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On Monte Carlo methods with applications

to the current satellite gravity missions

Abstract

Large-scaled least squares problems require tailored numerical techniques to overcome the computational bur-

den. For these types of problems iterative strategies are suitable because of their flexibility and effectiveness.

The first shortcoming of iterative strategies in least squares estimation is the fact that the inverse of the normal

equation matrix as the carrier of the covariance information is not available or very expensive to compute.

Another shortcoming within iterative strategies arises when different types of observation groups with different

stochastic properties are to be combined. In this case the choice of optimum weight factors, and eventually

regularization parameters, by means of variance component estimation is essential for obtaining reliable esti-

mates of the unknown parameters. Unfortunately, the conventional method of variance component estimation

requires the repeated inversion of large products of matrices. This thesis presents algorithms based on Monte

Carlo methods, which can be integrated very efficiently into iterative solvers, and which are demonstrated to

close the aforementioned gaps. Tailored strategies for different types of solution techniques with respect to

normal equations, observation equations and combined models are treated. In addition, the thesis presents

new criteria to define confidence regions of the estimated variance information of the parameters, as well as for

all additional derived quantities. The developed algorithms for computing variance/covariance matrices and

for obtaining variance components are tailored to be integrated into the Preconditioned Conjugate Gradients

Multiple Adjustment (PCGMA) algorithm of Schuh 1996 and Boxhammer 2006. These algorithms are ap-

plied in a case study to simulated GOCE data, where Satellite Gravity Gradiometry (SGG) data in form of

observation equations and Satellite-to-Satellite tracking (SST) data in form of normal equations are combined

for recovering the Earth’s gravity field.

Zusammenfassung

In großdimensionierten Ausgleichungsproblemen lassen sich die numerischen Kosten oft nur mit speziell ange-

passten Techniken in erträglichen Grenzen halten. Iterative Strategien sind hier aufgrund ihrer Flexibilität und

Effizienz besonders geeignet. Allerdings wird dabei der Gewinn an Rechenzeit mit einem Verlust an Informa-

tion erkauft, da iterative Löser zumeist nicht effizient sind, um die Varianz-Kovarianz-Matrix der Unbekannten

zu liefern. Ein weiterer Nachteil zeigt sich, wenn Beobachtungsgruppen mit unterschiedlichen stochastischen

Eigenschaften miteinander kombiniert werden sollen. In diesem Fall ist es notwendig, die optimalen Gewich-

tungsfaktoren - eventuell auch Regularisierungsparameter - über die Schätzung von Varianzkomponenten zu

bestimmen. Die herkömmliche Methode der Varianzkomponentenschätzung erfordert dabei die wiederholte In-

version großer Matrizen. In dieser Arbeit wird gezeigt, daß sich diese Probleme mit auf Monte-Carlo-Methoden

basierenden Algorithmen lösen lassen, die sehr effizient in iterative Löser integriert werden können. Speziell

angepasste Algorithmen für Löser, die verschiedene Beobachtungsgruppen sowohl auf Basis von Normalgle-

ichungen als auch auf Basis von Beobachtungsgleichungen oder auch Kombinationen von Beobachtungs- und

Normalgleichungen verarbeiten können, werden vorgestellt. Darüber hinaus werden in dieser Arbeit neue Kri-

terien angegeben, mit denen Konfidenzintervalle für die Varianzinformation der geschätzten Parameter und

auch aller abgeleiteten Größen angegeben werden können. Die entwickelten Algorithmen zur Berechnung der

Varianz-Kovarianz-Matrizen und zur Schätzung der Varianzkomponenten werden in den PCGMA-Algorithmus

von Schuh 1996 und Boxhammer 2006 integriert. Sie werden auf ein Testszenario mit simulierten GOCE-

Daten angewendet, in dem zur Bestimmung des Erdschwerefeldes ”Satellite Gravity Gradiometry”-Daten auf

Basis von Beobachtungsgleichungen mit ”Satellite-to-Satellite-Tracking”-Daten auf Basis von Normalgleichun-

gen miteinander kombiniert werden.
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1 Introduction

The Earth’s gravity field has been subject to intensive research for a few years. This research aims at improving

our understanding in many fields of application, particularly in oceanography, geodynamics, and geodesy. In

the field of oceanography, the sea level can be determined with an accuracy of a few centimeters. This surface

is compared with the geoid to determine, for instance, the amount of sea currents. This is one reason why

the accuracy of the geoid itself is required to be a few centimeters. In geodynamics it is also fundamental

to have the Earth’s gravity field available as it constitutes a side condition for seismic models of the Earth’s

crust. In geodesy, an accurate determination of the Earth’s gravity field is needed to improve the geoid, as the

equipotential surface of the Earth’s gravity field, as a reference surface to various height systems. A detailed

study regarding application and use of the Earth’s gravity field is found in ESA (1999).

Only satellite missions, designed in particular for the purpose of gravity field determination, namely, the CHAMP

(Challenging Minisatellite Payload, cf. Reigber et al. 2004) mission, the current GRACE (Gravity Recovery

and Climate Experiment, cf. Tapley et al. 2005) mission and the future GOCE (Gravity and Steady State

Ocean Circulation Explorer, cf. ESA 2002) mission have the potential to reach an accuracy of a few centimeters

with respect to geoid heights derived from the Earth’s gravity field.

1.1 Numerical challenge of GOCE

Modeling the gravity field requires that thousands of parameters are estimated from a huge amount of data in

each of the above mentioned satellite missions. Finding computational techniques that are capable of handling

very large sets of data and parameters is a great challenge.

In this thesis, we will focus on the GOCE mission, which is based on the sensor concepts of Satellite to Satellite

Tracking (SST) and Satellite Gravity Gradiometry (SGG). The SGG and SST observations obtained by these

sensors are used to estimate, by means of a least squares adjustment, the parameters of the Earth’s gravity

field in terms of spherical harmonic coefficients up to degree and order 240, resulting in about 60,000 unknown

parameters.

In the last few years, a numerical determination of the gravity field from such huge systems has been based on a

number of strategies, which may be divided into two main categories: the space-wise approach and the time-wise

approach. The space-wise approach requires data to be transformed onto a regular grid by means of a rather

complex algorithm. On the other hand, with the time-wise approach, the data are treated as time series along

the satellite’s orbit (see e.g. Rummel et al. 1993 for a general discussion of both approaches). The space-wise

approach will not be further discussed in this thesis ; the reader is referred to Migliaccio et al. (2004) instead.

Within the context of the time-wise approach, a variety of processing strategies has been developed and inves-

tigated. In the framework of the ESA project ”GOCE High-level Processing” (HPF, Rummel et al. 2004), an

operational software for the scientific processing of GOCE data has been set up by the European GOCE Gravity

Consortium (EGG-C, Rummel et al. 2004). One main task of this system is performed by the institute of

navigation and satellite geodesy (INAS) at the Technical University of Graz (TUG) along with the Institute of

Geodesy and Geoinformation (IGG) at the University of Bonn and the Institute of Astronomical and Physical

Geodesy (IAPG) at the Technical University of Munich (TUM). Beside the so-called quick-look gravity field

analysis (QL-GFA ), which is based on the semi-analytic approach due to Sneeuw (2000) and Pail and Plank

(2002), a diagnostic tool for quickly checking the quality of the input data, core solvers (CS) have evolved as

tools for computing highly accurate solutions to the normal equations.

With respect to CS, one distinguishes between direct and iterative procedures for solving the normal equation

system. In Plank (2004) and Pail and Plank (2002), a program system based on the time-wise approach

was presented that computes high-resolution gravity models via a parallel and distributed assemblance of the

fully populated normal equation matrix. This method is known as distributed non-approximative adjustment

(DNA). Within the category of iterative solvers, Schuh (1996) and Boxhammer (2006) implemented a

modified version of the conjugate gradient (CG) algorithm that avoids an explicit assemblance of the normal

equation matrix. This strategy is based on a very flexible PCGMA algorithm (Preconditioned Conjugate

Gradients Multiple Adjustment) which is especially adapted to work with different types of observations.

Colored noise causes correlations between the SGG observations, which results in covariance matrix which has

a banded structure with a broad band. In order to decorrelate these observations, Schuh (1996) and Pail and

Plank (2002) proposed autoregressive moving average (ARMA) filter strategy as a whitening process.



1.2 The goals of the work 9

In order to find an optimal solution to the unknown parameters, the reliable weighting factor between SGG

and SST must be estimated. Unfortunately, the normal equation system is ill-conditioned due to the data gaps

such as polar gap and the downward continuation problem. In order to overcome the ill-condition, a positive

definite regularization matrix (scaled by an unknown regularization parameter) must be added to the normal

equation matrix (which is known as Tikhonov regularization); see Kusche and Klees (2002) and Ditmar

et al. (2003). To resolve both the choices of weighting factors and regularization parameters in large-scale least

squares problems, the method of variance component estimation (VCE) has been demonstrated by Koch and

Kusche (2002) to be suitable procedure.

In the course of the last years, the application of VCE for estimating weight factors and regularization param-

eters has became more and more relevant in the context of global gravity field determination. For instance,

Mayer-Gürr et al. (2005) discussed a scenario where a one-year CHAMP orbit is divided into short arcs

to establish the observation equations. For the combination of the normal equations of each short arc, opti-

mal variance factors were estimated. A potential change in measurement accuracy from one arc to the next

could then be taken into account, and arcs that were supposed to have outliers were thereby assigned lower

weight factors. In van Loon and Kusche (2005), the method of VCE was used to estimate parameters of the

stochastic model by means of an iterative procedure, because the stochastic model for the values of the potential

from the energy balance is heterogeneous due to the varying quality of the GPS orbits. Bauer and Kusche

(2006), in computing the optimum regularization parameters using the VCE, presents a tailored strategy for

geopotential recovery from satellite data of GOCE and GRACE, which based on iterative least squares using

QR decomposition (LSQR). The method of VCE has not only played a vital role in global determination of the

Earth’s gravity field, but also in regional gravity field determination. In Eicker et al. (2005), for example, the

Earth’s surface was divided into patches, and for each of these, an individual local gravity field was computed.

The optimal regularization parameter for each of the patches was estimated by VCE. Yet another field of appli-

cation for VCE is airborne gravimetry, where regularization parameters must also be estimated (see Mueller

and Mayer-Guerr (2004)).

A further challenge for the GOCE mission is the computation of the full covariance information which charac-

terizes the quality of the estimated parameters. In linear least squares, this means that the covariance matrix

is given by the inverse matrix of the normal equations, multiplied by an estimated variance factor. In the light

of the huge number of unknowns determined by the SGG observations, the computation of the corresponding

normal equations and its inverse becomes in fact unfeasible, because of the size of the systems.

Unfortunately, previous articles only provide incomplete estimates of the covariance information or not are

applicable for large-scaled variance propagation. For example, Tscherning et al. (1999) have given an ap-

proximative solution by taking into consideration only the diagonal part of the covariance matrix for variance

propagation. Abwerzger (1999) used the partial inverse (’kite’ structure) of the normal equations to compute

the variances of second level products, employing however a very time consuming, iterative procedure. This

approach is also limited because it is applicable only in the case that particular variances are of interest. A

first implementation of a full variance propagation is given in Gundlich et al. (2003), see also Sect. 3.2.2,

in which a Monte Carlo approach is used to overcome the huge computational burden. In particular, a Gibbs

sampler (see Sec. 3.2.1) is adopted to compute the inverse of the normal equation matrix and to estimate the

variance/covariance matrix (VCM) in a tailored and efficient way. Unfortunately, this approach requires the

presence of a full normal equation matrix which is not available in iterative solvers

It follows that both the optimal estimation of gravity field parameters (taking into account the determination

of weight factors as well as regularization parameters) and the computation of the full large-scaled covariance

matrix of the parameters are essential to fill the gaps within an iterative solution procedure, specific to the

PCGMA algorithm.

1.2 The goals of the work

The main purpose of this thesis is to present tailored direct and iterative solvers based on Monte Carlo techniques

for computing covariance information as well as optimal variance components for huge data sets. The novelty

of the proposed algorithms is that normal equations, observation equations, or combined equation systems may

all be processed. Furthermore, they are applicable to direct solver as well as to iterative techniques e.g. con-
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jugate gradients. It is demonstrated that these Monte Carlo strategies complement the PCGMA algorithm to

estimate, in addition to the gravity field parameters, accurate variance/covariance information as well as the

optimal weighting and regularization parameters. It should be mentioned that the development of a quality

assessment of the computed gravity field, as well as the optimum weighting and regularization parameters are

official products of the GOCE-HPF.

This thesis is organized as follows: In chapter 2 the basics and the algorithms for random sample generation

are presented. In addition, a review of the basic theory with respect to Monte Carlo integration and error

propagation of linear transformations is given.

In chapter 3, Monte Carlo methods are suggested for estimating the moments of a random sample. In partic-

ular, Monte Carlo algorithms for estimating the second moments, which is equivalent to computing the inverse

of the normal matrix, are discussed. Chapter 3 presents a method to obtain the accuracy of the estimated

covariance matrix after the process of generating samples. In addition, the variance reduction technique by

blocking of the generated samples is applied.

Chapter 4 represents the linear model with unknown variance components for heterogeneous data and apriori

information on the parameters. In addition, a Monte Carlo technique based on stochastic trace estimation for

the normal equation is presented. The method is restructured and developed for the case of mixed observation

equations and normal matrices.

In chapter 5, tailored versions of the algorithms described in chapters 3 and 4 are integrated into the iterative

solver PCGMA. The required modifications of PCGMA are discussed in detail for the GOCE data combination.

In chapter 6, the numerical results for two test scenarios are presented for the purpose of validating the concepts

and to demonstrate the performance of the proposed algorithms.

The seventh chapter is dedicated to a discussion of the proposed algorithms and concludes with an outlook to

future investigations.
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2 Theory of Monte Carlo methods

2.1 Introduction to Monte Carlo methods

2.1.1 A brief history of Monte Carlo methods

Monte Carlo (MC) methods belong to the most popular numerical statistical methods that make use of sequences

of random numbers to perform simulations. MC simulations have been discovered and applied in the previous

century.

In 1777 for instance, Comte de Buffon performed the following experiment: A needle of length L is thrown onto

a board with equidistant parallel lines separated by distance d. He demonstrated that the probability of the

event that the needle bisects a line is:

p =
2L

πd
. (2.1)

Years later, Laplace proved that this method may be used for obtaining a rough estimate of the number π.

Modern MC methods arose after the second world war at the National Laboratory in Los Alamos. They were

given their name in 1942 by the physicist Fermi, who, while working on a nuclear reactor, was the first to

generate random samples. The name is derived from the town of Monte Carlo which became famous through

its casino. The reason for this is that the first tables with random numbers contained the roulette results in

the casino of Monte Carlo. The problems related to games, were reason enough for science to tackle questions

regarding the randomness of events. In 1946 Stanislaw Ulam proposed to simulate the course of neutrons by

generating random numbers. Then, John von Neumann developed the approach in detail. There were also cases

where random numbers were applied to solve numerical problems (Kalos and Whitlock 1986).

However, within the last few years MC methods developed rapidly and were used as mature standard procedure

to solve complex numerical problems. Nowadays, MC methods are applied in various fields of research. They

are typically used for simulation of complex physical experiments, but also for optimization of finance models

(see e.g. Glasserman 2003). Furthermore, they are suitable for solving analytical problems such as high-

dimensional integrals or particular types of differential equations with complex boundary conditions.

In this thesis MC methods are used for computation of large-scale covariance matrices (cf. chapter 3) and for

estimation of the redundancy contributions of disjunctive observation groups (cf. chapter 4), respectively.

2.1.2 Components of a MC algorithm

In this subsection, the main building blocks of the MC method will be summarized. These components constitute

the basis for most of the MC applications, and to understand them is essential for any readers who wish to

either reproduce the Monte Carlo simulations given in this thesis or to conduct their own simulations. The

primary components of a MC simulation may be described as follows:

1. Probability density function (PDF): The physical or mathematical system is described by one or a collec-

tion of PDFs.

2. Random number generator: Functions or routines that produce random numbers from a uniform distri-

bution.

3. Sampling role: Various MC algorithms to produce random samples.

4. Parallelization and efficiency: Optimization of the MC algorithm for parallel computing can be done by

serial efficiency and parallel speedup.

5. Scoring of the generated random samples: the generated samples are added up to estimate the unknown

quantity.

6. Error estimations: Estimation of the statistical error (variance) as a function of all the generated random

samples.

7. Variance reduction techniques: Techniques to minimize the error of the estimated solution. They play

a decisive role to reduce the required number of samples in order to reduce the processing time of the

simulation.
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The first 3 parts of Fig. 2.1 represent the core components to generate random samples in a MC simulation.

They are essential in every MC algorithm. The other components are primarily responsible for the analysis of

the random samples and for increasing the efficiency in a MC simulation.

Scoring
of the

samples

Parallelization
      and
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Random
number
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Estimates of the quantities
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Fig. 2.1: The main components of a MC Algorithm

2.2 Some probability theory and statistical basics

The purpose of the current subsection is to give an overview of the concepts from traditional probability theory

required for a general understanding of Monte Carlo methods. With regard to the generation of random

samples, discrete and continuous random variables, sample PDFs, and quantities derived from such variables

will be considered. The distributions required for chapters 3 and 4 will be defined. In order to estimate

variance/covariance matrices (chapter 3) and variance components (chapter 4), samples must be produced,

which are based on a generation of random numbers. For this purpose, procedures to generate random vectors

will be presented. For a detailed introduction into probability theory, the reader is referred to Pitman (1993)

and Feller (1968). Definitions and statistical concepts are found, e.g., in Koch (1999).

2.2.1 Random variables, PDF and CDF

A Monte Carlo simulation is given by a number of numerical computations of stochastic nature, because they

are a sequence of probabilistic events. In probability theory, discrete and continuous random variables are

distinguished. Definitions of discrete and continuous random variables are found, for instance, in Koch (1999)

or Dudewicz and Mishra (1988). Only continuous random variables occur in this thesis. Therefore the

discrete random variables will be abstract away from the following description.

The random variables within the continuous random vectors X may take all the values Xi with −∞ < Xi < +∞,

i ∈ {1, · · · , n}. The cumalative distribution function (CDF) F (x) of the random vector X is given by the

probability of the event X1 < x1, · · · , Xn < xn, i.e. that the corresponding random variables take values less

than x1, · · · , xn (Koch 2000, p. 24), in symbols:

F (x) = F (x1, · · · , xn) = P{X1 < x1, · · · , Xn < xn}. (2.2)

The continuous distribution function is defined as:

F (x1, · · · , xn) =

∫ xn

−∞

· · ·
∫ x1

−∞

pX(t1, · · · , tn)dt1 · · · dtn, (2.3)

where t1, · · · , tn are the integration variables. The Eq. 2.3 can be rewritten in a vector notation as:

F (x) =

∫ xn

−∞

· · ·
∫ x1

−∞

pX(t)d(t). (2.4)
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The continuous probability density function is obtained from:

pX(x) =
∂nF (x)

∂x1∂x2 · · · ∂xn
. (2.5)

In addition, the following conditions hold for the integration domain χ of the random vectors X:

pX(x) ≥ 0 and

∫

χ

pX(x)dx = 1. (2.6)

The distributions required in chapters 3 and 4 shall be described in Sect. 2.2.4; see , e.g., Johnson and Kotz

(1970b), Johnson and Kotz (1970c), Koch (1999), and Koch (2000).

2.2.2 Conditional distribution

If a random vector X is partitioned into two partial vectors according to

X = (X1, X2)
T

, X1 = [X1, · · · , Xi]
T

and X2 = [Xi+1, · · · , Xn]
T

, (2.7)

then the conditional probability density pX(x1|x2) is given by the probability density of the vector X1 of

random variables evaluated at x1 under the condition that, for the vector X2 of random variables, X2 = x2

holds. The relation between the jointly PDF pX(x1,x2), the marginal PDF pX(x1) and pX(x2), respectively

and the conditional PDF are given as (cf. Koch 1999, p. 91):

pX(x1,x1) = pX(x1)pX(x2|x1) = pX(x2)pX(x1|x2). (2.8)

2.2.3 Expected values, variance and covariance

Definitions of the expected values and the covariance matrix of continuous random variable are found in Koch

(2000, p. 38-43). For the expectation value, one has

EpX
{Xi} =

∫ ∞

−∞

· · ·
∫ ∞

−∞

xipX(x1, · · · , xn)dx1 · · · dxn. (2.9)

Accordingly, one obtain for the expectation value E {f(Xi)} of the function f(Xi)

EpX
{f(Xi)} =

∫ ∞

−∞

· · ·
∫ ∞

−∞

f(xi)pX(x1, · · · , xn)dx1 · · · dxn. (2.10)

The variance V {Xi} of the random variable Xi (the second central moment) is defined by:

VpX
{Xi} = E

{
(Xi − E{Xi})2

}
=

∫ ∞

−∞

· · ·
∫ ∞

−∞

(xi − E{Xi})2pX(x1, · · · , xn)dx1 · · · dxn. (2.11)

The covariance Σ(Xi, Xk) of two random variables Xi and Xk is defined by:

ΣpX
{Xi, Xk} = E {(Xi − E{Xi})(Xk − E{Xk})}

=

∫ ∞

−∞

· · ·
∫ ∞

−∞

((xi − E{Xi})(xk − E{Xk}))pX(x1, · · · , xn)dx1 · · · dxn. (2.12)

If the single random variables X1, · · · , Xn are combined to a random vector X, then Eq. (2.9) may be written

as:

EpX
{X} =

∫

χ

xpX(x)dx, (2.13)

and for the function of a random vector:

EpX
{f(X)} =

∫

χ

f(x)pX (x) dx. (2.14)
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Analogous to Eq. 2.12, the covariance matrix of a random vector X can be written as:

ΣpX
{X} =

∫

χ

(x− E{X}) (x− E{X})T
pX (x) dx, (2.15)

where the main diagonal comprises the variances of the random vector and the off-diagonals the covariances.

For the sake of simplicity, the notation E{X} will be used instead of EpX
{X} and E{f(X)} instead of EpX

{f(X)},
keeping in mind that the expectation is always based on an associated PDF. In addition, the covariance in-

formation ΣpX
{f(X)} is simplified in the short notation Σ{f(X)} and the PDF pX(x) in the short notation

p(x).

Error Propagation

In order to obtain the covariance matrix Σ{Y} of a transformed random vector

Y = AX + b, (2.16)

where A is a constant m×n matrix and b a constant m×1 vector, the law of error propagation is applied (see,

e.g., Koch 1999, p. 99):

Σ{Y} = E
{
(Y − E{Y})(Y − E{Y)}T

}

= E
{
(AX + b − E{AX − b})(AX + b− E{AX − b})T

}

= AE{(X − E{X})(X − E{X})T }AT

= AΣ{X}AT . (2.17)

2.2.4 Special continuous distribution functions

Uniform distribution

A random variable X is said to be uniformly distributed within the domain (a, b), in symbols X ∼ U(a, b), if its

PDF is given by:

p(x) =

{
1

a−b for all x ∈ [a, b]

0 else.
(2.18)

Normal distribution

The normal distribution is the most widely used distribution in statistics. A random variable X is called normally

distributed with parameters µ and σ2, in symbols X ∼ N (µ, σ2), if its PDF is given by:

p (x) =
1√
2πσ

exp

{
−0.5

(
x − µ

σ

)2
}

for (−∞ < x < +∞). (2.19)

The standardized normal distribution N (0, 1) is obtained by means of the variable transformation:

Z =
X − µ

σ
. (2.20)

From Eq. (2.19) and Eq. (2.20) one gets (cf. Koch 1999, p. 107):

p (z) =
1√
2π

exp

{
−z2

2

}
. (2.21)

The random variables X1, · · · , Xn, which build up the n × 1 random vector X has a multivariate normal

distribution, written as X ∼ N (µ,Σ), if its PDF is given by (see, e.g., Koch 1999, p. 117):

p (x) =
1

(2π)n/2(detΣ)1/2
exp

{
−1

2
(x − µ)T Σ−1(x − µ)

}
. (2.22)

χ2-distribution

Let random vector x be normally distributed with expectation 0 and covariance matrix I (the unity matrix),

i.e. x ∼ N (0, I). Then, the sum of squared vector components v = xT x has a χ2-distribution with m degrees

of freedom, in short v ∼ χ2(m), and its PDF is (Koch 1999, p. 124):

f (v) =
1

2m/2Γ(m/2)
v(m/2)−1 exp(−v/2) for 0 < v < +∞, (2.23)

where Γ(m/2) is the gamma function of the integer m/2.
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2.3 Sampling from probability distribution functions

Any Monte Carlo simulation requires random numbers. Random numbers are generated on a computer by means

of deterministic procedures. Therefore, the numbers generated in this way are actually not random in a strict

sense, but are rather called pseudo-random. More specifically one performs for each proposed pseudo number

generator a series of different tests (Gentle 2003, p. 61-86). If the outcome of one test differs significantly

from what one would expect from a truly random sequence, the pseudo number generator is classified as bad.

A good pseudo random number generator should satisfy many of criteria, which are summarized in Gentle

(2003).

In particular, uniformly distributed random numbers are generated, which may then in turn be transformed

into pseudo-random numbers of random variables having other distributions (as explained in Sect. 2.3.2), for

instance, into numbers of a normally distributed random variable (see Sect. 2.3.3).

2.3.1 Generation of uniformly distributed random numbers

The standard random number generators constitute the starting point for most Monte Carlo algorithms. By

means of these random generators, realizations of random variables may be produced that are uniformly dis-

tributed on the unit interval [0, 1]. A widely used standard procedure to generate pseudo-random numbers

makes use of the following linear congruence method (Koch 2000, p. 183).

The random numbers are produced through an equation of the form:

Ui+1 = (aUi + b) mod M with M ∈ N and a, b, U0 ∈ {0, · · ·M − 1} . (2.24)

Considerations for suitable choices of the constants as well as descriptions of other types of pseudo-random num-

ber generators, such as non-linear congruence generators, shift register generators, lagged Fibonacci generators,

and combinations of such generators, can be found, e.g., in Glasserman (2003) or Rubinstein (1981).

2.3.2 General sampling methods

Starting from pseudo-random numbers u1, u2, · · · , un generated by one of the standard methods as outlined in

Sect. 2.3.1, some random numbers x1, x2, · · · may be generated which may be viewed as realizations of ran-

dom variables X1, X2, · · · , Xn with another distribution, for instance as realizations x1, x2, · · · , xn of Poisson-,

binomial-, or normally distributed random variables X1, X2, · · · , Xn. This process makes in particular use of

the so-called inversion method or acceptance-rejection method, whose basic ideas shall now be explained in the

current section. A far more comprehensive discussion of such algorithms are found, e.g., in Fishman (2003),

Robert and Casella (1999), or Koch (2000).

Inversion method

The following property of a inverse function F−1 of an arbitrary monotone increasing distribution function

F (x) serves as the basis for generating pseudo-random numbers x1, x2, · · · , xn. If U1, U2, · · · , Un are sequences

of independent and uniformly distributed random variables on [0, 1], then the random variables X1, X2, · · · , Xn

with Xi = F−1(Ui) for every i ∈ {1, 2, · · · , n} are independent and have the distribution function F . The main

disadvantage of this method is that the distribution function F (x) and its inverse function must be analytically

specified, which generally is not always possible. The following Alg. 2.1 illustrates this procedure:

Algorithmus 2.1 (Inversion method)

Purpose: To generate a sample X from p(x)

Output: Realization of X

1. Generate the random value u for the random variable U ∼ U (0, 1).

2. Set u equal to the distribution function, that is: F (x) = u.

3. Invert the distribution function and isolate x, that is: x = F−1(u).
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Acceptance-rejection method

The acceptance-rejection method is one of the most widely applicable method for generating random samples

(Gentle 2003, p. 113). This method generates samples from a target distribution by first generating candidates

from a more convenient distribution and then rejecting a random subset of the generated candidates.

Suppose, that one wishes to generate samples from p(x). Let g(x) be a pdf which we know how to generate

samples and with the property that (see, e.g., Koch 2000, p. 186)

C ≥ p(x)/g(x), for all x ∈ R, (2.25)

where C is a constant with C ≥ 1. In the acceptance-rejection method, we generate sample X from g and

accept the sample with probability p(x)/Cg(x); this can be implemented by sampling U uniformly over [0, 1]

and accepting X if p(x) ≤ Cg(x). If X is rejected, a new candidate is sampled from g(x) and the acceptance

applied again. The process repeats until the acceptance test is passed; the accepted value is returned as a

sample from p(x). The following algorithm illustrates a generic implementation:

Algorithmus 2.2 (Acceptance-rejection method)

Purpose: To generate a sample X from p(x)

Output: Realisations of X

1. Generate the random value x for the random variable X with probability density function g.

2. Generate the random value u for the random variable U ∼ U (0, 1).

3. Compute the fraction q = p(x)
Cg(x) .

4. If u ≤ q, then accept the value x, otherwise go back to the first step.

2.3.3 Generation of standard-normally distributed random numbers

Normally distributed random numbers are produced by transforming uniformly distributed random numbers.

For this purpose, various algorithms exist that are based on the methods described in Sect. 2.3.2. The Box-

Muller (Box and Muller 1958) transformation method is probably the most popular algorithm for generating

normally distributed random values. The idea behind this method is to transform realizations of uniformly dis-

tributed random variables U1, U2 ∼ U(0, 1) into values of random variables X1, X2 ∼ N (0, 1). The computational

steps are summarized in Alg. 2.3 according to (Gentle 2003, p. 172):

Algorithmus 2.3 (Box-Muller Algorithm)

Purpose: To generate a sample X from N (0, I)

Output: Realisations of X

1. Generate realizations of random variables U1, U2 ∼ U (0, 1).

2. Compute the transformations:

x1 =
√
−2 lnu1 cos (2πu2) and x2 =

√
−2 lnu1 sin (2πu2)

3. The resulting realizations of the random variables are N (0, 1)-distributed.

The computational cost of Alg. 2.3 may be reduced by avoiding trigonometric functions, which is accomplished,

for instance, through a transformation into polar coordinates (see, e.g., Gentle 2003, p. 173). Modern algo-

rithms such as the Ziggurat algorithm (Gentle 2003, p. 174) even avoid the evaluations of the roots and are

based on purely multiplicative operations.

The standard version of Matlab (The Math Works 2006a) and the Statistics Toolbox (The Math Works

2006b) comprise a random number generator which produces scalar N (0, 1)-distributed numbers. As it will be

seen later on, the generation of scalars is in fact sufficient as one may easily arrive at a general multivariate
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normal distribution through a suitable transformation of the one-dimensional standard normal distribution

(see Sect. 2.3.4). The first step is to extend a one-dimensional standard-normally distributed random number

X ∼ N (0, 1) to a multi-dimensional standard-normally distributed random vector X ∼ N (0, I). For this

purpose, it is only necessary to have the random number generator produce a number of random numbers

that equals the number of components within the random vector, and to arrange these random numbers as

a vector. As the generated numbers are practically uncorrelated and have a variance equal to 1, the random

vector constructed in this way already follows a multivariate standard-normal distribution, i.e. X ∼ N (0, I).

2.3.4 Generation of correlated normally-distributed random numbers

The multinormal distribution is a building block for some of the algorithms devolved in chapter 3. Therefore,

we include their generation here. It is well known that the multinormal distribution is fully characterized by

its expected value µ ∈ Rn and its variance-covariance matrix Σ ∈ Rn×n (cf. Eq.2.22). Since it is no problem

to add µ after generation we will assume that µ = 0 (see, e.g., Gentle 2003, p. 197).

Consider a vector Z = (Z1, · · · , ZN )T of independent standard-normally distributed random variables Z ∼
N (0, I). As Σ is positive definite then there exists the Cholesky decomposition Σ = RT R, where R is an n×n

upper triangular matrix. Further, let

X = RT Z. (2.26)

The random vector X ∼ N (0,Σ). This can be proven by

E{(X − E{X}) (X − E{X})T } = E{XXT } (2.27)

Substituting the transformation 2.26 into 2.27 produces:

E{XXT } =E{RT Z(RT Z)T }
E{XXT } =E{RT ZZT R}
E{XXT } =RT E{ZZT }︸ ︷︷ ︸

I

R

=RT R = Σ

(2.28)

Accordingly, X ∼ N (0,Σ) holds. Now, a N (µ,Σ)-distributed random vector Y is generated. This follows from

the transformation:

Y = µ + X. (2.29)

This yields the following algorithm:

Algorithmus 2.4 (Generation of N (µ, Σ)-distributed random vectors)

Purpose: To generate a sample X from N (µ,Σ)

Input: Expected vector µ and the symmetrical positive definite matrix Σ

Output: Realisations of Y

1. Compute the Cholesky decomposition, that is: Σ = RT R.

2. Generate a realization of an independently and normally-distributed random vector Z ∼ N (0, I).

3. Compute the transformed X = RT Z, X ∼ N (0,Σ)

4. Compute transformed realizations according to Y = µ + X.

5. The vector Y is N (µ,Σ)-distributed.

2.4 Basic Monte Carlo Integration

The generation of random numbers is of great importance for the evaluation of integrals by means of Monte

Carlo methods. As far as the applications in chapter 3 are concerned, a simple Monte Carlo integration method
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will be discussed.

The original Monte Carlo approach was developed as a method using random number generation to compute

integrals (Kalos and Whitlock 1986; Liu 2001). Let Z be a real-valued random variable, p(z) (z ∈ R) its

pdf, and χ ⊂ R the domain of integration. Then, the integral

∫

χ

f(z)p(z)dz = E{f(Z)} (2.30)

represents the expected value of an arbitrary random function f(Z) over p(z). Considering a large number of

identically and independently distributed (i.i.d.) samples s
(1)
z , . . . , s

(M)
z with pdf p(z), the expectation may be

estimated by:

Ê{f(Z)} =
1

M

M∑

i=1

f(s(i)
z ) . (2.31)

This procedure is called Monte Carlo integration and may be extended to a multivariate approach involving a

real-valued random m-vector Z and a real-valued random n-vector function f (Z). In this case, the expectation

vector is estimated by

Ê{f (Z)} =
1

M

M∑

i=1

f(s(i)
z ) , (2.32)

where s
(i)
z denote i.i.d. samples, each with joint pdf p(z) (z ∈ Rm).

The covariance information Σ{f(Z)}, is obtained from the second central moment of f(Z), that is:

Σ{f(Z)} = E
{(

f(Z) − E{f(Z)}
)(

f(Z) − E{f(Z)}
)T}

=

∫

X

(
f(Z)−E{f(Z)}

)(
f(Z)−E{f(Z)}

)T

p(z)dz. (2.33)

The entries of (2.33) can be numerically determined by using Monte Carlo integration via drawing M vectors

of samples s
(i)
z from p(z) and computing:

Σ̂{f(Z)}=
1

M

M∑

i=1

(
f (s(i)

z )−E{f(Z)}
)(

f (s(i)
z )−E{f(Z)}

)T

. (2.34)

In contrast to the standard error propagation procedure mentioned above, which is restricted to the computation

of the variance Σ{FZ} of a linear relation F = FZ (or to a linearized function), the random vector s
(i)
z is here

transformed directly according to s
(i)
f = f(s

(i)
z ), and the variance is obtained by:

Σ̂{f(Z)}=
1

M

M∑

i=1

(
s

(i)
f −E{f(Z)}

)(
s

(i)
f −E{f(Z)}

)T

, (2.35)

i.e. through averaging the dyadic products of the centralized random vectors s
(i)
f .

In Sect. 3.4 the convergence of the Monte Carlo integration with respect to the number of generated samples

will be discussed. Furthermore a procedure for improving the rate of convergence will be presented in Sect. 3.5.
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3 Monte Carlo method for estimation of the VCM

The calculation of the inverse of a large positive definite matrix is a common task in many geodetic related

problem. In particular, there are applications where it is desired to obtain the least squares estimates of the

parameters of a large linear model. Moreover, to obtain the variances or the covariances of the least squares

estimated parameters, one needs not only the solution of the normal equations, but also the full inverse matrix

of the normal equations, possibly multiplied by an estimated variance factor. We assume n to be the number

of observation and m to be the number of unknown parameters then it takes O(nm2) floating-point operations

to set up the normal equation matrix and O(1
2m3) floating-point operations to calculate its inverse (see, e.g.,

Schuh 2001). In case of insufficient RAM the computing time of the inverse increases significantly.

Moreover, not only the covariance matrix of the estimated parameters are of interest but also the linear as well

as the non-linear functions of the parameters with their corresponding accuracies. For example the adjustment

of satellite data results in harmonic coefficients to represent the Earth’s gravity field. The calculation of the

covariance matrix of other functionals (e.g., geoid heights, gravity anomalies) of the gravity field from those

coefficients can be done by error propagation (cf. Eq. 2.17). If the quantities of interest are derived by nonlinear

transformations from the estimated parameters, Monte Carlo simulation may then be the only feasible method.

For example, by nonlinear transformations in Koch (2005), the generated random vectors are converted to

random values of the square roots of degree variances, of mean squares of geoid undulations and geoid anomalies.

A research area at the focus of this thesis, occurs with the simulation and application of the developed Monte

Carlo methods on the new satellite missions such as GOCE. However, it is expressly emphasized that the

methods presented in this chapter are universally applicable to any adjustment problems, whereas the analysis

of GOCE data in chapter 5 solely serves as an example without limiting the generality of this procedure.

The current chapter is organized as follows: In Sect. 3.1 the terminology of the linear model and the method

of least squares to estimate the unknown parameters and their covariance matrix is elaborated. Sect. 3.2 deals

with the use of Gibbs sampler for the computation of the covariance matrices. In Sect. 3.2, Monte Carlo

variance/covariance matrix (MCVCM)-Algorithms for random sample generation are presented. That section

is subdivided into four parts: first, a direct application to observation equations is discussed; second, the

decorrelation of observation equations is presented; third, a simple approach with respect to normal equations

is given; and fourth, an algorithm for combined heterogeneous systems is developed. The evaluation of the

accuracy of Monte Carlo integration as one of the crucial aspects of this study is described in Sect. 3.4. For this

purpose, confidence regions for propagated variances are derived, and an answer to the important question of

the relation between accuracy and the number of samples is given. In Sect. 3.5, a stepwise estimation process by

conditioning is shown to take advantage of prior information of the preconditioner to increase the accuracy of

the estimation process. Finally, the efficiency estimations of the MCVCM-Algorithms are introduced in Sect. 3.6

for the purpose of parallelization of the Monte Carlo algorithms.

3.1 The linear Gauss-Markov model

3.1.1 Definition

Based on a random vector L containing n observations, we would like to estimate m unknown parameters,

which are summarized in a random vector X. The relation between the observed quantities and the unknown

parameters will be described by a function f(X). In the linear case of the Gauss-Markov-Model (GMM) this

relation can be formulated as follows (see, e.g., Koch 1999, p. 153):

E{L} = Aξ, with Σ{L} = σ2P−1. (3.1)

The function E{L} = Aξ, where ξ = E{X} is the true values of the parameters, expresses the expectations

E{L} of the observations L as a linear combination of the unknown m parameters by means of matrix of

coefficients A ∈ Rn×m, also called the design matrix, which will be assumed to have full column rank. This

relation is also called the functional model. An important aspect of the GMM is the stochastic model which is

described by the positive definite variance/covariance matrix Σ{L} = σ2P−1. This matrix can be calculated by

means of the known weight matrix P of the observation and by a unknown variance factor σ2, which describes

the general level of variance between all observations. In the sense of least square adjustment the number of

observations n is always larger than the number of unknown parameters m (n > m). In this case the system
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of equations L = AX becomes inconsistent. In order to solve this problem, the best linear unbiased estimator

(BLUE) has to be determined.

3.1.2 Best linear unbiased estimation

We look for a linear estimator

X = BL, (3.2)

which is unbiased

ξ = E{X} = E{BL} = BE{L} = BAξ. (3.3)

Therefore BA = I must hold. In addition the best estimator denoted by B̂ must have minimal variance

Σ{B̂Σ{L}B̂T } → min (3.4)

This means, that also each linear transformed vector F = FX has a minimal variance. As Meissl (1982)

shows, are this conditions sufficient to determine B̂ uniquely by

B̂ =
(
AT Σ{L}−1AT

)−1

AT Σ{L}−1, (3.5)

where Σ{L}−1 describes the metric of the vector space. In the following Σ{L}−1 will be denoted by Σ.

3.2 Generation of samples based on MCMC methods

We have discussed in in Sect. 2.4 the important role of MC methods in evaluating integrals. The most critical

step in developing an efficient MC algorithm is the sampling from an appropriate pdf p(x). When directly

generating independent samples from p(x) is not possible, one have to produce statistically dependent samples

based on the idea of Markov Chain Monte Carlo (MCMC) sampling (Liu 2001).

Markov Chain Monte Carlo (MCMC) methods have gained enormous popularity beyond mathematical statistics

over the last few years. A general discussion of the MCMC methods is given in, e.g., Robert and Casella

1999, and a practical use of MCMC for sampling of solutions to inverse problems can be found in Mosegaard

and Tarantola (1995) and Tarantola (2005). Other instances of the use of MCMC sampling for the

Bayesian image reconstruction can be found in Koch (2006). Comprehensive accounts of MCMC methods and

their applications may also be found in Gelman et al. (2004). The purpose of the next section is to give a

brief overview of the commonly used MCMC sampling algorithm, the Gibbs sampler. In Sect. 3.2.2, the Monte

Carlo estimation of the inverse of the normal equation matrix by generation of random sample based on the

Gibbs sampler will be outlined.

3.2.1 Gibbs sampler

Gibbs sampling (Geman and Geman 1984) typically involves a partitioning of the random vector X into

multiple blocks X = (X1, · · · , Xm). The density is then defined as the product of the conditional density of

each block given the data and the remaining parameters. In each iteration step, each component of the sample

is generated from the corresponding conditional density. To compute the 0th iteration initial values must be

given.

The density p(x), X ∈ S ⊆ Rp, from which the sample components are generated, is assumed to be known. The

conditional density of the kth block is denoted by p(xk|x−k) = p(xk|x1, · · · , xk−1, xk+1, · · · , xm). The Gibbs

sampling algorithm comprises the following steps (see Koch 2000, p. 205):

Algorithmus 3.1

Purpose: To generate a sample x using Gibbs sampler

Input: Initial values of x = 0

Output: Realisations x of the random vector X
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1. Specify starting values x(0) = (x
(0)
1 , · · · ,x

(0)
m ) and set i = 0

2. Sample or update in turn

– X
(i+1)
1 from p(x1|x(i)

2 ,x
(i)
3 , · · · ,x

(i)
m )

– X
(i+1)
2 from p(x2|x(i+1)

1 ,x
(i)
3 , · · · ,x

(i)
m )

– X
(i+1)
3 from p(x3|x(i+1)

1 ,x
(i+1)
2 ,x

(i)
4 , · · · ,x

(i)
m )

–
...

– X(i+1)
m from p(xm|x(i+1)

1 ,x
(i+1)
2 , · · · ,x

(i+1)
m−2 ,x

(i+1)
m−1 )

3. Set i = i + 1 and go to step 2.

In order to compute large covariance matrices, Harville (1999) suggested the Alg. 3.1 whose main steps will

be given in the next section.

3.2.2 Computation of the covariance matrix based on Gibbs sampler

The Gibbs sampling method for estimating the elements of the inverse normal equation matrix is discussed in

detail in Harville (1999) and Gundlich et al. (2003), and was applied to matrix inversion of huge normal

equation systems in the context of spherical harmonic analysis.

The first step of this procedure consists in a partitioning of the m × m normal equation matrix N and of its

inverse Σ into 2 × 2 submatrices or blocks. This can be written as:

N =

[
N11 N12

N21 N22

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
with sizes

[
r × r r × (m − r)

(m − r) × r (m − r) × (m − r)

]
.

(3.6)

Let the sample x, which is to be generated, be normally distributed with expectation vector 0 and covariance

matrix Σ, that is, X ∼ N (0,Σ). Then x is partitioned into subvectors x1 and x2, where x1 is of dimension

r × 1 and x2 dimension m − r × 1. Then the distribution of X1 conditional on X2 = x2 is:

(X1|X2 = x2) ∼ N
(
Σ12Σ

−1
22 x2,Σ11 − Σ12Σ

−1
22 Σ21

)
. (3.7)

Proof

The conditional density function p(x1|x2) can be rewritten from the relation 2.8 as:

p(x1|x2) =
p(x)

p(x2)
, (3.8)

where p(x2) is the marginal pdf of X2. If X2 ∼ N (0,Σ22), then its pdf is given by:

p(x2) =
1

(2π)(m−r)/2(detΣ22)1/2
exp

(
−1

2
xT

2 Σ−1
22 x2

)
. (3.9)

Substituting the results Eqs. (3.9) and (2.22) into Eq. (3.8) yields:

p(x1|x2) =

1
(2π)m/2(detΣ)1/2 exp

(
− 1

2x
T Σ−1x

)

1
(2π)(m−r)/2(detΣ22)1/2 exp

(
− 1

2x
T
2 Σ22

−1x2

)

=
1

(2π)r/2(detΣ)1/2(detΣ22)−1/2
exp

{
−1

2

(
xT Σ−1x − xT

2 Σ−1
22 x2

)}

=
1

(2π)r/2(detΣ)1/2(detΣ22)−1/2
exp {H} . (3.10)

The exponent in Eq. (3.10) may be rewritten as:

H = −1

2

[
xT

1 xT
2

]
Σ−1

[
x1

x2

]
− xT

2 Σ−1
22 x2. (3.11)
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One sets up the inverse of the block matrix Σ (see, e.g., Meyer 2000; p. 123):

Σ−1 =

[
F −FΣ12Σ

−1
22

−Σ−1
22 Σ21F Σ−1

22 + Σ−1
22 Σ21FΣ12Σ

−1
22

]
, (3.12)

where F = (Σ11 − Σ12Σ
−1
22 Σ21)

−1 and Σ22 are both nonsingular1. Substituting this in Eq. 3.11 leads to:

H = −1

2

[
xT

1 xT
2

] [ F −FΣ12Σ
−1
22

−Σ−1
22 Σ21F Σ−1

22 + Σ−1
22 Σ21FΣ12Σ

−1
22

] [
x1

x2

]
− xT

2 Σ−1
22 x2

= −1

2

(
xT

1 Fx1 − xT
2 Σ−1

22 Σ21Fx1 − xT
1 FΣ12Σ

−1
22 x2 + xT

2 Σ−1
22 x2+

xT
2 Σ−1

22 Σ21FΣ12Σ
−1
22 x2 − xT

2 Σ−1
22 x2

)

= −1

2

(
x1 − Σ12Σ

−1
22 x2

)T
F
(
x1 − Σ12Σ

−1
22 x2

)
, (3.13)

Further, the following condition holds:

detΣ = det

[
Σ11 Σ12

Σ21 Σ22

]
. (3.14)

Since Σ11 and Σ22 are square matrices, then holds (see, e.g., Meyer 2000; p. 475):

detΣ = det (Σ22) det
(
Σ11 − Σ12Σ

−1
22 Σ21

)
if Σ−1

22 exists

= detΣ22 detF−1. (3.15)

From Eq. 3.15 it follows that:

detF−1 = detΣ(detΣ22)
−1. (3.16)

Substituting the results Eqs. (3.16) and (3.13) into Eq. (3.10) yields:

p(x1|x2) =
1

(2π)r/2(detF)−1/2
exp

{(
x1 − Σ12Σ

−1
22 x2

)T
F
(
x1 − Σ12Σ

−1
22 x2

)}
. (3.17)

This leads to:

(X1|X2 = x2) ∼ N
(
Σ12Σ

−1
22 x2,F

−1
)
; (3.18)

That is, the conditional distribution of x1 given x2 is N
(
Σ12Σ

−1
22 x2,Σ11 − Σ12Σ

−1
22 Σ21

)
(cf. Koch 1999,

p. 121). �

With the matrix identities (cf. Koch 1999, p. 33)

NΣ =

[
N 11 N 12

N 21 N 22

] [
Σ11 Σ12

Σ21 Σ22

]
=

[
I 0

0 I

]
, (3.19)

we get the equations:

N 11Σ11 + N12Σ21 = I (1) N11Σ12 + N12Σ22 = 0 (2)

N21Σ11 + N22Σ21 = 0 (3) N21Σ12 + N22Σ22 = I (4).
(3.20)

From (1) in Eq. (3.20) we obtain

N−1
11 = Σ11 − Σ12Σ

−1
22 Σ21 (3.21)

and from (2) we get

N12 = −N11Σ12Σ
−1
22 ⇐⇒ Σ12Σ

−1
22 = −N−1

11 N 12 (3.22)

Substituting Eqs. (3.21) and (3.22) into Eq. (3.18) results in:

(X1|X2 = x2) ∼ N
(
−N−1

11 N12x2, N
−1
11

)
. (3.23)

1The matrix F is called the Schur complement of Σ22
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As a simplification, we will use for the following the notation x1|x2 instead of (X1|X2 = x2).

The normal equation matrix N is divided into r × r blocks. The Alg. 3.1 is applied to generate the samples xi

according to Eq. (3.23) that is:

xl|xi
1,x

i
2, · · · ,xi

l−1,x
i−1
l+1 , · · · ,xi−1

r ∼ N



−N−1
ll




∑

j<l

N ljx
(i)
j +

∑

j>l

N ljx
(i−1)
j



 , N−1
ll



 . (3.24)

It is common practice to generate values z as realizations of the random variable Z from the standard normal

distribution N (0, I). In our case, however, the n×1 samples x(i) must follow a multivariate normal distribution,

i.e. X ∼ N (µ,Σ) must hold (see Sect. 2.3.4). The transformation then reads (cf. Koch 2000, p. 187):

xi
l = Rllz

i
l + µi

l

= Rllz
i
l − N−1

ll




∑

j<l

N ljx
(i)
j +

∑

j>l

N ljx
(i−1)
j



 , (3.25)

where Rll denotes a upper triangular matrix, which is obtained from the Cholesky decomposition of the inverse

of each block N−1
ll = RT

llRll.

Fig.3.1 demonstrates the computation steps of the Eq. 3.25. For example, suppose that the third sample of

the ith iteration (x
(i)
3 ) shall be computed. At first, the product of the Cholesky-decomposed main diagonal

block R33 with the corresponding part of the random vector z
(i)
3 is computed. From this, the product of

the inverted main diagonal block N 33 with the bracketed expression
(∑

j<l N ljx
(i)
j +

∑
j>l N ljx

(i−1)
j

)
(here

combined within the vector h
(i)
3 ) is subtracted. This expression is arises from of the products of the secondary

diagonal blocks, which have the row index 3, with the corresponding parts of the vectors x. From these values,

however, only the parts x
(i)
1 and x

(i)
2 are computed within the i-th iteration step. Therefore, for all the parts

with an index larger than the current index, the samples of the previous iteration step (x
(i)
4 and x

(i)
5 ) are used.

N 35N 31 N 32 N 34

z
(i)
3R33 N−1

33

h
(i)
3

x
(i)
3 h

(i)
3

x
(i)
1 x

(i)
2 x

(i−1)
4 x

(i−1)
5

Fig. 3.1: Principle of the Gibbs-Sampler

Algorithm 3.1 reveals that the computation of the samples by means of Gibbs sampling is performed within

an iterative process. To reduce the effect of the starting initial values x(0), one generally discard the first S

(burn-in period) values of the generated sequence. The burn-in period increases the efficiency of the estimation

enormously. The length of this burn-in period is influenced by the starting values of the samples x(0). A detailed

discussion of suitable specifications for the burn-in period is found for instance in Johnson (1996).

Another problem that arises, is the dependence of the iterations in each generated sequence. As a remedy, once

approximate convergence has been reached, is whether to thin the sequences by keeping every sth simulation

draw and discarding the rest (Gelman et al. 2004, pp. 287–305). Koch et al. (2004) proposed to use only

every 5th sample for an efficiently computing the covariance matrix. The following algorithm illustrates a generic

implementation:
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Algorithmus 3.2 (Version based on Gibbs sampler)

Purpose: To estimate the Σ̂{X}
Input: N . . . normal equations

N ij . . . blocks of the normal equations

M . . . number of samples

S . . . length of the burn-in period

s . . . value to thin the samples

Output: Σ̂{X} = N−1 . . . VCM of parameters

1. Set arbitrary starting values for x, for instance x = 0

2. Divide the normal equation N into r × r blocks.

3. Reiterate the following computation for every i = 1 . . .M

Generate samples z(i) from Z ∼ N (0, I).

FOR l = 1, ..., r

• Invert the diagonal block: N−1
ll = INV (N ll).

• Factorize N−1
ll = RllR

T
ll .

• Transform random vector z
(i)
l to x

(i)
l by

x
(i)
l = Rllz

(i)
l − N−1

ll

(∑
j<l N ljx

(i)
j +

∑
j>l N ljx

(i−1)
j

)
.

END l

4. Discard the first S samples (the burn-in period)

5. Pick up every sth sample from the remaining M − S samples (i.e. thin the sequences).

6. Compute the VCM : N−1 = 1
M−S

∑M
i=S+1 x(i)x(i)T

Highly correlated unknown parameters lead to strong correlations between the generated samples x(i). By

clustering the samples of correlated parameters in the same subvectors xl, one can diminish the correlation

(Harville 1999). The other reason for dividing the samples x(k) into subvectors is to reduce the variance of

the estimate N−1 in the last step of Alg. 3.2. This technique called estimation by conditioning and gives a

more accurate estimate of the VCM of the unknown parameters (see Sect. 3.5.2).

It should be mentioned that this approach has two important characteristics. Firstly, it allows a very condensed

representation of the variance/covariance information in terms of random samples (compression rate: 1:10 to

1:100), and secondly, it is optimally suited for parallel implementation. Koch et al. (2004) modified the al-

gorithm 3.2 for parallel computation, which leads to an enormous decrease in computation time. Furthermore,

this modified algorithm caused lower correlations between the generated samples.

The only shortcoming of the Gibbs sampler is the difficulty in adapting this algorithm to iterative solvers,

which avoids the costly computation of the normal equations. Therefore, new generation method based on

Monte Carlo Integration will be developed in the following section to overcome this lack.

3.3 Generation of random samples based on MC integration

In this chapter, special attention to least squares problems with the combination of heterogeneous types of

observations is given. One part of the information is to be fully accessible in form of observation equations,

whereas other parts are only provided in condensed form as normal equations. The goal is to estimate the

variance information of the combined system. The approach will be developed step by step, beginning with a

standard Gauss-Markov model with the full design matrix available. Then the approach is presented for the

case that only the condensed information of the normal equations is available. Finally, combined systems are

treated, where both types of information are assembled in an optimal way. It should be mentioned that the

development of the following Monte Carlo algorithms is tailored for approximating large VCM in gravity field

modeling, especially GOCE, and facilitate the related error propagation computations.
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3.3.1 Gauss-Markov model, observation equations

As a starting point, the standard Gauss-Markov model (see 3.1) is considered as a linear transformation, defined

by

ξ = Bλ (3.26)

where ξ and λ denote true values, and the linear transformation matrix B (cf. Eq. (3.5)) is chosen as the inverse

operator of λ = Aξ with The random counterparts of ξ and λ are denoted by the random vectors X and L.

The random vector

L ∼ N (λ,Σ) (3.27)

has the characteristic of an unbiased, normally distributed quantity with expectation λ and VCM Σ. The

characteristics of the linearly transformed quantity X can be derived by propagation of the expectation and the

variances by:

X ∼ N (Bλ, BΣBT ) . (3.28)

Applying Eq. (3.5) to Eq. (3.28) yields:

X ∼ N (ξ, (AT Σ−1A)−1) , (3.29)

where ξ may also be viewed as the solution of the symmetric linear (normal equation) system

(
AT Σ−1A

)
ξ = ATΣ−1λ . (3.30)

Direct computation of the VCM through

Σ{X} =
(
AT Σ−1A

)−1

= N−1 (3.31)

requires inverting the normal equation matrix N . For large matrices this is a very costly task and the compu-

tational complexity increases with the power of three of the number of unknowns. Therefore, the application of

Monte Carlo integration as a tool to circumvent the critical inversion step is described in the following. The first

step is to generate sample vectors s
(1)
ℓ , . . . , s

(M)
ℓ with the same probability distribution as the random vector

L. These M samples are subsequently transformed through

s(i)
x = B s

(i)
ℓ , i = 1, . . . , M , (3.32)

into M vectors as realizations of X. These transformed samples s
(i)
x can then be used to estimate the VCM of

X by applying Eq. (2.35). The transformation of the samples s
(i)
ℓ into the samples s

(i)
x defined by Eq. (3.32)

corresponds to the solution of Eq. (3.30), i.e. of

(ATΣ−1A) s(i)
x = ATΣ−1s

(i)
ℓ , (3.33)

which can be accomplished by means of direct or iterative solution techniques (cf., e.g., Poder and Tschern-

ing 1973; Schuh 1984).

In order to simplify the computation, one can also work with centered quantities. This requires generating

realizations s
(1)
∆ℓ, . . . , s

(M)
∆ℓ from ∆L ∼ N (0,Σ) and transforming them by

s
(i)
∆x = Bs

(i)
∆ℓ. (3.34)

The transformed samples are distributed according to ∆X ∼ N (0, (ATΣ−1A)−1). Consequently, the VCM can

be calculated by application of Eq. (2.35), yielding

Σ̂{X} =
1

M

M∑

i=1

s
(i)
∆xs

(i)T
∆x (3.35)
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as the mean values of the sum of dyadic products of s
(i)
∆x which were generated by transformation in Eq. 3.34.

Proof

This can be proven immediately by variance propagation starting with the linear expression for s
(i)
∆x derived

from (3.33)

s
(i)
∆x = (ATΣ−1A)−1AT Σ−1s

(i)
∆ℓ . (3.36)

Substituting this into (3.35) and reordering the summation yields:

Σ̂{X} = (ATΣ−1A)−1AT Σ−1

(
1

M

M∑

i=1

s
(i)
∆ℓs

(i)T
∆ℓ

)
Σ−1A(ATΣ−1A)−1 . (3.37)

Defining Σ̂ by Eq. (2.35)

Σ̂ = Σ̂{∆ℓ} =
1

M

M∑

i=1

s
(i)
∆ℓs

(i)T
∆ℓ (3.38)

one obtains

Σ̂{X}=(ATΣ−1A)−1ATΣ−1Σ̂Σ−1A(ATΣ−1A)−1. (3.39)

The central limit theorem (cf. Sect. 3.4) ensures that Σ̂ converges to Σ if the number of samples M increases

to infinity (M → ∞), and therefore Σ̂{X} converges to Σ{X}=(ATΣ−1A)−1. �

All the necessary steps for implementing this Monte Carlo estimation procedure are summarized in Alg. 3.3.

Algorithmus 3.3 (Version based on observation equations)

Purpose: To estimate Σ̂{X}
Input: A . . . design matrix

Σ . . . VCM of observations

Output: Σ̂{X} = (ATΣ−1A)−1 . . . VCM of parameters

1. Generate samples s
(i)
∆ℓ , i = 1, . . . , M from

∆L ∼ N (0,Σ).

2. Transform the sample vectors s
(i)
∆ℓ into s

(i)
∆x by solving the linear equation system

(ATΣ−1A) s
(i)
∆x = ATΣ−1s

(i)
∆ℓ

for M right-hand sides.

3. Estimate the variance/covariance matrix by Σ̂{X} = 1
M

∑M
i=1 s

(i)
∆xs

(i)T
∆x .

Since samples are evaluated independently, Alg. 3.3 is ideally suited for parallel implementation (see section

3.6).

The crucial point of the whole procedure is how to generate the samples s
(i)
∆ℓ with the random characteristics

of ∆L ∼ N (0,Σ) 2. Assuming independency of the random quantities, the joint PDF may be factorized into

univariate PDFs, and the VCM degenerates to a diagonal matrix. The realizations of the different components(
s
(i)
∆ℓ

)

j
may therefore be independently drawn from the univariate normal distribution.

However, the more complex situation, where the observations are correlated and the VCM Σ is a dense system,

must be considered too. For instance, the observations might stem from a pre-adjustment, or the measurement

process might result in a time series with a colored noise characteristic. Since the VCM must, by definition, be

set up as a symmetric and positive definite matrix, it may be decomposed into two triangular matrices R with

Σ = RT R by a rank-preserving Cholesky factorization. This procedure is implemented as follows:

2It should be mentioned that one of the great advantages of the MC approach is that it works with arbitrary PDFs. The choice
of normal distribution for this study is justified by the asymptotic behavior of the normal distribution with respect to large numbers
of samples.
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Algorithmus 3.4

Purpose: To generate samples ∆L ∼ N (0,Σ)

Input: Σ . . . variance/covariance matrix

Output: s
(i)
∆ℓ . . . realizations of ∆L

1. Factorize Σ = RT R.

2. Generate samples s
(i)
e , i = 1, . . . , M , from E ∼ N (0, I).

3. Transform the random vector s
(i)
e to s

(i)
∆ℓ by s

(i)
∆ℓ = RT s

(i)
e .

The resulting samples s
(i)
∆ℓ from auxiliary Alg. 3.4 belong to ∆L ∼ N (0,Σ). This can be immediately proven

by variance propagation (see the proof of Alg. 3.3). Algorithms 3.3 and 3.4 summarize all the necessary steps

to estimate the VCM of Σ̂{X} by Monte Carlo integration directly from the observation equations

AX = L + V L ∼ N (Aξ,Σ) . (3.40)

with respect to the random vectors L of the observations, the residuals V and the parameters X. This is the

empirical counterpart to Aξ = λ with respect to the true values ξ and λ. Assuming the Markov condition

E{V} = 0 implies E{L} = λ and E{X} = ξ, respectively. This straightforward algorithm may be optimized

by introducing an additional transformation to fully decorrelate and homogenize the observation equations,

followed by solving the simplified Gauss-Markov model

Āx = ℓ̄ + v̄ L̄ ∼ N (Āξ, I) , (3.41)

where I denotes the unit matrix. The next section focuses on this decorrelation process.

3.3.2 Gauss-Markov model, decorrelated observation equations

The decorrelation of the (fully correlated) observation equations, as defined by (3.40), is performed by applying

a linear transformation, i.e.

ℓ̄ = F ℓ , (3.42)

on the observations where F represents a regular (i.e. invertible) matrix. The same transformation can be

applied to the entire system of observation equations. This system is denoted by

Āx = ℓ̄ + v̄ , (3.43)

with

Ā = FA and v̄ = Fv . (3.44)

The VCM Σ{L̄} of the filtered observations ℓ̄ can be derived by variance propagation with

Σ{L̄} = F ΣF T . (3.45)

If the Cholesky factor R of the VCM Σ, defined by Σ=RT R, is used as a filter matrix with F = (R−1)T , it

can be seen immediately that

Σ{L̄} = FΣF T = FRT RF T =

= (R−1)T RT R(R−1) = I, (3.46)

thus the VCM Σ{L̄} degenerates to the unit matrix I. Therefore, the transformed, i.e. uncorrelated and

homogenized observation equations are given by

Āx = ℓ̄ + v̄, (3.47)

where ℓ̄ are realizations of the random vector L̄ ∼ N (Āξ, I). Consequently, inserting this decorrelation step

Ā=(R−1)T A into the Monte Carlo integration, Alg. 3.3 and 3.4 can be reformulated. The whole procedure is

summarized in Alg. 3.5.
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Algorithmus 3.5 (Version based on decorrelation)

Purpose: To estimate Σ̂{X}
Input: A . . . design matrix

Σ . . . VCM of observations

Output: Σ̂{X} = (ATΣ−1A)−1 . . . VCM of parameters

1. Decorrelation step: Transform the design matrix A into Ā.

2. Generate samples s
(i)
e , i = 1, . . . , M from ∆E ∼ N (0, I).

3. Transform the random vectors s
(i)
e into s

(i)
∆x by solving the linear system

(Ā
T
Ā) s

(i)
∆x = Ā

T
s
(i)
e for M right-hand sides.

4. Estimate the VCM by Σ̂{X} = 1
M

∑M
i=1 s

(i)
∆xs

(i)T
∆x .

The results of this algorithm can be proven by substitution and variance propagation (see proof of Alg. 3.3). The

cost of the decorrelation step, characterized by the factorization step Σ=RT R and the filter step Ā=(R−1)T A,

mainly depends on the structure of the VCM Σ. In many applications, the VCM is defined as a diagonal matrix

or a band matrix (such as the VCM for observations in geodetic networks, or the VCM of velocities derived from

point observations). Then these steps are easy to compute. In reality, though, time series are often superposed

by colored noise. Under the assumption of stationary noise and regularly distributed data the VCM is a Toplitz

matrix. The computation with the Toeplitz matrix Σ degenerates to a convolution and can be performed effi-

ciently in the frequency domain as well as in the time domain. In both cases, efficient tailored strategies can be

constructed to perform the operation (R−1)T A for arbitrary matrices A. This can be accomplished by apply-

ing FFT techniques, thus carrying out the discrete convolution in the frequency domain, or by implementing

discrete linear ARMA (Auto Regressive Moving Average) filters, thus performing the computation in the time

domain (Schuh 2003b).

The proposed algorithm has large potential for parallel implementation. The main steps, the decorrelation

procedure as well as the solution process, can be split up horizontally or vertically into single threads and

processed in parallel (cf. Schuh 2003a; Koch et al. 2004).

3.3.3 Gauss-Markov model, normal equations

In this section, the standard approach with direct application of this strategy to the normal equations will be

discussed. In this case, the normal equations Nx = n are given, and the VCM of the unknown parameters,

defined by Σ{X} = N−1σ2 will be computed. For simplicity, we assume hereafter that σ2 = 1, or that the

variance factor is already included in the normal equation system. The focus is on the computation of the

inverse N−1.

It is now intended to process large combined systems, where parts of the measurement information is condensed

in the form of normal equations, but affects only relatively small groups of parameters. In fact, it may be

assumed that the factorization of these systems with less than 10,000 to 20,000 parameters can be accomplished

without much effort. Consequently, it appears to be rather inefficient to use the Monte Carlo integration under

these circumstances. However, as it will be seen in the following section, this approach is nevertheless very useful

when Monte Carlo integration is applied to a combined system. In such a system, large parts of the parameters

are defined directly by observation equations, and normal equations yield significant additional information

only for few parameters. Therefore, samples have to be generated also for smaller systems. Of course, this

can be done by the application of the Gibbs sampler which was presented in Sect. 3.2, but also a very simple

factorization approach is convenient.

Following this idea, the normal equations N are split up into two triangular matrices S by a Cholesky factor-

ization N = ST S. The estimation of Σ̂{X} can be performed in various ways by Monte Carlo integration.

In the following a first straightforward approach is given. First, samples s
(i)
e from E ∼ N (0, I) are generated.

These samples are transformed by s
(i)
∆n = ST s

(i)
e to obtain N (0, N)-distributed samples. The solution process

Ns
(i)
∆x = s

(i)
∆n yields samples s

(i)
∆x, which belongs to the distribution N (0, N−1) and which can be used to

estimate Σ̂{X} via Monte Carlo integration (cf. Alg. 3.6).
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Algorithmus 3.6 (Version based on normal equations)

Purpose: To estimate Σ̂{X}
Input: N . . . normal equation

Output: Σ̂{X} = N−1 . . . VCM of parameters

1. Factorize N = ST S.

2. Generate samples s
(i)
e , i = 1, . . . , M from E ∼ N (0, I).

3. Transform the random vector s
(i)
e to s

(i)
∆n by

s
(i)
∆n = ST s

(i)
e .

4. Transform the random vector s
(i)
∆n to s

(i)
x by solving the linear system

Ns
(i)
∆x = s

(i)
∆n.

5. Estimate the variance/covariance matrix by Σ̂{X} = 1
M

∑M
i=1 s

(i)
∆xs

(i)T
∆x .

Comment: A step-by-step analysis of this Algorithm 3.6 immediately reveals the bottleneck as the compu-

tation of N−1NN−1. Of course, the straightforward way of representing N−1 as N−1 = S−1(ST )−1 may

be used to condense steps 3 and 4 of Alg. 3.6. This allows the direct computation of s
(i)
x from s

(i)
e by solving

the triangular system S s
(i)
x = s

(i)
e within a back substitution step. If only the VCM of a condensed normal

equation system is of interest, this shortcut is convenient. However our goal is to combine different groups of

data. With respect to this task Alg. 3.7 constitutes the basic tool to introduce condensed normal equations into

a combined heterogeneous model.

3.3.4 Gauss-Markov model, combined heterogeneous systems

As mentioned before, it is intended to apply the Monte Carlo simulation strategy to estimate the VCM of the

combined system defined by two groups of observations. The equations

Ax = ℓ + v L ∼ N (Aξ,Σ) (3.48)

describe one part of the observations, for which it is desirable to avoid the explicit computation of the normal

equations, and the system

Nx = n (3.49)

contains the information of the second group of observations. The combination of these mutually uncorrelated

systems results in the sum of normal equations (see e.g. Koch 1999, p. 177)

(
AT Σ−1A + N

)
x = ATΣ−1ℓ + n. (3.50)

The VCM of the combined system is defined by

Σ{X} =
(
AT Σ−1A + N

)−1

. (3.51)

To exploit this formula by a Monte Carlo approach, the same strategy as before can be followed: generate

samples, transform these samples by solving the combined system, and estimate the VCM by an average

process. As the single steps have already been prepared in Algs. 3.5 and 3.6, these algorithms simply need to

be combined into one computational stream.

Algorithmus 3.7 (Version based on combined system)

Purpose: To estimate Σ̂{X}
Input: N . . . normal equation

A . . . design matrix

Σ . . . VCM of observations

Output: Σ̂{X} = (ATΣ−1A + N)−1 . . . VCM of parameters
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1. Decorrelation step: Transform the design matrix A to Ā.

2. Generate samples s
(i)
e , i = 1, . . . , M from ∆E ∼ N (0, I).

3. Factorize N = ST S.

4. Generate samples s
(i)
g , i = 1, . . . , M from G ∼ N (0, I).

5. Transform the random vector s
(i)
g to s

(i)
∆n by s

(i)
∆n = ST s

(i)
g .

6. Transform the random vectors s
(i)
e and s

(i)
∆n to s

(i)
∆x by solving the linear system

(Ā
T
Ā + N) s

(i)
∆x = Ā

T
s
(i)
e + s

(i)
∆n

for M right-hand sides.

7. Estimate the variance/covariance matrix by Σ̂{X} = 1
M

∑M
i=1 s

(i)
∆xs

(i)T
∆x .

To prove this algorithm, use variance propagation taking into account that the s
(i)
e are independent from the

s
(i)
∆n.

The main computational work in Alg. 3.7 is done in step 6, where the samples s
(i)
∆x are determined by solving

the linear system

(Ā
T
Ā + N) s

(i)
∆x = Ā

T
s(i)

e + s
(i)
∆n (3.52)

for M different combined samples. Regarding the GOCE mission, these are very large systems with 100

millions of observations and about 60,000 unknowns, resulting from the extremely sensitive SGG observations.

In contrast, the SST observations are collected in normal equations which are only sensitive to about 20,000

unknowns.

To take this into account, the normal equation system Nx = n is split up into

[
N11 0

0 0

] [
x1

x2

]
=

[
n1

0

]
, (3.53)

and the quantities s
(i)
g are transformed by

s
(i)
∆n =

[ (
s
(i)
∆n

)
1

0

]
=

[
ST

11 0

0 0

]
s(i)

g (3.54)

As far as the computational effort is concerned, it is easy to solely perform the Cholesky reduction of the small

block N11 of the normal equation system. In the case of singular normal equations, a regularization by means

of a rank preserving factorization (cf. Gill et al. 1981, p. 173) with a suitable choice of the null space has to

be performed. It should be mentioned that the factorized matrix is only required to generate the samples, but

not within the solution process, where the combined normal equations (Eq. 3.52) are involved. For the solution

of this large system, parallel iterative procedures have been proven to be useful (cf. as an example the PCGMA

algorithm in Schuh 1996).

3.4 Accuracy of the Monte Carlo integration

In Sect. 2.4, two types of integrals were defined to be solved by Monte Carlo integration. The first type (2.30)

is related to the expectation, the second type (2.33) to the variance of a random vector. Both integrals may be

estimated through Monte Carlo integration by averaging samples Eq. (2.32), or by averaging dyadic products

of random samples Eq. (2.35). The fundamental theorem of Monte Carlo estimation (see, e.g., Leonard and

Hsu 1999, p. 275) guarantees that the estimated value Ê{fj(X)} for each individual function fj(X) converges

to the true value E{fj(X)} almost surely, that is

P
{

lim
M→∞

Ê{fj(X)} = E{fj(X)}
}

= 1 , (3.55)

if the number of samples M increases to infinity, i.e. if M → ∞. If the number of samples is finite, an upper

bound for the error εj with

εj = Ê{fj(X)} − E{fj(X)}, (3.56)
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which is defined as the difference between the estimated value Ê{fj(X)} and the true value E{fj(X)}, can be

obtained by Chebychev’s inequality (cf. Kalos and Whitlock 1986, p. 25)

P

{
ε2

j ≥
σ2

Ê{fj(X)}

α

}
≤ α, (3.57)

where σ2
Ê{fj(X)}

characterizes the variances of the estimated values Ê{fj(X)}. The positive number α repre-

sents the error probability (0≤α<1).

Comment

This formulation is often denoted as the fundamental theorem of Monte Carlo integration. But we have to be

very careful and distinguish between the variance of the estimated value Ê{fj(X)} denoted by σ2
Ê{fj(X)}

and

the variance of the random function fj(X), denoted by σ2
fj(X).

Recall that each component fj(X) of the vector function f(X) is sampled by s
(i)
fj

with variance σ2
fj(X). The

averaging process

Ê{fj(X)} =
1

M

M∑

i=1

s
(i)
fj

, (3.58)

allows to estimate the function value with a higher accuracy, because the variance of the average can be

determined by variance propagation with

σ2
Ê{fj(X)}

=
1

M
σ2

fj(X) . (3.59)

Substituting the variance of the estimated value σ2
Ê{fj(X)}

by the variance of the samples σ2
fj(X) Chebyshev’s

inequality (Eq. 3.57) can be rewritten as

P

{
|εj | ≥

√
1

α

√
1

M
σfj(X)

}
≤ α . (3.60)

In order to increase the accuracy of the estimation process each of the two factors M− 1
2 and σfj(X) defining

the error bound can be improved. As a very simple attempt in doing so, the factor M− 1
2 could be decreased

by increasing the number of samples M . However, it must be kept in mind that the square root decreases very

slowly, or, in other words, the computational effort increases quadratically.

As a first impression, let the error probability be fixed at 1% (α = 0.01) and evaluate this factor, resulting in

α− 1
2 = 10. Here one can see immediately that Chebyshev’s inequality is only a rough estimation. If normal

distributed values for the samples s
(i)
fj

are introduced, or if the central limit theorem for large numbers of

samples is applied, the limit distribution for the estimated value Ê{fj(X)} is known as the normal distribution.

Therefore, the factor α− 1
2 may be replaced by the quantile values of standard normal distribution, which are

K
N (0,1)
α/2 and K

N (0,1)
1−α/2 , respectively. The corresponding two-sided confidence region is defined as

P

{
K

N (0,1)
α/2 ≤ εj

σÊ{fj(X)}

≤ K
N (0,1)
1−α/2

}
= 1 − α . (3.61)

If σÊ{fj(X)} is substituted by Eq. (3.59) with the variance of the samples σfj(X), then this results in

P

{
|εj | ≤

√
1

M
K

N (0,1)
1−α/2 σfj(X)

}
= 1 − α . (3.62)

If the error level is again set to α = 0.01 the quantile value K
N (0,1)
1−α/2 results in 2.57. Therefore, the application

of the normal distribution corresponds to an enhancement of the estimate of assessment of accuracy by a factor

of four, or a reduction of samples by a factor of 16 with respect to Chebyshev’s inequality.

The third factor of the accuracy bound is determined by the variance of the samples. In the literature (e.g.

Kalos and Whitlock 1986p. 92 and Liu 2001p. 26), different strategies are described to reduce this variance.
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Before elaborating on these strategies, (cf. Sect. 3.5.2) the estimation of variance as the second kind of Monte

Carlo integration is now discussed. As explained in Sect. 2.4, the variance is estimated by

Σ̂{X} =
1

M

M∑

i=1

s
(i)
∆xs

(i)T
∆x , (3.63)

where s∆x characterizes a sample with expectation zero. An individual variance σ̂2
Xj

is then computed by

σ̂2
Xj

=
(
Σ̂{X}

)
jj

=
1

M

M∑

i=1

(
s
(i)
∆x

)
j

(
s
(i)
∆x

)
j

. (3.64)

The error of this estimation, that is

εσ̂2
j

= σ̂2
Xj

− σ2
Xj

, (3.65)

is bounded by Chebyshev’s inequality

P




ε2
σ̂2

j
≥

σ2
σ̂2

Xj

α




 ≤ α . (3.66)

To use this bound either the variance σ2
σ̂2

Xj

of the estimated variance σ̂2
Xj

is determined, or the PDF of the

estimated quantity is evaluated. With respect to Eq. (3.64) the computation is obviously based on the squared

sum of independent samples. Another approach evaluating the uncertainty of the estimation of σ̂2
Xj

in Eq.

(3.64) is to analyze the distribution of the squared sum of independent values. Scaling these random variables

by the assumed variances σ2
Xj

and supposing normal distributed values, the evaluated sum is χ2-distributed

with M degrees of freedom, denoted by χ2
M . The two sided confidence region of σ̂2

Xj
is defined by

P

{
K

χ2
M

α/2 ≤ M
σ̂2

Xj

σ2
Xj

≤ K
χ2

M

1−α/2

}
= 1 − α , (3.67)

where K
χ2

M

α/2 and K
χ2

M

1−α/2 denote the quantiles of the χ2
M distribution with respect to the error probability α/2

and 1 − α/2, respectively. The reformulation of this confidence region yields

P

{
1

M
σ2

Xj
K

χ2
M

α/2 ≤ σ̂2
Xj

≤ 1

M
σ2

Xj
K

χ2
M

1−α/2

}
= 1 − α . (3.68)

Introducing the error of the estimation εσ̂2
j

from Eq. (3.65) the relation

P

{
1

M
σ2

Xj
K

χ2
M

α/2 − σ2
Xj

≤ εσ̂2
j
≤ 1

M
σ2

Xj
K

χ2
M

1−α/2 − σ2
Xj

}
= 1 − α (3.69)

P

{(
1

M
K

χ2
M

α/2 − 1

)
σ2

Xj
≤ εσ̂2

j
≤
(

1

M
K

χ2
M

1−α/2 − 1

)
σ2

Xj

}
= 1 − α . (3.70)

is obtained, which provides limits for the estimation error. To bring this result into agreement with the confidence

region of the expectation in Eq. (3.62), the asymptotic behavior of the χ2
M distribution is used by replacing

it by a normal distribution with expectation M and variance 2M (Johnson and Kotz 1970a; p. 176). The

quantile K
χ2

M

β of the χ2
M distribution can be approximated by

K
χ2

M

β ≈ M + K
N (0,1)
β

√
2M (3.71)

using the quantile K
N (0,1)
β of the normal distribution. Numerical simulations strongly evidenced that the

error is of the order O( 1
M ). Therefore, this approximation is sufficient for the given application. Using this

approximation, the confidence region for the error of the estimated variance is given by

P

{
|εσ̂2

j
| ≤

√
2

M
K

N (0,1)
1−α/2 σ2

Xj

}
= 1 − α , (3.72)
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and consists of three terms again. The first term (2/M)
1
2 states that the accuracy improves with the number of

samples, the second term, that the quantile value fixes the probability level, and the last term, that the variance

σ2
Xj

acts as scaling factor. In contrast to Eq. (3.62), the performance of the variance estimation is reduced by

a factor of
√

2. It should be also mentioned that these error bounds are valid for the variances and not for the

standard deviations. As a consequence of Eq. (3.72), the test value

T =
σ̂2

Xj
− σ2

Xj

σ2
Xj

√
M

2
∼ N (0, 1) , (3.73)

which reflects a relative error of the estimated variance, is standard normal distributed.

This discussion shows that the relative error (σ̂2
Xj

− σ2
Xj

)/σ2
Xj

of the simulation depends primarily on the

number of samples. However, it must be taken into account that, as the number of samples increases, the error

bound decreases very slowly. Especially for large systems, one may run into severe time problems. Therefore,

other strategies are necessary to reduce the error bound, and this can only be accomplished by reducing the

variance of the Monte Carlo estimator. As far as relative errors are concerned, it is immediately observed that

a multiplicative transformation (scaling) has no effect on the relative error. Thus, additive forms should be

preferred.

3.5 Variance reduction of the generated samples

3.5.1 Variance reduction techniques

In Sect. 3.4 we have seen that the accuracy of the Monte Carlo Integration primarily depends on the amount

of generated random samples (cf. Eq. 3.73). The computing time increases proportionally with the number

of generated samples. The general aim of the variance reductions techniques is to reduce errors and to get

short computing times at the same time, without increasing the number of random samples. There are various

methods to achieve this aim, the most common ones are:

• Stratified sampling: In this technique, the interval is divided in subintervals, and the estimate (Eqs. 2.32

and 2.35) of the basic Monte Carlo integration is applied to each subinterval separately. The variance of

this method might be considerably smaller than the variance of the basic Monte Carlo simulation.

• Control variates: Another way to reducing the variance of the the estimators (Eqs. 2.32 and 2.35) is offered

by the control variates. Instead of considering only realizations of the PDF, one introduce an additional,

simple function g(x), with a known expectation µg:

˜̂
E{f(x)} = Ê{f(x)} − a(g(x) − µg).

The variance of
˜̂
E{f(x)} is less than the variance of the original response if Ê{f(x)} and g are positively

correlated.

• Antithetic variates: In the antithetic variates one introduce an additional estimator
¯̂
E{f(x)}, with the

same PDF as Ê{f(x)}. The variance reads

V

{
¯̂
E{f(x)} + Ê{f(x)}

2

}
=

V {Ê{f(x)}}
4

+
V { ¯̂

E{f(x)}}
4

+
C{ ¯̂

E{f(x)}, Ê{f(x)}}
2

.

If
¯̂
E{f(x)} and Ê{f(x)} are negatively correlated, the variance may be considerably smaller than the

variance of the estimates ( 2.32) and (2.35), respectively.

• Importance sampling: Another technique commonly used for reducing variance in Monte Carlo methods is

importance sampling. This method is different from the basic Monte Carlo method presented in Sect. 2.4.

Instead of sampling from p(x) one generate samples from another PDF h(x), and computes the estimate

of ( 2.32) and (2.35) using averages of f(x)p(x)/h(x) instead of f(x). That is:

E

{
f(X)

h(x)

}
=

∫

χ

f(x)
p(x)

h(x)
h(x)dx.

The function h(x) is called the importance sampling distribution function.
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• Conditional expectations: Conditional expectations is a very well-known variance reduction technique.

Suppose one have generated independent samples x(1), · · · ,x(M) from the PDF p(x) using the basic

Monte Carlo method presented in Sect. 2.4. The estimator in (2.32) can be used to evaluate the integral.

Furthermore, suppose that x divided into two parts and that the conditional expectation E{f(x)|x2} can

be evaluated analytically. The alternative estimator of (2.32) is:

Ĩ =
1

M

(
E
{
f(x)|x(1)

2

}
+ · · · + E

{
f(x)|x(M)

2

})
. (3.74)

Both estimator (2.32 and 3.74) are unbiased. Moreover,

V {Î} =
V {f(x)}

M
≥ V {E{f(x)|x2}}

M
= V {Ĩ}, (3.75)

where Î denotes the estimator (2.32).

A detailed description of the mentioned techniques as well as other techniques can be found in Rubinstein

(1981; p. 121 – 142) and in Robert and Casella (1999; p. 80 – 119). In the next chapter we would like

to reduce the variance of the estimate Eq. (3.63) by applying a blocking technique (see, e.g., Liu 2001),

i. e. by clustering the samples s
(i)
∆x of correlated unknown parameters. This technique allows the estimation by

conditioning which reduces the variance of the estimate Eq. (3.63). For more details see Harville (1999) and

Gundlich et al. (2003).

3.5.2 Stepwise estimation by conditioning

An efficient estimator can be found by conditioning on subvectors. Let

N =

[
N11 N12

N21 N22

]
(3.76)

define a 2 × 2 block-structured matrix N , and its inverse, which corresponds to the VCM, be given by

Σ = N−1 =

[
Σ11 Σ12

Σ21 Σ22

]
. (3.77)

Applying the inversion process on block structured matrices (cf. Meyer 2000, p. 123) yields the relations

Σ11 = N−1
11 + N−1

11 N12Σ22N21N
−1
11 (3.78)

and

Σ12 = −N−1
11 N12Σ22 . (3.79)

The main idea of the strategy of estimation by conditioning is that the inverse of N 11 can be computed in a

strict way, while the second term in Eq. (3.78) can be estimated by Monte Carlo integration.

The second diagonal block in the inverse matrix Σ22 may be estimated through Monte Carlo integration by

(cf. Alg. 3.7)

Σ̂22 =
1

M

M∑

i=1

(
s
(i)
∆x

)
2

(
s
(i)
∆x

)T
2
, (3.80)

where
(
s
(i)
∆x

)
2

denotes the second (remaining) part of the samples s
(i)
∆x. A look at Eq. (3.78) reveals that each

summand of is positive definite, resulting in the inequality

tT
(
Σ11 − N−1

11 N 12Σ22N 21N
−1
11

)
t ≥ 0, (3.81)

for arbitrary vectors t. This states that each diagonal element of the matrix N−1
11 N 12Σ22N 21N

−1
11 is smaller

than or equal to the diagonal elements in Σ11, that is,

(N−1
11 N 12Σ22N 21N

−1
11 )ii ≤ (Σ11)ii. (3.82)



3.5 Variance reduction of the generated samples 35

We see from Eq. (3.78) that the first summand N−1
11 is known (deterministic) so that only the second term

has to be treated by the MC approach. As stated in Eq. (3.82) this term cannot be larger than (Σ11)ii,

but corresponds to the third term σfj(X) in Eq. (3.60), which defines the accuracy of the MC estimator.

Eq. (3.72) states that the error of the MC estimator is directly proportional to the variance σ2
Xj

, which has to

be estimated, or in other words, the relative accuracy of the MC estimation is constant. Now, if only the value

(N−1
11 N 12Σ22N 21N

−1
11 )ii has to be estimated by the MC approach, and main parts of the variance are defined

by the known term N−1
11 , then the accuracy of the entire estimation process can be increased. Especially, the

regular distribution of satellite observations produces diagonal block-dominant matrices (cf. Schuh 1996). The

block N−1
11 contains main parts of Σ11, and the estimation by conditioning substantially increases the accuracy

(see the test simulations in Sect. 6.1). Instructions for implementing this procedure for an arbitrary p× p block

system are provided in Alg. 3.8.

Algorithmus 3.8 (Version based on estimation by conditioning)

Purpose: To estimate Σ̂{X}
Input: N ij . . . blocks of the normal equations

(s
(i)
∆x)k . . . subvectors of the samples

Output: Σ̂{X} = N−1 . . . VCM of parameters

For k = 1, · · · , p

1. Invert the diagonal block Nkk

N−1
kk = INV (Nkk).

2. Transform random vector s
(i)
∆x to

(
s
(i)
∆x̄

)
k

by
(
s
(i)
∆x̄

)
k

= −N−1
kk

(∑p

(j=1
j 6=k)

Nkj (s
(i)
∆x)j

)
.

3. Compute the VCM of the diagonal block(
Σ̂{X}

)
kk

=N−1
kk + 1

M

∑M
i=1

(
s
(i)
∆x̄

)
k

(
s
(i)
∆x̄

)T
k
.

4. Compute the VCM of the blocks in the row(
Σ̂{X}

)
kj

= 1
M

∑M
i=1

(
s
(i)
∆x̄

)
k
(s

(i)
∆x)T

j

j = k+1, . . . , p.

END k

In Alg. 3.8, the normal equation matrix is subdivided into p × p blocks in such a way that all blocks on

the diagonal are squared and regular. If the matrix N is symmetric and positive definite, the inverses of

these diagonal blocks exist. Now, let k refer to a particular diagonal block and apply Eqs. (3.78) and (3.79),

respectively. The index 1 in Eq. (3.78) is equivalent to k, and the index 2 corresponds to the remaining subset

of indices j = 1, . . . , p with j 6= k.

This estimation by conditioning can be used to speed up the convergence behavior of all Monte Carlo integra-

tions. This method does not work only in connection with normal equations (Alg. 3.6), but can be adapted

to observation equations. Of course, in this case, the diagonal blocks of the normal equations need to be com-

puted. This is often done automatically to find an appropriate preconditioner for the iterative procedure. Thus,

this computation is not critical. Special attention is necessary regarding step 2 of Alg. 3.8, where the samples(
s
(i)
∆x̄

)
k

are generated. Here, all the off-diagonal blocks Nkj of the normal equations are involved. Due to the

huge computational effort necessitated by this step, it is recommended instead that the off-diagonal blocks are

evaluated direct from the solution of the system N∆x = n by

p∑

(j=1
j 6=k)

Nkj (∆x)j = (n)k − Nkk(∆x)k , (3.83)

where (∆x)j denotes the jth group of components in the vector ∆x. This transformation can be used in all

algorithms. Therefore, the estimation by conditioning may be integrated into Alg. 3.6. Additional computations

are required to compute

(
s
(i)
∆x̄

)
k

= (s
(i)
∆x)k − N−1

kk (s
(i)
∆n)k (3.84)
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and to use the last steps of Alg. 3.8 in order to increase the accuracy of the estimation. With the same strategy,

Alg. 3.5 can also be modified by computing the samples s
(i)
∆x̄ with

(
s
(i)
∆x̄

)
k

= (s
(i)
∆x)k − N−1

kk Āk
T
(s(i)

e )k, (3.85)

where Āk represents the design matrix of the kth group of observations and (s
(i)
e )k the samples of the same

group of observations. In this paper, combined adjustment constitutes the main goal. Therefore, Alg. 3.7 is

rewritten in combination with the estimation by conditioning. This results in Alg. 3.9.

Algorithmus 3.9 (Version based on estimation by conditioning)

Purpose: To estimate Σ̂{X} from combined system

Input: N . . . normal equation

N⊕ . . . block-diagonal preconditioner of (Ā
T
Ā + N )

A . . . design matrix

Σ . . . VCM of observations

Output: Σ̂{X} = (ATΣ−1A + N)−1 . . . VCM of parameters

1. Decorrelation step: Transform the design matrix A to Ā.

2. Generate samples s
(i)
e , i = 1, . . . , M from ∆E ∼ N (0, I).

3. Factorize N = ST S.

4. Generate samples s
(i)
g , i = 1, . . . , M from G ∼ N (0, I).

5. Transform the random vector s
(i)
g to s

(i)
∆n by

s
(i)
∆n = ST s

(i)
g .

6. Transform the random vectors s
(i)
e and s

(i)
∆n to s

(i)
∆x by solving the linear system

(Ā
T
Ā + N) s

(i)
∆x = Ā

T
s
(i)
e + s

(i)
∆n

for M right-hand sides.

7. Transform random vector s
(i)
∆x to s

(i)
∆x̄

k = 1, . . . , p
(
s
(i)

∆x̄

)
k

= (s
(i)

∆x
)k − (N⊕kk )−1

(
Āk

T
(s

(i)
e )k + (s

(i)

∆n
)k

)
.

8. Compute the VCM of the diagonal block,

k = 1, . . . , p
(
Σ̂{X}

)
kk

=N−1
kk + 1

M

∑M

i=1

(
s
(i)

∆x̄

)
k

(
s
(i)

∆x̄

)T
k

9. Compute the VCM of the not diagonal blocks,

k = 1, . . . , p, j = k+1, . . . , p
(
Σ̂{X}

)
kj

= 1
M

∑M

i=1

(
s
(i)

∆x̄

)
k
(s

(i)

∆x)T
j .

Algorithm 3.9 can be easily modified if, for example, only normal equations or observation equations A are

available. In the case that only observation equations are available, all steps for computing S, s
(i)
g and s

(i)
∆n,

and for adding the terms s
(i)
∆n and N can be neglected. The same cancellation strategy works for a pure normal

equation system. In addition, it should be mentioned that Algorithm 3.9 can be adapted to process more than

one normal or observation equation system. Thus, Alg. 3.9 is flexible and efficient since it is readily tailored to

solve large equation systems.

3.6 Efficiency estimations of the Monte Carlo variance/covariance matrix algo-
rithms

In this section the estimations for the mathematical expectation of the time, serial efficiency and parallel speedup

will be presented. All three parameters define the quality of the parallel algorithms.

In order to estimate how the Monte Carlo algorithms depend on different computer architectures, we have

considered two models:
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a) A serial model with time T1 required to complete the operations

b) A multiprocessor configuration consisting of p processors (cluster). Every processor of the cluster performs

its own instructions on the data in its own memory.

3.6.1 Serial efficiency

Before we analyze how the algorithm 3.9 can be parallelized, we study its efficiency in order to be sure that

the processor speed is exploited optimally. This is only possible, if we attribute most operations to matrix

multiplications. These are core operations in optimized libraries for linear algebra (ATLAS 2007). When we

use these libraries, we have to make sure that the participating matrices exceed a critical size, for instance

100 × 100, because only then the optimization begin to have impact. As we can see, the algorithm 3.9 consists

of the main part of matrix multiplications. The size of the individual matrices can be selected in such a way

that it exceeds the minimum dimension of 100 × 100.

3.6.2 Parallel speedup

With the inherent parallelism of the Monte Carlo methods we have got the possibility to calculate each realiza-

tion (sample) of the random variable on a different processor. There is no need for communication between the

processors during the time of calculating the realizations. The only need for communication occurs at the end

when the averaged value is to be calculated.

The speedup S, also called parallel speedup, is defined as the running time of execution of the program on one

processor divided by the running time Tp of the parallel execution of the program on p-Processors (Gropp et al.

1994).

Master Client 1 Client 2 Client 3
T0

Tserial1

Tcom1

Tparallel

Tcom2

Tserial2

T

Communication
Idle
Computing

Time

. . .

. . .

. . .

. . .

. . .

Client p

Fig. 3.2: Principle to parallelize Monte Carlo Variance/Covariance Matrix (MCVCM) algorithms

The computing time of a parallel program can be divided into parallelizable parts Tparallel and unparallelizable

parts Tseriell. Furthermore the communication time Tcom between the master and the clients has to be incor-

porated (cf. Fig. 3.2). Then Amdahl’s law (Dongarra et al. 1990, p. 57) can be used to give a maximum

speedup factor

S =
T1

Tp
=

T1

Tcom + Tserial +
Tparallel

p

. (3.86)

Test simulations (see Sect. 6.1) were serial executed. They lead us to the following assumptions: The serial

part of the computation requires approximately 10% of the total processing time while the parallelizable parts
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of the program need about 90%. One has to take into account that the communication time has to be added

to the excecution time T1, if the program is parallelized. A pessimistic estimate for the communication time is

5% of the excecution time. This yields with Eq. (3.86) a maximum possible speedup S as:

S =
100%

5% + 10% + 0%
= 6.7. (3.87)

The expected speedup for 1 to 100 processors, under the assumption of a constant communication time of

Tcom = 5%, is depicted in Fig. 3.3. With these assumptions the best speedup factor of 5.8 is achieved, by using

about 40 processors.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4
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6

7

Number of processors

S
pe

ed
up

Fig. 3.3: Test simulation of the parallel speedup

The MCVCM algorithms can be easily applied in parallel computing. In fact, that was the motivation for

developing the Monte Carlo methods for computing and propagating large covariance matrices.
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4 Monte Carlo method for estimation of the variance components

4.1 The problem

One of the most important goals of current satellite missions is the reliable and accurate estimation of the Earth’s

gravity model. This model is based on various observables, which are strongly heterogeneous with respect to

the type of sensor used and measurement accuracy. For instance, if a global modeling of the Earth’s gravity

field is desired, then data of different satellites (CHAMP, GRACE, GOCE) and ground stations, altimetry data,

multi-arc data, etc. are analyzed. Some of the challenges to be taken into account when such heterogeneous

data sources are combined into one model are:

• The measurement principles and sensors are different, e.g. satellite observations (SGG and SST), terrestrial

and airborne gravimetry.

• The apriori accuracies of the various types of observables (if known) differ considerably.

• Even the variances of observations for one sensor type might be different, e.g. for GPS orbits (see Mayer-

Gürr et al. (2005)).

• The normal equation system is often ill-conditioned.

In order to find appropriate weighting factors for the different data sets, on the one hand, and to regularize the

inverse problem by determination of the regularization parameter on the other hand, we apply in this chapter

the computational algorithm for VCE, which is presented in Koch and Kusche (2002) and Kusche (2003).

In order to find a tailored VCE-algorithm, which can be integrated into PCGMA, this algorithm will be modi-

fied. How the modified algorithm is incorporated into the PCGMA algorithm, is shown later on in Sect. 5.4.2.

In Sect. 4.2 the general linear model with unknown variance components is presented. In this section, the

unknown parameters and the unknown variance factors were computed rigorously by means of Alg. 4.1. The

expensive repeated computation of the trace will be substituted in Sect. 4.3 by applying Monte Carlo methods

(Alg. 4.2). Finally, the more general case of combining observation with normal equations will be outlined in

Alg. 4.3.

4.2 Estimation of variance components

If multiple data types are given for an estimation of the parameters x and these observation groups are disjunc-

tive, then the observation equations in the linear model (3.48) with a only unknown variance factor σ2
0 for all

the observations is extended to a model in which variance components are introduced:

Aix = li + vi with Σ{L} =

o∑

i=1

σ2
i Qi and i ∈ {1, . . . , o} , (4.1)

where Qi are (semi-)positive definite cofactor matrices, and σ2
i with i ∈ {1, · · · , o} are the unknown variance

components to be estimated, in a joint estimation procedure together with the unknown parameters x. If the

model 4.1 is referred to gravity filed modeling, it is a almost always a series expansion of the gravity potential

up to a maximal degree/order of spherical harmonic coefficients. In many cases, the normal equation system of

the model 4.1 (e.g. for GOCE) tend to be ill-posed. Then the model 4.1 is extended to:





A1

A2

...

Ao

I




x =





l1 + v1

l2 + v2

...

lo + vo

µ + vµ




, with Σ {L, µ} =

o∑

i=1

σ2
i Qi + σ2

µQµ. (4.2)

µ represents an m × 1 vector of prior information for the unknown parameters, σ2
µ the corresponding variance

factor which may be interpreted as regularization parameters, and Qµ an m×m prior positive definite matrix of

the parameters. The observations li and the prior information µ of the unknown parameters x in Eq. (4.2) may

be assumed as stochastically independent quantities (see Koch and Kusche (2002)). The matrix Σ {L, µ} in

Eq. (4.2) is generally block diagonal, and can be rewritten as follows:
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Σ {L, µ} = Σ =





σ2
1P−1

1 0 . . . 0 0

0 σ2
2P−1

2 . . . 0 0
...

...
. . .

... 0

0 0 . . . σ2
oP−1

o 0

0 0 . . . 0 σ2
µP−1

µ




, (4.3)

where P i are the weight matrices of the corresponding types of observations and P µ is the weight matrix of

the prior information.

The estimation of variance components in Eq. (4.2) has had a long history in geodesy and has been developed

for a variety of applications. The most important estimation methods can be summarized as follows:

• In Rao and Kleffe (1988), the minimum norm quadratic unbiased estimation (MINQUE) method is

derived. Besides that it is a quadratic and unbiased estimation, it fulfills the demand for minimal norm.

• Another method is the best invariant quadratic unbiased estimation (BIQUE) presented by Koch (1999)

and Crocetto et al. (2000). Under the assumption that the observations are normally distributed,

BIQUE and MINQUE are identical (Grafarend 1978).

• Variance components may also be estimated by the maximum likelihod method as explained in Koch

(1986). An iterated maximum likelihood (IML) procedure for the Gauss-Markov model has been derived

for normally distributed observations.

• A Bayesian estimation as well as Bayesian confidence intervals for variance components were suggested in

Koch (1987) and Koch (2000)

The system of linear equations for the estimation of variance components can be given as follows (see, e.g.,

Koch 2000, p. 141):





r1 0 . . . 0 0
...

. . .
...

...
...

0 0 . . . ro 0

0 0 . . . 0 rµ





︸ ︷︷ ︸
S





σ̂2
1
...

σ̂2
o

σ̂2
µ





︸ ︷︷ ︸
σ̂

=





q1

...

qo

qµ





︸ ︷︷ ︸
q

, (4.4)

where the variance components are combined into σ̂ = (σ̂2
1 , σ̂2

1 , · · · , σ̂2
o , σ̂2

µ) and coefficient matrix S and the

vector q are known, given a set of start values of σ̂. Since the observations are assumed to be normally

distributed and because of the variance components model 4.4 have a block diagonal, the methods listed above

all lead to the same estimate (Xu et al. 2006). The variance components in 4.4 are iteratively solved, then the

well-known alternative non-negative estimate of the variance components at the kth iteration read as follows

(see, e.g., Koch 2000, p. 146):

σ̂i
2(k+1) =

qi

ri
=

vT
i P ivi

ri
with i ∈ {1, . . . , o} and σ̂2(k+1)

µ =
qµ

rµ
=

vT
µP µvµ

rµ
, (4.5)

where

vi = Aix̂ − li and vµ = x̂ − µ (4.6)

is the vector of residuals of the ith data set and the vector of the regularization set, respectively. x̂ in Eq. (4.6)

is the desired estimates for the unknown parameters of the normal equations

(
o∑

i=1

1

σ2
i

AT
i P iAi +

1

σ2
µ

P µ

)

︸ ︷︷ ︸
N

x̂ =

o∑

i=1

1

σ2
i

AT
i P ili +

1

σ2
µ

P µµ (4.7)

of the GMM 4.2.
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The partial redundancy of the ith group ri as well as the partial redundancy of regularization part group rµ in

eq. (4.5) are given as:

ri = tr
(
W (σ2

i Qi)
)

with i ∈ {1, · · · , o} and rµ = tr
(
W (σ2

µQµ)
)
, (4.8)

where the matrix W is given as:

W = Σ−1
0 − Σ−1

0 Π
Σ

−1
0

S(A)Σ
−1
0 , (4.9)

where

Π
Σ

−1
0

S(A) = A
(
ATΣ−1

0 A
)−1

AT (4.10)

denotes here the projector of column space of A with the metric Σ−1
0 . Here Σ−1

0 stands for Σ in Eq. (4.3) with

an approximate or initial values of variance components σ
2(0)
i with i ∈ {1, · · · , o} and σ

2(0)
µ .

One can reduce Eq. (4.8) for the computation of the partial redundancies, if matrix W in Eq.(4.9) can be

written as:

W =





1
σ2
1
P 1 . . . 0 . . . 0

. . . . . . . . . . . . . . .

0 . . . 0 1
σ2

o
P o 0

0 . . . 0 . . . 1
σ2

µ
P µ




−





1
σ2
1
P 1 . . . 0 . . . 0

. . . . . . . . . . . . . . .

0 . . . 0 1
σ2

o
P o 0

0 . . . 0 . . . 1
σ2

µ
P µ









A1

. . .

Ao

I



N−1

[
AT

1 . . . AT
o I

]





1
σ2
1
P 1 . . . 0 . . . 0

. . . . . . . . . . . . . . .

0 . . . 0 1
σ2

o
P o 0

0 . . . 0 . . . 1
σ2

µ
P µ




.

(4.11)

The expanding of Eq. (4.11) yields:

W =





1

σ2
1

P 1 − 1

σ2
1

P 1A1N−1AT
1

(
1

σ2
1

P 1

)
. . . 1

σ2
1

P 1A1N−1AT
o

(
1

σ2
o

P o

)
1

σ2
1

P 1A1N−1

(
1

σ2
µ

P µ

)

...
. . .

...
...

1
σ2

o
P oAoN−1AT

1

(
1

σ2
1

P 1

)
. . . 1

σ2
o

P o − 1
σ2

o
P oAoN−1AT

o

(
1

σ2
o

P o

)
1

σ2
o

P oAoN−1

(
1

σ2
µ

P µ

)

1
σ2

µ
P µN−1AT

1

(
1

σ2
1

P 1

)
. . . 1

σ2
µ

P µN−1AT
o

(
1

σ2
o

P o

)
1

σ2
µ

P µ − 1
σ2

µ
P µN−1

(
1

σ2
µ

P µ

)




.

(4.12)

The product W (σ2
i Qi) in Eq. (4.8) is obtained for the jth variance component by

W (σ2
j Qj) =





0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . Ij . . . 0
...

0 . . . 0 . . . 0

0 . . . 0 . . . 0





−





0 . . . 1
σ2

j
P 1A1N

−1AT
j . . . 0

...
. . .

...
...

...

0 . . . 1
σ2

j
P jAjN

−1AT
j . . . 0

...

0 . . . 1
σ2

j
P oAoN

−1AT
j . . . 0

0 . . . 1
σ2

j
P µN−1AT

j . . . 0





, (4.13)

as well as the product W (σ2
µQµ) is obtained by

W (σ2
µQµ) =





0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . 0 . . . 0
...

0 . . . 0 . . . 0

0 . . . 0 . . . Iµ





−





0 . . . 0 1
σ2
1
P 1A1N

−1

... . . . 0
...

0 . . . 0 1
σ2

i
P jAjN

−1

... . . . 0
...

0 . . . 0 1
σ2

o
P oAoN

−1

0 . . . 0 1
σ2

µ
P µN−1





. (4.14)
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Therefore, the redundancy number ri follows for Eq. 4.8 by

ri = tr

(
Ii −

1

σ2
i

P iAiN
−1AT

i

)
with i ∈ {1, · · · , o}. (4.15)

Concerning the fact that tr (A + B) = tr A + tr B, (cf. Koch 1999, p. 40), Eq. (4.15) simplifies to:

ri =tr (Ii) −
1

σ2
i

tr
(
P iAiN

−1AT
i

)

ri =ni −
1

σ2
i

tr
(
P iAiN

−1AT
i

) (4.16)

and

rµ =tr (Iµ) − 1

σ2
µ

tr
(
P µN−1

)

rµ =u − 1

σ2
µ

tr
(
P µN−1

)
,

(4.17)

where Iµ is the u × u identity matrix (u here is number of unknown parameter).

The weight matrix of the observation group P i in Eq. (4.16) can be substituted by the lower and upper

symmetrical triangular matrices (computed by a Cholesky decomposition P i = GT
i Gi). Note that the Cholesky

decomposition is also applied to P µ = GT
µGµ in equation Eq. (4.17). This yields to:

ri = ni −
1

σ2
i

tr
(
GT

i GiAiN
−1AT

i

)
and rµ = u − 1

σ2
µ

tr
(
GT

µGµN−1
)

(4.18)

and because of tr (AB) = tr (BA) (cf. Koch 1999,S. 40) the partial redundancies for the computation of the

variance components is then (cf. Eq. 21 in Koch and Kusche 2002)

ri = ni −
1

σ2
i

tr
(
GiAiN

−1AT
i GT

i

)
and rµ = u − 1

σ2
µ

tr
(
GµN−1GT

µ

)
. (4.19)

The iterative estimation of the variance components σ̂ = {σ2
i , · · · , σ2

o , σ2
µ} is carried out by the iterative proce-

dure presented in algorithm 4.1:

Algorithmus 4.1 (VCE-Algorithm based on observation equations)

Purpose: To compute the variance components

Input: Ai for i ∈ {1, . . . o} . . . design matrix

P i for i ∈ {1, . . . o} . . . weight matrix

li for i ∈ {1, . . . o} . . . observation vector

σ
(0)
i for i ∈ {1, . . . o} . . . start values for the variances of each group

P µ . . . regularization matrix

σ
(0)
µ . . . start values for the variance of the regularization set

Output: x̂ . . . estimates for the unknown parameters

σ2
i for i ∈ {1, . . . o} . . . variance factors of each group

σ2
µ . . . variance factor of the regularization matrix
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1 Start with apriori values σ2
i
(0)

for the variances of each observation group for

i ∈ {1, ...o} and for σ2
µ

(0)
and set k = 1

2 Compute the joint normal equation matrix:

N (k) =

(
1

σ2
1
(k) A

T
1 P 1A1 + . . . + 1

σ2
o
(k) A

T
o P oAo + 1

σ2
µ

(k) P µ

)

and the joint right-hand side:

b(k) =

(
1

σ2
1
(k) A

T
1 P 1l1 + . . . + 1

σ2
o
(k) A

T
o P olo + 1

σ2
µ

(k) µ

)

3 Estimate the parameters x̂(k) by solving the normal equations:

N (k)x̂
(k) = b(k)

4 Compute the residual vectors of each group: vi
(k) = Aix̂

(k) − li for i ∈ {1, ...o} and vµ
(k) = x̂(k) − µ

5 Compute the partial redundancies r
(k)
i and r

(k)
µ of each group:

r
(k)
i = ni − 1

σ
(k)2
i

tr
(
GiAiN

−1(k)AT
i Gi

T
)

and r
(k)
µ = u − 1

σ
(k)2
µ

tr
(
GµN−1(k)GT

µ

)

and set k = k + 1

6 Compute the σ
2(k+1)
i =

v̂
(k)T
i P iv̂

(k)
i

r
(k)
i

for i ∈ {1, ...o} and σ
2(k+1)
µ =

v̂(k)T
µ P µv̂(k)

µ

r
(k)
µ

, respectively.

7 Set update values for the variance factors and repeat steps 2 to 6 until a point of convergence is reached.

Inspection of Alg. 4.1 reveals a few problems:

• It can be seen from step 5 of Alg. 4.1 that a rigorous computation of the variance components requires

a repeated computation of the trace of the inverse of the combined normal equation matrix N (k), where

k denotes the iteration step. This computation requires a great deal of working memory and processing

time for very large systems. Furthermore, within an iterative solution procedure (such as PCGMA), the

expensive assembling of the combined normal equation matrix N (k) for the heterogeneous observation

types (steps 2 and 5 of Alg. 4.1) is avoided. Consequently, the computation of the partial redundancies is

not possible without modification. This problem is solved by a stochastic trace estimation which will be

introduced in Sect. 4.3.1. Alg. 4.1.

• As far as the computation of the partial redundancies in step 5 is concerned, some of the matrices are

not given. The assembling of the weight matrix P i of the corresponding observation group is not always

possible due to the high dimension of the adjustment problem with millions of observations. A solution

to this problem is achieved by applying suitable ARMA filters (see Sect. 3.3.2).

• The computation of the partial redundancies in step 5 requires the presence of the design matrices Ai, i ∈
{1, · · · , o} of all observation groups, which is not always available. For instance, an adjustment of SGG

and SST data within the GOCE mission by means of PCGMA is performed by combining the observation

equations for the SGG data with the normal equation system for the SST data. The latter is obtained

via an external interface (see Boxhammer 2006). Furthermore, both systems are usually of different

dimensions. In Sect. 4.3.2 the solution of this problem is outlined .

4.3 Monte Carlo variance component estimation

4.3.1 Monte Carlo trace estimator

It becomes evident from Eq. (4.18) that an iterative estimation of the trace term

t = tr
(
GiAiN

−1AT
i GT

i

)
(4.20)

requires the expensive computation of the inverse N−1 of the combined normal equation system N−1. To

avoid this computation, Koch and Kusche (2002) and Kusche (2003) demonstrated an alternative Monte

Carlo approach, which is based on a substitution of the rigorous determination of the term t in Eq. (4.20) by a

stochastic trace estimator. This method is called Monte Carlo variance component estimation (MCVCE).

Let B a positive definite n × n matrix and Z a random n × 1 vector of n independent samples from a random

vector with E(Z) = 0 and Σ {Z} = I. Then,
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E{ZT BZ} = tr B, (4.21)

holds (see Koch 1999, p. 134). In Girard (1989), q pseudo-random numbers following a multivariate normal

distribution Z ∼ N (0, I) were generated, and the trace of the matrix B was approximated by the unbiased

estimation:

tr B =
1

q

q∑

i=1

zT Bz. (4.22)

Hutchinson (1990) proved that the estimator Eq. (4.22) has minimal variance if Z follows a multivariate

discrete distribution, which takes the values −1 or +1 with probability 1
2 . This reads:

Z ∼ U
{
−1 with probability 1

2

+1 with probability 1
2

(4.23)

Golub and von Matt (1997) suggested for an accurate determining the trace of the matrix B just one sample

vector z. Koch and Kusche (2002) and Kusche (2003) reported similar conclusions in the context of the

choice of weighting factors and regularization parameters for GOCE data. The tests which has been carried out

in Sect. 6.2 validate this conclusions. When the stochastic trace estimator in Eq. (4.22) is used, the term t in

Eq. (4.20) may be substituted by:

t̄ = zT
i

(
GiAiN

−1AT
i GT

i

)
zi. (4.24)

Now let the auxiliary parameter vector αi in Eq. (4.24) define:

αi = N−1AT
i GT

i zi ⇔ αiN = AT
i GT

i zi. (4.25)

Then, the substitute form of the first part of Eq. (4.18) is obtained as:

ri = ni −
1

σ2
i

zT GiAiαi. (4.26)

The partial redundancy rµ used for determining the regularization parameter 1
σ2

µ
then equals the difference

between the total number of observations n (the sum of the individual numbers ni of observations within each

group and the dimension nµ = m of the apriori parameters µ) and the number m of parameters:

r =n − m
o∑

i=1

ri + rµ =

o∑

i=1

ni + nµ − m ⇔ rµ =

o∑

i=1

ni −
o∑

i=1

ri. (4.27)

The Monte Carlo trace estimator is incorporated into Alg. 4.1. The computational steps of the MCVCE

algorithm are summarized in Alg. 4.2:

Algorithmus 4.2 (MCVCE-Algorithm: version based only on observation equations)

Purpose: To compute the variance components

Input: Ai for i ∈ {1, . . . o} . . . design matrix

P i for i ∈ {1, . . . o} . . . weight matrix

li for i ∈ {1, . . . o} . . . observation vector

σ
(0)
i for i ∈ {1, . . . o} . . . start values for the variances for all groups

P µ . . . regularization matrix

σ
(0)
µ . . . start value for the variance of the regularization set

Output: x̂ . . . estimates for the unknown parameters

σ2
i for i ∈ {1, . . . o}, σ2

µ . . . variance components
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1 Start with apriori values for the variances of the observation groups σ2
i
(0)

for

i ∈ {1, ...o} and for σ2
µ

(0)
and set k = 1

2 Generate the random vector zi for i ∈ {1, · · · , o} from the distribution given in Sect. 4.3.1

3 Compute the joint normal equation:

N (k) =

o∑

i=1

(
1

σ2
i
(k)

AT
i P iA+

1

σ2
µ

(k)
P µ

)

and the joint right-hand side:

b(k) =

o∑

i=1

(
1

σ2
i
(k)

AT
i P ili +

1

σ2
µ

(k)
µ

)

4 Estimate the parameter x̂(k) as well as αi, i ∈ {1, · · · , o} by solving the normal equation for multiple right-

hand sides:

N (k)
(
x̂(k) α̂1

(k) . . . α̂o
(k)
)

=
(
b(k) AT

1 GT
1 z1 . . . AT

o GT
o zo

)

5 Compute the residual vectors of groups vi
(k) = Aix̂

(k) − li for i ∈ {1, ...o} and vµ
(k) = x̂(k) − µ

6 Compute the partial redundancies of groups r
(k)
i and r

(k)
µ :

r
(k)
i = ni − 1

σ
(k)2
i

(
zT

i GiAiαi

)
and r

(k)
µ =

∑o
i=1 ni + u −∑o

i=1 r
(k)
i

and set k = k + 1

7 Compute update values for the variance factors:

σ
2(k+1)
i =

v̂
(k)T
i P iv̂

(k)
i

r
(k)
i

for i ∈ {1, ...o} and σ2(k+1)
µ =

v̂
(k)T
µ P µv̂

(k)
µ

r
(k)
µ

8 Substitute the update values for the variance factors into step 2 and repeat steps 2 to 7 until the termination

criteria is satisfied.

The main difference between Alg. 4.1 and Alg. 4.2 is the step for computing the partial redundancies. While

this step cannot be performed in Alg. 4.1 without determination of the inverse of the combined normal equation

matrix and without calculation of the expensive matrix-matrix multiplication (see step 5 of Alg. 4.1), computa-

tion of the partial redundancy of observation group i in Alg. 4.2 is only based on matrix-vector multiplications.

The auxiliary parameter vector αi in Alg. 4.2 is estimated by solving the normal equation system for multiple

right-hand sides (see step 4 of Alg. 4.2). This estimation may be done either directly of iteratively. In doing so,

the MCVCE algorithm is built into PCGMA in Sect. 5.4.2.

4.3.2 Combination of observation equations and normal equations

Design matrix of some observation groups

Alg. 4.2 requires the presence of design matrices Ai, i ∈ {1, · · · , o} for the different groups of observations,

which is not the case for every adjustment model. For instance, the processing of GOCE data (see Sect. 5.4.2)

by means of PCGMA is based on a combination of SGG and SST. The SST data are available only as a normal

equation matrix N sst and the corresponding right-hand side bsst (which are usually processed from external

interfaces), while the normal equations of the SGG data are assembled without computing the normal equation

matrix (see Schuh 1996). Therefore, the variance components cannot be computed without modifying Alg. 4.2.

In order to compute the partial redundancies with respect to the groups of observations, which are available

only through a normal equation matrix and a right-hand side, the trace of the matrix
(
GiAiN

−1AT
i GT

i

)
in

Eq. (4.20) may be rewritten as:

t = tr
(
GiAiN

−1AT
i GT

i

)

t = tr
(
AT

i GT
i GiAiN

−1
)

t = tr
(
N iN

−1
)
. (4.28)
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Applying again the stochastic trace estimator (Eq. 4.22) (see Sect. 4.3.1) to Eq. (4.28) leads to the following

substitute equation for Eq. (4.28):

t̄ = wT
i

(
N iN

−1
)
wi. (4.29)

The vector w in Eq. (4.29) is a realization of discrete distribution U given by 4.23, from which the vector z was

generated (see Eq. (4.24)). They only differ in dimension. w is a u × 1-vector, where u is the dimension of the

i − th normal equation matrix.

The computational formula for the partial redundancy of the i − th group of observations (which are present

only through the normal equation matrix N i) is then given by:

ri = ni −
1

σ2
i

(
wT

i N iN
−1wi

)
. (4.30)

Defining the auxiliary parameter vector βi in Eq. (4.30) as the solution of the normal equation system for

multiple right-hand sides wi as:

βiN = w, (4.31)

yields for Eq. (4.30):

ri = ni −
1

σ2
i

wT
i N iβi. (4.32)

Residual vector of some observation groups

If the design matrix for the i − th group cannot be assembled, then the computation of the residual vector in

step 5 of Alg. 4.2 by means of the equation vi = Aix̂ − li is not possible. The residual vector vi of the i − th

group of observations is required for computing the square sum of residuals vT
i P ivi, which in turn is necessary

for computing an update value for the variance factor. An alternative equation for computing the square sum

of residuals is derived as follows:

vT
i P ivi = (Aix̂ − li)

T
P i (Aix̂ − li)

=
(
x̂T AT

i − lTi

)
P i (Aix̂ − li)

= x̂T AT
i P iAix̂ − 2x̂T AT

i P ili + lTi P ili. (4.33)

Substitution of N i for AT
i P iAi and bi for AT

i P ili in Eq. (4.33) yields:

vT
i P ivi = x̂T N ix̂ − 2x̂T bi + lTi P ili. (4.34)

Substituting the above mentioned modifications:

1. Decorrelated groups of observations Āi instead of A, P i = GT
i Gi = I;

2. The alternative equation Eq. (4.32) for computing the partial redundancy of the i − th group of normal

equations (given by N i, bi and lTi P ili);

3. The alternative equation Eq. (4.34) for computing the square sum of residuals of the group of normal

equations;

into Alg. 4.2, leads to the following algorithm:
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Algorithmus 4.3 (MCVCE-Algorithm: version based on combination of observation and normal equations)

Purpose: To compute the variance components

Input: Ā . . . decorrelated design matrix

l̄ . . . deorrelated observation vector

N i for i ∈ {2, . . . o} . . . normal equations

bi for i ∈ {2, . . . o} . . . right-hand sides

lTi P ili for i ∈ {2, . . . o} . . . square sum of observations

ni for i ∈ {1, . . . o} . . . number of observations

σ
(0)
i for i ∈ {1, . . . o} . . . start values for the variances for all groups

P µ . . . weight matrix for the regularization matrix

σ
(0)
µ . . . start value for the variance of the regularization set

Output: x̂ . . . estimates for the unknown parameters

σ2
i for i ∈ {1, . . . o} and σ2

µ . . . variance components

1 Generate the random vector z of dimension n1 × 1 and the vector wi for i ∈ {2, · · · , o} of dimension ni × 1

from the distribution given in Sect. 4.3.1. Set k = 1.

2 Compute the joint normal equation as well as the joint right-hand side:

N (k) =
1

σ2
1
(k)

Ā
T
Ā +

o∑

i=2

(
1

σ2
i
(k)

N i

)
+

1

σ2
µ

(k)
P µ , b(k) =

1

σ2
1
(k)

Ā
T
l̄ +

o∑

i=2

(
1

σ2
i
(k)

bi

)
+

1

σ2
µ

(k)
µ

3 Estimate the parameter x̂(k), α as well as βi, i ∈ {2, · · · , o} by solving the normal equations for multiple

right-hand sides:

N (k)
(
x̂(k) α̂(k) β̂1

(k)
. . . β̂o

(k)
)

=
(
b(k) Ā

T
z w1 . . . wo

)

4 Compute the square sum of residuals of the observation groups, the groups of normal equations and the

regularization:

(
v̄T

1 v̄1

)(k)
=
(
Āx̂(k) − l̄

)T (
Āx̂(k) − l̄

)
. . . for the groups of observation equations

(
vT

i P ivi

)(k)
=x̂T N ix̂ − 2x̂T bi + lTi P ili . . . for the groups of normal equations

(
vT

µ P µvµ

)(k)
=
(
x̂(k) − µ

)T (
x̂(k) − µ

)
. . . for the regularization parameter

5 Compute the partial redundancies of groups r
(k)
1 , r

(k)
i for i ∈ {2, . . . o} and r

(k)
µ :

r
(k)
1 =n1 −

1

σ
(k)2
1

(
zT Āα

)
. . . for the groups of observation equations

r
(k)
i =ni −

1

σ
(k)2
i

wT
i N iβi . . . for the groups of normal equations

r(k)
µ =

o∑

i=1

ni + u −
o∑

i=1

r
(k)
i . . . for the regularization parameter

and set k = k + 1

6 Compute update values for the variance factors:

σ
2(k+1)
1 =

(
v̄T

1 v̄1

)(k)

r
(k)
1

, σ
2(k+1)
i =

(
vT

i P ivi

)(k)

r
(k)
i

for i ∈ {2, · · · o} and σ2(k+1)
µ =

(
vT

µP µvµ

)(k)

r
(k)
µ

7 Substitute the update values for the variance factors into step 2 and repeat steps 3 to 6 until the convergence.



48 5 INTEGRATION OF MONTE CARLO METHODS INTO PCGMA

5 Integration of Monte Carlo methods into PCGMA

5.1 Solution strategies for GOCE data

According to ESA (1999) the main goal of the GOCE mission is the determination of a gravity field model

which surpasses any existing model in resolution with a half-wavelength of about 100km and accuracy (1−2mgal

for geoid anomalies and 1cm for geoid heights, respectively). For this purpose, GOCE will be equipped with a

gradiometer, a Global Positioning System (GPS) receiver, and a laser retro-reflector. The gradiometer is based

on a highly sensitive configuration of six accelerometers whose differential observables correspond to the second

derivatives of the gravitational potential. This measurement principle is called satellite gravity gradiometry or

SGG. To determine the long wavelengths accurately, SGG data are combined with high-low satellite-to-satellite

tracking (SST) data. The expected resolution corresponds to a spherical harmonic series up to degree and order

240, which results in about 60,000 unknown parameters. This results in very large equation systems, which

do not fit into the work memory of a current personal computer. To be more specific, the computation of

the normal equation matrix takes approximately 400 days considering the current computation speed and its

storage requires about 25 GByte.

The processing of such a large volume of data promises a challenging task. Therefore, our research group at the

IGG in Bonn have designed a tuning software (”tuning machine”) which operates on the basis of the iterative

PCGMA. This tool will be used to determine the optimal gravity model and will be realized in the GOCE

HPF as well as in GT GOCE-GRAND II (Geotechnologien GOCE-GRavitationsfeld-ANalyse Deutschland II,

Rummel 2005). Others gravity processing tools are presented in Sect. 1.1.

But not only an efficient solution is necessary to assess a reliable GOCE gravity field. In addition, the optimal

choice of relative weighting factors between the SST data which mainly provide low-frequency information and

SGG data which exploit the high frequency information is of interest. Therefore, the algorithms of variance

components estimation presented in Sect.4.3 will be performed during GT GOCE GRAND II and GOCE HPF.

Now it is necessary to integrate and implement these procedures into PCGMA.

In order to impart the information of the entire gravity model the variance/covariance information of the es-

timated gravity field parameters must be provided. However, because of huge storage requirements and the

incapability of the PCGMA to compute the full VCM, this variance/covariance information would not be avail-

able for many users. As an alternative way to compute this information, the Monte Carlo algorithms in Sect. 3.2

will be applied. In this context the PCGMA package will be redesigned to implement the possibility of calcu-

lating the VCM.

In the next section, the two data types of GOCE observations, SGG and SST, as well as the regularization part

are shortly described. In Sect. 5.3, the computational steps of the PCGMA algorithm are summarized. The

integration of Monte Carlo algorithms 3.9 and 4.3 (which are discussed in Chaps. 3 and 4, respectively) into

PCGMA are treated in Sect. 5.4.

5.2 Functional and stochastic model

The main goal of all strategies for determining the gravity field is the computation of the spherical harmonic

coefficients C̄lm and S̄lm from the series expansion of the gravity potential:

V (r, θ, λ) =
GM

R

∞∑

l=0

(
R

r

)l+1 l∑

m=0

P̄lm(cos θ)[C̄lm cosmλ + S̄lm sin mλ], (5.1)

where GM denotes the geocentric constant as the product of the gravitational constant and the Earth mass, R

the Earth radius, r the distance to the Earth’s center of a point whose gravitational potential is to be determined,

λ, θ the geographic longitude and latitude of that point, P̄lm the fully normalized Legendre functions and l, m

the degree and order of the series expansion. In practice, the series (Eq. 5.1) is expanded only up to a maximal

degree lmax. The higher the number lmax, the better this series fits the actual shape of the gravitational potential,

but in contrast the numerical stability decreases because of the downward continuation effect.
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5.2.1 SGG observations

The observation equations for SGG data comprise measurements of the second derivatives of the gravitational

potential (Eq. 5.1). Four of the components of the SGG tensor will be recorded with high accuracy: Txx, Tyy,

Tzz and Txz, where x, y, z refer to a body-fixed reference frame with x-axis aligned to the satellite’s orbit ,z

pointing to the Earth and y-axis perpendicular to the (x, z) plane. A detailed derivation of the functional

SGG model may be found, for instance, in Rummel et al. (1993). For the time-wise approach it is assumed

that the orbit of the GOCE satellite is known (e.g., determined from high-low SST observations). There-

fore, the spherical harmonic coefficients are the only parameters within the SGG observation equations to be

estimated, and these parameters are in a linear relationship with the SGG observations (see Klees et al. 2000).

If all of the SGG data are combined in a vector l with corresponding covariance matrix Σ, then the SGG

observation equations may be written as (cf. Eq. 3.48):

l + v = Ax, (5.2)

where A is the design matrix of the SGG observations, v the SGG residual vector, and x =
(
C̄lm, S̄lm

)
the

parameter vector. The accuracy of the SGG observations will be considerably downgraded by a number of error

sources such as instrument errors, satellite errors, processing errors, etc. A detailed description of these error

sources is found in ESA (1999). These errors result in colored noise, i.e. they cause the covariance matrix to

be fully populated:

Σ = σ2P−1, (5.3)

with the apriori variance factor σ2 and the weight matrix of the SGG observations P−1. Schuh (1996)

demonstrated that the SGG observations may be viewed as a time series (according to the time-wise approach)

and thus may be decorrelated by means of digital filters. This is done by applying ARMA filters to the

observation equations (Eq. 5.2), which corresponds to a linear transformation (see Sect. 3.3.2). This leads from

the model (Eq. 5.2) with Eq. (5.3) to the transformed observation equations:

l̄ + v̄ = Āx with Σ̄ = σ2I. (5.4)

ARMA filters were integrated into PCGMA (see Boxhammer 2006). The redundant equation system (Eq. 5.4)

may then be solved according to a Gauss-Markov model (see Sect. 3.1). The normal equation system of the

SGG observation reads:

Ā
T
Āx̂ = Ā

T
l̄. (5.5)

Efficient techniques for solving the normal equation system (Eq. 5.5) that avoid assemblance of the normal

equation matrix Ā
T
Ā will be treated together with PCGMA (Sect. 5.3).

5.2.2 SST observations

The GOCE SST data consist in the code and phase observations of the on board GPS receiver. Their main

task is to cover the long and medium wavelength of the potential, unaccessible to SGG. In the last years,

various approaches have been developed for determining this part of the spectrum by SST observations. These

approaches essentially differ in their functional or stochastic model, resulting in different linear or non-linear

observation equations. One of the most popular methods is based on the principle of energy preservation within

a closed system. This approach, which has been considered already in the early years of satellite geodesy (see

Reigber 1969), requires that observations are given densely. However, this requirement is satisfied since the

CHAMP and GRACE satellite missions (see, e.g., Ilk and Löcher 2003, Földvary et al. 2005, Kusche

and van Loon 2004, and Löcher and Ilk 2005). In Mayer-Gürr (2006), a detailed description of these

and other methods for assembling the observation equations with respect to different satellite observables is

given.

The linear or linearized model reads:
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lsst + vsst = Asstx with Σsst = σ2P−1
sst . (5.6)

Formally, the method of least squares leads to the normal equation system:

N sstx̂ = bsst with N sst = AT
sstP sstAsst and bsst = AT

sstP sstlsst. (5.7)

The SST observations are available as a normal equation system, which comprises the normal equation matrix

N sst and the corresponding right-hand side bsst. Therefore, the setting up of the underlying observation

equations will not be explained in this thesis.

5.2.3 Regularization

In the course of GOCE data processing, the SGG data (resolved up to degree 240) are combined with SST data

(resolved up to degree 100) for a joint adjustment. The combined normal equation system has a weak condition

for various reasons: A first problem is that the observations are made at the height of the satellite and not

on the Earth’s surface, which is also called the downward continuation problem. A second factor contributing

to the weak condition is a result of the problem that, due to the geometry of the satellite’s orbit, no observa-

tions are collected over the polar regions. Among others, these causes lead to the problem that the harmonic

coefficients cannot be estimated accurately from the data alone. Therefore, a regularization of the combined

normal equation system is essential. For instance, the so-called spherical cap regularization method (Metzler

and Pail 2005) was proposed to stabilize the system in polar regions by filling the polar caps with data from

an analytic model. In comparison to other regularization methods this approach has the advantage that the

regularization part affects only the polar regions (Metzler 2007).

Tikhonov regularization

Another popular method is Tikhonov regularization for which Hansen (1997) gives a detailed overview. The

key principle of this approach consists in the minimization of the quadratic function:

Jλ(x) = ‖Ax − l‖2 + λ‖Lx‖2, (5.8)

where λ in denotes the regularization parameter. The function ‖Lx‖2 is called the discrete smoothing norm,

where L is a semi positive definite matrix. L is in generally the discrete approximation of a derivation operator.

Thus the unique solution of the minimization problem (Eq. 5.8) is:

x̂Pµ,λ =
(
AT P A + λLT L

)−1

AT Pl, (5.9)

where LT L = P µ denotes here the regularization matrix. Usually, a positive definite matrix P µ (multiplied by

a regularization factor λ) is added to the complete normal equation matrix as can be seen from Eq.(5.9).

One distinguishes different ways for specifying the regularization matrix P µ. In ordinary ridge regression, P µ

is set equal to the unit matrix I. Another option is to specify P µ according to a geopotential degree variance

model. To do this, one adds a well-conditioned VCM of the prior gravity field solution to the normal system

(cf. Sect.4.2). If this VCM is derived from Kaula’s rule of thumb for the signal variances (Kaula 1966)

P µ(i, j) =

{
1010 · l4 if i = j

0 else,
(5.10)

the resulting method is known then as Kaula stabilization.

Depending on the differential operator L in λ‖Lx‖2, the first or the higher orders of the derivative of the gravi-

tational potential is minimized. At this point the reader is referred to the extensive study by Bouman (1998),

Ditmar et al. (2003) and Kusche and Klees (2002) for choosing the regularization matrix in gravitation

field determination.
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Choice of the optimal regularization parameter

The main problem with applying regularization methods lies in the determination of a suitable regularization

parameter. This parameter controls the influence of the additional information and restrictions, respectively,

on the estimation process. Is often critically pointed out that on the one hand the influence of the addi-

tional information (inserted into the normal equations by virtue of the apriori parameter vector µ according

to Eq. (5.9)) is too strong when the regularization parameter is granted a value too generous. On the other

hand, if the regularization part is weak within the normal equation matrix, the influence of the measurement

errors is unchanged and a part of the parameter vector for the spherical harmonic coefficients becomes unusable.

There already exists a wide range of procedures for optimal determination of the regularization parameter which

have been excellently summarized, for example, by Kusche (2002). In this thesis the regularization parameter

is estimated by means of the variance component estimation (see algorithms described in chapter 4). Other

methods for selecting regularization parameters shall be described briefly.

L-curve

L-curve based procedures are suitable for a graphical determination of the regularization parameter (Hansen

1997). The idea is to generate a double-logarithmic plot of the weighted residual sum of squares with respect to

the weighted residual sum of squares of the prior information for different values of the regularization parameter.

The form of the resulting curve resembles an L, and the optimal regularization parameter is read off at the

corner point of this curve.

Generalized cross validation

The generalized Cross-Validation (GCV) method does not depend on a priori knowledge about the noise vari-

ance. The idea behind GCV is to find the parameter λ which minimizes the functional:

λgcv =
n‖Axλ − l‖2

P(
tr(I − Qλ)

) (5.11)

with xλ being the solution obtained from the whole data. Qλ is the so-called influence matrix (see, e.g., Kusche

2002, p. 50):

Qλ = A(AT PA + λP µ)−1AT P . (5.12)

To avoid the computation of the trace in Eq. 5.11 for large-scale problems like GOCE, Kusche and Klees

(2002) suggested to use the Monte Carlo trace estimator which has been used in Sect. 4.3.

5.3 The algorithm PCGMA

In the previous chapter the normal equation systems were described for different types of data. Combining the

heterogeneous normal equation systems Eqs. (5.5), (5.7), and the regularization matrix yields (see, e.g., Koch

1999, p. 177):

(
1

σ2
1

Ā
T
Ā +

1

σ2
2

N sst +
1

σ2
µ

P µ

)
x̂ =

(
1

σ2
1

Ā
T
l̄ +

1

σ2
2

bsst +
1

σ2
µ

µ

)
. (5.13)

After multiplying Eq. (5.13) with σ2
1 , defining

ω =
σ2

1

σ2
2

as weight parameter and λ =
σ2

1

σ2
µ

as regularization parameter, (5.14)

Eq. (5.13) takes the following form:

(
Ā

T
Ā + ωN sst + λP µ

)
x̂ = Ā

T
sggl̄sgg + ωbsst + λµ. (5.15)
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Schuh (1996) proposed the procedure of preconditioned conjugate gradient multiple adjustment (PCGMA),

which is based on the method of conjugate gradients with preconditioning with a modification by Schwarz

(1970). This procedure allows the solving of a combined normal equation systems from uncorrelated groups

of observations on the basis of both normal equations (the SST group) and observation equations (the SGG

group). An essential part of the PCGMA algorithm consists in the selection of a suitable preconditioning matrix

N⊕. The preconditioning matrix improves the condition of the normal equation matrix, thus the convergence

rate of the solver. Usually, the preconditioning matrix is specified such that it is as similar to the unknown

normal equation matrix as possible, but may be computed and stored easily.

For example, a suitable preconditioning matrix for SGG data is given by the normal equation matrix with

a block-diagonal structure. Colombo (1981) demonstrated that the normal equation matrix has a block-

diagonal structure if the data are gridded regularly on a sphere. Although these conditions are not strictly

valid for SGG data, one may assume that the normal equation matrix has a block-dominant structure. If only

the diagonal blocks of the normal equation matrix are taken, then we obtain an approximation of the normal

equation matrix which is a suitable preconditioner within the CG algorithm. The structure of a preconditioning

matrix is depicted in Fig. 5.1(a). The blocks of the preconditioning matrix refer to those spherical harmonic co-

efficients that belong to one order of the series expansion. For the combined datasets (SGG+SST) an order-wise

arrangement of the unknown coefficients causes the normal equation matrix to exhibit a pattern that prevents

the exploitation of its sparse population in the course of solving the approximated normal equation system. To

overcome this disadvantage Schuh (1996) suggested to use the kite scheme (see Fig. 5.1(b)). The original kite

scheme was subject to the restrictions that the minimal degree of the series expansion had to equal 2 and that

the maximal degree had to be constant for each dataset and each order. This limitation could be successfully

removed with the free kite numbering scheme (Boxhammer 2006). The computational steps of the PCGMA

procedure are summarized in Alg. 5.1.
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(a) Block structure (SGG)
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(b) Kite structure

Fig. 5.1: Structure of the preconditioning matrix

Due to the large number of observations it is hardly possible to store the complete design matrix within the

working memory of the computer. Therefore, it is necessary to divide the design matrix Ā and the observation

vector l into individual and independent blocks

Ā
T

=
[
Ā

T
1 Ā

T
2 · · · Ā

T
S

]
, l̄

T
=
[
l̄
T
1 l̄

T
2 · · · l̄

T
S

]
. (5.16)

The normal equation matrix N and right-hand side n of the joint normal equation system are then obtained

by cumulating the products Ā
T
s Ās and Ā

T
s l̄s for s ∈ {1, · · · , S} individual blocks. This procedure requires that

the data are uncorrelated. Within the PCGMA algorithm, the decorrelation of the SGG data is performed by

means of an ARMA filter (see also Chap. 3). In Alg. 5.1 the computation of the normal equation matrix N is

skipped. Instead, only matrix-vector products are computed. Thus, the vector of residuals r(0), which results

from the SGG-, SST-, and the regularization part in the initialization step, is given by:
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r(0) =

S∑

s=1

(
Ā

T
s (Āsx

(0) − ℓs)
(0)
)

+ ω
(
N sst x(0) − nsst

)
+ λ

(
P µx(0) − µ

)
, (5.17)

where ω denotes the weight factor between the two groups of observations, and λ the regularization parameter,

which may be estimated by applying the algorithms described in Chap. 4. The necessary modifications of the

algorithm will be explained in the following section.

Within each iteration step of Alg. 5.1 the solution vector x(i) of the preceding step is updated by the product

of the absolute value of q and the search direction Π (step 12 of Alg. 5.1):

x(i+1) = x(i) + q Π(i), (5.18)

where Π defines the relaxation direction. The scaling factor q represents the distance from x(i) in the direction

Π(i). The step length q in Eq. (5.18) must satisfy the condition that the square sum of the residuals is minimal

along the search direction. This requires a repeated computation of the vectors r(i), ρ(i), Π(i), and h within

the iteration step. The residual vector h is obtained analogously to Eq. (5.17) by

h =

S∑

s=1

(
Ā

T
s (ĀsΠ)

)
+ ω N sst Π + λ P µ Π. (5.19)

However, when the vectors r(i) in Eq. (5.17) and h(i) in Eq. (5.19) are computed, the differing dimensions of the

combined systems must be taken into account. The number of parameters of the SGG part is much larger than

that of the SST part. In Boxhammer (2006) this problem was solved by rearranging the unknown parameters

according to the free kite numbering scheme.

Algorithmus 5.1 (PCGMA)

Purpose: To solve the equation system (5.13)

Input: Ās design matrix of SGG-Data set, s ∈ 1, . . . , S

ℓ observations of SGG-data set

N sst normal matrix of SST-Data set

bsst right hand side of SST-Data set

x(0) intitial solution

ω start value of the weight factor between the data sets

I number of iterations

N⊕ preconditioning matrix

P µ regularization matrix

λ start value of the regularization parameter

µ apriori values of the parameter vector

Output: x vector of the parameters

rT ρ square sum of the residuals

vT v square sum of the residuals of the observations
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Initialization

1. r(0) =

S∑

s=1

(
Ā

T
s (Āsx

(0) − ℓs)︸ ︷︷ ︸
v

(0)
s

)

+ ω
(
N sst x(0) − nsst

)
+ λ

(
P µx(0) − µ

)

2. v(0) =
[
vT

1 , vT
2 , . . . , vT

S

]T

3. ρ(0) = solve(N⊕, r(0))

4. Π(0) = −ρ(0)

Iteration steps i = 0, 1, . . . , I

5. e =
r(i)T ρ(i)

r(i−1)T ρ(i−1)

6. Π(i) = −ρ(i) + e Π(i−1)





i > 0

7. h =

S∑

s=1

(
Ā

T
s (ĀsΠ)︸ ︷︷ ︸

gs

)
+ ω N sst Π + λ P µ Π

8. g(i) =
(
gT

1 , gT
2 , . . . , gT

S

)T

9. q =
r(i)T ρi

Π(i)T h

10. x(i+1) = x(i) + q Π(i)

11. r(i+1) = r(i) + q h

12. ρ(i+1) = solve(N⊕, r(i+1))

13. v(i+1) = v(i) + q g(i)

Where

r . . . is the n × 1 vector of residuals of the normal equations

v . . . is the n × 1 vector of the residuals of the SGG observations

Π . . . is the m × 1 vector of the relaxation direction in the the preconditioning system

ρ . . . is the m × 1 vector of the residuals direction in the the preconditioning system

h . . . is the m × 1 vector of auxiliary parameters

e, q . . . are the 1 × 1 scaling factors to determine the relaxation direction

5.4 Integration of Monte Carlo methods into PCGMA

In addition to the parameters, the knowledge about the quality of the parameter estimates is of high rele-

vance. Information regarding the quality is usually provided from the computation of VCM of the coefficients

determined within the adjustment process. This VCM may then be used to obtain the accuracies of quantities

(such as geoid heights and geoid anomalies) that are derived from particular coefficients via error propagation.

In Sect. 5.4.1 an extension of Alg. 5.1 by algorithmic steps for computing the full VCM of the parameters

(as described in Chap. 3) will be discussed. Beside the estimation of the spherical harmonic coefficients x,

the estimation of ω and λ shall be accomplished within Alg. 5.1. Section 5.4.2 deals with the question which

modifications of Alg. 5.1 are necessary to allow an estimation of these variance components.

5.4.1 Integration of the MCVCM algorithm

The computation of the VCM of the spherical harmonic coefficients is traditionally carried out by inversion of

the combined normal equation matrix Eq. (3.31):

Σ
{
X̂
}

= σ2N−1. (5.20)
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As the computation of the inverse itself is avoided within the PCGMA algorithm, the inverse of a sparse

preconditioning matrix (see Sect. 5.3) is used as an approximation of the VCM. The inverting of a sparse pre-

conditioning matrix requires very little computational and time effort. Abwerzger (1999) showed that such

an approximation of the exact VCM of the parameters is sufficiently accurate.

As an alternative to using sparse matrices we will now discuss a method for computing the VCM by means of

algorithms explained in Sect. 3 (see also Alkhatib and Schuh 2007). Figure 5.2 illustrates the computational

steps necessary for estimating the VCM of a combined equation system (consisting of SST normal equations

and SGG observation equations) by means of the PCGMA algorithm.

Transform samples

sI = Ā
T
sggsl

Genrate samples
sl ∼ N (0, I), dim(sl) = nsgg × M

Generate samples
sg ∼ N (0, I), dim(sg) = usst × M

Transform samples
sII = ST sg

Initialization

s
(0)
III =

[
s
(0)
III(1) · · · s

(0)
III(M)

]
=
[
0 · · · 0

]

r
(0)
M =

S∑

s=1

(
Ā

T
s

(
Ās

[
x̂(0) s

(0)
III(1) · · · s

(0)
III(M)

]

︸ ︷︷ ︸
X(0)

−
[

ℓ̄s (sl(1))s · · · (sl(M))s

]))

+ ω
(
N sst

[
x̂(0) s

(0)
III(1) · · · s

(0)
III(M)

]
−
[
nsst sII(1) · · · sII(M)

])

v(0) =
[
vT

1 , vT
2 , . . . , vT

S

]T
vs = Āsx

(0) − ℓ̄s s ∈ {1, · · · , S}
ρ

(0)
M = solve

(
N⊕, r

(0)
M

)

Π
(0)
M = −ρ

(0)
M

Iteration steps i = 0, 1, . . . , I

E =
r

(i)T
M ρ

(i)
M

r
(i−1)T
M ρ

(i−1)
M

Π
(i)
M = −ρ

(i)
M + diag(E) Π

(i−1)
M





i > 0

hM =

S∑

s=1

(
Ā

T
s (ĀsΠM )

)
+ ω N sst ΠM

g(i) =
(
gT

1 , gT
2 , . . . , gT

S

)T

Q =
r

(i)T
M ρ

(i)
M

Π
(i)T
M hM

X(i+1) = X(i) + diag(Q)Π
(i)
M

r
(i+1)
M = r

(i)
M + diag(Q)hM

ρ
(i+1)
M = solve(N⊕, r

(i+1)
M )

v(i+1) = v(i) + q g(i) with q = Q(1, 1)

Compute the diagonal blocks of
the covariance matrix

(Σ̂{X})kk = N−1
⊕kk

+
1

M

M∑

i=1

(s
(i)
IV )k(s

(i)
IV )T

k

Compute the offdiagonal
blocks of the covariance matrix

(Σ̂{X})kj =
1

M

M∑

i=1

(s
(i)
IV )k(s

(i)
III)

T
j

Ās, l̄s, nsgg SGG data set
N sst, bsst SST data set
N⊕ preconditioning matrix
ω weighting factor
M number of samples

Decompose
N sst = ST S

Transform samples sIII

(s
(i)
IV )k = (s

(i)
III)k − N−1

⊕kk

[
(s

(i)
I )k + (s

(i)
II )k

]

x̂ parameter vector

Σ̂{X} covariance matrix

Compute covariance matrix

Σ̂{X} = 1
M

∑M
i=1 s

(i)
IIIs

(i)
III

x̂ parameter vector
sI , sII , sIII samples
N⊕ preconditioning matrix

Algorithm
PCGMA

YES

NO

Estimation by conditioning

Output from PCGMA

Output

Input

Fig. 5.2: Interation of the VCMC algorithm

For a clearer presentation of the extension of the Alg. 5.1 by Alg. 3.9 (discussed in Sect. 3.5.2), the regularization
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terms in Eq. (5.13) in the current section will be neglected.

Comment: If the VCM of the parameters should be computed for the case of a combined equation system

comprising a regularization matrix, then the regularization matrix (denoted by P µ) is taken into account as an

additional normal equation matrix within Alg. 3.9.

First, a specific number of samples is generated for each given dataset from standard-normal distributed random

vectors (see Sect. 2.3.3). The groups of generated samples differ only by their dimension: for the SGG dataset

sl ∈ Rn×M samples are generated, and for the SST dataset sg ∈ Rm×M samples are produced, where n denotes

the length of the SGG observation vector and m the total number of parameters. In a second step, the generated

samples sg and sl are transformed. The transformation steps involved in this operation have been explained in

Sect. 3.5.2 and then incorporated into Alg. 3.9. For simplicity the transformed samples will be denoted as sI

and sII , respectively.

The combined equation system is solved by the PCGMA algorithm for additional multiple M right-hand sides,

consisting of the summation of the sI and sII (Fig. 5.3).

Ā
T

Ā

s
(1)
III s

(M)
III

RT

s
(M)
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(1)
I

Ā
T

s
(1)
II s

(M)
II

N sst

Fig. 5.3: Generation of MCVCM-samples

Beside the estimated parameters also the sIII must be provided by PCGMA as output for computing the VCM

of the parameters. To achieve this, the algorithm 5.1 must be modified. As for the modified version of the

PCGMA algorithm in the previous section, a number of changes are necessary now. To begin with, the initial

values of the residual vectors r(0)j in Eq. (5.17) are substituted by the following matrix r
(0)j
M ∈ Rm×M+1:

r
(0)
M =

S∑

s=1

(
Ā

T
s

(
Ās

[
x̂

(0)
s
(0)
III(1) · · · s

(0)
III(M)

]

︸ ︷︷ ︸
X(0)

−
[

ℓ̄s (sl(1))s · · · (sl(M))s

]))

+ ω
(
N sst

[
x̂

(0)
s
(0)
III(1) · · · s

(0)
III(M)

]
−
[
nsst sII(1) · · · sII(M)

])
.

(5.21)

Thus, the parameter matrix X ∈ Rm×M+1 is jointly constructed from the parameter vector x and sIII ∈Rm×M . The computation of the matrix X(i+1) with respect to the new iteration step i + 1 is performed

according to Eq. (5.27). This computation step is described by Fig. 5.4.

Q ∈ R
M+1×M+1

Π1 Π2

X(i+1) X(i) Π
(i)
M

x s
(1)
III s

(M)
III

ΠM+1

Fig. 5.4: Update of the paramete rmatrix X to generate sIII
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The computation of the matrix Q ∈ RM+1 ×M+1 in Fig. 5.4 is done by means of the following equation:

Q =
rT

MρM

ΠT
MhM

(5.22)

If the number M of the generated samples is large, then the assembling of this matrix within each iteration is

computationally expensive. However, only the diagonal elements of the matrix Q are required, from which the

update values for determining the search direction q1, · · · , qM+1 are inferred. The computation of the diagonal

elements of Q is explained by Fig. 5.5. Only the product of the ith row of the matrix rT
M with the corresponding

ith row of the matrix ρM needs to be computed, and this scalar product is divided by the product which results

from multiplying the ith rows of the matrices ΠT
M and hM . Fig. 5.5 illustrates the computation of the diagonal

elements of Q, which fixes the ith search direction qi. The computation of the matrix E within the modified

Q(i, i) rT
M(i, :) ΠT

M(i, :)ρM(:, i) hM(:, i)

Fig. 5.5: Computation of the matrix Q

PCGMA algorithm is carried out analogously to the computation of the matrix Q (see Fig. 5.2).

After I iterations the PCGMA algorithm achieved its convergence, then one obtains as output the parameter

matrix X, which comprises both the estimated spherical harmonic coefficients x and the M samples sIII .

Computation of the dyadic products of the samples sIII (cf. Alg. 3.9 in Sect. 3.5.2) results in a quick but coarse

estimation of the VCM of the parameters Σ̂{X}. The more samples are generated, the more accurate this

estimation becomes (compare with 3.73 in Sect. 3.4). Thus, a more accurate estimation of Σ̂{X} necessitates a

higher number of samples, which in turn requires additional memory and arithmetic operations.

To keep the number of samples as small as possible the variance reduction technique estimation by conditioning

was applied (see Sect. 3.5.2). This requires first that the sIII are transformed into sIV as demonstrated by

Fig. 5.6.

N−1
⊕

k k k

k

k

sIV sIII sII sI

Fig. 5.6: Computation of the samples sIV

It can be seen from Fig. 5.6 that the computation of the transformed samples sIV requires, beside the samples

sI and sII , the inverse of the main diagonal blocks of the kite matrix N⊕. The samples sI may be computed

outside the PCGMA algorithm since the SST normal equation matrix is available as an external product

(cf. Sect. 5.2.2). In contrast to these samples, the samples sII must be obtained during the processing of the
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SGG data. The sII are then obtained from the initialization step for the SGG part in Eq. (5.21) as:

[
r

(0)
M

]

SGG
=

S∑

s=1

(
Ā

T
s

(
Ās

[
x̂(0) s

(0)
III(1) · · · s

(0)
III(M)

]
X(0)

︸ ︷︷ ︸
0

−
[

ℓ̄s (sl(1))s · · · (sl(M))s

]))
. (5.23)

Using null vectors as initial values for the parameter matrix X
(0)
M and multiplying the right-hand side of

Eq. (5.23) by −1 yields:

sII =

S∑

s=1

(
Ā

T
s

[
(sl(1))s · · · (sl(M))s

])
. (5.24)

Due to the different dimensions of the samples sII and sI resulting from PCGMA (see Fig. 5.6) the sI are

added to the last block of the samples sII . The dimension of this last block is equal to the dimension of the SST

normal equation matrix. The samples sII and sIII are divided into blocks. The partitioning of the samples is

performed according to the dimension of the main diagonal blocks of the kite matrix. The kite in Fig. 5.6 is

set up within the PCGMA algorithm in order to speed up the convergence of the PCGMA method (see also

Sect. 5.3).

The following example will make this division of the samples clear. If SGG data resolved up to degree 20 are

combined with SST data up to degree 10, then the blocks of the kite matrix are divided into three zones order

by order (Boxhammer 2006). These zones are displayed in Fig. 5.7 only for the main diagonal blocks.

Full

Semi

Independent

N⊕

(a) kite matrix

order m

← Slm    Clm →

0

10

20

de
gr

ee
 l

1020 0 10 20

full
semi
independent

(b) Parameter triangles

Fig. 5.7: The partitioning of the kite-matrix and corresponding parameter triangles

The order of the parameters starts with the parameters of the independent zone. The blocks inside this zone

are determined by SGG data only, and they take orders or degrees that are higher than the maximal resolution

degree of the SST data:

Zone Independent =

{
m = 11 : 20 Clm = {Cloddm, Clevenm} l ∈ {11, 12, · · ·20}
m = 11 : 20 Slm = {Sloddm, Slevenm} l ∈ {11, 12, · · ·20}.

The independent zone is followed by the semi zone, which corresponds to parameters that have the same order

as the SST dataset but higher degrees:

Zone Semi =

{
m = 0 : 10 Clm = {Cloddm, Clevenm} l ∈ {11, 12, · · ·20}
m = 1 : 10 Slm = {Sloddm, Slevenm} l ∈ {11, 12, · · ·20}.

The end of the kite matrix is occupied by the full zone for which the parameters are identical to the parameters

of the SST data set:

Zone Full =

{
m = 0 : 10 Clm = {Cloddm, Clevenm} l ∈ {2, 3, · · ·10}
m = 1 : 10 Slm = {Sloddm, Slevenm} l ∈ {2, 3, · · ·10}.

The alternative estimation of the VCM consists then of two parts: the estimation of the main and the secondary

diagonal blocks. The computational steps were explained in detail by Alg. 3.9, and visualized by Fig. 5.8. The
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computation of the main diagonal blocks are showed at the top of Fig. 5.8 and the secondary diagonal blocks

at the bottom. Suppose that the kth main diagonal block of the VCM (Σ̂{X})kk shall be computed. For this

purpose, the dyadic product of the kth block of sIII is computed, and the inverted main diagonal block of the

kite matrix (N−1
⊕ )kk is added to this. To obtain the jth secondary diagonal block of the VCM (Σ̂{X})kj , the

dyadic product of the k-th block of the samples sIV with the kth block of the samples sIII is computed.

k

k

N−1
⊕

k

k

k
j

k

k

sIV sT
IV

sIV sT
III(Σ̂{X})kj

(Σ̂{X})kk

Fig. 5.8: Estimation of the VCM by means of estimation by conditioning

A great advantage of this procedure is that an accurate representation of the VCM of the parameters is achieved

by using only a relatively small number of generated samples. This was demonstrated by a simulation in Sect. 6.1.

However, a condition for this to be true is that the normal equation matrix has a dominating block diagonal

structure. This condition is satisfied by GOCE data.

5.4.2 Integration of the MCVCE algorithm

The computation of the variance components σ̂ = {σ2
1 , σ

2
2 , σ2

µ} is done by means of Alg. 4.3 from Sect. 4.3.2.

It requires the solving of the combined normal equation system for multiple right-hand sides (see step 3 of

Alg. 4.3):

N (k)
(
x̂(k) α̂(k) β̂

(k)
)

=
(
b(k) Ā

T
z w

)
. (5.25)

The number of additional right-hand sides in Eq. (5.25) is determined by the number of types of observations

(in our case 2). For groups of observations that are available through corresponding observation equations,

auxiliary parameter vectors α are estimated in addition. The corresponding right-hand sides are given by the

product AT z with z ∼ U from the distribution in Sect. 4.3.1. For data types that are given as normal equa-

tion systems, the auxiliary parameters β are estimated. The right-hand side is given by the vector w, which

follows the same distribution U as the random vector z, but for which the parameter vector has dimension m×1.

Now Alg. 5.1 shall be modified to allow estimation of both the parameter vector x and the additional auxiliary

parameters α and β in Eq. (5.25). For this purpose, the residual vector ri is extended to the matrix r
(0)j
M ∈ Rm×3

within the initialization step:
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(0) β̂
(0)
]
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+ ω
(
N sst

[
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(0)
α̂
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(
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[
x̂

(0)
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(0) β̂
(0)
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])
.

(5.26)

It is seen from Eq. (5.26) that the m × 3 parameter matrix X consists of the individual parameter vectors x,

α and β. The parameter matrix X(i+1) of the new iteration step is computed in analogy to Eq. (5.18) by:

X(i+1) = X(i) + diag(Q)Π
(i)
M . (5.27)

In contrast to Eq. (5.18), Q in Eq. (5.27) is not a scalar anymore, but a 3 × 3 matrix, in which only its

diagonal elements Q(k, k) (with k = 1 : 3) must be substituted for computing X(i+1). Fig. 5.9 illustrates this

computation step.

X(i+1) X (i) Π
(i)
M

Π1 Π2 Π3

Q ∈ R
3×3

α βx

Fig. 5.9: Update of the parameter matrix X to estimate α and β

The vectors h, ρ, and Π in Alg. 5.1 are replaced by the matrices hM , ρM , and rM ∈ Rm×3, whose dimensions

are determined by the dimension of the parameter matrix X, analogously to the matrix Q ∈ R3×3.

The modified PCGMA algorithm together with the MCVCE algorithm (Alg. 4.3) is displayed in Fig. 5.10, from

which it is seen that two iterative procedures must be combined.

After successful convergence of the modified PCGMA algorithm one obtains the estimated parameter matrix

X i as the output, which is used in turn to compute update values for the variance components σ̂, and thus for

the weight factor ω and the regularization parameter λ. To compute the partial redundancy of the SGG-part

rsgg (see Fig. 5.10), we need the right hand side Ā
T
z which must be computed during the processing of the

SGG data within PCGMA . The Ā
T
z are obtained from the initialization step (regarding SGG observations in

5.26) as:

(r
(0)
M )rsgg =

S∑

s=1

(
Ā

T
s

(
Ās

[
x̂(0) α̂(0) β̂

(0)
]

︸ ︷︷ ︸
X(0)

−
[
ℓ̄s zs 0

]))
(5.28)

Using null vectors as initial values for the parameter matrix X(0) and multiplying the right-hand side of

Eq. (5.28) by −1 yields:

Ā
T
z =

S∑

s=1

(
Ā

T
s zs

)
. (5.29)

Then the modified PCGMA algorithm is restarted again using the computed update value for ω and λ. Both

iteration procedures are repeated until the estimates for the variance components do not change significantly

anymore.
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Fig. 5.10: Integration of the MCVCE-algorithm
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6 Application of the Monte Carlo integration to simulated GOCE

data

6.1 Scenario 1: Estimation of the variance/covariance information

6.1.1 Data sets

To demonstrate the capability of the developed algorithms in chapter 3, the results of numerical experiments

using simulated GOCE data sets will be presented. The first data set was generated following the baseline of

the GOCE mission ESA 1999. It consists of 1,480,000 simulated gradiometer measurements along the orbit of

a satellite at 250 km altitude during a period of 23 days. The three diagonal components Vxx, Vyy and Vzz of

the gravity tensor were used. The data interval was fixed at 4sec. These simulated observations are typically

corrupted by coloured noise, which is generated by a power spectral density model with a white noise behavior of

3mE/
√

Hz in the measurement bandwidth between 0.005 − 0.1 Hz and an 1/f behaviour in the low frequency

range. Orbit and gradiometry data were derived from the EGM96 (Earth Gravitational Model, Lemoine et al.

1998) gravity model complete up to degree and order 60.

The second data set consists of an SST normal equation matrix, which resulted from a simulation of joint state

vector and low-degree (to degree 60) gravity field estimation for the GPS-tracked, low-orbiting GOCE satellite.

This normal equation matrix was simulated from a 30-day GOCE orbit solution from precise orbit determination

(POD). The (x, y, z)-data covariance matrix was assumed to be a diagonal matrix with diag(Σ) = 1.75 cm. The

mathematical model is described in Mayer-Gürr et al. 2005.

6.1.2 Test simulation

The data sets were used to compute the numerical simulations. In the first part of these simulations, Algs. 3.5

to 3.7 were used to estimate the VCM by Monte Carlo integration in a straightforward way. Algorithm 3.5 was

applied to compute the SGG-only solution directly from the observation equations, whereas the direct solution

with the SST-normal equations was obtained by Alg. 3.6. For the combined SST/SGG solution Alg. 3.7 was

used. In all simulations, it was aimed at guaranteeing at least one significant digit of the estimated variance

information, which means that the relative error is to be bounded by

σ̂2
Xj

− σ2
Xj

σ2
Xj

≤ 0.1 . (6.1)

Applying Eq. (3.72) the number of necessary samples is given by

K
N(0,1)
1−α/2

√
2

M
≤ 0.1 . (6.2)

Introducing the error probability α = 5%, the quantile K
N(0,1)
1−α/2 is fixed at 1.96. The efficient number of samples

M can be determined to be equal to 769. Therefore, 800 samples should guarantee one significant digit of the

estimated variances. Numerous simulations were conducted to verify these statements, with special attention to

the particular numerical characteristics of the given problem. According to theoretical considerations presented

above, we proceed in the following way:

• We start by demonstrating the performance of the MC estimation of the coefficient’s variances. We will

provide an empirical proof of the error bound equation (Eq. 6.1).

• In a second step, we give a detailed analysis of the MC estimation process for two single coefficients.

In addition to analyzing the numerical deviations of estimated variances from their true values, the dis-

tribution of the samples will be investigated and compared with its theoretical counterpart, the normal

distribution. For this purpose, we generate 1000 MC estimates, each of which based on 800 samples.

• Our final investigation examines the performance of propagated quantities such as geoid height anomalies.

As a first example, Fig. 6.1 demonstrates the results of the hypothesis test of an SGG-only simulation with

respect to the test value defined by Eq. (3.73):
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H0 : σ̂2
Xj

= σ2
Xj

, HA : σ̂2
Xj

6= σ2
Xj

, with error probability: α = 5%. (6.3)

where σ̂2
Xj

denotes the estimated variance of Monte Carlo integration and σ2
Xj

stand for the determined variance

of the rigorous inverse of the normal equation matrix (cf. Eq. 5.20)

Figure 6.1(a) shows the results of hypothesis (white – rejected null hypothesis, black – not rejected), and in

Fig. 6.1(b) the corresponding p-values of the same sample are displayed. The p-value is defined as the probability

contained in the tails of the distribution (under H0) outside the observed test value T . Figure 6.1(b) focuses

on the critical error probability region between 0% and 10%.
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(a) SSG model (rejected coefficients: 4.95 %
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(c) SST model (rejected coefficients: 5.27 %
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(d) combined model, rejected coefficients: 5.38 %

Fig. 6.1: Accuracy of the MC estimation process using 800 samples; Hypotheses test based on Eq. (3.73).

This computation demonstrates that no clustering of rejected values occurs. It should also be mentioned that

each MC realization with a different set of 800 samples reflects another pattern of rejected elements. In our

current example, we have a rejection rate of 4.95% samples. The results of a purely SST solution and a combined

SST/SGG are visualized by Figs. 6.1c and 6.1(d), reflect the random behavior of the rejected coefficients.

To underpin the overall performance, 1000 MC estimates were computed, each of wich were computed by MC

integration with 800 samples. A histogram plot of the 1000 test values T =
σ̂2
Xj

−σ2
Xj

σ2

Xj

√
M
2 , estimated using

Eq. (3.73), is given in Fig. 6.2. In this test we look especially at the SGG-only solution, because in this

computation we expect weak values for coefficients of low degree and order due to the band-limited behavior

of the SGG measurements. Figure 2a shows the histogram with respect to a representative example of a

weakly determined zonal low degree coefficient (C10,0), 6.2(b) correspondingly with respect to a well-determined

coefficient (C47,30).
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(a) Coefficient: C10,0 mean -0.035, variance 1.11, skewness
0.14, kurtosis 3.09; Kolmogorov-Smirnov-test: p-value 0.04
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Fig. 6.2: Histogram, empirical and theoretical PDF of the standard normal distributed test values T defined

by Eq. (3.73).

It can be immediately seen that the estimated variances coincide closely with their theoretical distribution.

Quantitatively, the p-value of the Kolmogorov-Smirnov-test indicates that the seemingly small deviations from

the theoretical distribution are significant with respect to an error probability of 5%.

Evidently, the mean (−0.035) of the test value for coefficient C10,0 contains a bias. Now, recall that this test

value holds for an accuracy of one digit in the relative error, i.e. the bias must be multiplied by this accuracy

(0.1) in order to determine the absolute bias, which is therefore equal to −0.0035. Considering the test scenario

of 1000 × 800 samples, a confidence region of ±0.0031 for the estimation of the relative variance is indicated

by Eq. (3.72). This means that this bias is significant with respect to the error probability of 5%. An analysis

including all coefficients shows that the range of bias is between −0.0146 and 0.0083. However, these extreme

values are not clustered according to particular degrees or orders, but are arbitrarily distributed throughout all

spherical harmonic coefficients.

−60 −40 −20 0 20 40 60

0

10

20

30

40

50

60

de
gr

ee

sin < order > cos

Fig. 6.3: Overall accuracy of the MC estimation process of the SGG model using 1000 × 800 samples;

Hypotheses test based on Eq. (3.73)

To demonstrate this, we plot in Fig. 6.3 again the test value defined by Eq. (3.73), but now for 800,000

samples. We test again the hypothesis 6.3. This figure shows, on the one hand, the irregular distribution of

the rejected null hypotheses, and on the other hand we can observe immediately that the number of rejected

elements increases from the theoretical error probability of 5% to about 12%. This means that systematic effects

(numerics, random number generators, etc.) occur, and we have to be very careful not to violate the ”square

root of M” law, where idealized assumptions are made, which are not easy to fulfill in practice. Table 1 gives

an overview of the test statistics and shows that after 80,000 samples (corresponds to an accuracy of 2 digits),
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the number of rejected elements increases. Therefore, we can conclude that the statistical behaviour of the test

value (Eq. 3.73) is influenced by systematic effects.

800 100 × 800 300 × 800 1000 × 800

SGG-only 4.97% 5.23% 7.32% 12.27%

SST-only 5.27% 5.46% 7.18% 12.27%

SGG+SST 5.38% 5.22% 7.21% 12.27%

Table 1: Percentage of rejected hypotheses tests based on Eq. (3.73) with respect to the number of samples

6.1.3 Results

Summarizing these results, it can be stated that for the given application, Monte Carlo integration is a suitable

method to reproduce the variances with the expected accuracy of one or two digits in the relative error (Eq. 6.1.)

Small yet significant biases occur and influence the third digit of the estimated variances. These biases are

irregularly distributed , but for larger numbers of samples we have to be very careful with statements about

the accuracy because of bias effects. The SST and the combined SST/SGG solution reflect the same behavior

and the same range in bias.

A way to analyze the whole ensemble of spherical harmonic coefficients at once is to compare variances of

geoid height anomalies for 250 arbitrary points. This test would respond sensitively to systematic effects, since

systematic errors in the variances of the coefficients would immediately lead to errors in the variances of geoid

height anomalies. Numerous numerical experiments did not provide any evidence of deviations from the above

statements. The test values reflect the same behavior as for the single components. The bias of the test value

lies approximately within the same range as before (between −0.0137 and 0.0067, which is now even a shorter

interval).

As a summary of these simulations, it can be said that all proposed algorithms work and that the accuracy

estimation (Eq. 3.72) is valid for all data sets and propagated functionals used in the experiments. A shortcoming

of this procedure is due to the fact that the number of samples must be increased considerably, if a higher

accuracy is aimed for. For one additional digit in accuracy the number of samples increases by a factor of 100,

that is 80,000 samples to fix two digits of the estimated variances. However, as the experiments show, caution

is advised when extending these technique to a large accuracy because of the biases in the solution.

As elaborated in Sect. 3.5.2, the stepwise estimation by conditioning by-passes this handicap. To demonstrate

the performance of Alg. 3.9 the following test is performed. 800 samples are used to predict the variances of

the geoid height anomalies of 250 randomly distributed points in a region between −60◦ and +60◦ latitude.

A block-diagonal matrix with block size of at least 60 is used as a conditioner. This means that the spherical

harmonic coefficients are arranged order by order, and this block-dominant system is matched with this 60× 60

grid. Starting with the block of zonal coefficients, one can proceed order by order. If a block of a particular

order can be placed within the actual grid, then it is included, otherwise the actual grid is closed, and the

coefficients of this order are placed in the next block. Because of the block-dominant structure of the gravity

field estimation process, it follows that the majority of the variances can be estimated purely by using the diago-

nal blocks. Nevertheless, the accuracy of this estimation can be further investigated by Monte Carlo integration.

To demonstrate the performance, Table 2 comprises the results for one individual point. It comprises between

the rigorous computed values σH , estimation from the block-diagonal structure σHblock
, stepwise estimation by

conditioning σHcond
and estimation by Monte Carlo integration σHMC

. The results are given for the point, for

which the block estimate has the maximal error (based on 800 samples).

To maximize the visibility of the effects, the point with the largest error in the block estimate is used. Further-

more, the simple block estimation process is compared with the stepwise estimation by conditioning and the

standard Monte Carlo integration approach, respectively. Note that in this representation standard deviations

are used instead of variances. The experiments should, on the one hand, give the reader a better feel for the

numbers. On the other hand, it should be remarked that they provide a proof of concept with respect to Monte

Carlo integration and not with respect to specific mission scenarios.
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unit: [m] σH σHblock
σHcond

σHMC

SGG-only 0.071554 0.071617 0.071533 0.071755

error 63 -21 201

SST-only 0.195057 0.199235 0.195295 0.189731

error 4177 237 -5327

SGG+SST 0.006704 0.006587 0.006719 0.006649

error -117 15 -55

Table 2: Estimated standard deviations of geoid height anomalies in [m]

To gain some insight about the overall performance of the three variance estimation procedures, the mean stan-

dard deviations of all the 250 points are compared. The results, listed in Table 3, support the theoretical results.

It comprises the means of absolute errors of the estimated block with the value (εσHblock
), stepwise estimation

by conditioning (εσHcond
), and estimation by Monte Carlo integration (εσHMC

) (based on 800 samples).

It is evident that for the step-wise approach of estimation by conditioning, the accuracy of variance estimation

can be improved dramatically. For the block estimate we gain already 2-3 digits (error: 0.6%), and again we

can improve these values by virtue of MC estimation by at least one third (800 samples imply a factor of
√

10).

In addition it should be mentioned that, in general, also the standard Monte Carlo integration method leads to

remarkably good results with the relative error below 2%.

unit: [m] mean(σH) mean|εσHblock
| mean|εσHcond

| mean|εσHMC
|

SGG-only 0.064845 0.000015 0.000005 0.001306

SST-only 0.176710 0.001093 0.000126 0.003773

SGG+SST 0.005689 0.000024 0.000006 0.000114

Table 3: Mean error ε (ε = σestimated − σtrue) of the standard deviation of the geoid height anomalies of all

250 (randomly distributed) points

6.2 Scenario 2: Estimation of the variance component

6.2.1 Data sets

The numerical study is based on GOCE-simulation-data arranged by the European Space Agency (ESA, see

De Sanctis et al. 2002). The same simulation setup has been used for the official completion test AR 2 of the

HPF-Software, which was conducted at the beginning of 2006 and originate from ESA’s end-to-end simulation.

The simulated data set consists of:

• Gradients: Simulated gradients (main diagonal components of the gradient tensor) over a period of 60

days referred to the Gradiometer Reference Frame (GRF). The simulated gradients are based on the

EGM96 (Lemoine et al. 1998) up to degree and order n,m=360 with a sampling rate of s = 1 sec.

• Orbit: The gradients are defined along a typical GOCE orbit, which is generated by numerical integration

based on the EGM96 up to degree and order l, m = 200. Also considered in the orbit simulation are

external force models as well as the DFAC (drag free and attitude control) system (ESA 1999).

• Attitude: The orientation of the satellite system (or the associated GRF) with respect to the inertial

reference frame is realized by means of quaternions, which can be calculated from the information given

by the star cameras and the gradiometer itself by integrating the angular velocities (Pail 2005). Naturally

these quaternions are subjected to biased errors and high frequency noise. The error model in this case is

chosen according to the assumed error characteristics in the ESA-Simulation.

• Noise characteristics: The noise behaviour of the gradiometer depends on the position of the GOCE

satellite and is of periodical nature, which can be seen in the error spectrum (Schuh et al. 2006).

The simulated data set and its design parameter are summarized in Table 4
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SGG test data

positions 5 011 200 unknown parameter 40 397

observations 14 988 600 resolution maximal degree/order 200

observation period 60 days gravity model EGM96

earth revolution 928 error charackteristics colored noise

representation Txx, Tyy, Tzz

Table 4: Design of parameters of the simulated SGG-data set

The SGG data will now be combined with SST data in order to estimate the harmonic coefficients of lower

degree and order. The SST data are already available in terms of a normal equation system up to degree and

order l, m = 90. With respect to the accuracy this presetting is sufficient to obtain a solid combined SGG and

SST solution (Pail et al. 2007). The design parameters for the SST data set can be extracted from Table 5:

SST test data

positions 5 011 200 unknown parameter 8277

observations 5 011 200 resolution maximal degree/order 90

observation period 60 days gravity model EGM96

earth revolution 928 error charackteristics white noise

available as N = AT A, x = AT ℓ, ℓT Pℓ with P = I

Table 5: Design of parameters of the simulated SST-data set

As a result of the specific GOCE configuration, in particular the sun synchronised orbit we have to expect

instabilities within the normal equations due to the lack of data at polar regions. For that reason Kaul rule’s

of thumb (see Eq. 5.10) has been used to minimize these effects. In our scenario the combined SGG+SST

data sets are regularized above degree and order l ≥ 90. In this connection it should be mentioned that there

already exist tailor-made regularization methods specifically for polar regions, which has been tested with the

same simulation data set (Metzler and Pail 2005).

6.2.2 Test simulation

In order to achieve the best possible estimate of the harmonic coefficients, the optimal weighting factors between

the combination of SGG data (Tabel 4) and SST data (Table 5) as well as the optimal regularization parameter

are calculated according to the modified PCGMA-algorithm presented in Sect. 5.4.2. The evaluation of the

data up to a maximum degree of l = 200 has been performed on the Jülich Multi Processor (JUMP)-Cluster

in Juelich (JUMP 2006). 256 processors are used to execute the computations. The time of evaluation for a

complete cycle of PCGMA averages around 7 hours. The start value of the weighting factor between the SGG-

the SST-group is set to ω(0) = 1. As aforementioned, we used the Kaula regularization presented in Sect. 5.2.3.

The regularization matrix P µ is a diagonal matrix with the variances of the harmonic coefficients given by

Kaula’s rule of thump (cf. 5.10). The corresponding prior information on the unknown parameters is the null

vector µ = 0 and the start value of the regularization parameter is set to λ(0) = 1 · 10−12. If µ = 0, the formula

for the regularized solution is obtained:

(
Ā

T
Ā + ω(0)N sst + λ(0)P µ

)
x̂λ = Ā

T
sggl̄sgg + ω(0)bsst. (6.4)

As initialization values for all harmonic coefficients we used the null vector.

Convergence of the PCGMA-algorithm

Fig. 6.4 acts as an indicator for analysing the developing of iteration. To make it more comprehensive every

step of iteration is depicted in this Figure. After each iteration a gravity field is determined (test model) and

compared with the EGM96 model (true model). The blue lines in Fig. 6.4 are the mean values of the absolute

differences between the coefficients ∆Clm and ∆Slm of the test- and true model:

σmean
l =

1

2l + 1

l∑

m=0

(∆Clm)2 + (∆Slm)2 for m ∈ {1, · · · , l}. (6.5)
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The black lines represent the median of the absolute differences between the test- and the true model in each

iteration step.

σmedian
l = median (|∆Clm| + |∆Slm|) . (6.6)

The red line is calculated according to rule of thumb (Kaula 1966) and indicates the order of magnitude of the

coefficients with respect to their degree. The estimated standard deviation σmodel
l of the estimated paremter

for every degree l is described by the green line with:

σtest
l = median(σClm

+ σSlm
). (6.7)
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Fig. 6.4: Demonstration of convergence of PCGMA-algorithm

With ascending iterations the median curves starting to merge with the green curve. This issue does not hold

for the mean value (blue curves). In contrast to the median the mean value is not a robust estimator. Fig. 6.5

explains the characteristics of the blue curves.

It shows the absolute differences of the coefficients between the test- and true model as well as the standard

deviation of the test model. Especially the differences of the zonal and near zonal coefficients attract attention.

These enormous variations probably occur due to the lack of data at polar regions. The standard deviation of

the test model seems to be consistent with the absolute difference except for the zonal and near zonal coeffi-

cients, whose accuracies apparently are estimated to optimistically. Furthermore you can see a jump within the

accuracies of the coefficients at degree l = 90.

Validation of MCVCE

After the first cycle of the PCGMA the update values for ω and λ according to Eq. (5.14) are determined

by means of the MCVCE-algorithm. The calculation of the partial redundancies is carried out with the two

random vectors α and β ( see Fig. 5.10). The calculation of the partial redundancies of each data set only

requires one random sample (see, e.g., Kusche 2003), which was explained in Sect. 4.3.1.

In order to validate this statement and to apply it on our simulation data set, we have estimated 100 realizations

of the random vectors α as well as of β. The variations from the mean value for all determined partial
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(a) absolute discrepancy (b) accuracy of the model 1

Fig. 6.5: Absolute discrepancy between the coefficients of the model 1 and the true model

redundancies of the SGG data rsgg as well as of the SST data rsst is shown in the histograms 6.6(a) and 6.6(b),

respectively.
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Fig. 6.6: Histogram of the estimation of the redundancy contribution

As we can see in Figure 6.6, all 100 random samples of the rsgg and rsst vary only about 0.3% and 1% from the

mean value, respectively. We conclude that the computed partial redundancies according to step 6 of Alg. 4.3

can be used for accurate variance component estimate samples. The partial redundancies of the SST data set

rsst can be calculated using the total redundancy of the estimated model and the partial redundancies of the

SGG data rsgg:

rsst = nsgg + nsst − m − rsgg. (6.8)

This result will be calibrate the estimation according to the Eq. 4.32 (cf. 6th step of the Alg. 4.3). The difference

between the two estimates (Eqs. 6.8 and 4.32) amounts in the last iteration of MCVCE to approximately 845.

That is

∆r = |r(1)
sst − r

(2)
sst | (6.9)

∆r = |5 010 409.09− 5 011 253.5| ≈ 845,

where r
(1)
sst denotes the estimate with Eq. (6.8) and r

(2)
sst denotes the estimate with Eq. (4.32). This value of

difference is equal to a relative change of 0.00042 in the variance component σ2
sst. Therefore the Monte Carlo

trace estimator is suitable for calculating the partial redundancies and moreover meets the demands regarding
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the accuracy for the variance component estimation.

Convergence of the MCVCE

After 4 cycles of iteration the MCVCE algorithm converges. The determined variance components:

σ̂ = {σ2
1 , σ

2
2 , σ2

µ} and the corresponding values ω and λ are stated in Table 6. The optimal estimated ω and λ

are marked in blue.

zero step first step second step third step last step

ω 1 1.08457 1.17173 1.17173 1.17173

λ 1 · 10−12 0.93568 0.84595 0.84012 0.83962

Table 6: Change of the regularization parameter λ and of the weighting parameter ω during the iteration

process of the MCVCE algorithm

In the following investigations 3 models will be presented. The first model (zero step) represents the solution,

which arises from the initial values λ and ω taken from the first column in Table 6, λ = 1 · 10−12 means no

regularization is applied. The second model uses λ and ω from the first step of iteration and in analogy the

third model is based on the optimal values for ω and λ (last column of Table 6 ).

6.2.3 Results

The results of all three solutions will now be compared. For that purpose we calculate the degree variances of

all three models and contrast them with the degree variances from the EGM96 in order to evaluate to what

extent each solution deviates from the true solution (Fig. 6.7).
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Fig. 6.7: Differences of the spherical harmonic coefficients absolute discrepancies over all orders of the same

degree (median, mean) with respect to the size of the Kaula and the accuracy of the adjustment (median values)

As expected the three solutions does not differ significantly up to degree l = 40. Because of the ill-posed

problematic, the errors of the first solution increase with increasing degree and eventually exceed Kaula’s curve.

This problematic will be antagonized by regularization in the second solution. The signal is attenuated so that

it does not exceed a certain limit. In order to show the influence of the optimal determined λ and ω on the

estimated coefficients, solution 2 and solution 3 are compared in Fig. 6.7(b). In this figure you can clearly see

in how far the optimal weighting factors and regularization parameters smooth the signal, in particular with

respect to the lower and medium degrees.
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Another important comparison is the representation of the degree variances between the solutions in terms of

geoid height anomalies:

σl(N) = R

√√√√
l∑

m=0

(∆C2
lm + ∆S2

lm), (6.10)

where R is the earth’s radius. This can be realized with subject to the individual degrees (Fig. 6.8) as well

as cumulative (Fig. 6.10). The geoid height anomalies, according to 6.10, are represented on the y-axis using

a logarithmic scale. If now regularization is applied then the largest variations appear to be over degree

n ≥ 90 for the SGG data. This jump can also be found in Fig. 6.7 and probably is ascribed to a non-optimal

determination of the regularization and weighting parameters between the combination of SGG and SST data.

Using the optimal values for λ and ω this is removed for the most part.
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Fig. 6.8: Degree variances between the solutions in terms of geoid height anomalies

In this matter we compare the absolute errors with respect to the reference model EGM96 and the corresponding

accuracies for model 1 (Fig. 6.5) and for model 3 (Fig. 6.9). Apparently the absolute errors and their accuracies

seem to be more consistent than illustrated in (Fig. 6.9). Furthermore the jump in Fig. 6.5(b) is mostly removed.

In addition the accumulated errors according to 6.10 (see Fig. (6.10)) have been reduced from 2.35m for the first

model to 7cm for the third model. We now compare model 2 and model 3, the results are shown in Fig. 6.10(b).

A minor improvement regarding global errors can be extracted from this Figure. The most important part in

this case however is the during the iteration. Apparently this comparison shows that the MCVCE algorithm

already gives reasonable results for the variance components after the second cycle of iteration.

The geographical assignment of the differences for all models with respect to the reference solution (EGM96)

is depicted in Fig. 6.11 in terms of geoid undulations. The statistical data of the residues is listed in Table 7.

The global recovery area was chosen to be from 0 to 360◦ longitude and −89.5 to 89.5◦ latitude and the gravity

undulations was modeled by 0.5 × 0.5◦ height anomalies. The second row in Table 7 excludes the polar gap

bounding the area to −83.5 < Φ < 83.5◦. As you can see the standard deviation has improved significantly from

7,4cm to 2,5cm after the first iteration. With respect to the global scale the standard deviation has improved

from 12,18m to 32,6cm. The maximum variations are located in polar regions, which is quite obvious due to

the orbit setup of the satellite. Comparing the differences between model 3 and EGM96 (see Fig. 6.11(c)) you

can see the biased error, which is periodically distributed over the whole earth. These errors are analyzed in

detail in Schuh et al. (2006).
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(a) absolute discrepancy (b) accuracy of the model 3

Fig. 6.9: Absolute discrepancy between the coefficients of the model 3 and the true model
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Fig. 6.10: Cumulative Geoid Accuracy-Geoid height
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global reconstruction

min max mean σ

model 1 -178.145m 181.298m 0.505m 12.180m

-0.893m 0.972m -0.001m 0.074m

model 2 -4.015m 3.755m -0.055m 0.457m

-0.155m 0.140m 0.000m 0.025m

model 3 -3.499m 4.370m -0.018m 0.326m

-0.153m 0.139m -0.000m 0.026m

Table 7: Global reconstruction of second level information: discrepancies of geoid height anomalies between

true model (EGM 96) and test model. The first row gives the discrepancies for the area from −89.5 < Φ < 89.5◦

and the second row excludes the polar gap bounding the area to −83.5 < Φ < 83.5◦

In order to get a better understanding how the fine structure of the calculated gravity models behave, the global

calculation will be complemented with a calculation conducted over a bounded local area. The regional recovery

area was chosen to be from −10◦ to 60◦ longitude and 10◦ to 60◦ latitude. The results are given in Table 8. In

this case the standard deviation has been improved from 3,2cm to 2,3cm.

local reconstruction

min max mean σ

model 1 -0.115m 0.118m -0.001m 0.032m

model 2 -0.104m 0.116m 0.000m 0.023m

model 3 -0.104m 0.115m -0.000m 0.023m

Table 8: Local reconstruction of second level information: discrepancies of geoid height anomalies between

true model (EGM 96) and test model (without smoothing)

As a conclusion you can say that the MCVCE algorithm has been successfully implemented in the processing

software PCGMA. At first the Monte Carlo trace estimator has been investigated and statistically validated.

Comparing all three models with respect to the EGM96 it can be stated, that even after the first cycle of iteration

the weighting and regularization parameters yield reasonable results regarding the variance components.
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Fig. 6.11: Comparison of the model discerpancies in term of geoid heights anomalies between the test and

the EGM96 model
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7 Summary and Conclusions

The concept of Monte Carlo methods covers many numerical methods in which random number are used to

solve complex problems. For the one part, Monte Carlo methods are used within this work as an alternative

tool to compute the inverse of the normal equation matrix of huge systems. For another part, these methods

are used to find an approximation of trace terms of huge matrix products needed for the prediction of variance

components, which would otherwise be computationally very intensive.

In chapter 3, the first Monte Carlo method used to obtain estimates of the inverse of the normal equation matrix

since this matrix is too large to be inverted by using conventional or sparse algorithms. Monte Carlo integration

allows a condensed representation of the variance/covariance information and fits well into efficient solution

strategies for large-scale equation systems. The proposed variance/covariance estimation procedure is flexible

and may be integrated into many types of solvers, e.g. sparse solvers, parallel direct solvers using distributed

memory, or iterative solvers. Furthermore, it supports combined solution strategies for heterogeneous data sets.

A shortcut of many simulation processes lies in the estimation of the accuracy. In Sect. 3.4, confidence regions for

the estimated variances are deduced and the simulations support this concept also for ill-posed inverse problems.

Because of the direct connection between confidence region and number of samples, the number of necessary

samples at a fixed a priori accuracy and probability level can determined easily. However, the simulations also

show that the standard Monte Carlo integration has limitations with respect to extreme accuracy conditions.

If a relative accuracy of three or more digits is necessary, then biases have to be taken into account. In this

case, estimation by conditioning gives an improvement. In contrast to a purely algebraic approach, such as via

incomplete inverses, Monte Carlo estimation by conditioning provides a tool to further increase the accuracy of

the VCM not only for the adjusted parameters, but also for all propagated quantities.

The second Monte Carlo technique in chapter 4 deals with an efficient way to implement the variance compo-

nent estimation, which means, to estimate the optimal relative weight factors of different types of observations

and the regularization parameter, simultaneously. Naturally, the choice of the optimal weights for different

data sets is very important for obtaining reliable results. However, most of the traditional methods require

intensive computations. The proposed Monte Carlo algorithm avoids most of this intensive computation and

uses efficient estimators to compute group redundancies which are needed to compute the variance compo-

nents. One needs only a single additional solution of the normal equation for every weighting parameter and

another solution for every regularization parameter. The novelty of the proposed algorithm is its flexibility to

work in iterative solvers as well as in direct solvers and in the possibility to combine different form of input data.

In a case study in chapter 5 these Monte Carlo techniques are applied to simulated GOCE data, where SGG

and SST observations are combined for reconstructing the gravity field. The objective is to compute a high-

resolution spherical harmonic model including a quality description of the estimated coefficients in terms of a

full VCM as well as the optimal regularization and weighting parameters. A tailored version of Monte Carlo

techniques is integrated into the iterative solver PCGMA. By means of these algorithms we are able to cover the

whole processing chain (parameter-,covariance- and variance components estimation) in a uniform way based

on the direct application of observation equations. Due to the sequential access to the observation equations,

the numerically intensive parts of the algorithms can be parallelized very easily and are implemented as parallel

programs and tested on the super computers JUMP in Juelich.

The tow numerical experiments in chapter 6 showed evidence that Monte Carlo methods work well and are

efficient for estimating the variance/covariance information and for estimating variance components in a case

study of the combination of heterogeneous simulated GOCE data. In the first test computations of the VCM

is estimated for 3717 harmonic coefficients. We conclude that the development algorithms work and that the

derived confidence interval of the estimates variances is valid for different data sets.

The second scenario collects the harmonic coefficients from l, m = 200 with 40 397 parameters. The spherical

harmonic coefficients as well as the optimum weighting and regularization parameters are estimated by means

of the modified PCGMA and MCVCE algorithms. It can be stated on the one hand, that without additional

computational effort within PCGMA, one can compute reliable variance components. On the other hand, only

a few iterations are necessary to achieve the convergence of the iterative MCVCE algorithm.

Thus the following objectives are accomplished:
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The iterative solving algorithm PCGMA for the harmonic analysis was extended by two components, which now

allow an integrated variance component estimation, as well as to provide variance/covariance information on the

estimated parameters. Both model-specific options are essential components in the course of the GOCE-HPF

project, where the PCGMA algorithm in terms of a “tuning machine“ is implemented.

In future research we would like to apply this algorithm for rigorous solutions of high-resolution (up to degree an

order l, m = 720) combination models (e.g. GRACE-GOCE combined with terrestrial data) . For this reason

it is certainly necessary to enhance the efficiency of the procedure in order to reduce the number of samples.

The choice of the PDFs to generating samples plays the vital role within a Monte Carlo simulation. The choice

of normal distribution for algorithms presented in chapter 3 is justified by the asymptotic behavior of the normal

distribution with respect to large numbers of samples. In addition other PDFs for example, the discrete PDF

proposed in chapter 4 to approximate the trace of a large-scale matrix satisfies a minimum variance criterion.

However, the use of other PDFs for generating of Monte Carlo samples needs additional research in the future.

The significant biases in the estimated variances of the VCM occur and influence on the third digit of the

estimated variances. In order to remove the effect of biases on the estimate of variance/covariance matrix,

development of bias-corrected estimator are essential in future advanced research.
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