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Chapter 1

Introduction

When two model categories C and D are Quillen equivalent, then their homotopy
categories Ho(C) and Ho(D) are equivalent. But on the other hand, if there is an
equivalence between the homotopy categories of two model categories, can anything
be said about the underlying model structures?

For the stable homotopy category Ho(S), i.e., the homotopy category of spectra,
there is the following result of [Sch05]:

Rigidity Theorem(Schwede [Sch05]) Let C be a stable model category, and

Φ : Ho(S) −→ Ho(C)

an equivalence of triangulated categories. Then the underlying model categories S
and C are Quillen equivalent.

Usually, when passing from the model category level to the homotopy level, in-
formation can be lost, as “higher homotopy information” like mapping spaces or
algebraic K-theory is defined via the model structure of the underlying model cat-
egory. However, the Rigidity Theorem says that for spectra, all such secondary
homotopy information is encoded in the triangulated structure of the stable homo-
topy category.

Now the next question could be if there is a similar result for Bousfield localisa-
tions of the stable homotopy category with respect to certain homology theories. In
this thesis, we consider localisation with respect to 2-local complex K-theory K(2)

with
K(2)∗ = Z(2)[v1, v

−1
1 ], |v1| = 2.
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CHAPTER 1. INTRODUCTION

The K(2)-local model structure is a model structure on the category of spectra
where the weak equivalences are the K(2)∗-isomorphisms (see Definition 3.1). For
the resulting K(2)-local stable homotopy category we present the following positive
answer to the rigidity question which is the main result of this thesis:

K(2)-local Rigidity Theorem Let C be a stable model category, and let L1S
denote the K-local category of spectra at the prime 2, and let

Φ : Ho(L1S) −→ Ho(C)

be any equivalence of triangulated categories. Then L1S and C are Quillen equiva-
lent.

Remark. The notation L1 for K(p)-localisation for a prime p referes to the general
context of chromatic localisation: the notation Ln is often used to denote Bousfield
localisation with respect to the Johnson-Wilson theories E(n) with

E(n)∗ = Z(p)[v1, v2, ..., vn, v
−1
n ], |vi| = 2pi − 2,

and therefore, K(p) = E(1).

The proof divides into two main parts: First, we modify the Universal Property
of Spectra introduced by Schwede and Shipley in [SS02] 5.1 to obtain a Quillen
functor pair

X ∧ − : L1S � C : Hom(X,−)

for X = Φ(L1S
0).

The left derived functor X ∧L − composed with the inverse of Φ

Ho(L1S)
X∧L−−−−−→ Ho(C) Φ−1

−−→ Ho(L1S)

is an exact endofunctor of the homotopy category of K(2)-local spectra, mapping
the K(2)-local sphere L1S

0 to itself. The spectrum L1S
0 is a so-called small weak

generator of L1S. Any exact endofunctor fixing this small weak generator must be
a self-equivalence, thus X ∧L − is an equivalence of categories induced by a left
Quillen functor. This means that L1S and C are Quillen equivalent. The details of
this will be explained in the fourth chapter.
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As we explain in the last chapter, there cannot be an odd primary version of the
K(p)-local Rigidity Theorem: For odd primes, Jens Franke constructs an equivalence
of triangulated categories

R : D1(A) −→ Ho(L1S)

between the homotopy category of K-local spectra at an odd prime p and the de-
rived category of so-called quasi-periodic cochain complexes over a certain abelian
category A (see [Fra96] 3.1). However, the underlying model categories C1(A) and
L1S are not Quillen equivalent. This means that C1(A) is a so-called “exotic model”
for L1S.
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Chapter 2

Stable model categories - a review

Model categories were introduced in the 1960s by Quillen to provide a set-
theoretically clean device to describe homotopy ([Qui67]). A model category is a
category equipped with classes of morphisms called weak equivalences, fibrations
and cofibrations satisfying certain axioms (see e.g. [Hov99] 1.1). These axioms
enable us to define a notion of homotopy between morphisms.

Very roughly speaking, one then obtains the homotopy category Ho(C) of a model
category C by formally inverting the weak equivalences, while the model category
axioms ensure that the result is indeed a category.

In order to compare model categories, one studies morphisms of model categories,
so-called Quillen functors:

Definition 2.1. Let C and D be two model categories. An adjoint pair of functors
F : C � D : G is called a Quillen functor pair if F preserves cofibrations and
trivial cofibrations (i.e., cofibrations that are also weak equivalences), or equivalently,
if G preserves fibrations and trivial fibrations (i.e., fibrations that are also weak
equivalences).

Notation. Throughout this thesis, we use the following convention: for an adjoint
functor pair F : C � D : G, the top arrow denotes the left adjoint and the bottom
arrow the right adjoint.

Cofibrations are marked // // , fibrations are marked // // and weak
equivalences ∼ // .

If an adjoint pair of functors is a Quillen pair, it induces an adjoint pair of
functors LF : Ho(C) � Ho(D) : RG ([Hov99], Lemma 1.3.10).
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CHAPTER 2. STABLE MODEL CATEGORIES - A REVIEW

Definition 2.2. A Quillen functor pair is called a Quillen equivalence if in addition,
for all cofibrant X ∈ C and fibrant Y ∈ D, a morphism f : FX → Y is a weak
equivalence if and only if its adjoint f̄ : X → GY is.

One can conclude that a Quillen functor pair is a Quillen equivalence if and only
if it induces an equivalence of homotopy categories ([Hov99], Prop. 1.3.13). But not
only do Quillen equivalent model categories have equivalent homotopy categories,
they also have the “same homotopy theory” in the sense that the higher homotopy
information mentioned in the introduction such as mapping spaces is preserved by
Quillen equivalences.

For a pointed model category C, one can define an adjoint pair of suspension and
loop functors

Σ : Ho(C) � Ho(C) : Ω.

Without loss of generality let X ∈ C be fibrant and cofibrant. We choose
a factorisation X // // C

∼ // ∗ of the unique morphism from X into the
terminal object. The suspension ΣX of X is defined as the pushout of the
diagram

∗ Xoo // // C.

Dually, choosing a factorisation ∗ ∼ // A // X , the loop functor ΩX of X
is defined as the pullback of the diagram

∗ // X A.oooooo

Definition 2.3. A pointed, complete and cocomplete model category C is called
stable if Σ and Ω are inverse equivalences of categories.

Examples for stable model categories are provided by the category of spectra
S (see the beginning of Chapter 3) or chain complexes C(A) for certain abelian
categories A.

The homotopy category Ho(C) of a stable model category C carries the structure
of a triangulated category, where the exact triangles are given by the fiber and
cofiber sequences ([Hov99] 7.1.6).

In particular, the stable homotopy category Ho(S) and the derived category
D(A) of an abelian category A are triangulated categories.

Furthermore, note the following: given a Quillen pair F : C � D : G with C
and D being stable model categories, the left derived and right derived functors LF
and RG are exact functors, i.e., preserve exact triangles. This justifies the general
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rigidity question for stable model categories, namely, if two stable model categories
whose homotopy categories are equivalent as triangulated categories, are Quillen
equivalent. However, the Rigidity Theorems for Ho(S) and Ho(L1S) do not claim
that the given equivalence Φ is induced by a Quillen functor, they just claim that the
given stable model categories are linked by some Quillen equivalence. The question
about possible uniqueness of this Quillen functor is still unanswered.
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Chapter 3

The Quillen functor pair

3.1 Universal property of spectra

In this chapter, we construct a Quillen functor pair between the category of
spectra equipped with the K(2)-local model structure L1S and our given stable
model category C.

Throughout this thesis, S denotes the category of spectra with the stable
Bousfield-Friedlander model structure ([BF78]). Here a spectrum X is a sequence of
simplicial sets (X0, X1, ...) together with structure maps σX

n : ΣXn → Xn+1. A mor-
phism f : X → Y of spectra is a collection of morphisms of pointed simplicial sets
fn : Xn → Yn that are compatible with the structure maps, i.e., fn+1◦σX

n = σY
n ◦Σfn

for all n ≥ 0. The K(2)-local model structure on the category of spectra is a locali-
sation of the Bousfield-Friedlander model structure:

Definition 3.1. (K(2)-local model structure for spectra)
A morphism of spectra f : A −→ B is called a

• weak equivalence if K(2)∗f : K(2)∗(A) −→ K(2)∗(B) is an isomorphism

• cofibration, if the induced map

ΣBn ∪ΣAn An+1 −→ Bn+1

is a cofibration of simplicial sets for all n ≥ 1 and A0 −→ B0 is a cofibration
of simplicial sets.

• fibration if f has the right lifting property with respect to trivial cofibrations,
i.e., cofibrations that are also K(2)∗-isomorphisms.

13



CHAPTER 3. THE QUILLEN FUNCTOR PAIR

Remark. A spectrum X is fibrant with respect to this model structure if and only
if it is K(2)-local in Ho(S) and an Ω-spectrum.

With the above choices, the category of spectra becomes a stable model category,
denoted by L1S. (For the definition of generalised Bousfield localisations see [Hir03]
Definition 3.3.1. For the existence of such localisations, see Theorem 4.1.1 of the
same book. The author believes that this theorem can be applied to this special
case by using the set-theoretical methods of [Bou75], §10-11. However, the author
does not know of any reference for such a proof.)

Now, to construct our desired Quillen functor pair between L1S and C, we use

Universal Property of Spectra (Schwede-Shipley [SS02])
Let C be a stable model category, X ∈ C fibrant and cofibrant. Then there is a

Quillen adjoint functor pair

X ∧ − : S � C : Hom(X,−)

sending the sphere spectrum S0 to X.

Forgetting their model structures, S and L1S are the same categories, so the
above property gives us an adjoint pair of functors

X ∧ − : L1S � C : Hom(X,−)

for any X. However, it is not obvious under which conditions this functor pair is a
Quillen functor pair.

Before we answer this, let us briefly summarize the construction of the functor

Hom(X,−) : C −→ S.

For simplicity, let us assume C to be a pointed simplicial model category, i.e., a
category equipped with three functors

−⊗− : C × sSet* −→ C
(−)(−) : sSet*

op×C −→ C
mapC(−,−) : Cop × C −→ sSet*

satisfying certain adjunction properties. (For details, see [GJ99], Definition II.2.1.)
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3.1. UNIVERSAL PROPERTY OF SPECTRA

Notation. In the pointed case, the first functor is usually denoted − ∧ − instead
of −⊗ −. However, we choose to write −⊗ − to avoid confusion with the functor
X ∧ − as in the Universal Property of Spectra.

For Y ∈ C, we define the nth level space of the spectrum Hom(X, Y ) to be

Hom(X,Y )n := mapC(ω
nX, Y ) ∈ sSet*

where ωnX is a cofibrant replacement of the nth desuspension of X: We define ωnX
inductively by setting ω0X = X and for n ≥ 1 by choosing a factorisation

∗ // // ωnX
∼
ϕn

// // Ω(ωn−1X) .

By ϕ̃n we denote the morphism ΣωnX −→ ωn−1X that is adjoint to ϕn. The
structure map Σ Hom(X, Y )n−1 −→ Hom(X, Y )n of the spectrum Hom(X, Y ) is
now given by the adjoint of the map

mapC(ω
n−1X, Y )

mapC(ϕ̃n,Y )−−−−−−−→ mapC(Σω
nX, Y ) ' Ω mapC(ω

nX, Y ).

As ωnX is cofibrant in C, the functor mapC(ω
nX,−) : C −→ sSet* preserves

fibrations and trivial fibrations (see [Hov99], section 5). One can conclude from this
that the functor Hom(X,−) : C −→ S preserves fibrations and trivial fibrations
(as shown in [SS02] 6.2). In particular, Hom(X,Y ) is an Ω-spectrum for fibrant Y ,
which is something we are going to make use of in the proof of the next proposition:

Proposition 3.2. Let Φ : Ho(L1S) −→ Ho(C) be an equivalence of triangulated
categories, and let X be a cofibrant and fibrant object in C isomorphic to Φ(L1S

0).
Then

X ∧ − : L1S � C : Hom(X,−)

is a Quillen functor pair with respect to the K(2)-local model structure on the left
side.

Notation. Throughout the rest of this thesis, X will be a fixed fibrant and cofibrant
replacement of Φ(L1S

0). For a stable model category D, and A,B in D, [A,B]D∗
denotes the graded group of morphisms in the homotopy category of D. All spectra
are assumed to be 2-local, in particular S0 = S0

(2). By M we denote the mod-2

Moore spectrum M(Z
/
2).
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CHAPTER 3. THE QUILLEN FUNCTOR PAIR

3.2 v1-periodicity

The key ingredient in the proof of the proposition is showing that the spectra
Hom(X,Y ) are K(2)-local for all fibrant Y ∈ C. A spectrum A is K(2)-local if and
only if v4

1 induces an isomorphism of its mod-2 homotopy groups [M,A]S∗ ([Bou79]
§4). To be more precise:

Let K(n) denote the nth Morava K-theory with

K(n)∗ = Fp[vn, v
−1
n ], |vn| = 2pn − 2, K(0) := HQ.

Any p-local finite spectrum A with K(0)∗(A) = 0 but K(1)∗(A) 6= 0 possesses a

v1-self map ([HS98] §3), i.e., a map vpi

1 such that

vpi

1 : Σpi(2p−2)A −→ A

induces an isomorphism in K(1)-homology. The notation is standard but slightly

misleading since it implies that vpj

1 is a power of an existing morphism v1. However,
this need not be the case:

In the case p = 2, the mod 2-Moore spectrum M has a v1-self map

v4
1 : Σ8M −→M

that induces an isomorphism in K(1)-homology, or in this case equivalently, K(2)-
homology. This is the smallest degree v1-self map that can be realised on M . Also,
this v1-self map v4

1 need not be unique, so we fix one possible v4
1 for the rest of this

thesis which will be specified in the proof of Lemma 5.10.

Lemma 3.3. The map

(v4
1)
∗ : [M,Hom(X,X)]Sn −→ [M,Hom(X,X)]Sn+8

is an isomorphism for all n ∈ Z, thus, Hom(X,X) is K(2)-local.

Before we prove this lemma, we have to look at the image of certain elements
in π∗L1S

0 under the functor X ∧ −, namely the Hopf elements η ∈ π1L1S
0,

ν ∈ π3L1S
0 and σ ∈ π7L1S

0, and further, the elements y0 ∈ π0L1S
0, y1 ∈ π1L1S

0,
µ ∈ π9L1S

0 ρ ∈ π15L1S
0 and µ17 ∈ π17L1S

0.
(For details about the generators of the stable homotopy groups of the K(2)-local

sphere and their multiplicative relations see the table of generators of π∗L1S
0 on

page 36.)
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3.2. v1-PERIODICITY

Lemma 3.4. For η, ν, σ, y0, y1, µ, ρ and µ17 in π∗L1S
0 as before, we have

• X ∧ η = Φ(η) or = Φ(η) + Φ(y1)

• X ∧ ν = ūΦ(ν), ū ∈ Z odd

• X ∧ σ = ūΦ(σ), ū ∈ Z odd

• X ∧ µ = Φ(µ) or = Φ(µ) + Φ(η2σ)

• X ∧ y0 = Φ(y0)

• X ∧ y1 = Φ(y1).

• X ∧ ρ = uΦ(ρ), u ∈ Z odd

• X ∧ µ17 = Φ(µ17) or = Φ(µ17) + Φ(η2ρ)

Proof. X ∧ η
On the mod-2 Moore spectrum M , 2 IdM factors as

M
pinch−−−→ S1 η−→ S0 incl−−→M,

and this composition is nonzero. Here, pinch denotes the map that “pinches” off the
bottom cell of M , and incl denotes the inclusion of the zero-sphere into the bottom
cell of M . Consequently, 2 IdL1M factors as

L1M
pinch−−−→ L1S

1 η−→ L1S
0 incl−−→ L1M.

Recall that η survives K(2)-localisation. As the left derived X ∧L − of
X ∧ − : S −→ C is exact on homotopy level and as Φ is exact and furthermore
X ∧ S0 ∼= Φ(L1S

0), it follows that

X ∧M ∼= Φ(L1M), X ∧ pinch = Φ(pinch), X ∧ incl = Φ(incl),

coming from the exact triangle

S0 2−→ S0 incl−−→M
pinch−−−→ S1

in Ho(S). Throughout this thesis, we fix an isomorphism X ∧M ∼= Φ(L1M).

17



CHAPTER 3. THE QUILLEN FUNCTOR PAIR

The functor X ∧L − is additive, so

X ∧ 2 IdL1M = 2 IdX∧M 6= 0,

and 2 IdX∧M factors as

X ∧M X∧pinch−−−−−→ X ∧ S1 X∧η−−→ X ∧ S0 X∧incl−−−−→ X ∧M.

Consequently,
X ∧ η ∈ [X,X]C1

∼= Z
/
2{Φ(η),Φ(y1)}

cannot be zero.
Also, X ∧ η cannot be Φ(y1) either: the composition

L1M
pinch−−−→ L1S

1 y1−→ L1S
0 incl−−→ L1M

is zero by equation (5.1). So in the case X ∧ η = Φ(y1) we would have

2 IdX∧M = (X ∧ incl) ◦ (X ∧ η) ◦ (X ∧ pinch)

= Φ(incl) ◦ Φ(y1) ◦ Φ(pinch)

= Φ(incl ◦y1 ◦ pinch) = Φ(0) = 0, (3.1)

which is a contradiction. It follows that either

X ∧ η = Φ(η) or X ∧ η = Φ(η) + Φ(y1). (3.2)

X ∧ ν
In either case,

X ∧ η3 = (X ∧ η)3 = Φ(η)3.

as ηy1 and y2
1 are both zero in π∗L1S

0. Since in π3L1S
0 there is the relation η3 = 4ν,

we have
4(X ∧ ν) = X ∧ η3 = 4Φ(ν).

As 4Φ(ν) 6= 0 in [X,X]C3
∼= Z

/
8{Φ(ν)}, X ∧ ν has order eight in this group and is

therefore a generator. Consequently

X ∧ ν = uΦ(ν), for some odd integeru ∈ Z. (3.3)

18



3.2. v1-PERIODICITY

X ∧ σ
For X ∧ σ we look at the Toda bracket relation

8σ = 〈ν, 8, ν〉 .

So we obtain

X ∧ 8σ ∈ 〈X ∧ ν,X ∧ 8, X ∧ ν〉 .

The indeterminacy of this Toda bracket is zero, thus, equality holds. By the com-
putations above, we get

8(X ∧ σ) = X ∧ 8σ = 〈uΦ(ν),Φ(8), uΦ(ν)〉 = u2Φ(8σ)

which is nonzero in [X,X]C7
∼= Z

/
16{Φ(σ)}. We conclude that X ∧ σ has order 16

in this group, so

X ∧ σ = ūΦ(σ), ū ∈ Z odd. (3.4)

X ∧ µ

Next, we use that µ ∈ 〈2, 8σ, η〉 with indeterminacy η2σ. It follows that

X ∧ µ ∈ 〈X ∧ 2, X ∧ 8σ,X ∧ η〉 .

Using our previous computations, this bracket either equals 〈2,Φ(8σ),Φ(η)〉 or
〈2,Φ(8σ),Φ(η) + Φ(y1)〉.

In the first case, 〈2,Φ(8σ),Φ(η)〉 = Φ(〈2, 8σ, η〉) = {Φ(µ),Φ(µ) + Φ(η2σ)} which
is what we want.

For the second case, we compute

〈2, 8σ, η + y1〉 ⊇ 〈2, 8σ, η〉+ 〈2, 8σ, y1〉 . (3.5)

The bracket on the left side has indeterminacy η2σ, which is the same as the
intederminacy of the first bracket on the right side. The last bracket has
indeterminacy zero and contains the set 〈2, 8σ, η〉 y0 = {µy0, µy0 + η2σy0} = {η2σ},
so it equals {η2σ}. Thus, equality holds in (3.5), and we can also conclude in this
case that

X ∧ µ ∈ {Φ(µ),Φ(µ) + Φ(η2σ)}.

19



CHAPTER 3. THE QUILLEN FUNCTOR PAIR

X ∧ y0

Next, we look at X ∧ y0. Since y0 is the only nonzero torsion element in
π0L0S

0 = Z(2) ⊕ Z
/
2, the element X ∧ y0 must be a torsion element as well

because the functor X ∧− is additive. Consequently, X ∧ y0 either equals Φ(y0) or
zero.

We now make use of the multiplicative relation µy0 = η2σ (see [Rav84] 8.15.(d)).
We have already seen that X ∧ η2σ = ūΦ(η2σ) 6= 0, so X ∧ y0 cannot be zero.
Consequently,

X ∧ y0 = Φ(y0).

X ∧ y1

Now determining X ∧ y1 is easy: we have y1 = ηy0, so

X ∧ y1 = (X ∧ η)(X ∧ y0) = Φ(η)Φ(y0) or = Φ(η)Φ(y0) + Φ(y2
0)

which in either case equals Φ(y1) since y2
0 = 0.

X ∧ ρ

Here, we use the Toda bracket relation ρ ∈ 〈σ, 2σ, 8〉 with indeterminacy
8π15L1S

0. From this, we get

X ∧ ρ ∈ 〈X ∧ σ,X ∧ 2σ,X ∧ 8〉 .

By the previous computations, we obtain

(X ∧ ρ) ∈ 〈ūΦ(σ), 2ūΦ(σ), 8〉 = ū2 〈Φ(σ), 2Φ(σ), 8〉
= ū2Φ({ρ+ 8π15L1S

0}) = ū2Φ({ρ, 9ρ, 17ρ, 25ρ}).

Consequently, X ∧ ρ ∈ [X,X]C15
∼= Z

/
32{Φ(ρ)} has order 32 in this group, so

X ∧ ρ = uΦ(ρ), u ∈ Z odd.

X ∧ µ17

This is very similar to the computation of X ∧ µ. We use that µ17 ∈ 〈η, 16ρ, 2〉
with indeterminacy η2ρ (see Lemma 5.7). Consequently,

X ∧ µ17 ∈ 〈X ∧ η,X ∧ 16ρ,X ∧ 2〉 ,

20



3.2. v1-PERIODICITY

which is either 〈Φ(η),Φ(16ρ), 2〉 or 〈Φ(η) + Φ(y1),Φ(16ρ), 2〉. In the first case,
〈Φ(η),Φ(16ρ), 2〉 = Φ(〈η, 16ρ, 2〉) = {Φ(µ17),Φ(µ17) + Φ(η2ρ)}.

In the second case, we look at

〈η + y1, 16ρ, 2〉 ⊇ 〈η, 16ρ, 2〉+ 〈y1, 16ρ, 2〉 . (3.6)

The bracket on the left side has indeterminacy η2ρ, which is the same as the
intederminacy of the first bracket on the right side. The last bracket has
indeterminacy zero and contains the set 〈η, 16ρ, 2〉 y0 = {µ17y0, µ17y0 + η2ρy0} =
{η2ρ}, so it equals {η2ρ}. Thus, equality holds in (3.6), and we can also conclude
in this case that

X ∧ ρ ∈ {Φ(µ17),Φ(µ17) + Φ(η2ρ)}.

Proof. We now prove Lemma 3.3. It suffices to prove that the mod-2 homotopy
groups of Hom(X,X) are v8

1-periodic instead of v4
1-periodic, as (v4

1)
∗ is an isomor-

phism if and only if ((v4
1)

2)∗ = (v8
1)
∗ is. We choose to work with v8

1 instead of v4
1 as we

need our v1-self map in this lemma to commute with certain elements of [M,M ]L1S
∗ ,

and we know from Lemma 5.10, that v8
1 lies in the centre of [M,M ]L1S

∗ . However,
we do not know of a proof for v4

1 being central.
By adjunction, it suffices to prove that

(X ∧ v8
1)
∗ : [X ∧M,X]Cn −→ [X ∧ Σ16M,X]Cn

is an isomorphism for all integers n. Via the equivalence Φ, the left and right
side is isomorphic to [M,S0]L1S

n and [Σ16M,S0]L1S
n , respectively. Since (v8

1)
∗ is an

isomorphism between these two groups, and therefore

Φ(v8
1)
∗ : [X ∧M,X]Cn −→ [X ∧ Σ16M,X]Cn

is an isomorphism, we will now investigate how X ∧v8
1 differs from Φ(v8

1) by making
use of the preceding lemma and the computations in Chapter 5.

The element X ∧ v8
1 lies in [X ∧Σ16M,X ∧M ]C0 , which, via Φ and Computation

5.8, is isomorphic to

[M,M ]L1S
16
∼= Z

/
4{v8

1} ⊕ Z
/
2{η̃ρ ◦ pinch, IdL1M ∧ηρ}.

By Corollary 5.9, 2v8
1 = incl ◦µ17 ◦ pinch, so by Lemma 3.4,

2(X ∧ v8
1) = (X ∧ incl) ◦ (X ∧ µ17) ◦ (X ∧ pinch)

= Φ(incl) ◦ Φ(µ17) ◦ Φ(pinch)

= Φ(incl ◦µ17 ◦ pinch) = Φ(2v8
1)

= 2Φ(v8
1).
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or

2(X ∧ v8
1) = (X ∧ incl) ◦ (X ∧ µ17) ◦ (X ∧ pinch)

= Φ(incl) ◦ (Φ(µ17) + Φ(η2ρ)) ◦ Φ(pinch)

= Φ(incl ◦µ17 ◦ pinch) + 0 = Φ(2v8
1)

= 2Φ(v8
1).

This means that X ∧ v8
1 can only differ from Φ(v8

1) by an element of order at most
two, i.e.,

X ∧ v8
1 = Φ(v8

1) + Φ(T ), for some T ∈ [M,M ]L1S
16 , 2T = 0.

However, all such T are nilpotent in [M,M ]L1S
∗ by Lemma 5.11, so

(X ∧ v8
1)
∗ = Φ(v8

1)
∗ + Φ(T )∗

is the sum of an isomorphism and a nilpotent map. As v8
1 commutes with all such

T by Lemma 5.10, this sum is again an isomorphism. Hence, by adjunction

(v8
1)
∗ : [M,Hom(X,X)]Sn −→ [M,Hom(X,X)]Sn+16

is an isomorphism for all n, so Hom(X,X) is a K(2)-local spectrum.

To prove that every Hom(X, Y ) is K(2)-local, we make use of the fact that
Ho(L1S) is a compactly generated triangulated category:

The K(2)-local sphere is a small weak generator in Ho(L1S), i.e., [S0,−]L1S

commutes with coproducts and detects isomorphisms. So by [Kel94] 4.2, any trian-
gulated subcategory of Ho(L1S) closed under coproducts and containing the sphere
must already be Ho(L1S) itself. Since Φ is an equivalence of triangulated categories,
Φ(L1S

0) = X is a small weak generator for Ho(C), i.e., any triangulated subcategory
of Ho(C) closed under coproducts and containing X is again Ho(C) itself.

Lemma 3.5. For Y ∈ C, Hom(X, Y ) is a K(2)-local spectrum.

Proof. Again we use the criterion in [Bou79] §4, that a spectrum is K(2)-local iff
v4

1 induces an isomorphism of its mod-2 homotopy groups. As Ho(S) is triangu-
lated, this is equivalent to being acyclic with respect to M(2, v4

1), the cofiber of
v4

1 : Σ8M →M . This means A ∈ S is K(2)-local iff [M(2, v4
1), A]S∗ = 0.

We now prove this for Hom(X, Y ), Y ∈ C: Let T be the full subcategory of
Ho(C) containing all Y ∈ C such that [M(2, v4

1),Hom(X, Y )]S∗ = 0. To prove that
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T = Ho(C), we show that T is triangulated, contains X and is closed under
coproducts.

The category T is triangulated because Hom(X,−) is exact on homotopy level
and

[M(2, v4
1),−]S∗ : Ho(S) −→ Ab∗

is a homological functor, i.e., sends exact triangles to long exact sequences of abelian
groups. Also, T contains the weak generator X by Lemma 3.3. Now let Yi, i ∈ I be
a family of objects in T . By adjunction,

[M(2, v4
1),Hom(X,

∐
i

Yi)]
S
∗
∼= [X ∧M(2, v4

1),
∐

i

Yi]
C
∗ .

The objectX∧M is small in C asX is small andX∧M is the cofiber of multiplication
by two on X. As the cofiber of a map between small objects, X ∧M(2, v4

1) is again
small. Consequently, [X∧M(2, v4

1),−]C∗ commutes with coproducts. Hence, we have

[X ∧M(2, v4
1),

∐
i

Yi]
C
∗
∼=

⊕
i

[X ∧M(2, v4
1), Yi]

C
∗

which is zero because Yi ∈ T for all i ∈ I. It follows that

T = {Y ∈ C | [M(2, v4
1),Hom(X, Y )]S∗ = 0} = Ho(C),

i.e., Hom(X, Y ) is K(2)-local for all Y ∈ C.

Finally, we can prove Proposition 3.2, which says that for X ∼= Φ(L1S
0), the

Universal Property of Spectra provides a Quillen functor pair between L1S and C.

Proof. We show that the functor

Hom(X,−) : C −→ L1S

is a right Quillen functor, i.e., preserves fibrations and trivial fibrations.
Since the cofibrations in S are the same as in L1S, the left adjoint

X ∧ − : L1S −→ C

preserves cofibrations because X ∧ − : S −→ C is already a Quillen functor by the
Universal Property of Spectra.
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Via adjunction it follows that

Hom(X,−) : C −→ L1S

preserves trivial fibrations.

Now it is left to show that Hom(X,−) preserves fibrations. By [Dug01] A.2 it
suffices to show that Hom(X,−) preserves fibrations between fibrant objects. We
do this in the following steps:

- for Y ∈ C fibrant, Hom(X, Y ) is fibrant in L1S

- Hom(X,−) sends fibrations to level fibrations

- level fibrations between fibrant objects in L1S are fibrations.

Let Y ∈ C be fibrant. Then, by [SS02] 6.2 the spectrum Hom(X, Y ) is an Ω-
spectrum, as also described at the beginning of Section 3.1. By Lemma 3.5,
Hom(X,Y ) is K(2)-local. So since in L1S the fibrant objects are exactly the K(2)-
local Ω-spectra, Hom(X,Y ) is fibrant for fibrant Y .

By construction, the functor Hom(X,−) sends fibrations to level fibrations, see
[SS02] 6.2. But level fibrations between fibrant objects are fibrations in L1S:

Let A,B ∈ L1S be fibrant, f : A −→ B a level fibration. As both A and B are
fibrant, f is a fibration in S. In L1S we use the Factorisation Axiom to factor f as
the composite of a fibration and a trivial cofibration:

A // ∼
i

// C p
// // B

By assumption, B is fibrant, and so must be C. So i is an K(2)∗-isomorphism
between K(2)∗-local spectra and therefore a π∗-isomorphism. Also, i is a cofibration
in S since it is a cofibration in L1S, so i is a trivial cofibration in S.

Consequently, i has the left lifting property in S with respect to the level
fibration f :

A��
i
��

A

f
����

C
p

//

h
??

B
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3.2. v1-PERIODICITY

This gives us a commutative diagram in L1S

A
i //

f
��

id

''
C

h //

p
����

A

f

��

B B B

which says that f is a retract of the L1S-fibration p and therefore a fibration in L1S
by the Retract Axiom of model categories.

Putting these steps together, we showed that Hom(X,−) is a right Quillen
functor, which proves the proposition.
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Chapter 4

The Quillen equivalence

Again, let Φ : Ho(L1S) −→ Ho(C) be an equivalence of triangulated categories and
X a fibrant and cofibrant replacement of Φ(L1S

0). In the last chapter we used the
Universal Property of Spectra ([SS02]) to construct a Quillen functor pair

X ∧ − : L1S � C : Hom(X,−).

This chapter will be devoted to showing that (X ∧ −,Hom(X,−)) is a Quillen
equivalence.

4.1 Homotopy type of Hom(X,X)

Our first goal is to show that Hom(X,X) is stably equivalent to the K(2)-local sphere
spectrum. Define

ι : S0 −→ Hom(X,X)

to be the morphism adjoint to the isomorphism X ∧ S0 ∼= X. Since Hom(X,X) is
K(2)-local by Lemma 3.3, ι factors over the K(2)-local sphere:

S0

L1

��

ι // Hom(X,X)

L1S
0

λ

88

Proposition 4.1. The map λ is a πn-isomorphism for n ≥ 0.
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Proof. We have the following diagram:

πnL1S
0 ∼= [S0, S0]L1S

n

λ∗ //

X∧L−
��

[S0,Hom(X,X)]Sn

[X,X]Cn

∼=
adj

44jjjjjjjjjjjjjjjjj

It is commutative because, by definition of λ, for α ∈ π∗L1S
0 the image of X ∧L α

under the adjunction isomorphism is precisely λ ◦ α. Hence, λ∗ is an isomorphism
if and only if

X ∧L − : [S0, S0]L1S
n −→ [X,X]Cn

is an isomorphism for all n. We show that

Ψ : [S0, S0]L1S
n

X∧L−−−−−→ [X,X]Cn
Φ−1

−−→ [S0, S0]L1S
n

is an isomorphism for all n ≥ 0.
The statement that Ψ is an isomorphism in degree 0,...,9 follows directly from

Lemma 3.4 (see also the table on page 36 in Chapter 5).
Using the exact triangle

L1S
0 2−→ L1S

0 incl−−→ L1M
pinch−−−→ L1S

1

together with the 5-lemma, it follows that

Ψ : [M,S0]L1S
n −→ [M,S0]L1S

n

is an isomorphism for n = 0, ..., 8. (We are still using our fixed isomorphismX∧M ∼=
Φ(L1M) which will be omitted from our notation.)

Now M has a v1-self map v4
1 that induces an isomorphism in K(2)-homology, so

v4
1 : Σ8L1M −→ L1M

is an isomorphism in Ho(L1S). Using the commutative diagram

[M,S0]L1S
n

Ψ //

∼=(v4
1)∗

��

[M,S0]L1S
n

∼=(Ψ(v4
1))∗

��

[M,S0]L1S
n+8

Ψ // [M,S0]L1S
n+8
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we obtain by induction that

Ψ : [M,S0]L1S
n −→ [M,S0]L1S

n

is an isomorphism for all n ≥ 0. (Note that the commutativity of above diagram
does not depend on the choice of the fixed isomorphisms X ∧M ∼= Φ(L1M) and
X ∧ S0 ∼= Φ(L1S

0).)
There is an exact triangle of Moore spectra

L1M = L1M(Z
/
2) −→ L1M(Z

/
2k+1) −→ L1M(Z

/
2k) −→ ΣL1M.

Again, we conclude by induction on k using the 5-lemma, that

Ψ : [M(Z
/
2k), S0]L1S

n −→ [M(Z
/
2k), S0]L1S

n

is an isomorphism for all n, k ≥ 0.
The Moore spectra M(Z

/
2k) are self-dual with respect to Spanier-Whitehead

duality up to suspension: this follows directly from the fact that the dualization
functor D : Ho(S)op −→ Ho(S) is exact and sends the sphere and multiplication by
2k to itself. Thus, we have ΣDM(Z

/
2k) ∼= M(Z

/
2k), and

[M(Z
/
2k), S0]L1S

n = [S0,M(Z
/
2k)]L1S

n+1.

So Ψ is also an automorphism of [S0,M(Z
/
2k)]L1S

n for all k ≥ 0, n ≥ 1.
The K(1)-local sphere LK(1)S

0 is equivalent in L1S to holimk L1M(Z
/
2k). (For

this, use [HS99] Proposition 7.10.(e) with X = S0. The functor L̂ denotes Bousfield
localisation with respect to K(1), L = L1 and S/I the mod-2k Moore spectra, see
Notation 1.1 of [HS99].) Thus we have

[S0, holimk M(Z
/
2k)]L1S

n = limk[S
0,M(Z

/
2k)]L1S

n

as lim1
k[S

0,M(Z
/
2k)]L1S

n = 0 since all groups over which the limit is taken are finite.
We obtain that

Ψ : [S0, LK(1)S
0]L1S

n −→ [S0, LK(1)S
0]L1S

n

is an isomorphism for all n ≥ 0.
The K(1)-local sphere only differs from the K(2)-local sphere by some rational

parts in the dimension range −2, ..., 1, so

πkL1S
0 −→ πkLK(1)S

0
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is an isomorphism for k ≥ 2, and it follows that

Ψ : [S0, S0]L1S
n −→ [S0, S0]L1S

n

is an isomorphism for all n ≥ 2. But we already showed that Ψ is an isomorphism
for n = 0 and n = 1, so we get the desired result that

Ψ : [S0, S0]L1S
n −→ [S0, S0]L1S

n

is an isomorphism for all n ≥ 0. Thus,

λ∗ : πnL1S
0 −→ πn Hom(X,X)

is an isomorphism for all n ≥ 0, so the connective covers of L1S
0 and Hom(X,X)

are stably equivalent via λ.

Lemma 4.2. Let f : A −→ B be a morphism of K(2)-local spectra. Further, assume
that πkA and πkB are torsion groups for k < 0. If f induces a weak homotopy
equivalence between the connective covers Ac and Bc of A and B, then f is a weak
homotopy equivalence.

Proof. We can complete the covering map cA : Ac −→ A to an exact triangle

A−∞ −→ Ac cA−→ A −→ ΣA−∞

in Ho(S). Now we look at the tower of Postnikov sections of A−∞:

A−∞ = X≤−1
// X≤−2

// X≤−3
// ...

Hπ−1A
−∞

OO

Σ−1Hπ−2A
−∞

OO

Σ−2Hπ−3A
−∞

OO

with

πkX≤−i =

{
πkA

−∞, k ≤ −i
0, else

and

Σ−k+1Hπ−k+1A
−∞ −→ X≤−k −→ X≤−k+1

being a fiber sequence in S where HG denotes the Eilenberg-MacLane spectrum of
the group G.
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The K(2)-homology of a torsion Eilenberg-MacLane spectrum is trivial ([AH68]),
so the morphisms

X≤−k −→ X≤−k+1

are K(2)∗-isomorphisms. Consequently,

K(2)∗(A
−∞) ' K(2)∗(hocolimnX≤−n).

However, hocolimnX≤−n ' ∗: Applying πk to the directed system of the X≤n’s,
one obtains a directed system of abelian groups that becomes stationary 0 after the
−(k + 1)th step. So

πk colimnX≤−n = 0 for all k,

and thus hocolimnX≤−n ' ∗.
It follows that

K(2)∗(A
−∞) = K(2)∗(hocolimnX≤−n) = 0.

We now arrive at a morphism of exact triangles in Ho(S):

A−∞ //

��

Ac
cA //

fc

��

A //

f

��

ΣA−∞

��

B−∞ // Bc
cB // B // ΣB−∞

The map f c is a weak homotopy equivalence by assumption. The spectra A−∞ and
B−∞ have trivial K(2)-homology, so cA and cB are K(2)∗-isomorphisms. Therefore, f
must be an K(2)∗-isomorphism, and since it is an K(2)∗-isomorphism between K(2)∗-
local spectra, it is a π∗-equivalence.

Corollary 4.3. Let A be a K(2)-local spectrum with πkA being torsion groups for
n < 0. Then the covering map cA : Ac −→ A is a K(2)-localisation.

Corollary 4.4. The map λ : L1S
0 −→ Hom(X,X) is a π∗-equivalence.

With this, we can now prove the K(2)-local Rigidity Theorem:

4.2 Proof of the Main Theorem

Theorem 4.5. Let Φ : Ho(L1S) −→ Ho(C) be an equivalence of triangulated
categories, X a fibrant and cofibrant replacement of Φ(L1S

0), and

X ∧ − : L1S � C : Hom(X,−)
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the Quillen functor pair from Proposition 3.2. Then (X∧−,Hom(X,−)) is a Quillen
equivalence.

Proof. By [Hov99] 1.3.16, it suffices to show the following:

1. RHom(X,−) : Ho(C) −→ Ho(L1S) reflects isomorphisms

2. The map A −→ RHom(X,X ∧L A) is an isomorphism for all A ∈ Ho(L1S).

Let Y −→ Z be an isomorphism in Ho(C). As X ∼= Φ(L1S
0) with Φ being an

equivalence and L1S
0 ∈ Ho(L1S) a weak generator, X is a weak generator, and so

[X, Y ]C∗ −→ [X,Z]C∗

is an isomorphism. By adjunction it follows that

[S0,RHom(X, Y )]L1S
∗ −→ [S0,RHom(X,Z)]L1S

∗

is an isomorphism. But as the sphere is a generator in Ho(L1S), it detects
isomorphisms, so

RHom(X, Y ) −→ RHom(X,Z)

is an isomorphism in Ho(L1S) which proves the first point.
To prove the second point we define T to be the full subcategory of Ho(L1S)

containing those A ∈ Ho(L1S) such that

A −→ RHom(X,X ∧L A)

is an isomorphism. We want to prove that T = Ho(L1S).
Since RHom(X,−) and X ∧L − are exact functors, T is triangulated. By

Corollary 4.4, L1S
0 ∈ T . Now let Ai, i ∈ I, be a family of objects in T . We

want to prove that
∐
i∈I

Ai ∈ T . By adjunction,

[S0,RHom(X,X ∧L (
∐

i

Ai))]
L1S
∗
∼= [X,X ∧L (

∐
i

Ai)]
C
∗ .

As a left adjoint, X ∧L − commutes with coproducts, so

[X,X ∧L (
∐

i

Ai)]
C
∗
∼= [X,

∐
i

(X ∧L Ai)]
C
∗ .
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Since X ∼= Φ(L1S
0) is small, we have

[X,
∐

i

(X ∧L Ai)]
C
∗
∼=

⊕
i

[X,X ∧L Ai]
C
∗

∼=
⊕

i

[S0,RHom(X,X ∧L Ai)]
L1S
∗ .

As Ai ∈ T for all i,

[S0, Ai]
L1S
∗
∼= [S0,RHom(X,X ∧L Ai)]

L1S
∗ ,

induced by

Ai

∼=−→ RHom(X,X ∧L Ai).

So by naturality of the preceding isomorphisms,

[S0,
∐

i

Ai]
L1S
∗
∼= [S0,RHom(X,X ∧L (

∐
i

Ai))]
L1S
∗

is an isomorphism induced by the map∐
i

Ai −→ RHom(X,X ∧L (
∐

i

Ai)).

Since the K(2)-local sphere detects isomorphisms, this map is an isomorphism in
Ho(L1S).

So we have seen that T is triangulated, contains L1S
0 and is closed under co-

products, therefore T must be Ho(L1S). This means that

A −→ RHom(X,X ∧L A)

is an isomorphism for all A ∈ Ho(L1S).
We can now conlude that (X ∧−,Hom(X,−)) is a Quillen equivalence for X ∼=

Φ(L1S
0). So, given an equivalence of triangulated categories

Φ : Ho(L1S) −→ Ho(C)

we have proved that C and L1S are Quillen equivalent, which proves the K-local
Rigidity Theorem at the prime 2.

33



CHAPTER 4. THE QUILLEN EQUIVALENCE

34



Chapter 5

Computations

For our main proofs we need information about [M,M ]L1S
∗ and [S0,M ]L1S

∗ in certain
degrees. The necessary computations will be summarized in this chapter.

5.1 Generators and relations of π∗L1S
0

First, let us look at the homotopy groups of the K(2)-local sphere, see e.g. [Bou79]
Proposition 4.5 or [Rav84] 8.15. The ring homomorphism

L1 : π∗S
0 −→ π∗L1S

0

induced byK(2)-localisation is surjective in degrees ≥ 2, and it has a cokernel isomor-
phic to Z

/
2 in degrees 0 and 1. There is a unique order 2 element of π0L1S

0 called
y0, and y1 = ηy0 is a generator of the second Z

/
2 summand in π1L1S

0. The other
elements of π∗L1S

0 are given the names of their (not necessarily unique) preimage
in π∗S

0. So in low degrees we have
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k πkL1S
0

0 Z(2){ι} ⊕ Z
/
2{y0}

1 Z
/
2{η, y1}

2 Z
/
2{η2}

3 Z
/
8{ν}

4 0
5 0
6 0
7 Z

/
16{σ}

8 Z
/
2{ησ}

9 Z
/
2{η2σ, µ}

... ...
15 Z

/
32{ρ}

16 Z
/
2{ηρ}

17 Z
/
2{η2ρ, µ17}

Moreover, we have 4ν = η3, ηy1 = 0, y2
1 = 0, µy0 = η2σ and µ17y0 = η2ρ ([Rav84]

8.15.(d)). Furthermore, we make use of the following Toda bracket releations:

8σ = 〈ν, 8, ν〉
µ ∈ 〈2, 8σ, η〉 (indeterminacy: η2σ)

ρ ∈ 〈σ, 2σ, 8〉 (indeterminacy: 8π15L1S
0)

µ17 ∈ 〈η, 16ρ, 2〉 (indeterminacy: η2ρ)

The element µ is the unique element of the second Toda bracket with Adams
filtration five, µ17 is the unique element of the last bracket with Adams filtration
nine. For a reference of the first three bracket relations, see [Tod62], Lemma 5.13,
Lemma 10.9 and the tables in Chapter XIV. For the last bracket, see Lemma 5.7 of
this thesis.

Notation. Throughout this thesis, we read Toda brackets from right to left, i.e., in
the same direction as the composition of morphisms.

5.2 Homotopy groups and endomorphisms of L1M

We will now compute some homotopy groups of the K(2)-local mod-2 Moore spec-
trum. The long exact homotopy sequence of the exact triangle
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L1S
0 2−→ L1S

0 incl−−→ L1M
pinch−−−→ L1S

1

splits into short exact sequences of the form

0 −→ πm+1L1S
0
/
(2)

incl∗−−→ πm+1L1M
pinch∗−−−→ {πmL1S

0}2 −→ 0.

Here, {πmL1S
0}2 denotes the 2-torsion of the group πmL1S

0, i.e., all x ∈ πmL1S
0

with 2x = 0.

Let x ∈ {πmL1S
0}2, and x̃ ∈ πm+1L1M a lift of x, i.e., an element with

pinch ◦x̃ = x. We have pinch∗(2x̃) = 0, so 2x̃ has a unique preimage under the
map incl∗. This preimage is ηx ∈ πm+1L1S

0
/
(2), as

incl∗(ηx) = (incl ◦η ◦ pinch) ◦ x̃ = 2x̃,

remembering incl ◦η ◦ pinch = 2 IdL1M .

Notation. A preimage of an element x under the pinch map will be denoted by x̃.
This x̃ need not be unique, but the following computations do not depend on the
choice of such an x̃ unless stated.

For some particular examples this gives us

Computation 5.1. π0L1M ∼= Z
/
2{incl, incl ◦y0}

Computation 5.2. π1L1M ∼= Z
/
4{ỹ0} ⊕ Z

/
2{incl ◦η}

Computation 5.3. π16L1M ∼= Z
/
2{incl ◦ηρ, 1̃6ρ}

Computation 5.4. π17L1M ∼= Z
/
4{η̃ρ} ⊕ Z

/
2{incl ◦µ17}

Also, note that

incl ◦y1 ◦ pinch = incl ◦ηy0 pinch = 2ỹ0 pinch = ỹ0(2 pinch) = 0. (5.1)

To specify the element 1̃6ρ in Computation 5.3 and for further applications we need
the following:

Lemma 5.5. 16ρ = pinch ◦v8
1 ◦ incl in Ho(L1S).
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Proof. The element pinch ◦v8
1 ◦ incl lies in π15L1S

0. Since 2 pinch = 0, it has order
at most two, so the element in question is either 16ρ or 0.

Assume that pinch ◦v8
1 ◦ incl = 0, then v8

1 ◦ incl factors over the fiber of the pinch
map, which, after K(2)-localisation, gives us the commutative diagram

Σ16L1M
v8
1 // L1M

L1S
8

incl

OO

ϕ
// L1S

0

incl

OO

The element ϕ lies in π16L1S
0 ∼= Z

/
2{ηρ}, so ϕ = ηa for either a = 0 or a = ρ. We

now apply the mth K(1)-homology to above diagram, using this factorisation of ϕ:

K(1)m(L1S
16)

incl∗ //

η∗
��

K(1)m(Σ16L1M)
(v8

1)∗
// K(1)m(L1M)

K(1)m(L1S
15)

a∗ // K(1)m(L1S
0)

incl∗

OO

For even m, incl∗ = K(1)m(incl) is an isomorphism, the map v8
1 is a K(1)∗-

isomorphism, so the upper row is an isomorphism for even m. However, η∗ lowers
the degree by one, so it must be zero since the K(1)-homology of the sphere is
concentrated in even degrees. Thus, we have arrived at a contradiction.

So since there is no ϕ ∈ π16L1S
0 with incl ◦ϕ = v8

1 ◦ incl, the composition
pinch ◦v8

1 ◦ incl ∈ π15S
0 is nonzero, has order two and therefore must be 16ρ.

Corollary 5.6. π8L1M ∼= Z
/
2{incl ◦ηρ, v8

1 ◦ incl}

Lemma 5.7. In Ho(L1S), µ17 ∈ 〈η, 16ρ, 2〉.

Proof. Since 16ρ · 2 = 32ρ = 0, there is a lift R : Σ16L1M −→ L1M such that
R ◦ incl = 16ρ. We have

R ∈ [M,S0]L1S
15 = Z

/
2{ηρ ◦ pinch, pinch ◦v8

1},

so by Lemma 5.5, R can either be pinch ◦v8
1 or ηρ ◦ pinch + pinch ◦v8

1.
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As η ·16ρ = η◦R◦incl = 0, η◦R has a lift Q : L1S
17 −→ L1S

0 with Q◦pinch = η◦R:

L1S
16 2 // L1S

16 incl //

16ρ

��

Σ16L1M
pinch

//

Ryyssssssssss
L1S

17

Q

yysssssssssssssssssssssssss

L1S
1

η

��

L1S
1

The Toda bracket 〈η, 16ρ, 2〉 consists of all such lifts Q and has indeterminacy η2ρ, so
for a fixed Q, it equals the set {Q,Q+η2ρ}. It does not contain 0 as η◦R = Q◦pinch,
and, hence, for Q = 0 we would have η ◦R = 0. This is not the case since

incl ◦η ◦R = incl ◦η ◦ pinch ◦v8
1 = 2v8

1 6= 0.

Consequently, the only possible elements to be contained in this bracket are µ17 and
µ17 + η2ρ.

Computation 5.8. [M,M ]L1S
16
∼= Z

/
4{v8

1} ⊕ Z
/
2{η̃ρ ◦ pinch, IdL1M ∧ηρ}

Proof. We consider the short exact sequence

0 −→ π17L1M
/
(2)

pinch∗−−−→ [M,M ]L1S
16

incl∗−−→ {π16L1M}2 −→ 0. (5.2)

Let x ∈ {π16L1M}2, x̄ ∈ [M,M ]L1S
16 with incl∗(x̄) = x̄◦incl = x. Since 2 IdL1M x = 0,

the element 2x̄ has a unique preimage q ∈ π17L1M
/
(2). This q lies in the Toda

bracket 〈2 IdL1M , x, 2〉:

L1S
16 2 // L1S

16 x //

incl %%KKKKKKKKKK
L1M

2 IdL1M
// L1M

Σ16L1M

x̄

OO

pinch %%KKKKKKKKKK

L1S
17

q∈〈2 IdL1M ,x,2〉

OO

So to determine whether 2x̄ = 0 for any x ∈ {π16L1M}2, we have to compute the
brackets 〈2 IdL1M , v

8
1 ◦ incl, 2〉 and 〈2 IdL1M , incl ◦ηρ, 2〉.
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Since 2 IdL1M = incl ◦η ◦ pinch, the first bracket writes as〈
2 IdL1M , v

8
1 ◦ incl, 2

〉
=

〈
incl ◦η ◦ pinch, v8

1 ◦ incl, 2
〉

=
〈
incl ◦η, pinch ◦v8

1 ◦ incl, 2
〉

= 〈incl ◦η, 16ρ, 2〉
= incl ◦ 〈η, 16ρ, 2〉

where the second and fourth equality are due to the Juggling Theorem ([Rav86]
A1.4.6) and the third equality due to Lemma 5.5. This means that 2v8

1 is hit in
the short exact sequence by incl ◦µ17 or incl ◦ (µ17 + η2ρ), as µ17 ∈ 〈η, 16ρ, 2〉 with
indeterminacy η2ρ. Since

incl ◦η2ρ ◦ pinch = 2η̃ρ pinch = 0,

we have in either case

2v8
1 = incl ◦µ17 ◦ pinch 6= 0.

The second bracket gives us

〈2 IdL1M , incl ◦ηρ, 2〉 = 〈incl ◦η, pinch ◦ incl ◦ηρ, 2〉
= 〈incl ◦η, 0, 2〉 = 0.

The indeterminacy here is 2π17L1M , i.e., zero in π17L1M/(2). Applying these com-
putations to the short exact sequence (5.2) gives us now the desired result: we now
know that [M,M ]L1S

16
∼= Z

/
4 ⊕ Z

/
2 ⊕ Z

/
2 with v8

1 generating the Z
/
4 summand,

and η̃ρ ◦ pinch generating one of the Z
/
2 summands. Looking at the sequence (5.2)

again we see that any element P ∈ [M,M ]L1S
8 with P ◦ incl = incl ◦ηρ can be taken

to be a generator of the other Z
/
2 summand, so we choose P = IdL1M ∧ηρ (where

∧ denotes the smash product in the homotopy category of S).

Corollary 5.9. 2v8
1 = incl ◦µ17 ◦ pinch 6= 0.

Next, we are going to provide some computations that are made use of in
the proof of Lemma 3.3. There, we need that v8

1 commutes with all elements of
[M,M ]L1S

16 , and that all elements of additive order at most two in [M,M ]L1S
16 are

nilpotent.

Lemma 5.10. Every element of [M,M ]L1S
16 commutes with v8

1.
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Proof. In their paper [CK88], Crabb and Knapp describe the construction of a self
map B for certain topological spaces X, that induces an isomorphism in real topo-
logical K-theory KO∗ and that can be chosen to be central in the stable endomor-
phism ring of X. In the fifth section, they apply this construction to the mod-2
Moore spectrum to obtain a map B2

2 : Σ16M −→ M that is a KO∗-isomorphism.
Proposition 5.1 of [CK88] now says that this B2

2 is central in the stable endomor-
phism ring of M .

This map B2
2 is a v1-self map for M : By [Bou90] 1.11, the complex K-theory

spectrum K is the cofiber of multiplication by η on KO. Using the 5-lemma, we
obtain that a KO∗-isomorphism is also a K∗-isomorphism. So in our case, the map
B2

2 is a K∗-isomorphism, and as M is 2-local, also a K(2)-isomorphism. Hence, we
can choose our v1-self map v8

1 : Σ16M −→M to be this map B2
2 .

So we now know that our v8
1 is central in the ring [M,M ]S∗ . By Corollary F of

[DMM87],

(v8
1)
−1M := colim(M

v8
1−→ Σ−16M

v8
1−→ ...),

is a K(2)-localisation of M , so the endomorphisms of the K(2)-local Moore spectrum
are the endomorphisms of M in Ho(S) made v8

1-periodic:

[M,M ]L1S
∗ = colim

(
[M,M ]S∗

(v8
1)∗

−→ [M,M ]S∗+16

(v8
1)∗

−→ ...
)

= (v8
1)
−1[M,M ]S∗ ,

so if v8
1 is central in [M,M ]S∗ , then it also is in [M,M ]L1S

∗ . In particular, v8
1 commutes

with all elements of [M,M ]L1S
16 .

Lemma 5.11. Every T ∈ [M,M ]L1S
16 with 2T = 0 is nilpotent.

Proof. The element ηρ ∈ π16L1S
0 satisfies (ηρ)2 = η2ρ2 = 0. Consequently,

(IdL1M ∧ηρ)2 = IdL1M ∧(ηρ2) = IdL1M ∧ 0 = 0.

Next,

(η̃ρ ◦ pinch)3 = η̃ρ ◦ (pinch ◦(η̃ρ))2 ◦ pinch = η̃ρ ◦ (ηρ)2 ◦ pinch = η̃ρ ◦ 0 ◦ pinch = 0

and (2v8
1)

2 = (4v8
1)v

8
1 = 0. These three elements commute, so their sums are also

nilpotent.
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Chapter 6

The case against odd primes

As mentioned in the introduction, in the case of p > 2, rigidity for K(p)-local spectra
cannot hold because of a counterexample constructed by Franke in [Fra96]. In this
chapter, we give a brief review of this exotic model and explain where the proof of
the K(2)-local Rigidity Theorem must fail when replacing 2 by an odd prime p.

6.1 Franke’s exotic models

Throughout the rest of this chapter, let p denote an odd prime. Franke proves that
the homotopy category of K(p)-local spectra is triangulated equivalent to the derived
category of 2p− 2-twisted chochain complexes over a certain abelian category B:

Theorem(Franke [Fra96]) There is an equivalence of categories

R : D2p−2(B) −→ Ho(L1S)

where D2p−2(B) denotes the derived category of twisted cochain complexes over an
abelian category B, and Ho(L1S) the homotopy category of K(p)-local spectra for
an odd prime p.

We are now going to explain the ingredients of this theorem. We begin with
certain abelian categoriesA and B: The category B consists of Z(p)-modules together
with Adams operations ψk, k ∈ Z∗(p), satisfying some further conditions. (Details can

be found in [Bou85] or [Fra96] 3.1.)
To build the category A out of the above category, we additionally need the

following: Let T : B −→ B, denote the following self-equivalence:
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For all M ∈ B, T (M) = M as a Z(p)-module, but on T (M), the Adams
operation ψk now equals kp−1ψk : M −→M for all k ∈ Z.

An object M ∈ A is defined as a collection of modules M = (Mn)n∈Z,Mn ∈ B,
together with isomorphisms

T (Mn)
∼=−→Mn+2p−2 for all n ∈ Z.

The resulting category A is equivalent to the category of K(p)∗K(p)-comodules.

Note the following: LetX be a spectrum. Then theK(p)∗K(p)-comoduleK(p)∗(X)
is an object of A in the above sense by taking Mn := (K(p))n(X), and the operations
ψk being the usual Adams operations.

From now on B will be viewed as the subcategory of A consisting of those objects
(Mn)n∈Z such that

Mn =

{
M : n ≡ 0 mod 2p− 2
0 : else

for a Z(p)-module M with Adams operations as before. This describes a so-called
split of period 2p− 2 of A: B ⊂ A is a Serre class such that⊕

0≤i<2p−2

B −→ A

(Bi)0≤i<2p−2 7−→
⊕

0≤i<2p−2

Bi[i]

is an equivalence of categories, where [i] denotes the i-fold internal shift in the
grading, i.e., M [i]n = Mi−n.

Now we describe the source of Franke’s equivalence. Let A for the next para-
graphs denote an arbitrary abelian category, N a natural number and Θ : A −→ A
a self-equivalence.

Definition 6.1. The category C(Θ,N)(A) of (Θ, N)-twisted cochain complexes with
values in A is defined as follows:

The objects are cochain complexes C∗ with Ci ∈ A for all i together with an
isomorphism of cochain complexes

αC : Θ(C∗) −→ C∗[N ] = C∗+N .
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The morphisms are those morphisms of cochain complexes f : C∗ → D∗ that are
compatible with the periodicity isomorphims, i.e., the following diagram commutes:

Θ(C∗)
αC //

Θ(f)

��

C∗[N ]

f [N ]

��

Θ(D∗)
αD // D∗[N ].

Such a cochain complex C∗ is called injective if each Ci is injective in A. A
morphism in C(Θ,N)(A) is called a quasi-isomorphism if it induces an isomorphims
in cohomology. C∗ is called strictly injective if it is injective, and, for each acyclic
complex D∗, the cochain complex Hom∗

C(Θ,N)(A)(D
∗, C∗) is again acyclic.

Notation. In our particular case, let A be again the category equivalent to
K(p)∗K(p)-comodules described in the previous paragraphs. The self-equivalence of
A we work with from now on is the twisting of Adams operations T p−1 described
earlier in this section. We denote the category C(T,1)(A) by C1(A).

Secondly, we are interested in the category C(T (2p−2),2p−2)(B), where B denotes
again the split of A introduced earlier in this section. This category of cochain
complexes will be denoted by C2p−2(B).

Proposition 6.2. ([Fra96] 1.3.3, Prop.3) There is a model structure on C1(A) resp.
C2p−2(B) such that

• weak equivalences are the quasi-isomorphisms

• cofibrations are the monomorphisms

• fibrations are the componentwise split epimorphisms with strictly injective
kernel.

Remark. This model structure exists on arbitrary C(Θ,N)(A), given that there are
enough injectives in A, see [Fra96] 1.3.3.

Notation. D1(A) resp. D2p−2(B) denotes the derived category of C1(A) resp.
C2p−2(B), i.e., the homotopy category of these model categories with respect to
the above model structure.
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Remark. The categories C1(A) and C2p−2(B) are equivalent categories, see [Roi05]
1.4..

Franke’s functor R : D2p−2(B) −→ Ho(L1S) now reconstructs a spectrum from
the algebraic data given by C∗ for each twisted cochain complex C∗ over B. The
idea is to first associate a spectrum each to the boundaries of C∗ and the quotients
of C∗ by the boundaries. These spectra Xβi

and Xγi
(1 ≤ i ≤ 2p − 2) are put into

a diagram

Xβ1
... Xβi−1 Xβi

Xβ2p−2

Xγ1

OO
22

Xγi−1

OO
aa

Xγi

OObbEEEEEEEE
...

``

Xγ2p−2 .

OO

In the next step, the Xβi
’s and Xγi

’s are pasted together by the homotopy colimit
of this diagram. So all in all, the result is a spectrum X = R(C∗) ∈ Ho(L1S)
assigned to a twisted cochain complex C∗ ∈ D2p−2(B).

The condition that p is odd is a special case of the condition that the splitting
index of A (into 2p− 2 shifted copies of B) is bigger than the injective dimension of
A, which is 2. This ensures sparseness in certain Adams spectral sequences which
the proof of Franke’s theorem relies on. For details, see [Fra96] section 2 and [Roi05]
section 1-3.

Next, we note that

Proposition 6.3. The categories D2p−2(B) and Ho(L1S) are not Quillen equivalent.
In particular, R is not derived from a Quillen equivalence.

Proof. To prove this, we compare the homotopy types of certain mapping spaces for
each category. Let us first collect the necessary definitions. For a pointed simplicial
model category C there is a mapping space functor

mapC(−,−) : Cop × C −→ sSet*

to the category of pointed simplicial sets satisfying

mapC(X, Y )0 = HomC(X, Y )

for allX, Y ∈ C and certain adjointness properties (see e.g. [GJ99], Definition II.2.1).
However, D1(A) and D2p−2(B) are not simplicial categories. The next best thing
we can achieve is a notion of a mapping space that is well-defined up to homotopy,
which will do for our purposes.
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To achieve this, we look at the category C∆ of cosimplicial objects in C and view
X as constant object in C∆. The category C∆ of cosimplicial objects in a model
category C can be given a model structure, the so-called Reedy model structure.
For details of this, see [Hov99] Section 5.2. We now define a special replacement of
X in C∆, so-called frames. To do this, we first need the following:

Definition 6.4. Via the methods of [Hov99], Remark 5.2.3. and Example 5.2.4.,
there are functors l•, r• : C −→ C∆ with the following properties:
Let X ∈ C:

• the nth level space of the object l•X is the n+ 1-fold coproduct of A

• l• : C −→ C∆ is a left adjoint to the evaluation functor ev0 : C∆ −→ C that
sends A• to A•[0]

• the nth level space of the object r•X is X itself

• r• : C −→ C∆ is a right adjoint to ev0 : C∆ −→ C

Remark. One can prove that r• is the constant cosimplicial functor. There is a
natural transformation l• −→ r• that is the identity in degree zero and the fold map
in higher degrees.

With these functors, we can now define cosimplicial frames:

Definition 6.5. Let C be a model category, X an object of C. A cosimplicial frame
for X is a cosimplicial object X• ∈ C∆ together with a factorisation of the map
l•X −→ r•X in C∆

l•X // // X• ∼ // r•X

where the weak equivalence X• ∼−→ r•X in degree zero induces a weak equivalence
in C.

For the existence of such framings, see [Hov99], Theorem 5.2.8.
We now use this definition to define mapping spaces:

Definition 6.6. Let X,Y be objects of C, X• a cosimplicial frame for X and

Y // ∼ // Y fib // // ∗

a factorisation of Y → ∗. Then the (left) mapping space for X and Y is defined via

mapC(X, Y ) := C(X•, Y fib) ∈ sSet*,
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where C(X•, Y fib) is the simplicial set with

C(X•, Y fib)n := HomC(X
•[n], Y fib).

However, it is not clear whether this definition actually deserves to be called a
definition since it depends on two choices: firstly, the cosimplicial frame for X and
secondly, the fibrant replacement for Y . So, for this definition to make sense we
need the following:

Lemma 6.7. Let X•
1 , X

•
2 be two cosimplicial frames for cofibrant X in C, and let

Y fib
1 , Y fib

2 be two fibrant replacements for Y . Then

C(X•
1 , Y

fib
1 ) ' C(X•

2 , Y
fib
2 )

in sSet*.

Proof. First, let X•
1 and X•

2 be two cosimplicial frames for X. By definition, the
frames X•

1 and X•
2 are linked by a zig-zag of weak equivalences

X•
1

∼−→ r•X
∼←− X•

2 .

For fibrant Y , the functor C(−, Y ) preserves weak equivalences ([SS02] Lemma 6.3),
so for fibrant Y and X•

1 , X•
2 as above, we have

C(X•
1 , Y ) ' C(X•

2 , Y ).

For the second part we quote [Hov99], Corollary 5.4.4, which says that for fibrant
X in C, the functor

C(X•, ...) : C −→ sSet*

preserves fibrations and acyclic fibrations, in particular between fibrant objects. So
Ken Brown’s lemma applies (see e.g. [Hov99], Lemma 1.1.12), and it follows that
C(X•, ...) takes weak equivalences between fibrant objects in C to weak equivalences
in sSet* which proves the claim of our lemma.

Now we look at the behaviour of mapping spaces under Quillen functors and
Quillen equivalences.

Lemma 6.8. Let L : C � D : R be a Quillen equivalence, X,X ′ ∈ C both cofibrant.
Then

mapC(X,X
′) ∼= mapD(LX,LX ′)

in Ho(sSet*).
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Proof. First of all, let L : C � D : R be a Quillen adjoint functor pair, X ∈ C and
Y ∈ D. Then

mapD(LX, Y ) = D((LX)•, Y fib)

by definition. Since L is a left Quillen functor, L(X•) ∈ D∆ is also a cosimplicial
frame for LX ([Hov99], Lemma 5.6.1), so

D((LX)•, Y fib) ∼= D(L(X•), Y fib)

by Lemma 6.7. By adjointness,

HomD(L(X•)[n], Y fib) ∼= HomC(X
•[n], R(Y fib)),

so
D(L(X•), Y fib) ∼= C(X•, R(Y fib)).

Since R is a right Quillen functor, R(Y fib) is a fibrant replacement for RY , conse-
quently by Lemma 6.7,

C(X•, R(Y fib)) ' C(X•, (RY )fib) = mapC(X,RY ).

Thus, altogether we have

mapC(X,RY ) ' mapD(LX, Y ). (6.1)

Next, let L : C � D : R be a Quillen equivalence and X ′ ∈ C cofibrant. Then

LX ′ ∼−→ (LX ′)fib

is a weak equivalence in D with cofibrant source and fibrant target, so by definition
of a Quillen equivalence, the adjoint map

X ′ ∼−→ R((LX ′)fib)

is a weak equivalence in C. Since R is a right Quillen functor, R((LX ′)fib) is fibrant
in C. Consequently, R((LX ′)fib) is a fibrant replacement for X ′ in C. By Lemma 6.7
and above adjointness result for mapping spaces (6.1), it follows that

mapC(X,X
′) ' mapC(X,R((LX ′)fib)) ' mapD(LX,LX ′)

in sSet* which proves the lemma.
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Back to our special case: We will see that for all C,D ∈ C2p−2(B),
mapC2p−2(B)(C,D) is weakly equivalent to a product of Eilenberg-MacLane spaces.
However, the mapping space mapL1S(S

0, S0) is not a product of Eilenberg-MacLane
spaces, so as a consequence of Lemma 6.8, there is no Quillen equivalence between
those two model categories which was the claim of the proposition.

The category C2p−2(B) is abelian, so for all C1, C2 ∈ C2p−2(B), the n-simplices of
mapC2p−2(B)(C1, C2)

C(C•
1 , C

fib
2 )n = Hom(C•

1 [n], C2)

form an abelian group, and the simplicial structure maps are group homomorphisms,
so

C(C•
1 , C

fib
2 ) = mapC2p−2(B)(C1, C2)

is not just a simplicial set but a simplicial abelian group. From Proposition III.2.20
of [GJ99], it follows that

mapC2p−2(B)(C1, C2) ∼=
∏
n≥0

K(πn mapC2p−2(B)(C1, C2)n, n)

where K(G, n) denotes the nth Eilenberg-MacLane space for the abelian group G.
However, there are spectra for which the mapping spaces over L1S are not

products of Eilenberg-MacLane spaces, for example mapL1S(S
0, S0) ∼= QL1S

0 =
colimn ΩnL1S

n. Thus, C2p−2(B) and L1S cannot be Quillen equivalent and C2p−2(B)
provides an exotic model for L1S.

6.2 Universal Property of K(p)-local spectra

In this section, let L1S denote the model category of spectra with the K(p)-local
model structure for p > 2. How can we check in general if a stable model category
C provides an exotic model for L1S or not?

Let us return to the proof of the Universal Property for K(p)-local spectra and
its first step, the question if the spectrum Hom(X,X) is K(p)-local. This is again
equivalent to the mod-p homotopy groups of Hom(X,X) being v1-periodic ([Bou79],
§4):

Let M = M(Z
/
p) denote the mod-p Moore spectrum. For odd primes, the v1-self

map of M of smallest existing degree is not vp2

1 as in the case p = 2, but

v1 : Σ2p−2M −→M
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itself. So the spectrum Hom(X,X) is K(p)-local if and only if the precomposition
morphism

(v1)
∗ : [M,Hom(X,X)]S∗ −→ [M,Hom(X,X)]S∗

is an isomorphism. By adjunction, this is equivalent to

(X ∧ v1)
∗ : [X ∧M,X]C∗ −→ [X ∧M,X]C∗

being an isomorphism.
The morphism X ∧ v1 lies in

[X ∧M,X ∧M ]C2p−2
∼= [Φ(L1M),Φ(L1M)]C2p−2

∼= [M,M ]L1S
2p−2 = Z

/
p{v1}.

So (X ∧ v1)
∗ is either an isomorphism or the zero map.

The element v1 ∈ [M,M ]L1S
2p−2 factors as

α1 = pinch ◦v1 ◦ incl, α1 ∈ π2p−3L1S
0 = Z

/
p{α1}

which can be computed by similar methods to those in Chapter 5. It follows that
X ∧ v1 = 0 if and only if X ∧α1 = 0. Let us investigate those two cases seperately.

X ∧ α1 = 0

For this case, we look at the action of π∗S
0 on the morphism sets of a stable

homotopy category C. Let us look again at the technique of framings used in the
last section. In addition to the mapping space functor

mapC(−,−) : Ho(Cop)× Ho(C) −→ Ho(sSet*)

introduced in Definition 6.6, we define a functor

−⊗− : Ho(C)× Ho(sSet*) −→ Ho(C)

such that
A⊗− : Ho(sSet*) � Ho(C) : mapC(A,−)

is an adjoint functor pair for A ∈ C:
Let Y ∈ C, K ∈ sSet* and Y • ∈ C∆ be a cosimplicial frame for Y . Further, let

∆K denote the category of simplices in K ([Hov99], 3.1). Now Y ⊗K is defined to
be the image of a framing Y • under the functor

C∆ −→ C∆K colim−→ C,
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(cf [Hov99] 3.1.5). (Again, one has to check that the homotopy type of Y ⊗K does
not depend on the choice of the frame for Y .) This functor −⊗− now makes Ho(C)
a module over the symmetric monoidal category Ho(sSet*) ([Hov99], 4.1.6).

For Y, Z ∈ C, one can now use this functor to define an action

πnS
0 ⊗ [Y, Z]Ck

µ−→ [Y, Z]Cn+k :

Let f ∈ [Y, Z]Ck = Hom0
Ho(C)(Σ

kY, Z) = Hom0
Ho(C)(Y ⊗ Sk, Z). Note that the

suspension functor Σ defined in Chapter 2 is isomorphic to the functor − ⊗ S1,
with S1 denoting the simplicial 1-sphere.

For α ∈ πnS
0 we choose a representative a : Sn+l −→ Sl in Ho(sSet*). The

element f ⊗ a now lies in [Y ⊗ Sk ⊗ Sn+l, Z ⊗ Sl]C0 which is isomorphic to [Y, Z]Cn+k

since C is stable.

Definition 6.9. We now define µ(α, f) := f ·α to be the unique element such that
(f ·α)⊗ idSl = f ⊗α in [Y ⊗ Sn+k+l, Z ⊗ Sl]C0 . (For details, see [SS02], Construction
2.4.)

Definition 6.10. Let C and D be stable model categories. A functor

Λ : Ho(C) −→ Ho(D)

is called π∗S
0-exact (cf [SS02], Definition 2.2) if Λ is exact and π∗S

0-linear, i.e.,
compatible with the π∗S

0-action.

We are now going to use the following important example of this: If F : C −→ D
is a left Quillen functor, then its left derived functor LF : Ho(C) −→ Ho(D) is
π∗S

0-exact ([SS02], Lemma 6.1).

In particular, for the functor X ∧ − : S −→ C from the Universal Property of
Spectra, the diagram

π∗S
0 ⊗ [S0, S0]S∗

µ
//

id⊗(X∧−)
��

[S0, S0]S∗

X∧−
��

π∗S
0 ⊗ [X,X]C∗

µ
// [X,X]C∗

commutes as X ∧ − : S −→ C is a left Quillen functor. Consequently, for α ∈ π∗S0

we have
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X ∧ α = X ∧ (IdS0 ·α)

= (X ∧ −) ◦ µ(α, IdS0)

= µ ◦ (id⊗(X ∧ −))(α, IdS0)

= µ(α,X ∧ IdS0)

= µ(α, IdX)

= α · IdX . (6.2)

Let us return to the situation that C is a stable model category with an
equivalence of triangulated categories

Φ : Ho(L1S) −→ Ho(C).

Also, we assume again that X∧α1 = 0 for X = Φ(L1S
0), α1 ∈ π2p−3L1S

0 = π2p−3S
0.

With the help of the previously introduced π∗S
0-operation we can now show that

L1S and C are not Quillen equivalent:
Let us assume that there is a functor

F : L1S −→ C

that is part of a Quillen equivalence. (Without loss of generality, let F be a left
Quillen functor.) So then its derived functor LF would be a π∗S

0-exact equiva-
lence, in particular [S0, S0]L1S

∗ and [X,X]C∗ would be isomorphic as π∗S
0-modules.

However, this cannot be the case as

α1 · IdX = X ∧ α1 = 0 and α1 · IdS0 = α1 6= 0.

So we have shown

Proposition 6.11. If X ∧ α1 = 0, then L1S and C are not Quillen equivalent.

Next, we will see that the condition X ∧ α1 6= 0 is both necessary and sufficient
for Quillen equivalence:

X ∧ α1 6= 0

We have seen at the beginning of this section that X ∧ α1 6= 0 implies that the
mod-p homotopy groups of the spectrum Hom(X,X) are v1-periodic. Therefore,
Hom(X,X) is K(p)-local. With the methods of Proposition 3.2 it now follows that

X ∧ − : L1S � C : Hom(X,−)
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is a Quillen functor pair for X = Φ(L1S
0).

Analogously to Chapter 4, we now show that Hom(X,X) is equivalent to the
K(p)-local sphere by showing that the map

λ : L1S
0 −→ Hom(X,X)

is a π∗-isomorphism.
Again, this is the case if and only if

Ψ : [S0, S0]L1S
n

X∧L−−−−−→ [X,X]Cn
Φ−1

−−→ [S0, S0]L1S
n

is an isomorphism for all n ∈ Z. For n = −1, ..., 2p − 1 this follows easily as the
only nontrivial homotopy groups of L1S

0 in this range are π0L1S
0 = Z(p){ι} and

π2p−3L1S
0 = Z

/
p{α1} ([Rav84] 8.10.(b)): By our assumption X ∧ α1 6= 0 we can

conclude that Ψ(α1) is a nonzero multiple of α1 again. With the 5-lemma it follows
that

Ψ : [M,S0]L1S
n −→ [M,S0]L1S

n

is an isomorphism for n = 0, ..., 2p− 2.
We now use that v1 : Σ2p−2M −→ M is an isomorphism in Ho(L1S), so by

proceeding with exactly the same method as in Proposition 4.1 we conclude by
induction that

Ψ : [S0, S0]L1S
n −→ [S0, S0]L1S

n

is an isomorphism for all n ≥ 0, and thus, λ : L1S
0 −→ Hom(X,X) induces a π∗-

isomorphism between the connective covers of L1S
0 and Hom(X,X). Since Lemma

4.2 also holds for odd primes, we see that λ is a π∗-isomorphism indeed, and so,
analogously to Theorem 4.5,

X ∧ − : L1S � C : Hom(X,−)

is a Quillen equivalence for odd primes.
We summarize this section in the following theorem:

Theorem 6.12. Let Φ : Ho(L1S) −→ Ho(C) be an equivalence of triangulated
categories, where L1S denotes the category of spectra with the K(p)-local model
structure for p odd. Then L1S and C are Quillen equivalent if and only if

X ∧ α1 6= 0, for X = Φ(L1S
0), α1 ∈ π2p−3S

0 = Z
/
p{α1}.

However, while this Theorem might say if a model C for L1S is exotic or not,
it does not answer the question whether two exotic models are Quillen equivalent.
In particular, it would be interesting to find out if two algebraic models (i.e., a
model that is also an abelian category, such as Franke’s example C = C2p−2(B)) are
automatically Quillen equivalent or not.

54



Bibliography

[AH68] D. W. Anderson and L. Hodgkin. The K-theory of Eilenberg-MacLane
complexes. Topology, 7:317–329, 1968.

[BF78] A. K. Bousfield and E. M. Friedlander. Homotopy theory of Γ-spaces,
spectra, and bisimplicial sets. In Geometric applications of homotopy
theory (Proc. Conf., Evanston, Ill., 1977), II, volume 658 of Lecture Notes
in Math., pages 80–130. Springer, Berlin, 1978.

[Bou75] A. K. Bousfield. The localization of spaces with respect to homology.
Topology, 14:133–150, 1975.

[Bou79] A. K. Bousfield. The localization of spectra with respect to homology.
Topology, 18(4):257–281, 1979.

[Bou85] A. K. Bousfield. On the homotopy theory of K-local spectra at an odd
prime. Amer. J. Math., 107(4):895–932, 1985.

[Bou90] A. K. Bousfield. A classification ofK-local spectra. J. Pure Appl. Algebra,
66(2):121–163, 1990.

[CK88] M. Crabb and K. Knapp. Central Adams operators. Manuscripta Math.,
60(2):131–137, 1988.

[DMM87] D. M. Davis, M. Mahowald, and H. Miller. Mapping telescopes and
K∗-localization. In Algebraic topology and algebraic K-theory (Princeton,
N.J., 1983), volume 113 of Ann. of Math. Stud., pages 152–167. Princeton
Univ. Press, Princeton, NJ, 1987.

[Dug01] D. Dugger. Replacing model categories with simplicial ones. Trans. Amer.
Math. Soc., 353(12):5003–5027 (electronic), 2001.

55



BIBLIOGRAPHY

[Fra96] J. Franke. Uniqueness theorems for certain triangulated
categories possessing an Adams spectral sequence.
http://www.math.uiuc.edu/K-theory/0139/, 1996.

[GJ99] P. G. Goerss and J. F. Jardine. Simplicial homotopy theory, volume 174
of Progress in Mathematics. Birkhäuser Verlag, Basel, 1999.
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