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Zusammenfassung

Gruppierung unsicherer orientierter projektiver geometrischer Elemente mit
Anwendung in der automatischen Gebäuderekonstruktion

Die vollautomatische Rekonstruktion von 3D Szenen aus einer Menge von 2D Bildern war
immer ein Hauptanliegen in der Photogrammetrie und Computer Vision und wurde bisher
noch nicht zufriedenstellend gelöst. Die meisten aktuellen Ansätze ordnen Merkmale zwischen
den Bildern basierend auf radiometrischen Eigenschaften zu. Daran schließt sich dann eine
Rekonstruktion auf der Basis der Bildgeometrie an. Die Motivation für diese Arbeit ist die
These, dass es möglich sein sollte, die Struktur einer Szene durch Gruppierung geometrischer
Primitive zu rekonstruieren, falls die Eingabedaten genügend redundant sind.

Orientierte projektive Geometrie wird in dieser Arbeit zur Repräsentation geometrischer
Primitive, wie Punkten, Linien und Ebenen in 2D und 3D sowie projektiver Kameras, zu-
sammen mit ihrer Unsicherheit verwendet.

Der erste Hauptbeitrag dieser Arbeit ist die Verwendung unsicherer orientierter projekti-
ver Geometrie, anstatt von unsicherer projektiver Geometrie, welche die Repräsentation von
komplexeren zusammengesetzten Objekten, wie Liniensegmenten und Polygonen in 2D und
3D sowie 2D Edgels und 3D Facetten, ermöglicht. Innerhalb dieser unsicheren orientierten
projektiven Repräsentation wird ein Verfahren zum testen paarweiser Relationen zwischen
den verschiedenen unsicheren orientierten projektiven geometrischen Elementen entwickelt.
Dabei liegt die Neuheit wieder in der Möglichkeit, Relationen zwischen den neuen zusam-
mengesetzten Elementen zu prüfen.

Der zweite Hauptbeitrag dieser Arbeit ist die Entwicklung einer Datenstruktur, welche
speziell auf die effiziente Prüfung von solchen Relationen zwischen vielen Elementen ausge-
legt ist. Die Möglichkeit zur effizienten Prüfung von Relationen zwischen den geometrischen
Elementen erlaubt nun die Entwicklung eines Systems zur Gruppierung dieser Elemente.
Verschiedene Gruppierungsmethoden werden vorgestellt.

Der dritte Hauptbeitrag dieser Arbeit ist die Entwicklung einer neuen Gruppierungsme-
thode, die durch die Analyse der Änderung der Entropie beim Hinzufügen von Beobachtungen
in die Schätzung Effizienz und Robustheit gegeneinander ausbalanciert und dadurch bessere
Gruppierungsergebnisse erzielt.

Zum Schluss wird die Anwendbarkeit der vorgeschlagenen Repräsentationen, Tests und
Gruppierungsmethoden für die ausschließlich geometriebasierte Gebäuderekonstruktion aus
orientierten Luftbildern demonstriert. Es wird gezeigt, dass unter der Annahme von hoch red-
undanten Datensätzen vernünftige Rekonstruktionsergebnisse durch Gruppierung von geome-
trischen Primitiven erzielbar sind.



4

Abstract

Grouping Uncertain Oriented Projective Geometric Entities with Application
to Automatic Building Reconstruction

The fully automatic reconstruction of 3d scenes from a set of 2d images has always been
a key issue in photogrammetry and computer vision and has not been solved satisfactory so
far. Most of the current approaches match features between the images based on radiometric
cues followed by a reconstruction using the image geometry. The motivation for this work is
the conjecture that in the presence of highly redundant data it should be possible to recover
the scene structure by grouping together geometric primitives in a bottom-up manner.

Oriented projective geometry will be used throughout this work, which allows to represent
geometric primitives, such as points, lines and planes in 2d and 3d space as well as projective
cameras, together with their uncertainty.

The first major contribution of the work is the use of uncertain oriented projective geom-
etry, rather than uncertain projective geometry, that enables the representation of more
complex compound entities, such as line segments and polygons in 2d and 3d space as well
as 2d edgels and 3d facets. Within the uncertain oriented projective framework a procedure
is developed, which allows to test pairwise relations between the various uncertain oriented
projective entities. Again, the novelty lies in the possibility to check relations between the
novel compound entities.

The second major contribution of the work is the development of a data structure, specifi-
cally designed to enable performing the tests between large numbers of entities in an efficient
manner. Being able to efficiently test relations between the geometric entities, a framework
for grouping those entities together is developed. Various different grouping methods are
discussed.

The third major contribution of this work is the development of a novel grouping method
that by analyzing the entropy change incurred by incrementally adding observations into an
estimation is able to balance efficiency against robustness in order to achieve better grouping
results.

Finally the applicability of the proposed representations, tests and grouping methods
for the task of purely geometry based building reconstruction from oriented aerial images is
demonstrated. It will be shown that in the presence of highly redundant datasets it is possible
to achieve reasonable reconstruction results by grouping together geometric primitives.
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Chapter 1

Introduction

1.1 Motivation

The description of a depicted scene from images has always been the ultimate goal of pho-
togrammetry and computer vision. One important aspect of this task is the three dimensional
reconstruction of the visible world. Though a lot of progress has been achieved in recent years,
the problem of fully automatic reconstruction without human interaction is still unsolved for
a variety of important reconstruction tasks including the fully automatic building reconstruc-
tion from aerial images that has always received a lot of attention from the photogrammetric
community.

The availability of digital cameras that has taken place in recent years has decreased the
expenses for acquiring large amounts of images significantly. Hence, highly redundant sets of
high quality images have become available at very low cost and the potential impact of this
redundancy has only been recognized for the goal of full automation by few people in the
photogrammetric community so far (cf. Gruber et al. [2003]).

In addition to this more practical aspects, the research on the theory underlying the
geometry of multiple images has been very active in the last decade and much progress
has been achieved. Especially the work of Heuel [2004], who proposed a methodology for
reasoning about geometric entities in the presence of uncertainty, has influenced this work
very strongly.

The main motivation for this work is the conjecture that in the presence of highly redun-
dant data it should be possible to recover the complete scene structure by grouping together
geometric primitives without using the radiometric image content (see figure 1.1). It will be
exploited, how far a scene can be reconstructed by grouping together geometric primitives in
a bottom-up manner. Neither high-level prior knowledge nor radiometric information from
the images content should be integrated into this methodology, in order to show how much
the purely geometric information contributes to the results. It will be shown that reasonable
results are achievable by this purely geometric approach, strengthening the vital importance
of integrating this kind of information into every image matching procedure.

This work is structured as follows: First the relevant previous work in the areas of uncer-
tainty, projective geometry, algorithms, grouping, camera calibration, structure-from-motion,
feature extraction, feature matching and building reconstruction will be reviewed.

Next, the concepts of uncertain oriented projective geometry will be introduced. Rep-
resentations for various geometric entities including points, lines, planes, line segments and
polygons in 2d and 3d space are presented. It will be shown, how various relations between
those uncertain entities can be tested. The novelty lies in the additional relations between
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: Left: A highly redundant set of digital aerial images showing a single house. The
orientation and calibration of the images are known and indicated by the lines connecting
the four image corners with the projection centers. Right: The reconstruction obtained by
grouping the geometric primitives without using any intensity information from the images
for matching. This example, which will be picked up again in the last chapter of this work,
shows the importance of geometric (rather than radiometric) cues for feature matching.

the oriented uncertain entities that allow to represent additional compound entities, such as
line segments and polygons, in a unified and simple framework. Also a novel data structure
will be presented, which allows to efficiently perform those tests and enables the practical ap-
plication of the presented framework to large real world datasets. An empirical performance
assessment of the data structure will demonstrate its applicability and usefulness.

The third part will be concerned with grouping such uncertain oriented projective entities
together. The grouping problem will be formally stated and various useful tasks that could be
solved as geometric grouping problems will be presented. Four different grouping methodolo-
gies for solving the stated grouping problem will be presented. Especially the fourth method
based on analyzing the expected entropy increase in an incremental estimation presents a
major contribution of this work. The performance of all grouping methods will be compared
empirically for a synthetic data set with known ground truth.

Finally the applicability of the grouping methodology for the task of fully automatic
building reconstruction, more precisely the reconstruction of 3d points and 3d lines, from
oriented aerial images will be demonstrated. The differences between the results of the graph
based grouping approach and the entropy bound grouping approach will be discussed.

1.2 Previous work on fundamental theory

In this section some previous work on the fundamental theory underlying the contributions
of this work will be presented. First previous work on methods for dealing with uncertain
data, namely probability theory and information theory, will be discussed. Then the previous
work in the field of projective geometry will be reviewed. Some work on algorithms and data
structures related to the contributions of this work will be shown in section 1.2.3. Finally
the previous work on grouping will be presented in section 1.2.4.
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1.2.1 Previous work on uncertainty

The inherent uncertainty of the data must be considered as a key challenge in computer
vision. The rigorous treatment of this uncertainty has therefore received a lot of attention, as
it not only improves the results compared to ad-hoc methods but also makes the results more
explainable. It will be shown in this work, how the rigorous treatment of uncertainties not
only reduces the need for unexplainable thresholds, but also allows to derive new algorithms
through its analysis (cf. section 3.4.4).

Mumford [2000] makes the very polemic point that statistical rather than logical reasoning
will be even the future of mathematics itself. It is argued that the stringent logical reasoning,
which has influenced the thinking in modern science, is not leading to successful results and
that the modeling of uncertainty will become the scientific paradigm of the future.

For modeling uncertainty, there exist two important interrelated and supplementary con-
cepts, namely probability theory and information theory. The concepts must be considered
supplementary, as information theory is built upon probability theory, but its concepts are
extremely useful by themselves. The following two sections discuss some previous work on
each of those two subjects.

Probability theory

This section summarizes some previous work on probability theory that will be used in this
work to deal with the uncertainty of the measured geometric data. Though probability
theory has been recognized as being very useful in recent years, there had been a lot of
criticism on the applicability of probability theory for the task of reasoning from the artificial
intelligence community. Answering this doubts, Cheeseman [1985] defends the tools provided
by probability theory and argues that probability theory is the right tool for dealing with
uncertainty. Various criticism on Bayesian statistics from the artificial intelligence community
are tackled and it is argued that many forms of reasoning systems are reducible or inferior
to the use of probabilistic methods for the same task.

A very good textbook, which first introduced the basic concepts of probability theory
to a broader audience in the western world, is [Feller, 1968]. From this the whole field of
statistics, which is here seen as the sub-field of probability theory that is concerned with esti-
mating probabilistic models from observations emerged. In the geodetic context uncertainty
modeling and estimation techniques have always received a lot of attention with [Mikhail and
Ackermann, 1976], [Koch, 1997; 1988] and [Niemeier, 2001] being the most influential text
books for this work. Another important book in the field is [Kanatani, 1996], which explicitly
is about estimation techniques in the 3d computer vision context.

One particular important aspect of statistics is the estimation of parameters of a known
model from uncertain input data. In [Förstner and Wrobel, 2004] a broad overview over
the various estimation techniques in the photogrammetric context is given. Of particular
importance in this work (cf. section 3.4.4) is the incremental estimation also known as
Kalman-filtering. The tutorial [Welch and Bishop, 1995] gives an introduction to discrete
Kalman filtering that has received a lot of attention in the computer vision community. Also
the extended Kalman filter for non-linear processes is discussed there.
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While pure estimation is only concerned with small noise introduced by the measurement
process, fully automatic procedures often introduce a large amount of outliers into the data.
As the target of this work is the development of such fully automatic methods, outliers in the
data have to be dealt with. One aspect of dealing with outliers is known as robust estimation
that aims at fitting optimal models to the data even in the presence of such gross errors
in the observations that do not result from the measurement process itself but from other
uncontrollable sources of error. The book [Huber, 1981] is specifically about such robust
estimation techniques.

A very important robust estimation technique in computer vision that is also the basis
for the grouping algorithm presented in section 3.4.3 is known as random sample consensus
(RANSAC). It was introduced by Fischler and Bolles [1981]. The estimation procedure
presented there is as follows: a putative model is estimated from a minimal set of data points
and the remaining data points are used to validate this model. The process is iterated and
the best fitting model is retained. This procedure could also be used for grouping, as will be
shown in section 3.4.3.

Performance is always a vital issue that limits the applicability of the RANSAC grouping
method to small toy problems (cf. section 3.4.3). In [Matas and Chum, 2005] a method
is proposed to speed up the verification part of a RANSAC algorithm. Using a statistical
analysis of sequential decision making, the known percentage of outliers is used to derive an
optimal number of verification steps.

As pointed out before, Kalman filtering is at the core of the grouping technique presented
in section 3.4.4, where robustness is achieved through analyzing the expected entropy increase
of each update. A different path is taken by Vedaldi et al. [2005], who propose to increase the
robustness of Kalman filtering by applying a RANSAC-like inlier/outlier-selection for each
update. Every group of new observations is randomly divided into inlier and outlier and the
parameter update is computed. The inlier/outlier configuration that maximizes the posterior
probability is selected for the update.

While robust estimation in principle is only concerned with obtaining reliable estimates
in the presence of outliers, another important aspect of robust statistics is the detection of
outliers in the data itself. Though most robust estimation techniques solve also this outlier
detection task, it has a special relevance in the grouping context, because grouping can be
seen as partitioning the data subsequently into inliers and outleirs (cf. section 3.4.3).

The analysis of incremental parameter estimation techniques is the basis for the grouping
method presented in section 3.4.4 and was inspired by the following techniques for detecting
outliers.

In [Förstner, 1983] specifically the effect of undetected errors on estimation and statistical
hypothesis testing is analyzed. Multiple possible alternative hypothesis are considered and
the notion of probability of an error of third type is introduced, which reflects the fact that
the wrong hypothesis is selected among the multiple possible models.

Also in [Förstner, 1987] the effect of gross errors on an estimation depending on the
design is analyzed. Redundancy numbers are shown to describe the effect of a particular
observation on the result and are therefore very useful to decide, if an observation contributes
to the model. This approach is very similar to the information theoretic grouping method
presented in section 3.4.4 and yields very similar results.

Förstner [2001b] summarizes methods for analyzing the quality of an estimation system.
The quality measures that are all purely design dependent are determinability, controllabil-
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ity and locatability. Determinability is the instability of the design with respect to small
random errors, which can be analyzed using the expected covariance matrices. A measure
for comparing covariance matrices is proposed. Controllability is the possibility to detect
errors using hypothesis testing, which can be analyzed using the redundancy numbers of the
design as already proposed in [Förstner, 1987]. Locatability is the possibility to distinguish
between the influence of different groups of observations on the estimation result, which can
be analyzed using the off-diagonal elements of the hat-matrix. Though this latter aspect
looks promising for the task of grouping, none of the grouping methods presented in section
3.4 will exploit it, yet.

An application of the previous methods is presented in [Sester and Förstner, 1989], where
an algorithm for locating objects in images is discussed, which is based on the analysis of
the uncertainty of the image features. Not only the precision of the estimated parameters is
considered, but also the sensitivity. It is pointed out that bounding the precision from above
is not sufficient but that the sensitivity must be bound from below as well as from above,
too. This is because neither useless observations nor leverage observations should be taken
into account. This latter statement also holds true for grouping tasks, as has already been
noted by Förstner [1990], and will be the key for the information theoretic grouping method
presented in section 3.4.4.

The scope of all approaches discussed above is not the representation of the uncertainty
itself, although they all implicitly assume the uncertainty to be represented by the first two
moments of the probability distributions, which is in principle justifiably by a maximum
entropy argument. The suitability of this representation is studied by DeVore [2005], who
derived error probabilities for two-class hypothesis tests. It is argued that estimated moments
are well suited for decision making. In addition to the Gaussian approach, which uses only the
first two moments, another approach using the four parameter family of Johnson distributions
is presented, which turns out, in spite of the difficulty to estimated higher order moments, to
be better suited for low-dimensional problems. This approach will not be followed here and
only the first two moments are used.

Also Förstner et al. [2000] use the first two moments of distributions of geometric enti-
ties, which will be done extensively here, too. The Grassmann-Cayley algebra on projective
geometric entities is connected with error propagation and statistical hypothesis testing. The
construction of uncertain points, lines and planes in 2d and 3d and the statistical test between
those entities are described that are the basis for the representations presented in section 2.1
and test presented in section 2.2.

In [Heuel, 2004; 2001] a method for the optimal estimation of points, lines and planes is
described in addition to the representations and tests presented in [Förstner et al., 2000]. The
homogeneous representation of the entities together with their covariances is advocated, since
all occurring constructions are bilinear in the entities, enabling a simple and rigorous error
propagation. The Gauss-Helmert model in conjunction with initial values obtained from the
minimum of the algebraic distance, which can easily be computed using a SVD, is proposed
for the estimation task. The analysis of this specific estimation technique is the basis for the
grouping method presented in section 3.4.4.

The works [Förstner, 2001a; 2001c] present an alternative method for the optimal esti-
mation of such statistical uncertain geometric entities. The bi-linear relations between the
entities together with their covariances are integrated into the formulation of an eigenvector
problem, which then needs to be solved iteratively. This approach is not followed here.



12 CHAPTER 1. INTRODUCTION

Perwass et al. [2005] extend the notions of the uncertain projective entities presented in
[Förstner et al., 2000] toward circles and spheres using the geometric algebra of conformal
space. The resulting linear constraints are applicable for estimation, error propagation and
statistical testing in the same framework. Therefore those entities straightforwardly fit into
the concepts presented in this work as well, but are not exploited any further so far.

The apparent ease of representing uncertain geometric entities using the first two moments
of a distribution in projective space, which is also the approach in this work, comes at a price.
As will be discussed in detail in section 2.1, the scale ambiguity in projective space requires
to fix a gauge scale in order to achieve uniqueness of the representation. This has been
studied by Kanatani and Morris [2001], who discuss the problem of a unique description of
uncertainty under varying gauge transformations, i.e. the problem that the covariance matrix
changes under different equivalent transformations in over-parameterized estimations. The
proposed solution is to normalize the entities to a fixed reference gauge and compare the
normalized covariance matrices instead. This has also been studied by Heuel [2004].

Morris et al. [1999] discuss the effect of gauge constraints on the uncertainties derived from
a bundle adjustment. It is pointed out that using the Moore-Penrose inverse of the normal
equation matrix gauge constraints are not required to obtain a solution. It is conjectured
that therefore the result gives an unambiguous measure for the solution uncertainty. This
idea is not follow here, as the gauge constraints are usually known and should be exploited
fully in order to obtain stable results.

Kanatani [2004] discusses the measurement uncertainty of image feature operators and
its impact on geometric reasoning and model selection. It is pointed out that geometric
inference requires statistical modeling. Furthermore it is shown, how the asymptotic behavior
of geometric inference for noise going to zero is related to the asymptotic statistical analysis
for sample size going to infinity. This is a very desirable property which justifies the chosen
representations of uncertain entities.

Other authors have studied uncertain projective geometric entities as well and should
be mentioned here. For instance Criminisi et al. [1999] analyze the uncertainty of the
2d homography. It is shown, how point measurement errors affect the uncertainty of the
homography and vice versa. By analyzing the second order error propagation it is shown
that first order approximations, which are made throughout this whole work, are usually
sufficient.

In [Csurka et al., 1997] the uncertainty of the fundamental matrix is addressed. The
fundamental matrix is re-parameterized in order to obtain a full-rank covariance matrix,
which is then derived using error propagation. In [Zhang, 1998] also several estimation
techniques for the fundamental matrix are reviewed.

In [Begelfor and Werman, 2005] it is argued that a degenerate normal distribution of
the nine parameters of a planar homography is not an adequate probabilistic model for
a transformation. Instead another family of distributions is proposed, which exploits the
properties of the transformation group and shows a much better performance in Monte-Carlo
simulations as well as object recognition. This path is not followed here.

Thus far previous work on uncertain projective base entities has been presented. The
idea of uncertain compound entities (cf. section 2.1) occurs in [Shi, 1998], which proposes a
representation of uncertain line segments. The idea is to describe the two end-points with its
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mean and covariance matrix assuming a Normal distribution. Each point between the two
end-points is now considered as a mixture of those two Gaussians and the confidence region
of the line segment is defined as the union over all confidence regions on the segment. In
[Shi and Liu, 2000] the approach is extended to allow correlated end-points. In contrast to
this, the uncertain line segments are composed of oriented projective entities in section 2.1
allowing easier reasoning and estimation using the methods of Heuel [2004; 2001].

Thus far the previous work on probability theory and statistics, which is concerned with
the optimal and robust estimation of parameters, has been presented. The previous work on
probabilistic methods, which enable the detection of outliers, was reviewed as well as the work
on representing uncertain geometric entities. The work on this uncertainty representations
included the study of the impact of projective gauge freedom on the uncertainty as well as
previous work on compound entities.

Information theory

In the following some previous work in information theory will be reviewed.
The field of information theory was spawned by the classical paper [Shannon, 1948], which

addresses the information content of messages and their compressibility. The central quantity
of this theory is the entropy, which captures a notion of degree of randomness that will turn
out to be very helpful for grouping decisions in section 3.4.4, where the entropy is the central
quantity for decision making as well. Therefore some previous work on information theory
will be reviewed in the following.

A very good textbook in the field of information theory is [Cover and Thomas, 1991], which
introduces all information theoretic notions required in this work in a very clear manner.
Also the statistics book [Kagan et al., 1973] discusses information theoretic quantities to
characterize probability distributions.

The role of information theory in the context of photogrammetry has already been iden-
tified by Förstner [1989], who sketched the impact of information theoretic quantities on
some image analysis techniques. Specifically the extraction and matching of image features
is viewed in a unifying information theoretic framework.

The importance of information theory in the grouping context is the possibility to quantify
some notion of simplicity. Chater and Vitanyi [2003b] give an overview of the role of simplicity
in the whole field of cognitive science. It is pointed out that this notion is a unifying factor
between the research on patter recognition, information theory, statistics and psychology.

More specifically toward the grouping problem Chater and Vitanyi [2003a] discuss the
connection between psychological generalization, i.e. the fact that two items are perceived as
belonging to the same group, and the information theoretic notion of Kolmogorov information
distance. As both notions are not computable, the discussion is on a fairly philosophical level,
although an exponential functional relation between both is stated.

Being much more specific and devising an actual working algorithm, Rissanen [1985]
introduces the concept of minimum description length (MDL), which estimates a model of the
data based on a given encoding. The close relation between maximum-likelihood estimation



14 CHAPTER 1. INTRODUCTION

and minimum-length encoding is exploited. The main advantage of the MDL approach is
the possibility to estimate the parameters as well as their number in an unified manner. The
MDL principle is also a key concept in the grouping context, as optimal groupings should
allow a compact description using a group model for each group and a group membership
for each observation. This idea will be captured in detail in the definition of the grouping
problem presented in section 3.2.

The problem of optimal model selection, which is of vital importance in any grouping task,
is discussed by Torr [2002], who studies the connection between Bayesian model estimation
and model selection. A RANSAC-like procedure for MAP-estimation is proposed. Further-
more it is pointed out that classical hypothesis testing is not very well suited for deciding
among different models. Instead the use of information theoretic quantities is advocated. In
[Torr, 1997] this generic framework is applied to the problem of deciding on a correct motion
model between an image pair.

The minimization of description length is also the goal of Davison [2005], who analyzes
the effect of a Kalman update on the mutual information. In contrast to [Beder, 2005] (also
presented in section 3.4.4) it is proposed to choose measurements, which decrease the entropy
most, yielding the largest reduction of description length in each step. This leads fastest to
the most accurate estimation in the case that there are no outliers. In the presence of outliers
this decrease has to be controlled more carefully, which is one of the major contributions of
section 3.4.4.

One shortcoming of the MDL principle is that it is dependent on the actual encoding.
Invariance against encoding could be achieved theoretically by minimizing the description
length over all possible encodings. This invariant quantity is called Kolmogorov complex-
ity, which is obviously practically not computable. Grünwald and Vitanyi [2003] discuss the
relation between the concepts of Kolmogorov complexity and the concepts of information
theory. It is pointed out that universal coding, which is the basis for nearly all data compres-
sion methods, bridges the gap between the two concepts, meaning that finding the optimal
representation for the data and determining the generative process underlying the data is
essentially the same. In [Grünwald and Vitányi, 2004] those concepts and their relations are
extended to the concepts mutual information and sufficient statistics, both in the classical
probabilistic version and in the Kolmogorov algorithmic version.

Also Vitanyi [2004] discusses an algorithmic, in contrast to a probabilistic, approach to
model selection. The notion of typicality of data is defined in an algorithmic manner and
bounds in terms of Kolmogorov complexity are derived. It is argued that this quantity is
closely related to minimum-description-length and also maximum-likelihood-estimation with
a finite restriction on the model complexity. This algorithmic path is not taken here, though.

In contrast to the ultimate goal of minimizing the description length robust algorithms
should be very careful to do so, as greedy strategies could lead to very bad results. Hence,
algorithmic decisions should be designed, such that as few restrictions as possible are imposed
on the future. In [Jaynes, 1982] this notion is formalized and the idea behind the maximum-
entropy inference is discussed. Therefore a theorem is presented that states that under
certain assumptions the majority of probability distributions, which could have generated a
finite data set, must have an entropy close to the maximum entropy distribution.

This seeming contradiction between the simultaneous requirement to minimize and to
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maximize the entropy can be resolved as follows: Obviously the final MDL result should
have minimal entropy amongst all solutions. On the other hand leverage points significantly
decrease the entropy, so that greedy optimization strategies get trapped in local minima of
the description length. Therefor one has to trade efficiency against robustness, which will be
detailed in section 3.4.4, in order to get satisfactory results in the presence of leverage points.

Grünwald and Dawid [2004] relate this maximum entropy approach and the robust Bayesian
decision theory in a game theoretic setting. It is shown that maximizing the entropy and
minimizing the worst-case expected loss are essentially different approaches for solving the
same problem. This shows, how maximum entropy methods and robust estimation, which
has been identified as closely coupled with the grouping problem in the previous section, are
related.

Also Grünwald and Halpern [2004] argue against the common sense that using all available
information is sometimes not the best choice. Some examples are presented, where a non-
informative prior in connection with small sample sizes yield worse predictions than just
ignoring certain given information. It is pointed out that in the context of maximum entropy
inference this phenomenon does usually not occur, because here uninformative data is ignored,
too.

Trading efficiency against robustness is also a topic of Brand [1999], who relates the con-
cepts of entropy minimization, free energy minimization and posterior maximization. The
prior in the MAP estimation is augmented with a temperature term leading to the max-
imum entropy approach of deterministic annealing for minimizing the overall entropy, i.e.
discovering the structure in a robust and efficient way, which is the goal in every grouping
task.

In this section some previous work on information theory has been summarized. The
unifying concept of simplicity, quantified by the entropy as a measure, is identified as the
basis for the work on minimum description length and optimal model selection. Some work
on the algorithmic notion of Kolmogorov complexity, which tries to overcome the major
disadvantage of MDL to select a specific encoding, were reviewed. Finally, some previous
work on maximum entropy methods, which trade efficiency against robustness in the presence
of outliers and leverage points, has been presented.

1.2.2 Previous work on projective geometry

This work is concerned with projective geometric entities, as they present an easy method
for dealing with projective transformations, which frequently occur in the imaging process.
This has also been realized in the early textbook by Blaschke [1948]. In this section some
previous work on projective geometry, which has not already been discussed in the previous
section on uncertainty, will be presented. Especially the previous work on oriented projective
geometry in the computer vision context, which is subject of this work, will be reviewed.

A textbook that introduced the concepts of projective geometry into the field of computer
vision is [Faugeras, 1993]. The book [Hartley and Zisserman, 2000] gives a comprehensive
and consolidating overview over the field of projective geometry in computer vision and must
be considered today as the most important book in this field. Faugeras and Luong [2001]
review the field in their book from a more theoretical point of view and give more details
about the underlying Grassmann-Cayley algebra.

An introductory overview on the topic of multi view geometry could now be found in many



16 CHAPTER 1. INTRODUCTION

computer vision books such as [Heyden and Pollefeys, 2004], as the topic is now considered
as one of the fundamental aspects in the field. The geometry of the imaging process also has
been a key issue in photogrammetric research for many decades and Mugnier et al. [2004] give
an introduction to the topic of multiple view geometry for the photogrammetric community.
The ideas and much of the notation of this and the related work by Heuel [2004] were very
influential to this work.

An interesting unifying theoretical framework of multi-view geometry, which has not
received much attention in the textbooks mentioned above, is proposed by Triggs [1995b;
1995a], who proposed the concept of the joint image. The basic idea is to consider the
space resulting from stacking all projective image spaces into one single product space. It
is shown that all matching constraints between the images are expressible in terms of three
dimensional linear subspaces of the joint image space. Those linear subspaces allow to apply
the techniques from Grassmann-Cayley algebra and contain the well-known epipolar-, the
trifocal- and the quadrifocal-constraints.

This work is mainly concerned with oriented projective geometry, as it allows to represent
and reason about a much richer class of entities (cf. section 2.1 and section 2.2). The notion
of oriented projective geometry was introduced by Stolfi [1991], who extended the notions
of projective geometry toward oriented projective geometry, which allows to check signs and
therefore augments the concept with many useful new possibilities as shown in section 2.2.

The implications of orientation on the imaging process were studied by Hartley [1998],
who introduced the concept of so-called chirality, which captures the very reasonably idea that
all points must lie in front of each camera. The notion is introduced in an oriented projective
framework and it is shown that not only a projective but a quasi-affine reconstruction of a
scene from a pair of uncalibrated images is possible. This quasi-affine reconstruction has the
important property that the position of points with respect to a plane stays invariant, i. e. not
only ”incidence”relations but also ”above”and ”below”relations are preserved. How this kind
of relations in an uncertain oriented projective framework are testable is a major contribution
of this work and will be presented in section 2.2. Also note that the result of [Hartley, 1998]
implies the applicability of the uncertain oriented projective framework presented here to
uncalibrated images (cf. section 1.3.1 for some limitations of this statement). The same
idea has also been published by Pajdla et al. [1998], who introduce the notion of oriented
projective reconstruction. They describe, how, by enforcing all scene points to be in front
of the camera and the plane at infinity not to intersect the convex hull of the reconstructed
scene points, not only a projective but an oriented projective reconstruction is obtainable
from uncalibrated images.

The advantages of an oriented projective framework are manifold. In addition to the richer
set of testable relations between the entities presented in section 2.2, other possibilites gained
from the use of oriented projective geometry have been studied and should be mentioned
briefly. For instance Werner and Pajdla [2001a] discuss the epipolar geometry constraints
in an oriented projective framework. In [Werner and Pajdla, 2001b] this is extended toward
matching constraints between multiple images. The necessary modifications to the projective
multi-view matching constraints are presented that allow to rule out certain impossible con-
figurations. In [Werner, 2003] it is shown that in the oriented projective framework even five
matching points between an image pair, instead of eight, have to obey certain constraints.
This ideas are not followed any further here, as the calibration is usually assumed to be given
(cf. section 1.3.1).
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This section summarized some previous work on projective geometry that is not explicitly
focused on uncertain entities. Especially the previous work on oriented projective geometry,
which is a major building block of the contribution of this work, and its implications in the
computer vision context has been reviewed.

1.2.3 Previous work on data structures and algorithms

The vast increase and cheap availability of computational power in recent years has facilitated
many new techniques to become applicable. However, the transition from small toy problems
toward the ability to cope with huge real-world datasets is still a major challenge, which has
not been very popular within the computer vision research community. One contribution of
this work is a search tree data structure, which enables the testing of uncertain relations in
an efficient manner (cf. section 2.3). Hence, some previous work on such related search tree
data structures will be reviewed in the following.

Another aspect of computational efficiency is the question of complexity. In section 3.4.2
a grouping method based on the partition into cliques of a graph will be presented, which is
a problem known to be NP-hard. Therefore some work on this topic will be reviewed here as
well.

Search trees

First some literature on the topic of search trees will be reviewed.
The most influential textbook for this work on algorithms and data structures is [Cormen

et al., 1990], which gives a broad introduction into the whole field of algorithms includ-
ing search tree data structures and graph algorithms. Furthermore the classical textbooks
[Knuth, 1998a] and [Knuth, 1998b] give a very detailed introduction to the field of search
trees.

Many databases use a data structure known as B-trees, which have been introduced by
Bayer and McCreight [1972]. It is shown, how insertion, deletion and search of elements can
be performed with logarithmic complexity. The insertion and deletion strategies of the data
structure presented in section 2.3 are adopted from this, so that the depth of the tree is
guaranteed to be logarithmic here as well.

Also based on the B-tree Guttman [1984] proposed the R-Tree data structure, which, using
bounding boxes, allows to efficiently insert, delete and search for objects with a spatial extend.
In [Beckmann et al., 1990] some more sophisticated tree management strategies are proposed,
which further decrease the expected running times. The ideas from this data structures,
namely using a necessary condition for each descendant, inspired the data structure presented
in section 2.3, though more sophisticated necessary conditions than bounding boxes are used
to enable any bi-linear statistical hypothesis tests as queries. In [Beder, 2004a] this data
structure, presented in section 2.3, together with the representation of line segments in 2d
and 3d, presented in section 2.1, and their tests, presented in section 2.2, have been first
published.

An alternative search tree for spatial data has been proposed by Finkel and Bentley
[1974], who introduced the so-called quad-tree. This data structure is based on subdividing
the whole space into smaller portions and putting an element of a certain spatial extend
into any such overlapping portion. This is in contrast to dynamically adopting the bounding
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boxes like in [Guttman, 1984], so that it is less suited for generalized necessary conditions.
Therefore this path has not been followed here.

The query performance of spatial search trees mainly depends on the statistical properties
of the data. There exists for instance queries that have the whole database as a result set, so
that no index structure is able to increase the query performance. The empirical evaluation
of the data structure presented in section 2.3.4 shows only a linear rather than a logarithmic
performance increase caused by the selectivity of the queries. A case study on the statistics
of ”typical”line segment datasets is carried out by Proietti and Faloutsos [1998], who study
the selectivity of queries for real world line segment datasets. It is conjectured that line
orientation angles are distributed uniformly, while line segment lengths follow a Poisson
distribution, which has to be taken into account, when indexing large line segment datasets.
The conjecture is verified on large GIS datasets of road and river networks. No such knowledge
has been exploited for optimizing the data structure presented in section 2.3 so far, though.

Complexity

Now some literature on complexity theory and specifically the clique partition problem, which
occurs in section 3.4.2 and is known to be NP-hard will be reviewed.

The underlying theory of NP-completeness is developed in the classical textbook [Garey,
1979] for decision problems, which introduced a well-known and often cited list of NP-
complete problems, where the specific problem of clique partition occurs as GT15 on page
193.

Paz and Moran [1981] extended the theory of NP-completeness toward optimization
problems and introduced the notion of non-deterministic polynomial optimization problems.
Those problems are not decision problems like the class of the NP-complete, but share the
same discouraging runtime properties. Amongst others, the clique cover problem is shown to
belong to this class and that it is equivalent to the colorability problem on the complement
graph. Hence, some approximation has to be applied to solve the clique partition problem
occurring in section 3.4.2.

The textbook [Ausiello et al., 1999] describes various paradigms and techniques to cope
with NP-completeness and gives an introduction to the field of approximation algorithms.
Some of the techniques presented there have been applied in section 3.4.2 to find a good
solution for the occurring clique partition problem.

The ad-hoc methods proposed in [Ausiello et al., 1999] could be expected to be out-
performed by approximation schemes specifically tailored for the clique partition problem.
Khuller [1997] gives a broad overview on the state of the art of polynomial time approxima-
tions for finding minimum weight spanning subgraphs of a desired connectivity. Many special
cases are discussed and results mainly for small connectivities are presented. [Khuller and
Raghavachari, 1996] tackle the problem of finding spanning subgraphs with a given connec-
tivity requirement. It is pointed out that the problem is NP-hard for any connectivity greater
than one, but a polynomial-time approximation algorithm is presented.

Also the work [Goldschmidt et al., 1996] is about the covering of a graph with cliques
of a given size. It is shown that this problem is NP-hard for all clique sizes greater than
three. Approximation algorithms for the clique size of three and four are given, as well as an
approximation algorithm for arbitrary clique sizes. However, the heuristics applied in section
3.4.2 seem to be well suited for the specific graphs encountered, so that this rather theoretical
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results have not been followed up here.

This section reviewed some previous work on search trees relevant to the data structure
presented in section 2.3 as well as some previous work on the complexity of the clique partition
problem. Besides the literature on the complexity of the clique partition problem itself also
some work on the approximation algorithms for this specific problem has been reviewed.
However, none of the proposed methods are applicable to the practical relevant cases occurring
in section 3.4.2, where the ad-hoc heuristics turned out to be most successful.

1.2.4 Previous work on grouping

Grouping has been a key issue in computer vision from the very beginning and is also the
central topic of this work. The classical book [Marr, 1982], which is often considered to
spawn the whole field of computer vision itself, propagates an image processing pipeline that
is able to interpret a scene by stepwise grouping and aggregation of information. Today
perceptual organization is a subfield of computer vision by itself and some previous work will
be reviewed in the following. However, grouping, as understood in this work, goes beyond
the pure aggregation of image features and includes the whole field of identifying significant
structure in observed data, which is now known by the key words data mining, unsupervised
learning or clustering. Also some work in this area will be reviewed in the following.

Perceptual organization

As mentioned, an important subpart of grouping in computer vision is known as perceptual
organization, which is specifically about grouping together low level image features that is
conjectured to take place in the human visual system. The classical textbook in this domain
is [Lowe, 1985]. Also the textbook [McCafferty, 1990] is about perceptual grouping developed
after the human visual system.

A more recent overview on the current state of the art in perceptual grouping is given by
Boyer and Sarkar [1999]. The work in the field is classified according to the level of detail
considered and the dimension the algorithms operate on. It is pointed out that most previous
work on grouping up to now is in the 2d image domain. The grouping tasks presented in
section 3.3 include some 2d reasoning, but the focus of this work is grouping in 3d targeted
on the application of 3d building reconstruction.

Some frameworks for the task of perceptual grouping have been presented in the literature.
Those frameworks can be classified as voting based grouping methods, energy minimization
grouping methods and hypothesize and verify grouping methods. In the following the some
previous work classified according to those categories will be presented.

Voting based methods: A classical voting based grouping method is known as Hough-
transform. Illingworth and Kittler [1988] review the state of the art in grouping based on
this classical technique, where for each observation all possible group models in a discrete
parameter space are computed. Those group models, which are supported by most observa-
tions, are then selected. Hough-transform suffers from the problem that the whole parameter
space has to be discretized, which becomes intractable, if the dimension of this space is large.
Therefore it is no longer used widely today, as better grouping techniques are available.
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One of those better techniques, which is still voting based, is the prominent tensor voting
framework, which is presented in detail in the textbook by Medioni et al. [2000].

The first publication of this framework is [Guy and Medioni, 1996], which describes a
method for the inference of perceptual contours from local features. For each edgel an ex-
tension field is considered, where it votes on the existence of a contour of a certain direction.
Each pixel therefore collects direction votes from different edgels and a consistency measure
based on the structure tensor of the voting field is applied to decide, where dominant di-
rections are present. Those positions together with the dominant direction are then also
considered as edgels, so that the contours are closed.

In [Guy and Medioni, 1997; Medioni et al., 2000] this tensor voting concept is extended
to the 3d case, where in addition to linear features also plane-like features are detectable.
Schuster [2004] showed the applicability of this approach to LIDAR data. In [Tang and
Medioni, 2002] the approach is extended toward curvature estimation by using the inferred
dominant directions in a second voting phase.

The tensor voting framework is in principle very similar to the grouping procedure pre-
sented in section 3.4.4, because it constitutes an agglomerative grouping procedure that
aggregates features based on a combined similarity and proximity measure. The approach
presented in section 3.4.4 goes beyond the tensor voting framework, though, as it is not re-
stricted to specific geometric entities (such as edgels) and allows the grouping to be based on
arbitrary functional group models.

Energy minimization methods: A second alternative grouping framework, which
has been described by McCafferty [1990], is based on energy minimization. The idea is
to penalize unlikely groupings with a high energy and obtain a minimum of this energy
functional. Also Ommer and Buhmann [2003] present a framework for perceptual grouping
based on energy minimization. The costs of grouping two entities together for various Gestalt
laws are proposed and assuming a hierarchical grouping structure an overall energy function
is given. It is proposed to minimize this energy function in a greedy manner, yielding an
agglomerative grouping algorithm.

Another method, which is very similar to the approach presented in [Ommer and Buh-
mann, 2003] and also based on pairwise potentials, is given by Crevier [1999], who describes
an algorithm for grouping co-linear line segments. First a connectivity matrix based on a
pairwise co-linearity criterion is computed. For each connected component of the graph in-
duced by this adjacency matrix a probability of being in fact a larger segment is computed
and used to decide, if it should be kept as group. The optimization differs from approach
of [Ommer and Buhmann, 2003], as those groups of segments are then re-inserted into the
procedure as single segments and the process is repeated until all segments are found.

Because the energy of such a system is directly related to an encoding of the data, those
energy minimization techniques can be seen as minimum description length algorithms. The
algorithm presented in section 3.4.4 minimizes the entropy of the system, which is directly
related to the description length, so that the same goal is achieved. However, the minimiza-
tion is controlled in order to prevent the optimization to get trapped in local minima, as
could be expected for the greedy optimization proposed in [Ommer and Buhmann, 2003].
This controlled minimization effectively enforces a notion of proximity while the entropy
minimization enforces similarity, which shows the connection between the computational
framework of Medioni et al. [2000] and the energy minimization framework of McCafferty
[1990].

Hypothesize and verify: A third common technique often encountered in perceptual
organization is the so-called hypothesize and verify paradigm, which are based on generating
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grouping hypothesis and verifying them according to some measure. The first aspect of this
technique, namely the generation of good hypothesis, is conjectured to be best solved by
perceptual grouping by Kim and Nevatia [1999], though the authors do not give any details.
Instead the general need for grouping evidence in order to generate higher level hypotheses
in the context of the hypothesize and verify paradigm is formulated. Several methods for
combining evidence, including neural networks and Bayesian networks, are discussed. It is
pointed out that those more rigorous methods are superior to the ad hoc methods usually
used for building reconstruction. This is in complete accordance with the results obtained in
chapter 4.

How hypothesis generation can be performed is addressed for instance by Clarke et al.
[1996], who present an approach for finding line segments in images using RANSAC. The
focus of the paper is on the efficiency required for real-time applications. Therefore a small
region of the image is extracted and divided into a regular grid. On this grid edgels are
extracted and a RANSAC procedure is applied to find larger groups among this edgels. Also
the prediction of lines from two oriented views into a third for the task of tracking is sketched
briefly. This approach is very similar to the RANSAC grouping method presented in section
3.4.3. The problem of enforcing proximity, which has been encountered explicitly in the tensor
voting approach and implicitly in the energy minimization approach, is solve in [Clarke et
al., 1996] through the use of a small window in the beginning, though the choice is motivated
by the performance requirement there.

The RANSAC approach for grouping has also been used in [Beder and Förstner, 2006a;
2006b] for the task of finding cylinders in point clouds. The problem of proximity has not
been addressed there, although it had been one of the major challenges.

Estrada and Jepson [2004] go even further in hypothesis generation and describe a group-
ing procedure for image line segments based on completely searching the space of all possible
contours. Starting from a single line segment, more segments are added based on an affinity
score. If the end of a contour is reached, the algorithm backtracks, so that in principle a
heuristic search on all possible contours is performed. It is stated that the branching factor is
controllable low on real images for the proposed affinity measures. This path of backtracking
and complete searching is not followed here.

The second aspect of the hypothesize and verify paradigm, namely the rigorous verification
of hypothesis, in the grouping context is the topic of [Heuel and Förstner, 2001]. There the
statistical hypothesis test presented in [Förstner et al., 2000], which constitute also the basis
for the tests presented in section 2.2, are used as a similarity measure for a reconstruction
method based on the grouping of uncertain 3d lines using a hypothesize and verify procedure.

The usefulness of statistical hypothesis testing for the task of grouping has already been
demonstrated by Utcke [1998], who used rigorous error propagation and statistical hypothesis
testing for grouping 2d edgels into straight lines in images.

It is pointed out in [Heuel and Förstner, 2001] that for the grouping procedure to work
properly some notion of proximity between the line segments needs to be applied, which is
not explicitly given in the paper. The central importance of this issue for the task of grouping
has already been discussed above in the context of the tensor voting framework. One possible
rigorous solution for the proximity problem in the framework of statistical hypothesis testing
is the entropy based grouping method presented in section 3.4.4, which uses an information
theoretic similarity as well as an information theoretic proximity measure derived from the
statistical hypothesis tests for evaluation.

Another idea for solving this problem is the use of uncertain oriented 3d line segments,
presented in section 2.1, instead of uncertain 3d lines. This idea has been proposed by by
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Zhang and Faugeras [1994], although no statistical but geometric distances are used there.
The grouping method used in [Zhang and Faugeras, 1994] is very similar to the graph theoretic
grouping method presented in section 3.4.2, as clusters of line segments are identified by
searching cliques in the graph defined by pairwise distances. This has also been used in
[Beder, 2004b], where uncertain line segments were matched across multiple oriented images.
In contrast to the work of Zhang and Faugeras [1994], rigorous statistical hypothesis testing
was used there.

The previous three frameworks focus on solving some given perceptual grouping problem
itself. On a more abstract level Mohan and Nevatia [1992] present a whole perceptual grouping
system. Grouping is viewed as a hierarchical process that starting from low-level-features
aggregates structure based on certain criteria into higher level structures, which, again, can
be grouped on this higher level. Certain criteria for some levels of aggregation derived from
the laws of Gestalt psychology are presented. It is pointed out that those image-based criteria
should be invariant to the change of viewpoint and exploit some scene structure. This high
level view on the grouping problem is not adopted here, though it would of course be useful
to integrate the presented grouping steps into an overall system, too.

Other authors have presented hierarchical grouping schemes, too. For instance Venkateswar
and Chellappa [1995] proposed a hierarchical matching scheme for finding feature correspon-
dences between two images. In a first step a hierarchical feature graph consisting of lines,
vertices and surfaces in the image is constructed. Beginning at the highest level those graphs
are matched between the images using various topological, geometric and perceptual criteria
for guiding the search process.

Also Lang and Förstner [1996] proposed a hierarchical grouping framework for recon-
structing polyhedral objects from multiple images by aggregating features. It is pointed out
that a transition into object space at an early stage of processing is crucial, because much
more information is available there. This idea is adopted in chapter 4, were the transition
into 3d space is performed directly after the feature extraction and all reasoning is performed
in the 3d domain. The method presented in [Lang and Förstner, 1996] works by matching
the feature adjacency graph between the images using the relational matching techniques
proposed in [Vosselman, 1992] and then aggregating the resulting 3d corners into higher level
structures by using specific scene constraints. This is in contrast to the method used in chap-
ter 4, where the matching itself is performed using the grouping approach. The subsequent
processing of 3d corners into higher level structures is also not the topic of this work.

While the previous work presented in this section so far is focused on the presentation
of grouping paradigms, some authors focus on specific geometric entities instead. The most
prominent of this geometric entities in the field of perceptual grouping are image line seg-
ments, which also have been discussed by many works reviewed above and do not require
any special attention here. However, other target models have been used, too, and will be
mentioned briefly in the following.

For instance Zisserman et al. [1995] discuss some criteria for grouping pixels in images
based on the depicted object class. The three classes considered are surfaces of revolution,
pipes and polyhedra, each yielding different internal constraints useful for the task of group-
ing.

Van Gool et al. [1998] discuss the usefulness of planar homologies for geometry based
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grouping. Two examples for the usefulness are given: shadows of planar structures are related
to this structure by a planar homology as are all extruded surfaces, which occur very often
in man-made environments.

Also Schaffalitzky and Zisserman [1998; 2000] are concerned with planar structures. They
present an approach for grouping repetitive structures in images, which occur on planar
surfaces. The image-to-image homography resulting from a translation on the world plane
is derived. It is shown how it depends on the two parameters for the vanishing line, one
parameter for the translation direction and one parameter for the translation magnitude. A
RANSAC based estimation of this four parameters is used to identify the repetitive structures
in the image.

In [Kosecka and Zhang, 2005] a method for finding rectangular structures in an image is
proposed. Edgels are grouped together yielding dominant vanishing points, which are then
used to identify rectangles in the image. A method for recovering the pose of the camera
with respect to the world plane defined by the rectangle is given, too.

This section reviewed some previous work on perceptual grouping. Three different par-
adigms have been identified and examples for those paradigms were presented. Then some
work on grouping systems has been presented and a hierarchical grouping approach was
identified as very useful for building a grouping based image analysis system. Finally some
previous work focusing on specific object classes for grouping has been presented.

Clustering

While the perceptual grouping approaches, presented in the previous section, all focused on
image primitives and sometimes on geometric space primitives, grouping can be seen in the
much broader context of data analysis, where it is a key task, to identify observations that
somehow belong together. The classical textbook in the field of pattern recognition is [Duda et
al., 2001], which gives a very broad overview into the field. Of special interest in the grouping
context (as defined in section 3.2) are the so-called unsupervised or clustering methods. Those
methods require no training data and divide the data into subsets having common properties,
which is basically the same task defined as grouping in section 3.2. The major difference to
the grouping task presented here must be seen in the existence of a specified target group
model, so that grouping can be interpreted as a sub-problem of clustering. An additional
difference of clustering to the perceptual grouping tasks presented in the previous section
can be seen in the fact that clustering is not limited to geometric observations. However, the
grouping problem defined in section 3.2 is in principle not restricted in this sense, either. Two
other textbooks in the domain of pattern recognition that influenced this work are [Ripley,
1996] and [Mitchell, 1997].

The importance of minimum description length has already been stressed in section 1.2.1.
As already mentioned there, this technique is of vital importance for many data analysis tasks,
especially in the absence of other information. For instance Kontkanen et al. [2004] present
a MDL framework for data clustering. Grouping objects is achieved by using as much group
structure as possible, which is expressed by the maximal possible compression of the data.
The normalized maximum likelihood code estimated from the data is used for compression,
yielding a natural choice of the model complexity term for a given model parameterization.
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This approach however, like every pure clustering approach, does not exploit any target group
model, which is the major difference between clustering and the grouping problem presented
here.

In contrast to this, knowledge of target groups is used in [Beder, 2005], where a framework
for grouping observations is proposed, which balances the entropy minimization approach
of MDL with the maximum entropy inference paradigm. By analyzing the Kalman filter
update equations, the entropy change incurred by including a new observation into a group
is quantified. An analogy to statistical hypothesis testing is established and bounds on the
admissible entropy updates are derived. The ideas presented in [Beder, 2005] are very closely
related to the information theoretic grouping approach presented in section 3.4.4. The major
difference is the use of an explicit functional model instead of the implicit functional model
presented in section 3.4.4.

Also Kemp and Drummond [2005] exploit a functional target model by proposing a
method for grouping observations based on a rank analysis of the normal equation matrix. It
is stated that usually the normal equation matrix is sparse, i.e. certain groups of parameters
only depend on certain groups of observations. By partitioning the normal equation matrix
into those groups, the efficiency is increased, because the subgroups can be treated indepen-
dent from each other. This again shows the close connection of grouping to the redundancy
numbers, which also can be observed in section 3.4.4.

Other clustering techniques are purely based on the pairwise distances between the ob-
servations. For instance Hofmann and Buhmann [1997] presented a method for clustering
data into groups solely based on their pairwise distances. The approach uses an expectation
minimization scheme like the grouping scheme presented in section 3.4.1 and employs the
technique of deterministic annealing, which is a maximum entropy method already discussed
in section 1.2.1. The drawback of the procedure is, like the expectation minimization scheme
presented in section 3.4.1 that the number of groups must be known in advance.

Also based on pairwise distances Amir and Lindenbaum [1998] presented a generic graph
theoretic grouping framework. They model the objects as vertices of a graph and the simi-
larity (with respect to the grouping task) as edges. The optimal grouping is then defined as
a minimal clique partition of that graph. Furthermore a technique for enhancing the quality
of the edge weights is proposed to enhance the possibilities of the applied heuristic search
procedure. This is very similar to the grouping method presented in section 3.4.2. The dif-
ference to this approach is the fact that the vertices of the graph correspond to the actual
observations in [Amir and Lindenbaum, 1998] and not to the candidate group models. If the
observations and the candidate group models coincide, which is the case for some grouping
tasks with the consistent, sufficient and irreducible subsets of observations (cf. section 3.2)
having size one, the two approaches are equivalent.

Also graph based and based on pairwise dissimilarities is the normalized-cut algorithm
proposed in [Shi and Malik, 2000]. The problem of image segmentation is formulated as
finding groups in a weighted graph, so that the similarity within the groups as well as the
dissimilarity between the groups is maximized. It turns out that finding this graph-cuts
can be efficiently computed by solving a generalized eigenvalue problem on a normalized
adjacency matrix of the graph. This idea is not exploited any further here.

This section reviewed some previous work on clustering methods going beyond the pure
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perceptual grouping task. It has been pointed out that grouping can be seen as sub-problem
of clustering and some minimum description length methods as well as some methods based
solely on pairwise distances have been presented.

1.3 Previous work on required pre-processing

In chapter 4 the presented representations of uncertain oriented projective entities and the
presented grouping techniques will be shown to be applicable in the domain automatic scene
reconstruction from sets of images. The cameras are in this application assumed to be
calibrated and oriented. Furthermore, image features are assumed to be extracted and given
together with their uncertainties. In the following some techniques should be reviewed that
are necessary to obtain the required input data.

1.3.1 Previous work on calibration

As already mentioned in section 1.2.2, it is necessary to work with images from calibrated
cameras in an uncertain oriented projective framework. Although Hartley [1998] has shown
that an orientation preserving reconstruction is in principle possible without knowing the
calibration of the cameras by just enforcing all scene points to be in front of all cameras, the
calibration is required due to the representation of the uncertainty. The uncertainty of the
entities is represented here by the second moments in oriented projective space (cf. section
2.1). Those second moments are only able to reasonably reflect the probability distributions
of the uncertain entities, if the perspective distortions are low. This is only achievable, if the
calibration of the cameras is known. Hence, some calibration techniques that could be used
to obtain reasonable input data should be reviewed in the following.

While in classical photogrammetry the camera calibration has been acquired using physi-
cal measurements of the cameras itself in a laboratory environment, the calibration techniques
favored in computer vision that are of course nowadays also used in photogrammetry fall into
two categories: the first group of techniques use images of a known calibration object or a
known camera movement while the second group of techniques use weak assumptions on the
internal camera parameters itself to obtain the full set of internal camera parameters.

Starting with the first group of techniques, the most prominent paper in this area is
by Zhang [1999], who proposed a very simple and easily applicable method. By taking
several images of a planar checkerboard pattern with at least two different orientations it is
shown, how all internal camera parameters including radial distortion can be estimated. The
big advantage of this approach is the fact that it is implemented in Intel’s open computer
vision library and there also exists a MATLAB toolbox, which are both very common in the
computer vision community. Furthermore a planar checkerboard pattern is easily produced,
so that no specific laboratory environment is required to obtain a good calibration of the
camera.

The second group of calibration methods, also known as self-calibration, use only weak
constraints on the intrinsic parameters of the camera. The most prominent approach has
been proposed by Pollefeys et al. [1996b; 1996a; 1997a], who have shown, how the so-called
modulus constraint can be used for affine self-calibration in the case that the internal camera
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parameters stay constant over the image sequence. The advantage of using the modulus con-
straint is that the non-linear optimization required is only over a three-dimensional parameter
space. In [Pollefeys and Gool, 1997b; 1997c; 1999] this idea is even extended, by no longer
requiring a fixed first reference image. Thereby the modulus constraint can be used for each
image pair reducing the minimal number of images required from four to three and increas-
ing the robustness of the procedure. In [Pollefeys et al., 1997b; Pollefeys and Gool, 1997a;
Pollefeys et al., 1998a; 1999c] several metric self-calibration techniques relying solely on the
assumption that the skew is zero over the whole image sequence are reviewed. It is concluded
that it is indeed possible to obtain a metric reconstruction from an image sequence under
this weak assumption. In [Pollefeys and Gool, 2000a; 2000b] some insight into critical motion
sequences for self-calibration are given. A whole system for metric reconstruction based on
self-calibration from an uncalibrated image sequence is presented in [Pollefeys et al., 1998b;
1998e; 1998c; 1998d; 1999a; 1999b; 2000b; 2000a; 2000d; 2000c; Pollefeys and Gool, 2002;
Pollefeys et al., 2002a; 2003]. A very comprehensive report on this system can be found in
[Pollefeys et al., 2004].

The applicability of this self-calibration techniques is somehow limited and an awareness of
the limitations is strongly required to apply them. Besides the need for image sequences and
non-changing cameras (including focal length), the problem of degeneracies resulting from
planar objects are studied in [Pollefeys et al., 2002b]. As a solution, it is proposed to partition
the image sequence into sub-sequences seeing planar structures and sub-sequences seeing 3d
structures as described by [Torr, 1997] and applying different self-calibration methods for
each case.

In [Repko and Pollefeys, 2005] the problem of processing long image sequences for self-
calibration and orientation is discussed. Using the geometric robust information criterion (cf.
Torr, [2002]) triplets of key-frames are selected from the sequence and local reconstructions
are used to overcome the problem of projective drift, which can significantly decrease the
performance of self-calibration.

In this section two major contributions on calibration, namely using a simple calibration
object and the so-called auto-calibration, were reviewed due to the crucial importance of
calibrated cameras for the uncertain oriented framework subject of this work. Some work on
the limitations of auto-calibration has been presented as well, showing the limitations of this
approach. It must be strongly recommended to use the first approach with the calibration
pattern whenever possible, because it is often then simplest and most robust choice. Having
now discussed methods for obtaining the calibration of the camera, the next section will
be about obtaining the orientation of the cameras, which is the second prerequisite of the
reconstruction application presented in chapter 4.

1.3.2 Previous work on structure from motion

The recovery of 3d structure from corresponding points in multiple images has always been
a key issue in computer vision and photogrammetry (e.g. [Horn, 1986], [Faugeras, 1993] or
[Hartley and Zisserman, 2000]) and is also the goal of the polyhedral object reconstruction
application in chapter 4 of this work. Given corresponding image features, it is possible to
recover the scene structure as well as the exterior orientations of the cameras. The geometry
related sub-problems of this task are summarized here under the keyword structure-from-
motion. In the following some prior work on this subject will be reviewed for two reasons:
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first, those problems occur also in some of the grouping applications presented in section
3.3 and second, the orientations of the images are required as input data of the building
reconstruction application presented in chapter 4.

First some previous work on pure relative orientation of two images will be presented
followed by a short section on pure triangulation. Those two sub-tasks are often solved si-
multaneously, which is summarized under the topic bundle-adjustment that will be presented
in the subsequent section. This section will be concluded by a review of prior work on the
topic of simultaneous localization and mapping, which is concerned with the specific demands
of bundle-adjustment for image sequences.

Relative Orientation

The first crucial problem encountered in structure from motion is the determination of rel-
ative orientation between an image pair for given point correspondences. Like calibration,
presented in the previous section, this is an important pre-processing step that must be
performed before the grouping techniques presented here are applicable. All approaches
presented here assume the calibration to be known.

Horn [1990] described an iterative approach for finding the relative orientation of an image
pair. The problem of finding an appropriate error metric for the co-planarity condition is
discussed. It is conjectured that the proposed method does not rely on good initial values.
The critical surfaces of the method are analyzed as well. As such iterative procedures always
suffer from possible inappropriate choices of initial values, non-iterative procedures have been
developed. For instance Philip [1996] presents such a method for determining the relative
orientation of two calibrated cameras from six points as well as a method for five points. Both
methods first compute the basis of the space of essential matrices, where the solution can be
found. Using additional cubic constraints, a linear equation system is derived for the three-
dimensional space derived from six correspondences. In case of five correspondences the cubic
constraints are used to derive a 13th-degree polynomial, whose roots give solution candidates
for the essential matrix. In [Philip, 1998] the critical point configurations for the algorithms
presented are studied. Amongst other results it is shown that all those algorithms fail if the
points are all co-planar. Solving this degeneracy, Nistér [2003; 2004] gives an efficient solution
for determining the relative orientation of two calibrated cameras from the minimal set of five
points. From the five point correspondences the basis of a four-dimensional space, where the
solution must lie, is calculated. Using additional cubic constraints on the essential matrix, this
up to ten solutions are calculated by finding the roots of a 10th-degree polynomial. It is shown
that there exist indeed cases, where all ten roots correspond to feasible solutions. In contrast
to [Philip, 1996] the algorithm is capable of dealing with planar scenes. In [Stewenius et al.,
2006] a different implementation of the algorithm based on the computation of a Gröbner
basis is presented. Instead of finding the roots of a 10th-degree polynomial the eigenvectors
of a 10 × 10-matrix are computed to find the up to ten real solutions. This last algorithm
must be considered as the method of choice, because its numerical stability is best and it can
deal with planar scenes, which often occur in practical applications.

As mentioned above, all those approaches need the calibration of the camera to be known.
In case of a zooming camera this is often impractical due to the changing focal length.
Tackling this problem Stewenius et al. [2005a] proposed an algorithm for computing the
relative orientation of an image pair without knowing the focal length from six corresponding
image points. The polynomial constraints are formulated and it is shown, how to obtain the
up to 15 solutions using Gröbner basis methods. However, this algorithm is again unable to
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cope with planar scenes.

One problem not solved by all pairwise relative orientation methods is the computation
of a single consistent set of orientations for multiple images, which is ultimately required. A
solution is proposed for instance by Goldberger [2005], who presents an algorithm for obtain-
ing a consistent set of projection matrices from pairwise fundamental matrices. Constraints
between projection matrices and fundamental matrices are developed and a stepwise proce-
dure for obtaining all orientations is given. This set could be used directly as input data
for the grouping methods presented here or alternatively could be refined using the bundle
adjustment techniques presented in section 1.3.2.

Some more or less simple methods for obtaining relative orientations of image pairs have
been presented. The relevance for this work stems from the fact that orientations are required
as input data for the building reconstruction application presented in chapter 4. If the focal
length is known, the method presented in [Stewenius et al., 2006] should be used, as it is robust
and able to cope best with nearly planar scenes that often occur in practice. Furthermore, the
orientations should be refined using the bundle-adjustment techniques that will be reviewed
in section 1.3.2.

Triangulation

The problem of triangulating points from given correspondences and given camera orien-
tations occurs as sub-problem when grouping 3d lines into 3d points (cf. section 3.3). It
is, however, not trivial and recently some promising new approaches have been presented.
The importance for this work stems from the fact that the iterative triangulation method
presented in [Heuel, 2004], which has been used here, sometimes suffers from solutions being
only local minima of the cost function or even divergence of the optimization resulting in
missed matches. Different methods for obtaining initial values could therefore improve the
results.

One approach introduced by Stewénius et al. [2005b] gives a direct solution for finding the
maximum-likelihood estimate of a 3d point from exactly three cameras. Using the polynomial
equations resulting from the minimization of the L2-distance between the reprojected and the
observed image points, the up to 47 solutions are computed using a Gröbner basis method
showing the problems complexity. As the requirement of exactly three images is too restrictive
to be applicable here, this path has not been followed, though.

A different method is proposed by Kahl [2005], who introduced a framework for solving
geometric structure and motion problems using the L∞- instead of the L2-norm. By stating
the problems as quasi-convex optimization problems it is possible to efficiently find a global
optimal solution. It is stated that though the L∞-norm is extremely sensitive to noise, this
approach is comparable to classical methods and could also be used to find initial values for an
iterative L2-norm optimization. Due to the complexity and the sensitivity to outliers of this
method, it has not been applied here. However, one could think of improving the estimation
results of Heuel [2004] for instance by initializing the estimation with the L∞-norm solution
in case of divergence. This path has not been take here either, though.

This section reviewed two promising approaches for improving the estimation results
obtained in chapter 4 by improving the initial triangulation. The improvement that could be
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gained by this has not been studied here. Apart from the desirability of optimal results, the
actual improvement in practical applications can be assumed to be minor, though, because
it could be observed that divergence occurred only on a very small fraction of estimations.
Hence, no path toward this direction has been followed here.

Bundle adjustment

The previous two section reviewed techniques for obtaining pairwise relative orientations on
the one hand and given those orientations scene points on the other hand. It is often favorable
to combine those two geometric tasks into one single step, as statistical optimal solutions are
only obtainable like this. However, the methods presented above are still applicable for
obtaining initial values for the iterative combined methods known as bundle-adjustment. A
very broad overview over the current state of the art of bundle-adjustment is given by Triggs
et al. [2000]. The paper contains a detailed and consolidating discussion on the topics of
choosing an appropriate cost functions, optimization techniques, approximations, recursive
estimations, gauge invariance and quality assessment.

From the discussion in [Triggs et al., 2000] follows that the generic problem of bundle-
adjustment is a difficult problem requiring a lot of effort. Often simpler approaches are
possible. Of particular importance among those simplifications is an approach presented by
Rother and Carlsson [2002], who propose a linear algorithm for simultaneously estimating
scene points and camera positions in a projective frame. Linearity is achieved by transforming
the image coordinate systems using a single reference plane that is visible in all images. This is
a weak assumption for many applications, which could also be fulfilled by the plane at infinity
if the mutual rotations of all cameras are known (for instance from the relative orientation
techniques presented in section 1.3.2).

It is widely recognized in the computer vision community that a final step of every
structure-from-motion algorithm should be a bundle adjustment, in order to obtain opti-
mal results. The grouping techniques presented in this work require image orientations to be
known in the first place, so that here a bundle adjustment is also required as a pre-processing
step. As the accuracy demands might not be that high in the pre-processing, either the
relative orientations obtained using the techniques of section 1.3.2 are used directly or alter-
natively the simple approach presented in [Rother and Carlsson, 2002] should be used.

The bundle-adjustment techniques presented so far are only concerned with point features.
As lines and line segments are important image features and will be used extensively in this
work, too, some previous work on bundle-adjustment techniques based on lines and line-
segments will be reviewed as well.

A broad overview of the state of the art of structure and motion recovery from lines can be
found in [Bartoli and Sturm, 2005; 2003]. In there mainly the topic of 3d line representation
and its implications on various reconstruction algorithms are discussed.

Early work on the topic of bundle adjustment using line segments has been done by
Taylor and Kriegman [1995]. The re-projection error of the scene lines is measured along the
extracted image line segments in each image. The optimum of this cost function depending
on the space line and camera positions is found via gradient descend like in the classical
point-based bundle-adjustment.

Also Zhang [1995] presented a method for computing structure and motion from corre-
sponding line segments. In contrast to [Taylor and Kriegman, 1995] the overlap between
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matched line segments is measured as cost function. It is pointed out that, as line segments
rather than lines are considered, it is possible to solve this problem with only two perspective
images.

An approach for simultaneous bundle adjustment from point and line features based on
the relations presented in section 2.2 as cost function is presented in [Luxen and Förstner,
2001], where an algorithm is proposed that optimally estimates the internal and external
orientation of the camera from observed scene points and scene lines of known position in
the image as well as in the object space.

Also Bazin and Vezien [2005] presented a structure-from-motion algorithm that integrates
geometric entities such as points, line segments and also rectangles, their uncertainties and
mutual relations and a parameterized camera motion model. The focus of the paper is on
elimination redundant parameters and on estimating the reduced model parameters optimally
yielding robust reconstruction and orientation results.

Finally also the approach of Rother and Carlsson [2002], which has been favored above,
is extended toward lines and planes in [Rother, 2003].

In this section some previous work on bundle adjustment has been summarized. The
first part has been concerned with work on bundle-adjustment for point features, while the
second part presented some previous work on bundle-adjustment using lines and line segments
as features that both occur in the building reconstruction application presented in chapter
4. The relevance of those techniques for this work is two-fold: first, oriented images are
required for the grouping results obtained in chapter 4 and second, the results obtained
with any structure-from-motion algorithm should be post-processed using bundle-adjustment
techniques. However, this latter has not been done presently, as the accuracy of the camera
positions in the building reconstruction application is assumed to be very precise for the given
aerial images.

Simulataneous localization and mapping

Systems that simultaneously acquire scene structure and camera orientations in an on-line
manner from image sequences have become popular recently under the keyword simultaneous
localization and mapping. Because this systems present an interesting method for obtaining
oriented images and because they also can be considered as competing technique to the
reconstruction application presented in chapter 4, some previous work in this area will be
presented.

One major advantage of such active systems, which originate in the robotics community,
is that they are often free to navigate the environment. For instance Davison and Murray
[2002] present a method for simultaneous localization and mapping based on active vision.
Using a Kalman filter it is predicted, where features are likely to occur in the scene. The
active vision system is then targeted on this features in order to obtain the precise location.
Interestingly, the grouping method presented in section 3.4.4 is also based on analyzing the
Kalman filter, but prefers to choose more uninformative observations to be more robust to
outliers. The choice in [Davison and Murray, 2002] on the other hand is the most informative
feature, which could distort the result significantly, in case it is a leverage point.

This active vision system is not restricted to be used with active hardware as has been
demonstrated for instance in [Davison, 2003], where a real-time localization of a mobile single
camera is presented. Using a simple motion model for the camera the location of interesting
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scene features is predicted using a Kalman filter. Simultaneously interesting and stable scene
features are mapped to be used for later orientations. This system has a high potential to be
used to obtain sets of oriented images in a fully automatic and efficient manner.

Other groups have also proposed approaches for simultaneous localization and mapping.
For instance Se et al. [2005] presented an automatic localization method using SIFT features
(cf. Lowe, [2004]). A map is generated, which contains for every scene point a SIFT de-
scriptor. Localization is performed by matching the image features against the map features.
Two approaches based on RANSAC and on Hough transform are compared.

There exist some drawbacks, though. One major disadvantage of the current techniques
are the huge memory requirements that limit the applicability to small problems. Sim et
al. [2005] report on a purely stereo vision-based system for simultaneous localization and
mapping. Landmarks are represented using SIFT features as described in [Se et al., 2005]
and the motion is estimated using a particle filter. It is reported that running times for large
environments are still to high for the applicability of systems that do not take advantage of
non-vision sensors. Hence, classical wide-basline systems combined with other sensors are
still the best choice for the task automatic orientation and should be used whenever the
problem size is too large.

One central issue in simultaneous localization and mapping systems is the proper selec-
tion of key-frames in order to obtain stable reconstructions. The problem is not only the
computational and memory efficiency, but also the issue of stability resulting from the very
small base-lines in image sequences.

To cope with this problem, Schaffalitzky and Zisserman [2002] presented a collection of
algorithms and heuristics to efficiently find spatial clusters in unorganized image sets that
enable the computation of orientations for large databases. Features and invariant descriptors
are detected and from this putative correspondences between image pairs are computed.
Based on this and the robust estimation of the epipolar geometry the matches between
the image pairs are refined and connected components of image sets and feature tracks are
identified. Finally auto-calibration and bundle-adjustment are employed on the connected
components to recover the interior and exterior orientation of the whole image set.

Also Koch et al. [1999b] presented a method for robust calibration and orientation as
well as surface reconstruction from large image sets. By analyzing the estimated epipoles
and residuals of estimated homographies of image pairs the topology of the camera positions
is recovered. Using this topology information, suitable subsets of images are selected for
calibration, orientation and reconstruction. This pre-processing is of vital importance for
coping with large image sets.

Another idea for key-frame selection is presented by Thormählen et al. [2004], who
proposed to use the trace of the expected covariance matrix of the bundle adjustment to
select those frames yielding the highest accuracy in the estimation. This is very similar to
the approach presented in [Beder and Steffen, 2006], where a method for fixing the scale of a
3d reconstruction is presented. The roundness of the expected covariance matrices, which is
related to the condition of the normal equation system for reconstruction, is maximized, in
order to obtain frames that enable a stable reconstruction.

Depending on the application the techniques presented in [Schaffalitzky and Zisserman,
2002] and [Koch et al., 1999b] or the techniques presented in [Thormählen et al., 2004] and
[Beder and Steffen, 2006] might be more applicable. In any case, the proper selection of
key-frames is of vital importance for using image sequences as a mean of generating sets of
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oriented images that are required for the reconstruction application of the grouping methods
presented in chapter 4.

In the previous sections a brief overview on the geometric aspects of recovering scene
structure as well as camera positions from sets of images, which is summarized under the
topic of structure-from-motion, has been presented. The need for oriented images motivated
most of the presentation including the sections on relative orientation, bundle-adjustment
and SLAM. The section on triangulation and part of the section on bundle-adjustment were
motivated by the fact that it occurs as sub-problem in some of the grouping tasks presented
in section 3.3. Now the geometric prerequisites for the reconstruction application presented
in chapter 4 have been discussed. The following section will be on the image processing
requirements, namely the extraction of suitable features.

1.3.3 Previous work on feature extraction

The final crucial pre-processing step for the proposed application of the grouping algorithms
is the extraction of features from the images. As the grouping results are critically dependent
on good feature extraction, some previous work in this area will be reviewed in the following.
First feature extraction methods focusing on image points followed by methods focusing on
image lines and finally on image regions will be presented. As a major influence factor on
the results of feature extraction the scale of the features and the images has been identified,
hence some previous work focusing on this topic will be presented as well.

Points

The most informative image features for the task of bundle-adjustment are image points, as
has been seen in the previous section. Therefore a large amount of work has been done in this
area. An early overview on the topic of interest point detection has been given by Deriche
and Giraudon [1993].

A more recent overview on the current state of the art of interest point detection is given
by Schmid et al. [2000] and even more recently by Mikolajczyk et al. [2005]. In [Schmid
et al., 2000] the two quality criteria repeatability and distinctiveness under varying image
transformations are proposed to evaluate the feature detectors. In [Mikolajczyk et al., 2005]
also the correctness of point matching between images is used as a quality criterion. Of those
quality criteria only the repeatability is of relevance for the geometric grouping techniques
presented here, because the feature matching demonstrated in chapter 4 does not use any
radiometric information from the images at all and hence cannot benefit from radiometric
distinctiveness.

Other quality criteria have been studied as well. For instance the performance of different
interest point detectors is compared on the basis of database retrieval results by Mikolajczyk
and Schmid [2003; 2005], as has already been proposed as quality criterion by Schmid and
Mohr [1997; 2000]. It is found in this very popular work that the influence of the specific
detector is negligible and that the descriptor of Lowe [1999; 2004] outperformed the other
descriptors. In [Moreels and Perona, 2005] the same analysis is done explicitly for objects
with significant 3d-structure. It is found that no detector/descriptor-pair performs well under
viewpoint changes of more than 25−30◦. This latter result can be helpful in desiging imaging
setups, while the fact that the influence of the detector is negligible, must be doubted for the
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application presented in chapter 4, which turned out to heavily depend on the quality of the
feature extraction.

The most well-known interest point detector is presented in the classical paper by Harris
and Stephens [1988], who analyzed the intensity change incurred by a shift, which must
vanish in homogeneous regions. The well-known combined corner and edge detector based
on the determinant and the trace of the structure tensor is derived. Basically the same idea
has been published earlier by Förstner and Gülch [1987], who presented a feature detector
based on the quality of least squares matching. By analyzing the expected accuracy, corner
points together with their covariance matrices are extracted. The major advantage of this
approach is the computation of uncertainties of the image features as a byproduct, which are
required in the framework presented here. Hence, the interest point extraction is performed
using this technique here.

The expected accuracies of the image features can only be interpreted properly, if the
noise level of the image is known. In [Förstner, 1998] a method for estimating this noise
level is presented that will be used here as well to extract the required uncertainties from the
images.

If the noise level of the image is unknown, the condition of the structure tensor, which
is independent of the noise level, can be used as a criterion instead. This has been proposed
by Shi and Tomasi [1994], who presented a method for extracting interest points based on
the condition of the expected covariance matrix of the estimated transformation between two
frames. The explanation given there is the idea that, if the normal equation system of the
tracker of Lucas and Kanade [1981] for an affine motion model is well conditioned, then a
certain feature is well suited for the task of tracking. However, the absolute accuracies are
thresholded there, too, so that the noise level must be known as well. This is in principle the
same argument given in [Förstner and Gülch, 1987], hence nearly the same criterion is derived.
Also Triggs [2004] presented such an interest point detector, but in a broader framework that
generalizes toward generic motion and illumination models. This generalization could be
used to obtain more accurate uncertainty estimates for specific applications. However, this
path has not been taken here and the method presented in [Förstner and Gülch, 1987] in
conjunction with the noise estimation presented in [Förstner, 1998] is used to obtain the
results presented in chapter 4.

Lines

The second important features that frequently occurs in man-made environments are image
line segments. Because line matching is another important grouping application presented in
chapter 4, some prior work on this topic will be reviewed as well.

The most well-known edge detector was proposed by Canny [1986], who derived a detector
by optimizing a cost-function that explicitly models the criteria of optimal detectability,
optimal localization and suppression of multiple responses. As a post-processing step the
so-called hysteresis thresholding ensures that few spurious small line segments occur in the
results.

The same goal of suppressing spurious responses in textured image areas is followed by
Heitger [1995], who presented an improved edge detector based on linear filters. In addition
to using the anisotropic filter responses in different directions the first and second derivatives
of the response function along the orthogonal direction are used to enhance or suppress the
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original responses. Thereby isolated edges are favored over textured areas.
This problem of noise sensitivity of edge detectors is also tackled by Smith and Brady

[1997], who presented the so-called SUSAN edge and corner detector. This detector does not
incorporate any image derivatives, but decides on the interestingness of a pixel by measuring
the nearby area of equal intensity, which should be one half at edges and less at corners. It is
claimed that this measure is very robust, because no derivatives are need, which are known
to enhance the noise.

All this three presented edge detectors only indicate certain pixels as belonging to edges.
None of them extracts line segments itself nor does any of them extract uncertainties of the
results. The first issue of extracting line segments can be solved by chaining edge pixels as
presented for instance in [Fuchs, 1998]. The second issue of extracting uncertainties that is
vital for the uncertain oriented projective framework of this work can be solved by analyzing
the structure tensor as it has been done for the point extraction. This strategy has been
proposed by Förstner [1994], who extended the idea of [Förstner and Gülch, 1987] toward
segmenting the image content into point-like, line-like and region-like areas using the eigen-
values of the structure tensor. This feature extraction operator is used here, as it is capable
of extracting points as well as line segments together with their uncertainty that are required
in the grouping framework presented in section 3.2.

Regions

The third type of features that can be extracted from images besides points and lines are
image regions, which are connected image areas that are homogeneous according to some
criterion. The feature extraction framework presented in [Förstner, 1994] and [Fuchs, 1998],
which has been discussed in the context of line extraction in the previous paragraph, basically
segments the image into point-like, line-like and region-like areas. The relevance of image
regions for the task of matching is the fact that theoretically only regions cover an image
area to extract radiometric information from. On the other hand only purely geometric
matching algorithms are able to work with image points and image lines. Hence, all matching
algorithms, which are not purely geometry based like the one presented in this work, need in
fact image regions rather than points and lines as input data, i. e. use at least some image
content in the vicinity of the feature points and feature lines. The geometric information
contained in regions, however, is limited, so that intensity based approaches are the right
choice for processing image regions and geometry based approaches can be best applied for
processing image points and image lines. Therefore no region matching algorithm based on the
grouping framework will be presented in the following. However, as the competing radiometric
matching algorithms only work on (possibly small) image regions, some additional previous
work on the extraction of image regions will be presented. Furthermore, region extraction
can also be used for point and line extraction by using the image topology, as those features
can also be considered as the image content, which is left after all regions have been removed.

One genuine region extraction approach, which has received a lot of attention in recent
years, has been presented by Matas et al. [2002]. In there a method for extracting maximal
stable extremal regions in gray-value images is described. It is conjectured that those regions,
where the local binarization is stable over a large range of thresholds, are very well suited for
the task of wide baseline matching.

The topology of regions is an important aspect. While the stability criterion of [Matas
et al., 2002] uses the image topology alone for extracting good regions, other available in-
formation may be incorporated to solve the difficult task of region extraction. For instance
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Bretar and Roux [2005] propose to use LIDAR data as additional cue in order to extract ho-
mogeneous regions from oriented aerial images. The 3d point cloud is first triangulated and
segmented into planar primitives. The planar primitives are then projected into the image
and a region merging based on color distances is performed, which takes also the connectiv-
ity information from the planar primitives into account. Applications using such additional
information, from which also the geometry based reconstruction would benefit, are not the
scope here, though.

As mentioned above, regions are often extracted in the vicinity of interest points, in
order to facilitate intensity based matching. One such region extractor has been proposed
by Tuytelaars and Gool [2004], who describe two methods for finding affine invariant regions
around interest points that are suitable for matching. The first method uses the extracted
image edges adjacent to the image point to grow a region until a photometric similarity
criterion for the covered region is maximal. The second method does not rely on extracted
edges to grow this region, but grows the region in circular directions from the interest point.
Generalized color moments are used to describe and match the extracted regions between the
images.

Also the extraction of interest points in scale-space, which will be discussed in more
detail in the following section, can be viewed as region extraction, because feature points in
very low-resolution images correspond to larger regions in high-resolution images. The most
prominent work in this context, which has received a lot of attention from the computer vision
community, is by Lowe [1999; 2004], who proposed to use scale-space maxima as features for
the task of matching. Those features, although being points in scale space, may correspond
to large circular image regions on the original image resolution. Those circular regions may
also be used to define some notion of uncertainty of those features, which would be required
in the uncertain framework presented here. However, no theoretical consistent framework for
this idea exists so far, so that this path is not followed here.

Scale

As pointed out in the previous paragraph on region extraction, scale plays an important role in
feature extraction. The reason for this is two-fold: first, objects usually occur on specific scales
in images and second, radiometry based point and line matching algorithms require image
information from a neighborhood of the features. The size of this neighborhoods is usually
derived from the scale of the features. Although the purely geometry based point and line
matching framework presented in section 3.3 and chapter 4 does not require a neighborhood
of the features to be known and is therefore able to operate on true 1- and 0-dimensional
features, it requires an uncertainty of the features to be known, which is linked to the scale
of the feature. Furthermore, the issue of repeatability of features together with the fact that
certain features only occur on certain scales require the feature extraction procedure to have
some scale-invariance, in order for the presented grouping framework to work. Therefore
some previous work on the scale of features is presented in the following.

The importance of scale for feature extraction has been noted early by Koenderink and van
Doorn [1987], who studied the local reception of features in the biological visual system. It is
conjectured that features are described locally by a set of filter responses to the convolution
with higher order derivatives of a Gaussian kernel. Thereby the local scale and geometry is
captured in a very simple and localized descriptor for further processing, giving a biological
motivation for scale-space features in computer vision.

From a more technical point of view Lindeberg [1998b] discusses the importance of proper
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scale selection for the task of feature extraction. It is proposed to use local maxima in scale-
space itself for feature detection in order to solve the problem of automatic scale-selection.
This approach has received a lot of attention from the computer vision community especially
in the context of SIFT features introduced by Lowe [1999; 2004]. The approach has been
extended toward edge features in [Lindeberg, 1998a], where an analogous edge detection
algorithm is proposed that operates directly in the scale space. Instead of searching edges
at a single fixed scale, in this framework edges are defined as one-dimensional curves in
the three-dimensional scale-space. In particular the scale is allowed to vary along the edges
themselves.

Other criteria for finding features in scale-space have been proposed. For instance Kadir
and Brady [2001] argue that the two key aspects of feature detection, namely saliency and
scale, are inter-related, and that a good interest point operator should detect salient, i.e.
complex, features not at different scales, but detect complexity in scale-space itself. An
algorithm is derived that detects features, where the local entropy is maximal in the scale-
space. In [Kadir et al., 2004] this approach is extended toward affine invariance by augmenting
the single scale parameter with two extra parameters that describe a sampling ellipse instead
of a circle in scale-space.

Scale invariant feature extraction does not need to operate on scale-space itself. For
instance Mikolajczyk and Schmid [2001] presented a scale invariant interest point detector.
First interest points are detected using the approach of Harris and Stephens [1988] on different
scales of interest. For each such point the characteristic scale is determined by finding the
scale for which the Laplacian at its position is maximal. In [Mikolajczyk and Schmid, 2002]
this idea is refined toward affine invariance by first rectifying the image at each interest
point using the local structure tensor. As the characteristic scale of each interest point is
not needed for the purely geometry based feature matching presented here, this path has
not been followed, although an improvement might be expected from detecting features at
multiple scales.

In this section previous work on the extraction of features from images has been pre-
sented. The first two sub-sections reviewed some literature on the extraction of points and
lines that will be needed together with the camera calibration and orientation as input data
for the building reconstruction application presented in chapter 4. The competing match-
ing techniques that are based on comparing the radiometric contents of the images, are in
principle unable to work with 0- and 1-dimensional features and require either regions or a
specific feature scale to be extracted instead. Hence, some previous work on this topics has
been presented as well. In the following section those competing matching techniques will be
discussed.

1.4 Previous work on competing techniques

In chapter 4 an application of the presented grouping framework for the task of matching
point and line features across multiple oriented images will be demonstrated. The approach
is solely based on geometric cues in this framework and competes with the feature matching
approaches that are based on the radiometric image content. Therefore some previous work on
the topic of feature matching will be presented in the following. Furthermore, the application
domain of building reconstruction from aerial images, which has also been chosen in chapter
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4, has always been of special interest in the photogrammetry domain and some previous work
on this topic will be presented as well.

1.4.1 Previous work on feature matching

As pointed out before, the proposed grouping framework is applicable to the task of matching
point and line features across multiple views on a purely geometric basis. In contrast to this,
much work in the computer vision literature has been concerned with the matching of image
features based on the image content (e.g. [Horn, 1986] or [Faugeras, 1993].

Also Torr and Zisserman [1999; 2000] advocate the use of features for structure and motion
estimation in contrast to dense matching techniques. Those dense matching techniques are
not considered here, but a broad overview on the current state of the art in this field has been
given by Scharstein and Szeliski [2002], who compared the performance of various techniques
on many test images with known disparity maps.

The field of image-based feature matching can be viewed as competing technique to the
geometric grouping approach presented here, as the same problem is solved. Due to the
usually much higher redundancy, the radiometry-based methods outperform the purely geo-
metric methods if only few images are used, as will also be seen in chapter 4. However,
the two approaches are complementary, so that better results are obtainable by combining
both approaches, which must be strongly recommended in practice. The results of the purely
geometric matching presented in chapter 4 show the importance of geometric cues, though,
as it will be seen that matching is indeed possible without looking at the images at all, if the
geometry is known.

In the following some competing (or supplementary) previous feature matching approaches
will be reviewed. Following the outline of the feature extraction section, first matching
algorithms focusing on image points followed by methods focusing on image lines will be
presented. The section will be concluded with some brief remarks on the connection of the
grouping framework with prior work on region matching that could be considered as part of
the dense matching techniques not considered in this work.

Points

Starting with the point features it has already been noted in the section on feature extraction
that those have received a lot of attention in the field of photogrammetry and computer vision
mainly due to their suitability for the task of bundle adjustment. In order to be able to apply
those techniques, features need to be matched between the images, which must be considered
as one of the most challenging problems in computer vision that has not been solved in a
satisfactory manner, yet. However, in very constraint imaging situations correlation based
techniques described for instance in [Faugeras, 1993] or [Vosselman et al., 2004] have turned
out to be quite successful.

Already Helava [1976], who reviewed several image point matching techniques, concluded
that multi-level correlation had been superior to all other techniques considered in his review.

A more recent overview on the current state of the art of wide baseline feature matching
has been given by Gool et al. [2002], who discussed the various sub-tasks and the problems
encountered in this area.

In the following several point matching techniques will be discussed. First some work
specifically concerned with comparison-based wide baseline matching will be presented, which
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is very well suited to be combined with the geometric approach presented in section 3.3.
Thereafter some previous work on tracking, i.e. assuming short baselines, will be presented.
In contrast to the comparison-based techniques descriptor-based matching techniques have
become popular recently and some previous work on this topic will conclude this section.

A purely radiometric wide-baseline point matching algorithm has been presented by
Baumberg [2000], who proposed to compute affine invariant windows from the local struc-
ture tensor at each feature point and generate correspondences based on the distance between
those normalized image patches. This idea is completely complementary to the purely geo-
metric approach presented here and is therefore very well-suited to be combined. However,
this has not been exploited, as the goal of chapter 4 is to demonstrate the power of the purely
geometric grouping approach and not to devise an optimal algorithm.

The same idea has been used by by Xiao and Shah [2003], who propose to estimate an
affine transformation between each pair of interest points following the idea of Lucas and
Kanade [1981] and use the residuals of this estimation to generate putative correspondences.
The close connection to the approach of Baumberg [2000] results from the close connection
between the structure tensor and the technique of least squares estimation that has already
been used in [Förstner and Gülch, 1987].

The main advantage of this residual-based image point comparison technique is that it
easily allows to model various assumptions on the local geometric and radiometric transfor-
mations between the images. For instance Georgescu and Meer [2004] describe a least-squares
parameter estimation based method for matching points across two widely separated views
that also differ significantly in illumination. The local 2d homographies together with the
color transformation between the images are modeled and their parameters are estimated
using a robust M-estimator. The drawback of incorporating many parameters in the model
is, apart from possible problems with the estimation, that the residuals decrease, worsen-
ing the distinguishability between the features. However, the geometric matching techniques
presented here could compensate for this weakness.

Using geometry for this compensation has already been proposed by Pritchett and Zis-
serman [1998b], who presented an approach for wide-baseline matching, which is based on
estimating local homographies for each interest point pair, too. Using those initial puta-
tive correspondences, a RANSAC procedure is applied for finding dominant planes in the
scene. The correspondences not consistent with any dominant plane are removed and again
a RANSAC procedure is applied to compute the fundamental matrix, retaining all point
matches consistent with the epipolar geometry. In [Pritchett and Zisserman, 1998a] the ap-
proach of [Pritchett and Zisserman, 1998b] is extended toward three views. Between all three
pairs of images the correspondences are computed according to [Pritchett and Zisserman,
1998b] and the corresponding triples are determined from the resulting matched point pairs
by checking, whether they have any point in common. Finally the trifocal tensor is estimated
using a RANSAC procedure from those triples, retaining all point triples consistent with the
trifocal geometry. In contrast to this approach, the geometric matching techniques presented
in section 3.3 are not restricted in the number of views enabling it to exploit more redundancy
in the presence of more than three views.

All matching techniques presented in the previous paragraph are based on comparing
small image patches between two views. Other comparison methods have been proposed. For
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instance Carneiro and Jepson [2002] present a method for matching point-features between
two images using normalized phase correlation as similarity measure. Rotational invariance
is achieved by integrating over all possible rotations.

Another idea is to use image topology. For instance Tell and Carlsson [2000] proposed an
algorithm for matching intensity profiles between two images. Interest points are computed
and for random pairs of them the intensity profile on the line between them is extracted. Using
a voting scheme those profiles are matched across the images by comparing scale-invariant
features based on their Fourier transform. In [Tell and Carlsson, 2002] this topological idea
is augmented by penalizing point matches, where the cyclic order of profiles to neighboring
interest points differs.

The topology of interest points has also been used by Brown and Lowe [2002], who
proposed a method for matching small adjacent groups of point-features between two images.
Interest points, which are the extrema of the Laplacian in scale-space, are extracted and for
each such interest point the 2, 3 or 4 nearest neighbors in scale-space are used to estimate
a similarity, affinity or homography into a canonical reference frame. Finally this resampled
reference frames are correlated between the images, which is very similar to the approach
presented in [Baumberg, 2000], although the arrangement of interest points itself rather than
the structure tensor is used to capture the local geometry.

Thus far algorithms have been discussed, which make no assumption on the length of
the baseline between the images and are therefore called wide-baseline methods. If a short
baseline can be assumed, then the matching problem is also known as tracking, which has
also received a lot of attention in the computer vision community due to the wide availability
of image sequences and the possibility to process them in real-time. This is in contrast to
the geometric grouping methods presented in section 3.3, which even require large baselines
in order to work properly. However, some work in this field will be reviewed, as it can be
considered as competing technique if image sequences are available.

The most well-known tracking algorithm has been proposed by Lucas and Kanade [1981],
who presented the now classical least-squares matching technique, where an iterative algo-
rithm for computing the translation between two signals was proposed. The squared differ-
ence of the two signals is minimized using a linear approximation and an explicit expression
for the translation is derived. Starting from an initial estimate of the translation it is then
possible to refine the translation vector iteratively. Although this idea has occurred earlier
in in [Helava, 1976], it was not recognized as being very useful there, because the tracking
application was not considered.

The major problem of tracking algorithms like the one proposed in [Lucas and Kanade,
1981] is that tracks are lost after some time. Therefore stabilization is a major issue. One
interesting idea, which promises stable matches even over long baselines, has been proposed
by Molton et al. [2004]. An algorithm for tracking point features over long image sequences
is discussed that explicitly uses the local planarity assumption, which is only implicitly con-
tained in [Lucas and Kanade, 1981]. The idea is to estimate the surface normal at the
reconstructed 3d point and use this information for the matching. Conversely the estimate of
the normal is updated along the sequence, enabling stable wide-baseline matches. Interest-
ingly, this approach uses geometric cues in order to obtain better real-time tracking results
strengthening again the vital importance of geometric information.

A graph theoretic view on the tracking problem is taken by Shafique and Shah [2005].
The problem of finding point tracks across image sequences is formulated in a graph theoretic
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setting. While finding matches between two images is formulated as bipartite matching
problem, which is solvable in polynomial time, the multi-view matching problem is NP-hard.
This gives some insight into the inherent complexity of the task, although a greedy algorithm
is proposed that promises real-time on-line tracking of image points over monocular sequences.
The practical applicability, especially in comparison to the approach proposed by Molton et
al. [2004], is not clear, though the problem of loosing tracks is clearly a consequence of the
greedy strategy also used in [Lucas and Kanade, 1981] and [Molton et al., 2004].

The point matching algorithms presented up to now were all based on comparing image
patches between the images. In contrast to those comparison based approaches, there exist
descriptor based approaches that compute for each interest point a single descriptor and use
the distance between those descriptors for the matching. The descriptors must be designed,
such that they are invariant against the anticipated image transformations. There are two
advantages of this strategy: first, the descriptor needs only to be computed once for each
feature, so that the time complexity is only linear in the number of features in contrast to the
quadratic complexity of the comparison based methods. Second, descriptors can be stored
for each image, so that large image databases are possible with this technique. For the task
of matching, descriptor based and comparison based methods are equally applicable, though.
Hence, some previous work on those techniques will be presented in the following.

Today the most prominent among the descriptor based approaches, which recently has
received a lot of attention from the computer vision community due to its good performance,
has been presented by Lowe [1999; 2004], who proposed an algorithm for matching interest
points based on a scale invariant descriptor for each point, which is now commonly known
under the acronym SIFT (scale invariant feature transformation). It is proposed to first
extract interest points and their dominant rotation and scale by finding local extrema in scale
space (cf. Lindeberg, [1998b]. For each such point in scale space a local image descriptor
is computed by taking the histogram of gradient directions in the vicinity of the point. It
is conjectured that Euclidean distances of this descriptors are very distinctive and useful
for the task of database retrieval. This conjecture has also been confirmed by the study of
Mikolajczyk and Schmid [2003] and this approach must be considered as most competitive
for the task of purely radiometric point matching today. It could be used to supplement the
geometric approach presented in section 3.3, but this path has not been followed yet.

Skrypnyk and Lowe [2004] report on a system for marker-less augmented reality based on
SIFT descriptors. In an off-line initialization phase a metric 3d reconstruction of the scene
is constructed from multi-view point matches based on SIFT feature descriptors (cf. Lowe,
[2004]). For each 3d point the SIFT feature descriptor is retained, so that interest points
from later images can be matched and their orientation can be computed.

The SIFT descriptor of Lowe [1999; 2004] is invariant to scale and rotation. Other in-
variances might be desirable. For instance assuming a locally planar surface and arbitrary
viewpoints requires the descriptor to be affine invariant. Such an affine invariant descriptor
has been proposed by Schaffalitzky and Zisserman [2001], who used the local second-moment-
matrix in order to compute a normalized frame to compensate the effects of affine distortion
(cf. Baumberg, [2000]). This normalized frame itself is used as descriptor and the residuals
of a least-squares estimation of contrast- and brightness-difference are used as a measure of
dissimilarity like in [Georgescu and Meer, 2004], which has been discussed above.

Other descriptors have been proposed in the literature. For instance Schmid and Mohr
[1997] used the differential invariants of Koenderink and van Doorn [1987] computed for
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automatically extracted interest points for the task of image retrieval. The retrieval results
suggested that those descriptors are well suited for the task of feature matching, although
in the more recent study by Mikolajczyk and Schmid [2003] they were outperformed by the
SIFT descriptors of Lowe [1999; 2004]. The reason might be the fact that the descriptor is
not scale invariant.

Very similar to the descriptor of Schmid and Mohr [1997] and also not scale invariant
is the descriptor presented by Gouet et al. [1998], who devised a feature point descriptor
specifically designed for color images. For each interest point a feature vector comprising of
the local color and the local gradient of the color is computed. Matching is performed by
looking at the residuals of a least squares estimation, which compensates the effects of some
color and brightness changes like in [Schaffalitzky and Zisserman, 2001] and [Georgescu and
Meer, 2004].

The major problem of invariances is that the discriminative power decreases. Vedaldi
and Soatto [2005] point out that most feature detectors and descriptors implicitly assume a
planar scene. It is shown that it is possible to construct viewpoint-invariant descriptors, but
that those unfortunately cannot be shape-discriminative. It is also proved that discriminating
scenes of different shape but identical albedo requires a reconstruction of the scene in the
matching process. This rather theoretical results again strengthens the vital importance of
incorporating geometric cues into the matching process, especially if certain invariances are
desired.

A conceptually very different path is taken by Meltzer et al. [2004b], who apply machine
learning techniques to learn the appropriate invariances from training data. The idea is
to learn good feature descriptors from given image sequences by applying kernel principal
component analysis on the regions around the interest points. With every new matched point
the kernel principal components are learned incrementally and used for further matching. In
[Meltzer et al., 2004a] a simultaneous localization and mapping system using this descriptor
is presented. The drawback of this approach is that the invariances are not made explicit.
Furthermore, such a procedure has to be initialized with good initial training data, which
has to be obtained by other matching methods.

This section reviewed some previous work on point feature matching. Two approaches
were distinguished, namely comparison-based and descriptor-based methods. However, for
the task of matching, in contrast to the task of database retrieval, the difference between those
two methods is not relevant apart from performance issues. Furthermore two interrelated
influence factors have been identified, namely the length of the baseline and the invariances
of the image transformation. While radiometric methods usually perform better for small
baselines, the geometric matching framework presented in section 3.3 is only able to work with
long baselines, because the geometry is more stable in this case. The wide baseline methods
require that the radiometric methods allow many invariances for the transformation between
the images. This invariances weaken the discriminative power of such radiometric methods.
Hence, a synthesis between the geometric and radiometric approaches is required. It has been
seen that the geometric framework presented in section 3.3 easily allows to integrate many
of the radiometric matching methods proposed in the literature.
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Lines

Matching image lines has been by far not as popular as matching image points due to the weak
image content in the vicinity of lines in images. Many line matching algorithms are extensions
of ideas adopted from the point matching procedures discussed in the previous section. Like in
the case of point matching, tracking line segments has received some attention and some prior
work on this topic will be reviewed first. Also wide-baseline techniques and descriptor based
methods have been proposed for matching line segments and will be discussed thereafter.
Finally some previous work on line matching based on geometric cues will be presented, as
those geometric cues are much more important for the task of line matching than for the task
of point matching, and have therefore been used much more consequently there.

As in the point case, the geometric grouping framework of section 3.3 is not applicable
in the case of short baselines. However, the line tracking might be a potential competing
technique, if short baseline image sequences are available.

For the task of tracking line segments, the classical work of Lucas and Kanade [1981]
has been extended toward line segments by Chiba and Kanade [1998]. They proposed a
method for matching lines across two consecutive short-baseline frames by using the motion
estimation of [Lucas and Kanade, 1981] to generate a motion prediction for each image line.
The matches are scored according to image gradient directions and mutual overlap yielding
the final matches.

Also Zhang [1994] uses such a prediction strategy. He proposed to use an extended
Kalman-filter for tracking tokens, especially points and line segments, over an image sequence
using the statistical as well as geometric properties of the entities. It is proposed to resolve
matching ambiguities by retaining multiple and possibly contradicting matches and evaluate
them based on their uncertainty measures. Both of this methods use geometric rather than
radiometric cues.

The idea of Pritchett and Zisserman [1998b] has also been extended toward line segments.
Beardsley et al. [1996] proposed to track points and lines across a sequence of three short
baseline images applying a RANSAC approach. Therefore putative correspondences are
generated based on very simple distance measures and, using the trifocal tensor as underlying
model, the matching is established based on the geometry using a RANSAC procedure.

Only the work of Chiba and Kanade [1998] uses the radiometric image content in the
vicinity of the line segment directly, while the other two approaches use only the mere exis-
tence of line segments at a certain location. This is basically the same kind of information
used by the grouping framework presented here, with the difference that in the tracking case
short baselines are assumed, while here the image orientation is assumed to be known.

Also wide-baseline techniques have been proposed for lines. Unlike the point case, most of
this approaches assume the image geometry to be known somehow. For instance a comparison
based wide baseline line matching algorithm for images with known epipolar geometry has
been presented by Schmid and Zisserman [1997]. The idea is to assume a locally planar
object in the vicinity of the scene line. Then the homography between the images of the line
is defined up to a single rotation parameter for the scene plane. The cross-correlations of
points in the vicinity of the line transfered by this family of homographies are computed and
the final matching score is obtained by taking their maximum. In [Schmid and Zisserman,
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2000] this idea to use a plane induced homography is extended from lines toward conics and
smooth curves. This is one of the most promising approaches to be integrated as radiometric
information, if the geometric grouping framework should be applied. Again, this path of
integrating radiometric information has not been followed here.

Another such approach based on least squares matching has been presented by Cheng
et al. [2001], who proposed a method for matching points across two and lines across three
views. First for every pair of interest points the 3d point closest to the two projection rays
and for every triple of interest lines the 3d line closest to the three projection planes are
computed. This 3d entities are then back-projected into the images an a least-squares score
is computed from the intensity data. This approach differs from the approach of Schmid and
Zisserman [1997], as here in addition to using least-squares instead of cross-correlation the
orientation of the scene plane is fixed and assumed to be aligned with the image planes.

As in the point case, also descriptor based matching techniques exist for lines. For instance
Mikolajczyk et al. [2003] generalized the scale invariant feature point descriptor of Lowe [1999;
2004] toward edges. The histogram of the weighted gradient directions in the vicinity of
the edges relative to the direction of the edge itself are used as a descriptor and matching
is performed based on the distance of those histograms. The information contained in the
vicinity of edges in images is quite weak, however, so that it must be strongly recommended to
stabilize such a matching strategy with geometric cues. As in the point case, such radiometric
distances are straightforwardly integrated into the geometric grouping framework presented
in section 3.3. This path has not been followed, though, as the main goal of chapter 4
is to demonstrate the power of the geometric grouping approach without disturbance from
radiometric image cues.

Instead of histograms of gradient directions other descriptors have been proposed. For
instance Bay et al. [2005] proposed an algorithm for matching line segments between two
images by establishing initial matches based on the distance of the color histogram of the lines
neighboring pixels. This initial matches are then refined based on topological constraints.
Also color histograms suffer the problem of a weak discriminative power, so that it would be
interesting, how much is achieved by the topological constraints and how much is actually
achieved by the distance measure.

As has already been seen in the previous paragraphs, information such as topology and
geometry is a much stronger cue in line matching than the radiometric image content itself,
as the content in the vicinity of edges is usually not very discriminative. This leads to the
extreme idea of not using the radiometric image content for line matching at all, as will also
be done in chapter 4. The reason here is to demonstrate the power of the geometric grouping
framework without any disturbing influences from other factors. This matching based on the
grouping framework presented in section 3.3 has been published in [Beder, 2004b].

Other authors have published line matching algorithms, which are solely based on geomet-
ric information, too. For instance Jung and Paparoditis [2003] presented a purely geometric
algorithm for matching edgels across multiple oriented views. The idea is very similar to
the graph theoretic grouping approach presented in section 3.4.2 and goes as follows: Every
epipolar compatible pair of potentially matching edgels yields a 3d edgel hypothesis in space.
Those edgel hypothesis are then grouped together yielding the final 3d reconstruction. Sim-
ilar results to those in chapter 4 are obtained with the obvious difference that edgels instead
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of points and lines are matched.

It has been seen in this section that line matching is much more reliant on image geometry
than point matching. This could either be a short-baseline assumption, with some work
on this topic presented in the first part of the section, or the known geometry derived for
instance from point matches beforehand. As the discriminative power of radiometric cues in
the vicinity of image lines is weak, the geometric framework presented in section 3.3 presents
a true alternative to the radiometry based matching methods by itself. However, like in
the point case both techniques are supplementary and best results can be expected from
combining them, which is again easily possible.

Regions

Matching regions is much more complicated than matching points or lines between images due
to the unknown scene structure corresponding to the depicted regions. This is because the
problem of matching image regions can be considered as part of the dense (rather than feature
based) matching and reconstruction problem. As mentioned above, those dense techniques
will not be considered in this work but a comprehensive overview on the current state of the
art in this field can be found in [Scharstein and Szeliski, 2002].

However, some region matching methods employ grouping techniques and will therefore
be discussed in the following, as the proposed geometric grouping methodology can be ap-
plied to solve those problems. For instance Bartoli [2001] proposed a method for the fully
automatic reconstruction of piecewise planar scenes from oriented images. The point match-
ing, and hence a set of 3d points, is assumed to be given. Co-planar points are then grouped
together using a RANSAC procedure and the generated plane hypothesis are verified using
the radiometric information from the images. Except for the radiometric verification step,
the proposed algorithm is very similar to the grouping framework presented in section 3.3.
Due to the usually low redundancy contained in 3d point clouds obtained from sparse feature
matching, the radiometric verification step is vital in this case. Hence, no such application is
presented in section 4, as purely geometric cues turned out to be not sufficient in this case.
This might be different, if more redundant datasets such as dense 3d point clouds obtained
for instance using laser scanners are available. This has not been exploited here, though.

A very similar approach has also been proposed by Dick et al. [2000], who presented a
method for the fully automatic reconstruction of planar scenes from multiple images. First
interest points are extracted and matched using cross-correlation yielding a set of recon-
structed 3d points. Like in [Bartoli, 2001], initial planes are found in this point cloud using
a RANSAC procedure. The final parameters of the planar model are then refined using a
probability model based on the spatial, boundary, texture and parallax parameters of the
planes. Again, grouping points is only used to find initial plane hypothesis.

Region matching based on grouping co-planar 3d lines, rather than 3d points, has been
proposed by Bignone et al. [1996], who presented a method for the fully automatic extraction
of house roofs from oriented aerial images. First, edges are extracted in the most nadir
image and the two-parameter family of corresponding 3d line segments is checked in all the
other images based on geometric and radiometric similarity measures. The reconstructed 3d
line segments are then grouped together based on co-planarity using a RANSAC procedure.
This sub-task could also be easily formulated in the uncertain oriented projective geometric
grouping framework presented in section 3.3, where some improvement might be achieved
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by the rigorous statistical modeling. In comparison to the 3d point case considered in [Dick
et al., 2000] and [Bartoli, 2001], the co-planarity constraint imposed by 3d lines is much
stronger, so that grouping those 3d lines might be more successful even in the case of low
redundancy. However, this has not studied.

Also Baillard and Zisserman [1999; 2000] proposed a region matching algorithm based
on grouping. In contrast to Bignone et al. [1996], their approach is based on grouping co-
planar 3d planes rather than 3d lines. It is proposed to first generate 3d line hypothesis from
pairs of extracted image line segments and then, following the idea of Schmid and Zisserman
[1997], estimate the adjacent half planes by finding the plane angle, which maximizes the
correlation between all images. Finally those half-planes are grouped based on co-planarity.
This latter sub-task is again easily formulated in the uncertain oriented projective geometric
grouping framework presented in section 3.3, where some improvement could be achieved by
the rigorous statistical modeling. This has not yet been exploited, though.

It has been seen in this section that various proposals for solving the region matching
problem contain grouping sub-tasks. Although the general dense matching problem is not
the topic of this work, applying the grouping methodology presented in section 3.3 might
offer improvements to some of those techniques. Again it must be stressed that the geometric
grouping and radiometric verification in the images are supplementary and should be applied
in combination in practical application, which has been seen to be true for all the discussed
matching techniques.

1.4.2 Previous work on building reconstruction

In the previous section various approaches for feature extraction and feature matching have
been presented. The ultimate goal of photogrammetry is to use this tools to reconstruct
and measure the scene geometry depicted in an image. A subtask of this is the task of
building reconstruction that is crucial for todays mapping applications and unfortunately
not satisfactory automated so far. In chapter 4 of this work it will present a testbed for
the proposed geometric grouping framework. Note that the results shown in chapter 4 are
not meant to be used in practical applications, but rather show the power of the geometric
framework, as they do not use radiometric information from the images at all. As already
discussed in the previous section, certainly also radiometric cues from the images should be
taken into account for any practical application. However, the results shown in chapter 4
suggest that ignoring geometric cues is not a good thing to do either, but a combination
of both techniques should be applied. In the following an overview on some previous work
regarding the task of building reconstruction from aerial images will be given.

First some overview material on the topic of building reconstruction will be presented.
Much work on the topic can be found in the workshop proceedings [Grün et al., 1995], [Grün
et al., 1997] and [Baltsavias et al., 2001] as well as [Förstner and Plümer, 1997], where many
research groups working in this field gave an overview on their various approaches.

A comprehensive overview on the field has been given by Mayer [1999], who reviewed the
state of the art in automatic building reconstruction in this article. The different methods
are assessed based on the building model used and the algorithmic strategy.

A more recent overview can be found in [Baltsavias, 2004]. It is pointed out that
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knowledge-based and semi-automatic systems are currently the most promising approaches,
since reliability and completeness together with automated evaluation poses the major prob-
lems. The need for reasoning in 3d as early as possible is formulated, because most knowledge
is often expressed in this space. This is also propagated here in chapter 4.

Also Förstner [1999] gave a brief overview on the state of the art of automatic build-
ing reconstruction and its relation to semi-automatic methods. The complexity of building
models makes fully automatic methods too unreliable for current practical demands, so that
semi-automatic methods are still the only practical reasonable choice.

Mayer [2004] discusses the commercial applicability of current automatic object extraction
methods. It is pointed out that the current state of the art is not yet sufficient for practical
purposes. It is advocated that only on a rigorous theoretical basis, in particular statistical
modeling, advances in this increasingly important field are achievable. This thesis constitutes
a step in this direction of applying rigorous statistical methods to the tasks of geometric
grouping and reconstruction.

Also Paparoditis et al. [1998] give an overview on current automatic building extraction
methods from oriented stereo pairs and conclude that the current available methods are not
sufficient for solving the task in a fully automatic fashion.

Most building extraction approaches are distinct from generic reconstruction algorithms
by often being highly model driven. Braun et al. [1994] discussed the various types of models
adequate for the task of building reconstruction. The models considered in the work are
polyhedral, parameterized building primitives, boundary representation CAD and generic
volumetric CSG. It is pointed out that there exists an aggregation hierarchy in object and
in image space, and the mutual relations are discussed, as well as some internal constraints.
The results presented in chapter 4 are therefore not typical for building reconstruction ap-
plications, as the only model assumption made is that building boundaries are straight line
segments. This is a very weak assumption, as, in comparison to polyhedral models, no topo-
logical constraints are enforced. A post-processing might yield much better results, if such
more restrictive and simplifying building models are enforced. In the following some previ-
ous work on building reconstruction employing increasingly general building models will be
reviewed.

Cuboids Probably the most simple building model is to assume the buildings to be
shaped like a cuboid, which is only the case for rectilinear flat-roof buildings. This model
has for instance been used by Noronha and Nevatia [1997; 2001], who described an approach
for the automatic reconstruction of rectangular buildings from multiple aerial images. Line
segments are extracted and first grouped together into junctions. The resulting junctions are
then grouped together into parallelograms, which are finally matched across the views using
the known epipolar geometry and approximate ground hight. Note that grouping plays an
important role in this system, although all grouping is performed in the 2d image domain
rather than the scene domain as proposed here in chapter 4.

The model assumption of rectilinear flat-roofed buildings is so strong that Lin and Nevatia
[1995; 1996; 1998] claim to be able to reconstruct such buildings from only one single aerial
image using simple additional assumptions on shadows and image acquisition time. Like in
[Noronha and Nevatia, 1997; 2001] features are extracted, grouped and building hypothesis
in the image are generated and verified. Shadows and the known position of the sun are
finally used to extract 3d information.

Another building reconstruction system, which is restricted to rectilinear flat-roofed build-
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ings, has been presented by Collins et al. [1998]. In there edges are extracted and rectangular
structures are found. Afterward this structures are matched across several views to gener-
ate 3d building hypothesis, which are finally refined using the intensity information from all
images. It is pointed out that the difficulties of automatic building reconstruction might be
overcome by incorporating a large number of views instead of devising increasingly elaborate
matching strategies. This concurs with the findings of chapter 4, as the geometric grouping
framework performs best in the presence of highly redundant datasets.

A cuboid building model is also assumed by Dick et al. [2001], who presented an approach
for the reconstruction of architectural scenes from oriented close-range images. Following a
metric reconstruction the three dominant planes in the scene are found using a RANSAC
approach. After this basic cuboid has been found, the model is refined by detecting different
parameterized parts, such as windows or doors, using a probabilistic model with shape and
texture priors. The estimated parameters of the detected model parts are used thereafter to
describe the scene more accurately. In [Dick et al., 2002; 2004] this approach is augmented
with a implicit global priors reflecting regularities in the building structure. The MAP
estimates for the parameters are found using a MCMC scheme.

Basically the same model assumption has also been made by Werner et al. [2001; 2002b],
who also presented an algorithm for building reconstruction from close-range images. The
difference is that first the three vanishing lines of the three dominant planes occurring in
architectural scenes are extracted in the image. Using the plane-sweep algorithm of Baillard
and Zisserman [1999; 2000] on this lines, the three dominant planes are found. In [Werner
and Zisserman, 2002a] the cuboid building model is further augmented with windows using
the model based approach of [Dick et al., 2001].

Parametric models One possible generalization of the cuboid image model is to allow
a certain amount of pre-defined parametric building models instead of just one single model.
This has been presented for instance by Fischer et al. [1998], who proposed a model-based
approach for automatic building reconstruction from aerial images. Matched 2d corners are
used to produce initial 3d corner hypothesis. This 3d corner hypothesis are then used to
generate building hypothesis using a database of building models. Finally this 3d building
hypothesis are verified against the image data. This latter step of generating and verifying
model driven building hypothesis could be applied as a post-processing step for the approach
presented in chapter 4 in order to obtain semantically meaningful building models.

A very similar idea has been presented by Spreeuwers et al. [1997], who proposed a model
driven algorithm for building reconstruction from oriented aerial images. A 3d reconstruction
of the scene is computed by verification of building primitive hypothesis and estimation of
their parameters from multiple images. It is pointed out that the performance of the system
significantly increases with the use of multiple images. This is in complete accordance with
the findings in chapter 4, as the geometric grouping framework presented here is also reliant
on highly redundant datasets.

Polyhedrons A major drawback of parametric building models is the restriction to a
small set of pre-defined building models. As a solution polyhedral models have been proposed,
which are in principle able to approximate any building structure. For instance Taylor et
al. [1996] report on the well-known façade-system for polyhedral building reconstruction.
The system works by matching edges of polyhedral primitives with edges in the images.
Constraints on the mutual relation between the building primitives are then applied in order
to estimate the polyhedral models. However, the system must be considered semi-automatic,
as it relies on a lot of user interaction due to the many ambiguities inherently contain in
the task of polyhedral reconstruction. As pointed out before, polyhedral reconstruction from
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oriented images must be still considered an unsolved problem so far and also the geometric
grouping results presented in chapter 4 must be seen as only being a pre-rpocessing step for
subsequent polyhedral reconstruction.

An earlier work on automatic building reconstruction has been presented by Nevatia and
Chung [1992], who discuss a methodology for the recovery of polyhedral building structures
from a pair of aerial images. A hierarchy of image descriptions is built and matched at differ-
ent levels. Matching constraints for the various features at the various levels are discussed.

Also Moons et al. [1998] described a workflow for the fully automatic polygonal roof
reconstruction from aerial images. First 3d scene line hypothesis from the longest extracted
image line segments are generated using the trifocal constraint. Those 3d lines are then
grouped together based on co-planarity and, including smaller 3d line segments, 3d polygon
hypothesis are generated. Thereafter, starting form the convex hull, concave structures are
found by looking at small line segments having just one end-point on the convex hull. The
remaining boundary line segments are classified according to their angle with the ground
plane and from this classification and the neighborhood structure a wire-frame roof-model
is generated. Finally this model is adjusted by back-projecting it into the original images.
This approach is also reliant on grouping geometric primitives, hence the proposed uncertain
geometric grouping framework might be applicable for improving certain sub-tasks.

Another system for the automatic extraction of polyhedral building reconstruction has
been reported by Henricsson [1997; 1998]. The system is based on the roof extraction al-
gorithms described in [Bignone et al., 1996]. The achieved accuracy measured against a
reference data set is analyzed. It is pointed out in [Henricsson, 1998] that color cues are im-
portant for obtaining reliable results and that a pure geometric approach has to be augmented
with such radiometric information in order to work.

A system for the reconstruction of buildings from terrestrial stereoscopic image sequences,
rather than oriented aerial images, has been presented by Koch [1993; 1994a; 1994b; 1995] and
Liedtke [1993], which is based on computing depth maps for each stereo pair by correlation.
Those depth maps are then segmented and the segments are triangulated. The motion along
the sequence is recovered and the triangulated surfaces are registered to build a 3d model.
In [Koch, 1996] a polygonal model is created by fitting planar surfaces to the meshes. In
[Koch et al., 1998a; 1998b; 1999a; 2000; Koch and Frahm, 2001] a self-calibrated monocular
sequence is used instead of a stereo rig.

Planes In contrast to requiring the reconstructed objects to be complete polyhedrons,
some work only reconstructs dominant structures such as isolated planes, lines or points.
Although those models are more complicated to use than the ones presented in the previous
paragraphs, they are much easier to compute, as no restrictions on the mutual relations
between the primitives need to be enforced. The building reconstruction application presented
in chapter 4 also falls in this category of applying feature based reconstruction algorithms to
the task of building reconstruction from aerial images.

This has also been done by Baillard et al. [1999], who report on the application of the
plane-sweep matching techniques presented in [Baillard and Zisserman, 1999] to the task of
building reconstruction from aerial images. No specific prior knowledge on the structure of
buildings apart from the assumption of planar surfaces are made in this approach, but the
matching technique is merely applied to aerial images. This is also done in chapter 4, as
there also no building specific assumptions are enforced.

Many building reconstruction applications do not rely only on images, but incorporate
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data acquired with other sensors as well. The geometric grouping framework presented
in section 3.3 is in principle not restricted to a certain sensor type and the possibility of
straightforward sensor fusion is another major advantage of the presented framework. Hence,
some prior work on building reconstruction using additional sensors will be presented.

The most common sensor apart from aerial images for the task of building reconstruction
is the airborne laser scanner. This has for instance been used as an additional sensor by
Jaynes et al. [1997], who proposed to improve the toolbox presented by Collins et al. [1998]
to cope with more complex buildings by incorporating registered range data in order to
classify the observed roofs based on a more complex 3d building primitive database.

Also Kim et al. [2001b; 2001a; 2002; 2004] proposed a model based building reconstruction
method from aerial images and digital elevation data. First line features are extracted and
nearby lines are grouped into junctions. The DEM is used to remove line features, which
are not located near any building. Then 3d features are generated by pairwise matching the
junctions and are again verified against the DEM. The remaining 3d features are grouped
together and, using a building model of rectangular shaped gable roofs, building hypothesis
are generated, which are finally verified using various cues. Note that this approach is mainly
based on grouping image features and the elevation data is mainly used to reduce the number
of outliers.

One major problem not considered by the works presented in this paragraph so far, which
needs to solved for fusing data acquired using multiple sensors, is the registration of this data.
This task is very difficult especially if the sensors are mounted on different platforms and
operate on different scales. For the task of building reconstruction it is very common to geo-
reference the data, but other approaches have been proposed. For instance Früh and Zakhor
[2003] report on the generation of 3d city models by fusing airborne images and laser-scans
with vehicle mounted images and laser-scans. A particle-filter based Monte-Carlo localization
technique is proposed for registering the laser scans with each other. The 3d points obtained
by the lase scanners are then grouped into 3d planes, which are finally verified against the
images acquired simultaneously. The problem of simultaneously grouping 3d points with
different accuracies resulting from the two different platforms they were acquired with is
not addressed. Here the geometric grouping framework offers a rigorous treatment of such
different uncertainties from which such sensor fusion techniques could benefit. This path has
not been followed yet, though.

This section reviewed some previous work on building reconstruction. It has been seen
that most of the works make very simplifying assumptions on the geometric structure of
the buildings. This on the one hand eases the task significantly but is on the other hand
much to restrictive to be applicable in practice. It has also been seen that the currently
no fully automatic building reconstruction approach exists that would satisfy the practical
demands. This holds also true for the results presented in chapter 4. However, the results
presented there will demonstrate the strength of geometric cues for the task, even if a much
weaker building model than in many of the prior work is assumed. Furthermore the rigorous
treatment of uncertainties in the presented framework allows the straightforward fusion of
multiple sensors that has been identified as being very important for practical applications.
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Chapter 2

Uncertain oriented projective
geometry

This chapter describes the underlying concepts of uncertain oriented projective geometry.
The first section is about the representation of such objects that will be used throughout this
work. The second section describes methods for reasoning about such objects, i.e. making
decisions about relations between the objects. Finally, the third section will be concerned
with efficiency. A data structure will be presented that allows to perform the reasoning
presented in the second section of this chapter in an efficient manner.

2.1 Representing uncertain oriented entities

In this section a representation for uncertain oriented projective entities will be presented.
The concepts are very closely related to the ideas presented by Heuel [2004] for representing
uncertain projective entities. The novelty lies in the use of oriented projective geometry
throughout this work that allows to derive additional relations between the entities and also
allows to represent novel, more complex compound uncertain entities. Among those novel
uncertain compound entities are line segments in 2d and 3d, polygons in 2d and 3d as well as
2d edgels and 3d facets that are often very useful. In the following the underlying notions for
representing uncertain oriented projective entities will be presented that are then specialized
toward the specific base entities followed by the specific compound entities.

In an Euclidean setting, every uncertain entity is given by a probability density function

p(x) : IRn 7→ IR+ (2.1)

so that the probability that the entity lies within a region Ω ⊂ IRn is given by

µ(Ω) =
∫
Ω
p(x)dx (2.2)

Note that here distributions are assumed to be generalized functions in the sense defined
by Horn [1986, p.116] to avoid problems with normalization and integrability, if they are
only non-zero on a sub-set of the integration space. In many cases this distribution can be
characterized sufficiently by its first and second moments

mx =
∫

xp(x)dx (2.3)

51
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Figure 2.1: Uncertain oriented projective entities are represented by their probability distrib-
utions. The mean can be interpreted as a position and the covariance matrix as a confidence
ellipsoid in oriented projective space. Here the entities x and y are identical, whereas the
entity z is not in uncertain oriented projective geometry. Also note that the distribution of
y is degenerate resulting from a singular covariance matrix of a spherical normalized entity.

Cxx =
∫

(x−mx)(x−mx)T p(x)dx (2.4)

Using a maximum entropy approach, the opposite direction is possible, too. Namely knowing
only those first two moments, the distribution having maximum entropy is given by the
Normal distribution (cf. [Kagan et al., 1973, p.410] and [Cover and Thomas, 1991, p.270])

p(x) = argmaxp

(
−
∫
p(x) log p(x)dx

)
(2.5)

=
1√

(2π)n|Cxx|
e−

1
2
(x−mx)TC xx(x−mx) (2.6)

Now a similar notion in an oriented projective setting is developed. In this setting, two
vectors are considered to be equivalent, if and only if there exists a positive factor that relates
them (cf. [Heuel, 2004, p.20])

x ≡ y ⇔ ∃λ > 0 : x = λy (2.7)

Throughout this work such homogeneous vectors will be denoted with upright letters x in
contrast to non-homogeneous vectors denoted as x following the notation of [Mugnier et al.,
2004].

The above notion carries over to the uncertain entities as follows: again every uncertain
entity is given by a probability density function

p(x) : IRn+1 7→ IR+ (2.8)

Now in analogy to the above equality definition two densities are considered to represent the
same uncertain entity, if the following holds (see figure 2.1)

px(x) ≡ py(y) ⇔ ∀Ω ⊂ IRn+1 :
∫
{x|x≡z,z∈Ω}

px(x)dx =
∫
{y|y≡z,z∈Ω}

py(y)dy (2.9)
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From this follows that the probability of an entity lying in a region Ω ⊂ IRn+1 of oriented
projective space is given by

µ(Ω) =
∫
{x|x≡z,z∈Ω}

p(x)dx (2.10)

Again the density function can be characterized by its first and second moments

mx =
∫

xp(x)dx (2.11)

Cxx =
∫

(x−mx)(x−mx)T p(x)dx (2.12)

Note that covariance matrices of such homogeneous entities will be denoted with upright
letters Cxx in contrast to covariance matrices of non-homogeneous entities denoted with Cxx.

As many probability density functions represent the same uncertain entity, this character-
ization is not unique. To cope with this problem of comparability, a normalization to spherical
coordinates is useful, though not required for every application. The idea is as follows: since
multiplication with a positive scalar does not change the entity, the distribution is projected
onto the tangent space of the unit sphere at the projection of its mean. Using linear error
propagation (cf. [Koch, 1997, p.108]), the moments change according to (cf. [Heuel, 2004,
p.110])

m(s)
x =

mx

|mx|
(2.13)

C(s)
xx = J

(s)CxxJ
(s)T (2.14)

with the Jacobian

J
(s) =

∂m(s)
x

∂mx
=

1
|mx|

(
I d −

mxmT
x

|mx|2

)
(2.15)

This representation for uncertain entities in oriented projective space is unique. Note that
the covariance matrix C(s)

xx is singular due to the projection on the tangent space. Again
the interpretation of those moments as probability density function is also possible, because
the maximum entropy distribution inside the tangent space is again the Normal distribution.
Therefore the uncertain entities, the moments and the probability density functions will not
be distinguished in the following. The usual notation for an uncertain entity will be the tuple
(mx,Cxx) containing the first two moments of its probability density function.

The next required generalization of the concept is toward compound entities, i.e. entities
that comprise of a fixed number of oriented projective entities x1, ...,xN . In analogy to the
above definition (cf. equation (2.7)), compound oriented projective entities are considered to
be equivalent, if and only if there exist positive factors that relate them

(x1, ...,xN ) ≡ (y1, ...,yN ) ⇔ x1 ≡ y1 ∧ ... ∧ xN ≡ yN (2.16)

Again this carries over to uncertain compound oriented projective entities defined as proba-
bility density functions

p(x1, ...,xN ) : IRn1+1 × · · · × IRnN+1 7→ IR+ (2.17)

that represent the same uncertain compound entity, if the following holds

px(x1, ...,xN ) ≡ py(y1, ...,yN ) (2.18)
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⇔ ∀Ω1 × · · · × ΩN ⊂ IRn1+1 × · · · × IRnN+1 :∫
{x1|x1≡z1,z1∈Ω1}

· · ·
∫
{xN |xN≡zN ,zN∈ΩN}

px(x1, ...,xN )dx1 · · · dxN

=
∫
{y1|y1≡z1,z1∈Ω1}

· · ·
∫
{yN |yN≡zN ,zN∈ΩN}

py(y1, ...,yN )dy1 · · · dyN

Hence, the probability of a compound entity lying in a region Ω1× · · ·×ΩN ⊂ IRn1+1× · · ·×
IRnN+1 of the compound oriented projective space is given by

µ(Ω1 × · · · × ΩN ) = (2.19)∫
{x1|x1≡z1,z1∈Ω1}

· · ·
∫
{xN |xN≡zN ,zN∈ΩN}

p(x1, ...,xN )dx1 · · · dxN

Again, the density will be characterized by its first two moments and vice versa. Thus the
means and covariances are

mxi =
∫

xip(x1, ...,xN )dx1 · · · dxN (2.20)

Cxixj =
∫

(xi −mi)(xj −mj)T p(x1, ...,xN )dx1 · · · dxN (2.21)

and, as many density functions represent the same entity, uniqueness is again achievable by
spherical normalization, which is defined for compound entities as

m(s)
xi

=
mxi

|mxi |
(2.22)

C(s)
xixj

= J
(s)
i CxixjJ

(s)
j

T
(2.23)

with the Jacobians for linear error propagation being

J
(s)
i =

∂m(s)
xi

∂mxi

=
1

|mxi |

(
I d −

mxim
T
xi

|mxi |2

)
(2.24)

The maximum entropy distribution for those first and second moments is the Normal dis-
tribution in the space spanned by the covariance matrices. Therefore also the uncertain
compound entities will not be distinguished from their distributions or their moments and
will be notated in the following as ({mxi}, {Cxixj}), leaving out covariance matrices from the
notation where they are not needed subsequently.

Note that the basic uncertain oriented projective entity is a special case of the compound
uncertain oriented entity containing only one element.

Having now introduced the fundamental concepts underlying the representation of each
uncertain oriented projective entity, in the following those notions will be specialized toward
some useful specific geometric 2d and 3d entities. First, some base entities will be presented,
which are then combined into some useful compound entities. The section is concluded by
a representation for projective cameras in the uncertain oriented projective framework. In
particular it will be shown explicitly for every transformation, how the uncertainties of the
entities transform.

2.1.1 Uncertain oriented 2d base entities

As computer vision and photogrammetry is mainly concerned with processing images, 2d
primitives such as points and lines naturally occur very often. In the following a representation
of such entities in the uncertain oriented projective framework will be shown.
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Figure 2.2: Left: An uncertain point in uncertain Euclidean space is represented by its
position x0 and its uncertainties along the two axes σx and σy. The confidence ellipsoid
needs not to be aligned with the coordinate system, but could also be rotated, which would
result in a non-zero covariance σxy. Right: A directed line from the uncertain point x to the
uncertain point y. The error band is in this case a hyperbola rather than an ellipse. Also
note that the normal of the line points by definition to the left seen in the direction of the
line.

2d points

Starting with 2d points, it has been discussed in section 1.3.3 that there are many algorithms
for extracting point features together with their uncertainties from images. Such a 2d point
is then usually given by its Euclidean coordinates (x, y) together with their variances σ2

x and
σ2

y and their covariance σxy. The uncertain Euclidean entity is thus represented as (see figure
2.2, left)

(x,Cxx) =

((
x
y

)
,

(
σ2

x σxy

σxy σ2
y

))
(2.25)

The corresponding uncertain oriented projective entity is obtained as (cf. [Heuel, 2004,
p.106])

(x,Cxx) =

((
x
1

)
,

(
Cxx 0
0T 0

))
(2.26)

Given on the other hand an uncertain oriented projective 2d point

(x,Cxx) =

((
x0

xh

)
,Cxx

)
(2.27)

this may be normalized into Euclidean coordinates dividing by |xh| resulting in the normalized
2d point (cf. [Heuel, 2004, p.109f])

(x(e),C(e)
xx ) =

(
1
|xh|

(
x0

xh

)
, JeCxxJ

T
e

)
(2.28)

=

((
x

(e)
0

sign(xh)

)
,

(
C

(e)
x0x0

0
0T 0

))
(2.29)



56 CHAPTER 2. UNCERTAIN ORIENTED PROJECTIVE GEOMETRY

using the Jacobian

Je =
∂x(e)

∂x
=

1
|xh|

(
I 2 − x0

|xh|
0T 0

)
(2.30)

Observe that the orientation is preserved by this operation, so that an Euclidean point
is only obtained, if the homogeneous coordinate is positive. Thus, it is always possible to
represent a given uncertain Euclidean 2d point in the oriented projective framework, but not
every uncertain oriented projective 2d point is representable as Euclidean point.

2d lines

A second useful feature encountered are straight 2d lines. Those 2d lines are usually created
by connecting two 2d points. In the uncertain oriented projective framework this is done as
follows: using the skew symmetric matrix inducing the cross product (cf. [Heuel, 2004, p.51])

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (2.31)

the line from the point (x,Cxx) in the direction toward the point (y,Cyy) is defined as (l,Cll)
with (cf. [Heuel, 2004, p.51] and see figure 2.2, right)

l = S(x)y = −S(y)x (2.32)

and for uncorrelated x and y

Cll = S(x)CyyS(x)T + S(y)CxxS(y)T (2.33)

Observe that the vector l is bilinear in the vectors x and y and that changing the order
of the two points changes the sign of the resulting connecting line. Again an Euclidean
interpretation is possible, too. Given the uncertain oriented projective 2d line

(l,Cll) =

((
lh
l0

)
,Cll

)
(2.34)

the Euclidean entity is obtained dividing by |lh| as (cf. [Heuel, 2004, p.109f])

(l(e),C(e)
ll ) =

(
1
|lh|

(
lh
l0

)
, JeCllJ

T
e

)
(2.35)

=


 cosφ

sinφ
−d

 ,C(e)
ll

 (2.36)

using the Jacobian

Je =
∂l(e)

∂l
=

1
|lh|

 I 2 − lhl
T
h

|lh|2
0

−l0l
T
h

|lh|2
1

 (2.37)

This yields the oriented angle of the line with the x-axis φ and the oriented distance to the
origin, which is also known as the Hessian normal form.
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Figure 2.3: Left: An uncertain oriented projective 2d edgel located at the point x having the
normal t. Right: An uncertain oriented 2d line segment can be either represented by its two
end-points x and y or by the connecting line l and the two delimiting lines m and n. Observe
that the shape of the confidence region of the line segment depends on the representation.

For duality reasons the intersection of two uncertain oriented projective lines (l,Cll) and
(m,Cmm) is defined as (x,Cxx) with (cf. [Heuel, 2004, p.54])

x = S(l)m = −S(m)l (2.38)

and its covariance matrix is given in the case of uncorrelated l and m by

Cxx = S(l)CmmS(l)T + S(m)CllS(m)T (2.39)

The orientation of the resulting point depends on the oriented angle between the two lines.
To see how, observe that for Euclidean normalized lines the last component of the resulting
point is

x3 = l1m2 − l2m1 = cosφ sinψ − sinφ cosψ = sin(ψ − φ) (2.40)

which is positive for ψ − φ ∈ [0..π] and negative for ψ − φ ∈ [π..2π].
Up to now uncertain oriented projective 2d points and uncertain oriented projective 2d

lines have been presented. Those two basic entities are now combinable into more complex
compound entities, which will be shown in the following.

2.1.2 Uncertain oriented 2d compound entities

Now the 2d base entities presented in the previous section will be combined into more complex
compound entities. It will first be shown, how 2d edgles can be represented followed by the
representation of 2d line segments and concluded by 2d polygons.

2d edgels

The first compound entity is the 2d edgel, i.e. a position in 2d space with an associated
direction. Its usefulness stems for instance from the fact that some feature extraction proce-
dures yield not only the position of a feature point, but also its orientation. Those entities
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are called edgels and consist of a position being an uncertain oriented 2d point (x,Cxx) and
a normal

(t,Ctt) =

((
t1
t2

)
,Ctt

)
(2.41)

being an uncertain oriented projective 1d point representing a 2d direction usually aligned
with the local gradient in the image. The resulting 2d edgel is then defined as the compound
oriented projective entitiy (see figure 2.3, left)

({x, t}, {Cxx,Ctt,Cxt}) (2.42)

The point at infinity corresponding to the normal direction vector is computable using

C∞ =

 1 0
0 1
0 0

 (2.43)

as
x∞ = C∞t (2.44)

having the covariance matrix
Cx∞x∞ = C∞CttC

T
∞ (2.45)

Finally the line going though the edgel is constructible from the point x and the rotated
point at infinity x∞ by using the rotation matrix

R⊥ =

 0 1 0
−1 0 0
0 0 1

 (2.46)

as
l = S(x)R⊥x∞ = −S(R⊥x∞)x (2.47)

having the covariance matrix

Cll = S(x)R⊥Cx∞x∞R
T
⊥S(x)T + S(R⊥x∞)CxxS(R⊥x∞)T (2.48)

if the edgels normal is uncorrelated with its position, i. e. Cxt = 0.
The additional information contained in the orientation of an edgel in comparison to just

using the position of a feature point is often of great advantage for grouping tasks, as the
search region can be significantly reduced.

2d line segments

Another important image feature extractable with the methods discussed in section 1.3.3 are
straight line segments. Those line segments differ from straight lines by having a start- and
an end-point. In an Euclidean setting, this means that line segments have a finite length. As
will be seen, this is not the case in an oriented projective setting.

It will become clear in section 2.2.2 that two different representations for line segments are
necessary to formulate various geometric relations. Therefore in the following two represen-
tations for uncertain line segments will be defined and it is shown, how those representations
can be converted from one to the other.

Line segments in point representation: An uncertain 2d line segment is usually
constructed from its two end-points. In contrast to the 2d line it does not extend from its



2.1. REPRESENTING UNCERTAIN ORIENTED ENTITIES 59

two end points in both directions, though it might cross the line at infinity and has therefore
infinite length in an Euclidean interpretation. The most natural representation is given by the
compound entity defined by the ordered pair of end-points (x,Cxx) and (y,Cyy) themselves
(see figure 2.3, right)

({x,y}, {Cxx,Cyy,Cxy}) (2.49)

The interpretation is as follows: starting from point x all points along the directed line
l = S(x)y lie on the line segment until the point y is reached. The line at infinity is crossed,
if and only if the orientation of the two end-points x and y is different.

Line segments in line representation: Another useful representation uses the con-
necting line (l,Cll) between the end-points and the two delimiting lines (m,Cmm) and (n,Cnn)
going perpendicular through the end-points (see figure 2.3, right)

({l,m,n}, {Cll,Cmm,Cnn,Clm,Cln,Cmn}) (2.50)

Not all such entities actually represent a line segment, because of the perpendicularity con-
straint. The notion of orthogonality is defined using the conic that is dual to the two circular
points (cf. [Hartley and Zisserman, 2000, p.33f])

C
∗
∞ =

 1 0 0
0 1 0
0 0 0

 (2.51)

The perpendicularity constraints are then formulated as

lTC ∗∞m = 0 (2.52)

and
lTC ∗∞n = 0 (2.53)

As orthogonality is an Euclidean quantity, the end-points are not allowed to be at infinity in
this representation.

Converting from point to line representation: To obtain a line segment in line
representation, one first constructs the connecting line as shown above (cf. equation (2.32))

l = S(x)y = −S(y)x (2.54)

From the perpendicularity constraint (cf. equation (2.52)) follows that the ideal point

x′ = C
∗
∞l (2.55)

lies on m. As the end-points are assumed not to be at infinity, it is distinct from x. Therefore
m is constructed by connecting x and x′ yielding

m = S(x)x′ (2.56)
= S(x)C ∗∞S(x)y (2.57)
= U(x)y (2.58)

with

U(x) = S(x)C ∗∞S(x) =

(
−x2

hI 2 xhx0

xhxT
0 −xT

0 x0

)
(2.59)



60 CHAPTER 2. UNCERTAIN ORIENTED PROJECTIVE GEOMETRY

Note that this expression is linear in y but not in x. Therefore the Jacobian

V(x,y) =
∂m
∂x

(2.60)

=

(
xhyhI 2 yhx0 − 2xhy0

xhyT
0 − 2yhxT

0 xT
0 y0

)

is required for error propagation.
The construction of n is completely analogous by swapping the roles of x and y yielding

n = U(y)x (2.61)

Finally the covariance matrices are obtained by error propagation using the Jacobian

J(x,y) =

 −S(y) S(x)
V(x,y) U(x)
U(y) V(y,x)

 (2.62)

yielding the covariance matrices Cll Clm Cln

Cml Cmm Cmn

Cnl Cnm Cnn

 = J(x,y)

(
Cxx Cxy

Cyx Cyy

)
J(x,y)T (2.63)

Note that the covariances between the entities are not necessary for the statistical tests
presented in section 2.2.2 and therefore often need not to be computed.

Converting from line to point representation: To convert a line segment from line
representation to point representation one has to intersect the line m and n with l. Therefore
the end-points are obtained as (cf. equation (2.38))

x = S(l)m = −S(m)l (2.64)

and
y = −S(l)n = S(n)l (2.65)

Using the Jacobian

J(l,m,n) =

(
−S(m) S(l) 0

S(n) 0 −S(l)

)
(2.66)

the covariance matrices are obtained as(
Cxx Cxy

Cyx Cyy

)
= J(l,m,n)

 Cll Clm Cln

Cml Cmm Cmn

Cnl Cnm Cnn

 J(l,m,n)T (2.67)

Again the covariance between the entities are often not needed for statistical testing and
need not be computed.

It has been shown, how line segments can be represented in an uncertain oriented pro-
jective framework. Two alternative representations have been presented that can easily be
converted into each other and that are both useful for different tasks, as will become clear in
section 2.2.
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Figure 2.4: An uncertain oriented projective 2d triangle may be represented either by its
three end-points x1, x2 and x3 or by its three delimiting lines l1, l2 and l3. Observe that the
confidence region has a different shape in the two different representations.

2d polygons

The third uncertain oriented projective compound entity that will be presented here is the
2d polygon. For instance homogeneous image regions, which are the output of some feature
extraction methods, can be modeled as such uncertain oriented projective polygons.

A 2d polygon with N corners can be seen as a collection of N delimiting line segments,
where two line segments have one point in common. This yields two natural representations
for uncertain polygons, namely using the corner-points itself (see figure 2.4)

({x1, ...,xN}, {Cxixj |i, j = 1, ..., N}) (2.68)

or using the delimiting lines (see figure 2.4)

({l1, ..., lN}, {Clilj |i, j = 1, ..., N}) (2.69)

The conversion from point to line representation is (cf. equation (2.32))

li = S(xi)xi+1 = −S(xi+1)xi (2.70)

where the indices read modulo N. The covariance matrices are obtained using the Jacobian

J(x1, ...,xN ) =


−S(x2) S(x1)

. . .
−S(xN ) S(xN−1)

S(xN ) −S(x1)

 (2.71)

as (
Clilj

)
i,j=1,...,N

= J(x1, ...,xN )
(
Cxixj

)
i,j=1,...,N

J(x1, ...,xN )T (2.72)



62 CHAPTER 2. UNCERTAIN ORIENTED PROJECTIVE GEOMETRY

For duality reasons the conversion from line representation into point representation is
completely analogous (cf. equation (2.38))

xi = S(li−1)li = −S(li)li−1 (2.73)

with the covariance being obtained using the Jacobian

J(l1, ..., lN ) =


S(lN ) −S(l1)
−S(l2) S(l1)

. . .
−S(lN ) S(lN−1)

 (2.74)

as (
Cxixj

)
i,j=1,...,N

= J(l1, ..., lN )
(
Clilj

)
i,j=1,...,N

J(l1, ..., lN )T (2.75)

Again the covariance matrices between all entities are not always required, which simplifies
the computation significantly. Also note that also non-convex polygons can be represented
like this, although most of the tests presented in section 2.2 require the polygons to be convex.

This section presented uncertain oriented projective 2d entities. First the two base enti-
ties, namely 2d points and 2d lines were discussed, followed by three useful compound entities
constructed from those base entities. In the following a completely analogous derivation will
be presented for 3d entities.

2.1.3 Uncertain oriented 3d base entities

As before in the 2d case, this section will present the representation of 3d entities in the
uncertain oriented projective framework. First, the base entities 3d point, 3d line and 3d
plane will be discussed.

3d points

In computer vision and photogrammetry uncertain 3d points are the output of most recon-
struction algorithms. Furthermore, there exist many different sensors, such as laser scanners
or GPS, that directly yield 3d coordinates as observations.

Such a 3d point is usually given by its Eclidean coordinates (X,Y, Z) together with their
variances σ2

X , σ2
Y , σ2

Z and their covariances σXY , σXZ , σY Z . Hence, the uncertain Euclidean
entity is represented as (see figure 2.5)

(X,CXX) =


 X

Y
Z

 ,
 σ2

X σXY σXZ

σXY σ2
Y σY Z

σXZ σY Z σ2
Z


 (2.76)

The corresponding uncertain oriented projective entity is obtained as (cf. equation (2.26)
and [Heuel, 2004, p.106])

(X,CXX) =

((
X
1

)
,

(
CXX 0
0T 0

))
(2.77)

Given on the other hand an uncertain oriented projective 3d point

(X,CXX) =

((
X0

Xh

)
,CXX

)
(2.78)
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Figure 2.5: An uncertain Euclidean 3d point is represented by its position X and a confidence
ellipsoid represented by the covariance matrix CXX . The ellipsoid needs not to be aligned
with the coordinate system.

this may be normalized into Euclidean coordinates dividing by |Xh| resulting in the normal-
ized 3d point (cf. equation (2.28) and [Heuel, 2004, p.109f])

(X(e),C
(e)
XX) =

(
1

|Xh|

(
X0

Xh

)
, JeCXXJ

T
e

)
(2.79)

=

((
X

(e)
0

sign(Xh)

)
,

(
C

(e)
X0X0

0
0T 0

))
(2.80)

using the Jacobian

Je =
∂X(e)

∂X
=

1
|Xh|

(
I 3 −X0

|Xh|
0T 0

)
(2.81)

This is completely analogous to the 2d point and again the orientation is preserved by
this operation, so that an Euclidean point is only obtained, if the homogeneous coordinate
is positive. Hence, again it is possible to represent every uncertain Euclidean 3d point in the
uncertain oriented projective framework.

3d lines

A second very useful entity is the 3d line. In computer vision and photogrammetry it occurs
for instance as backprojection of image points (see section 2.1.5). Furthermore, straight lines
often occur in man-made environments, so that reconstruction algorithms for such scenes
should be able to represent uncertain 3d lines.

An uncertain oriented projective 3d line is obtained by connecting two 3d points. Using
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Figure 2.6: An uncertain directed line going from point X to point Y. The vector Lh indicates
the direction of the line and the vector L0 is the normal of the plane going through the line
and the origin.

the matrix (cf. [Heuel, 2004, p.52])

Π(X) =



X4 0 0 −X1

0 X4 0 −X2

0 0 X4 −X3

0 −X3 X2 0
X3 0 −X1 0
−X2 X1 0 0


(2.82)

the line from point (X,CXX) to the point (Y,CY Y ) is defined as (L,CLL) with (cf. [Heuel,
2004, p.51] and see figure 2.6)

L = Π(X)Y = −Π(Y)X (2.83)

and in case of uncorrelated points X and Y its covariance matrix is given by

CLL = Π(X)CY Y Π(X)T + Π(Y)CXXΠ(Y)T (2.84)

Note that changing the order of the two points changes the sign and thus the direction of the
connecting line. Not all 6-vectors are constructible from two homogeneous points. This is
because the Plücker constraint must be fulfilled, i.e. a 6-vector L = (LT

h ,L
T
0 )T only represents

a line, if and only if the upper 3d vector and the lower 3d vector are perpendicular, i.e.

LT
h L0 = 0 (2.85)

An Euclidean interpretation of the uncertain oriented projective 3d line

(L,CLL) =

((
Lh

L0

)
,CLL

)
(2.86)
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is possible by dividing by the norm of its homogeneous part |Lh| resulting in the normalized
3d line (cf. [Heuel, 2004, p.109f])

(L(e),C
(e)
LL) =

(
1
|Lh|

(
Lh

L0

)
, JeCLLJ

T
e

)
(2.87)

=

((
L

(e)
h

L
(e)
0

)
,C

(e)
LL

)
(2.88)

using the Jacobian

Je =
∂L(e)

∂L
=

1
|Lh|

 I 3 − LhL
T
h

|Lh|2
0

−LhL
T
0

|Lh|2
I 3

 (2.89)

This yields the oriented line direction L
(e)
h , which can be interpreted using spherical coordi-

nates

L
(e)
h =

 cos θ sinφ
sin θ sinφ

cosφ

 (2.90)

with θ being the oriented angle in the xy-plane and φ being the oriented angle out of this
plane, as well as the point on the line being closest to the origin (cf. [Förstner and Wrobel,
2004, p.120])

Z = L
(e)
h ×L

(e)
0 (2.91)

It has been seen, how an uncertain oriented projective 3d line can be represented and
constructed from two uncertain oriented projective 3d points. It has also been shown, how
the representation can be interpreted in an Euclidean setting. Next, the uncertain oriented
projective 3d plane will be presented that results from joining a 3d line with a 3d point.

3d planes

The third important 3d base entity is the 3d plane. Like the 3d line it occurs in many man-
made environments and is also encountered in computer vision and photogrammetry as the
backprojection of image lines (see section 2.1.5).

An uncertain oriented projective 3d plane is obtained by connecting a 3d line with a 3d
point. Using the matrix (cf. [Heuel, 2004, p.52])

Π(X) = D6Π(X) =



0 −X3 X2 0
X3 0 −X1 0
−X2 X1 0 0
X4 0 0 −X1

0 X4 0 −X2

0 0 X4 −X3


(2.92)

with the dualizing matrix (cf. [Heuel, 2004, p.44])

D6 =

(
0 I 3

I 3 0

)
(2.93)
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Figure 2.7: An uncertaint oriented 3d plane A constructed from an uncertain directed line L
and an uncertain point Z. The vector Ah is the normal of the plane defining its orientation.

and the matrix (cf. [Heuel, 2004, p.53])

Γ(L) =


0 L3 −L2 −L4

−L3 0 L1 −L5

L2 −L1 0 −L6

L4 L5 L6 0

 (2.94)

the plane connecting the line (L,CLL) with the point (X,CXX) is defined as (A,CAA) with
(cf. [Heuel, 2004, p.53] and see figure 2.7)

A = Π(X)TL = Γ(L)TX (2.95)

and
CAA = Π(X)TCLLΠ(X) + Γ(L)TCXXΓ(L)) (2.96)

if the point X is uncorrelated with the line L. Note that the orientation of the plane depends
on the orientation of the line and the orientation of the point, which will become clearer in
the Euclidean interpretation.

To obtain this Euclidean interpretation of a given uncertain oriented 3d plane

(A,CAA) =

((
Ah

A0

)
,CAA

)
(2.97)

it is divided by the norm of its homogeneous part |Ah| resulting in the normalized plane (cf.
[Heuel, 2004, p.109f])

(A(e),C
(e)
AA) =

(
1

|Ah|

(
Ah

A0

)
, JeCAAJ

T
e

)
(2.98)

=

((
A

(e)
h

A
(e)
0

)
,C

(e)
AA

)
(2.99)
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using the Jacobian

Je =
∂A(e)

∂A
=

1
|Ah|

 I 3 − AhA
T
h

|Ah|2
0

−A0A
T
h

|Ah|2
1

 (2.100)

This yields the directed normal A
(e)
h of the plane, which can be interpreted in terms of

spherical coordinates

A
(e)
h =

 cos θ sinφ
sin θ sinφ

cosφ

 (2.101)

and the directed distance to the origin A
(e)
0 , where the sign of A(e)

0 is positive, if the plane’s
normal points toward the origin and negative if it points away from the origin.

The orientation of the plane, i.e. the direction of its normal vector Ah, defines a notion
of above and below the plane with the convention that above is in the direction the normal
vector points, which is consistent with the 2d case as will seen in detail in section 2.2.1.

Having defined the uncertain oriented 3d plane some more useful construction rules can
be defined. For instance given three uncertain 3d points (X,CXX), (Y,CY Y ) and (Z,CZZ),
the plane going through them is obtained by first connecting the first two points into a line
(cf. equation (2.83)) and then this line with the third point. Being more precise, the plane
is obtained as (A,CAA) with (cf. equation (2.95) and [Heuel, 2004, p.55])

A = Γ(Π(X)Y)TZ = Γ(Π(Y)Z)TX = Γ(Π(Z)X)TY (2.102)

and in case of uncorrelated points X, Y and Z

CAA = Γ(Π(X)Y)TCZZΓ(Π(X)Y (2.103)
+Γ(Π(Y)Z)TCXXΓ(Π(Y)Z
+Γ(Π(Z)X)TCY Y Γ(Π(Z)X

The orientation of the resulting plane is such that in case all three points have positive
orientation, the direction from X to Y, the direction from X to Z and the normal of the
plane form a right handed coordinate system.

For duality reasons the intersection of three uncertain oriented projective 3d planes
(A,CAA), (B,CBB) and (C,CCC) can be defined analogously to (2.102) yielding the oriented
uncertain projective 3d point (X,CXX) with (cf. [Heuel, 2004, p.55])

X = Γ(Π(A)B)TC = Γ(Π(B)C)TA = Γ(Π(C)A)TB (2.104)

and

CXX = Γ(Π(A)B)TCCCΓ(Π(A)B (2.105)
+Γ(Π(B)C)TCAAΓ(Π(B)C
+Γ(Π(C)A)TCBBΓ(Π(C)A

if the three planes are assumed to be uncorrelated. The orientation of the resulting point is
positive, if and only if the normals of the planes A, B and C form a left-handed coordinate
system.

Dualizing the definition of the uncertain oriented projective 3d plane (cf. equation (2.95))
yields the intersection of an oriented projective 3d line (L,CLL) and an oriented projective 3d
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plane (A,CAA) being the uncertain oriented projective 3d point (X,CXX) with (cf. [Heuel,
2004, p.55])

X = Π(A)TL = Γ(L)TA (2.106)

and in case of uncorrelated L and A

CXX = Π(A)TCLLΠ(A) + Γ(L)TCAAΓ(L) (2.107)

using the dualized matrix (cf. [Heuel, 2004, p.53])

Γ(L) = Γ(D6L) =


0 L6 −L5 −L1

−L6 0 L4 −L2

L5 −L4 0 −L3

L1 L2 L3 0

 (2.108)

The orientation of the resulting point is positive, if and only if the line pierces the plane from
left as will be discussed in detail in section 2.2.1.

Finally also the definition of the uncertain oriented projective 3d line (cf. equation (2.83))
can be dualized yielding the intersection of the two oriented projective 3d planes (A,CAA)
and (B,CBB) being the line (L,CLL) with (cf. [Heuel, 2004, p.55])

L = Π(A)B = −Π(B)A (2.109)

and
CLL = Π(A)CBBΠ(A)T + Π(B)CAAΠ(B)T (2.110)

if the two planes are uncorrelated. The orientation of the resulting line is such that the
normal vector of the plane A, the normal vector of the plane B and the direction vector of
the line form a right handed coordinate system.

Up to now the three uncertain oriented projective 3d base entities point, line and plane
have been presented. It has been shown, how they could be constructed and how they could
be interpreted in an Euclidean setting. As in the 2d case, those entities can be combined into
useful compound entities, which will be presented in the following section.

2.1.4 Uncertain oriented 3d compound entities

Now the uncertain oriented projective 3d entities presented in the previous section will be
combined into uncertain oriented projective compound entities. It will be shown, how 3d
facets, 3d line segments and 3d polygons can be represented in the uncertain oriented pro-
jective framework.

3d facets

Analogous to the 2d edgels facets, i.e. 3d points with an associated normal direction, may be
defined in 3d space. Facets are for instance required for visualization purposes in computer
graphics and are usually obtained from laser scanner data from the known neighborhood
structure within the 3d point cloud.

Those 3d facets are constructed from an uncertain oriented projective 3d point (X,CXX)
together with a local surface normal

(T,CTT ) =


 T1

T2

T3

 ,CTT

 (2.111)
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Figure 2.8: An uncertain oriented projective 3d facet located at the point X having the
normal T.

being an uncertain oriented projective 2d point representing the local surface normal. The
resulting 3d facet is then defined as the compound oriented projective entity (see figure 2.8)

({X,T}, {CXX ,CTT ,CXT }) (2.112)

The point at infinity corresponding to the normal direction vector is computable in com-
plete analogy to the 2d edgel case using the matrix (cf. 2.43)

C̃∞ =


1 0 0
0 1 0
0 0 1
0 0 0

 (2.113)

as
X∞ = C̃∞T (2.114)

having the covariance matrix
CX∞X∞ = C̃∞CTT C̃

T
∞ (2.115)

The plane A going through the facet has the normal vector T and goes through X, hence

ATX =

(
T
A0

)T (
X0

Xh

)
= 0 (2.116)

Solving this equation for the unknown distance A0 yields

A0 = −T T X0

Xh
(2.117)

Multiplying with the common factor Xh yields the plane

A =

(
XhT

−T T X0

)
= U(X)T = V (T)X (2.118)
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Figure 2.9: An uncertain oriented 3d line segment can either be represented by its two end-
points X and Y or by the line L and the two delimiting planes E and F. Note that like the
2d case the shape of the confidence region depends on the representation.

with the Jacobians

U(X) =

(
XhI 3

−X0

)
(2.119)

and

V (T) =

(
03×3 T

−T T 0

)
(2.120)

Note that Xh might be negative, so that a point with negative orientation results in a plane
with a normal vector pointing in the opposite direction of the normal vector of the facet.
The covariance matrix of the resulting plane is finally obtained under the assumption that
the facets normal is uncorrelated with its position, as

CAA = U(X)CTTU(X)T + V (T)CXXV (T)T (2.121)

The additional information contained in the surface normal can often be used to great
advantage. As in the case of 2d edgels, grouping is significantly eased, if such normal direction
information is available in addition to the position of a 3d point. Furthermore, realistic
visualization of 3d point clouds is only possible, if the normal directions are known for each
3d point, as the reflectance properties of the surface strongly depend on it.

3d line segments

Like in the 2d case, also 3d line segments may be represented in the uncertain oriented
projective framework as compound entities. Again two different representations for 3d line
segments will be required in section 2.2 and will be presented in the following.

Line segments in point representation: As in the 2d case a 3d line segment is
usually constructed from its two end-points. Again it does not extend from the end-points
in two directions but may cross the plane at infinity and have therefore infinite length in an
Euclidean interpretation, too. Constructing the compound entity from the ordered pair of
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uncertain oriented projective 3d end-points (X,CXX) and (Y,CY Y ), one obtains (see figure
2.9)

({X,Y}, {CXX ,CY Y ,CXY }) (2.122)

All points are considered on the line segment that starting from point X lie along the directed
line Π(X)Y until the point Y is reached. As in the 2d case the plane at infinity is crossed,
if and only if the orientation of X and Y differs.

Line segments in line-plane representation: The second useful representation for a
3d line segment is the compound entity comprising of the line (L,CLL) connecting its two
end-points and the two planes (E,CEE) and (F,CFF ) going perpendicular to the line through
the end-points (see figure 2.9)

({L,E,F}, {CLL,CEE ,CFF ,CLE ,CLF ,CEF }) (2.123)

Because of the perpendicularity constraint, not all such entities represent 3d line segments.
For defining orthogonality between lines and planes, one can use the 3 × 3 × 3-tensor (cf.
[Hartley and Zisserman, 2000, p.546])

εrst =


0 unless r, s and t are distinct
+1 if rst is an even permutation of 123
−1 if rst is an odd permutation of 123

(2.124)

and augment it with zeros to obtain a 3× 6× 4-tensor

ε̃rst =

{
εrst if s ≤ 3 and t ≤ 3
0 otherwise

(2.125)

The two perpendicularity constraints can now be stated as

ε̃ijkLiEk = 0 (2.126)

and
ε̃ijkLiFk = 0 (2.127)

Note that from each of those constraint only two are linear independent and, as orthogo-
nality is an Euclidean property, none of the end-points are allowed to lie at infinity in this
representation. Also note that the two constraints are also expressible as cross-products, but
are given in tensor notation to ease the following derivations.

Converting from point to line-plane representation: To obtain a 3d line segment in
line-plane representation, one first constructs the connecting line as shown above (cf. equation
(2.83))

L = Π(X)Y = −Π(Y)X (2.128)

From the perpendicularity constraint (cf. 2.126) in tensor notation follows immediately
that the three ideal points

X ′
k = ε̃1jkLj (2.129)

X ′′
k = ε̃2jkLj (2.130)

X ′′′
k = ε̃3jkLj (2.131)

lie on E. Because the end-points are assumed to be not at infinity they are distinct from X.
Therefore the plane ±E can be constructed up to its orientation by connecting X with two
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of those three points. Selecting without loss of generality the first two points, it is given by
(cf. 2.102)

±E = Γ(Π(X′)X′′)TX (2.132)

= d3


d1Xh

d2Xh

d3Xh

−d1X1 − d2X2 − d3X3

 (2.133)

using the 2× 2 - determinant

di =

∣∣∣∣∣ Xi Yi

Xh Yh

∣∣∣∣∣ (2.134)

The scale factor d3, which would be d2 if the first and third point had been selected and d1

if the second and third point had been selected, can now be omitted. As a byproduct, the
scale ambiguity resulting from the selected points at infinity is resolved, so that the oriented
plane can now in complete analogy to the 2d case be defined as

E =


d1Xh

d2Xh

d3Xh

−d1X1 − d2X2 − d3X3

 = U(X)Y (2.135)

with

U(X) =

(
−X2

hI 3 XhX0

XhXT
0 −XT

0 X0

)
(2.136)

Observe that this matrix has the identical form as in the 2d case (cf. equation (2.59)). Again
this expression is linear in Y, but not in X. Therefore the Jacobian

V(X,Y) =
∂E
∂X

(2.137)

=

(
XhYhI 3 YhX0 − 2XhY 0

XhY T
0 − 2YhXT

0 XT
0 Y 0

)

is required for error propagation.
The construction of F is completely analogous by swapping the roles of X and Y yielding

F = U(Y)X (2.138)

As in the 2d case the covariance matrices are obtained by error propagation using the
Jacobian

J(X,Y) =

 −Π(Y) Π(X)
V(X,Y) U(X)
U(Y) V(Y,X)

 (2.139)

yielding  CLL CLE CLF

CEL CEE CEF

CFL CFE CFF

 = J(X,Y)

(
CXX CXY

CY X CY Y

)
J(X,Y)T (2.140)

Note that often the covariances between the entities are not required for statistical testing
and can be omitted from the computation.
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Figure 2.10: An uncertain oriented 3d triangle can be represented by its three corner-points
X1, X2 and X3, by its three delimiting lines L1, L2 and L3 or by the plane A and the three
delimiting planes B1, B2 and B3.

Converting from line-plane to point representation: To convert a line segment
from line-plane representation into point representation, one has to intersect the two planes
E and F with L. The end-points are therefore given by (cf. equation (2.106))

X = Π(E)TL = −Π(L)TE (2.141)

and
Y = −Π(F)TL = Π(L)TF (2.142)

Using the Jacobian

J(L,E,F) =

(
−Π(E) Π(L) 0

Π(F) 0 −Π(L)

)
(2.143)

the covariance matrices are obtained as(
CXX CXY

CY X CY Y

)
= J(L,E,F)

 CLL CLE CLF

CEL CEE CEF

CFL CFE CFF

 J(L,E,F)T (2.144)

Again the covariances between the entities are not always required and need not be
computed.

It has been shown, how 3d line segments can be represented as uncertain oriented projec-
tive compound entites. Like in the 2d case, two different representations have been presented
and it was shown, how to convert from one representation into the other and vice versa,
which will be required for the geometric reasoning presented in section 2.2.

3d polygons

A third very useful compound entity representable in the uncertain oriented projective frame-
work is the 3d polygon. A 3d polygon is a planar patch in 3d space that is delimited by three
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or more straight line segments. As in the 2d case, those space polygons need not be convex,
although some of the tests presented in section 2.2 require such.

In the following three representations, namely one using points, one using planes and one
using lines are presented. It will be shown, how to convert 3d polygons from point to plane
representation and vice versa as well as from point to line representation and vice versa. The
conversion from plane to line representation are therefore possible via the point representation
and will not be discussed.

Representation using points: One can represent a 3d polygon with N ≥ 3 corners
simply using the corner points itself (see figure 2.10)

({X1, ...,XN}, {CXiXj |i, j = 1, ..., N}) (2.145)

If N > 3, then not all such compound entities represent actual polygons, because the points
are required to be all coplanar. This condition is formulated algebraically by stating that the
determinants are ∣∣∣ Xi Xj Xk Xl

∣∣∣ = 0 ∀i, j, k, l ∈ {1, ..., N} (2.146)

for all subsets of corner points.
Representation using planes: Another representation for 3d polygons is based on the

plane A, in which the polygon lies together with the ordered list of perpendicular delimiting
planes B1, ...,BN yielding the entity (see figure 2.10))

({A,B1, ...,BN}, {CAA,CBiBj ,CABi |i, j = 1, ..., N}) (2.147)

Orthogonality can be defined between planes similar to the 2d case using the degenerate
quadric

C̃
∗
∞ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (2.148)

by stating that a compound entity represents a 3d polygon if and only if the constraints

AT
C̃
∗
∞Bi = 0 ∀i ∈ {1, ..., N} (2.149)

hold. Again, as orthogonality is an Euclidean property, no corner point is allowed to lie at
infinity in this representation.

Representation using lines: Another third useful representation for 3d polygons uses
the delimiting lines instead of the points. The compound entity is then (see figure 2.10)

({L1, ...,Ln}, {CLiLj |i, j = 1, ..., N}) (2.150)

Not every such entity represents a 3d polygon, since the lines have to be all co-planar.
Algebraically this condition is formulated by requiring that all inner products are

LT
i D6Lj = 0 ∀i, j ∈ {1, ..., N} (2.151)

Converting from point to plane representation: To convert a 3d polygon from
point to plane representation, one first constructs the plane going through all corner points.
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Without loss of generality choosing the corner points Xr, Xs and Xt with r < s < t it is
given by (cf. equation (2.102))

A = Γ(Π(Xr)Xs)TXt (2.152)

This choice is arbitrary for points in general position to calculate the expectation value of
the uncertain plane A. As will be discussed below, the second moments of the distribution
of A depend on this choice, so that the conversion is not uniquely possible for polygons other
than triangles.

From the perpendicularity constraint (cf. equation (2.149)) follows that the ideal point

X′ = C̃
∗
∞A (2.153)

lies on all planes Bi. Because the corner points are assumed not to be at infinity, it is distinct
from each of the corner points. Therefore the delimiting planes are given by connecting every
pair of neighboring corner points with X′ (cf. equation (2.102)) yielding

Bi = −Γ(Π(Xi)Xi+1)TX′ (2.154)

where the indices read modulo N . Note that the orientations depend on the orientations and
the order of the corner points.

As pointed out above, no unique conversion from point to plane representation is possible
for N > 3. This is, because the description of the uncertainty of the corner points is much
richer and may not be captured by the second moments of a single plane. However, choosing
three corner points Xr, Xs and Xt defining the polygon plane allows to uniquely compute
the second moments of the plane representation. The covariance matrix of this plane is then
given by (cf. equation (2.102))

CAA = J

 CXrXr CXrXs CXrXt

CXsXr CXsXs CXsXt

CXtXr CXtXs CXtXt

 J
T (2.155)

using the Jacobian

J(Xr,Xs,Xt) =

 Γ(Π(Xs)Xt)
Γ(Π(Xr)Xt)
Γ(Π(Xr)Xs)


T

(2.156)

Uniqueness could artificially be achieved by introducing some criterion on choosing those
three points. If no such criterion is available from the application, one might minimize some
measure like the trace or the determinant of the resulting covariance matrix CAA.

For the computation of the covariance matrices of the planes Bi one has to distinguish
three cases

1. Both points Xi and Xi+1 are identical with two of the points Xr, Xs and Xt.

2. Only one of the points Xi and Xi+1 is identical with one of the points Xr, Xs and Xt.

3. None of the points Xi and Xi+1 is identical with any of the points Xr, Xs and Xt.

Observe that in the case of triangles only the first case can occur, and that the third case
occurs only with polygons having five of more corner points. Also note, the exchanging Xi

and Xi+1 or permuting Xr, Xs and Xt only changes the sign of Bi (cf. equation (2.154))
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and therefore does not affect its covariance matrix. Thus the ordering of points will be fixed
without loss of generality in the following analysis.

Case 1: Now starting with the first case and assuming without loss of generality that
Xi = Xr, Xi+1 = Xs and Xt is the non-identical point, then the plane Bi is linear in Xt,
since equation (2.154) can in this case also be written in the form

Bi = −Γ(Π(Xi)Xi+1)T
C̃
∗
∞Γ(Π(Xi)Xi+1)TXt (2.157)

= U i(Xi,Xi+1)Xt (2.158)

It is, however, not linear in Xi or Xi+1. To obtain the required Jacobians tensor notation is
useful and equation (2.157) is re-written as

B(i)
g = −Γfg(Πhj(X

(i)
k )X(i+1)

j )C̃∗fbΓab(Πcd(X(i)
e )X(i+1)

d )X(t)
a (2.159)

= −Γfg(Πhj(X
(i+1)
k )X(i)

j )C̃∗fbΓab(Πcd(X(t)
e )X(i+1)

d )X(i)
a (2.160)

where the indices of the points are put up eventually to improve the readability. Now the
partial derivatives are easily obtained using product and chain rule as

∂B
(i)
g

∂X
(i)
m

= −Γ′lfgΠlm(X(i+1))C̃∗fbΓab(Π(X(t))X(i+1))X(i)
a (2.161)

−Γfg(Π(X(i+1))X(i))C̃∗fbΓmb(Π(X(t))X(i+1))

denoting the partial derivatives of the construction matrix with

Γ′rst =
∂Γst

∂Lr
=


+1 if Γst(1, 2, 3, 4, 5, 6) = r
−1 if Γst(1, 2, 3, 4, 5, 6) = −r
0 otherwise

(2.162)

so that the Jacobian is

V i(Xi,Xi+1,Xt) =

 ∂B
(i)
g

∂X
(i)
m

∣∣∣∣∣
Xi,Xi+1,Xt


g=1..4,m=1..4

(2.163)

Because equation (2.157) is reflexive in Xi and Xi+1 also its derivatives are, so that the third
Jacobian is simply obtained from the last by exchanging Xi and Xi+1, i.e. ∂B

(i)
g

∂X
(i+1)
m

∣∣∣∣∣
Xi,Xi+1,Xt


g=1..4,m=1..4

= V i(Xi+1,Xi,Xt) (2.164)

Hence, the covariance matrix of the delimiting plane is now computable as

CBiBi = J1

 CXtXt CXtXi CXtXi+1

CXiXt CXiXi CXiXi+1

CXi+1Xt CXi+1Xi CXi+1Xi+1

 J
T
1 (2.165)

using the Jacobian

J1(Xi,Xi+1,Xt) =

 U i(Xi,Xi+1)
V i(Xi,Xi+1,Xt)
V i(Xi+1,Xi,Xt)


T

(2.166)
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Case 2: In the second case, assuming without loss of generality Xi = Xr and neither
Xs nor Xt identical to Xi+1, equation (2.154) is linear in Xs, Xt and Xi+1, since it can be
written either as

Bi = −Γ(Π(Xi)Xi+1)T
C̃
∗
∞Γ(Π(Xi)Xs)TXt (2.167)

= U i(Xi,Xi+1,Xs)Xt (2.168)
= −U i(Xi,Xi+1,Xt)Xs (2.169)

or as

Bi = −Γ(Π(Xi)C̃
∗
∞Γ(Π(Xi)Xt)TXs)TXi+1 (2.170)

= V i(Xi,Xs,Xt)Xi+1 (2.171)

It is not linear in Xi, though. Using again tensor notation, equation (2.167) is re-written as

B(i)
g = −Γfg(Πhj(X

(i)
k )X(i+1)

j )C̃∗fbΓab(Πcd(X(i)
e )X(s)

d )X(t)
a (2.172)

= −Γfg(Πhj(X
(i+1)
k )X(i)

j )C̃∗fbΓab(Πcd(X(t)
e )X(s)

d )X(i)
a (2.173)

Applying product and chain rule the partial derivatives are

∂B
(i)
g

∂X
(i)
m

= −Γ′lfgΠlm(X(i+1))C̃∗fbΓab(Π(X(t))X(s))X(i)
a (2.174)

−Γfg(Π(X(i+1))X(i))C̃∗fbΓmb(Π(X(t))X(s))

so that the Jacobian is

W i(Xi,Xi+1,Xs,Xt) =

 ∂B
(i)
g

∂X
(i)
m

∣∣∣∣∣
Xi,Xi+1,Xs,Xt


g=1..4,m=1..4

(2.175)

and the covariance matrix is obtained as

CBiBi = J2


CXsXs CXsXt CXsXi CXsXi+1

CXtXs CXtXt CXtXi CXtXi+1

CXiXs CXiXt CXiXi CXiXi+1

CXi+1Xs CXi+1Xt CXi+1Xi CXi+1Xi+1

 J
T
2 (2.176)

using the Jacobian

J2(Xi,Xi+1,Xs,Xt) =


−U i(Xi,Xi+1,Xt)
U i(Xi,Xi+1,Xs)

W i(Xi,Xi+1,Xs,Xt)
V i(Xi,Xs,Xt)


T

(2.177)

Case 3: Finally in the third case equation (2.154) is linear in all quantities Xi, Xi+1, Xr,
Xs and Xt, as it can be written either as

Bi = −Γ(Π(Xi)Xi+1)T
C̃
∗
∞Γ(Π(Xr)Xs)TXt (2.178)

= U i(Xi,Xi+1,Xr,Xs)Xt (2.179)
= U i(Xi,Xi+1,Xt,Xr)Xs (2.180)
= U i(Xi,Xi+1,Xs,Xt)Xr (2.181)
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or as

Bi = −Γ(Π(Xi)C̃
∗
∞Γ(Π(Xr)Xt)TXs)TXi+1 (2.182)

= V i(Xi,Xr,Xs,Xt)Xi+1 (2.183)
= −V i(Xi+1,Xr,Xs,Xt)Xi (2.184)

Hence, the covariance matrix of the delimiting plane is in this case given by

CBiBi = J3


CXrXr CXrXs CXrXt CXrXi CXrXi+1

CXsXr CXsXs CXsXt CXsXi CXsXi+1

CXtXr CXtXs CXtXt CXtXi CXtXi+1

CXiXr CXiXs CXiXt CXiXi CXiXi+1

CXi+1Xr CXi+1Xs CXi+1Xt CXi+1Xi CXi+1Xi+1

 J
T
3 (2.185)

using the Jacobian

J3(Xi,Xi+1,Xr,Xs,Xt) =


U i(Xi,Xi+1,Xs,Xt)
U i(Xi,Xi+1,Xt,Xr)
U i(Xi,Xi+1,Xr,Xs)
−V i(Xi+1,Xr,Xs,Xt)
V i(Xi,Xr,Xs,Xt)


T

(2.186)

The computation of the covariance matrices between the entities is possible in a straight-
forward manner using the Jacobians derived. However, one must distinguish between all
combinations of cases that can occur, so that this derivation is not presented here, as the
covariance matrices between the entities are not required for the hypothesis tests.

Converting from plane to point representation: To convert a space polygon from
plane representation into line representation, one has to intersect the three planes going
through each corner point. Hence the corner points are (cf. equation (2.104))

Xi = Γ(Π(A)Bi−1)TBi (2.187)
= Γ(Π(Bi)A)TBi−1 (2.188)
= Γ(Π(Bi−1)Bi)TA (2.189)

where the indices again read modulo N .
The covariance matrices are therefore obtained using the Jacobian

J =


Γ(Π(BN )B1)T Γ(Π(A)BN )T Γ(Π(B1)A)T

Γ(Π(B1)B2)T Γ(Π(B2)A)T Γ(Π(A)B1)T

...
. . .

Γ(Π(BN−1)BN )T Γ(Π(BN )A)T Γ(Π(A)BN−1)T

 (2.190)

as

(
CXiXj

)
i,j=1,...,N

= J


CAA CAB1 · · · CABN

CB1A CB1B1 · · · CB1BN

...
...

. . .
...

CBNA CBNB1 · · · CBNBN

 J
T (2.191)

Converting from point to line representation: To convert a space polygon from
point to line representation, one has to connect the adjacent corner points. The lines are
then given by (cf. equation (2.83))

Li = Π(Xi)Xi+1 = −Π(Xi+1)Xi (2.192)
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where the indices read modulo N . The covariance matrices are obtained using the Jacobian

J(X1, ...,XN ) =


−Π(X2) Π(X1)

. . .
−Π(XN ) Π(XN−1)

Π(XN ) −Π(X1)

 (2.193)

as (
CLiLj

)
i,j=1,...,N

= J(X1, ...,XN )
(
CXiXj

)
i,j=1,...,N

J(X1, ...,XN )T (2.194)

This is completely analogous to the 2d case.
Converting from line to point representation: To convert a 3d polygon from line to

point representation, one has to intersect all adjacent lines. As before in the conversion from
point to plane representation, this is not possible in a unique manner, since the uncertainties
of the adjacent lines is not guaranteed to fit at the intersections. The point Xi is at the
intersection of Li−1 and Li, which exists because of condition (2.151). Hence, neither the
plane constructed from Li−1 and Xi nor from from Li and Xi does exists (cf. equation 2.95),
i. e.

Γ(Li−1)TXi =


γ

(i−1)
1
...

γ
(i−1)
4

Xi = 0 (2.195)

and

Γ(Li)TXi =


γ

(i)
1
...

γ
(i)
4

Xi = 0 (2.196)

This may also be interpreted as Xi lying on the eight planes γ
(i−1)
1 , ..., γ

(i−1)
4 , γ

(i)
1 , ..., γ

(i)
4

defined by the columns of the two Γ-matrices.
As a point is uniquely defined by three planes and the rank of each Γ-matrix is two, only

three of those rows and two of each Γ-matrix are linear independent. Thus selecting without
loss of generality three of those columns γ

(i−1)
r , γ

(i−1)
s and γ

(i)
t , either two of the first and one

of the second Γ-matrix or vice versa, the point is obtained by intersecting the three planes
(cf. equation (2.102))

Xi = Γ(Π(γ(i−1)
r )γ(i−1)

s )T γ
(i)
t (2.197)

This expression is linear in L(i), but not in L(i−1). To obtain the covariance matrix, it is
re-written in tensor notation as

X
(i)
b = Γab(Πcd(Γre(L(i−1)))Γsd(L(i−1)))Γta(L(i)) (2.198)

= Γab(Πcd(Γte(L(i)))Γrd(L(i−1)))Γsa(L(i−1)) (2.199)

Applying product and chain rule, the partial derivatives are

∂X
(i)
b

∂L
(i)
f

= Γab(Πcd(Γre(L(i−1)))Γsd(L(i−1)))Γ′fta (2.200)

and

∂X
(i)
b

∂L
(i+1)
f

= Γab(Πcd(Γte(L(i)))Γrd(L(i−1)))Γ′fsa (2.201)

+Γ′gabΠgh(Γtk(L(i)))Γ′frhΓsa(L(i−1))



80 CHAPTER 2. UNCERTAIN ORIENTED PROJECTIVE GEOMETRY

so that the Jacobians are given by

V i(Li−1) =

 ∂X
(i)
b

∂L
(i)
f

∣∣∣∣∣∣
Li−1


b=1..4,f=1..4

(2.202)

and

W i(Li−1,Li) =

 ∂X
(i)
b

∂L
(i−1)
f

∣∣∣∣∣∣
Li−1,Li


b=1..4,f=1..4

(2.203)

Finally the covariance matrices are obtained using the Jacobian

J(L1, ...,LN ) =


V 1(LN ) W 1(LN ,L1)

W 2(L1,L2) V 2(L1)
. . .

WN (LN−1,LN ) VN (LN−1)

 (2.204)

as (
CXiXj

)
i,j=1,...,N

= J(L1, ...,LN )
(
CLiLj

)
i,j=1,...,N

J(L1, ...,LN )T (2.205)

Up to now a number of 2d and 3d entities have been presented. It has been shown, how
to represent and convert the various entities in 2d into each other as well as how to represent
and convert the various entities in 3d into each other. The connection between 2d and 3d
space, i.e. how to obtain 2d entities from 3d entities and vice versa, has not been discussed,
so far. In computer vision and photogrammetry the connection between 2d and 3d space
is established by projective cameras, which are also representable in the uncertain oriented
projective framework and will therefore be presented in the following.

2.1.5 Uncertain oriented projective cameras

In this work, cameras are seen as devices that relate the uncertain oriented projective 2d
space with the uncertain oriented projective 3d space. Furthermore, projective cameras can
be represented as uncertain oriented projective 3d entities themselves and therefore fit into the
framework as such entities. Like many of the entities discussed above, also projective cameras
can be represented in two representations, namely in point projection matrix representation
and in line projection matrix representation. In the following, those two representations in
the uncertain oriented projective framework will be presented and it will be shown, how those
uncertain oriented projective cameras relate the 3d object space to the 2d image space and
vice versa. Especially the possibility of relating the 2d image entities to 3d scene entities will
enable the reconstruction application presented in chapter 4.

Point projection matrix representation

The first and most well-known representation for a projective camera is given by the point
projection matrix. In the following the point projection matrix will be presented and it will
be shown, how it can be represented as uncertain oriented projective 3d entity.

In section 1.3.1 various methods for calibrating cameras are presented. Omitting non-
linear image distortions those algorithms usually output five calibration parameters: the
principal length c, the principal point (xh, yh), the aspect ration m and the coordinate axis
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Figure 2.11: A line preserving projective camera images the scene line L as image line l and
the scene point X as image point x. The backward projection is possible, too. The image
point x backprojects onto the scene line Lx and the image line l backprojects onto the scene
plane Al.

skew s. Those parameters are then collected in the homogeneous calibration matrix (cf.
[Mugnier et al., 2004, p.224])

K =

 c cs xh

0 c(1 +m) yh

0 0 1

 (2.206)

that describes, how directions of incoming light are mapped to pixel positions in the image.
In the oriented projective setting, light rays coming from the front of the camera result in
2d image points with positive orientation and light rays coming from the rear of the camera
result in 2d image points with negative orientation. It is therefore clear that all visible points
in an image take with a real physical camera must have positive orientation.

Furthermore in section 1.3.2 methods for estimating the position Z and rotation matrix
R of the camera in space are presented. The homogeneous point projection matrix is then
given by (cf. [Mugnier et al., 2004, p.225] and [Hartley and Zisserman, 2000, p.143])

P = KR(I 3| −Z) (2.207)

As this matrix is uniquely defined up to a positive scale factor, its elements can be collected
into a vector in oriented projective space

p = vecPT (2.208)

so that the resulting uncertain oriented projective entity

(p,Cpp) (2.209)

represents a line preserving projective camera. The elements of the covariance matrix Cpp

can be obtained from the uncertainties of the calibration and orientation parameters by error
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propagation. As this depends on the specific representation of those, this will not be discussed
here and the covariance matrix is assumed to be given by the orientation procedure.

Given an uncertain oriented projective 3d point (X,CXX) the projection into the uncer-
tain oriented projective 2d image point is given by (cf. [Hartley and Zisserman, 2000, p.142]
and see figure 2.11)

x = PX (2.210)

having the covariance matrix (cf. [Koch, 1997, p.44])

Cxx = PCXXP
T + (I 3 ⊗XT )Cpp(I 3 ⊗XT )T (2.211)

Observe that the orientation is reversed for points behind the camera.
On the other hand, given an uncertain oriented projective image line (l,Cll), the projecting

uncertain oriented scene plane is given by (cf. [Hartley and Zisserman, 2000, p.186] and see
figure 2.11)

Al = PT l (2.212)

having the covariance matrix

CAlAl
= PTCllP+ (lT ⊗ I 4)Cpp(lT ⊗ I 4)T (2.213)

It has been seen that the point projection matrix representation of a projective camera is
well-suited for computing the uncertain oriented projective 2d image point from an uncertain
oriented projective 3d scene point and for computing the uncertain oriented projective 3d
scene plane from an uncertain oriented projective 2d image line. In the following another
representation will be presented that is better suited for transferring 3d lines into images and
more important 2d image points into 3d scene lines.

Line projection matrix representation

The second useful representation for a projective camera is the line projection matrix (cf.
[Mugnier et al., 2004, p.236])

Q = (KR)−1 (−S(Z)|I 3) (2.214)

which defines the oriented projective entity

q = vecQT (2.215)

and, adding a covariance matrix, the uncertain oriented projective entity

(q,Cqq) (2.216)

Obviously, as the projective camera has only eleven degrees of freedom, not all such 18-vectors
actually represent cameras. Those constraints can be derived by noting that the rows of Q
represent three lines through the projection center Z (cf. [Faugeras and Luong, 2001, p.195]).
Therefore it is required that the rows fulfill the Plücker constraint and that all rows intersect
in a single point, yielding a total of six constraints. Hence, a matrix

Q =

 qT
1

qT
2

qT
3

 (2.217)
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represents a projective camera if and only if the six conditions

qT
1 D6q1 = 0 (2.218)

qT
2 D6q2 = 0 (2.219)

qT
3 D6q3 = 0 (2.220)

qT
1 D6q2 = 0 (2.221)

qT
1 D6q3 = 0 (2.222)

qT
2 D6q3 = 0 (2.223)

are fulfilled.
Given an uncertain oriented projective 3d line (L,CLL) the projection into the uncertain

oriented projected 2d image line is given by (see figure 2.11)

l = QL (2.224)

having the covariance matrix

Cll = QCLLQ
T + (I 6 ⊗ LT )Cqq(I 6 ⊗ LT )T (2.225)

On the other hand given an uncertain oriented image point (x,Cxx), the projecting un-
certain oriented scene line is given by (see figure 2.11)

Lx = D6Q
Tx (2.226)

having the covariance matrix

CLxLx = D6Q
TCxxQD6 + (xT ⊗ D6)Cqq(xT ⊗ D6)T (2.227)

The line projection matrix representation, again representable as uncertain oriented pro-
jective 3d entity, turned out to be very well-suited for the task of transferring uncertain
oriented projective 3d scene lines into uncertain oriented projective 2d image lines and also
uncertain oriented projective 2d image points into uncertain oriented projective 3d lines. As
all those operations are often required, the two representations need to be convertible. In the
following it will be shown, how an uncertain oriented projective camera in point projection
matrix representation can be converted into an uncertain oriented projective camera in line
projection matrix representation.

Converting from point projection to line projection representation

It is possible to convert a point projection matrix into a line projection matrix without having
to decompose it, which significantly eases uncertainty propagation, as will be seen below.
However, the conversion in the other direction is not easily possible without decomposition.
Fortunately it is not required in many applications and will not be discussed here.

Now given a point projection matrix

P =

 pT
1

pT
2

pT
3

 (2.228)



84 CHAPTER 2. UNCERTAIN ORIENTED PROJECTIVE GEOMETRY

Figure 2.12: If a minimal and maximal distance from the camera are known, an image point
x backprojects onto an uncertain oriented line segment in space.

its rows p1, p2 and p3 are the planes of the camera coordinate system. To obtain the rows
of the line projection matrix one has to intersect those planes yielding (cf. equation (2.109))

Q =


(
Π(p2)p3

)T(
Π(p3)p1

)T(
Π(p1)p2

)T

 (2.229)

The Jacobian of this non-linear transformation is (cf. [Heuel, 2004, p.59])

Jqp(p) =
∂q
∂p

=

 0 −Π(p3) Π(p2)
Π(p3) 0 −Π(p1)
−Π(p2) Π(p1) 0

 (2.230)

so that the covariance matrix transforms according to

Cqq = Jqp(p)CppJqp(p)T (2.231)

Up to now two representations for projective cameras, the conversion between those repre-
sentations and the forward and backward projection of points and lines have been presented.
In many applications lower and upper bounds on the distance of the object from the cameras
are available that enable the backprojection of 2d image points into 3d line segments instead
of lines and the backprojection of 2d image line segments into 3d polygons instead of planes.
In the following this two specific backprojections will be discussed.

Backward projection of points

It has been shown in equation (2.226), how the projecting line of an image point can be
computed. This line extends from the camera center in both directions toward infinity.
Obviously the true scene point cannot be behind the camera, which could be modeled in
an oriented projective framework (cf. [Hartley, 1998] and [Hartley and Zisserman, 2000,
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p.149]). Furthermore many applications allow to specify a minimal possible distance dmin
and a maximal possible distance dmax of the object from the camera. Therefore the locus of
an image point in space will be modeled as an uncertain oriented projective 3d line segment
in the following. The construction of the line segment is as follows: Given the uncertain
oriented projective image point

(x,Cxx) (2.232)

and the uncertain oriented projective camera in point projection representation

(p,C pp) (2.233)

as well as in line projection representation

(q,C qq) (2.234)

one first constructs the line joining the projection center and the image point according to
equation (2.226) (

Lh

L0

)
= D6Q

Tx (2.235)

It has the covariance matrix(
CLhLh

CLhL0

CLhL0 CL0L0

)
= D6Q

TCxxQD6 + (xT ⊗ D6)Cqq(xT ⊗ D6)T ) (2.236)

Now the projection center is derived from the point projection matrix as being the intersection
of all three coordinate planes represented by its rows. It is given by (cf. equation (2.104))

Z =

(
Z0

Zh

)
= Γ(Π(p1)p2)Tp3 (2.237)

having the covariance matrix

CZZ =

 Γ(Π(p2)p3)
Γ(Π(p3)p1)
Γ(Π(p1)p2)


T

Cpp

 Γ(Π(p2)p3)
Γ(Π(p3)p1)
Γ(Π(p1)p2)

 (2.238)

The two Euclidean points

X =
Z0

Zh
+ dmin

Lh

|Lh|
(2.239)

and
Y =

Z0

Zh
+ dmax

Lh

|Lh|
(2.240)

now constitute the two end-points of the line segment. Under the assumption that the
direction of the projecting ray is uncorrelated with the position of the camera, the Euclidean
covariance matrices of the two end-points are obtained using the Jacobian (cf. equation (2.79)
and equation (2.14))

J =


1

Zh
I 3

−Z0

Z2
h

dmin
|Lh|

(
I 3 − LhL

T
h

|Lh|2

)
1

Zh
I 3

−Z0

Z2
h

dmax
|Lh|

(
I 3 − LhL

T
h

|Lh|2

)
 (2.241)
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Figure 2.13: If a minimal and maximal distance from the camera are known, an image line l
backprojects onto an uncertain oriented polygon in space.

as (
CXX CXY

CY X CY Y

)
= J

(
CZZ 0

0 CLhLh

)
J

T (2.242)

The uncertain oriented projective end-points are easily obtained from the uncertain
Euclidean points as described in section 2.1.3 and the resulting uncertain oriented projective
3d line segment (see figure 2.12) in point representation is given by

({X,Y}, {CXX ,CY Y ,CXY }) (2.243)

If two such line segments from two distinct cameras intersect in space, then the image
points can be matched with each other. This is a stronger condition than the pure epipolar
constraint, as the distances of the scene point from the cameras are taken into account, too.
In the section 2.2 a method will be presented, how this intersection between two uncertain
oriented projective line segments can be tested.

Backward projection of line segments

How to compute the infinite projecting plane of an infinite image line has been shown in
equation (2.212). This section deals with the backward projection of image line segments.
As in the previous section, a minimal possible distance dmin and a maximal possible distance
dmax of the object from the camera is assumed, so that the resulting locus of the image line
segment is a space polygon with four corners. Given the uncertain oriented projective image
line segment in point representation

({x,y}, {Cxx,Cyy,Cxy}) (2.244)

as well as in line representation

({l,m,n}, {Cll,Cmm,Cnn,Clm,Cln,Cmn}) (2.245)
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together with the uncertain oriented projective camera in point projection representation

(p,C pp) (2.246)

as well as in line projection representation

(q,C qq) (2.247)

one is able to directly construct the two delimiting lines (cf. equation (2.226))

L1 = D6Q
Tx (2.248)

and
L3 = D6Q

Ty (2.249)

Their covariance matrices are obtainable using the Jacobian

Ja =

(
D6Q

T
0 xT ⊗ D6

0 D6Q
T yT ⊗ D6

)
(2.250)

as (
CL1L1 CL1L3

CL3L1 CL3L3

)
= Ja

 Cxx Cxy 0

Cyx Cyy 0

0 0 Cqq

 J
T
a (2.251)

Furthermore the projecting plane is given by (cf. equation (2.212))

A = PT l (2.252)

as well as the two delimiting planes
B1 = PTm (2.253)

and
B3 = PTn (2.254)

Their covariance matrices are obtained using the Jacobian

Jb =

 PT
0 0 lT ⊗ I 4

0 PT
0 mT ⊗ I 4

0 0 PT nT ⊗ I 4

 (2.255)

as  CAA CAB1 CAB2

CB1A CB1B1 CB1B2

CB2A CB2B1 CB2B2

 = Jb


Cll Clm Cln 0

Cml Cmm Cmn 0

Cnl Cnm Cnn 0

0 0 0 Cpp

 J
T
b (2.256)

As already shown in the previous section the projection center of the camera is given by

Z =

(
Z0

Zh

)
= Γ(Π(p1)p2)Tp3 (2.257)

having the covariance matrix

CZZ =

 Γ(Π(p2)p3)
Γ(Π(p3)p1)
Γ(Π(p1)p2)


T

Cpp

 Γ(Π(p2)p3)
Γ(Π(p3)p1)
Γ(Π(p1)p2)

 (2.258)
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As before the four corner-points of the uncertain oriented projective 3d polygon representing
the image line segment are obtained from this, the lines L1 and L3 as well as the minimal pos-
sible distance dmin and the maximal possible distance dmax. This yields the four Euclidean
points

X1 =
Z0

Zh
+ dmin

L
(1)
h

|L(1)
h |

(2.259)

X2 =
Z0

Zh
+ dmin

L
(3)
h

|L(3)
h |

(2.260)

X3 =
Z0

Zh
+ dmax

L
(3)
h

|L(3)
h |

(2.261)

and

X4 =
Z0

Zh
+ dmax

L
(1)
h

|L(1)
h |

(2.262)

where the indices have been put up eventually to improve readability. Using the Jacobian

J =



1
Zh
I 3

−Z0

Z2
h

dmin∣∣∣L(1)
h

∣∣∣
I 3 − L(1)

h L(1)
h

T∣∣∣L(1)
h

∣∣∣2
 0

1
Zh
I 3

−Z0

Z2
h

0
dmin∣∣∣L(3)

h

∣∣∣
I 3 − L(3)

h L(3)
h

T∣∣∣L(3)
h

∣∣∣2


1
Zh
I 3

−Z0

Z2
h

dmax∣∣∣L(1)
h

∣∣∣
I 3 − L(1)

h L(1)
h

T∣∣∣L(1)
h

∣∣∣2
 0

1
Zh
I 3

−Z0

Z2
h

0
dmax∣∣∣L(3)

h

∣∣∣
I 3 − L(3)

h L(3)
h

T∣∣∣L(3)
h

∣∣∣2




(2.263)

their covariance matrices are again obtained under the assumption that the projection center
is uncorrelated with the projection ray directions, as

CX1X1 CX1X2 CX1X3 CX1X4

CX2X1 CX2X2 CX2X3 CX2X4

CX3X1 CX3X2 CX3X3 CX3X4

CX4X1 CX4X2 CX4X3 CX4X4

 = J


CZZ 0 0

0 C
L

(1)
h

L
(1)
h

C
L

(1)
h

L
(3)
h

0 C
L

(3)
h

L
(1)
h

C
L

(3)
h

L
(3)
h

 J
T (2.264)

The four uncertain oriented projective corner-points are easily obtained from those un-
certain Euclidean points as described in section 2.1.3 and the resulting uncertain oriented
projective 3d polygon (see figure 2.13) in point representation is given by

({X1,X2,X3,X4}, {CXiXj |i, j = 1, ..., 4}) (2.265)

If two such polygons from two distinct cameras intersect in space, then the image line
segments can be matched with each other. As the distances of the scene line from the
cameras are taken into account, this allows to check the epipolar constraint for two line
segments between an image pair. In the following section a method will be presented, how
this intersection between two uncertain oriented projective space polygons can be tested.



2.2. TESTING GEOMETRIC RELATIONS 89

Up to now the representation of entities in the uncertain oriented projective framework
has been discussed. It has been shown, how to construct entities from other entities and how
the uncertain oriented projective 2d space is related to the uncertain oriented projective 3d
space by projective cameras, which are uncertain oriented projective 3d entities themselves.
The use of oriented projective geometry instead of non-oriented projective geometry enabled
the construction of line segments and polygons in 2d and 3d space. Furthermore, for each
transformation it was explicitly shown, how all the uncertainties propagate. Those uncer-
tainties will play a major role in the next section, where the task of geometric reasoning,
i.e. making decisions about relations between uncertain oriented projective entities, will be
described.

2.2 Testing geometric relations

The goal of representing the uncertainties of the geometric entities is to facilitate rigorous
statistical testing, whether some geometric relation between the entities holds or not. In the
following a notion of uncertain relations between the uncertain entities will be presented.
Useful example relations between the base entities as well as the compound entities will be
shown thereafter.

Usually a relation between to vectors x and y is given by some characteristic function

R(x,y) : IRn × IRm 7→ {0, 1} (2.266)

indicating, whether the relation between the two entities holds or not. As discussed in the
previous section, all uncertain entities are given by probability density functions p(x) and
p(y). A relation between two such uncertain entities is now assumed to hold, if the joint
probability mass satisfying the relation is large enough, i.e.∫

{(x,y)∈IRn×IRm|R(x,y)=1}
p(x)p(y)dxdy > α (2.267)

Observe that there is no assertion that the relation actually holds. However, in the absence
of contradicting evidence, following an empiristic rather than rationalistic tradition, it will be
treated as if in all of the following, meaning that an uncertain relation is considered to hold
if and only if condition (2.267) holds. This is a much stronger notion of uncertain relations,
than the notion resulting from statistical hypothesis testing, as non-falsified hypothesis are
conjectured to be true.

Also note that, if the relation respects orientated homogeneity, i.e. if

R(x,y) = R(λx, µy) ∀λ > 0, µ > 0 (2.268)

there is no need to distinguish between uncertain Euclidean and uncertain oriented projective
entities. All relations, which are discussed here, have this property.

For full-rank bilinear relations, i.e. relations of the form

R(x,y) =

{
1 if A(x)y = B(y)x = 0
0 otherwise

(2.269)

with A(x) and B(y) having full rank r, and Normal distributed uncertain entities (x,Cxx)
and (y,C yy) (which is justifiable from the maximum entropy assumption as discussed in
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section 2.1) this test may be performed by checking (cf. [Heuel, 2004, p.130] and [Koch,
1997, p.134]), if the Mahalanobis-distance

yT
A(x)T

(
A(x)C yyA(x)T + B(y)CxxB(y)T

)−1
A(x)y ≤ Tα,r (2.270)

is smaller than a threshold, which is numerically derived as the α-fractile from the χ2
r-

distribution with r degrees of freedom

1
2r/2

∫∞
0 tr/2−1e−tdt

∫ Tα,r

0
vr/2−1e−v/2dv = α (2.271)

If the rank r of A(x) and B(y) is smaller than the number of rows, then either a pseudo-
inverse has to be used in the test, or rows have to be deleted from both matrices in order
to obtain full rank matrices. The proposed method is to choose those r rows, where the
product of the L∞-norm is maximal. The reduced matrices will be denoted with (A(x))[r]

and (B(y))[r] in the following. This approach slightly deviates from the approach proposed
in [Heuel, 2004, p.67ff], where the product of the L2-norms was proposed.

In an orientation preserving framework, this test can be extended for scalar bi-linear
relations to not only test, if the bi-linear expression is equal to zero, but also to check, if its
sign is negative. That means relations of the form

R(x,y) =

{
1 if a(x)y = b(y)x ≤ 0
0 otherwise

(2.272)

with a(x) and b(y) being vectors can be tested by taking the square root of condition (2.270)
yielding the modified equivalent condition

a(x)y√
a(x)C yya(x)T + b(y)Cxxb(y)T

≤
√
Tα,1 (2.273)

for the relation to hold.
As pointed out before, holding uncertain relations are considered as being conjectures

rather than non-falsified hypothesis. This allows to reason with uncertain entities using
uncertain relations and Boolean operations. In the following a conjunction will be denoted
as

R(x,y) = R1(x,y) ∧R2(x,y) (2.274)
= min(R1(x,y), R2(x,y)) (2.275)

and a disjunction will be denoted as

R(x,y) = R1(x,y) ∨R2(x,y) (2.276)
= max(R1(x,y), R2(x,y)) (2.277)

Observe that the condition for the conjunction of the two bi-linear sign tests

a(x)y
!
≤ 0 ∧ −a(x)y

!
≤ 0 (2.278)

is equivalent to the condition for the bi-linear test

a(x)y != 0 (2.279)

as would be expected.
In the following some example relations for the entities presented in the previous section

will be shown.
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Figure 2.14: The 2d point x is incident to the 2d line l. The 2d point y is right of l and the
2d point z is left of l.

2.2.1 Relations between the base entities

In the previous section two special types of relations together with a method for checking
those relations for uncertain oriented projective entities were presented. In the following a
range of such relations including incidence, equality, orthogonality and parallelity between
the base entities will be presented and for each of those relations the required Jacobians will
be made visible.

Incidence

To check, whether an oriented projective 2d point x is incident to an oriented projective 2d
line l, the inner product must be zero (see figure 2.14). This will be denoted as

Incident(x, l) ⇔ xT l = lTx != 0 (2.280)

Observe that the covariance matrices are only left out in this notation in order to improve
the readability. They are still required, though, and must be present for every entity as has
been discussed in section 2.1.

To see if the oriented projective 2d point x is left or right of the oriented projective 2d
line l, one has to check the sign of the scalar product (see figure 2.14), therefore the relations
are given by

Right(x, l) ⇔ xT l = lTx
!
≤ 0 (2.281)

and
Left(x, l) ⇔ −xT l = −lTx

!
≤ 0 (2.282)

In 3d the situation between oriented 3d points X and oriented 3d planes A is just the
same. The two entities are incident, if their scalar product is equal to zero (see figure 2.15),
hence one defines the relation

Incident(X,A) ⇔ XTA = ATX != 0 (2.283)

A similar directed notion is possible, too, and one defines an oriented projective 3d point X
to be above or below of an oriented projective 3d plane A as (see figure 2.15)

Below(X,A) ⇔ XTA = ATX
!
≤ 0 (2.284)
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Figure 2.15: The 3d point X is incident to the 3d plane A. The 3d point Y is above the 3d
plane A and the 3d point Z is below the 3d plane A.

and

Above(X,A) ⇔ −XTA = −ATX
!
≤ 0 (2.285)

Two projective 3d lines L and M intersect, if their inner product is equal to zero (see
figure 2.16). Therefore one defines

Incident(L,M) ⇔ LT
D6M = MT

D6L
!= 0 (2.286)

In a similar fashion the two oriented versions (see figure 2.16)

Left(L,M) ⇔ LT
D6M = MT

D6L
!
≤ 0 (2.287)

and

Right(L,M) ⇔ −LT
D6M = −MT

D6L
!
≤ 0 (2.288)

may be defined. The two relations describe the screw between the two oriented 3d lines (cf.
[Förstner and Wrobel, 2004, p.139]), which means one line can be transformed on a shortest
path into the other line by pushing it and simultaneously rotating it either to the left or to
the right.

A projective 3d point X lies on a projective 3d line L, if the 3d plane constructed from
both entities does not exist (see figure 2.17), i.e. (cf. (2.95))

Π(X)TL = Γ(L)TX != 0 (2.289)

This expression is bi-linear, however it has not full rank. To facilitate checking uncertain
relations as described above, one has to consistently reduce the two matrices Π(X)T and
Γ(L)T , so that they have the full rank of two (cf. [Heuel, 2004, p.67]). Hence incidence is
defined as

Incident(X,L) ⇔
(
Π(X)T

)[2]
L =

(
Γ(L)T )

)[2]
X != 0 (2.290)
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Figure 2.16: The 3d lines Q and L are incident. The 3d lines R and L are right-screwed and
the 3d lines P and L are left-screwed.

Figure 2.17: The 3d point X is incident to the 3d line L. In this case no direct notion of left
or right exists, as the incidence relation between a 3d point and a 3d line has two degrees of
freedom.
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Figure 2.18: The 3d line L is incident to the 3d plane A. Note that no notion of L being
above or below A can be defined unless L and A are parallel.

For duality reasons the incidence relation of a projective 3d line L with a projective 3d
plane A (see figure 2.18) is defined as (cf. (2.106))

Incident(A,L) ⇔
(
Π(A)T

)[2]
L =

(
Γ(L)T )

)[2]
A != 0 (2.291)

Identity

Two oriented projective 2d points x and y are considered equal up to orientation, if it is
not possible, to construct a joining line. Therefore the equality relation up to orientation is
defined as (cf. (2.32))

Equal(x,y) ⇔ (S(x))[2] y = − (S(y)))[2] x != 0 (2.292)

The orientation cannot be checked in a bi-linear test and can easily be tested in an extra
step if required. For duality reasons the equality of two projective 2d lines l and m up to
orientation is defined as (cf. (2.38))

Equal(l,m) ⇔ (S(l))[2] m = − (S(m)))[2] l != 0 (2.293)

In 3d an analogous argument applies. Two projective 3d points X and Y are considered
to be equal up to orientation, if it is not possible to construct a joining line. Hence, equality
up to orientation for projective 3d points is defined as (cf. (2.83))

Equal(X,Y) ⇔ (Π(X))[3] Y = − (Π(Y)))[3] X != 0 (2.294)

For duality reasons this also applies to projective 3d planes A and B, where equality is
defined as (cf. (2.109))

Equal(A,B) ⇔
(
Π(A)

)[3]
B = −

(
Π(B))

)[3]
A != 0 (2.295)
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Figure 2.19: The 2d lines m and l are orthogonal. The directed 2d lines o and l are concurrent
and the directed 2d lines n and l are countercurrent.

Defining equality for 3d lines is a little more involved. As pointed out on page 74ff in
[Heuel, 2004], it is in principle possible to formulate as bi-linear relation, but the required
reduction is not trivial. The proposed solution (cf. [Heuel, 2004, p.76]) is as follows: Given
two projective 3d lines L and M an index i ∈ {1, ..., 6} is selected, where the product
|LiMi| >> 0 is maximal. If no such index exists, the lines are not possibly identical. Now
equality is defined as

Equal(L,M) ⇔ (∆i(L))[4] M = − (∆i(M))[4] L != 0 (2.296)

with
∆i(L) = LET

i − LiI 6 (2.297)

where Ei denotes the 6-vector, containing zeros except for position i, where it contains a one.

Orthogonality

As already used in equation (2.52) the orthogonality of two projective 2d lines l and m can
be defined using the conic C ∗∞ (cf. equation (2.51)), which is dual to the two circular points
(cf. [Hartley and Zisserman, 2000, p.33f]). Hence, orthogonality is defined as (see figure 2.19)

Orthogonal(l,m) ⇔ lTC ∗∞m = mT
C
∗
∞l != 0 (2.298)

The oriented version of this relation indicates, if the two oriented lines point into opposite
directions (see figure 2.19)

Countercurrent(l,m) ⇔ lTC ∗∞m = mT
C
∗
∞l

!
≤ 0 (2.299)

or if they point into the same direction (see figure 2.19)

Concurrent(l,m) ⇔ −lTC ∗∞m = −mT
C
∗
∞l

!
≤ 0 (2.300)

The same argument is possible for 3d planes, as already discussed in equation (2.149).
Therefore orthogonality is defined for projective 3d planes A and B using the conic C̃

∗
∞ (cf.

(2.148)) as (see figure 2.20)

Orthogonal(A,B) ⇔ AT
C̃
∗
∞B = BT

C̃
∗
∞A != 0 (2.301)
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Figure 2.20: The two 3d planes A and B are orthogonal. The two 3d planes A and C face
into opposite directions and the two 3d planes A and D face into the same direction.

Again an oriented version is possible. The two oriented planes face opposite directions (see
figure 2.20), if

OppositeFacing(A,B) ⇔ AT
C̃
∗
∞B = BT

C̃
∗
∞A

!
≤ 0 (2.302)

and face the same direction (see figure 2.20), if

SameFacing(A,B) ⇔ −AT
C̃
∗
∞B = −BT

C̃
∗
∞A

!
≤ 0 (2.303)

This definition for projective 3d planes is easily extended for projective 3d lines. The
orthogonality of two projective 3d lines L and M is defined as (see figure 2.21)

Orthogonal(L,M) ⇔ LT

(
I 3 0

0 0

)
M = MT

(
I 3 0

0 0

)
L != 0 (2.304)

As in the 2d case, the oriented versions indicate, whether the two oriented lines point into
opposite directions (see figure 2.21)

Countercurrent(L,M) ⇔ LT

(
I 3 0

0 0

)
M = MT

(
I 3 0

0 0

)
L

!
≤ 0 (2.305)

or if they point into the same direction (see figure 2.21)

Concurrent(L,M) ⇔ −LT

(
I 3 0

0 0

)
M = −MT

(
I 3 0

0 0

)
L

!
≤ 0 (2.306)

Finally the orthogonality of a projective 3d plane and a projective 3d line has already
been used in equation (2.126). Those two are considered orthogonal, if the direction vector
of the line and the normal vector of the plane point into the same direction (see figure 2.22).
This can be either expressed using the extended ε̃rst tensor (cf. (2.125)) or using the skew
symmetric matrix. It is defined as

Orthogonal(L,A) ⇔
(
S(Lh) 0

)[2]
A =

(
−S(Ah) 0

)[2]
L != 0 (2.307)
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Figure 2.21: The two 3d lines L and Q are orthogonal. The two 3d lines L and P are
concurrent and the two 3d lines L and R are countercurrent.

Figure 2.22: The 3d line L and the 3d plane A are orthogonal. Note that no analogous
oriented notion is definable in this case.
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Figure 2.23: The two 2d lines m and l are parallel. The 2d line o crosses l from left and the
2d line n crosses l from right.

Parallelity

Two projective 2d lines l and m are considered parallel, if one rotated by 90◦ is orthogonal
to the other. Therefore using the rotation matrix (cf. (2.46))

R⊥ =

 0 1 0
−1 0 0
0 0 1

 (2.308)

parallelity is defined as (see figure 2.23)

Parallel(l,m) ⇔ lTRT
⊥C

∗
∞m = mT

C
∗
∞R⊥l != 0 (2.309)

The oriented version of this relation indicates, whether the one of the lines crosses the other
from the left (see figure 2.23)

FromLeft(l,m) ⇔ lTRT
⊥C

∗
∞m = mT

C
∗
∞R⊥l

!
≤ 0 (2.310)

or from the right (see figure 2.23)

FromRight(l,m) ⇔ −lTRT
⊥C

∗
∞m = −mT

C
∗
∞R⊥l

!
≤ 0 (2.311)

A projective 3d line L and a projective 3d plane A are considered parallel, if the direction
of the line and the normal of the plane are orthogonal (see figure 2.24). Parallelity is therefore
defined as

Parallel(L,A) ⇔ LT

(
C̃
∗
∞
0

)
A = AT

(
C̃
∗
∞ 0

)
L != 0 (2.312)

As in the 2d case, the oriented version of this relation indicates, whether the lines crosses the
plane from above (see figure 2.24)

FromAbove(L,A) ⇔ LT

(
C̃∞

∗

0

)
A = AT

(
C̃
∗
∞ 0

)
L

!
≤ 0 (2.313)



2.2. TESTING GEOMETRIC RELATIONS 99

Figure 2.24: The 3d line L and the 3d plane A are parallel. The 3d line N crosses A from
above, the 3d line M crosses A from below.

or from below (see figure 2.24)

FromBelow(L,A) ⇔ −LT

(
C̃∞

∗

0

)
A = −AT

(
C̃
∗
∞ 0

)
L

!
≤ 0 (2.314)

Two projective 3d planes are considered to be parallel, if their normals point into the
same direction (see figure 2.25). It is therefore defined as

Parallel(A,B) ⇔
(
S(Ah) 0

)[2]
B =

(
−S(Bh) 0

)[2]
A != 0 (2.315)

The same argument holds for two projective 3d lines L and M, which are considered to
be parallel, if their direction vectors point in the same direction, so that parallelity is defined
analogously as (see figure 2.26)

Parallel(L,M) ⇔
(
S(Lh) 0

)[2]
M =

(
−S(Mh) 0

)[2]
L != 0 (2.316)

Up to now various relations between the base entities have been presented. Those relations
were either bi-linear tests or bi-linear sign tests containing two base entities. No conjunctions
or disjunctions have been considered so far. In the following conjunctions and disjunctions of
the relations between the base entities presented so far will be used to derive useful relations
between the compound entities.

2.2.2 Relations between the compound entities

In the previous section various relations between the base entities were presented. Those
relations can of course be checked also for the components of the compound entities, such
as line segments and polygons in 2d and 3d space. In addition to the basic tests, several
more meaningful tests can be constructed from conjunctions and disjunctions of those. In
the following each compound entity discussed in section 2.1 will be picked up in turn and
compound relations with these entities will be derived.
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Figure 2.25: The two plane A and B are parallel. Note that no analogous oriented notion is
definable in this case.

Figure 2.26: The two 3d lines L and M are parallel. Note that no analogous oriented notion
is definable in this case.
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Figure 2.27: The 2d point x is incident to the 2d line segment, because it is incident to the
2d line l and between the two 2d lines m and n.

2d line segments

Starting with the 2d line segment, the conjunctions and disjunctions that need to tested in
order to decide on the incidence of a 2d point to a 2d line segment, the incidence of two
2d line segments, the intersection of two 2d line segments as well as the orthogonality and
parallelity of two 2d line segments will be shown.

Incidence: Given an uncertain oriented 2d line segment in line representation

s : ({l,m,n}, {Cll,Cmm,Cnn}) (2.317)

an uncertain oriented 2d point (x,Cxx) lies on this line segment, if it is on the line l and
between the lines m and n (see figure 2.27). First observe that a point lies between the two
delimiting lines, if

Between(x,m,n) ⇔ Right(x,m) ∧ Right(x,n) (2.318)

Now incidence of a point and a line segment is defined as the condition

Incident(x, s) (2.319)
⇔ Incident(x, l) ∧ Between(x,m,n)

which holds, whenever there is no reason to assume that the point does not lie on the line
segment.

Two uncertain oriented 2d line segments in line representation as well as in point repre-
sentation

s1 : ({l1,m1,n1}, {Cl1l1 ,Cm1m1 ,Cn1n1}) (2.320)
↔ ({x1,y1}, {Cx1x1 ,Cy1y1})

and

s2 : ({l2,m2,n2}, {Cl2l2 ,Cm2m2 ,Cn2n2}) (2.321)
↔ ({x2,y2}, {Cx2x2 ,Cy2y2})
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Figure 2.28: Left: The two depicted 2d line segments overlap because the two lines l1 and l2
are equal and the 2d point x2 is between the two 2d lines m1 and n1 and the 2d point x1 is
between the two 2d lines m2 and n2. Right: The two 2d line segments are parallel because
the 2d point x2 is between the two 2d lines m1 and n1 and the 2d point x1 is between the
two 2d lines m2 and n2.

are considered to overlap, if the two connecting lines are equal and at least one end-point lies
on the other segment (see figure 2.28, left). Hence overlap for two line segments is defined as

Overlap(s1, s2) (2.322)
⇔ Equal(l1, l2) ∧ (Between(x1,m2,n2) ∨ Between(y1,m2,n2) ∨

Between(x2,m1,n1) ∨ Between(y2,m1,n1))

Parallelity: In contrast to infinite lines two line segments are considered to be parallel, if
in addition to the parallelity of the connecting line, the orthogonal projection of at least one
end-point on the other line lies on the segment (see figure 2.28, right). Hence, parallelity is
defined for two line segments very analogous to incidence as

Parallel(s1, s2) (2.323)
⇔ Parallel(l1, l2) ∧ (Between(x1,m2,n2) ∨ Between(y1,m2,n2) ∨

Between(x2,m1,n1) ∨ Between(y2,m1,n1))

Intersection: A line segment intersects a line, if its end-points lie on opposite sides of the
line (see figure 2.29, left). Introducing for further reference the abbreviation

Opposite(x,y, l) ⇔ (Left(x, l) ∧ Right(y, l)) ∨ (2.324)
(Right(x, l) ∧ Left(y, l))

there is no reason to assume that a line segment does not intersect a line l, if the following
condition holds

Intersect(s1, l) ⇔ Opposite(x1,y1, l) (2.325)

Two line segments intersect, if the end-points of each segment lie on opposite sides of the
joining line of the other (see figure 2.29, left). Hence, there is no reason to assume that the
two line segments do not intersect, if the following condition holds

Intersect(s1, s2) ⇔ Opposite(x1,y1, l2) ∧ Opposite(x2,y2, l1) (2.326)
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Figure 2.29: Left: The 2d line segment {x1,y1} intersect the line l2, because the two 2d
points x1 and y1 are on opposite sides of the 2d line l2. The two depicted line segments
intersect, because also the 2d points the 2d points x2 and y2 are on opposite sides of the
2d line l1. Right: The oriented projective 2d edgel {x1, t1} is parallel to the 2d line l. In
addition to this, it is between the 2d lines m and n, so that it is also considered parallel to
the 2d line segment {l,m,n}. The oriented projective 2d edgel {x2, t2} is incident to the 2d
line l. In addition to this, it is between the 2d lines m and n, so that it is also considered
incident to the 2d line segment {l,m,n}. Finally, the oriented projective 2d edgel {x3, t3} is
orthogonal to the 2d line l. In addition to this, it is between the 2d lines m and n, so that
it is also considered orthogonal to the 2d line segment {l,m,n}.

Orthogonality: The previous definition is easily expendable toward orthogonal intersection
by just adding one aditional term as follows

Orthogonal(s1, s2) (2.327)
⇔ Orthogonal(l1, l2) ∧ Opposite(x1,y1, l2) ∧ Opposite(x2,y2, l1)

Identity: Two line segments are considered to be identical, if their end-points are identical.
Because a line segment has a direction, i.e. a start- and an end-point, equality is defined as

Equal(s1, s2) ⇔ Equal(x1,x2) ∧ Equal(y1,y2) (2.328)

Note that the equality relation for the base entities is up to sign, so that a line segment
passing the line at infinity can be considered equal to a finite line segment as long as their
end-points are identical up to orientation.

2d edgels

Now the relations containing 2d edgels will be discussed. An uncertain oriented projective
2d edgel

e : ({x, t}, {Cxx,Ctt}) (2.329)

is incident to an uncertain oriented projective 2d line (l,Cll), if the point x is incident to the
line l and the normal of the line lh and the normal of the edgel t point into the same direction
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(see figure 2.29, right). Using again the matrices (cf. (2.43))

C∞ =

 1 0
0 1
0 0

 (2.330)

and (cf. (2.46))

R⊥ =

 0 1 0
−1 0 0
0 0 1

 (2.331)

the parallelity of the line and the edgel is defined in complete analogy to equation (2.309) as
(see figure 2.29, right)

Parallel(l, e) ⇔ lTR⊥C∞t = tTCT
∞R

T
⊥l != 0 (2.332)

and hence incidence between a line and an edgel can be defined as

Incident(l, e) ⇔ Incident(x, l) ∧ Parallel(l, e) (2.333)

The previous definition straightforwardly extends toward 2d line segments in line repre-
sentation

s : ({l,m,n}, {Cll,Cmm,Cnn}) (2.334)

so that a line segment and an edgel are considered incident, if the following condition holds
(see figure 2.29, right)

Incident(s , e) ⇔ Incident(x, s) ∧ Parallel(l, e) (2.335)

It is also possible to test, if a line pierces orthogonal through an edgel. Therefore one first
defines in analogy to equation (2.298) orthogonality between a line and an edgels normal as

Orthogonal(l, e) ⇔ lTC∞t = tTCT
∞l != 0 (2.336)

Now one can define an edgel and a line as being orthogonal, if (see figure 2.29, right)

Orthogonal(l, e) ⇔ Incident(x, l) ∧ Orthogonal(l, e) (2.337)

As before, this notion straightforwardly extends toward 2d line segments as (see figure 2.29,
right)

Orthogonal(s , e) ⇔ Incident(x, s) ∧ Orthogonal(l, e) (2.338)

Two edgels are considered equal, if the points and the normals are identical, so that
identity of the two uncertain oriented projective 2d edgels

e1 : ({x1, t1}, {Cx1x1 ,Ct1t1}) (2.339)

and
e2 : ({x2, t2}, {Cx2x2 ,Ct2t2}) (2.340)

up to orientation is defined as

Equal(e1, e2) ⇔ Equal(x1,x2) ∧ Equal(t1, t2) (2.341)
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Figure 2.30: Left: The two edgels are considered aligned, because the two normal vectors
t1 and t2 point into the same direction and point x1 is on the line defined by the second
edgel and vice versa. Right: The 2d point y is inside the 2d triangle, because it is left of all
delimiting lines l1, l2 and l3.

where the equality up to orientation of two directions t1 and t2 is defined by requiring that
the determinant |t1 t2| is zero, i.e.

Equal(t1, t2) ⇔ tT
1

(
0 1
−1 0

)
t2 = tT

2

(
0 −1
1 0

)
t1

!= 0 (2.342)

Finally two edgels are aligned, if their normals point into the same direction and the
position of one edgel lies on the line induced by the other edgel (see figure 2.30, left). Therefore
alignment is defined as

Aligned(e1, e2) ⇔ Equal(t1, t2) ∧ Incident(x1, l2) (2.343)

with the line l2 constructed from the edgel e2 according to equation (2.47).

2d polygons

Next are relations involving 2d polygons. In the following it will be assumed that all polygons
are convex. If non-convex polygons are to be tested, it is required to break them up into
convex sub-polygons, for instance using a Delaunay triangulation.

An uncertain oriented projective 2d point (x,Cxx) is inside a convex oriented projective
2d polygon in line representation

p : ({l1, ..., lN}, {Cl1l1 , ...,ClN lN }) (2.344)

if it lies left of all lines (see figure 2.30, right), i.e.

Inside(x, p) ⇔
∧

i=1,...,N

Left(x, li) (2.345)

An uncertain oriented projective 2d line (l,Cll) intersects the polygon, if it intersects any
of the delimiting line segments. Hence, intersection with a convex uncertain oriented 2d
polygon in point representation

p : ({x1, ...,xN}, {Cx1x1 , ...,CxNxN }) (2.346)
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Figure 2.31: Left: The 2d line segment {xa,xb} intersects the 2d triangle, because both its
end-points are left of all the lines l1, l2 and l3. The 2d line segment {xb,xb} intersects the 2d
triangle, because it intersects the delimiting 2d line segment {x2,x3} and also the delimiting
2d line segment {x3,x1}. Right: The two depicted 2d triangles intersect, because the point
xb

2 is left of all delimiting lines la1, la2 and la3 and because the 2d line segments {xb
1,x

b
2} and

{xb
2,x

b
3} intersect the 2d line segment {xa

2,x
a
3}.

is defined as
Intersect(l, p) ⇔

∨
i=1,...,N

Opposite(xi,xi+1, l) (2.347)

where the indices read modulo N .
An uncertain oriented projective 2d line segment in point representation as well as in line

representation

s : ({l,m,n}, {Cll,Cmm,Cnn}) (2.348)
↔ ({x,y}, {Cxx,Cyy})

intersects a convex uncertain oriented projective 2d polygon, if either both end-points are
within the polygon or the line segment intersects any of the delimiting line segments of the
polygon (see figure 2.31, left). Therefore intersection is defined in this case as

Intersect(s , p) (2.349)

⇔

 ∧
i=1,...,N

Left(x, li) ∧
∧

i=1,...,N

Left(y, li)

 ∨
∨

i=1,...,N

(Opposite(xi,xi+1, l) ∧ Opposite(x,y, li))

Two convex uncertain oriented projective 2d polygons in line as well as in point repre-
sentation

p1 : ({l(1)
1 , ..., l(1)N }, {C(1)

l1l1
, ...,C

(1)
lN lN

}) (2.350)

↔ ({x(1)
1 , ...,x(1)

N }, {C(1)
x1x1

, ...,C(1)
xNxN

})
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Figure 2.32: The 3d point Z is incident to the depicted 3d line segment, because it is incident
to the line L and between the two delimiting planes E and F.

and

p2 : ({l(2)
1 , ..., l(2)

M }, {C(2)
l1l1
, ...,C

(2)
lM lM

}) (2.351)

↔ ({x(2)
1 , ...,x(2)

M }, {C(2)
x1x1

, ...,C(2)
xMxM

})

intersect, if either one polygon lies within the other or any of the delimiting line segments
intersect (see figure 2.31, right). Therefore intersection is defined in this case as

Intersect(p1, p2) (2.352)

⇔

 ∧
i=1,...,N

∧
j=1,...,M

Left(x(1)
i , l(2)j )

 ∨
 ∧

i=1,...,M

∧
j=1,...,N

Left(x(2)
i , l(1)

j )

 ∨
∨

i=1,...,N

∨
j=1,...,M

(Opposite(x(1)
i ,x(1)

i+1, l
(2)
j ) ∧ Opposite(x(2)

j ,x(2)
j+1, l

(1)
i ))

Observe that the number of corner points does not need to be equal.
The polygons are considered equal, if for some circulation of indices the endpoints are

equal. Hence, it is defined as

Equal(p1, p2) ⇔
∨

i=1,...,N

∧
j=1,...,N

Equal(x(1)
j+i,x

(2)
j ) (2.353)

Observe that this test does not required convexity. Of course the number of corner points
must be equal, though.

3d line segments

The relations for 2d line segments carry over to 3d line segments in an analogous manner and
will be discussed in detail in the following.

Incidence: Given an uncertain oriented 3d line segment in line plane representation

S : ({L,E,F}, {CLL,CEE ,CFF }) (2.354)
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Figure 2.33: The two depicted 3d line segments overlap, because the two lines L1 and L2 are
identical and the 3d point X2 is between the two 3d planes E1 and F1 and the 3d point X1

is between the two 3d planes E2 and F2.

an uncertain oriented 3d point (X,CXX) lies on the line segment, if it is on the line L and
between the planes E and F (see figure 2.32). Introducing the 3d version of the ’between’
relation (cf. (2.318))

Between(X,E,F) ⇔ Below(X,E) ∧ Below(X,F) (2.355)

incidence is defined analogously to the 2d case as

Incident(X, S) ⇔ Incident(X,L) ∧ Between(X,E,F) (2.356)

For two uncertain oriented 3d line segments in line-plane representation as well as in point
representation

S1 : ({L1,E1,F1}, {CL1L1 ,CE1E1 ,CF1F1}) (2.357)
↔ ({X1,Y1}, {CX1X1 ,CY1Y1})

and

S2 : ({L2,E2,F2}, {CL2L2 ,CE2E2 ,CF2F2}) (2.358)
↔ ({X2,Y2}, {CX2X2 ,CY2Y2})

overlap is defined analogously to the 2d case as (cf. (2.322) and see figure 2.33)

Overlap(S1, S2) (2.359)
⇔ Equal(L1,L2) ∧ (Between(X1,E2,F2) ∨ Between(Y1,E2,F2) ∨

Between(X2,E1,F1) ∨ Between(Y2,E1,F1))

Parallelity: Again, parallelity is defined for 3d line segments in contrast to infinite 3d
lines by requiring the connecting lines not only to be parallel, but also the segments to be
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Figure 2.34: The two depicted 3d line segments are parallel, because the two lines L1 and L2

are parallel and the 3d point X2 is between the two 3d planes E1 and F1 and the 3d point
X1 is between the two 3d planes E2 and F2.

aligned (cf. (2.323) and see figure 2.34). Therefore it is defined as

Parallel(S1, S2) (2.360)
⇔ Parallel(L1,L2) ∧ (Between(X1,E2,F2) ∨ Between(Y1,E2,F2) ∨

Between(X2,E1,F1) ∨ Between(Y2,E1,F1))

Intersection: To define intersection of 3d line segments, the ’opposite’ relation (cf. (2.324))
has to be extended for points with respect to a line. This is a little more involved, since the
3d line is not the dual entity of the 3d point. In order to solve this problem, the signs of
the incidence relation between projective 3d points and projective 3d lines (cf. (2.290)) are
analyzed. Those signs may be interpreted as indicators, whether the point lies left or right of
the canonical entities of the line (cf. Definition 6 in [Heuel, 2004, p.67]), which are 3d planes
and therefore dual entities of 3d points. Denoting the strongest canonical plane contained in
the rows of the reduced Γ-matrix in equation (2.290) with

γ(L) =
((

Γ(L)T
)[1]
)T

(2.361)

then two points X and Y lie on opposite sides of the line L, if they lie on opposite sides of
this plane γ(L). First the ’opposite’ relation for points X and Y with respect to a plane A
is abbreviated as

Opposite(X,Y,A) ⇔ (Above(X,A) ∧ Below(Y,A)) ∨ (2.362)
(Below(X,A) ∧ Above(Y,A))

so that now the ’opposite’ relation for points with respect to a line is easily formulated as

Opposite(X,Y,L) ⇔ Opposite(X,Y,γ(L)) (2.363)
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Figure 2.35: The line segment {X1,Y1} intersects the line L2, because the two 3d lines L1

and L2 intersect and the two 3d points X1 and Y1 are on opposite sides of the 3d line L2.
The two depicted 3d line segments intersect, because the two lines L1 and L2 intersect and
the two 3d points X1 and Y1 are on opposite sides of L2 and the two 3d points X2 and Y2

are on opposite sides of L1. Observe that the opposite relation between points and lines is
only well defined, because the two lines intersect.

Note that (although not explicitly visible in the chosen notation) the covariance matrices
of the canonical plane Cγ(L)γ(L) is required to define this relation. Fortunately, it is easily
obtainable by selecting the respective rows and columns of the covariance matrix of the line.

Also observe that the given ’opposite’ relation is only interpretable, if the line and the
two points are co-planar. Therefore the intersection of an uncertain oriented projective 3d
line segment with an uncertain oriented projective 3d line L is defined as (see figure 2.35)

Intersect(S1,L) ⇔ Incident(L1,L) ∧ Opposite(X1,Y1,L) (2.364)

The definition is extendable for two uncertain oriented projective 3d line segments by
requiring that both segments intersect the other connecting line, yielding (see figure 2.35)

Intersect(S1, S2) (2.365)
⇔ Incident(L1,L2) ∧ Opposite(X1,Y1,L2) ∧ Opposite(X2,Y2,L1)

Orthogonality: As in the 2d case the intersection relation can be extended toward orthog-
onal intersection, which yields the definition for the 3d case

Orthogonal(S1, S2) (2.366)
⇔ Orthogonal(L1,L2) ∧ Incident(L1,L2)
∧Opposite(X1,Y1,L2) ∧ Opposite(X2,Y2,L1)

Identity: Finally identity of two directed uncertain oriented projective 3d line segments
is definable through the identity of their end-points as

Equal(S1, S2) ⇔ Equal(X1,X2) ∧ Equal(Y1,Y2) (2.367)

Note that again like in the 2d case a 3d line segment passing the plane at infinity can be
considered equal to a 3d line segment, if their end-points are equal up to orientation.
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Figure 2.36: The 3d point X is inside the depicted 3d triangle, because it is on the plane A
and above all delimiting planes B1, B2 and B3.

3d polygons

The relations for the 2d polygons carry over to the 3d case. Again convexity is assumed for
all relations, unless stated otherwise.

An uncertain oriented 3d point (X,CXX) lies within a convex uncertain oriented 3d
polygon in plane representation

P : ({A,B1, ...,BN}, {CAA,CB1B1 , ...,CBNBN
}) (2.368)

if it lies on the polygonal plane and above of all delimiting planes (see figure 2.36). Therefore
this relation is defined as

Inside(X,P ) ⇔ Incident(X,A) ∧
∧

i=1,...,N

Above(X,Bi) (2.369)

An uncertain projective 3d line (L,CLL) pierces through the uncertain convex polygon in
line representation

P : ({L1, ...,LN}, {CL1L1 , ...,CLN ,LN
}) (2.370)

if it goes either left or right of all lines, depending on whether it pierces the polygon from
below of from above (see figure 2.37). Intersection is therefore defined in this case as (cf.
[Förstner and Wrobel, 2004, p.140])

Intersect(L,P ) ⇔

 ∧
i=1,...,N

Left(L,Li)

 ∨
 ∧

i=1,...,N

Right(L,Li)

 (2.371)

This definition is easily augmented by requiring that the line pierces the polygon orthog-
onally, i.e.

Orthogonal(L,P ) (2.372)

⇔ Orthogonal(L,A) ∧

 ∧
i=1,...,N

Left(L,Li)

 ∨
 ∧

i=1,...,N

Right(L,Li)


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Figure 2.37: The line L intersects the depicted 3d triangle, because it is on the same side of
all delimiting lines L1, L2 and L3. In addition to this, the 3d line segment {X,Y} intersects
the 3d polygon, because also the two 3d points X and Y are on opposite sides of A.

Figure 2.38: The 3d line L is incident to the depicted 3d polygon, because it is incident to
the 3d plane A and the two 3d points X1 and X2 are on the opposite side of L than the 3d
point X3. Note that the notion of two 3d points being opposite to each other with respect
to a 3d line is only defined, because the points and the line are co-planar. In addition to this
the 3d line segment {X,Y} is incident to the 3d triangle, because also the points X and Y
are opposite to each other with respect to the 3d lines L2 and L3.
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The uncertain projective 3d line is considered incident to the convex 3d polygon, if it is
incident to the polygonal plane and crosses any of the delimiting line segments (see figure
2.38). Hence incidence is defined as

Incident(L,P ) ⇔ Incident(L,A) ∧
∨

i=1,...,N

Opposite(Xi,Xi+1,L) (2.373)

where again all indices read modulo N . There is no easy generalization toward parallelity,
because the ’opposite’ relation requires the lines to intersect to be meaningful.

An uncertain oriented projective 3d line segment in point as wall as in line-plane repre-
sentation

S : ({L,E,F}, {CLL,CEE ,CFF }) (2.374)
↔ ({X,Y}, {CXX ,CY Y })

intersects a convex uncertain oriented projective 3d polygon, if the connecting line pierces the
polygon and both end-points are on opposite sides of the polygonal plane (see figure 2.37).
Hence, intersection is defined as

Intersect(S ,P ) (2.375)
⇔ Opposite(X,Y,A) ∧ ∧

i=1,...,N

Left(L,Li)

 ∨
 ∧

i=1,...,N

Right(L,Li)


Again this definition is easily augmented by requiring the line segment to pierce the

polygon orthogonally. Therefore this is defined as

Orthogonal(S ,P ) (2.376)
⇔ Opposite(X,Y,A) ∧ Orthogonal(L,A) ∧ ∧

i=1,...,N

Left(L,Li)

 ∨
 ∧

i=1,...,N

Right(L,Li)


The line segment is considered incident, if it is incident to the polygonal plane and ei-

ther both end-points lie within the polygon or the segment intersects any of the delimiting
segments (see figure 2.38).

Incident(S ,P ) (2.377)

⇔ Incident(L,A) ∧ (

 ∧
i=1,...,N

(Above(X,Bi) ∧ Above(Y,Bi))

 ∨
∨

i=1,...,N

(Opposite(X,Y,Bi) ∧ Opposite(Xi,Xi+1,L)))

As before there is no easy generalization toward parallelity.
A convex uncertain projective 3d polygon intersects an uncertain projective plane (D,CDD),

if there exists some delimiting line segment, whose end-points are on both sides of the plane
(see figure 2.39), i.e.

Intersect(D,P ) ⇔
∨

i=1,...,N

Opposite(Xi,Xi+1,D) (2.378)
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Figure 2.39: The 3d polygon {Xa
1,X

a
2,X

a
3} intersects the plane Ab, because the 3d points Xa

1

and Xa
3 are on opposite sides of the 3d plane Ab. The two depicted 3d triangles intersect,

because the 3d line segment {qXb
3,X

b
1} intersects the 3d polygon {Xa

1,X
a
2,X

a
3} and because

the 3d line segment {Xa
3,X

a
1} intersects the 3d polygon {Xb

1,X
b
2,X

b
3}

.

This might also be augmented by orthogonality yielding

Orthogonal(D,P ) (2.379)

⇔ Orthogonal(A,D) ∧

 ∨
i=1,...,N

Opposite(Xi,Xi+1,D)


Next, two convex uncertain projective 3d polygons in point, line and plane representation

P1 : ({X(1)
1 , ...,X(1)

N }, {C(1)
X1X1

, ...,C
(1)
XNXN

}) (2.380)

↔ ({L(1)
1 , ...,L(1)

N }, {C(1)
L1L1

, ...,C
(1)
LNLN

})

↔ ({A(1),B(1)
1 , ...,B(1)

N }, {C(1)
AA,C

(1)
B1B1

, ...,C
(1)
BNBN

})

and

P2 : ({X(2)
1 , ...,X(2)

M }, {C(2)
X1X1

, ...,C
(2)
XMXM

}) (2.381)

↔ ({L(2)
1 , ...,L(2)

M }, {C(2)
L1L1

, ...,C
(2)
LMLM

})

↔ ({A(2),B(2)
1 , ...,B(2)

M }, {C(2)
AA,C

(2)
B1B1

, ...,C
(2)
BMBM

})

intersect, if any delimiting line segment of one polygon pierces the other polygon (see figure
2.39). Hence, intersection is defined in this case as

Intersect(P1,P2) (2.382)

⇔
∨

i=1,...,N

(

 ∧
j=1,...,M

Left(L(1)
i ,L(2)

j )

 ∨
 ∧

j=1,...,M

Right(L(1)
i ,L(2)

j )


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Figure 2.40: The two depicted 3d triangles overlap, because the two 3d planes Aa and Ab

are identical and the 3d point Xb
2 is above all the delimiting planes Ba

1, Ba
2 and Ba

3.

∧Opposite(X(1)
i ,X(1)

i+1,A
(2)))

∨
∨

i=1,...,M

(

 ∧
j=1,...,N

Left(L(2)
i ,L(1)

j )

 ∨
 ∧

j=1,...,N

Right(L(2)
i ,L(1)

j )


∧Opposite(X(2)

i ,X(2)
i+1,A

(1)))

Observe that the number of corner points does not need to be identical for this relation.
Again, this definition can be extended toward orthogonal intersection yielding

Orthogonal(P1,P2) (2.383)
⇔ Orthogonal(A(1),A(2)) ∧

(
∨

i=1,...,N

((

 ∧
j=1,...,M

Left(L(1)
i ,L(2)

j )

 ∨
 ∧

j=1,...,M

Right(L(1)
i ,L(2)

j )

)

∧Opposite(X(1)
i ,X(1)

i+1,A
(2)))

∨
∨

i=1,...,M

((

 ∧
j=1,...,N

Left(L(2)
i ,L(1)

j )

 ∨
 ∧

j=1,...,N

Right(L(2)
i ,L(1)

j )

)

∧Opposite(X(2)
i ,X(2)

i+1,A
(1))))

The two convex 3d polygons are considered to overlap, if the polygonal planes are equal
and either all points of one polygon lie within the other polygon or any of the delimiting line
segments intersect (see figure 2.40). Therefore overlap is defined as

Overlap(P1,P2) (2.384)
⇔ Equal(A(1),A(2)) ∧

(

 ∧
i=1,...,N

∧
j=1,...,M

Above(X(1)
i ,B(2)

j )

 ∨
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Figure 2.41: The two depicted 3d triangles are parallel, because the two 3d planes Aa and
Ab are parallel and the 3d point Xb

2 is above all the delimiting planes Ba
1, Ba

2 and Ba
3.

 ∧
i=1,...,M

∧
j=1,...,N

Above(X(2)
i ,B(1)

j )

 ∨
∨

i=1,...,N

∨
j=1,...,M

(Opposite(X(1)
i ,X(1)

i+1,B
(2)
j ) ∧

Opposite(X(2)
j ,X(2)

j+1,B
(1)
i )))

Here the relation may be relaxed to paralellity of two convex 3d polygons (see figure 2.41)
being

Parallel(P1,P2) (2.385)
⇔ Parallel(A(1),A(2)) ∧

(

 ∧
i=1,...,N

∧
j=1,...,M

Above(X(1)
i ,B(2)

j )

 ∨
 ∧

i=1,...,M

∧
j=1,...,N

Above(X(2)
i ,B(1)

j )

 ∨
∨

i=1,...,N

∨
j=1,...,M

(Opposite(X(1)
i ,X(1)

i+1,B
(2)
j ) ∧

Opposite(X(2)
j ,X(2)

j+1,B
(1)
i )))

As in the 2d case two polygons are considered equal, if for some circulation of indices the
endpoints are equal. Hence, it is defined as

Equal(P1,P2) ⇔
∨

i=1,...,N

∧
j=1,...,N

Equal(X(1)
j+i,X

(2)
j ) (2.386)

Of course the number of end-points must be equal. Again this test does not required convexity.
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Figure 2.42: The 3d facet {X,T} is incident to the plane A, because the 3d point X is
incident to A and the normal of A and T point into the same direction. In addition to this,
the facet is incident to the depicted 3d triangle, because also the 3d point X is above all
delimiting planes B1, B2 and B3.

3d facets

The relations for the 2d edgels carry over to the 3d case. An uncertain oriented projective
3d facet

F : ({X,T}, {CXX ,CTT }) (2.387)

is considered incident to an uncertain oriented projective plane (A,CAA), if the normal direc-
tion of the facet T and the normal direction of the plane Ah point in the same direction and
the point X lies on the plane A (see figure 2.42). Being more specific and defining parallelity
between a facet and a plane as (cf. (2.315))

Parallel(F ,A) ⇔
(
S(T) 0

)[2]
A = − (S(Ah))[2] T != 0 (2.388)

the incidence of a plane and a facet is defined as

Incident(F ,A) ⇔ Incident(X,A) ∧ Parallel(F ,A) (2.389)

The previous definition straightforwardly extends toward convex 3d polygons in plane
representation

P : ({A,B1, ...,BN}, {CAA,CB1B1 , ...,CBNBN
}) (2.390)

so that a convex 3d polygon and a facet are considered incident, if the following condition
holds (see figure 2.42)

Incident(F ,P ) ⇔ Inside(X,P ) ∧ Parallel(F ,A) (2.391)

For a 3d line L and a facet orthogonality can be defined analogously. Therefore first a
line and a facet are considered orthogonally aligned, if the direction of the line Lh and the
normal T of the facet point in the same direction (see figure 2.43), i.e.

OrthogonalAligned(F ,L) (2.392)

⇔
(
S(T) 03×3

)[2]
L = − (S(Lh))[2] T != 0
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Figure 2.43: The 3d facet {X1,T1} is orthogonal aligned to the 3d line L, because its normal
points into the same direction as the direction of the line. Furthermore the facet {X2,T2}
is orthogonal to the line, because in addition to being orthogonal aligned the 3d point X2 is
incident to L. The 3d facet {X3,T3} is parallel to the 3d line L, because its normal and the
direction of the line are orthogonal. In addition to this, the 3d facet {X4,T4} is incident to
the 3d line L, because it is parallel to the line and the point X4 is incident to L.

Now orthogonality of a facet and a line is defined by requiring that in addition to being
orthogonally aligned the point X lies on the line (see figure 2.43). The definition for the
orthogonality of a line and a facet is therefore given by

Orthogonal(F ,L) (2.393)
⇔ Incident(X,L) ∧ OrthogonalAligned(F ,L)

As before this notion straightforwardly extends toward 3d line segments, so that a 3d line
segment in line-plane-representation

S : ({L,E,F}, {CLL,CEE ,CFF }) (2.394)

is orthogonal to a 3d facet, if (see figure 2.43)

Orthogonal(S ,F ) (2.395)
⇔ Incident(X, S) ∧ OrthogonalAligned(F ,L)

A 3d facet is considered to be incident to a line, if the point lies on the line and the
normal of the facet is parallel to the line, i.e. perpendicular to its direction (see figure 2.43).
Therefore one first defines parallelity between a 3d facet and a 3d line as (cf. (2.312))

Parallel(F ,L) ⇔ LT

(
I 3

03×3

)
T = TT

(
I 3 03×3

)
L != 0 (2.396)

Now incidence between a 3d facet and a 3d line is defined by requiring that also the point
lies on the line, yielding

Incident(F ,L) ⇔ Incident(X,L) ∧ Parallel(F ,L) (2.397)
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Figure 2.44: The 3d facets {X1,T1} and {X2,T2} are co-linear, because the 3d point X1 is
on the plane defined by the second facet and vice versa. The 3d facets {X2,T2} and {X3,T3}
are co-planar, because in addition to being co-linear, their normal vectors point into the same
direction.

Again this definition can be easily extended toward 3d line segments, so that incidence is
defined in this case as (see figure 2.43)

Incident(F , S) ⇔ Incident(X, S) ∧ Parallel(F ,L) (2.398)

Equality between two 3d facets is defined by considering two 3d facets

F1 : ({X1,T1}, {CX1X1 ,CT1T1}) (2.399)

and
F2 : ({X2,T2}, {CX2X2 ,CT2T2}) (2.400)

as equal, if the points X1 and X2 as well as the normal directions T1 and T2 are equal up to
orientation, i.e.

Equal(F1,F2) ⇔ Equal(X1,X2) ∧ Equal(T1,T2) (2.401)

where equality up to orientation between the two normal directions is defined analogously to
the equality of two 2d points (cf. 2.292) as

Equal(T1,T2) ⇔ (S(T1))
[2] T2 = − (S(T2))

[2] T1
!= 0 (2.402)

Two facets are considered co-linear, if the first facets position X1 lies on the plane A2

defined by the second facet F2 according to equation (2.118) and vice versa (see figure 2.44).
Co-linearity for two facets is therefore defined as

Colinear(F1,F2) ⇔ Incident(X1,A2) ∧ Incident(X2,A1) (2.403)

Finally two facets are considered to be co-planar, if their normals point into the same
direction and the position of one facet lies on the plane induced by the other facet (see figure
2.44). Hence co-planarity is defined as

Coplanar(F1,F2) ⇔ Equal(T1,T2) ∧ Incident(X1,A2) (2.404)
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Up to now a number of relations between the uncertain oriented projective entities have
been presented. All those tests take two entities as input and return a yes/no-conjecture
about their relation as output. In case that a large number of tests has to be performed,
which is the case in most real-world applications, some efficiency considerations are in order.
In the following section a data structure will be derived that exploits the specific structure of
the bi-linear tests presented in this section and allows to perform those tests more efficiently
on large sets of entities.

2.3 Data structures for efficient testing

In the previous section various relations between pairs of entities were presented. In real
application huge amounts of such pairwise tests need to be performed. In order to facilitate
efficient testing it is possible to exploit the special structure of the presented relations and
derive a data structure that enables finding all elements out of a large database fulfilling a
given relation with another given element.

In the following such a data-structure, which has been presented briefly in [Beder, 2004a],
will be derived in detail. It is inspired by the idea of the R-tree (cf. [Guttman, 1984]) for
the efficient retrieval of spatial objects, which uses bounding boxes as necessary conditions
for speeding up searches, as well as balancing the tree similar to B-trees (cf. [Bayer and
McCreight, 1972]) in order to guarantee a non-degenerate logarithmic depth.

The bounding boxes will be generalized toward general necessary conditions for the bi-
linear test relations. It is also necessary to have a method for combining those necessary
conditions into new ones to build up the tree structure. Both notions, which are rather
technical in nature, will be presented in the following.

2.3.1 Necessary conditions

All presented relations consist of conjunctions and disjunctions of equations either in the
form (2.270) or in the form (2.273). In the following necessary conditions for those relations
will be derived. Repeating equation (2.270)

yT
A(x)T

(
A(x)C yyA(x)T + B(y)CxxB(y)T

)−1
A(x)y ≤ Tα,r (2.405)

and equation (2.273)

a(x)y√
a(x)C yya(x)T + b(y)Cxxb(y)T

≤
√
Tα,1 (2.406)

a managable necessary condition for this to hold is obtained by first enlarging the denomina-
tor. Therefore the error ellipsoids are replaced by the smallest possible round error ellipsoids
still containing the original ones. Being more specific and denoting with σ2

x the largest eigen-
value of

Cxx = U

 σ2
x

. . .
∗

U
T (2.407)



2.3. DATA STRUCTURES FOR EFFICIENT TESTING 121

d C d=T
T -1

d
i

Figure 2.45: The bounding box of the ellipse defined by the solution to the quadratic equation
dT
C
−1d = T can be found by finding the point d on the ellipse, such that the i-th component

di is maximum (see text).

and with σ2
y the largest eigenvalue of

C yy = U


σ2

y
. . .

∗

U
T (2.408)

a necessary condition for (2.270) is given by

yT
A(x)T

σ2
yA(x)A(x)T + σ2

xB(y)B(y)T︸ ︷︷ ︸
C dd


−1

A(x)y︸ ︷︷ ︸
d

(2.409)

= dT
C
−1
dd d ≤ Tα,r (2.410)

and a necessary condition for (2.273) is given by

a(x)y√
σ2

ya(x)a(x)T + σ2
xb(y)b(y)T

≤
√
Tα,1 (2.411)

The next step is to find a bounding box for the error ellipsoid represented by equation
(2.410). Therefore the vector d = A(x)y is projected onto its components

di = eT
i d = eT

i A(x)y = ai(x)y (2.412)

where ei denotes the unit basis vector containing zeros everywhere except for the i-th position,
where it contains a one. In order to find this bounding box, the extremal value of di under
the constraint that d lies on the ellipsoid

dT
C
−1
dd d = T (2.413)

is determined using the technique of Lagrangian multipliers (see figure 2.45). Being more
specific, the extrema of the function

f(d, λ) = eT
i d + λ(dT

C
−1
dd d− T ) (2.414)
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are derived. Setting its partial derivative

∂

∂d
f(d, λ) = eT

i + 2λdT
C
−1
dd = 0 (2.415)

equal to zero and solving for d yields

d =
Cei

2λ
(2.416)

This solution is now inserted into the partial derivative

∂

∂λ
f(d, λ) = d

T
C
−1
dd d− T (2.417)

=
eT

i CC
−1
Cei

4λ2
− T (2.418)

=
eT

i Cei

4λ2
− T = 0 (2.419)

Again, setting this equal to zero and solving for λ yields

λ = ±

√
eT

i Cei

4T
(2.420)

Inserting this back into equation (2.416) yields the extremal value

d = ± Cei

2

√
eT

i Cei

4T

(2.421)

= ±
√
T

Cei√
eT

i Cei

(2.422)

Hence, the extremal component is given by

di = eT
i d = ±

√
T

eT
i Cei√
eT

i Cei

(2.423)

or equivalent

di

2

Cdidi

=
eT

i d d
T
ei

eT
i Cddei

= T (2.424)

Because the last equation holds for all T , it finally follows that

dT
C
−1
dd d ≤ T ⇒ d2

i

Cdidi

≤ T (2.425)

and that the bound is actually achieved for some d (cf. figure 2.14 in [Förstner and Wrobel,
2004, p.63]).

Hence, a necessary condition for equation (2.410) is that for all i the following equation
holds

(ai(x)y)2

σ2
yai(x)ai(x)T + σ2

xbi(y)bi(y)T
≤ Tα,r (2.426)
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Figure 2.46: Left: The function f(δx, δy) = δx
√

1− δ2y +δy
√

1− δ2x on the interval δx+δy ≤ 1.
Observe, how similar it looks to the function of just the sum of the two arguments δx + δy
on this interval. However, it is below the surface δx + δy, so that a factor of

√
2 has to be

introduced. Right: The function f(δx, δy) = δx
√

1− δ2y + δy
√

1− δ2x − 1√
2
(δx + δy), which

reflects the approximation error introduced by the factor
√

2, on the interval δx + δy ≤ 1.
Observe that it is non-negative on this interval and that the largest approximation error
occurs, if the values of δx and δy differ significantly.

⇔ (ai(x)y)2 ≤ Tα,r(σ2
yai(x)ai(x)T + σ2

xbi(y)bi(y)T ) (2.427)

⇔ |ai(x)y| ≤
√
Tα,r(σ2

yai(x)ai(x)T + σ2
xbi(y)bi(y)T ) (2.428)

⇔ |ai(x)y|
|ai(x)||y|

≤

√√√√Tα,r

(
σ2

yai(x)ai(x)T

|ai(x)|2|y|2
+
σ2

xbi(y)bi(y)T

|ai(x)|2|y|2

)
(2.429)

⇔ |ai(x)y|
|ai(x)||y|

≤

√√√√Tα,r

(
σ2

y

|y|2
+
σ2

xbi(y)bi(y)T

|ai(x)|2|y|2

)
(2.430)

Applying the same reasoning to equation (2.411) yields the equivalent signed condition

a(x)y√
σ2

ya(x)a(x)T + σ2
xb(y)Cxxb(y)T

≤
√
Tα,1 (2.431)

⇔ a(x)y
|a(x)||y|

≤

√√√√Tα,r

(
σ2

y

|y|2
+
σ2

xb(y)b(y)T

|a(x)|2|y|2

)
(2.432)

which differs only by the missing absolute value on the left hand side of the equation.
This conditions are further relaxed using the triangle inequality and the assumption that

the inequality
|bi(y)|
|y|

≤ 1 (2.433)

holds. This assumption is true for all relations discussed in the previous section. The final
necessary conditions, which are easily interpretable as will become clearer in the following,
are now given by (see also figure 2.46, left)

|ai(x)y|
|ai(x)||y|

≤
√
Tα,r

σy

|y|
+
√
Tα,r

σx

|ai(x)|
|bi(y)|
|y|

(2.434)
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≤
√
Tα,r

σy

|y|
+
√
Tα,r

σx

|ai(x)|
(2.435)

≤
{
δx
√

1− δ2y + δy
√

1− δ2x if δ2x + δ2y ≤ 1
1 otherwise

(2.436)

and
a(x)y
|a(x)||y|

≤
{
δx
√

1− δ2y + δy
√

1− δ2x if δ2x + δ2y ≤ 1
1 otherwise

(2.437)

with the substitutions (see below)

δx =
√

2Tα,r
σx

|ai(x)|
(2.438)

and
δy =

√
2Tα,r

σy

|y|
(2.439)

To see the inequalities (2.436) and (2.437), one first notes that the case for δ2x + δ2y > 1 is
trivial, as there is a cosine on the left hand side of the equation, which cannot be larger than
one. For the case of δ2x + δ2y ≤ 1 one looks at the difference function (see figure 2.46, right)

δx
√

1− δ2y + δy

√
1− δ2x −

(√
Tα,r

σy

|y|
+
√
Tα,r

σx

|ai(x)|

)
(2.440)

= δx
√

1− δ2y + δy

√
1− δ2x −

1√
2
(δx + δy) (2.441)

= f(δx, δy) (2.442)

and prooves that f(δx, δy) ≥ 0 on the set

{(δx, δy)|δx > 0, δy > 0, δ2x + δ2y ≤ 1} (2.443)

Therefore one computes the derivative

∂f(δx, δy)
∂δx

=
√

1− δy
2 − δxδy√

1− δx
2
− 1√

2
(2.444)

Setting this equal to zero and solving for δy yields the two solutions

δy = − 1√
2

√
(1− δx) (δx + 1)

(
δx

2 ±
√
δx

2 + δx
4
)

δx
(2.445)

One easily verifies using the triangle inequality that only the ’−’-solution is positive for
0 ≤ δx ≤ 1. Substituting this solution back into equation (2.441) and setting its derivative
equal to zero

∂f(δx, δy)
∂δx

= 0 (2.446)

one obtains the two solutions

δx = ±1
4

√
7−

√
17 (2.447)
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Obviously only the ’+’-solution is positive. Substituting this solution back into equation
(2.445) yields the position of the only local extremum of (2.441) on the set defined in equation
(2.443). Evaluating (2.441) at this position, one easily verifies that it is greater than zero

f

(
1
4

√
7−

√
17,

1
4

√
7−

√
17
)
≈ 0.17 > 0 (2.448)

It remains to check the boundary of the set defined in equation (2.443). For the two
boundaries

f(δx, 0) =

(
1−

√
1
2

)
δx (2.449)

and

f(0, δy) =

(
1−

√
1
2

)
δy (2.450)

one can immediately see that the function is greater than zero on the intervals 0 ≤ δx ≤ 1
and 0 ≤ δy ≤ 1. Evaluating the function on the remaining third boundary yields

f

(
δx,
√

1− δ2x

)
= 1−

√
1
2

(
δx +

√
1− δ2x

)
(2.451)

which is greater than zero for the two values δx = 0 and δx = 1 as has already been noted
above. Its derivative is

∂f
(
δx,
√

1− δ2x

)
∂δx

= −
√

1
2

(
1− δx√

1− δ2x

)
(2.452)

Setting it equal to zero and solving for δx yields the position of its extremum

δx =
√

1
2

(2.453)

Substituting this back into equation (2.451) finally yields the value to be

f

(
δx,

√
1− δx

2
)

= 0 (2.454)

which finally proofs that f(δx, δy) ≥ 0 on the set defined in equation (2.443) and that equality
is actually achieved at this position justifying the choice of the substitution δx and δy.

The final necessary condition can now be reformulated in order to facilitate an easy
interpretation. First note that in case δ2x + δ2y ≤ 1 the following identity holds (cf. [Bronstein
et al., 2001, p.87])

δx
√

1− δ2y + δy

√
1− δ2x (2.455)

= sin arcsin
(
δx
√

1− δ2y + δy

√
1− δ2x

)
(2.456)

= sin (arcsin δx + arcsin δy) (2.457)

= cos
(
π

2
− (arccos δx + arccos δy)

)
(2.458)

Hence, equation (2.436) is equivalent to

|ai(x)y|
|ai(x)||y|

≤
{

cos
(

π
2 − (arccos δx + arccos δy)

)
if δ2x + δ2y ≤ 1

1 otherwise
(2.459)
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Figure 2.47: The necessary condition can be interpreted geometrically as follows: inside the
cone with axis y and radius δy on the unit sphere there exists a direction vector, which is
perpendicular to another direction vector, existing inside the cone with axis a(x) and radius
δx on the unit sphere.

which can be interpreted as follows (see figure 2.47): Whenever a bilinear test (cf. equation
(2.270)) gives no reason to assume that a given relation between two entities x and y does
not hold, then for all i the angle between the vectors ai(x) and y differs at most the amount
arccos δx + arccos δy from the right angle.

If on the other hand the contrary is true and the angle differs more than this amount,
the bilinear test (cf. equation (2.270)) will be definitely rejected. This latter property is the
key to the data structure presented here, as the values δy can be computed in advance and,
as will be shown in the next section, can also be combined for multiple entities.

In the signed case (cf. (2.273)) equation (2.437) is equivalent to

a(x)y
|a(x)||y|

≤
{

cos
(

π
2 − (arccos δx + arccos δy)

)
if δ2x + δ2y ≤ 1

1 otherwise
(2.460)

which can be interpreted as follows: whenever there is no reason to assume that a given
signed bilinear relation between two entities x and y does not hold, then either the sign of
the oriented angle is negative or the angle between the vectors a(x) and y differs at most
the amount arccos δx + arccos δy from the right angle. Again the negation of this statement
is the key to the data structure.

The pairs [y, δy] will be called keys in the following, as they allow to check the necessary
conditions for every relation. As noted above, the keys have a geometric interpretation: they
represent cones having the axis y and the radius δy at the intersection with the unit sphere.
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2.3.2 Combining necessary conditions

The next step is combining the necessary conditions for two entities into one single necessary
condition. That means given two keys [y1, δy1 ] and [y2, δy2 ] that allow to check the two
conditions

|a(x)y1|
|a(x)||y1|

≤
{

cos
(

π
2 − (arccos δx + arccos δy1)

)
if δ2x + δ2y1

≤ 1
1 otherwise

(2.461)

and
|a(x)y2|
|a(x)||y2|

≤
{

cos
(

π
2 − (arccos δx + arccos δy2)

)
if δ2x + δ2y2

≤ 1
1 otherwise

(2.462)

as shown in the previous section, a new key [y′, δ′y] has to be computed, so that the combined
necessary condition

|a(x)y′|
|a(x)||y′|

≤
{

cos
(

π
2 − (arccos δx + arccos δ′y)

)
if δ2x + δ′2y ≤ 1

1 otherwise
(2.463)

holds, whenever any of the two previous conditions holds. If this is possible, a tree-shaped
data structure for efficient performing large amount of bi-linear tests can be devised. In the
following it will be shown, how such a super-key can be computed.

The geometric interpretability is extremely helpful to devise an algorithm. First observe
that this problem is by construction inherently two-dimensional in the plane spanned by the
two vectors y1 and y2. The projection into this plane is depicted in figure 2.48. All directions
in that plane must fulfill

e1 = (1− λ1)y1 + λ1y2 (2.464)

where points on the two envelope lines fulfill the additional constraint given by the Pythagoras
theorem that (

yT
1 e1

|y1||e1|

)2

+ δ2y1
= 1 (2.465)

Substituting e1 into this equation yields

1− δ2y1
=

(
(1− λ1)yT

1 y1 + λ1y
T
1 y2

|y1||(1− λ1)y1 + λ1y2|

)2

(2.466)

=
((1− λ1)yT

1 y1 + λ1y
T
1 y2)2

yT
1 y1((1− λ1)2yT

1 y1 + 2(λ1 − λ2
1)y

T
1 y2 + λ2

1y
T
2 y2)

(2.467)

=
((1− λ1)a+ λ1c)2

a((1− λ1)2a+ 2(λ1 − λ2
1)c+ λ2

1b)
(2.468)

where the abreviations a = yT
1 y1, b = yT

2 y2 and c = yT
1 y2 are introduced to allow a more

compact notation. Solving this equation for λ1 yields the two solutions

λ1
± =

(
δy1a− δy1c±

√(
1− δ2y1

)
(ab− c2)

)
aδy1

c2 − ab+ δ2y1
a2 − 2δ2y1

ac+ δ2y1
ab

(2.469)

Substituting this back into equation (2.464) yields two points on the two envelope lines

e1
± = (1− λ1

±)y1 + λ1
±
y2 (2.470)
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Figure 2.48: The two cones represented by the keys [y1, δy1 ] and [y2, δy2 ] are combined into
a super-key [y′, δ′y] by finding the union cone that is delimited by the two lines eF

1 and eF
2 ,

which have the largest angle with each other among the delimiting lines.
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of the first entity.
The same reasoning is possible for the envelope lines of the second entity

e2 = (1− λ2)y2 + λ2y1 (2.471)

for which the condition (
yT

2 e2

|y2||e2|

)2

+ δ2y2
= 1 (2.472)

must be fulfilled. Substituting e2 into this equation now yields

1− δ2y2
=

(
(1− λ2)yT

2 y2 + λ2y
T
1 y2

|y2||(1− λ2)y2 + λ2y1|

)2

(2.473)

=
((1− λ2)yT

2 y2 + λ2y
T
1 y2)2

yT
2 y2((1− λ2)2yT

2 y2 + 2(λ2 − λ2
2)y

T
1 y2 + λ2

2y
T
1 y1)

(2.474)

=
((1− λ2)b+ λ2c)2

b((1− λ2)2b+ 2(λ2 − λ2
2)c+ λ2

2a)
(2.475)

which has the two solutions

λ2
± =

(
δy2b− δy2c±

√(
1− δ2y2

)
(ab− c2)

)
bδy2

c2 − ab+ δ2y2
b2 − 2δ2y2

bc+ δ2y2
ab

(2.476)

that are back-substituted into equation (2.471) yielding two points on the envelope lines of
the second entity

e2
± = (1− λ2

±)y2 + λ2
±
y1 (2.477)

Now the two oriented envelope lines including the largest angle have to be selected.
Therefore first the orientations have to be aligned with the entities. Also applying a spherical
normalization yields the oriented envelope points

ẽ1
± = sign(yT

1 e1
±)

e1
±

|e1
±|

(2.478)

and

ẽ2
± = sign(yT

2 e2
±)

e2
±

|e2
±|

(2.479)

The next step is to distinguish for each entity between the envelope line that is on the same
side as the second entity and the envelope line that is on the other side than the second
entity. This can be done by checking the signs of the scalar products

eN
1 =

{
ẽ1

+ if yT
2 ẽ1

+ > yT
2 ẽ1

−

ẽ1
− otherwise

(2.480)

eF
1 =

{
ẽ1

+ if yT
2 ẽ1

+ < yT
2 ẽ1

−

ẽ1
− otherwise

(2.481)

eN
2 =

{
ẽ2

+ if yT
1 ẽ2

+ > yT
1 ẽ2

−

ẽ2
− otherwise

(2.482)
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eF
2 =

{
ẽ2

+ if yT
1 ẽ2

+ < yT
1 ẽ2

−

ẽ2
− otherwise

(2.483)

Finally, as the two envelopes need not be disjoint, one obtains the two enclosing envelope
lines, i.e. those with the largest opening angle, again from checking signs of scalar products

m =

{
eF

1 if yT
2 eF

1 < yT
2 yN

2

eN
2 otherwise

(2.484)

n =

{
eF

2 if yT
1 eF

2 < yT
1 yN

1

eN
1 otherwise

(2.485)

The new key [y′, δ′y] is now in the middle between the two envelope lines

y′ =
m + n

|m + n|
(2.486)

with the opening angle being computable using Pythagoras theorem as

δ′y =

{ √
1− (mT n)2 if yT

1 y′ > 0 ∧ yT
2 y′ > 0

1 otherwise
(2.487)

where the two cases must be distinguished to deal with angles greater than 90◦.
Note that, as the combined necessary condition has the same structure as the two sin-

gle necessary conditions, it is possible to combine more than two keys successively. In the
following a tree data structure based on those pre-computable keys representing necessary
conditions for relations will be derived.

2.3.3 The tree data structure

Having defined necessary conditions for bilinear tests based on pre-computable keys for each
entity and a method for combining such keys into super-keys, which allow to check the
necessary condition for multiple entities at once, an R-tree like data structure (cf. [Guttman,
1984] and [Bayer and McCreight, 1972]) can be devised. This tree should have the following
properties (see figure 2.49)

1. Every leaf node contains at least a pre-specified numberM and at most 2M−1 uncertain
oriented projective entities together with the corresponding keys [yi, δyi ], which allow
to check necessary conditions as described in section 2.3.1. If it is the root of the tree
it may contain less elements.

2. Every inner node contains at least M and at most 2M − 1 descendants together with
the super-keys [y′i, δ

′
yi

], such that all keys contained in the subtree are sufficient for the
corresponding super-key as described in section 2.3.2.

Those properties ensure that the tree has logarithmic depth and does not degenerate, and
therefore enable efficient access. In the following a query algorithm for such a tree data
structure will be presented as well as an insertion and a deletion algorithm that preserve the
properties described above by reorganizing the tree if required.
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Figure 2.49: The tree structure contains an oriented projective entity in each leaf node. Each
edge in this tree is label with a key, representing the cone in which all oriented projective
sub-elements can be found.

Query

A query to such a data-structure is as follows: starting at the root for every descendant the
necessary condition for the query is computed as has been derived in detail in section 2.3.1.
If the condition is not fulfilled, then the corresponding subtree cannot contain an element
that would fulfill the query. Therefore such subtrees are skipped and one descends only into
subtrees, where the necessary condition is fulfilled. If the leafs of the tree are reached, the
query is tested for each uncertain oriented projective element that is contained in the leaf
node.

As the depth of the tree is logarithmic, the time complexity depends on how the query
relation prunes the sub-trees so that a logarithmic running time is possible. Because the
output size might be the whole set of stored elements, only linear time complexity can be
ensured.

The details for the query are shown in algorithm 1.
Note that it might be more efficient even to test the necessary condition before line 4 of

algorithm 1, if the evaluation of the relation is complex.
In line 11 of algorithm 1 it is required to check the condition, if some uncertain element

fulfilling the query relation can possibly be found in the according subtree. The details for
checking conditions are shown in algorithm 2.

Observe that the computations in lines 16, 18, 25 and 26 of algorithm 2 need only be
performed once fore each query, as they depend only on the query relation and the query
entity, which are known in advance and do not change during the query.
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Algorithm 1 Query
Require: uncertain query element ({xi}, {Cxixi})

query relation R({xi}, ·)
root of the tree T

Ensure: set S = {({yi}, {Cyiyi}) | R({xi}, {yi}) ∧ ({yi}, {Cyiyi}) ∈ T }
1: S = ∅
2: if T is a leaf node then
3: for each element ({yi}, {Cyiyi}) of T do
4: if R({xi}, {yi}) then
5: S = S ∪ ({yi}, {Cyiyi})
6: end if
7: end for
8: else
9: for each descendant t of T do

10: get key [{y′i}, {δ′yi
}]t stored for descendant t

11: if CheckCondition(({xi}, {Cxixi}), R({xi}, ·), [{y′i}, {δ′yi
}]t) then

12: recursivly query subtree t resulting in the set St

13: S = S ∪ St

14: end if
15: end for
16: end if

Insert

To insert a new element into the data-structure with logarithmic time complexity one proceeds
as follows: starting at the root it is decided, into which descendant the element should be
inserted and this process is iterated until a leaf is reached. The element is then inserted into
this leaf node. There are three issues to address:

1. the decision rule for choosing an appropriate descendant has to be devised

2. the keys along the path have to be updated in order to guarantee that the inserted
entity can be found

3. if the size of the leaf would exceed the maximum of 2M − 1 after insertion, the tree has
to be reorganized

For choosing a decision rule the geometric interpretation of the necessary conditions
(2.459) and (2.460) is helpful. As noted before, any key [y, δy] represents a cone with axis
y and radius δy. The smaller the radius, the more descendants are pruned during a query.
Therefore a reasonable choice as decision rule is to choose the descendant for insertion that
requires the minimum increase of radius of the cone represented by its key.

This brings up the second issue of updating the key for the descendant, in which the
element should be inserted. This has been derived in detail in section 2.3.2.

The third issue of reorganizing the tree is analogous to the reorganization of a B-tree (cf.
[Bayer and McCreight, 1972]) by splitting up the overfull node and inserting it into its parent
node. As the parent node can overflow as well, it might be necessary to iterate this process
up the the root of the tree. As in the case of B-trees this process has at most logarithmic
time complexity. Splitting a node brings up again the issues of choosing the two subsets and
re-computing keys, which will be detailed below.
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Algorithm 2 Check condition
Require: uncertain query element ({xi}, {Cxixi})

query relation R({xi}, ·)
key [{yi}, {δyi}]

Ensure: false, if a sub-tree with the given key cannot contain an element fulfilling the query
relation, and true otherwise

1: if R({xi}, ·) = R1({xi}, ·) ∧R2({xi}, ·) then
2: if CheckCondition(({xi}, {Cxixi}), R1({xi}, ·), [{yi}, {δyi}]) then
3: if CheckCondition(({xi}, {Cxixi}), R2({xi}, ·), [{yi}, {δyi}]) then
4: return true
5: end if
6: end if
7: return false
8: else if R({xi}, ·) = R1({xi}, ·) ∨R2({xi}, ·) then
9: if CheckCondition(({xi}, {Cxixi}), R1({xi}, ·), [{yi}, {δyi}]) then

10: return true
11: else if CheckCondition(({xi}, {Cxixi}), R2({xi}, ·), [{yi}, {δyi}]) then
12: return true
13: end if
14: return false
15: else if R({xi}, ·) = A(xi)·

!= 0 then
16: compute σx from Cxixi according to (2.407)
17: for each row aj of A(xi) do
18: compute δj

x from aj and σx according to (2.438)
19: if condition (2.436) does not hold then
20: return false
21: end if
22: end for
23: return true

24: else if R({xi}, ·) = a(xi)·
!
≤ 0 then

25: compute σx from Cxixi according to (2.407)
26: compute δx from a(xi) and σx according to (2.438)
27: if condition (2.437) does not hold then
28: return false
29: end if
30: return true
31: end if
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The details for the insertion of elements are shown in algorithm 3.

Algorithm 3 Insert element
Require: compound uncertain oriented entitiy ({yi}, {Cyiyi}) to be inserted

root of the tee T
Ensure: tree T containing the element
1: for each base entity (yi,Cyiyi) do
2: compute σyi from Cyiyi according to (2.408)
3: compute δyi from σyi and yi according to equation (2.439)
4: end for
5: construct key [{yi}, {δyi}]
6: if T is a leaf then
7: insert the element and its key into leaf T
8: if size of |T | = 2M then
9:

(
T1; [{y(1)

i }, {δ(1)
yi }]; T2; [{y(2)

i }, {δ(2)yi }]
)

= SplitNode(T )
10: if T is the root then
11: create new root T
12: insert T1 and T2 into new root T using algorithm 4
13: else
14: remove T from its parent node
15: insert T1 and T2 into the previous parent of T using algorithm 4
16: end if
17: end if
18: else
19: for each descendant t of T do
20: get key [{y(t)

i }, {δ(t)yi }] stored for descendant t
21: compute combined key [{y′(t)i }, {δ′(t)yi }] from [{y(t)

i }, {δ(t)yi }] and [{yi}, {δyi}] according
to equations (2.486) and (2.487) as derived in section 2.3.2

22: end for
23: choose descendant t̂ = argmint maxi |δ′(t)yi − δ

(t)
yi | with minimum radius enlargement

24: set key for descendant t̂ to [{y′(t̂)i }, {δ′(t̂)yi }]
25: recursively insert the element into the descendant t̂
26: end if

Note that the computation of the key in lines 1-5 of algorithm 3 needs only be performed
once, as the key is only dependent on the entity itself and does not change during the
recursion. In line 23 of algorithm 3 the L∞-norm is minimized, though one could choose any
other appropriate measure such as the L1− or L2-norm.

In lines 12 and 15 of algorithm 3 a whole subtree must be inserted into the data-structure.
This is done completely analogous to the previous algorithm with the distinction that subtrees
may also be inserted into inner nodes of the tree. The details for the insertion of trees are
shown in algorithm 4.

Both insertion algorithms needed to split up an overflowing node at some point. Choosing
an optimal bipartition of the descendants would require to check all of those bipartitions. As
this is impractical even for small values of M , a heuristic similar to one used in R-tree (cf.
[Guttman, 1984]) is applied. The idea is to first choose those two descendants that are farthest
away from each other, i.e. those two descendants, where the radius of the cone represented
by the key resulting from combining the keys of the two descendants is maximal. Starting
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Algorithm 4 Insert Tree
Require: subtree S to be inserted

key [{yi}, {δyi}] of the subtree
root of the tee T

Ensure: tree T containing the subtree S
1: insert sub-tree S and its key into T
2: if size of |T | = 2M then
3:

(
T1; [{y(1)

i }, {δ(1)
yi }]; T2; [{y(2)

i }, {δ(2)yi }]
)

= SplitNode(T )
4: if T is the root then
5: create new root T
6: insert T1 and T2 into new root T
7: else
8: remove T from its parent node
9: recursively insert T1 and T2 into the previous parent of T

10: end if
11: end if

from those two descendants, each is augmented in turn with the closest descendant in the
above sense until all descendants are distributed.

The details for the splitting of nodes are shown in algorithm 5.

As before, the choice of L∞-norm in lines 6 and 16 of algorithm 5 could be replaced by
other distance measures such as L1- or L2-norm.

Delete

Deletion of an element from the tree requires that the element inside the tree is somehow
identified. This is possible using the query function, so that it will be assumed that the leaf
containing the entity to be deleted has already been identified. There are two issues that
have to be addressed: first, the deletion of an entity from a non-root node can result in a
leaf containing less than M elements, so that the tree has to be reorganized; second, the keys
on the path from the deleted element to the root may be re-computed in order to improve
the query performance of the tree. As opposed to the insertion case, this re-computation
of keys, i.e. lines 4-8 of algorithm 6, is not mandatory and may be skipped, depending on
performance considerations.

The details for the deletion of elements are shown in algorithm 6.



136 CHAPTER 2. UNCERTAIN ORIENTED PROJECTIVE GEOMETRY

Algorithm 5 Split node
Require: node of tree T having size |T | = 2M
Ensure: tree T1 with key [{y(1)

i }, {δ(1)
yi }]

tree T2 with key [{y(2)
i }, {δ(2)

yi }], with T1 ∪ T2 = T and |T1| = |T2| = M
1: for each pair of descendants t1 and t2 of T do
2: get key [{y(t1)

i }, {δ(t1)
yi }] stored for descendant t1

3: get key [{y(t2)
i }, {δ(t2)

yi }] stored for descendant t2
4: compute combined key [{y′(t1,t2)

i }, {δ′(t1,t2)
yi }] from [{y(t1)

i }, {δ(t1)
yi }] and [{y(t2)

i }, {δ(t2)
yi }]

according to equations (2.486) and (2.487) as derived in section 2.3.2
5: end for
6: choose pair (t̂1, t̂2) = argmaxt1,t2 maxi |δ′(t1,t2)

yi | with maximum distance
7: remove chosen descendants, i.e. T = T \{t̂1, t̂2}
8: set T1 = {t̂1} and [{y(1)

i }, {δ(1)
yi }] = [{y(t̂1)

i }, {δ(t̂1)
yi }]

9: set T2 = {t̂2} and [{y(2)
i }, {δ(2)

yi }] = [{y(t̂2)
i }, {δ(t̂2)

yi }]
10: while T 6= ∅ do
11: for ν = 0..1 do
12: for each remaining descendant t of T do
13: get key [{y(t)

i }, {δ(t)yi }] stored for descendant t

14: compute combined key [{y′(t)i }, {δ′(t)yi }] from [{y(t)
i }, {δ(t)yi }] and [{y(t̂ν)

i }, {δ(t̂ν)
yi }]

according to equations (2.486) and (2.487) as derived in section 2.3.2
15: end for
16: choose descendant t̂ = argmint maxi |δ′(t)yi − δ

(t)
yi | with minimum radius enlargement

17: add chosen descendant t̂ to tree Tν

18: update key [{y(ν)
i }, {δ(ν)

yi }] = [{y′(t̂)i }, {δ′(t̂)yi }]
19: remove descendant T = T \{t̂}
20: end for
21: end while
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Algorithm 6 Delete Element
Require: leaf L containing the entity to be deleted
Ensure: tree T no longer containing the element
1: remove element and key from leaf L
2: set T = L
3: if L is not the root then
4: repeat
5: compute combined key [{y′i}, {δyi}] consecutively from all keys stored in T according

to equations (2.486) and (2.487) as derived in section 2.3.2
6: replace the key stored for T in its parent by [{y′i}, {δyi}]
7: change T into its parent
8: until T is the root
9: if size of |L| < M then

10: remove L from its parent
11: insert remaining elements from L into its parent using algorithm 3
12: end if
13: end if

Up to now a data structure for storing uncertain oriented projective entities has been
presented that enables testing relations. Although the depth of the tree is guaranteed to be
logarithmic, the selectivity of the queries and the tightness of the necessary conditions plays
a major role for its performance. In order to assess the performance of the presented data
structure, an empirical performance evaluation will be given in the following.

2.3.4 Empirical performance analysis

To analyze the performance of the presented data structure, some experiments on synthetic
data will be presented. First a set of uncertain oriented projective 2d line segments of random
length varying from 0.05 to 0.5 lying uniformly distributed inside the unit box [−0.5..0.5]×
[−0.5..0.5] were generated. The accuracy of the end-points was set to σ = 0.001. The running
times for constructing the data structure for branching factors varying fromM = 2 toM = 64
are plotted against the number of elements on the left hand side in figure 2.50. It can be seen
that the best performance for constructing the data structure is achieved with the smallest
possible branching factor M = 2.

Now another uncertain oriented projective 2d line segment is generated at random and
all incident uncertain oriented projective line segments are retrieved from the data structure.
The running times of this query operation for different branching factors varying from M = 2
to M = 64 are plotted against the number of elements contained in the data structure on
the right hand side in figure 2.50. It can be seen that the branching factor has no significant
impact on the performance for this query. Hence, a branching factor of M = 2 maximizes
the overall performance, because in this case the construction is most efficient as has been
observed before.

Next the performance of the data structure is compared to the naive method of sequen-
tially testing all uncertain oriented projective 2d line segments contained in it. The running
times of both competing methods are plotted against the number of elements on the left hand
side in figure 2.51. It can be seen that a significant increase of query performance is gained
from using the proposed data structure.

The next experiment demonstrates the performance for more complex elements. Therefore
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Figure 2.50: Left: Construction times (with standard deviations) for the data structure
containing 2d line segments against their number for different branching factors. The thick
line corresponds to a branching factor of M = 2. The other lines correspond with increasing
running times to the branching factors M = 4, 8, 16, 32 and 64. Right: Query times (with
standard deviations) for retrieving all incident 2d line segments against the number of 2d
line segments contained in the data structure for different branching factors. The thick line
corresponds to a branching factor of M = 2, the other lines to branching factors M =
4, 8, 16, 32 and 64. Observe that the branching factor has no significant influence on the
running times in this case.
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Figure 2.51: Left:Comparison of running times using the data structure with sequential
testing not using the data structure. The thick line shows the query performance (with
standard deviations) using the data structure with a branching factor of M = 2. The other
line shows the query performance (with standard deviations), when all 2d line segments are
tested for incidence sequentially. Right: Construction times (with standard deviations) for
the data structure containing 3d line segments against their number for different branching
factors. The thick line corresponds to a branching factor ofM = 2. The other lines correspond
with increasing running times to the branching factors M = 4, 8, 16, 32 and 64.

uncertain oriented projective 3d line segments were generated at random using the same
parameters as before in the 2d case. That means the length of the line segments was allowed
to vary between 0.05 and 0.5 and the positions were generated inside the unit box [−0.5..0.5]×
[−0.5..0.5]×[−0.5..0.5]. The end-point accuracy was set to σ = 0.001. The construction times
for different branching factors M = 2, 4, 8, 16, 32 and 64 are plotted against the number of
elements on the right hand side in figure 2.51. It can be seen again that the construction
performance is optimal for the minimal branching factor M = 2.

Again another uncertain oriented projective 3d line segment was generate using the same
parameters as before. All uncertain oriented projective 3d line segments were retrieved from
the data structure that are incident to the generated test segment. The running times of this
query for different branching factors are plotted against the size of the data structure on the
left hand side in figure 2.52. It can be seen that unlike the 2d case the performance is better
for branching factors M > 2. Hence, for complex queries on higher dimensional entities the
branching factor must be chosen, such that the construction time for the data structure is
traded against the query time based on the expected number of queries.

On the right hand side in figure 2.52 the performance of the incident query on the data
structure with a branching factor M = 2 is compared to sequential testing all elements. It
can be seen that like the 2d case the performance is significantly increased, if the proposed
data structure is used.

The final experiment demonstrates the influence of the accuracy of the elements contained
in the data structure on the performance. The uncertain oriented projective 2d line segments
from the first experiment are now stored in the data structure with end-point accuracies
varying from σ = 0.0001 to σ = 0.1. On the left hand side in figure 2.53 the construction
times for different end-point accuracies are plotted against the number of elements. It can
be seen that the construction performance increases for the large value of σ = 0.1, because
the keys do not need to be computed for each node any more. Unfortunately, those keys do



140 CHAPTER 2. UNCERTAIN ORIENTED PROJECTIVE GEOMETRY

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

x 10
−3

0 500 1000 1500 2000 2500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 2.52: Left: Query times (with standard deviations) for retrieving all incident 3d line
segments against the number of 3d line segments contained in the data structure for different
branching factors. The thick line corresponds to a branching factor of M = 2, the other lines
to branching factors M = 4, 8, 16, 32 and 64. Right: Comparison of running times using the
data structure with sequential testing not using the data structure. The thick line shows
the query performance (with standard deviations) using the data structure with a branching
factor of M = 2. The other line shows the query performance (with standard deviations),
when all 3d line segments are tested for incidence sequentially.

not carry any information either, which will be seen next.
Again all incident uncertain oriented projective 2d line segments are retrieved from the

data structure for different end-point accuracies. The test entities are given the same end-
point accuracy than the elements contained in the data structure. The running times for
those queries together with the running time for sequentially testing all elements are plotted
against the number of elements on the right hand side in figure 2.53. It can be seen that the
performance decreases with the accuracies of the elements contained in the data structure.
This is caused by two factors, which are also well-known from classical R-trees: first the result
set becomes larger, so that effectively all elements have to be tested and second the keys in
the upper nodes of the tree become less informative. Hence, if all elements potentially belong
to the result set, then the overhead for the data structure decreases the performance of the
query.

As a conclusion of the empirical analysis the presented data structure should be used, if
a large amount of relations must be checked, because only in this case the construction times
of the data structure justify its application. Furthermore it has been seen that the accuracy
of the data to be tested must be reasonable good, so that the selectivity of the queries and
the tightness of the necessary conditions yields an improvement against simple sequential
testing. Both of those conditions are fulfilled for the application presented in chapter 4, so
that significant runtime improvements have been achieved there.

This chapter discussed the representation of entities and efficient testing of relations in
the uncertain oriented projective framework. In the following this two building blocks will be
used to devise grouping algorithms for such entities that enable a wide range of applications.
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Figure 2.53: Left: Construction times (with standard deviations) for the data structure
containing 2d line segments against their number for different end-point accuracies. The
thick line corresponds to an end-point accuracy of σ = 0.1. The other lines correspond
with increasing running times to the end-point accuracies σ = 0.01, 0.001 and 0.0001. Right:
Query times (with standard deviations) for retrieving all incident 2d line segments against the
number of 2d line segments contained in the data structure for different end-point accuracies.
The thick line corresponds to a large end-point accuracy of σ = 0.1, the other solid lines with
increasing performance to end-point accuracies of σ = 0.01, 0.001 and 0.0001. The dotted line
shows the performance (with standard deviations) of sequential testing. Observe that the
performance is worse than sequential testing for large uncertainties, because the algorithm
has to descend in every leaf.
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Chapter 3

Grouping

3.1 Motivation

As seen in section 1.2.4, grouping has been a key issue in computer vision from the very
beginning. There are two major reasons for this. The first reason is the observation that
the human visual system seems to group together visual stimuli in a very early stage of
perception, enabling him to process the huge amount of input data. The second important
reason is that many problems in vision can be formulated as grouping problems. After a
precise notion of grouping is defined in section 3.2, some examples for this will be shown in
section 3.3. For now an introductory example will be given informally, in order to ease the
understanding of the formal definitions in the next section.

Given the image on the left hand side of figure 3.1, it is quite easy for a human observer
to identify the depicted sketch of a house marked on the right hand side of figure 3.1 despite
the presence of noise and outliers. Trying to replicate this human ability to identify groups
in unordered observations is the goal of the grouping algorithms presented in the following.

While in the related field of perceptual grouping a number of criteria like simplicity,
proximity, compactness, continuation or symmetry are identified as being responsible for this
ability, the notion of grouping defined in the following will only be based on simplicity and
proximity. The principle of compactness will also be exploited in a way by the entropy bound
grouping approach presented in section 3.4.4.

Another important aspect for grouping is the use of prior knowledge. While the field
of perceptual grouping, being sometimes considered as low-level image processing, is very
reluctant to use this prior information, the notion of grouping presented in this work heavily
depends on prior knowledge about the expected structure of the groups.

In the example presented above the prior knowledge would be that the sketch is made
up of straight line segments. Furthermore simplicity demands that as few as possible line
segments are present and at the same time most of the points are as close as possible to
those line segments, which also serves the proximity requirement. In addition to that, the
compactness requirement prevents the line segments to extend to far, as the points, which
are not outliers, are expected to be compactly spaced along the segment.

In the subsequent sections the grouping problem will be defined formally followed by
a range of exemplary grouping tasks in the presented framework. After this five different
solution strategies will be presented and their performance will be compared on synthetic
data. The application to the practical task of building reconstruction will be demonstrated
chapter 4.
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Figure 3.1: Left: An unordered set of 2d points. It is quite easy for a human observer, to
identify a groups (along straight lines in this case) among those points. Right: The line
segments associated with the groups yield a sketch of the depicted image.

3.2 Problem definition

In this section a generic problem definition for the grouping task will be given formally, which
then will be made more specific in section 3.3. The definition is as follows: given is a finite
set of observed, possibly heterogeneous entities

L = {(l1,C l1l1), ..., (lN ,C lN lN )} (3.1)

being realizations of random variables drawn from a distribution having the unknown means

L̃ = {l̃1, ..., l̃N} (3.2)

and known covariance matrices C l1l1 , ...,C lN lN . Note that this is exactly the representation of
entities presented in section 2.1. In the example of the previous section this set of observations
L contains the 2d points depicted in figure 3.1.

Next the prior knowledge about the internal structure of possible groups is modeled.
Therefore a set of model functions

{g1, ..., gN} (3.3)

describing the relation between the entities in terms of their relation with possible target
models p̃

gi(̃li, p̃) = 0 (3.4)

is given. In the example of the previous section the target models p̃ would be 2d lines
and the group model functions gi would be the scalar product of the entities represented as
homogeneous vectors.

Now a grouping of the given entities can be defined as a set of group models

P̃ = {p̃1, ..., p̃K} (3.5)

possibly required to fulfill a known internal model constraint

h(p̃i) = 0 (3.6)
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and an assignment mapping of the entities onto those group models

ζ̃ : {1, ..., N} → {1, ...K} (3.7)

such that the model functions are fulfilled within each group

ζ̃(i) = j ⇒ gi(̃li, p̃j) = 0 (3.8)

In the example of the previous section, the set of group models P̃ are the line segments
depicted on the right hand side of figure 3.1. If the lines are represented as homogeneous
vectors, then the internal model constraint h would be technically used to force their length
to one. The assignment mapping ζ̃ would be set for each point to point to its nearest line
segment. Observe that the constraint is defined for the true entities l̃i instead of the observed
entities li, so that the line must not pass through the points exactly.

This is a weak definition, as most problems allow multiple groupings, including the trivial
and often non-unique solution of assigning a group for each entity, i.e. having K = N . It is
therefore required to rank the groupings against each other and come up with some notion
of good groupings. As a possible solution Occam’s razor (cf. [Duda et al., 2001, p.464])
suggests to favor simple explanations above complex ones, which means in the grouping
context to prefer solutions with minimal number of groups K. Other criteria for identifying
good groupings might be applicable, too. For instance it is often very important, to enforce
some notion of compactness, i.e. require no single entity to lie far away from all other entities
in the group. This latter criterion will be exploited in section 3.4.4.

The computation of such an optimal grouping poses two major challenges: first the com-
plexity due to the combinatorics is exponential in the number of elements to be grouped and
therefore prohibitive, and second the definition gives no hint on how to obtain the correct
group models. Both of this tasks are coupled in the sense that knowing the correct group
models usually makes it easy to assign the entities to the appropriate groups (e.g. using the
methods for checking geometric relations presented in section 2.2) and on the other hand
given the correct assignments it is usually possible to estimate group models using standard
estimation techniques (cf. section 3.4.4, [Förstner and Wrobel, 2004, p.84] and [Heuel, 2001]).
This property will be exploited by the expectation maximization approach in section 3.4.1.

In order to be able to devise grouping algorithms some technical assumptions on the
unique computability of a group model must be made. Therefore one first defines a subset of
entities

l̃ ⊂ L̃ (3.9)

as consistent, if there exists some group model p̃, such that all of the constraints between the
elements of l̃ and p̃ are fulfilled.

In addition to this the subset l̃ is considered sufficient, if the entities contained in l̃ allow
the unique computation of a group model p̃ using the given constraints. In the geometric
setting this means that an element p̃ is constructible from the elements contained in the subset
l̃, as has been demonstrated for many combinations of different element types in section 2.1.

Furthermore such a subset l̃ will be called irreducible, if the removal of any element will
result in the subset not being sufficient any more. The set of all such minimal subsets will
be denoted by

S̃ = {l̃ ⊂ L̃|l̃ is consistent, sufficient and irreducible} (3.10)

By definition each element of this set implies a group model, with many of them being
identical in the case of a small number of groups. In the absence of noise and outliers and
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assuming that there exist no ambiguities in the solution, the set of all such implied group
models directly yields the desired grouping. This property will be exploited by the graph
based approaches in section 3.4.2.

As pointed out above, the true entities L̃ are usually unknown, and one is given only
observed entities denoted with

L = {(l1,C l1l1), ..., (lN ,C lN lN )} (3.11)

being realizations of random variables drawn from a distribution having the unknown means

L̃ = {l̃1, ..., l̃N} (3.12)

and known covariance matrices C l1l1 , ...,C lN lN . In this case the consistency requirement can
be relaxed toward uncertain relations, so that also a set of consistent, sufficient and irreducible
subsets of observations can be defined, which will be denoted as

S = {l ⊂ L|l is consistent, sufficient and irreducible} (3.13)

Of course the implied group models are in this case also uncertain entities and will be repre-
sented by the means and covariances of their distributions as usual.

Furthermore one must expect a possibly large number of outliers not following any known
distribution to be present in the observations. Because the expectation maximization ap-
proach as well as the graph based approaches perform poorly under this conditions, an infor-
mation theoretic approach, which balances robustness against efficiency, will be presented in
section 3.4.4.

In the next section the notions defined abstractly in this section will be specialized toward
specific geometric grouping problems that occur in computer vision.

3.3 Geometric grouping tasks

In the last section the problem of grouping was stated in a very generic framework. In
the setting of uncertain oriented projective entities the abstract concepts can be made more
specific, by requiring the group models P̃ as well as the entities L̃ all to be uncertain oriented
projective entities as defined in section 2.1. The Boolean relations R(l,p) ∈ {0, 1} between
the entities presented in section 2.2 imply naive group model functions as

g(l,p) = 1−R(l,p) (3.14)

However, those naive group model functions take only values zero and one and are not
very informative, as they do not encode any information about the distance between the two
entities. Following the idea of Heuel [2001], in case of bi-linear relations (cf. equation (2.269))

R(l,p) =

{
1 if A(l)p = B(p)l = 0
0 otherwise

(3.15)

a better choice as group model function is given by

g(l,p) = A(l)p = B(p)l (3.16)

where the Jacobians are immediately visible, which will turn out to be very useful later.
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In the case of the bi-linear sign testing relations (cf. equation (2.272))

R(l,p) =

{
1 if a(l)p = b(p)l ≤ 0
0 otherwise

(3.17)

the group model function would be

g(l,p) = ψ(a(l)p) = ψ(b(p)l) (3.18)

with the function

ψ(x) =

{
x if x > 0
0 otherwise

(3.19)

This function is not bi-linear, but ignoring the discontinuity of ψ at zero, the Jacobians are
also easily obtained as

A =
∂g(l,p)
∂p

= ψ′(a(l)p)a(l) =

{
a(l) if a(l)p ≥ 0
0 otherwise

(3.20)

and

B =
∂g(l,p)
∂l

= ψ′(a(l)p)b(p) =

{
b(p) if a(l)p ≥ 0
0 otherwise

(3.21)

with

ψ′(x) =

{
1 if x ≥ 0
0 otherwise

(3.22)

Observe that A = B = 0 , if the condition R(l,p) is fulfilled at the point of linearization, so
that the conditions can be discarded in this case.

If the relation is a conjunction of two relations R1(l,p) and R2(l,p)

R(l,p) = R1(l,p) ∧R2(l,p) (3.23)

corresponding to the group model functions g1(l,p) and g2(l,p), then the combined group
model function would be obtained by stacking the two vectors as

g(l,p) =

(
g1(l,p)
g2(l,p)

)
(3.24)

Unfortunately the situation is not so easy for disjunctions. In case the relation is a
disjunction of two relations R1(l,p) and R2(l,p)

R(l,p) = R1(l,p) ∨R2(l,p) (3.25)

corresponding to the group model functions g1(l,p) and g2(l,p), then both of those group
model functions have to be considered in subsequent processing. This will be denoted as

g(l,p) = {g1(l,p), g2(l,p)} (3.26)

In the following the components of the above grouping definition will be exemplified for
a selection of useful grouping tasks occurring in computer vision. As many heterogeneous
observations can be grouped into one group model, the following sections are ordered by
group model type.
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3.3.1 Grouping into 2d points

From incident 2d lines

Grouping elements into 2d points occurs in computer vision for instance when identifying
vanishing points in images from uncertain oriented projective 2d line observations

L = {(li,Clili), i = 1, ..., N} (3.27)

that intersect at this vanishing points. In this case the group model function is given by the
bi-linear incidence relation between the 2d line and the 2d point (cf. equation (2.280))

g(li,x) = lTi x = xT li (3.28)

As a 2d point is uniquely constructible from the intersection of two 2d lines, every subset
l ⊂ L having size |l| ≤ 2 is consistent and every subset having size |l| = 2 is sufficient and
irreducible. Hence, the set of consistent, sufficient and irreducible subsets of observations is
given by

S = {{li, lj}|i 6= j} (3.29)

where each element of this set defines as group model the intersection point of the two lines
(cf. equation (2.38))

xij = S(li)lj (3.30)

having the covariance matrix

Cxijxij = S(li)Clj ljS(li)T + S(lj)CliliS(lj)T (3.31)

From incident 2d line segments

If the observed entities are uncertain oriented projective 2d line segments

L = {({li,mi,ni}, {Clili ,Cmimi ,Cnini}), i = 1, ..., N} (3.32)

that have to intersect in some points, then the group model function is analogously given by
the incidence relation between the 2d line segment and the 2d point (cf. equation (2.319))

g({li,mi,ni},x) =

 lTi x
ψ(mT

i x)
ψ(nT

i x)

 =

 xT li
ψ(xTmi)
ψ(xTni)

 (3.33)

Unlike the 2d line case, two 2d line segments not necessarily intersect. Every consistent
subset l ⊂ L of size |l| = 2 is sufficient and irreducible for the same reason as before,
though. Therefore the consistency requirement constraints the set of consistent, sufficient
and irreducible subsets of observations to

S = {{({li,mi,ni}), ({lj ,mj ,nj})} (3.34)
|i 6= j ∧ Intersect({li,mi,ni}, {lj ,mj ,nj})}

in the case of 2d line segments. Again each element of this set induces as group model the
intersection point

xij = S(li)lj (3.35)
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having the covariance matrix

Cxijxij = S(li)Clj ljS(li)T + S(lj)CliliS(lj)T (3.36)

Note that if both 2d lines and 2d line segments occur as observations, the set of consistent,
sufficient and irreducible subsets can easily be augmented by the subsets containing all mixed
pairs of intersecting lines and line segments.

From identical 2d points

It is always possible, to group equal entities together. In this case the set of observed entities
contains the uncertain projective 2d points

L = {(xi,Cxixi), i = 1, ..., N} (3.37)

and the group model function is given by (cf. equation (2.292))

g(xi,y) = (S(xi))
[2] y = − (S(y)))[2] xi (3.38)

The set of consistent, sufficient and irreducible subsets of observations is trivially given by

S = {{xi}|i = 1, ..., N} (3.39)

and the induced group model of each element of S is the point xi itself.

3.3.2 Grouping into 2d lines

From incident 2d points

Grouping a set of uncertain oriented projective 2d points

L = {(xi,Cxixi), i = 1, ..., N} (3.40)

into straight lines is one of the key tasks encountered in feature extraction from images. It
is also the toy example presented in section 3.1. Because it is the dual problem to grouping
lines into points as discussed above, the model function for identifying co-linear points is
given by (cf. equation (2.280))

g(xi, l) = xT
i l = lTxi (3.41)

The set of consistent, sufficient and irreducible subsets is analogously given by

S = {{xi,xj}|i 6= j} (3.42)

where each element of this set defines as group model the connecting line between the two
points (cf. equation (2.32))

lij = S(xi)xj (3.43)

having the covariance matrix

Clij lij = S(xi)CxjxjS(xi)T + S(xj)CxixiS(xj)T (3.44)
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From incident 2d edgels

Some feature extraction algorithms not only extract 2d point locations, but also gradient
directions from the images. Hence, grouping uncertain oriented projective 2d edgels

L = {({xi, ti}, {Cxixi ,Ctiti}), i = 1, ..., N} (3.45)

without discarding the gradient information into 2d lines is an important step in feature
extraction procedures, too. The group model function is here given by (cf. equation (2.333))

g({xi, ti}, l) =

(
xT

i

tT
i C

T
∞R

T
⊥

)
l =

(
lT 0
0 lTR⊥C∞

)(
xi

ti

)
(3.46)

As a single edgel defines a unique 2d line (cf. equation (2.47)), the set of consistent, sufficient
and irreducible subsets of observations is simply given by

S = {{({xi, ti})}|i = 1, ..., N} (3.47)

with each such trivial subset implying a group model line according to equation (2.47).

From identical 2d lines

In case the set of observed entities contains the uncertain projective 2d lines

L = {(li,Clili), i = 1, ..., N} (3.48)

that should be grouped into identical lines, the group model function is given by (cf. equation
(2.293))

g(li,m) = (S(li))
[2] m = − (S(m)))[2] li (3.49)

The set of consistent, sufficient and irreducible subsets of observations is trivially given by

S = {{li}|i = 1, ..., N} (3.50)

with the induced group model of each element being the line li itself.

3.3.3 Grouping into 3d points

From incident 3d lines

Grouping a set of uncertain oriented projective 3d lines

L = {(Li,CLiLi), i = 1, ..., N} (3.51)

into 3d points can be used for matching corresponding image points across multiple oriented
views as has been presented in [Beder, 2004b] and will also be shown in section 4.2. The
group model function is in this case given by (cf. equation (2.290))

g(Li,X) =
(
Γ(Li)T )

)[2]
X =

(
Π(X)T

)[2]
Li (3.52)

Because 3d lines do not need to intersect, a subset of lines can only be consistent, if all lines
intersect in a single point. As two intersecting lines uniquely define a 3d point, the set of
consistent, sufficient and irreducible subsets is given by (cf. equation (2.286))

S = {{Li,Lj}|i 6= j ∧ Incident(Li,Lj)} (3.53)

Observe that in the feature matching application, this condition is equivalent to the epipolar
constraint. The induced group models are the intersection points between the two lines,
which have to be obtained using the estimation method proposed in [Heuel, 2001].
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From incident 3d line segments

As pointed out in section 2.1.5, an image point feature may geometrically represent a 3d line
segment, if a lower and an upper bound on the distance from the camera are known. The
multi view matching problem can therefore be stated as a grouping problem of uncertain
oriented projective 3d line segments

L = {({Li,Ei,Fi}, {CLiLi ,CEiEi ,CFiFi}), i = 1, ..., N} (3.54)

intersecting at 3d points (cf. section 4.2). The group model function is then given by (cf.
equation (2.356))

g({Li,Ei,Fi},X) =


(
Γ(Li)T )

)[2]
X

ψ(ET
i X)

ψ(FT
i X)

 =


(
Π(X)T

)[2]
Li

ψ(XTEi)
ψ(XTFT

i )

 (3.55)

Applying the same reasoning as before in the case of 3d lines, the set of consistent,
sufficient and irreducible subsets is given in this case by (cf. equation (2.365))

S = {{({Li,Ei,Fi}), ({Lj ,Ej ,Fj})} (3.56)
|i 6= j ∧ Intersect({Li,Ei,Fi}, {Lj ,Ej ,Fj})}

Observe that in the feature matching application, this constraint is equivalent to the epipolar
constraint and the epipolar beam constraint (cf. [Heuel, 2004, p.161]). Again the induced
group models are the intersection points between the two line segments and have to be
obtained using the estimation method proposed in [Heuel, 2001].

From identical 3d points

In case a set of uncertain projective 3d points

L = {(Xi,CXiXi), i = 1, ..., N} (3.57)

itself should be grouped, the group model function is given by (cf. equation (2.294))

g(Xi,Y) = (Π(Xi))
[3] Y = − (Π(Y)))[3] Xi (3.58)

The set of consistent, sufficient and irreducible subsets of observations is trivially given by

S = {{Xi}|i = 1, ..., N} (3.59)

with the induced group model of each element being the point Xi itself.

3.3.4 Grouping into 3d lines

Grouping into 3d lines requires that the resulting entities are actual 3d lines and therefore
fulfill the Plücker constraint (cf. equation (2.85)). This means that in this case a model
constraint given by (cf. equation (2.85) and equation (2.93))

h(L) = LT
D6L = 0 (3.60)

has to be enforced.
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From incident 3d points

As in the 2d case grouping uncertain oriented projective 3d points

L = {(Xi,CXiXi), i = 1, ..., N} (3.61)

into straight lines is useful for identifying such linear structures in 3d point data. The group
model function is given by (cf. eqaution (2.290))

g(Xi,L) =
(
Π(Xi)T

)[2]
L =

(
Γ(L)T )

)[2]
Xi (3.62)

As two 3d points uniquely define a 3d line like in the 2d case, the set of consistent, sufficient
and irreducible subsets of observations if given by (cf. equation (2.83))

S = {{Xi,Xj}|i 6= j} (3.63)

where each element of this set defines as group model the connecting line between the two
points (cf. equation (2.83))

Lij = Π(Xi)Xj (3.64)

having the covariance matrix

CLijLij = Π(Xi)CXjXjΠ(Xi)T + Π(Xj)CXiXiΠ(Xj)T (3.65)

From incident 3d facets

If the 3d observations have an attached normal direction, the situation is more constrained
and therefore more information is available for the grouping into straight lines. For grouping
a set of uncertain oriented projective 3d facets

L = {({Xi,Ti}, {CXiXi ,CTiTi}), i = 1, ..., N} (3.66)

into straight 3d lines the group model function is given by (cf. eqaution (2.397))

g({Xi,Ti},L) =

 (
Π(Xi)T

)[2]

TT
i

(
I 3 03×3

)
L (3.67)

=


(
Γ(L)T )

)[2]
0

0 LT

(
I 3

03×3

)

(

Xi

Ti

)
(3.68)

Due to the normals the situation is more constrained than the grouping from 3d points. A
pair of 3d facets is only consistent, if it is co-linear. Therefore the set of consistent, sufficient
and irreducible subsets of observations is given by (cf. equation (2.403))

S = {{({Xi,Ti}), ({Xj ,Tj})} (3.69)
|i 6= j ∧ Colinear({Xi,Ti}, {Xj ,Tj})}

The resulting group model is like the grouping from 3d points the connecting line between
the two facets given by (cf. equation (2.83))

Lij = Π(Xi)Xj (3.70)

having the covariance matrix

CLijLij = Π(Xi)CXjXjΠ(Xi)T + Π(Xj)CXiXiΠ(Xj)T (3.71)
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From incident 3d planes

Grouping a set of uncertain oriented projective 3d planes

L = {(Ai,CAiAi), i = 1, ..., N} (3.72)

into 3d lines can be used for matching image lines across multiple views as has been demon-
strated in [Beder, 2004b] and will also be shown in section 4.2. The group model function is
given by (cf. equation (2.291))

g(Ai,L) =
(
Π(Ai)T

)[2]
L =

(
Γ(L)T )

)[2]
Ai (3.73)

Because this is dual to the problem of grouping points into straight lines and two planes
uniquely define a 3d line, the set of consistent, sufficient and irreducible subsets of observations
is given by

S = {{Ai,Aj}|i 6= j} (3.74)

where each element of this set defines as group model the line a the intersection of the two
planes (cf. equation (2.109))

Lij = Π(Ai)Aj (3.75)

having the covariance matrix

CLijLij = Π(Ai)CAjAjΠ(Ai)T + Π(Aj)CAiAiΠ(Aj)T (3.76)

From incident convex 3d polygons

As pointed out in section 2.1.5, a line segment image feature may geometrically represent a
3d polygon, if a lower and an upper bound on the distance from the camera are known. The
multi view matching problem of image line segments can therefore be stated as a grouping
problem of a set of convex uncertain oriented projective 3d polygons

L = {({X(i)
1 , ...,X(i)

K } ↔ {A(i),B(i)
1 , ...,B(i)

K }, (3.77)

{C(i)
X1X1

, ...,C
(i)
XKXK

↔ {C(i)
A ,C

(i)
B1B1

, ...,C
(i)
BKBK

}), i = 1, ..., N}

intersecting at 3d lines (cf. section 4.2), where the indices have been put up to improve
readability. To derive the model function, equation (2.373) is converted to disjunctive normal
form as follows (cf. equation (2.363), equation (2.361) and equation (2.362))

Incident(L, {X1, ...,XK} ↔ {A,B1, ...,BK}) (3.78)
⇔ Incident(L,A) ∧

∨
j=1,...,K

Opposite(Xj ,Xj+1,L)

⇔
∨

j=1,...,K

Incident(L,A) ∧ Opposite(Xj ,Xj+1,γ(L)) (3.79)

⇔
∨

j=1,...,K

Incident(L,A) ∧ (3.80)

((Left(Xj ,γ(L)) ∧ Right(Xj+1,γ(L))) ∨
(Right(Xj ,γ(L)) ∧ Left(Xj+1,γ(L))))

⇔
∨

j=1,...,K

Incident(L,A) ∧ (3.81)
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((Left(Xj ,γ(L)) ∧ Right(Xj+1,γ(L)))

∨
∨

j=1,...,K

Incident(L,A) ∧

((Right(Xj ,γ(L)) ∧ Left(Xj+1,γ(L)))

The set of possible alternative model functions is therefore given by (cf. equation (2.291))

g({X(i)
1 , ...,X(i)

K } ↔ {A(i),B(i)
1 , ...,B(i)

K },L) (3.82)

=



(
Π(A(i))T

)[2]
L

ψ(±X(i)
j

T
γ(L))

ψ(∓X(i)
j+1

T
γ(L))


 =



(
Γ(L)T )

)[2]
A(i)

ψ(±γ(L)TX(i)
j )

ψ(∓γ(L)TX(i)
j+1)




Unlike planes not all 3d polygons actually intersect, so that the set of consistent, sufficient
and irreducible subsets of observations is given by (cf. equation (2.382))

S = {{({X(i)
1 , ...,X(i)

K }), ({X(j)
1 , ...,X(j)

K })} (3.83)

|i 6= j ∧ Intersect({X(i)
1 , ...,X(i)

K }, {X(j)
1 , ...,X(j)

K })}

Observe that this constraint is equivalent to the epipolar beam constraint (cf. [Heuel, 2004,
p.161]) in the image line segment matching application. The corresponding group models
are obtained like in the case of grouping planes by intersecting the polygon planes from the
plane representation of the two polygons (cf. equation (2.109))

Lij = Π(A(i))A(j) (3.84)

having the covariance matrix

CLijLij = Π(A(i))CA(j)A(j)Π(A(i))T + Π(A(j))CA(i)A(i)Π(A(j))T (3.85)

From identical 3d lines

In case a set of uncertain projective 3d lines

L = {(Li,CLiLi), i = 1, ..., N} (3.86)

itself should be grouped, the group model function is given by (cf. equation (2.296))

g(Li,M) = (∆j(Li))
[4] M = − (∆j(M))[4] Li (3.87)

The set of consistent, sufficient and irreducible subsets of observations is trivially given by

S = {{Li}|i = 1, ..., N} (3.88)

with the induced group model of each element being the line Li itself.
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3.3.5 Grouping into 3d planes

From incident 3d points

Grouping uncertain oriented projective 3d points

L = {(Xi,CXiXi), i = 1, ..., N} (3.89)

into 3d planes is a common requirement, when for instance 3d point clouds obtained from a
laser scanner are segmented. The group model function in this case is given by (cf. equation
(2.283))

g(Xi,A) = XT
i A = ATXi (3.90)

For each subset of observations l ⊂ L containing at most three points, i.e. |l| ≤ 3, there exists
a plane going through all points. As three 3d points in general position define a 3d plane,
the set of consistent, sufficient and irreducible subsets of observations is given by the set of
all three element subsets of points

S = {{Xi,Xj ,Xk}|i 6= j 6= k} (3.91)

The corresponding group models are the planes defined by the three points (cf. equation
(2.102))

Aijk = Γ(Π(Xi)Xj)TXk (3.92)

having the covariance matrix

CAijkAijk
= Γ(Π(Xi)Xj)TCXkXk

Γ(Π(Xi)Xj (3.93)

+Γ(Π(Xj)Xk)TCXiXiΓ(Π(Xj)Xk

+Γ(Π(Xk)Xi)TCXjXjΓ(Π(Xk)Xi

From incident 3d facets

In the laser scanning application often the normal directions are derived from the local neigh-
borhood and 3d facets are given instead of raw 3d points. When grouping a set of uncertain
oriented projective 3d facets

L = {({Xi,Ti}, {CXiXi ,CTiTi}), i = 1, ..., N} (3.94)

into 3d planes the group model function is given by (cf. equation (2.389))

g({Xi,Ti},A) =

 XT
i(

S(Ti) 0
)[2]

A (3.95)

=

(
AT 0

0 − (S(Ah))[2]

)(
Xi

Ti

)
(3.96)

As a single 3d facet defines a plane (cf. equation (2.118)) the set of consistent, sufficient
and irreducible subsets of observations is trivially given by

S = {({Xi,Ti}), i = 1, ..., N} (3.97)

and the corresponding group models are given by (cf. equation (2.118))

A =

(
XhT

−T T X0

)
(3.98)

with the covariance matrix being computed according to equation (2.121).
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From incident 3d lines

If a set of uncertain oriented projective 3d lines

L = {(Li,CLiLi), i = 1, ..., N} (3.99)

has to be grouped into incident 3d planes, the group model function is given by (cf. equation
(2.291))

g(Li,A) =
(
Γ(Li)T )

)[2]
A =

(
Π(A)T

)[2]
Li (3.100)

This problem is dual to the grouping of 3d lines into 3d points and therefore consistent subsets
have also to fulfill constraints. In this case two lines are only consistent, if they are co-planar,
i.e. incident. Hence the set of consistent, sufficient and irreducible subsets of observations is
given by (cf. equation (2.286))

S = {{Li,Lj}|i 6= j ∧ Incident(Li,Lj)} (3.101)

The corresponding induced group models are the planes that are spanned by the pairs of
co-planar lines and have to be obtained using the estimation method proposed in [Heuel,
2001] because of the additional constraint.

From identical 3d planes

In case a set of uncertain projective 3d planes

L = {(Ai,CAiAi), i = 1, ..., N} (3.102)

itself should be grouped, the group model function is given by (cf. equation (2.295))

g(Ai,B) =
(
Π(Ai)

)[3]
B = −

(
Π(B))

)[3]
Ai (3.103)

The set of consistent, sufficient and irreducible subsets of observations is trivially given by

S = {{Ai}|i = 1, ..., N} (3.104)

with the induced group model of each element being the plane Ai itself.

Up to now a generic grouping framework has been presented and it has been shown, how
various important problems in computer vision can be formulated in this framework. It has
also been discussed briefly, how a notion of good groupings might be defined. However, no
means of constructing such groupings in the first place is given so far. In the following several
algorithms for solving this problem will be presented.

3.4 Grouping methods

In this section five different methods for finding groupings in the sense defined in section 3.2
will be presented. First, an expectation maximization scheme, which is only applicable in the
case of a known number of groups will be presented. Then two graph based approaches, which
work on the graph induced by the pairwise relations between the entities, will be developed.
Next, a random sample consensus grouping method will be presented, that exploits the close
connection between robust estimation and grouping. This connection is also used by the
entropy bound approach presented thereafter, that constitutes one of the major contributions
of this work.
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3.4.1 Expectation maximization

In case the number of groups K is known in advance, the expectation maximization heuristic
(cf. [Mitchell, 1997, p.191ff]) presents a very powerful technique for solving the grouping
problem.

The basic idea goes as follows: starting from an initial, probably random, guess of group
models together with a confidence represented as covariance matrix

P̂(0) = {(p̂(0)
1 ,C

(0)
p̂1p̂1

), ..., (p̂(0)
K ,C

(0)
p̂K p̂K

)} (3.105)

one computes the assignment function

ζ̂(ν)(i) = argminj d((li,C lili), (p
(ν)
j ,C (ν)

pjpj
)) (3.106)

such that the distances of the observed entities and the current model are minimized. Using
this assignment function, the group models p̂

(ν+1)
j are re-estimated from the set of observa-

tions, which has been assigned to this group

Oj = {li|ζ(ν)(i) = j} (3.107)

This process is iterated, until the group models and assignments do not change any more.
There are two issues to be addressed: first a suitable distance between the observations

and the group models must be devised and second a method for estimating an optimal group
model from the observations has to be given. As distance measure the Mahalanobis-distance
has been used so far. Therefore the distance between a group model p̂j and an observation
li will be measured using the Jacobians of the group model function

Aij =
∂gi(li,pj)

∂pj

∣∣∣∣∣
p̂(ν)

j ,li

(3.108)

B ij =
∂gi(li,pj)

∂li

∣∣∣∣∣
p̂(ν)

j ,li

(3.109)

according to (cf. equation (2.270))

d(li,pj) = p̂T
j A

T
ij

(
AijC liliA

T
ij + B ijC p̂j p̂j

B
T
ij

)−1
Aijp̂j (3.110)

Note that this measure is by definition consistent with the checking of relations presented in
section 2.2, so that the data structure presented in section 2.3 can be used to improve the
efficiency by considering for each group model only those observations that are consistent
with the group model for some weak threshold.

The second issue is the estimation of a group model from a set of observations Oj . This
can be done using the group model functions by applying the standard Gauss-Helmert-model
(cf. section 3.4.4 and [Förstner and Wrobel, 2004, p.84]), as has been proposed by [Heuel,
2001]. This estimation will be denoted with p̂(Oj) in the following.

3.4.2 Graph based approach

As pointed out before in section 3.2, each element in the set of consistent, sufficient and
irreducible subsets of observations

s̃ ∈ S̃ (3.111)
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defines a group model
p̃(s̃) (3.112)

by itself. In case of error-free observations, the set of group models is simply the union of
those, i.e.

P̃ =
⋃
s̃∈S̃

{p̃(s̃)} (3.113)

In the presence of noise, however, the equality relation between the group models, which
is implicit in the union operation, has to be made explicit. Therefore, one may construct the
undirected graph

G̃ = (Ṽ, Ẽ) (3.114)

with the vertex set being the set of consistent, sufficient and irreducible subsets

Ṽ = S̃ (3.115)

and the edge set being
Ẽ = {(s̃1, s̃2) ∈ Ṽ2|p̃(s̃1) = p̃(s̃2)} (3.116)

which links two elements of S̃ if and only if the corresponding group models are equal. The
connected components of this graph are defined as the set

ConnectedComponents(G̃) = (3.117)
{V ⊂ Ṽ|∀v1, v2 ∈ V (∃w1 = v1, ..., wN = v2 ∈ V (

∀1 ≤ i < N : (wi, wi+1) ∈ Ẽ))
∧∀v ∈ Ṽ\V (¬∃w ∈ V ((v, w) ∈ Ẽ))}

and a minimum clique partition of this graph is defined as

Cliques(G̃) (3.118)

= argminK{Vi ⊂ Ṽ|
⋃̇K

i=1
Vi = Ṽ ∧ ∀v1, v2 ∈ Vi : ∃(v1, v2) ∈ Ẽ}

For this particular graph it follows from the transitivity of the equality relation that those
two sets are equal, i.e.

ConnectedComponents(G̃) = Cliques(G̃) (3.119)

Furthermore by definition there is a one to one mapping between each such clique and a
corresponding group model, i.e.

P̃ = {p̃(cj)|cj ∈ {c1, ..., cK} = Cliques(G̃)} (3.120)

and
ζ̃(i) = j ⇔ l̃i ∈ cj (3.121)

so that finding the cliques, or equivalent connected components, in this noise-free graph is
equivalent to finding the grouping.

In the presence of noise, the previous graph can be generalized as follows. The observed
graph is now given by

G = (V, E) (3.122)
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with the vertex set being the set of consistent, sufficient and irreducible subsets of observations

V = S (3.123)

and the edge set being

E = {(s1, s2) ∈ V2|Equal(p̂(s1), p̂(s2))} (3.124)

which links two elements of S if and only if the corresponding estimated group models fulfill
the uncertain equality relation. Note that the construction of the graph is significantly sped
up by the data structure presented in section 2.3. The connected components of this graph
are now given by

ConnectedComponents(G) = (3.125)
{V ⊂ V|∀v1, v2 ∈ V (∃w1 = v1, ..., wN = v2 ∈ V (

∀1 ≤ i < N : (wi, wi+1) ∈ E))
∧∀v ∈ V\V (¬∃w ∈ V ((v, w) ∈ E))}

and the minimum clique partition of this graph is

Cliques(G) (3.126)

= argminK{Vi ⊂ V|
⋃̇K

i=1
Vi = V ∧ ∀v1, v2 ∈ Vi : ∃(v1, v2) ∈ E}

Note that the uncertain equality relation is no longer transitive due to chaining effects,
therefore in general the set of connected components is not equal to the set of cliques in
general, i.e.

ConnectedComponents(G) 6= Cliques(G) (3.127)

However, the set of connected components and the set of cliques both still directly correspond
to group models. Hence, two grouping algorithms can be devised that in general come up
with two different results. The first derives the set of group models from the set of connected
components, i.e.

P̂CC = {p̂(ccj)|ccj ∈ {cc1, ..., ccK} = ConnectedComponents(G)} (3.128)

As a single observation can be contained in multiple consistent, sufficient and irreducible
subsets of observations the corresponding assignment function is not unique. Therefore one
either extends the model and allows a single observation to be assigned to multiple groups or
one selects for each observation one of the set of groups it is contained in according to some
criterion. As the size of the connected component indicates the strength of the group, this
can be used as criterion yielding the following assignment function

ζ̂CC(i) = argmaxj{|ccj | | li ∈ ccj} (3.129)

The second computes a minimum clique partition and derives the group models from this,
i.e.

P̂Cl = {p̂(clj)|clj ∈ {cl1, ..., clK} = Cliques(G)} (3.130)

with the corresponding assignment function being analogously defined as

ζ̂Cl(i) = argmaxj{|clj | | li ∈ clj} (3.131)
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The obvious disadvantage of the connected components solution is that one single outlier
is able to link multiple groups together and therefore could severely distort the whole grouping
result. Hence, one has to take extra care in order to avoid this or go for the clique partition
approach. As all vertices within a group have to have a linking edge in this approach, it could
be expected to react more robustly toward outliers than the connected components approach,
as groups containing such an outlier are more likely to be split up. In [Beder, 2004b] the
clique partition approach has been presented for the task of matching points and lines across
multiple oriented images.

While the connected components of a graph are computable in polynomial time, the mim-
imum clique partition problem is unfortunately known to be NP-hard. Therefore one has to
come up with an approximation algorithm. A successful heuristic in the point an line match-
ing application has been to sort the vertices by their degree and then greedily accumulate
vertices into cliques. This heuristic tends to produce large cliques in the beginning, which
are more likely to be inliers and then produces smaller cliques, which usually correspond to
the outliers that have not much support by other observations. However, an outlier vertex
linking two cliques together also has a high degree, so that this heuristic is by no means
fool-proof and has to be augmented by other heuristics, such as eliminating vertices of high
uncertainty in the first place that are more likely to behave like this.

3.4.3 Random Sample Consensus method

The applicability of the graph based grouping methods described in the previous section
suffers from the computational complexity. This complexity is not only incurred by the NP-
hardness of the clique partition problem, but also by the problem size itself. The number of
consistent, sufficient and irreducible subsets of observations, hence the size of the problem
instance itself, is potentially exponential in the number of oberservations involved. In addition
to this the number of edges of the graph can be quadratic in the number of those subsets.
While the latter issue has been partly addressed by the data structure presented in section
2.3, the large number of consistent, sufficient and irreducible subsets can affect the practical
applicability of the presented method.

In order to circumvent this problem, not all consistent, sufficient and irreducible subsets
have to be computed. Instead they can be sampled at random and a consensus set of obser-
vations that fit the corresponding group model can be computed. After a certain amount of
iterations the largest consensus set is selected, all observations are removed and the process is
iterated. This method has been used in [Beder and Förstner, 2006a] and [Beder and Förstner,
2006b] for grouping 3d points into cylinders.

Although this procedure has successfully been applied to robust estimation problems (cf.
[Fischler and Bolles, 1981]) it suffers two major disadvantages in the grouping context. First,
the required number of iterations heavily depends on the expected number of groups, so that
there is no improvement on the running time over the graph based methods presented in
the previous section, as nearly the whole set of consistent, sufficient and irreducible subsets
has to be sampled, in order to obtain reasonable results. The second severe disadvantage
of this method is that the whole consensus set is considered at once. In the presence of
geometrically weak consistent, sufficient and irreducible subsets of observations or leverage
points inside the consensus set, the procedure breaks down. A solution to this problem would
be to carefully and incrementally build the consensus set. This idea will be exploited in the
following section.
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3.4.4 Entropy bound approach

The grouping approaches presented so far all have some caveat: The expectation maximiza-
tion heuristic requires the number of groups as well as some initial guess of group models to
be known in advance, which is impractical in most applications. The connected component
grouping algorithm is extremely unstable in the presence of outliers, while the clique partition
grouping algorithm is NP-hard and therefore requires exponential running time.

In the following an alternative grouping algorithm will be derived. Incremental estimation
is analyzed in order to devise an information theoretic measure that allows to decide for one
single observation, if it should be grouped together with an existing group. Using this measure
enables a greedy grouping strategy that is able to balance robustness against efficiency.

In order to devise this novel grouping algorithm, first the effect of adding a group of
observations into an estimation will be derived. Afterward the entropy change incurred by this
new group of observations will be analyzed and it will be shown to comprise of two additive
parts, which reflect the two aspects of similarity and proximity of the new observations with
respect to the old observations. Finally a grouping algorithm will be devised, that uses those
two measures in order to guide the grouping process in a robust and efficient manner.

Incremental Gauss-Helmert-model with restrictions

When adding a new set of observations to an existing set of observations, the resulting group
model changes. In order to analyze this change, the effect of adding a second group of
observations on the estimation of a group model in the Gauss-Helmert-model will be studied
in the following.

The general Gauss-Helmert-model (cf. [Mikhail and Ackermann, 1976, p.214] and [Först-
ner and Wrobel, 2004, p.84]) for two sets of independent observations is given by the con-
straints

g1(l̃1, p̃) = 0 (3.132)
g2(l̃2, p̃) = 0 (3.133)

between the true parameters p̃ and the true, i.e. error-free, observations l̃1 and l̃2 together
with the gauge-constraints

h(p̃) = 0 (3.134)

on the parameters. In the following the number of parameters is U , the number of observa-
tions in the first set is N1, the number of observations in the second set is N2 and the number
of gauge-constraints is H. Furthermore the actual observations l1 and l2 are assumed to be
realizations of random variables drawn from distributions with means l̃1 and l̃2 and covari-
ances σ0

2C 11 and σ0
2C 22 of known shape and unknown magnitude. The best linear unbiased

estimate p̂1 of the parameters from the first set of observations l1 together with its covari-
ance matrix Ĉ p̂1p̂1 is computable as follows. First, using the initial values p̂

(ν)
1 = p̂DLT

1 and

l̂
(ν)

1 = l1, the Jacobians

A1 =
∂g1(l1,p)

∂p

∣∣∣∣
p̂(ν)

1 ,
ˆl
(ν)

1

(3.135)

B1 =
∂g1(l1,p)

∂l1

∣∣∣∣
p̂(ν)

1 ,
ˆl
(ν)

1

(3.136)

H =
∂h(p)
∂p

∣∣∣∣
p̂(ν)

1

(3.137)
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and the contradictions
cg1 = −g1(̂l

(ν)

1 , p̂
(ν)
1 )− B1(l1 − l̂

(ν)

1 ) (3.138)

ch = −h(p̂(ν)
1 ) (3.139)

are computed. Using the abbreviations

W 11 = B1C 11B
T
1 (3.140)

y1 = A
T
1W

−1
11 cg1 (3.141)

the normal equation system (cf. [Förstner and Wrobel, 2004, p.85]) for the first set of
observations is (

A
T
1W

−1
11 A1 H

T

H 0

)(
∆p̂1

µ

)
=

(
y1

ch

)
(3.142)

Under the assumption that the rows of H are orthonormal and prependicular to the rows of
the normal equation matrix H⊥AT

1W
−1
11 A1, the solution (cf. [Niemeier, 2001, p.245]) is given

by (
∆p̂1

µ

)
=

(
A

T
1W

−1
11 A1 H

T

H 0

)−1(
y1

ch

)
(3.143)

=

(
(AT

1W
−1
11 A1 + H

T
H)−1 − H

T
H H

T

H 0

)(
y1

ch

)
(3.144)

In case of a non-linear gauge-constraint h, it is numerically more stable, to enforce the above
requirement by projecting the design matrix according to

A
′
1 = A1(I − H

T
H) (3.145)

Now the expected covariance matrix is

C p̂1p̂1 = (AT
1W

−1
11 A1 + H

T
H)−1 − H

T
H (3.146)

and the estimated parameters are

p̂
(ν+1)
1 = p̂

(ν)
1 + ∆p̂1 (3.147)

with
∆p̂1 = C p̂1p̂1y1 + H

T ch (3.148)

The residuals (cf. [Förstner and Wrobel, 2004, p.85]) are given by

v̂1 = −C 11B
T
1W

−1
11 (A1∆p̂1 − cg1) (3.149)

and therefore the adjusted observations are

l̂
(ν+1)

1 = l1 + v̂1 (3.150)

If the observations must fulfill some constraints, they can be imposed on the adjusted obser-
vations at this point (cf. [Heuel, 2004, p.193]). In case of non-linear constraints, this process
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must be iterated using p̂
(ν+1)
1 and l̂

(ν+1)

1 a new initial values. Finally the weighted sum of
the squared residuals (cf. [Heuel, 2004, p.193]) is obtained as

Ω2
1 = v̂T

1 B
T
1W

−1
11 B1v̂1 (3.151)

and thus the estimated covariance matrix from the first set of parameters is

Ĉ p̂1p̂1 = σ̂1
2
C p̂1p̂1 (3.152)

with

σ̂2
1 =

Ω2
1

N1 − U +H
(3.153)

Now the second set of observations should be included into the estimation. Therefore
using the initial values p̂

(ν)
2 = p̂

(ν)
1 and l̂

(ν)

2 = l2, the Jacobians

A2 =
∂g2(l2,p)

∂p

∣∣∣∣
p̂(ν)

2 ,
ˆl
(ν)

2

(3.154)

B2 =
∂g2(l2,p)

∂l2

∣∣∣∣
p̂(ν)

2 ,
ˆl
(ν)

2

(3.155)

H =
∂h(p)
∂p

∣∣∣∣
p̂(ν)

2

(3.156)

and the contradictions
cg2 = −g2(̂l

(ν)

2 , p̂
(ν)
2 )− B2(l2 − l̂

(ν)

2 ) (3.157)

ch = −h(p̂(ν)
2 ) (3.158)

are computed. Under the assumption that the constraint equations for the two observation
sets are independent of the observations of the other set, i.e.

∂g1(l1,p)
∂l2

= 0 (3.159)

and
∂g2(l2,p)

∂l1
= 0 (3.160)

and that the two observation sets are not correlated, i.e. C 12 = C 21 = 0 , the normal
equation matrix for the joint estimation from both sets of observations can be partitioned as
(cf. [Steffen, 2006])

(
A

T
1 A

T
2

)((
B

T
1 0

0 B
T
2

)(
C 11 0

0 C 22

)(
B1 0

0 B2

))−1(
A1

A2

)
(3.161)

= A
T
1 (BT

1 C 11B1)−1
A1 + A

T
2 (BT

2 C 22B2)−1
A2

Further observe that the contradictions for the first set of observations change due to the
new parameter vector, so that

c̄g1 = −g1(̂l1, p̂
(ν)
2 )− B1(l1 − l̂1) (3.162)

= −g1(̂l1, p̂
(ν)
2 ) + B1v̂1 (3.163)
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and thus

ȳ1 = A
T
1W

−1
11 c̄g1 (3.164)

= −AT
1W

−1
11 g1(̂l

(ν)

1 , p̂
(ν)
2 ) + A1W

−1
11 B1v̂1 (3.165)

= −AT
1W

−1
11 g1(̂l

(ν)

1 , p̂
(ν)
2 ) (3.166)

−A1W
−1
11 B1C 11B

T
1W

−1
11 (A1∆p̂1 − cg1)

= −AT
1W

−1
11 g1(̂l

(ν)

1 , p̂
(ν)
2 )− A1W

−1
11 (A1∆p̂1 − cg1) (3.167)

= −(AT
1W

−1
11 g1(̂l

(ν)

1 , p̂
(ν)
2 )− (A1W

−1
11 A1∆p̂1 − y1)︸ ︷︷ ︸

=0

(3.168)

= −AT
1W

−1
11 g1(̂l

(ν)

1 , p̂
(ν)
2 ) (3.169)

where the last equality follows from the normal equation system. Note that the change of
residuals for the first set of observations, like for the estimation of the new variance factor
(see below), is not taken into account. Hence, using the abreviations

W 22 = B2C 22B
T
2 (3.170)

y2 = ȳ1 + A
T
2W

−1
22 cg2 (3.171)

the new normal equation system becomes(
A

T
1W

−1
11 A1 + A

T
2W

−1
22 A2 H

T

H 0

)(
∆p̂2

µ

)
=

(
y2

ch

)
(3.172)

Using again the orthonormality of the rows of H and the perpendicularity of H⊥(AT
1W

−1
11 A1+

A
T
2W

−1
22 A2), the solution is(

∆p̂2

µ

)
=

(
A

T
1W

−1
11 A1 + A

T
2W

−1
22 A2 H

T

H 0

)−1(
y2

ch

)
(3.173)

=

(
(AT

1W
−1
11 A1 + A

T
2W

−1
22 A2 + H

T
H)−1 − H

T
H H

T

H 0

)(
y2

ch

)
(3.174)

Again in case of a non-linear gauge-constraint h, it is numerically more stable, to enforce the
above requirement by projecting the design matrices and covaraiance matrix according to

A
′
1 = A1(I − H

T
H) (3.175)

A
′
2 = A2(I − H

T
H) (3.176)

C
′
p̂1p̂1

= (I − H
T
H)C p̂1p̂1(I − H

T
H) (3.177)

Now using the well-known matrix identity (cf. [Koch, 1997, p.37])

(A− BD
−1
C )−1 = A

−1 + A
−1
B(D − CA

−1
B)−1

CA
−1 (3.178)

the expected covariance matrix is

C p̂2p̂2 = (AT
1W

−1
11 A1 + H

T
H + A

T
2W

−1
22 A2)−1 − H

T
H (3.179)

= (AT
1W

−1
11 A1 + H

T
H)−1 (3.180)
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−(AT
1W

−1
11 A1 + H

T
H)−1

A
T
2 (W 22 + A2(AT

1W
−1
11 A1 + H

T
H)−1

A
T
2 )−1

A2

(AT
1W

−1
11 A1 + H

T
H)−1 − H

T
H

= (C p̂1p̂1 + H
T
H)− H

T
H (3.181)

−(C p̂1p̂1 + H
T
H)AT

2 (W 22 + A2(C p̂1p̂1 + H
T
H)AT

2 )−1

A2(C p̂1p̂1 + H
T
H)

where the last equality is due to equation (3.146). Putting everything together, the new
covariance matrix of the parameters estimated from both sets of observations is

C p̂2p̂2 = C p̂1p̂1 − FA2(C p̂1p̂1 + H
T
H) (3.182)

with
F = (C p̂1p̂1 + H

T
H)AT

2 (W 22 + A2(C p̂1p̂1 + H
T
H)AT

2 )−1 (3.183)

The estimated parameters itself are obtained as

p̂
(ν+1)
2 = p̂

(ν)
2 + ∆p̂2 (3.184)

with
∆p̂2 = C p̂2p̂2y2 + H

T ch (3.185)

and the residuals of the joint estimation for the second set of observations are

v̂2 = −C 22B
T
2W

−1
22 (A2∆p̂2 − cg2) (3.186)

so that the adjusted observations are

l̂
(ν+1)

2 = l2 + v̂2 (3.187)

Again, in case of non-linear constraints, this process must be iterated using p̂
(ν+1)
2 and l̂

(ν+1)

2

as new initial values. Note that in this case the solution is only an approximation, since
the linearization is made at a different parameter vector, so that the Jacobians of the first
estimation might no longer be accurate, if the cost function is too rough in the range of the
two estimated parameters. Finally, following the idea of Förstner and Wrobel [2004, p.93]
and neglecting the change of residuals for the first set of observations, the weighted sum of
the squared residuals may be updated as

Ω2
2 = Ω2

1 + v̂T
2 B

T
2W

−1
22 B2v̂2 (3.188)

so that the estimated covariance of the parameters from both sets of observations is

Ĉ p̂2p̂2 = σ̂2
2C p̂2p̂2 (3.189)

with

σ̂2
2 =

Ω2
2

N1 +N2 − U +H
(3.190)
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Entropy change incurred by the incremental estimation

In the previous section the effect of adding a new set of observations on the mean and
covariance of the distribution of the resulting group model has been analyzed. In the following
the effect on the entropy of this group model distribution will be studied. The minimum-
description-length principle demands that the overall entropy shall be minimized, so that
grouping together observations, which promise an entropy decrease, should be favored. On
the other hand rapid entropy decrease endangers greedy algorithms to make fatal decisions
that cannot be reversed. As a solution, the analysis of the change of entropy gives some
useful insights, how this trade-off between efficiency and robustness can be controlled.

Let the k-dimensional subspace determinant of a singular matrix C with rankC = k be
defined as the product of its non-zero eigenvalues

|C |k =
k∏

i=1

λi(C ) (3.191)

With an orthonormal basis H of the nullspace of C perpendicular to its rows H⊥C this is
expressible as the determinant of the regular matrix (cf. [Koch, 1997, p.65f])

|C |k =
∣∣∣C + H

T
H

∣∣∣ (3.192)

Obviously the multiplication of the singular matrix with a scalar results in

∣∣∣σ2
C

∣∣∣
k

=
k∏

i=1

σ2λi(C ) = σ2k |C |k = σ2k
∣∣∣C + H

T
H

∣∣∣ (3.193)

The entropy of the degenerate Normal distribution having singular covariance matrix σ2C

can be defined for the Lebesgue measure on the subspace spanned by C , so that the maximum
differential entropy of distributions with this covariance matrix is given by (cf. [Kagan et al.,
1973, p.410] and [Cover and Thomas, 1991, p.270])

h
(
σ2
C

)
=

k

2
(1 + log 2π) +

1
2

log
∣∣∣σ2

C

∣∣∣
k

(3.194)

=
k

2
(1 + log 2π) +

1
2

log σ2k
∣∣∣C + H

T
H

∣∣∣ (3.195)

=
k

2
(1 + log 2π) +

k

2
log σ2 +

1
2

log
∣∣∣C + H

T
H

∣∣∣ (3.196)

Now the entropy change incurred by the incremental estimation is given by

∆h = h
(
Ĉ p̂2p̂2

)
− h

(
Ĉ p̂1p̂1

)
(3.197)

= h
(
σ̂2

2C p̂2p̂2

)
− h

(
σ̂2

1C p̂1p̂1

)
(3.198)

=
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log
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σ̂2
1

+
1
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∣∣∣ (3.199)

=
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log
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H

)−1
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=
k

2
log

σ̂2
2

σ̂2
1

(3.201)
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Figure 3.2: Left: An existing group of four 2d points with isotropic equal size covariance
matrices incident to a horizontal 2d line. For each position the observation dependent entropy
increase is computed that another incident 2d point would incur, and the contour lines are
plotted. Points in the white region are compatible with the group model based on the
observation dependent entropy increase. Right: The same configuration as on the left. Now
the design dependent entropy decrease is plotted for each point. The proposed grouping
algorithm favors points that are nearer to the existing points.

+
1
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log
∣∣∣∣(C p̂1p̂1 − FA2(C p̂1p̂1 + H

T
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∆ho

+
1
2

log |I − FA2|︸ ︷︷ ︸
−∆hd

(3.202)

Note that this result is completely analogous to the result for the Gauss-Markov-Model
without restrictions presented in [Beder, 2005].

Equation (3.202) shows that the entropy is increased due to the observation dependent
term (see figure 3.2, left)

∆ho =
k

2
log

σ̂2
2

σ̂2
1

(3.203)

that reflects, how well the new set of observations fits the current model, and simultaneously
decreased due to the design dependent term (see figure 3.2, right)

∆hd = −1
2

log |I − FA2| (3.204)

that reflects the commitment, the algorithm makes in grouping the specific set of observations.
Some remarks on both quantities are in order.

First note that the observation dependent entropy increase

∆ho =
k

2
logF (3.205)

is a monotonous function of the well-known Fisher-distributed test statistic (cf. [Förstner
and Wrobel, 2004, p.79])

F =
σ̂2

2

σ̂2
1

(3.206)
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for checking, if the variance of the parameter distribution due to incorporating a new set of
observation significantly increases. Hence, a new set of observations fits the existing group
model, if

F < Tα,N1+N2−U+H,N1−U+H (3.207)

⇔ ∆ho <
k

2
log Tα,N1+N2−U+H,N1−U+H (3.208)

with the threshold Tα,m,n being numerically derived from the Fisher distribution as (cf. [Koch,
1997, p.139])
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2
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(n+mw)
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2

+n
2

dw = α (3.209)

Thresholding only the observation dependent term ∆ho is conceptually equivalent to the
greedy graph based approaches in section 3.4.2, because there the grouping decision is based
solely on a hypothesis test on the candidate observation and the current group model. The
design dependent entropy decrease is therefore not considered at all.

As mentioned, the design dependent term ∆hd reflects the commitment of the grouping
algorithm that some new set of observations should be considered to belong to a certain
group. In the spirit of maximum-entropy inference, this commitment should be as small
as possible, so that a robust grouping algorithm makes each grouping decision, such that
the design dependent entropy decrease is controlled and the maximum number of options
is retained. Also observe that the expression ∆hd is closely related to the well-known hat-
matrix (cf. [Förstner, 1987]), which is used to quantify the effect of gross errors in single
observations on the estimation and helps to identify leverage points for the task of robust
estimation.

The proposed grouping algorithm now goes as follows: starting from an initial group
model derived from the set of consistent, sufficient and irreducible subsets of observations
the observation dependent entropy increase and the design dependent entropy decrease are
computed. From all observations, where the observation dependent entropy increase is below
the threshold, i.e. the observations fit the current group model, the one with smallest design
dependent entropy decrease is selected. If this design dependent entropy decrease is below
some threshold, the observation is included into the group. If it is above the threshold, the
current group is completed and a new group selected from the remaining set of consistent,
sufficient and irreducible subsets of observations is started.

Note that the selection of fitting observations can be approximated very efficiently by
checking an uncertain relation instead of thresholding the design dependent entropy increase
using the data structure presented in section 2.3. The threshold on the design dependent
entropy decrease is a design parameter that controls the maximum allowed distance of an
observation to its group and therefore the compactness of the group. To choose this parameter
one might consider that the entropy decrease of a decision should be in the same order of
magnitude as the possible entropy increase caused by observed data. Therefore it is reasonable
to choose the same threshold for the design dependent entropy decrease as for the observation
dependent entropy increase that has been derived from the Fisher-distribution above.

The details of the proposed grouping method are shown in algorithm 7.

Up to now five different grouping methods have been presented. Apart from some remarks
on specific caveats of the different methods no conclusion on their performance is possible
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Algorithm 7 Grouping by bounding the entropy change
Require: observations L = {(li,C lili)}, group model functions {g1, ..., gN}, constraints h,

threshold T0

Ensure: group models P̂ = {p̂i}, assignments ζ̂
1: P̂ = ∅
2: compute the set of consistent, sufficient and irreducible subsets of observation S
3: while S 6= ∅ do
4: pick a subset of observations s ∈ S
5: compute the corresponding group model (p̂, Ĉ pp) from s
6: repeat
7: O = ∅
8: for each observation (li,C lili) ∈ L\s do
9: compute observation dependent entropy increase ∆h(i)

o according to equation
(3.203)

10: if ∆ho <
k
2 log 1

Tα,N1+N2−U+H,N1−U+H
then

11: compute design dependent entropy decrease ∆h(i)
d according to equation (3.204)

12: if ∆hd < T0 + k
2 log 1

Tα,N1+N2−U+H,N1−U+H
then

13: O = O ∪ {(li,C lili)}
14: end if
15: end if
16: end for
17: s = s ∪

{
argmin(li,C lili

)∈O

(
∆h(i)

d

)}
18: until O = ∅
19: L = L\s
20: S = S\{t ∈ S|s ∩ t 6= ∅}
21: P̂ = P̂ ∪ {p̂(s)}
22: assign all elements in s to p̂(s)
23: end while
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so far. In the following the performance of those five different methods on a synthetic data
set will therefore be analyzed and compared. Furthermore, building reconstruction results
obtained using the graph based clique partition grouping method and the entropy bound
grouping method will be demonstrated in chapter 4.

3.5 Empirical analysis on synthetic data

In order to compare the performance of the presented grouping methods, all algorithms were
run on a simple synthetic dataset, where ground truth is available. The dataset was generated
as follows: first K line segments were generated at random inside the box [−1, ..1]×[−1, ..., 1].
Then for each such line segment a set of N

K random points on the segment were generated and
perturbed by Gaussian noise with standard deviation σ yielding a total of N inlier points.
Finally a number Nout of outliers were generated at random inside the box [−1.5, ..1.5] ×
[−1.5, ..., 1.5]. Hence, the resulting dataset is dependent on the following parameters:

• K is the number of groups

• N
K is the number of observations per group

• Nout is the number of outliers

• σ is the standard deviation of the noise of the observations

The effect of all those parameters on the classification results obtained by the five different
grouping algorithms will be studied in the following.

The points were grouped together based on line incidence as group model function us-
ing the expectation maximization method, the sampling consensus method, the connected
components and clique partition method and the entropy bound method presented in the
previous sections. As the EM method is unable to find the number of groups itself, the effect
of a wrongly set parameter is studied by comparing also the grouping results using the correct
number of groups as well as with one group less and one group more. This yields a total of
seven different grouping algorithms, that are abbreviated in the figures as follows:

• EM-1 is the expectation maximization method with one group less than correct

• EM is the expectation maximization method with the correct group size

• EM+1 is the expectation maximization method with one group more than correct

• CC is the graph based connected component method

• Cl is the graph based clique partition method

• Smp is the sampling consensus method

• Ent it the entropy bound method

The computed group memberships were compared to the known ground truth member-
ships used to generate the data and the performance was assessed using the percentage of
correctly classified observations with respect to the ground truth without counting the out-
liers. The experiment was repeated many times and the mean classification rates together
with their empirical standard deviation were derived for different input parameters. The
results are depicted in the figures and will be discussed in the following.
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Figure 3.3: Left: Effect of the group size on the performance. Classification rates (with
standard deviations) for K = 3 groups with group sizes N

K = 3, 5, 10, 20, point accuracy
σ = 0.01 and number of outliers Nout = 0 for the different algorithms. Observe that the
classification rates increase for the EM-algorithm and decrease for the other algorithms. For
small group sizes, the entropy bound approach is slightly better than all other methods.
Right: The same as on the left hand side with the number of outliers being equal to the
group size, i.e. Nout = N

K . Note, the effect of outliers is negligible.

First the effect of the group size N
K on the grouping performance was analyzed. Therefore

the number of groups was set to K = 3 and the point accuracy to σ = 0.01. On the left
hand side of figure 3.3 the performance results for group sizes N

K = 3, 5, 10 and 20 are shown
with no outliers, i.e. Nout = 0, for the different algorithms. On the right hand side of figure
3.3 the performance results for the same group sizes but now with the number of outliers
being equal to the number of group members, i.e. Nout = N

K , are shown. It can be observed
that the expectation maximization method performs the better, the more observations per
group are given. This is in contrast to the other methods, which decrease in classification
performance, if more observations per group are present. The reason for this is that the
number of identified groups increases with more observations for each method that does not
fixK, which the expectation maximization method does. Also observe that the entropy bound
method achieves comparable results for small group sizes to the expectation maximization
method with correctly chosen number of groups K. It is slightly superior to the expectation
maximization method, if the number of groups used in the expectation maximization method
is incorrectly estimated asK+1 orK−1, though. The graph based methods and the sampling
consensus methods yield very similar results, which are slightly inferior to the entropy bound
approach. The presence of a number of outliers equal to the group size does not alter the
picture, as very similar results are obtained.

To quantify the effect of a reasonable amount of outliers on the classification performance,
the experiment was run again using a group size of N

K = 5 and an accuracy of σ = 0.1. On the
left hand side of figure 3.4 the classification rates forK = 3 groups with the number of outliers
being Nout = 0, 5, 10, 15 are shown for each algorithm. On the right hand side of figure 3.4
the classification rates for K = 5 groups with the number of outliers being Nout = 0, 5, 10, 25
are shown. It can be observed that, as in the previous experiment, the number of outliers has
no significant effect on the grouping results, as all algorithms are designed to work robustly.
The classification performance of the entropy bound method is again slightly superior to the
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Figure 3.4: Left: Effect of outliers on the performance. Classification rates (with standard
deviations) for K = 3 groups with group size N

K = 5, point accuracy σ = 0.01 and number of
outliers Nout = 0, 5, 10, 15 for the different algorithms. Observe that the effect of a reasonable
number of outliers is negligible. Right: Classification rates (with standard deviations) for
more groups K = 5 than on the left hand side with group size N

K = 5, point accuracy
σ = 0.01 and number of outliers Nout = 0, 5, 10, 20, 25 for the different algorithms. Again the
effect of a reasonable number of outliers on the results is negligible.

other approaches.
Next the effect of the group members accuracy on the classification performance was

studied. The number of groups was chosen as K = 3 and the observations per group as
N
K = 5. On the left hand side of figure 3.5 the classification rates for accuracies in the
range σ = 0.001, 0.05, 0.01, 0.1, 0.2 are shown with no outliers present. On the right hand
side of figure 3.5 the classification results for the same accuracies with a number Nout = 10
outliers present is shown. It can be observed that the classification rates drop, if the point
accuracy decreases. This is due to the fact that the group memberships become weaker
and the uncertainty which observation belongs to which group increases. Also note that for
extremely accurate points the classification rates of the graph based methods, the sampling
consensus method and the entropy bound method are comparable and slightly superior to
the expectation maximization approach. For large uncertainties the graph based methods
and the sampling consensus method become useless, while the entropy bound method is still
applicable in this case. The effect of accuracy on the classification rates of the expectation
maximization method is not as significant as with the other methods. Again the effect of
outliers is negligible.

Finally the effect of the number of groups on the classification rates was analyzed. The
number of observations per group was set to N

K = 5 and the accuracy of the points to
σ = 0.01. On the left hand side of figure 3.6 the classification performance is show for the
number of groups beingK = 2, 3, 5 without outliers and on the right hand side of figure 3.6 the
classification performance is shown for the same configuration but with the number of outliers
being Nout = 10. It can be observed that the classification rates decrease with increasing
number of groups. This is caused on the one hand by a higher chance of misclassification and
on the other hand by a higher chance of ambiguous configurations such as intersecting line
segments, if more of them are present. Again, the graph based methods and the sampling
consensus method perform equally well, while the entropy bound method performs slightly
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Figure 3.5: Left: Effect of points accuracy on the performance. Classification rates (with
standard deviations) for K = 3 groups with group size N

K = 5 and point accuracy σ =
0.001, 0.05, 0.01, 0.1, 0.2 without outliers for the different algorithms. Note that all algorithms
perform well for σ = 0.001 and that the entropy bound approach performs slightly better
than the rest for larger values of σ. Also observe that the effect of accuracy on the expectation
maximization method is small. Right: The same as on the left hand side with the number of
outliers being Nout = 10. Note that the effect of the outliers is negligible.
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Figure 3.6: Left: Effect of the number of groups on the performance. Classification rates
(with standard deviations) for K = 2, 3, 5 groups with group size N

K = 5 and point accuracy
σ = 0.01 without outliers for the different algorithms. Observe that the classification rates
decrease with the number of groups and the the entropy bound approach is slightly better
than the other methods. Right: The same as on the left hand side with the number of outliers
being Nout = 10. Again, the presence of outliers has no significant effect.
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better than the others. Also note that the performance decrease for the entropy bound
method is slower. Again the effect of a small number of outliers is negligible.

This section demonstrated the performance of the presented grouping methods on a simple
synthetic data set under a range of varying conditions. The availability of ground truth for
the synthetic test data enabled the quantitative comparison of the different methods. In
the next chapter the applicability of the proposed grouping methods for the task of fully
automatic building reconstruction from aerial images will be demonstrated. As no ground
truth is available in this case, the results will be judged only visually there.



Chapter 4

Application to building
reconstruction

4.1 Input data set and task

In the following the applicability of the presented geometric grouping methods for the task of
building reconstruction will be demonstrated. The presented reconstruction results including
the matching of feature points and lines are solely based on the geometry of the images rather
than their radiometric content. This is in order to show the power of the geometric cues in
conjunction with the grouping methodology, as it will be seen that matching between image
points and image lines is indeed possible without using radiometric information from the
images at all. In practical applications the radiometric information contained in the images
should be used, though. However, this has not been the scope of this study.

To demonstrate the applicability of the presented geometric grouping tasks and methods
for building reconstruction from aerial images a data set of digital aerial images with high
resolution and high overlap taken in a suburban area in Toyonaka (Japan) has been used. The
pictures were provided by the company Vexcel and taken using the airborne digital camera
UltraCam-D. The camera calibration for this specific camera results from the stitching based
digital process of picture generation (cf. [Kröpfl et al., 2004]) and is therefore provided by the
manufacturer. The exterior orientation has been established by a bundle block adjustment
over 50 images in 5 strips.

In figures 4.1,4.3,4.5 and 4.7 twelve pictures of single buildings cut out of the large aerial
images are shown. Figure 4.1 shows simple and small buildings, figure 4.3 shows simple and
larger buildings. Figure 4.5 shows more complex but small buildings and figure 4.7 shows
complex and large buildings.

Those buildings were cut out of each image in the block they occurred in. Point and
line features together with their uncertainties were extracted from all those images using the
method presented in [Fuchs, 1998]. The corresponding results of this feature extraction for
the exemplary images are shown in figures 4.2, 4.4, 4.6 and 4.8. Note that in order to obtain
comparability between the results, only one parameter set was used for all experiments.

4.2 Grouping results

The extracted image point features and image line features were back-projected into 3d
space using the known calibration and orientation as described in sections 2.1.5 and 2.1.5.

175
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Figure 4.1: Digital aerial images of some simple small houses in a suburban area in Toyonaka
(Japan).

Figure 4.2: Point and line features extracted from the images depicted in figure 4.1.
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Figure 4.3: Digital aerial images of some simple large houses in a suburban area in Toyonaka
(Japan).

Figure 4.4: Point and line features extracted from the images depicted in figure 4.3.

Figure 4.5: Digital aerial images of some complex small houses in a suburban area in Toyonaka
(Japan).

Figure 4.6: Point and line features extracted from the images depicted in figure 4.5.
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Figure 4.7: Digital aerial images of some complex large houses in a suburban area in Toyonaka
(Japan).

Figure 4.8: Point and line features extracted from the images depicted in figure 4.7.

Hence, every image point corresponds to an uncertain oriented projective 3d line segment and
every image line segment corresponds to a convex uncertain oriented projective 3d polygon.
The resulting uncertain oriented projective 3d line segments were grouped into 3d points
as outlined in section 3.3.3 and the uncertain oriented projective 3d polygons were grouped
into 3d lines as outlined in section 3.3.4. For each of the twelve houses in the dataset this
grouping has been established using the clique partition method outlined in section 3.4.2 and
the entropy bound method outlined in section 3.4.4. Trivial groups of size smaller than three
were discarded from the results. Also note that the parameters of the algorithms were not
changed between the different scenarios.

In figure 4.9 the reconstruction results of a small simple house roof from a strong geometric
configuration of 19 images are shown. The roof of this house is slightly textured, resulting
in a large number of identifiable and matched points. As single observations are allowed
to be assigned to multiple groups in the graph based grouping approaches, the number of
groups is much larger there than in the entropy bound approach. The graph based approach
missed one roof line, while the entropy bound approach recovered every meaningful line
in this case. There is some obvious clutter in the reconstruction from the entropy bound
approach, though the number of reconstructed elements in the graph based method is larger
and therefore suggests that there is in fact a large number of very small and not very useful
line segments.

In figure 4.10 the reconstruction results from 19 images for a very similar house are shown.
The results look quite similar. The difference is that there is much less texture present on the
roof resulting in much fewer reconstructed 3d points. Both algorithms missed a part of the
roof, were the house has an adjacent structure, which is only visible in part of the images and
has therefore much less support. This must be considered as a major caveat of the grouping
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Figure 4.9: Top: Geometric 3d configuration of the 19 images taken form a small simple
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
162 3d points and 119 3d lines. Bottom right: 3d reconstruction result from the entropy
bound grouping method. There are 54 3d points and 42 3d lines.
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Figure 4.10: Top: Geometric 3d configuration of the 19 images taken form a small simple
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
28 3d points and 44 3d lines. One line is missed, where the house has an adjacent structure.
Bottom right: 3d reconstruction result from the entropy bound grouping method. There are
16 3d points and 41 3d lines.
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based building reconstruction, as a large number of supporting evidence is required for each
scene feature and the support can vary significantly in a scene due to occlusions.

In figure 4.11 another reconstruction result for a small simple house is shown. In this case
fewer images (15) are present. More important edges are missed here, though the entropy
bound method performs slightly better.

In figure 4.12 even fewer images (13) are present. The entropy bound method still recovers
all the edges of the roof structure correctly, while the clique partition method breaks down.

The reconstruction of a small simple house depicted in figure 4.13 is based only on six
images. The clique partition approach only recovers one single line, while the entropy bound
method still finds some lines on the roof. However, matching image features based on solely
geometric grouping must be considered as not applicable, if only few images of the object to
be reconstructed are given.

In figure 4.14 the reconstruction of a larger and very simple house roof from 16 images is
shown. The clique partition approach misses the one large line on the front of the roof, which
the feature extraction could only extract in small fragments due to occluding boundaries with
the parking lots in front of the building. The entropy bound approach was able to group
those fragments together correctly, as it incrementally builds the group model and is therefore
capable of chaining observations in a controlled manner. This must be considered as one of
the key features of the approach.

Figure 4.15 shows the reconstruction of a large and seemingly simple house roof from 16
images. The reconstruction results are unsatisfactory in this case for both methods. The
reason could be assumed to be the feature extraction, which has great difficulties with such
flat roof buildings for the chosen overall set of parameters, because lines on the delimiting
wall of the roof are extracted ambiguously on its outside, on its inside at the top as well as on
the inside on the bottom or on the cast shadows. Those ambiguities, resulting from difference
in viewpoint and lighting conditions, yield image features, which are not co-linear in space
due to the unclear semantic of the roof delineation itself, which is of course unknown to the
feature extraction procedure. The effect is worsened by the non-maximum suppression of the
feature extraction that often results in only one of the different possible meaningful lines to
be extracted. However, the entropy bound method yields much more matching hypothesis
than the clique partition method does.

Also note that the feature extraction could of course be tuned to work better for this
specific building. As mentioned before, the same feature extraction has been applied for the
whole dataset, in order to be able to compare the results and to demonstrate the potentials
for the full automation of the procedure.

In figure 4.16 the reconstruction results for a small but complex house from 16 images
are shown. While the entropy bound grouping approach finds most of the important roof
structure, the clique partition method is only able to find the most dominant structures. As
before, the reason for this is that complex structures yield more occlusions and therefore less
geometric evidence.

In figure 4.17 the reconstruction of a small complex house from only ten images is shown.
The clique partition method is not able to reconstruct one single line, while the entropy
bound grouping method is again able to recover the dominant structures even from as few as
ten observations.

This behavior can also be observed in the larger and complex buildings, where the recon-
structions are depicted in figures 4.18, 4.19 and 4.20. While the clique partition grouping is
very conservative and yields only few but correct results, the entropy bound grouping method
yields better roof reconstructions that are cluttered by more outliers.
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Figure 4.11: Top: Geometric 3d configuration of the 15 images taken form a small simple
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
4 3d points and 76 3d lines. Bottom right: 3d reconstruction result from the entropy bound
grouping method. There are 10 3d points and 36 3d lines.
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Figure 4.12: Top: Geometric 3d configuration of the 13 images taken form a small simple
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
61 3d points and 3 3d lines. Bottom right: 3d reconstruction result from the entropy bound
grouping method. There are 9 3d points and 17 3d lines. In contrast to the clique partition
method, the entropy bound method found all the important lines.
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Figure 4.13: Top: Geometric 3d configuration of the 6 images taken form a small simple
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
18 3d points and 1 3d line. Bottom right: 3d reconstruction result from the entropy bound
grouping method. There are 9 3d points and 18 3d lines.
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Figure 4.14: Top: Geometric 3d configuration of the 16 images taken form a large simple
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
21 3d points and 40 3d lines. The front roof line is not found, due to fragmented image features
resulting from occluding boundaries with the parking lots. Bottom right: 3d reconstruction
result from the entropy bound grouping method. There are 14 3d points and 34 3d lines.
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Figure 4.15: Top: Geometric 3d configuration of the 16 images taken form a large simple
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
45 3d points and 6 3d lines. Bottom right: 3d reconstruction result from the entropy bound
grouping method. There are 69 3d points and 67 3d lines.
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Figure 4.16: Top: Geometric 3d configuration of the 16 images taken form a small complex
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
203 3d points and 6 3d lines. Bottom right: 3d reconstruction result from the entropy bound
grouping method. There are 51 3d points and 46 3d lines.
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Figure 4.17: Top: Geometric configuration of the 10 images taken form a small complex
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
19 3d points and no 3d lines. Bottom right: 3d reconstruction result from the entropy bound
grouping method. There are 17 3d points and 31 3d lines.
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Figure 4.18: Top: Geometric 3d configuration of the 16 images taken form a large complex
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
17 3d points and 10 3d lines. Bottom right: 3d reconstruction result from the entropy bound
grouping method. There are 71 3d points and 74 3d lines.
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Figure 4.19: Top: Geometric 3d configuration of the 13 images taken form a large complex
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
35 3d points and 9 3d lines. Bottom right: 3d reconstruction result from the entropy bound
grouping method. There are 66 3d points and 105 3d lines.
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Figure 4.20: Top: Geometric 3d configuration of the 12 images taken form a large complex
house. The lines indicate the connection of the image corners with the projection center.
Bottom left: 3d reconstruction result from the clique partition grouping method. There are
3 3d points and no 3d lines. Bottom right: 3d reconstruction result from the entropy bound
grouping method. There are 34 3d points and 80 3d lines.
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Observe that the presented reconstructions are solely based on the image geometry. Apart
from the feature extraction, the image content is not used for matching features at all.
Nonetheless, reasonable results can be achieved without using any image content, strength-
ening the vital importance of geometry for multi image feature matching and fully automatic
scene reconstruction. It has been shown that, in order to match features based solely on
their geometric configuration, strong geometric evidence, i.e. many images, are required.
Additional geometric cues resulting from the application, such as orthogonality, parallelity
or symmetry assumptions, may also be included in order to obtain better results. However,
this path has not been followed here.

As modern digital cameras produce many more images at very low extra expense, the
importance of geometric grouping for the task of photogrammetric building reconstruction
will become more important than ever in the future. Also the very improved noise levels
of modern digital cameras make it possible, to work with fully automatic feature extraction
that must be seen as one of the major bottlenecks for the presented reconstructions.



Chapter 5

Conclusion

A purely geometric framework for the 3d reconstruction of objects from multiple oriented and
calibrated images has been presented. It has been shown that grouping geometric entities is
an adequate approach for solving the 3d reconstruction problem on a geometric basis. The
possibility of solving the matching problem without referring to the actual appearance of the
objects in the images suggests that geometric cues are very strong by themselves and should
not be neglected in any feature matching approach. It has been seen that highly redundant
observations are required, if the image content is neglected. Though one should not neglect
the image content in practical applications, the strong evidence contained in the geometry
has become extremely cheap in recent years through the wide availability of digital cameras.

All results presented here were generated fully automatic without any human interaction
including per image parameter tuning. Also note that no explicit high level building model
knowledge, such as orthogonality, parallelity and symmetry or even building prototypes,
has been used for generating the 3d reconstructions in the previous section. In my opinion
the most promising approach for generating building models would be to fit explicit high
level building models to the generated data. The sparseness of the data suggests that the
computational burden is manageable, although this has not been investigated. Furthermore
it could be helpful, to include the image content into the approach (for instance into the
consistency requirement of the consistent, sufficient and irreducible subsets of observations
presented in section 3.2), although I would suspect the performance gain to be minor, because
of the weak radiometric information contained at scene corners and scene edges. Improving
the performance of feature extraction, increasing the geometric redundancy by adding more
images or including other sensors such as laser scanners seems much more promising. Note
that due to the purely geometric nature of the approach, this sensor fusion is straightforward,
as no image specific information is used.

The contribution of this work is the introduction of uncertain oriented projective geom-
etry. By doing so, new compound entities such as line segments and polygons in 2d and
3d space as well as 2d edgels and 3d facets became representable in the framework of Heuel
[2004]. The bi-linear relations occurring in this augmented framework enabled the design of a
tree-like data structure for efficiently performing large amounts of statistical tests of relations
between the uncertain oriented projective entities, which is the second major contribution of
this work and made the application of the framework possible for large real world datasets.

The third contribution is the formulation of various computer vision tasks including the
3d reconstruction of points and lines as geometric grouping problems and devising strategies
for solving those. The final major contribution of this work is the analysis of the entropy
change incurred by incremental estimation in the Gauss-Helmert-model with constraints.
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A unified information theoretic measure has been devised that balances efficiency against
robustness for making incremental grouping decisions. The novel approach has been shown
to perform well compared to the existing methods on a synthetic dataset with known ground
truth. Also the results for automatic reconstruction of buildings from digital aerial images
obtained with this information theoretic approach looked promising and yielded results for
weaker configurations, where the graph based methods were not able to yield a solution.

There remain several interesting paths of research to follow. Fitting explicit high-level
building prototypes to the very sparse sets of points and lines obtained by the geometric
grouping seems a promising path to go for solving the problem of fully automatic building
reconstruction.

Also the integration of other geometry sensors, such as laser scanners, is a very interest-
ing topic. The uncertain 3d point clouds obtained by a laser scanner are straightforwardly
integrated into the presented framework. That the redundancy of such 3d point clouds is
extremely high is also very promising, although it must be studied, in how far other data
structures might be required in order to cope with the huge amounts of data that do not fit
into the fast memory any more.

From a practical point of view it would be very important to integrate other primitives,
such as cylinders and cones into the framework. The research problems faced in this case are
that the relations are no longer bi-linear but quadratic. A major problem faced in this case
is that the presented data structure is no longer applicable in this case and one has to come
up with an alternative for dealing with large real world datasets. However, the presented
grouping strategies including the entropy bound method should also work in this case using
first order approximations of the quadratic relations, which looks a very promising approach.

Finally it must be remarked that still the performance of low level feature extraction
presents one of the major bottlenecks for the fully automatic feature based reconstruction
from images. Hence, in order to improve the performance and robustness of the presented
framework, increasing the robustness and accuracy of automatic feature extraction methods
is another practical important topic for further research.
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[Helava, 1976] U. V. Helava. Digital correlation in photogrammric instruments. In Interna-
tional Archives for Photogrammetry, Vol. 23, Part II, 1976.

[Henricsson, 1997] Olof Henricsson. 3-d building reconstruction with aruba: A qualitative
and quantitative evaluation. In A. Gruen, E.P. Baltsavias, and O. Henricsson, editors,
Automatic Extraction of Man-Made Objects from Aerial and Space Images (II), page 65.
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