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Zusammenfassung

Gegenstand dieser Untersuchung ist die 6konomletriSpezifikation von Para-
metern beschrankter Optimierungsmodelle mit Schwetpauf Fragen, welche
dann auftreten (i) wenn Ungleichheitsbeschrankumgenlviert sind und/oder (ii)
wenn das Schéatzproblem unterbestimmt ist oder diterb aus verschiedenen
Quellen stammen. Die Ubergeordnete Methode, diedmnigewendet wird, ist die
direkte Schatzung der Optimalitatsbedingungen degiligen Optimierungsmo-
dells zusammen mit zusétzlichen Gleichungen zueiltieziehung von A-Priori-
Informationen.

Wenn das Optimierungsmodell Ungleichungen beinhatienn sind Komple-
mentaritatsbedingungen in den Optimalitdtsbedingangnthalten, die zu einem
nicht-konvexen Lésungsraum und zu nicht-stetigefeilngen des Schéatzprob-
lems filhren. Ein Problem solcher Art ist zumeisiveer 16sbar. In solchen Fallen
ist es vorteilhaft, die Schatzung als ein Optimigsproblem in zwei Ebenen (Bi-
Level Programming Problem, BLPP) zu betrachten,evalas Problem der obe-
ren Ebene darin besteht, das Schatzkriterium zmggen, und die untere Ebene
das zu schatzende Modell darstellt. Die BLPP-Latier bietet mehrere Lésungs-
algorithmen an, die dazu geeignet sind, Problemet rKiomple-
mentaritatsbedingungen zu lésen. In dieser Didsantavird gezeigt, wie durch
deren Einsatz die Effizienz von Schatzungen vedyesgerden kann.

Wenn das Schatzproblem unterbestimmt ist, danneni®ssatzliche Informa-
tionen zugefiihrt werden um die Parameter zu ideigien. Im vergangenen
Jahrzehnt wurde dies haufig mittels so genanntetnofie-Schatzern erreicht.
Eine allgemeinere und transparentere Methode azmbildung der Zusatzinfor-
mation, welche zugleich einfacher zu berechnen lsaim, basiert auf der Erfas-
sung des Schatzproblems als Bayes’'sche SchéatzuegZuxatzinformationen
werden als A-Priori-Wahrscheinlichkeitsverteilungiar Parameter definiert, und
die Punktschatzung wird mit Hilfe der A-Posterivierteilung, abgeleitet vom
Satz von Bayes, ermittelt. Der vorgestellte Bayd®sAnsatz bietet sich auch an,
um Daten unterschiedlicher Quellen in einer thésebteinheitlichen Schatzung
Zu nutzen.

Die Dissertation hat vier Hauptkapitel (Kapitel aviés fuinf). In den beiden
ersteren wird das Problem, die Handelskosten ireneimrdumlichen Preis-
Gleichgewichtsmodell zu schatzen, aus jeweils nulogischer und empirischer
Sicht behandelt, wobei BLPP zum Einsatz gebrachd,wim die Ungleich-
heitsbedingungen zu handhaben. In den beiden hekpiteln wird eine Bay-



es’sche Methode, unterbestimmte Schéatzproblemeézen| vorgestellt und fur
die Schatzung der Parameter eines landwirtschadticAngebotsmodells einge-
setzt.

In Kapitel zwei wird die Schatzung der Parameteesgitraditionellen Trans-
portmodells diskutiert, und eine neue Schatzmethadgestellt. In Gegensatz zu
anderen Methoden werden Beobachtungen von Handédskand von regionalen
Preisen verwendet. BLPP wird eingesetzt, um eirdgiesches Schéatzkriterium
zu minimieren, unter der Nebenbedingung, dass dienKTucker-Bedingungen
des Transportmodells erfullt sind. Mit Hilfe von kte-Carlo-Simulationen wer-
den einige Eigenschaften der Schatzer abgeleitetmit den einer traditionellen
Kalibrierungsmethode dieses bekannten Modells igvgh. Die Analyse ergibt,
dass mit der vorgeschlagenen Methode Preise undétskosten effizienter ge-
schatzt werden konnen. Der Ansatz scheint fur esitds Spektrum linearer und
guadratischer Modelle anwendbar zu sein.

Kapitel drei behandelt die Schatzung von regiondkeaeisen, Uberschuss-
nachfragen und Handelskosten homogener Guter amemaumlichen, partiellen
Preis-Gleichgewichtsmodell und ist eine empirisémevendung des im zweiten
Kapitel vorgestellten Konzeptes. Das geschéatzte diidiezieht sich auf zwdlf
Regionen in Benin, die in sieben Produkten miteilear(Netto-)Handel treiben.
Die zur Verfigung stehenden Preis- und Mengendsitehmit beachtlichen Un-
sicherheiten behaftet. Wie in Kapitel zwei wird huc diesem Kapitel die Schéat-
zung als ein Optimierungsproblem in zwei Ebenemestellt und geldst, wobei
auf der oberen Ebene die Summe der gewichteterriguad Abweichungen der
geschéatzten von den beobachteten Werten, und auhtEren Ebene die Summe
der Handelskosten im Transportmodell minimiert veerdDie Handelskosten
werden in einer nichtlinearen Funktion, deren Patamzu bestimmen sind, von
einer Entfernungsmatrix abhéngig gemacht. Die gigtdn Handelskosten wer-
den mit entsprechenden Ergebnissen anderer Studighchen und als akzepta-
bel eingestuft. Die Handelskostenfunktion impliziemen linearen Zusammen-
hang zwischen Entfernung und Handelskosten, migreRroportionalitéatskon-
stante von 0.147 FCFA/kg/km (FCFA ist die Beninsdéhrung, 1 USD ent-
sprach in 2002 etwa 700 FCFA).

Kapitel vier stellt eine Bayes’sche Alternative ieneralized Maximum
Entropy- (GME) und Generalized Cross Entropy- (GOH)sungen unter-
bestimmter Gleichungssysteme vor. In vielen Falégtet der vorgeschlagene
Ansatz eine vollig dquivalente Alternative zu GM&Ad GCE-Techniken. Er
liefert aber in seiner allgemeinen Form eine deekiund einfacher zu interpretie-
rende Mdglichkeit zur Einbindung von A-Priori-Infoationen und kann zudem
auch den erforderlichen Rechenaufwand erheblictingarn. Die Methode lasst
sich auch auf den Fall einer nicht-informativenh(dgleichverteilten) A-Priori-



Information erweitern. In dem Kapitel werden sethstrative Rechenbeispiele
ausfuhrlich dargestellt.

Kapitel funf liefert eine umfassende Anwendung idgkapitel vier vorgestell-
ten Methoden. Der Bayes’sche Schétzer wird eingesain die im Angebotsteil
des Modellsystems CAPRI enthaltenen Verhaltenspetemzu bestimmen. Das
Angebotsmodell in CAPRI besteht aus rund 250 riinddiren Optimierungsmo-
dellen, wobei jedes Modell den landwirtschaftlich®ektor einer européischen
Region abbildet. Die Modelle haben eine gquadra@isgkelfunktion, wobei die
quadratischen Terme das Simulationsverhalten dedeNdostark beeinflussen.
Das Ziel ist, diese Parameter mit Hilfe der in @&PRI-Datenbank vorhandenen
Daten zu schatzen. Insgesamt wurden Parameteisfioul23 Produktionsaktivi-
taten mit zugehorigen Preisen, variablen Kosten\tgrthaltensfunktionen in 165
Regionen der EU-15 geschétzt. Es gibt mehrere &tudie Ergebnisse auf Mit-
gliedsstaatebene und/oder fir aggregierte Prodidispielsweise Getreide und
Olsaaten) prasentieren. Die Ergebnisse in diesepitédaverden systematisch mit
den Ergebnissen vier solcher Studien hinsichtlicigébotselastizitaten vergli-
chen, darunter zwei Studien fur Frankreich, eirredié Niederlande und eine fir
Danemark. Fur aggregierte Produkte auf Mitgliedgsebene sind die Ergebnisse
gut vergleichbar mit denen anderer Studien undgétgigen Faustzahlen. Zum
Beispiel ergibt die Schatzung eine Angebotseldétizion einem Aggregat von
tiblichen Getreidearten in Frankreich von 0.508, eineé von Olsaaten von 0.807.
Auf regionaler Ebene und fir einzelne Produkte slimdgeschatzte Elastizitaten
mehr heterogen. In der Franzdsischen Region (NUT&ein der Analyse als
Fallbeispiel dient, fallen die Elastizititen zwieoh0.38 (Kartoffeln) und 7.9
(Hartweizen). Ob diese Spanne realistisch istsabivierig zu beurteilen, da dem
Autor keine andere Publikation mit Schatzergebmisgen vergleichbarem Pro-
duktspektrum und regionaler Deckung bekannt sind



Summary

The subject of this thesis is econometric spedificaof parameters of con-
strained optimization models, with special attemtio issues that arise when (i)
inequality constraints are involved and/or (ii) whie estimation problem is ill-
posed (underdetermined) or data come from diveoseces. The general ap-
proach followed here is to estimate directly th&roplity conditions of the opti-
mization model, together with additional equatidas including prior informa-
tion.

If inequality constraints are involved, the optiihalconditions will contain
complementary slackness conditions, making theespécolutions non-convex
with discontinuous derivatives. The extremum edfiomaproblem may then be
very difficult to solve. In such cases, the estioraprofits from being viewed as
a bilevel programming problem (BLPP), where thed&& problem is to opti-
mize the estimation criterion function, whereas fitllower’s problem is the op-
timization model whose parameters are to be estimathe BLPP literature of-
fers several solution algorithms capable of hamgiive complementary slackness
conditions, and in this thesis it is shown how ¢ffficiency of estimators may be
increased if they are used.

Obtaining a point estimate of the unidentifiablagmaeters in an ill-posed
problem requires additional information. Commonctitee among applied model-
lers during the last decade has been to introduiseirtfformation using entropy
estimators. A more general, more transparent aridnpally computationally
simpler means to the same end is to cast the dgiinmia a Bayesian form. The
required additional information is defined in terofsa prior probability distribu-
tion of the parameters, and the estimation is basethe posterior probability
density function which can be found using Bayesls.rThe Bayesian approach
also proves useful for utilizing data from hetenogeus data sources in a theoreti-
cally sound way.

The thesis has four main chapters (chapters tWiwed. The chapters two and
three are a methodological and an empirical approespectively to the problem
of estimating trade costs in a spatial price eluiim model using bilevel pro-
gramming techniques to handle inequality constsai@hapters four and five
introduce a Bayesian approach to estimation gfaded problems, and apply a
Bayesian estimator to the problem of estimatingapeters of an agricultural
supply model.



Chapter two discusses the estimation of parameteadraditional transporta-
tion model, and proposes a new estimation methrodomtrast to previously used
methods, observations of regional prieeswell asof trade costs are used. The
proposed method uses bilevel programming to mirénaizveighted least squares
criterion under the restriction that the estimapstameters satisfy the Kuhn-
Tucker conditions for an optimal solution of thartsport model. Monte-Carlo
simulations are used to trace out some properfiisecestimator and compare it
with a traditional calibration method. The analysi®ws that the proposed tech-
nique estimates prices as well as trade costs eftiogently. The approach ap-
pears to be applicable to a wide range of linedrquadratic models.

Chapter three also treats the estimation of regjipriees, excess demand and
trade costs, for homogeneous products in a sgetréial price equilibrium model,
and serves as an empirical application of the #tea approach developed in
chapter two. The estimation is applied to a modeBfenin, where twelve market
regions are bilaterally trading (net trade) in sepeoducts. The available data is
subject to considerable uncertainty both regargiices and quantities. The esti-
mation is again formulated as a bilevel progranthwhe upper level objective to
minimize the weighted sum of squared deviationestfmated from observed
values of prices and excess demand. The estimiatieestricted to optimal solu-
tions of the transport cost minimization problenargmetrized by a trade cost
function, the parameters of which are also to kerdaned. The resulting trade
cost estimates are compared to those of empirtadies, and are found to be
within an acceptable range. Trade costs are foarthte a distance elasticity of
unity, and are thus linear, with a coefficient ofoportionality of 0.147
FCFA/kg/km (FCFA is the currency in Benin, 1 USIJ0O0 FCFA in 2002)

Chapter four presents a Bayesian alternative tefatined Maximum Entropy
(GME) and Generalized Cross Entropy (GCE) solutimnanderdetermined sys-
tems of equations. For certain types of economidehspecifications, this ap-
proach provides fully equivalent results to GME-G@Ehniques, but in its gen-
eral form allows a more direct and straightforwgriterpretable formulation of
available prior information and can reduce sigaifity the computational effort
involved in finding solutions. The technique casoabe extended to situations
with uninformative (uniform distributed) prior infimation. The chapter provides
six fully worked out illustrative numerical examplef the proposed estimator.

Chapter five provides a large-scale applicationthef methods proposed in
chapter four. The estimator is applied to the syalrt of the agricultural sector
model CAPRI in order to estimate the behaviourahpeeters embedded there.
The supply model in CAPRI consists of around 258st@ined quadratic pro-
gramming models, where each model represents timubligral sector in a region
in the EU. The models have a quadratic objectivection, where the quadratic
term influences the simulation behaviour of the elolt is the objective to esti-



mate the parameters of that quadratic term, udiegtime series data in the
CAPRI database. After discarding regions with ifisight data, parameters for

up to 23 crop production activities with relateguts, outputs, prices and behav-
ioural functions were estimated for 165 region&Ewh15. There are several stud-
ies available that publish supply elasticities fiodividual countries and major

crop aggregates. The results are systematicallypaosd to the outcomes of four
such studies, of which two for France, one for Nletherlands and one for Den-
mark. For crop aggregates (e.g. cereals, oilseedsam the level of nations, the
estimated own price elasticities of supply are tbtmbe in a plausible range. For
example, the supply elasticity of common cerealBriznce is found to be 0.508
and that of oilseeds 0.807. On a regional levelfanthdividual crops, the picture

is much more diverse. In a French case-study rg@ITS 2), the supply elastic-

ities ranged between 0.38 (potatoes) and 7.9 (duvbheat). Whether this span is
plausible or not is difficult to judge, since ndet study of similar regional and
product coverage is known to the author.

Vi
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Chapter 1 Introduction

1. Aim and motivation
The aim of this dissertation is to develop and destrate a general framework
for the econometric specification of constrainetirojzation models. Focus is on
issues that arise when inequality constraintsrarelved and/or when the estima-
tion problem is ill-posed (underdetermined) or dadee from diverse sources.

There are at least two good reasons for working general approach to this
subject. One reason is that traditionally, paransedé larger optimization models
are gathered from different sources. Take as ampbeaa stylized economic
simulation model that contains two types of parargethat we calsupplyelas-
ticities (behavioural parameters) atechnical coefficientsAssume that supply
elasticities are estimated separately or taken ftmar studies, whereas technical
coefficients come from engineering information gteenal estimations. Thus, the
parameters are determined in two steps, each affwhay be performed follow-
ing the state of the art in statistics. The erradel used when estimating the be-
havioural parameters does not include errors ontébbnical coefficients, and
vice versa, so that taken together, the two estimatare likely to be inefficient
and inconsistent. Furthermore, in each step, thenpeters were estimated using a
different model than the one in which the paransesee to be used, and are thus
not likely to be consistent with that model. One aif this dissertation is to point
out that such problems do arise and to propos@ergleway of avoiding them.

The second reason is that the full specificationanfie scale optimization
models typically require some amount of informatibat is not contained in any
data source. Examples of such information can be dhrtain coefficients have
certain signs, or that they should be within somecgied range that is based on
heuristics. Some parameters of the desired modglnmoabe identifiable at all in
the underlying data, implying that there exist malifferent (generally a contin-
uum of) parameter vectors that all result in modelssistent with data but possi-
bly different simulation behaviour. If the reseatclwishes to proceed with the
chosen model formulation in underdetermined casks, faces the problem of
selecting one of the possible parameter vectorhéormodel; a task frequently
solved using out-of-sample information. Inclusiohsoich prior information is
another core subject of this dissertation.

The first reason is related to heterogeneity oé daturces and consistency be-
tween the estimating equations and the final moalegreas the second refers to



prior information about theparametersof the model. Depending on the estima-
tion approach, however, that distinction blurs, #&nd indeed one proposition of
this thesis that a proper estimation approach chneas both issues simultane-
ously.

2. Overview of methodological approach

The general approach to the estimation of consgdamptimization models pro-
posed in this dissertation is found in the intetisecof the three different disci-
plines (i) Bilevel programming (ii) Errors in vahbikes modelling and (iii) Bayes-
ian estimation. In this section, a general consé@ioptimization model is con-
structed, and it is shown how each of the threeigliaes contributes to the esti-
mation of the model. This section is brief and osdyves as an overview, whereas
the methodological approach is developed at leingthe subsequent chapters.

2.1. A constrained optimization model

The problem is to estimate the parameter vegtorf the following general con-
strained optimization problem:

mlax fo,Q): g(x,@) <0, h(x,gp) =0 D)

Here, and throughout the text if not stated othgewa bold face letter gener-
ally indicates a vector or matrix, whereas scakmes denoted by regular italic
letters. We could thus write = {x: ] = 1,...J}. The symbolsx|yp beneath the
directive “max” means that the functiéfx,) is being maximised with respect to
x while treatingy) as exogenous. The general problem can have inggoah-
straintsg as well as equality constraints Further notation is introduced along
the way.

We constrain the study to cases wheig twice continuously differentiable
and the feasible spac®defined by the constraints for amy, i.e. JY) = {x:
a(x,P) < 0, h(x,) = 0} is compact. Furthermore, all elementsxoandy are re-
quired to be real continuous variables, thus exolyithteger programming prob-
lems.

The vectorx is generally referred to as thariablesor endogenouswhereas
Y is called thgparametersor exogenousThose terms, however, depend upon the
context, forcing us to leave that convention aesmmlake for example the estima-
tion of the vecto¥ using the equation systeR(x,W) = 0. When solving the
equation systemy is generally termed "parameter" axdvariable". In the con-
text of this thesis, the estimation itself is egjly considered an optimization
problem in the variabl® = (x,¥), possibly parametrized by yet another vector
(e.g. weights or probability distribution params)erso that the vectd¥ some-
times must be referred to as variable and sometaagarameter.



2.2. A bilevel programming perspective

A bilevel programming problem (BLPP) is an optintiza model that has an-
other optimization model in its constraints. A coominstance is the case of a
leader and one or manyollowers Without loss of generality, we assume that
there is only one follower. The leader is in cohttbsome instrument vectap
which the follower takes as given. The leader séeksaximise some functiof
that depends og and the vector of choicesof the follower, and possibly on a
vector of parameter®. The leader may be constrained by vectors of ialiips
G(X,,0) < 0 and equalitieH(x,,®©) = 0. The follower seeks to maximise a
functionf in which the instrument vectay of the leader is exogenous, subject to
the vectors of inequality constrairgé,p) < 0 and equality constraints(x,p) <
0. The problem of the leader can then be written

max F(X,,0)

X,y|©
subject to G(x,p,0)<0

H(x,p,0) =0 (2)
andx solves mlax f(x,)
Xl

subject to agx,p) <0
h(x.)=0

The similarities with an estimation gf can be readily seen: Let the leader be
a researcher that seeks to estimate the paramsteory, and let the function
F(x,) be the estimation criterion function. Then theFBL(2) is interpreted as to
find the parameters that, when inserted into thdehaives model outcomes that
maximise the criterion function. Observations thise somehow related joor
by some data sampling process may be entered atotin the objective func-
tion F or in the constraint® or H via the parameter vect@®.

The model (2) belongs to a special class of BLIRBsis sometimes called the
weakor optimisticcase (Dempe, 1997). That class is characteriselebgroperty
that if there are several optimal solutions to ftliwers problem for a giver,
then the leader may choose the one he prefershantbliower is indifferent to
that choice. Or, in terms of an estimation, if tbbowers problem has several
solutions for a given parameter vector, we may skamny of those.

The follower's problem is also referred to as theer problemand the
leader’s problem as theuter problem In this work, those terms are sometimes
used instead of the terms leader/follower, bec#usg are perceived to be more
neutral. The terms leader and followers are uskfa)] however, because they
show the relation to the vast literature on leddéower games originating with
Stackelberg (1934).



In general, the model (2) is very difficult to seifLuo, Pang and Ralph,
1996), and gradient based solution methods aredotufind only local optima.
When such models arise in econometrics, commortipeais to either apply or-
dinary solution techniques and ignore the posskilstence of "better" solutiohs
(e.g. Heckelei and Wolff, 2003 pp. 44), or to detee the binding status of the
complementary slackness conditions by some tailmderalgorithm (e.g. Fischer
et al. 1988) or heuristic that effectively turneguality constraints into equalities
(e.g. the budget constraint of the consumer is yavexhausted). That such solu-
tions may be appropriate in the cases where theya@aplied is beside the point.
An advantage of viewing the estimation problemiés/bl programming problem
is that much research has been done on solutiohoaetfor such problems. In
this study we make use of the easy to implemertinigaes proposed in Ferris,
Dirkse and Meeraus (2002). A comprehensive but somewhat dated literature
review of bilevel programming is found in VicentedaCalamai (1994).

When the inner problem is replaced by its firstesrdonditions, we obtain (in
general) a single level programming problem thattaims complementary slack-
ness conditions among its constraints. Such prabkem studied within the field
of mathematical programming with equilibrium coastts (MPEC), see for ex-
ample the textbook by Luo, Pang and Ralph (1996).

The proposition to use bilevel programming techagtio solve estimation
problems does nqgier seimply doing something entirely different or newaily
econometric problems solved in literature are inifyi BLPPs. Especially, all
extremum estimators of equations derived from resit models should belong
to that class. Consider for example the estimatioparameters of a demand sys-
tem. A common way of proceeding includes settingupicroeconomic model of
the agent (the inner problem or the follower), &min that model deriving a re-
duced form system of demand equations. The demauaktiens are then related
to observations of prices and quantities by somer enodel, and a parameter
vector is selected that minimizes (or maximizeshasaestimation criterion. The
whole process is then equivalent to the solutioa BLPP.

The value of viewing estimations of parameters aistrained programming
models as BLPPs is that it provides an alternapieespective of the problem.
BLPP provides a toolbox for handling situations vehthe road appears closed to
ordinary statistical methods.

! The phrase "better solutions" means that there emist another local optimum that is better than
the one found. In the work of Heckelei and Wolf0(3) referred to in the text, the authors do not
report any numerical problems in the estimations.
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2.3. A measurement errors perspective

A common characteristic of estimations of economaxels is that there are gen-
erally few controlled variables, i.e. variables wmowith certainty, for instance by
experimental design. For an economic model suchraled variables can in
some cases be political intervention measuressliksidies and tariffs. Neverthe-
less, important items like prices, supply, demadadhnical coefficientgt cetera
can in general only be inferred from error proneastgements. In fact, the pa-
rameters of interest can frequently not be measateall, but we can instead
measure some quantity that we believeagelatedwith the parameter of interest
via an error model.

Take for instance prices in some production motleé producer is generally
assumed to base his production decision oexpectedrice. So even if we actu-
ally could measure the price with very high presiwe do not necessarily know
what price the agent waxpectingto receive, but can only assume that there is
some statistical relation between our measurensmishe expected price, just as
we may assume that there is one between obsenatitigs and true planned
production.

In the situation described above, which should ditkeqcommon in the estima-
tion of constrained optimization models, there moe"left hand side" and "right
hand side" variables, but the model is regardecragquation system where
measurement errors can enter in several place ®odels are referred to as
errors-in-variables models (EVM) or measuremertremodels. It is well known
that failure to incorporate errors in the "explamptvariables" when they are
really error prone leads to biased parameter essn@.g. Fuller, 1987). Despite
the likely bias, estimations in literature frequgnise error prone explanatory
variables, e.g. prices to explain demanded quaesititi

The EIV models that arise in the context of ecormombdels generally con-
tain nuisance parametets.e. items that enter the estimating equationsabeitof
no direct interest to the researcher, and thabhéumore tend to increase in num-
ber as the number of observations grows. For aticéxpxample, consider a
model of a single economic price taking agent thaassumed to choose some
optimal quantity x given a price p and some teciini@arametef that is believed
to be constant. In the notation of model @)= (p,£). Assume for simplicity that
there are no inequality constraints involved arat the functional forms are such
that curvature is no issue (second order conditeorsalways satisfied), and fur-
thermore that there is a time series containingseovations of prices and quanti-
ties. The producer is assumed to choose the optitnadach period as a function
of (p,f) so that we can writg(p,f) as the (possibly implicit) solution to the first

2 Nuisance parameters is the term used by Carrall ¢1995). Zellner (1971) adopts the term "inci-
dental parameters"” introduced by Neyman and St84q).
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order conditions of (1) fox. Observations of prices and quantities are assumed
be generated as

X =x(p,B) +us
pobs =p + Uy
whereu; andu, are measurement errors with standard deviatpsdo,.

From an econometric perspectiyeand 5 are parameters to estimate, and we
see that for each new observation, another "trioe’'gp must be estimated, albeit
the parameteff may be the only parameter of interest for the resd@hus, re-
gardless of sample sizethere are always + 1 parameters to estimate, hence the
term "nuisance parameters”. Without further infatiora the parameters are not
identifiable. A maximum likelihood estimation ofetproblem requires knowl-
edge of the ratio of variances/o: (e.g. Zellner, 1971, Fuller, 1987). I§,0) are
estimated with a Bayesian approach, exact knowleflge/ o> is not required, but
other prior information may be used instead (Ze|ld871, chapter V).

Taking the reasoning one step further, we may atémowledge that not only
the researcher (upon measuring the quantities eofrtbdel) can commit errors,
but also the agent that is modelled. Such errors nesult in non-optimal choices
of the producer, which then are measured by theareber and enter into the
estimation. McElroy, (1987) terms a model that ed&rs optimization as well as
measurement errors a general error model, andsptuirthe consequences of ne-
glecting optimization errors.

By designing a measurement error model, a moréstieadlata sampling proc-
ess can be obtained, and biases and inefficiemedsced. Unfortunately, the
more sophisticated the error model, the greated#ta requirements, because the
number of endogenous variables in the estimationcigased. The greater num-
ber of "unknowns" may even result in an underdeirged) or ill-posed estima-
tion. The measurement error model also requiresdbearcher to determine the
relative variances of the errors involved, eithgradssumption or using external
datasets. Those potential obstacles raised by #asumement error model lead to
the last methodological field, Bayesian estimation.

2.4. A Bayesian perspective

There are many situations in which applied modeltexed to include prior infor-
mation into the specification of model parametéysplied modellers frequently
face problems of scarce or missing data (e.g. Hamid Reynaud, 2003), or want
to include non-data information when determiningapseters of their models in
order to account for sound plausibility considenasi (e.g. Fischer et al. 1988 p.
93). Furthermore, modellers may wish to specifychar model structure than is
supported by the data (e.g. Oude Lansink, 1999s Raxd Howitt, 1998), thus



facing ill-posed problems. In the previous sectitowas also mentioned that the
measurement error model generally requires priorimation of some kind.

The prior information required to solve ill-posedoplems have frequently
been introduced using entropy based estimatorsin adowitt and Reynaud
(2003), Oude Lansink (1999) and Paris and Howit98) referred to above
(more references are found in chapter 4). The Bagegpproach to econometrics
is directly aimed at handling prior information,damay thus prove a useful alter-
native to maximum entropy and cross entropy tealesdor the applied model-
ler.

Let ¢(z|0) denote the conditional probability density foisebving the outcome
z of some random vectat given the parameter vectBri] Q, and leté(0) be the
unconditional probability density d@. Using Bayes's rule (e.g. DeGroot, 1970),
the following function (actually a family of funcins) for the density d condi-
tional on observing can be derived:

$(612) 0 ¢(z|6)<(6)

&(0]2) is called theposterior densityand &(0) the prior densityof 8. Note that
the parameter vectd is not to be confused with the parameter ve#forThe
latter are parameters of the inner problem, whetieadormer are parameters of
the data sampling model.

The Bayesian approach lets the researcher introglice information regard-
ing the parameters, and can contribute to resoltliegproblems of transparent
and consistent inclusion of diverse data sourcespamon problem in the estima-
tion of parameters of constrained optimization ni@deifferent data sources and
assumptions provide information about the prior sitgnfunction & (e.g. prior
mean and variance @), and confrontation of the model with data progide-
formation about the outcomes As an estimator we may want to choose the
mode or mean of the conditional density funct®|z). As is shown in chapter 4,
the posterior mode estimator entails many otherilf@mestimators as special
cases.

3. Outline of thesis

The methodological approach outlined above is imglgted in four steps in the
following four chapters, as is illustrated in teotby-two matrix below. The first
two chapters show how the bilevel programming pegtipe is useful for estimat-
ing inequality constrained models. In particuldre two chapters deal with the
estimation of regional prices and transportatiost€dn a transportation model,
first from a theoretical point of view and then &pg to a real data set. The chap-
ters four and five treat Bayesian methods for isicin of prior information. In
chapter four, a Bayesian estimator for general idetermined models is pro-
posed, and chapter five applies the methodologeldeed in chapter four to a
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large scale nonlinear model. The models in all tdérapcan be regarded a kind of
measurement error models. The chapters are basedlisidual papers, and are
thus written in such a way that they may be redépendent of each other.

Figure 1: Outline of body of thesis.

Bilevel Programming | Bayesian estimation

Theoretical Chapter 2 Chapter 4

Applied Chapter 3 Chapter 5

Chapter two discusses the estimation of parameteadraditional transporta-
tion model, as it is typically present in so-call€dkayama-Judge type spatial
price equilibrium (SPE) models (e.g. Takayama amthé, 1964). In contrast to
previously used estimation methods for this problefservations of regional
prices as well as of trade costs are used. Theopeabmethod uses bilevel pro-
gramming techniques to minimize a weighted leastases criterion under the
restriction that the estimated parameters satisfyKiuhn-Tucker conditions for an
optimal solution of the transport model. A pendlinction as proposed in Ferris
et al. (2002) is used to iteratively approximate tomplementary slackness con-
ditions. Monte-Carlo simulations are used to traaesome properties of the es-
timator and compare it with a traditional calibostimethod. The analysis shows
that the proposed technigque estimates prices asasefrade costs more effi-
ciently. It is suggested to apply the same metbaarange of linear and quadratic
models.

Chapter three also treats the estimation of redjiprniees, excess demand and
trade costs, for homogeneous products in a spaiieé equilibrium model, and
serves to illustrate the application of the theoattapproach developed in chapter
two. The estimation is restricted to optimal sauos of the transport cost minimi-
zation problem, parametrized by a trade cost fonctihe parameters of which are
also to be determined. The data come from an dtgurialimodel for Benin, where
twelve market regions are bilaterally trading (t@ide) in seven primary crop
products. The resulting trade cost estimates angpaced to those of empirical
studies.

Chapter four presents a Bayesian alternative tefadined Maximum Entropy
(GME) and Generalized Cross Entropy (GCE) solutimnanderdetermined sys-
tems of equations. For certain types of economidehgpecifications, this ap-
proach provides fully equivalent results to GME-G@Ehniques, but in its gen-
eral form allows a more direct and straightforwgrditerpretable formulation of
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available prior information and can reduce sigaifity the computational effort
involved in finding solutions. The technique casoabe extended to situations
with non-informative prior information. Six fully @rked out numerical illustra-
tions of the estimator are supplied. The explicmparison with the entropy-
based methods is motivated by the frequent useMiE @r GCE for solving un-
derdetermined problems and introducing prior infation into model calibration
problems (e.g. Paris and Howitt 1998, Witzke anitizBr998, Paris 2001).

In chapter five, the estimator developed in chafater is applied to the supply
part of the agricultural sector model CAPRI in artte estimate the behavioural
parameters embedded there. The supply model in CA&ists of a number of
constrained quadratic programming models, wherdn eaodel represents the
agricultural sector in a region in the EU. The nisdeave a quadratic objective
function, where the quadratic term influences theutation behaviour of the
model. It is the objective to estimate the paranseté that quadratic term, using
the time series data in the CAPRI database. Albagvay, two alternative formu-
lations of the regional programming models are wered but discarded.

Chapter six summarizes the main findings, discuise® relative to the aim
of the study, and identifies some potentially fulifields for further research.
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Chapter 2 An estimator for trade costs and its small sample
propertied

1. Introduction

The transport model treated in this chapter is @mmon component of spatial
price equilibrium models. It has been analyzedewesal central articles in linear
programming, for example in Koopmans’s originalicket from 1947, Enke’s
ingenious “solution by electric analogue” (1951)daBamuelson’s formalized
treatment (1952). In Dantzig’s work on linear pamming (1966), the transport
problem is referred to as “The classical transpooblem.” This chapter is not
concerned with theolution of the transport model, which has been thoroughly
treated for more than fifty years, but turns indteathe empirical specification of
the model.

In fact, during the long history of this establidheodel, little attention has
been paid to the estimation of its parameters.example, the only article in the
edited volume by Labys et al. (1989) that explcitientions the estimation (cali-
bration) issues is McCarl et al. (1989, p. 289-29Bey describe a process where
the model specification is iteratively updated ey to reproduce first observed
guantities, then observed prices. Thompson (19&9same edited volume) pro-
poses to use statistical measures as mean abdeltétion or mean squared error
to evaluate goodness of fit of the resulting modibke reader should, however, be
aware that already with a modest number of reginrtke SPE model, the large
number of possible bilateral trade flows resulaimequally large number of zero
arbitrage conditions, that render the selectiom tfasis that fits the base data a
difficult problem.

The transport cost minimization problem can betemitas

min D e
i
S.t. € +Z(Xij - X;)=0 [p] 1)
j

% 20 [v,]

3 Part of the material in this chapter has previptisien presented and discussed at conferences, see
Jansson and Heckelei (2004) and Jansson (2005).
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wherec; is the trade cost from regioro regionj, x; is the traded quantity argl
is excess demand in Letters in square brackets after the restricteyrabolize
the dual values of the constraints.

We consider the trade of a single homogeneous gowtlassume that reliable
(error free) data on regional excess demand idadolai Furthermore, we assume
that observations of trade costs between regionsedisas regional prices are
available, but associated with measurement erf@pserved prices are likely to
be inconsistent with observed trade costs and sxgesiand under the assump-
tion that they constitute an equilibrium solutiemmodel 1.

Spatial price equilibrium models frequently contairsimilar transport cost
minimization model as component. Examples rangm fifte early publications of
Judge and Wallace (1958) and Takayama and Judd@e)(1® the more recent
contributions of Litzenberg, McCarl and Polito (298 Peeters (1990) and
Guijardo and Elizondo (2003)—to name just a few.

In the cases known to this author, including thélipations just cited, there
was either no calibration at 4lbr the models were calibrated by in three stgps b

1. solving the trade cost minimization problem gsthe observed trade
costs,

2. taking the dual values of the market (:Iearirﬂjr'rtxeztionspi as prices and
3. shifting the prices so that some important pisamatched precisely.

Step 3 is possible because the first order comditionly contain pair-wise
price differencesindeed, one of the market clearing restrictiongadundant,
because we know that for a solution to the trartagion problem to exist, the
sum of all regional net demands must be zero (D@rit266), implying that if
there arek markets, then ik — 1 of them clear, all of them must clear. Because
only price differences are identified, onemerator pricecan be chosen arbitrar-
ily and the remaining prices are determined byedlmice differences.

Obviously, this method for determining regionalces for a transport model
does not use any direct observations of regioriakprexcept for the numerator
price. The remaining regional price informatioreidracted from trade costs and
excess demand. This procedure is henceforth reféoras “traditional” and ab-
breviated TRAD.

The purpose of this chapter is (1) to demonstratealéernative method, a
bilevel estimation program (BLEP), for calibratittye input data for a transport

% The edited volume by Labys, Takayama and Uri (1$8@ntirely devoted to spatial (and tempo-
ral) price equilibrium volume. The paper thereinMygCarl et al. mention attempts to calibrate the
model by trial and error, and the paper by Thommauyests to use statistical measures to quantify
the deviation of the specified model from obseorati
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model that uses observations of regional priced,(@8hto show that BLEP esti-
mates regional prices more efficiently than TRADM ahat this increased effi-
ciency in estimating prices does not come at tipeese of a less efficient estima-
tion of trade costs.

The outline is as follows: In the next section, BIEEP is presented in detail,
and it is given a geometric interpretation. Thepdiheses are deduced about the
behaviour of the two estimators by treating theninaglicit functions, and the
ideas are illustrated in a three-region example ehothe hypotheses are ana-
lyzed using Monte-Carlo simulations, where the @eniance of the two estima-
tors is evaluated using generated data. The redultse simulations are analyzed
and compared to the hypotheses formed. A finalime@ummarizes and dis-
cusses the results.

2. A bilevel estimation program

2.1. The estimator

The idea to determine parameters of optimizatiomet®by estimating the first
order conditions (FOC) is not new—it is standardcedure. Nevertheless, it has
not been much used famequality constrainegporogramming models. Fischer et
al. mention an algorithm for computing parametdra tinear program so that a
statistical measure of deviation from observatisnsiinimized, thus (implicitly)
solving a bilevel programming problem, but do nobvide any details of the
algorithm. Heckelei and Wolff (2003) propose estimg parameters of agricul-
tural supply models by using optimality conditioas estimating equations.
Jansson and Heckelei (2004) show how a similamigcle can be applied to the
estimation of a transport model, where a large rermalb inequalities renders the
estimation numerically difficult. The current chaptontributes to this strand of
research by calibrating the parameters of a trahspadel by direct estimation of
the optimality conditions of problem 1, using asteaquares objective, and ana-
lyzing the finite sample properties of the estimafbhe resulting optimization
problem, given by equations 2-7, belongs to thestidevel programming prob-
lems (BLPP). The term "bilevel" refers to the fact thiais one programming
problem (the estimation) that has another programgrproblem, in this case the
transport problem represented by its optimality dibons, in the constraints
(Candler and Norton 1977).

min Z (Cij - Ci?bs)2 + z (pi - piObS)2 (2)

p,c

i
s.t. e + Z(xji - X ): 0 (3)
j
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G~ +R=V )

%V =0 ()
Cij = Gji (6)
X@j > 0, Vij >0 (7)

The general BLPP is difficult to solve, so a fewrds about solution tech-
niques are appropriate, although a substantiainiera of that subject is beyond
the scope of this text. Several different solutinathods were tested, including
approximation by smooth reformulations as suggelsjeBacchinei, Jiang and Qi
(1999), by Ferris et al. (2002, also found in thePRC solver for GAMS), a
branch-and-reduce algorithm called BARON implemeérae solver for the mod-
elling language GAMS and the method proposed bgstanand Heckelei (2004).
Repeated simulation experiments were performedderao select the most ap-
propriate solution algorithm for the case at hamndthe experiments, normally
distributed errors were added to randomly generatedmodels, and the parame-
ters re-estimated with least squares. It turnedlaittwo algorithms (Al and A2)
based on smooth approximations in Ferris et aDZ2ere performing similarly
well.

Al: The algorithm thamost frequentlyobtained the smallest sum of squared
errors was based on a product reformulation. Thka igehind the reformulation
can be illustrated for a complementary slacknesslition consisting of a slack
variablex = 0 and a dual value= 0. The complementary slackness condition can
then be writterxv = 0. With Al, we instead writev< 1 for some positive number
L. The estimation problem with the approximated clemgntary slackness is a
smooth NLP problem that can be solved with gradi@®ed techniques (this pa-
per uses the solver CONOPT for GAMS, ). The problemsolved repeatedly,
starting with a larges and finishing with = 0, and each time using the previous
solution as a starting point. It was found thaf@@nance was improved if before
each step a new feasible starting point was foynsblving the inner problem for
the parameter values of the previous step (or isemwations in the first step).

A2: The algorithm thabn averageobtained the smallest sum of squared errors
was based on a penalty function. Here the compleaneslackness conditions
were completely removed, and instead the estimatrderion was augmented
with a penalty function of the formxv (with x, v and i as before). This modified
optimization problem was solved iteratively, eathet with a largery, with
initially set to a small positive number. The aitjun terminates when the com-
plementarity gapxv was zero. A2 did not find the best solution mastéiently,
but it always found a solution that was close te tiest solution found by any
algorithm.
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All other methods were either taking considerabtyr@time to solve the prob-
lem or were less reliable in finding a good solatitt was thus decided to use
both Al and A2, and for each simulation experimesd the results of A1 except
if the sum of squares obtained by A2 was lowewylmich case the results of A2
were used.

2.2. A geometric interpretation

In the case where the criterion function to be miréd is the sum of squared
deviations and the model to be estimated is adimealel, the BLPP has an intui-
tive geometric interpretation. Consider the follogriproblem, estimating a pa-
rameterx of a linear programming model in one varialgleand restrictions as
follows:

min (x - Xo) + (v = o)

s.t. miny
yix

st -y-x <-3 8)
-y+x £ 2
y-x £ 2
y+x < 8

Herex, andy, are observations, and we want to pickndy that minimize the
upper level objective and wheyesolves the inner problem treatizgas given.
We note thatxy) that minimize X - X,)> + (y — Yo)* also minimize [ — x))* + (y
- vo)l” which is theEuclidean metrici.e. the ordinary distance, between the
estimated pointqy) and the observatiox£yo).

In figure 1 the restrictions of problem (8) arewnaas lines, the observed
point (X.,Yo) as a plus sign, and level cur¥ésr the criterion function as concen-
tric circles around the observation. All points @rircle have the same distance
from the plus sign and hence the same objectiveegaihn the criterion function.
Following Bard (1998), we call the area enclosedH®y restrictions (where the
circles are not dashed) tleenstraint regionS of the bilevel programming prob-
lem.

5 |If the problem is interpreted as a Bayesian probdes in chapter four, with error terms iid normal
distributed, the concentric circles are the isdsphulity curves of the posterior density function.
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Figure 1. A simple BLEP with OLS criterion and larénner problem.

The projection ofS onto the x-axis is denoted I§X), and is a convex subset
of X with the property that for eachl] X at least one, but possibly several, solu-
tions to the LP exists. If we form the set of airg §&,y) wherex is in S(X) andy
solves the LP, we have the so-calladucible region It is marked with heavy
lines in the figure. We seek the point in the irtdleregion that is closest to the
observation.

When the inner problem is an LP, the inducible gagks a piecewise linear
function derived from the faces &f(Bard 1998). In the general case, it is non-
convex, so there may be several local optima.garé 1, there is a local optimum
at the point and the global optimum is found @t The non-convexity of the in-
ducible region makes the problem difficult to sela@ad is one important reason
that special solution methods frequently are neéde8LEPs—and why BLEPs
are rarely used.

3. Analysis of estimator properties

It is desirable that an estimator on average isecto the true parameter. We call
this efficiencyand measure it by th@ean squared erro(MSE) (Greene 2003).
MSE is the mean squared deviation of an estimata the true parameter value.
Efficiency is a relative measure, so what we wdikd to know is if one of the
estimators is more efficient than the other. To aid; we use the fact that MSE
can be split into a variance and a bias compongngu

MSH®|6] = E[(8 - 6)?] =Var[8] + (Biad 8| F]) > 9)

where @ is the true parameter value addthe estimator.

In this section, we proceed analytically to dedugbotheses about variances
and biases of the estimates of the two methodsnédf estimator turns out to be
less biased as well as having less variance thamtter, we conclude that it is
more efficient. If, in contrast, one estimatorasd biased but has higher variance
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than the other (or vice versa), the qualitativesosing in this section does not
allow us to say that one estimator is more efficibian the other. The last two
sections in this chapter report setup and resdltsimulation experiments de-
signed to investigate the properties numerically.

We consider the case when there is only one obsanvavailable and the er-
rors are known to be additive and drawn from a senio distribution. Then
TRAD and BLEP constitute two differeirhplicit functionsfrom price-cost space
Q into itself (onto the inducible region, which is a subspac€Xf That is, each
vector of observations is mapped into a vectorstifreates. If this mapping were
linear, the probability distribution of the estiraatwould be only a scaled and
shifted version of the probability distribution tbfe errors. The mapping is, how-
ever, not always linear, due to the complementlgkaess conditions, and thus
the distribution of the estimates is asymmetric.

Let us analyse the shape of the graph of the iihflioction by a few exam-
ples. If we pick one component of the implicit ftina, say the estimated price in
some market, and compute its graph against onkeofitguments, say the trade
cost into that region from some neighbouring regisa could obtain something
like the left pane in figure 2. In the figure, ttrade routei(j) is not used if the
trade cost is greater than so observing a trade cost greater than that does
influence the price estimapéin regionj at all neither with TRAD nor BLEP.

Est. p Est.

¢ ¢ Obs.g ¢ ¢ Obs.g

Figure 2. Stylized graph of implicit function conmemt. The break point is due to
the complementary slackness conditions.

If in contrast the observed cost is lower tlo%l,nsayc", then the zero arbitrage
conditions suggest that the pricq iis lower tharp’. TRAD undertakes the neces-
sary adjustment solely on the price position, so dhaph of TRAD slopes 45°
downward to the left fromc{,p) as the dotted line shows. BLEP undertakes the
adjustment for the estimated trade cost, showharright pane, as well as for the
estimated price, so the adjustment of the estimptex® is smaller, along the
more gently sloping solid line. Both graphs in te## pane do, however, have a
kink at €,p’). As a consequence, the density function of thienased price irj
will be asymmetric, and more so for TRAD than fotEP. For the estimated
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trade cost though, as shown in the right pane, ttrdygraph of the implicit func-
tion for BLEP has a kink.

What are the consequences of the kinked impligitfions on the efficiency
of the estimators? Analysis suggests that a kinisesi the estimates to be biased.
To see this, we sketch a histogram for a stylizedsdy function for the BLEP
estimates in the right pane of figure 2. This imeldn figure 3. The quantity on
the horizontal axis is, as before, an observatids.presumed to have an additive
error component from a symmetric density functiem,that the density function
for the observation could give rise to the histograt is standing on the hori-
zontal axis. Denote the class width §yand the probabilities of the four classes
by a, b, d, ande. Assume, without loss of generality, tltais the true trade cost.

On the vertical axis is, as before, the estimatéhis case the BLEP estimate
of trade cost. We have put the resulting histogfanthe estimates, rotated 90°
anti clockwise, along that axis. We see that areotesl costs in the interval
(c’, c'+9] that occurs with probabilitg will be mapped to an estimate in the inter-
val (¢, c+s] with probability d, and an observation irc ¢-s,c +2s] that occurs
with probabilitye maps to ¢'+s, ¢'+2s] with probabilitye. However, any observa-
tion in [c -2s, ¢), occurring with probabilitya + b maps to the smaller interval
[c'-s, ¢) with probabilitya + b. Thus, the distribution of the estimates is skewed

bd:i

¢ Obs. g

Figure 3. Density functions for a component ofithplicit function BLEP.

The mean of the estimates will not&gthe value mapped by the true parame-
terc . We see this by computing the moments aratimedc” respectively:

Moment around’ =-0.5s(a +b) + 0.55d+ 1.5e
=-0.5sa- 0.5sb+ 0.55d + 1.55e
>-1.5sa-0.56b+ 0.55d+ 1.5e

= moment around = 0.

Since the moment around is zero, we can compute the bias easily by cancel-
ling terms to obtain moment around= sa> 0. Thus, the estimates of trade costs
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are biased by the amouwsd, and they must be biased whenever the implicicfun
tion is kinked.

Figure 3 also shows that the variance of the eséisndecreases, because the
width of the histogram decreases. In that way, sofrtee efficiency lost due to
the bias is regained.

Note that the number of kinks and the slopes oflittes depend on the trade
pattern. If a region is connected by trade flowsrtany other regions, then a
changed price in that region has implications fangn other prices, and con-
versely when there are few connections. This makesnalytical deduction of the
graph of the implicit function practically imposkib

The above reasoning is illustrated in a three-megéingle commodity model,
for which we assume that there exist true parametieies that represent an equi-
librium solution. Figure 4 shows three regiohsB and C, with B being a net
importing region and\ andC net exporters. The left and right panels of tgerré
show two of the three possible trade flows that iatlear all markets. To be
specific, let the true regional prices pg= 100,ps = 109 andpc, = 104 and the
trade costEas =9, Cac = 5 andceg = 5 and symmetric as in equation (6). In this
case, trade will flow as in the left hand panel.

Figure 4. Three region model withandC net exporters anfl a net importer,
and two possible market clearing solutions.

To start with, we make the trivial observation tifathe all disturbances are
degenerate “0”, i.e. no disturbances, then TRAD BbHP map an “observation”
to itself, i.e. both methods return the true paranse Then, we add random dis-
turbances from aymmetricdistribution with mean of zero but nonzero varenc
to only the trade costa,z and leave all other observations undisturbed, seel
what happens to the estimates of TRAD and BLERn#&thematical terms, we
make point approximations of a single partial datiie of the vector valued im-
plicit functions that map observations to estimatdsfined by the estimation
methods. The symmetric errors will havéiasing effect on price estimates, re-
gardless if they are estimated with TRAD or BLE®jllustrated by the following
numerical example:
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Example: We measure prices and costs of the model in figuveice, and after
each measurement we use the observation to estimateue parameters with
TRAD and BLEP. Onlgsc is measured with errors, all other trade costs and
prices “happen to be” observed at their true valyésit we do not know that).
The observations @hc are

Case 1: cac =10

Case 2: caic=0

Estimates with TRAD:

Case 1: The trade cost minimizing solution is tame as that without the er-
ror, so trade will still flow as in the left panef the figure. Conclusion: The dual
values of the markets with the numerator ppggadded will equal the true prices,
because the flowCis still not used. The costs will, as always WifRAD, be the
observed onesxg = 9,Cac = 10 andecg = 5.

Case 2: It is cheaper to transport Xi@B than viaAB, so trade will divert from
AB to ACB as in the right panel of figure 4, the prices Wwidlp, = 100,pg = 105
andpc = 100, and costsg = 9, cac = 0 andccg = 5. Conclusion: In this case, only
negative errors that are larger than 1.0 influgheeprice estimates, because the
second cheapest trade route is 1.0 unit more ekeetign the cheapest one. The
price estimates foB should systematically turn out lower than the tpuiees in
this setup, as would the price@

Estimates with BLEP:

Case 1: The observation is a point in the induaibtgon, so the estimator will
accept the observation unaltered and will measwutevation of zero. In the esti-
mated model, trade will flow as in the left panétklee figure. Conclusion: Noth-
ing will happen to the prices because the fla@ is still not used, and the esti-
mated costs will beag = 9,cac = 10 andceg = 5 as with TRAD.

Case 2: The observation is not in the inducibleomregso the estimator will
look for the closest point of the inducible regiasing the least squares criterion.
The best solution means using the trade #@®B and notAB, choosing the prices
pa=101.9,ps = 108.2 an@c = 102.9, and the trade cosig = 9, Cac = 0.952 and
Ccs = 5.381. Conclusion: As with TRAD, only the negatierror with absolute
amount greater than 1.0 influences the estimatiarg a symmetric measurement
error with a mean of zero causes the estimatecgptic deviate from the true
values in only one direction (positive fpg and negative fops andpg), i.e. being
estimated with bias, but less biased than with TRAD
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Further analysis along the same lines as aboveestgyépur hypotheses about
the estimators TRAD and BLEP, and those hypothase$urther analysed in the
next section with aid of numerical technigies.

H1. BLEP is a more efficient estimator of regiomaices than TRAD, be-
cause the BLEP estimates have both less variardtéeas bias than the
TRAD estimates.

H2. We cannot priori say that either estimator is a more efficientneator
of trade costs. On the one hand, BLEP estimates hahas that TRAD
estimates lack, but on the other hand the variaotdse BLEP estimates
are lower. The simulation experiments reported Wwesoggest that this
hypothesis can be strengthened.

H3. The variances of the price estimates are hgd@eous, in other words the
variance is different in different regions. It i9om heterogeneous if esti-
mated with TRAD than with BLEP.

H4. The variance of the cost estimates is hetemmenwhen estimated with
BLEP but not when estimated with TRAD.

4. Simulation experiments

The small sample properties of the estimators aaéyaed using simulation tech-
niques. The basic idea is to genemteandomly chosen “true models,” and then
estimate each modaltimes (the simulation size i§, each time adding errors to
the true prices and costs. We thus obtaisamples that each consistsnafbser-
vations of estimated trade cost matrices and pméo¢ors. Throughout this paper
we usem = 100 andch = 500.

The m models, each with ten regions, are generated &widg regional ex-
cess demand from the uniform distributier1(),10] and trade costs from the uni-
form distribution [20,100]. The excess demand cf cggion is set to the negative
of the sum of excess demand in all other regionmasie the problem feasible.
The transport model (1) is solved, and the dualesbf the market balances plus
a constant of are 120 taken as true regional pricethe following, the index
denoting themodel(1,... m) to which a certain price or trade cost belongsnist-
ted for readability.

Each of them models is estimated times with TRAD and BLEP, each time
with errors added to all true prices and tradescoelie errors are sampled from

5 A rigorous treatment of the topological propertigproblems such as this is beyond the capabili-
ties of the author, but can be found in the liter@aton mathematical programming with equilibrium
constraints (MPEC), e.g. the monograph by Luo, RartgRalph (1996).
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the normal distribution with mean of zero and stadddeviation 6. With this
standard deviation, we expect that the major plath® errors are in the interval
[-18,18], because plus or minus three standard devsatovers 99.9% of the
outcomes. By construction, true trade costs af@@100], so with a numerator
price of 120 the smallest possible true trade egstvell as price is 20. Hence,
adding an error of standard deviation 6 and mean &él rarely result in nega-
tive observed values. Still, they may occur, andrievent that, the sampled errors
are censored to lie within the intervallP,19]. The errors are censored upwards
as well as downwards to avoid censoring being ecsonf biases.

In the next section, we address the hypothesefopuard in the previous sec-
tion by analysing MSE, variances and biases ofegriand trade costs estimated
with TRAD and BLEP. Since equation (9) holds forckegparameter in each
model, we can compute the mean of each term oVqariaks or costs in each
model, obtaining mean MSE (MMSE), mean squared (hSBIAS) and mean
variance (MVAR), for which it holds that MMSE = M®8S + MVAR. The
means are computed in order to obtain an overvieav the large number of pa-
rameters estimated in the simulation exercise.

The GAMS program “generateSample.gms” that was @egerforming the
numerical experiments is printed in appendix 2] the program that was used
for analysing the results, “analyseSample.gms’priated in appendix 2.3. The
programs require that the software GAMS is insthllend are better executed
from the command prompt in order for progress feeklio work properly.

5. Results

This section presents the results of the simulagigoeriments in relation to the
four hypotheses formed in section 3. The sectiosulsdivided into three parts:
5.1 efficiency of price estimates, 5.2 efficienciyt@de cost estimates and 5.3
heterogeneity of variances.

5.1. Efficiency of price estimates (hypothesis H1)

Result 1BLEP is a more efficient estimator of regionalges than TRAD.

The simulation experiments confirm the hypothelset BLEP is a more effi-
cient estimator of regional prices than TRAD. Fegbrshows MMSE for price
estimates in all models. Each point is the avetd@E over all regional prices
and all 500 estimations in one model.
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Figure 5. Mean MSE for price estimates for each ehod

The results show that BLEP not only delivers mofficient estimates of
prices, but also that the efficiency is stable ssrdifferent models. In other
words, it does not depend upon the true data déatg&ta. In contrast, TRAD is
less efficient in all cases, and additionally, diiciency seems to depend on the
data constellation. As we will see, the greateicifificy of BLEP regarding price
estimates is attributable to less bias as welleas Vvariance, as the qualitative
reasoning above suggests.

Result 2Both BLEP and TRAD estimate prices with bias,thatbias is smaller
for BLEP.

Figure 6 shows the mean squared bias (MSBIAS)gfriade estimates and es-
timations per model. MSBIAS of prices estimatedwitRAD fluctuate strongly
between models, whereas the biases of prices dstnweith BLEP are much
more stable and also smaller. Most of the largedsiaome from the TRAD esti-
mator.
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Figure 6. Mean squared bias of price estimated afaels.

It may also be of interest to analyse the biasdgbeindividual regional price
estimates (not the mean squared bias). Table 1ssHesgcriptive statistics of the
sample of estimation biases of regional pricesa(tsample of 100 modebs 10
pricesx 500 estimations = 500 000 prices). Neither theagye nor the median of
the biases is far from zero, indicating that theme about as many positive biases
as there are negative ones. The larger varianttedfiases of TRAD supports the
hypothesis that TRAD generally produces price estid® with larger biases. The
larger biases also appears in the line “SABIAS” jcluhis the sum of absolute
biases. SABIAS of TRAD is more than three timeg tiaBLEP.

Table 1: Descriptive Statistics of Biases of PEstimates

TRAD BLEP
mean -0.193 0.004
variance 8.242 0.590
median -0.061 -0.004
SABIAS 2018.280 594.965

According to the reasoning in the previous sectie&would expect TRAD to
systematically estimate biased prices in some nsgio some models, and the
BLEP estimates would also be biased. A visual iospe of figure 6 suggests
that that the bias of BLEP is much smaller than @ialfRAD. It would thus be
interesting taestif the biases of the price estimates are sigmificH we pick at
random one of the 1000 prices (10 prices in eachO6f models), we have 500
estimates of that price. Since the estimates ardora variables, we may use the
Lindberg-Levy central limit theorem (LLCLT) to arguhat the mean of the esti-
mates will be asymptotically normally distributédi/ith 500 observations, the
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asymptotic distribution can be considered a faprapimation to the correspond-
ing small sample distribution.

If we apply the LLCLT, using an estimageof the variance instead of the un-
known true variance?, we have that

zln zl(f)kn ~ Py )2

n-1

2(py = Pu
Sk'

(10)

where p,, is the estimated price in modkl regioni for estimationl with
I{1,...,500}, p,; the average of the estimations of the price in modelregion

i, ands; the sample standard error of the price estimatamodelk, regioni.
With the null hypothesis that the expectation @& ¢éistimates equals the true price,
we can compute the probability that the absolutaevaf the outcome of the test
statistic‘fki‘ in eqg. (10) would be as big as it is or biggersymbols, that means
that we seek the probabili(t,;| =[f,|) = 2(1~ F([f,|), with F the cumulative
standard normal distribution. We decide to rejeet mull hypothesis if the prob-
ability is less than 1%.

The result is that for TRAD, the null hypothesisrégected in 509 cases (of
1000 possible, 100 models with 10 prices per modady BLEP, the null hy-
pothesis is rejected in 508 cases. The test seemapport the hypothesis that
both estimators are biased, but does not make laay distinction between them.
The greater biases of TRAD that are visible in figé are accompanied by
greater variances (see figure 7 below), that ma&diases less significant.

Result 3 The variance of prices estimated with TRAD is gredhan that of
prices estimated with BLEP.

Figure 7 shows the pooled sample variance of mgtenates in each model
estimated with TRAD and BLEP. K= {1,....m} indexes the models, the pooled
sample variandes? of the prices of modek is computed as? =%Z; Sz,
with sZ indicating the squared sample standard deviatigmice i in modelk as
defined above, anB indicating the number of regions (in this c&e 10). As
can be clearly seen in the figure, TRAD estimateisegally have a higher vari-
ance. The variances of prices estimated with TRAdens to depend more
strongly upon the underlying true model than is ¢hse for BLEP. The highest
pooled sample variance of the TRAD estimates isuabwice the lowest one,

whereas the variances of the BLEP estimates aserctogether.

"Because each price is estimated the same numkieresf, the pooled variance turns out
to be the plain average MVAR.
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Figure 7. Sample variances of price estimates,gubtmgether for each model.

It is noteworthy that in all models, the poolediaace for BLEP is clearly
smaller than the variance used in the samplingga®¢36), whereas it is larger
than 36 for TRAD. The pooled sample variances céefllee behaviour of the un-
derlying non-pooled variances, described in motaidieelow under the hypothe-
sis about heterogeneity. Obviously, no statistieat is necessary to see that the
variance of the TRAD price estimates is greaten that of the BLEP.

5.2.  Efficiency of trade cost estimates (hypothesis H2)

Result 4BLEP is a more efficient estimator of trade cobEt TRAD.

Figure 8 shows the mean MSE for all trade costmedtis in each model.
MMSE for BLEP is lower than for TRAD in almost attodels, but the differ-
ences are not as obvious as for the price estinflégese 5). It also looks as if the
efficiency of BLEP is somewhat more sensitive tffedent data constellations
than TRAD, because the BLEP points appear to bacally more dispersed.
Below, MMSE of trade cost estimates is split upibtas and variance compo-
nents.
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Figure 8. Mean MSE for trade cost estimates foheaodel.

Result 5BLEP but not TRAD produces biased trade cost egtisna

The TRAD trade cost estimates cannot, by constrncthe systematically bi-
ased. They are simply the unaltered observatiamgheair being biased would
mean that there is something wrong with our datzegsing process. However,
we have only a finite sample, so the sample mdanr(iean of any estimated cost
item taken over tha repetitions) may very well deviate from the trusde cost.

For BLEP, the qualitative discussion above suggbstisthe inequalities could
cause the trade costs to be systematically biawgesoine region pairs, but in an
unpredictable direction. In figure 9, the MSBIASthE trade cost estimates in all
models are shown. All values are small, and itdsimmediately clear whether
BLEP is more biased than TRAD, but the tendencgeidainly visible, because
points further away from zero generally belong t&EB.

To further investigate the question whether the BLdst estimates actually
are more biased than the TRAD estimates, we perfotest similar to the one
performed for price biases above. As we do not kif@angiven trade cost will be
over- or underestimated, we make the test two-satetdefore. For TRAD, the
number of rejections of the null hypothesis (il €xpectation of each trade cost
estimate equals the true trade cost) is closegmtimber that would be expected,
namely 1.31 percent of the cases (59/4500) at@hgetcent level. For BLEP, the
number of rejections is higher, with 9.75% of thdl mypotheses (439/4500)
rejected at the 99 percent level. Thus, there ideexce for the BLEP but not for
the TRAD estimates being biased.
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Figure 9. Mean squared bias of trade cost estinmatesch model.

If all the computed trade cost biases are congidarsample, we get the sam-
ple statistics shown in table 2. The average lsa$ose to zero for both methods,
and so are the variances and the medians of teesidhe sum of absolute biases
of all trade costs in all models, SABIAS, is higlier BLEP than for TRAD, also
supporting the hypothesis that estimates of BLEP@ore biased than TRAD.

Table 2. Descriptive Statistics of Biases of Traaest Estimates

TRAD BLEP
mean 0.004 0.054
variance 0.073 0.138
median 0.005 0.026
SABIAS 969.585 1271.622

Result 6 The variance of trade costs estimated with TRA@résiter than that of
those estimated with BLEP.

We expect the pooled sample variance of the esunmade costs for TRAD
to be precisely 36, which is the variance usedhéndata generation process. Fur-
thermore, the hypothesis states that the pooleglsawariance per model (see
above) of the estimates performed with BLEP shdiddower. Figure 10 shows
the pooled sample variances of both methods fdr efithe 100 models. The data
seems to support the hypothesis, because the TRAD pbints are nicely dis-
persed around 36 and all BLEP data points lie beét@iowest TRAD data point.
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Figure 10. Mean variance of estimated trade cpsisled together for each
model.

The logic of this result is clear in figure 3 aboV¥ée kink of the implicit func-
tion tends to compress part of the density functbthe BLEP cost estimates,
making it narrower than the true error distributithus reducing variance. If we
look at the underlying data in the form of the rpmeled sample variances, the
view is more differentiated. It seems that the danwariances of the cost esti-
mates are more dispersed across trade links wathitn model with BLEP than
with TRAD. This observation is further discussed@annection with the hypothe-
ses H3 and H4 regarding heterogeneity of variabhe&sv (figure 12).

5.3. Heterogeneity of variances (hypotheses H3 and H4)

Result 7The variance of the price estimates is heterogesieical the variance is
different in different regions. It is more heterogeus if estimated with TRAD
than with BLEP.

A quick look at the data supports this result. Féglil shows the sample vari-
ance (not pooled) of the first 200 prices estimated the variance over all 500
estimations of each of the ten prices in the tmodels. It can be seen that the
variances of the different regional price estimdhestuate strongly between the
TRAD estimates, whereas the variances seem mucle imomogeneous for
BLEP. All BLEP points are in the thick band at thettom of the plot. Above that
band comes a row of plus signs, which is the TRADnhsates of the numerator
prices, all of which have the variance 36 (the damgprariance). Above that row
lie all the other TRAD estimates. The higher théarece of a price estimate, the
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more trade links are probably separating it from tlumerator price. The more
trade links, the more measurement errors of trades@ffect the TRAD estimate.
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Figure 11. Sample variance of estimates of indi@iguices

The variances of the TRAD estimates are clearlgrogeneous. However, it is
difficult to tell whether the variances of the BLEBtimates are homogeneous or
not, that is if the fluctuations observed are randmtcomes of the same distribu-
tion. If we would estimate the same price item haot times, would we then get
a similar or different sample variance? We wantest the hypothesis “the vari-
ances of prices differ between at least two regiarnhe estimated model” with
the null hypothesis “the variances are equal irregions of the model.” To do
this, aBartlett’s test (see NIST/SEMATECH 2004) is performed forteamwdel
m. The results indicate that in 100 models out dd, TDRAD has produced het-
erogeneous estimates at the 99 percent signifidamet whereas BLEP has done
so in 99 cases.

However, the Bartlett’s test is sensitive to dewiad from normality, and we
know that the price estimates are biased. Henaerebults may be due to a
skewed distribution, not to heterogeneity. To deuthieck, we perform also a
Levene'dest (NIST/SEMATECH 2004) for heterogeneity, & teat is less sensi-
tive to deviations from normality. The test can ferformed using deviations
from mean or from the median. Both were tried, vgitmilar results. The follow-
ing results are for tests with the mean. The redulbe test is that the hypothesis
that the variances of price estimates equal iregibns is rejected in 99 model for
BLEP and in all 200 models for TRAD. So, it seetlike the price estimates are
likely to be heterogeneous with both methods, &l visual impression from
figure 11 clearly is that the problem is smallerBhEP than for TRAD.
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Result 8 The variance of the cost estimates is heterogensbes estimated with
BLEP but not when estimated with TRAD.

Figure 12 shows the sample variance of the fir§l #de cost estimates with
TRAD and BLEP. The first impression is that thesdeiss difference between the
methods than was the case for the price estimates.variances of the TRAD
estimates are, as expected due to the data gemena¢ithod, dispersed around 36.
The variances of the BLEP estimates seem to bergignemaller, as previously
discussed, and more dispersed, supporting the hggist A lot of the points in
the figure coincide. These are trade costs forettanks that are not used regard-
less of cost, so the observed value need not béfiethdavith either method in
order to reach consistency.

50 T T T T T T T 1 TRAD
+
45 | x — BLEP «
o * . * + X
40 . < x x Ko+ -
X X7 x + &
o T i % KX RGN R X e x B M
O * +’X t‘ *‘v‘“ X Xa( WX e * K *,.‘t & 2
c 35 X *% *)f* *X t("*', # :’ *‘w *‘;4.5** £ 4 X K * 4
© f.* * x X * e o+ X %*{&j o oxx
% 30 Ky * x x » x
| x ¥ -
> X * X X x M
8 x % x x x
- x X X —
25 XX x x x % XX x: x X
x x "
20 * v » XS
x X
15 | | | | | | | | |

20 40 60 80 100 120 140 160 180 200
Estimated transport cost items

Figure 12. Variance of estimates of individual gaasts.

The tests for heterogeneity detect clear differermmdween the TRAD and the
BLEP estimates: The Bartlett's statistic for thepbthesis “the variances of all
cost estimates in each model are not equal,” wighrtull hypothesis “all vari-
ances in each model are equal” fully supports thpothesis. The null hypothesis
is rejected at the 99 percent significance levarily a single model of 100 mod-
els estimated with TRAD. For BLEP, the null hypdtiseis rejected in all 100
models on the 99 percent level.

To double check, the Levene’s test was performsal falr trade cost estimates
with results identical to those of the Bartlettestt (at the 99 percent level). The
null hypothesis is rejected in one out of 100 medet TRAD at the 99 percent
level, whereas for BLEP, the Levene’s test rejélaes hypothesis in all models.
The result thus seems to be firmly corroborated.
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6. Discussion and extensions

We conclude that the traditional way of calibratanransportation model is inef-
ficient. With the error model studied here, BLERimore efficient estimator than
TRAD of prices as well as trade costs. paces BLEP estimates havamaller
biasesas well asmaller varianceshan TRAD. With both methods, the variances
of the price estimates depend on the true parameten when the additive errors
come from the same distribution (heterogeneousnaes). In other words, also
the variances of prices are estimated with biasésih methods.

For trade coststhe BLEP estimates are biased whereas the TRADa&ss
are not. However, the biases of the BLEP estimatesmore than compensated
for by lower average variances, obtaining a smatlean squared error. Variances
of trade cost estimates are heterogeneous if astimaith BLEP but not with
TRAD.

The BLEP performs better than TRAD in almost aflaijplines. Are there no
drawbacks? Clearly, one drawback is that BLPPsimetal are difficult to solve.
However, with increasing computing capacity anddbeelopment of new solver
software, that argument is losing its strength. Aodthe incumbent problem—
the transport model—existing techniques are ablaatalle the difficulties.

Hitherto we only considered the estimation of patars in the classical
transportation model. The proposed techniques aaih mesults apply equally
well to linear programs and linearly constraineddyatic programs.

The extremum estimation of parameters of a mathealatptimization model
cangenerallybe formulated as a bilevel programming problemenshthe upper
level problem is to select the parameters of thénopation model so that the
parameters and the solution of the model minimiraesestimation criterion. The
inner problem is to solve the optimization modedttts to be estimated, treating
the parameters coming from the upper level as gigatting up the estimation
this way, the parameters are consistently estimatéie sense that the estimating
equations are fully equivalent to those in thelfgimulation model.

In all linear programs the solution of the inner problem will be at aubdary
of the constraint region and the solution corresigoice, i.e. the implicit function
that returns a set of solutions (possibly empty)dach parameter value, will not
be continuously differentiable except in trivialsea. This is reflected in for ex-
ample the stepwise supply response to changingiit linear supply models,
and in the switching of trade flows between différdestinations in the model
studied in this text. In such cases, bilevel progréng techniques as exemplified
by the ones employed here aeguiredin order to find a solution to the bilevel
estimation problem at least close to the globalnmyin. Neither conventional
least squares estimation techniques nor gradiesgdoaumerical optimization is
feasible due to the discontinuous derivatives efdblution correspondence.
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The estimation of parameters of a linear programalao be put in terms of
estimation of parameters of a linear complememntatioblem, LCP. An LCP is a
system of linear equalities and inequalities, whbeeinequalities are linked via
complementary slackness conditions. The systenguditéons (3-7) is an instance
of LCP. We conjecture that the solution method #mal analysis of estimator
properties applies equally well to the whole clas&CPs, because it only refers
to linearity of equations and the existence of clemgntary slackness conditions.
In particular, this class includes first order cibioths of linearly constrained
guadratic programsin appendix 2.1 we give a definition of a lineamplemen-
tarity problem and prove that the first order coiodis of a linear or quadratic
program is an LCP, as claimed above.

The approach described in this chapter would treusdeful also for estimat-
ing parameters in such problems. A specific instahat attracted much attention
in the last ten years is the quadratic PMP mod#ipduced to the wider commu-
nity of modellers by Howitt (1995). Note that withconvex quadratic program,
an inner solution is possible, or, in the casePPnodels, even likely. We may
thus expect less problems with “switching completagnslackness constraints”
in such models than in linear models. Indeed, Heclead Wolff (2003) perform
such an estimation and do not report any numepoalblems. In a subsequent
chapter (chapter five), we estimate parameters lofear inequality constrained
guadratic model, where we are ableatpriori determine the status of the single
complementary slackness condition, and thus matmageoid using bilevel solu-
tion techniques altogether.
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Appendix 2.1. Linear complementarity problems

Definition: Linear Complementarity Problem (LCP)
Let M be an § x n) matrix andg, zandw (n x 1) vectors. £,w) is said to solve
the LCPM,q) if

w-Mz=q
w=0,z=0
wz=0

The necessary first order conditions of linear aphdratic programming
problems can be transformed into LCPs.

Theorem: Quadratic programming and LCP

Consider the quadratic program (QP)

mincx + %X'DX

subjectto Ax=Db

x=0

x solves the QP iff there exist a vector of dualiealy and slack vectors andv
such tha X , ! solve the LC D -A , ¢
yl|v A O -b

Proof: (Murty, 1997) The Kuhn-Tucker conditions of the @

-A'y+c' +Dx=0
AXx-b=0

x20,y=0
(c'=A'y)x=0,(Ax=-b)'y=0

wherey is the vector of dual values connected to theuaéties. Introducing the
(non-negative) slack variablas=—-A'y +c'+ Dx and v=Ax —b and rearrang-
ing gives
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which is an LCP according to the definition. O

If the matrixD is a matrix of zeros, then the problem is an L the first or-
der conditions are still an LCP. Note that in orteestimate the parameters of
the QP, we would in the most common cases likedtbthe second order condi-
tion thatD be a positive (semi-)definite matrix.
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Appendix 2.2. GAMS program for generation of numercal results

$ontext
generateSample.gms
GAMS code for implementing the bilevel estimati
plus some alternative solution algorithms. Note
also included in contrast to paper, but with nu
one (the set t contains one element), equivalen
Progress feedback works only when run from DOS
window to improve speed considerably, as screen
neccesary. Several solution approaches are incl
In the chapter, “A1” corresponds to a6 below, “
and the “traditional method” is a8 below.

Torbjoern Jansson
LEI, The Hague, NL
$offtext
Sofflisting

* Temporary directory: set to a fast local drive
$setglobal tempdir CATEMP

* Create new set of random numbers?
* execseed=1+gsecond(jnow);

scalar saveGDX "Set to 1 to save results for analys

set m Number of models to generate /m1*m10/;
set n Number of estimation attempts /n1*n10/;

set a Solution approaches implemented/
a0 Not a solution method just the raw data saved
al Direct solution bound to fail
a2 Perpendicular starting point working well in
a3 Global optimisation with Baron as NLP
a4 Global optimisation with Baron as MINLP
a5 Simpler but not better own method
a6 Facchinei et al or NLPEC solver smooth approx
a7 Yetanother enumeration method not working
a8 Traditional method not using price observatio
a9 Penalty function iterative approximation as i
al0 Best of a6 and a9
l;

set aon(a) Solution approaches to test /a6,a8,a9,al
alias(aon,aon?2);

* Declarations for the economic model (the inner pr

seti Regions /i1*i10/;
alias(i,j,kii,jj);

set t Periods /t1*1/,
alias(t,t1,t2);

set tnext(t,t1);
tnext(t,t1) $ (ord(tl) = (ord(t)+1))
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on program of chapter 2,
that storage costs are
mber of periods equal to
ce is obtained.

prompt. Minimize DOS
updating becomes un-
uded below (al1-a10).
A2" corresponds to a9,

eSample.gms" /1/,

symmetric case

imation

ns
n NLPEC solver

of;

oblem)

= yes;



tnext(t,t1) $ ((ord(t1) = 1) and (ord(t) = card(t

set im(i) Regions with market balance (one is dropp
im(i) = yes$(not sameas(i,"i1");
*im(i) = yes;

set AD(i,j) Set of admissible transport flows;
AD(i,)) $ (not sameas(i,j)) = yes;

parameter c(i,j) Observed (true) transport costs;
parameter so(i) Observed (true) storage costs;
parameter p(t,i) Observed prices;
parameter e(t,i) Excess demand;

scalar fp Fix price that shifts (the observed) pric
scalar mu Smoothing parameter of relaxation

scalar w1l Weight for transport cost in estimation /
scalar w2 Weight for storage cost in estimation /
scalar w3 Weight for prices in estimation /

* ¥ Declarations belonging to the models ***

free variables
pe(ti) Estimated price of region i
z Free objective variable
7z Another free objective variable
zpen  Penalty function value;

positive variables
X(ti,j) Transport stream fromitoj
st(t,i) Storage
ce(ij) Estimated transport cost
se(i) Estimated storage cost
pi(t,i,j) Dual value of lower bound on x
ro(t,) Dual value of lower bound on st;

binary variables
bt(t,i,j) Is there a trade flow
bs(t,i) Is there storage;

equations
F Objective function definition
h(tj) Market balance i
dx(t,i,j) First order conditions for optimal tr
ds(t,i) First order conditions for optimal st
cx  Complementarity restriction
cs
pen  Penalty function for complementary sl
FPen  Objective function penalty term

*  Binary tree for Baron
bdx(t,ij) Alternative foc tp
bds(t,i) Alternative foc st
bex(tij)  Alternateve cmp tp
bes(ti)  Alternateve cmp st

DUM Dummy

) = yes;
ed);

e system /120/;
10f;

S

ansportation
orage

ackness
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TPC  Transport cost;

* Weighted least squares deviation

F . z=E=
* Squared deviations of costs from
*

Symmetry ==> only upper triangle

wl*sum(AD(i,j) $ (ord(i) It ord(j)), sq

* Squared deviations of prices to
+w3*sum((ti), sar(pe(t.i) - p(t.i)))
* Squared deviations of storage co

+ w2*sum(i, sqr(se(i) - so(i)));
* Penalty function approach

Pen .. zpen =e= mu*sum((t,i,j) $ AD(i,j), pi(t,i,j
+ mu*sum((t,i) , ro(t,i)

FPen .. zz =e=z + zpen,
* Market balance

h(tim) .. sum(AD(im,j), X(t,j,im)-x(t,im,})) -
+ sum(tnext(t1,t), st(tl,im)) =E=e(t,

* First order condition for transport problem
dx(t,ij) $ AD(G,) .. (ce(,j) $ (ord(i) It ord(
+ce(j,i) $ (ord(i) gt ord(
+ pe(ti) - pe(t)) =E= pi(t
ds(t,i) .. se(i) - sum(tnext(t,t1), pe(tl,)) + pe

* Complementary slackness condition for transport

cx (ti,) $ AD()) .. pitij)* x(ti)) =L=
cs (ti) .. ro(ti) * st(t,i) =L.= mu;

* BARONS binary first order condition for transpo

bdx(t,i,j) $ AD(i,j) .. pi(ti,) == pi.up(t,i,
bds(t,i) .. ro(ti) ==ro.up(t,i)

bex (4i) $ AD() .. x(4i)) == x.up(t,i))
bes (t,i) .. St(ti) =l=stup(t,)

DUM ..z == 10;
* Transport cost minimisation

TPC .. z =E= sum((t,i,))BAD(i,)), x(t,i,j))*(ce.l(i,
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observations.
less diagonal

r(ce(ij) - c(i)

observations.

sts from observations

) * X(Li))
* st(t,i));

st(t,im)
im);

D)

1)

NH)

(t,i) =E=ro(t,i);
problem

mu;

rt problem

) * (1-bt(t,i,)));
* (1-bs(t,i));

* bt(t,i,j);
* bs(t,1);

)$ (ord(i) It ord(j))



+ce.l(j,
+ sum((t,i), st(t,iy*se.l(i));

model EstimNLP NLP formulation of MPEC  /F,h,dx
model EstimPEN Penalty formulation of MPEC /F,h,dx
model TPmin  Transportation model [TPC,h
model EstimPre Relaxed version of MPEC  /F,h,dx
model BaronNLP Binary formulation of MPEC /F,h,dx
model DUMMY /DUMY/,

EstimNLP.limcol =0;
EstimPEN.limcol =0;
TPmin.limcol =0;

TPminlimrow  =0;
TPmin.solprint =
EstimNLP.solprint
EstimPEN.solprint

2
EstimPRE.solprint =

2;
2;
2;

EstimPRE.solvelink = 2;
EstimNLP.solvelink = 2;
EstimPEN.solvelink = 2;
TPmin.solvelink =2;

EstimNLP.workspace = 100;
EstimNLP.optfile =1;
EstimPEN.workspace = 100;
EstimPEN.optfile =1,

DUMMY .solprint = 2;
* Declarations of items used to save program outp

parameter ptru(m,t,i)  True price;

parameter ctru(m,i,j) True transportation cost;
parameter stru(m,i)  True storage cost;
parameter etru(m,t,i)  True excess demand;

parameter pest(m,n.t,i,a) Estimated price;
parameter cest(m,n,ij,a) Estimated transportation
parameter sest(m,n,i,a) Estimated storage cost;

parameter objes(*,m,n);

set enum /e1*e1000/,

set cenum/s,x,pi,rho/;

parameter zenum(m,n,cenum,enumy;
scalar nenum /1/,

* For the log window

scalar logcount ‘Counter for iteration log' /0/;
scalar iflog ‘Iteration log frequency' /0/;
scalar progress 'Progress fraction' [0/
file batch /%tempdird\titlebatch.bat/;
batch.lw = 0;

iflog = (card(m)*card(n))/1000;
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,cx,ds,cs/;

, ds,pen,FPen/,

/.

,ds/;
,bdx,bcx,ds,bds,bcs/;

ut

COst;



*

Bound prices to help Baron

pe.lo(t,i) = 0;
pe.up(t,i) = fp*2;

$onecho > init.gms
*

*
*

Automatically generated include file that initi
feasible point, using observations.

1) Reset all variables with bounds and equation

option kill=pe;
option kill=ce;
option kill=se;
option kill=x;
option kill=F;
option kill=h;
option kill=dx;
option kill=ds;
option kill=cx;
option kill=cs;
option kill=ro;
option kill=pi;
option kill=z;

2) Restore bounds on transport costs
ce.up(i,j) = 200 $ (AD(i,j) and (ord(j) It ord(
3) Starting point for costs is observation

ce.l(i,j) $ (AD(i,j) and (ord(i) It ord(j))) =
se.l(i) = so(i);

4) Find a corresponding feasible price vector b
solve TPmin using nlp minimising z;
pe.(ti) = fp + h.m(t,i) $ im(i);
5) Initialise the first order conditions using
piItL) $ AD(,j)

=ce.l(i,j) $ (ord(j) It ord(j))

+ ce.l(j,i) $ (ord(i) gt ord(j)) + pe.l(t,i
ro.|(t,i) = se.l(i) - sum(tnext(t,t1), pe.l(t1,

$offecho

$onechov > savesol.gms

* Automatically generated batinclude that saves the

objes("%1",m,n) = z.I;
pest(m,n,t,i,"%1") = pe.l(t,);
cest(m,n,i,j,"%1") = ce.l(i,j);
sest(m,n,i,"%1") =se.l(i);
$offecho

*

alizes problem at a

s of importance

)

c(i.);

y solving TP problem

duals of TP problem

) - pe.l(t);
i)) + pe.l(t,);

outcome of a solution



* Generate m models
*

loop(m,
* START: Generate true model with prices consiste

c(i,j) $ (ord(i) It ord(j)) = uniform(20,100);
c(i,j) $ (ord(i) gt ord(})) = c(j,);
so(i) = uniform(3,10);
e(t,) =uniform(-10,10);
* Make sure solution exists by adjusting excess d

e("t1","i1") = -sum((t,i) $ (not ( sameas(t,
and sameas(i,

cel(ij) = c(,);
sel(i) =so();

solve TPmin using nlp minimising z;
p(t,i) = fp + h.m(t,i) $ im(i);

ptru(m,t,i) = p(t,i);

ctru(m,ij) = c(i);

stru(m,i) = so());
etru(m,t,i) = e(t);

*  Add error terms to the model n times and es

loop(n,
*  Add error terms to costs and prices, trunca

c(i,j) $ (ord(i) It ord(j)) = ctru(m,i,j)
+ min(19, max(-
c(i,)) $ (ord(i) gt ord(j)) = c(j,i);

p(t,i) = ptru(m,t,i) + min(19, ma
so(i) = max(stru(m,i) + normal

pest(m,n,ti,"a0") = p(ti);
cest(m,n,ij,"a0" = c(i,));
sest(m,n,i,"a0") = so(l);

*  Show progress in title bar of DOS window

logcount=logcount-1;

if(logcount le 0O,
logcount=iflog;
progress=100-100*((ord(m)-1)*card(n)+or
putclose batch "title M: ",m.tl,", ",pr
execute "%tempdirdol\titiebatch”;

);
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emand on one point
Iltlll)
i), e(t);

te to avoid negatives

19,normal(0,6)));

x(-19,normal(0,6)));
(0,(3/2)), 0.2);

d(n)-1)/card(n)/card(m);
ogress:0:1,"%% left";



if(aon("al"),
$include "init.gms"
* a) Solve using NLP from the starting po int just obtained
solve EstimNLP using NLP minimizing z;

$batinclude "savesol.gms" al

);
if(@aon("a2"),
$include "init.gms"
* a) Solve the relaxed MPEC
solve EstimPre using NLP minimizing z;
* b) Solve TP-problem again
solve TPmin using nlp minimizing z;
pe.l(t,i) = fp + h.m(t,i) $ im(i);

pil(tij) $ AD(,j)
=ce.l(i,j) $ (ord(i) It ord(j))

+ ce.l(j,1) $ (ord(i) gt ord(j)) + pe.l(t,i) - pe.l(t,));
ro.l(t,i) = se.l(i) - sum(tnext(t,t1), pe.l(t1,i) + pe.l(t,i);
* ¢) Solve the full MPEC from this new point using NLP
mu =0;

solve EstimNLP using NLP minimising z;

$batinclude "savesol.gms" a2

);
o approach 3 ————— e
if(@on("a3"),
* Comment out to let Baron start from pre vious solution
$include "init.gms"
* Extra: bounds on all variables, just fo r the Baron..
se.up(i) = 100*smax(t,pe.up(t,i)-pe Jo(t,);
pi.up(t,i,j) = ce.up(i) + pe.up(t,i)- pe.lo(t,i);
ro.up(ti) =se.up(i) + pe.up(t,)- pe.lo(t,i);
x.up(t,i,j) =sum((tl,k), ABS(e(t1,k)) );
stup(t)) =sum((tl,), ABS(e(tl,)) )
* a) Solve using Baron from the starting poi nt just generated

option NLP=Baron;
solve EstimNLP using NLP minimizing z;
option NLP=Conopt;
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$batinclude "savesol.gms" a3
);
if(aon("a4"),

* Comment out to let Baron start from pre
$include "init.gms"

* Extra: bounds on all variables, just fo
se.up(i) = 100*smax(t,pe.up(t,i)-pe
pi.up(t,i,j) = ce.up(i,) + pe.up(t,i)-
ro.up(ti) =se.up(i) + pe.up(t,)-
x.up(t,i)) =sum((tl,k), ABS(e(t1,k))
stup(t,i) =sum((tl,)), ABS(e(t1,))

* Initialise binary variables to feasible

btitij)=1%$ xI(tij));
bs.(ti) =13$stlt,);

* a) Solve using Baron MINLP from the starti
option MINLP=Baron;
BaronNLP.solprint = 2;
solve BaronNLP using MINLP minimizing z
BaronNLP.solprint = 2;

$hatinclude "savesol.gms" a4

if(@aon("a5"),
$include "init.gms"
* a) Solve the MPEC using NLP from the start
solve EstimNLP using NLP minimizing z;

$batinclude "savesol.gms" ab

);
if(@aon("a6"),
$include "init.gms"
* a) Solve problem without complementarity ¢
solve EstimPre using NLP minimizing z;
* b) lterate over increasingly better approx
mu=1;

while(mu,
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* b1) Make feasible
solve TPmin using nlp minimizing z;
pe.l(ti) = fp + h.m(t,i)) $ im(i);
pi.l(tij) $ AD(,j)

=ce.l(i,j) $ (ord(i) It ord(j) )
+cell(j,) $ (ord(i) gt ord(j) ) + pe.l(ti)-pe.l(t,);
ro.l(t,)) = se.l(i) -sum(tnext(t,t1 ),pe.l(td,i))+pe.l(L);
* b2) Solve approximation

mu $ (mu<0.001) = 0;

solve EstimNLP using NLP minimising Z;
mu = mu/2;
)i
$batinclude "savesol.gms" a6
e approach 7 - e
if(@on("a7"),

$include "init.gms"

* Force one column after another into the basis
nenum=1;

* a) Spatial price equilibrium

loop((t2,ii,jj) $ AD(ii,jj),
pi.up(t2,iijj) = O;
solve EstimPRE using nlp minimizing Z;
solve TPmin using nlp minimizing z;
pe.l(t,)) = fp + h.m(t,i) $ im(i);

* Initialise the first order conditio n as well

pil(tij) $ AD(i,))
= ce.l(i) $ (ord(i) It ord(j) )
+ ce.l(j,)) $ (ord(i) gt ord()) ) + pe.(ti-pe.lt,);

ro.I(t,i)) = se.l(i) -sum(tnext(t,t1 ),pe.l(tL,i))+pe.l(t,i);
solve EstimNLP using nlp minimizing Z;
pi.up(t2,ii,jj) = inf;
zenum(m,n,"pi",enum) $ (ord(enum)=n enum) =2z.;
nenum=nenum-+1;
);
* b) Intertemporal price equilibrium
loop(ii,
ro.up(t2,ii) = 0;
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solve EstimPRE using nlp minimizing
solve TPmin using nlp minimizing z;
pe.l(t,i) = fp + h.m(t,i) $ im(i);

* Initialise the first order conditio
pil(tij) $ AD(,j)
=ce.l(i,j) $ (ord(i) It ord(j)
+cell(j,)) $ (ord(j) gt ord(j)

ro.I(t,i) = se.l(i) -sum(tnext(t,t1
solve EstimNLP using nlp minimizing
ro.up(t2,ii) = inf;
zenum(m,n,"rho",enum) $ (ord(enum)=
nenum=nenum-+1;

)i

z.l = smin((cenum,enum)$( zenum(m,n,

an
zenum(m,n,cenum

$batinclude "savesol.gms" a7

if(aon("a8"),

$include "init.gms"

zl=
sum(AD(i,j) $ (ord(i) It ord(j)), sq
+ sum((t,), sq
+ sum(i, sq
$batinclude "savesol.gms" a8
);
S e approach 9 -----------

A penalty function approach,
*  with ordinary complementary slackness times

ifl@on("a9"),
$include "init.gms"
* b) Solve problem without complementarity ¢
solve EstimPre using NLP minimizing z;
* C) lterate over increasingly better approx

mu=0.1;
zpen.l = 100;

while(mu<1001,
* d) Solve approximation. Stop if comp. g

mu $ ((mu > 1000) or (zpen.l/mu It
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; + pe.l(t,))-pe.l(t,));
),pe.l(t1,)+pe.l(t,);
7

’

nenum) = z.l;

cenum,enum)
d (ord(enum) It nenum)),
,enum));

r(ce.I(j,i)-c(i,j)))*wi

r(pe.l(ti)-p(tn)yw3
r(se.l(i) -sof(i))) *w2;

mu in objective

onstraints

imations

ap<0.01
0.01)) = 100000;



solve EstimPEN using NLP minimising

mu=mu*2;

$batinclude "savesol.gms" a9

)

———————————————————— approach 10 -

a6 most often produces the best solution, b
it is much worse than a9 (penalty function)
was the best and use that one.

* ok * X

if(aon("a10"),

if((aon("a6") and aon("a9"),

if((objes("a9",m,n) It objes("a6",m
objes("al10",m,n) = objes("a9",m
pest(m,n,t,i,"al0") = pest(m,n,
cest(m,n,i,j,"al0") = cest(m,n,
sest(m,n,i,"al0") =sest(m,n,

else
objes("al10",m,n) = objes("a6",m
pest(m,n,t,i,"al0") = pest(m,n,
cest(m,n,i,j,"al0") = cest(m,n,
sest(m,n,i,"al0") = sest(m,n,

parameter objesl;

set objitems /pre2,dds,nds,ddx,ndx/;
objes1(m,n,a) = objes(a,m,n);
objes1(m,n,objitems) = objes(objitems,m,n);
display "All objective values transposed for readab
if(@on("a7"), display zenum);

* Rate solution approaches. Find the best solution,
* the approach that found it

scalar bestz /0/;

parameter rating(*);

rating(aon) $ (not sameas(aon,"a0"))

= sum((m,n) $ (objes1(m,n,aon) It (smin(aon2 $ (not
objes1(m,n,aon2)) + 0.0001)),1);

rating("total") = card(n)*card(m);
display rating;

option kill=rating;
option kill=objes;
option kill=objes1;

if(saveGDX,
execute_unload "smp.gdx" m nitaaon ptru ctru st
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t,i,"a9");
ij,"a9");
i,'a9");

n);
t,i,"a6");
i,j,"a6");
i,"a6");

ility:", objes1;

and give one point to

sameas(aon2,"a0"),
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Appendix 2.3. GAMS program for analysing numericalresults

$ontext
analyseSample.gms
File for analysing results of estimations carri
generateSample.gms and stored in GDX-file smp.g

Torbjorn Jansson
LEI, The Hague, NL
Pofftext
$offlisting
$set TRAD a8
$set BLEP a10
$set OBS a0

file con /con/;

setm Models generated ;

setn Estimation attempts per model;

seta Solution approaches available in total;

seti Regions;

sett Periods;

set aon(a) Solution approaches actually implemented

alias(i,j,k);
alias(t,t1);

putclose con/"... Reading sets ..." /,

$gdxin "smp.gdx"
Sloadmnaitaon

parameter ptru(m,t,i)  True price;

parameter ctru(m,i,j) True transportation cost;
parameter stru(m,i)  True storage cost;
parameter etru(m,t,i)  True excess demand;

parameter pest(m,n.t,i,a) Estimated price;
parameter cest(m,n,ij,a) Estimated transportation
parameter sest(m,n,i,a) Estimated storage cost;

variable VDUM,; equation EDUM; EDUM .. VDUM =e= 10;
model MDUM 'Dummy model clears memory for some odd
MDUM.solprint = 2;

putclose con/"... Reading data ..." /,

$load ptru ctru stru etru pest cest sest

$gdxin

scalar count /0/;

scalar np Number of prices estimated,;

scalar nc Number of transport costs estimated,;
scalar ns Number of storage costs estimated;
scalar nn Number of iterations per model;

np = card(i)*card(t);
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ed out with program
dx.

COst;

reason' [EDUM/;



nc = card(i)*(card(i)-1)/2;
ns = card(i);
nn = card(n);

parameter iord(i) Ordering of the i set;
parameter nord(n) Ordering of the n set;

count=0;

loop(i, count=count+1; iord(i)=count);
count=0;

loop(n, count=count+1; nord(n)=count);

set AD(i,j) Admissible trade flows;
AD(i,j) = yes $ (iord(j) gt iord(j));

scalar son Storage on /0/;
son = card(t)-1;

set obs/o1*010000/,
set uobs(obs);

* Some basic reporting to list file

option count:0;

count = card(m);

display "Number of true models in sample:",count;

count = card(n);

display "Number of solutions per model:",count;

count = card(t);

display "Number of time periods in storage model (1

count = card(j);

display "Number of regions in model",count;

count = sum((m,n,i,j) $ (AD(i,j) and (1 = cest(m,n,

display "Number of truncated cost items:", count;

count = sum((m,n,t,i) $ ((139 = pest(m,nt,i,"%OBS%
or (101 = pest(m,n,t,i,"%0BS%

display "Number of truncated price items:", count;

*

* Declare statistical measures to compute
*

set parvec /preg Regional price, tpc Transport cost
set meth /TRAD Traditional method , BLEP Bilevel Es

parameter pmean(m,ti,a) Sample mean;
parameter cmean(m,i,j,a);
parameter smean(m,i,a);

parameter psvar(m,t,i,a) Sample variance;
parameter csvar(m,i,j,a);
parameter ssvar(m,i,a);

parameter ptval(m,ti,a) T-values for test estim

parameter ctval(m,i,j,a);
parameter stval(m,i,a);
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=no storage)",count;

ij,"%0BS%")), 1);

ML)

, Stc Storage cost/;
timation Program/;

ated equals true;



set alpha 'Levels of significanse' /alpha950,alpha9
parameter pcrit(alpha) 'Critical test statistic val
alpha950 0.05
alpha990 0.01
alpha999 0.001/,

parameter tsummary(a,*);

set mse Items used for analysis of mean squared err
msetot Mean squared error
msebias Bias
msevar Variance /;

set totmse Items used for analysis of mean squared
MMSE Mean MSE
MSBIAS Mean Squared Bias
MVAR Mean (pooled) Variance /

parameter pmse(m,t,i,a,mse) Mean squared error per
parameter cmse(m,i,j,a,mse);
parameter smse(m,i,a,mse);

parameter psrmse(*,a,totmse) Sum of root mean sq
parameter csrmse(*,a,totmse);
parameter ssrmse(*,a,totmse);

option pmse:3:3:2;
option cmse:3:3:2;
option smse:3:2:2;

option psrmse:3:1:2;
option csrmse:3:1:2;
option ssrmse:3:1:2;

parameter bartlett(m,a,parvec) Bartlett statistic e
parameter levene(m,a,parvec) Levene statistic equ

option bartlett:2:1:2;
option levene:2:1:2;

* [tems for GDX-rank

parameter pct(*) /median 50.0/,
parameter someSort1(*);
parameter someSort2(*);
parameter someRank(*);

*

* Compute mean and sample variance of estimated p
*

putclose con/"... computing means ..." /;
pmean(m,t,i,aon) = sum(n, pest(m,n,t,i,ao
cmean(m,i,j,aon) $ AD(i,j) = sum(n, cest(m,n,ij,ao
smean(m,i,aon) $son =sum(n, sest(m,n,i,aon)

putclose con/"... computing variances ..." /;
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ue'/
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item;

uared error;

quality of variances;
ality of variances;

n))/card(n);
n))/card(n);
) /card(n);



psvar(m,t,i,aon) = sum(n, sgr(pest(m,nt,

- pmean(mt
csvar(m,i,j,aon) $ AD(i,j) = sum(n, sgr(cest(m,n,,
- cmean(m,i
ssvar(m,i,aon) $son =sum(n, sgr(sest(m,n,i,
- smean(m,i

putclose con/"... computing t-values ..." /;

ptval(m,t,i,aon) = (ptru(m,t,i)-pmean(m,
Isqrt(psvar(m,t,i,aon

ctval(m,i,j,aon) $ AD(i,)) = (ctru(m,i,j)-cmean(m,
/sgrt(csvar(m,i,j,aon

stval(m,i,aon) $son = (stru(m,i) -smean(m,
/sqrt(ssvar(m,i,aon)/

*

* Compute mean squared error and bias of estimato
*

putclose con/"... computing MSE ..." /;
pmse(m,t,i,aon,"msebias") =pmean(m,t,i,a
cmse(m,ij,aon,"msebias") $ AD(i,j) = cmean(m,i,j,a
smse(m,i,aon,"msebias”) $son =smean(m,i,aon

option kill = ptru; option kill = ctru;

pmse(m,t,i,aon,"'msevar") =psvar(m;,i,a
cmse(m,i,j,aon,"msevar’) $ AD(i,j) = csvar(m,i,j,a
smse(m,i,aon,"msevar") $son  =ssvar(m,i,aon

option kill = psvar; option kill = csvar; option ki

pmse(m,t,i,aon,"'msetot") = pmse(m,t,i,ao
+ sgr(pmse(m,t,
cmse(m,i,j,aon,"msetot"”) $ AD(i,j) =cmse(m,i,j,a0
+ sgr(cmse(m,i,
smse(m,i,aon,"msetot) $son  =smse(m,i,aon,
+ sgr(smse(m,i,

putclose con/"... computing sum of root(MSE) ..."

psrmse(m,aon,"mshias") = sum((t,i), sgr(pmse(m,t,i,
[(card(iy*card(t));

csrmse(m,aon,"msbias”) = sum((i,j)$ AD(i,j),sgr(cms
/(card(i)*(card(i)-1)/2);

ssrmse(m,aon,"'msbias") = sum(i$ son, sgr(smse(m,i,a
[card(i);;

* Compute pooled variance
psrmse(m,aon,"mvar”) = sum((t,i), pmse(m,
I(card(i)* card(t));

csrmse(m,aon,"mvar”) = sum((i,j) $ AD(,j), cmse(m,
/(card(i)*(card(i)-1)/2);
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J,aon)))/(card(n)-1);

j,aon
J,aon)))/(card(n)-1);
aon)
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)card(n));
I,j,aon))
Ycard(n));
i,aon))
card(n));

on)-ptru(m,t,i);
on)-ctru(m,i,j);
) -stru(m,i);

ony;
on);

Il = ssvar;
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n,"msevar")
j,aon,"msebias")) ;
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I

aon,"msebias")))

e(m,ij,aon,"'msebias™)))

on,"msebias™))

t,i,aon,"msevar"))

i,j,aon,"msevar"))



ssrmse(m,aon,"mvar’) =sum(i $son, smse(m,
[card(i);

* Compute sum of Root Mean Squared Error, SRMSE

psrmse(m,aon,"mmse") = sum((t,i), pmse(m
/(card(i)* card(t));

csrmse(m,aon,"'mmse") = sum((i,j) $ AD(i,j), cmse(m
/(card(i)*(card(i)-1)/2);

ssrmse(m,aon,"mmse”) =sum(i $son, smse(m
[card(i);

* Average over all models

psrmse(“tot",aon,totmse) = sum(m, psrmse(m,aon,to
csrmse("tot",aon,totmse) = sum(m, csrmse(m,aon,to
ssrmse(“tot",aon,totmse) = sum(m, ssrmse(m,aon,to

*

* Declare some parameters to hold values to plot

*

parameter plotpmse(m,meth) Plot of SRMSE for price
parameter plotcmse(m,meth) Plot of SRMSE for costs

parameter plotpvar(m,meth) Plot of pooled price
parameter plotcvar(m,meth) Plot of pooled price

parameter plotpbias(m,meth) Plot of price ABIAS
parameter plotcbias(m,meth) Plot of cost ABIAS f

parameter plotphomo(obs,*) Plot of individual pric
parameter plotchomo(obs,*) Plot of individual cost

plotpmse(m,"TRAD") = psrmse(m, "% TRAD%","mmse");
plotcmse(m, " TRAD") = csrmse(m, "% TRAD%","mmse");
plotpmse(m,"BLEP") = psrmse(m,"%BLEP%","mmse");
plotcmse(m,"BLEP") = csrmse(m,"%BLEP%","mmse");

plotpvar(m," TRAD") = psrmse(m, "% TRAD%","mvar");
plotcvar(m,"TRAD") = csrmse(m," % TRAD%","mvar");
plotpvar(m,"BLEP") = psrmse(m,"%BLEP%","mvar");
plotcvar(m,"BLEP") = csrmse(m,"%BLEP%","mvar");

plotpbias(m,"TRAD") = psrmse(m, "% TRAD%","msbias");
plotcbias(m," TRAD") = csrmse(m," % TRAD%","msbias");

plotpbias(m,"BLEP") = psrmse(m,"%BLEP%","msbias");
plotcbias(m,"BLEP") = csrmse(m,"%BLEP%","'msbias");

*

* Analysis of biases
*

putclose con/"... Price biases ..." /;

* Compute descriptive statistics for biases
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i,aon,"msevar"))

.ti,aon,"msetot"))
J1,j,aon,"msetot")

J,aon,"msetot"))

s for Poster;
for Poster;

variance for Poster;
variance for Poster;

for Poster;
or Poster;

e variance estimates;
variance estimates;



parameter biasstat(*,a,parvec) Sample mean and vari

* ... average bias ...

biasstat("mean"”,aon,"preg") =
sum((m,t,i), pmse(m,t,i,aon,"msebias"))
/(card(m)*card(i)*card(t));

biasstat("mean"”,aon,"tpc") =
sum((m,i,j)$AD(,j), cmse(m,i,j,aon,"msebias"))
[(card(m)*card(iy*(card(i)-1)/2);

* ... sum of absolute biases ...
biasstat("SABIAS",aon,"preg") =
sum((m,t,i), abs(pmse(m,t,i,aon,"msebias")));

biasstat("SABIAS",aon,"tpc") =
sum((m,i,j)$AD(i,j), abs(cmse(m,i,j,aon,"'msebia

* ... variance of biases ...
biasstat("variance",aon,"preg") =
sum((m,t,i), sgr(pmse(m,t,i,aon,"'msebias")
-biasstat("mean”,aon,"preg")))
[(card(m)*card(i)*card(t)-1);

biasstat("variance",aon,"tpc") =
sum((m,i,j))$AD(i,j), sgr(cmse(m,i,j,aon,"msebia
-biasstat("mean”,aon,"t
[(card(m)*card(i)*(card(i)-1)/2-1);

putclose con/"... computing medians ..." /,
* ... median bias over k times m observations for

count = 0;
loop(obs$sameas(obs,"01"),
loop((m,t,i),
someSortl(obs+count) = pmse(m,t,i,"% TRAD%",
someSort2(obs+count) = pmse(m,t,i,"%BLEP%",
count=count+1;

Liobs(obs) =yes $ (ord(obs) It count);

pct("median”) = 50.0;

$libinclude rank.gms someSort1 uobs someRank pct
biasstat("median”,"%TRAD%","preg") = pct("median”);
pct("median”) = 50.0;

$libinclude rank.gms someSort2 uobs someRank pct
biasstat("median”,"%BLEP%","preg") =pct("median");

* ... median bias over k times m observations for

count =0
loop(obs$sameas(obs,"01"),
loop((m,i,)$AD(i,)),
someSortl(obs+count) = cmse(m,i,j,"% TRAD%",
someSort2(obs+count) = cmse(m,i,,"%BLEP%",
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count=count+1,

)1
Liobs(obs) =yes $ (ord(obs) It count);

pct("median”) = 50.0;

$libinclude rank.gms someSort1 uobs someRank pct
biasstat("median”,"%TRAD%","tpc") = pct("median™);
pct("median”) = 50.0;

$libinclude rank.gms someSort2 uobs someRank pct
biasstat("median","%BLEP%","tpc") =pct("median");

display biasstat;

* Summarize t-statistics
putclose con/"... computing t-tests for biases ..

* Double sided test if average price differs from
* asymptotic normality of averages (Lindberg-Levy

tsummary(aon,alpha) =

sum((m,t,i) $ [2*(1-errorf(abs[ptval(m,t,i,aon)
tsummary(aon,'neg’) =

sum((m,t,i) $ (ptval(m,t,i,aon) It 0),1);

display "Number of rejections of null hypothesis fo
;tsummary;

* Test for average of cost estimates equals true

tsummary(aon,alpha) =
sum((m,i,j)$ (AD(,))
and [2*(1-errorf(abs[ctval(m,i,j,aon)]
tsummary(aon,“neg") =
sum((m,i,j) $ (AD(,j) and (ctval(m,ij,aon) |

display "Number of rejections of null hypothesis fo
, tsummary;

option kill = tsummary;

*

* Analysis of variances
*

putclose con/"... pooling variances ..." /;
parameter msestat(totmse,*,aon,parvec);

msestat(totmse,"'mean",aon,"preg") = sum(m, psrmse(m
msestat(totmse,"mean"”,aon,"tpc"”) = sum(m, csrmse(m

msestat(totmse,"variance",aon,"preg") =
sum(m, sqr(psrmse(m,aon,totmse)-msestat(totmse,
[ (card(m)-1);

msestat(totmse,"variance",aon,"tpc") =
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zero, based on
Central Limit Theorem)

1) le perit(alpha)],1);
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)) le pcrit(alpha)]),1);
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r cost estimates:"

,aon,totmse)) / card(m);
,aon,totmse)) / card(m);

"mean",aon,"preg")))



sum(m, sgr(csrmse(m,aon,totmse)-msestat(totmse,
[ (card(my)-1);

display msestat;

Tests: Variances of prices are heterogeneous f
Variances of costs are heterogeneous fo
- Plot of variances
- Bartlett test
- Levene test (if normality does not hold)

* % X Sk X X

putclose con/"... making vectors suitable for plo
* Put variances on parameter suitable for plottin

count = 0;
loop(obs$sameas(obs,"01"),
loop((m,t,i),
plotphomo(obs+count,"TRAD") = pmse(m,t,i,"%
plotphomo(obs+count,"BLEP") = pmse(m,t,i,"%
count=count+1;
)i
);

count = 0;
loop(obs$sameas(obs,"01"),
loop((m,i,)$AD(i,)),

plotchomo(obs+count," TRAD") = cmse(m,i,j,"%
plotchomo(obs+count,"BLEP") = cmse(m,i,},"%
count=count+1;

)i

);

putclose con/"... testing for equality of varianc

bartlett(m,aon,"preg") =
((card(i)*card(t)*(card(n)-1))*log(psrmse(m,aon
-sum((t,i), (card(n) - 1)*log(pmse(m,t,i,aon,"
/(1 + (L/(3*(card(i)*card(t)-1)))
* (sum((t,i), 1/(card(n) - 1))
- Y(card(i)*card(t)*(card(n)-1

bartlett(m,aon,"tpc") =
((card(i)*(card(i)-1)/2*(card(n)-1))*log(csrmse
-sum((i,j))$AD(i,)), (card(n) - 1)*log(cmse(m,
/(1 + (1/(3*(card(i)*(card(i)-1)/2-1)))
* (sum((i,))SAD(i,)), L/(card(n) - 1))
- L(card(i)*(card(i)-1

parameter plevYi(m,tj,a) The Yihat parameter i
parameter plevZij(m,n,t,i,a) The Zij parameter in t
parameter plevzZi(m,t,i,a) The Zi hat parameter i
parameter plevZ(m,a) The Z hat parameter in
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parameter clevYi(m,i,j,a) The Yihat parameter i
parameter clevZij(m,n,i,j,a) The Zij parameter in t
parameter clevZi(m,ij,a) The Zi hat parameter i
parameter clevZ(m,a) The Z hat parameter in

* Mean (1) or median (0O) for levene measure? Medi
* skew distributions. Trial show no difference.

scalar levenemean "Use mean (1) or median (0)" /1/,
plevYi(m,ti,aon) $ levenemean = pmean(m,t,i,aon
clevYi(m,i,j,aon) $ levenemean =cmean(m,ij,aon

parameter levSort(n);
parameter levRank(n);

if((not levenemean), putclose con /... computing

loop((m,aon) $ (not levenemean),
putclose con/"... medians for prices in model
loop((t.i),
pct("median”) = 50.0;
levSort(n) = pest(m,n,t,i,aon);
$libinclude rank.gms levSort n levRank pct
plevYi(m,t,i,aon) = pct("median™);

p'utclose con /"... medians for transport costs

loop((i.))$AD(.)),
pct("median”) = 50.0;
levSort(n) = cest(m,n,i,j,aon);
$libinclude rank.gms levSort n levRank pct
clevyi(m,i,j,aon) = pct("median");

)

putclose con/"... free some memory ..." /,
solve MDUM using NLP maximising VDUM,;
putclose con/"... computing Levene statistics for

plevzij(m,n,t,i,aon) = abs(pest(m,n,t,i,aon)-plevy
plevzZi(m,t,i,aon) =sum(n, plevZijim,n,t,i,aon)
plevZ(m,aon) =sum((t,i), plevZi(m,t,i,aon

putclose con/"... free some memory ..." /,

option kill = pest;

solve MDUM using NLP maximising VDUM,;
putclose con/"... computing Levene statistics for

clevzij(m,n,ijaon) = abs(cest(m,n,i,j,aon)-clevy¥
clevZi(m,ijaon) = sum(n, clevZij(m,n,ij,aon)
clevZ(m,aon) = sum((i,j)$AD(i,)), clevZi(m

putclose con/"... free some memory ..." /;
option kill = cest;

solve MDUM using NLP maximising VDUM,;
putclose con/"... finalize Levene statistics ..."
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n the levene statistic;
he levene statistic;

n the levene statistic;
the levene statistic;

an should be better for

medians ..." /);

" m.tl/;

in model ", m.tl /;

prices ..." /;
i(m,t,i,aon));
)/ nn;

) /np;

costs ..."/;
i(m,i,j,aon));
)/ nn;
Jj,aon)) / nc;



levene(m,aon,"preg") =
((np*(card(n)-1)) o
*sum((t,i), card(n)*sqr(plevZi(m,t,i,aon)-plev
/((np-1)*sum((t,i,n), sqr(plevZij(m,n,t,i,aon)-

levene(m,aon,"tpc") =
((nc*(card(n)-1))
*sum((i,j))SAD(i,j), card(n)*sqr(clevZi(m,i,j,a
I((nc-1)*sum((i,j,;n)$AD(i,j), sqr(clevZij(m,n,i
-clevZi(m,ij,

display bartlett,levene;

set homtest /bartlett,levene/;

parameter heterostats(*,alpha,parvec,aon) "Summary

table critval(parvec,alpha,homtest)
bartlett levene
preg.alpha950 16.92 1.88
preg.alpha990 21.67 2.43
tpc.alpha950 61.66 1.39
tpc.alpha990 69.96 1.61 ;

heterostats("bartlett",alpha,parvec,aon) $ (not sam
sum(m $ (bartlett(m,aon,parvec) ge critval(parve

heterostats("levene",alpha,parvec,aon) $ (not same
sum(m $ (levene(m,aon,parvec) ge critval(parvec,

display heterostats;
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Z(m,aon))))
plevzi(m,t,i,aon))));

on)-clevZ(m,aon))))
J,aon)

aon))));

of Levene and Bartlett";

eas(parvec,"stc")) =
c,alpha,"bartlett")),1);

as(parvec,"stc") =
alpha,"levene")),1);



Chapter 3  Estimating prices, excess demand and trade costs
in a spatial price equilibrium model

1. Introduction
Spatial price equilibrium (SPE) models with homogaus goods have been used
in agricultural sector analysis at least sincepthilications of Judge and Wallace
(1958) and Takayama and Judge (1964). This ch&tmncerned with an SPE
model for homogeneous primary agricultural produst®enin. The model has
twelve regions (administrative departments) andesegoods (cassava, beans,
rice, sorghum including millet, maize, yams andugidnut). For each region and
product there is data on annual supply, demandand, and there is also a table
of distances between each pair of regions. Thectbgeof the study is to estimate
the regional net supply, net trade flows, prices @ade costs.

The trade cost minimization component of the mddekach produck is put
as a linear program in standard form,

min CiX
Xy
subjectto Ax = gk Q)
X=0

wherecy is a 1x n(n-1) vector of trade costs, ann(n-1) x 1 vector of trade
flows, g is ann x 1 vector of excess demand ahis ann x n(n-1) matrix of “0”,
“1” and “-1” arranged in such a way that for tferow, there is a “1” in all col-
umns corresponding to flows into regigra “-1” in all columns corresponding to
flows out of regiori and “0” elsewhere. This is not the usual symb@jmresenta-
tion of the transportation model, though it is nesttatically equivalent. The rep-
resentation is chosen because it points at thergleagplicability of the estima-
tion method to a wider class of problems.

If a model is to be used in a positive way, itésidable that it is capable of re-
producing real world behaviour ex-post, and coneatjy we would like to inter-
pret real world observations as model solutionss Téquires that the ex-post data
satisfies the Kuhn-Tucker (KT) conditions for artiofal solution to the transpor-
tation problem. For several reasons, the KT conwiitiare likely to be violated by

8 A draft of this chapter was presented on the Embronference on Regional and Urban Model-
ing, Brussels 2006.
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ex-post data: The good may not be quite homogeneouss may arise when
observations are aggregated over time and spare, tAn be measurement errors
involved etc. Given such errors, and the chosen emodome calibra-
tion/estimation procedure is required in ordertéhie model to the ex-post data.

Traditionally, the calibration of SPE models hagsé&andled by solving the
transportation model with observed or engineeradetrcosts, subject to market
clearing constraints for given regional excess deimguantities, and using the
Lagrange multiplicators associated with the madiearing constraints to deter-
mine the regional prices (e.g. Judge and Walla6&g), Litzenberg, McCarl and
Polito (1982), Peeters (1990), Kawaguchi, Suzuld &aiser (1997) and Gua-
jardo and Elizondo (2003)). This implies that anstutbances of observed trade
costs and excess demand are accepted, and tlwairr@ttions needed to satisfy
the KT conditions are undertaken on the price osst for which only a single
observation is used (the numerator price).

Whereas this certainly may be a defensible wayroteeding in some in-
stances, it is equally easy to imagine situatiohgre there are observations of
regional prices available and the observationgaufet costs and excess demand
are associated with errors. Then the traditionat@dure described above is inef-
ficient, because the price observations are igndtes also unable of identifying
autarky regions; an observed nonzero regional exdesmand, however tiny, en-
forces a fixed price difference (equal trade ctits§ome other region.

A general approach to this type of estimation peoblis to recognize that
givena set of trade costs and regional excess demamdn{eters), trade flows
and regional price differences (variables) resutrf observing a solution of the
transportation model. Thus, the estimation prob&nhand is to select the pa-
rameters so that they, together with the solutiariables of the transportation
problem, minimize (or maximize) some estimationecion. Viewed that way, the
problem falls within the class dfilevel programs prominently exemplified by
the Stackelberg game. In terms of a leader-folloprblem, the leader is the
person conducting the estimation, the leader’s fuwsttion is the estimation crite-
rion, his decision variables the parameters of tthasportation problem. The
follower’s problem is the transportation model wiparameters given by the
leader.

In terms of a bilevel programming problem, the aiilon at hand is sometimes
(e.g. in Dempe, 1997) described as dpéimistic or weakapproach. In economic
terms that would mean that if the follower is irfielient regarding two solutions,
he chooses the one preferred by the leader. Inamettical terms it means that if
the solution of the inner problem is not a singtebut a set with several points,
the leader is allowed to choose that value fromstteof solutions of the inner
problem that minimizes the estimation criterionisTiroperty simplifies the solu-
tion of the bilevel estimation problem comparedtte general bilevel program,
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where the weak approach cannot be asswmgdori. In the case at hand, it has
special implications for the prices, which are fudly identified in a solution to
the transportation problem; only price differenaes. The weak approach means
that we, among all sets of prices satisfying thoisee differences, may choose
those that score highest on our estimation critetog. are closest to the observed
prices or have the highest probability density.

The outline is as follows: Section two formulatee tbilevel estimation pro-
gram, section three discusses alternative soluiethods, and in section four the
required weights are computed. Section five presant analyses the data used
in the estimation, and section six reviews othévant studies of trade costs in
Benin. In section seven, the results of the estonaare described, and section
eight concludes with a discussion.

2. A bilevel estimation program

The mathematical representation of the bilevel @ogning problem in this ap-
plication is based on a representation of the partation problem by its first
order conditions, with a weighted least squaregaihje function penalizing de-
viations from observations of prices and excessaeinThe first order condi-
tions here are cast adiaear complementarity problerfLCP), thus formulating

the estimation problem explicitly asraathematical program with equilibrium
constraint§] the branch of literature from which the solutionthzal is borrowed.

min (wk"(pk - p&’)'(pk - p )+ wi -QE)' (@ —q;’)j (2)

apcxf4
r T 0 _ AI ]
subject to el Xl 2| & (3)
Vi | A0 ] P — Oy
e zo,{xk}zo (4)
| Vk Pk
fu ] [ %
=0 5)
| Vk | |:pk:|
c, = Bo0% (6)

The objective function (2) minimizes the weighteansof squared deviations
of estimated prices and excess demand from obsmmgatf observations of trade
flows and costs were available, those could belailpiincluded into the objec-
tive. Equations 3-6 form an LCP that is equivakenthe Kuhn-Tucker conditions
for the LP (1), withpx the dual vector of the constraints in the LP, apdndvy
slack vectors. Equation 6 is a function relating ttade cost between any two
regions to the distana®between them, parametrized Byand ..
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Trade costs are expressed per weight unit, andderdo economize on de-
grees of freedom, the trade costs per weight ueievassumed to be equal for all
products. This would be reasonable if all prodweese equally perishable and
with similar prices, which is not perfectly truerfthe set of products at hand:
cassava, yams, maize, rice, sorghum, beans andtpe@mn the other hand, IFPRI
(2004) does not find that traders in Benin discniaté between different agricul-
tural products when setting transportation ratepperting the use of a single
trade cost function for all products.

3. Solution method

An optimization problem constrained by an LCP fallshe class ofnathematical
programs with equilibrium constrain{8PEC), that started to attract attention in
the literature in the 1990’s, evidenced by the fmaltbbn of two books on the sub-
ject (Luo, Pang and Ralph (1996), Outrata, Kocweae Zowe (1998)). The solver
NLPEC (see NLPEC solver manual) for GAMS (Gener&defsraic Modelling
System) solves MPECs via smooth reformulation @& tomplementarity con-
straints. Several of those reformulations wereetbsand the method finally se-
lected is one of the reformulations implementedNtPEC. The intuition behind
the smooth reformulations is the following:

The complementary slackness constraint (5) is theation causing trouble
when attempting to solve the problem (2-6), becausskes the feasible space
non-convex and it has “corners”. The key idea efsmooth reformulations is to
replace (5) by a sequence of increasingly accuppeoximations. Several such
reformulations are available, and after extensesing with synthetic data, a
method where a penalty function minimizes tbenplementarity gag/as chosen.

Before proceeding, we note that data is unlikelgupport solutions with zero
price for any product. Thus, the slack vectgrsan be fixed to zero, reducing the
problem somewhat. Next, the remaining complementackness condition
U X = 0 is removed, and instead a penalty tefo'x) is added to the objective
function with 7 a nonnegative real number. The resulting systesolised repeat-
edly, with i initially set to a small number and then stepviigeeased, each time
using the previous solution as starting point,liuheé complementarity gam'X« is
zero. The estimation problem then is:

min (Wkp (b - pﬁ’)'(pk - p2 )+ wila - ag ) (o - ap )+ e, )j (7)

q,p.c.x.[B K
0 — A’ I
subject to {uk} —{ }{ X } { G } (8)
0] [A O |p] [~

u, 20,%, 20 9)
c. = B,0% (10)
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with wf and w, weights to be defined below. Note that when. «, the factor
u'x in the penalty term eventually becomes zero @filele), so that the original
problem is recovered. Testing with different seqasnofu and different syn-
thetic data constellations revealed that this netilsmot guaranteedo find the
global minimum for the problem size at handlevertheless, of the methods
tested it performed on average and in median besgsured by the sum of
squared deviations obtained, on a large numbeinofasly structured, randomly
generated problems.

In an attempt to verify that the iterative approatmn method finds the
unique global minimum, or at least a point closd,tfor the incumbent data, the
problem was also reformulated as a mixed integegnamming problem, with
binary variables in a so-called “big M” construetitthing the complementary
slackness conditions. To reduce the size of thbleno, only one product (maize)
was included, and the problem initialised with godution obtained by the itera-
tive approximation described above. The so obtapredlem in 132 binary vari-
ables was solved with a branch-and-bound algoritiva solver SBB in GAMS
on the NEOS server). The solver terminated aftem88ites and 1.6 million it-
erations without any significant improvement of thigective, though still with a
possible gap (between best found and best possibieynd 10% of the objective
function value. For the entire problem (around ®fary variables) the solver
terminated due to limited system resources (meméy)a comparison, the itera-
tive smooth approximation solution of the entirelgem solves in about 20 sec-
onds on a standard workstation. So, even if a bstteition may exist, it is diffi-
cult to find.

The estimation was programmed in GAMS and the exire optimisation
problem solved numerically using the non-linear gramnming software
CONORPT.

4. Assigning weights

The objective function of the problem (2-6) litdyatompares apples to pears. It
actually does more than that, because it also wedgherror in therice of one
commodity against the error quantityof another. In order to make the estimator
more efficient, the error terms need to be weighgdhe inverse of their vari-
ances, which in this case are unknown.

In other circumstances, one approach would be timate the variances si-
multaneous with the parameters, either using maxinfikelihood or by itera-
tively computing the sample variances from thedwesls of previous estimation
steps. To this end, one could assume that pricggjaantities of each commodity

® Several studies formulates conditions for theterise of a global optimum for bilevel programs.
,Following Dempe (1997) a global minimum existshie case at hand.
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constitute two homoscedastic groups with variamz%sand c7§ (or some more
complex matrix function of those variances). Endugesly determinedjfJ and
05, would likely result in one group having variaratese to zero and the other a
very high variance. The reason for this is thdiezitobserved prices or quantities
always can be matched perfectly by the estimatéisisnrmodel. If the ratio of the
variancesasl 05 is shifted towards zero, prices will be matchedgmtly and the
objective value be depending only on the inverseci)f and vice versa.

Thus, some external source or assumption must éx tesassign weights. In
this analysis, wassumedhat variances are proportional to the absolute of
the related variables. More specifically we assuithed the variances of prices
are proportional to the observed price and to tiverse market share of the cur-
rent region. The variances of excess demand weraras] to be proportional to
the sum of regional supply and demand, the sunghmiotivated by the fact that
the variance of a difference is the sum of thearanés. The weights were com-
puted as
1 ndy

P D dj ’

J

q 1

ik * Sik

Wik

and the resulting weights are shown in tables pfimes and 2 for excess de-
mand.

Table 1: Weights for price disturbances

CASS SORM PULS MAIZ PEAN RICE YAMS

ALI 0.446 1.155 0.769  0.554 0.29 0.258 2.834
ATA 0.136 1.966 0.628 0.171 0.744  0.267 3.634
ATL 1.293 0.003 0.231 2.244 0.268 0.474 0.079
BOR 0.373 2.644 1.031 0.522 0.431 0.328 3.832
COL 0.589 0.215 0.56  1.497 0.383 0.335 0.065
Ccou 1.449 0.325 0.211 0.611 0.271  0.299 1.335
DON 0.059 0.813 0.359 0.118 0.818  0.227 15.644
LIT 0.924 0.002 0.129  0.683 0.223  0.998 0.067
MON 0.631 0.284 0.129 0451 0.116  0.186 0.815
OUE 0.966 0.986 0.377 2527 0.588  0.517 0.078
PLA 0.437 0.681 0.207 1511 0.344  0.245 0.056
Z0U 0.666 0.232 0.614  1.463 0.441  0.373 0.048
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Table 2: Weights for excess demand disturbances

CASS SORM PULS MAIZ PEAN RICE  YAMS
ALI 1.161 1.877 7.438 1.97 4.476 7.898 0.5
ATA 1.533 1.574 8.602 5.481 4.959 7.452 0.261
ATL 0.204 1230.172 21.374 0.74 12.518 5.863 13.186
BOR 0.668 1.484 5.19 1.282 7.614 6.748 0.179
COoL 0.325 11.913 5.505 1.305 4.259 5.211 0.729
Ccou 0.411 13.756 11.086 2.404 6.704 9.198 0.874
DON 3.837 5.235 20.935 11.328 7.289 13.243 0.491
LIT 0.56 1399.573  49.265 3.394 18.692 2.68 15.357
MON 0.595 12.846 50.817 2.164 36.331 15.597 1.32
OUE 0.452 3.528 14.49 0.916 7.048 5.275 10.906
PLA 0.278 6.575 15.385 0.747 9.709 12.695 6.174
Z0U 0.567 20.176 6.503 1.401 3.718 8.555 3.402

5. Data

The data used in the estimation is the data iBdr@mpact model data base for
2001. Aggregates of the data sufficient for repoiciy the results of the estima-
tions are presented in this section. In the Benbhpatabase, regional demand
stems from the Benin statistic agency ONASA (sdvpublications), as do re-
gional prices. Regional supply is based on ONAS#fae yields and acreage on
the level of the administrative units sub-prefeesu(SP), of which there are 77 in
Benin.

Both yields and acreages fluctuate strongly betwaacent time periods as
well as regions. In order to arrive at reasonabtarates of yields at least on ag-
gregate levels, the data for the individual SPsevesaled to fit yield and acreage
trends estimated for “agri-ecological zones” (ABAsed on survey data from van
den Akker (2000). AEZ are eight agronomically homiogous but spatially dis-
continuous geographical units, to which the SPsbheamapped. After fitting it to
the AEZ data, excess demand was computed and agedep the administrative
regional level of departments, which was the reglidevel used in the Benlmpact
model.

Prices are collected by ONASA at the level of seléanarket places, some-
times several times per year due to the seasomdljiyoduction. Since no data on
market place or seasonairnoverwas available, the prices for the departments
were computed as the arithmetic average of theprm market places that fall
within that department. Having all this in mind, s@nclude that data on prices as
well as excess demand are subject to consideralglertainty, and thus that the
traditional calibration approach is likely to makefficient use of the available
information.
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Figure 1 shows the regions used in the estimatiwhlists the abbreviations
used for the twelve departments (Littoral, containonly the city Cotonou, was
considered one department). Table 3 lists the amiiens used for the seven
products. A major crop that is missing is cottoijck was omitted from the es-
timations due to special regulated internal tradingditions. Data on prices and
excess demand are shown in tables 4 and 5.

Abbreviations
ALI Alibori
ATA  Atacora
ATL  Atlantique

BOR Borgou
COL Collines
COU Couffo
DON Donga
LIT Littoral
MON  Mono
OUE Oueme
PLA Plateau
Z0U Zou

Figure 1: Regions (departments) of Benin in esiiomatSource: The Benlmpact
mapping tool built by Wolfgang Britz (Bonn Univetg), with own graphical
modifications.

Table 3: Products in the estimation and their abbt®ns.

CASS Cassava PULS Beans RICE Rice
SORM  Sorghum and MAIZ Maize YAMS Yams
millet PEAN  Groundnut
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Table 4: Price observations for regions and praduct

CASS SORM PULS MAIZ PEAN RICE YAMS

ALI 17242 107.06 219.74 88.52 250.45 266.31 73.93
ATA 171.70 113.21 18253 96.45 22554  266.36 72.83
ATL 156.99 186.65 269.81 104.10 286.02 277.70 136.28
BOR 182.98 112.39 231.28 91.68 236.80 291.55 59.56
COoL 153.40 111.35 219.01 86.83 233.85 246.89 79.29
Ccou 117.67 163.74 224.43 8591 197.73 27359 119.74
DON 166.81 106.76  201.69 87.70 17550 235.24 n.a.
LIT 15955 20529 288.96 127.37 364.50 288.62 138.55
MON 165.71 204.19 253.03 110.65 29484 264.46 127.13
OUE 142.66 191.01 285.67 92.06 32433 248.11 126.91
PLA 156.02 168.16 292.00 9435 264.97 248.43 96.18
Z0U 149.85 13242 219.66 10141 220.39 237.59 118.71

Source: Benlmpact database for 2001, based onfdata ONASA.

Table 5: Regional excess demand observations

CASS SORM PULS MAIZ PEAN RICE YAMS

ALI 60.76 -20.45 494 -1754 -12.88 5.18 91.95
ATA -20.77 -4.45 0.85 -7.10 1.65 5.04 -13.77
ATL -102.96 0.08 2.10 23.07 197 17.04 7.43
BOR -19.50 11.51 6.68 -45.59 0.13 9.99 -242.02
COL -134.79 -2.04 -4.84 1141 -11.84 2.25 -129.94
Ccou 82.68 6.86 -3.87 -6.08 -7.95 1031 108.25
DON -7.14 3.93 3.10 -1.85 4.95 6.29 57.79
LIT 103.32 0.06 2.03 29.46 522 3731 6.51
MON 31.75 7.62 158 -12.44 1.68 6.36 68.67
OUE 42.39 21.64 481 48.30 10.63 14.26 4.56
PLA -229.93 15.21 0.08 -37.34 1.55 7.88 -8.64
Z0U 14.57 3.20 -0.71 290.08 -14.27 11.27 -21.41

Source: Benlmpact database for 2001, based onfdata ONASA and van den Akker (2000).

The distances between departments required by €f) eomputed using a ta-
ble of line-of-sight-distances between the printiparket places in each depart-
ment. In praxis, sometimes different market plaaes important for different
products, so that the selection of principal magkates had to be a compromise
if not one unique distance matrix was to be usedeézh product. The distance
matrix used is shown in table 6.
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Table 6: Distance matrix (kilometres)

ALl ATA ATL BOR COL COU DON LIT MON OUE PLA ZOU

ALI 300 574 213 425 592 347 628 631 658 570 502
ATA 485 212 336 503 78 539 542 569 481 413
ATL 361 149 102 407 54 63 84 140 72
BOR 212 379 134 415 418 445 357 289
COoL 167 258 203 206 233 145 77
Ccou 425 106 39 136 158 90
DON 461 464 491 403 335
LIT 67 30 138 126
MON 97 197 129
OUE 108 156
PLA 68

Source: Own measurement on a map of Benin.

6. Results of other studies

There are other sources of trade cost estimaté3eioin. Thus, before proceeding
with a presentation of the estimation results,iaeflsurvey is of interest. One re-
cent study is IFPRI 2004, performing a survey atlars in Benin. They find that
on distances of 160 km, large trucks are used,thadmotorized transport on
average costs 0.28 USD/ton/km. Converted to FCHAguan exchange rate of
700 FCFA/USD this corresponds to 31 FCFA per kglfe® km. It is not clear to

this author if those rates also contain mark-upgrmthan transportation costs.

Van den Akker (2000) surveys production and tradBenin and finds trans-
port costs for maize that, when fitted to the tradst function used in this article,
correspond to a distance elasticity of transpostz@f 0.37, 0.71 and 0.41 for
southern, central and northern Benin respectivaiyn(computations). For a typi-
cal truck operated distance of 160 km, this amotmtsransportation costs of
9.60, 17.92 and 10.51 FCFA per kg. These numberswgposed to contain only
transportation costs and not other costs connecoterdde, whence we expect our
estimated trade costs to be somewhat higher. Faemaan den Akker finds that
marketing costs and profit each amount to approtéimas much as the transpor-
tation costs.

Finally, there are estimates of distance elastgitf trade costs from other
studies, prominently in the gravity literature. Huels (1999) estimates a trade
cost function similar to ours but withd valoremtrade costs and finds a distance
elasticity of 0.27 (all products), and commodityesific elasticities “tightly clus-
tered in the 0.2 to 0.3 range” (ibid p.11). Elatgs smaller than one indicate
concave trade costs, which would be easily expthine

The main reason for expecting a concave trade foostion with a distance
elasticity of less than unity is that trade takésce with a multitude of means,
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ranging from transportation by foot over bicyclegtorcycles, modified ordinary
automobiles, small trucks up to large trucks (IFRR04), all with different fix
charges and costs per km. If always the cheapadable means of transportation
were used for a given haul, this would result ina@ve trade costs as illustrated
in figure 2, where the heavy grey line shows thegpgrof a trade cost function as
of equation 6. Most distances in the model ardivelly long and therefore could
be operated by a more homogeneous class of traagpormeans, allowing the
function to be closer to linear, but never conveaving all this in mind, we
would expect our estimated trade cost function @oshch that the elasticity is
between 0.2 (the lowest value in Hummels) and th® ¢pper limit for concav-
ity), and the function value for 160 km to be ardi80 FCFA per kg (indicated
by the IFPRI survey).

80 -
70 -
60 -
50 -

Trade cost per kg (FCFA)
N
o

0 1 T T T 1

0 100 200 300 400
Distance (km)

Figure 2: Concavity of trade costs resulting frolmeéerogeneous class of means
of transportation.

7. Results of estimation
The fit of the estimates were evaluated using thegiRared measure, computed
for each product separately according to the foamul

R = 2with SST=Y (- 5. f . SSE=Y, (B, - p.

and SSR= SST- SSE and the same for excess demand. Thus, no cameTH
degrees of freedom was undertaken. A bar denotesdample mean and a hat
denotes the estimated value. Tables 8 and 9 showstimated prices and excess
demand, table 7 the computed R-squared values.
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For sorghum and millet, peanuts and yams, the Rfegumeasures indicate a
fair fit, with errors distributed over both quaig#& and prices. This means that for
those products, the price was generalhigher in regions with positive excess
demand and lower in regions with excess supplyhéck with the observations
of prices and net supplies supports this conclusi@ke for example sorghum
and millet. Here, the R-squared measures are Or7firices and 0.82 for quanti-
ties (table 7). The greatest net supplier of somgland millet was Alibori in the
far north of Benin with a surplus of 20 450 torab(e 5). As expected, that region
had a low price (table 4), a relation which remamshe estimates. The price or
sorghum and millet in Donga was also low, but tkeess demand positive and
smaller than in Alibori. In that case, the estimatetermined that Donga should
be an autarky region. The largest net importersasfhum and millet—Mono,
Oueme and Plateau—also had among the highest elsprices.

Another example is yams. The majority of the yamagé according to obser-
vations originates in Borgou and Collines (tablevi)ere the prices also are low-
est. The low prices enable them to export yaméechigher priced net demand-
ing regions. Only in the northern region of Alibarilow observed price of yams
is in contrast to a significant excess demandh#t tase, the estimator chooses to
adjust the price upwards in order to be able tooihiine required quantities.

Table 7: Measures of determination with all produotluded (P = price, Q =
excess demand).

mean sse sst SSr R2
CASS P 157.98 5031 3113 -1918 -0.62
CASS Q -14.97 26 104029 104003 1.00
SORM P 150.18 5163 17822 12658 0.71
SORM Q 3.60 227 1250 1023 0.82
PULS P 240.65 5588 14594 9006 0.62
PULS Q 1.40 111 129 18 0.14
MAIZ P 97.25 2217 1623 -594 -0.37
MAIZ Q 1.12 464 8721 8256 0.95
PEAN P 256.24 17654 31893 14238 0.45
PEAN Q -1.60 200 719 519 0.72
RICE P 262.07 5306 3924 -1382 -0.35
RICE Q 11.10 336 940 605 0.64
YAMS P 104.46 2249 8280 6030 0.73
YAMS Q -5.89 234 104109 103875 1.00

Source: Own estimations.

The R-squares for the three products cassava, raaizeice the R-squares for
prices turn out negative, indicating a poor supporthe data for the assumed
model. Indeed, a look at the data reveals thathfase products, excess demand is
sometimes positive where the price is low and wieesa. One example where
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data is contradicting the assumption of arbitragiaglers is the case of cassava,
especially in the region of Borgou. In that regitre data claim an excess supply
of 19 500 tons (table 5), which has to be exporbed,at the same time, Borgou
has the highest cassava price of all regions (B3EQFA/ton, table 4). This is
clearly not consistent with the idea that the cassairplus is traded to some other
region by profit maximizing traders facing a pogtiunit trade cost and homoge-
neous goods. The estimator thus chooses the "shalbssible" correction that
brings quantities and prices in line with the moddiis turns out to be a strong
correction of the price and little correction okethxcess demand. The estimated
price is 157.95 FCFA/ton (table 8), implying ancerof about 25 FCFA/ton,
whereas the estimated excess demand (-20 420isodgkser to the data. In gen-
eral, the estimator favoured price correctionseaathan quantity corrections for
cassava, as evidenced by the R-squared measusdsdr/ (1.00 for quantities, -
0.62 for prices).

Table 8: Price estimates with all products inclule@FA/Kg)

CASS SORM PULS MAIZ PEAN RICE YAMS

ALl 189.21 88.06 219.74 87.42 250.45 266.31 87.24
ATA 145.18 113.21 19291 87.27 218.92 262.73 72.83
ATL 148.70 17230 256.64 109.14 267.20 263.46 108.96
BOR 15795 119.32 224.03 56.16 227.14 293.84 55.99
COL 126.84 150.43 234.77 87.27 24533 262.73 87.10
cou 151.34 17494 241.67 94.17 25957 271.09 11161
DON 138.28 11257 204.36 75.83 207.47 274.17 75.65
LIT 156.63 170.83 248.71 109.73 275.13 25554 116.89
MON 157.07 180.66 247.39 99.89 265.29 26537 117.33
OUE 152,22 17523 25312 105.32 279.53 259.94 112.49
PLA 136.37 171.71  256.05 89.47 266.61 275.79 96.64
Z0U 138.14 161.73  246.07 98.57 256.63 274.03 98.40

Table 9: Excess demand estimates (1000 ton, ematyarky)
CASS SORM PULS MAIZ PEAN RICE YAMS

ALl 60.22 -25.34 89.93
ATA -21.17 -2.62 -2.21

ATL -99.99 0.07 4.79 18.69 1.50 21.49 7.35
BOR -20.42 5.33 094  -48.13 466 -247.69
COL -136.70 -2.81 -2.36 8.92 -13.21 -4.66 -131.33
cou 81.18 6.19 -1.99 -7.43 -8.81 13.15 107.09
DON -7.30 1.68 221 55.73
LIT 104.40 0.09 3.20 28.51 491 47.04 6.45
MON 30.71 10.59 1.99 -13.94 1.52 8.03 67.90
OUE 43.73 32.48 8.77 43.38 9.80 19.21 4.46
PLA -227.74 13.81 0.96 -43.38 0.95 9.93 -8.80
Z0U 13.48 2.74 1.39 26.76 -15.83 14.32 -21.71
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The estimated parameters of the trade cost functiomn out
(Buf) = (0.147,1.000) corresponding to a trade cod6atkm of 23.5 FCFA/kg.
The cost for 160 km is of plausible magnitude, padidpy the results of van den
Akker and IFPRI discussed in the previous secfidre distance elasticity, of
unity, implying a linear trade cost function, apgeehigh compared to the consid-
erations expressed in the previous section, imgljimear trade costs. However,
one should keep in mind that most distances ineble of similar magnitude
since all regions are relatively large. In otherds if there would also have been
a number of very small regions, close by one amptheolved, then the observa-
tions would have contained more information abaw lthe trade costs vary with
varying distance. Indeed, most distances in taldes@arge enough to be covered
by similar means of motorized transport.

Finally, in order to investigate the sensitivity thle estimates to changes in
data, an additional estimation was performed, usinly products for which R-
squared was positive, thus not contradicting tiseimed model. That meant omit-
ting cassava, maize and rice. That results in peterm estimates of
(Buf) = (1.558,0.643), corresponding to a trade costl@D km of 40.7 FCFA
per kg, the estimated prices and excess demandnshmotables 10 and 11, and
the measures of determination shown in table 1®s@élestimates, as far as the
trade cost function is concerned, is more in linghwther results. A conclusion
must be that the estimation is not very robust,thatithere possibly are problems
with the data, the model or both.

Table 10: Price estimates with product subset (FE§A.a. = not available)
CASS SORM PULS MAIZ PEAN RICE YAMS

ALI n.a. 90.20 219.74 n.a. 250.45 n.a. 95.93
ATA n.a. 113.21 182.56 n.a. 225.54 n.a. 72.83
ATL n.a. 182.73 265.60 n.a. 270.65 n.a. 112.77
BOR n.a. 114.13 231.34 n.a. 236.80 n.a. 47.01
COL n.a. 144.11 226.72 n.a. 233.77 n.a. 74.69
cou n.a. 184.59 235.12 n.a. 249.96 n.a. 116.53
DON n.a. 108.61 208.21 n.a. 201.90 n.a. 83.32
LIT n.a. 165.28 245.35 n.a. 281.20 n.a. 122.12
MON n.a. 188.54 251.55 n.a. 266.39 n.a. 122.47
OUE n.a. 179.16 259.23 n.a. 285.59 n.a. 116.73
PLA n.a. 182.32 264.92 n.a. 269.77 n.a. 85.11
Z0U n.a. 158.84 241.44 n.a. 246.29 n.a. 88.41
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Table 11: Excess demand estimates, product suti¥@® (on, empty = autarky)

CASS SORM PULS MAIZ PEAN RICE YAMS
ALI n.a. -20.24 n.a. n.a. 89.93
ATA n.a. -2.62 n.a. n.a.
ATL n.a. 0.08 4.79 n.a. 1.50 n.a. 7.35
BOR n.a. 0.94 n.a. n.a. -247.69
COL n.a. -2.00 -1.33 n.a. -13.21 n.a. -131.33
Ccou n.a. 6.89 -1.99 n.a. -8.81 n.a. 107.09
DON n.a. 1.68 n.a. n.a. 55.73
LIT n.a. 0.09 3.20 n.a. 491 n.a. 6.45
MON n.a. 10.59 1.99 n.a. 1.52 n.a. 67.90
OUE n.a. 32.48 8.77 n.a. 9.80 n.a. 4.46
PLA n.a. 15.27 1.33 n.a. 0.95 n.a. -8.80
Z0U n.a. n.a. -15.83 n.a. -21.71

Table 12: Measure of determination with productsstib

mean sse sst SSr R2
SORM P 150.18 4698 17822 13123 0.74
SORM Q 3.60 304 1250 945 0.76
PULS P 240.65 4045 14594 10549 0.72
PULS Q 1.40 114 129 15 0.12
PEAN P 256.24 13605 31893 18288 0.57
PEAN Q -1.60 200 719 519 0.72
YAMS P 104.46 2661 8280 5618 0.68
YAMS Q -5.89 234 104109 103875 1.00

The data and GAMS-code required for reproducingréselts presented here
can be obtained for test purposes from the autbon uequest.

8. Discussion

The estimations above show that the proposed mdtitoestimating trade costs
is computationally feasible, and theoretical coesations indicate that it is supe-
rior to traditional calibration methods from aniefncy point of view. The esti-
mation results were, however, not stable when @meposition of the sample was
modified, as demonstrated by the rather differesults obtained when using a
subset of the products. This signals that thergpeoblems with the model speci-
fication, with the data or both. The list of pot@hspecification errors is long:

(i) Lack of temporal disaggregation. In the tropicauntry of Benin, there are
two production seasons, with somewhat differenetimindows in the south and
in the north. Thus, production, demand and trallestgplace within shorter time
frames and trade flows may even reverse withinaa.y¥an den Akker uses four
time periods. This setup was tried but discardedt eequires the estimation of a
storage function and urges considerations of uaiceyt
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(i) Products may not be homogeneous. For someugtedhere are local as
well as commercial varieties, which may sell afediént prices.

(iii) Great circle distances neither reflect thatstof maintenance and other
qualities of the road network nor actual distarmfa®ad to travel.

(iv) Congestion effects are not considered. Aceuydp IFPRI, congestion in
the transportation system sometimes occur duritigprcdarvest.

(vi) External trade, occurring via the harbour iat@ou or across the borders
to neighbour countries, is not considered due ¢k tf data on prices and quanti-
ties. The only external trade allowed is by a camnistderived from the sample,
and attributed entirely to Cotonou.

The data problems for a country suffering undeicisfin all kinds of infra-
structure and low literacy (33.6% according to GAB06) are obvious. Official
statistics frequently appear to be more “guessésiathan the results of actual
measurements, and utterly sparse. The data usédeirstimations has gone
through a gap-filling process already before entptihe estimation, and is still
not complete (one price is missing for yams). Fone products and regions there
are obvious problems. As an example, the cassas@ iprthe department Couffo
is the lowest of all regions even though Couffo tfes second to largest excess
demand, clearly contradicting the assumption otiaparbitraging. Indeed, the
coefficient of correlation between prices and egadsmand is negative (-0.138)
for cassava, though positive for all other produkiswever, trade does occur and
is not likely to take place at a loss, so this @renlikely to be a data than a speci-
fication problem.

To conclude, the estimation is on the one hand ected with some severe
difficulties. Not only is the available data baraypporting the assumed model,
but furthermore, the bilevel program is difficult $olve due to non-convexities.
On the other hand, the method is workable, delingreasonable estimates com-
pared to expert knowledge and other trade costestuBurthermore, for the given
model, it is difficult to see how the available al@abuld be used more efficiently.
The estimation uses all available information, dmndthe proper use of weights,
attaches more confidence to items that for someoreare believed to be more
certain (have less variance).

The bilevel programming approach to the estimatiboonstrained program-
ming models can, as noted above, be extended lodm®bservations also of
trade flows and trade costs in a similar manneryetas a time series of obser-
vations. One could also attempt similar (bileveghniques to estimate parame-
ters of general LP models, or, with additional setorder conditions to NLP
models, and could thus be of interest to a widegeaof modellers as an alterna-
tive to separate estimations or calibration methods
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Chapter 4 A Bayesian alternative to generalized cross en-
tropy solutions for underdetermined mod®8ls

1. Introduction

In 1996, Golan, Judge and Miller published a bowk “Maximum Entropy
Econometrics” introducing Generalized Maximum EpyrdGME) and General-
ized Cross Entropy techniques (GCE) to a wider eaofyapplied econometri-
cians. These estimation approaches were attrattieenpirical modelers mainly
for two reasons: First, they allow empirical speeifion and estimation of under-
determined models, i.e. models where the numbenkhowns is larger than the
number of equations, a capability not provided tassical solution techniques.
Second, prior information on model unknowns cannwtuded in a technically
straightforward way, making estimates potentiallyrenefficient in a mean square
error sense, or at least more “plausible” for maelulation, interpretation, and
analysis subsequent to estimation..

Since their introduction, a notable number of aggilons of GME and GCE
have appeared in the empirical economics literatyrgignificant area of applica-
tion relates to balancing large raw data sets usougunting identities and prior
information to fill gaps and reconcile conflictindpata sources. The techniques
allow setting ranges for missing data values amdige a means of differentiat-
ing the reliability of various sources in the baligny process (e.g. Robinson, Cat-
tanbo, and EI-Said 2000; Britz and Wieck 2002, Riabbdl and Robinson 2003).
A related line of work deals with allocating inpguantities to outputs from data
on total input use and prior information on theutputput relationships (e.g.
Lence and Miller 1998a and b, Léon et al. 1999)ib€ation of simulation mod-
els to base year quantities and theory-consistaainpeter sets is often done using
entropy methods (e.g. Paris and Howitt 1998; Witakel Britz (1998); Paris
2001) and a fairly new but increasingly importardgaais the spatial disaggrega-
tion of technological and economic data (Howitt delynaud 2003). However,
GME and GCE applications are not reserved for detavery and calibration
issues, and have been employed in attempts tor lsetee traditional estimation
problems or analyze new ones (e.g. Golan, Judgé®aridff 1996; Oude Lansink
1999; Zhang and Fan 2001; Arndt, Robinson, and Tag®2), Heckelei and

10 Authors: Thomas Heckelei (Bonn University), Rorttelhammer (Washington State University),
Torbjoérn Jansson (Bonn University).
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Wolff 2003). In essence, any economic model cheraetd by a vector of M
equations in K > M unknowns, sayz) = 0, is an underdetermined model that
can be solved through the use of GME or GCE tegles.

Despite the growing number of applications, GME &@E techniques are
arguably subject to at least three difficultie® flrst being the specification and
interpretation of prior information imposed via thse of discrete support points
and a corresponding reference prior probabilitytritistion on that support. In
fact, the actual prior information ultimately imgakis a rather complicated com-
posite of the choice of support points, the chaiteeference prior probabilities
on support points, and their interaction with tiigecion of maximum entropy in
determining the final estimated subject probakfiton the support points. A sec-
ond issue relates to challenges in characterinagature of the estimation objec-
tive that is actually being used to combine priod a@ata information, with atten-
dant difficulties in evaluation of the estimatiossults by the scientific commu-
nity. Thirdly, the entropy approach introduces &ddal variables (the probabili-
ties linked to the supports) and equations (addmgonstraints for the probabili-
ties) to the estimation process, which leads totargial computational challenge
especially for large data balancing application®g #ucidate as well as address
these issues in the sections ahead.

The overall objective of this chapter is to introdua Bayesian alternative to
GME and GCE techniques that allows for a direct stngightforwardly interpret-
able formulation of prior information and a cleadgfined estimation objective
while also reducing computational demands considgravhen estimating an
underdetermined economic model. The specific oljestare reflected in the
organization of the remaining sections of the papéich is as follows. Section 2
reviews the GME-GCE approach in the context ohesting an underdetermined
linear model without noise. We clarify the interfat®on of the effective prior
information imposed as being a combined effectupipsrts, reference probabili-
ties on supports, and the solution for the subpecbabilities via the maximum
entropy criterion. Section 3 introduces a formwalatof the underdetermined lin-
ear model estimation problem using a Bayesian agprohat is fully equivalent
to GME-GCE, where the underdetermined model equnsitamd the data together
represent the “Likelihood” information and all primformation is represented in
terms of a prior density on model unknowns. Thiprapch is then extended to
solving general systems of underdetermined equationsection 4, the approach
is extended to accommodate the situation whereptlog information is com-
pletely uninformative relative to the unknowns lne tequation system. Section 5
provides illustrative applications, followed by atding remarks.
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2. Prior information in GME-GCE approaches

The principles of GME (later extended to GCE) eation as introduced by Go-
lan, Judge and Miller (1996) and discussed furthdvlittelhammer, Judge, and
Miller (2000) are briefly reviewed here in the laxemodel context without noise
to provide a conceptual foundation and identifyation for use in later sections.
Within this basic model context, we elucidate towual nature of the prior infor-
mation that is implicitly used in the GME and GQipeoaches.

Consider the underdetermined linear regression maitbout noise, given by

y=Xp (1)

wherey is a T-dimensional column vector of observationgte dependent vari-
able,X is a T™xK matrix of observations on independent regresads T<K, and

B is a K-dimensional column vector of unknown paranset@&he values o can-
not be uniquely identified with classical estimatitechniques, such as ordinary
least squares, because the number of observati@gmedller than the number of
parameters. The basic GME approach is to “repaeminet the vector of parame-
tersf such that each element is expressed as an expeatét discrete probabil-
ity distribution. LetS be a block-diagonal ¥KL matrix of support pointswhere

L is the number of support points associated wattheparameters, and letbe a
corresponding Kk1 vector of weights that have the properties obphilities.
The vectof3 can then be represented as

s 0 - 0fp,

0 s, . P,

=Sp= .
p=sp=|. > 0 %

0 ... 0 s || Pk @
with S, =[S, $, -+ ] such thatig< se < ... < s. A reparameterized
version of (2) is then given by

y = XSp 3)

which corresponds to the 'data constraints’ ofGME approach. Realizing that
the elements of eagh, k = 1,...,K sum to 1 consistent with their intesfation as
having the properties of probabilities, equatioh d&fines theadmissible values
for the elements g8 as convex combinations of the corresponding suppmnts
S, k =1,...,K. This implies that the range of pb&sivalues fofd« is given by the
interval [s1S.]- The GME approach chooses among the infinite remalb vec-
torsp satisfying (3) so as to maximize the entropy core™

' The value of; In( o] ) is defined to equal its limiting value of 0 whégy =0
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Hlp] =-p’lnp 4)

The objective function (4) attains an unconstraingakimum when all ele-
ments ofp have the value 1/L, i.e. when the probabilities aniform. Since the
uniform distribution treats each outcome as equiigly one can view this dis-
tribution as the maximally uninformative distriboni with respect to anticipating
outcomes of a random variable. 'Thus, theximum value of entropg uniquely
associated with thenaximally uninformative weight- probability distution”
(Mittelhammer et al. 2000, E3: 8). However, theiomtof “uninformative” prob-
abilities has caused some confusion in some apioglitsaof GME in that it has
been incorrectly interpreted as characterizing phier probabilities associated
with various possible values of the parameter©ien@ME problem formulation.
We will address this issue in more detail shortly.

The complete estimation problem can now be stated a

max H(p) = —plnp
P

subjectto y =XSp (5)
Upk=1 OKk

where the last constraint ensures that the prababibappropriately sum to one,
with | being a Ix1 'summation vector', i.e. a conformable vectooonés. The
values off can be recovered after optimization by the deéinigiven in (2).

A crucial question for interpreting the resultsttld GME estimation approach
is how one can interpret the notion of “uninformati claimed above for the en-
tropy criterion in the GME context. Of principaltémest is the interpretation of
the expectationof the probability distribution over the suppodims, since it is
this expectation that represents the final estinohtthe parameter vect@, as
defined in (4). The probability distributions inket in the solved value qf
merely serves as a vehicle for the entropy critetidchoose particular values of
the expectation that maximize entropy. Or as Pid@a®1, p. 375) statesThus,
the role of the distribution is simply to serveiagermediary in expressing the
desirability of the value of a parametet.

Preckel reinterprets GME as minimizing a penaltyction on these expecta-
tions subject to the data constraints., and conspthieeapproach to the case of the
penalty function implied by a least squares ciater\We instead conceptualize the
GME-implied weighting on expectations as the ppowbability distribution in a
Bayesian context. This prior density turns out éoabreflection of Preckel’s pen-
alty function (see his equation (5), p. 368).

For an explicit illustration of the implied priocpnsider just one paramef&r
from the linear model in (1) and suppose that dwly support points,g and %
are used, i.e. L=2. Recalling that p p. = 1 we write the expectation Bf as
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EBy = PuSat ( 1- p<1) %2 (6)

Solving for the probability as a function &3, obtains

pkl(EBk):(EBk_skz)/( u~ §2) (7)

The component of the entropy criterion in (5) rielgtto the expectation dd
can then be expressed as

H(EBk)z_pkl In( pkl)_(l_ pa) Ir( T Rl)
:_(EBK_S(Z)/(SQ_ $2) I'(( By - §2)/( i '§2)) (8)
(80~ BB)/(50- %) (2~ B/ 8- 9))

which defines the prior weight that the entropyesion assigns to each possible
value of the expectation . The criterion is maximized if the distance @E
from the lower support poinisis equal to the distance o3Efrom the upper
support point,s, which coincides with g = p, = 0.5, i.e. a uniform distribution
over the supports, and a value fir= (Sat+ S2)/2. All other values of B are
assigned lower prior weights vid(EBk). A graphical illustration of the weight
distribution is given in Figure 1, where we choge=s0 and g = 10.
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Figure 1: Prior weighting of parameter expectatibased on the entropy crite-
rion. Source: Maximum entropy calculations withs0, . = 10.

The mathematical and graphical illustration aboeendnstrates that the use
of the maximum entropy criterion implies differgrior weights on the different
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possible outcomesi=p, , of the GME estimator. These are prior weightshiat
they are independent of any the data informatidre flighest weight is given to
the parameter expectation that would be generateal imiform probability dis-
tribution over the supports.

The GME approach is a special case of GCE, wherdatiter method allows
defining a reference probability distribution otke support points. Denoting the
vector of reference distribution probabilitiesgsthe cross entropy criterion can
be written as

I(p,a)=p'In(p/a) 9)

wherep/q is to be interpreted as a vector with elemegigq The value of I§,q)

is smallest if all elements of the vecipare equal to the corresponding elements
of the vectog. Consequently, an unconstrairmathimizationof the cross entropy
measure ovep will result in a probability distribution equal tp and provides
estimates of parameters according to expectatropsidd by the probabilities in

g. The GME approach considered above is equivaltergnt application of the
GCE approach with a uniforneferencedistribution.

The use of a non-uniform reference distributiordeo modifications in the
implicit prior weighting on parameter expectationsder the GCE approach.
Without repeating what amounts to a similar mathterabhderivation to that in
(6)-(8), we illustrate in Figure 2 the impact or forior weights for the two sup-
port points example above. The reference probesilivere chosen such that q
= 0.3 and g = 0.7. Note that we reflected the cross entropyesawhich is
minimized rather than maximized as in the GME caassund 0.6 to make the
graph more easily comparable to Figure 1. In thsecthe highest cross-entropy
weight is given to B« = 7, which would be the parameter estimate chbyethe
GCE approach if data constraints render the vglue 7 feasible. A general prin-
ciple of GCE is illustrated by the two examples—ini®r that is actually implied
by the method places the highest prior weight andkpectation that is implied
by thereferenceprobability distribution.

In summary, the GME/GCE approaches implies theaisaformative prior
information on parameters to be estimated. Thiauis, even if the reference dis-
tribution employed is uniform over the set of supgmints because the actual
GME/GCE estimates are defined as expectations vesipect to the discrete
probability distribution used to reparameterize paeameters of interest. To solve
underdetermined systems of equations, the usdafipformation is unavoidable
and by itself is not a caveat regarding the usBME techniques. It is in fact this
specific feature, i.e. the flexibility in formulaty prior information, that makes the
GCE/GME framework of analysis so interesting to leopmodelers who seek
plausible simulation models and consistent dats 3éte prior information actu-
ally employed is, however, a result of interactitmetween chosen support points
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and the reference distributions on the chosen stppe well as the final weight-
ing on support points implied by the maximum enyrapterion. The total effect
of this interaction—especially for applications lwitnany parameters and more
than two support points—is not transparent. Funtoge, the introduction of a set
of probabilities for each parameter to be estimatedeases the computational
demand on solving complex problems, which rendersesvery complex data
reconciliation and estimation exercises intractatilh currently available hard-
ware and optimization solvers. In the next secti@ndevelop a Bayesian alterna-
tive to the GME approach which allows a direct arshsparent formulation of
prior information and potentially reduces the cotagional demand significantly.
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Figure 2: Prior weighting of parameter expectatiaith the cross-entropy
criterion. Source: Maximum cross-entropy calculations with=s0, %, = 10, and
a reference distribution wherg, 6 0.3, g, = 0.7.

3. A Bayesian approach to the solution of underdetermied systems

To motivate the general concepts underlying the eBen alternative to

GCE/GME we first reconsider the linear model withnaise used in the previous
section. We then extend the approach to a gengstérm of underdetermined
structural equations.

3.1. The linear model revisited
The Bayesian approach to parameter estimationstraatiel parameters as sto-

chastic variables. In this context the method wiggtishes between the prior den-

86



sity, p@), summarizing prior information on parameters, ltileslihood function,
L(Bly), representing information obtained from the datzonjunction with the
assumed model, and the posterior densif§jyh(which is the result of combining
prior and data information based on Bayes's theofidm relationship between
these three elements can be expressed as (emeiZE71, p.14)

h(Bly) O p(B) L(Bly). (10)

where the posterior density is proportional to thempdensity multiplied by the
Likelihood function. The posterior density allows dnagy statistical inference
aboutp using probability statements or by deriving point estésdhat are opti-
mal with respect to some loss criterion. For example,niean of the posterior
(density) is the value which minimizes quadratic loss.

Through appropriate interpretation of its componetite, GME approach to
estimating the parameters of the underdetermined Imedel given in the previ-
ous section can be subsumed within the Bayesian formdksnthe case of two
support points, using (8) and suppressing the GCE/GMEc¢xtion operator
henceforth by simply representing the resultant estintat 3, the GME optimi-
zation problem can be represented as

mpax{ h(ﬁ|y) 0 p(B) L(B|y) 0 LZK:; H(Bk)} b:y=xp) (B) } (11)

where IA(B) is the standard indicator function that takes the evaluwhen
BOA and equals O otherwise. If Bl is chosen according to (8), the optimal
value forf will be equal to the optimal flE= Sp obtained in the GME solution,
with an analogous result holding for GCE with3g)(defined appropriately. In the
Bayesian context, the objective function can berpraged as the joint posterior
density pf the model parameted$([$|y), defined via a prior density defined by
p(B) O > H(B,) **that is multiplied by a likelihood function thassigns zero
weightstb values B that do not satisfy the linear model constraipts Xp and

a positive constant weight to the valuefdahat are compatible with the data and
the linear model relationship This implies zergosteriordensity weights for the
values off3 not satisfying the constraints and differenpabterior weighting ac-

K
2 The functionzk:lH(Gk) would need to be scaled appropriately to integi@tenity in order

to be interpreted as a proper density, but thireg#s irrelevant for the outcome of the maximiza-
tion.

13 1n the classical case of a linear model with noike Likelihood function would also have the
error variance as an argument and would imply scomtinuous differential weighting according to
the assumed error distribution. All that can bered from the model (the underdetermined data
constraints, without noise) in this case is whiclgmeter vectors satisfy the data constraints and
which do not.
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cording to the prior (density) for all other valuefsf. The value of3 that maxi-
mizes hpJy) is the mode of the posterior distribution @f which leads to the
Highest Posterior DensitgHPD)-estimate op.**

The preceding interpretation of GCE/GME within tBayesian formalism
suggests a general Bayesian alternative to themntapproach that has three
useful characteristics: (1) it can be formulatechsthat it is fully equivalent to the
GCE/GME approach if support point choice and impheeighting by the en-
tropy criterion are appropriately represented, 8 prior information on un-
knowns can be transparently formulated by assigamgappropriate prior den-
sity p(@) directly to the unknowns, and (3) the optimization moded hasmaller
number of variables and, for an appropriate chofcte prior density functions,
can be less computationally demanding.

Having motivated the Bayesian alternative with sibanderdetermined linear
model example, we now turn to a more general treatrof the Bayesian solution
to underdetermined systems and the connectionttonbased approaches.

3.2. General structural equation system

The general mathematical problem now being adddessene where there are M
equations, represented in vector function forng(@s = 0, involving an unknown
(Kx1) vector argumert, with M < K, so that the system of equatiamsderde-
terminesthe unknown vectoz.” Thus, in the absence of any additional informa-
tion, and assuming the original equation systgm = 0 is consistent so that at
least some solution actually exists, then indeteacy implies that there is gener-
ally an infinite number of solution vectors thatveothe system of equations.

One method of obtaining a unique solution to thstesy of equations is to
choosez so as to optimize an extremum metrig)yéubject to the constraints that
0(z) = 0. So long as there exists a unique optimum @j within the feasible
space ofz values determined bW = {z: g(z) = 0}, a unique solution to the
original equation system can be identified. In gehterms, such a solution could
be represented as

z* =argmax { {2) st.42)= ¢ (12)

where it is assumed without loss of generality tinaiximizationis the type of
optimization pursued.

14 Using the mode of the posterior for estimation waggested before in the context of well-posed
estimation problems, for example by DeGroot (19¥@)o called the estimator “generalized maxi-
mum likelihood”. More frequently used terms are %imaum a-posteriori estimator” and “posterior

mode estimator”. In accordance with the Bayesiarfidence intervals we prefer HPD-estimator.

5 The elements of are not restricted to model parameters. They caldd represent unknown
variable values in a data reconciliation exercibeng data are measured with errors or not observed
at all.
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In factany extremum metric \#) that exhibits an optimum within the feasible
spacez[OW defines a possible solution to the equation sysfEnere is thus a
problem of decidingvhich metric to optimize, which in turn determinesich
solution from among a generally infinite numberlwigé chosen athe solution to
the original equation system. In general, any efgblutions if¥ can be obtained
given an appropriate corresponding choice of extranmetric vg). Thus, the
solution obtained to a system of equations in wey is only defensible to the
extent that the extremum metric used to obtain $baition is defensible. Before
returning to this issue we discuss some necessaditons for the solution.

Assume that the equation systeng(¥) = 0 is a collection of functionally in-
dependent equations, so that the equations eféégtiletermine M of the;'s as a
function of the remaining K-M;zvalues. It is not necessary, conceptually, that
explicit solutions exist for M of the variables in termstioé other K-M variables,
but only that solutions exists. The solution mightly be implicitly defined
(which would then require numerical solution tecfuds). It is apparent that a
generalnecessarycondition for an extremum solution to exist istthéz) for
zOW be informative, i.e. non-constant, in at least KelMthe variables in the
vectorz. Among other things, this means that)w{annot be uniform (or “unin-
formative” in prior distribution parlance) in motean M of the zarguments®
We note that there are other conditions that mighhecessary in any given ap-
plication, because depending on the nature of guateons in the system, it may
be that informative information would have to exdsta specific as opposed to an
arbitrary subset af arguments given the solution space@ = 0. It should also
be noted that if \#) is informative on precisely K-M variables in tkevector,
then the solution can be trivial in the sense timzionstrained optimization of the
v(z) metric in these K-M dimensions could be pursustependent of the equa-
tion systemg(z) = O to determine K-M of the unknowns. The remaininguar
ments in thez vector could then be solved based on the reldtippsamong the
z's determined by the equation system.

Given that the data information serves only to marthe feasible space of so-
lutions for the unknowns and is otherwise uninfaiwe a useful and defensible
choice for the extremum metric,2)( is the additional prior information held by
the analyst, which summarizes the available noa-d#gbrmation orz. If pi(z)
represents general prior distribution weights o plossible solution values for
the " component of the vector, and if the prior weightings of the diffateom-
ponents are considered to be independent, theoptimization metric used to
obtain a solution to the equation system coulddeeified as

16 Given this observation, it is clear that the GMpm@ach to solving underdetermined systems
works because it “automatically” implies a non-onifi prior weighting with respect to the variable
of interest.
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v(z)=p()=[]n (3) (13)

as example of which was given in (11). In the absesf independence, 7)(can
represent any joint prior distribution on potensalution valueg.

Now consider Bayes's rule applied to the problermad¥ing the equation sys-
tem forz. In the absence of any information that would lmkalues to data and
allow a likelihood function to be specified, thkdiihood function would be con-
sidered undetermined or undefined. In this caseByesian posterior and prior
on thez vector would be identical and the maximizatiortied prior vg) = p@)
would yield the maximum of the posterior. But i tturrent problem context the
system of equationg(z) = 0 in effect constrains the support of the postehni@j
to z0W={zg(2) = ¢ . The Likelihood function in this case can be ipteted as
an indicator functionl,, (z) that assigns weights of 1 to admissible valueg of
and 0 otherwise. The posterior is then in the form

h(z) O p(2)1,(2). (14)

Consequently, the argument that maximizes the gmiobability pg) subject to
the constrainzJW (or g(z) = 0) will provide aBayesian highest posterior density
(HPD) solutionto the equation system.

4. Solutions for uninformative priors
For reasons discussed earlier, the HPD approasbl#ing the system of equa-
tions cannot be applied in cases where the prigghiag on solution values is
not sufficiently informative, i.e. gf cannot be uniform in more than M of the z
arguments as the optimum will not be unique. Howewethis case, solving for
the posteriomean which is the posterior risk-minimizing Bayesiastimate un-
der quadratic loss, will generally be possibleasylas the uniform distribution is
proper in the sense of integrating to 1. This ¥allow naturally if the prior sup-
port space is a priori compact, so that there difference among values af
within a hyperrectangle of values having finite bdaries. In the extreme case of
no informative prior information at all, the valuiesthe support space defined by
the equation systemw:{z:g(z): q are all equally likely, so that the
Bayes's posterior mean solution would be the méanfleom among all equally
likely values in this support space. A computatiome&thod of finding such a
solution would be to draw uniform random outcomég &§rom W, forming their
sample mean, and for large enough simulated sasipés, the sample mean
would converge in probability (or almost surely)tte true mean by the weak
(strong) law of large numbers.

In some cases, the posterior mean solution mighdémtifiable analytically.
For example, consider again the underdetermineaddimodel without noise,
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y=XB
whereX is a T x K matrix, with T < K and rani{} = T. Since rankX) is smaller
than the number of columns, an infinite number afigons exist forp. These

solutions will form a hyperplane ii®, which can be described by a linear func-
tion of the form

P=po+BE (15)

whereB is a K x (K — T) matrix that is a basis for thdspace of solutions to the
homogeneous mod8l= X, and¢ is an arbitrary (K — T) vector. This follows
from the following results:

Lemma 1: Any solutionp* to the inhomogeneous linear moget Xp can be
written as the sum of particular solution g° to the inhomogeneous model plus
somesolutionp’ to the homogeneous linear mo@et Xp (e.g. de la Fuente 2000,
p. 197).

Lemma 2: p* in lemma 1 can be written &, for somematrix B andany vec-
tor & of dimension (K —T).

If there are uniform priors for at least K — T bktelements of, then those
priors constitute a hyperrectanglein 0, and the posterior mean is the geomet-
rical centre of the intersection between the sofutiyperplane and the hyperrec-
tangleU. We can then compute the posterior mean througbgaence of four
steps that include first findingf. , then computing the matrB, next finding the
intersection between the solution hyperplane amrdpitior hyper rectangle, and
finally finding the center of the intersection. pegific algorithm for accomplish-
ing these steps is as follows:

Step 1.A particular solutior® to the inhomogeneous system can be found by
solvingp° = X'y, whereX" is the generalized inverse X%f

Step 2.Since K> T and rankX) = T, K — T columns oK, together forming
the matrix X, can be written as linear combinations of the ofhecolumns,
which are kept in the ® T matrix X. The coefficients of each of the K — T
columns inX;; can be chosen arbitrarily. If this is repeatediyel for each col-
umn inX, the following expression is obtained, where tblimns ofB;, are the
arbitrary coefficient vectors fo:

—XoBg) = Xi)Bi

Choosing the (F K) x (T — K) identity matrix forB, the above expression can
be solved foB; = —(X()" X, andB can be obtained by vertical concatenation
of B;) andB, keeping the rows in proper order.

Step 3.Find the values of for which the resulting is inside the prior hyper-
rectangle. This can be done by trial and erroh& tlimension of is low, and
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numerically by repeated linear programming (solMimin p'&: o + BE =p O U},
with p being some permutation of (-1) and 1 of length K,or all such permu-
tations) if the dimension is higher. The set ofuiohs will be the bounds of a
hyperrectangle il .

Step 4.Sincep is linearly dependent ofy andp is uniformly distributed, the
expected value df is found by computing the geometrical mid pointtloé hy-
perrectangle found in step 3.

Various empirical illustrations of the Bayesian hatology are presented in
the next section.

5. lllustrative applications

This section presents two illustrative applicatioighe HPD-estimator based on
underdetermined problem specifications that aréc#ypof applications for en-
tropy estimators: Balancing of a Social AccountiMgtrix (SAM) and a linear
regression problem. A GAMS program for the balaga@fhthe SAM is printed in
appendix 4.1, and a GAMS program for the illust@atapplications for the un-
derdetermined linear regression is printed in agped.2. An installation of the
GAMS software is required in order to run the agations.

5.1. Balancing a Social Accounting Matrix

In 1994, Golan, Judge and Robinson (GJR) used@ntrased estimators to cre-
ate a consistent SAM. Variants of their approaasssbe found in the empirical
Computable General Equilibrium literature to prepaomplete databases out of
incomplete and uncertain data information.

The basic problem of balancing a SAM can be fortedlaas follows: find a
square matrix of coefficiens and vectors andy satisfying the equations

AX =y (16)
Al =1. a7)

with 1 the vector of ones of appropriate dimension. Inegal, information about
the accountx andy are available from observable data, whereas thfficient
matrix A is difficult to obtain. A common situation is thtisatx andy are given,
and A needs to be determined subject to the restrictfdf¥ and (17), possibly
given some prior information aboAt perhaps in the form of the same matrix for
another region or for the same region for a difieygeriod. We take the example
studied by GJR and provide a Bayesian alternative.

Table 1 in their paper provides the “true parangter
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0.726 0.000 0.165 0.301 6 1

_|0.161 0.268 0.000 0.4 L_| sp._| 1
“10.113 0678 0714 00d0° | oY | 11
0.000 0.054 0.121 0.248 266 (

The authors proceed to construct a (synthetic)rgdo A by multiplying each
entry inA by a random number drawn from a normal distributid(1, .05). They
present the outcome

0.730 0.000 0.172 0.27
10.159 0.259 0.000 0.4
~10.111 0.688 0.694 0.00(

0.000 0.053 0.135 0.24:

(o]

and estimaté\ with GCE usingA® as a prior.
The GCE problem is

min p'in(p/a)
suchthat p=0, Sp=veqA), y=Ax, At=1 (18)

where the prior probabilitieg of the support point matri$ are selected so that
Sg= A°, with vec@\) being the operator that reshapes the matrte a column
vector by vertically concatenating respective cotsmandp/q as in section 2 the
vector whose"l element is gq;, Note that this approach requires the researcher t
define a set of at least two (GJR use five) suppoitts for each parameter, and
also to define a corresponding set of prior proliads such that the prior SAM is
recovered. GJR use the same support points falethents oA, and choosg
using an initial GME estimation dbg= A°, which effectively doubles the com-
putational effort needed to produce the final eatem of thed matrix.

Now construct an alternative Bayesian estimatortli@r same problem. The
HPD framework allows the use of any prior distribot Assume, for example,
that the researcher had a-priori knowledge thabtserved matriXA® was gener-
ated as in GJR. Taking° as prior mean, and continuing to follow GJR, thee-
sponding prior density function would be va¥(~ N(vec@A?.%), The covariance
matrix X is set equal to a diagonal matrix with elemefutsdA° )0.052, the
square taken element-wise.

Formulating the HPD estimator as discussed preljiptsking natural logs,
and restricting the objective function to the tertimat are relevant for optimiza-
tion leads to the following extremum estimationpem:
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max [vec(A)—ve(‘A")]'Q_l ve@) - véa°) ]

A

subjectto AX =y (19)
Av=1

For the synthetic data provided in GJR, GCE and HjRI2 very similar re-
sults, shown below (results for GCE as printed IR} Note that the HPD esti-
mation tacitly assumed degenerate priorsXandy. The estimation is easily
extended to encompass the fact thahdy are not known with certainty.

0.732 0.000 0.168 0.298 0.731 0.000 0.167
cce .| 0155 0251 0.000 0.456 ., _| 0.157 0.248 0.000
0.114 0.697 0.702 0.000 0.112 0.699 0.702

0.000 0.052 0.129 0.246 0.000 0.053 0.131

As can be seen from (19), the choice of a normial plistribution results in a
weighted least squares approach implying numeyiaddisirable properties for
large scale problems. Compared to GME or GCE appexs explicit accounting
for support points and adding up constraints fabpbilities are unnecessary and
infeasibilities are less likely to lead to numelipeoblems. Other prior distribu-
tions can be flexibly accommodated and will be adgred in the next example.

5.2. Regression models

In this section we consider an ill-posed linearesgion model with and without

noise, and characterized by three equations andplaameters. For two of the

parameters there is prior information available.tdtal five cases are studied
which are distinguished by the prior informatioredgor the parameters, and the
type of estimation objective applied:

1. Uniform priors given boundsij], with parameters estimated by poste-
rior means;

2. Symmetric triangular distributed priors, witarameters estimated by the
posterior mode;

3. GME estimation withy,v] as supports, represented and solved equiva-
lently as a Bayesian HPD-estimator;

4. Priors are distributed as beta(2,2) betweemdthmmds {1,v] and estimated
by a Bayesian HPD estimator;

5. As previous, but also including additive whitise;
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True parameters for the model without noise;, X3, were chosen arbitrarily and
the columns 2-4 oK drawn from normal distributions with means 20,8l 4.2
and variances equal to ¥ of the means. By mulgpbo with the selected true
parameters, the truewas obtained. In all five cases, prior informativas avail-
able for, andps, based on a lower bound of zero and an upper bfound by
adding errors from N(0,0.1) to the true parameters multiplying the result by
two. The procedure resulted in the following nunsbeédote that the mid points
between the boundsl,i) used in some cases aret equal to the true parameter
value.

10.0
1 20.733 8.656 8.83 42.180
0.5 0 0.868
B= X =|1 17.827 7.443 13.619y,=| 43.697u,{ =
1.5 0 2.903
i 1 20.001 6.715 12.596 42.668

Case 1 Since we are dealing with a linear system witt) @egrees of free-
dom, the vecto€ in equation (15) is a scalar, and all feasplée on a line seg-
ment limited by ¢,v). Following the steps indicated in section 4, diog the
second column oX for X, we obtain

0.1132 - 43.230

b= 0.7284 g 1.0000 (20)
1.8604 1.5735
1.2300 1.0054

for arbitrary&. In order forf to be within (,v), it is required that O (-0.7284,
0.1396). Since the uniform density indicates thaesposterior density weight for
all values for¢ in that interval and zero elsewhere, we can comfha posterior
mean as the mid point of the interval, = —0.2944. Inserting that value into the
expression (20) gives us the point estimfitef 3:

12.842

0.434

1.397 |

0.934

B=

Case 2:Let the prior density fo, and(; have the same bounds as before, but
now follow a symmetric triangular distribution,.ithe mid point of the interval is
favored. Now a unique posterior mode exists, ananag apply the HPD estima-
tor. Since we strive to maximize the posterior, plecewise linear formulation of
the triangular density can be relaxed to threealirieequalities, each representing
a side of the triangle. For ease of notation, wst fintroduce the subvectd,
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consisting of the elementg,(3s) for which there are priors, the corresponding
subset of probability densitigs, and the linear mapping[u,v] - [0,1]x[0,1].
Thus g(Bx) expressegy in terms of theshareof the distance fromyuto v, for k
=2,3.

The HPD estimator is then

m?xp2p3

Pp:bp

subject tdB, being triangular distributed, i.e.

and the data constraints,

y=XB
The outcome of the estimator is identical to thecome of the posterior mean
estimator and is not repeated here.
Case 3 Let (u,v) be support points for a GME estimation. Using ioemali-
zationg(B,) as before, the support points become {0,1}, thebabilities of the

supports become = vec([g([ip) 1—g(|3p)]') and we may write the GME

estimator as
max H = —[g(ﬂp)'ln(g(ﬁp))+ L-o,) 'n(l—g(ﬂp))}

subjectto y=XB
uspBpsv

For the sake of illustration, we re-write this afully equivalent HPD estima-
tion problem. Note that the GME problem is equinél®o maximizing 8 (the
maximum is maintained under monotonic transfornmti®ubstitution and some
algebra lead to the equivalent HPD problem

max fa(B2)fa(Ba)
subjectto y=Xf(

usppsv

where f, (B, ) =cg, (Bk)_gk(ﬁk)(l—gk(Bk))(gk(ﬁk)_l) (for k = 2,3) is a probability
density function if the constantis chosen properly (€ 0.6 maked integrate to
unity, non-negative values are prevented by the pingpg and the bounds
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u < By <Vv). We see that, interpreted in this way, the GMfidrestor is an instance
of a HPD estimator. The GME estimateffos

12.586
0.440
1.406
0.940

B=

Case 4:The upper and lower bounds on two of the parameteke it natural
to describe the estimates in terms of a fractiothefdistance between the bounds
(as expressed in the mappigp In such cases the beta distribution is sometimes
used. Let the distribution @ for k = 2,3 be such that(@x) ~ beta(2,2). The
HPD estimate op with beta-distributed priors is identical to th&& estimate at
least up to three decimal places in this casenahdepeated here.

Case 5:In the previous cases we assumed ¥handy were observable with-
out noise. We now introduce white noise yoby adding iid errors drawn from
N(0,1) whereas is still assumed to be known with certainty. Theulting sto-
chastic vector of left hand side variables is deddiyys, and the outcome of a
draw was

y.=y+e=[44.064 42.976 41.36¢

wheree is an outcome of the errey and the system to estimateyis= X3 + €.

If we considele yet another parameter to determine, and introthue@rior in-
formation that errors were drawn from N(0,1) antl assume thap, andf; be-
long to the same beta distributions as in the previexample, the HPD estimator
for B is found by solving the problem

Ir}ga><h=k P, gk(B)r]pe

pE

subjectto u<f,<v
=XB+e

with py(0) being the beta density function as in the previexample and i)
being the standard normal univariate density. Anfanore easily computed is
obtained by recognizing that(®g) = 6(x-x°)l1(X) and taking the logarithm of
the objective function, which then becomes

max In(h) = > In(g, (B.) -0, (B)?) -2 > ¢?

kO(2,3} i=1

The resulting estimate @is p =[16.668 0.379 1.820 0.4}
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6. Summary and conclusions

This paper presents a Bayesian alternative to éh&ien of underdetermined
systems of equations. First, we reviewed the GMEEG@proach in the context
of estimating an underdetermined linear model withaoise and identified the
effective prior information as a combined effecttvieen supports, reference
probabilities, and the entropy criterion. It wasdicated that a “uniform distribu-
tions over supports” does not imply a “non-inforiwat prior on the parameters
of interest, but rather a clear prior preferentiaighting on estimation outcomes.
In the suggested Bayesian alternative the underdeted model equations and
the data represent the “Likelihood” information.Mizing from standard Likeli-
hood functions of conventional models with a predsaf family of distributions,
the Likelihood implies a constant positive weigbt &ll possible solutions of the
model equations and a zero weight for infeasibleesa All prior information is
represented in a standard Bayesian way via prioibgiility densities on model
parameters. Highest Posterior Density (HPD) es@matre obtained using an
optimization algorithm.

The Bayesian approach can be formulated to minechihavior of GME-
GCE models perfectly. However, more interestinigsigieneral structure allowing
full flexibility in formulating directly and transgrently the prior information held
by the analyst. For a unique solution to existedan amount of informative
prior information is necessary. However, if thisnist the case, a solution based
on the posterior mean can—at least conceptuallyi-bstiprovided.

The suggested approach lends itself easily toyhe of problems currently
solved with GME or GCE techniques. It has been es&fully applied to large
scale estimation and calibration exercises (Britale 2004, Jansson 2007). It
facilitates the peer review of methodology and ulytley assumptions by making
the employed prior information directly visible. fther research should examine
computational approaches for generating postereasimestimates under insuffi-
cient identifying prior information.
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Appendix 4.1. GAMS code for section 5.1
$title Balance a SAM with HPD estimator
$ontext
This program illustrates the use of highest pos terior density estimator
to balance a SAM.
The SAM is 4 by 4, taken from Golan, Judge, Rob inson (1994) (GJR94).
$offtext
Sofflisting
option limrow=0; option limcol=0;

*,

* Declarations and true sample data. We start with the SAM,
* and compute the coefficient matrix.
*,

set i 'rows in SAM' /1*4/,
set j ‘columns in SAM' /1*4/,
alias(i,ii); alias(j,jj);

set fun 'different datasets or extremum metrics '/
ori 'original data’
me 'maximum entropy solution’
ce 'cross entropy solution’
gme 'generalized maximum entropy solution'
gce ‘generalized cross entropy solution'
hpd "highest posterior density estimator outcom e/,

table FLOWDATA(,)) ‘true SAM'
1234

1450 15 80

2 10150 120

37 38650

40 3 1166 ;

table AO(i,j) 'Stochastic coefficient matrix (obser vation)'
1 2 3 4

1 0730 0 0.172 0.278

2 0159 0259 0 0.480

3 0111 0.688 0.694 0O

4 0 0053 0135 0.243;

parameter X(j) ‘column sum of SAM;

parameter y(i) ‘row sum of SAM';

parameter A(i,j) ‘coefficient matrix’;

parameter AFUN(fun,i,j) ‘comparison of differen t A-matrices’
parameter dist(fun) 'distance of estimated A from original’;

x()) = sum(i, FLOWDATA(G,);

y(i) = sum(j, FLOWDATA());

A(l,j) = FLOWDATA(G ))/x();
AFUN(ort'ij) = A(i,j);

* Declare fundamental SAM identities

variable o ‘objective variable';
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variable va(i,j) 'estimated coefficients’;
equation el(i) 'balance condition’;
equation e2(j) ‘'addup condition’;

el(i).. sum(j, va(ij)*x()) =e= y(i);
e2()) .. sum(i, va(i,j)) =e=1;

va.lo(i,j) = 0.00001 $ AO,):
vaup(j)=1  $AO(,);

* Implement balancing solutions by GJR94 and the HP
*

* A: Maximum entropy procedure
*,

equation eentropy ‘ordinary entropy';

eentropy .. 0 =e= -sum((i,j)$AO(i,j), va(i,)*log(v

model mme 'maximum entropy model' /eentropy,el,e2/;
va.l(i,j) = 0.25;

solve mme using nlp maximising o;

AFUN(ME',i,j) = va.l(i,));

*,

* B: Cross entropy with the same priors as GJR94
*,

scalar s 'standard deviation' /0.05/;

equation ece 'cross entropy’;

ece .. 0 =e= -sum((i,))SAO(,)), va(i,j)*log(va(i,]

model mce 'maximum cross entropy model' /ece,el,e2/
solve mce using nlp maximising o;

AFUN('CE',i,j) = va.l(i,j);

*,

* C: Generalized maximum entropy (GME) with the sam
* j.e. "uninformative" with (0,0.25,0.5,0.75,1)

*,

set k 'support points' /1,2,3,4,5/,
parameter ps(k) 'support values'/
10

2 025
3 05
4 0.75
5 1/

variable vp(i,j,k) ‘probability of supports’;

equation eGMEcrit  'GME criterion function';
equation eReParam(i,j) 'Reparametrization of A in
equation eProbSum(i,j) ‘Adding up criterion for pr

eGMEcrit .. 0 =e= -sum((i,j,k), vp(i,j,k)*log(vp(i,

eReParam(i,j) .. va(i,j) =e= sum(k, vp(i,j,K)*ps(k)
eProbSum(i,)) .. sum(k, vp(i,j,k)) =e=1;
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model MGME 'GME model' /leGMEcrit,eReParam,eProbSum,

vp.lo(ij,k) = 1E-12;
vp.I(i,j,K) = Licard(K);

solve MGME using nlp maximizing o;
AFUN(GME',i,j) = va.l(i,j);

*,

* D: Generalized cross entropy (GCE) with the same
*  Step 1: assign probabilities to the supports (

so that the prior SAM s recovered.
Step 2: use the probabilities of step 1 as pri

L I

parameter q(i,j,k) ‘Prior probabilities in GCE'
variable vS(,j) 'Generalized cross-entropy per
equation eGCEpre(i,j)'Definition of generalized cro
equation eGCE  'Negative of sum of generalized

eGCEpre(l,J) vS(i,j) =e= sum(k, vp(i,j,K)*I
.0 =e=-sum((i]), vS(i)));

*Step 1

va.fx(i,) = AO(.));
model MGCEL1 'First step in GCE as GME' /eGMEcrit,eR
solve MGCEL1 using NLP maximizing o;

*Step 2

va.lo(i,j) = 0.00001 $ AO(i,));

vaup(ij)=1  $AO(,));

q(i,j.K) = vp.I(i,j,K); ,

model MGCE2 'Second step in GCE' /eGCE,eGCEpre,eReP
solve MGCE2 using NLP maximizing o;

AFUN('GCE!,i,j) = va.l(i,j);

option ¢:3:2:1;
display q;

*,

* Estimate with HPD using the error density used by
*the data.
*,

equation epd 'posterior density equals prior for
epd .. 0 =e=-sum((i,)$AO(i,j), 0.5*sqar((va(,j)-

model mhpd 'highest posterior density model' /epd,e
solve mhpd using nlp maximising o;

AFUN(HPD',i,j) = va.l(i,j);

dist(fun) = sum((i,j), sqr(AFUN('ori',i,))-AFUN(fun
display AFUN,dist;
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el,e?/;

priors as GJR%4, i.e.
0,0.25,0.5,0.75,1)

ors in the GCE

point’;
ss-entropy’;
Cross entropies';

og(vp(ij,K)/a(ij.K);

eParam,eProbSum/;

aram,eProbSum,el,e2/,

feasible values
AO(i,)/(S*AO())));
1,e2/;
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Appendix 4.2. GAMS code for section 5.2

$ontext
This GAMS program illustrates the estimation of
linear regression in chapter 4. It implements,
1. Posterior mode estimator with triangular pri
2. Posterior mean estimator with uniform priors
3. Generalized maximum entropy with supports eq
4. Beta distributed normalised priors
5. Beta distributed normalised priors, normally

Torbjorn Jansson
LEI, The Hague, NL
$offtext
Pofflisting
$eolcom #
option limrow=0; option limcol=0;

*,

*SECO Declarations and basic problem setup
*,

* Declarations of some basic items

seti 'Rows in equation system' /i1*i3/;
set k 'Columns in equation system' /k1*k4/;
set stochk(k) 'All k except constant’; stochk(k) =
alias(i,j); alias(k,l);
set fun 'Different estimation settings'/
f1 'HPD with triangular prior'
f2 'posterior mean with uniform distribution'
3 'GME with supports = uniform bounds'
4 'beta(1.75,1.75) distributed priors for k2,k
5 'with normal(0,1) noise in likelihood functi

parameter b(k) True parameter vector’;

parameter estb(k,fun) 'Estimated parameter vector’;
parameter x(i,k) 'Exogenous’;

parameter y(i) 'Endogenous’;

parameter xmean(k);

parameter xvar(k,k);

* Re-initialise pseudo random number generator if n
* Default seed is 3141, but | type it anyway just t
execseed = 3141,

*execseed = gmillisec(jnow);

* Data generation, manually entered for now

b(k1) =10.0;
b(k2') = 0.5;
b(k3) = 1.5;
b(k4') = 1.0;
xmean(kl) = 1;
xmean(k2') = 20;
xmean(k3) = §;
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xmean(k4) = 12;
xvar(k2','k2") =5;
xvar('k3','k3) = 2;
xvar(k4''k4') = 3;

* Replace random number generator with outcome in p

*x(i,K) = normal(xmean(k),sqrt(xvar(k,k)));
x(,k1) =1,
x(i1','k2") = 20.733;
x(i2''k2') = 17.827;
x(13','k2") = 20.001;
x(i1','k3’) = 8.656;
x(i2''k3) = 7.443;
x(i3,'k3) = 6.715;
x(i1','k4") = 8.830;
x(i2''k4") = 13.619;
x(i3','k4") = 12.596;

y(i) = sum(k, b(K)*x(i,k));
* Prior distributions: triangular for k2 and k3, an

setprik) 'parameters with prior distribution
setuml ‘upper, mid and low points' /Jupp,mi
set uplo(uml) ‘'upper and lower bounds' /upp,low/;
parameter bound(k,uplo) 'bounds’;

* Declaration of model variables and equations used

variable p ‘posterior density’;

variable f(k)  'prior density of parameter val
variable vb(k) ‘estimated parameter vector’,
variable vnb(k) 'b normalised to [0,1];

equationeqgpd  ‘definition of posterior densit
equation eql(i) 'likelihood function for parame
equation egnb(k) 'normalization of b to the inte

eqpd ..p =e=prod(pri, f(pri));
eql(i) .. y(i) =e= sum(k, vb(K)*x(i,K));

eqnb(pri) .. vnb(pri) =e= (vb(pri) - (bound(pri,'lo
/(bound(pri,'upp’) - bound

*,

*SEC 1 Posterior mode estimator with triangula
*,

* Implementation of triangle distribution:

* To avoid abs and max, the triangle is put as th
* which is equivalent to the standard piecewise |
*first two equations are the legs of the triang|

* plus a tiny amount to avoid log of zero.

parameter primode(k) ‘'mode of prior dist’;
parameter prispan(k) ‘span of prior dist’;

* Replace random number generator with outcome in p
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*primode(pri) = b(pri) + normal(0,0.1);
primode('k2’) = 0.434;

primode(k3’) = 1.4515;

bound(pri,'upp’) = primode(pri)*2;
bound(pri,'low") = 0;

prispan(pri) = abs(bound(pri,'upp’) - bound(pri,o

display x,y,b,bound,primode;

equation eqfl(k) 'definition of triangular densi
equation eqf2(k) 'definition of triangular densi
equation eqf3(k) 'definition of prior density no

eqfd(pri) .. f(pri) =l=  4*vnb(pri);
eqf2(pri) .. f(pri) =l= 4 - 4*vnb(pri);
eqf3(pri) .. f(pri) =g= 0.00001;

model hpd1 /eqfl,eqf2,eqf3,eql,eqpd,eqnby/;
solve hpd1 using nlp maximizing p;
estb(k,'f1) = vb.l(k);

display primode;

*,

*SEC 2 Posterior mean estimator with uniform p
*,

* The same span is assumed as with the triangular d

parameter line(k,uml) ‘end and mid points of line";
alias(pri,pri2);

* The feasible space for B is a line in 4-space, li
* defined by the bounds (low,upp) for each of the f
* Find the line by trial and error; there are only

model mlin /eql/; mlin.holdfixed = 1; mlin.solprint
loop(pri2, # loop over parameters
loop(uplo, # loop over bounds
vb.lo(pri) = bound(pri, low);
vb.up(pri) = bound(pri,'upp’);
vb.fX(pri2) = bound(pri2,uplo);
solve mlin using cns;
line(k,uplo)$(mlin.modelstat = 15) = vb.I(k

’

* The posterior mean is the midpoint of the line ju
line(k,'mid") = (line(k,'upp’) + line(k,'low"))/2;
estb(k,'2") = line(k,'mid";

display line,bound,estb;

*,

*SEC3 Generalized maximum entropy with suppor
*,
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variable prob(k,uplo);
equation eentropy, egme(k),eqaddup(k);

eentropy .. p =e=-sum(pri, vnb(pri) *log( vnb(

+ (1-vnb(pri))*log(1-vnb(
egme(pri) .. vb(pri) =e= sum(uplo, prob(pri,uplo)*b
egaddup(pri) .. sum(uplo, prob(pri,uplo)) =e=1,

model mgme /eentropy,eql,eqnb/;
prob.lo(pri,uplo) = 0.00001; prob.l(pri,uplo) = 0.5
vb.lo(pri) = bound(pri, low);

vb.up(pri) = bound(pri,'upp”);

solve mgme using nlp maximising p;

estb(k,13) = vb.I(K);

*,

*SEC4 Beta distributed normalised priors
*,

scalar t ‘parameter of symmetric beta' /
variable ff(k) ‘intermediary variable'

equation eqbp(k) 'definition of beta density’;
equation eqff(k) 'definition of special density'

eqbp(pri) .. ff(pri) =e= 1/beta(t,t)*vnb(pri)**(t-1
eqff(pri) .. f(pri) =e= ff(pri); t=2;

model mhpdbeta /eql,egnb,eqbp,eqpd,eqff/;
vnb.lo(pri) = 0.00001;

solve mhpdbeta using nlp maximising p;
estb(k,4) = vb.I(k);

*,

*SEC5 Beta distributed normalised priors, nor
*,

parameter e(i)  'additive error’,

parameter ys(i) 'Y plus error’;

variable ve(i)  ‘'estimated error’;

equation eqls(i) 'stochastic version of linear m
equation eglogp  'sum of logged probabilities’;

eqis(i) .. ys(i) =e= sum(k, x(i,K)*vb(k)) + ve(i);
eglogp .. p =e= sum(pri, log(vnb(pri) -sqr(vnb(pri
- sum(i, 0.5*sgr(ve(i)));

model mNoiseHPD /eqls,eqlogp,eqnb/;

ys(i) = y(i) + normal(0,1);

solve mNoiseHPD using nlp maximising p;
estb(k,'f5") = vb.l(k);

* Save everything to a GDX file for later analysis

display estb,ys; execute_unload 'hpd1.gdx’;

107

pri));
ound(pri,uplo));

)*(1-vnb(pri))**(t-1);

odel’;

)



Chapter 5  Estimation of supply response in CAPRI

1. Introduction

The primary objective of this research is to depedorobust method for estimat-
ing the behavioural parameters of the supply moututee regionalised European
agricultural sector model CAPRI, utilizing the tirseries of observations avail-
able in the CAPRI database and the optimality doorth of the model. As a sec-
ondary objective, the current model assumption aristant yields will be re-
viewed and, if feasible, revised.

The CAPRI model is a constrained quadratic programgrmodel for NUTS2
regions in 34 European countries, where agriculitureach region is represented
by an instance of a template programming model.

In this context we only consider the arable anmuap producing part of the
representative regional farm, keeping other patsi§andry, permanent grassland
and permanent crops) fixed when necessary or lgatiem out altogether when
possible. We also ignore the fertilization constigiof the full model, working
with Leontieff fertilizer input coefficients. Witlthose restrictions, we need to
estimate parameters for a maximum of 23 land useitées using ten inputs in
172 regions in EU-15 (thus excluding new membédesj)a

Since most regions produce only a subset of ther@8s, and some regions
have too short time series of data, the actualnéxdéthe exercise is somewhat
smaller. Still, it is a large scale applicationtthequires a method equally applica-
ble to all regions and that is robust to data motd. The full list of crops and
crop groups (see following sections) is provide@mpendix 1, table 16. The ten
inputs are listed in table 17.

Data for the model is provided by the CAPRI datebd$e part of the dataset
that is relevant for this research has been conpiten theEconomic Accounts
for Agriculture (EAA, production values and volumes at nationakleandNew
Cronos Regidacreages and yields on regional level), bothletas from Euro-
stat, completed with policy information from regiidas and expert data where
necessary. The dataset has been processed by extanfmauristic software of
the CAPRI system to be made complete (no holesria series) and consistent
(with respect to physical and economical interiefe) on member state as well
as NUTS2 level.

The estimation is explicitly uses the optimalityndd@ions of the model, to-
gether with some parameter restrictions. Priorrimfation is included in a Bayes-
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ian estimation approach as outlined in the previthapter, and the point estima-
tor is computed by numerical maximization of thestgoior density. The statisti-
cal model estimated resembles the Bayesian analfydise measurement error
model in Zellner (1971), but is more complex siitdastead of the linear model
in Zellner (eq. 5.31) has a system of equationesgmting the optimality condi-
tions of CAPRI, and instead of the additive measiemat error model for the "ex-
ogenous” (Zellner eq. 5.30) it relates some modehpeters to observations
through a simple expectation model.

The report is outlined as follows: In section twe describe the structure of
the template regional representative farm modal ithased for all regions. The
existing model hafixed input and output coefficients. In order to chedkether
that is a good specification, two sections folldwatt investigate two different
extensions of the model to endogenous yields. ¢tigethree we test for all re-
gions of the model whether yield significantly de@e on inputs. Section four
analyses in greater depth for one single regidects for its good data quality
(long time series, many crops produced) whethemgbd acreages lead to
changed yields. Since it is concluded that nonthefextensions in section three
and four is statistically reliable, we return ircsen five to the primary objective
to estimation of the model with fixed yield coeféints. In section six, results are
presented for selected regions, and compared t@gudts of other studies.

2. Aregional supply model
The regional representative farm is assumed tasdf solving a linearly con-
strained quadratic programming problem (1) in ev@me periodt. Throughout
this chapter we generally use lower case bold Feiters to represent items that
are column vectors for eathupper case bold face letters to represent matrice
and italic letters to represent scalars. The dimoassof vectors and matrices are
denoted by upper case letters, where a lower caiston of the same letter de-
notes the indices of the elements in that dimepsonthat for instance the)-
vector of acreages’ means a vector of length with elementsg, j = 1...J. The
prime character’] denotes the ordinary transpose of a vector oaixn

All regional models have identical structure, atmdcnoss-regional constraints
or relationships are assumed, in order to keep dbemomplexity of the estima-
tion. Thus, indices for regions can be omitted. Phaducer is assumed to solve
the optimization problem in each period indepenigenit other periods, thus all
items that change across periods obtain an ihdex that for examplg; denotes
the vectorx in periodt. This implies thatx also can be considered a 3-
dimensional array with dimensions with only oneutoh, or dimg) = (J,1,T). At
some occasions it is convenient to denote the sienes for some elemenof x,
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and this is done somewhat sloppyxasvhere the reader is assumed to remember
thatx also has another dimensi@nwhich is now in the row$
The model can then be written for each period as
maxx;[Y,p, +s, ~Aw,]-x| [qtc — 3l [D+ GBG’]Xt]
. )

s.t. Ryx, =v,

where for each,

Xt vector of acreages for eachJdfind uses

Y J x J diagonal matrix with yields on the diagonal
o} J vector of prices

S J vector of direct subsidies

Ay J x| matrix of input coefficients for inputs

W | vector of input prices

O price index

c J vector of parameters

i a land availability index (described further beJow

D J x J diagonal matrix of parameters

G J x M matrix that sums up land use by eachMf= 6 crop groups,
i.e. withgyn = 1 if cropj belongs to groum, elseg;, = 0

B 6 x 6 matrix of parameters

R: 2 x J matrix of constraint coefficients, wherg = 1 forj = 1...J and
r; is the net set-aside contribution of cjop

Vi 2 vector withv; total land availabley, = 0.

The model implies that the producer maximises thra sf gross margins (the
first term) minus a quadratic function (the secdedn), subject to a land con-
straint and set-aside requirement. The quadratiction in the objective function
is a behavioural term in the tradition pbsitive mathematical programming
(PMP, see e.g. Horner et al. 1992 or Howitt 199%} ts intended to capture the
aggregated influence of economic factors that ateemplicitly included in the
model, like land heterogeneity and additional reseuconstraints (Heckelei
2002). The function is in what follows sometimedereed to as thePMP-
function and the parametecs D andB as thePMP parametersor the behav-
ioural parameters of the model. It is the objectifeéhis work to estimate those
parameters.

In order to reduce the number of parameters tanasti, we assume that the
guadratic function has a special structure: Crosp-effects are only permitted
betweengroups of cropsso that for instance an increase in the areaotatpes

7 |.e. we perform a generalised transpose of theaBrByx where the first and last dimensions are
swapped, and signal this only by a switch of inglida general, symbols are better thought of as 3-
D arrays where the index denotes tfledBnension.
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plus sugar beet may influence the cost of producergals and increase the cost
of producing both sugar beet and potatoes. In omlgrovide each individual
crop with increasing marginal co¥tswe also admit a quadratic term that depends
only on the individual crop. The structure desdalileimplemented using a vector

c of linear effects, a diagonal matiixof quadratic own-crop effects, and a matrix
B of cross-group effects. Thlex M matrix G is used to sum the acreages within
each group, substantially reducing the number cdipaters compared to estima-
tion of a fullJ x J matrix.

The pricegp andw in the model are nominal, and since the quadfatiction
is assumed to capture, among other things, thertappty cost of resources not
explicitly modelled, it should be inflated. This abtained by multiplication of
by the general price index.

The total amount of land fluctuates slightly betweagears, in general with a
downward trend due to migration of land into oteectors (fallow land is mod-
elled explicitly as a land use activity). We do kabw if it is productive or un-
productive land that migrates, so to avoid thatllamgration strongly influences
land rent (the dual value of the first constraimg, use land shares instead of ab-
solute land use in the quadratic term of the PMition. This is equivalent to
scaling the matrix[) + GBG'] by the square inverse of total land available in
each period. In order to obtain values approxinyaielerpretable as “marginal
cost change in euro per hectare” it is also mudtipby % times square of total
land available in year 2000, oni)2000 Thus, thd; = ((V1)200d (Vi))?.

The optimization model (1) can be equivalently diésd by the following
first- and second order conditions for optimal

Y.p, +s, AW, —qc-1,[D+GBG'fx, ~RIx, =0 @)
Rix: = v; 3)
B=U'U (4)
d; 20 forj = 1...J (andd; = O fori #j) (5)

A: is the 2x 1 vector of dual values for the constraints. Nt for positive
semi-definiteness of the Hessian matrix it is sigfit thatB is positive semi-
definite, which is satisfied by the Cholesky faation with the upper triangular
matrix U, and that all elements Bf are non-negativé

18 More precisely, to ensure a strictly definite Hassmatrix.

' In fact, we will use a stronger restrictiondyf> & > 0 in estimations to avoid numerical problems
when estimating elasticities.
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The primary objective of the chapter can now beenwecisely formulated as
estimating the PMP parameters by using the optiynatinditions as estimating
equations.

The secondary objective of evaluating the assummiconstant yields can be
restated as an attempt to lift some of the noralitye out of the PMP-function
and explicit it in the form of a non-constant mawgi gross value added, i.e. to
estimate the relationship between yields and imget. The first such extension is
a variant of the model where yield depends endaggpoon input use (land
counting as an input). A second extension is tlssde modification that yields
depend on allocated acreage.

3. Should yield depend on input use?

3.1. Motivation

The purpose of this section is to determine ifgsiof outputs and inputs are im-
portant determinants of yields of major agriculturaps in the EU. If a signifi-
cant relationship between prices and yields caidéetified, yields should be an
endogenous function of input use in the CAPRI modksle input use and yields
should be treated as exogenous to the model. Tiwerlyg idea is that perhaps
some of the nonlinearity of the model, which isreatly modelled only by the
qguadratic cost component, can be explained morécékp(cf. Heckelei 2002).
To decide which of those two alternative formulatido use, we estimate a yield
function.

We start from the microeconomic model (1), and amigmit with yields
endogenously depending grandA as in equation (6). We thus assume that yield
Y;: of cropj in periodt can be approximated by a function that is quacliatin-
putsA = (g;), linearly dependent on planned number of hectasd on trend
and with a random terig

_ 2
Yii =Voj Vi Te + Vo Xy + Qg + 0y @5 & (6)

In this estimation, it is assumed that the acredigeationx is the optimal so-
lution to the maximization problem at some expegiddes and yield. We may
then use the envelope theorem to obtain the optinw@nditions for input use.

The first order condition for profit maximum of tlextended model with re-

spect toA at the expected output prigesind input prices can be written
Mg = ( +2 ) _
aai,-t P =% a8y JPj = Wi

Solving for the optimal input quantities giv&§* = (Wi/py — aij)/(2a2;). Sub-
stituting that expression into the yield functi@) énd defining
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ﬂOJ ij - Iz 4a2|J
Bi =V
B =
Lo = ! and
3ij 4a2ij
Fijt = Wi/ Pit

gives us an expression for yields that depends®sdquare price ratig:

Yy =Bo; + BTy + Baj Xyt +Z:83ij rij% T & (7)

The second-order condition for a profit maximunthiat az; < 0, so we expect
[ to be negative. Without that condition holdingetrwe will not obtain useable
estimates, and we would better choose exogenoldsyi€hus, we want to test
the hypothesis thak < 0 versug3 = 0.

3.2. Data

The estimation is carried out on NUTSII level faetEU15 member states. All
input prices have been aggregated to a single yice index by first computing
the Laspeyres price index of the aggregates “ptaotection” (PLAP) and “all
other inputs” (REST), with the average total ingpiantities 2001-2003 as
weights, and then merging them into a single imige index for each crop by
computing the Laspeyres price index using the a@e001-2003 crop specific
input coefficients as weights (input coefficientsning from the CAPRI data-
base). Expected output prices were observed plaggged one year (naive price
expectation), whereas input prices entered withamit

It is crucial to be able to separate the effedrefid from that of the other ex-
planatory variables., The squared price ratio asydver, likely to contain a trend
component as well, which we will not be able toagepe from the pure trend. To
be on the safe side, i.e. not to find a signifidafiuence of prices that is really
only the influence of the trend in prices, we satbtrlinear trends from the ex-
planatory variableg andr. This is done by fitting and subtracting a simipénd
from each variabl& using the equation

g =g-c(cc)'ce
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whereC is then x 2 matrix with ones in the first column and thesstre from 1
to n in the second column, arfda time series for some exogenous variable to
clear of trend.

3.3. Estimation method

The principal estimation method used is Least Szpiarhree problems are likely
to be present in the data set, so that some matidits of the ordinary least
squares (OLS) seem appropriate. Firstly, there beaproblems with endogene-
ity, because the lagged price ratio is likely tiuience acreage. To avoid obtain-
ing biased estimates, we try an alternative estimathere the trend free acreage
is instrumentalized by lagged acreage, lagged ouyipce, lagged price index of
substitutes, direct subsidies and the other explanaariables in (7) except for
lagged squared price ratio. Denoting, for now, TheK matrix of K explanatory
variablesT years for each cropby X; (not to confuse with acreagg the instru-
mental variables matrix b¥;, and the vector of coefficients Iy, we estimate

BIV] =()A(’jxj)_1xljyj1 >A(,- :ZJ(Z'ij)_lz'ij forj=1..J

The correlation between acreage and instrumendadiseeage should be rather
high for the instrumentation to make sense. Thdficants of correlation are
shown for all relevant crops in table 1. Albeitrthare some cases with low corre-
lation, the general impression is that the instnutaigon is good, with 55% of the
correlations greater than 0.80.

Table 1: Correlation between acreage and instruatieatl acreage

BL DK DE EL ES FR IR IT NL AT PT SE FI UK

SWHE 0.72 084 086 087 087 070 054 061 0.39 0.83 0.79 0.78 0.90 0.54
DWHE 0.84 0.67 0.89 0.92 0.85 0.90 0.84 0.95
RYEM 0.89 0.55 0.87 0.61 0.83 0.96 0.42 056 0.89 0.79 0.77 0.61 0.83
BARL 092 0.74 0.87 094 0.78 088 096 0.89 0.70 0.85 052 090 0.79 0.91

OATS 0.79 065 096 046 097 099 0.63 091 0.87 0.77 0.85 0.74 0.88 0.66

MAIZ 0.78 0.97 0.78 0.53 0.86 0.83 0.85 0.74

OCER 0.60 0.63 0.92 0.78 0.90 0.81 0.95 0.90
RAPE 0.86 0.87 093 0.79 0.84 0.94 0.96 0.87 0.26 0.41
SUNF 0.91 0.97 0.96 0.82 0.86 0.88 0.77

SOYA 0.86 0.71 0.74 0.69

PULS 0.78 040 0.96 0.98 0.80 0.95 093 0.89 093 0.79 053 0.84 0.73

POTA 0.88 0.88 0.99 0.69 094 0.74 053 087 0.68 0.89 043 0.64 0.73 0.62

SUGB 0.77 0.94 0.76 054 094 068 0.82 0.72 0.77 099 054 0.68 0.88 0.90
MAIF 098 0.80 0.64 091 0.53 0.97 0.80 0.84 0.85 0.58

OFAR 0.72 0.69 0.95 0.99 0.72 0.82 0.62 0.71 0.93 0.63 0.85 0.81

Secondly, a strong correlation between error tesfnsertain crops should be
expected due to the similar influence of weathersionilar crops. For example,
one should expect a positive correlation betweenyilelds of barley and rye,
because their vegetative periods are similar aeg ttave similar requirements
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regarding weather and soil. Thus, a seemingly ateélregression (SUR) would
be appropriate. Such an estimator would be moieiafit than OLS would the
covariance matrix be known. In the current case, dbvariance matrix is not
known, but has to be estimated, which may hamgariexicy considerably. This
was tried out using iterated SUR with and withdw# instrumentation above. The
estimation was carried out in three steps: (iruraentation oX by X as above,

(i) iterated SUR ofY on X to obtain stable weights matii%, which was com-
puted from the inverse covariance magiinf the error terms of the regression of
Y on X, weighting each element of the covariance matyixhe harmonic mean
of the degrees of  freedom of the relevant  equations

\

DF; =(N; =K JIN; -K;), and (i) computation of estimator

Bsur = (>A<'WX )_1>A(‘Wy. The index free matrices represent the stackeigrsyas
in Greene (2003, p. 342X is the (T) x (JK) partitioned matrix with matrix; on
thej™ diagonal position and zeros elsewhere, and sifilaX . W =310 1, and
y the vertically concatenated vectgys

Thirdly, there could be an aggregation bias. It ma&jl be that for example a
price increase has a greater production responsesub region with generally
low yields. The weight of the low yield region ihet aggregate would increase,
leading to reduced aggregate yield although thiel yfieeach sub-region increased
as response to the higher price. To investigatedfiect to the extent possible by
the available data, the regressions were re-rursudn national level (NUTS2
where possible, UK NUTS1). Prices are only avadlabh national level. They
were mapped down to the respective sub regionseayes and vyields, on the
other hand, are also available for NUTS2 regions.

Table 2: Different estimation methods tried

Estimation nr. Regional resolution Acreage instrumentation SUR
1 national no no
2 sub regions no no
3 national yes no
4 sub regions yes no
5 national no yes
6 sub regions no yes
7 national yes yes
8 sub regions yes yes

Alltogether, eight different estimations were rundccount for each of the
three problems. The estimation setups are shouebie 2. The estimations were
evaluated based on the number of significant cdefits using t-tests on the 5%
level. The t-tests were computed for the f&gt= 0 using standard deviations of
the vector of estimators computed as the squareofoihie diagonal elements of
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Cov(p) = ()2 W)A()_l. Note that in the case of no instrumentati¥nz X, andw*
becomes the standard variance estimator with degfdieeedom correction.

3.4. Results

The results indicate that there is a relationsleipveen yields and input prices and
also between acreages and yields in some regiorsofoe crops., The relation-
ships ,however, can not be statistically deteabecli crops in all regions. For the
major shareof all crops no significant influence at all ofitier input prices nor
acreages on yields is found. The results also ghewvthe sophistication of the
estimation method by the instrumentation of acreagee of sub regions and
SUR covariance structure is worthwhile, becausentitaber of significant coef-
ficients increase by their introduction, and thgnsiof the price influence tend to
be more conform with theory (which suggests a negamnfluence of the output-
input price ratio). Table 3 shows the number oinested equations, the number
of coefficients with positive and negative signsldhe number of coefficients
significantly different from zero with each sign.

Since a rather large number of t-tests were cawigidat the 5% level, one
would expect 5% of the tests to show a signifiggt O even if the trugs = 0.
For example, in the estimations with sub regior&g8lt-tests were carried out.
We would then expect 2.5% of 1858 = 93 tests tawshaignificantly different
from zero in each direction even if the tlue 0. Even with this in mind, it seems
that the number of significant coefficients is faoge to be a pure random out-
come (e.g. 184 negative significant to 96 posisigmificant out of 1858 tests for
regionalised iterated SUR estimation with instrutagan). Therefore, we con-
clude that there is indeed a general influencerigkep on yields, but that the in-
fluence is so hard to detect statistically thataes not seem worthwhile to try to
estimate an economic model with endogenous yields.

Table 3: Summary of results for different estimatsetups.
Est. nr. Eq b3<0 b3>0 b3<0* b3>0* b2<0 b2>0 b2<0* b2>0*

1 163 90 73 12 8 95 68 20 6
2 1858 1097 745 137 63 1051 807 204 114
3 163 95 68 9 7 96 67 14 4
4 1858 1112 730 125 61 1024 834 117 103
5 163 98 65 24 9 84 79 29 11
6 1858 1032 810 189 117 995 863 273 192
7 163 98 65 28 6 90 73 31 21
8 1858 1062 780 184 96 986 871 176 178

Est. nr. refers to estimation number in tablbgis the coefficient of price ratid, the coefficient of acreage,
and a star refers to significance of 5 % level dewtided t-test.

Why is there no statistically reliable influence mices on yields? It is well
known that yield of most crops is a concave functaf inputs. Given profit
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maximizing behaviour of producers, a relationshipilar to that estimated here
should result. There are, however, at least fivppnabstacles involved.

(1) The quadratic yield model implied here may wemng. In reality, yield also
depends on a lot of other factors that are allectdd in the error term. Crop rota-
tion is certainly a significant determinant of yiethat is not controlled for in
these estimations. This could be introduced by rafahselection of substitute
acreages. A share of this influence should alrdeyepresented by the inclusion
of own acreage, and introducing further explanatasiables would reduce the
degrees of freedom and aggravate the problems emittogeneity (acreages de-
pending on prices)

(2) The producers may not be rational in the wasuaged here. Output price
expectations may not be naive, and the decisianmrn use may have to be taken
with some time lag so that an input price expeatats required as well. It may
also be the case that the yield function is largelknown to the producer, so that
rational behaviour as in the conceptualized mosdelpossible. Producers are
perhaps more likely to choose input amounts frotabde or heuristic with very
few, if any, alternative levels of inputs. As aneahative price expectation, the
formula 0.6 P, + 0.33,., was tried, but without improvement in fit.

(3) The yield function may have a shape that inspdinost the same input use
and yield for a wide range of price ratios, so thate are almost only two differ-
ent profit maximizing solutions: either “zero” ofutl” input use. That would be
the case if the graph of yield to inputs has anoaintinear initial part and then
bends sharply downwards at some point. Then tHaeinfe of the price ratio
would be “almost” discontinuous, with almost no ipa in yield for moderate
price ratio changes and a big leap at some poh#n;Tfor most price ratios, the
optimal yield choice is almost the same.

(4) It may well be the case that the sub regiomatllused in the estimations 2,
4, 6 and 8 is still too aggregated so that an agdien bias remains.

(5) The data sampling model underlying the estiomeiis inappropriate. Ac-
tually, observed acreages and prices are only amalis of the true (latent)
planned acreagandexpected priceBecause the errors on acreages and prices
now (erroneously) are attributed to measuremerntreiin yields, the estimated
variance is too large, and thus the tests likelakee. The coefficients are also
likely to be biased in unknown directions (Full&8Y). In addition, the observed
yield is theaverageyield, whereas if yield really is endogenous tleeision is
based on thexpected margingyield. Actually, a model including measurement
errors and marginal yield expectation together whth full optimality conditions
(2-5) was the starting point of the estimation, prdved too complex to handle
efficiently. Thus, the estimations of yield funat®were performed in this sepa-
rate step to determine whether endogenous yieldidle part of the final model.
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We return to the measurement error model and yefibctations below, though
without endogenous input coefficients.

4. Should yields depend on land allocation?

4.1. Problematic marginal cost curves

If the zero-profit condition (2) is solved forwe find that acreages are linearly
depending on prices according to the relation

x, =17 [D+GBG'|*[Y,p, +s —Aw, —gc-RA,] (8)

Because the matri;k[l[D+GBG']_1 is required to be positive semi-definite by
the second order conditions, we expect the grapiqtofgross margim; =Y p; +

s — Aw,, to be an upward sloping curve, so that increagiogs margin leads to
increased acreage. Figure 1 shows the developrmey® acreage and gross mar-
gin (nominal prices) between 1985 and 2003 for@frtbe most important cereals
producing regions in France, the Nuts 2 region witde FR24 (Centre). Obvi-
ously, it would be difficult to fit acreage to geomargin with a positive slope if
no other information is included, because the groaggin has increased whereas
production decreased. In fact, the coefficientannOLS regression of acreage on
constant and gives the slope coefficient -0.012% i p-value of 0.0152. The
points and the fitted line are shown in figure 2.
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600 . .
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Figure 1. Gross margin and acreage of rye in FR24.
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y = -0.0135x + 15.164
a0 IEVENE R? = 0.4098
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Figure 2. Acreage linearly fitted to gross marginriye in FR24.

Thus, something more is influencing the producerigien to decrease rye
production despite apparently increasing gross mag8gveral auxiliary hypothe-
ses come to mind. For instance, we tacitly assuthatlthe dual vectok was
constant, whereas it in fadt depends on the gross margins of all other crops.
Perhaps gross margins in, say the most importamt soft wheat, has increased
enough to increase land price enough to force pgekFigure 3 shows acreage
and gross margin in soft wheat in the same regiahtiane period. As can be seen
in the figure, the gross margin in soft wheat hesrélased slightly during the time
period, which is not favourable for that hypothe@mough it is not enough to
reject it; soft wheat may have been the wrong crop)
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@ 600 /" - 750
£ 500 =
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O I I I I I I I I I I I I I I I I I 600

Figure 3. Gross margin and acreage of soft whelaRi?4.
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A second assumption in the simple regression afegy® on gross margin was
that the coefficient is constant over time. Comgxami of the regression model
with the equation (8) derived from the first ordenditions reveals that the coef-
ficient contains the parametecs D and B which change over time with price
index and total area. Thus the cost comporeattually increases in hominal
terms over time, which also helps alleviate theébfmm of reverse reaction of rye.
A proper analysis should thus include at leasfulidirst order conditions.

Estimation of (2-5) for all crops simultaneoushitwa measurement error ap-
proacﬁ0 allowing for errors orx, Y, p, A andw, and endogenous dual values
with prior information for identification, did hower result in a boundary solu-
tion for D and/orB. The boundary solution is such that rye obtainsraall a
coefficient as possible, still yielding a positidefinite matrix. That implies an
elasticity of supply of rye of close to infinity ithe resulting simulation model,
which is simply not plausible. That model is funtléscussed in the next section.

Gross margin (Euro/|

o

1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

Year
Figure 4. Average vyields of rye in FR24

The rest of this section discusses a third auyilfeypothesis that is sufficient
to estimate rye parameters with the expected 3iba.hypothesis is based on the
fact that our yield data are reallyerageyields, whereas the producer is assumed
to base his production decision erpected marginaield. Then gross margins
m were computed in the wrong way above, using aeeyiglds. In fact, a closer
look on the componentg, Y, s, A andw of gross margins reveals that output
prices have dropped steadily, and that the maisoredor the increasing gross

20 The estimation also uses linear trends for expegield and expected input requirements to re-
move stochastic weather influences, and uses jformation of 0.5 times gross margin of soft
wheat for land price dual value and similar forasile for identification of the model.
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margin is that rye yields have risen sharply frdyouwt three to about five tons per
hectare (figure 4). If the marginal yield is actyalepending orx, then the devel-
opment of marginal yields may be a qualitativelffestent from that of averages.

4.2. Motivation for endogenous yield

It could be the case that rye, which is grown aromsiderably smaller area than
soft wheat, is treated as an inferior alternatifenany producers, and is thus
grown on soil less suitable for cereals productloprices increase, rye becomes
an increasingly competitive alternative to soft athen the better soils. In that
case, the marginal yield of rye with respect teeage would be anpward slop-
ing function.

One could also motivate downwardsloping yield function (of acreage) by
assuming that first the soil that is best suitadrfe is used, or that there is some
rotational effect favouring smaller land use foe.ryio investigate which is the
case, we attempt to estimate the relation betwesd gnd acreage.

Assume that marginal yield is approximated by thedr model

fi(%0) = Boi + TBy + 2B

with T a linear trend, and that observations of averaglds/arise according to

Integration gives the model to estimate,

Yie = B + TBy + Xy + & 9

Note that the coefficien, in the expression for the marginal yield entergwi
twice its estimated value. Thus,/; is positive and; decreases over time, then
the marginal yield decreases over time compareévage yield. If the,; is big
enough, this may be enough to turn the appareritiygross margin develop-
ment for example in rye in the case study regio@4-Rto a negative one.

4.3. Pitfalls when estimating the expected marginal yield

A straightforward least squares estimation of (®eg a3 for rye of 0.04577,
which is supporting the hypothesis that gross nmaagtually has been increasing
less rapidly than indicated by the average yielti t-test for3 = 0 gives a poor
p-value of 0.544. The estimation, however, hagadtitwo pitfalls that potentially
make the estimation less efficient and reducepdtheer of the t-test gf, = 0.

() The yields of all crops tend to be correlated.
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(i) We ignore that acreage is measured with errors

The first pitfall makes the LS estimation inefficte because a more efficient
estimator would recognise that if, say, all cerdéalge a low yield in 2003 (which
was the actual case), then error terms in that sleanld have less weight in the
estimation. That is, aeemingly unrelated regressig8UR) could be a more ap-
propriate model (as in the previous section).

The second pitfall must be further explained. Abdawsas briefly mentioned
that the ultimate goal is to perform an estimatioth errors on the acreagesSo
we should not now ignore that our observationsaéages may not be the true
planned acreages, but acknowledge that a measuremenmay be involved. If
we assume the simple model that observed acreagelate to true planned acre-
agesx with a simple additive error model,

Xj =Xty

then the estimates ¢ are likely to be biased and the variances of gienates
are likely to be biased too (see Fuller 1987 fthaough treatment of the linear
measurement error model). In a simple linear med#éi a single explanatory
variable, the coefficient is biased towards nullébfactork = oy, (oy + du)™, and
the estimated variance of the coefficient is biasgd®. (but t-test} = 0 is not
weakened). Unfortunately the situation becomes rooneplicated when there are
two explanatory variables (TREND and ACREAGE), arfievhich is measured
without error (TREND). To correct for these biaseasneasurement error model
seems to be the appropriate method.

4.4. A seemingly unrelated regression

The SUR estimator requires knowledge of the comagamatrix of yields. If that

is not available, it can be estimated in a feagjjeleeralised least squares estima-
tion (FGLS). In this analysis we use an iteratedRSlh the first step, we estimate
the model with independent error terms (identitytriraas weighing matrix). The
residuals are used to estimate the yield covariamaigix .. The inverse covari-
ance matrixX." is used in the second step to estimate the FGL&hiy mini-
mising the generalised sum of squares

minZ(th = Boj =BTy = B X )(Z;l)jk (th = Box = PuTy _:szxkt)
jkt
wherej,k are alternative indices fdrcrops and the index for time.
In order for the coefficient vector to convergertaim limitations are required
to bring down the number of elements3p This was done by subdividing the
crops into five groups that were conjectured tetraeamilarly or perform a similar
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function in the rotation. This is equivalent toeparate SUR estimation for each
group. The groups are the ones shown in table iBeimppendix to this chapter,
except of course for the group NOCR (crops withphgsical yield) which was
not included. In FR24 there was sufficient datalfércropping activities.

The SUR estimato;@2 for 5 in rye is considerably smaller than the OLS esti-
mator, 0.01878 instead of 0.04577, and the t-s&afisdicates an even less sig-
nificant coefficient, P(ab£2)20.01878[|52:0) = 0.598. The block wise covari-
ance matrix and the estimated coefficients are shiowhe following tables (4-9).
One can see in the table that the assumption @ridion of yields across crops
within the groups is reasonable, because all itemsept for the covariation
PULS.POTA in table 8 are positive. Nevertheless, ebtimated,B2 are signifi-
cantly different from zero only in 4 out of 15 cageletermined by Student’s t-
test), rye not being one of them. So even if theffadent on rye tends to have the
right sign, the effect could just as well be codlezice in most cases.

Table 4. Coefficients for TREND and ACREAGE in SE&imation

,Bl .value ,Bl.p ,5’2 .value ﬁz.p Significance of ,Bz

SWHE 0.0688 0.0090 -0.0011  0.5870

DWHE 0.0564 0.0250 -0.0022 0.1210

RYEM 0.1492  0.0000 0.0188 0.5980

BARL 0.0689 0.0050 0.0001 0.9770

OATS 0.0534 0.0140 0.0177 0.0010 rx
MAIZ 0.1785 0.0001 -0.0009 0.7880

OCER -0.0318 0.2620 0.0511 0.0190 *
RAPE -0.0013  0.9680 0.0012 0.7070

SUNF 0.0150 0.4100 -0.0020 0.3220

PULS 0.0214 0.2760 0.0066  0.1460

POTA 0.7869 0.0030 -0.6038 0.4310

SUGB 0.9813 0.0000 -2.1111  0.0008 rx
MAIF -0.0790 0.7810 -0.2972  0.0440

OFAR -0.4271  0.1190 -0.1502  0.0000 rx
NONF 0.0731  0.0020 0.0072  0.3830

Table 5. Covariance matrix of SUR residuals foreaés

SWHE DWHE RYEM BARL OATS
SWHE 0.305 0.244 0.202 0.210 0.151
DWHE 0.244 0.274 0.183 0.184 0.133
RYEM 0.202 0.183 0.228 0.147 0.146
BARL 0.210 0.184 0.147 0.233 0.149
OATS 0.151 0.133 0.146 0.149 0.147
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Table 6. Covariance matrix of SUR residuals foreaés?2

MAIZ OCER
MAIZ 0.413 0.256
OCER 0.256 0.263

Table 7. Covariance matrix of SUR residuals fois@dlds

RAPE SUNF NONF

RAPE 0.129 0.018 0.038
SUNF 0.018 0.067 0.021
NONF 0.038 0.021 0.061

Table 8. Covariance matrix of SUR residuals foredihrable Crops

PULS POTA SUGB

PULS 0.205 -0.034 0.835
POTA -0.034 9.426 2.167
SUGB 0.835 2.167 11.051

Table 9. Covariance matrix of SUR residuals fordierd

MAIF OFAR
MAIF 22,212  12.228
OFAR 12.228  15.024

4. 5. A measurement error model

To include the assumption thX = x; + u; into the estimation, a total least
squares estimation is performed by minimising thigfving extremum estima-
tion criterion, scaled by the inverse of the numbkeobservations = JT (for J
crops andr periods):

minimize

%Z(th _1801‘ _l[”let _'BZijt )(Ze_l)jk (th = Bo — BT, _,szxkt)

jkt

+ %Z(th ~ X )(Zu_l)jk (th - th)

jkt

(10)

HereZ. denotes the covariance matrix between the resicdahined from the
SUR estimation mentioned previously, wherEass a prior covariance matrix of
acreagesZ, only contains diagonal entries that are constdudt#lowing the
principle that the standard deviation always 35 ercent of the sample mean
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(over time for each crop), implying that virtuabyi outcomes are within + 20%
of the observations. That is, foj diagonal element &,

—  020)°

The model 10 with errors in the explanatory vaeabk referred to as a meas-
urement error model (Fuller 1987), or sometint&sors-In-Variables-model
(EIV). The coefficients of the EIV estimation arelsed for using a non-linear
programming (NLP) solver software, and the ressiitswn in the following table
(10). The signs and sizes of the coefficients ameegally similar to those of the
SUR estimators.

Table 10. Coefficients in EIV estimation

BO Bl B2
SWHE 37.21941 0.00644 -0.04172
DWHE  5.58560 0.05500 -0.00250
RYEM 2.82318 0.14463 0.00699
BARL 491312 0.06313 0.00195
OATS 2.60144 0.05768 0.01952
MAIZ 6.17032 0.18124 -0.00051
OCER 3.05974 -0.04094 0.06173
RAPE 2.90948 -0.00335 0.00137
SUNF 2.74305 0.01259 -0.00229
PULS 3.68404 0.02101 0.00965
POTA  32.54321 0.85206 -0.86423
SUGB 166.77830 0.67172 -3.90225
MAIF 55.23074 -0.29928 -0.44824
OFAR  69.80859 -0.68218 -0.18152
NONF 0.67922 0.07145 0.00797

It would be desirable to obtain an estimator of skendard deviations of the
EIV coefficient estimators. Fuller (1987) finds thee is unable to establish the
exact distribution of the estimators even in tlrapde case with one explanatory
variable. He instead derives an approximate (ngratigtribution for the coeffi-
cient vector in large samples.

Here we follow another approach using asymptotaperties of extremum es-
timators as described in Mittelhammer, Judge, V{900, ch. 7).

4.6. Asymptotic properties of the estimators in the EIV model

We start off by putting the model (10) in matrixrio Rewrite it separating the
exogenous variable “acreages” that is measured aitbrs from the matrix of
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exogenou¥ that is known with certainty; constant and treDenote the coeffi-
cients ofx by y and the coefficients faZ by B. We denote the true planned acre-
ages by lower case and the observed values from the statistics byrdhdom
variable upper cas¢. Then the model can be written in matrix form as

minn (Y - 2,8 - x,7) QY = 2,8 - %)+ (X -x) @3 (X -x)
oy (11)
- rpin m(B,y,x]|Y,z,X)

2

where, forl; of sizeT, and the Kronecker product,
ol=x'01,,Q'=x'01l,

The vectors/matrice¥, X, z, X, andp are the vertically concatenated vec-
tors/matricesy, x;, z;,, X;, andp;. y is the vector ofy for cropsj = 1...J, the sub-
scriptb denotes the block-wise diagonalisation whergthgiagonal block of the
JT x JK (for K columns inz) matrix z, is z; (and similar forx,), so that the func-
tion m can be written alternatively as

Yol |z 0 OB} |X O Ofnj)loe - lioe
m=2{l s -[o . of:|-[o - of:]]] : :
Y, 0 0 z B, 0 0 Xy ))|lrad" - lyod
X1 X ' Loyt oy (X)) %]
S : S
n X1 I, )] 1sat lro’ ([ X5 ] %]

The rightmost vector (...) in the first term is thaarge as the first bracketed ex-
pression, omitted to save space. The extremum a&stindefined in (11) is
equivalent to an element-wise weighted total Isgstares estimator, shown to be
consistent in Kukush and Huffel (2004).

We will now attempt to obtain a Lagrange Multipl{&M) test of the hypothe-
sis thaty = 0, following the procedure described in Mittelhamméudge and
Miller (2000) (section 7.6). One can show thatcbeditions in theorem 7.3.3 are
satisfied, so tha® is asymptotlcally normally distributed, Wlth/2(9 Btrue)

[T¥ ~ N(O,H*£H™), with H™ the Hessian afh andX the covariance matrix of*
times the Jacobian aof, both w.r.t.9 evaluated ac.

We may then use the operational Lagrange Multiglid) test with the test
statistic

LM =nI" [CI:I B c’][cﬂ 1A ‘1c']_l[cI:| - c’]l“r ~x%(30)
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for I, the Lagrange Multipliers associated with the mdd&) restricted by thé
restrictionsy = 0, or in matrix form as a linear restrictiontbé entire parameter
vector,cO = 0, wherec is aJ x (3J + JT) matrix of zeros and ones constructed by
horizontal concatenation of & 2) zeros]; and ( x JT) zeros. Differentiation of
m gives the Jacobiai(m) as column vector as

“om]
grl:] 2,1 (Y ~ 2,8 - x,7)
J(m) = E =n2 2,02 (Y - 2,B - %7)
om TaQ:H Y ~ 2,8~ Xx,7) + Q7 (x = X)
oz |
z,Q'e z,Q' 0 .
=n"2 x;Qje [=n"2x;Q; O { }
_ i} i 4 |u
ngele_gulu YdQel _Qul

whereyy denotes thdT x JT diagonal vector witly [ 11 (for 1 vector of “1”) on
the diagonal. Since B(= EUu) = 0, we have that B(m)) = 0. The Jacobian is a
linear combination of the (assumed) normally distréd random variables i [
u’l’, the covariance matrix

e . _ _ 4\ 0 Q 0
estco =4°Q=n 1(e’Qele+ uQitu) ¢ =m(B,y,x|Y,z,X) °
u 0 Q, 0 Q,

so the covariancE of n”J(m(8)) evaluated at the estimat@ccomputed is given
by

2, 0 o o 2, 0
==m@,y.x|Y,zX)n?2 x, @ 0 {oe Q}x'bszgl 0 [n72
TaQe -~y lreRe -@f
2,22, Z,Q.X, 2,97y,
=mByx|Y,z,X)n7"4 x, Q717, x,Q:X, X, Q2 4

Va2, 14X, T4y + Q)

The Hessian matrix is obtained by differentiatidth@ Jacobian, to obtain
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om>  am*  am?

aaﬁrf]f aaﬁriz aaﬁn(? 2,Q.'2, 2,9, 2, Q2.7
H(m) = =-2n7 xp Q'z,  xpQ.X, 22X, Q7MY 4

oyop’ oyoy' 0yoz' 4 4 4 4

am? oam?  am> VaeZp 274Qe Xy Yo Va ~L,

| 0z0p’ 0z0y' 0z0Z' |

The model (11) is then solved twice, once uncomstthand once constrained
by =0 forj =1...15. The LM test statistic is computed using ttlagrange Mul-
tipliers obtained in the constrained model anddsgmatedH andX. The result-
ing test statistic is 26.7, which is asymptoticaligtributed as chi-square(15) if
the constraints are true. For a test on 5% levetevepare LM with the 5% tabu-
lar value of the chi-square distribution, which2i.0, and conclude that the null
hypothesis is rejected at the 5% level (the exadlpe is 0.031).

So, yields could depend on acreages. However,ladbthe estimated coeffi-
cients in table 10 shows that the estimations atesufficiently robust to use on a
large scale: Sugar beet (SUGB) obtains the (simfi at 0.1% level in a test
using the asymptotic normal distribution @) coefficient of minus 3.90 tons per
thousand hectares. This implies that the margireltlyat the observed acreage
(about 25’000 hectares) is negative, which is ueptable. At the same time, the
coefficient on rye is very close to zero and ngh#icant, so the original problem
is not solved. Thus, we decide to discard the madtdl yield depending on acre-
agedespitethe failure to reject the hypothesis tgat 0.

5. A Bayesian estimator based on highest posterior density

5.1. Principles of estimator

After having discussed two different versions oélgli endogeneity in sections
three and four, we now return to the primary oliecand model (1). The basic
assumption underlying the data sampling model a$ there exists a set of true
parametersp = (p,Y,sA,w,q,l,c,D,B,R,v) of the model, satisfying the second
order conditions (4-5), a vector of true planneteages<’ and a vector of dual
values\” such that X' ,\") is the unique optimal solution to the model pa-
rametrized by¥. We may thus write = x"(y) and\” = A" (). Furthermore, the
valuesz = (x°°S p°Psy °s g°bs 7\ 0bs\y0bs obs |obs pobs, obs) i the CAPRI database are
considered the outcome of a random variable vetttrat is conditional o,
i.e. there exists a probability density functigzj¥).

We have prior beliefs regarding the param&fethat are not contained in the
CAPRI database. We expect the dual values of thet@ints and the price elas-

128



ticities implied byy to be of “reasonable size”. If we are expresseahudiefs as
a prior density functiorf(W), we may use Bayes's rule to derive the posterior
density function otV conditional on the outcone

{(Wlz) O f(z|¥)5(W)

In the following sections, we first develop an emeodel that relatezto W in
order to derive the functioh We discuss the chosen error model and compare it
to alternatives. Then we formulate our prior baliefgarding elasticites and dual
values in terms of the unconditional density fumcté. Finally, we devise an
estimation method that chooses as an estimatestiaengter vectoW that maxi-
mises the conditional densi§W|z). DeGroot (1970) calls this estimator the gen-
eralised maximum likelihood estimator. Other aushloave called it the posterior
mode estimator, the maximum a-posteriori estimatdhe highest posterior den-
sity estimator.

5.2. Data sampling process

The distribution ofZ is based on the following assumptions, which aited
further below:

(i) All elements inZ are independent.

(i) Subsidies, price index, set-aside rate andlti@ind constraint are known
with certainty, i.e. are degenerate random vargable

(i) Errors are additive.
(iv) Producers have naive price expectations.
(v) Expected yields and input requirements follavear trends.

(i) The covariance matriX only contains diagonal elements. This is discussed
further in the following section on prior distritbons.

(i) We assume that set-aside rate, subsidiese pndex and total land con-
straint are known with certainty. Since the outceragthose items in the random
vector Z will be the corresponding items # itself, they are from now on re-
moved fromZ. An outcome of is thus writterz = (x°Sp°*SwS Y °PS A9,

(i) We write an outcome ofZ as the sum of its conditional expectation
H(WP) = (Bx Mo, HuwsHy.Ha), (With appropriate dimensions), and the randorarerec-
tor g, so thatZ = u(y) + €. For acreages, we have

Hx = X*(lIJ)
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(iv) Naive price expectations imply that the expéon of the price measure-
ment in period-1 equals the producer price in that period, oveosely,

Pt = (Hp)e1

Wi = (Mw)t1

where the expression on the right hand side dertbte®xpected value of the
output and input prices for all crops in perietl

(v) The producers expect the yield in each permadqual f1,), which in-
creases over time by an exogenous linear trends@ime assumption is made for
input coefficients, We thus have that

Y= () = Bo + BiTr (12)

A= (Ua) = 0o +aiT;

with T being a linear trend an@ = (Bo,f1) anda = (0o,0;) new parameters to
estimate. Unfortunately, there are no observatiasiable for actual input appli-
cation. Instead, we use estimated input coeffisi¢atailable in the CAPRI data-
base), that are based on total input use in thieudigral sector in combination
with farm level data, economic reasoning and eraging knowledge. Those ex-
pert coefficients are denoted By The actual amount of inputs applied in any
given year may differ from the expected value duernexpected climatic condi-
tions, just as the yield may deviate from expegtiett, though the hypothesis is

that the agricultural production plan is made uphwthe expected values in
mind,

5.3. Discussion of alternative error models

The error model developed above is fairly sophastid in the sense that it at-
tempts to take into account that all measurementdilkely to be subject to er-
rors”. The sophistication comes at a cost, becausejifines information about
the covariance matrix a. ldeally, this information would be supplied byplie
cate measurements or external datasets (Carrgipdruand Stefanski 1995). In
the case at hand, no such replicates are avaikatdeinstead, the relative variabil-
ity of the different errors is based on assumptions

2L This implies a general error model, but the résglformulation is indistinguishable from the

measurement error model.

22 Griliches and Ringstad (1970 p. 370) concludetelation to measurement errors in nonlinear
models, that th short, errors in variables are bad enough inelam models. They are likely to be

disastrous to any attempts to estimate additiomalinearity or curvature parameters
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Although the error model is sophisticated on tlue %if the researcher (meas-
urement errors), it is very simple on the sidehaf €conomic agent. We assume
that the agent has perfect information about tbhe prarameters, and that he is
able to determine the optimal production decisigactly. That is, no part of the
errors enter the model equations, thereby influengiroduction. A more general
error model, as discussed by McElroy (1987) andePapd Just (2002) would
also take into account the possibility that thedpicer may not correctly appreci-
ate the true parameters and/or is not able to méterexactly the optimal supply
decision. Let us look at the implications of netjleg those errors.

The exogenous (in this model) parameters that@gest to considerable un-
certainty are pricesp(w) and /O coefficientsA,Y). Saying that the producer
does not correctly appreciate those is silly, sitteey aredefinedas the pro-
ducer’s expectation. It may however be the casetlieexpectation modéas not
the correct one (the possibility that the produbaes not base his expectation on
the same observations as the researcher is almeeldded in the error term). In
those cases, the producer bases his land allocdéoision not on the true pa-
rameters [§,w,A,Y) (which can then no longer be called “true”) buatsiochastic
(p + 8w + 8y, A +84Y + &) for some deviationd. This is a kind of specifica-
tion error of the model. If we at this point assuthat the producer solves the
optimization problem correctly, we can substitute tisturbed parameters into
the first order conditions and rearrange to obtain

Y.p, +s, AW, —qc-1,[D+GBG'lx, —RIA, =A,

with A = Ad,, + Wda + dady — Y 8, — pdy — &0y (time indices omitted). This makes
the relationship between the true parameters s$tichdt is not clear what effect
the omission oA has on the estimation of the parameters of intef@B,D).

The producer may also commit an optimization erier,instead of choosing
the optimal acreage vectar, which would solve the optimization problem, he
allocates<’ + &,, which does not solve it, but satisfies the caists. That kind of
error would be impossible to distinguish from aguneasurement error on the
side of the researcher, except that we would redqRd;, = 0 (becausRx =v =
R(X +8)).

Since the general error model requires an increassalnt of prior informa-
tion and is anyway difficult to distinguish fromettmeasurement error model, we
choose to limit ourselves to measurement errors.ndie proceed with explicit
assumptions regarding the data sampling processes.

5.4. Augmented parameter vector and its prior distribution

In the ex-post perspective, the outcoera the error vectog has actually already
been determined, but the outcome is not directeokable. We thus choose to
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considere yet another unknown parameter. If the density fiond for the ran-
dom vectorZ is conditional also oe and the yield and input paramet@rsanda
defined above, then there are no random compohafititendf becomes the de-
generate density function

f(z|wy,B,a,€ ={é:. Zzu(\l’vﬁ,ﬂ)'i'eel,sg(\ll,x ,A)=0

One can immediately see that there must be a latgaber of vectors
(g.B,a,e) that give the density value “1” for almost anytaamez of Z. Without
further information, there is no way of discrimiimgt between any two such vec-
tors by saying that one is any more likely thandteer to be the true parameter
vector. This is why we require a prior distributiéfW,e,a,B). In this section, we
define the prior distribution based on the follovssumptions, detailed below:

() &Wea,p) = N (W,a,B)&n(W.a,B), with n(W,a,p) denoting the
vector of implied own price supply elasticities.aths, we assign prior
distributions to error terms, dual values and iegblpoint price elastic-
ities of supply, and assume that those are funaipmdependent.

(i) The errorse are independent and normally distributed with déad de-
viations equal to a fix share of the observed valfiehe respective pa-
rameter.

(iii) The dual values are independent, with meamp@rtional to average ob-
served gross margins over all crops in each regawh year, and stan-
dard deviations proportional to a fix share of that

(iv) We believe that the parameter vector is sunet the implied point price
elasticity of supply matrix)(W,a,B) is normally distributed with mean
depending on the crop mix (rotational shares) daddard deviation in-
dependent for each item. For non-diagonal elemeafmg the prior distri-
bution is non-informative (i.e. we have no spedif@iefs regarding cross
price elasticities).

Regarding (ii): Specifically we assume tledil N(0,Z.) with Z a diagonal ma-
trix with o2 =(020/3zi )’ on thei™ position. This means that we assume that
errors are independent normally distributed withameero covariance matrix
such that three standard deviations cover 20%eobbserved value of the related
parameter.

Regarding (iii): In order for the posterior densityhave a unique maximum,
we require informative priors also for the dualues in order to be able to iden-
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tify W (since for example andA enter the first order conditions additively). We
make the assumptions

020

Ay ~ N(OZ% [T ozu—njzj

_ 020 WY
Ay ~ N[ 025Moser L= £,) = M 2, ), (T 025Moser A= 0,) — M P, )j J :

wheremoser: IS the observed gross margin in compulsory seleasn, the aver-
age gross margin over all crops amdhe general set-aside rate in periodhe
prior mode (mean of normal distribution) Mfis thus based on the assumption
that the expected land rent is approximately 25%hefaverage observed gross
margin m, in the respective year taken over all crops exsapar beet (whereas
sugar quota rents are missing in the model). Ferctdse study region FR24 this
fits reasonably well with data on land rental psiagbtained from Eurostat for
France, shown in table 11. The priors for dual @slof the set-aside constraint
were derived in a similar manner, but also inclgdifhe variances ok were
assumed to be such that 20% of the prior meand #qea standard deviations.

Table 11. Land rents in France (Euro per ha)

Eurostat* A; prior A, prior

1986 102 86
1987 104 132
1988 106 94
1989 109 113
1990 111 134
1991 113 119
1992 115 101 -116
1993 117 91 -23
1994 119 124 -5
1995 121 175 -8
1996 122 163 -27
1997 125 148 11
1998 129 155 -98
1999 132 193 -6
2000 132 139 39
2001 131 145 74
2002 131 181 24

*Source: Eurostat (2003)

Regarding (iv): There are cases when the obsengtioply a supply elastic-
ity that is far outside any plausible range, e.d.080. One case when this would
happen is when the observations imply a downwanpisty supply function, as in
the case of rye in FR24 discussed in a previousosedsiven the second order
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conditions for optimality, the best fit is obtainég a horizontal supply curve,
implying an infinite elasticity. Such a simulatibehaviour of the model is unac-
ceptable, and we firmly believe that the aggregatgply response of regions in
reality is much smoother. Put differently, we bediethat the parameter vector
comes from a distribution that makes such extreatees utterly improbable, but
is rather indifferent for elasticities within somptausible range. For this purpose,
we choose a very wide normal distribution, with mead standard deviation
derived below.

Most studies (see comparison to other studies Bdiad supply elasticities in
the range of, say, 0.1 to 5. More specifically, see that the elasticity is typically
around unity for major crops, but that it is higHier crops that occupy a small
share of the total area. One motivation for sucblation is that if a small crop
expands with a certain percentage, that should kesgeeffect on the value of
fixed resources, like pushing other crops out @ thtation on the constrained
land, compared to if a major crop expands by tineespercentage.

Letting r; denote the share of land allocated to grope believe that the own
price supply elasticities have mea|®5rj% and standard deviations such that
three standard deviations cover 1000% of the mgmnstandard deviation rela-
tive to mean is thus fifty times that of the acresgprices or yields). There are no
priors at all for cross price elasticities. In tlesult section below, the priors are
compared to elasticities from literature for thetidglands, Denmark and France,
and found to be in a plausible range.

We will see that the explicit expression for supplgsticities is a nonlinear
function of the parameters. That makes its inclusido the estimation difficult.
Jansson (2005) solves a similar model for supm@gteities and includes the ex-
pression explicitly in the estimation. His modebwever, did not have area con-
straints, and imposed land constrain only implgcdler curvature constraints on
the Hessian matrix, which simplified the expressidor supply elasticities con-
siderable. Heckelei and Wolff (2003) makes a simdatimation but with in-
vented data for a didactic size problem, with auiameous incorporation of elas-
ticity priors. Here, we have two constraints in tngsars and only one constraint
in some years (before set-aside regime), which ticatps things further. The
elasticities of supply in our model can be obtaibgdsolving the first order con-
ditions forx; (repeated here for convenience),

X: (pt';"t) = It_l[D + GBG']_l[Ytpt S~ AtWt —-Q,C— R;)“t] . (13)

Let E, =It[D+GBG’] and insert that expression into the constraintsbt@in a
solution forA,

A (p,) = [RtE;lR;]‘l[RtE;l(Ytpt +s, —AW, —q,C)- vt]. (14)

134



Computing X (puA'«(py) by inserting (14) into (13), taking derivativesid
multiplying the result by yield gives us the follmg expression for marginal
productiof®

o(Y,x,)
op,

Using the definition of elasticity, we finally olitethe expression

_ A a1 _
:YI(EtlYt_Etht[RtEtht] RtEtlYt] (15)

f — o P a1 _
nt:th(EtlYt_Etht[RtEtht] RtEtlYtJPt (16)

where upper cas¥; means the square diagonal matrix witton the diagonal,
and similar for upper casg.

This expression is strongly non-linearbnandB (via E) and thus difficult to
include as constraint in the estimation. In somel@h® the expression has been
simplified by neglecting the second term in thecked and only computing di-
agonal elements i&. That simplification was previously used in di#at model
to compute only diagonal elements of the quadfaitP-parameter, e.g. in the
CAPRI model (not published), and by Helming (200B5he DRAM model.

Nevertheless, with appropriate initialisation ofe thsolution algorithm
(CONOPT for GAMS) together with reasonable bouraistiie variables, equa-
tion 16 turns out to be possible to solve simultarsty in the estimation, thus
enabling us to include our prior beliefs regardatgsticities of supply in a trans-
parent way.

5.5. Definition of the estimator

Putting all the pieces together, we can now formeuthe estimation problem us-
ing Bayes's theorem as above and write

¥ = argmax&,B.a.el2) U f(zly,B,0,8) &W.B.a.e)

To repeat, the point estimate @f,,a,e) that we are looking for is the value
that maximises the posterior densifp,8,a,e|2, i.e. the posterior mode. Note
that with the degenerate density function thisgisiealent to solving

max  &(y,B,a.e)
subjectto  z=p(y,p,0) +e

o(y,x,27)=0

2 In this case, the marginal production could bevesblfor directly. In the general case with con-
tinuous derivatives, the implicit function theoremay be used instead.

135



Since the value that maximises some functioalso maximises loghf, we
may take the logarithm of the objective functiorhigh is a multivariate normal
density function with covariance matr). Doing that and replacing the con-
straints with the equations derived above, we argv the following extremum
estimation problem:

minimise
vec{ex,eY €,,8,,€4, (k — P ) (diag(v) - G))
x ):gétalvec(ex,eY 1€,,€,,€4, (x — 3, prier ) (diag(v) - 0))

subject to
Yp, +s, —~Aw, —qc-1,[D+GBG'lx, —R}A, ~MAC,d=0
Rt = v;
B=U'U
d;j 20 forj = 1...J (andd; = O fori #j)
X=X + g,
YOPS=Y + g

Yi=Bo+BiT:

obs adm adm

Py =Pex T (P —P )t €yt
A=A +e,

A=dptaT;
v, = x;l(E;lYI ~ER! [RtEt'lR;]_lRtEt‘lYtth

The dummy variablMAC; with associated parametéiin the first order con-
dition was added to control for additional effeofsthe MacSharry reform. It is
equal to 1 for year 1992 and earlier for regiorad there member of the EU then,
and zero from 1993 and on. This is motivated byppatical inspection of the time
series. For example, looking again at the grosgimand acreages of rye if fig-
ure 1 suggests that there are two clouds of obsemga which correspond to pre-
and post MacSharry reform (1993). Thus the refarikiely to have influenced
behaviour in some way not captured in the preserteain(the situation is similar
for some other products).
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5.6. Data preparations

The time series in the CAPRI database is diffeleng) for different crops even
within regions. It also contains holes and obvieuwrs, especially for crops of
residual character like “other cereals”, or whea #rea cropped is very small
compared to other crops in the region. Thus, thienasons require data to be
processed prior to estimation in order to make shat no obvious data errors
corrupt the estimations, we must select a strafegychoosing which regions,
crops and years to include in estimation, and wetrdacide what to do with ze-
ros in the data.

Selection of cropsA potentially different set of crops were estigthin each
region. To start with, all acreages smaller thab0l8a were set to zero. Then, the
crops to be estimated were those satisfying atheffollowing three conditions:
(1) There is acreage data in year 2000, (2) them@cieage data in at least five
years, and (3) the sum of acreage over all yeasléeast 10 000 ha.

Selection of yeardA yeart was included in the estimation if the total aceeag
over all crops just selected was at least 10 000 eaart-1. The lag is necessary
for the lagged prices to work. The longest posdibhe series was 1986 to 2003.

Selection of regionsA region was included in the estimation if théldwing
three conditions were satisfied: (1) Year 2000 imatuded in the set of years to
estimate for that region, (2) the set of cropsdiingate contain at least three ele-
ments, and (3) the number of observations overrajps and years is at least 50.
The number of regions to estimate determined sy turned out to be 165.

Treatment of outliersQutliers for prices, yields and input coefficiemtgre
detected and replaced with time series mean ukiéptlowing procedure:

Do fori = 1,2
1. Compute mea@ using all but the greatest and the smallest value.
2. If not @i < z < bli), then replace; with z

wherea andb are constants. The replacement was done twicewdhdarrower
bounds in the second repetition in order to allevtae problem that the presence
of two outliers biases the mean. Trial and errmeated that ,b) = (0.1,6.0)
worked fine for prices, (0.2,4.0) for yields and2®4.0) for input coefficients.
Unbalanced paneidn the cases where some time series were sttbeerrthe
others, it was assumed that this was really dusissing data, perhaps truncated
by the “1000 ha rule”, not that the data truly veaso (except in the case of the
“political activities” compulsory set-aside and nfmod production on set-aside).
Then, the estimator was allowed to choose any vsditisfying the equation sys-
tem as the estimate, but the item did not enteptis¢erior density function. Since
consecutive years are interlinked via the otheapaters (yield, input require-
ment, PMP terms), this does not generally causepaolylems. In most regions
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where some time series was shorter than the athegs early years that were
missing, which are of lesser importance for thenied use of the estimates.

6. Results

The estimation produced a large number of restii$7 elements of the key pa-
rametersc andD respectively, and 5457 elements of the cross gedigets ma-
trix B. Furthermore, 329 092 price elasticities were aateqh, including the cross
price elasticities. To this comes a very large neindf fitted values and all other
parameters . It is impossible to give even an overview oftatse results, and
in this section we only present estimation resigighe French case study region
FR24 and for France as a whole. The results afdeateal following two criteria:

1. How well is the prior information recovered? address this, a kind of
R? measure is computed as the share of the explaiméance observa-
tions or prior mode. In an appendix, we also pre\advisual presentation
of prior and posterior mode for selected itemst§)lo

2. How is the resulting model behaving in simulatidNVe discuss our esti-
mated point price supply elasicities and compaeenttio estimates from
literature.

6.1. Measures of fit

Table (12) shows the share of explained variati®?),for acreages, prices and
yields for all land use activities in FR24. We gbat in most cases, the fit of
acreage is high, above 0.90. Exceptions are soffatylpotatoes, sugar beet and
voluntary set-aside. Only the last of those cragsdn R2 below 0.50 (0.393). The
fit of prices is equally high in general. The fit yields is lower because here a
more restrictive error model is employed: the expecg/ields have to lie on a
straight line (12). In four cases, the fit of yiedeven negative. One can see on
the plots in the appendix that the yields of thosgs are highly variable.
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Table 12. R? for acreages (X), prices (P) and gyl

Crop ltem N R2| Crop Iltem N R2
SWHE P 18 0.928| PULS X 18 0.907
DWHE P 18 0.820| POTA X 18 0.649
RYEM P 18 0.927| SUGB X 18 0.805
BARL P 18 0.791| MAIF X 18 0.987
OATS P 18 0.915| OFAR X 18 0.938
MAIZ P 18 0.794| NONF X 11 0.999
OCER P 18 0.935| OSET X 12 1.000
RAPE P 18 0.923| VSET X 14 0.393
SUNF P 18 0.932| SWHE Y 18 0.291
PULS P 18 0.838| DWHE Y 18 0.235
POTA P 18 0.964| RYEM Y 18 0.673
SUGB P 18 0.455| BARL Y 18 0.179
MAIF P 18 0.716| OATS Y 18 0.012
OFAR P 18 0.685| MAIzZ Y 18 0.657
NONF P 18 0.948| OCER Y 18 -0.030
SWHE X 18 0.591| RAPE Y 18 -0.164
DWHE X 18 0.995| SUNF Y 18 0.234
RYEM X 18 0.998| PULS Y 18 -0.027
BARL X 18 0.977| POTA Y 18 0.490
OATS X 18 0.997| SUGB Y 18 0.717
MAIZ X 18 0.909| MAIF Y 18 -0.086
OCER X 18 0.988| OFAR Y 18 0.428
RAPE X 18 0.979| NONF Y 11 0.891
SUNF X 18 0.934

Source: Own estimations.

6.2. Elasticities

The point price elasticities of supply are compuségdultaneous in the estima-
tions by equation (16). In this section we pres#asticities for individual crops
and for crop groups for one selected subregion,4-R&d for the aggregate
France, all in the year 2002. The aggregation fthen22 French regions esti-
mated and whole of France was done by weighingdgenal elasticities with

the region's share of national crop area, or

D % /Z X;

Aggregation to crop groups was done similarly, Bighing with each crop's
share in the crop group to which it belongs. Thepagroups are the same that
were used in the estimation, reported in table.(Téple (18) and (19) shows the

139



elasticities of individual crops for FR24 and Framespectively. Table (20) and
(21) show the elasticities of the crop groups. Sarnthe elasticities, especially
for individual crops of minor land share on regibleel, are high. This is true
for e.g. rye and durum wheat, which both have witiss above 7 and small rota-
tional shares. In contrast, soft wheat has the mnadelelasticity of 0.79 for a land
share of 36%; however, there are notable exceptiBotatoes has a rotational
share of only 0.36%, but only an elasticity of 0.38

As one might expect, the crop groups generally shess elasticity to price
changes than the individual crops. This is parthe do the land restriction, but
also to the crop group structure of the model, #ilmws catching substitution
effects between related crops. The most notable &@sFR24 is perhaps oil
seeds. In table (18) we see that rapeseed andwa@nfare good substitutes, but
table (20) reveals inelastic supply response asapg

Aggregation from regions to the member state offergreat surprises. Most
of the elasticities are of similar size at natiomalon regional level in the case
studied. The greatest difference is for durum wheaere the elasticity in FR24
is much higher than that in the member state aggee@®ne reason for not find-
ing greater differences between the region andajggegate is probably that the
rotational shares in the region are similar to ¢has national level.

Although there are several studies that presesti€i@des on national level, no
other study that the author is aware of publishastieities for individual crops
on regional level with this crop coverage. Below eznpare our point elasticity
estimates as well as our priors with four othedists. Two of the other studies
are for France, one study is for the Netherland$ @me is for Denmark. In all
comparisons, we use our point price elasticitiesHe year 2002.

For France, we can compare our results to thosteakelei and Britz (2000)
(HBOO) and Guyomard et al. (1996) (GBC96). This hasn done in table (13),
where also the land share and prior mode are pri@8C96 estimates a model
with seven outputs and three inputs based on &ctest profit function, using
annual data for France. HBOO estimate a similarehag ours, but they use a
cross-section data set of French regions for tlee $694 instead of time series
for individual regions as we do.

We see that GBC96 finds considerable smaller elties for barley (0.35)
and other coarse grains (0.76) than this study4(ard 2.53), HBOO (2.65 for
barley) or the priors (1.11 and 1.55). For soft aththe results are much more in
line, with the priors (0.77) quite close to GBC967@) and the estimates (1.01) in
between GBC96 and HBOO (1.32). For maize the estisnfl.68) are close to
GBC96 (1.63) but much higher than HBOO (0.65), whsrthe priors lie in be-
tween (1.07). Rapeseed and sunflower occupy smttional shares, less than
5%, and as a consequence the priors are highart alio The elasticity estimates
for those crops are also much higher, 1.28 and, 2@t GBC96, which finds
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values of 0.42 and 0.22, and more in line with HB@Mich finds elasticities
greater than unity. All of the three studies findthelasticities for soya, for which
the rotational share is less than 0.5%.

Table 13. Comparison with other studies of owngsapply elasticities in France

Crop Land share® Prior° Own estimate GBC96° HBO00®
Other coarse grains® 0.034 1.547 2.531 0.758
Soft wheat 0.273 0.771 1.009 0.715 1.322
Maize 0.102 1.070 1.680 1.630 0.653
Barley 0.092 1.109 2.243 0.351 2.647
Rapeseed 0.045 1.405 1.284 0.418 1.457
Sunflower 0.027 1.664 2.959 0.223 1.126
Soya 0.004 3.276 2.020 3.701 1.861

a: Aggregated from rye, oats and other cereals.
b: Computed from the data in CAPRI for 2002
c: Using the formula for priors reported above
d: Guyomard et al. (1996)

e: Heckelei and Britz (2000)

For the Netherlands, Oude Lansink and Peerling®9gL90LP96) estimate
twelve farm type models producing three outputs (EQ@ereals and oilseeds,
Rootcrops = Potatoes and sugar beet, and Othérothal crops). They estimate
the model using panel data on individual farms, alsd® have a land constraint
and a fixed area of rootcrops. In their table A8ytlpresent supply elasticites, of
which the own price effects are compared to oumedes for the Netherlands for
similar product aggregates in table (14). To mdiedomparison, our individual
crop elasticities have been aggregated with estidnalianned rotational shares for
2002. The “other crops” aggregate in OLP96 couldb®formed, since we have
three crops, (voluntary and compulsory set-asiadkefaliow land) for which there
is no output price.

Our estimates for CO (0.94) are quite close to GL{#90), but considerably
higher for root crops (OLP96 find 0.34, our estien@t91). We must then keep in
mind that in OLP96, the area used in root crops fixasl, so that the price elas-
ticity can come only from a change in intensitythién seems reasonable that their
estimates for that aggregate turn out lower.

Table 14. Comparison with other own price supphsttity estimates for the
Netherlands

Crop group Land share Prior Own estimate OLP96%
CO 0.266 0.778 0.937 0.90
Root crops 0.342 0.715 0.909 0.24

Oude Lansink and Peerlings (1996)
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Jensen (1996) estimates an econometric model oEPBagriculture, and also
presents aggregated supply elasticities for theteeted crop groups. In table (15)
we have reprinted those elasticities and also ogplied estimates for the corre-
sponding aggregates. We see that for the first gwoups, our elasticities are
higher than those in ibid., though our prior forezds is similar to the estimate in
ibid. For the last group, root crops, the elasésitare very similar and more than
twice as high as our prior.

Table 15. Comparison with other own price suppésttity estimates for Den-
mark

Crop Land share Prior Own estimate Jensen (1996)
Cereals 0.575 0.601 1.073 0.60
Pulses + rapeseed 0.037 1.498 1.999 0.66
Root crops 0.035 1.522 3.772 3.80

6.3. Complete results and estimation program

The GAMS program and the data used to produced$dts in this chapter can
be obtained for test purposes from the author upquest.

6.4. Conclusive remarks

No confidence regions for the estimates are estaddi. Exact analytical confi-
dence regions are very difficult to deduce. Appmoations would in theory be
possible. Reilly and Patino-Leal (1981) compute rapinate probability con-
tours of the posterior in a non-linear errors-imi&lles model by iterated lineari-
sations. In our case, analytical deduction of axipnate confidence regions is
more difficult than in ibid. due to the curvaturenstraints. Numerical computa-
tion by Monte Carlo simulations is not feasible dese of the amount of compu-
tation time required with the present setup (sdveoars for a single simulation
of all regions).

We conclude that the estimated elasticities compaiewith estimates in the
four cases from literature studied. Neverthelesy a handful elasticities from
three member states could be compared. The vastranod estimates are for
individual crops in NUTS2 regions, and for them, lnewve nothing to compare to.
Some of those elasticities appear high, e.g. rgecamum wheat in FR24 (table
18). Such parameter settings will result in a mdHat reacts strongly on shocks
in simulation compared to the current CAPRI modelt in the past had inelastic
supply. However, the high elasticities are mos¢mftound for crops with small
rotational shares, where an elastic response glden
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With repeated future applied analyses with the @APRI modelling system
and the new parameters, experiences will be gaiegarding the performance of
the estimates.
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Appendix 1. Activities and inputs in estimation

Table 16. Crop groups and activities modelled

Group  Description Crop Description
CERE Cereals SWHE Soft wheat
DWHE Durum wheat
RYEM Rye
BARL Barley
OATS Oats
CER2  Cereals2 MAIZ Maize
OCER Other cereals
OILS Oil seeds RAPE Rapeseed
SUNF Sunflower
SOYA Soya
OOIL Other oilseeds
NONF Ind. rapeseed
OARA  Other arable crops POTA Potatoes
PULS Pulses
SUGB Sugar beet
TEXT Fibre crops
FARA  Fodder on arable land MAIF Fodder maize
OFAR Silage grass
ROOF Fodder root crops
NOCR  Non-yield crops OSET Obligatory set-aside
VSET Voluntary set-aside
FALL Fallow land
Table 17: Inputs in estimation
Seed Repairs buildings Fuel
Plant protection Electricity Lubricants
Fertilize Gas for drying Other inputs

Repairs machinery
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Appendix 2: Supply elasticity estimates in France

Table 18. Supply elasticities for FR24 in year 2@@2individual crops.

Share SWHE DWHE RYEM BARL OATS MAIZ OCER RAPE SUNF PULS POTA SUGB MAIF OFAR NONF
SWHE 36.17% 0.786 -0.127 -0.018 -0.280 -0.027 -0.061 -0.007 0.003 0.016 0.032 0.000 0.002 -0.016 -0.055 0.039
DWHE 1.80% -2.226 7.913 -0.134 -2.037 -0.199 -0.441 -0.049 0.022 0.115 0.234 0.001 0.016 -0.118 -0.397 0.283
RYEM 0.29% -3.366 -1.392 7.733 -3.079 -0.301 -0.667 -0.073 0.034 0.174 0.354 0.001 0.024 -0.179 -0.600 0.427
BARL 12.04% -0.860 -0.356 -0.052 2.261 -0.077 -0.171 -0.019 0.009 0.045 0.090 0.000 0.006 -0.046 -0.153 0.109
OATS 1.08% -2.320 -0.959 -0.140 -2.122 2.903 -0.460 -0.051 0.023 0.120 0.244 0.001 0.017 -0.123 -0.413 0.294
MAIZ 7.27% -0.237 -0.098 -0.014 -0.217 -0.021 3.168 -0.261 -0.109 -0.559 -0.965 -0.001 -0.020 0.155 0.742 0.064
OCER 1.93% -0.233 -0.096 -0.014 -0.213 -0.021 -2.334 2.074 -0.107 -0.549 -0.949 -0.001 -0.019 0.152 0.729 0.063
RAPE 9.18% 0.012 0.005 0.001 0.011 0.001 -0.109 -0.012 1.659 -1.265 0.043 0.000 0.003 -0.014 -0.033 -0.066
SUNF 494% 0.134 0.056 0.008 0.123 0.012 -1.214 -0.134 -2.751 4.059 0.480 0.001 0.036 -0.151 -0.366 -0.738
PULS 2.89% 0.465 0.192 0.028 0.425 0.042 -3.568 -0.392 0.159 0.817 2.225 -0.040 -1.264 -0.302 -1.434 -0.117
POTA 0.38% 0.001 0.000 0.000 0.001 0.000 -0.002 0.000 0.000 0.001 -0.031 0.384 -0.001 0.000 -0.001 -0.001
SUGB 1.22% 0.017 0.007 0.001 0.016 0.002 -0.040 -0.004 0.006 0.033 -0.683 -0.001 3.083 -0.003 -0.021 -0.015
MAIF 1.36% -0.711 -0.294 -0.043 -0.650 -0.064 1.728 0.190 -0.151 -0.775 -0.913 0.000 -0.015 6.590 -6.639 0.135
OFAR 6.90% -0.366 -0.151 -0.022 -0.335 -0.033 1.274 0.140 -0.056 -0.289 -0.666 -0.001 -0.018 -1.020 2.108 -0.056
NONF 143% 1658 0.685 0.100 1516 0.148 0.695 0.076 -0.723 -3.708 -0.344 -0.003 -0.083 0.132 -0.355 3.944
OSET 6.29% -0.289 -0.120 -0.017 -0.265 -0.026 -0.246 -0.027 0.181 0.930 0.139 -0.001 -0.035 0.077 -0.135 -0.917
VSET 0.82% -3.982 -1.646 -0.240 -3.643 -0.356 -3.266 -0.359 -0.563 -2.886 1.564 0.002 0.073 -0.125 -0.127 0.619
FALL 4.01% -1.044 -0.432 -0.063 -0.955 -0.093 -0.857 -0.094 -0.129 -0.661 0.412 0.001 0.016 -0.025 -0.044 0.081
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Table 19. Supply elasticities for France in yead2€r individual crops.

Share SWHE DWHE RYEM BARL OATS MAIZ OCER RAPE SUNF PULS POTA SUGB MAIF OFAR NONF
SWHE 26.84% 1.009 -0.056 -0.010 -0.397 -0.048 -0.091 -0.006 -0.003 -0.011 -0.001 -0.010 -0.006 -0.029 -0.020 -0.090
DWHE 184% -0.766 2.102 -0.054 -0.480 -0.072 -0.132 -0.013 0.004 0.004 0.001 0.029 -0.002 -0.014 -0.022 -0.230
RYEM 0.16% -3.276 -1.086 8.577 -2.818 -0.970 -0.939 -0.397 -0.018 -0.055 -0.013 0.074 0.092 0.003 -0.115 -1.240
BARL 9.01% -1.322 -0.112 -0.028 2.243 -0.113 -0.199 -0.032 -0.027 -0.035 -0.001 -0.007 -0.004 -0.023 -0.028 -0.144
OATS 1.14% -2.202 -0.241 -0.133 -1.666 2.884 -0.391 -0.126 -0.015 -0.036 -0.005 0.002 0.021 -0.031 -0.059 -0.440
MAIZ 10.04% -0.195 -0.022 -0.006 -0.129 -0.018 1.680 -0.285 -0.020 0.043 0.011 -0.160 -0.024 -0.143 0.020 -0.314
OCER 2.03% -0.122 -0.018 -0.022 -0.181 -0.050 -2.384 2.205 0.016 -0.003 0.009 -0.047 -0.002 -0.043 0.009 -0.566
RAPE 4.44% -0.011 0.003 0.000 -0.049 -0.001 -0.054 0.006 1.284 -0.539 -0.011 0.087 -0.008 0.061 -0.098 -0.404
SUNF 2.67% -0.076 0.007 -0.001 -0.097 -0.006 0.084 -0.001 -1.016 2.959 -0.042 0.358 -0.008 0.087 -0.181 -1.727
PULS 0.35% -0.058 0.008 -0.003 -0.034 -0.009 0.482 0.047 -0.196 -0.373 2.020 0.066 -0.056 0.002 -0.050 -1.443
POTA 2.40% -0.130 0.044 0.003 -0.014 0.001 -0.993 -0.005 0.180 0.458 0.010 2.113 -0.234 -0.712 -0.200 -1.812
SUGB 0.89% -0.020 0.000 0.002 -0.004 0.004 -0.065 0.000 -0.006 -0.006 -0.003 -0.099 1.210 -0.023 0.000 0.059
MAIF 2.40% -0.114 -0.003 0.000 -0.026 -0.002 -0.205 -0.008 0.030 0.023 0.000 -0.172 -0.018 2.434 -0.043 -0.144
OFAR 7.74% -0.089 -0.009 -0.002 -0.043 -0.006 0.051 0.002 -0.071 -0.071 -0.002 -0.076 -0.001 -0.063 1.304 -1.114
NONF 18.08% -0.195 -0.039 -0.009 -0.102 -0.022 -0.203 -0.059 -0.121 -0.287 -0.036 -0.237 0.033 -0.064 -0.417 2.059
OSET 2.02% 1.329 0.146 0.025 0.785 0.092 0.897 0.286 -0.586 -1.196 -0.083 0.381 -0.250 0.209 -0.127 -1.973
VSET 5.17% -0.442 -0.043 -0.006 -0.256 -0.027 -0.241 -0.092 0.279 0.603 0.048 -0.062 0.076 -0.163 0.206 0.124
FALL 1.15% -1.355 -0.141 -0.026 -0.824 -0.071 0.012 0.030 -0.208 -0.430 -0.010 0.292 -0.018 -0.001 -0.664 -1.499

Note: Numbers in parentheses from Heckelei and B200 table 2), in square brackets from Guyonwral. (1996 table 2).



Table 20. Supply elasticities for FR24 for cropugs in 2002.

CERE CER2 OILS OARA FARA

CERE 0.509 -0.124 0.107 0.064 -0.131
CER2 -0.666 2.554 -0.685 -1.118 1.017
OILS 0.489 -0.418 0.321 0.148 -0.207
OARA 0.727 -2.473 0.540 1.228 -1.085
FARA -0.999 1.428 -0.444 -0.691 0.861
NOCR -2.066 -0.765 -0.354 0.334 -0.076

Table 21. Supply elasticities for France for cropugps in 2002.

CERE CER2 OILS OARA FARA

CERE 0.508 -0.152 0.046 -0.038 -0.151
CER2 -0.395 1.220 0.076 -0.343 -0.343
OILS 0.352 0.209 0.807 0.240 -1.042
OARA -0.138 -0.543 0.402 1.623 -0.895
FARA -0.299 -0.167 -0.428 -0.231 1.201
NOCR -1.273 -0.360 -0.353 -0.127 -0.656
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Appendix 3:Plots of prior versus posterior mode forFR24
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FR240000: RYEM, Acreage
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Chapter 6  Discussion

1. Conclusions

This thesis attempted to provide a general apprt@@&tonometric specification

of constrained optimization models. Special atmntwas given to issues that
arise when (1) inequality constraints are involuedhe model that is to be esti-
mated, and (ii) the estimation problem is ill-posed. the parameters are not
identified. It can be argued that both of thosebfgms are common in empirical
work, and thus the treatment provided in this thesiould be of general interest.
The solution approaches contained elements froaevélilprogramming, errors-in-

variables modelling and Bayesian estimation, and @eveloped in two theoreti-

cal and two empirical chapters.

Chapter two showed how efficiency can be gaindtiaéfestimation is treated
as a bilevel programming problem, and also sugdesteumerical method from
the field of mathematical programming with equiliin constraints that can be
used to find the estimates in the case when thenattion model to estimate
contains inequality constraints.

Chapter three applied the results obtained in enapto a spatial price equi-
librium model of crop production in Benin. Tradestsy prices and regional ex-
cess demand were estimated for one year, givemaltigms of prices, excess
demand and distances between markets. The esticatgsare rather well with
results of empirical studies, albeit they were fmot to be robust.

In chapter four, the focus was on the inclusiorindébrmation from diverse
data sources using a Bayesian approach. It wasrmshow a highest posterior
density estimator can be regarded a more gendmhative to some currently
used methods for inclusion of prior information, shaotably maximum entropy
and generalized cross entropy.

In chapter five, the estimator proposed in chafaer was applied to the sup-
ply model of the large scale modelling system CAPRIe estimation was formu-
lated as a bilevel programming problem, which wkba@rated to an additive
measurement error model, and a highest posterisitgeestimator designed to
include prior information on several parameterscontrast to the application in
chapter three, no inequality constraints were ighetl All in all, supply parame-
ters of supply models with up to 23 crops wereneated in 165 regions in the
EU. The results were compared to aggregated resutither studies for France,
Denmark and the Netherlands.
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It is tempting to try to condense the entire bodlyhis thesis into a concise
"recipe" that in a few points addresses the titlgject. With risk of oversimplify-
ing, the general approach to the estimation ofrpatars of constrained optimiza-
tion models where there are observations correlati¢ld model outcomes can
thus be condensed into the following steps:

1. Formulate the necessary and sufficient optimatibnditions for the
model to estimate.

2. Formulate a plausible and workable error mokiai &€xplains how obser-
vations relate to model parameters or variables.

3. Include any available prior information on thargmeters of the error
model.

4. Choose an estimation criterion that fits witk 8elected error model. If
prior information is to be included (and also othiee), the highest pos-
terior density estimator is an important optionthié problem is ill-posed
even after prior information has been included, fibsterior mean may
still be defined.

5. Find the estimates by solving the bilevel prograng problem defined
by optimizing the estimation criterion subject twe toptimality condi-
tions, error model equations and prior distribusioli the inner problem
contains inequality constraints, apply bilevel peogming techniques for
a numerical solution.

2. Outlook

Providing a fully general treatment of the seledimuic is a tremendous task that
in fact is too vaguely defined to be suitable foguiry. Some areas that could be
considered as belonging to this topic were hardiyctied upon at all in this the-

sis. Perhaps the most obvious such deficit is $bae of hypothesis testing and
regions of confidence. Only chapter two is concémiéh the small sample prop-

erties of the parameters, and none of the precectiagters provided a way of
testing the significance of the estimating equation provide regions of confi-

dence for the estimated parameters.

If the estimation of all parameters is performethimi the general framework
provided here, the possibility is opened up fotistiaal tests for parts or whole
models. If the model at hand isxarmativemodel, such testing is not really inter-
esting, since the model is not intended to answestipns of how realitys be-
having, but of how ishould behave. But precisely the application of empirical
estimation procedures like the ones advocated $teyers that the borderline be-
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tweennormativeandpositivemodels is fuzzy, since the estimation aims atseju
ing the model to better refleattual behaviour.

Theoretically, the work presented here falls wittiie area of extremum esti-
mators, a class of problems for which several gty useful results are avail-
able, at least in cases where the inner problemmbasequality constraints. Ana-
lytical deduction of estimator properties is, hoeguikely to be difficult in most
cases, depending on the complexity of the modélaatl, and especially on the
existence of inequality constraints. A workablecalative could be numerical
simulation methods like bootstrapping. It was cdased outside the scope of this
thesis to also treat this subject at any depth.

For the author in his role as an applied econortfist,work presented in this
thesis has provided a general, readily applicatdenéwork for estimating pa-
rameters in a wide array of models, also facingsspdata or identification prob-
lems. When this is written (spring 2007), the fraraek has already proved use-
ful in several applications not reported here (mablished work). It is the modest
wish of the author that it may facilitate consistand transparent model parame-
ter specification also for a wider community of reders.

The End.

168



