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Zusammenfassung 

Gegenstand dieser Untersuchung ist die ökonometrische Spezifikation von Para-
metern beschränkter Optimierungsmodelle mit Schwerpunkt auf Fragen, welche 
dann auftreten (i) wenn Ungleichheitsbeschränkungen involviert sind und/oder (ii) 
wenn das Schätzproblem unterbestimmt ist oder die Daten aus verschiedenen 
Quellen stammen. Die übergeordnete Methode, die hier angewendet wird, ist die 
direkte Schätzung der Optimalitätsbedingungen des jeweiligen Optimierungsmo-
dells zusammen mit zusätzlichen Gleichungen zur Miteinbeziehung von A-Priori-
Informationen. 

Wenn das Optimierungsmodell Ungleichungen beinhaltet, dann sind Komple-
mentaritätsbedingungen in den Optimalitätsbedingungen enthalten, die zu einem 
nicht-konvexen Lösungsraum und zu nicht-stetigen Ableitungen des Schätzprob-
lems führen. Ein Problem solcher Art ist zumeist schwer lösbar. In solchen Fällen 
ist es vorteilhaft, die Schätzung als ein Optimierungsproblem in zwei Ebenen (Bi-
Level Programming Problem, BLPP) zu betrachten, wobei das Problem der obe-
ren Ebene darin besteht, das Schätzkriterium zu optimieren, und die untere Ebene 
das zu schätzende Modell darstellt. Die BLPP-Litteratur bietet mehrere Lösungs-
algorithmen an, die dazu geeignet sind, Probleme mit Komple-
mentaritätsbedingungen zu lösen. In dieser Dissertation wird gezeigt, wie durch 
deren Einsatz die Effizienz von Schätzungen verbessert werden kann. 

Wenn das Schätzproblem unterbestimmt ist, dann müssen zusätzliche Informa-
tionen zugeführt werden um die Parameter zu identifizieren. Im vergangenen 
Jahrzehnt wurde dies häufig mittels so genannten Entropie-Schätzern erreicht. 
Eine allgemeinere und transparentere Methode zur Einbindung der Zusatzinfor-
mation, welche zugleich einfacher zu berechnen sein kann, basiert auf der Erfas-
sung des Schätzproblems als Bayes’sche Schätzung. Die Zusatzinformationen 
werden als A-Priori-Wahrscheinlichkeitsverteilungen der Parameter definiert, und 
die Punktschätzung wird mit Hilfe der A-Posteriori-Verteilung, abgeleitet vom 
Satz von Bayes, ermittelt. Der vorgestellte Bayes’sche Ansatz bietet sich auch an, 
um Daten unterschiedlicher Quellen in einer theoretisch einheitlichen Schätzung 
zu nutzen. 

Die Dissertation hat vier Hauptkapitel (Kapitel zwei bis fünf). In den beiden 
ersteren wird das Problem, die Handelskosten in einem räumlichen Preis-
Gleichgewichtsmodell zu schätzen, aus jeweils methodologischer und empirischer 
Sicht behandelt, wobei BLPP zum Einsatz gebracht wird, um die Ungleich-
heitsbedingungen zu handhaben. In den beiden letzten Kapiteln wird eine Bay-
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es’sche Methode, unterbestimmte Schätzprobleme zu lösen, vorgestellt und für 
die Schätzung der Parameter eines landwirtschaftlichen Angebotsmodells einge-
setzt. 

In Kapitel zwei wird die Schätzung der Parameter eines traditionellen Trans-
portmodells diskutiert, und eine neue Schätzmethode vorgestellt. In Gegensatz zu 
anderen Methoden werden Beobachtungen von Handelskosten und von regionalen 
Preisen verwendet. BLPP wird eingesetzt, um ein quadratisches Schätzkriterium 
zu minimieren, unter der Nebenbedingung, dass die Kuhn-Tucker-Bedingungen 
des Transportmodells erfüllt sind. Mit Hilfe von Monte-Carlo-Simulationen wer-
den einige Eigenschaften der Schätzer abgeleitet, und mit den einer traditionellen 
Kalibrierungsmethode dieses bekannten Modells verglichen. Die Analyse ergibt, 
dass mit der vorgeschlagenen Methode Preise und Handelskosten effizienter ge-
schätzt werden können. Der Ansatz scheint für ein breites Spektrum linearer und 
quadratischer Modelle anwendbar zu sein. 

Kapitel drei behandelt die Schätzung von regionalen Preisen, Überschuss-
nachfragen und Handelskosten homogener Güter in einem räumlichen, partiellen 
Preis-Gleichgewichtsmodell und ist eine empirische Anwendung des im zweiten 
Kapitel vorgestellten Konzeptes. Das geschätzte Modell bezieht sich auf zwölf 
Regionen in Benin, die in sieben Produkten miteinander (Netto-)Handel treiben. 
Die zur Verfügung stehenden Preis- und Mengendaten sind mit beachtlichen Un-
sicherheiten behaftet. Wie in Kapitel zwei wird auch in diesem Kapitel die Schät-
zung als ein Optimierungsproblem in zwei Ebenen aufgestellt und gelöst, wobei 
auf der oberen Ebene die Summe der gewichteten quadrierten Abweichungen der 
geschätzten von den beobachteten Werten, und auf der unteren Ebene die Summe 
der Handelskosten im Transportmodell minimiert werden. Die Handelskosten 
werden in einer nichtlinearen Funktion, deren Parameter zu bestimmen sind, von 
einer Entfernungsmatrix abhängig gemacht. Die geschätzten Handelskosten wer-
den mit entsprechenden Ergebnissen anderer Studien verglichen und als akzepta-
bel eingestuft. Die Handelskostenfunktion impliziert einen linearen Zusammen-
hang zwischen Entfernung und Handelskosten, mit einer Proportionalitätskon-
stante von 0.147 FCFA/kg/km (FCFA ist die Beninsche Währung, 1 USD ent-
sprach in 2002 etwa 700 FCFA). 

Kapitel vier stellt eine Bayes’sche Alternative zu Generalized Maximum 
Entropy- (GME) und Generalized Cross Entropy- (GCE) Lösungen unter-
bestimmter Gleichungssysteme vor. In vielen Fällen bietet der vorgeschlagene 
Ansatz eine völlig äquivalente Alternative zu GME- und GCE-Techniken. Er 
liefert aber in seiner allgemeinen Form eine direktere und einfacher zu interpretie-
rende Möglichkeit zur Einbindung von A-Priori-Informationen und kann zudem 
auch den erforderlichen Rechenaufwand erheblich verringern. Die Methode lässt 
sich auch auf den Fall einer nicht-informativen (d.h. gleichverteilten) A-Priori-
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Information erweitern. In dem Kapitel werden sechs illustrative Rechenbeispiele 
ausführlich dargestellt. 

Kapitel fünf liefert eine umfassende Anwendung der in Kapitel vier vorgestell-
ten Methoden. Der Bayes’sche Schätzer wird eingesetzt, um die im Angebotsteil 
des Modellsystems CAPRI enthaltenen Verhaltensparameter zu bestimmen. Das 
Angebotsmodell in CAPRI besteht aus rund 250 nichtlinearen Optimierungsmo-
dellen, wobei jedes Modell den landwirtschaftlichen Sektor einer europäischen 
Region abbildet. Die Modelle haben eine quadratische Zielfunktion, wobei die 
quadratischen Terme das Simulationsverhalten des Modells stark beeinflussen. 
Das Ziel ist, diese Parameter mit Hilfe der in der CAPRI-Datenbank vorhandenen 
Daten zu schätzen. Insgesamt wurden Parameter für bis zu 23 Produktionsaktivi-
täten mit zugehörigen Preisen, variablen Kosten und Verhaltensfunktionen in 165 
Regionen der EU-15 geschätzt. Es gibt mehrere Studien, die Ergebnisse auf Mit-
gliedsstaatebene und/oder für aggregierte Produkte (Beispielsweise Getreide und 
Ölsaaten) präsentieren. Die Ergebnisse in diesem Kapitel werden systematisch mit 
den Ergebnissen vier solcher Studien hinsichtlich Angebotselastizitäten vergli-
chen, darunter zwei Studien für Frankreich, eine für die Niederlande und eine für 
Dänemark. Für aggregierte Produkte auf Mitgliedsstaatsebene sind die Ergebnisse 
gut vergleichbar mit denen anderer Studien und mit gängigen Faustzahlen. Zum 
Beispiel ergibt die Schätzung eine Angebotselastizität von einem Aggregat von 
üblichen Getreidearten in Frankreich von 0.508, und eine von Ölsaaten von 0.807. 
Auf regionaler Ebene und für einzelne Produkte sind die geschätzte Elastizitäten 
mehr heterogen. In der Französischen Region (NUTS 2) die in der Analyse als 
Fallbeispiel dient, fallen die Elastizitäten zwischen 0.38 (Kartoffeln) und 7.9 
(Hartweizen). Ob diese Spanne realistisch ist, ist schwierig zu beurteilen, da dem 
Autor keine andere Publikation mit Schätzergebnissen von vergleichbarem Pro-
duktspektrum und regionaler Deckung bekannt sind 
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Summary 

The subject of this thesis is econometric specification of parameters of con-
strained optimization models, with special attention to issues that arise when (i) 
inequality constraints are involved and/or (ii) when the estimation problem is ill-
posed (underdetermined) or data come from diverse sources. The general ap-
proach followed here is to estimate directly the optimality conditions of the opti-
mization model, together with additional equations for including prior informa-
tion. 

If inequality constraints are involved, the optimality conditions will contain 
complementary slackness conditions, making the space of solutions non-convex 
with discontinuous derivatives. The extremum estimation problem may then be 
very difficult to solve. In such cases, the estimation profits from being viewed as 
a bilevel programming problem (BLPP), where the leader’s problem is to opti-
mize the estimation criterion function, whereas the follower’s problem is the op-
timization model whose parameters are to be estimated. The BLPP literature of-
fers several solution algorithms capable of handling the complementary slackness 
conditions, and in this thesis it is shown how the efficiency of estimators may be 
increased if they are used. 

Obtaining a point estimate of the unidentifiable parameters in an ill-posed 
problem requires additional information. Common practice among applied model-
lers during the last decade has been to introduce this information using entropy 
estimators. A more general, more transparent and potentially computationally 
simpler means to the same end is to cast the estimation in a Bayesian form. The 
required additional information is defined in terms of a prior probability distribu-
tion of the parameters, and the estimation is based on the posterior probability 
density function which can be found using Bayes's rule. The Bayesian approach 
also proves useful for utilizing data from heterogeneous data sources in a theoreti-
cally sound way. 

The thesis has four main chapters (chapters two to five). The chapters two and 
three are a methodological and an empirical approach respectively to the problem 
of estimating trade costs in a spatial price equilibrium model using bilevel pro-
gramming techniques to handle inequality constraints. Chapters four and five 
introduce a Bayesian approach to estimation of ill-posed problems, and apply a 
Bayesian estimator to the problem of estimating parameters of an agricultural 
supply model. 
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Chapter two discusses the estimation of parameters of a traditional transporta-
tion model, and proposes a new estimation method. In contrast to previously used 
methods, observations of regional prices as well as of trade costs are used. The 
proposed method uses bilevel programming to minimize a weighted least squares 
criterion under the restriction that the estimated parameters satisfy the Kuhn-
Tucker conditions for an optimal solution of the transport model. Monte-Carlo 
simulations are used to trace out some properties of the estimator and compare it 
with a traditional calibration method. The analysis shows that the proposed tech-
nique estimates prices as well as trade costs more efficiently. The approach ap-
pears to be applicable to a wide range of linear and quadratic models. 

Chapter three also treats the estimation of regional prices, excess demand and 
trade costs, for homogeneous products in a spatial partial price equilibrium model, 
and serves as an empirical application of the theoretical approach developed in 
chapter two. The estimation is applied to a model for Benin, where twelve market 
regions are bilaterally trading (net trade) in seven products. The available data is 
subject to considerable uncertainty both regarding prices and quantities. The esti-
mation is again formulated as a bilevel program, with the upper level objective to 
minimize the weighted sum of squared deviations of estimated from observed 
values of prices and excess demand. The estimation is restricted to optimal solu-
tions of the transport cost minimization problem, parametrized by a trade cost 
function, the parameters of which are also to be determined. The resulting trade 
cost estimates are compared to those of empirical studies, and are found to be 
within an acceptable range. Trade costs are found to have a distance elasticity of 
unity, and are thus linear, with a coefficient of proportionality of 0.147 
FCFA/kg/km (FCFA is the currency in Benin, 1 USD ≈ 700 FCFA in 2002) 

Chapter four presents a Bayesian alternative to Generalized Maximum Entropy 
(GME) and Generalized Cross Entropy (GCE) solutions to underdetermined sys-
tems of equations. For certain types of economic model specifications, this ap-
proach provides fully equivalent results to GME-GCE techniques, but in its gen-
eral form allows a more direct and straightforwardly interpretable formulation of 
available prior information and can reduce significantly the computational effort 
involved in finding solutions. The technique can also be extended to situations 
with uninformative (uniform distributed) prior information. The chapter provides 
six fully worked out illustrative numerical examples of the proposed estimator.  

Chapter five provides a large-scale application of the methods proposed in 
chapter four. The estimator is applied to the supply part of the agricultural sector 
model CAPRI in order to estimate the behavioural parameters embedded there. 
The supply model in CAPRI consists of around 250 constrained quadratic pro-
gramming models, where each model represents the agricultural sector in a region 
in the EU. The models have a quadratic objective function, where the quadratic 
term influences the simulation behaviour of the model. It is the objective to esti-
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mate the parameters of that quadratic term, using the time series data in the 
CAPRI database. After discarding regions with insufficient data, parameters for 
up to 23 crop production activities with related inputs, outputs, prices and behav-
ioural functions were estimated for 165 regions in EU-15. There are several stud-
ies available that publish supply elasticities for individual countries and major 
crop aggregates. The results are systematically compared to the outcomes of four 
such studies, of which two for France, one for the Netherlands and one for Den-
mark. For crop aggregates (e.g. cereals, oilseeds etc.) on the level of nations, the 
estimated own price elasticities of supply are found to be in a plausible range. For 
example, the supply elasticity of common cereals in France is found to be 0.508 
and that of oilseeds 0.807. On a regional level and for individual crops, the picture 
is much more diverse. In a French case-study region (NUTS 2), the supply elastic-
ities ranged between 0.38 (potatoes) and 7.9 (durum wheat). Whether this span is 
plausible or not is difficult to judge, since no other study of similar regional and 
product coverage is known to the author. 
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Chapter 1  Introduction 

1. Aim and motivation 
The aim of this dissertation is to develop and demonstrate a general framework 
for the econometric specification of constrained optimization models. Focus is on 
issues that arise when inequality constraints are involved and/or when the estima-
tion problem is ill-posed (underdetermined) or data come from diverse sources. 

There are at least two good reasons for working on a general approach to this 
subject. One reason is that traditionally, parameters of larger optimization models 
are gathered from different sources. Take as an example a stylized economic 
simulation model that contains two types of parameters that we call supply elas-
ticities (behavioural parameters) and technical coefficients. Assume that supply 
elasticities are estimated separately or taken from other studies, whereas technical 
coefficients come from engineering information or external estimations. Thus, the 
parameters are determined in two steps, each of which may be performed follow-
ing the state of the art in statistics. The error model used when estimating the be-
havioural parameters does not include errors on the technical coefficients, and 
vice versa, so that taken together, the two estimations are likely to be inefficient 
and inconsistent. Furthermore, in each step, the parameters were estimated using a 
different model than the one in which the parameters are to be used, and are thus 
not likely to be consistent with that model. One aim of this dissertation is to point 
out that such problems do arise and to propose a general way of avoiding them. 

The second reason is that the full specification of large scale optimization 
models typically require some amount of information that is not contained in any 
data source. Examples of such information can be that certain coefficients have 
certain signs, or that they should be within some specified range that is based on 
heuristics. Some parameters of the desired model may not be identifiable at all in 
the underlying data, implying that there exist many different (generally a contin-
uum of) parameter vectors that all result in models consistent with data but possi-
bly different simulation behaviour. If the researcher wishes to proceed with the 
chosen model formulation in underdetermined cases, she faces the problem of 
selecting one of the possible parameter vectors for her model; a task frequently 
solved using out-of-sample information. Inclusion of such prior information is 
another core subject of this dissertation. 

The first reason is related to heterogeneity of data sources and consistency be-
tween the estimating equations and the final model, whereas the second refers to 
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prior information about the parameters of the model. Depending on the estima-
tion approach, however, that distinction blurs, and it is indeed one proposition of 
this thesis that a proper estimation approach can address both issues simultane-
ously. 

2. Overview of methodological approach 
The general approach to the estimation of constrained optimization models pro-
posed in this dissertation is found in the intersection of the three different disci-
plines (i) Bilevel programming (ii) Errors in variables modelling and (iii) Bayes-
ian estimation. In this section, a general constrained optimization model is con-
structed, and it is shown how each of the three disciplines contributes to the esti-
mation of the model. This section is brief and only serves as an overview, whereas 
the methodological approach is developed at length in the subsequent chapters. 

2.1. A constrained optimization model 

The problem is to estimate the parameter vector ψψψψ of the following general con-
strained optimization problem: 

  
ψx|

max f(x,ψψψψ): g(x,ψψψψ) ≤ 0, h(x,ψψψψ) = 0 (1) 

Here, and throughout the text if not stated otherwise, a bold face letter gener-
ally indicates a vector or matrix, whereas scalars are denoted by regular italic 
letters. We could thus write x = {xj: j = 1,…,J}. The symbols x|ψψψψ beneath the 
directive “max” means that the function f(x,ψψψψ) is being maximised with respect to 
x while treating ψψψψ as exogenous. The general problem can have inequality con-
straints g as well as equality constraints h. Further notation is introduced along 
the way. 

We constrain the study to cases where f is twice continuously differentiable 
and the feasible space S defined by the constraints for any ψψψψ, i.e. S(ψψψψ) = {x: 
g(x,ψψψψ) ≤ 0, h(x,ψψψψ) = 0} is compact. Furthermore, all elements of x and ψψψψ are re-
quired to be real continuous variables, thus excluding integer programming prob-
lems.  

The vector x is generally referred to as the variables or endogenous, whereas 
ψψψψ is called the parameters or exogenous. Those terms, however, depend upon the 
context, forcing us to leave that convention at times. Take for example the estima-
tion of the vector ΨΨΨΨ using the equation system F(x,ΨΨΨΨ) = 0. When solving the 
equation system, ΨΨΨΨ is generally termed "parameter" and x "variable". In the con-
text of this thesis, the estimation itself is explicitly considered an optimization 
problem in the variable θθθθ = (x,ΨΨΨΨ), possibly parametrized by yet another vector 
(e.g. weights or probability distribution parameters), so that the vector ΨΨΨΨ some-
times must be referred to as variable and sometimes as parameter. 
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2.2. A bilevel programming perspective 

A bilevel programming problem (BLPP) is an optimization model that has an-
other optimization model in its constraints. A common instance is the case of a 
leader and one or many followers. Without loss of generality, we assume that 
there is only one follower. The leader is in control of some instrument vector ψψψψ 
which the follower takes as given. The leader seeks to maximise some function F 
that depends on ψψψψ and the vector of choices x of the follower, and possibly on a 
vector of parameters ΘΘΘΘ. The leader may be constrained by vectors of inequalities 
G(x,ψψψψ,ΘΘΘΘ) ≤ 0 and equalities H(x,ψψψψ,ΘΘΘΘ) = 0. The follower seeks to maximise a 
function f in which the instrument vector ψψψψ of the leader is exogenous, subject to 
the vectors of inequality constraints g(x,ψψψψ) ≤ 0 and equality constraints h(x,ψψψψ) ≤ 
0. The problem of the leader can then be written 

 
Θ|,

max
ψx

 F(x,ψψψψ,ΘΘΘΘ)   

 subject to  G(x,ψψψψ,ΘΘΘΘ) ≤ 0   

  H(x,ψψψψ,ΘΘΘΘ) = 0  (2) 
 and x solves 

ψx|
max f(x,ψψψψ)  

  subject to  g(x,ψψψψ) ≤ 0  

   h(x,ψψψψ) = 0  

The similarities with an estimation of ψψψψ can be readily seen: Let the leader be 
a researcher that seeks to estimate the parameter vector ψψψψ, and let the function 
F(x,ψψψψ) be the estimation criterion function. Then the BLPP (2) is interpreted as to 
find the parameters that, when inserted into the model, gives model outcomes that 
maximise the criterion function. Observations that are somehow related to x or ψψψψ 
by some data sampling process may be entered as constants in the objective func-
tion F or in the constraints G or H via the parameter vector ΘΘΘΘ. 

The model (2) belongs to a special class of BLPPs that is sometimes called the 
weak or optimistic case (Dempe, 1997). That class is characterised by the property 
that if there are several optimal solutions to the followers problem for a given ψψψψ, 
then the leader may choose the one he prefers and the follower is indifferent to 
that choice. Or, in terms of an estimation, if the followers problem has several 
solutions for a given parameter vector, we may choose any of those. 

The follower’s problem is also referred to as the inner problem and the 
leader’s problem as the outer problem. In this work, those terms are sometimes 
used instead of the terms leader/follower, because they are perceived to be more 
neutral. The terms leader and followers are useful too, however, because they 
show the relation to the vast literature on leader-follower games originating with 
Stackelberg (1934). 
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In general, the model (2) is very difficult to solve (Luo, Pang and Ralph, 
1996), and gradient based solution methods are bound to find only local optima. 
When such models arise in econometrics, common practice is to either apply or-
dinary solution techniques and ignore the possible existence of "better" solutions1 
(e.g. Heckelei and Wolff, 2003 pp. 44), or to determine the binding status of the 
complementary slackness conditions by some tailor-made algorithm (e.g. Fischer 
et al. 1988) or heuristic that effectively turns inequality constraints into equalities 
(e.g. the budget constraint of the consumer is always exhausted). That such solu-
tions may be appropriate in the cases where they are applied is beside the point. 
An advantage of viewing the estimation problem as bilevel programming problem 
is that much research has been done on solution methods for such problems. In 
this study we make use of the easy to implement techniques proposed in Ferris, 
Dirkse and Meeraus (2002). A comprehensive but now somewhat dated literature 
review of bilevel programming is found in Vicente and Calamai (1994). 

When the inner problem is replaced by its first order conditions, we obtain (in 
general) a single level programming problem that contains complementary slack-
ness conditions among its constraints. Such problems are studied within the field 
of mathematical programming with equilibrium constraints (MPEC), see for ex-
ample the textbook by Luo, Pang and Ralph (1996). 

The proposition to use bilevel programming techniques to solve estimation 
problems does not per se imply doing something entirely different or new. Many 
econometric problems solved in literature are implicitly BLPPs. Especially, all 
extremum estimators of equations derived from neoclassic models should belong 
to that class. Consider for example the estimation of parameters of a demand sys-
tem. A common way of proceeding includes setting up a microeconomic model of 
the agent (the inner problem or the follower), and from that model deriving a re-
duced form system of demand equations. The demand equations are then related 
to observations of prices and quantities by some error model, and a parameter 
vector is selected that minimizes (or maximizes) some estimation criterion. The 
whole process is then equivalent to the solution of a BLPP. 

The value of viewing estimations of parameters of constrained programming 
models as BLPPs is that it provides an alternative perspective of the problem. 
BLPP provides a toolbox for handling situations where the road appears closed to 
ordinary statistical methods. 

                                                      
1 The phrase "better solutions" means that there may exist another local optimum that is better than 
the one found. In the work of Heckelei and Wolff (2003) referred to in the text, the authors do not 
report any numerical problems in the estimations.  



 8 

2.3. A measurement errors perspective 

A common characteristic of estimations of economic models is that there are gen-
erally few controlled variables, i.e. variables known with certainty, for instance by 
experimental design. For an economic model such controlled variables can in 
some cases be political intervention measures, like subsidies and tariffs. Neverthe-
less, important items like prices, supply, demand, technical coefficients et cetera 
can in general only be inferred from error prone measurements. In fact, the pa-
rameters of interest can frequently not be measured at all, but we can instead 
measure some quantity that we believe is correlated with the parameter of interest 
via an error model. 

Take for instance prices in some production model. The producer is generally 
assumed to base his production decision on an expected price. So even if we actu-
ally could measure the price with very high precision, we do not necessarily know 
what price the agent was expecting to receive, but can only assume that there is 
some statistical relation between our measurements and the expected price, just as 
we may assume that there is one between observed quantities and true planned 
production. 

In the situation described above, which should be quite common in the estima-
tion of constrained optimization models, there are no "left hand side" and "right 
hand side" variables, but the model is regarded as an equation system where 
measurement errors can enter in several places. Such models are referred to as 
errors-in-variables models (EVM) or measurement error models. It is well known 
that failure to incorporate errors in the "explanatory variables" when they are 
really error prone leads to biased parameter estimates (e.g. Fuller, 1987). Despite 
the likely bias, estimations in literature frequently use error prone explanatory 
variables, e.g. prices to explain demanded quantities. 

The EIV models that arise in the context of economic models generally con-
tain nuisance parameters2 i.e. items that enter the estimating equations but are of 
no direct interest to the researcher, and that furthermore tend to increase in num-
ber as the number of observations grows. For an explicit example, consider a 
model of a single economic price taking agent that is assumed to choose some 
optimal quantity x given a price p and some technical parameter β that is believed 
to be constant. In the notation of model (1), ΨΨΨΨ = (p,β). Assume for simplicity that 
there are no inequality constraints involved and that the functional forms are such 
that curvature is no issue (second order conditions are always satisfied), and fur-
thermore that there is a time series containing n observations of prices and quanti-
ties. The producer is assumed to choose the optimal x in each period as a function 
of (p,β) so that we can write x(p,β) as the (possibly implicit) solution to the first 

                                                      
2 Nuisance parameters is the term used by Carroll et al. (1995). Zellner (1971) adopts the term "inci-
dental parameters" introduced by Neyman and Scott (1948). 
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order conditions of (1) for x. Observations of prices and quantities are assumed to 
be generated as 

 xobs = x(p,β) + u1  

 pobs = p + u2  

where u1 and u2 are measurement errors with standard deviations σ1 and σ2. 
From an econometric perspective, p and β are parameters to estimate, and we 

see that for each new observation, another "true price" p must be estimated, albeit 
the parameter β may be the only parameter of interest for the modeler. Thus, re-
gardless of sample size n, there are always n + 1 parameters to estimate, hence the 
term "nuisance parameters". Without further information, the parameters are not 
identifiable. A maximum likelihood estimation of the problem requires knowl-
edge of the ratio of variances σ1/σ2 (e.g. Zellner, 1971, Fuller, 1987). If (p,β) are 
estimated with a Bayesian approach, exact knowledge of σ1/σ2 is not required, but 
other prior information may be used instead (Zellner, 1971, chapter V). 

Taking the reasoning one step further, we may also acknowledge that not only 
the researcher (upon measuring the quantities of the model) can commit errors, 
but also the agent that is modelled. Such errors may result in non-optimal choices 
of the producer, which then are measured by the researcher and enter into the 
estimation. McElroy, (1987) terms a model that considers optimization as well as 
measurement errors a general error model, and points to the consequences of ne-
glecting optimization errors. 

By designing a measurement error model, a more realistic data sampling proc-
ess can be obtained, and biases and inefficiencies reduced. Unfortunately, the 
more sophisticated the error model, the greater the data requirements, because the 
number of endogenous variables in the estimation is increased. The greater num-
ber of "unknowns" may even result in an underdetermined, or ill-posed estima-
tion. The measurement error model also requires the researcher to determine the 
relative variances of the errors involved, either by assumption or using external 
datasets. Those potential obstacles raised by the measurement error model lead to 
the last methodological field, Bayesian estimation. 

2.4. A Bayesian perspective 

There are many situations in which applied modellers need to include prior infor-
mation into the specification of model parameters: Applied modellers frequently 
face problems of scarce or missing data (e.g. Howitt and Reynaud, 2003), or want 
to include non-data information when determining parameters of their models in 
order to account for sound plausibility considerations (e.g. Fischer et al. 1988 p. 
93). Furthermore, modellers may wish to specify a richer model structure than is 
supported by the data (e.g. Oude Lansink, 1999, Paris and Howitt, 1998), thus 
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facing ill-posed problems. In the previous section it was also mentioned that the 
measurement error model generally requires prior information of some kind. 

The prior information required to solve ill-posed problems have frequently 
been introduced using entropy based estimators, as in Howitt and Reynaud 
(2003), Oude Lansink (1999) and Paris and Howitt (1998) referred to above 
(more references are found in chapter 4). The Bayesian approach to econometrics 
is directly aimed at handling prior information, and may thus prove a useful alter-
native to maximum entropy and cross entropy techniques for the applied model-
ler. 

Let φ(z|θθθθ) denote the conditional probability density for observing the outcome 
z of some random vector Z given the parameter vector θθθθ ∈ Ω, and let ξ(θθθθ) be the 
unconditional probability density of θθθθ. Using Bayes's rule (e.g. DeGroot, 1970), 
the following function (actually a family of functions) for the density of θθθθ condi-
tional on observing z can be derived:  

 ξ(θθθθ|z) ∝ φ(z|θθθθ)ξ(θθθθ) 

ξ(θθθθ|z) is called the posterior density, and ξ(θθθθ) the prior density of θθθθ. Note that 
the parameter vector θθθθ is not to be confused with the parameter vector ΨΨΨΨ. The 
latter are parameters of the inner problem, whereas the former are parameters of 
the data sampling model. 

The Bayesian approach lets the researcher introduce prior information regard-
ing the parameters, and can contribute to resolving the problems of transparent 
and consistent inclusion of diverse data sources, a common problem in the estima-
tion of parameters of constrained optimization models. Different data sources and 
assumptions provide information about the prior density function ξ (e.g. prior 
mean and variance of θθθθ), and confrontation of the model with data provides in-
formation about the outcomes z. As an estimator we may want to choose the 
mode or mean of the conditional density function ξ(θθθθ|z). As is shown in chapter 4, 
the posterior mode estimator entails many other familiar estimators as special 
cases. 

3. Outline of thesis 
The methodological approach outlined above is implemented in four steps in the 
following four chapters, as is illustrated in the two-by-two matrix below. The first 
two chapters show how the bilevel programming perspective is useful for estimat-
ing inequality constrained models. In particular, the two chapters deal with the 
estimation of regional prices and transportation costs in a transportation model, 
first from a theoretical point of view and then applied to a real data set. The chap-
ters four and five treat Bayesian methods for inclusion of prior information. In 
chapter four, a Bayesian estimator for general underdetermined models is pro-
posed, and chapter five applies the methodology developed in chapter four to a 
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large scale nonlinear model. The models in all chapters can be regarded a kind of 
measurement error models. The chapters are based on individual papers, and are 
thus written in such a way that they may be read independent of each other. 

Figure 1: Outline of body of thesis. 

 Bilevel Programming Bayesian estimation 

Theoretical Chapter 2 Chapter 4 

Applied Chapter 3 Chapter 5 

 
Chapter two discusses the estimation of parameters of a traditional transporta-

tion model, as it is typically present in so-called Takayama-Judge type spatial 
price equilibrium (SPE) models (e.g. Takayama and Judge, 1964). In contrast to 
previously used estimation methods for this problem, observations of regional 
prices as well as of trade costs are used. The proposed method uses bilevel pro-
gramming techniques to minimize a weighted least squares criterion under the 
restriction that the estimated parameters satisfy the Kuhn-Tucker conditions for an 
optimal solution of the transport model. A penalty function as proposed in Ferris 
et al. (2002) is used to iteratively approximate the complementary slackness con-
ditions. Monte-Carlo simulations are used to trace out some properties of the es-
timator and compare it with a traditional calibration method. The analysis shows 
that the proposed technique estimates prices as well as trade costs more effi-
ciently. It is suggested to apply the same method to a range of linear and quadratic 
models. 

Chapter three also treats the estimation of regional prices, excess demand and 
trade costs, for homogeneous products in a spatial price equilibrium model, and 
serves to illustrate the application of the theoretical approach developed in chapter 
two. The estimation is restricted to optimal solutions of the transport cost minimi-
zation problem, parametrized by a trade cost function, the parameters of which are 
also to be determined. The data come from an agricultural model for Benin, where 
twelve market regions are bilaterally trading (net trade) in seven primary crop 
products. The resulting trade cost estimates are compared to those of empirical 
studies.  

Chapter four presents a Bayesian alternative to Generalized Maximum Entropy 
(GME) and Generalized Cross Entropy (GCE) solutions to underdetermined sys-
tems of equations. For certain types of economic model specifications, this ap-
proach provides fully equivalent results to GME-GCE techniques, but in its gen-
eral form allows a more direct and straightforwardly interpretable formulation of 
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available prior information and can reduce significantly the computational effort 
involved in finding solutions. The technique can also be extended to situations 
with non-informative prior information. Six fully worked out numerical illustra-
tions of the estimator are supplied. The explicit comparison with the entropy-
based methods is motivated by the frequent use of GME or GCE for solving un-
derdetermined problems and introducing prior information into model calibration 
problems (e.g. Paris and Howitt 1998, Witzke and Britz 1998, Paris 2001). 

In chapter five, the estimator developed in chapter four is applied to the supply 
part of the agricultural sector model CAPRI in order to estimate the behavioural 
parameters embedded there. The supply model in CAPRI consists of a number of 
constrained quadratic programming models, where each model represents the 
agricultural sector in a region in the EU. The models have a quadratic objective 
function, where the quadratic term influences the simulation behaviour of the 
model. It is the objective to estimate the parameters of that quadratic term, using 
the time series data in the CAPRI database. Along the way, two alternative formu-
lations of the regional programming models are considered but discarded.  

Chapter six summarizes the main findings, discusses them relative to the aim 
of the study, and identifies some potentially fruitful fields for further research. 
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Chapter 2  An estimator for trade costs and its small sample 
properties3 

1. Introduction 
The transport model treated in this chapter is a common component of spatial 
price equilibrium models. It has been analyzed in several central articles in linear 
programming, for example in Koopmans’s original article from 1947, Enke’s 
ingenious “solution by electric analogue” (1951) and Samuelson’s formalized 
treatment (1952). In Dantzig’s work on linear programming (1966), the transport 
problem is referred to as “The classical transport problem.” This chapter is not 
concerned with the solution of the transport model, which has been thoroughly 
treated for more than fifty years, but turns instead to the empirical specification of 
the model. 

In fact, during the long history of this established model, little attention has 
been paid to the estimation of its parameters. For example, the only article in the 
edited volume by Labys et al. (1989) that explicitly mentions the estimation (cali-
bration) issues is McCarl et al. (1989, p. 289-290). They describe a process where 
the model specification is iteratively updated in order to reproduce first observed 
quantities, then observed prices. Thompson (1989, the same edited volume) pro-
poses to use statistical measures as mean absolute deviation or mean squared error 
to evaluate goodness of fit of the resulting model. The reader should, however, be 
aware that already with a modest number of regions in the SPE model, the large 
number of possible bilateral trade flows result in an equally large number of zero 
arbitrage conditions, that render the selection of a basis that fits the base data a 
difficult problem. 

The transport cost minimization problem can be written as 

 
x

min  ∑
ij

ijij xc  

 s.t. ∑ =−+
j

jiiji xxe 0)(  ][ ip  (1) 

  0≥ijx  ][ ijv  

                                                      
3 Part of the material in this chapter has previously been presented and discussed at conferences, see 
Jansson and Heckelei (2004) and Jansson (2005). 
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where cij is the trade cost from region i to region j, xij is the traded quantity and ei 
is excess demand in i. Letters in square brackets after the restrictions symbolize 
the dual values of the constraints. 

We consider the trade of a single homogeneous good, and assume that reliable 
(error free) data on regional excess demand is available. Furthermore, we assume 
that observations of trade costs between regions as well as regional prices are 
available, but associated with measurement errors. Observed prices are likely to 
be inconsistent with observed trade costs and excess demand under the assump-
tion that they constitute an equilibrium solution to model 1. 

Spatial price equilibrium models frequently contain a similar transport cost 
minimization model as component. Examples range from the early publications of 
Judge and Wallace (1958) and Takayama and Judge (1964) to the more recent 
contributions of Litzenberg, McCarl and Polito (1982), Peeters (1990) and 
Guijardo and Elizondo (2003)—to name just a few. 

In the cases known to this author, including the publications just cited, there 
was either no calibration at all4, or the models were calibrated by in three steps by 

1. solving the trade cost minimization problem using the observed trade 
costs, 

2. taking the dual values of the market clearing restrictions p
i
 as prices and 

3. shifting the prices so that some important price is matched precisely. 

Step 3 is possible because the first order conditions only contain pair-wise 
price differences. Indeed, one of the market clearing restrictions is redundant, 
because we know that for a solution to the transportation problem to exist, the 
sum of all regional net demands must be zero (Dantzig 1966), implying that if 
there are k markets, then if k − 1 of them clear, all of them must clear. Because 
only price differences are identified, one numerator price can be chosen arbitrar-
ily and the remaining prices are determined by those price differences. 

Obviously, this method for determining regional prices for a transport model 
does not use any direct observations of regional prices except for the numerator 
price. The remaining regional price information is extracted from trade costs and 
excess demand. This procedure is henceforth referred to as “traditional” and ab-
breviated TRAD. 

The purpose of this chapter is (1) to demonstrate an alternative method, a 
bilevel estimation program (BLEP), for calibrating the input data for a transport 

                                                      
4 The edited volume by Labys, Takayama and Uri (1989) is entirely devoted to spatial (and tempo-
ral) price equilibrium volume. The paper therein by McCarl et al. mention attempts to calibrate the 
model by trial and error, and the paper by Thompson suggests to use statistical measures to quantify 
the deviation of the specified model from observations. 



 17 

model that uses observations of regional prices, and (2) to show that BLEP esti-
mates regional prices more efficiently than TRAD and that this increased effi-
ciency in estimating prices does not come at the expense of a less efficient estima-
tion of trade costs. 

The outline is as follows: In the next section, the BLEP is presented in detail, 
and it is given a geometric interpretation. Then, hypotheses are deduced about the 
behaviour of the two estimators by treating them as implicit functions, and the 
ideas are illustrated in a three-region example model. The hypotheses are ana-
lyzed using Monte-Carlo simulations, where the performance of the two estima-
tors is evaluated using generated data. The results of the simulations are analyzed 
and compared to the hypotheses formed. A final section summarizes and dis-
cusses the results. 

2. A bilevel estimation program 

2.1. The estimator 

The idea to determine parameters of optimization models by estimating the first 
order conditions (FOC) is not new—it is standard procedure. Nevertheless, it has 
not been much used for inequality constrained programming models. Fischer et 
al. mention an algorithm for computing parameters of a linear program so that a 
statistical measure of deviation from observations is minimized, thus (implicitly) 
solving a bilevel programming problem, but do not provide any details of the 
algorithm. Heckelei and Wolff (2003) propose estimating parameters of agricul-
tural supply models by using optimality conditions as estimating equations. 
Jansson and Heckelei (2004) show how a similar technique can be applied to the 
estimation of a transport model, where a large number of inequalities renders the 
estimation numerically difficult. The current chapter contributes to this strand of 
research by calibrating the parameters of a transport model by direct estimation of 
the optimality conditions of problem 1, using a least squares objective, and ana-
lyzing the finite sample properties of the estimator. The resulting optimization 
problem, given by equations 2-7, belongs to the class bilevel programming prob-
lems (BLPP). The term "bilevel" refers to the fact that it is one programming 
problem (the estimation) that has another programming problem, in this case the 
transport problem represented by its optimality conditions, in the constraints 
(Candler and Norton 1977). 

 
cp,

min  ( ) ( )∑ ∑ −+−
ij i

obs
ii

obs
ijij ppcc

22
 (2) 

 s.t. ( ) 0=−+∑
j

ijjii xxe  (3) 
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  cij − pj + pi= vij (4) 

  xijvij = 0 (5) 

  cij = cji (6) 

  xij ≥ 0, vij ≥ 0 (7) 

The general BLPP is difficult to solve, so a few words about solution tech-
niques are appropriate, although a substantial treatment of that subject is beyond 
the scope of this text. Several different solution methods were tested, including 
approximation by smooth reformulations as suggested by Facchinei, Jiang and Qi 
(1999), by Ferris et al. (2002, also found in the NLPEC solver for GAMS), a 
branch-and-reduce algorithm called BARON implemented as solver for the mod-
elling language GAMS and the method proposed by Jansson and Heckelei (2004). 
Repeated simulation experiments were performed in order to select the most ap-
propriate solution algorithm for the case at hand. In the experiments, normally 
distributed errors were added to randomly generated true models, and the parame-
ters re-estimated with least squares. It turned out that two algorithms (A1 and A2) 
based on smooth approximations in Ferris et al. (2002) were performing similarly 
well. 

A1: The algorithm that most frequently obtained the smallest sum of squared 
errors was based on a product reformulation. The idea behind the reformulation 
can be illustrated for a complementary slackness condition consisting of a slack 
variable x ≥ 0 and a dual value v ≥ 0. The complementary slackness condition can 
then be written xv = 0. With A1, we instead write xv ≤ µ for some positive number 
µ. The estimation problem with the approximated complementary slackness is a 
smooth NLP problem that can be solved with gradient based techniques (this pa-
per uses the solver CONOPT for GAMS, ). The problem is solved repeatedly, 
starting with a large µ and finishing with µ = 0, and each time using the previous 
solution as a starting point. It was found that performance was improved if before 
each step a new feasible starting point was found by solving the inner problem for 
the parameter values of the previous step (or the observations in the first step). 

A2: The algorithm that on average obtained the smallest sum of squared errors 
was based on a penalty function. Here the complementary slackness conditions 
were completely removed, and instead the estimation criterion was augmented 
with a penalty function of the form µxv (with x, v and µ as before). This modified 
optimization problem was solved iteratively, each time with a larger µ, with µ 
initially set to a small positive number. The algorithm terminates when the com-
plementarity gap xv was zero. A2 did not find the best solution most frequently, 
but it always found a solution that was close to the best solution found by any 
algorithm. 
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All other methods were either taking considerably more time to solve the prob-
lem or were less reliable in finding a good solution. It was thus decided to use 
both A1 and A2, and for each simulation experiment use the results of A1 except 
if the sum of squares obtained by A2 was lower, in which case the results of A2 
were used.  

2.2. A geometric interpretation 

In the case where the criterion function to be minimized is the sum of squared 
deviations and the model to be estimated is a linear model, the BLPP has an intui-
tive geometric interpretation. Consider the following problem, estimating a pa-
rameter x of a linear programming model in one variable y, and restrictions as 
follows: 

 
yx,

min (x − xo)
2 + (y − yo)

2  

 s.t. 
xy|

min  y  

  s.t. −y − x ≤ −3 (8) 

   −y + x ≤ 2  

   y − x ≤ 2  

   y + x ≤ 8  

Here xo and yo are observations, and we want to pick x and y that minimize the 
upper level objective and where y solves the inner problem treating x as given. 
We note that (x,y) that minimize (x − xo)

2 + (y − yo)
2 also minimize [(x − xo)

2 + (y 
− yo)

2]½, which is the Euclidean metric, i.e. the ordinary distance, between the 
estimated point (x,y) and the observation (xo,yo). 

In figure 1 the restrictions of problem (8) are drawn as lines, the observed 
point (xo,yo) as a plus sign, and level curves5 for the criterion function as concen-
tric circles around the observation. All points on a circle have the same distance 
from the plus sign and hence the same objective values in the criterion function. 
Following Bard (1998), we call the area enclosed by the restrictions (where the 
circles are not dashed) the constraint region S of the bilevel programming prob-
lem. 

                                                      
5 If the problem is interpreted as a Bayesian problem as in chapter four, with error terms iid normal 
distributed, the concentric circles are the iso-probability curves of the posterior density function. 
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Figure 1. A simple BLEP with OLS criterion and linear inner problem. 

The projection of S onto the x-axis is denoted by S(X), and is a convex subset 
of X with the property that for each x ∈ X at least one, but possibly several, solu-
tions to the LP exists. If we form the set of all pairs (x,y) where x is in S(X) and y 
solves the LP, we have the so-called inducible region. It is marked with heavy 
lines in the figure. We seek the point in the inducible region that is closest to the 
observation. 

When the inner problem is an LP, the inducible region is a piecewise linear 
function derived from the faces of S (Bard 1998). In the general case, it is non-
convex, so there may be several local optima. In figure 1, there is a local optimum 
at the point l and the global optimum is found at g. The non-convexity of the in-
ducible region makes the problem difficult to solve, and is one important reason 
that special solution methods frequently are needed for BLEPs—and why BLEPs 
are rarely used. 

3. Analysis of estimator properties 
It is desirable that an estimator on average is close to the true parameter. We call 
this efficiency and measure it by the mean squared error (MSE) (Greene 2003). 
MSE is the mean squared deviation of an estimate from the true parameter value. 
Efficiency is a relative measure, so what we would like to know is if one of the 
estimators is more efficient than the other. To our aid, we use the fact that MSE 
can be split into a variance and a bias component using  

 22 ])|ˆ[(]ˆ[])ˆ[(]|ˆ[ θθθθθθθ BiasVarEMSE +=−=  (9) 

where θ  is the true parameter value and θ̂  the estimator. 
In this section, we proceed analytically to deduct hypotheses about variances 

and biases of the estimates of the two methods. If one estimator turns out to be 
less biased as well as having less variance than the other, we conclude that it is 
more efficient. If, in contrast, one estimator is less biased but has higher variance 
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than the other (or vice versa), the qualitative reasoning in this section does not 
allow us to say that one estimator is more efficient than the other. The last two 
sections in this chapter report setup and results of simulation experiments de-
signed to investigate the properties numerically. 

We consider the case when there is only one observation available and the er-
rors are known to be additive and drawn from a symmetric distribution. Then 
TRAD and BLEP constitute two different implicit functions from price-cost space 
ΩΩΩΩ into itself (onto the inducible region, which is a subspace of ΩΩΩΩ). That is, each 
vector of observations is mapped into a vector of estimates. If this mapping were 
linear, the probability distribution of the estimates would be only a scaled and 
shifted version of the probability distribution of the errors. The mapping is, how-
ever, not always linear, due to the complementary slackness conditions, and thus 
the distribution of the estimates is asymmetric. 

Let us analyse the shape of the graph of the implicit function by a few exam-
ples. If we pick one component of the implicit function, say the estimated price in 
some market, and compute its graph against one of the arguments, say the trade 
cost into that region from some neighbouring region, we could obtain something 
like the left pane in figure 2. In the figure, the trade route (i,j) is not used if the 
trade cost is greater than c*, so observing a trade cost greater than that does not 
influence the price estimate p′ in region j at all neither with TRAD nor BLEP. 

 

Figure 2. Stylized graph of implicit function component. The break point is due to 
the complementary slackness conditions. 

If in contrast the observed cost is lower than c*, say co, then the zero arbitrage 
conditions suggest that the price in j is lower than p′. TRAD undertakes the neces-
sary adjustment solely on the price position, so the graph of TRAD slopes 45° 
downward to the left from (c*,p′) as the dotted line shows. BLEP undertakes the 
adjustment for the estimated trade cost, shown in the right pane, as well as for the 
estimated price, so the adjustment of the estimated price is smaller, along the 
more gently sloping solid line. Both graphs in the left pane do, however, have a 
kink at (c*,p′). As a consequence, the density function of the estimated price in j 
will be asymmetric, and more so for TRAD than for BLEP. For the estimated 
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trade cost though, as shown in the right pane, only the graph of the implicit func-
tion for BLEP has a kink. 

What are the consequences of the kinked implicit functions on the efficiency 
of the estimators? Analysis suggests that a kink causes the estimates to be biased. 
To see this, we sketch a histogram for a stylized density function for the BLEP 
estimates in the right pane of figure 2. This is done in figure 3. The quantity on 
the horizontal axis is, as before, an observation. It is presumed to have an additive 
error component from a symmetric density function, so that the density function 
for the observation could give rise to the histogram that is standing on the hori-
zontal axis. Denote the class width by s, and the probabilities of the four classes 
by a, b, d, and e. Assume, without loss of generality, that c* is the true trade cost. 

On the vertical axis is, as before, the estimate, in this case the BLEP estimate 
of trade cost. We have put the resulting histogram for the estimates, rotated 90° 
anti clockwise, along that axis. We see that an observed costs in the interval 
(c*, c*+s] that occurs with probability d will be mapped to an estimate in the inter-
val (c′, c′+s] with probability d, and an observation in (c*+s,c*+2s] that occurs 
with probability e maps to (c′+s, c′+2s] with probability e. However, any observa-
tion in [c*−2s, c*), occurring with probability a + b maps to the smaller interval 
[c′−s, c′) with probability a + b. Thus, the distribution of the estimates is skewed. 

 

Figure 3. Density functions for a component of the implicit function BLEP. 

The mean of the estimates will not be c′, the value mapped by the true parame-
ter c*. We see this by computing the moments around c′ and c* respectively: 

 Moment around c′  = −0.5s(a + b) + 0.5sd + 1.5se  

  = −0.5sa − 0.5sb + 0.5sd + 1.5se  

  > −1.5sa − 0.5sb + 0.5sd + 1.5se  

  = moment around c* = 0. 

Since the moment around c* is zero, we can compute the bias easily by cancel-
ling terms to obtain moment around c′ = sa > 0. Thus, the estimates of trade costs 
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are biased by the amount sa, and they must be biased whenever the implicit func-
tion is kinked. 

Figure 3 also shows that the variance of the estimates decreases, because the 
width of the histogram decreases. In that way, some of the efficiency lost due to 
the bias is regained. 

Note that the number of kinks and the slopes of the lines depend on the trade 
pattern. If a region is connected by trade flows to many other regions, then a 
changed price in that region has implications for many other prices, and con-
versely when there are few connections. This makes an analytical deduction of the 
graph of the implicit function practically impossible.  

The above reasoning is illustrated in a three-region, single commodity model, 
for which we assume that there exist true parameter values that represent an equi-
librium solution. Figure 4 shows three regions A, B and C, with B being a net 
importing region and A and C net exporters. The left and right panels of the figure 
show two of the three possible trade flows that would clear all markets. To be 
specific, let the true regional prices be pA = 100, pB = 109 and pC, = 104 and the 
trade costs cAB = 9, cAC = 5 and cCB = 5 and symmetric as in equation (6). In this 
case, trade will flow as in the left hand panel. 

A C

B

A C

B
 

Figure 4. Three region model with A and C net exporters and B a net importer, 
and two possible market clearing solutions. 

To start with, we make the trivial observation that if the all disturbances are 
degenerate “0”, i.e. no disturbances, then TRAD and BLEP map an “observation” 
to itself, i.e. both methods return the true parameters. Then, we add random dis-
turbances from a symmetric distribution with mean of zero but nonzero variance 
to only the trade cost cAB and leave all other observations undisturbed, and see 
what happens to the estimates of TRAD and BLEP. In mathematical terms, we 
make point approximations of a single partial derivative of the vector valued im-
plicit functions that map observations to estimates, defined by the estimation 
methods. The symmetric errors will have a biasing effect on price estimates, re-
gardless if they are estimated with TRAD or BLEP, as illustrated by the following 
numerical example: 



 24 

Example: We measure prices and costs of the model in figure 4 twice, and after 
each measurement we use the observation to estimate the true parameters with 
TRAD and BLEP. Only cAC is measured with errors, all other trade costs and 
prices “happen to be” observed at their true values (but we do not know that). 
The observations of cAC are  
 Case 1:  cAC = 10  
 Case 2:  cAC = 0 

Estimates with TRAD: 
Case 1: The trade cost minimizing solution is the same as that without the er-

ror, so trade will still flow as in the left panel of the figure. Conclusion: The dual 
values of the markets with the numerator price pA added will equal the true prices, 
because the flow AC is still not used. The costs will, as always with TRAD, be the 
observed ones: cAB = 9, cAC = 10 and cCB = 5. 

Case 2: It is cheaper to transport via ACB than via AB, so trade will divert from 
AB to ACB as in the right panel of figure 4, the prices will be pA = 100, pB = 105 
and pC = 100, and costs cAB = 9, cAC = 0 and cCB = 5. Conclusion: In this case, only 
negative errors that are larger than 1.0 influence the price estimates, because the 
second cheapest trade route is 1.0 unit more expensive than the cheapest one. The 
price estimates for B should systematically turn out lower than the true prices in 
this setup, as would the price in C. 

Estimates with BLEP: 
Case 1: The observation is a point in the inducible region, so the estimator will 

accept the observation unaltered and will measure a deviation of zero. In the esti-
mated model, trade will flow as in the left panel of the figure. Conclusion: Noth-
ing will happen to the prices because the flow AC is still not used, and the esti-
mated costs will be cAB = 9, cAC = 10 and cCB = 5 as with TRAD. 

Case 2: The observation is not in the inducible region, so the estimator will 
look for the closest point of the inducible region using the least squares criterion. 
The best solution means using the trade flow ACB and not AB, choosing the prices 
pA = 101.9, pB = 108.2 and pC = 102.9, and the trade costs cAB = 9, cAC = 0.952 and 
cCB = 5.381. Conclusion: As with TRAD, only the negative error with absolute 
amount greater than 1.0 influences the estimation, thus a symmetric measurement 
error with a mean of zero causes the estimated prices to deviate from the true 
values in only one direction (positive for pA and negative for pB and pC), i.e. being 
estimated with bias, but less biased than with TRAD. 
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Further analysis along the same lines as above suggests four hypotheses about 
the estimators TRAD and BLEP, and those hypotheses are further analysed in the 
next section with aid of numerical techniques.6 

H1. BLEP is a more efficient estimator of regional prices than TRAD, be-
cause the BLEP estimates have both less variance and less bias than the 
TRAD estimates. 

H2. We cannot a priori say that either estimator is a more efficient estimator 
of trade costs. On the one hand, BLEP estimates have a bias that TRAD 
estimates lack, but on the other hand the variances of the BLEP estimates 
are lower. The simulation experiments reported below suggest that this 
hypothesis can be strengthened. 

H3. The variances of the price estimates are heterogeneous, in other words the 
variance is different in different regions. It is more heterogeneous if esti-
mated with TRAD than with BLEP. 

H4. The variance of the cost estimates is heterogeneous when estimated with 
BLEP but not when estimated with TRAD. 

4. Simulation experiments  
The small sample properties of the estimators are analyzed using simulation tech-
niques. The basic idea is to generate m randomly chosen “true models,” and then 
estimate each model n times (the simulation size is n), each time adding errors to 
the true prices and costs. We thus obtain m samples that each consists of n obser-
vations of estimated trade cost matrices and price vectors. Throughout this paper 
we use m = 100 and n = 500. 

The m models, each with ten regions, are generated by drawing regional ex-
cess demand from the uniform distribution [−10,10] and trade costs from the uni-
form distribution [20,100]. The excess demand of one region is set to the negative 
of the sum of excess demand in all other regions to make the problem feasible. 
The transport model (1) is solved, and the dual values of the market balances plus 
a constant of are 120 taken as true regional prices. In the following, the index 
denoting the model (1,…,m) to which a certain price or trade cost belongs is omit-
ted for readability.  

Each of the m models is estimated n times with TRAD and BLEP, each time 
with errors added to all true prices and trade costs. The errors are sampled from 

                                                      
6 A rigorous treatment of the topological properties of problems such as this is beyond the capabili-
ties of the author, but can be found in the literature on mathematical programming with equilibrium 
constraints (MPEC), e.g. the monograph by Luo, Pang and Ralph (1996). 
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the normal distribution with mean of zero and standard deviation 6. With this 
standard deviation, we expect that the major part of the errors are in the interval 
[−18,18], because plus or minus three standard deviations covers 99.9% of the 
outcomes. By construction, true trade costs are in [20,100], so with a numerator 
price of 120 the smallest possible true trade cost as well as price is 20. Hence, 
adding an error of standard deviation 6 and mean zero will rarely result in nega-
tive observed values. Still, they may occur, and to prevent that, the sampled errors 
are censored to lie within the interval [−19,19]. The errors are censored upwards 
as well as downwards to avoid censoring being a source of biases. 

In the next section, we address the hypotheses put forward in the previous sec-
tion by analysing MSE, variances and biases of prices and trade costs estimated 
with TRAD and BLEP. Since equation (9) holds for each parameter in each 
model, we can compute the mean of each term over all prices or costs in each 
model, obtaining mean MSE (MMSE), mean squared bias (MSBIAS) and mean 
variance (MVAR), for which it holds that MMSE = MSBIAS + MVAR. The 
means are computed in order to obtain an overview over the large number of pa-
rameters estimated in the simulation exercise. 

The GAMS program “generateSample.gms” that was used for performing the 
numerical experiments is printed in appendix 2.2, and the program that was used 
for analysing the results, “analyseSample.gms”, is printed in appendix 2.3. The 
programs require that the software GAMS is installed, and are better executed 
from the command prompt in order for progress feedback to work properly. 

5. Results  
This section presents the results of the simulation experiments in relation to the 
four hypotheses formed in section 3. The section is subdivided into three parts: 
5.1 efficiency of price estimates, 5.2 efficiency of trade cost estimates and 5.3 
heterogeneity of variances. 

5.1. Efficiency of price estimates (hypothesis H1) 

Result 1 BLEP is a more efficient estimator of regional prices than TRAD.  

The simulation experiments confirm the hypothesis that BLEP is a more effi-
cient estimator of regional prices than TRAD. Figure 5 shows MMSE for price 
estimates in all models. Each point is the average MSE over all regional prices 
and all 500 estimations in one model. 
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Figure 5. Mean MSE for price estimates for each model. 

The results show that BLEP not only delivers more efficient estimates of 
prices, but also that the efficiency is stable across different models. In other 
words, it does not depend upon the true data constellation. In contrast, TRAD is 
less efficient in all cases, and additionally, the efficiency seems to depend on the 
data constellation. As we will see, the greater efficiency of BLEP regarding price 
estimates is attributable to less bias as well as less variance, as the qualitative 
reasoning above suggests. 

Result 2 Both BLEP and TRAD estimate prices with bias, but the bias is smaller 
for BLEP.  

Figure 6 shows the mean squared bias (MSBIAS)of all price estimates and es-
timations per model. MSBIAS of prices estimated with TRAD fluctuate strongly 
between models, whereas the biases of prices estimated with BLEP are much 
more stable and also smaller. Most of the large biases come from the TRAD esti-
mator. 
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Figure 6. Mean squared bias of price estimates of all models. 

It may also be of interest to analyse the biases of the individual regional price 
estimates (not the mean squared bias). Table 1 shows descriptive statistics of the 
sample of estimation biases of regional prices (total sample of 100 models × 10 
prices × 500 estimations = 500 000 prices). Neither the average nor the median of 
the biases is far from zero, indicating that there are about as many positive biases 
as there are negative ones. The larger variance of the biases of TRAD supports the 
hypothesis that TRAD generally produces price estimates with larger biases. The 
larger biases also appears in the line “SABIAS”, which is the sum of absolute 
biases. SABIAS of TRAD is more than three times that of BLEP. 

Table 1: Descriptive Statistics of Biases of Price Estimates  

 TRAD BLEP 
mean -0.193 0.004 
variance 8.242 0.590 
median -0.061 -0.004 
SABIAS 2018.280 594.965 
 

According to the reasoning in the previous section, we would expect TRAD to 
systematically estimate biased prices in some regions in some models, and the 
BLEP estimates would also be biased. A visual inspection of figure 6 suggests 
that that the bias of BLEP is much smaller than that of TRAD. It would thus be 
interesting to test if the biases of the price estimates are significant. If we pick at 
random one of the 1000 prices (10 prices in each of 100 models), we have 500 
estimates of that price. Since the estimates are random variables, we may use the 
Lindberg-Levy central limit theorem (LLCLT) to argue that the mean of the esti-
mates will be asymptotically normally distributed. With 500 observations, the 
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asymptotic distribution can be considered a fair approximation to the correspond-
ing small sample distribution.  

If we apply the LLCLT, using an estimate s2 of the variance instead of the un-
known true variance σ2, we have that  
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where kilp̂  is the estimated price in model k, region i for estimation l with 
l∈{1,…,500}, kip  the average of the n estimations of the price in model k, region 
i, and ski the sample standard error of the price estimates in model k, region i. 
With the null hypothesis that the expectation of the estimates equals the true price, 
we can compute the probability that the absolute value of the outcome of the test 
statistic kit̂  in eq. (10) would be as big as it is or bigger. In symbols, that means 
that we seek the probability P( kit ≥ kit̂ ) = 2(1 − F( kit̂ ), with F the cumulative 
standard normal distribution. We decide to reject the null hypothesis if the prob-
ability is less than 1%.  

The result is that for TRAD, the null hypothesis is rejected in 509 cases (of 
1000 possible, 100 models with 10 prices per model). For BLEP, the null hy-
pothesis is rejected in 508 cases. The test seems to support the hypothesis that 
both estimators are biased, but does not make any clear distinction between them. 
The greater biases of TRAD that are visible in figure 6 are accompanied by 
greater variances (see figure 7 below), that make the biases less significant. 

Result 3 The variance of prices estimated with TRAD is greater than that of 
prices estimated with BLEP. 

Figure 7 shows the pooled sample variance of price estimates in each model 
estimated with TRAD and BLEP. If k = {1,…,m} indexes the models, the pooled 
sample variance7 2

ks  of the prices of model k is computed as ( )∑ =
=

R

i kiRk ss
1

212 , 
with 2

kis  indicating the squared sample standard deviation of price i in model k as 
defined above, and R indicating the number of regions (in this case R = 10). As 
can be clearly seen in the figure, TRAD estimates generally have a higher vari-
ance. The variances of prices estimated with TRAD seem to depend more 
strongly upon the underlying true model than is the case for BLEP. The highest 
pooled sample variance of the TRAD estimates is about twice the lowest one, 
whereas the variances of the BLEP estimates are closer together. 

                                                      
7Because each price is estimated the same number of times, the pooled variance turns out 
to be the plain average MVAR.  
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Figure 7. Sample variances of price estimates, pooled together for each model. 

It is noteworthy that in all models, the pooled variance for BLEP is clearly 
smaller than the variance used in the sampling process (36), whereas it is larger 
than 36 for TRAD. The pooled sample variances reflect the behaviour of the un-
derlying non-pooled variances, described in more detail below under the hypothe-
sis about heterogeneity. Obviously, no statistical test is necessary to see that the 
variance of the TRAD price estimates is greater than that of the BLEP. 

5.2. Efficiency of trade cost estimates (hypothesis H2) 

Result 4 BLEP is a more efficient estimator of trade costs than TRAD. 

Figure 8 shows the mean MSE for all trade cost estimates in each model. 
MMSE for BLEP is lower than for TRAD in almost all models, but the differ-
ences are not as obvious as for the price estimates (figure 5). It also looks as if the 
efficiency of BLEP is somewhat more sensitive to different data constellations 
than TRAD, because the BLEP points appear to be vertically more dispersed. 
Below, MMSE of trade cost estimates is split up into bias and variance compo-
nents. 
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Figure 8. Mean MSE for trade cost estimates for each model. 

Result 5 BLEP but not TRAD produces biased trade cost estimates.  

The TRAD trade cost estimates cannot, by construction, be systematically bi-
ased. They are simply the unaltered observations, so their being biased would 
mean that there is something wrong with our data generating process. However, 
we have only a finite sample, so the sample mean (the mean of any estimated cost 
item taken over the n repetitions) may very well deviate from the true trade cost. 

For BLEP, the qualitative discussion above suggests that the inequalities could 
cause the trade costs to be systematically biased for some region pairs, but in an 
unpredictable direction. In figure 9, the MSBIAS of the trade cost estimates in all 
models are shown. All values are small, and it is not immediately clear whether 
BLEP is more biased than TRAD, but the tendency is certainly visible, because 
points further away from zero generally belong to BLEP. 

To further investigate the question whether the BLEP cost estimates actually 
are more biased than the TRAD estimates, we perform a test similar to the one 
performed for price biases above. As we do not know if a given trade cost will be 
over- or underestimated, we make the test two-sided as before. For TRAD, the 
number of rejections of the null hypothesis (that the expectation of each trade cost 
estimate equals the true trade cost) is close to the number that would be expected, 
namely 1.31 percent of the cases (59/4500) at the 99 percent level. For BLEP, the 
number of rejections is higher, with 9.75% of the null hypotheses (439/4500) 
rejected at the 99 percent level. Thus, there is evidence for the BLEP but not for 
the TRAD estimates being biased. 
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Figure 9. Mean squared bias of trade cost estimates in each model. 

If all the computed trade cost biases are considered a sample, we get the sam-
ple statistics shown in table 2. The average bias is close to zero for both methods, 
and so are the variances and the medians of the biases. The sum of absolute biases 
of all trade costs in all models, SABIAS, is higher for BLEP than for TRAD, also 
supporting the hypothesis that estimates of BLEP are more biased than TRAD. 

Table 2. Descriptive Statistics of Biases of Trade Cost Estimates  

 TRAD BLEP 
mean  0.004 0.054 
variance 0.073 0.138 
median  0.005 0.026 
SABIAS 969.585 1271.622 
 

Result 6 The variance of trade costs estimated with TRAD is greater than that of 
those estimated with BLEP.  

We expect the pooled sample variance of the estimated trade costs for TRAD 
to be precisely 36, which is the variance used in the data generation process. Fur-
thermore, the hypothesis states that the pooled sample variance per model (see 
above) of the estimates performed with BLEP should be lower. Figure 10 shows 
the pooled sample variances of both methods for each of the 100 models. The data 
seems to support the hypothesis, because the TRAD data points are nicely dis-
persed around 36 and all BLEP data points lie below the lowest TRAD data point. 
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Figure 10. Mean variance of estimated trade costs, pooled together for each 
model. 

The logic of this result is clear in figure 3 above: The kink of the implicit func-
tion tends to compress part of the density function of the BLEP cost estimates, 
making it narrower than the true error distribution, thus reducing variance. If we 
look at the underlying data in the form of the non-pooled sample variances, the 
view is more differentiated. It seems that the sample variances of the cost esti-
mates are more dispersed across trade links within each model with BLEP than 
with TRAD. This observation is further discussed in connection with the hypothe-
ses H3 and H4 regarding heterogeneity of variances below (figure 12).  

5.3. Heterogeneity of variances (hypotheses H3 and H4) 

Result 7 The variance of the price estimates is heterogeneous, i.e. the variance is 
different in different regions. It is more heterogeneous if estimated with TRAD 
than with BLEP.  

A quick look at the data supports this result. Figure 11 shows the sample vari-
ance (not pooled) of the first 200 prices estimated, i.e. the variance over all 500 
estimations of each of the ten prices in the first 20 models. It can be seen that the 
variances of the different regional price estimates fluctuate strongly between the 
TRAD estimates, whereas the variances seem much more homogeneous for 
BLEP. All BLEP points are in the thick band at the bottom of the plot. Above that 
band comes a row of plus signs, which is the TRAD estimates of the numerator 
prices, all of which have the variance 36 (the sampling variance). Above that row 
lie all the other TRAD estimates. The higher the variance of a price estimate, the 
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more trade links are probably separating it from the numerator price. The more 
trade links, the more measurement errors of trade costs affect the TRAD estimate. 
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Figure 11. Sample variance of estimates of individual prices 

The variances of the TRAD estimates are clearly heterogeneous. However, it is 
difficult to tell whether the variances of the BLEP estimates are homogeneous or 
not, that is if the fluctuations observed are random outcomes of the same distribu-
tion. If we would estimate the same price item another n times, would we then get 
a similar or different sample variance? We want to test the hypothesis “the vari-
ances of prices differ between at least two regions in the estimated model” with 
the null hypothesis “the variances are equal in all regions of the model.” To do 
this, a Bartlett’s test (see NIST/SEMATECH 2004) is performed for each model 
m. The results indicate that in 100 models out of 100, TRAD has produced het-
erogeneous estimates at the 99 percent significance level, whereas BLEP has done 
so in 99 cases. 

However, the Bartlett’s test is sensitive to deviations from normality, and we 
know that the price estimates are biased. Hence, the results may be due to a 
skewed distribution, not to heterogeneity. To double-check, we perform also a 
Levene’s test (NIST/SEMATECH 2004) for heterogeneity, a test that is less sensi-
tive to deviations from normality. The test can be performed using deviations 
from mean or from the median. Both were tried, with similar results. The follow-
ing results are for tests with the mean. The result of the test is that the hypothesis 
that the variances of price estimates equal in all regions is rejected in 99 model for 
BLEP and in all 100 models for TRAD. So, it seems like the price estimates are 
likely to be heterogeneous with both methods, albeit the visual impression from 
figure 11 clearly is that the problem is smaller for BLEP than for TRAD. 



 35 

Result 8 The variance of the cost estimates is heterogeneous when estimated with 
BLEP but not when estimated with TRAD.  

Figure 12 shows the sample variance of the first 200 trade cost estimates with 
TRAD and BLEP. The first impression is that there is less difference between the 
methods than was the case for the price estimates. The variances of the TRAD 
estimates are, as expected due to the data generation method, dispersed around 36. 
The variances of the BLEP estimates seem to be generally smaller, as previously 
discussed, and more dispersed, supporting the hypothesis. A lot of the points in 
the figure coincide. These are trade costs for trade links that are not used regard-
less of cost, so the observed value need not be modified with either method in 
order to reach consistency. 
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Figure 12. Variance of estimates of individual trade costs. 

The tests for heterogeneity detect clear differences between the TRAD and the 
BLEP estimates: The Bartlett’s statistic for the hypothesis “the variances of all 
cost estimates in each model are not equal,” with the null hypothesis “all vari-
ances in each model are equal” fully supports the hypothesis. The null hypothesis 
is rejected at the 99 percent significance level in only a single model of 100 mod-
els estimated with TRAD. For BLEP, the null hypothesis is rejected in all 100 
models on the 99 percent level. 

To double check, the Levene’s test was performed also for trade cost estimates 
with results identical to those of the Bartlett’s test (at the 99 percent level). The 
null hypothesis is rejected in one out of 100 models for TRAD at the 99 percent 
level, whereas for BLEP, the Levene’s test rejects the hypothesis in all models. 
The result thus seems to be firmly corroborated. 
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6. Discussion and extensions 
We conclude that the traditional way of calibrating a transportation model is inef-
ficient. With the error model studied here, BLEP is a more efficient estimator than 
TRAD of prices as well as trade costs. For prices, BLEP estimates have smaller 
biases as well as smaller variances than TRAD. With both methods, the variances 
of the price estimates depend on the true parameters even when the additive errors 
come from the same distribution (heterogeneous variances). In other words, also 
the variances of prices are estimated with biases in both methods. 

For trade costs, the BLEP estimates are biased whereas the TRAD estimates 
are not. However, the biases of the BLEP estimates are more than compensated 
for by lower average variances, obtaining a smaller mean squared error. Variances 
of trade cost estimates are heterogeneous if estimated with BLEP but not with 
TRAD.  

The BLEP performs better than TRAD in almost all disciplines. Are there no 
drawbacks? Clearly, one drawback is that BLPPs in general are difficult to solve. 
However, with increasing computing capacity and the development of new solver 
software, that argument is losing its strength. And for the incumbent problem—
the transport model—existing techniques are able to handle the difficulties. 

Hitherto we only considered the estimation of parameters in the classical 
transportation model. The proposed techniques and main results apply equally 
well to linear programs and linearly constrained quadratic programs. 

The extremum estimation of parameters of a mathematical optimization model 
can generally be formulated as a bilevel programming problem, where the upper 
level problem is to select the parameters of the optimization model so that the 
parameters and the solution of the model minimize some estimation criterion. The 
inner problem is to solve the optimization model that is to be estimated, treating 
the parameters coming from the upper level as given. Setting up the estimation 
this way, the parameters are consistently estimated in the sense that the estimating 
equations are fully equivalent to those in the final simulation model. 

In all linear programs, the solution of the inner problem will be at a boundary 
of the constraint region and the solution correspondence, i.e. the implicit function 
that returns a set of solutions (possibly empty) for each parameter value, will not 
be continuously differentiable except in trivial cases. This is reflected in for ex-
ample the stepwise supply response to changing prices in linear supply models, 
and in the switching of trade flows between different destinations in the model 
studied in this text. In such cases, bilevel programming techniques as exemplified 
by the ones employed here are required in order to find a solution to the bilevel 
estimation problem at least close to the global optimum. Neither conventional 
least squares estimation techniques nor gradient based numerical optimization is 
feasible due to the discontinuous derivatives of the solution correspondence. 
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The estimation of parameters of a linear program can also be put in terms of 
estimation of parameters of a linear complementarity problem, LCP. An LCP is a 
system of linear equalities and inequalities, where the inequalities are linked via 
complementary slackness conditions. The system of equations (3-7) is an instance 
of LCP. We conjecture that the solution method and the analysis of estimator 
properties applies equally well to the whole class of LCPs, because it only refers 
to linearity of equations and the existence of complementary slackness conditions. 
In particular, this class includes first order conditions of linearly constrained 
quadratic programs. In appendix 2.1 we give a definition of a linear complemen-
tarity problem and prove that the first order conditions of a linear or quadratic 
program is an LCP, as claimed above.  

The approach described in this chapter would thus be useful also for estimat-
ing parameters in such problems. A specific instance that attracted much attention 
in the last ten years is the quadratic PMP model, introduced to the wider commu-
nity of modellers by Howitt (1995). Note that with a convex quadratic program, 
an inner solution is possible, or, in the case of PMP-models, even likely. We may 
thus expect less problems with “switching complementary slackness constraints” 
in such models than in linear models. Indeed, Heckelei and Wolff (2003) perform 
such an estimation and do not report any numerical problems. In a subsequent 
chapter (chapter five), we estimate parameters of a linear inequality constrained 
quadratic model, where we are able to a-priori determine the status of the single 
complementary slackness condition, and thus manage to avoid using bilevel solu-
tion techniques altogether. 
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Appendix 2.1. Linear complementarity problems 
 

Definition : Linear Complementarity Problem (LCP) 
Let M be an (n × n) matrix and q, z and w (n × 1) vectors. (z,w) is said to solve 

the LCP(M,q) if 
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The necessary first order conditions of linear and quadratic programming 
problems can be transformed into LCPs. 

Theorem: Quadratic programming and LCP 

Consider the quadratic program (QP) 
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Proof: (Murty, 1997) The Kuhn-Tucker conditions of the QP are  

 0≥+′+′− DxcyA  

 0≥− bAx  

 0,0 ≥≥ yx  

 0)(,0)( =′−=′′−′ ybAxxyAc  

where y is the vector of dual values connected to the inequalities. Introducing the 
(non-negative) slack variables DxcyAu +′+′−=  and bAxv −=  and rearrang-
ing gives 
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which is an LCP according to the definition.  ⁪ 
If the matrix D is a matrix of zeros, then the problem is an LP, and the first or-

der conditions are still an LCP. Note that in order to estimate the parameters of 
the QP, we would in the most common cases like to add the second order condi-
tion that D be a positive (semi-)definite matrix. 
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Appendix 2.2. GAMS program for generation of numerical results 
$ontext 
    generateSample.gms 
    GAMS code for implementing the bilevel estimati on program of chapter 2, 
    plus some alternative solution algorithms. Note  that storage costs are 
    also included in contrast to paper, but with nu mber of periods equal to 
    one (the set t contains one element), equivalen ce is obtained. 
    Progress feedback works only when run from DOS prompt. Minimize DOS 
    window to improve speed considerably, as screen  updating becomes un- 
    neccesary. Several solution approaches are incl uded below (a1-a10). 
    In the chapter, “A1” corresponds to a6 below, “ A2” corresponds to a9, 
    and the “traditional method” is a8 below. 
 
    Torbjoern Jansson 
    LEI, The Hague, NL 
$offtext 
$offlisting 
 
* Temporary directory: set to a fast local drive 
$setglobal tempdir C:\TEMP 
 
* Create new set of random numbers? 
*  execseed=1+gsecond(jnow); 
 
scalar saveGDX "Set to 1 to save results for analys eSample.gms" /1/; 
 
set m Number of models to generate  /m1*m10/; 
set n Number of estimation attempts /n1*n10/; 
 
set a Solution approaches implemented/ 
  a0  Not a solution method just the raw data saved  
  a1  Direct solution bound to fail 
  a2  Perpendicular starting point working well in symmetric case 
  a3  Global optimisation with Baron as NLP 
  a4  Global optimisation with Baron as MINLP 
  a5  Simpler but not better own method 
  a6  Facchinei et al or NLPEC solver smooth approx imation 
  a7  Yet another enumeration method not working 
  a8  Traditional method not using price observatio ns 
  a9  Penalty function iterative approximation as i n NLPEC solver 
  a10 Best of a6 and a9 
  /; 
 
set aon(a) Solution approaches to test /a6,a8,a9,a1 0/; 
alias(aon,aon2); 
 
* Declarations for the economic model (the inner pr oblem) 
 
set i Regions /i1*i10/; 
alias(i,j,k,ii,jj); 
 
set t Periods /t1*t1/; 
alias(t,t1,t2); 
 
set tnext(t,t1); 
  tnext(t,t1) $  (ord(t1) = (ord(t)+1))                = yes; 
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  tnext(t,t1) $ ((ord(t1) = 1) and (ord(t) = card(t ))) = yes; 
 
set im(i) Regions with market balance (one is dropp ed); 
    im(i) = yes$(not sameas(i,"i1")); 
*   im(i) = yes; 
 
set AD(i,j) Set of admissible transport flows; 
    AD(i,j) $ (not sameas(i,j)) = yes; 
 
parameter c(i,j) Observed (true) transport costs; 
parameter so(i)  Observed (true) storage costs; 
parameter p(t,i) Observed prices; 
parameter e(t,i) Excess demand; 
 
scalar fp Fix price that shifts (the observed) pric e system /120/; 
scalar mu Smoothing parameter of relaxation                 /0/; 
 
scalar w1 Weight for transport cost in estimation / 1/; 
scalar w2 Weight for storage cost in estimation   / 1/; 
scalar w3 Weight for prices in estimation         / 1/; 
 
* *** Declarations belonging to the models *** 
 
free variables 
    pe(t,i)   Estimated price of region i 
    z         Free objective variable 
    zz        Another free objective variable 
    zpen      Penalty function value; 
 
positive variables 
    x(t,i,j)  Transport stream from i to j 
    st(t,i)   Storage 
    ce(i,j)   Estimated transport cost 
    se(i)     Estimated storage   cost 
    pi(t,i,j) Dual value of lower bound on x 
    ro(t,i)   Dual value of lower bound on st; 
 
binary variables 
    bt(t,i,j) Is there a trade flow 
    bs(t,i)   Is there storage; 
 
equations 
    F         Objective function definition 
    h(t,i)    Market balance i 
    dx(t,i,j) First order conditions for optimal tr ansportation 
    ds(t,i)   First order conditions for optimal st orage 
    cx        Complementarity restriction 
    cs 
    pen       Penalty function for complementary sl ackness 
    FPen      Objective function penalty term 
 
*     Binary tree for Baron 
    bdx(t,i,j)    Alternative foc tp 
    bds(t,i)      Alternative foc st 
    bcx(t,i,j)    Alternateve cmp tp 
    bcs(t,i)      Alternateve cmp st 
 
    DUM           Dummy 
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    TPC     Transport cost; 
 
*   Weighted least squares deviation 
 
F       ..   z =E= 
 
*                  Squared deviations of costs from  observations. 
*                  Symmetry ==> only upper triangle  less diagonal 
 
            w1*sum(AD(i,j) $ (ord(i) lt ord(j)), sq r(ce(i,j) - c(i,j))) 
 
*                  Squared deviations of prices to observations. 
 
          + w3*sum((t,i), sqr(pe(t,i) - p(t,i))) 
 
*                  Squared deviations of storage co sts from observations 
 
          + w2*sum(i, sqr(se(i) - so(i))); 
 
*   Penalty function approach 
 
Pen ..  zpen =e= mu*sum((t,i,j) $ AD(i,j), pi(t,i,j ) * x(t,i,j)) 
               + mu*sum((t,i)            , ro(t,i) * st(t,i)); 
 
FPen .. zz =e= z + zpen; 
 
*   Market balance 
 
h(t,im)   ..   sum(AD(im,j), x(t,j,im)-x(t,im,j)) -  st(t,im) 
             + sum(tnext(t1,t), st(t1,im)) =E= e(t, im); 
 
*   First order condition for transport problem 
 
dx(t,i,j) $ AD(i,j) ..   (ce(i,j) $ (ord(i) lt ord( j)) 
                         +ce(j,i) $ (ord(i) gt ord( j))) 
                       + pe(t,i) - pe(t,j) =E= pi(t ,i,j); 
 
ds(t,i) ..  se(i) - sum(tnext(t,t1), pe(t1,i)) + pe (t,i) =E= ro(t,i); 
 
*   Complementary slackness condition for transport  problem 
 
cx (t,i,j) $ AD(i,j)  ..  pi(t,i,j) * x(t,i,j) =L= mu; 
 
cs (t,i) ..   ro(t,i) * st(t,i) =L= mu; 
 
*   BARONS binary first order condition for transpo rt problem 
 
bdx(t,i,j) $ AD(i,j)  ..  pi(t,i,j) =l= pi.up(t,i,j ) * (1-bt(t,i,j)); 
bds(t,i)              ..  ro(t,i)   =l= ro.up(t,i)   * (1-bs(t,i)); 
 
bcx (t,i,j) $ AD(i,j) ..  x(t,i,j)  =l= x.up(t,i,j)   * bt(t,i,j); 
bcs (t,i)             ..  st(t,i)   =l= st.up(t,i)   * bs(t,i); 
 
DUM .. z =l= 10; 
 
*   Transport cost minimisation 
 
TPC .. z =E= sum((t,i,j)$AD(i,j), x(t,i,j)*(ce.l(i, j)$ (ord(i) lt ord(j)) 
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                                           +ce.l(j, i)$ (ord(i) gt ord(j)))) 
           + sum((t,i), st(t,i)*se.l(i)); 
 
model EstimNLP  NLP formulation of MPEC     /F,h,dx ,cx,ds,cs/; 
model EstimPEN  Penalty formulation of MPEC /F,h,dx ,   ds,pen,FPen/; 
model TPmin     Transportation model        /TPC,h  /; 
model EstimPre  Relaxed version of MPEC     /F,h,dx ,ds/; 
model BaronNLP  Binary formulation of MPEC  /F,h,dx ,bdx,bcx,ds,bds,bcs/; 
model DUMMY /DUM/; 
 
EstimNLP.limcol    = 0; 
EstimPEN.limcol    = 0; 
TPmin.limcol       = 0; 
TPmin.limrow       = 0; 
 
TPmin.solprint     = 2; 
EstimNLP.solprint  = 2; 
EstimPEN.solprint  = 2; 
EstimPRE.solprint  = 2; 
 
EstimPRE.solvelink = 2; 
EstimNLP.solvelink = 2; 
EstimPEN.solvelink = 2; 
TPmin.solvelink    = 2; 
 
EstimNLP.workspace = 100; 
EstimNLP.optfile   = 1; 
EstimPEN.workspace = 100; 
EstimPEN.optfile   = 1; 
 
DUMMY.solprint = 2; 
 
*   Declarations of items used to save program outp ut 
 
parameter ptru(m,t,i)     True price; 
parameter ctru(m,i,j)     True transportation cost;  
parameter stru(m,i)       True storage cost; 
parameter etru(m,t,i)     True excess demand; 
 
parameter pest(m,n,t,i,a) Estimated price; 
parameter cest(m,n,i,j,a) Estimated transportation cost; 
parameter sest(m,n,i,a)   Estimated storage cost; 
 
parameter objes(*,m,n); 
 
set enum /e1*e1000/; 
set cenum/s,x,pi,rho/; 
parameter zenum(m,n,cenum,enum); 
scalar nenum /1/; 
 
*   For the log window 
 
scalar logcount 'Counter for iteration log' /0/; 
scalar iflog    'Iteration log frequency'   /0/; 
scalar progress 'Progress fraction'         /0/; 
file batch /%tempdir%\titlebatch.bat/; 
batch.lw = 0; 
iflog = (card(m)*card(n))/1000; 
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*   Bound prices to help Baron 
 
pe.lo(t,i) = 0; 
pe.up(t,i) = fp*2; 
 
$onecho > init.gms 
*   Automatically generated include file that initi alizes problem at a 
*   feasible point, using observations. 
*   1) Reset all variables with bounds and equation s of importance 
 
    option kill=pe; 
    option kill=ce; 
    option kill=se; 
    option kill=x; 
    option kill=F; 
    option kill=h; 
    option kill=dx; 
    option kill=ds; 
    option kill=cx; 
    option kill=cs; 
    option kill=ro; 
    option kill=pi; 
    option kill=z; 
 
*   2) Restore bounds on transport costs 
 
    ce.up(i,j) = 200 $ (AD(i,j) and (ord(i) lt ord( j))); 
 
*   3) Starting point for costs is observation 
 
    ce.l(i,j) $ (AD(i,j) and (ord(i) lt ord(j))) = c(i,j); 
    se.l(i) = so(i); 
 
*   4) Find a corresponding feasible price vector b y solving TP problem 
 
    solve TPmin using nlp minimising z; 
 
    pe.l(t,i) = fp + h.m(t,i) $ im(i); 
 
*   5) Initialise the first order conditions using duals of TP problem 
 
    pi.l(t,i,j) $ AD(i,j) 
        = ce.l(i,j) $ (ord(i) lt ord(j)) 
        + ce.l(j,i) $ (ord(i) gt ord(j)) + pe.l(t,i ) - pe.l(t,j); 
 
    ro.l(t,i) = se.l(i) - sum(tnext(t,t1), pe.l(t1, i)) + pe.l(t,i); 
$offecho 
 
$onechov > savesol.gms 
* Automatically generated batinclude that saves the  outcome of a solution 
objes("%1",m,n) = z.l; 
pest(m,n,t,i,"%1") = pe.l(t,i); 
cest(m,n,i,j,"%1") = ce.l(i,j); 
sest(m,n,i,"%1")   = se.l(i); 
$offecho 
 
* ------------------------------------------------- ------------------------ 
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*   Generate m models 
* ------------------------------------------------- ------------------------ 
 
loop(m, 
 
*   START: Generate true model with prices consiste nt with transport costs 
 
    c(i,j) $ (ord(i) lt ord(j)) = uniform(20,100); 
    c(i,j) $ (ord(i) gt ord(j)) = c(j,i); 
 
    so(i) = uniform(3,10); 
 
    e(t,i)    = uniform(-10,10); 
*   Make sure solution exists by adjusting excess d emand on one point 
    e("t1","i1") = -sum((t,i) $ (not (    sameas(t, "t1") 
                                      and sameas(i, "i1"))), e(t,i)); 
 
    ce.l(i,j) =  c(i,j); 
    se.l(i)   = so(i); 
 
    solve TPmin using nlp minimising z; 
 
    p(t,i) = fp + h.m(t,i) $ im(i); 
 
    ptru(m,t,i) =  p(t,i); 
    ctru(m,i,j) =  c(i,j); 
    stru(m,i)   = so(i); 
    etru(m,t,i) =  e(t,i); 
 
* ------------------------------------------------- ------------------------ 
*       Add error terms to the model n times and es timate m 
* ------------------------------------------------- ------------------------ 
 
    loop(n, 
 
*       Add error terms to costs and prices, trunca te to avoid negatives 
 
        c(i,j) $ (ord(i) lt ord(j)) = ctru(m,i,j) 
                                    + min(19, max(- 19,normal(0,6))); 
        c(i,j) $ (ord(i) gt ord(j)) = c(j,i); 
 
        p(t,i)           = ptru(m,t,i) + min(19, ma x(-19,normal(0,6))); 
        so(i)            = max(stru(m,i)   + normal (0,(3/2)), 0.2); 
 
        pest(m,n,t,i,"a0") =  p(t,i); 
        cest(m,n,i,j,"a0") =  c(i,j); 
        sest(m,n,i,"a0")   = so(i); 
 
*       Show progress in title bar of DOS window 
 
        logcount=logcount-1; 
        if(logcount le 0, 
            logcount=iflog; 
            progress=100-100*((ord(m)-1)*card(n)+or d(n)-1)/card(n)/card(m); 
            putclose batch "title M: ",m.tl,", ",pr ogress:0:1,"%% left"; 
            execute "%tempdir%\titlebatch"; 
        ); 
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*       -------------------- approach 1 ----------- ------------------------ 
        if(aon("a1"), 
 
$include "init.gms" 
 
*           a) Solve using NLP from the starting po int just obtained 
 
            solve EstimNLP using NLP minimizing z; 
 
$batinclude "savesol.gms" a1 
        ); 
*       -------------------- approach 2 ----------- ------------------------ 
        if(aon("a2"), 
 
$include "init.gms" 
 
*        a) Solve the relaxed MPEC 
 
            solve EstimPre using NLP minimizing z; 
 
*        b) Solve TP-problem again 
 
            solve TPmin using nlp minimizing z; 
 
            pe.l(t,i) = fp + h.m(t,i) $ im(i); 
 
            pi.l(t,i,j) $ AD(i,j) 
                = ce.l(i,j) $ (ord(i) lt ord(j)) 
                + ce.l(j,i) $ (ord(i) gt ord(j)) + pe.l(t,i) - pe.l(t,j); 
 
            ro.l(t,i) = se.l(i) - sum(tnext(t,t1), pe.l(t1,i)) + pe.l(t,i); 
 
*        c) Solve the full MPEC from this new point  using NLP 
 
            mu = 0; 
            solve EstimNLP using NLP minimising z; 
 
$batinclude "savesol.gms" a2 
        ); 
*       -------------------- approach 3 ----------- ------------------------ 
        if(aon("a3"), 
 
*           Comment out to let Baron start from pre vious solution 
$include "init.gms" 
 
*           Extra: bounds on all variables, just fo r the Baron.. 
 
            se.up(i)     = 100*smax(t,pe.up(t,i)-pe .lo(t,i)); 
            pi.up(t,i,j) = ce.up(i,j) + pe.up(t,i)- pe.lo(t,i); 
            ro.up(t,i)   = se.up(i)   + pe.up(t,i)- pe.lo(t,i); 
            x.up(t,i,j)  = sum((t1,k), ABS(e(t1,k)) ); 
            st.up(t,i)   = sum((t1,j), ABS(e(t1,j)) ); 
 
*        a) Solve using Baron from the starting poi nt just generated 
 
            option NLP=Baron; 
            solve EstimNLP using NLP minimizing z; 
            option NLP=Conopt; 
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$batinclude "savesol.gms" a3 
        ); 
 
*       -------------------- approach 4 ----------- ------------------------ 
        if(aon("a4"), 
 
*           Comment out to let Baron start from pre vious solution 
$include "init.gms" 
 
*           Extra: bounds on all variables, just fo r the Baron.. 
 
            se.up(i)     = 100*smax(t,pe.up(t,i)-pe .lo(t,i)); 
            pi.up(t,i,j) = ce.up(i,j) + pe.up(t,i)- pe.lo(t,i); 
            ro.up(t,i)   = se.up(i)   + pe.up(t,i)- pe.lo(t,i); 
            x.up(t,i,j)  = sum((t1,k), ABS(e(t1,k)) ); 
            st.up(t,i)   = sum((t1,j), ABS(e(t1,j)) ); 
 
*           Initialise binary variables to feasible  point 
 
            bt.l(t,i,j) = 1 $  x.l(t,i,j); 
            bs.l(t,i)   = 1 $ st.l(t,i); 
 
*        a) Solve using Baron MINLP from the starti ng point just generated 
 
            option MINLP=Baron; 
            BaronNLP.solprint = 2; 
            solve BaronNLP using MINLP minimizing z ; 
            BaronNLP.solprint = 2; 
 
$batinclude "savesol.gms" a4 
        ); 
 
*       -------------------- approach 5 ----------- ------------------------ 
        if(aon("a5"), 
 
$include "init.gms" 
 
*        a) Solve the MPEC using NLP from the start ing point just generated 
 
            solve EstimNLP using NLP minimizing z; 
 
$batinclude "savesol.gms" a5 
        ); 
*       -------------------- approach 6 ----------- ------------------------ 
        if(aon("a6"), 
 
$include "init.gms" 
 
*        a) Solve problem without complementarity c onstraints 
 
            solve EstimPre using NLP minimizing z; 
 
*        b) Iterate over increasingly better approx imations 
 
            mu = 1; 
 
            while(mu, 
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*               b1) Make feasible 
 
                solve TPmin using nlp minimizing z;  
 
                pe.l(t,i) = fp + h.m(t,i) $ im(i); 
 
                pi.l(t,i,j) $ AD(i,j) 
                    = ce.l(i,j) $ (ord(i) lt ord(j) ) 
                    + ce.l(j,i) $ (ord(i) gt ord(j) ) + pe.l(t,i)-pe.l(t,j); 
 
                ro.l(t,i) = se.l(i) -sum(tnext(t,t1 ),pe.l(t1,i))+pe.l(t,i); 
 
*               b2) Solve approximation 
 
                mu $ (mu<0.001) = 0; 
 
                solve EstimNLP using NLP minimising  z; 
 
                mu = mu/2; 
            ); 
 
$batinclude "savesol.gms" a6 
        ); 
*       -------------------- approach 7 ----------- ------------------------ 
        if(aon("a7"), 
 
$include "init.gms" 
 
*           Force one column after another into the  basis 
 
            nenum=1; 
 
*        a) Spatial price equilibrium 
 
            loop((t2,ii,jj) $ AD(ii,jj), 
                pi.up(t2,ii,jj) = 0; 
                solve EstimPRE using nlp minimizing  z; 
                solve TPmin using nlp minimizing z;  
                pe.l(t,i) = fp + h.m(t,i) $ im(i); 
 
*               Initialise the first order conditio n as well 
 
                pi.l(t,i,j) $ AD(i,j) 
                    = ce.l(i,j) $ (ord(i) lt ord(j) ) 
                    + ce.l(j,i) $ (ord(i) gt ord(j) ) + pe.l(t,i)-pe.l(t,j); 
 
                ro.l(t,i) = se.l(i) -sum(tnext(t,t1 ),pe.l(t1,i))+pe.l(t,i); 
                solve EstimNLP using nlp minimizing  z; 
                pi.up(t2,ii,jj) = inf; 
                zenum(m,n,"pi",enum) $ (ord(enum)=n enum) = z.l; 
                nenum=nenum+1; 
            ); 
 
*        b) Intertemporal price equilibrium 
 
            loop(ii, 
                ro.up(t2,ii) = 0; 
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                solve EstimPRE using nlp minimizing  z; 
                solve TPmin using nlp minimizing z;  
                pe.l(t,i) = fp + h.m(t,i) $ im(i); 
 
*               Initialise the first order conditio ns 
                pi.l(t,i,j) $ AD(i,j) 
                    = ce.l(i,j) $ (ord(i) lt ord(j) ) 
                    + ce.l(j,i) $ (ord(i) gt ord(j) ) + pe.l(t,i)-pe.l(t,j); 
 
                ro.l(t,i) = se.l(i) -sum(tnext(t,t1 ),pe.l(t1,i))+pe.l(t,i); 
                solve EstimNLP using nlp minimizing  z; 
                ro.up(t2,ii) = inf; 
                zenum(m,n,"rho",enum) $ (ord(enum)= nenum) = z.l; 
                nenum=nenum+1; 
            ); 
 
            z.l = smin((cenum,enum)$(    zenum(m,n, cenum,enum) 
                                                 an d (ord(enum) lt nenum)), 
                                    zenum(m,n,cenum ,enum)); 
 
$batinclude "savesol.gms" a7 
        ); 
*       -------------------- approach 8 ----------- ------------------------ 
        if(aon("a8"), 
 
$include "init.gms" 
 
            z.l = 
               sum(AD(i,j) $ (ord(i) lt ord(j)), sq r(ce.l(j,i)-c(i,j)))*w1 
             + sum((t,i),                        sq r(pe.l(t,i)-p(t,i)))*w3 
             + sum(i,                            sq r(se.l(i)  -so(i))) *w2; 
 
$batinclude "savesol.gms" a8 
        ); 
 
*       -------------------- approach 9 ----------- -------------------------
------- 
*       A penalty function approach, 
*       with ordinary complementary slackness times  mu in objective 
 
        if(aon("a9"), 
 
$include "init.gms" 
 
*        b) Solve problem without complementarity c onstraints 
 
            solve EstimPre using NLP minimizing z; 
 
*        c) Iterate over increasingly better approx imations 
 
            mu = 0.1; 
            zpen.l = 100; 
 
            while(mu<1001, 
 
*           d) Solve approximation. Stop if comp. g ap < 0.01 
 
                mu $ ((mu > 1000) or (zpen.l/mu lt 0.01)) = 100000; 
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                solve EstimPEN using NLP minimising  zz; 
 
                mu=mu*2; 
            ); 
 
$batinclude "savesol.gms" a9 
        ); 
 
*       -------------------- approach 10 ---------- ------------------------ 
*       a6 most often produces the best solution, b ut when it is NOT best, 
*       it is much worse than a9 (penalty function) . Thus, check which one 
*       was the best and use that one. 
 
        if(aon("a10"), 
 
            if((aon("a6") and aon("a9")), 
                if((objes("a9",m,n) lt objes("a6",m ,n)), 
                    objes("a10",m,n) = objes("a9",m ,n); 
                    pest(m,n,t,i,"a10") = pest(m,n, t,i,"a9"); 
                    cest(m,n,i,j,"a10") = cest(m,n, i,j,"a9"); 
                    sest(m,n,i,"a10")   = sest(m,n, i,"a9"); 
                else 
                    objes("a10",m,n) = objes("a6",m ,n); 
                    pest(m,n,t,i,"a10") = pest(m,n, t,i,"a6"); 
                    cest(m,n,i,j,"a10") = cest(m,n, i,j,"a6"); 
                    sest(m,n,i,"a10")   = sest(m,n, i,"a6"); 
                ); 
            ); 
        ); 
    ); 
); 
 
parameter objes1; 
set objitems /pre2,dds,nds,ddx,ndx/; 
objes1(m,n,a) = objes(a,m,n); 
objes1(m,n,objitems) = objes(objitems,m,n); 
display "All objective values transposed for readab ility:", objes1; 
if(aon("a7"), display zenum); 
 
* Rate solution approaches. Find the best solution,  and give one point to 
* the approach that found it 
 
scalar bestz /0/; 
parameter rating(*); 
rating(aon) $ (not sameas(aon,"a0")) 
= sum((m,n) $ (objes1(m,n,aon) lt (smin(aon2 $ (not  sameas(aon2,"a0")), 
    objes1(m,n,aon2)) + 0.0001)),1); 
 
rating("total") = card(n)*card(m); 
display rating; 
 
option kill=rating; 
option kill=objes; 
option kill=objes1; 
 
if(saveGDX, 
execute_unload "smp.gdx" m n i t a aon ptru ctru st ru etru pest cest sest); 
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Appendix 2.3. GAMS program for analysing numerical results 
$ontext 
    analyseSample.gms 
    File for analysing results of estimations carri ed out with program 
    generateSample.gms and stored in GDX-file smp.g dx. 
 
    Torbjorn Jansson 
    LEI, The Hague, NL 
$offtext 
$offlisting 
$set TRAD a8 
$set BLEP a10 
$set OBS  a0 
 
file con /con/; 
 
set m  Models generated ; 
set n  Estimation attempts per model; 
set a  Solution approaches available in total; 
set i  Regions ; 
set t  Periods; 
set aon(a) Solution approaches actually implemented ; 
 
alias(i,j,k); 
alias(t,t1); 
 
putclose con / "... Reading sets ..." /; 
 
$gdxin "smp.gdx" 
$load m n a i t aon 
 
parameter ptru(m,t,i)     True price; 
parameter ctru(m,i,j)     True transportation cost;  
parameter stru(m,i)       True storage cost; 
parameter etru(m,t,i)     True excess demand; 
 
parameter pest(m,n,t,i,a) Estimated price; 
parameter cest(m,n,i,j,a) Estimated transportation cost; 
parameter sest(m,n,i,a)   Estimated storage cost; 
 
variable VDUM; equation EDUM; EDUM .. VDUM =e= 10; 
model MDUM 'Dummy model clears memory for some odd reason' /EDUM/; 
MDUM.solprint = 2; 
 
putclose con / "... Reading data ..." /; 
 
$load ptru ctru stru etru pest cest sest 
$gdxin 
 
scalar count /0/; 
scalar np Number of prices estimated; 
scalar nc Number of transport costs estimated; 
scalar ns Number of storage costs estimated; 
scalar nn Number of iterations per model; 
 
np = card(i)*card(t); 
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nc = card(i)*(card(i)-1)/2; 
ns = card(i); 
nn = card(n); 
 
parameter iord(i) Ordering of the i set; 
parameter nord(n) Ordering of the n set; 
 
count=0; 
loop(i, count=count+1; iord(i)=count); 
count=0; 
loop(n, count=count+1; nord(n)=count); 
 
set AD(i,j) Admissible trade flows; 
AD(i,j) = yes $ (iord(j) gt iord(i)); 
 
scalar son Storage on /0/; 
son = card(t)-1; 
 
set obs/o1*o10000/; 
set uobs(obs); 
 
* Some basic reporting to list file 
 
option count:0; 
count = card(m); 
display "Number of true models in sample:",count; 
count = card(n); 
display "Number of solutions per model:",count; 
count = card(t); 
display "Number of time periods in storage model (1 =no storage)",count; 
count = card(i); 
display "Number of regions in model",count; 
count = sum((m,n,i,j) $ (AD(i,j) and (1 = cest(m,n, i,j,"%OBS%"))),1); 
display "Number of truncated cost items:", count; 
count = sum((m,n,t,i) $ ((139 = pest(m,n,t,i,"%OBS% ")) 
                      or (101 = pest(m,n,t,i,"%OBS% "))),1); 
display "Number of truncated price items:", count; 
 
 
* ------------------------------------------------- --------------------- 
*   Declare statistical measures to compute 
* ------------------------------------------------- --------------------- 
 
set parvec /preg Regional price, tpc Transport cost , stc Storage cost/; 
set meth /TRAD Traditional method , BLEP Bilevel Es timation Program/; 
 
parameter pmean(m,t,i,a)    Sample mean; 
parameter cmean(m,i,j,a); 
parameter smean(m,i,a); 
 
parameter psvar(m,t,i,a)    Sample variance; 
parameter csvar(m,i,j,a); 
parameter ssvar(m,i,a); 
 
parameter ptval(m,t,i,a)    T-values for test estim ated equals true; 
parameter ctval(m,i,j,a); 
parameter stval(m,i,a); 
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set alpha 'Levels of significanse' /alpha950,alpha9 90,alpha999/; 
parameter pcrit(alpha) 'Critical test statistic val ue' / 
    alpha950    0.05 
    alpha990    0.01 
    alpha999    0.001 /; 
 
parameter tsummary(a,*); 
 
set mse Items used for analysis of mean squared err or / 
    msetot  Mean squared error 
    msebias Bias 
    msevar  Variance    /; 
 
set totmse Items used for analysis of mean squared error / 
    MMSE    Mean MSE 
    MSBIAS  Mean Squared Bias 
    MVAR    Mean (pooled) Variance    /; 
 
parameter pmse(m,t,i,a,mse)  Mean squared error per  item; 
parameter cmse(m,i,j,a,mse); 
parameter smse(m,i,a,mse); 
 
parameter psrmse(*,a,totmse)    Sum of root mean sq uared error; 
parameter csrmse(*,a,totmse); 
parameter ssrmse(*,a,totmse); 
 
option pmse:3:3:2; 
option cmse:3:3:2; 
option smse:3:2:2; 
 
option psrmse:3:1:2; 
option csrmse:3:1:2; 
option ssrmse:3:1:2; 
 
parameter bartlett(m,a,parvec) Bartlett statistic e quality of variances; 
parameter levene(m,a,parvec)   Levene statistic equ ality of variances; 
 
option bartlett:2:1:2; 
option levene:2:1:2; 
 
*   Items for GDX-rank 
 
parameter pct(*) /median 50.0/; 
parameter someSort1(*); 
parameter someSort2(*); 
parameter someRank(*); 
 
* ------------------------------------------------- --------------------- 
*   Compute mean and sample variance of estimated p arameters 
* ------------------------------------------------- --------------------- 
 
putclose con / "... computing means ..." /; 
 
pmean(m,t,i,aon)           = sum(n, pest(m,n,t,i,ao n))/card(n); 
cmean(m,i,j,aon) $ AD(i,j) = sum(n, cest(m,n,i,j,ao n))/card(n); 
smean(m,i,aon)   $ son     = sum(n, sest(m,n,i,aon) )  /card(n); 
 
putclose con / "... computing variances ..." /; 
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psvar(m,t,i,aon)           = sum(n, sqr(pest(m,n,t, i,aon) 
                                        - pmean(m,t ,i,aon)))/(card(n)-1); 
csvar(m,i,j,aon) $ AD(i,j) = sum(n, sqr(cest(m,n,i, j,aon) 
                                        - cmean(m,i ,j,aon)))/(card(n)-1); 
ssvar(m,i,aon)   $ son     = sum(n, sqr(sest(m,n,i, aon) 
                                        - smean(m,i ,aon)))  /(card(n)-1); 
 
putclose con / "... computing t-values ..." /; 
 
ptval(m,t,i,aon)            = (ptru(m,t,i)-pmean(m, t,i,aon)) 
                              /sqrt(psvar(m,t,i,aon )/card(n)); 
ctval(m,i,j,aon) $ AD(i,j)  = (ctru(m,i,j)-cmean(m, i,j,aon)) 
                              /sqrt(csvar(m,i,j,aon )/card(n)); 
stval(m,i,aon)   $ son      = (stru(m,i)  -smean(m, i,aon)) 
                              /sqrt(ssvar(m,i,aon)/ card(n)); 
 
 
* ------------------------------------------------- --------------------- 
*   Compute mean squared error and bias of estimato rs 
* ------------------------------------------------- --------------------- 
 
putclose con / "... computing MSE ..." /; 
 
pmse(m,t,i,aon,"msebias")           = pmean(m,t,i,a on)-ptru(m,t,i); 
cmse(m,i,j,aon,"msebias") $ AD(i,j) = cmean(m,i,j,a on)-ctru(m,i,j); 
smse(m,i,aon,"msebias")   $ son     = smean(m,i,aon )  -stru(m,i); 
 
option kill = ptru; option kill = ctru; 
 
pmse(m,t,i,aon,"msevar")            = psvar(m,t,i,a on); 
cmse(m,i,j,aon,"msevar") $ AD(i,j)  = csvar(m,i,j,a on); 
smse(m,i,aon,"msevar")   $ son      = ssvar(m,i,aon ); 
 
option kill = psvar; option kill = csvar; option ki ll = ssvar; 
 
pmse(m,t,i,aon,"msetot")            = pmse(m,t,i,ao n,"msevar") 
                                    + sqr(pmse(m,t, i,aon,"msebias")) ; 
cmse(m,i,j,aon,"msetot") $ AD(i,j)  = cmse(m,i,j,ao n,"msevar") 
                                    + sqr(cmse(m,i, j,aon,"msebias")) ; 
smse(m,i,aon,"msetot")   $ son      = smse(m,i,aon, "msevar") 
                                    + sqr(smse(m,i, aon,"msebias"))   ; 
 
putclose con / "... computing sum of root(MSE) ..."  /; 
 
psrmse(m,aon,"msbias") = sum((t,i), sqr(pmse(m,t,i, aon,"msebias"))) 
                        /(card(i)*card(t)); 
csrmse(m,aon,"msbias") = sum((i,j)$ AD(i,j),sqr(cms e(m,i,j,aon,"msebias"))) 
                        /(card(i)*(card(i)-1)/2); 
ssrmse(m,aon,"msbias") = sum(i$ son, sqr(smse(m,i,a on,"msebias"))) 
                        /card(i);; 
 
*   Compute pooled variance 
 
psrmse(m,aon,"mvar") = sum((t,i),           pmse(m, t,i,aon,"msevar")) 
                       /(card(i)* card(t)); 
csrmse(m,aon,"mvar") = sum((i,j) $ AD(i,j), cmse(m, i,j,aon,"msevar")) 
                       /(card(i)*(card(i)-1)/2); 
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ssrmse(m,aon,"mvar") = sum( i    $ son,     smse(m, i,aon,"msevar")) 
                       /card(i); 
 
*   Compute sum of Root Mean Squared Error, SRMSE 
 
psrmse(m,aon,"mmse")  = sum((t,i),           pmse(m ,t,i,aon,"msetot")) 
                        /(card(i)* card(t)); 
csrmse(m,aon,"mmse")  = sum((i,j) $ AD(i,j), cmse(m ,i,j,aon,"msetot")) 
                        /(card(i)*(card(i)-1)/2); 
ssrmse(m,aon,"mmse")  = sum( i    $ son,     smse(m ,i,aon,"msetot")) 
                        /card(i); 
 
*   Average over all models 
 
psrmse("tot",aon,totmse)   = sum(m, psrmse(m,aon,to tmse)); 
csrmse("tot",aon,totmse)   = sum(m, csrmse(m,aon,to tmse)); 
ssrmse("tot",aon,totmse)   = sum(m, ssrmse(m,aon,to tmse)); 
 
 
* ------------------------------------------------- --------------------- 
*   Declare some parameters to hold values to plot 
* ------------------------------------------------- --------------------- 
 
parameter plotpmse(m,meth)  Plot of SRMSE for price s for Poster; 
parameter plotcmse(m,meth)  Plot of SRMSE for costs  for Poster; 
 
parameter plotpvar(m,meth)    Plot of pooled price variance for Poster; 
parameter plotcvar(m,meth)    Plot of pooled price variance for Poster; 
 
parameter plotpbias(m,meth)    Plot of price ABIAS for Poster; 
parameter plotcbias(m,meth)    Plot of cost ABIAS f or Poster; 
 
parameter plotphomo(obs,*)  Plot of individual pric e variance estimates; 
parameter plotchomo(obs,*)  Plot of individual cost  variance estimates; 
 
plotpmse(m,"TRAD") = psrmse(m,"%TRAD%","mmse"); 
plotcmse(m,"TRAD") = csrmse(m,"%TRAD%","mmse"); 
plotpmse(m,"BLEP") = psrmse(m,"%BLEP%","mmse"); 
plotcmse(m,"BLEP") = csrmse(m,"%BLEP%","mmse"); 
 
plotpvar(m,"TRAD") = psrmse(m,"%TRAD%","mvar"); 
plotcvar(m,"TRAD") = csrmse(m,"%TRAD%","mvar"); 
plotpvar(m,"BLEP") = psrmse(m,"%BLEP%","mvar"); 
plotcvar(m,"BLEP") = csrmse(m,"%BLEP%","mvar"); 
 
plotpbias(m,"TRAD") = psrmse(m,"%TRAD%","msbias"); 
plotcbias(m,"TRAD") = csrmse(m,"%TRAD%","msbias"); 
plotpbias(m,"BLEP") = psrmse(m,"%BLEP%","msbias"); 
plotcbias(m,"BLEP") = csrmse(m,"%BLEP%","msbias"); 
 
 
* ------------------------------------------------- --------------------- 
*   Analysis of biases 
* ------------------------------------------------- --------------------- 
 
putclose con / "... Price biases ..." /; 
 
*   Compute descriptive statistics for biases 



 58 

 
parameter biasstat(*,a,parvec) Sample mean and vari ances of biases; 
 
*   ... average bias ... 
biasstat("mean",aon,"preg") = 
    sum((m,t,i), pmse(m,t,i,aon,"msebias")) 
    /(card(m)*card(i)*card(t)); 
 
biasstat("mean",aon,"tpc") = 
    sum((m,i,j)$AD(i,j), cmse(m,i,j,aon,"msebias"))  
    /(card(m)*card(i)*(card(i)-1)/2); 
 
*   ... sum of absolute biases ... 
biasstat("SABIAS",aon,"preg") = 
    sum((m,t,i), abs(pmse(m,t,i,aon,"msebias"))); 
 
biasstat("SABIAS",aon,"tpc")  = 
    sum((m,i,j)$AD(i,j), abs(cmse(m,i,j,aon,"msebia s"))); 
 
*   ... variance of biases ... 
biasstat("variance",aon,"preg") = 
    sum((m,t,i), sqr(pmse(m,t,i,aon,"msebias") 
                    -biasstat("mean",aon,"preg"))) 
    /(card(m)*card(i)*card(t)-1); 
 
biasstat("variance",aon,"tpc") = 
    sum((m,i,j)$AD(i,j), sqr(cmse(m,i,j,aon,"msebia s") 
                            -biasstat("mean",aon,"t pc"))) 
    /(card(m)*card(i)*(card(i)-1)/2-1); 
 
putclose con / "... computing medians ..." /; 
 
*   ... median bias over k times m observations for  prices (use gdx-rank) 
 
count = 0; 
loop(obs$sameas(obs,"o1"), 
    loop((m,t,i), 
        someSort1(obs+count) = pmse(m,t,i,"%TRAD%", "msebias"); 
        someSort2(obs+count) = pmse(m,t,i,"%BLEP%", "msebias"); 
        count=count+1; 
    ); 
); 
uobs(obs) = yes $ (ord(obs) lt count); 
 
pct("median") = 50.0; 
$libinclude rank.gms someSort1 uobs someRank pct 
biasstat("median","%TRAD%","preg") = pct("median");  
pct("median") = 50.0; 
$libinclude rank.gms someSort2 uobs someRank pct 
biasstat("median","%BLEP%","preg")  =pct("median");  
 
*   ... median bias over k times m observations for  costs (use gdx-rank) 
 
count = 0; 
loop(obs$sameas(obs,"o1"), 
    loop((m,i,j)$AD(i,j), 
        someSort1(obs+count) = cmse(m,i,j,"%TRAD%", "msebias"); 
        someSort2(obs+count) = cmse(m,i,j,"%BLEP%", "msebias"); 
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        count=count+1; 
    ); 
); 
uobs(obs) = yes $ (ord(obs) lt count); 
 
pct("median") = 50.0; 
$libinclude rank.gms someSort1 uobs someRank pct 
biasstat("median","%TRAD%","tpc") = pct("median"); 
pct("median") = 50.0; 
$libinclude rank.gms someSort2 uobs someRank pct 
biasstat("median","%BLEP%","tpc")  =pct("median"); 
 
display biasstat; 
 
 
*   Summarize t-statistics 
putclose con / "... computing t-tests for biases .. ." /; 
 
*   Double sided test if average price differs from  zero, based on 
*   asymptotic normality of averages (Lindberg-Levy  Central Limit Theorem) 
 
tsummary(aon,alpha) = 
    sum((m,t,i) $ [2*(1-errorf(abs[ptval(m,t,i,aon) ])) le pcrit(alpha)],1); 
tsummary(aon,'neg') = 
    sum((m,t,i) $ (ptval(m,t,i,aon) lt 0),1); 
 
display "Number of rejections of null hypothesis fo r price estimates:" 
        ,tsummary; 
 
*   Test for average of cost estimates equals true cost 
 
tsummary(aon,alpha) = 
    sum((m,i,j)$ (AD(i,j) 
             and [2*(1-errorf(abs[ctval(m,i,j,aon)] )) le pcrit(alpha)]),1); 
tsummary(aon,"neg") = 
    sum((m,i,j)  $ (AD(i,j) and (ctval(m,i,j,aon) l t 0)),1); 
 
display "Number of rejections of null hypothesis fo r cost estimates:" 
        , tsummary; 
 
option kill = tsummary; 
 
 
* ------------------------------------------------- --------------------- 
*   Analysis of variances 
* ------------------------------------------------- --------------------- 
 
putclose con / "... pooling variances ..." /; 
 
parameter msestat(totmse,*,aon,parvec); 
 
msestat(totmse,"mean",aon,"preg") = sum(m, psrmse(m ,aon,totmse)) / card(m); 
msestat(totmse,"mean",aon,"tpc")  = sum(m, csrmse(m ,aon,totmse)) / card(m); 
 
msestat(totmse,"variance",aon,"preg") = 
    sum(m, sqr(psrmse(m,aon,totmse)-msestat(totmse, "mean",aon,"preg"))) 
    / (card(m)-1); 
msestat(totmse,"variance",aon,"tpc")  = 
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    sum(m, sqr(csrmse(m,aon,totmse)-msestat(totmse, "mean",aon,"tpc"))) 
    / (card(m)-1); 
 
display msestat; 
 
 
* ------------------------------------------------- --------------------- 
*   Tests:  Variances of prices are heterogeneous f or TRAD and BLEP 
*           Variances of costs are heterogeneous fo r BLEP but not TRAD 
*       - Plot of variances 
*       - Bartlett test 
*       - Levene test (if normality does not hold) 
* ------------------------------------------------- --------------------- 
 
putclose con / "... making vectors suitable for plo tting ..." /; 
 
*   Put variances on parameter suitable for plottin g 
 
count = 0; 
loop(obs$sameas(obs,"o1"), 
    loop((m,t,i), 
        plotphomo(obs+count,"TRAD") = pmse(m,t,i,"% TRAD%","msevar"); 
        plotphomo(obs+count,"BLEP") = pmse(m,t,i,"% BLEP%","msevar"); 
        count=count+1; 
    ); 
); 
 
count = 0; 
loop(obs$sameas(obs,"o1"), 
    loop((m,i,j)$AD(i,j), 
        plotchomo(obs+count,"TRAD") = cmse(m,i,j,"% TRAD%","msevar"); 
        plotchomo(obs+count,"BLEP") = cmse(m,i,j,"% BLEP%","msevar"); 
        count=count+1; 
    ); 
); 
 
 
putclose con / "... testing for equality of varianc es (bartlett) ..." /; 
 
bartlett(m,aon,"preg") = 
    ((card(i)*card(t)*(card(n)-1))*log(psrmse(m,aon ,"mvar")) 
     -sum((t,i), (card(n) - 1)*log(pmse(m,t,i,aon," msevar")))) 
    /(1 + (1/(3*(card(i)*card(t)-1))) 
        * (sum((t,i), 1/(card(n) - 1)) 
                    - 1/(card(i)*card(t)*(card(n)-1 )))); 
 
bartlett(m,aon,"tpc")  = 
    ((card(i)*(card(i)-1)/2*(card(n)-1))*log(csrmse (m,aon,"mvar")) 
      -sum((i,j)$AD(i,j), (card(n) - 1)*log(cmse(m, i,j,aon,"msevar")))) 
    /(1 + (1/(3*(card(i)*(card(i)-1)/2-1))) 
        * (sum((i,j)$AD(i,j), 1/(card(n) - 1)) 
                            - 1/(card(i)*(card(i)-1 )/2*(card(n)-1)))); 
 
parameter plevYi(m,t,i,a)    The Yi hat parameter i n the levene statistic; 
parameter plevZij(m,n,t,i,a) The Zij parameter in t he levene statistic; 
parameter plevZi(m,t,i,a)    The Zi hat parameter i n the levene statistic; 
parameter plevZ(m,a)         The Z hat parameter in  the levene statistic; 
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parameter clevYi(m,i,j,a)    The Yi hat parameter i n the levene statistic; 
parameter clevZij(m,n,i,j,a) The Zij parameter in t he levene statistic; 
parameter clevZi(m,i,j,a)    The Zi hat parameter i n the levene statistic; 
parameter clevZ(m,a)         The Z hat parameter in  the levene statistic; 
 
*   Mean (1) or median (0) for levene measure? Medi an should be better for 
*   skew distributions. Trial show no difference. 
 
scalar levenemean "Use mean (1) or median (0)" /1/;  
plevYi(m,t,i,aon) $ levenemean    = pmean(m,t,i,aon ); 
clevYi(m,i,j,aon) $ levenemean    = cmean(m,i,j,aon ); 
 
parameter levSort(n); 
parameter levRank(n); 
 
if((not levenemean), putclose con / "... computing medians ..." /); 
 
 
loop((m,aon) $ (not levenemean), 
    putclose con / "... medians for prices in model  ", m.tl /; 
    loop((t,i), 
        pct("median") = 50.0; 
        levSort(n) = pest(m,n,t,i,aon); 
$libinclude rank.gms levSort n levRank pct 
        plevYi(m,t,i,aon) = pct("median"); 
    ); 
    putclose con / "... medians for transport costs  in model ", m.tl /; 
 
    loop((i,j)$AD(i,j), 
        pct("median") = 50.0; 
        levSort(n) = cest(m,n,i,j,aon); 
$libinclude rank.gms levSort n levRank pct 
        clevYi(m,i,j,aon) = pct("median"); 
    ); 
); 
 
putclose con / "... free some memory ..." /; 
solve MDUM using NLP maximising VDUM; 
putclose con / "... computing Levene statistics for  prices ..." /; 
 
plevZij(m,n,t,i,aon)  = abs(pest(m,n,t,i,aon)-plevY i(m,t,i,aon)); 
plevZi(m,t,i,aon)     = sum(n, plevZij(m,n,t,i,aon) ) / nn; 
plevZ(m,aon)          = sum((t,i), plevZi(m,t,i,aon )) / np; 
 
putclose con / "... free some memory ..." /; 
option kill = pest; 
solve MDUM using NLP maximising VDUM; 
putclose con / "... computing Levene statistics for  costs ..." /; 
 
clevZij(m,n,i,j,aon)  = abs(cest(m,n,i,j,aon)-clevY i(m,i,j,aon)); 
clevZi(m,i,j,aon)     = sum(n, clevZij(m,n,i,j,aon) ) / nn; 
clevZ(m,aon)          = sum((i,j)$AD(i,j), clevZi(m ,i,j,aon)) / nc; 
 
putclose con / "... free some memory ..." /; 
option kill = cest; 
solve MDUM using NLP maximising VDUM; 
putclose con / "... finalize Levene statistics ..."  /; 
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levene(m,aon,"preg") = 
    ((np*(card(n)-1)) 
     *sum((t,i), card(n)*sqr(plevZi(m,t,i,aon)-plev Z(m,aon)))) 
    /((np-1)*sum((t,i,n), sqr(plevZij(m,n,t,i,aon)- plevZi(m,t,i,aon)))); 
 
levene(m,aon,"tpc")  = 
    ((nc*(card(n)-1)) 
     *sum((i,j)$AD(i,j), card(n)*sqr(clevZi(m,i,j,a on)-clevZ(m,aon)))) 
    /((nc-1)*sum((i,j,n)$AD(i,j), sqr(clevZij(m,n,i ,j,aon) 
                                     -clevZi(m,i,j, aon)))); 
 
display bartlett,levene; 
 
set homtest /bartlett,levene/; 
parameter heterostats(*,alpha,parvec,aon) "Summary of Levene and Bartlett"; 
 
table critval(parvec,alpha,homtest) 
                bartlett    levene 
preg.alpha950   16.92       1.88 
preg.alpha990   21.67       2.43 
tpc.alpha950    61.66       1.39 
tpc.alpha990    69.96       1.61    ; 
 
heterostats("bartlett",alpha,parvec,aon) $ (not sam eas(parvec,"stc")) = 
   sum(m $ (bartlett(m,aon,parvec) ge critval(parve c,alpha,"bartlett")),1); 
 
heterostats("levene",alpha,parvec,aon)  $ (not same as(parvec,"stc"))  = 
   sum(m $ (levene(m,aon,parvec) ge critval(parvec, alpha,"levene")),1); 
 
display heterostats; 
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Chapter 3  Estimating prices, excess demand and trade costs 
in a spatial price equilibrium model8 

1. Introduction 
Spatial price equilibrium (SPE) models with homogeneous goods have been used 
in agricultural sector analysis at least since the publications of Judge and Wallace 
(1958) and Takayama and Judge (1964). This chapter is concerned with an SPE 
model for homogeneous primary agricultural products in Benin. The model has 
twelve regions (administrative departments) and seven goods (cassava, beans, 
rice, sorghum including millet, maize, yams and groundnut). For each region and 
product there is data on annual supply, demand and price, and there is also a table 
of distances between each pair of regions. The objective of the study is to estimate 
the regional net supply, net trade flows, prices and trade costs. 

The trade cost minimization component of the model for each product k is put 
as a linear program in standard form, 

 
kx

min  ckxk 

 subject to Axk ≥ qk (1) 

  xk ≥ 0 

where ck is a 1 × n(n-1) vector of trade costs, xk an n(n-1) × 1 vector of trade 
flows, qk is an n × 1 vector of excess demand and A is an n × n(n-1) matrix of “0”, 
“1” and “-1” arranged in such a way that for the i th row, there is a “1” in all col-
umns corresponding to flows into region i, a “-1” in all columns corresponding to 
flows out of region i and “0” elsewhere. This is not the usual symbolic representa-
tion of the transportation model, though it is mathematically equivalent. The rep-
resentation is chosen because it points at the general applicability of the estima-
tion method to a wider class of problems.  

If a model is to be used in a positive way, it is desirable that it is capable of re-
producing real world behaviour ex-post, and consequently we would like to inter-
pret real world observations as model solutions. This requires that the ex-post data 
satisfies the Kuhn-Tucker (KT) conditions for an optimal solution to the transpor-
tation problem. For several reasons, the KT conditions are likely to be violated by 

                                                      
8 A draft of this chapter  was presented on the Ecomod conference on Regional and Urban Model-
ing, Brussels 2006. 
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ex-post data: The good may not be quite homogeneous; errors may arise when 
observations are aggregated over time and space, there can be measurement errors 
involved etc. Given such errors, and the chosen model, some calibra-
tion/estimation procedure is required in order to fit the model to the ex-post data. 

Traditionally, the calibration of SPE models has been handled by solving the 
transportation model with observed or engineered trade costs, subject to market 
clearing constraints for given regional excess demand quantities, and using the 
Lagrange multiplicators associated with the market clearing constraints to deter-
mine the regional prices (e.g. Judge and Wallace (1958), Litzenberg, McCarl and 
Polito (1982), Peeters (1990), Kawaguchi, Suzuki and Kaiser (1997) and Gua-
jardo and Elizondo (2003)). This implies that any disturbances of observed trade 
costs and excess demand are accepted, and that all corrections needed to satisfy 
the KT conditions are undertaken on the price positions, for which only a single 
observation is used (the numerator price). 

Whereas this certainly may be a defensible way of proceeding in some in-
stances, it is equally easy to imagine situations where there are observations of 
regional prices available and the observations of trade costs and excess demand 
are associated with errors. Then the traditional procedure described above is inef-
ficient, because the price observations are ignored. It is also unable of identifying 
autarky regions; an observed nonzero regional excess demand, however tiny, en-
forces a fixed price difference (equal trade cost) to some other region. 

A general approach to this type of estimation problem is to recognize that 
given a set of trade costs and regional excess demand (parameters), trade flows 
and regional price differences (variables) result from observing a solution of the 
transportation model. Thus, the estimation problem at hand is to select the pa-
rameters so that they, together with the solution variables of the transportation 
problem, minimize (or maximize) some estimation criterion. Viewed that way, the 
problem falls within the class of bilevel programs, prominently exemplified by 
the Stackelberg game. In terms of a leader-follower problem, the leader is the 
person conducting the estimation, the leader’s cost function is the estimation crite-
rion, his decision variables the parameters of the transportation problem. The 
follower’s problem is the transportation model with parameters given by the 
leader. 

In terms of a bilevel programming problem, the situation at hand is sometimes 
(e.g. in Dempe, 1997) described as the optimistic or weak approach. In economic 
terms that would mean that if the follower is indifferent regarding two solutions, 
he chooses the one preferred by the leader. In mathematical terms it means that if 
the solution of the inner problem is not a singleton but a set with several points, 
the leader is allowed to choose that value from the set of solutions of the inner 
problem that minimizes the estimation criterion. This property simplifies the solu-
tion of the bilevel estimation problem compared to the general bilevel program, 
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where the weak approach cannot be assumed a priori. In the case at hand, it has 
special implications for the prices, which are not fully identified in a solution to 
the transportation problem; only price differences are. The weak approach means 
that we, among all sets of prices satisfying those price differences, may choose 
those that score highest on our estimation criterion, e.g. are closest to the observed 
prices or have the highest probability density. 

The outline is as follows: Section two formulates the bilevel estimation pro-
gram, section three discusses alternative solution methods, and in section four the 
required weights are computed. Section five presents and analyses the data used 
in the estimation, and section six reviews other relevant studies of trade costs in 
Benin. In section seven, the results of the estimation are described, and section 
eight concludes with a discussion. 

2. A bilevel estimation program 
The mathematical representation of the bilevel programming problem in this ap-
plication is based on a representation of the transportation problem by its first 
order conditions, with a weighted least squares objective function penalizing de-
viations from observations of prices and excess demand. The first order condi-
tions here are cast as a linear complementarity problem (LCP), thus formulating 
the estimation problem explicitly as a mathematical program with equilibrium 
constraintsthe branch of literature from which the solution method is borrowed. 
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The objective function (2) minimizes the weighted sum of squared deviations 
of estimated prices and excess demand from observations. If observations of trade 
flows and costs were available, those could be similarly included into the objec-
tive. Equations 3-6 form an LCP that is equivalent to the Kuhn-Tucker conditions 
for the LP (1), with pk the dual vector of the constraints in the LP, and uk and vk 
slack vectors. Equation 6 is a function relating the trade cost between any two 
regions to the distance δ between them, parametrized by β1 and β2. 
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Trade costs are expressed per weight unit, and in order to economize on de-
grees of freedom, the trade costs per weight unit were assumed to be equal for all 
products. This would be reasonable if all products were equally perishable and 
with similar prices, which is not perfectly true for the set of products at hand: 
cassava, yams, maize, rice, sorghum, beans and peanuts. On the other hand, IFPRI 
(2004) does not find that traders in Benin discriminate between different agricul-
tural products when setting transportation rates, supporting the use of a single 
trade cost function for all products. 

3. Solution method 
An optimization problem constrained by an LCP falls in the class of mathematical 
programs with equilibrium constraints (MPEC), that started to attract attention in 
the literature in the 1990’s, evidenced by the publication of two books on the sub-
ject (Luo, Pang and Ralph (1996), Outrata, Kocvara and Zowe (1998)). The solver 
NLPEC (see NLPEC solver manual) for GAMS (General Algebraic Modelling 
System) solves MPECs via smooth reformulation of the complementarity con-
straints. Several of those reformulations were tested, and the method finally se-
lected is one of the reformulations implemented in NLPEC. The intuition behind 
the smooth reformulations is the following: 

The complementary slackness constraint (5) is the equation causing trouble 
when attempting to solve the problem (2-6), because it makes the feasible space 
non-convex and it has “corners”. The key idea of the smooth reformulations is to 
replace (5) by a sequence of increasingly accurate approximations. Several such 
reformulations are available, and after extensive testing with synthetic data, a 
method where a penalty function minimizes the complementarity gap was chosen. 

Before proceeding, we note that data is unlikely to support solutions with zero 
price for any product. Thus, the slack vectors vk can be fixed to zero, reducing the 
problem somewhat. Next, the remaining complementary slackness condition 
uk′xk = 0 is removed, and instead a penalty term µ(uk′xk) is added to the objective 
function with µ a nonnegative real number. The resulting system is solved repeat-
edly, with µ initially set to a small number and then stepwise increased, each time 
using the previous solution as starting point, until the complementarity gap uk′xk is 
zero. The estimation problem then is: 
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with p
kw  and q

kw  weights to be defined below. Note that when µ → ∞, the factor 
u′x in the penalty term eventually becomes zero (if feasible), so that the original 
problem is recovered. Testing with different sequences of µ and different syn-
thetic data constellations revealed that this method is not guaranteed to find the 
global minimum for the problem size at hand9. Nevertheless, of the methods 
tested it performed on average and in median best, measured by the sum of 
squared deviations obtained, on a large number of similarly structured, randomly 
generated problems. 

In an attempt to verify that the iterative approximation method finds the 
unique global minimum, or at least a point close to it, for the incumbent data, the 
problem was also reformulated as a mixed integer programming problem, with 
binary variables in a so-called “big M” construct switching the complementary 
slackness conditions. To reduce the size of the problem, only one product (maize) 
was included, and the problem initialised with the solution obtained by the itera-
tive approximation described above. The so obtained problem in 132 binary vari-
ables was solved with a branch-and-bound algorithm (the solver SBB in GAMS 
on the NEOS server). The solver terminated after 38 minutes and 1.6 million it-
erations without any significant improvement of the objective, though still with a 
possible gap (between best found and best possible) of round 10% of the objective 
function value. For the entire problem (around 900 binary variables) the solver 
terminated due to limited system resources (memory). As a comparison, the itera-
tive smooth approximation solution of the entire problem solves in about 20 sec-
onds on a standard workstation. So, even if a better solution may exist, it is diffi-
cult to find. 

The estimation was programmed in GAMS and the extremum optimisation 
problem solved numerically using the non-linear programming software 
CONOPT. 

4. Assigning weights 
The objective function of the problem (2-6) literally compares apples to pears. It 
actually does more than that, because it also weighs an error in the price of one 
commodity against the error in quantity of another. In order to make the estimator 
more efficient, the error terms need to be weighed by the inverse of their vari-
ances, which in this case are unknown. 

In other circumstances, one approach would be to estimate the variances si-
multaneous with the parameters, either using maximum likelihood or by itera-
tively computing the sample variances from the residuals of previous estimation 
steps. To this end, one could assume that prices and quantities of each commodity 

                                                      
9 Several studies formulates conditions for the existence of a global optimum for bilevel programs. 
,Following Dempe (1997) a global minimum exists in the case at hand. 
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constitute two homoscedastic groups with variances 2
pσ  and 2

qσ  (or some more 
complex matrix function of those variances). Endogenously determined 2

pσ  and 
2
qσ , would likely result in one group having variance close to zero and the other a 

very high variance. The reason for this is that either observed prices or quantities 
always can be matched perfectly by the estimates in this model. If the ratio of the 
variances 2

pσ / 2
qσ  is shifted towards zero, prices will be matched perfectly and the 

objective value be depending only on the inverse of 2
qσ , and vice versa. 

Thus, some external source or assumption must be used to assign weights. In 
this analysis, we assumed that variances are proportional to the absolute size of 
the related variables. More specifically we assumed that the variances of prices 
are proportional to the observed price and to the inverse market share of the cur-
rent region. The variances of excess demand were assumed to be proportional to 
the sum of regional supply and demand, the sum being motivated by the fact that 
the variance of a difference is the sum of the variances. The weights were com-
puted as 
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and the resulting weights are shown in tables 1 for prices and 2 for excess de-
mand. 

Table 1: Weights for price disturbances 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 0.446 1.155 0.769 0.554 0.29 0.258 2.834 
ATA 0.136 1.966 0.628 0.171 0.744 0.267 3.634 
ATL 1.293 0.003 0.231 2.244 0.268 0.474 0.079 
BOR 0.373 2.644 1.031 0.522 0.431 0.328 3.832 
COL 0.589 0.215 0.56 1.497 0.383 0.335 0.065 
COU 1.449 0.325 0.211 0.611 0.271 0.299 1.335 
DON 0.059 0.813 0.359 0.118 0.818 0.227 15.644 
LIT 0.924 0.002 0.129 0.683 0.223 0.998 0.067 
MON 0.631 0.284 0.129 0.451 0.116 0.186 0.815 
OUE 0.966 0.986 0.377 2.527 0.588 0.517 0.078 
PLA 0.437 0.681 0.207 1.511 0.344 0.245 0.056 
ZOU 0.666 0.232 0.614 1.463 0.441 0.373 0.048 
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Table 2: Weights for excess demand disturbances 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 1.161 1.877 7.438 1.97 4.476 7.898 0.5 
ATA 1.533 1.574 8.602 5.481 4.959 7.452 0.261 
ATL 0.204 1230.172 21.374 0.74 12.518 5.863 13.186 
BOR 0.668 1.484 5.19 1.282 7.614 6.748 0.179 
COL 0.325 11.913 5.505 1.305 4.259 5.211 0.729 
COU 0.411 13.756 11.086 2.404 6.704 9.198 0.874 
DON 3.837 5.235 20.935 11.328 7.289 13.243 0.491 
LIT 0.56 1399.573 49.265 3.394 18.692 2.68 15.357 
MON 0.595 12.846 50.817 2.164 36.331 15.597 1.32 
OUE 0.452 3.528 14.49 0.916 7.048 5.275 10.906 
PLA 0.278 6.575 15.385 0.747 9.709 12.695 6.174 
ZOU 0.567 20.176 6.503 1.401 3.718 8.555 3.402 

5. Data 
The data used in the estimation is the data in the BenImpact model data base for 
2001. Aggregates of the data sufficient for reproducing the results of the estima-
tions are presented in this section. In the BenImpact database, regional demand 
stems from the Benin statistic agency ONASA (several publications), as do re-
gional prices. Regional supply is based on ONASA-data on yields and acreage on 
the level of the administrative units sub-prefectures (SP), of which there are 77 in 
Benin. 

Both yields and acreages fluctuate strongly between adjacent time periods as 
well as regions. In order to arrive at reasonable estimates of yields at least on ag-
gregate levels, the data for the individual SPs were scaled to fit yield and acreage 
trends estimated for “agri-ecological zones” (AEZ) based on survey data from van 
den Akker (2000). AEZ are eight agronomically homogeneous but spatially dis-
continuous geographical units, to which the SPs can be mapped. After fitting it to 
the AEZ data, excess demand was computed and aggregated to the administrative 
regional level of departments, which was the regional level used in the BenImpact 
model. 

Prices are collected by ONASA at the level of selected market places, some-
times several times per year due to the seasonality of production. Since no data on 
market place or seasonal turnover was available, the prices for the departments 
were computed as the arithmetic average of the prices on market places that fall 
within that department. Having all this in mind, we conclude that data on prices as 
well as excess demand are subject to considerable uncertainty, and thus that the 
traditional calibration approach is likely to make inefficient use of the available 
information. 
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Figure 1 shows the regions used in the estimation and lists the abbreviations 
used for the twelve departments (Littoral, containing only the city Cotonou, was 
considered one department). Table 3 lists the abbreviations used for the seven 
products. A major crop that is missing is cotton, which was omitted from the es-
timations due to special regulated internal trading conditions. Data on prices and 
excess demand are shown in tables 4 and 5. 

 

Figure 1: Regions (departments) of Benin in estimation. Source: The BenImpact 
mapping tool built by Wolfgang Britz (Bonn University), with own graphical 
modifications. 

Table 3: Products in the estimation and their abbreviations. 
CASS Cassava PULS Beans RICE Rice 
SORM Sorghum and  MAIZ Maize YAMS Yams 
 millet PEAN Groundnut   
 

ALI 

ATA 

DON 
BOR 

COL 

ZOU 

ATL 

COU 

MON 

PLA 

OUE 
LIT 

Abbreviations 
ALI Alibori 
ATA Atacora 
ATL Atlantique 
BOR Borgou 
COL Collines 
COU Couffo 
DON Donga 
LIT Littoral 
MON Mono 
OUE Oueme 
PLA Plateau 
ZOU Zou 
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Table 4: Price observations for regions and products 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 172.42 107.06 219.74 88.52 250.45 266.31 73.93 
ATA 171.70 113.21 182.53 96.45 225.54 266.36 72.83 
ATL 156.99 186.65 269.81 104.10 286.02 277.70 136.28 
BOR 182.98 112.39 231.28 91.68 236.80 291.55 59.56 
COL 153.40 111.35 219.01 86.83 233.85 246.89 79.29 
COU 117.67 163.74 224.43 85.91 197.73 273.59 119.74 
DON 166.81 106.76 201.69 87.70 175.50 235.24 n.a. 
LIT 159.55 205.29 288.96 127.37 364.50 288.62 138.55 
MON 165.71 204.19 253.03 110.65 294.84 264.46 127.13 
OUE 142.66 191.01 285.67 92.06 324.33 248.11 126.91 
PLA 156.02 168.16 292.00 94.35 264.97 248.43 96.18 
ZOU 149.85 132.42 219.66 101.41 220.39 237.59 118.71 
Source: BenImpact database for 2001, based on data from ONASA. 

Table 5: Regional excess demand observations 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 60.76 -20.45 4.94 -17.54 -12.88 5.18 91.95 
ATA -20.77 -4.45 0.85 -7.10 1.65 5.04 -13.77 
ATL -102.96 0.08 2.10 23.07 1.97 17.04 7.43 
BOR -19.50 11.51 6.68 -45.59 0.13 9.99 -242.02 
COL -134.79 -2.04 -4.84 11.41 -11.84 2.25 -129.94 
COU 82.68 6.86 -3.87 -6.08 -7.95 10.31 108.25 
DON -7.14 3.93 3.10 -1.85 4.95 6.29 57.79 
LIT 103.32 0.06 2.03 29.46 5.22 37.31 6.51 
MON 31.75 7.62 1.58 -12.44 1.68 6.36 68.67 
OUE 42.39 21.64 4.81 48.30 10.63 14.26 4.56 
PLA -229.93 15.21 0.08 -37.34 1.55 7.88 -8.64 
ZOU 14.57 3.20 -0.71 29.08 -14.27 11.27 -21.41 
Source: BenImpact database for 2001, based on data from ONASA and van den Akker (2000). 

The distances between departments required by (6) were computed using a ta-
ble of line-of-sight-distances between the principal market places in each depart-
ment. In praxis, sometimes different market places are important for different 
products, so that the selection of principal market places had to be a compromise 
if not one unique distance matrix was to be used for each product. The distance 
matrix used is shown in table 6. 
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Table 6: Distance matrix (kilometres) 

 ALI ATA ATL BOR COL COU DON LIT MON OUE PLA ZOU 
ALI  300 574 213 425 592 347 628 631 658 570 502 
ATA   485 212 336 503 78 539 542 569 481 413 
ATL    361 149 102 407 54 63 84 140 72 
BOR     212 379 134 415 418 445 357 289 
COL      167 258 203 206 233 145 77 
COU       425 106 39 136 158 90 
DON        461 464 491 403 335 
LIT         67 30 138 126 
MON          97 197 129 
OUE           108 156 
PLA            68 
Source: Own measurement on a map of Benin. 

6. Results of other studies 
There are other sources of trade cost estimates for Benin. Thus, before proceeding 
with a presentation of the estimation results, a brief survey is of interest. One re-
cent study is IFPRI 2004, performing a survey of traders in Benin. They find that 
on distances of 160 km, large trucks are used, and that motorized transport on 
average costs 0.28 USD/ton/km. Converted to FCFA using an exchange rate of 
700 FCFA/USD this corresponds to 31 FCFA per kg for 160 km. It is not clear to 
this author if those rates also contain mark-ups other than transportation costs. 

Van den Akker (2000) surveys production and trade in Benin and finds trans-
port costs for maize that, when fitted to the trade cost function used in this article, 
correspond to a distance elasticity of transport costs of 0.37, 0.71 and 0.41 for 
southern, central and northern Benin respectively (own computations). For a typi-
cal truck operated distance of 160 km, this amounts to transportation costs of 
9.60, 17.92 and 10.51 FCFA per kg. These numbers are supposed to contain only 
transportation costs and not other costs connected to trade, whence we expect our 
estimated trade costs to be somewhat higher. For maize, van den Akker finds that 
marketing costs and profit each amount to approximately as much as the transpor-
tation costs. 

Finally, there are estimates of distance elasticities of trade costs from other 
studies, prominently in the gravity literature. Hummels (1999) estimates a trade 
cost function similar to ours but with ad valorem trade costs and finds a distance 
elasticity of 0.27 (all products), and commodity specific elasticities “tightly clus-
tered in the 0.2 to 0.3 range” (ibid p.11). Elasticities smaller than one indicate 
concave trade costs, which would be easily explained: 

The main reason for expecting a concave trade cost function with a distance 
elasticity of less than unity is that trade takes place with a multitude of means, 
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ranging from transportation by foot over bicycles, motorcycles, modified ordinary 
automobiles, small trucks up to large trucks (IFPRI 2004), all with different fix 
charges and costs per km. If always the cheapest available means of transportation 
were used for a given haul, this would result in concave trade costs as illustrated 
in figure 2, where the heavy grey line shows the graph of a trade cost function as 
of equation 6. Most distances in the model are relatively long and therefore could 
be operated by a more homogeneous class of transportation means, allowing the 
function to be closer to linear, but never convex. Having all this in mind, we 
would expect our estimated trade cost function to be such that the elasticity is 
between 0.2 (the lowest value in Hummels) and 1.0 (the upper limit for concav-
ity), and the function value for 160 km to be around 30 FCFA per kg (indicated 
by the IFPRI survey). 
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Figure 2: Concavity of trade costs resulting from a heterogeneous class of means 
of transportation. 

7. Results of estimation 
The fit of the estimates were evaluated using the R-squared measure, computed 
for each product separately according to the formula 

 
SST

SSR
R =2  with ( )∑ −=

r rr ppSST 2ˆ , ( )∑ −=
r rr ppSSE 2ˆ  

and SSR = SST – SSE, and the same for excess demand. Thus, no correction for 
degrees of freedom was undertaken. A bar denotes the sample mean and a hat 
denotes the estimated value. Tables 8 and 9 show the estimated prices and excess 
demand, table 7 the computed R-squared values. 
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For sorghum and millet, peanuts and yams, the R-squared measures indicate a 
fair fit, with errors distributed over both quantities and prices. This means that for 
those products, the price was in general higher in regions with positive excess 
demand and lower in regions with excess supply. A check with the observations 
of prices and net supplies supports this conclusion: Take for example sorghum 
and millet. Here, the R-squared measures are 0.71 for prices and 0.82 for quanti-
ties (table 7). The greatest net supplier of sorghum and millet was Alibori in the 
far north of Benin with a surplus of 20 450 tons (table 5). As expected, that region 
had a low price (table 4), a relation which remains in the estimates. The price or 
sorghum and millet in Donga was also low, but the excess demand positive and 
smaller than in Alibori. In that case, the estimator determined that Donga should 
be an autarky region. The largest net importers of sorghum and millet—Mono, 
Oueme and Plateau—also had among the highest observed prices. 

Another example is yams. The majority of the yams trade according to obser-
vations originates in Borgou and Collines (table 5), where the prices also are low-
est. The low prices enable them to export yams to the higher priced net demand-
ing regions. Only in the northern region of Alibori a low observed price of yams 
is in contrast to a significant excess demand. In that case, the estimator chooses to 
adjust the price upwards in order to be able to import the required quantities. 

Table 7: Measures of determination with all products included (P = price, Q = 
excess demand). 

  mean sse sst ssr R2 
CASS P 157.98 5031 3113 -1918 -0.62 
CASS Q -14.97 26 104029 104003 1.00 
SORM P 150.18 5163 17822 12658 0.71 
SORM Q 3.60 227 1250 1023 0.82 
PULS P 240.65 5588 14594 9006 0.62 
PULS Q 1.40 111 129 18 0.14 
MAIZ P 97.25 2217 1623 -594 -0.37 
MAIZ Q 1.12 464 8721 8256 0.95 
PEAN P 256.24 17654 31893 14238 0.45 
PEAN Q -1.60 200 719 519 0.72 
RICE P 262.07 5306 3924 -1382 -0.35 
RICE Q 11.10 336 940 605 0.64 
YAMS P 104.46 2249 8280 6030 0.73 
YAMS Q -5.89 234 104109 103875 1.00 
Source: Own estimations. 

The R-squares for the three products cassava, maize and rice the R-squares for 
prices turn out negative, indicating a poor support in the data for the assumed 
model. Indeed, a look at the data reveals that for those products, excess demand is 
sometimes positive where the price is low and vice versa. One example where 
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data is contradicting the assumption of arbitraging traders is the case of cassava, 
especially in the region of Borgou. In that region, the data claim an excess supply 
of 19 500 tons (table 5), which has to be exported, but at the same time, Borgou 
has the highest cassava price of all regions (182.98 FCFA/ton, table 4). This is 
clearly not consistent with the idea that the cassava surplus is traded to some other 
region by profit maximizing traders facing a positive unit trade cost and homoge-
neous goods. The estimator thus chooses the "smallest possible" correction that 
brings quantities and prices in line with the model. This turns out to be a strong 
correction of the price and little correction of the excess demand. The estimated 
price is 157.95 FCFA/ton (table 8), implying an error of about 25 FCFA/ton, 
whereas the estimated excess demand (-20 420 tons) is closer to the data. In gen-
eral, the estimator favoured price corrections rather than quantity corrections for 
cassava, as evidenced by the R-squared measures in table 7 (1.00 for quantities, -
0.62 for prices). 

Table 8: Price estimates with all products included (FCFA/kg) 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 189.21 88.06 219.74 87.42 250.45 266.31 87.24 
ATA 145.18 113.21 192.91 87.27 218.92 262.73 72.83 
ATL 148.70 172.30 256.64 109.14 267.20 263.46 108.96 
BOR 157.95 119.32 224.03 56.16 227.14 293.84 55.99 
COL 126.84 150.43 234.77 87.27 245.33 262.73 87.10 
COU 151.34 174.94 241.67 94.17 259.57 271.09 111.61 
DON 138.28 112.57 204.36 75.83 207.47 274.17 75.65 
LIT 156.63 170.83 248.71 109.73 275.13 255.54 116.89 
MON 157.07 180.66 247.39 99.89 265.29 265.37 117.33 
OUE 152.22 175.23 253.12 105.32 279.53 259.94 112.49 
PLA 136.37 171.71 256.05 89.47 266.61 275.79 96.64 
ZOU 138.14 161.73 246.07 98.57 256.63 274.03 98.40 

Table 9: Excess demand estimates (1000 ton, empty = autarky) 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 60.22 -25.34     89.93 
ATA -21.17  -2.62   -2.21  
ATL -99.99 0.07 4.79 18.69 1.50 21.49 7.35 
BOR -20.42 5.33 0.94 -48.13  4.66 -247.69 
COL -136.70 -2.81 -2.36 8.92 -13.21 -4.66 -131.33 
COU 81.18 6.19 -1.99 -7.43 -8.81 13.15 107.09 
DON -7.30  1.68   2.21 55.73 
LIT 104.40 0.09 3.20 28.51 4.91 47.04 6.45 
MON 30.71 10.59 1.99 -13.94 1.52 8.03 67.90 
OUE 43.73 32.48 8.77 43.38 9.80 19.21 4.46 
PLA -227.74 13.81 0.96 -43.38 0.95 9.93 -8.80 
ZOU 13.48 2.74 1.39 26.76 -15.83 14.32 -21.71 
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The estimated parameters of the trade cost function turn out 
(β1,β2) = (0.147,1.000) corresponding to a trade cost at 160 km of 23.5 FCFA/kg. 
The cost for 160 km is of plausible magnitude, judged by the results of van den 
Akker and IFPRI discussed in the previous section. The distance elasticity β2 of 
unity, implying a linear trade cost function, appears high compared to the consid-
erations expressed in the previous section, implying linear trade costs. However, 
one should keep in mind that most distances involved are of similar magnitude 
since all regions are relatively large. In other words, if there would also have been 
a number of very small regions, close by one another, involved, then the observa-
tions would have contained more information about how the trade costs vary with 
varying distance. Indeed, most distances in table 6 are large enough to be covered 
by similar means of motorized transport. 

Finally, in order to investigate the sensitivity of the estimates to changes in 
data, an additional estimation was performed, using only products for which R-
squared was positive, thus not contradicting the assumed model. That meant omit-
ting cassava, maize and rice. That results in parameter estimates of 
(β1,β2) = (1.558,0.643), corresponding to a trade cost for 160 km of 40.7 FCFA 
per kg, the estimated prices and excess demand shown in tables 10 and 11, and 
the measures of determination shown in table 12. Those estimates, as far as the 
trade cost function is concerned, is more in line with other results. A conclusion 
must be that the estimation is not very robust, and that there possibly are problems 
with the data, the model or both. 

Table 10: Price estimates with product subset (FCFA/kg, n.a. = not available) 

 CASS SORM PULS MAIZ PEAN RICE YAMS
ALI n.a. 90.20 219.74 n.a. 250.45 n.a. 95.93
ATA n.a. 113.21 182.56 n.a. 225.54 n.a. 72.83
ATL n.a. 182.73 265.60 n.a. 270.65 n.a. 112.77
BOR n.a. 114.13 231.34 n.a. 236.80 n.a. 47.01
COL n.a. 144.11 226.72 n.a. 233.77 n.a. 74.69
COU n.a. 184.59 235.12 n.a. 249.96 n.a. 116.53
DON n.a. 108.61 208.21 n.a. 201.90 n.a. 83.32
LIT n.a. 165.28 245.35 n.a. 281.20 n.a. 122.12
MON n.a. 188.54 251.55 n.a. 266.39 n.a. 122.47
OUE n.a. 179.16 259.23 n.a. 285.59 n.a. 116.73
PLA n.a. 182.32 264.92 n.a. 269.77 n.a. 85.11
ZOU n.a. 158.84 241.44 n.a. 246.29 n.a. 88.41
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Table 11: Excess demand estimates, product subset (1000 ton, empty = autarky) 

 CASS SORM PULS MAIZ PEAN RICE YAMS
ALI n.a. -20.24 n.a. n.a. 89.93
ATA n.a. -2.62 n.a. n.a.
ATL n.a. 0.08 4.79 n.a. 1.50 n.a. 7.35
BOR n.a. 0.94 n.a. n.a. -247.69
COL n.a. -2.00 -1.33 n.a. -13.21 n.a. -131.33
COU n.a. 6.89 -1.99 n.a. -8.81 n.a. 107.09
DON n.a. 1.68 n.a. n.a. 55.73
LIT n.a. 0.09 3.20 n.a. 4.91 n.a. 6.45
MON n.a. 10.59 1.99 n.a. 1.52 n.a. 67.90
OUE n.a. 32.48 8.77 n.a. 9.80 n.a. 4.46
PLA n.a. 15.27 1.33 n.a. 0.95 n.a. -8.80
ZOU n.a. n.a. -15.83 n.a. -21.71

Table 12: Measure of determination with product subset 

  mean sse sst ssr R2
SORM P 150.18 4698 17822 13123 0.74
SORM Q 3.60 304 1250 945 0.76
PULS P 240.65 4045 14594 10549 0.72
PULS Q 1.40 114 129 15 0.12
PEAN P 256.24 13605 31893 18288 0.57
PEAN Q -1.60 200 719 519 0.72
YAMS P 104.46 2661 8280 5618 0.68
YAMS Q -5.89 234 104109 103875 1.00
 

The data and GAMS-code required for reproducing the results presented here 
can be obtained for test purposes from the author upon request. 

8. Discussion 
The estimations above show that the proposed method for estimating trade costs 
is computationally feasible, and theoretical considerations indicate that it is supe-
rior to traditional calibration methods from an efficiency point of view. The esti-
mation results were, however, not stable when the composition of the sample was 
modified, as demonstrated by the rather different results obtained when using a 
subset of the products. This signals that there are problems with the model speci-
fication, with the data or both. The list of potential specification errors is long: 

(i) Lack of temporal disaggregation. In the tropical country of Benin, there are 
two production seasons, with somewhat different time windows in the south and 
in the north. Thus, production, demand and trade takes place within shorter time 
frames and trade flows may even reverse within a year. Van den Akker uses four 
time periods. This setup was tried but discarded, as it requires the estimation of a 
storage function and urges considerations of uncertainty. 
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(ii) Products may not be homogeneous. For some products there are local as 
well as commercial varieties, which may sell at different prices.  

(iii) Great circle distances neither reflect the state of maintenance and other 
qualities of the road network nor actual distances of road to travel. 

(iv) Congestion effects are not considered. According to IFPRI, congestion in 
the transportation system sometimes occur during cotton harvest. 

(vi) External trade, occurring via the harbour in Cotonou or across the borders 
to neighbour countries, is not considered due to lack of data on prices and quanti-
ties. The only external trade allowed is by a constant, derived from the sample, 
and attributed entirely to Cotonou. 

The data problems for a country suffering under deficits in all kinds of infra-
structure and low literacy (33.6% according to CIA 2006) are obvious. Official 
statistics frequently appear to be more “guesstimates” than the results of actual 
measurements, and utterly sparse. The data used in the estimations has gone 
through a gap-filling process already before entering the estimation, and is still 
not complete (one price is missing for yams). For some products and regions there 
are obvious problems. As an example, the cassava price in the department Couffo 
is the lowest of all regions even though Couffo has the second to largest excess 
demand, clearly contradicting the assumption of spatial arbitraging. Indeed, the 
coefficient of correlation between prices and excess demand is negative (-0.138) 
for cassava, though positive for all other products. However, trade does occur and 
is not likely to take place at a loss, so this is more likely to be a data than a speci-
fication problem. 

To conclude, the estimation is on the one hand connected with some severe 
difficulties. Not only is the available data barely supporting the assumed model, 
but furthermore, the bilevel program is difficult to solve due to non-convexities. 
On the other hand, the method is workable, delivering reasonable estimates com-
pared to expert knowledge and other trade cost studies. Furthermore, for the given 
model, it is difficult to see how the available data could be used more efficiently. 
The estimation uses all available information, and, by the proper use of weights, 
attaches more confidence to items that for some reason are believed to be more 
certain (have less variance). 

The bilevel programming approach to the estimation of constrained program-
ming models can, as noted above, be extended to include observations also of 
trade flows and trade costs in a similar manner, as well as a time series of obser-
vations. One could also attempt similar (bilevel) techniques to estimate parame-
ters of general LP models, or, with additional second order conditions to NLP 
models, and could thus be of interest to a wider range of modellers as an alterna-
tive to separate estimations or calibration methods. 
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Chapter 4  A Bayesian alternative to generalized cross en-
tropy solutions for underdetermined models 10 

1. Introduction 
In 1996, Golan, Judge and Miller published a book on “Maximum Entropy 
Econometrics” introducing Generalized Maximum Entropy (GME) and General-
ized Cross Entropy techniques (GCE) to a wider range of applied econometri-
cians. These estimation approaches were attractive to empirical modelers mainly 
for two reasons: First, they allow empirical specification and estimation of under-
determined models, i.e. models where the number of unknowns is larger than the 
number of equations, a capability not provided by classical solution techniques. 
Second, prior information on model unknowns can be included in a technically 
straightforward way, making estimates potentially more efficient in a mean square 
error sense, or at least more “plausible” for model simulation, interpretation, and 
analysis subsequent to estimation.. 

Since their introduction, a notable number of applications of GME and GCE 
have appeared in the empirical economics literature. A significant area of applica-
tion relates to balancing large raw data sets using accounting identities and prior 
information to fill gaps and reconcile conflicting data sources. The techniques 
allow setting ranges for missing data values and provide a means of differentiat-
ing the reliability of various sources in the balancing process (e.g. Robinson, Cat-
tanbo, and El-Said 2000; Britz and Wieck 2002, Robilliard and Robinson 2003). 
A related line of work deals with allocating input quantities to outputs from data 
on total input use and prior information on the input-output relationships (e.g. 
Lence and Miller 1998a and b, Léon et al. 1999). Calibration of simulation mod-
els to base year quantities and theory-consistent parameter sets is often done using 
entropy methods (e.g. Paris and Howitt 1998; Witzke and Britz (1998); Paris 
2001) and a fairly new but increasingly important area is the spatial disaggrega-
tion of technological and economic data (Howitt and Reynaud 2003). However, 
GME and GCE applications are not reserved for data recovery and calibration 
issues, and have been employed in attempts to better solve traditional estimation 
problems or analyze new ones (e.g. Golan, Judge and Perloff 1996; Oude Lansink 
1999; Zhang and Fan 2001; Arndt, Robinson, and Tarp (2002), Heckelei and 

                                                      
10 Authors: Thomas Heckelei (Bonn University), Ron Mittelhammer (Washington State University), 
Torbjörn Jansson (Bonn University). 
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Wolff 2003). In essence, any economic model characterized by a vector of M 
equations in  K > M unknowns, say ( ) =g z 0, is an underdetermined model that 
can be solved through the use of  GME or GCE techniques. 

Despite the growing number of applications, GME and GCE techniques are 
arguably subject to at least three difficulties, the first being the specification and 
interpretation of prior information imposed via the use of discrete support points 
and a corresponding reference prior probability distribution on that support. In 
fact, the actual prior information ultimately imposed is a rather complicated com-
posite of the choice of support points, the choice of reference prior probabilities 
on support points, and their interaction with the criterion of maximum entropy in 
determining the final estimated subject probabilities on the support points. A sec-
ond issue relates to challenges in characterizing the nature of the estimation objec-
tive that is actually being used to combine prior and data information, with atten-
dant difficulties in evaluation of the estimation results by the scientific commu-
nity. Thirdly, the entropy approach introduces additional variables (the probabili-
ties linked to the supports) and equations (adding up constraints for the probabili-
ties) to the estimation process, which leads to a potential computational challenge 
especially for large data balancing applications. We elucidate as well as address 
these issues in the sections ahead. 

The overall objective of this chapter is to introduce a Bayesian alternative to 
GME and GCE techniques that allows for a direct and straightforwardly interpret-
able formulation of prior information and a clearly defined estimation objective 
while also reducing computational demands considerably when estimating an 
underdetermined economic model. The specific objectives are reflected in the 
organization of the remaining sections of the paper, which is as follows. Section 2 
reviews the GME-GCE approach in the context of estimating an underdetermined 
linear model without noise. We clarify the interpretation of the effective prior 
information imposed as being a combined effect of supports, reference probabili-
ties on supports, and the solution for the subject probabilities via the maximum 
entropy criterion. Section 3 introduces a formulation of the underdetermined lin-
ear model estimation problem using a Bayesian approach that is fully equivalent 
to GME-GCE, where the underdetermined model equations and the data together 
represent the “Likelihood” information and all prior information is represented in 
terms of a prior density on model unknowns. This approach is then extended to 
solving general systems of underdetermined equations. In section 4, the approach 
is extended to accommodate the situation where the prior information is com-
pletely uninformative relative to the unknowns in the equation system. Section 5 
provides illustrative applications, followed by concluding remarks. 
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2. Prior information in GME-GCE approaches 
The principles of GME (later extended to GCE) estimation as introduced by Go-
lan, Judge and Miller (1996) and discussed further in Mittelhammer, Judge, and 
Miller (2000) are briefly reviewed here in the linear model context without noise 
to provide a conceptual foundation and identify notation for use in later sections. 
Within this basic model context, we elucidate the actual nature of the prior infor-
mation that is implicitly used in the GME and GCE approaches. 

Consider the underdetermined linear regression model, without noise, given by 

 =y Xβ  (1) 

where y is a T-dimensional column vector of observations on the dependent vari-
able, X is a T×K matrix of observations on independent regressors with T<K, and 
ββββ is a K-dimensional column vector of unknown parameters. The values of ββββ can-
not be uniquely identified with classical estimation techniques, such as ordinary 
least squares, because the number of observations is smaller than the number of 
parameters. The basic GME approach is to “reparameterize” the vector of parame-
ters ββββ such that each element is expressed as an expectation of a discrete probabil-
ity distribution. Let S be a block-diagonal K×KL matrix of support points, where 
L is the number of support points associated with each parameters, and let p be a 
corresponding KL×1 vector of weights that have the properties of probabilities. 
The vector ββββ can then be represented as 
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with [ ]'
k k1 k2 kL=s s s sL  such that sk1< sk2 < ... < skL. A reparameterized 

version of (2) is then given by 

 =y XSp  (3) 

which corresponds to the 'data constraints' of the GME approach. Realizing that 
the elements of each pk, k = 1,...,K sum to 1 consistent with their interpretation as 
having the properties of probabilities, equation (2) defines the admissible values 
for the elements of ββββ as convex combinations of the corresponding support points 
sk, k = 1,...,K. This implies that the range of possible values for ββββk is given by the 
interval [sk1,skL]. The GME approach chooses among the infinite number of vec-
tors p satisfying (3) so as to maximize the entropy criterion11 
                                                      
11 The value of ( )ij ijp ln p is defined to equal its limiting value of 0 when ijp 0=  
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 H[ ] ' ln= −p p p  (4) 

The objective function (4) attains an unconstrained maximum when all ele-
ments of p have the value 1/L, i.e. when the probabilities are uniform. Since the 
uniform distribution treats each outcome as equally likely one can view this dis-
tribution as the maximally uninformative distribution with respect to anticipating 
outcomes of a random variable. 'Thus, the maximum value of entropy is uniquely 
associated with the maximally uninformative weight- probability distribution” 
(Mittelhammer et al. 2000, E3: 8). However, the notion of “uninformative” prob-
abilities has caused some confusion in some applications of GME in that it has 
been incorrectly interpreted as characterizing the prior probabilities associated 
with various possible values of the parameters in the GME problem formulation. 
We will address this issue in more detail shortly. 

The complete estimation problem can now be stated as 

 
p

max ppp ln)(H −=  

 subject to y = XSp (5) 

  ιιιι′pk = 1    ∀ k  

where the last constraint ensures that the probabilities appropriately sum to one, 
with ιιιι being a L×1 'summation vector', i.e. a conformable vector of ones. The 
values of ββββ can be recovered after optimization by the definition given in (2). 

A crucial question for interpreting the results of the GME estimation approach 
is how one can interpret the notion of “uninformative” claimed above for the en-
tropy criterion in the GME context. Of principal interest is the interpretation of 
the expectation of the probability distribution over the support points, since it is 
this expectation that represents the final estimate of the parameter vector ββββ, as 
defined in (4). The probability distributions inherent in the solved value of p 
merely serves as a vehicle for the entropy criterion to choose particular values of 
the expectation that maximize entropy. Or as Preckel (2001, p. 375) states: “Thus, 
the role of the distribution is simply to serve as intermediary in expressing the 
desirability of the value of a parameter…”.  

Preckel reinterprets GME as minimizing a penalty function on these expecta-
tions subject to the data constraints., and compares the approach to the case of the 
penalty function implied by a least squares criterion. We instead conceptualize the 
GME-implied weighting on expectations as the prior probability distribution in a 
Bayesian context. This prior density turns out to be a reflection of Preckel’s pen-
alty function (see his equation (5), p. 368). 

For an explicit illustration of the implied prior, consider just one parameter βk 
from the linear model in (1) and suppose that only two support points sk1 and sk2 
are used, i.e. L=2. Recalling that pk1 + pk2 = 1 we write the expectation of βk as 
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 ( )k k1 k1 k1 k2E p s 1 p sβ = + −  (6) 

Solving for the probability as a function of kEβ  obtains 

 ( ) ( ) ( )k1 k k k2 k1 k2p E E s s sβ = β − −  (7) 

The component of the entropy criterion in (5) relating to the expectation of βk 
can then be expressed as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

k k1 k1 k1 k1

k k2 k1 k2 k k2 k1 k2

k1 k k1 k2 k1 k k1 k2

H E p ln p 1 p ln 1 p

E s s s ln E s s s

s E s s ln s E s s

β = − − − −

= − β − − β − −

− − β − − β −

 (8) 

which defines the prior weight that the entropy criterion assigns to each possible 
value of the expectation of βk. The criterion is maximized if the distance of Eβk 
from the lower support point sk1 is equal to the distance of Eβk from the upper 
support point sk2, which coincides with pk1 = pk2 = 0.5, i.e. a uniform distribution 
over the supports, and a value for βk = (sk1+ sk2)/2. All other values of Eβk are 
assigned lower prior weights via ( )kH Eβ . A graphical illustration of the weight 
distribution is given in Figure 1, where we chose sk1 = 0 and sk2 = 10. 
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Figure 1: Prior weighting of parameter expectations based on the entropy crite-
rion. Source: Maximum entropy calculations with sk1 = 0, sk2 = 10. 

The mathematical and graphical illustration above demonstrates  that the use 
of the maximum entropy criterion implies different prior weights on the different 
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possible outcomes, kEβ , of the GME estimator. These are prior weights in that 
they are independent of any the data information. The highest weight is given to 
the parameter expectation that would be generated by a uniform probability dis-
tribution over the supports. 

The GME approach is a special case of GCE, where the latter method allows 
defining a reference probability distribution over the support points. Denoting the 
vector of reference distribution probabilities as q, the cross entropy criterion can 
be written as 

 ( ) ( )I , ′=p q p ln p q  (9) 

where p/q is to be interpreted as a vector with elements psk/qsk. The value of I(p,q) 
is smallest if all elements of the vector p are equal to the corresponding elements 
of the vector q. Consequently, an unconstrained minimization of the cross entropy 
measure over p will result in a probability distribution equal to q, and provides 
estimates of parameters according to expectations implied by the probabilities in 
q. The GME approach considered above is equivalent to an application of the 
GCE approach with a uniform reference distribution.  

The use of a non-uniform reference distribution leads to modifications in the 
implicit prior weighting on parameter expectations under the GCE approach. 
Without repeating what amounts to a similar mathematical derivation to that in 
(6)-(8), we illustrate in Figure 2 the impact on the prior weights for the two sup-
port points example above. The reference probabilities were chosen such that qk1 
= 0.3 and qk2 = 0.7. Note that we reflected the cross entropy value—which is 
minimized rather than maximized as in the GME case—around 0.6 to make the 
graph more easily comparable to Figure 1. In this case the highest cross-entropy 
weight is given to Eβk = 7, which would be the parameter estimate chosen by the 
GCE approach if data constraints render the value βk = 7 feasible. A general prin-
ciple of GCE is illustrated by the two examples—the prior that is actually implied 
by the method places the highest prior weight on the expectation that is implied 
by the reference probability distribution.  

In summary, the GME/GCE approaches implies the use of informative prior 
information on parameters to be estimated. This is true, even if the reference dis-
tribution employed is uniform over the set of support points because the actual 
GME/GCE estimates are defined as expectations with respect to the discrete 
probability distribution used to reparameterize the parameters of interest. To solve 
underdetermined systems of equations, the use of prior information is unavoidable 
and by itself is not a caveat regarding the use of GME techniques. It is in fact this 
specific feature, i.e. the flexibility in formulating prior information, that makes the 
GCE/GME framework of analysis so interesting to applied modelers who seek 
plausible simulation models and consistent data sets. The prior information actu-
ally employed is, however, a result of interactions between chosen support points 
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and the reference distributions on the chosen supports as well as the final weight-
ing on support points implied by the maximum entropy criterion. The total effect 
of this interaction—especially for applications with many parameters and more 
than two support points—is not transparent. Furthermore, the introduction of a set 
of probabilities for each parameter to be estimated increases the computational 
demand on solving complex problems, which renders some very complex data 
reconciliation and estimation exercises intractable with currently available hard-
ware and optimization solvers. In the next section we develop a Bayesian alterna-
tive to the GME approach which allows a direct and transparent formulation of 
prior information and potentially reduces the computational demand significantly. 
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Figure 2: Prior weighting of parameter expectations with the cross-entropy 
criterion. Source: Maximum cross-entropy calculations with sk1 = 0, sk2 = 10, and 
a reference distribution where qk1 = 0.3, qk2 = 0.7. 

3. A Bayesian approach to the solution of underdetermined systems 
To motivate the general concepts underlying the Bayesian alternative to 
GCE/GME we first reconsider the linear model without noise used in the previous 
section. We then extend the approach to a general system of underdetermined 
structural equations. 

3.1. The linear model revisited 

The Bayesian approach to parameter estimation treats model parameters as sto-
chastic variables. In this context the method distinguishes between the prior den-
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sity, p(ββββ), summarizing prior information on parameters, the Likelihood function, 
L(ββββ|y), representing information obtained from the data in conjunction with the 
assumed model, and the posterior density, h(ββββ|y), which is the result of combining 
prior and data information based on Bayes's theorem. The relationship between 
these three elements can be expressed as (e.g. Zellner 1971, p.14) 

 ( ) ( ) ( )h p L∝β y β β y ,  (10) 

where the posterior density is proportional to the prior density multiplied by the 
Likelihood function. The posterior density allows drawing statistical inference 
about ββββ using probability statements or by deriving point estimates that are opti-
mal with respect to some loss criterion. For example, the mean of the posterior 
(density) is the value which minimizes quadratic loss. 

Through appropriate interpretation of its components, the GME approach to 
estimating the parameters of the underdetermined linear model given in the previ-
ous section can be subsumed within the Bayesian formalism. For the case of two 
support points, using (8) and suppressing the GCE/GME expectation operator 
henceforth by simply representing the resultant estimator by ββββ , the GME optimi-
zation problem can be represented as 

 ( ) ( ) ( ) ( ) { } ( )
K

k
k 1

max h p L H I
=

=
   ∝ ∝ β  
   

∑
β y Xββ y β β y β:β:β:β: ββββ  (11) 

where ( )AI ββββ is the standard indicator function that takes the value 1 when 
∈β Αβ Αβ Αβ Α and equals 0 otherwise. If H(βk) is chosen according to (8), the optimal 

value for ββββ will be equal to the optimal Eββββ = Sp obtained in the GME solution, 
with an analogous result holding for GCE with H(βk) defined appropriately. In the 
Bayesian context, the objective function can be interpreted as the joint posterior 
density of the model parameters, ( )h β y , defined via a prior density defined by 

( ) ( )
K

k
k 1

p H
=

∝ β∑ββββ  12 that is multiplied by a likelihood function that assigns zero 
weights to values of ββββ that do not satisfy the linear model constraints =y Xβ  and 
a positive constant weight to the values of ββββ that are compatible with the data and 
the linear model relationship.13 This implies zero posterior density weights for the 
values of ββββ not satisfying the constraints and differential posterior weighting ac-

                                                      

12 The function ∑ =
βK

1k k )(H  would need to be scaled appropriately to integrate to unity in order 

to be interpreted as a proper density, but this scaling is irrelevant for the outcome of the maximiza-
tion.  
13 In the classical case of a linear model with noise, the Likelihood function would also have the 
error variance as an argument and would imply some continuous differential weighting according to 
the assumed error distribution. All that can be learned from the model (the underdetermined data 
constraints, without noise) in this case is which parameter vectors satisfy the data constraints and 
which do not.  
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cording to the prior (density) for all other values of ββββ. The value of ββββ that maxi-
mizes h(ββββ|y) is the mode of the posterior distribution of ββββ,  which leads to the 
Highest Posterior Density (HPD)-estimate of ββββ.14  

The preceding interpretation of GCE/GME within the Bayesian formalism 
suggests a general Bayesian alternative to the entropy approach that has three 
useful characteristics: (1) it can be formulated such that it is fully equivalent to the 
GCE/GME approach if support point choice and implicit weighting by the en-
tropy criterion are appropriately represented, (2) the prior information on un-
knowns can be transparently formulated by assigning any appropriate prior den-
sity p(ββββ) directly to the unknowns, and (3) the optimization model has a smaller 
number of variables and, for an appropriate choice of the prior density functions, 
can be less computationally demanding.  

Having motivated the Bayesian alternative with a basic underdetermined linear 
model example, we now turn to a more general treatment of the Bayesian solution 
to underdetermined systems and the connection to entropy-based approaches. 

3.2. General structural equation system 

The general mathematical problem now being addressed is one where there are M 
equations, represented in vector function form as g(z) = 0, involving an unknown 
(K×1) vector argument z, with M < K, so that the system of equations underde-
termines the unknown vector z.15 Thus, in the absence of any additional informa-
tion, and assuming the original equation system g(z) = 0 is consistent so that at 
least some solution actually exists, then indeterminacy implies that there is gener-
ally an infinite number of solution vectors that solve the system of equations. 

One method of obtaining a unique solution to the system of equations is to 
choose z so as to optimize an extremum metric v(z), subject to the constraints that

 
g(z) = 0. So long as there exists a unique optimum of v(z) within the feasible 
space of z values determined by z∈Ψ = {z: g(z) = 0}, a unique solution to the 
original equation system can be identified. In general terms, such a solution could 
be represented as 

 ( ) ( ){ }* arg max v s.t. g= =zz z z 0  (12) 

where it is assumed without loss of generality that maximization is the type of 
optimization pursued. 

                                                      
14 Using the mode of the posterior for estimation was suggested before in the context of well-posed 
estimation problems, for example by DeGroot (1970), who called the estimator “generalized maxi-
mum likelihood”. More frequently used terms are “maximum a-posteriori estimator” and “posterior 
mode estimator”. In accordance with the Bayesian confidence intervals we prefer HPD-estimator. 
15 The elements of z are not restricted to model parameters. They could also represent unknown 
variable values in a data reconciliation exercise where data are measured with errors or not observed 
at all. 
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In fact any extremum metric v(z) that exhibits an optimum within the feasible 
space z∈Ψ defines a possible solution to the equation system. There is thus a 
problem of deciding which metric to optimize, which in turn determines which 
solution from among a generally infinite number will be chosen as the solution to 
the original equation system. In general, any of the solutions in Ψ can be obtained 
given an appropriate corresponding choice of extremum metric v(z). Thus, the 
solution obtained to a system of equations in this way is only defensible to the 
extent that the extremum metric used to obtain that solution is defensible. Before 
returning to this issue we discuss some necessary conditions for the solution. 

Assume that the equation system of g(z) = 0 is a collection of functionally in-
dependent equations, so that the equations effectively determine M of the zi’s as a 
function of the remaining K-M zi-values. It is not necessary, conceptually, that 
explicit solutions exist for M of the variables in terms of the other K-M variables, 
but only that solutions exists. The solution might only be implicitly defined 
(which would then require numerical solution techniques). It is apparent that a 
general necessary condition for an extremum solution to exist is that v(z) for 

∈z ΨΨΨΨ  be informative, i.e. non-constant, in at least K-M of the variables in the 
vector z.  Among other things, this means that v(z) cannot be uniform (or “unin-
formative” in prior distribution parlance) in more than M of the zi arguments.16 
We note that there are other conditions that might be necessary in any given ap-
plication, because depending on the nature of the equations in the system, it may 
be that informative information would have to exist on a specific as opposed to an 
arbitrary subset of z arguments given the solution space to g(z) = 0. It should also 
be noted that if v(z) is informative on precisely K-M variables in the z vector, 
then the solution can be trivial in the sense that unconstrained optimization of the 
v(z) metric in these K-M dimensions could be pursued independent of the equa-
tion system g(z) = 0 to determine K-M of the unknowns. The remaining argu-
ments in the z vector could then be solved based on the relationships among the 
zi’s determined by the equation system. 

Given that the data information serves only to narrow the feasible space of so-
lutions for the unknowns and is otherwise uninformative, a useful and defensible 
choice for the extremum metric, v(z), is the additional prior information held by 
the analyst, which summarizes the available non-data information on z. If pi(zi) 
represents general prior distribution weights on the possible solution values for 
the ith component of the z vector, and if the prior weightings of the different com-
ponents are considered to be independent, then the optimization metric used to 
obtain a solution to the equation system could be specified as 

                                                      
16 Given this observation, it is clear that the GME approach to solving underdetermined systems 
works because it “automatically” implies a non-uniform prior weighting with respect to the variable 
of interest.  
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 ( ) ( ) ( )
K

i i
i 1

v p p z
=

= = ∏z z  (13) 

as example of which was given in (11). In the absence of independence, p(z) can 
represent any joint prior distribution on potential solution values z. 

Now consider Bayes's rule applied to the problem of solving the equation sys-
tem for z. In the absence of any information that would link z values to data and 
allow a likelihood function to be specified, the likelihood function would be con-
sidered undetermined or undefined. In this case, the Bayesian posterior and prior 
on the z vector would be identical and the maximization of the prior v(z) = p(z) 
would yield the maximum of the posterior. But in the current problem context the 
system of equations g(z) = 0 in effect constrains the support of the posterior h(z) 
to z∈Ψ={ }: ( ) = z g z 0 . The Likelihood function in this case can be interpreted as 
an indicator function ( )Iψ z  that assigns weights of 1 to admissible values of z 
and 0 otherwise. The posterior is then in the form 

 ( ) ( ) ( )h p I∝z z zψψψψ . (14) 

Consequently, the argument that maximizes the prior probability p(z) subject to 
the constraint z∈Ψ (or g(z) = 0) will provide a Bayesian highest posterior density 
(HPD) solution to the equation system. 

4. Solutions for uninformative priors 
For reasons discussed earlier, the HPD approach to solving the system of equa-
tions cannot be applied in cases where the prior weighting on solution values is 
not sufficiently informative, i.e. p(z) cannot be uniform in more than M of the zi 
arguments as the optimum will not be unique. However, in this case, solving for 
the posterior mean, which is the posterior risk-minimizing Bayesian estimate un-
der quadratic loss, will generally be possible as long as the uniform distribution is 
proper in the sense of integrating to 1. This will follow naturally if the prior sup-
port space is a priori compact, so that there is indifference among values of z 
within a hyperrectangle of values having finite boundaries. In the extreme case of 
no informative prior information at all, the values in the support space defined by 
the equation system. ( ){ }:Ψ = =z g z 0 , are all equally likely, so that the 
Bayes's posterior mean solution would be the mean of z from among all equally 
likely values in this support space. A computational method of finding such a 
solution would be to draw uniform random outcomes of z from Ψ, forming their 
sample mean, and for large enough simulated sample sizes, the sample mean 
would converge in probability (or almost surely) to the true mean by the weak 
(strong) law of large numbers. 

In some cases, the posterior mean solution might be identifiable analytically. 
For example, consider again the underdetermined linear model without noise, 
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 y = Xβ 

where X is a T × K matrix, with T < K and rank (X) = T. Since rank (X) is smaller 
than the number of columns, an infinite number of solutions exist for β. These 
solutions will form a hyperplane in ℜK, which can be described by a linear func-
tion of the form 

 β = β0 + Bξ (15) 

where B is a K × (K – T) matrix that is a basis for the subspace of solutions to the 
homogeneous model 0 = Xββββ, and ξ is an arbitrary (K – T) vector. This follows 
from the following results: 

Lemma 1: Any solution β* to the inhomogeneous linear model y = Xβ can be 
written as the sum of a particular solution β0 to the inhomogeneous model plus 
some solution β1 to the homogeneous linear model 0 = Xβ (e.g. de la Fuente 2000, 
p. 197). 

Lemma 2: β1 in lemma 1 can be written as Bξ, for some matrix B and any vec-
tor ξ of dimension (K – T). 

If there are uniform priors for at least K – T of the elements of β, then those 
priors constitute a hyperrectangle U in ℜK, and the posterior mean is the geomet-
rical centre of the intersection between the solution hyperplane and the hyperrec-
tangle U. We can then compute the posterior mean through a sequence of four 
steps that include first finding β0. , then computing the matrix B, next finding the 
intersection between the solution hyperplane and the prior hyper rectangle, and 
finally finding the center of the intersection. A specific algorithm for accomplish-
ing these steps is as follows: 

Step 1. A particular solution β0 to the inhomogeneous system can be found by 
solving β0 = X+y, where X+ is the generalized inverse of X. 

Step 2. Since K > T and rank (X) = T, K – T columns of X, together forming 
the matrix X(i), can be written as linear combinations of the other T columns, 
which are kept in the T × T matrix X(−i). The coefficients of each of the K – T 
columns in X(i) can be chosen arbitrarily. If this is repeatedly done for each col-
umn in X(i), the following expression is obtained, where the columns of B(i) are the 
arbitrary coefficient vectors for X(i): 

 −X(i)B(i) = X(-i)B(-i) 

Choosing the (T − K) × (T − K) identity matrix for B(i), the above expression can 
be solved for B(-i) = −(X(i))

-1X(i), and B can be obtained by vertical concatenation 
of B(i) and B(-i), keeping the rows in proper order. 

Step 3. Find the values of ξ for which the resulting β is inside the prior hyper-
rectangle. This can be done by trial and error if the dimension of ξ is low, and 
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numerically by repeated linear programming (solving {min p′ξ: β0 + Bξ = β ∈ U}, 
with p being some permutation of (-1) and 1 of length K – T, for all such permu-
tations) if the dimension is higher. The set of solutions will be the bounds of a 
hyperrectangle in ℜK – T. 

Step 4. Since β is linearly dependent on ξ, and β is uniformly distributed, the 
expected value of β is found by computing the geometrical mid point of the hy-
perrectangle found in step 3. 

Various empirical illustrations of the Bayesian methodology are presented in 
the next section. 

5. Illustrative applications 
This section presents two illustrative applications of the HPD-estimator based on 
underdetermined problem specifications that are typical of applications for en-
tropy estimators: Balancing of a Social Accounting Matrix (SAM) and a linear 
regression problem. A GAMS program for the balancing of the SAM is printed in 
appendix 4.1, and a GAMS program for the illustrative applications for the un-
derdetermined linear regression is printed in appendix 4.2. An installation of the 
GAMS software is required in order to run the applications. 

5.1. Balancing a Social Accounting Matrix 

In 1994, Golan, Judge and Robinson (GJR) used entropy based estimators to cre-
ate a consistent SAM. Variants of their approaches can be found in the empirical 
Computable General Equilibrium literature to prepare complete databases out of 
incomplete and uncertain data information.  

The basic problem of balancing a SAM can be formulated as follows: find a 
square matrix of coefficients A and vectors x and y satisfying the equations 

 Ax = y (16) 

 A′ιιιι = ιιιι. (17) 

with ιιιι the vector of ones of appropriate dimension. In general, information about 
the accounts x and y are available from observable data, whereas the coefficient 
matrix A is difficult to obtain. A common situation is thus that x and y are given, 
and A needs to be determined subject to the restrictions (16) and (17), possibly 
given some prior information about A, perhaps in the form of the same matrix for 
another region or for the same region for a different period. We take the example 
studied by GJR and provide a Bayesian alternative. 

Table 1 in their paper provides the “true parameters”, 
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0.726 0.000 0.165 0.301 62 140

0.161 0.268 0.000 0.451 56 145
, ,

0.113 0.678 0.714 0.000 91 110

0.000 0.054 0.121 0.248 266 80

     
     
     = = =
     
     
     

A x y . 

The authors proceed to construct a (synthetic) prior for A by multiplying each 
entry in A by a random number drawn from a normal distribution, N(1, .05). They 
present the outcome 

 

0.730 0.000 0.172 0.278

0.159 0.259 0.000 0.480

0.111 0.688 0.694 0.000

0.000 0.053 0.135 0.243

o

 
 
 =
 
 
 

A , 

and estimate A with GCE using Ao as a prior. 
The GCE problem is  

 min  ( )′p ln p q   

 such that  , ( ), ,vec≥ = = =p 0 Sp A y Ax Aι 1 (18) 

where the prior probabilities q of the support point matrix S are selected so that 
o=Sq A , with vec(A) being the operator that reshapes the matrix A to a column 

vector by vertically concatenating respective columns, and p/q as in section 2 the 
vector whose ith element is pi/qi, Note that this approach requires the researcher to 
define a set of at least two (GJR use five) support points for each parameter, and 
also to define a corresponding set of prior probabilities such that the prior SAM is 
recovered. GJR use the same support points for all elements of A, and choose q 
using an initial GME estimation of o=Sq A , which effectively doubles the com-
putational effort needed to produce the final estimates of the A matrix. 

Now construct an alternative Bayesian estimator for the same problem. The 
HPD framework allows the use of any prior distribution. Assume, for example, 
that the researcher had a-priori knowledge that the observed matrix Ao was gener-
ated as in GJR. Taking Ao as prior mean, and continuing to follow GJR, the corre-
sponding prior density function would be vec(A) ~ N(vec(Ao),ΣΣΣΣ), The covariance 
matrix ΣΣΣΣ is set equal to a diagonal matrix with elements ( )2

05.0)(vec oA , the 
square taken element-wise. 

Formulating the HPD estimator as discussed previously, taking natural logs, 
and restricting the objective function to the terms that are relevant for optimiza-
tion leads to the following extremum estimation problem: 
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 max
A

 1( ) ( ) ( ) ( )o ovec vec vec vec−′
   − −   A A Ω A A  

 subject to =Ax y  (19) 

  =Aι 1   

For the synthetic data provided in GJR, GCE and HPD give very similar re-
sults, shown below (results for GCE as printed in GJR). Note that the HPD esti-
mation tacitly assumed degenerate priors for x and y. The estimation is easily 
extended to encompass the fact that x and y are not known with certainty.  

0.732 0.000 0.168 0.298 0.731 0.000 0.167 0.299

0.155 0.251 0.000 0.456 0.157 0.248 0.000 0.456
,

0.114 0.697 0.702 0.000 0.112 0.699 0.702 0.000

0.000 0.052 0.129 0.246 0.000 0.053 0.131 0.245

GCE HPD

   
   
   = =
   
   
   

A A  

As can be seen from (19), the choice of a normal prior distribution results in a 
weighted least squares approach implying numerically desirable properties for 
large scale problems. Compared to GME or GCE approaches, explicit accounting 
for support points and adding up constraints for probabilities are unnecessary and 
infeasibilities are less likely to lead to numerical problems. Other prior distribu-
tions can be flexibly accommodated and will be considered in the next example.  

5.2. Regression models 

In this section we consider an ill-posed linear regression model with and without 
noise, and characterized by three equations and four parameters. For two of the 
parameters there is prior information available. In total five cases are studied 
which are distinguished by the prior information used for the parameters, and the 
type of estimation objective applied: 

1. Uniform priors given bounds [u,v], with parameters estimated by poste-
rior means; 

2.  Symmetric triangular distributed priors, with parameters estimated by the 
posterior mode; 

3. GME estimation with [u,v] as supports, represented and solved equiva-
lently as a Bayesian HPD-estimator; 

4. Priors are distributed as beta(2,2) between the bounds [u,v] and estimated 
by a Bayesian HPD estimator; 

5. As previous, but also including additive white noise; 
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True parameters for the model without noise, y = Xββββ, were chosen arbitrarily and 
the columns 2-4 of X drawn from normal distributions with means 20, 8 and 12 
and variances equal to ¼ of the means. By multiplication with the selected true 
parameters, the true y was obtained. In all five cases, prior information was avail-
able for β2 and β3, based on a lower bound of zero and an upper bound found by 
adding errors from N(0,0.1) to the true parameters and multiplying the result by 
two. The procedure resulted in the following numbers. Note that the mid points 
between the bounds (u,v) used in some cases are not equal to the true parameter 
value. 

10.0
1 20.733 8.656 8.830 42.180

0.5 0 0.868
, 1 17.827 7.443 13.619 , 43.697 , ( , )

1.5 0 2.903
1 20.001 6.715 12.596 42.668

1.0

 
    

     = = = =                
 

β X y u v  

Case 1: Since we are dealing with a linear system with (-1) degrees of free-
dom, the vector ξξξξ in equation (15) is a scalar, and all feasible ββββ lie on a line seg-
ment limited by (u,v). Following the steps indicated in section 4, choosing the 
second column of X for X(i), we obtain 

 

0.1132 43.2306

0.7284 1.0000

1.8604 1.5735

1.2300 1.0054

ξ

−   
   
   = +
   
   
   

β  (20)  

for arbitrary ξ. In order for ββββ to be within (u,v), it is required that ξ ∈ (-0.7284, 
0.1396). Since the uniform density indicates the same posterior density weight for 
all values for ξ in that interval and zero elsewhere, we can compute the posterior 
mean as the mid point of the interval, or ξ̂ = −0.2944. Inserting that value into the 
expression (20) gives us the point estimate β̂  of ββββ:  

 

12.842

0.434ˆ
1.397

0.934

 
 
 =
 
 
 

β . 

Case 2: Let the prior density for β2 and β3 have the same bounds as before, but 
now follow a symmetric triangular distribution, i.e. the mid point of the interval is 
favored. Now a unique posterior mode exists, and we may apply the HPD estima-
tor. Since we strive to maximize the posterior, the piecewise linear formulation of 
the triangular density can be relaxed to three linear inequalities, each representing 
a side of the triangle. For ease of notation, we first introduce the subvector ββββp 
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consisting of the elements (β2,β3) for which there are priors, the corresponding 
subset of probability densities pp, and the linear mapping g:[u,v] → [0,1]×[0,1]. 
Thus gk(βk) expresses βk in terms of the share of the distance from uk to vk, for k 
= 2,3. 

The HPD estimator is then 

  32
,

ppmax
pp βp

  

  subject to ββββp being triangular distributed, i.e.  

 4 ( )p p≤p g β ,  4 4 ( )p p≤ −p g β ,  0p ≥p ,  

  and the data constraints,  

  y = Xββββ 

The outcome of the estimator is identical to the outcome of the posterior mean 
estimator and is not repeated here. 

Case 3: Let (u,v) be support points for a GME estimation. Using the normali-
zation g(ββββp) as before, the support points become {0,1}, the probabilities of the 

supports become p = [ ] 




 ′− )()(vec pp βg1βg  and we may write the GME 

estimator as 

 ( ) ( ) ( )




 −′−+′−= )()(1)()(Hmax pppp

p

βg1lnβgβglnβg
β

  

 subject to y = Xββββ  

  u ≤ ββββp ≤ v  

For the sake of illustration, we re-write this as a fully equivalent HPD estima-
tion problem. Note that the GME problem is equivalent to maximizing eH (the 
maximum is maintained under monotonic transformation). Substitution and some 
algebra lead to the equivalent HPD problem 

 max  f2(ββββ2)f3(ββββ3)  

 subject to  y = Xββββ  

  u ≤ ββββp ≤ v  

where ( ) ( ) ( )( ) ( )( )1g
kk

g
kkkk

kkkk g1cg)(f −ββ− β−β=β  (for k = 2,3) is a probability 
density function if the constant c is chosen properly (c ≈ 0.6 makes f integrate to 
unity, non-negative values are prevented by the mapping g and the bounds 
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u ≤ ββββp ≤ v). We see that, interpreted in this way, the GME estimator is an instance 
of a HPD estimator. The GME estimate of ββββ is 

 

12.586

0.440ˆ
1.406

0.940

 
 
 =
 
 
 

β  

Case 4: The upper and lower bounds on two of the parameters make it natural 
to describe the estimates in terms of a fraction of the distance between the bounds 
(as expressed in the mapping g). In such cases the beta distribution is sometimes 
used. Let the distribution of βk for k = 2,3 be such that gk(βk) ~ beta(2,2). The 
HPD estimate of ββββ with beta-distributed priors is identical to the GME estimate at 
least up to three decimal places in this case, and not repeated here. 

Case 5: In the previous cases we assumed that X and y were observable with-
out noise. We now introduce white noise for y by adding iid errors drawn from 
N(0,1) whereas X is still assumed to be known with certainty. The resulting sto-
chastic vector of left hand side variables is denoted by ys, and the outcome of a 
draw was 

 [ ]44.064 42.976 41.369s

′= + =y y e  

where e is an outcome of the error εεεε, and the system to estimate is ys = Xββββ + εεεε. 
If we consider εεεε yet another parameter to determine, and introduce the prior in-

formation that errors were drawn from N(0,1) and still assume that β2 and β3 be-
long to the same beta distributions as in the previous example, the HPD estimator 
for ββββ is found by solving the problem 

 ( ) ( )∏∏
=∈

εβ=
4

1i
ie

}3,2{k
kkp

,
p)(gphmax

p εβ
 

 subject to u ≤ ββββp ≤ v  

  ys = Xββββ + εεεε  

with pb(⋅) being the beta density function as in the previous example and pe(⋅) 
being the standard normal univariate density. A form more easily computed is 
obtained by recognizing that pb(x) = 6(x−x2)I(0,1)(x) and taking the logarithm of 
the objective function, which then becomes 

 ( )∑ ∑
∈ =

ε−β−β=
}3,2{k

4

1i

2
i2

12
kkkk )(g)(gln)hln(max  

The resulting estimate of ββββ is [ ]ˆ 16.668 0.379 1.820 0.419
′=β . 



 98 

6. Summary and conclusions 
This paper presents a Bayesian alternative to the solution of underdetermined 
systems of equations. First, we reviewed the GME-GCE approach in the context 
of estimating an underdetermined linear model without noise and identified the 
effective prior information as a combined effect between supports, reference 
probabilities, and the entropy criterion. It was indicated that a “uniform distribu-
tions over supports” does not imply a “non-informative” prior on the parameters 
of interest, but rather a clear prior preferential weighting on estimation outcomes. 
In the suggested Bayesian alternative the underdetermined model equations and 
the data represent the “Likelihood” information. Deviating from standard Likeli-
hood functions of conventional models with a predefined family of distributions, 
the Likelihood implies a constant positive weight for all possible solutions of the 
model equations and a zero weight for infeasible values. All prior information is 
represented in a standard Bayesian way via prior probability densities on model 
parameters. Highest Posterior Density (HPD) estimates are obtained using an 
optimization algorithm. 

The Bayesian approach can be formulated to mimic the behavior of GME-
GCE models perfectly. However, more interesting is its general structure allowing 
full flexibility in formulating directly and transparently the prior information held 
by the analyst. For a unique solution to exist, a certain amount of informative 
prior information is necessary. However, if this is not the case, a solution based 
on the posterior mean can—at least conceptually—still be provided.  

The suggested approach lends itself easily to the type of problems currently 
solved with GME or GCE techniques. It has been successfully applied to large 
scale estimation and calibration exercises (Britz et al. 2004, Jansson 2007). It 
facilitates the peer review of methodology and underlying assumptions by making 
the employed prior information directly visible. Further research should examine 
computational approaches for generating posterior mean estimates under insuffi-
cient identifying prior information. 
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Appendix 4.1. GAMS code for section 5.1 
$title Balance a SAM with HPD estimator 
$ontext 
    This program illustrates the use of highest pos terior density estimator 
    to balance a SAM. 
    The SAM is 4 by 4, taken from Golan, Judge, Rob inson (1994) (GJR94). 
$offtext 
$offlisting 
option limrow=0; option limcol=0; 
 
 
*-------------------------------------------------- ------------------------ 
* Declarations and true sample data. We start with the SAM, 
* and compute the coefficient matrix. 
*-------------------------------------------------- ------------------------ 
 
set i 'rows in SAM' /1*4/; 
set j 'columns in SAM' /1*4/; 
alias(i,ii); alias(j,jj); 
 
set fun 'different datasets or extremum metrics ' /  
    ori 'original data' 
    me  'maximum entropy solution' 
    ce  'cross entropy solution' 
    gme 'generalized maximum entropy solution' 
    gce 'generalized cross entropy solution' 
    hpd 'highest posterior density estimator outcom e' /; 
 
table FLOWDATA(i,j) 'true SAM' 
    1   2   3   4 
1   45  0   15  80 
2   10  15  0   120 
3   7   38  65  0 
4   0   3   11  66  ; 
 
table AO(i,j) 'Stochastic coefficient matrix (obser vation)' 
    1       2       3       4 
1   0.730   0       0.172   0.278 
2   0.159   0.259   0       0.480 
3   0.111   0.688   0.694   0 
4   0       0.053   0.135   0.243 ; 
 
parameter x(j)              'column sum of SAM'; 
parameter y(i)              'row sum of SAM'; 
parameter A(i,j)            'coefficient matrix'; 
parameter AFUN(fun,i,j)     'comparison of differen t A-matrices'; 
parameter dist(fun)         'distance of estimated A from original'; 
 
x(j) = sum(i, FLOWDATA(i,j)); 
y(i) = sum(j, FLOWDATA(i,j)); 
A(i,j) = FLOWDATA(i,j)/x(j); 
AFUN('ori',i,j) = A(i,j); 
 
* Declare fundamental SAM identities 
 
variable o          'objective variable'; 
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variable va(i,j)    'estimated coefficients'; 
equation e1(i)      'balance condition'; 
equation e2(j)      'addup condition'; 
 
e1(i) ..    sum(j, va(i,j)*x(j)) =e= y(i); 
e2(j) ..    sum(i, va(i,j)) =e= 1; 
 
va.lo(i,j) = 0.00001 $ AO(i,j); 
va.up(i,j) = 1       $ AO(i,j); 
 
*-------------------------------------------------- ------------------------ 
* Implement balancing solutions by GJR94 and the HP D estimator. 
* 
* A: Maximum entropy procedure 
*-------------------------------------------------- ------------------------ 
 
equation eentropy   'ordinary entropy'; 
eentropy .. o =e= -sum((i,j)$AO(i,j), va(i,j)*log(v a(i,j))); 
model mme 'maximum entropy model' /eentropy,e1,e2/;  
va.l(i,j) = 0.25; 
solve mme using nlp maximising o; 
AFUN('ME',i,j) = va.l(i,j); 
 
 
*-------------------------------------------------- ------------------------ 
* B: Cross entropy with the same priors as GJR94 
*-------------------------------------------------- ------------------------ 
 
scalar s 'standard deviation' /0.05/; 
 
equation ece    'cross entropy'; 
ece .. o =e= -sum((i,j)$AO(i,j), va(i,j)*log(va(i,j )/AO(i,j))) 
model mce 'maximum cross entropy model' /ece,e1,e2/ ; 
solve mce using nlp maximising o; 
AFUN('CE',i,j) = va.l(i,j); 
 
 
*-------------------------------------------------- ------------------------ 
* C: Generalized maximum entropy (GME) with the sam e priors as GJR94, 
*    i.e. "uninformative" with (0,0.25,0.5,0.75,1) 
*-------------------------------------------------- ------------------------ 
 
set k 'support points' /1,2,3,4,5/; 
parameter ps(k) 'support values' / 
    1   0 
    2   0.25 
    3   0.5 
    4   0.75 
    5   1 /; 
 
variable vp(i,j,k) 'probability of supports'; 
equation eGMEcrit       'GME criterion function'; 
equation eReParam(i,j)  'Reparametrization of A in terms of supports'; 
equation eProbSum(i,j)  'Adding up criterion for pr obabilities'; 
 
eGMEcrit .. o =e= -sum((i,j,k), vp(i,j,k)*log(vp(i, j,k))); 
eReParam(i,j) .. va(i,j) =e= sum(k, vp(i,j,k)*ps(k) ); 
eProbSum(i,j) .. sum(k, vp(i,j,k)) =e= 1; 
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model MGME 'GME model' /eGMEcrit,eReParam,eProbSum, e1,e2/; 
 
vp.lo(i,j,k) = 1E-12; 
vp.l(i,j,k) = 1/card(k); 
 
solve MGME using nlp maximizing o; 
AFUN('GME',i,j) = va.l(i,j); 
 
 
*-------------------------------------------------- ------------------------ 
* D: Generalized cross entropy (GCE) with the same priors as GJR94, i.e. 
*    Step 1: assign probabilities to the supports ( 0,0.25,0.5,0.75,1) 
*            so that the prior SAM is recovered. 
*    Step 2: use the probabilities of step 1 as pri ors in the GCE 
*-------------------------------------------------- ------------------------ 
 
parameter q(i,j,k)  'Prior probabilities in GCE'; 
variable vS(i,j)    'Generalized cross-entropy per point'; 
equation eGCEpre(i,j)'Definition of generalized cro ss-entropy'; 
equation eGCE       'Negative of sum of generalized  cross entropies'; 
 
eGCEpre(i,j) .. vS(i,j) =e=  sum(k,     vp(i,j,k)*l og(vp(i,j,k)/q(i,j,k))); 
eGCE         .. o       =e= -sum((i,j), vS(i,j)); 
 
* Step 1 
 
va.fx(i,j) = AO(i,j); 
model MGCE1 'First step in GCE as GME' /eGMEcrit,eR eParam,eProbSum/; 
solve MGCE1 using NLP maximizing o; 
 
* Step 2 
 
va.lo(i,j) = 0.00001 $ AO(i,j); 
va.up(i,j) = 1       $ AO(i,j); 
q(i,j,k) = vp.l(i,j,k); 
model MGCE2 'Second step in GCE' /eGCE,eGCEpre,eReP aram,eProbSum,e1,e2/; 
solve MGCE2 using NLP maximizing o; 
AFUN('GCE',i,j) = va.l(i,j); 
 
option q:3:2:1; 
display q; 
 
 
*-------------------------------------------------- ------------------------ 
* Estimate with HPD using the error density used by  GJR94 for generating 
* the data. 
*-------------------------------------------------- ------------------------ 
 
equation epd    'posterior density equals prior for  feasible values'; 
epd ..  o =e= -sum((i,j)$AO(i,j), 0.5*sqr((va(i,j)- AO(i,j))/(s*AO(i,j)))); 
model mhpd 'highest posterior density model' /epd,e 1,e2/; 
solve mhpd using nlp maximising o; 
AFUN('HPD',i,j) = va.l(i,j); 
 
dist(fun) = sum((i,j), sqr(AFUN('ori',i,j)-AFUN(fun ,i,j))); 
display AFUN,dist; 
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Appendix 4.2. GAMS code for section 5.2 
$ontext 
    This GAMS program illustrates the estimation of  the underdetermined 
    linear regression in chapter 4. It implements, using an NLP solver: 
    1. Posterior mode estimator with triangular pri ors for two parameters 
    2. Posterior mean estimator with uniform priors  for two parameter 
    3. Generalized maximum entropy with supports eq ual to uniform bounds 
    4. Beta distributed normalised priors 
    5. Beta distributed normalised priors, normally  distributed noise 
 
    Torbjorn Jansson 
    LEI, The Hague, NL 
$offtext 
$offlisting 
$eolcom # 
option limrow=0; option limcol=0; 
 
 
*-------------------------------------------------- ------------------------ 
* SEC 0     Declarations and basic problem setup 
*-------------------------------------------------- ------------------------ 
 
* Declarations of some basic items 
 
set i 'Rows in equation system' /i1*i3/; 
set k 'Columns in equation system' /k1*k4/; 
set stochk(k) 'All k except constant'; stochk(k) = yes$(ord(k)-1); 
alias(i,j); alias(k,l); 
set fun 'Different estimation settings' / 
    f1 'HPD with triangular prior' 
    f2 'posterior mean with uniform distribution' 
    f3 'GME with supports = uniform bounds' 
    f4 'beta(1.75,1.75) distributed priors for k2,k 3 normalised to (0,1)' 
    f5 'with normal(0,1) noise in likelihood functi on' 
    /; 
parameter b(k) 'True parameter vector'; 
parameter estb(k,fun) 'Estimated parameter vector';  
parameter x(i,k) 'Exogenous'; 
parameter y(i) 'Endogenous'; 
parameter xmean(k); 
parameter xvar(k,k); 
 
* Re-initialise pseudo random number generator if n eeded 
* Default seed is 3141, but I type it anyway just t o make sure... 
execseed = 3141; 
*execseed = gmillisec(jnow); 
 
* Data generation, manually entered for now 
 
b('k1') = 10.0; 
b('k2') = 0.5; 
b('k3') = 1.5; 
b('k4') = 1.0; 
xmean('k1') = 1; 
xmean('k2') = 20; 
xmean('k3') = 8; 
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xmean('k4') = 12; 
xvar('k2','k2') = 5; 
xvar('k3','k3') = 2; 
xvar('k4','k4') = 3; 
* Replace random number generator with outcome in p aper 
*x(i,k) = normal(xmean(k),sqrt(xvar(k,k))); 
x(i,'k1') = 1; 
x('i1','k2') = 20.733; 
x('i2','k2') = 17.827; 
x('i3','k2') = 20.001; 
x('i1','k3') = 8.656; 
x('i2','k3') = 7.443; 
x('i3','k3') = 6.715; 
x('i1','k4') = 8.830; 
x('i2','k4') = 13.619; 
x('i3','k4') = 12.596; 
 
y(i) = sum(k, b(k)*x(i,k)); 
 
* Prior distributions: triangular for k2 and k3, an d uniform for k1 and k4 
 
set pri(k)      'parameters with prior distribution ' /k2,k3/; 
set uml         'upper, mid and low points' /upp,mi d,low/; 
set uplo(uml)   'upper and lower bounds' /upp,low/;  
parameter bound(k,uplo) 'bounds'; 
 
* Declaration of model variables and equations used  in all five examples 
 
variable p          'posterior density'; 
variable f(k)       'prior density of parameter val ue'; 
variable vb(k)      'estimated parameter vector'; 
variable vnb(k)     'b normalised to [0,1]'; 
 
equation eqpd       'definition of posterior densit y'; 
equation eql(i)     'likelihood function for parame ters as restrictions'; 
equation eqnb(k)    'normalization of b to the inte rval [0,1]'; 
 
 
eqpd   .. p    =e= prod(pri, f(pri)); 
eql(i) .. y(i) =e= sum(k, vb(k)*x(i,k)); 
 
eqnb(pri) .. vnb(pri) =e= (vb(pri) - (bound(pri,'lo w')+bound(pri,'upp'))/2) 
                         /(bound(pri,'upp') - bound (pri,'low')) + 0.5; 
 
 
*-------------------------------------------------- ------------------------ 
* SEC 1     Posterior mode estimator with triangula r priors for two params 
*-------------------------------------------------- ------------------------ 
 
* Implementation of triangle distribution: 
*   To avoid abs and max, the triangle is put as th ree linear inequalities, 
*   which is equivalent to the standard piecewise l inear formulation. The 
*   first two equations are the legs of the triangl e, the third is the base 
*   plus a tiny amount to avoid log of zero. 
 
parameter primode(k) 'mode of prior dist'; 
parameter prispan(k) 'span of prior dist'; 
* Replace random number generator with outcome in p aper 
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*primode(pri) = b(pri) + normal(0,0.1); 
primode('k2') = 0.434; 
primode('k3') = 1.4515; 
bound(pri,'upp') = primode(pri)*2; 
bound(pri,'low') = 0; 
prispan(pri) = abs(bound(pri,'upp') - bound(pri,'lo w')); 
 
display x,y,b,bound,primode; 
 
equation eqf1(k)    'definition of triangular densi ty left line'; 
equation eqf2(k)    'definition of triangular densi ty right line'; 
equation eqf3(k)    'definition of prior density no n-negativity'; 
 
eqf1(pri) .. f(pri) =l=     4*vnb(pri); 
eqf2(pri) .. f(pri) =l= 4 - 4*vnb(pri); 
eqf3(pri) .. f(pri) =g= 0.00001; 
 
 
model hpd1 /eqf1,eqf2,eqf3,eql,eqpd,eqnb/; 
solve hpd1 using nlp maximizing p; 
estb(k,'f1') = vb.l(k); 
display primode; 
 
 
*-------------------------------------------------- ------------------------ 
* SEC 2     Posterior mean estimator with uniform p riors for two parameter 
*-------------------------------------------------- ------------------------ 
 
* The same span is assumed as with the triangular d istribution. 
 
parameter line(k,uml) 'end and mid points of line';  
alias(pri,pri2); 
 
* The feasible space for B is a line in 4-space, li mited by hyper rectangle 
* defined by the bounds (low,upp) for each of the f our parameters. 
* Find the line by trial and error; there are only four points to examine. 
 
model mlin /eql/; mlin.holdfixed = 1; mlin.solprint  = 2; 
loop(pri2,              # loop over parameters 
    loop(uplo,          # loop over bounds 
        vb.lo(pri) = bound(pri,'low'); 
        vb.up(pri) = bound(pri,'upp'); 
        vb.fx(pri2) = bound(pri2,uplo); 
        solve mlin using cns; 
        line(k,uplo)$(mlin.modelstat = 15) = vb.l(k ); 
        )); 
 
* The posterior mean is the midpoint of the line ju st identified 
line(k,'mid') = (line(k,'upp') + line(k,'low'))/2; 
estb(k,'f2') = line(k,'mid'); 
 
display line,bound,estb; 
 
 
*-------------------------------------------------- ------------------------ 
* SEC 3     Generalized maximum entropy with suppor ts equal to bounds 
*-------------------------------------------------- ------------------------ 
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variable prob(k,uplo); 
equation eentropy, egme(k),eqaddup(k); 
 
eentropy .. p =e= -sum(pri,    vnb(pri) *log(  vnb( pri)) 
                          + (1-vnb(pri))*log(1-vnb( pri))); 
egme(pri) .. vb(pri) =e= sum(uplo, prob(pri,uplo)*b ound(pri,uplo)); 
eqaddup(pri) .. sum(uplo, prob(pri,uplo)) =e= 1; 
 
model mgme /eentropy,eql,eqnb/; 
prob.lo(pri,uplo) = 0.00001; prob.l(pri,uplo) = 0.5 ; 
vb.lo(pri) = bound(pri,'low'); 
vb.up(pri) = bound(pri,'upp'); 
solve mgme using nlp maximising p; 
 
estb(k,'f3') = vb.l(k); 
 
 
*-------------------------------------------------- ------------------------ 
* SEC 4     Beta distributed normalised priors 
*-------------------------------------------------- ------------------------ 
 
scalar   t          'parameter of symmetric beta' / 2/; 
variable ff(k)      'intermediary variable' 
equation eqbp(k)    'definition of beta density'; 
equation eqff(k)    'definition of special density' ; 
 
eqbp(pri) .. ff(pri) =e= 1/beta(t,t)*vnb(pri)**(t-1 )*(1-vnb(pri))**(t-1); 
eqff(pri) .. f(pri) =e= ff(pri);            t = 2; 
 
model mhpdbeta /eql,eqnb,eqbp,eqpd,eqff/; 
vnb.lo(pri) = 0.00001; 
solve mhpdbeta using nlp maximising p; 
estb(k,'f4') = vb.l(k); 
 
 
*-------------------------------------------------- ------------------------ 
* SEC 5     Beta distributed normalised priors, nor mally distributed noise 
*-------------------------------------------------- ------------------------ 
 
parameter e(i)      'additive error'; 
parameter ys(i)     'Y plus error'; 
variable ve(i)      'estimated error'; 
equation eqls(i)    'stochastic version of linear m odel'; 
equation eqlogp     'sum of logged probabilities'; 
 
eqls(i) .. ys(i) =e= sum(k, x(i,k)*vb(k)) + ve(i); 
eqlogp  .. p =e= sum(pri, log(vnb(pri) -sqr(vnb(pri )))) 
               - sum(i, 0.5*sqr(ve(i))); 
 
model mNoiseHPD /eqls,eqlogp,eqnb/; 
ys(i) = y(i) + normal(0,1); 
solve mNoiseHPD using nlp maximising p; 
estb(k,'f5') = vb.l(k); 
 
* Save everything to a GDX file for later analysis 
 
display estb,ys; execute_unload 'hpd1.gdx'; 
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Chapter 5  Estimation of supply response in CAPRI 

1. Introduction 
The primary objective of this research is to develop a robust method for estimat-
ing the behavioural parameters of the supply module in the regionalised European 
agricultural sector model CAPRI, utilizing the time series of observations avail-
able in the CAPRI database and the optimality conditions of the model. As a sec-
ondary objective, the current model assumption of constant yields will be re-
viewed and, if feasible, revised. 

The CAPRI model is a constrained quadratic programming model for NUTS2 
regions in 34 European countries, where agriculture in each region is represented 
by an instance of a template programming model. 

In this context we only consider the arable annual crop producing part of the 
representative regional farm, keeping other parts (husbandry, permanent grassland 
and permanent crops) fixed when necessary or leaving them out altogether when 
possible. We also ignore the fertilization constraints of the full model, working 
with Leontieff fertilizer input coefficients. With those restrictions, we need to 
estimate parameters for a maximum of 23 land use activities using ten inputs in 
172 regions in EU-15 (thus excluding new member states).  

Since most regions produce only a subset of the 23 crops, and some regions 
have too short time series of data, the actual extent of the exercise is somewhat 
smaller. Still, it is a large scale application that requires a method equally applica-
ble to all regions and that is robust to data problems. The full list of crops and 
crop groups (see following sections) is provided in appendix 1, table 16. The ten 
inputs are listed in table 17. 

Data for the model is provided by the CAPRI database. The part of the dataset 
that is relevant for this research has been compiled from the Economic Accounts 
for Agriculture (EAA, production values and volumes at national level) and New 
Cronos Regio (acreages and yields on regional level), both databases from Euro-
stat, completed with policy information from regulations and expert data where 
necessary. The dataset has been processed by econometric/heuristic software of 
the CAPRI system to be made complete (no holes in time series) and consistent 
(with respect to physical and economical interrelations) on member state as well 
as NUTS2 level. 

The estimation is explicitly uses the optimality conditions of the model, to-
gether with some parameter restrictions. Prior information is included in a Bayes-
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ian estimation approach as outlined in the previous chapter, and the point estima-
tor is computed by numerical maximization of the posterior density. The statisti-
cal model estimated resembles the Bayesian analysis of the measurement error 
model in Zellner (1971), but is more complex since it instead of the linear model 
in Zellner (eq. 5.31) has a system of equation representing the optimality condi-
tions of CAPRI, and instead of the additive measurement error model for the "ex-
ogenous" (Zellner eq. 5.30) it relates some model parameters to observations 
through a simple expectation model. 

The report is outlined as follows: In section two we describe the structure of 
the template regional representative farm model that is used for all regions. The 
existing model has fixed input and output coefficients. In order to check whether 
that is a good specification, two sections follow that investigate two different 
extensions of the model to endogenous yields. In section three we test for all re-
gions of the model whether yield significantly depends on inputs. Section four 
analyses in greater depth for one single region, selected for its good data quality 
(long time series, many crops produced) whether changed acreages lead to 
changed yields. Since it is concluded that none of the extensions in section three 
and four is statistically reliable, we return in section five to the primary objective 
to estimation of the model with fixed yield coefficients. In section six, results are 
presented for selected regions, and compared to the results of other studies. 

2. A regional supply model 
The regional representative farm is assumed to act as if solving a linearly con-
strained quadratic programming problem (1) in every time period t. Throughout 
this chapter we generally use lower case bold face letters to represent items that 
are column vectors for each t, upper case bold face letters to represent matrices 
and italic letters to represent scalars. The dimensions of vectors and matrices are 
denoted by upper case letters, where a lower case version of the same letter de-
notes the indices of the elements in that dimension, so that for instance the “J-
vector of acreages x” means a vector of length J, with elements xj, j = 1…J. The 
prime character (′) denotes the ordinary transpose of a vector or a matrix. 

All regional models have identical structure, and no cross-regional constraints 
or relationships are assumed, in order to keep down the complexity of the estima-
tion. Thus, indices for regions can be omitted. The producer is assumed to solve 
the optimization problem in each period independently of other periods, thus all 
items that change across periods obtain an index t, so that for example xt denotes 
the vector x in period t. This implies that x also can be considered a 3-
dimensional array with dimensions with only one column, or dim(x) = (J,1,T). At 
some occasions it is convenient to denote the time series for some element j of x, 
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and this is done somewhat sloppy as xj, where the reader is assumed to remember 
that x also has another dimension T, which is now in the rows17. 

The model can then be written for each period as 
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where for each t,  
xt vector of acreages for each of J land uses  
Y t J × J diagonal matrix with yields on the diagonal  
pt J vector of prices  
st J vector of direct subsidies  
A t J × I matrix of input coefficients for I inputs  
wt I vector of input prices  
qt price index  
c J vector of parameters  
l t a land availability index (described further below)  
D J × J diagonal matrix of parameters  
G J × M matrix that sums up land use by each of M = 6 crop groups, 
 i.e. with gjm = 1 if crop j belongs to group m, else gjm = 0  
B 6 × 6 matrix of parameters  
Rt 2 × J matrix of constraint coefficients, where r1j = 1 for j = 1…J and 
 r2j is the net set-aside contribution of crop j  
vt 2 vector with v1 total land available, v2 = 0. 

The model implies that the producer maximises the sum of gross margins (the 
first term) minus a quadratic function (the second term), subject to a land con-
straint and set-aside requirement. The quadratic function in the objective function 
is a behavioural term in the tradition of positive mathematical programming 
(PMP, see e.g. Horner et al. 1992 or Howitt 1995) that is intended to capture the 
aggregated influence of economic factors that are not explicitly included in the 
model, like land heterogeneity and additional resource constraints (Heckelei 
2002). The function is in what follows sometimes referred to as the PMP-
function, and the parameters c, D and B as the PMP parameters, or the behav-
ioural parameters of the model. It is the objective of this work to estimate those 
parameters. 

In order to reduce the number of parameters to estimate, we assume that the 
quadratic function has a special structure: Cross-crop effects are only permitted 
between groups of crops, so that for instance an increase in the area of potatoes 

                                                      
17 I.e. we perform a generalised transpose of the 3-D array x where the first and last dimensions are 
swapped, and signal this only by a switch of indices. In general, symbols are better thought of as 3-
D arrays where the index denotes the 3rd dimension. 
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plus sugar beet may influence the cost of producing cereals and increase the cost 
of producing both sugar beet and potatoes. In order to provide each individual 
crop with increasing marginal costs18, we also admit a quadratic term that depends 
only on the individual crop. The structure described is implemented using a vector 
c of linear effects, a diagonal matrix D of quadratic own-crop effects, and a matrix 
B of cross-group effects. The J × M matrix G is used to sum the acreages within 
each group, substantially reducing the number of parameters compared to estima-
tion of a full J × J matrix. 

The prices p and w in the model are nominal, and since the quadratic function 
is assumed to capture, among other things, the opportunity cost of resources not 
explicitly modelled, it should be inflated. This is obtained by multiplication of c 
by the general price index qt. 

The total amount of land fluctuates slightly between years, in general with a 
downward trend due to migration of land into other sectors (fallow land is mod-
elled explicitly as a land use activity). We do not know if it is productive or un-
productive land that migrates, so to avoid that land migration strongly influences 
land rent (the dual value of the first constraint), we use land shares instead of ab-
solute land use in the quadratic term of the PMP-function. This is equivalent to 
scaling the matrix [D + GBG′] by the square inverse of total land available in 
each period. In order to obtain values approximately interpretable as “marginal 
cost change in euro per hectare” it is also multiplied by ½ times square of total 
land available in year 2000, or (v1)2000. Thus, the lt = ((v1)2000/(v1)t)². 

The optimization model (1) can be equivalently described by the following 
first- and second order conditions for optimal x 

 [ ] 0λRxGGBDcwAspY =′−′+−−−+ tttttttttt lq  (2) 

 Rtxt = vt  (3) 

 UUB ′=   (4) 

 djj ≥ 0 for j = 1…J (and dij = 0 for i ≠ j) (5) 

λλλλt is the 2 × 1 vector of dual values for the constraints. Note that for positive 
semi-definiteness of the Hessian matrix it is sufficient that B is positive semi-
definite, which is satisfied by the Cholesky factorisation with the upper triangular 
matrix U, and that all elements of D are non-negative19. 

                                                      
18 More precisely, to ensure a strictly definite Hessian matrix. 
19 In fact, we will use a stronger restriction of djj ≥ δij > 0 in estimations to avoid numerical problems 
when estimating elasticities. 
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The primary objective of the chapter can now be more precisely formulated as 
estimating the PMP parameters by using the optimality conditions as estimating 
equations. 

The secondary objective of evaluating the assumption of constant yields can be 
restated as an attempt to lift some of the non-linearity out of the PMP-function 
and explicit it in the form of a non-constant marginal gross value added, i.e. to 
estimate the relationship between yields and input use.. The first such extension is 
a variant of the model where yield depends endogenously on input use (land 
counting as an input). A second extension is the lesser modification that yields 
depend on allocated acreage. 

3. Should yield depend on input use? 

3.1. Motivation 

The purpose of this section is to determine if prices of outputs and inputs are im-
portant determinants of yields of major agricultural crops in the EU. If a signifi-
cant relationship between prices and yields can be identified, yields should be an 
endogenous function of input use in the CAPRI model, else input use and yields 
should be treated as exogenous to the model. The underlying idea is that perhaps 
some of the nonlinearity of the model, which is currently modelled only by the 
quadratic cost component, can be explained more explicitly (cf. Heckelei 2002). 
To decide which of those two alternative formulations to use, we estimate a yield 
function. 

We start from the microeconomic model (1), and augment it with yields 
endogenously depending on x and A as in equation (6). We thus assume that yield 
Yjt of crop j in period t can be approximated by a function that is quadratic in in-
puts A = (aij), linearly dependent on planned number of hectares x and on trend T 
and with a random term εεεε: 

 jtijtijijtijjtjtjjjt aaxTY εααγγγ +++++= 2
21210  (6) 

In this estimation, it is assumed that the acreage allocation x is the optimal so-
lution to the maximization problem at some expected prices and yield. We may 
then use the envelope theorem to obtain the optimality conditions for input use. 

The first order condition for profit maximum of the extended model with re-
spect to A at the expected output prices p and input prices w can be written 
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Solving for the optimal input quantities gives aijt
* = (wit/pjt – α1ij)/(2α2ij). Sub-

stituting that expression into the yield function (6) and defining 
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gives us an expression for yields that depends on the square price ratio r ijt: 
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The second-order condition for a profit maximum is that α2ij < 0, so we expect 
β3 to be negative. Without that condition holding true, we will not obtain useable 
estimates, and we would better choose exogenous yields. Thus, we want to test 
the hypothesis that β3 < 0 versus β3 ≥ 0.  

3.2. Data 

The estimation is carried out on NUTSII level for the EU15 member states. All 
input prices have been aggregated to a single input price index by first computing 
the Laspeyres price index of the aggregates “plant protection” (PLAP) and “all 
other inputs” (REST), with the average total input quantities 2001-2003 as 
weights, and then merging them into a single input price index for each crop by 
computing the Laspeyres price index using the average 2001-2003 crop specific 
input coefficients as weights (input coefficients coming from the CAPRI data-
base). Expected output prices were observed prices lagged one year (naïve price 
expectation), whereas input prices entered without lag. 

It is crucial to be able to separate the effect of trend from that of the other ex-
planatory variables., The squared price ratio is, however, likely to contain a trend 
component as well, which we will not be able to separate from the pure trend. To 
be on the safe side, i.e. not to find a significant influence of prices that is really 
only the influence of the trend in prices, we subtract linear trends from the ex-
planatory variables x and r . This is done by fitting and subtracting a simple trend 
from each variable ξξξξ using the equation 

 ( ) ξCCCCξξ ′′−= −1*  
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where C is the n × 2 matrix with ones in the first column and the sequence from 1 
to n in the second column, and ξξξξ a time series for some exogenous variable to 
clear of trend. 

3.3. Estimation method 

The principal estimation method used is Least Squares. Three problems are likely 
to be present in the data set, so that some modifications of the ordinary least 
squares (OLS) seem appropriate. Firstly, there may be problems with endogene-
ity, because the lagged price ratio is likely to influence acreage. To avoid obtain-
ing biased estimates, we try an alternative estimation where the trend free acreage 
is instrumentalized by lagged acreage, lagged output price, lagged price index of 
substitutes, direct subsidies and the other explanatory variables in (7) except for 
lagged squared price ratio. Denoting, for now, the T × K matrix of K explanatory 
variables T years for each crop j by X j (not to confuse with acreage xj) the instru-
mental variables matrix by Z j, and the vector of coefficients by ββββIV, we estimate 

 ( ) ( ) jjjjjjjjjjIVj , XZZZZXyXXXβ ′′=′′= −− 11 ˆˆˆ  for j = 1…J 

The correlation between acreage and instrumentalised acreage should be rather 
high for the instrumentation to make sense. The coefficients of correlation are 
shown for all relevant crops in table 1. Albeit there are some cases with low corre-
lation, the general impression is that the instrumentation is good, with 55% of the 
correlations greater than 0.80. 

Table 1: Correlation between acreage and instrumentalized acreage 

 BL DK DE EL ES FR IR IT NL AT PT SE FI UK 
SWHE 0.72 0.84 0.86 0.87 0.87 0.70 0.54 0.61 0.39 0.83 0.79 0.78 0.90 0.54 
DWHE   0.84 0.67 0.89 0.92  0.85  0.90 0.84   0.95 
RYEM 0.89 0.55 0.87 0.61 0.83 0.96  0.42 0.56 0.89 0.79 0.77 0.61 0.83 
BARL 0.92 0.74 0.87 0.94 0.78 0.88 0.96 0.89 0.70 0.85 0.52 0.90 0.79 0.91 
OATS 0.79 0.65 0.96 0.46 0.97 0.99 0.63 0.91 0.87 0.77 0.85 0.74 0.88 0.66 
MAIZ   0.78 0.97 0.78 0.53  0.86 0.83 0.85 0.74    

OCER 0.60  0.63 0.92 0.78 0.90  0.81   0.95   0.90 
RAPE  0.86 0.87  0.93 0.79 0.84 0.94  0.96  0.87 0.26 0.41 
SUNF   0.91 0.97 0.96 0.82  0.86  0.88 0.77    
SOYA     0.86 0.71  0.74  0.69     
PULS 0.78 0.40 0.96 0.98 0.80 0.95  0.93 0.89 0.93 0.79 0.53 0.84 0.73 
POTA 0.88 0.88 0.99 0.69 0.94 0.74 0.53 0.87 0.68 0.89 0.43 0.64 0.73 0.62 
SUGB 0.77 0.94 0.76 0.54 0.94 0.68 0.82 0.72 0.77 0.99 0.54 0.68 0.88 0.90 
MAIF  0.98 0.80 0.64 0.91 0.53  0.97 0.80 0.84 0.85 0.58   

OFAR 0.72 0.69 0.95 0.99  0.72 0.82 0.62 0.71 0.93 0.63 0.85 0.81  
 

Secondly, a strong correlation between error terms of certain crops should be 
expected due to the similar influence of weather on similar crops. For example, 
one should expect a positive correlation between the yields of barley and rye, 
because their vegetative periods are similar and they have similar requirements 
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regarding weather and soil. Thus, a seemingly unrelated regression (SUR) would 
be appropriate. Such an estimator would be more efficient than OLS would the 
covariance matrix be known. In the current case, the covariance matrix is not 
known, but has to be estimated, which may hamper efficiency considerably. This 
was tried out using iterated SUR with and without the instrumentation above. The 

estimation was carried out in three steps: (i) instrumentation of X by X̂  as above, 

(ii) iterated SUR of Y on X̂  to obtain stable weights matrix W, which was com-
puted from the inverse covariance matrix ΣΣΣΣ of the error terms of the regression of 

Y on X̂ , weighting each element of the covariance matrix by the harmonic mean 
of the degrees of freedom of the relevant equations, 

( )( )jjiiij KNKNDF −−= , and (iii) computation of estimator 

( ) WyXWXXβ ''SUR
ˆˆ 1−

= . The index free matrices represent the stacked system as 

in Greene (2003, p. 342). X is the (JT) × (JK) partitioned matrix with matrix X j on 

the j th diagonal position and zeros elsewhere, and similar for X̂ . W = ΣΣΣΣ-1 ⊗ I , and 
y the vertically concatenated vectors yj. 

Thirdly, there could be an aggregation bias. It may well be that for example a 
price increase has a greater production response in a sub region with generally 
low yields. The weight of the low yield region in the aggregate would increase, 
leading to reduced aggregate yield although the yield in each sub-region increased 
as response to the higher price. To investigate this effect to the extent possible by 
the available data, the regressions were re-run on sub national level (NUTS2 
where possible, UK NUTS1). Prices are only available on national level. They 
were mapped down to the respective sub regions. Acreages and yields, on the 
other hand, are also available for NUTS2 regions. 

Table 2: Different estimation methods tried 

Estimation nr. Regional resolution Acreage instrumentation SUR 
1 national no no 
2 sub regions no no 
3 national yes no 
4 sub regions yes no 
5 national no yes 
6 sub regions no yes 
7 national yes yes 
8 sub regions yes yes 

 

Alltogether, eight different estimations were run to account for each of the 
three problems. The estimation setups are shown in table 2. The estimations were 
evaluated based on the number of significant coefficients using t-tests on the 5% 
level. The t-tests were computed for the test β3j = 0 using standard deviations of 
the vector of estimators computed as the square root of the diagonal elements of 
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( ) 1ˆˆ)(Cov
−

= XW'Xβ . Note that in the case of no instrumentation, X̂  = X, and W-1 
becomes the standard variance estimator with degrees of freedom correction. 

3.4. Results 

The results indicate that there is a relationship between yields and input prices and 
also between acreages and yields in some regions for some crops., The relation-
ships ,however, can not be statistically detected for all crops in all regions. For the 
major share of all crops no significant influence at all of neither input prices nor 
acreages on yields is found. The results also show that the sophistication of the 
estimation method by the instrumentation of acreages, use of sub regions and 
SUR covariance structure is worthwhile, because the number of significant coef-
ficients increase by their introduction, and the signs of the price influence tend to 
be more conform with theory (which suggests a negative influence of the output-
input price ratio). Table 3 shows the number of estimated equations, the number 
of coefficients with positive and negative signs and the number of coefficients 
significantly different from zero with each sign. 

Since a rather large number of t-tests were carried out at the 5% level, one 
would expect 5% of the tests to show a significant β3 ≠ 0 even if the true β3 = 0. 
For example, in the estimations with sub regions, 1858 t-tests were carried out. 
We would then expect 2.5% of 1858 = 93 tests to show b significantly different 
from zero in each direction even if the true b = 0. Even with this in mind, it seems 
that the number of significant coefficients is too large to be a pure random out-
come (e.g. 184 negative significant to 96 positive significant out of 1858 tests for 
regionalised iterated SUR estimation with instrumentation). Therefore, we con-
clude that there is indeed a general influence of prices on yields, but that the in-
fluence is so hard to detect statistically that it does not seem worthwhile to try to 
estimate an economic model with endogenous yields. 

Table 3: Summary of results for different estimation setups. 

Est. nr. Eq. b3<0 b3>0 b3<0* b3>0* b2<0 b2>0 b2<0* b2>0* 
1 163 90 73 12 8 95 68 20 6 
2 1858 1097 745 137 63 1051 807 204 114 
3 163 95 68 9 7 96 67 14 4 
4 1858 1112 730 125 61 1024 834 117 103 
5 163 98 65 24 9 84 79 29 11 
6 1858 1032 810 189 117 995 863 273 192 
7 163 98 65 28 6 90 73 31 21 
8 1858 1062 780 184 96 986 871 176 178 

Est. nr. refers to estimation number in table2, b3 is the coefficient of price ratio, b2 the coefficient of acreage, 
and a star refers to significance of 5 % level double sided t-test. 

Why is there no statistically reliable influence of prices on yields? It is well 
known that yield of most crops is a concave function of inputs. Given profit 
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maximizing behaviour of producers, a relationship similar to that estimated here 
should result. There are, however, at least five major obstacles involved. 

(1) The quadratic yield model implied here may be wrong. In reality, yield also 
depends on a lot of other factors that are all collected in the error term. Crop rota-
tion is certainly a significant determinant of yield that is not controlled for in 
these estimations. This could be introduced by a careful selection of substitute 
acreages. A share of this influence should already be represented by the inclusion 
of own acreage, and introducing further explanatory variables would reduce the 
degrees of freedom and aggravate the problems with endogeneity (acreages de-
pending on prices) 

(2) The producers may not be rational in the way assumed here. Output price 
expectations may not be naïve, and the decision on input use may have to be taken 
with some time lag so that an input price expectation is required as well. It may 
also be the case that the yield function is largely unknown to the producer, so that 
rational behaviour as in the conceptualized model is impossible. Producers are 
perhaps more likely to choose input amounts from a table or heuristic with very 
few, if any, alternative levels of inputs. As an alternative price expectation, the 
formula 0.67Pt-1 + 0.33Pt-2 was tried, but without improvement in fit. 

(3) The yield function may have a shape that implies almost the same input use 
and yield for a wide range of price ratios, so that there are almost only two differ-
ent profit maximizing solutions: either “zero” or “full” input use. That would be 
the case if the graph of yield to inputs has an almost linear initial part and then 
bends sharply downwards at some point. Then the influence of the price ratio 
would be “almost” discontinuous, with almost no change in yield for moderate 
price ratio changes and a big leap at some point. Then, for most price ratios, the 
optimal yield choice is almost the same. 

(4) It may well be the case that the sub regional level used in the estimations 2, 
4, 6 and 8 is still too aggregated so that an aggregation bias remains. 

(5) The data sampling model underlying the estimations is inappropriate. Ac-
tually, observed acreages and prices are only indicators of the true (latent) 
planned acreage and expected price. Because the errors on acreages and prices 
now (erroneously) are attributed to measurement errors in yields, the estimated 
variance is too large, and thus the tests likely weaker. The coefficients are also 
likely to be biased in unknown directions (Fuller 1987). In addition, the observed 
yield is the average yield, whereas if yield really is endogenous the decision is 
based on the expected marginal yield. Actually, a model including measurement 
errors and marginal yield expectation together with the full optimality conditions 
(2-5) was the starting point of the estimation, but proved too complex to handle 
efficiently. Thus, the estimations of yield functions were performed in this sepa-
rate step to determine whether endogenous yield should be part of the final model. 
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We return to the measurement error model and yield expectations below, though 
without endogenous input coefficients. 

4. Should yields depend on land allocation? 

4.1. Problematic marginal cost curves 

If the zero-profit condition (2) is solved for x we find that acreages are linearly 
depending on prices according to the relation 

 [ ] [ ]tttttttttt ql λRcwAspYGGBDx ′−−−+′+= −− 11  (8) 

Because the matrix [ ] 11 −− ′+ GGBDtl  is required to be positive semi-definite by 
the second order conditions, we expect the graph of xt to gross margin mt = Y tpt + 
st − A twt, to be an upward sloping curve, so that increasing gross margin leads to 
increased acreage. Figure 1 shows the development of rye acreage and gross mar-
gin (nominal prices) between 1985 and 2003 for one of the most important cereals 
producing regions in France, the Nuts 2 region with code FR24 (Centre). Obvi-
ously, it would be difficult to fit acreage to gross margin with a positive slope if 
no other information is included, because the gross margin has increased whereas 
production decreased. In fact, the coefficients in an OLS regression of acreage on 
constant and gives the slope coefficient -0.0122 with a p-value of 0.0152. The 
points and the fitted line are shown in figure 2. 
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Figure 1. Gross margin and acreage of rye in FR24. 
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Figure 2. Acreage linearly fitted to gross margin for rye in FR24. 

Thus, something more is influencing the producer decision to decrease rye 
production despite apparently increasing gross margin. Several auxiliary hypothe-
ses come to mind. For instance, we tacitly assumed that the dual vector λλλλ was 
constant, whereas it in fact λλλλ depends on the gross margins of all other crops. 
Perhaps gross margins in, say the most important crop soft wheat, has increased 
enough to increase land price enough to force back rye. Figure 3 shows acreage 
and gross margin in soft wheat in the same region and time period. As can be seen 
in the figure, the gross margin in soft wheat has decreased slightly during the time 
period, which is not favourable for that hypothesis (though it is not enough to 
reject it; soft wheat may have been the wrong crop). 
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Figure 3. Gross margin and acreage of soft wheat in FR24. 
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A second assumption in the simple regression of acreage on gross margin was 
that the coefficient is constant over time. Comparison of the regression model 
with the equation (8) derived from the first order conditions reveals that the coef-
ficient contains the parameters c, D and B which change over time with price 
index and total area. Thus the cost component c actually increases in nominal 
terms over time, which also helps alleviate the problem of reverse reaction of rye. 
A proper analysis should thus include at least the full first order conditions. 

Estimation of (2-5) for all crops simultaneously, with a measurement error ap-
proach20 allowing for errors on x, Y, p, A and w, and endogenous dual values 
with prior information for identification, did however result in a boundary solu-
tion for D and/or B. The boundary solution is such that rye obtains as small a 
coefficient as possible, still yielding a positive definite matrix. That implies an 
elasticity of supply of rye of close to infinity in the resulting simulation model, 
which is simply not plausible. That model is further discussed in the next section. 
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Figure 4. Average yields of rye in FR24 

The rest of this section discusses a third auxiliary hypothesis that is sufficient 
to estimate rye parameters with the expected sign. The hypothesis is based on the 
fact that our yield data are really average yields, whereas the producer is assumed 
to base his production decision on expected marginal yield. Then gross margins 
m were computed in the wrong way above, using average yields. In fact, a closer 
look on the components p, Y, s, A and w of gross margins reveals that output 
prices have dropped steadily, and that the main reason for the increasing gross 
                                                      
20 The estimation also uses linear trends for expected yield and expected input requirements to re-
move stochastic weather influences, and uses prior information of 0.5 times gross margin of soft 
wheat for land price dual value and similar for set-aside for identification of the model. 
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margin is that rye yields have risen sharply from about three to about five tons per 
hectare (figure 4). If the marginal yield is actually depending on x, then the devel-
opment of marginal yields may be a qualitatively different from that of averages. 

4.2. Motivation for endogenous yield 

It could be the case that rye, which is grown on a considerably smaller area than 
soft wheat, is treated as an inferior alternative of many producers, and is thus 
grown on soil less suitable for cereals production. If prices increase, rye becomes 
an increasingly competitive alternative to soft wheat on the better soils. In that 
case, the marginal yield of rye with respect to acreage would be an upward slop-
ing function. 

One could also motivate a downward sloping yield function (of acreage) by 
assuming that first the soil that is best suited for rye is used, or that there is some 
rotational effect favouring smaller land use for rye. To investigate which is the 
case, we attempt to estimate the relation between yield and acreage. 

Assume that marginal yield is approximated by the linear model 

 fjt(xjt) = β0j + Ttβ1j + 2xjtβ2j 

with T a linear trend, and that observations of average yields arise according to 

 ∫ +=
jtx

jtjt
jt

jt dzzf
x

y
0

)(
1 ε . 

Integration gives the model to estimate, 

 yjt = β0j + Ttβ1j + xjtβ2j + εjt. (9) 

Note that the coefficient β2 in the expression for the marginal yield enters with 
twice its estimated value. Thus, if β2j is positive and xjt decreases over time, then 
the marginal yield decreases over time compared to average yield. If the β2j is big 
enough, this may be enough to turn the apparent positive gross margin develop-
ment for example in rye in the case study region FR24 into a negative one. 

4.3. Pitfalls when estimating the expected marginal yield 

A straightforward least squares estimation of (9) gives a β2 for rye of 0.04577, 
which is supporting the hypothesis that gross margin actually has been increasing 
less rapidly than indicated by the average yields. The t-test for β2 = 0 gives a poor 
p-value of 0.544. The estimation, however, has at least two pitfalls that potentially 
make the estimation less efficient and reduces the power of the t-test of β2 = 0. 

(i) The yields of all crops tend to be correlated. 
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(ii) We ignore that acreage is measured with errors. 

The first pitfall makes the LS estimation inefficient, because a more efficient 
estimator would recognise that if, say, all cereals have a low yield in 2003 (which 
was the actual case), then error terms in that year should have less weight in the 
estimation. That is, a seemingly unrelated regression (SUR) could be a more ap-
propriate model (as in the previous section). 

The second pitfall must be further explained. Above it was briefly mentioned 
that the ultimate goal is to perform an estimation with errors on the acreages x. So 
we should not now ignore that our observations of acreages may not be the true 
planned acreages, but acknowledge that a measurement error may be involved. If 
we assume the simple model that observed acreages X relate to true planned acre-
ages x with a simple additive error model, 

 X j = xj + uj  

then the estimates of β2 are likely to be biased and the variances of the estimates 
are likely to be biased too (see Fuller 1987 for a thorough treatment of the linear 
measurement error model). In a simple linear model with a single explanatory 
variable, the coefficient is biased towards null by a factor κ = σxx(σxx + σuu)

-1, and 
the estimated variance of the coefficient is biased by κ-2. (but t-test β = 0 is not 
weakened). Unfortunately the situation becomes more complicated when there are 
two explanatory variables (TREND and ACREAGE), one of which is measured 
without error (TREND). To correct for these biases, a measurement error model 
seems to be the appropriate method. 

4.4. A seemingly unrelated regression 

The SUR estimator requires knowledge of the covariance matrix of yields. If that 
is not available, it can be estimated in a feasible generalised least squares estima-
tion (FGLS). In this analysis we use an iterated SUR. In the first step, we estimate 
the model with independent error terms (identity matrix as weighing matrix). The 
residuals are used to estimate the yield covariance matrix ΣΣΣΣe. The inverse covari-
ance matrix 1−

eΣ  is used in the second step to estimate the FGLS model by mini-
mising the generalised sum of squares 

 ( )( ) ( )∑ −−−Σ−−− −

jkt
ktktkkktjkejtjtjjjt XTYXTY 210

1
210min ββββββ  

where j,k are alternative indices for J crops and t the index for time. 
In order for the coefficient vector to converge, certain limitations are required 

to bring down the number of elements in ΣΣΣΣe. This was done by subdividing the 
crops into five groups that were conjectured to react similarly or perform a similar 
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function in the rotation. This is equivalent to a separate SUR estimation for each 
group. The groups are the ones shown in table 16 in the appendix to this chapter, 
except of course for the group NOCR (crops with no physical yield) which was 
not included. In FR24 there was sufficient data for 15 cropping activities. 

The SUR estimator 2β
)

for β2 in rye is considerably smaller than the OLS esti-
mator, 0.01878 instead of 0.04577, and the t-statistic indicates an even less sig-
nificant coefficient, P(abs(2β

)
)≥0.01878|β2=0) = 0.598. The block wise covari-

ance matrix and the estimated coefficients are shown in the following tables (4-9). 
One can see in the table that the assumption of covariation of yields across crops 
within the groups is reasonable, because all items except for the covariation 
PULS.POTA in table 8 are positive. Nevertheless, the estimated 2β

)
 are signifi-

cantly different from zero only in 4 out of 15 cases (determined by Student’s t-
test), rye not being one of them. So even if the coefficient on rye tends to have the 
right sign, the effect could just as well be coincidence in most cases. 

Table 4. Coefficients for TREND and ACREAGE in SUR estimation 

 1β
)

.value 1β
)

.p 2β
)

.value 2β
)

.p Significance of 2β
)

 

SWHE 0.0688 0.0090 -0.0011 0.5870  
DWHE 0.0564 0.0250 -0.0022 0.1210  
RYEM 0.1492 0.0000 0.0188 0.5980  
BARL 0.0689 0.0050 0.0001 0.9770  
OATS 0.0534 0.0140 0.0177 0.0010 *** 
MAIZ 0.1785 0.0001 -0.0009 0.7880  
OCER -0.0318 0.2620 0.0511 0.0190 * 
RAPE -0.0013 0.9680 0.0012 0.7070  
SUNF 0.0150 0.4100 -0.0020 0.3220  
PULS 0.0214 0.2760 0.0066 0.1460  
POTA 0.7869 0.0030 -0.6038 0.4310  
SUGB 0.9813 0.0000 -2.1111 0.0008 *** 
MAIF -0.0790 0.7810 -0.2972 0.0440  
OFAR -0.4271 0.1190 -0.1502 0.0000 *** 
NONF 0.0731 0.0020 0.0072 0.3830  

Table 5. Covariance matrix of SUR residuals for Cereals 

 SWHE DWHE RYEM BARL OATS 
SWHE 0.305 0.244 0.202 0.210 0.151 
DWHE 0.244 0.274 0.183 0.184 0.133 
RYEM 0.202 0.183 0.228 0.147 0.146 
BARL 0.210 0.184 0.147 0.233 0.149 
OATS 0.151 0.133 0.146 0.149 0.147 
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Table 6. Covariance matrix of SUR residuals for Cereals2 

 MAIZ OCER 
MAIZ 0.413 0.256 
OCER 0.256 0.263 

Table 7. Covariance matrix of SUR residuals for Oilseeds 

 RAPE SUNF NONF 
RAPE 0.129 0.018 0.038 
SUNF 0.018 0.067 0.021 
NONF 0.038 0.021 0.061 

Table 8. Covariance matrix of SUR residuals for Other Arable Crops 

 PULS POTA SUGB 
PULS 0.205 -0.034 0.835 
POTA -0.034 9.426 2.167 
SUGB 0.835 2.167 11.051 

Table 9. Covariance matrix of SUR residuals for Fodder 

 MAIF OFAR 
MAIF 22.212 12.228 
OFAR 12.228 15.024 

4.5. A measurement error model 

To include the assumption that X j = xj + uj into the estimation, a total least 
squares estimation is performed by minimising the following extremum estima-
tion criterion, scaled by the inverse of the number of observations n = JT (for J 
crops and T periods): 

minimize 

( )( ) ( )

( )( ) ( )∑

∑

−−+

−−−−−−

−

−

jkt
ktktjkujtjtn

jkt
ktktkkktjkejtjtjjjtn

xXxX

xTYxTY

11

210
1

210
1

Σ

βββΣβββ
 (10) 

Here ΣΣΣΣe denotes the covariance matrix between the residuals obtained from the 
SUR estimation mentioned previously, whereas ΣΣΣΣu is a prior covariance matrix of 
acreages. ΣΣΣΣu only contains diagonal entries that are constructed following the 
principle that the standard deviation always is 6⅔ percent of the sample mean 
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(over time for each crop), implying that virtually all outcomes are within ± 20% 
of the observations. That is, for σjj diagonal element of ΣΣΣΣu,  

 
2

3

20.0







= •jjj Xσ . 

The model 10 with errors in the explanatory variables is referred to as a meas-
urement error model (Fuller 1987), or sometimes Errors-In-Variables-model 
(EIV). The coefficients of the EIV estimation are solved for using a non-linear 
programming (NLP) solver software, and the results shown in the following table 
(10). The signs and sizes of the coefficients are generally similar to those of the 
SUR estimators. 

Table 10. Coefficients in EIV estimation 

 B0 B1 B2 
SWHE 37.21941 0.00644 -0.04172 
DWHE 5.58560 0.05500 -0.00250 
RYEM 2.82318 0.14463 0.00699 
BARL 4.91312 0.06313 0.00195 
OATS 2.60144 0.05768 0.01952 
MAIZ 6.17032 0.18124 -0.00051 
OCER 3.05974 -0.04094 0.06173 
RAPE 2.90948 -0.00335 0.00137 
SUNF 2.74305 0.01259 -0.00229 
PULS 3.68404 0.02101 0.00965 
POTA 32.54321 0.85206 -0.86423 
SUGB 166.77830 0.67172 -3.90225 
MAIF 55.23074 -0.29928 -0.44824 
OFAR 69.80859 -0.68218 -0.18152 
NONF 0.67922 0.07145 0.00797 

 

It would be desirable to obtain an estimator of the standard deviations of the 
EIV coefficient estimators. Fuller (1987) finds that he is unable to establish the 
exact distribution of the estimators even in the simple case with one explanatory 
variable. He instead derives an approximate (normal) distribution for the coeffi-
cient vector in large samples.  

Here we follow another approach using asymptotic properties of extremum es-
timators as described in Mittelhammer, Judge, Miller (2000, ch. 7). 

4.6. Asymptotic properties of the estimators in the EIV model 

We start off by putting the model (10) in matrix form. Rewrite it separating the 
exogenous variable “acreages” that is measured with errors from the matrix of 
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exogenous Z that is known with certainty; constant and trend. Denote the coeffi-
cients of x by γγγγ and the coefficients for Z by ββββ. We denote the true planned acre-
ages by lower case x and the observed values from the statistics by the random 
variable upper case X. Then the model can be written in matrix form as  

 
( ) ( ) ( ) ( )

X)z,Y,|xγ(β

xXΩxXγxβzYΩγxβzY

,,min

min 111

,,

m

n

β,γ,x

ubbebb
x

⇔

−′−+−−′−− −−−

γβ  (11) 

where, for IT of size T, and ⊗ the Kronecker product, 

 TuuTee IΣΩIΣΩ ⊗=⊗= −−−− 1111 ,  

The vectors/matrices Y, x, z, X, and ββββ are the vertically concatenated vec-
tors/matrices Y j, xj, zj,, X j, and ββββj. γγγγ is the vector of γj for crops j = 1…J, the sub-
script b denotes the block-wise diagonalisation where the j th diagonal block of the 
JT × JK (for K columns in z) matrix zb is zj (and similar for xb), so that the func-
tion m can be written alternatively as 
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The rightmost vector (…) in the first term is the same as the first bracketed ex-
pression, omitted to save space. The extremum estimator defined in (11) is 
equivalent to an element-wise weighted total least squares estimator, shown to be 
consistent in Kukush and Huffel (2004). 

We will now attempt to obtain a Lagrange Multiplier (LM) test of the hypothe-
sis that γγγγ = 0, following the procedure described in Mittelhammer, Judge and 
Miller (2000) (section 7.6). One can show that the conditions in theorem 7.3.3 are 
satisfied, so that θ̂  is asymptotically normally distributed, with n½( θ̂  − θθθθtrue) 

→d  N(0,H-1ΣΣΣΣH-1), with H-1 the Hessian of m and ΣΣΣΣ the covariance matrix of n½ 
times the Jacobian of m, both w.r.t. θθθθ evaluated at θθθθtrue. 

We may then use the operational Lagrange Multiplier (LM) test with the test 
statistic 

 [ ][ ] [ ] ( )0,~ˆˆˆˆˆ 211111 JnLM rr χΓcHccHΣHccHcΓ ′′′′= −−−−−  
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for ΓΓΓΓr the Lagrange Multipliers associated with the model (11) restricted by the J 
restrictions γj = 0, or in matrix form as a linear restriction of the entire parameter 
vector, cθθθθ = 0, where c is a J × (3J + JT) matrix of zeros and ones constructed by 
horizontal concatenation of (J × 2) zeros, I J and (J × JT) zeros. Differentiation of 
m gives the Jacobian J(m) as column vector as 
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where γγγγd denotes the JT × JT diagonal vector with γγγγ ⊗ ιιιιT (for ιιιι vector of “1”) on 
the diagonal. Since E(e) = E(u) = 0, we have that E(J(m)) = 0. The Jacobian is a 
linear combination of the (assumed) normally distributed random variables in [e′ 
u′]′, the covariance matrix 
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so the covariance ΣΣΣΣ of n½J(m(θθθθ)) evaluated at the estimated θθθθ computed is given 
by 
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The Hessian matrix is obtained by differentiation of the Jacobian, to obtain 
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The model (11) is then solved twice, once unconstrained and once constrained 
by γj = 0 for j = 1…15. The LM test statistic is computed using the Lagrange Mul-
tipliers obtained in the constrained model and the estimated H and ΣΣΣΣ. The result-
ing test statistic is 26.7, which is asymptotically distributed as chi-square(15) if 
the constraints are true. For a test on 5% level we compare LM with the 5% tabu-
lar value of the chi-square distribution, which is 25.0, and conclude that the null 
hypothesis is rejected at the 5% level (the exact p-value is 0.031). 

So, yields could depend on acreages. However, a look at the estimated coeffi-
cients in table 10 shows that the estimations are not sufficiently robust to use on a 
large scale: Sugar beet (SUGB) obtains the (significant at 0.1% level in a test 
using the asymptotic normal distribution for θ̂ ) coefficient of minus 3.90 tons per 
thousand hectares. This implies that the marginal yield at the observed acreage 
(about 25’000 hectares) is negative, which is unacceptable. At the same time, the 
coefficient on rye is very close to zero and not significant, so the original problem 
is not solved. Thus, we decide to discard the model with yield depending on acre-
age despite the failure to reject the hypothesis that γγγγ = 0. 

5. A Bayesian estimator based on highest posterior density 

5.1. Principles of estimator 

After having discussed two different versions of yield endogeneity in sections 
three and four, we now return to the primary objective and model (1). The basic 
assumption underlying the data sampling model is that there exists a set of true 
parameters ψψψψ = (p,Y,s,A,w,q,l,c,D,B,R,v) of the model, satisfying the second 
order conditions (4-5), a vector of true planned acreages x* and a vector of dual 
values λλλλ* such that (x*,λλλλ*) is the unique optimal solution to the model pa-
rametrized by ΨΨΨΨ. We may thus write x* = x*(ψψψψ) and λλλλ* = λλλλ*(ψψψψ). Furthermore, the 
values z = (xobs,pobs,Yobs,sobs,Aobs,wobs,qobs,lobs,Robs,vobs) in the CAPRI database are 
considered the outcome of a random variable vector Z that is conditional on ΨΨΨΨ, 
i.e. there exists a probability density function f(z|ΨΨΨΨ). 

We have prior beliefs regarding the parameter ΨΨΨΨ that are not contained in the 
CAPRI database. We expect the dual values of the constraints and the price elas-



129 

ticities implied by ψψψψ to be of “reasonable size”. If we are express those beliefs as 
a prior density function ξ(ΨΨΨΨ), we may use Bayes's rule to derive the posterior 
density function of ΨΨΨΨ conditional on the outcome z: 

 ξ(ΨΨΨΨ|z) ∝ f(z|ΨΨΨΨ)ξ(ΨΨΨΨ) 

In the following sections, we first develop an error model that relates z to ΨΨΨΨ in 
order to derive the function f. We discuss the chosen error model and compare it 
to alternatives. Then we formulate our prior beliefs regarding elasticites and dual 
values in terms of the unconditional density function ξ. Finally, we devise an 
estimation method that chooses as an estimate the parameter vector ΨΨΨΨ that maxi-
mises the conditional density ξ(ΨΨΨΨ|z). DeGroot (1970) calls this estimator the gen-
eralised maximum likelihood estimator. Other authors have called it the posterior 
mode estimator, the maximum a-posteriori estimator or the highest posterior den-
sity estimator. 

5.2. Data sampling process 

The distribution of Z is based on the following assumptions, which are detailed 
further below: 

(i) All elements in Z are independent. 

(ii) Subsidies, price index, set-aside rate and total land constraint are known 
with certainty, i.e. are degenerate random variables. 

(iii) Errors are additive. 

(iv) Producers have naïve price expectations. 

(v) Expected yields and input requirements follow linear trends. 

(i) The covariance matrix Σ only contains diagonal elements. This is discussed 
further in the following section on prior distributions. 

(ii) We assume that set-aside rate, subsidies, price index and total land con-
straint are known with certainty. Since the outcomes of those items in the random 
vector Z will be the corresponding items of ΨΨΨΨ itself, they are from now on re-
moved from Z. An outcome of Z is thus written z = (xobs,pobs,wobs,Yobs,Aobs). 

(iii) We write an outcome of Z as the sum of its conditional expectation 
µµµµ(ψψψψ) = (µµµµx,µµµµp,µµµµw,µµµµY,µµµµA), (with appropriate dimensions), and the random error vec-
tor εεεε, so that, Z = µµµµ(ψψψψ) + εεεε. For acreages, we have 

 µµµµx = x*(ψψψψ) 
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(iv) Naïve price expectations imply that the expectation of the price measure-
ment in period t-1 equals the producer price in that period, or conversely, 

 pt = (µµµµp)t-1  

 wt = (µµµµw)t-1  

where the expression on the right hand side denotes the expected value of the 
output and input prices for all crops in period t-1. 

(v) The producers expect the yield in each period to equal (µµµµy)t, which in-
creases over time by an exogenous linear trend. The same assumption is made for 
input coefficients, We thus have that 

 Y t = (µµµµy)t = ββββ0 + ββββ1Tt (12) 

 A t = (µµµµA)t = αααα0 + αααα1Tt 

with T being a linear trend and ββββ = (ββββ0,ββββ1) and αααα = (αααα0,αααα1) new parameters to 
estimate. Unfortunately, there are no observations available for actual input appli-
cation. Instead, we use estimated input coefficients (available in the CAPRI data-
base), that are based on total input use in the agricultural sector in combination 
with farm level data, economic reasoning and engineering knowledge. Those ex-
pert coefficients are denoted by Aobs. The actual amount of inputs applied in any 
given year may differ from the expected value due to unexpected climatic condi-
tions, just as the yield may deviate from expected yield, though the hypothesis is 
that the agricultural production plan is made up with the expected values in 
mind21. 

5.3. Discussion of alternative error models 

The error model developed above is fairly sophisticated in the sense that it at-
tempts to take into account that all measurements are likely to be subject to er-
rors22. The sophistication comes at a cost, because it requires information about 
the covariance matrix of Z. Ideally, this information would be supplied by repli-
cate measurements or external datasets (Carroll, Ruppert and Stefanski 1995). In 
the case at hand, no such replicates are available, and instead, the relative variabil-
ity of the different errors is based on assumptions. 

                                                      
21 This implies a general error model, but the resulting formulation is indistinguishable from the 
measurement error model. 
22 Griliches and Ringstad (1970 p. 370) conclude, in relation to measurement errors in nonlinear 
models, that “In short, errors in variables are bad enough in linear models. They are likely to be 
disastrous to any attempts to estimate additional nonlinearity or curvature parameters.” 



131 

Although the error model is sophisticated on the side of the researcher (meas-
urement errors), it is very simple on the side of the economic agent. We assume 
that the agent has perfect information about the true parameters, and that he is 
able to determine the optimal production decision exactly. That is, no part of the 
errors enter the model equations, thereby influencing production. A more general 
error model, as discussed by McElroy (1987) and Pope and Just (2002) would 
also take into account the possibility that the producer may not correctly appreci-
ate the true parameters and/or is not able to determine exactly the optimal supply 
decision. Let us look at the implications of neglecting those errors. 

The exogenous (in this model) parameters that are subject to considerable un-
certainty are prices (p,w) and I/O coefficients (A,Y). Saying that the producer 
does not correctly appreciate those is silly, since they are defined as the pro-
ducer’s expectation. It may however be the case that the expectation model is not 
the correct one (the possibility that the producer does not base his expectation on 
the same observations as the researcher is already included in the error term). In 
those cases, the producer bases his land allocation decision not on the true pa-
rameters (p,w,A,Y) (which can then no longer be called “true”) but on stochastic 
(p + δδδδp,w + δδδδw,A + δδδδA,Y + δδδδY) for some deviations δδδδ. This is a kind of specifica-
tion error of the model. If we at this point assume that the producer solves the 
optimization problem correctly, we can substitute the disturbed parameters into 
the first order conditions and rearrange to obtain  

 [ ] ttttttttttt lq ∆λRxGGBDcwAspY =′−′+−−−+  

with ∆∆∆∆ = Aδδδδw + wδδδδA + δδδδAδδδδw − Yδδδδp − pδδδδY − δδδδpδδδδY (time indices omitted). This makes 
the relationship between the true parameters stochastic. It is not clear what effect 
the omission of ∆∆∆∆ has on the estimation of the parameters of interest, (c,B,D). 

The producer may also commit an optimization error, i.e. instead of choosing 
the optimal acreage vector x*, which would solve the optimization problem, he 
allocates x* + δδδδx, which does not solve it, but satisfies the constraints. That kind of 
error would be impossible to distinguish from a pure measurement error on the 
side of the researcher, except that we would require Rδδδδx = 0 (because Rx* = v = 
R(x* + δδδδx)). 

Since the general error model requires an increased amount of prior informa-
tion and is anyway difficult to distinguish from the measurement error model, we 
choose to limit ourselves to measurement errors. We now proceed with explicit 
assumptions regarding the data sampling processes. 

5.4. Augmented parameter vector and its prior distribution 

In the ex-post perspective, the outcome e of the error vector εεεε has actually already 
been determined, but the outcome is not directly observable. We thus choose to 
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consider e yet another unknown parameter. If the density function f for the ran-
dom vector Z is conditional also on e and the yield and input parameters ββββ, and αααα 
defined above, then there are no random components left, and f becomes the de-
generate density function 
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One can immediately see that there must be a large number of vectors 
(ψψψψ,ββββ,αααα,e) that give the density value “1” for almost any outcome z of Z. Without 
further information, there is no way of discriminating between any two such vec-
tors by saying that one is any more likely than the other to be the true parameter 
vector. This is why we require a prior distribution ξ(ΨΨΨΨ,e,αααα,ββββ). In this section, we 
define the prior distribution based on the following assumptions, detailed below: 

(i) ξ(ΨΨΨΨ,e,αααα,ββββ) = ξ(e)ξ(λλλλ*(ΨΨΨΨ,αααα,ββββ))ξ(ηηηη(ΨΨΨΨ,αααα,ββββ)), with ηηηη(ΨΨΨΨ,αααα,ββββ) denoting the 
vector of implied own price supply elasticities. That is, we assign prior 
distributions to error terms, dual values and implied point price elastic-
ities of supply, and assume that those are functionally independent. 

(ii) The errors e are independent and normally distributed with standard de-
viations equal to a fix share of the observed value of the respective pa-
rameter. 

(iii) The dual values are independent, with means proportional to average ob-
served gross margins over all crops in each region each year, and stan-
dard deviations proportional to a fix share of that. 

(iv) We believe that the parameter vector is such that the implied point price 
elasticity of supply matrix ηηηη(ΨΨΨΨ,αααα,ββββ) is normally distributed with mean 
depending on the crop mix (rotational shares) and standard deviation in-
dependent for each item. For non-diagonal elements of ηηηη, the prior distri-
bution is non-informative (i.e. we have no specific beliefs regarding cross 
price elasticities). 

Regarding (ii): Specifically we assume that e ∼ N(0,ΣΣΣΣe) with ΣΣΣΣe a diagonal ma-
trix with ( )22 320.0 iei z=σ  on the i th position. This means that we assume that 
errors are independent normally distributed with mean zero covariance matrix 
such that three standard deviations cover 20% of the observed value of the related 
parameter. 

Regarding (iii): In order for the posterior density to have a unique maximum, 
we require informative priors also for the dual values λλλλ in order to be able to iden-
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tify ΨΨΨΨ (since for example c and λλλλ enter the first order conditions additively). We 
make the assumptions 
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where m”OSET” t is the observed gross margin in compulsory set aside, tm  the aver-
age gross margin over all crops and ρt the general set-aside rate in period t. The 
prior mode (mean of normal distribution) of λλλλ is thus based on the assumption 
that the expected land rent is approximately 25% of the average observed gross 
margin tm  in the respective year taken over all crops except sugar beet (whereas 
sugar quota rents are missing in the model). For the case study region FR24 this 
fits reasonably well with data on land rental prices obtained from Eurostat for 
France, shown in table 11. The priors for dual values of the set-aside constraint 
were derived in a similar manner, but also including. The variances of λλλλ were 
assumed to be such that 20% of the prior means equal three standard deviations. 

Table 11. Land rents in France (Euro per ha) 

 Eurostat* λ1 prior λ2 prior 
1986 102 86  
1987 104 132  
1988 106 94  
1989 109 113  
1990 111 134  
1991 113 119  
1992 115 101 -116 
1993 117 91 -23 
1994 119 124 -5 
1995 121 175 -8 
1996 122 163 -27 
1997 125 148 11 
1998 129 155 -98 
1999 132 193 -6 
2000 132 139 39 
2001 131 145 74 
2002 131 181 24 

*Source: Eurostat (2003) 

Regarding (iv): There are cases when the observations imply a supply elastic-
ity that is far outside any plausible range, e.g. > 1000. One case when this would 
happen is when the observations imply a downward sloping supply function, as in 
the case of rye in FR24 discussed in a previous section. Given the second order 
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conditions for optimality, the best fit is obtained by a horizontal supply curve, 
implying an infinite elasticity. Such a simulation behaviour of the model is unac-
ceptable, and we firmly believe that the aggregate supply response of regions in 
reality is much smoother. Put differently, we believe that the parameter vector 
comes from a distribution that makes such extreme values utterly improbable, but 
is rather indifferent for elasticities within some plausible range. For this purpose, 
we choose a very wide normal distribution, with mean and standard deviation 
derived below. 

Most studies (see comparison to other studies below) find supply elasticities in 
the range of, say, 0.1 to 5. More specifically, we see that the elasticity is typically 
around unity for major crops, but that it is higher for crops that occupy a small 
share of the total area. One motivation for such a relation is that if a small crop 
expands with a certain percentage, that should have less effect on the value of 
fixed resources, like pushing other crops out of the rotation on the constrained 
land, compared to if a major crop expands by the same percentage.  

Letting r j denote the share of land allocated to crop j, we believe that the own 
price supply elasticities have means 3

1

5.0
−

jr  and standard deviations such that 
three standard deviations cover 1000% of the mean (the standard deviation rela-
tive to mean is thus fifty times that of the acreages, prices or yields). There are no 
priors at all for cross price elasticities. In the result section below, the priors are 
compared to elasticities from literature for the Netherlands, Denmark and France, 
and found to be in a plausible range. 

We will see that the explicit expression for supply elasticities is a nonlinear 
function of the parameters. That makes its inclusion into the estimation difficult. 
Jansson (2005) solves a similar model for supply elasticities and includes the ex-
pression explicitly in the estimation. His model, however, did not have area con-
straints, and imposed land constrain only implicitly over curvature constraints on 
the Hessian matrix, which simplified the expressions for supply elasticities con-
siderable. Heckelei and Wolff (2003) makes a similar estimation but with in-
vented data for a didactic size problem, with a simultaneous incorporation of elas-
ticity priors. Here, we have two constraints in most years and only one constraint 
in some years (before set-aside regime), which complicates things further. The 
elasticities of supply in our model can be obtained by solving the first order con-
ditions for xt (repeated here for convenience), 

 [ ] [ ]tttttttttttt ql λRcwAspYGGBDλpx ′−−−+′+= −− 11* ),( . (13) 

Let [ ]GGBDE ′+= tt l  and insert that expression into the constraints to obtain a 
solution for λλλλ, 

 [ ] ( )[ ]tttttttttttttt q vcwAspYERRERpλ −−−+′= −−− 111* )( . (14) 
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Computing x*
t(pt,λλλλ*

t(pt)) by inserting (14) into (13), taking derivatives and 
multiplying the result by yield gives us the following expression for marginal 
production23: 
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Using the definition of elasticity, we finally obtain the expression 

 [ ] ttttttttttttt PYERRERREYEXη 




 ′′−= −−−−−− 111111  (16) 

where upper case X t means the square diagonal matrix with xt on the diagonal, 
and similar for upper case Pt. 

This expression is strongly non-linear in D and B (via E) and thus difficult to 
include as constraint in the estimation. In some models, the expression has been 
simplified by neglecting the second term in the bracket and only computing di-
agonal elements in E. That simplification was previously used in different model 
to compute only diagonal elements of the quadratic PMP-parameter, e.g. in the 
CAPRI model (not published), and by Helming (2005) in the DRAM model. 

Nevertheless, with appropriate initialisation of the solution algorithm 
(CONOPT for GAMS) together with reasonable bounds for the variables, equa-
tion 16 turns out to be possible to solve simultaneously in the estimation, thus 
enabling us to include our prior beliefs regarding elasticities of supply in a trans-
parent way. 

5.5. Definition of the estimator 

Putting all the pieces together, we can now formulate the estimation problem us-
ing Bayes's theorem as above and write 

 maxargˆ =Ψ ξ(ψψψψ,ββββ,αααα,e|z) ∝ f(z|ψψψψ,ββββ,αααα,e)ξ(ψψψψ,ββββ,αααα,e) 

To repeat, the point estimate of (ψψψψ,ββββ,αααα,e) that we are looking for is the value 
that maximises the posterior density ξ(ψψψψ,ββββ,αααα,e|z), i.e. the posterior mode. Note 
that with the degenerate density function this is equivalent to solving 

 max  ξ(ψψψψ,ββββ,αααα,e)  

 subject to eαβψµz += ),,(   

  0λxψg =),,( **   

                                                      
23 In this case, the marginal production could be solved for directly. In the general case with con-
tinuous derivatives, the implicit function theorem may be used instead. 
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Since the value that maximises some function h also maximises log (h), we 
may take the logarithm of the objective function (which is a multivariate normal 
density function with covariance matrix ΣΣΣΣ). Doing that and replacing the con-
straints with the equations derived above, we arrive at the following extremum 
estimation problem: 

  minimise 
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  [ ] 0λRxGGBDcwAspY =−′−′+−−−+ δttttttttttt MAClq   

  Rtxt = vt   
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
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
 ′′−= −−−−−− 111111ν  

The dummy variable MACt with associated parameter δ in the first order con-
dition was added to control for additional effects of the MacSharry reform. It is 
equal to 1 for year 1992 and earlier for regions that were member of the EU then, 
and zero from 1993 and on. This is motivated by an optical inspection of the time 
series. For example, looking again at the gross margin and acreages of rye if fig-
ure 1 suggests that there are two clouds of observations, which correspond to pre- 
and post MacSharry reform (1993). Thus the reform is likely to have influenced 
behaviour in some way not captured in the present model (the situation is similar 
for some other products). 
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5.6. Data preparations 

The time series in the CAPRI database is different long for different crops even 
within regions. It also contains holes and obvious errors, especially for crops of 
residual character like “other cereals”, or when the area cropped is very small 
compared to other crops in the region. Thus, the estimations require data to be 
processed prior to estimation in order to make sure that no obvious data errors 
corrupt the estimations, we must select a strategy for choosing which regions, 
crops and years to include in estimation, and we must decide what to do with ze-
ros in the data. 

Selection of crops: A potentially different set of crops were estimated in each 
region. To start with, all acreages smaller than 1000 ha were set to zero. Then, the 
crops to be estimated were those satisfying all of the following three conditions: 
(1) There is acreage data in year 2000, (2) there is acreage data in at least five 
years, and (3) the sum of acreage over all years is at least 10 000 ha. 

Selection of years: A year t was included in the estimation if the total acreage 
over all crops just selected was at least 10 000 ha in year t-1. The lag is necessary 
for the lagged prices to work. The longest possible time series was 1986 to 2003. 

Selection of regions: A region was included in the estimation if the following 
three conditions were satisfied: (1) Year 2000 was included in the set of years to 
estimate for that region, (2) the set of crops to estimate contain at least three ele-
ments, and (3) the number of observations over all crops and years is at least 50. 
The number of regions to estimate determined in this way turned out to be 165. 

Treatment of outliers: Outliers for prices, yields and input coefficients were 
detected and replaced with time series mean using the following procedure: 

 Do for i = 1,2  

  1. Compute mean z  using all but the greatest and the smallest value.  

  2. If not (ai ≤ zt ≤ b/i), then replace zt with z   

where a and b are constants. The replacement was done twice, and with narrower 
bounds in the second repetition in order to alleviate the problem that the presence 
of two outliers biases the mean. Trial and error revealed that (a,b) = (0.1,6.0) 
worked fine for prices, (0.2,4.0) for yields and (0.25,4.0) for input coefficients. 

Unbalanced panels: In the cases where some time series were shorter than the 
others, it was assumed that this was really due to missing data, perhaps truncated 
by the “1000 ha rule”, not that the data truly was zero (except in the case of the 
“political activities” compulsory set-aside and non-food production on set-aside). 
Then, the estimator was allowed to choose any value satisfying the equation sys-
tem as the estimate, but the item did not enter the posterior density function. Since 
consecutive years are interlinked via the other parameters (yield, input require-
ment, PMP terms), this does not generally cause any problems. In most regions 
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where some time series was shorter than the other, it was early years that were 
missing, which are of lesser importance for the intended use of the estimates.  

6. Results 
The estimation produced a large number of results: 1917 elements of the key pa-
rameters c and D respectively, and 5457 elements of the cross group effects ma-
trix B. Furthermore, 329 092 price elasticities were computed, including the cross 
price elasticities. To this comes a very large number of fitted values and all other 
parameters in ΨΨΨΨ. It is impossible to give even an overview of all those results, and 
in this section we only present estimation results for the French case study region 
FR24 and for France as a whole. The results are evaluated following two criteria: 

1. How well is the prior information recovered? To address this, a kind of 
R2 measure is computed as the share of the explained variance observa-
tions or prior mode. In an appendix, we also provide a visual presentation 
of prior and posterior mode for selected items (plots). 

2. How is the resulting model behaving in simulation? We discuss our esti-
mated point price supply elasicities and compare them to estimates from 
literature. 

6.1. Measures of fit 

Table (12) shows the share of explained variation, R², for acreages, prices and 
yields for all land use activities in FR24. We see that in most cases, the fit of 
acreage is high, above 0.90. Exceptions are soft wheat, potatoes, sugar beet and 
voluntary set-aside. Only the last of those crops has an R² below 0.50 (0.393). The 
fit of prices is equally high in general. The fit of yields is lower because here a 
more restrictive error model is employed: the expected yields have to lie on a 
straight line (12). In four cases, the fit of yield is even negative. One can see on 
the plots in the appendix that the yields of those crops are highly variable. 
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Table 12. R² for acreages (X), prices (P) and yields(Y) 

Crop Item N R2   Crop Item N R2 
SWHE P 18 0.928  PULS X 18 0.907 
DWHE P 18 0.820  POTA X 18 0.649 
RYEM P 18 0.927  SUGB X 18 0.805 
BARL P 18 0.791  MAIF X 18 0.987 
OATS P 18 0.915  OFAR X 18 0.938 
MAIZ P 18 0.794  NONF X 11 0.999 
OCER P 18 0.935  OSET X 12 1.000 
RAPE P 18 0.923  VSET X 14 0.393 
SUNF P 18 0.932  SWHE Y 18 0.291 
PULS P 18 0.838  DWHE Y 18 0.235 
POTA P 18 0.964  RYEM Y 18 0.673 
SUGB P 18 0.455  BARL Y 18 0.179 
MAIF P 18 0.716  OATS Y 18 0.012 
OFAR P 18 0.685  MAIZ Y 18 0.657 
NONF P 18 0.948  OCER Y 18 -0.030 
SWHE X 18 0.591  RAPE Y 18 -0.164 
DWHE X 18 0.995  SUNF Y 18 0.234 
RYEM X 18 0.998  PULS Y 18 -0.027 
BARL X 18 0.977  POTA Y 18 0.490 
OATS X 18 0.997  SUGB Y 18 0.717 
MAIZ X 18 0.909  MAIF Y 18 -0.086 
OCER X 18 0.988  OFAR Y 18 0.428 
RAPE X 18 0.979  NONF Y 11 0.891 
SUNF X 18 0.934      

Source: Own estimations. 

6.2. Elasticities 

The point price elasticities of supply are computed simultaneous in the estima-
tions by equation (16). In this section we present elasticities for individual crops 
and for crop groups for one selected subregion, FR24, and for the aggregate 
France, all in the year 2002. The aggregation from the 22 French regions esti-
mated and whole of France was done by weighing the regional elasticities with 
the region's share of national crop area, or 

 ∑∑
r

rj
r

rjrj xxη  

Aggregation to crop groups was done similarly, by weighing with each crop's 
share in the crop group to which it belongs. The crop groups are the same that 
were used in the estimation, reported in table (16). Table (18) and (19) shows the 
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elasticities of individual crops for FR24 and France respectively. Table (20) and 
(21) show the elasticities of the crop groups. Some of the elasticities, especially 
for individual crops of minor land share on regional level, are high. This is true 
for e.g. rye and durum wheat, which both have elasticities above 7 and small rota-
tional shares. In contrast, soft wheat has the moderate elasticity of 0.79 for a land 
share of 36%; however, there are notable exceptions. Potatoes has a rotational 
share of only 0.36%, but only an elasticity of 0.38. 

As one might expect, the crop groups generally show less elasticity to price 
changes than the individual crops. This is partly due to the land restriction, but 
also to the crop group structure of the model, that allows catching substitution 
effects between related crops. The most notable case for FR24 is perhaps oil 
seeds. In table (18) we see that rapeseed and sunflower are good substitutes, but 
table (20) reveals inelastic supply response as a group. 

Aggregation from regions to the member state offers no great surprises. Most 
of the elasticities are of similar size at national as on regional level in the case 
studied. The greatest difference is for durum wheat, where the elasticity in FR24 
is much higher than that in the member state aggregate. One reason for not find-
ing greater differences between the region and the aggregate is probably that the 
rotational shares in the region are similar to those on national level. 

Although there are several studies that present elasticities on national level, no 
other study that the author is aware of publishes elasticities for individual crops 
on regional level with this crop coverage. Below we compare our point elasticity 
estimates as well as our priors with four other studies. Two of the other studies 
are for France, one study is for the Netherlands and one is for Denmark. In all 
comparisons, we use our point price elasticities for the year 2002. 

For France, we can compare our results to those in Heckelei and Britz (2000) 
(HB00) and Guyomard et al. (1996) (GBC96). This has been done in table (13), 
where also the land share and prior mode are printed. GBC96 estimates a model 
with seven outputs and three inputs based on a restricted profit function, using 
annual data for France. HB00 estimate a similar model as ours, but they use a 
cross-section data set of French regions for the year 1994 instead of time series 
for individual regions as we do. 

We see that GBC96 finds considerable smaller elasticities for barley (0.35) 
and other coarse grains (0.76) than this study (2.24 and 2.53), HB00 (2.65 for 
barley) or the priors (1.11 and 1.55). For soft wheat the results are much more in 
line, with the priors (0.77) quite close to GBC96 (0.72) and the estimates (1.01) in 
between GBC96 and HB00 (1.32). For maize the estimates (1.68) are close to 
GBC96 (1.63) but much higher than HB00 (0.65), whereas the priors lie in be-
tween (1.07). Rapeseed and sunflower occupy small rotational shares, less than 
5%, and as a consequence the priors are higher, about 1.5. The elasticity estimates 
for those crops are also much higher, 1.28 and 2.96, than GBC96, which finds 
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values of 0.42 and 0.22, and more in line with HB00, which finds elasticities 
greater than unity. All of the three studies find high elasticities for soya, for which 
the rotational share is less than 0.5%. 

Table 13. Comparison with other studies of own price supply elasticities in France 

Crop Land shareb Priorc Own estimate GBC96d HB00e 
Other coarse grainsa 0.034 1.547 2.531 0.758 -.--- 
Soft wheat 0.273 0.771 1.009 0.715 1.322 
Maize 0.102 1.070 1.680 1.630 0.653 
Barley 0.092 1.109 2.243 0.351 2.647 
Rapeseed 0.045 1.405 1.284 0.418 1.457 
Sunflower 0.027 1.664 2.959 0.223 1.126 
Soya 0.004 3.276 2.020 3.701 1.861 

a: Aggregated from rye, oats and other cereals. 
b: Computed from the data in CAPRI for 2002 
c: Using the formula for priors reported above 
d: Guyomard et al. (1996) 
e: Heckelei and Britz (2000) 

For the Netherlands, Oude Lansink and Peerlings (1996) (OLP96) estimate 
twelve farm type models producing three outputs (CO = Cereals and oilseeds, 
Rootcrops = Potatoes and sugar beet, and Other = all other crops). They estimate 
the model using panel data on individual farms, and also have a land constraint 
and a fixed area of rootcrops. In their table A3 they present supply elasticites, of 
which the own price effects are compared to our estimates for the Netherlands for 
similar product aggregates in table (14). To make the comparison, our individual 
crop elasticities have been aggregated with estimated planned rotational shares for 
2002. The “other crops” aggregate in OLP96 could not be formed, since we have 
three crops, (voluntary and compulsory set-aside and fallow land) for which there 
is no output price. 

Our estimates for CO (0.94) are quite close to OLP96 (0.90), but considerably 
higher for root crops (OLP96 find 0.34, our estimate 0.91). We must then keep in 
mind that in OLP96, the area used in root crops was fixed, so that the price elas-
ticity can come only from a change in intensity. It then seems reasonable that their 
estimates for that aggregate turn out lower. 

Table 14. Comparison with other own price supply elasticity estimates for the 
Netherlands 

Crop group Land share Prior Own estimate OLP96a 
CO 0.266 0.778 0.937 0.90 
Root crops 0.342 0.715 0.909 0.24 

Oude Lansink and Peerlings (1996) 
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Jensen (1996) estimates an econometric model of Danish agriculture, and also 
presents aggregated supply elasticities for three selected crop groups. In table (15) 
we have reprinted those elasticities and also our implied estimates for the corre-
sponding aggregates. We see that for the first two groups, our elasticities are 
higher than those in ibid., though our prior for cereals is similar to the estimate in 
ibid. For the last group, root crops, the elasticities are very similar and more than 
twice as high as our prior.  

Table 15. Comparison with other own price supply elasticity estimates for Den-
mark 

Crop Land share Prior Own estimate Jensen (1996) 
Cereals 0.575 0.601 1.073 0.60 
Pulses + rapeseed 0.037 1.498 1.999 0.66 
Root crops 0.035 1.522 3.772 3.80 

6.3. Complete results and estimation program 

The GAMS program and the data used to produce the results in this chapter can 
be obtained for test purposes from the author upon request.  

6.4. Conclusive remarks 

No confidence regions for the estimates are established. Exact analytical confi-
dence regions are very difficult to deduce. Approximations would in theory be 
possible. Reilly and Patino-Leal (1981) compute approximate probability con-
tours of the posterior in a non-linear errors-in-variables model by iterated lineari-
sations. In our case, analytical deduction of approximate confidence regions is 
more difficult than in ibid. due to the curvature constraints. Numerical computa-
tion by Monte Carlo simulations is not feasible because of the amount of compu-
tation time required with the present setup (several hours for a single simulation 
of all regions). 

We conclude that the estimated elasticities compare well with estimates in the 
four cases from literature studied. Nevertheless, only a handful elasticities from 
three member states could be compared. The vast amount of estimates are for 
individual crops in NUTS2 regions, and for them, we have nothing to compare to. 
Some of those elasticities appear high, e.g. rye and durum wheat in FR24 (table 
18). Such parameter settings will result in a model that reacts strongly on shocks 
in simulation compared to the current CAPRI model that in the past had inelastic 
supply. However, the high elasticities are most often found for crops with small 
rotational shares, where an elastic response is sensible. 
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With repeated future applied analyses with the full CAPRI modelling system 
and the new parameters, experiences will be gained regarding the performance of 
the estimates. 
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Appendix 1. Activities and inputs in estimation 

Table 16. Crop groups and activities modelled 

Group Description Crop Description 
CERE Cereals SWHE Soft wheat 
  DWHE Durum wheat 
  RYEM Rye 
  BARL Barley 
  OATS Oats 
CER2 Cereals2 MAIZ Maize 
  OCER Other cereals 
OILS Oil seeds RAPE Rapeseed 
  SUNF Sunflower 
  SOYA Soya 
  OOIL Other oilseeds 
  NONF Ind. rapeseed 
OARA Other arable crops POTA Potatoes 
  PULS Pulses 
  SUGB Sugar beet 
  TEXT Fibre crops 
FARA Fodder on arable land MAIF Fodder maize 
  OFAR Silage grass 
  ROOF Fodder root crops 
NOCR Non-yield crops OSET Obligatory set-aside 
  VSET Voluntary set-aside 
  FALL Fallow land 

Table 17: Inputs in estimation 

Seed Repairs buildings Fuel 
Plant protection Electricity Lubricants 
Fertilize Gas for drying Other inputs 
Repairs machinery   
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Appendix 2: Supply elasticity estimates in France 

Table 18. Supply elasticities for FR24 in year 2002 for individual crops.  

 Share SWHE DWHE RYEM BARL OATS MAIZ OCER RAPE SUNF PULS POTA SUGB MAIF OFAR NONF 
SWHE 36.17% 0.786 -0.127 -0.018 -0.280 -0.027 -0.061 -0.007 0.003 0.016 0.032 0.000 0.002 -0.016 -0.055 0.039 
DWHE 1.80% -2.226 7.913 -0.134 -2.037 -0.199 -0.441 -0.049 0.022 0.115 0.234 0.001 0.016 -0.118 -0.397 0.283 
RYEM 0.29% -3.366 -1.392 7.733 -3.079 -0.301 -0.667 -0.073 0.034 0.174 0.354 0.001 0.024 -0.179 -0.600 0.427 
BARL 12.04% -0.860 -0.356 -0.052 2.261 -0.077 -0.171 -0.019 0.009 0.045 0.090 0.000 0.006 -0.046 -0.153 0.109 
OATS 1.08% -2.320 -0.959 -0.140 -2.122 2.903 -0.460 -0.051 0.023 0.120 0.244 0.001 0.017 -0.123 -0.413 0.294 
MAIZ 7.27% -0.237 -0.098 -0.014 -0.217 -0.021 3.168 -0.261 -0.109 -0.559 -0.965 -0.001 -0.020 0.155 0.742 0.064 
OCER 1.93% -0.233 -0.096 -0.014 -0.213 -0.021 -2.334 2.074 -0.107 -0.549 -0.949 -0.001 -0.019 0.152 0.729 0.063 
RAPE 9.18% 0.012 0.005 0.001 0.011 0.001 -0.109 -0.012 1.659 -1.265 0.043 0.000 0.003 -0.014 -0.033 -0.066 
SUNF 4.94% 0.134 0.056 0.008 0.123 0.012 -1.214 -0.134 -2.751 4.059 0.480 0.001 0.036 -0.151 -0.366 -0.738 
PULS 2.89% 0.465 0.192 0.028 0.425 0.042 -3.568 -0.392 0.159 0.817 2.225 -0.040 -1.264 -0.302 -1.434 -0.117 
POTA 0.38% 0.001 0.000 0.000 0.001 0.000 -0.002 0.000 0.000 0.001 -0.031 0.384 -0.001 0.000 -0.001 -0.001 
SUGB 1.22% 0.017 0.007 0.001 0.016 0.002 -0.040 -0.004 0.006 0.033 -0.683 -0.001 3.083 -0.003 -0.021 -0.015 
MAIF 1.36% -0.711 -0.294 -0.043 -0.650 -0.064 1.728 0.190 -0.151 -0.775 -0.913 0.000 -0.015 6.590 -6.639 0.135 
OFAR 6.90% -0.366 -0.151 -0.022 -0.335 -0.033 1.274 0.140 -0.056 -0.289 -0.666 -0.001 -0.018 -1.020 2.108 -0.056 
NONF 1.43% 1.658 0.685 0.100 1.516 0.148 0.695 0.076 -0.723 -3.708 -0.344 -0.003 -0.083 0.132 -0.355 3.944 
OSET 6.29% -0.289 -0.120 -0.017 -0.265 -0.026 -0.246 -0.027 0.181 0.930 0.139 -0.001 -0.035 0.077 -0.135 -0.917 
VSET 0.82% -3.982 -1.646 -0.240 -3.643 -0.356 -3.266 -0.359 -0.563 -2.886 1.564 0.002 0.073 -0.125 -0.127 0.619 
FALL 4.01% -1.044 -0.432 -0.063 -0.955 -0.093 -0.857 -0.094 -0.129 -0.661 0.412 0.001 0.016 -0.025 -0.044 0.081 
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Table 19. Supply elasticities for France in year 2002 for individual crops. 

 Share SWHE DWHE RYEM BARL OATS MAIZ OCER RAPE SUNF PULS POTA SUGB MAIF OFAR NONF 
SWHE 26.84% 1.009 -0.056 -0.010 -0.397 -0.048 -0.091 -0.006 -0.003 -0.011 -0.001 -0.010 -0.006 -0.029 -0.020 -0.090 
DWHE 1.84% -0.766 2.102 -0.054 -0.480 -0.072 -0.132 -0.013 0.004 0.004 0.001 0.029 -0.002 -0.014 -0.022 -0.230 
RYEM 0.16% -3.276 -1.086 8.577 -2.818 -0.970 -0.939 -0.397 -0.018 -0.055 -0.013 0.074 0.092 0.003 -0.115 -1.240 
BARL 9.01% -1.322 -0.112 -0.028 2.243 -0.113 -0.199 -0.032 -0.027 -0.035 -0.001 -0.007 -0.004 -0.023 -0.028 -0.144 
OATS 1.14% -2.202 -0.241 -0.133 -1.666 2.884 -0.391 -0.126 -0.015 -0.036 -0.005 0.002 0.021 -0.031 -0.059 -0.440 
MAIZ 10.04% -0.195 -0.022 -0.006 -0.129 -0.018 1.680 -0.285 -0.020 0.043 0.011 -0.160 -0.024 -0.143 0.020 -0.314 
OCER 2.03% -0.122 -0.018 -0.022 -0.181 -0.050 -2.384 2.205 0.016 -0.003 0.009 -0.047 -0.002 -0.043 0.009 -0.566 
RAPE 4.44% -0.011 0.003 0.000 -0.049 -0.001 -0.054 0.006 1.284 -0.539 -0.011 0.087 -0.008 0.061 -0.098 -0.404 
SUNF 2.67% -0.076 0.007 -0.001 -0.097 -0.006 0.084 -0.001 -1.016 2.959 -0.042 0.358 -0.008 0.087 -0.181 -1.727 
PULS 0.35% -0.058 0.008 -0.003 -0.034 -0.009 0.482 0.047 -0.196 -0.373 2.020 0.066 -0.056 0.002 -0.050 -1.443 
POTA 2.40% -0.130 0.044 0.003 -0.014 0.001 -0.993 -0.005 0.180 0.458 0.010 2.113 -0.234 -0.712 -0.200 -1.812 
SUGB 0.89% -0.020 0.000 0.002 -0.004 0.004 -0.065 0.000 -0.006 -0.006 -0.003 -0.099 1.210 -0.023 0.000 0.059 
MAIF 2.40% -0.114 -0.003 0.000 -0.026 -0.002 -0.205 -0.008 0.030 0.023 0.000 -0.172 -0.018 2.434 -0.043 -0.144 
OFAR 7.74% -0.089 -0.009 -0.002 -0.043 -0.006 0.051 0.002 -0.071 -0.071 -0.002 -0.076 -0.001 -0.063 1.304 -1.114 
NONF 18.08% -0.195 -0.039 -0.009 -0.102 -0.022 -0.203 -0.059 -0.121 -0.287 -0.036 -0.237 0.033 -0.064 -0.417 2.059 
OSET 2.02% 1.329 0.146 0.025 0.785 0.092 0.897 0.286 -0.586 -1.196 -0.083 0.381 -0.250 0.209 -0.127 -1.973 
VSET 5.17% -0.442 -0.043 -0.006 -0.256 -0.027 -0.241 -0.092 0.279 0.603 0.048 -0.062 0.076 -0.163 0.206 0.124 
FALL 1.15% -1.355 -0.141 -0.026 -0.824 -0.071 0.012 0.030 -0.208 -0.430 -0.010 0.292 -0.018 -0.001 -0.664 -1.499 
Note: Numbers in parentheses from Heckelei and Britz (2000 table 2), in square brackets from Guyomard et al. (1996 table 2). 
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Table 20. Supply elasticities for FR24 for crop groups in 2002. 

 CERE CER2 OILS OARA FARA 
CERE 0.509 -0.124 0.107 0.064 -0.131 
CER2 -0.666 2.554 -0.685 -1.118 1.017 
OILS 0.489 -0.418 0.321 0.148 -0.207 
OARA 0.727 -2.473 0.540 1.228 -1.085 
FARA -0.999 1.428 -0.444 -0.691 0.861 
NOCR -2.066 -0.765 -0.354 0.334 -0.076 
 

Table 21. Supply elasticities for France for crop groups in 2002. 

 CERE CER2 OILS OARA FARA 
CERE 0.508 -0.152 0.046 -0.038 -0.151 
CER2 -0.395 1.220 0.076 -0.343 -0.343 
OILS 0.352 0.209 0.807 0.240 -1.042 
OARA -0.138 -0.543 0.402 1.623 -0.895 
FARA -0.299 -0.167 -0.428 -0.231 1.201 
NOCR -1.273 -0.360 -0.353 -0.127 -0.656 
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Appendix 3:Plots of prior versus posterior mode for FR24 
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Chapter 6  Discussion 

1. Conclusions 
This thesis attempted to provide a general approach to econometric specification 
of constrained optimization models. Special attention was given to issues that 
arise when (1) inequality constraints are involved in the model that is to be esti-
mated, and (ii) the estimation problem is ill-posed, i.e. the parameters are not 
identified. It can be argued that both of those problems are common in empirical 
work, and thus the treatment provided in this thesis should be of general interest. 
The solution approaches contained elements from bilevel programming, errors-in-
variables modelling and Bayesian estimation, and was developed in two theoreti-
cal and two empirical chapters. 

Chapter two showed how efficiency can be gained if the estimation is treated 
as a bilevel programming problem, and also suggested a numerical method from 
the field of mathematical programming with equilibrium constraints that can be 
used to find the estimates in the case when the optimization model to estimate 
contains inequality constraints. 

Chapter three applied the results obtained in chapter 2 to a spatial price equi-
librium model of crop production in Benin. Trade costs, prices and regional ex-
cess demand were estimated for one year, given observations of prices, excess 
demand and distances between markets. The estimates compare rather well with 
results of empirical studies, albeit they were found not to be robust. 

In chapter four, the focus was on the inclusion of information from diverse 
data sources using a Bayesian approach. It was shown how a highest posterior 
density estimator can be regarded a more general alternative to some currently 
used methods for inclusion of prior information, most notably maximum entropy 
and generalized cross entropy. 

In chapter five, the estimator proposed in chapter four was applied to the sup-
ply model of the large scale modelling system CAPRI. The estimation was formu-
lated as a bilevel programming problem, which was elaborated to an additive 
measurement error model, and a highest posterior density estimator designed to 
include prior information on several parameters. In contrast to the application in 
chapter three, no inequality constraints were included. All in all, supply parame-
ters of supply models with up to 23 crops were estimated in 165 regions in the 
EU. The results were compared to aggregated results of other studies for France, 
Denmark and the Netherlands. 
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It is tempting to try to condense the entire body of this thesis into a concise 
"recipe" that in a few points addresses the title subject. With risk of oversimplify-
ing, the general approach to the estimation of parameters of constrained optimiza-
tion models where there are observations correlated with model outcomes can 
thus be condensed into the following steps: 

1. Formulate the necessary and sufficient optimality conditions for the 
model to estimate. 

2. Formulate a plausible and workable error model that explains how obser-
vations relate to model parameters or variables. 

3. Include any available prior information on the parameters of the error 
model. 

4. Choose an estimation criterion that fits with the selected error model. If 
prior information is to be included (and also otherwise), the highest pos-
terior density estimator is an important option. If the problem is ill-posed 
even after prior information has been included, the posterior mean may 
still be defined. 

5. Find the estimates by solving the bilevel programming problem defined 
by optimizing the estimation criterion subject to the optimality condi-
tions, error model equations and prior distributions. If the inner problem 
contains inequality constraints, apply bilevel programming techniques for 
a numerical solution. 

2. Outlook 
Providing a fully general treatment of the selected topic is a tremendous task that 
in fact is too vaguely defined to be suitable for inquiry. Some areas that could be 
considered as belonging to this topic were hardly touched upon at all in this the-
sis. Perhaps the most obvious such deficit is the issue of hypothesis testing and 
regions of confidence. Only chapter two is concerned with the small sample prop-
erties of the parameters, and none of the preceding chapters provided a way of 
testing the significance of the estimating equations or provide regions of confi-
dence for the estimated parameters. 

If the estimation of all parameters is performed within the general framework 
provided here, the possibility is opened up for statistical tests for parts or whole 
models. If the model at hand is a normative model, such testing is not really inter-
esting, since the model is not intended to answer questions of how reality is be-
having, but of how it should behave. But precisely the application of empirical 
estimation procedures like the ones advocated here shows that the borderline be-
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tween normative and positive models is fuzzy, since the estimation aims at adjust-
ing the model to better reflect actual behaviour. 

Theoretically, the work presented here falls within the area of extremum esti-
mators, a class of problems for which several potentially useful results are avail-
able, at least in cases where the inner problem has no inequality constraints. Ana-
lytical deduction of estimator properties is, however, likely to be difficult in most 
cases, depending on the complexity of the model at hand, and especially on the 
existence of inequality constraints. A workable alternative could be numerical 
simulation methods like bootstrapping. It was considered outside the scope of this 
thesis to also treat this subject at any depth. 

For the author in his role as an applied economist, the work presented in this 
thesis has provided a general, readily applicable framework for estimating pa-
rameters in a wide array of models, also facing sparse data or identification prob-
lems. When this is written (spring 2007), the framework has already proved use-
ful in several applications not reported here (not published work). It is the modest 
wish of the author that it may facilitate consistent and transparent model parame-
ter specification also for a wider community of modellers. 

 
 

The End. 


