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CHAPTER 1

Introduction

The different parts of this thesis are all devoted to developments in algebraic ge-
ometry that are, at least indirectly, motivated by mirror symmetry and physics.

Mirror symmetry was born with the prediction that numbers of rational curves in
a projective variety can be computed from period integrals on the space of complex
deformations of its mirror variety ([CdlOGP92]). The introduction of quantum coho-
mology [KM94] and Frobenius manifolds [Dub93] led to both precise mathematical
definitions on the side of counting rational curves [BM96, BF97, Beh97], and a con-
ceptual framework to the enumerative conjectures of mirror symmetry [Bar02].

At the ICM 1994, Kontsevich’s conjecture of homological mirror symmetry
[Kon95] added a new perspective. Four years later, again at the ICM, Dubrovin sug-
gested a new conjecture [Dub98] that could most likely be derived by combining a
good understanding of both classical and Kontsevich’s homological mirror symmetry.
However, it is a statement relating the Frobenius manifold of the quantum cohomol-
ogy of a projective variety V to properties of the derived category Db(V ) of coherent
sheaves on V , without any reference to its mirror partner: It claims that quantum mul-
tiplication in H∗(V ) becomes semisimple for generic parameters if and only if Db(V )
has a so-called exceptional collection, and makes more predictions comparing struc-
ture invariants of quantum cohomology and the exceptional collection. Chapter 2 is
devoted to this conjecture; more specifically, it is shown to hold for the blow-up of X
at points if it holds for X .

Dubrovin’s conjecture is not alone in claiming a relationship between the derived
category and quantum cohomology. For example, Ruan conjectured that birationally
K-equivalent varieties have isomorphic quantum cohomology [Rua99]—according to
a conjecture by Kawamata, they also have equivalent derived categories. Recently,
this has motivated the crepant resolution conjecture by Bryan and Graber, which is a
quantum cohomology analogue of the derived category formulation of McKay corre-
spondence [BKR01].

This relationship seems so far more coincidental than systematic. Bridgeland’s in-
troduction of stability conditions on the derived category might, among many other
things, eventually lead to a better understanding of this coincidence. Since their in-
troduction in [Bri02b], they have created interest from various different perspectives.
As proven by Bridgeland, the set of stability conditions is a smooth manifold; in the
above context, it is particularly interesting that, conjecturally, this moduli space has the
structure of a Frobenius manifold. At this point, its relation to the Frobenius manifold
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2 1. INTRODUCTION

of quantum cohomology remains unexplored beyond conjectures in [Bri02a] for the
case of P2.

Many questions about Bridgeland’s stability conditions are open. Chapter 3 is a
contribution towards the problem of constructing stability conditions in the sense of
Bridgeland. Apart from a few examples, even the existence of a stability condition on
the derived category Db(V ) of a smooth projective variety V is unknown. We intro-
duce the notion of a polynomial stability condition that should be seen as a natural limit
of stability conditions in the sense of Bridgeland. Our theorem 3.2.5 shows that their
moduli space is again a smooth manifold, generalizing the main result of [Bri02b];
further, theorem 4.2 shows the existence of a family of canonical polynomial stability
conditions for any projective variety V .

Finally, in chapter 4 we study a non-linear example of families of stability condi-
tions; it deforms Kontsevich’s notion of a stable map, which is fundamental for the def-
inition of quantum cohomology and Gromov-Witten invariants in algebraic geometry.
By Kontsevich’s definition, a stable map to a projective variety V is a map f : C → V
from a curve C with distinct marked points (x1, . . . , xn) in the smooth locus of C,
such that f has finitely many automorphisms that leave every marking fixed. In the
case of weighted stable maps, each marking is assigned a weighting between 0 and 1,
and marked points are allowed to collide as long as the sum of their weights does not
exceed one.

We show the existence of moduli space of weighted stable maps as proper Deligne-
Mumford stacks of finite type. We study in detail the birational behaviour of the moduli
spaces under changes of weights. We introduce a category of weighted marked graphs
to keep track of their boundary components and the natural morphisms between them.
By constructing virtual fundamental classes, Gromov-Witten invariants are defined.
We show that they satisfy all properties one might naturally expect. In particular,
weighted Gromov-Witten invariants without gravitational descendants do not depend
on the choice of weights; on the other hand, their behaviour when including gravita-
tional descendants promises to be interesting, in particular for the case of semisimple
quantum cohomology as studied in chapter 2.



CHAPTER 2

Semisimple quantum cohomology and blow-ups

1. Introduction

This chapter is motivated by a conjecture proposed by Boris Dubrovin in his talk
at the International Congress of Mathematicians (ICM) in Berlin 1998. It claims that
the quantum cohomology of a projective variety X is generically semisimple if and
only if its bounded derived category Db(X) of coherent sheaves is generated by an
exceptional collection. We discuss here a modification of this conjecture proposed in
[BM04] and show its compatibility with blowing up at a point.

Quantum multiplication gives (roughly speaking) a commutative associative mul-
tiplication ◦ω : H∗(X) ⊗ H∗(X) → H∗(X) depending on a parameter ω ∈ H∗(X).
Semisimplicity of quantum cohomology means that for generic parameters ω, the re-
sulting algebra is semisimple. More precisely, quantum cohomology produces a for-
mal Frobenius supermanifold whose underlying manifold is the completion at the point
zero of H∗(X). We call a Frobenius manifold generically semisimple if it is purely
even and the spectral cover map Spec(TM, ◦) → M is unramified over a general
fibre. Generically semisimple Frobenius manifolds are particularly well understood.
There exist two independent classifications of their germs, due to Dubrovin and Manin.
Both identify a germ via a finite set of invariants. As mirror symmetry statements in-
clude an isomorphism of Frobenius manifolds, this means that in the semisimple case
one will have to control only this finite set of invariants.

In [BM04], it was proven that the even-dimensional part Hev of quantum coho-
mology cannot be semisimple unless hp,q = 0 for all p 6= q, p + q ≡ 0 (mod 2). On
the other hand, the subspace

⊕
pH

p,p(X) gives rise to a Frobenius submanifold. This
suggested the following modification of Dubrovin’s conjecture: The Frobenius sub-
manifold of (p, p)-cohomology is semisimple if and only if there exists an exceptional
collection of length rk

⊕
pH

p,p(X).
A consequence of this modified conjecture is the following: Whenever X has

semisimple (p, p)-quantum cohomology, the same is true for the blow-up of X at any
number of points. We prove this in Theorem 3.1.1.

We would like to point out that our result suggests another small change of the
formulation of Dubrovin’s conjecture. Dubrovin assumed that being Fano is an ad-
ditional necessary condition for semisimple quantum cohomology. However, as our
result holds for the blow-up at an arbitrary number of points, it yields many non-Fano
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4 2. SEMISIMPLE QUANTUM COHOMOLOGY AND BLOW-UPS

counter-examples. We suggest to just drop any reference to X being Fano from the
conjecture.

2. Definitions and Notations

LetX be a smooth projective variety over C. ByHX :=
⊕

Hp,p(X,C), we denote
the space of (p, p)-cohomology. Let ∆0, . . . ,∆m,∆m+1, . . . ,∆r be a homogeneous
basis of HX , such that ∆0 is the unit, and ∆m+1, . . . ,∆r are a basis of H1,1(X).

We denote the correlators in the quantum cohomology of X by

〈∆i1 . . .∆in〉β.
This is the number of appropriately counted stable maps

f : (C, y1, . . . , yn) → X

where C is a semi-stable curve of genus zero, y1, . . . , yn are marked points on C, the
fundamental class of C is mapped to β under f , and ∆i1 , . . . ,∆in are cohomology
classes representing conditions for the images of the marked points. In the case of
β = 0 it is artificially defined to be zero if n 6= 3, and equal to

∫
X

∆i1 ∪∆i1 ∪∆i3 if
n = 3.

Such a correlator vanishes unless

(1) k(β) := (c1(X), β) = 3− dimX +
∑

(
|∆ij |

2
− 1)

where |∆ij | are the degrees of the cohomology classes.
Before writing down the potential of quantum cohomology and the resulting prod-

uct, we will define the ring that it lives in. Let {xk|k ≤ m} be the dual coordinates of
HX/H

1,1(X) corresponding to the homogeneous basis {∆k}. Instead of dual coordi-
nates inH1,1(X), we want to consider exponentiated coordinates. This is done most el-
egantly by adjoining a formal coordinate qβ for effective classes β ∈ H2(X,Z)/torsion
with qβ1+β2 = qβ1qβ2 . Now let

FX = Q[[xk, q]]

be the completion of the polynomial ring generated by xk and monomials qβ with β
effective.

We consider FX as the structure ring of the formal Frobenius manifold associated
to HX . The vector space HX acts on FX as a space of derivations: ∆k, k ≤ m acts
as ∂

∂xk
, and the divisorial classes ∆k, k > m act via qβ 7→ (∆k, β)qβ . Hence we can

formally consider HX as the space of horizontal tangent fields of the formal Frobenius
manifold M, and FX ⊗HX as its tangent bundle TM.

The flat structure of this formal manifold is given by the Poincaré pairing g onHX .
Given the flat metric, the whole structure of a formal Frobenius manifold is an algebra
structure on FX ⊗ HX over FX given by the third partial derivatives of a potential
Φ ∈ FX :

g(∆i ◦∆j,∆k) = ∆i∆j∆kΦ
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To be able to consistently work only with exponentiated coordinates on H1,1, we
slightly deviate from this definition: We use only the non-classical part

ΦX =
∑
β 6=0

〈e
P

k≤m xk∆k〉βqβ.

of the Gromov-Witten potential (it is a consequence of the divisor axiom that it
makes sense to write ΦX in this way), and define the product via g(∆i ◦ ∆j,∆k) =
g(∆i ∪ ∆j,∆k) + ∆i∆j∆kΦX . The choice of the ring FX is governed by the two
properties that it has to contain ΦX , and that HX has to act on it as a vector space of
derivations. This is enough to ensure that all standard constructions associated to a
Frobenius manifold are defined over FX .

Explicitly, the multiplication is given by

(2) ∆i ◦∆j = ∆i ∪ ∆j +
∑
β 6=0

∑
k 6=0

〈∆i∆j∆ke
P

k≤m xk∆k〉β∆kqβ

where ∆k are the elements of the basis dual to (∆k) with respect to the Poincaré
pairing. The multiplication endows FX ⊗ HX with the structure of a commutative,
associative algebra with 1⊗∆0 being the unit.

We call the whole structure of the formal Frobenius manifold on FX and HX re-
duced quantum cohomology. The map of rings

(3) FX → FX ⊗HX , f 7→ f ⊗∆0

is the formal replacement of the spectral cover map Spec(TM, ◦) → M of a non-
formal Frobenius manifold.

Definition 2.1. X has semisimple reduced quantum cohomology if the spectral
cover map (3) is generically unramified.

More concretely, semisimplicity over a geometric point FX → k of FX means that
after base change to k, the ring k ⊗ HX with the quantum product is isomorphic to
kr+1 with component-wise multiplication. Generic semisimplicity means that this is
true for a dense open subset in the set of k-valued points of FX .

Finally, we recall the definition of the Euler field of quantum cohomology. It is
given by

E = −c1(X) +
∑
k≤m

(
1− |∆k|

2

)
xk∆k.

It induces a grading on FX and FX ⊗ HX by its Lie derivative. E. g., a vector
field is homogeneous of degree d if LieE(X) = [E , X] = dX . It is clear that the
Poincaré pairing is homogeneous of degree (2− dimX) by the induced Lie derivative
on (H∗

X)⊗2. Further, from the dimension axiom (1) it follows that ΦX is homogeneous
of degree (3 − dimX). It is a purely formal consequence of these two facts that the
multiplication ◦ is homogeneous of degree 1 with respect to E (see [Man99, section
I.2]).
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3. Semisimple quantum cohomology and blow-ups

3.1. Motivation. So let us now assume that the variety X satisfies the modified
version of Dubrovin’s conjecture, i. e. that it has both an exceptional collection of
length rk

⊕
pH

p,p(X), and semisimple reduced quantum cohomology. Let X̃ be its
blow-up at some points. By remark 4.4.2, this is a test for the modified version of
Dubrovin’s conjecture 4.2.2: We know that X̃ has an exceptional system of desired
length, so it should have semisimple reduced quantum cohomology as well:

Theorem 3.1.1. Let X̃ → X be the blow-up of a smooth projective variety X at
any number of closed points.

If the reduced quantum cohomology of X is generically semisimple, then the same
is true for X̃ .

In the case of dimension two, Del Pezzo surfaces were treated in [BM04], where
the results of [GP98] on their quantum cohomology were used. The generalization
presented here uses instead the results in Andreas Gathmann’s paper [Gat01], with an
improvement from the later paper [Hu00] by J. Hu. The essential idea is a variant of
the idea used in [BM04]: a partial compactification of the spectral cover map where
the exponentiated coordinate of an exceptional class vanishes. However, in our case,
this is only possible after base change to a finite cover of the spectral cover map.

3.2. More notations. We want to compare the reduced quantum cohomology of
X̃ with that of X . We may and will restrict ourselves to the blow-up j : X̃ → X
of a single point. For the pull-back j∗ : H∗(X) → H∗(X̃) and the push-forward
j∗ : H

∗(X̃) → H∗(X) we have the identity j∗j
∗ = idH∗(X). Hence H∗(X̃) =

j∗(H∗(X)) ⊕ ker j∗ canonically. We will identify j∗(H∗(X)) with H∗(X) from now
on and get a canonical decomposition HX̃ = HX ⊕HE with HE =

⊕
1≤k≤n−1 C ·Ek,

where E is the exceptional divisor of j. The dual coordinates (xk) =: x on
HX/H

1,1(X) get extended via coordinates (xE2 , . . . , x
E
n−1) =: xE to dual coordinates

of HX̃/H
1,1(X̃). Let E ′ ∈ H2(X̃) be the class of a line in the exceptional divisor

E ∼= Pn−1. From Poincaré duality and the decomposition of H∗(X̃), we get a corre-
sponding decomposition H2(X̃,Z) = H2(X,Z)⊕Z ·E ′ in homology, where we have
identified H2(X) with its image via the dual of j∗. With this identification, the cone of
effective curves in X is a subcone of the effective cone in X̃ . Hence FX is a subring
of FX̃ . We will call elements β ∈ H2(X) ⊂ H2(X̃) non-exceptional, and β ∈ ZE ′

purely exceptional.
We can also view FX as a quotient of FX̃ : Let I be the completion of the subspace

in FX̃ generated by monomials xa · (xE)bqβ̃ with b 6= (0, . . . , 0) or β̃ 6∈ H2(X). Then
evidently FX = FX̃/I . But note that I is not an ideal, as there are effective classes
β̃1, β̃2 ∈ H2(X̃) \H2(X) whose sum β̃1 + β̃2 is in H2(X).

Also, it is not true that FX ⊗HX is a subring of FX̃ ⊗HX̃ . The next section will
summarize the results of [Gat01] that will enable us to study the relation between the
two reduced quantum cohomology rings.
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3.3. Gathmann’s results.

Theorem 3.3.1. The following assertions relate the Gromov-Witten invariants of
X̃ to those of X (which we will denote by 〈. . . 〉X̃β and 〈. . . 〉Xβ , respectively):

(1) (a) Let β ∈ H2(X̃) be any non-exceptional homology class—so β is any ele-
ment of H2(X)—, and let T1, . . . , Tm be any number of non-exceptional
classes in H∗(X) ⊂ H∗(X̃), which we can identify with their preimages
in H∗(X). Then it does not matter whether we compute their Gromov-
Witten invariants with respect to X̃ or X:

〈T1 ⊗ · · · ⊗ Tm〉X̃β = 〈T1 ⊗ · · · ⊗ Tm〉Xβ .

(b) Consider the Gromov-Witten invariants 〈T1 ⊗ · · · ⊗ Tm〉X̃β with β being
purely exceptional, i. e. β = d · E ′, and let n be the dimension of X .
If any of the cohomology classes T1, . . . , Tm are non-exceptional, the
invariant is zero. All invariants involving only exceptional cohomology
classes can be computed recursively from the following:

〈En−1 ⊗ En−1〉X̃E′ = 1.

They depend only on n.
(2) (a) Using the associativity relations, it is possible to compute all Gromov-

Witten invariants of X̃ from those mentioned above in 1a and 1b.
(b) Vanishing of mixed classes: Write β̃ ∈ H2(X̃) in the form β̃ = β+d ·E ′

where β is the non-exceptional part; assume that β 6= 0. Let T1, . . . , Tm
be non-exceptional cohomology classes. Let l be a non-negative integer,
and let 2 ≤ k1, . . . , kl ≤ n− 1 be integers satisfying

(k1 − 1) + · · ·+ (kl − 1) < (d+ 1)(n− 1).

Unless we have both d = 0 and l = 0, this implies the vanishing of

〈T1 ⊗ · · · ⊗ Tm ⊗ Ek1 ⊗ · · · ⊗ Ekl〉β = 0.

Proof. The statement in no. 1a is proven by J. Hu in [Hu00, Theorem 1.2]. This is
lemma 2.2 in [Gat01]; since the proof of this lemma is the only place where Gathmann
uses the convexity of X (see remark 2.3 in that paper), we can drop this assumption
from his theorems.

The other equations follow trivially from statements in lemma 2.4 and proposition
3.1 in [Gat01]. 2

3.4. Proof of Theorem 3.1.1. Let us first restate Gathmann’s results in terms of
the potentials ΦX and ΦX̃ : We can write ΦX̃ as

(4) ΦX̃ = ΦX + Φpure + Φmixed

where ΦX is the sum coming from all non-exceptional β̃ = β and non-exceptional
cohomology classes (coinciding with the potential of X by no. 1a), Φpure is the sum
coming from all correlators with β̃ being purely exceptional (i. e. a positive multiple
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of E ′), and Φmixed the sum from correlators for mixed homology classes β̃ = β+d ·E ′

with 0 6= β ∈ H2(X) and d 6= 0.
Now let Ẽ and E be the Euler fields of X̃ and X , respectively. Let us consider the

grading induced by

Ẽ − E = (n− 1)E +
∑

2≤k≤n−1

(1− k)xEk E
k.

Lemma 3.4.1. With respect to Ẽ − E , the potential Φpure is homogeneous of degree
3− n, and Φmixed only has summands of degree less than or equal to 1− n.

Proof. The assertion about Φpure is just the dimension axiom (1) of X̃ , as
EΦpure = 0. The statement about Φmixed is equivalent to Gathmann’s vanishing result,
theorem 3.3.1 no. 2b. 2

Let J C FX̃ be the ideal generated by xE2 , . . . , x
E
n−1. We will show that the spectral

cover map of X̃ is already generically semisimple when restricted to the fibre

(5) FX̃/J → HX̃ ⊗ FX̃/J.

Write a monomial qβ̃ in FX̃ as qβ̃ = Q−dqβ if β̃ = β + d · E ′ with β ∈ H2(X).
We make the base change to the cover given by adjoining Z := n−1

√
Q. More pre-

cisely, we first localize1 at Q−1 and adjoin an (n − 1)-th root of Q: We consider
R := (FX̃/J) [Q][Z]/(Zn−1−Q).

On the other hand, consider the subring B of R that consists of power series in
which Z only appears with non-negative degrees.2 Then R is a completion of the
localization B[Z−1] of B. We claim that the quantum product “extends” to a product
over B.

We define M as the free B-submodule of B ⊗H∗(X̃) generated by

〈H∗(X), ZE, Z2E2, . . . , Zn−1En−1 = QEn−1〉.

More invariantly,B is the completed subspace ofR generated by monomials with non-
positive degree with respect to Ẽ − E . And M is the submodule of B ⊗HX̃ generated
by B ⊗HX and all elements of strictly negative degree in B ⊗HE .

Lemma 3.4.2. • The quantum product restricts to M , i. e. M ◦M ⊆ M ,
and there is the following cartesian diagram:

B

��

// M

��

R // R⊗H∗(X̃)

1Note that Q itself is not an element of FX̃ .
2The ring B is neither FX [[Z]] nor FX [Z]; it is a different completion of FX [Z].
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• Consider the push-out with respect to B → B/(Z) = FX . Then the spectral
cover map decomposes as

B //

��

M

��
FX // (FX ⊗HX)⊕ FX [z]/(zn−1 − (−1)n−1)

where the product on FX ⊗HX is the quantum product of X .

First, we show how to derive Theorem 3.1.1 from the above lemma. By the induc-
tion hypothesis, FX → FX ⊗ HX is generically semisimple. The second part of the
lemma then tells us that the map B → M is generically semisimple over the fibre of
Z = 0.

E. g. by the criterion [EGA, IV, Proposition 17.3.6] of unramifiedness, it is clear
that semisimplicity is an open condition for finite flat maps. Hence, also B → M
is generically semisimple. The same is then true for the base change to the com-
pleted localization (FX̃/J)[Q][Z]/(Zn−1−Q). It is also evident that the finite exten-
sion (FX̃/J)[Q] → (FX̃/J)[Q][Z]/(Zn−1−Q) cannot change generic semisimplicity.
Hence the spectral cover map (5) must be generically semisimple (as its localization
at Q is). And again by openness of semisimplicity, it also holds for the full reduced
quantum cohomology of X̃ .

Proof.[of the lemma] We want to analyze the behaviour of multiplication with
respect to the grading of Ẽ − E . We decompose the quantum product ◦X̃ , un-
derstood as a bilinear map (B ⊗ HX̃) ⊗ (B ⊗ HX̃) → B ⊗ HX̃ , into a sum
◦X̃ = ◦X + ◦Eclass + ◦pure + ◦mixed according to the decomposition of ΦX̃ in (4); we have
written ◦Eclass for the classical cup product of exceptional classes Ei ◦Eclass E

j = Ei+j

for 0 ≤ i, j ≤ n − 1 and i > 0 or j > 0. So for example ◦pure is defined by
g̃(U ◦pure V,W ) = UVWΦpure with g̃ as the Poincaré pairing on X̃ .

We claim that ◦X , ◦pure and ◦mixed are of degree 0, 1 and ≤ −1, respectively.
This is clear for ◦X and follows by standard Euler field computations from the

assertions in lemma 3.4.1 (compare with the computations in [Man99, section I.2]):
Take a homogeneous component Φd of degree d of any of the two relevant poten-

tials, and ◦d the corresponding component of the multiplication. Let U , V and W be
vector fields of degree u, v and w, respectively:

(Ẽ − E)g̃(U ◦d V,W ) = (Ẽ − E)UVWΦd

= [Ẽ − E , U ]VWΦd + U [Ẽ − E , V ]WΦd

+ UV [Ẽ − E ,W ]Φd + UVW (Ẽ − E)Φd

= (u+ v + w + d)UVWΦd

= (u+ v + w + d)g̃(U ◦d V,W )

(6)

Now write g̃ = g + gE where g is the Poincaré pairing of X and gE the pairing
of exceptional classes gE(Ei, Ek) = δi+j,n(−1)n−1. Then g is of degree zero, and
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gE of degree 2 − n with respect to Ẽ − E . Let ◦d = ◦0
d + ◦Ed accordingly. Then

U ◦d V = U ◦0
d V + U ◦Ed V is just the decomposition of U ◦d V in the orthogonal

sum HX̃ = HX ⊕HE; in particular, U ◦d V is homogeneous if and only if U ◦0
d V and

U ◦Ed V are. So we have:

(Ẽ − E)g̃(U ◦0
d V,W ) = (Ẽ − E)g(U ◦0

d V,W )

= g([Ẽ − E , U ◦0
d V ],W ) + g(U ◦0

d V, [Ẽ − E ,W ])

= g([Ẽ − E , U ◦0
d V ],W ) + wg(U ◦0

d V,W )

(Ẽ − E)g̃(U ◦Ed V,W ) = (Ẽ − E)gE(U ◦Ed V,W )

= LieẼ−E(g
E)(U ◦Ed V,W )

+ g([Ẽ − E , U ◦0
d V ],W ) + g(U ◦0

d V, [Ẽ − E ,W ])

= g((Ẽ − E)(U ◦Ed V ),W ) + (2− n+ w)g̃(U ◦Ed V,W ).

Comparing with (6), we see that U ◦0
d V is of degree u+ v + d, and U ◦Ed Y of degree

u+ v+d+n− 2, in other words, ◦0
d has degree d and ◦Ed degree d+n− 2. Hence, the

claim about the degree of ◦mixed is obvious, and the one about ◦pure follows from the
additional fact that the derivative of Φpure in HX-direction is zero, so that ◦0

pure is zero.
It is clear that M is closed with respect to ◦X and ◦Eclass. That it is also closed under

the multiplication ◦mixed follows directly by degree reasons from the description of M
in terms of degrees. With respect to ◦pure we can argue via degrees if we additionally
note that HX ◦pure HX̃ = 0.

So we have proven M ◦ M ⊆ M , and it remains to analyze the product on
M/ZM ∼= FX ⊗ HX̃ . Note that all elements in M of degree ≤ −2 are mapped to
zero in this quotient.

It is clear that ◦X induces the quantum product ofX on the subspace FX⊗HX and
is zero on HE . We already noted that HX ◦pure HX̃ = 0. Also, Y1 ◦mixed Y2 is always
zero if Y1 or Y2 is in M ∩B ⊗HE for degree reasons.

We investigate the product with ZE. For this we can ignore ◦X and ◦mixed. The
classical part contributes ZE ◦Eclass (ZE)i = (ZE)i+1 for 0 ≤ i ≤ n− 1. For ◦pure we
finally have to use the explicit multiplication formula:

ZE ◦pure (ZE)i = (−1)n−1
∑
d>0

∑
j

〈EEiEj〉dE′Zi+1En−jQ−d.

By the dimension axiom, this can only be non-zero if (n − 1)d = 3 − n + (1 − 1) +
(i − 1) + (j − 1), or, equivalently, (n − 1)(d + 1) = i + j. This is only possible for
d = 1 and i = j = n− 1, where we have 〈EEn−1En−1〉E′ = −〈En−1En−1〉E′ = −1.
We thus get

ZE ◦ (ZE)i =

{
Zi+1Ei+1 if i ≤ n− 2

(−1)nZE if i = n− 1.
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Let Y := (−1)nQEn−1 = (−1)nZn−1En−1. As a consequence of the last equa-
tion, multiplication by Y in the ring M/ZM is the identity on (M ∩B⊗HE)/ZM ∼=
FX ⊗ HE . In particular, Y is an idempotent and gives a splitting of M/ZM ∼=
FX ⊗HE⊕K into the image FX ⊗HE and the kernel K of Y ◦. The algebra structure
on FX ⊗HE is isomorphic to FX [z]/(zn−1 − (−1)n−1) via z 7→ ZE.

The kernel is generated by ∆1, . . . ,∆m,∆0 − Y , and ∆0 − Y is its unit. Mapping
each element in K to its degree zero component, we get an isomorphism K → FX ⊗
HX that maps the multiplication on K isomorphically to its degree zero component
◦X , and the lemma is proven. 2

3.5. Further Questions. The first example where our theorem applies is the case
of X = Pn. For n = 2, this yields the semisimplicity of quantum cohomology for
all Del Pezzo surfaces as proven earlier in [BM04]. Further, semisimplicity has been
established in [TX97] by Tian and Xu, using results of Beauville (see [Bea97]), for
low degree complete intersections in Pn.

Generally speaking, once the three-point Gromov-Witten correlators are known,
and thus generators and relations for the small quantum cohomology ring, it is an exer-
cise purely in commutative algebra to check generic semisimplicity in small quantum
cohomology. For example, using Batyrev’s formula for Fano toric varieties [Bat93]
and its explicit version for the projectivization of spliting bundles over Pn given in
[AM04], semisimplicitiy can be shown to hold for these bundles. In the recent preprint
[Cio05], generic semisimplicity was systematically studied for three-dimensional Fano
manifolds, thus verifying Dubrovin’s conjecture for 36 Fano threefolds out of 59 hav-
ing purely even-dimensional cohomology.

Of course, our theorem 3.1.1 covers only the first part of Dubrovin’s conjecture. It
would be very encouraging if it was possible to show his statement on Stokes matrices
in a similar way. To my knowledge, the only case where this part has been checked is
the case of projective spaces (cf. [Guz99]).

Revisiting Gathmann’s algorithm to compute the invariants of X̃ (Theorem 3.3.1,
no. 2a), we notice that all the initial data it uses is already determined by the multi-
plication in the special fibre Z = 0 of our partially compactified spectral cover map.
In other words, the Frobenius manifold on FX̃ and HX̃ is already determined by the
structure at Z = 0.

Yet our construction does not yield a Frobenius structure at the divisor Z = 0. If
there was a formalism of Frobenius manifolds with singularities along divisors, and
if there was a way to extend Dubrovin’s Stokes matrices to these divisorial Frobenius
manifolds, this might also lead to an elegant treatment of Stokes matrices of blow-ups.

Also, one would like to extend the method to the case of the blow-up along a
subvariety, analogously to Orlov’s Theorem 4.4.1. The next-trivial case of the blow-up
along a fibre {x0} × Y in a product X × Y follows from our result and the discussion
of products in section 4.3.
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4. Exceptional systems and Dubrovin’s conjecture

In this section, we briefly review Dubrovin’s conjecture and its modified version,
and explain how our theorem fits into this context.

4.1. Exceptional systems in triangulated categories. We consider a triangulated
category C. We assume that it is linear over a ground field C.

Definition 4.1.1. • An exceptional object in C is an object E such that the
endomorphism complex of E is concentrated in degree zero and equal to C:

RHom•(E , E) = C[0]

• An exceptional collection is a sequence E0, . . . , Em of exceptional objects,
such that for all i > j we have no morphisms from Ei to Ej:

RHom•(Ei, Ej) = 0 if i > j

• An exceptional collection of objects is called a complete exceptional collec-
tion (or exceptional system), if the objects E0, . . . , Em generate C as a trian-
gulated category: The smallest subcategory of C that contains all Ei, and is
closed under isomorphisms, shifts and cones, is C itself.

The first example is the bounded derived category Db(Pn) on a projective space
with the series of sheavesO(i),O(i+1), . . . ,O(i+n) (for any i). Exceptional systems
were studied extensively by a group at the Moscow University, see e. g. the collection
of papers in [Rud90].

More generally, exceptional systems exist on flag varieties; other examples include
quadrics in Pn and projective bundles over a variety for which the existence of an
exceptional system is already known.

4.2. Dubrovin’s conjecture. On the other side of Dubrovin’s conjecture we con-
sider the Frobenius manifoldM associated (as in [Man99] or [Dub99]) to the quantum
cohomology of X . As already mentioned in the introduction, Dubrovin’s conjecture
relates generic semisimplicity of M to the existence of an exceptional system:

Conjecture 4.2.1. [Dub98] Let X be a projective variety.
The quantum cohomology of X is generically semisimple if and only if there exists

an exceptional system in its derived category Db(X).

In further claims of his conjecture, he relates invariants of M to characteristics
of the exceptional system: The so-called Stokes matrix S of the Frobenius manifold
should have entries Sij = χ(Ei, Ej). We almost completely omit these parts of his
conjecture in our discussion.

An expectation underlying Dubrovin’s conjecture is that the mirror partner of such
a varietyX will be the unfolding of a function with isolated singularities. The quantum
cohomology should be isomorphic to a Frobenius manifold structure on the base space
of the unfolding, as established by Barannikov for projective spaces, cf. [Bar01].
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If X has cohomology with Hodge indices other than (p, p), it can neither have an
exceptional system, nor can the Frobenius manifold of its quantum cohomology be
semisimple:

• To make sense of all parts of Dubrovin’s conjecture, an exceptional collection
should have length rkHev(X). But the length of an exceptional collection is
bounded by the rank of N∗(X), the group of algebraic cycles modulo numer-
ical equivalence.3 And this is bounded by rkN∗(X) ≤ rkHX .

• The subspace
⊕

pH
p,p(X) ⊂ H∗(X) gives rise to a Frobenius submanifold

M ′ ofM ; this is the Frobenius manifold we constructed in section 2. This is a
maximal Frobenius submanifold of M that has a chance of being semisimple
([BM04, Theorem 1.8.1]).

This suggested the following modification:

Conjecture 4.2.2. [BM04] The variety X has generically semisimple reduced
quantum cohomology (i. e. M ′ is generically semisimple) if and only if there exists
an exceptional collection of length rk

⊕
pH

p,p(X) in Db(X).

4.3. Products. It follows easily from well-known facts that Dubrovin’s conjecture
is compatible with products, i. e. when it is true for two varietiesX, Y , it will also hold
for their product X × Y .

Theorem 4.3.1. Let E0, . . . , Em be an exceptional system on X , and F0, . . . ,Fm′

one on Y . Then (Eik � Fjk)k forms an exceptional system on X × Y if (ik, jk)k is an
indexing of the set {1, . . . ,m} × {1, . . . ,m′} which satisfies ik < ik′ or jk < jk′ for
all k < k′.

This follows from the Leray spectral sequence computing the Ext-groups onX×Y .
It also shows that the Stokes matrix of the exceptional system on X × Y is the tensor
product of the Stokes matrices on X and Y :

χ(Eik � Fjk , Eik′ � Fjk′ ) = χ(Eik , Eik′ ) · χ(Fjk ,Fjk′ )
The corresponding statements hold for quantum cohomology: Let M and M ′ be

the Frobenius manifolds associated to the quantum cohomology of X and Y , respec-
tively. The Frobenius manifold of the quantum cohomology of X × Y is the tensor
product M ⊗M ′ ([KM96], [Beh99], [Kau96]). A pair of semisimple points in M and
M ′ yields a semisimple point in M ⊗M ′, and the Stokes matrix of the tensor product
is the tensor product of the Stokes matrices of M and M ′ ([Dub99, Lemma 4.10]). It
is also clear that the same holds for the reduced quantum cohomology on HX , HY and
HX ⊗HY .

Hence, Dubrovin’s conjecture follows for the product if it holds for X and Y . And
in cases where HX⊗HY = HX×Y , i. e.

⊕
pH

p,p(X)⊗
⊕

pH
p,p(Y ) =

⊕
pH

p,p(X×
Y ), the same holds for the modified conjecture 4.2.2.

3From the Hirzebruch-Riemann-Roch theorem, it follows easily that the Chern characters of the
exceptional objects are linearly independent.
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4.4. Complete exceptional systems and blow-ups.

Theorem 4.4.1. [Orl92] Let Y be a smooth subvariety of the smooth projective
variety X . Let ρ : X̃ → X be the blow-up of X along Y .

If both Y and X have an exceptional system, then the same is true for X̃ .

Consider the case where Y is a point: Let Pn−1 ∼= E ⊂ X̃ be the exceptional
divisor (n is the dimension ofX). If E0, . . . , Er is a given exceptional system inDb(X),
then OE(−n+ 1), . . . ,OE(−2),OE(−1), ρ∗(E0), . . . , ρ

∗(Er) is an exceptional system
in Db(X̃). Hence, the following holds:

Remark 4.4.2. If X has an exceptional collection of length rkHX , then the anal-
ogous statement is true for the blow-up of X at any number of points.



CHAPTER 3

Polynomial Bridgeland stability conditions

1. Introduction

This chapter introduces polynomial stability conditions, a generalization of Bridge-
land’s notion of a stability condition on a triangulated category [Bri02b]. We show that
it has the same deformation properties, and that every projective variety has a canoncial
family of polynomial stability conditions.

1.1. Bridgeland’s stability conditions. Since their introduction in [Bri02b], sta-
bility conditions for triangulated categories have drawn an increasing amount of inter-
est from various perspectives. Stability has been an important tool in studying abelian
categories for a long time; in algebraic geometry, the study of semistable sheaves and
their moduli spaces has drawn much attention. For an abstract study of the notion of
stability in an abelian category, see [Rud97].

Generalizing this notion of stability to triangulated categories can already be con-
sidered a breakthrough; this is the point of view adopted by [GKR04]. However, the
original motivation by Bridgeland is somewhat different, and twofold.

Originally, it developed as an attempt to understand Douglas’ construction
[Dou02] of Π-stability of D-branes mathematically. Following Douglas’ ideas,
Bridgeland showed that the set of stability conditions has a natural structure as a
smooth manifold. In the case of the bounded derived category Db(X) for a smooth
projective variety X , this moduli space of stability conditions is a fibre of the moduli
space of superconformal field theories (SCFTs); further deformations of a SCFT are
given by deformations of X .

Further, the analysis of stability conditions for K3 surfaces [Bri03] was an attempt
at studying the automorphism group of their derived categories by understanding its
action on the space of stability conditions.

Another motivation, suggested to me by Yuri I. Manin, is the following: It is well-
known that given ampleness of the canonical class (or its inverse) of X , the variety can
be reconstructed from its bounded derived category [BO01]. Without this assumption,
the statement becomes fundamentally wrong, and the proof breaks down already at its
first step, the intrisic characterization of point-like objects in Db(X) (the shifts k(x)[j]
of skyscraper sheaves for closed points x ∈ X).

However, proposals by Aspinwall [Asp03] suggest that a stability condition pro-
vides exactly the missing data to characterize the point-like objects. Inside Bridge-
land’s moduli space, there should be a special chamber of stability conditions that are

15
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essentially determined by two classes β, ω ∈ NSR(X) in the Néron-Severi group, with
ω being ample; see the next section for a more detailed description. Then point-like
objects are simply semi-stable objects (for such a stability condition) of correct class
in the K-group, and X should be reconstructed as their moduli space.

Moving to a different chamber of the moduli space of stability conditions, the
moduli space X̃ of semi-stable objects of the same class is expected to be a birational
transformation ofX , and its bounded derived categoryDb(X̃) will often be isomorphic
to Db(X).

1.2. Constructing stability conditions. Let X be a smooth, n-dimensional pro-
jective variety, Db(X) its bounded derived category of coherent sheaves, and N (X)
the numerical Grothendieck group of Db(X) (i.e. the quotient of the Grothendieck
group by the nullspace of the bilinear form χ(A,B) = χ(RHom(A,B))). A numeri-
cal stability condition on Db(X) can be given by a bounded t-structure (see definition
2.1.2) on Db(X) with heart A ⊂ Db(X), and a so-called central charge: a group
homomorphism Z : N (Db(X)) → C such that any object A ∈ A is mapped to a
semi-closed half-plane: Z(A) = reiπφ for r > 0, φ0 ≤ φ < φ0 + 1 and fixed φ0 ∈ R.

This positivity condition on the cone N+(A) ⊂ N (X) is highly non-trivial. For
any X , classes β, ω ∈ NS(X) ⊗ R in the Néron-Severi group with β arbitrary and ω
ample, one would expect to have a numerical stability condition with central charge
Zβ,ω given by the following formula:

(7) Zβ,ω(E) = (eβ+iω, v(E))

Here v : N (X) → Num∗(X) is the Mukai vector given by v(E) =

ch(E)
√

td(X), and the pairing (A,B) on Num∗(X) determined by (v(E), v(F )) =
−χ(RHom(E,F )) for E,F ∈ N (X). By Hirzebruch-Riemann-Roch, the pairing is
given by (A,B) = −

∫
X
P (A)·B, where P (A) is the parity operator that acts as (−1)k

on classes of codimension k.
This is the class of stability conditions we alluded to in the previous section when

describing Aspinwall’s picture. However, except for the case of K3 surfaces [Bri03],
and varieties that admit an exceptional collection in Db(X) with a strong additional
property [Mac04], the existence of a matching t-structure is unknown.

1.3. Polynomial stability conditions. In this chapter, we will show that it is pos-
sible to determine the limit of these t-structures as ω → ∞: Replacing ω by Nω,
the central charge Zβ,Nω given by equation (7) becomes a polynomial in N . We in-
troduce a notion of polynomial stability condition (Definition 2.1.4) where the central
charge has values in polynomials C[N ] instead of C; this gives a precise meaning to
a “stability condition in the limit of N → ∞”. With theorem 3.2.5, we show that
polynomial stability conditions satisfy the same deformation properties as in Bridge-
land’s situation. Further, in section 4 we show the existence of a canonical t-structure
whose central charge is Zβ,Nω defined above. The t-structure is given by a category of
perverse coherent sheaves [Bez00]; in Bezrukavnikov’s language, the heart consists of
“perverse sheaves of middle perversity”.
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1.4. Notation. If Σ is a set of objects in a triangulated category D (resp. a set
of subcategories of D), we write 〈Σ〉 as the full subcategory generated by Σ and ex-
tensions; i.e. the smallest full subcategory of D that is closed under extensions and
contains Σ (resp. contains all subcategories in Σ).

By a semi-metric on a set Σ we denote a function d : Σ×Σ → [0,∞] that satisfies
the triangle inequality and d(x, x) = 0, but is not necessarily finite or non-zero for two
distinct elements. Similarly, we call a function ‖ · ‖ : V → [0,∞] on a vector space a
semi-norm if it satisfies subadditivity and linearity with respect to multiplication with
scalars.

2. Polynomial stability conditions

2.1. Slicings.

Definition 2.1.1. Let (S,�) be a linearly ordered set, equipped with an order-
preserving bijection τ : S → S (called the shift) satisfying τ(φ) � φ. An S-valued
slicing of a triangulated category D is given by full additive extension-closed subcat-
egories P(φ) for all φ ∈ S, such that the following properties are satisfied:

(a) For all φ ∈ S, we have P(τ(φ)) = P(φ)[1].
(b) If φ � ψ for φ, ψ ∈ S, and A ∈ P(φ), B ∈ P(ψ), then Hom(A,B) = 0
(c) For all non-zero objects X ∈ D, there is a finite sequence φ0 � φ1 � · · · �

φn of elements in S, and a Postnikov tower of exact triangles

(8) F 0X // F 1X //

||yyyyy
F 2X //

{{www
ww

· · · F n−1X // F nX

{{vvv
vv

X1

bb

X2

cc

Xn

ee

with Xi ∈ P(φi).

This was called a “slicing” in the case of S = R in [Bri02b], and “stability data”
or “t-stability” in [GKR04]. The objects in P(φ) are called semistable of phase φ. We
follow [GKR04] in calling the Postnikov tower (8) the Harder-Narasimhan filtration
of X , and writing X  (X1, . . . , Xn) if we are only interested in the quotients of the
filtration. Elements of S are also called phases.

For immediate comparison, recall the definition of a bounded t-structure:

Definition 2.1.2. A bounded t-structure on a triangulated category D is a pair of
full subcategories (D≤0,D≥0) with the following properties:

(a) D≤0[1] ⊂ D≤0 and D≥0[−1] ⊂ D≥0.
(b) We write D≤i = D≤0[−i]. Then for any X ∈ D≤−1, Y ∈ D≥0 we have

Hom(X, Y ) = 0.

(c) For any object X ∈ D, there is an exact triangle

τ≤−1X → X → τ≥0X →[1]

with τ≤−1X ∈ D≤−1 and τ≥0X ∈ D≥0.
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(d) (Boundedness.) Any object X ∈ D is contained in D≤N and D≥M for some
N � 0 and M � 0.

From condition (b) it follows that τ≤−1 is functorial and a right adjoint to the in-
clusion D≤−1 ⊂ D. The subcategory A = D≤0 ∩ D≥0 is called the heart. It is
automatically abelian. IfD = Db(A) is the derived category of an abelian categoryA,
thenA can be recovered as the heart of the standard t-structureD≤0 = {X• ∈ Db(A) |
Hk(X•) = 0 for all k > 0}.

Every object X has a finite set of non-zero cohomology objects Hk(X) :=
τ≤kτ≥k(X)[k] ∈ A. They are part of exact triangles Hk(X•)[−k] → τ≥k(X

•) →
τ≥k+1(X) which yield a finite filtration of X . It follows that a bounded t-structure
yields a Z-valued slicing with P(n) = A[n], and in fact the two notions are equivalent
(see [Bri03, Lemma 3.1]).

From now on, let S be the set of continuous function germs φ : (R ∪
{+∞},+∞) → R such that there exists a polynomial z(N) ∈ C[N ] and a positive
function germ m : (R ∪ {+∞},+∞) → R>0 with z(N) = m(N)eπiφ(N) for N � 0.
The set S is linearly ordered by setting

φ ≺ ψ ⇔ φ(x) < ψ(x) for x� 0.(9)

(The condition that φ, ψ can be written as arguments of polynomial functions guaran-
tees that either φ ≺ ψ or ψ � φ.) It is equipped with a shift τ defined as τ(φ) = φ+1.
In our construction, S-valued slicings will play the role of R-valued slicings in Bridge-
land’s construction.

The following easy lemma is implicitly assumed in [GKR04], but we will need it
explicitly:

Lemma 2.1.3. Let S1, S2 be two linearly ordered sets equipped with shifts τ1, τ2,
and let π : S1 → S2 be a morphism of ordered sets commuting with τ1, τ2. Then π
induces a push-forward of stability conditions as follows: If P is an S1-valued slicing,
then π∗P(φ2) for some φ2 ∈ S2 is defined as 〈{P(φ1) | π(φ1) = φ2}〉.

Proof. Conditions (a) and (b) of definition 2.1.1 are evident. To prove
(c) for an object X , we start with its Harder-Narasimhan filtration X  
(X1,1, . . . , Xk−1,nk−1

, Xk,1, . . . , Xk,nk
, Xk+1,nk+1

, . . . , Xn,nn) given by P , where Xk,j

is of phase φk,j ∈ S1 such that φk := π(φk,1) = π(φk,2) = · · · = π(φk,nk
) and

π(φk,nk
) � π(φk+1,1). Repeated use of the octahedral axiom then yields objects Yk

with Harder-Narasimhan filtrations Yk  (Xk,1, . . . , Xk,nk
) and X  (Y1, . . . , Yn);

see [GKR04, Proposition 4.3 no. 2] for a complete proof. Since Yk ∈ π∗P(φk), the
assertion follows. 2

In the language of [GKR04], P is a “finer t-stability” than π∗P . We will make
use of the following push-forwards: By the projection π : S → R, φ 7→ φ(∞), we
obtain an R-valued slicing from every S-valued slicing. Further, for each φ0 ∈ S
we get a projection πφ0 : S → Z, φ 7→ maxn∈Z φ0 + n � φ (we could also choose
φ 7→ maxn∈Z φ0 + n ≺ φ). This produces a bounded t-structure from every S-valued
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slicing; in other words, an S-valued slicing is a refinement of a bounded t-structure,
breaking up the category into even smaller slices.

For any interval I in the set of phases, we get an extension-closed subcategory
P(I) = 〈{P(φ) | φ ∈ I}〉. In the case of an S-valued slicing, the categories P([φ, φ+
1)) and P((φ, φ+ 1]) are abelian, as they are the hearts of the t-structures constructed
in the last paragraph. If φ ≺ ψ ≺ φ + 1, the subcategories P([φ, ψ]),P([φ, ψ)) etc.
are quasi-abelian:1 The proof for these statements carries over literally from the one
given by Bridgeland, because we can include these categories into the abelian category
P([φ, φ+ 1)). The slices P(φ) are abelian.

Definition 2.1.4. A polynomial stability condition on a triangulated category
D is given by a pair (Z,P), where P is an S-valued slicing of D and Z is a
group homorphism Z : K(D) → C[N ], with the following property: if 0 6= E ∈
P(φ), then Z(E)(N) = m(E)(N)eπiφ(N) for N � 0 and some function germ
m(E) : (R+∞,+∞) → R>0.

If Z actually maps to the constant polynomials C ⊂ C[N ], this is exactly a stability
condition as defined in [Bri02b, Definition 5.1].

2.2. Centered slope function. The following definition and proposition shows
how a polynomial stability condition can be seen as a refinement of a Z-valued slicing
induced by a compatible central charge Z.

Definition 2.2.1. A polynomial stability function on a quasi-abelian category A is
a group homorphism Z : K(A) → C[N ] such that there exists a function φ0 ∈ S with
the following property:

For any 0 6= E ∈ A, we can write Z(E)(N) = rE(N)e2πiφE(N) with rE(N) > 0
and φ0 � φE ≺ φ0 + 1.

Approximately, this means that Z is mapping the “effective cone” in K(A) to one
half-plane for N � 0. We call φE the phase of E; the function ObA → S, E 7→ φE
is a slope function in the sense that it satisfies the see-saw property on short exact
sequences (cf. [Rud97]). An object 0 6= E is said to be semistable with respect to Z
if for all subobjects 0 6= A ⊂ E, we have φA � φE (equivalently, if for every quotient
E � B in A we have φB � φE). We say that a stability function has the Harder-
Narasimhan property if for all E ∈ A, there is a finite filtration 0 = E0 ⊂ E1 ⊂
· · · ⊂ En = E such that Ei/Ei−1 are semistable with slopes φE1/E0 � φE2/E1 � · · · �
φEn/En−1 . Proposition 2.4 in [Bri02b] shows that the Harder-Narasimhan property can
be deduced from rather weak assumptions on Z.

Finally, note that the set of polynomials for which functions rE and φE as in the
above definitions exist forms a convex cone in C[N ]. Its only extremal ray is the set
of polynomials with φE = φ. This is an important reason why many of the proofs of
[Bri02b] carry over automatically to our situation.

1We refer to [Bri02b, section 4] for an introduction to quasi-abelian categories.
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Proposition 2.2.2. Giving a polynomial stability condition is equivalent to giving
a bounded t-structure on D and a polynomial stability function on its heart with the
Harder-Narasimhan property.

We first spell out how to go from one side to another: Given a polynomial stability
condition (Z,P), we choose any φ0 ∈ S. The projection πφ0 : S → Z defined in the
last section yields a bounded t-structure πφ0

∗ P with heart P([φ0, φ0 + 1)), for which Z
is a stability function. From a stability function on the heartA of a bounded t-structure,
we only need to produce an S-valued slicing: For any φ with φ0 � φ ≺ φ0 + 1, we let
P(φ) be the subcategory of A of objects semistable with respect to Z of phase φ, and
P(φ+ n) = P(φ)[n].

The only thing left to check is that starting with a polynomial stability condition
(Z,P), the semistable objects of slope φ with respect to the stability function Z on
P([φ0, φ0 + 1)) are identical to the objects in the original P(φ), and vice versa. This
is easily verified from two facts: For A ∈ P((φ, φ0 + 1)), the function φA (cf. defi-
nition 2.2.1) satisfies φ ≺ φA ≺ φ0 + 1, and given B ∈ P(φ), the homomorphisms
Hom(A,B) = 0 vanish.

3. The moduli space of polynomial stability conditions

3.1. The topology. We continue with the following translations of definitions of
[Bri02b] to our situation:

Definition 3.1.1. A polynomial stability condition (Z,P) is called locally finite if
there exists a real number ε > 0 such that for all φ ∈ S, the quasi-abelian category
P((φ− ε, φ+ ε)) is of finite length.

Definition 3.1.2. If the triangulated categoryD is linear over a field, a polynomial
stability condition (Z,P) on D is called numerical if Z : K(D) → C[N ] factors via
N (D), the numerical Grothendieck group.

Let StabPol(D) be the set of locally finite polynomial stability conditions on D.
Our next goal is to define a topology on StabPol(D). Bridgeland introduced the fol-
lowing generalized metric on the space of R-valued slicings:

For any X ∈ D and an R-valued slicing, let φ−P(X) and φ+
P(X) be the smallest

and highest phase appearing in the Harder-Narasimhan filtration of X according to
2.1.1(c), respectively. Equivalently, φ+

P(X) is the largest φ such that there exists a
stable object E of phase φ and a non-zero morphism E → X; similarly, φ−P(X) is the
smallest phase φ with a stable object E and a non-trivial morphism X → E. Then
d(P ,Q) ∈ [0,∞] is defined as

(10) d(P ,Q) = sup
0 6=X∈D

{∣∣φ−P(X)− φ−Q(X)
∣∣ , ∣∣φ+

P(X)− φ+
Q(X)

∣∣} .
Via π∗, we pull this back to a semi-metric dS on the space of S-valued slicings.
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Following [Bri02b, section 6], we introduce a semi-norm on the infinite-
dimensional linear space Hom(K(D),C[N ]) for all σ = (Z,P) ∈ StabPol(D):

‖ · ‖σ : Hom(K(D),C[N ]) → [0,∞]

‖U‖σ = sup

{
lim sup
N→∞

|U(E)(N)|
|Z(E)(N)|

∣∣∣∣E semistable in σ
}

(11)

The next step is to show that [Bri02b, Lemma 6.2] carries over: For 0 < ε < 1
4
,

and σ = (Z,P) ∈ StabPol(D) define Bε(σ) ⊂ StabPol(D) as

Bε(σ) = {τ = (Q,W ) | ‖W − Z‖σ < sin(πε) and dS(P ,Q) < ε} .

Lemma 3.1.3. If τ = (Q,W ) ∈ Bε(σ), then the semi-norms ‖ · ‖σ, ‖ · ‖τ of σ and
τ are equivalent, i.e. there are constants k1, k2 such that k1‖U‖σ < ‖U‖τ < k2‖U‖σ
for all U ∈ Hom(K(D),C[N ]).

Proof. Let X be an object with φ+
P(X)− φ−P(X) < η for some 0 ≤ η < 1

2
and the

given stability condition σ = (Z,P). Then the following inequality holds:

(12) lim sup
N→∞

|U(E)(N)|
|Z(E)(N)|

<
‖U‖σ

cos(πη)

The reason is the same as for the corresponding inequality (*) in the proof of [Bri02b,
Lemma 6.2]: Consider the filtration X  (X1, . . . , Xn) of X into its semistable fac-
tors, and apply (11) to all Xi. Since the points Z(Xi)(N) lie in a sector with an
angle smaller than πη for N � 0, we have |Z(X)(N)| ≥ cos(πη)

∑
i|Z(Xi)(N)| for

N � 0, and the lemma follows.
Now assume E is semistable in τ ; due to dS(P ,Q) < ε < 1

4
, the inequality (12)

holds with η = 2ε. We first apply it with U = Z −W to obtain an inequality of the
form |Z(E)(N)| < k|W (E)(N)| for all E semistable in τ , all N � 0 and a fixed
constant k. Then we apply (12) for an arbitrary U to conclude ‖U‖τ < k

cos(π2ε)
. The

other inequality follows with the same argument. 2

On Hom(K(D),C[N ]) we have the natural topology of point-wise convergence;
via the forgetful map (Z,P) 7→ Z we can pull this back to get a system of open sets
in StabPol(D). Now equip StabPol(D) with the topology generated, in the sense of a
subbasis2, by this system of open sets and the sets Bε(σ) defined above.

Let E be stable in some polynomial stability condition σ = (Z,P). Then the defi-
nition of the topology implies that the degree of the polynomial Z(E)(N) is constant
on the connected component of σ. In particular, Bridgeland’s moduli space Stab(D)
is just the union of the connected components of StabPol(D) where the image of the
central charge lies in C ⊂ C[N ].

As in [Bri02b], the subspace

{U ∈ Hom(K(D),C[N ]) | ‖U‖σ <∞}

2A topology T on a set S is generated by a subbasis Π of subsets of S if open sets in T are exactly
the (infinite) unions of finite intersections of sets in Π.
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is locally constant in StabPol(D) and hence constant on a connected component Σ,
denoted by V (Σ). It is equipped with the topology generated by the topology of point-
wise convergence and the semi-norms ‖·‖σ for σ ∈ Σ (which are equivalent by lemma
3.1.3); we have obtained:

Proposition 3.1.4. For each connected component of Σ ⊂ StabPol(D) there is a
topological vector space V (Σ), which is a subspace of Hom(K(D),C[N ]) such that
the forgetful map Σ → V (Σ) given by (Z,P) 7→ Z is continuous.

The next proposition shows that this map is locally injective:

Proposition 3.1.5. Suppose that σ = (Z,P) and τ = (Z,Q) are polynomial
stability conditions with identical central charge Z and dS(P ,Q) < 1. Then they are
identical.

Again, the proof of [Bri02b, Lemma 6.4] carries over literally. The main reason
for this is that the following argument works in our situation, too: Given an abelian
category A and a stability function Z, an object E ∈ A is stable of slope φ0 if and
only if φE = φ0 (where φE and φ0 are as defined in definition 2.2.1).

3.2. Deformations of a polynomial stability condition. We will prove that the
forgetful map (Z,P) 7→ Z is a local homeomorphism. In other words, a polynomial
stability condition can be deformed uniquely by deforming its central charge:

Theorem 3.2.1. Let σ = (Z,P) be a locally finite polynomial stability condition.
Then there is an ε > 0 such that if a group homomorphismW : K(D) → C[N ] satisfies
‖W − Z‖σ < sin(πε), there is a locally finite stability condition τ = (W,Q) with
dS(P ,Q) < ε.

We will follow Bridgeland’s arguments in [Bri02b, section 7] closely. We won’t re-
peat the proof of most of the preparatory lemmas, but we will present here the (slightly
modified) proof of the main step, the existence of Harder-Narasimhan filtrations for
the new stability condition (lemma 3.2.4).

Consider any interval (a, b) of length b−a ≺ 1−2ε. As mentioned previously, the
category P((a, b)) is quasi-abelian; it is embedded into the abelian category P([a, a+
1)). We say that A with a morphism A → B is a strict subobject of B, if it is a
subobject in P([a, a+1)), and the quotient is an element of P((a, b)); analogously for
strict quotient.

Since the phases ofW and Z differ by at most ε for σ-semistable objects, it follows
that W is a stability function for the category P((a, b)). For any object E ∈ P((a, b)),
we will write ψE and φE for its phase (in the sense of definition 2.2.1) with respect
to W and Z, respectively. We say that an object E of P((a, b)) is W -semistable if
ψA � ψE holds for all strict subobjects A ⊂ E.

We choose ε < 1
10

such that P([φ− 4ε, φ+ 4ε]) is of finite length for every φ ∈ S.
Let Q(φ) be the full subcategory of W -semistable objects in P((φ− ε, φ+ ε)).
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Lemma 3.2.2. Let (a, b) ⊂ S be an interval containing φ of length b−a ≺ 1−2ε.
Then every object in Q(φ) is W -semistable in the quasi-abelian category P((a, b));
conversely, every W -semistable object E of phase φ is an object of P((φ− ε, φ+ ε));
in particular, if (a, b) contains (φ− ε, φ+ ε), then E is an object in Q(φ).

The proofs of [Bri02b, Lemma 7.5 and Lemma 7.3] carry over with no changes.

Lemma 3.2.3. If φ � ψ, and A ∈ Q(φ), B ∈ Q(ψ), then Hom(A,B) = 0.

See [Bri02b, Lemma 7.6] for the proof. As a consequence, the pair of subcate-
gories Q([φ,+∞)) and Q((−∞, φ+ 1)) is semiorthogonal (definition 2.1.2, (b)).

Fix an interval (a, b) as above with the additional property that A := P((a, b)) has
finite length.

Lemma 3.2.4. Every objectE ∈ P([a+2ε, b−4ε]) has a finite Harder-Narasimhan
filtration by W -semistable objects in P((a, b− 2ε)); the filtration quotients Ei satisfy
a+ ε ≺ ψEi

≺ b− 3ε.

Proof. Let G be the set of objectsE inA = P((a, b−2ε)) that satisfy the following
two properties:

(a) Every W -semistable strict subobject A ⊂ E of E in A satisfies ψA ≺ b− 3ε.
(b) Every W -semistable strict quotient E � B of E in A satisfies ψB � a+ ε.

All objects of P([a + 2ε, b − 4ε]) are contained in G: for E � B, we have ψB + ε �
φ−B � a+ 2ε, and similarly for a subobject A ⊂ E.

We will show that all elements of G have a Harder-Narasimhan filtration as desired.
We say that E � B is a maximal destabilizing quotient (mdq) of E (with respect to
the slope function ψ), if every quotient E � B′ satisfies ψB′ � ψB, with equality
holding only if E � B′ factors via E � B. Both conditions may be tested only for
W -semistable B′, and if E � B is a mdq, then B is automatically W -semistable.

Assume that E ∈ G has a mdq E � B. Consider the short exact sequence 0 →
E ′ → E → B → 0 with E ′ 6= 0 (otherwise, E is already semistable). By assumption,
ψB � a+ ε. Now consider any quotient E ′ � B′, define K as its kernel and Q via the
following diagram of short exact sequences:

0

��

0

��
0 // K //

=

��

E ′ //

��

B′ //

��

0

0 // K // E //

��

Q //

��

0

B
= //

��

B

��
0 0
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By definition of mdq, ψQ � ψB and thus ψB′ � ψQ � ψB � a + ε by the see-saw
property; in particular, E ′ is an element of G. By induction on the length of E, we may
assume that E ′ has a Harder-Narasimhan filtration 0 = E ′

0 ⊂ E ′
1 ⊂ · · · ⊂ E ′

n = E ′.
We have just shown that its last filtration quotient E ′/E ′

n−1 satisfies ψE′/E′n−1
� ψB,

and thus this sequence extends to a Harder-Narasimhan filtration of E.
It remains to show that every object E ∈ G has a mdq. We will show this for the

larger class H of objects such that

(a) ψE ≺ b− 3ε.
(b) Every W -semistable strict quotient E � B of E in A satisfies ψB � a+ ε.

By induction on length, it is sufficient to construct a non-trivial strict subobject A ⊂ E
with ψA � ψE such that

(*) for every W -semistable quotient E � B with ψB � ψE , we have
Hom(A,B) = 0.

In that case, the quotient E ′ = E/A satisfies ψE′ ≺ ψE ≺ b − 3ε, so it is an element
of H; every quotient E � B as aboves factors via E � E ′, and thus a mdq of E ′ is
also a mdq for E.

If E is not contained in P((a, b − 2ε)), there is a non-trivial short exact sequence
0 → A → E → E ′ → 0 with A ∈ P([b − 2ε, b)) and E ′ ∈ P((a, b − 2ε)). The con-
dition (*) holds by applying lemma 3.2.2 to B. Otherwise, and if E is not semistable,
it has a W -semistable strict subobject A ⊂ E with ψA � ψE . Then b − ε � ψA by
lemma 3.2.2; again by the same lemma, it follows A ∈ Q(ψA). Hence we can use
lemma 3.2.3 to show condition (*). 2

In particular P(φ) ⊂ Q((φ− ε, φ+ ε)), and thus P((−∞, φ− ε]) ⊂ Q((−∞, φ))
as well as P([φ+ ε,+∞)) ⊂ Q((φ,+∞)). Given an arbitrary object E of D, we can
first construct a three-step filtration E  (E0, E1, E2) with E0 ∈ P([φ + ε,+∞)),
E1 ∈ P((φ− ε, φ+ ε)) and E2 ∈ P((−∞, φ− ε]). Since we assumed ε < 1

10
, lemma

3.2.4 gives a Harder-Narasimhan filtration of E1; altogether we obtain a filtration of E
that we can collapse into an exact triangle E ′ → E → E ′′ with E ′ ∈ Q([φ,+∞)) and
E ′′ ∈ Q((−∞, φ)).

Hence we have shown that Q([φ,+∞)),Q((−∞, φ)) is a bounded t-structure, for
which W is a stability function with the Harder-Narasimhan property. By proposi-
tion 2.2.2, the pair (W,Q) is a polynomial stability condition, finishing the proof of
theorem 3.2.1.

Combining propositions 3.1.4, 3.1.5 and theorem 3.2.1, we obtain the following
generalization of [Bri02b, Theorem 1.2]:

Theorem 3.2.5. The set StabPol(D) of locally finite polynomial stability condi-
tions on a triangulated category D is a smooth manifold. For each connected com-
ponent Σ ⊂ StabPol(D) there is a topological vector space V (Σ), a subspace of
Hom(K(D),C[N ]), such that the forgetful map σ = (Z,P) 7→ Z gives local coor-
dinates Σ → V (Σ) at every point of Σ.
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Restricted to the subset StabN
Pol(D) of numerical stability conditions, the same

statements hold with K(D) replaced by N (D). Additionally, if N (D) is finite dimen-
sional, then every connected component of StabN

Pol(D) is finite dimensional, too.

4. Canonical stability conditions

4.1. Perverse coherent sheaves. In this section we construct a stability condition
with a slope function as given in the introduction. The t-structure is given by a con-
struction of perverse coherent sheaves; their theory was apparently sketched, but not
published, by Deligne, and worked out by Bezrukavnikov [Bez00]. For convenience,
we use the somewhat more explicit description [Kas04] by Kashiwara.

Let X be a projective variety, and Db(X) its bounded derived category of com-
plexes of quasi-coherent sheaves with coherent cohomology. Consider the following
increasing filtration of CohX by the dimension of support:

A≤k = {F ∈ CohX | dim suppF ≤ 2k + 1}

Note that all A≤k are closed under subobjects and quotients, i.e. they are abelian
subcategories of CohX .

Theorem 4.1.1. [Bez00, Kas04] The following pair defines a t-structure on
Db(X):

D]≤n =
{
X ∈ D | H−k(X) ∈ A≤k+n for all k ∈ Z

}
(13)

D]≥n =
{
X ∈ D | Hom(A,X) = 0 for all k ∈ Z and A ∈ A≤k+n[k + 1]

}
(14)

In the language of [Bez00], this is the t-structure of perverse coherent sheaves of
middle perversity (i.e. for the perversity function p(x) = d−dim(x)

2
e in his notation).

In the notation of [Kas04], this t-structure is obtained from the filtration of supports
given by Φ−i = {Z ⊂ X | dimZ ≤ 2i + 1} = Sm−2i, which yields a t-structure by
theorem 3.5 and 5.9 ibid.

Our description of D]≥n differs from the one given by Kashiwara. However, D]≥n

is uniquely determined as the right orthogonal to D]≤n−1; the latter is generated by all
A ∈ A≤k+n[k + 1] and extensions, and hence its right-orthogonal must be the inter-
section of the right-orthogonals of the given objects A. The reason for our choice of
notation of A≤k as an increasing filtration is that these subcategories can be recovered
from the new t-structure as A≤k = A ∩D]≤k.

Theorem 4.2. Let β, ω be classes in the real Néron-Severi groupNS(X)⊗R such
that ω lies in the ample cone. Let Zβ,ω : K(X) → C[N ] be defined via

Zβ,ω(E)(N) =
(
eβ+iNω, v(E)

)
Then Zβ,ω(E) is a polynomial stability function for the heart A] of the bounded t-
structure defined in Theorem 4.1.1.
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Proof. We will prove that Zβ,ω satisfies the conditions of definition 2.2.1 for any
constant function φ with 0 < φ < 1

2
.

Let E be any non-zero object in A]. Let k be maximal such that H−k(E) 6=
0. We know H−k(E) ∈ A≤k by (13) and E ∈ D]≤0. If H−k(E) ∈ A≤k−1, then
Hom(H−k(E)[k], E) = 0 by (14) and E ∈ D]≥0, which is a contradiction. Hence
dim suppH−kE ∈ {2k, 2k + 1}.

Since ch(E) =
∑

i(−1)i ch(H i(E)), this means that the only contribution to
ch(E) (and thus, to v(E)) of dimension 2k + 1 and 2k comes from H−k(E). Thus

Zβ,ω(E)(N) = (−1)kZβ,ω(H
−k(E)) +O(N2k−1)

≈ (−1)k(eβ+iNω, v(H−k(E))) ≈ (−1)k+1

∫
X

e−iNω ch(H−k(E)).

Let n = dimX; if chn−(2k+1)(H
−k(E)) 6= 0, we get

Zβ,ω(E)(N) ≈ (−1)k+1

∫
X

(−i)2k+1 N2k+1

(2k + 1)!
ω2k+1 chn−(2k+1)(H

−k(E))

= i
N2k+1

(2k + 1)!

∫
X

ω2k+1 chn−(2k+1)(H
−k(E))

otherwise, chn−2k(H
−k(E)) 6= 0, and we obtain

Zβ,ω(E)(N) ≈ (−1)k+1

∫
X

(−i)2k N
2k

(2k)!
ω2k chn−2k(H

−k(E))

= − N2k

(2k)!

∫
X

ω2k chn−2k(H
−k(E)).

Since ω is an ample class, and chn−(2k+1)(H
−k(E)) respectively chn−2k(H

−k(E)) is
effective, this shows Zβ,ω(E)(N) → +i∞ respectively Zβ,ω(E)(N) → −∞ as N →
∞, and the claim follows. 2

The following remark goes in the direction of recovering X from Db(X) with a
stability condition:

Remark 4.2.1. The set of stable objects E in P(1) with Zβ,ω(E) = −1 is the set
of skyscraper sheaves k(x) for closed points x ∈ X .

Proof. This is almost tautological. E must be an element in A]. From Zβ,ω(E) =
−1 and the proof of theorem 4.2 it follows that E is concentrated in degree zero, that
the support of E is zero-dimensional, and that ch(E) = [pt]. Hence E = k(x).

Conversely, we need to show that all k(x) are stable. It is immediate that
k(x) ∈ A]. It is sufficient to show that k(x) has no subobjects in A]. Otherwise,
there would be an exact triangle A → k(x) → A′ →[1] with A,A′ ∈ A]. The
long exact sequence in cohomology (with respect to the standard t-structure) yields
0 → H−1(A′) → H0(A) → k(x) → H0(A′) → 0 exact and H−k(A′) ∼= H−k+1(A)
for k > 1. Hence H−k(A′) ∈ A≤k−1 for all k > 0. Thus τ<0(A

′) ∈ D]<0. Since
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A′ ∈ D]≥0, the canonical morphism τ<0(A
′) → A′ is zero, so τ<0(A

′) = 0. Thus both
A and A′ are concentrated in degree zero, and we have an impossible non-trivial short
exact sequence of coherent sheaves 0 → A→ k(x) → A′ → 0. 2

Of course, instead of a set-theoretic identification, we would like to exhibit X as
the moduli space of stable objects. This would need a work-around for the ”gluing
problem” of objects in the derived category.

We would like to remark that this stability condition is not equivalent to Gieseker-
or Rudakov-stability (the latter in the sense of [Rud97]). While our stability condi-
tion is also a refinement of Mumford-stability, it is a different refinement. This was
already observed in [Bri03]: Proposition 12.2 ibid. would not be true for objects E
with (c1(E)− r(E)B) · ω < 0 (using Bridgeland’s notation).





CHAPTER 4

Moduli spaces of weighted stable maps and
Gromov-Witten invariants

1. Introduction

In this chapter, we generalize Hassett’s notion of weighted stable curves to the case
of weighted stable maps, study their moduli spaces, and introduce Gromov-Witten
invariants based on weighted stable maps.

When constructing moduli spaces via geometric invariant theory, it it is well un-
derstood how different choices of a stability condition (and thus different polarizations
in the GIT setting) yield birationally different compactifications of the moduli space
(see e.g. [Tha96]). As discussed in the previous chapter, this should extend to the case
of derived categories in the setting of Bridgeland’s stability conditions. Hassett’s study
of the moduli spaces of weighted stable curves [Has03] yields a non-linear example
of the same phenomenon. By introducing weights to the markings, it yields differ-
ent compactifications of the Deligne-Mumford moduli space of curves with marked
points. We generalize his approach to the case of weighted stable maps, and study the
birational behaviour under weight changes in detail: the moduli spaces are constant
in chambers of a finite chamber decomposition of the space of weights, and change
birationally via blowups when crossing a wall of the chamber decomposition.

A further motivation of this study is the work by Losev and Manin on painted
stable curves [LM00, LM04, Man04], which are a special case of weighted stable
curves. They introduced the notion of an L-algebra as an extension of the notion of a
cohomological field theory of [KM94]. By constructing virtual fundamental classes,
we introduce Gromov-Witten invariants based on weighted stable maps. Including
gravitational descendants, we obtain an L-algebra in the sense of [LM04].

1.1. Plan. In section 2, we define the precise moduli problem and construct its
moduli space as a proper Deligne-Mumford stack. We show the existence of birational
contraction morphism for any reduction of the weights; in particular, all moduli spaces
of weighted stable maps are birational contractions of the Kontsevich moduli space.

We establish the existence of all basic morphisms (gluing, changing the target,
forgetting markings etc.) between them in section 3. Section 4 exhibits the reduction
morphisms as explicit blow-ups, and describes the chamber decompositions of the set
of admissible weights.

29
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In section 5, we postulate a list of basic properties for virtual fundamental classes,
and discuss consequences for the weighted Gromov-Witten invariants. After introduc-
ing the language of weighted graphs in section 6, we prove a more complete graph-
level list of properties of the virtual fundamental classes in section 7.

2. Geometry of moduli spaces of weighted stable maps

2.1. The moduli problem. Let k be a field of any characteristic, V/k a projective
variety, and β ∈ CH1(V ) an effective one-dimensional class in the Chow ring. Let S
be a finite set with weights A : S → Q ∩ [0, 1], and let g ≥ 0 be any genus.

Definition 2.1.1. A nodal curve of genus g over a scheme T/k is a proper, flat
morphism π : C → T of finite type such that for every geometric point Spec η of T ,
the fibre over Spec η is a connected curve of genus g with only nodes as singularities.

Given (g, S,A, β) as above, a prestable map of type (g,A, β) over T is a tuple
(C, π, s, f) where π : C → T is a nodal curve of genus g, s = (si)i∈S is an S-tuple of
sections si : T → C, and f is a map f : C → V with f∗([C]) = β, such that

(1) the image of any section si with positive weight A(i) > 0 lies in the smooth
locus of C/T ,

(2) for any subset I ⊂ S such that the intersection
⋂
i∈I si(T ) of the correspond-

ing sections is non-empty, we have
∑

i∈I A(i) ≤ 1.

Definition 2.1.2. A stable map of type (g,A, β) over T is a prestable map
(C, π, s, f) of the same type such that Kπ +

∑
i∈S A(i)si + 3f ∗(M) is π-relatively

ample for some ample divisor M on V .

We will often call such a curve (g,A)-stable when the homology class β is irrele-
vant.

Remark 2.1.3. Assume that (C, π, s, f) is a (g,A)-prestable map over T . Then it
is (g,A)-stable if and only if it is (g,A)-stable over geometric points of T .

Over an algebraically closed field, ampleness of Kπ +
∑

i∈S A(i)si + 3f ∗(M) can
only fail on irreducible components C that are of genus 0 and get mapped to a point
by f . Precisely, if nC is the number of nodal points (counted with multiplicity), then
ampleness is equivalent to nC +

∑
i : si∈C A(i) > 2.

In particular, stability can be checked with an arbitrary ample divisor M ; if all
sections have weight 1 (we will write this as A = 1S), weighted stability agrees with
the definition of a stable map by Kontsevich.

We consider the data g, S,A, β admissible, if β 6= 0 or 2g − 2 +
∑

i∈S A(i) > 0,
and if β is bounded by the characteristic (cf. [BM96, Theorem 3.14]: this means that
k has characteristic zero, or that β · L < char k for some very ample line bundle L on
V ).

Theorem 2.1.4. Given admissible data g, S,A, β, let M g,A(V, β) be the category
of stable maps of type (g,A, β) and their isomorphisms, with the standard structure as
a groupoid over schemes over Spec k.
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This category is a proper algebraic Deligne-Mumford stack of finite type.

2.2. Reduction morphisms for weight changes. If β 6= 0, consider the con-
figuration space Cg,S(V, β): the open substack of M g,A(V, β) of maps that do not
contract any irreducible component, and for which all markings are distinct. Obvi-
ously, Cg,S(V, β) does not depend on A, every M g,A(V, β) is a compactification of
Cg,S(V, β), and thus all the moduli stacks for differentA are birational. The following
proposition gives actual morphisms, provided that the weights are comparable. They
will be analyzed in more detail in section 4.

Consider two weights A,B : S → Q ∩ [0, 1] such that A(i) ≥ B(i) for all i ∈ S;
we will just write A ≥ B from now on. Any (g,A)-stable map is obviously (g,B)-
prestable, but it may not be (g,B)-stable. However, we can stabilize the curve with
respect to B:

Proposition 2.2.1. If g, S, β,A ≥ B are as above, there is a natural reduction
morphism

ρB,A : M g,A(V, β) →M g,B(V, β).

It is surjective and birational.1 Over an algebraically closed field η, it is given by ad-
justing the weights and then successively contracting all (g,B)-unstable components.

Given three weight data A ≥ B ≥ C, the reduction morphisms respect composi-
tion: ρC,A = ρC,B ◦ ρB,A.

In particular, every moduli space M g,A(V, β) is a birational contraction of the
Kontsevich moduli space M g,S(V, β) = M g,1S

(V, β).

2.3. Proofs of the geometric properties. As in the case of (g,A)-stable curves,
the following vanishing result is essential to ensure that all constructions are compati-
ble with base change:

Proposition 2.3.1. [Has03, Proposition 3.3] Let C be a connected nodal curve
of genus g over an algebraically closed field, D an effective divisor supported in the
smooth locus of C, and L an invertible sheaf with L ∼= ωkC(D) for k > 0.

1. If L is nef, and L 6= ωC , then L has vanishing higher cohomology.
2. If L is nef and has positive degree, then LN is basepoint free for N ≥ 2.
3. If L is ample, then LN is very ample when N ≥ 3.
4. Assume L is nef and has positive degree, and let C ′ denote the image of C

under LN with N ≥ 3. Then C ′ is a nodal curve with the same arithmetic genus as
C, obtained by collapsing the irreducible components of C on which L has degree
zero. Components on which L has positive degree are mapped birationally onto their
images.

1an isomorphism over a scheme-theoretically dense subset
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2.3.2. Stability and geometric points. We will first show how remark 2.1.3 follows
from this proposition: Consider the line bundle

L = ωkC(k
∑
i∈S

A(i)si)⊗ f ∗(O(M))3k,

where k is such that all numbers kA(i) are integer. Then by the proposition and the
base change theorems, formation of P := Proj(π∗(L

N)) commutes with base change.
By definition, L is relatively ample iff the induced morphism p : C → P is defined
everywhere and an open immersion. By [SGA1, exposé I, Théorème 5.1], this is the
case if and only if p is everywhere defined, radical, flat and unramified. All these
conditions can be checked on geometric fibers (for flatness, this follows from [EGA,
IV, Théorème 11.3.10], for unramifiedness from the conormal sequence).

2.3.3. Reduction morphisms. By Grothendieck’s descent theory, M g,A(V, β) is a
stack in the étale topology, i. e. the Isom functors are sheaves and any étale descent
datum is effective. We first show the existence of the natural reduction morphisms
ρB,A as maps between these abstract stacks. This will enable us to use the results of
[BM96] on M g,S(V, β) to shorten our proofs.

Using the vanishing result 2.3.1, the proof of proposition 2.2.1 is completely
analogous to that of theorem 4.1 in [Has03]: Let Bλ = λA + (1 − λ)B, and let
1 = λ0 > λ1 > · · · > λN = 0 be a finite set such that for all λ 6∈ {λ0, . . . , λN}, the
following condition holds: There is no subset I ⊂ S such that

∑
i∈I Bλ(i) = 1 and∑

i∈I B1(i) 6= 1. (*)
We will construct ρB,A as the composition ρB,A = ρB(λN ),B(λN−1) ◦ · · · ◦ρB(λ1),B(λ0).

This means we can assume that the condition (*) holds for all 0 < λ < 1.
Fix an ample divisor M on V , and fix a natural number k so that kB(i) is an

integer for all i. Let L be the invertible sheaf L := ωkC(k
∑

i∈S B(i)si) ⊗ f ∗(M)3

for any (g,A)-stable map f : C → V over T . Due to condition (*), it is nef; also
it has positive degree. Let C ′ be the image of C under the map induced by LN for
some N ≥ 3, i.e. C ′ = Proj R where R is the graded sheaf of rings on T given by
Rl = π∗((L

N)l). Let t : C → C ′ be the natural map, and let s′i = t ◦ si. By the same
arguments as in the non-weighted case, C ′ is a nodal curve of genus g, and s′i lie in
the smooth locus whenever B(i) > 0. By proposition 2.3.1, L has vanishing higher
cohomology; so the formation of π∗((LN)l) and hence that of C ′ commutes with base
change. Over an algebraically closed field, this morphism agrees with the description
via contraction of unstable components. In particular, C ′ is (b,B)-prestable.

The original f factors via the induced morphism f ′ : C ′ → V . Let L′ be the line
bundle L′ := ωkC′(k

∑
i∈S B(i)si) ⊗ f ′∗(M)3. Then t∗L = L′; hence L′ is ample

and (C ′, π′, s′, f ′) is a (g,B)-stable map. The induced morphism T → M g,B(V, β)
commutes with base change and thus yields the map ρB,A between stacks as claimed.

To prove surjectivity, it is sufficient to show that every (g,B)-stable map (C, s, f)
over an algebraically closed field K is the image of some (g,A)-stable map (C ′, s′, f ′)
over K. It is obvious how to construct C ′: If I ⊂ S is a subset of the markings such
that condition (2) of definition 2.1.1 is violated for the weighting A, i.e. the marked
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points si, i ∈ I coincide and
∑

i∈I A(i) > 1, we can attach a copy of P1(K) at this
point, move the marked points to arbitrary but different points on P1, and extend the
map constantly along P1.

Birationality (for β 6= 0) follows from the fact that ρB,A is an isomorphism over the
configuration space Cg,S(V, β), which is a dense and open subset. The compatibility
with composition follows immediately once we have shown the the moduli spaces are
separate: the two morphisms ρC,A and ρC,B ◦ ρB,A agree on the configuration space.

Proposition 2.3.4. The diagonal ∆: M g,A(V, β) → M g,A(V, β) ×M g,A(V, β) is
representable, separated and finite.

Let (C1, π1, s1, f1) and (C2, π2, s2, f2) be two families of (g,A)-stable maps to
V over a scheme T . We have to show that Isom((C1, π1, s1, f1), (C2, π2, s2, f2)) is
represented by a scheme finite and separated over T . Since V is projective and β is
bounded by the characteristic, we can use exactly the same argument as in the proof
of [BM96, Lemma 4.2]: one shows that étale locally on T , one can extend the set of
markings to S ∪ S ′ and find additional S ′-tuples of sections (s1)

′ and (s2)
′, such that

(C1, π1, s1 ∪ s′1) and (C2, π2, s2 ∪ s′2) are (g,A∪ 1S′)-stable curves, and that there is a
natural closed immersion

Isom((C1, π1, s1, f1), (C2, π2, s2, f2)) → Isom((C1, π1, (s1, s
′
1)), (C2, π2, (s2, s

′
2))).

Sine M g,A∪1S′
has a representable, separated and finite diagonal by [Has03], the claim

of the proposition follows.
2.3.5. Existence as Deligne-Mumford stacks. In particular, the diagonal is proper

and thus the moduli stack separated. As M g,1S
(V, β) is proper and the reduction mor-

phism ρA,1S
: M g,S(V, β) →M g,A(V, β) is surjective, M g,A(V, β) is also proper.

Finally, the existence of a flat covering of finite type follows with almost the same
argument as the one in [BM96], following Proposition 4.7 there. However, some
changes are required, so we spell it out in detail: We write An = A ∪ 1{1,...,n} for
the weight data obtained from A by adding n weights of 1. Let M

o

g,An
(V, β) be the

open substack of M g,An(V, β) where the additional sections of weight one lie in the
smooth locus of Cg,A(V, β) and away from the existing sections (in other words, the
open substack where the map is already (g,A)-stable after forgetting the additional
sections). The obvious forgetful map

φ0
A,An

: M
o

g,An
(V, β) →M g,A(V, β)

is smooth and in particular flat. Let U0
g,An

(V, β) be the open substack of M
o

g,An
(V, β)

where the curve is already (g,An)-stable as a curve. Then for high enough n, the re-
striction φoA,An

|U0
g,An

(V,β) to this substack is surjective. On the other hand, U0
g,An

(V, β)

is an open substack of the relative morphism space MorMg,An
(V, β) (parametrizing

maps T →M g,An together with a map of the pull-back of the universal curve Cg,An to
V ). So a flat presentation of the morphism space induces one for M g,A(V, β).
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3. Elementary morphisms

3.1. Gluing morphisms. As in the non-weighted case, we can glue curves at
marked points, but to guarantee that the resulting curves is prestable, we have to as-
sume that both markings have weight 1:

Let g1, S1,A1, β1 and g2, S2,A2, β2 be weight data, such that the extensions gi, Si∪
{0},Ai ∪ {0 7→ 1}, βi by an additional marking of weight 1 are admissible. Denote
by ev0 be the evaluation morphisms ev0 : M gi,Ai∪{1}(V, βi) → V given by evaluating
the additional section: ev0 = f ◦ s0. Similarly, let g, S,A, β be weight data such that
g, S ∪ {0, 1},A ∪ {1, 1}, β is admissible, and let ev0, ev1 be the additional evaluation
morphisms.

Proposition 3.1.1. There are natural gluing morphisms(
M g1,A1∪{1}(V, β1)×M g2,A2∪{1}(V, β2)

)
×V×V V →M g1+g2,A1∪A2(V, β1 + β2)

and

M g,A∪{1,1}(V, β)×V×V V →M g+1,A(V, β).

The product over V × V is taken via the morphism (ev0, ev0) respectively (ev0, ev1)
on the left, and the diagonal ∆: V → V × V on the right.

There is nothing new to prove here, except to note that the weight of 1 guarantees
that the markings (of positive weight) do not meet the additional node on the glued
curve.

Proposition 3.2. Let µ : V → W be a morphism, and (g, S,A, β) be admissible
data for V , such that (g, S,A, µ∗(β)) is also admissible. Then there is a natural push-
forward

M g,A(V, β) →M g,A(W,µ∗(β))

that is obtained by composing the maps with µ, followed by stabilization.

One could adapt the proof of [BM96] to the weighted case; instead, we give a proof
analogous to the one in section 2.3.3.

Let f : C → V be the universal map over M g,A(V, β), let f ′ = µ ◦ f be the
induced map to W , and let M ′ be an ample divisor on V ′. By the assumptions, the
divisor D′ = Kπ +

∑
i∈S A(i)si+3f ′∗M ′ has positive degree; however, it need not be

nef. Hence we considerD = Kπ+
∑

i∈S A(i)si+3f ∗M andD(λ) = λD+(1−λ)D′

for 0 ≤ λ ≤ 1. Let {λ1, . . . , λN} be the set of λ for which the degree of D(λ) is zero
on any irreducible component of C, and let kr, r = 1 . . . N be an integer such that krλr
and krA(i), i ∈ S is integer.

Then L1 = ωk1(k1

∑
i∈S A(i)si+k1(3f

∗Mλ1+(1−λ1)3f
′∗M ′)) is a nef invertible

sheaf on C for which proposition 2.3.1 applies. Hence C1 defined by C1 := Proj R1

and (R1)l = π∗(L
3l
1 ) is again a flat nodal curve of genus g, contracting all components

ofC on whichL1 fails to be ample, and f ′ factors via a unique morphism f1 : C1 → W .
We proceed inductively to obtain fN : CN → W on which D′ is ample; this induces
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the map of moduli stacks. Note that C → CN → W is the universal factorization of
f ′ such that fN : CN → W is a (g,A)-stable map.

Proposition 3.3. Given admissible weight data (g, S,A, β), let (g, S ∪ {∗},A ∪
{a} = A

∐
{∗ 7→ a}, β) be the weight data obtained by adding a marking {∗} of

arbitrary weight a ∈ Q ∩ [0, 1]. There is a natural forgetful map

φA,A∪{a} : M g,A∪{a}(V, β) →M g,A(V, β)

obtained by forgetting the additional marking and stabilization. If a = 0, then φA,A∪{0}
is the universal curve over M g,A(V, β).

We can construct this map as the composition

φA,A∪{0} ◦ ρA∪{0},A∪{a} : M g,A∪{a}(V, β) →M g,A∪{0}(V, β) →M g,A(V, β).

The second morphism φA,A∪{0} is the naive forgetful morphism, as a map is (g,A ∪
{0})-stable if and only if it is (g,A)-stable.

Proposition 3.4. Let S ′
∐
S ′′ = S be a partition of the markings such that

A(S ′′) =
∑

i∈S′′ A(i) ≤ 1. Then there is a natural map

M g,A|S′∪{A(S′′)}(V, β) →M g,A(V, β).

It is given by setting si = s∗ for all i ∈ S ′. It identifies M g,A|S′∪{∗7→A(S′′)}(V, β)

with the locus of M g,A(V, β) where all si, i ∈ S ′′ agree.

3.5. Weighted marked graphs. A graph was defined in [BM96] as a quadruple
τ = (Vτ , Fτ , ∂τ , jτ ) of a set of vertices Vτ , a set of flags Fτ , a morphism ∂τ : Fτ →
Vτ and an involution jτ : Fτ → Fτ . We think of a graph in terms of its geometric
realization: it is obtained by identifying in the disjoint union

∐
f∈Fτ

[0, 1] the points
0 for all flags f attached to the same vertex via v = ∂τ (f), and the points 1 for all
orbits of jτ . A flag f with jτ (f) = f is called a tail of the vertex ∂τ (f), whereas a pair
{f, jτ (f)} for f 6= jτ (f) is called an edge, connecting the (not necessarily distinct)
vertices ∂τ (f) and ∂τ (jτ (f)).

Given a projective variety V , a weighted modular V -graph is a graph τ together
with a genus g : Vτ → Z≥0, a weighting A : Fτ → Q ∩ [0, 1] such that A(f) = 1 for
all flags that are part of an edge, and a marking β : Vτ → H+

2 (V ). To any weighted
stable map we can associate its dual graph: a vertex for every irreducible component,
an edge for every node, and a tail for every marking. Conversely, to every weighted
modular graph we can associate the moduli space of tuples of weighted stable maps
fv : Cv → V of type (g(v), Sv = {f ∈ Fτ : ∂(f) = v},A|Sv , β(v)), such that for
every edge {f, f ′ = jτ (f)} connecting the vertices v = ∂τ (f) and v′ = ∂τ (f), the
corresponding evaluation morphisms are identical: fv ◦ sf = fv′ ◦ sf ′ . Via gluing, this
gives a single weighted stable map f : C → V ; if all Cv are smooth, its dual graph will
give back τ .
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The moduli space M g,A(V, β) corresponds to the one-vertex graphs with the set
S of tails. The morphisms constructed in this section correspond to elementary mor-
phisms between graphs with one and two vertices. Extending this set of morphisms to
higher codimension boundary strata, indexed by graphs with more vertices, naturally
leads to a category of weighted stable marked graphs. We will adopt this viewpoint
in section 6, and show that we get a functor M from the graph category to Deligne-
Mumford stacks over k.

4. Birational behaviour under weight changes

For this section, we will fix g, S, β, and analyze more systematically the reduction
morphisms ρA,B of proposition 2.2.1 for varying weight data A,B.

4.1. Exceptional locus and reduction morphism as blow-up.

Proposition 4.1.1. [Has03, Proposition 4.5] Assume we have weight data A ≥
B > 0. The reduction morphism ρB,A contracts the boundary divisors DI,J given as
the image of the gluing morphism

M0,A|I∪{1}(V, 0)×V M g,A|J∪{1}(V, β) →M g,A(V, β)

for all partitions I
∐
J = S of S with∑
i∈I

A(i) > 1 and bI :=
∑
i∈I

B(i) ≤ 1.

There is a factorization of ρB,A|DI,J via

M0,A|I∪1(V, 0)×V M g,A|J∪1(V, β) →M g,A|J∪{1}(V, β) →M g,A|J∪{bI}(V, β).

We may assume that there is just one such I and that bI = 1. The stabilization
contracts components on which ωkC(k

∑
i∈S B(i)si) ⊗ f ∗(M)3 has degree zero. Such

a component can only be a genus zero irreducible component mapped to a point that
has a single node and markings given exactly by si for i ∈ I .

In particular, the exceptional locus of ρB,A is given by allDI,J for partitions I∩J =
S as above with the additional condition |I| > 2. When all sets I ⊂ S such that∑

i∈I A(i) > 1 and
∑

i∈I B(i) ≤ 1 satisfy |I| = 2, then ρB,A is an isomorphism.

Remark 4.1.2. Assume that forA > B > 0, there is exactly one partition I
∐
J =

S of S as in the proposition. Then ρB,A is the blowup of M g,B(V, β) along the locus
CIJ ∼= M g,B|J∪{bI}(V, β) of weighted stable curves where all section si for i ∈ I are
identical.

The divisor DI,J is the scheme-theoretic inverse image of CIJ . By deformation
theory of singular curves, DI,J is a cartier divisor. By the universal property of blow-
ups, this shows that ρB,A factors via the blow-up ρ′ : M →M g,B(V, β) of CIJ .

For the converse, letC ′ be the pull-back of the universal curve along ρ′, letE be the
exceptional divisor of ρ′, and write ρ′−1si : M → C ′ for the pull-back of the sections si
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over M g,B(V, β). Let C0 be the common image (ρ′−1si)(E) of the exceptional divisor
for any i ∈ I , and let C be blow-up of C ′ at C0. The center C0 ⊂ C ′ is a codimension
two regular embedding, and embeds as a Cartier divisor in both (ρ′−1si)(M) for any
i ∈ I , and in the restriction of C ′ to E. Thus the fibers of C over E are obtained from
that of the universal curve over M g,B(V, β) by attaching a projective line at the marked
point given by any si for i ∈ I , and every section ρ′−1si lifts to a section si : C →M .

Over E, the image is contained in the attached projective line, away from the node,
as si(M) and the fibre over E meet transversely in C ′. Also, since the images of
si, i ∈ I intersect transversely in the universal curve over M g,B(V, β), any tangent
vector at a point of C0 tangent to all the images of (ρ′−1si)(M), i ∈ I is already
tangent to C0; thus the sections si : M → C cannot all be mapped to the same point of
the projective line.

Hence, with the induced map to V , we have constructed a (g,A)-stable map, and
so a map M → M g,A(V, β); it is an inverse to the map in the opposite direction
constructed above, as this is true over Cg,S(V, β) and both stacks are separated.

Proposition 4.1.3. LetA,B as in proposition 4.1.1, except we allow some weights
of B to be zero. Let i ∈ S be a marking with A(i) > B(i) = 0. Then ρA,B additionally
contracts the boundary components C(g1,0,g2),(I1,I0,I2),(β1,0,β2) which are defined as the
image of the gluing morphisms

M g1,A|I1∪{1}(V, β1)×V M0,AI0∪{i}∪{1,1}(V, 0)×V M g2,A|I2∪{1}(V, β1)

→M g,A(V, β)

for all g1 + g2 = g, β1 + β2 = β and disjoint partitions I1 ∪ I0 ∪ {i} ∪ I2 = S such
that A(j) = 0 for j ∈ I0.

The restriction ρB,A factors via the projection of the second component to a point.

In other words, this is the boundary component of singular curves such that the
section si is contained in a node after stabilization.

4.2. Chamber decomposition. We now assume β 6= 0, and consider the set of
positive weights Dn = (0, 1]S ⊂ RS . The walls Wc and Wf of the coarse and fine
chamber decomposition, respectively, are given by2

Wc = {
∑
i∈I

A(i) = 1 | I ⊂ S, 2 < |I|}

Wf = {
∑
i∈I

A(i) = 1 | I ⊂ S, 2 ≤ |I|}.

Coarse and fine chambers are connected component of the complements Dn \Wc and
Dn \Wf , respectively.

2The conditions |S| < n − 2 and |S| ≤ n − 2 for the coarse and fine chamber decompositions,
respectively, in [Has03, section 5] are correct only when g = 0 and don’t apply in our case as we
assumed β 6= 0.
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Proposition 4.2.1. (cf. [Has03, Proposition 5.1]) The coarse chamber decomposi-
tion is the coarsest decomposition such that M g,A(V, β) is constant in each chamber.
The fine chamber decomposition is the coarsest decomposition such that the universal
curve Cg,A(V, β) is constant in each chamber.

Corollary 4.2.2. LetA be positive weight data in the interior of a fine open cham-
ber. Then for small ε > 0, the forgetful morphism φA,A∪{ε} identifies M g,A∪{ε}(V, β)

with the universal curve Cg,A(V, β) →M g,A(V, β).

This holds by definition for ε = 0, and it follows easily from the earlier proposi-
tions that ρA∪{0},A∪{ε} is an isomorphism.

5. Virtual fundamental classes and Gromov-Witten invariants

5.1. Expected properties. The crucial step in the construction of Gromov-Witten
invariants is the construction of virtual fundamental classes of expected dimension:

[M g,A(V, β)]virt ∈ A(1−g)(dimV−3)−KV ·β+|S|M g,A(V, β)

We will provide now a basic list of properties that such a construction should satisfy,
and proceed to draw some conclusions about Gromov-Witten invariants in the remain-
der of the section.

(1) Mapping to a point. If β = 0, then

[M g,A(V, 0)]virt = cg dimV (R1π∗f
∗TV )

(2) Forgetting a tail. Assume A and ε are as in corollary 4.2.2, so that φA,A∪ε is
the universal curve over M g,A(V, β). In particular, this implies that φA,A∪{ε}
is flat, and thus defines a pull-back in intersection theory. We require

φA,A∪ε(V, β)∗[M g,A(V, β)]virt = [M g,A∪ε(V, β)]virt.

(3) Combining tails. Assume we are in the situation of proposition 3.4. Since all
sections lie in the smooth locus of the curve, µS/S′ is a regular embedding,
and we require that

µ!
S/S′ [M g,A(V, β)]virt = [M g,A|S′∪{A(S′′)}(V, β)].

(4) Gluing. We fix g1, S1,A1, g2, S2,A2 and some β ∈ H+
2 (V ). Set g = g1 + g2

and A = A1 ∪ A2. Consider the gluing morphisms

µβ1,β2 : M g1,A1∪{1}(V, β1)×M g2,A2∪{1}(V, β2)×V×V V

→M g,A(V, β)
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of proposition 3.1.1 for all β1, β2 with β1 +β2 = β. The union of their images
is the boundary component in M g,A(V, β) given as the pull-back

M (g1,A1)|(g2,A2)(V, β) //

��

M g,A(V, β)

��

M g1,A1∪{1} ×M g2,A2∪{1}
µ // M g,A

Since the moduli spaces of weighted stable curves are smooth, µ is a l.c.i.
morphism and defines a pull-back µ![M g,A(V, β)]virt. On the other hand, via
the diagonal ∆: V → V × V , we can pull-back the virtual fundamental class
on the productM g1,A1∪{1}(V, β1)×M g2,A2∪{1}(V, β2) to the fibre product that
is the source of µβ1,β2 . We require∑
β1+β2=β

µβ1,β1∗∆
!
(
[M g1,A1∪{1}(V, β1)]

virt × [M g2,A2∪{1}(V, β2)]
virt
)

= µ![M g,A(V, β)]virt.

(5) Kontsevich-stable maps. If all weights are 1, then [M g,A(V, β)]virt agrees with
the definition of virtual fundamental classes of [BF97, Beh97].

(6) Reducing weights. Given two set of weightsA > B, we require compatibility
with the reduction morphism ρB,A:

ρB,A∗[M g,A(V, β)]virt = [M g,A(V, β)]virt

Evidently, properties (1), (2) and (4) are direct generalizations of properties satis-
fied by the virtual fundamental classes of the non-weighted moduli spaces, while (3)
and (6) are new.

Theorem 5.1.1. There is a system of virtual fundamental classes satisfying all of
the above properties.

While the Behrend-Fantechi construction can be applied to our situation and pro-
vides virtual fundamental classes, we instead use (5) and (6) as a definition, and prove
that these classes automatically satisfy the desired properties.

We postpone the proof of the above properties to section 7, after having generalized
them to a bigger class of morphisms labelled by a category of weighted stable graphs.
In the remainder of the section we will instead proceed to give some consequences of
theorem 5.1.1.

5.2. Gromov-Witten invariants. As in the non-weighted case, one defines the n-
point Gromov-Witten invariants of V depending on weights A : {1, . . . , n} → [0, 1] ∩
Q via

〈 〉g,A,β : H∗(V )⊗n → C

〈γ1 ⊗ · · · ⊗ γn〉g,A,β =

∫
[Mg,A(V,β)]virt

ev∗1(γ1) ∪ · · · ∪ ev∗n(γn)
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and Gromov-Witten invariants including gravitational descendants via

〈τ k11 γ1 · · · τ kn
n γn〉g,A,β =

∫
[Mg,A(V,β)]virt

ψk11 ev∗1(γ1) ∪ · · · ∪ ψkn
n ev∗n(γn)

where ψi is the tautological class associated to the section si: ψi = c1(s
∗
iΩC) where

ΩC is the relative cotangent bundle of the universal curve C over M g,A(V, β).

Proposition 5.2.1. Gromov-Witten invariants without gravitational descendants
do not depend on the choice of weights A.

It is enough to prove this for two weights A > B. The evaluation morphisms
evi : M g,A(V, β) → V factor via the reduction morphism ρB,A. Hence the claim fol-
lows from property (6) and the projection formula.

5.3. Extended modular operad. Let Am,n be the weight data consisting of m
weights of one, and n weights of ε ≤ 1

n
. The moduli spaces M g,Am,n were called

Lg,m,n in [LM04] and studied more closely in [Man04]. Markings with weight one
and ε are white and black points in the language of [LM04], respectively: white points
may not coincide with any other point, whereas any number of black points are allowed
to coincide. Similarly, we write Lg,m,n(V, β) for the moduli spaces of weighted stable
maps Lg,m,n(V, β) = M g,Am,n(V, β).

In [LM04], the notion of an L-algebra was introduced by a combinatorial descrip-
tion. It is an extension of the graph-level description of the genus zero-part of a coho-
mological field theory in the sense of [KM94]. By the results of [Man04], the ”econ-
omy class description“ of [LM04, section 4.2.2] can be translated into the following
geometric description:

Let (T ;F, (, )) be a triple consisting of two Z2-graded Q-vector spaces T, F , where
the latter is equipped with a (super)symmetric non-degenerate scalar product (, ). An
L-algebra on (T ;F, (, )) over a Q-algebra R can be given as a collection of maps

I0;m,n : T⊗n ⊗ F⊗m → H∗(L0;m,n)⊗Q R

being compatible with gluing of black points and the trace on F .
We obtain the L-algebra of quantum cohomology of V including gravitational

descendants as follows: Let F = H∗(V,Q), equipped with the Poincaré pairing, and
let T =

⊕
k≥0 z

kF . We denote by evW1 , . . . , ev
W
m and evB1 , . . . , ev

B
n the evaluation

mapsL0;m,n(V, β) → V induced by the markings of weight one and ε, respectively, and
by π : L0;m,n(V, β) → L0;m,n the forgetful map. Let ψi, i = 1 . . . n be the tautological
classes associated to the section sBi of weight ε. Let Q[[q]] be the Novikov ring of
V , i.e. the formal completion of the polynomial ring over the semigroup of effective
classes in H2(V )/torsion.

Then we define I0;m,n as

I0;m,n
(
zk1γ1 ⊗ · · · ⊗ zknγn ⊗ δ1 ⊗ · · · ⊗ δm

)
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=
∑

β∈H+
2 (V )

qβP

(
π∗

(
n∏
i=1

(evBi )∗γiψ
ki
i

n∏
i=1

(evWi )∗δi ∩ [L0,m,n(V, β)]virt

))
where π : L0;m,n(V, β) → L0;m,n is the forgetful map, and P(s) ∈ H∗L0;m,n is the
Poincaré dual of s ∈ H∗L0;m,n.

Theorem 5.3.1. The above definition of I0;m,n yields a cyclic L-algebra (in the
sense of the economy class description in [LM04, section 4.2.2]).

The only thing to check is the compatibility with gluing, in the formal sense of
[LM04, diagram (4.8)]. This holds due to property (4) of section 5.1.

5.4. Comments. In [LM04], it was shown that the datum of an L-algebra is
equivalent to a geometric structure, a solution of the so-called commutativity equa-
tion. However, the structure of an L-algebra does not capture the complete structure
we have available:

(1) By property (6), the inclusion F = z0F ⊂ T is compatible with the reduction
morphisms L0,m,n → L0,m−1,n+1 in the obvious sense.

(2) Relating the gravitational descendants to intersection numbers in L0;m,n by an
analysis analogous to the one in [KM98] will, of course, lead to many more
relations among the correlators.

One might hope that these can be integrated in the geometric picture of [LM04].
As a side remark, it is worth pointing out that the tautological classes ψi, i =

1 . . . n in L0;m,n(V, β) are compatible with pull-back along the forgetful morphism
L0;m,n+1(V, β); this is not true in the non-weighted case.

6. Graph-language

6.1. Weighted marked graphs. The elementary morphism described in section
3 generate a larger system of morphisms. They are best modelled over a category
of weighted marked graphs; this category generalizes the category of marked graphs
introduced in [BM96] by introducing weights of tails. We follow [BM96, section 1]
closely.

We recall from section 3.5 the definition of a graph:

Definition 6.1.1. [BM96, Definition 1.1] A graph τ is a quadruple (Fτ , Vτ , jτ , ∂τ )
of a finite set Vτ of vertices, a finite set Fτ of flags, an involution jτ : Fτ → Fτ and
a map ∂τ : Fτ → Vτ . We call Sτ = {f ∈ Fτ |jτf = f} the set of tails, and Eτ =
{{f, jτf}|f ∈ Fτ and jτf 6= f} the set of edges.

Definition 6.1.2. A weighted modular graph is a graph τ = (Fτ , Vτ , jτ , ∂τ ) en-
dowed with two maps gτ : Vτ → Z≥0 and Aτ : Fτ → Q ∩ (0, 1] such that Aτ (f) = 1
for all flags f that are part of an edge, i.e. for which jτ (f) 6= f .

The number gτ (v) is called the genus of a vertex, and Aτ (f) the weight of a flag.
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Definition 6.1.3. Given a semigroup A with indecomposable zero, a weighted A-
graph (τ, α) is a weighted modular graph τ with a map α : Vτ → A. A weighted
marked graph is a pair (A, (τ, α)) where A is a semigroup with indecomposable zero,
and (τ, α) is an A-graph.

We will often omit α from the notation and call τ an A-graph.
Morphisms in the category of weighted marked graphs are generated by two dif-

ferent types, combinatorial morphisms and contractions. More precisely, since the
associated geometric morphisms are contravariant with respect to the combinatorial
morphisms, and covariant with respect to contractions, the morphisms will be gener-
ated by contractions and formal inverses of the combinatorial morphisms.

Only condition (2) of the definition of a combinatorial morphism of modular
graphs ([BM96, Definition 1.7]) needs to be adopted to our situation:

Definition 6.1.4. Let (σ, α) and (τ, β) be weighted A-graphs. A combinatorial
morphism a : (σ, α) → (τ, β) is a pair of maps aF : Fσ → Fτ and aV : Vσ → Vτ ,
satisfying the following conditions:

(1) The morphisms commute with ∂, i.e. we have aV ◦∂σ = ∂τ ◦aF . In particular,
for any v ∈ Vσ and w = aV (v) ∈ Vτ , we get an induced map aV,v : Fσ(v) →
Fτ (w).

(2) Consider the above map aV,v. Then for any f ∈ Fτ (w), the inequality∑
f ′∈Fσ(v) : aV,v(f ′)=f

Aσ(f
′) ≤ Aτ (f)

is satisfied.
(3) Let {f, f̄} be an edge of σ, i.e. f ∈ Fσ, f̄ = jσ(f) 6= f . Then there exist n ≥

1 and n edges {f1, f̄1}, . . . , {fn, f̄n} of τ such that vi := ∂τ (f̄i) = ∂τ (fi+1)
and β(vi) = 0 for all 1 ≤ i < n.

(4) For every v ∈ Vσ we have α(v) = β(aV (v)).
(5) For every v ∈ Vσ we have g(v) = g(aV (v)).

A combinatorial morphism of weighted marked graphs (B, σ, β) → (A, τ, α) is
a pair (ξ, a) where ξ : A → B is a homomorphism of semigroups, and a : (σ, β) →
(τ, ξ ◦ α) is a combinatorial morphism of B-graphs.

Note that we do not require that jσ and jτ commute with aF and aV ; in particular, σ
could be obtained from τ by cutting an edge into two tails. Other examples of combina-
torial morphisms are morphisms adding tails or adding connected components. There
are essentially two new types of morphisms compared to the non-weighted case:

(1) (Combining tails.) Consider a subset {t1, . . . , tn} ∈ Fσ(v) of tails attached to
a vertex v, and assume that its sum of weights satisfies

∑
iAσ(ti) ≤ 1. Then

we can form a new graph τ by replacing the tails {t1, . . . , tn} with a single
tail t̄ of weight Aτ (t̄) :=

∑
iAσ(ti).

(2) (Increasing the weights.) This means that (τ, β) are identical to (σ, α) as
modular graphs, but the weighting Aτ satisfies Aτ ≥ Aσ.
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We refer to [BM96, Definition 1.3] for the definition of a contraction φ : τ → σ of
graphs. It is obtained by collapsing a subgraph consisting entirely of edges (and the
adjoining vertices) to one vertex for every connected component of the subgraph. It is
given by an injective map φF : Fσ → Fτ (which is bijective on tails) and a surjective
map φV : Vτ → Vσ.

Definition 6.1.5. A contraction of weighted marked graphs φ : (τ, β) → (σ, α) is
a contraction φ : τ → σ of graphs such that

(1) α(v) =
∑

w∈φ−1
V (v) α(w) for all v ∈ Vσ,

(2) g(v) =
∑

w∈φ−1
V (v) α(w) +H1(|τv|) for all v ∈ Vσ and τv being the subgraph

of τ being collapsed onto v, and
(3) Aτ (φ

F (f)) = Aσ(f) for all tails f ∈ Sσ.

Definition 6.1.6. A vertex v of a weighted modular A-graph (τ, α) is called stable
if α(v) 6= 0 or 2g(v) − 2 +

∑
f∈Fτ : ∂τ (f)=vAτ (f) > 0. A graph is stable if all its

vertices are stable.

Remark 6.1.7. Let (τ, α) be a weighted A-graph. There is a unique weighted
stable A-graph (τ s, αs) and a combinatorial morphism (τ s, αs) → (τ, α), such that
every combinatorial morphism (σ, β) → (τ, α) from a stable A-graph (σ, β) factors
uniquely through (τ s, αs).

The graph (τ s, αs) is called the stabilization of (τ, α). Similarly, there is a stabi-
lization of weighted modular graphs. The stabilization τ s of the underlying modular
graph τ of an A-graph (τ, α) is also called the absolute stabilization.

The stabilization (τ s, αs) can be constructed via a sequence of steps as below,
following [BM96, Proposition 1.13]:

(1) If there is a connected component of τ that has only one vertex, and this vertex
is unstable, we remove this connected component from τ .

(2) If there is an unstable vertex v attached to one edge {f0, f̄0 = jτ (f0)} with
∂τ (f0) = v, ∂τ (f̄0) 6= v and n ≥ 0 tails f1, . . . , fn, we remove the vertex v
and the flags f0, . . . , fn from the graph and modify j such that j(f̄0) = f̄0,
i.e. the edge becomes a tail at the vertex ∂τ (f̄0) with weight one.

(3) If there is an unstable vertex v attached to two edges {f1, f̄1 = jτ (f1)} and
{f2, f̄2 = jτ (f2)} with ∂τ (fi) = v and ∂τ (f̄i) 6= v, we remove v and the tails
fi from the graph, and modify j such that j(f̄1) = f̄2. In other words, we
combine the tails f̄1, f̄2 to form a new edge.

At every step, any combinatorial morphism (σ, β) → (τ, α), where (σ, β) is a stable
V -graph, factors uniquely through the new graph, and the claim of the remark follows
by induction on the number of unstable vertices.

Definition 6.1.8. Let (A, τ) and (B, σ) be weighted stable marked graphs. A mor-
phism (A, τ) → (B, σ) is quadruple (ξ, a, τ ′, φ) where ξ : A→ B is a homomorphism
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of semigroups, τ ′ is a weighted stable B-graph, a : τ ′ → τ makes (ξ, a) into a com-
binatorial morphism of weighted marked graphs, and φ : τ ′ → σ is a contraction of
B-graphs.

B τ ′
φ //

a

��

σ

A

ξ

OO

τ

We think of this morphism as the composition of φ with the inverse of (ξ, a), ex-
cept that (ξ, a) itself is not a morphism in the category of weighted stable marked
graphs. As explained earlier, this construction is motivated by the fact that the geomet-
ric morphism are covariant with respect to isogenies, but contravariant with respect to
combinatorial morphisms.

To define compositions, we need the definition of stable pullback; the construc-
tion of [BM96] applies with minor changes. Given a combinatorial morphism of
weighted marked graphs (a, ξ) : (B, ρ) → (A, τ) and a contraction of weighted A-
graphs φ : σ → τ , it canonically constructs a weighted stable B-graph π, together
with a contraction of B-graphs ψ : π → ρ and a combinatorial morphism of weighted
marked graphs b : π → σ:

B π
ψ //

b

��

ρ

a

��
A

ξ

OO

σ
φ // τ

We call π the stable pullback of ρ under φ. We will describe how to obtain π from ρ,
assuming that φ is an elementary isogeny.

If φ contracts a loop adjacent to a vertex v ∈ Vτ , we simply readd a loop at every
preimage v′ ∈ a−1

V (v) (and decrease its genus by one). If φ contracts an edge {f, f̄}
connecting the vertices v1 = ∂σ(f), v2 = ∂σ(f̄), let v = φV (v1) = φV (v2) their
common image in τ , and let v′ ∈ a−1

V be any vertex in the preimage of v in ρ. There
can be two cases:

(1) Replace v′ by two vertices v′1, v
′
2 connected by an edge {f ′, f̄ ′}; their class and

genus are determined by the corresponding vertex in σ: απ(v′i) = ξ(ασ(vi))
and gπ(v′i) = gσ(vi). A flag f1 of v is moved to v′1 or v′2 according to its
position in σ, i.e. according to whether φF (aF (f1)) is attached to v1 or v2; its
weight remains unchanged. Now if either v′1 or v′2 is unstable, we undo this
construction and skip to case (2). Otherwise, it remains to define the maps:
ψ is the map contracting {f ′, f̄ ′}; the combinatorial morphism b is given by
sending v′i to vi, and by sending a flag f1 6= f ′ of v′i to

(
φF ◦ a ◦ (ψF )−1

)
(f1).

Other than that, b agrees with a.
(2) Assume that in the above construction, the vertex v′2 was unstable. We leave

ρ unchanged, and let bV send v′ to v1. Let f1 be a flag of v′; we set bF (f1) =
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φF (aV (f1)) if that is a flag attached to v1, otherwise bF (f1) = f , where f
defined above is part of the edge connection v1 and v2.

The same construction is iteratively applied to every such vertex v to obtain π.
Geometrically, the isogeny φ corresponds to the inclusion of a boundary compo-

nent M(σ) of the moduli space M(τ) associated to τ , and the stable pull-back con-
structs the boundary component of M(ρ) upon which the boundary component M(σ)
is naturally mapped by morphism M(τ) →M(ρ) associated to a.

Proposition and Definition 6.1.9. Let (ξ, a, τ ′, φ) : (A, τ) → (B, σ) and
(η, b, σ′, ψ) : (B, σ) → (C, ρ) be morphisms of weighted stable marked graphs.
Then we define the composition (η, b, σ′, ψ) ◦ (ξ, a, τ ′, φ) : (A, τ) → (C, ρ) to be
(ηξ, ac, τ ′′, ψξ) where (c, τ ′′, ξ) is the stable pullback of σ′ under φ.

This composition is associative, defining the category of weighted stable marked
graphs.

C τ ′′
ξ //

c

��

σ′

b

��

ψ // ρ

B

η

OO

τ ′
φ //

a

��

σ

A

ξ

OO

τ

We denote by Gw
s the category of weighted stable marked graphs, and by A the cate-

gory of semigroups with indecomposable zeros.

6.2. Weighted stable maps indexed by graphs. As in [BM96, section 3], let V
be the category of smooth projective varieties over a field k. Consider the fibered
product VGw

s of categories

VGw
s

//

��

Gw
s

��
V

H+
2 // A

where H+
2 is the functor that associates to V the semigroup of effective classes in

CH1(V ). Objects of VGw
s are pairs (V, τ) where V is a smooth projective variety over

k and τ is a weighted stable H+
2 (V )-graph.

For any weighted graph τ and any vertex v ∈ Vτ , let Fv = {f ∈ Fτ |∂τ (f) = v} be
the set of flags attached to v, and Av = A|Fv be their weight data.

Definition 6.2.1. A stable map of type (V, τ) for an object (V, τ) in VGw
w is a

collection of stable maps (Cv, xv, fv) to V of type (g(v),Av, α(v)) for every v ∈ Vτ ,
such that f∂τ (i)(xi) = f∂τ (jτ (i))(xjτ (i)) for all flags i.
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For a scheme T and (V, τ) ∈ VGw
s , let M(T )(V, τ) be the groupoid of families of

weighted stable maps of type (V, τ) over T , and let M(T ) be the groupoid of arbitrary
weighted stable maps.

Theorem 6.2.2. For a fixed scheme T , M(T ) defines a 2-functor

M(T )( ) : VGw
s →M(T ).

For every base change u : T ′ → T , the pullback u∗ : M(T ) → M(T ′) commutes
with the functors M(T )( ) and M(T ′)( ).

Finally, for fixed (V, τ, α), the category of weighted stable maps of type (V, τ, α) is
a proper algebraic Deligne-Mumford stack M(V, τ, α) of finite type.

Of course, the compatibility with base change in particular implies that that M(Φ)
for some morphism Φ in VGw

s induces a morphisms between the stacks associated
by M to the source and target; i.e. M is a 2-functor from VG2

s to the 2-category of
Deligne-Mumford stacks.3

The last claim of the theorem immediately follows from theorem 2.1.4 and the fact
that by definition it is a closed substack of

∏
v∈Vτ

M g(v),A(v)(V, α(v)).
To prove the first and second claim of the theorem, we need to prove the

existence of a functorial push-forward in M(T ) associated to every morphism
(ξ, a, τ ′, φ) : (V, τ) → (W,σ) in VGw

s , and show that they are compatible with base
change. Every morphism in VGw

s can be written as a composition of elementary mor-
phisms of one of the following types: changing the target (I), increasing the weights
(II), forgetting a tail (III), combining tails (IV), complete combinatorial morphisms
(V), contracting an edge (VI) and contracting a loop (VII). For complete combina-
torial morphisms this is immediate (and there is nothing to add to the discussion in
[BM96, section 3, case IV]). All other cases have already been treated in 3 in the case
where the target is a one-vertex graph; the general case follows immediately from this.

What is left to prove is that the associated morphism are compatible with compo-
sition in the category of weighted stable marked graphs, i.e. that it does not depend on
the way we break up a morphism into a composition of elementary morphisms.

For compositions of contractions with contractions, respectively of the (inverses
of) combinatorial morphisms with combinatorial morphisms this is immediate, and the
only interesting case to prove is the case of the composition (ξ, a)−1 ◦ φ of (the formal
inverse of) a combinatorial morphism (ξ, a) : (B, ρ) → (A, τ) and a contraction of
A-graphs φ : σ → τ . In fact, the formation of stable pull-back exactly makes sure that
this compatibility holds, and the claim follows easily by following every step of the
stable pull-back construction.

3Implicitly, we passed from the description of a stack as a category fibered in groupoids to the
description as a 2-functor to the 2-category of groupoids. See e.g. [Man99, Chapter V] for a discussion
of both viewpoints.
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7. Graph-level description of virtual fundamental classes.

To define Gromov-Witten invariants based on weighted stable maps, we need to
define virtual fundamental classes in the Chow ring A∗

(
M(V, τ, α)

)
of the moduli

spaces. To formulate the required behaviour with respect to restriction to boundary
components of the moduli space, we need to introduce the notion of isogenies of
weighted stable graphs and their cartesian isogeny diagrams. (We won’t introduce
the complete cartesian extended isogeny category as in [BM96].)

7.1. Isogenies of graphs. For our purposes, we need to refine the definition of an
isogeny as given in [BM96, Definition 5.4].

Definition 7.1.1. We say that the one-vertex V -graph σ is a contraction of small
tails of the one-vertex V -graph τ if it is obtained from τ by a sequence of steps, each
forgetting a single tail, such that in every step we are in the situation of corollary
4.2.2 (the weight data of τ is contained in a fine open chamber, and the weight of the
additional tail in σ is small enough that changing it to zero would not cross a wall of
the fine chamber decomposition).

This implies that the associated map M(τ) → M(σ) is flat, as it is a sequence of
projection maps of the universal curve.

Definition 7.1.2. An isogeny Φ: τ → σ of weighted stable A-graphs is given by
an injective map ΦF : Fσ → Fτ of flags and a surjective map ΦV : Vτ → Vσ of vertices
such that the following conditions hold:

(1) ΦF commutes with the boundary maps ∂τ , ∂σ, i. e. for any flag f ∈ Fσ, we
have ΦV (∂τ (Φ

F (f))) = ∂σ(f).
(2) For any vertex v ∈ Vσ, let τv be the subgraph of τ that consists of all vertices

send to v by ΦV , and all edges joining them. We require that
(a) g(v) =

∑
w∈Vτv

g(w) + dimH1(|τv|) and
(b) α(v) =

∑
w∈Vτv

α(w)

(3) ΦF respects the weights, i.e. Aτ ◦ ΦF = Aσ.
(4) For any v ∈ Vτ , let τv be the one-vertex graph obtained from τ by removing

all other vertices, and cutting off the edges starting from v into a tail of weight
1; let σv be the graph obtained from τv by removing all tails not in the image
of ΦF . The condition is that σv is is a contraction of small tails of τv.

In the geometric realizations of the graphs, an isogeny is given by collapsing a set
of disjoint closed connected subgraphs |τv| ⊂ |τ | consisting of edges and small tails to
a single vertex v ∈ Vσ. It can be written as the composition of a morphism contracting
small tails, and a contraction as in definition 6.1.5.

7.2. Cartesian isogeny diagrams. Consider a stable V -graph σ and its absolute
stabilization a : σs → σ, as well as an isogeny of weighted modular graphs Φ: τ s →
σs. In [BM96, section 5] the pull-back τ = (τi)i∈I of σ along Φ is constructed. For
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each i ∈ I , the stable V -graph τi comes with a stabilization morphism ai : τ
s → τi and

an isogeny Φi : τi → σ such that the diagram

τi
Φi // σ

τ s
Φ //

ai

OO

σs

b

OO

commutes.
Its construction is as follows:4 To every edge {f, f̄} of σs there is a long edge

in σ consisting of edges {f1, f̄1}, . . . , {fn, f̄n} and vertices vi = ∂σ(f̄i) = ∂σ(fi+1)
such that bF (f) = f1, bF (f̄) = f̄n and the vertices vi are of genus 0 and have
no further flags. We replace the edge {ΦF (f),ΦF (f̄)} of τ s by the same long
edge {f1, f̄1}, . . . , {fn, f̄n}. Similary, to every tail f ∈ Sσs there is a long tail
{f1, f̄1}, . . . , {fn, f̄n} of edges as above and some number k ≥ 0 of additional tails
fn+1, . . . , fn+k. The addtional tails are attached to the last vertex vn of the tail,
∂σ(fn+i) = vn = ∂σ(f̄n) for 1 ≤ i ≤ k, and the sum of weights is bounded as∑

1≤i≤kA(fn+i) ≤ 1. Again we replace the tail ΦF (f) ∈ Sσs with the same long tail,
preserving the weights.

We thus obtain a weighted graph τ ′ with a combinatorial morphism a : τ s → τ ′

and an isogeny of graphs Φ′ : τ ′ → σ. Now let I be the set of V -structures on τ ′ such
that Φ′ is an isogeny of weighted V -graphs. We get a set (τi)i∈I of V -graphs such that
the induced morphism ai : τ

s → τi is an absolute stabilization, and Φi : τi → σ is an
isogeny of V -graphs.

The same construction can be made for a tuple (σj)j∈J of V -graphs with abso-
lute stabilization morphisms bj : σ → σj . The formation of pull-back then becomes
compatible with composition.

7.3. Expected properties.

Definition 7.3.1. Let τ be a weighted stable V -graph, where V is of pure dimen-
sion dimV , and has canonical class ωV . We define the class β(τ), the Euler charac-
teristic χ(τ), the genus g(τ) and the dimension dim(τ) of τ as

β(τ) =
∑
v∈Vτ

β(v)

χ(τ) = χ(|τ |)−
∑
v∈Vτ

g(v)

g(τ) = 1− χ(τ)

dim(τ) = χ(τ)(dimV − 3)− β(τ) · ωV + |Sτ | − |Eτ |
We now fix V . An orientation will be a system of virtual fundamental classes

J(V, τ) ⊂ Adim(V,τ)(M(V, τ)) for all stable V -graphs τ bounded by the characteristic,
satisfying the list of properties given below.

4Unlike [BM96, section 5], we omit the orbit map as well as the notion of an extended isogeny.
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(1) (Mapping to a point). If τ is a graph of class zero, and |τ | is nonempty and
connected, then

J(V, τ) = cg(τ) dimV

(
R1π∗f

∗TV
)
.

(2) (Forgetting tails). Let Φ: σ → τ be a morphism of stable V -graphs given by
forgetting a small tail of σ, i.e. such that τ is obtained from σ by a contraction
of a small tail. Then M(Φ) is flat, and we require

J(V, σ) = M(Φ)∗J(V, τ).

(3) (Combining tails.). Let Φ: σ → τ be a morphism splitting up a tail into
several of them, i. e. one that is induced by a combinatorial morphism a : τ →
σ combining several tails f1, . . . , fk ∈ Sτ to a single tail f ∈ Sσ with weight
Aσ(f) =

∑k
i=1Aτ (fi). Then M(Φ) is a regular closed embedding, and the

condition is
J(V, σ) = M(Φ)!J(V, τ).

(4a) (Products). For any two stable V -graphs σ, τ , let σ × τ be the disjoint union
of the graphs of σ and τ with the obvious structure as a stable V -graph. Then

J(V, σ × τ) = J(V, σ)× J(V, τ).

(4b) (Cutting edges). Let Φ: σ → τ be a morphism obtained by cutting an edge
{f, f̄} of σ into two tails. By abuse of notation, we identify the flags f, f̄ ⊂
Fσ with the corresponding tails f, f̄ ⊂ Sτ . We obtain a cartesian square

M(V, σ)

evf=evf̄

��

M(Φ)
// M(V, τ)

evf × evf̄

��
V

∆ // V × V

and require that
J(V, σ) = ∆!J(V, τ).

(4c) (Isogenies). Let (σj)j∈J be a tuple of V -graphs with absolute stabilization σs

and τ s → σs an isogeny. Let (τi)i∈I be the tuple of V -graphs completing this
to a cartesian isogeny diagram. We obtain an induced commutative, but not
cartesian diagram ∐

i∈IM(τi) //

��

∐
j∈JM(σj)

��

M(τ s)
M(Φ)

// M(σs)

and thus an induced map

h :
∐
i∈I

M(τi) →M(τ s)×M(σs)

∐
j∈J

M(σj).
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We require that

h∗

(∑
i∈I

J(V, τi)

)
=
∑
j∈J

M(Φ)!J(V, σj).

(5) Kontsevich-stable maps. Assume that all weights satisfy A(s) = 1. Then
J(V, τ) agrees with the definition of the virtual fundamental class J(V, τ̃) for
the underlying stable V -graphs τ̃ according to [Beh97, BF97].

(6) Reducing weights. Let Φ: σ → τ be a morphism of weighted stable V -graphs
obtained by reducing weights, i. e. such that Φ is induced by a combinatorial
morphism τ → σ that is the identity on the modular graph structure, but such
that Aσ(f) ≥ Aτ (f) for all flags f ∈ Fτ = Fσ. Then M(Φ) is a reduction
morphism, and we require that

M(Φ)∗ (J(V, σ)) = (J(V, τ)) .

Theorem 7.3.2. There is a system of virtual fundamental classes satisfying all
properties listed in the previous section.

Note that (4a), (4b) and (4c) imply condition (4) of theorem 5.1.1, whereas the
other conditions for one-vertex graphs are identical to the corresponding condition
ibid.

Of course, (1), (2) and (4a-c) are direct generalizations of properties of the virtual
fundamental classes in the non-weighted setting. The only caveat is that for morphisms
contracting or forgetting a tail, we always have to assume the situation of corollary
4.2.2. This is to be expected: if we forget a tail of bigger weight, the forgetful map
factorizes via a non-trivial reduction morphism ρ. However, there is no reason to
assume that the virtual fundamental class is a pull-back of a class via ρ.

As we already explained, we use (5) and (6) as the definition:

Definition and Remark 7.3.3. For any weighted stable V -graph τ , let τ 1 be the
weighted stable V -graph obtained by setting all weights to 1, let w(τ) : τ → τ 1 be the
combinatorial morphism increasing the weights, and W (τ) : τ 1 → τ the induced mor-
phism in the category of weighted marked graphs. Then any combinatorial morphism
τ → σ to a V -graph σ with all weights equal to 1 factors uniquely via w(τ).

By abuse of notation, we write W (τ) : M(V, τ 1) → M(V, τ) also for the induced
map on moduli spaces, and define J(V, τ) as

J(V, τ) := W (τ)∗J(V, τ 1)

where the latter is as defined in [Beh97, BF97].
We will now show how to obtain these properties from those listed in Definition

7.1 in [BM96], which have been verified for the Behrend-Fantechi construction of the
virtual fundamental class in [Beh97]. As a preparation, we need the following lemma:
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Lemma 7.3.4. Let Φ: σ → τ be an isogeny of V -graphs, and let Φ1 : σ1 → τ 1 be
the same morphism for the graphs with weight 1. Consider the commutative (but not
necessarily cartesian) square

M(V, σ1)

M(W (σ))
��

M(Φ1)
// M(V, τ 1)

M(W (τ))
��

M(V, σ)
M(Φ)

// M(V, τ)

and the induced morphism h : M(V, σ1) → M(V, σ) ×M(V,τ) M(V, τ 1). Then M(Φ)!

and h∗ ◦M(Φ1)! yield the same orientation to the projection

M(V, σ)×M(V,τ) M(V, τ 1) →M(V, τ 1).

(By definition, an orientation of a morphism f : X → Y is an element of the
bivariant intersection theory A∗(Y → X), i.e. in particular a morphism A∗(X

′) →
A∗(Y

′) for every pull-back f ′ : X ′ → Y ′ of f .)
We may assume that Φ is an elementary isogeny, so we have one of the following

two cases:

• Contraction of an edge. It is sufficient to consider the case where τ has only
one vertex, so bothM(Φ) andM(Φ1) are a gluing morphism as in proposition
3.1.1. Consider the first case, where Φ contracts a non-looping edge (the other
case follows similarly). An object in the product consists of a pair of weighted
stable maps ((C1, f1), (C2, f2)) of type σ and τ 1, respectively, together with
an isomorphism the reduction of C2 to type τ with the curve obtained by
gluing the two components of C1. Since the sections cannot meet the node,
this is only possible if C2 already consists of two components, which together
form a weighted stable maps of type σ1. The induced map to M(V, σ1) is an
inverse to h, i.e. the above diagram is a cartesian square.

Both M(Φ) and M(Φ1) are a codimension one regular embedding with
compatible normal bundle, and the claim follows by standard intersection
theory.

• Contraction of a small tail. In this case, both M(Φ) and M(Φ1) are flat. The
orientation given by M(Φ) is the same as that of the projection to the second
factor of the product. Since h is a blow-up at a regularly embedded substack,
we have h∗ ◦ h∗ = id, and the assertion follows.

We proceed with the proof of theorem 7.3.2.

(1) This follows from the same property [BM96, Definition 7.1, (1)] in the non-
weighted case and projection formula.
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(2) Consider the diagram of lemma 7.3.4:

M(Φ)!J(V, τ) = M(Φ)!M(W (τ))∗J(V, τ 1) (by definition)

= p1∗M(Φ)!J(V, τ 1) (push-forward)

= p1∗h∗M(Φ1)!J(V, τ 1) (by lemma 7.3.4)

= M(W (σ))∗J(V, σ1) (*)

= J(V, σ) (by definition)

Here (*) holds by [BM96, Definition 7.1, (4)].
(4a) This is obvious from the same property for non-weighted graphs [BM96, Def-

inition 7.1, (2)].
(4b) The natural map M(V, σ1) → M(V, τ 1) fits as an additional row on top of

diagram given in condition (4b), so that all squares are cartesian. Thus the
claim follows from property [BM96, Definition 7.1, (3)] and push-forward.

(4c) We may assume that |J | = 1, so we are just dealing with a single V -graph σ
and its absolute stabilization σs.

Consider σ1 and its absolute stabilization (σ1)s. By the universal property
of stabilization, the composition of the combinatorial morphisms of weighted
graphs σs → σ → σ1 factors uniquely via (σ1)s. Similarly, for each i ∈ I
let τ 1

i be the corresponding graphs with weights 1, and let, by some abuse of
notation, (τ 1)s be their common absolute stabilization; we obtain a combina-
torial morphism τ s → (τ 1)s.

These morphisms can be completed to the following diagram of a cube:∐
i τi

‘
Φi

//

��

σ

��

∐
i τ

1
i

W (τi) ;;wwww ‘
Φ1

i
//

��

σ1

W (σ)
~~

??~~

��
τ s Φ //σs

(τ 1)s

::uuuuu
Φ1 //(σ1)s

=={{{{

More precisely, there exist unique contractions Φ1 : (τ 1)s → (σ1)s and
Φ1
i : τ

1
i → σ1 such that

(I) the top and bottom square are commutative in the category of weighted
marked graphs, and

(II) the square in front is a cartesian isogeny diagram.
Assuming these claims, the desired property can be deduced from the

corresponding property [BM96, Definition 7.1, (5)] by careful diagram com-
putation:

Since none of the squares of the cube necessarily yield cartesian squares
of moduli spaces, we need to consider the products Pback = M(τ s) ×M(σs)
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M(V, σ), Pfront = M((τ 1)s) ×M((σ1)s) M(V, σ1) and Pdiag = M(τ s) ×M(σs)

M(V, σ1). Let hback and hfront be the induced map from the corresponding
corner of the cube to Pback and Pfront, respectively, and hd→b : Pdiag → Pback,
hf→b : Pfront → Pback and hf→d : Pfront → Pdiag the maps induced by the
commutative cube. We obtain

M(Φ)!J(V, σ) = M(Φ)!M(W (σ))∗J(V, σ1) (by definition)

= hd→b∗M(Φ)!J(V, σ1) (push-forward)

= hd→b∗hf→d∗M(Φ1)!J(V, σ1) (lemma 7.3.4)

= hf→b∗hfront∗

∑
i

J(V, τ 1
i ) (*)

= hback∗

∑
i

W (τi)∗J(V, τ 1
i )

= hback∗

∑
i

J(V, τi), (by definition)

where (*) holds according to [BM96, Definition 7.1, (5)]. So it remains to
prove the two claims above.

The definition of Φ1
i is obvious and necessarily unique, as the graphs τi

and τ 1
i , as well as σi and σ1

i , are identical as marked graphs after forgetting
the weighting. Commutativity of the top square is equivalent to the claim that
the combinatorial morphism w(τi) : τi → τ 1

i is the stable pull-back (see p. 44)
of w(σ) : σ → σ1 along Φ1

i , which is equally obvious.
For the bottom square involving Φ1, we need to review the construction of

cartesian isogenies. Consider any tail f ∈ Sσs ; it corresponds to a long tail in
σ consisting of edges {f1, f̄1}, . . . , {fn, f̄n}, of vertices v1, . . . , vn and of tails
fn+1, . . . , fn+k attached to vn. Its preimage ΦF (f) ∈ Sτs corresponds to an
identical long tail {ΦF

i (f1),Φ
F
i (f̄1)}, ... etc. in τi. After adjusting the weights

to one, we again see identical long tails as part of σ1 respectively τ 1
i ; these

will have identical stabilization in (σ1)s resp. (τ 1)s. This shows that Φ1 is
uniquely determined on the stabilization of this long tail. The same discussion
applies to any edge of σs corresponding to a long edge in σs. Finally, any part
of τ s contracted by Φ will appear identically in τi, and thus in τ 1

i and (τ 1)s.
Hence Φ1 will necessarily contract it, too.

We have thus constructed Φ1 so that the front square is a cartesian isogeny
diagram. At the same time, the above discussion shows that the stable pull-
back of σs → (σ1)s along Φ1 will recover τ s → (τ 1)s, i.e. the bottom square
is indeed commutative.

(5) This holds by definition.
(6) This follows from the definition and the fact that reduction morphisms are

compatible with composition (Proposition 2.2.1).



54 4. MODULI SPACES OF WEIGHTED STABLE MAPS AND GROMOV-WITTEN INVARIANTS

(3) By properties (4a) and (4b), we can consider only graphs having a single
vertex. Further, we may assume that the combinatorial morphism a combines
exactly two tails f1, f2 ∈ Sτ to a single tail f = aF (f1) = aF (f2) ∈ Sσ.

Let ρ be the V -graph obtained from σ1 by adding second vertex of class
and genus zero, having two tails f ′1, f

′
2 of weight 1 and one edge whose second

flag connects it to the original vertex and replaces the tail f ; geometrically,
we replace the tail f with a tripod.

The morphism ρ → σ1 induced by the combinatorial morphism σ1 → ρ
gives an isomorphism of moduli spaces M(ρ) → M(σ1), which respects the
virtual fundamental classes by properties (1), (4a) and (4b).

There is a morphism Ψ: ρ→ τ 1 contracting the edge in ρ and sending f ′i
to fi. Thus we have the following commutative diagram:

M(ρ) ∼= M(σ1)
M(Ψ)

//

W (σ)
��

M(τ 1)

W (τ)
��

M(σ)
M(Φ)

// M(τ)

A discussion similar to the one in the proof of (4c) shows that this is a
cartesian square. Let Ξ: τ 1 → σ1 be the morphism obtained by forget-
ting the tail f1 and mapping f2 to f . Then M(Ψ) is a section of M(Ξ), so
M(Ψ)![M(τ 1)]virt = M(Ψ)!M(Ξ)∗[M(σ1)]virt = [M(σ1)]virt. The desired
equality follows by push-forward and the vanishing of excess intersection.
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1993. alg-geom/9310004.

[Bay04] Arend Bayer. Semisimple quantum cohomology and blowups. Int. Math. Res. Not.,
(40):2069–2083, 2004. math.AG/0403260.

[Bea97] Arnaud Beauville. Quantum cohomology of complete intersections. In R.C.P. 25, Vol.
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nisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern
Surveys in Mathematics]. Springer-Verlag, Berlin, 2000.

[Mac04] Emanuele Macrı̀. Some examples of moduli spaces of stability conditions on derived cat-
egories. 2004. math.AG/0411613.

[Man99] Yu. I. Manin. Frobenius manifolds, quantum cohomology, and moduli spaces, volume 47
of American Mathematical Society Colloquium Publications. American Mathematical So-
ciety, Providence, RI, 1999.

[Man04] Yuri Manin. Moduli stacks Lg,S . Mosc. Math. J., 4(1):181–198, 311, 2004.
[Orl92] D. O. Orlov. Projective bundles, monoidal transformations, and derived categories of co-

herent sheaves. Izv. Ross. Akad. Nauk Ser. Mat., 56(4):852–862, 1992.
[Rua99] Yongbin Ruan. Surgery, quantum cohomology and birational geometry. In Northern Cal-

ifornia Symplectic Geometry Seminar, volume 196 of Amer. Math. Soc. Transl. Ser. 2,
pages 183–198. Amer. Math. Soc., Providence, RI, 1999.

[Rud90] A. N. Rudakov. Helices and vector bundles, volume 148 of London Math. Soc. Lecture
Note Ser. Cambridge Univ. Press, Cambridge, 1990.

[Rud97] Alexei Rudakov. Stability for an abelian category. J. Algebra, 197(1):231–245, 1997.
[SGA1] Revêtements étales et groupe fondamental. Springer-Verlag, Berlin, 1971. Séminaire
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Summary
Semisimple Quantum Cohomology, deformations of

stability conditions and the derived category
by Arend Bayer

The introduction discusses various motivations for the following chapters of the
thesis, and their relation to questions around mirror symmetry.

The main theorem of chapter 2 says that if the quantum cohomology of a smooth
projective variety V yields a generically semisimple product, then the same holds true
for its blow-up at any number of points (theorem 3.1.1). This is a positive test for a
conjecture by Dubrovin, which claims that quantum cohomology of V is generically
semisimple if and only if its bounded derived category Db(V ) has a complete excep-
tional collection.

Chapter 3 generalizes Bridgeland’s notion of stability condition on a triangulated
category. The generalization, a polynomial stability condtion (definition 2.1.4), allows
the central charge to have values in polynomials C[N ] instead of complex numbers C.
We show that polynomial stability conditions have the same deformation properties as
Bridgeland’s stability conditions (theorem 3.2.5). In section 4, it is shown that every
projective variety has a canonical family of polynomial stability conditions.

In chapter 4, we define and study the notion of a weighted stable map (definition
2.1.2), depending on a set of weights. We show the existence of moduli spaces of
weighted stable maps as proper Deligne-Mumford stacks of finite type (theorem 2.1.4),
and study in detail their birational behaviour under changes of weights (section 4).
We introduce a category of weighted marked graphs in section 6, and show that it
keeps track of the boundary components of the moduli spaces, and natural morphisms
between them. We introduce weighted Gromov-Witten invariants by defining virtual
fundamental classes, and prove that these satisfy all properties to be expected (sections
5 and 7). In particular, we show that Gromov-Witten invariants without gravitational
descendants do not depend on the choice of weights.



Zusammenfassung
Halbeinfache Quanten-Kohomologie, Deformation von

Stabilitätsbedingungen und die Derivierte Kategorie
von Arend Bayer

Die Einleitung erläutert verschiedene Ausgangspunkte für die nachfolgenden
Kapitel, und ihre Verbindungen zu Fragen rund um Spiegelsymmetrie.

Hauptaussage von Kapitel 2 ist Satz 3.1.1: wenn das Produkt der Quantenkoho-
mologie einer glatten projektiven Varietät V generisch halbeinfach ist, dann gilt das-
gleiche für die Aufblasung von V an beliebig vielen Punkten. Dies ist ein erfolgreicher
Test für eine Vermutung von Dubrovin, die besagt, dass die Quantenkohomologie von
V genau dann generisch halbeinfach ist, wenn die beschränkte derivierte Kategorie
Db(V ) ein vollständiges exzeptionelles System besitzt.

Kapitel 3 verallgemeinert Bridgelands Begriff einer Stabilitätsbedingung in
einer triangulierten Kategorie. Diese Verallgemeinerung, eine polynomiale Sta-
bilitätsbedingung (Definition 2.1.4), lässt eine zentrale Ladung mit Werten in Poly-
nomen C[N ] statt komplexen Zahlen C zu. Es wird gezeigt, dass polynomiale
Stabilitätsbedingungen dieselben Deformationseigenschaften wie Bridgelands Sta-
bilitätsbedingungen haben (Satz 3.2.5). Abschnitt 4 zeigt, dass es für jede projek-
tive Varietät V eine kanonische Familie von polynomialen Stabilitätsbedingungen in
Db(V ) gibt.

Kapitel 4 führt den Begriff einer gewichteten stabilen Abbildung ein (Definition
2.1.2), in Abhängigkeit einer Menge von Gewichten. Satz 2.1.4 zeigt die Existenz der
Modulräume gewichter stabiler Abbildung als eigentliche Deligne-Mumford-Stacks
endlichen Typs, und Abschnitt 4 beschäftigt sich im Detail mit dem birationalen Ver-
halten der Modulräume bei Änderungen der Gewichte. In Abschnitt 6 führen wir eine
Kategorie gewichteter markierter Graphen ein, und zeigen, dass sie natürlicherweise
Randkomponenten der Modulräume und die natürliche Morphismen zwischen ih-
nen indiziert. Gewichtete Gromov-Witten-Invarianten werden durch die Definition
von virtuellen Fundamentalklassen eingefürt, und wir zeigen, dass diese alle zu er-
wartenden Eigenschaften erfüllen (Abschnitte 5 und 7). Insbesondere zeigen wir,
dass Gromov-Witten-Invarianten ohne Kopplung an Gravitation nicht von der Wahl
der Gewichte abhängen.


