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I don’t want knowledge, I want certainty

I don’t want knowledge, I want certainty

Oh I get a little bit afraid

Sometimes

David Bowie

Law (Earthlings on Fire), 1997





Introduction

Categorization is one of the most common phenomena one has

to deal with during one’s lifetime. Whatever action we have to

take, the categorization is a preassumption. Categorization is not

only connected to sensual experiences, like, for example, perceiv-

ing colors or sounds, but also deals with our activities. Moreover,

each mental system human is able to create, has a notion of cate-

gorization. In linguistics, for example, categories emerge on each

language level: from phonetics to pragmatics. Categorization is

thus fundamental in all kinds of interaction with the world.

Although categorization is so important to us, it is one of

the least known and least understood processes. It has been a

long time since scientists started to investigate the categorization
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process and to model it — in my opinion still without really con-

vincing results.

With this work I would like to contribute to the investigation

of categorization. I am far from stating that my model is the best,

or even better than what was already done. However, I would like

to present it as an anchor point for further investigations, because

I believe that my ideas contain some potential to challenge several

current problems in cognitive sciences.

The tool used to implement my model is based on a connec-

tionist paradigm. However, I would not like to contribute to the

eternal opposition between localist versus distributed branches of

connectionism. In my opinion, there is no “black or white”. In-

stead, there is no possibility to use either pure localist or pure

distributed formalism in more complex systems (even if their in-

ventors state so). That is why my model tries to incorporate

aspects of both flavors of connectionism.

The model of categorization presented here is of course not

the ultimate way to describe this process. In the present stage it

focuses on the creation of the hierarchy (taxonomy) of concepts

in an easily readable way. I would not like to state that it is able

to model real cognitive processes. Instead my aim was to create a

formal but usable way to describe them. I hope that it can help in

understanding them and at the same time it will create a frame-

work for applications. The most obvious is automatic classification

of different items, and thus supporting the lexicon creation within
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more sophisticated computer-linguistic applications. As a further

application, my model can serve as a base to create full (or at

least more developed) ontologies in different domains of computer

and language sciences.
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Outline

This work is divided as follows. The first part deals with theoret-

ical issues. In Chapter 1 the terms category, categorization and

taxonomy are introduced in the context of this work. Further,

categorization models proposed in the literature (Chapter 2) as

well as basics of connectionism (Chapter 3) are described. The

second part goes into details of the model proposed here. Chapter

4 explicates the architecture of a single node as well as of the whole

network, followed by Chapter 5 that presents details of the imple-

mentation of the model. The following Chapter 6 presents several

experiments conducted with the use of the model in question and

compares the results against real psychological experimental data.

Chapter 7 summarizes the description of the model itself, whereas

Chapter 8 closes this work with conclusions. Additionally, two
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appendices (Appendix A and B) present central elements of Java

and dot source code as implemented in order to evaluate the model

presented.
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Part I

Theory





CHAPTER 1

Categories, Categorization and Taxonomies

Categories and categorization are one of the most important con-

cepts in one’s life. Usage of categories is usually not noticed, but

precedes many other activities. Categorization is a process which

prepares people to take any action by assigning received signals

and actions to be performed to different sets of equivalent enti-

ties. Thanks to this process, it is possible to store and manage

an infinite number of stimuli and possible actions taking place in

the real world. Although everybody has a feeling of what cate-

gory and categorization mean, the exact meanings of these terms

are discussable and are indeed defined differently by different au-

thors (cf. below). Therefore, this chapter briefly introduces the
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meaning of these terms as used further in this work.

1.1 Category

The term category comes from the Greek word κατηγoρια which

means “assertion” or “accusation”. In the following, I present some

views on categories and category systems. They can be regarded

as milestones on the way to understanding a category, as used in

this work.

1.1.1 Aristotle

The first systematic work on categories is the Aristotelian text

“Categories” (Aristotle, 1928). Aristotle begins with the definition

of equivocality, univocality and derivativeness. These three terms

are then used to describe relations between objects and thereby

also their belonging to a given group of objects.

According to Aristotle, each atomic thing (that means a thing

without a further internal structure) or a living being can be at-

tributed one of ten characteristics: substance, quantity, quality,

relation, action, affection, place, time, position or state. In Aris-

totle’s view these characteristics are inherent.

“To sketch my meaning roughly, examples of substance

are ‘man’ or ‘the horse’, of quantity, such terms as

‘two cubits long’ or ‘three cubits long’, of quality, such

attributes as ‘white’, ‘grammatical’. ‘Double’, ‘half’,
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‘greater’, fall under the category of relation; ‘in a mar-

ket place’, ‘in the Lyceum’, under that of place; ‘yes-

terday’, ‘last year’, under that of time. ‘Lying’, ‘sit-

ting’, are terms indicating position, ‘shod’, ‘armed’,

state; ‘to lance’, ‘to cauterize’, action; ‘to be lanced’,

‘to be cauterized’, affection.” (Categories, Chap. 4

Aristotle, 1928)

These attributes define ten main categories for every item in

the world: a system of categories which forms a list of the highest

genera of things. A complete system of categories in the Aris-

totelian spirit would offer a systematic inventory of everything

that exists, considered at the most abstract level.

1.1.2 Immanuel Kant

Skepticism about the ability to extract inherent properties of ob-

jects, thus defining intrinsic divisions of reality, led to the next

step in understanding categories which was made by Kant in his

“Kritik der reinen Vernunft” (Kant, 1787/1990). He denied this

ability to access the internal world’s structure but believed that

one can discover our categories of understanding. Thus, the main

question he tried to answer in the abovementioned work was how

much can experience support understanding. Obviously, to an-

swer this question one has to discover the fundamental types of

subjective understanding which organize perceptions into knowl-

edge.
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“Wenn wir von allem Inhalte eines Urteils überhaupt

abstrahieren, und nur auf die bloße Verstandesform

darin achtgeben, so finden wir, daß die Funktion des

Denkens in demselben unter vier Titel gebracht wer-

den können, deren jeder drei Momente unter sich ent-

hält. Sie können füglich in folgender Tafel vorgestellt

werden.

1. Quantität der Urteile: Allgemeine; Besondere;

Einzelne

2. Qualität: Bejahende; Verneinende; Unendliche

3. Relation: Kategorische; Hypothetische; Disjunk-

tive

4. Modalität: Problematische; Assertorische; Apodik-

tische”

(Kant, 1787/1990, §9)

These twelve modes define concepts of understanding which

Kant calls “categories” (1787/1990, §10). For Kant, the categories

are a priori and transcendental. They are used for making judg-

ments which constitute preconditions for principles of understand-

ing nature.

1.1.3 Category in this work

For the purpose of this work, a category is defined in a simple

way which summarizes the common components of Aristotle’s and
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Kant’s category systems, and simultaneously agrees with the com-

mon understanding of this term. Category is defined here as an

imaginary container, that contains all objects which are similar

to each other and simultaneously different to objects from other

categories (containers).

However, unlike in most philosophers’ works, the number and

type of categories or characteristics which lead to assigning a cat-

egory cannot be defined, because the goal of the investigations

presented here is not to find a unique answer to the ontological

question of what kinds of universal genera exist. Thus, the num-

ber of categories in the system presented here is neither defined

nor limited. It also means that categories are not given a priori

but emerge from experience.

One must note that there are several ways to “measure” the

similarity of objects. These methods actually define the models

of categorization. Aristotle and Kant used intrinsic properties of

objects or modes of understanding to assign any item into one cat-

egory. The way to measure the similarity which I use in the system

presented here is also based on properties (here also referred to

as features), but these features are treated in a more flexible way,

and – even more important – they can be graded and may contain

intermediate states. The most important models of categoriza-

tion which developed from the Aristotelian yes/no method to the

modern psychologically based ones are described in the following

chapter 2.
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1.2 Where do categories come from?

Categories are not completely arbitrary. One can find many clues

in the world that give the basis for categorization.

The world is structured because real–world attributes

do not occur independently of each other. (. . . ) That

is, combinations of attributes of real objects do not

occur uniformly. Some pairs, triples, or ntuples are

quite probable, appearing in combination sometimes

with one, sometimes with another attribute; others

are rare; others logically cannot or empirically do not

occur. (Rosch et al., 1976)

This means that not only the pure characteristic of a given object

is necessary. The most important thing is the cooccurence of

properties. As a consequence, the analysis of clusters of features

can lead to the discovery of a category.

A process of categorization does not only mean finding simi-

larities between instances of the given class. It is also searching

for differences to instances of other classes. Those differences help

in creating characteristics of a given category.

1.3 Taxonomies

Categorization, that is, finding categories in unstructured data,

is here regarded as a synonym of classification. The classification
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in hierarchical systems is building a taxonomy (from greek ταξoζ

“arrangement, order” and -νoµια “method”). Thus a taxonomy is

a method of arrangement or a method of ordering.

Taxonomies are hierarchical arrangements of objects (things,

concepts etc.) displaying usually parent-child relationships. The

parent-child relationship, also referred to as is-a or subsumption

relationship, is in the main scope of this work. Hierarchical tax-

onomies are tree structures with a single root node (top node)

that applies to all objects in the hierarchy.

The aim of the work presented here is the construction and

evaluation of a system that creates a taxonomical tree structure

emerging from the previously unstructured input data and there-

fore performs categorization automatically. The system consists

of logical nodes which are analogue to taxonomical units and con-

nections which define the relations between nodes. In the course

of operation, this system of nodes organizes itself into a taxonom-

ical tree structure – the hierarchy – which reproduce the relations

between objects represented by the nodes.





CHAPTER 2

Models of Categorization

Categorization is one of the most important cognitive processes.

“There is nothing more basic than categorization to

our thought, perception, action, and speech. Every

time we see something as a kind of thing, (. . . ) we

are categorizing. Whenever we reason about kinds of

things (. . . ) we are employing categories. Whenever

we intentionally perform any kind of action, (. . . ) we

are using categories.” (Lakoff, 1987, p. 5)

Categorization creates a framework for the interpretation of

experiences. Its goal is to group individual entities by neglecting

29
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subtle differences in individual experiences when they are not nec-

essary. Without categorization the world would seem constantly

changing and thus probably impossible to explore (cf. Smith and

Medin, 1981). It is important to realize that although categoriza-

tion is usually performed unconsciously and without noticeable

effort it is nevertheless a process which has to be learned. Even

more, the categories themselves are not innate and must be ac-

quired from experience.

Especially in linguistics – in phonology, in morphology and

syntax as well as in semantics – categorization is a process of high

value. In linguistics, categorization is used at two levels (Taylor,

2001): to describe the subject of its exploration and also to in-

terrelate linguistic terms to the real world. Language components

can be classified not only according to their formal structure or

membership in specific groups of grammatical entities but also as

labels for phenomena encountered in real world. For example, the

term red is not only an instantiation of the word class “adjective”

but also denotes a bundle of visual experiences.

Labov (1974) points out that this preferential reputation of

categorization often moves away from scope the understanding of

the nature of categories:

“The categorization is such a fundamental part of lin-

guistic activity that the properties of categories are

normally assumed rather than studied.” (p. 342)
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As an interesting example of the above statement, one can

quote the Whorf’s principle of linguistic determinism (cf. Gipper,

1972). Whorf assumed that categories used by people are given

along with the language they use, and as such, they split the world

according to the concepts expressed by a language.

“We dissect nature along lines laid down by our native

languages. The categories and types that we isolate

from the world of phenomena we do not find there be-

cause they stare every observer in the face; on the con-

trary, the world is presented in a kaleidoscopic flux of

impressions which has to be organized by our minds –

and this means largely by the linguistic systems in our

minds. We cut nature up, organize it into concepts,

and ascribe significances as we do, largely because we

are parties to an agreement to organize it in this way –

an agreement that holds throughout our speech com-

munity and is codified in the patterns of our language.

(. . . ) All observers are not led by the same physical ev-

idence to the same picture of the universe, unless their

linguistic backgrounds are similar, or can in some way

be calibrated.” (Whorf, 1956, p. 213-214)

However, to understand the linguistic as well as psychological

processes of categorization it is important to know what a cat-

egory is and how it can be defined. Moreover, the discovery of

a structure of categories and dependencies between them is also
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significant. To tackle these problems there has to exist a model of

categorization and categories.

This chapter presents an overview over different models of cat-

egorization. It starts with the classical one which formed a base

for language analysis in the twentieth century. In contrast to this

view, models based on new psychological and linguistic findings

have arisen. The prototype and exemplar based models, to name

the most prominent ones, are described here to illustrate efforts

to overcome the limitations of the classical model.

2.1 The Classical Model

The classical view on categorization has its origin in works of

Aristotle (1928, 1908). Aristotle defines the category membership

on the base of the following assumptions.

• Categories are defined by a set of necessary and jointly suf-

ficient rules based on features.

• Features have binary nature. This means they may be ei-

ther present or not. This is a consequence of a rule that

something has either to exist or not, and everything either

posses a certain feature or not.

• Thus categories have well defined and sharp borders and are

disjunctive. There are no objects which belong partially to

some category or which belong to more than one category.
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• All elements of categories are equally good because they are

defined by the same set of binary features, shared by all

members.

The Aristotelian way of defining categories strongly influenced

the linguistics of the twentieth century. It forms a base for many

theories in phonology as well as in syntax and semantics.

2.1.1 Feature Model in Phonology

Probably the most spectacular success the classical view cele-

brated, was with respect to phonology, which defines speech as a

set of phonemes. Phonemes are described by a set of features. Ac-

cording to Chomsky and Halle (1968) the binary nature of phono-

logical features is important because they are used for classifica-

tion. Using the “yes/no mechanism” is a natural method to show

whether a unit in question is a member of a given category or not.

The noteworthy success of Aristotelian feature-based mech-

anism inclined many phonologists to develop it further, and to

enrich the properties of phonological features by additional as-

sumptions:

• Features are primitive, i.e., they have no internal structure

and cannot be decomposed further.

• Features are universal. All phoneme classes are defined by a

set of features common to all languages which express human

articulation ability.
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• Features are abstract. They do not describe directly any

physical phenomena related to speech production or com-

prehension but they appear only as a classificatory markers

(in contrast to the phonetic features that range over a full

scale of physical phenomena, cf. Chomsky and Halle, 1968,

chapter 7).

• Sometimes it is also postulated that phonological features

are innate. This is a consequence of the two latter char-

acteristics: if they are really universal and abstract, they

cannot be acquired from physical data, so there is no possi-

bility for children to learn them. Thus, they must be innate.

2.1.2 Feature Model in Other Linguistic Fields

A classification theory based on the assumptions listed above was

very productive in phonology and this success probably encour-

aged scientists to use it analogously also in other linguistic fields

like phonetics, syntax, and semantics.

Analogous to phonologist findings, a systematic description in

phonetic was developed. It describes sounds in a well organized

manner, by means of phonetic units (Laver, 1994; Clements and

Hume, 1995). Phonetic features (Ladefoged, 1975; Lindau, 1978)

constitute a minimum set of the descriptive parameters used to

distinguish among different phonetic units. The set of all features

forms a model of a language and its structure. According to the

perception domain, there exist several types of phonetic features:
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• articulatory features, defined in terms of the action of the

organs of speech,

• acoustic features, defined in terms of the physical properties

of the speech sound relevant to the feature, and

• perceptual features, defined in terms of the perception of the

given sound by the ear and the brain.

A relatively constant set of phonetic features builds up a pho-

netic segment. A given feature may be limited to a particular

segment but may also be longer (suprasegmental) or shorter (sub-

segmental). Among segments there are phonological units of the

language, such as vowels and consonants.

A description of coarticulation can be quoted as a success of

feature based approach in phonetics. Coarticulation is a process

of the assimilation of the place of articulation of one speech sound

to that of an adjacent speech sound. The feature based model

accounting for explanation of coarticulation uses so-called “feature

spreading” (cf. Daniloff and Hammarberg, 1973; Lubker, 1981).

In this model, each articulatory segment is characterized by a

set of features. On the input level only contrasting features are

specified and irrelevant properties are not being defined. The

coarticulation is then regarded as spreading a feature’s value from

a given segment to the nearby segment.

The structural analogy assumption (Anderson and Durand,

1986; Anderson, 1992) underlies the usage of similar principles
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and methods in exploring the nature of syntactic and semantic

structures:

“The relevance of dependency throughout the linguis-

tic description is in accordance with what has been

called the STRUCTURAL ANALOGY assumption.

(. . . ) This is simply the assumption, familiar from

much post-Saussurean work, that we should expect

that the same structural properties recur at different

levels. Structural properties which are postulated as

being unique to a particular level are unexpected and

suspicious if unsupported by firm evidence of their

unique appropriateness in that particular instance.”

(Anderson and Durand, 1986, p. 3)

Despite its drawbacks, according to Kleiber (2003), the clas-

sical view on categorization is justified psychologically. It reflects

the fact that the meaning of the word (the category it denotes) is

something more or less well defined. Usually categories are seen as

distinct and non-overlapping units. The classical view originates

from the so-called folk theory of categorization which is consistent

with philosophical tradition (Aristotle) on which the classical view

is based. Although Lakoff (1987) argues that folk categorization

does not reflect reality, it is based on the common-sense intuition

that there must exist some sets of features that allow for distin-

guishing between different categories, that those categories are

well-defined and form a taxonomy.
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2.1.3 Feature Model and Language Acquisition

The classical feature-based view on categorization was also utilized

to model language acquisition by infants and children.

One of the prominent trials in this field was a hypothesis for-

mulated by Clark (1973) based on semantic features. In her hy-

pothesis, Clark postulated that the meaning of the word is learned

in early childhood by acquiring semantic features. The first as-

similated features are the most general ones, and come from per-

ceptual experiences of children, and thus the categorization of the

world results from sensual perception. In the further development

of language, the meaning of words is refined by adding more and

more specific semantic features.

Clark states that this hypothesis is especially applicable for

learning pairs of words with opposite meanings (antonyms). In

these cases, the hierarchical structure (figure 2.1) of learned fea-

tures leads to gradual refining of the meaning.

(+Zeit)

(+simultan)
��

��
��

(-simultan)

??
??

??

(+Vorzeitigkeit)
��

��
��

bevor

(-Vorzeitigkeit)

??
??

??

nachdem

Figure 2.1: Clark’s hierarchical features setup (after Szagun, 1996).
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The explanation of learning the meaning by acquiring seman-

tic features from perceptual experience is, however, not sufficient.

One of the unclarities was the way how sensual experiences can

change into abstract semantic features. Moreover, the theory

could not explain the meaning of words which cannot be expressed

in terms of perception (like animal or friendship) (cf. Carey, 1982;

Szagun, 1983).

Finally, other empirical studies showed that Clark’s hypoth-

esis can be applied to explain only few special cases of meaning

acquisition, namely in case of contrasting words. When the set of

words to disambiguate was broader (i.e. not limited to contrasting

words), the experiments (cf. Kavanaugh, 1976; Wannemacher and

Ryan, 1978) showed that if a child did not understand a given

word (e.g. before), it did not necessarily imply that it had the

opposite meaning (e.g. after).

2.2 Non-Classical Models

The classical view of categorization outlined so far was challenged

in the twentieth century by many philosophers and psychologists.

Some drawbacks of the classical view were spotted by Wittgen-

stein (1971). He analyzed a category of games, and came to the

conclusion that not only there are no common features to all games

but also some games are considered as better members of the

category than others.
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„Betrachte z.B. einmal die Vorgänge, die wir “Spiele”

nennen. Ich meine Brettspiele, Kartenspiele, Ballspiel,

Kampfspiele, usw. Was ist allen diesen gemeinsam?

– Sag nicht: “Es muß ihnen etwas gemeinsam sein,

sonst hießen sie nicht »Spiele«” – sondern schau ob

ihnen allen etwas gemeinsam ist. – Denn, wenn du

sie anschaust, wirst du zwar nicht etwas sehen, was

allen gemeinsam wäre, aber du wirst Ähnlichkeiten,

Verwandtschaften, sehen, und zwar eine ganze Reihe.

Wie gesagt: denk nicht, sondern schau! – Schau z.B.

die Brettspiele an, mit ihren mannigfachen Verwandt-

schaften. Nun geh zu den Kartenspielen über: hier

findest du viele Entsprechungen mit jener ersten Klas-

se, aber viele gemeinsame Züge verschwinden, andere

treten auf. Wenn wir nun zu den Ballspielen überge-

hen, so bleibt manches Gemeinsame erhalten, aber

vieles geht verloren. – Sind sie alle “unterhaltend”?

Vergleiche Schach mit dem Mühlfahren. Oder gibt es

überall ein Gewinnen und Verlieren, oder eine Konkur-

renz der Spielenden? Denk an die Patiencen. In den

Ballspielen gibt es Gewinnen und Verlieren; aber wenn

ein Kind den Ball an die Wand wirft und wieder auf-

fängst, so ist dieser Zug verschwunden. Schau, welche

Rolle Geschick und Glück spielen. Und wie verschie-

den ist Geschick im Schachspiel und Geschick im Ten-
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nisspiel. Denk nun an die Reigenspiele: Hier ist das

Element der Unterhaltung, aber wie viele der anderen

Charakterzüge sind verschwunden! Und so können wir

durch die vielen, vielen anderen Gruppen von Spielen

gehen, Ähnlichkeiten auftauchen und verschwinden se-

hen.

Und das Ergebnis dieser Betrachtung lautet nun: Wir

sehen ein kompliziertes Netz von Ähnlichkeiten, die

einander übergreifen und kreuzen. Ähnlichkeiten im

Großen und Kleinen.” (Wittgenstein, 1971, p. 48)

This analysis conducted by Wittgenstein illustrated that there

exist casual categories, which cannot be described with the help

of well-defined sets of features. Everyone knows what a game is,

but it is not possible to characterize all games by means of naming

what they all have in common. There exist only similarities and

relationships among them.

Wittgenstein’s findings were further confirmed by many psy-

chological investigations, most notably those conducted by Labov

(1974), Rosch (1975a,b, 1988) or Lakoff (1973). The philosophical

investigations as well as psycholinguistic experiments had shown

that a model different from the classical one was needed.

2.2.1 Rosch’s “Standard” Prototype Model

The “standard” prototype model of categorization was formed by

Rosch and her collaborators in the 1970s. Its main feature is the
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redefinition of the internal structure of the category (“the horizon-

tal dimension of categories”) as well as the differentiation between

categories (“the vertical dimension”) without using the legacy of

classical categorization theory.

Two main principles underlied the formation of a prototype

model: cognitive economy and perceived world structure. They

express the fact that (natural) categories are not a result of ar-

bitrary considerations or of a historical accident but rather are

motivated physiologically.

Cognitive Economy. The cognitive economy principle says that the

categorization process should provide maximum information with

minimum cognitive effort.

“To categorize a stimulus means to consider it, for pur-

poses of that categorization, not only equivalent to

other stimuli in the same category but also different

from stimuli not in the category.” (Rosch, 1988, p. 28)

The categorization process should differentiate between objects

only if those differences are relevant for a given task.

Perceived World Structure. Simple observations and common sense

considerations lead to the conclusion that the world does not al-

low any arbitrary combinations of attributes or stimuli. Thus

Rosch states that also categories and categorization processes are

influenced by the world’s structure. Moreover, what is really im-
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portant is perceived world structure, which can vary depending on

the observer. There does not exist an arbitrary way of perception.

What the world looks like and how it is structured are strongly

dependent on who or what the subject of observation is. The

world’s image is completely different for humans and rattlesnakes,

because both these creatures use different senses with different

sensitivity.

The two principles above lead to the formation of a structure

of categories. This structure is seen two dimensionally and spans

on two axes: horizontal and vertical. The idea of axes of catego-

rization is depicted on figure 2.2.

hierarchy

��

item

ooooooooooo

RRRRRRRRRRRRRRR

house furniture

ooooooooooo

RRRRRRRRRRRRRR tool

table chair

ooooooooooo

RRRRRRRRRRRRRR bed

stool wooden chair electric chair

oo
prototypicality

//

Figure 2.2: Two axes of categorization.
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The Horizontal Dimension: Prototype

The horizontal dimension of categorization refers to the internal

structure of categories. In Rosch’s theory this structure is defined

in terms of prototypes.

The idea of prototypical members of categories originates from

the fact that not all members of a given category are equally good

ones. The prototypical members are those that can be said better

to represent a category better then others. In an experiment Rosch

(1975a) investigated several categories like furniture, fruit,

vehicle and others. This experiment was conducted on about

200 American students. The subjects had to answer how well ob-

jects from prepared lists represent a given category. The students

had to rate the objects in a seven-level scale. The results of this

questioning were (according to Rosch) reliable from a statistical

point of view and showed not only that graded category member-

ship is a sensible idea but also that there exist objects considered

as the best members of a given category. These ones Rosch called

prototypes.

“By prototypes of categories we have generally meant

the clearest cases of category membership defined op-

erationally by people’s judgments of goodness of mem-

bership in the category. (. . . ) [T]he more prototypical

of a category a member is rated, the more attributes

it has in common with other members of the category
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and the fewer attributes in common with members of

the contrasting categories.” (Rosch, 1988, pp. 36–37)

Taylor (2001) mentions results obtained by René Dirven in a

similar experiment conducted on German speaking students con-

cerning the category möbel. Interestingly, this experiment shows

that although categories furniture and möbel are seen seman-

tically equivalent, their internal structure is different: the most

prototypical objects for category furniture are chair and sofa

while for category möbel there are bed and table. This inter-

language comparison shows that indeed the second principle of

categorization, the perceived world structure, has great influence

on a category’s structure formation which may vary for different

nations and languages.

Using prototypes instead of necessary and sufficient conditions

implies redefining the process of categorization. Objects have to

be categorized not by analyzing conditions or sets of features, but

by comparing them to the prototypical members. To be more

precise, the prototypes are seen as the most typical members of

a category and the other objects belong to this category if they

are similar enough to the prototypes. The prototypes thus are

cognitive reference points (Rosch, 1975a).

One has to note the difference between the terms prototype

and stereotype, which I will explain as follows. Wierzbicka (1985)

points out that:
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“In ordinary language, the word prototype is usually

used to refer to the original model of a certain kind

of thing (‘the first thing or being of its kind; model’,

Webster’s 1977). It is unfortunate, therefore, that in

recent literature on meaning this word has been widely

used, and in fact has become ‘institutionalized’, in a

different sense, which would have been better served

by the word stereotype.” (p. 80)

According to the tradition in linguistic literature, however, I will

use the above terms after Schwarze (1985, p. 78):

“Nous appelons prototype l’objet qui est le meilleur

exemplaire d’une catégorie, et stéréotype le concept

qui le décrit”.

In other words,

“a prototype is an object which is held to be a very

TYPICAL of the kind of object which can be referred

to by an expression containing the predicate” (Hurford

and Heasley, 2004, p. 85)

while a stereotype is

“a list of the TYPICAL characteristics of things to

which the predicate may be applied” (Hurford and

Heasley, 2004, p. 98).

Therefore, someone may have an idea of a stereotype without

being able to find an appropriate example of it (a prototype).
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The Vertical Dimension: Basic-Level Objects

The problem of assigning an object to a given category is con-

nected to the vertical dimension of category systems. It is also

a problem of category hierarchies (taxonomies). In a taxonomy,

categories are related by means of inclusion.

Insekto

Ulod

Kapan
(Grasshopper)

Lipit-lipit
(Leaffolder)

Langaw-langaw
(Whorlmaggot)

Bunhok
(Leafhopper)

Dangaw-dangaw
(Semi-looper)

Figure 2.3: Farmers’ classification of leaf feeding insects in Leyte,
Philippines (adapted from http://www.knowledgebank.irri.
org/IPM/soccomm/).

The ethnobiologist Brent Berlin examined the regularities in

the classification and naming of plants and animals among peoples

of traditional societies: So called folk taxonomies (see for exam-

ple figure 2.3) have hierarchical levels similar to formal biological

classifications of kingdom, phylum, class, order, family, genus and

species. Berlin (1992) states that categories are related by inclu-

siveness and also that there is a preferential level of categorization:

a basic level called folk genus. Folk genera often do not correspond

to scientific genera, but, based on cultural tradition, serve as the

most informative level in a given society.

The vertical structure of categories in Rosch’s model emerges

from the idea of folk genera. Within her model she has suggested

three levels of categorization:
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• superordinate,

• basic level, and

• subordinate.

The key word for learning hierarchy of categories in Rosch’s

model is the basic-level category. The experiment in which sub-

jects had to list as many attributes as possible for objects in classes

designated by names of categories from different levels was con-

ducted. Similar experiments involved also listing of motor move-

ments and comparison of simplified shapes of objects.

“For all the taxonomies studied, regardless of whether

language dependent variables such as attributes or lan-

guage independent variables such as shape were used,

there was a level of abstraction at which all factors co-

occurred and below which further subdivisions added

little information.” (Rosch et al., 1976, p. 428)

Basic-level categories can thus be described as information-

rich bundles of co-occurring perceptual and functional attributes.

According to Kleiber (2003) their psycholinguistic importance ma-

nifests itself in many ways outlined below.

The basic-level is the highest level of abstraction where it is

possible to construct a Gestalt of an object (Berlin, 1992). There

is a general form of a chair, but no general form for furniture.

This is directly connected to the fact that on the basic-level it is

possible to create an image (abstract or concrete) representing the
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whole category. Trying to create an image of an object from super-

ordinate category one either ends up with an object which in fact

belongs to a basic-level category or one is not able to accomplish

this task at all.

Motoric movements (for categories to which they apply) are

similar for all objects contained in basic-level (Rosch, 1988). And

again, in the example mentioned above, it is possible to imagine

or describe the process of using a chair while there is no general

routine for using furniture.

From the purely psychological point of view, basic-level cate-

gories also manifest their existence in several ways (Rosch et al.,

1976): In the task of categorization, assigning objects to basic-

level category is faster than to other levels of abstraction. It

results, among other things, in more frequent use of names of

those objects in naming tasks. Directly connected with this phe-

nomenon is the fact that basic-level categories are the first and

fundamental categories learned by children.

The basic-level of categorization manifests itself also in lan-

guage usage. Terms denoting objects on the basic-level are context

neutral (cf. Cruse, 1977; Lakoff, 1987). They also usually define

the choice of pronouns. Usage of super- or subordinate term is

most often motivated by a context, while in context-neutral ut-

terances people tend to choose basic-level terms.
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The Importance of the Prototype Model

The most important consequence of the development of the proto-

type model was the creation of an alternative to the Aristotelian-

like way of categorizing. It is of great importance to have other

categorization models because, as mentioned above, the classical

model does not explain psychological data gathered. Indeed, the

prototype model has a much greater explanation power. Accord-

ing to Lakoff (1987), not only categories of concepts have proto-

typical properties but also linguistic categories can be described

in this way. This author suggests that language categories have

the same structure as categories of concepts.

The prototypical view on category structure solves also many

problems with the internal structure of categories. It explains

blurred borders of categories as well as the intuitive property that

not all members represent the category equally well. The proto-

type model allows for the categorization of marginal cases, which

is hard to describe within classical theory. For example, it makes

no problem to categorize a one-legged chair as a chair, while it

would be extremely hard if not impossible to conceive a set of

rules describing all possible chairs.

In semantics, the prototype theory allows for describing mean-

ings in terms of “information density” (Geeraerts, 1986). This

gives much more flexibility in defining sets of properties needed

for such a description: the prototypical conception organizes cat-

egories such that they are clusters of concepts and nuances. Ac-
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cording to Wierzbicka (1985), one should, however, differentiate

between significant properties and prototypical properties. The

significant ones refer to “semantic primitives” and are those which

guarantee that an object which possesses them is indeed a mem-

ber of the category in question. The latter ones are typical for a

category but not obligatory.

Problems of the Prototype Model

Unfortunately, the prototype model outlined so far is not the magi-

cal answer to all problems concerning categorization processes and

category structure. It also suffers from several shortcomings.

Although the prototype model was created as a counterpro-

posal for categorization based on necessary and jointly sufficient

conditions it cannot completely get rid of this formalism. The

vertical axis of categorization is based on class inclusion which in

turn is based on the implication relation. The implication relation

however needs the reference to necessary conditions. It means that

although the return to necessary and jointly sufficient conditions

is not compulsory, there must be at least a trail of necessary con-

ditions: a set of features may not be equivalent to a characteristic

of category but it implies that an object being a member of the

category de facto has those features.

Osherson and Smith (1981) investigated the prototype cate-

gory in terms of two criteria: the relationship between complex

concepts and their conceptual constituents and the truth condi-



Non-Classical Models 51

tions of thoughts corresponding to the simple inclusions. The au-

thors evaluated those issues by means of Zadeh’s theory of fuzzy-

sets (Zadeh, 1965, 1975) which was also used by Rosch (1975b)

to represent the prototype model formally. The final conclusion

of their work was threefold: either a prototype theory cannot be

represented with the fuzzy-set formalism, or the prototype theory

should be negated completely – what is however not recommended

because this theory captures many ideas about categorization –

or prototype theory is not complete and applies only to limited

aspects of concepts.

“[W]e can distinguish between a concept’s core and its

identification procedure; the core concerns with those

aspects of concept that explicate its relation to other

concepts, and to thoughts, while the identification pro-

cedure specifies the kind of information used to make

rapid decisions about membership. (. . . ) Given this

distinction it is possible that some traditional theory

of concepts correctly characterizes the core, whereas

prototype theory characterizes an important identifi-

cation procedure.” (Osherson and Smith, 1981, p. 57)

The above shows that not all kinds of categories are equally

well described by prototype theory. The best ones are naturally

those which served as a base for this theory: perceptual categories,

natural categories, artifacts etc. The most problems are connected

with compositional concepts.
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The problems with “standard” prototype theory can be solved

in two ways. Either by application of prototype theory to the

prototype itself or by redefining the mechanisms underlying the

categorization.

The notion of prototypicality as characterized by Geeraerts is

founded by four properties:

1. Prototypical categories cannot be defined by means

of a single set of criterial (necessary and suffi-

cient) attributes. (. . . )

2. Prototypical categories exhibit a family resem-

blance structure, or more generally, their seman-

tic structure takes the form of a radial set of clus-

tered and overlapping meanings. (. . . )

3. Prototypical categories exhibit degrees of cate-

gory membership; not every member is equally

representative for a category. (. . . )

4. Prototypical categories are blurred at the edges.(. . . )

(Geeraerts, 1988, pp. 343–344)

Following this author one can notice that not all of the above

properties apply to all cases of prototypical objects (cf. table 2.1).

Different prototypes can represent different properties of prototyp-

icality and this means that a prototype is indeed autoprototypical.

In fact, this characteristic of prototype leads to the next version

of theory of prototype, the theory of family resemblances.
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odd
bird vers1 red number

analytic polysemy cou-
pled with intuitive uni-
vocality

+ – – –

clustering of overlap-
ping senses

+ + – –

degrees of representa-
tivity

+ + + +

fuzzy boundaries – + + –

Table 2.1: Different prototypical objects (adapted from Geeraerts,
1988) characterized by four properties of prototypes.

2.2.2 Family Resemblance

The revision of the “standard” prototype model of categorization

leads to a theory using an idea of family resemblance in order to

describe categories. Wittgenstein (1971) argued that concepts or

objects in the world do not have to have common characteristics

in order to be understood as elements of one category. They can

connect to each other only by resemblance. This “new” prototype

theory, according to Lakoff (1987), is characterized by the two

following principles:

a) there is no longer a prototype as an entity representing a

category, there exist only prototypical effects,

1vers is a Dutch adjective, “which corresponds roughly to with English
fresh (except for the fact that the Dutch word does not carry the meaning
«cool»)”. (Geeraerts, 1988, p. 349)
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b) the relation between members of the same category is a fam-

ily resemblance relation.

This idea is in some sense reversed in comparison to the former

prototype model. The prototypical effects in a category are now

only a consequence of the relationship between its members.

This change in the categorization principle leads at first to the

change in category structure from radial one (cf. figure 2.4 for

a category bird) to the more distributed structure where indeed

a prototypical kernel exists, but where also outlying exemplars

occur which not necessarily have any properties common with

those forming the prototype (figure 2.5).

Figure 2.4: The radial structure of category.

This new category structure is based on family resemblance

(Wittgenstein, 1971). In the “standard” version of prototype the-

ory the notion of family resemblance was also introduced but (as

suggested by Kleiber, 2003) it was used improperly and motivated

by its false identification with similarity to the prototype.
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Figure 2.5: The non-radial structure of category. The grayed nodes
play role of prototypical centers.

What is family resemblance? It is a similarity between at least

two exemplars, while at the same time it is not necessary that any

of similar properties is common for all category members. There

also is no reference to the prototypical object and of course no

similarity to it is required. In Wittgenstein’s example of the game

category it is even not possible to extract any kind of prototype, no

game can be considered better representing this category than all

others. This apprehension of categorization leads to a much more

powerful mechanism: retaining all positive characteristics of the

“standard” model, the family resemblance denies simultaneously

the necessity of having similarities with some imaginary objects

constituting the category center. As a spectacular example let us

consider the categories bayi, balan, balam and bala of Dyirbal,

an aboriginal language of Australia (cf. Dixon, 1982; Lakoff, 1986).

These categories contain the following items:

Bayi : men, kangaroos, possums, bats, most snakes, most fishes,

some birds, most insects, the moon, storms, rainbows, boo-

merangs, some spears, etc.
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Balan : women, anything connected with water or fire, bandi-

coots, dogs, platypus, echidnae, some snakes, some fishes,

most birds, fireflies, scorpions, crickets, the stars, shields,

some spears, some trees, etc.

Balam : all edible fruit and the plants that bear them, tubers,

ferns, honey, cigarettes, wine, cake.

Bala : parts of the body, meat, bees, wind, yam sticks, some

spears, most trees, grass, mud, stones, noises, language, etc.

Clearly there is no single object which could serve as a center for

each of these categories. However all of the elements are connected

to each other by having at least one overlapping property. For

example the moon in bayi category is related to men, because in

myths it is personified as a husband. Analogously, the sun is in

the same category as women, because in myths it is incarnated as

a wife.

Actually, the term prototype should be replaced with the term

prototypical effect. Fillmore (1982), Lakoff (1987) and Geeraerts

(1988) suggest many types of prototypical effects dependent on the

type of category in question. That is why a prototype becomes

only a surface effect and cannot be used directly to build up a

category structure.
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2.2.3 Exemplar-Based Model

The exemplar model of categorization was first mentioned in works

of Brooks (1978) and Medin and Schaffer (1978). The main idea

here is that a category is represented in people’s mind with memo-

ries of all exemplars encountered in daily life. The consequence of

this view is that there is no abstraction of category representation

unlike in classical, prototype or family resemblance models.

The exemplar model’s hypothesis utilizes a parallel search me-

chanism among all stored memories in order to categorize an un-

known exemplar. Depending on the actual version of the model,

either a category is chosen which exemplars are on average most

similar to the categorized item, or the one which has the highest

number of similar exemplars.

It seems that the exemplar model has an advantage over pro-

totypical models in assigning objects to poorly defined categories

or those which have too few exemplars to generalize. This ad-

vantage stems from the representation which is simply a set of

unprocessed members of different categories. This representation

however has also drawbacks.

Firstly, although there is no clear evidence on people’s mem-

ory capacity it seems unlikely that everyone remembers all the

incoming information ever and forever. Thus the performance of

categorization should decrease with time, when exemplars are sim-

ply forgotten. However, there is evidence that exemplars influence

categorization even if they are not remembered explicitly.
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Barsalou (1992, pp. 27–28) mentions even more serious flaws

in the exemplar-based model. People are clearly able to abstract

from exemplars and to create general representations for cate-

gories. The exemplar model – by definition – can explain neither

forming of those abstractions nor their use.

2.3 No Clear-Cut Between Models

Experimental data known so far shows clearly that the classi-

cal feature-based model of categorization is not sufficient. But it

cannot be completely rejected. Even in the most sophisticated

prototype-based models the comparison process is built in.

The prototype models of categorization “simply” compare an

object to be categorized with some set of prototypes or other mem-

bers of a category. The problem is how this comparison is being

done. Rosch’s experiment (1976) concerning objects’ shapes may

suggest that the comparison is a kind of pattern matching: an

object is said to be a member of a given category when it is most

similar to the pattern of a prototype for this category. But as

Harnad (2003) points out

“it is simply not the case that everything is a member

of every category, to different degrees. It is not true

ontologically that a bird is a fish (or a table) to a

certain degree; nor is it true functionally that sensory

shadows of birds can be sorted on the basis of their

degree of similarity to prototype birds, fish or tables.”
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The same problem occurs with the family resemblance mecha-

nism. It says that members of categories are similar to each other

to some degree. Again, the question is how to measure this sim-

ilarity if not on the feature basis? Similarly, the exemplar-based

model suffers from this dilemma.

Kleiber (2003) points out that the prototype model actually

describes categories also in terms of features (or properties). The

feature mechanism is thus inherent within these more “psychologi-

cally justified” models. Thus a prototype can be defined as the set

of the most common features within a category and similarity can

be measured by the number of features and the degree to which

they match the prototype. Similarly family resemblance could be

defined by measuring the number of common properties and the

degree to which they overlap.

2.4 Learning Categories

The prototype, family resemblance and exemplar-based theories

describe phenomena related to categorization and category struc-

ture. However, none of those mechanisms explains how the cate-

gory structure is obtained. Indeed comparing either to prototype,

to other category members or using the set of rules requires that

the category structure is already present. Thus, no matter what

mechanism we assume to be appropriate for describing a category

structure, a learning method has to be also defined.
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Ashby and Maddox (2005) enumerates four main methods

most commonly used for investigating category learning by hu-

mans.

Rule-based. Rule-based category learning is generally a method

by which a subject learns the rules. These rules describe

the strategy of categorization verbally. Several conditions

must be met in this case: each stimulus must have a seman-

tic label, the subject must be able to isolate each property

of stimulus, and the rule combining information from differ-

ent stimuli must be verbalizable (usually in terms of logical

operations).

Information integration. In this learning method categoriza-

tion is possible only if information from several sources is

integrated on the pre-decision stage.

Prototype distortion. Learning randomly distorted single cat-

egory prototype is a base for the prototype distortion metod.

There are two popular variations: (A, B) and (A, not A). In

the former, exemplars from category A are presented against

exemplars from the contrasting category B. In the latter

method there is only one category presented in contrast to

exemplars not attributed to any category.

Weather prediction. This last method has the goal of finding

out whether a membership in category is deterministic or

probabilistic. In deterministic learning each stimulus has un-
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ambiguously assigned a member of a given category, whereas

in probabilistic tasks at least some of the stimuli are ran-

domly associated to more different categories.

Although it is not clear which of the above methods describes

category learning by humans (if any) there are different phenom-

ena connected with category acquisition. One of them is asymmet-

ric category learning (cf. Quinn et al., 1993) which is investigated

in the following chapters.

In the current chapter the models of categorization provided by

literature have been outlined. These models constitute a basis

for judging the categorization model I propose in this paper. This

model is a connectionist one. Thus, the following chapter presents

those aspects of connectionism which are needed to define the

model.





CHAPTER 3

Connectionism

Connectionism is nowadays one of the theories of information pro-

cessing within cognitive sciences (Medler, 1998). The term “con-

nectionism” itself originates from the idea of representing a system

as a net built of nodes and connections, where the main informa-

tion is stored in connections. The categorization model described

in this work deals with creating a taxonomy of concepts, formed as

a network of interconnected nodes. Thus, from the architectural

point of view, the model presented can and should be regarded as

a variant of a connectionist system. Moreover, the data process-

ing within this model involves passing a signal from one node to

the others which is a common procedure in connectionist models

63
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known as activation spreading. The task of this chapter is to show

what connectionism is and how it is related to the categorization

model.

Connectionism is regarded as the main alternative to a sym-

bolic processing in cognitive sciences, especially in psycholinguis-

tics. Figure 3.1 presents the hierarchy of main types of cognitive

models currently developed. According to this classification, con-

nectionist models belong to the class of quantitative, algorithmic

ones. Further, they subdivide into two branches: localist mod-

els and parallel distributed processing ones. Actually, the localist

models are also based on parallel distributed processing, but the

difference (as will be explained later) is in the data representation

used.

The current chapter is divided as follows. The Section 3.1

presents briefly the history of connectionist modeling. The follow-

ing Section 3.2 explains the place of connectionist models within

the model theory. Section 3.3 deals with data representation used

in different flavors of connectionist models. The next two Sec-

tions, 3.4 and 3.5, describe in more detail distributed and localist

types of connectionism respectively. Semantic networks, which

are structures slightly similar to the connectionist networks, are

highlighted in Section 3.6. Then, the opposition between brain

structure and connectionist models is described in Section 3.7.

Possible approaches to language processing in the connectionist

context are discussed briefly in Section 3.8. Finally Section 3.9
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explains how the model of categorization presented in this work

can be defined as a connectionist model.

Cognitive Models
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Figure 3.1: Hierarchy of different cognitive models (after Grainger and
Jacobs, 1998). The leaf and branch names have the following meanings.
V-type: verbal and boxological, M-type: mathematical, A-type: algo-
rithmic, computational.

3.1 On the History of Connectionism

Network models come to light in 1940’s when McCulloch and Pitts

(1943) proved that networks of simple interconnected binary units,

when supplemented by indefinitely large memory, were compu-

tationally equivalent to a Turing’s universal computing machine

(Turing, 1937). For these kinds of machines, Turing proves:

“It is possible to invent a single machine which can be

used to compute any computable sequence.” (Turing,
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1937, p. 241)

In the late fifties, Rosenblatt (1958) introduced perceptrons

(see figure 3.2) as an improved version of the units in networks by

McCullogh and Pitts. The innovation in Rosenblatt’s work was

the introduction of modifiable connection weights, which enabled

networks of such units to be trained. Later, Rosenblatt (1962)

invented the learning procedure for perceptron and developed the

“Perceptron Convergence Theorem”. This theorem asserts the con-

vergence of a simple supervised learning algorithm for simplified

neuron models.

Figure 3.2: Rosenblatt’s perceptron capable to perform logical not-and
(NAND) function.

However, Minsky and Papert (1969) presented a number of

fundamental problems which hold for these kinds of network archi-

tectures. For example, there are certain tasks which Rosenblatt’s

perceptrons could not solve. The most fatal was their inability to

calculate parity which led to practical limitations in perceptron’s
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application. For example, a perceptron could not learn to evalu-

ate the logical function of exclusive-or (XOR) and other linearly

inseparable problems. Minsky and Papert suggested the possibil-

ity of developing perceptrons into more sophisticated architecture

consisting of more processing layers. They predicted, however,

that this architecture would suffer from similar inabilities as the

single perceptron.

Another reason for suppressing the connectionist ideas of com-

putation was the success of other approaches to so-called “artificial

intelligence”. Among them were systems like STUDENT (Bobrow,

1969), Analogy Program (Evans, 1969), and a semantic memory

program called the Teachable Language Comprehender (Quillian,

1969), which seemed not to suffer from limitations of connectionist

systems.

In the seventies, not many significant studies on connectio-

nism were done. Some important exceptions were the works of

Anderson (1972), Kohonen (1972), and Grossberg (1976). Min-

sky and Papert’s prediction about the limitations of multi-layered

architectures based on a perceptron idea, however, were not con-

firmed.

In the eighties the renaissance of network architectures began.

The connectionism then split formally into localist connectionism

(McClelland and Rumelhart, 1981; Dell, 1986; McClelland and El-

man, 1986) and parallel distributed processing (Rumelhart et al.,

1986b). The network modeling gained more and more attention
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also because of dissatisfaction with the results obtained with the

artificial intelligence models (cf. Graubard, 1988).

The “modern connectionism” which started in 1980s brought

computationally powerful and trainable networks — new tools for

investigating human cognition. The development of training pro-

cedures for multi-layer networks gave not only a tool computation-

ally powerful enough to model problems of cognition but also a

learning procedure to deal with those problems. Nowadays, con-

nectionism is still evolving. The different network architectures

and learning rules developed so far allow one to choose an appro-

priate tool for a specific problem.

3.2 Algorithmic Model Theory

Model theory in general is a branch of logic. In a broader sense,

model theory is the study of the interpretation of any language,

formal or natural, by means of set-theoretic structures, with Alfred

Tarski’s truth definition (Tarski, 1933) as a paradigm. In this

broader sense, model theory meets philosophy at several points,

for example in the semantics of natural languages.

Algorithmic model theory (the theory of A − type models, cf.

figure 3.1) investigates the application of model theoretic methods

to different problem domains in computational science (cf. Otto,

2002). The most interesting domain from this work’s point of

view is the domain of knowledge representation and artificial in-

telligence. Because descriptive logics are also being used as formal
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languages for knowledge representation, it is relatively straightfor-

ward to connect it with model theory.

Connectionist models form a sub-branch of the more general

class of algorithmic models. The power of A− type models is that

they can be applied as tools to analyze the functioning of cognitive

systems and processes. They, however, do not claim to provide

the true solutions. Instead they can provide an explanation of

how the system could work but not necessarily how it does work.

The A − type models, and thus the connectionist models, have

the potential to bring insights into the functionality of cognitive

systems.

In the following an overview of the two main branches of con-

nectionism, distributed connectionism and localist connectionism,

is given.

3.3 Remarks on Data Representation

To start talking formally about the connectionism, one needs at

first to consider data to be processed by the system. The form

of data being processed by the connectionist system is the central

factor that decides what properties a system should have in order

to properly model a given phenomenon. The two main types of

data representation are local and distributed (figure 3.3).

Between these two poles there exists a number of mixed rep-

resentations. In the following localist and distributed representa-

tions are shortly characterized. The description assumes that the
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Figure 3.3: Schematic illustration of the difference between local and
distributed data representation.

data is represented in a system using a pool of units which can be

characterized by a real number (the activation value).

3.3.1 Localist Data Representation

The localist representation originates from the work of Gall and

Spurzheim (1809/1967) who claimed that particular knowledge is

stored in specific regions of brain. In the meantime there are many

flavors of localist representation. Those that can be presented

in the clearest way as the basic representations of this type are

strictly local and local ones.

• “Strictly Local

The item (. . . ) is represented by appropriately

configuring a single dedicated unit. The state of

the other units is irrelevant.

• Local

The limiting case of a sparse distributed repre-

sentation is one in which only a single unit in

the pool is active. These representations are of-
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ten also referred to as “local” (. . . ). The key dif-

ference with strictly local representations is that

here it matters what state the other units in the

pool are in, viz., they must not be active.”

(van Gelder, 1999, p. 188)

3.3.2 Distributed Data Representation

On the other end of the representation spectrum there is dis-

tributed representation. This representation assumes that spe-

cific information is represented by more than just one unit. In

addition, each single unit contributes to many representations. In

other words, it is usually the case that the same subset of units

can code many different pieces of information by means of differ-

ent activation patterns. It means that no single unit holds enough

clues to decode the information stored in the system’s pool of data

representing items.

3.3.3 Meaning of a Unit

Another aspect of local versus distributed data representation op-

position refers to the meaning and the interpretation of a single

item used to store data. The simplest way to deal with it is to

say that in localist systems each unit carries its own independent

piece of information which can be interpreted without taking the

state of other system’s parts into account. Even if the overall in-
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formation is composed of multiple units, each one is independent.1

Thorpe (1995) formulates this characteristic in the following way:

“With a local representation, activity in individual

units can be interpreted directly. [W]ith distributed

coding individual units cannot be interpreted without

knowing the state of other units in the network.”

On the other hand, the distributed data representation makes

clear that the meaning of a single, separated unit is useless. Only

the overall state of the whole system carries meaningful informa-

tion. This representation has its advantages (for example in case

the system is partially damaged, because even then the data may

be restored with some accuracy) but also disadvantages (e.g. very

complicated ways to analyze the correlations between different

pieces of data).

3.3.4 Semantic Problems

Talking about local and distributed representation always involves

formal, semantic problems. The terms “local” and “distributed” are

usually used in literature in many different ways and are in fact

still not well defined as yet.

Page (2000) argues that the real localist systems can use only

the strictly local representation. Moreover, what counts is not

1This kind of representation where the meaning in macro-scale is composed
of the state of many strictly local units is often referred to as representation
by microfeatures.
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the input and output signal form but the way it is processed.

However many connectionist systems (eg. Dell, 1986; McClelland

and Elman, 1986; Schade, 1999) are usually seen as localist ones,

although they use not strictly local data representation for pro-

cessing. This view can be justified by grouping representation

units into layers and considering each layer as a different subsys-

tem with its own, independent data representation. However, it

still leaves the problem of localist and distributed representations

vague.

In the following the short characteristics of sample systems

using distributed or localist representation are given.

3.4 Distributed Connectionism

A distributed connectionist, sometimes referred to as artificial

neural networks, is a computational method derived from obser-

vations about brain structure and properties of neurons. Such a

network consists of a (usually) large number of simple processing

units, called (artificial) neurons or just nodes. These nodes are

interconnected by weighted links.

The main principles of connectionist models derived from gen-

eral observations about the brain are as follows (according to

McLeod et al., 1998):

1. An artificial neuron receives and sums up input signals.

Based on this sum the neuron’s actual activation value is
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calculated and passed during the next step as an actualized

signal via weighted connections to other nodes.

2. The artificial neural networks are usually organized in lay-

ers and connections exist mainly between nodes in adjacent

layers. There are in general no connections between nodes

in the same layer or the connections have a different nature

than inter-layer ones.

3. The influence of one neuron on another one depends on

the strength of the connection between them (connection

weight).

4. The weights’ values are obtained during a learning process.

Due to the nature of input and output data (real-valued vec-

tors) neural networks are often used to approximate real-valued

functions. Because of this feature, neural networks may be called

universal approximators, and they are exploited to estimate un-

known (or very complicated) relationships.

3.4.1 The Artificial “Neuron”

An artificial neuron, often called a node, is a simple processing

unit which is a further development of Rosenblatt’s perceptron (cf.

page 66). Its role is to calculate an activation value (according

to some given function) out of the input data. The input data

consists of signals from many other nodes, and the activation value
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is used as the node’s output signal during the next step. The

schema of an artificial neuron is drawn in figure 3.4.

Figure 3.4: An artificial neuron.

In order to calculate the activation value, an activation func-

tion is used. Its concrete form is task-dependent. The standard

and probably most often used activation function is derived from

a logistic function (Kingsland, 1995):

P (t) = a
1 + me−t/τ

1 + ne−t/τ
(3.1)

The special case of logistic function (3.1) used in parallel dis-

tributed modeling is called a “sigmoidal function” (equation 3.2)

due to the sigmoid shape of its graph (see figure 3.5) or a “stan-



76 CONNECTIONISM

dard logistic function” (cf. for example McLeod et al., 1998; Ellis

and Humphreys, 1999)

f(si) =
1

1 + e−si

(3.2)

 0
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Figure 3.5: Sigmoidal (standard logistic) function.

In (3.2), si is the sum of the weighted outputs of those nodes

which are connected to the node i, as given in equation 3.3

si =
∑

j

wjiaj (3.3)

In (3.3), wji denotes the weight of the connection from node j to

node i and aj is the activation value of node j.
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3.4.2 Basic Architecture

There exists a large number of possible network architectures (i.e.

ways how nodes are organized and connected). The most popular

are so-called feed-forward networks in which a signal is propagated

only in one direction: from the layer of input neurons through one

or more hidden layers to the layer of output neurons. The name

“hidden layer” means that that activation value patterns in those

layers are not visible to the user.

In the following subsection the most basic network architec-

ture is described as it is a starting point for many investigations

involving distributed connectionist models.

Multi-Layer Perceptron (MLP)

A multi-layer perceptron is the most common neural network ar-

chitecture. Two-layer perceptrons were first introduced by Rosen-

blatt (1958). The multi-layer version of perceptron has been pro-

posed by Rumelhart et al. (1986b). Picture 3.6 shows the schema

of the latter. The nodes are organized in three layers. One layer

is the input layer (i.e. the activation of nodes in this layer, input

nodes, depends directly on input data) and one layer is the output

layer (i.e. this layer’s nodes’ activation pattern is considered to

be the output of the network). The intermediate layer is called

hidden because its activation distribution is not directly accessible

for a user.
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Figure 3.6: Multi-layer perceptron schema. Circles stand for nodes
and lines for connections between them.

The multi-layer perceptron is a kind of feed–forward network,

which means signals flow in only one direction: from input layer

through hidden layers to output layer without any back loops.

3.4.3 Learning

In the case of artificial neural networks, learning is a process of

changing connection weights. Usually feed-forward distributed

networks are trained according to a supervised method of learn-

ing (cf. le Cun, 1985; Parker, 1985; Rumelhart et al., 1986a). The

main attribute of supervised learning is that it needs a large num-

ber of input and output data pairs.

There exists a number of different supervised learning meth-

ods, rules and algorithms. For a multi-layer perceptron the most
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common method is called error back-propagation (cf. Rumelhart

et al., 1986a). The principle of this algorithm is the following.

1. The network is presented with input data selected (usually

randomly) from the set of training data.

2. The output is calculated according to the activation func-

tion.

3. The output is compared with the desired result and out of

this comparison the output layer error is calculated.

4. Based on the error found in step 3 and the current con-

nection weights errors are calculated for the other network

layers as well (“backpropagated”).

5. Based on the errors calculated in steps 3 and 4 and the

existing connection weights, all the weights are modified.

The weights’ changes are usually controlled by two parameters:

• learning rate, which is simply a fraction of an error value

taken into account when changing weights,

• learning momentum, which is a fraction of previous weight

changes. The learning momentum is used to prevent the

learning procedure being captured in a local minimum of

the learned function.

Usually learning is applied until a given performance of the net-

work is reached, that is, until the error rate decreases below some
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acceptable level. In most applications, learning is done only once.

After that the artificial neural network is used. After learning all

weights remain fixed.

Until the back-propagation algorithm was presented, it was

not possible to train perceptrons of more than two-layer. This

algorithm definitely overcame the limitations of the first connec-

tionist architectures which had been noted by Minsky and Papert

(1969), and allowed for serious competition against the symbolic

approach.

As the “extension” of multi-layer perceptron architecture there

were two other network types proposed by Jordan (1986) and

Elman (1990) in order to learn and process time sequences of

input activation patterns. These networks contain one additional

layer of units, called the “context layer”. The task of the context

layer is to provide a short-term memory for a network. The differ-

ence between Jordan and Elman network types is that the former

expresses context in terms of activation pattern of output nodes

in the previous time-step of processing and the latter in terms of

activation pattern of a hidden layer. The presence of short-term

memory allows for processing sequences of input patterns, or, more

precisely, for processing an input signal in context of previously

processed ones. These architectures were the first ones which gave

the possibility to train networks on sequences of arbitrary length,

thus allowing for real language processing (for example, extracting

grammar rules from sample sentences, cf. Lawrence et al., 2000).
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The multi-layer perceptron and architectures derived from it

have become a flagship for “modern connectionism” in its dis-

tributed version. They were successfully used also for categoriza-

tion purposes (e.g. McClelland and Rumelhart, 1985; Kruschke,

1992; Dienes, 1992). The fatal disadvantage of distributed connec-

tionist categorization models is that it is not possible in a simple

way (cf. cluster analysis, Tryon, 1939) to retrieve the dependen-

cies among learned categories, that is, the taxonomical structure.

That is why, in my opinion, distributed connectionism alone is not

the optimal solution for a categorization model.

3.4.4 Self-Organizing Maps

Another interesting artificial neural network architecture is a self-

organizing map (SOM), originally proposed by Kohonen (1982).

Those networks use so-called unsupervised learning (Hinton and

Sejnowski, 1999) in which a model fits to observed data. In un-

supervised learning, in contrast to supervised learning used in

multi-layer perceptrons, the desired output is not defined.

The objective of SOM is to map the input data onto a multi-

dimensional array. The most popular are, however, two- and

three-dimensional maps. Each node in the network is charac-

terized by an n-dimensional vector containing some data Wij =

(w1, . . . , wn) and its physical location in the network. Like most

connectionist systems, SOMs also operate in two modes:
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1. Training (learning) mode.

In the training mode, the network organizes itself using com-

petitive algorithms (e.g. winner-take-all). The organization

is executed in the following way: the input data in form of

a vector is presented, the node with the data vector which

is most similar to the input one is chosen, and the vector

is modified in a way to make it more similar to the input

data. This process is repeated for all input data and usually

in many cycles.

2. Production (mapping) mode.

In mapping mode, the input vector is compared to the vec-

tors of all network nodes and the most similar one is chosen.

The “winning” node can be physically localised and classified

based on the location on the map.

Kohonen networks are often used for classification (or cate-

gorization) (Anderson and Mozer, 1989; Merkl, 1998), data com-

pression (Amerijckx et al., 2003; Seiffert, 2005), pattern recogni-

tion (Carpenter and Grossberg, 1991; Ghosh and Pal, 1992) or to

visualize large collections of data (e.g. WebSOM by Lagus et al.,

1999, see figure 3.7).

The interesting (from the categorization point of view) prop-

erty of self organizing maps is that they preserve the topology of

input data. This means that similar input data are associated

with the nodes in the network which have similar physical posi-

tions (cf. figure 3.7). This property makes SOM into a tool for
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Figure 3.7: WebSOM example: the map of articles from usenet group
comp.ai.neural-nets. The labels denote sample posts from the
group. Similar articles are placed near each other on the map (topology
preserving property). The color represents the density of documents:
light areas contain more documents. (From: http://websom.hut.
fi/websom/.)



84 CONNECTIONISM

cluster analysis (Jain et al., 1999) of input data, and allows for

discovery of its hierarchical structure by creating a dendrogram.

A dendrogram shows the multidimensional distances between

objects in a tree-like structure (figure 3.8). Objects which are

closest to each other in the multidimensional data space form a

cluster and are connected by a horizontal line. The distance of the

particular pair of objects (or clusters) is reflected in the height of

the horizontal line. Dendrograms are heavily dependent upon the

measure used to calculate the distances between the objects.

Figure 3.8: An example of a dendrogram

Modeling categorization processes with Kohonen networks suf-

fers, however, from several limitations. First of all, the network

is not able to generalize within a hierarchy of categorized items,



Localist Connectionism 85

in the sense that unknown objects do not correspond to any node

in the dendrogram. The only “generalization” possible is to judge

which known object the input data is most similar to. Secondly,

the limited number of nodes limits the capacity of networks, and

thus number of categorized objects. Another drawback of this

architecture is the catastrophic inference (forgetting), from which

also many distributed connectionist architectures suffer (cf. French,

1999). This is why I judge that my model, presented later in this

work, is better suited for modeling categorization processes as it

makes a step toward overcoming these issues.

3.5 Localist Connectionism

In the following section, the localist view on connectionist model-

ing is presented.

“Localist connectionism is a branch of cognitive

modeling characterized, as the name implies, by the

use of localist representations. (. . . ) Localist rep-

resentations are simple processing units (as used by

connectionist models) that can be usefully interpreted

as standing for a single meaningful entity in the target

world. These representations are contrasted with dis-

tributed representations, in which a single processing

unit can be used to represent many different entities
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and a single entity is represented by many different

processing units.” (Grainger and Jacobs, 1998, p. 1)

It is very hard, if not impossible, to give general characteris-

tics of connectionist models or to present a kind of flagship for

this branch of connectionism. The reason is that localist models

are task-driven ones, and almost always hand-wired for a specific

purpose.

The most evident difference between localist and distributed

connectionist systems, apart from the data representation used,

can be seen in their applications. Traditionally the distributed

systems are used to model learning processes while localist ones

describe human performance (production processes). In the fol-

lowing, the idea of localist connectionist systems will be illustrated

with several works on lexical access and language production.

This is done so that the reader will be able to better judge

and classify the model described in this paper since this model

can also be labeled as a “localist connectionist model”.

3.5.1 Theory of Retrieval in Sentence Production

Based on the localist connectionist mechanisms, Dell (1986) pre-

sented a spreading-activation model of retrieval in sentence pro-

duction. His model postulated

“(. . . ) a network of linguistic rules and units in

which decisions about what unit or rule to choose are
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based on the activation levels of the nodes representing

those rules or units.” (Dell, 1986, p. 283)

The network used was organized in layers motivated by as-

sumption that linguistic knowledge can be organized into separate

levels, for example semantic, syntactic and phonological ones.

For his model evaluation purposes, Dell presented a demon-

stration of basic phonological errors production, namely slips of

the tongue. The model tried to explain the causes of speech er-

rors in the context that speaking is a production process and thus

must be able to produce also novel combinations of sounds. This

flexibility demand, however, makes the whole system prone to er-

ror.

3.5.2 Spreading Activation and Language Production

Starting from Dell’s ideas, another localist connectionist produc-

tion model has been proposed by Berg (1988).

To be more precise, Berg’ work presents a localist architecture,

consisting of memory units which simultaneously play the role

of processing units. He considers the speech production process

in the context of a parallel activation spreading mechanism in

hierarchical networks.

Berg also validates his model by applying it to the simulation

of speech errors. These errors are claimed to be caused by interac-

tions on different speech production levels. The levels correspond

to the mentioned hierarchical architecture of the network.
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Again, the model is evaluated as an explanation of speech pro-

duction errors. This evaluation shows that language production

can be explained as a parallel interactive process within the system

of linguistic units organized in networks.

3.5.3 Aphasia Model

To complement his work, Dell et al. (1997) developed an aphasia

model. Again, the model is a network which consists of three

layers: semantic features, words and phonemes.

In this model, lexical access is realized by activation spread-

ing to the words layer. The most important feature of this model

is that the retrieval process has two steps: lemma selection and

phonologic encoding. The division of the retrieval process in lan-

guage production has a long tradition. It has been proposed for

example by Fromkin (1971) and Garrett (1975) and tested out by

Kempen and Huijbers (1983). However, in Dell’s approach there

exists interaction between the layers on all steps of processing. In

contrast to the classical approach by Fromkin and Garret (cf. also

Levelt, 1989; Levelt et al., 1999), Dell’s model thus preserves two

stages of production but does not make them totally independent.

The model was used to explain the error patterns of aphasic

and non-aphasic speakers in picture naming experiments. Its pre-

dictions successfully modeled the results from naming experiments

conducted on human subjects.
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3.5.4 Connectionist Speech Production

In his work, Schade (1992, 1999) presents a cognitive model for

language production grounded in the localist connectionist tradi-

tion described above.

From the architectural point of view, this model offers two

novelties: lateral inhibition and chains of control nodes. The lat-

ter assist in the sequential data processing in the network. Lateral

inhibition, on the other hand, has multiple functionality. It not

only protects the system from uncontrolled rise of overall acti-

vation (“overheating”) but also aids selection of proper node by

increasing the contrast in activation values (see also Berg and

Schade, 1992).

The most prominent result of the model presented by Schade

was the ability to simulate several particular aspects of language

production like slips of the tongue and aphasic behavior in one

model.

3.6 Semantic Networks

At first glance, semantic networks look like localist connectionist

models. However, semantic networks involve relations among con-

cepts. In order to explain this difference, the current section dis-

cusses semantic networks in detail. Additionally, this section pro-

vides insight into the concept of “concept”.
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3.6.1 Concepts

Concepts can be defined as

“[t]he elements from which propositional thought is

constructed, thus providing a means of understanding

the world (. . . )” (Hampton, 1999, p. 176)

Concepts allow for classification of objects and experiences and for

relating them to the prior knowledge. Concepts exist in the human

mind and are used to construct the model of the world. One of the

important properties of concept to note is that they are “ad hoc”,

that is created for specific purposes and, usually, if generalized

beyond these purposes, they conflict with other concepts (Sowa,

1984).

Concepts can be regarded in reference to the meaning of a

given word. They are then analogous to the word’s intension, that

is to the set of all possible objects the word could describe. (In

opposition to the intension, there is an extension, which denotes

all existing objects actually described by the word in question.) In

this sense concepts can be defined by properties or criteria without

any concern for the existence of things that have those properties.

The relation between objects (referents), words (symbols) and

concepts was illustrated by Ogden and Richards (1923) as “the

meaning triangle” (figure 3.9). The meaning should be regarded

from the following points of view:
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Figure 3.9: The meaning triangle.

linguistic – relation between word and concept: how the concept

is expressed in language,

psychological – relation between concept and referent: what

happens in human consciousness,

logical – relation between word and referent: how a symbol refers

to the reality.

It follows that although symbols cannot completely capture

the essence of a concept or of a referent, there is a correspondence

between them. Either a word or an object can inspire the creation

of a concept, and people may express their concepts with words

or by identifying objects in the world.

The following section describes how a concept can be inter-

preted in relation to other ones. It also deals with the history of

semantic networks.
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3.6.2 Semantic Network

The meaning of a concept can be defined by relation to other con-

cepts, or — in other words — by its position in the network of

logical relations among them (White, 1975). This collection of

relationships that concepts have to each-other as well as to per-

cepts, procedures, and to motor mechanisms is called a semantic

network.

From the technical point of view,

“[a] semantic network is a graphic notation for rep-

resenting knowledge in patterns of interconnected nodes

and arcs (edges).” (Sowa, 1992)

There are many types of semantic networks used to code quite

different aspects of relationship among world elements. One of

the basic relationships is called “ISA”. It describes the subtype

relation among different types of those world objects. Because

the “ISA” relation has the features of definition it forms the basis

of a definitional network.

Definitional networks emphasize the subtype or ISA relation

between a concept type and a newly defined subtype. The result-

ing network, also called a generalization or subsumption hierarchy,

supports the rule of inheritance for copying properties defined for

a supertype to all of its subtypes. Since definitions are true by

definition, the information in these networks is often assumed to

be necessarily true.
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Origins of Semantic Networks

The definitional network is probably the oldest type of semantic

network. The first known one was described by Greek philosopher

Porphyry in “Isagoge” (cf. Porphyry, 1994) — his introduction to

Aristotle’s “Categories” (cf. Aristotle, 1928) — in the following

way:

“Substance is in itself a genus, and under it there is

body; under body, animated body; under animated

body, animal; under animal, rational animal; under

rational animal, the human being; and under the hu-

man being, Socrates, Plato, and all particular human

beings. Of these, substance is so general that it can

only be a genus, and the human being is so specific that

it can only be a species; whereas body is a species of

substance, and the genus of animated body. But an-

imated body is also a species of body, and the genus

of animal; and again animal is a species of animated

body, and the genus of rational animal; and rational

animal is a species of animal, and the genus of human

being; and the human being is a species of rational

animal, but it is not the genus of any sub–division of

humanity, so it is only a species; and anything which

is immediately predicated of the individual it governs

will be only a species, and not a genus. So, just as

substance is the most general genus, being the high-
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est, with nothing else above it; so the human being is

only a species, and the lowest, or (as we said) the most

specific species, since it is a species under which there

is no lower species or anything which can be divided

into species, but only individuals (. . . )”

Porphyry’s description was later illustrated by Petrus Hispan-

icus (ca. 1239/1947), who created a graph resembling modern

representations of definitional semantic networks (see figure 3.10).

The definitional network belongs to the class of monotonic

logic. It means that new information, when added, monotonically

increases the number of provable theorems. Already stored infor-

mation cannot be deleted or modified. The definitional network

can also be classified as a learning network. This term denotes

a graph which can be expanded or built up based on knowledge

acquired in the form of examples.

“Although the basic methods of description logics

are as old as Aristotle, they remain a vital part of

many versions of semantic networks and other kinds

of systems. Much of the ongoing research on descrip-

tion logics has been devoted to increasing their expres-

sive power while remaining within an efficiently com-

putable subset of logic (Brachman et al., 1990; Woods

and Schmolze, 1992). Two recent description logics

are DAML and OIL (Horrocks et al. 2001), which are

intended for representing knowledge in the semantic
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web (Berners-Lee et al. 2001) a giant semantic net-

work that spans the entire Internet.” (Sowa, 2002)
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Apart from definitional networks, many other kinds of seman-

tic networks exist, each expressing a different relation, like, for

example:

• meronymy (A is part of B),

• holonymy (B has A as a part of itself),

• hypernymy (A is superordinate of B) — in some sense, a

reversal of the definitional network,

• synonymy (A denotes the same as B),

• antonymy (A denotes the opposite of B).

It is also possible to introduce more than one relation in a

single semantic network. In this case, edges become labels, which

denote their meaning (figure 3.11).

The other types of semantic networks have, however, little

relevance for this work, and thus will not be further described

here.

Modern Applications

The definitional networks build a core for all common hierarchies

used to define relations of concepts. The first applications of those

networks were done in 1960s and used to define concept types and

relations for machine translation systems (Ceccato, 1961; Master-

man, 1962). The Masterman’s network, in which concepts were
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Figure 3.11: A sophisticated semantic network with many different
relations among nodes.

organized into a lattice and inherited properties from multiple su-

pertypes, was the first one to be called a semantic network.

Semantic networks were also widely used to build models of

semantic memory. One of the first ones was proposed by Collins

and Quillian (1969) in form of a hierarchical network (figure 3.12).

The main relation between two concepts represented by network

nodes was the ISA relation. Each concept was assigned a set of

features which were inherited from higher level in the hierarchy.

Some years later, another model was suggested by Collins and

Loftus (1975). In their model, Collins and Loftus proposed a net-

work where the lengths of links represent degree of relatedness
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Figure 3.12: Hierarchical semantic memory model by Collins and Quil-
lian (1969).

(figure 3.13). They also introduced the spreading activation pro-

cess, in which the activation of one of the links lead to partial ac-

tivation of connected nodes. To model the relatedness, the search

time was dependent on link length and the degree of activation

decreased with the distance.

Anderson (Anderson and Bower, 1973; Anderson, 1983) pro-

posed a slightly different approach. Knowledge was still repre-

sented in networks, but connections were in the form of propo-

sitions, or statements of relations (propositional network models,

figure 3.14). The model was capable of processing both declarative

knowledge (represented in the model by propositional networks)

and procedural knowledge (represented by production rules). Pro-

duction was effected by interpreting of the propositional network.
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Figure 3.13: Spreading activation network in the tradition of Collins
and Loftus (from Collins and Loftus, 1975, p. 412).

Modern semantic networks are based usually on a network de-

veloped by Woods (1975) and implemented by Brachman (1979)

in a system called KL-ONE: Knowledge Language One. KL-ONE
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is a frame-language,2 which has been developed from Frame Rep-

resentation Language and Knowledge Representation Language.

As an additional feature, in comparison to its ancestors, KL-ONE

introduced constraints involving more than one slot.

“KL-ONE is intended to represent general concep-

tual information and is typically used in the construc-

tion of the knowledge base of a single reasoning entity.

A KL-ONE knowledge base can be thought of as rep-

2Frame-language is a meta-language, where objects are represented by
frames, which are collections of named slots that describe types of objects
and relations to other objects. The frames are organized hierarchically.
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resenting the beliefs of the system using it. Thus KL-

ONE fits squarely into the currently prevailing philos-

ophy for building reasoning systems. (. . . )

In other words, KL-ONE provides a language for

expressing an explicit set of beliefs for a rational agent.”

(Brachman and Schmolze, 1985, p. 174)

Figure 3.15: A simple KL-ONE network of generic concepts (from
Brachman and Schmolze, 1985, p. 180).

KL-ONE can be used to represent a full range of semantical

relationships, from simple objects hierarchy (figure 3.15) to elab-

orated semantical dependencies (figure 3.16).
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Figure 3.16: A network representing a sentence in KL-ONE (from
Brachman and Schmolze, 1985, p. 214).

3.7 Connectionism vs. Brain Structure

It is often claimed that connectionist models (especially those of

the PDP kind) are derived from the structure of brain. Indeed,

in such models there are nodes and connections, where nodes are

interpreted as a parallel to neurons. However, it should be noted

that this is actually the only relation between connectionist models

(artificial neural networks) and brains (real neural networks).

There are several reasons why connectionist models are not
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Figure 3.17: A neuron: the major structural and functional “unit” of
nervous tissue.

analogues to the structure of the brain. First of all one has to note

that nodes in connectionist networks are very simple processing

units while real neurons (figure 3.17), on the contrary, are able to

perform relatively complicated calculations on input signals (c.f.

Koch et al., 1982, 1983; Mel, 1994).

An even more important reason to reject connectionist models

as models of the human brain is just the the underlying concept of

these models. They are only some kind of mathematical paradigm,

some formulation of algorithmic procedures. Parallel distributed

processing models are often called universal approximators, which

means that they are just mathematical tools able to approximate

(almost) any arbitrary kind of relation between two sets of num-

bers. Localist models are usually used to approximate even more

abstract cognitive processes. There is no, or very little, attention

paid to simulating how the brain really deals with the tasks in
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question. Connectionism just a tries to model the task itself. The

above is mentioned by Krebs (2005) as a clash between top-down

psychological models and bottom-up neural environments. Thus

“(. . . ) when simple ANNs [artificial neural networks]

with small numbers of nodes are employed to model

complex high level cognitive functions, the experimen-

ter should evaluate whether the simplicity of the net-

work can provide a plausible implementation, because

it is all too easy to provide a neurologically possible

model.” (Krebs, 2005, p. 1189)

3.8 Connectionism and Language Processing

The most widely spread approach to natural language processing

and understanding is based on sets of rules and representations.

The connectionist paradigm contrasts with this approach in that

it is based upon sets of nodes and connections, which are described

with vectors and matrices as well as complex apparatus to transfer

information between nodes (like spreading activation mechanism).

There are two different strategies which represent linguistic

phenomena within connectionist theory: model-centered and prin-

ciple-centered.

“[M]odel-centered strategy proceeds as follows (. . . ):

specific data illustrating some interesting linguistic phe-

nomena are identified; certain general connectionist
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principles are hypothesized to account for these data;

a concrete instantiation of these principles in a partic-

ular connectionist network – the model – is selected;

computer simulation is used to test the adequacy of the

model in accounting for the data; and, if the network

employs learning, the network configuration resulting

from learning is analyzed to discern the nature of the

account that has been learned. (. . . )

The second, principle-centered, strategy approa-

ches language by directly deploying general connectio-

nist principles, without the intervention of a particular

network model. Selected connectionist principles are

used to directly derive a novel and general linguistic

formalism, and this formalism is then used directly for

the analysis of particular linguistic phenomena.”

(Smolensky, 1999, p. 188)

The strategy used in this work is the model-centered one: the

model is created and evaluated.

3.9 My Categorization Model and Connectionism

The aim of my model is to create a taxonomy of concepts. It seems

natural that this taxonomy is presented in a form of a graph (or

tree) constructed from nodes, which denote concepts themselves,

and arcs, which denote relations within pairs of concepts.
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This kind of graph can be classified as a subtype of semantic

networks, namely a definitional network. A taxonomy is noth-

ing else than a definition of ISA relations (cf. definitional net-

works, page 92) between classes of objects (concepts) and their

subclasses. It is obvious that an instance of a given class auto-

matically is an (ISA) instance of its superclass. This simple defi-

nitional network is however enriched with nodes denoting features

of concepts to be classified as well as with interrelations among

those nodes and concepts themselves.

In order to provide more than a purely representational power,

activation spreading and weighted connections are introduced.

These properties make the model presented a part of the class of

“traditional” connectionist systems. Labeled nodes make it rather

a localist connectionist model. However (as will be shown further),

my model, while showing strong localist characteristics, remains

a mixed one.

To summarize: the model presented here is a connectionist

model, displaying several properties of both distributed and lo-

calist approaches to connectionism. It contributes to the class of

connectionist systems able to learn as well as those which perform.

At the same time my model can be seen as a means for building

a “living” taxonomy, a kind of a semantic network.

In the next chapter, the connectionist system able to create hier-

archy of concepts is presented and evaluated.
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CHAPTER 4

Architecture and Operation of the Model

The description of the model’s operation as well as its internal

architecture are presented in this chapter. The system presented

falls into the class of connectionist models (chapter 3, page 63).

Since the model is connectionist, its main constituent is a net-

work. The basic elements of this network are nodes. The struc-

ture of nodes is inspired by biological findings concerning signal

processing in brain. (It must be noted, however, that the pur-

pose of the system is not to model the architecture or function-

ality of the brain itself, but the higher cognitive ability: the cat-

egorization process.) Consequently, the signal flow in a network

constructed from those structured nodes must undergo a proce-

109
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dure that fits this architecture: this is the activation spreading

mechanism, which takes care of transferring information within a

network in general and within this model in particular.

4.1 A Node

In “traditional” connectionist systems (e.g. McClelland and Rumel-

hart, 1981), a node is a simple unit capable of performing basic

operations on incoming signals. The state of such a node is defined

by a given mathematical function, called an activation function,

where the number of arguments is defined by the number of in-

coming connections. Several classes of activation functions are in

use, among them: sigmoidal (logistic) functions (cf. McCullagh

and Nelder, 1989; Jordan, 1995) for feed-forward networks in the

PDP tradition; winner-take-all (cf. Schmutz and Banzhaf, 1992);

different kinds of radial functions (cf. Broomhead and Lowe, 1988;

Moody and Darken, 1989); self-organizing maps (Kohonen, 1982);

and many other kinds dependent on the structure and function-

ality of the network. Nevertheless, the general characteristics of

nodes in typical connectionist systems are that they do not have

any sophisticated internal structure, and do not process incoming

signals in a more elaborate manner.

In contrast to the above, the operation principle of each single

node within my model is based on the finding that neurons are

divided into subregions which are able to perform complex com-
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putations on incoming signals (c.f. Koch et al., 1982, 1983; Mel,

1994).

“When two neighboring regions of a dendritic tree ex-

perience simultaneous conductance changes — induced

by synaptic inputs — the resulting postsynaptic po-

tential at the soma is usually not the sum of the po-

tentials generates by each synapse alone. (. . . ) [I]t has

been customary to assume linear summation of exci-

tatory and inhibitory inputs on the dendrites and to

regard the thresholds associated with spike generation

at the axon hillock as performing the elementary log-

ical operations in the nervous system. It is, however,

possible that synapses situated close to each other on

the dendrite of a cell may interact in a highly nonlinear

way.” (Koch et al., 1983, p. 2799)

“One of the question of greatest interest in the study

of neuronal information processing regards the limit of

the computational power of the single neuron. In this

vein, the (. . . ) idea we consider here is that nonlinear

membrane mechanisms, if appropriately deployed in

a dendritic tree, can allow single neuron to act as a

powerful multilayer computational network.”

(Mel, 1994, p. 1065)

While a single real neuron can be seen as analogous to the

whole “classical” distributed connectionist network, it is justified
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to assume that the real neuron can perform virtually any opera-

tion on the input signal, whether linear or not. This assumption

underlies the working principle for a node used in the presented

network. Such a node has a complex internal structure (rather

than just performing simple addition, multiplication or integra-

tion) which allows for processing the input signal differently with

respect to its source. In the presented network, a node processes

the signals coming from its parent nodes in a different way than

the signals received from its child nodes. This feature is crucial

for both learning and performance activities. The general internal

structure of a node is sketched in the figure 4.1.

from
parent classes

from
child classes

WINNER
TAKE
ALL

activation
buffer

squashing
(threshold)

function

to
child classes

to
parent classes

Figure 4.1: Internal structure of a node.

In the center of a node resides an activation buffer, responsible

for storing the activation gained in the previous step of activation

spreading. Moreover, each node has four “processing units” which

calculate the activation components for each node’s input and

output respectively. Those calculations are governed by several

mathematical formulae and algorithms which are described in the

following section.
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4.2 Activation Spreading

The term activation is used here as an abbreviation for a node’s

activation value. It describes a state of a node. The activation is

also a means for transferring information along connections from

one node to another. Its current value is, roughly speaking, a func-

tion of its previous activation and of the state of the remaining

network. It behaves, however, locally: only the nearest neighbor-

hood influences the node in question. The more remote parts of

the network affect it only indirectly.

The activation spreading mechanism is closely connected to

the internal structure of the node. It also differentiates between

signals coming from parent and child nodes as well as between

outgoing signals.

There are four components which contribute to the activation

value: input from parent nodes, input from child nodes, inhibition

and the previous activation of the given node.

4.2.1 Signals from Parent Nodes.

Nodes’ Phase Space and Attractors

The idea of the nodes’ phase space is taken from physics.

phase space — (physics) an ideal space in which the

coordinate dimensions represent the variables that are
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required to describe a system or substance; “a multi-

dimensional phase space”.1

For a given node, each connection to a parent node is represented

as an axis in a multidimensional space. In this space a node

is placed in a point characterized by a combination of values of

parent nodes’ activations for which the node in question should

also be activated. Figure 4.2 provides a simple two dimensional

example of two nodes in a phase space.

a b
node 1 0.25 0.75
node 2 0.75 0.25

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

⊙

⊙

a

b

Figure 4.2: Two sample nodes in 2D phase space.

The phase space mechanism makes it easy to estimate how

much the stimulus provided to the system differs from the one

already coded as a node. Each node constitutes a center in a

phase space relative to which the signals may be examined. The

similarity between stimuli provided and those saved as points in

phase space can be measured in terms of Euclidean distance.

1From http://www.thefreedictionary.com/
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The node’s role in the network’s phase space can be explained

in terms of attractors.

“Let M be a smooth compact manifold, possibly with

boundary, and let f be a continuous map from M into

itself. The notation fn = f ◦ . . . ◦ f will stand for the

nth iterate of f . Recall that the omega limit set ω(x)

of a point x ∈ M is the collection of all accumulation

points for the sequence x, f(x), f2(x), . . . of successive

images of x. If we choose some metric for the topolog-

ical space M , then ω(x) can also be described as the

smallest closed set S such that the distance from fn(x)

to the nearest point of S tends to zero as n → ∞. The

definition of omega limit set in the case of a continuous

flow on M is completely analogous. Note that ω(x) is

always closed and nonvacuous, with f(ω(x)) = ω(x).

Furthermore, ω(x) is always contained in the nonwan-

dering set Ω(f).

Choose some measure µ on M which is equivalent to

Lebesgue measure when restricted to any coordinate

neighborhood. This can be constructed using a parti-

tion of unity, or using the volume form associated with

a Riemannian metric. It doesn’t really matter which

particular measure we use, since we will usually only

distinguish between sets of measure zero and sets of

positive measure.
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Definition. A closed subset A ⊂ M will be called an

attractor if it satisfies two conditions:

1. the realm of attraction ρ(A) consisting of all points

x ∈ M for which ω(x) ⊂ A, must have strictly

positive measure; and

2. there is no strictly smaller closed set A′ ⊂ A so

that ρ(A′) coincides with ρ(A) up to a set of mea-

sure zero.

The first condition says that there is some positive pos-

sibility that a randomly chosen point will be attracted

to A, and the second says that every part of A plays

an essential role.” (Milnor, 1985, p. 179)

In other words, in dynamical systems, an attractor is a set of

values to which the system evolves after a long enough time. For

the set to be an attractor, trajectories that get close enough to

the attractor must remain close even if slightly disturbed. The

connectionist network presented here is a dynamical system be-

cause its state is time-dependent. The nodes (actually the set of

weights of the input connections) play a role of attractors. When

the system receives a set of input values they define a point in

system’s phase space. This point’s coordinates change with the

time and migrate in the direction of the nearest point defined by a

already existing node. In this sense the network acts as an attrac-

tor network. In the case there is no attractor in the neigborhood
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of the initial point, its location in phasespace remains virtually

unchanged.

Overview

Signals coming from parent nodes are processed in a way similar

to calculating a distance in the multi-dimensional phase space.

The number of dimensions is defined by the number of incoming

connections. Additionally, the weights of those connections set

up a point in this space. The node is then able to calculate the

Euclidean distance between the point representing the incoming

signal (defined by activations of parent nodes connected to it)

and the point set up by the weight values. Finally, an activation

function is applied which calculates the activation coming from

parent nodes based on current input signal and the node’s previous

activation (cf. the reciprocal dotted link which originates from

activation buffer in the figure 4.1).

The resulting part of activation coming from parent nodes ex-

presses the difference between the incoming signal and a signal

to which a node is most sensitive, as well as a kind of history of

previous input signals.

Mathematics

The multidimensional space is defined by incoming connections:

their number sets the number of dimensions. Additionally, the

weights of those connections set up a point in this phase space.
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The node i calculates the Euclidean distance di between the point

representing the incoming signal (defined by activations aj of par-

ent nodes connected to it) and the point set up by weight values

wji of connections coming into node i. Then a Gaussian function

of this distance is computed:

în
p
i (t + 1) = e

−d
2
i

2r2 (4.1)

di =

√∑

j

(wji − aj(t))2 (4.2)

where wji denotes connection strength and aj activation; r is con-

stant and t represents discrete time. The parameter r in the

Gaussian function controls how much the activation function is

“blurred”: the smaller its value, the sharper the activation func-

tion (cf. figure 4.3).
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Figure 4.3: Example Gaussian functions: solid line with r = 0.5,
dashed line with r = 1.0
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Parameter r controls the network’s sensitivity to the difference

between data stored and new data which constitutes the current

input. The higher the r value is, the less sensitive the network is

to this difference. This parameter allows for modeling behaviors

of different people, who react differently to the slight changes in

stimuli.

Finally an activation function is applied which calculates the

activation coming from parent nodes based on current input signal

and the node’s previous activation:

in
p
i (t + 1) =





ai(t)(1 − γ) + în

p
i (t)(1 − ai(t)) for în

p
i (t) ≥ 0

ai(t)(1 − γ) + în
p
i (t)ai(t) for în

p
i (t) < 0

(4.3)

In this formula, γ is constant and describes activation decay

in time. Naturally, the activation value should remain bounded

in a range 0 ≤ ai ≤ amax
i . In this case, amax

i = 1 for all i. The

activation function is chosen in such a way that the resulting part

of activation coming from parent nodes indeed remains bounded

in the desired range. If the final activation value in the previous

step ai(t) is close to the range bounds, the change in the current

step is smaller than for a final activation value lying in the middle

of the range, due to the factors 1 − ai(t) and ai(t) respectively,

which weight the incoming activation în
p
i (t). Moreover, if the

activation value transgresses the bounds and falls out of the given

range 0 ≤ ai ≤ 1, it will be pulled back into this range in the next
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step.

4.2.2 Signals from Child Nodes

Signals from child nodes are calculated simply as the arithmetic

mean of the child nodes’ activations weighted by connection strengths.

inc
i(t + 1) =

1

N

N∑

j

aj(t)wji (4.4)

The weights wji are connection strengths.

The motivation is as follows. Child nodes j denote subcat-

egories or exemplars of categories defined by a given main node

i. Thus, the most important information is how well, on average,

the category is represented by the data currently processed by

the network. For this purpose, the arithmetic mean is well suited

as it gives the average activation for nodes j which represent the

category in question.

4.2.3 Final Activation Function

The activation components coming from parent and child nodes

are finally subject to a winner-take-all process. In addition, the

inhibition is subtracted.

ini(t) = max(inc
i (t), in

p
i (t)) − inhi(t) (4.5)

where (winh
ji is the strength of inhibitory connection):
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inhi(t + 1) =
N∑

i

ai(t)w
inh
ji (4.6)

The task of inhibitory connections is twofold. On the one

hand, they prevent so-called “overheating”, i.e. uncontrolled rise of

activation values in the network’s nodes. On the other hand, and

even more important for a categorization model, they enhance the

contrast between nodes that do not belong to the same category.

This enhanced difference among exclusive categories is one of the

aspects of cognitive economy (cf. Rosch, 1988).

Further calculations differentiate between connections going

in direction of feature nodes and of class nodes. For connections

going to class nodes a squashing function is applied which keeps

the final value in a range between 0.0 and 1.0. This method is

another mechanism to prevent “overheating”. In the presented

network the following function is applied:

ai(t) =






0 for ini(t) ≤ 0

ini(t) for ini(t) ∈ (0, 1)

1 for ini(t) ≥ 1

(4.7)

For connections going in the direction of feature nodes, a threshold

function is used:

out
p
i (t) =





0 for ini(t) ≤ θ

ini(t) for ini(t) > θ
(4.8)
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where θ denotes a threshold value. The threshold function was de-

signed because the feature nodes hold the description of currently

processed object. To change or to adapt this description, the sig-

nal coming from class nodes must be strong enough, thus ensuring

that the object was recognized or categorized well enough. If too

low signal levels could influence the state of feature nodes, the

characteristics of categorized objects would be too unstable to be

processed correctly.

4.2.4 Implementation

The implementation of the spreading activation mechanism, which

is a central part of the network algorithm is presented with more

technical details in appendix A, page 223.

4.3 Connections

The connections between nodes are bidirectional and symmetric

with respect to weights. However, they are treated asymmetrically

with respect to activation flow: the activation from parent to child

nodes flows without restrictions but not the other way round. A

child node’s activation influences a parent node’s only in case it

transgresses some given threshold. This is designed because child

nodes have richer featural characteristics which makes them more

sensitive to errors. That is why child nodes need to gain more

activation before they are able to modify the activation of their

superclasses. This mechanism corresponds to the fact that the
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activation flow must be stable enough to change the activation

pattern in higher layers of the network.

In the case that the incoming activation pattern for a child

node is close enough to the one already learned by the network,

the activation mechanism ensures that a given node reaches the

threshold immediately and can also influence its parent nodes.

4.4 Learning

One of the unique features of this semi-localist architecture is its

ability to learn. In principle, there is no sufficient definition for

learning.

“The problem is that learning is such a vast topic; it af-

fects almost everything we do – from learning to tie our

shoelaces when we are young to studying chemistry at

college or learning how to make friends.” (Lieberman,

1992, p. 32)

Very roughly it can be said that learning involves a change in an

organism’s capacities or behavior brought about by experience. In

the case of this connectionist system, learning simply means the

ability to store additional data and to restructure the network in

a way to reflect dependencies between known facts.

The presented network incorporates the unsupervised method

of learning. In the unsupervised learning there is no predefined

correct output state for the network. The networks has to adapt to
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a combination of input patterns. There are two most important

kinds of unsupervised leadning methods: Hebbian learning and

competitive learning. In the first method learning is determined

by correlations in activation patterns (Hebb, 1949). In the former

case, the central part of learning algorithm is a unit with the high-

est activation level (for example like in SOM’s; Kohonen, 1982).

In the presented model, the learning proceeds in a Hebbinal-like

style: connections are created and weights are adjusted without

comparison to a set of target outputs but only on the base of

analysis of correlations in activation patterns.

Three kinds of learning (cf. Sowa, 2002) are used.

Rote learning (storing data in the structure of network). This

kind of learning is used to store input data in the network.

It is comparable to long-term memory. Rote learning, in

its principal form, is basically just memorization. It avoids

going into details of presented data and acts without under-

standing the relationships involved in the data.

In principle, rote learning is connected with memorization

by repetition. In this case, however, no repetition is involved

and the data is memorized instantly after it is presented.

Connection weight changes. Changes in connection weights are

a means to create the working structure of the network:

the taxonomy itself. The changes in connection weights are

the most common way of training any connectionist sys-

tem. Especially in systems created in the PDP tradition (cf.
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Rumelhart et al., 1986b), this is actually the only sensible

way of learning because in these systems the whole knowl-

edge is represented by sets of weights. In my connectionist

model, unlike in PDP systems, the change of weights is only

one of three learning methods: knowledge is stored not only

in links and their strengths but also in nodes themselves.

Restructuring takes place also in the development of the taxon-

omy. It is done by creating nodes and connections as well as

removing connections. The newly added nodes denote tax-

onomy classes and the links denote relations between each

pair of classes. The restructuring can be seen as an aspect

of constructivism:

“Constructivism models incorporate the principle

of nonstationarity, a principle that in theory of au-

tomata refers to a system’s ability to make changes

to its underlying mechanisms. (. . . ) [T]he cen-

tral component of the constructivist model is that

it does not involve a search through a priori de-

fined hypothesis space, and so is not an instance of

model-based estimation, or paramteric regression.

Instead, the constructivist learner builds this hy-

pothesis space as it learns, and so is characterized

as a process of activity-dependent construction

of the presentations that are to underlie mature

skills.” (Quartz and Sejnowski, 1997)
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Restructuring is the most powerful method of learning ap-

plied in the system in question. It allows for memorizing new

data by adding nodes, for generalization from the memorized

facts as well as for creating the taxonomical structure itself.

Despite the fact that the above-mentioned learning methods

are different, they all have a common characteristic, one which

is desirable for learning within connectionist models. Ellis and

Humphreys (1999) define this characteristic as follows:

“An important feature of all the various learning pro-

cedures is that they depend only on local information,

for instance the activations of the units at either end

of the connection, rather than any global property of

the network or distant parts of it.” (p. 654)

4.4.1 Concept Learning

Concepts as constituents of semantic networks were introduced in

Section 3.6.1, page 90. In the following the application of this idea

to the presented model is explained.

“Psychologists use the term concept formation, or

concept learning, to refer to the development of the

ability to respond to common features of categories

of objects or events. Concepts are mental categories

for objects, events, or ideas that have a common set

of features. Concepts allow us to classify objects and
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events. In learning a concept, you must focus on the

relevant features and ignore those that are irrelevant.”

(Pettijohn, 1998, p. 191)

In principle, the concept of “concepts” allows for grouping

things according to their functionalities or common features, not

to focus on the individual items. Thus, the concept formation is

very close to the categorization or generalization task.

In machine learning jargon, the learning method leading to the

formation of a network within the model presented here could be

called “concept learning”.

“[A] concept is exemplified by a set of positive exam-

ples (cases that are examples of a concept) and a set

of negative examples (cases that are not examples of

the concept). In concept learning, the learner is at-

tempting to construct a rule or algorithm that allows

it co completely separate the positive and negative ex-

amples.” (Raynor, 1999, p. 59)

In the presented model, a positive example is embodied by features

describing an instance of the class in question, while all instances

of other classes together with their classification constitute the

pool of negative examples. The creation of taxonomical structure

as well as of inhibitory connections ensures the maximal separation

of concepts (classes).
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4.4.2 Introspective Processes

The introspection phenomenon may be defined as the direct ob-

servation of one’s own mind and its processes. It was widely intro-

duced to experimental psychology by Wundt (1874). In the orig-

inal sense, Wundt used the term “introspection” („Selbstbeobach-

tung“) to define another source of empirical facts.

“We may add that, fortunately for the science, there

are other [then psychological experiments] sources of

objective psychological knowledge, which become ac-

cessible at the very point which the experimental me-

thod fails us. These are certain products of the com-

mon mental life, in which we may trace the operation

of determinate psychical motives: chief among them

are language, myth and custom.” (Wundt, 1904, p. 5)

“Thus psychology has, like natural science, two ex-

act methods: the experimental method, serving for

the analysis of simpler psychical processes, and the ob-

servation of general mental products, serving for the

investigation of the higher psychical processes and de-

velopments.” (Wundt, 1897, p. 23-24)

The investigation of introspection was rejected as an inplausi-

ble method for general mental processes investigation. However,

there has not been enough serious criticism of introspectionism to

cause its complete rejection (cf. Vermersch, 1999). The process of
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introspection can be successfully used in some cases. In particular,

reasoning itself may be described with this method.

Introspection involves only internal memories and assump-

tions. The introspective reasoning could thus be defined as pro-

cessing of already known facts in order to extract relationships

among them. This kind of reasoning thus takes into account only

memories of the presented facts.

The presented connectionist system exploits a kind of an intro-

spection process. At first, only raw facts are directly memorized

without further processing (rote learning) and are stored in a kind

of long-term memory. This action is however not introspective and

serves only to prepare the domain in which future introspective

processes take place.

The proper creation of taxonomy, which aims at extracting the

structure of acquired data, is eventually done by an introspective

process. By means of this process, the network creates a gen-

eral structure of concepts and relations among them based on the

internally stored knowledge. This process involves self-analysis

of the activation flow through the network and incorporates re-

structuring the hierarchy by modifying connections and adding

new nodes (cf. examples in sections 6.1.4, page 144 and 6.1.5,

page 145). During the operation, the network does not refer any

longer to the original input data or any other external resources.

Network’s connections and structure are modified according to

already known facts only, resulting in the fully formed taxonomy.
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The connectionist system, based on the mechanisms just pre-

sented has been built and tested against data coming from psy-

chological experiments. The evaluation is described in the next

chapter.



CHAPTER 5

Implementation

Each idea, in order to be used in practice, needs to be imple-

mented. In the case of the connectionist system presented here,

the implementation was realized as a computer program. This

chapter describes the goals of the implementation as well some

design details.

5.1 Objectives

The implementation of the connectionist system in question was

not designed as a production system. Its goal was to provide a tool

131
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to test the behaviour of the system. Thus, it was not optimized

for performance.

The modularity of the network (which is a main component of

the system presented) is reflected in the modularity of the com-

puter program. There are several components defined:

• single nodes,

• connections (excitatory and inhibitory ones),

• the network, and

• tools to process input and output data as well as to produce

the visualization of the network’s current structure.

The network module makes use of node and connections mod-

ules and uses them as building blocks. The whole network also

defines the information flow (spreading activation) which is com-

mon to all network setups. Testing a system creates further addi-

tional demands on the network, like working with different input

data and delivering results in different forms and formats. These

demands were satisfied by custom tools developed to process the

respective data.

5.2 Realization

The Java programming language (in version 1.4.2) was used for im-

plementation (Java Website, 2007). This choice was motivated by
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the ease of development thanks to many useful mechanisms deliv-

ered with the programming language. Java is an object-oriented

programming language and thus perfectly suited to implement

modular systems. It is, however, suboptimal with respect to the

calculation effectiveness, but this aspect was not of great impor-

tance (see above). Different modules of the system were developed

as different Java classes, which is a common practice in object ori-

ented programming languages.

Another tool used in the development setup was GraphViz

by ATT (GraphViz Website, 2007) along with its dot language

(Gansner et al., 2006), which simplified the graphical representa-

tion of the networks created.

5.2.1 Nodes

A node (represented by class Node) was designed as a simple

container for node-specific data like label, activation and several

internal variables used for calculating activation value (for exam-

ple, an activation buffer). This simple design was motivated by

the fact that this class is shared among several types of networks,

which were tested during development. Thus, the actual calcula-

tion was transfered to the current network class, although logically

it takes place inside of a node.
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5.2.2 Network

The main component of the implemented system is a Java class,

which represents the network as a whole. The set of nodes, repre-

senting the network was implemented as an array (Java standard

class ArrayList) containing objects of a class Node. All connec-

tions were represented by two-dimensional arrays of real numbers

(with a double precision: double[][]).

To simplify the development, the inheritance property of Java

programming language was used. The basic features of the con-

nectionist system were implemented in a single Net class. This

class contains mainly the spreading activation mechanism, which

doesn’t change along with different usages of the network. Code

snippets which realize the respective tasks, are presented in Ap-

pendix A (page 223) for illustration.

Each of the experiments described in chapter 6 has different

demands with respect to the input data and the expected visual-

ization of the output results. Thus, for each experiment a sepa-

rate Java class was created, which inherited general functionality

from the Net class, but realized the specific input and output

behaviour.

5.2.3 Network visualization

To present the development of the network structure, the GraphViz

tool (GraphViz Website, 2007) was used. This tool is able to draw

graphs, which can be described in one of several different formal



Summary 135

languages. For the purpose of the network visualization the lan-

guge dot (Gansner et al., 2006) was used.

In order to create a dot-compatible description of the network

(for an example see Appendix B, page 227), a class NetPrinter

was created. Its task was to analyze the structure of the data

contained in the object implementing one of the Net subclasses

and to create a text file with the corresponding dot description.

Then the tool from GraphViz package was run automatically to

produce a vector graphic image file in EPS (encapsulated post

script) format. Such created images are used in this work as an

illustration of network structure and operation.

In one experiment – the categorization of ellipses (section 6.1)

– it was necessary to subclass the NetPrinter in order to adapt

the shape of nodes on the output image. The overriden methods

were placed in EllipsePrinter class.

5.3 Summary

The class diagram 5.1 shows the classes used along with the most

important fields and methods. As mentioned before, the detailed

calculations are performed by Java code, which is presented in the

Appendix A.

The system was implemented with use of Borland JBuilder

IDE1 (JBuilder, 2007) version 9.0 Enterprise and tested on the

1IDE — Integrated Development Environment
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Figure 5.1: Class diagram. Only the most relevant fields and methods
are shown.

Pentium 4 class computer with 2.0 GHz clock and 1 Gigabyte

RAM memory under Windows XP operating system.

The implementation of the connectionist network as described

in this chapter was used to perform a series of experiments in

order to evaluate the system. Those experiments are explained

and commented in the next chapter.



CHAPTER 6

Evaluation

This chapter presents the results of a series of simulations on the

cognitive properties of the presented model of categorization. The

simulations have been run to evaluate the model. Evaluation here

means two different things. First, there is evaluation of the model

as an IT-system. Second, there is evaluation of the model as a

cognitive model. Both kind of evaluations are discussed in this

chapter.

With respect to the evaluation of the model as IT-system, the

simulations have to illustrate that the model can handle the tasks

it has been designed for. The tasks in question are “creating a tax-

onomy” out of a set of item descriptions (section 6.1), “autoasso-
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ciation” (section 6.2), and generalization (section 6.3). These sec-

tions concentrate on the proof-of-concept aspect of the IT-system

evaluation. An example is given for every task, such that the

reader gets a good idea how the model solves the tasks. In order

to evaluate a system like the model at hand as an IT-system one

has to run additional tests (Liggesmeyer, 2002; Schmitt, 2003),

such as tests with broken input data. Although some of these

kinds of tests had been performed to obtain the model run, they

are not discussed here since they do not provide any further in-

sights. The bottom line is the model is usable if it can perform

the tasks mentioned successfully.

With respect to evaluating the model as a cognitive model, one

has to check whether its task performance exhibits a behaviour

that is in accordance with the behaviour that subjects exhibit

in psychological experiments. In order to evaluate the model at

hand as a cognitive one, two experiments have been run, one for

fuzzy categorization (section 6.4) and one for asymmetric category

formation (section 6.5). It is to be noted that fuzzy categoriza-

tion has not been a property of the model from the functional

(IT) view of it. Fuzzy categorization has not been implemented

into the model. So, it is interesting how the model reacts under

this question. The idea here is the following: the performance of

the model is compared to the results of psychological experiments,

namely those by Labov (1974). The question is whether the model

passes this test in the sense of Popper’s 1935/1994 “Bewährung”
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(Gadenne, 1998, cf.). The same holds for asymmetric category

formation. Here, the behaviour is compared to an experiment by

(Quinn, 2002). In this case, the model’s behaviour can be at-

tributed to the statistical distribution of features of stimuli that

infants were exposed to. The experiment on asymmetric category

formation therefore provides some support for explanation of the

effect given by Mareschal et al. (2000) and offers additional in-

sight how the effect can be explained in detail. In summary, with

respect to evaluation as a cognitive model, the model is success-

ful if its behaviour is similar to human behaviour as exhibited in

psychological experiments, and if the model provides additional

insights about the reasons behind the human behaviour.

6.1 Introductory Simulation: Creating a Taxonomy

This section describes step-by-step a general routine for creating

a taxonomy with the use of the presented network and illustrates

it through examples. Creating a taxonomy is the very first step

which must be performed before any other properties of the net-

work can be used. Since the network itself forms a taxonomy, it

means also creating a structure of the network.

6.1.1 Training Data

The network operates on data which consists of sets of features

weighted by real numbers. The weights express the degree to

which the respective feature is present in the class’s definition.
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This is however not the degree of importance of the feature. For

example, in the case of color, coded as a mix of red, green and blue

components, the weights for the respective basic colors express

only in what ratios they are mixed and not which one is more or

less important.

The features can be chosen arbitrarily. The concrete set of

used weights and values is task-dependent. The network’s pro-

cessing mechanism allows for use of both binary and real valued

weights. The choice between those two types in the following pre-

sented experiments and examples is thus arbitrary, and made only

to keep the examples as easy as possible to interpret.

Example. To investigate the process of creating a network a sim-

ple example with a single real valued feature will be used. The ex-

ample illustrates the categorization of ellipses defined by a ratio of

their semimajor axis to the semiminor axis. Table 6.1 presents the

data used within the example. In the dataset there are two “hori-

zontal” ellipses (i.e., with horizontal semiaxis longer than vertical

one): ellipse_3 and ellipse_4; three ellipses very close in shape

to a circle (ellipse_2, ellipse_5 and ellipse_6) and two “vertical”

ones (i.e., with vertical semiaxis longer): ellipse_0 and ellipse_1.

6.1.2 Storing the Data

In the first step the presented data is memorized only (stored).

This is done by rote learning (cf. section 4.4, page 123). Because
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object ratio
ellipse_0 2.0
ellipse_1 1.95
ellipse_2 1.15
ellipse_3 0.5
ellipse_4 0.55
ellipse_5 1.0
ellipse_6 0.95

Table 6.1: Data for introductory simulation.

of the local characteristics of the data representation used, the net-

work must be expanded to store new knowledge. Thus, for each

dataset, feature nodes are created as necessary. Additionally, class

nodes are created denoting the respective set of all co-occurring

features. Because the features are characterized not only by their

presence but also by a degree of this presence (value), the features

are said to co-occur only when their values equal within a given

precision. Between class nodes and feature nodes excitatory con-

nections are created with weights corresponding to the values of

respective features.

The procedure described above constitutes one of the construc-

tivist aspects of the model presented in the current work. When

data is not already represented within the network’s structure, the

network is expanded to deal with the new knowledge.
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6.1.3 Creating a Hierarchy

Based on the data stored in already created feature and class

nodes a hierarchy is created. The hierarchy developed in this

phase of learning reflects the relations among items only as far

as this is provided explicitly by the input data. One can assume

that in most cases the structure of the network created after this

step is not the final hierarchy. For example, if only the data

concerning exemplars for one category is presented to the system,

the network’s structure is very flat, usually having no more than

two or three levels.

During the hierarchy build-up, the network undergoes the fol-

lowing procedure. For each pair of class nodes, both nodes are

subsequently activated. The activation is spread to the feature

nodes layer and the activation patterns are compared. If one of

the nodes generates an activation pattern comprised in the other

one’s pattern, it is assumed to be its superclass. For example, let

us assume the following sets of binary features:

Set 1. a, b, c, f, g

Set 2. b, c, d

Set 3. a, f, g

In the above example, Set 1 describes a child node of a node

characterized by Set 3, while Set 2 does not have any direct

relation to the other two.
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This principle is based on the simple assumption that a sub-

class contains all features of its superclass and at least one more,

a distinctive one. The comparison of patterns is performed with a

given precision in order to gather classes characterized by features

which values do not differ significantly. This precision is charac-

terized by a threshold θ; all values falling under θ are treated as

equal.

Example. Figure 6.1 shows the results of storing the data and

creating a hierarchy. The node ELLIPSE denotes just a node

which is defined by a features ratio with some value. As previously

mentioned, because the input data (cf. table 6.1) is not structured

at all, the form of a network reflects no real taxonomical structure

at this point. The network has a relatively flat structure of two

levels only.

ELLIPSES

ellipse_0 ellipse_1 ellipse_2 ellipse_3 ellipse_4 ellipse_5 ellipse_6

Figure 6.1: First step in creating a taxonomy: raw input data pre-
sented as a network structure.
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6.1.4 Network Pruning

The previously described steps of creating a taxonomy lead to a

network which usually contains superfluous excitatory connections

that do not represent direct class – superclass relations. Because

the hierarchy creation algorithm discovers only category inclusive-

ness relations, it is the case that all subcategories are linked to the

main category even if there are other levels of specifications be-

tween them. For example, a pigeon would be linked to the node

denoting animal category even if there also exists a node for a bird

(cf. 6.2). Those connections are removed by an introspective pro-

cess (cf. section 4.4.2, page 128). This process analyzes the acti-

animal

bird

pigeon duck

Figure 6.2: The illustration of the incorrect class—superclass connec-
tion. The dashed arrow denotes the undesired edge.

vation flow between two nodes and compares the activation values

in all node pairs. The comparison drives the decision whether two

nodes remain in direct class—superclass relation or not. Roughly

speaking, nodes are assumed to lie on adjacent taxonomical lev-

els when the activation in the subordinate node comes only from
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the node representing a superclass. Subsequently, inhibitory con-

nections are introduced to enhance differences between exemplars

presented to the system.

Example. In the dataset used there is no structured data and thus

no given hierarchy. This means that no superfluous connections

are created as they exist only between non-adjacent levels in the

taxonomy.

The figure 6.3 illustrates the algorithm of comparing the ac-

tivation in order to detect class – superclass relation on another

example. In the figure 6.3a) the activation is spread via direct con-

nection from node animal to node pigeon, whereas in the figure

6.3b) the activation is spread via all available connections from

node animal to node pigeon. The activation level is denoted by

the darkness of a node (the higher activation value corresponds to

the darker node filling). Because the direct connection delivered

less activation then “normal” activation spreading, it is assumed

that there are nodes on intermediate taxonomical levels. Thus, the

direct animal—pigeon connection is superfluous and is removed:

figure 6.3c).

For a real illustration of network pruning see section 6.1.6.

6.1.5 Discovery

So far the network constitutes the representation of raw facts

known from input data only. This representation is structured

as far as it is provided by this data. That means that relations
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pigeon

animal

bird

duck pigeon

animal

bird

duck

animal

bird

pigeon duck

a) b) c)

Figure 6.3: The detection of the incorrect class – superclass connec-
tion: a) activating using a direct connection only, b) activating using
all direct and indirect connections, c) superfluous connection removed.
(More explanation in text.)

between classes are known only if they result directly from the

definitions.

However, this state does not guarantee the best taxonomy pos-

sible. Usually there exists more information that can be drawn

from the underlying data. The discovery procedure is another

introspective process (cf. section 4.4.2, page 128) which aims at

improvement of the existing network. The process attempts to

discover parts of the hierarchy which were not provided explic-

itly. This is achieved by analyzing pairs of exemplars. Therefore

pairs of class nodes are analyzed again with respect to the featural

patterns.

The process can be roughly defined as comparing how different

features are present in descriptions of items provided by the input

data. (Those descriptions are so far stored in the interconnected
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net consisting of feature and class nodes.) If the features for two

or more classes overlap (with respect to their presence and value)

they form a description of another class which is assumed to be

a superclass for those currently being analyzed. The description

created thus is presented to the system as new input data.

The generalization process involves, in addition to creating

new descriptions, also their integration into the existing network

structure. To assure correct integration, the new descriptions are

introduced in the exactly same way as the original data. Thus

the problem of superfluous connections described in the previous

section arises once more.

The discovery process is a crucial factor with respect to one of

the most important networks characteristic: generalization. With

respect to this property, it allows for categorization of objects shar-

ing several features common to the objects stored in the network’s

structure during the learning phase.

Example. The network resulting from the discovery of the new

nodes is shown in figure 6.4. Beside nodes already present in

the taxonomy, three new ones are introduced. These new nodes

correspond to the three discovered “classes” of ellipses presented:

one with horizontal axis longer then the vertical axis, one with

both axes almost equal in length and one with vertical axis longer

then the horizontal one. The introduced links connect all nodes

with respect to the class—superclass relation, not necessarily only

those on the adjacent levels of hierarchy.
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ELLIPSES

ellipse_0 ellipse_1 ellipse_2 ellipse_3 ellipse_4ellipse_5 ellipse_6

Figure 6.4: The form of a network after the discovery procedure.

6.1.6 Final Network

The network created so far contains nodes representing all terms

which could have been discovered from the presented data. How-

ever, because the data discovered in the previous step was intro-

duced in the same fashion as the original input data, the network

suffers again from many superfluous connections. This is of course

still undesired as it introduces unwanted chaos and destroys the

clear taxonomical structure.

Therefore, the final step in the procedure of creating a taxon-

omy from examples is to clean the network by removing superflu-

ous connections. This pruning is done according to the algorithm

described in section 6.1.4 above.

The resulting connectionist system reflects the taxonomical
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structure of the data as far as it was possible to discover based on

the data delivered. Now the learning procedure is complete and

the network can be used for “production” purposes.

Example. Figure 6.5 shows essentially the same network as figure

6.4, but superfluous connections have been removed. The remain-

ing links correspond to the direct class—superclass relations only.

Thus, a taxonomical network emerged.

ELLIPSES

ellipse_0 ellipse_1 ellipse_2 ellipse_3 ellipse_4ellipse_5 ellipse_6

Figure 6.5: The final form of a network, which corresponds to the
taxonomical structure.

6.1.7 Summary

Section 6.1 presents a quick overview over the creation of a localist

network which structure reflects the taxonomy of the input data.

The network is produced in two main steps:
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• creating a raw network (which depicts only the raw data),

and

• restructuring it (in order to create the full taxonomy that

can be deduced from the presented data).

In the following, experiments and simulations using the finished

network will be described in order to explore its properties and

behavior.

6.2 Introductory Simulation: Autoassociation

The autoassociator in distributed connectionism is a relatively

simple architecture in which the output signal is looped back to

the inputs of network’s nodes. In localist connectionism, however,

the autoassociation property has received little research attention.

This section presents the autoassociation property of the net-

work. Autoassociation is illustrated by an example of binary fea-

tures in order to simplify the exemplification of this process.

6.2.1 Preparing a Network

To investigate the autoassociation property one first needs a com-

plete network. Thus, a network is created according to the proce-

dure described in the previous section.

Example. A network is built from the data presented in table 6.2.

The data describes roughly several types of military equipment.
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Objects are defined by several binary features describing their

main characteristics. Of course, the dataset is very simplified in

order not to lose the process overview in the jungle of unnecessary

connections. The resulting taxonomy is presented in figure 6.6a.

object features
LEOPARD_2 armour tracked selfprop tank
JAGUAR_1 armour tracked selfprop antitank hot
JAGUAR_2 armour tracked selfprop antitank tow
FH_70 towed howitzer
PzH2000 armour tracked selfprop howitzer

Table 6.2: Data for autoassociation simulation.

6.2.2 Autoassociation Process

The autoassociation property is a special case of pattern associ-

ation and means that a network is able to recover its full state

from partial description of the activation pattern. This feature

of a network can be seen as a kind of long-term memory where

sets of units are associated into patterns which can be recalled on

demand.

The importance of the autoassociation property manifests it-

self in two main topics. One of them is object recognition under

noisy conditions. This means that the network is able to classify

items even if the feature set given as input data is blurred or cor-

rupt, or several features are missing. This ability reinforces the

system operation in environments where available data is distorted

and thus enhances system’s robustness.
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LEOPARD_2

JAGUAR_1 JAGUAR_2

FH_70

PzH2000

armour

armour
selfprop
tracked

selfproptank

armour
selfprop

tank
tracked

trackedantitank

antitank
armour
selfprop
tracked

hot

antitank
armour

hot
selfprop
tracked

tow

antitank
armour
selfprop

tow
tracked

howitzer

howitzer
towed

armour
howitzer
selfprop
tracked

towed

Figure 6.6a: Starting network for autoassociation demonstration.
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In a more general sense, the autoassociation property means

“noise reduction” and the ability to recognize and recall incomplete

patterns. The property is equivalent to analogous properties in

contemporary models of vision (Ge and Iwata, 2002; Rolls, 2003)

and memory (Rolls and Treves, 1997).

Another application of the autoassociation property is its use

in discovering novel items. In the case that system converges to

a state far from the initial one, the input data can be treated as

novel data (cf. section 6.5, page 169).

Example. The autoassociation procedure is evaluated in this case

as a way to complete the description of an item. In the network

representing data from table 6.2 two feature nodes are activated.

To simplify demonstration, they are chosen to unambiguously de-

fine an item. Thus, the simulation starts with activation of two

feature nodes (cf. figure 6.6b):

• tracked, which is common to most of objects described by

the network and

• hot, which is a distinctive feature of the JAGUAR_1 ob-

ject.

Following thereon, the activation spreading mechanism is used

to transfer the signal between network nodes. The activation pat-

tern in the network changes, and the activation is being trns-

ferred into feature nodes such that the full characteristics of the

JAGUAR_1 are reconstructed (figure 6.6c).
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In this way the autoassociation property manifested itself by

associating part of the description (two initially activated nodes)

with the complete characteristics of the item in question.

6.3 Introductory Simulation: Generalization

The generalization term is used to indicate the property of the net-

work which allows it to categorize objects previously not known.

Along with autoassociation, the generalization property is seen as

a strength of connectionist systems. However, it was thoroughly

investigated for systems based on a distributed data representa-

tion (cf. Shekhar and Amin, 1992; Musavi et al., 1994; Chris-

tiansen and Chater, 1994) but again neglected in the case of lo-

calist architectures.

Generalization is especially important for understanding the

phenomena of categorization. Roughly speaking, the most vital

part of the categorization process can be seen as generalizing over

many concrete objects or instances of a given class. Obviously,

this is a common and important property of human categoriza-

tion. People, for example, do not have any problem to categorize

most birds they never saw before as instances of the class bird.

Generally speaking, unknown objects can usually be assigned to

some broader category.

In the model presented, ability to generalize is developed dur-

ing the learning phase. Unlike in the distributed data represen-

tation architectures, the generalization property is not a result of
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Figure 6.6b: First step of autoassociation: activating some nodes.
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Figure 6.6c: Autoassociation successful: object characteristics are re-
stored.
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approximation done with numbers of free parameters (connection

weights). It is a result of the restructuring of the network and

the creation of additional nodes, which carry the characteristics

common to two or more objects presented to the system. Thus

the proposed solution seems to be more robust with respect to

new data introduced (see comments on catastrophic forgetting:

section 7.8.1).

Example. The generalization can be observed if features are ac-

tivated which do not fit together in the description of a known

object. This situation simulates the encounter of unknown exem-

plar, which shares several features common to the ones present in

the training dataset.

Let us assume that, in the example used to illustrate the au-

toassociation property (section 6.2), the feature tow also is ac-

tivated (cf. figure 6.7a). Thus, the network should classify an

unknown object which has the features tracked, hot and tow.

The network converges in this case to the more general term which

could be labelled as antitank vehicle. Thus, the general descrip-

tion for object carrying similar descriptions is activated. The final

state of the network is shown on the figure 6.7b.

6.4 Cup or Bowl: Fuzzy Categorization

Following the series of introductory experiments showing the basic

properties of the presented model, this section describes a simula-
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Figure 6.7a: Starting point for generalization process.
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Figure 6.7b: Autoassociation successful in case of contradicting fea-
tures: network converges to the more general term, here presented by
the node “antitank, armour, selfprop, tracked”
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tion based on the original experiment on boundaries of meanings

of words conducted by Labov.

The aim of the simulation is to compare the behavior of the

network against the experiments performed on human subjects,

and thus to judge whether the model presented here catches se-

lected properties of human cognition.

6.4.1 Original Experiment

The original experiment to be simulated here was described by

Labov (1974). The results presented then shed a new light on

the ideas of categorization of words’ meanings. This was the first

serious series of experiments which gave new insight into the cat-

egorization process. The formation of categories had until then

been not being studied but rather the process had been assumed

and “ready-to-use” categories utilized in the linguistic investiga-

tions.

The aim of this experiment was to investigate the boundaries

between meanings of words rather than meaning itself. While it

is very complicated to analyze the meaning of a single concept,

distinguishing between two of them seems to be relatively simpler

task. From a technical point of view, the act of naming “which

associates a linguistic sign with an element of the extra-linguistic

world” (Labov, 1974, p. 347) was studied. The naming experiment

was based upon a series of drawings of cup-like objects, varying in
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sizes and shapes (cf. figure 6.8). The experiment was conducted

in the following way:

“The drawings of cups are presented to subjects

one at a time, in two different randomized orders; the

subjects are simply asked to name them. They are

then shown the same series of drawings again, and

this time asked to imagine in each case that they saw

someone with the object in his hand, stirring in sugar

with a spoon, and drinking coffee from it (or in some

languages, tea), and to name them in this context.

In a third series, they are asked to imagine that they

came to dinner at someone’s house and saw this object

sitting on the dinner table, filled with mashed potatoes

(rice for some languages). (. . . ) We will refer to these

(. . . ) contexts as the ‘Neutral’, ‘Coffee’, ‘Food’ (. . . )

contexts. (. . . ) The responses to these tests are in

the form of noun phrases, often with a wide range of

modifiers. In our present analysis, we consider only a

head noun.” (Labov, 1974, p. 355)

The above-described procedure was conducted on several do-

zens of subjects and for a wide language spectrum. On the whole,

the investigation of boundaries of meaning took over ten years to

complete.
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6.4.2 Simulation

Input Data and Simulation Setup

Based on the above-presented famous experiment by Labov, a test

was conducted in order to discover the behavior of the network

in the categorization task. The network was trained to categorize

four cup-like objects presented in the figure 6.8 and additionally

the fifth one not depicted, which had an even bigger diameter.

Figure 6.8: Drawings used for simulation of Labov’s experiment.
Adapted from Labov (1974).

As input data, of course, not the pictures themselves were

used but characteristics drawn from them, namely the dimensions

of objects. Those dimensions — cup’s top and bottom diameters

as well as height — were measured in centimeters with the accu-

racy of 1 mm. The measurement results as well as the “object —

category” assignment for the learning phase are given in table 6.3.

The network however was not trained on absolute values but

on ratios expressing correspondence between the mentioned di-

mensions. This was motivated by the fact that people are able

to recognize objects based on the shape only, regardless of the

absolute dimensions they have. For example, a real car and a car

in a picture in a book are correctly named as an instance of the
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a) b)
object dimensions

id bottom top height

1 1.0 2.2 1.6
2 1.7 2.64 1.6
3 2.2 3.3 1.6
4 2.7 4.18 1.6
5 3.0 5.5 1.6

object context
id neutral food
1 cup cup
2 cup cup
3 cup bowl
4 bowl bowl
5 bowl bowl

Table 6.3: Data used for simulation of Labov’s experiment: a) dimen-
sions of objects, b) assigned categories in two contexts.

“car” category, or distant objects which seem to be smaller are as

equally well categorized as those present nearby. This suggests

that it is appropriate or even better grounded to use the relations

between an object’s dimensions, which describe the shape, for the

learning task. The ratios used were bottom
top , height

top and height
bottom .

The training data was organized into vectors containing an id

for the object in question as well as all three above-mentioned

ratio values. (An object’s id is its unique identifier.) For example,

the vector: (1, 5

11
, 8

11
, 1.6) is a valid input.

In the experiment a set of 500 networks were used. A single

network simulates a subject in the Labov’s experiment. It was

trained on the set of data created as described above. Then con-

nection weights were randomly changed up to a difference of 25%

in value. These changes were meant to correspond to individ-

ual experiences of people: a change in weight means a change in

sensitivity to the stimulus.
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Method

For each of the 500 networks with modified weights the following

simulation steps were conducted:

• for each dataset the feature nodes were activated with cor-

responding values, provided as input vector coordinates,

• activation was spread for 100 steps (the step number was

chosen that high to assure a stable final activation pattern),

• the sum of activation of nodes corresponding to learned ex-

emplars was calculated,

• a network was said to categorize an item as a “cup” when

the sum of activation for nodes corresponding to learned cup

objects was higher than the one corresponding to learned

bowl objects, and as a “bowl” otherwise.

For each dataset the cumulative number of categorizations as

“cup” and as “bowl” by all networks was stored separately and

expressed as percentage of overall number of categorization acts.

Complementary Experiments Additionally, three complementary si-

mulations were conducted in order to investigate another property

of the network, namely the priming phenomenon. These addi-

tional simulations were conducted to examine the influence of sit-

uational context as well as of previous categorization on results of

the current one.
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In the first experiment the influence of a context was checked.

An additional feature “context” was introduced (cf. table 6.3b).

It had the meaning of neutral or of food context1.

In two further simulations the networks underwent another

procedure in order to check the influence of previous categorization

act. The system categorized a test object after categorizing either

an object which was a cup or a bowl first.

Results

The results of the categorization experiments are gathered in ta-

bles 6.4 and 6.5 and presented as graphs (figures 6.9 and 6.10).

The resulting data expresses the probability of classifying an ob-

ject as a “cup” or “bowl” against ratio of bottom width of the

object in question to the bottom width of the first object in two

different contexts. This form of presentation is chosen to allow

direct comparison against the results as presented in the original

work (Labov, 1974). The probability is given here as a percent

[%] of the overall number of categorization acts.

For direct comparison the figure 6.11 which presents the origi-

nal results obtained by Labov in 1974 in naming experiment con-

ducted on eleven subjects (cf. subsection 6.4.1) is included here.

1The meaning of a “context” in this case is explained in the quotation on
the page 161.
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width categorization probability [%]
ratio cup bowl
1 100 0
1.2 100 0
1.5 73.51247601 26.48752399
1.9 12.28733459 87.71266541
2.5 6.862745098 93.1372549

Table 6.4: Results of simulation of Labov’s experiment (neutral con-
text).
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Figure 6.9: Results of simulation of Labov’s experiment (neutral con-
text).

Experiment Discussion

The human categorization process is influenced by numerous fac-

tors. Thus it is not possible to fully simulate it in this simple

simulation. The categorization process bases on much more data
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width categorization probability [%]
ratio cup bowl
1 100 0
1.2 62.76803119 37.23196881
1.5 11.39489194 88.60510806
1.9 0 100
2.5 0 100

Table 6.5: Results of simulation of Labov’s experiment (food context).
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Figure 6.10: Results of simulation of Labov’s experiment (food con-
text).

and constraints that simple dimension ratios of objects in ques-

tion. However, the qualitative similarities between the results from

the network simulation and the original experiment are obvious.

Both studies show the vagueness of the border between categories

of cups and bowls.
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Figure 6.11: Original figure from Labov (1974), page 356.

Depending on the widths ratio the networks as well as the

subjects in Labov’s experiment tended to classify with a given

probability. Thus the category boundary is not sharp, and there

are no clear-cut differences between the meanings of the words. In

all experiments, there are wide width ratio ranges to be observed

where, for a given, ratio different networks tend to classify objects

as either a cup or as a bowl.

The obtained results are sufficient to judge that the presented

network is able to capture the behavior of the human catego-

rization process: the boundary between categories identified by

the network is not fixed and the categories are blended. This is

in agreement with significant psychological findings showing that

human categorization is not based on a set of necessary and jointly

sufficient rules.
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6.5 Cats Could Be Dogs

This simulation explores the properties of category learning by

infants. It is based on the idea of an experiment presented by

Quinn et al. (1993) which investigates category formation in early

infancy.

6.5.1 Original Experiment

The original series of experiments concerns about the creation of

the representation of perceptually similar categories in the early

infancy, and was presented by Quinn et al. (1993). In one of the

experiments the authors

“(. . . ) explored the ability of infants to differentiate

categorical representations of dogs from specific in-

stances of cats and categorical representations of cats

from specific instances of dogs.” (Quinn et al., 1993,

p. 471)

This test trial showed that the novelty preference scores for in-

fants familiarized with cats was greater than for those familiarized

with dogs. The difference was substantially higher than statisti-

cal effects. One “explanation of this difference lies in a possible

asymmetry in the structure of the two categories” (Quinn et al.,

1993, p. 472).

The following simulation explores the formation of perceptu-

ally similar categories of dogs and cats with use of the connec-
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tionist system presented in this paper. The main factor of this

experiment is the investigation of asymmetry in the developed

categories.

6.5.2 Simulation

The simulation was designed to test whether the network is able

to develop a category representation which has the property dis-

covered by Quinn et al.

Input Data and Simulation Setup

Like in the previously described simulation of Labov’s experiment

(section 6.4), the original data in form of pictures obviously could

not be used in the following simulation because the network is not

equipped with any kind of mechanism to analyse pictures directly.

In the simulation made, therefore, the dataset used by Mareschal

et al. (2000) was reused. This data consists of measurements of the

most crucial properties of the original pictures. Table 6.6 shows

the measurements for cat images, table 6.7 for dog images.

Based on the data gathered in tables, vectors were created with

respective measurement values used as components. Those vectors

were then normalized to the unitary length. The normalization

expresses again the fact, that rather the shape, and thus only

relations among different dimensions, is important, and not the

absolute values.
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head head eye ear ear nose nose leg vertical horizontal
exemplar length width separation separation length length width length extent extent

cat1 29 32 7 28 12 0 3 0 54 62
cat2 12 13 4 12 5 3 2 14 25 50
cat3 20 20 4 17 6 5 3 15 26 67
cat4 13 17 4 17 5 3 2 28 28 46
cat5 13 14 4 14 4 4 3 15 23 42
cat6 18 22 3 17 6 6 3 24 42 70
cat7 10 12 3 7 3 2 1 24 24 47
cat8 23 24 5 26 7 4 4 25 50 64
cat9 16 17 4 15 5 5 4 22 32 54
cat10 16 15 3 12 8 3 2 15 30 65
cat11 19 27 5 20 8 4 3 22 71 57
cat12 19 21 4 12 5 5 4 20 39 65
cat13 25 30 6 30 14 6 5 0 50 81
cat14 16 20 3 16 13 5 3 26 29 59
cat15 17 27 5 22 5 3 3 28 40 43
cat16 18 21 4 20 6 4 4 35 55 43
cat17 23 22 5 24 7 6 4 35 52 56
cat18 20 22 5 23 7 5 4 28 34 54

Table 6.6: Data for cats in “cats and dogs” experiment (sizes in mm).
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head head eye ear ear nose nose leg vertical horizontal
exemplar length width separation separation length length width length extent extent

dog1 16 22 0 0 16 6 7 25 21 53
dog2 23 16 0 2 8 5 8 35 21 42
dog3 16 16 4 13 5 7 6 25 26 64
dog4 20 24 4 11 7 10 10 29 22 47
dog5 15 22 4 0 20 10 6 31 34 55
dog6 13 15 3 4 8 6 4 25 19 41
dog7 15 20 3 5 9 8 5 28 26 60
dog8 13 9 4 12 8 7 5 19 20 49
dog9 15 21 3 10 19 3 3 32 20 46
dog10 33 30 11 37 12 3 4 40 50 66
dog11 17 17 5 13 6 7 5 28 22 55
dog12 29 21 6 31 15 15 13 31 28 58
dog13 19 15 6 20 19 10 9 34 46 44
dog14 25 20 6 28 15 10 8 28 30 55
dog15 21 24 7 0 15 10 8 20 32 49
dog16 23 20 7 23 15 8 6 26 34 36
dog17 16 21 6 0 10 7 10 28 21 62
dog18 14 22 3 0 15 9 6 24 26 30

Table 6.7: Data for dogs in “cats and dogs” experiment (sizes in mm).
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Method

The simulation was performed with two different networks trained

under two different conditions (cf. figure 6.12):

• trained on cats: only data representing cats (12 items) was

used, and

• trained on dogs: only data representing dogs (12 items) was

used.

After training the network, the tests were performed using the re-

maining 6 objects. In this simulation, an autoassociation property

of the network was utilised. For each set of features representing

a cat or a dog, the respective feature nodes were activated and

the activation was spread through the network for 50 steps. This

step number was found by trial-and-error as giving a stable final

activation pattern.

The results of the network operation were investigated in terms

of the mean square error2. The mean square error of an estimator

θ̂ of a parameter θ in a statistical model is defined as:

MSE(θ̂) : = E[(θ̂ − θ)2] (6.1)

From the definition of the variance

Var(X) = E(X2) − E(X)2 (6.2)

2The following definition bases on http://planetmath.org/
encyclopedia/
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the mean square error can be expressed in terms of the bias by

expanding the right hand side above:

MSE(θ̂) = Var(θ̂) + Bias(θ̂). (6.3)

The bias, or systematic error, has to do with how the obser-

vations are made, how the instruments are set up to make the

measurements, and most of all, how these observations or mea-

surements are tallied and summarized to come up with an esti-

mate of the true parameter. If θ̂ is an unbiased estimator, then

its mean square error is identical to its variance:

MSE(θ̂) = Var(θ̂) (6.4)

An unbiased estimator such that MSE(θ̂) is a minimum value

among all unbiased estimators for θ is called a minimum variance

unbiased estimator, abbreviated MVUE, or uniformly minimum

variance unbiased estimator, abbreviated UMVU estimator.

The activation spreading was followed by the consequent pro-

cedure: the activation values for feature nodes were read and a

mean squared error was calculated according to the following for-

mula:

MSE =
1

N

N∑

i=0

(ai − fi)
2 (6.5)
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Figure 6.12: Result of “cats and dogs” experiment (explanation in
text).

where MSE – mean squared error value, N – total number of

feature nodes, ai – i-th feature node’s activation value and fi –

value corresponding to the i-th feature in the set describing the

item in question.

The meaning of MSE in this implementation can be explained

as follows. The zero value of MSE means that an object has

been perfectly recognized: the network reproduces a description

for the object. The higher the value is, the larger is the difference

between object’s real description (taken from tables 6.6 and 6.7)

and description reproduced by network. A high difference, thus,

expresses the fact that the object in question is poorly recognised

or completely not known. In other words it expresses the degree

of the item’s novelty.
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Results and Experiment Discussion

The figure 6.12 shows the result of the experiment in terms of

MSE. The dark bars correspond to network answers on stimulus

associated with test cat items while the lighter ones correspond to

the test dog items.

In the first setup the network was trained on cats only, and

during the test phase consequently the mean square error was

considerably higher for novel dogs than for novel cats. In the sec-

ond setup, the network was trained on dogs only, but this time

novel cats caused only little more errors than novel dogs had be-

fore. Thus, the network developed the representation of dog and

cat categories with asymmetric exclusivity. It means that for a

trained network it is more likely to categorize a cat as a dog than

the other way round. This finding is consistent with results of the

Quinn et al.’s experiment performed on infants.

The further statistical investigation on the reasons of the asym-

metric category learning phenomenon in the presented experiment

can be found in (Mareschal and French, 2000; Mareschal et al.,

2000).

The following chapter summarizes and provides comments on the

features of the model presented in this work. These features were

observed in the experiments described above.



CHAPTER 7

Model Properties

This section presents an overview over the properties of the pre-

sented network. It starts from simple properties of the network

itself and leads to the cognitive properties of the network’s per-

formance.

7.1 Description Autocompletion and Noise Reduction

Autoassociation is a special case of associative mem-

ory. Quite simply the input patterns are associated

with a copy of themselves on the output units. (Ellis

and Humphreys, 1999, p. 46)

177
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The developed network manifests autoassociation (autocom-

pletion). When given a part of a description (an incomplete set

of features) it attempts to complete it in the best possible way.

That means it recalls the features set (in the way that it activates

corresponding nodes) for which the given features are most dis-

tinctive. This is possible even if only one feature is given as long

as this feature is distinguishing.

The noise reduction property is displayed in a case when the

network is fed with data containing features that should not co-

occur with other ones. If some features define a class to a sufficient

extent, the corresponding pattern is reproduced and the activation

of the “noisy” features is canceled.

Autoassociation property is well known in connectionist mod-

eling (cf. chapter “Autoassociation” in McLeod et al., 1998). How-

ever, all well-known autoassociator architectures use distributed

data representation and thus fall under the category of distributed

connectionism. The system proposed here is as far as I know the

only localist system able to learn autoassociations.

7.2 Generalization

Generalization takes place when the given data contain features

that contradict each other on some level but still correspond to

nodes in the same taxonomy branch. In this situation a network

converges to the feature pattern describing the superclass which is

common for all nodes partially described by given data. In other
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words the network finds the more general term to describe the

presented set of features.

Generalization is seen as one of the most important advantages

of the connectionist models. It allows for learning and for proper

reaction to the previously unknown data.

For this mechanism, the discovery of common features is cru-

cial. It allows for correct classification of novel datasets. More-

over, the system may enhance the taxonomy by the newly encoun-

tered object in case its featural description is verified.

The strength and weakness of the localist connec-

tionist models often boil down to increased interpretabil-

ity at the expense of the model’s ability to automati-

cally generalize across patterns. For engineering uses

of connectionist models, generalization might be the

more important property. (Goldstone, 1998, p. 321)

My model goes towards overcoming these issues. It is both clearly

interpretable as well as able to generalize and either during learn-

ing or the performance phase.

7.2.1 Overfitting

A dangerous phenomenon connected to the generalizaton ability

is called overfitting.

If the training data is considered to consist of both

signal and noise (i.e., noisy data), a modeling tech-
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nique has begun to overfit when it begins capturing

the “noise” instead of the “signal”. (. . . ) The effect of

overfitting is to reduce the applicability of the model

to other data sets (i.e., to limit its generalizability).

(Raynor, 1999, p. 219)

In other words, a system which “overfits” is unable to gener-

alize properly, that is to correctly react to the new data. The

solution proposed here is no threatened by overfitting for at least

two reasons. Overfitting emerges only in distributed connectio-

nist networks with too many free parameters in comparison to

the training data. In the network presented here, the localist rep-

resentation is used. It assures that only the existing nodes will be

selected, thereby avoiding that the network produces noise data.

7.3 Family Resemblance

In the resulting network not all members of a category must have

features common to the other members. Membership is based on

family resemblance, which was first suggested in philosophy by

Wittgenstein (1971).

“A family resemblance relationship consists of a set

of items of the form AB, BC, CD, DE. That is, each

item has at least one, and probably several, elements

in common with one or more other items, but no, or
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few, elements are in common to all items.” (Rosch,

1975b, p. 575)

Family resemblance means only that an object within the same

category must be similar to at least one other object, but not that

all objects in a given category must resemble one another. The

family resemblance can be measured in the model presented in

the terms of activation values: the smaller the difference between

activation values of two nodes on the same taxonomical layer, the

higher their family resemblance.

7.4 Fuzzy Categorization

Human categorization does not follow rules based on necessary

and sufficient conditions. In contrast, the categorization process

exhibits many interesting properties, one of which is fuzzy cate-

gorization. It means that category boundaries are not arbitrarily

fixed and also can change along with external conditions. In par-

ticular, different people can categorize the same object in different

ways, which are dependent on either conditions like context or on

previous experiences.

Based on the experiment by Labov (1974), a test was con-

ducted in order to discover the behavior of the network in catego-

rization tasks. The network was trained to categorize 5 cup-like

objects. As in the original experiment, the results show that cat-

egorization is an ambiguous process. There is no clear-cut border
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between investigated objects, and those which are categorized as

cups by some people (networks) can be treated as bowls by others.

7.5 Priming

“Priming refers to an increased sensitivity to certain

stimuli due to prior experience. Because priming is

believed to occur outside of conscious awareness, it

is different from memory that relies on the direct re-

trieval of information. Direct retrieval utilizes explicit

memory, while priming relies on implicit memory. Re-

search has also shown that the affects of priming can

impact the decision-making process.” (Jacoby, 1983)

Context-based priming is a particular case of priming when

the associations are activated by a context in which the given

stimulus should be processed. It was observed in the experiment

described above. Depending on the context (neutral or “food”) the

probability to classify a given object as a cup or a bowl differs.

Another type of priming, the one driven by previous catego-

rization was also simulated. In this case, the priming procedure in-

vestigated concerns so-called semantic priming: the phenomenon

that presentation of a word will boost categorization probabil-

ity for a semantically-related word. Semantic priming is the only

priming possible to model in this experiment, because all catego-
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rized items are more or less semantically related. This relation is

expressed then in terms of overlapping features.

The results of the priming experiment clearly showed the ex-

pected phenomenon: the change in probability to categorize an

object as a cup or as a bowl under the system’s prior exposure to

information in the decision context as well as in this case on pre-

viously performed categorization. This dependency decays with

time as expected.

7.6 Lexical Items

The connectionist network being described contributes also to

models of representation of lexical items.

“[T]he lexical item serves a central controlling and sta-

bilizing role in language learning and processing.”

(MacWhinney, 2000, p. 134)

This means that lexical items associate different grammatical, se-

mantic, phonological, perceptual and possibly also other features.

“The lexical hypothesis entails, in particular, that

nothing in the speaker’s message will by itself trigger

a particular syntactic form (. . . ). There must always

be mediating lexical items, triggered by the message

(. . . ).” (Levelt, 1989, p. 181)

A class node in the network plays exactly the same role. It

creates a link between different feature nodes. The lexical item
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representation has its origin in the autoassociation property of the

network as well as in its highly localist nature.

The advantage over MacWhinney’s solution using self-orga-

nizing maps (Kohonen, 1982; Miikkulainen, 1990) is that this net-

work is able not only to tie different types of features together but

also delivers a structure of the lexicon: that means items sharing

similar features are not only close to each other but the hyponymy

relation is preserved as well.

Other localist solutions, like for example those proposed by

Stemberger (1985) or Dell (1986), despite their focus on a central

role of the lexical item, have the common drawback of typical

localist architecture. They are handwired and are unable to react

to new or changing data. The model presented overcomes this

shortcoming (cf. section 7.8).

7.7 Asymmetric Category Learning

The experiment conducted by Quinn et al. (1993) inspired the

investigation of the properties of category formation process. This

experiment covered two issues: category formation as such, as well

as the exclusivity assymetry in category representations. Quinn

(2002, p. 67) states:

“Generalization of familiarization to the novel instance

from the familiar category and a reference for the novel

instance from the novel category (measured in looking
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time) are taken as evidence that the infants have on

some basis grouped together, or categorized, the in-

stances from the familiar category and recognized that

the novel instance from the novel category does not

belong to this grouping (or category representation).”

The asymmetry was observed because of the distribution of

cat and dog feature values in the stimuli presented to the infants

(Mareschal et al., 2000). Feature values for cats often fell within

the range of values for dogs but not the other way round. Thus for

a system that processes the statistical distribution of features of

a stimulus, the cats would appear as a subset of the dog category.

Thus infants are able to form a category representation and,

moreover, this representation displays exclusivity assymetry. The

test with a network gave qualitatively similar results. The net-

work developed the representation of dog and cat categories with

asymmetric exclusivity. The model demonstrates that categorical

representations can self-organize as a result of exposure to famil-

iarization exemplars.

7.8 Localism and Distributionism

The difference between localist and distributed connectionist mod-

els is first seen in their architectures, which is the result of the

different kinds of information representations used. Beside the ar-

chitecutural issues, the separation of localist and distributed mod-

els can be seen in the distinction between theories of learning and
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theories of performance. The distributed models are generally seen

as a tool for the investigation of learning processes, while the lo-

calist ones place greater importance on performance (cf. Grainger

and Jacobs, 1998, p. 6-10). The network presented here is neither

purely localist nor purely distributed. It is a step towards covering

both aspects of cognitive processes: learning and performing. It

comes with a learning mechanism — like distributed architectures

— as well as has the representational power typical for localist

systems.

From the architecture point of view the network is localist in

the sense that each node can have its own interpretation indepen-

dent from the state of the whole network. It is additionally localist

in that class nodes represent single entities which can be referred

to by name. It is however also of a distributed nature because in

most network architectures the representation of any class would

consist of multiple nodes activated on a given level of network. I

use the word “level”, but “level” cannot be defined clearly. The

network is not structured in layers, as most classical (localist and

distributed) networks are. A set of nodes described by an equal

number of co-occurring features can be taken as a layer. However,

in this case inhibitory connections exist not only between nodes

on the same level but also between nodes on different levels.
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7.8.1 Comparison against PDP-networks

The parallel distributed processing (PDP) paradigm (Rumelhart

et al., 1986b) has been widely used in cognitive modeling (cf.

for example Kruschke, 1992; Mareschal et al., 2000; Plaut and

Botvinick, 2004; Rouder et al., 2000). However this approach

has some drawbacks. The most important problems concern the

increasing volume of knowledge. The usual PDP network once

trained cannot adapt to new data: it suffers from catastrophic for-

getting (French, 1999) (new data overwrites that already learned)

and often simply lacks storage space because of limited number

of nodes. The other problem is that the architecture (number of

layers, number of nodes, connections configuration etc.) of such

networks is found by trial and error and almost always arbitrary.

The network presented here is a step toward overcoming these

issues. It is a constructivist architecture which “regards devel-

opment as consisting of directed construction of representations

through interaction with a structured environment, and so involv-

ing a progressive increase in representational capacity” (Quartz

and Sejnowski, 1997, p. 541), which means here that it can expand

and adapt to the growing amount of data. Also, as a partially

exemplar-based network using localist representation, it does not

suffer from catastrophic forgetting. The network can organize it-

self and adapt to the structure of the data and thus its architecture

is no longer hand-crafted and arbitrary but emerges logically from

the underlying data. Additionally the architecture created in this
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way has a great representational power because it corresponds di-

rectly to the taxonomy of objects used in the learning phase. This

representational power is not directly accessible within networks

using a distributed representation because getting the information

usually demands a complex analysis of the states of all nodes.

The proposed network suffers seemingly from a scalability prob-

lem. The number of nodes and the time needed to simulate such

a network on a computer increases with the volume of input data.

(It is, however, not possible to estimate in general the increase

because it strongly depends on how the input data is structured.)

In contrast, the usual PDP networks have fixed numbers of nodes

and connections and thus the simulation time is also constant. In

my opinion, however, this problem should be seen as a problem of

the tools used for network simulation (computers). The networks

from their nature are fully parallel architectures and each node

should work independently at the same time, which obviously is

not the case in the computers running the network simulations.

This is why I assume that the mentioned scalability problem does

not really concern the network itself, but simply is a result of

limitations of tools used to simulate the networks.

7.9 Biological Inspiration

As is the case for each network having localist traces, the biolog-

ical plausibility of the network presented here can be questioned.

This is why I would rather talk about biological inspiration than
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plausibility. It is clear that in the brain there are no single neu-

rons corresponding to single concepts or combinations of concepts.

However, Page (2000) states that distinct populations of neurons

(e.g. cortical minicolumns) can have similar representation prop-

erties as nodes of a localist network. In this view, the use of

semi-localist representation can be justified (cf. Schade, 2002).

What makes the network even more inspired by biology is the

structure of a node. Unlike those usually used in both distributed

and localist models, the node has its internal structure. The neu-

ron is not an object only capable of single operations (such as

summing or integrating) on the incoming signal, it can also per-

form much more complex calculations. The same is true for a

node in the model presented.

With respect to connections between nodes, it should be noted

that, although they are symmetric in their weights, the signal

flowing from node A to node B should not be processed exactly

in the same way as the one flowing from node B to node A. This

has its origin in the fact that even if two neurons are mutually

connected, two different axons and two different sets of dendrites

are engaged.





CHAPTER 8

Conclusions

The categorization process is one of the most important cogni-

tive tasks. This means that modeling of cognitive processes must

include a mechanism allowing for the categorization as close to

human categorization as possible. The categorization model must

perform well but should provide a mechanism to interact with new

data encountered during the operation (learning).

In this work a spreading activation network has been pre-

sented, which is capable of representing relations between concepts

described by non-binary features. The network contributes to cog-

nitive modeling by providing a constructivist learning method (cf.

page 125) for automatic and unsupervised creation of a taxonomy.

191
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This connectionist system is not a complete solution for model-

ing cognitive aspects of categorization processes but contributes

to the connectionist models of investigations in cognition in the

following ways.

• The “standard” connectionist network is enhanced with the

complex node’s internal structure.

• The network can not only perform but also react to new

data by means of constructivist restructuring. The network

undergoes self-organization to create the taxonomy as well

as attempts to enrich this taxonomy with new terms which

are discovered automatically by the system itself.

• The algorithm used shows that also networks using local

data representation are able to learn and to generalize.

• The structure of the network allows for building hierarchical

“lexica” containing items defined by sets of features.

Moreover, the network is able to display cognitive behavior

like, for example, fuzzy categorization and priming. Also, in the

category acquisition process it displays similar properties to those

in category representation learning by infants.

The model was evaluated in a series of experiments (chapter 6).

The results of network’s performance were compared against data

gathered during “real-world” psychological and psycholinguistical

experiments. The qualitative result of these comparisons shows
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high conformity. Thus, it is legitimate to state that the presented

model contributes to investigations in the nature of cognition.
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APPENDIX A

Implementation of the Central Algorithm Parts

The algorithm presented in chapter 4, page 109 was implemented

in Java programming language (version 1.4.2). The following snip-

pets illustrate the implementation of central elements, namely,

calculating the activation spreading.

A.1 Activation from Parent Nodes

The method getTopDownExcitation calculates the activation

coming from parent nodes (formula 4.3, page 119).
1 protected double getTopDownExcitation( int iNode )
2 {
3 int i;
4 int iCnt = 0;
5 double dEx;
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6

7 // calculate "distance"
8 dEx = 0.0;
9 for( i = 0; i < size; i++ )

10 {
11 if( i == iNode || excitation[i][iNode] < dEpsilon )
12 continue;
13

14 iCnt++;
15 dEx += (excitation[i][iNode] - nodes[i].activation)*(

excitation[i ][iNode] - nodes[i].activation);
16 }
17

18 if( iCnt == 0 ) // no input at all!
19 return 0.0;
20

21 // calculate gaussian
22 dEx = Math.exp( - dEx / (2.0*dGaussR2 ) );
23 return dEx;
24 }

A.2 Activation from Child Nodes

The following method getBottomUpExcitation calculates the

activation coming from child nodes (formula 4.4, page 120).
1 protected double getBottomUpExcitation( int iNode )
2 {
3 int k, iCnt;
4 double dEx;
5

6 // calculate activation
7 dEx = 0.0;
8 iCnt = 0;
9 for( k = 0; k < size; k++ )

10 {
11 if( iNode == k || nodes[k].activation < 0.95 )
12 continue;
13 if( excitation[iNode][k] < dEpsilon )
14 continue;
15

16 dEx += excitation[iNode][k] * nodes[k].activation;
17 iCnt++;
18 }
19
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20 if( iCnt != 0 )
21 dEx /= iCnt;
22

23 return dEx;
24 }

A.3 Final Activation

The final activation, calculated according to the formula 4.7 (page

121), was implemented in the following way. The first snippet

contains the inhibition calculation according to formula 4.6.

1

2 dInh = 0.0;
3 for( k = 0; k < size; k++ )
4 if( k != j )
5 dInh += inhibition[k][j] * nodes[k].activation;

The values obtained from the above calculations are used as

parameters for the overloaded method activationFunction(

double, double, double, double ) (lines 1-14). The other

version of this method activationFunction( double, double

) (line 16 on) calculates the change of the activation value in time.

1 protected double activationFunction( double dTD, double dBU,
double dInh, double dPrevAct )

2 {
3 double d2;
4

5 d2 = activationFunction( dTD, dPrevAct );
6 d2 = Math.max( dBU, d2 ) - dInh;
7 d2 = Math.max( 0.0, d2 );
8 d2 = Math.min( d2, 1.0 );
9

10 if( dPrevAct > d2 && d2 < dEpsilon )
11 return 0.0;
12

13 return d2;
14 }
15



226 FINAL ACTIVATION

16 protected double activationFunction( double dIn, double
dPrevAct )

17 {
18 double dOut;
19

20 if ( dIn > 0.0 ) // choose between two possible cases
21 dOut = dPrevAct * ( 1.0 - activationDecay ) + dIn * (

1.0 - dPrevAct );
22 else
23 dOut = dPrevAct * ( 1.0 - activationDecay ) + dIn *

dPrevAct;
24

25 return dOut;
26 }



APPENDIX B

Example dot description of a network

The following listing shows parts of the dot description of one of

the example networks used in the autoassociation experiment (see

figure 6.6b, page 152).

1 digraph {
2 node [style=filled]
3

4 { rank = source; armour selfprop tank tracked antitank hot
tow howitzer towed };

5 { rank = same; FH_70 };
6 { rank = same; "armour\nselfprop\ntracked\n" };
7 { rank = same; LEOPARD_2 PzH2000 "antitank\narmour\nselfprop

\ntracked\n" };
8 { rank = same; JAGUAR_1 JAGUAR_2 };
9 armour [fillcolor=gray100 fontcolor=black];

10 selfprop [fillcolor=gray100 fontcolor=black];
11 tank [fillcolor=gray100 fontcolor=black];
12 tracked [fillcolor=gray100 fontcolor=black];
13 "armour\nselfprop\ntank\ntracked\n" [fillcolor=gray100

fontcolor=black];
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14 LEOPARD_2 [fillcolor=gray100 fontcolor=black];
15 antitank [fillcolor=gray100 fontcolor=black];
16 hot [fillcolor=gray100 fontcolor=black];
17 "antitank\narmour\nhot\nselfprop\ntracked\n" [fillcolor=

gray100 fontcolor=black];
18 JAGUAR_1 [fillcolor=gray100 fontcolor=black];
19 tow [fillcolor=gray100 fontcolor=black];
20 "antitank\narmour\nselfprop\ntow\ntracked\n" [fillcolor=

gray100 fontcolor=black];
21 JAGUAR_2 [fillcolor=gray100 fontcolor=black];
22 howitzer [fillcolor=gray100 fontcolor=black];
23 towed [fillcolor=gray100 fontcolor=black];
24 "howitzer\ntowed\n" [fillcolor=gray100 fontcolor=black];
25 FH_70 [fillcolor=gray100 fontcolor=black];
26 "armour\nhowitzer\nselfprop\ntracked\n" [fillcolor=gray100

fontcolor=black];
27 PzH2000 [fillcolor=gray100 fontcolor=black];
28 "armour\nselfprop\ntracked\n" [fillcolor=gray100 fontcolor=

black];
29 "antitank\narmour\nselfprop\ntracked\n" [fillcolor=gray100

fontcolor=black];
30 edge [color=black] armour -> "armour\nselfprop\ntracked\n";
31 edge [color=black] selfprop -> "armour\nselfprop\ntracked\n"

;
32 edge [color=black] tank -> "armour\nselfprop\ntank\ntracked\

n";
33 "armour\nselfprop\ntank\ntracked\n" -> LEOPARD_2;
34 edge [color=black] tracked -> "armour\nselfprop\ntracked\n";
35 edge [color=black] antitank -> "antitank\narmour\nselfprop\

ntracked\n";
36 edge [color=black] hot -> "antitank\narmour\nhot\nselfprop\

ntracked\n";
37 "antitank\narmour\nhot\nselfprop\ntracked\n" -> JAGUAR_1;
38 edge [color=black] tow -> "antitank\narmour\nselfprop\ntow\

ntracked\n";
39 "antitank\narmour\nselfprop\ntow\ntracked\n" -> JAGUAR_2;
40 edge [color=black] howitzer -> "howitzer\ntowed\n";
41 "howitzer\ntowed\n" -> FH_70;
42 edge [color=black] howitzer -> "armour\nhowitzer\nselfprop\

ntracked\n";
43 "armour\nhowitzer\nselfprop\ntracked\n" -> PzH2000;
44 edge [color=black] towed -> "howitzer\ntowed\n";
45 edge [color=black] "armour\nselfprop\ntracked\n" -> "armour\

nselfprop\ntank\ntracked\n";
46 edge [color=black] "armour\nselfprop\ntracked\n" -> "armour\

nhowitzer\nselfprop\ntracked\n";
47 edge [color=black] "armour\nselfprop\ntracked\n" -> "

antitank\narmour\nselfprop\ntracked\n";
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48 edge [color=black] "antitank\narmour\nselfprop\ntracked\n"
-> "antitank\narmour\nhot\nselfprop\ntracked\n";

49 edge [color=black] "antitank\narmour\nselfprop\ntracked\n"
-> "antitank\narmour\nselfprop\ntow\ntracked\n";

50 }




