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Introduction

The final state in deep inelastic electron-proton scattering contains a scattered electron or
neutrino and a parton – a quark or gluon – scattered off the proton. The proton remnant
as well as the parton carry colour, and as they depart from each other, the strength of the
strong force increases until the potential energy stored in the field between them is sufficient
to produce secondary gluons or quark-antiquark pairs. Once the available energy of the initial
process is split up among partons, the strong force becomes effective and the partons hadro-
nise in colourless objects, e.g. baryons and mesons. In general these particles are bundled
in phase space as so-called jets, whose directions and energies approximately represent those
of the initial partons. Due to the strong force, the angular range between the jet originating
from the proton remnant and the struck quark (current jet) is filled with soft particles, and
the existence of a significant gap is exponentially suppressed.
However, this näıve picture fails to explain a considerable fraction of events in deep inelastic
scattering (DIS) which display no hadronic activity between the proton remnant and the cur-
rent jets. Such a topology indicates that some sort of colourless particle, denoted as Pomeron
(IP ), has been scattered off the proton.
This phenomenon, known as diffractive exchange, was found in a variety of scattering pro-
cesses. In this analysis, diffraction in hard photoproduction (PHP) of dijets has been studied
on data taken with the Zeus detector at the electron-proton collider Hera. In PHP a quasi-
real photon is emitted by the initial electron, i.e. the squared four-momentum transfer Q2 is
small, Q2 . 1 GeV2, and interacts with a Pomeron, the hypothetical particle of the diffractive
exchange. The hard scale is provided by requiring two current jets with transverse energies
E

jet 1(2)
T ≥ 7.5(6.5) GeV.

The outline of the thesis is as follows: In Chapter 1, a brief introduction to the theory
of diffraction is given. The experimental setup, i.e. the Hera collider, the Zeus detector
and the procedure of data acquisition, is described in Chapter 2. Information on the data
sample and the Monte Carlo (MC) simulations can be found in Chapters 3 and 4, respectively.
The reconstruction of kinematic variables and the selection cuts are described in Chapters 5
and 6. Contamination of the data sample with different sources of background is considered
in Chapter 7. The tuning of the MC sample to the background-reduced data sample is
described in Chapter 8. Chapter 9 contains details on subsequent data corrections and control
plots, acceptances and efficiencies for a set of variables. Cross sections for these variables are
presented and compared with leading order (LO) MC simulations in Chapter 10 and with next-
to-leading order (NLO) QCD predictions in Chapter 12. The results of systematic checks are
summarised in Chapter 11. Finally, conclusions from this analysis are drawn in Chapter 13.



Chapter 1

Theoretical framework

In this introduction to diffraction, a historical path is followed as far as appropriate. Motivated
by diffraction in optics (Sec. 1.1), the main features of diffraction in particle physics (Sec. 1.2)
– in particular the production of diffractive dijets (Sec. 1.3) – are sketched before kinematic
variables corresponding to these processes are introduced (Sec. 1.4). Early studies on diffrac-
tion were limited to soft interactions (Sec. 1.5), and could be described by Regge theory
(Sec. 1.6). Studies on hard diffraction became possible as colliders with higher centre-of-mass
energy became available, and can be described by means of perturbative quantum chromody-
namics (pQCD) (Sec 1.7). Cross sections of hard diffraction in DIS are expected to factorise
into universal diffractive parton distribution functions (dPDFs) of the proton convoluted with
cross sections of a partonic subprocess (Sec. 1.7.1). Recent results indicate the possibility of
factorisation breaking for hard diffraction in hadron-hadron scattering (Sec. 1.7.2) and hence
suggest implications for lepton-hadron scattering in the kinematic range of this analysis.

1.1 Diffraction in optics

The denotation of diffraction in particle physics is motivated by features it has in common
with the phenomenon of diffraction in optics. As first noted by Francesco Maria Grimaldi [1]
in the 17th century, “light does not only propagate directly, reflectively and refractively, but
also in a fourth manner, denoted as diffractively”1. A plane light wave that passes a hole

Figure 1.1: A plane light wave that passes a hole (left) becomes diffracted, hence leading to a
pattern of constructive and destructive interference on a screen behind the hole (middle, right).

1“Lumen propagatur seu diffunditur non solum directe, refracte ac reflexe etiam quodam quarto modo
diffracte.”
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Figure 1.2: Cross sections for elastic p-scattering vs. the negative squared four-momentum transfer
t of the proton for different p-momenta in fixed-target experiments (P ≤ 24GeV) and centre-of-mass
energies

√
s in colliding-beam experiments; a minimum followed by a second maximum is observed

for
√

s ≥ 23GeV – taken from [2].

in an opaque screen (Fig. 1.1a), propagates non-linearly behind it; according to Huygens prin-
ciple, each point of the light wave acts as a source of a spherical wave. The superimposition
of these spherical waves leads to constructive and destructive interference. On a screen suffi-
ciently far behind the hole, a central maximum is observed, surrounded by additional smaller
maxima (Fig. 1.1b). The intensity of the maxima is found to decrease exponentially with
e−(R0/2)2θ, where θ is the scattering angle and R0 the radius of the hole.

1.2 Diffraction in particle physics

Early results on elastic proton-proton (pp) scattering (Fig. 1.2) revealed features which led to
the connotation with diffraction in optics [3]:

• the total cross section σtot rises slowly with increasing centre-of-mass energy
√

s ;

• the cross section falls exponentially with the squared four-momentum transfer |t|
between the incoming and outgoing proton: dσ/dt ∝ e−b|t| .
Here t is related to the scattering polar angle θ in optical diffraction and b = R2

0/4
can be interpreted as a constant associated with the radius of the interaction;

• with increasing t, a second diffractive maximum is observed for sufficiently large
√

s.
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Figure 1.3: Single and double diffractive process in pp scattering (left column), non-diffractive and
diffractive scattering in ep collisions (middle), and angular distribution of energy flow (right).

In elastic pp scattering the initial and final state are identical: pp → pp. In particular, no
quantum numbers except angular momentum are exchanged. Diffractive pp scattering refers
to processes where at least one proton stays intact and a hadronic system X is observed
in the final state: pp → ppX or pp → pY X (Fig. 1.3, left column). In terms of Regge
phenomenology (Sec. 1.6), this is explained by the exchange of a Pomeron IP , a hypothetical
particle with zero quantum numbers.
In ep scattering with a hadronic system X in the final state, two distinct processes are
possible (Fig. 1.3, middle column). In both cases the scattering process is moderated by a
virtual photon γ (or by a Z0) emitted from the electron. The upper graph in the middle
column of Fig. 1.3 refers to inelastic scattering ep → eY X, whereas the lower graph depicts
diffractive scattering ep → epX.
Such diffractive events account for ∼ 10% of ep-scatterings at Hera energies [4, 5]. In the
Zeus-experiment (Sec. 2.3) this class of events is observed by a lack of particles in proton
beam direction: Figure 1.4 shows the event distribution of ηmax, defined as the pseudorapidity
(Sec. 1.4) of the particle closest to the proton beam direction. The distribution of Zeus data is
compared to Monte Carlo simulations (Sec. 4.1), that represent the final state configurations
described in Fig. 1.3. Diffractive events at Zeus dominate at values of ηmax . 2.5.
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Figure 1.4: Event rates vs. ηmax for Zeus data in DIS compared with Monte Carlo simulated
events for diffractive (Pompyt) and non-diffractive (Ariadne) exchange; diffractive exchange is
dominant for ηmax . 2.5 – taken from [4].

1.3 Diffractive dijets

In this analysis, diffraction will be considered for processes in ep-scattering where a dijet
system is observed. The two jets are assumed to result from partons produced in the initial
diffractive process as described below. The concept of jets will be discussed in Sec. 5.3.

1.3.1 Diffractive dijets in DIS

In deep inelastic scattering (DIS) the electron is scattered through a large angle, indicating
a large squared four-momentum transfer Q2 between the incoming and outgoing lepton and
hence the emission of a highly-virtual photon γ∗. Q2 is also denoted as the photon virtuality
and reflects the resolution ∆b with which the scattered objects can be probed: ∆b ≈ λ =
~c/

√

Q2.
Besides the lowest order scattering on a quark of the proton (Fig. 1.5 left), a diffractive process
can occur (Fig. 1.5 middle, right) where the diffractive exchange particle IP is interpreted to
have a partonic substructure similar to the proton, i.e. with universal structure functions of
gluons and quarks [6]. The emission of the diffractive particle IP is followed by the interaction
of a parton in the IP with the virtual photon: either directly if the parton is a quark, or
indirectly if the parton is a gluon which couples to a qq̄-pair before interacting with the
photon.
Two additional variables are required to describe diffractive scattering: xIP (or ξ in hadron-
hadron scattering) gives the longitudinal momentum fraction of the proton taken by the
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diffractive exchange, whereas zIP , also denoted as β, corresponds to the Bjorken variable xBj

in non-diffractive scattering and gives the longitudinal momentum fraction of the diffractive
exchange taken by a quark or gluon evolving from it. As depicted in Fig. 1.5, the variable
xBj is then replaced by the two variables xIP and zIP for the diffractive exchange:

xBj = xIP · zIP (zIP ≡ β) (1.1)

Occasionally a direct contribution of the IP is mentioned in literature, meaning zIP ' 1.
The kinematic variables describing the graphs in Fig. 1.5 are explained in Tab. 1.1.

1.3.2 Diffractive dijets in PHP

Most events at ZEUS are photoproduction events, i.e.the lepton is only scattered by a small
angle, Q2 is small (usually Q2 . 1 GeV2) and the photon is quasi-real. Like in DIS, the
photon can interact directly with a qq̄-system, referred to as direct PHP (Fig. 1.6 left). For
quasi-real photons, however, Heisenberg’s Uncertainty Principle also allows a fluctuation into
a qq̄-system, i.e. the resolved photon can interact via its partonic content. This is denoted
as resolved PHP (Fig. 1.6 right). For the resolved process, one additional variable, xγ , is
required for the fraction of the longitudinal photon momentum taken by the parton which
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Figure 1.6: Main contributions to the production of diffractive dijets in PHP.
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Figure 1.7: LO graphs for direct (top row) and resolved PHP (middle and bottom row) – the
labelled partons in the centre are considered to form the dijet system whereas the partons starting
from a circle symbolise the remnant resulting from the Pomeron or, in case of resolved PHP, from
the photon.

evolves from the photon (see also Tab. 1.1). For leading order (LO) processes of direct PHP,
it follows that xγ = 1. Beyond LO, xγ . 1 and the separation of direct and resolved PHP is
not strict anymore.
An overview of LO-contributions2 to the production of diffractive dijets is given in Fig. 1.7.
The top row depicts processes for direct PHP: In the case that the diffractive exchange

2The abbreviation LO is ambiguous as it is often used for leading order as well as lowest order. Strictly
speaken, the lowest order processes for diffractive dijets in resolved PHP in Fig. 1.7 are at least one order
higher than the lowest order processes for diffractive dijets in direct PHP. The combination of both, however,
is considered as the leading order contribution to the production of diffractive dijets in PHP.
In most circumstances both terms are interchangable, and the term lowest order will be used in this analysis
only where misunderstandings could result.
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contributes a gluon g, a qq̄ system is produced (top-left diagram). If a quark q evolves from
the diffractive exchange, a dijet system can be produced by QCD-Compton scattering (top-
right diagram). The graphs in the second and third row refer to contributions from resolved
PHP.

1.4 Kinematic variables

The kinematic variables used in this analysis are summarised in Tab. 1.1. Here k = (Ee, ~k)

and P = (Ep, ~P ) are the four-momentum of the initial electron e and proton p, respectively,
and k′ and P ′ those of the scattered e′ and p′. Experimental observables for these variables
are derived in Sec. 5.4.

Kinematic variables

Squared centre-of-mass energy (cme) s = (k + P )2 ' 4EeEp

Squared four-momentum transfer

• at proton vertex t = (P − P ′)2

• at lepton vertex (virtuality) Q2 = −(k − k′)2 = −q2

Squared mass of

• system X M2
X = (q + P − P ′)2

• proton p / diss. proton (Y ) M 2
Y = (P ′)2

• total hadronic system W 2 = (P + q)2 = ys − Q2 + m2
p

Inelasticity y =
Pq
Pk

0 ≤ y ≤ 1

Longitudinal momentum fraction

of p taken by scattered parton xBj =
Q2

2·Pq =
Q2

Q2+W 2−m2
p

0 ≤ xBj ≤ 1

Additional variable for PHP

Longitudinal momentum fraction

of γ taken by scattered parton xγ =
Pu
Pq

with 4-momentum u

Additional variables for diffraction

Longitudinal momentum fraction

• of p taken by IP xIP =
(P−P ′)q

Pq =
Q2+M2

X−t

Q2+W 2−m2
p
'

Q2+M2
X

Q2+W 2

• of IP taken by scattered parton zIP =
Q2

2(P−P ′)q =
Q2

Q2+M2
X−t

' Q2

Q2+M2
X

Table 1.1: Description of main kinematic variables and calculation formulae.
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Rapidity and pseudorapidity

Another important variable in collider physics, where the direction of the beam line is distin-
guished from all other directions, is the rapidity Y [7]:

Y =
1

2
· ln

(E + pz)

(E − pz)
,

where E is the energy of the particle and pz its longitudinal momentum along the z-axis,
chosen to be the beam line. In the non-relativistic limit the rapidity reduces to the longitudinal
velocity v of a particle, but it is more practical as it is additive under Lorentz boosts along
the z-axis.
In the limit of small masses or high energies, the rapidity reduces to the so-called pseudo-
rapidity η [7]

η = − ln tan
θ

2
, (1.2)

where θ is the scattering polar angle with respect to the colliding beam direction. Like the
rapidity, the pseudorapidity is additive under Lorentz boosts along the z-axis.
In this analysis, the pseudorapidity is used to describe the direction of jets ηjet (Sec. 5.3) as
well as the direction of the particle which is closest to the beam direction, ηmax (Sec. 5.4).

1.5 Soft vs. hard diffraction

In lowest order, the cross section for processes involving the strong force is proportional to
αS:

αs(Q
2) =

4π

β0 · log(Q2/Λ2
QCD)

, (1.3)

where Q2 is the scale parameter of the interaction and β0 = 11 − 2
3
Nf . Since β0 > 0 for the

numbers of flavours Nf = 6, the Q2-dependence allows the following conclusions:

• for Q2 � Λ2
QCD, αS becomes small and the quarks and gluons can then be considered

as asymptotically free. Q2 provides a hard scale and it is possible to calculate cross
section by means of perturbative QCD (pQCD);

• for Q2 . Λ2
QCD, the energy scale is of the order of R = hc

E
& 1 fm and allows only soft

processes in elastic or diffractive scattering. This is the regime where Regge theory can
be applied to calculate cross sections.

Hence, the value of ΛQCD defines a boundary between hadrons on the one hand and quasi-free
quarks and gluons on the other. Experimentally this value was found to be ΛQCD ≈ 300 MeV.
Perturbative calculations break down for smaller values of Q2, but a hard scale might still be
given by the transverse energy Ejet

T in jet production, the quark mass mq in the production
of heavy quarks or a large four-momentum transfer squared t.
In this analysis, diffractive PHP of dijets is studied at large transverse jet energies.
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1.6 Diffraction in terms of Regge theory

Particle exchange in soft scattering processes can be described by Regge theory [3, 8]. It is
based on the study of the analytic properties of the scattering amplitude T (s, t). For high
energies s and small four-momentum transfer squared t, the elastic amplitude of two hadrons
a and b can be expressed as a function of a so-called trajectory α(t) which is exchanged
between a and b:

T ab→ab
elast (s, t) = i · s βa(t) ·

(
s

s0

)α(t)−1

· βb(t) .

Here βa(t) and βb(t) are form factors which account for the non-pointlike nature of the hadrons.
For t = 0, the forward elastic scattering cross section can be written as

dσab→ab
elast

dt

∣
∣
∣
∣
t=0

=
1

16πs2

∣
∣ T ab→ab

elast (s, 0)
∣
∣
2

=
1

16π
(βa(0)βb(0))2 ·

(
s

s0

)2(α(t)−1)

.

An analogous relation to the Optical Theorem, based on the conservation of probability, con-
nects the total cross section to the imaginary part of the forward elastic scattering amplitude:

σab
tot(s) =

1

s
· Im T ab→ab

elast (s, 0)

= βa(0)βb(0) ·
(

s

s0

)α(t)−1

. (1.4)

In terms of Regge theory, diffractive exchange refers to a special trajectory, denoted as the
Pomeron trajectory. In addition, other, non-diffractive processes are possible where the
Pomeron IP in Fig. 1.3 is replaced by a meson (e.g. π0, ρ0, J/Ψ). These processes refer
to the exchange of so-called Regge trajectories (IR). Both IP and IR trajectories are assumed
to be linear in t [8]:

αIP (t) = αIP (0) + α′
IP · t αIR(t) = αIR(0) + α′

IR · t
The cross section in Eqn. 1.4 can be re-written as the sum of the exchange of IR- and IP -
trajectories:

σtot = M · sαIR(0)−1 + N · sαIP (0)−1

With αIR(0) = 1−κ and αIP (0) = 1+ε, Donnachie and Landshoff [9] performed a fit of the form

σtot = M · sε + N · s−κ

to data of single-diffractive hadron-hadron collisions pp → pX, where M , N , ε and κ are fit
parameters. Their results led to a parametrisation of the Pomeron and Reggeon trajectories
according to:

αIR = 0.5475 + 0.93 GeV−2 · t

αIP = 1.0808 + 0.25 GeV−2 · t

In particular, the value of ε ≈ 0.08 leads to a slow rise of the cross section for elastic scattering
and therefore also for diffractive scattering. The t-dependent cross section dσab→ab/dt falls
exponentially with t in analogy to diffraction in optics.
As a consequence, Reggeon exchange refers to soft elastic scattering and its contribution to
hard diffraction is small and has been neglected for this analysis.
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1.7 Diffraction in pQCD

In terms of QCD, the exchange of a Pomeron refers to the exchange of a colour singlet. In
LO this can be interpreted as a 2g-exchange (Fig 1.8 middle) where the two gluons form a
colour neutral state [10]. As a result of the interaction of gluons with themselves, a gluon
ladder evolves at NLO and beyond (Fig 1.8 right).

jet1

jet2

jet1

jet2

jet1

jet2

p(P)

p(P’)

PI

p(P)

p(P’)

p(P)

p(P’)

q

q

q
_

(k)e
(e k’)

γ

q

q
_

(k)e
(e k’)

γ

(k)e
(e k’)

γ

g

q

g

Pomeron-exchange 2g-exchange (LO) gluon ladder

Figure 1.8: Diffractive process depicted as exchange of a Pomeron (left), two gluons (middle) or a
gluon ladder (right diagram) which form a colour singlet.

1.7.1 Factorisation

DIS cross section

The total cross section σep for DIS is given by

d2σep

dxBj dQ2
=

4π α2
em

xBj Q4

(
y2

2
· 2xBjF1(xBj , Q

2) + (1 − y) · F2(xBj , Q
2)

)

. (1.5)

From the QPM3 it follows that in lowest order (Fig. 1.5 left)

d2σep

dxBj dQ2
=

∑

q

d2σeq

dxBj dQ2
,

and the structure functions F1 and F2 are given by

F1(xBj) =
1

2
·
∑

i

q2
i fi(xBj),

F2(xBj) = xBj ·
∑

i

q2
i fi(xBj) ,

where fi are the parton distribution functions of the parton with charge qi. The emission
of non-collinear gluons by quarks leads to a non-vanishing longitudinal cross section [12].

3In the Quark Parton Modell (QPM) introduced by Feynman, the proton is considered to consist of point-
like constituents, suggested to be quarks and gluons [11].
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The corresponding longitudinal structure function FL(xBj) is defined by the violation of the
Callan-Gross relation

FL(xBj) = F2(xBj) − 2xBj · F1(xBj) (1.6)

and experimentally found to be small.

Diffractive DIS cross sections

In hard diffraction the Pomeron is considered as a single particle scattered off the proton. In
the resolved Pomeron model by Ingelman & Schlein [6], this particle is assumed to have a
partonic substructure and universal structure function of its constituents. The scattering can
then be interpreted as a two-stage process:

1. the emission of a Pomeron IP from the proton, followed by

2. the interaction of a parton with longitudinal momentum fraction zIP of the IP with a
probing particle, e.g. a virtual photon γ∗ or a quark or gluon evolving from it (comp.
Fig. 1.6).

Two additional variables, t and xIP = xBj/zIP (Eqn. 1.1), are required to describe this process,

and the four-fold differential cross section σ
D(4)
ep for diffractive DIS (dDIS) can be written in

an analogous way to Eqn. 1.5:

dσ
D(4)
ep

dxIP dt dzIP dQ2
=

4π α2
em

zIP Q4
·

(
y2

2
· 2xIPF

D(4)
1 (zIP , Q2, xIP , t) + (1 − y) · F D(4)

2 (zIP , Q2, xIP , t)

)

=
4π α2

em

zIP Q4
·
[(

1 − y +
y2

2

)

· F D(4)
2 (zIP , Q2, xIP , t) − y2

2
· F D(4)

L (zIP , Q2, xIP , t)

]

For the transformation in the second step, Eqn. 1.6 has been used. Due to the small contri-
bution from FL, this is often reduced to

dσ
D(4)
ep

dxIP dt dzIP dQ2
=

2π α2
em

zIP Q4
·
(
1 + (1 − y)2

)
· σD(4)

red (zIP , Q2, xIP , t)

with the reduced diffractive cross section σ
D(4)
red :

σ
D(4)
red = F

D(4)
2 − y2

1 + (1 − y)2
· F D(4)

L ≈ F
D(4)
2 . (1.7)

If the scattered proton p′ is not detected by the experiment, then t is not known. In this
case an integration over t is performed to obtain the three-fold cross section and structure
function:

σ
D(3)
red =

∫

dt σ
D(4)
red

F
D(3)
2 (zIP , Q2, xIP ) =

∫

dt F
D(4)
2 (zIP , Q2, xIP , t)
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F D
2 is constrained by the partonic structure functions in the Pomeron, fD, which can be

evoluted by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [13, 14]. Ac-
cording to the Ingelman-Schlein model, they factorise into two parts:

fD(xIP , t, zIP , Q2) = fIP/p(xIP , t)
︸ ︷︷ ︸

Pomeron flux

· fa/IP (zIP , Q2)
︸ ︷︷ ︸

diffractive PDFs

The first factor can be interpreted as a Pomeron flux, giving the probability that at four-
momentum transfer squared t a Pomeron with the momentum fraction xIP is found in the
proton,

fIP/p(xIP , t) =

tmax∫

tmin

dt eBIP tx
1−2αIP (t)
IP , (1.8)

while the second part can be considered as a universal diffractive structure function, giving
the probability to find a parton a with momentum fraction zIP in the Pomeron at energy Q2

of the probing particle. Such a factorisation theorem for DIS was proven by J.C.B. Collins
[15]. The proof holds for lepton-hadron scattering but fails for hadron-hadron scattering due
to soft interactions between hadrons in both the initial and final state (Sec. 1.7.2).
As a consequence, all non-perturbative information would be contained in universal diffractive
PDFs (dPDFs), i.e. dPDFs experimentally determined for one reaction would allow cross
sections for any other hard diffractive processes to predicted by convolution according to the
DGLAP equations with a hard scale.
In diffractive PHP, Q2 . 1 GeV2 does not provide a hard scale. As stated in Sec. 1.5, a hard
scale can alternatively be given by large transverse energies Ejet

T of particle jets. For the
production of diffractive dijets in PHP, Kaidalov et al. [16] use

Q2 −→ µ2 = Q2 +
1

4
(Ejet 1

T + Ejet 2
T ) . (1.9)

The cross section for diffractive dijet production in ep → e + 2 jets + p (or Y ) is considered
to be the sum of direct and resolved contributions [16]

σD
PHP = σD

dir + σD
res

with

dσD
dir(µ

2)

dt dxIP dzIP dy
=

∑

a

[fγ/e(y) · fIP/p(xIP , t) · fa/IP (zIP , µ2)] · σ(γa → 2 jets)

dσD
res(µ

2)

dt dxIP dzIP dy dxγ
=

∑

a,b

[fγ/e(y) · fb,γ(xγ , µ
2) · fIP/p(xIP , t) · fa/IP (zIP , µ2)] · σ(ba → 2 jets) .

Here a is the parton from the Pomeron, b is the parton in the resolved photon, σ(γa →
2 jets) and σ(ba → 2 jets) are the cross sections for the production of two final state partons
hadronising into 2 jets as depicted in Fig. 1.6. They were calculated in QCD by M. Klasen
and G. Kramer [17] using diffractive parton distributions functions fa/IP which were obtained
from experiments H1 and Zeus (Sec. 1.7). For the calculations of the resolved processes, the
parton distribution functions fb/γ were taken from GRV [18].
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Figure 1.9: The diffractive dijet structure function F D
jj over β (= zIP ) for CDF data obtained from

single diffractive pp scattering and two fits (red, blue) including IP and IR contributions (solid lines),
and contributions from IR exchange only (dotted lines) – taken from [19].

1.7.2 Factorisation breaking

Recent data on single inclusive scatterings pp̄ → pX taken in the CDF experiment at the
Tevatron collider have been compared to a prediction for single diffractive dijets [19]. This
prediction used dPDFs of the H1 Collaboration (Sec. 1.8.1) which were extrapolated to the
kinematical range of the CDF experiment. The predicted structure function overestimates
CDF data by a factor of ' 3 − 10 (Fig. 1.9).
According to Kaidalov et al. [20], such a suppression factor is possible in diffractive hadron-
hadron scattering due to multi-IP exchange in the initial state or rescatterings between final
state partons (Fig. 1.10). These effects reduce the rapidity gap survival probability [21]. Such
higher order processes were calculated yielding a rather constant suppression factor [20] over
the kinematical range as seen for the β (= zIP ) dependence in Fig. 1.9.
In direct PHP the photon interacts point-like as in diffractive DIS (Fig. 1.11, left diagram) so
that Collins’ proof of QCD factorisation is expected to hold. In resolved PHP the photon acts
as source of partons and thus mimics hadronic scattering (Fig. 1.11, middle, right diagram) so
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Figure 1.10: Initial state multi-IP exchange and final state partons rescattering.

that factorisaton breaking is expected. Based on calculations assuming s-channel unitarity,
Kaidalov et al. [16] predict a suppression factor of R = 0.34 for the cross section of hard
resolved PHP in ep collisions, smeared for values of xγ > 0.3. Hence hard diffractive PHP
provides a unique possibility to study the interplay of factorisation validity versus factorisation
breaking.
The NLO calculations by Klasen and Kramer [17] suggested that factorisation breaking for
the resolved photon could be observed mainly as an overall suppression factor. The results of
this analysis will be compared to NLO calculations based on Klasen and Kramer’s model in
Sec. 12.3.

1.8 Diffractive parton distributions

Diffractive Parton Distribution Functions (dPDFs) were determined from diffractive ep scat-
tering in DIS events at Hera by the H1 and Zeuscollaboration. Diffractive events were
selected according to three different signatures that are characteristic for diffraction:

• a large rapidity gap (LRG) devoid of any particles between the scattered
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Figure 1.11: Diffractive scattering in direct PHP and DIS (left), resolved PHP (middle) and single
diffractive scattering in pp̄ collisions (right).
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proton (or system Y ) and the diffracted system X; (→ LRG method, Sec. 1.8.1)

• an intact proton in the final state that loses only little of its inital
momentum: p′ > 0.98p, xL = 1 − xIP > 0.95 ; (→ LPS method, Sec. 1.8.2)

• a rather isolated hadronic system X with mass MX separated from
the scattered proton. (→ MX method, Sec. 1.8.3)

These methods and the dPDFs derived from them will be described below.

1.8.1 LRG method – H1 LO fit 2, H1 2002 fit

According to a simplified model introduced by Feynman [22], particles produced in hadron
collisions at high squared centre-of-mass energy s are distributed uniformly in rapidity within
kinematic limits given by ±s/mparton (Fig. 1.12 left). A LRG is then exponentially suppressed:
dN/d ∆Y ∝ e−∆Y . In contrast, the requirement of a colourless exchange in diffractive events
[5, 23] results in a LRG between the hadronic system X with mass MX and the scattered
proton p (Fig. 1.12 right): dN/d ∆Y ∼= const.

dY
dN

dY
dN

Y

Ydetector coverage in 

proton diffracted system Y

Ydetector coverage in 

Figure 1.12: Schematic depiction of particle rates over rapidity Y for non-diffractive (left) and
diffractive events (right).

The size of the LRG in diffraction is related to the masses of the final state systems at each
vertex: In the centre-of-mass system of γ∗p, the scattered p and the system X move in opposite
directions with longitudinal momentum pL ≈ W/2. Then an upper limit for the rapidity gap
can be estimated by the rapidities of the proton and the system X:

Yp = +
1

2
· ln

Ep + pL

Ep − pL
= +

1

2
· ln

(Ep + pL)2

E2
p − p2

L

≈ +
1

2
· ln

W 2

m2
p

YX = −1

2
· ln

EX + pL

EX − pL

= −1

2
· ln

(EX + pL)2

E2
X − p2

L

≈ −1

2
· ln

W 2

M2
X

=⇒ ∆Y = Yp − YX ≈ ln
W 2

mpMX

This limit is likely to be reduced on both sides: The hadronisation products of the system X
are spread in rapidity; typically MX < 100 MeV and ∆YX . 3. The measurement of high
proton rapidities is limited by the detector coverage.
Since a LRG in non-diffractive events is exponentially suppressed, background from such
processes can be suppressed by requiring a sufficiently large gap. However, the diffractive
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sample obtained hereby can still be enhanced with background from non-diffractive events
with low multiplicity while diffractive events with high multiplicity are likely to be damped.
The LRG method is sensitive to contributions from both Pomeron and Reggeon exchange,
though the latter is expected to be small and usually not taken into account.
The H1 collaboration determined dPDFs from data on inclusive diffractive DIS measurement.
The H1 LO fit2 [24] used an unexceptionally high value of αIP (0): αIP (0) = 1.17 > 1.08. A
more recent fit, denoted as H1 2002 fit [25], was performed by the H1 Collaboration on
inclusive data in diffractive DIS and used a more conservative value for αIP (0). This fit was
not available in time for the production of MC events for this analysis, but was used for the
calculation of NLO predictions.

1.8.2 LPS method – ZEUS LPS fit

The LPS-method [23, 26] selects diffractive events by tagging the intact, slightly scattered
proton in the final state in a leading proton spectrometer (LPS), which is placed at small
angles at large distance from the interaction point (Sec. 2.3). The energy of the scattered
proton can be reconstructed by its track and diffractive events can be selected by requiring a
sufficiently small t. The detector coverage limits the kinematic range at low t, i.e.the scattered
proton p′ might remain undetected for very small t.
The LPS method provides a cleaner diffractive sample than the LRG method because back-
ground from proton dissociation is highly suppressed. Since only neutral Reggeons can be
exchanged, contributions from IR-exchange are smaller than for the LRG method. However,
statistics are lower for the LPS method.

1.8.3 MX method – ZEUS GLP fit

The MX method [23, 26, 27] approximates the distribution of events over (ln M 2
X) (Fig. 1.13)

by the form

dN

d(ln M2
X)

= A
︸ ︷︷ ︸

diffractive

+ B · exp(C · ln M 2
X)

︸ ︷︷ ︸

non−diffractive

,

where the Gaussian peak is due to non-diffractive exchange and the plateau A is due to
diffractive exchange which is approximately proportional to (ln M 2

X). While the LPS and
LRG method select diffractive events directly, the MX method extracts the diffractive signal
statistically by fitting the above formula to data and subtracting the non-diffractive contri-
bution in each (W, Q2)-bin.
The MX method is not biased by low-multiplicity events but depends on a precise M 2

X

measurement and description of the exponential fall-off of the non-diffractive contribution.
Furthermore, this method is only applicable up to a reasonable ratio of diffractive to non-
diffractive contribution which restricts the measurement to small masses of MX . 35 GeV.

1.8.4 Comparison of dPDFs

The dPDFs of the LO fit 2 are shown in Figure 1.14, a comparison of the other dPDFs derived
from above methods is shown in Fig. 1.15.
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Figure 1.13: Schematic illustration of contributions from diffractive and non-diffractive events in
the distribution of (lnM 2

X).

Compared to the H1 2002 fit, the H1 LO fit 2 is flatter at high zIP for both the the distribution
of quarks and gluons. The dPDFs of the H1 2002 fit, the Zeus LPS fit and GLP fit are similar
in shape for quarks but differ considerably for gluons. Compared with the Zeus LPS fit, the
H1 2002 fit indicates the need of a normalisation factor of ∼ 0.8. The gluon density from
the Zeus GLP fit is roughly a constant factor smaller than the H1 2002 fit. The differences
between the dPDFs are still under investigation [28, 29].

Figure 1.14: Diffractive PDFs of the H1 LO fit 2 vs. zIP – taken from [24].
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Figure 1.15: Comparison of dPDFs vs. zIP obtained from the LRG, LPS, and MX method – taken
from [30].



Chapter 2

Experimental setup

This analysis was performed with data taken with the Zeus1 detector at the Hadron Electron
Ring Accellerator (Hera) at the Deutsches Elektron Synchrotron (Desy) in Hamburg. This
chapter will give a short introduction to the purpose, design and function of these facilities.

2.1 DESY

Desy was founded on December 18, 1959, as an independent institution under civil law, and
is a member of the Hermann von Helmholtz Association of National Research Centers. Its
main objectives are

• the development, construction and operation of accelerator facilities;

• the investigation of the fundamental properties of matter and forces;

• the use of synchroton radiation in the fields of surface physics, material science, chem-
istry, molecular biology, medicine, and geophysics.

In its long history, a number of outstanding discoveries have been made, e.g. the observation
of excited charmonium states in 1975 [32] and the detection of gluons in 1979 [33]. Over the
past decades, basic research performed at DESY has continously increased knowledge on the
standard model of particle physics.
Future projects include the design of a Free Electron Laser (X-Fel) and important contri-
butions to the International Linear Collider (ILC). The X-Fel will operate in X-ray
band and hence enable direct observation of atoms and molecules in biological and chemical
processes in real-time, e.g. for pharmacological purposes. The ILC will take advantage of
technology originally invented for the construction of a TeV–Energy Superconducting Linear
Accelerator at Desy. High energy electron-positron collisions at the ILC will possibly help to
solve fundamental questions of modern particle physics, for instance the search for the Higgs
boson and supersymmetric particles.

2.2 HERA

Fig. 2.1 depicts the main parts of the accelerator and pre-accelerator elements. Bunches of

1Zeus is an acronym for Zητηρισις ‘Eυριστικoς ‘Υπoκειµενες Συµµετριας , meaning ’Search for the
Elucidation of Underlying Symmetries’ and was certainly chosen to match with the acronym Hera [31].
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Figure 2.1: Accelerators and experiments at Desy.

electrons (or positrons2) and protons traverse the linear accelerators Linac 2, Linac 3 re-
spectively, before being injected in the storage rings Desy II, Desy III respectively. Protons
are pre-accelerated and then fed into the Proton Electron Tandem Ring Accelerator (Petra).
Here they are ramped up to 40 GeV before they are ejected counter-clockwise into the super-
conducting proton ring of Hera. Electrons run through the same cascade of accelerators and
after protons have reached their nominal energy of 920 GeV, electrons are injected clockwise
into the electron ring of Hera and ramped up to 27.5 GeV. At these energies, electrons and
protons circulate in Hera with a velocity close to the speed of light. The acceleration process
is summarised in Tab. 2.1.
There are four experiments located in the straight sections of the ring accelerator: Hera-B
in the west, Hermes in the east, H1 in the north and Zeus in the south. Hera-B (not in
operation anymore) and Hermes are fixed target experiments designed for the research on
heavy flavour production and the spin of the proton, respectively. H1 and Zeus are colliding
beam experiments used for a variety of studies in particle physics. At the interaction points
of these detectors, the beampipes for electrons and protons merge into one and the beams are

2In the following the term electrons will be used for both electrons and positrons if not stated otherwise.
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Accelerator Electrons (positrons) Protons

Linac II/III 450 MeV 50 MeV
Pia — (accumulation)
Desy II/III 8 GeV 7.5 GeV
Petra II 12 GeV 40 GeV
Hera 27.5 GeV 920 GeV

Table 2.1: Acceleration chain for Hera.

brought to collision at zero crossing angle.
The length of 6336 m of the Hera ring allows for 220 bunch buckets for both electrons and
protons, resulting in a bunch crossing interval of 96 ns. In normal operation, a number of
so-called pilot bunches remain unfilled or unpaired, i.e. without a counter-rotating partner,
in order to estimate the background from gas in the beam pipe or cosmic events. Table 2.2
summarises the main parameters of the HERA design.

Operational parameters Design values

proton beam energy Ep 920 GeV
electron beam energy Ee 27.56 GeV
centre-of-mass energy

√
s 318 GeV

proton beam current 140 mA
electron beam current 58 mA
bunch buckets 220
paired bunches 189
bunch crossing interval 96 ns
luminosity Linst 1.4 · 1031 cm−2s−1

Table 2.2: Design parameters of Hera (run period I, 1994-2000).

2.3 The ZEUS detector

The Zeus detector is in operation since 1992 and was significantly upgraded in 2000. A full
view of Zeus is shown in Fig. 2.2.
Its asymmetric design, more apparent in the longitudinal view of Fig. 2.4, accounts for the
different beam energies which result in a Lorentz boost of the centre-of-mass system (CMS)
in forward direction relative to the laboratory system3.
The transverse view in Fig. 2.4 (top) shows the onion-like structure of the detector: A set
of tracking detectors surround the interaction point (IP) of the Zeus detector and measures
the momentum of charged particles. These detectors are almost hermetically encased by a
set of calorimeters which measure the energy of the particles. Additional detectors along the

3The Zeus coordinate system is a right-handed Cartesian system with its origin in the nominal interaction
point (IP) of the detector. The x−axis is pointing towards the centre of the Hera ring and the z−axis in
proton direction, also referred to as forward direction (see Fig. 2.3).
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Figure 2.2: 3-Dimensional view of the Zeus detector (before upgrade) — detector components are
labelled in Fig. 2.4.

beamline detect softly scattered electrons and protons as well as bremsstrahlung photons that
leave the detector at angles too small to be detected in the main Zeus detector.
Detailed information on the complete Zeus detector can be found elsewhere [34]. In the
following, only the main detector components and those relevant for this analysis will be
described in more detail.

nominal IP

X

Y

Z

θ
φ

electrons protons

Figure 2.3: Coordinate system of the Zeus detector.
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Figure 2.4: Transverse (top) and longitudinal view (bottom) of the Zeus detector.
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2.3.1 Tracking detectors

The Zeus tracking detectors mainly consist of the central tracking device (CTD) and the
forward detector (FDET). The vertex detector (VXD) was not in use anymore in the data
taking for this analysis. A microvertex detector (MVD) and the straw-tube tracker (STT)
were installed during the upgrade in 2000 and were therefore not available for this analysis.

The Central Tracking Device (CTD)

The CTD [35] is a cylindrical drift chamber which operates in the magnetic field of 1.43 T
provided by the superconducting solenoid (see Sec. 2.3.3). The CTD surrounds the beampipe
and covers a polar range of 15◦ < θ < 164◦ and an azimuthal range of 360◦. As depicted
in Fig. 2.5, it is radially subdivided into 9 circular superlayers of 32 drift cells in the centre
and up to 96 cells in the outer superlayer. Each cell has eight sense wires. In the superlayers
with odd numbers, these sense wires run parallel to the beam axis whereas in superlayers
with even numbers the sense wires have a small stereo angle with respect to the beamline to
provide better information on the z-position of a track. The first, third and fifth superlayers
are additionally instrumented with z-by-timing electronics, mainly for triggering purposes.
The resolution in z is 1.0 − 1.4 mm, whereas in r − φ it is about 230 µm. This leads to a

Figure 2.5: Transverse view of a CTD sector.
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pseudorapidity resolution of

σ(η)

η
= (0.2 η ⊕ 0.3) %

for pT > 2 GeV. The transverse momentum resolution was determined [36] as

σ(pT )

pT [GeV]
= (0.58 pT [GeV] ⊕ 0.65 ⊕ 0.14

pT [GeV]
) %

The CTD uses a gas mixture of argon, carbon dioxide and ethane.

The Forward Detector (FDET)

The Fdet comprises the forward/rear tracking detector (FRTD) and a transition radiation
detector (TRD).
The FRTD [37] consists of three planar drift chambers in the forward (FTD) and one in the
rear (RTD) direction. The FTD extends the tracking to small values of θ by its coverage of
7◦ < θ < 28◦ (RTD: 160◦ < θ < 170◦) and improves the track measurement in the forward
direction where the highest particle densities are observed due to the Lorentz boost in proton
direction. Each FTD module consists of three layers of drift cells which are rotated by ±60◦

with respect to the first layer (Fig. 2.6, left). The drift cells are perpendicular to the beampipe.
Each cell has six signal wires and a number of field forming wires (Fig. 2.6, right). The signal
wire resolution is 120 µm. The FRTD operates with a gas mixture of argon, carbon dioxide
and ethanol. The TRD consists of two modules placed in the gaps between the FTD modules.
Detailed information on the TRD, which is not used in this analysis, can be found in [38].
The TRD was replaced by the STT [39] during the upgrade in 2000.
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Figure 2.6: Layers of one FRTD chamber (left); transverse view of a cell (right).
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2.3.2 Calorimeters

The Uranium Calorimeter (CAL)

The uranium-scintillator calorimeter [40] encloses the solenoid and tracking chambers. It is
composed of three parts, the forward (FCAL), barrel (BCAL) and rear (RCAL) calorimeter
and covers polar angles from 2.6◦ − 176.2◦ (3.95 > η < −3.49) and 99.7% of the total solid
angle.
The CAL consists of 80 modules (Fig. 2.7). The modules of the FCAL and BCAL (RCAL)
are longitudinally subdivided into one electromagnetic and two (one) hadronic sections. They
consist of depleted uranium and scintillator plates laminated alternately, with a total radiation
length of 25X0 and a absorption length of 6λ in the FCAL, 4λ in the BCAL and 3λ in
the RCAL. The scintillator plates form cells of 5 × 20 cm2 (RCAL : 10 × 20 cm2) in the
electromagnetic section and cells of 20 × 20 cm2 in the hadronic sections. Light generated in
the scintillator is collected on both sides of the module by wavelength shifters and converted
into an electronic signal by photomultiplier tubes. The calibration of the photomultipliers
is monitored with the signal from the radioactivity of the 238U to a precision of < 2%. The

Figure 2.7: Schematic drawing of a CAL module.
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CAL is compensating, i.e. electrons and hadrons of equal energy yield the same pulse height
within 3% for momenta above 3 GeV/c. The energy resolution as measured in test beams is

σ

E
=

18%
√

E [GeV]
⊕ 0.2% for electrons and

σ

E
=

35%
√

E [GeV]
⊕ 0.3% for hadrons.

The calorimeter noise is dominated by the uranium radioactivity and is typically 15 MeV in
the EMC cells and 25 MeV in the HAC cells. The calorimeter allows a time measurement
with a resolution of

σ

t
=

1.5 ns
√

E [GeV]
+ 0.5 ns.

The Forward Plug Calorimeter (FPC)

The FPC [41] is a lead scintillator sandwich calorimeter which was installed in the beam
hole of the FCAL in 1997 and extends the calorimetric coverage of the Zeus detector from
η = 3.95 to 5.33. It is located at a distance of z = 226 cm from the IP and covers an
area of 19.2 × 19.2 cm2 with a hole of 4.8 cm in diameter for the beampipe. Like the CAL,
the FPC is compensating and longitudinally segmented into an electromagnetic (EMC) and
a hadronic (HAC) section which are read out separately by wavelength shifting fibres and
photomultipliers. The EMC (HAC) section consists of 60 (16) cells (see Fig 2.8) with a size
of 24 × 24 mm2 (48 × 48 mm2), and has an energy resolution of

σE

E
=

25%
√

E [GeV]
⊕ 3%

Figure 2.8: Schematic drawing of the FPC.
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for electrons and
σE

E
=

50%
√

E [GeV]
⊕ 5%

for hadrons. The radiation and absorption length of 26.5X0 and 5.08λ units respectively, were
designed to be similar to those of the FCAL in order to minimize fluctuations of the energy
measurements in the transition area.
The FPC improves the energy measurement in the forward direction where most particles
are produced due to the large energy imbalance of the incident electron and proton and the
resulting Lorentz boost. It also enables slightly scattered protons to be detected. In this
analysis, a lack of signal in the FPC is used to identify more clearly events with a large
rapidity gap in forward direction.

The Backing Calorimeter (BAC)

The proportional tube chambers of the BAC [34] are placed in the gaps of the iron yoke
(Sec. 2.3.3) and measure particle momentum. Particles which are able to traverse the yoke
are mostly muons. In this analysis, the BAC is used to reject background caused by cosmic
muons (Sec. 7.2.2).

2.3.3 Other detector components

Magnets

The solenoid is a superconducting magnet which surrounds the CTD and provides the mag-
netic field which is necessary to bend charged particles detected in the CTD and measure
their momentum from their track curvature. The material of the solenoid accounts for 0.9X0

of radiation length. The effect of the magnetic field on the beams is suppressed by a com-
pensator shield provided by a second superconducting solenoid, the compensator, at the rear
endcap of the iron yoke. The yoke has the shape of an octagonal cylinder and surrounds the
inner Zeus detector. It consists of iron plates welded together with spacer bars in between
and is magnetised with a toroidal field of 1.5 T in the forward direction.

The Luminosity Monitor (LUMI)

The luminosity L measures the rate R of events per second for a given process with the cross
section σ and is defined by the relation R = L× σ. A precise measurement of the luminosity
is crucial for the correct calculation of cross sections and therefore requires

• a process with a clear experimental signature, and

• a cross section that is theoretically well known and

• large so that statistical uncertainties are small.

The latter criterion is also necessary to allow a continuous and fast monitoring of the lumi-
nosity at Hera which is essential for beam steering and focusing.
These requirements are satisfied by the bremsstrahlung process ep → e′γp, in which an in-
coming electron radiates a high energy photon γ in the electromagnetic field of the proton
charge.
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Figure 2.9: Schematic top view on the luminosity detector.

The scattered electron has less energy than the beam electrons and is therefore bent towards
the centre of the ring by the electron beamline magnets. These electrons can be tagged at
distances of −8 m, −35 m or −44 m from the interaction point. Their measurement is used as
additional systematic check and for the estimation of background corrections.
The luminosity calculation is based on the rate of radiated photons that leave the beampipe
through a copper-beryllium window and are measured with the LUMI detector [42] at a dis-
tance of z = 92.5 m from the interaction point. After traversing a 12.7 m long vacuum pipe
and a graphite absorber to shield against synchrotron radiation, the photon is detected in a
lead-scintillator sampling calorimeter at a distance of z = 107 m. The detector has an energy
resolution of σ(E)/E = 0.23/

√

E [GeV], corrected for event pile-up, electron-gas background
and geometrical acceptance of bremsstrahlung photons. The total systematic uncertainty of
the luminosity measurement is 2.25% for the data taken in 1999/2000..

2.4 Trigger and data acquisition

The number of events from ep-interactions is small (typically � 0.1%) compared with the
number of background events, e.g. from interaction of beam protons with residual gas in the
beampipe or the wall of the beampipe itself.
At a bunch crossing interval of 96 ns, not all events can be reconstructed in detail and the data
acquisition relies on an effective reduction of background events. At Zeus this is accomplished
with a three-fold trigger system [34], that consists of the First (FLT), Second (SLT) and Third
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Level Trigger (TLT). On the first and second level, events are selected online by a system of
component (local) triggers which send data to a global trigger (GFLT, GSLT). On the third
level, events are reconstructed, selected and classified offline using computer farms.
Time-flow and event rates of the trigger system are sketched in Fig. 2.10 and summarised in
Tab. 2.3.

Trigger Input rate Output rate

GFLT 10.4 MHz 1 kHz
GSLT 1 kHz 100 Hz
TLT 100 Hz 3 Hz

Table 2.3: Time flow of the Zeus trigger system.

The First Level Trigger (FLT)

The GFLT has an input rate of 10.4 MHz, corresponding to the bunch crossing interval of
96 ns, and must reach a decision within 4.4 µs equivalent to 26 bunch crossings. Therefore all
detector components need to store information for this time span. In case of a positive GFLT
decision, all signal pipelines are stopped and the data for the corresponding bunch crossing is
read out.
The GFLT decision is mainly based on analog information from the local FLT of the CAL
and CTD, e.g. the energy deposits in different parts of the calorimeter and the existence of
tracks originating close to the IP. The timing of signals from the FCAL and RCAL as well as
the z-by-timing information (s. Sec. 2.3.1) from the CTD readout is used to reject background
from beam gas events that occur upstream of the IP and deposit large amounts of energy in
the detector. The output rate of the GFLT is less than 1 kHz.

The Fast Clear (FCLR)

The FCLR is an additional, intermediate level of the trigger system: Contrary to the other
triggers, it solely provides a veto decision which is based on the FLT information of the CAL
but as more time is available for the FCLR, additional calculations can be performed by the
local FLT of the CAL. If the result of these calculations indicates a background event, the local
FLT sends a request to the GFLT to abort the event. In case the positive GFLT decision
was mainly based on CAL information, the GFLT sends an interrupt to all components.
The FCLR thus reduces the busy-time of most components’ readout and hence the average
dead-time of the readout system.

The Second Level Trigger (SLT)

During the time span needed for a GFLT decision, data from most components are digitised
and can be used by the GSLT for more advanced selection based on basic calculations. The
local SLT of the CAL calculates the total transverse energy ET and the missing ET while the
local SLT of the CTD determines the number and quality of tracks and vertex tracks and
their corresponding charge, a closer calculation of the z-vertex and the track angles φ and θ
including error estimates.
The GSLT must reach a decision within 10 ms and reduces the rate to about 100 Hz.
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The Third Level Trigger (TLT)

In case of a positive GSLT decision, information from all components is transferred to the
Event Builder (EVB). The final selection is reached by physics filters of the TLT, based on
a first reconstruction of the event. The accepted events are recontructed in processor farms,
classified with trigger bits and stored on tape.

Figure 2.10: Data processing and trigger rates at the Zeus detector.
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Data taking

This analysis was performed using data taken with the Zeus detector in the years 1999
and 2000. The trigger selection will be discussed in Sec. 6.1. In 1999 Hera switched from
e−p to e+p operation. All three data sets – 99e−p, 99e+p and 00e+p – were handled equally.

Figure 3.1: Integrated luminosity of Zeus data for the years 1993-2000.
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Events were selected by taking advantage of the flag EvTake (on) which allows also partially
corrupted runs to be included. The luminosity of the three data sets is given in Tab. 3.1. For
a number of runs (37588-37639), the nominal z-vertex was shifted; these runs were excluded.
The integrated luminosity Ltot of all set sums up to Ltot = 77.1 pb−1 (see also Fig. 3.1).

99 e−p 99 e+p 00 e+p Total

Run range 31784-32906 33125-34486 35031-37715 31784-37715
with shifted vertex 37588-37639

Runs 462 516 1042 2020
Runs w/o shifted vertex 1009 1987

Hera delivered 17.119 pb−1 28.537 pb−1 66.411 pb−1 112.07 pb−1

Zeus gated 14.005 pb−1 23.421 pb−1 55.097 pb−1 92.52 pb−1

Zeus on-tape 12.607 pb−1 21.615 pb−1 51.790 pb−1 86.01 pb−1

Zeus after EvTake 12.079 pb−1 19.649 pb−1 46.221 pb−1 77.95 pb−1

Zeus after EvTake
w/o shifted vertex 45.406 pb−1 77.13 pb−1

Table 3.1: Run ranges and integrated luminosites of data subsets.
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Monte Carlo simulation

4.1 Purpose

Parton interactions are described theoretically by means of pQCD. Partons, however, are not
directly observable, only the final state products are, i.e. hadrons and their decay products.
More precisely, from an experimental point of view all information about initial state parton
interactions is limited to and drawn from detector responses which measure hadrons (see
Fig. 4.1). In the following, the terms Parton Level (PL), Hadron Level (HL) and Detector
Level (DL) will be used to refer to the subsequent steps of the complete process.
The kinematic range on DL is reduced by the detector’s coverage and affected by its acceptance
and resolution. Cross sections based on DL are subject to experimental limitations and are
not comparable with results achieved by other experiments. By transforming data from DL
to HL, such experimental dependencies can almost be eliminated.
On the other hand, the transition from PL to HL requires the hadronisation process to
be quantified. Since the fragmentation of partons to hadrons is due to the strong force at
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Figure 4.1: Illustration of parton level (PL), hadron level (HL) and detector level (DL).
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Figure 4.2: String (left) and cluster fragmentation (right).

large distances, where αS is large, it is beyond the scope of pQCD calculations. Additional
theoretical models (e.g. string or cluster fragmentation model, see Fig. 4.2) are needed to
describe the process of hadronisation, and therefore the hadronisation is included in the
theoretical modelling.
For the above reasons the experimental results are compared with theoretical predictions at
an intermediate level, i.e. on HL. The transformation of experimental data from DL to HL
is achieved using Monte Carlo (MC) simulations: Events of the initial process are generated
based on pQCD and final state partons from this interaction are evolved according to a
hadronisation model. Subsequently the interaction of hadrons with detector material and the
response of the detector components are simulated. This is iterated for large numbers of events
to obtain predictions based on statistical analyses. The generation procedure is sketched in
Fig. 4.3. MC simulations provide information on PL, HL and DL. In this analysis, MC
simulations are used for two purposes:

• to transform experimental data from DL to HL
(by calculating correction factors and acceptances, see Sec. 9.3);

• to transform NLO pQCD calculations from PL to HL
(by calculating hadronic corrections, see Sec. 12.2).

Two MC programs were used: Rapgap MC for both purposes mentioned above, and Pomwig
MC to provide a systematic check of the hadronic corrections obtained with Rapgap.

4.2 RAPGAP

Event generation, simulation and reconstruction

Diffractive events in PHP were generated with Rapgap v3.00 [43]. For the proton and
photon, the structure functions CTEQ 5M1 [44] and GRV-G-VO [18], respectively, were used.
At the time the MC sample was generated, only the H1 LO fit2 [24] was available for the
diffractive parton distributions. Events were generated separately for direct and resolved
PHP. Three different subsets were produced for direct PHP, corresponding to the processes
shown in Fig. 1.7 (top row):
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Event Reconstruction
ZEPHYR

Trigger Simulation
CZAR

Detector Simulation
MOZART

Model ZEUS Detector

Analysis

AMADEUS
Event Generators

Figure 4.3: Generation procedure of MC events: A MC program is interfaced to the program
Amadeus for automatic event generation at Zeus. Subsequently, the response of the Zeus detector
to the final state hadrons and the trigger system are simulated by Mozart and Czar, respectively.
Finally, events are reconstructed with Zephyr.

• qq̄-production of light quarks: u, d, s ;

• qq̄-production of heavy quarks: c ;

• QCD-Compton scattering.

Resolved PHP includes all the processes given in Tab. 4.1, corresponding to the LO contribu-
tions shown in Fig. 1.7 (middle / bottom row), where the main contribution results from the
process with gluons in the initial state. The kinematic range of the simulated processes was

processes & luminosity LRAPGAP

direct PHP (dir) resolved PHP (res)
u, d, s (lq) c-quark (hq) QCD-Compton (qcdc)

g + g → q + q̄, q + q̄ → q + q̄
γ + g → q + q̄ γ + q → g + q g + g → g + g, q + q̄ → g + g

g + q → g + q, q + q → q + q

160.66 pb−1 162.06 pb−1 321.24 pb−1 124.70 pb−1

Table 4.1: Subprocesses simulated with Rapgap and generated luminosity.
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Kinematic cuts

Q2 < 1.0 GeV2

t < 1.0 GeV2

pmin
T = 5 GeV

(except for QCD-C)

Table 4.2: Kinematic cuts applied to the event generation in Rapgap MC.

chosen according to the cuts given in Tab. 4.2. Parton showers are included according to the
Altarelli-Parisi splitting functions [14].

Fragmentation model

Hadronisation in Rapgap is based on the string fragmentation model [45, 46] as depicted
in (Fig. 4.2a). In this model, pairs of quarks are considered to be connected by a string
representing the strong force. As the quarks depart from each other, the colour field between
them grows stronger until the production of an additional qq̄-pair becomes favourable. The
colour of the new qq̄-pair can create a colourfree gap between the quarks, and free mesons
can be formed (Fig. 4.2a). More complicated scenarios assume the existence of diquark-pairs
and allow the production of baryons to be explained. The length of the string between two
quarks corresponds to the energy stored in the colour field and can be tuned to describe the
suppression of heavy-quark production.

Generated luminosity

The luminosity for the four simulated processes is given in Tab. 4.1.

4.3 POMWIG

Another MC generator was used to test if, and to what extent, hadronic corrections depend on
the hadronisation model implemented in the MC simulation. For this purpose, the Pomwig
MC program [47] was chosen which uses the cluster fragmentation model [45] (see Fig. 4.2b).
Pomwig v1.2 is a modification to Herwig v5.9 [48] for the simulation of diffractive processes
in DIS. The modification takes advantage of the formal similarity between the exchange of a
Pomeron in ep collision and the exchange of a photon in ee collisions, as depicted in Fig. 4.4:
In both cases a colourless object (γ or IP ) is radiated from an unmodified particle (e or p)
and the radiated object is considered to interact hadronically.
Hence the diffractive process can be simulated by replacing the incident proton by an electron
and exchanging the photon flux and structure function by those of the Pomeron. Naturally,
this procedure is restricted to processes in which the radiated γ interacts directly, i.e. not as a
source of partons as in resolved PHP. The overlapping region with direct PHP is constrained
by 10−5 < Q2 (< 1.0 GeV2) so that hadronisation can only be tested in a reduced range of
kinematics. The authors of Pomwig also emphasize that “Pomwig fails [. . .] in the highest
zIP bins, that is at low diffractive masses” [47].
The program code of Pomwig was modified to run with the new Herwig release v6.04 [48]
and interfaced to Amadeus.
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Figure 4.4: Simulation of the diffractive exchange in Pomwig

Event generation, simulation and reconstruction

Events were generated using Herwig Iproc 9130, i.e. boson-gluon-fusion of light (u, d, s)
and c-quarks and QCD-Compton scattering in neutral current DIS. The simulations of soft
underlying events, i.e. soft remnant fragmentation was excluded. By default, Pomwig uses
the diffractive structure function H1 LO fit 2 (NStru = 9). The IP flux was parametrised
according to Eqn. 1.8 where values obtained by the H1 collaboration [24] were used as default
parameter:

αIP = 1.20, αIP ′ = 0.26, BIP = 4.6 .

The kinematic range was selected by the cuts summarised in Tab. 4.3.

Kinematic cuts

10−5 < Q2 < 2.0 GeV2

10−6 < t < 5.0 GeV2

10−4 < xIP < 0.30
pmin

T = 2.5 GeV
−12.0 < ηjet < 12.0

Table 4.3: Kinematic cuts applied to the event generation in Pomwig MC.

Fragmentation model

Pomwig does not modify the Herwig program code for the simulation of the hadronisation
process. Herwig – and therefore Pomwig – is based on the cluster fragmentation model
[?]: In a first step, gluons within a shower are split to produce qq̄-pairs. Subsequently, quarks
become pre-confined in colourless clusters (Fig. 4.2b), which decay into hadrons.

Generated luminosity

In total 106 events were generated, corresponding to a luminosity of LPomwig = 363.50 pb−1.
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Reconstruction of kinematic variables

The energy scale uncertainty of the CAL, coupled with differences between data and MC
simulations, is the dominant effect on the systematic uncertainty in jet measurements at Zeus:
CAL energy uncertainties of ±(3 − 5)% lead to jet energy uncertainties of ∼ ±(10 − 20)%
[49]. Therefore a good reconstruction of the energy is essential. In this chapter, the energy
reconstruction and corrections applied to the CAL and jet energies are discussed. In addition,
experimental observables for the kinematic variables yJB, xIP , xγ, zIP and MX are introduced.

5.1 CAL cell energy

The energy deposits measured in the calorimeter were corrected for attenuation in inactive
detector material between the interaction point IP and the CAL as well as for differences of
data and MC in the years 1998-2000 [50] according to Tab. 5.1. The CAL is also affected by
different sources of noise which are reduced by the following means:

• sometimes only one of the two photomultipliers of a CAL cell returns
a large signal; such mini sparks are removed by an imbalance cut on
the signals of the photomultipliers;

• hot cells can be detected by calibration of the CAL with the radiation
from 238U , and a frequently updated list of hot cells is taken into account
for analyses;

• signals of isolated cells below a certain energy threshold are ignored
(EEMC < 100 MeV, EHAC < 150 MeV).

CAL section FCAL BCAL RCAL
scale 1.00 1.05 1.022
subsection FEMC FHAC BEMC BHAC REMC RHAC
HFS scale 1.024 0.941 1.003 1.044 1.0 1.0

Table 5.1: CalCorr table - correction factors applied to cell energy measurement in data to
account for differences with MC, and additional scaling factors for the hadronic final state (HFS)
for 1998-2000.
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5.2 ZUFOs

5.2.1 CAL energy measurement and CTD track reconstruction

The hadronic final state (HFS) has a charged particle and neutral particle component. The
energy of both components is measured by the CAL, whereas the momentum of charged par-
ticles is also measured by the CTD.
The CAL has finite granularity but a large angular coverage and an accurate measurement of
energy is provided by its cells. The shape of clusters of cells additionally allows some particles
to be identified by their characteristic signature, e.g. in e and µ. However, its resolution be-
comes poor for low momentum particles, which are likely to get absorbed in inactive material
in front of the CAL, e.g.the solenoid coil. In contrast, the CTD track reconstruction provides
a precise measurement of particle momentum, especially at low momentum, but is restricted
to charged particles and limited in the forward direction where particles traverse only few
superlayers before leaving the CTD via the front plate at low angles (Tab. 5.2).
The combination of tracking and calorimeter information significantly improves the recon-
struction of the HFS. Internally, the term Zeus Unidentified Flying Objects (ZUFO) [51] is
used for such combined energy-track objects while the term Energy Flow Object (EFO) is
more common in Zeus publications. The algorithm to combine energy and track information
is described in the following.

CTD CAL

Measurement charged momentum charged and neutral energy
Angular coverage 15◦ − 164◦ 2.6◦ − 176.2◦

Granularity n.a. worse in forward direction
Resolution degrading for high momentum degrading for low energy

Table 5.2: Complementarity of CAL and CTD measurements.

5.2.2 Clustering of CAL cells

As first step, adjacent cells in the EMC, HAC1 and HAC2 sections are clustered layer by
layer into cell islands, where a logarithmic energy weight is used to account for the exponential
decline of the shower energy distribution from the shower maximum [51]. In the second step of
the algorithm, the resulting 2-dimensional cell islands are combined to 3-dimensional objects,
cone islands, by starting from the outer HAC and processing inwards.

5.2.3 Matching of CTD tracks with CAL clusters

In a subsequent step, good tracks are extrapolated to the inner surface of the calorimeter and
matched to cone islands (Fig. 5.1) if the distance of closest approach is either < 20 cm or
smaller than the island radius. Here the term good tracks means that the track

• originates from primary vertex;

• traverses at least 4 superlayers of the CTD;
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Figure 5.1: Illustration of CAL Clustering and matching: (1) a cone island (2-5) cell islands partly
associated with tracks – taken from [51].

• has a pT between 0.1 < pT < 20 GeV
(pT < 25 GeV for particles traversing at least 7 superlayers).

For CAL clusters not matched with a track (e.g. for neutral particles) and for CTD tracks
not associated with a cluster (e.g. if the particle momentum is too small to reach the CAL),
information of the corresponding detector will be used. In case of good tracks not associated

islands tracks detector used
0 1 CTD
1 1 CTD
1 2 CTD
1 3 CTD
2 1 CTD
2 2 CTD
1 0 CAL
1 >0 CAL
1 1 CTD & CAL
2 1 CTD & CAL

Table 5.3: Decision table for CAL-CTD matching. For the last two cases, angular information is
obtained from the CTD tracks whereas the energy information is taken from the CAL. In case of a
1-to-1 matching, the decision which detector(s) will be used, depends on the resolution of momentum
and energy (see text).
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Figure 5.2: Schematic picture of calculation of γmax from hadronic angle γh – taken from [51].

with a CAL object, the energy will be determined on the assumption that the particle is a
pion. For a 1-to-1 matching, the momentum will be used if the track momentum resolution
is better than the island energy resolution (σ(p)/p < σ(E)/E) or if the energy deposit is
due to the associated track (E/p < 1.0 + 1.2 σ(E/p)). Additional requirements apply for
more complicated track-island matches (Tab. 5.3) and for particles with properties of muons
[49, 52].

5.2.4 Backsplash correction

Small energy deposits in the detector at large polar angles have a large contribution to the
hadronic system δh = (E − pz)h and hence a large effect on the reconstruction of yJB

1 which
is calculated from δh:

yJB =
δh

2Ee

=
(E − pz)h

2Ee

However such energy deposits are often caused by other mechanisms than the ep-interaction:

• scattering in the inner part of the detector in front of the CAL,
e.g. in the beampipe or the inner wall of the CTD;

• high energy showers in the FCAL causing production of
low energy neutral particles (photons or neutrons)
that traverse the detector in any direction;

• noisy CAL cells;

• overlay events.

These effects are summarised under the term backsplash [52, 54]. At small values of
yJB . 0.3, such deposits in the rear side of the detector can strongly bias the δh measurement.
A procedure to remove contributions from backsplash was developed in [52] and is based on
the observation that backsplash is characterised by low CAL energy and no associated track:
A polar angle γmax is calculated according to γmax = γh + γoffset (see Fig. 5.2), where γh is

1The index indicates the reconstruction of y by the Jacquet-Blondel method [53].
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the energy-weighted mean of all Zufos (hadronic angle) and γoffset is a phenomenological
parameter and was found to yield best results for γoffset = 50◦. Subsequently all clusters
with γ > γmax without a vertex track and less than 3 GeV are removed unless their energy is
> 1.5 GeV and the timing is consistent with a particle originating from the vertex. Finally γh

and γmax are recalculated. The procedure is iterated until the difference of γh between two
iterations is < 1% or the number of iterations is larger than 3.
The procedure yields good agreement of data and MC in DIS [52]. For PHP, more soft
particles from the ep interaction are expected and the application of backsplash correction
is problematic. The first version of the analysis was performed with Zeus code that did
not allow backsplash correction to be switched off completely. A new release of Zeus code
provided such an option. The influence of the backsplash correction was investigated and
found to have effects on the cross section at the order of up to 5%. Final results were hence
obtained with a new version, i.e. without backsplash correction.

5.2.5 ZUFO energy correction

Reconstructed Zufos still need to be corrected for energy loss in the detector due to inactive
material. A formerly recommended version was derived by J. Vossebeld and A. Ochs (VO-
corrections) [55–57] and compared with a new method (DM-corrections) [58, 59] which was
implemented in the Zeus code recently.

ZUFO energy correction by Vossebeld & Ochs

A formerly recommended version for Zufo energy correction was invented by J. Vossebeld
[55]. It assumes that CAL-based Zufos are affected by energy loss due to inactive material
whereas CTD-based Zufos are considered to provide an accurate measurement of a particle’s
energy. Later, the method was improved by A. Ochs [57].
Corrections were determined separately for data as well as for the Herwig and Ariadne
MC programs2 in different bins of θ. These bins reflect the detector geometry, in particular
the so-called supercracks, i.e. the intersections between FCAL, BCAL and RCAL.

Figure 5.3: VO-corrections over Ezufo in 7 different bins of θ reflecting the coverage of FCAL,
BCAL, RCAL and the intersections between them – taken from [56].

2Herwig uses cluster fragmentation whereas Ariadne uses string fragmentation (Fig. 4.2)
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The correction factors (see Fig. 5.3) were derived from a sample of neutral current events with
Q2 > 100 GeV2 and either high plepton

T or high y, and were tested with an independent PHP
MC sample, where the scattered lepton is not detected in the CAL.
In the first version of this analysis, the VO corrections were used. For low Zufo energy, Ezufo,
these correction factors are unreasonably high (∼ 1.5−2.8). In addition, the correction factors
differ for data and Ariadne MC3, in particular at low polar angles θ < 7◦ (η < 2.8). The
combination of this features turned out to have a problematic impact on one of the selection
variables, ηmax (see Sec. 5.4), which is calculated from Ezufo > 400 MeV.

Inactive material in front of the UCAL
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Figure 5.4: Inactive material in front of the uranium calorimeter (UCAL) in units of the radiation
length X0 in the (θ − φ) plane, as implemented in the simulation of the detector – taken from [59].

ZUFO energy correction with DMCO

For above reasons, another method for the correction of the Zufo energy was tested in
addition. This recently available method is based on a map of the radiation length of inactive
material (e.g. the beampipe, the tracking devices and the solenoid) between the interaction
point and the CAL (Fig. 5.4). Correction factors were derived with a Pythia MC sample
[60] of dijet events in bb̄ photoproduction and parametrised as a function of the energy and
polar angle of the particles.
For comparison with the VO corrections, the dead material (DM) correction factors have been

3The correction factors for Ariadne MC were used for Rapgap MC because both MC programs use the
same hadronisation model.
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Figure 5.5: Corrections factors for DMCO over Ezufo in the same 7 bins of θ as in Fig. 5.3, reflecting
the coverage of FCAL, BCAL, RCAL and the intersections between them – in each bin, a Gaussian
fit was performed in the range [1.0, 1.8]; peak values are given by the dots (—), the 1σ-deviation is
indicated by the band.

determined in the same binning and are shown in Fig. 5.5. Unlike the VO corrections, they
do not display problematically high correction factors.

5.3 Jets

While pQCD allows processes at parton level to be calculated, experimental measurements are
based on detector responses to hadrons (see Sec. 4.1). In order to compare experimental mea-
surements with theoretical predictions, adequate properties need to be defined homogeneously
on DL, HL and PL. Such properties are usually derived from abstract objects, so-called jets
[61]: Assuming that partons fragment in a spray of hadrons whose total energy and mean
direction reflect – within some uncertainties – the energy and direction of the original par-
ton, these hadrons (or their detector response) can be combined in phase space by different
procedures, i.e. jet algorithms.

5.3.1 Jet algorithms

Though different approaches are possible, any jet algorithm needs to fulfill two general con-
ditions, namely collinear safety and infrared safety which can be deduced from general theo-
retical and experimental considerations [62]:
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• Observables need to be collinear safe, i.e. for any n-parton configuration,
the observable is not affected by replacing any massless parton by an exactly
collinear pair of massless partons.
[This requirement avoids collinear divergence in pQCD. From the experimental
point of view, two parallel particles hitting the same CAL cell cannot be re-
solved and the jet algorithm should not depend significantly on the resolution
of collinear particles, i.e. the angular resolution of the detector.]

• Observables need to be infrared safe, i.e. for any n-parton configuration, the
observable is not affected by adding a infinitely soft parton.
[This requirement avoids soft divergence in theory and bias from the threshold
of a CAL cell or CAL noise in the experiment.]

Cone algorithm

The concept of early jet algorithms attempts to model the generation process of particles
by assuming that the decaying products are bundled within a cone around the direction of
the original parton. These cone algorithms aim to maximise the transverse energy flow ET

through a cone of radius R
R =

√

(∆η)2 + (∆φ)2.

Here ∆η and ∆φ are the differences of pseudorapidities and azimuthal angles4 with respect
to the jet direction and R is usually set to R = 1. Problems arise in case of overlapping jets.
According to the Snowmass Accord [63], two jets are merged if the overlapping energy exceeds
75 % of the total energy of the jet with the lower energy. Otherwise two jets are formed
and the common cells are assigned to the nearest jet. However, the jet properties depend
on the number of particles in the overlap region and hence differ for parton, hadron and
detector level. Agreement between hadron and parton level can be achieved by introducing a
separation radius Rsep as suggested by [64]. The value of Rsep, however, is not given by theory
and remains a phenomenological parameter which may be different for different sources of jet
production.

Cluster algorithm

Another approach discards all information on the physical origin of particles and solely consid-
ers their distribution in phase space phenomenologically. In these so-called cluster algorithms,
a distance quantity is defined and objects are clustered according to this quantity. This sort
of algorithm is used for most purposes nowadays.
In the kt cluster algorithm, which is used in this analysis, the distance is defined as the
momentum of the softer particle transverse to the axis of the harder particle [65]:

1. For every pair (i, j) of particles, a distance dij is defined according to:

dij = min(Ei
T, Ej

T)2 · R2
ij ( ≈ min(Ei, Ej)2 · θ2

ij ≈ k2
t )

as well as a distance dib for each particle i relative to the beam particles b:

dib = (Ei
T )2 · R2

Again R is usually set to R = 1 for theoretical reasons [61].

4of partons, hadrons, Zufos, CAL cells or whatever is defined as input for the jet algorithm
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2. If min(dib) < min(dij), then jet i is complete, otherwise, particles i and j are merged
and replaced by a particle k with ET , η and φ calculated from particle i, j according to

Ek
T = Ei

T + Ej
T ,

ηk =
Ei

T · ηi + Ej
T · ηj

Ek
T

,

φk =
Ei

T · φi + Ej
T · φj

Ek
T

.

3. The procedure is iterated, i.e. all dib and dij are recalculated and the merging of particles
is continued until a list of complete particles, jets, remains.

The kt-algorithm has the advantage that it naturally avoids the problem of overlapping jets.
It is also unaffected by the initial particle multiplicity and hence equally applicable to both
parton and hadron level. Furthermore it is less sensitive to perturbations from soft particles
that get re-absorbed in the process of the algorithm.

Although the concept of jets is intuitive and comprehensible, jets are the product of a
mathematical procedure and jets found by one algorithm need not correspond to jets found
by another algorithm. In the first iteration of this analysis, a cone algorithm was part of
the original trigger selection (Sec. 6.1). A subsequent cut on jet variables derived from the
kT -cluster algorithm had a problematic impact and led to the selection of a different trigger
bit for this analysis.

5.3.2 Jet variables

Although there is also a variety of internal and external jet properties, only the following
external jet variables are used in this analysis:

Ejet
T =

∑

i∈jet

Ei
T ,

ηjet =
∑

i∈jet

(Ei
T /Ejet

T ) ηi ,

φjet =
∑

i∈jet

(Ei
T /Ejet

T ) φj .

On all three levels, only the transverse energy of the objects which are input to the jet
algorithm, is considered for the reconstruction of jets. Information on the mass of these
objects, as far as available on a particular level, is not taken into account.

5.3.3 Correction of the jet energy E
jet
T

The reconstruction of the jet energy Ejet
T at Zeus was compared for jets based on cells, Zufos

and corrected Zufos in [57]. As can be seen in Fig. 5.6, the EDL
T of jets calculated from cell

energies was on average 20% below their corresponding MC-value on HL (Fig. 5.6 bottom),
while the EDL

T of jets based on Zufos was still ∼ (10 − 15)% too small (Fig. 5.6 middle).
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Figure 5.6: Residuals of the jet energy for jets reconstructed on cells (bottom), Zufos (middle) and
VO-corrected Zufos (top). The jet energy on DL (in the figure labelled as E

jet
T ) is underestimated

for cell and zufo jets by (15− 20)% when compared with the jet energy on HL (in the figure labelled
as EHAD

T ), whereas jets calculated from corrected Zufos agree within 5% – taken from [57].

Jets reconstructed from corrected Zufos (Fig. 5.6 top) yielded better agreement with HL
jets although they still underestimate the jet energy by a few percent. Therefore the jet
energy Ejet

T on DL, as reconstructed by the jet algorithm needs to be corrected, too. This was
achieved with the use of the RAPGAP MC described in Sec. 4.2 by the following procedure:

1. Jets on HL and DL were matched in (η, φ):
For each pair i, j of DL- and HL-jets with Ejet

T > 3 GeV, the distance Rij was calculated
according to

Rij =
√

(ηjet i − ηjet j)2 + (φjet i − φjet j)2.

Iteratively, those jets with the smallest Rij were matched, provided that both jets were
still unmatched and have a transverse energy of Ejet

T > 3 GeV .
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2. The residuals Res,

Res =
EDL

T − EHL matched
T

EDL
T

,

were calculated for all matched pairs of jets where the jet on DL had to pass the cuts
described in Chap. 6, with the exception of the jet cuts. The residuals of the two jets
with highest Ejet

T on DL were plotted double differentially in bins of Ejet
T and ηjet as

shown in Fig. 5.7.

3. The peak values of the residuals were estimated from a Gaussian fit to the distribution
of the residuals:
The peak value was used to be unsensitive to mismatched pairs of jets: If two jets close
in (η, φ) on HL become combined into a single jet on DL, then the residual calculated
from its closest partner on HL can yield in abnormal high values that spoil the mean
value of the distribution. Bins with too small statistics were ignored.

4. The peak values were plotted in bins of Ejet
T and ηjet as shown in Fig. 5.7. Interest-

ingly, the residuals differ less over Ejet
T than for the jets with first and second highest

Ejet
T . However, the ordering of jets on HL and PL can change (Sec. 9.1), and since no

information on corresponding jets on HL or PL is available for data, the mean residuals
of the jet with first and second highest transverse energy were used to derive correction
factors for Ejet

T . However, based on the assumption that the ordering of the jets does not
change, discriminative correction factors for first and second jet can be used to estimate
the systematic uncertainty of the jet correction factors Sec. 11.1.3.

5. The mean residual in bins of Ejet
T and ηjet was parametrised according to

Ejet corr
T = cVO(i) · Ejet

T with

cVO(i) = 0.0343 + 0.006 · (Ejet
T − 6.5 [GeV]) + 0.006 · ηjet

for jets reconstructed on VO-corrected Zufos, and

Ejet corr
T = cDM(i) · Ejet

T with

cDM(i) = {0.028, 0.036, 0.039, 0.047, 0.050} , (5.1)

and i = bEjet
T − 6 [GeV]c

for jets reconstructed on DM-corrected Zufos, for which the residuals were flat in ηjet.

The residuals for corrected Ejet
T are displayed in Fig. 5.8. Deviations between DL and HL are

reduced to < 1.5%.

5.4 Reconstruction of kinematic variables

The exact definitions of the variables yJB, xIP , MX , xγ and zIP were given in Tab. 1.1. In the
experiment these variables are reconstructed from the energy E and longitudinal momentum
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Figure 5.7: Peak values of residuals in bins of ηjet and uncorrected E
jet
T from 6GeV < E

jet
T < 7GeV

(top row) to 10GeV < E
jet
T < 11GeV (bottom row), for jet with highest E

jet
T (N), second highest

E
jet
T (H) and the combination of both jets (� ), shown for jets reconstructed on VO-corrected Zufos

(left) and DM-corrected Zufos (right) before E
jet
T correction.

pz of Zufos:

yJB =
(E − pz)zufos

2Ee
, (5.2)

xIP =
(E + pz)zufos

2Ep

, (5.3)

MX =
√

[(E − pz) · (E + pz)]zufos . (5.4)

For Eqn. 5.3 the approximation Q2 ≈ 0 was used, since in PHP the electron loses only little of
its initial momentum. The squared four-momentum transfer Q2 cannot be measured directly
because the electron is only scattered by a small angle and escapes undetected along the
beampipe. As a consequence, the formulae given in Tab. 1.1 can not be used to calculate xγ

and zIP on an experimental level. Observable estimators xobs
γ and zobs

IP can be derived from
the ratio of (E ± pz)jets of Zufos within jets over (E ± pz)zufos of all Zufos where the term
jets refers to the two leading jets evolving from the hard interaction, i.e. the production of a
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Figure 5.8: Peak values of residuals in bins of ηjet and corrected E
jet
T from 6GeV < E

jet
T < 7GeV

(top row) to 10GeV < E
jet
T < 11GeV (bottom row), for jet with highest E

jet
T (N), second highest

E
jet
T and (H) the combination of both jets (� ),, shown for jets reconstructed on VO-corrected Zufos

(left) and DM-corrected Zufos (right) after E
jet
T correction, using mean correction values (see text).

qq̄-pair or a qg-pair (Fig. 1.7):

(E ± pz)jets

(E ± pz)zufos
' Ejets · (1 ± cos θ)

(E ± pz)zufos
=

(Ejets
T / sin θ) · (1 ± cos θ)

(E ± pz)zufos
=

=
Ejets

T · tan(±θ/2)

(E ± pz)zufos

=
Ejets

T · e±ηjet

(E ± pz)zufos

(5.5)

In the last step, Eqn. 1.2 has been used. From Eqn. 5.5 it follows that

xobs
γ =

∑

k=1,2 Ejet k
T e−ηjet k

(E − pz)zufos
and (5.6)

zobs
IP =

∑

k=1,2 Ejet k
T e+ηjet k

(E + pz)zufos
(5.7)

can be used as observables for xγ and zIP on detector level.
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Another important variable is ηmax, which is defined as the pseudorapidity of the most
forward Zufo above a threshold of 400 MeV:

ηmax = max
[
ηzufo (Ezufo > 400 MeV)

]
. (5.8)

The variable ηmax is associated with the LRG (Sec. 1.8.1) and a cut on ηmax provides an
effective tool to select diffractive events (Sec. 6.5). The threshold in Eqn. 5.8 is necessary to
exclude noise from the uranium in the CAL and the dependence on soft particles that can
migrate into the LRG and are known to be simulated inadequately in MC [66].
The distribution of ηmax is shifted towards higher values for MC (Fig. 5.9). This observation
holds for the default threshold of 400 MeV as well as an increased and decreased threshold
of 300 MeV and 500 MeV, respectively. The ηmax distribution in MC was not tuned for this
analysis. However, the dependence of the cross section on the ηmax-cut value and the default
threshold of Ezufo > 400 MeV was studied as a source of systematic errors in Sec. 11.1.5.
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Figure 5.9: Distribution of ηmax of Dmco corrected Zufos above
300MeV (left), 400MeV (middle) and 500MeV (right) for data (•)
and MC (—) with all DL cuts applied with the exception of the cut
on ηmax < 2.8 – the distribution of MC is shifted to higher values.



Chapter 6

Event selection

6.1 Trigger selection

Data selected by two different triggers were investigated for this analysis: a dijet trigger for
PHP (DST 77) and an inclusive jet trigger (DST 72). Events that pass either trigger fulfil
the following requirements (see Tab. 6.1):

• a event vertex with |zvtx| < 60 cm,
where zvtx is the z-coordinate of the reconstructed vertex
relative to the nominal vertex, i.e. at the interaction point IP = (0, 0, 0);

• < 6 bad tracks;
i.e. well-reconstructed tracks not associated with the primary vertex;

• E − pz < 75 GeV or pz/E < 1
where E and pz is the energy and longitudinal momentum measured
in the CAL and pz is calculated from the reconstructed z-vertex.

Originally, data were selected by the dijet trigger DST 77. This trigger additionally requires
that

• ≥ 2 jets are found by a cone algorithm applied on CAL cells with

• a pseudorapidity in the range |ηjet| < 2.5 and

• a transversal jet energy Ejet
T > 4.0 (4.5) GeV for 99e−p (99/00e+p) data.

The latter condition bears potential systematic problems since for the offline event selection a
cut on Ejet

T reconstructed by a different jet algorithm, the kT -cluster algorithm (Sec. 5.3.1), is
used. Recent studies on the TLT efficiencies [67] showed that MC was not sufficiently tuned
to describe the data, in particular at low jet energies Ejet

T (Fig. 6.1 top).
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trigger DST 77 DST 72
description PHP dijet trigger inclusive jet trigger
synonymous HPP 14 HPP 09

declarations TLT05 14 TLT05 09
SLT input triggers HPP SLT 01/02/03

Vertex with |zvtx| < 60 cm
common cuts < 6 bad tracks

8 < E − pz < 75 GeV
E − pz > 12 GeV ‖ pz/E < 0.95

≥ 2 jets (cone alg.) pz/E < 1.00
specific cuts |ηjet| < 2.5

Ejet
T > 4.0 (4.5) GeV Econe

T > 11.0 GeV

Table 6.1: Specification of trigger bits used in this analysis.

The TLT efficiencies were compared with those of the inclusive trigger (DST 72) which
has the following specific cuts:

• pz/E < 1.0 ;

• Econe
T > 11.0 GeV , where Econe

T is the sum of the transverse energy of all CAL cells
with the exception of the FCAL’s first inner ring of cells around the beampipe.

No significant discrepancies between data and MC were found for DST 72 (Fig. 6.1 bot-
tom). Furthermore, the TLT efficiencies of this trigger were considerably higher at low E jet

T .
Due to these reasons it was decided to use trigger DST 72 for the further analysis.

6.2 Quality cuts

To reject events of poor quality, the following cuts were introduced:

• −35 < zvtx < 30 cm ;

• ≥ 3 good tracks, i.e. tracks with pT > 0.2 GeV in good azimuthal range 15◦ < θ < 165◦

for a reconstruction in the CTD with the number of degrees of freedom ≥ 10 .

The latter cut was adopted from other trigger bits, where such a quality cut is already
implemented. The effect of both cuts on the original data sample can be seen in Fig. 6.2.

6.3 Selection of PHP events

For the MC sample, PHP events were selected by the cut Q2 < 1.0 GeV2. For data, a cut
on Q2 is not possible since the scattered electron e′ escapes along the beampipe and is not
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Figure 6.1: TLT efficiencies over jet energies E
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T (right) in data (+) and MC

(—) for DST 77 (top) and DST 72 (bottom)– taken from [67].
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correlation plot of good tracks vs. zvtx .
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detected. However, most DIS events can be rejected by the requirement that no scattered
electron is found in the CAL. The detection and identification of the scattered electron was
done with the electron finder Sinistra that assigns probabilites to any detected electron to
be the scattered electron. If the probability of any found candidate was ≥ 0.9 and its yel,
calculated as

yel = 1 − Ee′

2Ee

(1 − cos θe′) ,

satisfied yel ≤ 0.7, then the event was excluded.
An additional cut on yJB (Eqn. 5.2) was applied in order to further reduce background from
DIS events and beam gas interactions: In cases where the scattered electron is not found
by Sinistra, it is included in the calculation of the hadronic energy and by conservation of
energy it follows that

yJB =
E − pz

2 Ee
=

2 Ee

2 Ee
= 1 .

Interactions of beam-protons with residual gas in the beampipe can lead to large energy
deposits in the forward region of the detector and have yJB ≈ 0. For this analysis, a cut of

0.2 < yJB < 0.85 (6.1)

was used. The number of electron candidates with yel < 0.7 (with and without the cut on
yJB ) as well as the distribution of yJB (with and without the cut on e′ candidates) is shown
in Fig. 6.3.
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Figure 6.3: PHP cuts – left: event distribution of the number of electron candidates with yel < 0.7
(thin line: after quality cuts and yJB-cut), middle: event distribution of yJB (thin line: after quality
cuts and cut on e′ candidates with yel . 0.7), right: correlation plot of e′ candidates vs. yJB after
quality cuts.

6.4 Selection of dijet events

Jets were reconstructed by the kt-cluster algorithm in the longitudinally invariant inclusive
mode run in laboratory frame. At least 2 jets were required in the range

−1.5 < ηjet < +1.5 (6.2)
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and with a transversal jet energy Ejet
T of

Ejet 1
T > 7.5 GeV for the jet with highest Ejet

T ,

Ejet 2
T > 6.5 GeV for the jet with second highest Ejet

T . (6.3)

The jet finder was set to run on Zufos at DL, on stable hadrons at HL and on final state
partons at PL, i.e. on partons after parton shower and (if implemented) gluon splitting. The

distribution of E
jet 1(2)
T and ηjet 1(2) on DL is shown in Fig. 6.4.
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Figure 6.4: Dijet cuts (top: 1st jet, bottom: 2nd jet) – left: event distribution for E
jet
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after quality cuts, PHP cuts and corresponding ηjet-cut), middle: event distribution for ηjet (thin
line: after quality cuts, PHP cuts and corresponding E

jet
T -cut), middle: correlation plot of E

jet
T vs.

ηjet after quality cuts and PHP cuts.

6.5 Selection of diffractive events

In this analysis, diffractive events were selected with the LRG method described in Sec. 1.8.1:
Due to the colourless exchange, a large rapidity gap is expected between the outgoing proton
and the dijet system or a possible remnant of the diffractive exchange. Figure 6.5 shows
an example of a diffractive event at the Zeus detector. Since the scattered proton p′ is
not detected, the requirement of a LRG is implemented by a cut on the highest observed
pseudorapidity ηmax of an event (Sec. 5.4):

ηmax
ZUFO < 2.8 . (6.4)
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Figure 6.5: Example of a diffractive event in the Zeus detector – left: transverse view, right: longitudinal view.
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In order to reduce background from proton dissociation at high η, the total energy in the
FPC was restricted to values of

Etotal
FPC < 1.0 GeV . (6.5)

The cuts on the pseudorapidity and the FPC energy were only applied on DL to account
for detector acceptance and to reduce background from other sources like non-diffractive
photoproduction and beam gas interactions. Since the cuts also reduce the kinematic range
of the diffractive signal on DL, the pure, uncontaminated MC sample was used to reconstruct
the full kinematic range. For this purpose, the above cuts were not applied to the MC sample
on HL and PL. In order to select diffractive events also on those levels, an additional cut on
xIP was introduced at all three levels of MC as well as on DL of data:

xIP < 0.025 . (6.6)

The distributions of Etotal
FPC , xIP and ηmax at DL are shown in Fig. 6.6.
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Figure 6.6: Diffractive cuts – top row: event distributions for E total
FPC (left), xDL
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bottom row: correlation plots of E total

FPC , xDL
IP and ηmax,DL.

6.6 Summary

All cuts that were applied to the data and MC sample are summarised in Tab. 6.2. For MC
events, identical cuts were applied to the corresponding variables on HL and PL in order to
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obtain comparable MC sets on all three levels, with the exceptions of the ηmax- and EFPC
total -cut

which were only applied on DL. Two cuts were implemented to reject background from cosmic
events. These cuts are introduced in Sec. 7.2.2 and are shown in Tab. 6.2 for completeness.
The cosmic cut is only applied to the data sample.

Quality Cuts PHP Selection

−35 < zvtx < 30 cm no e−candidate found,
≥ 3 good tracks 0.20 < yJB < 0.85

only MC: Q2 < 1.0 GeV2

Diffractive Selection Dijet Selection

xIP < 0.025 ≥ 2 jets (kT -algorithm)
only DL: with:

ηmax < 2.8 Ejet
T > 7.5 (6.5) GeV

Etotal
FPC < 1.0 GeV −1.5 < ηjet < 1.5

Cosmics Rejection (only data)

|tdown
CAL − tup

CAL| > 7.0 ns
or

2 back-to-back hits in BAC:

∆R2µ =
√

(∆θ2µ − π)2 + (∆φ2µ − π)2 < 0.5

Table 6.2: Overview on the offline selection cuts and the rejection cuts described in Sec. 7.2.2.
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Sources of background

7.1 Background from ep-related processes

Sources of ep-related background were investigated by S. Kagawa [67]. Therefore only the
results of the studies on ep-background will be summarised briefly.

7.1.1 Non-diffractive background

Non-diffractive dijet events in PHP were simulated with Pythia MC [60]. Since a large
rapidity gap is exponentially suppressed for non-diffractive processes, events that passed all
selection cuts were accumulated in the highest bin of ηmax, accounting for ∼ 12.5% of this
bin’s content. The total background from non-diffractive events was estimated to be of the
order of 5% and was not subtracted.

7.1.2 Proton dissociative background

Although a proton can dissociate as an aftereffect of a diffractive scattering, the large amount
of p-dissociative events is predominantly due to non-diffractive processes and has been ex-
cluded by the following means:
The cut on the energy in the FPC (Eqn. 6.5) restricts the mass range of the p-dissociative
system Y to MY . 2.3 GeV. The amount of p-dissociative events for E total

FPC < 1 GeV was
estimated with Epsoft MC [68] which simulates p-dissociative events in PHP where the ex-
changed photon fluctuates into a J/Ψ meson. From a fit of Rapgap MC and Epsoft MC to
data in the range 0 < Etotal

FPC < 10 GeV, background from p-dissociation was found to account
for 14% of all events in data and was subtracted uniformly from all cross sections.

7.2 Background related to other sources

7.2.1 Beam gas and beampipe interactions

Both the proton and electron beam can interact with rest gas in the beampipe as well as
with the beampipe itself. Additionally, pions produced due to proton beam interactions up-
stream of the interaction point decay to muons which run almost parallel to the proton beam,



7.2. Background related to other sources 67

surrounding it like a halo. Such halo muons can traverse the Zeus detector parallel to the
beamline and cause signals in the CTD and the CAL (Fig. 7.3 bottom).
The majority of these events is effectively removed on trigger level by the requirement of a
well-reconstructed vertex close to the interaction point and timing information from differ-
ent detectors. They are additionally suppressed by the cut on the number of good tracks
originating from the vertex (Sec. 6.2) and the cut on yJB > 0.2 (Sec. 6.3). The remaining
contribution from this source of background is assumed to be negligible.

7.2.2 Cosmic events

The data sample can also be contaminated by cosmic events, mostly single muons, that
traverse the detector close to the nominal vertex and can fake a dijet signal. Fake dijet events
would appear back-to-back in the detector and be accumulated in the highest bins of the
xγ-distribution (Fig. 7.2b). Such a non-uniform background would significantly bias the fit of
MC to data as described in Sec. 8.1. Therefore a rejection of cosmic events is required at an
early stage.
A wide set of parameters was checked for detection of cosmic candidates, of which two turned
out to be highly effective:

1. the mean cell timing of the upper half of the CAL vs. its lower half,
because cosmic muons traverse the detector from top to bottom;

2. back-to-back hits in the BAC (Sec. 2.3.2), since the BAC detects
mostly muons and primarily those cosmic muons survive the trigger criteria
that pass near the nominal interaction point IP.

The time difference tdown
CAL − tup

CAL between the averaged cell timing of the lower and upper half
of the CAL is plotted in Fig. 7.1. Cut values of

tdown
CAL − tup

CAL > +7.0 ns and

tdown
CAL − tup

CAL < −10.0 ns (7.1)

were found to reject clear cosmic events without removing non-cosmics. The cut on negative
time differences was introduced due to a small number of questionable events with erroneous
time reconstruction (left-sided tail in Fig. 7.1 left). This cut, however, does not sufficiently
reject cosmics that traverse the detector at almost horizontal angles and only result in a small
time difference tdown

CAL − tup
CAL.

Therefore an additional cut on back-to-back muons was implemented: For each pair of BAC
hits, angular distances ∆φ2µ, ∆θ2µ and ∆R2µ were calculated, defined by

∆φ2µ = φµ1
− φµ2

(0 < φ < 2π) ,

∆ θ2µ = θµ1
+ θµ2

(0 < θ < π) ,

∆R2µ =
√

(∆θ2µ − π)2 + (∆φ2µ − π)2 .

A small value of ∆R2µ indicates that 2 hits in the BAC are found in opposite direction in
both θ and φ. Events with min(∆R2µ) ≤ 1.0 were checked by eye, and a cut value of

min(∆R2µ) < 0.5+0.4
−0.2 (7.2)
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Figure 7.1: Variables for rejection of cosmic events – left: time difference ∆tCAL = tdown
CAL − t

up
CAL

right: angular deviation ∆R2µ from π for hits in BAC – both distributions show a distinct secondary
peak at ∆tCAL ≈ 9 ns and min(∆R2µ) ≈ π for data (•) which is not seen in MC(—) and due to
cosmic events.

was found to ensure a clear identification of cosmic events. A secondary peak at ∆R2µ ≈ π
is mainly due to halo muons in the BAC which usually do not affect the CTD-and CAL-
measurement, and were not removed.
About 0.9% of all events have more than two BAC hits (Fig. 7.2 left). For these events the
combinatoric probability to find back-to-back hits increases. However, such events mostly
result from cosmic showers or halo muons (Fig. 7.3 middle) and should be rejected, too.

In total, 189 cosmics were identified and removed by the cut on CAL timing and back-
to-back hits in the BAC. All cosmic events were displayed and checked event-by-event; only
four candidates were found to be questionable. 6990 events of the data sample pass the cosmic
cuts as non-cosmics.
This method (= method A) was also compared with another method (= method B) in which
the jet timing relative to the time of the initial ep interaction was calculated from the cell
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Figure 7.2: Number of hits in BAC for all data events (left), and xobs
γ -distribution of detected

cosmics (right).
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timing of the CAL, and a cut on the jet timing was applied according to

|tjet 1 − tjet 2| > 6 ns or

|tjet 1(2)| > 20 ns .

Method A detected 116 out of 125 cosmic events which were found by method B; only one of
the nine undetected candidates was a clear cosmic event. Method A also detected a distinct
class of cosmic events which remained undetected with method B. Furthermore, method A is
technically easier to apply. The numbers of events detected by methods A and B are sum-
marised in Tab. 7.1.
An example of a cosmic event, a cosmic shower and a halo muon are shown in Fig. 7.3. The
cuts for rejection of cosmic events are not applied to the MC sample.

back-to-back
hits in BAC
yes no

bad 107 39
CAL (66) (24)

timing good 43 6990
(26) (9)

Table 7.1: Events rejected by / passing cuts of method A (CAL timing and orientation of BAC
hits); in total, 6990 events of the data sample remain. The numbers in parantheses add up to the
number of 125 events which were identified as cosmic events with method B (jet timing).
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Figure 7.3: Example of a cosmic event only found by method A (top), of a cosmic shower (middle)
and a halo muon traversing the CAL (bottom).



Chapter 8

Tuning of the MC sample

In this chapter the assembling of the Rapgap MC sample will be described: The LO MC
sets for the different processes stated in Sec. 4.2 need to be combined into one MC sample
(Sec. 8.1) and normalised to the data (Sec. 8.2). The MC also needs to be corrected for
deficiencies in the simulation of the generated processes (Sec. 8.3).

8.1 Fitting of MC to data

The Rapgap MC sample used for this analysis consists of four subsets (Tab. 4.1): one MC
set for the contribution of resolved PHP (in the following referred to as resolved MC) (Fig. 8.1
left) and three sets for contributions from direct PHP, i.e. light quark production (lq), charm
quark production (hq), and QCD-Compton scattering (qcdc). The processes for direct PHP
were combined into one set of direct MC (Fig. 8.1 middle, right). The relative contributions
from direct and resolved MC were determined by a least-squares fit to the data to the xobs

γ

distribution which naturally separates direct enriched (xγ ≥ 0.75) from resolved enriched
(xγ < 0.75) regions of PHP. The fit was performed in the range [0.25, 1.0] and allowed two
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Figure 8.1: MC sets for resolved PHP (left), and direct PHP: contribution from different processes
in direct PHP are shown accumulative (middle) and separately (right) for liqht quark production
(light grey), charm quark production (medium grey) and QCD-Compton scattering (dark grey).
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Figure 8.2: Distribution of xobs
γ — left: before fit for data (•) and separately for MC samples of

direct and resolved PHP (black line: MC dir, grey line: MC res); right: after fit for data, resolved
MC and the sum of resolved and direct MC.

fit parameters, fdir and fres, for the contribution from direct and resolved PHP:

fdir ·
(

NMClq

LMClq
+

NMChq

LMChq
+

NMCqcdc

LMCqcdc

)

+ fres ·
NMCres

LMCres
=

Ndata

Ldata
. (8.1)

Here N gives the number of events passing all cuts on DL. The fit (Fig. 8.2) yielded the
following results:

fdir = 0.590 ± 0.013 ,

fres = 0.718 ± 0.021 , (8.2)

i.e. a ratio of 45, 1% : 54.9% for the contributions from direct and resolved MC.

8.2 Normalisation of MC to data

Since only LO is taken into account for the generation of MC events, the need of a scaling (or
normalisation) factor is expected. The most basic concept assumes a constant normalisation
factor for the full range of xobs

γ .
The above fit of MC to data includes such an overall MC normalisation factor, cnorm, which
can be introduced in Eqn. 8.1 according to

cnorm ·
[

f ′
dir ·

(
NMC lq

LMClq
+

NMChq

LMChq
+

NMC qcdc

LMCqcdc

)

+ f ′
res ·

NMC res

LMCres

]

=
Ndata

Ldata
, (8.3)

where f ′
dir and f ′

res conserve the relative contributions of direct and resolved PHP as well as
the lumi-weighted number of events :

[
f ′

dir

f ′
res

=
fdir

fres
∧ f ′

dir + f ′
res

2
= 1

]

=⇒ cnorm =
fdir

f ′
dir

=
fres

f ′
res

=
fdir + fres

2
.
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With the results obtained in Eqn. 8.2, this gives

cnorm = 0.654 ,

f ′
dir = 0.903 ,

f ′
res = 1.097 . (8.4)

i.e. a general MC normalisation factor of 0.673 with the same ratio as given in Sec. 8.1.

8.3 Reweighting of zIP

In the left column of Fig. 8.3, the variable zobs
IP is shown for direct enriched and resolved

enriched PHP in the final binning determined in Sec. 9.1. Since the distribution of zobs
IP in

data is not simulated well by MC, a reweighting of the MC sample in bins of zobs
IP was advised

(see also Sec. 8.4). The reweighting to data was performed separately for the regions enriched
with direct PHP and resolved PHP. As a result of the reweighting, data and MC agree almost
perfectly in all subsequent plots of zobs

IP .
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Figure 8.3: Reweighting of MC to data in bins of zobs
IP for direct enriched (top row) and resolved

enriched PHP (bottom row). The zobs
IP -distributions for data (•) and MC (—) are shown in the left

column, the reweighting factors for MC in the right column.



74 Chapter 8. Tuning of the MC sample

, dataobs
γx

0.0 0.2 0.4 0.6 0.8 1.0

ev
en

ts

0

200

400

600

, dataobs
IPz

0.0 0.2 0.4 0.6 0.8 1.0

ev
en

ts

0

100

200

300

400

500

, MCobs
γx

0.0 0.2 0.4 0.6 0.8 1.0

ev
en

ts

0

200

400

600

, MCobs
IPz

0.0 0.2 0.4 0.6 0.8 1.0

ev
en

ts

0

100

200

300

400

500

Figure 8.4: Distribution of xobs
γ (left column) and zobs

IP (right column) for data (top row) and MC

(bottom row) on DL – the distributions for MC reveal a secondary peak at high xobs
γ and zobs

IP .

8.4 Discussion of fitting and reweighting

A fine binning of xobs
γ and zobs

IP before reweighting reveals that these variables are not described
adequately by the Rapgap MC (see Fig. 8.4): Both variables show secondary peaks at
xobs

γ ' 1 and zobs
IP ' 1 which are not present in data. These peaks are mainly due to the MC

sample for charm quark production1 and are strongly correlated with each other (Fig. 8.6, top
left) and weakly correlated with MX (Fig. 8.6, top middle, right). On HL the peaks appear
as an excess of D∗ events. The peaks can be understood qualitatively when assuming that
for the production of a (massive) cc̄-pair in PHP, almost all available energy is required and
hence, xobs

γ ∼ 1 and zobs
IP ∼ 1 is favoured.

The peaks could be an artefact of the parameters which were used for the generation of the
MC: To calculate the matrix elements in pQCD, a hard scale is required. For all MC sets but

1The peaks are also visible in the MC sample for resolved PHP which is a combination of the processes
generated separately for direct PHP, including charm quark production.
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Figure 8.5: Distribution of xobs
γ (left column) and zobs

IP (middle column) and the dominant MC
process (right column) for production of light quark, charm quark, QCD-Compton scattering and
resolved PHP (from top to bottom). The blob in the lower diagram indicates integration over all
simulated processes.
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Figure 8.6: Details of the secondary xobs
γ - and zobs

IP -peak in MC sample of charm quark production

— top row: Correlation plot for zobs
IP vs. xobs

γ (left), MX vs. xobs
γ with a cut on zobs

IP > 0.96 (middle),

and MX vs. zobs
IP with a cut on xobs

γ > 0.98 (right); bottom row: distributions of xobs
γ , zobs

IP and MX

without (thick line) and with (thin line) an additional cut on xobs
γ < 0.98 ∨ zobs

IP < 0.96 .

the one for charm quark production, the hard scale was defined by a minimal p̂T
2 > 5 GeV2

of the partons of the initial process (Fig. 1.7). For the MC set for charm quark production,
however, the squared quark mass m2

c was taken.
The secondary peak in xobs

γ strongly bias the fit of MC to data: By excluding events with

xobs
γ > 0.98 ∧ zobs

IP > 0.96

from the MC sample of charm quark production (percentage ≈ 12.6%, for comparison per-
centage in data: 0.4%), the fit in xobs

γ yields much better agreement of data and MC (Fig. 8.7),
and results in equal contributions from direct and resolved PHP:

cnorm = 0.679 ,

f ′
dir = 0.989 ,

f ′
res = 1.011 . (8.5)

The effect of the peak in zobs
IP on the reweighting factors was found to be less eminent. Since

the peaks are present on both DL and HL, the effect on the acceptances is also negligible.
The treatment of the secondary peak in the MC sample of charm quark production is currently
under discussion in the diffractive physics group at Zeus.
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Figure 8.7: Fitting of MC (—) to data (•) in xobs
γ with an additional cut of xobs

γ < 0.98 ∨ zobs
IP <

0.96 on the MC sample for charm quark production.



Chapter 9

Control plots

For the reconstruction of hadronic cross sections, information at DL needs to be transformed
to HL. In this analysis this transformation is performed with the bin-by-bin method. The
application of this method requires good agreement of data and MC on DL (Sec. 9.2) with
bin widths given by the resolution of the variables (Sec. 9.1) and their statistical error. Ac-
ceptances, which are also needed for the calculation of the cross sections on HL, are presented
in Sec. 9.3 along with efficiencies and purities for the chosen set of variables.

9.1 Resolution

The resolution R of a variable v is given by

R = vDL − vHL

and is an indicator of the reconstruction quality of this variable. Resolutions for the chosen set
of variables yJB, xobs

γ , xIP , zobs
IP , MX , Ejet 1

T , ηjet 1, Ejet 2
T and ηjet 2 are shown in Figs 9.1 and 9.2 as

2-dimensional contour plots (left column) and as 1-dimensional distributions (middle column).
Additionally, event rates for MC on DL and HL in the chosen binning are shown in the right
column.
The resolution of ηjet displays a broadening for values between −0.8 < ηjet 1(2) < +0.8.
This is due to jet switching, i.e. jets mismatched on DL and HL in cases where the secondary
jet on one level is the highest energetic jet on the other level. For jets matched on DL and
HL, no such broadening is observed (Fig. 9.3). Information on HL is not available for data,
however, and therefore jet matching is not applicable for the reconstruction of the hadron
level.
The resolution of Ejet

T is rather low, even for matched pairs of jets (Fig. 9.3). This is strongly
affected by the angular resolution of the detector, given by the cell size of the CAL: For the
energy reconstruction of Zufos, cells are combined to clusters (Sec. 5.2.2), where a distance
measurement, based on the cell center, is applied. The energy of particles that hit the edge
of a neighbouring cell can bias the calculation of (η, φ) or be discarded from a cluster and
– subsequently – a jet, leading to an underestimation of the jet energy on DL. On the other
hand, two particles that are not combined into one jet on HL, can hit the same CAL cell and
be combined into one jet on DL, leading to an overestimation of the jet energy on DL.
From the resolutions in Figs. 9.1 and 9.2 a binning is deduced and proposed in Tab. 9.1.
Although this binning seems more adequate than the binning used in a parallel analysis [67]
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Figure 9.1: Resolution of HL vs. DL (left column), integrated over DL (middle column) and event
rates of MC (right column) on DL (solid line) and HL (dashed line) for the variables yJB, xobs

γ , xIP ,

zobs
IP , MX .
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Figure 9.2: Resolution of HL vs. DL (left column), integrated over DL (middle column) and event
rates of MC (right column) on DL (solid line) and HL (dashed line) for the variables E

jet 1
T , ηjet 1,

E
jet 2
T and ηjet 2.

and consequently, for the NLO predictions [69], the NLO binning was used for comparability of
results. With the exception of Ejet

T , where the bin width was set to 2 GeV to obtain moderate
statistics in at least two bins, the bin width of most variables is only of the order of 1σ of
the resolution and a possible source of migration effects. In particular, the two highest bins
of xobs

γ needed to be combined into one bin with a width of 0.25 for this reason. Migration in
xobs

γ seemed less pronounced for the slightly wider binning proposed in Tab. 9.1.
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Figure 9.3: Resolution of E
jet
T (left) and ηjet (right) for matched jets with highest (top) and second

highest (bottom) E
jet
T on DL. As mentioned in Sec. 5.3.3, the E

jet
T of the second highest energetic

jet is shifted to lower values on DL than the highest energetic jet.

9.2 Event rates

The event rates for data are compared to MC in Fig. 9.4, where the MC was normalised and
fitted to data in xobs

γ and reweighted in bins of zobs
IP as described in the previous chapter. In

Proposed binning NLO binning
bins × bin width bins × bin width

(range) (range)
yJB 5 × 0.13

(0.20 to 0.85)
xobs

γ 5 × 0.15 4 × 0.125, 1 × 0.25
(0.25 to 1.0) (0.25 to 1.0)

xIP 5 × 0.005
(0.0 to 0.025)

zobs
IP 4 × 0.2

(0.2 to 1.0)
MX 4 × 8 GeV 6 × 5 GeV

(14 to 46 GeV) (15 to 45 GeV)

Ejet
T 3 × 3 GeV 4 × 2 GeV

(7.5 to 16.5 GeV) (7.5 to 15.5 GeV)
ηjet 6 × 0.5

(−1.5 to + 1.5)

Table 9.1: Binning as indicated by resolution and statistics (left) vs. applied binning (right).
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general, the agreement is good.
The ηjet 1(2)-distribution of MC is shifted to higher (lower) values of η compared with data.
This becomes more pronounced in the distribution of (ηjet 1 − ηjet 2) (Fig. 9.4 bottom-right)
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Figure 9.4: Event rates of data and MC on DL for variables yJB, xobs
γ , xIP , zobs

IP , MX , E
jet 1
T , ηjet 1,

E
jet 2
T and ηjet 2.
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which shows a strong asymmetry for MC jets: On average, more energy seems to be assigned
to the leading jet in MC.
An excess of data is also seen for 0.020 < xIP < 0.025 and considered to be mainly due to
non-diffractive background (Sec. 7.1.1, [67]).

9.3 Acceptance, efficiency and purity

The total cross section σHL
tot for data on HL is evaluated from

σHL,tot =
N tot

data

Atot · Ldata
,

where Ldata is the total integrated luminosity of data and the acceptance A is defined as the
ratio of events N passing the selection cuts on DL and HL in bin i:

Atot =
NDL

MC

NHL
MC

,

For fairly good agreement of data and MC on DL, the differential cross section for a given
variable can be reconstructed with the bin-by-bin method:

Abin i =
NDL bin i

MC

NHL bin i
MC

, (9.1)

σHL bin i =
N bin i

data

Abin i · Ldata
. (9.2)

Additional information is given by the efficiency ε and purity p, which give the ratio of events
reconstructed in the same bin i on both DL and HL to the number of events on HL and DL,
respectively:

εbin i =
NDL bin i

MC ∩ NHL bin i
MC

NHL bin i
MC

, (9.3)

pbin i =
NDL bin i

MC ∩ NHL bin i
MC

NDL bin i
MC

. (9.4)

Acceptance, efficiency and purity are related by

ε = A · p

and are shown for the variables yJB, xobs
γ , xIP , zobs

IP , MX , Ejet 1
T , ηjet 1, Ejet 2

T and ηjet 2 in Figs. 9.5
and 9.6.
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Figure 9.5: Acceptance (left column), efficiency (middle column) and purity (right column) for the
variables yJB, xobs

γ , xIP , zobs
IP and MX .
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Figure 9.6: Acceptance left columns), efficiency (middle column) and purity (right column) for the
variables E

jet 1
T , ηjet 1, E

jet 2
T and ηjet 2.

9.4 Effect of VO-corrections on acceptances

The VO-corrections, introduced in Sec. 5.2.5, contained unreasonably high correction factors
in the forward bin θ < 7◦ (η < 2.8). As a consequence, almost any Zufo that passed the
CAL noise cut of 100 MeV, was corrected to values above the ηmax-threshold of 400 MeV and
taken into account for the calculation of ηmax. Since the VO-correction factors were also
significantly higher for MC than for data (Fig. 5.3), the calculated ηmax was higher for MC
and fewer MC events passed the cut of ηmax < 2.8. Although the HL is not directly affected
by this problem, the fit of MC to data in xobs

γ led to a lower normalisation factor and, hence,
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to lower event rates of MC on HL after normalisation. Consequently the acceptances were
too high and the cross section, based on VO-correction, underestimated by ∼ 10%. The
VO-corrections were discarded from the further analysis for above reasons.



Chapter 10

Cross sections

10.1 Single differential cross sections

Single differential cross sections are presented in Fig. 10.1 as a function of yJB, xobs
γ , xIP , zobs

IP ,

MX , Ejet 1
T , ηjet 1, Ejet 2

T and ηjet 2. The systematic and total uncertainty as determined in
Sec. 11.1 is indicated by the error bars in each bin1.
For comparison, the cross sections for LO MC are also given in each plot. Since the MC
sample was normalised to data, this comparison only provides a test of the shape of the
distributions. In general, good agreement is observed between the data and the LO MC.
The distribution of xobs

γ seems slightly steeper in data and is related to the inadequacy of
MC at high xobs

γ (Sec. 8.4). The excess of data at high xIP is considered to be mainly due to
non-diffractive background as discussed in Sec. 7.1.1. The agreement of zobs

IP is a consequence
of the zobs

IP -reweighting of MC and does not bear any physical meaning.
Tables of the cross sections and the statistical and systematic errors can be found in App. D.

10.2 Double differential cross sections

As discussed in Sec. 1.7.2, factorisation is expected to hold for direct PHP but to fail for
resolved PHP by theoretical considerations. For this reason, the cross sections were also
investigated double differentially for direct enriched (xobs

γ ≥ 0.75) and resolved enriched PHP
(xobs

γ < 0.75).
These cross sections are shown in Figs. 10.2 and 10.3, respectively, for the variables yJB, xobs

γ ,

xIP , zobs
IP , MX , Ejet 1

T , ηjet 1, Ejet 2
T and ηjet 2. The agreement with Rapgap LO MC is fairly

good and the comparison reveals the same characteristics as described for single differential
cross sections. Tables of the cross sections and the statistical and systematic errors can be
found in Apps. E and F.

1Since the statistical uncertainty is small for most bins and covered by the dot size, the standard depiction
of error bars has been reversed for a better visualisation of the statistical uncertainty: The inner error bars
indicate the systematic uncertainty, whereas the outer errors bars indicate the systematic and statistical
uncertainty added in quadrature. The statistical uncertainties is approximately twice the difference between
inner and outer error bars:

∆σtotal − ∆σsyst =
√

∆σ2
stat + ∆σ2

syst − ∆σsyst ≈ ∆σstat

2
.
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Figure 10.1: Single differential cross sections for data (•) and Rapgap MC (—) for variables yJB,
xobs

γ , xIP , zobs
IP , MX , E

jet 1
T , ηjet 1, E

jet 2
T and ηjet 2 – the inner error bars indicate the systematic un-

certainty as determined in Sec. 11.1 while the outer error bars indicate the statistical and systematic
uncertainties added in quadrature.
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Figure 10.2: Double differential cross sections for data (•) and Rapgap MC (—) in the range
xobs

γ ≥ 0.75 enriched with direct PHP for variables yJB , xobs
γ , xIP , zobs

IP , MX , E
jet 1
T , ηjet 1, E

jet 2
T and

ηjet 2 – the inner error bars indicate the systematic uncertainty as determined in Sec. 11.1 while the
outer error bars indicate the statistical and systematic uncertainties added in quadrature.
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Figure 10.3: Double differential cross sections for data (•) and Rapgap MC (—) in the range
xobs

γ < 0.75 enriched with resolved PHP for variables yJB , xobs
γ , xIP , zobs

IP , MX , E
jet 1
T , ηjet 1, E

jet 2
T

and ηjet 2 – the inner error bars indicate the systematic uncertainty as determined in Sec. 11.1 while
the outer error bars indicate the statistical and systematic uncertainties added in quadrature.



Chapter 11

Systematic studies

In this chapter the dependence and influence of systematic biases on the analysis will be
investigated. Possible sources of systematic errors are identified in Sec. 11.1. The results of
the systematic studies are shown for the full xobs

γ range in App. A and for the range enriched
with direct and resolved PHP in Apps. B and C, respectively. Conclusions will be drawn in
Sec. 11.2.

11.1 Systematic tests

Systematic dependencies of the experiment and the analysis were investigated in order to
determine the total uncertainty of the results. Often the cut values that are used for the
selection of the data sample, are varied for this purpose by 1σ of the variable’s resolution.
However, a simple variation of the cut values was disfavoured, because for some variables a
dependency on the cut value is expected: For example, the jet energy Ejet

T in PHP provides
the hard scale (Eqn. 1.9), comparable to Q2 in DIS. Moreover, some cut variables might not
be independent and the systematic error obtained from one can indirectly affect others and
not be combined with the systematic errors derived from a cut variation of those variables.
For this reason, the primary variables which were used for the calculation of the kinematic
variables, were modified to study their influence on the results. For each of these systematic
modifications, the cross section σsys was calculated as described in the previous chapters, and
its deviation from the central cross section σ0 was quantified according to

∆σ

σ
=

σsys − σ0

σ0

The deviations ∆σ/σ are shown for the full xobs
γ range in App. A and for the range enriched

with direct and resolved PHP in Apps. B and C, respectively.
The following variables and parameters have been identified as independent and primary to
the calculation of the kinematic variables presented in the analysis:

1. the reconstruction of the z vertex in data;

2. the energy uncertainty of Zufos;

3. the correction factors for the jet energy Ejet
T on DL;
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4. the cut on ηmax which defines the angle of the most forward Zufos above an energy
threshold;

5. the energy threshold in the calculation of ηmax ;

6. the cut on yJB .

The systematic tests for these variables are motivated in Sec. 11.1.1 to Sec. 11.1.6 and sum-
marised in Tab. 11.1.

Systematic check Variation Applied to

Shift of z vertex ±5 mm data

Zufo energy CTD: ±0.3%
Scale uncertainty F/BCAL ±1%, RCAL ±2% data

Discriminative correction
factors for jet 1, 2 (see Eqn.11.1) data, MC

Variation of ηmax cut 2.8 ± 0.2 data, MC

Variation of ηmax threshold (400 ± 100) MeV data, MC

Variation of upper yJB limit 0.85 → 0.78 data, MC

Table 11.1: Systematic checks and their variation values.

11.1.1 z-Vertex

In the production of dijets in diffractive PHP, the bulk of most events is concentrated in the
central region of the detector between −1.0 . η . +1.0. Therefore the calculation of the
longitudinal momentum of Zufos, pz,zufos, and hence the calculation of yJB, xIP and MX

(Sec. 5.4) depend on the precise reconstruction of the z vertex.
While the zvtx-distribution in MC peaks at the nominal interaction point IP, i.e. at zvtx ≈
0.0 mm, a small shift of the peak to zvtx ≈ −3.9 mm has been observed for data. The effect of
this deviation, and the uncertainty of the reconstruction of the z vertex, have been investigated
by a shift of ±5 mm in data.
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11.1.2 ZUFO energy scale

The variables yJB, xIP and MX are calculated from the total energy and longitudinal momen-
tum of Zufos (Sec. 5.4). The precision of their reconstruction has been investigated by Zeus
previously [70]. The energy scale uncertainty of Zufos based on CAL measurements was
estimated to be 1% for the FCAL and BCAL, and 2% for the RCAL. For Zufos based on
CTD tracks, the uncertainty was determined to be 0.3%. The Zufo energy and momentum
have been modified according to these values in order to estimate the effect of the energy
scale uncertainty on the cross sections.

11.1.3 E
jet
T correction

In Sec. 5.3.3 correction factors for the transverse jet energy, Ejet
T , have been determined. It

has been observed that in MC the jet with the second highest Ejet
T on DL is usually under-

estimated compared to HL by a larger amount than the jet with the highest Ejet
T (Fig. 5.7

and 5.8). Correction factors for Ejet
T , which discriminate between first and second jet, are

problematic because the percentage of jet switching from DL to HL (Sec. 5.3.3) in data can-
not be determined. As a systematic check, however, discriminative correction factors can be
applied to obtain an upper and lower limit, based on the assumption that jet switching does
not occur in data.
Jets with highest and second highest Ejet

T , as reconstructed from DM-corrected zufos (Sec. 5.2.5),
were corrected in an analogous way to the procedure described in Eqn. 5.1:

Ejet corr
T = cjet j

DM (i) · Ejet
T with (11.1)

cjet1
DM(i) = {0.048, 0.068, 0.083, 0.091, 0.125} ,

cjet2
DM(i) = {0.0, −0.001, −0.013, −0.015, −0.024} ,

and i = bEjet
T − 6 [GeV]c .

11.1.4 Cut on ηmax

The cut of ηmax < 2.8 selects events with a large rapidity gap. As visible in Fig. 6.6, it serves
as the main selection criteria of diffractive events in this analysis, and a variation of the cut
value by 2.8 ± 0.2 was chosen as a systematic check.

11.1.5 Energy threshold for the ηmax calculation

The value of ηmax was calculated from all Zufos above an energy threshold of 400 MeV
(Sec. 5.4). Although this value is commonly used at Zeus, it is a rather experimental param-
eter which possibly depends on the underlying physical process. For this reason, the threshold
was modified to (400 ± 100) MeV.

11.1.6 Cut on yJB

The cut of yJB < 0.85 was implemented in order to reject DIS events (Sec. 6.3). This cut,
adopted to be consistent with a parallel analysis and the NLO predictions, is uncommonly
high for Zeus and extends into the tail of the DIS peak at yJB . 1 (Fig. 6.3). Since this
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could cause a bias from DIS events in the data sample, a more conservative cut of yJB < 0.78
was introduced as a systematic check.

11.2 Conclusion on systematic studies

The systematic uncertainties based on above modifications are small, typically at the order
of less than 2%, with the exception of the systematic errors arising from the cut on ηmax and
yJB.
The largest observed systematic error of ∼ (6−8)% is due to the cut on ηmax and points to the
unsatisfactory simulation of ηmax in MC (Sec. 5.4, Fig. 5.9). Interestingly, the modification of
the energy threshold in the calculation of ηmax has a negligible effect and hence indicates that
the systematic uncertainty could be an effect of the underlying physics and its simulation in
the MC program. Further studies on soft particle production and its tuning in MC simulations
could reduce the uncertainty due to ηmax cuts in Zeus.
The modification of the yJB cut leads to high systematic uncertainties in a few bins. The
non-fluctuating shape of the deviations indicate a trend and hence favour a reduction of the
cut value. It seems advisable to consider a reduced yJB cut in case of a re-calculation of the
NLO predictions.
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Cross section comparison with NLO

In this chapter, cross sections for data are compared to NLO calculations. The NLO predic-
tions are based on a model of M. Klasen and G. Kramer [17] (Sec. 1.7.2) and were calculated
with their program for the kinematic range of this analysis by L. Adamczyk [69]. The cal-
culations were performed on PL for the three different dPDFs described in Sec. 1.8. For
comparison of the NLO cross sections with those of data (Sec. 12.3), they need to be trans-
formed to HL (Sec. 12.2). The results are summarised in Sec. 12.5.
The program of M. Klasen and G. Kramer provides calculations for the variables yJB, xobs

γ ,

xIP , zobs
IP , MX , Ejet 1

T and ηjet 1.

12.1 NLO cross sections on PL

The NLO cross sections were calculated separately for processes of direct and resolved PHP.
In Fig. 12.1 the sum of these cross sections is shown as filled histograms for the three dPDFs
described in Sec. 1.8, i.e. the H1 2002 fit, the Zeus Lps and Zeus Glp fit. The MC cross
sections obtained with the H1 LO fit2 (Sec. 1.8.1) are included as a dashed line. For com-
parison with NLO, the MC samples for direct and resolved PHP were not fitted (Sec. 8.1),
normalised (Sec. 8.2) or reweighted to data (Sec. 8.3).
The three different NLO predictions are similar in shape for all but the zobs

IP distribution and
differ significantly in normalisation: The NLO cross sections derived from the Zeus Lps fit
account for 78 % of those from the H1 2002 fit whereas the Zeus Glp fit accounts for only
27 %. The different normalisation of the H1 2002 fit and Zeus Lps fit could be affected by
the fact that the H1 2002 fit was extracted on data which contain contributions from proton
dissociation up to a mass of MY . 1.6 GeV whereas the LPS method naturally excludes such
contributions. For a recent fit of the H1 collaboration (“H1 2006 fit” [29]), which includes
the H1 2002 fit, the contribution of proton background was estimated to be ≈ (23 ± 16)%.
The dPDFs of the MX fit are expected to contain ≈ (30 ± 3)% [30] background from proton
dissociation. These estimated contributions were not subtracted from the NLO cross sections
in the figures.
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Figure 12.1: NLO cross sections on PL based on H1 2002 fit (light grey), the Zeus Lps-fit (medium
grey) and the GLP-fit (dark grey), and unnormalised, unfitted and unreweighted Rapgap MC based
on the H1 LO-fit 2 (dashed line).

12.2 Hadronic corrections

NLO predictions are calculated on PL. For comparability with the measured cross sections
of data in Secs. 10.1 and 10.2, the NLO calculations need to be transformed from PL to HL.
This is achieved with the bin-by-bin method by calculating hadronic corrections chad from the
ratio of MC events, NMC, on HL to PL in bin i:

chad =
NHL bin i

MC

NPL bin i
MC

. (12.1)

Since no NLO MC was available for diffractive PHP, it was recommended by the diffrac-
tive physics group at Zeus to use the LO Rapgap MC for determination of the hadronic
corrections.
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Figure 12.2: Hadronic corrections including error bands for the H1 2002 fit (light grey) and the
Zeus Lps fit (dark grey) calculated with the reweighted Rapgap MC (H1 LO-fit 2) for the variables
yJB, xobs

γ , xIP , zobs
IP , MX , E

jet 1
T and ηjet 1 — hadronic corrections for the Zeus GLP fit are similar

to those of the Zeus LPS fit and were omitted for clearer visibility of the other two sets of hadronic
corrections.

Hadronic corrections with RAPGAP

In order to account for the observed differences between LO MC and NLO predictions in the
distribution of zobs

IP on PL (Fig. 12.1), the unnormalised and unfitted1 Rapgap MC sample
was reweighted to the NLO predictions in bins of zPL

IP in accordance with the method described
in Sec. 8.3, i.e. separately for xobs

γ ≥ 0.75 and xobs
γ < 0.75. For compatibility of results, this

reweighting procedure was performed independently for the NLO predictions using the dPDFs
from the H1 2002 fit and the Lps fit, before the hadronic corrections were calculated.
Figure 12.2 shows the hadronic corrections which were obtained after the zPL

IP reweighting

1The fitting parameters for direct and resolved PHP were omitted in MC because no fitting was applied
to the direct and resolved contributions of the NLO calculations. The constant normalisation factor cancels
out in the calculation of the hadronic corrections.
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Figure 12.3: Schematic illustration of the effect of the ηjet-shift on xobs
γ : The distribution of ηjet

indicates a shift to larger ηjet from PL to HL (left) which causes a rise in the hadronic corrections
over ηjet (middle); the more negative η

jet
PL in the exponent of Eqn. 12.2 results in a higher xobs

γ on
PL (right plot).

to the NLO predictions based on the H1 2002 fit and the Zeus Lps fit, respectively. The
hadronic corrections differ from unity by . 20% in the range of high statistics for all variables
with the exception of zobs

IP . A systematic increase is observed for ηjet1 which can be understood
qualitatively as a result of the hadronisation process: On PL, the partons are well separated in
(η, φ) and tend to be assigned to different jets. During hadronisation, formerly asymptotically
free partons of the IP -remnant and the dijet system become connected by a colour field and,
consequently, bundled in phase space. Additionally, secondary particles are produced in the
angular range between the initial partons of the dijet system and the IP -remnant, and allow
the jet algorithm to maximise the jet energy by combining hadrons of formerly well-separated
partons of the IP -remnant into one of the jets.
The shift to larger ηjet1 from PL to HL (Fig. 12.3, left) significantly affects the calculation of
xobs

γ and zobs
IP on PL which exponentially depend on ηjet1:

xobs
γ =

∑

k=1,2 Ejet k
T e−ηjet k

(E − pz)partons
, (12.2)

zobs
IP =

∑

k=1,2 Ejet k
T e+ηjet k

(E + pz)partons
. (12.3)

The more negative ηjet
HL in the exponent of Eqn. 12.2 results in a higher xobs

γ (Fig. 12.3,
right) and smaller zobs

IP on PL. Indeed the distribution of zobs
IP displays the largest observed

discrepancy (Fig. 12.2) in the highest bin of zobs
IP > 0.8. The large hadronic corrections in the

lowest bin of xIP and MX could also be affected by edge effects in the generation of MC events
in the range of low statistics, indicated by the error bands in the Fig. 12.2.

Hadronic corrections with POMWIG

The large hadronic corrections observed in a few bins motivated investigation of the influence
of the fragmentation model on the hadronic corrections. The hadronisation process in Rap-
gap is simulated by the string fragmentation model (Sec. 4.2). An alternative is Pomwig
[47] which is based on Herwig [48] and uses cluster fragmentation (Sec. 4.3).
Pomwig was originially developed for diffraction in DIS. Although it is not applicable for
resolved PHP (compare Sec. 4.3), the hadronic corrections calculated from Pomwig can serve
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Figure 12.4: Hadronic corrections including error bands calculated with the reweighted Rapgap
MC (light grey) and reweighted Pomwig MC (dark grey) for processes of direct PHP, shown for
the variables yJB, xobs

γ , xIP , zobs
IP , MX , E

jet 1
T and ηjet 1 – both Rapgap and Pomwig use H1 LO-fit

2 and were reweighted to the NLO prediction based on the H1 2002 fit in bins of zobs
IP .

as a systematic check for those derived from processes of direct PHP in Rapgap. For com-
parability, the PL of Pomwig was reweighted in bins of zobs

IP to the direct contributions of
Rapgap PL in this xobs

γ -range before the same reweighting as for Rapgap was applied.
The hadronic corrections determined with Pomwig and direct processes of Rapgap are
shown in Fig. 12.4. Although the hadronic corrections are generally smaller for Pomwig,
they show the same dependencies for ηjet1, high zobs

IP and low MX . An additional reweighting
in a variable affected by the electron vertex was suggested. Since there is only one bin for
xobs

γ > 0.75, the variable yJB was chosen. However, a double differential reweighting of the
PL of Pomwig in bins of zIP and yJB only resulted in changes below 2% to the hadronic
corrections and was omitted again.
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12.3 Single differential cross sections

Single differential cross sections for data were already presented in Sec. 10.1. In Fig. 12.5
they are compared to the NLO predictions based on the H1 2002 fit, the Zeus Lps fit and
the Zeus Glp fit, where the NLO cross sections were transformed to HL.
All three NLO predictions need a normalisation factor in order to describe the cross sections of
the data. The normalisation factor (Tab. 12.1) is closer to unity for the Zeus Lps fit (≈ 0.80)
than for the H1 2002 fit (≈ 0.63) and the Zeus Glp fit (≈ 2.24). The different normalisation
factors could partly reflect different contributions from proton dissocation, which is contained
in the data of the H1 2002 fit and Zeus GLP fit, excluded in the data of the Zeus LPS fit
and estimated and subtracted in the data of this analysis (Sec. 7.1.2).
The shape of the distributions is slightly better described by the Zeus Lps fit than by the
H1 2002 fit and Zeus GLP fit.

12.4 Double differential cross sections

The cross sections on HL are also compared to NLO predictions for the direct enriched range
(xγ ≥ 0.75) in Figs. 12.6 and 12.7 and for the resolved enriched range (xγ < 0.75) in Fig. 12.8.

Cross section of direct enriched PHP

The same conclusions as for the single differential cross sections also hold for the cross sections
in the range of direct enriched PHP (Fig. 12.6): Again, the NLO predictions fail to give the
correct normalisation of the cross sections. Here the normalisation factors (Tab. 12.1) are
≈ 0.61 for the H1 2002 fit, ≈ 0.77 for the Zeus Lps fit and ≈ 2.11 for the Zeus Glp fit. The
shape of the data cross sections is adequately described by all three NLO predictions with
the exception of zobs

IP .
In addition, the influence of the fragmentation model on the hadronic correction has been
investigated for the range of direct enriched PHP, where the missing contribution of resolved
PHP in the Pomwig MC sample is less important. For this purpose hadronic corrections
obtained from Rapgap MC (using string fragmentation) and Pomwig MC (using cluster
fragmentation) have been applied to the PL of the LPS-based NLO prediction, normalised
to the data by a factor of 0.8 (Fig. 12.7). For the Rapgap MC sample, the hadronic cor-
rections were derived from direct and resolved contributions in the range xγ ≥ 0.75. These
hadronic corrections differ by less than 2.5% from those derived from direct contributions
only. Therefore the hadronic corrections obtained from the Pomwig MC sample, although
not containing resolved contributions, were taken as an appropriate estimate of hadronic cor-
rections for processes of both direct and resolved PHP. The shaded area in Fig. 12.7 hence
shows the uncertainty of the fragmentation model on the NLO predictions at HL. The differ-
ences of the shapes between the data and the normalised NLO cross sections are covered by
the uncertainty of the fragmentation model with the exception of high values of yJB .

Cross section of resolved enriched PHP

In the range of resolved enriched PHP (Fig. 12.8), the normalisation factors (Tab. 12.1) are
larger than for direct enriched PHP, ≈ 0.71 for the H1 2002 fit, ≈ 0.93 for the Zeus Lps fit
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Figure 12.5: Single differential cross sections for data (•) and NLO predictions based on the H1
2002 fit (light grey), the Zeus Lps-fit (medium grey) and the Zeus Glp-fit (dark grey) for the
variables yJB, xobs

γ , xIP , zobs
IP , MX , E

jet 1
T and ηjet 1 – the inner error bars indicate the systematic

uncertainty as determined in Sec. 11.1 whereas the outer error bars indicate the statistical and
systematic uncertainty added in quadrature.

and ≈ 2.92 for the Zeus Glp fit. The shape of the distributions is adequately described by
all NLO predictions but seems to favour the H1 2002 fit. This conclusion, however, has to
be taken with caution as the data were corrected to HL with a MC sample based on the H1
LO fit 2, which is more similar to the H1 2002 fit than to the Zeus Lps fit. Moreover, the
uncertainty of the dPDFs increases rapidly for zIP > 0.4.

12.5 Conclusions on NLO comparison

Single and double differential cross sections of data have been compared to three NLO predic-
tions based on different dPDFs. The shape of the shown variables do not strikingly indicate
that one of the NLO predictions is to be preferred.
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Figure 12.6: Double differential cross sections for data (•) and NLO predictions based on the
H1 2002 fit (light grey), the Zeus Lps-fit (medium grey) and the Zeus Glp-fit (dark grey) in the
range xobs

γ ≥ 0.75 for the variables yJB, xobs
γ , xIP , zobs

IP , MX , E
jet 1
T and ηjet 1 – the inner error bars

indicate the systematic uncertainty as determined in Sec. 11.1 whereas the outer error bars indicate
the statistical and systematic uncertainty added in quadrature.

All three NLO predictions need a normalisation factor in order to reproduce the cross sec-
tions of the data. The normalisation factors are summarised in Tab. 12.1. However, the large
spread of the presently available NLO predictions does not allow conclusions on suppression
of both direct and resolved PHP or resolved PHP only.
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Figure 12.7: Double differential cross sections for data (•) and the normalised and LPS-based NLO
predictions (—) in the range xobs

γ ≥ 0.75 for the variables yJB, xobs
γ , xIP , zobs

IP , MX , E
jet 1
T and ηjet 1 –

the inner error bars indicate the systematic uncertainty as determined in Sec. 11.1 whereas the outer
error bars indicate the statistical and systematic uncertainty added in quadrature; the shaded band
indicates the variation of the fragmentation model [upper edge: Rapgap (string fragmentation),
lower edge: Pomwig (cluster fragmentation).]

NLO assumed normalisation factor
prediction p dissociation full xobs

γ xobs
γ ≥ 0.75 xobs

γ < 0.75

H1 2002 fit (23 ± 16)% 0.63 0.61 0.71
Zeus Lps fit n.a. 0.80 0.77 0.93
Zeus Glp fit (30 ± 3)% 2.24 2.11 2.92

Table 12.1: Assumed p-dissociative background of NLO predictions and normalisation factors for
agreement with data.
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Figure 12.8: Double differential cross sections for data (•) and NLO predictions based on the
H1 2002 fit (light grey), the Zeus Lps-fit (medium grey) and the Zeus Glp-fit (dark grey) in the
range xobs

γ < 0.75 for the variables yJB, xobs
γ , xIP , zobs

IP , MX , E
jet 1
T and ηjet 1 – the inner error bars

indicate the systematic uncertainty as determined in Sec. 11.1 whereas the outer error bars indicate
the statistical and systematic uncertainty added in quadrature.
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Conclusions

Dijet events in diffractive photoproduction have been selected from 77.1 pb−1 of Zeus data.
Two different triggers for data selection were tested of which one was found to be preferable
for this analysis. Dijet events with a transverse jet energy of E

jet1(2)
T > 7.5 (6.5) GeV and a

pseudorapidity between −1.5 < ηjet1(2) < +1.5 were analysed in the kinematic range given by
0.2 < yJB < 0.85 and xIP < 0.025.
Great effort has been spent in the reconstruction of the kinematic variables. The backsplash
correction which has been a formerly built-in part of the Zeus reconstruction code, was noted
to be inappropriate for this analysis and was switched off. A formerly recommended method
of Zufo correction has been found to be unsuitable for diffractive analyses and was replaced
by a recently available method. Both results have been adopted by other analyses which have
been repeated without backsplash correction and with the new method for energy correction
of Zufos. In addition, the reconstruction of the jet energy has been investigated and im-
proved.
For an enhanced extraction of the diffractive signal, an easily applicable method for rejection
of cosmic events has been developed, tested and applied.
Cross sections for dijets in diffractive photoproduction have been determined as functions
of the variables xγ , yJB, xIP , zIP , MX , Ejet 1

T , ηjet 1, Ejet 2
T and ηjet 2 for the full xγ-range as

well as double-differentially, i.e. for the range enriched with direct (xobs
γ ≥ 0.75) and resolved

(xobs
γ < 0.75) photoproduction.

The data have been compared to leading-order Monte Carlo simulation and three next-to-
leading order QCD predictions based on different diffractive parton density functions. These
predictions were given on parton level, and the influence of the fragmentation model on the
transformation to hadron level has been investigated.
Both single and double differential cross sections of the data are found to agree well in shape
with those of the normalised Monte Carlo simulation. The shapes of the single differential
distributions agree also reasonably with all three predictions at next-to-leading order. How-
ever, their normalisation fails, both for single and double differential cross sections. Due to
the large spread of the presently available dPDFs, there is at present no clear answer to the
question whether factorisation breaking in diffractive photoproduction is observed in the data.
It is planned to determine the diffractive parton density functions in a global fit including all
data sets.
The experimental results have been approved by the Zeus Collaboration and presented at
international conferences. A paper on this analysis is in progress.
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Markus Jüngst, Benjamin Kahle, Peter Irrgang, Oliver Maria Kind, Ursula Meyer, Verena
Schönberg, Joachim Tandler, Kai Voss, Howie Wessoleck and Micha l W lasenko – I would like
to thank for vivid discussions, their company and nourishing conversation during right-to-
the-contrary lunch at Hoheisel’s canteen.

I would also like to thank especially, though not exclusively, the following people:
Aaron Habsburg who incited me to trump him with those additional two-letters-and-a-dot,
Dirk Ortmann and Marc Lilienkamp for smoothing the worst abuses of English grammar,
Yvonne Dreisbach and Jens Optenhoefel (and again, Oliver) for their endless hospitality,
Katrin Hahn for these unexpected “blind dates” that brightened otherwise dull and workful
evenings, and all of them, in particular Aaron, for pulling my feet back on solid ground when
my head was somewhere up in the physical sky.
The latter maybe a bit rough at times, though. (It’s physics. Not chemistry. Thanks.)



107

Last but by all means not least, I would like to heartly thank my parents and my sister
for their love, motivation and buffering of the blahs which seem to come along inevitably with
such a project every now and then. But most of all, I’d like to thank them for being exactly
as they are.



Appendix A

Systematic errors
of cross sections in the full xobs

γ -range



109

y 
0.2 0.4 0.6 0.8

σ/σ∆

-0.2

-0.1

0.0

0.1

0.2

 obs
γx

0.4 0.6 0.8 1.0

σ/σ∆

-0.2

-0.1

0.0

0.1

0.2

 IPx
0.01 0.02

σ/σ∆

-0.2

-0.1

0.0

0.1

0.2

 obs
IPz

0.2 0.4 0.6 0.8 1.0

σ/σ∆

-0.2

-0.1

0.0

0.1

0.2

 (GeV)XM
20 30 40

σ/σ∆

-0.2

-0.1

0.0

0.1

0.2

 (GeV)jet1
TE

8 10 12 14

σ/σ∆

-0.2

-0.1

0.0

0.1

0.2

 jet1η
-1 0 1

σ/σ∆

-0.2

-0.1

0.0

0.1

0.2

 (GeV)jet2
TE

8 10 12 14

σ/σ∆

-0.2

-0.1

0.0

0.1

0.2

 jet2η
-1 0 1

σ/σ∆

-0.2

-0.1

0.0

0.1

0.2

Figure A.1: Systematic errors of a z-vertex shift by +5mm (N) and −5mm (H), shown for the
variables yJB , xobs

γ , xIP , zobs
IP , MX , E

jet 1
T , ηjet 1, E

jet 2
T and ηjet 2 – the solid lines indicate the statistical

errors.
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Figure A.2: Systematic errors of Zufo energy increased (N) and decreased (H) as described in
Sec. 11.1.2, shown for the variables yJB, xobs
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IP , MX , E
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jet
T correction for first and second jet (�), shown
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Figure A.5: Systematic errors of the energy threshold, which is used for the calculation of ηmax,
increased to 500MeV (N) and decreased to 300MeV (H), shown for the variables yJB, xobs

γ , xIP , zobs
IP ,
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Figure B.1: Systematic errors of a z-vertex shift by +5mm (N) and −5mm (H), shown in the
range xγ ≥ 0.75 for the variables yJB, xobs

γ , xIP , zobs
IP , MX , E

jet 1
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T and ηjet 2 – the solid

lines indicate the statistical errors.
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Figure B.2: Systematic errors of Zufo energy increased (N) and decreased (H) as described in
Sec. 11.1.2, shown in the range xγ ≥ 0.75 for the variables yJB, xobs

γ , xIP , zobs
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Figure B.3: Systematic errors of a discriminative E
jet
T correction for first and second jet (�) shown

in the range xγ ≥ 0.75 for the variables yJB, xobs
γ , xIP , zobs

IP , MX , E
jet 1
T , ηjet 1, E

jet 2
T and ηjet 2 – the

solid lines indicate the statistical errors.
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Figure B.4: Systematic errors of the cut on ηmax increased to ηmax < 3.0 (N) and decreased to
ηmax < 2.6 (H), shown in the range xγ ≥ 0.75 for the variables yJB, xobs

γ , xIP , zobs
IP , MX , E
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E
jet 2
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Figure B.5: Systematic errors of the energy threshold, which is used for the calculation of ηmax,
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Figure B.6: Systematic errors of a reduced cut of yJB < 0.78 (�) shown in the range xγ ≥ 0.75

for the variables yJB, xobs
γ , xIP , zobs

IP , MX , E
jet 1
T , ηjet 1, E

jet 2
T and ηjet 2 – the solid lines indicate the

statistical errors.
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Figure C.1: Systematic errors of a z-vertex shift by +5mm (N) and −5mm (H), shown in the
range xγ < 0.75 for the variables yJB, xobs

γ , xIP , zobs
IP , MX , E

jet 1
T , ηjet 1, E

jet 2
T and ηjet 2 – the solid

lines indicate the statistical errors.
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Figure C.2: Systematic errors of Zufo energy increased (N) and decreased (H) as described in
Sec. 11.1.2, shown in the range xγ < 0.75 for the variables yJB, xobs

γ , xIP , zobs
IP , MX , E

jet 1
T , ηjet 1,

E
jet 2
T and ηjet 2 – the solid lines indicate the statistical errors.
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Figure C.3: Systematic errors of a discriminative E
jet
T correction for first and second jet (�) shown

in the range xγ < 0.75 for the variables yJB, xobs
γ , xIP , zobs

IP , MX , E
jet 1
T , ηjet 1, E

jet 2
T and ηjet 2 – the

solid lines indicate the statistical errors.
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Figure C.4: Systematic errors of the cut on ηmax increased to ηmax < 3.0 (N) and decreased to
ηmax < 2.6 (H), shown in the range xγ < 0.75 for the variables yJB, xobs

γ , xIP , zobs
IP , MX , E

jet 1
T , ηjet 1,

E
jet 2
T and ηjet 2 – the solid lines indicate the statistical errors.
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Figure C.5: Systematic errors of the energy threshold, which is used for the calculation of ηmax,
increased to 500MeV (N) and decreased to 300MeV (H), shown in the range xγ < 0.75 for the

variables yJB , xobs
γ , xIP , zobs

IP , MX , E
jet 1
T , ηjet 1, E

jet 2
T and ηjet 2 – the solid lines indicate the statistical

errors.
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Figure C.6: Systematic errors of a reduced cut of yJB < 0.78 (�) shown in the range xγ < 0.75

for the variables yJB, xobs
γ , xIP , zobs

IP , MX , E
jet 1
T , ηjet 1, E

jet 2
T and ηjet 2 – the solid lines indicate the

statistical errors.



Appendix D

Tables of cross sections and errors
for the full xγ-range

MX (GeV) [15.0; 20.0] [20.0; 25.0] [25.0; 30.0] [30.0; 35.0] [35.0; 40.0] [40.0; 45.0]

dσ/dMX 1.878 6.396 7.140 6.538 4.025 1.611
(nb/GeV)
stat. error ±0.098 ±0.175 ±0.190 ±0.199 ±0.165 ±0.113

zvtx + 5mm +0.083 +0.160 +0.153 +0.206 +0.130 +0.035
zvtx − 5mm +0.038 +0.075 +0.089 +0.157 +0.095 +0.029
Ezufo ↑ +0.021 −0.098 −0.077 +0.080 −0.149 +0.139
Ezufo ↓ +0.069 +0.002 −0.044 −0.005 +0.179 −0.074
ET corr. −0.055 −0.085 +0.010 +0.007 −0.037 −0.006
Eη > 500GeV +0.000 +0.010 +0.028 +0.026 +0.005 −0.005
Eη > 300GeV −0.001 +0.036 −0.007 +0.003 +0.025 −0.013
ηmax < 3.0 +0.019 −0.049 −0.135 −0.217 −0.132 −0.063
ηmax < 2.6 +0.015 +0.111 +0.320 +0.128 +0.119 +0.136
yJB < 0.78 −0.034 −0.037 −0.128 +0.003 +0.080 −0.002

syst. error ↑ +0.119 +0.212 +0.367 +0.301 +0.281 +0.199
syst. error ↓ −0.064 −0.144 −0.206 −0.217 −0.202 −0.099

total error ↑ +0.154 +0.275 +0.413 +0.360 +0.326 +0.229
total error ↓ −0.117 −0.227 −0.280 −0.294 −0.261 −0.150

Table D.1: Cross sections, statistical and systematic errors as defined in Chap. 11 for MX .
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for the full xγ-range

y [0.20; 0.33] [0.33; 0.46] [0.46; 0.59] [0.59; 0.72] [0.72; 0.85]

dσ/dy (nb) 141.5 213.5 245.6 232.3 231.7
stat. error ±5.3 ±6.6 ±7.3 ±7.1 ±7.2

zvtx + 5mm +4.2 +4.7 +8.2 +4.4 +8.0
zvtx − 5mm +4.3 +2.9 +3.1 +1.7 +5.9
Ezufo ↑ −1.3 −0.5 +1.4 −3.4 −0.9
Ezufo ↓ +1.3 +0.3 −3.2 +5.4 +1.4
ET corr. −3.4 −2.0 +3.3 −2.8 +0.5
Eη > 500GeV −0.3 +0.9 +0.8 −0.1 +1.0
Eη > 300GeV +0.7 +0.2 +0.6 +0.2 +0.5
ηmax < 3.0 −1.3 −3.8 −6.0 −3.8 −5.3
ηmax < 2.6 +3.2 +10.1 +4.2 +4.8 +6.1
yJB < 0.78 −0.0 −0.0 −0.0 −0.0 −9.0

syst. error ↑ +6.9 +11.5 +10.4 +8.6 +11.8
syst. error ↓ −3.8 −4.3 −6.8 −5.8 −10.5

total error ↑ +8.8 +13.3 +12.7 +11.2 +13.8
total error ↓ −6.6 −7.9 −10.0 −9.1 −12.7

Table D.2: Cross sections, statistical and systematic errors as defined in Chap. 11 for y.

xobs
γ [0.250; 0.375] [0.375; 0.500] [0.500; 0.625] [0.625; 0.750] [0.750; 1.000]

dσ/dxobs
γ (nb) 31.41 61.94 92.52 139.9 387.3

stat. error ±2.66 ±3.64 ±4.36 ±5.3 ±6.6

zvtx + 5mm +1.50 +0.79 +3.03 +3.6 +11.0
zvtx − 5mm +1.00 −0.48 +1.67 +1.9 +7.5
Ezufo ↑ +0.58 −0.47 −2.25 −0.3 −1.2
Ezufo ↓ +2.76 +1.32 −0.21 +0.4 +0.9
ET corr. −0.31 −1.00 +0.89 −2.5 −0.9
Eη > 500GeV −0.45 −0.14 +0.90 −0.0 +1.0
Eη > 300GeV −0.09 +0.68 +0.04 −0.0 +1.0
ηmax < 3.0 −0.83 −3.05 −1.88 −3.5 −5.6
ηmax < 2.6 +0.46 +2.16 +3.21 +4.8 +9.5
yJB < 0.78 +1.13 −2.60 +0.29 +0.4 −2.4

syst. error ↑ +3.57 +2.74 +4.90 +6.3 +16.4
syst. error ↓ −0.99 −4.19 −2.94 −4.3 −6.3

total error ↑ +4.45 +4.56 +6.55 +8.3 +17.7
total error ↓ −2.84 −5.55 −5.26 −6.8 −9.1

Table D.3: Cross sections, statistical and systematic errors as defined in Chap. 11 for xobs
γ .
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xIP [0.000; 0.005] [0.005; 0.010] [0.010; 0.015] [0.015; 0.020] [0.020; 0.025]

dσ/dxIP (pb) 0.347 3.796 6.640 7.963 9.125
stat. error ±0.050 ±0.132 ±0.179 ±0.209 ±0.254

zvtx + 5mm +0.011 +0.132 +0.121 +0.254 +0.257
zvtx − 5mm +0.000 +0.041 +0.089 +0.145 +0.215
Ezufo ↑ −0.013 −0.039 −0.073 −0.026 +0.045
Ezufo ↓ +0.008 +0.006 +0.002 +0.032 +0.124
ET corr. −0.009 −0.056 +0.027 −0.010 −0.104
Eη > 500GeV +0.000 +0.007 −0.010 +0.099 −0.039
Eη > 300GeV +0.000 +0.014 +0.003 +0.006 +0.026
ηmax < 3.0 +0.000 +0.007 −0.093 −0.179 −0.370
ηmax < 2.6 +0.000 +0.035 +0.128 +0.220 +0.596
yJB < 0.78 −0.048 −0.160 −0.086 +0.046 +0.049

syst. error ↑ +0.013 +0.144 +0.199 +0.383 +0.698
syst. error ↓ −0.051 −0.174 −0.146 −0.181 −0.387

total error ↑ +0.052 +0.195 +0.268 +0.436 +0.743
total error ↓ −0.071 −0.218 −0.231 −0.276 −0.463

Table D.4: Cross sections, statistical and systematic errors as defined in Chap. 11 for xIP .

zobs
IP [0.2; 0.4] [0.4; 0.6] [0.6; 0.8] [0.8; 1.0]

dσ/dzobs
IP (nb) 110.2 192.7 221.8 160.6

stat. error ±5.6 ±6.1 ±5.6 ±3.5

zvtx + 5mm +3.4 +3.4 +8.2 +4.0
zvtx − 5mm +0.6 +2.7 +5.6 +2.2
Ezufo ↑ +0.4 −1.6 +0.3 −1.5
Ezufo ↓ +2.7 −1.5 +0.4 +1.6
ET corr. +3.6 −1.9 −1.7 −1.1
Eη > 500GeV +2.1 +0.2 +0.7 −0.2
Eη > 300GeV −0.1 +1.4 −0.2 +0.4
ηmax < 3.0 −6.8 −6.9 −4.1 −0.0
ηmax < 2.6 +9.0 +9.7 +9.2 −0.2
yJB < 0.78 +3.7 +2.9 −2.3 −3.0

syst. error ↑ +11.5 +11.1 +13.5 +4.8
syst. error ↓ −6.8 −7.5 −5.0 −3.6

total error ↑ +12.8 +12.7 +14.6 +6.0
total error ↓ −8.8 −9.7 −7.5 −5.0

Table D.5: Cross sections, statistical and systematic errors as defined in Chap. 11 for z obs
IP .
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for the full xγ-range

Ejet1
T (GeV) [7.5; 9.5] [9.5; 11.5] [11.5; 13.5] [13.5; 15.5]

dσ/dEjet1
T (nb/GeV) 49.34 15.28 3.68 0.77

stat. error ±0.86 ±0.44 ±0.19 ±0.08

zvtx + 5mm +1.47 +0.35 +0.07 +0.03
zvtx − 5mm +0.78 +0.23 +0.09 +0.02
Ezufo ↑ −0.42 −0.14 +0.14 −0.01
Ezufo ↓ +0.59 −0.22 −0.01 +0.02
ET corr. −0.48 +0.06 +0.02 −0.01
Eη > 500GeV +0.12 +0.06 +0.00 −0.02
Eη > 300GeV +0.24 −0.07 +0.00 −0.00
ηmax < 3.0 −1.19 −0.08 −0.05 −0.00
ηmax < 2.6 +1.60 +0.37 +0.04 −0.01
yJB < 0.78 +0.18 −0.26 −0.23 −0.01

syst. error ↑ +2.40 +0.57 +0.19 +0.04
syst. error ↓ −1.35 −0.38 −0.23 −0.03

total error ↑ +2.55 +0.72 +0.27 +0.09
total error ↓ −1.60 −0.58 −0.30 −0.09

Table D.6: Cross sections, statistical and systematic errors as defined in Chap. 11 for E
jet1
T .

Ejet2
T (GeV) [6.5; 8.5] [8.5; 10.5] [10.5; 12.5] [12.5; 14.5]

dσ/dEjet2
T (nb/GeV) 50.90 14.36 3.08 0.48

stat. error ±0.82 ±0.47 ±0.23 ±0.09

zvtx + 5mm +1.39 +0.35 +0.16 +0.01
zvtx − 5mm +0.70 +0.37 +0.10 +0.01
Ezufo ↑ −0.35 −0.05 +0.02 +0.04
Ezufo ↓ +0.28 −0.07 +0.10 +0.05
ET corr. −0.34 −0.00 +0.00 +0.00
Eη > 500GeV +0.13 +0.05 −0.03 +0.00
Eη > 300GeV +0.22 −0.05 −0.04 −0.00
ηmax < 3.0 −1.16 −0.13 +0.01 −0.02
ηmax < 2.6 +1.47 +0.45 +0.01 −0.03
yJB < 0.78 −0.27 −0.12 −0.10 −0.03

syst. error ↑ +2.17 +0.68 +0.22 +0.07
syst. error ↓ −1.29 −0.20 −0.11 −0.05

total error ↑ +2.32 +0.83 +0.32 +0.11
total error ↓ −1.53 −0.51 −0.26 −0.10

Table D.7: Cross sections, statistical and systematic errors as defined in Chap. 11 for E
jet2
T .
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ηjet1 [−1.5;−1.0] [−1.0;−0.5] [−0.5; 0.0] [0.0; 0.5] [0.5; 1.0] [1.0; 1.5]

dσ/dηjet1 (nb) 16.02 62.12 81.77 72.04 37.60 8.04
stat. error ±1.03 ±1.94 ±2.15 ±1.94 ±1.37 ±0.65

zvtx + 5mm +0.05 +1.70 +2.08 +1.86 +1.37 +0.51
zvtx − 5mm +0.39 +0.54 +1.54 +1.20 +0.78 +0.20
Ezufo ↑ −0.20 +0.03 −0.68 −0.36 −0.24 +0.16
Ezufo ↓ −0.50 +1.09 +0.40 −0.07 −0.11 +0.58
ET corr. −0.24 +0.86 +0.14 −1.44 −0.44 +0.07
Eη > 500GeV +0.16 +0.13 +0.62 −0.03 +0.03 −0.26
Eη > 300GeV +0.18 +0.09 −0.24 +0.54 −0.14 +0.16
ηmax < 3.0 −0.13 −1.30 −1.86 −1.40 −0.48 −0.15
ηmax < 2.6 +0.02 +1.49 +3.07 +1.88 +0.91 +0.15
yJB < 0.78 +0.28 −0.12 −0.74 −0.94 +0.36 +0.20

syst. error ↑ +0.54 +2.71 +4.08 +2.95 +1.85 +0.86
syst. error ↓ −0.60 −1.30 −2.13 −2.25 −0.71 −0.30

total error ↑ +1.16 +3.33 +4.61 +3.54 +2.30 +1.08
total error ↓ −1.19 −2.34 −3.02 −2.97 −1.55 −0.72

Table D.8: Cross sections, statistical and systematic errors as defined in Chap. 11 for η jet1.

ηjet2 [−1.5;−1.0] [−1.0;−0.5] [−0.5; 0.0] [0.0; 0.5] [0.5; 1.0] [1.0; 1.5]

dσ/dηjet2 (nb) 32.13 64.35 69.40 58.03 36.33 15.02
stat. error ±1.56 ±1.97 ±1.93 ±1.69 ±1.31 ±0.91

zvtx + 5mm +1.58 +2.55 +1.39 +1.56 +0.95 −0.12
zvtx − 5mm +0.45 +1.79 +0.67 +0.94 +0.81 −0.00
Ezufo ↑ −0.15 −1.19 +0.33 −0.50 +0.24 −0.11
Ezufo ↓ +0.25 +0.04 −0.05 +0.45 +0.45 +0.13
ET corr. −0.48 −0.08 +0.19 −0.84 +0.04 −0.08
Eη > 500GeV +0.17 +0.00 −0.03 +0.24 +0.20 −0.03
Eη > 300GeV +0.15 +0.23 +0.34 −0.28 −0.02 +0.19
ηmax < 3.0 −1.01 −0.55 −0.93 −1.46 −0.99 −0.08
ηmax < 2.6 +1.31 +0.96 +1.95 +2.28 +0.65 +0.27
yJB < 0.78 +0.02 −1.84 +0.12 −0.63 +0.11 −0.37

syst. error ↑ +2.12 +3.27 +2.54 +2.96 +1.51 +0.36
syst. error ↓ −1.13 −2.26 −0.93 −1.88 −0.99 −0.43

total error ↑ +2.64 +3.82 +3.19 +3.41 +2.00 +0.98
total error ↓ −1.93 −3.00 −2.14 −2.53 −1.64 −1.00

Table D.9: Cross sections, statistical and systematic errors as defined in Chap. 11 for η jet2.



Appendix E

Tables of cross sections and errors
for the range xγ ≥ 0.75

MX (GeV) [15.0; 20.0] [20.0; 25.0] [25.0; 30.0] [30.0; 35.0] [35.0; 40.0] [40.0; 45.0]

dσ/dMX 1.849 5.391 5.387 3.884 2.205 0.738
(nb/GeV)
stat. error ±0.098 ±0.162 ±0.173 ±0.159 ±0.130 ±0.083

zvtx + 5mm +0.080 +0.143 +0.119 +0.139 +0.040 +0.028
zvtx − 5mm +0.038 +0.068 +0.086 +0.101 +0.051 +0.056
Ezufo ↑ +0.023 −0.067 −0.019 +0.048 −0.104 +0.030
Ezufo ↓ +0.064 −0.009 −0.084 +0.066 +0.061 −0.079
ET corr. −0.043 −0.023 −0.022 +0.021 −0.014 +0.008
Eη > 500GeV +0.000 −0.003 +0.023 +0.032 +0.023 −0.001
Eη > 300GeV −0.001 +0.022 −0.006 +0.012 +0.018 −0.009
ηmax < 3.0 +0.019 −0.066 −0.074 −0.148 −0.047 −0.048
ηmax < 2.6 +0.012 +0.088 +0.282 +0.062 +0.090 +0.051
yJB < 0.78 −0.037 −0.027 −0.011 −0.005 −0.036 +0.081

syst. error ↑ +0.114 +0.183 +0.319 +0.204 +0.130 +0.119
syst. error ↓ −0.057 −0.101 −0.116 −0.148 −0.121 −0.093

total error ↑ +0.150 +0.244 +0.363 +0.259 +0.184 +0.145
total error ↓ −0.113 −0.190 −0.209 −0.217 −0.178 −0.125

Table E.1: Cross sections, statistical and systematic errors as defined in Chap. 11 for MX .
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y [0.20; 0.33] [0.33; 0.46] [0.46; 0.59] [0.59; 0.72] [0.72; 0.85]

dσ/dy (nb) 125.2 163.2 169.9 141.2 147.9
stat. error ±5.1 ±6.0 ±6.2 ±5.5 ±5.8

zvtx + 5mm +3.9 +3.9 +6.0 +2.5 +4.9
zvtx − 5mm +4.5 +1.9 +1.0 +2.2 +4.5
Ezufo ↑ −2.0 +1.8 +1.5 −2.5 −1.5
Ezufo ↓ +0.8 −0.7 −1.5 +2.6 −0.2
ET corr. −2.1 −1.0 +2.1 +0.0 −0.6
Eη > 500GeV −0.6 +0.5 +0.5 +0.7 +1.0
Eη > 300GeV −0.0 +0.9 +0.8 +0.9 −0.6
ηmax < 3.0 −1.5 −2.6 −2.6 −0.9 −3.4
ηmax < 2.6 +3.3 +6.3 +2.1 +3.3 +3.0
yJB < 0.78 −0.0 −0.0 −0.0 −0.0 +0.8

syst. error ↑ +6.8 +7.9 +7.0 +5.5 +7.4
syst. error ↓ −3.4 −2.8 −3.0 −2.7 −3.8

total error ↑ +8.5 +9.9 +9.4 +7.8 +9.4
total error ↓ −6.1 −6.6 −6.9 −6.1 −7.0

Table E.2: Cross sections, statistical and systematic errors as defined in Chap. 11 for y.

xobs
γ [0.250; 0.375] [0.375; 0.500] [0.500; 0.625] [0.625; 0.750] [0.750; 1.000]

dσ/dxobs
γ (nb) n.a. n.a. n.a. n.a. 387.3

stat. error n.a. n.a. n.a. n.a. ±6.6

zvtx + 5mm n.a. n.a. n.a. n.a. +11.0
zvtx − 5mm n.a. n.a. n.a. n.a. +7.5
Ezufo ↑ n.a. n.a. n.a. n.a. −1.2
Ezufo ↓ n.a. n.a. n.a. n.a. +0.9
ET corr. n.a. n.a. n.a. n.a. −0.9
Eη > 500GeV n.a. n.a. n.a. n.a. +1.0
Eη > 300GeV n.a. n.a. n.a. n.a. +1.0
ηmax < 3.0 n.a. n.a. n.a. n.a. −5.6
ηmax < 2.6 n.a. n.a. n.a. n.a. +9.5
yJB < 0.78 n.a. n.a. n.a. n.a. −2.4

syst. error ↑ n.a. n.a. n.a. n.a. +16.4
syst. error ↓ n.a. n.a. n.a. n.a. −6.3

total error ↑ n.a. n.a. n.a. n.a. +17.7
total error ↓ n.a. n.a. n.a. n.a. −9.1

Table E.3: Cross sections, statistical and systematic errors as defined in Chap. 11 for xobs
γ .
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Chapter E. Tables of cross sections and errors

for the range xγ ≥ 0.75

xIP [0.000; 0.005] [0.005; 0.010] [0.010; 0.015] [0.015; 0.020] [0.020; 0.025]

dσ/dxIP (pb) 0.355 3.230 5.026 5.470 5.497
stat. error ±0.051 ±0.122 ±0.158 ±0.179 ±0.207

zvtx + 5mm +0.011 +0.113 +0.099 +0.160 +0.179
zvtx − 5mm +0.000 +0.034 +0.088 +0.091 +0.190
Ezufo ↑ −0.016 −0.017 −0.035 −0.020 +0.021
Ezufo ↓ +0.008 −0.007 +0.018 +0.004 +0.011
ET corr. −0.015 −0.028 +0.052 −0.065 −0.008
Eη > 500GeV +0.000 +0.005 +0.011 +0.074 −0.042
Eη > 300GeV +0.000 +0.012 +0.011 −0.019 +0.038
ηmax < 3.0 +0.000 +0.010 −0.050 −0.158 −0.186
ηmax < 2.6 +0.000 +0.028 +0.128 +0.133 +0.379
yJB < 0.78 −0.056 −0.079 −0.053 −0.030 +0.061

syst. error ↑ +0.013 +0.122 +0.192 +0.239 +0.466
syst. error ↓ −0.060 −0.086 −0.081 −0.175 −0.191

total error ↑ +0.053 +0.173 +0.249 +0.298 +0.510
total error ↓ −0.079 −0.149 −0.177 −0.250 −0.282

Table E.4: Cross sections, statistical and systematic errors as defined in Chap. 11 for xIP .

zobs
IP [0.2; 0.4] [0.4; 0.6] [0.6; 0.8] [0.8; 1.0]

dσ/dzobs
IP (nb) 88.4 131.8 133.0 125.7

stat. error ±5.1 ±5.0 ±4.2 ±3.4

zvtx + 5mm +2.6 +1.9 +4.3 +4.0
zvtx − 5mm +0.4 +2.6 +2.8 +2.5
Ezufo ↑ +0.4 −1.2 −0.8 −0.2
Ezufo ↓ +1.2 −1.6 +0.1 +0.7
ET corr. +2.8 +0.4 −2.1 −0.4
Eη > 500GeV +1.6 −0.0 +0.9 −0.3
Eη > 300GeV +0.5 +0.3 −0.4 +0.8
ηmax < 3.0 −5.3 −2.6 −2.5 +0.4
ηmax < 2.6 +7.4 +7.2 +4.4 −0.6
yJB < 0.78 +3.0 +1.7 −1.7 −2.1

syst. error ↑ +9.1 +8.1 +6.8 +4.9
syst. error ↓ −5.3 −3.3 −3.8 −2.2

total error ↑ +10.4 +9.5 +8.0 +5.9
total error ↓ −7.4 −5.9 −5.6 −4.0

Table E.5: Cross sections, statistical and systematic errors as defined in Chap. 11 for z obs
IP .
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Ejet1
T (GeV) [7.5; 9.5] [9.5; 11.5] [11.5; 13.5] [13.5; 15.5]

dσ/dEjet1
T (nb/GeV) 33.65 11.26 2.84 0.66

stat. error ±0.72 ±0.38 ±0.17 ±0.08

zvtx + 5mm +1.00 +0.32 +0.03 +0.02
zvtx − 5mm +0.58 +0.20 +0.08 +0.01
Ezufo ↑ −0.26 −0.17 +0.15 −0.01
Ezufo ↓ +0.31 −0.07 −0.10 −0.00
ET corr. −0.25 +0.02 −0.00 −0.01
Eη > 500GeV +0.07 +0.10 −0.01 −0.03
Eη > 300GeV +0.19 −0.03 +0.00 −0.01
ηmax < 3.0 −0.53 −0.09 −0.07 −0.01
ηmax < 2.6 +1.05 +0.23 +0.03 −0.02
yJB < 0.78 +0.14 −0.13 −0.17 −0.04

syst. error ↑ +1.61 +0.46 +0.18 +0.02
syst. error ↓ −0.64 −0.25 −0.21 −0.05

total error ↑ +1.77 +0.60 +0.24 +0.08
total error ↓ −0.97 −0.46 −0.27 −0.10

Table E.6: Cross sections, statistical and systematic errors as defined in Chap. 11 for E
jet1
T .

Ejet2
T (GeV) [6.5; 8.5] [8.5; 10.5] [10.5; 12.5] [12.5; 14.5]

dσ/dEjet2
T (nb/GeV) 34.00 11.04 2.72 0.48

stat. error ±0.68 ±0.41 ±0.22 ±0.09

zvtx + 5mm +0.95 +0.28 +0.12 +0.01
zvtx − 5mm +0.54 +0.31 +0.07 +0.01
Ezufo ↑ −0.23 −0.01 +0.03 +0.03
Ezufo ↓ +0.01 +0.02 +0.01 +0.06
ET corr. +0.04 −0.00 +0.00 +0.00
Eη > 500GeV +0.10 +0.07 −0.04 +0.00
Eη > 300GeV +0.16 −0.02 −0.03 −0.01
ηmax < 3.0 −0.57 −0.14 +0.03 −0.03
ηmax < 2.6 +0.90 +0.35 −0.01 −0.04
yJB < 0.78 −0.18 −0.04 −0.11 −0.03

syst. error ↑ +1.43 +0.55 +0.15 +0.07
syst. error ↓ −0.64 −0.14 −0.12 −0.06

total error ↑ +1.58 +0.69 +0.27 +0.12
total error ↓ −0.93 −0.44 −0.25 −0.11

Table E.7: Cross sections, statistical and systematic errors as defined in Chap. 11 for E
jet2
T .
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for the range xγ ≥ 0.75

ηjet1 [−1.5;−1.0] [−1.0;−0.5] [−0.5; 0.0] [0.0; 0.5] [0.5; 1.0] [1.0; 1.5]

dσ/dηjet1 (nb) 13.94 47.44 56.76 47.11 24.50 4.66
stat. error ±0.94 ±1.67 ±1.78 ±1.61 ±1.19 ±0.52

zvtx + 5mm +0.14 +1.27 +1.49 +1.34 +0.85 +0.39
zvtx − 5mm +0.23 +0.70 +1.12 +0.93 +0.47 +0.26
Ezufo ↑ −0.13 −0.13 −0.13 −0.46 −0.12 +0.23
Ezufo ↓ −0.17 +0.82 −0.17 −0.02 −0.26 +0.10
ET corr. −0.28 +1.10 −0.19 −0.65 −0.50 +0.16
Eη > 500GeV +0.11 +0.14 +0.54 −0.21 +0.04 −0.09
Eη > 300GeV +0.16 +0.07 −0.05 +0.41 −0.25 +0.15
ηmax < 3.0 −0.05 −0.75 −0.76 −0.86 −0.41 −0.03
ηmax < 2.6 +0.11 +0.94 +2.24 +0.80 +0.64 +0.03
yJB < 0.78 +0.43 −0.05 −0.44 −0.41 +0.06 +0.00

syst. error ↑ +0.56 +2.21 +2.96 +1.86 +1.17 +0.57
syst. error ↓ −0.36 −0.77 −0.93 −1.26 −0.75 −0.09

total error ↑ +1.09 +2.77 +3.46 +2.46 +1.67 +0.77
total error ↓ −1.00 −1.84 −2.01 −2.04 −1.41 −0.53

Table E.8: Cross sections, statistical and systematic errors as defined in Chap. 11 for η jet1.

ηjet2 [−1.5;−1.0] [−1.0;−0.5] [−0.5; 0.0] [0.0; 0.5] [0.5; 1.0] [1.0; 1.5]

dσ/dηjet2 (nb) 28.34 50.59 51.57 35.79 19.17 7.24
stat. error ±1.46 ±1.77 ±1.69 ±1.32 ±0.95 ±0.61

zvtx + 5mm +1.17 +1.92 +1.19 +0.86 +0.52 −0.04
zvtx − 5mm +0.28 +1.51 +0.37 +0.72 +0.66 +0.08
Ezufo ↑ −0.38 −0.24 −0.05 −0.11 +0.10 −0.17
Ezufo ↓ +0.16 −0.05 −0.16 +0.28 −0.10 +0.10
ET corr. −0.62 +0.48 −0.17 −0.10 +0.25 −0.48
Eη > 500GeV +0.19 +0.19 +0.06 +0.09 +0.02 −0.04
Eη > 300GeV +0.12 +0.18 +0.27 −0.31 −0.09 +0.39
ηmax < 3.0 −0.80 −0.26 −0.51 −0.75 −0.54 +0.21
ηmax < 2.6 +0.88 +1.10 +1.28 +1.06 +0.37 +0.01
yJB < 0.78 −0.42 −1.26 +0.23 −0.23 +0.04 −0.36

syst. error ↑ +1.52 +2.74 +1.83 +1.57 +0.96 +0.46
syst. error ↓ −1.16 −1.30 −0.57 −0.86 −0.56 −0.63

total error ↑ +2.11 +3.26 +2.49 +2.05 +1.35 +0.77
total error ↓ −1.87 −2.20 −1.79 −1.57 −1.10 −0.88

Table E.9: Cross sections, statistical and systematic errors as defined in Chap. 11 for η jet2.
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Tables of cross sections and errors
for the range xγ < 0.75

MX (GeV) [15.0; 20.0] [20.0; 25.0] [25.0; 30.0] [30.0; 35.0] [35.0; 40.0] [40.0; 45.0]

dσ/dMX 0.023 1.003 1.783 2.655 1.850 0.877
(nb/GeV)
stat. error ±0.007 ±0.068 ±0.084 ±0.121 ±0.105 ±0.079

zvtx + 5mm +0.002 +0.017 +0.035 +0.069 +0.084 +0.010
zvtx − 5mm −0.000 +0.007 +0.009 +0.057 +0.044 −0.016
Ezufo ↑ −0.001 −0.031 −0.047 +0.032 −0.053 +0.101
Ezufo ↓ +0.004 +0.010 +0.026 −0.059 +0.109 −0.006
ET corr. −0.005 −0.060 +0.023 −0.012 −0.023 −0.012
Eη > 500GeV −0.000 +0.013 +0.005 −0.003 −0.011 −0.004
Eη > 300GeV −0.000 +0.014 −0.001 −0.008 +0.007 −0.005
ηmax < 3.0 −0.000 +0.017 −0.056 −0.071 −0.090 −0.020
ηmax < 2.6 +0.002 +0.022 +0.055 +0.063 +0.052 +0.082
yJB < 0.78 +0.002 −0.009 −0.090 +0.007 +0.099 −0.068

syst. error ↑ +0.005 +0.040 +0.075 +0.114 +0.183 +0.130
syst. error ↓ −0.005 −0.068 −0.116 −0.094 −0.108 −0.074

total error ↑ +0.009 +0.079 +0.112 +0.166 +0.212 +0.152
total error ↓ −0.009 −0.096 −0.143 −0.153 −0.151 −0.108

Table F.1: Cross sections, statistical and systematic errors as defined in Chap. 11 for MX .
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Chapter F. Tables of cross sections and errors

for the range xγ < 0.75

y [0.20; 0.33] [0.33; 0.46] [0.46; 0.59] [0.59; 0.72] [0.72; 0.85]

dσ/dy (nb) 16.3 49.3 75.8 91.1 84.3
stat. error ±1.6 ±2.9 ±3.9 ±4.4 ±4.2

zvtx + 5mm +0.4 +0.9 +2.2 +1.9 +3.1
zvtx − 5mm +0.0 +0.9 +1.9 −0.5 +1.4
Ezufo ↑ +0.5 −1.9 −0.0 −0.9 +0.4
Ezufo ↓ +0.4 +0.8 −1.6 +2.8 +1.5
ET corr. −1.0 −0.9 +1.2 −2.8 +1.0
Eη > 500GeV +0.3 +0.4 +0.4 −0.9 −0.0
Eη > 300GeV +0.5 −0.5 −0.1 −0.7 +1.0
ηmax < 3.0 +0.2 −1.1 −3.2 −2.8 −2.0
ηmax < 2.6 +0.0 +3.5 +2.0 +1.4 +3.1
yJB < 0.78 +0.0 −0.0 −0.0 −0.0 −9.6

syst. error ↑ +1.0 +3.9 +3.8 +3.7 +5.1
syst. error ↓ −1.0 −2.4 −3.6 −4.2 −9.8

total error ↑ +1.9 +4.8 +5.4 +5.8 +6.6
total error ↓ −1.9 −3.7 −5.3 −6.1 −10.7

Table F.2: Cross sections, statistical and systematic errors as defined in Chap. 11 for y.

xobs
γ [0.250; 0.375] [0.375; 0.500] [0.500; 0.625] [0.625; 0.750] [0.750; 1.000]

dσ/dxobs
γ (nb) 31.41 61.94 92.52 139.9 n.a.

stat. error ±2.66 ±3.64 ±4.36 ±5.3 n.a.

zvtx + 5mm +1.50 +0.79 +3.03 +3.6 n.a.
zvtx − 5mm +1.00 −0.48 +1.67 +1.9 n.a.
Ezufo ↑ +0.58 −0.47 −2.25 −0.3 n.a.
Ezufo ↓ +2.76 +1.32 −0.21 +0.4 n.a.
ET corr. −0.31 −1.00 +0.89 −2.5 n.a.
Eη > 500GeV −0.45 −0.14 +0.90 −0.0 n.a.
Eη > 300GeV −0.09 +0.68 +0.04 −0.0 n.a.
ηmax < 3.0 −0.83 −3.05 −1.88 −3.5 n.a.
ηmax < 2.6 +0.46 +2.16 +3.21 +4.8 n.a.
yJB < 0.78 +1.13 −2.60 +0.29 +0.4 n.a.

syst. error ↑ +3.57 +2.74 +4.90 +6.3 n.a.
syst. error ↓ −0.99 −4.19 −2.94 −4.3 n.a.

total error ↑ +4.45 +4.56 +6.55 +8.3 n.a.
total error ↓ −2.84 −5.55 −5.26 −6.8 n.a.

Table F.3: Cross sections, statistical and systematic errors as defined in Chap. 11 for xobs
γ .



141

xIP [0.000; 0.005] [0.005; 0.010] [0.010; 0.015] [0.015; 0.020] [0.020; 0.025]

dσ/dxIP (pb) 0.000 0.558 1.613 2.539 3.625
stat. error ±0.000 ±0.049 ±0.085 ±0.111 ±0.150

zvtx + 5mm 0.000 +0.019 +0.023 +0.094 +0.083
zvtx − 5mm 0.000 +0.006 +0.003 +0.054 +0.037
Ezufo ↑ 0.000 −0.020 −0.036 −0.007 +0.023
Ezufo ↓ 0.000 +0.014 −0.014 +0.025 +0.101
ET corr. 0.000 −0.029 −0.022 +0.042 −0.085
Eη > 500GeV 0.000 +0.003 −0.019 +0.027 −0.001
Eη > 300GeV 0.000 +0.002 −0.007 +0.019 −0.008
ηmax < 3.0 0.000 −0.003 −0.040 −0.037 −0.178
ηmax < 2.6 0.000 +0.006 +0.003 +0.094 +0.221
yJB < 0.78 0.000 −0.073 −0.031 +0.053 −0.006

syst. error ↑ +0.000 +0.026 +0.024 +0.164 +0.261
syst. error ↓ −0.000 −0.081 −0.071 −0.038 −0.197

total error ↑ +0.000 +0.055 +0.088 +0.198 +0.301
total error ↓ −0.000 −0.094 −0.110 −0.117 −0.248

Table F.4: Cross sections, statistical and systematic errors as defined in Chap. 11 for xIP .

zobs
IP [0.2; 0.4] [0.4; 0.6] [0.6; 0.8] [0.8; 1.0]

dσ/dzobs
IP (nb) 21.9 60.9 88.9 34.9

stat. error ±2.4 ±3.6 ±3.8 ±1.3

zvtx + 5mm +0.8 +1.6 +4.0 +0.3
zvtx − 5mm +0.2 −0.0 +2.9 +0.0
Ezufo ↑ +0.0 −0.3 +1.3 −0.9
Ezufo ↓ +1.4 +0.2 +0.4 +0.6
ET corr. +0.8 −2.6 +0.6 −0.5
Eη > 500GeV +0.4 +0.2 −0.2 +0.0
Eη > 300GeV −0.5 +1.2 +0.2 −0.2
ηmax < 3.0 −1.4 −4.5 −1.6 −0.2
ηmax < 2.6 +1.6 +2.4 +5.0 +0.2
yJB < 0.78 +0.7 +1.4 −0.5 −0.9

syst. error ↑ +2.6 +3.4 +7.2 +0.8
syst. error ↓ −1.5 −5.2 −1.7 −1.4

total error ↑ +3.5 +5.0 +8.1 +1.5
total error ↓ −2.8 −6.3 −4.1 −1.9

Table F.5: Cross sections, statistical and systematic errors as defined in Chap. 11 for z obs
IP .
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for the range xγ < 0.75

Ejet1
T (GeV) [7.5; 9.5] [9.5; 11.5] [11.5; 13.5] [13.5; 15.5]

dσ/dEjet1
T (nb/GeV) 15.67 4.04 0.82 0.07

stat. error ±0.46 ±0.22 ±0.08 ±0.02

zvtx + 5mm +0.47 +0.04 +0.04 +0.00
zvtx − 5mm +0.20 +0.03 +0.01 +0.01
Ezufo ↑ −0.16 +0.02 −0.01 +0.00
Ezufo ↓ +0.27 −0.13 +0.08 +0.01
ET corr. −0.22 +0.04 +0.02 +0.00
Eη > 500GeV +0.05 −0.03 +0.01 +0.00
Eη > 300GeV +0.05 −0.03 +0.00 +0.00
ηmax < 3.0 −0.62 −0.00 +0.01 +0.00
ηmax < 2.6 +0.54 +0.14 +0.01 +0.00
yJB < 0.78 +0.05 −0.14 −0.05 +0.02

syst. error ↑ +0.79 +0.15 +0.09 +0.02
syst. error ↓ −0.68 −0.20 −0.05 −0.00

total error ↑ +0.92 +0.27 +0.13 +0.03
total error ↓ −0.82 −0.30 −0.10 −0.02

Table F.6: Cross sections, statistical and systematic errors as defined in Chap. 11 for E
jet1
T .

Ejet2
T (GeV) [6.5; 8.5] [8.5; 10.5] [10.5; 12.5] [12.5; 14.5]

dσ/dEjet2
T (nb/GeV) 16.88 3.34 0.37 0.02

stat. error ±0.46 ±0.22 ±0.07 ±0.01

zvtx + 5mm +0.44 +0.08 +0.03 +0.00
zvtx − 5mm +0.16 +0.07 +0.03 +0.00
Ezufo ↑ −0.12 −0.04 −0.00 +0.00
Ezufo ↓ +0.26 −0.08 +0.08 +0.00
ET corr. −0.37 +0.00 +0.00 +0.00
Eη > 500GeV +0.03 −0.02 +0.01 +0.00
Eη > 300GeV +0.06 −0.03 −0.01 +0.00
ηmax < 3.0 −0.57 −0.00 −0.02 +0.00
ηmax < 2.6 +0.57 +0.10 +0.02 +0.00
yJB < 0.78 −0.09 −0.10 +0.00 −0.00

syst. error ↑ +0.78 +0.15 +0.09 +0.00
syst. error ↓ −0.70 −0.14 −0.02 −0.00

total error ↑ +0.91 +0.27 +0.12 +0.01
total error ↓ −0.83 −0.26 −0.07 −0.01

Table F.7: Cross sections, statistical and systematic errors as defined in Chap. 11 for E
jet2
T .
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ηjet1 [−1.5;−1.0] [−1.0;−0.5] [−0.5; 0.0] [0.0; 0.5] [0.5; 1.0] [1.0; 1.5]

dσ/dηjet1 (nb) 2.12 14.60 25.04 24.81 13.32 3.32
stat. error ±0.47 ±0.98 ±1.20 ±1.10 ±0.73 ±0.39

zvtx + 5mm −0.16 +0.44 +0.59 +0.54 +0.51 +0.14
zvtx − 5mm +0.24 −0.19 +0.42 +0.29 +0.30 −0.03
Ezufo ↑ −0.11 +0.17 −0.56 +0.08 −0.11 −0.05
Ezufo ↓ −0.51 +0.27 +0.61 −0.04 +0.09 +0.47
ET corr. +0.13 −0.27 +0.35 −0.76 −0.00 −0.07
Eη > 500GeV +0.07 −0.00 +0.08 +0.16 −0.01 −0.16
Eη > 300GeV +0.01 +0.02 −0.19 +0.13 +0.06 +0.02
ηmax < 3.0 −0.12 −0.56 −1.11 −0.53 −0.11 −0.11
ηmax < 2.6 −0.16 +0.56 +0.82 +1.03 +0.29 +0.11
yJB < 0.78 −0.38 −0.21 −0.23 −0.47 +0.22 +0.21

syst. error ↑ +0.28 +0.78 +1.30 +1.22 +0.70 +0.54
syst. error ↓ −0.69 −0.69 −1.28 −1.04 −0.16 −0.21

total error ↑ +0.55 +1.25 +1.77 +1.64 +1.02 +0.67
total error ↓ −0.84 −1.19 −1.75 −1.51 −0.75 −0.44

Table F.8: Cross sections, statistical and systematic errors as defined in Chap. 11 for η jet1.

ηjet2 [−1.5;−1.0] [−1.0;−0.5] [−0.5; 0.0] [0.0; 0.5] [0.5; 1.0] [1.0; 1.5]

dσ/dηjet2 (nb) 3.78 13.80 17.96 22.25 17.15 7.71
stat. error ±0.55 ±0.88 ±0.94 ±1.05 ±0.91 ±0.67

zvtx + 5mm +0.41 +0.62 +0.22 +0.70 +0.43 −0.09
zvtx − 5mm +0.18 +0.29 +0.29 +0.22 +0.14 −0.09
Ezufo ↑ +0.25 −0.87 +0.34 −0.39 +0.14 +0.07
Ezufo ↓ +0.10 +0.08 +0.10 +0.17 +0.55 +0.01
ET corr. +0.16 −0.49 +0.33 −0.75 −0.22 +0.44
Eη > 500GeV −0.02 −0.17 −0.08 +0.16 +0.17 +0.01
Eη > 300GeV +0.04 +0.05 +0.08 +0.03 +0.07 −0.21
ηmax < 3.0 −0.21 −0.28 −0.40 −0.71 −0.45 −0.28
ηmax < 2.6 +0.45 −0.10 +0.66 +1.24 +0.28 +0.26
yJB < 0.78 +0.63 −0.62 −0.18 −0.38 +0.04 −0.03

syst. error ↑ +0.95 +0.69 +0.90 +1.46 +0.79 +0.51
syst. error ↓ −0.22 −1.22 −0.44 −1.17 −0.50 −0.37

total error ↑ +1.09 +1.12 +1.30 +1.80 +1.21 +0.84
total error ↓ −0.59 −1.51 −1.04 −1.57 −1.03 −0.77

Table F.9: Cross sections, statistical and systematic errors as defined in Chap. 11 for η jet2.
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T. Sjöstrand, Comp. Phys. Comm. 39, 347 (1986).

[47] B.E. Cox, J.R. Forshaw, Comp. Phys. Comm. 144, 104 (2002).

[48] G. Corcella et al., Journal of High Energy Phys. 01, 010 (2001);
G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H. Seymour and L. Stanco,
HERWIG version 5.9, 1996;
Alexander Kupco, Cluster Hadronization in HERWIG 5.9, 1999.

[49] ZEUS Collab., J. Breitweg et al., Eur. Phys. J. C 11, 35 (1999).

[50] M. Martinez, ZEUS-note 00-016 (2000).

[51] N. Tuning, ZEUS-note 01-021 (2001).

[52] J. Grosse-Knetter, Energy Correction for Islands (unpublished). ZEUS-97-039, internal
ZEUS Note, 1997.

[53] F. Jacquet and A. Blondel, Proceedings of the Study for an ep facility for Europe,
p. 391. (1979).

151



152 LIST OF TABLES

[54] J. Grosse-Knetter, ZEUS-note 98-031 (1998).

[55] J.H. Vossebeld, Dijet Photoproduction at High Transverse Energies (unpublished). PhD
Thesis, 1999;
M. Wing. Annecy, France (2000). Proceedings of the IX Int. Conf. on Calorimetry in
Part. Phys.

[56] A.H. Ochs. PhD Thesis, 2001.

[57] M. Wing, hep-ex/0206036 (2002).

[58] M. Corradi, M. Turcato, ZEUS-note 2004-005 (2004).

[59] M. Turcato, DESY-thesis 2003-039 (2003).
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