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Analysen von Merkmalen für die Immunkompetenz und ihre Assoziation mit 

Kandidatengenen bei Schweinen 

 

Die vorliegende Arbeit wurde zur Untersuchung der Immunkompetenz in einer Duroc× 
Berliner Miniatur Schwein (DUMI) Rückkreuzungspopulation durchgeführt. Die 
Komplementaktivität über den klassischen und den alternativen Signalweg wurde mit 
dem hämolytischen Aktivitätsansatz ermittelt. Antikörperantworten zu Mycoplasma 
hyopneumoniae, Tetanus Toxoid und PRRS Virus wurden mit einem Enzyme-Linked 
Immunosorbent Assay (ELISA) gemessen. Darüber hinaus wurden die 
Komplementkomponenten C3c und Haptoglobin, wichtige Parameter der 
Immunantwort bei Tieren, bestimmt. Diese Parameter wurden im Folgenden als 
Phänotypen für die Kopplungskartierung zur Detektion von quantitativen trait loci 
(QTL) behandelt. Eine Genotypisierung von Mikrosatelliten wurde zur Untersuchung 
der QTL für Immunmerkmale durchgeführt. Es wurden insgesamt 220 
Rückkreuzungstiere für 74 Mikrosatelliten auf den 18 Autosomen des Schweins für die 
QTL-Kartierung genotypisiert. Es konnten 42 signifikante und 24 hoch signifikante 
QTL für alle Immunmerkmale detektiert werden. Die meisten QTL wurden auf SSC3, 
SSC16 und SSC18 (neun signifikante F-Werte auf jedem Chromosom) gefunden. Die 
meisten hoch signifikanten QTL wurden für die Antikörperantwort auf Mykoplasma, 
Tetanus und PRRS Impfung, C3c und Hp Konzentration gefunden. Für die Merkmale 
AH50 und CH50 wurden 22 signifikante und 9 hoch signifikanten QTL Regionen mit 
Hilfe des Programms QTLexpress abgeleitet. Zwei porcine Mannose-binding Gene 
MBL1 und MBL2 wurden in dieser Untersuchung als Kandidatengene untersucht. Eine 
phylogenetische Studie ergab eine höhere Identität der porcinen MBL Gene zu den 
bovinen Sequenzen als zu den von Primaten oder Nagern. Beide Gene wurden mit 
Radiation Hybrid Panel und Kopplungskartierung dem SSC14 zugeordnet. Diese waren 
hoch exprimiert in der Leber. MBL1 war ebenfalls in Lunge, Hoden und Gehirn 
exprimiert, eine geringe Expression von MBL2 wurde in Hoden und Niere gefunden. 
Single strand polymorphisms (SNP) des porcinen MBL2 Gens wurden gefunden und in 
einer porcinen F2 Versuchspopulation parallel zu einem vorher beschriebenen SNP in 
MBL1 genotypisiert. MBL1 Genotypen unterschieden sich in der C3c 
Serumkonzentration, d.h. in vivo Komplementaktivität mit p<0,1. Entsprechend ergab 
die Kopplungsanalyse einen QTL für das C3c Serumlevel nahe der Position der MBL 
Gene. Diese Untersuchung bestätigt somit, dass die porcinen MBL Gene funktionelle 
und positionelle Kandidatengene für die Komplementaktivität sind. 



     

Analyses of immune competence traits and their association  

with candidate genes in pigs 

 

The present study was carried out to investigate the immune competences of a 

backcross DUMI population. Complement activity via classical and alternative 

pathways were determined using haemolytic activity assay. Antibodies response to 

Mycoplasma hyopneumoniae, Tetanus toxoid and PRRS virus were determined using an 

Enzyme-Linked Immunosorbent Assay (ELISA). Moreover, complement component 

C3c and Haptoglobin (Hp), the important parameters of animal immune response were 

also determined. The parameters were further utilized as phenotypes for the linkage 

mapping to detect quantitative trait loci (QTL). Microsatellite genotyping was employed 

to detect the QTL of the immune traits. A total of 220 backcross animals were used for 

QTL analysis. Seventy-four microsatellites from 18 autosomes of Sus scrofa have been 

used for QTL mapping. Forty-two significant and twenty-four highly significant QTL 

could be detected for all immune traits. Most QTL were detected on SSC3, SSC16, and 

SSC18 (nine significant F-values on each chromosome). No significant F-value was 

detected on SSC12 and SSC13. Highly significant QTL could be detected for antibody 

response to Mycoplasma, Tetanus and PRRS vaccination, C3c and Hp concentration. 

For AH50 and CH50, twenty-two significant and nine highly significant QTL could be 

detected by using the program QTL express. Mannose-binding lectin (MBL) genes were 

proposed as a candidate gene in this study. Two porcine genes MBL1 and MBL2 were 

investigated. A phylogenetic study revealed that the porcine MBL genes had higher 

identities to bovine rather than primate and rodent sequences. Both genes were assigned 

to chromosome 14 by the radiation hybrid panel and linkage mapping. Both MBL genes 

were highly expressed in liver. MBL1 was also found to be expressed in lung, testis and 

brain, while low expression of MBL2 was detected in testis and kidney. New single 

nucleotide polymorphisms (SNP) of the porcine MBL2 gene were found and genotyped 

in an experimental F2 pig population together with a previously reported SNP of MBL1. 

MBL1 genotypes differed in C3c serum concentration, i.e. in vivo complement activity, 

at p<0.1. Correspondingly, linkage analysis revealed a QTL for C3c serum level close to 

the position of the MBL genes. The study thus promotes the porcine MBL genes as 

functional and positional candidate genes for complement activity. 
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Introduction   1 

1 Introduction 

 

Animal health has become an increasingly important issue for livestock producers and 

consumers. Animal diseases, causing morbidity and mortality, significantly decrease the 

profitability of animal production. Antibiotics resistance of pathogenic organisms and 

newly emerged diseases in livestock production such as BSE have led for a call of 

genetic selection for disease resistance animals. Selective breeding of high disease 

resistance animals based on their phenotypic value and the presence or absence of some 

specific resistance genes in their genotypes are the important tools for animal breeders 

to improve genetics of disease resistance. In order to accomplish the breeding 

(improvement) goal, the relevant immune response traits from individual animals have 

to be defined. To date, numerous assays have been established and developed regarding 

immune response traits. 

Molecular genetics approaches including the whole genome scan for quantitative loci 

(QTL) mapping and candidate gene study have been widely used to investigate genetic 

variation. Particularly, a combination of theses two approaches has been the most 

successful method of identifying “disease genes” to date. The QTL approach provides 

the ability to discover a number of genetic markers at the DNA level. The currents 

status in pig shows several QTL for various traits including meat production and 

quality, reproduction as well as disease resistance, that have been mapped on nearly all 

chromosomes in divergent breed crosses and commercial breeds (Bidanel and 

Rothschild 2002). The current status (February, 2007) of pig quantitative loci in the 

‘PigQTLdb’ available at the website http://www.animalgenome.org indicating 1,657 

QTL were reported from 110 publications represent 281 different pig traits. However, 

the QTL affecting immune response traits and disease resistance are still far less 

numerous (Rothschild 2003). The candidate gene approach is useful for quickly 

determining the association of a genetic variant with a disorder and for identifying 

genes of modest effect (Kwon and Goate 2000). 

In this study, several experiments were conducted. Haemolytic complement activities 

were performed to determine the complement activities via classical and alternative 

pathways. Several enzyme-linked immunosorbent assays (ELISA) were performed to 

determine the antibody responses to different vaccination treatments in experimental 
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animals, including some important immunological parameters (e.g. haptoglobin, C3c). 

Moreover, molecular genetics methods regarding linkage mapping and candidate gene 

approaches were also employed in order to achieve the following aims: 

1.  Evaluation of the porcine immune competencies including total complement 

activities of classical and alternative pathways, complement component C3c, 

acute phase protein, and also antibodies of individual pigs in a backcross DUMI 

resource population.  

2. Detection of quantitative trait loci (QTL) using genome scan over all autosomes 

in a backcross DUMI resource population regarding immunological traits. 

3. Identification of single nucleotide polymorphism (SNP) in the porcine MBL 

candidate genes and their association on immunological traits in an F2 DUMI 

resource population. 
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2 Literature review 

 

2.1 The immune system 

The immune system is an organization of cells and molecules with special roles in 

defending against infection. It comprises of two functional types of responses, innate or 

natural and specific or adaptive responses (Figure 1). Its major functions are to 

differentiate self from non-self and to maintain host defences against foreign substances 

and pathogens. The innate responses use phagocytic cells including neutrophils, 

monocytes and macrophages, that release inflammatory mediators (basophils, mast cells 

and eosinophils) and natural killer cells. The molecular components of innate response 

include complement, acute-phase proteins and cytokines. The adaptive or specific 

immune response involves the proliferation of antigen specific B and T cells (Delves 

and Roitt 2000, Medzhitov and Janeway 1997). Its composition is a complex series of 

cells and molecular from various tissues that interact to protect the body against 

invading microorganisms (de Souza 2006). In multicellular animals, immune systems 

contain different kinds of cells such as tissues or organs and their molecular products 

that encompass and protect the whole organism against potentially harmful pathogens 

such as bacteria, viruses and parasites that inhibit the external environment (Cooper 

2000). It is considered that the immune system must be capable of doing three actions 

including recognition of a diverse array of pathogens, killing these pathogens once they 

are recognized and sparing tissues of the host (Beutler 2004).  

 

 
Figure 1: Scheme of the immune response 
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2.1.1 Innate immune response 

The innate immune system can be expressed on the cell surface, in intracellular 

compartments or secreted into the bloodstream and tissue fluids using a variety of 

pattern recognition receptors (PRRs) (Medzhitov and Janeway 1997). PRRs functions 

include opsonization, activation of complement and coagulation cascades, phagocytosis, 

activation of proinflammatory signalling pathways and induction of apoptosis (Janeway 

and Medzhitov 2002). Two mechanisms are involved in the innate response in order to 

distinguish self cells from foreign organisms. The first mechanism involves an array of 

cell-bound and soluble molecules that have evolved to pathogen-associated molecular 

pattern (PAMPs) recognition, such as MBL. The second mechanism of self-nonself 

discrimination involves protecting self cells from the destructive effects of innate 

immunity such as the alternative pathway of complement activation on the surface of 

self cells (Parish 2005). The innate immune system evolved long before adaptive 

immune system in many respects (Beutler 2004).  

 

2.1.2 Acquired immune response 

The acquired immune response is a specific response against a particular pathogen or 

antigen, Lymphocytes are the primary effector cells, a memory response is generated 

and increases with each exposure to the antigen. The adaptive immune response is 

distinguished from innate immune mechanisms by a higher degree of specific reactivity 

for the including agent and recall memory (Doenhoff 2000). Its function is mediated by 

specific antibody or humoral immunity and a specific cellular immune response or cell-

mediated immunity (CMI) (Corbeil 1991). These specificities are governed by antigen 

handling and recognition molecules on each of the three cell types such as, major 

histocompatibility antigens (MHC) on antigen-presenting cells (APC), T-cell receptors 

(TCR) on T-cell and immunoglobulin (Ig) molecules on B cells. One of the acquired 

immune system enhancements is also represented by successful vaccination against an 

infectious disease. Vaccines against bacterial and viral infections have employed 

attenuated live or inactivated whole organisms (Bahr 1999).  
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2.1.3 Complement system 

The complement system is part of the innate immune system and plays an important 

role in both natural host defence against invading pathogens and the induction of 

acquired immunity (Roos et al. 2006). The complement system in mammals consists of 

a complex group of more than 35 soluble proteins and receptors that play an important 

role in innate and acquired host defence mechanisms against infection and participate in 

various immunoregulatory processes. The functions mediated by complement activation 

products include phagocytosis, cytolysis, inflammation, solubilization of immune 

complexes, apoptotic cells clearance and promotion of humoral immune responses. 

Activation of complement through any of the three pathways lead to activation of C3, 

the central protein of the complement system (Holland and Lambris 2005) and the 

formation of C5 convertase and enzyme complex that activates the terminal pathway 

and leads to the end product of complement activation, so called ‘membrane attack 

complex’ (MAC) (Sodetz and Plumb 2005). Most parts of the complement system are 

synthesized from liver and are taken into the circulation there (Carroll 2004).  

 

2.1.3.1 Classical pathway 

The classical pathway of complement is a major system of innate immunity and 

triggered through activation of several multimolecular proteases: C1, the MBL 

associated serine protease 2 (MBL-MASP-2) complex and the ficolin-MASP-2 

complexes. These convert an initial recognition signal into proteolytic activity, thereby 

initiating the ‘classical’ and ‘lectin’ routes of complement activation. Both routes then 

lead to the formation of C3 convertase and the generation of protein fragments 

triggering diverse biological activities, such as opsonization, endocytosis and 

inflammation (Arlaud and Colomb 2005). The classical pathway was the first studied 

and found activated by either antibody released after humoral response or by natural 

antibody (Carroll 2004). It is triggered by activation of the C1-complex, either by C1q 

binding to antibodies complexes with antigens, or by binding C1q to the surface of the 

pathogen. The C1 complex is inhibited by C1-inhibitor. The C1-complex now binds to 

and splits C2 and C4 into C2a and C4b. C4b and C2a bind to form C3-convertase 

(C4b2a complex). The production of C3-convertase signals is the end of the classical 
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pathway, but cleavage of C3 by this enzyme brings us to the start of the alternative 

pathway.  

 

2.1.3.2 Lectin pathway 

The lectin pathway closely resembles the classical complement pathway. The major 

molecules of this pathway consist of mannose MBL, the homologous molecule to C1q 

and the MBL-associated serine proteases (MASPs) including MASP-1 and MASP-2, 

which are homologous to C1r and C1s (Nakao et al. 2001, Sato et al. 1994, Thiel et al. 

1997) and form a complex molecule in the presence of the Ca2+ ions. This is similar to 

the C1q/C1r/C1s molecules of the classical pathway. The lectin pathway activation is 

initiated by binding of the complex between MBL and its associated serine protease 

MASP-1 and -2 to the mannose groups on bacterial cell surfaces, that leads to the 

activation of this protease (Fujita 2002, Walport 2001). By MASP2 activation, the 

complement component C4 and C2 are then cleaved to form the C3 convertase 

(C4aC2b), which is similar to the classical pathway activation (Fujita 2002). This 

C4aC2b molecule binds to C3b leading to the C5 convertase generation for the terminal 

pathway. Three members of this pathway have been identified including MBL, ficolin H 

and ficolin L (Carroll 2004).  

 

2.1.3.3 Alternative pathway 

The alternative pathway, the oldest and most important activation pathway of the 

complement system, assists in maintaining the integrity of an organism by inactivating 

invading organisms, pathogens and modified tissue cells (Zipfel 1999). It can be 

activated non-specifically without the necessity of antigen-antibody complexes (Corbeil 

1991). The alternative pathway is activated by a variety of microorganisms including 

viruses, bacteria, fungi and protozoa. Although the initiation of the activation is 

essentially antibody-independent, aggregated antibodies have been shown to enhance 

the activation process. The alternative pathway is kept at a low level of steady-state 

activation as a result of the hydrolysis of the thioester group of native C3, which leads 

to the formation of hydrolysed C3 (Holland and Lambris 2005). This pathway is 

triggered on the surface of a pathogen. Then, C3 is split into C3a and C3b in the 

alternative pathway. Some of the C3b is bound to the pathogen where it will bind to 
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factor B; this complex will then be cleaved by factor D into Ba and the alternative 

pathway C3-convertase, Bb. 

 

2.1.3.4 Terminal pathway 

The terminal or lytic pathway of the complement system consists of C5-C9 components 

which are involved in the formation of the MAC. The MAC causes cell lysis in the 

pathogen (Holland and Lambris 2005). The activation of the terminal pathway begins 

with the activation of C5 convertase enzyme (C4b2a3b and C3b3bBb), then breakdown 

the C5 component to release C5a and C5b. The C5b molecule binds to C6, C7, C8 and 

C9 respectively, to form MAC that facilitates the killing of microorganisms by changing 

the permeability of their membranes causing the osmotic lysis of microorganism cells 

(Sodetz and Plumb 2005). 

 

2.1.3.5 Complement activation 

Once the complement system is activated, a chain of reactions involving proteolysis and 

assembly occurs, resulting in destruction of the pathogen membranes. Complement is 

activated by three different pathways, classical, alternative and lectin. All pathways 

share the common step of activating the central component C3, but their recognition 

mechanisms are different (Carroll 2004). Various pathogenic microorganisms, including 

bacteria and viruses, as well as many infected cells, efficiently activate the classical 

pathway after their recognition by antibodies. The activation is triggered upon 

interaction of the serum C1 complex with antigen-antibody complexes or immune 

aggregates containing immunoglobulin G (IgG) or IgM (Arlaud and Colomb 2005). The 

lectin pathway is triggered by C1-like complex proteases in which the recognition 

function is mediated by either MBL, a member of the collectin family (Turner 1996) or 

the L- and H-ficolins (Matsushita et al. 2002). The activation of the pathway starts in 

the fluid phase including plasma or serum by a change of C3 which leads to the enzyme 

complex formation that cleaves further C3 molecules and sets in motion an 

amplification reaction leading to complement activation and deposition of a large 

number of C3b molecules on the cell surface (Zipfel 1999). 
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Figure 2: Activation of the complement system via A) classical, B) alternative and 

C) lectin pathways. 

 

2.1.4 Antibody response 

Antibodies are produced by B cells in response to antigens such as bacteria, viruses and 

protozoa. The development of the antibody response is dependent on the type of antigen 

and whether the immune system has previously encountered the antigen (Wingren 

2001). Antibodies belong to glycoprotein families known as Ig. They circulate in the 

plasma and lymph, are present in mucosal and lymphoid tissues and can be found on the 

surfaces of B lymphocytes, where they function as receptors for antigens. From 

lymphocytes, antibodies are secreted in response to foreign antigenic stimulation, which 

consist of the principal component of the adaptive humoral immune response. Antibody 

molecules consist of four polypeptide chains including two identical light (L) chains and 

2 identical heavy (H) chains as demonstrated in figure 3. The chains are linked by 

disulfide bonds and are arranged such that the H and L chains form pairs. The domain 
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function created by the juxtaposition of the VH and VL regions is to recognize and bind 

antigens, whereas the function of the CH domain(s) is to mediate biological effector 

functions (Lucas 1999). 

There are five classes of immunoglobulin: IgM, IgD, IgG, IgA and IgE, which can be 

divided into subclasses. For example, the IgG class consists of four subclasses (IgG1, 2, 

3 and 4) and the IgA class consists of two subclasses (IgA1 and IgA2). Biological 

properties of immunoglobulin vary within a class, such as IgA1 is able to utilize the 

alternative complement pathway, whereas IgA2 is not. Similarly, IgG1 and IgG3 fix 

complement (classical pathway) efficiently while IgG4 does not. These differences 

could be important in immune responses where a particular antibody specificity is 

restricted to a single IgG subclass (Lucas 1999). The genes encoding antibody 

molecules are organized such that the same VH region is able to associate with different 

CH regions. A particular VH region may at one time be expressed in the context of IgM 

and at another time in the context of IgG. Thus, antibodies with the same V regions 

specificity may associate with different CH regions, a process which links specificity 

with different effector capabilities and provides functional flexibility (Lucas 1999). 

 

 
Figure 3: Schematic diagram illustrating immunoglobulin G structures modified 

from Lucas (1999) 
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2.1.4.1 Antigen-antibody complex 

Antigen-antibody complexes are formed when the immune system raises antibody 

against antigenic determinants of host or foreign substances that recognize and bind to 

the unwanted molecules. Normally, the immune complexes that are formed are cleared 

by the cellular immune system, but when an excess of antibody or antigen is present, the 

immune complexes are either detected in tissues or involved in the pathogenesis of 

tissue lesions in a variety of diseases (Eggleton 2006). Antigen-antibody binding 

involves non-covalent interactions between atoms of the antigen and atoms of the 

combining site. Antibody-combining site character and the extent of the bonding 

interactions with the antigen varies, and also depends upon the type of antigenic 

determinant (epitope) which is being recognized. Antibodies can recognize small 

chemical groups or haptens, short peptides, polysaccharides and the surfaces of native 

proteins (Cisar et al. 1975). 

 

2.1.4.2 Antibody response to Mycoplasma hyopneumoniae  

M. hyopneumoniae is recognized as the causative agent of porcine enzootic pneumonia 

and plays an important role in the porcine respiratory disease complex (PRDC) 

(Thacker et al. 1999). Up to 80 % of pigs around the world are affected by this chronic 

disease which leads to a high morbidity, low mortality rates, thus being a significant 

pathogen to pig industry (Fano et al. 2005). M. hyopneumoniae causes widespread and 

persistent disease in pigs, and in combination with other respiratory pathogens e.g. 

porcine reproductive and respiratory syndrome (PRRS) or swine influenza virus, can 

cause more serious pneumonia than single pathogen infection (Kim et al. 2006, Thacker 

et al. 2001). The mechanism of M. hyopneumoniae is to attach to the cilia of the 

respiratory epithelium of tracheal epithelial cells, resulting in damage to epithelial cells 

and the mucociliary apparatus. M. hyopneumoniae infection is characterized by a 

chronic, mild, dry, non-productive cough beginning 10 to 14 days after experimental 

infection. Fever, lethargy, or anorexia is rarely observed in pigs infected only with M. 

hyopneumoniae. Lung lesions observed in pigs infected with M. hyopneumoniae are 

similar to those observed in pigs with swine influenza virus (SIV), with dark purplish 

areas of lung consolidation occurring primarily in the cranioventral areas of the lung 

(Debey et al. 1992, Thacker et al. 2001). Clinical manifestation of mycoplasmal 
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pneumonia is common in young pigs but generally not seen in adults. Previous infection 

at the young age protecting from re-infection is probably the reason of this pattern 

(Kobisch et al. 1993). Antibodies to M. hyopneumoniae were first detected in sera of 

pigs inoculated intranasally with M. hyopneumoniae at 2 to 4 wk after inoculation and 7 

to 8 wk after pigs were contact-exposed to the same Mycoplasma (Kazama et al. 1989). 

Active immunization, using mainly whole cells of M. hyopneumoniae inactivated 

bacteria, has been recommended in order to protect animals from mycoplasmal 

pneumonia, has been shown experimentally to induce protection against M. 

hyopneumoniae (Okada et al. 1999). Various methods have been employed in order to 

monitor mycoplasmal pneumonia and its antibodies in pig, such as the complement 

fixation (CF) test, the indirect hemaglutination (IHA) test and ELISA (Kazama et al. 

1989). It is possible to monitor the development of infection by measuring the immune 

response in animals maintained under commercial conditions using M. hyopneumoniae 

specific ELISA. The ELISA tests have a higher sensitivity at the individual level 

compared to other methods (e.g. IHA) (Armstrong et al. 1983, Sheldrake et al. 1990, 

Sørensen et al. 1992).  

 

2.1.4.3 Antibody response to Tetanus toxoid (TT) 

Tetanus is caused by the bacterium Clostridium tetani which produces toxins that affect 

the central nervous system. The organism, which can form spores, lives in the large 

intestines and faeces of many mammals, including pigs. It must enter through a dirty 

abrasion or a cut. In the sucking pig, the most common source is castration. Several In 

vitro serological assays for measuring the level of Tetanus antitoxin have been 

developed, such as, passive and indirect hemaglutination (Peel 1980), the toxin binding 

inhibition (ToBI) test (Hendriksen et al. 1989) and several versions of ELISA (Esparza 

and Kissel 1992, Gentili et al. 1985, Gupta and Siber 1994, Simonsen et al. 1987b).  

Stiffler-Rosenberg and Fe (1977) described a TT antibody ELISA procedure in which 1-

ml volumes in test tubes are used, three serum dilutions, two overnight incubation steps 

and alkaline-phosphatase as the enzyme. In an effort to make the test more economical, 

(Layton 1980) developed a Tetanus ELISA assay in which smaller volumes in 

microtiter plates and the less expensive enzyme horseradish peroxidase are used. One 

serum dilution (1:10) with one overnight incubation step was used. (Bullock and Walls 
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1977) found that short incubation periods (total, 5 h) were satisfactory in their study of 

the variables in the Toxoplasma antibody ELISA test. They concluded that measurement 

of a single dilution of test serum was inadequate for quantitative tests according to their 

reactivity curves which showed an extremely steep slope at the endpoint. The ELISA 

test is, however, commonly used to determine TT antibody titres and several 

modifications have been developed to overcome the unreliability it may show (Aybay et 

al. 2003).  

 

2.1.4.4 Antibody response to PRRS 

PRRS is a widespread and (becoming) one of the most important viral diseases in pig 

industry (Dee et al. 1997, Greiner et al. 2000). Its emergence across the world has a 

critical economic impact on the production. PRRS is caused by a virus, which 

eventually lyses the cell whose are contents released systemically into the body 

resulting in fever, anorexia, vomiting and coughing in young pigs and non-pregnant 

sows (Benfield et al. 1992, Bierk et al. 2001). In general, clinical signs caused by PRRS 

involve reproductive disorders in pregnant animals which are manifested as late-term 

abortions or premature farrowing, and/or respiratory disease in pigs of all ages. 

Furthermore, it also affects litters by having higher proportions of stillbirths, piglets 

born weak and increased pre-weaning mortality (Bilodeau et al. 1994). PRRS causes a 

long acute infection in pigs which is defined as the continued presence of a pathogen in 

the host beyond the acute phase of infection. Its persistence has been detected up to 157 

day post-inoculation (dpi) in weaned pigs (Wills et al. 1997), but much shorter (42 to 86 

dpi) in sows (Bierk et al. 2001). However, it has been reported that PRRS virus 

persistence in female pig was not detected during the period of 120 to 180 dpi (Batista 

et al. 2002). 

Pigs develop both antibody and cell-mediated immune responses following PRRS virus 

infection. However, the mechanisms and specific roles of each type in the development 

of protective immunity and clearance of the virus are not yet known (Batista et al. 2004, 

Chang et al. 2002). The IgM antibodies are detected approximately 5 to 7 dpi. They 

decrease rapidly to undetectable levels after 2 to 3 wk (Joo et al. 1997). Additionally, 

the IgG antibodies are detected at 7 to 10 dpi and reach the peak at 2 to 4 wk post-
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inoculation (wpi). These remain constant for months until they decrease to low levels by 

300 dpi (Nelson et al. 1994).  

For diagnosis of PRRS, serological tests are used. An immunoperoxidase monolayer 

assay (IPMA) is widely performed in Europe, while the indirect fluorescent antibody 

(IFA) test is more prefered in Canada and the United States (Cho et al. 1996). An 

ELISA has been developed for the rapid detection of antibodies to the PRRS virus in 

pig sera. By comparing to the IPMA, the only test available up till recently for 

serodiagnosis of the disease, the ELISA test proved to be more sensitive particularly in 

early detection of antibodies. It gave a sensitivity of 100% and specificity of 66% 

relative to IPMA using 165 field sera and 9 experimentally obtained sera (Albina et al. 

1992). Moreover, a reliable ELISA would be used because the advantages in term of 

semi-automation and cost effective for large-scale measurement (Cho et al. 1996). 

Serum antibody detection by the HerdChek® PRRS virus antibody test kit is used for 

herd screening to prevent the spread of disease to uninfected animals (Botner 1997, Cho 

et al. 1996).  

 

2.1.5 Acute-phase proteins 

Acute phase proteins (APP) are liver-derived plasma proteins whose concentrations can 

change rapidly in response to abnormal events that disturb physiologic homeostasis, 

including infection, tissue injury and trauma. Changes in APP concentrations, fever, 

leukocytosis, vascular permeability and an increase of metabolic responses are 

components of innate immunity mediated by cytokines, such as IL-1, IL-6 and TNF-α 

(Suffredini et al. 1999). The major porcine APP are C-reactive protein (CRP), 

haptoglobin (Hp) and serum amyloid A (SAA). The concentrations of these APP 

increase rapidly in response to infection. Acute phase proteins are sensitive indicators of 

illness even of sub-clinical diseases and immunological stress. In pig, Hp is one of the 

most important acute phase proteins (Francisco et al. 1996, Hall et al. 1992). 

 

2.1.5.1 Complement component 3 (C3) 

The importance of C3 as the central coordinator between innate and acquired immunity 

is to eliminate pathogens (Sahu and Lambris 2001). Its functional and genetic regulation 

is widely investigated. C3 is mainly synthesized in liver and regulated by cytokines or 
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interleukins (IL) such as interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), IL-1 

and IL-6 (Mitchell et al. 1996), transforming growth factor-β1 (TGF- β1) and TGF-β2 

(Høgåsen et al. 1995).The C3 protein is normally secreted in plasma at about 1.1-1.5 

µg/ml which is considered as an acute-phase protein with many times of normal 

concentration during inflammation or infection. C3 is an essential protein for binding 

covalent bonds to a wide range of biological surfaces such as pathogenic cell surfaces 

due to its thioester bond site in the α-chain molecule (Law and Dodds 1997). Native 

plasma C3 consists of a two chain (α and β) structure which is an inactivated molecule 

that does not bind to any antigen target. It is activated by C3 convertase from all three 

pathways in the complement system by cleaving the α-chain, releasing C3a and 

generating C3b molecules (Sahu and Lambris 2001). Native C3 is not a functional 

molecule and all of the ligand-binding sites on C3 are hidden until the molecule is 

activated (Holland and Lambris 2005). The C3b molecule plays a key role in regulating 

immune response in host defence due to the existence of a thioester bond which is 

essential to form a covalent bond with the cell surface of microorganisms as described 

above. C3b is produced by proteolytic cleavage of the C3-α chain by the classical 

(C4b2b) or alternative pathway convertase (C3bBb) with release of the amino terminal 

C3a peptide. Initial inactivation of C3b prevents its participation in C3 or C5 convertase 

formation and is mediated by factor I, which, in the presence of factor H, catalyzes the 

proteolysis of two peptide bonds in the α' polypeptide chain of C3b. The resulting 

products are C3b, which consists of two α-polypeptides covalently bonded to the β-

chain and C3f, which is released from the remainder of the molecule. Surface-bound 

and fluid-phase iC3b can be further degraded by limited tryptic digestion or by elastase 

digestion to produce the C3c and C3d fragments (Davis et al. 1984). 

 

2.1.5.2 Haptoglobin (Hp) 

Numerous functions of Hp have been proposed including the prevention of iron loss by 

the formation of very stable complexes with free haemoglobin in the blood, binding 

haemoglobin, bacteriostatic effect, stimulation of angiogenesis, role in lipid 

metabolism/development of fatty liver, immunomodulatory effect and inhibition of 

neutrophil respiratory burst activity. The increase of Hp also reflects the respiratory 
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infections caused by different serotypes, such as Actinobacillus pleuropneumoniae, 

Mycoplasma hyorhinis, or PRRS virus (Petersen et al. 2004).  

Hp is one of the major APP in pigs which has been used for identification in both 

clinical and sub-clinical disease, objectively monitoring antibiotic therapy and assess 

the health of animals (Alava et al. 1997, Eckersall et al. 1996). It has been used to 

evaluate systemic inflammation after cardiopulmonary bypass and acute phase reaction 

to antimicrobial agents after vascular implantation and in response to anti-inflammatory 

drugs due to its highly sensitive, nonspecific reactants present at low concentrations in 

normal sera. Hp serum concentration increases rapidly and significantly during 

inflammation or infection and precede the development of specific antibody in 4 to 5 

days later (Chen et al. 2003). Pigs aged 10 to 14, 15 to 19 and 20 to 25 wk in 

conventional herds had higher Hp concentrations than high health SPF (SPF-x) pigs of 

the same age. There was no significant difference between SPF-x pigs of different ages. 

Conventional pigs aged 15 to 19 and 20 to 25 wk had higher Hp concentrations than 

conventional pigs aged 10 -14 wk (Petersen et al. 2002).  

Hiss et al. (2003) developed the enzyme immunoassay (EIA) to determine the Hp in 

body fluids including meat juice, serum, plasma and saliva. According to their result, 

the in-house developed ELISA indicated reliably quantification of Hp in body fluids. 

 

2.2 Immune competence determination  

Immune competence of the pigs can be monitored by measuring the immune response 

induced by infection or detect the pathogen itself. Most common diagnostic assays are 

based on detection of antibodies specific to the pathogen. Normally, serum is used as a 

sample, although thoracic fluid, colostrums and muscle fluids are also used. The 

existing techniques for these purposes are based on the collection of blood samples in 

herds at regular intervals with subsequent serological analyses of the sera (Mortensen et 

al. 2001). 

 

2.2.1 Haemolytic complement activity assay  

In recent years, the relation between the amount of complement used and the proportion 

of red cell lysed reflecting haemolytic complement activity is represented in a sigmoidal 

curve. This curve indicated a high sensitivity to small changes of the complement 
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amount at the central region. For the haemolytic complement activity precision, usually 

50% or the central part of the curve was chosen to define the activity. The 50% 

haemolytic unit of complement designated as CH50, is defined as the quantity of 

complement required for 50% lysis (haemolysis) which is an arbitrary unit depending 

on many factors including red cell concentration, cell fragility, the quality of antibody 

used for sensitization, the nature of that antibody, the ionic strength of the reaction 

system, the concentration of Ca++, Mg++, pH, reaction time and temperature (Mayer 

1961). Moreover, storage temperatures also influence the activity. The results of the 

haemolytic complement activity are influenced by storage conditions of sera as found in 

chickens (Demey et al. 1993). In cattle and sheep, a little loss (13% loss) of activity was 

found in samples which had been stored under -70 °C after 4 months. On the other hand, 

samples which were stored at higher temperature (-20/-10 °C) had significant loss (67 

and 80% in cattle and sheep, respectively) of the activity within a month (Pandey et al. 

1993). But, it was found that the haemolytic complement activity was not affected by 

the coagulation temperature of serum sample (Baatrup et al. 1992).  

A simple, automated microassay for the serum complement-dependent haemolytic 

activity has been described (Liu and Young 1988). In contrast to the traditional titration 

haemolysis assay established by Mayer (1961), the new method depends on a single 

experimental step using a fixed volume of serum sample and sheep erythrocytes. This 

assay is based on the change in light scattering properties of erythrocytes upon 

haemolysis. It relies on the spectrophotometric reading of microtiter well samples at 700 

nm using a microplate reader. The measured absorbance correlates proportionally with 

the extent of haemolysis. A good correlation between the results obtained using this 

technique and those obtained by the traditional CH50 titration method is observed. This 

simple procedure can be applied to the rapid, semi-quantitative diagnostic screening of 

complement activities of a large number of serum specimens.  

 

2.2.2 Immunoassay 

ELISA was found to be potentially a very attractive and practical serodiagnostic test for 

mycoplasmal pneumonia in porcine. A study conducted by Armstrong et al. (1983) 

indicated an extremely sensitivity of these method for detecting porcine antibodies to M. 

hyopneumoniae, and also let itself to automation that would be economical for testing 
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when compared to indirect hemaglutination (IHA) and complement fixation (CF) 

methods. For the detection of Ab to PRRS virus in porcine, an immunoperoxidase 

monolayer assay (IPMA) and an indirect immunofluorescent (IFA) were previously 

used in Europe and North America, respectively (Cho et al. 1997a). Recently, 

researchers have conducted the comparative study to compare in-house and commercial 

tests for the serological diagnosis of porcine PRRS using IPMA and ELISA. The results 

also indicated a high sensitivity of ELISA similar to IPMA method (Drew 1995). At 

present, numbers of immunoassay formats are available to measure almost any 

substance ranging from small molecules to complex cellular antigens, and the ELISA 

have become the most widely used for immunological assay (Andreotti et al. 2003).  

 

 
Figure 4: Estimates of the number of articles published involving EIA/ELISA and 

RIA modified from Lequin (2005). 

 

2.3 Quantitative traits loci (QTL) analysis 

The effect of a QTL on the phenotype is usually expressed as the percentage of the total 

phenotypic variance that can be explained by variation in DNA at the locus. A massive 

number of QTL have been identified which influence economic important traits e.g. 

growth, carcass- and meat quality on almost all chromosomes in pig (Hu et al. 2005). 

The detection of QTL may be carried out by using a genome scan of either an F2 or 

backcross between two inbred strains that differ for the phenotype of interest. Due to the 

reason that all members of an inbred strain have identical genomes, there should be no 

genetic difference between the F1 progeny. Therefore, the familial effects in the 

ELISA

RIA
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analysis of F2 or backcross individuals should not be found. Quantitative trait loci 

mapping methods are statistical methods for identifying loci associated with a 

quantitative phenotype. The goal of QTL mapping is to determine the loci that are 

responsible for variation in complex, quantitative traits. The immune competence is a 

quantitative trait. It expresses the ability of an individual to protect itself against any 

pathogen by using innate and humoral immunity. QTL mapping procedures can be 

distinguished into three steps as follow (Mott 2006); 

1. QTL detection, where the objective is to find and map a QTL to within about 10-30 

cM, usually accomplished by linkage analysis of family data; 

2. QTL fine-mapping, where the QTL is localized to within 1-2 cM, small enough that 

a search for candidate genes within the region is feasible, usually by association 

analysis in either population or family data; and 

3. Cloning, in which the molecular basis of the trait variation is determined. 

Functional genomics has been applied to the genetic dissection of immune response in 

different ways (de Koning et al. 2005). The QTL detection underlying experimental 

crosses between lines that differ in their innate and specific immune response is also one 

of many methods used. Using these methods, the experimental populations have to be 

custom bred and challenged to study genetic differences in immune response and map 

genetic loci underlying these differences in most infectious disease study (de Koning et 

al. 2005). Antibody response was one of the first immune competence traits to be 

examined by QTL analysis (Edfors-Lilja et al. 1998). 

Many QTL underlying the immune response variation could be detected on various 

chromosomal regions in many studies in mouse, chicken and human (Hall et al. 2002, 

Siwek et al. 2003a, b , Zhou and Lamont 2003a, Zhou et al. 2003). By screening these 

chromosomal regions, evidences for significant association of candidate genes were 

found e.g. genes related to interferon which plays an important role for primary and 

secondary antibody response to different antigens as shown in chicken (Zhou et al. 

2001). These results in chicken confirmed the genetic association between immune 

response and disease resistance, thus promoting the improvement of poultry immune 

competence using marker assisted selection or ‘MAS’ programs (Yonash et al. 2001). 

The transforming growth factor beta 2 (TGFB2) gene was already suggested as 

candidate gene to be applied in MAS to improve antibody production (Zhou and 

Lamont 2003a). Similar results were found in pig, QTL close to the mast/stem cell 
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growth factor receptor (KIT) gene was detected and candidate gene analysis showed 

significant effects of this gene on the immune response-related traits (Wattrang et al. 

2005). In this study the QTL analysis is used to detect the loci and candidate genes 

regarding the innate and adaptive (humoral) immune response traits in pig. By QTL 

detection, the linkage between loci is calculated to localize the chromosome region 

including the candidate genes. 

 

2.4 Mannose-binding lectin (MBL) 

MBL also called mannose-binding protein (MBP) is a calcium-dependent carbohydrate-

recognizing protein (C-type lectin protein). It is a member of the collectins family that 

includes both collagen and globular regions. Its structure is similar to C1q in the 

complement system. Two types of MBL, namely MBL-A and MBL-C, were 

characterized in many species. In rodents, both types of MBL have been reported 

(Drickamer et al. 1986, Hansen et al. 2000, Mizuno et al. 1981), as well as in rhesus 

monkey (Mogues et al. 1996). Only one MBL was identified in human, chimpanzees 

(Mogues et al. 1996), chickens (Laursen and Nielsen 2000) and cattle (Kawai et al. 

1997). It has been, however, reported that bovine MBL-A was isolated and 

characterized recently (Lillie et al. 2006). In rabbit, although two forms of MBL (from 

serum and liver) were characterized by Kawai et al. (1998), their results indicated that 

those are identical and encoded by one gene (Carroll 2004, Håkansson and Reid 2000). 

Binding of MBL leads to opsonization through complement activation and C3 

deposition (Holmskov et al. 2003). In addition, serum mannose-binding lectin is able to 

trigger the classical complement system, via serine proteases (MASP-1 and MASP-2), 

resulting in lysis of the invading microorganism (Matsushita and Fujita 1992). 

 

2.4.1 MBL molecular characterization  

Collectin molecules comprise of four different regions including an N-terminal region 

containing a 20-residue signal peptide, a collagenous region containing 19 Gly-Xaa-Yaa 

triplets, an helical coiled coil so called ‘neck region’ and a C-terminal calcium-

dependent carbohydrate-binding lectin domain (also called carbohydrate-recognition 

domain; CRD) (Håkansson and Reid 2000, Holmskov et al. 2003, Presanis et al. 2003). 

The CRD is followed by an a-helical neck domain, a collagen-like domain and an N-
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terminal cysteine-rich domain. Three neck domains will form a triple coiled-coil 

structure and the collagen-like domain will assemble into a triple helix, leading to the 

formation of trimeric subunits. Trimeric subunits are assembled subsequently via 

cysteine residues in the N-terminal domain into higher oligomeric forms (Laursen and 

Nielsen 2000). MBL was first isolated from rabbit serum in the late 1970s (Kawasaki et 

al. 1978). The overall similarity in the organization of MBL as a collagen containing 

protein with 16 head domains with C1q, the first component of the classical 

complement pathway, led to the assumption that MBL could substitute for C1q and 

activate the classical pathway of the complement system (Ikeda et al. 1987). The 

collagenous regions of the collectins vary considerably in length in mammal collectins, 

especially for MBL comprising 19 Gly-Xaa-Yaa triplets. These are about 2-3 fold less 

than other collectins (e.g. 59 triplets in surfactant protein-D; SP-D). N-terminal to the 

collagenous region is a stretch of 7–28 residues of indeterminate structure, but, 

importantly, displaying 1–3 cysteine residues involved in the covalent interactions 

between the 3 polypeptide chains of the subunit and also responsible for covalent 

joining of several subunits into an oligomeric structure of up to 6 subunits (Holmskov et 

al. 2003). MBL forms multimeric (octadecamers) of this 6 trimeric subunits resembling 

a bouquet of flowers as in surfactant protein-A (SP-A) (van de Wetering et al. 2004).  

Characterization of cDNA that encoded MBL-A in rat revealed homologies to 

surfactant apoprotein A in that both molecules had C-terminal lectin–like domains and 

collagen tails that form trimers and then multimers of trimers up to hexamers of trimers 

(Drickamer et al. 1986). 

 
Figure 5: Schematic representation of the domain organisation and structure of 

mannose-binding lectin modified from Laursen and Nielsen (2000) 
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Table 1: Porcine MBLs characterization 

Protein 
Gene 

(Accession No.) 
  

- - 
First porcine MBLs were isolated and 

characterized  

Storgaard et al. 

(1996) 

- 
MBL2 

(AF205528) 

SNP (C to T at 328 bp) found to be 

segregating 

Somatic cell hybrid panel assigned 

location at SSC14q26-q29 

Linkage mapping assigned location 

between S0007 and SW210 on SSC14 

Marklund et al. 

(2000) 

MBL-C 
MBL2 

(NM_214125) 

Porcine liver MBL cDNA of 723 bp 

ORF of 241 amino acid was obtained 

Shares overall identity to rat MBL-A 

and –C proteins of 50.2 and 56.7%, 

respectively 

Agah et al. 

(2001) 

MBL-A 
MBL1 

(AY771222) 

A 750 bp segment encoding MBL 

cDNA, with 249 amino acid 

Evidence indicated MBL2 previously 

reported by Marklund is MBL1 

Lillie et al. 

(2006) 

 

2.4.2 MBL activation and its biological activity 

MBL is considered as an important factor in the lectin pathway in innate immunity 

(Kilpatrick 2002). It is the only member of the collectin family of proteins to activate 

the complement system (Presanis et al. 2003). Its association to MASP according to the 

structural and genetic similarities between C1q and MBL and C1r/C1s and MASP can 

initiate the classical complement pathway. However, the biological relevance of MASP 

in the lectin pathway has not been strongly confirmed yet (Matsushita and Fujita 1992). 

In addition, MBL may also directly opsonize microorganisms for phagocytosis 

(Kuhlman et al. 1989). MBL synthesis is regulated and influenced by inflammatory 

status and other stimuli, and has been reported as an acute phase protein (Holmskov et 

al. 2003). MBL binds to immobilized mannan in a Ca2+-dependent manner, and also 
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binds to a variety of phospholipids. Furthermore, MBL can also bind to a wide variety 

of microorganisms, including yeasts, bacteria, and viruses (Kilpatrick 2002). 

 

2.4.3 MBL genetics 

Two distinct, but related genes named MBL1 and MBL2, were found encode MBL-A 

and –C, respectively in mammals. The genes encoding human MBL (Sastry et al. 1989), 

rodent MBL-A and -C (Sastry et al. 1991), rhesus monkey MBL-A and -C (Mogues et 

al. 1996), chicken MBL (Laursen and Nielsen 2000), bovine MBL-A (Lillie et al. 2006) 

and -C (Kawai et al. 1997) and pig MBL-C (Agah et al. 2001) have been sequenced and 

characterized. In addition, porcine MBL-A cDNA was (also) characterized and 

proposed as the porcine MBL1 gene which is homologous to the rodent MBL1 gene and 

MBL1P1 pseudogene of humans and chimpanzees (Lillie et al. 2006). 

 

2.4.3.1 Structure and sequence of the MBL gene 

The human MBL is encoded by four exons of MBL2 gene (Taylor et al. 1989), the first 

exon encodes a signal peptide, the N-terminal cysteine rich segment and part of the 

collagen-like region. The rest of the collagen-like region is encoded by exon 2. The 

neck is encoded by exon 3, while exon 4 encodes the CRD. For the MBL1 gene in 

human, a pseudogene was reported (as MBL1P1) according to the posttranslational 

modification, it encodes a truncated 51-amino acid protein that is homologous to the 

MBL-A in rodents and primates (Guo et al. 1998). In rodents, rat MBL-A and MBL-C 

are encoded by 4 and 6 exons, respectively, while mouse MBL-A and MBL-C has 5 and 

6 exons, respectively. The extra exons in the rodent genes encode 5'-untranslated 

regions of the mRNA (Laursen and Nielsen 2000). 

 

2.4.3.2 MBL gene polymorphisms 

In human, three SNPs identified in exon 1 causing amino acid Arg  Cys substitution 

at codon 52 (Madsen et al. 1994), Gly  Asp substitution at codon 54 (Lipscombe et al. 

1993) and Gly  Glu substitution at codon 57 (Sumiya et al. 1991) were detected and 

have been widely known showing association with many innate immunological factors 

in human (Holmskov et al. 2003). The variation in MBL levels can be attributed to these 



Literature review    23 

three structural mutations of the MBL gene which are likely to result in defective 

polymerization, interacting with several polymorphisms in the MBL promoter region 

which influence the level of expression (Presanis et al. 2003). 

 

2.4.3.3 Positional and functional mapping of MBL gene 

In human, MBL2 gene was assigned to chromosome 10q11.2-q21 by a combination of 

Southern analysis of somatic cell hybrids and In situ hybridization (Sastry et al. 1989, 

Schuffenecker et al. 1991). The RFLP result indicated that the MBL2 gene locus is close 

to the MEN2A locus. In rodents, White et al. (1994) mapped the gene for murine MBL1 

genes to chromosome 14 (MMU14) and 19 (MMU19), respectively. The murine MBL1 

gene is located on a region homologous to human chromosome 10 (HSA10). However, 

it has been found that murine MBL2 gene location on MMU19 shows homology to 

HSA10, but does not include the MBL locus. Marklund et al. (2000) reported the 

chromosomal localization study of porcine MBL1 which is thought at that time to be 

porcine MBL2 (Lillie et al. 2006) by using a pig/rodent somatic cell hybrid panel 

(SCHP). The result showed that porcine MBL2 is located on pig chromosome 14q26–

q29. This was also confirmed by linkage mapping, showing that porcine MBL2 is most 

likely located between S0007 and SW210 on SSC14. 
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3 Material and methods 

 

3.1 Materials 

3.1.1 Animals 

For this study, F2 and backcross animals of a resource population based on the cross of 

Duroc and Berlin miniature pig (DUMI resource population) were used for determining 

the immunological competences and their association on porcine genetics using 

candidate gene approaches.  

 

3.1.1.1 F2 DUMI resource population  

The resource population used in molecular genetics study was generated based on the 

reciprocal cross of Duroc and Berlin miniature pig (Hardge et al. 1999). Five sows of 

Berlin miniature pigs were crossed with a Duroc boar and 4 Duroc sows were crossed 

with a Berlin miniature boar to produce F1 animals (parental generation). Fourteen F1 

animals generated the F2 animals (n = 417) of Bonn-DUMI resource population (figure 

6). F2 animals were reared and performance tested at the research farm of Frankenforst, 

Institute of Animal Science, University of Bonn. Theses animals were used for 

complement activity and other immune responsiveness evaluation. The piglets were 

vaccinated with a Mycoplasma vaccine at 6 wk of age, with an Aujeszky’s vaccine at 14 

wk of age and with a PRRS vaccine at 20 wk of age. Blood samples were taken from 

each piglet immediately prior to immunisation (day 0) and on day 4 and 10 after 

vaccination with the exception that after PRRS vaccination blood was only taken at day 

0 and 10 (figure 7). Blood was cooled immediately. Serum and plasma were harvested 

within 2 hours then stored at -80°C for further analysis. A pool of sera from several pigs 

was used as a reference serum. 
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Figure 6: F2 DUMI resource population 

 

3.1.1.2 Backcross DUMI resource population 

The experimental animal population used for immunological traits measurement and 

QTL analysis in this study was a DUMI backcross population, comprising three 

generations. The first generation (BC1) derived from twelve F2 DUMI pig sows (see 

3.1.1.1) were crossed back with 6 Duroc boars. The second generation (BC2) was 

derived from the cross of 7 DUMI-BC1 sows and 1 Duroc boar. The third generation 

(BC3) was derived from the cross of 6 DUMI-BC2 sows and 3 Duroc boars. All 

backcross animals were reared and performance tested at the research farm of 

Frankenforst, Institute of Animal Science, University of Bonn and were used for 

complement activity and other immune competences evaluation. The piglets were 

vaccinated with a mycoplasma vaccine at 6 wk of age, with a TT vaccine at 9 wk of age 

and with a PRRS vaccine at 15 wk of age. Blood samples were taken from each piglet 

immediately prior to immunisation (day 0) and on day 10 and day 20 after mycoplasma 

vaccination (Time point 1, 2, 3), day 10 and day 20 after TT vaccination (Time point 4 

and 5). The last blood sampling was taken at day 10 after PRRS vaccination (Time point 

6) as demonstrated in figure 7. Blood was cooled immediately. Serum and plasma were 

harvested within two hours and stored at -80°C for further analysis. A pool of sera of 

several pigs was used as a reference serum. 
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Figure 7: Schematic display of vaccination program and time point of blood 

sampling from A) F2 and B) Backcross DUMI 

 

3.1.2 Materials for laboratory analysis 

3.1.2.1 Chemicals, biological materials, kits and other materials 

Acris antibodies and abcam® 

(Hiddenhausen): 

Sheep polyclonal Anti Human C3c Antibody, and  

Lambda DNA HindIII 

Biomol (Hamburg): Phenol 

Biozym Diagnostik  

(Hessisch-Oldendorf): 
Sequagel XR sequencing gel (National Diagnostics) 

Clontech (Heidelberg): SMARTTM RACE cDNA Amplification Kit 

Corning Incorperated (USA): 
Costar® 3590 96 Well EIA/RIA Plate, and EIA Plate 

9108 

DakoCytomation (Denmark): 

Polyclonal Rabbit Anti-Human C3c Complement 

Horseradish Peroxidase and Dako Mycoplasma 

hyopneumoniae ELISA kit 

Gibco/BRL, Life 

Technologies (Karlsruhe): 

TrizolTM reagent and SuperScriptTM II reverse 

Transcriptase 

IDEXX GmbH (Wörrstadt): HerdChek® PRRS virus antibody test kit 

MWG Biotech (Ebersberg): Oligonucleotide primers  

Promega (Mannheim): 

DTT, pGEM®-T vector, Pfu DNA polymerase and 10x 

reaction buffer, Restriction endonucleases HindfI, 10 x 

BSA and 10x buffer, Rnase free-Dnase, Rnasin Ribo-

nuclease inhibitor, RQ1 Rnase-free Dnase and 10 x 

buffer, T4 DNA ligase and 2x rapid ligation buffer 
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Qiagen (Hilden): 
RNeasy Mini Kit (RNA purification kit), QIAquick 

PCR purification kit 

Roth (Karlsruhe): 

Acetic acid, Agar-Agar, Ampicillin, Ammonium 

peroxodisulphate (APS), Boric acid, Bromophenol 

blue, Chlorofrom, Dimethyl sulfoxide (DMSO), dNTP, 

EDTA, Ethanol, Ethidiumbromide, Flatted bottom 96-

well microplates, Formaldehyde, Formamide, 

Glycerin, Hydrochloric acid, Hydrogen peroxide 

(30%), N,N´-dimethylformamide, Nitric acid, Peptone, 

Proteinase K, SDS, Silver nitrate, Sodium carbonate, 

Sodium chloride, Sodium hydroxide, TEMED, Tris,  

Sigma (Germany): Oligonucleotide primers 

Sigma-Aldrich (Taufkirchen): 

Agarose, Anti-Pig IgG (whole molecule) Peroxidase 

conjugate, Anti-sheep red blood cell stroma 

(Hemolysin), Blue dextran, Calcium chloride, Diethyl 

barbituric acid, EGTA, Gelatin, Foetal calf serum, 

Isopropanol, Magnium chloride, o-Phenylendiamine 

dihydrochloride, Phosphate-citrate buffer with Sodium 

perborate capsules, Sodium barbituric acid, 

Streptavidin-peroxidse conjugate, Taq polymerase, 

TRI REAGENTTM and Tween 20. 

WDT (Garbsen): EquimaTe® Tetanus toxoid vaccine 

 

3.1.2.2 Buffers and reagents 

All solutions used in this investigation were prepared with deionised Millipore water 

and pH was adjusted with sodium hydroxide (NaOH) or hydrochloric acid (HCl).  

 

Alsever’s solution Dextrose       20.5 g 

 tri-Sodium citrate dihydrate       8.0  g 

 Sodium chloride       4.2  g 

 Citric acid monohydrate       0.6  g 

 Water added to  1000.0 ml 
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APS solution: Ammoniumpersulfat 5.0 g 

 Water added to 50.0 ml 

    

Coating buffer Sodium hydrogen carbonate       1.6 g 

 di-sodium hydrogen carbonate     42.0 g  

 Water added to 1000.0 ml 

    

Dextran blue buffer: Dextran blue (50mg/ml)      1.0  ml 

 EDTA (0.5 M)     50.0  µl 

 Formamide       5.0  ml 

    

Digestion buffer: Sodium chloride      2.5  ml 

 Tris       2.5  ml 

 EDTA        0.1  ml 

 Water added to     50.0  ml 

    

EGTA-Mg EGTA    38.4  g 

 Magnesium chloride   100  ml 

 Water added to 1000.0  ml 

 pH 7.5   

    

10 × FA buffer: MOPS     41.8  g 

 Sodium acetate       4.1  g 

 EDTA (0.5M)     20.0  ml  

 Water added to 1000.0  ml 

 pH 7.0   

    

FA-gel (1.2 %) Agarose       1.2 g 

 10 × FA buffer        1.0  µl 

 Ethidium bromide       1.0  µl 

 Formaldehyde (37%)     20.0  µl 

 Water added to   100.0  ml 
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GVBSS: 5× Veronal buffer saline (VBS)  200.0  ml 

 2% Gelatine    25.0  ml 

 Magnesium chloride      2.0  ml 

 Calcium chloride      0.6  ml 

 Water added to 1000.0  ml 

    

GVBS-Mg-EGTA: 5× VBS  200.0   ml 

 EGTA-Mg  160.0 ml 

 2% Gelatine   50.0 ml 

 Water added to  100.0 ml 

    

IPTG solution: IPTG      1.2 g 

 Water added to    10.0 ml 

    

LB-agar plate: Sodium chloride (Roth)      8.0  g 

 Peptone (Roth) 8.0 g 

 Yeast extract (Roth) 4.0 g 

 Agar-Agar (Roth) 12.0 g 

 Sodium hydroxide, 1N (Roth) 480.0 µl 

 Water added to 800.0 ml 

    

LB-broth:  Sodium chloride (Roth) 8.0 g 

 Peptone (Roth)     8.0  g 

 Yeast extract (Roth)     4.0  g 

 Sodium hydroxide, 1N (Roth)  480.0  µl 

 Water added to  800.0  ml 

    

PBS: Sodium chloride        8.0  g 

 di-sodium hydrogen phosphate       1.5  g 

 Potassium dihydrogen phosphate       2.0  g  

 Potassium chloride       0.2 g 

 Water added to 1000.0 ml 
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Polyacrylamidgel: Sequagel XR 20.0 ml 

 Sequagel buffer 5.0 ml 

 APS (10%) 250.0 µl 

 Dimethylsulfoxid 200.0 µl 

    

SDS solution (10%): Sodium dodecylsulfat 10.0 g 

 Water added to 100.0 ml 

    

TAE (50×) buffer Tris   242.0 mg  mg  

 Acetic acid    57.1 ml  ml  

 EDTA (0.5 M)  100.0 ml ml 

 Water added to 1000.0 ml ml 

 pH 8   

    

TBE (10×) buffer: Tris   108.0 g g 

 Boric acid     55.0 g g 

 EDTA (0.5 M)    40.0 ml ml 

 Water added to 1000.0 ml ml 

    

TE buffer: Tris (1 M)    10.0 ml ml 

 EDTA, (0.5 M)      2.0 ml ml 

 Water added to 1000.0 ml ml 

    

5× Veronal Buffer (VBS) Diethyl barbituric acid       2.9 g 

 Sodium barbiturate       1.9 g 

 Sodium chloride     42.5 g 

 Water added to 1000.0 ml 

    

X-gal: X-gal    50.0 mg 

 N,N´-dimethylformamide      1.0  ml  
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3.1.2.3 Software used 

BLAST program  http://www.ncbi.nlm.nih.gov/blast/  

CRIMAP Version 2.4 (Green et al. 1990) 

DNA to protein translate tool http://us.expasy.org/tools/dna.html  

Image Analysis (version 4.10) LI-COR Biotechnology, USA 

MapChart2.2 http://www.biometris.nl/uk/Software/MapChart/ 

MEGA3 http://www.megasoftware.net/mega.html 

Multiple Sequence Alignment http://saturn.med.nyu.edu/searching/promultali.html 

http://prodes.toulouse.inra.fr/multalin/multalin.html 

OneDScan Scanalytics Inc., Billerica, MA 

PedCheck http://watson.hgen.pitt.edu/register/docs/pedcheck.html 

Pig Genome 

 

http://linkage.rockefeller.edu/soft/list.html 

http://www.marc.usda.gov/genome/genome.html 

http://www.genome.kvl.dk/piggenome/misc.html 

http://www.genome.iastate.edu/pig 

http://nitro.biosci.arizona.edu/zbook/book.html 

QTL-express http://qtl.cap.ed.ac.uk/ (Seaton et al. 2002) 

Restriction enzyme analysis http://www.firstmarket.com/cutter/cut2.html 

http://tools.neb.com/NEBcutter/index.php3 

RH-Panel http://imprh.toulouse.inra.fr/ 

Primer design Primer Express -ABI prism  

http://www-genome.wi.mit.edu/cgi-

bin/primer/primer3_www.cgi 

SAS version 8.02 SAS Institute Inc., Cary, NC 

Soft Max Pro Software Molecular Devices, USA 

 

3.1.2.4 Equipments 

Automated sequencer (LI-COR 4200)  MWG Biotech, Ebersberg, Germany 

Centrifuge Hermle, Wehingen, Germany 

Carbon dioxide incubator Heraeus, Hanau, Germany 

CEQ™ 8000 Genetic Analysis System  Beckman Coulter, Krefeld, Germany 

Electrophoresis (for agarose gels)  BioRad, München, Germany 



Materials and methods   32 

 

Thermomax ELISA reader  Molecular Devices, USA 

PCR thermocycler (PTC100) MJ Research, USA & BioRad, Germany 

Power Supply PAC 3000  BioRad, München. Germany 

Spectrophotometer UV/visible light  GE Amersham Biosciences, Germany 

UV Transilluminator (Uvi-tec) Uni Equip, Martinsried, Germany 

 

3.2 Immunological methods 

3.2.1 Haemolytic complement activity 

The activity of complement system was determined in both alternative and classical 

pathways in this study. Its activity is measured based on the change in light-scattering 

properties of lysed sheep red blood cells as previously described (Liu and Young 1988).  

 

3.2.1.1 Classical pathway activity  

The method used to measure total complement activity was modified from Liu and 

Young (1988) and Demey et al (1993). It is based on the measurement of the change in 

light-scattering properties of erythrocytes upon lysis. The test conditions were evaluated 

and standardised for the assay of pig complement. Sheep red blood cells (SRBCs) were 

collected from healthy animals into modified Alsever’s solution and stored at 4 °C. A 

commercially prepared antibody, haemolysin (Sigma), was used to sensitize SRBCs. 

Sensitised SRBCs were used as a 2 % cell-suspension. Serial dilutions (1:2, 1:4, 1:8, 

1:16, 1:32, 1:64, 1:128 and 1:256) of test sera (50 µ1) in GVBS buffer (50 µ1) were 

made in replicates of 2 in flat-bottomed 96 wells microtiter plates. To each serum 

dilution, 50 µ1 of sensitised SRBCs were added and the plates were incubated for 90 

min at 37 °C. The results were read at 650 nm in a microplate reader (ThermoMax 

ELISA reader and Soft Max Pro software, Molecular Devices, USA). A pool of sera of 

several pigs was used as a reference. The reading results were transformed according to 

the method of von Krogh (1916) and the haemolytic titre was expressed as the titre that 

lysed 50 % of the erythrocytes (CH50, U/ml). 
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3.2.1.2 Alternative pathway activity 

Twenty-five microlitres of diluted sera (1:2, 1:3, 1:4 and 1:6) with GVBS-Mg-EGTA 

buffer and 25 µl of 0.5 % (v/v) rabbit erythrocytes were incubated at 37 °C for 90 min 

in duplicate wells of flatted bottom 96-well microplates (Roth). A 150 µl GVBSS-Mg-

EGTA buffer was added in each well and the absorbance values at 650 nm were read by 

a microplate reader (ThermoMax, Molecular Devices). A pool of sera of several pigs 

was used as a reference. Data were transformed by the method of von Krogh equation 

according to Mayer (1961). The activity was expressed in term of serum amount which 

causes 50% haemolysis of rabbit erythrocytes (AH50, U/ml). 

 

3.2.2 Immunoassays  

3.2.2.1 Antibody response to mycoplasma vaccination 

The antibody response to M. hyopneumoniae vaccination was determined by a 

monoclonal blocking ELISA (Feld et al. 1992) using the M. hyopneumoniae ELISA kit 

(DakoCytomation, Hamburg, Germany). A peroxidase-conjugated monoclonal antibody 

to M. hyopneumoniae 74 kDa protein epitope competes with antibodies in the serum 

samples to bind with a M. hyopneumoniae antigen, which was previously coated in the 

microplate. The porcine serum samples were diluted 1:10 and added in the wells pre-

coated with the antigen. After incubation for 90 min at room temperature, a specific 

peroxidase conjugated monoclonal antibody to M. hyopneumoniae was added into the 

wells to compete with an antibody in the samples. The conjugate and the samples were 

incubated together for 15 min and the wells were washed. A chromogenic o-

phenylendiamine substrate (OPD) was added and the colour reaction was developed in 

dark for 10 min and stopped by adding sulphuric acid. The optical density (OD) at 490 

nm was read using a microplate reader (ThermoMax, Molecular Devices). The results 

were interpreted as percentage of the buffer control wells (Buffer + conjugate + 

chromogen), and samples which had an OD of less than 50 % of the buffer control were 

regarded as positive sample. 
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3.2.2.2 Antibody response to tetanus toxoid vaccination 

Microtiter plates were coated with 100 µl of antigen (0.2 µg/µl coating buffer) by 

incubation for 2 h at 37 °C. The plates were washed 4 times with 200 µl of PBS-Tween 

20 buffer. The plates were blocked with 1 % (v/v) foetal calf serum (FCS) in PBS-

Tween 20 at 37 °C for 60 min, and then washed as described above. The test sera were 

diluted 1:100 with PBST containing 1 % (v/v) FCS and 100 µl of diluted sera were 

added in duplicate to the antigen coated wells. The plates were incubated at room 

temperature for 60 min and washed 3 times with PBS-Tween 20. One hundred µl of 

horseradish peroxidase conjugated rabbit antibody against pig IgG (Sigma-Aldrich, 

Munich, Germany) diluted to 1:10,000 in PBS-Tween 20 was added to the plates and 

incubated at 37 °C for 60 min then washed as described above. Then o-phenylendiamine 

dihydrochloride, OPD solution was added in 100 µl volume to the wells. The plates 

were incubated at room temperature for 30 min and the reaction was stopped with 50 µl 

of 2 M sulphuric acid (H2SO4). The OD values were determined with the ThermoMax 

ELISA reader at a wavelength of 490 nm. The result of antibody to TT vaccination was 

expressed as S/P: 

 

(mean of sample OD490) – (mean of blank OD490) 
S/P = 

(mean of positive control OD490) – (mean of blank OD490) 

 

3.2.2.3 Antibody response to PRRS vaccination 

Serum samples from pigs at 10 days after PRRS vaccination were measured for 

antibodies against PRRS virus by enzyme immunoassay using a HerdChek® PRRS virus 

antibody test kit (IDEXX's, Ludwigsburg, Germany). Microtiterplate wells were coated 

with PRRS virus and normal host cell (NHC) antigen in alternating wells. The NHC 

antigens coated on the plate are used to assess whether antibody against tissues culture 

component present in vaccine are contributing to test results. The serum samples were 

diluted (1:40) and added to duplicate wells coated with PRRS and NHC antigen. The 

positive and negative control sera were included in every plate of the assay. After 

incubation of 30 min at room temperature, plates were washed and an anti-porcine 

horseradish peroxidase conjugate was added to each well. Plates were incubated for 30 

min at room temperature and were washed with washing buffer to remove unbound 



Materials and methods   35 

 

anti-porcine conjugate. The substrate (hydrogen peroxide) and chromogen (3, 3´, 5, 5´ 

tetramethylbenzidine) were added into each well and incubated for 15 min at room 

temperature. The enzymatic colour reaction was stopped with hydrofluoric acid. The 

optical density was determined with a microplate reader (ThermoMax, Molecular 

Devices) at a wavelength of 650 nm. The antibodies to PRRS are expressed as S/P: 

 

(mean of sample OD650/ PRRS well) – (mean of sample OD650/ NHC) 
S/P = 

(mean of PC OD650/ PRRS well) – (mean of PC OD650/ NHC) 

 

3.2.2.4 Complement component 3 (C3c) concentration 

Serum C3c concentration of individual porcine serum samples prior and after 

vaccinations were measured by ELISA. Microtiter plates (EIA plate 3590, Corning 

Costar®, New York, USA) were coated with anti-human C3c (sheep polyclonal to 

human C3c, abcam®, UK) in a volume of 100 µl (diluted 1/100 in coating buffer, pH 

9.6) per well at 37 °C for 2 h. The plates were washed 4 times with 200 µl of PBS-

Tween 20 buffer. The plates were blocked with 1 % (v/v) FCS in PBST at room 

temperature for 60 min, and then washed as described above. The serum samples were 

diluted 1:40 with PBS-Tween 20 containing 1 % (v/v) FCS and 100 µl of diluted sera 

were added in duplicate to the coated microtiter plate wells. The plates were incubated 

at 37 °C for 60 min and washed 4 times with PBS-Tween 20. One hundred µl of 

horseradish peroxidase conjugated polyclonal rabbit anti-human C3c (Dako 

Cytomation, Germany) diluted to 1:500 in PBST was added to the plates and incubated 

at 37 °C for 60 min then washed for four times. Then, o-phenylendiamine 

dihydrochloride, OPD solution was added in 100 µl volume to the wells. The reaction 

was stopped by 100 µl of 2 M sulphuric acid (H2SO4) after 30 min. The OD was 

determined using a microplate reader (ThermoMax, Molecular Devices) at a wavelength 

of 490 nm. The results of complement component C3c concentration were expressed as 

S/P: 

 

(mean of sample OD490) – (mean of blank OD490) 
S/P = 

(mean of positive control OD490) – (mean of blank OD490) 
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3.2.2.5 Haptoglobin concentration 

Porcine Hp concentrations were measured by enzyme immunoassay as described by 

Hiss et al. (2003). Microtiter plates were coated with anti-rabbit-Fc fragment antibodies 

generated in sheep by incubating 150 ng of this sheep IgG in a volume of 100 µl 50 mM 

NaHCO3 (pH 9.6) per well at 4 °C for 20 h. After decanting, a second coating with 300 

µl 2.5% casein in 0.05 M NaCl (pH 7.4) was done to saturate potentially remaining 

binding sites of the plastic surface at room temperature for 1.5 h. The plates were then 

decanted and washed five times with washing buffer. They were filled with assay buffer 

to avoid desiccation and were stored at 4 °C up to several weeks without appreciable 

loss of sensitivity. The plates were decanted and 50 µl of biotinylated porcine Hp, 

diluted 1/1000 in assay buffer containing 1 mg haemoglobin per ml were added in 

duplicate. Purified porcine Hp was used as standard at the same volume in HEM buffer. 

Serum samples were first diluted 1/10,000 in HEM buffer and 50 µl were then pipetted 

per well. After adding 50 µl rabbit anti-Hp serum the plates were incubated for 1 h. 

After three washes using a microtiter plate washer (EL404, Bio-Tec Instruments, 

Winooski, VT, USA), 100 µl of a streptavidin-peroxidase conjugate solution (200 ng/ml 

assay buffer; Sigma-Aldrich, Germany) were added per well. After 30 min and five 

further washes, the wells were filled with 150 µl of a freshly prepared substrate solution 

containing 0.05 M citric acid, 0.055 M Na2HPO4, 0.05% urea hydrogen peroxide, 2 % 

ProClin 150®, and 2 % of a tetramethylbenzidine solution (12.5 mg/ml DMSO). The 

reaction was stopped after 30 min with 1 M of moxalic acid and dye development was 

determined photometrically at 450 nm in a microtiter plate reader (ELX800, BioTec 

Instruments). The Hp concentration in unknown samples was calculated from the 

standard curve using the four-parameter method. 

 

3.3 QTL analysis 

3.3.1 Selection of markers and genotyping methods 

In this study, 74 microsatellite markers were selected covering all 18 autosomes of the 

pig. The markers were selected according to previous at the Institute of Animal Science, 

University of Bonn, Germany (Liu 2005, Oltmanns 2003, Ün 2002). These markers 

were mainly selected from the USDA/MARC map. Names and genome position in 

Centimorgan (cM) units of markers used in this (http://www.marc.usda.gov/genome/ 
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swine/swine.html) are demonstrated in figure 8. Note that the names of the markers 

used and the position are indicated on the right and left side of the bar, respectively. 
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Figure 8: Positions and names of microsatellite markers used in this study 
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Tissue samples from tail of the backcross animals were collected at the research farm of 

Frankenforst, Institute of Animal Science, University of Bonn. Genomic DNA was 

isolated following the protocol of phenol-chloroform extraction, as described in chapter 

3.4.1. Genotyping, electrophoresis, and allele determination were done by laboratory 

technicians at the Institute of Animal Science. Different PCR protocols were used. 

Mainly, multiplex PCR were performed containing 2 to 4 primer pairs. Primers used for 

multiplex reaction showed at least more than 30 bp difference between the bands with 

similar annealing temperatures. Single and multiplex PCR were carried out in 12.5 µl 

reaction volume included 50 ng of genomic DNA, 0.2 µM of each primer, 50 µM of 

dNTP, 0.5 units of Supratherm DNA Polymerase (GeneCraft, Lüdinghausen, Germany) 

in 1xPCR buffer containing 1.5 mM MgCl2. The PCR amplifications were performed 

using standard and touchdown protocols as described previously by Liu (2005), 

Oltmanns (2003) and Ün (2002).  

PCR products were run in a LI-COR 4200 Automated Sequencer. Polyacrylamide gels 

were mixed by adding 20 ml Sequagel XR, 5 ml Sequagel buffer, 250 µl DMSO and 

200 µl APS (10%). Glass plates were prepared by cleaning with ethanol (75%), 

application of 60 µl haftsilane on the area where the comb was placed and two plates 

were fixed together with two spacers (0.04 mm) on the left and right side. The gel 

solution was filled between the plates, the comb inserted and the gel was allowed to 

polymerise for one hour. The PCR products were diluted 1:10 with dextran blue buffer 

and loaded on the 6% polyacrylamide gel. PCR products with a standard size were 

loaded as markers on both ends of the gel. Electrophoresis was performed in 1×TBE-

buffer at 50 °C, 50 W, 40 mA and 1500 V. Each gel was loaded 2 to 5 times. The gel 

image data were analysed by using Image Analysis program, version 4.10 (LI-COR 

Biotechnology). The allele sizes were determined with the software 1D Scan. The 

fragment lengths were calibrated for each sample in relation to the size of the standard 

PCR products (75bp, 100bp, 105bp, 120bp, 145bp, 175bp, 200bp, 204bp, 230bp, 255bp, 

300bp and 325bp). The fragment sizes were identified with an interval of 2bp and 

assigned to an Excel spreadsheet with the report function. 
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3.3.2 Statistical analysis of QTL 

3.3.2.1 Characterization of markers 

To characterize the markers used in this study, two different measurements were 

performed. The heterozygosity was used to identify the allelic diversity or the 

informativeness of genetic markers. The informativeness of a genetic marker increases 

as the heterozygosity increases. The informativeness of genetic markers in outbred 

species can also be measured by the polymorphic information content, the PIC (Botstein 

et al. 1980). The heterozygosity of a genetic marker is estimated by:  

∑
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where: 

pi: the frequency of the ith allele  

k: the number of alleles. 

 (Nei 1978, Otto and Goldstein 1992) 

 

The PIC is estimated by:  
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where: 

  pi: the frequency of the ith allele  

k: the number of alleles. 

 (Botstein et al. 1980, Otto and Goldstein 1992)  

 

Regarding a codominant genetic marker, the PIC was developed for ascertaining the 

allele transmitted by an affected heterozygous parent carrying a dominant disease allele 

(Otto and Goldstein 1992). The PIC estimates the probability that the codominant 

marker genotype of an offspring can be used to deduct which of the two marker alleles 

were transmitted by a parent carrying a dominant disease allele. The term polymorphic 

information content is alternatively and frequently used for heterozygosity and possibly 

other measures of marker informativeness. 
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3.3.2.2 Construction of genetic maps 

The data obtained from the fragment sizes analysis were firstly checked for any 

genotyping errors using Pedcheck, version 1.1 (O'Connell and Weeks 1998). The 

following multipoint analyses were carried out for female, male, and sex-average maps 

using the CRIMAP software, version 2.4 (Green et al. 1990). A two-point linkage 

analysis of recombination between two markers was used. Furthermore, the ‘fixed’ 

function was used for known order of markers, including ‘flipsn’, ‘all’ and ‘build’ 

functions. For the resulting map, CRIMAP calculated the expected recombination 

between markers. The recombination units were converted into map distances using 

Kosambi’s mapping function (Kosambi 1944). The generated sex-average 

recombination units can be converted to Kosambi centimorgan by: 

 

M  = 1/4 ln (1+2R/1-2R), 

where: 

  M  = map distance in Morgan  

R  = recombination 

 

3.3.2.3 Identification of QTL 

Using a regression approach, we calculated QTL with effects on immune traits 

measured in this investigation. A QTL interval mapping analysis was performed using 

the web-based program QTL express available at http://qtl.cap.ed.ac.uk/ (Seaton et al. 

2002).  

The QTL-express program including backcross/F2 dataset was used following an 

additive and dominant model with permutated chromosome-wide permutations at a total 

of 10,000 iterations. The chromosome-wide analysis was done by measuring QTL for 

all traits at the same time. As fixed effects, we used cross type mean (CTM) and sex. No 

interactions between the fixed effects and the traits were used in the QTL analysis. It is 

meaningful to include the litter number as fixed effect, but all animals used in this 

analyses were derived only from the first litter each sow.  

Based on a robust two-step procedure for QTL mapping in the QTL express program, 

marker genotypes were used to estimate the identity-by-descent (IBD) probabilities at 1-

cM intervals through the chromosomes. These probabilities are used to calculate 
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additive and dominance coefficients for a putative QTL at each position and the trait 

values are regressed onto these coefficients to calculate F-ratios testing the existence of 

a QTL at given position. Linear models are fitted to phenotypic data using a general 

linear model. For the genetic component in the linear model, a single or a two QTL 

model is fitted (Green et al. 1990). The regression analysis of the backcross population 

calculates transmission probabilities using a simple algorithm. The estimable allele 

substitution effect is defined by QQ-Qq, which contains both an additive and a 

dominance part. If the effect of the recurrent QTL genotype is larger than the effect of 

the heterozygous genotype, the value is positive. The QTL regression model for single 

analysis was: 

 

yijk  = µ + sj + fk + β covijk + caia + cdid + εijk,  

 

where: 

yijk = phenotype of the ith offspring 

µ = overall mean 

sj = jth fixed sex effect, j = 1, 2 

fk = kth fixed contemporary group effect 

β = regression coefficient on the covariate 

covijk = covariate (CTM and sex) 

cai = additive coefficient of the ith individual at a putative QTL in the 

genome 

cdi = dominant coefficient of the ith individual at a putative QTL in the 

genome 

a = additive effects of a putative QTL  

d = dominant effects of a putative QTL 

εijk = residual error 

 

3.3.2.4 Significant threshold 

To reduce results showing false positive significance, significant thresholds were 

determined for all QTL analysis. Errors of type I (false positive) and errors of type II 



Materials and methods   42 

 

(false negative) are possible in any statistical analysis, whereas errors of type I play an 

important role in a QTL analysis.  

A total of 10,000 permutations were performed for each chromosome * trait 

combination. The chromosome-wide 1% and 5% significance thresholds were 

calculated by QTL express. The 1% and 5% experiment-wide significant threshold were 

calculated by transformation with Bonferroni correction for 18 autosomes of the haploid 

porcine genome. As there were no markers genotyped on the X-chromosome, 

transformation was done only for an experiment-wide, not for a genome-wide 

significant threshold level. The significant thresholds at the 5 and 1% level were 

determined empirically by permutation test for individual chromosomes (Churchill and 

Doerge 1994). This empiric method uses distribution of data from genotypes and 

phenotypes. The experiment-wide significance level was calculated by the following 

term: 

 

r
PcPg )1(1 −−

=  

where:  

r  = length of a specific chromosome/ sum of length of all chromosomes  

Pc  = chromosome-wide significance threshold 

 

Different from the method and the chosen significance threshold used in this study, 

some publications use the “drop-off” method by Lander and Kruglyak (1995). By this 

method in a F2 population, an F-value of 4.3 is necessary for reaching a 1% significant 

threshold within a genome-wide experiment and a significant QTL. Analysis resulting 

in a suggestive QTL and a significance threshold of 5% should have F-values of not less 

than 3.0 (Lander and Kruglyak 1995). This “drop-off” method tends to give 

underestimated confidence intervals. 

 

3.4 Molecular genetic methods 

The basic molecular genetic methods including DNA isolation, polymerase chain 

reaction (PCR), and sequencing are described in this chapter. Moreover, 

semiquantitative RT-PCR used for gene expression studied was also explained. In order 
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to characterize the porcine MBL genes, chromosomal assignment, linkage mapping, 

gene polymorphism detection and genotyping were done. These experiments were 

performed in the F2 DUMI population. 

 

3.4.1 DNA isolation 

Genomic DNA was isolated from tissue samples. Tissue samples of about 0.1 g were 

cut into small pieces (2-3) and put it into 2 ml tube, and then 700 µl of digestion buffer, 

70 µl of 10% SDS, and 18 µl of proteinase K to digest protein were added and well 

mixed it well. Samples were incubated overnight at 37 °C, 90 rpm. Seven hundred 

microlitres of phenol-chloroform were added and then the tube was shaken until an 

emulsion was formed and centrifuged at 10,000 rpm for 10 min. The upper part was 

transferred into a 2 ml tube, 700 µl of chloroform were added and shook gently. 

Samples were centrifuged at 10,000 rpm for 10 min. The upper part was carefully 

collected into 1.7 ml tube, 700 µl of isopropanol and 70 µl of sodium acetate were 

added into the tube and the samples were shaken gently until precipitation of DNA and 

then centrifuged at 10,000 rpm for 5 min. The aqueous phase was discarded, then 200 µl 

of 70% ethanol were added, the pellet liberated from the tube surface then centrifuged at 

10,000 rpm for 5 min. The aqueous phase was discarded and the pellet left to dry. Five-

hundred microlitres of 1x TE were added in each tube and the DNA samples were left 

overnight at room temperature. The DNA samples were diluted to a concentration of 50 

ng/µl. 

 

3.4.2 Polymerase chain reaction (PCR) 

Standard PCR, in 20 µl reaction volume included 100 ng of genomic DNA, 0.2 µM of 

each primer, 50 µM of dNTP, 0.5 units of Biotherm or Supratherm DNA polymerase 

(GeneCraft, Lüdinghausen, Germany) in 1xPCR buffer containing 1.5 mM MgCl2. 

Thermocycling was performed as follows: initial denaturation at 95 °C for 5 min, 

followed by 35 cycles at 94 °C for 30 sec, 59 °C for 30 sec, 72 °C for 1 min, and final 

extension at 72 °C for 10 min. Additionally, touchdown PCR was also conducted to 

amplify MBL1 using the following conditions: initial denaturation at 95 °C for 5 min, 

followed by 8 cycles at 94 °C for 30 sec, 66-62 °C for 30 sec, 72 °C for 1 min 

(annealing temperature was 0.5 °C decreased each cycle), then followed by 35 cycles of 
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94 °C for 30 sec, 62 °C for 30 sec, 72 °C for 1 min, and final extension at 72 °C for 5 

min. Gene-specific primers used are described in table 2. All PCR products were 

resolved by agarose gel electrophoresis and visualized by ethidium bromide staining.  

 

Table 2: Gene-specific primers (5´-3´) used for porcine MBL genes 

Primer set Sequence 
Annealing temp. 

(°C) 

Product 

size  

MBL1-a 
CCCCAATATTTCCTGGAGGT 

TCCTCCTTCTGTGTGTGGTG 
59 222bp  

MBL2-a 
GGGAGAAAAGGGAGAACCAG 

CACACAGAGCCTTCACTCCA 
59 278bp 

MBL1-b 
AAGGGAGAACCAGGTATAGG 

TGAACCCTGGCCCTGTTG 
62-66 702bp 

MBL2-b 
CTTCGCTCAGGGAAAACAAG 

GTCATTCCACTTGCCATCCT 
59 319bp 

 

3.4.3 Sequencing 

PCR products of porcine MBL1 and MBL2 genes were generated using standard 

protocols as described above. DNA was purified from the agarose gel using the 

QIAquick PCR purification kit (Qiagen, Hilden, Germany). Samples were excised from 

gels, recorded the weight, and put in the spin column. Three sample volumes of QG 

buffer (Qiagen) were added to the samples and incubated at 50 °C for 5 min until the gel 

was completely melted. One sample volume of 100% 2-propanol (Roth, Karlsruhe, 

Germany) was added and mixed by inverting. The spin column was placed into the 

collection tube, followed by centrifugation for 1 min at 18,000 rpm at 19-20 °C. After 

the flow-through liquid was discarded, this cleaning up procedure was repeated two 

times and the buffer was replaced by 500 µl QG and 750 µl PE buffer (Qiagen), 

respectively. The spin column containing the sample was moved to a new collection 

tube. Fifty microlitres of dd.H2O were added into the column and incubated at room 

temperature for 5 min. Centrifugation for 1 min at 18,000 rpm at 19-20 °C was done to 

collect the dissolved sample in the tube. Dehydration was performed and the sample 

was diluted by adding 10 µl of dd.H2O for sequencing PCR. Five microlitres of purified 
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sample was used for cycle sequencing, with specific primers (table 2), and the Quick 

Start Kit for Dye Terminator Cycle Sequencing or DTCS (BeckmanCoulter, Krefeld, 

Germany) including DNA polymerase, pyrophosphatase, buffer, dNTPs and dye 

terminators. Once, sequencing the PCR was performed, three molar NaOAc, 100 mM 

EDTA and glycogen were added to stop the reaction. To each sample, 60 µl of 98% 

ethanol (Roth) was added and mixed well by vortexing and then centrifuged for 15 min 

at 18,000 rpm at 4 °C. All liquid was removed and replaced with 200 µl 70% ethanol 

without mixing and centrifuged again for 15 min at 18,000 rpm at 4 °C. The ethanol was 

then removed and the sample was air dried for 10 min. The sample was then 

resuspended in 40 µl of sample loading solution (SLS) (Beckman Coulter). Cleaned up 

samples were transferred manually to a CEQ sample plate and overlaid with mineral oil. 

Samples were sequenced using CEQ™ 8000 Genetic Analysis System (Beckman 

Coulter).  

 

3.4.4 Expression study of porcine MBL genes 

In order to survey expression of the porcine MBL genes in different tissues, RT-PCR 

was employed. Total RNA was isolated from muscle, heart, spleen, tonsil, lymph node, 

lung, liver, kidney, testis and brain from adult animals of Duroc and Berlin Miniature 

pig crossbreds using Tri-Reagent (Sigma, Taufkirchen, Germany) following the 

manufacturer’s instruction. All RNA samples were treated with deoxyribonuclease I 

(DNase I, Promega, Mannheim, Germany) in the presence of RNase inhibitor 

(Promega) for 1 h at 37 °C to remove the residual DNA. DNA free RNA products were 

obtained after purification with RNeasy Mini kit (Qiagen, Hilden, Germany). The RNA 

was visualized on 1.5 % formaldehyde containing agarose gel to check the integrity, the 

concentration was measured by Ultraspect-photospectrometer (Amersham Bioscience). 

First-strand cDNA was synthesized from 1 µg of total RNA using oligo (dT)12N and 

random primers in the presence of the superscript reverse transcriptase enzyme 

(Invitrogen, Karlsruhe, Germany). Standard protocols as described above using MBL1-

a, and MBL2-a primer sets for MBL1 and MBL2, respectively (table 2) were done to 

detect MBL1 and MBL2 transcripts. In order to control for possible variation of the 

initial RNA input, the expression of the 18S gene was used as an internal control. 
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3.4.5 Single nucleotide polymorphism (SNP) detection 

A part of the porcine MBL2 gene was amplified from 15 pigs of the F2 DUMI resource 

population by using standard PCR with the MBL2-b primer set. Primers (MBL2-b; table 

2) were designed based on the conserved region between exon 4 of the human and 

porcine MBL2 genes (GenBank accession no. NP_000233 and NM_2141259). The 

target products were sequenced using CEQ™ 8000 Genetic Analysis System (Beckman 

Coulter). Individual sequences were aligned and compared using the web-based 

program “multalin” (http://ribosome.toulouse.inra.fr/multalin/multalin.html) for 

identification of sequence variation. In order to detect a SNP in porcine MBL2 gene, 

multiple sequence alignment was employed. The identified SNPs were used for 

genotyping analysis. 

 

3.4.6 Genetic and physical mapping of porcine MBL genes 

Radiation hybrid mapping of MBL genes was performed using the INRA-Minnesota 

7000 rads radiation hybrid panel (IMpRH) (Yerle et al. 1998) which consisted of 118 

hamster-porcine hybrid cell lines (Hawken et al. 1999). Primers were developed for 

both porcine MBL genes (GenBank accession no. AF208528 and NM_214125), and the 

entire RH panel was scored by PCR using the INRA protocol available at 

http://www.toulouse.inra.fr/lgc/lgc.htm. Data analysis was performed using software 

available at IMpRH database (http://imprh.toulouse.inra.fr) for chromosome 

assignment. Genetic mapping by two-point linkage analysis using CRIMAP 2.4 (Green 

et al. 1990) was also done.  

 

3.4.7 Genotyping of porcine MBL genes 

PCR restriction fragment length polymorphism (PCR-RFLP) using HinfI and AdeI 

restriction enzymes for MBL1 and MBL2 polymorphic sites were performed. For the 

MBL1 gene, animals were genotyped at a previously identified C to T substitution 

within intron 1 at position 328 of the sequence (GenBank accession no. AF208528), 

reported by Marklund et al (2000). For the MBL2 gene, animals were genotyped at the 

G to A transition at position 645 of sequence NM 214125 as found in this study. The 

fragments covering polymorphic sites of both genes were amplified using specific 
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primer sets (MBL1-b, MBL2-b; table 2) as given above with touchdown and standard 

conditions for MBL1 and MBL2, respectively. Digestion of the products was carried out 

in 10 µl of 10x restriction buffer and incubated at 37 °C overnight to ensure complete 

digestion. Digested PCR products were visualized on 2.5 % agarose gels to identify the 

fragment pattern. Data were checked for any genotyping errors by using the program 

Pedcheck version 1.1 (O'Connell and Weeks 1998). 

 

3.4.8 Phylogenetic analyses of MBL genes 

In order to identify the relationships of MBL in different animal species, we used 

deduced amino acid sequences from previously identified genes reported in GenBank to 

reconstruct the phylogenetic tree. The tree was constructed by using the neighbour-

joining method (NJ). The reliability of internal branches was assessed by using 1000 

bootstrap replicates, and sites with pairwise deletion in this analysis. NJ searches were 

conducted by using the computer program MEGA3 (Kumar et al. 2004). 

 

3.4.9 Linkage QTL study for porcine MBL genes 

The association analysis was complemented by linkage QTL analysis, which enables to 

provide evidence for effects of the MBL genes in absence of linkage disequilibrium 

between the analyzed silent SNPs and other potentially existing causal mutations. 

Linkage QTL analysis was carried out by least square regression using the program 

QTL Express (Seaton et al. 2002). This model assumes a biallelic QTL fixed for 

alternative alleles in each parental line. For each F2 animal, genotypes of five markers 

including MBL1 and MBL2 on chromosome 14 (SSC14) were used to estimate the 

probability of having none, one or two alleles of the putative QTL of the respective 

founder line (grand-parent generation) in 1 cM intervals. The probabilities are used to 

calculate additive and dominance coefficients for a putative QTL at each position and 

the trait values are then regressed onto these coefficients. For QTL analysis, the 

phenotypes CH50, AH50 and C3c, adjusted for systematic effects, were used. These 

effects also included the residuals of repeated measures analyses using the model 

detailed above but without the fixed effect of genotype of MBL1 and MBL2. The 

chromosome-wide 5% significance threshold was determined empirically by 

permutation (10000 iterations) and transformed to genome-wide 5% significance 
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threshold by subsequent Bonferroni correction for the number of autosomes (Churchill 

and Doerge 1994). 

 

3.5 Statistical analyses 

3.5.1 Immunological traits analyses 

Estimations were performed with the general linear model (GLM) procedure of the SAS 

software package (SAS System for Windows, Release 9.01). Data were analyzed using 

the following model; 

 

Yijkl   = µ + sirei + damj + sexk + timel + εijkl 

 

where:  

Yijklmno = immunological traits (CH50, AH50, C3c level, Hp level, mycoplasma, 

tetanus, and PRRS antibody level) 

µ = overall mean 

sirei = the fixed effect of sire (i=1-8) 

damj = the fixed effect of dam (j=1-22) 

sexk = the fixed effect of sex (k=1-2) 

timel = the fixed effect of time point prior/after vaccinations (l=1-6) 

εijkl = the residual error 

 

3.5.2 MBL genotype association study  

Analysis of variance was performed with the procedure ‘mixed’ and ‘repeated’ 

statement of the SAS software package to investigate effects of MBL1 and MBL2 

genotypes on AH50, CH50 and C3c concentration. The model was fitted in order to 

identify other significant environmental and genetic effects apart from the MBL1 and 

MBL2 genotypes and its interaction by stepwise elimination of non-significant effects. 

Those factors found to significantly affect the phenotypes were included in the model to 

assess association of the MBL markers with the immunological trait. The animal effect 

was the subject specified in the repeated statement. An autoregressive (AR) covariance 

structure was included in model. The least square means between MBL genotype classes 
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on each time point were compared. The repeated measures (first order autoregressive R-

matrix) mixed model for haemolytic complement activity traits and acute phase proteins 

is: 

Yijklmno  =µ + sirei + damj + parityk + treatmentl +genotypem + timen + 

sexo + animalijklmno + (genotype*time)mn + εijklmno 

 

where:  

Yijklmno  = immunological traits (CH50, ACH50, and C3c level) 

µ = overall mean 

sirei = the fixed effect of sire (i=1-3) 

damj = the fixed effect of dam (j=1-11) 

parityk  = the fixed effect of parity (k=1-5) 

treatmentl = 
the fixed effect of treatment (vaccinated and non-

vaccinated) 

genotypem = the fixed effect of genotype (m=1-3) 

timen = 
the fixed effect of time point of measurement 

prior/after vaccinations (n=1-8) 

sexo = the fixed effect of sex (o=1-2) 

animalijklmno = the random effect of animal 

(genotype*time)mn = 
the interaction between MBL2 genotype and time 

point 

εijklmno   = the residual error 
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4 Results 

 

4.1 Immunological analyses 

In this chapter, the immunological traits including haemolytic complement activity of 

the classical and alternative pathway, complement component C3c, haptoglobin 

concentration and antibody response to vaccination (mycoplasma, tetanus, and PRRS) 

are described. QTL of immunological traits observed in the backcross DUMI population 

are reported. Furthermore, genetic analyses of porcine MBL genes including gene 

evolution, gene expression, chromosomal assignment, single nucleotide polymorphism 

detection, and the association between gene variation and phenotypic traits are also 

described. 

 

4.1.1 Classical complement activity assay 

The means of total haemolytic complement activity of the classical pathway of all pigs 

were 28.44 ± 16.15 U/ml before vaccination and 35.27 ± 18.13 U/ml after three 

immunizations. The lowest concentration of the complement activity in the classical 

pathway was measured at T3 with 27.78 ± 14.70 U/ml. The haemolytic complement 

activity of the classical pathway was elevated during each immunisation. The results 

indicate that the haemolytic complement activity of the classical pathway was increased 

over time point of measurement as described in table 3. 

 

Table 3: Haemolytic complement activity of the classical pathway (CH50) at 

different time points of measurement prior and after vaccinations 

Vaccination Time Animals Mean ± SD Minimum Maximum 

T1 194 28.44 ± 16.15 0.73 78.23 
Mycoplasma 

T2 195 32.14 ± 18.27 3.04 84.57 

T3 199 27.78 ± 14.70 5.61 82.88 
Tetanus 

T4 188 30.92 ± 14.05 4.59 71.61 

T5 165 33.13 ± 17.13 2.20 84.39 
PRRS 

T6 163 35.27 ± 18.13 7.96 101.95 
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The distribution of haemolytic complement activity of the classical pathway can be 

approximated as a normal distribution at each time point of measurement. The 

histograms of all observations and the normal curve at each time point of measurement 

are shown in figure 9. 
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Figure 9: Distribution of the haemolytic complement activity in the classical 

pathway (CH50) at each time point of measurement prior and after 

vaccinations. 

 

The analysis of variance for haemolytic complement activity of the classical pathway 

prior and after vaccination as described in table 4 indicated that the combined effects in 

the model accounted for 65 to 74% of phenotypic variation in traits at different time 

points. The effect of sire contributed significantly to the variation observed in the 

classical pathway at T1 and T2, while the effect of the dam contributed significantly to 

the variation observed at T1 to T4. Gender did not affect the traits. 
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Table 4: Analysis of variance of CH50 values at different time points of 

measurement prior and after vaccinations 

Vaccination Time R2 Model Sire Dam Gender 

T1 0.74 *** * *** ns 
Mycoplasma 

T2 0.73 *** ** *** ns 

T3 0.71 *** ns *** ns 
Tetanus 

T4 0.67 *** ns ** ns 

T5 0.74 *** ns ** ns 
PRRS 

T6 0.65 *** ns ns ns 

*p<0.05, ** p<0.01, *** p<0.001, ns = not significant  

 

4.1.2 Alternative complement activity assay 

The means of total haemolytic complement activity of the alternative pathway of all 

pigs were 27.95 ± 12.01 U/ml before vaccination and 56.09 ± 28.68 U/ml after three 

immunizations. The haemolytic complement activity of the alternative pathway was 

elevated during each immunisation. The results indicated that the haemolytic 

complement activity of the classical pathway was increased over time points of 

measurement as described in table 5. 

 

Table 5: Average of haemolytic complement activity of the alternative pathway 

(AH50) at different time points of measurement prior and after 

vaccinations 

Vaccination Time Animals Mean ± SD Minimum Maximum 

T1 102 27.95 ± 12.01 1.53 56.82 
Mycoplasma 

T2 115 35.50 ± 16.90 1.75 100.03 

T3 96 32.47 ± 19.37 1.29 91.63 
Tetanus 

T4 87 44.92 ± 24.65 8.54 154.23 

T5 90 50.69 ± 24.02 3.74 131.05 
PRRS 

T6 83 56.09 ± 28.68 7.01 194.05 

 

The distribution of the haemolytic complement activity of the alternative pathway can 

be approximated as a normal distribution at each time point of measurement. The 
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histograms of all observations and the normal curves of each time point of measurement 

are shown in figure 10. 
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Figure 10: Distribution of the haemolytic complement activity in the alternative 

pathway (AH50) at each time point of measurement prior and after 

vaccinations. 
 

The analysis of variance for the haemolytic complement activity in the alternative 

pathway prior and after vaccination as described in table 6 indicated that the combined 

effect in the model accounted for 26 to 77 % of phenotypic variation in traits at different 

time points. The effect of sire contributed significantly to the variation observed in the 

alternative pathway at T2, T3 and T6, while the effect of dam contributed significantly 

to the variation at T2-T6. The results clearly indicate that gender did not affect the traits. 
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Table 6: Analysis of variance of the haemolytic complement activity in the 

alternative pathway (AH50) at different time points of measurement prior 

and after vaccinations 

Vaccination Time R2 Model Sire Dam Gender 

T1 0.67 *** ns ns ns 
Mycoplasma 

T2 0.73 *** *** *** ns 

T3 0.77 *** *** *** ns 
Tetanus 

T4 0.43 *** - ** ns 

T5 0.26 * ns *** ns 
PRRS 

T6 0.32 ** *** * ns 

*p<0.05, ** p<0.01, *** p<0.001, ns = not significant  

 

4.1.3 Antibody response to mycoplasma vaccination 

The means of antibody response to mycoplasma vaccination which were determined by 

a monoclonal blocking ELISA using M. hyopneumoniae ELISA kit of all pigs were 

37.40 ± 23.76 % before vaccination, 19.86 ± 24.47 % and 14.59 ± 20.76 % at 10 and 20 

days (T2 and T3) after the immunizations, respectively. The results as described in table 

7 indicated that the antibody response to mycoplasma vaccination was increased over 

time point of measurement. Samples with a value less than 50% were considered 

positive, and therefore, an increase in the antibody level would be seen as a decrease in 

the test results. 

 

Table 7: Average of antibody response to mycoplasma vaccination at different 

time points of measurement 

Vaccination Time Animals Mean ± SD Minimum Maximum 

T1 130 37.40 ± 23.76 2.02 96.26 

T2 127 19.86 ± 24.47 2.44 95.13 Mycoplasma 

T3 126 14.59 ± 20.76 1.64 100.26 

 

The analysis of variance for antibody to mycoplasma prior and after vaccination as 

described in table 8 indicated that the combined effect in the model accounted for 56 to 

74% of phenotypic variation in traits at different time points. The effect of sire 



Results       55 

 

contributed significantly only at T1, while the dam contributed significantly to the 

variation observed in antibody to mycoplasma at all three time points. Gender did not 

affect the traits. 

 

Table 8: Analysis of variance of antibody response to mycoplasma vaccination at 

different time points of measurement 

Vaccination Time R2 Model Sire Dam Gender 

T1 0.61 *** ** *** ns 

T2 0.74 *** ns *** ns Mycoplasma 

T3 0.56 *** ns *** ns 

** p<0.01, *** p<0.001, ns = not significant  

 

4.1.4 Antibody response to tetanus toxoid vaccination 

The means of antibody response to TT vaccination which were determined by a 

competitive ELISA and expressed as an S/P ratio of all pigs were 0.09 ± 0.07 before 

vaccination, 0.65 ± 0.21 and 0.92 ± 0.10 at 20 and 40 days (T2 and T3) after the 

vaccinations, respectively. The results as described in table 9 indicated that the antibody 

response to TT vaccination was increased over the time points of measurement. 

 

Table 9: Average of antibody response to tetanus toxoid at different time points of 

measurement 

Vaccination Time Animals Mean ± SD Minimum Maximum 

T3 186 0.09 ± 0.07 0.02 0.78 

T4 187 0.65 ± 0.21 0.07 1.02 TT 

T5 162 0.92 ± 0.10 0.64 1.06 

 

The analysis of variance for antibodies to TT prior and after vaccination as described in 

table 10, indicated that the combined effects in the model accounted for 22 to 65% of 

phenotypic variation in traits at different time points. The effect of the sire contributed 

significantly at T4 and T5, while the dam contributed significantly to the variation 

observed in antibody to TT at all three time points. Gender did not affect the traits. 
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Table 10: Analysis of variance of antibody to tetanus toxoid at different time points 

of measurement 

Vaccination Time R2 Model Sire Dam Gender 

T3 0.22 ** ns ** ns 

T4 0.48 *** * *** ns TT 

T5 0.65 *** *** *** ns 

*p<0.05, ** p<0.01, *** p<0.001, ns = not significant  

 

4.1.5 Antibody response to PRRS vaccination 

The means of antibody response to PRRS vaccination are given in table 11. Antibody 

levels were determined by a competitive ELISA and expressed as an S/P ratio. 

 

Table 11: Average of antibody response to PRRS vaccination at time point 5 of 

measurement  

Vaccination Time Animals Mean ± SD Minimum Maximum 

PRRS T5 153 0.84 ± 0.79 -0.17 3.12 

 

The analysis of variance for antibodies to PRRS after vaccination as described in table 

12 indicated that the combined effect in the model accounted for 55% of phenotypic 

variation in trait. The effect of the dam contributed significantly to the variation 

observed in antibody to PRRS at the time point of measurement (T6). The sire and 

gender did not affect the trait. 

 

Table 12: Analysis of variance of antibody to PRRS vaccination time point 5 of 

measurement  

Vaccination Time R2 Model sire dam gender 

PRRS T6 0.55 *** ns *** ns 

*** p<0.001, ns = not significant  

 

The distribution of antibodies response to vaccinations can not be approximated as a 

normal distribution at each time point of measurement. The histogram of all 
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observations and the normal curve of each time point of measurement are shown in 

figure 11. 
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Figure 11: Distribution of antibody responses to mycoplasma at T1 to T3, TT at T3 

to t5 and PRRS at T6 of time points of measurement 
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4.1.6 Complement C3c concentration 

The means of complement C3c concentration which were determined by a competitive 

ELISA and expressed as an S/P ratio of all pigs were found lowest at time point T3 

(0.78 ± 0.25), and highest at T2 (0.87 ± 0.23). The results as described in table 13 

indicated that the complement C3c concentration is increased after each vaccination. 

 

Table 13: Average of the complement component C3c concentration at different 

time points of measurement prior and after vaccinations 

Vaccination Time Animals Mean ± SD Minimum Maximum 

T1 125 0.84 ± 0.25 0.18 1.33 
Mycoplasma 

T2 127 0.87 ± 0.23 0.13 1.47 

T3 124 0.78 ± 0.25 0.15 1.64 
TT 

T4 136 0.82 ± 0.21 0.11 1.95 

T5 128 0.79 ± 0.24 0.05 1.16 
PRRS 

T6 133 0.82 ± 0.25 0.04 1.15 

 

The analysis of variance for complement C3c concentration prior and after vaccination 

as described in table 14 indicated that the combined effects in the model accounted for 

52 to 78% of phenotypic variation in traits at different time points. The effect of the sire 

did not contribute during mycoplasma, but TT and PRRS vaccination. The dam 

contributed significantly to the variation observed during mycoplasma vaccination at 

both time points and before PRRS vaccination (T5). Gender did not affect the traits. 

 

Table 14: Analysis of variance of complements component C3c concentration at 

different time points of measurement prior and after vaccinations 

Vaccination Time R2 Model Sire Dam Gender 

T1 0.70 *** ns ** ns 
Mycoplasma 

T2 0.78 *** ns *** ns 

T3 0.52 *** * ns ns 
TT 

T4 0.57 *** * ns ns 

T5 0.64 *** *** * ns 
PRRS 

T6 0.65 *** *** ns ns 
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The distribution of complement C3c concentration can be approximated as a normal 

distribution at each time point of measurement. The histograms of all observations and 

the normal curve of each time point of measurement are shown in figure 12. 
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Figure 12: Distribution of complement component C3c level at each time points of 

measurement prior and after vaccinations 

 

4.1.7 Haptoglobin concentration 

Hp concentrations in the experimental pigs were measured according to the method 

described by Hiss et al. (2003). The means of Hp concentration which were determined 

by a competitive ELISA and expressed as mg/ml of all pigs were found lowest at T3 

(1.23 ± 0.92 mg/ml) and highest at T6 (2.18 ± 2.07 mg/ml). The results as described in 

table 15 indicated that the Hp concentration is decreased after the first measurement 

(T1) until T3, before TT vaccination. The increase of Hp concentration was obtained 
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after T3 and reached the highest point of measurement at T6 or 10 days after PRRS 

vaccination. 

 

Table 15: Average of Hp concentration at different time points of measurement 

prior and after vaccinations 

Vaccination Time Animals Mean ± SD Minimum Maximum 

T1 184 1.76 ± 1.03 0.03 6.30 
Mycoplasma 

T2 166 1.55 ± 1.01 0.12 8.30 

T3 184 1.23 ± 0.92 0.01 4.32 
TT 

T4 188 1.68 ± 1.05 0.07 6.60 

T5 170 1.93 ± 1.08 0.04 5.80 
PRRS 

T6 183 2.18 ± 1.07 0.25 6.60 

 

The analysis of variance for Hp concentration prior and after vaccination as described in 

table 16 indicated that the combined effect in the model accounted for 18 to 49 % of 

phenotypic variation in traits at different time points The effect of the sire contributed 

significantly only at T3, while the dam contributed significantly to the variation 

observed in the Hp concentration at all six time points, except T2 or 10 days after 

mycoplasma vaccination. Gender did not affect the traits. 

 

Table 16: Analysis of variance of haptoglobin (Hp) concentration at different time 

points of measurement prior and after vaccinations 

Vaccination Time R2 Model sire dam gender 

T1 0.30 *** ns *** ns 
Mycoplasma 

T2 0.18 ns ns ns ns 

T3 0.49 *** * *** ns 
TT 

T4 0.44 *** ns *** ns 

T5 0.40 *** ns *** ns 
PRRS 

T6 0.38 *** ns *** ns 
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The distribution of Hp concentration can be approximated as a normal distribution at 

each time point of measurement. The histograms of all observations and the normal 

curve of each time point of measurement are shown in figure 13. 
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Figure 13: Distribution of Haptoglobin concentration at each time point of 

measurement prior and after vaccinations 

 

4.2 Linkage analysis 

4.2.1 Characterization of markers 

By genotyping, the seventy-four markers (an average of 4.11 markers per chromosome) 

were investigated. The microsatellite markers had between two to seven alleles with an 
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average of 4.19 alleles per marker. A total of 220 backcross animals were used for QTL 

analysis in this study. Note that twenty-four animals were derived from F2 (parents of 

backcross), while thirteen and seventeen animals were also derived from F1 and F0 

(parents and grandparents of F2), respectively. 

The average heterozygosity and information content was 0.57 and 0.52, respectively. 

The lowest information content was 0.16 at the locus of the marker S0155 on SSC1. In 

total, twenty (27% of all used) markers showed information content less than 0.5. 

 

4.2.2 Mapping of markers 

Seventy-four microsatellites from 18 autosomes of Sus scrofa have been used for QTL 

mapping for immune traits in the DUMI backcross population. The sex average, female, 

and male maps were 2,052 cM, 2,058 cM, and 2,154 cM (Kosambi cM) in length, 

respectively. The orders of markers were almost in accordance with the published 

USDA-MARC map, except the marker S0220 on SSC6. This microsatellite marker 

S0220 was not available on that database. As there was not enough information, the 

map of SSC17 used for backcross was taken from mapping result in F2. The map of the 

DUMI F2 population was about 1,983 cM. The map from backcross was approximately 

with the factor 1.03 larger than the map in F2. It can be concluded that the map used in 

this study is in good agreement with the map in F2 population. The shortest sex average 

map was calculated for SSC13 with 32 cM total length, the longest map on SSC15 with 

233 cM in length. The markers and their genetic distances used in the QTL analysis and 

the genetic map as established for the DUMI resource population (sex average, 

Kosambi cM) for all autosomes (SSC) are shown in table 17. 

 

 

 

 

 

 

 

 

 



Results       63 

 

Table 17: Markers used in the QTL analysis and genetic map as established for the 

backcross population (sex average, Kosambi cM) 

SSC Coverage 1 [cM] Markers and genetic distances [cM] 

SSC1 16.4 – 140.5 [144.0] SW1515 [46.3] SW1851 [73.7] S0155 [95.6] SW1301 

SSC2 0.0 – 74.82 [132.1] 
SW2443 [57.3] SW240 [20.5] SW1564 [20.5] SW834 

[5.8] S0226 2 

SSC3 17.8 – 102.2 [129.3] SW72 [29.8] S0164 [24.3] SW2570 [38.6] S0002 

SSC4 4.1 – 120.0 [130.1] S0227 [54.8] S0001 [17.9] S0214 [78.7] S0097 

SSC5 8.4 – 102.9 [114.4] SW1482 [31.5] SW1134 [49.0] IGF1 [11.5] SW378 

SSC6 7.3 – 102.0 [165.7]3 
S0035 [20.4] S0087 [12.0] SW1067 [7.5] SW193 [3.7] 

S0300 [8.0] S0220 2 [30.9] S0059 [17.2] S0003 

SSC7 3.7 – 134.9 [156.6] 
S0025 [28.4] S0064 [29.4] S0102 [20.4] SW175 [37.3] 

S0115 [38.7] S0101 

SSC8 0.0 – 112.3 [127.7] SW2410 [67.9] S0086 [39.4] S0144 [13.3] SW61  

SSC9 11.1 – 96.5 [138.5] 
SW21 [29.3] SW911 [39.5] SW54 [21.4] S0109 [68.3] 

S0295 

SSC10 0.0 – 124.1 [124.1] SW830 [100.0] S0070 [0.8] SW2067 

SSC11 14.1 – 76.2 [84.9] 
SW2008 [22.5] S0071 [12.6] S0009 [12.6] S0386 [0.3] 

SW703 

SSC12 6.6 – 108.3 [113.1] S0143 [58.5] SW874 [32.7] SW605  

SSC13 1.6 – 79.3 [126.2] S0219 [31.9] SW344 [0.1] SW398  

SSC14 7.4 – 111.5 [111.5] SW857 [48.9] S0007 [27.9] SWC27 

SSC15 1.3 – 107.4 [111.8] S0355 [100.0] SW1111 [91.0] SW936 [41.9] SW1119 

SSC16 0.0 – 92.6 [93.2] S0111 [37.6] S0026 [41.8] S0061  

SSC17+ 0.0 – 94.0 [97.0] SW335 [33.8] SW840 [33.3] SW2431  

SSC18 5.0 – 57.6 [57.6] SW1023 [30.8] SW787 [100.0] SWR414 
1 relative position of flanking markers set used in this study from public map (USDA-

MARC v2); 
2 S0226 not covered by USDA-MARC v2, but SW14, which is closely linked to S0226 

(PigMaP v1.5); 
3 S0035 at 0.0 cM and S0003 at 144.5 cM in the International Workshop I SSC6 

integrated map with a total length of 166.0 cM;  
+data observed in F2 population 



Results       64 

 

4.2.3 Significance thresholds 

The average F-values for each significant threshold of all traits derived from the QTL 

express program showing F-values ≥2.0 separated by chromosomes and experiment-

wide significance levels after transformation are shown in table 18.  

 

Table 18: Significant threshold and experiment-wide significance levels after 

transformation 

Average of minimum F-value for reaching the 

following chromosome-wide significance level SSC 
Numbers of F-

values ≥2.0 
5% 1% 

1 9 4.65 6.54 

2 5 4.23 6.13 

3 20 4.48 6.35 

4 17 4.6 6.44 

5 9 4.03 5.88 

6 13 4.73 6.67 

7 19 4.78 6.62 

8 16 4.44 6.22 

9 2 3.85 5.58 

10 16 3.99 5.66 

11 13 3.87 5.66 

12 5 4.29 6.14 

13 3 3.88 5.64 

14 12 4.38 6.31 

15 8 4.36 6.18 

16 11 3.8 5.59 

17 19 3.1 4.73 

18 17 4.14 5.87 

 

4.2.4 Significant QTL 

Forty-two significant and twenty-four highly significant QTL could be detected for all 

immune traits. Most QTL were detected on SSC3, SSC16, and SSC18 (nine significant 
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F-values on each chromosome). No significant F-value was detected on SSC12 and 

SSC13. Most highly significant QTL could be detected for antibody response to 

mycoplasma, TT and PRRS vaccination, C3c and Hp concentration. For AH50 and 

CH50, 22 significant and 9 highly significant QTL could be detected. An overview of the 

detected QTL separated by chromosome and by trait is shown in table 19.  

 

Table 19: Summarise of the detected QTL in the backcross DUMI population 

Number of detected QTL 

All traits Complement activity Immunoassay SSC 

* ** * ** * ** 

1 2 0 2 0 0 0 

2 1 0 1 0 0 0 

3 7 2 2 0 5 2 

4 2 2 2 2 0 0 

5 2 1 2 1 1 0 

6 1 0 0 0 1 0 

7 6 1 5 1 1 0 

8 0 1 0 0 0 1 

9 1 0 1 0 0 0 

10 5 0 2 0 3 0 

11 2 2 0 0 2 2 

12 0 0 0 0 0 0 

13 0 0 0 0 0 0 

14 1 1 1 0 0 1 

15 1 0 0 0 1 0 

16 2 7 1 5 1 2 

17 4 2 1 0 3 2 

18 4 5 2 0 2 5 

Total 42 24 22 9 20 15 

* p≤0.05 ** p≤0.01 at chromosome-wide level 
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4.2.4.1 QTL for haemolytic complement activity traits 

QTL analysis was performed for two different traits within the haemolytic complement 

activity, the classical and the alternative pathway activities (CH50a and AH50). For both 

traits, effects were measured at different time points as mentioned in previous chapters. 

The CH50 activity was measured at six different time points, for four time points QTL 

could be detected. For CH50 at T1, significant F-values were detected on SSC3, SSC10 

and SSC14. On SSC17, a highly significant F-value for the measurement at T4 and one 

significant F-value at T6 were detected at the locus of the marker SW335 at 0 cM. For 

the measurement at T5, highly significant and significant F-values were detected on 

SSC16 and SSC5, respectively. Evidence for QTL significant at the 5% chromosome-

wide level for measurements of the CH50 obtained in the analysis of backcross DUMI 

population including estimated significance levels (F-value), position, and gene effects 

are shown in table 20. 

 

Table 20: Location and estimated effects of putative QTLs affecting the haemolytic 

complement activity in the classical pathway at different time points 

Trait SSC 
position 

(cM) 
F-value 

Additive 

effect 
S.E. 

Dominant 

effect 
S.E 

Variance 

(%)1 

CH50         

T1 3 78 5.58* 422.34 173.41 -191.53 200.8 23.36 

T1 10 100 5.65* 411.11 135.26 -253.46 174.94 23.35 

T1 14 120 4.21* 696.21 256.99 -1124.72 490.13 23.5 

T2 - - - - - - -  

T3 - - - - - - -  

T4 17 0 6.48** -1210.7 388.16 903.67 424.4 25.00 

T5 5 89 3.14* -222.11 192.46 575.53 249.85 30.22 

T5 16 79 9.34** -69.9 312.45 1447.43 446.55 29.42 

T6 7 66 4.41* 84.29 178.19 -441.68 188.99 30.23 

T6 17 0 4.15* -1216.86 469.89 955.37 513.76 34.13 

* p≤0.05 ** p≤0.01 at chromosome-wide level,  
1the fraction of phenotypic variance in the backcross explained by each QTL 
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Similar to CH50, the AH50 measurements at six different time points were also used for 

QTL detection. Significant F-values on SSC2, 3, 4, 9 and 10 were detected for only one 

measurement. QTL for the complement activity in the alternative pathway at T3 and T4 

was found on SSC1 at 74 cM. In addition, the linked regions for similar measurements 

were also found on SSC18 at 100 to 130 cM. On SSC4, four significant F-values were 

found for the measurements at T1, T3, T5 and T6 located nearby the marker SW2570 at 

approximately 50 cM. This clear picture of an interesting locus on one chromosome 

could not be found for SSC7, where significant F-values were detected for different 

measurements (T3, T5 and T6) covering different regions of the chromosome. 

Significance for almost all measurements was detected on SSC16 except for T5 and 

almost all QTL were located in the region of the marker S0026. The overview of all 

QTL detected for the different measurement for AH50 levels is shown in table 21. 

 

Table 21: Location and estimated effects of putative QTLs affecting the haemolytic 

complement activity in the alternative pathway at different time points 

Trait SSC 
Position 

(cM) 
F-value 

Additive 

effect 
S.E. 

Dominant 

effect 
S.E. 

Variance 

(%)1 

AH50         

T1 4 50 8.09** 56.22 244.63 528.34 284.59 31.91 

T1 5 66 7.13** 674.32 220.78 -1091.82 289.82 32.04 

T1 7 105 5.65* 1.49 189.34 -498.81 204.7 32.25 

T1 9 29 2.12* -827.24 651.2 1145.43 681.86 32.76 

T1 16 38 6.4* -235.4 167.41 -269.88 227.13 32.14 

T2 7 56 4.81* 110.17 187.7 -524.8 203.71 33.02 

T2 16 26 9.89** -80.84 202.65 -686.37 266.36 32.31 

T3 1 74 4.94* 750.51 239.56 -695.15 328.75 32.95 

T3 4 54 6.04* 200.57 235.58 266.2 273.26 32.79 

T3 16 18 8.43** -12.57 224.67 -715.02 285.84 32.46 

T3 18 130 5.78* -901.37 561.52 182.82 608.55 32.83 

T4 1 74 5.04* -746.69 235.24 769.13 322.83 32.35 

T4 7 0 5.5* 411.15 155.41 -578.51 175.08 32.29 

T4 10 0 4.33* 224.96 301.7 703.4 446.77 32.46 
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Table 21 (continued) 

Trait SSC 
Position 

(cM) 
F-value 

Additive 

effect 
S.E. 

Dominant 

effect 
S.E. 

Variance 

(%)1 

AH50         

T4 16 21 7.93** 32.94 214.13 -727.18 275.96 31.95 

T4 18 106 5.3* -676.81 780.88 -450.55 855.36 32.32 

T5 4 54 6.08* 29.05 236.97 456.51 274.87 32.98 

T5 7 58 5.8* -20.32 185.64 -470.52 202.12 33.02 

T6 2 58 4.25* 651.71 224.59 -695.91 273.05 33.81 

T6 3 30 5.2* -193.1 185.52 561.51 221.16 33.67 

T6 4 62 8.31** -238.07 230.69 791.73 269.91 33.22 

T6 5 56 4.87* 638.15 264 -1102.38 353.68 33.72 

T6 7 49 7.9** 277.69 193.52 -761.41 208.4 33.28 

T6 16 79 4.04* -182.04 359.4 -844.06 513.64 33.84 

** p≤0.05 ** p≤0.01 at chromosome-wide level,  
1the fraction of phenotypic variance in the backcross explained by each QTL 

 

The F-values of QTL of the haemolytic complement activity in the alternative pathway 

for the most interesting chromosomes including SSC1, SSC4, SSC7 and SSC16 are 

shown in figures 14, 15, 16 and 17, respectively. 
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Figure 14: Relative position of QTL for AH50 at T3 and T4 on SSC1 
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Figure 15: Relative position of QTL for AH50 at T1, T3, T5, and T6 on SSC4 
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Figure 16: Relative position of QTL for AH50 at T1, T2, T4, T5, and T6 on SSC7 
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Figure 17: Relative position of QTL for AH50 at T1, T2, T3, T4, and T6 on SSC16 

 

4.2.4.2 QTL for complement component C3c and Hp levels 

For C3c, different QTL could be detected in the backcross population. Only one 

significant F-value was detected on SSC16 and SSC17, whereas three interesting results 

on SSC11 for the measurements at T1, T3 and T6 were observed, indicating the region 
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between the markers S0071 and S0386 as important for search of possible candidate 

genes for this trait. On SSC3, there were significant F-values found mainly at 30 cM 

next to the marker S0164 for measurements excluding T5. The most interesting QTL on 

complement component C3c was found on SSC18 similar for all measurements, being 

located at 130 cM with the peak at the marker SWR414. All significant and highly 

significant F-values including the additive and dominant effects are shown in table 22.  

 

Table 22: Location and estimated effects of putative QTLs affecting the 

complement component C3c at different time points 

trait SSC 
Position 

(cM) 
F-value 

Additive 

effect 
S.E. 

Dominant 

effect 
S.E. 

Variance 

(%)1 

C3c         

T1 3 0 5.91* -200.1 212.94 828.34 285.42 33.17 

T1 11 23 4.41* 225.2 214.02 -607.48 254.12 33.39 

T1 18 130 5.29* -339.48 568.89 1112.3 616.54 33.26 

T2 3 31 8.28** -405.8 180.85 804.89 215.58 32.37 

T2 18 130 6.35** 448.5 558.31 377.14 605.07 32.64 

T3 3 30 6.38* -71.6 180.07 487.9 214.67 32.68 

T3 11 35 6.24** 591.06 231.13 -966.62 277.75 32.7 

T3 18 130 7.55** 1038.3 556.19 -228.93 602.77 32.52 

T4 3 29 4.98* 10.44 180.89 361.1 215.6 32.35 

T4 17 0 3.45* -1210.7 388.16 903.67 424.4 32.57 

T4 18 130 6.94** 145.67 548.7 721.7 594.66 32.08 

T5 16 0 3.57* -12.75 236.14 418.74 280.6 32.83 

T5 18 130 5.17* 104.82 557.55 656.82 604.25 32.60 

T6 3 29 4.84* 3.36 182.99 368.24 218.12 32.73 

T6 11 42 5.48** 369.79 224.41 -822.67 274.15 32.64 

T6 18 130 6.55** 62.24 555.68 793.02 602.23 32.49 

** p≤0.05 ** p≤0.01 at chromosome-wide level,  
1the fraction of phenotypic variance in the backcross explained by each QTL 

 

For C3c measurements, SSC3, SSC11 and SSC18 could be detected as the most 

interesting chromosomes. Within these chromosomes, significant F-values for all six 
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measurements where detected at the locus of the marker SWR414, at 130 cM. The 

following figures 18, 19 and 20 show the QTL effects for the different C3c 

measurements on SSC3, SSC11 and SSC18, respectively. 
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Figure 18: Relative position of QTL for C3c at T1, T2, T3, T4, and T6 on SSC3 
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Figure 19: Relative position of QTL C3c at T1, T3, and T6 on SSC11 
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Figure 20: Relative position of QTL for C3c at T1-T6 on SSC18 
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For Hp concentration, significant and highly significant F-values were detected for all 

measurements distributed over half of the autosomes. Only for SSC17, QTL could be 

detected for two different measurements (T4 and T5) indicating the region next to 

marker SW335 at 0 cM as interesting region comprising genes with possible effects on 

the Hp concentration. Moreover, significant F-values for one measurement on SSC3, 5, 

7, 8, 11, 14, 15 and 16 could be found as shown in table 23. 

 

Table 23: Location and estimated effects of putative QTLs affecting the 

concentration of Hp at different time points 

Trait SSC 
Position 

(cM) 
F-value 

Additive 

effect 
S.E. 

Dominant 

effect 
S.E. 

Variance 

(%)1 

Hp         

T1 3 92 6.25* 413.06 163.57 -187.47 187.33 25.41 

T2 7 127 5.44* 616.3 187.1 -419 195.4 29.22 

T2 8 27 7.4** 975.03 279.89 -1348.43 361.92 28.97 

T3 11 12 5.63* 546.98 189.19 -758.12 226.21 24.67 

T3 14 120 9.18** 1065.85 265.73 -1706.11 506.79 24.30 

T4 15 0 4.23* -643.68 225.67 563.18 267.23 24.08 

T4 17 0 6.05** -1132.21 375.94 843.77 411.04 24.21 

T5 5 89 4.11* -271.01 182.03 638.98 236.31 28.58 

T5 16 79 14.88** -175.92 290.07 1781.91 414.57 32.83 

T5 17 0 3.67* -872.06 444.67 1239.33 486.18 28.69 

T6 18 114 6.46** 441.73 573.49 438.74 623.39 25.49 

** p≤0.05 ** p≤0.01 at chromosome-wide level,  
1the fraction of phenotypic variance in the backcross explained by each QTL 

 

For the different Hp concentration in this study, only QTL affecting two different time 

points, T4 and T5 could be detected on SSC17. Figure 21 shows the effect on SSC17. 
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Figure 21: Relative position of QTL for Hp levels at T4 and T5 on SSC17 

 

4.2.4.3 QTL for antibodies responses to vaccinations 

For the trait of antibody response of Mh vaccination, four QTL on two different 

chromosomes could be detected. There was a chromosome-wide significant QTL 

detected on SSC10 at 100 cM with a peak at the position of marker S0070 for all three 

time points of measurement. The results are shown in table 24.  

 

Table 24: Location and estimated effects of putative QTLs affecting Mh-Ab 

Trait SSC 
Position 

(cM) 
F-value 

Additive

effect 
S.E. 

Dominant 

effect 
S.E. 

Variance 

(%)1 

Mh         

T1 10 100 4.43* 513.31 194.41 -732.9 251.44 33.56 

T2 10 100 4.76* 522.74 190.98 -746 247.01 32.97 

T3 6 16 4.53* 551.67 195.17 -695.3 239.01 33.01 

T3 10 100 4.18* 513.15 191.5 -684.2 247.67 33.06 

** p≤0.05 ** p≤0.01 at chromosome-wide level,  
1the fraction of phenotypic variance in the backcross explained by each QTL 

 

Regarding the antibody response to Mh vaccination, the most interesting chromosome 

for the detected of QTL affecting this trait was SSC10, as seen in table above and in 

figure 22. 
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Figure 22: Relative position of QTL for the antibody response to mycoplasma 

vaccination T1-T3 on SSC10 

 

On SSC6, one significant QTL could be detected for the last measurement. The 

measurements of antibody response to Mh vaccination nearly reach the significant F-

values of 4.4 and 4.3 respectively as demonstrated in figure 23. 

 

0

1

2

3

4

5

6

0 20 40 60 80 100 120
cM

F-
va

lu
e

Mh0
Mh10
Mh20
p≤0.05
p≤0.01

 
Figure 23: Relative position of QTL for the antibody to mycoplasma vaccination at 

T1-T3 on SSC6 

 

By using the 2-QTL model, no good evidence for two QTL on SSC6 for the 

measurement of the antibody response to Mh vaccination could be found. 

For the measurement of the antibody response to TT vaccination, there was no QTL 

found for the first measurement (T3). For the second measurement (T4), there was a 

significant QTL on SSC17 at 0 cM. A highly significant QTL could be detected at 30 

cM at the locus of the marker S0026 for the last measurement (T5) during TT 

vaccination. Data are shown in table 25. 
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Table 25: Location and estimated effects of putative QTLs on the antibodies to 

tetanus toxoid at different time points of measurement 

Trait SSC 
Position 

(cM) 
F-value

Additive

effect 
S.E. 

Dominate 

effect 
S.E. 

Variance 

(%)1 

TT         

T4 17 0 4.15* -859.81 377.96 565.0 413.25 24.34 

T5 16 30 9.98** -16.11 167.78 676.19 223.48 28.45 

** p≤0.05 ** p≤0.01 at chromosome-wide level,  
1the fraction of phenotypic variance in the backcross explained by each QTL 

 

The F-values of other time point measurements for antibody response to TT vaccination 

were too low and no nearly significant level could be reached. One QTL could be 

detected affecting the trait of measurement of antibody to PRRS vaccination. A highly 

significant linkage was detected on SSC3 at the position of 14 cM at T6. The detected 

peak was seen between the loci of the marker SW72 and S0164 as shown in table 26. 

 

Table 26: Location and estimated effects of putative QTLs on the antibodies to 

PRRS vaccination at different time points of measurement 

Trait SSC 
Position 

(cM) 

F-

value 

Additive

effect 
S.E. 

Dominant 

effect 
S.E. 

Variance 

(%)1 

PRRS         

T6 3 14 6.35** 73.69 212.78 450.98 258.97 30.36 

** p≤0.05 ** p≤0.01 at chromosome-wide level,  
1the fraction of phenotypic variance in the backcross explained by each QTL 

 

The following figure 24 illustrates QTL affecting antibody response to PRRS 

vaccination that could be detected on SSC3. 
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Figure 24: Relative position of QTL for antibody to PRRS vaccination on SSC3 

 

For the traits regarding antibody to different vaccinations, SSC3, SSC6, SSC10, SSC16 

and SSC17 could be detected as interesting chromosomes. The most important locus 

seems to be located nearby the marker S0070 on SSC10 where QTL affecting the 

antibody response to Mh vaccination at all three different measurements were detected.  

 

4.3 Molecular genetic analyses of porcine MBL genes  

4.3.1 Expression study of porcine MBL genes 

The expression of MBL1 and MBL2 genes in different porcine tissues were investigated 

using mRNA from ten tissues of adult animals of the third generation of the backcross. 

The results showed differential expression of the porcine MBL genes as demonstrated in 

figure 25. Both MBL genes were highly expressed in liver. Low MBL1 expression was 

also found in lung, testis and brain, while low expression of MBL2 was detected in testis 

and kidney. 

 
Figure 25: Tissues specific expression patterns of MBL1 and MBL2 genes assayed 

by RT-PCR. The RT-PCR of ribosomal 18S was performed to provide an 

internal reference. 
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4.3.2 Single nucleotide polymorphism detection 

Two SNPs were found at the position 579 (G to A) and 645 (G to A) of porcine MBL2 

mRNA (GenBank accession no. NM_214125) in F2 DUMI population, one of these was 

confirmed by enzyme digestion in PCR-RFLP analysis. This two SNPs were located at 

codon 193 (AAG) and 215 (GTG) of the predicted amino acid sequence (GenBank 

accession no. AAD45377), but did not effect amino acid composition in the translated 

protein (Lys and Val at codon 193 and 215, respectively). A SNP (at codon 215) 

affecting an AdeI restriction site was found to be segregating in the F2 DUMI resource 

population. The AdeI PCR-RFLP includes fragments of 319 bp (allele A), 286 bp, and 

33 bp (allele G) as illustrated in figure 26. 

 

 
Figure 26: Mendelian inheritance of the G>A SNP at position 645 of porcine MBL2 

in the F2 DUMI resource population. (The 33 bp fragment was not 

visible in this figure.)  

 

4.3.3 Genetic and physical mapping of porcine MBL genes 

The results of RH mapping as shown in table 27 assigned both porcine MBL genes to 

chromosome 14 (SSC14) with retention frequencies of 16% for both genes. The most 

significant linked markers (with two-point analysis) for porcine MBL1 and MBL2 were 

SW210 (89 cR; LOD = 3.32) and SW1552 (35 cR; LOD =10.66), respectively.  

Genetic mapping by ‘two point’ linkage analysis using CRIMAP 2.4 (Green et al. 1990) 

was also performed. The linked marker was S0007 with two-point recombination 

frequencies and LOD scores for porcine MBL1 and MBL2 being 0.32, 3.34 and 0.23, 

8.26, respectively. 
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Table 27: Relative distances, LOD scores, linked markers and chromosomes of the 

corresponding ‘two point analysis’ for MBL genes by radiation hybrid 

panel (118 hybrids) 

Gene 
Map 

Order 
Chromosome 

Marker 1 

Marker 2 

P(BR)a 1 

P(BR) 2 

Distance 1  

Distance 2  

LOD 1 

LOD 2 

1 14 
SW1536 

SW1556 

0.62 

0.67 

0.97 

1.11 

2.87 

2.22 

2 15 
SW1263 

SW120 

1.05 

0.7 

 

1.2 

0 

1.8 

3 14 
SW210 

SW1536 

0.59 

0.62 

0.89 

0.97 

3.33 

2.87 

4 15 SW1339 0.78 1.5 1.02 

MBL1 

5 8 
S0178 

Sw2521 

1.01 

0.8 

 

1.59 

0 

0.85 

1 14 
SW1552 

SW2122 

0.29 

0.77 

0.35 

1.48 

10.67 

1.07 

2 14 
SW1082 

SW1552 

0.43 

0.29 

0.56 

0.35 

6.33 

10.67 

3 14 
SW2001 

SW1082 

0.67 

0.43 

1.1 

0.56 

2.09 

6.33 

4 4 
SW1364 

SW589 

0.56 

0.76 

0.82 

1.43 

4.05 

1.2 

MBL2 

5 12 SWR1021 0.81 1.64 0.75 
a P(BR) Estimate of breaking probability 

 

4.3.4 Genotyping of the porcine MBL genes 

The results from 347 F2 DUMI pigs using HinfI enzyme digestion in PCR-RFLP 

showed allele C and allele T frequencies of MBL1 gene of 0.67 and 0.33, respectively. 

The genotype frequencies were 0.48, 0.38 and 0.14 for C/C, C/T, and T/T, respectively. 

For MBL2, the results from 284 F2 DUMI pigs using the AdeI enzyme digestion in 

PCR-RFLP showed allele G and allele A frequencies of 0.41 and 0.59, respectively. The 
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genotype frequencies were 0.21, 0.40, and 0.39 for G/G, G/A, and A/A, respectively 

(Table 28). 

 

Table 28: Genotype and allele frequencies of porcine MBL1 (C to T substitution at 

intron 1) and MBL2 (G to A substation at codon 215) in the F2 DUMI 

population 

 Animals Allele frequencies Genotype frequencies 

  C T C/C C/T T/T 

MBL1 304 0.67 0.33 0.48 0.38 0.14 

       

  G A G/G G/A A/A 

MBL2 284 0.41 0.59 0.21 0.40 0.39 

 

4.3.5 Phylogenetic analyses of MBL genes 

The predicted amino acids sequences of MBL-A and MBL-C across species (porcine, 

human, rhesus monkey, mouse, rat and chicken) were aligned. The unrooted neighbour-

joining tree showing phylogenetic relationships of MBL based on the neighbour-joining 

(NJ) method reconstructed by MEGA3 (figure 27) indicated the three distinct forms of 

MBL among all species investigated (MBL-A and MBL-C in mammals and MBL in 

chicken). In total 12 predicted amino acid sequences were used for constructing the tree. 

The MBL-A and MBL-C branches each comprise of three different sub-branches, i.e. 

rodent (mouse and rat), primate (rhesus and/or human) and non-primate (porcine and 

cattle). The non-primate sub-branch of both MBLs indicates highest identity (76% and 

98% bootstrap values for MBL-A and MBL-C) of porcine to bovine. The result also 

indicates a closer relationship of the non-primate to primate than to the rodent group. 
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Figure 27: Unrooted neighbour-joining tree showing phylogenetic relationships of 

MBL in mammals and chicken. The numbers at the nodes are the 

bootstrap scores (percentage of 1000 replicates). 

 

4.3.6 Association analyses 

The model application including the MBL1 and MBL2, and their interactions with time 

points revealed that the genotype of both genes showed no effect on haemolytic 

complement activity in classical and alternative pathways as shown in table 29. The 

haemolytic activities of both pathways depend on sequences of the complement cascade 

that do not directly involve MBL1 or MBL2. Thus, finding of no-association could have 

been expected. However, the outcome emphasises and highlights the specificity of the 

results obtained for C3c serum concentration that reflects In vivo complement activation 

after the vaccination that may act on the lectin pathway controlled by MBL. In fact, the 

C3c protein level, which reflects In vitro complement activity, tended to be higher in 

MBL1 heterozygous genotypes (C/T) than in the homozygous genotypes (C/C and T/T) 

(p=0.067). There was a highly significant effect of time points of measurement 

(P<0.001).  
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Table 29: Least square means of the haemolytic complement activities (AH50, 

CH50) and C3c concentration for the effect of MBL1and MBL2 genotypes 

in the F2 DUMI population 

Genotype  AH50 CH50 C3c 

MBL1 C/C 56.29 ± 2.47 68.12 ± 3.31 0.190 ± 0.004 

 C/T 58.13 ± 2.60 65.25 ± 3.55 0.198 ± 0.005 

 T/T 54.27 ± 3.40 62.90 ± 4.31 0.192 ± 0.005 

Effect (P): MBL1 0.355 0.313 0.067 

 Time < 0.001 < 0.001 < 0.001 

 MBL1*Time 0.690 0.479 0.056 

MBL2 G/G 58.24 ± 3.14 67.59 ± 4.36 0.201 ± 0.006 

 G/A 60.58 ± 2.60 68.89 ± 3.50 0.201 ± 0.005 

 A/A 56.69 ± 2.63 65.54 ± 3.61 0.194 ± 0.005 

Effect (P): MBL2 0.141 0.499 0.136 

 Time < 0.001 < 0.001 < 0.001 

 MBL2*Time 0.664 0.723 0.967 

 

Interactions of time points and MBL genotypes in the repeated measures model reflect 

the dependency of the profile of complement activity along the experiment on the 

genotype. For In vivo complement activity, a slight MBL1 genotype dependent deviation 

of the profiles of C3c concentration over time points was found (p=0.056). This 

deviation is most prominent late after Mh vaccination. The profiles of the haemolytic 

complement activities between different genotypes of porcine MBL1 and MBL2 were 

similar over time points as shown in figure 28. No significant effect of interaction 

between genotypes and time points on haemolytic complement activity was found in the 

alternative and classical pathway. 
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Figure 28: Plots of least square means of CH50, AH50 and C3c at different time points (A: MBL1, B: MBL2) 

 



Discussion    83 

 

5 Discussion 

 

5.1 Immunological analyses 

5.1.1 Complement activity 

The complement system plays an important role in host defence against infection and in 

most inflammatory processes. Assessing the functional integrity of the complement 

system (classical pathway) has been accomplished in the clinical laboratory by such 

assays for many years (Jaskowski et al. 1999). The assay is quantitative, with the result 

expressed as the reciprocal of the serum dilution required to produce lysis of 50% of 

defined numbers of red cells under standard conditions. The pathway is initiated by IgM 

on the surface of sheep RBCs (early antigen, EA, antibody sensitized sheep 

erythrocytes) and the assay is performed in the presence of calcium and magnesium ions 

(required for classical pathway activation). This assay needs to be controlled with 

positive control samples that are known to contain all the components and by a negative 

control, which controls spontaneous lysis of the erythrocytes. The amount of haemolysis 

(measured by determining the absorbance of the cell supernatant) can be compared with 

a known serum or using the von Krogh equation (North and Whaley 2005). 

In this study, haemolytic activities of classical and alternative pathways of experimental 

pigs under different vaccinations were altered from 28.44 U/ml prior vaccinations to 

35.27 U/ml after three vaccination treatments in the classical pathway and from 27.95 to 

56.09 U/ml in the alternative pathway. Mekchay et al (2003) reported a range of the 

haemolytic complement activity between 39.17 to 59.63 U/ml for the classical pathway, 

and 49.50 to 63.06 U/ml for the alternative pathway in the F2 DUMI population. 

Moreover, it has been reported that the porcine haemolytic complement activity varied 

from 3.6 to 210 U/ml for the classical pathway (Ish et al. 1993, Renshaw and Gilmore 

1980), and 8 to 33 U/ml for the alternative pathway (Mallard et al. 1989, Wimmers et al. 

1999a). The variation of the haemolytic activity is associated with many factors, 

including age (Bernoco et al. 1994, Tanaka et al. 1986), vaccination (Mallard et al. 

1989, Wimmers et al. 1999a), nutritional status (Sakamoto et al. 1998), genetics 

(Mallard et al. 1989, Vaiman et al. 1978, Wimmers et al. 1999a) and sample storage 

temperature (Demey et al. 1993, Pandey et al. 1993). 
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For the alternative pathway activity, sheep red cells are inefficient, so rabbit 

erythrocytes are used for the AH50 assay. Ethyleneglycol bis (b-aminoethyl ether)-N,N-

tetraacetic acid (EGTA) chelates calcium, but not magnesium ions, will prevent any 

concomitant activation of the classical pathway while permitting activation of the 

alternative pathway (North and Whaley 2005). 

 

5.1.2 Antibody response to vaccinations 

The antibodies were measured with assays designed to detect naturally acquired 

antibodies. A rise in antibody response to Mh and TT vaccinations was clearly found 

over the time points of measurement (14.59 to 37.40 % for Mh antibodies, and 0.09 to 

0.92 of ELISA S/P ratio result for TT antibody). It is difficult to estimate the trend of 

PRRS antibodies over vaccination time due to the single measurement in the study.  

M. hyopneumoniae is the primary pathogen responsible for swine enzootic pneumonia, 

which is thought to be the most important contributor to disease-associated economic 

losses in swine production worldwide (Kristensen et al. 2004). The study from Feld et 

al. (1992) suggested that using the blocking ELISA appears to be a valuable and 

reproducible tool in the surveillance and serodiagnosis of M. hyopneumoniae infections 

in pigs. Comparing to the indirect hemagglutination assay (IHA), the ELISA give earlier 

detection and less cross reaction results than the IHA assay. This conclusion was 

confirmed by the previous study. Armstrong et al. (1983) indicated that ELISA is 

potentially very attractive as a practical serodiagnostic test for M hyopneumoniae in 

pigs, and their study indicated that it is extremely sensitive for detecting antibodies to 

M. hyopneumoniae. Furthermore, it lends itself to automation and thus would be 

economical for herd testing. 

The measurement of antibodies response to TT in this study indicated the increase of 

antibodies over the time. In the measurement for this antibody, the tetanus toxoid was 

used as an antigen and the conjugated rabbit antibody against pig immunoglobulin was 

used as a second antibody. It can be concluded from the results, that the increased 

antibody level detected reflects the total immunoglobulin due to the detection antibody 

used. It has been, however, reported that TT antibody levels decreased significantly 

with time after the last TT vaccination but did not lead to nonprotective levels of TT 

antibodies (Aboud et al. 2001, Cook et al. 2001, Simonsen et al. 1987a). 
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PRRS has been recognized as an economically important disease of pigs in many parts 

of the world in the early 1990s. This disease causes reproductive failure in pregnant 

sows and respiratory problems in piglets (Bilodeau et al. 1991, Christianson et al. 1992, 

Collins et al. 1992, Wensvoort et al. 1991, Yoon et al. 1992). To determine the antibody 

response to PRRS, ELISA technique was found to contribute to a better performance in 

the combination of sensitivity (96.1%) and specificity (100%) relative to the reference 

classification of the serum samples and repeatability (kappa value 98%). It is technically 

superior to an indirect immunofluorescent assay (IFA) and an immunoperoxidase 

monolayer assay (IPMA), time efficient, cost effective and suitable for testing of a large 

number of samples over a short period of time. These would bring the ELISA to a 

preferred assay for routine detection of antibody response to PRRS in pig sera (Cho et 

al. 1996, 1997b). 

 

5.1.3 Complement C3c concentration 

C3c is the split product derived from proteolysis of inactive C3b (iC3b) in serum and 

cell surfaces (Davis et al. 1984, Lachmann et al. 1982). The measurement of C3c 

concentration in serum has been performed in many studies for determining the 

complement activity of the major component in the complement system, C3 (Asghar et 

al. 1984, Borque et al. 1983, Gonzalez-Ortiz et al. 2002, Kallman et al. 1998, Mekchay 

et al. 2003, Wimmers et al. 1999a, Wimmers et al. 2003). In this study, C3c was 

measured by indirect ELISA, and a polyclonal rabbit anti-human C3c was used for 

determining the C3 component in the sera. The results show an increase of the C3c 

concentration after each period of Mh, TT and PRRS vaccination.  

A previous study, conducted by Mekchay (2003), showed a significant effect of the 

interaction between the C3 genotype and the time point of C3c measurement on the C3c 

concentration. The result also showed an increase of C3c after 10 days of Mh 

vaccination in heterozygous animals which was higher than in homozygous animals in 

this study. In contrast, the C3c concentration in homozygous animals was significantly 

higher than in heterozygous animals after 4 days of Aujeszky vaccination. However, the 

C3c concentration was not different between genotypes at 10 days after PRRS 

vaccination. Another study indicated that the variation of the C3c is associated with sire 
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and dam factors as well as the vaccination effects (Wimmers et al. 1999a, Wimmers et 

al. 1999b). 

 

5.1.4 Haptoglobin concentration 

Estimations of changes in acute phase protein (APP) levels are useful, since they 

generally reflect the presence and intensity of an inflammatory process (Gabay and 

Kushner 1999). The Serum concentration of the APP including haptoglobin changes 

dramatically during the acute phase response. They are present at substantially different 

concentrations in the blood and can be classified according to the magnitude of their 

increase. Hp is a positive APP in serum concentrations during an acute phase response 

(Hiss et al. 2003, Petersen et al. 2004). An acute phase response was developed in the 

different diseases studies, this response was higher in animals with clinical signs and 

concurrent bacterial processes (Parra et al. 2006). 

The Hp concentration obtained from backcross DUMI population in this study (range 

between 1.23 ± 0.92 to 2.18 ± 1.07 mg/ml) were similar to experimental pigs (1.19 ± 

0.24 to 1.42 ± 0.02 mg/ml) that were raised in two traditional farms in the study of Chen 

et al. (2003), but higher than the values obtained from conventional and specific 

pathogen free herds in their report (0.9 and 0.3 mg/ml, respectively). 

 

5.2 QTL analysis 

The objective of the QTL study was to identify QTL that affect the immune traits and to 

further identify candidate genes underlying the detected QTL which might play an 

important role on the immune traits. In this study, different measurements of the 

immune competence were used as phenotypes. As the regions of QTL are too large, 

genes were identified by searching functional or positional candidate genes in the region 

of the QTL detected in this study. For that reason, we first identified genes, already 

mapped in the QTL regions in the pig. Further, because of many genes are already 

mapped in human, we identified genes, involved in the immune system on the 

homologous chromosomes in human. Table 30 is showing the homologous human 

chromosomes, to the chromosomes where QTL for the traits, measured in this study, 

were detected. Only the most interesting QTL for each chromosome are mentioned. 
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For further discussion, the single measurements were defined as times, so they were 

named as trait_1, trait_2, trait_3, trait_4, trait_5 and trait_6 for the measurements of 

AH50, CH50, C3c and Hp following the treatments with vaccinations of Mh, TT and 

PRRS. Also the single measurement of antibody response to vaccination was defined as 

day of vaccination and they were named as Mh0, Mh10, Mh20, TT0, TT20, TT40 and 

PRRS10 for Mh, TT and PRRS vaccination at different time points, respectively. 

The interesting results are the QTL for C3c_1 on SSC3 and SSC18, for antibody to 

PRRS vaccination on SSC3, the QTL for AH50_2 on SSC7 and SSC16 and the QTL for 

antibody response to Mh vaccination on SSC10. 

 

Table 30: Homologous regions in the human genome for detected porcine QTL 

SSC Trait 
Porcine QTL 

position (cM) 

Homologous region 

on HSA 

1 AH50_(3, 4) 74 HSA9 or HSA15q 

PRRS10 14 

C3c_(1, 2), C3c_(3, 4, 6), AH50_6 0 to 30 3 

CH50_1, AH50_6 75 to 95 

HSA16p or HSA7 

or HSA2p 

4 AH50_(1, 3, 5, 6) 50 to 62 HSA8q 

6 Mh20 16 
HSA16q or 

HSA19q 

7 AH50_(1, 2, 4, 5, 6),CH50_6, Hp_2 0 to 105 

HSA6p or HSA14q 

or HSA15q or 

HSA19q 

10 Mh (0, 10, 20 ) 100 HSA10p 

11 C3c_(1, 3, 6) 23 to 42 
HSA13p or 

HSA13q12-21 

16 AH50_(1, 2, 3, 4), CH50_5, Hp_5, TT40 18 to 79 
HSA5p or 

HSA5q11-14 

17 Hp_(4, 5), C3c_4, CH50_ (4, 6), TT20 0 HSA20p [or HSA5] 

18 C3c_(1, 2, 3, 4, 5) 130 HSA7q22-36 
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5.2.1 QTL for haemolytic complement activity traits 

There is no clear evidence of QTL for the CH50 levels measurements on any 

chromosome. The only region harbouring a QTL affecting two different measurements 

(CH50_4 and CH50_6) was found on SSC17 at 0 cM. Most QTL were detected for the 

measurements of AH50 on SSC1 (AH50_3 and AH50_4), SSC4 (AH50_2, AH50_3, 

AH50_4 and AH50_6), SSC7 (AH50_1, AH50_2, AH50_4, AH50_5 and AH50_6), and 

SSC16 (AH50_1, AH50_2, AH50_3, AH50_4 and AH50_6). Two of the most interesting 

chromosomal regions contain QTL for AH50 on SSC7 and SSC16, where QTL for five 

measurements could be detected. According to the literatures, several genes that found 

lie on SSC7 are involved in the immune response, including complement factor B 

properdin (BF), genes belonging to the major histocompatibility (MHC) class (i.e. DR 

beta2 (DRB) or DQ alpha (DQA) or beta (DQB) (Hradecky et al. 1982, Hruban et al. 

1976, Smith et al. 1995, Vaiman et al. 1979)), immunoglobulin alpha (IGA) (Fronicke et 

al. 1996, Thomsen et al. 1998), mannose phosphate isomerase (MPI) (Christensen et al. 

1985, Gellin et al. 1981), T cell receptor alpha (TCRA) and transforming growth factor 

beta 3 (TGFB3) (Rettenberger et al. 1996). While on SSC16, the complement 

component 9 gene (C9) (Thomsen et al. 1998, Wintero et al. 1998) is also involved in 

the immune response. For further identification of genes located in the porcine QTL 

regions in this study, the comparative maps of human genome were applied. HSA6p, 

HSA14q, HSA15q, and HSA19q are homologous to SSC7, while HSA5 is homologous 

to SSC16 (Meyers et al. 2005). Examples of genes involved in the immune response 

found in the comparative maps at the homologous porcine regions as obtained by NCBI 

GenBank are shown in table 31.  

 

Table 31: Comparative human positional candidate genes and regions for SSC7 

and SSC16 

SSC HSA Gene 

SSC7 HSA6p21.3 
Immune response to synthetic polypeptide-irglphe 1 

(IGLP1)(Chan et al. 1984, Hsu et al. 1981) 

SSC7 HSA6p21.3 
Major histocompatibility complex, class I, A (HLA-A) 

(Bakker et al. 1979) 

SSC7 HSA6p21.3 Complement component 4A (C4A) (Teisberg et al. 1976) 
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Table 31 (continued) 

SSC HSA Gene 

SSC7 HSA6p21.3 
Major histocompatibility complex, class II, DR alpha 

(HLA-DRA) (Levine et al. 1984) 

SSC7 HSA6p21.3 
major histocompatibility complex, class II, DQ alpha-1 

(HLA-DQA1) (Levine et al. 1984) 

SSC7 HSA14q32.1 Protease inhibitor (PI) (Schroeder et al. 1985) 

SSC7 HSA14q32.33 IgG heavy chain locus (IGHG1) (Cox et al. 1982) 

SSC7 HSA19p13.3 CD209 antigen (CD209) (Soilleux et al. 2000) 

SSC7  

SSC16 

HSA6p21.2-p12 

HSA5q33.2 

HSA5q32 

IgE responsiveness, Atopic (IGER) 

SSC16 HSA5q31 Interleukin 13 (IL13) (Morgan et al. 1992) 

SSC16 HSA5q31.1 Interleukin 4 (IL4) (Sutherland et al. 1988) 

SSC16 HSA5q31.1 Interleukin 5 (IL5) (Sutherland et al. 1988) 

SSC16 HSA5q31.1-q33.1 Interleukin 12B (IL12B) (Sieburth et al. 1992) 

 

5.2.2 QTL for complement component C3c and Hp concentrations 

The results indicated at least three interesting QTL affecting the measurements for C3c 

that could be detected on SSC3, SSC11, and the most interesting on SSC18. Genes 

already mapped on porcine chromosomes are involved in traits related to the immune 

system are T cell receptor beta (TCRB), and inhibin beta A (INHBA) (Lahbib-Mansais et 

al. 1996, Rettenberger et al. 1996). 

A number of genes locating on the HSA7, a homologous chromosome region to SSC18, 

that involved in the immune response could be identified and proposed as a candidate 

gene. The following genes are interesting regarding the immune system: T-cell antigen 

receptor, gamma subunit (TCRG) at 7p15-p14 (Bensmana et al. 1991), 

mucopolysaccharidosis type VII (GUSB) at 7q21.11 (Ward et al. 1983), interleukin 6 

(IL6) at 7p21, zinc finger protein, subfamily 1A, member 1 (ZNFN1A1) at 7p12, 

Shawachman-diamond syndrome (SDS) at 7q11, carboxypeptidase, vitellogenic-like 

(CPVL) at 7p15-p14, and receptor activity-modifying protein 3 (RAMP3) at 7p13-p12.  
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On the SSC3, different genes, including interleukin alpha and beta (IL1A and IL1B), 

immunoglobulin kappa light chain (IGKC) and the B-cell genes, B-cell CLL/lymphoma 

7B (BCL7B) and B-cell maturation factor (BCMA) are already mapped. High conserved 

regions of SSC3 are mentioned to be HSA16p, HSA7 and HSA2p (http://www.toulouse 

.inra.fr/lgc/pig/compare/compare.htm). Many genes could be identified derived from 

NCBI database which are involved in the immune system e.g. immunoglobulin, variable 

region genes of kappa light chain (IGKV), immunoglobulin kappa constant region 

(IGKC) on HSA2p12 (Malcolm et al. 1982), and T-cell antigen receptor gamma subunit 

(TCRG) on HSA7p15-p14 (Bensmana et al. 1991).  

 

5.2.3 QTL for antibodies responses to vaccinations 

The most interesting chromosome for antibody-related traits in our study is SSC3 for 

antibody response to PRRS vaccination and SSC10 for antibody response to Mh 

vaccination. The detected QTL affecting the antibody response to Mh vaccination is 

interesting, as for all three measurements the same region could be identified. The 

human genes on the HSA10p region are homologous to those regions that were found 

by QTL analysis on porcine SSC10 at 100 cM. Genes in this region are gata-binding 

protein 3 (GATA3) at HSA10p15 (Joulin et al. 1991) and neuropilin1 (NRP1) at 

HSA10p12 (Rossignol et al. 1999). In pig, different genes were mapped on SSC10q 

which are involved in immune response, including EST Z81203 of macrophage 

inflammatory protein beta 1 (MIP1B) at 10q11-q12, porcine EST BF713707 of inter-

alpha-inhibitor heavy chain H2 at 10p17, integrin beta 1 subunit (ITGB1) at 10p17, 

porcine EST Z84039 of iron responsive element binding protein (IREB1) at 10q11-q12, 

and porcine EST of cathepsin L (AJ301219; CTSL) at SSC10q11-q12. 

 

5.2.4 Comparison of detected QTLs in DUMI F2 and backcross population 

The following figure 29 shows the detected QTL of F2 DUMI population by Wimmers 

(2002). Based on this result, the QTL analysis in backcross was performed in order to 

confirm the previous detection. Similarities were found on: SSC3, SSC4, SSC5, SSC8 

and SSC10. There was no QTL detected on SSC13 in both populations. In backcross 

and F2, QTL for traits related to the measurement of C3c level were also found.  
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Figure 29: Overview of QTL for haemolytic complement activities (AH50 and CH50), antibodies to Mh, TT and PRRS vaccinations, 

Component complement C3c and haptoglobin traits in F2 and backcross DUMI populations (green: F2 DUMI (Wimmers 2002) 

red: backcross DUMI). 
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5.2.5 Conclusions from QTL identification 

A number of QTL for the immune traits could be detected in the backcross population 

in this study. Many QTL regions affecting the immune traits were also found in 

different species such as mouse, human and chicken (de Buhr et al. 2006, Hall et al. 

2002, Siwek et al. 2003a, Siwek et al. 2003b). In mouse, the number of candidate genes 

that play an important role for inflammatory processes and immune response could be 

increased by the combination of QTL and microarray approach (de Buhr et al. 2006). 

These results, found in other species, suggest further work including additional 

methods, which seem to be promising for the detection of candidate genes involved in 

the development of the immune system.  

Only few reports exist on QTL affecting traits related to the immune capacity in pigs. 

Edfors-Lilja et al. (1998) identified four QTLs with significant effects on the immune 

functions in pigs. These four QTL consist of a QTL affecting total leukocyte counts on 

SSC1 at 78 cM (p ≤ 0.05), mitogen-induced proliferation on SSC4 at 75 cM (p ≤ 0.05), 

prevaccination levels of antibodies response to E. coli Ag K88 on SSC5 at 64 cM (p ≤ 

0.01) and antibody response to the O149 antigen on SSC6 at 69 cM (p ≤ 0.01). 

Additionally, the other three putative QTL (p ≤ 0.10), affecting mitogen-induced 

proliferation on SSC7 at 73 cM, spontaneous proliferation on SSC13 at 107 cM, 

antibody response to the O149 antigen on SSC6 at 67 cM could be identified in their 

study. The identification of QTL with effect on stress induced alterations of porcine 

immune function were also done by Edfors-Lilja et al.(2000). Their results indicate 

several significant and suggestive QTL for a number of immune capacities. These 

suggestive QTL consist of highly significant QTL (p ≤ 0.01) affecting ‘stress’ induced 

alterations in mitogen induced interleukin 2 activity on SSC12 at 109 cM and number of 

neutrophils on SSC8 at 47 cM. Significant QTL (p ≤ 0.05) affecting spontaneous 

proliferation after stress on SSC2 at 109 cM and mitogen induced interleukin 2 activity 

after stress on SSC6 at 127 cM were also detected. A suggestive QTL (p ≤ 0.10) from 

this study was the QTL affecting mitogen induced proliferation after stress on SSC11 at 

3 cM. Wattrang et al. (2005) verified and confirmed the involvement of the 

chromosomal regions on SSC1 and SSC8 reported by Edfors-Lilja et al (1998, 2000). 

The QTL affecting hematocrit and haemoglobin levels, leucocyte numbers and in vitro 

leukocyte functions were also detected on SSC1 and SSC8 at the similar regions.  
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In cattle, many QTL could be detected and published on the QTL database 

(http://www.animalgenome.org/cgi-bin/QTLdb/) (Hu et al. 2005). QTL for general 

disease resistance were found on BTA9, BTA11, BTA15, and BTA25 in animals from 

the 10 largest dairy cattle half-sib families in Sweden (Holmberg and Andersson-Eklund 

2004). In chicken, many QTL could be identified for antibody response to different 

pathogens (Siwek et al. 2003a, Yonash et al. 2001).  

Many interesting QTL regions as well as candidate genes are also detected in chicken 

for different immune traits and are mostly related to the immune response. The 

interleukin genes are found to be candidate genes for immune response (Zhou et al. 

2001, Zhou and Lamont 2003b). Significant association was also found for the TGFB2, 

TGFB3, and TGFB4 genes to multiple immune response parameters. The TGFB SNPs 

might be applied in MAS to improve antibody production. Different QTL were detected 

for genetic regulation of antibody response to two different T-cell dependent antigens 

on GGA2, GGA3, GGA14, GGA18, and GGA27 (Siwek et al. 2003a). The regions on 

GGA3, GGA5, GGA6, and GGAZ were found to contain QTL affecting antibody 

kinetics in hens (Zhou et al. 2003). QTL for different traits related to immune system 

parameters were detected on GGA3, GGA5, GGA6, GGA9, GGA10, GGA15, GGA16, 

GGA23 and GGA27. These QTL are involved in the regulation of the primary and 

secondary immune response to sheep red blood cells (Siwek et al. 2003b).  

According to the comparative mapping of chicken and human chromosome regions by 

Groenen et al. (2000) and human to pig by Meyers et al. (2005), the homologous of 

detected QTL affecting immune response in the backcross in this study to chicken QTL 

affecting immune capacity traits could be identified as described in table 32. 
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Table 32: Homologous chromosomal segments of detected porcine QTL regions in 

human and chicken 

GGA HSA SSC QTL in pig 

GGA2 

HSA3p 

HSA7q 

HSA10p 

HSA7p 

HSA9q 

HSA6p 

HSA18p 

HSA18q 

HSA8p 

HSA8q 

SSC13 

SSC18 

SSC10 

SSC18 

SSC1 

SSC7, 1 

SSC1,6 

SSC1, 6 

SSC4, 14 

SSC4, 14 

- 

AH50_3, AH50_4, C3c_1-C3c_6, Hp_6 

AH50_4, CH50_1, Mh0, Mh10, Mh20 

AH50_3, AH50_4, C3c_1-C3c_6, Hp_6 

AH50_3, AH50_4 

AH50_1-2, AH504-6, CH50_6, Hp_2, AH50_3, AH50_4 

AH50_3, AH50_4; Mh20 

AH50_3, AH50_4; Mh20 

AH50_1, AH50_3, AH50_5, AH50_6; CH50_1, Hp_3 

AH50_1, AH50_3, AH50_5, AH50_6; CH50_1, Hp_3 

GGA3 

HSA20p 

HSA1q  

HSA16p 

HSA4p 

HSA6q 

 

HSA19q 

HSA2p 

SSC17 

SSC14 

SSC3 

SSC8 

SSC1, 7 

 

SSC6, 7 

SSC2 

CH50_4, CH50_6, TT20, C3c_4, Hp_4, Hp_5 

CH50_1, Hp_3 

AH50_6, CH50_1. PRRS10, C3c_1-C3c_4, C3c_6, Hp_1 

Hp_2 

AH50_3, AH50_4; AH50_1, AH50_2, AH504-6, CH50_6, 

Hp_2 

Mh20, AH50_1, AH50_2, AH50_4-6, CH50_6, Hp_2 

AH50_6 

GGA5 

HSA11p 

HSA15q 

HSA1p 

HSA14q 

SSC2 

SSC1 

SSC6 

SSC7 

AH50_6 

AH50_3, AH50_4 

Mh20 

AH50_1, AH50_2, AH50_4-6, CH50_6, Hp_2 

GGA6  HSA10q SSC10 AH50_4, CH50_1, Mh0, Mh10, Mh20 

GGA9  
HSA15q 

HSA4q 

SSC1 

SSC8 

AH50_3, AH50_4 

Hp_2 

GGA10 

HSA1 

 

HSA6p 

HSA19q 

SSC3, 6 

 

SSC7 

SSC6 

AH50_6, CH50_1, PRRS10, C3c_1-C3c_4, C3c_6, 

Hp_1; Mh_3 

AH50_1, AH50_2, AH50_4-6, CH50_6, Hp_2 

Mh20 
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Table 32 (continued) 

GGA HSA SSC QTL in pig 

GGA14 HSA16p SSC3 AH50_6, CH50_1. PRRS10, C3c_1-C3c_4, C3c_6, Hp_1 

GGA15 HSA22q SSC14 CH50_1, Hp_3 

GGA16 
HSA5q 

HSA19p 

SSC2 

SSC2 
AH50_6 

GGA23 
HSA11q 

HSA1q 

SSC9 

SSC9 
AH50_1 

GGA27 HSA5q SSC2 AH50_6 

 

The comparison of QTL regions found in chicken with the results of DUMI backcross 

shows mostly QTL detected for AH50 and CH50 which are mapped in similar regions to 

those found for different immune traits in chicken. The result from this study indicated 

that the QTL found in this study could be confirmed by several QTL and candidate gene 

studies in other species. 

Different candidate genes, either mapped in the pig genome or in the homologous 

chromosome segments of human genome could be identified. The previous studies in 

human, pig, cattle, mouse and chicken may give a better evidence of the regions 

detected (in their own study). De Buhr et al. (2006) found the candidate genes monocyte 

antigen Cd14 on SSC2, guanylate binding protein 1 (Gbp1) on SSC14q26, and 

phospholipase A2, group IIA (Pla2g2a) on SSC6q28 as major candidate genes that play 

an important role in inflammatory processes and immune response.  

Further, studies in other species suggest a combination of microarray and QTL analysis 

are useful tools for combining functional with positional data to refine candidate gene 

selection (de Buhr et al. 2006). Additionally, fine mapping or confirmation studies using 

other populations lead to narrowing the candidate gene (Siwek et al. 2003a, Siwek et al. 

2003b, Wattrang et al. 2005).  

 

5.3 Molecular genetics analyses of porcine MBL genes  

5.3.1 Expression study of porcine MBL genes 

The porcine MBL1 expression in this study is similar to the results reported by Lillie et 

al. (2006) showing also high expression of MBL1 in liver. Differential expressions of 
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MBL1 and MBL2 in murine tissues were reported by Wagner et al. (2003). The 

semiquantitative expression study revealed that the liver is the major site of expression 

for both MBL genes. Low expression was also found in kidney, brain, spleen and 

muscle, but only murine MBL1 is expressed in testis (Wagner et al. 2003). 

 

5.3.2 Comparison of porcine MBL gene 

The sequences of the two porcine MBLs are homologous to each other as shown in 

figure 30. The locations of putative structural domains are indicated based on porcine 

MBL-A (Lillie et al. 2006). The amino acid sequences of the two porcine MBL 

isoforms are homologous to each other. The identity of these two lectins is about 56.6%, 

allowing 9 gaps. Both porcine MBLs have three cysteine residues at the N-terminal 

domain which are involved in oligomerization. A collagen domain can be recognized 

from the amino acid sequence with its characteristic Gly-X-Y repetitive pattern, where X 

and Y can be any amino acid (Håkansson and Reid 2000). In animal MBL, the collagen 

regions comprise 19 Gly-X-Y triplets (Holmskov et al. 2003). Both porcine MBL-A and 

MBL-C have the same repetitive pattern as the MBL of other species, including a single 

interruption at the middle of the collagen domain as found in rat MBLs. The single 

interruption in the Gly-X-Y repeat pattern of this protein falls in the same part of the 

collagen domain suggesting a significance of interaction between this MBL with a 

common effector protein (Drickamer et al. 1986). The amino acid consensus sequence 

GEKGEP, which is involved in C1q receptor (C1qRp) interaction (Arora et al. 2001) is 

present in both porcine MBL. This suggests that porcine MBL has the same ability as 

C1q to stimulate phagocytosis in the complement system (Holmskov et al. 2003). The 

PGKXGP a sequence representing part of a putative MASP-binding motif is found in 

the porcine MBL-A, suggesting the potential to activate the lectin-complement pathway 

(Lillie et al. 2006). Although this motif is altered in MBL-C (PGMVGP) its function is 

retained, which is confirmed by the result of the porcine MBL-C to functionally activate 

the lectin pathway in MBL-deficient human sera (Agah et al. 2001). The most variable 

domain in MBL which contains hydrophobic amino acids necessary for forming the 

triple helical coil (Kawai et al. 1998) is also present in the porcine MBLs. It is 

interesting to note that porcine MBL-C misses 9 amino acids at this neck-region 

compared to MBL-A. This difference between porcine MBL-A and MBL-C may be 
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correlated with their α-helical-coiled coil formation ability. The carbohydrate 

recognition domain (CRD) of both porcine MBLs shows a high homology to each other. 

Furthermore, porcine MBL-A and MBL-C contain a mannose-binding EPN motif (Glu-

Pro-Asn) in a CRD. This indicates the ability of porcine MBLs to recognize the 

mannose sugar (Stahl and Ezekowitz 1998). 

 
Figure 30: Alignment of two full-length porcine MBL cDNA-deduced amino acid 

sequences, MBL-A and -C sequences. Shaded boxes represent identical 

amino acid residues. Dash (-) in a sequence indicates a gap. 

 

5.3.3 Genetic and physical mapping of porcine MBL genes 

The MBL2 chromosomal location shown by RH mapping in this study is confirmed by 

gene assignments reported by Meyers et al. (2005) and Yasue et al. (2006), indicating 

that the porcine MBL2 is located at the 3226.0 cR on SSC14; its nearest gene and 

marker is DKK1 and SW1552, respectively. It has been known that a large portion of the 

porcine chromosome SSC14 is represented in human chromosome HSA10. 

Rearrangement of gene order on SSC14 contains three regions (46-51, 74-81, and 82-88 

Mb-regions) of human chromosome HSA10 (Nonneman and Rohrer 2004). In addition, 

Yasue et al. (2006) also found the HSA10q arm corresponded to SSC14q24-qter and 

their study also demonstrated the occurrence of intra-chromosomal rearrangements. 

Collectin genes including SFPTA, SFPTD and MBL1 were found located in the collectin 

locus or cluster in human (Guo et al. 1998), mouse (Akiyama et al. 1999) and cattle 

(Gjerstorff et al. 2004). The MBL2 gene in human is located on the same chromosome 
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as the collectin cluster, whereas in mouse and bovine it is located on another 

chromosome (Gjerstorff et al. 2004). The results in this study reveal the porcine MBL1 

to be located between SFPTA and SFPTD genes on SSC14. Figure 31 demonstrates the 

map of SSC14 at the position 46.3-60 cM homologous to human and mouse. Gene 

positions on SSC14 were taken from Meyers et al. (2005), Yasue et al. (2006) and van 

Eijk et al.(2000), while the position used for human and mouse genes are from NCBI 

database, Build 36.2 and 36.1, respectively (http://www.ncbi.nlm.nih. gov/mapview/). 

Dash lines (----) indicate chromosomal rearrangement. The human MBL1 in this 

comparison represents the MBL pseudogene (MBL1P1). 

 
Figure 31: Comparative mapping of the 46.3-60 cM region (flanking markers 

SW210 and S0007) of SSC14 with the human and mouse genome maps.  
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5.3.4 Association analyses 

Through the activation of complement system, MBL has been found to trigger the 

opsonic activity of complement resulting in deposition of C3 on target pathogen and 

stimulation of phagocytic uptake via the C3 receptors (Presanis et al. 2003). Many 

studies revealed that mutations of MBL affect the complement activity in human. Three 

SNPs have been identified in exon 1, at codons 52 (Arg  Cys), 54 (Gly Asp) and 57 

(Gly Glu) (Lipscombe et al. 1993, Madsen et al. 1994, Sumiya et al. 1991), showing 

association with many innate immunological factors in human (Holmskov et al. 2003). 

Furthermore, the point mutations in exon 1 of the human MBL gene are frequently 

described as being associated with MBL plasma concentration, reduced ligand binding 

capacity and failure to activate complement (Larsen et al. 2004). Comparative 

sequencing of the porcine MBL1 and MBL2 cDNA sequences revealed no non-

synonymous nucleotide polymorphisms that may affect the protein function. 

Moreover, linkage analysis revealed a significant QTL for C3c serum concentration late 

after Mh vaccination (T4) on SSC14 in the interval of MBL1 and MBL2 as shown in 

figure 32. In this figure, the x-axis indicates the relative position on the linkage map. 

Arrows on the x-axis indicate the position of markers. The y-axis represents the F-value. 

Lines indicate the 5% genome-wide and 5% chromosome-wide significance thresholds. 

Significant dominance effects were found at the QTL site, corresponding to the finding 

of differences between heterozygous and homozygous MBL1 genotypes. The plot of the 

F-ratio from least square interval mapping for evidence of QTL for C3c serum 

concentration represents, at each position, a sum up of effects depending on the flanking 

markers. For instance, in mouse there are an increasing number of QTL studies where 

large QTL, when fine mapped, turned out to be due to multiple linked loci. Thus the 

position of the QTL might be a symptom of effects of the two MBL genes. Association 

analyses of the intronic and synonymous SNPs of MBL1 and MBL2 failed to 

consistently reveal significant effects, probably due to the fact, that they are not in 

linkage disequilibrium with a causative polymorphism. 
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Figure 32: Plot of the F-ratio from least square interval mapping for evidence of 

QTL for C3c serum concentration after Mh and prior to ADV 

vaccination (time 4) on SSC14. 

 

QTL at 24 cM with: F-value=8.2; LOD=3.5; additive genetic effect=0.004±0.006; 

dominance effect=0.051±0.012; fraction of phenotypic variance in the F2 explained by 

the QTL=4% 

F-value
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6 Summary 

 

This study was carried out in two Duroc × Berlin miniature pig (DUMI) populations, 

the F2 and backcross population. The piglets from F2 population were immunized with 

mycoplasma, Aujeszky’s and with a PRRS vaccines at 6, 14 and 20 wk of age, while the 

backcross were immunized with mycoplasma, tetanus and PRRS vaccination at 6, 9 and 

15 wk of age, respectively. Blood samples were collected for 8 and 6 different time 

points in F2 and backcross populations for the evaluation phenotypes. The immune 

competence traits measured in this study comprise of the haemolytic complement 

activity in the alternative and classical pathway, antibodies response to mycoplasma, 

tetanus toxoid and PRRS, complement component C3c and haptoglobin in the serum. 

Three different approaches including immunological studies, genetic linkage analysis 

and candidate gene study were employed. The evaluation of immune competence traits 

were performed using various assays, including haemolytic complement activity, 

enzyme-linked immunosorbent assays (ELISA) from both commercial and in housed 

developed assays. The information obtained from phenotypic evaluation in the first 

approach was further utilized in the quantitative trait loci (QTL) linkage mapping in the 

backcross population. In parallel, a candidate gene approach was employed to 

investigate the association between genes of interest and immune competence traits in 

the F2 population. 

In the immune competence traits evaluation in the backcross, the haemolytic 

complement activity of classical and alternative pathways was elevated after each 

immunisation. The results indicated that the haemolytic complement activity of both 

pathways was increased over the time point of measurements (28.44 to 35.27 U/ml and 

27.95 to 56.09 U/ml for classical and alternative pathways, respectively). There were 

substantial differences in the development and level of activity within the population. 

Similar to complement activity, the antibody response to different vaccinations 

including Mh, TT and PRRS vaccinations were measured and revealed an increase of 

antibodies in the experimental animals over the time points of measurements. Antibody 

responses to Mh vaccination were 37.40, 19.86 and 14.59% at 10 and 20 days after 

vaccination, respectively. The samples with a value less than 50% were considered 

positive, and therefore, an increase in the antibody level would be seen as a decrease in 
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the test results. The antibody response to TT was measured using an in house developed 

ELISA and tetanus toxoid was used as an antigen in the assay. The result showed an 

increase of antibodies over three time points of measurement, which expressed as S/P 

ratio, were 0.09, 0.65 and 0.92 at prior, after 10 and 20 days of vaccination, 

respectively. The antibody response to PRRS vaccination was measured at only time 

point at 10 days after vaccination, and the result revealed positive status of antibody 

which is expressed at 0.84 of S/P ratio according to the Herdchek® ELISA kit 

instruction. The complement component C3c was measured at all 6 time points and 

expressed as S/P ratio. The results indicated the complement C3c concentration was 

increased after each period of vaccination (0.84 to 0.87, 0.78 to 0.82 and 0.79 to 0.82 

during mycoplasma, TT and PRRS vaccination, respectively). Hp concentrations were 

measured according to the method described by Hiss et al. (2003), by using a 

competitive ELISA and expressed as mg/ml of Hp in blood serum. Hp concentration in 

this study was found to be decreased over the first three time points of measurement 

(1.76 to 1.23 mg/ml, at T1 to T3, respectively). An increase of Hp was observed over 

the last three time points of measurement and reached the highest value at T6 or 10 days 

after PRRS vaccination (1.68 to 2.18, at T4 to T6, respectively). 

For QTL mapping in the backcross population, the immune competence traits including 

complement activity, antibody response to vaccination, complement component C3c 

and haptoglobin were used as phenotypic values in this study. Microsatellite marker 

genotyping were employed for QTL detection. By genotyping, the seventy-four markers 

(an average of 4.11 markers per chromosome) were investigated. The microsatellite 

markers had between 2 to 7 alleles with an average of 4.19 alleles per marker. A total of 

220 backcross animals were genotyped. The average heterozygosity and information 

content of the markers were 0.57 and 0.52. The lowest information content was 0.16 at 

the locus of the marker S0155 on SSC1. In total, twenty (27% of all used) markers 

showed information content less than 0.5. Marker positions were calculated, using 

CRIMAP 2.4 software by using two possible options twopoint and multipoint to assign 

the relative position of the markers on each chromosome. It was concluded that the map 

used in this study was in good agreement with the map of the F2 population in a 

previous study in the F2 DUMI population (Wimmers 2002). Moreover, accordance of 

QTL regions in the studies of the F2 population and the present study could be found. 

Similarities were found on: SSC3, SSC4, SSC5, SSC8 and SSC10 in both, F2 and 
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backcross DUMI populations. There was no QTL detected on SSC13 in both 

populations. Forty-two significant and twenty-four highly significant QTL could be 

detected for all immune traits in the backcross. Most QTL were detected on SSC3, 

SSC16, and SSC18 (nine significant F-values on each chromosome). No significant F-

value was detected on SSC12 and SSC13. Most highly significant QTL could be 

detected for antibody response to mycoplasma, TT and PRRS vaccination, C3c and Hp 

concentration. For AH50 and CH50, twenty-two significant and nine highly significant 

QTL could be detected. 

As the third approach, a candidate gene study was employed using the F2 population, 

the two porcine mannose-binding lectin genes, MBL1 and MBL2, were selected and 

investigated as functional genes. Regarding the phylogenetic analysis, the porcine MBL 

genes were found to be highly identical with bovine rather than primate and rodent 

sequences. Radiation hybrid panel mapping positioned both porcine MBL genes to 

chromosome 14 (SSC14), with retention frequencies of 16% for both genes. The most 

significantly linked markers (with twopoint analysis) for porcine MBL1 and MBL2 were 

SW210 (89 cR; LOD = 3.32) and SW1552 (35 cR; LOD = 10.66), respectively. Genetic 

mapping by two-point linkage analysis using CRIMAP 2.4 was also performed and 

indicated as linked marker S0007 with two-point recombination frequencies and LOD 

scores for porcine MBL1 and MBL2 of 0.32, 3.34 and 0.23, 8.26, respectively. The 

expression studies revealed that both MBL genes were found to be highly expressed in 

liver. Low MBL1 expression was also found in lung, testis and brain, while low 

expression of MBL2 was detected in testis and kidney. New single nucleotide 

polymorphisms in the porcine MBL2 gene were found and genotyped in an experimental 

F2 pig population together with a previously reported SNP of MBL1. A SNP found in 

MBL2 affecting an AdeI enzyme restriction site and a SNP that was published in MBL1 

affecting a HinfI enzyme restriction site were found to be segregating in the F2 DUMI 

resource population. The results from 347 F2 DUMI pigs using HinfI enzyme digestion 

in PCR-RFLP showed allele C and allele T frequencies in the MBL1 gene of 0.67 and 

0.33, respectively. The genotype frequencies were 0.48, 0.38 and 0.14 for C/C, C/T, and 

T/T genotypes, respectively. For MBL2, the results from 284 F2 DUMI pigs using an 

AdeI enzyme digestion in PCR-RFLP showed allele G and allele A frequencies of 0.41 

and 0.59, respectively. The genotype frequencies were 0.21, 0.40, and 0.39 for G/G, 

G/A, and A/A genotypes, respectively. The result from association study showed that 
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only MBL1 genotypes affected the C3c serum concentration, i.e. the In vivo complement 

activity, at p<0.1. Correspondingly, linkage analysis revealed a QTL for C3c serum 

level close to the position of the MBL genes. The study thus promotes the porcine MBL 

genes as functional and positional candidate gene for In vivo complement activity 

mediated via the lectin pathway.  
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7 Zusammenfassung 

 

Diese Untersuchung wurde in zwei Duroc × Berliner Miniatur Schwein (DUMI) 

Populationen, der F2 und der Rückkreuzungspopulation durchgeführt. Die Schweine der 

F2 Population wurden im Alter von 6, 14 und 20 Wochen mit Impfstoffen gegen 

Mycoplasma, Aujeszky’s und PRRS geimpft. Die Tiere der Rückkreuzung wurden im 

Alter von jeweils 6, 9 und 15 Wochen gegen Mycoplasma, Tetanus und PRRS geimpft. 

Den Tieren der F2 Population wurden Blutproben zu 8 Zeitpunkten, den Tieren der 

Rückkreuzungspopulation zu 6 Zeitpunkten für die Feststellung der Phänotypen 

entnommen. Die in dieser Arbeit untersuchten Merkmale der Immunkompetenz 

umfassten die hämolytische Komplementaktivität des klassischen und alternativen 

Signalweges, die Antikörperreaktion auf Mycoplasma, Tetanus und PRRS, die 

Komplement Komponente C3c und den Haploglobingehalt im Serum. Drei 

verschiedene Ansätze, eine immunologische Untersuchung, eine genetische 

Kopplungsanalyse und ein Kandidatengenansatz wurden angewandt. Die Auswertung 

der Merkmale der Immunkompetenz wurden mit verschiedenen Methoden, der 

hämolytischen Komplementaktivität, Enzyme-Linked Immunosorbent Assays (ELISA) 

mit kommerziellen und intern entwickelten Ansätzen durchgeführt. Die Informationen 

aus den phänotypischen Erhebungen des ersten Ansatzes wurden darüber hinaus für die 

Quantitative trait loci (QTL) Kopplungskartierung verwendet. Parallel wurde ein 

Kandidatengenansatz zur Untersuchung der Assoziation zwischen interessanten 

funktionellen Genen und den Merkmalen der Immunkompetenz in der 

Versuchspopulation durchgeführt. 

Die hämolytische Komplementaktivität des klassischen und des alternativen Signalwegs 

wurde durch jede Immunisierung erhöht. Diese Ergebnisse zeigen, dass die 

hämolytische Komplementaktivität beider Signalwege über die Zeitpunkte der 

Messungen erhöht wurde (28,44 bis 35,27 U/ml und 27,95 bis 56,09 U/ml für jeweils 

den klassischen und alternativen Signalweg). Es gab erhebliche Unterschiede in der 

Entwicklung und im Level der Komplementaktivität innerhalb der Population. Ähnlich 

der Komplementaktivität wurde auch die Antikörperreaktion auf verschiedene 

Impfstoffe einschließlich Mycoplasma, Tetanus (TT) und PRRS Impfung beobachtet, 

welche eine Erhöhung der Antikörper in den Versuchstieren über die Zeitpunkte der 
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Messungen erkennen ließ. Die Antikörperantwort auf die Mykoplasmen Impfung betrug 

jeweils vor, 10 und 20 Tage nach der Impfung 37,40, 19,86 und 14,59%. Dabei wurden 

Proben mit einem Wert von weniger als 50% als positiv angesehen, daher ist ein 

Anstieg der Antikörperlevel als ein Sinken der Testergebnisse zu interpretieren. Die 

Antikörperantwort auf TT wurde mit einem selbst entwickelten ELISA untersucht und 

der Tetanusimpfstoff in diesem Ansatz als Antigen verwendet. Die Ergebnisse zeigten 

eine Erhöhung der Antikörper über drei Zeitpunkte der Messung, welche als S/P 

Verhältnis angegeben wurde. Diese waren zu den Messungen bei der Impfung, 10 und 

20 Tage nach der Impfung jeweils 0,09, 0,65 und 0,92. Die Antikörperantwort auf die 

PRRS Impfung wurde nur zu einem Zeitpunkt 10 Tage nach der Impfung erfasst. Das 

Ergebnis ergab einen positiven Status der Antikörper, welches als 0,84 des S/P 

Verhältnisses entsprechend der Anweisung des Herdchek® ELISA Kit, angegeben 

wurde. Die Komplementkomponente C3c wurde zu allen 6 Zeitpunkten der Messungen 

erfasst und als S/P Verhältnis ausgedrückt. Die Ergebnisse zeigten, dass die 

Komplement C3c Konzentration nach jeder Periode der Impfung erhöht war (0,84 bis 

0,87, 0,78 bis 0,82 und 0,79 bis 0,82 jeweils nach Mycoplasma, TT und PRRS 

Impfung). Die Hp Konzentrationen wurden anhand der von Hiss et al. (2003) 

beschriebenen Methode, unter Verwendung eines vergleichenden ELISA gemessen und 

in mg/ml Hp im Blutserum ausgedrückt. Die in dieser Untersuchung gefundenen Hp 

Konzentrationen waren während den ersten drei Zeitpunkten der Messung verringert 

(1,76 bis 1,23 mg/ml, jeweils bei T1 bis T3). Die Erhöhung der Hp Konzentration 

wurde über den letzten drei Zeitpunkten der Messung beobachtet, sie erreichte der 

höchsten Punkt bei den Messungen zu den Zeitpunkten T6 oder 10 Tage nach der PRRS 

Impfung (1,68 bis 2, 18, jeweils bei T4 bis T6). 

Die Merkmale der Immunkompetenz einschließlich Komplementaktivität, 

Antikörperantwort auf Impfungen, Komplementkomponente C3c und Haptoglobin 

wurden als phänotypische Merkmale für eine QTL-Kartierung verwendet. Die 

Genotypisierung wurde mit Mikrosatellitenmarkern durchgeführt. Es wurden 74 Marker 

(im Durchschnitt 4,11 Marker pro Chromosom) typisiert. Die Loci hatten zwischen 2 

und 7 Allele mit einem Durchschnitt von 4,19 Allelen je Marker. Insgesamt wurden 220 

Rückkreuzungstiere für die QTL Analyse genotypisiert. Die durchschnittliche 

Heterozygotie und der durchschnittliche Informationsgehalt der Marker betrugen 0,57 

und 0,52. Der niedrigste Informationsgehalt war 0,16 am Genort des Markers S0155 auf 
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SSC1. Die Positionen der Marker wurden mit der CRIMAP 2.4 Software mit Hilfe der 

beiden Optionen twopoint und multipoint ihren relativen Positionen auf den 

Chromsomen zugeordnet. Die in dieser Untersuchung verwendete Genkarte hatte eine 

guter Übereinstimmung zu der Genkarte der F2 Population aus einer früheren 

Untersuchung in der F2 DUMI Population (Wimmers 2002). Es wurden darüber hinaus 

auch Übereinstimmungen der QTL Regionen in den Arbeiten zu der F2 Population und 

der vorliegenden Arbeit gefunden. Ähnliche Regionen wurden auf SSC3, SSC4, SSC5, 

SSC8 und SSC10 in beiden, der F2 und der Rückkreuzung, Populationen gefunden. Es 

wurde in beiden Populationen kein QTL auf SSC13 gefunden. In der Rückkreuzungs- 

und der F2 Population wurden QTL für Merkmale, welche im Verhältnis zu den 

Messungen der C3c Level stehen, gefunden. In der Rückkreuzungspopulation konnten 

42 signifikante und 24 hoch signifikante QTL für alle Immunmerkmale gefunden 

werden. Die meisten QTL wurden auf SSC3, SSC16 und SSC18 (neun signifikante F-

Werte auf jedem Chromosom) detektiert. Es wurden keine signifikanten F-Werte auf 

SSC12 und SSC13 gefunden. Die am höchsten signifikanten QTL wurden für die 

Antikörperantwort auf Mykoplasmen, TT und PRRS Impfung, C3c und Hp 

Konzentration gefunden. Für die Merkmale AH50 und CH50 wurden 22 signifikante und 

9 hoch signifikante QTL detektiert.  

In dieser Untersuchung wurden die beiden porcinen mannose-binding protein (MBL) 

Gene MBL1 und MBL2 ausgewählt und mit dem Kandidatengenansatz untersucht. Im 

Hinblick auf die phylogenetische Analyse konnte festgestellt werden, dass die porcinen 

MBL Gene eine höhere Identität mit den Sequenzen vom Rind im Vergleich zu denen 

von Primaten und Nagern haben. Die Kartierung mit einem Radiation Hybrid Panel 

zeigte, dass beide porcinen MBL Gene mit Retentionsfrequenzen von jeweils 16% dem 

Chromosom 14 (SSC14) zugeordnet werden können. Die am signifikantesten 

gekoppelten Marker (mit einer Zweipunkt- Analyse) für die porcinen MBL1 und MBL2 

waren SW210 (89 cR; LOD = 3.32) und SW1552 (35 cR; LOD = 10.66). Eine 

genetische Kartierung mit einer Zweipunkt Kopplungsanalyse mit CRIMAP 2.4 wurde 

ebenfalls durchgeführt und ergab, dass S0007 der am höchsten gekoppelte Marker war, 

die Rekombinationsfrequenzen und LOD Scores für die porcinen MBL1 und MBL2 

Gene betrugen jeweils 0,32 und 3,34 sowie 0,23 und 8,26.  

Eine Expressionsstudie ergab, dass beide MBL Gene in der Leber hoch exprimiert 

waren. Eine niedrige Expression von MBL1 wurde in Lunge, Hoden und Gehirn 
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gefunden, während sich MBL2 in Hoden und Niere als niedriger exprimiert zeigte. 

Single nucleotide polymorphisms (SNP) des porcinen MBL2 Gens wurden gefunden 

und in einer porcinen F2 Versuchspopulation parallel mit einem vorher beschriebenen 

SNP in MBL1 genotypisiert. Ein im MBL2 Gen gefundener SNP veränderte die 

Restriktionsstelle des AdeI Enzyms, ein im MBL1 Gen gefundener SNP die des Enzyms 

HinfI. Diese SNP segregierten in der F2 DUMI Versuchspopulation. Die Ergebnisse 

von 347 untersuchten F2 DUMI Schweinen in einer PCR-RFLP mit einem HinfI Enzym 

Verdau ergab Frequenzen der Allele C und T von 0,67 und 0,33. Die 

Genotypenfrequenzen für C/C, C/T und T/T waren jeweils 0,48, 0,38 und 0,14. Für die 

Untersuchung des porcinen MBL2 in 284 F2 DUMI Schweinen in einer PCR-RFLP mit 

dem AdeI Enzym Verdau ergaben sich Frequenzen für die Allele G und A von jeweils 

0,41 und 0,59. Die Genotypenfrequenzen waren für G/G, G/A und A/A jeweils 0,21, 

0,40 und 0,39.  

Die Ergebnisse der Assoziationsstudien zeigten, dass sich nur die MBL1 Genotypen in 

der C3c Serumkonzentration unterschieden, d.h. die In vivo Komplementaktivität 

(p<0,1). Entsprechend ergab die Kopplungsanalyse einen QTL für das C3c Serumlevel 

nahe der Position der MBL Gene. Diese Untersuchung bestätigt somit, dass die porcinen 

MBL Gene funktionelle und positionelle Kandidatengene für die In vivo durch den 

Lectin Signalweg vermittelte Komplementaktivität sind. 
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