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Abstract 
The neural responses of anterior lateral line nerve (ALLN) fibers of goldfish to 

sinusoidal water motions in still and running water were investigated. In agreement 

with previous data (Engelmann et al., 2002) two types of fibers were distinguished: 

type I fibers, which most likely innervate superficial neuromasts, were stimulated 

by running water (10 cm*s-1) and, type II fibers, which most likely innervate canal 

neuromasts, were not stimulated by running water. The responses of type I fibers 

to sinusoidal water motions were masked in running water whereas responses of 

type II fibers were not masked. The degree of response masking increased with 

increasing flow velocity. Moreover, the ratio between responses that were masked 

in running water (type I) and those that were not masked (type II) increased with 

increasing flow velocity. Fibers exposed to unidirectional water flow showed a 

continuum of flow sensitivity and not two separate populations of flow sensitive and 

flow insensitive fibers as might be expected from previous results and theoretical 

considerations. Most nerve fibers responded with an increase in discharge rate, 

irrespective of flow direction (head-to-tail and tail-to-head flow). Thus fibers 

showed no directional sensitivity. Frequency spectra of water motions quantified 

with particle image velocimetry (PIV) and spectra of the firing rate of lateral line 

fibers showed an increase in amplitude below 10 Hz under flow conditions. This 

suggests that the neuromasts responded to the flow fluctuations that developed 

under flow conditions, but not to the d.c. flow. Thus it is unlikely that the spike 

trains of individual fibers code for the direction and velocity of a constant flow. 

Spike trains of ALLN fibers stimulated by a Kármán vortex street (KVS) showed 

that low frequency stimuli can still be encoded under running water. In terms of 

spike rate there was no difference between the KVS and the running water 

condition. However, if exposed to vortex stimuli, spike train frequency spectra 

showed reproducible peaks at the vortex shedding frequency. Any change in the 

vortex shedding frequency evoked by a change in either cylinder diameter or water 

flow velocity shifted the reproducible peaks of the neuronal data into the expected 

direction. Thus the data show that information about the frequency composition of 

flow fluctuation is preserved in the spike trains under flow conditions despite the 

fact that the fibers do not code for the direction and velocity of the flow. 
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Abbreviations  
 

 

ALLN   anterior lateral line nerve 

PLLN   posterior lateral line nerve  

SN    superficial neuromast 

CN   canal neuromast 

SW    still water  

RW    running water  

PIV    particle image velocimetry 

VSF    vortex shedding frequency  

KVS   Kármán vortex street  

cVSF    calculated vortex shedding frequency  

a.c.   alternating current 

d.c.   direct current 

FFT    fast Fourier transformation 

IF   instantaneous frequency 

RMS   root mean square 

RF   receptive field 

n   number of cells 

N   number of fishes 
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Introduction 
 

The lateral line is a sensory system used by fishes and aquatic amphibians to 

detect minute water motions (Bleckmann, 1994). It can play a dominant role in 

many behaviors including rheotaxis (Kanter and Coombs, 2003; Montgomery et al., 

1997; Simmons et al., 2004), schooling behavior (Partridge and Pitcher, 1980), 

object recognition (Campenhausen et al., 1981), communication (Satou et al., 

1994), prey capture (Kanter and Coombs, 2003; New et al., 2001) and predator 

avoidance (Blaxter and Fuiman, 1990). 

 

The sensory units of the lateral line are the neuromasts (Northcutt, 1989). In fish, 

two types of neuromasts are found, superficial neuromasts (SN) located on the 

skin and, canal neuromasts (CN) situated in sub-dermal fluid-filled canals that are 

connected to the outside medium by pores (Bleckmann, 1993; Coombs et al., 

1988; Münz, 1989; Puzdrowski, 1989). Typically there is one CN between two 

adjacent canal pores (Disler, 1977; Engelmann et al., 2002; Puzdrowski, 1989; 

Webb, 1989). Goldfish have up to 200 CNs and up to 3000 SNs distributed over 

their head, trunk and tail fin (Puzdrowski, 1989). CNs are oriented parallel to the 

length axis of the respective canal (Engelmann et al., 2002). Most SNs are 

oriented either parallel or orthogonal to the body axis (Coombs et al., 1988; 

Engelmann et al., 2002). 

 

Lateral line neuromasts may contain up to several hundred hair cells, each of 

which carries up to 150 stereovilli and a single true kinocilium at the apical surface. 

The stereovilli grow longer from one edge of the hair bundle to the other. The 

kinocilium always occurs eccentrically at the tall edge of the bundle, thus all hair 

cells have a morphological polarization. The ciliary bundles of the hair cells are 

embedded in a gelatinous cupula that extends into the surrounding water or into 

the canal fluid (Flock, 1971; Jørgensen and Flock, 1973). The sensory epithelium 

of a lateral line neuromast contains two antagonistically orientated populations of 

hair cells (Flock and Wersäll, 1962). 
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The hair cells of the neuromasts on the trunk of the fish are innervated by afferent 

and efferent fibers of the posterior lateral line nerve (PLLN). Neuromasts on the 

head are innervated by fibers of the dorsal or ventral anterior lateral line nerve 

(ALLN) (Puzdrowski, 1989). Individual afferent fibers innervate either a single CN 

or one or several SNs (Münz, 1985). Single lateral line nerve fibers may innervate 

more than one hair cell, provided they have the same orientation (Görner, 1963).  

 

Lateral line hair cells are displacement detectors. A water induced displacement of 

the cupula results in a shearing of the hair bundles that leads to a change of the 

hair cells resting potential. Displacement of the ciliary bundle towards the 

kinocilium causes a depolarization, displacement in the opposite direction a 

hyperpolarization of the hair cell (Kroese and van Netten, 1989). Displacement of 

the cupula leads to an increase in discharge rate of fibers innervating one 

population of hair cells and to a decrease in discharge rate of fibers innervating the 

hair cells aligned in the opposite direction. SNs function as velocity detectors, i.e., 

they respond proportional to the velocity of the water surrounding the cupula. In 

contrast, CNs function as acceleration detectors, i.e., they respond proportional to 

the acceleration of the water outside the canal (Kroese and Schellart, 1992). CNs 

can also be considered as pressure gradient detectors since water flow inside the 

canals is only generated by pressure differences between canal pores (Coombs et 

al., 1996; Denton and Gray, 1988). With respect to water velocity, lateral line 

canals act as high-pass filters (Denton and Gray, 1988). Consequently, CNs 

should not be stimulated by laminar d.c. water flow (Denton and Gray, 1988; Voigt 

et al., 2000). CNs should respond, however, to the a.c. components of prey 

generated water motions even in the presence of d.c. water flow.  

 

When fish are exposed to unidirectional water flow, two types of afferent lateral line 

fibers can be distinguished, those that respond to increasing flow velocity with 

increases in discharge rate and those that are insensitive to unidirectional water 

flow (Carton and Montgomery, 2002; Engelmann et al., 2002; Voigt et al., 2000). 

There are only incidental reports of fibers that respond to increasing flow velocity 

with decreases in discharge rate (Carton and Montgomery, 2002; Görner, 1963). In 

the PLLN of goldfish afferent fibers have been classified as type I and type II 
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(Engelmann et al., 2000). Type I fibers responded with an increase in discharge 

rate to a 10 cm*s-1 water flow whereas type II fibers were insensitive to that flow. 

As a consequence, the responses of type I fibers to sinusoidal water motions 

generated by a vibrating sphere were masked by the flow. In contrast, type II fibers 

responded about equally well to the vibrating sphere in still and running water. 

These findings suggested that type I fibers innervate SNs while type II fibers 

innervate CNs (Engelmann et al., 2002). In this study it was investigated how fibers 

in the ALLN of goldfish, Carassius auratus, respond to sinusoidal water motions 

under different background flow conditions and whether different fiber types 

comparable to those found in the PLLN can be distinguished. 

 

As a consequence of the directional sensitivity of lateral line hair cells and the 

innervation pattern of lateral line neuromasts (see above) about 50 % of all flow 

sensitive afferent lateral line nerve fibers should respond with an increase in 

ongoing activity to unidirectional water flow. The other 50 % of flow sensitive fibers 

should respond with a decrease in neural activity. In contrast to this assumption, 

nearly all lateral line afferents increased their discharge rates if the fish was 

exposed to unidirectional water flow (Carton and Montgomery, 2002; Voigt et al., 

2000). Therefore it was investigated whether the responses (spike rate) of primary 

lateral line afferents of the goldfish, Carassius auratus, do change if the direction of 

water flow is reversed. A detailed analysis of the water flow with particle image 

velocimetry (PIV) and a correlation of spike train patterns with the flow 

characteristics was used to investigate if lateral line nerve fibers of goldfish are 

sensitive to d.c. flow and whether the rate increase displayed by most fibers is due 

to flow fluctuations that develop under flow conditions.  

 

Up to now the lateral line system of fishes was stimulated in physiological 

experiments with vibrating spheres or with moving objects in both, still- and running 

water. In addition it was investigated how the lateral line responds to unidirectional 

water flow (Carton and Montgomery, 2002; Engelmann et al., 2002; Voigt et al., 

2000). However, for river fish natural lateral line stimuli also include repetitive 

vortex motions that occur, for instance, behind inanimate objects placed in water 

currents (Vogel, 1996). Behavioral experiments have shown that trout make use of 
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these vortex motions for station holding (Sutterlin and Waddy, 1975) and for the 

reduction of the costs of locomotion (Liao, 2004; Liao et al., 2003a). Vortex 

motions are also caused by undulatory swimming fish (Blickhan et al., 1992; 

Cheng and Chahine, 2001; Drucker and Lauder, 1999; Linden and Turner, 2004). 

Piscivorous animals may use vortex motions for prey detection and hydrodynamic 

trail following (Dehnhardt et al., 2001; Hanke and Bleckmann, 2004; Hanke et al., 

2000; Pohlmann et al., 2004; Pohlmann et al., 2001). 

A specific arrangement of vortex motions is known as Kármán vortex street. A 

Kármán vortex street can be generated with a cylinder placed in running water 

(Vogel, 1996). At a Reynolds number above 40 vortices alternately detach from an 

upstream cylinder with each vortex rotating in a direction opposite that of its 

predecessor farther downstream. The frequency of vortex detachment is called 

vortex shedding frequency. The vortex shedding frequency VSF is a function of the 

Strouhal number St, which is a dimensionless index, the diameter of the cylinder d 

and the free stream flow velocity U (Vogel, 1996): 

 

  VSF = St*U/d     (1)  

 

The Strouhal number depends on the Reynolds number, a dimensionless index. 

The Reynolds number is a ratio of inertial forces (mean fluid velocity *fluid density) 

to viscous forces (dynamic fluid viscosity / characteristic length). 

Trout align in a Kármán vortex street behind a cylinder and adjust their swimming 

motions to the vortex shedding frequency (Liao et al., 2003b). This raises the 

question whether trout (or other fish) can use lateral line information to detect the 

presence of a vortex street. 

 

In this study I investigated: How lateral line fibers respond to a vibrating sphere 

under different flow conditions, how lateral line fibers respond to unidirectional 

gross water flow of different directions, and how lateral line fibers respond to a 

Kármán vortex street. 
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Materials and Methods 

Experimental animals 

Goldfish, ranging in length from 8 cm to 12 cm, were used for the experiments. 

Fish were acquired from commercial dealers and were maintained in 250-l aquaria 

at ambient temperature on a daily 12–12 h light-dark cycle. Prior to surgery, fish 

were anaesthetized with MS 222 (0.001%) and immobilized with 1–2 μl 

pancuronium bromide (Organon Teknika). During surgery animals were respirated 

with fresh water. To prevent drying of the skin, fish were permanently rinsed with 

fresh water. A small piece of skin was removed and the ALLN or the PLLN was 

exposed at its entry to the medulla by drilling a hole into the skull. To prevent water 

from entering the brain and to allow a complete submersion of the fish during an 

experiment, a plastic cylinder (diameter 12 mm) was glued on top of the skull. After 

surgery fish were transferred to a flow tank with one upstream and one 

downstream collimator, positioned on a vibration-isolated table (TMC), and fixed 

parallel to flow direction in a stainless-steel mouth-holder (Engelmann et al., 2002) 

that consisted of a mouthpiece for artificial respiration with fresh water and two 

screws, which kept the head in a fixed position. A cord, attached to the tail of the 

fish, prevented lateral movements of the fish’s trunk and tail. Fish were positioned 

1–1.5 cm below the water surface. To avoid inactivation of the lateral line receptors 

by MS 222 (Palmer and Mensinger, 2004; Späth and Schweickert, 1977), 

recordings were not begun until 1 h after preparation. 

 

Generation of unidirectional water flow  

All experiments were conducted in a flow tank (canal width 15 cm, water depth 16 

cm, (Engelmann et al., 2002) that rested on a vibration-isolated table (TMC). Water 

flow was generated with a propeller (diameter 8 cm, Aeronaut) coupled to a d.c. 

motor (Conrad Electronic) that was driven by a power supply (Voltcraft Digi35, 

Conrad Electronic). The propeller was suspended from a holder on the side of the 

tank that was opposite to the recording section. The tank contained one upstream 

and one downstream flow collimator. During the experiment fish were positioned 

with their heads towards the flow. Flow velocity was calibrated with a flow meter 
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(Ott, Z200). Flow measurements were begun after the water flow reached its 

desired velocity and lasted for a period of 60 seconds. For these measurements 

the flow meter was placed at the position of the fish.  

 

Vibrating sphere stimulus 

The lateral line was stimulated with a dipole source consisting of a small (7 mm 

diameter) vibrating sphere attached to a vibrator (Ling, Model V101) by a stainless 

steel shaft (11 cm long, 2 mm diameter). The shaft was mounted perpendicular to 

the vibrator’s diaphragm to generate sinusoidal oscillations parallel to the 

longitudinal axis of the fish. The vibrator was mounted to a sliding bar assembly, 

which allowed to manually move the dipole source parallel to the fish. To avoid 

boundary layer effects (Kalmijn, 1989) the distance between the surface of the 

sphere and the fish’s skin was at least 5 mm but did not exceed 8 mm. The dipole 

stimulus (50 Hz) generated with the vibrator had a duration of 1 s with rise/fall 

times of 100 ms. Software-generated sinusoidal digital signals (Apple Macintosh, 

Super Scope II, GWI) were converted to analogue signals (MacAdios II, GWI, 

sampling rate 10 kHz), attenuated in 5-dB steps (custom-built attenuator), 

amplified (LDS, PA 25e) and fed into the vibrator. Peak-to-peak (p-p) displacement 

amplitudes of the sphere ranged between 1 µm and 350 µm. Displacement 

amplitudes were calibrated under a microscope (Leitz, Dialux) in air. 

 

Data acquisition 

Neural activity of ALLN or PLLN fibers was recorded with glass micropipettes filled 

with 3 mol/l KCl (impedance 50–90 MΩ). Electrodes were placed on the nerve with 

a motorised microdrive (Nanostepper MPC, Science Products Trading) and 

advanced with a micromanipulator. Action potentials were amplified (VF 180, 

Biologic), low-pass filtered (cut-off frequency 1 kHz or 10 kHz), displayed on an 

oscilloscope (Yokogawa DL-1800 A) and stored online (Superscope II). During 

experiments, neural activity was monitored with a loudspeaker (audio monitor). All 

units were tested for their responses to water movements created by moving a 

handheld pipette through the tank, or to small water jets that were generated by 

the pipette and directed to the skin of the fish. Units that did not respond to these 
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water motions were excluded from further investigations. Many of the responsive 

fibers were lost before the entire stimulus protocol could be completed. For this 

reason, the sample size for different stimulus conditions varies. 

 

Data analysis 

Recordings were filtered off-line (high-pass 100 Hz, low pass 3 - 5 kHz) and spikes 

were separated from background noise. Data analysis was carried out with self-

written scripts in Igor Pro 4 (Wavemetrics Inc). If not otherwise stated the values 

reported herein are mean values ± standard deviation. 

 

Flow sensitivity 

To be able to compare the data from the ALLN with those obtained from the PLLN 

fibers were classified according to the criteria introduced by Engelmann et al. 

(2000, 2002). Consequently, fibers were classified as flow sensitive (type I) if 

ongoing discharge rates obtained in still water were significantly different (Wilcoxon 

signed-rank test, p ≤ 0.01) from those in a water flow of 10 cm*s-1. Fibers were 

classified as flow insensitive (type II) if discharge rates in still and running water 

(10 cm*s-1) were comparable. 

 

Vibrating sphere 

Responses to the vibrating sphere were quantified by the average discharge rates 

(spikes per second) during sphere vibration and the degree of phase locking 

(synchronization coefficient R) (Goldberg and Brown, 1969). Average discharge 

rates were determined from the number of spikes elicited during the 10 stimulus 

presentations and expressed in spikes per second. Evoked spike rates were 

compared with ongoing discharge rate measured one second prior to stimulus 

onset. To determine the degree of phase locking, elapsed spike times across all 

stimulus presentations were added and collapsed into a single cycle’s worth of 

time (period histogram). The Rayleigh statistic Z=n*R2 was used to determine 

whether measures of phase locking were statistically significant, where n is the 
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number of spikes (Batschelet, 1981). Z values above 4.6 indicate a probability of 

0.01 or less that spikes were randomly distributed during a vibration cycle.  

Level-response functions for evoked spike rates (ongoing activity subtracted) and 

for synchronization coefficients obtained in still and running water were compared 

by analysis of covariance (ANCOVA, p ≤ 0.05). Responses were classified as 

masked if the slope of the regression line of a response function obtained under 

flow conditions was significantly smaller than the slope of the response function 

obtained in still water, or if the response functions were shifted along the y-axis 

(ANCOVA, p ≤ 0.05). To determine the degree of masking, level-response 

functions for both spike rates (ongoing activity subtracted) and synchronization 

coefficients were integrated. Integrals of response functions obtained in running 

water were expressed as percent of the integrals of the response functions 

obtained in still water (Engelmann et al., 2002). 

 

Particle Image Velocimetry (PIV) 

A high speed PIV system (LaVision, Highspeedstar 4) was used to visualize and 

quantify water motions (Chagnaud et al., 2006). Neutrally buoyant particles 

(LaVision, Sphericel 110P8) - suspended in the water - were illuminated with a light 

sheet (<1 mm thick) that was generated with a laser. The light sheet was oriented 

parallel to the lateral surface of the fish. Due to the head, dorso-ventral and rostro-

caudal curvatures of the fish and laser light reflections on the fish surface it was 

not possible to align the laser sheet directly at the fish surface. 

Individual pictures were taken at a frame rate of 250 Hz, i.e., the temporal 

precision of the PIV was 4 ms. Construction of PIV-images (vector plots) was 

performed with the software Davis 7 (LaVision). Successive frames were analyzed 

by time series sequential cross-correlation with an interrogation window-size of 

256*256 pixel (16*16 vectors). To improve the analysis, an overlap between 

neighboring interrogation windows was applied which resulted in a final window-

size of 128*128 pixel (32*32 vectors). Application of a multi-pass filter further 

reduced the error of the calculated vectors. This filter executed iterative (n=1) 

evaluations of the same pair of images. In the first pass a vector was computed 

and used as a reference for the following pass. In the second pass the 
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interrogation window of the first frame was shifted by half the amount of the 

reference vector and in the opposite direction while the interrogation window of the 

second frame was shifted in the direction by half of the amount of the reference 

vector. Thus, the correlation in the second pass anticipates the main motion 

direction of the particles and adjusts the interrogation area such that the maximum 

number of particles is included. This enhances the precision of the PIV. Finally a 

median filter was used to compute the median vector for eight neighboring 

interrogation windows. If the centre vector (surrounded by the eight interrogation 

windows) differed from the median vector by more than 3 times the root-mean-

square, the centre vector was replaced by the averaged vector obtained from the 

neighboring interrogation windows. After the computation the vector plots were 

post-processed. The same median filter and smoothing was used as during the 

computation of the vector plots. 

 

 

 

Experimental protocols and special analysis 

I Responses of ALLN fibers to dipole stimuli 

Experimental protocol 

To measure the ongoing discharge rate of a fiber, the non-vibrating sphere was 

placed at least 10 cm behind the fish and neural activity was recorded in still water 

for 60 s (10 consecutive trials of 6 s duration each). To determine neural activity in 

running water, this protocol was repeated with the water flow set to 10 cm*s-1.  

Neural activity in response to the vibrating sphere was recorded with the sphere 

placed in the centre of the receptive field (RF) of a fiber. RF centre was determined 

by moving the vibrating sphere (Frequency: 50 Hz, peak to peak amplitude: 30 µm) 

slowly along the side of the fish in a head-to-tail or tail-to-head direction. The 

sphere was then placed at the location from which the strongest responses, judged 

by listening to the audio monitor, were elicited. This method was used previously 

and allowed to determine the RF centre in the horizontal plane with a precision of 

0.1 ±  1.2 cm (Chagnaud et al., 2006). With the sphere at the RF centre, level-
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response functions were measured in still and running water (flow velocities 6.5, 10 

and 13.5 cm*s-1). For each displacement amplitude, stimuli were presented ten 

times with inter-stimulus time intervals of 5 s. 

 

II Responses of lateral line fibers to running water 

Experimental protocol 

The lateral line was stimulated with unidirectional water flow (0, 4, 6.5, 8, 10, 12, 

13.5, 15 cm*s-1). The direction of water flow usually was from anterior to posterior, 

but in some experiments the direction of water flow was reversed. Ongoing activity 

under still water and - in discrete steps (see above) - under running water 

conditions was recorded for 60 s (in some experiments 30 s). Care was taken that 

the flow reached the desired velocity before recording the neural activity. After 

completion of the stimulus protocol the flow was turned off. Each stimulus protocol 

was repeated up to 3 times. 

Detailed data analysis 

Peri-stimulus-time histograms (PSTH), raster plots and Fast Fourier 

transformations (FFT) of the spike trains were computed. For each fiber the 

instantaneous frequency (IF) was calculated as the reciprocals of the inter spike 

time intervals. Thereafter the average spike frequency of that fiber was subtracted 

from all IF values and calculated the root mean square (RMS) value of the 

resulting curve. The RMS value was expressed as percent of the average spike 

rate measured under still water conditions. Thus, the RMS value is a measure for 

the variability of the IFs obtained at the different flow velocities. For each fiber the 

average ongoing rate (still water and running water conditions) was determined 

either in absolute values or as the difference between the rates obtained at 

different flow velocities (0 - 15 cm*s-1).  

A fiber was defined as flow sensitive if its discharge rate, measured under still 

water conditions, was significantly different from its discharge rate measured under 

running water conditions (Wilcoxon test, significance level p ≤ 0.01). Depending on 

flow velocity the same fiber could be flow sensitive or flow insensitive. To test for 

flow sensitivity the flow velocities of 6.5, 10 and 13.5 cm*s-1 were apllied. Linear 

regressions of the flow velocity functions of the fibers were computed (Excel, 



Microsoft). Coefficients of determination R2 ≥ 0.6 were used to determine whether 

there was a correlation between discharge rate and flow velocity. 

For the analysis the instantaneous frequencies IF (reciprocals of the inter spike 

intervals) and the fast Fourier transformation (FFT) of the spike trains were 

computed. To compare the variability of primary afferent discharges the mean IF of 

each fiber was subtracted from each instantaneous frequency value of that fiber. 

Thereafter the root mean square (RMS) value for each fiber was calculated, i.e. a 

value that can be used as a measure for firing variability. The RMS value is a 

statistical measure of the magnitude of a varying quantity. It can be calculated for a 

series of discrete values or for a continuously varying function.  

 

  RMS = ∑
=

N

i
ix

N 1

21     (2) 

 

 

III Responses of lateral line fibers to a Kármán vortex street 

 

To generate a vortex street a cylinder (diameter 2.5 cm, length 20 cm) was placed 

vertically at a distance of 20 cm upstream to the fish (Fig. 1). Perpendicular to the 

flow direction the position of the cylinder was varied. At position p0, it was directly 

ahead of the fish. At the positions p1, p2 and p3 the cylinder was moved laterally by 

2, 4 and 6 cm, respectively.  
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Fig. 1: Part of the flow tank (A) with a cylinder (not to scale) that generated the vortex street. 

Black arrow below the tank indicates the direction of water flow. B Dorsal view of the fish with 

the cylinder placed at the positions p0 – p3. The drawing is not to scale. 

 

To alter the vortex shedding frequency either the free stream flow velocity (6.5, 10 

and 13.5 cm*s-1) was changed or the cylinder diameter (1.0, 2.5 and 7.8 cm). 

Vortex shedding frequency was calculated using a Strouhal number of 0.2 (Vogel, 

1996). The Reynolds number was calculated according to the formula (Vogel, 

1996):  

 

  Re = ρ*V*D*µ-1     (3) 

 

V = free stream fluid velocity V (6.5, 10 and 13.5 cm*s-1), D = characteristic 

distance (canal width = 15 cm), ρ = fluid density (0.998 kg*m-3), µ = fluid viscosity            

(1.002 Pa*s-3). The Reynolds number varied between 1000 and 20000 depending 

on the flow velocity applied. Ongoing activity was recorded for 60 s under still 

water (SW), running water (RW, 10 cm*s-1) and Kármán vortex street (KVS) 

conditions, respectively.  
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Results 
 

I Responses of ALLN fibers to dipole stimuli 

Single unit recordings were made from 243 fibres in the right (ipsilateral) ALLN of 

goldfish (N=22). Of these, 220 responded to hydrodynamic stimuli (unidirectional 

water flow, sinusoidal water motions or, water motions generated by moving a 

pipette in the experimental tank) with a change in discharge rate and/or discharge 

pattern. The remaining 23 fibres did not respond to any of these stimuli and were 

thus not further investigated. The average ongoing activity of the 220 responsive 

fibres under still water conditions was 26.6 ± 21.0 spikes*s-1 (mean ± SD, median:  

23.3 spikes*s-1). 

 

 

Classification of fibres 

Ongoing activity of 153 fibres was recorded in still water and in a 10 cm*s-1 water 

flow. 119 of these fibres were flow sensitive, i.e., in each of these fibres the 

discharge rate in running water differed from that in still water (Wilcoxon signed-

rank test: p≤0.01). These fibres were classified as type I fibres. The remaining 34 

fibres were not sensitive to unidirectional water flow, i.e., discharge rates in running 

water were not different from those in still water (Wilcoxon signed-rank test, 

p>0.01). These fibres were classified as type II fibres.  

On average, ongoing activities of type I fibres in still water (mean 27.2 ± 25.5 

spikes*s-1) were not different from the still water rates of type II fibres (mean 26.9 ± 

18.7 spikes*s-1) (Mann-Whitney U-test, p=0.64). In contrast, in running water 

ongoing activities of type I fibres (mean 43.6 ± 25.0 spikes*s-1) were significantly 

greater than those of type II fibres (mean 27.2 ± 20.0 spikes*s-1) (Mann-Whitney U-

test, p=0.004).  
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In a separate experiment, fluctuations were introduced into the flow by placing a 

cylinder (2.5 cm diameter, 20 cm length) vertically into the tank at a distance of 20 

cm in front of the fish. The cylinder was positioned either directly ahead of the fish 

(p0) or 2 cm (p1) or 4 cm (p2) displaced to the right. A cylinder in a flow sheds 

predictable vortices, thus generating a Kármán vortex street (Vogel, 1996). The 

discharge rates of 37 ALLN fibres were recorded in flow with the cylinder placed at 

one of the three positions and compared with those recorded in flow without a 

cylinder. There was no difference in discharge rate between these conditions. 

Average discharge rates were 40.15 ± 19.4 spikes*s-1 (n=37) in flow without a 

cylinder, 36.5 ± 20.5 spikes*s-1 (n=37) in a flow with the cylinder at p0 (Mann 

Whitney U-test, p=0.35), 30.7 ± 25.5 spikes*s-1 (n=19) with the cylinder at p1 

(p=0.08) and, 38.7 ± 20.8 spikes*s-1 (n=24) with the cylinder at p2 (p=0.84). 

Discharge rates for the different cylinder positions were also not different from 

each other (Mann Whitney U-test, p0 vs. p1: p=0.21, p0 vs. p2: p=0.56, p1 vs. p2: 

p=0.19). Thus it was not possible to determine from the discharge rates if a 

cylinder was in the flow and at which of the three positions. 

 

Responses to dipole stimuli in still water 

Responses to sinusoidal water motions were obtained from 72 fibres. All fibres 

exhibited phase locked, tonic discharges in response to the sinusoidal vibration 

(Fig. 2A, 3A). At stimulus levels near threshold, fibres responded with a modulation 

of ongoing activity, i.e. they exhibited phase locking with no or little increase in 

discharge rate (Fig. 2C, 3C). Both, degree of phase locking and discharge rate 

increased with increasing displacement amplitude. In 35 fibres, particularly at high 

displacement amplitudes, a period of decreased neural activity was observed after 

the stimulus ended (e.g., Fig. 3A). At the highest displacement amplitudes used, 

the number of spikes generated per wave cycle increased up to 4 spikes per cycle 

which resulted in a decrease in phase locking in 24 fibres. 
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Responses to dipole stimuli in a 10 cm*s-1 water flow 

Of the 72 fibres from which responses to dipole stimuli were obtained, 63 were 

classified as type I fibres and nine as type II fibres. The responses of 41 of the 63 

type I fibres were masked by a 10 cm*s-1 water flow. In 16 fibres, responses were 

masked both in terms of evoked spike rate and in terms of phase locking (see Fig. 

2), in 15 type I fibres, responses were masked only in terms of evoked spike rate 

and, in 10 type I fibres responses were masked only in terms of phase locking. The 

responses of 22 fibres classified as type I were not masked by a 10 cm*s-1 water 

flow. An example of a fibre whose response was masked in running water is shown 

in Fig. 2. In running water, the ongoing activity of this fibre increased (compare 

ongoing rates in Fig. 2B). Consequently, level response functions measured in 

running water were shifted to lower values compared to those measured in still 

water (compare Figs. 2C and D).  

 

 

 

 

 

 

 

 

 



 

Fig 2: Responses of a type I ALLN fiber of the goldfish to a 50 Hz vibrating sphere stimulus 

applied under still (left) and running (right) water (10 cm*s-1) conditions. A, Raster plots of the 

responses to 10 stimulus presentations with displacement amplitudes of 1 µm, 4 µm, 15 µm 

and 60 µm. Each marker represents one action potential. The stimulus traces are shown below 

the raster plots. B, Raster plots of the activity of the fiber in still and running water without 

sphere vibration. C, D Level response functions obtained in still water (C) and running water 

(D). Evoked discharge rates (mean ± S.D.) (circles) averaged across 10 stimulus 

presentations, ongoing discharge rates (triangles) and synchronization coefficients (grey lines 

connecting small symbols) are plotted as function of sphere displacement.  
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Fig 3: Responses of a type II ALLN fiber of the goldfish to a 50 Hz vibrating sphere stimulus 

applied still (left) and running (right) water (10 cm*s-1) conditions. A, Raster plots of the 

responses to 10 stimulus presentations with displacement amplitudes of 7 µm, 15 µm, 30 µm 

and 60 µm. Each marker represents one action potential. The stimulus traces are shown below 

the raster plots. B, Raster plots of the activity of the fiber in still and running water without 

sphere vibration. C, D Level response functions obtained in still water (C) and running water 

(D). Evoked discharge rates (mean ± S.D.) (circles) averaged across 10 stimulus 

presentations, ongoing discharge rates (triangles) and synchronization coefficients (grey lines 

connecting small symbols) are plotted as function of sphere displacement.  
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The responses of 7 out of the 9 type II fibres were masked by running water 

neither in terms of evoked spike rates, nor in terms of phase locking (for an 

example see Fig. 3). In one type II fibre, the evoked spike rate but not phase 

locking, and, in another type II fibre, phase locking but not the evoked spike rate 

was masked in running water. 

The degree of masking of type I and type II fibers was measured by comparing the 

integrals of the level-response functions in still and running water and the results 

are shown in Fig. 4. For type I fibres, averaged integrals of the rate functions in 

running water were 55.2% (range 0.4 – 131.6 %) of those in still water (100%). 

Averaged integrals of the phase locking functions were 80.6% (range 13.8 – 123.4 

%) of those in still water. Thus, across the population of type I fibres, responses to 

the vibrating sphere were masked in terms of evoked spike rates and, although to 

a smaller degree, in terms of phase locking. For type II fibres, averaged integrals of 

the rate functions in running water were 94.2 % (range 33.7 – 139.1 %) of those in 

still water. These values were significantly different from those obtained from type I 

fibres (Mann Whitney U-test, p=0.001). Averaged integrals of the phase locking 

functions of type II fibres were 92.7 % (range 83.8 - 103.0 %) of those in still water. 

These values were barely different from those obtained from type I fibres (Mann 

Whitney U-test, p=0.078). Thus, in contrast to type I fibres, responses of type II 

units were masked neither in terms of evoked spike rate nor in terms of phase 

locking.  



 

 

Fig 4: Summary of the characteristics of type I and type II fibers of goldfish. Box-and-whisker 

plots are shown representing median values and 10th, 25th, 75th and 90th percentiles. The 

integrals of the level response functions for evoked activity (gray bars) and for the degree of 

phase locking (white bars) are expressed as percentage of the integrals of the response 

functions measured in still water. Asterisk indicates statistically significant differences (U-test, 

p=0.001). n.s., no significant difference (p=0.078). 

 

 

 

Responses to dipole stimuli at different flow velocities 

To determine the effect of different flow velocities on lateral line responses the 

responses to sinusoidal water motions that were presented in a 6.5, 10 and 13.5 

cm*s-1 water flow were recorded. The results show that for both type of fibres, the 

ratio between masked responses and responses that are not masked increased 

systematically with increasing flow velocity. For type I fibres, the responses that 

were masked in terms of evoked discharge rates increased from 52% (n=15 out of 

29) at 6.5 cm*s-1 to 76% (n=22 out of 29) at 10 cm*s-1 and to 90% (n=17 out of 19) 

at 13.5 cm*s-1 flow velocity (Table 1). The responses that were masked in terms of 

phase locking increased from 10% (n=3 out of 29) at 6.5 cm*s-1 to 41% (n=12 out 

of 29) at 10 cm*s-1 to 63% (n=12 out of 19) at 13.5 cm*s-1 flow velocity (Table 1). 

Similarly, the proportion of masked responses of type II fibres also increased with 
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increasing flow velocity both in terms of discharge rate and in terms of phase 

locking. However, the number of type II fibres investigated was low (n=4). 

Fig. 5 shows level response functions for rate and phase locking of type I fibres, at 

different flow velocities. In 19 out of 27 type I fibres from which complete level 

responses functions at all three flow velocities could be obtained, the degree of 

masking for both evoked rates and phase locking increased with increasing flow 

velocity, resulting in a shift of the response functions towards lower values (Fig. 

5A). The responses of 5 type I fibres were affected only in terms of phase locking. 

In these fibres increasing flow velocities caused a systematic shift in the phase 

locking functions whereas the rate response functions were not affected (Fig. 5B). 

In 3 type I fibres, responses were masked neither in terms of evoked spike rates 

nor in terms of phase locking at any of the flow velocities applied (Fig. 5C).  
 

 

 

Table 1: Proportions of type I and type II ALLN fibre responses to sinusoidal wave stimuli that 

were masked and those that were not masked in running water at different flow velocities.  

 Velocity [cm*s-1] 6.5 10 13.5 

type I   masked/not masked 15 / 14 22 / 7 17 / 2 Evoked activity 

type II  masked/not masked 1 / 3 1 / 3 2 / 3 

type I   masked/not masked 3 / 26 12 / 17 12 / 7 Phase locking 

type II  masked/not masked 0 / 4 0 / 4 1 / 2 



 

Fig 5: Level-response functions of three representative type I fibers. Fibers were tested in still 

water (filled circles) and in running water (6.5 (circles), 10 (filled triangles) and 13.5 cm*s-1 

(triangles)). Discharge rates (left column) and synchronization coefficients (right column) are 

plotted as function of sphere displacement. A. Response functions of a type I fiber whose 

responses to the dipole stimulus were masked in running water both in terms of discharge rate 

and in terms of phase locking. Note that level-response functions were shifted systematically 

with increasing flow velocity, i.e., the degree of masking increased with increasing flow velocity. 

B. Response functions of a type I fiber whose responses were masked in terms of phase 

locking but not in terms of evoked discharge rates. C. Response functions of a type I fiber 

whose responses were not masked in running water.  
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Fig. 6 shows level response functions for rate and phase locking from a type II fibre 

at different flow velocities. Complete response functions at three flow velocities 

were recorded from 3 type II fibres. The responses to the dipole of each of these 

fibres were not masked at any of the applied flow velocities, neither in terms of 

evoked spike rates nor in terms of phase locking.  

 

 

 

Fig 6: Level-response functions of two representative type II fibers measured in still water and 

in running water (6.5, 10 and 13.5 cm*s-1). Discharge rates (left column) and synchronization 

coefficients (right column) are plotted as function of sphere displacement. A. Response 

functions of a type II fiber whose responses to the dipole stimulus were not masked in running 

water.  

 

The degree of masking of dipole-evoked responses at different flow velocities is 

shown in Fig. 7. Here, the percentages of the integrals of the level response 

functions for both evoked activity and phase locking are plotted as a function of 

flow velocity (integrals in still water = 100%). Despite the large variability, the data 

indicate that the degree of masking increased, i.e., percent integrals decreased, 

with increasing flow velocity. In some fibres (n=8 for evoked activity and n=7 for 

phase locking), the degree of masking decreased (increasing percent integrals) in 

running water, however only at the lowest flow velocity amplitude applied (6.5 

cm*s-1). 
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Fig 7: Degree of masking of dipole evoked responses by running water. Percent integrals of 

the level-response functions obtained in running water relative to those obtained in still water 

(100%) are plotted as function of flow velocity for spike rates (A) and  synchronization 

coefficients (B).  

 

Responses to dipole stimuli in turbulent flow 

To investigate the effects of flow fluctuations, the responses of 19 type I and 5 type 

II fibres to sinusoidal water motions in a flow with a cylinder placed at position p0, 

p1 or p2 in the experimental tank were recorded and compared with responses 

obtained in flow without a cylinder and with those obtained in still water. From 

these data, a differential effect of the different flow conditions on the responses to 

the vibrating sphere was not apparent. For type I fibres the degree of masking was 

comparable for each flow condition (e.g., see Fig. 8A). For type II fibres, the 

response functions obtained under the different flow conditions were comparable 

to those obtained in still water, i.e., responses were not affected by any of the flow 

conditions applied (e.g., see Fig. 8B).  
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Fig 8: Level-response functions of a type I fiber (A) and a type II fiber (B) in still water and in a 

10 cm*s-1 water flow without and with a cylinder at different locations (p0, p1, p2) in the 

experimental tank. Discharge rates (left column) and synchronization coefficients (right column) 

are plotted as function of sphere displacement. Note that the response functions recorded in 

flow were shifted relative to those obtained in still water by about the same degree irrespective 

of the different flow conditions.  

 

Stimulus measurements 

The PIV method was used to characterize the water motions generated by running 

water with and without a cylinder in the flow and the water motions generated by a 

stationary vibrating sphere in still and running water. For these measurements a 

vertically oriented laser sheet was placed at the position that was usually occupied 

by the fish.  

Running water. Vector plots of the water motions as well as the average and the 

RMS velocity of a 10 cm*s-1 flow in the absence and in the presence of a cylinder 

are shown in Fig. 9. Without a cylinder, the water flow within the window covered 

by the camera was uniform, i.e., all water particles moved with comparable velocity 
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in the same direction. Thus, the corresponding vectors were of comparable length 

and had an identical orientation (Fig. 9A upper left). However, vector plots that 

were calculated from two consecutive frames revealed that the flow in the 

experimental tank was not perfectly laminar but subject to some velocity 

fluctuations (different colours in Fig 9A). To estimate mean flow velocity flow 

vectors across 2048 frames were averaged (i.e., 8.2 seconds, frame rate 250 Hz). 

The resulting vector plots revealed a systematic distribution of water velocities 

along the vertical axis of the tank: velocity decreased with increasing distance from 

the water surface (Fig 9B centre left). To obtain an estimate of the variability of the 

velocity fluctuations at each point in space the average flow velocity from each 

vector was subtracted and the RMS values (see materials and methods) were 

calculated. For a flow without a cylinder these fluctuations were fairly small (Fig. 

9C lower left).  

If a cylinder was placed in the flow the flow field was less uniform (Fig. 9 A). 

Moreover, vector plots as well as average and RMS velocity showed fluctuations 

that depended on the position of the cylinder relative to the plane of observation, 

i.e. the location of the fish. If the cylinder was in at p0, flow velocity was lower (on 

average) and velocity fluctuations (RMS of flow velocity) were greater than without 

a cylinder. The more the cylinder was moved out of the plane of observation, the 

greater were the absolute flow velocities In contrast, velocity fluctuations 

decreased in amplitude, i.e., the flow became more uniform (compare vectors and 

background colours for p0, p1 and p2 in Fig. 9A). These changes are also evident if 

one compares average and RMS velocities. If the cylinder was at p0, average flow 

velocity was lowest and even lower than the average flow velocity without cylinder. 

Average flow velocity increased systematically with increasing lateral distance of 

the cylinder but was still lower than without a cylinder even if the cylinder was 

placed at p1 or p2 (compare p0, p1 and p2 in Fig. 9B). RMS velocities with a cylinder 

were always greater than those without a cylinder and decreased with increasing 

lateral distance of the cylinder (Fig. 9C). These findings demonstrate that in these 

experiments the lateral line of the fish was subject to different flow conditions both, 

in terms of absolute velocities and in terms of velocity fluctuations depending on 

whether or not a cylinder was in the tank and on the relative position of cylinder 

and fish. 
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Fig. 9: The water flow associated with the different flow conditions used in the experiments. A. 

Vector plots on a laminar flow and on a flow that was disturbed by a cylinder placed at p0, p1 

and p2 (see Methods). Background colors code for water velocity. Vectors were obtained by 

comparing two consecutive frames. B. Vector plots obtained by averaging across 2048 

consecutive frames. C. RMS velocity (average water velocity subtracted) obtained from 2048 

consecutive frames. Frame rate in A, B and C was 250 Hz. 

 

 

 

Dipole stimulus. The water motions produced by a sphere that vibrated with 50 Hz 

in still and running water are shown in Fig.10. The sphere was located in the centre 

of each image, 5 mm behind the plane of observation (behind the laser sheet). The 

vibration axis was tilted by about 25° relative to the horizontal plane.  

Under still water conditions (Fig. 10A), the water motions generated by the 

vibrating sphere were clearly visible in the vector diagrams. When the sphere was 

displaced from left to right, water moved around the sphere resulting in vectors that 

were, in the plane of observation, pointing from right to left (Fig. 10A, 1st and 2nd 

image). Reversal of the motion direction of the sphere resulted in vectors that were 

pointing in the opposite direction (Fig. 10A, 3rd and 4th image). Just before the 

sphere was maximally displaced, the vector lengths decreased due to the reduced 

velocity of the sphere (Fig. 10A, 5th image).  

If the sphere was exposed to running water (10 cm*s-1) (Fig. 10B), the sinusoidal 

water motions generated by the vibrating sphere no longer showed up in the vector 

diagram. In each image, vectors had comparable length and were pointing from 

right to left, i.e., they represented the direction of bulk water flow that masked the 

sinusoidal water motions generated by the sphere. To visualize the dipole-

generated water motions in running water, the average vector length, obtained 

from all vectors of 100 frames (i.e., across 400 ms) of flow, was subtracted from 

each vector (Fig. 10B). The resulting vector plots showed a great similarity with 

those obtained under still water condition (compare Fig. 10C with Fig. 10A), 

demonstrating that it is possible to reconstruct the water motions caused by a 

sinusoidally vibrating sphere even if these water motions are masked by running 

water. 
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Fig 10 A-C: Vector plots representing the water motions generated by a dipole stimulus. 

Images were recorded at a frame rate of 250 Hz. Time intervals are indicated on top. Vectors 

represent the direction (vector orientation) and the velocity (vector length) of (water) particle 

movement. Reference vectors are given at the right of each sequence. Vectors pointing from 

left to right are shown in white, vectors pointing from right to left are shown in black. 

Background colors represent the range of vector lengths observed in each image. Due to the 

limitations of the camera optics, a sphere of 15 mm diameter was used for these 

measurements. A Vector plots of the water flow generated by a sinusoidally vibrating sphere 

(50Hz, 150 µm peak-peak displacement) in still water. B Vector plots of the water flow 

generated by the sinusoidally vibrating sphere in running water (10 cm*s-1 flow velocity). C 

Same as B, however, the vector that was obtained by averaging across 100 frames of flow was 

subtracted. 

 

 

 

II Responses of lateral line fibers to running water 

Flow sensitivity of anterior lateral line nerve fibers  

The responses of 42 ALLN fibers to unidirectional water flow were recorded. Under 

still water conditions ongoing activity was 30.8 ± 20.9 spikes*s-1 (mean ± SD; 

median: 28.5 spikes*s-1). At a water velocity of 6.5 cm*s-1, 30 out of the 42 fibers 

were flow-sensitive, i.e. these fibers either significantly increased (25 fibers) or 

decreased (5 fibers) their discharge rates. Twelve fibers were flow insensitive. 

However, if flow velocity exceeded 6.5 cm*s-1, more and more of these fibers 

became flow sensitive (Tab. 2). In addition, fibers that responded with a decrease 

in ongoing activity at 6.5 cm*s-1 finally increased their discharge rate above the 

ongoing activity measured in still water (Fig. 11 bottom). At a flow speed of 13.5 

cm*s-1 all but one fiber were flow sensitive (Tab. 1). Sixty-three percent of all fibers 

did not show a response saturation at the water velocities applied. A linear 

regression of each data set was computed and revealed that the coefficient of 

determination (R2) of 85.7% (n=36) of these fibers was ≥ 0.6. Thus most fibers 

showed an increase in discharge rate with increasing flow velocities. Note that the 

slopes of the linear regressions showed a broad distribution (Fig 1 inset). 

 

 



 

 

Fig 11: Discharge rates of ALLN fibers (left; n=42) and PLLN fibers (right; n=29) to 

unidirectional water flow. Top: absolute spike rates. Bottom: absolute spike rates minus spike 

rate in still water. Note that most units increased their discharge rate with increasing flow 

velocity. Inset: Distribution of the linear regression slopes.  
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Flow sensitivity of posterior lateral line nerve fibers  

Under still water conditions ongoing activity of PLLN fibers (n = 29) was 19.1 ± 

10.8 spikes*s-1 (mean ± SD; median: 20.6 spikes*s-1). At a flow velocity of 6.5 

cm*s-1, 21 of the 29 PLLN fibers encountered were flow sensitive, i.e. they 

significantly increased their discharge rates. Eight fibers did not significantly alter 

their discharge rate at a flow speed of 6.5 cm*s-1. However, with increasing flow 

velocity more and more of these fibers became flow sensitive (Tab. 2). Three fibers 

responded with a decrease in ongoing activity at 6.5 cm*s-1. This decrease was, 

however, not significant. At flow velocities > 6.5 cm*s-1 these fibers finally 

increased their discharge rate above the ongoing activity measured in still water 

(Fig. 11). At a flow speed of 13.5 cm*s-1, again all but one fiber were flow sensitive 

(Tab. 2). Eighty-three percent of all fibers did not show response saturation. In 14 

PLLN fibers the velocity test was repeated 3 times. In all 14 fibers responses were 

reproducible from trial to trial (Fig. 12). A linear regression of each data set was 

computed and revealed that 93.1% (n=27) of the fibers had a coefficient of 

determination of R2 ≥ 0.6. Thus most fibers showed an increase in discharge rate 

with increasing flow velocities. The slopes of the linear regressions showed a 

broad distribution (Fig 1 inset). 
 

 

Table 2. Percentage and number of ALLN and PLLN fibers classified as flow sensitive at 

different water flow velocities: 

 

Flow velocity [cm*s1] 6.5 10 13.5 

Flow sensitive ALLN fibers  71 %  

n = 42 

88 % 

n = 40 

96 % 

n = 27 

Flow sensitive PLLN fibers 72 %  

n = 29 

92 %  

n = 25 

95 %  

n= 20 

 

 

 

 



 

 

Fig 12: Discharge rates of ALLN fibers as function of flow velocity (different symbols refer to 

different fibers). Each data point shows the discharge rate averaged over 60 seconds.  

 

 

Reversal of flow direction 

In 12 ALLN fibers it was investigated how flow direction (head-to-tail vs. tail-to-

head; flow velocity 10 cm*s-1) affects neuronal activity. Regardless of flow direction 

all but one ALLN fiber had a higher discharge rate at 10 cm*s-1 than at 0 cm*s-1. 

On average, at a flow velocity of 10 cm*s-1 the discharge rates were significantly 

higher in the head-to-tail (63.94 ± 49.37 spikes*s-1) than in the tail-to-head direction 

(58.85 ± 48.24 spikes*s-1; paired t-test: n=12, p=0.05). 

In 8 ALLN fibers flow velocity response functions (flow velocities 0, 6.5, 10, and 

13.5 cm*s-1) were measured (Fig. 13). Irrespective of flow direction (head-to-tail vs. 

tail-to-head) all but one fiber increased their discharge rates with increasing flow 

velocity. Fibers showed no significant difference in discharge rates at 6.5 cm*s-1 

(head-to-tail 50.0 ± 43.1 spikes*s-1; tail-to-head 48.7 ± 43.4 spikes*s-1; paired t-test: 

n=8, p=0.06). At water flow velocities of 10 and 13.5 cm*s-1 the discharge rates of 

the fibers in the head-to-tail direction were significantly higher than the discharge 

rates in the tail to head direction (10 cm*s-1: head-to-tail 70.1 ± 54.4 spikes*s-1; tail-

 

 

39



to-head 62.1 ± 52.2 spikes*s-1; paired t-test: n=8, p=0.01 and 13.5 cm*s-1: head-to-

tail 83.7 ± 56.9 spikes*s-1; tail-to-head 67.7 ± 54.1spikes*s-1; paired t-test: n=8, 

p=0.03). Since the responses of ALLN and PLLN fibers revealed no detectable 

differences toward the unidirectional water flow from (anterior to posterior) it was 

not attempted to characterize the responses to water flow from both directions in 

PLLN fibers. 

 

 

 

Fig 13: Discharge rate of ALLN fibers (n=8) to water flow from head-to-tail (left) and tail-to-head 

(right). Each symbol refers to a single unit that was tested in both flow directions. Spike rates 

obtained in still water were subtracted.  
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Spike train patterns of LL nerve fibers 

In 29 PLLN lateral line nerve fibers the spike train patterns were analyzed. With 

increasing flow velocity more and more of the flow sensitive fibers showed a burst 

like activity (for an example see Fig. 14 and Fig. 15). The variability of the 

instantaneous frequency (IF), displayed for the flow velocities applied, reflects the 

bursting behavior of these units (for an example see Fig 15, left). The power 

spectra of the IFs had the largest amplitudes in the frequency range 2 to about 12 

Hz. Frequencies in this range correspond well with the burst rhythms of the 

respective fiber (e.g. Fig. 15, right). Eight units were flow insensitive (water 

velocity: 6.5 cm*s-1). These units barely showed burst like activity, even at high 

flow velocities (Fig. 16). However, even in units classified as flow insensitive, the 

variability of the IFs increased (e.g. Fig. 17, left). In addition the power spectrum of 

the IFs also showed some increase in the frequency range 2 to 10 Hz (Fig. 17, 

right) if flow velocity was increased. 

 

 

 

 

 

 

 

 



 

Fig 14: Neural activity of a flow sensitive ALLN fiber (left) and a flow sensitive PLLN fiber (right) 

exposed to flow velocities of 0, 6.5, 10 and 13.5 cm*s-1. Note that higher flow velocities caused 

burst-like responses. 
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Fig 15: Instantaneous frequency (IF) (left) and corresponding frequency spectra (right) of a flow 

sensitive PLLN fiber tested at the flow velocities indicated. Burst-like discharges are apparent 

under flow conditions. The frequency spectra (right) of the IF plots showed a broad peak 

around 5 Hz. IF and frequency spectra were calculated from the data of the PLLN fiber shown 

in Fig. 14. For better visualization only 8 s out of 60 s of the IF are shown. Frequency spectra 

are based on 60 s measurements. 
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Fig 16: Neural activity of a flow insensitive ALLN fiber (left) and a flow insensitive PLLN fiber 

(right) tested at the flow velocities indicated.  
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Fig 17: Instantaneous frequency (IF) (left) and corresponding frequency spectra (right) of a flow 

insensitive PLLN fiber. For better visualization only 8 s out of 60 s of the IF are shown. 

Frequency spectra are based on 60 s measurements. Data are taken from the PLLN fiber 

shown in Fig 16. 

 

To quantify the amount of bursting, the RMS (see materials and methods) of the 

instantaneous frequency (IF) (average rate subtracted) of all PLLN fibers 

investigated was calculated at the flow velocities 0 to 13.5 cm*s-1 (Fig. 18A). The 

RMS value reflects the normalized variability of the IF. In all units the modulation 

depth of the spike rate increased with increasing flow velocity. In most cases RMS 

values > 150% were accompanied by a prominent increase in spike rate (Fig. 

18B).  
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Fig 18 A, B: A: RMS of the IF (average subtracted), expressed in percent of the average spike 

rate of PLLN fibers (n=25), plotted against flow velocity. B: Normalized RMS values of the IF 

plotted against the normalized rate increase. Note that in most fibers a rate increase occured 

only when the RMS values exceeded 150 %. 
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Flow measurements 

To learn to which degree neuronal responses were correlated with hydrodynamic 

events, water movements were measured with PIV. Flow velocity was retrieved 

from the PIV data (vector length) at twelve points, separated by 2 mm in the 

vertical plane. Measurements were done for eight seconds each (for an example 

see Fig. 19).  

 

 

Fig.19: Vector plot (left) and water velocity (right) calculated for a time span of 8 s from the 

length of the vectors in the interrogation windows indicated by the squares (original PIV plots 

had a resolution of 32*32 vectors). Background color codes vector length (color code indicated 

at the left). Black bar indicates spatial resolution, reference vector 0.1 m*s-1. Note that from 

each vector the average vector length (10 cm*s-1) was subtracted.  

 

With increasing flow velocity, water movements became increasingly turbulent 

(Fig. 20, left). At water velocities ≥ 6.5 cm*s-1 the spectra showed an increase in 

power for frequencies < 10 Hz (Fig. 20, right). In contrast to the power spectra of 

the neuronal data, the spectra of the water motions increased exponentially 

towards low frequencies (Fig. 20, right). RMS values of the PIV traces (d.c. flow 

subtracted) showed a linear correlation with water flow velocity (Fig. 21). This 

finding was independent of flow direction. However, the flow from head-to-tail 

showed more fluctuations (had larger RMS values) than the flow from tail-to-head 

(head-to-tail: 0.011 ± 1.29*10-4; tail-to-head: 0.006 ± 1.84*10-4 (average ±SD); 

paired t-test: n=12, p≤0.001) (Fig. 22). 
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Fig 20: Water velocity as function of time (left) and corresponding frequency spectra (right). 

Water velocities were retrieved from 4 PIV traces. DC flow velocities were 0, 6.5, 10 and 13,5 

cm*s-1 indicated. Changes in flow velocity indicate the degree of flow fluctuations. Power 

spectra are based on 8 s flow measurements. Note that the average vector length (10 cm*s-1) 

was subtracted from each vector. 

 

 

 

Fig 21: RMS values of PIV traces (n=11) plotted against flow velocity. Line: linear regression of 

the data. Flow direction was head-to-tail. 
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Fig 22: Flow velocity, obtained from PIV data, in the tail-to-head (top) and the head-to-tail 

(bottom) direction and corresponding frequency spectra (right). Note that average flow velocity 

(10 cm*s-1) was subtracted.  

 

 

Spatial analysis of running water 

In addition the spatio-temporal flow dynamics was measured with PIV. With 

increasing flow velocity, the amplitudes of flow fluctuations increased. In addition 

flow fluctuations showed higher frequencies. The spatial structure of the flow 

fluctuations was investigated by comparing the fluctuations in an array of 32 x 32 

interrogation windows in the PIV plane. For each window (size about 1.5 x 1.5 

mm), flow velocity was measured over eight seconds and compared with the flow 

velocity functions obtained from all other 1023 windows (Fig. 23). A correlation in 

flow velocity functions occurred only in a small around the reference window. Thus 

flow fluctuations were spatially non-uniform, as expected from their chaotic nature.  

However, a comparison of individual flow profiles obtained from interrogation 

windows arranged in a horizontal and a vertical line (c.f. Fig. 23) showed that the 

flow fluctuation superimposed on the d.c. flow moved downstream (Fig. 23), i.e. the 

flow measured in the anterior region of the fish was highly correlated with the flow 

measured in a more posterior region of the fish (Fig 23), provided the two flow 

velocity functions were time shifted to compensate for gross flow velocity and for 

the distance between the two interrogation windows whose vectors were analyzed. 

Reciprocally the phase shift of the flow velocity functions and the distance between 

the two interrogation windows can be used to calculate gross flow velocity and flow 

direction.  
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Fig. 23. Flow velocity fluctuations as function of time plotted for the interrogation windows 

arranged in a vertical (A) and horizontal row (B). Gross flow velocity was 10 cm*s-1. Note that 

flow fluctuations propagated horizontally in gross flow direction, but not in the vertical direction. 

C. Color coded correlation of flow velocity functions based on the center vector (reference 

vector) and all other vectors. Note that the cross correlation (autocorrelation) of the flow 

velocity functions of the center vector leads to a correlation of 1 (perfect correlation), i.e. to the 

color red and that with increasing distance from the center (reference) vector the correlation 

decreased. D. As C but with each flow velocity profile time shifted to correct for flow velocity.  
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Cross correlation of simultaneously recorded spike trains  

To test whether the lateral line system can use flow fluctuations to detect flow 

direction and flow velocity, pairs of afferent fibers (n=54) were recorded from the 

PLLN of the goldfish (N = 6). For each pair, neural activities were recorded for 60 

seconds. Possible correlations were uncovered by cross-correlating spike train 1 

with spike train 2. Since stochastic events like spikes are difficult to correlate, the 

instantaneous firing frequency (IF) were calculated and used for the cross-

correlation procedure.  

IF’s were cross-correlated for different stimulus conditions. Under still water 

conditions, ongoing activities of two fibers (42 fiber pairs were tested) recorded 

simultaneously showed no correlation (-0.1 < correlation factor < 0.3). Under flow 

conditions most spike train pairs (n=42) also were uncorrelated, however, some 

pairs (n=12) that did not show a correlation under still water conditions showed a 

high correlation (0.7 < correlation factor < 1.0) under running water conditions. In 

general higher flow velocities led to higher correlation coefficients (Fig. 24). As 

expected the correlation peak shifted with increasing flow velocity in the expected 

direction (Fig 24).  

Correlation peaks could be negative or positive, depending on the position of the 

neuromast recorded from. As expected, in all fiber pairs that showed a correlation 

a reversal of flow direction led to a reversal in the sign of the phase shift (Fig 24).  

One pair showed an almost perfect anti-correlation, i.e. spikes in one fiber never 

coincided with spikes in the other fiber.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

Fig 24. Cross correlation functions of the instantaneous frequency of two neurons recorded 

simultaneously. A From bottom to top flow velocities were 0, 4, 6.5, 8, 10 and 13.5 cm*s-1. Flow 

direction was from rostral to caudal. B, C, D. Cross correlation functions of the instantaneous 

frequencies of three neuron pairs recorded simultaneously. Flow was from rostral to caudal 

(left) and from caudal to rostral (right). Note that the cross correlation functions show 

correlations (B and C) and anti-correlations (D). Flow velocities were 0, 6.5, 10 and  13.5 cm*s-

1. It is apparent that higher flow velocities systematically shifted the correlation peaks.  
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III Responses of lateral line fibers to a Kármán vortex street 

Ongoing activity and responses to a Kármán vortex street (KVS) 

Single unit recordings were made from 94 fibers in the anterior lateral line nerve 

(ALLN) of 8 goldfish. Eighty-five fibers responded to water motions (see materials 

and methods), the remaining 9 fibers did not respond and thus were discarded 

from further analysis. The ongoing activity of lateral line fibers was determined 

under still water (SW), running water (RW) and Kármán vortex street (KVS) 

conditions. Ongoing activity was quantified in terms of spike rate and in terms of 

the variance of the discharge pattern, expressed by the RMS of the instantaneous 

frequency. In SW fibers (n = 85) had an ongoing activity of 23.6 ± 19.0 spikes*s-1 

(median: 20.8 spikes*s-1). In 51 out of the 85 fibers ongoing activity could also be 

determined under RW conditions (flow velocity: 10 cm*s-1). 45 of the 51 fibers (88 

%) significantly increased their discharge rate if exposed to unidirectional water 

flow (Wilcoxon test, p ≤ 0.01). These fibers were classified as type I (Engelmann et 

al., 2002). The remaining 6 fibers (12%) were insensitive to unidirectional water 

flow (Wilcoxon test, p > 0.01). These fibers were classified as type II (Engelmann 

et al., 2002). Under still water conditions ongoing activity of type I fibers (25.3 ± 

18.1 spikes*s-1; median: 22.2 spikes*s-1) was not significantly different from the 

ongoing activity of type II fibers (35.3 ± 18.5 spikes*s-1; median: 38.5 spikes*s-1; 

Mann-Whitney U-test: U = 95.0; Z = -1.169; p= 0.25). If exposed to a KVS (n = 46, 

flow velocity 10 cm*s-1, cylinder diameter 2.5 cm, cylinder position p0) ongoing 

activity was 39.6 ± 19.9 spikes*s-1. There was no difference in discharge rate 

between RW (n = 58; 37.7 ± 21.3 spikes*s-1) and KVS conditions (Mann Whitney 

U-test: U = 1244.0; Z = -0.589; p= 0.56). The mean RMS value of the 

instantaneous firing frequency (mean instantaneous frequency subtracted) 

obtained under RW conditions (65.40 ± 37.70; n = 58) was not significantly 

different from the mean RMS value obtained under KVS conditions (60.47 ± 36.71; 

n = 46) (Mann Whitney U-test: U =1276.0; Z =-0.38; p= 0.70). 

For further analysis the frequency spectra of the spike trains obtained under SW, 

RW and KVS conditions were calculated. The frequency spectra of the spike trains 

showed unpredictable and predictable peaks under both RW and KVS conditions 



(Fig 25). Frequency spectra of the spike trains recorded under KVS conditions 

nearly always (42 out of 46 cases) had one reproducible peak close to the 

calculated vortex shedding frequency (cVSF) (Fig 25 right). A more detailed 

analysis of the frequency spectra at the cVSF (0.8 Hz) showed a significant 

increase in power in the frequency range 0.7 to 1.3 Hz (0.083 ± 0.047 mV; n = 46) 

only if the fish was exposed to a KVS. If the fish was not exposed to a KVS the 

corresponding values were 0.066 ± 0.036 mV (RW; n = 58) and 0.033 ± 0.013 mV 

(SW; n = 85), respectively. Both values were significantly lower than the values 

obtained under KVS conditions (RW: Mann-Whitney U-test: U = 1036.5; Z = -

1.947; p= 0.05; SW: U = 454.0; Z = -7.23; p= 0.001). Due to the small number of 

type II fibers it was not attempted to statistically analyze the differences between 

type I and type II fibers. 

 

 

Fig. 25: Frequency spectra of the responses of three afferent fibers (from top to bottom) tested 

in still water (left), running water (middle, flow velocity 10 cm*s-1), and under KVS conditions 

(right, cylinder diameter 2.5 cm, flow velocity again 10 cm*s-1). Although most spectra have 

many peaks, the only peak that was reproducible across fibers was close to the calculated 

vortex shedding frequency (0.8 Hz, see arrows). The top trace shows the original recording of 

the primary afferent that provided the data of the top spectra. 
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Neuronal data and PIV  

Flow velocity curves were calculated for each vector of the 1024 (32 x 32) 

interrogation windows for 2048 successive frames (= 33 seconds) (Fig 26A). For 

each of the 1024 velocity curves obtained the RMS value was calculated. PIV 

measurements confirmed (Vogel, 1996) that the water velocity behind a cylinder 

showed more fluctuations than beneath or in front of the cylinder (Fig 26A). 

Frequency spectra of the flow velocity curves measured behind the cylinder at 

positions (40 interrogation windows were analyzed) that were occupied by the fish 

during the physiological experiments showed a peak close to the cVSF (Fig 26C). 

This peak was congruent with the first prominent peak in the averaged frequency 

spectra of the spike trains obtained from recordings done under KVS conditions 

(Fig 27).  

 



 

Fig. 26: PIV measurements in still water (left), running water (middle, flow velocity 10 cm*s-1) 

and under KVS conditions (right, cylinder diameter 2.5 cm, flow velocity 10 cm*s-1). A: Color 

coded RMS values of flow profiles calculated from a matrix of 32x32 vectors over a time of 33 

s. High RMS values in the KVS indicate the presence of flow fluctuations. B: Flow velocity 

curves calculated for a time span of 33 s from of a single vector. The position of the 

interrogation window of this vector is marked by an asterisk in A. This was the position of the 

fish in the physiological experiments, but the PIV measurements shown here were done 

without a fish. C: Corresponding frequency spectra of the velocity curves shown in B. In the 

Kármán vortex street large low frequency flow fluctuations are present. The highest peak in the 

spectrum corresponds to the calculated vortex shedding frequency. Arrow: calculated vortex 

shedding frequency. 
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Fig 27: Averaged frequency spectra of the neuronal responses of ALLN fibers (dotted, left y-

axis) and of the frequency spectra of corresponding PIV traces (black, right y-axis). From top to 

bottom: still water, running water (RW, flow velocity 10 cm*s-1) and Kármán vortex street (KVS, 

cylinder diameter 2.5 cm). Arrow indicates the calculated vortex shedding frequency. 

 

In contrast no prominent peak was found in the frequency spectra of the PIV data 

obtained under SW and under RW conditions (Fig 27).  

 

 

 

57



Lateral position of the cylinder  

Fish (trout) swimming in a KVS continuously change their position (Liao et al., 

2003b). In the physiological experiments the position of the fish could not be 

changed. Instead the position of the cylinder that generated the vortex street was 

varied. At all cylinder positions (p0 – p3, see material and methods and Fig. 1) a 

prominent peak was found close to the cVSF (cVSF = 0.8 Hz) in the averaged 

frequency spectra of the spike trains (Fig. 28) (peak positions were: p0: 1.05 Hz, p1: 

0.86 Hz, p2: 0.96 Hz and p3: 1.00 Hz). Regardless of cylinder position the 

frequency spectra of the PIV data also showed a prominent peak at about 1 Hz 

(Fig. 27). In the frequency range of 0.7 to 1.3 Hz the position of the cylinder had no 

effect on the power in the frequency spectra of the fibers (Kruskall-Wallis test: 

p=0.13) (p0, n = 46: 0.081 ± 0.046; p1, n=19: 0.070 ± 0.043; p2, n=24: 0.090 ± 

0.037 and p3, n=7: 0.109 ± 0.046).  

 

 

 

 

Fig 28: Averaged power spectra of 60 s spike trains recorded from ALLN fibers (dotted line, left 

y-axis) and of PIV traces (solid line, right y-axis) obtained with the cylinder at the positions p0, 

p1, p2 and p3. Arrow indicates the calculated vortex shedding frequency. 
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Variation of cylinder diameter 

As already mentioned the vortex shedding frequency of a KVS depends ot only on 

water velocity but also on cylinder diameter. Thus any change in cylinder diameter 

should affect the responses of primary lateral line afferents. The above 

experiments were repeated with a cylinder that had a diameter of 7.8 cm. This 

cylinder, placed at the position p0, also was exposed to a water velocity of 10 cm*s-

1. For this condition the cVSF is 0.25 Hz. As expected, the prominent peak in the 

frequency spectra of the afferent responses now shifted to a lower frequency (0.59 

Hz, n = 10). The peak at 0.59 Hz was in agreement with the most pronounced 

peak in the frequency spectrum of the PIV (0.5 Hz) (Fig. 29). The cVSF of 0.25 Hz 

is, however, different from both the VSF retrieved from the neuronal and the PIV 

data.  

 

In a further experiment a cylinder with a diameter of 1 cm was placed at the 

position p0 (water velocity again 10 cm*s-1). For this condition the cVSF is 2 Hz. 

However, in this experiment neither a prominent peak in the spectra of the 

neuronal data was found nor in the spectra of the PIV data (c.f. Fig. 29).  



 

 

 

Fig 29: Averaged frequency spectra of the spike trains of ALLN fibers (dotted, left y-axis) and 

of the corresponding PIV traces (black, right y-axis) under KVS conditions. From top to bottom: 

cylinder diameter of 1 cm (number of cells: n=32), 2.5 cm (n=46) and 7.8 cm (n=10). Water 

flow velocity 10 cm*s-1, cylinder position p0. Arrow indicates the calculated vortex shedding 

frequency.  
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Variation of water velocity 

The VSF should increase with increasing flow velocity (see formula 1). Therefore 

the flow velocities 6.5, 10 and 13.5 cm*s-1 were applied while using a cylinder with 

a diameter of 2.5 cm. As expected, the peak in the spectra obtained from the PIV 

data shifted towards higher frequencies when water velocity was increased (6.5 

cm*s-1: 0.6 Hz, cVSF: 0.52 Hz; 10 cm*s-1: 1 Hz, cVSF: 0.8 Hz; 13.5 cm*s-1:1.3 Hz, 

cVSF: 1.08 Hz). At a flow velocity of 6.5 cm*s-1 the spectrum of the neuronal data 

showed no peak close to the cVSF (0.52 Hz). However, at the flow velocities 10 

and 13.5 cm*s-1, the spectra of the neuronal data showed prominent peaks close 

to the cVSFs (c.f. Fig. 30).  

 

 

Fig 30: Averaged frequency spectra of the spike trains of ALLN fibers (dotted, left y-axis) and 

of the corresponding PIV traces (black, right y-axis) under KVS conditions. From top to bottom, 

water flow velocity was 6.5 (number of cells: n=14), 10 (n=96) and 13.5 cm*s-1 (n=24) (cylinder 

diameter 2.5 cm, Position p0). Arrow indicates the calculated vortex shedding frequency. 
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Discussion 
 

I Responses of ALLN fibers to dipole stimuli 

It was investigated, how afferent fibres of the ALLN of goldfish respond to running 

water and to sinusoidal wave stimuli presented in still and running water. In 

goldfish, the ALLN consists of a dorsal and ventral root that enter the brainstem as 

one nerve (Puzdrowski, 1989). Recordings were made from both roots but 

predominantly from the ventral root of the ALLN since it is more accessible in 

dorso-ventral electrode penetrations. As in previous studies (Engelmann et al., 

2002; Engelmann et al., 2000), it was distinguished between type I and type II 

ALLN fibres based on their sensitivity to a 10 cm*s-1 water flow. Flow-sensitive 

fibres (type I) increased their discharge rates in running water compared to still 

water rates. The discharge rates of flow-insensitive fibres (type II) in running water 

were comparable to those in still water. These findings are in agreement with 

previous studies on PLLN fibres (Engelmann et al., 2002; Engelmann et al., 2000). 

These studies suggest that type I ALLN fibres most likely innervated superficial 

neuromast that were permanently stimulated by background water flow resulting in 

altered discharge rates of the innervating fibres. In contrast type II ALLN fibres 

most likely innervated canal neuromasts that are not or only weakly stimulated by 

running water. The ratio between type I and type II fibres in the ALLN (119:34) was 

comparable to the ratio between type I and type II PLLN fibres in the goldfish 

(72:28) (Engelmann et al., 2002). Puzdrowski (1989) reported about 1000 

superficial and up to 100 canal neuromasts on the goldfish head. Since individual 

afferent fibres may innervate more than one SN (Münz, 1989), the reported ratio is 

in fair agreement with the relative proportions of CN and SN. 

 

The ongoing activity of ALLN fibres under still water conditions measured in this 

study (type I 27.2 ± 25.5 spikes*s-1; mean ± SD, type II 26.9 ± 18.7 spikes*s-1) are 

comparable to those reported for goldfish PLLN fibres (Engelmann et al., 2002): 

type I 30.1± 21.6 spikes*s-1, type II 26.1± 23.8 spikes*s-1 (Chagnaud et al., 2006): 

type I 19.3 ± 10.6 spikes*s-1·, type II 18.7 ± 14.9 spikes*s-1). Moreover, in each of 

these studies ongoing rates of type I fibres were not different from ongoing rates of 
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type II fibres. Thus, in goldfish, fibres innervating SNs cannot be distinguished from 

fibres innervating CNs based on their ongoing discharge rates in still water. This is 

in contrast to Kroese and Schellart (1992) who reported that in rainbow trout 

ongoing activities were lower in fibres innervating SNs than in fibres innervating 

CNs.  

Ongoing discharge rates of ALLN fibers, measured under different running water 

conditions, i.e. with or without a cylinder in the flow, were not different. In addition 

different cylinder positions had no effect on ongoing discharge rates. This is 

surprising since the PIV measurements showed that both average and RMS flow 

velocity changed if a cylinder was placed in the flow. In addition flow velocity and 

flow fluctuations increased if the cylinder was placed more lateral with respect to 

the location of the fish (see Fig. 9). However, the differences in flow velocity for 

different cylinder positions were in the order of only a few cm*s-1. The differences 

in average flow velocity without a cylinder and with a cylinder placed at p0, p1 and 

p2 were 2.3 cm*s-1, 1.3 cm*s-1, and 0.3 cm*s-1, respectively. In addition, different 

fibres may have a different sensitivity to water flow (Carton and Montgomery, 2002; 

Voigt et al., 2000) since they innervate neuromasts that can differ in orientation 

and/or location relative to the direction of the impinging water flow. These factors 

may have blurred systematic effects of different flow velocities on discharge rates.  

 

In analogy to the data from PLLN fibres (Engelmann et al., 2002; Engelmann et al., 

2000), the results reported herein show a clear functional separation between the 

two fiber populations in the goldfish ALLN. Responses to sinusoidal stimuli of type I 

fibres, which most likely received input from SN’s, were masked by unidirectional 

water flow (10 cm*s-1). In contrast, type II fibres, i.e. fibres that most likely received 

input from CN’s, responded about equally well to a sinusoidal stimulus under still 

and running water conditions. Thus, type I fibres, i.e. SNs, are impaired in their 

ability to represent oscillatory water motions in the presence of background flow, 

whereas type II fibres, i.e. CNs, can represent oscillatory water motions even in the 

presence of background water flow.  

The degree of masking was highly variable across fibres and complete masking of 

the responses was observed in only a few cases. In addition, the responses of a 

few fibres classified as type I were not masked in the presence of running water. 
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One factor that might explain variances in the degree of masking is a 

misclassification of fibres. In this study and in previous studies (Engelmann et al., 

2002; Engelmann et al., 2000), classification as type I or type II was based on 

whether or not fibres changed discharge rate in response to a 10 cm*s-1 water 

flow. However, both thresholds and slopes of flow-response functions can be 

highly variable across fibres (Carton and Montgomery, 2002; Voigt et al., 2000). 

Thus, it is possible that some fibres barely changed their discharge rate in a 10 

cm*s-1 water flow and therefore, by the criterion applied, may have been 

misclassified as flow-insensitive, even though these fibres may readily respond to 

higher water flow velocities. However, the responses to sine wave stimuli of all 

fibres that were classified as type II in this study were masked neither in terms of 

discharge rate nor in terms of phase-locking or both. 

Another factor that may have led to a misclassification of fibres as being flow-

sensitive is the damming pressure that builds up in front of a swimming fish and in 

front of a stationary fish that faces running water (Dubois et al., 1974; Hassan, 

1992). This may cause pressure differences across the fish’s head resulting in a 

stimulation of neuromasts both on the head surface and within head canals. As a 

consequence, ongoing rates would increase in running water. Nonetheless, it is 

conceivable that fibres affected by damming pressure may still be capable of 

encoding sinusoidal stimuli and therefore their responses to dipole stimuli should 

not be masked or only little affected by a background water flow.  

 

The degree of response masking of type I fibres to a dipole stimulus increased with 

increasing flow velocity. Thus, the degree of masking depended on the ratio 

between stimulus (dipole) and background noise (flow). This result is expected 

since primary lateral line afferents increase their discharge rate both with 

increasing displacement of a dipole stimulus (Mogdans and Bleckmann, 1999) and 

with increasing velocity of an external water flow (Carton and Montgomery, 2002; 

Voigt et al., 2000).  

In the present experiments, displacement amplitudes of the vibrating sphere 

ranged between a few micrometers and 150 µm, corresponding to water velocities 

between less than 1 cm*s-1and about 11 cm*s-1at the source (sphere), and 

background flow velocities were 6.5, 10 and 13.5 cm*s-1. Since nearfield flow 
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around a dipole source is attenuated with a rate of 1/r3 (r=radius of the vibrating 

sphere) (Kalmijn, 1989), the velocity of the dipole-generated water motions at the 

surface of the fish was always smaller than the background flow velocities. 

Nevertheless, complete masking was only observed if the lateral line was 

stimulated with dipole displacements ≤ 250 µm in rather strong background flows 

(≥ 6.5 cm*s-1).  

In some type I fibres, responses were masked in terms of phase-locking but not in 

terms of evoked discharge rate (Fig. 5B). Fibres of this type were generally not 

very sensitive to dipole stimuli. They responded even in still water with phase-

locked discharges but barely with an increase in discharge rate (compare level-

response functions in Fig. 5A and B). However, in a few type I fibres responses 

were neither masked in terms of phase-locking nor in terms of evoked discharge 

rates even at the strongest background flow velocity applied (Fig. 5C). A possible 

explanation is that these fibres were misclassified due to damming pressure as 

discussed above. It is also conceivable that these fibres were particularly sensitive 

to dipole stimuli and that background flow velocities greater than those used in the 

experiments were needed to mask their responses to sinusoidal water motions.  

Finally, in a few fibers the ability to represent the stimulus generated by the 

vibrating sphere increased at low flow velocities compared to still water conditions. 

This result may be due to the fact that these fibres increased their ongoing 

discharge rates in running water. This increase may have resulted in an increase in 

overall responsiveness causing stronger dipole-evoked responses and better 

phase-locking.  

 

PIV measurements revealed that the stimulus generated by the vibrating sphere 

was superimposed on the background water flow. This physical phenomenon can 

be demonstrated mathematically by vector addition. The fact that complete 

masking was observed only if the lateral line was stimulated with very small dipole 

displacements in rather strong background flows raises the question how lateral 

line neuromast can detect a small stimulus embedded in a strong background 

noise. The most likely scenario is that lateral line receptors adapt to d.c. (laminar) 

flow. Hair cells are known to adapt quickly (Eatock, 2000) and it has been shown 

that the hair cells of the lateral line system of Xenopus adapt to local flow (Görner, 
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1963). As a consequence the increased neural activity of the innervating afferent 

fibres should return to pre-flow levels, i.e. to still water levels after a short period of 

time. If this was the case, then any a.c. stimulus should be detected even in the 

presence of background flow, i.e. responses to a.c. stimuli should not be masked. 

However, adaptation to bulk water flow and a consequent unmasking of dipole-

evoked responses has not been observed (Carton and Montgomery, 2002; 

Engelmann et al., 2002; Voigt et al., 2000). Most likely this is due to the fact that 

the flow in the experimental tank was not laminar but exhibited velocity fluctuations 

even at the lowest flow velocities applied. These flow fluctuations can be 

interpreted as an a.c. component superimposed on the d.c. flow. This a.c. 

component will prevent the discharge rate from returning to pre-flow levels. PIV 

measurements revealed that with increasing flow velocity the amplitude of the flow 

fluctuations increased (Fig 21). If the amplitude of the velocity fluctuations in 

background flow exceed a certain value, fibres will start to show burst-like activity 

(Engelmann et al., 2002) in response to the flow and therefore may no longer be 

capable to respond with phase-locked discharges to a sinusoidal dipole stimulus. 

Thus if the amplitude of the a.c. component exceeds the amplitude of the a 

vibrating sphere stimulus, masking occurs. 

 

The ability of ALLN fibers to represent a vibrating sphere stimulus in a water flow 

was not altered, i.e. the degree of masking was not increased, if a cylinder was 

placed in the flow. Thus, additional fluctuations introduced by an obstacle in the 

flow did not affect the responses of ALLN fibers. This was again unexpected since 

the PIV measurements showed that the RMS of the flow increased with a cylinder 

placed in the flow, thus creating a more noisy environment. 

These results indicate that in the range tested the amount of noise (number of 

fluctuations) was not relevant for masking. Instead the amplitude of the noise 

(amplitude of the fluctuations) might cause the masking of the dipole signal. Thus 

the fibers’ responses reflect the combination of both the a.c. signals generated by 

the fluctuations of the flow and the a.c. signal generated by the vibrating sphere. 
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II Responses of lateral line fibers to running water 

In studies in which lateral line neuromasts were stimulated with a local water jet, 

afferents responded with an increase or decrease in spike rate depending on flow 

direction (Bauknight et al., 1976; Görner, 1963). This is due to the directional 

sensitivity of the hair cells. More recent studies investigated the responses of 

afferent fibers to sustained unidirectional gross water flow. The responses of lateral 

line neuromasts to water flow was investigated in the Antarctic notothenioid fish 

Trematomus bernacchii (Carton and Montgomery, 2002), the New Zealand long-fin 

eel Anguilla dieffenbachia (Voigt et al., 2000), and in the trout Onchorynchus 

mykiss and the goldfish Carassius auratus (Engelmann et al., 2002; Engelmann et 

al., 2003). In these fish a tonic increase in spike rate was observed in most units if 

flow velocity was increased. Only occasionally a fiber was found that decreased its 

discharge rate, and only at low flow velocities. Taking the antagonistic alignment of 

hair cells in the sensory epithelium of a lateral line neuromast into account (Flock, 

1971), on average only 50 % of all afferent fibers should respond with excitation to 

unidirectional water flow, i.e. there should be an equal number of fibers that 

decrease their discharge rate. However, in this study and in the studies of Voigt et 

al. (2000), Carton and Montgomery (2002) and Engelmann et al. (2002) nearly all 

afferent fibers increased their discharge rate if the fish was exposed to 

unidirectional water flow. The present study shows that fibers that increased their 

rate in one flow direction also increased their rate if the flow direction was reversed 

(Fig. 13). The small, but significant difference in the amount of rate increase 

between the different flow directions found in this study may be due to the 

asymmetrical shape of the fish that may have caused differences in the pressure 

field around the fish depending on whether the head or the tail faced the flow. 

Anyhow, since all fibers increased their discharge rate regardless of flow direction, 

they cannot code gross flow direction. But why do primary afferent fibers never 

decrease their discharge rate?  

The frequency spectra of the afferent spike trains showed an increase in power 

between 5-10 Hz. This decrease correlated with an increase in power in the PIV 

spectra that occurred in the same frequency band. However, PIV spectra were 

dominated by frequencies below 4 Hz. Since these frequencies were greatly 

attenuated in the spike train spectra, it seems likely that the neuromasts are not 
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sensitive to these very low frequencies. This, and the fact that they did not change 

their response properties if flow direction was reversed, further suggests that they 

did not respond to pure d.c. flow. There are several possible explanations for this. 

i) the cupulae of SNs are situated within the boundary layer that attenuates low-

frequency components, ii) additional flow fluctuations may be introduced by the 

fish’s skin and/or iii) due to adaptation the sensitivity of hair cells may decrease in 

the presence of a d.c. stimulus (as has been shown in auditory hair 

cells)(Hudspeth et al., 2000). Unfortunately, the actual cupula movements could 

not be measured during the recordings, thus the nature of the high pass filter 

remains obscure.  

If primary lateral line fibers do not respond to gross water flow it remains to be 

explained, why most fibers nevertheless increased their mean firing rate with 

increasing flow velocity. Both, the discharge rate and the RMS of the 

instantaneous frequency of anterior and posterior lateral line nerve fibers increased 

with increasing flow velocity (Figs. 15 and 17, left). Fibers that increased their 

discharge rate with increasing water flow switched from a fairly regular discharge 

pattern to a burst-like firing pattern. This was also apparent in the spectra of the 

responses which showed an increase in amplitude at the burst frequencies (4-10 

Hz). Average spike rates increased only if the RMS values of the IFs exceeded 

about 150% of the ongoing activity measured in still water. This shows that minor 

flow fluctuations in the tank lead only to a modulation of the firing rates that was 

not accompanied by increasing spike rates. Only at high flow velocities spike rates 

were significantly higher than spike rates in still water. A similar phenomenon can 

be observed if the lateral line is stimulated with a vibrating sphere. In this case 

afferent fibers show a phase locking of spikes at low stimulus amplitudes that is not 

accompanied by an increase in spike rate (Engelmann et al., 2002; Münz, 1985). A 

significant increase in spike rate only occurs at higher stimulus amplitudes. It 

seems likely that the increase in spike rate in running water, found in this study and 

in the studies of Voigt et al. (2000) and Carton and Montgomery (2002), were 

caused by flow fluctuations and not by the constant flow.  

It has been proposed that flow sensitive fibers innervate SNs and flow insensitive 

fibers innervate CNs (Engelmann et al., 2002; Engelmann et al., 2000). However, 

in this study as well as in all other studies flow response functions did not reveal 
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the presence of two distinct populations of afferent fibers (Carton and Montgomery, 

2002; Voigt et al., 2000). Instead fibers showed a continuum of flow sensitivity and 

even units that did not significantly increase their spike rate at low flow velocities 

finally did so at higher flow velocities. Whether a fiber is classified as flow sensitive 

or flow insensitive depends to a large degree on flow speeds applied. It was 

therefore not attempted to classify between flow sensitive and flow insensitive 

fibers. The focus of this study was to determine why flow sensitive fibers increase 

their rate, but not to determine whether they receive their input from superficial or 

canal neuromasts.  

The results do not exclude the possibility that gross flow velocity is encoded by the 

lateral line. A simple rate code that is a function of flow velocity, however, is 

unlikely. Although afferent fibers could code flow velocity indirectly by responding 

to the increasing flow fluctuations, this would not be a reliable method. At a given 

flow speed, fluctuations are probably very variable and depend - for instance - on 

the presence or absence of objects upstream. However, it is likely that fish monitor 

flow fluctuations as they move across their skin. The complex spatio-temporal flow 

patterns that emerges probably contains information about flow direction and flow 

velocity. This information may be analyzed centrally by fish. 

In this study the responses of lateral line fibers in a stationary still water fish that 

was exposed to different flow velocities were explored. The hydrodynamic stimuli 

such a fish experiences is different from a fish that moves through still water. In still 

water, there may be no flow-associated fluctuations and the lateral line neuromasts 

could well change their spike rate according to the relative velocity between fish 

and water thus allowing the fish to determine its swimming speed. In any case, the 

data suggest that in running water spike trains of flow sensitive lateral line afferents 

are caused by flow fluctuations and thus cannot code the direction and velocity of 

constant flow.   

The spatio-temporal flow dynamics measured with PIV revealed that flow 

fluctuations were spatially non-uniform and propagated with the flow. Thus the time 

a certain velocity fluctuation needs to move from the neuromast first stimulated to 

the neuromast second stimulated can be used to calculate flow velocity and flow 

direction.  



 

 

70

To test whether the lateral line system uses the fluctuations to detect flow direction 

and flow velocity pairs of afferent fibers were recorded and cross-correlated. It was 

not surprising that under still water conditions there was no correlation between the 

recorded fibers. According to this and previous studies (Chagnaud et al., 2006; 

Engelmann et al., 2002; Engelmann et al., 2003; Palmer et al., 2005; Topp, 1983; 

Weeg and Bass, 2002) the discharge rate and the discharge pattern of lateral line 

fibers varies. 

Under running water conditions most fibers showed no correlation. This again has 

to be expected, as the flow fluctuations moved horizontally over the fish body and 

correlated mostly in a horizontal direction. Neuromast are widely distributed on the 

fish body (Puzdrowski, 1989), therefore it is likely that receptors that differ in their 

vertical position on the fish body show no or at best a weak correlation. Some 

fibers showed a correlation under running water conditions that increased with flow 

velocity. This was most likely due to the fact that the amplitude of the fluctuations 

also increased with flow velocity as shown by PIV measurements. One pair 

showed an almost perfect anti-correlation, i.e. spikes in one fiber never coincided 

with spikes in the other fiber. This most likely was a pair of fibers coming from the 

same neuromast, but from hair cells with opposite orientations.  

Double recordings showed that it is possible to extract flow velocity and flow 

direction from pairs of lateral line fibers. Whether flow fluctuations are used by the 

lateral line system has to be demonstrated in behavioral studies. 
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III Responses of lateral line fibers to a Kármán vortex street  

The mechanosensory lateral line consists of receptor organs that are situated 

either on the surface of the skin or in canals. The lateral line responds to the 

relative movements of water across the fish’s body. There are a number of 

possible sources for these water motions. The fish’s own movements cause large 

water displacements that could give important information about the flow pattern 

around the fish during swimming (Hanke and Bleckmann, 2004; Hanke et al., 

2000). Furthermore, flow patterns produced by swimming can be reflected or 

altered by nearby objects, i.e. flow pattern can be used to detect these objects as 

shown for the blind cave fish (Hassan, 1986). Since it is difficult to investigate the 

information processing of the lateral line system in freely moving fish, the vast 

majority of studies investigated stationary fish that were subject to water 

movements caused by external sources. Perhaps the most widely used stimulus 

was a vibrating sphere. The advantage of a vibrating sphere stimulus is that the 

water movements are predictable and well defined (Coombs et al., 1988). 

Frequency, amplitude and phase of the sinusoidal water movements caused by a 

vibrating sphere are easily controlled. The disadvantage of such a stimulus is that 

it is only one out of many stimulus types the lateral line system is exposed to under 

natural conditions. Therefore, a variety of other stimuli were used to study lateral 

line physiology. The stimuli included moving objects (Engelmann et al., 2003; 

Mogdans and Bleckmann, 1998) and constant unidirectional water flow (Carton 

and Montgomery, 2002; Engelmann et al., 2002; Engelmann et al., 2000; Voigt et 

al., 2000). The disadvantage of these latter stimuli is that they are quite variable 

and that the exact water flow at any given receptor can neither be controlled nor 

exactly quantified.  

Constant flow caused an increase in neuronal activity around 5-10 Hz that 

correlated with an increase in flow fluctuations of water movements in the same 

frequency band. However, it is not clear whether the cupula movements were 

determined by flow turbulences only or to secondary turbulences in the boundary 

layer (Engelmann et al., 2002). In other words, it is unclear to what extend the 
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afferent spike trains reflect true flow fluctuations. To investigate this, we generated 

vortex streets with predictable vortex shedding frequencies.  

Recordings from the ALLN have the advantage that the neuromasts recorded from 

are in the head region. Thus all neuromasts had approximately the same distance 

to the vortex shedding cylinder (20 cm, i.e. about 2 body lengths). This distance 

was chosen since swimming fish (trout) position themselves about 2 body lengths 

downstream from a cylinder placed in the flow (Liao et al., 2003b). The majority of 

units were flow sensitive according to the criteria of Engelmann et al. (2002). The 

ratio between flow-sensitive and flow-insensitive fibers was 7.5:1. This is in the 

range of a recent study on goldfish (Engelmann et al., 2002). Furthermore, the 

ongoing activity of ALLN fibers in the experiments is in agreement with the ongoing 

activity measured in the PLLN of goldfish (Chagnaud et al., 2006; Engelmann et 

al., 2002). 

In running water, spike rates of most units increased. Also Fourier spectra showed 

an increase in power in the range of 4-10 Hz. If measured in a Kármán vortex 

street, afferent fibers showed a prominent peak in the Fourier spectra close to the 

calculated VSF. The presence of vortex motions could also be confirmed by the 

PIV measurements. Further evidence that the prominent peak in the afferent spike 

train spectra was caused by the vortices is that variations of the VSF by flow speed 

or cylinder diameter shifted the peak in the expected direction. 

Compared to the most prominent peak in the PIV spectra, the VSF peak in the 

afferent spike train spectra was relatively small. The spike train spectra were 

dominated by a general increase in power that must have been due to the flow 

fluctuations that were present in running water even if no Kármán vortex street was 

present. Especially frequencies above 2-4 Hz were present in the spike trains 

whereas the PIV data show most of the power below 2 Hz. It is possible that flow 

fluctuations close to the fish skin were different from the flow fluctuations in the 

tank. Another possibility is that neuromasts were especially sensitive to 

frequencies above 2-4 Hz and that they were less sensitive to the low frequency 

fluctuations that dominated the PIV data, including the VSF. It should be noted that 

the VSF is the frequency the vortex motions detach from the cylinder. Even if the 

VSF does not show up in the single spike train spectra, a fish might well be able to 

detect the high frequency flow fluctuations in the vortex motions. 
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The results cannot prove that vortex motions and their shedding frequency are 

relevant for goldfish. There are certainly other filters in the central nervous system 

that extract relevant information and eliminate noise (Montgomery and Bodznick, 

1994). However, here we show for the first time that spike trains of afferent fibers 

contain the information about the structure of flow fluctuations including the vortex 

shedding frequency. Turbulent flow patterns in flowing water or caused by moving 

objects are highly unpredictable but may contain specific information relevant for 

the fish. By injecting a specific frequency (the VSF) into the water flow, the spectral 

composition of flow fluctuations was altered and corresponding changes in afferent 

fiber activity were found. Whether this lateral line information is used by the fish 

needs to be determined. 
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