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Introduction

Noncommutative tori are standard prototypes of noncommutative spaces.
Since the early stages of noncommutative geometry these spaces have been
central examples arising naturally in various context. In [16] Manin pro-
posed the use of noncommutative tori as a geometric framework for the
study of abelian class field theory of real quadratic fields. This is the so
called “real multiplication program”. The main idea is that noncommuta-
tive tori may play a role in the study of real quadratic fields analogous to
the role played by elliptic curves in the study of imaginary quadratic fields.
The relation between the endomorphism rings of noncommutative tori and
orders in real quadratic fields is a good evidence supporting this point of
view. If a noncommutative torus admits nontrivial Morita autoequivalences
then the ring of such autoequivalences is an order in a real quadratic field.
A noncommutative torus having this property is called a real multiplication
noncommutative torus.

The fact that noncommutative geometry may be relevant for addressing
questions in number theory is also supported by various results and relations
that have emerged in the last years. In particular explicit class field theory of
Q (Kronecker-Weber theorem) and explicit class field theory of imaginary
quadratic fields (complex multiplication) can both be recovered from the
dynamics of certain quantum statistical mechanical systems ([2, 7, 8]). The
existence of quantum statistical mechanical systems with rich arithmetical
properties opens a new approach to the study of explicit class field theory
using the tools of quantum statistical mechanics. The first case for which
there is not yet a complete solution to the explicit class field theory problem
is the case of real quadratic fields, K = Q(

√
D), where D ∈ N+ is a square

free positive integer.
Noncommutative tori are, a priori, analytical objects. In order to achieve

arithmetical applications it is important to find appropriate algebraic struc-
tures underlying these spaces. Rings admitting models algebraic over the
corresponding base fields have proved to be essential for the analysis of
quantum statistical mechanical systems of arithmetic nature.

In [26] Polishchuk defined homogeneous coordinate rings for real mul-
tiplication noncommutative tori endowed with a complex structure. These
rings seem to be good candidates for the applications described above. Our
aim is to understand in which sense these rings provide an arithmetic struc-
ture on noncommutative tori. Starting from the explicit formulas defining
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2 INTRODUCTION

these rings we study their rationality properties and their dependence on
the complex structure. Some examples related to particular quadratic fields
are treated.

Homogeneous coordinate rings for real multiplication noncommutative
tori can be viewed as a family of algebras varying with the parameter defining
the complex structure on the noncommutative torus. We give a presentation
of these rings in terms of modular forms and use this modularity to define
rings which do not depend on the choice of a complex structure. This is
done by an averaging process over (limiting) modular symbols.

The fact that modular forms play an essential role in our analysis points
to deep relations with the quantum thermodynamical system introduced by
Connes and Marcolli in [6]. This quantum mechanical system recovers the
class field theory of the modular field and provides a two dimensional analog
of the dynamical system corresponding to the Kronecker-Weber theorem.

In the case of real quadratic fields explicit class field theory is conjec-
turally given in terms of special values of L-functions, this is the content of
Stark’s famous conjectures [39]. In order to apply our results on noncommu-
tative tori in this direction using the tools of quantum statistical mechanics
we still need to find C∗-completions for the homogeneous coordinate rings
of real multiplication noncommutative tori. As a preliminary step in this
direction we describe the geometric data associated to the homogeneous co-
ordinate rings of noncommutative tori. We expect that at a future stage
the use of the techniques developed in [5] will make it possible to obtain
suitable C∗-completions.

In a different but related perspective arithmetic structures on noncom-
mutative tori have been recently studied by Vlasenko in [40] where the
theory of rings of quantum theta functions is developed.



CHAPTER 1

Homogeneous coordinate rings on
noncommutative tori with real multiplication

In this chapter we introduce the main notions and notations used in
the present work. In the first sections we introduce noncommutative tori
with real multiplication and their homogeneous coordinate rings as defined
by Polishchuk in [26]. In Section 5 we use the explicit formulas involved
in the definition of these rings in order to obtain a presentation in terms
of generators and relations, this section is the core of the chapter. We end
with some particular examples in order to illustrate the behavior of the rings
corresponding to different tori.

1. Noncommutative tori

On what follows we will denote by T the two dimensional torus S1×S1.
As a topological space T it is characterized by its algebra of continuous
functions C(T). This algebra is a unital commutative C∗-algebra. C(T)
can be realized as the universal C∗-algebra generated by two commuting
unitaries U and V . Any element of C(T) admits a Fourier expansion in
terms of powers of these unitaries and smooth functions are characterized
as those functions whose coefficients in the corresponding Fourier expansion
decay rapidly at infinity.

Noncommutative tori are defined by their function algebras which are
noncommutative deformations of C(T) and C∞(T).

Definition 1.1. Given θ ∈ R we define Aθ = C(Tθ), the algebra of
continuous functions on the noncommutative torus Tθ, as the universal C∗-
algebra generated by two unitaries U and V subject to the relations:

UV = e2πiθV U.(1)

Definition 1.2. Given θ ∈ R we define Aθ, the algebra of smooth func-
tions on the noncommutative torus Tθ, as the algebra of formal power series
in two unitaries U and V with rapidly decreasing coefficients and multipli-
cation given by the relation UV = e2πiθV U :

Aθ = C∞(Tθ)

= {a =
∑
n,m∈Z

an,mU
nV m | {an,m} ∈ S(Z2)}

3



4 1. HOMOGENEOUS COORDINATE RINGS ON RM NONCOMMUTATIVE TORI

The compact group T acts on the algebras Aθ and Aθ. Much of the
structure of these algebras is determined by this action. The action of T
induces an action of its Lie algebra L = R2 given by the derivations:

δ1(U) = 2πıU ; δ1(U) = 0(2)
δ2(U) = 0; δ2(V ) = 2πıV(3)

The algebra Aθ is a pre-C∗-algebra whose C∗-completion is isomorphic
to Aθ. The corresponding Frechet structure is determined by the derivations
δ1 and δ2. Likewise one can obtain Aθ as the algebra of smooth elements
of Aθ determined by these derivations. The relation between these algebras
parallels the classical situation which corresponds to the value θ = 0 for
which one recovers C(T) and C∞(T). We refer the reader to the seminal
paper [3] and the survey [31] for the main results about the algebras Aθ =
C(Tθ) and Aθ = C∞(Tθ).

On what follows we will restrict to the case were θ is an irrational num-
ber. In this case the algebra Aθ is simple and admits a unique normalized
trace χ invariant under the action of T. In the algebra Aθ this trace is given
by

χ(
∑

an,mU
nV m) = a0,0.(4)

2. Morita equivalences and real multiplication

By the Serre-Swan theorem the theory of vector bundles over T is equiva-
lent to to the theory of finite type projective modules over the algebra C(T).
To each complex vector bundle over T one associates the C(T)-module of its
global sections. Smooth bundles correspond to finite type projective mod-
ules over C∞(T) and every vector bundle over T is equivalent to a smooth
one.

We consider projective finite type right Aθ-modules as vector bundles
over Tθ. If Ẽ is a projective finite type right Aθ-module then there exists a
projective finite type right Aθ-module E such that one has an isomorphism
of right Aθ-modules:

Ẽ ' E ⊗Aθ
Aθ.

Therefore, as in the commutative case, the categories of smooth and contin-
uous vector bundles over Tθ are equivalent (c.f. [3]). On what follows we
will restrict to Aθ-modules.

The trace χ defined in (4) can be extended to a trace Trχ on the matrix
algebra Mn(Aθ) = End(Anθ ). A right Aθ-module E is projective of finite
type if and only if there exists an idempotent e = e2 = e∗ in Mn(Aθ) such
that E ' eAnθ , thus we can define the rank of E by

rk(E) = Trχ(e)(5)

Unless otherwise stated a right (resp. left) Aθ-module will always mean
a right (resp. left) projective finite type Aθ-module.
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Let θ ∈ R be irrational. Following [3] we define, for any pair c, d ∈ Z,
c > 0, a right Aθ-module Ed,c(θ) given by the following action of Aθ on the
Schwartz space S(R× Z/cZ) = S(R)c:

(fU)(x, α) = f(x− cθ + d

c
, α− 1)(6)

(fV )(x, α) = exp(2πi(x− αd

c
))f(x, α)(7)

The rank of Ed,c(θ) is |cθ+d| and if E is any right Aθ-module with rk(E) =
|cθ+ d| then E ' Ed,c(θ). The K0 group of Aθ, K0(Aθ), is by definition the
enveloping group of the abelian semigroup given by isomorphism classes of
right Aθ-modules together with direct sum. The rank function rk extends
to a injective morphism

rk : K0(Aθ) → R(8)

whose image is Z ⊕ θZ. Therefore one gets a ordered structure on K0(Aθ)
given by the isomorphism

K0(Aθ) ' Z⊕ θZ ⊂ R(9)

The fact that rk is injective is the content of the cancellation theorem due
to Rieffel (c.f. [32]). From this theorem it follows that right Aθ-modules are
classified up to isomorphism by their rank and that any finite type projective
right Aθ-module is either free or isomorphic to a right module of the form
Ed,c(θ).

If c and d are relatively prime we say that Ed,c(θ) is a basic Aθ-module.
Being this the case the pair d, c can be completed to a matrix

g =
(
a b
c d

)
∈ SL2(Z)(10)

We write Eg(θ) for the module Ed,c(θ). By definition the degree of Eg(θ)
is taken to be c. We also define the degree of a matrix g ∈ SL2(Z), given as
above, by deg(g) = c.

Let SL2(Z) act on R by fractional linear transformations. Let g ∈
SL2(Z) be as above and denote by U ′ and V ′ two generating unitaries of
the algebra Agθ. We can define a left action of the algebra Agθ on Eg by:

(U ′f)(x, α) = f

(
x− 1

c
, α− a

)
(11)

(V ′f)(x, α) = exp(2πi(
x

cθ + d
− α

c
))f(x, α)(12)

This action gives an identification:

EndAθ
(Eg(θ)) ' Agθ.(13)
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The tensor product of basic modules is again a basic module. More
precisely, given g1, g2 ∈ SL2(Z), there is a well defined pairing of right Aθ-
modules:

tg1,g2 : Eg1(g2θ)⊗C Eg2(θ) → Eg1g2(θ)(14)

This map gives rise to an isomorphism of Ag1g2θ −Aθ bimodules:

Eg1(g2θ)⊗Ag2θ
Eg2(θ) → Eg1g2(θ).(15)

In particular, if gθ = θ one has an isomorphism

Eg(θ)⊗Aθ
· · · ⊗Aθ

Eg(θ)︸ ︷︷ ︸
n

' Egn(θ).(16)

We say that two noncommutative tori Tθ′ and Tθ are Morita equiva-
lent if there exist a Aθ′-Aθ-bimodule which is projective and of finite type
both as a left Aθ′-module and as a right Aθ-module. We will consider the
category whose objects are noncommutative tori and whose morphisms are
given by isomorphism classes of finite type projective bimodules over the
corresponding algebras of smooth functions. Composition is provided by
tensor product over the corresponding algebra. A isomorphism in this cat-
egory is called a Morita equivalence. From the discussion above we see that
given a real number θ and a matrix g ∈ SL2(Z) the noncommutative tori
Tgθ and Tθ are Morita equivalent. The inverse of the morphism represented
by the Agθ-Aθ-bimodule Eg(θ) is the morphism represented by the Aθ-Agθ-
bimoduleEg−1(gθ). By a result of Rieffel these are the only possible Morita
equivalences in the category of noncommutative tori (c.f. [30]). More pre-
cisely, two noncommutative tori T′θ and Tθ are Morita equivalent if and only
if there exist g ∈ SL2(Z) such that θ′ = gθ.

If gθ = θ then Eg(θ) has the structure of Aθ-bimodule. An irrational
number θ ∈ R \ Q is a fixed point of a fractional linear transformation
g ∈ SL2(Z) if and only if it generates a quadratic extension of Q.

Definition 2.1. The noncommutative torus Tθ with algebra of smooth
functions Aθ is a real multiplication noncommutative torus if the parameter
θ generates a quadratic extension of Q.

Thus Tθ is a real multiplication noncommutative torus if and only if it
has nontrivial Morita autoequivalences.

In [16] Manin proposed the use of noncommutative tori as a geometric
framework under which to attack the explicit class field theory problem for
real quadratic extensions of Q. The explicit class field theory problem ask
for explicit generators of the maximal abelian extension of a given field and
the corresponding Galois action of the abelianization of the absolute Galois
group on these generators. The only number fields for which a complete
solution of this problem is known are the imaginary quadratic extensions
of Q and Q itself. Elliptic curves whose endomorphism ring is nontrivial
correspond to lattices generated by imaginary quadratic irrationalities and
play a central role in the solution of the explicit class field theory problem
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for the corresponding imaginary quadratic extensions. It is believed that
noncommutative tori with real multiplication may play analogous role in
the study of real quadratic extensions of Q. In order to achieve arithmeti-
cal applications it is important to realize algebraic structures underlying
noncommutative tori. This is our main motivation for the study of the
homogeneous coordinate rings described below.

3. Complex structures on tori and holomorphic connections

A complex structure on the noncommutative torus Tθ is determined
through the the derivations δ1 and δ2 by choosing a complex structure on
the Lie algebra L = R2 of T. For this we make a decomposition of the
complexification of L into two complex conjugate subspaces. This can be
done by choosing a complex parameter τ with nonzero imaginary part and
taking {1, τ} as a basis for the holomorphic part of this decomposition. The
resulting derivation δτ = τδ1 + δ2 is a complex structure Tθ. Explicitly we
have:

δτ :
∑
n,m∈Z

an,mU
nV m 7→ (2πı)

∑
n,m∈Z

(nτ +m)an,mUnV m(17)

This derivation should be viewed as an analog of the operator ∂̄ on a complex
elliptic curve. We will denote by Tθ,τ the noncommutative torus Tθ equipped
with this complex structure. In what follows we will assume that Im(τ) < 0.
We will also freely refer to τ as the complex structure on Tθ,τ .

Complex structures on noncommutative tori were introduced by Connes
in relation with the Yang Mills equation and positivity in Hochschild co-
homology for noncommutative tori (c.f. [4]). The study of the structure
of the space of connections associated to the above derivations was carried
out in [9]. An approach through noncommutative analogs of theta functions
was developed in [33, 10] were these are viewed as holomorphic sections on
noncommutative tori. The resulting categories were studied throughly in
[29]and [27].

A holomorphic structure on a right Aθ-module E is given by an operator
∇̄ : E → E which is compatible with the complex structure δτ in the sense
that it satisfies the following Leibniz rule:

∇̄(ea) = ∇̄(e)a+ eδτ (a), e ∈ E, a ∈ Aθ(18)

Given a holomorphic structure ∇̄ on a right Aθ-module E the corre-
sponding set of holomorphic sections is the space

H0(Tθ,τ , E∇̄) := Ker(∇̄)(19)

On every basic module Ed,c one can define a family of holomorphic struc-
tures {∇̄z} depending on a complex parameter z ∈ C:

∇̄z(f) =
∂f

∂x
+ 2πi

(
dτ

cθ + d
x+ z

)
f.(20)
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By definition a standard holomorphic vector bundle on Tθ,τ is given by
a basic module Ed,c = Eg together with one of the holomorphic structures
∇̄z.

The spaces of holomorphic sections of a standard holomorphic vector
bundles on Tθ,τ are finite dimensional (c.f. [29], Section 2). If cθ + d > 0
then dimH0(Eg, ∇̄0) = c. On what follows we will consider the spaces of
holomorphic sections corresponding to ∇̄0:

Hg := H0(Tθ,τ , Eg,∇̄0
).(21)

A basis of Hg is given by the Schwartz functions:

ϕα(x, β) = exp(− cτ

cθ + d

x2

2
)δβα α = 1, ..., c.(22)

The tensor product of holomorphic sections is again holomorphic. Using
the above basis the product can be written in terms of the corresponding
structure constants.

Theorem 3.1. ([29] Section 2) Suppose g1 and g2 have positive degree.
Then g1g2 has positive degree and tg1,g2 induces a well defined linear map

tg1,g2 : Hg1(g2θ)⊗C Hg2(θ) → Hg1g2(θ).(23)

Let g1, g2 and g1g2 be given by

g1 =
(
a1 b1
c1 d1

)
, g2 =

(
a2 b2
c2 d2

)
, g1g2 =

(
a12 b12
c12 d12

)
and let {ϕα}, {ϕ

′
β} and {ψγ} be respectively the basis of Hg1(g2θ), Hg2(θ)

and Hg1g2(θ) as given in (22). Then

tg1,g2 : ϕα ⊗ ϕ
′
β 7→ Cγα,βψγ(24)

Where for α = 1, ..., c1, β = 1, ..., c2 and γ = 1, ..., c12 we have:

Cγα,β =
∑

m∈Ig1,g2 (α,β,γ)

exp[πı
−τm2

2c1c2c12
](25)

with

Ig1,g2(α, β, γ) = {n ∈ Z | n ≡ −c1γ + c12α mod c12c1,
n ≡ c2d12γ − c12d2β mod c12c2}

Notation 3.2. Throughout we use the convention of summing over re-
peated indexes.

4. Homogeneous coordinate rings

Given a projective scheme Y over a field k together with an ample line
bundle L on Y one can construct the homogeneous coordinate ring

B =
⊕
n≥0

H0(Y,L⊗n).
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This ring plays a prominent role in the study of the geometry of Y (c.f.[34]).
In [26] Polishchuk proposed an analogous definition of the homogeneous

coordinate ring of a real multiplication noncommutative torus Tθ in terms
of holomorphic sections of tensor powers of a standard holomorphic vector
bundle on Tθ,τ . As mentioned above the real multiplication condition is
fundamental in order to be able to perform the tensor power operation.

Assume that θ ∈ R is a quadratic irrationality. So there exist some g ∈
SL2(Z) with gθ = θ and Tθ has real multiplication. Fix a complex structure
τ on Tθ. In the case E = Eg(θ) we can extend a holomorphic structure on
Eg to a holomorphic structure on the tensor powers E⊗ng . Following [26] we
define a homogeneous coordinate ring for Tθ,τ by:

Bg(θ, τ) =
⊕
n≥0

H0(Tθ,τ , E⊗n∇̄0
)(26)

=
⊕
n≥0

Hgn

The category of holomorphic vector bundles on Tθ,τ is equivalent to the
heart Cθ of a t-structure on Db(Eτ ), the derived category of the elliptic curve
Eτ = C/(Z ⊕ τZ). In [26] Polishchuk exploits this equivalence in order to
study the properties of the algebra Bg(θ, τ) by studying the the correspond-
ing image under this equivalence. The following result characterizes some
structural properties of Bg(θ, τ) in terms of the matrix elements of g:

Theorem 4.1. ([26] Theorem 3.5) Assume g ∈ SL2(Z) has positive real
eigenvalues

• If c ≥ a+ d then Bg(θ, τ) is generated over C by Hg.
• If c ≥ a+ d+ 1 then Bg(θ, τ) is a quadratic algebra.
• If c ≥ a+ d+ 2 then Bg(θ, τ) is a Koszul algebra.

Let us briefly recall these definitions. If A =
⊕

n≥0An is a connected
graded algebra over a field k generated by its degree one piece A1 then
A is isomorphic to a quotient T (A1)/I where T (A1) =

⊕
n≥0A

⊗n
1 is the

tensor algebra of the vector space A1 and I is a two sided ideal in T (A1).
The algebra A is a quadratic algebra if the ideal I can be generated by
homogeneous elements of degree two. Since A is connected we can consider
A0 = k as a left module over A. A quadratic A algebra is a Koszul algebra
if the graded k-algebra

⊕
n≥0Ext

n
A(k, k) is generated by Ext1A(k, k) ' A∗1.

We will fix some notations and conventions for the rest of the paper. As
above g will denote a matrix

g =
(
a b
c d

)
∈ SL2(Z)
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We will always assume that the following inequalities hold

Tr(g) = a+ d > 2 (g is hyperbolic)(27)
c ≥ Tr(g) + 2 = a+ d+ 2(28)

The first inequality implies that g has positive real eigenvalues. By
Theorem 4.1 the second inequality implies thatBg(θ, τ) is a quadratic Koszul
algebra generated in degree 1.

We denote by λ+ and λ− the eigenvalues of g with 0 < λ+ < 1 and 1 < λ−.
It is important to note that λ− is a fundamental unit for the quadratic
extension it generates. We also take

θ =
λ+ − d

c
, θ′ =

λ− − d

c
(29)

These are the fixed points of g. By definition the n-graded part of Bg(θ, τ)
is Hgn . The dimension of Hgn is deg(gn). Accordingly the Hilbert series for
Bg(τ, θ) is given by (c.f [26]):

hBg(τ,θ)(t) =
1 + (c− a− d) t+ t2

1− (a+ d) t+ t2
.(30)

Proposition 4.2. Let α ∈ R be a quadratic irrationality. Then there
exist g and θ satisfying (27) and (28) such that Q(α) = Q(θ).

Proof. Suppose α ∈ R is a quadratic irrationality. Then there exist a
hyperbolic element

h =
(
a′ b′

c′ d′

)
∈ SL2(Z)

having α as one of its two fixed points. Being a fixed point of h, α satisfies
the quadratic equation c′α2 +(d′−a′)α− b′ = 0. Since a′d′− b′c′ = 1 we can
write the discriminant of this equation as D = (a′ + d′)2 − 4 = Tr(h)2 − 4.
α and

√
D generate the same field extension of Q. |Tr(h)| > 2 and we may

assume Tr(h) > 2 since multiplying h by −1 does not change D. Define

g =
(
Tr(h) + 1 −1
Tr(h) + 2 −1

)
Then g ∈ SL2(Z) and Tr(g) = Tr(h) so the fixed points of g generate the
same extension of Q than α. By construction g satisfies (27) and (28). �

5. A presentation in terms of generators and relations

We want to describe Bg(θ, τ) in terms of generators and relations. Let
{ϕα|α = 1, ..., c} be the basis for Hg and {ψγ |γ = 1, ..., c(a+ d)} the corre-
sponding basis of Hg2 as given in (22).

The multiplication map m : Hg ⊗ Hg → Hg2 of the algebra Bg(θ, τ)
is tg,g. It is given in the above basis as in Theorem 3.1 by the structure
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constants:

m : ϕα ⊗ ϕβ 7→ Cγα,βψγ(31)

Our computation of the relations defining Bg(θ, τ) is based on the fol-
lowing observation:

Lemma 5.1. Denote by T the tensor algebra of Hg. Then Bg(θ, τ) is
isomorphic to the quotient of T by the homogeneous ideal R generated by
Ker(m) ⊂ Hg ⊗Hg.

Proof. The algebra graded Bg(θ, τ) is generated by its degree one part
Hg therefore it is a quotient of T . Being quadratic the ideal of relations
R = Ker(m) consist of degree two elements in T . �

Let vα,βϕα ⊗ ϕβ ∈ Hg ⊗ Hg, vα,β ∈ C be an arbitrary homogeneous
element of T of degree 2. Since m : vα,βϕα ⊗ ϕβ 7→ vα,βCγα,βψγ we have
that vα,βϕα ⊗ ϕβ belongs to Ker(m) if and only if vα,βCγα,β = 0 for all
γ = 1, ..., c(a+ d). Using the bases {ϕα} and {ψγ} we identify Hg ⊗Hg and
Hg2 with Cc2 and Cc(a+d) respectively. Finding a set of defining relations of
Bg(θ, τ) for the generators {ϕα|α = 1, ..., c} amounts to finding a basis for
the kernel of the linear map M : Cc2 → Cc(a+d) given by the Cγα,β.

Lemma 5.2. The structure constant Cγα,β is different from zero if and
only if α ≡ d(γ − β) mod c.

Proof. The formula for the structure constants (25) in this case is:

Cγα,β =
∑

m∈Ig,g(α,β,γ)

exp[πı
−τm2

c3(a+ d)
](32)

The index set of the series is nonempty only when α ≡ d(γ − β) mod c.

Ig,g(α, β, γ) 6= ∅ ⇐⇒ −cγ + c(a+ d)α ≡ c(d2 + bc)γ − c(a+ d)dβ mod c2(a+ d)

⇐⇒ −γ + (a+ d)α ≡ (d2 + bc)γ − (a+ d)dβ mod c(a+ d)
⇐⇒ (a+ d)α ≡ (d2 + bc+ 1)γ − (a+ d)dβ mod c(a+ d)
⇐⇒ (a+ d)α ≡ (d2 + da)γ − (a+ d)dβ mod c(a+ d)
⇐⇒ (a+ d)α ≡ d(d+ a)γ − (a+ d)dβ mod c(a+ d)
⇐⇒ α ≡ d(γ − β) mod c

Thus Cγα,β = 0 if α 6≡ d(γ − β) mod c.
Conversely if α ≡ d(γ − β) mod c then

Ig,g(α, β, γ) = {n ∈ Z|n ≡ −cγ + c(a+ d)α mod c2(a+ d)}
= {n ∈ Z|n = −cγ + c(a+ d)α+mc2(a+ d) for some m ∈ Z}
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And thus

Cγα,β =
∑
n∈Z

exp[−πıτ (−cγ + c(a+ d)α+ nc2(a+ d))2

c3(a+ d)
]

=
∑
n∈Z

exp[−πıτ((−cγ + c(a+ d)α)2

c3(a+ d)
+

2n(−cγ + c(a+ d)α)
c

+ c(a+ d)n2)]

= exp[−πıτ ((a+ d)α− γ)2

c(a+ d)
]
∑
n∈Z

exp[−2πıτ((a+ d)α− γ)n− πıτc(a+ d)n2]

The last series is a theta series (73):

Cγα,β = exp[−πıτ [(a+ d)α− γ]2

c(a+ d)
]ϑ(−τ((a+ d)α− γ),−τc(a+ d))

And we can write it as a theta constant with rational coefficients by taking,
τ ′ = −τc(a+ d) and l = c(a+ d).

Cγα,β = exp[−πıτc(a+ d)[
(a+ d)α− γ

c(a+ d)
]2]ϑ(−τc(a+ d)

(a+ d)α− γ

c(a+ d)
,−τc(a+ d))

= exp[πıτ ′[
(a+ d)α− γ

l
]2]ϑ(τ ′

(a+ d)α− γ

l
, τ ′)

= ϑ (a+d)α−γ
l

(τ ′).

Now, by Lemma 0.5 for r, s ∈ 1
lZ the zeroes of ϑr,s(z, τ ′) occur at the points

of the form (r+p+ 1
2)τ ′+(s+ q+ 1

2) for p, q ∈ Z. In particular the zeroes of
ϑr,0 are at points (r+ p+ 1

2)τ ′ + (q + 1
2). Thus ϑr,0(0, τ ′) 6= 0 for all r ∈ 1

lZ
which proves the lemma. �

The expression for the nonzero values of the structure constants in the proof
of Lemma 5.2 is crucial in all that follows. We state it as a corollary.

Corollary 5.3. The nonzero values of the structure constants Cγα,β are
theta constants with rational characteristics depending on g. If α ≡ d(γ−β)
mod c then

Cγα,β = ϑ (a+d)α−γ
l

(τ ′)

= ϑ (a+d)d(γ−β)−γ
l

(τ ′)

where τ ′ = −τc(a+ d) and l = c(a+ d).

Proof. The first equality follows from the proof of Lemma 5.2. For the
second one note that the theta constant ϑr(τ ′) only depend on the class of
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r in 1
lZ/Z so we can replace α by d(γ − β) mod c in the last formula for

the nonzero structure constants. �

We can use Lemma 5.2 to write the linear system M corresponding to
m as a sum of c independent systems. We do this by grouping the nonzero
structure constants. Since c and d are relatively prime it follows that for
γ in a fixed congruence class mod c the value of β determines the unique
value of α for which Cγα,β 6= 0.

Notation 5.4. Given µ, β ∈ {1, ..., c} we denote by α(µ, β) the unique
representative mod c of d(µ− β) laying in ∈ {1, ..., c}.

Lemma 5.5. Let M : Cc2 → Cc(a+d) be given by Cγα,β. Then M is
equivalent to c independent systems M(µ) : Cc → C(a+d), µ = 1, ..., c, each
one of rank c− (a+ d).

Proof. Fix α and β in {1, 2, ...c}. Given γ, γ′ ∈ {1, 2, ...c(a + d)} we
have by Lemma 5.2

Cγα,β 6= 0 and Cγ
′

α,β 6= 0 ⇐⇒ α+ dβ ≡ dγ and α+ dβ ≡ dγ′

⇐⇒ dγ ≡ dγ′ mod c
⇐⇒ γ ≡ γ′ mod c

Therefore nonzero values of Cγα,β occur for values of γ in the same congruence
class mod c and we can arrange the system as c independent systems of
dimension c2 × (a + d), each one corresponding to the values of of γ in
the same congruence class mod c. Again by Lemma 5.2 each one of these
systems will have only c nontrivial columns corresponding to the values of
α and β satisfying α ≡ d(γ − β) mod c. Leaving aside the zero structure
constants we are left with the c independent systems:

M(µ) =


Cµα(µ,1),1 Cµα(µ,2),2 ... Cµα(µ,c),c

Cµ+c
α(µ,1),1 Cµ+c

α(µ,2),2 ... Cµ+c
α(µ,c),c

.

.

C
µ+(a+d−1)c
α(µ,1),1 C

µ+(a+d−1)c
α(µ,2),2 ... C

µ+(a+d−1)c
α(µ,c),c

(33)

where µ ∈ {1, 2, ..., c}.
By Theorem 4.1 Bg(θ, τ) is generated by its degree 1 part (remember we

assumed c ≥ a + d + 2). This in particular means that Hg2 , its degree two
part, is generated by products of elements in Hg so the multiplication map
m is surjective. At the level of the representing matrices this just means
that M has maximal rank. Also, since M is the direct sum of the M(µ)
each one of these must have maximal rank. �
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Componentwise we have

M(µ)i,j = C
µ+(i−1)c
α(µ,j),j .

By Lemma 5.2 the denominator in the characteristic of the corresponding
theta constant is (a+d)d(µ−j)−(µ+(i−1)c) so dividing out by l = c(a+d)
one gets dµ

c −
dj
c −

µ
l −

i
a+d + 1

a+d i.e.

M(µ)i,j = ϑ
q(µ)− dj

c
− i

a+d
(τ ′)(34)

Where q(µ) = dµ
c −

µ
l + 1

a+d is the term not depending on i or j.
It is important to note that the characteristics giving the theta con-

stants which appear as the coefficients of the M(µ) are all the same up
to a shift. We can arrange these characteristics in a matrix Λ = Λ(g) ∈
Mc×(a+d)(1

lZ/Z) given by Λi,j = −dj
c −

i
(a+d) . The matrices M(µ) are then

functions of τ and µ determined by g:

(τ, µ) 7→M(µ)i,j = ϑq(µ)+Λi,j
(τ ′)(35)

Each one of the kernels of the matrices M(µ) gives us a set of relations
for Bg(θ, τ). By the above discussion we see that these sets are independent.
We write down a basis for the kernel of each M(µ) in terms of its minor
determinants. First we introduce some notation:

Notation 5.6. Let n > m and let L : Cn → Cm be a surjective lin-
ear map. Denote also by L ∈ Mm×n(C) its matrix representation in the
canonical basis. Given i1, i2, ..., im ∈ {1, 2, ..., n}, i1 < i2 < ... < im we
write |L|i1,i2,...,im for the minor determinant corresponding to the columns
i1, i2, ..., im.

Lemma 5.7. Let n > m and let L ∈ Mn×m(C). Assume the first m
columns of L are linearly independent. For each k = 1, ..., n−m let vk ∈ Cn

be defined by:

vkj =


|L|1,2,...,j−1,m+k,j+1,...,n if 1 ≤ j ≤ m

−|L|1,2,...,m if j = m+ k

0 otherwise
(36)

Then {vk|k = 1, ..., n−m} forms a basis for Ker(L).

Proof. Let L be as above. Denote by L1, ..., Ln ∈ Cm its columns.
Denote by L̃ ∈ Mm×m the matrix corresponding to the first m columns of
L. For k ∈ {1, ..., n−m} let X̃k ∈ Cm be a solution of L̃Y = −Lm+k we can
complete X̃k to a vector Xk ∈ Cn by taking the remaining coordinates to
be 0 except for the n+ k coordinate which we set to 1. Then LXk = 0 for
all k ∈ {1, ..., n−m}. Also, it is clear from the construction that the Xk are
linearly independent. In this way we may construct a basis for the kernel
of L. Now, we solve each one of the systems L̃Y = −Lm+k using Cramer’s
rule. After clearing denominators in the solution and completing to a vector
in Cn we get the vectors vk in (36). �
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It will be convenient to view the minor determinants of M(µ) as func-
tions of τ .

Definition 5.8. Let M(µ) be given as in 33 let i1, ..., ia+d ∈ {1, 2, ..., c}
with i1 < i2 < ... < ia+d. Define

F g,µi1,i2,...,ia+d
(τ) = |M(µ)|i1,i2,...,ia+d

=
∑

σ∈Sa+d

sgn(σ)
a+d∏
k=1

M(µ)σ(k),ik

=
∑

σ∈Sa+d

sgn(σ)
a+d∏
k=1

ϑ
q(µ)− dik

c
− σ(k)

(a+d)

(τ ′)

We will show later that for each g and µ these are modular functions on
τ .

By applying Lemma 5.7 we can write now a explicit presentation of
Bg(τ, θ):

Theorem 5.9. Given µ ∈ {1, 2, ..., c} and k ∈ {1, ..., c − a − d} let
vµ,k = vµ,k(τ) ∈ Cc be given by

vµ,kj = vµ,kj (τ)(37)

=


F g,µ1,2,...,j−1,a+d+k,j+1,...,a+d(τ) if 1 ≤ j ≤ a+ d

F g,µ1,2,...,a+d(τ) if j = m+ k

0 otherwise

Then the algebra Bg(τ, θ) is generated by elements x1, ..., xc of degree 1 sub-
ject to relations f µk = 0 where:

f µk = vµ,k1 xα(µ,1)x1 + ...+ vµ,kc xα(µ,c)xc(38)

Proof. Each one of the matrices M(µ) has maximal rank equal to a+d.
Therefore there are a+ d linearly independent columns and we can reorder
them in order to apply Lemma 5.7. We let x1, ..., xc be the generators
of the tensor algebra T of Hg corresponding to the basis ϕ1, ..., ϕc. Thus
T = C〈x1, ..., xc〉. For each µ ∈ {1, 2, ..., c} Lemma 5.7 gives us a basis for
the kernel of M(µ) which corresponds by Lemma 5.1 to a set of defining
relations for Bg(τ, θ). �

6. First examples

In this section we look at the behavior of Bg(θ, τ) for some particular
values of the matrix g.

Example 6.1. Let

g =
(

4 −1
5 −1

)
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The eigenvalues of g are:

λ+ =
3−

√
5

2
, λ− =

3 +
√

5
2

and the fixed points of g are:

θ =
5−

√
5

10
, θ′ =

5 +
√

5
10

Fix now a complex structure τ on Aθ and consider the corresponding con-
nection ∇̄0 on the Aθ-bimodule Eg(θ) = E−1,5(θ). The Hilbert series for
Bg(τ, θ) is given by (30):

hBg(τ,θ)(t) =
1 + 2 t+ t2

1− 3 t+ t2

= 1 + 5t+ 15t2 + 40t3 + 105t4 + 275t5 + . . .

In particular Hg ' C5 and Hg2 ' C15. After choosing a basis the multipli-
cation map m : Hg ⊗ Hg → Hg2 is represented by a matrix M ∈ M15,25.
We take as above {ϕα ⊗ ϕβ |α, β = 1, ..., 5} as basis for Hg ⊗ Hg and
{ψγ |γ = 1, ..., 15} as basis for Hg2 so that M is the matrix corresponding to
the structure constants

Cγα,β =

{
ϑ 3β−4γ

15
(−15τ) if α ≡ d(γ − β) mod c

0 otherwise

We write it as M 'M(1)⊕M(2)⊕M(3)⊕M(4)⊕M(5) where the elements
of M(µ) ∈M3,5(C) are given by

M(µ)i,j = ϑq(µ)+Λi,j
(−15τ)

With q(µ) = 5−4µ
15 and

Λ =
1
15

 2 14 11 8 5
7 4 1 13 10
12 9 6 3 0


Each µ ∈ {1, ..., 5} gives us a set of 2 relations corresponding to a basis
for the kernel of M(µ). In this case Bg(θ, τ) is a quadratic algebra with 5
generators of degree 1 and 10 quadratic relations.

The minors of M(µ) give the functions of τ appearing as coefficients
of the defining relations of Bg(θ, τ). For each ordered triple i1, i2, i3 ∈
{1, 2, 3, 4, 5} we have:

F g,µi1,i2,i3(τ) = |M(µ)|i1,i2,i3

=
∑
σ∈S3

sgn(σ)
3∏

k=1

ϑ 5−4µ
15

− dik
5
−σ(k)

3

(−15τ)
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Thus each one of the coefficients of the defining relations is a sum of triple
products of theta constants. For example, taking µ = 1 we get the two
relations:

f 1
1 = F g,14,2,3(τ)x5x1 + F g,11,4,3(τ)x1x2 + F g,11,2,4(τ)x2x3 − F g,11,2,3(τ)x3x4

and

f 1
2 = F g,15,2,3(τ)x4x1 + F g,11,5,3(τ)x5x2 + F g,11,2,5(τ)x1x3 − F g,11,2,3(τ)x3x5.

Example 6.2. Let

g =
(

5 −1
6 −1

)
The eigenvalues of g are

λ+ = 2−
√

3, λ− = 2 +
√

3

and the fixed points of g are

θ =
3−

√
3

6
, θ′ =

3 +
√

3
6

.

Fix now a complex structure τ on Aθ and consider the corresponding
connection ∇̄0 on the Aθ-bimodule Eg(θ) = E−1,6(θ). The Hilbert series for
Bg(τ, θ) is given by (30):

hBg(τ,θ)(t) =
1 + 2 t+ t2

1− 4 t+ t2

= 1 + 6t+ 24t2 + 90t3 + 336t4 + 1254t5 + . . .

In particular Hg ' C6 and Hg2 ' C24. After choosing a basis the multipli-
cation map m : Hg ⊗ Hg → Hg2 is represented by a matrix M ∈ M24,36.
We take as above {ϕα ⊗ ϕβ |α, β = 1, ..., 6} as basis for Hg ⊗ Hg and
{ψγ |γ = 1, ..., 24} as basis for Hg2 so that M is the matrix corresponding to
the structure constants

Cγα,β =

{
ϑ 4β−5γ

24
(−24τ) if α ≡ d(γ − β) mod 6

0 otherwise

We write it as M 'M(1)⊕M(2)⊕M(3)⊕M(4)⊕M(5)⊕M(6) where the
elements of M(µ) ∈M4,6(C) are given by

M(µ)i,j = ϑq(µ)+Λi,j
(−24τ)

With q(µ) = 6−5µ
24 and

Λ =
1
24


2 22 18 14 10 6
8 4 0 20 16 12
14 10 6 2 22 18
20 16 12 8 4 0
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Each µ ∈ {1, ..., 6} gives us a set of 2 relations corresponding to a basis
for the kernel of M(µ). In this case Bg(θ, τ) is a quadratic algebra with 6
generators of degree 1 and 12 quadratic relations.

Example 6.3. Let

g =
(

3 1
8 3

)
, θ =

√
2

4

Fix now a complex structure τ on Aθ and consider the corresponding
connection ∇̄0 on the Aθ-bimodule Eg(θ) = E3,8(θ). The Hilbert series for
Bg(τ, θ) is given by (30):

hBg(τ,θ)(t) =
1 + 2 t+ t2

1− 6 t+ t2

= 1 + 8t+ 48t2 + 280t3 + 1632t4 + 9512t5 + + . . .

In particular Hg ' C8 and Hg2 ' C48. After choosing a basis the multipli-
cation map m : Hg ⊗ Hg → Hg2 is represented by a matrix M ∈ M48,64.
We take as above {ϕα ⊗ ϕβ |α, β = 1, ..., 8} as basis for Hg ⊗ Hg and
{ψγ |γ = 1, ..., 48} as basis for Hg2 . We write the matrix corresponding
to the structure constants as M ' M(1) ⊕ · · · ⊕M(8) where the elements
of M(µ) ∈M6,8(C) are given by

M(µ)i,j = ϑq(µ)+Λi,j
(−48τ)

With q(µ) = 17µ
48 + 1

6 and

Λ =
1
48


26 44 14 32 2 20 38 8
34 4 22 40 10 28 46 16
42 12 30 0 18 36 6 24
2 20 38 8 26 44 14 32
10 28 46 16 34 4 22 40
18 36 6 24 42 12 30 0


Each µ ∈ {1, ..., 8} gives us a set of 2 relations corresponding to a basis
for the kernel of M(µ). In this case Bg(θ, τ) is a quadratic algebra with 8
generators of degree 1 and 16 quadratic relations.

Example 6.4. Let

g =
(
−1 −1
7 6

)
, θ =

√
21− 7
14

Fix now a complex structure τ on Aθ and consider the corresponding
connection ∇̄0 on the Aθ-bimodule Eg(θ) = E6,7(θ). The Hilbert series for
Bg(τ, θ) is given by (30):
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hBg(τ,θ)(t) =
1 + 2 t+ t2

1− 5 t+ t2

= 1 + 7t+ 35t2 + 168t3 + 805t4 + 3857t5 + . . .

In particular Hg ' C7 and Hg2 ' C35. After choosing a basis the multipli-
cation map m : Hg ⊗ Hg → Hg2 is represented by a matrix M ∈ M35,49.
We take as above {ϕα ⊗ ϕβ |α, β = 1, ..., 7} as basis for Hg ⊗ Hg and
{ψγ |γ = 1, ..., 35} as basis for Hg2 . We write the matrix corresponding
to the structure constants as M ' M(1) ⊕ · · · ⊕M(7) where the elements
of M(µ) ∈M5,7(C) are given by

M(µ)i,j = ϑq(µ)+Λi,j
(−48τ)

With q(µ) = 17µ
48 + 1

6 and

Λ =
1
35


2 32 27 22 17 12 7
9 4 34 29 24 19 14
16 11 6 1 31 26 21
23 18 13 8 3 33 28
30 25 20 15 10 5 0


Each µ ∈ {1, ..., 7} gives us a set of 2 relations corresponding to a basis
for the kernel of M(µ). In this case Bg(θ, τ) is a quadratic algebra with 7
generators of degree 1 and 14 quadratic relations.

Example 6.5. Let

g =
(

4 1
15 4

)
, θ = −

√
15

15

Fix now a complex structure τ on Aθ and consider the corresponding
connection ∇̄0 on the Aθ-bimodule Eg(θ) = E4,15(θ). The Hilbert series for
Bg(τ, θ) is given by (30):

hBg(τ,θ)(t) =
1 + 7 t+ t2

1− 8 t+ t2

= 1 + 15t+ 120t2 + 945t3 + 7440t4 + 58575t5 + . . .

In particular Hg ' C15 and Hg2 ' C120. After choosing a basis the
multiplication map m : Hg ⊗ Hg → Hg2 is represented by a matrix M ∈
M120,225. We take as above {ϕα ⊗ ϕβ|α, β = 1, ..., 15} as basis for Hg ⊗Hg

and {ψγ |γ = 1, ..., 120} as basis for Hg2 . We write the matrix corresponding
to the structure constants as M 'M(1)⊕ · · · ⊕M(15) where the elements
of M(µ) ∈M8,15(C) are given by

M(µ)i,j = ϑq(µ)+Λi,j
(−120τ)
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With q(µ) = 31µ
120 + 1

8 and Λ ∈M15×8( 1
120Z/Z) is given by

Λi,j = −4j
15
− i

8
; i = 1, . . . , 8; j = 1, . . . , 15

Each µ ∈ {1, ..., 15} gives us a set of 7 relations corresponding to a basis
for the kernel of M(µ). In this case Bg(θ, τ) is a quadratic algebra with 15
generators of degree 1 and 105 quadratic relations.

Example 6.6. Let

g =
(
−1 −1
11 10

)
, θ = −

√
77− 11

22

Fix now a complex structure τ on Aθ and consider the corresponding
connection ∇̄0 on the Aθ-bimodule Eg(θ) = E11,10(θ). The Hilbert series
for Bg(τ, θ) is given by (30):

hBg(τ,θ)(t) =
1 + 2 t+ t2

1− 9 t+ t2

= 1 + 11t+ 99t2 + 880t3 + 7821t4 + 69509t5 + . . .

In particular Hg ' C11 and Hg2 ' C99. After choosing a basis the
multiplication map m : Hg ⊗ Hg → Hg2 is represented by a matrix M ∈
M99,121. We take as above {ϕα ⊗ ϕβ|α, β = 1, ..., 11} as basis for Hg ⊗Hg

and {ψγ |γ = 1, ..., 99} as basis for Hg2 . We write the matrix corresponding
to the structure constants as M 'M(1)⊕ · · · ⊕M(11) where the elements
of M(µ) ∈M9,11(C) are given by

M(µ)i,j = ϑq(µ)+Λi,j
(−99τ)

With q(µ) = 89µ
99 + 1

9 and Λ ∈M11×9( 1
99Z/Z) is given by

Λi,j = −10j
11

− i

9
; i = 1, . . . , 9; j = 1, . . . , 11

Each µ ∈ {1, ..., 11} gives us a set of 2 relations corresponding to a basis
for the kernel of M(µ). In this case Bg(θ, τ) is a quadratic algebra with 11
generators of degree 1 and 22 quadratic relations.

Example 6.7. Let

g =
(

6 1
35 6

)
, θ = −

√
35

35

Fix now a complex structure τ on Aθ and consider the corresponding
connection ∇̄0 on the Aθ-bimodule Eg(θ) = E6,35(θ). The Hilbert series for
Bg(τ, θ) is given by (30):
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hBg(τ,θ)(t) =
1 + 23 t+ t2

1− 12 t+ t2

= 1 + 35t+ 420t2 + 5005t3 + 59640t4 + 710675t5 + . . .

In particular Hg ' C35 and Hg2 ' C420. After choosing a basis the
multiplication map m : Hg ⊗ Hg → Hg2 is represented by a matrix M ∈
M420,1225. We take as above {ϕα⊗ϕβ|α, β = 1, ..., 35} as basis for Hg ⊗Hg

and {ψγ |γ = 1, ..., 420} as basis for Hg2 . We write the matrix corresponding
to the structure constants as M 'M(1)⊕ · · · ⊕M(35) where the elements
of M(µ) ∈M12,35(C) are given by

M(µ)i,j = ϑq(µ)+Λi,j
(−120τ)

With q(µ) = 71µ
420 + 1

12 and Λ ∈M35×12( 1
420Z/Z) is given by

Λi,j = −6j
35
− i

12
; i = 1, . . . , 12; j = 1, . . . , 35.

Each µ ∈ {1, ..., 35} gives us a set of 23 relations corresponding to a basis
for the kernel of M(µ). In this case Bg(θ, τ) is a quadratic algebra with 35
generators of degree 1 and 805 quadratic relations.





CHAPTER 2

Rationality properties of Bg(τ, θ)

In this chapter we use the presentation of Bg(τ, θ) in terms of theta con-
stants given in the last chapter to derive some results about the rationality
of this algebra. The algebra Bg(τ, θ) is a priori only defined over C. It is
important to know in which cases Bg(τ, θ) can be defined over smaller fields.
In order to do this we will look for particular presentations of these algebras
in which the coefficients of the defining relations belong to fields smaller
than C. We begin by studying the rationality properties of special values of
homogeneous rational combinations of theta functions. By an appropriate
rescaling of the relations defining Bg(τ, θ) we can then find a presentation
whose coefficients are given in terms of these special values. The main result
of this chapter relates the field of definition of the algebra Bg(τ, θ) to the
field of definition of the elliptic curve defined by the complex structure τ .

1. Rationality properties of theta constants

Let g ∈ SL2(Z) and assume g satisfies the conditions (27) and (28). Let
θ be the corresponding quadratic irrationality. Fix a complex structure τ
on Tθ and let τ ′ = −c(a+d)τ . Consider the elliptic curve Eτ ′ with complex
points given by:

Eτ ′(C) = C/(Z⊕ τ ′Z)(39)

Let j(τ ′) denote the absolute invariant of the elliptic curve Eτ ′ . The
minimal field of definition of Eτ ′ is

k′ = Q(j(τ ′))(40)

Since the group structure on the elliptic curve Eτ ′ is given in terms of
algebraic maps any torsion point on Eτ ′ is defined over a finite algebraic
extension of the field k′. If we denote by Eτ ′ [N ] the set of N torsion points
of Eτ ′ and let k′N be the field extension of k′ over which they are defined we
obtain a Galois extension k′ ↪→ k′N . In general, given a extension k′ ↪→ K
of k′ we denote by Eτ ′(K) the elliptic curve over K obtained by the base
extension Spec(K) → Spec(k′). We refer the reader to [15] and [12] for
these and other standard results about elliptic curves used in this chapter.

In the previous chapter we showed that the structure constants of the
algebra Bg(τ, θ) and the corresponding presentation could be given in terms

23
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of theta constants of the form ϑr(τ ′). From (79) it follows that

ϑr(τ ′) = ϑαr,0(τ
′) ∀r ∈ 1

l
Z

Thus we can apply Theorem 0.6 to study the rationality of these values.
Given r ∈ 1

lZ the point x(r, 0)2l is a torsion point of order dividing 2l2 and
is therefore rational over k′2l2 . Since Eτ ′ and its basic line bundle L are both
defined over k′2l2 we get:

Theorem 1.1. For all r ∈ 1
lZ

ϑr(τ ′)
ϑ(τ ′)

∈ k′2l2(41)

Now let l = c(a+ d) and let τ ′ = −lτ , denote by Eτ the corresponding
elliptic curve C/(Z⊕τZ). The minimal field of definition of the elliptic curve
Eτ is

k = Q(j(τ)).(42)

Since k′2l2 is a finite algebraic extension of k′ Theorem 1.1 implies that
ϑr(τ ′)
ϑ(τ ′) is algebraic over k′. We want to show that the values ϑr(τ ′)

ϑ(τ ′) are also
algebraic over k. For this we must study the relation between k and k′2l2 .
The main point here is that the absolute invariants j(τ) and j(τ ′) are related
by an algebraic equation with integer coefficients.

For a positive integer n denote by ∆∗
n the set of matrices in M2(Z) with

determinant n and relatively prime components. Multiplication on the right
by elements in Sl2(Z) maps ∆∗

n to into itself. We denoe by ψ(n) the number
of right coset of ∆∗

n.

Definition 1.2. Let Ξ = {α1, . . . , αψ(n)} be a complete set of coset
representatives for of ∆∗

n. Let j denote the absolute invariant modular
function. We define the modular polynomial of order n Φn(T, j) ∈ Z[T, j]
by:

Φn(T, j) =
∏
αi∈Ξ

(T − j ◦ αi)(43)

We are now ready to apply the the following result (c.f [15] Chapter5
§3):

Theorem 1.3. Let Φn(T, j) be the modular polynomial of order n and
let E1, E2 be two elliptic curves over C. Then Φn(j(E1), j(E2)) = 0 if and
only if there exist an isogeny E1 → E2 with cyclic kernel of degree n.

Corollary 1.4. Let l > 1 be an integer and let r ∈ 1
l (Z). Then

ϑr(τ ′)
ϑ(τ ′)

=
ϑr(−lτ)
ϑ(−lτ)

is algebraic over k.
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Proof. Let Eτ and Eτ ′ be as above. Multiplication by l induces an
isogeny Eτ → Eτ ′ . The kernel of this isogeny is (Z⊕ τZ)/(Z⊕ lτZ) ' Z/lZ.
From Theorem 1.3 it follows that j(τ ′) is algebraic over k = Q(j(τ)). Taking
into account that k′2l2 is algebraic over Q(j(τ ′)) we get a tower of algebraic
extensions:

Q(j(τ)) ↪→ Q(j(τ ′), j(τ)) ↪→ k′2l2(j(τ)).
The theorem then follows from Theorem 1.1 �

2. A rational presentation of Bg(τ, θ)

In this section we will rescale the relations defining Bg(τ, θ) by appro-
priate factors that will allow the study of their rationality properties. As
we saw in the preceding chapter the relations defining Bg(τ, θ) are given
by a linearly independent generating set for the kernel of the multiplication
map. Multiplying each element of this basis by a nonzero constant we still
obtain a basis. Therefore we are free to multiply each one of the relations in
Theorem 5.9 by a nonzero constant and still get a set of defining relations
for Bg(τ, θ). Using the results about rationality of theta constants obtained
in the last section we can prove the main result of this chapter:

Theorem 2.1. Let Eτ be the elliptic curve C/(Z ⊕ τZ). Let k be its
minimal field of definition. Then the algebra Bg(θ, τ) admits a rational
presentation over a finite algebraic extension of k.

Proof. Multiplying each one of the relations in Theorem 5.9 by

[ϑ(−lτ)]−(a+d)

we get a new basis {f̃ µk } for R, the ideal giving the relations of the Bg(τ, θ):

f̃ µk = ṽµ,k1 xα(µ,1)x1 + ...+ ṽµ,kc xα(µ,c)xc(44)

where

ṽµ,kj = [ϑ(−lτ)]−(a+d) vµ,kc(45)

Each ṽµ,kj has the form:

[ϑ(−lτ)]−(a+d) F g,µi1,...,ia+d
(τ)

= [ϑ(−lτ)]−(a+d)
∑

σ∈Sa+d

sgn(σ)
a+d∏
k=1

ϑ
q(µ)− dik

c
− σ(k)

(a+d)

(−lτ)

for some i1, ..., ia+d ∈ {1, ..., a + d}. Therefore ṽµ,kj belongs to the field

generated over Q by the values of the form ϑr(−lτ)
ϑ(−lτ ′) which are algebraic over

k by Corollary 1.4 . �

From Corollary 1.4 and Theorem 2.1 we see that Bg(θ, τ) is defined over
the field

K = k′2l2(j(τ))(46)
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A minimal model of the elliptic curve Eτ is given by its Weierstrass
equation. In particular the field k′2l2 is generated by the values of the Weier-
strass functions ℘ and ℘′ at the points in the complex plane of the form
1

2l2
pτ ′ + 1

2l2
q with p, q ∈ Z. The field K is therefore generated over Q by

these values of ℘ and ℘′ together with j(τ) and j(τ ′).
We can restrict our field of scalars to K to obtain a noncommutative

K-algebra:

Bg(τ, θ)K = K〈x1, ..., xc〉/R(47)

An important question is whether the Galois group Gal(K/k) leaves R in-
variant and being this the case how does it act on Bg(τ, θ)K.

3. Special values of τ

Starting with Theorem 2.1 we can study the properties of Bg(τ, θ) for
special values of τ giving interesting fields of definition. We use the same
notation as in the previous sections.

3.1. Subfields of R. We start with a simple, yet useful, remark:

Proposition 3.1. Let τ ∈ ıR. Then Bg(τ, θ) is defined over a subfield
of R.

Proof. Bg(τ, θ) is defined over the field generated over Q by the values
of the theta constants ϑri(τ

′). By the series expression (73) we know that
the theta constant ϑri takes real values on ıR. Since τ ∈ ıR implies τ ′ ∈ ıR
the proposition follows. �

3.2. Number fields. The most interesting family of examples comes
from elliptic curves defined over number fields. In the case j(τ) is algebraic
over Q the field K = k′2l2(j(τ)) is a number field. As before we consider the
algebra

Bg(τ, θ)K = K〈x1, ..., xc〉/R
obtained by restriction of scalars from C to K. Let now OK be the ring of
integers of K. Since K is the field of fractions of OK we can clear denomi-
nators in each one of the defining relations of Bg(τ, θ)K and obtain a basis
{f̄ µk } of R of the form

f̄ µk = v̄µ,k1 xα(µ,1)x1 + ...+ v̄µ,kc xα(µ,c)xc

with v̄µ,kj in OK. In particular we can consider the various
reductions corresponding to different finite places P of K. If the coef-

ficient v̄µ,kj are nonzero modulo P it makes sense to talk about the OK/P

algebra given by the relations f̄ µk mod P.
Among number fields some cases deserve particular attention. The first

case comes from taking τ =
√
−D where D is a positive integer. Since the
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j invariant of an elliptic curve with complex multiplication is algebraic we
get from Proposition 3.1:

Corollary 3.2. Let τ =
√
−D be a generator in ıR of the quadratic

imaginary field Q(
√
−D). Then Bg(τ, θ) is defined over a real algebraic

extension of Q.

3.3. Canonical choices. Our original objects of study are noncom-
mutative tori with real multiplication and the corresponding quadratic ex-
tensions of Q. The complex structure τ should be viewed as an auxiliary
tool for the definition o the corresponding homogeneous coordinate rings. It
becomes then important two know whether there are some canonical com-
plex structures associated to a given a real multiplication noncommutative
tori Tθ and whether we can define homogeneous coordinate rings that do
not depend on a particular choice of a complex structure. We will address
the second question in later chapters. As for the first question There are at
least two complex structures that have some arithmetical meaning and can
be associated to Tθ:

• Choose τ =
√
−D where D is a positive integer such that Q(θ) =

Q(
√
D).

• Choose τ with absolute invariant j(τ) = θ. Then elliptic curve Eτ
is defined over Q(θ) and the defining relations of the Bg(τ, θ) are
algebraic over this field.

Once relation between the rings Bg(τ, θ) and the complex torus Tθ is
better understood it will be nice to address the question of a canonical
complex structure from a variational point of view.





CHAPTER 3

A linear basis for Bg(τ, θ)

Let K be a subfield of C over which Bg(τ, θ) is defined. We would like to
construct interesting linear functionals on Bg(τ, θ)K = K〈x1, ..., xc〉/R with
values on K. Provided we are given a linear basis for Bg(τ, θ)K over K we can
define linear functionals by prescribing the values of the elements in such a
basis. The aim of this chapter is to study the natural linear basis correspond-
ing to the presentations of Bg(τ, θ) in terms of generators and relations given
in Theorem 2.1. For this purpose the theory of noncommutative Gröbner
basis for two sided ideals on the free algebra K〈x1, ..., xc〉 provides the right
framework. The general idea is an extrapolation of Gaussian reduction to
infinite dimensions (c.f. [22], see also [28]).

We view K〈x1, ..., xc〉 as the semigroup algebra corresponding to the free
semigroup S generated by {x1, ..., xc}. The semigroup S is graded by total
degree and it becomes an ordered semigroup by imposing on it the deglex
order. Thus given t1, t2 ∈ S we say that t1 < t2 if either deg(t1) < deg(t2)
or deg(t1) = deg(t2) and there exist l, r1, r2 ∈ S such that t1 = lxjr1 and
t2 = lxir2 with j < i. Once this order is given every element f of K〈x1, ..., xc〉
has a well defined leading term T (f) ∈ S and a leading coefficients lc(f) ∈ K.

As in the previous chapters let

g =
(
a b
c d

)
be a matrix satisfying 27 and 28. For µ, j ∈ {1, 2, ..., c} and k ∈ {1, ..., c −
a − d} let ṽµ,kj be defined as in Theorem 2.1. In order to keep track of the
ordering of the terms in the relations defining Bg(τ, θ) we interchange the
roles of the two factors in the degree two part of the free algebra K〈x1, ..., xc〉.
Also, we divide each one of the relations {f̃ µk } by its leading coefficient.
Accordingly we define a basis {f̂ µk } for R, the ideal of relations of Bg(τ, θ),
by:

f̂ µk = xa+d+kxα(µ,a+d+k) +
ṽµ,ka+d

ṽµ,ka+d+k
xa+dxα(µ,a+d) + ...+

ṽµ,k1

ṽµ,ka+d+k
x1xα(µ,1).

In the above expression the terms of the relations appear in decreasing
order with T (f̂ µk ) = xa+d+kxα(µ,a+d+k) and lc(f̂ µk ) = 1.

Consider now the following decomposition of S2, the set of degree two
elements in S:

29
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S′2 = {xi1xi2 ∈ S2 | i1 ≤ a+ d}
S′′2 = {xi1xi2 ∈ S2 | i1 > a+ d}.

Then t′ < t′′ for any t′ ∈ S′2, t
′′ ∈ S′′2 and the defining relations of Bg(τ, θ)

have the form

tµk =
a+d∑
s=1

cµ,ks t
′µ
s t

′µ
s ∈ S′2 , t

µ
k ∈ S′′2(48)

With tµk = xa+d+kxα(µ,a+d+k), t
′µ
s = xsxα(µ,s) and cµ,ks = − ṽµ,k

s

ṽµ,k
a+d+k

. In par-

ticular t
′µ
1 < t

′µ
2 < ... < t

′µ
a+d < tµk .

Denote by Sn the set of elements of degree n in S and set

S′n = {xi1xi2 ...xin ∈ Sn | i1, i2, ..., in−1 ≤ a+ d}(49)

The set S′n = ∪nS′n linearly spansBg(τ, θ) since any element t = xj1xj2 ...xjn ∈
Sn \ S′n can be expressed by smaller elements modulo Rn.

We want to extract a basis from the set S′n = ∪nS′n. By cardinality
conditions we can see that this set is redundant. The cardinality of S′n
is (a + d)n−1c while the n-th graded component of Bg(τ, θ) has dimension
deg(gn) = dimHgn < (a+d)n−1c. The Hilbert series for Bg(τ, θ) is given by
( 30):

hBg(τ,θ)(t) =
1 + (c− a− d) t+ t2

1− (a+ d) t+ t2
.

Starting with the linear generating set S′ and the Hilbert series hBg(τ,θ)(t)
we can find a linear basis for each graded piece of Bg(τ, θ) by extracting a
minimal set of linearly dependent elements from each S′n. The redundant
elements will correspond to leading terms of elements of the ideal R. We will
obtain a basis for the semigroup ideal T (R) = {T (f) | f ∈ R} by computing
a Gröbner basis for the ideal R. We state the main parts of this formalism
in our context (c.f. [22]).

In general, given a two sided ideal I of K〈x1, ..., xc〉 we can consider the
semigroup ideal formed by its leading terms T (I) ⊂ S and its complement
on S, O(I) := S \ T (I). Then we have:

• K〈x1, ..., xc〉 = I ⊕ SpanK(O(I))
• K〈x1, ..., xc〉/I ' SpanK(O(I))
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Definition 0.3. A generating set G ⊂ I such that the semigroup ideal
T (G) generated by {T (g)|g ∈ G} coincides with T (I) is called a Gröbner
basis for I.

For the idealR we have that O(R)2 = S′2 andO(R)n ⊂ S′n. Given a Gröbner
basis G for R the set of redundant elements of S′n will be T (G)n ∩ S′n.
Buchberger’s algorithm provides a way to find a Gröbner basis G for R
starting with the set of generators {f µk }.

Remark 0.4. Since Bg(τ, θ) has exponential growth we should not ex-
pect R to have a finite Gröbner basis. Still an infinite Gröbner basis G exist
and Buchberger’s algorithm provides a way to compute its elements of a
given degree.

Buchberger’s algorithm is a infinite dimensional analog of Gaussian re-
duction. First one reduces the problem of finding a Gröbner basis to a linear
algebra problem. Then the computation of the corresponding linear basis is
done by a combinatorial manipulation of the vectors that takes into account
order of the generators in S. Buchberger’s algorithm is explained below, the
implementation of the algorithm is done in Appendix B.

Let V be a linear subspace of K〈x1, ..., xc〉. A linearly generating set B of
V such that T (V ) = T (B) is called a Gauss generating set. A linearly basis
B of V such that T (V ) = T (B) is called a Gauss Basis. G is a Gröbner basis
of a two sided ideal I of K〈x1, ..., xc〉 if and only if G = {lfr | l, r ∈ S; f ∈ G}
is a Gauss basis for I.

Assume we start with a ordered set of generators G′ = {f1, ..., fs} of the
ideal I. Then G′ = {lfr | l, r ∈ S; f ∈ G} is an ordered generating set for
I. From G′ we can extract a canonical Gauss basis for I by taking a set of
linearly independent elements G such that:

• T (G) = T (G′)
• If v ∈ G, w ∈ G′ are such that T (v) = T (w) then v ≤ w

One has to consider the fact that different elements in G′ may have the
same leading term. This self obstructions have to be taken into account
inductively. Given f ∈ K〈x1, ..., xc〉 we say that h is a normal form of f
with respect to G′ if:

• f − h ∈ I.
• Either h = 0 or T (h) /∈ T (G′).

Given j = 1, ..., s for each pair (l, r) ∈ S × S such that lT (gj)r ∈
(T (g1), T (g2), ..., T (gj−1)) or lT (gj) = T (gj)r the normal form of the element
lT (gj)r with respect to G′ must be added to the set G′. Choosing at each
stage a minimal iredundant set of pairs (l, r) and adding the corresponding
normal forms to G′ we get a Gröbner basis G of I (See Appendix B).

When we apply this procedure to {f̃ µk } we can algorithmically compute
for each degree n a set of obstructions in

{lfr | l, r ∈ S; f ∈ R , deg(lfr) = n}
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together with their normal forms having degree n. The leading terms of this
normal forms correspond to the elements of S′n which are redundant.

Example 0.5. To illustrate the above ideas we will compute the linear
basis of the degree three part of the ring considered in Example 6.2 above.
We start with the following basis for the ideal of relations R:

f̂ 1
1 = x5x1 +

1

ṽ1,1
5

(ṽ1,1
4 x4x2 + ṽ1,1

3 x3x3 + ṽ1,1
2 x2x4 + ṽ1,1

1 x1x5)

f̂ 2
1 = x5x2 +

1

ṽ2,1
5

(ṽ2,1
4 x4x3 + ṽ2,1

3 x3x4 + ṽ2,1
2 x2x5 + ṽ2,1

1 x1x6)

f̂ 3
1 = x5x3 +

1
ṽ3,1
5

(ṽ3,1
4 x4x4 + ṽ3,1

3 x3x5 + ṽ3,1
2 x2x6 + ṽ3,1

1 x1x1)

f̂ 4
1 = x5x4 +

1

ṽ4,1
5

(ṽ4,1
4 x4x5 + ṽ4,1

3 x3x6 + ṽ4,1
2 x2x1 + ṽ4,1

1 x1x2)

f̂ 5
1 = x5x5 +

1

ṽ5,1
5

(ṽ5,1
4 x4x6 + ṽ5,1

3 x3x1 + ṽ5,1
2 x2x2 + ṽ5,1

1 x1x3)

f̂ 6
1 = x5x6 +

1

ṽ6,1
5

(ṽ6,1
4 x4x1 + ṽ6,1

3 x3x2 + ṽ6,1
2 x2x3 + ṽ6,1

1 x1x4)

f̂ 1
2 = x6x1 +

1

ṽ1,2
5

(ṽ1,2
4 x4x3 + ṽ1,2

3 x3x4 + ṽ1,2
2 x2x5 + ṽ1,2

1 x1x6)

f̂ 2
2 = x6x2 +

1

ṽ2,2
5

(ṽ2,2
4 x4x4 + ṽ2,2

3 x3x5 + ṽ2,2
2 x2x6 + ṽ2,2

1 x1x1)

f̂ 3
2 = x6x3 +

1

ṽ3,2
5

(ṽ3,2
4 x4x5 + ṽ3,2

3 x3x6 + ṽ3,2
2 x2x1 + ṽ3,2

1 x1x2)

f̂ 4
2 = x6x4 +

1

ṽ4,2
5

(ṽ4,2
4 x4x2 + ṽ4,2

3 x3x3 + ṽ4,2
2 x2x4 + ṽ4,2

1 x1x5)

f̂ 5
2 = x6x5 +

1

ṽ5,2
5

(ṽ5,2
4 x4x1 + ṽ5,2

3 x3x2 + ṽ5,2
2 x2x3 + ṽ5,2

1 x1x4)

f̂ 6
2 = x6x6 +

1

ṽ6,2
5

(ṽ6,2
4 x4x2 + ṽ6,2

3 x3x3 + ṽ6,2
2 x2x4 + ṽ6,2

1 x1x5)

From the relations one immediately sees that

S′2 = {xi1xi2 ∈ S2 | i1 ≤ 4}
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spans K〈x1, ..., xc〉2 moduloR. Equivalently S′2 is a linear basis for Bg(τ, θ)2.
Also, from the discussion above we see that

S′3 = {xi1xi2xi3 ∈ S3 | i1, i2 ≤ 4}

spans K〈x1, ..., xc〉3 modulo R. |S′3| = (a + d)2c = 96 while Bg(τ, θ)3 has
dimension ((a+ d)2 − 1)c = 90 thus there are 6 redundant elements in S′3.

For each one of the relations we look at the obstructions coming from lower
relations:

(1) For f̂ 5
1 :

T (f̂ 5
1 )x1 = x1T (f̂ 1

1 ) = x5x5x1 ; T (f̂ 5
1 )x2 = x5T (f̂ 2

1 ) = x5x5x2

T (f̂ 5
1 )x3 = x5T (f̂ 3

1 ) = x5x5x3 ; T (f̂ 5
1 )x4 = x5T (f̂ 4

1 ) = x5x5x3

T (f̂ 5
1 )x5 = x5T (f̂ 5

1 ) = x5x5x5

(2) For f̂ 6
1 :

T (f̂ 5
1 )x6 = x5T (f̂ 6

1 ) = x5x5x6

(3) For f̂ 1
2 :

T (f̂ 5
1 )x1 = x5T (f̂ 1

1 ) = x5x6x1

(4) For f̂ 2
2 :

T (f̂ 5
1 )x2 = x5T (f̂ 2

2 ) = x5x6x2

(5) For f̂ 3
2 :

T (f̂ 5
1 )x3 = x5T (f̂ 3

2 ) = x5x6x3

(6) For f̂ 4
2 :

T (f̂ 5
1 )x4 = x5T (f̂ 4

2 ) = x5x6x4

(7) For f̂ 5
2 :

T (f̂ 5
2 )x1 = x6T (f̂ 1

1 ) = x6x5x1 ; T (f̂ 5
2 )x2 = x6T (f̂ 2

1 ) = x6x5x2

T (f̂ 5
2 )x3 = x6T (f̂ 3

1 ) = x6x5x3 ; T (f̂ 5
2 )x4 = x6T (f̂ 4

1 ) = x6x5x4

T (f̂ 5
2 )x5 = x6T (f̂ 5

1 ) = x6x5x5 ; T (f̂ 5
2 )x6 = x6T (f̂ 6

1 ) = x6x5x6

T (f̂ 6
1 )x5 = x5T (f̂ 5

2 ) = x5x6x5.
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(8) For f̂ 6
2 :

T (f̂ 6
2 )x1 = x6T (f̂ 1

2 ) = x6x6x1 ; T (f̂ 6
2 )x2 = x6T (f̂ 2

2 ) = x6x6x2

T (f̂ 6
2 )x3 = x6T (f̂ 3

2 ) = x6x6x3 ; T (f̂ 6
2 )x4 = x6T (f̂ 4

2 ) = x6x6x4

T (f̂ 6
2 )x5 = x6T (f̂ 5

2 ) = x6x6x5 ; T (f̂ 6
2 )x6 = x6T (f̂ 6

2 ) = x6x6x6

T (f̂ 6
1 )x5 = x5T (f̂ 6

2 ) = x5x6x6.

For each obstruction of f̂ µk ; T (f̂ µk )xi3 = xi1T (f̂ µ
′

k′ ) = xi1xi2xi3 ∈ S3 we must
look at the normal form of:

f̂ µk xi3 − xi1 f̂
µ′

k′

with respect to the ideal generated by the relations which are lower than f̂ µk .
The following elements give nontrivial normal forms:

f̂ 5
2 x1 − x6f̂ 1

1 ; f̂ 5
2 x2 − x6f̂ 2

1

f̂ 5
2 x3 − x6f̂ 3

1 ; f̂ 5
2 x4 − x6f̂ 4

1

f̂ 5
2 x5 − x6f̂ 5

1 ; f̂ 5
2 x6 − x6f̂ 6

1 .

The leading terms of the corresponding normal forms must be removed from
S′3. These terms are:

x4x1x1, x4x1x2, x4x1x3,

x4x1x4, x4x1x5, x4x1x6.

Thus a linear basis for Bg(τ, θ)3 is given by:

{xi1xi2xi3 ∈ S3 | i1, i2 ≤ 4, xi1xi2 6= x1x4}.(50)
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Modularity properties of Bg(τ, θ)

Let g ∈ Sl2(Z) satisfy (27) and (28) and let θ be the corresponding
quadratic irrationality. In this section we consider Bg(τ, θ) as a family of al-
gebras parametrized by τ . Theta constants can be viewed as modular forms
of weight 1

2 and certain level. We will use the fact that the relations defin-
ing Bg(τ, θ) are given in terms of theta constants to define a presentation in
which the defining relations have coefficients which are modular functions
of the complex structure τ . We will then exploit the modularity of Bg(τ, θ)
in order to define quadratic algebras associated to Tθ which do not depend
on a particular choice of a complex structure.

1. A presentation in terms of modular functions

Lets start by considering the presentation of Bg(τ, θ) given in Theo-
rem 5.9 of Chapter 1. Each one of the coefficients vµ,ki in the defining
relations f µk is given by one of the functions F g,µi1,i2,...,ia+d

(τ). The function
F g,µi1,i2,...,ia+d

(τ) was defined as a determinant of a matrix consisting of theta
constants in τ ′ = −lτ therefore it belongs to the ring generated by this
functions. Being more precise, let l be a positive integer and let Cl be the
ring generated over C by the functions ϑr,s with (r, s) ∈ (1

lZ)2. Since ϑr,s
depends on the characteristics (r, s) only modulo integers we see that Cl is
of finite type over C; it is generated by {ϑri,si} where (ri, si) runs though a
set of representatives in (1

rZ/Z)2. If we take l = c(a+ d) and view the coef-
ficients as functions of τ ′ = −lτ then our algebras will be naturally defined
over Cl. Cl becomes a graded ring by assigning to each ϑr,s ∈ Cl weight 1

2 .
The rings Cl of theta constants were studied by Igusa in [13] and [14].

The main results relate these rings to rings of modular forms for even values
of l.

For a positive integer n we define

Γn,2n = {γ =
(
x y
z w

)
∈ SL2(Z) | γ ≡ 12 mod n;xy ≡ zw ≡ 0 mod 2n}

If we denote by ΓN the principal congruence subgroup of level N in
Sl2(Z) then we see that

Γ2n ⊂ Γn,2n ⊂ Γn(51)

In particular Γn,2n is a congruence subgroup of Sl2(Z).

35
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Let Bl := C
(2)
l be the subring of elements with homogeneous components

of even degree i.e. the ring generated over C by the double products ϑr,sϑr′,s′
with (r, s), (r′, s′) in (1

lZ)2. The transformation law for theta constants (78)
shows that Sl2(Z) acts on Bl thus one gets a homomorphism from Sl2(Z) to
the group of degree preserving automorphisms of the algebra Bl. If l is even
the kernel of this morphism is precisely Γl,2l2 . Thus, the normal subgroup of
Sl2(Z) consisting of elements which keep Bl element wise invariant is Γl,2l2 .
It follows then that τ ′ 7→ ϑr,s(τ ′)ϑr′,s′(τ ′) is a modular form of weight 1 and
level Γl2,2l2 . We estate this classical result together with a theorem due to
Igusa ([13, 14]).

Theorem 1.1. Let l be a positive even integer. Given a congruence
subgroup Γ of Sl2(Z) denote by G(Γ) the ring of all holomorphic modular
forms of level Γ. Then:

(1) Bl is a subring of G(Γl,2l2).
(2) The integral closure of Bl in its field of fractions is G(Γl,2l2).

In order to study the behavior of the coefficients of the defining relations
of Bg(τ, θ) it is useful at this point to make some remarks about the structure
of Γl,2l2 . They follow from the general theory of discrete subgroups ofGl+2 (R)
(c.f. [36]). As above we will consider the action of subgroups of Gl2(C)
on C ∪ {∞} by fractional linear transformations. In particular Gl+2 (R) is
identified with the group of holomorphic automorphisms of the upper half
plane H = {τ ∈ C|Im(τ) > 0}.

Two subgroups of a group G are said to be commensurable if their in-
tersection has finite index in both of them. If two discrete subgroups Γ and
Γ′ of Sl2(R) are commensurable then their sets of cusps in C∪ {∞} are the
same i.e. the set of points which are fixed points of some parabolic transfor-
mation in Γ coincides with the corresponding set for Γ′. In particular, since
Γn,2n is a congruence subgroup of Sl2(Z) it is commensurable with it and
so the set of cusp of Γn,2n is Q ∪ {∞}. Denote by H∗ = H ∪ Q ∪ {∞} the
upper half plane with the cusps added. It follows from commensurability
with Sl2(Z) that the quotient

XΓn,2n = H∗/Γn,2n(52)

is a compact Riemann surface. In the terminology of Shimura, Γn,2n is a
Fuchsian group of the first kind (c.f. [36]).

Notation 1.2. On what follows we will change the sign on our complex
structure and take τ with Im(τ) > 0. τ ′ is then given by τ ′ = lτ .

In order to study the modularity of the defining relations of Bg(τ, θ) as
functions of τ we have to take care of the scaling by l = c(a + d). For this
we introduce some notation.

Definition 1.3. let m be a even positive integer, define
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Γ[m]
n,2n = Γ1,2 ∩ {

(
m 0
0 1

)−1

Γn,2n

(
m 0
0 1

)
}(53)

This subgroups are the levels for our relations:

Theorem 1.4. Let g ∈ Sl2(Z) satisfy (27) and (28) and assume l =
c(a + d) is even. Denote by w = ba+d+1

2 c the integer part of a+d+1
2 . Let

µ ∈ {1, 2, ..., c}, k ∈ {1, ..., c − a − d} and let τ 7→ vµ,k(τ) be given as in
Theorem 5.9. Define v̂µ,k = v̂µ,k(τ) ∈ Cc by

v̂µ,k(τ) = vµ,k(τ) if a+ d is even

v̂µ,k(τ) = ϑ(lτ)vµ,k(τ) if a+ d is odd.

Then:
(1) The algebra Bg(τ, θ) is generated by elements x1, ..., xc of degree 1

subject to relations f̂ µk = 0 where:

f̂ µk = v̂µ,k1 xα(µ,1)x1 + ...+ v̂µ,kc xα(µ,c)xc

(2) Each one of the functions τ 7→ v̂µ,kj (τ) is a modular form of weight

w and level Γ[l]
l2,2l2

.

Proof. The first part of the theorem follows from Theorem 5.9.
For the second part note that each v̂µ,kj (τ) has the form:

hµ,kj (τ ′) = ϑ(τ ′)ε
∑

σ∈Sa+d

sgn(σ)
a+d∏
k=1

ϑ
q(µ)− dik

c
− σ(k)

(a+d)
,0
(τ ′)(54)

for some i1, ..., ia+d ∈ {1, ..., a+ d} where ε = 0, 1.
The factor on the right just makes the number of theta constants in the

products even so, as function of τ ′ = lτ , hµ,kj is a homogeneous element of

Bl of weight w. In particular, hµ,kj is a modular form of weight w and level

Γl,2l2 . Since v̂µ,kj (τ) = hµ,kj (lτ) we see that whenever(
x ly
l−1z w

)
∈ Γl,2l2

we have

v̂µ,kj (
xτ + y

zτ + w
) = hµ,kj (l

xτ + y

zτ + w
) = (zτ + w)khµ,kj (lτ) = (zτ + w)kv̂µ,kj (τ).

Therefore τ 7→ v̂µ,kj (τ) is a modular form of weight k and level

Γ1,2 ∩ {
(
l 0
0 1

)−1

Γl,2l2
(
l 0
0 1

)
}

�
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Remark 1.5. If l is odd we only have modularity “up to a sign”. This
fact is a consequence of the appearance of an eight root of unity in the
functional equation of ϑ.

The above theorem will allow us to average the values of the coefficients
of the defining relations of Bg(τ, θ). For this purpose we are interested in
determining whether the modular forms in the defining relations of Bg(τ, θ)
are modular forms of cusp type; that is, their Fourier expansions at each
one of the cusp should have constant term equal to 0. In what follows we
will show that this is the case.

Proposition 1.6. For µ, j ∈ {1, 2, ..., c} and k ∈ {1, ..., c − a − d} let
v̂µ,kj (τ) be defined as in Theorem 1.4. Then v̂µ,kj (τ) is modular form of cusp

type for Γ[l]
l2,2l2

.

Proof. By conjugating with
(
l 0
0 1

)
it is enough to prove that hµ,kj (τ ′)

in (54) is a cusp form for Γl,2l2 .
We must look at the Fourier series expansions around the cusps of each

hµ,kj (τ ′). Since hµ,kj (τ ′) is given as a homogeneous combination of products
of theta constants we are interested in the behavior of ϑr around the cusps.
Moreover, taking into account that the set of cusp forms is an ideal of the
graded ring G(Γl,2l2) of holomorphic modular forms we see that once we
show that in each term of hµ,kj (τ ′) some factor is a cusp form the result will
follow.

Let l be a positive even integer and let r ∈ Z
l . First we look at the

behavior of ϑr at ∞. We can assume r = k
l with k ∈ {0, ...l−1}. For τ ′ ∈ H

let q̃τ ′ = exp(πıτ
′

l2
). Then the series defining ϑr is given by:

ϑr(τ ′) =
∑
n∈Z

q̃
(nl+rl)2

τ ′

=
∑
m≥0

amq̃
m
τ ′

where in the last sum the coefficient am takes the values 1, 2 or 0 depending
on whether m is the square of one integer of the form (nl + rl)2 for some
n ∈ Z, for two integers of this form or for none. Since we choose r = k

l with
k ∈ {0, ...l− 1} for the constant term we have that a0 6= 0 only if nl+ rl = 0
for some n ∈ Z. This can only happen if n = r = 0. Therefore the
constant term in the q̃τ ′ series expansion of any product of theta constants∏s
i=1 ϑri will vanish provided that at least one of the factors has a nonzero

characteristic rj 6= 0. Finally, since any cusp can be carried to ∞ by an
element in Sl2 the result follows. �
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Example 1.7. Consider Example 6.2 of Chapter 1:

g =
(

5 −1
6 −1

)
; θ =

3−
√

3
6

In this case Bg(θ, τ) is a quadratic algebra with 6 generators of degree
1 and 12 quadratic relations. After choosing a basis the multiplication map
m : Hg ⊗ Hg → Hg2 is represented by a 36 × 24 matrix whose coefficients
belong to C24 when viewed as functions of τ ′ = 24τ . The corresponding
functions of τ determining the coefficients of the relations are the minors of
each M(µ), µ ∈ {1, ..., 6}. Each ordered 4-tuple i1, i2, i3, i4 ∈ {1, 2, 3, 4, 5, 6}
determines a weight 2 modular form of τ ′ which belongs to B4:

F g,µi1,i2,i3,i4(τ) =
∑
σ∈S4

sgn(σ)
4∏

k=1

ϑ 6−5µ
24

− dik
6
−σ(k)

4

(24τ)

Considered as functions of τ each F g,µi1,i2,i3,i4 is a modular form of weight

2 and level Γ[24]
242,2(242)

. In particular, each F g,µi1,i2,i3,i4(τ) defines a differential
of the first kind in the modular curve X

Γ
[24]

242,2(242)

.

Example 1.8. Consider Example 6.5 of Chapter 1:

g =
(

4 1
15 4

)
, θ = −

√
15

15

In this case Bg(θ, τ) is a quadratic algebra with 15 generators of degree
1 and 105 quadratic relations. After choosing a basis the multiplication map
m : Hg ⊗Hg → Hg2 is represented by a 120× 225 matrix whose coefficients
belong to C120 when viewed as functions of τ ′ = 120τ . The corresponding
functions of τ determining the coefficients of the relations are the minors
of each M(µ), µ ∈ {1, ..., 15}. Each ordered 8-tuple i1, . . . , i8 ∈ {1, . . . , 15}
determines a weight 4 modular form of τ ′ which belongs to B120:

F g,µi1,...,i8(τ) =
∑
σ∈S8

sgn(σ)
8∏

k=1

ϑ 15+31µ
120

− 4ik
15
−σ(k)

8

(120τ)

Each F g,µi1,...,i8 is a modular form of weight 4 and level Γ[120]
1202,2(1202)

.

Example 1.9. Consider Example 6.7 of Chapter 1:

g =
(

6 1
35 6

)
, θ = −

√
35

35

In this case Bg(θ, τ) is a quadratic algebra with 35 generators of degree
1 and 805 quadratic relations. After choosing a basis the multiplication map
m : Hg⊗Hg → Hg2 is represented by a 420×1225 matrix whose coefficients



40 4. MODULARITY PROPERTIES OF Bg(τ, θ)

belong to C120 when viewed as functions of τ ′ = 120τ . The corresponding
functions of τ determining the coefficients of the relations are the minors of
each M(µ), µ ∈ {1, ..., 35}. Each ordered 12-tuple i1, . . . , i12 ∈ {1, . . . , 35}
determines a weight 6 modular form of τ ′ which belongs to B420:

F g,µi1,...,i12(τ) =
∑
σ∈S12

sgn(σ)
12∏
k=1

ϑ 20+71µ
120

− 6ik
35
−σ(k)

12

(420τ)

Each F g,µi1,...,i12 is a modular form of weight 6 and level Γ[420]
4202,2(4202)

.

2. Modular symbols and averaged algebras

In this section we use the results about modularity obtained in the Sec-
tion in order to define algebras which do not depend on a particular choice
of the complex structure τ . Fix g, l and θ as in the previous sections. Let
Γ = Γ[l]

l2,2l2
, by Theorem 1.4 one can take a presentation of Bg(τ, θ) in which

each one of the coefficients v(τ) in the defining relations is a modular form
for Γ. If v(τ) is a modular form of even weight w = 2r we can consider it
as a r-fold differential on H invariant under Γ. That is v is a function in
(dz)−r((Ω1

H)⊗r)Γ. A Γ invariant k-fold differential can be pushed down to
a differential form in the (2r − 2) fibered power of the universal curve over
XΓ. The corresponding integrals along homology classes can be realized as
values of line integrals along geodesics in H. This formalism was developed
by Manin in [19] for modular forms of weight 2 and extended to arbitrary
weights by Shokurov in [37].

Let Γ be a congruence subgroup of SL2(Z). Let k be a positive integer
and consider the action of the crossed product Γ n (Zk × Zk) on H × Ck

given by:

(γ;n,m) : (τ, z) 7→ (γτ,
z + τn+m

Cτ +D
)(55)

where γ =
(
A B
C D

)
∈ Γ;n,m ∈ Zk; τ ∈ H and z ∈ Ck.

The quotient Γn(Zk×Zk)\H×Ck admits a canonical smooth compact-
ification Zk

Γ called the Kuga-Sato variety. Let δ, ρ ∈ P1(Q) be two cusps and
let n,m ∈ Zk. This data defines a homology class {δ, ρ, n,m}Γ ∈ Hk+1(Zk

Γ)
called a modular symbol (c.f. [37]).

Now let v(τ) be a cusp modular form of even weight w = 2r and level
Γ. Then ω = v(τ)dτ ∧ dζ ∧ dζ1 ∧ ... ∧ dζw−2 is a Γ× Zw−2 × Zw−2 invariant
holomorphic volume form on H × Cw−2 so it can be pushed down to a
holomorphic volume form ω̂ in the Kuga-Sato variety Zw−2

Γ . The pairing of
this form with the modular symbol {δ, ρ, n,m}Γ is given by (c.f. [18]):
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∫ ρ

δ
v(τ)

2r−2∑
i=1

(niτ +mi)dτ =
∫
{δ,ρ,n,m}Γ

ω̂.(56)

Where the integral on the left is the line integral of the holomorphic
differential v(τ)

∑2r−2
i=1 (niτ +mi)dτ along the geodesic in H joining δ and ρ.

Definition 2.1. Let g satisfy (27) and (28) with l = c(a + d) and
w = ba+d+1

2 c even. Let v̂µ,kj (τ) be given as in Theorem 1.4. Let {δ, ρ, n,m}Γ

be a modular symbol. We define

Bg(θ){δ, ρ, n,m}Γ,(57)

the averaged homogeneous coordinate ring of Tθ with respect to {δ, ρ, n,m}Γ

as the quadratic algebra generated by elements x1, ..., xc of degree 1 subject
to relations ξµk = 0, µ ∈ {1, 2, ..., c} and k ∈ {1, ..., c− a− d} where

ξµk = νµ,k1 xα(µ,1)x1 + ...+ νµ,kc xα(µ,c)xc(58)

with

νµ,kj = νµ,kj ({δ, ρ, n,m}Γ) :=
∫ ρ

δ
v̂µ,kj (τ)

2r−2∑
i=1

(niτ +mi)dτ(59)

Example 2.2. Lets look at Example 1.7 in this setting. So we take

g =
(

5 −1
6 −1

)
; θ =

3−
√

3
6

We are working with modular forms of weight 2 for the groups Γ[24]
242,2(242)

and Γ242,2(242). As remarked in Example 1.7, having weight 2, the modular
forms appearing as coefficients of the defining relations of Bg(θ, τ) corre-
spond to differentials of the first kind in the modular curve X

Γ
[24]

242,2(242)

. The

corresponding modular symbols

{δ, ρ}
Γ

[24]

242,2(242)

∈ H1(X
Γ

[24]

242,2(242)

,Q)

are classical and given any two cusp δ, ρ ∈ Q ∪ {∞} we get a averaged
homogeneous coordinate ring Bg(θ){δ, ρ}Γ

[24]

242,2(242)

whose defining relations

have coefficients

νµ,kj ({δ, ρ}
Γ

[24]

242,2(242)

) :=
∫ ρ

δ
v̂µ,kj (τ)dτ.

3. Limiting modular symbols and averaged algebras

In the definition of the the averaged homogeneous coordinate ring

Bg(θ){δ, ρ, n,m}Γ

we have a non canonical choice coming from the cusps δ and ρ in the lim-
its of the integration (59). We will use the ideas developed by Manin and
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Marcolli in [20] to get canonical set of cusps associated to θ. The modular
symbols corresponding to these cusps will then define a averaged homoge-
neous coordinate ring canonically associated to Tθ.

One can not naively replace one of the cusp in {δ, ρ}Γ by a irrational
number β ∈ R\Q since corresponding integral (59) would then diverge. Still,
it makes sense to look at the asymptotic behavior of the integrals along
infinite geodesics in H having a irrational endpoint β. If this asymptotic
limit exist it defines a limiting modular symbol (c.f. [20]):

{{∗, β}}Γ ∈ H1(XΓ,R).(60)

If β is a real quadratic irrationality then the corresponding limiting modular
symbol exist and can be computed as a combination of classical modular
symbols.

Example 3.1. Consider again the situation in Example 1.7. Thus θ =
3−
√

3
6 and g is given by (55). Let

g̃ = g4l2 = g4(242)

Then we have that g̃ is a hyperbolic element of Γ[24]
242,2(242)

and θ is one

of its fixed points. Let also λ̃− = (λ−)4l
2
> 1 denote the corresponding

eigenvalue of g̃. The limiting modular symbol defined by θ is given in this
case by (c.f. [20]):

{{∗, θ}}
Γ

[24]

242,2(242)

=
{0, g̃(0)}

Γ
[24]

242,2(242)

log λ̃−
∈ H1(X

Γ
[24]

242,2(242)

,R).(61)

We can now integrate along this homology class the modular forms defining
Bg(τ, θ). Taking

νµ,kj (θ) :=
∫
{{∗,θ}}

Γ
[24]

242,2(242)

v̂µ,kj (τ)dτ

and imposing the relations νµ,k1 (θ)xα(µ,1)x1+...+ν
µ,k
c (θ)xα(µ,c)xc on C〈x1, ..., xc〉

we get a set of relations for a quadratic algebra Bg(θ) canonically associated
with θ and g.

The limiting modular symbol defined by a real quadratic irrationality
θ ∈ (0, 1) can be computed using its continued fraction expansion. Let
{kn(θ) | n = 1, 2, ...} ⊂ N be the eventually periodic sequence corresponding
to the continued fraction expansion of θ. The corresponding convergents
are:

[k1(θ), k2(θ), ..., kn(θ)] = 1
k1(θ)+ 1

k2(θ)+.... 1
kn(θ)

=
pn(θ)
qn(θ)

.(62)
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Let also

gn(θ) :=
(
pn−1(θ) pn(θ)
qn−1(θ) qn(θ)

)
∈ GL2(R)(63)

and take λ(θ) = limn→∞
log qn(θ)

n . Then the modular symbol defined by θ
can be computed by the following formula (c.f.[21]):

{{∗, θ}}Γ =
m∑
n=1

{g−1
n (θ)0 , g−1

n (θ)ı∞}Γ

mλ(θ)
.(64)

Where m is the period of the continued fraction expansion {kn(θ) | n =
1, 2, ...}.

At present the theory of limiting modular symbols has been developed
only for weight w = 2. It is expected that an analogous theory for higher
weight can be developed. For our purposes it is enough to consider (64) as
providing a canonical choice of cusps defining modular symbols over which
to average the coefficients of the defining relations of the homogeneous co-
ordinate ring Bg(τ, θ):

Definition 3.2. Let g satisfy (27) and (28) with l = c(a+ d) and w =
ba+d+1

2 c even. Take Γ = Γ[l]
l2,2l2

and let v̂µ,kj (τ) be given as in Theorem 1.4.
Let also gn(θ), λ(θ) and m be as in (64). We define Bg(θ) the averaged
homogeneous coordinate ring of Tθ as the quadratic algebra generated by
elements x1, ..., xc of degree 1 subject to relations ξ̂µk = 0, µ ∈ {1, 2, ..., c}
and k ∈ {1, ..., c− a− d} where

ξ̂µk = ν̂µ,k1 xα(µ,1)x1 + ...+ ν̂µ,kc xα(µ,c)xc(65)

with

ν̂µ,kj =
1

mλ(θ)

m∑
n=1

∫ g−1
n (θ)ı∞

g−1
n (θ)0

v̂µ,kj (τ)dτ.(66)

In this way we obtain a finitely generated finitely presented homogeneous
coordinate ring canonically associated to Tθ.





CHAPTER 5

Further developments

The role played by modular forms in the above discussion points to deep
relations with the quantum thermodynamical system introduced by Connes
and Marcolli in [6] in relation with the class field theory of the modular field.
Several results point to the fact that quantum statistical mechanics provides
the right framework under which the tools of noncommutative geometry may
be applied to class field theory. In this chapter we provide what we believe
may be the first steps in the construction of a quantum statistical mechanical
system associated to a real multiplication noncommutative torus Tθ.

1. The geometric data

In the case of real quadratic fields explicit class field theory is conjec-
turally given in terms of special values of L-functions, this is the content of
Stark’s conjectures [39]. In order to apply our results on noncommutative
tori in this direction using the tools of quantum statistical mechanics we
still need to find C∗-completions of the algebras Bg(τ, θ), Bg(θ){δ, ρ, n,m}Γ

and Bg(θ). The constructions of [5] seem to provide the right tools in for
this purpose.

The first step in this direction is the construction of the geometric data
corresponding to the algebra Bg(θ, τ). The geometric data associates to a
finitely generated graded algebra A = ⊕An a triple T = (Y, σ,L) where Y
is a projective variety, σ is an automorphism of Y and L is an ample line
bundle over Y . Starting from such a triple one can construct the graded
algebra:

B(T ) =
⊕
n≥0

H0(Y,L ⊗ Lσ ⊗ ...⊗ Lσn−1
)(67)

where Lσ := σ∗L and the multiplication of two sections s1 ∈ B(T )n, s2 ∈
B(T )m is given by s1s2 := s1 ⊗ sσ

n

2 .
The construction is made in such a way that one gets a morphism A→

B(T ). This construction was introduced by Artin, Tate and Van den Bergh
in [1] in order to study regular algebras of dimension 3.

Let T = K〈x1, ..., xc〉 be the free associative algebra on c generators of
degree one over K. So T1 =

∑
Kxi ' Kc and T is the tensor algebra

T =
⊕
n≥0

(T1)⊗n '
⊕
n≥0

(Kc)⊗n.(68)

45
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To each homogeneous element f ∈ Tn = T ⊗n1 we associate the cor-
responding n-multilinear form f̌ : T ∗1 × ... × T ∗1 → K acting on the n-th
Cartesian product of the dual space T ∗1 . We call f̌ the multi linearization
of f . Since f̌ is multihomogeneous its zero locus defines a hypersurface in
(Pc−1(K))n.

Let now A be a finitely generated quadratic algebra over K. Assume A
is generated in degree one so that

A ' T /R(69)

where R = (f1, ..., fr), fi ∈ T1 ⊗ T1, is the homogeneous ideal generated by
the defining relations of the algebra A. The locus of common zeroes of the
multilinearizations of the elements of R defines a variety {f̌i = 0} = Γ ⊂
Pc−1×Pc−1. Let Y1 and Y2 be the corresponding projections and σ : Y1 → Y2

be the correspondence with graph Γ. Assume we can make an identification
Y1 = Y2 = Y . If σ is an isomorphism we consider it as an automorphism of
Y . Letting then i : Y ↪→ Pc−1 be the inclusion and taking L = i∗OPc−1(1) we
get the corresponding geometric data T = (Y, σ,L). Taking B(T ) as above
we have that the canonical map A1 → H0(Y,L) extends to a morphism of
graded algebras A→ B(T ). We call Y the characteristic variety of A.

Consider now the algebra Bg(θ, τ). We start with its presentation in
terms of generators and relations given in Theorem 1.4

For µ ∈ {1, 2, ..., c} and k ∈ {1, ..., c− a− d} let

f µk = vµ,k1 xα(µ,1)x1 + ...+ vµ,kc xα(µ,c)xc(70)

be the corresponding quadratic relation. Denote by (xi)1(xj)2 the map
Cc × Cc → C given by (v, w) 7→ viwj . The multilinearization of f µk is then

f̌ µk = vµ,k1 (xα(µ,1))1(x1)2 + ...+ vµ,kc (xα(µ,c))1(xc)2(71)

By definition the graph Γ ⊂ Pc−1 × Pc−1 of the correspondence σ in
the geometric data of Bg(θ, τ) is the common zero locus of the c(c− a− d)
bihomogeneous forms f̌ µk . Let Ω ∈Mc,c(c−a−d)(T1) be the matrix defined by

f µk = Ωµ
k,ixi, i = 1, ..., c; µ = 1, 2, ..., c; k = 1, ..., c− a− d.(72)

If the images of Γ under the two projections π1 : Pc−1 × Pc−1 → Pc−1

and π2 : Pc−1 × Pc−1 → Pc−1 are equal then σ is an automorphism of
Y = π1(Γ) = π2(Γ). Y is given in this case by the vanishing of the c × c
minor determinants of the matrix:
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Ω̌ =



v1,1
1 (xα(1,1))1 v1,1

2 (xα(1,2))1 ... v1,1
c (xα(1,c))1

v1,2
1 (xα(1,1))1 v1,2

2 (xα(1,2))1 ... v1,2
c (xα(1,c))1

...
... ...

...
v1,c−a−d
1 (xα(1,1))1 v1,c−a−d

2 (xα(1,2))1 ... v1,c−a−d
c (xα(1,c))1

v2,1
1 (xα(2,1))1 v2,1

2 (xα(2,2))1 ... v2,1
c (xα(2,c))1

...
... ...

...
v2,c−a−d
1 (xα(2,1))1 v2,c−a−d

2 (xα(2,2))1 ... v2,c−a−d
c (xα(2,c))1

...
... ...

...
...

... ...
...

vc,11 (xα(c,1))1 vc,12 (xα(c,2))1 ... vc,1c (xα(c,c))1
...

... ...
...

vc,c−a−d1 (xα(c,1))1 vc,c−a−d2 (xα(c,2))1 ... vc,c−a−dc (xα(c,c))1



.

From this we see that Y ⊂ Pc−1 is defined by
(
c(c−a−d)

c

)
homogeneous

equations of degree c. Each one of these equations has as coefficients values
of theta constants in Bl. The explicit form of these determinantial varieties
depends in each particular case on the relations satisfied by the correspond-
ing theta constants.

Remark 1.1. In [38] Smith and Stafford analyzed the geometric data
of a class of graded rings known as Sklyanin algebras. These are quadratic
algebras whose relations have coefficients which can be realised as values
of theta functions with characteristics in 1

2Z. The relations satisfied by
ϑ0,0, ϑ0, 1

2
, ϑ 1

2
,0 and ϑ 1

2
, 1
2

play a central role in their analysis and are respon-
sible for the appearance of an elliptic curve as part of the characteristic
variety. At a first glance it seems like our situation is analogous to that on
[38] and either the modular curves or ProjBl could be playing the role that
elliptic curves played for the Sklyanin algebras.

We shall return to this point in future work where a detailed analysis of
the geometric data associated to the various rings considered in this thesis
will be carried out. We expect then the use of the techniques developed in [5]
will then make it possible to obtain C∗-completions suitable for arithmetic
applications.





APPENDIX A

Theta functions and theta constants with rational
characteristics

In this appendix we recall the main facts about theta functions and
theta constants with rational characteristics that are used in this thesis.
Our treatment follows closely [23], [24] and [25].

Let (r, s) ∈ Q2. The series

ϑr,s(z, τ) =
∑
n∈Z

exp[πı(n+ r)2τ + 2πı(n+ r)(z + s)](73)

defines a holomorphic function of (z, τ) ∈ C×H. We call ϑr,s(z, τ) the theta
function with rational characteristics (r, s). Note that changing the char-
acteristics by integer values does not affect the values of ϑr,s(z, τ). Taking
(r, s) = (0, 0) we get Riemann’s theta function ϑ(z, τ) := ϑ0,0(z, τ). For
(r, s) ∈ Q2 we have

ϑr,s(z, τ) = exp[πır2τ + 2πır(z + s)]ϑ(z + rτ + s, τ).(74)

One of the most important and useful result about ϑ is the functional
equation it satisfies:

Theorem 0.2. Let γ =
(
A B
C D

)
∈ Γ1,2. Then

ϑ(
z

Cτ +D
,
Aτ +D

Cτ +D
) = κ(γ)(Cτ +D)

1
2 exp[

πıCz2

Cτ +D
]ϑ(z, τ)

where the constant κ(γ) satisfies κ(γ)8 = 1.

For a fixed τ ∈ H consider the lattice Λτ = Z⊕ τZ. Let (r, s) ∈ Q2 and
define for λ = m′ +mτ ∈ Λτ

eλ(z) := exp[−πım2τ + 2πı(rm′ −m(z + s)]

Then

ϑr,s(z + λ, τ) = eλϑr,s(z, τ)

and the values eλ satisfy:

eλ1+λ2(z) = eλ1(z + λ2)eλ2(z).

Thus the function ϑr,s(z, τ) is an entire Λτ -automorphic function of z ∈ C.
The functions {eλ}λ∈Λτ are called automorphy factors. The above conditions
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just mean that each ϑr,s(z, τ) gives a section of a holomorphic line bundle
on the elliptic curve Eτ = C/Λτ .

We will denote by L the basic line bundle over Eτ . This is the bundle
obtained as the quotient of C× C by the action of Λτ given by

λ · (ζ, z) = (exp[−πım2τ + 2πım(z −m′)]ζ, z − λ)

where λ = m′ +mτ ∈ Λτ , (ζ, z) ∈ C × C, and we view C × C as the total
space of the trivial line bundle over C. For an integer l > 1 the functions
z 7→ ϑr,s(lz, τ) with (r, s) ∈ 1

lZ give sections of a line bundle whose l tensor
power is isomorphic to L. In this case the Lefschetz embedding theorem
gives us an embedding to projective space:

Theorem 0.3. Let l > 1 be an integer and let (ri, si) ∈ (1
lZ)2, i =

0, ..., l2 − 1, be a complete set of representatives of (1
lZ/Z)2. Then the holo-

morphic map φl : C/Λτ → Pl2−1C given by

φl : z 7→ (ϑr0,s0(lz, τ), ..., ϑrl2−1,sl2−1
(lz, τ))(75)

is an embedding. In particular, φl(C/Λτ ) is an algebraic subvariety of
Pl2−1C.

Remark 0.4. The algebraic equations defining φl(C/Λτ ) can be deter-
mined in some cases by relations satisfied by the ϑr,s. For instance, Rie-
mann’s 16 theta relations between ϑ0,0, ϑ0, 1

2
, ϑ 1

2
,0 and ϑ 1

2
, 1
2

can be used to
realize φ2(C/Λτ ) as the curve in P3C defined by the quadratic equations

ϑ0,0(0)2X2
0 = ϑ0, 1

2
(0)2X2

1 + ϑ 1
2
,0(0)2X2

2

ϑ0,0(0)2X2
3 = ϑ 1

2
,0(0)2X2

1 − ϑ0, 1
2
(0)2X2

2

The zeroes of z 7→ ϑr,s(z, τ) are characterized by the following lemma:

Lemma 0.5. Fix τ ∈ H, let l > 1 be an integer and let (r, s) ∈ Q. Then,
the zeroes of z 7→ ϑr,s(z, τ) are the points (r + p + 1

2)τ + (s + q + 1
2) with

p, q ∈ Z .

The holomorphic function on H obtained when we restrict ϑr,s(z, τ) to
z = 0 will be refereed as the theta constant with rational characteristics
(r, s). We will use the following notations:

ϑr,s(τ) := ϑr,s(0, τ).(76)
ϑr(τ) := ϑr,0(0, τ).(77)

The functional equation in Theorem 0.2 becomes in this case:

ϑ(
Aτ +D

Cτ +D
) = κ(γ)(Cτ +D)

1
2ϑ(τ).(78)

A very important variant of these functions is given by the algebraic
theta constants:

ϑαr,s(τ) := e−πırsϑr,s(0, τ) (r, s) ∈ Q2.(79)
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The rationality behavior of these functions plays an essential role for us. Let
τ ∈ H. Consider as above the elliptic curve Eτ and the basic line bundle L
on it. For all a, b ∈ Q we take

x(a, b)m = Image in Eτ of
1
m

(aτ + b)

Then we have:

Theorem 0.6. ([24] Corollary 5.12) Suppose that a, b ∈ 1
lZ and k ↪→ C

is a subfield such that Eτ and L can be defined over k and x(a, b)2l is rational
over k. Then

ϑαa,b(τ)
ϑα0,0(τ)

∈ k.





APPENDIX B

Buchberger’s algorithm

In this appendix we describe the implementation of Buchberger’s algo-
rithm for the computation of a Gröbner basis for a finitely generated two
sided ideal I in K〈x1, ..., xc〉. We will work on the setting of Chapter 3, in
particular we use the same notation and conventions. We assume that the
ideal I is a homogeneous. In this case Buchberger’s algorithm provides for
each given degree the set of elements of this degree in the corresponding
Gröbner basis. The auxiliary algorithms providing the normal form of an
element in a set of generators and a minimal set of obstructions are also
given. We follow the approach of [22].

The first algorithm computes a minimal set of obstructions of the element
gj in the finite ordered set {g1, . . . , gs}. The elements belonging to this
set take into account the fact that two elements in the ideal generated by
{g1, . . . , gs} can have the same leading term. This happens if there exists
elements l, r, l′, r′ ∈ S such that lT (gj)r = l′T (gi)r′ for some i, j ∈ {1, . . . , s}.
The corresponding obstruction is the element (j, l, r, i, l′, r′) in the Cartesian
product:

({1, . . . , s} × S× S)× ({1, . . . , s} × S× S)(80)

Given gj in the finite ordered set {g1, . . . , gs} the output of the algorithm
OBS(j) is the minimal set of obstructions of gj :

OBS(j) = ∅;
For each l, r, w ∈ S \ {1} s.t. : T (gj) = lw = wr:

OBS(j) = OBS(j) ∪ {(j, 1, r, j, l, 1)};
For i = 1, i < j

For each l, r, w ∈ S \ {1} s.t. : T (gj) = lw, T (gi) = wr:
OBS(j) = OBS(j) ∪ {j, 1, r, i, l, 1)};

For each l, r, w ∈ S \ {1} s.t. T (gj) = wr, T (gi) = lw:
OBS(j) = OBS(j) ∪ {(j, l, 1, i, 1, r};

Let s = {(l, r) | (j, l, r, k, l′, r′) ∈ OBS(j)}
For each s = (l, r) ∈ s Choose (j, ls, rs, ks, l′s, r

′
s) ∈ OBS(j)

such that ls, rs = (l, r)
OBS(j) = {(j, ls, rs, ks, l′s, r′s) | s ∈ s}.
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The following simple algorithm computes the normal form of an element
f ∈ K〈x1, ..., xc〉 with respect to finite set G ⊂ K〈x1, ..., xc〉:

h = NormalForm(f,G):
h = f ;
While h 6= 0 or T (h) ∈ T (G);

Choose g ∈ G; l, r ∈ S s.t. lT (gi)r = T (h);
h = h− lc(h)lc(g)−1lgr.

Let I be a finitely generated homogeneous two sided ideal in K〈x1, ..., xc〉
and let F a finite basis for I. Assume F is given as an ordered set {g1, . . . , gs}
such that lc(gi) = 1 and that all T (gi) are different. The following algorithm
computes a Gröbner basis for I.1

G = Gröbner(I)

G = ∅;
OBS = ∅;
For t = 1, t ≤ s:

RED = {(k, l, r, i, l′, r′) ∈ OBS : ∃ wl, wr ∈ S \ {1} s.t.
wlT (gt)wr = lT (gk)r};

OBS = OBS \RED;
G = G ∪ {gt};
OBS = OBS ∪OBS(t).

While OBS 6= ∅;
Choose (k, l, r, i, l′, r′) ∈ OBS;
OBS = OBS \ {(k, l, r, i, l′, r′)};
h = NormalForm(lgkr − l′gir

′, G);
If h 6= 0 then:
t = t+ 1;
gt = h;
G = G ∪ {gt};
RED = {(k, l, r, i, l′, r′) ∈ OBS : ∃wl, wr ∈ S \ {1} s.t.

wlT (gt)wr = lT (gk)r};
OBS = OBS \RED;
G = G ∪ {gt};
OBS = OBS ∪OBS(t).

1I am grateful to Alain Connes for providing me with a efficient Mathematica imple-
mentation of a noncommutative symbolic product due Michael Trott.
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[34] J.P. Serre, Faisceaux algébriques cohérents. Ann. of Math. (2) 61 (1955) 197-278.
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Summary

Arithmetic structures on noncommutative tori with real
multiplication

by Jorge Plazas

In this thesis we study homogeneous coordinate rings of real multiplication
noncommutative tori. Our aim is to understand how these rings give rise
to an arithmetic structure on the noncommutative torus. The main moti-
vation for the study of arithmetic structures on noncommutative tori comes
from possible applications to the explicit class field theory problem for real
quadratic extensions of Q. This relation is discussed in the introduction.

The first part of Chapter 1 discusses the setup of the rest of the the-
sis. Noncommutative tori with real multiplication and their homogeneous
coordinate rings are introduced. This definition due to Polishchuk depends
on the choice of a complex structure on the noncommutative torus, these
structures are also treated in this part. In the second part of Chapter 1 we
use the explicit formulas defining homogeneous coordinate rings in order to
obtain their presentation in terms of generators and relation. This presen-
tation is given in terms of theta constants with rational characteristics and
is the starting point of the subsequent analysis.

In Chapter 2 we exploit the relation between theta constants and elliptic
curves in order to study the rationality properties of the homogeneous co-
ordinate rings of real multiplication noncommutative tori. It is shown that
these rings admit a rational presentation which is algebraic over the field of
definition of the elliptic curve corresponding to the given complex structure
on the noncommutative torus.

In Chapter 3 we study the natural linear basis of the homogeneous co-
ordinate rings given in Chapters 1 and 2. The theory of noncommutative
Gröbner basis for two sided ideals on the free algebra K〈x1, ..., xc〉 plays a
central role in this computations.

In Chapter 4 we shift our point of view and look at homogeneous co-
ordinate rings as a family of algebras varying with the parameter defining
the complex structure on the noncommutative torus. For this we give a
presentation of the rings in terms of modular forms. We use the modularity
of these coordinate rings to define new rings by an averaging process over
(limiting) modular symbols. In this way we obtain a homogeneous ring asso-
ciated with the noncommutative torus which does not depend on the choice
of a particular complex structure.

In the last Chapter we analyze the geometric data corresponding to the
homogeneous rings discussed in the previous chapters. This is the first step
towards the construction of C∗-completions which are fundamental in order
to recast the above ideas in the context of quantum statistical mechanical
systems of arithmetic nature.
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