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Zusammenfassung

Die Gravitationsfeldeffekte der topographisch-isostatischen Massen stellen eine wichtige Information des
hochfrequenten Anteils des Gravitationsfeldes dar. In dieser Arbeit werden die physikalisch-mathematischen
Grundlagen der klassischen topographisch-isostatischen Modelle dargestellt. Es werden die verschiedenen
isostatischen Modelle mathematisch formuliert, wobei auf der Modellbildungsseite der Schwerpunkt auf der
sphärischen Approximation liegt und von den Anwendungen die Beobachtungstypen der Flugzeuggravimetrie
und der modernen Satellitenmethoden im Vordergrund stehen. Neben der Darstellung der topographisch-
isostatischen Masseneffekte durch sphärische Volumenintegrale, diskretisiert durch sphärische Volumenele-
mente, werden die Reihendarstellungen nach Kugelflächenfunktionen und nach ortslokalisierenden Basis-
funktionen zugrunde gelegt. Detaillierte Formeln werden für den direkten bzw. den sekundären indirekten
topographischen Effekt in den Schwerewerten und den primären indirekten Effekt in den Geoidhöhen für die
verschiedenen Darstellungen angegeben. Schliesslich werden Formeln für die Berechnung der Fernzoneneffekte
der topographisch-isostatischen Massen angegeben. Hierzu wird eine von Molodenskii angegebene Methode
angewendet, die auf der Kugelfunktionsentwicklung der topographisch-isostatischen Massen beruht. Um-
fangreiche Rechenbeispiele vermitteln einen Eindruck von der Grösse und der Verteilung der verschiedenen
Effekte, basierend auf unterschiedlich aufgelösten regionalen und globalen Testgebieten.

Summary

The gravity field effects of the topographic-isostatic masses represent an important information of the high-
frequent part of the gravity field. In this work the physical-mathematical basics of the classical topographic-
isostatic models are presented. These models are formulated mathematically with the emphasis on a spherical
approximation from the modelling point of view and on the observables of airborne gravimetry but also of the
modern satellite techniques from the application point of view. Besides the representation of the topographic-
isostatic mass effects by volume integrals, discretized by spherical volume elements, the representations
by series of spherical harmonics and space localizing base functions are considered. Detailed formulae are
presented for the direct and secondary indirect topographical effect as well as for the primary indirect
topographical effect in the geoid heights for the different representations. Finally, extended test computations
give an impression of the size and distribution of the various effects for regional and global test areas with
different resolutions of the topography.
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1. Introduction

The topographic masses represent an important source of gravity field information especially in the high-
frequency band of the gravity field spectrum, even if the detailed density function inside the topographic
masses is only approximately known. The gravity field effect of the visible topography is partially reduced
by isostatic compensation mechanisms – the net effect of both are nevertheless significant larger and of more
pronounced high-frequent character than the effects of the inhomogeneities inside the crust of the Earth.
With the global detailed digital elevation models of the topography at the continents and of the bathymetry
at the oceans, accessible nowadays, a very important source of gravity field information is available. In this
research, only geodetically relevant aspects are treated, but many of the topics discussed in this work are
important also in structural and exploration geophysics or in geological applications.

In geodesy, the topographic-isostatic masses can be used in a threefold way: (1) the solution of the Laplace
equation within the frame of the geodetic boundary value problem of Stokes requires a mass-free space outside
the boundary surface, the (co-)geoid. This is the reason that the topographic masses have to be removed
or shifted inside the geoid; the effects of this process have to be restored after the solution to reconstitute
the original situation. But also in case of the geodetic boundary value problem according to Molodenskii the
numerical results can be achieved in a simpler and more accurate way by making use of the topographic
information than without it. (2) A rough topography causes strong oscillations in the gravity field functionals,
e.g., gravity anomalies and disturbances, deflections of the vertical or the second derivatives of the gravity
potential. If these functionals can be filtered by the topographic-isostatic masses then the filtered functionals
can be interpolated or extrapolated much easier and more precise than by using the unfiltered quantities.
Because of the fact that the various geodetic applications of gravity require the knowledge of the gravity
field functionals at locations different from the measurement locations the prediction is a frequently applied
procedure. These principle ideas are behind the so-called remove-restore procedure, where the observational
functionals of the gravity field are reduced by the known global gravity field information, based on precise
global gravity field models and the high frequent effects of the topographic-isostatic masses. The resulting
residual gravity field functionals are considerably smoother than before and can be represented by generalized
approximation/prediction techniques such as Least Squares Collocation. (3) The determination of the gravity
field from observations at a certain altitude above sea level, especially at aircraft or satellite altitudes, is an
improperly posed problem in the sense that small changes in the observations at flight level produce large
effects in the gravity field parameters on the Earth’s surface or geoid level. This holds especially for the
high-frequency constituents of the observation spectrum. To prevent the results from unrealistic oscillations
in the parameters, regularization techniques are usually applied in very poorly conditioned cases. Most of
the regularization methods represent a filtering procedure and the filtering property can be controlled by a
regularization parameter. This is critical in those cases where the signal shows similar spectral characteristics
as the observation noise. The topographic-isostatic masses represent a gravity field information, especially in
the high frequency band of the gravity field spectrum, which can be superposed with the measurement noise
in aircraft or satellite altitude. Therefore, it is helpful, if those signal parts are reduced before the downward
continuation and restored afterwards. In this case, it can be assumed that the high-frequency part in the
observations is mainly caused by the observation noise, which can be filtered without loosing gravity field
information.

Because of the local effects of the topographic masses in the gravity field functionals the planar approxima-
tion was frequently applied in the past. In global applications, this approximation cannot be used anymore
(see Novák el al. 2001). Therefore, the very efficient fast Fourier transformation (FFT) techniques will not
be applied for large-scale computations as demonstrated by Schwarz et al. (1990) in case of applications
in airborne gravimetry in this investigation. This holds especially for large-scale regional or even global
applications in case of the processing of observables of the new gravity satellite missions. There are two prin-
cipal possibilities for calculating the effects of the topographic-isostatic masses on gravitational functionals
in spherical approximation: the representation of the topographic masses by any spherical discretisation in
form of spherical compartments (e.g. defined by spherical coordinate lines) and a subsequent integration
(Abd-Elmotaal 1995b, Smith et al. 2001; Tenzer et al. 2003; Heck 2003) or the representation of Newton’s
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integral by a spherical harmonic expansion (e.g., Sünkel 1985; Rummel et al. 1988; Tsoulis 1999a, 2001).
Sjöberg (1998a) implemented the formulae for the exterior Airy-Heiskanen topographic-isostatic gravity po-
tential and the corresponding gravity anomalies. Surface spherical harmonics are base functions with global
support and they are tailored to global computations. This is the reason that usually the gravity potential is
modelled by a spherical harmonic expansion. Nevertheless, the heterogeneity of the gravity field cannot be
properly taken into account with the help of spherical harmonics as base functions with global support. The
maximum degree must be adapted to the roughest gravity field features which are concentrated especially
in the regions with very high mountains. In most of the regions the maximum degree could be much smal-
ler. The representation of gravity field functionals by spherical harmonics is very efficient but limited to an
upper spherical harmonic degree of about 2700 which corresponds to a 4 arc-minute resolution. Beyond this
degree numerical computation problems concerning the stability of the recursive computation of Legendre’s
polynomials occur (see, e.g., Holmes and Featherstone 2002) and increasing of the computational time. It is
preferable to model the gravity field only up to a moderate spherical harmonic degree to represent properly
most of the regions of the Earth; the specific detailed features tailored to the individual gravity field charac-
teristics in areas of rough gravity field signal can be modelled additionally by space localizing base functions
such as spherical spline functions (Freeden et al. 1998) or spherical wavelets (Freeden and Windheuser 1996).
These more sophisticated base functions are applied for the modelling of topographic-isostatic effects for the
first time.

There is a huge list of publications related to the modelling of topographic-isostatic mass effects and the
various computation procedures. The investigations performed thus far are limited to the determination of
the potential or its first derivatives. The effects of the topographic-isostatic masses on the second derivatives
of the gravitational potential of the topographic-isostatic masses, necessary for Satellite Gravity Gradiometry
(SGG) are not treated for the general case. Only the topographic-isostatic effects on the radial component of
the gravitational tensor have been studied by Wild and Heck (2004a) and Heck and Wild (2005). The effects
of topographic-isostatic masses on Satellite-to-Satellite Tracking (SST) data and SGG functionals based on
spherical harmonic series are investigated by Makhloof and Ilk (2004).

In the present research the modelling of topographic-isostatic masses based on different isostatic or com-
pensation models is reviewed and enhanced with respect to different details, then the various computation
techniques are recapitulated and improved with respect to accuracy and additional features. The procedures
are applied to various geodetically important functionals with specific emphasis to the observables of the new
satellite gravity field missions such as GRACE and GOCE. The outcome of this investigation is demonstra-
ted with numerous examples, based on different test regions with varying resolutions of the digital elevation
models.

The second chapter reviews some basic facts important to understand the use of gravity field effects of
topographic-isostatic masses. Newton’s law of universal gravity is recapitulated with extensions to a set of
mass points and to the gravity field of an extended body. Then the concept of the gravitational potential is
reviewed as well as the potentials of a solid body and of a single mass layer. Furthermore, the boundary value
problems of Stokes and Molodenskii are shortly characterized and the computation formulae reviewed. The
different topographic-isostatic effects in Stokes’ problem are specified and the use of topographic-isostatic
effects in the computation of the telluroid or the quasi-geoid, respectively, is summarized. Then the use
of topographic-isostatic effects in airborne gravimetry is sketched as well as applications referring to the
observables of Satellite-to-Satellite Tracking (SST) and Satellite Gravity Gradiometry (SGG).

The third chapter reviews the mass models of the topography of the Earth. The chapter is introduced by
some remarks on the digital terrain and density models. It follows the presentation of the classical isostatic
models by Airy-Heiskanen, Pratt-Hayford, a combined model of both of them and the Vening-Meinesz model.
Additionally, Helmert’s models of mass condensation are reviewed.

The fourth chapter is dedicated to modelling aspects of the topographic-isostatic masses. It is subdivided
in three sections. A first section is dedicated to the direct integration method with subsections related to
the planar approximation, the spherical approximations specified for the topographic masses and the isosta-
tic compensation and condensation masses. A second section treats the representation of the topographic-
isostatic mass effects by series of surface spherical harmonics. In a first subsection the effects of topographic
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masses in the observational functionals of satellite geodesy are outlined as well as the effects of the isostatic
masses for the different isostasy models. It follows a subsection about the effects of the condensation masses
in the sense of Helmert’s condensation methods. Another important application of spherical harmonic series
of the topography is the determination of so-called far-zone effects. They are important in those cases where
the integration of the global mass effects shall be restricted to certain caps around the computation point.
Formulae are derived for the direct topographical effects on gravity, the primary indirect topographical effect
on geoid heights and the secondary indirect topographical effect on gravity. In the third section, formulae are
derived for the representation of the topographical effects, based on space localizing base functions – in the
specific case spherical spline functions. In a first subsection, the direct and secondary indirect topographical
effects on gravity are investigated and in a second one the primary indirect topographical effect.

In the fifth chapter various numerical aspects of the determination of the topographic-isostatic mass effects
are investigated. Different test areas are selected such that typical features of these computations can be
demonstrated properly. An important part of this chapter is the investigation of computational aspects
such as the investigation of discretization effects, the investigation of numerical aspects of the expansion of
the topography by spherical harmonics as well as the near and far-zone effects of the topographic-isostatic
masses. Then - as a main part of this dissertation - the effects of the topographic-isostatic masses for various
geodetic functionals at the surface of the Earth and at aeroplane altitudes are investigated as well as the
gravitational effects in satellite applications.

The results of the test computations are reviewed and discussed in the sixth chapter . The new develop-
ments in this work are summarized and its relevance for airborne gravimetry and gradiometry as well as
for the analysis of the observations of the new gravity satellite missions is outlined. An outlook to further
investigations conclude this chapter.

In the appendix the formulae for the truncation coefficients for the direct terrain effects based on spherical
harmonics are derived for Helmert’s methods of condensation and for the Airy-Heiskanen model.

Remark:Because of the large number of different quantities used in this work, the notation may vary in the
different chapters and sections.



10

2. Topographic masses and the gravity field of the
Earth

This chapter summarizes some basic facts of the Earth’s gravity field and the role of the topographic-isostatic
masses for the determination of the gravity field of the Earth according to the boundary value problems of
Stokes and Molodenskii. The regularizing effect of topographic-isostatic masses is outlined, especially for the
interpolation of gravity values and for the downward continuation of observables at airborne and satellite
altitudes. The role of topographic-isostatic masses in the observables of the Satellite-to-Satellite Tracking
(SST) technique and the Satellite Gravity Gradiometry (SGG) is reviewed. Throughout this chapter, the
Earth is regarded as a rigid body whenever necessary.

2.1 The gravity potential and its derivatives

In this section, we will shortly review Newton’s law of gravitation for two point masses and for an extended
body consisting either of a multiple of point masses or composed by mass elements described by an arbitrary
density function. Then the gravitational potential is introduced from which the force field function of the
gravitational field of a gravitating body can be derived by building the gradient of the gravitational potential.
Besides the source representation of the gravitational potential the representation by a series in terms of
spherical harmonics is given. Apart from the gravitational potential itself the important second derivatives
of the gravitational potential as well as Laplace’s equation are reviewed. Then the basic formulae for the
topographic masses and its isostatic compensation masses are presented. Finally, the gravitational potential
of a single mass layer and its derivatives are summarized, including its jump relations at the layer.

2.1.1 Newton’s law of gravitation

Newton’s law of universal gravitation describes the mutual attraction of gravitating mass points. Due to this
law the attraction force of point mass m1 acting onto point mass m2 reads (Fig. 2.1),

F21 = −Gm1m2
r2 − r1

| r2 − r1|3
, (2.1)

where the vectors r1 and r2 describe the positions of the two point masses m1 and m2. The constant G with
the value G = (6672 ± 4) 10−14m3s−2kg−1 is the universal gravitational constant. Because of the mutual
character of the gravitational force it can be written as well in the form,

F12 = −Gm1m2
r1 − r2

| r1 − r2|3
. (2.2)

The role of the attracting point mass and the attracted one is exchangeable. Newton’s law of universal
gravitation can be formulated also with the help of a force function, describing the force field of the respective
attracting point mass. In this case, we consider the attracting point mass as a source point, written as mQ,
so that it holds,

aQ (r) = −GmQ

r − rQ

| r − rQ|3
. (2.3)

The attraction force acting on point mass m located at the position r can be expressed as

FQ (r) = m aQ (r) , (2.4)

with the gravitational field strength aQ(r) of the gravitational field of mass mQ.
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Fig. 2.1: Newton’s universal law of gravitation, here point mass m1 considered as attracting mass and m2 as
attracted one

2.1.2 The gravitational field of a solid body

Because of the fact that the force function of a single point point is a vector, the gravitational fields of more
than one point mass can be superimposed by simply adding the individual components,

a (r) =
∑

i

ai (r). (2.5)

Analogously, the gravitational force field function of an extended mass, distributed in a volume described
by a certain density function ρ (rQ) can be derived. The contribution of a mass element dmQ to the force
function reads (Fig. 2.2),

da (r) = −GdmQ

r − rQ

| r − rQ|3
=: −GdmQ

l

| l |3
. (2.6)

The force function of the gravitational field of the total mass distribution can be derived as integral over
the total volume with dmQ = ρ (rQ) dv,

a (r) = −G
∫∫∫

v

ρ (rQ)
l

| l |3
dv. (2.7)

The gravitational force is a conservative force and the gravity field strength can be determined by the gradient
of a scalar function,

a(r) = ∇V (r), (2.8)

the gravitational potential,

V (r) = G

∫∫∫

v

ρ (rQ)
1

| r − rQ|
dv = G

∫∫∫

v

ρ (rQ)
1

l
dv. (2.9)

With the relation,

∇l−1 = ∇ (| r − rQ|)−1
= − r − rQ

| r − rQ|3
= − l

l3
, (2.10)
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Fig. 2.2: The gravitational field of an extended mass body

we arrive at the formula for the gravitational force. It should be pointed out that the gravitational potential
can be determined only up to a constant V0. This constant is set to zero to guarantee regularity at infinity,

lim
l→∞

V (r) = 0. (2.11)

The gravitational potential of a solid body can be differentiated arbitrarily often outside the masses. If the
Laplace operator ∆ = ∇ · ∇ is applied onto the potential function,

∆V = ∇ · (∇V ) = G

∫∫∫

v

ρ (rQ) ∆ (1/l) dv, (2.12)

then it follows Laplace’s equation because of ∆(1/l) = 0 for the space outside the masses. Laplace’s equation
reads, written in orthogonal Cartesian coordinates x,y and z,

∆V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0. (2.13)

It should be pointed out that the sum of the partials vanish but not the single components, as e.g. in case
of x,

∂2V

∂x2
= G

∫∫∫

v

ρ (rQ)
∂2 (1/l)

∂x2
dv = G

∫∫∫

v

ρ (rQ)

(

− 1

l3
+

3x2

l5

)

dv. (2.14)

Corresponding expressions can be derived for the other coordinates y and z. Inside the masses Poisson’s
equation holds instead of the Laplace’s equation,

∆V (r) =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= −4πGρ(r). (2.15)

By introducing spherical coordinates ϕ, λ, r for the computation point and ϕ′, λ′, r′ (see Fig. 2.3) for the
source point (location of a mass element) a solution of Laplace’s equation expressed in spherical harmonics
reads,

V (r) =
GM

r

∞∑

n=0

(
R

r

)n

Yn (ϕ, λ), (2.16)
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with Laplace’ surface spherical harmonics of degree n,

Yn (ϕ, λ) =
1

M

∫∫∫

v

(
r′

R

)n

Pn (cosψ) ρ (r′) dv =

n∑

m=0

((cnm cosmλ+ snm sinmλ)Pnm (sinϕ)). (2.17)

The functions Pnm(sinϕ) are the fully normalized Legendre functions of degree n and order m. The co-
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Fig. 2.3: Spherical coordinates for computation and source point

efficients cnm, snm represent the fully normalized spherical harmonic coefficients. M is the total mass of
the Earth and R the mean radius of the Earth. If the density function inside the Earth is known, then the
potential coefficients cnm, snm can be determined also by the following integrals (with the Kronecker symbol
δ0m),

cnm =
(2 − δ0m)

M

(n−m)!

(n+m)!

∫∫∫

v

(
r′

a

)n

Cnm (ϕ′, λ′) ρ (r′) dv,

snm =
2 (1 − δ0m)

M

(n−m)!

(n+m)!

∫∫∫

v

(
r′

a

)n

Snm (ϕ′, λ′) ρ (r′) dv.

(2.18)

2.1.3 The potential of the topographical and compensating masses

Let us start with the gravitational potential induced by the topographic masses above the geoid (Martinec
1998),

V t(r)
∣
∣
r=rP

= G

∫∫

σ

rg(Q)+H(Q)∫

ξ=rg(Q)

ρt(ϕQ, λQ, ξ)

l(r, ξ, ψ)

∣
∣
∣
∣

r=rP

ξ2dξdσ, (2.19)

with

l :=
√

r2P + ξ2 − 2rP ξ cosψ, (2.20)
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and the three dimensional (3-D) density function of the topographic masses, ρt(ϕQ, λQ, ξ). The quantity
ξ is the geocentric radius of the mass element and dσ = cosϕQdϕQdλQ the surface element in spherical
coordinates. The geocentric angle ψ is the spherical distance between the radius vectors of the computation
point rP (rP , ϕ, λ) and the integration point rQ(rQ, ϕQ, λQ). It is given by

cosψ = sinϕ sinϕQ + cosϕ cosϕQ cos(λQ − λ). (2.21)

The integration in Eq. (2.19) is performed over the topographic masses bounded by the radius of the geoid
rg and the Earth surface rg + H, where H stands for the topographic (orthometric) heights. It is a well-
known fact that the topographical masses generate a rough gravitational field with an equipotential surface
undulating by hundreds of meters with respect to the level ellipsoid. Since the undulations of the geoid are
significantly smaller, compensation mechanisms of the topographical masses must exist which reduce the
gravitational effects of the topographic masses. These mechanisms are most probably connected with lateral
mass heterogeneities of the crust but also with deep dynamic processes (Matyska 1994). Frequently applied
are more or less idealized compensation models which are described in chapter 3.

The gravitational potential of the compensation masses can be given also by Newton’s integral as follows:

V c(r)|r=rP
= G

∫∫

σ

r2∫

ξ=r1

∆ρt(ϕQ, λQ, ξ)

l(r, ξ, ψ)

∣
∣
∣
∣
r=rP

ξ2dξdσ, (2.22)

where the integration is performed over all masses for the actual compensation model with the (3-D) density
function ∆ρt(ϕQ, λQ, ξ), which indicates the difference between a mean density and the actual density. The
radial integration limits r1, r2 indicate the lower and upper bounds of the actual compensation masses and
depend on the applied compensation model (see chapter 3).

2.1.4 The gravitational field of a single mass layer

If the attracting masses are assumed to form a layer, or a coating on a certain closed surface σ, with a
thickness approaching to zero, then the surface density reads (Fig. 2.4),

kQ := k(rQ) =
dmQ

dσ
, (2.23)

where dσ is the surface element and kQ the single layer density. The potential of this surface of masses at a
certain computation point P is given by

V (r) = G

∫∫

σ

kQ
1

l
dσ, (2.24)

where l is the distance between the surface element dσ and the computation point under consideration.

On the surface σ the potential V is continuous, but there are discontinuities of the first derivatives depending
on the derivation direction e. The limit of the first derivative approaching from an external point Pa to a
point Pσ at the surface σ is called the external derivative (Fig. 2.4),

lim
Pa→Pσ

dV

de
= − lim

Pa→Pσ

G

∫∫

σ

kQ
e · el
l2a

dσ =:
dVa
de

, (2.25)

and from an internal point Pi to a point Pσ at the surface σ the internal derivative,

lim
Pi→Pσ

dV

de
= − lim

Pi→Pσ

G

∫∫

σ

kQ
e · el
l2i

dσ =:
dVi
de

. (2.26)
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Fig. 2.4: Potential of a material surface

The derivative at a point Pσ at the surface σ is called the direct derivative,

dV

de

∣
∣
∣
∣
σ

= G

∫∫

σ

kQ
d(1/lσ)

de
dσ = − G

∫∫

σ

kQ
e · el
l2σ

dσ =:
dVσ
de

. (2.27)

If the vector n is the outer normal of the surface σ at point Pσ with the surface density kσ := kPσ
in this

point, the external derivative can be written in the form

dVa
de

= − G

∫∫

σ

kQ
e · el
l2σ

dσ − 2πG kσn · e, (2.28)

and the internal derivative, respectively,

dVi
de

= − G

∫∫

σ

kQ
e · el
l2σ

dσ + 2πG kσn · e. (2.29)

The direction derivative of a single layer shows a jump at the layer in the size of

dVa
de

− dVi
de

= − 4πGkσn · e, (2.30)

and the direct derivative is the arithmetic mean between external and internal derivatives,

dVσ
de

=
1

2

(
dVa
de

+
dVi
de

)

= −G
∫∫

σ

kQ
n · e
l2σ

dσ. (2.31)
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The potential V of a single layer is regular at infinity,

lim
l→∞

V (r) = 0, (2.32)

satisfies everywhere Laplace’s equation,

∆V (r) = 0, (2.33)

except on σ itself, and is continuous everywhere together with all its derivatives.

2.2 The geodetic boundary value problems

2.2.1 Gravitational field and gravity field

The force acting on a test mass at the Earth’s surface is the resultant of the gravitational force and the
centrifugal force of the Earth. The centrifugal force acting on a mass m can be determined as follows:

C = mω2p, (2.34)

with the vector p = (x, y, 0) and the Earth’s angular velocity ω. Then the total force is given by

G(r) = F(r) + C(r). (2.35)

The first term of Eq. (2.35) is the gravitational force and the second term the centrifugal force which can be
written as follows:

C(r) = mc(r), (2.36)

where c(r) is the centrifugal field strength. It is given by

c(r) = C(r)/m = ω2p. (2.37)

The resultant of the gravitational field strength and the centrifugal field strength is the gravity acceleration
or simply the gravity vector,

g(r) = a(r) + c(r). (2.38)

The gravity potential is the sum of the gravitational potential and the centrifugal potential,

W (r) = V (r) + Z(r) = G

∫∫∫

v

ρ

l
dv +

1

2
ω2(x2 + y2). (2.39)

Since Z is an analytic function, the discontinuities of W are those of V : the second derivatives have jumps
at discontinuities of the density function. Any linear function of the gravity potential can be calculated by
applying the linear operator L as follows:

L(W (r)) = G

∫∫∫

v

L
(ρ

l

)

dv + L

(
1

2
ω2(x2 + y2)

)

. (2.40)

An example of such an operator is the Nabla operator ∇. When applied to Eq. (2.40) it gives the gravity g:

g(r) = ∇W = G

∫∫∫

v

∇
(ρ

l

)

dv + ∇
(

1

2
ω2(x2 + y2)

)

. (2.41)
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Fig. 2.5: Gravity field and normal field

The magnitude g of the vector g is frequently called gravity in the narrower sense.

Again, the potential of the Earth can be introduced using a spherical harmonic expansion as follows (Heis-
kanen and Moritz 1967):

W (r) =
GM

r

(

1 +
∞∑

n=2

(
R

r

)n n∑

m=0

(cnm cosmλ+ snm sinmλ)Pnm(sinϕ)

)

+
ω2r2

3
(1 − P2(sinϕ)) , (2.42)

with the mass of the Earth M and the mean radius R. The coefficients cnm, snm are defined in Eq. (2.18).

Applying the Laplace operator to the gravity potential results in,

∆W (r) = −4πGρ+ 2ω2, (2.43)

which is the well-known Poisson’s differential equation. For the space outside the masses it reads,

∆W (r) = 2ω2. (2.44)

2.2.2 Normal figure and normal field

For linearization tasks the actual gravity field can be approximated by a model gravity field generated by a
level ellipsoid. This ellipsoid serves as a reference and is also an approximation of the mathematical figure
of the Earth, the geoid or the quasi-geoid. The reference ellipsoid has the same mass M as the actual Earth.
Its center coincides with the center of the Earth and it rotates with the same angular velocity ω as the
real Earth. The gravity field generated by this model is fully described by four parameters a,GM, J2, ω, the
defining parameters of a Geodetic Reference System (GRS). Its gravity potential can be expressed as follows:

U(r) =
GM

r

(

1 −
∞∑

n=1

(a

r

)n
n∑

m=0

(c′nm cosmλ+ s′nm sinmλ)Pnm(sinϕ)

)

+
ω2r2

3
(1 − P2(sinϕ)) , (2.45)

where c′nm and s′nm are the fully normalized coefficients of the reference ellipsoid and a its equatorial radius
of the reference ellipsoid. It is sufficient to calculate these coefficients up to degree six or eight as the values
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of higher degree tend to zero (Rapp 1982). Because of its symmetries, the normal potential is described only
by an even degree zonal harmonic expansion. The zonal coefficients can be determined through,

c′n0 = − Jn√
2n+ 1

, (2.46)

with the coefficients

J2 =
2

3

[

f

(

1 − 1

2
f

)

− 1

2
m

(

1 − 2

7
f +

11

49
f2

)]

, (2.47)

J4 = − 4

35
f

(

1 − 1

2
f

)[

7f

((

1 − 1

2
f

)

− 5m

(

1 − 2

7
f

))]

, (2.48)

J6 =
4

21
f2(6f − 5m), (2.49)

and the flattening f of the reference ellipsoid and the parameter m, defined by

m =
ω2a3(1 − f)

GM
. (2.50)

Applying the Nabla operator to the normal gravity potential leads to the normal gravity vector,

∇U(r) = γ(r). (2.51)

The application of the Laplace operator yields

∆U(r) = 2ω2. (2.52)

Eq. (2.52) represents Poisson’s differential equation for the normal gravity potential in mass free space.

2.2.3 The boundary value problem of Stokes

In case of Stokes’ boundary value problem the equipotential surface of the gravity field in sea level, the geoid,
is selected as boundary surface. The points at the geoid are projected onto the reference (level) ellipsoid
along the ellipsoidal normals (Fig. 2.5). The ellipsoidal coordinates, latitude and longitude, of the geoid
points are considered to be known. The vertical distance between two points, the geoid height or undulation
N , is unknown and has to be determined as solution of Stokes’ problem. The reference ellipsoid is a level
ellipsoid, that means, the ellipsoidal surface is an equipotential surface of the normal field as explained in
the last section. The normal figure (ellipsoidal surface) and the normal field are approximations of the geoid
and the gravity field, respectively. The disturbing gravity potential T is defined as the difference between
the gravity potential and the normal potential,

T (r) = W (r) − U(r). (2.53)

The disturbing potential and the geoid height are the unknowns of the boundary value problem of Stokes
while the (scalar) gravity values at the geoid, g = g (P ), are considered to be the known (measured) quantities.
The disturbing potential T is regular at infinity and has to be harmonic outside the boundary surface to
fulfil the Laplace equation,

∆T (r) = 0. (2.54)

This will be achieved by removing all masses outside the geoid; the changes have to be corrected properly as
explained in the following chapters. A linear relation in spherical approximation between the gravity values
at the geoid, gP , and the disturbing potential T , the so-called Fundamental equation of Physical Geodesy
(Fig. 2.6),

∆g = gP − γQ = −∂T
∂r

∣
∣
∣
∣
Q

− 2

r
TQ, (2.55)
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with the gravity anomalies ∆g. The linearization provides also a relation between the geoid height and the
disturbing potential (Theorem of Bruns),

N =
TQ
γ
, (2.56)

with a mean normal value γ (Somigliana 1929).

The solution of the Laplace equation (2.54) with the boundary condition (2.55) is the Stokes formula,

T (r, ϕ, λ) = T0 (r, ϕ, λ) + T1 (r, ϕ, λ) +
R

4π

∫∫

s

∆g′ (ϕ′, λ′) S (r, ψ) ds, (2.57)

with the terms,

T0 (r, ϕ, λ) = −R
2

r
〈∆g′ (ϕ, λ)〉 , (2.58)

and

T1 (r, ϕ, λ) =
GM

r2
RX1 (ϕ, λ) , (2.59)

as well as the Stokes-Pizzetti function S (r, ψ). The quantity 〈∆g′〉 is the mean value of the gravity anomalies
over the Earth,

〈∆g′〉 :=
1

4π

∫∫

s

∆g′ (r, ϕ′, λ′) ds, (2.60)

and X1 (ϕ, λ) is the Laplace surface spherical harmonic of degree n = 1,

X1 (ϕ, λ) = c10C10 (ϕ, λ) + c11C11 (ϕ, λ) + s11S11 (ϕ, λ) . (2.61)

The Stokes formula reads at the boundary surface, the geoid, in spherical approximation by setting r → R:

P( rj,l, )

Earth surface

reference ellipsoid
0U

N

Qr

Pr

Q PB B=

Qg

g

Q

0
Wgeoid

Fig. 2.6: Relation between the surface of the Earth, the geoid and the reference ellipsoid

T (ϕ, λ) = T (R,ϕ, λ) = T0 (ϕ, λ) + T1 (ϕ, λ) +
R

4π

∫∫

s

∆g (ϕ′, λ′) S (ψ(ϕ, λ;ϕ′, λ′)) ds, (2.62)
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with

T0 (ϕ, λ) =
GδM

R
= −R 〈∆g (ϕ, λ)〉 , (2.63)

and

T1 (ϕ, λ) =
GM

R2
(cosϕ cosλ ex + cosϕ sinλ ey + sinϕ ez) · rCM , (2.64)

where the Stokes-Pizzetti function S (r, ψ) becomes the Stokes function S (ψ). For the geoid height it follows
according to the Theorem of Bruns,

N (ϕ, λ) =
T (ϕ, λ)

γ
= N0 (ϕ, λ) +N1 (ϕ, λ) +

R

4πγ

∫∫

σ

∆g′ (ϕ′, λ′) S (ψ(ϕ, λ;ϕ′, λ′)) dσ. (2.65)

Because of the fact that the masses outside the geoid have to be removed or shifted inside the boundary
surface these geoid heights are the heights of a preliminary boundary surface, the co-geoid.

2.2.4 Topographic isostatic effects in Stokes’ boundary value problem

The solution of the boundary value problem of Stokes by solving the Laplace equation requires that the
gravity potential outside the geoid is harmonic. As pointed out already, it is necessary to remove the topo-
graphic masses or shift them inside the boundary surface. Then it is possible to solve the boundary value
problem based on Laplace’s equation. Obviously, the solution has to be corrected afterwards to restore the
original situation, that means, the determination of the geoid inside the masses. Therefore, the reduction
and correction steps require a detailed knowledge of the topographic masses.

The effects of the topographic and the isostatic or condensed masses on the geoid heights are evaluated as
three separate contributions: the direct topographic effect on the gravity, the primary indirect topographic
effect on the geoid and the secondary indirect topographic effect on the gravity (e.g., Novàk et al. 2001) in
case of the gravity at the surface of the Earth. For airborne gravimetry where gravity disturbances at flight
level are considered as observations, only the direct and the secondary indirect topographic effects have to
be considered. The harmonized disturbing potential can be determined for any point in space by (Martinec
et al. 1993),

Th(r) = T (r) − δV (r),

Th(r, ϕ, λ) = T (r, ϕ, λ) − δV (r, ϕ, λ),
(2.66)

with the disturbing potential T of the Earth’s gravity field, and the direct topographic-isostatic effect on the
gravitational potential δV (r, ϕ, λ). The latter one is the difference between the gravitational potential of the
topography V t(r, ϕ, λ) and the gravitational potential of the isostatic or condensed masses V c(r, ϕ, λ),

δV (r, ϕ, λ) = V t(r, ϕ, λ) − V c(r, ϕ, λ). (2.67)

The spherical coordinates r,ϕ and λ of the computation point at the surface of the Earth or at airborne
altitude refer to a geocentric coordinate system.

The geoid heights of the co-geoid can be derived by Bruns’ theorem from the harmonized disturbing potential
as solution of the geodetic boundary value problem and a correction term on the co-geoid height, the primary
indirect topographic-isostatic effect PITE(R,ϕ, λ),

N(ϕ, λ) =
T (R,ϕ, λ)

γ0(ϕ)
=
Th(R,ϕ, λ)

γ0(ϕ)
+
δV (R,ϕ, λ)

γ0(ϕ)
=:

Th(R,ϕ, λ)

γ0(ϕ)
+ PITE(R,ϕ, λ), (2.68)

with the normal gravity γ0(ϕ) at the level ellipsoid.
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Fig. 2.7: Flow chart of the geoid determination procedure considering the various topographic-isostatic effects

By applying the negative radial derivative to Eq. (2.66), the corresponding topographical effect on gravity
can be obtained as follows:

δgh(r, ϕ, λ) = −∂T
h(r, ϕ, λ)

∂r
= −∂T (r, ϕ, λ)

∂r
+
∂δV (r, ϕ, λ)

∂r
=: δg(r, ϕ, λ) +DTE(r, ϕ, λ), (2.69)

where δg and δgh are the gravity disturbances of the real gravity field and the harmonized gravity field,
respectively, and DTE(r, ϕ, λ) is the direct topographic-isostatic effect on gravity. The direct and primary
indirect topographic-isostatic effects given in Eq. (2.68) and Eq. (2.69), respectively, represent the effect of
the topographic and isostatic masses for geoid determinations based on airborne gravity measurements. Since
the gravity disturbances δg differ from the gravity anomalies ∆g only by the vertical change of normal gravity
along the separation between the actual equipotential surface and the corresponding normal equipotential
surface, the following expression can be obtained for points at the surface of the Earth:

∆gh(r, ϕ, λ) = ∆g(r, ϕ, λ) +
∂δV (r, ϕ, λ)

∂r(ϕ, λ)
+

2

r
δV (r, ϕ, λ)

=: ∆g(r, ϕ, λ) +DTE(r, ϕ, λ) + SITE(r, ϕ, λ).

(2.70)
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The second term at the right hand side of Eq. (2.71) represents the direct topographic-isostatic effect on
gravity, DTE(r, ϕ, λ), and the third term the secondary indirect topographic effect on gravity, SITE(r, ϕ, λ).

To determine the geoid, the downward continuation of the gravity anomalies, defined in Eq. (2.71), from the
topography to the geoid has to be performed according to (Novàk 2000):

∆ghc (R,ϕ, λ) = ∆gh(r, ϕ, λ) +D∆gh(ϕ, λ), (2.71)

where D∆gh(ϕ, λ) is the downward continuation term. The geoid can be determined by Eq. (2.65). If the
masses of the reference ellipsoid and the Earth are identical and the origin of the terrestrial reference frame
is located at the center of mass of the Earth then the first two terms become zero and the solution reads as
follows,

Nh = N0 =
R

4πγ

∫∫

s

∆ghc (R,ϕ, λ)S(ψ)ds, (2.72)

here N0 is the harmonized undulation of the co-geoid referred to the reference ellipsoid and S(ψ) the Stokes’
function given by:

S(ψ) =
1

sin(ψ/2)
− 6 sin(ψ

/
2) + 1 − 5 cosψ − 3 cosψ ln

(
sin(ψ

/
2) + sin2(ψ/2)

)
. (2.73)

Finally, the geoid heights can be restored by the formula:

N = Nh + PITE = Nh + δN. (2.74)

The computation steps are shown in the flow chart of Fig. 2.7.

2.2.5 The role of topography in Molodenskii’s boundary value problem

With the solution of Stokes’ problem the surface of the Earth can be described mathematically. The geoid,
on the one hand, is determined by the geoid heights referring to the reference ellipsoid and the surface of
the Earth, on the other hand, by the orthometric heights referring to the geoid. But both quantities, geoid
heights and orthometric heights, cannot be determined without hypothesis:

• the gravity values measured at the Earth’s surface have to be reduced down to the geoid which is the
boundary surface of Stokes’ problem. Furthermore the masses outside the geoid, the topographic masses,
have to be removed – otherwise Laplace equation does not hold. To perform these steps rigorously the
density function of the masses must be known which is usually not the case. Therefore, hypotheses of
the density structure of the external masses are necessary.

• to derive orthometric heights of the Earth surface mean values of the gravity along the plumb lines
from the geoid to the Earth’s surface are necessary. Because of the fact that these values cannot be
measured they have to be derived indirectly based on hypotheses of the density structure of the masses
along the plumb lines.

It should be pointed out that the surface of the Earth is described correctly without hypothesis as the sum of
geoid heights and orthometric heights, but the geoid heights and the orthometric heights themselves depend
on the hypothesis about the density function of the topographic masses.

An alternative way to solve this problem is to use the surface of the Earth directly as boundary surface
for the geodetic boundary value problem. This solution has been proposed in the years 1940 to 1950 by
the Russian scientist M.S. Molodenskii. The first English publication appeared in 1962, together with V.F.
Eremeev and M.I. Yurkina (Molodenskii et al. 1962). The advantage of this idea is to avoid any hypothesis in
deriving a solution to the geodetic boundary value problem. The disadvantage is that this solution strategy



2.2. The geodetic boundary value problems 23

causes much more mathematical problems than in case of the Stokes’ problem. The first obvious difference
is that the boundary surface of Molodenskii’s problem is not an equipotential surface with normals directed
to the gravity vector. Instead the boundary surface is an arbitrary not even continuous function. It is also a
non-linear problem similar to Stokes’ problem, but the linearization causes much more problems because of
the fact that the geoid deviates from the reference ellipsoid only by a maximum of 100 m, while the surface
of the Earth shows ellipsoidal heights of up to approximately 9000 m. Furthermore, Molodenskii’s problem
is not only a free boundary value problem but also a so-called oblique boundary value problem because of
the fact that the gravity vector is usually not orthogonal to the boundary surface.

A consequence of the large deviations of the surface of the Earth (considered as boundary surface) from the
reference ellipsoid is that an approximation of the boundary surface has to be introduced which is closer to
the boundary surface. This approximation is the telluroid, which is referred to the reference ellipsoid by a
type of heights which can be determined without hypothesis, the so-called normal heights. The deviations
of the surface of the Earth and the telluroid, the height anomalies, are in the size of the geoid heights. If
the points of the surface of the Earth are referred to a vertical reference surface by the normal heights –
similar to the geoid in case of orthometric heights – then one arrives at the quasi geoid which coincides
approximately with the geoid (Fig. 2.10). In the following, we will only give the solution of Molodenskii’s
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boundary value problem in form of the so-called Molodenskii series where the first approximation is identical
with the solution of Stokes problem with a slightly different definition of the gravity anomalies used in the
solutions (Heiskanen and Moritz 1967; Klees 1992; Lehmann 1994),

T =
∞∑

n=0

Tn, (2.75)

with

Tn =
R

4π

∫∫

σ

GnS (ψ) dσ for n = 0, 1. (2.76)

and

Tn =
R

4π

∫∫

σ

G0 S (ψ) dσ − R2

4µ

∫∫

σ

(h− hP )
2

l30
Gn−2dσ for n ≥ 2. (2.77)
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The functions Gn can be determined by the following formulae,

G0 = ∆g, (2.78)

with the surface gravity anomalies ∆g = gP − γQ and

G1 =
R2

2π

∫∫

σ

h− hP
l30

G0dσ, (2.79)

G2 =
R2

2π

∫∫

σ

h− hP
l30

G1dσ +G0 tan2 β, (2.80)

G3 =
R2

2π

∫∫

σ

h− hP
l30

G2dσ +G1 tan2 β − 3R2

4π

∫∫

σ

(h− hP )
3

l50
G0dσ, (2.81)

where β is the maximum inclination of the terrain, hP the ellipsoidal height of the computation point and h
the ellipsoidal height of the integration point (for the notation refer also to Moritz 1965, 1980).

The height anomalies can be derived subsequently by applying Bruns’ theorem

ζ =
T

γ
. (2.82)

The first two terms of the series Eq. (2.75) represent an approximation of the solution of Molodenskii’s
problem which is sufficient for many applications. The disturbance potential reads,

T ≈ T0 + T1 =
R

4π

∫∫

σ

(∆g +G1) S (ψ) dσ, (2.83)

which can be used to derive the height anomalies again by Bruns’ theorem,

ζ ≈ ζ0 + ζ1 =
R

4πγ

∫∫

σ

∆g S (ψ) dσ +
R

4πγ

∫∫

σ

G1 S (ψ) dσ. (2.84)

The term G1 can be considered as terrain correction with constant density (Moritz 1968),

G1 =
1

2
GρR2

∫∫

σ

(h− hP )2

l30
dσ. (2.85)

The solution of the boundary value problem of Molodenskii does not need any assumptions about the density
of the topography and the crust as it depends on the free-air anomalies at the surface of the Earth. But it
is known that the free-air anomalies are small and strongly dependent on the roughness of the topography,
so that their interpolation is very inaccurate (Heiskanen and Moritz 1967). Therefore, it is preferable also
in case of Molodenskii’s boundary value problem to make use of the well-known advantages of the Bouguer
and isostatic anomalies. These anomalies are smoother and more representative than the free air anomalies
and can be interpolated more easily and more accurately.

To take the effect of the topographic-isostatic masses into account, we start with Eq. (2.66) as it represents
the disturbing potential by removing the topographic-isotatic masses as follows:

T r(rP , ϕ, λ) = T (rP , ϕ, λ) − δV (rP , ϕ, λ). (2.86)

With these reductions the disturbing potential will be smoother than the original one; therefore we call it
regularized disturbance potential T r. In this case, the physical surface of the Earth will remain unchanged,
but the telluroid will change, because its points Q are defined by UQ = WP , and the potential W at any point
P will be affected by the removing of the topographic masses. The height anomaly difference δζ between
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effects

the original telluroid and the regularized telluroid according to Bruns’ theorem is given by (Heiskanen and
Moritz 1967),

δζ = ζ − ζr =
δV

γ
, (2.87)

where γ is the normal gravity on the telluroid. In this case the regularized gravity anomalies at the surface
of the Earth will be given by:

∆gr = ∆g − δg − ∂γ

∂h
δV = ∆g +DTE + SITE. (2.88)

The second term in the right hand side of Eq. (2.88) represents the direct topographical effect on gravity and
the third term the secondary indirect topographical effect on gravity, both analogously to Eq. (2.70). After
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that the regularized height anomalies ζr are computed from the regularized gravity anomalies ∆gr by the
solution of Molodenskii’s problem according to Eq. (2.82) or approximately by Eq. (2.84),

ζr ≈ R

4πγ

∫∫

σ

∆gr S (ψ) dσ +
R

4πγ

∫∫

σ

G1 S (ψ) dσ. (2.89)

Finally, the original height anomalies ζ are obtained by considering the indirect effect by inserting δζ accor-
ding to Eq. (2.87):

ζ = ζr + δζ. (2.90)

The computation steps are shown in the flow chart of Fig. 2.9.

If the geoid heights are required, instead of height anomalies, the following equation can be used (Heiskanen
and Moritz 1967),

N = ζ +
ḡ − γ̄

γ̄

O

H, (2.91)

where ḡ is the mean gravity along the plumb line between the geoid and the ground and γ̄ the mean normal
gravity along the normal plumb line between the ellipsoid and the telluroid and the orthometric height HO.
The term ḡ − γ̄ is approximately equal to the Bouguer anomaly, and Eq. (2.91) can be transformed to the
following equation:

Ninmeters = ζ + ∆g
B inGalsH

O

inkm. (2.92)

But it is shown that using only the Bouguer anomalies brings some errors in calculating the geoid heights,
because the value of the mean gravity ḡ depends on the density of the topographic masses and maybe also
on the density of the crust, mantle and core of the Earth (see, e.g., Tenzer et al. 2005).
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Fig. 2.10: Telluroid before and after the reduction of the topographic masses

2.3 Topographic-isostatic effects in airborne gravimetry

Airborne gravimetry is a fast and accurate gravity measurement technique to derive high resolution geoids
in not easily accessible regions. Under optimal conditions the measurement accuracy varies around 1 to
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2 mGal for a spatial resolution of approximately 2 km. The downward continuation of these observations
requires a filtering of the observables to reduce the intrinsic instabilities. To ease the downward continuation
of filtered data from aircraft altitude down to sea level, it is helpful to additionally apply a remove-restore
technique (Forsberg and Tscherning 1997) based on gravity field information provided by the topographic-
isostatic masses. The effects of the topographic-isostatic masses on the geoid heights from airborne gravity
are evaluated as two separate contributions: the direct topographical effect on the gravity (DTE ) and the
(primary) indirect topographical effect on the geoid (PITE ) (Novàk et al. 2001).

The observables of airborne gravimetry are gravity disturbances at aircraft altitude. They are defined as
differences between the actual gravity and the normal gravity at the same point. If the gravity disturbances
on the reference ellipsoid are given and the disturbing potential is required in the space outside the masses,
then we have to solve a geodetic boundary value problem of the second kind or a so-called Neumann problem.
In this case, the Laplace equation for the disturbing potential,

∆T = 0, (2.93)

has to be solved, satisfying the following boundary condition (defined on the reference ellipsoid),

δg = gp − γP = −∂T
∂n

, (2.94)

where n is the ellipsoidal normal and gp and γP the actual and normal gravity at the boundary surface. In
case of a spherical approximation Eq. (2.94) can be simplified as

δg = gp − γP = −∂T
∂r

. (2.95)

The solution of the Neumann problem in this case is given by (e.g., Hotine 1969; Novàk et al. 2000):

T (ϕ, λ) =
R+ hf

4π

∫∫

σ

δg H(ψ) dψ, (2.96)

where H(ψ) is the Hotine function and hf is the height of the aircraft. It can be given as a closed formula
as follows (Hotine 1969):

H(ψ) =

∞∑

n=0

(2n+ 1)

(n+ 1)
Pn(cosψ) = cosec (1/2ψ) + ln (1 + cosec (1/2ψ)) . (2.97)

This equation includes the zero and the first order terms of the spherical harmonic expansion of the disturbing
potential. If the mass of the Earth is assumed to be equal to the mass of the reference ellipsoid and the center
of the Earth is assumed to coincide with the origin of the reference system, then Hotine’s function can be
simplified as following:

H(ψ) =

∞∑

n=2

(2n+ 1)

(n+ 1)
Pn(cosψ) = cosec (1/2ψ) + ln (1 + cosec (1/2ψ)) − 1 − (3/2) cosψ. (2.98)

If we want to remove the topographic-isostatic masses then we have to follow, in principle, the procedure
described in Fig. 2.7. The observations δg have to be corrected by the DTE at aircraft altitude to get the
harmonized gravity disturbance at aircraft altitude,

δgh = δg −DTE (R+D,ϕ, λ) (2.99)

with

δgh =
∂Th(R+D,ϕ, λ)

∂r
, (2.100)

δg =
∂T (R+D,ϕ, λ)

∂r
, (2.101)



28 2. Topographic masses and the gravity field of the Earth

DTE (R+D,ϕ, λ) :=
∂δV (r, ϕ, λ)

∂r

∣
∣
∣
∣
r=R+D

=
∂V t

∂r
− ∂V c

∂r
, (2.102)

where δV (r, ϕ, λ) is the difference between the gravitational potential of the topography V t and the gravita-
tional potential of the isostatic or condensed topographic masses, V c. In the following step, the harmonized
gravity disturbances at aircraft altitude have to be downward continued to the boundary surface,

δgh → δghc . (2.103)

Then the Hotine integral is applied to give the co-geoid as follows:

Nh(ϕ, λ) =
R

4π

∫∫

σ

δghcH(ψ)dψ. (2.104)

Finally, the primary indirect topographical effects are added to give the geoid heights,

N(ϕ, λ) = Nh(ϕ, λ) + PITE, (2.105)

with

PITE =
δV

γ
. (2.106)

2.4 Topographic-isostatic mass effects in satellite application

The dedicated satellite gravity missions CHAMP (Reigber et al. 1999) and GRACE (Tapley et al. 2004) as
well as ESA’s GOCE mission, to be launched in 2007, (ESA 1999) will improve our knowledge of the Earth’s
gravity field in the long, medium and short wavelength ranges. The novel measurement techniques are
Satellite-to-Satellite Tracking (SST) either in the high-low, the low-low or the Precise Orbit Determination
(POD) mode and Satellite Gravity Gradiometry (SGG), respectively. After an operational period of only a
few months after its launch in July 2000, a global gravity field model has been generated from the CHAMP
GPS-SST data, which recovers the long- to medium-wavelength part of the gravity field by one order of
magnitude more accurate than during the last decades of classical satellite geodesy (Reigber et al. 2002).
As a result of ultra-precise ranging between satellites, a further breakthrough in accuracy and resolution
has been achieved with the gravity field models derived from data generated by the twin-satellite mission
GRACE, launched in 2002 (Mayer-Gürr et al. 2006). Meanwhile, monthly snapshots of the gravity field have
been computed, allowing for the first time the resolution of temporal variations over a wide spatial and
temporal spectrum.

The innovative character of these missions consists in the more or less complete coverage with observations by
the Global Positioning System (GPS) and the continuous very precise line-of-sight range-rate measurements
by GRACE, as well as the measurement of the gravity gradients by a three-dimensional gravity gradiometer
without interruption in the case of GOCE. To prevent the observations from non-gravitational constituents,
the surface forces are either measured and considered in a pre-processing step or will be compensated by a
drag-free control system directly, as in case of GOCE.

2.4.1 Improperly posed problems in satellite geodesy

A critical point of the determination of gravity field parameters from observations at satellite altitude is the
downward continuation of the high-precise SST data and the SGG observations. It is well-known that these
gravity field recovery problems are improperly posed problems, that means, small changes in the observations
produce large effects in the solutions. These problems usually require a proper regularization to receive stable
recovery results. The basic principle behind regularization, e.g., in case of Tichnov’s regularization method,
is a balancing procedure between observation noise and unknowns. Regularization of unstable problems is
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especially critical in those cases where the noise is intermingled with the signal content in the observations.
Some contributions of the gravity signal are well known a-priori. Therefore, it is advantageous if those signal
parts are reduced prior to the downward continuation and restored after the recovery procedure. In this case,
we can anticipate that the high frequent part in the observations is mainly caused by the observation noise
which can be filtered without loosing gravity field signals.

One important source of high frequent signal constituents in the satellite observations is caused by the
topographical masses and its isostatic compensation. Nowadays, very precise digital elevation models (DEM)
of land and sea (bathymetry) are available. The effects of the topographic-isostatic masses on the gravity
field determinations from the new in-situ satellite gravity missions are evaluated also in this case as two
separate contributions: the direct topographical effect on the gravity (DTE ) and the (primary) indirect
topographical effect on the geoid (PITE ). The application of the direct topographic-isostatic effects on
the observables at satellite altitude acts as a smoothing of the observations which simplifies the downward
continuation procedure. Here we give only some basic information of the recovery models – the numerical
effects in satellite altitude will be discussed later.

2.4.2 The use of topographic-isostatic mass effects in the Satellite -to- Satellite Tracking
technique

The mathematical models for global as well as regional gravity field recovery from precise kinematical orbits,
high-low and low-low Satellite-to-Satellite Tracking data is based on the formulation of Newton’s equation of
motion,

r̈(t) = a(t; r, ṙ;x), (2.107)

as a boundary value problem,

r(t) = (1 − τ) rA + τrB − T 2

1∫

τ ′=0

K (τ, τ ′) a(t; r, ṙ,x) dτ ′ (2.108)

with the integral kernel,

K (τ, τ ′) =

{

τ (1 − τ ′) , τ ≤ τ ′,

τ ′ (1 − τ) , τ ′ ≤ τ,
(2.109)

the normalized time variable,

τ =
t− tA
T

with T = tB − tA, t ∈ [tA, tB ], (2.110)

and the boundary values

rA := r(tA), rB := r(tB), tA < tB. (2.111)

The specific force function in Eq. (2.108) with the unknown parameters x can be separated as follows,

a(t; r, ṙ;x) = ad(t; r, ṙ) + ∇V (t; r;x0) + ∇T (t; r;∆x). (2.112)

The quantity ad is a disturbance part, which represents the non-conservative disturbing forces, ∇V is a
reference part, representing the long wavelength gravity field features x0 and ∇T is an anomalous part,
modelling the high frequent refinements ∆x to the low frequent gravity field parameters x0 of the global
model.

In case of the analysis of precisely determined kinematical orbits according to the POD technique the Eq.
(2.108) together with Eq. (2.112) represents the physical model. It has to be supplied by a properly selected
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stochastic model, where both models together build the mathematical model to determine corrections to the
field parameters. This model has been successfully applied for the determination of the gravity field model
ITG-Champ01 (details can be found in Mayer-Gürr et al. 2005).

If precise intersatellite functionals such as line-of-sight measurements between two satellites, following each
other on the same orbit are available, as in case of the GRACE mission, the mathematical model for range
observations can be derived by projecting the relative vector to the line-of-sight connection,

ρ(τ) = e12(τ) · (r2(τ) − r1(τ)) . (2.113)

Analog formulae can be derived for range-rates and range accelerations. The quantity e12 is the unit vector
of the line-of-sight direction of the two GRACE satellites with the positions r1(τ) and r2(τ). This vector is
known with high accuracy, assuming that the satellite positions are measured with an accuracy of a few cm
and taking into account the distance of approximately 200km between the two satellites. Nevertheless, this
accuracy is not adequate to the extremely high accuracy of the range measurements in the size of some µm.
Therefore, a model refinement is necessary which improves implicitly also the relative orbit. The arcs of the
satellites are fitted to the observables such that the unknown gravity field parameters are solved for while
the quadratic norm of the observation residuals is minimized. To end up with a stable solution, a regularized
solver of Tichnov type has to be applied, where the regularization parameter is preferably computed according
to the variance component estimation procedure due to Koch and Kusche (2003). Further details to the
physical model of the gravity field recovery technique based on GRACE low-low SST data can be found also
in Mayer-Gürr (2006) and in Mayer-Gürr et al. (2006).

2.4.3 The use of topographic-isostatic mass effects in Satellite Gravity Gradiometry

GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) has the potential of deriving the global
gravity field with unprecedented accuracy in the high resolution spectral part. The usual way is to model the
gravity field by spherical harmonics. A disadvantage of this kind of gravity field representation is the lack of
flexibility in modelling the inhomogeneous gravity field features in specific regions. An alternative approach is
to determine a global gravity field solution, based on GRACE SST observations up to a moderate degree and
improve this global solution in selected regions by an adapted regional recovery procedure. The individual
gravity field features in these regions can be modelled by space localizing base functions such as spherical
spline functions. The advantage of this method is the possibility of adjusting the spline representation and
the recovery procedure according to the regional gravity field structures and the specific data distribution. In
the present case, the consideration of topographic-isostatic effects as discussed above is even more important
than in case of SST because of the higher satellite altitudes of the latter one.

The observations of the GOCE gradiometer are the second derivatives of the gravitational potential ∇∇V (P ).
They are observed along the satellite orbit at a regular sampling rate. Every observation constitutes an
observation equation if the gravity field is parameterized, adapted to the specific task. The parameterization
of the potential is performed in terms of spherical harmonics for the global solution, in case of a regional
gravity field recovery the potential has to be parameterized by space localizing base functions. It can be
modelled as a sum of base functions as follows:

V (rP ) =
I∑

i=1

ai ϕ(rP , rQi
) (2.114)

with the field parameters ai arranged in a column matrix and the base functions,

ϕ(rP , rQi
) =

∞∑

n=0

kn

(
R

r

)n+1

Pn(rP , rQi
). (2.115)

The coefficients kn are the degree variances of the gravity field spectrum to be determined,

kn =
M∑

m=0

(
∆c2nm + ∆s2nm

)
. (2.116)
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R is the mean equator radius of the Earth, r the distance of a field point from the geocenter and Pn(rP , rQi
)

are the Legendre’s polynomials depending on the spherical distance between a field point P and the nodal
points Qi of the set of base functions. With this definition the base functions can be interpreted as isotropic
and homogeneous harmonic spline functions (Freeden et al. 1998). The nodal points are generated on a grid
by a uniform subdivision of an icosahedron of twenty equal-area spherical triangles. In this way the global
pattern of the spline nodal points Qi shows approximately uniform nodal point distribution (details can be
found in Eicker et al. 2004).

The observation equation for gradiometer measurements is obtained by differentiating the potential twice:

∇∇V (P ) =

I∑

i=1

ai ∇∇ϕ(rP , rQ). (2.117)

The observation equations are established for short arcs over the selected regional recovery area, while the
coverage with short arcs should be slightly larger than the recovery region itself to prevent the solution
from geographical truncation effects. Every short arc builds a partial normal equation. To consider different
accuracies of the short arcs these normal equations are combined by estimating a variance factor for every
arc by means of a variance component estimation such as described by Koch and Kusche (2003). In those
cases where a regularization is required, the regularization factor can be determined within the variance
component estimation procedure as well.
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3. Mass models of the Earth’s topography

In chapter 2, various geodetic applications are presented which demonstrate the need or at least the usefulness
of considering the effects of topographic-isostatic masses. For this reason, the mass of the Earth must be
modeled in a satisfying way. The topographic-isostatic models with mass density information from geological
and geophysical investigations and orthometric heights from digital terrain models can be used for geodetic
applications. These models have more or less a geophysical meaning. Other models, such as Helmert’s methods
of condensation can be used as purely mathematical approaches to remove the masses outside the geoid and
shift it inside the boundary surface. In this chapter a review of the various topographic-isostatic models
and the different data sets is given which can be used for the geodetic applications of topographic-isostatic
masses as mentioned in chapter 2:

1. digital terrain models (DTM) for modelling the shape of the topography,

2. digital density models (DDM) for modelling the spatial distribution of density in the topography and
deeper masses,

3. isostatic models for analytically modelling the Earth’s outer masses,

4. Helmert’s method of condensation as a simple model to fulfill the assumption of Stokes’ theory.

3.1 Digital terrain model

A digital terrain model (DTM) is a digital representation of the topography of the Earth, that is, by horizontal
coordinates and a numerical description of the topography heights. A large variety of digital terrain models
is currently available. Some DTM’s only contain height information of the solid Earth surface (i.e. land
heights and ocean depths), whereas others also contain information on, for instance, thicknesses of glaciers
and oceanic ice shelves, or lake depths. In this investigation the digital terrain model ETOPO5 with a
resolution of five arc-minutes is used for the satellite applications. ETOPO5 (Earth Topography 5-minute)
is a gridded elevation (land) and bathymetry (sea floor) data set for the entire Earth at a grid spacing of
5 minutes (1/12 of a degree or 300 arcseconds). The entire data set consists of a single file which has 4320
columns and 2160 rows. This data set was compiled using data from many different sources by the National
Geophysical Data Center (NGDC), which is part of the National Oceanic and Atmospheric Administration
(NOAA). Most of the data set dates back to 1988, except for a small area in Canada that was re-gridded
in 1990. Elevation values are stored in a flat binary file (row major, no header) as signed 2-byte integers,
and are available with both the LSB (least significant byte first) and MSB (most significant byte first) byte
orders. The elevation units are meters. This data set provides global coverage and can be obtained free
of charge from NGDC/NOAA. A version with a resolution of two arc-minutes (3.6 km) was published in
2001. Five major data sources were assembled into the ETOPO2 data base: data derived from GLOBE
DEM (Sandwell and Smith 1997), bathymetric data from the Digital Bathymetric Data Base (DBDB),
from the International Bathymetric Chart of the Arctic Ocean (IBCAO) and the Digital Bathymetric Data
Base with a 5 arc-minutes resolution (DBDB5) filling any gaps (Kiamehr and Söjberg 2005). For more
information see: www.ngdc.noaa.gov/mgg/fliers/01mgg04.html. In this investigation, for Earth surface and
airborne applications the numerical tests are based on the high-resolution DTM GEBCO with one arc-
minute resolution (www.ngdc.noaa.gov/mgg/gebco). The GEBCO Digital Atlas project is carried out under
the auspices of the Intergovernmental Oceanographic Commission (IOC) and the International Hydrographic
Organization (IHO). It has been reviewed by the Joint IOC/IHO Guiding Committee for GEBCO; a technical
guidance is provided by the GEBCO Sub-Committee on Digital Bathymetry.
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3.2 Digital density models

So far, the actual density of the Earth crust is not known; occasionally density models describe only the
surface densities, derived from geological maps. Therefore, many of the investigations performed in the
past depend on a constant density for the Earth crust. Since the actual density of the topographic masses
may differ by more than 10% from a constant density (Martinec 1993; Tziavos et al. 1996; Pagiatakis and
Armenakis 1998; Kuhn 2000a, b; Huang et al. 2001), the resulting geoid models will contain significant
errors. Therefore, a 3-D digital density model (3-DDM) would be required to give a better modelling of the
topographic masses. But in practice, it is very difficult – if not impossible – to provide such models on a
global scale. On the other hand, 2-DDM are sufficient for many geodetic applications. Nowadays, a 2-DDM
is available for some regions such as for Canada (see, e.g., Pagiatikis and Armenakis 1998). In general, any
reasonable density model will give an improvement by using more realistic gravity reductions for the geoid
determination.

3.3 Isostatic models

One of the first ideas about the equilibrium of the Earth’s outer layers originate from Leonardo da Vinci
(1452-1519). He expressed interesting speculations how the Earth might response to loads on its surface.
Much later, Bouguer in 1749 gave the first experimental proof for the isostasy theory during the expedition
to Quito (South America) in the year 1735 to measure the length of the meridian at the equator to derive
the eccentricity of the ellipsoidal figure of the Earth. He discovered that the attraction effects of the Andes
are by far smaller than it would have been expected because of the huge visible masses. For the explanation
of this phenomena Bouguer and Boscovich (1755) speculated that the mass excess of the mountains might be
compensated in some way by a mass deficiency at depth (Watts 2001). Some decades later, Everest carried
out geodetic measurements in India in the years 1840 to 1859. As part of these measurements he computed
the geodetic position at a number of locations where he had already measured astronomic positions. He found
that for the cities Kaliana and Kalianpur in the Ganges plain the latitude differences between the positions
computed geodetically was 5.24 arc-seconds smaller than those determined astronomically. Everest concluded
that this discrepancy was not caused by the astronomical measurements; they could only be caused by the
geodetic determination of the positions. But Pratt in 1854 and Airy in 1859 disagreed; they explained these
significant differences by their isostatic models that they proposed before. Both came to the conclusion that
the visible topographic masses of the Himalaya must be compensated in some way. This idea was the same
which has been expressed much earlier by Leonardo da Vinci. He had stated that the visible masses must
be in equilibrium with more deep-seated masses (Heiskanen and Vening-Meinesz 1958). The first who used
the term “isostasy” was the American geologist C.E. Dutton (1889) in his article ”On Some of the Greater
Problems of Physical Geology”.

For the determination of the gravity field, the following considerations of a compensation mechanism in
the crust by the Bouguer anomalies are important (Heiskanen and Moritz 1967): “One might be inclined to
assume that the topographic masses are simply superposed on an essentially homogeneous crust. If this were
the case, the Bouguer reduction would remove the main irregularities of the gravity field, so that the Bouguer
anomalies would be very small and would fluctuate randomly around zero. However, just the opposite is true.
Bouguer anomalies in mountain areas are systematically negative and may attain large values, increasing in
magnitude on the average by 100 mGals per 1000 meters of elevation. The only explanation possible is that
there is some kind of mass deficiency under the mountains”. This means that the topographic masses are
compensated in some way which has consequences for the roughness of the functionals of the gravity field,
such as gravity anomalies and gravity disturbances as well as deflections of the vertical.

The idea of isostasy consists of the assumption that the topographic masses above the geoid are compensated
by more deep-seated mass distributions. There are two principle concepts, which differ substantially. In the
first concept, which was developed by Pratt, the mountains have risen from the underground somewhat
like a fermenting dough. In the second concept according to Airy, the mountains are floating on a fluid
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lava of higher density, so that the higher the mountains are, the deeper they sinks. In both concepts the
pressure produced by the topographic masses on the compensation surface must be equal to the buoyant
forces produced by the isostatic masses.

Now the question arises which model should preferably be used for the isostatic compensation, especially
for the determination of the gravity field. There are regions in which the concept of Pratt and others in
which the concept of Airy meets the reality better. But there are also areas, in which the simple isostatic
equilibrium as discussed before is disturbed and the isostatic compensation is much more complicated than
in these simplified cases. This can only be decided after a careful analysis of the specific gravity field features
within the various geographical regions of the Earth. Important for the determination of gravity field models
is the fact that the gravity functionals should be smoothed by consideration of the topographic-isostatic
reductions. It shall be pointed out that this demand might be different from the demands of different other
applications. In the following subsections different isostatic models will be discussed.

3.3.1 Airy-Heiskanen model

In 1855 the English astronomer G.B. Airy published his hypothesis of the compensation mechanism of
topographic masses. He assumed that the Earth’s crust in regions with substantial topographic masses such
as mountain chains in the scale of the Himalayas must sink with individual depth into the mantle. The
weight of the topographic masses must be compensated by buoyant forces from below. According to his
hypothesis, these forces result from the immersion of the lighter crust material into the denser mantle. Airy
came already to the conclusion that the compensation can not be purely local and a certain part of the
topography is carried by the resistance of the crust. This idea was enhanced later by Vening Meinesz in his
regional compensation model. The model of Airy was mathematically described in 1924 and 1938 by W.A.
Heiskanen and after that used for the computation of different isostatic corrections. From that time the
isostatic model was called the Airy-Heiskanen Model. It can be applied under the following assumptions:

1. the isostatic compensation takes place completely and locally, i.e. the compensation mass is directly
under the regarded topographic mass and there is no regional emanating effect,

2. the density of the crust is assumed to be 2670 kg/m3. The difference in the density between the crust
and mantle is taken to be 600 kg/m3.

The choice of the depth of the crust for the entire Earth, T , is extremely difficult (Fig. 3.2, left), since the
crust thickness within the continents varies strongly; Heiskanen suggested a mean value of T=30 km. The
mathematical treatment of this model can be performed by dividing the topographic masses into individual
compartments, for which the hydrostatic balance condition is applied. This means that the pressure exerted
by the weight of the topographic masses must be equal to the pressure produced by the lift forces of the
isostatic masses. Also, the mass equality condition can be used for estimating the roots with thickness t
under mountains or anti-roots with thickness t′ under oceans. In the following, the spherical and planar
approximation will be studied.

Spherical approximation In the following, the geoid used as reference surface for the heights given by
the DTMs is approximated by a geocentric mean sphere of radius R =6371 km (Fig. 3.1). The geocentric
radii of the computation and the integration points are given by adding the DTM heights, interpreted here
as orthometric heights of these points, to the radius of the geocentric sphere, so that the ellipsoidal shape
of the Earth is neglected. The error of this simplification is very small and in the size of approximately one
percent of the total effect (cf. Novák and Grafarend 2005). In spherical approximation, a mass element of
the topographic or compensation masses is called tesseroid. The ideal situation of the Earth can be defined
as follow: below R the density equals the density of the crust ρcr, above R the density equals 0.0 and below
(R− T ) the density equals the density of the mantle ρm. The mass of the topography in this case is defined
as the sum of all mass deviations (with respect to the ideal situation). The mass of a layered topography can



3.3. Isostatic models 35
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Fig. 3.1: Approximation of the geoid by an ellipsoid (left) and a sphere (right)

be defined as the sum of all mass deviations with respect to ρcr. Thus, assuming that a column consists of
several layers with constant densities, the differences of the masses of these layers and the masses with ρcr
give the topographic mass of this column (Fig. 3.2, left). The mass of the topography column can be given
by (Classens 2003):

MT
S =

i=l∑

i=0

∫∫

σ

R+Hi∫

R

(ρi − ρi+1)ξ
2dξdσ, (3.1)

with

ρ0 =

{

0 for H0 ≥ 0

ρcr for H0 ≤ 0
and ρl+1 =

{

0 for Hl > 0

ρcr for Hl < 0
. (3.2)

Also, the mass of the root with thickness t or of the anti-root with thickness t′ is given in spherical approxi-
mation by

MC
S =

∫∫

σ

R−T∫

R−T−t

∆ρr2drdσ, (3.3)

where ∆ρ is the difference between the density of the mantle ρm and the density of the crust ρcr.

The condition of the “equilibrium of masses” between an element of mass at the surface of the Earth and a
mass element at a depth T reads in spherical approximation

MT
S = MC

S , (3.4)

or

i=l∑

i=0

∫∫

σ

R+Hi∫

R

(ρi − ρi+1)ξ
2dξdσ =

∫∫

σ

R−T∫

R−T−t

∆ρξ2dξdσ. (3.5)
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Fig. 3.2: Airy-Heiskanen model, left with constant density; several layers right

If the area elements dσ are assumed to be equal, Eq. (3.5) can be integrated with respected to r to give the
following equation:

l∑

i=0

(ρi − ρi+1)

3

[
(R+Hi)

3 −R3
]

=
∆ρ

3

[
(R− T )3 − (R− T − t)3

]
. (3.6)

This equation can be solved for the root columns t to give

t = (R− T )









1 −
3

√
√
√
√
√

1 −

l∑

i=0

[(R+Hi)3 −R3] (ρi − ρi+1)

(R− T )3∆ρ









. (3.7)

If the density of the topographic masses is assumed to be constant and identical to the density of the crust,
Eq. (3.7) can be simplified for the roots as follows,

t = (R− T )

[

1 − 3

√

1 − [(R+H)3 −R3] ρcr
(R− T )3∆ρ

]

, (3.8)

and for the anti-roots

t′ = (R− T )

[

3

√

1 +
[R3 − (R−H ′)3]

(R− T )3
(ρcr − ρw)

∆ρ
− 1

]

, (3.9)

where ρw is the density of the water.

Eq. (3.8) can be rearranged to give

t = (R− T )



1 − 3

√
√
√
√1 − η

[(

1 +
H

R

)3

− 1

]

 , (3.10)

with

η :=
R3

(R− T )3
ρcr
∆ρ

(3.11)
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Expanding the term inside the root of Eq. (3.10) into a binomial series,

η

[(

1 +
H

R

)3

− 1

]

= η

(
3H

R
+

3H2

R2
+
H3

R3
. . .

)

=: ζ, (3.12)

Eq. (3.10) can be written as

t = (R− T )
[

1 − (1 − ζ)1/3
]

. (3.13)

Also, expanding the term (1−ζ)1/3 in Eq. (3.13) in a binomial series and restricting the series to the quadratic
term gives after some rearrangements

t =

(
R

R− T

)2
ρcr
∆ρ

H

[

1 +
H

R

((
R

R− T

)3
ρcr
∆ρ

+ 1

)]

+O

(
H

R

)3

. (3.14)

Applying an analogous procedure for the anti-roots, Eq. (3.9) can be approximated as

t′ =

(
R

R− T

)2
(ρcr − ρw)

∆ρ
H ′

[

1 +
H ′

R

((
R

R− T

)3
(ρcr − ρw)

∆ρ
− 1

)]

+O

(
H ′

R

)3

. (3.15)

The roots and anti-roots in spherical approximation with constant topographic densities have been derived
also by Heiskanen and Vening Meinesz (1958), Rummel et al. (1988) and Abd-Elmotaal (1991).

A frequently used concept to reduce the several topographic layers to only one layer for reducing CPU time is
the concept of “equivalent rock topography”. In this approach, all layers consisting of material with different
densities are replaced by an equivalent rock layer with the density of the crust ρcr and a certain thickness.
The thickness of the equivalent layer Heq is determined by assuming the condition that the mass of a column
of equivalent rock layer should be equal to the mass of the original layers in the same column so that it holds
(see Fig. 3.3):

MT
S =

l∑

i=0

(ρi − ρi+1)

3R2

[
(R+Hi)

3 −R3
]
dσ =

ρcr
3R2

[
(R+Heq)

3 −R3
]
dσ. (3.16)

Eq. (3.16) can be solved for the quantity Heq (rock equivalent topography):

Fig. 3.3: Ideal situation of the topography (left), three layers of topography (middle) and rock equivalent
topography (right)

Heq =

[

R3 +
3R2

ρcr
MT
S

] 1
3

−R. (3.17)
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If the equivalent rock topography is used, the roots can be given in spherical approximation by inserting the
rock equivalent topography in Eq. (3.14):

teq =

(
R

R− T

)2
ρcr
∆ρ

Heq

[

1 +
Heq

R

((
R

R− T

)3
ρcr
∆ρ

+ 1

)]

+O

(
Heq

R

)3

. (3.18)

Planar approximation In case of the planar approximation, the mass of the topography and the com-
pensating masses are given by (Fig. 3.4),

MT
P =

l∑

i=0

(ρl − ρl+1)Hidσ (3.19)

and

MC
P = ∆ρtdσ, (3.20)

respectively. Therefore, the root or anti-root is given by

t =
1

∆ρ

l∑

i=0

(ρl − ρl+1)Hi. (3.21)

The formulae for the roots and anti-roots in planar approximation and by assuming constant density can
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Fig. 3.4: Airy-Heiskanen isostatic model in planar approximation

be given as the limits of the functions in Eq. (3.14) and Eq. (3.15) with R→ ∞:

t = lim
R→∞

((
R

R− T

)2
ρcr
∆ρ

H

[

1 +
H

R

((
R

R− T

)3
ρcr
∆ρ

+ 1

)]

+ O

(
H

R

)3
)

=
ρcr
∆ρ

H (3.22)

t′ = lim
R→∞

((
R

R− T

)2
(ρcr − ρw)

∆ρ
H ′

[

1 +
H ′

R

((
R

R− T

)3
(ρcr − ρw)

∆ρ
− 1

)])

=
(ρcr − ρw)

∆ρ
H ′.

(3.23)

Also the rock equivalent topography in planar approximation is given by:

MT
P =

l∑

i=0

(ρi − ρi+1)Hidσ = ρcrHeqdσ, (3.24)
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which follows (assuming also the areas of the elements to be equal):

Heq =

l∑

i=0

(ρi − ρi+1)Hi

ρcr
. (3.25)

If the topography has a constant density ρcr (one layer topography), the rock equivalent topography can be
derived by

Heq =







land: Heq = H

ocean: Heq =
ρcr − ρw
ρcr

H ′






. (3.26)

In this case the roots or anti-roots are given by

teq =
ρcr
∆ρ

Heq. (3.27)

3.3.2 Pratt-Hayford model

In 1854 J.H. Pratt developed his hypothesis to explain the significant differences in the deflections of the
vertical, computed from the attraction of the topographic masses of the mountains and obtained by astro-
geodetic measurements. In 1859 he published the theory that the topographic masses of the mountains (mass
surplus) are compensated by a mass deficit within the Earth’s crust under the mountains. The mass deficit
extends down to a constant depth into the Earth’s crust. Pratt assumed that the density of the topography
depends on the height above the geoid, so that the density under the mountains is smaller than under the
ocean. Pratt proposed a compensation depth of 100 km for the Himalayan area so that the difference between
the astro-geodetically observed deflections of the vertical and those derived from the topographic-isostatic
masses becomes nearly zero. The depth of the compensation surface coincides approximately with the thick-
ness of the lithosphere of approximately 100 km in the global mean (Kertz 1969). In 1909/1910 Hayford
formulated Pratt’s model mathematically. This isostatic model of the Earth’s crust is well-known afterwards
as the model of Pratt-Hayford. Usually it is applied assuming that

1. the isostatic equilibrium is realized everywhere in the same way, so that the density under the mountains
is smaller than under the flat regions or under the oceans,

2. the compensation masses with laterally varying densities are located below the sea level and reach down
to a depth D (compensation depth) until hydrostatic equilibrium is reached,

3. Hayford modified this model and proposed that the condensation depth D is reckoned from the Earth’s
surface instead from the sea level to end up with simpler computation formulae.

The general mathematical description of the model is based on the principle of hydrostatic equilibrium,
which is reached in a depth D. For the determination of the lateral density variations, the topographic and
isostatic masses are divided also into individual compartments (rock columns). The principle of hydrostatic
balance or the condition of mass equality has the consequence that the pressure exerted on the compensation
surface is identical for every rock column. The density distributions in the different topography columns, ρL,
can be determined based on the density of the crust ρcr. In the following the model densities for the rock
columns are derived from the mass equality condition. This condition means that the mass of a column with
a topographic height zero (and therefore a thickness D) is identical to the masses of a column consisting of
the crust column and the layered topography. The gravity forces are assumed identical in each column. This
holds for the spherical as well as for the planar approximation.



40 3. Mass models of the Earth’s topography

Spherical approximation In the following, the density of the oceans is assumed to be constant. The
density under the geoid at the continental areas can be derived based on the mass equality condition as
follows:

∫∫

σ

R∫

R−D

ρcrξ
2dξdσ =

∫∫

σ

R∫

R−D

ρLξ
2dξdσ +

i=l∑

i=0

∫∫

σ

R+Hi∫

R

(ρi − ρi+1)ξ
2dξdσ, (3.28)

where D is the Pratt-Hayford compensation depth which is taken to be constant and equal to 100 km
(Heiskanen and Moritz 1967), and ρL is the density under continental areas. The densities ρ0 and ρl+1 are
defined in Eq. (3.2). In this case the topographic density is assumed to be known above the geoid and the
density ρL will be calculated for the mass column between the geoid and the compensating surface. After
definite integration of Eq. (3.28) it reads:

ρcr
[
(R)3 − (R−D)3

]
=
[
R3 − (R−D)3

]
ρL +

l∑

i=0

(ρi − ρi+1)

3

[
(R+Hi)

3 −R3
]
. (3.29)

The density function for the continental areas can be determined by the formulae as follows:

ρL =

[
R3 − (R−D)3

]
ρcr −

l∑

i=0

(ρi−ρi+1)
3

[
(R+Hi)

3 −R3
]

(R)3 − (R−D)3
.

(3.30)

If the density of the topography and the crust under the mountains are assumed to be unknown, the condition
of mass equality leads to the formula (Fig. 3.5):

∫∫

σ

R∫

R−D

ρcrξ
2dξdσ =

∫∫

σ

R+H∫

R−D

ρlandξ
2dξdσ. (3.31)

In this case the density ρland is calculated for the mass element reaching from the surface of the Earth down
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Fig. 3.5: Pratt-Hayford compensating model in spherical approximation with constant density

to the compensation depth resulting in

ρland =
R3 − (R−D)3

(R+H)3 − (R−D)3
ρcr. (3.32)

Eq. (3.32) can be reformulated to give

ρland =
R3(1 − (1 −D/R)3

R3 [(1 +H/R)3 − (1 −D/R)3]
ρcr

=
D

(H +D)

[
3R2 − 3DR+D2

3R2 + 3RH − 3RD +H2 −HD +D2

]

ρcr.

(3.33)
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By simplification of the term in brackets Eq. (3.33) can be written in the following form (Kuhn 2000a):

ρland =
D

D +H

[

1 − H

R
+

2

3

H(H −D)

R2

]

ρcr. (3.34)

If the topographic masses are considered with lateral variable density ρt only (Fig. 3.6), the density for the
column between the geoid and the compensation depth can be determined as follows:

∫∫

σ

R∫

R−D

ρcrr
2drdσ =

∫∫

σ

R∫

R−D

ρLr
2drdσ+

∫∫

σ

R+H∫

R

ρtr
2drdσ. (3.35)

After definite integration Eq. (3.35) can be rearranged as

ρL =

[
R3 − (R−D)3

]
ρcr −

[
(R+H)3 −R3

]
ρt

[R3 − (R−D)3]
. (3.36)

Eq. (3.36) can be reformulated analogously to Eq. (3.32) to give (Kuhn 2000a),

Fig. 3.6: Pratt-Hayford compensating model in spherical approximation with laterally variable density

ρL = ρcr −
H

D

[

1 +
H +D

R
+

(H +D)(H + 2D)

3R2

]

ρt. (3.37)

The density in ocean areas ρO can be found assuming a constant water density ρw by the formula

R∫

R−D

ρcrξ
2dξdσ =

R−H′

∫

R−D

ρOξ
2dξdσ +

R∫

R−H′

ρwξ
2dξdσ, (3.38)

or after definitive integration
[
R3 − (R−D)3

]
ρcr = ρw

[
R3 − (R−H ′)3

]
+ ρO

[
(R−H ′)3 − (R−D)3

]
, (3.39)

which leads to a formula for the column density of the ocean areas

ρO =

[
R3 − (R−D)3

]
ρcr − ρw

[
R3 − (R−H ′)3

]

[(R−H ′)3 − (R−D)3]
. (3.40)

Eq. (3.40) can be reformulated analogously to Eq. (3.32) to give (Kuhn 2000a):

ρO =
Dρcr −H ′ρw
D −H ′

[

1 +
DH ′

Dρcr −H ′ρw

(ρcr − ρw)

R
+

2

3

DH ′(D −H ′)

(Dρcr −H ′)

(ρcr − ρw)

R2

]

. (3.41)
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Planar approximation The principle of hydrostatic equilibrium and of the condition of mass preservation
leads analogously to Eq. (3.28) to the formula:

dσ (Dρcr) = dσ (DρL) +
i=l∑

i=0

(ρi − ρi+1)Hidσ. (3.42)

Then the column density in continental areas is given by:

ρL =

Dρcr −
i=l∑

i=0

(ρi − ρi+1)Hi

D
. (3.43)

If the density of the topographic masses and the crust are assumed to be unknown (Fig. 3.7), then ρL will
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Fig. 3.7: Pratt-Hayford compensating model (constant density) in planar approximation

be determined by

ρland =
D

D +H
ρcr, (3.44)

which follows from the mass equality condition, too. Again, if the density of the topographic masses is
assumed to be laterally variable only, then Eq. (3.43) reads

ρL =
Dρcr −Hρt

D
. (3.45)

In Pratt’s original formulation which was defined only over continental areas, the topographic masses are
considered with the same constant density ρcr (constant crust density). The density in the continental areas
can be given by (Kuhn 2000a):

ρL =
D −H

D
ρcr. (3.46)

Finally the density under the ocean areas can be determined based on the mass equality condition as follows:

ρO =
Dρcr −H ′ρw
D −H ′

. (3.47)

It is preferable in the Pratt-Hayford model to adapt the topographic heights and bathymetric depths from
the DTM directly as absolute values. This means that the concepts of the rock equivalent topography will
not be applied in this investigation (see Tsoulis 1999a; 2001).
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3.3.3 Combined Airy-Pratt model

A disadvantage of the original Airy-Heiskanen model is the fact that the anti-roots in the ocean areas
can attain values which are larger than the thickness of the crust. Obviously, the anti-roots can never
extend the thickness of the crust, i.e. t′ in Eq. (3.15) can never be larger than T −H ′. This means that H ′

must be not larger than approximately 8000 m for the realistic values ρ = 2670kg
/
m3, ρw = 1027kg

/
m3,

ρm = 3270kg
/
m3, R=6371 km and T =30 km. In reality, several deep-sea trenches exceed this value. This

example demonstrates that the Airy-Heiskanen model cannot be correct in these cases. As a way out of this
problem, the anti-roots can either be restricted to the crust boundary or the normal crust thickness T has
to be changed. In our study T will not be changed to enable comparability on the one hand; on the other
hand, the restriction of the anti-roots to the crust boundary causes some errors in computing the isostatic
effects. Therefore, a combined Airy-Pratt model is applied as a combination of the Airy-Heiskanen model
and the Pratt-Hayford model (Wild and Heck 2004a, b). In this model, the Airy-Heiskanen model is applied
in the land areas and the Pratt-Hayford model in the ocean areas.

3.3.4 Vening-Meinesz model

The well known compensation principle of Airy-Heiskanen postulates an isostatic compensation within each
mass column; there is no dependency between neighbouring columns. This is not true in reality due to
the elasticity of the Earth. Vening-Meinesz modified the Airy floating theory to include also these features
(Vening Meinesz 1931, Vening Meinesz 1939). In his approach, each topographic column of infinitely small
cross section is considered to be compensated by a mass equal to the local compensation of this element but
spreads horizontally according to the curved deformation of the Earth’s crust (Fig. 3.8). He assumed the
crust as a homogenous elastic plate floating on a viscous material. Its deformation can be represented by
the deformation of an infinitely thin plate according to the laws developed within the frame of the elasticity
theory. The bending of the crust plate is described based on elasticity theory (Heiskanen and Moritz 1967;
Landau and Lifshitz 1959; Grüninger 1990; Abd-Elmotaal 1995a; Watts 2001). The equation of equilibrium

Fig. 3.8: Local and regional compensation

for a free plate of constant thickness T bent by an external force F acting on a point P can be written as
(Courant and Hilbert 1953; Landau and Lifshitz 1959),

D∆2z = F, (3.48)

with the two-dimensional Laplace operator ∆,

∆ =
∂2

∂x2
+

∂2

∂y2
. (3.49)

and the downward displacement z. The flexural rigidity of the plate D can be determined by (see, e.g.,
Jeffreys 1976; Banks et al. 1977; Abd-Elmotaal 1995a; Watts 2001)

D =
ET 3

12(1 − χ2)
, (3.50)
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where E is Young’s modulus and χ Poisson’s ratio.

The bent plate is considered to be floating on a liquid layer (substratum) of higher density ρm (Fig. 3.9). In
this case, a hydrostatic uplift force per unit area equal to gzρm will act opposite to the external force F and
must be subtracted from it. Thus, the equation of equilibrium for a floating bent plate will be given by:

D∆2z = F − gzρm. (3.51)

This equation was treated for the first time in Hertz (1884) and was also used without derivation in Jeffreys
(1976). To get a horizontal upper surface of the plate, the upper concave surface appearing in Fig. 3.10 must
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Fig. 3.9: Bending of a floating plate
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Fig. 3.10: The indirect effect

be filled with mass; this represents the indirect effect (do not mix it up with the indirect effect in case of the
geoid computation). This depression can be considered to be filled up with the same material as the plate.
Then this filling produces a force equal to gzρcr per unit area, acting in the same direction as the external
force. Finally, the equation of equilibrium for a floating bent plate will be given by (Abd-Elmotaal 1995a):

D∆2z = F − gzρm + gρcrz = F − gz(ρm − ρcr). (3.52)

The solution of Eq. (3.52) can be determined with the help of the Thomson function kei(x) (Márkus 1978,
Grüninger 1990) as follow:

z = − F
2πl2∆ρ

kei(x), (3.53)

with

x =
r

l
and ∆ρ = ρm − ρcr. (3.54)

To simplify the computations, Vening Meinesz (1939) introduced a polynomial function Z(x) in order to
describe the vertical component of the bending by two different polynomials of the form

Z(x) = Z1(x) + Z2(x), (3.55)
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with

Z1(x) = f
[
c1x

6 + c2x
4 + c3x

2 + c4
]
; 0 ≤ x ≤ 2 (3.56)

Z1(x) = f
[
c5x

4 + c6x
2 + c7

]
; 0 ≤ x ≤ rmax (3.57)

and

f =
mp

8∆ρl2
; l = 4

√

D

g∆ρ
; x =

r

l
, (3.58)

where l is the degree of regionality which describes the mechanical stiffness of the plate using the flexural
rigidity D (Jeffreys 1976; Banks et al. 1977), f is the maximum downward displacement (Vening Meinesz
1939, P. 5), rmax is the maximum extension of the regional compensation for one single load/relief (Vening
Meinesz 139, p. 713) and mp is the load generated by the topographic masses. In ocean area, mp denotes the
relief generated by the ocean water mass deficiencies with the density difference (ρcr − ρw). The coefficient
(ci, i = 1, . . ..., 7) can be found, for example, in Heiskanen and Vening Meinesz (1958), Abd-Elmotaal (1991)
and Abd-Elmotaal (1995a) as shown in Table 3.1.

Table 3.1: Polynomial coefficients of the bended curve

Coefficients Vening Meinesz Abd-Elmotaal
(rmax=2.905l) (rmax=2.914l)

c1 -0.00913 -0.00925
c2 0.09906 0.09922
c3 -0.35434 -0.34969
c4 0.41660 0.40336
c5 0.00275 0.00320
c6 -0.09234 -0.09748
c7 0.58340 0.59664

The difference between the exact solution, given by the elasticity theory, and the approximate solution, given
by Eqs. (3.56) and (3.57), can be neglected in all practical cases (Grüninger 1990, Abd-Elmotaal 1995a).

For the determining the Vening-Meinesz compensation depths, the mass of the point load mp due to a vertical
column of topography of density ρcr, height H and infinity small cross sectional area ds, can be written as:

mp = ρcrHds. (3.59)

Thus the bending due to this topographic column will be

Zmp = f(r)ρcrHds. (3.60)

The total bending t due to the entire topographic masses can be given by (Abd-Elmotaal 1995a):

t(x, y) =

∫∫

s

ρcrH(x′, y′)f(r)ds, (3.61)

with

f(r) = z, (3.62)

where ds can be expressed in Cartesian or spherical coordinates as follows:

ds = dxdy, ds = R2 cosϕdϕdλ, (3.63)

and R is the radius of the mean Earth, dϕ and dλ represent the dimensions of the topographic column in the
latitude and the longitude directions, respectively. The total bending t is closely related to the Moho depth

Hm = T + t, (3.64)

where T is the crustal thickness for a topography with zero heights.
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3.4 Helmert’s models of condensation

Helmert proposed the condensation method to remove the topographic masses outside the geoid and condense
them onto a surface as a single layer within the masses. One alternative is to condense the topographic masses
on a surface parallel to the geoid located at a depth of 21 km below the geoid (Helmert 1884). This depth,
corresponding to the difference in the lengths of the equatorial and the minor semi-axes of the Earth ellipsoid,
was chosen in order to shift the topographical masses below a sphere situated completely within the geoid.
This proposal is the so-called Helmert’s first method of condensation. In a second method, the condensation
surface is the geoid itself. There is a large number of publications referred to Helmerts condensation models,
see, e.g., Wichiencharoen (1982); Heck (1992); Martinec et al. (1993); Sjöberg (1994), (1995), (1996a), b;
Martinec and Vaníček (1994a, b); Vaníček et al. (1999); Sjöberg and Nahavandchi (1999); Kuhn (2000a), b;
Kuhn (2002); Kuhn (2003). Although Helmert’s second method of condensation cannot adequately describe
the density distribution within the Earth’s crust, it has been applied for practical determination of the geoid.
Its advantage is the very small indirect effect even in case of very high mountains. It is well-known from the
analysis of gravity observations (Kuhn 2000a) that the true gravity field of the Earth contains significant
short wavelengths. These short wavelength constituents are generated by the topographical masses and show
approximately a linear dependency with the topographical heights. Therefore, gravity anomalies computed
from Helmert’s second method of condensation are as rough as free-air anomalies. This is the reason that
the downward continuation of the gravity from the surface of the Earth to the geoid in a rough gravity
field may become dubious. Since the short wave-length components cannot be eliminated by the reduction
procedure of Helmert’s second method of condensation, it is obvious that the reduction model implied by
this method cannot work in a satisfaying way in high-resolution applications (Heck 2003). Although some
authors (e.g., Martinec 1995; Kuhn 2000a) have pointed out that the gravity anomalies related to Helmert’s
second method are strongly correlated with the topographical heights, this model is still widely used in the
determination of the geoid due to their small indirect effect.

In case of Helmert’s first method of condensation, the reduced gravity is rather smooth (Kuhn 2000a),
showing strong similarities to the reduction results by classical isostatic models such as discussed before
(Heck 2003). This model approximates the geophysical reality better than Helmert’s second model. With a
proper selection of Helmert’s condensation depth D1 the condensation method can be adjusted to a more
realistic topographic-isostatic reality. This modification of Helmert’s condensation method has been proposed
by Heck (2003) and can be defined as generalized Helmert method of condensation. In the following the single
layer density for spherical and planar approximation will be discussed.

Spherical approximation In Helmert’s methods of condensation, the single-layer density k is a function
of the topographical heights. Using the mass conservation principle, the local single-layer density can be
given in spherical approximation as follows (Fig. 4.8):

kR2
Cdσ = MT

S , (3.65)

which follows

k =
1

R2
C

i=l∑

i=0

R+Hi∫

R

(ρi − ρi+1)ξ
2dξ, (3.66)

where ρ0, ρl+1 are defined in Eq. (3.2), RC = R for Helmert’s second method of condensation and RC =
R−D1 in case of Helmert’s first or generalized method of condensation with Helmert’s condensation depth
D1.

After integration and applying a binomial series expansion, the single-layer density can be given by:

k =

l∑

i=0

(ρi − ρi+1)

[
(R+H)3i −R3

3R2
c

]

=

l∑

i=0

(ρi − ρi+1)

R2
c

R3

[(
Hi

R

)

+

(
Hi

R

)2

+
1

3

(
Hi

R

)3
]

. (3.67)
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If the topographic masses have a constant density (one layer with density ρcr), Eq. (3.67) can be simplified
to

k =
ρcr
R2
c

R3

[(
H

R

)

+

(
H

R

)2

+
1

3

(
H

R

)3
]

. (3.68)

From the above formulae and from the formulae which will be given in chapter 4 it is shown that the
respective formulae for the generalized Helmert’s model of condensation are much simpler than the isostatic
models (for example the Airy-Heiskanen model). Therefore this model can be considered as a proper method
for downward continuation and related tasks within the frame of geoid determination (Heck 2003).

The only disadvantage of this generalized method of Helmert is that the indirect effect, primarily due to
non-vanishing components proportional to the topographical height, will be larger than those of Helmert’s
second method of condensation. It has the same order of magnitude as the indirect effects related to the
classical isostatic models (Kuhn 2002).

Planar approximation In case of the planar approximation, the single layer density is given by using Eq.
(3.19) as follows:

dσk =

l∑

i=0

(ρi − ρi+1)Hidσ

k =
l∑

i=0

(ρi − ρi+1)Hi,

(3.69)

and for a constant density or the rock equivalent topographic procedures it follows analogously to Eq. (3.24)

k = ρcrHeq. (3.70)
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4. Computation of the gravitational effects of the
topographic-isostatic masses

The effects of the topographic-isostatic masses can be calculated using analytical, numerical and combination
methods. The numerical and combination methods are preferable in the case of more than one computation
point, especially when the goal is the computation of these effects at the points of a regular grid. The latter
may coincide with the outer boundary of the topographic masses as described by the surface relief or may
be located at a given flight altitude above the terrain for airborne gravimetry. The different demands of
the numerical evaluations depend on the nature of the problem and on the required accuracy level. The
efficiency of the computation methods can be increased by introducing spectral techniques which permit a
fast evaluation of the respective quantities (Tsoulis and Tziavos 2003).

There are various computation methods which are used for calculating the topographic-isostatic effects:

1. direct integration method,

2. Fast Fourier Transform (FFT),

3. spherical harmonic expansion,

4. spline function,

5. combined method.

The FFT method is restricted first of all to planar applications and has been extensively discussed in the past.
In the present applications the focus is on spherical approximations and will, therefore, not be treated here.
Details can be found in various publications (see, e.g., Bracewell 1978; Forsberg 1985; Sideris 1985; Schwarz
et al. 1990; Parker 1995, 1996; Kirby and Featherstone 1999; Smith 2002; Bracewell 1978; Harrison and
Dickinson 1989; Li and Sideris 1994). The singularity at the computation point in the numerical calculation
of FFT was studied by e.g. Martinec et al. (1996), Kirby and Featherstone (1999), Nagy et al. (2000). The
weak singularities in the terrain correction kernel can be avoided using the procedures derived by Nagy
et al. (2000), Tsoulis (1999b) and Klose and Ilk (1993). In the following, the direct integration technique,
the spherical harmonic expansion method as well as the space localizing base function technique will be
discussed in detail. Finally, the combinations of these techniques are proposed, including methods which
allow the determination of the topographic-isostatic far-zone effects using also spherical harmonic expansion.

4.1 Direct integration method

In a flat Earth approximation the integration compartments can be represented by rectangular prisms which
is admissible for small areas only. Nevertheless, this approximation is useful for model studies (Nagy et al.
2000). The use of spherical models requires extensive computational efforts if tesseroids are used or spherical
harmonic series (Papp and Wang 1996). For instance, in order to resolve 1 x 1 km topography information
in spherical geometry, a spherical harmonic expansion up to degree and order 36 000 would be necessary.
Spherical harmonic expansions up to this high degree can not be calculated because of the instability of
the determination of the associated Legendre functions. Therefore, a spherical harmonic expansion of the
topography may not be selected for a very detailed local modeling.
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4.1.1 Gravitational potential and its derivatives modelled by prisms

4.1.1.1 Effect of the topographic and isostatic masses

The determination of the potential as well as its first and second derivatives by using the integration method
based on rectangular prisms has been studied by many authors (e.g., Mader 1951; Nagy 1966; Forsberg
1984). Formulae for the calculation of the derivatives of the potential up to the third order are given by
Mader (1951). Here we give only a short review of the gravitational potential, represented by rectangular
prisms, as well as of its various derivatives. The gravitational potential of a rectangular prism of homogeneous
mass-density ρ is described by Newton’s integral (e.g., Heiskanen and Moritz 1967):

Vt|r=rP
= G

∫∫∫

v

ρ(Q)
1

l(r, rQ)

∣
∣
∣
∣
r=rP

dvQ, (4.1)

where ρ(Q) is the density of the topographic masses or the density contrast of the topographic masses and
the water masses of the oceans. Because of lack of more detailed knowledge, the density of the topographic
masses is assumed to be constant (see, e.g., Vaníček and Kleusberg 1987; Featherstone 1992; Forsberg and
Sideris 1993; Abd-Elmotaal 1999; Smith and Milbert 1999; Featherstone et al. 2001). However, the real
density distribution can differ from this value by 10% or more (see, e.g., Martinec 1993; Tziavos el al. 1996;
Pagiatakis and Armenakis 1998; Kuhn 2000a, b; Huang et al. 2001).

The point P in Eq.(4.1) is the computation point with the Cartesian coordinates xP , yP , zP and Q (the
center of the prism) represents the source point with the coordinates x′, y′ and z′ referring to the same
Cartesian coordinate system (Fig. 4.1). The quantity l(r, rQ) is the distance between the computation point
and the source point. It is given by the well-known formula,

l(r, rQ)|
r=rP

=

√

(x− x′)
2

+ (y − y′)
2

+ (z − z′)
2

∣
∣
∣
∣
r=rP

. (4.2)

Insertion of Eq. (4.2) into Eq. (4.1) gives

Vt|r=rP
= G

x2∫

x1

y2∫

y1

z2∫

z1

ρ(Q)
1

√

(x− x′)
2

+ (y − y′)
2

+ (z − z′)
2

∣
∣
∣
∣
∣
∣
r=rP

dx′dy′dz′. (4.3)

If the density of the prism for simplicity is assumed to be homogeneous and constant (ρcr), the integral of

P(xP,yP,zP)

lPQ

z

x

y

Q(x´,y´,z´)

x

y

z 

(x2,y2,z2)

(x1,y1,z1) ∆

∆
∆

Fig. 4.1: Notation used for the definition of a prism
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the Eq. (4.3) takes the form (Nagy 1966; Nagy et al. 2000):

V =Gρcr
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(4.4)

The first derivatives of the potential with respected to z are given by (Nagy 1966):

∂V
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(4.6)

The other two partial derivatives of the potential with respect to x, y can be obtained from Eq. (4.6) by
cyclic permutation
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(4.8)

The second derivatives of the potential are given by (ibid.)
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From Eqs. (4.4) to (4.14), it is easy to realize that these formulae show singularities for special locations of P
(e.g., if P coincides with a prism’s corner or is situated on an edge of the prism); the respective limit values
have been derived by Nagy et al. (2000, 2002). The above relations can be used for calculating the potential
and its first and second derivatives of the topographic masses on or above the surface of the Earth. Since the
prism matches the concept of the DTM, the TC software (Forsberg 1984) for prismatic topographic elements
situated in an intermediate zone can be used after modifying it for calculating different topographic-isostatic
models.

Due to the decrease of the gravitational effects with increasing distance, the complex formula (4.4) can be
substituted by a simpler one for prisms which are located at a large distance from the computation point.
This simpler formula can be derived based on a Taylor expansion of the integration kernel in Eq. (4.1). The
Taylor expansion is fixed at the geometrical centre of the prism. The gravitational potential of the rectangular
prism neglecting terms of order four and higher is given by MacMillan’s (1930) formula (also see Anderson
1976; Forsberg 1984; Heck and Seitz 2006):

V = Gρcr∆x∆y∆z
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, (4.15)

where

xo = (x1 + x2)/2,

yo = (y1 + y2)/2,

zo = (z1 + z2)/2.

(4.16)

and l0 denotes the Euclidean distance between the computation point P and the geometrical center (x0, y0, z0)
of the computation prism with ∆x = x2 − x1, ∆y = y2 − y1 and ∆z = z2 − z1. The first and higher order
derivatives of the potential can be simply found by differentiation of Eq. (4.15) with respect to x, y and
z. Near the computation point (Eqs. 4.4 to 4.14), the flat-topped approximation of the topographic prism
is assumed. This approximation produces some errors for the computation of the gravitational functions. A
better approximation can be supplied by a prism topped by an inclined plane (Koch 1965) or by a bilinear
surface (Smith 2000; Tsoulis et al. 2003). This procedure can be transformed to polyhedral bodies which can
easily be determined by numerical methods (Talwani and Ewing 1960; Paul 1974; Petrović 1996).

For prisms which are far from the computation point, the curvature of the Earth must be taken into account.
These prisms are inclined with respect to the local vertical and shifted with respect to the horizontal plane
at the computation point, due to the (approximate) sphericity of the Earth. These effects have to be taken
into account for distant prismatic elements (Grüninger 1990; Kuhn 2000a; Smith 2000, 2002). Also, due
to the curvature of the Earth, the topocentric Cartesian coordinate systems, according to the direction of
the vertical at the computation point and the edges of the prismatic topographic element, are not parallel.
The transformation between the two systems is visualized in Fig.4.2 where (X,Y, Z) denote the Cartesian
coordinates related to a global terrestrial reference frame and (x, y, z) and (x∗, y∗, z∗) the local Cartesian
coordinates related to the edge system of the prism and the local vertical reference frame at the computation
point P , respectively. The transformation of the first derivatives of the potential known in the edge system
into the local coordinate system at P is given by the respective basis transformation with respect to the
global equatorial system (Heck and Seitz 2006). The direction of the plumbline at the computation point is
defined by the geodetic latitude ϕ and the geodetic longitude λ of the point P . The direction of the z-axis
of the edge system is defined by ϕ′ and λ′. The relations between the orthonormal base vectors are given by
(Grüninger 1990; Kuhn 2000a; Heck and Seitz 2006)
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Fig. 4.2: Transformation between the edge system of the prism and the local vertical system at the compu-
tation point

where R2 and R3 are the rotation matrices for rotations about the y- and z-axis, respectively, while the
reflection matrix P1 has to be introduced for the transition between the right-handed global system and
the left-handed local system. In numerical applications, the geodetic latitudes ϕ, ϕ′ may be replaced by the
geocentric latitudes. From Eqs. (4.17) and (4.18) the formula for the transformation between the edge system
of the prism and the local vertical system at the computation point is given by (Kuhn 2000a):

(v∗x, v
∗

y , v
∗

z)
T = R(ϕ, λ, ϕ′, λ′) · (vx, vy, vz)T , (4.19)

where (v∗x, v
∗

y , v
∗

z) and (vx, vy, vz) are the first derivatives of the potential in the edge system and in the local
vertical system at P , respectively. The transformation matrix R(ϕ, λ, ϕ′, λ′) is given by (ibid.)

R(ϕ, λ, ϕ′, λ′) =





s1s
′

1(c2c
′

2 + s2s
′

2) + c1c
′

1 s1(−c2s′2 − s2c
′

2) −s1c′1(c2c′2 + s2s
′

2) + c1c
′

1

s′1(s2c
′

2 + c2s
′

2) s2s
′

2 + c2c
′

2 c′1(−s2c′2 + c2s
′

2)
−c1s′1(c2c′2 + s2s

′

2) + s1c
′

1 c1(−c2s′2 + s2c
′

2) c1c
′

1(c2c
′

2 + s2s
′

2) + s1s
′

1



 (4.20)

with

s1 = sinϕ, s2 = sinλ, c1 = cosϕ, c2 = cosλ,
s′1 = sinϕ′, s′2 = sinλ′, c′1 = cosϕ′, c′2 = cosλ′.

(4.21)

This transformation is carried out for every single prism situated at a large distance from the computation
point P . Also, the second derivatives of the potential can be transformed using the same transformation
matrix given in Eq. (4.20).

The dimensions of the prism have to be derived from the dimensions of a tesseroid. These dimensions can
be determined based on the mass conservation as follows:

mtesseroid = mprism, (4.22)

which follows

∆z = ∆r,

∆x = R∆ϕ,

∆y = R cosϕ∆λ.

(4.23)
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For calculating the effects of the topographic masses, the height of the prismatic element is taken to be equal
to the orthometric height of the topography of this element with ρ equals the density of the masses in case
of land areas. In case of ocean regions the density is taken to be

ρ(xQ, yQ, zQ) = ρw − ρcr, (4.24)

where ρcr is the density of the crust and ρw the density of the water. For calculating the effects of the
isostatic masses in case of Airy-Heiskanen and Vening Meinesz models, the height of the prismatic element
is taken to be equal to the roots or antiroots of the isostatic masses with density contrast ∆ρ = ρm − ρcr.
In case of the Pratt-Hayford model, the height of the prismatic element is taken to be equal to the height
of the orthometric height of the topography in addition to the Pratt-Hayford compensation depth with the
density contrast as determined in chapter 3 for land and ocean areas.

4.1.1.2 Effect of the condensation masses

For calculating the effect of the condensation masses in the case of Helmert’s methods of condensation using
the prism integration method, Eq. (4.1) will be transformed to the following equation (Smith et al. 2001):

Vc|r=rP
= G

∫∫

σ

kQ
l∗(r, rQ)

∣
∣
∣
∣
r=rP

dx′dy′, (4.25)

with the surface element dσ =dxQdyQ and the single layer density kQ, which depends on the height and
density of the topography (see chapter 3). If the density of the prism is taken to be constant (ρcr), the
potential, the first and the second derivatives can be determined as follows (see Fig. 4.3):
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Fig. 4.3: Notation used for the definition of a condensed prism

Vc|r=rP
=Gρcr∆z

∣
∣
∣
∣

∣
∣
∣(x− x′) ln((y − y′) + l∗(r, rQ)) + (y − y′) ln((x− x′) + l∗(r, rQ))−

− z arctan [(x− x′)(y − y′)/((z − z∗)l∗(r, rQ))]|
r=rP

∣
∣
∣

x2

x1

∣
∣
∣
∣

y2

y1

,

(4.26)

∂Vc
∂z

= Gρcr∆z

∣
∣
∣
∣

∣
∣
∣− arctan [(x− x′)(y − y′)/((z − z∗)l∗(r, rQ))]

∣
∣
∣

x2

x1

∣
∣
∣
∣

y2

y1

, (4.27)

∂Vc
∂x

= Gρcr∆z

∣
∣
∣
∣

∣
∣
∣ln((y − y′) + l∗(r, rQ))

∣
∣
∣

x2

x1

∣
∣
∣
∣
∣

y2

y1

, (4.28)

∂Vc
∂y

= Gρcr∆z

∣
∣
∣
∣

∣
∣
∣ln((x− x′) + l∗(r, rQ))

∣
∣
∣

x2

x1

∣
∣
∣
∣

y2

y1

, (4.29)
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∂2Vc
∂z2

= Gρcr∆z

∣
∣
∣
∣

∣
∣
∣
(x− x′)(y − y′)

l∗(r, rQ)

(
1

(x− x′)2 + (z − z∗)2
+

1

(y − y′)2 + (z − z∗)2

)∣
∣
∣

x2

x′=x1

∣
∣
∣
∣

y2

y′=y1

, (4.30)

∂2Vc
∂x2

= Gρcr∆z

∣
∣
∣
∣

∣
∣
∣

(x− x′)

l∗(r, rQ)((y − y′) + l∗(r, rQ))

∣
∣
∣

x2

x1

∣
∣
∣
∣

y2

y1

, (4.31)

∂2Vc
∂y2

= Gρcr∆z

∣
∣
∣
∣

∣
∣
∣

(y − y′)

l∗(r, rQ)((x− x′) + l∗(r, rQ))

∣
∣
∣

x2

x1

∣
∣
∣
∣

y2

y1

, (4.32)

∂2Vc
∂x∂y

= Gρcr∆z

∣
∣
∣
∣

∣
∣
∣

1

l∗(r, rQ)

∣
∣
∣

x2

x1

∣
∣
∣
∣

y2

y1

, (4.33)

∂2Vc
∂x∂z

= Gρcr∆z

∣
∣
∣
∣

∣
∣
∣

(z − z∗)

l∗(r, rQ)((y − y′) + l∗(r, rQ))

∣
∣
∣

x2

x1

∣
∣
∣
∣

y2

y1

, (4.34)

∂2Vc
∂y∂z

= Gρcr∆z

∣
∣
∣
∣

∣
∣
∣

(z − z∗)

l∗(r, rQ)((x− x′) + l∗(r, rQ))

∣
∣
∣

x2

x1

∣
∣
∣
∣

y2

y1

, (4.35)

where

l∗(r, rQ) =
(
(x− x′)2 + (y − y′)2 + (z − z∗)2

)1/2
. (4.36)

In our case ∆z = z2 − z1 is equal to the orthometric height of the prismatic element and z∗ the vertical
coordinate of the geometrical center of the condensed integration element.

4.1.2 Gravitational potential and its derivatives modelled by tesseroids (using the analy-
tic vertical integration)

Taking the curvature of the Earth into account, a much better level of approximation in the calculation of
the topographic mass effects is obtained. In this case the geoid can be modelled by a sphere of radius R,
coinciding with the mean radius of the Earth. There are two principal possibilities: a representation of the
topography by any spherical discretisation and a subsequent integration (Smith et al. 2001; Tenzer et al.
2003; Heck 2003) or a representation of the topography by a spherical harmonic expansion (see, e.g., Sünkel
1985, 1986; Rummel et al. 1988; Tsoulis 1999a, 2001). In the case of the direct integration method, the weak
singularities are solved numerically by separating the topographic masses in spherical approximation in two
terms: the spherical Bouguer shell and a spherical terrain correction (see, e.g., Novák et al. 2001; Vaníček et
al. 2001; Heck 2003). The effects of the spherical shell on the potential and its first and second derivatives
are studied in many previous investigations such as Wichiencharoen (1982), Blakely (1995), Vaníček et al.
(2001), Tenzer et al. (2003), Vajda et al. (2004a), (2004b) and Vaníček et al. (2004).

4.1.2.1 Effect of the topographic masses

The potential of the topographic masses between the topographic surface S and the sphere of radius R at
the computation point P is given by Newton’s integral in spherical coordinates as follows (Fig. 4.4):

Vt|r=rP
= G

∫∫

σ





rQ∫

R

ρ(Q)
ξ2

l

∣
∣
∣
∣
r=rP

dξ



dσ, (4.37)

with

l :=
√

r2 + ξ2 − 2rξ cosψ, (4.38)

the density of the topography ρ(Q), rQ = R + HQ, and the surface element in spherical coordinates
dσ = cosϕQdϕQdλQ. ρ(Q) is the density of the spherical integration element; it reads in case of the ocean
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area ρ(Q) = ρcr − ρw. The geocentric angle ψ is the spherical distance between the radius vectors of the
computation point rP (r, ϕ, λ) and the integration point rQ(rQ, ϕQ, λQ):

cosψ = sinϕ sinϕQ + cosϕ cosϕQ cos(λQ − λ), (4.39)

where ϕ and λ are the geodetic latitude and longitude of the computation point, respectively. Additional
quantities are shown in Fig. 4.4. If the column of topography consists of several layers with different densities
(Fig. 3.2, left), the potential of the topographic masses is given by:

Vt|r=rP
= G

∫∫

σ





R+Hi∫

R

i=l∑

i=0

(ρi − ρi+1)
ξ2

l

∣
∣
∣
∣
r=rP

dξ



dσ, (4.40)

where ρ0, ρl+1 are defined in Eq. (3.2). If the rock equivalent representation is used, Eq. (4.37) is transformed
to

Vt|r=rP
= Gρcr

∫∫

σ





rQ∫

R

ξ2

l

∣
∣
∣
∣
r=rP

dξ



dσ. (4.41)

The inner integral of Eq. (4.37) can be evaluated by using (Gradshteyn and Ryzhik 1980):

Vt|r=rP
=

1

2
Gρcr

∫∫

σ

[
F0(r, ψ, ξ)|r=rP

]rQ

ξ=R
dσ, (4.42)

with

F0(r, ψ, ξ) = (ξ + 3r cosψ)l(r, ψ, ξ) + r2(3cos2ψ − 1) ln(l(r, ψ, ξ) + ξ − r cosψ) (4.43)

and rP = (R + HP , ϕ, λ). The integration interval in Eq. (4.42) can be separated into two parts, (R, rP ′)
and (rp′ , rQ). The quantity rP ′ = R+Hp′ denotes the geocentric radius of the surface point P ′ ∈ S which
is located under the computation point P (Fig. 4.4). Then the integral of Eq. (4.3) can be given by (Heck
2003):

Vt|r=rP
=

2πGρcr
rP







2

3
(r3P ′ −R3) ∀rP ≥ rP ′

rP (r2P ′ −R2) ∀rP ≤ rP ′






+

1

2
Gρcr

∫∫

σ

[
rQ l̄

′ − rP ′ l̄+

+3rP cosψ(l̄′ − l̄) + r2P (3 cos2 ψ − 1) ln

∣
∣
∣
∣

l̄′ + rQ − rP cosψ

l̄ + rP ′ − rP cosψ

∣
∣
∣
∣

]

dσ,

(4.44)

with the Euclidean distances as shown in Fig. 4.4 and defined by:

l̄ :=
√

r2P + r2P ′ − 2rP rP ′ cosψ, (4.45)

l̄′ :=
√

r2P + r2Q − 2rP rQcosψ. (4.46)

The first term in Eq. (4.44) is due to the mass of a homogenous spherical shell of thickness HP ′ = rP ′ − R
acting on the gravitational potential at the computation point P . Two cases have to be distinguished: the
point is located either on or outside the topography of the Earth (rP ≥ rP ′) or the point is located below
or on the geoid (rP ≤ rP ′). The integral term in Eq. (4.44) denotes the influence of the varying terrain
due to rQ 6= rP ′(terrain correction). The first case (rP ≥ rP ′) will be used to determine the effect of the
topographic-isostatic masses at the surface of the Earth or outside at aeroplane or satellite altitude. The
second case of Eq. (4.44) is necessary only for the calculation of the primary indirect topographical effect on
the geoidal height.

The first and second derivatives of the potential of the topographic masses are determined in a tangential
coordinate system. This tangential coordinate system is defined with the x-axis oriented to north, the z-axis
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coinciding with the radius vector and the y-axis oriented to east, completing a left-hand-system (see Fig.
4.5). The first derivatives of the potential of the topographic masses with respect to z can be calculated
using the following formula (Novák et al. 2001):

∂Vt
∂z

=
∂Vt
∂r

, (4.47)

∂Vt
∂r

∣
∣
∣
∣
r=rP

= − 4πGρcr
3r2

(r3p′ −R3)

∣
∣
∣
∣
r=rP

+Gρcr

∫∫

σ

[
F1(r, ψ, ξ|r=rP

)
]rQ

ξ=rP ′

dσ, (4.48)

F1(r, ψ, ξ) =
([

(ξ2 + 3r2) cosψ + ξr(1 − 6 cos2 ψ)
]
/l(r, ψ, ξ)+

+ r(3 cos2 ψ − 1) ln |ξ − r cosψ + l(r, ψ, ξ)|) .
(4.49)

The first derivative of the potential of the topographic masses with respect to x can be calculated as follows
(Tscherning 1976):

∂Vt
∂x

∣
∣
∣
∣
r=rP

=
1

r

∂Vt
∂ϕ

∣
∣
∣
∣
r=rP

=
1

r

∂ψ

∂ϕ

∂Vt
∂ψ

∣
∣
∣
∣
r=rP

, (4.50)

It follows from Eq. (4.37) with Eq. (4.38) according to Fig. 4.5,

∂Vt
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∣
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∣
∣
r=rP

= Gρcr

∫∫

σ

[

∂F0

∂ψ

∣
∣
∣
∣
r=rP

]rQ

R

dσ, (4.51)
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with

∂F0

∂ψ

∣
∣
∣
∣
r=rP

=: F2(r, ψ, ξ)|r=rP
, (4.52)

and according to Heiskanen and Moritz (1967),

∂ψ

∂ϕ
= − cosαQ, (4.53)

with the spherical azimuth αQ as given by e.g. Heiskanen and Moritz (1967, Eq. 2-212):

tanαQ =
cosϕQ sin(λQ − λ)

sinϕQ cosϕ− cosϕQ sinϕ cos (λQ − λ)
. (4.54)

The integration interval in Eq. (4.51) is again separated into two parts, (R, rP ′) and (rp′ , rQ). The first part
represents the effect of the spherical Bouguer shell and is zero for the first derivatives in x and y directions.
Then the second part can be given by:

∂Vt
∂ψ

∣
∣
∣
∣
r=rP

= Gρcr

∫∫

σ

[
F2(r, ψ, ξ)|r=rP

]rQ

rP ′

dσ, (4.55)

with

F2(r, ψ, ξ) =
[
−
(
rξ2 sinψ − r2ξ cosψ(5 − 6 cos2 ψ)/ sinψ + r3(2 − 3 cos2 ψ)/ sinψ

)
/

− l(r, ψ, ξ) −
(
r2(3/2 sin 2ψ) ln |ξ − r cosψ + l(r, ψ, ξ)|

)]
.

(4.56)

The first derivative of the potential of the topographic masses with respect to y can be determined analogously
to Eq. (4.50) resulting in the formula,

∂Vt
∂y

∣
∣
∣
∣
r=rP

=
1

r cosϕ

∂Vt
∂λ

∣
∣
∣
∣
r=rP

=
1

r cosϕ

∂ψ

∂λ

∂Vt
∂ψ

∣
∣
∣
∣
r=rP

, (4.57)
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where ∂Vt/∂ψ|r=rP
is given by Eq. (4.55) and

∂ψ

∂λ
= − cosϕ sinαQ, (4.58)

based on the Eq. (4.39) and Eq. (4.54). Eqs. (4.48), (4.50) and (4.57) can be used to study the effects of
the topographic masses on Satellite-to-Satellite Tracking (SST) observations as shown in Makhloof and Ilk
(2004).

The second derivatives of the potential of the topographic masses are important for airborne or Satellite
Gravity Gradiometry. It holds for the radial component, starting from Eq. (4.48):

∂2Vt
∂z2

∣
∣
∣
∣
r=rP

=
∂2Vt
∂r2

∣
∣
∣
∣
r=rP

, (4.59)

with

∂2Vt
∂r2

∣
∣
∣
∣
r=rP
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8πGρcr

3r3
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+Gρcr

∫∫

σ

[

∂F1(r, ψ, ξ)

∂r

∣
∣
∣
∣
r=rP

]rQ

ξ=rP ′

dσ, (4.60)

and

∂F1(r, ψ, ξ)

∂r

∣
∣
∣
∣
r=rP

=: F3(r, ψ, ξ)|r=rP
, (4.61)

where F3(r, ψ, ξ) can be given after some algebraic operations by:

F3(r, ψ, ξ) =
([

(ξ cosψ − r)
(
(ξ2 + 3r2) cosψ + rξ(1 − 6 cos2 ψ)

)]
l−3(r, ψ, ξ)

+ (3 cos2 ψ − 1) ln |ξ − r cosψ + l(r, ψ, ξ)|+
+
[
2ξ + 6r cosψ − 9ξ cos2 ψ

]
l−1(r, ψ, ξ)

)
.

(4.62)

The second derivative of the potential of the topographic masses with respect to x can be given by the
relation (Tscherning 1976),

∂2Vt
∂x2

∣
∣
∣
∣
r=rP

=
1

r

∂Vt
∂r

∣
∣
∣
∣
r=rP

+
1

r2
∂2Vt
∂ϕ2

∣
∣
∣
∣
r=rP

. (4.63)

The first term is given by Eq. (4.48) and the second term can be derived starting from Eq. (4.50):

1

r2
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∣
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=
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∣
∣
∣
∣
r=rP

, (4.64)

with

∂2ψ

∂ϕ2
= sin2 αQ cotψ, (4.65)

by considering Eqs. (4.53), (4.39) and (4.54). The term

∂2Vt
∂ψ2
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∣
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= Gρcr
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σ

[

F2(r, ψ, ξ)

∂ψ
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]rQ

rP ′

dσ (4.66)

follows from Eq. (4.51) with Eq. (4.52) with the relation

F2(r, ψ, ξ)

∂ψ

∣
∣
∣
∣
r=rP

=: F4(r, ψ, ξ)|r=rP
, (4.67)
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where F4(r, ψ, ξ) can be expressed after some algebraic operations by:

F4(r, ψ, ξ) = −
[
3r2(cos 2ψ) ln |ξ − r cosψ + l(r, ψ, ξ)|

]
+

+
[
rξ
(
rξ2 sin2 ψ− r2ξ cosψ(5 − 6 cos2 ψ) + r3(2 − 3 cos2 ψ)

)
/l3(r, ψ, ξ)

]
+

+
[(
−rξ2 cosψ + 15r2ξ cos2 ψ − r2ξ(5 − 6 cos2 ψ)/ sin2 ψ −

−9r3 cosψ + r3 cosψ(2 − 3 cos2 ψ)/ sin2 ψ
)
/l(r, ψ, ξ)

]
.

(4.68)

The second derivative of the potential of the topographic masses with respect to y, (Vt)yy, reads as follows
(Tscherning 1976):
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. (4.69)

The first term of Eq. (4.69) coincides with the first term of Eq. (4.63) and is given by Eq. (4.48) corresponding
to Eq. (4.50) and the second term can be calculated starting from

1

r2 cos2 ϕ
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, (4.70)

with the first derivative as given in Eq. (4.58) and the second derivative

∂2ψ

∂λ2
= cos2 αQ cos2 φ cotψ − 1

2
sin 2φ cosαQ, (4.71)

again based on Eq. (4.39) and Eq. (4.54).

The derivatives ∂Vt/∂ψ and ∂2Vt/∂ψ
2 are given by Eq. (4.55) and Eq. (4.66), respectively. The mixed second

derivatives (Vt)xz and (Vt)yz read according to Tscherning (1976):
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∂x∂z

∣
∣
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= − 1
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∣
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+
1

r
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∂ϕ∂r

∣
∣
∣
∣
r=rP

, (4.72)
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∣
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= − 1

r2 cosϕ
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∣
∣
r=rP

+
1

r cosϕ

∂2Vt
∂r∂λ

∣
∣
∣
∣
r=rP

. (4.73)

The first term of Eq. (4.72) is given by Eq. (4.50) and the second term can be determined from the following
formula:

1
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∂2Vt
∂ϕ∂r
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∣
∣
∣
r=rP

=
1

r

∂2Vt
∂r∂ψ
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∂ϕ
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r
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∣
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, (4.74)

with

∂2Vt
∂r∂ψ
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∣
∣
∣
r=rP

= Gρcr

∫∫

σ

[

∂F2(r, ψ, ξ)

∂r
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∣
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r=rP

]rQ

rP ′

dσ, (4.75)

where

∂F2(r, ψ, ξ)

∂r

∣
∣
∣
∣
r=rP

=: F5(r, ψ, ξ)|r=rP
. (4.76)

F5(r, ψ, ξ) can be derived from Eq. (4.56) by differentiating with respect to r and after some rearrangements:

F5(r, ψ, ξ) = [−rξ sinψ(cos ψ(ξ2 + 3r2) + rξ(1 − 6 cos2 ψ))l−3(r, ψ, ξ)+

+
(
6rξ sin 2ψ − sinψ(ξ2 + 3r2)

)
l−1(r, ψ, ξ)−

− 3r sin 2ψ ln |ξ + l(r, ψ, ξ) − r cosψ|

+
r sinψ(l(r, ψ, ξ) + ξ)

l(r, ψ, ξ)(l(r, ψ, ξ) + ξ − r cosψ)
r(3 cos2 ψ − 1)

]
.

(4.77)
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The first term of the mixed derivatives (Vt)yz (see Eq. 4.73) reads as shown in Eq. (4.57) and the second
term can be determined as follows:

1

r cosϕ

∂2Vt
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r

∂2Vt
∂r∂ψ
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∣
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, (4.78)

with ∂2Vt/∂r∂ψ
∣
∣
r=rP

as given by Eq. (4.75).

Finally, the mixed second derivative in (Vt)xy can be derived based on the formula (Tscherning 1976):
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(4.79)

The first term at the right hand side of Eq. (4.79) is given by Eq. (4.57) and the second term reads:

1
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∣
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∂2ψ

∂ϕ∂λ

∂Vt
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∣
∣
∣
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]

, (4.80)

where

∂2ψ

∂ϕ∂λ
= sinαQ(sinϕ− cosϕ cosαQ cotψ). (4.81)

∂Vt/∂ψ as well as ∂2Vt/∂ψ
2 can be determined using Eq. (4.55) and Eq. (4.66), respectively.

4.1.2.2 Effect of the isostatic masses

In the previous section, the effect of the uncompensated topographic masses has been studied. In the following,
the contributions of the isostatic compensating masses due to different models will be investigated.

Airy-Heiskanen model The topography of height H = 0 corresponds to the normal thickness T of the
Earth’s crust with the density equal to the density of the topography ρ. The higher the mountains are, the
deeper they sink (see Fig. 4.6). Thus the thickness of a root column under a mountain column with height
H can be determined by the formulae as given in chapter 3. The potential of the isostatic masses at the
computation point P can be determined in the same way as the potential of the topographic masses, see Eq.
4.37

VI |r=rP
= G∆ρ

∫∫

σ






R−T∫

R−T−tQ

ξ2

l

∣
∣
∣
∣
r=rP

dξ




dσ, (4.82)

with the spherical surface element dσ of a sphere with radius R and the integration variable ξ and l due to

l :=
√

r2 + ξ2 − 2rξ cosψ. (4.83)

The integration interval (R− T − tQ, R− T ) can be decomposed again into two parts, the terrain correction
(R− T − tQ, R− T − tP ′) and the shell of thickness (R− T − tP ′ , R− T ) where tP ′ is the thickness of the
root or the anti-root under the computation point P or P ′, respectively (Fig. 4.6). Then the formula for
the potential of the isostatic compensation masses can be given by a formula similar to Eq. (4.42) with Eq.
(4.43):

VI |r=rP
=

4πG∆ρ

3rP

[
(R− T )3 − (R− T − tP )3

]
+
G∆ρ

2

∫∫

σ

[
F0(r, ψ, ξ)|r=rP

]R−T−tQ

R−T−tP
dσ, (4.84)
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Fig. 4.6: Spherical Airy-Heiskanen topographic-isostatic model

where ∆ρ = ρm − ρcr is the difference between the density of the mantle and the density of the isostatic
compensation masses and F0(r, ψ, ξ) is given by Eq. (4.43). The first term of Eq. (4.84) represents the effect
of the spherical Bouguer shell of the compensating masses for point P ′

c.

The first and second derivatives of the potential of the isostatic compensation masses necessary for airborne
vector gravimetry and gradiometry at aeroplane or satellite altitude can be determined using the same
formulae as applied for the determination of the effects of the topographic masses. Only the integration
limits have to be selected properly as illustrated in Fig. 4.6. The radial derivative (VI)z (z -direction, see
Fig. 4.5) reads

∂VI
∂z

∣
∣
∣
∣
r=rP

= −4πG∆ρ

3r2P

[
(R− T )3 − (R− T − tP )3

]
+G∆ρ

∫∫

σ

[
F1(r, ψ, ξ)|r=rP

]R−T−tQ

R−T−tP
dσ, (4.85)

where F1(r, ψ, ξ) is given by Eq. (4.49). The effects of the compensating masses on the other components of
the first and second derivatives can be determined analogously.

The combined effect of the topographic-isostatic masses on the different gravity functionals is the difference
between the effect of the topographic masses and the effect of the isostatic compensation masses. It reads
e.g.,

VTI |r=rP
= Vt|r=rP

− VI |r=rP
. (4.86)

In the previous formulae in spherical approximation the topographic effects are calculated by setting Heq for
H. If the density is laterally variable, the thickness of the rock equivalent heights Heq can be determined by
the condition that the mass density of an equivalent rock layer is equal to the mass density of the constant
crust (see chapter 3).

All the equations derived for the Airy-Heiskanen model can be used also for the Vening-Meinesz model with
the only difference that the roots and anti-roots are determined according to the equations given in chapter
3 (see, e.g., Abd-Elmotaal 1995a; Vening Meinesz 1939, 1941).

Pratt-Hayford model In case of the Pratt-Hayford model the effect of the topographic masses is calcu-
lated in two parts: one for the land areas and the other for the ocean areas. The same has to be done for the
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effects of the isostatic compensation masses. The second derivative of the effect of the topographic masses
in the radial direction (see Fig. 4.7) reads:

∂2V Lt
∂z2

∣
∣
∣
∣
r=rP

= G

∫∫

σ

[
F3(r, ψ, ξ)|r=rP

]rQ

R
ρLdσ, (4.87)

with the density ρL in land areas (see chapter 3) and the function F3(r, ψ, ξ) as given by Eq. (4.62). If the
density of the topographic masses is known then it can be used instead of ρL. This formula holds for land
areas, i.e., in those cases where the heights H are positive. In case of ocean areas (with the water density
ρw), that means for negative heights H ′, the effects of the topographic masses can be given by

∂2V Ot
∂z2

∣
∣
∣
∣
r=rP

= G(ρcr − ρw)
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σ

[
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]rQ

R
dσ. (4.88)

The effect of the compensation masses for land areas is given by
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= G
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σ

[
F3(r, ψ, ξ)|r=rP
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R−D
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and for ocean areas by
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σ

[
F3(r, ψ, ξ)|r=rP
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(ρcr − ρO)dσ, (4.90)

where ρO is the density in the ocean area.
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Fig. 4.7: Spherical Pratt-Hayford topographic-isostatic model

The first and second derivatives of the potential of the topographic-isostatic masses can be determined using
corresponding formulae as used in section 4.1.2.1, but the different cases corresponding to the four integrals
of Eq. (4.87) to Eq. (4.90) have to be distinguished. The concept of a rock equivalent topography will not
be applied in this study. The effect of the tesseroid at the computation point must be calculated separately
using the prism formulae.
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Combined Airy-Pratt model The effects of the topographic-isostatic masses in land areas are calculated
according to the Airy-Heiskanen model and the effects of the topographic-compensation masses in ocean areas
according to the Pratt-Hayford model.

4.1.2.3 Effect of the condensation masses

In Helmert’s methods of condensation, the compensation masses are condensed on a mass layer at a depth
D1 below the geoidal sphere (Helmert’s first method of condensation) or on the geoid (Helmert’s second
method of condensation) which provides a simpler integral kernel. The potential of the condensed masses at
the computation point P can be given by (Heiskanen and Moritz 1967):

Vc|r=rP
= G

∫∫

σ

kQ
lc

∣
∣
∣
∣
r=rP

R2
cdσ, (4.91)

with the spatial distance

lc(r, ψ,Rc) =
√

r2 +R2
c − 2rRc cosψ, (4.92)

the density of the surface layer kQ, and the radius of the condensation sphere Rc. In case of Helmert’s first
condensation method or generalized Helmert model of condensation it holds Rc = R − D1, and in case
of Helmert’s second condensation method Rc = R (see Fig. 4.8). In order to relate the potential of the
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Fig. 4.8: Geometry of Helmert’s condensation models

condensed masses to the potential of the topography the layer density kQ has to be given as a function of
the topographical heights. It holds in spherical approximation (see chapter 3):

kQ = ρcr
r3Q −R3

3R2
c

. (4.93)
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By adding and subtracting the density corresponding to the point P ′, the integral in Eq. (4.91) can be
written in the following form (Heck 2003):
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(4.94)

The first term of Eq. (4.94) represents the effect of the condensation layer with the layer density kP ′ . The
first derivative of the potential of the condensation masses at P , (Vc)z, with the layer density kP ′ can be
determined by differentiation of Eq. (4.94) with respect to r as follows:
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Inserting the relation
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, (4.96)

the formula can be rewritten in the form:
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(4.97)

Following a procedure as applied for the determination of Eq. (4.50) and Eq. (4.57), the first derivatives of
the condensation masses with respect to x and y, (Vc)x and (Vc)y, are given by:
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where ∂ψ/∂ϕ and ∂ψ/∂λ are given by Eq. (4.53) and Eq. (4.58), respectively.

The second derivatives of the potential of the condensation masses in radial direction, (Vc)zz, can be deter-
mined by differentiating Eq. (4.97) with respect to r and using Eq. (4.96), so that it follows:
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(4.100)
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The second derivatives of the potential of the condensation masses in x direction, (Vc)xx, can be determined
according to Eq. (4.63) with the first term of this equation as given by Eq. (4.97) and the second term as
given by:
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(4.101)

based on Eq. (4.64) and Eq. (4.98), where ∂Vt/∂ψ and ∂2Vt/∂ψ
2 are given by Eq. (4.55) and Eq. (4.66),

respectively. The formula used for calculating the second derivatives with respect to y, (Vc)yy, is given by
Eq. (4.69) with the first term given in Eq. (4.97) and the third term in Eq. (4.98). The second term of this
equation can be derived based on Eq. (4.70) and Eq. (4.99) as follows:
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(4.102)

where ∂ψ/∂λ and ∂2ψ/∂λ2 due to Eq. (4.58) and Eq. (4.71), respectively. The mixed second derivatives of
the potential with respect to xz and xy, (Vc)xz and (Vc)xy, read as follows:
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∂2Vc
∂x∂y

∣
∣
∣
∣
r=rP

=
tanϕ

r

∂Vc
∂y

∣
∣
∣
∣
r=rP

+
1

r2 cosϕ

∂2Vc
∂ϕ∂λ

∣
∣
∣
∣
r=rP

. (4.104)

The first terms of Eq. (4.103) and Eq. (4.104) are calculated using Eq. (4.98) and Eq. (4.99), respectively.
The second term of Eq. (4.103) can be determined using the following equation:
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The second term of Eq. (4.104) is given by
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(4.106)

where ∂ψ/∂ϕ, ∂ψ/∂λ and ∂2ψ/∂ϕ∂λ are given by Eq. (4.53), Eq. (4.58) and Eq. (4.81), respectively. Finally,
the effect of the condensation masses in yz - direction, (Vc)yz, is calculated as follows:
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with the first term given by Eq. (4.99). The second term can be determined based on Eq. (4.78) as follows:
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(4.108)

4.2 Spherical harmonic expansion

In this section, an algorithm for the computation of the spherical harmonic expansion of the topographic-
isostatic masses from a digital terrain model (DTM) is presented. The method is based on a series expansion
of the inverse distance function – the kernel function of the Newtonian potential. The isostatic compensation
of the topography for different topographic-isostatic models is taken into account. This method is appropriate
especially for satellite applications. For airborne gravimetry and for gravimetry at the Earth surface a method
is presented for the calculation of far-zone effects of the topographic-isostatic masses.

4.2.1 Effects of topographic-isostatic masses in satellite applications

4.2.1.1 The effect of topographic masses

For determining the effect of topographic masses, again we start with the formula for the gravitational
potential of the Earth at any point P on or outside the Earth’s surface as it is given by Newton’s law of
gravitation,

V t
∣
∣
r=rP

= G

∫∫∫

v

ρ(Q)

l

∣
∣
∣
∣
r=rP

dv. (4.109)

The distance between the computation point P and the source point Q, l|r=rP
, is given by Eq. (4.38). The

gravitational potential is harmonic outside the masses and its spherical harmonic expansion is convergent
outside a sphere enclosing the total mass of the Earth (see chapter 2). The series expansion for the inverse
distance l|r=rP

in spherical coordinates can be written as follows (Heiskanen and Moritz 1967, Eq. 1.81):

[
l|r=rP

]−1
=







∞∑

n=0

ξn

rn+1
P

Pn(cosψPQ) for rP > ξ

∞∑

n=0

rnP
ξn+1

Pn(cosψPQ) for rP < ξ







, (4.110)

where Pn(cosψPQ) are the Legendre polynomials of degree n and ψPQ is the spherical distance between the
geocentric direction of points P and Q which can be computed by the spherical angle cosine theorem,

cosψPQ = cosϕ cosϕQ + sinϕ sinϕQ cos(λ− λQ). (4.111)

Firstly, we refer to a computation point outside the sphere enclosing the total masses of the Earth (for
calculating the effect of topographic and isostatic masses at aeroplane or at satellite altitude). Therefore,
only the first term of Eq. (4.110) is taken into consideration. The second term has been described in Engels
and Grafarend (1993). Applying the addition theorem of the spherical harmonic functions to separate the
coordinate dependencies related to point P from those related to point Q gives

Pn(cosψPQ) =
1

2n+ 1

n∑

m=0

Pnm(cos θ)Pnm(cos θQ)·

· [cosmλ cosmλQ + sinmλ sinmλQ] ,

(4.112)
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where Pnm are the fully normalized associated Legendre functions of degree n and order m. Then the inverse
distance can be written as follows (Rummel et al. 1988):

[
l|r=rP

]−1
=

1

rP

∑

n,m,α

(ξ/rP )
n 1

2n+ 1
Y αnm(p)Y αnm(Q), (4.113)

with the surface spherical harmonics

Y α=0
nm = Pmn (cos θ) cosmλ,

Y α=1
nm = Pmn (cos θ) sinmλ.

(4.114)

By substituting Eq. (4.113) with Eq. (4.114) into Eq. (4.109), the gravitational potential can be written as
follows (Tsoulis 1999a):

V t
∣
∣
r=rP

=G

∫∫∫

v

ρ̃(Q)
1

rp

∞∑

n=0

(
ξ

rp

)n
1

2n+ 1

n∑

m=0

1∑

α=0

Y αnm(P )Y αnm(Q)dv,

=
GM

R

∞∑

n=0

Rn+1

rn+1
P

n∑

m=0

1∑

α=0

Y αnm(P )C̄α,Tnm ,

(4.115)

with the mass of the Earth M , the mean Earth radius R, the fully normalized spherical harmonic coefficients
C̄αnm and the density function

ρ̃(Q) =

{

ρ(Q) in land areas

ρw − ρcr in ocean areas

}

. (4.116)

Then the potential coefficients of the topographic masses can be given by (Rummel et al. 1988):

C̄α,Tnm =
1

M(2n+ 1)

∫∫∫

v

(
ξ

R

)n

ρ̃(ξ)Y αnm(ξ)dv, (4.117)

with the total mass of the Earth in spherical approximation,

M = 4πρ̄R3/3, (4.118)

where ρ̄ is the mean density of the Earth . After introducing the volume of the integration element in spherical
coordinates dv = ξ2dξdσ, the spherical harmonic coefficients of the potential of the topographic masses can
be written in the following form:

C̄α,Tnm =
3

ρ̄R(2n+ 1)

1

4π

∫∫

σ

AT (Q)Y αnmdσ, (4.119)

where the surface topography part AT (Q) in case of topographic masses above the geoid is given by

AT (Q) =

rs∫

ξ=rg

ρ̃(Q)

(
ξ

R

)n+2

dξ. (4.120)

The quantities rg and rs are the radius of the geoid and the surface of the Earth, respectively. After integration
Eq. (4.120) results in:

AT (Q) =

[

R

n+ 3
ρ̃(Q)

(
ξ

R

)n+3
]rs

rg

= ρ̃(Q)
R

n+ 3

[(rs
R

)n+3

−
(rg
R

)n+3
]

= ρ̃(Q)
R

n+ 3

[(

1 +
rs −R

R

)n+3

−
(

1 +
rg −R

R

)n+3
]

.

(4.121)
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After some algebraic operations Eq. (4.121) can be written in the following form:

AT (Q) = ρ̃(Q)R

([(
rs −R

R

)

−
(
rg −R

R

)]

+
n+ 2

2

[(
rs −R

R

)2

−
(
rg −R

R

)2
]

+

+
(n+ 2)(n+ 1)

6

[(
rs −R

R

)3

−
(
rg −R

R

)3
]

+
1

n+ 3

n+3∑

k=4

(
n+ 3

k

)[(
rs −R

R

)k

−
(
rg −R

R

)k
])

.

(4.122)

Inserting Eq.(4.122) into Eq.(4.119) gives the potential coefficients of the topographic masses as follows:

C̄α,Tnm =
3

(2n+ 1)ρ̄

{

R1αnm +
n+ 2

2
R2αnm+

(n+ 1)(n+ 2)

6
R3αnm +

1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

Rkαnm

}

, (4.123)

with the coefficients

R1αnm =
1

4π

∫∫

σ

[(
rs −R

R

)

−
(
rg −R

R

)]

ρ̃(Q)Y αnmdσ =
1

4π

∫∫

σ

[(
HQ −NQ

R

)]

ρ̃(Q)Y αnmdσ, (4.124)

Rkαnm =
1

4π

∫∫

σ

[(
rs −R

R

)k

−
(
rg −R

R

)k
]

ρ̃(Q)Y αnmdσ
1

4π

∫∫

σ

[(

Hk
Q −Nk

Q

Rk

)]

ρ̃(Q)Y αnmdσ, (4.125)

where N is the geoid heights.

If the geoid is approximated by a sphere with a radius equal to the mean Earth radius, the surface topography
part (Eq. 4.120) will be transformed to:

AT (Q) =

ξ=R+HQ∫

ξ=R

ρ̃(Q)

(
ξ

R

)n+2

dξ, (4.126)

with the topographic or bathymetric height H or H ′, respectively. If the topography columns consist of
several layers with constant densities in each layer (see chapter 3), then the surface topography part is
written as:

AT (Q) =
l∑

i=0

ξ=R+Hi∫

ξ=R

(ρ̃i(Q) − ρ̃i+1(Q))

(
ξ

R

)n+2

dξ =
l∑

i=0

ξ=R+Hi∫

ξ=R

δρ̃i(Qi)

(
ξ

R

)n+2

dξ, (4.127)

where ρ̃i(Q) is the density of every topographic layer; ρ0, ρl+1 are defined in chapter 3. After performing the
integration with respect to ξ, Eq. (4.127) results in

AT (Q) =R

l∑

i=0

(ρ̃i(Q) − ρ̃i+1(Q))

[

Hi

R
+

(n+ 2)

2

(
Hi

R

)2

+
(n+ 2)(n+ 1)

6

(
Hi

R

)3

+

+
1

n+ 3

n+3∑

k=4

(
n+ 3

k

)(
Hi

R

)k
]

.

(4.128)

Insertion of Eq. (4.128) into Eq. (4.119) gives the potential coefficients of the topographic masses in spherical
approximation,

C̄α,Tnm =
3

(2n+ 1)ρ̄

{

ha1αnm +
n+ 2

2
ha2αnm+

(n+ 1)(n+ 2)

6
ha3αnm +

1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

hakαnm

}

, (4.129)
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with the coefficients

hakαnm =
1

4π

∫∫

σ

l∑

i=0

(ρ̃i(Q) − ρ̃i+1(Q))

(
Hi

R

)k

Y αnmdσ. (4.130)

If digital density models (DDM) in 2-D are available only (i.e., the density of the topographic masses is
considered to be laterally variable only), then the spherical harmonic potential coefficients of the topographic
masses can be simplified as,

C̄α,Tnm =
3

(2n+ 1)ρ̄

[

h1dαnm +
n+ 2

2
h2dαnm +

(n+ 1)(n+ 2)

6
h3dαnm +

1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

· hkdαnm

]

, (4.131)

with the coefficients

hkdαnm =
1

4π

∫∫

σ

(
HQ

R

)k

ρ̃(Q)Y αnmdσ. (4.132)

To reduce CPU time, in practical application, the topographic heights and bathymetric depths of global
DTMs can be replaced by equivalent rock topography heights (see chapter 3). This simplification entails no
loss of accuracy because the error introduced by the rock equivalent procedure are smaller than 1% (Classens
2003). After using the rock equivalent topography procedure, Eq. (4.129) can be transformed to (Rummel
et al. 1988)

C̄α,Tnm =
3

(2n+ 1)

ρcr
ρ̄

{

h1αnm +
n+ 2

2
h2αnm +

(n+ 1)(n+ 2)

6
h3αnm +

1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

· hkαnm

}

, (4.133)

with the expressions

hkαnm =
1

4π

∫∫

σ

(
Heq

R

)k

Y αnmdσ. (4.134)

For the effects of the topographic masses at satellite altitude, only the first three terms of Eq. (4.134) are
necessary and the maximum degree can be restricted to nmax =360 (see, e.g., Sun 2002; Sun and Sjöberg
2001). For computing the topographic effects at aeroplane altitudes if the heights of the aeroplane are higher
than the maximum height of the topography, the series expansion given in Eq. (4.129) and Eq. (4.133) has
to be extended to higher terms (see, e.g., Sun 2002; Sun and Sjöberg 2001). Finally, for determining the
indirect effect the computation point is taken to be at the geoid. Then convegent expansion of the potential
of the topographic masses for othometric height (in case of land areas) as a series of spherical harmonic reads
(Nahavandchi and Sjöberg 1998):

Vt = GρcrR
2

∞∑

n=0

∫∫

σ

[

HQ

R
+

(1 − n)

2

(
HQ

R

)2

+
n(n− 1)

6

(
HQ

R

)3
]

pn(cosψPQ)dσ. (4.135)

After employing the defination of Eq.(4.112), the potential of the topographic masses in case of land areas
at the geoid is given by:

Vt = 4πGρcrR
2

∞∑

n=0

1

2n+ 1

[
n∑

m=0

1∑

α=0

h1αnmY
α
nm − (n− 1)

2
h2αnmY

α
nm +

n(n− 1)

6
h3αnmY

α
nm

]

, (4.136)

where the expressions h1nm, h2nm and h2nm are computed using heights above the geoid only. The potential
of the topographic masses (in case ocean areas) is computed using the potential coefficients, Eq. (4.133),
with the coefficients h1nm, h2nm and h2nm computed from bathymetric depths.
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4.2.1.2 Effect of the isostatic masses

The topographic-isostatic models due to Airy-Heiskanen, Vening-Meinesz, Pratt-Hayford and the combined
Airy-Pratt model as well as Helmert’s first and second condensation methods will be formulated in terms of
spherical harmonic expansions in the following.

Airy-Heiskanen model The spherical harmonic coefficients of the isostatic masses can be derived similar
to those of the topographic masses according to Eq. (4.119) (e.g. Rummel et al. 1988):

C̄α,Cnm =
3

ρ̄R(2n+ 1)

1

4π

∫∫

σ

AC(Q)Y αnmdσ, (4.137)

where the isostatic compensation masses are covered by

AC(Q) =

R−T∫

R−T−tQ

∆ρ

(
ξ

R

)n+2

dξ, (4.138)

with the thickness of the crust T and the difference in density between the crust and the mantle ∆ρ = ρm−ρcr.
After performing the integration, the isostatic compensation part is given by:

AC(Q) = ∆ρ
R

n+ 3

[(
R− T )

R

)n+3

−
(
R− T − tQ

R

)n+3
]

. (4.139)

Eq. (4.139) can be written in the following form:

AC(Q) =
∆ρR

n+ 3

[(
R− T )

R

)n+3

−
(
R− T

R

)n+3(

1 − (n+ 3)
tQ

(R− T )
+

(n+ 2)(n+ 3)

2
.

.

(
tQ

R− T

)2

− (n+ 3)(n+ 2)(n+ 1)

6

(
tQ

R− T

)3

+
1

(n+ 3)

n+3∑

k=4

(
n+ 3

k

)( −tQ
R− T

)k
)]

,

(4.140)

and after some algebraic rearrangements,

AC(Q) =∆ρR

(
R− T )

R

)n+2 [
tQ
R

− R(n+ 2)

2(R− T )

(
tQ
R

)2

+
R2(n+ 2)(n+ 1)

6(R− T )2

(
tQ
R

)3

−

− 1

(n+ 3)

n+3∑

k=4

(
n+ 3

k

)(−tQ
R

)k (
R

R− T

)k−1
]

.

(4.141)

The potential coefficients of the isostatic masses read analogously to Eq. (4.133)

C̄α,Cnm =
3∆ρ

(2n+ 1)ρ̄

(
R− T )

R

)n+2 [

t1αnm − R(n+ 2)

2(R− T )
t2αnm+

R2(n+ 2)(n+ 1)

6(R− T )2
t3nm−

− 1

(n+ 3)

n+3∑

k=4

(
n+ 3

k

)(
R

R− T

)k−1

(−1)
k · tkαnm

]

,

(4.142)

with the terms

tkαnm :=
1

4π

∫∫

σ

(
tQ
R

)k

Y αnmdσ. (4.143)

The roots and anti-roots are determined based on the formulae as given in chapter 3.
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If the density of the topographic masses is considered to be constant and the equivalent rock topography
procedures (see chapter 3) are introduced, Eq. (4.142) can be written in the form (after expanding the
equivalent roots, Eq. (3.18), to the third order in equivalent heights)

C̄α,Cnm =
3

(2n+ 1)

ρcr
ρ̄

(
R− T )

R

)n{

h1αnm +

[

(η + 1) − η(n+ 2)

2

]

h2αnm+

+

[
η2(n+ 2)(n+ 1)

6
− (n+ 2)

(
η + η2

)
+

(
1

3
+ 2η +

5

3
η2

)]

h3αnm

}

,

(4.144)

with

η =

(
R

R− T

)3
ρcr
∆ρ

, (4.145)

where the coefficient h1αnm, h2αnm and h3αnm are computed using Eq. (4.134).

Pratt-Hayford model The spherical harmonic terms for the Pratt-Hayford model can be derived similar
to those for the Airy-Heiskanen model. In this case the potential coefficients are given by (Tsoulis 2001):

C̄α,∆nm =
3

ρ̄R(2n+ 1)

1

4π

∫∫

σ

[
AT (Q) −AC(Q)

]
Y αnmdσ, (4.146)

where the topography part (consisting of layers with known density) can be represented as:

AT (Q) =







l∑

i=0

R+Hi∫

R

[ρi(Q) − ρi+1(Q)]

(
ξ

R

)n+2

dξ

R∫

ξ=R−H′

Q

(
ξ

R

)n+2

(ρw − ρcr)dξ







, (4.147)

and the compensating part as:

AC(Q) =







R∫

ξ=R−D

(
ξ

R

)n+2

∆ρL(Q)dξ

R−H′

Q∫

ξ=R−D

(
ξ

R

)n+2

∆ρO(Q)dξ







. (4.148)

The integral of Eq. (4.147) for the topographical masses (in case of land area) corresponds to those of the
Airy-Heiskanen model according to (Eq. 4.126). For the ocean areas it can be formulated as follows:

ATO = [ρw − ρcr]
R

n+ 3

[(
ξ

R

)n+3
]R

R−H′

Q

= [ρw − ρcr]
R

n+ 3

[

1 −
(
R−H ′

Q

R

)n+3
]

. (4.149)

Expanding the terms in Eq. (4.149) into a binomial series up to kth order gives

ATO = [ρw − ρcr]R

[

H ′

Q

R
− (n+ 2)

2

(
H ′

Q

R

)2

+
(n+ 1)(n+ 2)

6

(
H ′

Q

R

)3

− 1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

·
(−H ′

Q

R

)k
]

.

(4.150)
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Then, the contribution of the oceanic part to the potential coefficients can be given analogously to Eq. (4.133)
by:

C̄α,T,Onm =
3

2n+ 1

(ρw − ρcr)

ρ̄

{

h′1αnm − n+ 2

2
h′2αnm +

(n+ 1)(n+ 2)

6
h′3αnm−

− 1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

· (−1)
k
h′kαnm

}

,

(4.151)

with the coefficients

h′kαnm =
1

4π

∫∫

σ

(
H ′

Q

R

)k

Y αnmdσ. (4.152)

For calculating the effect of the compensating masses in case of the land part (upper term of Eq. 4.148), the
density deficiency is calculated as follows:

∆ρL(Q) = ρcr − ρL(Q). (4.153)

Inserting this relation into the first term of Eq. (4.148) and integrating over rQ yields:

ACL = ∆ρL(Q)
R

n+ 3

[

1 −
(
R−D

R

)n+3
]

. (4.154)

Similarly, the density surplus for the suboceanic columns is given by:

∆ρO(Q) = ρcr − ρO(Q), (4.155)

where ρO and ρL are calculated using the formulae in chapter 3. Inserting Eq. (4.155) in the lower term of
Eq. (4.148) and integrating over ξ gives the contribution for the oceanic areas:

ACO =∆ρO(Q)R

[

−
(
H ′

Q

R

)

+
n+ 2

2

(
H ′

Q

R

)2

− (n+ 2)(n+ 1)

6

(
H ′

Q

R

)3

+

+
1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

·
(−H ′

Q

R

)k
]

+ ∆ρocean
R

n+ 3

[

1 −
(
R−D

R

)n+3
]

.

(4.156)

Finally, the potential coefficients of the compensating masses for land areas read

C̄α,C,Lnm =
3

ρ̄(2n+ 1)(n+ 3)

[

1 −
(
R−D

R

)n+3
]

hαdh, (4.157)

and for ocean areas

C̄α,C,Onm =
3

ρ̄(2n+ 1)

{

−h′′1αnm +
n+ 2

2
h′′2αnm − (n+ 1)(n+ 2)

6
h′′3αnm+

+
1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

· (−1)
k
h′′kαnm

}

+
3

(2n+ 1)(n+ 3)ρ̄

[

1 −
(
R−D

R

)n+3
]

h′′
α
dh,

(4.158)

with the terms

hαdh =
1

4π

∫∫

σ

∆ρL(Q)Y αnmdσ, (4.159)
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h′′1αnm =
1

4π

∫∫

σ

∆ρO(Q)
H ′

Q

R
Y αnmdσ, (4.160)

h′′2αnm =
1

4π

∫∫

σ

∆ρO(Q)

(
H ′

Q

R

)2

Y αnmdσ, (4.161)

h′′3αnm =
1

4π

∫∫

σ

∆ρO(Q)

(
H ′

Q

R

)3

Y αnmdσ, (4.162)

h′′kαnm =
1

4π

∫∫

σ

∆ρO
(
H ′

R

)k

Y αnmdσ, (4.163)

h′′
α
dh =

1

4π

∫∫

σ

∆ρO(Q)Y αnmdσ. (4.164)

If the density of the topographic masses is assumed to be unknown, Eqs. (4.147) and (4.148) can be simplified
to

AT (Q) =







R+HQ∫

R

ρL(Q)

(
ξ

R

)n+2

dξ

R∫

ξ=R−H′

Q

(
ξ

R

)n+2

(ρw − ρcr)dξ







, (4.165)

and the compensation term is given by

AC(Q) =







R∫

ξ=R−D

(
ξ

R

)n+2

∆ρL(Q)dξ

R−H′

Q∫

ξ=R−D

(
ξ

R

)n+2

∆ρOdξ







. (4.166)

In this case the potential coefficients of the topographic masses (in case of land area) is given by:

C̄α,T,Lnm =
3

(2n+ 1)ρ̄

{

h1Lαnm +
n+ 2

2
h2Lαnm +

(n+ 1)(n+ 2)

6
h3Lαnm +

1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

· hkLαnm

}

,

(4.167)

with the expressions

hkLαnm =
1

4π

∫∫

σ

(
HQ

R

)k

ρLY
α
nmdσ. (4.168)

After calculating all the potential coefficients of the topographic and compensating masses, the potential
coefficients for the Pratt-Hayford model can be determined as follows:

C̄α,∆nm = C̄α,T,Lnm + C̄α,T,Onm − C̄α,C,Lnm − C̄α,C,Onm . (4.169)

The depths of oceans are adapted from global bathymetry models as absolute values; the concept of equivalent
rock topography is not applied in determining the Eq. (4.169). All the previous equations can also be used
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for calculating the Pratt-Hayford model in planar approximation. Differences occur only in determining the
variable density (chapter 3). An alternative method can be developed in case of the unknown density of the
topography for computing the Pratt-Hayford compensation model: In this method the potential coefficients
of the topographic masses are considered to be equal the potential coefficients for the Airy-Heiskanen model
and the potential coefficients of the compensating masses are calculated in one step according to the following
equation:

C̄α,∆nm =
3

ρ̄R(2n+ 1)

1

4π

∫∫

σ

[
AT (Q) −AC(Q)

]
Y αnmdσ, (4.170)

with the topography and compensation constituents

AT (Q) =







R+HQ∫

R

ρcr

(
ξ

R

)n+2

dξ

R∫

ξ=R−H′

Q

(
ξ

R

)n+2

(ρw − ρcr)dξ







, (4.171)

AC(Q) =

R+HQ∫

ξ=R−D

(
ξ

R

)n+2

∆ρ(Q)dξ, (4.172)

where ∆ρ(Q) is the difference between the density of the integration element and the constant crust density in
case of the land and ocean areas and H is the orthometric height in case of the topographic and bathymetric
depths in ocean areas. Eq. (4.171) is the same as the equation derived for the Airy-Heiskanen model for
calculating the effects of the topographic masses. After integration and insertion of the integral limits, Eq.
(4.172) can be written as:

AC(Q) =∆ρ(Q)R

[(
HQ

R

)

+
n+ 2

2

(
HQ

R

)2

+
(n+ 2)(n+ 1)

6

(
HQ

R

)3

+

+
1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

·
(
HQ

R

)k
]

+ ∆ρ(Q)
R

n+ 3

[

1 −
(
R−D

R

)n+3
]

.

(4.173)

Finally, the potential coefficients of the compensating masses for land and ocean areas are given by:

C̄α,Cnm =
3

ρ̄(2n+ 1)

{

hbαnm +
n+ 2

2
h2bαnm +

(n+ 1)(n+ 2)

6
h3bαnm+

+
1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

· hkbαnm

}

+
3

(2n+ 1)(n+ 3)ρ̄

[

1 −
(
R−D

R

)n+3
]

hαdh,

(4.174)

with the coefficients

hkbαnm =
1

4π

∫∫

σ

∆ρ(Q)

(
HQ

R

)k

Y αnmdσ. (4.175)

Combined Airy-Pratt model In this model the potential coefficients of the topographic and isostatic
compensation masses for continental areas are computed according to the Airy-Heiskanen model and the



4.2. Spherical harmonic expansion 75

potential coefficients of the topographic-isostatic compensation masses for ocean areas according to the
Pratt-Hayford model. The spherical harmonic coefficients read as follows,

c̄α,∆nm = c̄α,T,Lnm − c̄α,C,Lnm
︸ ︷︷ ︸

Airy−Heiskanen model

+ c̄α,T,Onm − c̄α,C,Onm
︸ ︷︷ ︸

Pratt−Hayford model

.
(4.176)

In this investigation, the concept of rock equivalent topographic heights will not be applied in the case of
the Pratt-Hayford and the combined Airy-Pratt models.

Vening-Meinesz isostatic model In case of the Vening-Meinesz model, the isostatic compensation part
of the topography is filtered for small scale signals, i.e. for high frequencies. This can be taken into account
by using degree-dependent low-pass spectral smoothing filter coefficients βn for the compensation part.
Inserting these filter coefficients into Eq. (4.144) results in the following equation for the spherical harmonic
compensation coefficients

c̄β,α,Cnm = βn(nb, k)c̄
α,C
nm . (4.177)

The spectral amplitude filter coefficients βn are defined as follows:

βn(nb, k) =

√

1

1 + (n/nb)
2k
, (4.178)

with the order k of the filter and the band degree nb at which the power (or the amplitude) is halved (cf.
Haagmans 2000). The parameter k defines the steepness of the low-pass filter. For k = 0 the coefficients are
not filtered at all and for k = ∞ all the coefficients below nb are preserved and the coefficients above nb are
set equal to zero. The choice of nb can be based upon the spatial scale for which the Airy-Heiskanen model
is no longer valid. Haagmans (2000) and Pail (2000) states that the compensation model is not likely to be
valid for topographic signals at spatial scales smaller than 200 km while Sjöberg (1998b) gives a value of
500 km. The value of Haagmans corresponds more or less to the non-validity of the compensation model for
frequencies above degree 200. In this study, the parameters chosen by Haagmans (2000) are used as k = 3
and nb = 150.

4.2.1.3 Helmert’s condensation methods

The potential due to the topographic masses in case of Helmert’s condensation methods is identical to that of
the Airy-Heiskanen model Eq. (4.129). The potential of the condensed masses can be given by the following
equation (Heck 2003):

V c|r=rP
= G

∫∫

σ

kQ
lc

∣
∣
∣
∣
r=rP

R2
cdσ, (4.179)

where Rc is the radius of the condensed masses and kQ is the surface density at the integration point, Q.
The surface density can be calculated using the formulae as given in chapter 3. The reciprocal of the distance
can be written as spherical harmonic expansion as follows:

l−1
c = (r2 +R2

c − 2rRc cosψ)−
1
2 =

1

r

∞∑

n=0

(
Rc
r

)n

Pn(cosψ). (4.180)

Inserting Eq. (4.180) into Eq. (4.179) with kQ as defined in chapter 3 yields:

V c|r=rP
= GR2

c

∞∑

n=0

(
R

rP

)n+1(
Rc
R

)n ∫∫

σ

l∑

i=0

(ρi − ρi+1)

R2
c

R3

[(
Hi

R

)

+

(
Hi

R

)2

+
1

3

(
Hi

R

)3
]

Pn(cosψ)dσ.
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(4.181)

Following the procedures that led to Eq. (4.129), the potential coefficients for the condensed masses are
determined as follows:

C̄α,Cnm =
3

(2n+ 1)ρ̄

[(
Rc
R

)n

haαnm +

(
Rc
R

)n

ha2αnm +

(
Rc
R

)n

ha3αnm

]

. (4.182)

The coefficients hakαnm are computed from Eq. (4.130).

Finally, the differences between the potential coefficients of the topographic and condensed masses read

cα,Inm =
3

(2n+ 1)ρ̄

{[

1 −
(
Rc
R

)n]

ha1αnm +

[
n+ 2

2
−
(
Rc
R

)n]

ha2αnm+

+
1

3

[
(n+ 2)(n+ 1)

2
−
(
Rc
R

)n]

ha3αnm +
1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

· hakαnm

}

.

(4.183)

The quantity Rc is the radius of the (approximate) condensation sphere. In case of Helmert’s first or gene-
ralized condensation method it holds Rc = R − D1, and in case of Helmert’s second condensation method
Rc = R.

If the density of the topographic masses is considered to be constant or the rock equivalent topography is
used, the potential coefficients of the topographic and condensed masses will be given by:

cα,Inm =
3ρcr

(2n+ 1)ρ̄

{[

1 −
(
Rc
R

)n]

h1αnm +

(

[
n+ 2

2
−
(
Rc
R

)n]

h2αnm+

+
1

3

[
(n+ 2)(n+ 1)

2
−
(
Rc
R

)n]

h3αnm +
1

n+ 3

n+3∑

k=4

(
n+ 3

k

)

· hkαnm

}

,

(4.184)

where the coefficients h1αnm, h2αnm, h3αnm and hkαnm are computed according to Eq. (4.134).

4.2.2 Spherical harmonic expansion for calculating the far-zone topographical effects

Let us start with the potential of the topographic masses as given by Newton’s integral

V t
∣
∣
r=rP

= Gρcr

∫∫

σ





rQ∫

R

ξ2

l

∣
∣
∣
∣
r=rP

dξ



dσ. (4.185)

The integration domain is divided into two parts σ = σ0 ∪ σFz where σ0 is the near zone and σFz is the
far-zone. Then the integral in Eq. (4.185) can be written as the sum of the two parts as follows:

V t
∣
∣
r=rP

= Gρcr

∫∫

σ0






R+HQ∫

R

ξ2

l

∣
∣
∣
∣
r=rP

dξ




dσ +Gρcr

∫∫

σF z






R+HQ∫

R

ξ2

l

∣
∣
∣
∣
r=rP

dξ




dσ

=: V t0
∣
∣
r=rP

+ V tF z
∣
∣
r=rP

.

(4.186)

Here we will study the term V tF z |r=rP
or quantities related to this term. The quantity V tF z |r=rP

is expressed
by a series expansion in terms of Laplace’s surface spherical harmonics. Then the truncation coefficients due
to Molodenskii will be derived to get an impression of the far-zone effects.
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4.2.2.1 The direct topographical effects on gravity

Helmert’s second method of condensation The topographical masses are condensed on the geoid as
a single layer. The direct topographical effect DTE on gravity was given by Martinec and Vaníček (1994b)
in spherical approximation. DTE can be obtained from the difference between the first derivatives of the
potential of the topographic and the condensed masses as follows:

DTE(r, ϕ, λ)|r=rP
=
∂V

∂r

∣
∣
∣
∣
r=rP

= Gρcr

∫∫

σ

∂

∂r

R+HQ∫

ξ=R

l−1(r, ψ , ξ)|r=rP
ξ2dξdσ −Gρcr

∫∫

σ






R+HQ∫

ξ=R

ξ2dξ





∂

∂r
l−1(r, ψ, R)|r=rP

dσ.

(4.187)

The reciprocal distance between the computation and the integration point is given by

l−1(r, ψ, ξ) = (r2 + ξ2 − 2rξ cosψ)−1/2, (4.188)

with the spherical distance ψ expressed as:

cosψ = cosϕ cosϕQ + sinϕ sinϕQ cos(λ− λQ). (4.189)

The contribution of the integral of Eq. (4.187) can be developed in the following form (Novák et al. 2001):

DTE|r=rP
=Ab +Gρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

∂

∂r
l−1(r, ψ, ξ) |r=rP

ξ2dξdσ−

−Acb −Gρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

∂

∂r
l−1(r, ψ,R)

∣
∣
r=rP

ξ2dξdσ.

(4.190)

Ab and Acb are the gravitational effects of the topographical Bouguer shell and the corresponding Bouguer
layer. The terms Ab and Acb are equal if mass conservation is anticipated (Wichiencharoen 1982). In this case
both terms cancel eact other. The difference between the other two terms is called the direct terrain effect
DTEter in the following. The far-zone contribution can be determined in an economic approximative way.
This section treats only the far-zone contribution of the topographic-condensation masses which is given by
Eq. (4.191) as derived in Appendix A.1.1:

DTEter
F Z

∣
∣
r=rP

=2πGρcr

(
Nmax∑

n=0

tn(η, ψ, ψ0)Hn(ϕ, λ)+
1

rP
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un(η, ψ, ψ0)H
2
n(ϕ, λ)−

− 2HP

rP

Nmax∑
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un(η, ψ, ψ0)Hn(ϕ, λ) −
Nmax∑

n=0

wn(HP , ψ, ψ0)Hn(ϕ, λ)−

− 2(HP ′ −HP )

rP

Nmax∑

n=0

vn(η, ψ, ψ0)Hn(ϕ, λ) − 1

R

Nmax∑

n=0

wn(HP , ψ, ψ0)H
2
n(ϕ, λ)

)

+ [C1 − C2] ,

(4.191)

where tn(η, ψ, ψ0), un(η, ψ, ψ0), vn(η, ψ, ψ0) and wn(HP , ψ, ψ0) are Molodenskii’s truncation coefficients as
defined in Appendix A.1.1 by Eqs. (A.20), (A.25), (A.26) and (A.28), respectively. C1 and C2 are given by
Eqs. (A.27) and (A.37), respectively.

The Laplace surface spherical harmonics of the height function Hn(ϕ, λ) and the squared height function
H2
n(ϕ, λ) are given by:

Hn(ϕ, λ) =

n∑

m=−n

Hn,mYn,m(ϕ, λ), H2
n(ϕ, λ) =

n∑

m=−n

H2
n,mYn,m(ϕ, λ), (4.192)
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where the coefficientsHn,m andH2
n,m can be computed based on a global DTM and Yn,m(ϕ, λ) are the surface

spherical harmonics of degree n and order m (Heiskanen and Moritz 1967). The numerical computation of
the coefficients for the height function and the squared height function will be given in chapter 5.

Helmert’s first or generalized method of condensation The topographic masses are condensed on
an internal surface at a depth of D1 below the geoid and parallel to it. To determine the far-zone contribution
of the direct terrain effect, Eq. (4.190) has to be modified as follows:

DTEter
∣
∣
r=rP

=Gρcr

∫∫

σ

∂

∂r

R+HQ∫

ξ=R+HP ′
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∂
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∣
∣
r=rP

ξ2dξdσ,

(4.193)

where again the attraction of the Bouguer shell and the condensation layer are considered as identical, Ab
∧

=
Acb. The far-zone direct terrain effect for this method is calculated using Eq. (4.191), where wn(HP , ψ, ψ0)
has to be modified as shown in Appendix A.1.2 by the Eqs. (A.36) with (A.38).

Airy-Heiskanen model The mountains of constant density ρcr float on a mantle of constant density
ρm with roots reflecting the heights of the mountains. The roots or anti-roots in this model for the linear
approximation are given by (Rummel et al. 1988, Lambeck 1988 ; see Fig. 4.6):

t = CH, (4.194)

with a constant C in case of mountains,

C :=

(
R

R− T

)2
ρcr

ρm − ρcr
, (4.195)

and in case of the oceans,

C :=

(
R

R− T

)2
ρcr − ρw
ρm − ρcr

, (4.196)

where R is the Earth radius, ρw is the water density and T is the Airy-Heiskanen depth for zero elevation.

The direct topographical effect for the Airy-Heiskanen model can be given analogously to Eq. (4.190):
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(4.197)
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where tP is the root under the computation point and tQ is the thickness of the variable root (Fig. 4.6). Ab

and Abi are the effects of the Bouguer shells. These terms are identical if mass conservation is anticipated.
In this case both terms cancel each other. Also, the difference between the remaining terms is called in the
following the direct terrain effect DTEter.

The first term on the right hand side of Eq. (4.197) has been derived in (Eq. A24). The second term is
determined following the procedures used for the first term of Eq. (4.190). Finally, the direct far-zone terrain
effect for this model is given by:
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(4.198)

where the coefficients qn(η, ψ, ψ0), rn(η, ψ, ψ0) and sn(η, ψ, ψ0) are calculated based on Eq. (A20), Eq. (A.25)
and Eq. (A.26), respectively, with the parameter η given in Eq. (A.41). C1 and C3 are defined in Eq. (A.27)
and Eq. (A.42), respectively. If the roots and anti-roots are taken according to Eq. (3.18), the DTEter

F Z
is

given by:
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(4.199)

with Laplace surface spherical harmonics of the root function tn(ϕ, λ) and the squared root function t2n(ϕ, λ)
are given by:

tn(ϕ, λ) =

n∑

m=−n

tn,mYn,m(ϕ, λ), t2n(ϕ, λ) =

n∑

m=−n

t2n,mYn,m(ϕ, λ), (4.200)

where the coefficients tn,m and t2n,m are computed according to Eq. (4.143) and the parameters C ′

3 is given
by

C ′

3 =2πG∆ρcr [q0(η, ψ, ψ0)tP − 1

rP
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2
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s0(η, ψ, ψ0) tP ] .

(4.201)
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4.2.2.2 The primary indirect topographical effect on geoidal heights

The primary indirect topographical effect PITE on the geoid is given by Bruns’s theorem (Bruns 1878). The
potentials of the Bouguer shell and the Bouguer layer of the condensed masses are studied by Vaníček et al.
(2001),

δV = δV shell + δV ter. (4.202)

It reads in terms of the primary indirect effect according to Eq. (4.202)

PITE = PITEshell + PITEter :=
δV

γ0
=
δV shell

γ0
+
δV ter

γ0
, (4.203)

where δV shell is the difference between the gravitational potential of topographic Bouguer shell and the
condensed Bouguer layer.

Helmert’s second method of condensation We focus on the term PITEterwhich is called the primary
indirect terrain effect on the geoid in case of Helmert’s second method of condensation. The PITEter is
given by (Martinec and Vaníček 1994a):
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(4.204)

The inner integral of the first term of Eq. (4.204) can be written as follows (Gradshteyn and Ryzhik 1980):
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ξ2dξ =
1

2
(ξ + 3rP0

)l(rP0
, ψ, ξ)+

+
r2P0

2
(3 cos2 ψ − 1) ln |ξ − rP0

cosψ + l(rP0
, ψ, ξ)|

∣
∣
∣
∣

R+HQ

R+HP ′

,

(4.205)

with rP0
= R.

Using the following parameters

ζ =
ξ

R
− 1, ζQ =

ξQ
R

− 1, ξ = R+HP ′ , η =
ξ

R
, ηQ =

ξQ
R
, ξQ = R+HQ, (4.206)

Eq. (4.205) is written as

R+HQ∫

R+HP ′

l−1(r, ψ, ξ)|r=rP0

ξ2dξ =
R2

2
(ηQ + 3 cosψ)(1 + η2

Q − 2ηQ cosψ)
1
2 +

+
R2

2
(3 cos2 ψ − 1) ln

∣
∣
∣
∣
∣

ηQ − cosψ + (1 + η2
Q − 2ηQ cosψ)

1
2

η − cosψ + (1 + η2 − 2η cosψ)
1
2

∣
∣
∣
∣
∣
−

− R2

2
(η + 3 cosψ)(1 + η2 − 2η cosψ)

1
2 .

(4.207)
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The distance function and the logarithmic function in Eq. (4.207) can be developed based on Eq. (A.4) and
Eq. (A.9), respectively. The substitutions of Eq. (A.4) and Eq. (A.9) in Eq. (4.207) result in

R+HQ∫

R+HP ′

l−1(r, ψ , ξ)|r=rP0

ξ2dξ =R2(ζQ − ζ)N1(η, ψ) +R2(ζ2
Q − ζ2)N2(η, ψ)−

−R2(ζQ − ζ)2N3(η, ψ),

(4.208)

with the integral kernels (Novák et al. 2001)

N1(η, ψ) =
3

4
(2 − 2 cosψ)

1
2 (1 + cosψ) +

(3 cos2 ψ − 1)
[

2 + (2 − 2 cosψ)
1
2

]

4
[

η − cosψ + (1 + η2 − 2η cosψ)
1
2

] , (4.209)

N2(η, ψ) =
5 + 3 cos2 ψ

8(2 − 2 cosψ)
1
2

+
(3 cos2 ψ − 1)(1 + cosψ)

8(2 − 2 cosψ)
1
2

[

η − cosψ + (1 + η2 − 2η cosψ)
1
2

] , (4.210)

N3(η, ψ) =
(3 cos2 ψ − 1)

[

3 − cosψ + 2(2 − cosψ)
1
2

]

8
[

η − cosψ + (1 + η2 − 2η cosψ)
1
2

]2 . (4.211)

Applying the procedure introduced by Molodenskii as shown in detail in Appendix A.1.1, the far-zone primary
indirect topographic effect on the geoid heights of the topographic masses for Helmert’s second condensation
method is given by:

G

γ0
ρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

l−1(R,ψ, ξ) |r=rP
ξ2dξdσ = 2π

G

γ0
ρcr

[

R

Nmax∑

n=0

a(1)
n (η, ψ, ψ0)Hn(ϕ, λ)+

+

Nmax∑

n=0

c(1)n (η, ψ, ψ0)H
2
n(ϕ, λ) + 2HP ′

Nmax∑

n=0

b(1)n (η, ψ, ψ0)Hn(ϕ, λ) + C4

(4.212)

and for the condensed masses analogously to Eq. (A.33)

−G

γ0
ρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

l−1(R,ψ,R) ξ2dξ
∣
∣
r=rP0

dσ = − 2π
G

γ0
ρcr

[

R

Nmax∑

n=0

e(1)n (η, ψ, ψ0)Hn(ϕ, λ)+

+

Nmax∑

n=0

e(1)n (ψ,ψ0)H
2
n(ϕ, λ)

]

+ C5.

(4.213)

The truncation coefficients of Eq. (4.212) and Eq. (4.213) are given by:

a(1)
n (η, ψ, ψ0) =

π∫

ψ=ψ0

N1(η, ψ)Pn(cosψ) sinψdψ, (4.214)

c(1)n (η, ψ, ψ0) =

π∫

ψ=ψ0

[N2(η, ψ) −N3(η, ψ)]Pn(cosψ) sinψdψ, (4.215)

b(1)n (η, ψ, ψ0) =

π∫

ψ=ψ0

N3(η, ψ)Pn(cosψ) sinψdψ, (4.216)
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e(1)n (ψ,ψ0) = R

π∫

ψ=ψ0

l−1(R,ψ,R)Pn(cosψ) sinψdψ, (4.217)

with the parameter

η =
R+HP ′

R
. (4.218)

The terms C4 and C5 are given by:

C4 =
2πGρ

γ0

[

−HP ′Ra
(1)
0 (η, ψ, ψ0) −H2

P ′c
(1)
0 (η, ψ, ψ0) −2H2

P ′b
(1)
0 (η, ψ, ψ0)

]

, (4.219)

C5 =
2πGρ

γ0

[
e0(ψ,ψ0)RHP ′ + e0 (ψ,ψ0)H

2
P ′

]
. (4.220)

Helmert’s first or generalized method of condensation The coefficients e(1)n (ψ,ψ0) of Eq. (4.217)
have to be replaced by:

e(1)n (ψ,ψ0, D1) = R

π∫

ψ=ψ0

l−1(R,ψ,R−D1)Pn(cosψ) sinψdψ. (4.221)

Airy-Heiskanen model The far-zone primary indirect terrain effect for the topographic-isostatic masses
is given by:

PITEter
∣
∣
r=rP0

=
G

γ0
ρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

l−1(R,ψ, ξ)|r=rP0

ξ2dξdσ−

− G

γ0
∆ρ

∫∫

σ

R−T−tQ∫

ξ=R−T−tP

l−1(R,ψ, ξ)|r=rP0

ξ2dξdσ.

(4.222)

The first term of Eq. (4.222) represents the effect of the topographic masses and is given by Eq. (4.212). The
second term can be derived using the same procedure as used in Eq. (4.205), resulting in

R−T−tQ∫

R−T−tp

l−1(r, ψ , ξ)|r=rP0

ξ2dξ =R2(ζQ − ζ)N1(η, ψ) +R2(ζ2
Q − ζ2)N2(η, ψ)−

−R2(ζQ − ζ)2N3(η, ψ),

(4.223)

with the parameters

ζ =
ξ

R
− 1, ζQ =

ξQ
R

− 1, ξ = R− T − tp, η =
ξ

R
, ηQ =

ξQ
R
, ξQ = R− T − tQ. (4.224)

N1(η, ψ), N2(η, ψ) and N3(η, ψ) are given by Eq. (4.209) to Eq. (4.211) with the parameter η as defined in
Eq. (4.222).

Inserting the integration limits and the parameters, as shown in Eq. (4.224), Eq. (4.223) can be transformed
into the following practical computation formula:

R−T−tQ∫

R−T−tP

l−1(r, ψ, ξ) ξ2dξ
∣
∣
r=rP0

= −RC (HQ −HP ′)N1(η, ψ)+

+ 2TC (HQ −HP ′) [N2(η, ψ) −N3(η, ψ)] + C2
(
H2
Q −H2

P ′

)
·

· [N2(η, ψ) −N3(η, ψ)] + 2C [T + tP ]N3(η, ψ)(HQ −HP ′).

(4.225)
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Applying the procedure introduced by Molodenskii as shown in Appendix A.1.1, the second term of Eq.
(4.219) is given by:

G

γ0
∆ρ

∫∫

σ→σF Z

R−T−tQ∫

ξ=R−T−tp

l−1(R,ψ, ξ)ξ2dξdσ = 2π
G

γ0
∆ρ

[

−RC
Nmax∑

n=0

o(1)n (η, ψ, ψ0)Hn(ϕ, λ)+

+ C2
Nmax∑

n=0

f (1)
n (η, ψ, ψ0)H

2
n(ϕ, λ) + 2TC

Nmax∑

n=0

f (1)
n (η, ψ, ψ0)Hn(ϕ, λ)+

+ 2(T + tP )C

Nmax∑

n=0

g(1)
n (η, ψ, ψ0)Hn(ϕ, λ)

]

+ C6,

(4.226)

with T and C as defined in Eqs. (4.194) to (4.196). The truncation coefficients of Eq. (4.226) are given by:

o(1)n (η, ψ, ψ0) =

π∫

ψ=ψ0

N1(η, ψ)Pn(cosψ) sinψdψ, (4.227)

f (1)
n (η, ψ, ψ0) =

π∫

ψ=ψ0

[N2(η, ψ) −N3(η, ψ)]Pn(cosψ) sinψdψ, (4.228)

g(1)
n (η, ψ, ψ0) =

π∫

ψ=ψ0

N3(η, ψ)Pn(cosψ) sinψdψ, (4.229)

and the parameter C6 is defined as

C6 =2π
G

γ0
∆ρ
[

RCHP ′o
(1)
0 (η, ψ, ψ0) − C2f

(1)
0 (η, ψ, ψ0)H

2
P ′−

−2TCf
(1)
0 (η, ψ, ψ0)HP ′ − 2(T + tP )Cg

(1)
0 (η, ψ, ψ0)HP ′

]

.

(4.230)

If the roots and anti-roots are taken according to Eq. (3.18), the second term of Eq. (4.219) is given by:

G

γ0
∆ρ

∫∫

σ→σF Z

R−T−tQ∫

ξ=R−T−tp

l−1(R,ψ, ξ)ξ2dξdσ = 2π
G

γ0
∆ρ

[

−R
Nmax∑

n=0

o(1)n (η, ψ, ψ0)tn(ϕ, λ)+

+

Nmax∑

n=0

f (1)
n (η, ψ, ψ0)t

2
n(ϕ, λ) + 2T

Nmax∑

n=0

f (1)
n (η, ψ, ψ0)tn(ϕ, λ)+

+ 2(T + tP )

Nmax∑

n=0

g(1)
n (η, ψ, ψ0)Ht(ϕ, λ)

]

+ C ′

6,

(4.231)

with

C ′

6 =2π
G

γ0
∆ρ
[

RtP o
(1)
0 (η, ψ, ψ0) − f

(1)
0 (η, ψ, ψ0)t

2
P−

−2Tf
(1)
0 (η, ψ, ψ0)tP − 2(T + tP )g

(1)
0 (η, ψ, ψ0)tP

]

.

(4.232)

Then, the PITEterFz is the sum of Eq. (4.212) and Eq. (4.226) or Eq. (4.231).
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4.2.2.3 The secondary indirect topographical effect on gravity

For the Stokes problem the spherical form of the secondary indirect topographical effect on gravity was
formulated by Vaníček et al. (1999) as a rescaled value of the residual topographical potential evaluated at a
radius equal to the radius of the Earth’s surface. The scale is set to 2/r. The different topographic-isostatic
models will be discussed in the following.

Helmert’s second method of condensation The difference between the gravitational potential of the
topographical shell and its condensed counterpart is zero in case of mass conservation. Then, the secondary
indirect terrain effect can be computed using the following expression (Vaníček et al. 1999):

SITEter
∣
∣
r=rP ′

=
2G

rP ′

ρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

l−1(r, ψ , ξ)|r=rP ′
ξ2dξdσ−

− 2G

rP ′

ρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

l−1(r, ψ, R)|r=rP ′
ξ2dξdσ.

(4.233)

Applying the same procedure as used in Eq. (4.205), the first term of Eq. (4.233) results in

∫∫

σ

R+HQ∫

ξ=R+HP ′

l−1(r, ψ , ξ)|r=rP ′
ξ2dξdσ =r2P ′(ζQ − ζ)M1(ψ) + r2P ′(ζ2

Q − ζ2)M2(ψ)−

− r2P ′(ζQ − ζ)2M3(ψ),

(4.234)

with the terms

ζ =
ξ

rP ′

− 1, ζQ =
ξQ
rP ′

− 1, ξ = R+HP ′ , η = 1.0, ηQ =
ξQ
rP ′

, ξQ = R+HQ. (4.235)

Inserting the integration limits and the parameters as shown in Eq. (4.235), Eq. (4.234) can be transformed
to the following practical computation formula:

∫∫

σ

R+HQ∫

ξ=R+HP ′

l−1(r, ψ , ξ)|r=rP ′
ξ2dξdσ = rP ′(HQ −HP ′)M1(ψ)+

+(H2
Q +H2

P ′) [M2(ψ) −M3(ψ)] − 2HP ′HQ [M2(ψ) −M3(ψ)] ,

(4.236)

with

M1(ψ) =
3

4
(2 − 2 cosψ)

1
2 (1 + cosψ) +

(3 cos2 ψ − 1)
[

2 + (2 − 2 cosψ)
1
2

]

4
[

1 − cosψ + (2 − 2 cosψ)
1
2

] , (4.237)

M2(ψ) =
5 + 3 cos2 ψ

8(2 − 2 cosψ)
1
2

+
(3 cos2 ψ − 1)(1 + cosψ)

8(2 − 2 cosψ)
1
2

[

1 − cosψ + (2 − 2 cosψ)
1
2

] , (4.238)

M3(ψ) =
(3 cos2 ψ − 1)

[

3 − cosψ + 2(2 − cosψ)
1
2

]

8
[

1 − cosψ + (2 − 2 cosψ)
1
2

]2 . (4.239)
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Again, applying the procedure introduced by Molodenskii as shown in Appendix A.1.1, the second term of
Eq. (4.233) is given by:

2G

rP ′

ρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

l−1(r, ψ , ξ)|r=rP ′
ξ2dξdσ = 4πGρcr

[
Nmax∑

n=0

a(2)
n (ψ,ψ0)Hn(ϕ, λ)−

−2HP ′

rP ′

Nmax∑

n=0

b(2)n (ψ,ψ0)Hn(ϕ, λ) +
1

rP ′

Nmax∑

n=0

b(2)n (ψ,ψ0)H
2
n(ϕ, λ)

]

+ C7,

(4.240)

with

a(2)
n (ψ,ψ0) =

π∫

ψ=ψ0

M1(ψ)Pn(cosψ) sinψdψ, (4.241)

b(2)n (ψ,ψ0) =

π∫

ψ=ψ0

[M2(ψ) −M3(ψ)]Pn(cosψ) sinψdψ, (4.242)

and

C7 = 4πGρ
[

−HP ′a
(2)
0 (ψ,ψ0) +H2

P ′b
(2)
0 (ψ,ψ0)/rP ′

]

. (4.243)

The second term of Eq. (4.233) is developed based on the procedure used in Eq. (A33) resulting in:

− 2G

rP ′

ρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

l−1(r, ψ, R)|r=rP ′
ξ2dξdσ =

−4πGρcr
rP ′

[
Nmax∑

n=0

d(2)
n (HP ′ , ψ, ψ0)Hn(ϕ, λ) +

+
1

R

Nmax∑

n=0

d(2)
n (HP ′ , ψ, ψ0)H

2
n(ϕ, λ)

]

+ C8,

(4.244)

where the Molodenskii truncation coefficient d(2)
n (HP ′ , ψ, ψ0) is given by:

d(2)
n (HP ′ , ψ, ψ0) = R2

π∫

ψ=ψ0

M4(HP ′ , ψ)Pn(cosψ) sinψdψ, (4.245)

with the integral kernel

M4(HP ′ , ψ) =
1

l(R+HP ′ , ψ,R)
. (4.246)

The parameter C8 is defined as:

C8 =
4πGρ

rP ′

[

d
(2)
0 HP ′ +

1

R
d
(2)
0 H2

P ′

]

. (4.247)

Helmert’s first or generalized method of condensation The following coefficient M4(HP ′ , ψ,D1) has
to be used instead of Eq. (4.246):

M4(HP ′ , ψ,D1) =
1

l(R+HP ′ , ψ,R−D1)
. (4.248)



86 4. Computation of the gravitational effects of the topographic-isostatic masses

Airy-Heiskanen model For this model, the far-zone contribution of the topographic-isostatic terrain
masses can be determined as follows (Novàk et al. 2001):

SITEter
∣
∣
r=rP ′

=
2G

R
ρcr

∫∫

σ

R+HQ∫

ξ=R+Hp′

l−1(r, ψ, ξ)|r=rP ′
ξ2dξdσ+

+
2G

R
∆ρ

∫∫

σ

R−T−tQ∫

ξ=R−T−tP

l−1(r, ψ, ξ)|r=rP ′
ξ2dξdσ.

(4.249)

The first term of Eq. (4.249) is given by Eq. (4.240). Following the same procedures as used for the determi-
nation of the direct topographic-isostatic effect, the inner integral of the second term of Eq. (4.249) can be
written as:

R−T−tQ∫

ξ=R−T−tP

l−1(rP , ψ, ξ)|r=rP ′
ξ2dξ = −rP ′ (HQ −HP ′)N1(η, ψ)C + 2(HP ′ + T ) (HQ −HP ′) ·

· C [N2(η, ψ) −N3(η, ψ)] +
(
H2
Q −H2

P ′

)
[N2(η, ψ) −N3(η, ψ)]C2+

+ 2C (HQ −HP ′)N3(η, ψ)(T + tP +HP ′).

(4.250)

The integral kernels N1(η, ψ), N2(η, ψ) and N3(η, ψ) are determined based on Eq. (4.209) to Eq. (4.211),
with the parameter η = R− T − tp/rP ′ .

Again, applying the technique introduced by Molodenskii Eq. (4.250) is written as

2G∆ρ

rP ′

R−T−tQ∫

ξ=R−T−tP

l−1(rP , ψ, ξ)|r=rP ′
ξ2dξ =

4πG∆ρ

rP ′

[

−rP ′

Nmax∑

n=0

o(2)n (η, ψ, ψ0)Hn(ϕ, λ)C+

+ 2(T +HP ′)

Nmax∑

n=0

f (2)
n (η, ψ, ψ0)Hn(ϕ, λ)C +

Nmax∑

n=0

f (2)
n (η, ψ, ψ0)H

2
n(ϕ, λ)C2+

+2

Nmax∑

n=0

g(2)
n (η, ψ, ψ0)Hn(ϕ, λ)(T + tP +HP ′)C

]

+ C9.

(4.251)

The truncation coefficients o(2)n (η, ψ, ψ0), f
(2)
n (η, ψ, ψ0) and g(2)

n (η, ψ, ψ0) are calculated based on Eqs. (4.227)
to (4.229) but with the parameter η = R − T − tp/rP ′ and T and C as defined in Eqs. (4.194) to (4.196).
The parameter C9 is determined by:

C9 =
4πG∆ρ

rP ′

[

CrP ′o
(2)
0 (η, ψ, ψ0)HP ′ − 2C(T +HP ′) f

(2)
0 (η, ψ, ψ0)HP ′−

−C2f
(2)
0 (η, ψ, ψ0)H

2
P ′ − 2(T + CHP ′ +HP ′)CHP ′g

(n)
0 (η, ψ, ψ0)

]

.

(4.252)

Also, in case of not using the linear approximation of roots and anti-roots, the second term of Eq. (4.251) is
given by:

2G∆ρ

rP ′

R−T−tQ∫

ξ=R−T−tP

l−1(rP , ψ, ξ)|r=rP ′
ξ2dξ =

4πG∆ρ

rP ′

[

−rP ′

Nmax∑

n=0

o(2)n (η, ψ, ψ0)tn(ϕ, λ)+

+ 2(T +HP ′)

Nmax∑

n=0

f (2)
n (η, ψ, ψ0)tn(ϕ, λ)C +

Nmax∑

n=0

f (2)
n (η, ψ, ψ0)t

2
n(ϕ, λ)+

+2

Nmax∑

n=0

g(2)
n (η, ψ, ψ0)tn(ϕ, λ)(T + tP +HP ′)

]

+ C ′

9,

(4.253)
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with

C ′

9 =
4πG∆ρ

rP ′

[

rP ′o
(2)
0 (η, ψ, ψ0)tP − 2(T +HP ′) f

(2)
0 (η, ψ, ψ0)tP−

−f (2)
0 (η, ψ, ψ0)t

2
P − 2(T + tP +HP ′)tP ′g

(n)
0 (η, ψ, ψ0)

]

.

(4.254)

The SITEterFz of the topographic and isostatic masses is the sum of Eq. (4.244) and Eq. (4.251) or Eq. (4.253).

4.3 Space localizing base functions

The spherical harmonic expansions treated in section 4.2 can be used for calculating topographic-isostatic
effects of long and medium and a small part from short wavelength features of the topographic masses
at the surface of the Earth or at aeroplane altitudes. This is especially the case also for the reduction of
observables at satellite altitudes (SST and SGG observables). Spherical harmonic expansions are also a proper
representation for the computation of topographic-isostatic far-zone effects. For the near-zone effects at low
altitudes a representation by space-localizing base functions is preferable. They are useful especially in the
case of computing the effects of residual topographical masses at the surface of the Earth or at low altitudes
as for airborne gravimetry. In this investigation only the formulae for Helmert’s methods of condensation are
investigated.

4.3.1 Direct topographical effects on gravity

We start from Eq. (4.41) for the determination of the potential of the topographic masses:

V t
∣
∣
r=rP

= Gρcr

∫∫

σ

R+HQ∫

R

1

l(r, ψ, ξ)

∣
∣
∣
∣
r=rP

ξ2dξdσ. (4.255)

Inserting the first term of Eq. (4.110) into Eq. (4.255) and interchanging the summation and the integration
results in:

Vt|r=rP
= GρcrR

2





∞∑

n=0

(
R

rP

)n+1 n+3∑

k=1

1

k

(

n+ 2

k − 1

)k ∫∫

σ

Pn(cosψPQ)

(
HQ

R

)k

dσ



 . (4.256)

Similarly, the potential of the condensation masses can be given as:

Vc(rP , ϕ, λ) = GR2
c

∫∫

σ

κQ
l(rP , ψ,Rc)

dσ, (4.257)

where κQ is the single layer density, Rc the radius of the condensed masses andD1 the Helmert’s condensation
depth which is equal to zero in case of Helmert’s second method of condensation.

If the mass of the topography is considered identical to the mass of the condensed topography (mass-
preservation condition), then the single mass layer density in spherical approximation reads as follows:

κQ =
ρcr
R2

R+HQ∫

R

ξ2dξ, (4.258)

κQ = ρcrR

[

H1
Q

R
+

(
HQ

R

)2

+
1

3

(
HQ

R

)3
]

. (4.259)
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Inserting Eq. (4.259) into Eq. (4.257) and following the same procedure as used for the determination of the
potential of the topographic masses results in

Vt(rP , ϕ, λ) = Gρcr
R3

rP

∞∑

n=0

(
Rc
rP

)n ∫∫

σ

Pn(cosψPQ)

(

HQ

R
+
H2
Q

R2
+

1

3

H3
Q

R3

)

dσ. (4.260)

Then the residual potential is given by:

δV |r=rP
=GρcrR
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(4.261)

Applying the partial radial derivative to Eq. (4.261), we obtain the direct topographical effect as follows:

DTE|r=rP
= −GρcrR
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(4.262)

The topographical heights shall now be represented by the following approximation:

Hk
Q =

I∑

i=1

akiΦ
k(rQ, rSi

), k = 1, 2, 3, ... (4.263)

where aki (k = 1, 2, 3) are the unknown base function parameters, rQ represents the field point and the points
rsi

indicate the locations of the i nodal points. As base functions isotropic base functions can be used such
as spline functions Φk(rQ, rSi

). A general form of the spline function can be given by:

Φk(rQ, rSi
) =

Nmax∑

n=0

CknPn(cosψQSi
). (4.264)

The coefficients Ckn define the shape of the spline function; in this particular case degree variances of the
heights are used. The quadratic and cubic heights will also be modelled by spline functions. With this
definition, the base functions can be interpreted as isotropic and homogenous harmonic spline functions
(Freeden et al. 1998). The nodal points can be generated by a uniform subdivision of an icosahedron or
selected according to a Gauss-Legendre grid.

Inserting Eq. (4.264) into Eq. (4.263) results in:

Hk
Q =

I∑

i=1

aki

N max∑

n=0

CknPN (cosψQSi
) . (4.265)

Applying the addition theorem of spherical harmonics

Pn (P,Q) =
1

2n+ 1

n∑

m=−n

Ynm (P )Ynm (Q), (4.266)
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and taking into account the orthogonality relations

∫∫

σ

Yn̄m̄ (Q)Ynm (Q) dσ = 4πδnn̄δmm̄, (4.267)

the double integral in Eq. (4.262) can be expressed (e.g., for k = 1) as:
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(4.268)

Eq. (4.268) (for k = 1, 2, 3) into Eq. (4.262), the direct topographical effect of the residual terrain in terms of
spherical splines as base functions is finally given by:
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= − 4πGρcrR
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(4.269)

In case of Helmert’s second method of condensation, Eq. (4.269) will be reduced to
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∣
∣
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(4.270)

where l is the minimum degree of the spherical harmonic expansion and is taken to be 0 in case of satellite
applications.

4.3.2 Primary indirect topographical effect

The residual potential on the geoid is known as the primary indirect topographical effect on the potential.
The primary indirect topographical effect on the geoid is given by Bruns’s theorem (1878). The potential of
the topographic masses on the geoid is given by:

Vt(R,ϕ, λ) = Gρcr

∫∫∫

v

1

l(R,ψ, ξ)
dv = Gρcr

∫∫

σ

R+HQ∫

R

ξ2

l(R,ψ, ξ)
dξdσ. (4.271)

In this case, the Newton integral kernel l(R, λ, φ)−1 can be expanded into a convergent series as follows:

l−1 =
1

ξ

∞∑

n=0

(
R

ξ

)n

Pn(cosψpQ). (4.272)
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Substituting from Eq. (4.272) into Eq. (4.271), results in

Vt(R,ϕ, λ) = Gρcr

∞∑

n=0

Rn
∫∫

σ

R+HQ∫

R

ξ−n+1dξdσ. (4.273)

Integrating the term in the brackets and expanding the result into a series up to the third order, then the
potential of the topographic masses can be given for computation points located at the geoid:

Vt(R,ϕ, λ) = GρcrR
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The corresponding potential of the condensed masses at the geoid is given by:

Vc(R,ϕ, λ) = GR2

∫∫

σ

κQl
−1(R,ψ,Rc)dσ. (4.275)

The Newtonian integration kernel can be expanded again into a convergent series:

l−1(R,ψ,Rc) =
1
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Pn(cosψpQ). (4.276)

Substituting κQ from Eq. (4.258) and l−1(R,ψ,R) from Eq. (4.276) into Eq. (4.275) results in
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Differencing Eqs. (4.274) and (4.277) yields the residual potential on the geoid,
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(4.278)

Following the same procedure as used for the direct topographical effect, the band-limited primary indirect
topographical effect (for orthometric height) on the geoid heights can be given as:

PITEres =
4πGρcrR

2

γ

Nmax∑

n=l

{

1

2n+ 1

[

1 −
(
Rc
R

)n]
1

R

I∑

i=1

a1
iC

1
nPn(cosψPSi

)+

+

[
(1 − n)

2
−
(
Rc
R

)n]
1

R2

I∑

i=1

a2
iC

2
nPn(cosψPSi

)+

+

[
(n− 1)n

2
− 1

3

(
Rc
R

)n]
1

R3

I∑

i=1

a3
iC

3
nPn(cosψPSi

)

}

,

(4.279)

where l stands for the minimum degree and n for the maximum degree. Again in case of Helmert’s second
method of condensation, Eq. (4.279) is given by,
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(4.280)
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5. Numerical analysis

In this chapter, the effects of the topographic-isostatic masses for various geodetic observables are investigated
numerically. In the first section, the test areas are presented. They are selected such that typical features
of the topographic-isostatic effects can be demonstrated. In the second section, computational aspects are
discussed. It includes the investigation of discretization effects for the numerical integration method and
the calculation procedure of the spherical harmonic coefficients as well as the near and far-zone aspects.
In the third section, the effects of topographic-isostatic masses are investigated at the surface of the Earth
and at altitude for airborne gravimetry/gradiometry. The near and far-zone effects of the topography are
considered in this section. The effects of topographic-isostatic masses in the observables of the Satellite-to-
Satellite Tracking (SST) technique and the Satellite Gravity Gradiometry (SGG) are determined in the last
section. Throughout the numerical computations the density of the topography and the crust is taken to
be 2670 kg/m3, the density of the mantle 3270 kg/m3, the mean density of the Earth 5498 kg/m3 and the
density of sea water 1030 kg/m3. Also, the depths of the Airy-Heiskanen and Vening Meinesz model are
taken to be constant and equal to 30 km.

5.1 Test regions

Four different computation areas have been selected to demonstrate typical features of the effects of the
topographic-isostatic masses. For airborne gravimetry and gravimetry at the surface of the Earth, the Cana-
dian Rocky Mountains are chosen. In case of airborne gradiometry, the Himalaya region is selected. To give
an impression about the effects of the topographic-isostatic masses at satellite altitude, the Asian region is
selected. Finally, the total surface of the Earth has been taken to show the effects of topographic-isostatic
masses in its global distribution. All test areas will be summarized in the following.

5.1.1 Canadian Rocky Mountains

This area covers the longitude from 2410 to 2440 and the latitude from 490 to 520 (see Fig. 5.1). The
digital terrain model GEBCO (General Bathymetric Chart of the Oceans) with one arc-minute resolution
(www.ngdc.noaa.gov/mgg/gebco) has been used for the test computations. The topographic heights of this
area range from 336 to 3112 m. This area with rough topography has been used for determining the effects
of topographic-isostatic masses at the surface of the Earth and at aeroplane altitude.

5.1.2 Himalaya

The Himalaya region is bounded by the meridians of 750 and 1050 eastern longitude and the parallels of
250 and 400 northern latitude (see Fig. 5.2). Also, the digital terrain model GEBCO with one arc-minute
resolution has been used for the numerical computations. The topographic heights range from 0 m to 8424.56
m.

5.1.3 Asia

The Asian area has been taken to be extended from 400 to 1500 in longitude and from −200 to 800 in
latitude (see Fig. 5.3). The digital terrain model ETOPO5 with five arc-minute resolution has been used
for the numerical calculation (NOAA 1988). The topographic heights and bathymetric depths range from
approximately -7000 m to 9 000 m.
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Fig. 5.1: GEBCO topography for Canadian Rocky Mountains (units in meter)
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5.1.4 Earth

To give an impression about the distribution of the effects of the topographic-isostatic masses, the total
surface of the Earth has been taken in the test computations (see Fig. 5.4). Also, the digital terrain model
ETOPO5 with five arc-minute resolution has been used for the numerical calculation (NOAA 1988). The
topographic heights and bathymetric depths range from approximately -8000 to 9 000 m.
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Fig. 5.4: ETOPO5 topography for the Earth (units in meter)

5.2 Computation aspects

5.2.1 Discretization effects

The integral formulae given in section 4.1.2 have been evaluated numerically such that the rigorous spherical
volume elements of the integrals defined by the geographical coordinate lines and the topography within these
compartments are approximated by mass lines in the center of these compartments. To avoid singularities at
the surface of the Earth, the locations of the computation points were selected at the intersection points of the
geographical coordinate lines (longitudes and latitudes). The discretization errors of these approximations
were investigated in the following for the potential, the first and the second derivatives of the potential for
different altitudes of the computation point and different resolutions of the topographic masses.

As a test example the spherical Bouguer shell has been chosen where the different gravitational functionals
of this shell can be determined analytically. For the thickness of the shell a value of ∆R = 2500 m has
been selected; the radius of the inner sphere coincides with the spherical approximation of the Earth, R1 =
R = 6371 km, and for the radius of the outer sphere follows R2 = R + ∆R. It shall be pointed out that
this test example represents an extreme situation in reality which may occur only in few cases, because in
the usual applications the numerical computations are restricted to the terrain corrections while the effects
of the spherical shell are computed analytically. The true values can be calculated analytically in arbitrary
altitudes by the following equations (see chapter 4 for the general formulae). It reads for the potential

Vt|r=rP
=

4πGρ

3rP
(R3

2 −R3
1), (5.1)
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and for the first radial derivative,

∂Vt
∂r

∣
∣
∣
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r=rP

= −4πGρ

3r2p
(R3

2 −R3
1), (5.2)

as well as for the second radial derivative,

∂2Vt
∂r2

∣
∣
∣
∣
r=rP

=
8πGρ

3r3P
(R3

2 −R3
1). (5.3)

The second horizontal components in x and y direction are identical and half of this expression with a
negative sign to fulfill the Laplace differential equation.

Figure 5.5 shows the differences between the numerical integration and the analytical computation of the
gravitational potential for various altitudes of the computation point above the the Bouguer shell and different
resolutions of the spherical volume elements, approximated by the mass-line elements. Figure 5.6 shows
these differences for the first radial derivative of the potential (in units of mGal). It is obvious that in case
of high accuracy demands and low flight altitudes it is necessary to use very high resolution of the DTM
and alternative precise approximation of the volume elements instead of the mass-lines. In the vicinity of the
computation points it might be sufficient to apply a rigorous planar representation such as the prism formulae
proposed, e.g., by Nagy (1966). The requirements are much less critical in case of increasing altitudes. Figure
5.7 and Fig. 5.8 show the approximation errors of the second radial derivatives of the potential and for the
(identical) horizontal components x and y, respectively, again for various altitudes of the computation point
above the shell up to 10000 m and different resolutions.

0 2000 4000 6000 8000 10000

heights above the spherical shell (m)

-12

-8

-4

0

n
u

m
e

ri
c
a

l
-

a
n

a
ly

ti
c
a

l
(m

2
/s

e
c
2

)

5'
7.5'

10'

2.5'1'

Fig. 5.5: Differences between the numerical integration and the analytical computation of the potential of a
Bouguer shell with a thickness of 2500 m (units in m2/s2)

The integral formulae become more and more critical if the computation point approaches the outer shell
surface. In this case a poor resolution causes large errors in the vicinity of the computation point. Table 5.1
illustrates the situation for computation points close to the spherical shell (the altitudes vary between 10
m and 50 m) based on increasing detailed resolutions of the DTM from 5′′ down to 0.125′′. It is obvious
that an extremely fine resolution is necessary for precise computations of the topographic-isostatic effects
of the second derivatives of the potential in case of computation points close to the Earth’s surface. These
instabilities are caused by the jump relations of the second derivatives dependent on the jumps of the density
function of the volume masses. Because of the jump relation of the, e.g., second radial derivative of our
spherical shell with an outer limit of

∂2Vt+
∂r2

∣
∣
∣
∣
r=R2

=
8πGρ

3R3
2

(R3
2 −R3

1), (5.4)
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Fig. 5.6: Differences between the numerical integration and the analytical computation of the first radial
derivative of the potential of a Bouguer shell with a thickness of 2500 m (units in mGal)
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derivative of the potential of a Bouguer shell with a thickness of 2500 m (units in Eötvös)

Table 5.1: Differences between the numerical integration and the analytical computation of the potential of
a Bouguer shell with a thickness 2500 m (units in m2/s2)

resolution height (m) 5”∗5” 2”∗2” 1”∗1” 0.25”∗0.25” 0.125”∗0.125”
10 -930.33 -668.72 -338.73 -1.16 < 1E-3
20 -751.64 -338.61 -62.25 < 1E-4 < 1E-4
30 -560.66 -151.30 -10.90 < 1E-4 < 1E-4
40 -452.40 -62.24 -1.15 < 1E-4 < 1E-4
50 -338.62 -22.56 -0.04 < 1E-4 < 1E-4
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and an inner limit of
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We cannot expect a reasonable result in case of computation points close to or at the outer spherical surface
of the shell.

The numerical values for the present example read for the outer limit of the radial component 1.75 Eötvös
and for the inner limit −2236 Eötvös. The results of the numerical integration for computation points at the
surface of the shell turn out to be (approximately) the arithmetic mean of the inner and the outer values,
approximately −1118 Eötvös (Fig. 5.9). This is only the case if the resolution is selected adequately high -
in case of a coarse grid the approximation errors cannot be interpreted anymore. The situation cannot be
explained in such a simple way as in case of the local horizontal directions x and y which are perpendicular
to the radial direction. No jump occurs in these cases, so that it holds at the outer shell boundary, e.g., for
the derivation with respect to x,

∂2Vt+
∂x2

∣
∣
∣
∣
r=R2

=
∂2Vt−
∂x2

∣
∣
∣
∣
r=R2

. (5.6)

Therefore, in these cases there would be no reason for an unstable behavior as in case of the radial component.
Here we have to keep in mind that the formulae for the computation of the second derivatives are derived such
that the Laplace equation is fulfilled in the space outside the masses as demonstrated in Figs. 5.7 and 5.8,
even if the computation point is arbitrarily close to the surface of the shell. This is the case despite the fact
that the formulae are only approximate. A numerical consequence is that the second horizontal derivatives
will never converge to the correct value at the outer boundary even in case of a very fine resolution of the
digital terrain model (Fig. 5.9).

In the vicinity of the computation point a rigorous tesseroid formula in three dimensions (Kuhn 2000a) is
necessary or to choose a sufficient fine grid of the DTM, where a planar approximation based on the prism
formulae technique of Nagy (1966) might be sufficient. It should be pointed out that the Laplace equation
is fulfilled as long as the computation point is located outside the masses as demonstrated in Figs. 5.7 and
5.8, even if the computation point is arbitrarily close to the surface of the shell. The situation is less critical
in practical applications as it may seem from the aforementioned facts; in these cases a Bouguer plate or
a Bouguer shell is used, whose effects can be determined analytically, and the (in general small) terrain
corrections can be determined by numerical integration based on a DTM with a sufficient fine resolution
or any rigorous (planar) formula. A detailed investigation of these error effects has to be performed in a
forthcoming study.

5.2.2 Surface spherical harmonic expansion of the topography

There are many methods for calculating the surface spherical harmonic expansions of the topography such
as quadrature methods, least squares, Paul integral, integral through Legendre polynomials (see, e.g., Tsoulis
1999a; Sneeuw 1994; Sneeuw and Bun 1996). In this investigation only a simple quadrature and the Gauss-
Legendre quadrature methods have been used.

5.2.2.1 Resolution aspects

The spherical harmonic expansion of the topography is a very efficient technique for calculating the
topographic-isostatic mass effects, but it is limited to an upper spherical harmonic degree of about 2700
which corresponds to a 4 arc-minute resolution. Beyond this degree numerical computation problems con-
cerning the stability of the recursive computation of the associated Legendre’s functions occur (see, e.g.,
Holmes and Featherstone 2002) and increasing the computational time. For this reason, the spherical har-
monic expansion of the topography can be used for calculating the long and medium wavelength effects of
the topography. These long and medium wavelengths are important for calculating the effects at satellite
altitude or for calculating the far-zone effects of the topographic masses for the points at the Earth’s surface
and at certain altitudes for airborne gravimetry.
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Fig. 5.9: Second derivatives of the potential of a Bouguer shell with a thickness of 2500m (Eötvös) determined
by numerical integration using different discretizations
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5.2.2.2 Numerical computation of the surface spherical harmonics

It is known that a square integrable function on the sphere can be developed into harmonic coefficients using
the global spherical harmonic analysis (GSHA). In our study, the integrable function is the topography above
the geoid. The computation of the spherical harmonics using quadrature method will be discussed in the
following.

Simple quadrature method The spherical harmonic coefficients of the topography can be calculated by
replacing the double integral by a double summation all over the world. For an efficient computation, the
two step analysis approach proposed by Neumann (1838) and Gauss (1839) has been applied. The double
integration or summation is splitted into a longitude and a latitude dependent part. For example, Eq. (4.134)
reads as follows (e.g. in case of k=1):

hkαnm =
1

4π

∫∫

σ

(
Heq(ϕ, λ)

R

)

Y αnmdσ. (5.7)

This equation can be splitted into two equations as follows:

{

am(ϕ)

bm(ϕ)

}

=
1

(1 + δm0)π

2π∫

λ=0

(
Heq(ϕ, λ)

R

){

cosmλ

sinmλ

}

dλ, (5.8)

{

hcnm

hsnm

}

=
1

4
(1 + δm0)

π∫

ϕ=0

{

am(ϕ)

bm(ϕ)

}

Pnm(sinϕ) cosϕdϕ. (5.9)

The reason for the greater efficiency of the two-step formulation is twofold. Firstly, Eq. (5.8) can be treated by
Fourier transformations over single parallels. Secondly, the equations may be evaluated for separate orders
m. In reality one has to deal with discretized function values, either point values or area means. In our
study, we approximate the function of heights by point values. The aliasing problem will be ignored, i.e. it is
assumed that the function does not contain information above degree N . Since the distribution of parallels
has not been decided yet and since the problem of non-orthogonality of the discretized Legendre function
has not been resolved, the determination of coefficients is still bending. In order to solve this problem of
non-orthogonality, Neumann’s method has been used.

Neumann’s method A special case of exact quadrature is achieved by restricting the ϕ-grid. Neumann
(1887) showed that if one chooses the latitude circles to coincide with the zeros of the Legendre polynomials
of degree N + 1, i.e.

PNmax+1
(sinϕi) = 0, i = 1, 2, ..., Nmax, (5.10)

the number of parallels can be reduced to N = Nmax + 1. The specific ϕ- or ϑ-grid leads to the Gauss-
Legendre quadrature method (Lanczos 1956; Krylov 1962; Stroud and Secrest 1966; Colombo 1981). The
specific grid is referred as Gauss grid (Payne 1971). Neumann’s method can be summarized as follows: An
exact GSHA is performed up to degree Nmax making use of a Gauss-Neumann grid (see Fig. 5.10 blue),
defined by:

PNmax+1
(sinϕi) = 0, i = 1, 2, ..., Nmax + 1,

λj = j∆λ, j = 1, 2, ..., 2Nmax − 1,

∆λ =
π

Nmax
.

(5.11)
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For the computations of weights in Neumann’s method, the existing literature on Gauss quadrature methods
can be used. If the Lengendre polynomials of PNmax+1

(sinϕ) are available, the weights may be calculated for
instance from:

wi =
2

(1 − (sinϕi)2)(P ′

Nmax+1
(sinϕi))2

, (5.12)

where P ′

Nmax+1
(sinϕ) is the first derivative of the Legendre polynomial of degree N + 1, when N is the

maximum degree to be determined. Further numerical aspects of finding nodes and weights can be found in
Press et al. (1986) and Prey (1922). The Neumann method requires the data points to be located at a specific
grid, called Gauss-Legendre Grid. Using cubic spline interpolation for the DTM, the topographic heights can
be determined at the nodes of this grid. This quadrature method has the advantage of maintaining the
orthogonality relations of the Legendre function despite the discretization procedure.

Simple quadrature versus Neumann method In order to compare the quadrature methods sketched
above, the spherical harmonic coefficients of topography have been calculated up to degree and order 2160
using ETOPO5 (rock equivalent heights). In case of the simple quadrature, the weights cosϕdϕdλ were used
(see Fig. 5.10 red). From the two sets of coefficients, the heights of the topography were reconstructed by
the global spherical harmonic synthesis (GSHS) as follows:

H(ϕ, λ) = R

Nmax∑

n=0

n∑

m=0

(hcnm cosmλ+ hsnm sinmλ)Pnm(sinϕ). (5.13)

The reconstructed heights for a small region are shown in Fig. 5.11. It has been found that the difference
between the computed heights from the two sets of coefficients and the heights from ETOPO5 are approxima-
tely the same. This means that, in case of the the simple quadrature method, the effect of non-orthogonality
can be ignored if the grid size is very small. This would be expected because for very fine grids the discrete
Legendre function behaves as a continuous function.

Fig. 5.10: Geographical grid (red) and Gauss-Legendre grid (blue)

After comparing the simple quadrature method with the Gauss-Legendre quadrature method, the spherical
harmonic coefficients for square and cubic heights have been calculated also up to degree 2160.
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Fig. 5.11: Comparison between simple quadrature and Gauss Legendre quadrature methods (units in meter)
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5.2.2.3 Degree variances of different topographic-isostatic models

To visualize the spectral behavior of the topography the spectrum of the potential coefficients has been
computed. The degree variance of a set of coefficients for degree n can be computed as follows (Rapp 1982):

σ2
n =

n∑

m=0

(c2nm + s2nm). (5.14)

Firstly, to get an idea about the contribution of the first, second and third order terms of Eq. (4.134)
to the harmonic coefficients of the uncompensated topographic potential, the separate degree variance for
hαnm, h2αnm and h3αnm have been computed and shown in Fig. 5.12. The h2αnm, h3αnm and hαnm are properly
multiplied by the respective factors as given in Eq. (4.133)
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Fig. 5.12: Separate contributions of hαnm, h2αnm and h3αnm to the computation of the uncompensated potential
coefficients

The results shown in Fig. 5.12 agree with those reported in Rummel et al. (1988) and Tsoulis (2001). The
power spectrum of (h/R)2 and (h/R)3 are approximately 10−6 and 10−13 of the power spectrum of (h/R)
for the degrees n=0 to 180. After this degree and up to n = 1000, the power spectrum of (h/R)2 and (h/R)3

are approximately 10−3 and 10−6of the power spectrum of (h/R). For higher degrees the power spectra of
the quadratic and cubic terms are approximately 10−1 and 10−3 of the linear terms. From the above results,
it can be concluded that at satellite altitude only the linear and quadratic terms of heights are necessary
for calculating the gravitational effects of the topographic-isostatic masses. On the other hand, at least the
first, second and third terms of height must be taken into account for calculating the gravitational effect at
aeroplane altitudes as the spherical harmonic coefficients are taken to higher degrees.

Secondly, to compare the different topographic isostatic models, the degree variances of all topographic-
isostatic models, uncompensated topography and of the coefficients of the gravitational model EGM96 (Le-
moine et al. 1998) are shown in Fig. 5.13. It is shown from Fig. 5.13 that:

1. the degree variances of the potential coefficients for the uncompensated topography (Bouguer mo-
del) are significantly higher than those obtained from the EGM96 coefficients. This means that the
topography must be considered in isostatic equilbrium.
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Fig. 5.13: Degree variances of different topographic-isostatic models

2. the degree variances of the potential coefficients of the Airy-Heiskanen model and the generalized
Helmert’s model of condensation with a condensation depth=32 km are approximately the same.

3. the degree variances of the Pratt-Hayford model are approximately the same as for the combined Airy
and Pratt model. This means that the effects of the topographic heights are significantly smaller than
the effects of bathymetric heights.

4. the degree variances of the Pratt-Hayford model agree quit well with the degree variance of the EGM96
coefficients.

5. the degree variances of the Vening Meinesz model are larger than the degree variances of the Airy-
Heiskanen model for high degrees. This is caused by smoothing the roots and anti-roots in case of the
Vening Meinesz model.

5.2.3 Near-zone and far-zone aspects

The effects of topographic-isostatic masses must be calculated globally which is very expensive in terms of
computation time. To overcome this problem, the surface integration domain is divided into two integration
sub-domains: a spherical cap around the computation point with a small radius, called near-zone contribution
(σ0), and the rest of the Earth, called far-zone contribution (σFz). A fine resolution DTM must be used in
the near zone while in the far-zone a coarser DTM is sufficient in most cases (Grüninger 1990). Near-zone
topographic effects on the gravity and geoid heights can be calculated using rectangular prisms (Nagy 1966;
Nagy et al. 2000, 2002), which lead to a particularly simple formula, or by using tesseroid formulae in case of
the spherical approximation of the geoid (Smith et al. 2001; Kuhn and Seitz 2005; Makhloof and Ilk 2006). To
arrive at economic computation formulae, the far-zone effects are represented by a global spherical harmonic
expansion of the topography. This can be performed by a Molodenskii-type spectral approach as shown in
chapter 4.
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5.3 Effects of topographic-isostatic masses at the surface of the Earth
and at aeroplane altitudes

In this section the near and far-zone effects of the topography will be discussed at the surface of the Earth and
at aeroplane altitude. The potential of the topographic-isoatatic masses in terms of the indirect topographical
effect has been computed. Also, the first derivatives of the potential in terms of the direct topographical effect
have been determined. Moreover, the second derivatives of the potential of the topographic-isotatic masses
at aeroplane altitude have been studied numerically.

5.3.1 Near-zone topography effects

To give an impression of the size and distribution of the topographic-isostatic mass effects on the gravitatio-
nal functionals at the Earth’s surface and at aeroplane altitudes, the Airy-Heiskanen model and Helmert’s
methods of condensation have been used. To reduce the discretization errors, the direct and indirect topo-
graphical effects have been splitted into two effects: (1) the effects of the Bouguer shells and (2) the effects
of the terrain refinements. As the effects of the Bouguer shells of topographic and isostatic masses cancel
each other in case of the direct topographical effect, only the terrain effects have been computed. In case of
the primary indirect topographical effect, the terrain effects in addition to the effects of the Bouguer shells
have been determined.

5.3.1.1 Direct terrain effect on gravity

In order to take the short wavelengths of the topography into account, the near-zone cap has been taken
to be ψ0 = 30. For the generalized Helmert model of condensation the depth of the condensation masses
has been varied between 21 km to 40 km. These tests have been performed to show the coincidence of
Helmert’s models with an an appropriate condensation depth with the Airy-Heiskanen isostatic model. The
computation points has an altitude of 4 km above the sea level. Examples of Helmert’s generalized models
with condensation depths (21, 25, 30, 32, 35 and 40 km) together with the Airy-Heiskanen model are given
in Table 5.2.

Table 5.2: Near-zone terrain effects at an altitude of 4 km for Helmert’s first and generalized model of
condensation with different depths in comparison with Airy-Heiskanen (units in mGal)

topographic-isostatic model RMS Mean Min Max
Helmert’s first method (21 km) 23.78 -4.23 -67.90 56.99
generalized Helmert model (25 km) 24.13 -4.76 -69.47 57.12
generalized Helmert model (30 km) 24.32 -5.45 -70.60 56.60
generalized Helmert model (32 km) 24.32 -5.58 -70.86 56.25
Airy-Heiskanen model 24.32 -6.04 -70.46 55.79
generalized Helmert model (35 km) 24.31 -5.89 -71.09 55.61
generalized Helmert model (40 km) 24.20 -6.38 -71.13 54.35

The coincidence of the generalized Helmert model of condensation with the Airy-Heiskanen model depends on
the condensation depths of Helmert’s model (Table 5.2). This means that, with a proper selection of Helmert’s
condensation depth D1, the condensation method can be adjusted to be more realistic. To illustrate the size
of the direct terrain effect dependent on the height of the calculation points, the direct terrain effects at the
altitudes of 4 km, 6 km, 8 km, 10 km are shown in Table 5.3

Finally, to give an impression about the distribution of the near-zone terrain effects, the direct terrain effect
for Helmert’s second method of condensation, Helmert’s generalized model with a condensation depth of 32
km and Airy-Heiskanen method are shown in Fig. 5.14.
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Fig. 5.14: Near-zone direct terrain effect on gravity of the area inside a cap size of ψ0 = 30 for different
topographic-isostatic models at an altitude of 4 km (units in mGal)
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5.3.1.2 Indirect topographical effect on geoid and gravity

It is shown in Eq. (4.202) that the primary indirect topographical effects includes two parts: the effects of the
Bouguer shells of the topographic and isostatic masses and the terrain effects. The effects of the Bouguer shell
of the topographic masses and the Bouguer layer of the condensation masses in case of Helmert’s methods
of condensation can be determined by the following equation:

PITEBouguer =
2πGρcr

[
(R+HP ′)2 −R2

]

γ0
− 4πGρcr

3(R+HP ′)γ0

[
(R+HP ′)3 −R3)

]
, (5.15)

where HP ′ is the orthometric height of the topography at the computation point. It can be seen that Eq.
(5.15) is independent of the condensation depth of Helmert’s first or generalized model of condensation.
This is due to the fact that the potentials of the Bouguer layers of the condensation masses in case of
Helmert’s first and second method of condensation are equal. Also, the potential of the Bouguer shell of the
compensating masses in case of the Airy-Heiskanen model are equal to the potential of the Bouguer layer in
case of Helmert’s model. This is based on the mass conservation principle of the topographic and isostatic
or condensation masses. The effects of the Bouguer shells for the Canadian Rocky Mountains are shown in
Fig. 5.15.
Also, the near-zone primary indirect terrain effects are shown in Fig. 5.16. The plot shows that the primary
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Fig. 5.15: Primary indirect effects of Bouguer shells of the topographic masses (units in mGal)

indirect terrain effects in case of the generalized Helmert model of condensation and the Airy-Heiskanen
model are large compared to the effects of the Bouguer shells and depend significantly on the heights of
the topography. These effects must be taken into account for calculating the 1 cm geoid in case of local
geoid determination. On the other hand the near zone primary indirect terrain effects in case of Helmert’s
second method of condensation are small but these value must be taken into account in case of 1 cm geoid
determination. Finally, the near zone secondary indirect terrain effects for the same area are shown in Fig.
5.17. Again the near-zone secondary indirect terrain effects for Helmert’s first and the generalized methods
as well as Airy-Heiskanen method reach significant values compared to the accuracy of the observation data.

5.3.1.3 Terrain effect on airborne gradiometry

Airborne gravity gradiometry is not yet popular but may represent a potential technique for the future, e.g.,
it is imaginable that HALO (High Altitude and LOng Range Research Aircraft) could be equipped with
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Fig. 5.16: Near-zone primary indirect terrain effect on geoid heights of the area inside a cap size of ψ0 = 30

for different topographic-compensation models (units in meter)
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Fig. 5.17: Near-zone secondary indirect terrain effect on gravity of the area inside a cap size of ψ0 = 30 for
different topographic-isostatic models at the surface of the Earth (units in mGal)
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a gravity gradiometer. Therefore, it is interesting to investigate the topographic-isostatic effects of gravity
gradients in an aeroplane altitude. The near-zone terrain effects of the topographic-isostatic masses on the
gravitational tensor component Vzz at an altitude of 10 km based on the Airy-Heiskanen model is shown in
Fig. 5.18 for the Himalaya region.
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Fig. 5.18: Effects of the near-zone terrain masses on the tensor component Vzz at an altitude of 10 km for
the Airy-Heiskanen model for the Himalaya region (units in Eötvös)

5.3.2 Far-zone topography effects

The computational area is taken as the same used for the near-zone terrain effects (Fig. 5.1). The calculations
are performed for a far-zone cap size of ψ0 ≥ 30. In this case the series expansions fulfill the convergence
criterion given in Eq. (A.6). In addition, various other cases of far zones have been investigated. The upper
degree of the spherical harmonic expansion of the topography is taken to be Nmax = 360 as the effects above
this degree are neglected (will be seen later). Again, for the generalized Helmert model of condensation the
depth of the condensation masses has been varied between 21 km to 40 km. These tests have been performed
to show that a varying condensation depth approximates the Airy-Heiskanen isostatic model quite well.
Examples of condensation depths (21, 25, 30, 32, 35 and 40 km) are given in Table 5.4.

5.3.2.1 Direct terrain effect on gravity

To illustrate the size of the direct terrain effect against the cap size of the far-zone, the RMS-values (root
mean square of point values) of these effects for the three models are shown in Fig. 5.19 for computation
points at an altitude of 4 km. It is shown that a far-zone cap size of ψ0 ≥ 30 gives small RMS-values in
case of Helmert’s second method of condensation compared to the accuracy of the observation. Table 5.5
shows the far-zone effects in case of cap-size radii of 30, 100 and 200 in case of Helmert’s second method of
condensation. The situation is different in case of the generalized Helmert model of condensation and the
Airy-Heiskanen model where these effects are much larger. Table 5.6 gives an overview of the far-zone effects
depending on the cap-size radius (30, 100, 200,......,900). It is interesting to note that these effects depend
only marginally on the altitude of the computation points.

The accuracy of the spherical harmonic formulae derived in this case has been tested using the integration
method with tesseroid formulae (Makhloof and Ilk 2006). Figure 5.20 shows the direct terrain far-zone effects
along the 500 latitude, determined by the formulae based on a spherical harmonic expansion up to degree
Nmax = 360 and based on a numerical quadrature method using tesseroid formulae with a corresponding grid
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Table 5.3: Near-zone direct terrain effects for different altitudes for Helmert’s methods of condensation and
Airy-Heiskanen model (units in mGal)

Model statistics H= 4 km H= 6 km H= 8 km H= 10 km

Helmert’s second method

RMS 6.97 3.93 2.63 1.91
Max 15.83 9.42 6.46 4.54
Min -30.17 -13.17 -8.24 -5.81
Mean -0.45 -0.35 -0.31 -0.28

generalized Helmert (D1=32 km)

RMS 24.32 18.07 14.42 12.02
Max 56.25 37.62 30.24 25.30
Min -70.86 -49.49 -45.33 -41.62
Mean -5.58 -5.19 -4.92 -4.69

Airy-Heiskanen model

RMS 24.31 18.21 14.67 12.37
Max 55.79 37.07 30.49 25.64
Min -70.46 -51.87 -48.46 -44.50
Mean -6.01 -5.65 -5.36 -5.11
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Fig. 5.19: RMS of direct topographical effects at an altitude of 4 km against the cap radius for different
topographic-isostatic models

Table 5.4: Far-zone terrain effects at an altitude of 4 km for Helmert’s first and generalized model of con-
densation with different depths in comparison with Airy-Heiskanen (units in mGal)

topographic-isostatic model RMS Mean Min Max
Helmert’s first method (21 km) 3.25 -8.49 -16.21 -0.31
generalized Helmert model (25 km) 3.82 -10.08 -19.13 -0.43
generalized Helmert model (30 km) 4.53 -12.07 -22.77 -0.58
generalized Helmert model (32 km) 4.82 -12.86 -24.23 -0.65
Airy-Heiskanen model 5.58 -13.05 -26.88 0.44
generalized Helmert model (35 km) 5.25 -14.05 -26.41 -0.74
generalized Helmert model (40 km) 5.95 -16.03 -30.03 -0.91
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Table 5.5: Far-zone direct terrain effects for different cap size radii and different altitudes in case of Helmert’s
second method of condensation (units in mGal)

cap radius statistics Earth surface H= 4 km H= 6 km H= 10 km

30

RMS 0.238 0.237 0.237 0.234
Max 0.301 0.301 0.301 0.300
Min -0.844 -0.843 -0.840 -0.828
Mean -0.131 -0.129 -0.128 -0.122

100

RMS 0.071 0.071 0.070 0.070
Max 0.164 0.164 0.165 0.166
Min -0.177 -0.176 -0.175 -0.171
Mean 0.035 0.036 0.037 0.039

200

RMS 0.033 0.033 0.034 0.034
Max 0.103 0.103 0.103 0.103
Min -0.059 -0.059 -0.058 -0.056
Mean 0.042 0.042 0.042 0.044

Table 5.6: Far-zone direct terrain effects for different cap size radii and different altitudes in case of the
generalized Helmert model of condensation (D1 = 32 km; units in mGal)

cap radius statistics Earth surface H= 4 km H= 6 km H= 10 km

30

RMS 4.835 4.820 4.812 4.803
Max -0.631 -0.640 -0.650 -0.660
Min -24.285 -24.230 -24.220 -24.149
Mean -12.900 -12.860 -12.850 -12.828

100

RMS 1.418 1.418 1.417 1.415
Max -3.620 -3.615 -3.614 -3.609
Min -10.596 -10.590 -10.580 -10.560
Mean -7.344 -7.338 -7.330 -7.323

200

RMS 0.716 0.716 0.715 0.714
Max 2.647 -2.645 -2.643 -2.639
Min -6.181 -6.181 -6.178 -6.170
Mean -4.514 -4.513 -4.511 -4.505

400

RMS 0.336 0.335 0.335 0.335
Max -1.414 -1.413 -1.412 -1.410
Min -3.068 -3.067 -3.065 -3.061
Mean -2.277 -2.76 -2.275 -2.272

500

RMS 0.251 0.251 0.251 0.250
Max -1.008 -1.007 -1.006 -1.005
Min -2.242 -2.241 -2.240 -2.238
Mean -1.653 -1.652 -1.651 -1.649

900

RMS 0.093 0.093 0.093 0.093
Max -0.330 -0.329 -0.329 -0.329
Min -0.785 -0.785 -0.784 -0.784
Mean -0.565 -0.564 -0.564 -0.564
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size of 5′∗5′. There are identical results in case of Helmert’s condensation methods and some small differences
in case of the Airy-Heiskanen method. These differences most probably are caused by the restriction of the
Taylor expansions of Eq. (A.4) and Eq. (A.9) to the second term only. For this reason it would be necessary
to develop the series including the cubic term of Taylor expansions for distance and logarithmic functions to
remove these differences. Another interesting aspect of this method is the choice of the maximum expansion
degree of the spherical harmonic series representing the topography. Figure 5.21 gives an impression of the
size of different spectral bands of the spherical harmonic expansion. It seems that an upper degree of 100 is
sufficient even for high accuracy airborne gravimetry (1-2 mGal) for all topographic-compensation models
investigated here. At the Earth’s surface a high degree of Nmax = 360 is necessary to consider the effects of
the topographic-compensating masses in case of Helmert’s first or generalized methods of condensation and
the Airy-Heiskanen isostatic model. In case of Helmert’s second method of condensation, an upper degree of
50 may fulfill the accuracy demand of Earth’s surface gravimetry.

To give an impression of the distribution of the far-zone terrain effects depending on the topography within
the near zone, the direct terrain effect for Helmert’s methods of condensation and the Airy-Heiskanen model
at an altitude of 4 km are plotted in Fig. 5.22.

5.3.2.2 Indirect terrain effect on geoid and gravity

Finally, the indirect terrain effects for the same test region are shown in Figs. 5.24 and 5.25. Figure 5.24 shows
the far-zone primary indirect terrain effects on the geoid heights for the different topographic-compensating
models. The effects are rather large for the generalized Helmert model (D1 = 32 km) and for the Airy-
Heiskanen model, except those for Helmert’s second condensation method. The situation is similar for the
far-zone secondary indirect terrain effects on gravity at the surface of the Earth as Fig. 5.25 demonstrates.

5.3.2.3 Concluding remarks to the terrain effects of gravity and geoid heights

For the cap size of ψ0 = 30 investigated here, the far-zone contributions for the primary topographic indirect
effect are as large as up to 13 m while the direct topographic effect is in the size of up to 28 mGal. That
means that the far-zone contributions to the primary indirect effects are of comparable magnitude as the
near-zone contributions in contrast to the direct effect. This is caused by the fact that the potential is inverse
to the distance between the computation point and mass elements while gravity is inverse to the squared
distance which tapers off more quickly.

From Fig. 5.22 it can be concluded that the far-zone terrain effects at aeroplane altitude in case of Helmert’s
second method of condensation can be neglected for spherical cap size radii larger than 30 as the maximum
values of these effects are smaller than the accuracy of the airborne gravity measurements (1-2 mGal). On the
other hand, these effects must be taken into account for Helmert’s first or generalized model of condensation
and the Airy-Heiskanen model. Figure 5.23 shows that the far-zone effects at the surface of the Earth are
more or less the same as at aeroplane attitudes higher than 4 km and for all topographic-isostatic models.

The results of the far-zone effects determined in the present investigation at the surface of the Earth were
compared with those calculated from Novàk et al. (2001). Both soluations are shown in Fig. 5.26. There
are some differences between the two methods. These differences are caused by a different handling of the
topography height of the computation point. In case of Novàk et al. (2001) the heights of the computation
points are computed from the spherical harmonic expansion up to the maximum degree used for calculating
the far-zone effects. This is not sufficient for a precise determination of the far-zone effects. But we have to
point out that this holds for a region with a rough topography. Therefore the differences between the two
methods may be neglected for areas with a smooth topography or if the maximum degree of the spherical
harmonic expansion of the topography has been extended to a high degree as for example Nmax = 2160.

The formulae based on the spherical harmonics as derived in this study are very efficient. The computation
of the various topographic-isostatic effects at a grid with a grid size of 5′ ∗ 5′ – these are 1296 point values
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Fig. 5.20: Far-zone direct terrain effect along the 500 latitude for different topographic-isostatic models at
an altitude of 4 km
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Fig. 5.22: Far-zone direct terrain effect on gravity of the area outside a cap size of ψ0 = 30 for different
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Fig. 5.23: Far-zone direct terrain effect on gravity of the area outside a cap size of ψ0 = 30 in case of
generalized Helmert method (D1 = 32 km) at different altitudes of the computation point (units in mGal)
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Fig. 5.25: Far-zone secondary indirect terrain effect on gravity of the area outside a cap size of ψ0 = 30 for
different topographic-isostatic models at the surface of the Earth (units in mGal)



118 5. Numerical analysis

241.5 242.0 242.5 243.0 243.5

49.5

50.0

50.5

51.0

51.5

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

-0.00

0.10

0.20

0.30

                       Novàk et al. (2001)
(Max=0.43, Min=-0.81, Mean=-0.09, RMS=0.23)

                         di fferences
(Max=0.19, Min=-0.02, Mean=0.04, RMS=0.03)

                          the new formulae
(Max=0.30, Min=-0.84, Mean=0.13, RMS=0.24)

241.5 242.0 242.5 243.0 243.5

49.5

50.0

50.5

51.0

51.5

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

-0.00

0.10

0.20

0.30

241.5 242.0 242.5 243.0 243.5

49.5

50.0

50.5

51.0

51.5

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

Fig. 5.26: Far-zone direct terrain effects in case of Helmert’s second method of condensation at the surface of
the Earth: (a) formulae in Novàk et al. (2001), (b) from Eq. (4.191), (c) differences between the two methods
(units in mGal)



5.4. Effect of topographic-isostatic masses in satellite applications 119

for our test area – and a spherical harmonic expansion of the topography of up to degree Nmax = 360 takes
48 sec on a PC (1, 8 GHz processor frequency). The computation costs are reduced further in case of larger
cap size radii, because in this case the upper degree of the spherical harmonic expansion can be reduced as
well.

5.3.2.4 Far-zone terrain effect on airborne gradiometry

The far-zone terrain effects at aeroplane altitude for the Himalaya region on z− component in a local
coordinates system of the gravity tensor, Vzz, are shown in Fig. 5.27. The cap size has been taken to be 30.
Figure 5.27 shows that the effects of far-zone terrain effects are very small and in the size of approximately
one percent of the total effect. This is caused by the fact that the second derivatives of the potential is inverse
to the cubic distance between the computation and integration points which tapers off very quickly.
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Fig. 5.27: Effects of the far-zone terrain on the tensor components Vzz of the area outside a cap size of
ψ0 = 30 at an altitude of 10 km for the Airy-Heiskanen model for the Himalaya region (units in Eötvös)

5.4 Effect of topographic-isostatic masses in satellite applications

As we stated in section 4.1.2 and section 4.2 the effects of topographic-isostatic masses at satellite altitude can
be determined from the direct integration method or by a using spherical harmonic expansion. Therefore, this
section starts with the determination of the effects of topographic masses on Satellite Gravity Gradiometry
based on the two methods. The results have been compared and show the efficiency of the spherical harmonic
approach is demonstrated. Then the effects of the topographic-isostatic masses for different models at GOCE
altitude have been determined. Finally, the effects of the topographic-isostatic masses on POD (Precis orbit
determination) and SST (Satellite-to-Satellite Tracking) observations are investigated.

5.4.1 Topographic-isostatic effects on gravity gradients

5.4.1.1 Computation formulae

To determine the effects of topographic-isostatic masses on the gravity gradients at GOCE altitude from
spherical harmonic expansions of the topography, the formulae derived by Tscherning (1976) are used for the
potential and its first and second derivations. The potential of the topographic-isostatic masses reads (ibid.):

V (r, ϕ, λ) =
Gm

R

Nmax∑

n=0

(
R

r

)n+1 n∑

m=0

(cnm cosmλ+ snm sinmλ)Pnm(sinϕ), (5.16)
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its derivates with respect to ( r, ϑ, λ) yields (ibid.):

Vr(r, ϕ, λ) = −Gm
R2

Nmax∑

n=0

(n+ 1)

(
R

r

)n+2 n∑

m=0

(cnm cosmλ+ snm sinmλ)Pnm(sinϕ), (5.17)

Vϕ(r, ϕ, λ) =
Gm

R

Nmax∑

n=0

(
R

r

)n+1 n∑

m=0

(cnm cosmλ+ snm sinmλ)
∂Pnm(sinϕ)

∂ϕ
, (5.18)

Vλ(r, ϕ, λ) =
Gm

R

Nmax∑

n=0

(
R

r

)n+1 n∑

m=0

m(−cnm sinmλ+ snm cosmλ)Pnm(sinϕ). (5.19)

The second derivatives can be determined by the formulae (ibid.)

Vrr(r, ϕ, λ) =
Gm

R3

Nmax∑

n=0

(n+ 1)(n+ 2)

(
R

r

)n+3 n∑

m=0

Pnm(sinϕ)(cnm cosmλ+ snm sinmλ), (5.20)

Vr,ϕ(r, ϕ, λ) = −Gm
R2

Nmax∑

n=0

(n+ 1)

(
R

r

)n+2 n∑

m=0

(cnm cosmλ+ snm sinmλ)
∂Pnm(sinϕ)

∂ϕ
, (5.21)

Vr,λ(r, ϕ, λ) =
Gm

R2

Nmax∑

n=0

(n+ 1)

(
R

r

)n+2 n∑

m=0

m(cnm sinmλ− snm cosmλ)Pnm(sinϕ), (5.22)

Vλ,λ(r, ϕ, λ) = −Gm
R

Nmax∑

n=0

(
R

r

)n+1 n∑

m=0

m2(cnm cosmλ+snm sinmλ)Pnm(sinϕ), (5.23)

Vϕ,ϕ(r, ϕ, λ) =
Gm

R

Nmax∑

n=0

(
R

r

)n+1 n∑

m=0

(cnm cosmλ+ snm sinmλ)
∂2Pnm(sinϕ)

∂ϕ2
, (5.24)

Vϕ,λ(r, ϕ, λ) =
Gm

R

Nmax∑

n=0

(
R

r

)n+1 n∑

m=0

m(−cnm sinmλ+ snm cosmλp)
∂Pnm(sinϕ)

∂ϕ
. (5.25)

In order to simplify the evaluation of the second derivatives of the gravitational potential, let us introduce
a tangential coordinate system frame at a point with spherical coordinates (r, ϕ, λ) as shown in Fig. 4.5 as
follows: the x-axis is directed to the north, the y- axis to the east, and the z-axis coincides with the radius
vector. Then the first and second derivatives of the gravitational potential with respect to x,y and z may be
related to the first and second derivatives with respect to r, ϕ, λ in the following equations:

Vx(r, ϕ, λ) =
1

r
Vϕ, (5.26)

Vy(r, ϕ, λ) =
1

r cosϕ
Vλ, (5.27)

Vz(r, ϕ, λ) = Vr, (5.28)

Vxx(r, ϕ, λ) =
1

r
Vr(r, ϕ, λ) +

1

r2
Vϕϕ(r, ϕ, λ), (5.29)

Vxy(r, ϕ, λ) = Vyx(r, ϕ, λ) =
1

r2 cosϕ
(tanϕVλ(r, ϕ, λ) + Vϕλ(r, ϕ, λ)), (5.30)

Vxz(r, ϕ, λ) = Vzx(r, ϕ, λ) =
1

r2
(−Vϕ(r, ϕ, λ) + rVrϕ(r, ϕ, λ)), (5.31)

Vyy(r, ϕ, λ) =
1

r
Vr(r, ϕ, λ) − tanϕ

r2
Vϕ(r, ϕ, λ) +

1

r2 cos2 ϕ
Vλλ(r, ϕ, λ), (5.32)
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Vyz(r, ϕ, λ) = Vzy(r, ϕ, λ) =
1

r cosϕ
(−1

r
Vλ(r, ϕ, λ) + Vrλ(r, ϕ, λ)), (5.33)

Vzz(r, ϕ, λ) = Vrr(r, ϕ, λ). (5.34)

Finally, the first and second derivatives of the potential can be calculated using the following formulae:

Vx(r, ϕ, λ) =
GM

r2

Nmax∑

n=0

(
R

r

)n n∑

m=0

(cosmλcnm + sinmλsnm)
∂Pnm(sinϕ)

∂ϕ
, (5.35)

Vy(r, ϕ, λ) =
GM

r2 cosϕ

Nmax∑

n=0

(
R

r

)n n∑

m=0

m(−cnm sinmλ+ snm cosmλ)Pnm(sinϕ), (5.36)

Vz(r, ϕ, λ) = −Gm
r2

Nmax∑

n=0

(n+ 1)

(
R

r

)n n∑

m=0

(cnm cosmλ+ snm sinmλ)Pnm(sinϕ), (5.37)

Vxx(r, ϕ, λ) =
GM

r3

Nmax∑

n=0

(
R

r

)n n∑

m=0

(cnm cosmλ+ snm sinmλ)

[

−(n+ 1)Pnm(sinϕ) +
∂2Pnm(sinϕ)

∂ϕ2

]

,

(5.38)

Vxy(r, ϕ, λ) =
GM

r3 cosϕ

Nmax∑

n=0

(
R

r

)n n∑

m=0

m (−cnm sinmλ+ snm cosmλ)

[

tanϕPnm(sinϕ) +
∂Pnm(sinϕ)

∂ϕ

]

,

(5.39)

Vxz(r, ϕ, λ) = −GM
r3

Nmax∑

n=0

(
R

r

)n

(n+ 2)

n∑

m=0

(cnm cosmλ+ snm sinmλ)
∂Pnm(sinϕ)

∂ϕ
, (5.40)

Vyy(r, ϕ, λ) =
GM

r3

Nmax∑

n=0

(
R

r

)n n∑

m=0

(cnm cosmλ+ snm sinmλ)

{[

−(n+ 1) − m2

cos2 ϕ

]

Pnm(sinϕ) − tanϕ
∂Pnm(sinϕ)

∂ϕ

}

,

(5.41)

Vyz(r, ϕ, λ) =
Gm

r3 cosϕ

Nmax∑

n=0

(n+ 2)

(
R

r

)n n∑

m=0

m(cnm sinmλ− snm cosmλ)Pnm(sinϕ), (5.42)

Vzz(r, ϕ, λ) =
GM

r3

Nmax∑

n=0

(n+ 1)(n+ 2)

(
R

r

)n n∑

m=0

(cnm cosmλ+ snm sinmλ)Pnm(sinϕ). (5.43)

5.4.1.2 Integral formulae versus determination by spherical harmonic expansion

In order to get insight into the numerical differences between the numerical integration method and the sphe-
rical harmonic expansion of the topography, the effects of the topographic masses on the second derivatives
of the gravitational masses at GOCE altitude caused by the global topography have been determined by
both methods. In both cases the rock equivalent heights procedures with a resolution of 5 arc-minutes have
been used. This fine grid size has been chosen to overcome the discretization errors in case of the numerical
integration method and to minimize the problem of the non-orthogonality of the discrete Legendre polynomi-
als in case of the spherical harmonic expansion. The evaluation has been performed for the Asia region. The
differences between the numerical results of the discretized numerical integration and the spherical harmonic
approach are shown in Table 5.7. The table shows that the differences between the two methods are very
small and can be neglected if we keep in mind the accuracy of the observation from the GOCE satellite
(5 ∗ 10−3 Eötvös ). This means that it is better to use the spherical harmonic expansion for determining the
effects at satellite altitude as it sharply saves CPU time.
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Table 5.7: Statistics of the differences between the numerical integration method and the spherical harmonic
expansion on the tensor component at an altitude of 250 km for Airy-Heiskanen model (units in Eötvös)

tensor components Max Min RMS
xx 2.3E-5 -1.8E-4 2.8E-5
yy 1.1E-4 -2.37E-5 1.5E-5
zz 7.9E-5 -3.7E-6 1.7E-5

5.4.1.3 Computation of various topographic-isostatic models

The topographic-isostatic effects of the components of the gravitational tensor at a satellite altitude of 250
km are already considerably damped (Fig. 5.28) compared to the features in an aircraft altitude of 10 km
(Fig. 5.27) for the same region. Nevertheless, the structure of the topographic-isostatic effects at a satellite
altitude of 250 km shows still steep changes with a gradient of 0.70 Eötvös per 100 km in north-south
direction (Fig. 5.29) and of 0.50 m Eötvös per 100 km in east-west direction (Fig. 5.30).
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Fig. 5.28: Effects of the topographic-isostatic masses on the tensor component Vzz at an altitude of 250 km
for the Airy-Heiskanen model for the Himalaya region; units in Eötvös)

If it is possible to remove this sort of roughness from the observations with a noise level of approximately
5 ∗ 10−3 Eötvös expected for GOCE the downward continuation can be considerably simplified. The GOCE
mission is designed to derive the static part of the gravity field with an extremely high precision. Therefore,
it is very important to filter the observations by the topographic-isostatic gravity field effects to ease the
requirements for the downward continuation. An additional regularization might be avoided in that case; but
this depends on the envisaged resolution of the gravity field model and on the error level of the observations.

Figs. 5.31 to 5.33 give an impression of the size of the effects of the topographic-isostatic masses for the
xx, yy and zz-components of the gravitational tensor, respectively. The effects of the topographic-isostatic
masses for the Pratt-Hayford and the combined Airy-Pratt model are slightly larger than in case of the Airy-
Heiskanen and Helmert’s first condensation model, while Helmert’s second condensation model produces
only tiny effects. The results indicate that the effects of topographic-isostatic masses and the gradient of the
different tensor components for different models are significant and it seems to be advantageous to take them
into account for the gravity field recovery of the GOCE observations. This question will be investigated in a
simulation experiment.

Again, the coincidence of the generalized Helmert model of condensation with the other isostatic models
depends strongly on the condensation depths of Helmert’s model (Table 5.8 and Fig. 5.34). E.g, the ge-
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Fig. 5.29: Direction derivation of the tensor component Vzz in north-south direction at an altitude of 250
km (effect of the topographic-isostatic masses on the tensor component Vzz for the Airy-Heiskanen model
for the Himalaya region; units in Eötvös/degree)
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Fig. 5.30: Direction derivation of the tensor component Vzz in west-east direction at an altitude of 250 km
(effect of the topographic-isostatic masses on the tensor component Vzz for the Airy-Heiskanen model for
the Himalaya region; units in Eötvös/degree)
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             Vening Meinesz model
(Max=0.65, Min=-0.77, Mean=-0.003, RMS=0.10)

                 A iry-Heiskanen model  
(Max=0.64, Min=-0.77, Mean=-0.003, RMS=0.09)
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                Pratt-Hayford model 
(Max=0.65, Min=-0.76, Mean=-0.007, RMS=0.13)

           combined Airy and Pratt model
(Max=0.63, Min=-0.77, Mean=-0.007, RMS=0.12)

                Helmert's first  method
(Max=0.37, Min=-0.42, Mean=-0.002, RMS=0.06)

                Helmert's second method
(Max=0.06, Min=-0.04, Mean=-0.000, RMS=0.01)

Fig. 5.31: Effects of the topographic-isostatic masses on the tensor component Vxx at an altitude of 250 km
for different topographic-isostatic models (units in Eötvös)
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             Vening Meinesz model
(Max=0.38, Min=-0.44, Mean=0.002, RMS=0.07)

                 A iry-Heiskanen model  
(Max=0.38, Min=-0.45, Mean=0.002, RMS=0.07)
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                Pratt-Hayford model 
(Max=0.49, Min=-0.69, Mean=0.005, RMS=0.12)

            combined Airy and Pratt model
(Max=0.48, Min=-0.65, Mean=-0.007, RMS=0.11)

                   Helmert's first method
(Max=0.22, Min=-0.32, Mean=-0.000, RMS=0.06)

              Helmert's second method
(Max=0.03, Min=-0.03, Mean=-0.000, RMS=0.005)

Fig. 5.32: Effects of the topographic-isostatic masses on the tensor component Vyyat an altitude of 250 km
for Helmert’s first method of condensation with different depths (units in Eötvös)
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               Vening Meinesz model
(Max=0.97, Min=-0.65, Mean=0.003, RMS=0.14)

                 A iry-Heiskanen model  
(Max=0.98, Min=-0.66, Mean=0.003, RMS=0.14)
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                Pratt-Hayford model 
(Max=0.99, Min=-0.76, Mean=0.007, RMS=0.21)

            combined Airy and Pratt model
(Max=0.98, Min=-0.75, Mean=0.008, RMS=0.20)

               Helmert's first method 
(Max=0.55, Min=-0.37, Mean=0.002, RMS=0.10)

               Helmert's second method
(Max=0.07, Min=-0.05, Mean=-0.000, RMS=0.02)

Fig. 5.33: Effects of the topographic-isostatic masses on the tensor component Vzz at an altitude of 250 km
for different topographic-isostatic models (units in Eötvös)
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neralized Helmert model of condensation with a condensation depth between 45 km and 50 km coincides
well with the Pratt-Hayford model. In case of a condensation depth of 30 km for the generalized Helmert
model the effects coincide approximately with the Airy-Heiskanen model. For the second radial derivatives
the numerical results for different topographic-isostatic models are practically equivalent to those reported
in Heck and Wild (2005) and Wild and Heck (2004b).

Finally, the effects of the topographic-isostatic masses in the global scale for different topographic-isostatic
models are shown in Figs. 5.35 to 5.37. The plots show the distribution of these effects for the diagonal
components of the gravity tensor. The condensation depth of the generalized Helmert model for this test
computation has been taken to be 30 km. The effects are as large as 1 Eötvös and more. Compared to
the observation accuracy of approximately 5 ∗ 10−3 Eötvös, again these are significant gravity field effects
according to the topography and its isostatic compensation in the gravity field signal.

Table 5.8: Effects of the topographic-isostatic masses on the tensor component at an altitude of 250 km
for Helmert’s first or generalized method of condensation with different depths in comparison with Airy-
Heiskanen and Pratt-Hayford models (units in Eötvös)

topographic-isostatic model RMS Mean Min Max
Helmert’s first method 0.10 0.002 -0.37 0.55
generalized Helmert model (25 km) 0.12 0.002 -0.43 0.63
Airy-Heiskanen 0.14 0.003 -0.65 0.97
Vening Meinesz 0.14 0.003 -0.66 0.98
generalized Helmert model (30 km) 0.14 0.003 -0.49 0.73
generalized Helmert model (35 km) 0.16 0.003 -0.56 0.83
generalized Helmert model (40 km) 0.18 0.004 -0.64 0.92
generalized Helmert model (45 km) 0.20 0.004 -0.71 1.01
Pratt-Hayford 0.21 0.007 -0.76 0.99
generalized Helmert model (50 km) 0.22 0.005 -0.78 1.10
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Fig. 5.34: Effects of the topographic-isostatic masses on the tensor component Vzz at an altitude of 250 km
for generalized Helmert model of condensation with different depths (units in Eötvös)
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                   A iry-Heiskanen model
(Max=0.59, Min=-0.80, Mean=0.00, RMS=0.07)

general ized Helmert model of condensation 
(Max=0.45, M in=-0.69, Mean=0.00, RMS=0.007)

                   Pratt-Hayford model
(Max=0.65, M in=-0.96, Mean=0.00, RMS=0.12)

            combined  Airy and Pratt model
(Max=0.62, M in=-0.90, Mean=0.00, RMS=0.11)

Fig. 5.35: Effects of the topographic-isostatic masses on the tensor component Vxx at an altitude of 250 km
for different topographic-isostatic models (units in Eötvös)
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                   A iry-Heiskanen model
(Max=0.59, Min=-0.80, Mean=0.00, RMS=0.07)

general ized Helmert model of condensation 
(Max=0.45, M in=-0.69, Mean=0.00, RMS=0.007)

                   Pratt-Hayford model
(Max=0.65, M in=-0.96, Mean=0.00, RMS=0.12)

            combined  Airy and Pratt model
(Max=0.62, M in=-0.90, Mean=0.00, RMS=0.11)

Fig. 5.36: Effects of the topographic-isostatic masses on the tensor component Vyy at an altitude of 250 km
for different topographic-isostatic models (units in Eötvös)
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                   A iry-Heiskanen model
(Max=1.23, Min=-0.66, Mean=0.004, RMS=0.13)

general ized Helmert model of condensation 
(Max=1.10, M in=-0.70, Mean=0.003, RMS=0.14)

                   Pratt-Hayford model
(Max=1.44, M in=-0.99, Mean=0.004, RMS=0.21)

             combined Airy and Pratt model
(Max=1.34, M in=-0.93, Mean=0.003, RMS=0.19)

Fig. 5.37: Effects of the topographic-isostatic masses on the tensor component Vzz at an altitude of 250 km
for different topographic-isostatic models (units in Eötvös)
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5.4.2 Topographic-isostatic effects on SST observations

As sketched in chapter 2, the gravity field recovery from SST data is based on the analysis of short precisely
determined kinematical orbits based mainly on GPS measurements in an altitude of ∼ 400 km.

5.4.2.1 Effects on the orbit

To get an impression of the size of the topographic-isostatic effects on the short arcs, a 30-minute-arc has
been determined dynamically twice, the first version based on EGM96 potential coefficients (Lemoine et
al. 1998) complete up to degree Nmax = 360, the second version based on EGM96 minus the effects of the
topographic-isostatic masses. Then both orbits have been compared applying a least squares fit of both orbits.
The differences in the coordinates represent the effect of the topographic-isostatic gravity field effects in the
short arcs. Figure 5.38 shows the effects of different topographic isostatic models. The Airy-Heiskanen model
and the Vening Meinesz model as well as the generalized Helmert model of condensation show significant
deviations up to two meters. The Pratt-Hayford model as well as the combined Pratt-Airy model show even
larger deviations up to four meters while the gravity field effect of Helmert’s second model is very small,
only a couple of centimeters.

5.4.2.2 Effects on the relative motion of two satellites

To investigate the gravity field effects of the topographic-isostatic models on the ranges and range-rates of a
twin-satellite scenario like GRACE the relative orbits of a 30-minute-arc have been determined dynamically
twice again: The first version has been based on EGM96 potential coefficients complete up to degree Nmax =
360, the second one based on EGM96 coefficients minus the effects of the topographic-isostatic models. Then
both relative orbits have been compared applying a least squares fit of both relative orbits.

The differences in the ranges and range-rates represent the effect of the topographic-isostatic gravity field
effects in the short relative arcs. Figure 5.39 shows the effects of the topographic-isostatic models in the
ranges and Fig. 5.40 in the range-rates. Again the Airy-Heiskanen model and the Vening Meinesz model as
well as the generalized Helmert model of condensation show significant deviations up to a couple of decimeters
while the gravity field effect of Helmert’s second model again is very small. Also, the Pratt-Hayford model
and the combined Airy-Pratt model show significant deviations larger than the other models.

The situation is similar in case of the topographic-isostatic effects in the range-rates between the GRACE
satellites. Again the Airy-Heiskanen model and the Vening Meinesz model as well as the Helmert’s first or
generalized condensation method show significant deviations up to ±200 to 300µm/s while the gravity field
effect of Helmert’s second model is very small. In addition, the effect of the Pratt-Hayford model and the
combined Airy-Pratt model show significant deviations larger than those of the other models. Compared to
the observation accuracy of approximately 0.2µm/s these are significant effects in the gravity field signal.
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Fig. 5.38: Orbit deviations for different topographic isostatic models (altitude: ∼400 km)



134 5. Numerical analysis

51740.005 51740.01 51740.015 51740.02

MJD (days)

-0.2

0

0.2

0.4

ra
n
g
e
 (
m
)

Vening Meinesz model

Pratt-Hayford model

Airy and Pratt model

Airy-Heiskanen model

generalized Helmert model (D1=32 km)

Helmert's second method

Fig. 5.39: SST ranges: EGM96 versus (EGM96-T/I-models) (altitude: ∼ 450 km)

51740.005 51740.01 51740.015 51740.02

MJD (days)

-0.002

0

0.002

0.004

ra
n
g
e
 r
a
te
 (
m
/s
)

Vening Meinesz model

Pratt-Hayford model

Airy and Pratt model

Airy-Heiskanen model

generalized Helmert model (D1=32 km)

Helmert's second method

Fig. 5.40: SST range-rates: EGM96 versus (EGM96-T/I-models)(altitude: ∼ 450 km)



135

6. Discussion and conclusions

In this study the integral formulae for the calculation of the first and second derivatives of the gravitational
potential of the topographic-isostatic masses were derived for various frequently applied topographic-isostatic
models in spherical approximation by approximating the spherical volume elements by mass-lines located
in the center of the compartments. To our knowledge, only the formula for the determination of the first
derivative in the radial direction has been derived but not for the other two components. The situation
is similar for the second derivatives of the potential; only an alternative equivalent formula for the radial
component has been published in various papers (Heck and Wild 2005; Wild and Heck 2004a, b). The
other second derivatives of the potential have not been studied till now to our knowledge. The formulae
can be used to determine the topographic-isostatic effects at aircraft altitudes for airborne applications
or at satellite altitudes to reduce the observation functionals of Satellite Gravity Gradiometry missions.
The integral formulae presented here allow to use DTMs with an – in principle – arbitrary high resolution
depending on the numerical integration method. Obviously such a high resolution is not necessary for satellite
altitudes, because only a comparably coarse digital elevation model is required. In these cases it might be
preferable to apply formulae which are based on the expansion of Newton’s integral in spherical harmonics
at least for global applications (see, e.g., Makhloof and Ilk 2004). If the potential coefficients are determined
once for all, then the same results can be achieved with less CPU time and sufficient accuracy. The situation is
different, if the topographic-isostatic effects are required at the surface of the Earth or at aeroplane altitudes.
Then a higher resolution of the DTMs is indispensable and the computation of the corresponding spherical
harmonic coefficients can be critical because of numerical problems (Holmes and Featherstone 2002). Also,
the computational effort increases quadratically with data resolution. Therefore only a maximum degree
of 2700 corresponding to a compartment size of 4′′ can be determined efficiently. Due to this limitation a
spherical harmonic expansion of the topographic-isostatic masses cannot be used for exact determinations
of the geoid (see Kuhn and Seitz 2005). At the surface of the Earth or at low altitudes the formulae for
the second derivatives have to be applied with care because of instabilities and discretization errors caused
by the jump relation of the second derivatives of the gravitational potential at the Earth’s surface. There
are various ways out of these problems: The cap around the computation point can be calculated using
the rigorous tesseroid formula approach in three dimensions such as proposed by Kuhn (2000) or the prism
formulae as proposed by Nagy (1966, 2000, 2002). Another possibility is to model the topography in a cap of
sufficient spherical radius around the computation point with a higher resolution than in the distant regions.
Discretization problems are less critical for the first derivatives or even for the potential. The errors depend
on the resolution of the DTMs and the altitudes of the computation points as demonstrated in chapter 5.

For the determination of a 1 cm geoid from ground and airborne gravimetry, formulae for the far-zone
direct and indirect terrain effects for Helmert’s condensation methods and for the Airy-Heiskanen model are
derived and transformed into the spectral domain following Molodenskii’s approach. These formulae that
are based on spherical harmonic expansions can be applied very economically for all models investigated
here. From the point of view of computation costs it would be desirable to select the cap size radius as
small as possible to reduce the work load for the near zone computations, e.g., for the direct terrain effects
on gravity. A cap radius of at least 3o is necessary for the Taylor expansion of the formulae for the far-zone
effects (see chapters 4 and 5).

The gravity field effects of the topography and the isostatic compensation masses strongly depend on the
applied topographic-isostatic models. For the gravity field recovery procedure it is important to know the size
of these effects in the satellite observations which are used for the determination of gravity field parameters.
The results of chapter 5 demonstrate that the Pratt-Hayford model shows the largest effects at satellite
altitude, followed – as expected – by the combined Airy and Pratt model. The Airy-Heiskanen and the Vening
Meinesz models as well as Helmert’s first condensation model show similar slightly smaller effects, while
Helmert’s second condensation model produces only tiny effects compared to the other models. This means
that these gravity field effects are remarkable large compared to the measurement accuracy. If the three-
dimensional position coordinates of a satellite such as CHAMP derived by a kinematical orbit determination
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procedure are used within the so-called Precise Orbit Determination (POD) gravity field recovery approach
then the coordinates must be known with an accuracy of one to two centimeters. It becomes obvious that
an effect in the orbit of up to a couple of meters (as shown in chapter 5) corresponding to a signal-to-noise
ratio of approximately 1000 requires a careful computation of the topographic-isostatic effects. The situation
is similar if low-low SST data of a GRACE-type twin satellite mission are used for the gravity field recovery.
Again the ratio of the topographic-isostatic effect to the measurement noise is approximately 1000 for these
observables. This holds approximately for all models except for Helmert’s second condensation method. The
topographic-isostatic effects might be also important for the gravity field mission GOCE where the gravity
gradients are measured with high precsion, especially the diagonal elements. The size of the diagonal elements
of the gravity gradients is largest for the radial component Vzz and approximately half of these values for the
local horizontal components Vxx and Vyy. Also in this case the signal-to-noise ratio is approximately 1000 if
we take into account the measurement accuracy of the Satellite Gravity Gradiometry mission GOCE in the
size of 0.003 Eötvös. Therefore, also in this case a remove-restore procedure can significantly stabilize the
downward continuation procedure and can help to improve the final results.

The far-zone direct terrain effects are rather high for Helmert’s first or generalized condensation method
as well as for the Airy-Heiskanen model and very small in case of Helmert’s second condensation method.
It is interesting to note that the altitude of the computation point has a minor influence on the size of
the far-zone effects for all topographic-compensation models. The far-zone effects decrease slightly with
increasing altitude and are more or less identical in case of cap radii of 10o and larger. Therefore, the results
hold for ground gravity measurements and for airborne gravimetry. The far-zone effects increase with the
condensation depth selected for the generalized Helmert model (and are very small for the second Helmert
method). A corresponding behaviour show the numerical tests for the far-zone primary and secondary indirect
terrain effects. An important question is the selection of the cap radius for the determination of far-zone
topographic-compensation effects. For Helmert’s second method of condensation the far-zone terrain effects
in case of a cap radius of 3o and larger have a minor influence on airborne gravity measurements in relation
to a measurement accuracy of 1 to 2 mGal and can be omitted completely. The situation is different in case
of ground gravity measurements with a much higher measurement accuracy of 0.02 mGal. In this case the
far-zone effects have to be considered in case, e.g. of a cap radius of 3o. The maximum harmonic degree of
50 should be sufficient for the determination of the far-zone effects in this case. The situation is different
in case of Helmert’s generalized condensation models (including Helmert’s first model) and in case of the
Airy-Heiskanen model. Even in case of the minor accuracy of airborne gravimetry the far-zone effects have
to be considered for cap radii of 3o and also larger ones. The maximum degree of the spherical harmonic
expansion can be restricted to 50 in case of airborne gravimetry and up to degree 200 and higher for ground
gravity measurements, depending on the accuracy demands. If we keep in mind that the accuracy of the
airborne gravimetry is 1-2 mgal and the band limted geoid is determined, then it is better to use space
localizing space function than the integral formulae for determinig the topographic-compensating masses
effects.

Now the question arises which model should preferably be used for the filtering of satellite born observations
such as low-low SST data, airbore gravimetry, three-dimensional position coordinates or measured gravity
gradients as preparation for the subsequent downward continuation procedure? While Helmert’s second
condensation method might be useful for geoid computations, its usefulness for the processing of satellite
in-situ observations cannot be answered in such a simple generally valid way. Indeed the task of filtering
topographic-isostatic effects in the satellite observations is helpful only if these quantities show a significant
size in the observations. Obviously, this fact depends on the validity of the topographic-isostatic hypothesis
in specific geographic regions. This can be decided only after a careful analysis of the specific gravity field
features within the various geographical regions of the Earth to find out which model describes the reality
in these regions in the best possible way. It is well-known that the Earth is isostatically compensated by
an amount of approximately 90%, but it is difficult to decide which model fits best. Although seismic
measurement results indicate the validity of an Airy-Heiskanen type of topographic-isostatic compensation,
in some parts of the Earth the isostatic compensation seems to follow the Pratt-Hayford model (Heiskanen
and Moritz 1967). If the specific topographic-isostatic model holds more or less uniformly for a larger region
then this model can be used to filter the satellite observations before the application of the regional gravity
field recovery procedure. The situation is more complicated in case of regionally varying deviations of the
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reality from a specific model; further investigations are necessary to consider this case. The numerical results
indicate that the effects of topographic and isostatic masses for Helmert’s first method of condensation with
a condensation depth of 30 km coincides approximately with the effects of the Airy-Heiskanen model. The
change of the condensation level by using a sort of generalized Helmert model (Heck 2003) could be used
to fit the topographic-isostatic model to the reality. An interesting side effect would be the reduction of the
computation costs due to the efficiency of this model.

Because of the varying effects of the topographic-isostatic models depending on the type of observables such
as gravity vectors or tensor components the frequently expressed argument that a high resolution gravity field
model might be sufficient to reduce observations at aeroplane or satellite altitude is not valid. Therefore,
additional investigations are necessary to demonstrate the benefit of a remove-restore procedure taking
into account individually selected topographic-isostatic models for the processing of airborne measurements
and SGG observables. Therefore, an integration of this processing steps into the global but especially the
regional gravity field recovery procedure as developed at the Institute of Theoretical Geodesy, University of
Bonn, and various other aspects mentioned here have to be investigated. In addition, further investigations
are necessary to demonstrate the benefit of a remove-restore procedure taking into account topographic-
compensation effects for the processing of POD and low-low SST observables. Also, further investigations
are necessary to take the cubic terms of the Taylor expansion into account in the case of the Airy-Heiskanen
model. Also, further investigation can be performed to apply the Molodenskii’s approach for determing
the far-zone effects for other topographic-isostatic models such as the Pratt-Hayford model. Finally, the
geophysical models in coincidence with modern models of plate tectonics must be investigated with respect
to its topographic-isostatic effects.
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A. Appendix

A.1 Truncation coefficients for the direct terrain effect

A.1.1 Helmert’s second method of condensation

The direct terrain effect of the topographic and condensation masses can be derived based on Eq. (4.177) by

setting Ab
∧

= Acb,

DTEter
∣
∣
r=rP

= Gρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

∂

∂r
l−1(r, ψ, ξ) ξ2dξ

∣
∣
r=rP

dσ−

−Gρ

∫∫

σ

R+HQ∫

ξ=R+HP ′

ξ2dξ
∂

∂r
l−1(r, ψ,R)

∣
∣
r=rP

dσ.

(A.1)

The inner integral of the first term can be performed based on (Gradshteyn and Ryzhik 1980) and rearranged
to give:

∂

∂r

R+HQ∫

ξ=R+HP ′

l−1(r, ψ, ξ) ξ2dξ
∣
∣
r=rP

=
[
(ξ2 + 3r2P ) cosψ + rP ξ(1 − 6 cos2 ψ)

]
l−1(rP , ψ, ξ)+

+rP (3 cos2 ψ − 1) ln |ξ − rP cosψ + l(rP , ψ, ξ)|
∣
∣
R+HQ

R+HP ′

,

(A.2)

with rP = (R+HP , ϕ, λ), ξ = R+HP ′ , ξQ = R+HQ and the height of the topography HQ .

Using the following parameters

ζ =
HP ′ −HP

rP
and ζQ =

HQ −HP

rP
, (A.3)

the Newtonian Kernel l−1 and its inverse in Eq. (A.2) can be expanded into a binomial series as follows
(Novàk et al. 2001):

l−1(rP , ψ, ξ) =
1

rP
(2 − 2 cosψ)−1/2

[

1 + ζ

(

1 +
ζ

2 − 2 cosψ

)]−1/2

≈ 1

rP
(2 − 2 cosψ)−1/2

(

1 − ζ

2
+
ζ2

8

1 − 3cosψ
1 − cosψ

)

+ ....

(A.4)

l(rP , ψ, ξ) = rP (2 − 2 cosψ)1/2
[

1 + ζ

(

1 +
ζ

2 − 2 cosψ

)]1/2

≈ rP (2 − 2 cosψ)1/2
(

1 +
ζ

2
+
ζ2

8

1 + cosψ
1 − cosψ

)

+ .....

(A.5)

To give estimations for the quantities ζ and ζQ we consider the following example: the spherical cap shell is
defined by a radius of ψ ≥ ψ0 = 30, the height of the computation point is considered to be 10 km above the
geoid and the topography shall reach heights of maximum 9 km. In this case the quantities ζ and ζQ reach
a maximum value of 0.00156. In this case it holds the relation

∣
∣
∣
∣
ζ

(

1 +
ζ

(2 − 2 cosψ)

)∣
∣
∣
∣
< 0.002 ≪ 1. (A.6)
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Therefore, the truncation of the binomial series in Eq. (A.4) and (A.5) after the quadratic terms of ζ is fully
justified.

After substituting of Eq. (A.4) and Eq. (A.5) into Eq. (A.2), the integral can be written as follows:

∂

∂r

R+HQ∫

ξ=R+HP ′

l−1(r, ψ, ξ) ξ2dξ
∣
∣
r=rP

=
[
(rP (3 + η2

Q) cosψ + ηQrP (1 − 6 cos2 ψ)
]
(2 − 2 cosψ)−

1
2 .

.

(

1 − ζQ
2

+
ζ2
Q

8

1 − 3 cosψ

1 − cosψ

)

−
[
rP (3 + η2) cosψ + ηrP (1 − 6 cos2 ψ)

]
(2 − 2 cosψ)−

1
2 .

.

(

1 − ζ

2
+
ζ2

8

1 − 3 cosψ

1 − cosψ

)

+ rP (3 cos2 ψ − 1) ln

∣
∣
∣
∣
∣

ηQ − cosψ + (1 + η2
Q − 2ηQ cosψ)

1
2

η − cosψ + (1 + η2 − 2η cosψ)
1
2

∣
∣
∣
∣
∣
,

(A.7)

with

η =
ξ

rP
, ηQ =

ξQ
rP
. (A.8)

The logarithmic function in Eq. (A.7) can be developed into a binomial series as well and truncated after
the quadratic terms as follows:

ln

∣
∣
∣
∣
∣

ηQ − cosψ + (1 + η2
Q − 2ηQ cosψ)

1
2

η − cosψ + (1 + η2 − 2η cosψ)
1
2

∣
∣
∣
∣
∣
=
ζQ − ζ + (2 − 2 cosψ)

1
2

(
ζQ−ζ

2 +
ζ2Q−ζ2

8
1+cosψ
1−cosψ

)

η − cosψ + (1 + η2 − 2η cosψ)
1
2

−

− 1

2






ζQ − ζ + (2 − 2 cosψ)
1
2

(
ζQ−ζ

2 +
ζ2Q−ζ2

8
1+cosψ
1−cosψ

)

η − cosψ + (1 + η2 − 2η cosψ)
1
2






2

+ .....

(A.9)

Substituting Eq. (A.9) into Eq. (A.7) and rearranging of the terms results in:

R+HQ∫

ξ=R+HP ′

∂

∂r
l−1 (r, ψ, ξ)

∣
∣
r=rP

ξ2dξ = rP

[

K1 (η, ψ) (ζQ − ζ) +K2 (η, ψ)
(
ζ2
Q − ζ2

)
+K3 (η, ψ) (ζQ − ζ)

2
]

,

(A.10)

with the functions ζ and ζQ as defined in Eq. (A.3),

K1(η, ψ) =
1

2

(1 − 6 cos2 ψ)

(2 − 2 cosψ)
1
2

+
1

2

(3 cos2 ψ − 1)(2 + (2 − cosψ)
1
2 ))

η − cosψ + (1 + η2 − 2η cosψ)
1
2

, (A.11)

K2(η, ψ =
cosψ

(2 − 2 cosψ)
1
2

− 1

2

(1 + 2 cosψ − 6 cos2 ψ)

(2 − 2 cosψ)
1
2

+
1

8

(1 − 3 cosψ)(1 + 4 cosψ − 6 cos2 ψ)

(1 − cosψ)(2 − 2 cosψ)
1
2

+

+
(1 + cosψ)

8(1 − cosψ)

(3 cos2 −1)

(2 − 2 cosψ)−
1
2 (η − cosψ + (1 + η2 − 2η cosψ)

1
2 )
,

(A.12)

K3(η, ψ) = −1

4

(3 cos2 ψ − 1)
[

(3 − cosψ) + 2 (2 − 2 cosψ)
1
2

]

[

(η − cosψ + (1 + η2 − 2η cosψ)
1
2 )
]2 (A.13)

Eq. (A.10) can be rearranged to give:

R+HQ∫

ξ=R+HP ′

∂

∂r
l−1(r, ψ, ξ)

∣
∣
r=rP

ξ2dξ = rP
[
K1(η, ψ)(ζQ − ζ) +K2(η, ψ)(ζ2

Q − ζ2)+

+ K3(η, ψ)(ζ2
Q − ζ2) − 2K3(η, ψ)ζ(ζQ − ζ)

]
.

(A.14)
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The integration over the sphere σ in the first term of Eq. (A.1) can be performed by replacing the geocentric
coordinates ϕQ and λQ by the spherical polar coordinates with the pole in the computation point, ψ and α.
Then the first term in Eq. (A.1) can be written as

Gρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

∂

∂r
l−1(r, ψ, ξ)|r=rP

ξ2dξdσ = Gρ

π∫

ψ=0

{(HQ −HP ′)K1(η, ψ)+ .

+
1

rP
(H2

Q −H2
P )(K2(η, ψ) +K3(η, ψ)) − 2HP

rP
(HQ −HP ) [K2(η, ψ) +K3(η, ψ)]−

−2(HP ′ −HP )

rP
(HQ −HP )K3(η, ψ)

}

sinψ dψ

2π∫

0

dα.

(A.15)

By using the technique introduced by Molodenskii el al. (1960), the terms in Eq. (A.15) can be developed
into a spectral form. If only the far zone has to be taken into account, then the kernels Ki(η, ψ), i=1, 2, 3,
in Eq. (A.15) have to be redefined as

K̄i(η, ψ) =

{
0 0 ≤ ψ < ψ0

Ki(η, ψ) ψ0 ≤ ψ ≤ π
. (A.16)

The function K̄i(η, ψ), being piecewise continuous, may be expanded into a series of Legendre polynomials
(zonal spherical harmonics). For example, it holds for the kernel

K̄1(η, ψ) =

∞∑

n=0

2n+ 1

2
tn(η, ψ, ψ0)Pn(cosψ), (A.17)

with the Legendre polynomials Pn of degree n. The coefficients tn(η, ψ, ψ0) are given by Heiskanen and
Moritz (1967) in Sec. 1-13 by,

2n+ 1

2
tn(η, ψ, ψ0) =

2n+ 1

4π

2π∫

0

π∫

0

K̄1(η, ψ)Pn(cosψ) sinψdψdα. (A.18)

After integration with respect to α gives

tn(η, ψ, ψ0) =

π∫

ψ=0

K̄1(η, ψ)Pn(cosψ) sinψdψ. (A.19)

Introducing the definition of Eq. (A.16), tn(η, ψ, ψ0) can be written as

tn(η, ψ, ψ0) =

π∫

ψ=ψ0

K1(η, ψ)Pn(cosψ) sinψdψ. (A.20)

Because of

HQ(ψ, α) =

∞∑

n=0

HnPn(cosψ), (A.21)

with

Hn =
2n+ 1

4π

2π∫

0

π∫

ψ=0

HQ(ψ, α)Pn(cosψ) sinψdψdα, (A.22)
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the first term of Eq. (A.15) can be expressed as:

∫∫

σ

(HQ −HP ′)K1(η, ψ)dσ = 2π

Nmax∑

n=0

tn(η, ψ, ψ0)Hn(ϕ, λ) − 2πt0(η, ψ, ψ0)HP ′ , (A.23)

where the truncation coefficients tn(η, ψ, ψ0) are given by Eq. (A.20).

Applying this procedure (Eq. (A.16) to Eq. (A.23)) to the other terms in Eq. (A.15), we arrive at:

Gρcr

∫ ∫

σ→σF Z

R+HQ∫

ξ=R+HP ′

∂

∂r
l−1(r, ψ, ξ)|r=rP

ξ2dξdσ = 2πGρcr

[
Nmax∑

n=0

tn(η, ψ, ψ0)Hn(ϕ, λ)+

+
1

rP

Nmax∑

n=0

un(η, ψ, ψ0)H
2
n(ϕ, λ) − 2HP

rP

Nmax∑

n=0

un(η, ψ, ψ0)Hn(ϕ, λ)−

−2(HP ′ −HP )

rP

Nmax∑

n=0

vn(η, ψ, ψ0)Hn(ϕ, λ)

]

+ C1,

(A.24)

where the truncation coefficients un(η, ψ, ψ0) and vn(η, ψ, ψ0) are given by:

un(ηψ, ψ0) =

π∫

ψ=ψ0

[K2(η, ψ) +K3(η, ψ)]Pn(cosψ)) sinψdψ, (A.25)

vn(η, ψ, ψ0) =

π∫

ψ=ψ0

K3(η, ψ)Pn(cosψ) sinψdψ, (A.26)

and C1 reads

C1 =2πGρcr
[
−t0(η, ψ, ψ0)HP ′ − u0(η, ψ, ψ0)H

2
P ′/rP +

+ 2u0(η, ψ, ψ0)HPHP ′/rP + 2v0(η, ψ, ψ0)HP ′(HP ′ −HP )/rP ] .
(A.27)

The truncation coefficients, given in Eqs. (A.20), (A.25) and (A.26), can be calculated numerically by the
Gauss-Legendre quadrature formula. It reads, e.g, in case of Eq. (A.20) if the integration ranges from 0 to π
(ψ0 = 00),

tn(η, ψ, ψ0) =

π∫

ψ=ψ0

K1(ηψ)(Pn(cosψ)) sinψdψ

≈
imax∑

i=1

(Pn(cosψi))K1(η, ψi)wi,

=

imax∑

i=1

F (η, ψi)wi.

(A.28)

The factor wi are the corresponding Gauss-Legendre quadrature weights,

wi =
2

(1 − x2
i )(P

′

imax
(xi))2

, (A.29)

where xi = cosψi and P ′

imax
are the first derivatives of the Legendre polynomials with respect to x. The

values ψi are the zeros of the Legendre polynomials used for a specific Gauss-Legendre quadrature formula.
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In our case, the integration starts from ψ0 6= 00. Therefore, the zeros of the Legendre polynomials must be
transformed as follows:

ψ′

i = a+ bψi, (A.30)

with

a =
cosψ0 + cosπ

2
, b =

cosψ0 − cosπ

2
. (A.31)

Then the truncation coefficients tn(η, ψ, ψ0) are given by the quadratic formula

tn(η, ψ, ψ0) = b

imax∑

i=1

F (η, ψ′

i)wi. (A.32)

The second integral of Eq. (A.1) can be treated analogously as before resulting in

Gρcr

∫∫

σ

R+HQ∫

ξ=R+HP ′

ξ2dξ
∂

∂r
l−1(r, ψ, R)|r=rP

dσ = Gρcr

∫∫

σ

[
ξ3

3

]R+HQ

R+Hp′

K4(R+HP , ψ,R) sinψ dψdα,

= Gρ

∫∫

σ

[
1

3

(
(R+HQ)3 − (R+HP ′)3

)
]

K4(R+HP , ψ,R) sinψdψdα,

= Gρ

∫∫

σ

R3

3

[
3(HQ −HP ′)

R
+

3(H2
Q −H2

P ′)

R2
+o

H3

R3

]

K4(R+HP , ψ,R) sinψ dψdα,

(A.33)

where the integral kernel K4(R+HP , ψ,R) is the radial derivative of the Newtonian kernel given by:

K4(R+HP , ψ,R) =
R(cosψ − 1) −HP

l3
. (A.34)

By inserting Eq. (A.34) in Eq. (A.33), the second integral of Eq. (A.1) can be finally written as

Gρcr

∫ ∫

σ→σF Z

R+HQ∫

ξ=R+HP ′

∂

∂r
l−1(r, ψ, R)|r=rP

ξ2dξdσ = 2πGρcr

Nmax∑

n=0

wn(HP , ψ, ψ0)Hn(ϕ, λ)+

+
1

R

Nmax∑

n=0

wn(HP , ψ, ψ0)H
2
n(ϕ, λ) + C2,

(A.35)

with

wn(HP , ψ, ψ0) = R2

π∫

ψ=ψ0

K4(R+HP , ψ,R)Pn(cosψ) sinψdψ, (A.36)

and

C2 = 2πGρcr
[
−w0(HP , ψ, ψ0)HP ′ − w0 (HP , ψ, ψ0)H

2
P ′/rP

]
. (A.37)

A.1.2 Helmert’s first or generalized method of condensation

The only difference between Helmert’s first and second condensation method is a different calculation of
the truncation coefficients wn(HP , ψ, ψ0). The integral kernel K4(R + HP , ψ,R − D1) in Helmert’s first
condensation method is given by:

K4(R+HP , ψ,R−D1) =:
∂ (1/l(r, ψ,R−D1)

∂r

∣
∣
∣
∣
r=rP

=
(R−D1) cosψ − (R+HP )

l3
. (A.38)
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A.1.3 Airy-Heiskanen model

In this model, the direct terrain effect of the topographic and isostatic masses is given by (Rummel et al.
1988):

DTEter
∣
∣
r=rP

=Gρ

∫∫

σ

R+HQ∫

ξ=R+HP ′

∂

∂r
l−1(r, ψ, ξ)|r=rP

ξ2dξdσ+

+G∆ρ

∫∫

σ

R−T−tQ∫

ξ=R−T−tP

∂

∂r
l−1(r, ψ, ξ)|r=rP

ξ2dξdσ.

(A.39)

The first integral of Eq. (A.39) is derived from Eq. (A.1) and given by Eq. (A.24). Following an analogous
procedure as used for treating Eq. (A.1), the second integral can be derived resulting in

G∆ρ

∫ ∫

σ→σF Z

R−T−tQ∫

ξ=R−T−tP

∂

∂r
l−1(r, ψ , ξ)|r=rP

ξ2dξdσ = 2πG∆ρ

[

−
Nmax∑

n=0

qn(η, ψ, ψ0)Hn(ϕ, λ)C+

+
1

rP

Nmax∑

n=0

rn(η, ψ, ψ0)H
2
n(ϕ, λ)C2 +

2(HP + T )

rP

Nmax∑

n=0

rn(η, ψ, ψ0)Hn(ϕ, λ)C−

− 2(T + tP +HP )

rP

Nmax∑

n=0

Sn(η, ψ, ψ0)Hn(ϕ, λ)C

]

+ C3.

(A.40)

The coefficients qn(η, ψ, ψ0), rn(η, ψ, ψ0) and sn(η, ψ, ψ0) are calculated based on Eqs. (A.20), (A.25) and
(A.26), respectively, with the parameter

η =
R− T − tP

rP
. (A.41)

The term C3 is given by:

C3 =2πG∆ρcr [Cq0(η, ψ, ψ0)HP ′ − 1

rP
r0(η, ψ, ψ0)C

2H2
P ′−

− 2(HP + T )

rP
r0(η, ψ, ψ0)CHP ′ +

2(T + tP +HP )

rP
s0(η, ψ, ψ0) CHP ′ ] .

(A.42)
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