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   I 

Management of intrinsic quality characteristics for high-value 
specialty coffees of heterogeneous hillside landscapes 
 

Tropical hillsides are ecologically and socially diverse with a multitude of small- to 
medium-sized farms that offer a potential treasure chest of high-value market crops. 
Specialty coffees, for example, earn a substantial price premium and are therefore a 
promising opportunity for farmers. Coffee quality is determined by the natural 
environment and farm management practices. To sell high-priced coffee, farmers must 
produce beans desired by consumers who are willing to pay more for specific quality 
profiles. A targeting of the production practices to suit the continuously-changing 
market demands is necessary; the focus must be on controlling the processes that 
determine the quality characteristics.  
 
The present research aimed to develop a framework to manage the intrinsic coffee 
quality of heterogeneous hillside landscapes. In a two-tiered approach, firstly spatial 
prediction models were developed and tested to identify the comparative advantage of 
environmental niches and secondly systematic farm management practices were 
developed and tested to turn the comparative advantage of farmers into a competitive 
advantage. Commercial sensorial data of the two Colombian departments of Cauca and 
Antioquia, of the Veracruz department in Mexico and of the five coffee growing 
regions in Honduras were used to develop and test the framework.  
 
The results suggest that the framework is highly viable; the information generated is 
highly novel, is high-medium actionable and is medium deliverable to stakeholders. 
The specific conclusions derived are: (1) The production environment of coffee 
(natural environment, agronomic management and post-harvest processes) is variable 
over space. (2) Beverage quality of coffee is dependent on the production 
environment. The combination of decisive quality factors varies from location to 
location, and so does the contribution of each factor. (3) Production factors can be 
identified and their impact quantified. Subsequently the factors can be systematically 
controlled and managed to improve product quality. (4) Site-specific systematic and 
cyclic quality control processes are required to decrease produce variability and deliver 
a product sought by the market. (5) The approach is twofold, firstly the identification 
of suitable environmental niches followed by definition of site-specific management. 
(6) Farm management interventions are not always statistically significant but often 
relevant for farmers. (7) Qualitative quality-control methods using commercial data are 
viable indicators for quality measurements so long as consistent, skilled evaluators 
(cuppers) are selected in preliminary testing.  
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Manejo de las características de calidad intrínseca para cafés 
especiales de alto valor en terrenos heterogéneos de ladera 
 
Las laderas tropicales son terrenos ecológicamente y socialmente diversos los cuales 
cuentan con una gran variedad de pequeñas y medianas fincas que constituyen un 
verdadero tesoro para los cultivos comerciales de alto valor. Los cultivos de cafés 
especiales por ejemplo, ganan un valor agregado y son, por lo tanto una oportunidad 
prometedora para los agricultores. La calidad del café está determinada por el medio 
ambiente y las practicas agrícolas. Para vender café a un precio alto, los productores 
deben producir cafés requeridos por los consumidores, quienes a su vez están 
dispuestos a pagar más por ciertos perfiles de calidad específica. Es necesario hacer 
una intervención en las prácticas de producción acordes con las exigencias de un 
mercado constantemente cambiante. El enfoque se debe basar en el control de los 
procesos que determinan las características de calidad.  
 
Esta investigación esta encaminada a desarrollar un marco teórico para controlar y 
manejar la calidad intrínseca del café de laderas heterogéneas. Se desarrollaron y 
probaron primero, los modelos de predicción espacial para identificar la ventaja 
comparativa y los nichos ambientales y seguidamente se desarrollaron y probaron las 
prácticas sistemáticas del manejo agrícola específico para convertir la ventaja 
comparativa de los productores en una ventaja competitiva. Se usaron datos 
sensoriales comerciales de los departamentos de Cauca y Antioquia en Colombia, del 
departamento de Veracruz en México y de cinco regiones de café en Honduras para 
desarrollar y probar el marco teórico.  
 
Los resultados comprueban  que el marco teórico es totalmente viable, la información 
generada es altamente novedosa, es realizable y es entregable a los participantes. Las 
conclusiones específicas derivadas son: (1) El ambiente de producción (ambiente 
natural, procesos de manejo agrónomo y post-cosecha) es variable y depende del sitio. 
(2) La calidad de la bebida de café depende del ambiente de la producción. La 
combinación de factores decisivos para la calidad varia de un lugar a otro y así mismo 
es para la contribución de cada factor. (3) Los factores de producción pueden ser 
identificados y su impacto cuantificado. Subsecuentemente, los factores pueden ser 
sistemáticamente controlados y manejados para mejorar la calidad del producto. (4) Se 
requieren procesos específicos-sistemáticos y cíclicos de control de calidad para 
disminuir la variabilidad del producto y producir un producto requerido por el 
mercado. El enfoque es doble, primeramente la identificación de un nicho 
ambientalmente apto seguido de la identificación del manejo específico por sitio. (5) 
Las intervenciones en el manejo agronómico no siempre son estadísticamente 
significativas pero a menudo son relevantes para los productores. (7) Métodos 
cualitativos de control de calidad usando datos comerciales son indicadores viables 
para medir la calidad siempre y cuando catadores consistentes y calificados sean 
seleccionados en la prueba preliminar. 
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Management der intrinsischen Qualitätscharakteristiken von 
hochwertigen Spezialitätenkaffees aus heterogenen Hanglagen 
 
Der Kaffeeanbau in tropischen Hanglagen variiert ökologisch sehr stark und ist sozial 
besonders geprägt durch eine Vielzahl von kleinen und mittleren landwirtschaftlichen 
Betrieben, welche ein hohes Potential für die Produktion von hochwertigen 
Agrarprodukten haben. Spezialitätenkaffees werden mit einem Mehrwert belohnt und 
sind deshalb eine vielversprechende Option für diese Bauern. Kaffeequalität ist 
wesentlich durch die natürlichen Umweltbedingungen und die agronomischen 
Praktiken bestimmt. Um hochwertige Kaffees vermarkten zu können, müssen die 
Bauern einen Rohkaffee produzieren, welcher vom Markt nachgefragt wird und für 
welchen der Konsument bereit ist, einen entsprechenden Aufpreis zuzahlen. Deshalb 
ist eine kontrollierte gezielte Produktion notwendig um mit den sich konstant 
ändernden Marktpräferenzen Schritt halten zu können.  
 
Die vorliegende Arbeit hat zum Ziel ein Rahmenwerk vorzulegen, welches es erlaubt, 
die Kaffeequalität aus heterogenen Hanglagen einschätzen, kontrollieren und 
beeinflussen zu können. Im ersten Teil der Dissertation werden räumliche 
Vorhersagemodelle entwickelt und getestet, um den komparativen Vorteil von 
Umweltnischen zu bestimmen. Im zweiten Teil erfolgt die Analyse der systematischen 
Anbaupraktiken, um den komparativen Standortvorteil der Bauern auch kompetitiv 
nutzen zu können. Kommerzielle sensorische Daten von Kaffees aus den 
kolumbianischen Departamentos (entspricht Bundesländern in Deutschland) Cauca 
und Antioquia, aus dem Departamento Veracruz in Mexiko, und aus den fünf 
Kaffeebauzonen in Honduras wurden verwendet, um das Rahmenwerk zu entwickeln 
und zu testen.  
 
Die Ergebnisse zeigen, dass das Rahmenwerk höchst brauchbar und die mit dem 
Rahmenwerk generierte Information höchst neuartig, hoch bis mittelmässig umsetzbar, 
und mittelmässig zugänglich ist. Insgesamt lassen sich folgende Schlussfolgerungen 
ziehen: (1) Das Produktionsumfeld (natürliche Umwelt, agronomisches Umfeld und 
Nachernteverfahren) ist standortsvariable. (2) Die Tassenqualität hängt vom 
Produktionsumfeld ab. Die Kombination der qualitätsbeeinflussenden Faktoren variiert 
von Standort zu Standort und ebenfalls der Beitrag der einzelnen Faktoren. (3) 
Limitierende Produktionsfaktoren konnten identifiziert und deren Einfluss quantifiziert 
werden. Dies erlaubt eine systematische Kontrolle und Beeinflussung einzelner 
Faktoren, um die Produktqualität verbessern zu können. (4) Ortsspezifische, 
systematische und zyklische Qualitätskontrollprozesse sind notwendig, um die 
Variabilität der Produktqualität zu verringern und ein vom Markt nachgefragtes 
Produkt herzustellen zu können. (5) Die Herangehensweise beinhaltet zwei 
Teilschritte. Zuerst werden geeignete Nischen identifiziert und darauf basierend das 
ortspezifische Qualitätsmanagement definiert.  (6) Managementinterventionen sind 
nicht immer statistisch signifikant, aber trotzdem oft relevant für den Bauern. (7) 
Qualitative Methoden zur Qualitätskontrolle, basierend auf kommerziellen Daten, sind 
brauchbare Indikatoren für die Erfassung der Tassenqualität, so lange gut ausgebildete 
Verkoster in Voruntersuchungen ausgewählt wurden.  
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Introduction 

   1 

1 INTRODUCTION 
Since the early 1980s the dominant feature of the international commodity markets has 

been a sharp downward trend in price (Maizels, 1994). Developing economies are 

destabilized by fluctuations in primary commodity prices due to their strong reliance 

on foreign exchange earnings on commodities (Dick et al., 1983). Despite efforts to 

stabilize prices, commodity prices continue to decline over time (Grilli and Yang, 

1988). Although price booms do occur, they tend to be shorter than the slumps, which 

also tend to be worse than the price recoveries (Cashin et al., 2002). The slump of 

coffee prices led to a 20-year low in 2001; taking inflation into account, the ‘real’ price 

is now at a mere of 25% of its level in 1960 (Cashin et al., 2002; Gresser and Tickell, 

2002). The 25 million coffee producers worldwide, 70% of whom are smallholder 

farmer working on fewer than 5 ha (Gresser and Tickell, 2002) have been among the 

hardest hit by the decline of commodity prices. Coffee is grown in 70 countries on 

East African, South Asian and Latin American hillsides where millions of people are 

employed in producing, processing, trading, roasting and retailing. The entire 

agricultural system has become jeopardized as farmers strive to cut costs, producing 

coffee becomes unaffordable and farmers stop maintaining their land and coffee trees. 

 

Tropical hillsides are ecologically and socially diverse with a multitude of small- to 

medium-sized farms that offer a potential treasure chest of high-value market crops. 

The diverse conditions of hillside areas provide major opportunities for utilizing 

different ecological niches required to produce high-value specialty crops. One option 

for farmers for increasing their incomes is to diversify into higher value coffees. 

Specialty coffees, in contrast to bulk commodity coffee, earn a substantial price 

premium and are therefore a promising opportunity for farmers. To sell high-priced 

coffee, farmers must produce beans desired by consumers who are willing to pay more 

for specific traits. Rigorous, continuous cyclic quality-management schemes are 

necessary so that farmers can react on the emerging and fast-changing markets for 

specialty coffee. Existing approaches for quality management of volume coffee can 

not cope with the requirements of the supply chains for specialty coffee. 



Introduction 

   2 

1.1 Problem definition 
In the last decades a process of market fragmentation and differentiation into higher-

valued products has occurred. Product lines became vertically differentiated offering to 

the consumer the opportunity of choosing their products based on various objective 

and subjective quality attributes, such as monetary, physical, visual, social, 

information, or service attributes. Differentiated products are beneficial for both ends 

of the supply chain; the consumers receive a product tailored to their requirements and 

the producer is rewarded for his effort (Borregaard and Dufey, 2005). 

 

Quality is a measure of the extent to which customer requirements and expectations 

are satisfied (Lochner and Mater, 1990). Consumers’ perceptions and attitudes define 

which aspect of a product is critical to consumer value (Schröder, 2003). Quality 

relates to the fulfillment of requirements through a set of inherent characteristics, 

where inherent refers to an existing characteristic as opposed to an assigned attribute 

(ISO, 2000). This implies that quality is not static, since customer expectations can and 

do change. Quality therefore involves identifying specifications and standards to meet 

customer needs and preferences (design quality) and producing products that satisfy 

those specifications and standards (conformance quality) (Lochner and Mater, 1990). 

 

The specialty coffee sector is only one example of a newly-emerged market niche. 

Commodity coffee has behaved over the last two decades as a paradigmatic primary 

commodity, exhibiting sustained declines in its term of trade, punctuated by occasional 

periods of price rises (Fitter and Kaplinsky, 2001). Specialty coffees, however, in 

contrast to bulk commodity coffee, earn a substantial price premium and are therefore 

a promising opportunity for farmers.  

 

Quality coffees are particularly suited to the intensive management that can be 

provided by small-sized production units. Furthermore, the diverse climatic conditions 

and soils of hillside areas provide major opportunities for utilizing different ecological 

niches required to produce specialty coffee.  

 

Coffee quality is determined both by the natural environmental factors such as altitude, 

aspect, rainfall and soils and by farm management practices such as shade 
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management and harvest practices (fermentation time, drying, storing) The quality is 

therefore highly variable in both space and time. The question to be addressed then is, 

how can farmers, in their highly variable environments, produce beans desired by 

consumers as the demand for high-quality specialty coffees grows and becomes an 

increasingly important component of the market?  

 

The focus must be on controlling the processes that determine the characteristics of the 

green beans so that the coffee liquor has the qualities that are sought by customers, 

rather than on controlling the end product by inspection, as is currently the case. This 

implies the need for a focus change from inspection to prevention (Lee and Whang, 

2005). In this context the understanding of supply-chain quality management becomes 

increasingly relevant (Robinson and Malhotra, 2005). Quality practices must advance 

from traditional and product-based mind-sets to an inter-organizational supply-chain 

orientation involving all actors along the supply chain. The change from generic to 

continuously-emerging specifics implies a shift from product to process. Processes 

represent a continuous series of actions or operations directed to an end.  For the 

specialty-coffee sector this means a collaborative effort between supply chain 

participants in process-based management to interlink high-quality production 

environments to final consumer niches.  

 

1.2 Demand for change 
Recent research has demonstrated that quality does indeed pay. The added value 

gained by premiums paid for quality is much higher than for premiums paid for a 

label. This is especially true for specialty coffee, for premium coffees the added value 

is similar (Figure 1). Importers and roasters are the final judges who decide what price 

they are willing to pay for coffee of a given quality. The high-quality coffee trade 

therefore requires a full understanding and appreciation of why a particular coffee 

attracts the interest of buyers (ICO, 2000) so that producers will be able to produce 

beans that will satisfy the customers’ demands. 
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Figure 1: Impacts of quality and certification on green coffee prices.  
Adapted from (CIMS, 2004 ) 
 

Customer satisfaction in the conventional paradigm for bulk coffee is shown in Figure 

2. In this model, customer satisfaction is 100% when the product complies with the 

standard requirements or 0% when it does not. Whilst it is easy to comply with the 

requirements required for bulk coffee, the benefits are also small. The requirements for 

bulk coffee do not form a specific target rather a range within which quality has to fall, 

for example a range in full defects between 9 and 23 is acceptable. Specifications on 

defect will be presented in the next chapter. 

 

 
Figure 2: Conventional quality paradigm used for bulk coffee.  
Quality specifications for bulk coffee allow a wide range of quaities (Bhote and Bhote, 2000). 
 

In the markets for high-quality coffee, product specifications are even more important. 

For example, to be classified as specialty grade (Specialty Coffee Association of 

America SCAA standards), “no primary defects are permitted, and only 5% by weight 
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can be above or below the indicated screen size” (Note the wording, “Indicated screen 

size”, which implies that the customer chooses according to his preferred size). 

Purchasers of high-quality coffees assume that their product complies with certain 

specifications but they most importantly demand that their product has a distinct 

expression of one or more of flavor, body and fragrance. Therefore the new focus in 

the specialty quality segment of the industry must be on controlling the processes that 

determine the quality characteristics of the green beans so that the coffee liquor is 

sought after by the end user. In consequence, actors in the coffee supply-chain must 

attempt to reduce variability in both the process and the product, and thereby moving 

the quality characteristics closer to the target values specified by the customer. The 

pursuit of quality therefore means creating products that reduce economic losses due to 

variation away from the target. The target is very narrowly defined and only small 

deviation will cause loses (Figure 3).  

 

 

 
Figure 3: The new quality paradigm used for specialty coffee. 
Adapted from (Bhote and Bhote, 2000). 
 

Targeting the customers’ demands implies increasing investment in information and 

control mechanisms to comply with standards and customer trends. According to the 

market channel continuum (Goldsmith and Bender, 2003) is the lowest level of 

information need represented by commodity coffee, which only requires some generic 

physical information about defects in the sample. Further product differentiation by 

search attributes such as bean size and variety implies a little more sophisticated 

tracking and control system (Figure 4). Differentiation by experience attributes, such 

as cupping tests, requires tighter quality evaluation by an expert panel together with a 

demanding tracking and quality control system. The credence model has the additional 
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requirement of trust in the company marketing the coffee, which is only possible 

through long-term commitment and high-quality standards. The highest level of 

product differentiation in the market channel continuum is the exclusivity model, 

where the consumer has full trust in the coffee retailer with regard to the origin and 

quality of the coffee, based on personal relationship either in the store, by telephone or 

over the internet. 

 

 
Figure 4: Marketing channel continuum.  
Adapted from (Goldsmith and Bender, 2003). 
 

For farmers to move from commodity coffee to specialty coffee requires that they not 

only increase the quality of their product, but that information about it is available to 

the end user, so that a system of information management is necessary. 

Communication and trust between actors in the supply chain will eventually lead to 

consumers’ increased satisfaction with the product. The supply-chain approach and 

quality management of commodity coffee cannot cope with the newly emerging 

specialty coffee markets. A new approach to quality management in the supply chain 

is therefore necessary to move from a focus on the product control for commodity 

coffee to a focus on process control in specialty coffee. 
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1.3 Hypothesis, goal and objectives 

1.3.1 Central hypotheses 

1. That association exists between the organoleptic characteristics of coffee and 

the natural and production environment in which it is grown. 

2. That these associations can be identified through systematic analyses of large 

numbers of commercial samples. 

3. That using novel approaches and modern information technology will provide 

the bases for differential, site-specific product management that consistently 

harnesses the potential of both the natural and production environments to 

produce high-quality specialty coffee. 

 

1.3.2 Overall development goal 

To accrue sustainable economic benefits to the coffee-growing community and their 

partners, while maintaining the environmental resource base, by facilitating producer 

participation in supply chains for high-value coffee. 

 

1.3.3 Objectives 

General objective  

To use analyses of product quality and associated growing practices in coffee 

production systems to derive the concepts and methodology for both site-specific and 

regional quality management. To devise quality management methodologies for use on 

farm and in the supply chain that facilitates farmers’ participation in the production of 

specialty coffees leading to increased income and improved livelihoods. 

 

Specific objectives 

1. To describe and quantify the impact of the natural environment on coffee 

liquor quality.  

2. To describe and quantify the impact of agronomic management and post-

harvest processes on coffee liquor quality. 

3. To develop, compare and test spatial analyses tools for the identification of 

high quality coffee niches. 

4. To develop and test concepts for site specific agronomic and post-harvest 

management practices for improved coffee quality. 

5. To determine the utility of qualitative quality control methods. 
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1.3.4 Problem and objective tree 

Figure 5 summarizes the sequences of the problem tree starting out in the trunk of the 

tree with the decreasing income of coffee farmers up to the branches representing the 

lack of real world data, environmental data, analyses techniques and data management 

systems. In the opposite direction the objective tree states the output, general 

objectives, objectives and sub-objectives to confront the defined problems. 

 

1.4 Approach 

The approach differs from those used in traditional agricultural research. First, 

methodologies were required to characterize the spatial variation in factors that drive 

product quality. Secondly, organizational structures were required where producers 

and others contribute knowledge to assess the variation of product quality down to the 

farm or field level. Thirdly, analytical techniques needed to be adapted to make sense 

of the information collected. Methodologies to characterize the factor variation 

included tests of significance, correlation, regression, cluster, principal component and 

discriminate analyses, spatial visualization (mapping), Bayesian statistics and 

prediction modeling. The organizational structure involved all partners of the supply 

chain to allow the use of commercial data. 

 

• Farmers harvested the berries and provided information on farm management 

and post-harvest activities; 

•  Associations assisted in developing the sampling design and coordinating the 

field work;  

• Exporters and the roaster assessed the beverage quality and provided insight on 

cupping procedures and quality preferences; and  

• Researchers generated environmental data, compiled and administrated the 

production data, developed a online data warehouse system, and analyzed the 

data generated by the chain.  

 

For the field experiments the data were generated under a semi-controlled environment 

that is the plots where chosen in advance, specific parameters were controlled and 

treatments applied. In the thesis exploratory analyses are distinguish where 

commercial data was used from case control studies where data generated in semi-

controlled environments were used.  
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Figure 5: Problem and objective tree. 
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2 CONCEPTUAL FRAME WORK 

2.1 Specialty coffee quality 

As stated in Section 1.1 is quality a measure of the extent to which customer 

requirements and expectations are satisfied and consumers’ perceptions and attitudes 

define which aspects of a product is critical to consumer value. Moreover, quality 

relates to the fulfillment of requirements through a set of inherent characteristics.  

 

2.1.1 Paradigms 

In the conventional coffee trade, as for example implemented by the New York Board 

of Trade coffee exchange (NYBOT, 2005), coffee quality is measured comparing 

critical product characteristics such as bean defects (Table 1) or bean grain size  with 

technical specifications for the product. For example, to qualify as Exchange grade 

coffee, 9 to 23 full defects are permitted, and 50% of the coffee by weight must be 

above screen 15, and only less than 5% below screen size 14. Exchange grade is 

defined by the Common Code for the Coffee Community 4C (CCCC, 2005) as those 

“with minimum size of aggregated volume of green coffee of at least one container” . 

This is the conventional paradigm for volume coffee. 

 

Table 1: NYBOT classification system 
The numbers of full defects allowed for each class. 

Class NYBOT grade 

1 Specialty grade (0 - 5 full defects) 

2 Premium grade (6 – 8 full defects) 

3 Exchange grade (9 – 23 full defects.) 

4 Below Standard grade (24 – 86 full defects) 

5 Off grade (more than 86 full defects) 

 

Specialty coffee refers to class 1 according to the NYBOT grading systemCustomers 

of high quality coffees assume that their product complies with certain specifications, 

but they most importantly demand that their product has distinct attributes in flavor, 

body or fragrance. To classify for specialty coffee SCAA terms: “Coffee beans roasted 

to greatest flavor potential, brewed to established standards. In the green bean phase it 

has no defects and has a distinctive character in the cup.” The grain size is not 

considered as decisive for quality, but screen sizes are not allowed to be mixed 

because when milling and roasting mixed screen sizes have different quality 
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characteristics. In the high-quality coffee markets product specifications are still 

important (Table 2).  

 

Table 2: Differences between exchange and specialty grade are shown 

Exchange Grade (9 – 23 f.d) Specialty Grade (0 – 5 f.d) 
Primary defects permitted; 50% by weight 
above screen size 15, less 5% than 5% below 
screen size 14  

No primary defects; 5% above below indicated 
screen size  

No faults permitted, 5 quakers1 permitted  No faults and taints; no quakers  
Sound cup; good roasting Must possess at least one distinctive attribute in 

the body, aroma, or acidity 
1 Quakers are defective coffee beans that fail to roast properly, remaining stubbornly light-colored. 

 

2.1.2 Quality perceptions 

Producers, exporters and roasters in the supply chain for specialty coffee perceive 

quality differently. Their distinct understanding of quality and language used to 

describe quality is demonstrated with the results of interviews conducted with the 

actors of the supply chain of specialty coffee (Bode et al., 2006). 

 

Producers refer to quality as: 

“…the coffee should be bright, without black beans, very clean, the sieves where the 

coffee is screened maintained, and that only ripe cherries are harvested…”  

(Doña Carmen, grower Ecuador)  

 

“… the coffee has no defect neither a tiny one nor a big one….”  

(Don Gilner, grower Colombia) 

 

“… an elegant management…”  

(Wife of Don Denis, grower Colombia) 

 

Growers perceive the quality of their coffee mainly based on the color and size of the 

bean, by the odor and the contamination with defects. Tangible indicators are used for 

good processing, such as color and time of the fermentation process, and the color and 

hardness during the drying stage of beans.    

 

On the other hand specialty exporters and roasters define quality as follows: “Quality 

is a compound of quality attributes, physical and intrinsic quality, organoleptic quality, 
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which is the flavor, the aroma, the acidity, the sweetness, that will satisfy the 

consumer, and a specific client who is looking for a certain quality profile.” 

(Colombian Specialty Coffee Exporter) 

 

“For me the principal component of coffee quality is the flavor. If the coffee is free of 

defects, naturally sweet, and if it offers clear and articulated aromas, then I refer to 

quality.” (United States specialty coffee roaster) 

 

“It is not only the absence of defects …the focus has to be in positive attributes”. 

(United States specialty coffee roaster and importer) 

 

“It needs to consist of outstanding aromatic attributes, which are especially fine, 

especially lively. These are my definitions; I guess that others look more for body or 

sweetness. The elementary factor for me is the vitality.”  

(German specialty coffee roaster) 

 

For specialty coffee roasters, the organoleptic qualities, which are intrinsic to each 

coffee, are decisive. Despite this, the prerequisite for a specialty coffee are the absence 

of defects. On the other hand are growers’ definitions mainly based on objective and 

tangible attributes. Usually growers do not know the organoleptic quality of their 

coffee, since they sell the best quality and consume the defective beans. The intrinsic 

liquor characteristics require skill and training to measure, which few growers have, 

and this usually implies asymmetric information between buyer and seller (Stiglitz, 

1986). In order to improve equity and understanding of quality in the supply chain all 

the actors need to be able to communicate and discuss quality. The obstacle is not only 

due to language barriers but also rather due to the very distinct perceptions of quality 

between the different actors.  

 

2.1.3 Definition 

Based on the SCAA specialty coffee definitions, Schröder’s definition (2003), the 

perceptions of quality in the supply chain and on my own experience, the following 

definition for specialty coffee is proposed:  
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Specialty coffee is a coffee of a particular production environment (natural 

environment, agronomic management, and post-harvest practice), which represents 

characteristics intrinsic in the sensorial quality that is sought of by the market.  

This definition of specialty coffee includes three components, the production 

environment that give (i) a distinct characteristic to the coffee expressed in (ii) the cup 

quality sought of by the (iii) market.  (Läderach et al., 2006) 

 

2.2 Precise quality management 

The conceptual frame work will demonstrate how to manage intrinsic quality 

characteristics for high-value specialty coffees. The aim is to identify and manage the 

variability in order to produce coffee that meets defined goals. The four-stage 

approach to variability (Cook et al., 2006) is the conceptual framework where the 

different theoretical concepts are incorporated and tested for their suitability to manage 

variability in the supply chain for specialty coffee. The four-stage approach to 

variability helps to clarify if the different concepts are suitable to identify and generate 

the information that is required for decreasing variability, which are then compared 

against the current (traditional) situation. Table 3 shows the chapters of this thesis 

where the concepts are tested in case studies. The approach stresses the importance of 

presenting concepts for decreasing variability that pass tests of viability, novelty, 

actionability and deliverability.  

 
Table 3: The four-stage approach to variability 
The concepts applied are built into the approach. Reference is made to the chapters of the thesis where 
the relevant concepts are tested in case studies. 
 

Four-stage approach to variability Thesis chapters 
I: Are the concepts viable? 

 -> Concept of comparative and competitive advantage 
 -> Pareto principle 
 -> Identification of limiting factors 

 
6 

4, 5 
4, 5, 6 

II: Is the information novel? 
 -> House of quality 
 -> New product data 
 -> New environmental data 

 
8 

3, 8 
3 

III: Is the information actionable? 
 -> Taguchi concept 
 -> Realize the competitive advantage 
 -> New data analyses techniques 

 
7 
7 
3 

IV: Can the information be delivered to the stakeholder? 
 -> New feed back mechanisms 
 -> New information management 

 
3 
3 
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2.2.1 Viability of concepts 

As statetd in Section 1.2 is high variability in coffee quality problematic and can 

endanger income. Therefore it is important to develop concepts that will lead to the 

generation of information that decreases that variability. That is, the approach must 

show that the concepts and the information they generate will remove a major source 

of variability and in doing so will be beneficial for the actors in the supply chain by 

reducing uncertainty.  

 

Concept of comparative and competitive advantage 

Two important concepts in international trade theory are competitive advantage and 

comparative advantage, which are conceptually different but are interrelated. 

Comparative advantage refers to the potential advantage that one entity (area or 

company or some other such entity) has over another for the production of a specific 

product. Competitive advantage, on the other hand, refers to the factors that explain 

why an entity is able to realize its comparative advantage (Borregaard and Dufey, 

2005). For example, according to both empirical analyses and expert knowledge, the 

farmers of the southern Colombian municipalities of El Tambo-Timbio and Inzá have 

the environmental prerequisites to produce high quality coffees. In this case, these 

farmers have a comparative advantage compared to other farmers in the same 

department. However not all the farmers in these two municipalities take the advantage 

of their favorable prerequisites to produce the specialty coffee that commands a 

premium price in the market. So while all the farmers in these high quality niches have 

a comparative advantage over other farmers in the Department, some do convert this 

into a competitive advantage, and other dont. The question then becomes, “Why is 

farmer X able to turn his comparative advantage into a competitive advantage while 

his neighboring farmer Y does not?” That “why” question then leads to the further 

questions “What is farmer X doing differently and how is he doing it”.  

 

Pareto principle 

What are the factors that farmers need to manage and control in order to decrease 

variability? The volume coffee industry has a naïve approach to quality control, using 

merely one final sampling inspection to screen for non-conformance to the grading 

standards (see Table 1). Using this approach, the only way to obtain higher quality is 

by increasing sampling frequency and so increasing the costs of inspection. Over the 
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last few decades, however, the quality interventions have moved from a focus of 

inspection to a focus of prevention  (Lee and Whang, 2005), or, as stated by (Robinson 

and Malhotra, 2005), a shift from product control to process control. Quality control 

systems in manufacturing industry are based on the Pareto Principle.  

 

Vilfredo Pareto was an Italian economist who described that the income of the 

population is unequally distributed. Few people in a community, the vital few, earn a 

larger part of the total income while the majority, the trivial many, earn a smaller 

fraction. Later Pareto’s Principle was translated to industry, with totally universal 

application. The Pareto Principle states that causes and effects are not linearly and 

proportionally related, that is a few causes produce the majority of effects. This is also 

known as the 20-80 law: 20 percent or fewer causes produce 80 percent of the effects 

(Figure 6). The 20-80 law holds true in many industrial situations of quality control 

and is believed to be applicable to quality management in agricultural production. The 

goal, then, is to identify the critical few factors that contribute most to variation in 

quality with the objective that by controlling them, variability around an overall target 

objective can be reduced.  

 

 

Figure 6: The Pareto Principle. 
Only few causes produce the majority of the effects. (Adapted from (Bhote and Bhote, 2000). 
 

Identification of limiting factors 

The first step to identify the environmental factors that affect coffee quality is to 

review literature of studies conducted in other growing areas. Environmental factors 

that affect coffee quality are spatially correlated, that is, the environment changes over 
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space and as it does, quality also changes. The objective is to define the relation 

between quality data and the parameters that describe the environment. There are three 

different types of spatial statistics: 

 

•••• Point correlations and regressions compare data of sample sites; 

•••• Cell correlations, compare cells of occurrence data; and 

•••• Moving Window correlations compare sites (pixels) taking into account 

information from surrounding pixels. 

 

In addition, spatial decision support (SDS) tools can be used to identify limiting 

factors. There are various SDS tools based on different algorithms ranging from 

Bayesian statistics, artificial intelligence, maximum entropy, and so on. The effect of 

controlling agronomic management and post-harvest factors can be determined by 

carrying out formal experiments on-farm.  

 

2.2.2 Novelty of information 

To be useful, any new information generated and compiled must be perceived by 

actors in the supply chain as offering new insights from that, which is currently 

available. Volume coffee requires very few items in the specification; usually traders 

and roasters only know the variety, country or region of origin, its altitude in general, 

and some basic quality indicators such as percent of defects and grain (sieve) size. 

Information on the relation between quality and the production processes is not 

available so that the incentive to improve the characteristics that contribute to the 

quality of the product is almost entirely absent. In contrast, management of the quality 

of specialty coffee requires information on both production and processing sides to 

define the product more closely. The interactions between quality and the natural, 

agronomic and processing components of the production environment require that 

these quality predictor variables be known as well as the response variables, such as 

the quality characteristics sought by the market. 

 

The house of quality 

For the success of a product it is crucial taking into account the customer perception, 

which is referred to as the “voice of the customer” (Lowe and Ridgway). Quality 

function deployment (QFD) is a set of tools to translate customer requirements into the 
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appropriate technical requirements for each phase of production. QFD builds on the 

“voice of the customers” to asses the demand and uses a comprehensive matrix, the 

house of quality (HOQ) for documenting information, perceptions and decisions 

(Akao, 1990). The HOQ is the centerpiece of the QFD. In the HOQ the customer’s 

requirements are related to the product characteristics, so that it is crucial to match the 

product to the requirements of the market. In the case of the supply chain for specialty 

coffee the “voice of the customer” is the cupper, a skilled person with trained sensory 

perception. These experts are persons “with considerable experience and proven ability 

in sensory assessment of a given product under specific conditions”(Land and 

Shepherd, 1984). The cupping evaluation is the HOQ where quality traits are identified 

and then related to components of the production specifications such as district of 

origin, shade, varieties, and post-harvest practices.  

 

New product data  

The lack of relevant agricultural information is usually the lack of its site specific 

focus and the relevance for the industry (Cook et al., 2006). For quality management in 

supply chains, however, these are two vital components. Because coffee quality is site 

specific, data must be collected from individual sites to understand the interactions 

between the production environment and the quality assessment. Moreover, because 

the assessment must be based on industry standards, the data have to be those provided 

by the industry. 

 

A specific evaluation is needed for quality assessment of specialty coffee. The cupping 

evaluation of coffee flavor has three components: olfaction (aroma of the freshly 

ground coffee and the flavour of the brew), gustation (the taste sensations of the brew), 

and mouthful (the feel of the liquid in the mouth) (Lingle, 2001). Sensorial coffee 

assessment is performed by experts who in the specialty coffee sector usually are 

cuppers and importers at the same time. Experts are persons “with considerable 

experience and proven ability in sensory assessment of a given product under specific 

condition (Land and Shepherd, 1984). Cuppers represent the markets and their 

judgment impacts on management, purchasing, processing and marketing decisions 

(Gatchalian, 1981). The cupping process is the central component of the HOQ and 

with the other QFD tools brings together consumers, traders and representatives of the 

grower associations to make sure that the voice of the customer is transmitted upward 
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along the chain. This approach makes sure that the information generated is relevant to 

the problem, especially as the cupper is a person from the industry who represents the 

market and sets the standards. The information from the process is production specific, 

close to real time, driven by the market and is therefore relevant and unique to the 

problem.    

 

New environmental data   

Over the last few decades there has been a data revolution that provides more data on 

environmental variables at a higher resolution, both temporal and spatial, for the whole 

globe. The three principal advances are for higher resolution topography, climate and 

vegetation data. These include: 

 

• Shuttle Radar Topography Mission (SRTM): High resolution terrain model 

(90m spatial resolution, improving to 30m). Processed and downloadable from 

http://srtm.csi.cgiar.org (Jarvis et al., 2004) 

• WorldClim: 30 arcsecond (about 1 km at the Equator) spatial resolution climate 

data. Processed and downloadable from http://www.worldclim.org (Hijmans et 

al., 2005a).  

• MODIS: High temporal resolution thermal and spectral imagery providing 

global images of vegetation every 16 days, with a spatial resolution of 250m.  

• Satellite imageries of different spatial resolutions; 30 m (Landsat) and 0.60 m 

(Quickbird) resolution.  

 

 

2.2.3 Actionability of information 

The test of “actionability”, that is whether any particular piece of information is, of 

itself, sufficient to justify recommending a course of action, is perhaps the hardest to 

satisfy. The tests of significance and novelty specify the potential importance of the 

new information, while actionability addresses whether the information can be put to 

practical use. The Taguchi concept is useful in this regard. 

 

Taguchi concept 

In manufacturing, the information that is gathered about a product is specific for each 

of the conditions under which the product was produced. The measured factors explain 
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the quality of the product within its defined environment. This information permits the 

analysis of the variation of the quality of a product around a given target quality and 

through a cyclic process of trial and error allows minimizing the variation according to 

the Taguchi concept. Taguchi started from the realization that in much industrial 

production, outcomes need to be produced to meet a given target specification. He also 

realized that excessive variation lies at the root of poor manufacturing quality. He 

argued that quality engineering should therefore start by quantifying the cost of poor 

quality. In much conventional manufacturing the cost of poor quality is represented by 

the number of items that lie outside a given specification multiplied by the cost of 

reworking or scrapping the products that fail to meet it. It is self evident that losses 

become very small when there is little variation from the target specification. Taguchi 

proposed to find a useful way to describe these losses with statistics. He specified three 

situations: 

 

• The larger the better (for example, agricultural yield); 

• The smaller the better (for example, carbon dioxide emission); and 

• On-target production with minimum-variation (for example, specialty coffee 

production that complies with consumer requirements and earns a premium) 

 

The cyclic learning process is adapted from Taguchi as follows: Consider the factors 

that drive an agricultural production system where: some are controllable by the 

supply chain members others are not (Figure 7). With no control system in place, a 

product with great variation in quality is produced, shown by the dashed line, while the 

objective is to produce a product with a consistent quality as shown by the solid 

horizontal line. With a suitable control system, the contribution of controllable factors 

towards variation in product quality can be estimated by the chain members applying 

their own knowledge or other sources of information.  Based on these estimates a 

control or damping system can be implemented to reduce the variability in quality as 

shown in the dotted line. The approach is based on cycles of analysis and learning and 

comprises four stages, information acquisition; interpretation; evaluation; and control 

(Cook and Bramley, 1998). This approach is applied to the supply chain for specialty 

coffees in the following sections. 
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Figure 7: The agricultural production system in the process control concept.  

Interpretation of product quality is done so that controllable factors can be identified and managed 

(Oberthür et al., 2005). 

 

Realize the competitive advantage 

As described above, many farmers do have comparative advantage over others but do 

not convert this to a competitive advantage. To address this issue, farmers must choose 

those farm management practices that permit the full expression of the natural-

resource base, that is those environmental conditions that identify specific niches. 

Once farmers have the information that identifies their specific niche, they can make 

that information actionable by implementing a version of the Taguchi system of cyclic 

process control. 

 

The process requires that the growers obtain cupping information on the effect of 

different environmental factors and management practices, such as aspect, soils, shade 

management, harvest time, and post-harvest processes. In this manner, growers 

convert their farms into applied research sites. They then know what influence 

different management conditions have on cupping quality and thus what are the 

conditions for increasing the quality of their product and eventually obtaining a price 

premium. 

 

The management practices to achieve this will likely be different for each location that 

is management will be site-specific. This implies that participation in supply chains of 

high value products must be process oriented as opposed to product oriented as in the 

market for bulk coffee. Moreover, the configuration of the supply chain is an iterative 
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process, which inevitably includes failures as well as successes (Robinson and 

Malhorte, 2005).  

 

New techniques for data analysis 

The development of computer hardware and software has allowed the evolution of 

new techniques for data analysis and data mining. Artificial intelligence (AI), new 

statistical algorithms, spatial analyses, and geographic information systems (GIS) 

provide information on the occurrence of spatially-distributed patterns of attributes, 

which were hitherto not possible. Predictions that operate on the basis of the state of a 

particular property, such as coffee quality that may be difficult to measure directly, can 

be inferred from the state of other, measurable entities and knowledge of their 

interrelationships (Fraisse et al., 2006). In the case of coffee, environmental factors can 

be used to infer potential cupping quality (Läderach et al., 2005).  

 

2.2.4 Deliverability of information 

Having demonstrated the potential demand for information, the final test is to consider 

the practicalities of delivering that information to the user. There is increasing 

recognition of the importance of providing free access to information to a very wide 

range of potential users along the supply chain.  

 

New information management  

A supply chain is a “system of suppliers, manufactures, distributors, retailers and 

customers where material, financial and information flows connect participants in both 

directions” (Fiala, 2005). Supply chains usually contain four entities: At the start of the 

chain the suppliers, followed by the manufactures, and distributors and finally the 

customers (end users). The supply chain for coffee consists of growers, traders 

(exporter and importer), the roaster and the consumers. Supply chains for specialty 

coffee tend to be shorter because the importer is often the roaster as well. 

 

The requirement to provide free access to the wide range of potential users implies that 

there both material (in the form of product and samples) and information flows will 

become increasingly complex. Moreover free flow of information and material is 

essential to the successful production and marketing of high value products on the 

international markets. The increasing complexity and extra dimensions of these flows 
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will require new information-management technology deployed in a central 

information management system to ensure that all actors in the supply chain have 

access to the information that they need. Furthermore, it is important be able to trace a 

particular product and its related inforamtion back to its site of origin. As part of the 

work associated with this thesis, colleagues created CInfo, a web-based system for 

information management of high value agricultural products (Niederhauser et al., 

2007).  

 

New feed back mechanisms 

Growers involved in the project, typified by smallholder growers association in San 

Roque municipality in the Huila Department of southern Colombia, are learning to use 

quality to improve their product. They harvest their plots separately and have them 

cupped at the cost of about US$1.00. The quality assessments allow them to decide on 

which market to sell their parchment beans. If the beans are of outstanding quality they 

sell them to a specialty exporter, if the quality is good, but less than outstanding, they 

sell them as fair trade coffee, and if the quality is low they sell them as volume coffee. 

The results of the quality assessment are stored in the Cinfo database and farmers use 

the information to improve their farm management. In the case of repeated defects the 

associations’ own technician visits the grower’s farm to identify potential 

mismanagement that might cause the defects in question.  
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2.3 Analytical frame work 

To test if enabling farmers to engage in differentiated markets by selling high- valued 

products increases their income and improves their livelihoods, the question may be 

posed as: Is the livelihood that people derive at location i a function of the income 

generated from quality product q?   

 

LIV i = f (INCq) (1) 

Where: 

LIV = livelihood, and 

INC = income generated by a quality product. 

 

To do so, they must deliver products of higher quality; where quality at location i is 

defined by its sensorial attributes.  

INCq = f (QUAi) (2) 

Where: 

QUA = quality. 

 

Location i and its agronomic and post-harvest management are drivers of quality. 

QUAi = f (MGTi) (3) 

Where: 

MGT = management. 

 

To improve livelihoods of coffee producers the agronomic management at location i 

needs to be adapted in such a way as to maintain the quality produced at the location. 

 

LIV i = f (INCq) = f (QUAi) = f (MGTi) (4) 
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2.4 Operational model 

The operational model (Figure 8) outlines how the research was conducted. First, the 

environments (natural environment and production environment) are described and 

factors determining quality characterized and their impact quantified. Secondly, tools 

and methods are developed to turn the farmer’s comparative advantage into a 

competitive advantage. Thirdly, products derived are presented, evaluated and 

validated. Finally the conclusions and recommendations chapter points out future 

investigation to further fine-tune the models and concepts developed. 

 

 
 
Figure 8: The operational model.  
The numbers in the boxes indicate the chapter of the thesis where the topics are presented. 
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3 METHODOLOGY 
The methodological framework is divided into the sub-chapters describing sites and 

sampling (3.1), data generation (3.2) analytical methods (3.3) and design and outline 

of the analyses (3.4). The research consist of studies at two different geographical 

scales; small-scale studies that mainly build on GIS-generated data and information 

gathered through interviews, and large-scale studies that build on empirical 

measurements. Small-scale studies are referred to as the Exploratory Study and the 

large-scale study as the Case-Control Study.  

 

The case-control study includes several sub-studies addressing the impacts on coffee 

cup quality of aspect, soil fertility, shading, fruit load, targeted harvesting, harvest per 

canopy, time of harvest, fermentation and drying practices. Case-control studies 

provide point data for individual cases and their relation with a set of controlled 

variables. Exploratory studies use aggregate geographical data to investigate spatial 

relationships and interactions between variables; they are usually quicker and less 

expensive to do than case-control studies. Table 4 gives an overview of the samples 

and methodologies used for the different studies. Some studies did overlap and use 

partly or entirely the same data sets. Figure 9 shows a visual representation of the 

spatial distribution of the sample sites used in the exploratory and case control studies 

 

CInfo is an online data warehouse system that was developed to administrate the 

incoming data. Farm and production data are stored in a relational database, allowing 

consistent storage and dynamic linkage of data. CInfo manages farm data, including 

the description of the management units (e.g. GPS coordinates), field data (e.g. 

varieties and shade system), harvest (e.g. harvest date, lot quantity, and certification), 

post-harvest processing, and sensorial and physical coffee-quality data. All participants 

of the supply chain are able to insert and to query their data on a daily basis and assure 

that the information is up-to-date.  

 

3.1  Sites and samples 

Exploratory studies were conducted in Colombia and Honduras. In Colombia samples 

were collected in the municipalities of Inzá and El Tambo-Timbio in the Cauca 

Department and in Honduras in all major growing regions. Case-control studies were 
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conducted in the municipalities of El Tambo-Timbio and Inzá in the Cauca 

Department,  in the Concordia municipality in the Antioquia Department of Colombia 

and in the municipalities of El Encinal and Axocuapan in Mexico (Figure 9). 

 

Figure 9: Exploratory and case-control studies sampling sites. 
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Table 4: Overview of objectives and studies 

Sub-Objectives Sample sites n Sample type Analyses Study type Chapter 
1. To describe and quantify the 

impact of the natural environment 
on coffee liquor quality. 

Honduras 
Cauca 

582 
88 

o.f. producer1 

o.f. standardized2 
Correlation, 
cluster analyses, 
spatial 
visualization. 

Exploratory 4 

Cauca 270 o.f. standardized Spatial 
visualization and 
description 

Exploratory 
Ag mgt3 

2. To describe and quantify the 
impact of agronomic management 
and post-harvest processes on 
coffee liquor quality. 

 
Cauca 74 o.f. standardized Correlation and 

description 
Exploratory 
Php4 

5 
 

3. To present, compare and test 
spatial analyses tools for the 
identification of high quality coffee 
niches. 

Honduras 
Cauca 

582 
88 

o.f. producer 
o.f. standardized 

BioClim, Domain, 
Maxent, 
CaNaSTA, Kappa, 
ROC AUC, 
MacNemar 

Exploratory 6 

Piendamo (Cauca) 
Inzá (Cauca) 
Concordia (Antioquia) 
El Encinal (Veracruz) 
Axocuapan (Veracruz) 

139 
33 
76 
97 
48 

o.f. standardized 
o.f. standardized 
o.f. standardized 
o.f. standardized 
o.f. standardized 

ANOVA and 
correlation 

Case control 
Ag mgt 

4. To develop and test concepts of 
site specific agronomic and post-
harvest management practices for 
improved coffee quality. 

 
El Tambo-Timbio (Cauca) 
Inzá (Cauca) 

56 
32 

o.f. producer 
o.f. standardized 

Test of 
significance and 
correlation 

Case control 
Php 

7 

5. To determine the utility of 
qualitative quality control methods. 

El Tambo-Timbio (Cauca) 
Inzá (Cauca) 
Timana (Huila) 

52 
52 

59 

o.f. producer 
o.f. producer 
o.f. producer 
 

Discriminate 
analyses, principal 
component 
analyses and test 
of significance 

Case control 8 

1 o.f. producer = on farm producer samples are entirely commercial samples; 2 o.f. standardized = on farm standardized samples are commercial samples with controlled post-
harvest processment; 3 Ag mgt = Agronomic management; 4Php = Post-harvest processing
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3.1.1 Exploratory study 

Field sampling design  

Ideally one would have wished to apply some kind of probability sampling, using 

either a model-based or a design-based approach (Brus and De Gruijter, 1997; 

Dobermann and Oberthur, 1997) on which to implement the selection of sites in the 

exploratory study. Probability sampling means that every element, or sampling unit, of 

a population has a known probability of being included in the survey sample, so that 

once the population is defined, sampling sites are selected randomly. However 

operational constrains, such as timing and length of the harvest, long travel times to 

the field sites, availability of processing equipment and field support, location of farms 

and accessibility to them given the time constraints, prevented the implementation of 

strictly random sampling. Instead the strategy adopted was to use sampling based the 

subjective criteria of prior experience, convenience and feasibility.  

 

There are two broad non-probabilistic sampling methods, accidental, typified by the 

“man in the street” opinion-seeking and purposive, where the need is for a targeted 

sample and where sampling for proportionality is not the primary concern. Because the 

study objective was well defined, purposive sampling was used here. There are several 

strategies on which to base purposive sampling including modal instance, expert 

opinion, quota, heterogeneity and snowball sampling. 

 

Proportional quota sampling, which was used here, attempts to represent the major 

characteristics of the population by sampling proportional numbers of each category. 

In contrast, in non-proportional quota sampling one specifies the minimum number of 

sampled units required in each category. In this study, the purpose was not to have 

numbers in each category that exactly matched their proportions in the whole 

population, but to have enough samples to ensure that the most important groups in the 

population, identified by expert opinion, were represented. This method is the non-

probabilistic analogue of stratified random sampling, which is typically used to assure 

that smaller groups are adequately represented in a sample.  

 

The major difference between non-probabilistic and probabilitistic sampling is that 

non-probabilitic sampling does not involve random selection. But this does not 
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necessarily mean that non-probability samples are not representative of the population. 

But it does imply, however that non-probabilistic samples cannot depend upon the 

rationale of probability theory, and therefore must find other ways to show that the 

population was adequately sampled. Traditionally researchers prefer probabilistic or 

random sampling methods over non-probabilistic methods, considering them more 

accurate and rigorous. However, in much applied research, such as the project that is 

reported here, there are often circumstances where it is neither feasible, practical nor 

theoretically sensible to undertake random sampling. 

 

The difficult issue in purposive quota sampling, as used here, is to decide upon the 

specific characteristics on which the quota will be based. In Colombia, literature 

review, prior knowledge generated by colleagues’ similar work in the Cauca 

Department and consultation with other experts, expert knowledge of local coffee 

committees were used to identify sample farms. The objective was to choose farms 

that represented as broad a range of conditions as reasonably possible, including those 

thought to have the potential to produce high-value coffee. In Honduras special 

emphasis was laid on sampling different sized farms in each zone.  

 

Site characterization 

The study sites in Cauca Department were mainly in the municipalities of El Tambo-

Timbio and the municipality of Inzá with a few sites selected in other municipalities.  

 

Table 5: The five major coffee growing regions of Honduras 

Region Departments Altitude 
(masl) 

Annual 
precipitation 

(mm) 

Mean annual 
temperature 

(°C) 

Main coffee 
varieties 

Copan Ocotepeque, 
Lempira, Cortés 

1000-1600 1800-2200 18-22 Bourbon, 
Caturra 

Opalaca Santa Barbara, 
Intibuca, Lempira 

1000-1400 1800-2200 18-22 Caturra, Catuai, 
Typica 

Montecillos La Paz, Comayagua, 
Santa Barbara, 

Itabuca 

1200-1600 1700-2200 16-20 Typica, 
Bourbon, 
Caturra 

Azul 
Meambar 

Yoro, Comayagua 1000-1300 2000-2500 18-22 Bourbon, 
Caturra, Catuai 

Agalta 
Tropica 

Olancho, El Paraíso, 
Franscisco Morazan 

1100-1300 1700-2300 18-24 Bourbon, 
Caturra 

 

The farms in El Tambo-Timbio are at an altitude of 1400 to 1750 masl, with an annual 

precipitation of 1900-2300 mm, and a mean annual temperature of 17-19°C. The farms 
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in Inzá are higher (altitude 1700 to 1850 masl), somewhat drier (annual precipitation 

1580- 1760 mm) and cooler (mean annual temperature 16.6-17.7°C). In Honduras the 

five major coffee growing regions were sampled (Table 5). 

 

3.1.2 Case control study 

Site selection and characterization 

The philosophy of the approach is that farmers manage only those factors that make 

good sense environmentally and commercially. This can be one or several factors 

depending on the particular farm and farmer. The studies were therefore conducted on 

commercial farms, which provided diverse conditions for the implementation of 

various managerial scenarios and which differed in their complexity. The farms 

included in the study were based on the willingness of growers and their supply-chain 

partners to take part in the research. 

Specifically, the study examined two estate farms (> 25 ha) and 62 small farms (0.5 – 

5.0 ha) in Colombia; and two farms of about 5 ha in Mexico (Figure 9). One of the 

estates in Colombia was located in the municipality of Concordia (longitude -75.89; 

latitude 6.03; 1870 masl, Department of Antioquia) and the other in the municipality of 

Piendamo (longitude -76.57, latitude 2.75, 1640 masl; Department of Cauca). The 

small farms were located in the municipalities of Inzá (33 farms, longitude -75.99-

76.02, latitude 2.47-2.53, 1630-1990 masl; Department of Cauca). The two Mexican 

farms were located in the state of Veracruz. One farm was in the community of El 

Encinal (longitude -96.82, latitude 19.21, 890 masl) in the municipality of Totutla and 

the other in the community of Auxcuapan (longitude -96.98, latitude 19.20, 1490 masl) 

in the municipality of Tlaltetela. Departments in Colombia represent the same 

administrative level as the states in Mexico but communities in Mexico are one 

administrative level lower than the municipalities in Colombia.  
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3.2  Data generation  

The data generation process is divided into exploratory data, case control data and 

quality data. 

 

3.2.1 Exploratory data generation 

Generation of biophysical variables 

In a review of the literature, environmental factors that impacted most on beverage 

quality were identified and subsequently generated from a number of different sources. 

The ten factors chosen were: Mean annual precipitation, number of dry month per 

year, mean annual solar radiation, mean annual temperature, mean annual dew point, 

mean diurnal temperature range, altitude, northness, eastness (see equations (5) and (6) 

below), and slope.  For all GIS manipulations and mapping ESRI GIS software and 

DIVA GIS (Hijmans et al., 2005b) were used. The environmental factors were mapped 

as rasters or grids, where a raster is a type of map used to represent continuous layers. 

The mapped areas were divided in equal size cells (pixels), in which each pixel 

contains a single value of the factor mapped. When data were presented in raster, 

rather than vector format, it was convenient to refer to resolution rather than to scale 

(O'Brien, 2004). Resolution refers to the size of one pixel on the ground, and is 

commonly measured in km or degrees (or subdivisions of these). The distance 

represented by one degree of longitude varies with latitude, and is about 111km at the 

equator. A 30 arc second resolution is often referred to as a 1km2 grid, and 3 arc 

second resolution is approximately equivalent to a grid of 90m.  

 

Climate data were extracted and mapped using WorldClim (WorlClim, 2007) and 

MarkSim data. WorldClim is a global database of climate variables in the form of grid 

surfaces with a spatial resolution of 30 arc seconds. The data layers were generated at 

this resolution through interpolation of average monthly climate data from some 

46,000 weather stations (Hijmans et al., 2005a). MarkSim uses data from 20000 

climate stations. It uses an interpolated climate surfaces with 10 arc minute resolution 

and uses a third-order Markov model with stochastic resembling of the model 

parameters to estimate climate data for the tropics (CIAT, 2007; Jones et al., 2002). 

The variables extracted and generated from Worldclim and MarkSim were: Monthly 

total precipitation, monthly mean, minimum and maximum temperature; annual 
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precipitation, annual temperature, and dry months per year. Annual average of diurnal 

temperature range was calculated from WorldClim MetGrid. Because relative 

humidity varies diurnally with temperature, while dewpoint, the temperature at which 

air becomes saturated, varies relatively little diurnally. When the relative humidity is 

high, the dew point is closer to the current air temperature. Dew point was used to was 

used to represent the variation in atmospheric humidity between seasons and maps of it 

were calculated (Linacre, 1977) from the WorldClim dataset. Since solar exposure is 

difficult to calculate, mean annual insolation, which is the incoming solar radiation 

was calculated from MarkSim (Donatelli and Campbell, 1997). 

 

Terrain attributes such as elevation, aspect and slope for the study areas were 

generated from the Shuttle Radar Topography Mission (SRTM) Digital Elevation 

Model (DEM) using Esri GIS software. Northness and eastness (equation 5 and 6) 

were calculated from the aspect information (Zar, 1999). The SRTM is a joint project 

between the National Geospatial-Intelligence Agency (NGA) and the National 

Aeronautics and Space Administration (NASA). In February 2000, the space shuttle 

produced digital topographic data for 80% of the Earth's land surface using radar 

interferometry. These data were mapped as a DEM, which is a raster file containing 

spatial elevation data. The data are of very good quality with 3 arc second resolution. 

At CIAT, the holes in the primary coverage have been filled with secondary data 

(Jarvis et al., 2006). 

 

Northness = sin ((aspect * π)/180) (5) 

Eastness = cos ((aspect * π)/180) (6) 

 

Soil properties were problematic to map for a number of reasons. Soil characteristics 

maps do not exist at a large scale for the study areas so they would have had to be 

derived from coarse-scale maps of soil type. But the scale of maps of soil type, typified 

by the FAO World Soil Map with a scale of 1:5,000,000, does not generally allow soil 

heterogeneity to be represented (O'Brien, 2004). Furthermore, soil characteristics can 

vary a lot at very local scale, and although some general characteristics such as pH and 

fertility have been derived, there is not usually a direct correspondence between soil 
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type and other important soil characteristics. It was therefore not possible to map the 

soil characteristics suggested in the literature to impact on coffee quality. The digital 

version of the soil map of the Colombian Agustín Codazzi Geografic Institute (IGAC, 

1983) at a scale of 1:500 000 were used for the description of soil type.  

 

Farm management characterization  

Questionnaires were developed for the capture of information on crop management. 

The questionnaire consisted of three parts: (i) the administrative and geographic 

description of the farm with its management units (MUs) and personal information 

about the grower; (ii) description of the post harvest handling processes and the 

facilities used for processing and; (iii) details of field management practices of each 

MU. In this context, MUs are defined as land areas that can be independently managed 

by the grower during all stages of production. An MU can therefore be a single 

individual field, a group of fields or even a complete small farm. Details assessed in 

part one of the questionnaire are: Name of producer, farm, location of farm and GPS 

coordinates; farm size and membership in an association. Details assessed in part two 

of the questionnaire are: Description of the post-harvest process such as type of 

machines, times taken in each processing step, and the state of equipment and the 

working environment. Details assessed in part three of the questionnaire are: Varieties 

grown, planting dates, planting system and distance between plants, pruning, shade 

management including, shade trees and planting distances fertilizer application and 

disease and pest management. For details on the data capturing formats refer to the 

Annex. 

 

3.2.2 Case control data generation 

Selection of biophysical variables and farm management practices 

The different biophysical variables and management practices selected are shown in 

Table 6. The estate farms in Colombia provided the widest choice of management 

options. Growers identified five different management units in each estate that 

presented northern, western, southern and eastern aspects. In addition, one plateau (flat 

slope) MU was also selected. In the MUs with different aspects, two sites were chosen 

on the upper and lower parts of the slope to give contrasting levels of soil fertility, 

since growers contend that upper slopes are less fertile than lower slopes. The case 
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control studies for the assessment of the post-harvest practices were conducted in the 

farms in El Tambo-Timbio and Inzá only.  

 

Table 6: The biophysical variables and management practices examined.  
Note that not all variables and practices were represented at all sites 
 

 Biophysical variables and management practices 
Sites 

 
Aspect1 

Soil 
fertility2 

Varieties (#) Shade 
Fruit 

thinning 
Canopy 
level3 

Harvest 
(#) 

Concordia 5 2 1 None 50% 3 levels 2 
Piendamo 5 2 1 None 50% 3 levels 1 
Inzá small 

farms 
VNA5 VNA5 1 VA4 None Whole tree VNA5 

El Encinal Flat 1 4 VA4 None Whole tree 1 
Axcocuapan Flat 1 2  VA4 None Whole tree 1 

1 Aspect (north, east, south, west and flat; in Concordia northwest instead of north).  2 Soil fertility level 
(1 = fertile is lower slope position, 2 = infertile is upper slope position). 3 Number of horizontal strata 
harvested. 4 VA = variable analyzed here. 5 VNA = variable not analyzed here. 
 

In each of the nine identified sites, different harvesting strategies were implemented. 

These practices were selected after consultation with the growers and included 

harvesting fruits separately from different tree canopy levels (low, middle, high; in 

Concordia), fruit thinning (in Concordia and Piendamo) and harvest time (Piendamo).  

 

The first canopy level included the upper orthotropic nodes and comprised leafy 

primary plagiotropic branches with few fruit-bearing nodes. The middle region 

comprised primary plagiotropic branches with a large majority of heavy fruiting nodes 

but with few leaves. The lower canopy region comprised plagiotropic branches that 

had already produced the previous years and bore secondary and tertiary branches that 

had few fruiting nodes. The fruit thinning consisted in removing 50% of the fruits nine 

weeks after the main flowering from 25 previously-labeled trees. At this time the fruits 

have initiated the bean filling stage and have reached about 10% of their final size 

(Arcila-Pulgarín et al., 2002). The harvest in Piendamo was divided into an early 

harvest on 12 May and in a late harvest on 9 June. Other management practices were 

implemented by the growers using their usual standards. 

 

Managing so many different factors was impossible in the smaller Colombian farms. 

Farm owners identified one MU in each small farm for the inclusion in the study and 
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shade levels were defined in each of these management units. Other agronomic 

management practices were very similar in all small farms. 

 

In Mexico aspect, variety and shade levels were determined for eight management 

units in El Encinal and four management units in Axocuapan. The other agronomic 

management practices followed local commercial standards but were similar in all the 

MUs selected in Mexico. 

 

Measurement of biophysical variables 

Geographic location was determined using a Trimble Pro-XR GPS with Omni-STAR 

real-time correction. Aspect in degrees (°) was measured with a compass. 

Hemispherical imagery to describe shade levels was taken with a NIKON Cool-Pix 

E4500v1.3 digital camera using a fish-eye lens with a field of view of 180°. The 

imagery was then processed using Win-SCANOPY (Regentinstruments, 2005) 

software to derive the illumination parameters. First the pixels of the imagery were 

classified as canopy or sky, the output of this process is a black and white image. The 

second step was the analysis of the canopy, which comprises the analyses of the 

canopy structure and the radiation analyses. The canopy structure variable derived for 

the present analyses was the gap fraction, which is the number of pixels classified as 

sky divided by total number of pixels in the image. The shade percentage is simply the 

numerical complement (1 - gap fraction) expressed as a percentage.  

 

In the radiation analyses the average direct and diffuse photosynthetically active 

radiation (PAR) over (PPFDO) and under (PPFDU) the shade tree canopy were 

estimated in µmol m-2 s-1. PAR radiation is assumed to be constant over time and is 

further assumed to be a constant percentage (51%) of the solar energy flux. 

Atmospheric attenuation is inversely proportional to atmospheric transmittance at 

zenith and relative path length to the zenith. As common in meteorological studies 

incident radiation was cosine corrected to account for the radiation angle of incidence 

with respect to the receiving surface. The preceding formulae are used by 

WinSCANOPY to compute direct radiation above the canopy for the selected sun 

track, which is created automatically by WinSCANOPY for a specified period of time. 

These calculations are a function of latitude and longitude, and the defined growing 

season and time zone.  
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PAR under the canopy was calculated the following manner: For all sun positions on a 

sun track the instantaneous radiation value below canopy varies between zero and the 

direct radiation value above canopy as a function of the pixels’ value in the image 

under the sun tracks at the moment. When the pixel is classified as shade it is assumed 

that all radiation is intercepted so the value below the canopy is zero. When the pixel is 

classified as sky, it is assumed that all radiation above canopy passes unimpeded so it 

is equal to the radiation level above the canopy. These parameters include the average 

direct and diffuse photosyntetically active flux density over (PPFDO) and under 

(PPFDU) the shade tree canopy measured in µmol m-2 s-1.  

 

Farm management characterization  

An extended version of the questionnaires used for the exploratory studies was 

designed to capture the details described in the previous paragraphs. All the data were 

subsequently digitized and managed in CInfo. 

 

3.2.3 Quality data generation 

Sample collection and processing 

All sample sites were identified by the latitude, longitude, and elevation in the centre 

of each MU using for the case control study a Trimble ProXR GPS device with 

OmniSTAR real-time correction and for the exploratory study the same unit or a 

Garmin Etrex GPS, which is less accurate than the ProXR. Its accuracy is in a 10-20 m 

range, which is enough considering that the coordinates were taken in the centre of the 

MU and their area always had a radius, measured form the centre, superior than 30m; 

so that the coordinates would always fall somewhere in the area of the field.  

 

Twelve kg of ripe berries were harvested by hand during the peak of the 2006 harvest, 

guided by a maturation index (Marín et al., 2003). In the estate farms, berries from 50 

trees for each management practice and each biophysical variable were harvested by 

estate workers. For comparison, berries also were harvested from 25 control trees for 

each different bio-physical variable that were not subjected to fruit thinning and 

harvest at various canopy levels. 
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Samples in the small farms in Colombia were harvested by the farmers from trees in a 

previously delimitated 30 m x 30 m area within the identified MU. Before processing, 

damaged, green and infected berries as well as stones, leaves and other artifacts were 

removed. Immediately after harvest, samples from both the estates and the small farms 

were delivered to a mobile, truck-mounted processing unit. In the unit the berries were 

de-pulped and the mucilage removed using a J.M. Estrada Model 100 unit. The beans 

were subsequently fermented in 10 l buckets using only the water attached to the 

grains. 

 

The samples were then dried using the integrated dryer of the processing unit. The 

dryer consists of a metal closet with four shelves each containing four individual 

drawers, which are perforated on the bottom. The dryer thus has the capacity to 

process 24 samples of 1-1.5 kg at the same time. Air, heated to 45°C by a gas burner, 

is blown into the bottom of the closet and ascends through the closet drying the beans. 

The most recent samples are placed in the top drawers and moved down to the next 

lower level when new samples were added, thereby emulating the process of industrial 

dryers. Samples were dried until the parchment beans reach a humidity of 10% to 12 

%, which occurs normally after 14 to 16 hours. The samples were then placed in sealed 

plastic bags and stored at 18°C until the cupping process. 

 

Samples from Mexico and Honduras were harvested during the peak of the 2005/06 

harvest. The samples from Mexico were processed the same day according to the wet 

local method which included de-pulping, fermentation, washing, and drying in a 

standardized manual manner. The samples from Honduras were processed by the 

farmers. The slightly different procedures used in Honduras, Mexico and Colombia did 

not present a problem in the data analyses because there is no direct comparison of 

samples between the three countries.  

 

Physical and sensorial evaluation 

The parchment beans were milled and the percentage and weight of bean and husks 

determined. The density of the beans was calculated after humidity was measured. 

Thereafter beans with primary and secondary defects were quantified, and their weight 

and percentage recorded. Any beans with defects were then removed by hand. The 

defect-free beans were sieved and the bean size distribution determined using standard 
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sieves from 14/64 inch to 18/64 inch. Physical assessment data were recorded but not 

used in the analyses presented here due to the focus on intrinsic quality. 

 

All the samples 250 g of beans were roasted in a laboratory roaster the day before the 

beverage assessment. All samples were roasted at an initial temperature of 200 °C to a 

standard reddish-yellow color, which took about 11 minutes; the exact roasting time 

was recorded. Roasted beans were ground to the recommended intermediate particle 

size immediately before the beverage quality assessment using a precision grinder. 

 

Sensory beverage quality assessment was done by cupping of the coffee liquid 

prepared for each sample: water (150 ml at 97 °C) was poured on 10 g of ground 

coffee in each of five cups. This produces coffee with a range of 1.1% to 1.3% soluble 

solids. The five cups were treated as replicates for the sensory beverage quality 

assessment. The sensory attributes evaluated were fragrance, aroma, acidity, aftertaste, 

body, flavor, sweetness, preference and final score. 

 

• Fragrance is the sensation of gases released from ground coffee; 

• Aroma is the sensation of gases released from brewed coffee. Fragrance and 

aroma were assigned one value; 

• Acidity is a measure of the intensity of acidic sensation; 

• Aftertaste is the taste that remains in the mouth after having tasted the brewed 

coffee; 

• Body is the oral feeling of viscosity; 

• Flavor is the taste perception of the coffee beverage on the tongue; 

• Sweetness is the detection of soluble sugars on the tip of the tongue; 

• Preference represents the overall impression of the coffee by the cupper; and 

• Final score is the sum of the attributes evaluated plus three times their average. 

 

The attributes were rated on a scale of 1 to 10 with 0.5 point increments, using the 

jointly with cuppers adapted cupping protocol of the Specialty Coffee Association of 

America (Lingle, 2001). A score of one implies a beverage with many defects, two 

some defects, three a very deficient beverage, four a deficient beverage, five is a 

standard coffee, six is a good coffee, seven is very good, eight is an excellent coffee, 
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and nine is a coffee of exceptional quality. For the analyses, final score values were 

used because they are a summary indicator of all attributes. Final score values range 

from 0 to 80 because they are the sum of ten single attributes.  

 

The Colombian samples were cupped by one cupper with a high international 

reputation. Only the samples of the case control experiment in Inzá were assessed by a 

national panel of several cuppers of which only the results of the most consistent 

cupper were included in the analyses. The repetition samples for the assessment of the 

consistency of the cupper were cupped by a panel also. The Honduran samples were 

cupped by a national panel of 16 cuppers in the IHCAFE cupping laboratory in San 

Pedro Sula according to the SCAA protocol. The Mexico samples were assessed by a 

panel of seven cuppers in the cupping laboratory of Café-Veracruz, A.C. also 

according to SCAA standards. They followed the official Mexican norm of assessing 

only the attributes fragrance, aroma, aftertaste, acidity and body. Mexican cuppers 

used a scale that ranges from 0-15, 0-5 being low quality, 5-9 medium quality and >9 

high quality. The different scales used and experts used for the data sets did not 

present a problem in the statistical analyses because there is no direct comparison 

between samples from the three countries.  
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3.3 Analytical Methods 

The analytical methods are divided in point statistics and prediction models.  

 

3.3.1 Point statistics 

Descriptive statistics 

Summary statistics were computed for the all the data. Various multivariate analyses, 

including cluster analyses, principle component analyses and discriminate analysis 

were applied as described below. For comparison of treatments ANOVA and 

correlations analyses were applied (Hair et al., 1992).  

 

Note on data scale 

All the production data and the sensorial data on product quality used in this study 

were measured on an interval or ratio scale. However, information of sensorial quality 

was measured on a quasi-interval scale, that is product qualifications were made on a 

scale of 0 to 10 with increments of 0.5 giving a range of 21 points available. While 

such data are now commonly used in similar studies (Avelino et al., 2005; Decazy et 

al., 2003; Vaast et al., 2006), some may question the validity of using these data in 

parametric statistical methods. The sensorial data described here are analogous to a 

Likert scale (completely agree, strongly agree, agree, etc.), which are commonly 

analyzed using interval procedures. In considering ordinal Likert scale items, in a 

review of the literature Jaccard and Wan (Jaccard and Wan, 1996) conclude, “for many 

statistical tests, rather severe departures (from intervalness) do not seem to affect Type 

I and Type II errors dramatically.” Therefore, provided the scale item has at least five, 

and preferably seven categories, the assumption of normal distribution, required for 

many tests, may be assumed to be valid. Conversely, as the number of points 

decreases, it will be more likely that the distribution departs from the assumption of 

normality. The 21 points used here provides a considerable safety margin. 

 

Correlation and regression, and test for significance 

ANOVA analyses and pearson correlation and regression were conducted using the S+ 

package (Insightful, 2001). 

  

Kappa statistic 

The accuracy of the output of the different modeling techniques was calculated with 

the Kappa statistic (Cohen, 1960; Congalton, 1991). The Kappa statistic assesses the 

extent to which models predict occurrence at a rate higher than expected by chance 
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(Monserud and Leemans, 1992). The results vary from 1.0 for perfect prediction down 

to 0.0 when agreement occurs only due to chance. The performance of the model was 

summarized in an error matrix that cross tabulates the observed and the predicted 

presence/absence pattern (Fielding and Bell, 1997) and based on the values in this 

matrix the Kappa statistic was calculated. Since the Kappa statistic is asymptotically 

normally distributed, a basic z-score can be used for significance testing, based on the 

associated p value (Congalton and Green, 1999). The calculations were made in 

Cohen`s Kappa Classification Table Metrics 2.0 extension of ArcView (Jenness and 

Wynne, 2005). The Kappa statistic can also be used to give a qualitative assessment of 

the extent to which the model predicts rates higher than by chance: 0 = no agreement, 

0.0-0.19 poor agreement, 0.20-0.39 fair agreement, 0.4-0.59 moderate agreement, 

0.60-0.79 substantial agreement, 0.80-1.00 almost perfect agreement. 

 

For differences in model performance the MacNemar test was applied, which can cope 

with dependent test samples and its use is recommended when comparing the 

performance of alternative modeling techniques (De Leeuw et al., 2006). 

 

ROC and AUC 

The ROC is a threshold-independent technique. A ROC plot is obtained by plotting the 

fraction of correctly classified cases on the y axis (sensitivity) against the fraction of 

wrongly classified cases (1-specificity) for all possible thresholds on the x axis 

(Fielding and Bell, 1997). The area under the ROC function curve (AUC) is taken as a 

measure of overall accuracy that is not dependent upon a particular threshold.(Deleo, 

1993). The values of the AUC vary from 0.5 (no apparent accuracy) to 1 (perfect 

accuracy). The ROC Plotting and AUC Calculation Transferability Test 1.3 software 

(Schröder, 2004), was used to calculate the AUC. The AUC value estimates if the 

prediction is significantly different as opposed to chance differences:  AUC = 0.5: no 

discrimination; 0.6 <AUC> 0.7: moderate discrimination; 0.7< AUC > 0.8: acceptable 

discrimination; 0.8< AUC> 0.9: excellent; AUC> 0.9: outstanding. 

 

Cluster analyses 

The purpose of cluster analysis is to place objects into groups or clusters suggested by 

the data, not defined a priori, such that objects in a given cluster tend to be similar to 

each other in some sense, and objects in different clusters tend to be dissimilar. Each 
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observation begins in a cluster by itself. The two closest clusters are merged to form a 

new cluster that replaces the two old clusters. Merging of the two closest clusters is 

repeated until only one cluster is left.  

The data representations of objects to be clustered also take many forms. The most 

common are: 

 

• A square distance or similarity matrix, in which both rows and columns 

correspond to the objects to be clustered. A correlation matrix is an 

example of a similarity matrix.  

• A coordinate matrix, in which the rows are observations and the columns 

are variables. The observations, the variables, or both may be clustered.  

 

Any generalization about cluster analysis must be vague because a vast number of 

clustering methods have been developed in several different fields, with different 

definitions of clusters and similarity among objects. 

 

The various clustering methods differ in how the distance between two clusters is 

computed. I used Ward's minimum-variance method where the distance between two 

clusters is the ANOVA sum of squares between the two clusters summed over all the 

variables. At each generation, the within-cluster sum of squares is minimized over all 

partitions obtainable by merging two clusters from the previous generation. The sums 

of squares are easier to interpret when they are divided by the total sum of squares to 

give proportions of variance (termed squared semi-partial correlations). 

 

Discriminant analyses  

The purpose of discriminant analysis is to find a mathematical rule, or discriminant 

function, for determining to which class an observation belongs, that is to say, 

discriminant analysis is used to classify observations into two or more known groups 

on the basis of one or more quantitative variables. 

 

Classification can be done by either a parametric or a nonparametric method. A 

parametric method is appropriate only for distributions that are approximately normal 

within each class. The method generates either a linear discriminant function (the 
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within-class covariance matrices are assumed to be equal) or a quadratic discriminant 

function (the within-class covariance matrices are assumed to be unequal). 

 

When the distribution within each group is not assumed to have any specific 

distribution or is assumed to have a distribution different from the multivariate normal 

distribution, nonparametric methods can be used to derive classification criteria. 

The performance of a discriminant function can be evaluated by estimating error rates 

(probabilities of misclassification). Error count estimates and posterior probability 

error rate estimates are evaluated. The error rates are also estimated by cross 

validation. The linear discriminant function used here is: 
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3.3.2 Prediction models 

Bayesian probability (CaNaSTA) 

Various modeling approaches exist to identify suitable niches for specific crops, and 

one such approach has been used to create a spatial decision support (SDS) tool, that 

is, a software tool based on geographical information science, which can assist users in 

decision-making. The CaNaSTA algorithm (O'Brien, 2004) creates conditional 

probability tables of all predictor variables against response variable categories. In the 

case of coffee, predictor variables include climate and topographic factors and the 

response variables include sensorial, physical or biochemical quality attributes. The 

primary model output is a discrete probability distribution at each location. A certainty 

value is also associated with each location, derived from the number of occurrences in 

the trial data of a particular combination of predictors and responses. 

The probability distribution consists of the probability that the response variable is in 

each potential state. This information can be used to create maps showing the most 

likely response value (‘Most likely’). The values in the probability distribution can 

also be weighted to produce a suitability value (‘Score’). Finally, the certainty value 

can also be displayed as a map (‘Certainty’), and can assist in the interpretation of the 

results. Once locations have been identified where a particular response is likely, 

further analysis can be carried out to determine which predictor variables are 

important. These driving factors can be either positive or negative, and can help with 

the analysis of specific conditions required for specialty coffee. 
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Calculating posterior probability distribution 

A ‘prior probability’ is an initial estimate that may be modified once more information 

becomes available. If Y is a response variable, then the prior probability of Y is denoted 

P(Y). ‘Joint probability’ refers to the probability of two events occurring together, such 

as a species thriving in a location with certain biophysical conditions. This is denoted 

by P(X, Y), where X is a predictor variable (e.g., “rainfall is low”) and Y is a response 

variable (e.g., “quality is high”). ‘Conditional probability’ is the probability of a 

response variable being in a given state, given that a predictor variable is a particular 

state, and is denoted P(Y | X). 

Conditional probability can be calculated from prior and joint probability: 
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It can be shown that posterior probability can be calculated from conditional and prior 

probabilities: 
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where Xk is the kth predictor variable (k = 1 … n). 

For simplicity the left-hand side of equation 5, the posterior probability distribution 

P(Y | X1, X2, …, Xn) can be written as (y1, y2, … , ym), Σyj = 1, where yj is the 

probability that the response variable y will be in class j. 

Score 

The score metric is a weighted average of y1, y2, … , ym, devised as a way of displaying 

a summary of the entire probability distribution in one map. The assumption is that the 

classes are ordinal, and class j is ranked higher than class j – 1 (2 ≤ j ≤ m).  

The score s is calculated as follows: 

∑=
−
−=

ii

i

yws

n

i
w

1

1

 (10) 

where n is the total number of response classes, wi  is the weight for the ith class and yi 

is the posterior probability value of the ith class. 
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For example, for a response variable with four categories and probability distribution 

(0.2, 0.4, 0.3, 0.1), score s = 0*0.2 + 1/3*0.4 + 2/3*0.3 +1*0.1 = 0.433. 

Certainty 

Each conditional probability distribution is assigned a certainty value of ‘low’, 

‘medium’ or ‘high’. When calculating posterior probability, these are assigned the 

values 0, 1 and 2 respectively, and are simply averaged over predictor variables to 

produce a combined certainty value. In general, if there are few data points in the input 

data in a given predictor variable class, certainty for all locations falling in this class 

will be low. 

Driving factors 

Once a probability surface has been created, it can be further analyzed to identify 

driving factors. Analysis of driving factors attempts to identify the variable classes that 

disproportionately contribute to high values in the probability surface (positive driving 

factors) and low values in the probability surface (negative driving factors).  

A sample of size n is taken from a region of interest and is sorted by response value so 

that three sets can be obtained: 

 N = the set of all elements in the sample (size n); 

 Q1 = the set of elements in the upper quartile, ranked on response (size n(Q1) = n/4); 

and 

 Q4 = the set of elements in the lower quartile, ranked on response (size n(Q4) = n/4). 

For each predictor variable, the following can be calculated: 

 n(xi) = the number of elements in N that are in category i for predictor variable x; 

 n(xi, Q1) = the number of elements in Q1 that are in category i for predictor variable x; 

and 

 n(xi, Q4) = the number of elements in Q4 that are in category i for predictor variable x. 

Then category i for predictor variable x is considered a positive driving factor if: 
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and is considered a negative driving factor if: 
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where c (> 1) is a user-defined threshold, with default value of 2.0.  

Although the default is upper quartile and lower quartile (25%), this value can also be 

user-defined. For example, if there are n = 100 locations in the sample, of which n(xi) 

= 20 are in predictor variable class i, and there are n(Q1) = 25 locations in the upper 

quartile, of which n(xi, Q1) = 15 are in predictor variable class i, then the left-hand side 

of equation 8 evaluates to 3.75 and class i is therefore a positive driving factor. 

 

Maximum Entropy 

“Maximum entropy (MaxEnt) is a general-purpose method for making predictions or 

inferences from incomplete information. The idea is to estimate a target probability 

distribution by finding the probability distribution of maximum entropy, subject to a 

set of constraints that represent (one’s) incomplete information about the target 

distribution. The information available about the target distribution often presents itself 

as a set of real-valued variables, called ‘features’, and the constraints are that the 

expected value of each feature should match its empirical average (average value for a 

set of sample points taken from the target distribution” (Phillips et al., 2006). Similar 

to logistic regression, MaxEnt weights each environmental variable by a constant. The 

probability distribution is the sum of each weighed variable divided by a scaling 

constant to ensure that the probability value ranges from 0 to 1. The program starts 

with a uniform probability distribution and iteratively alters one weight at a time to 

maximize the likelihood of reaching the optimum probability distribution.  

 

BioClim 

BioClim utilizes a boxcar environmental envelope algorithm to identify locations that 

have environmental conditions that fall within the range over which a given element is 

known to occur. Specifically the minimum and maximum values for each 

environmental predictor are identified and used to define the multidimensional 

environmental box where the element is known to occur. Study area sites that have 

environmental conditions within the boundaries of the multidimensional box are 

predicted as potential sites of occupancy of the element. Since this method is known to 

be sensitive to outliers, often the predicted distribution is calculated by disregarding 

5% of the lower and higher values for each environmental predictor variable and is 

termed the “core bioclimate”. 
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Domain 

The Domain algorithm calculates the Gower distance statistic between each cell on the 

map and each point, using the values of the climate variables. The distance between 

point A and cell B for a single climate variable is calculated as the absolute difference 

in the values of that variable divided by the range across all points, The Gower 

distance is then the mean over all climate variables: 

 

       (13)  

dAB = Gower distance 

p = Total number of climatic variables 

Ak = Value of point k in point A 

Bk = Value of variable k in cell B 

range (k) = Range of variable k across all the points present. 

 

The Gower similarity indicator is calculated as: 

 

        (14) 

 

The similarity between each pixel of the layer and the presence points is mapped. The 

higher the value of D for one pixel, the more similar are the climatic variables of this 

cell to the presence point data. The pixel has similar conditions to the presence data. 

Predictions are not to be interpreted as predictions of probability of occurrence but as a 

measure of classification confidence. (Carpenter et al., 1993; Hijmans et al., 2005b) 
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3.4  Design and outline of analyses 

3.4.1 Environment quality interactions 
Specific objective 1: To describe and quantify the impact of the natural 
environment on coffee liquor quality.  

 

In an extensive literature review, the environmental factors that impact on the quality 

of coffee liquor were identified. The ten factors identified consisted of topographic and 

climatic variables; their values were generated for each sampling point. The variation 

of the environmental factors and the quality attributes within and between growing 

regions (environmental clusters and geographical areas) and the interactions between 

the quality and the environmental factors were quantified.  

 
3.4.2 Management quality interactions 

Specific objective 2: To describe and quantify the impact of agronomic 
management and post-harvest processes on coffee liquor quality. 
 

In a literature review, production factors that determine quality were identified. The 

production factors consist of agronomic management practices and post-harvest 

processes. The variation of production factors within and between the study areas El 

Tambo-Timbio and Inza is described. 

 
3.4.3 Spatial decision support tools  

Specific objective 3: To present, compare and test spatial analyses tools for 
the identification of high quality coffee niches. 

 

CaNaSTA is a spatial decision support tool, which was adapted for this research to 

predict coffee qualities. As a first step, CaNaSTA was compared with existing species 

prediction models. The Honduras data set was used for the comparison, which 

consisted of 637 sites sampled. Of these, two samples were removed because of 

incomplete quality data, 49 were removed because they were out of the coffee areas 

delimited by the Instituto Hondureno de Café IHCAFE, and five were eliminated 

because a semi-variogram analysis flagged them as outliers. This left 581 samples for 

the comparison. 

 

The samples were divided in three quality classes according to their final cupping 

score: A less than 80 (121 samples), AA 80 to 85 (278 samples), and AAA greater 

than 85 (183 samples). IHCAFE cuppers score on average five points above SCAA 

cuppers, so these quality classes are equivalent to SCAA scores: A less than 75, AA 75 
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to 80 and AAA greater than 80. A coffees are below the specialty coffee range, AA 

coffee that have potential to become specialty coffees and AAA are true specialty 

coffees. For the prediction data 75% of the data were selected at random, while the 

remaining 25% were used as test data. The models were run for three different 

evidence data combinations. The first was for all ten environmental factors (annual 

average precipitation, annual average dry month, annual average temperature, annual 

average dew point, annual average diurnal temperature range, northness, eastness, 

elevation, slope, annual average solar radiation), the second was for the two non-

topographic factors most correlated with quality (average annual dew point and annual 

average temperature), and the third was for elevation, the one factor most strongly 

correlated with quality.   

 

CaNaSTA was then validated with a data set from Cauca of 88 sample points, 44 from 

sites in El Tambo-Timbio, 27 from Inzá and 17 from other municipalities. Three 

different tests and training sets were used with 25/75, 50/50 and 75/25 percent of the 

data to predict and test the model, respectively. Each set was repeated 10 times with 

predicting and testing sites selected at random. The final score of a SCAA quality class 

was the sum of ten evaluated sensorial attributes, each having a score between 1 and 

10. Because the emphasis is on quality coffees, only those samples scoring in the range 

of 70-90 were used in the evaluation. The likelihood ratio of the dependency of the 

quality class on the predictor scores was tested using the chi-square test. 

 

The test method uses a conformity matrix where the axes represent the quality classes 

and predictor ranges and the cells of the matrix cells show the agreement between 

them. “Driving factor” analysis was then applied to determine the factors that had most 

impact on sensorial coffee quality. The analysis was conducted on the two different 

environmental niches and on the entire Cauca data set. The Inzá niche covers 16,005 

ha, El Tambo-Timbio 160,765 ha, and the sampled municipalities of Cauca cover 

775,866 ha. Finally quality niches in Cauca were predicted and delimited and the 

interactions between coffee liquor quality and environmental factors determined and 

quantified.  
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3.4.4 Site-specific farm management  

Specific objective 4: To develop and test concepts of site-specific farm and 
post-harvest management practices for improved coffee quality. 

 

Case studies to asses the potential of site-specific farm and post-harvest management 

were conducted. To appraise the potential of agronomic management the study looked 

at biophysical and agronomic management variables. The importance of slope 

orientation, slope position, variety, shade, fruit thinning and harvest per canopy were 

assessed. To appraise the post-harvest processes, on-farm trials pair sample 

comparisons were conducted, which compared the quality of farmer-produced coffee 

and the on-farm standardized sample. The effect on coffee quality of the time lag 

between harvest and processing, the influence of the equipment used, the fermentation 

time and the drying methodology were also assessed. These evaluations gave a final 

appraisal of the suitability of site-specific management. 

 
3.4.5 Qualitative quality control methods 

Specific objective 5: To determine the utility of qualitative quality control 
methods. 

 

Three samples of different origins in Cauca were cupped by five cuppers repeatedly. 

Discriminate analyses and principal component analyses (PCA) were used to assess 

the consistency of the cuppers, leading to conclusions about the use of quality control 

methods. 
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4 ENVIRONMENT QUALITY INTERACTIONS  
Specific objective 1: To describe and quantify the impact of the natural 
environment on coffee liquor quality.  

 

The dependency of coffee-cup quality on environmental factors has been described 

only recently (Avelino et al., 2005; Decazy et al., 2003; Muschler, 2001; Vaast et al., 

2004b). Because such studies are costly, they were usually conducted in few 

experimental sites. From these, the findings and generated knowledge were then scaled 

up and applied to wide areas without taking into account the changes in the 

environment over space. In contrast, geographical analyses can help to interpolate and 

extrapolate point data to obtain a higher coverage of information. This chapter deals 

with the interactions between the environment and the beverage quality of coffees 

using environmental data generated by means of GIS. Data sets from southern 

Colombia and Honduras are used to compare different growing conditions. In 

Southern Colombia two high quality niches (El Tambo-Timbio and Inzá) and in 

Honduras five distinct environments, selected according to an environmental cluster 

analysis, were used as study areas. This chapter starts with a literature review on the 

impact of environmental factors on beverage quality, followed by a quantification of 

the variability of environmental factors and quality in space. The chapter concludes 

with the quantification of the variable impact of environmental factors on coffee 

beverage quality. 

 

4.1 Impact of the environment on sensorial quality 

4.1.1 Topography  

Topography refers to the physiographic characteristics of land in terms of elevation, 

aspect and slope. Elevation is the factor cited most as the determinant of coffee quality 

in general and specifically of coffee beverage quality. It is generally accepted that 

coffees grown at higher altitudes are higher quality (Avelino et al., 2002; Avelino et 

al., 2005; Boot, 2001; Buenaventura-Serrano and Castaño-Castrillón, 2002; Bureau, 

2002; Decazy et al., 2003; Griffin, 2001; Ibarra, 1986; Pochet, 1990; Sylvain, 1965; 

Vaast et al., 2004a). The elevations cited differ depending on the growing regions; 

authors also differentiate between altitudes suitable for growing coffee and the optimal 

altitudes for coffee beverage quality (Table 7). Aspect as defined here is the compass 
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direction that sloping land faces. Avelino et al. (2005) found that east-facing slopes 

produce beverage qualities with generally superior scores, higher in acidity and 

preferred by cuppers. 

Table 7: Elevation ranges apt for coffee production 

  Elevation (masl) Region /Country Reference 
1000 to 1800 Western Ecuador (Cofenac, 2003) 

300 to 1 500 
Northwest of Pichincha 

(Ecuador) 
(Cofenac, 2003) 

> 500 Manabi (Ecuador) (Cofenac, 2003) 
1400 to 2000 East Africa (Naylor, 1990) 
450 to 1500 Zimbabwe (Naylor, 1990) 

1400 to 2100 General statement 
(Njoka and Mochoge, 

1997) 
600 to 1500 / max 2000 General statement (Vitzthum, 1976) 

400 to 2000 General statement 
(Fischersworring and 

Robkamp, 2001) 

G
ro

w
in

g 
co

nd
iti

on
s 

1300 to 1700 Colombia (Cenicafe, 1970) 
800 – 1000 regular quality 

> 1200 good quality 
Central America (Bureau, 2002) 

>1370, more high quality coffees than in 
lower altitudes 

General statement (Foote, 1963) 

> 1000 most appreciated coffees Honduras (Decazy et al., 2003) 

1450, 1550, and 1650 
Colombia 

(ecotype 206B) 

(Buenaventura-Serrano 
and Castaño-Castrillón, 

2002) 
>1115, best coffees in high elevation Honduras (Avelino et al., 2002) 

H
ig

h 
qu

al
ity

 c
on

di
tio

ns
 

1200 to 2000, depending on latitude General statement 
(Fischersworring and 

Robkamp, 2001) 
 

 

4.1.2 Climate  

Climate is the conditions of the atmosphere near the earth's surface averaged over a 

long period of time, usually a minimum of thirty years. Meteorological variables used 

to describe climate are most often surface variables such as temperature, rainfall, 

barometric pressure, wind strength and direction. Important variables for coffee 

quality, however, are rainfall, temperature, humidity and solar radiation. Climate 

influences coffee quality through three functional aspects, fruit development, 

fermentation and incidence of defective grains (Cortez, 1997). Annual rainfall is the 

most often quoted factor; there are many references in the literature to growing 

conditions but only few on the specific conditions for high quality coffee. Annual 

rainfall where coffee is grown varies according to the region, ranging from 600 mm in 

Zimbabwe (Naylor, 1990) to 4000 mm in Ecuador (Cofenac, 2003). Rainfall where 
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high quality is grown varies less, ranging from 1000 mm (Njoka and Mochoge, 1997) 

to a little over 1700 mm (Avelino et al., 2002) (Table 8). 

 

Table 8:  Precipitation ranges apt for coffee production 

  Precipitation (masl) Regions /Country Reference 
1500 to 2500 General statement (Mitchell H.W., 1988) 

600 to 1200 (single rainy season of 4 
months) 

Zimbabwe (Naylor, 1990) 

1200 to 1800 mm (two rainy seasons) 
Ethiopia, Congo, 
Colombia, Brazil 

(Sylvain, 1965) 

1000 to 4000 Ecuador (Sylvain, 1965) 

1000 to 3500 General statement 
(Fischersworring and 

Robkamp, 2001; Trojer, 
1968) 

1800 to 2800 Colombia (Cenicafe, 1970) 
> 230 rain days per year Colombia (Cenicafe, 1970) 

1800 to 2800 Colombia (Cenicafé, 1979) 
Min.760 to 1780, max. 990 to 3000 Ecuador (Cofenac, 2003) 

1800 to 2800 Colombia (Suárez, 1972) 
1600 to 1800 General statement (Guharay et al., 2000) 

1200 to 1800 General statement (Enríquez, 1993) 

G
ro

w
in

g 
co

nd
iti

on
s 

> 1778 General statement (Haarer, 1984) 
From 1000 to 1150 General statement (Njoka and Mochoge, 1997) 

Less than 1600 Honduras (Decazy et al., 2003) 

H
ig

h 
qu

al
ity

 
co

nd
iti

on
s 

Average 1726 Honduras (Avelino et al., 2002) 

  

Apart from total annual rainfall, its distribution is also important. Ibarra (1986) states 

that in Honduras best coffee is produced where the wet seasons are as long as nine 

months. Other authors recommend a dry season of no more than 3 or 4 months (Table 

9).  

 

Alsoof rainfall distribution during berry development is crucial, since it directly 

influences harvest quality (Suarez, 1979). Venkataramanan (2003) states that 

inadequate rainfall during berry development causes water stress in the plants and 

results in physical defects of the beans. In particular, inadequate rainfall during the 

stage of rapid swelling of the berries (42-102 days after flowering) and first endosperm 

filling stage (117-152 days) can affect normal berry development and may result in 

small beans and a lower percentage of best quality beans (Venkataramanan, 2003). 
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Table 9: Number of dry month apt for coffee production 

  Dry month (# month) Regions /Country Reference 

3 (coinciding with harvest) General statement (Mitchell H.W., 1988) 

3 Ecuador (Cofenac, 2003) 
G

ro
w

in
g 

co
nd

iti
on

s 

2 to 3 General statement (Guharay et al., 2000) 

< 4 General statement 
(Njoka and Mochoge, 

1997) 

H
ig

h 
qu

al
ity

 
co

nd
iti

on
s 

3 Honduras (Ibarra, 1986) 

 

Annual average temperature is also an important factor in coffee quality (Table 10). 

Authors also quote the diurnal temperature range to have strong influence on coffee 

quality (Illy, 2001). Griffin (2001) states that a greater diurnal range promotes the 

production of sugars in fruits in general. Consequently, large diurnal ranges in 

temperature may increase the sweetness of a coffee. Njoka and Mochoge (1997) state 

that Arabica coffee requires temperatures ranging from a daily maximum of 32ºC to a 

minimum of 7ºC. The minimum diurnal range should be about 19ºC. 

Table 10:  Average annual temperature ranges apt for coffee production 

  Annual average temperature (°C) Regions /Country Reference 

20, oscillating from 18 to 21 
Ethiopia, Congo, Colombia, 

Brazil 
(Sylvain, 1965) 

18 to 24 Ecuador (Sylvain, 1965) 
18.5 to 21 Colombia (Cenicafe, 1970) 
15 to 25 General statement (Vitzthum, 1976) 

19 to 21.5 Colombia (Cenicafé, 1979) 

18 to 21 General statement (Enríquez, 1993) 

19 to 21 General statement 
(Fischersworring and 

Robkamp, 2001; Haarer, 
1984) 

17 to 23 General statement (Guharay et al., 2000) 

G
ro

w
in

g 
co

nd
iti

on
s 

18 to 24 General statement (Cofenac, 2003) 
 

Exposure to sunlight also impacts coffee quality (Barel and Jacquet, 1994; Cofenac, 

2003) and growers manage shade to enhance quality. COFENCA (2003) recommends 

managing shade to achieve sun exposure greater than 1000 hours per year.  
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Relative humidity has influence on coffee quality (Tale 11). References in the 

literature recommend 70 to 95 % of relative humidity to obtain high quality coffee. 

 

Table 11:  Relative humidity for coffee production 

 Relative humidity (%) Regions /Country Reference 

70 to 80 
Ethiopia, Congo, 
Colombia, Brazil 

(Sylvain, 1965) 

70 to 95 
General statement (Enríquez, 1993; 

Fischersworring and Robkamp, 
2001) G

ro
w

in
g 

co
nd

iti
on

s 

> 92 cause favorable conditions for 
disease 

General statement 
(Cofenac, 2003) 

 

Soils indicators will be discussed in chapter DII and EII because the resolution of the 

data at a field level is higher than the GIS-generated values.   

 

Based on the literature review the following ten environmental factors were deemed as 

decisive for coffee beverage quality and subsequently generated by means of GIS: 

Average annual precipitation, average annual temperature, average annual dew point, 

and average annual diurnal temperature range, average annual number of dry month, 

solar radiation, slope, eastness, northness, and elevation. Dew point was used as a 

proxy for relative humidity, and eastness and northness as more meaningful measures 

of aspect.   
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4.2 Quantification of the variability in space  

4.2.1 Variability of environmental factors 

Environmental factors are highly variable in space. Table 12 and 13 display the 

summary statistics of the ten variables for Honduras and Cauca and for their sub zones, 

in Cauca these are the two high value niches El Tambo-Timbio and in Honduras the 

five clusters described above.  

Table 12:  Descriptive statistic of sampled sites in Honduras  

  P T DP DTR DM SR S E N EL 

MIN 1053 17.3 10.1 9.0 3 15.0 0.0 -1.0 -1.0 402 

MEAN 1543 20.5 12.6 11.3 5.3 22.1 13.3 -0.4 0.2 1147 

MAX 2181 24.5 18.2 12.5 6 25.0 37.5 1.0 1.0 1677 

A
ll 

da
ta

 
(5

82
) 

STDW 193 1.3 1.6 0.7 0.8 1.4 6.7 0.7 0.7 244 

MIN 1453 19.8 11.8 9 3 19.0 2.0 -1.0 -1.0 402 

MEAN 1818 22.0 15.5 10.7 4 22.8 13.4 0.0 0.2 855 

MAX 2181 24.5 18.2 12.3 6 25.0 31.6 1.0 1.0 1262 

C
lu

st
. 

2 
(8

0)
 

STDW 182 1.6 1.2 0.9 0.7 1.6 7.2 0.7 0.7 194 

MIN 1463 17.3 10.1 11.5 5 22.0 1.8 -1.0 -1.0 1330 

MEAN 1613 18.3 11.2 12 5.9 23.6 12.2 0.4 -0.1 1508 

MAX 1765 19.5 12.1 12.4 6 25.0 24.0 0.9 1.0 1677 

C
lu

st
. 

3 
(3

6)
 

STDW 70 0.6 0.5 0.2 0.2 0.9 5.6 0.6 0.7 90 

MIN 1200 17.9 11.0 9.3 4 18.0 1.2 -1.0 -1.0 936 

MEAN 1545 19.6 12.6 11.5 5.4 23.3 13.2 0.0 -0.6 1306 

MAX 1954 21.6 15.7 12.4 6 25.0 37.5 1.0 1.0 1609 

C
lu

st
. 4

 
(1

92
) 

STDW 135 0.7 0.8 0.5 0.7 1.3 6.6 0.7 0.7 132 

MIN 1053 19.5 12.4 10.1 4 20.0 1.0 -1.0 -1.0 500 

MEAN 1408 21.3 14.5 11.3 5.5 23.3 11.7 0.1 0.2 1007 

MAX 1672 24.2 17.4 12.5 6 25.0 25.6 1.0 1.0 1330 

C
lu

st
. 5

 
(1

5
0)

 

STDW 146 10.3 1.2 0.5 0.6 1.1 6.1 0.7 0.7 180 

MIN 1095 18.4 11.1 10.2 4 19.0 0.0 -1.0 -1.0 675 

MEAN 1486 20.4 13.4 11.4 5.5 22.5 14.9 -0.2 0.4 1161 

MAX 1753 24.0 17.4 12.4 6 25.0 32 1.0 1.0 1547 

C
lu

st
. 

7 
(1

1
5)

 
 

STDW 139 1.0 1.2 0.5 0.6 0.6 6.7 0.6 0.6 173 

P = average annual precipitation (mm), T = average annual temperature (°C), DP = average annual dew 
point (°C), DTR = average annual diurnal temperature range (°C), DM = average annual number of dry 
months, SR = solar radiation (MJm-2d-1), S = slope (°), N = northness (cos(aspect*pi)/180)), E = 
eastness (sin(aspect*pi)/180)), and EL = elevation (masl). 
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Table 13:  Descriptive statistic of sampled sites in Cauca, Colombia 

  P T DP DTR DM SR S E N EL 

MIN 1587 16.6 10.9 10.5 0 21.0 2 -1.0 -1.0 1434 

MEAN 2108 18.3 12.4 10.9 1.6 24.6 10.6 0.2 0.0 1750 

MAX 2628 20.9 14.8 11.4 3 25.0 41 1.0 1.0 2001 

A
ll 

da
ta

 

(8
8)

 

STDW 313 0.8 0.6 0.2 0.7 0.7 7.9 0.7 0.7 108 

MIN 1587 16.6 10.9 10.5 0 23 9 0.2 -1.0 1700 

MEAN 1665 17.7 12.0 10.6 0.7 24 13.5 0.7 0.4 1843 

MAX 1761 18.8 13.0 10.7 1 27 29 1.0 0.8 2001 In
zá

 

 (
27

) 

STDW 50 0.6 0.6 0.05 0.5 0.0 4.8 0.2 0.5 85 

MIN 1978 17.6 11.7 10.9 2 21.0 2 -1.0 -1.0 1434 

MEAN 2339 18.4 12.4 11.0 2.0 24.8 8.3 -0.0 0.2 1727 

MAX 2628 20.9 14.8 11.2 3 25.0 41 1.0 1.0 1871 

E
l T

am
bo

- 

T
im

bi
o 

(4
8)

 

STDW 109 0.6 0.5 0.06 0.1 0.7 7.8 0.7 0.7 82 

P = average annual precipitation (mm), T = average annual temperature (°C), DP = average annual dew 
point (°C), DTR = average annual diurnal temperature range (°C), DM = average annual number of dry 
months, SR = solar radiation (MJm-2d-1), S = slope (°), N = northness (cos(aspect*pi)/180)), E = 
eastness (sin(aspect*pi)/180)), and EL = elevation (masl). 
 

In Cauca, coffee is generally grown in higher altitudes (1750 masl) than in Honduras 

(1150 masl); the variables related to altitude, such as average annual temperature, 

average annual dew point, and average annual diurnal temperature range are lower in 

Cauca than in Honduras by 2.2 °C, 0.2°C, and 0.4°C respectively. Average annual 

precipitation is higher in Cauca (2110 mm) than in Honduras (1540 mm), and dry 

month are fewer in Cauca than in Honduras. Solar radiation is also higher in Cauca 

(24.6 MJm-2d-1) than in Honduras (22.1 MJ m-2d-1). Average growing altitude varies in 

Honduras between clusters from 860 masl to 1510 masl, and accordingly the 

differences in average annual temperature, average annual dew point, and average 

annual diurnal temperature range are of 4.3 °C, 4.3°, and 0.3°C. Average annual 

precipitation differs between clusters by 410 mm and average annual dry month by 1.9 

month/year and solar radiation by 1.1 MJ m-2d-1. In Cauca the difference in elevation 

between the two niches is of 116 m, and accordingly the differences in average annual 

temperature, average annual dew point, and average annual diurnal temperature range 

are 0.7°C, 0.4°C, and 0.4°C. The differences in solar radiation are 0.8 MJ m-2d-1. The 

variability of the environmental factors is higher within the Honduran clusters than 

between Honduras and Cauca or within the Cauca niches. This is indicated by larger 

ranges and bigger standard deviations.  
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In Honduras the dependency of altitude and its related temperature variables is nicely 

represented when mapping the factors (Figure 10). Annual average temperature, 

average annual dew point, and average annual diurnal temperature range show patterns 

very similar to elevation. Average annual dry months is represented in a north south 

gradient, having more dry months in the south than in the north. Annual average 

precipitation is linked to elevation but an east west gradient is also distinguishable, 

with more rainfall in the eastern zones than in the western zones. Slope, eastness and 

northness are linked to elevation.  

 

Cluster analyses of the environmental factors suggest seven different environment 

clusters (Table 14). Less than ten sampling points fall in clusters 1 and 6, which were 

therefore not included in further analysis.  

 

Table 14:  Overview of number of records per cluster 

Cluster  1 2 3 4 5 6 7 

Records 7 80 36 192 150 3 115 

 

In Cauca, as in Honduras, average annual temperature, average annual dew point, and 

average annual diurnal temperature range follow the pattern of elevation (Figure 11). 

Annual average precipitation shows a west-east gradient, the western zones receiving 

more precipitation than the eastern zones. The average annual dry month pattern 

follows mainly the elevation pattern. Higher altitudes receive more solar radiation than 

lower altitudes.  
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Figure 10:  Variability of environmental factors in Honduras. 
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Figure 11:  Variability of environmental factors in Cauca. 
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4.2.2 Variability of sensorial quality 

Quality scores in Honduras and its individual clusters are higher than quality scores in 

Cauca (Table 15 and 16) . The cuppers from Honduras confirmed that on average they 

cup five points above the SCAA scores. The quality in Honduras and in its sub-regions 

is more variable than in Cauca, as indicated by the larger ranges and standard 

deviations. The sub-regions in Honduras were chosen on statistical bases as having 

similar environments. In contrast, the Cauca sub-regions were chosen on geographical 

bases as areas producing high-quality coffee.  
 

Table 15:  Descriptive statistic of quality in Honduras  

SA & S#1 STATS AROMA / F ACIDITY A.TASTE BODY FLAVOR FINAL SCORE 

MIN 4.4 3.8 4.0 3.9 3.7 50.0 
MEAN 6.8 6.5 6.4 6.5 6.5 82.7 
MAX 8.8 8.5 8.4 8.0 8.6 93.3 

A
ll 

da
ta

 
(5

82
) 

STDW 0.6 0.7 0.7 0.6 0.7 3.6 
MIN 4.4 3.8 4.0 3.9 3.7 69.8 

MEAN 6.4 6.1 6.0 6.2 6.1 80.8 
MAX 7.9 8.0 8.0 7.9 8.1 90.7 

C
lu

st
. 

2 
(8

0)
 

STDW 0.5 0.6 0.7 0.5 0.7 3.1 
MIN 5.8 5.3 5.1 5.8 5.4 77.5 

MEAN 6.9 7.0 7.0 6.9 7.0 85.3 
MAX 7.6 7.9 8.1 7.6 8.0 89.6 

C
lu

st
. 

3 
(3

6)
 

STDW 0.5 0.6 0.7 0.5 0.7 3.2 
MIN 5.6 5.2 5.2 5.4 5.1 77.0 

MEAN 6.8 6.8 6.7 6.7 6.8 84.1 
MAX 8.3 8.5 8.4 8.0 8.6 93.3 

C
lu

st
. 4

 
(1

92
) 

STDW 0.5 0.6 0.6 4.4 0.6 2.9 
MIN 4.9 4.6 4.5 4.7 4.6 73.1 

MEAN 6.4 6.2 6.1 6.3 6.2 81.4 
MAX 8.2 7.8 8.0 7.7 8.1 90.6 

C
lu

st
. 

5 
(1

5
0)

 

STDW 0.5 0.6 0.6 0.5 0.7 3.1 
MIN 5.2 5.0 4.7 5.2 4.8 75.0 

MEAN 6.6 6.6 6.5 6.5 6.6 83.0 
MAX 8.8 7.9 8.0 7.4 8.0 90.4 

C
lu

st
. 7

 
(1

15
) 

 

STDW 0.5 0.6 0.6 0.4 0.6 2.9 
1 SA & S# = Study area and number of samples 

Table 16:  Descriptive statistic of quality in Cauca  

SA & S#1 STATS AROMA / F ACIDITY A.TASTE BODY FLAVOR FINAL SCORE 
MIN 5.0 6.0 5.0 7.0 5.0 58.0 

MEAN 7.7 7.8 7.1 7.8 7.6 79.3 
MAX 9.0 9.0 9.0 9.0 9.0 90.0 

A
ll 

da
ta

 
(8

8)
 

STDW 0.8 0.7 1.0 0.5 0.97 6.2 
MIN 6.0 7.0 6.0 7.0 6.0 73.0 

MEAN 7.8 7.6 7.3 7.8 7.7 80.4 
MAX 9.0 9.0 9.0 9.0 9.0 89.0 In

zá
  

(2
7)

 

STDW 0.8 0.6 0.7 0.5 0.7 4.0 
MIN 6.0 6.0 5.0 7.0 5.0 60.0 

MEAN 7.9 7.9 7.2 7.9 7.7 79.7 
MAX 9.0 9.0 9.0 9.0 9.0 90.0 E

l T
T

 
(4

8)
 

STDW 0.7 0.8 1.1 0.6 1.0 6.4 
1 SA & S# = Study area and number of samples 
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4.2.3 Variable impact of environmental factors 

Correlation between environment and quality 

In Honduras, the correlation coefficients are higher than in Cauca, they reach values up 

to r = 0.50 whereas in Cauca the highest values are r = 0.41. In the following 

discussion only correlation coefficients superior to 0.20 will be considered. In 

Honduras average annual temperature is correlated for all attributes, except for balance 

for some clusters. The same pattern is true for elevation and average annual dew point, 

except for dewpoint in cluster 4 (Table 17). Average annual diurnal temperature range 

is only correlated with all the attributes of the entire Honduran data set and for the 

main attributes of cluster 3. Cluster 3 is furthermore correlated with average annual 

precipitation, solar radiation, slope, and northness.  

 

In Cauca, average annual temperature, average annual dew point, average annual 

diurnal temperature range, and elevation are the variables higher or close to 0.20 

correlated with final score and aroma (Table 18). In El Tambo-Timbio these factors 

are correlated with balance, body and acidity and in Inzá with cleancup, flavor, and 

uniformity. Average annual precipitation is correlated in El Tambo-Timbio with 

aftertaste, body, cleancup, and uniformity. Average annual number of dry month is 

correlated in Inzá with balance, body sweetness and uniformity. Slope, eastness and 

northness are only correlated in some instances with the sensorial attributes and mainly 

in El Tambo Timbio and Inzá. The remaining correlations coefficients are less than r = 

0.20 in El Tambo-Timbio and Inzá.  
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Table 17:  Correlation between environmental factors and quality in Honduras 

 ATTRIBUTES P T DP DTR DM SR S E N EL 
AROMA / F -0.03 -0.42 -0.42 0.21 0.15 -0.01 0.04 -0.03 -0.03 0.42 
ACIDITY -0.04 -0.50 -0.50 0.23 0.17 0.02 0.03 0.00 0.01 0.50 
A.TASTE -0.02 -0.49 -0.49 0.20 0.15 0.02 0.05 -0.02 -0.01 0.50 

BODY -0.01 -0.46 -0.46 0.21 0.16 0.02 0.01 -0.01 0.02 0.46 
FLAVOR -0.01 -0.50 -0.48 0.20 0.16 0.02 0.06 -0.01 0.01 0.49 

A
ll 

da
ta

 (
5

82
 )

 

FINAL S -0.02 -0.49 -0.49 0.20 0.16 0.02 0.05 -0.01 0.00 0.49 
AROMA / F 0.10 -0.23 -0.23 0.07 0.01 -0.14 0.12 0.23 0.12 0.31 
ACIDITY 0.05 -0.28 -0.26 -0.03 0.04 -0.17 0.18 0.21 0.11 0.38 
A.TASTE 0.06 -0.31 -0.28 -0.04 0.02 -0.14 0.19 0.21 0.12 0.41 

BODY 0.07 -0.24 -0.23 -0.02 0.03 -0.16 0.17 0.20 0.08 0.34 
FLAVOR 0.05 -0.29 -0.27 -0.01 0.04 -0.13 0.17 0.22 0.09 0.38 

C
lu

st
e

r 
2 

(8
0)

 

FINAL S 0.07 -0.27 -0.25 0.00 0.03 -0.13 0.15 0.23 0.11 0.36 
AROMA / F 0.23 -0.33 -0.32 -0.17 -0.09 0.16 0.45 -0.11 -0.30 0.27 
ACIDITY 0.20 -0.43 -0.41 0.33 -0.07 0.21 0.58 -0.07 -0.47 0.33 
A.TASTE 0.26 -0.40 -0.35 -0.28 -0.07 0.23 0.50 -0.04 -0.45 0.26 

BODY 0.12 -0.24 -0.24 -0.19 -0.03 0.33 0.57 -0.01 -0.47 0.19 
FLAVOR 0.24 -0.36 -0.34 -0.28 -0.11 0.20 0.52 -0.04 -0.44 0.25 

C
lu

st
e

r 
3 

(3
6)

 

FINAL S 0.25 -0.38 -0.36 -0.25 -0.05 0.30 0.52 -0.01 -0.49 0.28 
AROMA / F 0.16 -0.24 -0.15 -0.16 -0.13 -0.8 0.15 -0.11 0.06 0.16 
ACIDITY 0.12 -0.25 -0.18 -0.14 -0.16 -0.01 0.14 -0.05 0.04 0.20 
A.TASTE 0.16 -0.26 -0.17 -0.18 -0.17 -0.02 0.15 -0.07 0.03 0.18 

BODY 0.18 -0.28 -0.18 -0.15 -0.15 -0.04 0.12 -0.05 0.08 0.20 
FLAVOR 0.17 -0.26 -0.18 -0.16 -0.16 0.00 0.14 -0.08 0.03 0.18 

C
lu

st
e

r 
4 

(1
9

2)
 

FINAL S 0.18 -0.28 -0.18 -0.17 -0.17 -0.03 0.16 -0.07 0.04 0.19 
AROMA / F -0.04 -0.32 -0.34 -0.15 -0.06 -0.05 -0.04 -0.09 0.10 0.37 
ACIDITY -0.03 -0.40 -0.41 0.13 -0.06 -0.03 -0.06 -0.05 0.11 0.43 
A.TASTE 0.02 -0.35 -0.36 0.12 -0.04 -0.05 -0.03 -0.07 0.08 0.38 

BODY -0.09 -0.39 -0.39 0.12 -0.08 -0.03 -0.07 -0.12 0.10 0.38 
FLAVOR 0.00 -0.36 -0.36 0.11 -0.01 -0.05 -0.01 -0.06 0.08 0.38 

C
lu

st
er

 5
 (

15
0)

 

FINAL S 0.02 -0.37 -0.37 0.11 -0.03 -0.06 -0.02 -0.07 0.09 0.40 
AROMA / F 0.00 -0.41 -0.37 0.10 0.07 0.03 -0.02 0.04 -0.05 0.42 
ACIDITY -0.04 .0.43 -0.44 0.23 0.06 0.03 -0.08 0.09 -0.08 0.45 
A.TASTE -0.02 -0.46 -0.45 0.18 0.07 0.04 -0.06 0.09 -0.08 0.49 

BODY -0.01 -0.45 -0.42 0.17 0.06 0.03 -0.09 0.10 -0.07 0.46 
FLAVOR .0.03 -0.46 -0.45 0.21 0.08 0.02 -0.05 0.11 -0.07 0.48 

C
lu

st
e

r 
7 

(1
15

) 

FINAL S -0.02 -0.46 -0.45 0.19 0.07 0.03 -0.06 0.09 -0.07 0.49 
P = average annual precipitation (mm), T = average annual temperature (°C), DP = average annual dew 
point (°C), DTR = average annual diurnal temperature range (°C), DM = average annual number of dry 
months, SR = solar radiation (MJm-2d-1), S = slope (°), N = northness (cos(aspect*pi)/180)), E = 
eastness (sin(aspect*pi)/180)), and EL = elevation (masl). 
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Table 18:  Correlation between environmental factors and quality in Cauca  

  P T DP DTR DM SR S E N EL 
AROMA/ F -0.05 -0.29 -0.27 -0.27 -0.11 0.08 0.02 0.09 -0.02 0.18 
ACIDITY 0.17 -0.15 -0.06 0.08 0.12 -0.18 -0.28 0.04 0.06 0.01 
AFTER T. -0.01 -0.19 -0.16 -0.25 -0.10 -0.14 0.10 -0.05 0.02 0.21 

BODY -0.02 0.08 0.10 0.01 0.07 -0.09 0.06 -0.19 0.16 -0.02 
FLAVOR 0.03 -0.14 -0.14 -0.12 -0.05 -0.04 0.06 0.00 0.06 0.16 C

a
uc

a 
(8

8)
 

FINAL S. -0.06 -0.20 -0.19 -0.20 -0.12 -0.06 -0.06 0.03 -0.02 0.22 
AROMA/ F 0.04 -0.24 -0.25 -0.07 -0.15 0.25 -0.10 0.00 0.01 0.15 
ACIDITY 0.14 0.19 -0.20 -0.18 0.02 0.14 -0.34 0.05 -0.10 0.15 
AFTER T. 0.24 -0.15 -0.15 -0.21 -0.03 -0.06 0.00 -0.18 0.13 0.20 

BODY -0.23 0.26 0.26 0.23 0.02 -0.25 0.19 -0.34 0.15 -0.10 
FLAVOR 0.02 -0.16 -0.16 -0.09 0.03 -0.03 0.00 -0.05 0.11 0.20 E

l T
am

bo
- 

T
im

bi
o 

(4
8)

 

FINAL S. 0.01 -0.16 -0.16 -0.10 0.03 0.03 -0.07 -0.17 0.05 0.23 
AROMA/ F 0.09 -0.11 -0.12 0.09 -0.12 0.19 -0.34 -0.17 0.05 0.00 
ACIDITY 0.10 -0.11 -0.11 0.13 -0.04 0.16 -0.10 -0.11 0.12 0.18 
AFTER T. -0.12 0.11 0.12 0.11 0.10 -0.13 -0.03 -0.33 -0.15 0.10 

BODY 0.04 0.05 0.01 -0.02 0.29 0.35 -0.31 0.00 0.25 -0.02 
FLAVOR -0.17 -0.20 -0.19 0.41 -0.17 0.03 0.08 -0.51 -0.20 0.34 In

zá
 (

27
) 

FINAL S. 0.19 -0.22 -0.20 0.36 -0.14 -0.04 -0.08 -0.40 -0.13 0.27 
P = average annual precipitation (mm), T = average annual temperature (°C), DP = average annual dew 
point (°C), DTR = average annual diurnal temperature range (°C), DM = average annual number of dry 
months, SR = solar radiation (MJm-2d-1), S = slope (°), N = northness (cos(aspect*pi)/180)), E = 
eastness (sin(aspect*pi)/180)), and EL = elevation (masl). 
 

Regressions between environment and quality 

Regression analyses were carried out for the final score attribute, which is a summary 

indicator for all the sensorial attributes. The regression analysis for Honduras confirms 

the results of the correlations; average annual temperature, average annual dew point, 

and elevation have the highest r2 coefficients, of 0.27, 0.35, and 0.27 respectively (see 

grey points, equation and r2 in Figure 12). Environmental factor averages for each 

quality class were calculated (see red lines, equations and r2). The r2 value for the 

environmental factor averages with its quality class is 0.94, 0.93 and 0.93 respectively. 

The remaining factors of the point data regression all had r2 <0.05.  

 

The r2 values are much higher for the regressions of the clusters than for the entire data 

set; this is true for both the point data regression and for the quality class regression of 

average annual temperature, average annual dew point, and elevation and for the 

majority of the remaining factors (Table 19). Class regression for cluster 7 has the 

highest correlation, followed by cluster 4 and cluster 3 for average annual temperature, 

average annual dew point, and elevation.  
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Figure 12:  Regression analyses between quality and environment in Honduras. 
Regression analyses were calculated of environmental factors with final score quality (grey dots and 
grey line) and on the final score quality class average (red line concets final score quality classes and 
dashed red lines is its regression) for all Honduran sites. 
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Figure 13:  Regression analyses between quality and environment in Cauca. 
Regression analyses were calculated of environmental factors on the data of final score quality (grey 
dots and grey line) and on the final score quality class average (red line concets final score quality 
classes and dashed red lines is its regression) for all sites in Cauca. 
 

In Cauca, average annual temperature, average annual dew point, and elevation are the 

environmental factors with the highest r2 values, 0.042, 0.035, and 0.047 respectively 
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(Figure 13). The r2 value for the quality class average and its environmental factor 

averages are 0.14, 0.14 and 0.18 respectively. The r2 values for Cauca are all less than 

0.05. Besides the three factors above, only northness has an r2 for the class regression 

greater than 0.10. In Cauca, the subsets usually have higher r2 coefficients than the 

entire data set. This is true in El Tambo-Timbio for the majority of factors and in Inzá 

for all factors except solar radiation in the point data regression. In the class 

regressions, the subsets in general have lower regression coefficients than the entire 

data set. The tendency of higher r and r2 values for the sub-classes than for the entire 

data set indicates that the subsets are more interlinked in terms of cause and effect 

between environmental factors and quality. The clusters in Honduras were selected 

statistically while the niches in Cauca were chosen based on expert knowledge, 

suggesting that selection by both subjective and objective means are suitable to 

identify niches with similar environment-quality interactions. However this pattern is 

more pronounced in Honduras.  

 

Table 19:  Regression between quality and environment in Honduras and Cauca 
Regression of finals score with environmental factors and regression of final score classes with 
environmental factors averages classes were conducted with the entire Honduran data set and its 
clusters, and with the entire Cauca data set and the El Tambo-Timbio and Inzá niche data. 
 

SA RT DS P T DP DTR DM SR S E N EL 
All 0.00 0.27 0.25 0.03 0.02 0.00 0.00 0.00 0.00 0.27 
C2 0.00 0.07 0.06 0.00 0.00 0.02 0.02 0.06 0.01 0.13 
C3 0.11 0.17 0.18 0.00 0.00 0.03 0.34 0.02 0.14 0.12 
C4 0.03 0.08 0.03 0.03 0.03 0.00 0.02 0.00 0.00 0.04 
C5 0.00 0.13 0.14 0.02 0.00 0.00 0.00 0.00 0.00 0.16 

P
oi

nt
 r

e
gr

es
si

on
 

C7 0.00 0.19 0.18 0.04 0.00 0.00 0.00 0.01 0.00 0.21 
All 0.27 0.95 0.92 0.04 0.00 0.09 0.12 0.04 0.12 0.93 
C2 0.44 0.21 0.22 0.00 0.03 0.19 0.13 0.24 0.19 0.45 
C3 0.38 0.45 0.35 0.02 0.00 0.03 0.62 0.00 0.19 0.19 
C4 0.39 0.68 0.62 0.49 0.25 0.05 0.25 0.38 0.57 0.57 
C5 0.11 0.35 0.36 0.12 0.00 0.01 0.00 0.04 0.51 0.51 

H
on

du
ra

s 

C
la

ss
 r

eg
re

ss
io

n 

C7 0.07 0.76 0.69 0.12 0.00 0.05 0.00 0.01 0.86 0.86 
All 0.00 0.04 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.05 
TT 0.00 0.02 0.03 0.01 0.00 0.00 0.00 0.03 0.00 0.05 

P
oi

nt
  

re
g.

 

In 0.02 0.05 0.04 0.13 0.02 0.00 0.01 0.15 0.02 0.07 
All 0.01 0.14 0.14 0.06 0.05 0.04 0.01 0.00 0.12 0.18 
TT 0.00 0.06 0.07 0.02 0.00 0.00 0.01 0.08 0.00 0.13 

C
a

uc
a

 

C
la

ss
 

re
g.

 

In 0.08 0.10 0.09 0.19 0.04 0.00 0.01 0.24 0.03 0.10 
SA = Study area, RT = Regression type, DS Data sets, P = average annual precipitation (mm), T = 
average annual temperature (°C), DP = average annual dew point (°C), DTR = average annual diurnal 
temperature range (°C), DM = average annual number of dry months, SR = solar radiation (MJm-2d-1), S 
= slope (°), N = northness (cos(aspect*pi)/180)), E = eastness (sin(aspect*pi)/180)), and EL = elevation 
(masl). 
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Quality class average versus environment 

By plotting the final score quality class averages against the environmental factor 

averages for each cluster, the differences between the clusters become apparent. High 

beverage quality can be produced in a range of environmental conditions (Figure 14 

and 15). For example, a final score quality of 92 points can be produced at a 

temperature range of 18 to 22°C, at an elevation of 1100 to 1300, and with a number of 

dry months of between 5 and 6. These results indicate that there is not just one 

optimum level of an environmental factor but an optimal combination of 

environmental factors that make a growing environment superior to another.  
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Figure 14: Average quality versus average environmental factor of Honduras.  
Average quality class values for each cluster are plotted against the average environmental factor values. 
The red line connects the plotted values of the entire data set. 
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Figure 15: Average quality versus average environmental factor of Cauca.  
Average quality class values for each cluster are plotted against the average environmental factor values. 
The red line connects the plotted values of the entire data set. 
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4.3 Conclusions 

1. The literature reports a range of environmental factors that impact on coffee 

quality. Among these are the following: average annual precipitation, average annual 

temperature, and average annual dew point, and average annual diurnal temperature 

range, average annual number of dry month, solar radiation, slope, eastness, northness, 

and elevation.  

 

2. In the last decade, efforts were made to identify factors that impact on coffee 

beverage quality. The studies were often conducted in few single sites under controlled 

conditions, which makes it difficult to extrapolate the results. 

 

3. Generating data for environmental factors by GIS methodology to relate to actual 

coffees sampled in the field might not be as precise as controlled experiments but 

allows a broader coverage of information.  

 

4. Environmental factors and coffee quality are highly variable in space. Coffee 

quality and environmental factors are correlated with each other. 

 

5. The magnitude of the impact that the environmental factors have on quality is also 

variable, and the same factors are not always decisive. Combination of very different 

environmental conditions can produce high beverage quality. 

 

6. In Honduras, correlation and regression coefficients, mainly due to elevation and 

temperature, are much higher than in Cauca. where the decisive factors are not as 

strongly correlated and are more difficult to identify. 

 

7. Subsets within both the Honduras and Cauca data are generally more strongly 

correlated than are the entire data sets. This indicates that similar environments were 

successfully identified; the similar environments in this case being combinations of 

environmental factors that cause similar effects. 

 

8. The environments were selected by means of a cluster analyses in Honduras and by 

expert knowledge in Cauca. This suggests that both subjective and objective means are 
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suitable to identify niches with similar environment quality interactions. However the 

patterns were more pronounced in Honduras, where the identification was based on a 

statistical approach.  

 

9. Correlation and regression analyses are viable ways for a first assessment of the 

decisive factors for quality. As suggested by the Paretto Principles are there only some 

factors that are decisive for the major part of the quality.  
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5 MANAGEMENT QUALITY INTERACTIONS 
Specific objective 2: To describe and quantify the impact of agronomic 
management and post-harvest processes on coffee liquor quality. 

 

Management at the farm level is the second group of important factors in determining 

coffee beverage quality. Farm management is divided in agronomic management and 

post-harvest practices and is termed as the farmer’s management interventions to 

influence decisive quality factors. In this chapter, firstly farm management practices 

and their impact on beverage quality are reviewed and secondly the variability of farm 

management practices is illustrated and the potential to vary them to improve coffee 

quality is outlined.  

 

5.1 Impact of farm management on sensorial quality 
 

5.1.1 Biophysical factors 

Aspect has only recently been studied as a factor influencing coffee quality (Avelino, 

2005). On 35 sample sites in commercial farms in two coffee growing areas in Costa 

Rica, east-facing slopes in the Orosi growing zone had significant impact on body and 

acidity, preference was also highest on east-facing slopes (Avelino, 2005). In Santa 

Maria de Dota, Avelino (2005) observed significant improvement for beverage quality 

in aroma, body, acidity and preference in coffee from east-facing slopes. Avelino’s 

reasoning was that the east-facing slopes receive more sunlight than the remaining 

orientations due to the low cloud cover in the morning when east-facing slopes are 

fully exposed to the sun.  

 

Soil is usually quoted as a basic factor impacting on coffee quality (Barel and Jacquet, 

1994; Camargo et al., 1992; Cofenac, 2003; Illy, 2001). It is generally accepted that 

volcanic soils produce the best quality coffee (Griffin, 2001; Njoka and Mochoge, 

1997). Griffin (2001) states that volcanic soils often have positive influence on the 

attributes of acidity and body. Avelino et al. (2002) state that adequate soil for coffee 

has light texture. Different ranges of pH are recommended according to the growing 

zone (Table 20).  
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Table 20: pH ranges for different coffee growing conditions 

 Soil requirements Region Reference 
Acid pH (5.0-5.5) or 
slightly acid (6.0-6.5) 

Equador (Cofenac, 2003) Growing conditions 

pH from 4.8 -6.0 Colombia (Cenicafé, 1979) 
pH from 5.4 – 6.5 General 

Statement 
(Njoka and Mochoge, 1997) High quality coffee 

growing conditions 
pH of 5.4 to 6.5 Honduras (Avelino et al., 2002) 

 
Illy (2001) quotes that micronutrients frequently show a non-linear correlation 

between their concentration in the soil and cup quality. Another study (Foote, 1963) 

has shown that nutrient deficiencies may decrease cup flavor, on the other hand there 

is a very clear and positive link between gustative qualities and low soil fertility 

(Pochet, 1990).  Griffin (2001) states that potassium also augments the body of a 

coffee and increases the weight of the bean. Avelino et al. (2002) show that low 

contents of calcium affect coffee quality, Cofenac (2003) states that magnesium 

content favors the characteristics of aroma and flavor. Cofenac (2003) also showed 

that high contents of nitrogen and iron in coffee soils contribute directly improved 

acidity of the brew. Avelino et al. (2002) found that excess aluminum affects coffee 

quality negatively, while Cofenac (2003) states that high contents of copper negatively 

affects aroma, flavor and body characteristics. The data in the present study on the 

effect of different catena positions on beverage quality did show higher scores for 

upper slope positions that supports the Pochet’s (1990) findings that low soil fertility is 

correlated with high gustative qualities, but the differences are not large. In 

comparison to the other management factors, soils are very complex to assess and it is 

difficult to derive recommendations for direct use by the farmer for the improvement 

of coffee quality  

 

5.1.2 Variety 

A study conducted in Central America to compare the sensorial quality of traditional 

varieties such as Caturra, Pacas, Catuai, Bourbon and Pacamara with Arabica hybrids 

of Sudanese-Ethiopian origins did not show any significant differences (Bertrand et al., 

2006). A study in Colombia did not show any consistent differences between Caturra 

and Colombian traditional varieties (Puerta-Quintero, 1988), however the Caturra 

variety is preferred by most specialty coffee roasters over the Colombia traditional 

varieties. There are currently some varieties that are very sought after by specific 

markets such as the Geisha variety by the Japanese market and the Bourbon variety by 
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the North American market. Another study states that coffee cup qualities are 

determined genetically and can deteriorate in production and processing of the grain 

(Fajardo-Peña and Sanz-Uribe, 2003). ICO et al. (2000) argue that there is no 

inherently bad coffee. When coffee is of poor quality then the cause can usually be 

traced to poor harvesting methodology, post harvest processing, drying and handling.  

 

5.1.3 Shade management 

It has long been agreed that shade is the main factor enhancing coffee plantation 

sustainability in sub-optimal coffee zones (Beer et al., 1998). Recently shade cover has 

been shown to be beneficial in different coffee growing zones not only for its 

environmental services and additional income for farmers but as a means to improve 

coffee quality. In Costa Rica zero shade has a negative impact and 45% shade has a 

positive impact (Vaast et al., 2005), while in Nicaragua 45% or less  had a negative 

effect, while 46-63% had a positive effect (Lara-Estrada, 2005). In Honduras less than 

45% shade had a negative effect (Decazy et al., 2003), and in Guatemala high shade 

levels were positive and low shade levels had a negative impact. The optimal shade 

level for the 0-20°N latitude is therefore probably somewhere between 45% and 70% 

(Table 21).  

 

Table 21: Shade levels and impact on quality 
Reviewed studies from Central America. 
 

Reference Country Positive impact Negative impact Observation 

(Vaast et al., 2006) Costa Rica 45% shade 0 % shade Optimal growing zone 

(Muschler, 2001) Costa Rica High shade level Low shade level Sub-optimal growing zone 

(Lara-Estrada, 2005) Nicaragua 46-63% ≤45% Optimal growing zone 

(Decazy et al., 2003) Honduras Not evaluated <44% Optimal growing zone 

(Guyot et al., 1996) Guatemala High shade level Low shade level Optimal growing zone 

 

5.1.4 Harvest management 

According to specialty roasters, harvest is the critical point where quality can 

deteriorate or its potential can be maintained. A careful picking of only ripe cherries in 

contrast of stripe picking is crucial and conserves beverage quality (Barel and Jacquet, 

1994). In wine it had long been demonstrated that ‘selective harvesting’, that is the 

split picking of fruit according to different yield and quality criteria to exploit the 

observed variation was beneficial terms of higher cross margins per hectar (Bramley et 
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al., 2003). Management practices have to be site specific in order to improve coffee 

quality. Recently some harvest practices in coffee have been developed and their 

impact on quality assessed.  

 

Fruit thinning is the elimination of parts of the fruit load before its maturation to allow 

a concentration of the plants’ energy in fewer fruits and an increased accumulation of 

carbon, sugar, acids and other quality-relevant components. Vaast’s (2006) study 

conducted in Costa Rica showed a significant improvement of preference and acidity 

score of trees in which the fruit had been thinned. Attributes of bitterness and 

astringency attributes, which the consumer does not like, decreased with decreasing 

fruit load. Fruit-thinning in kiwifruit (Smith et al., 1992), apples (Palmer et al., 1997),  

and peaches (Corelli-Grappadelli and Coston, 1991; Souty et al., 1999) has been 

shown to have beneficial effect on quality.  

 

The separation of harvest time showed significant impact on beverage quality in a 

study conducted in Costa Rica (Vaast and Bertrand, 2005). Beverage quality of early 

and peak harvest was significantly higher than late harvest for acidity and preference 

and significantly lower for astringency and bitterness. Additional results presented in 

the same study confirmed that higher quality was reached for early and peak harvest in 

the case of acidity and preference for the varieties Caturra and Costa Rica 95 at 

altitudes of 700, 800, 1100, 1180 and 900, 1000, 1180, 1200, 1350, 1400 masl.  

 

Separation of the harvest according to position of the fruit in the canopy was studied in 

Costa Rica (Bertrand et al., 2004) In five-year-old trees there was a significant 

difference between fruit harvested from the upper canopy where the beverage quality 

was significantly higher for acidity and overall standard compared with the middle and 

lower canopy. There were no differences in beverage quality with canopy position in 

three-year-old trees.  

 

5.1.5 Post-harvest practices 

Specialty coffee quality is highly dependent on careful post-harvest processing 

(Menon, 1992). The post-harvest processing may be either by a dry or a wet procedure. 

Dry processing is used for Brazilian Robusta and Arabica, while wet processing is 
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mainly used for Arabica coffees and only rarely for Robustas. Dry processing consists 

of drying the beans immediately after harvest without removing the pulpy exocarp that 

surrounds the bean. The exocarp is dried until it is dehydrated and is thereafter 

removed mechanically during the hulling process. In wet processing, the exocarp and 

parts of the mucilage are removed mechanically. The remaining mucilage is then 

removed either by fermentation or by another mechanical process (BECOLSUB). The 

wet process gives a shorter drying period, a more attractive-looking grain, and finer 

coffee aromas (Barel and Jacquet, 1994). 

 

Wet processing is differentiated between the traditional method, which includes 

fermentation, and the ecological method BECOLSUB (abbreviation of the Spanish for 

ecological post-processing and its products). In the BECOLSUB process beans are 

centrifuged until there is no more mucilage attached to the bean. Fajardo and Sanz 

(2003) showed that physical quality of the coffee is improved when processing the 

beans with the BECOLSUB method compared with fermentation. BECOLSUB 

produces a smaller proportion of beans with adhering shell and mucilage, as well as 

fewer impurities and less almond coffee with first and second order defects. In 

addition BECOLSUB uses much less water leading to substantially less contamination 

of rivers and streams in the coffee-growing areas. Mechanical removal of mucilage 

improves the acidity and body of coffee without affecting the aroma as long as the 

coffee is dried immediately (Griffin, 2001). There are many ways that bad processing 

can cause decreased beverage quality and give serious defects such as stinker, amongst 

which the most prominent are delayed processing after harvest and drying the 

harvested fruit in thick layers (Kamau, 1977).  

 

Fermentation is the microbiological process of mucilage removal. The coffee is piled 

up in fermentation basins or bags and the process lasts for 12 – 30 hours depending on 

the climatic conditions. Traditionally, producers determine that mucilage fermentation 

is “complete” by manual inspection of the fermenting mass. Before completion, the 

intact mucilage layer is slippery, and the parchment coffee readily slides over itself. 

But at completion, the coffee is no longer slippery, the mucilage layer is loose and can 

be completely washed off. Coffee produced by the traditional wet method using 

microbial mucilage removal has given better quality than the mechanical methodology, 

the coffees had better aromatic quality with floral, fruity and caramel tones (Gonzalez-
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Riosa et al., 2006). “Over-fermentation” is generally considered as detrimental to 

coffee quality (Puerta-Quintero, 1999), and controlling it is crucial to enter the 

specialty coffee market. Systematic measurement of pH can predict when fermentation 

is complete and can indicate when over-fermentation may be occurring. The value of 

pH = 4.6 was observed to be the critical point in a study in Nicaragua (Jackels and 

Jackels, 2005). Over-fermentation of coffee fruit produces a highly displeasing sour 

sensation on the tongue –the result of enzymatic activity in the green coffee beans 

changing the sugars to acetic acid (vinegar) (Lingle, 2001).  

 

There is a great variety of mechanisms to dry parchment bean coffee; and here they are 

divided into four groups: 

 

(i) Drying under sun on the floor, 

(ii)  Drying under sun in mobile units to protect the beans from weather events,  

(iii)  Drying under sun protected against the weather by a kind of cover, and  

(iv) Mechanical drying in a silo. 

 

A study from Java showed that coffee dried in the sun had better flavor characteristics 

than coffee dried mechanically. In India, for example, coffee is dried in the monsoon 

winds and provides a good quality coffee sought by European markets (Nagabhushana 

R., 1989). Griffin (2001) states that final taste of coffee will greatly differ depending 

on the drying method, for example, coffee dried on clay patios can have a clay-like 

earthy taste. Cuppers often identify defects caused by drying on contaminated surfaces. 

For example, coffee can have a plastic taste from being dried on plastic sheets, or have 

a corn flavor in the cup because of contamination due to corn being dried along with 

the coffee. 
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5.2 Quantification of variable farm management  

5.2.1 Biophysical factors 

Aspect is a variable that obviously cannot be directly altered by the farmer but by 

separating the beans depending on the aspect of the field on which they were grown, 

farmers can at least manage the influence of aspect. The majority of coffee farms are 

on hillsides with very heterogeneous terrain so that even small farms often have 

distinctly different aspects. In Inzá, there are very few slopes facing south or southwest 

while in El Tambo-Timbio slopes are fairly homogenously distributed, with somewhat 

fewer east and southeast facing slopes (Figure 16).  
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Figure 16: Aspect of farms in Cauca.  

 

The soils of the sampled sites in El Tambo-Timbio are mainly Inceptisols, although 

there are some Entisols, Entisols-Inceptisols and Inceptisols-mollisols-alfisols. In Inzá 

the soils are Entisols-Inceptisols (Figure 17). All are mineral soils. Inceptisols have 

minimal horizon development, although they are more developed than Entisols, which 

lack developed horizons. Alfisols are relatively low in organic matter with relatively 

high base saturation and Mollisols have thick, dark surface horizons relatively high in 

organic matter and high base saturation.  
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Figure 17: Soils of farms in Cauca.  
The map shows sampling sites in El Tambo-Timbio (west) and Inzá (east), map adapted from (IGAC, 
1983).  

 

5.2.2 Variety 

In Colombia it is forbidden to plant Robusta coffees (Coffea canephoraa), therefore all 

the varieties are Arabica (Coffea arabica) species. The 270 sampled farms in Cauca 

194 are mainly planted with Caturra variety, followed by 31 with the Colombia variety 

and 25 with Caturra and Colombia mixed. Caturra variety is sometimes mixed with 

Typica (3 sites), San Bernardo (3) and Bourbon (1). There are also some farms with 

only San Bernardo (13) variety and some with only Typica (3) (Figure 18) 

. 

In El Tambo-Timbio 168 and in Inzá 102 farms were sampled. Both areas have nearly 

the same percentage planted of the Caturra variety, 70% in El Tambo-Timbio and 73% 

in Inzá. The Colombia variety comprises 15% and 4% in El Tambo-Timbio and Inzá 

respectively. In El Tambo-Timbio proportionally more farms have mixed varieties 

although there are few farms where Colombia is mixed with other varieties. There is a 

distinguishable clustering of the Colombia variety (Colombia only or rarely mixed 
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with Caturra) in the south-east and north east. In Inzá there are only five sites where 

Colombia or Colombia mixed with Caturra was planted; there is a clustering 

distinguishable of San Bernardo, Typica and Caturra mixed with other varieties in the 

south (Figure 18).  

 

Varieties in El Tambo-Timbio

70%

15%

14%
1%

Caturra Colombia Colombia + Caturra San Bernardo
 

Varieties in Inza

73%

4%

1%

12%

1%

3%

3%

3%

Caturra Colombia Colombia + Caturra

San Bernardo Caturra + Bourbon Caturra + San Bernardo

Caturra Tipica Tipica
 

Figure 18: Coffee varieties distribution in Cauca.  
The graph is read clockwise. Caturra refers in El Tambo-Timbio to 70% and in Inzá to 73%. 
 

 

Figure 19: Varieties in farms in El Tambo-Timbio (west) and Inzá (east).  
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5.2.3 Shade management 

Shade management in Cauca is variable, depending on the farmer’s diversification and 

income strategy. In the 270 farms surveyed 87% have some kind of shade in their 

coffee plantation and only 13% cultivate coffee in full sun. In El Tambo-Timbio 95% 

of the coffee fields have some kind of shade while in Inzá only 75% of the fields have 

shade (Figure 20).   

 

In El Tambo-Timbio 10 % use only one species of shade, 33% use two species, 21 % 

three species, 15 % four species and 16 % use five species or more (Figure 20). In Inzá 

25 % use only one species of shade specie, 21% two species, 13 % three species, 7 % 

four species and 9 % use five species or more. 
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Figure 20: Shade species distribution in El Tambo-Timbio and Inzá.  
The graph is read clockwise, one specie per field refers in El Tambo-Timbio to 10% and in Inzá to 25%. 

 

A spatial pattern is distinguishable. Sites with a higher number of shade species are 

often clustered; In El Tambo-Timbio in the southeast and the west and in Inzá in the 

south (Figure 21). This appears to be farmers in a given local area tend to adopt similar 

practices and strategies.  
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Figure 21: Number of shade species in the surveyed farms. 

 

5.2.4 Harvest management 

A survey conducted by Cenicafé (Figure 22) shows the harvest periods and peaks in 

the different coffee-growing areas of Colombia. In the the south, north and northwest 

there is only one principle harvest, while in the center of the country there are two 

principle harvests. The harvest period in all the areas is distributed over at least four 

months, and since coffee is harvested every 3-5 weeks, four to six harvests are usual. 

Grain from the different harvests can be kept separate to maintain uniform quality.     
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Figure 22: Coffee harvest periods in Colombia. 
Map adapted from (Cenicafé, 1997).  
 

5.2.5 Post-harvest practices 

Only 5 % of the farmers work with the BECOLSUB method, the remaining 95 % 

remove the mucilage by traditional fermentation. The 5 % using BECOLSUB are all 

from El Tambo-Timbio (Figure 23). 
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Figure 23: Post-harvest processes in Cauca.  
The graph on the left shows traditional processing versus BECOLSUB in El Tambo-Timbio and Inzá, 
the graph on the right the percentage of traditional versus BECOLSUB processing.  
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The condition of the farmers’ post-harvest equipment and the working environment 

was surveyed by asking farmers to choose between: 

 

(i) Equipment is in good condition and the working environment is clean and 

suitable for coffee processing; 

(ii)  Neither the equipment’s performance nor the working environment is entirely 

satisfactory; and 

(iii)  Both the equipment and working environment needs to be improved. 

 

The general pattern in both growing areas is similar however differences were more 

pronounced in El Tambo-Timbio. The majority of the farmers believe that neither the 

status of their equipment nor the working environment is entirely satisfactory followed 

by many who believe that they are good and a small minority who admit they need 

improvement (Figure 24).  
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Figure 24: Status of equipment and working environment in Cauca farms. 

 

Coffee is dried in a variety of ways, which can be summarized in four major categories 

(Table 22): 

 

(i) Drying in the sun on a floor; 

(ii)  Drying in the sun under mobile units to protect the beans from unexpected rain; 

(iii)  Drying in the sun protected by some kind of light penetrable cover; and 

(iv) Mechanical drying in a silo. 
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Drying in the sun on the ground has the disadvantage that the coffee has to be gathered 

up each time before it rains. Often the coffee gets wet because it could not be gathered 

on time, which can spoil the quality. Mobile sun dryers are more advanced systems of 

drying under the direct sun. The advantages are that the coffee can be rapidly removed 

to shelter from rain and that the coffee is not in direct contact with the floor. Sun 

drying under a sun-penetrable cover is an efficient and natural way of drying. These 

installations are usually built so that they allow a constant air flow and that the coffee 

never gets wet or in contact with the soil.  

 

Table 22: Categories of drying methods 

Category Type Description 
On a clay floor Most simple way of drying. Danger of contamination. 

On a cement floor Most reasonable way of floor drying 
On a plastic sheet Danger of contamination 

On fertilizer or other 
bags 

High danger of contamination 

Sun dried on the 
floor 

On wood or bamboo Most reasonable way of floor drying 
Casa Elda Casa Elda are drawers that are built in the roofs of 

farmers’ houses, so that the drawers can be quickly 
moved under the roof to protect the coffee of rain. 

Paceras or colectas Free standing drawers with a roof. Similar to Casa Elda 

Mobile sun dryer 

Sieves Sieves with wooden mark are used dry coffee and 
when rain threatens they are piled up in a dry place. 

Parabolica con 
polisombra 

Plastic tunnel over black sieves that allow the air 
circulation through the grains. Mainly used in the 

Cauca department (El Tambo-Timbio). 

Sun dried under 
some kind of 

protection 
Camion A plastic tunnel over firm ground that only allows air 

circulation through the tunnel. Mainly used in the Huila 
department (Inzá). 

Sisco Heat is produced by burning the hulls of the beans 
removed during the hulling process 

Charcoal Heat is produced by burning. Danger of contamination 
Propane Heat is produced by burning propane. 

Silo 

Diesel Heat is produced by burning Diesel. Danger of 
contamination 

 

More than 50 % of farmers dry in the sun with penetrable cover protection, 39% still 

dry on the floor, and only 5% have a mobile drying unit and 2 % a silo dryer (Figure 

25). In El Tambo-Timbio and Inzá drying on the floor under direct sunlight and under 

some kind of protection is common. A few farmers have mobile drying units or a silo. 

In El Tambo-Timbio the cheapest and easiest way of drying, in the sun on the floor, is 

most common whereas in Inzá farmers more frequently dry their coffee under some 

protection.  
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Figure 25: Drying practices in Cauca.  

The graph on the left shows the different drying types in El Tambo-Timbio and Inzá, the graph on the 
right the percentage of the drying processes.  
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5.3 Conclusions 

1. Farm management practices such as control of biophysical factors, varieties, shade 

management, and post-harvest practices have been studied and are reported as decisive 

for coffee quality. 

 

2. Farm management practices are highly variable between the growing niches. In 

Inzá slope aspects are more homogenous than in El Tambo-Timbio. Soils are more 

variable in Inzá, where more fields have shade, there are more shade species per farm 

and there is more mixture of coffee varieties. Post-harvest practices also differ between 

both niches.  

 

3. Agronomic management practices vary within niches; patterns of distribution of 

varieties and shade management are clearly recognizable. Farmers closer to each other 

are more likely to have similar shade species and variety management than farmers 

further apart. Shade levels do not follow this pattern.  

 

4. Post-harvest practices are very homogenous within the niche. The question is 

however if these adaptations were made consciously and in function of the realization 

of the competitive advantage.  

 

5. The bottom line question is,: “What is the adequate farm management to match 

with a given natural environment? How can farmers realize their comparative 

advantage of a beneficial natural environment and, with suitable management 

practices, convert it into a competitive advantage?” 
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6 SPATIAL DECISION SUPPORT TOOLS 
Specific objective 3: To compare and evaluate spatial analyses tools for the 
identification of high quality coffee niches. 
 

The objective of this chapter was firstly to compare the spatial decision support (SDS) 

tools MaxEnt, CaNaSTA, Domain and BioClim, where CaNaSTA is a SDS tool that was 

adapted to predict coffee quality for this research. The second objective was to evaluate 

the SDS tools using a data set of coffee quality from Honduras. The third objective was 

to validate CaNaSTA and to present a case study using a data set of the Cauca department 

in Colombia. The final objective was to discuss the utility of the approach for farmers. 

For detailed description of the methods refer to Chapter 3 on methodology. 

 

6.1 Model comparison 

A great variety of algorithms and models exist to predict the geographic distribution of 

species. Sometimes data of both presence and absence are available so that general-

purpose statistics can be used. For an overview of the available techniques used with 

these data see (Corsi et al., 2000; Elith, 2002; Guisan and Zimmerman, 2000; Scott et al., 

2002). When only data of presence are available, which is often the case for poorly-

sampled tropical regions, different models and algorithms are required. Coffee quality is 

a function of the environmental factors and is highly variable in space. If models 

originally developed for species distribution could be used to identify and map coffee 

quality, this becomes a researchable issue. Frequently used models that are based on very 

distinct mathematical algorithms were therefore compared to assess their performance.  

 

6.1.1 CaNaSTA  

The SDS tool, crop niche selection in tropical agriculture (CaNaSTA), was initially 

developed to suggest to smallholder farmers in the tropics niches for forage species. 

During the research presented here it was adapted to predict coffee quality. The engine 

used in developing CaNaSTA was Bayesian probability modeling. Bayesian methods 

provide a “formalism for reasoning under conditions of uncertainty, with degrees of 

belief coded as numerical parameters, which are then combined according to rules of 

probability theory” (Pearl, 1990). A simple Bayesian model defines prior and conditional 

probability distributions and combines these to calculate posterior probabilities for each 
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possible outcome. In other words, CaNaSTA compares the environmental factors for 

each pixel with sites where evidence is known about environmental factors and coffee 

quality. It then assigns a probability value depending on the similarity of the pixel with 

the evidence sites. The probability distributions may be derived from data, set by expert 

opinion or defined from a combination of data and expert opinion. 

 

6.1.2 Statistical approach and algorithms  

The idea of MaxEnt is to estimate a target probability distribution by finding the 

probability distribution that has maximum entropy (Phillips et al., 2006) by working in 

cycles during which it adjusts the probabilities until it arrives at a solution. In contrast, 

CaNaSTA assigns to each cell a conditional probability based on the known prediction 

response relations of the evidence data. MaxEnt and CaNaSTA make both use of prior 

probabilities, interpreted as a description of what is known about a variable in the 

absence of some evidence. The Domain algorithm averages the expression of the 

environmental evidence variables and searches for similar sites (Carpenter et al., 1993; 

Hijmans et al.), which causes a loss of detail in the environmental factor combination 

variability. The BioClim algorithm looks for pixels that fall within the multidimensional 

environmental range of the occurrence data (Hijmans et al.). All pixels that fall within the 

range are considered to be suitable. Due to the broad value range of the variables vast 

areas are identified as suitable, and often these predictions overestimate the reality. 

Bioclim does not take into account different combinations of environmental factors.  

 

6.1.3 Ease of use and speed of modeling  

MaxEnt is easy to run and use, but the interpretation requires a through knowledge of the 

model. On the other hand, CaNaSTa is easy to interpret but needs expertise in setting up 

the model since everything is user defined. Domain and Bioclim are straightforward and 

easy to interpret. Due to its cyclic process, MaxEnt is the most time consuming model to 

run, followed by CaNaSTA. Domain and BioClim both run fast because their algorithm 

takes up less memory.  

6.1.4 Data, format, resolution and outliers 

MaxEnt requires its own data sets in both shape file and ASCII format, CaNaSTA 

requires shape files and grd formats, both work with data of any resolution. Domain and 

BioClim have their own built-in data sets, but user defined data sets in shape file and grd 
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format can also be used. The resolution of the built-in data sets is 10, 5 and 2.5 

arcminutes (18, 9, 4.5 km near the equator); however data at other resolutions works 

satisfactorily. Bioclim and Domain have a percentile function incorporated that allows 

eliminating outliers, since their algorithms are very sensitive to outliers. 

 

6.1.5 Model comparison overview 

In Table 23 the technical model specifications are compared. The models are ordered 

from left to right according to their algorithm complexity.  

 

Table 23: Model comparison overview 

 MaxEnt CaNaSTA Domain BioClim 
Statistic 
approach 

Maximum entropy 
(MaxEnt) method 

Bayesian statistic Gower point-to-
point similarity 

metric 

Boxcar 
environmental 

envelop algorithm 
Algorithm Maximum entropy 

that estimates the 
probable distribution 
of species (quality) 

by finding the 
distribution of 

maximum entropy. 

Conditional 
probability layer 
from predictor 

variables against 
response classes is 

calculated. 
 

Mean over all 
climate variables 

define Gower 
similarity 
indicator 

Max and min 
values of 

environmental 
factors define 

multidimensional 
envelop 

Ease of use Easy to run stand 
alone software. 

Interpretations need 
broader statistical and 

mathematical 
knowledge. 

Analyses are user 
defined and need 
preparations and 

expertise. 

Easy to work with 
default data, more 
time-consuming 
for analyses with 

own data. 

Easy to work with 
default data, more 
time-consuming 
for analyses with 

own data. 

Speed of 
modeling 

Performs slowest 
(three times slower 

than Domain) 

Performs slowly 
(two times slower 

than Domain) 

Perform fastest Performs slightly 
slower than 

Domain 
Data Any own data Any own data BioClim in-built 

climatic layers1 
from the 

WorldClim 
database and own 

data. 

BioClim in-built 
climatic layers1 

from the 
WorldClim 

database and own 
data. 

Data  format ESRI and ASCII Shape files and 
grd 

Shape files and 
grd 

Shape files and 
grd 

Resolution Any Any Any and in-built 
10, 5 and 2.5 

minutes of arc (18, 
9, 4.5 km) 

Any and in-built 
10, 5 and 2.5 

minutes of arc (18, 
9, 4.5 km) 

Sensitivity to 
outliers 

No option No option Choice of outlier 
elimination 

Choice of outlier 
elimination 
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6.2 Model evaluation and validation 

6.2.1 Model precision  

The four models were compared using three different combinations of evidence data and 

three replications for each combination and model. The indicators of comparison are the 

area under curve (AUC) and the Kappa values, which both assess if a prediction is 

significantly different than might be expected by chance.  

 

The CaNaSTA AUC and Kappa results are statistically significant different to random 

predictions for quality A and the three input combinations (Table 24). The AUC values 

indicate an excellent discrimination and the Kappa values a moderate discrimination of 

the CaNaSTA model. Domain and BioClim AUC and Kappa values indicate moderate to 

no agreement, the latter that the predictions are no better than chance estimates. Maxent 

values are even lower and do clearly indicate that the predictions are no better than 

chance estimates. There was no apparent difference in the prediction performance of the 

different input combinations.  

 

The CaNaSTA ROC AUC and Kappa results for quality AA show that the majority of 

analyses are statistically significant different from random predication, but the AUC 

Kappa values are substantially lower and only represent for AUC a moderate and for 

Kappa a poor to fair agreement (Table 25) . This might be because it is easier to 

discriminate extreme qualities such as A than qualities lying in the centre of the 

distribution such as AA. The remaining models show low AUC and Kappa values, 

whereas the Maxent values are still slightly higher than the ones for Domain and Bioclim, 

all of them indicate no discrimination from random predictions.  

 

The CaNaSTA ROC AUC and Kappa results for quality AAA show a similar pattern as 

for quality A, that is the results are statistically significantly better than random 

predictions for the three input combinations (Table 26). The AUC values indicate an 

excellent discrimination and the Kappa values a moderate discrimination of the 

CaNaSTA model. The second best model for the discrimination of the AAA qualities is 

MaxEnt with moderate AUC discrimination and poor to fair agreement for Kappa values, 

that is the discrimination is statistically significant. The results for Domain and BioClim 

do not show a significant discrimination, either for AUC or for Kappa values.  
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In general there is no improvement in the predictions with increasing numbers of input 

variables, with the exception of the predictions with MaxEnt for quality A. These 

findings support Paretto’s concept that only a small number of factors is responsible for 

the majority of causes. In the case of coffee in Honduras the factors are elevation and the 

interlinked temperature regimes. Kappa and AUC values tend to by highest for quality 

AAA, it seems that it is easier to distinguish factors responsible for higher quality coffee 

than those factors responsible for lower quality coffee. This also means that the 

environment for very high quality is different than that for average or low quality. This 

finding supports the hypothesis that there exist speciality coffee niches that will be 

discussed later in this chapter.  
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Table 24: Model accuracy for quality A predictions 
Predictions were conducted with varying predictor combinations and evaluated by ROC AUC and 
KAPPA indicators. 
 

M1 EF2 R3 AUC4 SE5 z6 p7 K8 V9 z10 P11 

1 0.41 0.08 -1.15 0.25 -0.20 0.02 -1.58 0.94 
2 0.54 0.08 0.59 0.56 0.03 0.02 0.26 0.40 

A
L

L
12

 

 3 0.51 0.08 0.08 0.94 -0.06 0.02 -0.51 0.69 
1 0.31 0.07 -2.57 0.01 -0.30 0.02 -2.36 0.99 
2 0.48 0.07 -0.22 0.82 -0.10 0.02 -0.77 0.78 

D
&

A
13

 

 3 0.46 0.08 -0.49 0.62 -0.13 0.02 -1.04 0.85 
1 0.30 0.07 -2.79 0.005 0.13 0.02 0.79 0.21 
2 0.39 0.08 -4.08 <0.0001 -0.26 0.01 -2.14 0.98 

M
A

X
E

N
T

 
 

E
L

1
4 

 3 0.42 0.08 -1.06 0.29 -0.33 0.01 -2.73 0.99 
1 0.80 0.06 4.92 <0.0001 0.46 0.01 4.08 0.00002 
2 0.80 0.06 5.08 <0.0001 0.46 0.02 4.09 0.00002 

A
L

L
 

3 0.80 0.06 4.91 <0.0001 0.36 0.01 3.05 0.001 
1 0.81 0.06 5.18 <0.0001 0.53 0.12 4.88 <0.00001 
2 0.78 0.06 .80 <0.0001 0.46 0.01 4.09 0.00002 

D
&

A
 

3 0.82 0.06 5.61 <0.0001 0.46 0.01 4.08 0.00002 
1 0.82 0.06 5.54 <0.0001 0.53 0.01 4.88 <0.00001 
2 0.81 0.05 5.76 <0.0001 0.40 0.14 3.38 0.0004 

C
a

N
a

S
T

A
 

E
L

 

3 0.83 0.06 5.73 <0.0001 0.53 0.01 4.81 <0.00001 
1 0.55 0.04 1.21 0.22 0.1 0.04 0.51 0.30 
2 0.50 0.04 0.00 1.00 0.00 0.05 0.00 0.50 

A
L

L
 

3 0.50 0.04 0.00 1.00 0.00 0.04 0.00 0.50 
1 0.48 0.03 -0.57 0.57 -0.03 0.06 -0.13 0.55 
2 0.53 0.04 0.93 0.35 0.07 0.04 0.32 0.37 

D
&

A
 

3 0.50 0.03 0.00 1.00 0.00 0.05 0.00 0.50 
1 0.48 0.02 -0.99 0.32 -0.03 0.06 -0.12 0.55 
2 0.52 0.02 1.03 0.30 0.03 0.06 0.14 0.44 

D
O

M
A

IN
 

E
L

 

3 0.52 0.02 0.99 0.32 0.03K 0.06 0.13 0.44 
1 0.43 0.06 -1.07 0.28 -0.13 0.02 -0.86 0.80 
2 0.48 0.06 -0.26 0.79 -0.03 0.02 -0.25 0.60 

A
L

L
 

3 0.51 0.06 0.26 0.79 0.03 0.02 0.24 0.40 
1 0.50 0.05 0.00 1.00 0.00 0.04 0.00 0.50 
2 0.60 0.05 2.11 0.03 0.20 0.28 1.19 0.11 

D
&

A
 

3 0.58 0.05 1.81 0.07 0.16 0.03 0.94 0.17 
1 0.48 0.04 -0.44 0.66 -0.03 0.05 -0.14 0.56 
2 0.60 0.04 2.3 0.02 0.20 0.03 1.15 0.12 

B
IO

C
L

IM
 

E
L

 

3 0.55 0.04 1.38 0.17 0.10 0.04 0.48 0.31 
1 Models, 2 Environmental factors, 3 Repetition, 4 Area under the ROC curve estimates if the 
prediction is significantly different as by chance (AUC ≤0.5), 5 Standard Error, 6 z statistic, 7 p 
probability indicating the significance difference from the critical AUC = 0.5, 8 Kappa statistic assesses 
the extend to which the model predicts by at a rate higher than by chance (0= no agreement to 1 = full 
agreement), 9 Kappa variance, 10 z-statistic for Kappa, p probability for Kappa, 12 All ten 
environmental factors, 13 only annual average dew point and temperature, 14 only elevation. 
 

 



Spatial decision support tools 
 

 97 

Table 25: Model accuracy for quality AA predictions 
Predictions were conducted with varying predictor combinations and evaluated by ROC AUC and 
KAPPA indicators. 
 

M1 EF2 R3 AUC4 SE5 z6 p7 K8 V9 z10 P11 

1 0.54 0.05 0.73 0.46 0.01 0.01 0.17 0.43 
2 0.58 0.05 1.60 0.11 0.09 0.01 1.02 0.15 

A
L

L
1

2 

 
3 0.57 0.05 1.36 0.17 0.10 0.01 1.19 0.11 
1 0.54 0.05 0.84 0.40 0.03 0.01 0.34 0.36 
2 0.58 0.05 1.75 0.08 0.17 0.08 1.99 0.02 

D
&

A
13

 

 

3 0.57 0.05 1.48 0.14 0.04 0.01 0.511 0.30 
1 0.53 0.05 0.58 0.56 -0.04 0.01 -0.51 0.69 
2 0.57 0.05 1.48 0.14 0.11 0.07 1.37 0.08 

M
A

X
E

N
T

 
 

E
L

14
 

 

3 0.55 0.05 1.01 0.31 0.04 0.01 0.51 0.30 
1 0.63 0.05 2.70 0.047 0.14 0.01 1.72 0.04 
2 0.63 0.05 2.65 0.007 0.23 0.01 2.80 0.002 

A
L

L
 

3 0.67 0.05 3.58 0.0003 0.26 0.01 3.17 0.0007 
1 0.56 0.05 1.23 0.22 0.16 0.01 1.89 0.03 
2 0.58 0.05 1.74 0.081 0.05 0.01 0.68 0.24 

D
&

A
 

3 0.61 0.05 2.31 0.02 0.20 0.01 2.43 0.0074 
1 0.63 0.05 2.85 0.004 0.16 0.01 1.89 0.03 
2 0.65 0.05 3.20 0.001 0.22 0.007 2.62 0.004 

C
a

N
a

S
T

A
 

E
L

 

3 0.71 0.04 0.79 <0.0001 0.28 0.01 3.56 0.0002 
1 0.49 0.04 -0.20 0.83 -0.01 0.01 -0.12 0.54 
2 0.55 0.03 1.51 0.13 0.10 0.01 0.88 0.18 

A
L

L
 

3 0.50 0.03 0.00 1.00 0.00 0.01 0.00 0.50 
1 0.49 0.01 -1.01 0.31 -0.01 0.03 -0.08 0.53 
2 0.49 0.01 -0.45 0.65 -0.01 0.03 -0.09 0.53 

D
&

A
 

3 0.49 0.02 -0.56 0.57 -0.01 0.03 -0.09 0.53 
1 0.51 0.07 1.03 0.30 0.01 0.03 0.09 0.46 
2 0.51 0.01 1.02 0.31 0.01 0.03 0.09 0.46 

D
O

M
A

IN
 

E
L

 

3 0.51 0.01 1.45 0.15 0.03 0.03 0.18 0.42 
1 0.53 0.04 0.70 0.48 0.06 0.00 0.63 0.26 
2 0.57 0.04 1.72 0.08 0.14 0.01 1.71 0.04 

A
L

L
 

3 0.57 0.04 1.76 0.07 0.14 0.01 1.60 0.05 
1 0.56 0.03 1.98 0.048 0.14 0.01 1.28 0.10 
2 0.55 0.03 1.78 0.07 0.11 0.01 1.01 0.15 

D
&

A
 

3 0.59 0.02 3.49 0.0005 0.17 0.01 1.41 0.08 
1 0.55 0.03 1.72 0.08 0.10 0.01 0.81 0.21 
2 0.55 0.03 1.69 0.09 0.10 0.01 0.83 0.20 

B
IO

C
L

IM
 

E
L

 

3 0.53 0.02 1.47 0.14 0.06 0.2 0.39 0.34 
1 Models, 2 Environmental factors, 3 Repetition, 4 Area under the ROC curve estimates if the 
prediction is significantly different as by chance (AUC ≤0.5), 5 Standard Error, 6 z statistic, 7 p 
probability indicating the significance difference from the critical AUC = 0.5, 8 Kappa statistic assesses 
the extend to which the model predicts by at a rate higher than by chance (0= no agreement to 1 = full 
agreement), 9 Kappa variance, 10 z-statistic for Kappa, p probability for Kappa, 12 All ten 
environmental factors, 13 only annual average dew point and temperature, 14 only elevation. 
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Table 26: Model accuracy for quality AAA predictions 

Predictions were conducted with varying predictor combinations and evaluated by ROC AUC and 
Kappa indicators. 
 

M1 EF2 R3 AUC4 SE5 z6 p7 K8 V9 z10 P11 

1 0.76 0.05 5.17 <0.0001 0.36 0.01 3.81 0.00006 
2 0.75 0.05 4.65 <0.0001 0.39 0.01 4.08 0.00002 

A
L

L
12

 

 
3 0.64 0.06 2.46 0.01 0.13 0.01 1.26 0.10 
1 0.31 0.07 -2.57 0.01 0.35 0.01 3.55 0.00018 
2 0.79 0.04 6.58 <0.0001 0.43 0.01 4.63 <0.00001 

D
&

A
13

 

 

3 0.67 0.06 3.06 0.002 0.21 0.01 2.13 0.01 
1 0.68 0.06 3.23 0.001 0.32 0.01 3.31 0.0004 
2 0.76 0.05 1.28 0.20 0.46 0.01 4.92 <0.00001 

M
A

X
E

N
T

 
 

E
L

1
4 

 

3 0.69 0.05 3.41 0.0006 0.36 0.01 3.81 0.00006 
1 0.76 0.05 5.11 <0.0001 0.39 0.01 4.08 0.00002 
2 0.81 0.04 7.30 <0.0001 0.43 0.01 4.63 <0.00001 

A
L

L
 

3 0.69 0.06 3.39 0.0007 0.30 0.01 3.06 0.001 
1 0.81 0.06 5.18 <0.0001 0.39 0.01 4.08 0.00002 
2 0.82 0.04 7.45 <0.0001 0.50 0.01 5.53 <0.00001 

D
&

A
 

3 0.75 0.05 5.09 <0.0001 0.36 0.01 3.81 0.00006 
1 0.76 0.05 5.31 <0.0001 0.34 0.01 3.55 0.0002 
2 0.82 0.04 7.37 <0.0001 0.46 0.01 4.92 <0.00001 

C
a

N
a

S
T

A
 

E
L

 

3 0.72 0.05 4.29 <0.0001 0.39 0.01 4.08 0.00002 
1 0.59 0.04 1.93 0.05 0.17 0.01 1.42 0.07 
2 0.64 0.04 3.75 0.0002 0.28 0.01 2.31 0.01 

A
L

L
 

3 0.55 0.04 1.21 0.22 0.11 0.02 0.84 0.20 
1 0.48 0.03 -0.57 0.57 0.11 0.03 0.63 0.26 
2 0.56 0.02 2.61 0.009 0.13 0.03 0.79 0.21 

D
&

A
 

3 0.54 0.02 2.12 0.03 0.08 0.03 0.49 0.31 
1 0.51 0.01 1.01 0.30 0.02 0.04 0.11 0.46 
2 0.54 0.02 2.07 0.04 0.09 0.03 0.48 0.31 

D
O

M
A

IN
 

E
L

 

3 0.53 0.02 1.81 0.07 0.06 0.03 0.35 0.36 
1 0.63 0.05 2.69 0.007 0.26 0.01 2.51 0.006 
2 0.62 0.05 -1.59 0.11 0.23 0.01 2.27 0.01 

A
L

L
 

3 0.54 0.05 0.84 0.40 0.09 0.01 0.80 0.21 
1 0.50 0.05 0.00 1.00 0.04 0.03 0.26 0.39 
2 0.61 0.04 3.21 0.001 0.22 0.02 1.83 0.03 

D
&

A
 

3 0.53 0.03 1.03 0.30 0.06 0.03 0.39 0.34 
1 0.56 0.03 1.94 0.05 0.13 0.02 0.86 0.19 
2 0.56 0.02 2.58 0.01 0.13 0.03 0.78 0.21 

B
IO

C
L

IM
 

E
L

 

3 0.52 0.02 0.84 0.40 0.04 0.032 0.24 0.40 
1 Models, 2 Environmental factors, 3 Repetition, 4 Area under the ROC curve estimates if the 
prediction is significantly different as by chance (AUC ≤0.5), 5 Standard Error, 6 z statistic, 7 p 
probability indicating the significance difference from the critical AUC = 0.5, 8 Kappa statistic assesses 
the extend to which the model predicts by at a rate higher than by chance (0= no agreement to 1 = full 
agreement), 9 Kappa variance, 10 z-statistic for Kappa, p probability for Kappa, 12 All ten 
environmental factors, 13 only Annual average dew point and temperature, 14 only elevation. 
 

The McNemar test was used to show the statistical difference between the models, the 

test is like a Kappa test but is designed to compare models. CaNaSTA is statistically 

significantly the most suitable model for the prediction of qualities A and AA using all 

input variables, for quality AAA CaNaSTA is also statistically significantly better than 

Domain and BioClim but not as MaxEnt. The remaining models are not statistically 

distinguishable (Table 27).  
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Table 27: McNemar model comparison using all input variables 

 

Quality. Models MaxEnt CaNaSTA Domain 
CaNaSTA SD1   
Domain 0.32 SD  A

 

BioClim 0.81 SD 0.56 
CaNaSTA SD   
Domain 0.59 SD  A

A
 

BioClim 0.41 0.09 0.23 
CaNaSTA 0.23   
Domain 0.15 SD  

A
A

A
 

BioClim 0.14 SD 1 
1 Statistically significant different 

 

For average annual temperature and average annual dew point only CaNaSTA was the 

statistically significant most suitable model for A and AAA quality prediction (Table 

28). For quality AA CaNaSTA is better than Domain but not statistically different 

form BioClim and MaxEnt. For quality A, BioClim is more suitable than MaxEnt. For 

quality AA, BioClim is more suitable than Domain. For quality AAA MaxEnt is 

significantly more suitable than either Domain or BioClim, which are not 

distinguishable one from the other. In summary is CaNaSTA the most suitable model 

followed by MaxEnt, BioClim and finally Domain. 

 

Table 28: McNemar model comparison using selected input variables 

Average annual temperature and average annual dew point were used as predictor variables. 
 

 Models MaxEnt CaNaSTA Domain 
CaNaSTA SD1   
Domain 0.08 SD  A

 

BioClim SD SD 1 
CaNaSTA 0.50   
Domain 0.21 SD  A

A
 

BioClim 0.26 0.93 SD 
CaNaSTA SD   
Domain SD SD  

A
A

A
 

BioClim SD SD 1 
1 Statistically significant different 

 

When using only elevation data as the input variable, CaNaSTA is significantly more 

suitable than either Domain and BioClim for qualities A, AA and AAA, except for 

BioClim with quality AA (Table 29). CaNaSTA is only significantly more suitable 

than MaxEnt for quality A. On the other hand MaxEnt is also significantly more 

suitable than Domain and BioClim for quality AAA. BioClim is more suitable for 

quality A than MaxEnt. For these data, CaNaSTA is the most suitable model followed 

by MaxEnt; while Domain and BioClim are not distinguishable one from the other.  
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Table 29: McNemar model comparison  using elevation as predictor variable 
 

 Models MAXENT CaNaSTA DOMAIN 
CaNaSTA SD1   
DOMAIN 0.09 SD  A

 

BIOCLIM SD SD 0.12 
CaNaSTA 0.07   
DOMAIN 0.83 SD  A

A
 

BIOCLIM 0.47 0.17 0.05 
CaNaSTA 0.62   
DOMAIN SD SD  

A
A

A
 

BIOCLIM SD SD 0.21 
1 Statistically significant different 

 

The model comparison shows that CaNaSTA is for all the different conditions the 

most suitable model; the differences are not always significant. CaNaSTA is followed 

by Maxent. Bioclim is only in some instances more suitable than Domain. 

 

6.2.2 Data threshold  

According to the model comparison, CaNaSTA is the most suitable model for 

prediction of specialty coffees. A case study to validate CaNaSTA and determine the 

data threshold was therefore conducted, using data from El Tambo-Timbio and Inzá 

and the pooled data set using different data thresholds. The prediction and evidence 

quality scores were compared, with the hypotheses being:  

 

H0 = Prediction and evidence scores are independent (null hypothesis) 

H1 = Prediction and evidence scores are dependent 

 

In El Tambo-Timbio the P-value decreases from 0.062 to 0.019 with increasing 

numbers of prediction points (Table 30). With the 25/75 set, the null hypothesis is 

accepted, that is the prediction and evidence scores are independent. For the 50/50 and 

75/25 sets, H1 can be accepted with P=0.052, that is the prediction and evidence scores 

are dependent. In Inzá the null hypothesis is accepted with P=0.014 for the 75/25 set, 

for the 50/50 set with P=0.081 it is just rejected and for the 25/75 it is clearly rejected. 

When analyzing the entire area no pattern is distinguishable, 50 and 75 percent of the 

data points predict the niches at P=0.056 and 0.13 respectively, which are reasonable 
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P-values, remembering that the CaNaSTA methodology uses site data combined with 

the relevant environmental data to predict areas that are suitable to produce specialty 

quality coffee. This implies that predictive relationships derived for Inzá is used to 

predict qualities in El Tambo-Timbio and vice versa. It is also obvious that the niches 

cannot be identified with a high degree of confidence, but the methodology still serves 

for a general delimitation of niches that can thereafter be refined by concentrating the 

analysis window at the niche scale, in other words by using a smaller window to define 

the niche more closely.  

 

Table 30: Area, number of samples and P values of the likelihood ratio chi-square  
The analyses were run for the entire area and for the two niches 
 

 Area n 25 / 75 50 / 50 75 / 25 

Cauca 775,866 ha 88 0.43 0.056 0.13 

El Tambo-Timbio 160,765 ha 48 0.062 0.051 0.019 

Inzá 16,005 ha 27 0.86 0.081 0.014 

 

 

6.3 Specialty coffee quality prediction 

The previous analyses proved the validity of CaNaSTA predictions. In this section a 

case study is presented predicting high quality coffee niches for the Cauca department.  

 

6.3.1 Niche identification  

A niche identification was run in CaNaSTA using the entire data set (88 sampled sites) 

and the ten environmental evidence factors. The range of qualities was divided into 

five ranges of final scores: < 70, 70 - 75, 75 - 80, 80 - 85 and > 85. The maps in figures 

26 and 27 show the probability of producing a specific final score according to the 

natural environment where coffee is grown in Cauca department. It is obvious that it is 

easier to reach a final score of 75 to 80 than one above 85. As the final score increases, 

the area suitable for growing the coffee decreases. The conclusion is that only small 

areas comply with the requirements to produce high final scores. Nevertheless, 

ecological niches can be identified with high probabilities of producing an excellent 

coffee. Figure 28 shows the most probable quality per niche. It is a summary analysis 

that shows again that large areas produce mediocre coffee but only very limited areas 

can produce superior quality coffee. The same effect of niches can be observed in  
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Figure 26: Probability of producing coffee with a final score between 75 and 80. 

 

 
Figure 27: Probability of producing coffee with a final score above 85. 
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Figure 28: Most likely quality class that can be produced. 

 

maps generated for individual organoleptic characteristics such as acidity, sweetness, 

and body (results not presented). The niches identified are the municipalities of El 

Tambo-Timbio in the Popayan area and the municipality of Inzá on the eastern border 

of the Cauca department.   

 

6.3.2 Niche characterization  

It has been shown that there are two niches apt to produce high quality coffees, the 

niche of El Tambo-Timbio and Inzá. The two niches are very distinct in terms of 

climate and geomorphology as discussed in chapter four, which means that there is not 

just one suitable environment for the production of quality coffee. To illustrate the site 

specificity of the interactions of environmental factors with quality, a “driving factor” 

analysis was run for the entire data set and for the two niches separately (Tables 31 

and 32). For the entire data set, only one enhancing and three reducing factors were 

identified having a significance value (c) > 2. As stated previously, by running a 

general analysis, areas that produce high-quality coffee can be predicted based on 

evidence data from distinct environmental conditions and insights into the interactions 
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with coffee quality, which are only of a general nature. When analyzing niche by 

niche, a more detailed set of responsible factors can be obtained.  

 

Table 31: Quality enhancing factors impacting on the final score 

Attributes of the niches Inzá, El Tambo-Timbio and the whole Cauca sampling area are presented. The 
significance indicator c is shown in parentheses 
 

Quality enhancing factors Entire data Set Inzá El Tambo-Timbio 

 1750 -1800 (2.02) 1652 -1725 (2.32) Altitude (masl) 

   1725 -1798 (2.39) 

 11.9-12.2 (2.43)  Average annual dew point (°C) 

  12.3-12.6 (2.07) 12.3 – 12.8 (2.38) 

 17.7 -18.1 (2.55) 17.8-18.9 (2.32) Average annual temperature (°C) 

  18 -18.4 (2.21)  

 1645 -1674 (2.2)  Average annual precipitation (mm) 

 1760 – 1934 (2.31) 1587 -1616 (2.1)  

 
  

Table 32: Quality reducing factors impacting on the final score 

Attributes of the niches Inzá, El Tambo-Timbio and the whole Cauca sampling area are presented. The 
significance indicator c is shown in parentheses 

 
Quality reducing factors Entire data set Inzá El Tambo-Timbio 

Altitude (masl) 1528 – 1623  (2.74)   

  34.5 – 40.9  (2.55) Slope (degrees) 

  22.4 -25.6 (2.54) 21.6 – 27.9 (2.10) 

Average annual dew point (°C) 12.8 – 13.5 (2.4) 11.5 -11.9 (2.57) 14.3 -14.8 (2.00) 

Average annual temperature (°C)  17.3 – 17.7 (2.47) 20 - 21 (2.02) 

Average annual solar radiation 
(Mj/m2/d) 

  21.8 – 22.3 (2.32) 

Average annual precipitation (mm) 1133 – 1587 (2.78)   

Dry month per year (mth / yr)  3 (2.81)  

 

For both niches, altitude, average annual temperature and average annual dew point 

enhance final quality score. The ranges are only slightly different between the two 

Cauca sites, Inzá having lower temperatures and higher altitudes than El Tambo-

Timbio. Average annual precipitation is an important enhancing factor in Inzá and for 

the entire Cauca data set. In contrast, slope influences final score negatively in both 

niches. Dew point above and below the range identified as enhancing quality have a 

negative impact as does average annual temperature. The optimal annual average 

temperature in Inzá is 17.7 – 18.4°C but is slightly higher (17.8 – 18.9°C) for El 



Spatial decision support tools 
 

 105 

Tambo-Timbio. The results demonstrate variability in the environmental factors that 

impact on final score and the need to assess these factors according to their niches. The 

findings also prove that there are different environmental niches apt to produce high 

quality coffee and that the environmental factors, their combination and weighting are 

distinct from on niche to another. 

 

6.4 Discussion 

6.4.1 Is environmental niche identification viable? 

The comparison and evaluation of models demonstrates that CaNaSTA predicts 

qualities best. According to two independent tests, the predictions in the majority of 

cases are statistically significantly better than by chance. Depending on the input data 

and the evaluation indicator, the predictions range from moderate to excellent. Taking 

into account that the data from Honduras were not processed in a standardized manner 

and may well include noise caused by sub-optimal farm management and post-harvest 

processing, the CaNaSTA predictions are very precise. CaNaSTA has been validated 

and predicts quality accurately for small niches and satisfactorily for larger regions. 

The CaNaSTA quality predictions are a viable option to determine the comparative 

advantage of farmers’ natural environments and are significantly better than random 

predictions. CaNaSTA allows associations and national institutions to reduce 

uncertainty and minimize risk for local and regional decision makers. The information 

generated indicate where farmers have high potentials to participate in the specialty 

coffee sector, where coffee production should focus on main-stream coffees and where 

alternative crops for conversion or difersification have to be identified.   

 

6.4.2 Is the information novel? 

CaNaSTA infers the unknown quality of coffees based on the state of known attributes 

under the assumption that coffee qualities are dependent on these attributes. The 

approach is novel because only a very limited number of data points are necessary in 

order to identify qualities over a large area. In the past, controlled experiments were 

conducted that allowed predictions to be made for only very restricted areas. The 

commercial data used in the analyses reported here assures that the results are from 

real world conditions. In contrast, controlled experiments do not always reproduce the 

conditions of farmers’ fields.  
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6.4.3 Can environmental niche identification generally be applied? 

The niche prediction has been tested also in Veracruz, Mexico and compared using 

different, approaches (Martinez et al., 2006) and showed promising results. What is the 

practical use of niche identification and how can this information be used by farmers 

and associations? A spin-off the research reported here is a denomination of origin 

study for Colombia that uses as part of the basis for delimiting terroir the spatial 

analyses tools presented here. The tool is also being tested to predict areas where pest 

and disease management has to focus or where it is not of such importance. This 

research will be part of integrated pest and disease management.  

 

6.4.4 Can the information be delivered? 

The models are not straight forward; analyses have to be conducted by trained personal 

and can thereafter be disseminated or built-in decision or policies. The data of the 

present research had been managed in the Cinfo system (Oberthür et al., 2006), an 

online data base. Cinfo is currently being investigated to see if decision support tools 

could be incorporated into it that would allow periodicity analyses and visualization of 

the data stored in it. The quality predictions could be consulted by the various actors in 

the coffee supply chain. With every new harvest cycle and associated cupping data the 

maps would become more precise. To date Cinfo already permits the visualization of 

individual farms and the quality of the coffee they produce on a mapping environment 

based on Google Earth 
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6.5 Conclusions 

1. CaNaSTA is the most precise prediction model, MaxEnt the second while Domain 

and BioClim are not always distinguishable one from the other, but Bioclim is often 

more precise than Domain. 
 

2. The performance of the models is best for indicating which environments produce 

high quality coffees and how the environments differ from those that produce lower 

qualities. 

 

3. There is a slight improvement in precision with increasing evidence variables only 

in some instances in MaxEnt, which was not the case for CaNaSTA. This suggests the 

validity of the Paretto principle that few factors are responsible for the majority of 

causes. 

 

4. Niches can be identified statistically significantly, for larger areas the predictions 

are less accurate but still satisfactory for a general identification and delimitation. 

 

5. The environments of high quality niches differ from one site to another. The niches 

are composed of distinct combinations of factors that define coffee quality. The 

combination of factors and the weight of single factors varies from niche to niche. 

 

6. CaNaSTA allows the identification of farmers’ comparative environmental 

advantage.  
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7 SITE SPECIFIC FARM MANAGEMENT   
Specific objective 4: To develop and test concepts of site specific 
agronomic and post-harvest management practices for improved coffee 
quality. 

 

 

The objective of this chapter is to illustrate the process of how systematic targeting of 

farm management practices can be implemented by smallholder growers and their 

supply chain partners. The process of targeting management practices is illustrated 

with case studies using data from Colombia and Mexico. The study looked at some of 

the biophysical, agronomic and post-harvest management variables that influence 

coffee quality. The importance on coffee quality of aspect, slope position, choice of 

varieties, fruit thinning, harvest by level on the plant, harvest time, time lag between 

harvest and processing, status of post-harvest equipment, fermentation, and drying 

were examined. The chapter also appraises the conceptual frame work and the 

implications of these findings for small-scale coffee producers.  

 

7.1 Descriptive statistics  

7.1.1 On farm agronomic management trials 
The farms chosen for this study are described in section 3.2.1. Briefly there were two 

estates greater than 25 ha in the municipalities of Concordia in Antioquia and 

Piendamo in Cauca, 33 small farms in Inzá, Cauca and two farms about 5 ha in El 

Encinal and Axocuapan in Mexico. The two Colombian estates have average values 

between seven and eight for the sensory characteristics of the coffee that they produce. 

Concordia tends to have higher values and also results that are less variable as 

indicated by the smaller ranges and lower standard deviation of the data. Concordia 

reaches an average final score of more than 80 points, which is remarkable. The 

highest final scores for the both estates were more than 90 points. The Inzá farms had 

relatively low values between three and six for the sensory characteristics, which was 

expected due to the different quality preferences of the cupping panel. The results 

indicate highly variable product quality coming from the 33 farms. The results from 

the two Mexican farms indicate that the quality of the coffee is very similar in both 

farms, although results from Axocuapan tend to be slightly more variable. Table 33 

summarizes the results of the coffee beverage sensory analyses.  
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Table 33: Descriptive statistics for all sites 
The results include the two Colombian estates (Concordia, Piendamo), the small farms of Inzá in 
Colombia and the two Mexican farms (El Encinal, Axocuapan). Samples for all biophysical variables 
and management practices are included in the analyses. 
 

 Statistical 
indicators 

Aroma 
Fragrance 

Acidity After- 
Taste 

Body Flavor  Sweet- 
ness 

Prefer-
ence 

Final- 
score 

Minimum 4.00 5.00 3.75 7.00 4.00 6.00 4.00 59.75 
Mean 7.53 7.60 7.04 7.90 7.33 7.83 7.08 78.08 

Maximum 9.00 9.25 9.50 9.00 9.25 10.00 9.75 91.50 

P
ie

nd
a

m
o 

n=
1

3
9 

Std devn 0.91 0.81 1.24 0.46 1.13 0.71 1.43 7.56 
Minimum 5.00 6.25 5.00 6.00 6.00 5.00 6.00 63.50 

Mean 7.64 7.82 7.43 7.99 7.85 8.13 7.83 82.25 
Maximum 9.00 9.25 10.00 9.00 10.00 10.00 10.00 92.00 

C
o

nc
or

di
a 

n=
7

6 

Std devn 0.72 0.64 0.98 0.58 0.86 0.92 0.94 5.03 

Minimum 2.00 3.00 4.00 3.00 4.00 2.00 3.00 39.00 
Mean 6.05 5.78 5.77 5.56 5.77 2.83 5.37 54.59 

Maximum 8.00 8.00 8.00 9.00 8.00 5.00 8.00 77.00 

In
zá

 n
=

33
 

Std devn 1.43 1.19 1.11 1.29 1.05 0.70 0.98 8.58 

Minimum 8.50 6.10 n.a. 1 4.80 n.a. n.a. n.a. n.a. 
Mean 9.73 8.27 n.a. 6.00 n.a. n.a. n.a. n.a. 

Maximum 11.40 10.40 n.a. 7.20 n.a. n.a. n.a. n.a. 

E
l E

nc
in

a
l 

n=
9

7 

Std devn 0.58 0.89 n.a. 0.42 n.a. n.a. n.a. n.a. 
Minimum 8.20 6.70 n.a. 4.70 n.a. n.a. n.a. n.a. 

Mean 9.52 8.81 n.a. 6.07 n.a. n.a. n.a. n.a. 
Maximum 11.10 11.40 n.a. 7.00 n.a. n.a. n.a. n.a. 

A
xo

cu
a

pa
n 

n=
48

 

Std devn 0.58 1.09 n.a. 0.50 n.a. n.a. n.a. n.a. 
1 na = not available 

 

7.1.2 Pair sample comparison 

In Inzá ,quality of producer and standardized samples is less variable than in El 

Tambo-Timbio, indicated by the lower standard deviation and the smaller ranges 

(Table 34). However the standard deviation of the differences between standardized 

and producer samples are higher in Inzá than in El Tambo-Timbio, which indicates 

higher variability due to post-harvest processing in Inzá. If average producer samples 

score higher than standardized samples, it is likely to be due to the smaller volumes 

that are processed using the standard method. In El Tambo-Timbio, the average time 

lag between harvest and processing is longer than in Inzá, while the opposite is true for 

the fermentation time (Table 34). 
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Table 34: Descriptive statistics for pair samples in Cauca 

Pair 
samples 

Statistical 
indicators 

Time 
lag 

Fermentation 
Time 

Difference Final score 
(P1) 

Final 
score (S2) 

Minimum 4.0 10.0 -19.0 61.2 59.7 

Mean 8.3 14.0 3.4 78.9 75.5 

Maximum 12.0 24.0 26.0 88.7 89.5 A
ll 

(4
4)

 
Std devn 1.8 3.0 11.3 6.6 8.4 

Minimum 4.0 10.0 -19.0 61.2 59.7 

Mean 8.5 12.7 3.2 78.0 74.9 

Maximum 10 15 26.0 88.5 89.5 

E
l T

a
m

bo
-

T
im

bi
o 

(2
8)

 

Std devn 1.41 1.3 12.7 7.1 9.0 

Minimum 4.0 12.0 -14.0 66.7 64.7 

Mean 7.9 16.2 3.9 80.6 76.7 

Maximum 12.0 24.0 16.0 88.7 88.7 In
zá

 
(1

6)
 

Std devn 2.3 3.7 8.5 5.5 7.4 
1Producer and 2 standardized on farm samples 

 

Coffee is mainly processed in the traditional way (Table 35), only three farmers in El 

Tambo-Timbio use BECOLSUB. The state of the equipment and the working 

environment is considered by the majority of producers to be sufficient to good; only 

one farmer in Inzá argued that improvement was needed. In El Tambo-Timbio coffee 

is mainly dried under direct sun on the floor and secondly under some kind of 

protection, while in Inzá the opposite is the case. 

  

Table 35: Categorical data of the comparison study 

Variable Category # ALL # El Tambo-

Timbio 

# Inzá 

Traditional 37 21 16 Post-harvest practice 

BECOLSUB 3 3 0 

Good 13 7 6 

Sufficient 26 18 8 

State of equipment and 

working environment 

Needs improvement 1 0 1 

Sun dried on the floor 15 12 3 

Mobile sun dryer 5 5 0 

Sun dried with protection 20 7 13 

Drying type 

Silo 2 2 0 
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7.1.3 On-farm post-harvest trials 

The quality of the samples of the fermentation trial range from final score 60 to 83, 

with standard deviations from 4.1 to 7.5 (Table 36).  

 

Table 36: Descriptive statistics of the fermentation experiment  

 All Data Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 
n 30 5 5 5 5 5 5 

Minimum 60.0 66.5 66.2 64.4 68.0 68.0 60.0 

Mean 73.7 73.7 75 76.9 75.0 74.6 68.9 

Maximum 83.0 79.0 79.0 83.0 79.0 78.5 77.5 

Std devn 6.1 4.8 6.7 7.5 4.5 4.1 7.9 

 

Both batches of samples dried under the sun have higher average final scores than the 

ones dried in silos. The differences in quality of the May batch ranges from -4.2 to 

15.6 and for the June batch from -2.4 to 16.5 (Table 37).     

 

Table 37: Descriptive statistics of the drying experiment  

 Batch May 06 Batch June 06 
 Sun Silo Difference Sun Silo Difference 

n1 9 9 9 pairs 6 6 6 pairs 
Minimum 74.7 69.0 -4.2 76.4 68.1 -2.4 

Mean 80.5 76.6 3.9 82.3 73.3 9.1 

Maximum 87.5 88.5 15.6 84.6 78.8 16.5 

Std devn 4.3 7.0 6.4 3.2 3.8 6.7 
1 Each of the nine or six samples is the average of 2-4 replications. 

  

7.2 Impact of farm management on sensorial quality 

7.2.1 Biophysical factors 
 

On the Concordia estate the best quality coffee comes from south-facing slopes with a 

final score of 83.9. Berries harvested from the plateau also achieve very good results 

with a final score of 83.4. The east-facing slopes have generally the lowest values 

albeit with a still acceptable final score of 80.8 (Table 38). The situation presents itself 

very different in the Piendamo estate where east-facing slopes score second best after 

the plateau site. South-facing slopes perform badly compared with all other aspects 

and achieve final score of only 72.8. This represents an astounding difference of 

almost eight points between the best- and the worst-performing site. As noted above, 

farmers believe that the lower slope positions are more fertile than the upper slopes. 
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Table 38: Effects of aspect and position in the slope on coffee beverage quality 

Samples included are from the Concordia and Piendamo estates based on one-way ANOVA and t-test. 
Data for the same attribute followed by the same letter are not significantly different according to 
Duncan’s multiple range test (P<0.05, aspect) and t-test (P<0.05, slope position). 
 

Aspect Aroma 
Fragrance 

Acidity After- 
Taste 

Body Flavor Sweet- 
ness 

Prefer-
ence 

Final- 
score 

Aspect Concordia estate ANOVA 
North 7.83 a 7.81 a 7.10 b 7.94 a 7.81 ab 8.16 a 7.75 a 82.06 a 
East 7.57 a 7.62 a 7.27 ab 7.57 a 7.45 b 7.81 a 7.60 a 80.76 a 

South 7.42 a 7.94 a 7.93 a 7.94 a 8.25 a 8.40 a 8.18 a 83.85 a 
West 7.79 a 7.29 a 7.22 ab 8.08 a 7.91 ab 8.25 a 7.88 a 81.95 a 
Flat 7.67 a 8.12 a 7.67 ab 7.92 a 7.97 ab 8.05 a 7.70 a 83.42 a 

Aspect Piendamo estate ANOVA 
Northwest 7.28 b 7.73 a 7.31 a 7.86 a 7.55 a 7.75 a 7.30 a 79.77 a 

East 7.50 ab 7.78 a 7.66 a 7.93 a 7.66 a 8.12 a 7.47 a 80.62 a 
South 7.15 b 6.89 b 6.00 b 7.54 a 6.45 b 6.99 b 6.33 b 72.80 b 
West 7.57 ab 7.41 ab 6.88 a 7.83 a 7.37 a 7.62 ab 7.30 a 78.00 

ab 
Flat 7.54 ab 7.88 a 7.36 a 7.98 a 7.69 a 8.05 a 7.41 a 80.67 a 

Slope position Concordia estate T-test 
High 7.63 a 7.70 a 7.52 a 7.90 a 7.79 a 8.22 a 7.85 a 82.40 a 
Low 7.63 a 7.62 a 7.28 a 7.86 a 7.86 a 8.07 a 7.84 a 81.83 a 

Slope position Piendamo estate T-test 
High 7.45 a 7.69 a 7.09 a 7.50 b 7.41 a 7.83 a 7.22 a 79.66 a 
Low 7.31 b 7.26 a 6.93 a 8.07 a 7.18 a 7.45 a 7.05 a 76.29 a 

 

Coffee quality was indeed influenced by slope position with the higher slope positions 

generally performing better in coffee-quality characteristics. Once again, the 

differences were greater on the Piendamo estate; with a difference of three points in 

the final score compared with the Concordia estate with less than one point difference. 

In Concordia only flavor appears to be better in coffee harvested in the lower slope 

positions. In Piendamo only body was perceived better in berries harvested in lower 

slope positions. It is not clear how fertility differences could bring about these 

differences. 

 

Aspect and some slope values in the Piendamo estate were considerably greater than 

for Concordia estate, or, in other words, slope and aspect are important at Piendamo in 

Cauca but are only slightly important at Concordia in Antioquia. It is not clear why 

this should be as the altitudes and rainfall differ only slightly and coffee is grown 

without shade on both estates. Clearly the interactions between aspect and quality are 

more subtle than might be expected. 
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7.2.2 Variety 
Quality characteristics differed between varieties in the two Mexican sites. In El 

Encinal, the Red Caturra variety had highest values for fragrance/aroma and acidity, 

followed by Mundo Novo for both characteristics. Only when body is considered do 

Typica and Yellow Caturra achieve higher values (Table 39). In Axocuapan, Typica 

performed best for fragrance/aroma and for body and Red Caturra gave the highest 

values for acidity.  

 
Table 39: Effect of variety on beverage quality 

Data included are from the El Encinal and Axocuapan farms in Mexico, based on one-way ANOVA (El 
Encinal) and t-test (Axouapan). Data for the same attribute followed by the same letter are not 
significantly different (P<0.05 t-test or Duncan’s multiple range test for ANOVA) 
 

Variety Aroma 
Fragrance 

Acidity After- 
Taste 

Bod
y 

Flavor  Sweet- 
ness 

Prefer
-ence 

Final- 
score 

Varieties El Encinal ANOVA 
Typica 9.45 a  8.03 a n.a. 6.1 a n.a. n.a. n.a. n.a. 
Red 
Caturra 

10.17 b 9.02 b n.a. 5.9 a n.a. n.a. n.a. n.a. 

Mundo 
Novo 

9.78 ab 8.22 a n.a. 5.9 a n.a. n.a. n.a. n.a. 

Yellow 
Caturra 

9.57 a 7.80 a n.a. 6.0 a n.a. n.a. n.a. n.a. 

Varieties Axocuapan T-test 
Typica 9.81 b 8.70 a n.a. 6.2 b n.a. n.a. n.a. n.a. 
Red 
Caturra 

9.22 a 8.95 a n.a. 5.8 a n.a. n.a. n.a. n.a. 

 

7.2.3 Shade management 

To understand the impact of different shade management on coffee-quality 

characteristics, sites were grouped into two classes, one with relatively high-shade 

coverage and one with relatively low-shade coverage. At Inzá, the mean shade level of 

the 17 sites in the low-shade class was 37%. The fifteen sites with denser shade 

averaged of 61 % (Table 40). Shade coverage ranged from 26 % to 49 % and from 

52% to 79% in the low- and high- shade classes respectively (data not presented in 

tabular format). The coffees brewed from berries that were harvested under denser 

shade generally scored higher than coffees derived from berries grown under lower 

shade levels. These differences are consistent for all quality characteristics, except 

sweetness, albeit only statistically significant for body. The individual characteristics 
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result in final scores of 53.2 for lower shade density and 56.3 for the higher shade 

class, a difference of a little over three points.  

Table 40: Effect of shade level on beverage quality 
The data included is of samples from in Inzá, El Encinal and Axocuapan. Data for the same attribute 
followed by the same letter are not significantly different (P<0.05, t-test). 
 

Shade 
descriptor 

(%) 

Aroma 
Fragrance 

Acidity After- 
Taste 

Body Flavor  Sweet- 
ness 

Prefer-
ence 

Final- 
score 

Average shade levels (%) in Inzá, T-test 
36.5 5.89 a 5.55 a 5.50 a 5.13 b 5.41 a 2.97 a 5.18 a 53.16 a 
60.6 6.18 a 6.06 a 6.07 a 6.06 a 6.21 a 2.67 a 5.21 a 56.30 a 

Average shade levels (%) in El Encinal, T-test 
68.2 9.79 a 8.36 a n.a. 6.1 a n.a. n.a. n.a. n.a. 
87.0 9.68 a 8.19 a n.a. 5.9 b n.a. n.a. n.a. n.a. 

Average shade levels (%) in Axocuapan, T-test 
68.2 9.68 a 8.96 a n.a. 6.2 a n.a. n.a. n.a. n.a. 
87.0 9.39 a 8.96 a n.a. 5.9 b n.a. n.a. n.a. n.a. 

 

Consistent differences were also found in Mexico. Shade density on average was much 

higher in Mexico. In both communities the lower-density shade group had an average 

of 68.2% coverage and the more densely shaded areas had an average of 87%. 

Contrary to the results from the Inzá farms in Colombia, beverages prepared from 

berries harvested under less shade performed better in Mexico than their dense-shade 

counterparts. Differences are, however, not statistically significant at the P<0.05 level. 

Average direct and diffuse photosynthetically active radiation flux density measured 

under the shade canopy (PPFDU) during the growing season was 9.10 µmol m-2 s-1 in 

Inzá. A correlation analyses illustrated that PPFDU was negatively correlated with all 

quality attributes except for fragrance/aroma. The correlation coefficients for 

aroma/fragrance, acidity, aftertaste, body, flavor, sweetness, preference and the final 

score were 0.05, -0.25, -0.44, -0.47, -0.44, 0.12, -0.32 and -0.18 respectively.  

 

7.2.4 Harvest management 
 

Three different harvest management practices were considered in the two estates in 

Colombia including manual fruit thinning, different harvest date and harvest from 

different coffee tree canopy levels (Table 41). 
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Table 41: Effect of management practices on bewerage quality 

Data include fruit thinning (samples from estates in Concordia and Piendamo), harvest time (samples 
from Piendamo estate) and harvest in different canopy levels (samples from Concordia estate) on 
beverage quality. Data for the same attribute followed by the same letter are not significantly different 
(P<0.05 t-test or Duncan multiple range test for the ANOVA analyses). 
 

Treatments Aroma 
Fragrance 

Acidity After- 
Taste 

Body Flavor  Sweet- 
ness 

Prefer-
ence 

Final- 
score 

Fruit thinning (%) in the Concordia estate, T-test 
0 7.76 a 7.94 a 7.91 a 8.06 a 8.20 a 8.50 a 8.50 a 84.75 a 
50 7.72 a 7.71 a 7.33 b 7.33 a 7.72 a 8.15 a 8.12 a 81.79 b 

Fruit thinning (%) in the Piendamo estate, T-test 
0 7.32 b 7.37 b 6.99 a 7.75 a 7.25 a 7.68 a 7.15 a 77.79 a 

50 7.62 a 7.71 a 7.14 a 7.89 a 7.52 a 7.70 a 7.27 a 79.18 a 

Harvest time in the Piendamo estate, T-test 
May 12 7.47 a 7.72 a 7.27 a 7.86 a 7.53 a 7.25 a 7.89 a 79.79 a 

June 09 7.83 a 7.51 b 6.88 b 7.83 a 7.17 b 6.95 a 7.69 b 77.52 b 

Canopy level harvest in the Concordia estate, ANOVA 
Low 7.29 a 7.81 a 7.72 a 7.97 a 7.89 a 7.83 a 8.31 a 82.81 a 

Medium 7.67 a 7.96 a 7.14 a 8.05 a 8.01 a 7.57 a 7.96 a 81.67 a 

High 7.65 a 7.21 a 7.07 a 8.10 a 7.48 a 7.75 a 7.73 a 80.37 a 

 

Fruit thinning by 50% resulted in consistently higher values for all quality 

characteristics in the Piendamo estate, giving final scores of 79.2 points for coffee 

from trees where the fruit load was reduced compared to 77.8 points from trees with 

full fruit load. In the Concordia estate differences were also found, but the better-

scoring coffees were from berries harvested from trees that had no manual fruit 

thinning. The final scores in Concordia for the reduced and full fruit load were 81.8 

and 84.8 points respectively, a difference of three points. 

 

Early harvest (May 12) was generally more favorable than late harvest (June 09) for 

the coffee-quality characteristics apart from aroma/fragrance. Final scores for early 

and late harvested coffees were 79.8 points and 77.5 pints respectively, a difference of 

a little over two points. 

 

Harvesting from different canopy levels in the Concordia estate also produced 

differences in beverage quality. Berries from the lower levels had the highest final 

score for the beverage. However the differences were not consistent with different 

coffee-quality characteristics giving the highest scores for different canopy harvest 

levels. For example, body was best in coffees brewed from berries that were harvested 

in the higher-level canopy but acidity and flavor were best from coffees brewed using 

berries from the middle-level canopy. 
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7.2.5 Post-harvest practices 

To assess the impact of farmers’ post-harvest processing, pair samples were compared, 

one sample was processed by the farmer and its pair by the standardized method. The 

producer samples scored statistically significant (p = 0.03) higher than the 

standardized-process samples (Figure 29). The difference between the pair sample 

(final score value of producer minus final score value of standardized sample) was 

used to quantify the impact of farmer’s post-harvest processes on the brew quality. If 

the value is positive the producer post-harvest process was more successful than the 

standardized process and vice versa.  

 

Comparison standard with producer samples
T-test: p = 0.03
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Standard Producer  
Figure 29: Final score difference between standardized and producer samples. 

The producer samples score statistical significantly higher than the standardized samples.   
 

Farmers responses about the state of their equipment and working environment were 

negatively correlated to the pair quality difference in El Tambo-Timbio (r = - 0.35) and 

in Inzá (r = - 0.21) (Figure 30). For farmers in El Tambo-Timbio the pattern was 

stronger than for farmers in Inzá. 
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Status of equipment and working environment versus 
difference in quality between standardized and producer 

sample
Inza ( r = - 0.21)
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Figure 30: Correlation of quality difference to production environment. 
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The time lag between harvest and processing of the berries was negatively correlated 

to the quality difference (Figure 31). The correlations were higher in El Tambo-Timbio 

(r = - 0.29) than in Inzá (r = - 0.18).  

 

Time lag between harvest and processing versus  difference in 
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Time lag between harvest and processing versus difference in 
quality between  standardized and producer samples

 Inza (r = - 0.18)
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Figure 31: Correlation of quality difference to time  

 

The number of hours farmers in El Tambo-Timbio and Inzá ferment ranges from eight 

to twenty-four hours (Figure 32). The fermentation time is highly correlated to the 

elevation of the farms (r = 0.51).  
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Figure 32: Fermentation time versus elevation. 

 

The results of the pair sample comparison show that the fermentation time had very 

low correlation with the pair differences. For Inzá the correlation coefficient is r = 0.10 

and in El Tambo-Timbio r = -0.06 (Figure 33). 
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Fermentation time versus differences in quality between 
standardized and producer sample

Inza (r = 0.10)
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Fermentation time versus differences in quality between 
standardized and producer sample

El Tambo-Timbio (r = - 0.06)
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Figure 33: Correlation of quality difference with fermentation time. 

 

The standardized samples had all been processed by a mobile post-harvest process unit 

(BECOLSUB). In addition to the de-pulping and removal of mucilage, the coffee was 

fermented for 5 hours to make sure that all the mucilage had been removed. Before 

processing the samples for the investigation, an on farm trial was conducted to 

estimate the appropriate fermentation time (Figure 34). The results show that on 

average the quality increases until the fifth hour and from there to the tenth hour it 

increases only slightly. After discussions with farmers in the field and taking into 

account the logistics of the process it was decided to ferment the coffee only five hours 

and neglect the slight improvement of quality between the fifth and tenth hour. The 

presented data consist of six samples from different farms of the municipality of Inzá.  

 

Impact of fermentation time on beverage quality

55

60

65

70

75

80

85

90

95

0 5 10 15 20

Fermentation time (h)

F
in

al
 s

co
re

s

Sample 1 Sample 2 Sample 3 Sample 4

Sample 5 Sample 6 Av 1-6
 

Figure 34: Optimal fermentation hours for the post-harvest processing unit. 
Trail was conducted for fermentation hours after mucilage removal. 
 

An on farm trial conducted in collaboration with the Piendamo estate shows that for 

the May and June harvest, sun drying gives higher quality scores than silo drying 

(Figure 35). The results are significantly increased in both occasions (May P = 0.05 

and June P = 0.01).  
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Differences in quality between sun and silo drying 
of early harvest (T-test: p = 0.05)
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Differences in quality between sun and silo drying 
of late  harvest (T-test: p = 0.01)
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Figure 35: Differences in quality between sun and silo dried coffee beans. 

 

7.3 Discussion 

7.3.1 Is site specific farm management viable? 

The case studies show that managing biophysical variables in coffee farms separately 

and the appropriate choice of agronomic practices can have impact on the attributes of 

coffee beverage quality. These differences are not consistent across sites and they are 

not always statistically significant. The impacts of the same biophysical variable and / 

or management practice can be negative at one site and positive in another site. The 

site-specific nature of the impacts is obvious. 

 

While it provides helpful guidance, formal statistical tests of the significance of 

measured differences mean relatively little to growers in a commercial production 

situation. The information provided by growers’ on-farm experimentation with 

biophysical variables and management practices has to be evaluated as to whether it 

generates commercial benefits. The cost-benefit ratio of generated information and the 

gains realized from decisions based on that information is the key yardstick for 

growers. In discussions with growers, the management implications were assessed in 

terms of resources (labor, yield, and quality evaluation), ease of implementation 

(knowledge and logistics), the potential for improvement of the beverage quality and 

the value added from the intervention (Table 42).  
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Table 42: Evaluation of management interventions  

Evaluation was conducted by statistical significance, ease of implementation, likely improvement of 
quality, resource intensiveness, and added value. 
 

Management Statistical 
significance 

Ease of 
implementation 

Improvement 
of quality 

Resource 
intensiveness 

Added 
value1 

Aspect Medium Easy High Low High 
Slope position Low Medium Low Medium Low 

Variety Medium Medium Low-medium High Low-
medium 

Shade management High Easy Medium Medium Medium 

Fruit thinning Medium Difficult Low-medium High Low-
medium 

Harvest time High Easy Medium Low High 
Harvest by canopy Medium Easy Medium Low Low 
1 Cost-benefit ratio. 

 

Aspect often has a statistically significant and consistent impact on beverage quality: 

in Concordia south-facing aspects scored the highest or second highest and in 

Piendamo south-facing aspects scored the lowest while east-facing aspects and flat 

sites scored the highest for the majority of quality attributes. The investment of 

harvesting sites with different aspects separately has only minor logistical implications 

and adds little to the cost of the production process. The quality differences due to 

aspect are remarkable considering that the sites were only a few hundred meters apart. 

Trees in upper slope positions score slightly higher than trees on lower position on the 

same slope, although the differences are not substantial in the data presented here. 

Varieties have significant impacts on quality characteristics as shown in the Mexican 

sites El Encinal and in Axocuapan. However, to change varieties on a farm is resource-

demanding and is not likely to be recommendable in many cases. Obviously, however, 

this is an option when farm renovation is being considered for other reasons. When a 

certain variety is identified that performs substantially better under specific 

environmental and management conditions there may be sufficient reason to 

recommend change of varieties. For example, the variety Geisha, which is not that 

traditionally grown in Panama, has been planted recently by a few growers. 

Intelligentsia Coffee Roasters in Chicago sells a half-pound of roasted Panamanian 

Hacienda La Esmeralda Geisha (a repeated competition winner) beans for US$52, an 

outstanding premium. 

 

Shade management has been shown to have substantial impacts on quality on both the 

Colombian and the Mexican sites. Shade is easy and cheap to implement and a viable 
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farm management practice not only for the improvement of coffee beverage quality 

but shade trees can also provide an additional source of income. Fruit thinning had a 

favorable influence on coffee beverage quality in the estate of Piendamo, but fruit 

thinning is not easy to implement and is labor intensive.  

 

For the interpretation of the results, 80 points are usually considered the entry level to 

specialty coffees and coffees with more than 85 points can generate substantial 

premiums for growers. For example, during the 2006 Cup of Excellence® competition 

in Colombia (Cupofexcellence, 2006) the winning 23 farms had final scores ranging 

from 84.33 to 91.48 points. In the subsequent online auction, Maruyama Coffee for the 

Mikatajuku group, Stumptown Coffee Roasters and Intelligentsia Coffee Roasters 

Chicago bid US$12.05 per pound to secure the winning lot. Prices ranged from 

US$3.05 to US$12.05 respectively for a pound of these green coffees. For comparison, 

during 2006 the average price at the New York Board of Trade (NYBOT) for mild 

Colombian coffees was US$1.18 per pound of green coffee.  

 

The Colombian estate coffees in this study were assessed by Mr. Geoff Watts of 

Intelligentsia Coffee Roasters Chicago. Watts is one of the leading international 

cuppers and specialty green coffee buyers. Intelligentsia uses their triple A pricing 

scheme where high quality coffees are rewarded AAA, intermediate specialty coffees 

AA and entry level specialty coffees A. The price premiums are US$1.35 for a pound 

of an A coffee with 80 to 84 points final score, US$1.55 per pound for an AA coffee 

with 85 to 87 points, and at least US$1.85 per pound for an AAA coffee with a final 

scores of 88 to 93 points. For boutique coffees of the highest quality Intelligentsia very 

often pays more than US$3 per pound of green coffee. An additional 35-40 cents per 

pound has to be added to Intelligentsia farm gate prices to obtain the FOB price. 

 

If this scheme is applied, for example, to the results of the different slope aspects in the 

estate farms then this biophysical variable becomes commercially very interesting for 

separate management of fields with aspects that are likely to produce high-quality 

berries. The difference in the final score between the highest and lowest scoring aspect 

is 2.66 in the Concordia estate and 7.87 in the Piendamo estate. In Concordia the 

highest scores qualify as an AA premium. In Piendamo coffees from the south, east 

and northwest aspects can be sold as conventionally traded coffees at NYBOT prices 
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while the eastern aspect coffees and the plateau coffees would qualify for an A 

premium. 

 

Reducing the fruit load obviously reduces the yield level of coffee trees. Vaast et al. 

(2006) estimated for 50% reduction of flower buds gave an actual yield decrease of 

25%. The best-performing sites reached an average green bean yield of 4.1 pounds per 

tree when flowering buds were reduced by 50%. The grower could therefore expect 

about US$4.84 per tree if sold at the NYBOT price. Considering an additional labor 

cost of 20 cents this translates into an actual loss of US$1.85 per tree when compared 

to the income of US$6.49 per tree without manual thinning. Sold at Intelligentsia with 

an A premium, the tree would generate US$5.34, with an AA premium US$6.16 and 

with an AAA premium US$7.39 income for the grower. On the rare occasion that a 

boutique coffee would be produced due to the thinning of flowering buds, the grower 

could expect a return of US$12.10 per tree. Positive effects from fruit thinning were 

also shown in Costa Rica, where reduced fruit load significantly improved preference 

and acidity score. Bitterness and astringency decreased with decreasing fruit load 

(Vaast et al. 2006). Fruit thinning allows a plant to concentrate energy in fewer fruits 

and permits an increased accumulation of carbon, sugar, acids and other components. 

As discussed in the literature review, fruit thinning has benefits for other species: 

kiwifruit (Smith et al. 1992), apples (Palmer et al. 1997), and peaches (Corelli-

Grappadelli and Coston 1991, Souty et al. 1999). 

 

Different harvest times also generate large quality differences, as shown here. 

Managing separately batches harvested at different times presents no logistical 

problems. Harvesting from different canopy levels may also be possible, although it 

requires very thorough briefing of the pickers and probably strict supervisory control 

during the harvest.  

 

The adequate processing of high quality berries is crucial. Post-harvest processes are 

known to maintain or decrease but not to improve quality. The challenge is to target 

the processing to the site-specific conditions of the farm, which innovative on-farm 

trials and experimental design can help to do. The comparison of pair samples is an 

easily-implemented intervention that allows focusing on post-harvest processing 

variables. The higher scores of the farmers’ own samples compared with the 

standardized samples is likely due to the relatively small samples of coffee berries that 



Site specific farm management 
 

 124 

were processed in the standardized methodology compared to the farmers’ samples. 

Chemical processes and biological activity differ between small and large samples. 

Although intriguing, this is unimportant because the objective was to process the 

standardized samples uniformly in order to have benchmark data to compare across 

sites. In chapter six, El Tambo-Timbio and Inzá were identified as high quality niches; 

however some farmers in these niches are not realizing their comparative advantage by 

producing coffee of only mediocre quality. Interestingly, farmers are aware of this, as 

is shown by their own perception of their post-harvest status, which is correlated to the 

final score quality of their coffees (r = - 0.35 in El Tambo-Timbio and r = -0.21 in 

Inzá). 

 

The results further indicate that the time lag between harvest and processing is a more 

important problem in El Tambo-Timbio than in Inzá. If the analyses were run only 

with farmer-produced samples, the importance of delayed processing in Inzá would 

not have been detected. The correlations for El Tambo-Timbio were r = - 0.33 and for 

Inzá of r = -0.03 for farmer samples compared with r = 0.29 for El Tambo-Timbio and 

r = -0.18 for Inzá for standardized samples. Fermentation time and farm altitude is 

highly correlated (r = 0.51) in El Tambo-Timbio and Inzá when analyzed with 

producer samples only, though the pair sample comparison shows a weak correlation 

between the quality difference and the fermentation time. These findings imply that the 

farmers do a good job in targeting the fermentation time to their location. 

 

The absolute final score is the response to the entire production process comprising 

variability introduced by the natural environment, agronomic management and post-

harvest processes whereas the differences between standardized and producer sample 

only addresses the post-harvest environment. The importance of a benchmark 

comparison becomes evident in this context and demonstrates the novel approach to 

quality control to reduce variability. The innovation to identify the obstacles of 

realizing the comparative advantage lies in the correct choice of variables and design 

of the investigation. 

 

7.3.2 Is the information novel? 

The novelty of this concept is the participatory approach, the innovative experimental 

design and the use of commercial data. Farmers, together with researchers, defined the 

weak points in their process; innovative experiments were then designed and jointly 

implemented. Farmers are an integral part of the design and implementation of the 

experiments, researchers learned from farmers what are the important variables to 

investigate and farmers learn from researchers how to set up an experiment. The costs 
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of such experiments are low and farmers can implement them easily. The analyses 

might require input from experts or technicians. The samples are assessed by importers 

and represent the market preferences; this is novel in comparison to the quality 

information of volume, coffee which is not assessed in the same depth. The importers’ 

appraisal of the coffees provides feedback to the farmers and permits a real world cost-

benefit analyses. 

 

7. 3.3 Can site specific farm management be applied generally? 

For the proposed concepts to be applicable elsewhere, it is assumed that there is 

heterogeneity of growing conditions and a varied response to uniform management 

and technologies. Under these conditions, blanket recommendations for regions or 

zones does not optimize management for specific crops directed to particular markets. 

Although initial improvements can be obtained by using widely adapted technology, 

later improvements can come only from more site-specific technology (Cassman, 

1999; Cock and Luna, 1996; Cook et al., 2000; Evenson, 1981). Farmers have long 

been aware of the differences among sites and constantly try out new options and 

adopt practices suited to their conditions. Due to the limited number of treatments that 

any one farmer can try and to the effects of variations in climate and other 

management practices, it may be difficult for a farmer to filter out the best options.  

 

Supply chain management (SCM) for differentiated, higher-value crops emphasizes 

the overall and long-term benefit of cooperation and information sharing by all chain 

members. Relevant information for better decisions can then be provided to growers. 

Chain integration has been shown to improve the information flow concerning 

customer preferences (Trienekens et al., 2003). The literature review examined the 

widespread applicability of such chain integration. 

 

In the Piendamo estate, early harvest significantly improved beverage quality. In Costa 

Rica, coffee quality from early and peak harvest was significantly higher than for late 

harvest (Vaast and Bertrand, 2005). In the Concordia estate, the lower and medium 

canopy level scored better than the upper canopy regions. A study in Costa Rica   

demonstrated that there was a significant difference between upper canopy region and 

middle and lower canopy regions (Bertrand et al., 2004). Also other variable 

management practices that have not been considered here would benefit from the 
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outlined concepts: for example harvesting beans with different maturity grades has 

been shown to impact coffee beverage quality (Barel and Jacquet, 1994). Furthermore, 

for wine it has been demonstrated that selective harvesting provides for substantial 

benefits from systematic management of variation (Bramley et al., 2003). 

 

The immediate processing of the harvested berries is more crucial in El Tambo-Timbio 

than in Inzá. The reason for this regional differences might lie in the lower average 

elevation of the El Tambo-Timbio farms (115 m lower), which gives higher annual 

average temperatures (0.9 °C higher) and accelerates microbiological processes in the 

mucilage. In addition the average annual precipitation (680 mm/year) and the annual 

average radiation are also higher in El Tambo-Timbio (24.9 Mj/m2day) than in Inzá 

(24 Mj/m2day). All these factors promote faster uncontrolled biochemical processes of 

the berries before they reach the processing plant.  

 

Farmers adjust fermentation times according to their farm location. The reason is the 

decreased microbiological activity during the fermentation in farms of higher altitude 

or lower average temperatures. The location of the farm is in this case mainly 

characterized by air and water temperature factors that influence fermentation time. 

The results show that fermentation time in El Tambo-Timbio (r = 0.10) and Inzá (r = -

0.06) are not factors that limit quality; that is to say that farmers apply the appropriate 

fermentation according to their location. Fermentation processes can be monitored 

easily as has been shown in on-farm trials in Nicaragua (Jackels and Jackels, 2005).  

 

The results show that sun drying is better than silo drying. This fact might be due to 

the “unnaturally” fast drying of the beans in a silo in contrast to the slow sun drying. 

The slower process probably causes less loss of aromatic and enzymatic substances 

important to the coffee aroma and flavor. The disadvantage of silo drying has been 

reported in a study conducted in Java (Wahyudi and Ismayadi, 1995) and for mild 

Colombian coffees (Puerta Q., 1996).  

 

7.3.4 Can the information be delivered? 

One of the key problems in precision agriculture is not information acquisition but its 

interpretation and the feed-back mechanisms that deliver the information in a usable 

form to growers (Cook and Bramley, 1998). The dynamics and complexity of food 
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systems and their supply chains require the use of new technologies to realize the 

opportunity to differentiate products based on their quality. This means that along the 

supply chain information must be shared vertically in both directions.  

 

Several recent developments in low-cost radio frequency identification (RFID) 

technology systems make it possible to track and trace agricultural products (grain, 

fruit and meat) from farm to fork (Hornbacker, 2005; Pena, 2004.). GeoTraceAgri is a 

user-friendly system that allows interested people to track the origin of products on the 

Internet. GeoTraceAgri, tracks and traces European agricultural products at all stages 

of production, processing, storage, and distribution. They use a variety of different 

platforms, languages, databases, mapping engines and spatial processing libraries. The 

data can be geo-referenced and visualized on the Internet using geo-portals such as 

Google Earth (Hornbacker, 2005).  

 

Until recently, small- and medium-sized companies and producers in rural areas have 

remained outside the advanced, integrated supply networks because the information 

technology solutions enabling this transparency in supply chains was expensive and 

unaffordable for them. With the Internet as a medium to deliver real-time information 

to consumers on the quality status of products, the methodology now appears feasible 

for them and to be worthy of investigation. A different research branch of the present 

project has recently presented the concepts that govern the provision of innovative 

information within agriculture supply chains with small holder producers (Oberthür et 

al., 2006).  
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7.4 Conclusions 

1. Biophysical and management factors have a variable impact on coffee beverage 

quality. There were statistically significant differences between slope aspect in 

Piendamo, varieties in Mexico, times of harvest in Piendamo, shade in Inzá and slope 

position in both Concordia and Piendamo. 

 

2. The impacts of these factors were not consistence across all sites and they were not 

always statistically significant.  

 

3. On-farm experimentation with biophysical variables and agronomic management 

practices have to be evaluated as to whether they generate commercial benefits.  

 

4. According to the cost-benefit appraisal, is the value added by biophysical and 

agronomic management factors as follows: aspect and harvest per canopy highly, 

shade management medium, variety and fruit thinning medium to low, and slope 

position and harvest per canopy low.  

 

5. Post-harvest processes have to be targeted to the farm location and have to be 

controlled and managed site specifically as do the biophysical and agronomic 

management practices.  

 

6. Site-specific management, innovative experimental design combined with a 

participatory approach and real world quality data are essential to turn the comparative 

advantage of a high quality environmental niche into a competitive advantage, that is a 

niche where high-quality coffee is produced.  

 

7. Farmers will be able to target their product to the dynamic requirements of a 

dynamic market by cycles of implementation, observation, interpretation and 

evaluation.  

 

8. To make this happen, it is necessary to interlink the actors in the supply chain more 

closely, to facilitate data analyses and interpretation for farmers, and to develop 

appropriate feed-back mechanisms.  

 

9. Systematic site-specific farm management is a promising opportunity for farmers to 

improve their livelihoods by producing coffees with added value. 
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8 QUALITATIVE QUALITY CONTROL METHODS   

Specific objective 5: To determine the utility of qualitative quality control 
methods. 

 

This chapter firstly discusses the constraints of sensorial analyses followed by the 

descriptive statistics of the data sets. It then compares cupper variability versus 

variability of environmental factors in a case study and finally draws some 

conclusions. 

 

8.1 Background 

8.1.1 Production versus evaluation variability 

Quality management of specialty coffee requires by definition assessment of sensorial 

quality. Only through cupping can intrinsic quality be characterized, profiles 

established and specialty coffees differentiated from volume coffees. The central 

question is, are cuppers consistent enough to detect differences between qualities that 

are caused by the variable production environment (production environment = natural 

environment + farm management) or is the variability in the production environment 

too small for the cupper to distinguish it? 

 

If cuppers can detect differences, there still remains the variability between cuppers.  

Throughout this thesis it had been shown that in many instances cuppers are indeed 

able to detect differences in the production environment. The question remains, 

however, if cuppers do not detect differences, does this mean that there are no 

differences or that they simply not detect them? In the studies presented here, in many 

cases it might be that interactions could not be satisfactorily identified due to the 

nature of the commercial samples that is the samples contain a certain level of 

variability or “noise”.  

 

8.1.2 Subjectivity of sensorial quality analyses  

The sensorial assessments of coffee are performed by experts, who in the specialty 

coffee sector are usually both cuppers and importers. Sensory experts are persons 

“with considerable experience and proven ability in sensory assessment of a given 

product under specific conditions” (Land and Shepherd, 1984). They are widely used 
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in the coffee, tea, tobacco and wine industries (Gatchalian, 1981) where their judgment 

impacts on management decisions for purchasing, processing and marketing. Land and 

Sheperd (1984) classify people performing sensory assessments as follows (Land and 

Shepherd, 1984):  

 

(a) Unqualified assessors are any people (,other than those in the following 

categories,) taking part in sensory tests; 

(b) Selected assessors are those tested and chosen for their proven ability to carry 

out a particular test; 

(c) An expert is a person with considerable experience and proven ability in 

sensory assessment of a given product under specified conditions; and 

(d) A panel is a group of selected assessors chosen to participate in a sensory test 

 

Hall (1958) points out the following disadvantages of only relying on experts as 

opposed to selected assessors (Hall, 1958), “The expert’s perception varies from day to 

day, the judgment may vary under the influence of external factors and may not be free 

from bias, the expert may not have the same perceptions as a trained sensory panelist, 

and it takes much time to train experts and is therefore very costly.”  

 

Attempts to determine sensory characteristics by objective indicators have been made 

for fruits by assessing quality variables in gas or liquid stage with a so-called 

“electronic nose” or “electronic tongue”. Characterization of defects in apples (Di 

Natale et al., 2001), ripening stages in mandarins (Hernández Gómez et al., 2005), 

pears (Brezmes et al., 2000), shelf live of apples (Brezmes et al., 2001) and coffee 

aroma (Dirinck et al., 2002) were conducted successfully. The methods include mass 

spectrometer, voltametric techniques and electrochemical measurements. In contrast, 

cupping of coffee consists of olfaction, gustation, and mouthful assessments 

corresponding to the sensory evaluation of the volatile matter, the water soluble 

matter, and the tactile sensations on the palate. These are experienced separately by the 

palate’s sensors, which are subsequently processed in the brain and joined to an overall 

sensation called the cup profile. Despite the advances in scientific knowledge on 

coffee in the last 40 years, the origin of coffee flavor remains unclear and is not 

detectable by artificial intelligence. Approximately one thousand chemical compounds 

have already been found in roasted coffee (Clarke and Vitzthum, 2001), it is their 
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presence; absence and combination make up the cup profile. For the sensorial analysis 

of coffee quality, cupping panels are indispensable.  

 

8.2 Descriptive statistics  

8.2.1 Sensorial evaluation 

The descriptive statistics of the five cuppers that evaluated the samples in this chapter 

are shown in Table 43. Cupper three and four score lower than the remaining cuppers 

and cupper four lower than the others and has therefore higher variability in the scores 

indicated by the wider range and larger standard deviation. Highest scores are reached 

for clean flavor, cup, uniformity and acidity.   

 

Table 43: Descriptive statistic of cuppers’ sensorial evaluation 

  
Frag. 
aroma Flavor 

After-
taste Acidity Body 

Uniform- 
mity 

Clean-
cup 

Sweet
-ness 

Over-
all 

Bitter- 
ness 

MIN 4.00 4.00 3.00 3.50 3.00 2.00 2.00 3.00 2.00 2.00 
MEAN 6.24 6.20 6.10 6.37 6.29 7.25 6.69 6.12 6.15 5.95 
MAX 8.25 9.50 8.50 8.75 8.50 9.00 9.00 8.75 8.50 8.50 A

L
L

 

STDEV 1.09 1.02 1.11 1.21 1.03 1.35 1.72 1.15 1.10 1.04 

MIN 4.50 4.00 4.00 4.00 4.00 5.00 2.00 4.00 4.00 3.00 
MEAN 6.92 6.54 6.29 6.30 6.03 6.70 6.14 6.59 6.27 5.96 
MAX 8.25 9.50 8.50 8.75 7.75 9.00 9.00 8.75 8.50 7.00 

C
up

pe
r 

1 

STDEV 0.84 1.28 1.28 1.48 1.19 1.10 1.94 1.32 1.30 0.66 

MIN 6.00 5.00 5.00 3.50 6.00 5.50 2.00 4.00 5.00 5.00 
MEAN 6.91 6.48 6.38 6.62 7.29 8.01 6.53 6.69 6.38 6.86 
MAX 8.00 7.50 7.50 8.25 8.50 9.00 8.75 8.50 7.75 8.50 C

u
pp

e
r 

2 

STDEV 0.56 0.63 0.71 1.24 0.55 0.79 1.82 1.16 0.82 1.26 

MIN 5.00 5.00 5.00 4.50 5.00 5.00 4.50 5.00 4.75 4.75 
MEAN 6.13 6.04 6.22 5.94 6.20 6.73 6.37 6.19 6.13 5.51 
MAX 7.00 7.00 6.75 7.00 7.00 8.00 7.00 7.75 7.00 6.75 

C
u

pp
e

r 
3 

STDEV 0.59 0.39 0.43 0.89 0.55 0.55 0.92 0.68 0.66 0.57 

MIN 4.00 4.00 3.00 4.00 3.00 2.00 2.00 3.00 2.00 2.00 
MEAN 4.78 5.09 4.66 5.89 5.17 6.06 5.86 4.78 5.00 5.08 
MAX 6.00 7.00 6.00 8.00 6.00 7.00 8.00 7.00 7.00 7.00 C

u
pp

e
r 

4 

STDEV 1.19 0.94 1.06 0.95 0.85 0.75 1.04 1.05 1.15 1.08 

MIN 5.00 6.00 6.00 6.00 6.00 7.00 6.00 6.00 6.00 6.00 
MEAN 6.50 6.86 6.92 7.11 6.75 8.75 8.47 6.36 6.86 6.31 
MAX 8.00 8.00 8.00 8.00 8.00 9.00 9.00 7.00 8.00 8.00 C

u
pp

e
r 

5 

STDEV 1.06 0.77 0.77 0.82 0.65 0.55 0.77 0.49 0.77 0.52 
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8.2.2 Sites and production environment 

The three cupping samples each have different origins; two are from the municipalities 

of El-Tambo-Timbio and Inzá in the department of Cauca in and one from the 

municipality of Timana in the department of Huila. Inzá and Timana are located 

between the central and eastern cordilleras and El-Tambo-Timbio between the western 

and central cordilleras of the Andes. The average annual precipitation is similar in Inzá 

and Timana and both have one dry month a year. El Tambo-Timbio and Inzá have 

similar temperatures (average annual temperature, average annual dew point, and 

average annual diurnal temperature range). Elevation of the sites differ, Timana has 

the lowest altitude, El Tambo-Timbio is mid altitude and Inzá the highest. Slope is the 

same in Inzá and Timana (Table 44). 

 

Table 44: Descriptive statistics of environmental factors  

 °P T DP DTR DM SR S EL 
El Tambo-Timbio 2311 18.4 12.5 11.0 2 25 8 1720 

Inzá 1668 17.8 12.0 10.6 1 24 17 1852 
Timana 1625 19.2 14.2 9.9 1 24 17 1517 

P = average annual precipitation (mm), T = average annual temperature (°C), DP = average annual dew 
point (°C), DTR = average annual diurnal temperature range (°C), DM = average annual number of dry 
months, SR = solar radiation (MJm-2d-1), S = slope (°) and EL = elevation (masl). 
 

The production system of El Tambo-Timbio is organic whereas both Inzá and Timana 

are traditional low input systems. The coffees are all Caturra variety with some shade 

cover. The post-harvest processes were the same traditional method for all the three 

samples with de-pulping and mucilage removal by fermentation. The coffees in Inzá 

and Timana were dried in the sun with a protective cover; the coffee in El Tambo-

Timbio was dried in the sum on the floor without a protective cover (Table 45). 

 

Table 45: Description of agronomic management and post-harvest processes  
 

 Production 
system 

Variety Shade Post-harvest 
Process 

Drying 

El Tambo-Timbio Organic Caturra Some Traditional Sun on the floor 
Inzá Traditional Caturra Some Traditional Sun under 

protection 
Timana Traditional Caturra Some Traditional Sun under 

protection 
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8.3 Cupper consistency and sensitivity 

8.3.1 Error matrix  
The assessment of the environmental versus the cupper variability can be summarized 

in an error matrix (Table 46). Either there is variability in the environment expressed 

in the samples or there is not. If there is variability and the cupper does identify it, the 

results will be correct; if he does not recognize it then the result will be false. If there is 

no variability in the environment and the cupper does not differentiate the samples the 

result will be correct, if there is no variability and the cupper does detect variability the 

results will be false. 

 

The error of differentiating the samples when there is no variability can be avoided by 

comparing the results of several cuppers, since it is very unlikely that a number of 

cuppers will discriminate samples if they are not different. The comparison of cuppers 

also helps to avoid the error of not distinguishing between the samples when there is 

variability. The case may be that there is variability between the samples but none of 

the cuppers is able to detect it, but the magnitude of this variability is not important in 

the assessment because if several experts canot distinguish the differences nor will the 

consumers be able to do so.   

 

Table 46: Error matrix 

Environment  
Variable Not variable 

Defines variability Correct False 

C
u

pp
e

r 

Does not define variability False Correct 

 
 

8.3.1 Cupper comparison 

The ten sensorial attributes of each of the three samples with its replications were 

compared for each of five cuppers. The test of significance for cuppers one and two 

show that nine of the comparisons of El Tambo-Timbio with Inzá and Timana were 

assessed as statistically significantly different, for cupper three there were six 

attributes distinguishing the samples. For cupper four only one attribute distinguished 

El Tambo-Timbio from Timana, while cupper five did not distinguish between any of 

the samples (Table 47). According to the error matrix, the El Tambo-Timbio sample 

was different to the Inzá and the Timana samples, which were similar. 
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Table 47: Test of significance for sensorial attributes of samples 
The roman numbers indicate the number of attributes out of a total of ten that were statistically different 
for the respective sample pairs. 
 

 
Sanple n El Tambo-Timbio Inzá Timana 

El Tambo-Timbio 11 -- IX IX 

Inzá 10 IX -- 0 

C
u

p
pe

r 
1 

 

Timana 12 IX 0 -- 

El Tambo-Timbio 6 -- IX IX 

Inzá 12 IX -- 0 

C
up

pe
r 

2 
 

Timana 12 IX 0 -- 

El Tambo-Timbio 12 -- VI VI 

Inzá 12 VI -- 0 

C
u

pp
e

r 
3 

 

Timana 12 VI 0 -- 

El Tambo-Timbio 12 -- 0 I 

Inzá 8 0 -- II 

C
up

pe
r 

4 
 

Timana 12 I II -- 

El Tambo-Timbio 11 -- 0 0 

Inzá 12 0 -- 0 

C
u

pp
e

r 
5 

 

Timana 11 0 0 -- 

 

The principal component analyses (PCA) for cuppers one and two confirms these 

findings (Figure 36 and 37). El Tambo-Timbio replicate samples cluster mainly in the 

upper left quadrant while Timana and Inzá are crowded together and are distributed 

over mainly the upper and lower left quadrant. Visually it is apparent that El Tambo-

Timbio is easily distinguishable from Inzá and Timana but Inzá and Timana are not so 

easily distinguishable.  
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Figure 36: PCA analyses for cupper 1.  

The analyses show the clustering of the replicate samples cupped by cupper 1. ET = El Tambo-Timbio, 
IN = Inzá, TI = Timana. Numbers 1-12 refer to the replicates of the samples. 
 

 

Figure 37: PCA analyses for cupper 2.  

The analyses show the clustering of the replicate samples cupped by cupper 2. ET = El Tambo-Timbio, 
IN = Inzá, TI = Timana. Numbers 1-12 refer to the replicates of the samples. 
 

The discriminate analyses shows that cupper one assigned only one replicate wrong for 

each sample, Inzá and Timana were classified wrong twice, El Tambo-Timbio and 

Timana only once, while Inzá and El Tambo-Timbio were always correct classified 

(Table 48).  
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Table 48: Discriminate analyses for cuppers 1 and 2 

Number indicates samples correctly assigned by the cupper, e.g. cupper one identified ten of eleven El 
Tambo-Timbio replicate samples as El Tambo-Timbio and only one as Timana.   
 

Sample El Tambo-Timbio Inzá Timana 

El Tambo-Timbio (n=11) 10 0 1 

Inzá (n=10) 0 9 1 

C
u

pp
e

r 
1 

 

Timana (n=12) 0 1 11 

 El Tambo-Timbio Inzá Timana 

El Tambo-Timbio (n=6) 6 0 0 

Inzá (n=12) 0 9 3 

C
u

pp
e

r 
2 

 

Timana (n=12) 0 3 9 

 

Cupper two distinguished bewteen Inzá and El Tambo-Timbio and between Timana 

and El Tambo-Timbio, but failed six times to distinguish between Inzá and Timana. 

These examples illustrate that the El Tambo-Timbio sample was different from the 

Inzá and Timana samples, which were similar and that the cuppers were able to 

distinguish the differences. In this case the variability of the environment is greater 

than the sensory variability of the cuppers who were able to detect the differences.  

In summary: 

Variability of cuppers < Variability in environment 

 

Cupper three was similar to cuppers one and two, but was less sensitive. The 

discriminate analyses (Table 49) show that he was able to distinguish between the 

samples satisfactorily and the PCA (Figure 38) shows a nice clustering of the EL 

Tambo-Timbio samples and the crowded pattern of the Timana and Inzá samples. The 

differentiation is not as good as the one of cupper one and two, however, but cupper 

three was able to distinguish samples from El Tambo-Timbio from those from Inzá 

and Timana.  

Again, in summary: 

Variability of cuppers < Variability in environment 

 

Table 49: Discriminate analyses for cupper 3 

 

Cupper 3  El Tambo-Timbio Inzá Timana 

El Tambo-Timbio (n=12) 10 1 1 
Inzá (n=12) 0 10 2 

Timana (n=12) 0 0 12 
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Figure 38: PCA analyses for cupper 3.  

The analyses show the clustering of the replicate samples cupped by cupper 3. ET = El Tambo-Timbio, 

IN = Inzá, TI = Timana. Numbers 1-12 refer to the replicates of the samples. 

 

According to the discriminate analyses cuppers four and five did not distinguish any 

sample without errors apart from cupper four distinguished Timana without error 

(Table 50).  

 

Table 50: Discriminate analyses for cuppers 4 and 5 

 Samples El Tambo-Timbio Inzá Timana 
El Tambo-Timbio (n=12) 9 2 1 

Inzá (n=8) 1 7 0 

C
up

pe
r 

 
4 

Timana (n=12) 0 0 12 

El Tambo-Timbio (n=11) 8 
 

1 
 

2 
 

Inzá (n=12) 2 9 1 

C
up

pe
r 

5 

Timana (n=11) 1 0 10 
 

 

The PCA results show the same pattern, the replicates of the three samples are 

crowded together with no discernable (Figure 39 and 40) distinguishable. 
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Figure 39: PCA analyses for cupper 4.  

The analyses show the clustering of the repetition samples cupped by cupper 4. ET = El Tambo-Timbio, 

IN = Inzá, TI = Timana. Numbers 1-12 refer to the repetitions of the samples. 

 

 

Figure 40: PCA analyses for cupper 5.  

The analyses show the clustering of the repetition samples cupped by cupper 5. ET = El Tambo-Timbio, 

IN = Inzá, TI = Timana. Numbers 1-12 refer to the repetitions of the samples. 
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Cuppers four and five represent the case where the variability of the assessors is higher 

than the variability between the samples. The cuppers were not consistent in their 

judgment and did therefore not distinguish the samples.  

In summary: 

Variability of cuppers > Variability in environment 

 

It is interesting to note that the consistent cuppers are representatives of a coffee 

exporting company. They know Colombian coffees very well and can distinguish 

accurately between the coffees grown between the western and central cordilleras (El 

Tambo-Timbio) and the coffees grown between the central and eastern cordilleras 

(Inzá and Timana). The two groups of samples are mainly characterized by their 

humidity regime, which is drier in the eastern (Magdalena) valley than in the western 

(Cauca) valley, together with the organic production in the western valley versus the 

traditional system in the eastern valley and the sun drying on the floor in the western 

valley versus the sun drying under protection in the eastern valley. Cuppers four and 

five on the other hand are international cuppers and undoubtedly know many coffees 

around the world but clearly were not able to distinguish local differences.  

 

The findings demonstrate the importance of validation of the cupping data before 

conducting any further analyses. It is necessary to cup samples in a panel in order to 

use the data set of the most consistent cuppers for the analyses.  
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8.4 Conclusions 

1. By definition, management of the quality of specialty coffees requires an 

assessment of sensorial quality. Only through cupping can intrinsic quality be 

characterized, profiles established and specialty coffees be differentiated from volume 

coffees. 

 

2. Analyses of sensorial quality are very subjective and vary from one cupper to 

another.  

 

3. Attempts to determine sensory characteristics using objective indicators have been 

reported. However, the cupping process involves variable sensations of the palate, 

which are experienced separately and are processed subsequently in the brain and 

joined together to an overall sensation called the cup profile. 

 

4. It is crucial to know if the cupper variability (inconsistency of the cupping) is 

bigger or smaller than the variability required to be detected between the samples.  

 

5. Analytical means of assessing the consistency of cuppers are essential.  

Discriminate analyses and PCA can help to chose consistent cuppers who have a 

sensible perception for quality differences.  
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9 FINAL EVALUATION 

9.1 Evaluation of the conceptual frame work 

The conceptual framework presented is highly viable for the management of intrinsic 

coffee quality (Table 51). High-quality niches exist that represent a comparative 

advantage for farmers. There are only a limited number of factors that determine the 

majority of variability in beverage quality of coffee as has been observed according to 

the Pareto Principle of quality control in manufacturing and industry. Limiting factors 

can be identified by analytical techniques and appropriate experimental design.  

 

The information generated within the conceptual frame work is highly novel (Table 

51). The consumer’s perception is represented by the use of commercial data and 

product specifications, which are derived from the data according to the house of 

quality. The commercial data makes the analyses relevant to the participants of the 

supply chain. Prediction data is site-specific and readily available for any location.   

 
Table 51: Validation of the conceptual frame work 
 

4 stage approach to variability  Environment 
quality 

Management 
quality 

 I: Is the conceptual frame work viable?  
 -> Concept of comparative and competitive advantage 
 -> Pareto Principle 
 -> Identification of limiting factors 

 
High 

 
High 

 II: Is the information novel? 
 -> House of quality 
 -> New product data 
 -> New environmental data 

 
High 

 
High 

 III: Is the information actionable? 
 -> Taguchi concept 
 -> Realize the competitive advantage 
 -> New techniques for data analyses 

 
 High –  

(medium) 

 
High – 

(medium) 

 IV: Can the information be delivered to the stakeholder? 
  -> New feedback mechanisms 
 -> New information management systems 

 
Medium 

 
Medium 

 

The information generated within the conceptual framework is highly actionable for 

members of the supply chain but requires some input from experts with analytical and 

interpretative skills (Table 51). Reducing the variation around the quality target can be 

achieved by a cyclic learning process of information acquisition, interpretation, 

evaluation and control according to the Taguchi concept. The only systematic way to 

turn a comparative advantage into a competitive advantage is to shift from product 

control to process control by implementing a process control system. The evolution in 
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computer hardware and software and new data mining and analyses technique support 

the system. 

 

The information generated within the conceptual framework is deliverable given 

certain organizational structure and technical prerequisites (Table 51). Systematic data 

gathering and feedback systems have been successfully developed and tested. The data 

can be generated, and analyzed and interpreted. However, the data have to be compiled 

and fed into the system and the information returned to the participants. Technically 

this is no longer a problem but to get people to compile data and act upon the 

recommendations coming out of the feedback is still a challenge. The information has 

to reach growers and has to be in a form usable by them. 

 

9.2 Test of the analytical framework 

The equation of the analytical framework to be tested is: Livelihoods at site i are a  

function of income generated from quality q. Quality q at site i is a function of the 

farm management at site i.    

 

LIV i = f (INCq) = f (QUAi) = f (MGTi)     (15) 

 

Farm management at site i determines the product quality. The farm management has 

to be site specific to site i. Superior sensorial quality is rewarded by the market, 

increases income of growers and improves their livelihoods. The equation established 

is correct and explains the relation between growers’ livelihoods, their income, their 

location and their production. 



Final evaluation 
 

 143 

9.3 Overall Conclusions  

 

1. The production environment for coffee (natural environment, agronomic 

management and post-harvest processes) is variable over space.  

 

2. Beverage quality of coffee is dependent on the production environment. The 

combination of decisive quality factors varies from location to location, and so does 

the contribution each factor makes. 

 

3. Production factors can be identified and their impact quantified. Subsequently, the 

factors can be systematically controlled and managed to improve product quality.   

 

4. Site specific systematic and cyclic quality control processes are required to decrease 

produce variability and deliver the high-quality products sought of by the market. 

 

5. The approach is twofold; firstly the  identifaction of suitable environmental niches 

followed by the definition of site-specific management.  

 

6. Farm management interventions are not always statistically significant but are often 

relevant for farmers.   

 

7. Methods of qualitative quality control using commercial data are viable tools to 

measure product quality so long as consistent, skilled evaluators (cuppers) are selected 

in preliminary testing.  
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9.4 Recommendations 

 

1. The developed framework should be implemented in a purely commercial setting 

with a large number of growers to refine the analyses, processes and experimental 

design further.  

 

2. During the research reported here, some consultancies were undertaken to apply 

the framework. However the breakthrough that industry partners fully implement the 

ideas described here has not yet happened. It might be useful to investigate the reasons 

for the slow adoption of the concepts and framework.  

 

3. The last mile in the supply chain is the most important and challenging researchable 

issue. How can growers be linked into the system and how can systematic process 

control be assured. 

 

4. Using commercial data for research is logistically and analytically highly complex, 

but should more often be adopted in order to provide grower with results that are 

relevant to their situations and not merely statistically significant. 
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11 ANNEX 

10.1 Producer and standardized sample (CIAT) identification 
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10.2 General farm and post-harvest facility data capturing form 

 

 



Annex 

 155 

10.3 Managemnt Unit (MU) data capturing form 
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10.4 Field data capturing form 
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10.5 Illumination study data capturing form 
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10.6 Fermentation study data capturing form 
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10.7 Cupping form 
 

 
 

 




