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Chapter 1

Introduction: Cryptography and

Hardware

In the past traditional communications were based on letters, payments were done using

checks or cash, and secret documents were saved in sealed boxes. Today everything is

changed, and is changing quickly. Everyday more people buy cell phones, the number

of e-mail users goes up, and more people pay their payments over the internet. Paperless

office strategies save and process documents in electronic format. These trends are going

to make the life easier but at the same time produce security risks. Traditional paper-

based systems have been developed during a long time, in parallel to suitable laws for

their security and reliability. The rapid development of electronic communication systems

requires a secure infrastructure, too. Cryptography is themathematical tool which is

used by security engineers to secure data against unauthorized access or manipulation.

Cryptography supplies the people, who are responsible for security, the required utilities

to hide data, control accesses to them, verify their integrity, and estimate the required cost

and time to break the security.

Like every other useful service, security will not be achieved for free. Implement-

ing cryptography tasks costs time, money, and energy. The focus of this work is about

1



2 Chapter 1-Introduction

the design of an FPGA-based1 elliptic curve cryptography co-processor (ECCo) and the

study of different techniques which can be used to increase its performance. Such a co-

processor can influence applications in different ways: By increasing the speed, it enables

more people to use the system in the same time and increases the availability. It can re-

duce the overall system costs. If energy consumption is minimized, this processor can

decrease the total energy, and for example increase the battery lifetime in cell phones.

Such improvements can be done in different levels as we see inChapter 2. Implementing

a fast co-processor, in this work, is done by studying the well-known methods in differ-

ent areas. But the proposed novel improvements concern finite field multiplication only.

This task is at the root of elliptic curve cryptography and every improvement in that can

influence directly the performance of the co-processor. Finite fields of characteristic2

are specially attractive for hardware designers since computation in these fields does not

produce a carry, which contributes to long and complicated paths in hardware designs. It

is the main reason that we study such fields.

There are two popular kinds of cryptographic protocols, namely public key and private

key protocols. In private key protocols, a common key is usedby both communication

partners and for both encryption and decryption. Among themare DES, IDEA, and AES.

These systems provide high speed but have the drawback that acommon key must be

established for each pair of participants. In public key protocols we have two keys, one is

kept private and used either for decryption (confidentiality) or encryption (signature) of

messages. The other key, the public key, is published to be used for the reverse operation.

RSA, ElGamal, and DSS are examples of public key systems. These systems are slower

than the symmetric ones, but they provide arbitrarily high levels of security and do not

require an initial private key exchange. In real applications, both types are used. The pub-

lic key algorithm first establishes a common private key overan insecure channel. Then

the symmetric system is used for secure communication with high throughput. When this

key expires after some time, a new key is established via the public key algorithm again.

1Field Programmable Gate Array
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Due to the comparative slowness of the public key algorithms, dedicated hardware

support is desirable. In the second chapter of this work, we present different structures

for FPGA-based implementations of a cryptographic co-processor using elliptic curves.

Then we will present some results about efficient finite field arithmetic which can be used

to improve the performance of such processors. FPGA-based cryptography co-processors

avoid a series of drawbacks of ASIC2 based systems:

• A cryptography algorithm is secure as long as no effective attack is found. If this

happens, the algorithm must be replaced. FPGAs facilitate afast and cost effective

way of exchanging the algorithm, in particular of switchingto a higher key length.

• In electronic commerce servers, cryptographic algorithmscan be exchanged often

for the purpose of adaption to the current workload, depending on the type of cryp-

tography that is mainly used (public key or symmetric key). This can be done by

exploiting the FPGAs reconfigurability.

• Elliptic curve cryptosystems possess several degrees of freedom like Galois field

characteristic, extension degree, elliptic curve parameters, or the fixed point gener-

ating the working subgroup on the curve. FPGAs allow for an effortless adaption

to changing security or workload requirements.

• The empirical results of testing various approaches on an FPGA may later be of

help in designing an efficient ASIC, where such experiments would be much more

costly.

1.1 Related Works and Document Structure

The contributions of the present work can be summarized in the following items:

• The comparison of the costs of polynomial and normal basis arithmetic in two-input

and FPGA models in Section 2.2.
2Application-Specific Integrated Circuit
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• Analyzing the effect of different point representations onthe performance of paral-

lel implementations of elliptic curve cryptography over fields of characteristic2 in

Sections 2.3 and 2.4.

• Implementing a very fast FPGA-based ECCo using parallel arithmetic units in Sec-

tion 2.5.

• Analyzing combinations of different recursive polynomialmultiplications to reduce

the area requirements of hardware implementations in Section 3.3.

• Decreasing the latency of pipelined recursive polynomial multipliers by decreasing

the recursion degree in Section 3.4.

• Introducing a new structure for efficient changing between polynomial representa-

tions and optimal normal bases of type II in special finite fields. This technique

which is introduced in Chapter 4 results in efficient normal basis multipliers which

are analyzed in that chapter.

Due to the importance of elliptic curve cryptography, thereare a lot of publications

in this area. The following paragraphs describe the document structure together with the

most important publications related to each chapter.

Chapter 1, this chapter, is the opening of the work and contains pointers to references

for further information. It begins with a very short introduction to cryptography and the

group of points on an elliptic curve, and is continued with anoverview of the structure of

the specific FPGAs which are used. These topics are followed with the definitions of the

cost parameters which are considered when designing the circuits. Finally this chapter is

concluded with some possible applications where the results of this work can be applied.

A sample application, a PCI-based cryptography co-processor, has been implemented and

the benchmarks are presented. It should be mentioned, that the materials in this chapter

are in no way, a complete text book about cryptography or FPGAs. We assume, that the

reader is familiar with finite fields and basic hardware methods like pipelining.
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Chapter 2 describes the steps of the design and implementation of an elliptic curve co-

processor (ECCo). The ECCo should be optimized to have smallarea. Comparisons have

been performed between multipliers which can be adapted to tight area constraints. Since

the target platforms are FPGAs, implementation costs have been compared in classical

circuit analysis models and other models which are closer tothe structure of the FPGAs

used. Some of the algorithms use a particular representation of points on an elliptic curve

called “mixed coordinates”. There are some computations considering the mixed coor-

dinates when fields of characteristic2 are used. These results can be derived from the

works of López & Dahab (1999b) and Cohenet al. (1998). Materials of this chapter

which are the results of cooperation with the working group AGTeich are already pub-

lished in Bednaraet al.(2002a) and Bednaraet al.(2002b). There are several other works

which describe the application of FPGAs for elliptic curve curve cryptography or finite

field arithmetic (see Gaoet al. (1999), Gregoryet al. (1999), Leong & Leung (2002),

Orlando & Paar (1999) and Lutz & Hasan (2004)). The distinguishing factor in our work

is the application of parallelism in both bit and finite field operations. As we will see in

Chapter 2, the area and time costs of finite field multipliers grow faster than linear when

the number of output-bits per clock-cycle is increased. This shows that it is always better

to use as many small parallel multipliers as possible instead of using a single multiplier

with a large number of output bits per clock cycle. Unfortunately the performance of the

FPGA-based systems depends on the platform used and a directcomparison is possible

only when considering the same target FPGA. From the above implementations the only

comparable work belongs to Lutz & Hasan (2004) which requires 0.233 ms for a point

multiplication on a generic curve overF2163 , when a clock frequency of66 MHz is used.

Our design on the other hand requires0.18 ms for a generic curve overF2191 with the

same clock frequency and on the same FPGA. It should be pointed out that their design is

optimized for the Koblitz curves (see Hankersonet al. (2003)) and not generic cases.

Chapter 3 can be considered the most important part of this thesis. It contains results

about applications of asymptotically fast multiplicationin hardware. These methods have
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been known for a long time but their high crossover points in software did not let design-

ers enjoy their high performance in practical situations. Software implementations of the

Karatsuba multipliers using general purpose processors have been discussed thoroughly

in the literature (see Paar (1994), Bailey & Paar (1998), Koc¸ & Erdem (2002), Hankerson

et al. (2003), Chapter 2, and von zur Gathen & Gerhard (2003), Chapter 8). There are,

on the contrary, only few publications about the hardware implementations. Junget al.

(2002) and Weimerskirch & Paar (2003) suggest the use of algorithms withO(n2) oper-

ations to multiply polynomials which contain a prime numberof bits. The number of bit

operations is, by a constant factor, smaller than the classical method and yet asymptoti-

cally larger than those for the Karatsuba method. Grabbeet al. (2003a) propose a hybrid

implementation of the Karatsuba method which reduces the latency by pipelining and by

mixing sequential and combinational circuits. The goal of this chapter is to present a

method to decrease the resource usage of polynomial multipliers by means of both known

algorithmic and platform dependent methods. This is achieved by computing the best

choice of hybrid multiplication algorithms which multiplypolynomials with at most8192

bits using six recursive methods, namely: classical, Karatsuba, a variant of Karatsuba

for quadratic polynomials, and three methods of Montgomery(2005) for polynomials of

degrees4, 5, and6, respectively. In addition to the above algorithmic, or machine inde-

pendent optimization we use a second type of optimization, which is machine-dependent,

to design a240-bit multiplier with small area-time cost. This240-bit multiplier covers

in particular the233-bit polynomials proposed by NIST for elliptic curve cryptography

(FIPS PUB 186-2 (2000)). Many of the materials of this chapter are new results and some

of them are published in Grabbeet al.(2003a), von zur Gathen & Shokrollahi (2005), and

von zur Gathen & Shokrollahi (2006). For example, finding theoptimum hybrid limits,

decreasing the number of recursive stages, and the code generator.

Chapter 4 describes the use of sub-quadratic multiplication methods for normal basis

arithmetic in finite fields. Amin Shokrollahi initiated the discoveries in this chapter. Nor-

mal bases are popularized in finite fields because of the ease of squaring but they have
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the drawback that multiplication in these bases is more expensive than in polynomial

bases. Multiplication in normal bases of small type has important applications in cryp-

tography, so that most of cryptography standards suggest the use of finite fields which

contain such bases (see FIPS PUB 186-2 (2000)). There are several works detailing the

implementation of these multiplications, starting with Omura & Massey (1986) which in-

troduced the Massey-Omura multiplier. Mullinet al.(1989) define optimal normal bases,

which minimize the area and the time complexities of this multiplier and Gao & Lenstra

(1992) specify exactly the finite fields for which optimal normal bases exist. Follow-

ing these works there are several proposals for the efficientmultiplications using optimal

normal bases and especially those of type2. The parallel Massey-Omura multiplier for

F2n can be implemented, with at leastn(3n − 2) gates, whereas multiplications of poly-

nomials of degreen − 1 is done, classically, using2n2 − 2n + 1 gates. Sunar & Koç

(2001) and Reyhani-Masoleh & Hasan (2002) decrease the costof type2 multiplication

to n(5n − 1)/2 by suitably modifying the Massey-Omura multiplier. Gaoet al. (2000),

on the other hand, decrease the multiplication cost in optimal normal bases of type2, as-

ymptotically, to2M(n), whereM(n) is the cost of multiplying two polynomials of degree

n− 1 (of lengthn). This allows the application of asymptotically fast polynomial multi-

plication methods for normal bases as well. The structure reported in Chapter 3 decreases

this cost asymptotically toM(n) +O(n logn) by the addition of a suitable small size cir-

cuit to a polynomial multiplier. This small circuit is used to convert from the normal basis

to an appropriate polynomial representation. A comparisonof the area of this multiplier

with the other proposed architectures in the literature shows its suitability for small area

implementations. Results of this chapter can also be used for efficient change of basis be-

tween the polynomial and the normal bases as a mechanism against side-channel attacks

(see Parket al. (2003)). Chapter 5 summarizes the results of this work.
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1.2 Cryptography

In this section we describe the two kinds of cryptography systems, namely public and

private key systems. The results of this work can be used in cryptography systems but

are not directly cryptographical results. Hence, we avoid formal definitions and limit

ourselves to brief explanations which are sufficient to represent applications of this work.

1.2.1 Private Key Cryptography

Almost all cryptographic protocols are based on the same principle. They contain a func-

tion which, by means of a parameter called the encryption key, can be easily computed.

The inverse of this function is hard to compute unless a trapdoor function (a second key

corresponding to the former one) is known. A general assumption made during the analy-

sis of the security of a system is that all information about the system except the trapdoor

key are known by the adversary. The previously mentioned group of public and private

key systems are based on the way these keys are generated and kept.

In a private key system encryption and decryption are done using the same key which

should be kept secret, otherwise the system is broken. Figure 1.1 shows a scenario where

communication is secured via a private key system. Here Eve does not know the private

key and cannot get any information even if she has access to the channel.

There are several private key algorithms like Rijndael (AES) and 3DES. Private key

systems are generally characterized by very high performance. But they cannot normally

be used alone. Their applications will be completed with public key cryptosystems which

are introduced in Diffie & Hellman (1976).

1.2.2 Public Key Cryptography

As we have already mentioned private key systems are generally very efficient but there

is the need for other kinds of cryptosystems in practice. Consider as an example the

setup in Figure 1.1. Alice and Bob have never met each other and their only connection
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Figure 1.1: A private key cryptography scenario

is a channel which is accessible to Eve. In this case they havenever the possibility of

establishing a common secret key using private key cryptosystems only. As another case

consider the scenario in which instead of Alice and Bob, a group of 1000 people want to

communicate with each other. In this case every user requires 999 keys and the overall

system requires999000 keys to be generated.

In public key cryptosystems encryption and decryption are done using two different

keys. One of the keys is published and the other is kept secret. When one party is going

to sign a message the encryption key is kept secret but the keyto verify the signature will

be published. On the other hand when a secret message is to be sent the encryption key

will be published while the key to open the message will be kept secret by the owner.

Figure 1.2 is an example for a public key system where the information should be kept

secret during transmission. In this system messages sent toa user are encrypted by his

encryption system and he is the only person who has access to the corresponding private

key and can decrypt the message.

There are several types of public key cryptosystems. A majorgroup of these systems

is based on the difficulty of solving the discrete logarithm problem or DLP for short. In

the next section we explain the elliptic curve variant of this problem.
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Figure 1.2: A public key cryptography scenario
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1.2.3 Elliptic Curves and the Discrete Logarithm Problem

LetE be an elliptic curve defined, in the affine version, by the Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

which is defined over a finite fieldK. It can be shown, that there is a group associated

with the points on this curve (see Silverman (1986), ChapterIII, Section 2, Page 55 for the

proof). The operation of this group, the addition of points,is defined in a special manner

which is shown in Figure 1.3. LetS andQ, in the part (a) of that figure, be two distinct

points on an elliptic curve. There is a straight line throughthese points which intersects

the curve in another third point,−R in that figure. The mirror of−R with respect to the

x-axis is a new point,R, which is defined as the sum ofS andQ. When a point is added

to itself the tangent line at that point is used instead, as shown in Figure 1.3-b. Like the

last case, the sum is computed as the mirror of the next intersection with respect to the

x-axis. As a common precept in group theory, here a zero element is needed. It can be

easily verified, that if the straight line through a point is parallel to they-axis, it intersects

the curve in the mirror of the original point with respect to thex-axis. Mirroring this point

results in the original point. The zero pointO is virtually defined to be in the infinity on

the y-axis to achieve a line which is parallel to they-axis for every point on the curve.

This point is generally called the “point at infinity”.

Now that we can add two points, distinct or equal, we can compute any integer mul-

tiple of a point. We call this operation the “point multiplication”. In this waynQ is the

point which is computed byn− 1 times addition of the pointQ to itself. Since the set of

points generate a group this product is well defined and does not depend on the way the

points are added together. The aim of our co-processor is to computenQ for a givenQ

and an integern, when the elliptic curve is already specified.

The DLP on elliptic curves is the problem of computingn from Q andnQ. It is gener-

ally assumed that, at least for general enough curves, this cannot be solved in polynomial

time, i.e., in a number of operations which is expressible ina polynomial of the bit-size
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−R

R

Q

S

(a)

Q
−R

R

(b)

Figure 1.3: (a) Addition and (b) doubling of points on an elliptic curve

of the finite field, i.e.,log2 #F . It should be pointed out that for some very special elliptic

curves the DLP is known to be easy (see Blakeet al. (1999), Chapter III, Section 3.2,

Page 37). We assume that the given finite field and the curve arenot of this form. Our

elliptic curves, for fields of characteristic2, are of the general form:

E : y2 + xy = x3 + ax2 + b,

with a, b ∈ F2n , b 6= 0.

To show where and how this project can be used, we describe some applications of

elliptic curve cryptography and how using an elliptic curveco-processor can improve the

performance of the system.

1.2.4 Applications

Key Establishment

Consider again the scenario presented in Figure 1.1. As we have already mentioned, if

Alice and Bob have never met each other they cannot agree upona secure and common

private key. Even if they establish a key and later doubt the security of this key (for

example if they find out Eve could recover some or all of bits ofthe key) they cannot
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change the key unless they have a secure channel or meet each other. A solution to the

key establishment problem has been suggested for the first time by Diffie & Hellman

(1976). This situation which is shown in Figure 1.4 makes useof the difficulty of solving

the DLP. It is assumed that Alice and Bob have already selected an elliptic curve and a

pointQ on it. The order of the group of points,n, is already known .

1 Alice selects a random number1 < r < n, computesrQ,

and sendsrQ to Bob.

2 Bob selects a random number1 < s < n, computessQ, and

sendssQ to Bob.

3 Alice and Bob usersQ as the common secret key for secure

communication using the private key system.

Figure 1.4: The Diffie-Hellman key establishment protocol using elliptic curves.

As we see Eve’s task should be computingrsQ from rQ andsQ. If the DLP were easy

to solve Eve could findr ands by observing the communication. But she could probably

solve her problem even without solving the DLP. It is conjectured that her task is as hard

as solving the DLP but, despite numerous efforts to prove this assertion, the general case

is still open (see e.g. Maurer (1994)).

Here all required operations except finding random numbers are multiplications on

elliptic curves which shows how useful an elliptic curve co-processor can be for this

application.

Digital Signatures

As another scenario consider a situation, where Bob receives a message from Alice. For

example a message that the key has been lost and a new session key has to be established.

How can Bob be sure that this message is from Alice? Could it not be the case that Eve

wants to completely redirect Bob’s communication with Alice to herself?
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A public key protocol has been suggested by ElGamal (1985), based on which the

digital signature standard (or DSS for short) has been proposed (see FIPS PUB 186-2

(2000)). Algorithms for signing and signature verifications in elliptic curve counterparts

of this scenario (ECDSA) are shown in Algorithms 1 and 2 respectively. The functionH

in these algorithms is some secure hash algorithm (FIPS recommends SHA); we do not

discuss security of hash functions here. For us at the moment, it is a function that takes a

sequence of bits and outputs a sequence of fixed length, say160 bits, with some specific

properties (see FIPS PUB 180-1 (1993) for more information).

Algorithm 1 Message signing in ECDSA
Input: An elliptic curve with a fixed pointQ on it, together with its ordern, the private

key1 < d < n− 1, the public keyR = dQ, and the messagem to be signed.

Output: The pair of integers(r, s) as the signature of the messagem.

1: Select a random integer1 < k < n− 1

2: ComputekQ = (x1, y1) andr = x1 mod n

3: if r = 0 then

4: Go to 1

5: end if

6: Computek−1 mod n

7: Computes = k−1(H(m) + dr) mod n

8: if s = 0 then

9: Go to 1

10: end if

11: return (r, s)

Here we see that the key generation has one elliptic curve multiplication and the sign-

ing and verification phases require one and two multiplications respectively. These are

operations which can be accelerated using elliptic curve co-processors.
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Algorithm 2 Signature verification in ECDSA.
Input: An elliptic curve with a fixed pointQ on it, together with its ordern, the public

key R = dQ, the messagem which is signed, and a pair of integers(r, s) as the

signature.

Output: TRUE if (r, s) is a valid signature form, FALSE otherwise.

1: Computec = s−1 mod n andH(m)

2: Computeu1 = H(m) · c mod n andu2 = r · c mod n

3: Computeu1Q + u2R = (x0, y0) andv = x0 mod n

4: if r = v then

5: OutputTRUE

6: else

7: OutputFALSE

8: end if

1.3 Hardware for Cryptography

In the last section we saw where elliptic curve cryptographycan be used. But is it really

necessary to build a special co-processor for it or all of ourproblems can be solved using

current processors to perform algorithms? In this section we consider two special cases

where co-processors can have important advantages which can not be achieved by only

using general purpose microprocessors.

1.3.1 Smart Cards

Smart cards are going to be a part of our life. A lot of our applications are done using smart

cards. Identifying ourselves in a mobile network is done using SIM cards (Subscriber

Identity Module). We use smart cards as insurance cards, bank cards, and in several other

applications. These are some chips with limited amounts of memory and small general

purpose processors. Implementations of cryptographic algorithms on these processors

are generally slow and require several operations but can bereduced to fewer ones when
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special purpose co-processors are used. These reductions save energy and time.

Another possibility is to extend the smart card microprocessor with some special arith-

metic modules. Results which are gathered in this project can be used in each of these

strategies.

1.3.2 Accelerator Cards

Another situation where a crypto co-processor can be usefulis in e-commerce servers. In

these applications the computational power is not so limited as in smart cards but there are

several requests which should be responded to simultaneously. In an e-commerce server

several users try to connect to a server and send requests forwhich a signature must be

generated or verified. At the same time users, who are alreadyconnected, send and re-

ceive information which should be encrypted. The processoris here not only responsible

for cryptographic algorithms but it should also process some other tasks like network

operations which are assigned to every server. Equipping a server with a cryptography

accelerator card will help the main microprocessor to concentrate on server operations.

Otherwise each user would face a long waiting delay for his jobs to be done.

1.3.3 FPGA

FPGAs or field programmable gate arrays are valuable tools which can help in several

design stages. On the one hand an FPGA module can be used to develop a prototyping

model. Developing an ASIC chip is very expensive because once a design is finished,

changing its structure requires a completely new chip. FPGAs give designers the oppor-

tunity to test the complete hardware (up to some timing limitations) for possible bugs and

problems.

On the other hand with the development of large and inexpensive FPGAs it is possible

to design the complete system in a single chip (an SoC, or a system on chip). These

systems perform all necessary operations and can be reconfigured at any time. A system
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Block SelectRAM CLB

Figure 1.5: A simplified version of a Virtex-II FPGA

which is developed and encounters a problem needs only to be reconfigured to solve the

problem. For our example with the accelerator card it is possible to make the co-processor

on an FPGA and modify it with respect to the workload during the operation.

The designs explained later, in Chapters 2 and 3, are implemented on the FPGAs from

Xilinx company. A simplified overview of the structure of an FPGA in the Virtex II family,

on which the designs are implemented, is shown in Figure 1.5.For complete information

about these FPGAs see the online documentation on the internet (Xilinx 2005). There

are several modules on such an FPGA, but we mention here only two of them which are

important in our designs.

Block SelectRAM memory modules provide large18 Kbit storage elements of dual-

port RAM. These modules can be separately read and written bytwo processor modules

and can be especially used as interfaces between processorsand co-processors.

The Virtex-II configurable logic blocks (CLBs) are organized in an array and are used

to build combinational and synchronous logic designs. EachCLB element is tied to a
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Figure 1.6: A simplified view of a single slice in a CLB of a Virtex-II FPGA

switch matrix to access the general routing matrix. A CLB element comprises4 similar

slices, with fast local feedbacks within the CLB. There are also fast connections between

each CLB and its neighbors. Each slice includes several parts from which the most im-

portant ones for our designs are: two4-input function generators, two single-bit D-type

registers, and two multiplexers. The arrangement of these parts is shown in Figure 1.6.

In this figure look-up tables (LUTs) are4-input modules which have a single-bit output.

These LUTs are each capable of implementing any arbitrarilydefined boolean function

of four inputs. The output of each LUT goes to the multiplexerand the register. The

multiplexer selects, whether the LUT or the register shouldbe connected to the output of

the slice. This configuration is helpful when designing pipelined circuits.

1.3.4 Circuit Parameters

The cost parameters which we use to compare different designs are the implementation

areas and the times required for the computation of results.We do not consider energy

efficient implementation techniques and do not use the consumed energy as a cost func-

tion. The area of a combinational circuit – a circuit containing no memory element – is
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expressed as the number of two-input gates. In FPGA-based circuits this parameter can

be compared with the number of LUTs since these blocks are responsible for the imple-

mentation of boolean functions in FPGAs. However, most of our designs use memory

elements and are sequential. The pipelined multipliers in Chapter 3 especially use regis-

ters of the slices. To make a fair comparison between two different circuits in the case

of sequential circuits, i.e., when timing and memory elements are important, we use the

number of slices for the comparisons. In this way we count both the number of boolean

function gates and the bit-registers.

The time parameter of a combinational circuit is computed asthe depth of the circuit.

This is the minimum allowable clock period, when this circuit is used without any further

modifications. For the FPGA-based implementations it is better to compute the time cost

as the product of the number of the clock cycles by the minimumallowable clock period.

The latter contains several parameters like the propagation delays of cascaded LUTs,

delay of routing resources including buffers in high fan-out nets, and setup times of the

registers. For the case of two-input gate model the number ofgates in the longest path

represents the time cost.

The best method to compare two circuits is to analyze their area and time costs in-

dividually. But in some situations one parameter is more important (or more expensive)

than the other. For example in a very small FPGA a much faster implementation which

does not fit on the FPGA is of no use. Here the fair measure of comparison, which is

also well established in the literature, is the product of area by time or AT. We use this

measure to compare circuits when there is a conflict between the two parameters. The

area-time measure has also another property which can be used for the comparison of

parallel implementations of a method. Considering a circuit to be a parallel algorithm the

area-time measure can be thought of as the consumed energy ofthat algorithm. Here the

area is the sum of the power of processors which will be dissipated in the computation

time. The energy of an ideal parallel implementation shouldbe equal to that of a serial

implementation, but there is often a penalty factor due to the parallelism. This measure
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JAVA application

JAVA security provider

ECDSAKeyPairGeneratorECDSASignature

JAVA Native Interface

Raptor card

Figure 1.7: Using the raptor card as an ECDSA co-processor

shows how good different parallel implementations of a serial algorithm are.

1.3.5 A Typical Scenario, ECDSA Accelerator Card

As a typical scenario we have used our FPGA-based implementation to be on a PCI

card in a PC. The system was designed to be JAVA compatible anddeveloped in such

a way that a programmer can access the processor functionalities through JAVA libraries.

The platform which we used was the Rapid prototyping platform (Raptor card) from the

working group AGRückert in the university of Paderborn. Inthe next section we describe

the specifications of the system.
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Digital Signatures in JAVA

The communication between JAVA applications and the ECCo isshown in

Figure 1.7. The JAVA application starts by instantiating two objects of type

ECDSAKeyPairGenerator and ECDSASignature which are derived from

DSAKeyPairGenerator andDSASignature in the JAVA security provider respec-

tively.

The classDSAKeyPairGenerator is a placeholder for classes which generate a

set of public and private keys once a security parameter (generally the key length) and the

algorithm are specified. In our implementation the securityparameter, which specifies

the extension degree of the finite field, can be only191. To use other parameters the co-

processor has to be synthesized again ,while the generationof the required VHDL-codes

can be done automatically. The generated key pair is returned in a structure which is

already defined by JAVA.

The classDSASignature contains virtual definitions of the necessary operations to

perform digital signature algorithm, namely signing and verifying the signature. Again

parameter passing is done in a standard way predefined by JAVA.

As we have already said these two classes contain only empty operations which have

to be implemented for a cryptography system in JAVA. Our implementations perform the

operations according to Algorithms 1 and 2. For the generation of a key pair only one

multiplication over the elliptic curve is required which isdone using the co-processor.

There are several other operations like generation of random numbers, long integer arith-

metic, and computing the SHA. These are performed using internal implementations of

JAVA.

The security objects which we have implemented communicatewith the card through

Java Native Interface (or JNI). JNI is a facility which is putinto JAVA systems to enable

them to access libraries in other languages like the C language.

The driver for the card which is developed in the working group AGTeich of the Uni-

versity of Paderborn is able to get a191-bit integer and a pointQ, start the card to perform
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Finite field F2191

Elliptic curve y2 + xy = x3 + ax+ b

a = 1

b = 7BC86E2102902EC4D5890E8B6B4981

FF27E0482750FEFC03

Number of points 156927543384667019095894735583461499581

5261150867795429199 · 4

Key generation time 3.6 ms

Signing time 3 ms

Verification time 4 ms

Table 1.8: The specifications of our PCI based ECDSA co-processor with the timings

achieved on a XCV2000e FPGA when the clock frequency is12.5 MHz.

the point multiplication, and return the result. This driver which has been developed using

C++ is a part of the system and is accessed through the JNI.

Some information about our design is shown in Table 1.8. In this table the parameter

b is the hexadecimal representation of that element inF2191 . The best software based time

known to us is about3.5 ms using a900 MHz UltraSPARC III processor3 (see Gupta

et al. (2004)). We know of no hardware implementation of ECDSA. Theperformance

of our ECDSA co-processor can be increased by implementing long integer arithmetic

in FPGA instead of using the JAVA inherent libraries. As it can be seen this system is

fairly fast even with a very slow clock frequency. Embeddingsuch a design in a handheld

device can result in energy saving which is an important parameter.

3The time is not accurate since it has been visually interpolated from a continuous curve.
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1.4 Conclusion

In this chapter, elliptic curve cryptography, the structure of FPGAs, and the parameters

used to compare different hardware designs were briefly reviewed. The structure of a test

elliptic curve digital signature (ECDSA) co-processor using an XCV2000e FPGA, has

also been studied and the benchmarks have been presented.
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Chapter 2

An FPGA-Based Elliptic Curve

Cryptography Co-Processor

2.1 Introduction

Elliptic curve cryptosystems are public key protocols whose security is based on the con-

jectured difficulty of solving the discrete logarithm problem on an elliptic curve.

AssumingQ to be a point of ordern on an elliptic curve it is desirable to compute

mQ, wherem is an integer smaller thann. This will be done by using several additions,

doublings, or possibly negations of points on the elliptic curve to achieve the result. These

operations boil down to arithmetic operations in the finite field K = Fqn , over which

the elliptic curve has been defined. In this work we concentrate on fields which have

characteristic 2, i.e.,q is a power of2.

The required computations to computemQ can be categorized at three levels. Each

requires thorough investigations to enable the design of a high performance elliptic curve

co-processor (see Figure 2.1):

25
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Scalar multiplication

Point addition and doubling

Finite field arithmetic

Figure 2.1: Three stages of performing elliptic curve pointmultiplication.

• Scalar multiplication: By scalar multiplication or point multiplication we mean

the combination of additions and doublings of points to computemQ for givenm

andQ. There are several methods like the additive variant of repeated squaring

or addition-subtraction chains which do this task usingO(logm) doublings and

additions (see Knuth (1998) and Morain & Olivos (1990)).

• Point addition and doubling: Multiplication of a point by a scalar consists of

several additions, doublings, and possibly negations of points on the elliptic curve.

Negation or computing−Q is almost free of cost but the other two operations are

more expensive. There are several representations of points of an elliptic curve

which influence point addition and doubling costs dependingon the platform used.

• Finite field arithmetic: Point coordinates which have to be processed during point

additions and doublings are elements of a finite fieldK. By accelerating opera-

tions in this field, we can improve the efficiency of point arithmetic and as an effect

increase the performance of the co-processor. This can be done by optimal selec-

tion of finite field representations and by the hardware structures which perform

addition, multiplication, and division in the field.

There are several published reports of efficient implementations of elliptic curve co-

processors. see Gaoet al.(1999), Gregoryet al. (1999), Leong & Leung (2002), Orlando

& Paar (1999), and Lutz & Hasan (2004)). The distinguishing factor in our work is the
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application of parallelism in both bit and finite field operations. Unfortunately the perfor-

mance of the FPGA-based systems depends on the platforms anda direct comparison is

possible only when the same target is used. Lutz & Hasan (2004) implemented their co-

processor on the same FPGA model as used in this project. Their system requires0.233

ms for a point multiplication on a generic curve overF2163 when the clock frequency is

66 MHz. The current design on the other hand requires0.18 ms for a generic curve over

F2191 with the same clock frequency and on the same FPGA. It should be pointed out that

their design is optimized for Koblitz curves (see Hankersonet al. (2003)) and not generic

curves.

This chapter is arranged in the following manner: Section 2.2 compares two popu-

lar finite field representations, namely the polynomial basis and the normal basis for the

efficiency of arithmetic, when elliptic curves are implemented. Section 2.3 compares dif-

ferent representations of points and their effect on the efficiency when parallel and serial

implementations are considered. Section 2.4 compares different methods of computing

an integer multiple of a point. Section 2.5 presents the data-path and important modules

in the implemented FPGA-based co-processor followed by thebenchmarks achieved in

Section 2.6. Finally Section 2.7 summarizes the results of the previous sections. Some

of the materials of this chapter have been already publishedin Bednaraet al.(2002a) and

Bednaraet al. (2002b).

2.2 Finite Field Arithmetic

It is known that the additive group of a finite fieldFqn can be represented as a vector space

of degreen overFq. In this manner elements ofF2n are represented by vectors of length

n consisting of0’s and1’s which can be added using XOR operations. The operations of

multiplication, squaring, and inversion depend highly on the selected basis.

There are three famous finite field representations, namely:polynomial, normal, and

dual bases. Arithmetic in dual bases requires a change of representation for each oper-
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ation. This makes these bases inefficient for cryptographicpurposes because the finite

fields which are used here are of significant size and conversion would be inefficient. We

consider only the two other bases in this section.

2.2.1 Polynomial and Normal Bases

One popular representation for finite fields is the polynomial basis. A polynomial basis of

F2n is a basis of the form(1, ω, ω2, · · · , ωn−1), whereω is a root of an irreducible poly-

nomialf(x) of degreen overF2. In this basis elements of the finite field are represented

by polynomials of degree smaller thann and operations are done by means of polynomial

arithmetic modulof(x).

Another representation for finite fields is the normal basis representation. Here a basis

of the form(α, α2, · · · , α2n−1
) is used for the finite fieldF2n . It is easily verifiable that

squaring in this basis can be done using only a circular shift. Multiplication in this basis

is more complicated than in the polynomial basis. Further information about finite fields

and bases can be found in several books, e.g., McEliece (1987).

2.2.2 Multiplication

Multiplication and inversion are the most resource consuming operations in elliptic curve

cryptography. However, although inversion requires more space and time than multipli-

cation it is possible to use a single inversion for the whole scalar multiplication by means

of appropriate point representations. It is also imperative to optimize the multiplication

algorithms.

Finite field multipliers, depending on the generated bits per clock cycle, can be grouped

into the three categories of serial, parallel, and serial-parallel multipliers. The general

structure of a finite field multiplier forF2n, together with the timings of the three groups

are shown in Figure 2.2.

We consider only parallel-in multipliers, meaning that thebits of the representations
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Multiplier

α (input) β (input)

γ (output)

clock

(a)

output: cτ(0) cτ(1) cτ(2)
· · ·

cτ(n−1)

clock: · · ·

n clock cycles

(b)

output:

cτ(0)

cτ(1)

cτ(2)

· · ·

clock: · · ·

1 clock cycle
(c)

output: C0 C1 C2 · · ·
Cm−1

clock: · · ·

m = d n
w
e clock cycles

(d)

Figure 2.2: (a) The general structure ofF2n multipliers, together with the timing dia-

grams of (b) serial, (c) parallel, and (d) serial-parallel multipliers of word-lengthw. The

elementsα andβ are multiplied to get their product,γ.
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of inputs are simultaneously loaded into the multiplier. This requires that each of the input

buses ben-bits wide. The clock signal, like other sequential designs, specifies the timing.

The rising edge of each clock cycle defines the beginning of one time-interval. The period

of the clock signal cannot be arbitrarily short. To see why consider the multiplier block

which contains both logic elements and flip-flops. When the inputs of a path, which

consists of logic elements only, are applied there is some time needed for its output to

be valid and the inputs should remain constant over this time. There is also the settling-

time requirement. The settling-time is the time during which the input-pin of a flip-flop

must remain stable before the sample-pin of the flip-flop is deactivated. The clock period

should not be shorter than the sum of these times. We refer to this sum by the “delay”

or the “minimum clock-period”. Obviously the multiplication time is the product of the

number of clock cycles and this delay.

Figure 2.2-b shows the timing of a serial multiplier. A serial multiplier generates each

of the output bits in one clock cycle, hence it requiresn clock cycles for a multiplication in

F2n . The sequence of output bits,cτ(0), cτ(1), · · · , cτ(n−1), i.e., the bits of the representation

of the productγ can have the same or the reverse ordering asc0, c1, · · · , cn−1.

Parallel multipliers, whose timing is shown in Figure 2.2-c, generate all of the output

bits in a single clock cycle. The output-bus is in this casen-bits wide. The serial-parallel

multipliers fill the gap between the serial and the parallel multipliers. They generate

w > 1 bits of output in each clock cycle1. These sets ofw bits are shown asC0, C1,

· · · , Cm−1 in Figure 2.2-d. The parameterw is henceforth referred to by “word-length”.

A serial-parallel multiplier of word-lengthw performs a multiplication inF2n in dn/we

clock cycles.

It should be mentioned that there are other parallel multipliers which requirek cycles

to compute the result, but in this time other data can be fed tothem to be processed. We

1Each serial multiplier can also be considered as a special case of serial-parallel withw = 1. The reason

for the separation of these two concepts in this text is that there are arithmetic methods which are serial but

do not possess any direct serial-parallel implementation.
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categorize them depending on their application. If they arepipelined multipliers and there

are several input values to be fed into these multipliers sequentially we group them as

parallel multipliers. The reason is that the multiplication of t values in this case requires

m + t − 1 cycles. The parametert becomes insignificant for large values ofm and

effectively only one clock cycle has been used. If on the other hand no new input can be

loaded during the multiplication, either due to the structure of the multiplier or because

there are not enough input-data available, we assume the multiplier to be serial-parallel.

In all of these cases the multiplication time is the minimum clock-period times the number

of clock cycles. Parallel multipliers are generally characterized by large area and delays.

They are used for small input lengths. Serial multipliers allow smaller area and shorter

delays. They are used when there is only a limited amount of area on the chip.

In this section we discuss only multipliers with low number of bits per clock cycle,

i.e., we assume that many clock cycles are required for a single multiplication. Some

parallel multipliers will be studied in the next two chapters. The multipliers which we

analyze in this section are linear feedback shift register (LFSR) and Massey-Omura (MO)

multipliers. These are the two most popular serial-parallel units for polynomial and nor-

mal bases respectively. We analyze and compare them in the following three models to

reflect different abstraction levels of a circuit (See Bednara et al. (2002a) and Bednara

et al. (2002b)).

• Theoretical 2-input gate: This is the most popular model in the literature. It is

very well suited to analyze the gate complexity of ASIC or VLSI based hardware

modules. But its time analysis results are inaccurate especially in FPGAs, since

they do not reflect the delay of buffers used in high fan-out paths or routing elements

which are used in FPGAs.

• FPGA 4-input LUT model: This is a more practical abstraction of many FPGA

based circuits. This model does not only compute the number of 4-input units



32 Chapter 2-FPGA-based Co-processor

(like LUTs2) but also estimates the propagation delays corresponding to buffers in

high fan-out nets. These results can be extracted from the timing analyzer before

running the “Place and Route” (par) program. This program isthe final part during

the synthesization of a circuit for FPGA implementation. When every block of the

hardware design is converted to segments which exist on the FPGA and a net-list

is generated, this program finds the appropriate positions and connections on the

target FPGA and generates a binary configuration file (the bitstream file) which can

be downloaded onto the FPGA.

• FPGA model: This description of the circuit contains real gate and time complex-

ities of the circuit when implemented on the platform FPGA. Space complexity

is computed as the number of used slices and timing complexity as the minimum

allowable period for the clock signal across the circuit multiplied by the number

of clock cycles required to compute the result. The clock period depends on the

propagation delay which contains delays of logic elements,high fan-out buffers,

and routing resources. The costs in this model will generally depend on the imple-

mented circuit which will not be unique due to the used nondeterministic place and

route algorithms. To achieve more convergent results we settight timing constraints

for “par”.

2-input Gate Model

The LFSR multiplier is best known because of its simplicity to perform finite field multi-

plication in polynomial basis. It generates, in its simplest form, a single bit of output in

each clock cycle, but can be easily extended to a serial-parallel multiplier. A schematic

diagram of such a multiplier forF2n is shown in Figure 2.3. In this figurem = d n
w
e,

wherew is theword-lengthor the number of generated bits per clock cycle.

2Lookup tables



2
.2

.F
in

ite
F

ield
A

rith
m

etic
33

B0 B1 · · · Bm−1 A0 A1 · · · Am−1

M M M

b(x) a(x)

b b

Overlap circuit

cn−1c1c0 · · ·+ + +b b

··
·

Feedback circuit

Figure 2.3: Schematic diagram of a serial-parallel LFSR multiplier



34 Chapter 2-FPGA-based Co-processor

At the beginning the polynomialsa(x) =
∑n−1

i=0 aix
i andb(x) =

∑n−1
i=0 bix

i are loaded

into the word registersA andB to generate
∑m−1

j=0 Ajx
jw and

∑m−1
j=0 Bjx

jw respectively,

where eachAj andBj are polynomials of degree smaller thanw. The word multipliers

M multiply the highest word of the registerB by the words ofA. The Overlap circuit adds

the coefficients of common powers with each other. In each clock cycle the registersB

andC will be shifted to right byw bits, which is equivalent to multiplying byxw. During

shifting C to right, some powers ofx will be generated which are greater than or equal

to n and should be converted to their representation in the polynomial basis. This will

be accomplished by the feedback circuit which hardwires these to smaller powers ofx

according to the polynomial basis representation ofxi for n ≤ i < n + w. The product

of a(x) andBk is a polynomial of degreen + w − 2 which is again larger thann − 1

whenw > 1. We call the action of converting the produced powers which are greater

thann − 1 into the polynomial basisP “Feed forwarding”. This task will also be done

using the “Feedback circuit”. Theorem 1 states the space andtime complexities of this

multiplier.

Theorem 1. LetP be a polynomial basis forF2n generated by the irreducible polynomial

f(x) ∈ F2[x]. In an LFSR multiplier of word lengthw for P the required number ofAND

gates ismw2 and the number ofXOR gates is

(w − 1)(mw − 1) + n− 1 +H(xw+n−1) + 2

w+n−2∑

i=n

H(xi).

Herem = d n
w
e andH(xi) is the Hamming weight, or the number of nonzero coefficients,

in the representation ofxi in the basisP.

Proof. Each of them word multipliers requirew2 AND and (w − 1)2 XOR gates. The

ith word multiplier computes the powersxw(i−1) to xw(i−1)+2w−2. Hence, theith & the

(i+ 1)st multipliers havew − 1 common coefficients. There arem− 1 overlap modules

which require in total(m − 1)(w − 1) XOR gates. Output bits of the overlap circuit can

be categorized into two groups, namely the powers smaller thann and the powers which
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are greater than or equal ton. Adding the first group to the contents of memory cells

during shifting in the registerC requiresn− 1 XOR gates (the constant coefficient has no

neighbor on the left side and requires no addition). But the other group should be com-

puted in the basisP and added to the register values. It will be done by
∑w+n−2

i=n H(xi)

XOR gates. Finally the feedback circuit has to increment the register values by the poly-

nomial basis representation of the high powers ofx generated by shift to right. It requires
∑w+n−1

i=n H(xi) XOR gates. Table 2.4 summarizes these results.

Module AND gates XOR gates

Word multipliers mw2 m(w − 1)2

Overlap circuit 0 (m− 1)(w − 1)

Overlap circuit

to registerC

x0 · · ·xn−1 0 n− 1

xn · · ·xw+n−2 0
∑w+n−2

i=n H(xi)

Feedback module 0
∑w+n−1

i=n H(xi)

Table 2.4: Number of gates in a serial-parallel LFSR multiplier.

The propagation delay depends on the distribution of ones inthe polynomialf(x). If

representations of no two different powersxi andxj for n ≤ i, j < n + w have the same

nonzero coefficients, the feedback circuit will contributeto an increment of at most two

gates. One for the power generated by the shifting and one from the parallel multipliers.

For an irreducible polynomialf(x) = xn+
∑r

i=1 x
n−si, wheresi is an ascending sequence

of positive numbers, this happens ifw < s1. For example for the two cases that the

irreducible polynomials are trinomials and pentanomialsr = 2, 4, respectively. The next

corollary computes the area and time complexities of the LFSR multiplier for small values

of w.
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Corollary 2. LetP be a polynomial basis forF2n generated by the irreducible polynomial

xn +
∑r

i=1 x
n−si, wheresi < sj if i < j. If the word lengthw is smaller thans1 then the

area and minimum clock periods of an LFSR multiplier in this basis are given by

i: ALFSR(n,P, w) = mw2 + (w − 1)(mw + 2r − 1) + n− 1 + r,

ii:

DLFSR(n,P, w) =







TA + 2TX if w = 1, and

TA + (3 + dlog2(w)e)TX if w > 1

respectively. HereTA is the delay of anAND gate, andTX is the delay of anXOR gate.

Proof. The area complexity (casei) can be computed by settingH(xi) to r in Theorem 1.

To compute the minimum clock period in case ii we observe thateach parallel multiplier

has a delay ofTA + dlog2(w)eTX . The overlap circuit, shift register adders, and feedback

circuit, according to what already mentioned for the casew < s1, result in a delay of2TX

for w = 1 and3TX if w > 1 (there is no overlap circuit ifw = 1).

It is also known that in a finite fieldF2n , in which an optimal normal basis of type2

exists, a Massey-Omura multiplier of word lengthw requireswn andw(2n− 2) gates of

typesAND & XOR respectively and has a propagation delay ofTA +(1+dlog2(n−1)e)TX

(See Koç & Sunar (1998)).

A comparison of the two multipliers in the 2-input gate modelfor F2191 is shown in

Figure 2.5. Here the computation time, as the product of the number of clock cycles by

the minimum clock-period, as a function of required area is plotted. Values are computed

for different word lengthsw. The polynomial basisP is generated using the irreducible

polynomialx191 + x9 + 1 andF2191 contains an optimal normal basis of type2. As it can

be seen the LFSR multiplier is dominant in all practical operating points.

Table 2.6 displays the comparison of the two multipliers in the 4-input LUT and FPGA

models3. The area in these two models are equal and the minimum clock-periods are

shown in the second and third columns for each multiplier respectively. It can be seen

3A Massey-Omura multiplier forw = 96 does not fit on our FPGA and no delay can be computed.
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from Table 2.6, that the delay grows faster than estimated when the multiplier gets larger.

An effect which is caused by the routing resources.

Bits per LFSR Massey-Omura

clock Slice Delay (ns) Delay (ns) Slice Delay (ns) Delay (ns)

(4-input LUT) (actual) (4-input LUT) (actual)

1 288 1.577 3.136 397 7.506 9.847

2 383 2.116 4.295 509 7.506 10.619

4 436 3.194 4.967 730 7.506 12.670

8 762 3.733 6.278 1172 7.506 15.666

16 1513 4.811 11.554 2052 7.506 18.403

32 2558 5.889 15.423 3814 7.506 16.568

48 3642 8.584 21.745 5584 7.506 26.720

64 4712 7.506 22.419 7347 7.506 26.886

96 6837 7.506 27.846 10847 – –

Table 2.6: Comparing the LFSR and Massey-Omura multipliersin F2191 implemented

on a XCV2000e FPGA. Delays are the minimum clock period in nano-seconds for the

4-input LUT model and the actual FPGA implementations respectively.

2.2.3 Squaring

Another important operation in elliptic curve cryptography is the squaring. It can be done

more efficiently than multiplication. For comparison we consider again two different

cases of normal and polynomial bases.

Normal Bases

Squaring an element which is represented in normal basis requires only a cyclic shift of

the corresponding vector. We assume the space and time complexities of this operation to



2.2. Finite Field Arithmetic 39

2-input gate 4-input LUT FPGA model

Space Delay Space Delay Space Delay

95 2TX 91 6.477ns 91 8.012ns

Table 2.7: Space and time complexities of squaring inF2191 using three different models.

be 0.

Polynomial Bases

Computing the square of a polynomial overF2 can be easily done by inserting zeros

between each two adjacent coefficients. The resulting polynomial should then be reduced

modulo the irreducible polynomial characterizing the basis. Some upper bounds for the

space and time complexities are reported in Wu (2000). If theirreducible polynomial

is of the formf(x) = xn + xk + 1 andk < n
2
, then reducing a general polynomial of

degree2n− 2 modulof(x) can be done using a circuit with at most2(n− 1) XOR gates.

The depth of the circuit would be at most2TX . Figure 2.8 shows the circuit to perform

squaring inF2191 . In this figure the circles in theith column show the input coefficients

which must be added to compute theith output-bit. For example the circles in the gray

box show that the coefficient ofx in the resulting polynomial is the sum ofa96 (for x192)

anda187 (for x374). Here the circles in the first row are the low-order coefficientsa0 to a95

of the original polynomial corresponding with the powers1 to x190.

This kind of squarer is especially attractive for FPGA basedcircuits where the struc-

ture of circuits can be modified in each design depending on the selected finite field. For

the case ofF2191 we have used the trinomialx191 + x9 + 1 to represent the finite field.

Results in three models are shown in Table 2.7.
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2.2.4 Inversion

There are generally two different methods for inversion in finite fields, namely the Euclid-

ean algorithm and Fermat’s theorem. Classical Euclidean algorithm requires one polyno-

mial division and two multiplications in each stage. There are at mostn stages to compute

the inverses inF2n. This fact makes it inefficient for hardware implementations. Instead

the binary Euclidean method is often used where only addition of polynomials is required

(see Guo & Wang (1998), Takagi (1998), and Shantz (2001)). The binary Euclidean al-

gorithm requires in the worst case2n clocks which cannot be reduced using more space.

We use here the second method which is based on the fact that:

x2n−2 = x−1 (2.1)

for any elementx ∈ F
×
2n. To compute the(2n − 2)th power of an element we use the

method by Asanoet al. (1989) and von zur Gathen & Nöcker (2003). Application of

this method toF2191 can be summarized as represented in Figure 2.9. As can be seen

an inversion requires10 multiplications and190 squarings independent of the finite field

representation.

2.3 Point Addition and Doubling

Point arithmetic is another building block for multiplication in elliptic curves. As it is

mentioned in Chapter 1, points on an elliptic curve togetherwith the point at infinityO

form an abelian group. There have been different proposals for point representations.

Each of them has its own advantages and drawbacks and some of them are suitable for

special implementation platforms. For a detailed survey ofdifferent representations in

prime finite fields see Cohenet al. (1998); López & Dahab (1999a) give a survey for

binary finite fields. We review such representations and their resource consumptions for

parallel implementations. Most of these works are already cited in Bednaraet al.(2002a)

and Bednaraet al. (2002b). In our analysis we count only the number of inversions and
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0: y1 ← x {x21−1}

1: y2 ← y2
1 · y1 {x22−1}

2: y3 ← y2
2 · y1 {x23−1}

3: y5 ← y22

3 · y2 {x25−1}

4: y10 ← y25

5 · y5 {x210−1}

5: y20 ← y210

10 · y10 {x220−1}

6: y40 ← y220

20 · y20 {x240−1}

7: y80 ← y240

40 · y40 {x280−1}

8: y85 ← y25

80 · y5 {x285−1}

9: y95 ← y210

85 · y10 {x295−1}

10: y190 ← y295

95 · y95 {x2190−1}

11: Output← y2
190 {x2191−2}

Figure 2.9: Sequence of multiplications and squarings for inversion inF2191

multiplications because of their higher costs compared to addition and squaring in FPGA

designs.

Parallel implementations are interesting both from hardware and software point of

views. It is shown in Section 2.2.2 that multiplication costs grow faster than linear when

the word length is increased. In hardware designs, this suggests breaking up large multi-

pliers into as many parallel multipliers4 as possible. Efficient arithmetic with processors

which contain several ALUs like C6000 DSP series requires parallel algorithms to be

developed. This would be also advantageous for better use ofpipeline stages in RISC

processors (see Hennesy & Patterson (2003)). An analysis ofpossible parallelism for

some special types of finite fields has been already describedby Smart (2001). We con-

sider here again only fields of characteristic2 since they are more suitable for hardware

implementations.

4We assume efficient communication inside the FPGA.
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2.3.1 Simple Representations

Possibly the most straightforward representation of points on elliptic curves is the affine

representation from which other representations can be derived. Here every point is

specified using two coordinatesx and y. We consider the general equation of a non-

supersingular elliptic curve over a field of characteristic2 according to Blakeet al.(1999),

namely:

y2 + xy = x3 + ax2 + b.

Two different pointsQ1 = (x1, y1) andQ2 = (x2, y2) can be added to result in a third

pointQ3 = (x3, y3) using the following formula ifx1 + x2 6= 0:

λ =
y1 + y2

x1 + x2
,

x3 = λ2 + λ+ x1 + x2 + a, (2.2)

y3 = (x1 + x3)λ+ x3 + y1.

The sum of two different points if the sum of theirx-coordinates is0 is the point at infinity,

or O.

The pointQ4 = (x4, y4) = 2Q1, if x1 6= 0, can be computed by:

λ =
y1

x1

+ x1,

x4 = λ2 + λ+ a = x2
1 +

b

x2
1

, (2.3)

y4 = (x1 + x4)λ+ x4 + y1.

If x1 = 0 thenQ4 will be the point at infinity.

As can be seen, each of the addition or doubling operations requires1 inversion,2

multiplications, and1 squaring or1 division,1 multiplication, and1 squaring. We denote

this cost by1I + 2M since the costs of addition and squaring in the field are negligible.

The second multiplication in each of these relations depends on the first one and they

cannot be performed in parallel.
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Representation Mappings Addition Doubling

x y costs depth costs depth

Jacobian (J) X/Z2 Y/Z3 16M 4M 5M 2M

López/Dahab (L) X/Z Y/Z2 13M 4M 4M 2M

Table 2.10: Some elliptic curve point representations withtheir corresponding costs.

A possibility to avoid inversion in each point addition and doubling is to use a projec-

tive point representation. In this casex andy from the affine representation are substituted

byX/Zm andY/Zn for some specific values ofm andn which result in different projec-

tive representations. All points(αX, αY, αZ) for α 6= 0 belong to the same equivalence

class which is represented by(X : Y : Z). Setting theZ-coordinate equal to1 results

in the sameX andY coordinates as the corresponding affine representation. The point at

infinity will be the equivalence class(0 : 1 : 0). Here we consider the most popular Ja-

cobian and the most efficient López-Dahab representations. Table 2.10 summarizes these

representations, their costs, and the length of the longestcomputation path when a parallel

implementation is used. It should be mentioned that the Jacobian addition can be done

with fewer multiplications, but that implementation has larger depth and is not efficient

for parallel implementation. Data dependency diagrams forsome of these representations

are shown in Figures 2.11, 2.12, 2.13, and 2.14.

2.3.2 Mixed Representations

Mixed representations for elliptic curves have been independently published by Cohen

et al. (1998) and López & Dahab (1999b) for prime and binary finite fields respectively.

Indeed the work by Cohenet al. (1998) is more general and can be applied to simple

double-and-add and addition-subtraction chains as well asother sophisticated methods

like Brauer methods (see Brauer (1939)). Because of memory limitations in FPGA cir-

cuits we do not consider windowing methods and discuss parallel implementation of the

method by López & Dahab (1999b) only.
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Figure 2.11: Data dependency of parallel implementation ofpoint addition in Jacobian

representation
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Representation Addition Doubling

costs depth costs depth

Mixed Jacobian (J) 12M 4M 5M 2M

Mixed López/Dahab (L) 10M 4M 4M 2M

Table 2.15: Addition and doubling costs for mixed representation arithmetic over elliptic

curves.

The mixed López-Dahab and mixed Jacobian addition methodsare other kinds of

projective additions in which theZ coordinate of one of the points is set to1. In this

way some multiplications and squarings can be saved resulting in new addition formulas

which are shown in Figures 2.16 and 2.17. The new costs are shown in Table 2.15.

2.4 Scalar Multiplication

Scalar multiplication or the task of computingmQ, for a given integerm and a pointQ,

consists of many additions, doublings, and possibly negations which must be combined

together. The selected method to perform these simpler operations depends on several
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López/Dahab representation

parameters like the point arithmetic costs and the amount ofavailable memory (for pre-

computation and intermediate results). FPGAs have only limited amount of memory, and

these memory blocks (see Block SelectRAM in Section 1.3) aredistributed across the

FPGA. Accessing these memory cells is one of the slowest operations inside FPGAs.

Hence, we limit our study to methods which do not require precomputations.

There are three methods which can be applied here: The “double and add” and the

“addition-subtraction chains” methods which are thoroughly investigated in the litera-

ture (see Knuth (1998), Morain & Olivos (1990), and Otto (2001)), and the Montgomery

method which is developed by Montgomery (1987). López & Dahab (1999a) have used

the closed form formulas of point addition and doubling in affine representation to ap-

ply the method to fields of characteristic2. The “double and add” method requires on

averagen doublings andn/2 additions for multiplication ofQ by an bit random num-

ber. Addition-subtraction chains which are introduced by Morain & Olivos (1990) insert

subtractions into addition chains. These structures decrease the number of operations to

n doublings andn/3 additions on average. The Montgomery method requires exactly

n doublings andn additions for the complete multiplication, which is more than other

methods, but in each of these operations, onlyX andZ coordinates have to be com-
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in Jacobian representation
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whichx is thex-coordinate of the difference of the two points which are added together.
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puted. The computation of theY coordinate is postponed to the last stage. Figure 2.4

compares the average number of required multiplications inthe best method for each of

these representations. In part (a) of this figure the averagenumber of multiplications are

compared whereas in part (b) the average number of cascaded multiplications in parallel

implementations is shown.

Data dependency diagrams for addition and doubling in the Montgomery method are

shown in Figures 2.18 and 2.19, respectively. In Figure 2.18two pointsR andS are added

such thatR− S = Q andx thex-coordinate ofQ is already known.
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Figure 2.20: Average numbers of (a) total and (b) cascaded finite field multiplications

to multiply a point on an elliptic curve by a random scalarm, (2190 < m < 2191),

when addition-subtraction chains are used for the parallelversions of Jacobian and López-

Dahab methods.
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2.5 FPGA-Based Co-Processor

As we have seen in Section 2.4 if precomputation is avoided the Montgomery method

results in the best performance. Based on this observation we have implemented an ECCo

(Elliptic Curve Co-processor) (see Bednaraet al. (2002a) and Bednaraet al. (2002b)).

There are several such implementations, see Gaoet al. (1999), Orlando & Paar (2000),

and Goodman & Chandrakasan (2001) for example. The distinguishing factor in our

work is the deployment of parallel units. Because of different platform FPGAs, a direct

comparison of these implementations is not possible. But wehave shown in Section 2.2.2

that parallel small multipliers (as long as parallelism is possible) would result in a better

performance than larger multipliers.

2.5.1 Data-path Architecture

The generic data-path architecture for the co-processor isshown in Figure 2.21. It is based

on the implementation of Daldrup (2002) which uses the mixedrepresentation. Flexibility

due to finite field extension is achieved by using “generic” parameters. Modules which

could not be parameterized using VHDL structures are produced by means of code gen-

erators which are written in C++.

Modularity of the structure makes it flexible to meet variousperformance/area con-

straints which we describe in subsequent sections. This structure also lets prototyping

of other point representations by modifying the state machine. Particular modules of the

system are described in the following paragraphs:

• Dual port RAM

This memory stores input and output data together with the intermediate results of

computations. This module is implemented using the Block SelectRAM modules

which are briefly explained in Section 1.3. The width of its I/O buses is equal

to the extension degreen of the selected finite fieldF2n since it should store and

load polynomials of degrees smaller thann. One of its ports will be written by
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Figure 2.21: Data-path structure.

a host processor interface module and the other one will be connected through a

multiplexer to the arithmetic modules.

• Multiplexer

There are three groups of data buses in the processor, mainly:

– input data to the dual port RAM which are also the outputs of arithmetic units,

– output data from the dual port RAM,

– and input data to the arithmetic units.

Saving and loading data to and from the dual port RAM is alwaystime consuming.

It requires at least two clock cycles and it is sometimes moreefficient to load an

arithmetic unit directly from another or the same module. The multiplexer decides

which of the first two data lines should be used to load each arithmetic module.

• Adders

This module consists of two adders, each of them having two input buffers and one

output buffer. Each input buffer requires one clock cycle tobe loaded. Addition

which is only a bitwise XOR combination will be done in one clock cycle. The

code uses “generic” parameters.
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• Squarers

There are two squarers which can be used in parallel. Their input-output structures

are like those of adders. They are generated using a code generator for each field

extension.

• Multipliers

As we have already seen at most two multipliers can be deployed at the same

time during the Montgomery algorithm. The multipliers are the most time and area

consuming elements in our design. They are LFSR multiplierswhich are generated

using a code generator. They are flexible both with respect topolynomial length

and parallelism degree. So if there is more space on the platform FPGA, the word-

length of the multipliers can be increased. But it should be taken into account that

this structure uses extra clock cycles to load and save from and into register files

and is effective as long as the multipliers require several clock cycles.

• Control module

This is probably the most complicated module in our ECCo. It controls the over-

all point multiplication and consists of several other submodules. So we devote a

complete section to it.

2.5.2 Control Module

This part is responsible for performing the Montgomery multiplication algorithm. The

required sequence of point additions and doublings of this algorithm is shown in Algo-

rithm 3 in whichk = dlog2 ne. The point additions and doublings can be in any represen-

tations and they-coordinate needs to be computed only in the last stage. We use additions

and doublings as stated in Figures 2.18 and 2.19.

This module consists of a state machine, performing Algorithm 3, which communi-

cates with several other submodules as shown in Figure 2.22.These different submodules

are described as follows:
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Algorithm 3 The Montgomery point multiplication algorithm expressed in point level.
Input: An elliptic curve with a fixed pointQ on it, together with the binary representation

of the scalar multiplierm as(mk−1mk−2 . . .m1m0)2.

Output: mQ

1: Q1 ← Q, Q2 ← 2Q

2: for i from k − 2 downto 0 do

3: if mi = 1 then

4: Q1 ← Q1 + Q2, Q2 ← 2Q2

5: else

6: Q2 ← Q1 + Q2, Q1 ← 2Q1

7: end if

8: end for

A
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ouble

C
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pute Y

Control line mux.

Control
module

Counter

Shift register

Address

Hardwired
addresses

Indirect addresses

DPRAM address

Control+Address lines

Figure 2.22: The structure of the control module in ECCo.
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• Counter

The counter in the control module takes care of the number of iterations in Algo-

rithm 3 to be exactlydlog2 ne − 1 whenn is the order of the group of points on the

elliptic curve.

• Shift register

This register will be directly loaded from the dual port RAM and contains the

multiplier m. By each repetition of Algorithm 3 this register will be shifted to

right. The LSB of this register is the decision criterion forthe control module state

machine.

• Control module state machine

This state machine controls the overall operation of the processor. It starts other

modules, gives the control to them, and waits for their terminations.

• Add, Double, and Compute Y

These state machines perform the operations addition, doubling, and computing the

y-coordinate. The latter will be activated only once during the total point multipli-

cation. Each of these operations will be started with the command of the control

module state machine, which at the same time gives the control of all of the proces-

sor elements to these modules. After finishing, they activate a signal in the main

state machine which takes their control back by changing theaddresses of the con-

trol line multiplexer.

• Control line multiplexer

There is a single control bus in the processor which consistsof address lines for

the dual port RAM, commands to arithmetic units, and their ready status signals.

The control module state machine can change the master of this bus by activating

the corresponding address in this multiplexer.
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• Address multiplexer

As stated above there is a single control line in the processor. The point additions

and doublings in Algorithm 3 consist of the same operations which are performed

on different variables. Results should also be written backto different addresses.

This is done during an indirect addressing process. The control module state ma-

chine puts the addresses of the arguments and return values on the indirect address

line inputs of the multiplexer. The module which controls the processor can select

these addresses by activating the indirect address line on this multiplexer.

2.6 Benchmarks

Using the above structure on a XCV2000e FPGA we have performed a complete point

multiplication overF2191 in 0.18 ms using clock frequency of66 MHz. Our finite field

multipliers generate64 bits in one clock cycle. Since the performance of hardware im-

plementations depends on the amount of used area we can compare our results to Lutz

& Hasan (2004) only, which is on the same FPGA and the same clock frequency. Their

implementation, which is optimized for Koblitz curves, requires0.238 ms for a point mul-

tiplication on a generic curve overF2163 . As a measure of comparison, one of the known

running times for point multiplication in software is givenby Hankersonet al. (2000),

where a point multiplication inF2163 is done in3.24 ms. Assuming a cubic growth factor

for the point multiplication (quadratic for finite field multiplications times linear for the

size of the scalarm) these hardware and software times can be extrapolated to0.38 and

5.21 ms over our fieldF2191 , respectively. The above hardware implementation resultsare

summarized in Table 2.23.
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Implementation Multiplication time

Lutz & Hasan (2004) forF2163 0.238 ms

Extrapolating the results of Lutz & Hasan (2004) toF2191 0.38 ms

Our results forF2191 0.18 ms

Table 2.23: Comparisons of different elliptic curve scalarmultiplication times on a

XCV2000e FPGA with a clock frequency of66 MHz. To extrapolate the multiplication

time of Lutz & Hasan (2004) forF2191 we have used a cubic growth factor.

2.7 Conclusion

This chapter presents the stages of the design and implementation of an FPGA-based

co-processor for elliptic curve cryptography. It is shown how optimizations in different

levels of finite field arithmetic, point addition and doubling, and scalar multiplication can

be combined to achieve a high performance co-processor. Here the scalar multiplication

refers to the sequence of additions and doublings which compute an integer multiplier of

a point. Finally the data-path of the designed co-processortogether with the benchmarks,

when implemented on a XCV2000e FPGA are presented and compared with a published

result on a similar FPGA. The topics of this chapter are:

• Polynomial and normal bases as two popular finite field representations are com-

pared. This comparison is made for the costs of arithmetic infinite fields for the

special case of elliptic curve cryptography using generic curves. It is shown that,

especially when serial-parallel multipliers are used, polynomial bases are always

better than normal bases.

• Several point representations and their effect on the efficiency of point addition and

doubling are compared. The mixed representations of pointsare discussed.

• The double-and-add, addition-subtraction chains, and theMontgomery method for

point multiplication are compared. It is shown that, the Montgomery method re-
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quires fewer operations than the other two methods, since itdoes not compute the

y-coordinate at each iteration.

• The structure of an FPGA-based co-processor using the Montgomery method to-

gether with the benchmarks, when implemented on a XCV2000e FPGA, are pre-

sented.



Chapter 3

Sub-quadratic Multiplication in

Hardware

3.1 Introduction

As mentioned in Chapter 2, arithmetic and in particular multiplication in finite fields are

central algorithmic tasks in cryptography. The multiplication in our case, in finite fields of

characteristic2, can be achieved by multiplying two polynomials overF2 followed by a

reduction modulo the irreducible polynomial defining the field extension. This reduction

can be done again using multiplications or very small circuits.

Classical methods for multiplying twon-bit polynomials requireO(n2) bit operations.

The Karatsuba algorithm reduces this toO(nlog2 3) (see Karatsuba & Ofman (1963)). The

Fast Fourier Transformations (FFT) with a cost ofO(n logn loglog n) and the Cantor

multiplier with a cost ofO(n(logn)2(loglogn)3) are efficient for high extension degrees

and therefore are not studied here for applications to cryptography (see Cantor (1989) and

von zur Gathen & Gerhard (1996)).

In this chapter hardware implementations of the Karatsuba method and its variants are

studied. Even the Karatsuba method which has the lowest crossover point with the clas-

sical algorithm is asymptotically good and thus efficient for large degrees. Sophisticated

61
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implementation strategies decrease the crossover point between different algorithms and

make them efficient for practical applications.

Efficient software implementations of the Karatsuba multipliers using general pur-

pose processors have been discussed thoroughly in the literature (see Paar (1994), Bailey

& Paar (1998), Koç & Erdem (2002), Hankersonet al. (2003), Chapter 2, and von zur

Gathen & Gerhard (2003), Chapter 8). Hardware implementations to the contrary have

attracted less attention. Junget al.(2002) and Weimerskirch & Paar (2003) suggest to use

algorithms withO(n2) operations to multiply polynomials which contain a prime number

of bits. Their proposed number of bit operations is by a constant factor smaller than the

classical method but asymptotically larger than those for the Karatsuba method. In Grabbe

et al.(2003a) we have proposed a hybrid implementation of the Karatsuba method which

reduces the latency by pipelining and by mixing sequential and combinational circuits.

The goal of this chapter is to decrease the resource usage of polynomial multipliers

by means of both known algorithmic and platform dependent methods. This is achieved

by computing the best choice of hybrid multiplication algorithms which multiply polyno-

mials with at most8192 bits. This choice is restricted to six recursive methods, namely:

classical, Karatsuba, a variant of Karatsuba for quadraticpolynomials, and three methods

of Montgomery (2005) for polynomials of degrees4, 5, and6, respectively. The “best”

refers to minimizing the area measure. This is an algorithmic and machine independent

optimization. The240-bit multiplier of Grabbeet al. (2003a) is re-used here, which was

implemented on a XC2V6000-4FF1517-4 FPGA, to illustrate a second type of optimiza-

tion, which is machine-dependent. The goal is a240-bit multiplier with small area-time

cost. A single30-bit multiplier is put on the used FPGA and three Karatsuba steps are ap-

plied to get from240 = 23·30 to30 bits. This requires judicious application of multiplexer

and adder circuitry, but the major computational cost stillresides in the30-bit multiplier.

Twenty seven(33) small multiplications are required for one240-bit product and these

inputs are fed into the single small multiplier in a pipelined fashion. This has the pleasant

effect of keeping the total delay small and the area reduced,with correspondingly small
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propagation delays. This240-bit multiplier covers in particular the233-bit polynomials

proposed by NIST for elliptic curve cryptography (FIPS PUB 186-2 (2000)).

Substantial parts of this chapter have been published in Grabbeet al.(2003a), Grabbe

et al. (2003b), von zur Gathen & Shokrollahi (2005), and von zur Gathen & Shokrollahi

(2006).

The structure of this chapter is as follows. First the Karatsuba method and its cost

are studied in Section 3.2. Section 3.3 is devoted to the optimized hybrid Karatsuba

implementations. Section 3.4 shows how a hybrid structure and pipelining can improve

resource usage in the circuit of Grabbeet al. (2003a). Section 3.5 analyzes the effect

of the number of recursion levels on the performance. Section 3.6 briefly describes the

structure of our developed code generator for the used combinational pipelined multiplier,

and finally Section 3.7 concludes this chapter.

3.2 The Karatsuba Algorithm

The three coefficients of the product(a1x + a0)(b1x+ b0) = a1b1x
2 + (a1b0 + a0b1)x+

a0b0 are “classically” computed with4 multiplications and1 addition from the four input

coefficientsa1, a0, b1, andb0. The following formula uses only3 multiplications and4

additions:

(a1x+ a0)(b1x+ b0) = a1b1x
2 + ((a1 + a0)(b1 + b0)− a1b1 − a0b0)x+ a0b0. (3.1)

We call this the2-segment Karatsuba method orK2. Settingm = dn/2e, twon-bit poly-

nomials (thus of degrees less thann) can be rewritten and multiplied using the formula:

(f1x
m + f0)(g1x

m + g0) = h2x
2m + h1x

m + h0,

wheref0, f1, g0, andg1 arem-bit polynomials respectively. The polynomialsh0, h1, and

h2 are computed by applying the Karatsuba algorithm to the polynomialsf0, f1, g0, and

g1 as single coefficients and adding coefficients of common powers of x together. This
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method can be applied recursively. The circuit to perform a single stage is shown in

Figure 3.1.

f1 f0
g1 g0

×High multiplier + + × Low multiplier

× Middle multiplier

+ −

+−

Overlap circuit

h2 h1 h0

Figure 3.1: The circuit to perform one level of the Karatsubamultiplication

The “overlap circuit” adds common powers ofx in the three generated products. For

example ifn = 8, then the input polynomials have degree at most7, each of the poly-

nomialsf0, f1, g0, andg1 is 4 bits long and thus of degree at most3, and their products

will be of degree at most6. The effect of the overlap module in this case is representedin

Figure 3.2, where coefficients to be added together are shownin the same columns.

f1g1

f0g1 + f1g0

f0g0

x14 x13 x12 x11 x10 x9 x8

x10 x9 x8 x7 x6 x5 x4

x6 x5 x4 x3 x2 x1 x0

Figure 3.2: The overlap circuit for the8-bit Karatsuba multiplier

Figures 3.1 and 3.2 show that we need three multiplication calls at sizem = dn/2e

and some adders:2 for input, 2 for output, and2 for the overlap module of lengthsm,

2m − 1, andm − 1 respectively. Below we consider various algorithmsA of a similar

structure. We denote the size reduction factor, the number of multiplications, input adders,

output adders, and the total number of bit operations to multiply two n-bit polynomials in
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A by bA, mulA, iaA, oaA, andMA(n), respectively. Then

MA(n) = mulA M(m) + iaA m+ oaA (2m− 1) + 2(bA − 1)(m− 1), (3.2)

wherem = dn/bAe andM(m) is the cost of the multiplication call form-bit polynomials.

ForA = K2, this becomes:

MK2(n) = 3 M(m) + 8m− 4, m = dn/2e.

Our interest is not the usual recursive deployment of this kind of algorithms, but rather

the efficient interaction of various methods. We include in our study the classical multi-

plicationCb on b-bit polynomials and algorithms for3, 5, 6, and7-segment polynomials

which we callK3 (3-segment Karatsuba, see Blahut (1985), Section 3.4, page 85), M5,

M6, andM7 (see Montgomery (2005)). The parameters of these algorithms are given in

Table 3.3.

AlgorithmA bA mulA iaA oaA

K2 2 3 2 2

K3 3 6 6 6

M5 5 13 22 30

M6 6 17 61 40

M7 7 22 21 55

Cb, b ≥ 2 b b2 0 (b− 1)2

Table 3.3: The parameters of some multiplication methods

3.3 Hybrid Design

For fast multiplication software, a judicious mixture of table look-up and classical, Karat-

suba and even faster (FFT) algorithms must be used (see von zur Gathen & Gerhard

(2003), chapter8, and Hankersonet al. (2003), chapter2). Suitable techniques for hard-

ware implementations are not thoroughly studied in the literature. In contrast to soft-

ware implementations where the word-length of the processor, the datapath, and the set
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of commands are fixed, hardware designers have more flexibility. In software solutions

speed and memory usage are the measures of comparison whereas hardware implementa-

tions are generally designed to minimize the area and time, simultaneously or with some

weight-factors. In this section we determine the least-cost combination of any basic rou-

tines for bit sizes up to8192. Here, cost corresponds to the total number of operations in

software, and the area in hardware. Using pipelining and thestructure of Grabbeet al.

(2003a) this can also result in multipliers which have smallarea-time parameters.

We present a general methodology for this purpose. We start with a toolboxT of

basic algorithms, namelyT = {classical, K2, K3,M5,M6,M7}. EachA ∈ T is defined

for bA-bit polynomials. We denote byT∗ the set of all iterated (or hybrid algorithms)

compositions fromT; this includesT, too.

Figure 3.4 shows the hierarchy of a hybrid algorithm for12-bit polynomials using our

toolbox T. At the top level,K2 is used, meaning that the12-bit input polynomials are

divided into two6-bit polynomials each andK2 is used to multiply the input polynomi-

als as if each6-bit polynomial were a single coefficient.K2C3 performs the three6-bit

multiplications. One of these6-bit multipliers is circled in Figure 3.4 and unravels as

follows:

(a5x
5 + · · ·+ a0) · (b5x

5 + · · ·+ b0) =

((a5x
2 + a4x+ a3)x

3 + (a2x
2 + a1x+ a0))

· ((b5x
2 + b4x+ b3)x

3 + (b2x
2 + b1x+ b0)) =

(A1x
3 + A0) · (B1x

3 +B0) = A1B1x
6+

((A1 + A0)(B1 +B0)− A1B1 − A0B0)x
3 + A0B0

Each ofA1B1, (A1 + A0)(B1 + B0), andA0B0 denotes a multiplication of3-bit polyno-
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mials and will be done classically using the formula

(a2x
2 + a1x+ a0)(b2x

2 + b1x+ b0) = a2b2x
4+

(a2b1 + a1b2)x
3 + (a2b0 + a1b1 + a0b2)x

2+

(a1b0 + a0b1)x+ a0b0.

Thick lines under eachC3 indicate the nine1-bit multiplications to performC3. We

designate this algorithm, for12-bit polynomials, withK2K2C3 = K2
2C3 where the left

hand algorithm, in this caseK2, is the topmost algorithm.

K2

K2 K2 K2

C3 C3 C3 C3 C3 C3 C3 C3 C3

Figure 3.4: The multiplication hierarchy forK2K2C3

As in (3.2), the cost of a hybrid algorithmA2A1 ∈ T∗ with A1, A2 ∈ T∗ satisfies

MA2A1(n) ≤mulA2 MA1(m) + iaA2 m+

oaA2 (2m− 1) + 2(bA2 − 1)(m− 1), (3.3)

whereMA(1) = 1 for anyA ∈ T∗ andm = dn/(bA2bA1)e = ddn/bA2e/bA1e. Each

A ∈ T∗ has a well-defined input lengthbA, given in Table 3.3 for basic tools and by mul-

tiplication for composite methods. We extend the notion by applyingA also to fewer than

bA bits, by padding with leading zeros, so thatMA(m) = MA(bA) for 1 ≤ m ≤ bA. For

some purposes, one might consider the savings due to such a-priori-zero coefficients. Our

goal, however, is a pipelined structure where such a consideration cannot be incorporated.

The minimum hybrid cost overT is

M(n) = min
A∈T∗,bA≥n

MA(n).
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We first show that the infinitely many classical algorithms inT do not contribute to

optimal methods beyond size12.

Lemma 3. ForA ∈ T∗ and integersm ≥ 1 andb, c ≥ 2 we have the following.

(i) MCbCc(bc) = MCbc
(bc).

(ii ) MCbA(bAbm) ≥ MACb
(bAbm).

(iii ) For anyn, there is an optimal hybrid algorithm all of whose components are non-

classical, except possibly the right most one.

(iv) If n ≥ 13, thenCn is not optimal.

Proof. (i) This can be easily shown using (3.2) and Table 3.3.

(ii ) We only show this forA = K2. Using (3.2) and Table 3.3 we have

MCbK2(2bm)−MK2Cb
(2bm) = 2(b− 1)(3bm− b− 1) > 0.

(iii ) LetA = A1A2 · · ·Ar be a hybrid algorithm withA1, . . . , Ar ∈ T and suppose that

As = Cb for somes < r andb ≥ 2 andAs+1 ∈ {K2, . . . ,M7}. Now (ii ) shows that

the cost of

A′ = A1A2 · · ·As+1As · · ·Ar

is smaller than that ofA, andA is not optimal. Hence if someAs is classical, then

eachAt for s < t ≤ r is also classical. These can all be combined into one by (i).

(iv) We letm = dn/2e. Then

MCn(n)−MK2Cm(2m) =

2n2 − 2n+ 2− 6m2 − 2m+ 2 ≥ n2/2− 6n− 1/2 > 0

using(n + 1)/2 ≥ m andn ≥ 13. On the other hand,n ≤ 2m and the2m-bit

algorithmK2Cm can also be used forn-bit polynomials, and we have

MK2Cm(n) ≤ MK2Cm(2m) < MCn(n).
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Algorithm 4 presents a dynamic programming algorithm whichcomputes an optimal

hybrid algorithm fromT∗ for n-bit multiplication, forn = 1, 2, . . ..

Algorithm 4 Finding optimal algorithms inT∗

Input: The toolboxT = {classical, K2, K3,M5,M6,M7} and an integerN .

Output: TableT with N rows containing the optimal algorithms for1 ≤ n ≤ N and

their costs.

1: Enter the classical algorithm and cost1 for n = 1 into T

2: for n = 2, . . . , N do

3: bestalgorithm← unknown,mincost← +infinity

4: for A = K2, . . . ,M7 do

5: ComputeMA(n) according to (3.2)

6: if MA(n) < mincost then

7: bestalgorithm← A,mincost← MA(n)

8: end if

9: end for

10: if n < 13 then

11: MCn ← 2n2 − 2n+ 1

12: if MCn(n) < mincost then

13: bestalgorithm← Cn,mincost← MCn(n)

14: end if

15: end if

16: Enterbestalgorithm andmincost for n into T

17: end for

Theorem 4. Algorithm 4 works correctly as specified. The operations (arithmetic, table

look-up) have integers withO(logN) bits as input, and their total number isO(N).
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Proof. We only show correctness, by induction onn. The casen = 1 is clear. So let

n > 1, andA ∈ T∗ be an optimal algorithm forn-bit polynomials as in Lemma 3-

(iii ). We writeA = BC with B ∈ T andC ∈ T∗. If B is non-classical, then it is

tested for in steps 4-9, and by induction, an optimal algorithmD is chosen for the calls

at sizem = dn/bBe. ThusMD(m) ≤ MC(m) and in fact, equality holds. Therefore

MA(n) = MBD(n), and indeed an optimal algorithmBD is entered intoT . If B is

classical, then indeedA = B andn < 13 by Lemma 3-(iv), andA = Cn is tested in

steps 10-14.

Polynomial length
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Figure 3.5: The number of bit operations of the classical, recursive Karatsuba, and the

hybrid methods to multiply polynomials of degree smaller than128

The optimal recursive method for each polynomial length up to 8192 is shown in

Table 3.6. The column “length” of this table represents the length (or the range of lengths)

of polynomials for which the method specified in the column “method” must be used. As

an example, for194-bit polynomials the methodM7 is used at the top level. This requires

22 multiplications of polynomials withd194/7e = 28 bits, which are done by means of

K2 on top of14-bit polynomials. These14-bit multiplications are executed again usingK2

and finally polynomials of length7 are multiplied classically. Thus the optimal algorithm

isA = M7K
2
2C7, of total costMA(194) = 22 ·MK2

2C7
(28)+3937 = 26575 bit operations.

Figure 3.5 shows the recursive cost of the Karatsuba method,as used by Weimerskirch

& Paar (2003), of our hybrid method, and the classical method.
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length method length method length method
1 − 5 C1 − C5 301 − 320 K2 1603 − 1610 M5

6 K2 321 − 343 M7 1611 − 1728 M6

7 C7 344 − 360 M5 1729 − 1792 M7

8 K2 361 − 384 K2 1793 − 1800 M5

9 K3 385 − 392 M7 1801 − 1920 M6

10 K2 393 − 400 M5 1921 − 1960 M7

11 C11 401 − 420 M7 1961 − 2048 K2

12 − 14 K2 421 − 432 K2 2049 − 2058 M7

15 K3 433 − 448 M7 2059 − 2100 M5

16 − 20 K2 449 − 450 M5 2101 − 2240 M7

21 M7 451 − 454 K2 2241 − 2304 M6

22 − 24 K2 455 M5 2305 − 2352 M7

25 M5 456 K2 2353 − 2400 M6

26 − 27 K3 457 − 460 M5 2401 − 2560 K2

28 − 40 K2 461 − 512 K2 2561 − 2744 M7

41 − 42 M7 513 − 525 M5 2745 − 2800 M5

43 − 45 K3 526 − 560 M7 2801 − 2880 M6

46 − 48 K2 561 − 576 K2 2881 − 3072 K2

49 M7 577 − 588 M7 3073 − 3136 M7

50 M5 589 − 600 M5 3137 − 3200 M5

51 − 64 K2 601 − 640 K2 3201 − 3456 M6

65 − 70 M7 641 − 686 M7 3457 − 3584 M7

71 − 80 K2 687 − 720 M5 3585 − 3840 M6

81 − 84 M7 721 − 768 K2 3841 − 3920 M7

85 − 96 K2 769 − 784 M7 3921 − 4096 K2

97 − 98 M7 785 − 800 M5 4097 − 4116 M7

99 − 100 M5 801 − 840 M7 4117 − 4200 M5

101 − 105 M7 841 − 864 M6 4201 − 4320 M6

106 − 108 K2 865 − 896 M7 4321 − 4480 M7

109 − 112 M7 897 − 900 M5 4481 − 4608 M6

113 − 128 K2 901 − 912 M6 4609 − 4704 M7

129 − 140 M7 913 − 920 M5 4705 − 4800 M6

141 − 144 K2 921 − 936 M6 4801 − 5120 K2

145 − 147 M7 937 − 940 M5 5121 − 5184 M6

148 − 150 M5 941 − 960 M6 5185 − 5488 M7

151 − 160 K2 961 − 980 M7 5489 − 5600 M5

161 − 168 M7 981 − 1024 K2 5601 − 5880 M6

169 − 175 M5 1025 − 1029 M7 5881 − 5888 K2

176 − 192 K2 1030 − 1050 M5 5889 − 5952 M6

193 − 196 M7 1051 − 1120 M7 5953 − 6016 K2

197 − 200 M5 1121 − 1152 M6 6017 − 6144 M6

201 − 210 M7 1153 − 1176 M7 6145 − 6272 M7

211 − 216 K2 1177 − 1200 M5 6273 − 6400 M5

217 − 224 M7 1201 − 1280 K2 6401 − 6912 M6

225 M5 1281 − 1372 M7 6913 − 7168 M7

226 − 256 K2 1373 − 1440 M5 7169 − 7680 M6

257 − 280 M7 1441 − 1536 K2 7681 − 7840 M7

281 − 288 K2 1537 − 1568 M7 7841 − 8064 M6

289 − 294 M7 1569 − 1600 M5 8065 − 8192 K2

295 − 300 M5 1601 − 1602 M6

Table 3.6: Optimal multiplications for polynomial lengthsup to8192
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Lemma 3 implies that the classical methods need only be considered forn ≤ 12. We

can pruneT further and now illustrate this forK3. One first checks thatMAK3B(3bAbB) <

MK3AB(3bAbB) for A ∈ {K2,M5,M6,M7}, B ∈ T∗, andbB ≥ 2. Therefore forK3 to

be the top-level tool in an optimal algorithm overT the next algorithm to it must be either

K3 or Cb for someb. Since the classical method is not optimal forn ≥ 13 and Table 3.6

does not listK3 in the interval46 to 3 ·45 = 135,K3 is not the top-level tool forn ≥ 135.

Table 3.7 gives the asymptotic behavior of the costs of the algorithms in the toolboxT

when used recursively. It is expected that for very large polynomials only the asymptot-

ically fastest method, namelyM6, should be used. But due to the tiny differences in the

cost exponents this seems to happen only for very large polynomial lengths, beyond the

sizes which are shown in Table 3.6.

algorithm k

Cb, b ≥ 2 logb b2 = 2

K3 log3 6 ≈ 1.6309

M5 log5 13 ≈ 1.5937

M7 log7 22 ≈ 1.5885

K2 log2 3 ≈ 1.5850

M6 log6 17 ≈ 1.5812

Table 3.7: Asymptotical costO(nk) of algorithms in the toolboxT

3.4 Hardware Structure

The delay of a fully parallel combinational Karatsuba multiplier is4dlog2 ne, which is al-

most4 times that of a classical multiplier, namelydlog2 ne+1. It is the main disadvantage

of the Karatsuba method for hardware implementations. As a solution, we have suggested

in Grabbeet al. (2003a) a pipelined Karatsuba multiplier for240-bit polynomials, shown

in Figure 3.8.

The innermost part of the design is a combinational pipelined 40-bit classical multi-

plier equipped with40-bit and79-bit adders. The multiplier, these adders, and the overlap
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240-bit multiplier

120-bit multiplier

40-bit
multiplier

40-bit adder
· · ·

79-bit adder
· · ·

Overlap module

120-bit adder
· · ·

239-bit adder
· · ·

Overlap module

Figure 3.8: The240-bit multiplier in Grabbeet al. (2003a)

module, together with a control circuit, constitute a120-bit multiplier. The algorithm

is based on a modification of a Karatsuba formula for3-segment polynomials which is

similar to but slightly different from what we have used in Section 3.3. Another suit-

able control circuit performs the2-segment Karatsuba method for240 bits by means of a

120-bit recursion,239-bit adders, and an overlap circuit.

This multiplier can be seen as implementing the factorization240 = 2·3·40. Table 3.6

implies that it is preferable to use2 or 5-segment for larger polynomials rather than the

3-segment method. On the other hand the complicated structure of the5-segment method

makes it difficult to use it for pipelining in the upper levels. A new design is presented

here which is based on the factorization240 = 2 · 2 · 2 · 30. The resulting structure is

shown in Figure 3.9.

The 30-bit multiplier follows the recipe of Table 3.6. It is a combinational circuit

without feedback and the design goal is to minimize its area.In general,k pipeline stages

can performn parallel multiplications inn + k − 1 instead ofnk clock cycles without

pipelining.

The new design, the structure of Grabbeet al. (2003a), and a purely classical method

are designed on an XC2V6000-4FF1517-4 FPGA. The last designhas a classical30-bit

multiplier and applies the three classical recursion stepsto it. The results after place and

route are shown in Table 3.10. The second column shows the number of clock cycles for
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240-bit multiplier

120-bit multiplier

60-bit multiplier

30-bit
multiplier

30-bit adder
· · ·

59-bit adder
· · ·

Overlap module

60-bit adder
· · ·

119-bit adder
· · ·

Overlap module

120-bit adder
· · ·

239-bit adder
· · ·

Overlap module

Figure 3.9: The new240-bit multiplier

a multiplication. The third column represents the area in terms of the number of slices.

This measure contains both logic elements, or LUTs, and flip-flops used for pipelining.

The fourth column is the multiplication time as returned by the hardware synthesis tool.

Finally the last column shows the product of area and time in order to compare the AT

measures of our designs.

The synchronization is set so that the30-bit multipliers require1 and4 clock cycles

for classical and hybrid Karatsuba implementations, respectively. The new structure is

smaller than the implementation in Grabbeet al. (2003a) but is larger than the classical

one. This drawback is due to the complicated structure of theKaratsuba method but is

compensated by the speed as seen in the time and AT measures. In the next section this is

further improved by decreasing the number of recursions.

Multiplier type Number of Number of Multiplication AT
clock cycles slices time Slices× µs

classical 106 1328 1.029µs 1367

Grabbe et al. (2003a)

(Fig. 3.8)

54 1660 0.655µs 1087

Hybrid Karatsuba (Fig. 3.9) 55 1513 0.670µs 1014

Table 3.10: Time and area of different multipliers for240-bit polynomials
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3.5 Hybrid Polynomial Multiplier with Few Recursions

The timing diagram of the recursive multiplier for the time interval50 ns < t < 280 ns

is shown in Figure 3.11. In this figure the lowest level which is the combinational module

communicates with the highest level through intermediate stages in several clock cycles.

At time t = 180 ns after two120-bit blocks being multiplied the60-bit multiplier activates

its READY60signal to inform the120-bit multiplier to load it with new data. The120-bit

multiplier has to transfer this request to the240-bit multiplier. Each of the multipliers

require one clock cycle to start the lower multiplier. As a result it takes5 clock cycles for

the whole communication. This example reveals that in the recursive Karatsuba multiplier

of Grabbeet al. (2003a), the core of the system, namely the combinational multiplier, is

idle for several clock cycles during the multiplication. Toimprove resource usage, we

reduce the communication overhead by decreasing the levelsof recursion. In this new

240-bit multiplier, an8-segment Karatsuba is applied at once to30-bit polynomials. The

formulas describing three recursive levels of Karatsuba are computed symbolically and

implemented directly.

The new circuit is shown in Figure 3.12. The multiplexersmux1to mux6are adders

at the same time. Their inputs are30-bit sections of the two original240-bit polynomials

which are added according to the Karatsuba rules. Now their27 output pairs are pipelined

as inputs into the30-bit multiplier. The27 corresponding59-bit polynomials are subse-

quently combined according to the overlap rules to yield thefinal result. Time and space

consumptions are shown in Table 3.13 and compared with the results of Grabbeet al.

(2003a). The columns are as in Table 3.10. It can be seen that this design improves on the

previous ones in all respects.
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multiplier
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Figure 3.12: The structure of the Karatsuba multiplier withfewer number of recursions.

Multiplier type Number of Number of Multiplication AT
clock cycles slices time Slices× µs

classical 65 1582 0.523µs 827

Grabbe et al. (2003a)

(Fig. 3.8)

54 1660 0.655µs 1087

Fewer recursions (Fig. 3.12) 30 1480 0.378µs 559

Table 3.13: Time and area of different240-bit multipliers compared with the structure

with reduced number of recursion levels

3.6 Code Generator

As it has been shown in Sections 3.4 and 3.5, using a pipelinedmodular structure to

implement the Karatsuba multiplication algorithm has several advantages. However, im-

plementing the parallel multipliers for smaller polynomials is the main difficulty of this

structure. Handwriting a VHDL code for these blocks is time consuming, particularly
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when accurate insertion of pipeline stages is desired.

In this section an object oriented library is presented which can be used for automat-

ically generating the VHDL code of a combinational pipelined multiplier of any degree.

This has been achieved by combining the Karatsuba and the classical methods. The gen-

erated code is in register transfer level (RTL).

3.6.1 Code Generator Functionalities

The code generator gives the user the ability of suppling a sequence of pairs of polyno-

mial lengths and type selection parameters. The type selection parameter specifies the

algorithm which is used for each polynomial degree, e.g., the Karatsuba or the classical

algorithm. Then, the program generates the appropriate multiplication method for each

of these degrees and combines them recursively to create thealgorithm and consequently

the multiplier.

An important functionality of the code generator is the ability of computing algorithms

for multiplying polynomials, when an algorithm to multiplylonger polynomials is found.

The program automatically inserts zero coefficients to the beginnings of the smaller poly-

nomials, makes the multiplication graphs, and removes the unnecessary gates.

The library is also able to report the time and space complexities of the design and

create appropriate pipeline stages by getting the depth of each pipeline stage as the number

of two input gates.

The main part of this code generator consists of the following classes. Each class is

represented with its functionalities:

Multiplication

The classmultiplicationmanages the multiplication methods. It creates the appro-

priate classical and Karatsuba methods, their shorteningsand combines them recursively.

This class is able to simplify the resulting expressions andto put pipeline registers in the

appropriate positions. Finally, it generates a VHDL code which describes the multiplier.
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An important functionality of the classmultiplication is the generation of a

computation graph for the polynomial multiplication. It computes the depth of the graph,

puts pipeline registers according to a specified depth, checks for possible hazards, and

increases the number of these registers when required to remove any hazards (see the sec-

tion on pipelining below). Therefore, a pipelined multiplier can be generated in which the

depth of the stages can be specified by the user as a parameter.A sample program which

generates a multiplication method for polynomials of degree smaller than6 is shown in

Figure 3.14

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include "multiplication.hh"

int main(int argv, char* argc[]){

multiplication m2;
m2.init(); //Linear polynomials

multiplication m6;
m6.init();
m6.expand(m2); //Cubic polynomials
m6.shorten(3); //Quadratic polynomials
m6.expand(m2); //Polynomials of degree 5

m6.pipedepth = 4;
m6.makecomputationsequence();

m6.writeVHDL("mult.vhdl");
}

Figure 3.14: A sample code which uses the code generator libraries to produce a Karat-
suba multiplier for polynomials of degree smaller than6 when the pipeline depth is set to
4.
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Addition Simplifier

The order of performing the additions in an expression has a great impact on the re-

source consumption. When the Karatsuba algorithm is used tomultiply polynomials with

large degrees, there are some additions which are redundantand can be performed only

once. classaddition simplifier takes a set of additions and generates a specific

sequence to compute it which contains only additions of two operands. This sequence

can be optimized to achieve smaller area or shorter propagation delay. Achieving smaller

area is done in a heuristic manner.

Reducing the Number of Gates

It has already been mentioned that the delay of small block multipliers does not have a

large impact on the whole multiplication time. This happenswhen the number of indepen-

dent multiplications is higher than the number of pipeline levels (which is often the case).

Hence it is better to reduce the number of two input gates withthe cost of increasing the

propagation delay.

In order to identify and simplify redundant additions we count the number of simul-

taneous occurrences of each two variables. The two variables with the most number of

occurrences are gathered together and represented with a new variable, which replaces all

of their simultaneous occurrences. This is repeated until no two variables occur simulta-

neously in more than one expression.

Pipelining

The parallel combinational multipliers have complicated structures in which manually in-

serting the pipeline registers is a complicated task. Pipelining is an optimization technique

which is used in the code generator. However, the pipeline depth must be supplied by the

user as an input to the code generator. In an object of typemultiplication, the sequence of

operations is saved as a set of binary trees in which the position of pipeline registers are
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stored.

The most important issue in such a pipeline strategy is thehazardproblem. It is

possible that the inputs of a gate arrive in different time slices which will lead to failure

in the computation of the result. To solve this problem, the pipeline generation module

checks all the gates to see if the inputs arrive at the same time. If not, the path to the faster

input will be delayed by an extra register. The Inputs to other modules will be taken from

the former register as shown in Figure 3.15, in which registers are shown with boxes. This

method solves the hazard problem without increasing the overall latency.

+

D Q
t = 6

t = 5

(a)

+

D Q

D Q

t = 6

t = 6

t = 5

(b)

Figure 3.15: Pipelining the multiplier circuit (a) before and (b) after solving thehazard

problem

3.7 Conclusion

Since finite field arithmetics play an important role in cryptography and elliptic curves,

this chapter is devoted to the application of asymptotically fast methods, in particular
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the Karatsuba method in hardware. The materials of this chapter are presented in the

following sequence:

• In Section 3.2 essentials of the Karatsuba method and its costs are analyzed.

• Section 3.3 proposes a new methodology which can be used to combine different

multiplication methods of a toolbox to achieve a new algorithm. The new algorithm

can be found in a time that is linear in the polynomial degree and its number of

bit operations for each polynomial degree is at most equal tothe number of bit

operations for the best algorithm of the toolbox for that degree.

• Section 3.4 is devoted to the review of the multiplier of Grabbeet al. (2003a). The

main contribution of this section is the application of the hybrid method to that

multiplier and reducing the area in this way.

• In Section 3.5 fewer recursions are used to decrease the communication time be-

tween different modules in the modular Karatsuba multiplier. In this way multipli-

ers are achieved which are better than the classical and the method of Grabbeet al.

(2003a) with respect to both time and area.

• Finally Section 3.6 introduces a C++ based code generator bydescribing its func-

tionalities and structure. This library is developed to generate the VHDL description

of combinational pipelined multipliers and is used for the smaller multipliers of this

chapter.



Chapter 4

Small Area Normal Basis Multipliers:

Gauß meets Pascal

4.1 Introduction

Normal basis representation of finite fields enables easy computation of theqth power of

elements. Assumingq to be a prime power, a basis of the form(α, αq, · · · , αqn−1
) for Fqn

is called a normal basis generated by the normal elementα ∈ Fqn. In this basis theqth

power of an element can be computed by means of a single cyclicshift. This property

makes such bases very attractive for parallel exponentiation in finite fields (see Nöcker

(2001)).

Since multiplication in these bases is more expensive than in polynomial basis it is

especially desirable to reduce their multiplication costs. In this chapter, a new method for

multiplication in normal bases of type2 is suggested. It uses an area efficient circuit to

convert the normal basis representation to polynomials andvice versa. Any method can

be used to multiply the resulting polynomials. Although this structure has small area, its

propagation delay is longer than other methods and is only suitable for applications where

the area is limited.

One popular normal basis multiplier is the Massey-Omura multiplier presented for the

83
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2 3 5 11 23 29 41 53 83 89

113 131 173 179 191 233 239 251 281 293

359 419 431 443 491 509 593 641 653 659

683 719 743 761 809 911 953 1013 1019 1031

1049 1103 1223 1229 1289 1409 1439 1451 1481 1499

1511 1559 1583 1601 1733 1811 1889 1901 1931 1973

2003 2039 2063 2069 2129 2141 2273 2339 2351 2393

2399 2459 2543 2549 2693 2699 2741 2753 2819 2903

2939 2963 2969 3023 3299 3329 3359 3389 3413 3449

3491 3539 3593 3623 3761 3779 3803 3821 3851 3863

3911 4019 4073 4211 4271 4349 4373 4391 4409 4481

4733 4793 4871 4919 4943

Table 4.1: The prime numbersn < 5000 for whichF2n contains an optimal normal basis

of type2.

first time by Omura & Massey (1986). The space and time complexities of this multiplier

increase with the number of nonzero coefficients in the matrix representation of the en-

domorphismx→ αx overFqn, whereα generates the normal basis. Mullinet al. (1989)

show that this number is at least2n− 1 which can be achieved for optimal normal bases.

Gao & Lenstra (1992) specify exactly the finite fields for which optimal normal bases

exist. Relating these bases with the Gauss periods they grouped them into optimal normal

bases of type1 and2 according to the Gauss periods used.

For security reasons only prime extension degrees are used in cryptography, whereas

the extension degrees of the finite fields containing an optimal normal basis of type1

are always composite numbers. Cryptography standards often suggest the finite fields for

which the type of normal bases are small (see for example FIPSPUB 186-2 (2000)) to

enable designers to deploy normal bases. Table 4.1 shows theprime numbersn, when

n < 5000, for which F2n contains an optimal normal basis of type2. Applications in

cryptography have stimulated research about efficient multiplication using optimal nor-

mal bases of type2. The best space complexity results for the type2 multipliers aren2

and3n(n−1)/2 gates of typesAND andXOR, respectively reported in Sunar & Koç (2001)



4.1. Introduction 85

and Reyhani-Masoleh & Hasan (2002). Their suggested circuits are obtained by suitably

modifying the Massey-Omura multiplier. A classical polynomial basis multiplier, how-

ever, requiresn2 and(n−1)2 gates of typesAND andXOR respectively for the polynomial

multiplication, followed by a modular reduction. The latter is done using a small circuit of

size of(r − 1)n, wherer is the number of nonzero coefficients in the polynomial which

is used to create the polynomial basis. It is conjectured by von zur Gathen & Nöcker

(2005) that there are usually irreducible trinomials of degreen and for the cases that there

is no irreducible trinomial an irreducible pentanomial canbe found. The above costs and

the fact that there are asymptotically fast methods for polynomial arithmetic suggest the

use of polynomial multipliers for normal bases to make good use of both representations.

The proposed multiplier in this chapter works in normal bases but its space complexity

is similar to polynomial multipliers. Using classical polynomial multiplication methods,

it requires2n2 + 16n log2(n) gates inF2n . Moreover, using more efficient polynomial

multiplication algorithms, such as the Karatsuba algorithm, we can decrease the space

asymptotically even further down toO(nlog2 3).

The connection between polynomial and normal bases, together with its application

in achieving high performance multiplication in normal bases, has been investigated in

Gaoet al. (1995) and Gaoet al. (2000). The present work can be viewed as a concep-

tual continuation of the approach in those papers. Gaoet al. (2000) describe how the

multiplication using the normal bases generated by the Gauss periods can be reduced to

multiplications of polynomials. For the case of the Gauss periods of type(n, 2), their

proposed method requires multiplication of two2n-bit polynomials which will be done

using asymptotically fast methods, as suggested in their works.

The multiplier of this chapter is based on a similar approach. For optimal normal

bases of type2 we present a very efficient method which changes the representations

between the normal basis and suitable polynomials. These polynomials are multiplied

using any method of choice, such as the classical or the Karatsuba multiplier. Using

the inverse transformation circuit and an additional smallcircuit the result is converted
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back into the normal basis representation. The heart of thismethod is a factorization of

the transformation matrix between the two representationsinto a small product of sparse

matrices. The circuit requires roughlyO(n logn) gates and resembles the circuit used for

computing the Fast Fourier Transformation (FFT). The analogy to the FFT circuit goes

even further: as with the FFT, the inverse of the transformation has a very similar circuit.

It should be noted that a general basis conversion, and not for a specific set of bases,

requiresO(n2) operation as also reported by Kaliski & Liskov (1999).

This chapter will begin with a review of the Gauss periods andthe normal bases of

type2. Then the structure of the multiplier is introduced and the costs of each part of the

multiplier are computed. The last section focuses the results on fields of characteristic2

and compares the results with the literature.

4.2 Gauss Periods

Letn, k ≥ 1 be integers such thatr = nk+1 is a prime, and letq be a prime power which

is relatively prime tor. Then the groupZ×
r of units modulor is cyclic, hasnk elements,

and sinceqnk ≡ 1 mod r, r dividesqnk − 1 = #F
×

qnk . Hence there exists a primitiverth

root of unityβ ∈ Fqnk . Let G < Z
×
r be the unique subgroup of the cyclic groupZ

×
r with

#G = k, and:

α =
∑

a∈G

βa

Thenα is called a primeGauss periodof type (n, k) overFq. Wassermann (1993) and

Gaoet al. (2000) prove the following theorem:

Theorem 5. Letr = nk+1 be a prime not dividingq, e the index ofq in Z
×
r , G the unique

subgroup of orderk of Z
×
r , andβ a primitive rth root of unity inFqr . Then the Gauss

period

α =
∑

a∈G

βa

is a normal element inFqn overFq if and only ifgcd(e, n) = 1.
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In this chapter we consider the Gauss periods of type(n, 2). In this caseG = {1,−1}

andα is of the formβ+β−1, whereβ is a2n+1st root of unity inF
2n
q . Hence the normal

basis is

N = (β + β−1, βq + β−q, · · · , βqn−1

+ β−qn−1

) (4.1)

and as is shown in Wassermann (1993) and Gaoet al. (2000):

{1,−1, q,−q, · · · , qn−1,−qn−1} = {1,−1, 2,−2, · · · , n,−n}

if the computations are modulo2n + 1. Sinceβ2n+1 = 1 eachβqr
+ β−qr

, 0 ≤ r < n,

equalsβi +β−i for a suitable value ofi, where1 ≤ i ≤ n. It follows that the normal basis

representation
n−1∑

k=0

a
(N)
k (βqk

+ β−qk

)

can be written as:
n∑

l=1

a
(N′)
l (βl + β−l), (4.2)

where(a
(N′)
l )1≤l≤n is a permutation of(a(N)

k )0≤k<n. We call the sequence

N′ = (β + β−1, β2 + β−2, · · · , βn + β−n),

in this case, the permuted normal basis and the vector(a
(N′)
l )1≤l≤n the permuted normal

representation ofa.

4.3 Multiplier Structure

The structure of the multiplier is described in Figure 4.2. To multiply two elementsa, b ∈

Fqn given in the basis (4.1) we first convert their representations to the permuted form as

a =
n∑

i=1

a
(N′)
i (βi + β−i), and b =

n∑

i=1

b
(N′)
i (βi + β−i),

with a(N′)
i , b

(N′)
i ∈ Fq. By inserting a zero at the beginning of the representation vectors

and a linear mappingπn+1, which we define in Section 4.4, fromFn+1
q to Fq[x]

≤n the
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vectors of these representations are converted to polynomialsϕa(x) andϕb(x) such that

the evaluations of these two polynomials atβ + β−1 area andb, respectively. The poly-

nomialsϕa andϕb are then multiplied using an appropriate method with respect to the

polynomial degrees and implementation platform. Obviously the evaluation of the result-

ing polynomialϕc(x) at β + β−1 is the productc = a · b. The polynomialϕc(x) is of

degree at most2n and the evaluation is a linear combination of(β+β−1)i for 0 ≤ i ≤ 2n.

Using another linear mappingν2n+1 from Fq[x]
≤2n to F

2n+1
q , namely the inverse ofπ2n+1,

this linear combination is converted to a linear combination of the vectors1 andβi + β−i

for 1 ≤ i ≤ 2n. This is then converted to the permuted normal basis using another linear

mappingτn.

The linear mappingν2n+1 takes a polynomial inFq[x]
≤2n, evaluates it atβ + β−1, and

represents the result as a linear combination of1 andβi + β−i, for 1 ≤ i ≤ 2n. Since

the above vectors are linearly dependent there are several choices forν2n+1. One way

to compute the resulting linear combination is that each(β + β−1)j , for 1 ≤ j ≤ 2n

be expanded as a linear combination ofβi + β−i, for 1 ≤ i ≤ 2n. The coefficients of

these expansions have tight connections with the binomial coefficients or the entries of

the Pascal triangle. Sinceβ ∈ Fq2n, if we denote the characteristic ofFq by p, we have

p·β = 0 and the matrix representation ofν2n+1 has a similar structure as the Pascal triangle

in which the entries are reduced modulop. Such a triangle which has a fractal structure has

attracted a lot of attention and has been given various namesin the literature. One of the

most famous ones is “Sierpinski triangle” or “Sierpinski gasket” (see Wikipedia (2006))

for p = 2. In Section 4.5 we find a special factorization for the matrixrepresentation

of ν2n+1 in an appropriate basis which allows the mapping to be computed inO(n logn)

operations.

4.3.1 Example overF25

Here the overall operation of the multiplier forF25 is exemplified. Since11 divides210−1

there is an11th root of unity inF210 which is represented byβ. Settingr, k, andq of
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(a
(N)
i )1≤i≤n (b

(N)
i )1≤i≤n

(a
(N′)
i )1≤i≤n (b

(N′)
i )1≤i≤n

(ã
(N′)
i )0≤i≤n (b̃

(N′)
i )0≤i≤n

ϕa(x) ϕb(β + β−1) = bϕa(β + β−1) = a ϕb(x)

ϕc(x) = ϕa · ϕb

Polynomial multiplication

(c̃i)0≤i≤2nc = a · b = c̃0 +
∑2n

i=1 c̃i(β
i + β−i)

(c
(N′)
i )1≤i≤n

(c
(N)
i )1≤i≤n

Permutation Permutation

zero insertion zero insertion

Linear mappingπn+1Linear mappingπn+1 Linear mappingπn+1

Linear mappingν2n+1

Linear mappingτn

Permutation

Figure 4.2: Overview of our multiplier structure to multiply two elementsa, b ∈ Fqn,

where their two representation vectors(a
(N)
i )1≤i≤n and (b

(N)
i )1≤i≤n with respect to the

normal basisN are given. See the text for more information.
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Theorem 5 to11, 2, and2, respectively, implies thatα = β + β−1 constructs the normal

basisN for F25 overF2:

N = (α, α2, α22

, α23

, α24

).

Sinceβ is an11th root of unity the following equalities hold:

β + β−1 = β + β−1 β2 + β−2 = β2 + β−2 β22
+ β−22

= β4 + β−4

β23
+ β−23

= β3 + β−3 β24
+ β−24

= β5 + β−5.
(4.3)

and

N′ = (β + β−1, β2 + β−2, β3 + β−3, β4 + β−4, β5 + β−5)

is thepermuted normalbasis. We represent the vectors of the permuted normal repre-

sentations ofa andb by aN′ = (a
(N′)
i )1≤i≤5 andbN′ = (b

(N′)
i )1≤i≤5, respectively. These

vectors satisfy the equations:

a = N′ · aT
N′, and b = N′ · bT

N′ . (4.4)

Our strategy is to find polynomialsϕa(x) andϕb(x) overFq whose evaluations atβ+β−1

give the elementsa andb, respectively. Then these polynomials are multiplied and the

evaluation of the result atβ + β−1 is converted back to the normal basis representation.

Each power(β + β−1)j can be represented as a linear combination ofβi + β−i, for

0 ≤ i ≤ j, in which the coefficients are inF2. Hence we have the following equality:

P = Ñ′ · L6, (4.5)

in which:

Ñ′ = (1, β + β−1, β2 + β−2, β3 + β−3, β4 + β−4, β5 + β−5),

P = (1, β + β−1, (β + β−1)2, (β + β−1)3, (β + β−1)4, (β + β−1)5),

and the matrixL6, whose entries are calculated using the binomial coefficients modulo2,

is shown in part (a) of Figure 4.3. This matrix is upper triangular and hence invertible.

We represent its inverse, which is shown in part (b) of Figure4.3, byP6, then:

Ñ′ = P · P6. (4.6)
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(a) (b)

Figure 4.3: (a) The matrixL6 and (b) its inverseP6

The entries of the vectors̃N′ andP are elements ofF25 , which has dimension5 over

F2. These entries in each of the vectors are linearly dependentbut still spanF25 and

each element ofF25 can be written as a linear combination – which is not unique –

of these elements. To representa and b with respect to these new vectors we insert

a zero at the beginning of the permuted normal representations to get the new vectors

a
Ñ′ = (ã

(Ñ′)
i )0≤i≤5 andb

Ñ′ = (b̃
(Ñ′)
i )0≤i≤5, respectively, i.e.,

ã
(Ñ′)
i =

{

0 if i = 0,

a
(N′)
i otherwise,

b̃
(Ñ′)
i =

{

0 if i = 0,

b
(N′)
i otherwise.

Similar to (4.4) we have:

a = Ñ′ · aT
Ñ′, and b = Ñ′ · bT

Ñ′ . (4.7)

SubstitutingÑ′ from (4.6) we have:

a = P · P6 · a
T
Ñ′, and b = P · P6 · b

T
Ñ′ . (4.8)

Now consider the two vectorsaP = P6 ·a
T
Ñ′ = (a

(P)
i )0≤i≤5 andbP = P6·b

T
Ñ′ = (b

(P)
i )0≤i≤5.

They correspond to the two polynomialsϕa(x) =
∑5

i=0 a
(P)
i xi andϕb(x) =

∑5
i=0 b

(P)
i xi

whose evaluations atβ + β−1, according to (4.8), givea and b, respectively. Let the

polynomialϕc(x) = ϕa(x) · ϕb(x) be

ϕc(x) =

10∑

i=0

c
(P)
i xi

and we have

c = a · b =
10∑

i=0

c
(P)
i (β + β−1)i.
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Figure 4.4: The matrixL11

In the same way as above we can use the matrixL11 which corresponds

((β + β−1)i)0≤i≤10 with the vector containing1 andβi + β−i for 1 ≤ i ≤ 10. The

matrix L11 is shown in Figure 4.4. The product ofL11 andcP = (c
(P)
i )0≤i≤10 is a new

vectorc
Ñ′ = (c̃

(Ñ′)
i )0≤i≤10:

c
Ñ′ = L11 · c

T
P

and we have:

c = c̃
(Ñ′)
0 +

10∑

i=1

c̃
(Ñ′)
i (βi + β−i).

As it will be seen later̃c(Ñ
′)

0 for fields of characteristic2 is always zero. For other fields

we need to compute the representation of1 and multiply it by c̃(Ñ
′)

0 . On the other hand

sinceβ11 = 1 we have

β6 + β−6 = β5 + β−5, β7 + β−7 = β4 + β−4,
β8 + β−8 = β3 + β−3, β9 + β−9 = β2 + β−2, and
β10 + β−10 = β + β−1.

Also the permuted normal and normal representations of the product are

(c̃
(Ñ′)
1 + c̃

(Ñ′)
10 , c̃

(Ñ′)
2 + c̃

(Ñ′)
9 , c̃

(Ñ′)
3 + c̃

(Ñ′)
8 , c̃

(Ñ′)
4 + c̃

(Ñ′)
7 , c̃

(Ñ′)
5 + c̃

(Ñ′)
6 ) and

(c̃
(Ñ′)
1 + c̃

(Ñ′)
10 , c̃

(Ñ′)
2 + c̃

(Ñ′)
9 , c̃

(Ñ′)
4 + c̃

(Ñ′)
7 , c̃

(Ñ′)
3 + c̃

(Ñ′)
8 , c̃

(Ñ′)
5 + c̃

(Ñ′)
6 ),

respectively. In the next sections we compute the costs of each of the above tasks for

generalp andn.
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4.4 Polynomials from Normal Bases

The most important parts of the multiplier are the converters between polynomial and

permuted normal representations. Since the elements(β + β−1)i, for 0 ≤ i ≤ n, and also

1 andβi + β−i, for 1 ≤ i ≤ 2n, are linearly dependent there are different possibilities

for the selection of the mappingsπn+1 andν2n+1 from Section 4.3. These mappings are

defined via matricesPn+1 ∈ F
(n+1)×(n+1)
p andL2n+1 ∈ F

(2n+1)×(2n+1)
p , wherep is the

characteristic ofFqn. These matrices have special factorizations which let themto be

multiplied by vectors of appropriate length usingO(n logn) operations inFq.

The idea behind the construction of these matrices is similar to the example in Sec-

tion 4.3. The permuted representations ofa and b are preceeded by zero andPn+1 is

multiplied by the resulting vectors. The structure of the inverse ofPn+1 which we denote

by Ln+1 is easier to describe. Hence we define a candidate forLn+1 and show that this

matrix can be used to convert from polynomial to the extendedpermuted normal repre-

sentation, i.e., it satisfies

(1, β + β−1, β2 + β−2, · · · , βn + β−n)Ln+1 =

(1, β + β−1, (β + β−1)2, · · · , (β + β−1)n).

We also show thatLn+1 is invertible. Then we study its structure and show how it can

be factored into sparse factors in Section 4.5. This factorization is also used to find a

factorization forPn.

Definition 6. Let p be the characteristic ofFq, for integersi, j let li,j ∈ Fp be such that

(x + x−1)j =
∑

i∈Z
li,jx

i in Fp[x], for a variablex, andLq,n = (li,j)0≤i,j<n ∈ F
n×n
p .

Obviouslyli,j = 0 for |i| > |j|. (Lq,n depends onp but not onlogp q.)

Example 7. Let q = 9, i.e.,p = 3. For 0 ≤ j < 9, the powers(x+ x−1)j are:
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j (x+ x−1)j

0 1

1 x+ x−1

2 x2 + 2 + x−2

3 x3 + x−3

4 x4 + x2 + x−2 + x−4

5 x5 + 2x3 + x+ x−1 + 2x−3 + x−5

6 x6 + 2 + x−6

7 x7 + x5 + 2x+ 2x−1 + x−5 + x−7

8 x8 + 2x6 + x4 + 2x2 + 1 + 2x−2 + x−4 + 2x−6 + x−8.

Hence the matrixL9,9 is:


















1 0 2 0 0 0 2 0 1

0 1 0 0 0 1 0 2 0

0 0 1 0 1 0 0 0 2

0 0 0 1 0 2 0 0 0

0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 2

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


















.

Theorem 8. The matrixLq,n of Definition 6 satisfies

(1, β + β−1, β2 + β−2, · · · , βn−1 + β−n+1)Lq,n =

(1, β + β−1, (β + β−1)2, · · · , (β + β−1)n−1),
(4.9)

is upper triangular with1 on the diagonal, hence nonsingular, and its entries satisfythe

relation:

(Lq,n)i,j =

{

0 if i > j or j − i is odd, and
(

j
(j−i)/2

)
otherwise.

Proof. Since(x+ x−1)j = (x−1 + x)j we haveli,j = l−i,j and for any0 ≤ j < n:

(β + β−1)j =

j
∑

i=−j

li,jβ
i = l0,j +

j
∑

i=1

li,j(β
i + β−i) = l0,j +

n−1∑

i=1

li,j(β
i + β−i),
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sinceli,j = 0 for i > j. This shows that thejth entries on the left and right sides of (4.9)

for 0 ≤ j < n are equal. For the values of(Lq,n)i,j we have:

(x+ x−1)j =

j
∑

k=0

(
j

k

)

xj−k(x−1)k =

j
∑

k=0

(
j

k

)

xj−2k, (4.10)

in which the binomial coefficients are reduced modulop and the coefficient ofxi is the

entry (Lq,n)i,j. All of the powers ofx in (4.10) wheni > j have zero coefficients. For

the remaining terms ifi − j is odd there is no integerk such thati = j − 2k, hence the

entry(Lq,n)i,j is zero. For even valuesi = j − 2k implies thatk = (j − i)/2 and(Lq,n)i,j

is
(

j
(j−i)/2

)
. SinceLq,n is upper triangular its determinant is the product of all elements

on the main diagonal. The entry(Lq,n)i,j is
(

j
0

)
= 1 and the determinant is also equal to

1.

Definition 9. Let Lq,n be as defined in Definition 6. We denote its inverse byPq,n =

(pi,j)0≤i,j<n, wherepi,j ∈ Fp andp is the characteristic ofFq.

As we have seen the entries of the matrixLq,n and consequentlyPq,n depend onp, the

characteristic ofFq, andn. Since the finite field is usually fixed during our analysis we

drop the symbolq and show the matrices asLn andPn for the sake of simplicity. In the

next sections we see how special factorizations ofPn andLn result in fast methods for the

multiplication of these matrices by vectors.

4.5 Factorizations of the Conversion Matrices

The costs of computing the isomorphismsπn andνn of Section 4.3 depend on the structure

of the corresponding matrices. As in the last section, it is easier to initially study the

structure ofLn and use this information to analyzePn. The former study will be simplified

by assumingn to be a power ofp, saypr, and extending the results to generaln later. This

simplification enables a recursive study ofLpr which is shown in Example 10 and will be

discussed in Lemma 15. This recursive structure is then later used in Theorem 17 to find

a factorization ofLpr into sparse matrices.
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1 0 2 0 0 0 2 0 1
0 1 0 0 0 1 0 2 0
0 0 1 0 1 0 0 0 2
0 0 0 1 0 2 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

Figure 4.5: The block representation of the matrixL9

Example 10. The matrixL9 has been computed in Example 7. The entries of this matrix

are rewritten in Figure 4.5. In this figureL9 is divided into nine blocks which have three

rows and three columns each. These blocks can be grouped in three different groups. The

ones which are colored in light gray contain only zero entries. We show these blocks as

Z3×3. The second group are the ones in blue and have structures which are very similar to

the block in the first row and first column which is obviouslyL3. Each block of this group

in theith row andjth column is the product of
(

j
(j−i)/2

)
byL3. The elements of the third

group are colored in green. They are equal in our special example but if we represent the

block in the first row and second column withL′
3, the block in theith row andjth column

can be written as the product of
(

j
(j−i−1)/2

)
andL′

3. Indeed the matrixL′
3 can also be

written as the product of the matrixΘ3 which is

Θ3 =





0 0 0

0 0 1

0 1 0





andL3. Also the matrixL9 can be written using the block representation:

L9 =





(
0
0

)
L3

(
1
0

)
Θ3L3

(
2
1

)
L3

Z3×3

(
1
0

)
L3

(
2
0

)
Θ3L3

Z3×3 Z3×3

(
2
0

)
L3





The above recursive relation is generally true betweenLpr andLpr−1 as will be proved

in Lemma 15. To formally describe the above relation we definethree matrices ofreflec-

tion, shifting, andfactorizationdenoted byΘn, Ψn, andBr, respectively.
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Figure 4.6: The matrixΘ5

Figure 4.7: The matrixΨ5

Definition 11. The entries of thereflectionmatrixΘn = (θi,j)0≤i,j<n ∈ F
n×n
p are defined

by the relation:

θi,j =

{
1 if i+ j = n,
0 otherwise.

An example,Θ5, is shown in Figure 4.6 where the coefficients equal to0 and1 are

represented by empty and filled boxes, respectively. Left multiplication by Θn reflects a

matrix horizontally and shifts the result by one row downwards.

Definition 12. The entries of theshifting matrix Ψn = (ψi,j)0≤i,j<n ∈ F
n×n
p are defined

by the relation:

ψi,j =

{
1 if j − i = 1,
0 otherwise.

Right multiplication byΨn shifts a matrix by one position upwards. As an example

Ψ5 is shown in Figure 4.7.

Definition 13. Let Ipr−1 be the identitypr−1 × pr−1 matrix andΘpr−1 andΨp as in Def-

initions 11 and 12, respectively. Then we define thefactorizationmatrixBr ∈ F
pr×pr

p to
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be:

Br = Lp ⊗ Ipr−1 + (ΨpLp)⊗Θpr−1,

in which⊗ is the Kronecker or tensor product operator.

The following theorem gives us more information about the structure ofBr which can

be helpful for constructing this matrix.

Theorem 14. The matrixBr can be split intop× p blocksB(i1,j1) ∈ F
pr−1×pr−1

p such that

Br = (B(i1,j1))0≤i1,j1<p and

B(i1,j1) =







the zero block ifi1 > j1,(
j1

(j1−i1)/2

)
Ipr−1 if i1 ≤ j1 andj1 − i1 is even, and

(
j1

(j1−i1−1)/2

)
Θpr−1 otherwise.

Proof. For0 ≤ i0, j0 < pr−1 we consider(B(i1,j1))i0,j0. Definition 13 implies that:

(B(i1,j1))i0,j0 = (Br)i1pr−1+i0,j1pr−1+j0 = (Lp)i1,j1(Ipr−1)i0,j0 + (ΨpLp)i1,j1(Θpr−1)i0,j0.

Using Definition 12 the only nonzero entry of thei1th row of Ψp is a 1 in the i1 + 1st

column, if i1 + 1 < p, and hence(ΨpLp)i1,j1 = li1+1,j1 and the above equation can be

written as:

(B(i1,j1))i0,j0 = li1,j1(Ipr−1)i0,j0 + li1+1,j1(Θpr−1)i0,j0. (4.11)

Now using Theorem 8:

• If i1 > j1, thenli1,j1 andli1+1,j1 and hence also(B(i1,j1))i0,j0 are zero.

• If i1 ≤ j1 andj1 − i1 is even, thenli1,j1 =
(

j1
(j1−i1)/2

)
andli1+1,j1 is zero.

• If i1 ≤ j1 andj1 − i1 is odd, thenli1,j1 = 0 andli1+1,j1 equals
(

j1
(j1−i1−1)/2

)
, since

j1 − i1 − 1 is even.
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r = 1
r = 2

r = 3 r = 4

Figure 4.8: The matricesBr for p = 3 and4 values ofr
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The matricesBr for 4 values ofr = 1, 2, 3, 4 are shown in Figure 4.8 with colors

light blue, green, and dark blue for values of0, 1, and2 respectively. We now prove the

following lemma.

Lemma 15. The following equation holds forr ≥ 1:

Lpr = Br(Ip ⊗ Lpr−1). (4.12)

Proof. For0 ≤ i, j < pr we compute(Lpr)i,j by writing:

i = i1p
r−1 + i0, j = j1p

r−1 + j0, (4.13)

with 0 ≤ i1, j1 < p and0 ≤ i0, j0 < pr−1. Sincep · x = 0:

(x+ x−1)j = (x+ x−1)j1pr−1

(x+ x−1)j0 = (xpr−1

+ x−pr−1

)j1(x+ x−1)j0 =

(
∑

k1∈Z

lk1,j1x
k1pr−1

)(
∑

k0∈Z

lk0,j0x
k0) =

∑

k0,k1∈Z

lk1,j1lk0,j0x
k1pr−1+k0 (4.14)

wherelk,j is as Definition 6 and is zero for|k| > |j|. For the coefficient ofxi = xi1pr−1+i0,

which is(Lpr)i,j, we have:

k1p
r−1 + k0 = i1p

r−1 + i0 =⇒ k0 ≡ i0 mod pr−1 =⇒
{
k0 = i0 + tpr−1

k1 = i1 − t
,with t ∈ Z.

(4.15)

In the above equation except fort = −1, 0 we have|i0 + tpr−1| ≥ |pr−1| > |j0| which

meansli0+tpr−1,j0 = 0 and hence:

(Lpr)i,j = li1,j1li0,j0 + li1+1,j1li0−pr−1,j0 (4.16)

in which li1,j1 = (Lp)i1,j1, li0,j0 = (Lpr−1)i0,j0, and we have seen in the proof of Theo-

rem 14 thatli1+j1 = (ΨpLp)i1,j1. The value ofli0−pr−1,j0 can be replaced bylpr−1−i0,j0

because of the symmetry of the binomial coefficients. The latter can again be replaced by

(Θpr−1Lpr−1)i0,j0 since for0 < i0 < pr−1 the only nonzero entry in thei0th row of Θpr−1
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is in thepr−1 − i0th column and hence(Θpr−1Lpr−1)i0,j0 is the entry in thepr−1 − i0th

row andj0th column ofLpr−1. For i0 = 0 the entry(Θpr−1Lpr−1)i0,j0 is zero since there

is no nonzero entry in thei0th row of Θpr−1, and lpr−1,j0 is also zero sincej0 < pr−1.

Substituting all of these into (4.16) we will have the following equation:

(Lpr)i,j = (Lp)i1,j1(Lpr−1)i0,j0 + (ΨpLp)i1,j1(Θpr−1Lpr−1)i0,j0 (4.17)

which together with (4.13) shows that:

Lpr = Lp ⊗ Lpr−1 + (ΨpLp)⊗ (Θpr−1Lpr−1). (4.18)

It is straightforward, using Definition 13 to show that (4.18) is equivalent to (4.12).

Example 16. The matrixL81 is shown in Figure 4.9 where the numbers0, 1, and2 are

shown with colors light blue, green, and dark blue respectively. The relation betweenL3r

andL3r−1 is also shown in Figure 4.10.

This recursive relation resembles that for the DFT matrix inChapter 1 of Loan (1992)

and enables us to find a matrix factorization forLpr in Theorem 17. Using this factor-

ization the map of a vector under the isomorphismνn can be computed usingO(n logn)

operations as will be shown later in Section 4.6.

Theorem 17. The matrixLpr can be written as:

Lpr = (I1 ⊗Br)(Ip ⊗ Br−1) · · · (Ipr−2 ⊗ B2)(Ipr−1 ⊗ B1). (4.19)

Proof. We use induction onr. If r = 1, thenΘ1 is zero and Definition 13 implies that:

Lp = B1 = I1 ⊗B1.

Now assume that (4.19) is correct. Then using Lemma 15 :

Lpr+1 = Br+1(Ip ⊗ Lpr) =

Br+1 · (Ip ⊗ ((I1 ⊗Br)(Ip ⊗ Br−1) · · · (Ipr−2 ⊗ B2)(Ipr−1 ⊗ B1))) =

(I1 ⊗ Br+1) · (Ip ⊗Br) · · · (Ipr−1 ⊗B2)(Ipr ⊗ B1). (4.20)
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Figure 4.9: The matrixL81
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0

0 0

(
0
0

)
L3r−1

(
1
0

)
L3r−1

(
2
0

)
L3r−1

(
2
1

)
L3r−1

(
1
0

)
L3r−1

(
2
0

)
L3r−1

Figure 4.10: The relation between the matrixL3r and its sub-blocks. The sub-block at the

ith row andjth column, ifi < j andj − i is odd, is
(

j
(j−i−1)/2

)
multiplied by the mirror

of L3r−1 .
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Instead of multiplyingLpr by a vector, we successively multiply the matrices in the

factorization of (4.19) by that vector. In the next section we count the number of op-

erations required for the computations of the mappingsπn and νn, but before that we

informally describe the relation between Lemma 15 and the Pascal triangle. This infor-

mal description helps in better understanding of that lemmaand can probably give some

insights into data structures which are based on the modularPascal triangle.

Consider a new triangle which is generated from the Pascal triangle in the following

way (See Figures 4.11 and 4.12): At first a zero is inserted between any two horizontally

adjacent entries of the Pascal triangle and every entry is reduced modulop. This will result

in the expansion of the Pascal triangle and the new triangle is then rotated90 degrees

counter-clockwise. This triangle can be split into two partitions as shown in Figure 4.11.

In this figure the lower partition consists of the nonzero entries ofLpr , whereas the upper

partition contains the coefficients of the negative powers of x in the expansions of(x +

x−1)j. These negative powers construct, in a similar way to the definition of Lpr , a new

matrix which is shown byL′ in Figure 4.11. The symmetry in the Pascal triangle can now

be interpreted as the relation:

L′
pr = Θ · Lpr ,

and is demonstrated in the following example.

Example 18. The powers(x + x−1)j ∈ F9[x], for 0 ≤ j < 9, were shown in Example 7

and can be used to constructL′
9. This matrix together withL9 are shown in Figure 4.12-a.

The entriesli,j, for i < j, and oddj − i, andl′i,j, for j > pr − i and evenj − i, are zero,

independent of the binomial coefficients, and are shown in gray while other entries are

in black. The rotated Pascal triangle modulo3 is shown in Figure 4.12-b for the ease of

comparison.

To analyze the recursive dependency betweenLpr andLpr−1 we write0 ≤ i, j < pr
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L′
pr

Lpr

Figure 4.11: The relation between the matricesLpr , L′
pr , and the Pascal triangle. The

gray area is the Pascal triangle rotated 90 degrees counter-clockwise in which each entry

is reduced modulop, and a zero is inserted between any two horizontally adjacent entries.

L′
9

L9

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 2
0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 1 0 2 0 0 0
0 0 1 0 1 0 0 0 2
0 1 0 0 0 1 0 2 0
1 0 2 0 0 0 2 0 1
0 1 0 0 0 1 0 2 0
0 0 1 0 1 0 0 0 2
0 0 0 1 0 2 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

(a)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 2
0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 1 0 2 0 0 0
0 0 1 0 1 0 0 0 2
0 1 0 0 0 1 0 2 0
1 0 2 0 0 0 2 0 1
0 1 0 0 0 1 0 2 0
0 0 1 0 1 0 0 0 2
0 0 0 1 0 2 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

(b)

Figure 4.12: (a) The entries of the matricesL9 andL′
9 and (b) the rotated Pascal triangle

modulo3
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asi = i1p
r−1 + i0, j = j1p

r−1 + j0 and expand:

(x+ x−1)j = (x+ x−1)j1pr−1

(x+ x−1)j0 =

(xpr−1

+ x−pr−1

)j1

︸ ︷︷ ︸

displacements

(x+ x−1)j0

︸ ︷︷ ︸

blocks

. (4.21)

Since0 ≤ j0 < pr−1 the coefficients of the powers ofx in “blocks” make the concatena-

tions of the columns ofLpr−1 andL′
pr−1 as shown in Figure 4.11 and Example 18. The

terms in each block created by “blocks” are multiplied by oneof the terms in “displace-

ments” which are generally of the formcj′1x
j′1pr−1

. This can be thought of as multiplying

the block by the scalarcj′1 and moving it byj′1p
r−1 positions downwards, in the ma-

trix Lpr . Different values ofj1 correspond to horizontal positions of blocks. Sincej1

is multiplied bypr−1 and the difference of two powers ofx with nonzero coefficients in

“displacements” is at least2pr−1 and regarding the size of each block,(2pr−1
− 1)× pr−1,

the blocks are non-overlapping. This is shown in Figure 4.13-a. In this figure the blocks

of non-negative and negative powers ofx are shown with blue and green triangles, respec-

tively. Note that although the triangles of each group have the same color, their entries

are not equal. All of them are scalar multipliers of the same block.

Since the coefficients of negative powers ofx are not directly present inLpr their

corresponding blocks will be created by multiplyingΘpr−1 byLpr−1. Now the two parts of

Br, i.e.,Lp⊗Ipr−1 and(ΨpLp)⊗Θpr−1, can be considered as two masks which multiply the

non-negative and negative blocks,Lpr−1 andL′
pr−1, by appropriate binomial coefficients

and put them in the correct positions as shown in Figures 4.13-b and 4.13-c.

4.6 Costs of Computingνn and πn

Multiplication byLpr consists of several multiplications byBk for different values ofk.

Hence it is better to start the study by counting the requiredoperations for multiplyingBk

by a vector inFpk

q .
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Lpr−1

L′
pr−1

Lpr

Θpr−1

(a)

Lp ⊗ Ipr−1

(b)

(ΨpLp)⊗Θpr−1

(c)

Figure 4.13: (a) The recursive structure of the modified Pascal triangle together with the

masking effect ofBr for (b) non-negative and (c) negative powers ofx in the recursive

construction ofLpr in Lemma 15.
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Definition 19. LetBk, for the finite fieldFq, be as in Definition 13 andp be the charac-

teristic ofFq. We defineµadd(k) andµmult(k) to be the number of additions and multipli-

cations inFq to multiplyBk by a vector inFpk

q , respectively.

It should be noted that to compute the functionsµadd(k) andµmult(k) we use the

structure of the matrixBk which is already known and hence the cost of adding an entry

which is known to be zero to an element or that of multiplying one by an element is zero.

As an example sinceB1, for p = 2, is the identity matrix bothµadd(1) andµmult(1) are

zero.

Lemma 20. Let δi,j be the Kronecker delta, i.e., fori, j ∈ N, δi,j is 1 if i = j and

otherwise0. Then fork ≥ 1 the functionµadd(k) is given by:

µadd(k) = (p− 1)(2pk − p− 1)/4− δp,2/4.

Furthermoreµmult(k) ≤ (1− δp,2)µadd(k).

`0
0

´

Ipk−1 · · ·

` p−3
(p−3)/2

´

·

Ipk−1

` p−2
(p−3)/2

´

·

Θpk−1

` p−1
(p−1)/2

´

·

Ipk−1

· · · · · · · · · · · · · · ·

0 · · ·

`p−3
0

´

·

Ipk−1

`p−2
0

´

·

Θpk−1

`p−1
1

´

·

Ipk−1

0 · · · 0

`p−2
0

´

·

Ipk−1

`p−1
0

´

·

Θpk−1

0 · · · 0 0

`p−1
0

´

·

Ipk−1

(a)

`0
0

´

I2k−1

`1
0

´

Θ2k−1

0
`1
0

´

I2k−1

(b)

Figure 4.14: The partitioning ofBk, according to Theorem 14, for two different cases of

(a) odd primep and (b)p = 2.
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Proof. The block partitioning ofBk, according to Theorem 14, for two different cases of

odd primep andp = 2 are shown in Figure 4.14. As it can be seen the blocks on the main

diagonal are of the form
(

j
0

)
Ipk−1, for 0 ≤ j < p, which equalsIpk−1 . Hence all of the

entries on the main diagonal ofBk are1. If we denote the number of nonzero entries in

theith row ofBk byHi(Bk) thenHi(Bk) > 0 and the number of additions to multiply the

ith row ofBk by a vector is at mostHi(Bk)−1. This implies that the number of additions

to multiplyBk by a vector is at most

pk−1
∑

i=0

Hi(Bk)− p
k.

If we show the number of nonzero entries inBk, or
∑pk−1

i=0 Hi(Bk), byH(Bk), then the

number of additions to multiplyBk by a vector can be written as:

µadd(k) = H(Bk)− p
k. (4.22)

To computeH(Bk) we use the fact that the nonzero blocks ofBk are scalar multiples of

Ipk−1 with pk−1 nonzero entries andΘpk−1 with pk−1−1 nonzero entries and we count the

number of each of these blocks inBk.

If p is odd there are1+ 1 + · · ·+ (p− 1)/2+ (p− 1)/2+ (p+ 1)/2 = 2
∑(p−1)/2

i=1 i+

(p+ 1)/2 blocks which are multiples ofIpk−1 and1 + 1 + · · ·+ (p− 1)/2 + (p− 1)/2 =

2
∑(p−1)/2

i=1 i blocks which are multiples ofΘpk−1. Since
∑(p−1)/2

i=1 i = (p2−1)/8 we have:

H(Bk)− p
k =

p2 − 1

4
(pk−1 + pk−1 − 1) +

p + 1

2
pk−1 − pk =

p− 1

4
(2pk + 2pk−1 − p− 1) +

−pk + pk−1

2
=

p− 1

4
(2pk + 2pk−1 − p− 1− 2pk−1) = (p− 1)(2pk − p− 1)/4.

(4.23)

For p = 2 the results of (4.23) is2k−1 − 3/4. In this case there are two blocks which are

I2k−1 and oneΘ2k−1 in Bk. HenceH(Bk)− 2k = 2k−1 − 1 = 2k−1 − 3/4− 1/4.

We observe thatH(Bk)− p
k is also an upper bound for the number of multiplications

in Fq since from the nonzero entries inBk there arepk entries which are on the main
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diagonal and are1. These elements do not contribute to any multiplications. There are

possibly other elements inBk which are1 but specifying them is complicated. Ifp = 2

there are only1s and0s inBk and hence multiplication ofBk by a vector is done without

anyFq-multiplications.

Using Lemma 20 we are now in the position to compute the cost ofmultiplication by

Lpr as shown in the following theorem.

Lemma 21. Multiplying Lpr by a vector inF
pr

q for r ≥ 1 requiresη(r) number of addi-

tions, where

η(r) = r(p− 1)pr/2− (p+ 1)(pr − 1)/4− δp,2(p
r − 1)/(4(p− 1)).

The number of multiplications is not larger than the number of additions.

Proof. It is clear from (4.20) that the number of additions and multiplications are

r∑

k=1

pr−kµadd(k) and
r∑

k=1

pr−kµmult(k)

respectively and sinceµmult(r) ≤ µadd(r) the total number of multiplications is not larger

than the number of additions. Replacingµadd(k) with its value from Lemma 20 we have:

r∑

k=1

pr−k((p− 1)(2pk − p− 1)− δp,2)/4 =

r∑

k=1

(p− 1)pr/2−
p2 − 1 + δp,2

4

r∑

k=1

pr−k =

r(p− 1)pr/2−
p2 − 1 + δp,2

4

r∑

k=1

pr−k. (4.24)

Putting
∑r

k=1 p
r−k = (pr − 1)/(p− 1) in (4.24) gives the functionη(r) given above.

The following theorem is the result of Lemma 21.

Theorem 22. Multiplication ofLn from Definition 6 by a vector inFn
q can be done using

O(n logn) operations inFq.
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Proof. Let p be the characteristic ofFq andr = dlogp ne. Obviously the above number of

operations is upper bounded by the number of operations to multiply Lpr by a vector in

F
pr

q . This is given by the functionη(r) from Lemma 21. But we haver − 1 < logp n ≤ r

and hence:

η(r) < rpr+1/2 < p2n(logp n + 1)/2.

One interesting fact about this factorization, which distinguishes it from other recur-

sive methods like FFT, is that it is not necessary to use all ofthe entries ofLpr for values

of n which are betweenpr−1 andpr. To find a factorization ofLn in this case we use the

factorization ofLpr . Using (4.20) we can write:

Lpr = A0A1 · · ·Ar−1,

whereAj, 0 ≤ j < r, are upper triangular andAj = Ipj ⊗ Br−j. ObviouslyLn consists

of the firstn rows and columns ofLpr . Now we can write:

Ln = A′
0A

′
1 · · ·A

′
r−1, (4.25)

where eachA′
j is made up of the firstn rows and columns ofAj because each of the

involved matrices are upper triangular. This can be better explained by the following block

matrix multiplication assuming that the sizes of the matrices are such that the operations

are allowed.
(
A B

0 C

) (
D E

0 F

)

=

(
AD AE +BF

0 CF

)

.

As it can be seen the first block of the product matrix depends only on the first blocks of

the multiplicands.

In the next paragraphs we show that the cost of multiplyingPpr by a vector can be

computed by the same formulas as for the cost of multiplyingLpr by a vector. First we

observe that eachBr is nonsingular since it is upper-triangular and all of the entries on

the main diagonal are1. Now we can factorizePpr , since it is the inverse ofLpr , using
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the factorization ofLpr in (4.20):

Ppr = (Ipr−1 ⊗B−1
1 )(Ipr−2 ⊗ B−1

2 ) · · · (Ip ⊗B
−1
r−1)(I1 ⊗ B

−1
r ). (4.26)

Finding an exact expression forB−1
r is not easy but the computation of an upper bound

for the number of nonzero entries in this matrix is achieved by symbolically invertingBr.

As we will see later, the resulting matrix has a block representation in which each block is

a polynomial inΘpr−1 with even or odd powers only. In the next paragraphs we count the

number of nonzero entries in these blocks. The following lemma expresses the number of

nonzero elements in the matrices constructed by such polynomials.

Definition 23. We define even and odd polynomials to be polynomials of the formsf(x2)

andx · f(x2), for a general polynomialf , respectively. The product of two even or odd

polynomials is an even polynomial whereas that of an even andan odd polynomial is an

odd polynomial.

Lemma 24. LetH = (hi,j)0≤i,j<n ∈ F
n×n
p be such thatH = g(Θn) for a polynomial

g. If hi,j is nonzero, theni = j for eveng and i + j = n for an odd polynomialg. The

number of nonzero entries inH is at mostn andn − 1 for even and odd polynomialg,

respectively.

Proof. Let Φn ∈ F
n×n
p be the identity matrix with the top-left entry set to zero, i.e.,

(Φn)i,j =

{
1 if i = j andi 6= 0,
0 otherwise.

We haveΘ2
n = Φn andΦnΘn = Θn. It follows by induction thatΘs

n, for s > 0, equals

Φn andΘn for even and odds, respectively. Hence sums of even and odd powers ofΘn

can have at mostn andn − 1 nonzero entries, respectively. Note thatΘ0
n = In is an

even power ofΘ which containsn nonzero entries. These nonzero entries must be on the

positions where the entries ofIn andΘn are nonzero, respectively.

Before we start the last theorem about the number of nonzero entries we need more

information about the structure ofBk which is gathered in the following lemma.
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Lemma 25. Let T = Ipk − Bk = (Ti,j)0≤i,j<p with Ti,j ∈ F
pk−1×pk−1

p . ThenT has the

following properties:

1.

Ti,j =







the zero block ifi ≥ j,
−

(
j

(j−i)/2

)
Ipr−1 if j − i is even, and

−
(

j
(j−i−1)/2

)
Θpr−1 otherwise,

2. For anys ≥ 0 the blocks ofT s = (T
(s)
i,j )0≤i,j<p with T (s)

i,j ∈ F
pk−1×pk−1

p satisfy

T
(s)
i,j =

{
the zero block ifj − i < s,
gi,j(Θpk−1) otherwise,

(4.27)

wheregi,j ∈ Fp[x] is odd and even forj − i odd and even, respectively, and

3. T p = 0.

Proof. Part 1 can be directly verified byT = Ipk − Bk and Theorem 14. SinceT is

strictly upper triangular the blocks on the main diagonal ofT s ands− 1 diagonals on top

of that are zero, i.e.,T (s)
i,j is the zero block wheneverj − i < s. To show the condition on

the polynomialsgi,j we use again induction ons. For the beginning,Ipk andT obviously

satisfy (4.27) according to Part 1. Now assume that this equation is satisfied for all integers

s < s0 and lets1, s2 < s0 ands0 = s1 + s2. Then the block on theith row andjth column

of T s0 is:

T
(s0)
i,j =

p
∑

t=1

T
(s1)
i,t T

(s2)
t,j . (4.28)

Now if j − i is even,j − t andt− i must be both even or odd. In these cases two even or

odd polynomials ofΘpk−1 are multiplied and the resulting polynomial will be even. If, on

the other hand,j − i is odd eithert − i or j − t is odd and the other one is even. In this

case two polynomials ofΘpk−1 are multiplied, so that one of them is odd and the other one

even. This results in an odd polynomial inΘpk−1. Part 3 is also a direct result of Part 2

since all of the blocks satisfyj − i < p.
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Lemma 26. Multiplication of B−1
k by a vector inF

pk

q requires at mostµadd(k) and

µmult(k) additions and multiplications inFq, respectively whereµadd(k) and µmult(k)

are given in Lemma 20.

Proof. SinceT p = 0 we can write:

Ipk − T p = Ipk = (Ipk − T )(Ipk + T + · · ·+ T p−1).

Hence using the definition ofT in Lemma 25:

Ipk = Bk · (Ipk + T + · · ·+ T p−1) =⇒ B−1
k = Ipk + T + · · ·+ T p−1. (4.29)

Lemma 25 shows that eachT s, for s ≥ 0, and henceB−1
k can be partitioned in a way

similar to Lemma 25, such that the block on theith row andjth column is the zero

block for i > j and an even or an odd polynomial inΘpk−1 for even and oddj − i,

respectively. Note that the zero blocks in the identity matrix are even and odd polynomials

in Θpk−1. These even and odd polynomials have at mostn andn−1 nonzero coefficients,

respectively according to Lemma 24. Now the same method as that of Lemma 20 shows

that the number ofFq-additions and multiplications are bounded byµadd(k) andµmult(k),

respectively.

Theorem 27. Multiplication ofPn from Definition 9 by a vector inFn
q can be done using

O(n logn) operations inFq.

Proof. Lemma 26 and the same argumentation as Lemma 21 show that multiplication of

Ppr by a vector is done usingη(r) operations, whereη(r) is given in Lemma 21. Now the

proof is similar to Theorem 22.

We conclude this section with the following theorem. Although its result is not con-

cerned with normal basis multiplication directly, it emphasizes the most important prop-

erty of our multiplier. Namely a specific change of basis inFqn which can be done using

O(n logn) instead ofO(n2) operations, which is the cost of general basis conversion in

Fqn.
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Theorem 28. Let N be a type-II normal basis ofFqn over Fq generated by the normal

elementβ + β−1 and

P = (1, β + β−1, · · · , (β + β−1)n−1)

be the polynomial basis generated by the minimal polynomialofβ+β−1. Then the change

of representation between the two basesN andP can be done usingO(n logn) operations

in Fq.

Proof. TheN-basis vector representation of an element is converted to the extended per-

muted representation, as in Figure 4.2, without any arithmetic operations. Then the matrix

Pn+1 is multiplied by this vector using at mostη(r) operations, wherer = dlogp ne and

p is the characteristic ofFq, and the coefficient of(β + β−1)n is converted to the polyno-

mial basis using at most2n additions and multiplications inFq. This cost isO(n logn)

according to Theorem 22.

To convert the representation of an element fromP intoN we insert a zero, as the coef-

ficient of(β+β−1)n, to the end of the representation vector inP. ThenLn+1 is multiplied

by the resulting vector and finally the first entry which is theconstant term is converted to

the normal basis representation by multiplying it by the vector representation of1 using

at most2n operations inFq. This again can be done usingO(n logn) operations.

4.7 Other Costs

There are two other operations in our multiplier which will be discussed in this section.

Namely polynomial multiplication and conversion from the extended permuted represen-

tation to the normal basis representation.

The polynomial multiplication method can be selected arbitrarily among all avail-

able methods depending on the polynomial lengths and the implementation environments.

Chapter 3 was devoted to moderate polynomial sizes which areapplicable to cryptogra-

phy. Although Table 3.6 of that chapter compares our multipliers with others for polyno-

mial lengths up to8192, the methods can be applied to larger polynomials as well. For
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a thorough analysis of other methods of polynomial multiplication see von zur Gathen &

Gerhard (2003), Chapter 8. We assume the polynomial multipliers of Chapter 3 to require

d7.6 nlog2 3e two-input gates. The above expression has been computed as an upper bound

for the area of those multipliers in the interval160 < n < 10000.

Another cost which we analyze is the number of bit operationsto convert from ex-

tended permuted to the permuted representation. By multiplying the polynomials of

lengthn + 1 the product which is of length2n + 1 is converted to a linear combina-

tion of βi + β−i for 0 ≤ i ≤ 2n. These values should be converted to the permuted

representation, i.e.,βi + β−i for 1 ≤ i ≤ n. This conversion is done using the fact thatβ

is a2n + 1st root of unity. The costs for the case of odd prime numbers are given in the

next theorem.

Theorem 29. Let p, the characteristic ofFqn , be an odd prime number. Conversion from

extended permuted representation of the product in Figure 4.2 into the permuted basis

can be done using at most2n additions andn scalar multiplications inFq.

Proof. The conversion from the extended permuted representation to the permuted basis

must be done for the constant term andβi + β−i wheni > n. Sinceβ is a2n + 1th root

of unity βn+k = βn+1−k for 1 ≤ k ≤ n andβn+k + β−n−k = βn+1−k + β−n−1+k. Hence

the corresponding coefficients must be added together. Thisis done usingn additions.

The mapping of the constant term is done by multiplying it with the vector of represen-

tation of 1 in the permuted normal basis. This is done with at mostn additions andn

multiplications inFq.

The above task can be done usingn additions when the characteristic of the finite

field is 2 since in that case the constant term vanishes, as will be shown later using the

following lemma.

Lemma 30. For any positive integern the binomial coefficient
(
2n
n

)
is an even number.

Proof. This can be easily proven using Lucas’ theorem. This theorem(see PlanetMath

(2002)) states that for any two positive integersa and b with p-adic representations
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am−1am−2 · · ·a0 andbm−1bm−2 · · · b0 respectively, we have:
(
a

b

)

≡

(
am−1

bm−1

)(
am−2

bm−2

)

· · ·

(
a0

b0

)

mod p. (4.30)

Letnm−1nm−2 · · ·n0 be the binary representation ofn andk be its first nonzero digit from

the right, i.e., for eachj < k we havenj = 0 andnk = 0. Since the binary representation

of 2n is that ofn shifted by one position to left, the digit on thekth position of the binary

representation of2n is zero. The relation
(

2n

n

)

≡ 0 mod 2

is hence the result of the fact that
(
0
1

)
is equal to zero and (4.30).

Theorem 31. Let ϕc(x) be the polynomial representation of the productc, as shown in

Figure 4.2 andq be a power of2. Then the constant term inϕc(x) is zero.

Proof. According to Theorem 8 and Lemma 30 the entryl0,0 is the only nonzero entryl0,j

of L2k , for every integerk and0 ≤ j < 2k. On the other hand, as we saw in Section 4.4,

zeros are inserted to the beginning of the permuted normal representations ofa andb and

the entries at the index0 of these two new vectors are zero. Hence the constant terms in

polynomialsϕa andϕb in Figure 4.2 are zero and sinceϕc is the product ofϕa andϕb the

constant term in that polynomial is zero, too.

Using the materials which are presented herein we can summarize the costs of our

multiplier in the following theorem. Since we can use any suitable polynomial multiplier,

the presented costs depend on the polynomial multiplication methods used.

Theorem 32. Let Fqn be a finite field of characteristicp, which contains an optimal

normal basis of type2. Let furtherδi,j be the Kronecker delta as stated in Lemma 20,

M(n) be the number ofFq-operations to multiply two polynomials of degreen − 1, η(r)

be as given in Lemma 21,r1 = dlogp(n + 1)e, andr2 = dlogp(2n + 1)e. Multiplication

in this finite field, in normal basis, can be done using at most

n + 2(1− δp,2)n+ 2η(r1) + η(r2) + M(n+ 1)
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(a)

(b)

Figure 4.15: (a) The matricesP6 andP8 and (b) their factorizations. All nonzero entries

which belong only toP6 are in black and other nonzero entries inP8 are in gray.

operations inFq. For sufficiently largen the above expression is upper bounded by

M(n+ 1) + 3n+ 2(2n+ 1)p2 logp(2n+ 1).

It should be pointed out that for the casep = 2 we haveT 2 = 0, for the matrixL in

Theorem 26, and Equation 4.29 implies that eachBk is its own inverse and computingπn

has the same cost asνn.

The matricesL11 andP6 whenp = 2, i.e., the case of the example in Section 4.3 and

their factorizations are shown in Figures 4.15 and 4.16, respectively.

4.8 Comparison

The multiplier which is proposed in this section is especially efficient when the extension

degreen is much larger than the size of the ground fieldq. One practical application

of this kind is the cryptography in fields of characteristic2. In this section we compare
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(a)

(b)

Figure 4.16: (a) The matricesL11 andL16 and (b) their factorizations. All nonzero entries

which belong only toL16 are in gray, whereas common entries ofL16 andL11 are in black.

this multiplier with some other structures, from the literature, which are proposed for

multiplication in such fields using normal bases of type2. The field extensions which are

discussed here are from Table 4.1.

The first structure, which we study here is the circuit of Sunar & Koç (2001) with

n(5n − 1)/2 gates. The second circuit is from Gaoet al. (1995). The idea behind this

multiplier is to consider the representation

a1(β + β−1) + · · ·+ an(βn + β−n)

as the sum of two polynomials

a1β + · · ·+ anβ
n andanβ

−n + · · ·+ a1β
−1.

To multiply two elements four polynomials of degreen should be multiplied together.

However, because of the symmetry only two multiplications are necessary which also

result in the other two products by mirroring the coefficients. The cost of a multiplication
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using this circuit is2M(n) + 2n, whereM(n) is the cost of multiplying two polynomials

of lengthn.

Since we are interested in hardware implementations of algorithms we compare the

circuits with respect to both area and area-time. The propagation delay of the multiplier

of Sunar & Koç (2001) is1 + dlog2 ne gates. The propagation delay of the multiplier of

this chapter consists of two parts: the first one belongs to the conversion circuits which is

2+2dlog2 ne and the other part corresponds to the polynomial multiplier. We compute the

propagation delay of each polynomial multiplier for that special case. The propagation

delay of the multiplier of Gaoet al. (1995) is two plus the delay of each polynomial

multiplier which must again be calculated for each special case.

The area and AT parameters of these three circuits are compared with each other

and the results are shown in Figure 4.17. In these diagrams polynomial multiplication

is done using the methods of Chapter 3. As it can be seen the area of the proposed

multiplier is always better than the other two structures. But the AT parameter is larger

for small finite fields. This shows that, as we have mentioned,this method is appropriate

for applications where only small area is available or wherethe finite fields are large.

Economical applications, where small FPGAs should be used are situations of this sort.

The AT parameter of the proposed multiplier isO(n log3 n(log log n)3), whereas that of

the structure in Sunar & Koç (2001) isO(n2 log n).

4.9 Conclusion

This chapter presented a new method for multiplication in finite fields using optimal nor-

mal bases of type2. The area of this multiplier is smaller than other proposed structures

but has a higher propagation delay, hence is suitable for lowarea implementations. The

most important property of this multiplier, which is inherited from its conceptual par-

ent in Gaoet al. (1995), is the ability of using polynomial multipliers for normal bases.

This enables designers to select the most appropriate structure, from the well studied area
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The multiplier of Sunar & Koç (2001)
The multiplier of Gaoet al. (1995)
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Figure 4.17: Comparing the (a) area (as the number of two-input gates) and (b) the AT

parameter (as the product of the number of two-input gates and the delay of a single gate)

of three multipliers for binary finite fields with extension degrees from Table 4.1.
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of polynomial multipliers, to fit their special conditions.The advantage of this struc-

ture, compared to that of Gaoet al. (1995), is the reduction of the number of operations

from two polynomial multiplications to one multiplicationplus a small circuit of size

O(n logn) for the change of representation. The materials of this chapter were arranged

in the following parts:

• First the definitions of the Gauss periods and optimal normalbases of type2 re-

viewed from the literature.

• The structure of the multiplier and the definitions of the used data structures were

presented in Section 4.3.

• The data structures for the change of representations were introduced. Some facts

about their matrices were proved, which resulted in specialfactorizations. These

factorizations allowed the change of representations to bedone usingO(n logn)

operations.

• The costs corresponding to the other parts of the multiplierare briefly studied.

• Finally Section 4.8 compared the area and AT measures of the proposed mul-

tiplier with two other structures from the literature for the finite fieldsF2n , for

160 < n < 5000, in which optimal normal bases of type2 exist. Results showed

that the asymptotically small area of the multiplier makes it even attractive for el-

liptic curve cryptography, where the finite field sizes are not very large (160 <

n < 600). But designers should note the long propagation delay and use it only for

applications where the area is limited or too expensive or for large finite fields.



Chapter 5

Conclusion and Future Works

The aim of this work is to present the design stages of an elliptic curve co-processor.

Elliptic curve cryptography is going to be an important partof cryptography because of its

relatively short key length and higher efficiency as compared to other well-known public

key crypto-systems like RSA. Chapter 1 contains a very briefoverview of cryptography,

FPGAs, and parameters which are used for designing the circuit.

Chapter 2 studies the stages of the design of a high performance elliptic curve co-

processor. It is shown in this chapter that for small area applications, the combination

of polynomial basis for the finite field representation and the Montgomery method for

the point representation and scalar multiplication, is best. In addition, it is shown in this

chapter that it is always better to use as much parallelism aspossible in the finite field

arithmetic level rather than in the bit-level. This means that for example, if allowed by

the algorithm two serial multipliers are better than a single multiplier which produces two

output bits in one clock cycle. A comparison between all of the published reports is not

possible due to differences in hardware platforms. But the comparison with a circuit on

the same FPGA shows the high performance of the co-processorpresented here.

The rest of this work studies different methods to improve the efficiency of the finite

field multiplication as a ground operation in elliptic curvecryptography. The results of

Chapter 3 propose a novel pipelined architecture for the multiplication of polynomials
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overF2. This chapter begins with a machine-independent improvement of the Karatsuba

method by combining different multiplication methods and continues with the applica-

tion of pipelining as a machine-dependent optimization to further improve the results. Al-

though these results are not built into the designed co-processor, the comparisons between

this structure and other classical methods for240-bit polynomials show the suitability for

applications in elliptic curve cryptography by covering the NIST finite finite fieldF233.

Finally Chapter 4 presents a small area normal basis multiplier. This multiplier re-

duces the multiplication in optimal normal bases of type2 to one polynomial multipli-

cation and a small circuit of sizeO(n logn). These results are probably not directly

applicable to generic elliptic curves because of the high propagation delay in their circuits

and the fact that for these curves polynomial bases are better, as is shown in Chapter 2.

They can instead be applied to Koblitz curves, where severalsquarings should be done for

a single point multiplication (see Hankersonet al. (2003), Section 4.1.2, Page 163) or to

finite field inversion, where there are a lot of squarings compared to multiplications. It is

better to perform these squarings in normal bases. Another advantage of this structure is

its efficiency for the change of representation between polynomial and normal bases. This

change of representation, which is used by Parket al. (2003) to strengthen the systems

against side channel attacks, can be done by the multiplier of this chapter usingO(n logn)

instead of the assumedO(n2) operations. Another possible application of this system is

in systems where several normal basis multiplications can be done in parallel. In this case

pipelining can be used to decrease the latency of the system while keeping the area to a

minimum. This happens, in fields of characteristic3 for identity based cryptosystems, as

also mentioned in Grangeret al. (2005). These can be considered as the future research

directions of this project.



Appendix A

Karatsuba multiplication Formulas for

Polynomials of Degrees2 and 7 for fields

of characteristic 2

A.1 Degree2

a(x) = a2x
2 + a1x + a0,

b(x) = b2x
2 + b1x + b0),

P0 = a0b0, P1 = (a0 + a1)(b0 + b1), P2 = a1b1,

P3 = (a0 + a2)(b0 + b2), P4 = (a1 + a2)(b1 + b2), P5 = a2b2,

a(x)b(x) = P0(1 + x + x2) + P1x + P2(x + x2 + x3)+

P3x
2 + P4x

3 + P5(x
2 + x3 + x4).
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A.2 Degree7

a(x) = (a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0),

b(x) = (b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0),

P0 = a0b0, P1 = a1b1, P2 = a2b2, P3 = a3b3, P4 = a4b4, P5 = a5b5,

P6 = a6b6, P7 = a7b7,

P8 = (a0 + a1)(b0 + b1), P9 = (a0 + a2)(b0 + b2), P10 = (a1 + a3)(b1 + b3),

P11 = (a2 + a3)(b2 + b3), P12 = (a0 + a4)(b0 + b4), P13 = (a1 + a5)(b1 + b5),

P14 = (a2 + a6)(b2 + b6), P15 = (a3 + a7)(b3 + b7), P16 = (a4 + a5)(b4 + b5),

P17 = (a4 + a6)(b4 + b6), P18 = (a5 + a7)(b5 + b7), P19 = (a6 + a7)(b6 + b7),

P20 = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3), P21 = (a0 + a1 + a4 + a5)(b0 + b1 + b4 + b5),

P22 = (a0 + a2 + a4 + a6)(b0 + b2 + b4 + b6), P23 = (a1 + a3 + a5 + a7)(b1 + b3 + b5 + b7),

P24 = (a1 + a2 + a5 + a6)(b1 + b2 + b5 + b6), P25 = (a2 + a3 + a6 + a7)(b2 + b3 + b6 + b7),

P26 = (a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7)(b0 + b1 + b2 + b3 + b4 + b5 + b6 + b7),

a(x)b(x) = P0(1 + x1 + x2 + x3 + x4 + x5 + x6 + x7)+

P8(x
1 + x3 + x5 + x7) + P1(x

1 + x2 + x3 + x4 + x5 + x6 + x7 + x8)+

P9(x
2 + x3 + x6 + x7) + P20(x

3 + x7) + P10(x
3 + x4 + x7 + x8)+

P2(x
2 + x3 + x4 + x5 + x6 + x7 + x8 + x9) + P11(x

3 + x5 + x7 + x9)+

P3(x
3 + x4 + x5 + x6 + x7 + x8 + x9 + x10) + P12(x

4 + x5 + x6 + x7)+

P21(x
5 + x7) + P13(x

5 + x6 + x7 + x8) + P22(x
6 + x7) + P26(x

7)+

P23(x
7 + x8) + P14(x

6 + x7 + x8 + x9) + P24(x
7 + x9)+

P15(x
7 + x8 + x9 + x10) + P4(x

4 + x5 + x6 + x7 + x8 + x9 + x10 + x11)+

P16(x
5 + x7 + x9 + x11) + P5(x

5 + x6 + x7 + x8 + x9 + x10 + x11 + x12)+

P17(x
6 + x7 + x10 + x11) + P25(x

7 + x11) + P18(x
7 + x8 + x11 + x12)+

P6(x
6 + x7 + x8 + x9 + x10 + x11 + x12 + x13)+

+P19(x
7 + x9 + x11 + x13) + P7(x

7 + x8 + x9 + x10 + x11 + x12 + x13 + x14).
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Embedded Systems CHES 2001, Ç. K. KOÇ, D. NACCACHE & C. PAAR, editors, number 2162

in Lecture Notes in Computer Science, 118–125. Springer-Verlag. ISBN 3-540-42521-7. ISSN

0302-9743.
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List of symbols

Fqn The finite field withqn elements
M(n) Number of bit operations for multiplication of polynomialsof

lengthn
Q A fixed point on an elliptic curve
−R The additive inverse of the pointR on an elliptic curve
O The point at infinity: the zero element of the group of points

on an elliptic curve
mR The integerm times the pointR on an elliptic curve
a, b Parameters of an elliptic curve over a field of characteristic 2

ω The root of the irreducible polynomial generating a polynomial

basis
f(x) The irreducible polynomial defining a polynomial basis
α Normal element
w The word-length of serial-parallel multipliers
P Polynomial basis
H(xk) The Hamming weight or the number of nonzero coefficients in

the representation ofxk

ALFSR(n,P, w) The area or the number of two-input gates in an LFSR multi-

plier for F2n of word-lengthw and in a polynomial basisP
DLFSR(n,P, w) The delay (or the minimum clock period) of an LFSR multi-

plier for F2n of word-lengthw and in a polynomial basisP
TX The delay of anXOR gate
TA The delay of anAND gate
K2 The2-segment Karatsuba method
M

(2)(n) The number of bit operations to multiply twon-bit polynomi-

als by recursively applying the2-segment Karatsuba method
K3 The3-segment Karatsuba method
M

(3)(n) The number of bit operations to multiply twon-bit polynomi-

als by recursively applying the3-segment Karatsuba method
M

(K2K3)(6n) The number of bit operations to multiply two polynomials of

length6n by applyingK2 on top ofK3

M
(K3K2)(6n) The number of bit operations to multiply two polynomials of

length6n by applyingK3 on top ofK2

p The characteristic ofFqn
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Z
×
r The group of units modulor

#Fqnk The number of elements inFqnk

β A primitive rth root of unity inFqnk

(a
(B)
i )1≤i≤n The vector of the representation of the elementa with respect

to the basisB
a

(B)
i Theith entry in the vector of the representation of the element

a with respect to the basisB
Fq[x]

≤n Polynomials in variablex overFq with degree not larger than

n.
ϕa See Section 4.3. The polynomial representation of the element

a

(yi)1≤i≤n The vector of elementsyi for 1 ≤ i ≤ n

(A)i,j The entry in theith row andjth column of the matrixA
Lq,n See Definition 6. The parameterq can be omitted.
νn The linear mapping corresponding toLq,n

Pq,n See Definition 9. The parameterq can be omitted.
πn The linear mapping corresponding toPq,n

L′
pr See Definition 6.

Θpr See Definition 11

L
(i,j)
pr The block in theith row andjth column in the block represen-

tation ofLpr

Br See Definition 13
µadd(k) The number ofFq-additions to multiplyBk by a vector inFpk

q

µmult(k) The number ofFq-multiplications to multiplyBk by a vector

in F
pk

q

η(r) The number ofFq-additions to multiplyLpr by a vector inFpr

q ,

See Theorem 21
Φn See Lemma 24
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López-Dahab representations, 44

Massey-Omura (MO) multiplier, 36

matrix factorization, 101

minimum clock-period, 30

mixed coordinates, 5

mixed representation, 44

Montgomery method, 48

multiplexer, 54

multiplication time, 30, 31



140 Index

multiplier, 55

normal basis, 6, 28, 38, 83

normal element, 83

optimal normal bases, 84

optimum hybrid limits, 6

overlap circuit, 34

parallel-in, 28

parallelism, 5

Pascal triangle, 104

pentanomial, 35

permuted normal basis, 87

pipeline registers, 19, 79

pipelined Karatsuba multiplier, 72

pipelining, 4, 6

place and route (par), 32

point multiplication time, 5

point addition, 26, 43

point at infinity, 11, 41

point doubling, 26, 43

point multiplication, 11, 26

point negation, 26

polynomial basis, 28, 39

private key, 2, 8

projective representation, 44

propagation delay, 19, 32

public key, 2, 8

Rapid prototyping platform (Raptor) card,

20

recursive, 6

reflection matrix, 96, 97

Register Transfer Level (RTL), 78

routing resource, 19

scalar multiplication, 26, 46

Secure Hash Algorithm (SHA), 14

sequential, 6, 19

settling-time, 30

setup time, 19

shift register, 57

shifting matrix, 96, 97

side-channel attacks, 7

simple representations, 43

slice, 18

smart cards, 15

space complexity, 32

squarer, 55

squaring, 38

Subscriber Identity Module (SIM), 15

theoretical 2-input gate model, 31

time, 5

time complexity, 32, 35

time parameter, 19

trapdoor, 8

trinomial, 35



INDEX 141

Weierstrass equation, 11

word multipliers, 34

word register, 34

word-length, 30, 32


