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Introduction

Spinors in geometry have been widely studied in the past few decades motivated by
the fundamental role that the Dirac operator plays in many areas at the cross-border
between geometry, global analysis, topology and of course physics, from where the
original motivation came. Previously, the Laplacian operator was the focus of most
of the developments in the study of differential operators and from the profound
knowledge gained about its properties, some guidance has been available in the
search for interesting questions and methods to consider in the case of the Dirac
operator.

One particular example, in which we are interested here, is the existence of
lower and upper bounds on the spectrum of the Dirac operator under different sets
of conditions. Moreover, the explicit spectrum on compact manifolds has been
calculated for particularly “nice” cases where available algebraic or analytical tech-
niques are fruitful, but this is not the most common situation.

On the other hand, the relation of this spectrum with the geometry of the mani-
fold, which is another instance of the problem of “hearing the shape” of a space, is
one of the fundamental questions of the subject. Pinching theorems for the eigen-
values of geometric operators offer some insight into this questions. For the eigen-
values of the Laplace operator many different results have been found in various
contexts.

As an example we recall here the following cases (see [Pet99], [PS99], [PS03]).
Consider the Hodge Laplacian ∆ω = (d∗d +dd∗)ω , and the connection (Bochner)
Laplacian ∇∗∇ω = − tr∇2ω acting on forms. For the eigenvalues of 1-forms on
compact Riemannian manifolds there are pinching results stating that under cer-
tain conditions, smallness of the first n eigenvalues implies that the manifold is the
quotient of a nilpotent Lie group by a discrete group of isometries i.e. a nilmanifold.

Let us denote by λi the eigenvalues of the Hodge Laplacian and with λ̄i the
eigenvalues of the connection Laplacian.

Theorem. (Petersen-Sprouse 1999). Let Mn be a compact manifold with |sec |< K,
diam(M) < d. Then there is an ε = ε(n,K,d) such that if λ̄n < ε , then M is a
nilmanifold.
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Motivated by this and by similar results for the Dirac operator obtained recently
by Ammann and Sprouse, we focused on the study of convergence and regularity
techniques to obtain pinching restrictions for the eigenvalues of the Dirac operator
close to the Friedrich lower bound (λ 2 ≥ n2/4, cf. chapter 5) under appropriate
geometrical conditions.

In this thesis, we introduce spaces and metrics of C1,α regularity and employ
the theory of convergence of Riemannian manifolds developed after Gromov, to
study spin manifolds converging in the C1,α -topology. In particular, we are con-
cerned with the existence of Killing spinors in these limits and the improving of the
regularity of the metric for such cases.

Now we outline briefly the contents. In chapter 1, we review basic but important
results from the theory of partial differential equations in the context of compact
manifolds, and establish some elliptic regularity theorems and estimates needed in
chapters 3 and 4.

In chapter 2, a brief discussion on spin geometry appears, focusing at the end on
the notions of Killing spinors, Einstein manifolds and their relationship on smooth
Riemannian manifolds.

Chapter 3 is devoted to the study of Riemannian manifolds with C1,α -metrics,
making use of the well-known optimal regularity properties of harmonic coordi-
nates. Since curvature is not well-defined without second derivatives of the metric,
we introduce appropriate weak notions of Ricci curvature and the Einstein condi-
tion for C1,α -metrics. Then, it is shown that C1,α -metrics satisfying the Einstein
condition weakly in harmonic coordinates are actually smooth and Einstein in the
usual sense.

Then, weak spinorial Riemann curvature is introduced and with that, it is proved
that manifolds with C1,α -metrics carrying a Killing spinor satisfy the weak Einstein
condition and therefore, the smoothness of those metrics is obtained.

The most important results of chapter 3 are:

Theorem 3.3.2. Let M be an n-dimensional manifold with a Riemannian metric g
of class C1,α . If the components of g are weak solutions of the Einstein equation
Ricab = κ(n− 1)gab in a harmonic coordinate chart (U,φ), where φ : U ⊂ M −→
V ⊂ Rn is invertible, then viewed as functions gab ◦φ−1 : V −→ R, they are smooth.
We say in this case that the components of g are smooth with respect to the harmonic
coordinate chart (U,φ).

Corollary 3.3.3. If g is weakly Einstein with respect to all charts in a harmonic
coordinate atlas A = {φγ : Uγ −→Vγ} of M, then A is actually a smooth atlas, and
g is a smooth Riemannian metric with respect to it.

Theorem 3.4.2. If M is a compact spin manifold with a C1,α -metric g such that
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there is a non-trivial Killing spinor, then the manifold satisfies weakly the Einstein
condition in any local coordinate chart.

Theorem 3.4.3. If M is a compact spin manifold with a C1,α -metric g such that
there is a non-trivial Killing spinor, then g is smooth with respect to a harmonic
coordinate atlas for M. Furthermore g is Einstein (and hence analytic) in this atlas.

In chapter 4, the identification procedure for spinor fields associated to differ-
ent metrics on the base manifold is reviewed as well as the essential aspects of the
theory of convergence of Riemannian manifolds under appropriate diameter, curva-
ture and volume bounds. Then we study sequences of manifolds carrying “almost
Killing spinors” and consider their convergence in the space of L2-spinors. Exis-
tence of a Killing spinor in the limit, with appropriate regularity, is proved.

The main result here can be summarized as:

Theorem 4.5.2. A sequence of almost Killing spinors (ψi)i≥1 where ψi ∈ L2(ΣgiM),
has a subsequence, denoted again by (ψi)i≥1, such that (Aiψi)i≥1 converge strongly
in L2(ΣgM) to a non-trivial Killing spinor ψ of class C1,α .

In chapter 5 all the material presented before is used to find pinching results for
eigenvalues of the Dirac operator close to the Friedrich bound on n-manifolds with
bounded diameter diam < d, volume vol > V and sectional curvature |sec | < K
(whose class is denoted by M (n,d,K,V )). In particular the existence of a Killing
spinor in such manifolds allows to characterize the sphere for many dimensions.
Additionally, uniform lower bounds on manifolds no diffeomorphic to the sphere
and with the same geometrical restrictions are presented.

Denoting I+
ε := spec(D)∩ [0, n

2 + ε], and I−ε := spec(D)∩ [−n
2 − ε,0], we find:

Theorem 5.4.1. Suppose (M,g,χ) is a compact n-dimensional Riemannian spin
manifold in M (n,d,K,V ) and scalg ≥ n(n− 1). For every δ > 0 there is an ε =
ε(n,K,d,δ ) > 0 such that if any of the following conditions hold:

1. #(I+
ε ∪ I−ε )≥ 1 if n is even and n 6= 6,

2. #(I+
ε )≥ 2 or #(I−ε )≥ 2 if n = 6 or n≡ 1(mod 4),

3. #(I+
ε )≥ n+9

4 or #(I−ε )≥ n+9
4 or #(I+

ε )≥ 1, #(I−ε )≥ 1 if n≡ 3(mod 4),

with M being simply-connected in the cases 2 and 3 if n > 3, then (M,g) has C1,α -
distance ≤ δ to the sphere Sn with the standard metric of constant sectional curva-
ture sec = 1.

Corollary 5.4.4. Suppose (M,χ) is a simply-connected, n-dimensional, compact
spin manifold not diffeomorphic with the sphere Sn. Then, among all metrics with
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bounded diameter, volume and curvature in M (n,d,K,V ) and with scalar curva-
ture scalg ≥ n(n− 1), there exists an ε = ε(n,K,d,V ) > 0 and an integer r ∈ Z+

yielding a uniform lower bound on the r-th eigenvalue of D2:

λr(D2)≥ n2

4
+ ε,

where

r =

{
3 if n = 6 or n≡ 1(mod 4).
n+9

4 if n≡ 3(mod 4).
(1)

When n is even but n 6= 6 it is known that only spheres carry Killing spinors.
For manifolds with positive scalar curvature, it was shown in [BD03] that prox-

imity of the first eigenvalue of the Dirac operator to the Friedrich estimate does
not impose topological restrictions on the manifold. Nevertheless, if in addition
the manifolds belong to the class M (n,d,K,V ) our result shows that proximity
of enough eigenvalues to this estimate do impose some restrictions. In particular
for n = 6 or n ≡ 1(mod 4), only 3 eigenvalues are needed for the manifold to be
the sphere, which interestingly is independent of n. Even in the remaining case
n≡ 3(mod 4), the dependance on n is linear.
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Chapter 1

Preliminaries on PDE’s

Here we present a brief summary of important tools from the theory of partial differ-
ential equations which are necessary for the regularity theorems required in chapter
3. Since we are going to work on compact Riemannian manifolds, the theory will
be described in this setting. A good exposition of this material in the context of
manifolds and vector bundles can be found for example in [Kaz93], [Aub98] and
the first chapter of [Joy00].

For what follows, let (M,g) denote an n-dimensional Riemannian manifold. In
this chapter we suppose that M has a smooth differentiable structure and g is a
smooth Riemannian metric defined on it. Later, and specially for the applications in
following chapters, we will weaken this hypothesis as necessary. In particular the
degree of differentiability of g will be considered.

1.1 Hölder Spaces

The familiar spaces Ck(M) of continuous, bounded functions on M with k contin-
uous and bounded derivatives do not behave nicely enough to satisfy the kind of
regularity properties that one would like to have in the study of partial differential
equations. For this reason it is customary to introduce additional function spaces.

Recall that the space Ck(M) for k ≥ 0 carries a Banach space structure with the
supremum norm

‖ f‖Ck :=
k

∑
j=0

sup
M
|∇ j f |, where ∇

j f := ∇ · · ·∇︸ ︷︷ ︸ f
j−times

denotes the Levi-Civita connection acting j times on f . Here we use by convention
∇0 f := f . However, with this norm, the inclusion Ck ↪→Ck−1 does not send Ck into

1



2 CHAPTER 1. PRELIMINARIES ON PDE’S

a closed subspace of Ck−1. To avoid this problem the so-called Cα -seminorm [ · ]α
is introduced. For each α ∈ (0,1), it is given by

[ f ]α := sup
x 6=y∈M

| f (x)− f (y)|
dg(x,y)α

.

Here dg(x,y) denotes the distance between two points x,y ∈M calculated using the
metric g. A function f on M is said to be Hölder continuous with exponent α if it
has a finite Cα -seminorm. With this definition any Hölder continuous function with
exponent α ∈ (0,1) is continuous on M.

To define the Hölder spaces Ck,α(M) for an integer k ≥ 0 and α ∈ (0,1) we
consider first the case k = 0.

Definition 1.1.1. The vector space C0,α(M) is the set of C0(M) functions which are
Hölder continuous of exponent α , and is endowed with the norm

‖ f‖C0,α := ‖ f‖C0 +[ f ]α .

The Hölder spaces Ck,α(M) of functions on manifolds for an arbitrary integer
k will be generalized in section 1.3 to sections of vector bundles. Nevertheless,
the global approach we follow here requires the notion of a connection to define
covariant derivatives of functions and, because of this, it is important to talk about
sections of vector bundles already at this point. Therefore, we extend first the Cα -
seminorm to sections, which will allow to take the norm of covariant derivatives of
a function f , needed in the expression for the total Ck,α -norm.

Let E −→M be a vector bundle over M, with Euclidean metrics in the fibers, and
a connection ∇E preserving these metrics. Denote by ιg := inj rad(g) the injectivity
radius of the metric g on M, which we suppose to be positive (as it happens in
particular when M is compact), and for a given section u ∈ Γ(E) define

[u]α := sup
x 6=y∈M

dg(x,y)<ιg

|u(x)−u(y)|
dg(x,y)α

,

in case the supremum exists. Since the elements u(x) and u(y) lie in different fibers
(i.e. different vector spaces), to make sense of the expression |u(x)−u(y)|, we attach
it to the following prescription. First, given two different points x,y ∈M for which
the value dg(x,y) < inj rad(g), there is a unique geodesic γ of length dg(x,y) joining
x and y in M. Then, parallel translation along γ using ∇E identifies Ex and Ey, the
fibers of E over x and y respectively, and their corresponding metrics. In this way
the expression is well-defined.
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Definition 1.1.2. The Hölder space Ck,α(M) is the set of functions in Ck(M) with
finite Cα -seminorm for all their covariant derivatives ∇k f ∈ Γ(T ∗M⊗k) of order k.
To calculate these seminorms [∇k f ]α , the natural metric and connection inherited
from T ∗M are required. Hence, for Hölder spaces Ck,α(M) on a manifold M we
define the norm

‖ f‖Ck,α := ‖ f‖Ck +[∇k f ]α ,

which provides a Banach space structure. Furthermore, for α > β there are inclu-
sions Ck,α(M) ↪→Ck,β (M) which are compact maps when M itself is compact, i.e.
closed bounded sets are mapped to compact sets. See also section 1.4 below.

1.2 Sobolev Spaces of Integer Order
Recall that the Lebesgue spaces Lp(M) for a Riemannian manifold (M,g) and p≥ 1
are defined as the set of locally integrable functions f on M for which the Lp-norm

‖ f‖Lp :=
(∫

M
| f |p dvolg

)1/p

is finite. The expression dvolg denotes the volume form on the manifold associated
with the metric g, i.e. in a local coordinate system (x1, . . . ,xn) we have dvolg :=√

gdx1 · · ·dxn.

Definition 1.2.1. For every f ∈ C∞(M), p ≥ 1 and an integer k ≥ 0, define the
Sobolev H p

k -norm as

‖ f‖H p
k

:=

(∫
M

k

∑
j=0
|∇ j f |p dvolg

)1/p

, (1.1)

where |∇ j f | is the pointwise norm of the j-th covariant derivative of f . The Sobolev
space H p

k (M) is the completion of C∞(M) in this norm.

Alternatively, the Sobolev space H p
k can be defined as the set of all f ∈ Lp(M)

such that f is k times weakly differentiable and |∇ j f | ∈ Lp(M) for j ≤ k. It is,
of course, an important theorem that these two different descriptions coincide, but
we will use one or the other indistinctly, according to the convenience of the con-
text. Locally, the Sobolev spaces are given by equivalence classes of measurable
functions whose partial (possibly weak) derivatives up to order k are in Lp. A parti-
tion of unity argument suffices to paste this local viewpoint into the global one just
explained.

The Sobolev spaces H p
k (M) are Banach spaces with respect to the Sobolev norm

and are reflexive for 1 < p < ∞. For p = 2 the spaces H2
k (M) are Hilbert spaces with

the obvious inner product.
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Remark 1.2.1. Under a change of metric g, assuming that the differentiable struc-
ture on the manifold M is fixed, the norms of the spaces Ck,α(M) and H p

k (M)
change, but if M is compact the new norms are still equivalent and hence the in-
duced topologies are the same. Moreover, the assertion is also true in the compact
case if different connections are used to define the norms of these spaces. This
observation will be fundamental (but implicitly assumed) for our applications in
chapter 4 where we need to work with sequences of metrics (one particular case
appears in the proof of Lemma 4.5.1).

1.3 Function Spaces on Vector Bundles

The previous spaces Ck,α(M), Lp(M) and H p
k (M) are vector spaces of real functions

on a manifold M. They can be generalized to vector spaces of sections of a vector
bundle in a straightforward way. Let E −→ M be a vector bundle on M as before,
endowed with Euclidean metrics on its fibers and a connection ∇E (denoted simply
as ∇ if the context is clear) on E preserving these metrics. The generalization of the
Hölder spaces Ck,α(M) on M to the Hölder spaces Ck,α(E) of sections of E is done,
for example, by replacing the occurrence of functions on M with the corresponding
sections needed in each case. It is important to note that, once again, any substrac-
tion of values of sections u ∈ Γ(E) in different points of M is understood using the
parallel transport prescription, as mentioned in section 1.1.

Notation. In reference to an arbitrary section u of a vector bundle E −→M we write
u ∈ Γ(E), but when we want to emphasize its differentiability we write explicitly,
for example, u∈Ck(E). In the same manner, we will denote by Ck,α(E) and H p

k (E)
the corresponding Hölder and Sobolev sections of E.

Definition 1.3.1. For p ≥ 1, we define the Lebesgue space Lp(E) to be the set of
locally integrable sections u ∈ Γ(E) over M for which the norm

‖u‖Lp =
(∫

M
|u|p dvolg

)1/p

is finite. Similarly, the Sobolev space H p
k (E) is the completion of the set of smooth

sections u ∈ C∞(E) in the corresponding Sobolev norm for this case. It can be
also seen as the set of u ∈ Lp(E) such that u is k times weakly differentiable and
|∇ ju| ∈ Lp(M) for j ≤ k.
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1.4 Sobolev Inequalities and Embedding Theorems
Now let us state important results concerning the relations between the Hölder
spaces Ck,α , the Sobolev spaces H p

k and the usual spaces of k times differentiable
functions Ck. In addition to standard references as [GT77], a complete exposition of
embedding theorems is found in [Ada75]. For the next statement, recall that given
Banach spaces B1, B2, a continuous map T : B1−→ B2 is compact if for any bounded
set A⊂ B1, the closure of its image T (A)⊂ B2 is compact.

Theorem 1.4.1 (Sobolev Embedding and Kondrakov Theorems). Suppose M is a
compact Riemannian n-manifold, let k, l ∈ Z with 0≤ l ≤ k and p,q ∈ R such that
p,q≥ 1. Given a function f ∈ H p

k (M) we have:

1. If k− l ≤ n/p and an integer q satisfies

1
p
− k− l

n
≤ 1

q
,

then there is a constant c > 0 independent of f such that

‖ f‖Hq
l
≤ c‖ f‖H p

k
. (1.2)

Thus there is a continuous inclusion H p
k (M) ↪→Hq

l (M). Furthermore, if l < k
and the inequality holds strictly, this inclusion is a compact operator.

2. If k− l− 1 < n/p < k− l, define α := k− l− n/p so that α ∈ (0,1). Then
there is a constant c independent of f such that

‖ f‖Cl,α ≤ c‖ f‖H p
k
.

Thus, there is a continuous inclusion H p
k (M) ↪→Cl,α and a compact inclusion

H p
k (M) ↪→ Cl,β for any β with 0 < β < α = k− l− n/p. Also Ck,α(M) ↪→

Ck(M) is compact.

Remark 1.4.1. Some particular and important consequences of the previous theo-
rem are:

1. if f ∈ H p
k (M) and p > n, then f ∈Ck−1(M),

2. the inclusion H p
k+1(M) ↪→ H p

k (M) is compact,

3. if f ∈ H p
k (M) and k > n/p, then f ∈C0(M),

4. C∞ =
⋂

k H p
k for any 1 < p < ∞,



6 CHAPTER 1. PRELIMINARIES ON PDE’S

5. if f ∈H2
1 (M), then f ∈ L2n/(n−2)(M) for n≥ 3, and there are constants A,B >

0 independent of f such that

‖ f‖L2n/(n−2) ≤ A‖∇ f‖L2 +B‖ f‖L2 .

The value q = 2n/(n−2) is the largest value for which (1.2) holds in the case k = 1,
p = 2. In fact, it is a limit case of the Sobolev inequality.

1.5 Elliptic Differential Operators
Let M be an n-dimensional Riemannian manifold, the following definitions extend
the usual notion of partial differential operators on domains in the Euclidean space
to partial differential operators on M.

Definition 1.5.1. A partial differential operator P on M of order k is an operator
taking real functions on M to real functions on M, that depends on u and its first
k derivatives. For a real function u on M whose first k derivatives ∇u, . . .∇ku exist
(even in some weak sense), then Pu as a function on M is written as

Pu(x) = f
(
x,u(x),∇u(x) . . . ,∇ku(x)

)
, (1.3)

where f is a real function of its arguments, generally at least continuous. The
differential operator P is called smooth when f is a smooth function of its arguments
and linear when it is linear in u.

Notation. More explicitly, a linear differential operator of order k on M, acting on a
function u ∈Ck(M), is written in a local chart (U,φ) as an expression of the form:

Pu =
k

∑
l=0

ai1...il
l ∇i1...il u =:

k

∑
l=0

al∇
lu, (1.4)

where the al’s are symmetric l-tensors called the coefficients of P and in the case
l = 0, the coefficient a0 is understood to be a real function on M. In addition the
leading coefficients ai1...ik

k are presumed to be non-zero. In this notation, a summa-
tion convention is understood on repeated upper and lower indices, this will appear
in general expressions for differential operators and in the definition of the symbol
below. The right hand side of (1.4) must be understood as an abbreviated (although
a bit abusive) notation just for simplicity.

Remark 1.5.1. When P is smooth of order k and u ∈ C∞(M), then Pu ∈ C∞(M)
so we have a map P : C∞(M) −→C∞(M). However P is not necessarily required to
be smooth. If, for example, P is linear of order k and the coefficients of P are just
bounded, we have a linear map P : H p

k+l(M)−→ H p
l (M), and if the coefficients of P

are at least Cl,α , then P : Ck+l,α −→Cl,α(M) is again linear.
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Definition 1.5.2. Let P be a partial differential operator of order k. For each point
x∈M and each ξ ∈ T ∗x M, define σξ (P;x) := ai1...ik

k ξi1 · · ·ξik . Let us denote by σ(P) :
T ∗M −→R the function ξ 7→ σξ (P;x). Then σ(P) is called the symbol (or principal
symbol) of P. It is a homogeneous polynomial of degree k on each cotangent space.

Definition 1.5.3. A linear differential operator P of order k on M is said to be elliptic
if for each x ∈M and each non-zero ξ ∈ T ∗x M, we have σξ (P;x) 6= 0.

If follows from the previous definitions that the principal symbol σ(P) of an
elliptic operator P must be non-zero on the complement of the zero section of T ∗M,
i.e. on each T ∗x M �{0}. Using this, one can conclude that every elliptic operator
defined on a manifold M with dimM > 1 has necessarily even degree.

When this is the case, an operator P of degree k = 2m is said to be given in
divergence form if we can write Pu in the following way,

Pu =
m

∑
l,l′=0

∇i1...il(a
i1...il j1... jl′
l,l′ ∇ j1... jl′u)+

m

∑
l=0

bi1...il
l ∇i1...il u,

where the coefficients al,l′ are (l + l′)-tensors and bl are l-tensors.
In a local coordinate chart (U,φ) of M, the condition of ellipticity of the operator

P is equivalent to saying that at a point x ∈U , there exists λ (x)≥ 1 such that for all
vectors ξ ∈ Rn the following inequalities are satisfied:

‖ξ‖k
λ
−1(x)≤ ai1...ik

k (x)ξi1 . . .ξik ≤ λ (x)‖ξ‖k.

Definition 1.5.4. Let P be a non-linear differential operator of order k defined by
a function f that is at least C1 in its arguments u,∇u, . . . ,∇ku, according to the
notation used in (1.3). Also, suppose u is a real function with k derivatives. The
linearization LuP of P at u is defined as the derivative of P(v) with respect to v at u,
that is

LuPv = lim
δ→0

(
P(u+δv)−P(u)

δ

)
. (1.5)

This LuP is a linear differential operator of order k. If P is linear then LuP = P,
but note that even if P is smooth, LuP does not need to be smooth if u is not smooth.
For instance, if P is of order k and u ∈Ck+l(M), then LuP will have Cl coefficients
in general, since they depend on the k-th derivatives of u.

Remark 1.5.2. A non-linear differential operator P of degree k on M is elliptic at
a function u (assumed to have k derivatives) if the linearization LuP of P at u is
elliptic. According to this, P may be elliptic at some functions u and not at others.
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1.5.1 Elliptic Operators on Vector Bundles
The same previous discussion of differential operators on manifolds can be general-
ized to differential operators on vector bundles in a natural way, where functions on
M are replaced by sections of the vector bundle. Let E and F be vector bundles over
M, denote by ∇ a connection on T M and by ∇E a connection on E. Given a section
u ∈ Γ(E) one can form repeated derivatives of u by coupling the connections ∇ and
∇E . Let us denote by ∇E

i1...iku the k-th derivative of u defined in this manner.

Definition 1.5.5. A differential operator P of order k taking sections of E to sections
of F is explicitly given, for a k times differentiable section u of E by

Pu(x) = f
(
x,u(x),∇E

i1u(x) . . . ,∇E
i1...iku(x)

)
∈ Fx

for x ∈M. Again P is called smooth, linear or non-linear according to the smooth-
ness of f and the linearity or non-linearity of this expression with respect to u.

For instance, if P is a smooth, linear differential operator of order k from E to
F , then P can act as follows: P : C∞(E) −→ C∞(F), P : Ck+l,α(E) −→ Cl,α(F) and
P : H p

k+l(E)−→ H p
l (F).

Notation. Let P be a linear differential operator of order k from E to F . In index
notation, we write

Pu =
k

∑
l=0

ai1...il
l ∇i1...il u =:

k

∑
l=0

al∇
lu,

where the quantities ai1,...,il
l are tensors with values in E∗⊗F (the subindices for F

and E∗ are omitted), called the coefficients of P. Again, the summation convention
for repeated indices is used. The right-hand side abbreviation is used for simplicity
as before in case no confusion arises from the context.

The next step is to generalize the notions of the symbol and ellipticity for differ-
ential operators on functions given before. For each point x∈M and each ξ ∈ T ∗x M,
we define a linear map from Ex to Fx given by

σξ (P;x) = ai1...ik
k ξi1 . . .ξik .

Let σ(P) : T ∗M×E −→F be the bundle map defined by σ(P)(ξ ,u) = σξ (P;x)u∈Fx
for every x ∈M, ξ ∈ T ∗x M and u ∈ Fx. Then σ(P) is called the symbol (or principal
symbol) of P, and σ(P)(ξ ,u) is homogeneous of degree k in ξ and linear in u.

Definition 1.5.6. A linear differential operator P of degree k from E to F is called
an elliptic operator if for each x ∈M and each non-zero ξ ∈ T ∗x M, the linear map
σξ (P;x) : Ex −→ Fx is invertible, where σ(P) is the principal symbol of P.
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In case of ellipticity, σξ (P;x) determines an isomorphism of vector spaces be-
tween the fibers, so the vector bundles E and F have the same rank. If P is non-
linear and u is a section of E with k derivatives, then P is said to be elliptic at u if
the linearization LuP of P at u is elliptic.

1.5.2 Formal Adjoint of an Operator

Suppose that E and F are vector bundles endowed with corresponding metrics on
the fibers over a compact Riemannian manifold without boundary (M,g) and let P
be a linear differential operator of order k from E to F , with coefficients at least k
times differentiable. Then there is a unique linear differential operator P∗ of order
k from F to E, with continuous coefficients, such that

〈Pu,v〉L2(F) = 〈u,P∗v〉L2(E)

for all sections u ∈ H2
k (E) and v ∈ H2

k (F). Here, the inner products on the Hilbert
spaces of sections H2

k (E) and H2
k (F) are the natural ones, defined for example in E

by 〈u,v〉L2(E) :=
∫

M(u,v) dvolg, where (·, ·) represents here the metrics on the fibers
of E. This operator P∗ is called the adjoint or formal adjoint of P. Additionally,
the following properties are satisfied: (P∗)∗ = P for any P and if P is smooth (or
elliptic) then P∗ is also smooth (or elliptic respectively). When E = F and P = P∗

then P is called self-adjoint.

1.6 Weak Solutions on Manifolds

Given a linear differential operator P of order k defined on a Riemannian manifold
(M,g), a solution of the equation Pu = f is a function u ∈Ck(M) that satisfies the
equation pointwise. Nevertheless, this equation can also be satisfied in a “weak”
sense when u is allowed to be an element of H p

k (M), i.e. a distribution.

Definitions 1.6.1. The following definitions deal with these more general solutions
for different cases (see [Aub98]):

1. If f ∈ Lp and if P has locally bounded and measurable coefficients, then an
element u ∈ H p

k (M) is a strong solution of Pu = f in the Lp sense if there is
a sequence of smooth functions {ui}i≥1 on M such that ui→ u in H p

k (M) and
Pui→ f in Lp(M). In this case, the weak (distributional) derivatives of u up
to order k are functions in Lp(M) and the equation Pu = f is satisfied almost
everywhere.
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2. Suppose Pu = ∑
k
l=0 ai1...il

l ∇i1...il u. If the tensors ai1...il
l ∈Cl(M), for 0≤ l ≤ k,

then the formal adjoint of P, acting on a function v ∈Cl(M), is given by

P∗v =
k

∑
l=0

(−1)l
∇i1...il(vai1...il

l ). (1.6)

We say that an element u∈ L1(M) satisfies Pu = f in the sense of distributions
(or weak sense), if for all compactly supported test functions η ∈C∞

c (M):∫
M

uP∗η dvolg =
∫

M
f η dvolg .

If P has smooth coefficients ai1...il
l ∈ C∞(M), we say that a distribution u ∈

H2
r (M) satisfies Pu = f if for all η ∈C∞

c (M):

〈u,P∗η〉L2 = 〈 f ,η〉L2 .

Since a distribution u ∈ H2
r (M) involves a weak derivative of order r of a

locally integrable function, the product 〈u,P∗η〉L2 makes sense even when
the coefficients ai1...il

l ∈Cl+r(M) and not only for smooth ones, as the terms
in the expression (1.6) for P∗ indicate.

3. If a differential operator P of degree k = 2m can be written in divergence
form, i.e.

Pu =
m

∑
l,l′=0

∇i1...il(a
i1...il j1... jl′
l,l′ ∇ j1... jl′u)+

m

∑
l=0

bi1...il
l ∇i1...il u,

then u ∈H p
m(M) is said to be a weak solution of Pu = f with f ∈ L1(M) if for

all η ∈C∞
c (M):

m

∑
l,l′=0

(−1)k
∫

M
al,l′∇

l′u∇
l
η dvolg +

m

∑
l=0

∫
M

η bl∇
lu dvolg =

∫
M

f η dvolg,

where the only requirement needed is that the coefficients al,l′ must be mea-
surable and locally bounded for all pairs (l, l′). These definitions depend on
the particular properties of the coefficients and hence the generalized solu-
tions are not equivalent.

4. More generally, given a non-linear differential operator P of degree k with the
form

Pu =
k

∑
l=0

(−1)l
∇i1...il A

i1...il
l (x,u,∇u, . . .∇ku) =:

k

∑
l=0

(−1)l
∇

lAl,
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where Al are l-tensors on M, a function u∈Ck(M) is said to be a weak solution
of Pu = 0, if for all test functions η ∈C∞

c (M):

k

∑
l=0

∫
M

Ai1...il
l ∇i1...il η dvolg = 0.

Remark 1.6.1. Given that the previous definitions of weak solutions for elliptic
PDE’s are not equivalent and in particular depend strongly on the regularity of the
coefficients of the partial differential operator P, we want to draw attention to the
case 2 in the list of Definitions 1.6.1 where a weak solution is defined for coefficients
of P of class Cl(M). When P is the Laplacian operator on manifolds ∆g and the
metric g is at least C2, this is the natural case to consider (with l = 2) to define weak
solutions of the Poisson equation. Nevertheless for a metric of less regularity like
C1,α which we will study in chapter 3, a different definition will be given to deal
with the fact that the coefficients of ∆g, which depend on g, cannot be differentiated
twice. This will require the solutions to be at least C1 from the beginning (compare
with Definition 3.3.2).

1.7 Regularity for Linear Elliptic Equations
The results in this section, devoted to the general setting of vector bundles, can be
found in [Joy00], [Bes87] and [Kaz93]. Recommended references for a complete
treatment of the theory of partial differential equations, where proofs of the results
appearing below for domains in Rn can be found, are for example [Eva98] and the
classical [GT77].

1.7.1 Existence of Solutions to Elliptic PDE’s
Here we concentrate already on partial elliptic operators with Ck,α coefficients,
which are required for our applications. It is a slight generalization of the cor-
responding case for smooth coefficients. Existence results for equations Pu = v,
which require a simple condition v ⊥ kerP∗ for u to exist, are known as the Fred-
holm alternative. For more details on this (and the Sobolev spaces case), see [Joy00,
section 1.5].

Theorem 1.7.1. Let k, l ∈ Z with 0 < k≤ l, and α ∈ (0,1). Denote by E and F two
vector bundles over a compact Riemannian manifold (M,g), endowed with corre-
sponding metrics in their fibers, and suppose P is a linear elliptic operator of order
k from E to F with Cl,α coefficients. Then P∗ is elliptic with Cl−k,α coefficients, and
the kernels kerP, kerP∗ are finite-dimensional subspaces of Ck+l,α(E) and Cl,α(F)
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respectively. If v ∈Cl,α(F) then there exists u ∈Ck+l,α(E) with Pu = v if and only
if v⊥ kerP∗, and if it is required that u⊥ kerP then v is unique.

1.7.2 Global Elliptic Estimates

Let us assume here that (M,g) is a compact Riemannian manifold and let E,F be
vector bundles over M with the same rank. First we state the following regular-
ity result for smooth linear elliptic differential operators in the context of vector
bundles.

Theorem 1.7.2 (Global elliptic estimates). Suppose P :C∞(E)−→C∞(F) is a smooth
linear elliptic differential operator of order k from E to F. Let α ∈ (0,1), p > 1,
and l ≥ 0 be an integer. Furthermore, assume Pu = v holds weakly with u ∈ L1(E)
and v ∈ L1(F).

1. (Lp estimates) If v ∈ H p
l (F) then u ∈ H p

k+l(E), and

‖u‖H p
k+l(E) ≤C

(
‖Pu‖H p

k (F) +‖u‖L1(E)
)
, (1.7)

for some C > 0 independent of u and v. In particular, if v ∈ C∞(F), then
together with Remark 1.4.1 we get u ∈C∞(E).

2. (Schauder estimates) If v ∈Cl,α(F), then u ∈Ck+l,α(E), and

‖u‖Ck+l,α (E) ≤C
(
‖Pu‖Cl,α (F) +‖u‖C0(E)

)
, (1.8)

for some C > 0 independent of u and v.

The previous estimates can be generalized to the case where P has Hölder
continuous coefficients instead of smooth ones. In the next theorem the explicit
Schauder estimates for this more general case are presented. They will be useful for
the study of the Einstein condition for C1,α metrics that we consider later.

Theorem 1.7.3. Let P be a linear elliptic differential operator of order k from E to
F. Let α ∈ (0,1) and l ≥ 0 be an integer. Suppose that the coefficients of P are in
Cl,α(M) and that, Pu = v (almost everywhere) for some u ∈Ck,α(E), v ∈Cl,α(F).
Then u ∈Ck+l,α(E) and

‖u‖Ck+l,α (E) ≤C
(
‖Pu‖Cl,α (F) +‖u‖C0(E)

)
, (1.9)

for some C > 0 independent of u and v.
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1.7.3 Regularity for Weak Solutions
Weak solutions of linear elliptic equations of second order have also useful regular-
ity properties from which we select the following relevant one (taken from [Aub98,
p. 86]), that can be easily applied to the interior of a manifold. It will play an
important role in our regularity results of chapter 3.

Theorem 1.7.4 (Ladyzhenskaya and Uraltseva). Let U be an open set ofRn and P a
second order linear elliptic operator, with Ck,α coefficients for an integer k≥ 0 and
α ∈ (0,1). If a bounded function u ∈ H2

2 (U) satisfies the relation Pu = f almost
everywhere for a function f ∈Ck,α(U), then u ∈Ck+2,α(U). The same conclusion
is true when u ∈ H2

1 (U) is a weak solution of Pu = f and the operator P can be
written in divergence form.

As mentioned in the statement, this theorem can be traced back to [LU68,
p. 195]. Some related results follow from general theorems for weak solutions
appearing in [Mor66, chapters 5 and 6]. We emphasize here that a second order el-
liptic operator P, acting on functions on a manifold M, is given in local coordinates
(x1, . . . ,xn) : U ⊂M −→ Rn by a expression of the type

P =
n

∑
i, j=1

ai j
∂i∂ j +

n

∑
i=1

ai
∂i.

According to the previous theorem, this operator is required to admit a divergence
form (Definition 1.6.1), which in this case is

P =
n

∑
i, j=1

∂i(ai j
∂ j)+

n

∑
i=1

bi
∂i,

in order to preserve the appropriate regularity for the case of weak solutions. This
forces the coefficients to be at least differentiable, i.e. ai j ∈C1(U).



14 CHAPTER 1. PRELIMINARIES ON PDE’S



Chapter 2

Spin Manifolds and Killing Spinors

The aim of this chapter is to introduce the required tools from Riemannian spin
geometry to study the classical Dirac operator and consider its relation to Killing
spinors and the Einstein curvature condition. Good references for these topics are
[LM89], [Fri00] and the lecture notes [Hij99]. Additionally, a compendium of
this and related material has recently appeared in [BBC]. Other references will
be provided on the way for particular details. Throughout this chapter, we implic-
itly assume that the Riemannian manifolds considered have a smooth differentiable
structure and the corresponding metrics are either smooth or their degree of differ-
entiability is enough to define all the objects involved in the discussion.

2.1 Metric and Topological Spin Structures

It is useful for our purposes to discuss about the concept of metric and topological
spin structures separately and consider afterwards their relationship. This notions
will be relevant in chapter 4, in the context of the identification procedure introduced
in [BG92].

Given a Riemannian n-manifold (M,g), let PGL M be the GL(n,R)-principal
frame bundle of M and denote by PGL+M its reduction to the bundle of positively
oriented frames, for which the structural group has been restricted to orientation
preserving automorphisms GL+(n,R)⊂ GL(n,R).

We know that there exists a unique connected double-covering homomorphism
G̃L+(n,R) −→ GL+(n,R), which for n ≥ 3 is in fact a universal covering (i.e.
simply-connected). The restriction of this map to Spin(n) ⊂ G̃L+(n,R) induces
a two-fold homomorphism onto SO(n) ⊂ GL+(n,R), which we will denote by
Ad : Spin(n) −→ SO(n). In conclusion, we have the following diagram where the

15
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horizontal levels are short exact sequences

{0} -

{0} -

Z/2Z -

Z/2Z -

Spin(n) SO(n)-
Ad

G̃L+(n,R) GL+(n,R)-
×2

6 6

{1}.-

{1}-

Definition 2.1.1. A topological spin structure for M is a lifting of PGL+M to a
G̃L+(n,R)-principal bundle PG̃L+M by means of a double covering χ

U ⊂M PGL+M-
s

s̃

�
�
�
�
���

PG̃L+M

?

χ

that respects the fiberwise action of the corresponding structure groups on the bun-
dles. In a similar way, a metric spin structure for (M,g) is a lifting of the SO(n)-
principal bundle of g-orthonormal frames PSO(M,g) to a Spin(n)-principal bundle
PSpin(M,g), such that the covering application χ̂ : PSpin(M,g)−→PSO(M,g) preserve
the actions of the respective groups involved.

Definition 2.1.2. Two topological spin structures given by χ1 : P1
G̃L+M −→ PGL+M

and χ2 : P2
G̃L+M −→ PGL+M are equivalent if there is a GL+(n,R)-equivariant map

ϒ that completes the diagram

P1
G̃L+M P2

G̃L+M-ϒ

PGL+M.

χ1

@
@
@
@@R

χ2

�
�

�
��	

Analogously, we say that two metric spin structures χ̂1 : P1
Spin(M,g) −→ PSO(M,g)

and χ̂2 : P2
Spin(M,g) −→ PSO(M,g) are equivalent if there is a Spin(n)-equivariant

application ϒ̂ : P1
Spin(M,g) −→ P2

Spin(M,g) which factorizes the coverings as in the
previous diagram, i.e., χ̂1 = χ̂2 ◦ ϒ̂.

Notation. When the metric g is clear from the context we will denote a metric spin
structure PSpin(M,g) simply by PSpinM and will refer to it as a g-spin structure.
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Remark 2.1.1. Note that the definition of equivalence between metric spin struc-
tures just given assumes that the base manifold has the same Riemannian metric
g. This assumption will be now improved to include the case of different metrics.
Given a topological spin structure χ : PG̃L+M −→ PGL+M on a Riemannian mani-
fold (M,g), the inclusions PSpinM ⊂ PG̃L+M and PSOM ⊂ PGL+M, imply that the
restricted map χ̂ := χ|PSpinM : PSpinM −→ PSOM defines a metric spin structure for
(M,g). Conversely, any metric spin structure χ̂ can be extended into a topological
one χ . In this way, there is an induced Spin(n)-equivariant bijection between equiv-
alence classes of metric and topological spin structures (cf. [Swi93] for details).

Theorem 2.1.1. Let g1, g2 be two Riemannian metrics on a spin manifold M with
fixed metric spin structures χ̂1 and χ̂2, respectively. Assume additionally that there
exists an SO(n)-equivariant map ζ : PSO(M,g1)−→ PSO(M,g2). Then, the underly-
ing topological spin structures χ1 and χ2 are equivalent, if and only if the induced
bundle ζ ∗χ̂2 defines a metric spin structure on (M,g1) equivalent to χ̂1.

Proof. Suppose that the topological spin structures χ1 and χ2 are equivalent. Then,
the SO(n)-equivariant application ζ : PSO(M,g1) −→ PSO(M,g2) can be lifted to a
Spin(n)-equivariant map ζ̃ : PSpin(M,g1) −→ PSpin(M,g2) such that the following
diagram commutes,

PSO(M,g1) PSO(M,g2).-
ζ

PSpin(M,g1) PSpin(M,g2)-
ζ̃

?

χ̂1

?

χ̂2

Recall, with reference to the diagram below, that the induced bundle ζ ∗χ̂2, defined
by the pullback of χ̂2 with respect to ζ , has total space

ζ
∗PSpin(M,g2) := {(s,B) ∈ PSpin(M,g2)×PSO(M,g1) | χ̂2(s) = ζ (B)},

with the covering ζ ∗χ̂2 : ζ ∗PSpin(M,g2) −→ PSO(M,g1) given by the projection pr2
onto the second component. The action of Spin(n) associated to g1 on this bundle
is given by

ζ
∗PSpin(M,g2)×Spin(n)−→ ζ

∗PSpin(M,g2)
((s,B),ς) 7−→ (s,B) ·1 ς := (s ·2 ς ,B ·1 Ad(ς)),

where we denote by ·i the corresponding action (of Spin(n) or SO(n) according to
the context), associated to the metric gi. The next diagram ilustrates the construc-
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tion,

PSO(M,g1) PSO(M,g2).-
ζ

ζ ∗PSpin(M,g2) PSpin(M,g2)-
pr1

?

ζ ∗χ̂2 := pr2

?

χ̂2

Since χ̂2(s ·2 ς) = χ̂2(s) ·2 Ad(ς) and ζ (B ·1 Ad(ς)) = ζ (B) ·2 Ad(ς), this action is
well-defined on the induced bundle, and is projected under ζ ∗χ̂2 to the action of
SO(n) on PSO(M,g1). In this manner, the induced bundle construction defines a
metric spin structure for (M,g1).

Now, we show explicitly that χ̂1 and ζ ∗χ̂2 yield equivalent metric spin struc-
tures for (M,g1). Let us choose an arbitrary element s ∈ PSpin(M,g1), then the pair
(ζ̃ (s), χ̂1(s)) ∈ PSpin(M,g2)×PSO(M,g1), and since χ̂2 ◦ ζ̃ = ζ ◦ χ̂1, it follows that
(ζ̃ (s), χ̂1(s)) ∈ ζ ∗PSpin(M,g2). This means that the map ϒ(s) := (ζ̃ (s), χ̂1(s)) de-
fines an application which makes the following diagram commutative

PSpin(M,g1) ζ ∗PSpin(M,g2)-ϒ

PSO(M,g1).

χ̂1

@
@
@
@@R

ζ ∗χ̂2

�
�
�

��	

By similar arguments as invoked before, ϒ is Spin(n)-equivariant and behaves ap-
propriately under the projection to PSO(M,g1). Then it is a bundle morphism that
determines the claimed equivalence.

The converse part of this theorem follows by an analogous procedure, using
that the equivalence of the metric spin structures should come from appropriate
restrictions of the corresponding topological spin structures.

As a conclusion we have shown that there is a bijection between equivalence
classes of metric and topological spin structures and the use of one or another de-
scription is a matter of convenience according to the context. Moreover, the in-
duced bundle construction provides a natural way to pass from equivalent topolog-
ical spin structures to equivalent metric spin structures when the identification of
metric spinors introduced in [BG92] is possible.

Definition 2.1.3. In case the conditions of Theorem 2.1.1 are satisfied, we say that
for a spin manifold M, the metric spin structures χ̂1 : PSpin(M,g1) −→ PSO(M,g1)
and χ̂2 : PSpin(M,g2) −→ PSO(M,g2) coming from different metrics g1 and g2 are
equivalent.
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2.2 The Connection on Spinor Bundles
As a reminder of the construction of spinor fields we collect here some important
facts that are well detailed in the references cited at the beginning of this chapter.

First, recall that for a complex vector space Σn ∼= C2[ n
2 ]

the complex spin rep-
resentation is given by a map σ : Spin(n) −→ Aut(Σn) which is induced by any
irreducible complex finite dimensional representation of the whole Clifford algebra
C`(Rn). It is important to emphasize here that the metric g appears in the definition
of the Clifford algebra and hence, is implicitly carried in these notions.

Definition 2.2.1. The complex spinor bundle associated to a (metric) spin structure
PSpin(M,g) of a Riemannian spin manifold (M,g) is the complex vector bundle

Σ
gM := PSpin(M,g)×σ Σn,

endowed with a Hermitian metric (· , ·) defined fiberwise as the natural Hermitian
product on Σn. A section ψ ∈ Γ(ΣgM) is called a spinor field over M. When the
metric in question is clear from the context we denote the spinor bundle simply by
ΣM.

In the case n = 2m, there is a splitting Σn = Σ+
n ⊕Σ−n of the complex spin rep-

resentation, denoted by σ±, that induces a splitting of the spinor bundle ΣM =
Σ+M⊕Σ−M, where Σ±M := PSpinM×σ± Σ±n .

Since the tangent bundle T M is a vector bundle associated to the SO(n)-principal
bundle of orthonormal frames PSOM by means of the SO(n)-action on Rn (i.e.,
T M = PSOM×SO(n)Rn), we can compose this action with the double-covering ho-
momorphism Ad : Spin(n)−→ SO(n) to obtain an identification

T M ' PSpinM×AdRn.

Seeing T M in this manner we have that Clifford multiplication c : Rn⊗R Σn −→ Σn
induces an action

c : T M⊗Σ
gM −→ Σ

gM

which is given by Clifford multiplication on each fiber. Thus, for any X ∈ Γ(T M),
ψ ∈ Γ(ΣM) and p ∈M this action is (X ·ψ)p := (Xp ·ψp).

For all X ∈ Γ(T M) and ψ,ϕ ∈ Γ(ΣM) the Clifford multiplication and the Her-
mitian metric on ΣM satisfy

(X ·ψ,ϕ) =−(ψ,X ·ϕ). (2.1)

Any connection over the principal bundle PSOM of a spin manifold M has a
natural lifting to a connection over PSpinM. If M is also a Riemannian manifold, the
Levi-Civita connection lifts to a spinorial Levi-Civita connection over PSpinM.
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To ilustrate this procedure, first consider a given simply connected open subset
U ⊂ M and a local section s ∈ ΓU(PSOM), so we have a lifting to a section s̃ ∈
ΓU(PSpinM), i.e.,

U ⊂M PSOM.-
s

s̃

�
�
�
�
���

PSpinM

?

χ

Let us denote by Ad∗ : spin(n) −→ so(n) the Lie algebra homomorphism induced
by the pushforward of the double-covering Ad : Spin(n)−→ SO(n). The connection
1-form ω ∈Ω1(PSOM,so(n)) defined on PSOM and taking values in the Lie algebra
so(n), lifts to a 1-form ω̃ ∈Ω1(PSpinM,spin(n)) over PSpinM, which means that the
following diagram commutes

T PSOM so(n).-
ω

T PSpinM spin(n)-ω̃

?

χ∗

?

Ad∗

TU ⊂ T M -
s∗

s̃∗

�
�
�
�
�
�
��>

On a Riemannian spin manifold (M,g), the spinorial Levi-Civita connection
associated to the Riemannian structure allows us to define a covariant derivative

∇
Σ : Γ(ΣgM)−→ Γ(T ∗M⊗Σ

gM)

acting on sections of the spinor bundle ΣgM.
Let (e1, . . . ,en) be a local oriented orthonormal frame. The Levi-Civita connec-

tion ∇Σ on the spinor bundle ΣgM can be expressed locally in terms of the Levi-
Civita connection ∇ on the tangent bundle T M by

∇
Σ
Xψ= X(ψ)+

1
4

n

∑
i, j=1

g(∇X ei,e j)ei · e j ·ψ, (2.2)

where ψ ∈ Γ(ΣM), X ∈ Γ(T M). In the same way, the corresponding Riemann cur-
vature tensors RΣ : Λ2(T M)−→ End(Γ(ΣgM)) and R : Λ2(T M)−→ End(Γ(T M)) of
the spinor and tangent bundles, respectively, are related by the formula

RΣ(X ,Y )ψ=
1
4

n

∑
i, j=1

g(R(X ,Y )ei,e j)ei · e j ·ψ. (2.3)
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Finally, we summarize the following compatibility conditions between Clifford
multiplication, the Hermitian metric (· , ·) and the spinorial covariant derivative ∇Σ:

X(ψ,ϕ) = (∇Σ
Xψ,ϕ)+(ψ,∇Σ

Xϕ), (2.4)

∇
Σ
Y (X ·ψ) = (∇Y X) ·ψ+X ·∇Σ

Yψ, (2.5)

for all X ,Y ∈ Γ(T M) and ψ,ϕ ∈ Γ(ΣM). Equation (2.4) says that ∇Σ is metric and
(2.5) establishes an appropriate Leibniz rule for the Clifford product.

2.3 The Spinor Laplacian and the Dirac Operator
Given a Riemannian spin manifold (M,g), denote by ∇Σ the Levi-Civita spinorial
covariant derivative with respect to the metric g.

Lemma 2.3.1. The spinorial Levi-Civita connection ∇Σ admits a formal adjoint
(∇Σ)∗ : Γ(T ∗M⊗ΣM) −→ Γ(ΣgM), which in local normal coordinates (e1, . . . ,en)
can be written as

(∇Σ)∗∇Σψ=−
n

∑
i=1

∇
Σ
ei

∇
Σ
ei
ψ

for all ψ ∈ Γ(ΣM). More generally, this lemma is also true for any metric connec-
tion ∇′ : Γ(ΣgM)−→ Γ(T ∗M⊗ΣM) acting on spinor fields.

Definition 2.3.1 (Laplacian on spinors). If ψ ∈ Γ(ΣM) is a spinor field and we
choose a local orthonormal frame field (e1, . . . ,en) on an open set U ⊂M, then the
Laplace operator acting on ψ is defined on U by

∆
Σψ :=−

n

∑
i=1

∇
Σ
ei

∇
Σ
ei
ψ−

n

∑
i=1

div(ei)∇Σ
ei
ψ,

where div(X) is the trace of the homomorphism Y 7→ ∇Y X . Since this definition is
independent on the choice of local frame, the Laplacian is well-defined in this way
everywhere on M.

For two spinor fields ψ,ϕ over a closed (i.e. compact without boundary) mani-
fold M, the Laplace operator satisfies∫

M
(∆Σψ,ϕ) dvolg =

∫
M

(∇Σψ,∇Σϕ) dvolg =
∫

M
(ψ,∆Σϕ) dvolg,

where (∇Σψ,∇Σϕ) denotes the scalar product on 1-forms. This property is a direct
application of Stokes’ theorem (using that the boundary ∂M =∅) and the compat-
ibility condition (2.4) of ∇Σ with the Hermitian metric.

Now we use Clifford multiplication to define the Dirac operator.
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Definition 2.3.2. The Dirac operator is the composition of covariant differentiation
with Clifford multiplication c:

D := c◦∇
Σ : Γ(ΣgM) ∇Σ

−→ Γ(T ∗M⊗Σ
gM) c−→ Γ(ΣgM).

With respect to a local orthonormal frame (e1, . . . ,en) on an open set U ⊂ M we
have

Dψ=
n

∑
i=1

ei ·∇Σ
ei
ψ, for ψ ∈ Γ(ΣM). (2.6)

As before, this expression is invariant under change of frame as a straightfor-
ward calculation shows. Let us summarize in the following theorem a few important
properties of the Dirac operator.

Theorem 2.3.2. Let (M,g,χ) be an n-dimensional Riemannian spin manifold and
denote by D its corresponding Dirac operator, then

1. D : Γ(ΣM)−→ Γ(ΣM) is a first order elliptic partial differential operator.

2. If M is a compact manifold, D is formally self-adjoint with respect to the
product in L2(ΣgM) and its spectrum is discrete.

3. If n = 2m, the Dirac operator interchange the splitting of the spinor bundle,
i.e. D : Γ(Σ±M) −→ Γ(Σ∓M), and the eigenvalues of D are symmetric with
respect to the origin.

There is a well-known relation between the square of the Dirac operator with
the spinor Laplacian over a spin manifold.

Theorem 2.3.3 (Schrödinger-Lichnerowicz formula). If scalg denotes the scalar
curvature of (M,g), then

D2ψ= (∇Σ)∗∇Σψ+
1
4

scalgψ, for all ψ ∈ Γ(ΣM). (2.7)

2.4 Killing Spinors and Einstein Manifolds

Now we concentrate on a special kind of spinor fields known as Killing spinors and
their geometric relation to the Einstein condition for a Riemannian metric on spin
manifolds. Let us recall these notions first and then consider their relationship.
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Definition 2.4.1. An n-dimensional Riemannian manifold (M,g) is said to have
constant Ricci curvature Ricg if for some constant κ ∈ R,

Ricg = κg. (2.8)

Riemannian metrics (manifolds) having constant Ricci curvature are called Einstein
metrics (manifolds) and the corresponding constant of proportionality κ is called
Einstein constant.

It turns out that for n≥ 3, the manifold (M,g) is Einstein if and only if

Ricg =
1
n

scalg g, (2.9)

where, for a given local orthonormal frame (e1, . . . ,en),

scalg := trRicg =
n

∑
i, j=1

sec(ei,e j)

is the scalar curvature of the metric g. In dimension n = 2, this condition is always
true, but scalg may not be constant and hence the metric is not necessarily Einstein.

Definition 2.4.2. A spinor field ψ defined on an n-dimensional Riemannian spin
manifold (M,g) is called a Killing spinor, if there exists a (complex) number µ for
which the equation

∇
Σ
Xψ= µX ·ψ, (2.10)

is satisfied for all X ∈Γ(T M). In that case, µ is called the Killing number associated
to ψ.

If ψ is a Killing spinor with Killing number µ , then it follows that ψ is an
eigenspinor of the Dirac operator

Dψ= ∑
i

ei ·∇Σ
ei
ψ= ∑

i
µ ei · ei ·ψ=−µ nψ,

with eigenvalue λ =−µ n.
Killing spinors were first introduced in the context of general relativity to con-

struct quadratic first integrals of free geodesic motion (see [HPSW] and [PR86]),
but their use has extended to more areas in physics like supergravity and super-
symmetry. In mathematics, Killing spinors were shown in [ACDS] to correspond
to Killing vector fields in Riemannian supergeometry and, on compact manifolds,
they play a fundamental role in the limiting case for the lowest eigenvalue of the
Dirac operator. Is this latter aspect the one we are mostly interested in this thesis.

Let us recall some useful properties of Killing spinors whose proofs can be
found, for example, in [Fri00]. A deeper discussion of Killing spinors in Rieman-
nian geometry appears in [BFGK].
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Theorem 2.4.1. Let (M,g) be an n-dimensional Riemannian spin manifold which
we suppose to be connected.

1. A non-trivial Killing spinor never vanishes.

2. For a Killing spinor ψ with Killing constant µ , the associated vector field de-
fined by Xψ = i∑

n
j=1(ψ,e j ·ψ)e j is a Killing vector field, i.e. the Lie derivative

of the metric in the direction of Xψ vanishes.

It is worth mentioning that the second property in the theorem is the reason why
Killing spinors deserve that name. Nevertheless the Killing vector field associated
to a Killing spinor can vanish, depending on the Clifford action and the Hermitian
product on the spinor bundle ΣgM.

In Riemannian spin manifolds, the presence of a Killing spinor is enough to
guarantee the Einstein condition defined above. Although in this section we are
generally concerned about smooth Riemannian metrics, the statement holds for any
metric of class at least C2, for which the curvature tensor and in particular the Ricci
curvature are well-defined. For this and additional closely related results, see [Fri00,
section 5.2].

Theorem 2.4.2. If (M,g) is a connected n-dimensional Riemannian spin manifold
(whose metric g is at least of class C2) with a non-trivial Killing spinor, then the
manifold is Einstein.

Proof. Let ψ∈Γ(ΣM) be a non-trivial Killing spinor with Killing constant µ so that
∇Σ

Xψ= µX ·ψ for every vector field X ∈ Γ(T M). Let us calculate for the curvature
tensor of the spinor bundle using a local orthonormal basis (e1, . . . ,en):

4
n

∑
i=1

ei ·RΣ(X ,ei)ψ=
n

∑
i, j,k=1

〈R(X ,ei)e j,ek〉ei · e j · ek ·ψ

=
n

∑
i, j,k=1

〈R(ek,e j)ei,X〉ei · e j · ek ·ψ

=
1
3

n

∑
i, j,k=1
distinct

〈R(ek,e j)ei +R(e j,ei)ek +R(ei,ek)e j,X〉ei · e j · ek ·ψ

+
n

∑
i,k=1
〈R(ek,ei)ei,X〉ei · ei · ek ·ψ

+
n

∑
i, j=1
〈R(ei,e j)ei,X〉ei · e j · ei ·ψ
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=−
n

∑
k=1

Ric(ek,X)ek ·ψ−
n

∑
j=1

Ric(e j,X)e j ·ψ

=−2Ric(X) ·ψ,

hence we get the identity

n

∑
i=0

ei ·RΣ(X ,ei)ψ=−1
2

Ric(X) ·ψ.

Now we use that ψ is a Killing spinor to simplify the expression for the spinorial
curvature tensor acting on ψ:

RΣ(X ,Y )ψ= ∇
Σ
X ∇

Σ
Yψ−∇

Σ
Y ∇

Σ
Xψ−∇

Σ

[X ,Y ]ψ

= ∇
Σ
X(µY ·ψ)−∇

Σ
Y (µX ·ψ)−µ[X ,Y ] ·ψ

= µ(∇XY −∇Y X− [X ,Y ]) ·ψ+ µ(Y ·∇Σ
Xψ−X ·∇Σ

Yψ)

= µ
2(Y ·X−X ·Y ) ·ψ.

Finally we calculate the Ricci tensor by replacing the action of the spinorial curva-
ture tensor RΣ on ψ with the expression above.

Ric(X) ·ψ=−2
n

∑
i=1

ei ·RΣ(X ,ei)ψ

=−2µ
2

n

∑
i=1

ei · (ei ·X−X · ei)

=−4µ
2

n

∑
i=1

ei · (ei ·X +g(X ,ei)) ·ψ

= 4µ
2(n−1)X ·ψ.

Since ψ is a non-trivial Killing spinor, it does not have any zeros, then necessarily

Ric(X) = 4µ
2(n−1)X . (2.11)

This last expression is coordinate independent, so it holds in all of M. It follows that
Riemannian manifold (M,g) is an Einstein manifold of constant scalar curvature
scalg = 4µ2n(n−1).
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2.4.1 Einstein Condition in Local Coordinates
The Einstein equation (2.8) defines a set of partial differential equations that can
be written in local coordinates, using the formalism of γ-matrices commonly em-
ployed in physics. The calculation used for the proof of Theorem 2.4.2, including
a brief introduction to this formalism, can be found in [CGLS] from the local co-
ordinate point of view. Below we sketch the main steps of this procedure needed
to obtain the Einstein condition, but avoiding the algebraic arguments needed for
the simplification. Einstein’s summation convention is used here (and in following
chapters).

Using a vector field frame (e1, . . . ,en) on an open chart U ⊂M and abbreviating
∇a := ∇ea , for a = 1, . . . ,n, equation (2.10) takes the form,

∇
Σ
aψ= µγaψ. (2.12)

In index notation, the relation between the curvature tensor of the spinor bundle
(defined by means of the spinorial covariant derivative) and the usual Riemann cur-
vature tensor of the tangent bundle can be written as

∇
Σ
a(∇Σ

bψ)−∇
Σ
b(∇Σ

aψ)−T d
ab∇

Σ
dψ=−1

4
Rcd

abγcγdψ,

where Rcd
ab denotes the component g(R(ea,eb)ec,ed) of the curvature tensor. On the

other hand T d
ab is the torsion tensor for the spin connection, that vanishes in our case

by the Levi-Civita condition. Using twice equation (2.12), the fact that ∇γ = 0 and
the previous comments, we get after some algebra

µ
2(γbγa− γaγb) =−1

4
Rcd

abγcγdψ.

Finally, using some useful identities from the algebra of γ-matrices one finds
the expression for the Ricci curvature of M,

Ricab = 4µ
2(n−1)gab. (2.13)

which is exactly the local form of (2.11).



Chapter 3

Hölder Metrics and Weak Einstein
Condition

3.1 Regularity of the Riemannian structure

We will be working in this and the following chapters in a Riemannian setting where
the degree of differentiability of the metric is a fundamental aspect. Usually, we
assume that the underlying differentiable manifold M has a smooth structure, but
in fact, for a metric g of class Ck,α to be well-defined, it is enough to suppose that
M carries a Ck+1,α differentiable structure. The reason for this lies in the fact that
from a Ck+1,α -atlas for M we can construct Ck,α local trivializations of the tangent
bundle T M and hence, define a Ck,α -atlas for it. Thus, sections of T M which are
entries of the metric g under consideration will have well-defined Ck,α regularity.

Notation. Through this chapter, to calculate in local coordinates we will use freely
Einstein’s summation convention as necessary, over repeated apparitions of upper
and lower indices. Nevertheless, for convenience the indices i, j,k, l will be left
out of this convention. Instead, other lowercase characters like a,b,r,s will denote
components of tensors and for them the summation applies. The notation ∂a :=
∂/∂xa for partial derivatives and coordinate vector fields will be adopted.

Recall briefly that vector fields act as derivations on functions defined over a
manifold. Let A = {φγ : Uγ −→ Vγ} be the underlying atlas of a smooth manifold
M. Then, for an arbitrary coordinate chart φ = (x1, . . . ,xn) : U ⊂ M −→ Rn (not
necessarily part of A ) and some function f ∈C∞(M) (with respect to A ) we know
that, at each p = φ−1(x)∈M, a coordinate vector field ∂a, for a = 1, . . . ,n, acts upon
f by

∂a(p) f =
∂

∂xa ( f ◦φ−1)(x). (3.1)

27
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If the coordinate chart φ is at least Ck+1,α (with respect to A ) it means that all the
compositions φ◦φ−1

γ are at least of class Ck+1,α . In that case the coordinate vector
fields of the chart φ acting on f as in (3.1) will have at least Ck,α regularity. In
addition, assuming that the metric g is C1,α in this chart, the Christoffel symbols
Γa

bc of the Riemannian connection associated to g, will be of class Ck−1,α , as clearly
follows from the relation,

Γ
a
bc =

1
2

gad(∂bgcd +∂cgbd−∂dgbc). (3.2)

The next theorem asserts that the converse is also true.

Theorem 3.1.1. Let Γ be the connection of a C1 metric g. If in some local coordi-
nates Γa

bc is of class Ck,α for k≥ 0, then in these coordinates the metric g is of class
Ck+1,α .

Proof. This is a generalization of Theorem 3.4 in [DK81], where the case when g is
C2 is considered. The proof is similar and obtained by invoking regularity for weak
solutions (see [Mor66, Theorem 6.4.3.]) instead of the standard elliptic regularity
arguments.

3.2 Ricci Curvature and Harmonic Coordinates
Contrary to what one would expect, the most appropriate coordinates to work lo-
cally with partial differential equations on manifolds are not the common geodesic
normal coordinates, specially when regularity of geometrical quantities as the met-
ric or the curvature are involved. Here we introduce a system of harmonic coordi-
nates for which the components of the metric tensor and other related objects have
optimal behavior with respect to regularity, as was shown by DeTurck and Kazdan
in [DK81].

Definition 3.2.1. A harmonic coordinate system on an n-dimensional Riemannian
manifold (M,g) is a system of coordinates (U,φ), where φ= (x1, . . . ,xn) : U −→Rn,
for which the coordinate functions xa are harmonic with respect to the Laplacian on
(M,g), i.e. ∆gxa = 0, for a = 1, . . . ,n.

Notation. When working with geometric objects it is important for us to keep their
dependence on g in mind, hence we use a subscript g, like ∆g for the Laplacian,
dvolg for the Riemannian volume form, and so on.

Definition 3.2.2. We say that a tensor field (like a metric tensor g) on a coordinate
chart (U,φ) of a manifold M is of class Ck,α if its components (gab : U −→ R in the
case of the metric) are Ck,α functions on U . The tensor field will be Ck,α globally
on M if it is Ck,α on every chart U ⊂M.
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Recall that the Laplace-Beltrami operator (or simply the Laplacian on func-
tions) ∆g acting on u ∈ C2(M) in a Riemannian manifold (M,g), depends on the
metric g and can be written locally as

∆gu =
1
√

g
∂a
(
gab√g∂bu

)
(3.3)

= gab
∂a∂bu+

1
√

g
∂a
(√

ggab)
∂bu,

where |g| := det(gab). It is possible to write the Laplacian directly in terms of the
Christoffel symbols Γa

bc in the following way. First, using the identity

tr
{

A−1(x)
d
dx

A(x)
}

=
d
dx

lndetA(x)

where A(x) is an arbitrary invertible matrix whose entries are functions of x, we get
for the metric tensor g,

1
2

gab
∂cgab =

1
√

g
∂c
(√

g
)
. (3.4)

This last expression implies immediately from (3.2),

Γ
a
ac =

1
2

gad(∂agcd +∂cgad−∂dgac) =
1
2

gad
∂cgad =

1
√

g
∂a
(√

g
)
.

Now, let us denote Γa := gbcΓa
bc. Using the relation gab∂rgbc +gbc∂rgab = 0 and the

previos calculation to simplify, we find

Γ
a =− 1

√
g

∂b
(√

ggba).
Then, the Laplacian can be rewritten in terms of the Christoffel symbols as

∆gu = gab
∂a∂bu−Γ

b
∂bu.

Applied to the coordinate functions xa, the Laplacian reads now shortly as:
∆gxa = −Γa. We conclude that the coordinate system (x1, . . . ,xn) is harmonic if
and only if for every a = 1, . . . ,n,

Γ
a = gbc

Γ
a
bc = 0 (3.5)
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and that in such harmonic charts, the Laplacian takes the simpler form

∆gu = gab
∂a∂bu. (3.6)

The existence of harmonic coordinate systems on any neighborhood of every
point of a Riemannian manifold is guaranteed. See [DK81] and [JK82] for a com-
plete account of harmonic coordinates in this context and the proofs of the following
results.

Theorem 3.2.1 (DeTurck, Kazdan). Let M be a Riemannian manifold endowed with
a Ck,α -metric g for k≥ 1 in a local coordinate chart containing some point p. Then,
there is a neighborhood of p in which harmonic coordinates exist and are Ck+1,α

functions of the original coordinates. Furthermore,

1. this harmonic coordinate system can be chosen such that gab(x) = δab for any
a,b ∈ {1, . . . ,n},

2. all harmonic coordinate charts about p have the same Ck+1,α regularity,

3. the metric g is of class Ck,α in any harmonic coordinate chart about p, while
it is at least of class Ck−2,α in geodesic normal coordinates.

4. any tensor which in the original coordinates is of class Cl,β , for l ≥ k and
β ≥ α , is at least of class Ck,α in harmonic coordinates.

The optimal regularity of the metric in harmonic coordinates follows from the
last property in this theorem. Briefly, the result asserts that in changing from ar-
bitrary coordinates to a harmonic coordinate chart the regularity of the metric is
preserved, while changing to normal coordinates involves always the loss of at least
two derivatives.

Finally, the existence of uniform bounds on the structure of a compact Rieman-
nian manifold is asserted in the next theorem (see [JK82]). In particular they are
useful to prove one version of the compactness theorems for Riemannian manifolds
(cf. [Pts87]).

Theorem 3.2.2 (Jost, Karcher). Let M be a compact Riemannian manifold and
α ∈ (0,1). About any point p ∈ M there exists a ball Bp(r) of fixed radius r, on
which harmonic coordinates exist and have the following properties:

1. There exists a uniform C2,α -Hölder bound for the transition functions,

2. a uniform C1,α -bound for the metric, and
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3. a uniform C0,α -bound for the Christoffel symbols, where the radius and the
Hölder bounds depend on the dimension, the injectivity radius and the curva-
ture bounds of M.

In conclusion one can always find a harmonic coordinate system on balls of
a-priori fixed radius about any point of the manifold. In these coordinates, the
transition functions φU ◦ φ−1

V are C2,α , the metric gab is C1,α and the Christoffel
symbols Γa

bc are C0,α . In fact, as follows from Theorem 3.1.1, the metric (even
if it is only of class C1) has always one degree of differentiability more than the
Christoffel symbols in any local coordinate chart.

For our purposes, the principal reason in using harmonic coordinates comes
from the fact that the local expression for the Ricci curvature has a simpler form,
in which derivatives of the Christoffel symbols do not appear (see [DK81, Lemma
4.1]).

Theorem 3.2.3 (Lanczos, [Lan22]). In an arbitrary system of local coordinates, the
Ricci curvature can be written in terms of the metric g and the Christoffel symbols
Γa = gbcΓa

bc as

Ricab =−1
2

grs
∂r∂sgab +

1
2

(gar∂bΓ
r +gbr∂aΓ

r)+Qab(g,∂g), (3.7)

where Q(g,∂g) is a quadratic form depending only on g and its first partial deriva-
tives ∂g. Moreover, in a harmonic coordinate system the Ricci curvature takes the
simpler form,

Ricab =−1
2

grs
∂r∂sgab +Qab(g,∂g). (3.8)

Proof. The standard formula for the curvature tensor in terms of the Christoffel
symbols says

Rd
abc = ∂aΓ

d
bc−∂bΓ

d
ac +(Γr

acΓ
d
br−Γ

r
bcΓ

d
ar), (3.9)

Then, replacing (3.2) in the first two terms of the previous expression for the Rie-
mann tensor we get for the Ricci curvature,

Ricab = Rc
acb =

1
2

grs(∂b∂sgar +∂a∂sgbr−∂r∂sgab−∂a∂bgrs)+ Q̃ab(g,∂g) (3.10)

where Q̃ab(g,∂g) := (Γr
acΓc

br−Γr
bcΓc

ar) is a function depending only on g and its first
partial derivatives ∂g. In fact, Q̃ is homogeneous of degree 2 in the first derivatives
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∂g. Now, according to the definitions we calculate

gacΓ
c = gacgrs

Γ
c
rs =

1
2

gacgrsgcd(∂rgsd +∂sgrd−∂dgrs)

=
1
2

grs(∂rgsa +∂sgra−∂agrs)

= grs(∂rgsa−
1
2

∂agrs).

Taking partial derivative ∂b of the previous equality and write it down together with
a similar one where the indices a and b are interchanged,

∂b(gacΓ
c) = ∂bgrs

(
∂sgar−

1
2

∂agrs

)
+grs

(
∂b∂sgar−

1
2

∂b∂agrs

)
,

∂a(gbcΓ
c) = ∂agrs

(
∂sgbr−

1
2

∂bgrs

)
+grs

(
∂a∂sgbr−

1
2

∂a∂bgrs

)
.

Adding the last two expressions and reordering terms we get the relation

grs(∂b∂sgar +∂a∂sgbr−∂a∂bgrs) = ∂b(gacΓ
c)+∂a(gbcΓ

c)

−∂bgrs
∂sgar−∂agrs

∂sgbr +
1
2
(∂bgrs

∂agrs +∂agrs
∂bgrs).

Finally, replacing all this directly in the formula for the Ricci curvature (3.10) yields,
after additional rearrangements

Ricab =−1
2

grs
∂r∂sgab +

1
2
(gac∂bΓ

c +gbc∂aΓ
c)

+
1
2
(∂bgac +∂agbc)Γc− 1

2
(∂bgrs

∂sgar−∂agrs
∂sgbr)

+
1
4
(∂bgrs

∂agrs +∂agrs
∂bgrs)+ Q̃ab(g,∂g).

The third, fourth and fifth terms in the right hand side of this equality depend only
on g and its first derivatives, as the function Q̃ab does. We denote these last four
terms simply by Qab(g,∂g), obtaining in this way the desired expression (3.7) for
the Ricci tensor in a local coordinate system. Since in harmonic coordinates Γc = 0,
it is a straightforward consequence that Ricci curvature takes the form (3.8) in this
case.

3.3 Einstein Equation and C1,α Metrics
In the previous section we saw that the Laplacian ∆g adopts the short expression
∆g = grs∂r∂s in any harmonic coordinate chart, therefore the Ricci curvature reads
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shortly as
Ricab =−1

2∆ggab +Qab(g,∂g) (3.11)

in such coordinates. This will be a central point in what follows because in this way
the Ricci curvature is shown to be a quasilinear operator, where ∆ggab is elliptic and
the estimates of section 1.7 apply to it.

Concerning regularity, the following theorem asserts that in harmonic coordi-
nates the metric has always two degrees of differentiability more than the Ricci
tensor. This is not true in general as one could naı̈vely expect, see [DK81, Theorem
4.5]. In fact, a smooth Ricci tensor can even have a non-smooth metric in arbitrary
coordinates.

Theorem 3.3.1. If in harmonic coordinates g ∈ C2 is a Riemannian metric with
Ricg ∈Ck,α for some k ≥ 0, then in these coordinates g ∈Ck+2,α .

Recall that the Einstein condition for the Ricci curvature in local coordinates, as
it was presented in section 2.4.1, can be written as

Ricab = κ(n−1)gab, (3.12)

where κ is some fixed real constant.
Now, to define the Ricci curvature in an appropriate weak sense, we use the

formula (3.7) for the Ricci tensor in local coordinates, rewritten below for conve-
nience:

Ricab =−1
2

grs
∂r∂sgab +

1
2

(gra∂bΓ
r +grb∂aΓ

r)+Qab(g,∂g),

where Γr = gabΓr
ab.

Definition 3.3.1. Given a coordinate chart (U,φ) on a Riemannian manifold M with
a C1,α -metric g, we define the weak Ricci curvature componentwise as a functional
Ricab acting on a compactly supported test function η ∈C1

c (U) by〈〈
Ricab,η

〉〉
U :=

1
2

∫
U

∂sgab∂r(grs
η) dvolg−

1
2

∫
U

Γ
r
∂b(gra η) dvolg

−1
2

∫
U

Γ
r
∂a(grb η) dvolg +

∫
U

Qab η dvolg .

(3.13)

In this last expression all the terms are well-defined for a C1,α -metric since no sec-
ond derivatives are involved. Furthermore, for X ,Y ∈C1,α(T M) on the open chart
U ⊂ M and a local frame field (e1, . . . ,en) such that X = Xaea and Y = Y beb, we
define 〈〈

Ric(X ,Y ),η
〉〉

U :=
n

∑
a,b=1

〈〈
Ricab,XaY b

η
〉〉

U .
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Notation. For weak objects like the components of the Ricci curvature just defined
acting on test functions, we introduce the notation

〈〈
Ricab,η

〉〉
U instead of the pos-

sible but a bit misleading
∫

U Ricab η which does really make sense only when Ric
is defined in the classical way.

The definition just given suffices to introduce weak solutions of the Einstein
equation and although it is not needed here for our arguments, in section A we
will show how this weak Ricci curvature arises from a natural weak notion for the
Riemann tensor of the tangent bundle.

Having the Ricci curvature defined in this weak (distributional) sense, we can
introduce a weak Einstein condition for the metric of a Riemannian manifold.

Definition 3.3.2. A C1,α -metric g of a Riemannian manifold M is weakly Einstein
in a local coordinate chart (U,φ) if the equality〈〈

Ricab,η
〉〉

U = κ

∫
U

gab η dvolg, (3.14)

holds for any compactly supported test function η ∈C1,α
c (U), an appropriate con-

stant κ ∈ R and all a,b ∈ {1, . . . ,n}. In index-free notation, this can be written for
X ,Y ∈ ΓU(T M) as 〈〈

Ric(X ,Y ),η
〉〉

U = κ

∫
U

g(X ,Y )η dvolg . (3.15)

If this condition is satisfied on any chart of an atlas of M then the manifold is called
weakly Einstein in this atlas.

A generalization of Theorem 3.3.1 for weak solutions of the Einstein equation
is possible as we show now.

Theorem 3.3.2. Let M be an n-dimensional manifold with a Riemannian metric g
of class C1,α . If the components of g are weak solutions of (3.12) in a harmonic
coordinate chart (U,φ), where φ : U ⊂ M −→ V ⊂ Rn is invertible, then viewed
as functions gab ◦ φ−1 : V −→ R, they are smooth. We say in this case that the
components of g are smooth with respect to the harmonic coordinate chart (U,φ).

Proof. First we replace the expression (3.8) for the Ricci curvature in harmonic
coordinates into (3.12) to obtain

∆ggab = grs
∂r∂sgab =−2κ(n−1)gab +2Qab(g,∂g). (3.16)

Given that g is C1,α we know that Q(g,∂g), which does not depend on second or
higher derivatives of g, has to be at least of class C0,α . It means that the whole
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right hand side of equation (3.16) is at least a C0,α function. Let us denote it by
fab :=−2κ(n−1)gab +2Qab(g,∂g) ∈C0,α .

The assumption of the theorem is that g∈C1,α is a weak solution to the equation
grs∂r∂sgab = fab, which requires that ∂sgab ∈ H2

1 and fab ∈ L2. In other words,
for any compactly supported test function η ∈ C1

c (U)∩H2
1 the following integral

equation in harmonic coordinates is satisfied〈〈
∆ggab,η

〉〉
U :=

∫
U

∂s(gab)∂r(grs
η) dvolg =

∫
U

fabη dvolg . (3.17)

Comparing the left hand and right hand sides of (3.17), we conclude that g ∈C1,α

admits C0,α (and in particular continuous) weak second partial derivatives or Lapla-
cian. Since weak derivatives are unique up to sets of measure zero, and the space
{u ∈ C1(U) | ‖u‖H2

1
< ∞} is dense in H2

1 , then ∂sgab has usual partial deriva-
tives ∂r∂sgab almost everywhere. Said briefly, the Laplacian of gab is equal to
fab ∈ C0,α(U)∩ L2 except possibly on a set of null measure. Applying the regu-
larity Theorem 1.7.4 we get that gab is actually a C2,α function. Hence, from (3.16)
the function fab must be C1,α and the process can be iterated again any number of
times in what is known as a bootstrap argument, to obtain the smoothness conclu-
sion claimed by the theorem.

Now, let A = {φγ : Uγ −→ Vγ} be an atlas consisting of harmonic coordinate
charts on M. Due to part 1 of Theorem 3.2.2 there are C2,α transition functions for
this atlas, i.e., A is a C2,α -atlas for M. Then, we obtain the following.

Corollary 3.3.3. If g is weakly Einstein with respect to all charts in a harmonic
coordinate atlas A = {φγ : Uγ −→Vγ} of M, then A is actually a smooth atlas, and
g is a smooth Riemannian metric with respect to it.

Proof. The C2,α differentiable structure given by the atlas A define a C1,α structure
on the tangent bundle T M, associated to the harmonic charts of A , where coordi-
nate frame fields of class C1,α can be defined. This allows the components gab of
the metric to be well-defined of class C1,α in this atlas. But from Theorem 3.3.2 it
follows that indeed, the functions gab ◦φ−1

γ : V −→ R must be smooth for every φγ ,
which necessarily requires that the transition functions be also smooth and hence,
the atlas itself is a smooth one. The smoothness of the components of the metric in
every harmonic chart means that g is smooth with respect to this atlas.

Remark 3.3.1. If g is a C1,α -metric that is weakly Einstein on M, then the harmonic
coordinate atlas A just discussed might define a different differentiable structure on
M. But in case these differentiable structures are compatible, the transition func-
tions between charts of one atlas to charts of the other are smooth and, therefore,
smoothness of g in the harmonic atlas imply also its smoothness in the original atlas
of M.
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Given the ellipticity of the Laplacian ∆g, the elliptic estimates (1.9) in Theorem
1.7.3

‖g‖C2,α (M) ≤C
(
‖g‖C0(M) +‖ f‖C0,α (M)

)
,

where C > 0 is independent of g and f , require in fact that g is bounded in C2,α and
by a bootstrap, actually in every Hölder space Ck,α . Nevertheless this conclusion
and the relation with the harmonic coordinate atlas is rather obscure without the
previous analysis.

Finally we summarize two additional well-known properties about analyticity
and unique continuation of Einstein metrics, whose proofs appear in [DK81, section
5].

Theorem 3.3.4. Any Einstein metric g of class C2 on a connected manifold M with
dimM ≥ 3 is real analytic in harmonic and geodesic normal coordinates.

Theorem 3.3.5. On a simply connected manifold M, any two Einstein metrics g1
and g2 which coincide locally (on some open set U ⊂M) are globally diffeomorphic,
i.e., if g1|U = g2|U , there is a diffeomorphism Φ : M −→M such that g1 = Φ∗g2.

As a consequence of our results, Theorem 3.3.2 implies the following corollary.

Corollary 3.3.6. On a connected manifold M, with dimM ≥ 3, any C1,α -metric
which is weakly Einstein in harmonic coordinates (in the sense of Theorem 3.3.2) is
actually real analytic in these coordinates.

3.4 Weak Solutions on the Spinor Bundle
According to item 2 from the list of Definitions 1.6.1, when the coefficients of a
partial differential operator P = ∑l al∇

l of order k acting on spinors, are at least
of class Ck, the natural way to define weak solutions should be given as follows
(compare also with Remark 1.6.1).

Definition 3.4.1. The equation Pψ1 = ψ2 holds weakly on a local chart U ⊂ M if
and only if for every compactly supported test spinor ϕ∈Ck

c(ΣM), with suppϕ⊂U ,
holds ∫

U
(ψ1,P∗ϕ) dvolg =

∫
U

(ψ2,ϕ) dvolg . (3.18)

where P∗ is the formal adjoint of P on the spinor bundle ΣgM (see subsection 1.5.2).

This definition is clearly useful when ψ1 is not differentiable enough for Pψ1 to
be well-defined. In particular, we can try to apply it to the Riemann tensor of ΣgM.
Since the Levi-Civita spin connection ∇Σ : Γ(ΣgM) −→ Γ(T ∗M⊗ΣgM) is metric,
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the spinorial curvature viewed as a map RΣ : Γ(ΣgM)−→ Γ(Λ2(T ∗M)⊗ΣgM) has a
formal adjoint (RΣ)∗ : Γ(Λ2(T ∗M)⊗ΣgM) −→ Γ(ΣgM). It can be shown1 that the
identity

(RΣ)∗((dxa∧dxb)⊗ϕ) =− 1
√

g
RΣ(∂a,∂b)ϕ,

holds for a compactly supported ϕ ∈ C2
c (ΣM) and some local coordinate vector

fields ∂a,∂b ∈ C2(T M), i.e. vector fields coming from the coordinate functions
(x1, . . . ,xn) :U −→Rn in the local chart. Thus, we could define for a non-differentiable
spinor ψ ∈ Γ(ΣgM),

∫
U

(
RΣ(∂a,∂b)ψ,ϕ

)
dvolg :=−

∫
U

1
√

g

(
ψ,RΣ(∂a,∂b)ϕ

)
dvolg . (3.19)

Nevertheless, it only makes sense when RΣ on the right hand side of (3.19) is well-
defined. This requires the existence of two derivatives of the metric, i.e., g must be
at least of class C2, which obviously means that Definition 3.4.1 and relation (3.19)
are not useful to define weak curvatures for C1,α metrics.

Our primary goal is to generalize in an appropriate weak sense the identity,

−1
2

Ric(X) ·ψ=
n

∑
i=1

ei ·RΣ(X ,ei)ψ, (3.20)

which holds on spin manifolds with smooth metrics, as shown in the proof of The-
orem 2.4.2. To this end, we introduce new definitions below.

First, let ϕ ∈C1
c (ΣM) be a compactly supported test spinor, with supp(ϕ) ⊂U

for an open chart U ⊂ M. Assuming for a moment that the spinorial curvature is
well-defined, we take the Hermitian product of RΣ acting on a spinor ψ with ϕ,(

RΣ(X ,Y )ψ ,ϕ
)

=
(
∇

Σ
X ∇

Σ
Yψ−∇

Σ
Y ∇

Σ
Xψ−∇

Σ

[X ,Y ]ψ ,ϕ
)

and integrate both sides locally. Then, partial integration and Stokes’ theorem sim-
plify the result. To establish this last step, local coordinate vector fields, denoted
by ∂a,∂b ∈ C2(T M), are needed as the first two entries of the spinorial curvature
tensor.

For the complete calculation, remember that dvolg =
√

gdx, where we ab-
breviate dx = dx1 · · ·dxn for coordinate functions (x1, . . . ,xn) on the local chart,

1We do not present the proof here but half of the necessary calculation appears in the next page
before the introduction of the weak spinorial curvature.
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∇Σ
c := ∇Σ

∂c
for any c = 1, . . . ,n, and denote ϕ̂=

√
gϕ. Thus, we can write∫

U

(
RΣ(∂a,∂b)ψ ,ϕ

)
dvolg =

∫
U

(
∇

Σ
a ∇

Σ
bψ−∇

Σ
b ∇

Σ
aψ−∇

Σ

[∂a,∂b]ψ , ϕ̂
)

dx

=
∫

U

{
∂a
(
∇

Σ
bψ, ϕ̂

)
−
(
∇

Σ
bψ,∇Σ

a ϕ̂
)

− ∂b
(
∇

Σ
aψ, ϕ̂

)
+
(
∇

Σ
aψ,∇Σ

b ϕ̂
)}

dx

=
∫

U

(
∇

Σ
aψ,∇Σ

b ϕ̂
)

dx−
∫

U

(
∇

Σ
bψ,∇Σ

a ϕ̂
)

dx.

This procedure indicates that the weak definition we need is what comes out
after the integration.

Notation. To simplify, we use from now on 〈X ,Y 〉 := g(X ,Y ), but the reader should
not confuse the Riemannian metric 〈·, ·〉 with our notation

〈〈
·, ·
〉〉

used to distinguish
distributions.

Definition 3.4.2. On a Riemannian spin manifold with a C1,α -metric g we define
the weak spinorial curvature tensor acting on local coordinate vector fields ∂a,∂b ∈
ΓU(T M) and spinor fields ψ,ϕ ∈C1,α(M) by〈〈

RΣ(∂a,∂b)ψ,ϕ
〉〉

U :=
∫

U

(
∇

Σ
aψ,∇Σ

b ϕ̂
)

dx−
∫

U

(
∇

Σ
bψ,∇Σ

a ϕ̂
)

dx

with ϕ̂=
√

gϕ and dx = dx1 · · ·dxn as before.

By the above calculation is clear that for a Riemannian metric g of class C2, the
weak and the classic expressions coincide〈〈

RΣ(∂a,∂b)ψ,ϕ
〉〉

U =
∫

U

(
RΣ(∂a,∂b)ψ ,ϕ

)
dvolg .

Remark 3.4.1. Given a local orthonormal frame (e1, . . . ,en), let us assume that
we can write each vector in terms of a basis of coordinate vectors (∂1, . . . ,∂n), as
ei = ∑b Eb

i ∂b. We point out here, as it was mentioned at the beginning of section
3.1, that the derivations ∂a act in a C1,α way if the differentiable structure of the
manifold is at least C2,α . This is enough for the metric g of class C1,α to be well-
defined. Any other local vector field frame can be obtained from (∂1, . . . ,∂n) by
a orthonormalization process and a rotation on TpM for each point p ∈M, i.e., an
action of SOg(n) on each basis. This two steps are linear and depend only on the
metric and not on its derivatives. If the metric is C1,α the result is that the new
vector frame will act also as a C1,α derivation and, in particular, the coefficients Eb

i
in the expression for ei in terms of ∂b are in fact C1,α functions on the manifold.
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Lemma 3.4.1. In a Riemannian spin manifold M with a C1,α -metric g, the relation

−1
2

Ric(∂a) ·ψ=
n

∑
i=1

ei ·RΣ(∂a,ei)ψ, (3.21)

is satisfied weakly, for any coordinate vector field ∂a, and any local orthonormal
frame field (e1, . . . ,en) on an open chart U ⊂ M. This means that the following
equality, which holds for metrics of class at least C2 and any test spinor ϕ∈C1

c (ΣM)
with suppϕ⊂U,

1
2

∫
U

(
Ric(∂a) ·ψ,ϕ

)
dvolg =

n

∑
i,b=1

∫
U

(
RΣ(∂a,∂b)ψ,Eb

i ei ·ϕ
)

dvolg (3.22)

is well-defined in the weak sense established above for C1,α metrics. Here, we
assume ei = ∑

n
b=1 Eb

i ∂b is the expression for the vector field ei in terms of the local
coordinate field basis (∂1, . . . ,∂n).

Proof. First, we prove that indeed (3.22) holds for any C2 Riemannian metric g, a
spinor ψ ∈C2(ΣM), and a test spinor ϕ ∈C1

c (ΣM) with suppϕ⊂U . For doing this,
we integrate both sides of (3.21), which holds under the previous assumptions, after
taking Hermitian product with ϕ:

1
2

∫
U

(
Ric(∂a) ·ψ,ϕ

)
dvolg =

n

∑
i=1

∫
U

(
ei ·RΣ(∂a,ei)ψ,ϕ

)
dvolg .

Passing one ei to the right of the Hermitian product and replacing the other by
ei = ∑b Eb

i ∂b we get,

1
2

∫
U

(
Ric(∂a) ·ψ,ϕ

)
dvolg =

n

∑
i,b=1

∫
U

(
RΣ(∂a,∂b)ψ,Eb

i ei ·ϕ
)

dvolg .

Thus, we get (3.22), which in fact will hold for smooth metrics. To translate this
equation to a weak interpretation for C1,α -metrics, we need to consider both of its
sides separately. Beginning from the left, when Ric is defined in the classical sense,
consider the calculation∫

U

(
Ric(∂a) ·ψ,ϕ

)
dvolg =

∫
U

(
∑

i
Ric(∂a,ei)ei ·ψ,ϕ

)
dvolg

=
n

∑
i=1

∫
U

Ric(∂a,ei)(ei ·ψ,ϕ) dvolg

=
n

∑
i,b=1

∫
U

Ric(∂a,∂b)Eb
i (ei ·ψ,ϕ) dvolg,
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where ei = ∑i Eb
i ∂b. After passing this equality to the weak context, the factor

Eb
i (ei ·ψ,ϕ) play the roll of a test function, dependent on the test spinor ϕ, and we

find that the left-hand side of (3.22) should be understood as,

〈〈
Ric(∂a) ·ψ,ϕ

〉〉
U : =

n

∑
i

〈〈
Ric(∂a,ei),(ei ·ψ,ϕ)

〉〉
U

: =
n

∑
i,b=1

〈〈
Ric(∂a,∂b),Eb

i (ei ·ψ,ϕ)
〉〉

U (3.23)

where the last expression to the right is given according to Definition 3.3.1. Simi-
larly, the right-hand side of (3.22) admits also a weak sense for C1,α -metrics using
directly Definition 3.4.2. Summing all this up, the weak version of (3.22) can be
written as

1
2

n

∑
i,b=1

〈〈
Ric(∂a,∂b),Eb

i (ei ·ψ,ϕ)
〉〉

U =
n

∑
i,b=1

〈〈
RΣ(∂a,∂b)ψ,Eb

i ei ·ϕ
〉〉

U , (3.24)

although we have not proved yet the validity of this equality. Clearly, the weak
expressions at both sides of (3.24) coincide with the corresponding “classical” ones
when the metric g and the spinors ϕ,ψ are already differentiable enough for (3.22)
to be well-defined.

Let us suppose now that ψ ∈C1,α(ΣM) and g ∈C1,α(T M�2). Then, if the test
spinor ϕ ∈ C1,α

c (ΣM), we have that ∇Σ
cψ and ∇Σ

c ϕ̂ := ∇Σ
c (
√

gϕ) are of class C0,α

for every c = 1, . . . ,n. Indeed, equation (3.4) shows that the partial derivatives
∂c(
√

g) = 1
2
√

ggab∂cgab so they really are C0,α functions and therefore the spino-
rial covariant derivatives ∇Σ

c ϕ̂ also are. From this, Definition 3.4.2 implies that for
any ∂a,∂b, the function

〈〈
RΣ(∂a,∂b)ψ,ϕ

〉〉
U has C0,α regularity on U ⊂M and is, in

particular, continuous.
Similarly, checking all the terms in Definition 3.3.1 we see that

〈〈
Ric(∂a,∂b),ϕ

〉〉
U

is also of class C0,α on U in this case. Moreover, we have that the weak Ricci and
weak spinorial curvatures viewed as applications

WRΣ : C1,α(ΣM)×C1,α(ΣM)×C1,α(T ∗M�2)−−−→ C
(ψ,ϕ,g) 7−−−→

〈〈
RΣ(∂a,∂b)ψ,ϕ

〉〉
U ,

and the weak Ricci curvature as

WRic : C1,α(ΣM)×C1,α(ΣM)×C1,α(T ∗M�2)−−−→ C
(ψ,ϕ,g) 7−−−→

〈〈
Ric(∂a) ·ψ,ϕ

〉〉
U ,
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are continuous in the variables ψ,ϕ and g in the C1,α -topology. For a detailed proof
of this, which requires long calculations and identification of spinors that will be
introduced in chapter 4 we refer the reader to Appendix B.

As was explained in Remark 3.4.1, if the vector fields ei are at least C1,α , the
coefficients Eb

i have also this regularity and then the expressions Eb
i (ei ·ψ,ϕ) and

Eb
i ei ·ϕ at the left and right-hand sides of (3.24), respectively, can be seen as test

functions of class C1,α . Then, replacing ϕ for these expressions in what was just
said concerning WRΣ and WRic guarantees that both sides of (3.24) are continuous in
the C1,α -topology.

Since smooth sections ψ,ϕ and g are dense in the domain of WRΣ and WRic,
i.e., C1,α(ΣM)×C1,α(ΣM)×C1,α(T ∗M�2), if (3.22) holds in the smooth case, the
corresponding weak version (3.24) will hold when g and ϕ,ψ have only C1,α regu-
larity.

Theorem 3.4.2. If M is a compact spin manifold with a C1,α -metric g such that
there is a (non-trivial) Killing spinor, then the manifold satisfies weakly the Einstein
condition in any local coordinate chart.

Proof. Let ψ ∈ Γ(ΣM) be a Killing spinor, ∇Σ
Xψ = µX ·ψ, for any X ∈ Γ(T M).

First, given a local basis of coordinate vector fields (∂1, . . . ,∂n) and a spinor field
ϕ ∈ Γ(ΣM) we get,〈〈

RΣ(∂a,∂b)ψ,ϕ
〉〉

U =
∫

U

(
∇

Σ
aψ,∇Σ

b ϕ̂
)

dx−
∫

U

(
∇

Σ
bψ,∇Σ

a ϕ̂
)

dx

=
∫

U

(
µ∂a ·ψ,∇Σ

b ϕ̂
)

dx−
∫

U

(
µ∂b ·ψ,∇Σ

a ϕ̂
)

dx.

Now we pass the covariant derivatives from the right-hand side to the left-hand side
of the hermitian products and collect the integrands,

=
∫

U

(
∇

Σ
a(µ∂b ·ψ)−∇

Σ
b(µ∂a ·ψ),ϕ

)
dvolg .

Finally, the product formula and the Killing equation once again are used to simplify
the remaining spinorial derivatives,

=
∫

U

(
µ(∇k∂b−∇l∂a) ·ψ+ µ(∂b ·∇Σ

aψ−∂a ·∇Σ
bψ),ϕ

)
dvolg

=
∫

U

(
µ(Γm

kl−Γ
m
lk)∂m ·ψ+ µ

2(∂b ·∂a−∂a ·∂b) ·ψ,ϕ
)

dvolg

=
∫

U

(
µ

2(∂b ·∂a−∂a ·∂b) ·ψ,ϕ
)

dvolg .
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In the previous result, let us replace now the test spinor ϕ in the right hand side
of the hermitian product by Eb

i ei ·ϕ and choose a particular ∂a to find,

n

∑
i,b=1

〈〈
RΣ(∂a,∂b)ψ,Eb

i ei ·ϕ
〉〉

U

=
n

∑
i,b=1

∫
U

(
µ

2(∂b ·∂a−∂a ·∂b) ·ψ,Eb
i ei ·ϕ

)
dvolg .

=
n

∑
i=1

∫
U

(
µ

2(ei ·∂a−∂a · ei) ·ψ ,ei ·ϕ
)

dvolg .

=−
n

∑
i=1

∫
U

(
µ

2(ei · ei ·∂a− ei ·∂a · ei) ·ψ,ϕ
)

dvolg .

=
n

∑
i=1

∫
U

(
µ

2(∂a− (∂a · ei +2g(∂a,ei)) · ei) ·ψ,ϕ
)

dvolg .

=
n

∑
i=1

∫
U

(
µ

2(2∂a−2g(∂a,ei)ei) ·ψ ,ϕ
)

dvolg .

= 2µ
2
∫

U

(
(n∂a−∑i g(∂a,ei)ei) ·ψ,ϕ

)
dvolg .

Since (e1, . . . ,en) is orthonormal then ∂a = ∑
n
i=1 g(∂a,ei)ei, so we arrive at

n

∑
i,b=1

〈〈
RΣ(∂a,∂b)ψ,Eb

i ei ·ϕ
〉〉

U = 2µ
2(n−1)

∫
U
(∂a ·ψ,ϕ) dvolg . (3.25)

With this, the previous lemma implies that the Einstein condition is satisfied locally
in a weak sense, i.e.,〈〈

Ric(∂a) ·ψ,ϕ
〉〉

U = 4µ
2(n−1)

∫
U
(∂a ·ψ,ϕ) dvolg . (3.26)

Both sides of this equation can be rewritten in the form of Definition 3.3.2, but
since we have not proved any linearity in the entries of Ric(·, ·) when working in
the weak sense, we have to stick to Definition 3.3.1 to proceed. Let us use (3.23) at
the left-hand side of (3.26) and the substitution ∂a = ∑i g(∂a,ei)ei to introduce the
metric at the right-hand side, then

n

∑
c=1

〈〈
Ric(∂a,∂c),∑iE

c
i (ei ·ψ,ϕ)

〉〉
U = 4µ

2(n−1)
∫

U
(∑ig(∂a,ei)ei ·ψ,ϕ) dvolg,

and replace ei inside g(∂a,ei) by ei = ∑c Ec
i ∂c to obtain

= 4µ
2(n−1)

n

∑
c=1

∫
U

g(∂a,∂c)(∑iE
c
i ei ·ψ,ϕ) dvolg .
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Since this holds for every ϕ ∈ Cc(ΣM), take any test function η ∈ Cc(M,R) with
suppη ⊂U and choose for any fixed b∈{1, . . . ,n}, a test spinor ϕb := g(∂b,ei)

ei·ψ
‖ψ‖2 η .

Thus, for each ϕb we can write (note that ∑i Ec
i g(∂b,ei) = δbc),

n

∑
c=1

〈〈
Ric(∂a,∂c),∑i Ec

i g(∂b,ei)
(ei·ψ,ei·ψ)
‖ψ‖2 η

〉〉
U

= 4µ
2(n−1)

n

∑
c=1

∫
U

g(∂a,∂c)∑i Ec
i g(∂b,ei)

(ei·ψ,ei·ψ)
‖ψ‖2 η dvolg

n

∑
c=1

〈〈
Ric(∂a,∂c),δbcη

〉〉
U = 4µ

2(n−1)
n

∑
c=1

∫
U

g(∂a,∂c)δbcη dvolg,

so we finally get the Einstein condition (3.14) for an arbitrary compactly supported
test function η and all a,b = 1, . . . ,n:

〈〈
Ric(∂a,∂b),η

〉〉
U = 4µ

2(n−1)
∫

U
g(∂a,∂b)η dvolg .

Finally, we arrive to our main result of this chapter taking a global point of view
in the previous theorem.

Theorem 3.4.3. If M is a compact spin manifold with a C1,α -metric g carrying a
non-trivial Killing spinor, then g is smooth with respect to a harmonic coordinate
atlas for M or to any compatible one. Furthermore, g is Einstein (and hence ana-
lytic) in these atlases.

Proof. By Theorem 3.3.2 a spin manifold with a C1,α -metric g carrying a non-trivial
Killing spinor satisfies weakly the Einstein equation (3.14) on any coordinate chart,
in particular on any chart of a harmonic coordinate atlas for M. But by Theorem
2.4.2 any C1,α -metric satisfying the Einstein equation in the weak sense on a har-
monic chart is smooth in this chart. This means that g is smooth with respect to a
harmonic coordinate atlas for M and therefore the Einstein equation is satisfied in
the classical sense. Theorem 3.3.4 (or Corollary 3.3.6) implies that the metric is
analytic for this atlas.
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Chapter 4

Spin Manifolds and Convergence

Now, we want to consider the convergence of sequences of Riemannian spin mani-
folds (with their corresponding metrics) under appropriate geometrical conditions,
and study the behavior of spinor fields and the Dirac operator in the limit. First
we recall the basic machinery from the theory of convergence of manifolds in a
Riemannian setting (see, for instance [Pet97] and [HH97]).

4.1 Convergence of Manifolds and Ck,α Metrics

We begin by defining the notion of Ck,α convergence of functions with domain in
Rn and then extend it to the manifold case, which will be needed to formulate the
main result of this chapter.

Definition 4.1.1. Let fi be a sequence of Ck,α functions defined on an open set
U ⊂ Rn, then fi converges in Ck,α(U) to a Ck,α function f , defined also on U , if
limi→∞ ‖ fi− f‖Ck,α (U) = 0.

Alternatively, this kind of convergence is also called convergence in the Ck,α -
topology for obvious reasons.

Definition 4.1.2. We say that fi converge in Ck,α
loc (U) to f , for an open set U ⊂ Rn,

if for every compact set K ⊂U it holds that limi→∞ ‖ fi− f‖Ck,α (K) = 0.

Remark 4.1.1. Here Ck,α
loc (U) denote the set of locally Ck,α functions on U . Using

the usual definition of the α-seminorm one can show that for U ⊂Rn, a fixed k ∈N
and α ∈ (0,1), a function f belongs to Ck,α

loc (U) whenever f ∈ Ck(U) and for all

45
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multi-indices β ∈ Nn with |β |= k and all open balls B(x0,r)⊂U ,

sup
x,y∈B(x0,r)

x 6=y

|∂ β f (x)−∂ β f (y)|
|x− y|α

≤C(x0,r),

for some real bound C(x0,r) depending only on the center x0 ∈U and radius r of
the corresponding ball.

When working on a manifold M there is a natural notion of Ck,α convergence of
tensors on M defined below.

Definition 4.1.3. A sequence Ti of tensors on a given manifold M is said to converge
to a tensor T in the Ck,α -topology if there is a sub-atlas of the complete atlas of
M whose coordinate charts φγ : Uγ −→ Rn define transition functions of class at
least Ck+1,α , and all the components of the tensors Ti converge in the Ck,α -topology
to the components of T , on any chart of this sub-atlas (viewed as functions on
φγ(Uγ)⊂ Rn).

The previous definition clearly requires that M carries at least a Ck+1,α differen-
tiable structure since the components of tensors are computed by evaluating them
on Ck,α objects as vector fields ∂a := ∂/∂xa and forms dxa. However, this notion
is not the same as the next one, with which we want to study the convergence of
metrics in our setting.

Definition 4.1.4. Let (Mi,gi) be a sequence of smooth compact Riemannian n-
manifolds, M a smooth compact differentiable n-manifold, and g a Ck,α Riemannian
metric on M, for an integer k and a real α ∈ (0,1). We say that (Mi,gi) converge to
(M,g) in the Ck,α -topology if there exists j0 such that for every i ≥ j0 we can find
Ck+1,α diffeomorphisms θi : M −→Mi for which the components of θ ∗i gi converge
in Ck,α

loc (Uγ) to the components of g, on any chart Uγ of the smooth complete atlas
of M.

This convergence is generally valid in the framework of Ck+1,α manifolds but
we restrict ourselves to the case of smooth manifolds which is enough for our pur-
poses. The general definition is straightforward from what we said for the conver-
gence of tensors.

Remark 4.1.2. Ck,α
loc convergence on any chart of the complete atlas of M implies

the existence of a (smooth) sub-atlas for which the components of the metrics θ ∗i gi
converge in the Ck,α -topology to the components of g on any of its charts (viewed
again as functions on Rn).

Definition 4.1.5. A set M of smooth compact Riemannian n-manifolds is precom-
pact in the Ck,α -topology if any sequence in M has a subsequence which is conver-
gent in this topology.
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4.1.1 Compactness Theorems
There are many compactness theorems in Riemannian geometry having their origin
in the seminal work of M. Gromov in 1981, who proved that the space of com-
pact Riemannian n-manifolds with sectional curvature and diameter bounded from
above and with lower bound for the volume, is precompact in the Lipschitz topol-
ogy (cf. [Gro99]). Since then, several extensions have been settled in different
directions. Of particular interest to us is the generalization of this theorem to the
C1,α -topology. Related results extend these properties to the case of lower bounds
on the Ricci curvature as it is done in the work of M. Anderson and J. Cheeger (e.g.
[And90], [AC92]) and even further in [HH97].

Definition 4.1.6. Let M (n,d,K,V ) denote the class of compact n-dimensional Rie-
mannian manifolds (M,g) with diameter diam(M) ≤ d, volume vol(M) ≥ V , and
sectional curvature |sec | ≤ K. (Alternatively, the condition vol(M) ≥ V can be re-
placed by a lower bound on the injectivity radius inj rad(g) of M, so we could take
inj rad(g)≥ i0 for some real constant i0 > 0.)

Theorem 4.1.1 (Compactness Theorem). The class M (n,d,K,V ) is precompact
in the C1,α -topology for any α ∈ (0,1), and contains only finitely many diffeomor-
phism types.

The following reformulation of the previous theorem that appears in [Pts87]
summarize very well the convergence and compactness properties we have defined.

Theorem 4.1.2. Let (Mi,gi) denote a sequence of Riemannian manifolds in the
class M (n,d,K,V ) and α ∈ (0,1). Then, there exists a subsequence denoted also
by (Mi,gi) with the properties:

1. Each Mi is diffeomorphic to a single manifold M.

2. There exist diffeomorphisms θi : M −→ Mi such that θ ∗i gi converges in the
C1,α -topology to a C1,α -metric g on M.

3. For the injectivity radius we have limsupi inj rad(gi)≤ inj rad(g).

4. Let expi be the exponential map of Mi, exp that of M and expi = θ ∗i expi, then
expi converges to exp uniformly on compact subsets of TpM, and exp(p) is
Lipschitz.

Theorem 4.1.3 (Nikolaev). In the previous compactness theorem, the components
of the limit metric g, expressed in harmonic coordinates, are contained in the Sobolev
spaces H p

2 for any p ≤ 1. In particular, all notions of curvature are almost every-
where defined.
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Remark 4.1.3. If a sequence of Riemannian manifolds (Mi,gi) converge in the
sense just defined to a limit manifold (M,g), the first property of Theorem 4.1.2 says
that the actual manifolds in question are diffeomorphic, therefore we can choose the
limit one as representative and concentrate in the convergence of the pullbacks of
the corresponding metrics.

4.1.2 Norms and Convergence of Metrics
Let M be a smooth compact spin manifold and denote by h a fixed Riemannian
metric over M with corresponding Levi-Civita connection ∇h. Let

SM =
⊔

p∈M

{Xp ∈ TpM | ‖Xp‖h = 1} ⊂ T M,

be the sphere bundle of unit vectors on M associated to h. For an operator T ∈
End(T M) there are natural norms with respect to the Riemannian metric h:

‖T‖h := sup
X∈SM

|T X |h,

‖∇hT‖h := sup
X ,Y∈SM

|(∇h
X T )(Y )|h.

For a Riemannian metric g we can define, as well, a norm of the covariant
derivative of g with respect to h as,

‖∇hg‖h := sup
p∈M

{
|(∇h

X g)(Y,Z)|h | X ,Y,Z ∈ SpM
}
. (4.1)

Definition 4.1.7. The C1-distance with respect to h between two Riemannian met-
rics g and g′ is given by

dC1

h (g,g′) := ‖g−g′‖h +‖∇h(g−g′)‖h.

The following two properties related to this distance in the C1-topology can be
found in [Pfä03].

Lemma 4.1.4. Let (gi)i≥1 denote a sequence of Riemannian metrics and g some
fixed Riemannian metric on a manifold M. The sequence (gi)i≥1 converge to g in
the C1-topology if and only if in every chart U ⊂M of local coordinates (x1 . . . ,xn),
the components of the metrics and its derivatives converge uniformly,

(gi)ab −−→
i→∞

gab and ∂c(gi)ab −−→
i→∞

∂cgab,

for every a,b,c ∈ {1, . . . ,n}.
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Theorem 4.1.5. If a sequence of Riemannian metrics (gi)i≥1 on M converge in the
C1-topology to a Riemannian metric g, then for the C1-distance we have

dg(gi) := dC1

g (g,gi)−−→
i→∞

0.

4.2 Identification of Metric Spinors

Using the procedure introduced in [BG92] (see also [Pfä03] and [ADH06]) we ex-
plain below how spinors coming from spin structures associated to different metrics
are going to be identified. Specifically, this will give us a way to associate spinors
on a sequence of spin manifolds to spinors in the limit manifold. In fact, given that
the actual manifolds in a convergent sequence are diffeomorphic to the limit one, the
importance of this construction is how it relates different metrics and corresponding
spin structures, providing an identification of vector and spinor fields.

We should point out here that there is another viewpoint to identify spinors
for different metrics given by J. Lott in [Lot00]. As explained there, one obtains
from a topological spin structure on M a Spin(n)-principal bundle PSpin(M) without
using explicitly a metric. This PSpin(M) is well-defined up to gauge transformations
and the spinor bundle is the corresponding associated bundle. In Lott’s approach,
the choice of a metric on M defines a connection-1-form on PSpin(M) and hence a
connection on spinors.

However, the above mentioned gauge transformations may cause several trou-
bles when one writes down analytical arguments explicitly. In order to be as con-
crete as possible, we have chosen in this thesis not to follow this presentation. From
the viewpoint of J. Lott’s approach what we do is to fix one metric (namely the limit
metric) as a reference metric, and then this gauge ambiguity does no longer exist.

Let (gi)i≥1 denote a sequence of Riemannian metrics on an n-dimensional spin
manifold M, converging to a fixed Riemannian metric g. We assume by now that
all these metrics have at least C1,α regularity. In addition, we suppose that there
is a fixed (metric) spin structure χ for (M,g) which can be pulled-back as shown
in section 2.1 to define compatible metric spin structures χi for the metrics gi in
the sequence. This compatibility amounts to the equivalence of the background
topological spin structures, but the metric aspect is necessary to construct associated
spinor bundles.

We want to relate (and identify) vector and spinor fields coming from the metrics
in the sequence, to the ones coming from the metric in the limit. For this, let us
take any metric gi with the corresponding metric spin structure χi for (M,gi) and
consider the relation to (M,g) with the spin structure χ . There exists a unique
positive definite transformation Ai ∈ End(T M), which is symmetric with respect to
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g and such that for every X ,Y ∈ T M

g(AiX ,AiY ) = gi(X ,Y ). (4.2)

Because of this property, Ai sends orthonormal frames for g to orthonormal frames
for gi, and thus induces a map denoted again by Ai between the SO(n)-principal
frame bundles associated to g and gi,

Ai : PSO(M,gi)−→ PSO(M,g)
s = (e1, . . . ,en) 7−→ Ai(s) = (Aie1, . . . ,Aien).

Given that the spin structures χ and χi are equivalent, as it was mentioned ear-
lier, the endomorphism Ai can be lifted to a map Ãi : PSpin(M,g) −→ PSpin(M,gi).
Thus, we have the following diagram, where we have included two arbitrary sec-
tions s ∈ Γ(PSpin(M,g)) and s ∈ Γ(PSO(M,g)),

PSO(M,gi) PSO(M,g).-
Ai

PSpin(M,gi) PSpin(M,g)-Ãi

?

χi

?

χ

U ⊂M -
s

s̃

�
�
�
�
�
��>

The associated spinor bundles inherit from this construction a natural identification
Ai : ΣgiM −→ ΣgM labeled for convenience with the same symbol Ai as the one for
vectors,

Σ
giM := PSpin(M,gi)×σ Σn −→ Σ

gM := PSpin(M,g)×σ Σn

ψ := [s̃,Ψ] 7−→ Aiψ := [Ãi(s̃),Ψ].

This map is Spin(n)-equivariant and respects Clifford multiplication by vector fields
defined through the identification T M ' PSpin(M,gi)×AdRn, so for X ∈ Γ(T M) we
can write,

Ai(X ·ψi) = (Ai X) · (Aiψi).

Since the metric on the spinor bundles is given by a fixed Hermitian inner product
on ΣgiM and ΣgM, the endomorphism Ai defines a fiberwise isometry between the
bundles, i.e., the norms of the spinors are preserved.

We will now look at the relation between the canonical covariant derivatives
for (M,g) and (M,gi). Let ∇ and ∇i be the Levi-Civita connections for g and gi.
To compare ∇ and ∇i on the frame and spin bundles for g we define a connection
∇

i
: Γ(T M)−→ Γ(T ∗M⊗T M) by

∇
i
X := A−1

i (∇Ai X). (4.3)
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The connection ∇
i

is metric with respect to gi, thanks to the metricity of ∇ with
respect to g and the properties of Ai,

gi(∇
i
ZX ,Y )+gi(X ,∇

i
ZY )

= gi(A−1
i ∇Z(AiX),A−1

i (AiY ))+gi(A−1
i (AiX),A−1

i ∇Z(AiY ))

= g(∇Z(AiX),AiY )+g(A−1
i X ,∇Z(AiY ))

= Zg(AiX ,AiY )
= Zgi(X ,Y ),

(4.4)

and has torsion given by

T i(X ,Y ) : = ∇
i
XY −∇

i
Y X− [X ,Y ]

= A−1
i ∇X(AiY )−A−1

i ∇Y (AiX)− [X ,Y ]

= ∇X(A−1
i AiY )−∇Y (A−1

i AiX)− [X ,Y ]

− ((∇X A−1
i )AiY − (∇Y A−1

i )AiX)

= (∇Y A−1
i )AiX− (∇X A−1

i )AiY,

(4.5)

where we have used that ∇ is torsion free.
Writing the covariant derivative in terms of the Lie bracket and the metric we

arrive at the following identity,

2gi(∇
i
XY −∇

i
XY,Z) = gi(T

i(X ,Y ),Z)−gi(T
i(X ,Z),Y )−gi(T

i(Y,Z),X). (4.6)

Next we compare ∇i, ∇
i

when lifted to the spinor bundle ΣgiM. To avoid com-
plicating the notation even more we drop the superscript in ∇Σ for the covariant
derivatives on the spinor bundles. Let (e1, . . . ,en) be a local g-orthonormal frame
on M, and let {ϕα} be the corresponding local orthonormal frame of the spinor bun-
dle. Denote by ω i, ω

i the connection one-forms for ∇i, ∇
i
, whose components with

respect to (e1, . . . ,en) can be written as,

ω
i
ab = gi(∇iea,eb),

ω
i
ab = gi(∇

i
ea,eb).

Using (4.5) and (4.6) we can estimate

‖(ω i
ab−ω

i
ab)(ek)‖gi ≤C‖Ai‖gi‖∇(A−1

i )‖gi.
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Thus, the covariant derivatives of ψi ∈ Γ(ΣgiM) with respect to a vector field X ∈
Γ(T M) are

∇
i
Xψi = X(ψi)+

1
4

n

∑
a,b=1

ω
i
ab(X)ea · eb ·ψi,

∇
i
Xψi = X(ψi)+

1
4

n

∑
a,b=1

ω
i
ab(X)ea · eb ·ψi

and the difference between ∇
i

and ∇i acting on ψi is

∇
i
Xψ−∇

i
Xψi =

1
4

n

∑
a,b=1

(ω i
ab−ω

i
ab)(X)ea · eb ·ψi. (4.7)

With the previous calculations we can state the following lemma

Lemma 4.2.1. Let X ,Y ∈ Γ(T M) be vector fields and ψi ∈ Γ(ΣgiM) a spinor field,
then we have the bounds

|∇i
XY −∇

i
XY |gi ≤C‖Ai‖gi‖∇(A−1

i )‖gi |X |gi |Y |gi, (4.8)

|∇i
Xψi−∇

i
Xψi| ≤C‖Ai‖gi‖∇(A−1

i )‖gi |X |gi |ψi|, (4.9)

|Di
ψi−Diψi| ≤C‖Ai‖gi‖∇(A−1

i )‖gi |ψi|, (4.10)

where Di and Di denote the Dirac operators associated to the connections ∇i and
∇

i
respectively.

4.3 Spectral Closeness
Now we study the behavior of the eigenvalues of the Dirac operator under changes
of the underlying metric g of the manifold. This will be useful to understand the
consequences arising from the identification of spinors for different C1,α -metrics on
the manifold that we will need.

Definition 4.3.1. Let ε > 0 and Λ > 0. Two operators with discrete spectrum are
said to be (Λ,ε)-spectral close if

1. ±Λ are not eigenvalues of either operator.

2. Both operators have the same total number m of eigenvalues in the interval
(−Λ,Λ).
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3. If the eigenvalues in (−Λ,Λ) are denoted by λ1 ≤ ·· · ≤ λm and µ1 ≤ ·· · ≤
µm respectively (each eigenvalue repeated according to its multiplicity), then
|λ j−µ j|< ε for j = 1, . . . ,m.

The following theorem states that on a fixed closed spin manifold the conver-
gence of Riemannian metrics in the C1-topology implies the convergence of the
Dirac spectra (see [Bär96b] and [Pfä03] for proofs and careful exposition).

Theorem 4.3.1 (Bär). Let (M,g) be a closed spin manifold and let ε > 0 and Λ > 0
with ±Λ /∈ spec(Dg). Then, there exists δ > 0 such that for all Riemannian metrics
g′ with dg(g′) < δ the Dirac operators Dg and Dg′ are (Λ,ε)-spectral close.

Notation. Let P be a self-adjoint operator and r < s be real numbers such that
essspec(P)∩ [r,s] = ∅. We denote by Eλ (P) the eigenspace of P associated to
the eigenvalue λ and define

E[r,s](P) :=
⊕

r≤λ≤s
λ∈spec(P)

Eλ (P).

Corollary 4.3.2. Let S > 0 be a real constant and (M,g) be an n-dimensional com-
pact Riemannian spin manifold (possibly with boundary), with scalar curvature
scalg ≥ −S. For fixed numbers Λ > 0, ε ≥ 0 and ν > 0 there exists some δ > 0
such that for any Riemannian metric g′ on M with dg(g′) < δ and every µ ∈ [0,Λ],
holds:

dimE[µ−ν ,µ+ν ](D
2
g)≤ dimE[µ−ν−ε,µ+ν+ε](D

2
g′) and

dimE[µ−ν ,µ+ν ](D
2
g′)≤ dimE[µ−ν−ε,µ+ν+ε](D

2
g).

4.4 Modified Connections
Let (M,g) be a Riemannian spin manifold with a fixed (metric) spin structure χ .
Recall that the spinor bundle ΣgM determined by χ depends intrinsically on g and
in particular, the Clifford multiplication on the fibers of ΣgM also does.

Definition 4.4.1. Denote by ∇Σg
the Levi-Civita connection on the spinor bundle

ΣgM and let µ ∈ C be fixed. The so-called Friedrich connection on ΣgM corre-
sponding to this µ is defined as

∇̂
g
Xψ := ∇

Σg

X ψ−µX ·ψ,

where X ∈ Γ(T M) and ψ ∈ Γ(ΣgM).
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In this way, we regard Killing spinors as parallel sections with respect to ∇̂g.
The following calculation shows that if µ is real then the Friedrich connection

∇̂ is metric with respect to the hermitian product of ΣgM.

(∇̂Xψ,ϕ)+(ψ, ∇̂Xϕ) = (∇Σ
Xψ,ϕ)− (µX ·ψ,ϕ)+(ψ,∇Σ

Xϕ)− (ψ,µX ·ϕ)
= (∇Σ

X ,ϕ)+(ψ,∇Σ
Xϕ)−µ(X ·ψ,ϕ)+ µ(X ·ψ,ϕ)

= X(ψ,ϕ)−2(X ·ψ,ϕ) Im µ.

This implies that Lemma 2.3.1, which is needed for the proof that follows, holds
also for ∇̂ for µ ∈ R.

Theorem 4.4.1. The Friedrich connection for a Killing constant µ ∈R satisfies the
following Weitzenböck formula for ψ ∈ Γ(ΣgM),

(D+ µ)2ψ= ∇̂
∗
∇̂ψ+

1
4

scalgψ−µ
2(n−1)ψ. (4.11)

Proof. As mentioned above, since ∇̂ is metric for µ ∈ R, we can use Lemma 2.3.1
and the Schrödinger-Lichnerowicz formula (2.7) to calculate, taking a normal coor-
dinate frame field (e1, . . . ,en) on a local chart U ⊂M,

∇̂
∗
∇̂ψ=−

n

∑
i=1

∇̂ei∇̂eiψ

=−
n

∑
i=1

(∇Σ
ei
−µei ·)(∇Σ

ei
ψ−µei ·ψ)

=−
n

∑
i=1

(∇Σ
ei

∇
Σ
ei
ψ−2µei ·∇Σ

ei
ψ−µ

2ψ)

= (∇Σ)∗∇Σψ+2µDψ+ µ
2nψ

= D2ψ− 1
4

scalgψ+2µDψ+ µ
2nψ

= (D+ µ)2ψ− 1
4

scalgψ+ µ
2(n−1)ψ.

Lemma 4.4.2. Let α ∈ (0,1), k ≥ 1 be fixed and assume ψ ∈ L2(ΣgM) is a Killing
spinor on a spin manifold M with Ck,α -metric g. Then, ψ is actually of Hölder class
Ck−1,α .

Proof. Since ψ is a Killing spinor we have, for all X ∈Ck,α(T M) and certain µ ∈C,

∇̂
g
Xψ= ∇

Σg

X ψ−µX ·ψ= 0.
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So if we choose a Ck,α -coordinate frame field (∂1, . . . ,∂n) and express the connec-
tion using (2.2) we get

∇̂
g
aψ := ∇̂

g
∂a
ψ= ∂aψ+

1
4

n

∑
b,c=1

g(∇aeb,ec)eb · ec ·ψ−µea ·ψ

= ∂aψ+
1
4

n

∑
b,c=1

Γ
c
abγbγcψ−µγaψ= 0,

where γa := ρ(ea). Since g is a Ck,α metric, the Christoffel symbols Γc
ab are of class

Ck−1,α(U) and the Clifford multiplication, that depends intrinsically on g and is rep-
resented componentwise by the γ matrices, has also Ck,α regularity. In conclusion,
we get

∇̂
g
aψ=

(
∂a +

1
4

n

∑
b,c=1

Γ
c
abγbγc−µγa

)
ψ= 0,

which shows that in coordinates ∇̂g is given by a first order differential operator (in
parenthesis) whose coefficients are at least Ck−1,α . The equation ∇̂

g
aψ = 0 is then

an elliptic differential equation whose right-hand side is smooth. Elliptic regularity
theory (see Theorem 1.7.3) guarantees now that ψ has to be at least of class Ck,α .

From the previous lemma it follows immediately this useful reformulation.

Corollary 4.4.3. For a spin manifold M with a Riemannian metric g of class C1,α ,
the Friedrich connection ∇̂g is well-defined as an application

∇̂
g : Ck,α(ΣgM)−→Ck,α(T ∗M)⊗Ck−1,α(ΣgM)

and given ψ∈Ck−1,α(ΣgM), the covariant derivative ∇̂gψ is bounded in the Ck−1,α -
norm defined before, i.e., for a real K > 0,

‖∇̂gψ‖Ck−1,α (ΣgM) ≤ K.

4.5 Convergence of Almost Killing Spinors
In this section we denote by τ(ε;r1, . . . ,rn) a function depending on certain (real)
parameters ε,r1, . . . ,rn, that goes to zero when ε goes to zero for fixed r1, . . .rn. The
precise form of the function τ may vary during the steps of a calculation but, when
used, we will be interested only in its vanishing behavior depending on ε .

Now, we want to introduce the notion of almost Killing spinors to mean that the
L2-norm of any ψ ∈ L2(ΣgM) from a sequence of spinors, on a Riemannian spin
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manifold (M,g), is bounded by a function of type τ(ε). Of course a genuine Killing
spinor has ‖∇̂gψ‖L2 = 0. We can formalize that notion, in the context of sequences
of spinors for different metrics, in the following way.

Definition 4.5.1. Let µ ∈ C be fixed. Let (gi)i≥1 be a sequence of Riemannian
metrics on a spin manifold M, converging in the C1,α -topology to a limit Rieman-
nian metric g, and suppose the manifold carries equivalent (metric) spin structures
χi for each gi. We say that a sequence (ψi)i≥1 of spinors ψi ∈ H2

1 (ΣgiM), associ-
ated to each (M,gi,χi), is an almost Killing spinor solution with constant µ if there
exist a vanishing real sequence (εi)i≥1, i.e., limi→∞ εi = 0, such that the inequality
‖∇̂giψi‖L2(Σgi M) ≤ τ(εi)‖ψi‖L2(ΣgiM) holds for every i≥ 1. An almost Killing spinor
solution is L2-normalized if ‖ψi‖L2(ΣgiM) = 1 for all i≥ 1.

Clearly this notion makes sense in the particular case when all the metrics in the
sequence reduce to a fixed one, say g. In this case we speak about an almost Killing
spinor solution on the spinor bundle ΣgM.

Lemma 4.5.1. Let (ψi)i≥1, with ψi ∈H2
1 (ΣgiM) be an L2-normalized almost Killing

spinor solution associated to a convergent sequence of Riemannian metrics (gi)i≥1
whose limit (in the C1,α -topology) is a Riemannian metric g. Then the sequence
(Aiψi)i≥1 is bounded in H2

1 (ΣgM) and limi→∞ ‖Aiψi‖Ĥ2
1 (ΣgM) = 1.

Proof. First we recall that the relevant norms on ΣgiM for each i≥ 0 are,

‖ψi‖2
L2(Σgi M) :=

∫
M

(ψi,ψi)gi dvolgi,

‖ψi‖2
Ĥ2

1 (Σgi M) := ‖ψi‖2
L2(ΣgiM) +‖∇̂

giψi‖2
L2(ΣgiM).

Similar expressions hold for Aiψi in ΣgM, where g appears instead of gi. Notice,
however, that Ĥ2

1 (ΣgM) refers to the Sobolev space defined through the Friedrich
connection ∇̂ , while H2

1 (ΣgM) refers to the one defined by the usual Levi-Civita
spinorial connection abbreviated for simplicity as ∇g := ∇Σg

. These two norms
are actually equivalent, i.e., there exist a real constant R > 0 such that for any ψ ∈
Γ(ΣgiM), they satisfy

R−1‖ψ‖H2
1 (Σgi M) ≤ ‖ψ‖Ĥ2

1 (ΣgiM) ≤ R‖ψ‖H2
1 (ΣgiM).

Notation. In what follows, we employ the standard notation o(εi) for refering to
terms going to zero when i→∞. We avoid to mix this notation with the τ(εi) of the
almost Killing spinors for the sake of clarity.



4.5. CONVERGENCE OF ALMOST KILLING SPINORS 57

Since the endomorphism Ai : ΣgiM −→ ΣgM preserves the norms of the spinors,
i.e. (ψi,ψi)gi = (Aiψi,Aiψi)g, we can write:

‖Aiψi‖2
L2(ΣgM) =

∫
M

(Aiψi,Aiψi)g dvolg =
∫

M
(ψi,ψi)gi dvolg

= (1+o(εi))
∫

M
(ψi,ψi)gi dvolgi

= (1+o(εi))‖ψi‖2
L2(ΣgiM). (4.12)

Using the almost Killing spinor condition ‖∇̂giψi‖L2(ΣgiM) ≤ τ(εi)‖ψi‖L2(ΣgiM), and

defining ∇̃gψi := A−1
i ∇̂g(Aiψi) while ∇

g
ψi := A−1∇g(Aiψi) we conclude,

‖∇̂g(Aiψi)‖2
L2(ΣgM) =

∫
M

(∇̂g(Aiψi), ∇̂g(Aiψi))g dvolg

=
∫

M
(A−1

i ∇̂
g(Aiψi),A−1

i ∇̂
g(Aiψi))gi dvolg

=
∫

M
(∇̃gψi, ∇̃

gψi)gi dvolg

= (1+o(εi))
∫

M
(∇̃gψi, ∇̃

gψi)gi dvolgi

= (1+o(εi))‖∇̃gψi‖2
L2(ΣgiM).

Estimating further,

‖∇̃gψi‖2
L2(Σgi M) = ‖∇̃gψi− ∇̂

giψi + ∇̂
giψi‖2

L2(ΣgiM)

≤ 2‖∇̃gψi− ∇̂
gψi‖2

L2(ΣgiM) +2‖∇̃gψi‖2
L2(ΣgiM)

≤ 2‖∇g
ψi−∇

gψi‖2
L2(ΣgiM) +2‖∇̃gψi‖2

L2(ΣgiM)

≤ 2C‖∇g(A−1
i )‖2

gi
‖Ai‖2

gi
‖ψi‖2

L2(ΣgiM) + τ(εi)‖ψi‖2
L2(ΣgiM).

The norm ‖Ai‖2
gi

is bounded and ‖∇g(A−1
i )‖2

gi
actually goes to zero when i→ ∞,

so we can write simply ‖∇̃gψi‖2
L2(ΣgiM) ≤ τ(εi)‖ψi‖2

L2(ΣgiM). Summing up these
estimates we have now

‖Aiψi‖2
Ĥ2

1 (ΣgM) = ‖Aiψi‖2
L2(ΣgM) +‖∇̂

gi(Aiψi)‖2
L2(ΣgM)

≤ (1+o(εi))‖ψi‖L2(ΣgiM) +(1+o(εi))‖∇̃gψi‖2
L2(ΣgiM)

≤ (1+o(εi))
{
‖ψi‖L2(ΣgiM) +‖∇̃gψi‖2

L2(ΣgiM)

}
≤ (1+o(εi))(1+ τ(εi))‖ψi‖2

L2(ΣgiM). (4.13)
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Given that the almost Killing spinor solution is L2-normalized, ‖ψi‖L2(ΣgiM) = 1
for all i ≥ 1, the sequence (Aiψi)i≥1 is bounded in Ĥ2

1 (ΣgM) and, in fact, (4.13)
implies limi→∞ ‖Aiψi‖Ĥ2

1 (ΣgM) = 1. Since the norms in Ĥ2
1 (ΣgM) and H2

1 (ΣgM) are

equivalent we conclude that (Aiψi)i≥1 is indeed bounded in H2
1 (ΣgM), as claimed

by the lemma.

Theorem 4.5.2. Assume the same conditions of the previous lemma. Then, the
sequence of almost Killing spinors (ψi)i≥1 where ψi ∈ L2(ΣgiM), has a subsequence,
denoted again by (ψi)i≥1, such that (Aiψi)i≥1 converge strongly in L2(ΣgM) to a
non-trivial Killing spinor ψ of class C1,α .

Proof. First, the sequence (Aiψi)i≥1 is bounded in H2
1 (ΣgM) according to the pre-

ceding lemma, so there exists a subsequence that is weakly convergent to some
spinor ψ ∈ H2

1 (ΣgM). Then, weak convergence in H2
1 (ΣgM) and the compactness

of the embedding H2
1 ↪→ L2 implies that there is a further subsequence, which we

can denote again as (Aiψi)i≥1, that is strongly convergent in L2(ΣgM) to the limit
spinor ψ.

Strong convergence means limi→∞ ‖Aiψi−ψ‖L2(ΣgM) = 0. By (4.12) and the
normalization of the almost Killing spinors we find

‖ψ‖L2(ΣgM) = lim
i→∞
‖Aiψi−ψ‖L2(ΣgM) +‖ψ‖L2(ΣgM)

≥ lim
i→∞
‖Aiψi−ψ+ψ‖L2(ΣgM)

= lim
i→∞
‖Aiψi‖L2(ΣgM) = 1,

therefore, ψ cannot be a trivial spinor. By construction, according to Lemma 4.5.1
and the lower semicontinuity of the weakly convergence in H2

1 we know

‖ψ‖Ĥ2
1 (ΣgM) ≤ liminf

i→∞
‖Aiψi‖Ĥ2

1 (ΣgM) = 1.

On the other side,

1+‖∇̂gψ‖L2(ΣgM) ≤ ‖ψ‖L2(ΣgM) +‖∇̂gψ‖L2(ΣgM) = ‖ψ‖Ĥ2
1 (ΣgM).

From these inequalities it follows that ‖∇̂gψ‖L2(ΣgM) = 0, thus ∇̂gψ = 0 (almost
everywhere). It means ψ ∈ L2(ΣgM) is a Killing spinor and by Lemma 4.4.2 it has
C1,α regularity.



Chapter 5

Pinching of Dirac Eigenvalues and
Holonomy

5.1 First Dirac Eigenvalues
The following is a classical estimate for the eigenvalues of the Dirac operator, which
is central for our discussion.

Theorem 5.1.1 (Friedrich). On a compact n-dimensional Riemannian spin manifold
(M,g) the eigenvalues λ of the Dirac operator D satisfy

λ
2 ≥ 1

4
n

n−1
min

M
scalg

In particular, for the n-dimensional sphere Sn of constant scalar curvature scal =
n(n−1) the theorem says λ 2 ≥ n2

4 .
Recently Bär and Dahl showed that on compact spin manifolds with positive

scalar curvature, Friedrich’s lower bound estimate for the eigenvalues of the Dirac
operator can be made as sharp as needed making appropriate choice of metrics.

Theorem 5.1.2 (Bär and Dahl, 2003). Let M be a compact n-dimensional Rieman-
nian spin manifold with positive scalar curvature. Then there is a smooth one-
parameter family of Riemannian metrics gε on M, for a real ε ∈ (0,ε0], such that

1. scalgε
≥ n(n−1)

2. n2

4 ≤ λ1(D2
gε

)≤ n2

4 + ε,

where λ1(D2
gε

) is the smallest eigenvalue of the square of the Dirac operator D2
gε

on
(M,gε).

59
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This interesting result shows that the lower bound cannot be improved with
additional topological conditions on the space. Additionally, this shows that there
is a big difference between actually reaching the bound, which force the manifold
to have a real Killing spinor and therefore be Einstein, and being arbitrarily close to
it, which the theorem shows does not impose additional topological conditions.

5.1.1 Small Eigenvalues of D2

Denote by λi(D2) the i-th eigenvalue of the square of the Dirac Operator and by
λi(∇∗∇) the i-th eigenvalue of the connection Laplacian on spinors. Also, define
r(n) = 1 for n≤ 3 and r(n) = 2[ n

2 ]−1 +1 for n≥ 4.

Theorem 5.1.3 (Ammann–Sprouse, 2003). Let (M,g, χ) be an n-dimensional com-
pact Riemannian spin manifold with sectional curvature |sec | < K and diameter
diam < d. Then there is ε = ε(n,K,d) > 0, such that if λr(∇∗∇) < ε , then M is
diffeomorphic to a nilmanifold. Furthermore, χ is the trivial spin structure on M.

Using the Schrödinger-Lichnerowicz formula D2 = ∇∗∇+ 1
4 scal it implies

Corollary 5.1.4. Let (M,g, χ) be an n-dimensional compact Riemannian spin man-
ifold satisfying |sec | < K and diam < d. There is ε = ε(n,K,d) > 0, such that if
scal >−ε and λr(D2) < ε , then M is diffeomorphic to a nilmanifold. Furthermore,
χ is the trivial spin structure on M.

5.2 Riemannian Holonomies and Spinors
We want to summarize briefly important results as the Berger classification of Rie-
mannian holonomies and its related implications for real Killing spinors, found by
Bär in [Bär93].

5.2.1 The classification of Riemannian Holonomy Groups
Theorem 5.2.1 (Berger). Suppose M is a simply-connected manifold of dimension
n, and that g is a Riemannian metric on M, that is irreducible and non-symmetric.
Then exactly one of the following seven cases holds.

1. Holg(M) = SO(n),

2. n = 2m with m≥ 2, and Holg(M) = U(m) in SO(2m),

3. n = 2m with m≥ 2, and Holg(M) = SU(m) in SO(2m),
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4. n = 4m with m≥ 2, and Holg(M) = Sp(m) in SO(4m),

5. n = 4m with m≥ 2, and Holg(M) = Sp(m)Sp(1) in SO(4m),

6. n = 7 and Holg(M) = G2 in SO(7), or

7. n = 8 and Holg(M) = Spin(7) in SO(8).

For a proof of the previous theorem and a careful exposition of Riemannian
holonomies, see [Joy00].

5.2.2 Holonomies with Real Killing Spinors
Let M be a compact simply connected Riemannian spin manifold of dimension n
carrying real Killing spinors.

Definition 5.2.1. M is said to be of Killing-type (p,q) if M carries exactly p lin-
early independent Killing spinors with Killing constant µ = 1

2 and exactly q linear
independent Killing spinors of Killing constant µ =−1

2 .

Let M = M×r2R+ be the Euclidean cone constructed over M. The classification
of the possible holonomies admitting Killing spinors is now summarized.

Theorem 5.2.2 (Bär). Let M be a complete simply-connected Riemannian spin
manifold of dimension n carrying a Killing spinor with Killing constant µ = 1

2 or
µ =−1

2 .

1. If n > 3 is even and n 6= 6, then M is isometric to the standard sphere. This
still holds if M is not simply-connected.

2. If n = 2m−1 and m≥ 3 is odd, then either M = Sn or M is of type (1,1) and
M is Kähler.

3. If n = 4m−1 with m≥ 3, then there are three possibilities

(a) M = Sn

(b) M is of type (2,0) and M is a Kähler manifold, but not hyperkähler.

(c) M is of type (m+1,0) and M is hyperkähler.

4. If n = 6 then either M = S6 or M is of type (1,1) and M = M×r2 R+ has
holonomy G2.

5. If n = 7 there are four different possibilities
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(a) M = S7

(b) M is of type (1,0) and M has holonomy group Spin(7).

(c) M is of type (2,0) and M is Kähler, but not hyperkäher.

(d) M is of type (3,0) and M is hyperkähler.

In the following table we collect some important facts from the previous classi-
fication that we use for our pinching results below.

n = dimM m ∈ Z Hol(M) Killing type

n arbitrary — trivial Sn

n = 2m−1 odd, m≥ 3 SU(m) (1,1)

n = 4m−1 any, m≥ 3 SU(2m) (2,0)

n = 4m−1 any, m≥ 3 Sp(m) (m+1,0)

n = 6 — G2 (1,1)

n = 7 — Spin(7) (1,0)

Table 5.1: Holonomies with real Killing spinors.

This classification can in fact be made more specific, as the detailed study of
each case in [Bär93] shows, where geometric conditions for the manifold M instead
of those for the cone M are obtained.

It is known (cf. [Bär96a]) that only spheres (or possibly projective spaces RPn)
carry the maximum possible number of linearly independent Killing spinors.

Theorem 5.2.3 (Bär). Let M be a closed connected Riemannian spin manifold of
dimension n > 3, carrying 2[ n

2 ] linearly independent Killing spinors with the same
Killing constant µ = ±1

2 . Then M is isometric to the standard sphere Sn or n ≡
3(mod 4) and M is isometric to RPn.

5.3 Almost Killing spinors and convergence
Using the convergence theorem of Riemannian manifolds and the almost Killing
spinors introduced in chapter 4 we prove the following lemma which contains the
core of the proof of our main theorem on pinching of Dirac eigenvalues for the
standard sphere.
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Lemma 5.3.1. Assume we have a sequence (Mi,gi)i≥1 of compact Riemannian spin
manifolds in M (n,d,K,V ), with scalgi ≥ n(n− 1) for every i ≥ 1. In addition,
suppose that each (Mi,gi) carries a Dirac eigenspinor ψi ∈ Γ(ΣgiMi) whose eigen-
value satisfy |λi| ∈ [0, n

2 + εi] for a vanishing positive real sequence (εi)i≥1. Then
(Mi,gi)i≥1 has a subsequence that converges in the C1,α -topology to a limit Rieman-
nian Einstein manifold (M,g) carrying a non-trivial Killing spinor ψ ∈ L2(ΣgM) of
class C1,α with Killing constant µ =±1

2 .

Proof. Since (Mi,gi)i≥1 is contained in M (n,K,d,V ), the compactness theorem
guarantees the existence of a subsequence, relabeled again as (Mi,gi)i≥1, that con-
verge in the C1,α -topology to a limit manifold (M,g). Moreover, the convergence
implies that the manifolds Mi are diffeomorphic to the limit M, so the sequence can
be regarded as being simply (M,gi)i≥1. In general, we may choose a fixed topolog-
ical spin structure in the limit and it will be inherited, under these diffeomorphisms,
by the manifolds in the sequence. Then, the identification of spinors described in
section 4.2 provides equivalent metric spin structures for each (Mi,gi) to which the
spinors will be attached.

By the Friedrich lower bound on the square of the eigenvalues of the Dirac oper-
ator we actually have, under the conditions of the lemma, that the eigenvalues must
satisfy n

2 ≤ |λi| ≤ n
2 +εi. Now, if λi > 0, set µ =−1

2 or if λi < 0, take µ = 1
2 . Apply-

ing Weitzenböck formula for the Friedrich connection (4.11) with the appropriate
µ defined above and invoking the bound scalgi ≥ n(n− 1), we get the following
estimate for the L2-norm of the Friedrich covariant derivative of ψi,

(∇̂giψi, ∇̂
giψi)L2(Σgi M) =

(
(∇̂gi)∗∇̂giψi,ψi

)
L2(ΣgiM)

≤
(
(Dgi∓ 1

2)2ψi− 1
4 scalgi ψi + 1

4(n−1)ψi,ψi
)

L2(ΣgiM)

≤ sup
M

{
(±|λi|∓ 1

2)2− 1
4 scalgi +

1
4(n−1)

}
(ψi,ψi)L2(ΣgiM)

≤ sup
M

{
(|λi|− 1

2)2− 1
4 scalgi +

1
4(n−1)

}
(ψi,ψi)L2(ΣgiM)

≤
{
(1

2(n−1)+ εi)2− 1
4n(n−1)+ 1

4(n−1)
}
‖ψi‖2

L2(ΣgiM)

≤
{
(n−1)εi + ε

2
i
}
‖ψi‖2

L2(ΣgiM)

≤ τ(εi)‖ψi‖2
L2(ΣgiM).

Then, (ψi)i≥1 is an almost Killing spinor solution. By Theorem 4.5.2, (ψi)i≥1 has
a subsequence which converge strongly in L2(ΣgM) to a non-trivial Killing spinor
ψ of class C1,α in the limit manifold (M,g). From Theorem 3.4.3 we conclude that
the limit manifold (M,g) is actually an Einstein manifold with smooth metric g in
a harmonic (or compatible) atlas.
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5.4 Dirac Eigenvalue Pinching for the Sphere
Let us divide the intersection of the spectrum of the Dirac operator with the interval
[−n

2 − ε, n
2 + ε] in two parts, by defining

I+
ε := spec(D)∩ [0, n

2 + ε],

I−ε := spec(D)∩ [−n
2 − ε,0].

Recall that, by the Friedrich bound on the first eigenvalue of the Dirac operator D for
manifolds with positive scalar curvature, any eigenvalue λ of D is actually λ ≤−n

2
or λ ≥ n

2 . Hence, there is a spectral gap in the interval (−n
2 , n

2) where spec(D) has
no elements.

Theorem 5.4.1. Suppose (M,g,χ) is a compact n-dimensional Riemannian spin
manifold in M (n,d,K,V ) and scalg ≥ n(n− 1). For every δ > 0 there is an ε =
ε(n,K,d,δ ) > 0 such that if any of the following conditions hold:

1. #(I+
ε ∪ I−ε )≥ 1 if n is even and n 6= 6,

2. #(I+
ε )≥ 2 or #(I−ε )≥ 2 if n = 6 or n≡ 1(mod 4),

3. #(I+
ε )≥ n+9

4 or #(I−ε )≥ n+9
4 or #(I+

ε )≥ 1, #(I−ε )≥ 1 if n≡ 3(mod 4),

with M being simply-connected in the cases 2 and 3 if n > 3, then (M,g) has C1,α -
distance ≤ δ to the sphere Sn with the standard metric of constant sectional curva-
ture sec = 1.

Proof. First, we show that under the assumptions of the theorem (M,g) is C1,α -
close to an Einstein manifold with Killing spinor. Assume, by contradiction, that
this is not the case. Then for any δ > 0, conditions 1, 2 and 3 in the theorem guar-
antee that the Dirac operator on M has always at least one eigenvalue λ with |λ | ∈
[n

2 , n
2 + ε], for some ε > 0. Therefore, we can construct a sequence of manifolds

(Mi,gi)i≥1 in M (n,d,K,V ) carrying eigenspinors ψi ∈ Γ(ΣgiM) of Dgi , with eigen-
value |λi| ∈ [0, n

2 + εi], for each i ≥ 1. Now, Lemma 5.3.1 implies that (Mi,gi)i≥1

converges in the C1,α -topology to an Einstein manifold (M′,g′) carrying a real
Killing spinor, contrary to our assumption that prevents any of the manifolds (Mi,gi)
to be C1,α -close to such an (M′,g′). In conclusion, (M,g) has indeed C1,α -distance
< δ to an Einstein manifold with real Killing spinor.

Now, we go to Bär’s list of Riemannian holonomies admitting real Killing
spinors to extract all the cases where enough number of Killling spinors force the
manifold to be the sphere. Recall that a manifold is of Killing-type (p,q) if the
number of linearly independent Killing spinors on M is exactly p for µ = 1

2 and q
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for µ =−1
2 or viceversa. Also, note that for ε→ 0 each eigenvalue in I+

ε or I−ε goes
to ±n

2 and therefore produce a Killing spinor in the limit. Finally, Theorem 5.2.2
implies that if (M,g) admits a Killing spinor, it is isometric to the standard sphere
Sn in any of the following cases,

• n even and n 6= 6: then in this case Killing-type (1,0) is enough.

• n = 6 or n≥ 5 with n≡ 1(mod 4): when M is simply connected and it is not
of Killing-type (1,1), so type (1,0) or (2,0) is enough.

• n = 3: when M is of Killing-type (1,1) or (3,0).

• n = 7: when M is simply connected and not of Killing-type (1,0), (2,0) or
(3,0), hence type (1,1) or (4,0) suffices.

• n ≥ 11 with n ≡ 3(mod 4): when M is simply connected and it is not of
Killing-type (2,0) or (n+5

4 ,0), then type (1,1) or (n+9
4 ,0) is enough.

Passing these considerations into conditions on the number of positive and/or neg-
ative eigenvalues yields the result of the theorem. Notice that for n = 3 the types
(1,1) or (3,0) required and for n = 7 the types (1,1) or (4,0), fit into the same
type-condition (1,1) or (n+9

4 ,0) for n≥ 11.

From Lemma 5.3.1 and the first part of the previous proof, we extract the fol-
lowing corollary.

Corollary 5.4.2. Suppose (M,g,χ) is a compact n-dimensional Riemannian spin
manifold in M (n,d,K,V ) and scalg ≥ n(n− 1). For every δ > 0 there is an
ε = ε(n,K,d,δ ) > 0 such that if the Dirac operator has an eigenvalue λ with
|λ | ∈ [0, n

2 + ε] then (M,g) has C1,α -distance ≤ δ to an Einstein manifold (M,g)
admitting a Killing spinor.

We can reformulate Theorem 5.4.1 to establish uniform lower bounds for par-
ticular eigenvalues of the Dirac operator on Riemannian spin manifolds not diffeo-
morphic to the standard sphere Sn.

Corollary 5.4.3. Let n be even and n 6= 6. Assume (M,χ) is an n-dimensional com-
pact spin manifold not diffeomorphic to the standard sphere Sn (with spin struc-
ture). Then, among all metrics with bounded diameter, volume and curvature as in
M (n,d,K,V ) and with scalg ≥ n(n−1), there exists an ε = ε(n,K,d,V ) > 0 which
provides a uniform lower bound on the first eigenvalue of D2:

λ1(D2)≥ n2

4
+ ε.
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Corollary 5.4.4. Suppose (M,χ) is a simply-connected, n-dimensional, compact
spin manifold not diffeomorphic with the sphere Sn. Then, among all metrics with
bounded diameter, volume and curvature in M (n,d,K,V ) and with scalar curva-
ture scalg ≥ n(n− 1), there exists an ε = ε(n,K,d,V ) > 0 and a number r ∈ Z+

yielding a uniform bound on the r-th eigenvalue of D2:

λr(D2)≥ n2

4
+ ε,

where

r =

{
3 if n = 6 or n≡ 1(mod 4).
n+9

4 if n≡ 3(mod 4).
(5.1)

Under the given conditions this r is generally optimal (minimum possible), but
from the list of manifolds with real Killing spinors one can see that with additional
assumptions on M, like being or not Kähler, hyperkähler, Sasaki, etc., this r can be
made smaller. Nevertheless this can imply restricting too much the geometry of the
manifold.



Appendix A

Weak Riemann Curvature

In this section we show how the weak Ricci curvature introduced in 3.3.1 comes
from a very natural weak definition of the Riemann tensor acting on compactly
supported test functions on the manifold M.

To introduce this definition suppose first that we have a smooth (or at least C2)
Riemannian metric g on M and choose four local vector fields X ,Y,Z,W ∈ Γ(T M).
Then we know that the Riemann tensor is well-defined and we can write,

R(X ,Y,Z,W ) : = g(R(X ,Y )Z,W ) = 〈R(X ,Y )Z,W 〉
= 〈∇X ∇Y Z,W 〉−〈∇Y ∇X Z,W 〉−〈∇[X ,Y ]Z,W 〉
= X〈∇Y Z,W 〉−〈∇Y Z,∇XW 〉−Y 〈∇X Z,W 〉

+〈∇X Z,∇YW 〉−〈∇[X ,Y ]Z,W 〉.

Given a compactly supported test function η ∈C1
c (M) with suppη ⊂U for an

open chart U ⊂M, we can integrate the product of the components of the Riemann
tensor R with η on U . Recall dvolg =

√
gdx =

√
gdx1 · · ·dxn and define η̂ :=

√
gη ,

so we have∫
U
〈R(X ,Y )Z,W 〉η dvolg =−

∫
U

{
〈∇Y Z,∇XW 〉−〈∇X Z,∇YW 〉

}
η̂ dx

+
∫

U

{
〈∇[X ,Y ]Z,W 〉+X〈∇Y Z,W 〉−Y 〈∇X Z,W 〉

}
η̂ dx

=
∫

U

{
〈∇X Z,∇YW 〉−〈∇Y Z,∇XW 〉+ 〈∇[X ,Y ]Z,W 〉

}
η̂ dx

+
∫

U

{
X(〈∇Y Z,W 〉η̂)−Y (〈∇X Z,W 〉η̂)

}
dx

+
∫

U

{
〈∇X Z,W 〉Y η̂−〈∇Y Z,W 〉X η̂

}
dx

67
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This expression can be simplified further if we choose X = ∂a and Y = ∂b for some
local coordinate vector field frame (∂1, . . . ,∂n) defined on U . In this case, after
Stokes’ theorem and supp η̂ ⊂U , the second integral vanishes and [∂a,∂b] = 0, so
this simplifies to

=
∫

U

{
〈∇X Z,∇YW 〉−〈∇Y Z,∇XW 〉

}
η̂ dx

+
∫

U

{
〈∇X Z,W 〉Y η̂−〈∇Y Z,W 〉X η̂

}
dx

The remaining terms do not depend on second derivatives of the metric, so we take
this equation as a weak definition for the curvature tensor.

Definition A.1. Let η ∈ C1,α
c (M) be a compactly supported test function with

suppη ⊂ U and (∂1, . . . ,∂n) a local basis of coordinate vector fields for a chart
(U,φ) of M. We define locally the weak Riemann curvature tensor acting on
∂a,∂b,Z,W ∈ Γ(T M) as〈〈

R(∂a,∂b,Z,W ),η
〉〉

U :=
∫

U

{
〈∇∂aZ,∇∂b

W 〉−〈∇∂b
Z,∇∂aW 〉

}
η̂ dx

+
∫

U

{
〈∇∂aZ,W 〉∂bη̂−〈∇∂b

Z,W 〉∂aη̂
}

dx (A.1)

Given the definition and the linearity properties of the metric g, the Levi-Civita
connection ∇ and of derivation and integration in general, we see that this weak
definition is linear in X , Y , Z and W with respect to addition of vector fields and
multiplication by constants. Moreover, similarly to the smooth case, this weak def-
inition have some tensorial-like properties as the next theorem asserts.

Theorem A.5. The local weak curvature is C1(M)-linear in the last two entries
(corresponding to Z and W). Namely, for a function f ∈C1(M) we have:

1. The Z entry satisfies〈〈
R(∂a,∂b, f Z,W ),η

〉〉
U =

〈〈
R(∂a,∂b,Z,W ), f η

〉〉
U . (A.2)

2. and for the W entry, it holds also〈〈
R(∂a,∂b,Z, fW ),η

〉〉
U =

〈〈
R(∂a,∂b,Z,W ), f η

〉〉
U . (A.3)

Proof. The first property is easily proved using the second one, so we prove 2 first.〈〈
R(∂a,∂b,Z, fW ),η

〉〉
U =

∫
U

{
〈∇∂aZ,∇∂b

fW 〉−〈∇∂b
Z,∇∂a fW 〉

}
η̂ dx

+
∫

U

{
〈∇∂aZ, fW 〉∂bη̂−〈∇∂b

Z, fW 〉∂aη̂
}

dx
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=
∫

U

{
〈∇∂aZ,∇∂b

W 〉−〈∇∂b
Z,∇∂aW 〉

}
f η̂ dx

+
∫

U

{
〈∇∂aZ,W 〉∂b f −〈∇∂b

Z,W 〉∂a f
}

η̂ dx

+
∫

U

{
〈∇∂aZ,W 〉 f (∂bη̂)−〈∇∂b

Z,W 〉 f (∂aη̂)
}

dx

=
∫

U

{
〈∇∂aZ,∇∂b

W 〉−〈∇∂b
Z,∇∂aW 〉

}
f η̂ dx

+
∫

U
〈∇∂aZ,W 〉{(∂b f )η̂ + f (∂bη̂)}dx

−
∫

U
〈∇∂b

Z,W 〉{(∂a f )η̂ + f (∂aη̂)}dx

=
∫

U

{
〈∇∂aZ,∇∂b

W 〉−〈∇∂b
Z,∇∂aW 〉

}
f η̂ dx

+
∫

U

{
〈∇∂aZ,W 〉∂b( f η̂)−〈∇∂b

Z,W 〉∂a( f η̂)
}

dx

=
〈〈

R(∂a,∂b,Z,W ), f η
〉〉

U .

Here we have only used the Leibniz property of the covariant derivative and the
action of vector fields on functions. What remains to proof is the behavior under
multiplication by a function f ∈C1(M) on the entry W . For this we calculate,

〈〈
R(∂a,∂b, f Z,W ),η

〉〉
U =

∫
U

{
〈∇∂a f Z,∇∂b

W 〉−〈∇∂b
f Z,∇∂aW 〉

}
η̂ dx

+
∫

U

{
〈∇∂a f Z,W 〉∂bη̂−〈∇∂b

f Z,W 〉∂aη̂
}

dx

=
∫

U

{
〈∇∂aZ,∇∂b

W 〉−〈∇∂b
Z,∇∂aW 〉

}
f η̂ dx

+
∫

U

{
〈Z,∇∂b

W 〉(∂a f )η̂−〈Z,∇∂aW 〉(∂b f )η̂
}

dx

+
∫

U

{
〈∇∂aZ,W 〉 f (∂bη̂)−〈∇∂b

Z,W 〉 f (∂aη̂)
}

dx

+
∫

U

{
〈Z,W 〉(∂a f )(∂bη̂)−〈Z,W 〉(∂b f )(∂aη̂)

}
dx
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=
∫

U

{
〈∇∂aZ,∇∂b

(η̂W )〉−〈∇∂b
Z,∇∂a(η̂W )〉

}
f dx

+
∫

U

{
〈Z,∇∂b

(η̂W )〉∂a f −〈Z,∇∂a(η̂W )〉∂b f
}

dx

=
〈〈

R(∂a,∂b,Z,ηW ), f
〉〉

U =
〈〈

R(∂a,∂b,Z,W ), f η
〉〉

U .

In the last step we have used the property 1 just proved. Then the C1(M)-
linearity in this weak sense is proved also for the Z entry.

Remark A.1. Similar properties to the ones just proved but for the first and second
entries of the weak curvature do not hold, due to the terms containing derivatives of
the test function ∂aη̂ and ∂bη̂ , in (A.1), which are not C1(M)-linear but satisfy the
Leibniz formula.

It can be shown that the weak Riemann curvature verify some analogous ver-
sions of the symmetries of the usual Riemann tensor, but only for local coordinate
vector fields instead of arbitrary ones.

Theorem A.6. For any compactly supported test function η ∈ C1
c (M) the weak

Riemann curvature satisfies the following properties:

1. it is antisymmetric in the first two and last two entries independently, i.e., for
Z,W ∈ Γ(T M),〈〈

R(∂a,∂b,Z,W ),η
〉〉

U =−
〈〈

R(∂b,∂a,Z,W ),η
〉〉

U (A.4)

=−
〈〈

R(∂a,∂b,W,Z),η
〉〉

U .

2. If the third and fourth entries are local coordinate vector fields ∂c,∂d ∈Γ(T M)
as the first two entries are, then it is symmetric between the first two and last
two entries, 〈〈

R(∂a,∂b,∂c,∂d),η
〉〉

U =
〈〈

R(∂c,∂d,∂a,∂b), f η
〉〉

U . (A.5)

3. It satisfies a cyclic permutation property (i.e. Bianchi’s first identity) if the
first three entries correspond to local coordinate vector fields and the fourth
to an arbitrary vector field W ∈ Γ(T M),〈〈

R(∂a,∂b,∂c,W )+R(∂b,∂c,∂a,W )+R(∂c,∂a,∂b,W ),η
〉〉

U = 0. (A.6)
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Proof. Property 1 is obvious from (A.1) and the symmetry of the metric, and since
2 follows from 3 we prove first this last one. The left-hand side of (A.6) should be
understood using linearity. With this and abbreviating ∇i := ∇∂i we get,〈〈

R(∂a,∂b,∂c,W )+R(∂b,∂c,∂a,W )+R(∂c,∂a,∂b,W ),η
〉〉

U =〈〈
R(∂a,∂b,∂c,W ),η

〉〉
U +

〈〈
R(∂b,∂c,∂a,W ),η

〉〉
U +

〈〈
R(∂c,∂a,∂b,W ),η

〉〉
U

=
∫

U

{
〈∇a∂c,∇bW 〉−〈∇b∂c,∇aW 〉

}
η̂ dx

+
∫

U

{
〈∇a∂c,W 〉∂bη̂−〈∇b∂c,W 〉∂aη̂

}
dx

+
∫

U

{
〈∇b∂a,∇cW 〉−〈∇bW,∇c∂a〉

}
η̂ dx

+
∫

U

{
〈∇c∂a,W 〉∂bη̂−〈∇c∂b,W 〉∂aη̂

}
dx

+
∫

U

{
〈∇c∂b,∇aW 〉−〈∇cW,∇a∂b〉

}
η̂ dx

+
∫

U

{
〈∇a∂b,W 〉∂cη̂−〈∇c∂b,W 〉∂aη̂

}
dx,

=
∫

U
〈∇a∂c−∇c∂a,∇bW 〉η̂ dx+

∫
U
〈∇b∂a−∇a∂b,∇cW 〉η̂ dx

+
∫

U
〈∇c∂b−∇b∂c,∇aW 〉η̂ dx+

∫
U
〈∇b∂c−∇c∂b,W 〉∂aη̂ dx

+
∫

U
〈∇c∂a−∇a∂c,W 〉∂bη̂ dx+

∫
U
〈∇a∂b−∇b∂a,W 〉∂cη̂ dx.

Now using that the Riemannian connection is torsion-free, i.e., ∇i∂ j−∇ j∂i = [∂i,∂ j],
we get

=
∫

U
〈[∂a,∂c],∇bW 〉η̂ dx+

∫
U
〈[∂a,∂c],∇bW 〉η̂ dx+

∫
U
〈[∂a,∂c],∇bW 〉η̂ dx

+
∫

U
〈[∂b,∂c],W 〉∂aη̂ dx+

∫
U
〈[∂c,∂a],W 〉∂bη̂ dx+

∫
U
〈[∂a,∂b],W 〉∂cη̂ dx,

but since local vector fields commute, [∂i,∂ j] = 0 for every i, j = 1, . . . ,n and the
whole expression vanishes. Part 2 of the theorem, as in the smooth case, is just
an algebraic consequence of properties 1 and 2 and holds choosing another local
coordinate vector field as the fourth entry of the weak curvature, instead of the
arbitrary vector W .
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These properties show that the weak curvature introduced here has similar be-
havior to the classical one, but only for vector fields coming from local coordinates.
The corresponding second Bianchi identity in this context would require a covariant
derivative of the curvature which implicitly needs one more (weak) derivative of the
metric, and we do not consider it here.

From the weak Riemann curvature defined in this appendix, if follows a natural
definition of weak Ricci curvature.

Definition A.2. Let η ∈ C1,α
c (M) be a compactly supported test function with

suppη ⊂ U and (∂1, . . . ,∂n) a local basis of coordinate vector fields for a chart
(U,φ) of M. We define locally the weak Riemann curvature tensor acting on
∂a,∂b,Z,W ∈ Γ(T M) as

〈〈
R(∂a,∂b),η

〉〉
U :=

n

∑
c=1

〈〈
R(∂a,∂c,∂c,∂b),η

〉〉
U

It is possible to show that this definition is equivalent to Definition 3.3.1. In
particular it is clear that in the smooth metric case both expressions should coincide.



Appendix B

Continuity of Weak Curvatures

Recall that for a Riemannian metric g we use the notation
√

g :=
√

det(g). Given
another metric g′ we will denote

√
g ′ :=

√
det(g′).

Theorem B.7. Let M be a differentiable manifold endowed with a C1,α Riemannian
metric g on it. For fixed coordinate vector fields ∂a,∂b ∈C1(T M) on an open chart
U ⊂M, the application

WRicab : C1,α(ΣM)×C1,α(T ∗M�2)−−−→ R
(η ,g) 7−−−→

〈〈
Ric(∂a,∂b),η

〉〉
U ,

given by Definition 3.3.1 is continuous in the C1-topology.

Proof. The weak Ricci curvature is easily seen to be linear in η . Then, to show
continuity in this variable we just need to prove that |WRicab(η ,g)| is bounded by
‖η‖C0 and ‖∂η‖C0 .∣∣〈〈Ric(∂a,∂b),η

〉〉
U

∣∣≤ 1
2

∣∣∣∣∫U
∂sgab∂r(grs

η) dvolg−
∫

U
Γ

r
∂b(gra η) dvolg

−
∫

U
Γ

r
∂a(grb η) dvolg +2

∫
U

Qab η dvolg

∣∣∣∣
≤ 1

2

∫
U

∣∣∂sgab(∂rgrs
η +grs

∂rη)−Γ
r(∂bgra η +gra∂bη)

−Γ
r(∂agrb η +grb∂aη)+2Qab η

∣∣ dvolg

≤ 1
2

∫
U

∣∣∂sgab∂rgrs−Γ
r(∂bgra−∂agrb)+2Qab

∣∣|η | dvolg

+
∫

U

∣∣grs
∂sgab∂rη−Γ

r(gra∂bη−grb∂aη)
∣∣ dvolg

≤C
{
‖∂sgab∂rgrs‖C0 +‖Γr(∂bgra +∂agrb)‖C0 +‖2Qab‖C0

}
‖η‖C0

+
∥∥grs

∂sgab∂rη−Γ
r(gra∂bη +grb∂aη)

∥∥
C0

73
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≤C
{
‖∂sgab∂rgrs‖+‖gcd

Γ
r
cd(∂bgra +∂agrb)‖+‖2Qab‖

}
‖η‖

+
∥∥grs

∂sgab∂rη−gcd
Γ

r
cd(gra∂bη +grb∂aη)

∥∥
≤C

{
n2‖∂g‖C0‖∂ (g−1)‖C0 +2n3‖g‖C0‖Γ‖C0‖∂g‖C0 +2‖Q‖C0

}
‖η‖C0

+‖g−1‖C0
(
n2‖∂g‖C0 +2n3‖Γ‖C0‖g‖C0

)
‖∂η‖C0.

To prove the continuity in g, we calculate:

∣∣WRic(η ,g)−WRic′(η ,g′)
∣∣= ∣∣〈〈Ricg(∂a,∂b),η

〉〉
U −

〈〈
Ricg′(∂a,∂b),η

〉〉
U

∣∣
≤ 1

2

∣∣∣∣∫U

{
∂sgab∂r(grs

η) dvolg−Γ
r(∂b(gra η)−∂a(grb η))+2Qab η

}
dvolg

−
∫

U

{
∂sgab∂r(g′rs

η)−Γ
r(∂b(g′ra η)+∂a(g′rb η))+2Q′ab η

}
dvolg′

∣∣∣∣
≤ 1

2

∣∣∣∣∫U

(
∂sgab∂rgrs−Γ

r(∂bgra−∂agrb)+2Qab
)
η
√

g dx

+
∫

U

(
grs

∂sgab∂rη−Γ
r(gra∂bη−grb∂aη)

)√
gdx

−
∫

U

(
∂sg′ab∂rg′rs−Γ

′r(∂bg′ra−∂ag′rb)+2Q′ab
)
η
√

g ′ dx

+
∫

U

(
g′rs

∂sg′ab∂rη−Γ
′r(g′ra∂bη−g′rb∂aη)

)√
g ′ dx

∣∣∣∣
≤ 1

2

∫
U

∣∣∣{√g(∂sgab∂r(g−g′)rs +∂s(g−g′)ab∂rgrs)+(
√

g−√g ′)∂sg′ab∂rg′rs

−√g(Γr−Γ
′r)(∂bgra−∂agrb)−

√
gΓ
′r(∂b(g−g′)ra−∂a(g−g′)rb)

− (
√

g−√g ′)Γ′r(∂bg′ra−∂agrb)+2
√

g(Q−Q′)ab +2(
√

g−√g ′)Q′ab
}

η

+
{√

g((g−g′)rs
∂sgab +grs

∂s(g−g′)ab)+(
√

g−√g ′)g′rs
∂sg′ab

}
∂rη

+
√

g(Γr−Γ
′r)(gra∂bη−grb∂aη)−√gΓ

′r((g−g′)ra∂bη− (g−g′)rb∂aη)

− (
√

g−√g ′)Γ′r(g′ra∂bη−grb∂aη)
∣∣∣dx

≤C‖η‖C0

{
n2‖√g‖C0

(
‖∂g‖C0‖∂ (g−g′)−1‖C0 +‖∂ (g−g′)‖C0‖∂g−1‖C0

)
+n2‖√g−√g ′‖C0‖∂g′‖C0‖∂ (g′)−1‖C0 +2n‖√g‖C0‖Γ−Γ

′‖C0‖∂g‖C0

+2n‖√g‖C0 ‖Γ′‖C0‖∂ (g−g′)‖C0 +n‖√g−√g ′‖C0‖Γ′‖C0
(
‖∂g′‖C0 +‖∂g‖C0

)
+2‖√g‖C0‖Q−Q′‖C0 +2‖√g−√g ′‖C0‖Q′‖C0

}
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+C‖∂η‖C0

{
n2‖√g‖C0

(
‖(g−g′)−1‖C0‖∂g‖C0 +‖g−1‖C0‖∂ (g−g′)‖C0

)
+n2‖√g−√g ′‖C0‖(g′)−1‖C0‖∂g′‖C0 +2n‖√g‖C0‖Γ−Γ

′‖C0‖g‖C0

+2n‖√g‖C0‖Γ′‖C0‖g−g′‖C0 +n‖√g−√g ′‖C0‖Γ′‖C0
(
‖g′‖C0 +‖g‖C0

)}
.

Theorem B.8. Let M be a spin manifold and denote by C1(T ∗M�2) the space of C1

symmetric (2,0)-tensors on it. For fixed coordinate vector fields ∂a,∂b ∈C1(T M) on
an open chart U ⊂M, the application

WRΣ
ab

: C1,α(ΣM)×C1,α(ΣM)×C1,α(T ∗M�2)−−−→ C

(ψ,ϕ,g) 7−−−→
〈〈

RΣ(∂a,∂b)ψ,ϕ
〉〉

U ,

given by Definition 3.4.2 is continuous in the C1-topology.

Proof. First, let us suppose we have a fixed Riemannian C1 metric g, with respect
to which there is a (metric) spin structure PSpin(M,g) on M and an associated spinor
bundle ΣgM. By definition of the weak spinorial curvature and the properties of
∇Σ, we know that WRΣ

ab
(ψ,ϕ,g) is C-linear in ψ and ϕ. Thus, to check continuity in

these first two variables a boundedness argument suffices.

∣∣〈〈RΣ(∂a,∂b)ψ,ϕ
〉〉

U

∣∣≤ ∣∣∣∣∫U

(
∇

Σ
aψ,∇Σ

b ϕ̂
)

dx−
∫

U

(
∇

Σ
bψ,∇Σ

a ϕ̂
)

dx
∣∣∣∣

≤ 2 max
a,b

∫
U

∣∣(∇Σ
aψ,∇Σ

b ϕ̂
)∣∣dx

≤ 2 max
a,b

sup
U

{
|∇Σ

aψ|g
|∂a|g

|∇Σ
b ϕ̂|g
|∂b|g

|∂a|g|∂b|g
}∫

U
dx

≤C max
a,b

sup
U

{
|∂a|g |∂b|g

}
sup

X ,Y∈Γ(T M)

{
|∇Σ

Xψ|g
|X |g

|∇Σ
Y ϕ̂|g
|Y |g

}
≤C max

a,b
sup
U
{|∂a|g |∂b|g }‖∇Σψ‖C0(U)‖∇Σϕ̂‖C0(U).

Since the coordinate vector fields ∂a are of class C0, their norms are appropriately
bounded on U , in fact, they are uniformly bounded, so there is a constant K such
that maxa,b supU |∂a|g ≤ K,∣∣〈〈RΣ(∂a,∂b)ψ,ϕ

〉〉
U

∣∣≤C K2‖ψ‖C1(U)‖ϕ̂‖C1(U)

≤C K2‖√g‖C1(U)‖ψ‖C1(U)‖ϕ‖C1(U).
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This shows that WRΣ(ψ,ϕ,g) is bounded by ‖ψ‖C1(U)‖ and ‖ϕ‖C1(U) and therefore
continuous in the C1-topology for each of these variables.

Continuity in g is more involved to prove since a change in g affects all the
metric structure of the manifold and relevant bundles. In particular, and assuming
that the new metric spin structure for g′ is equivalent to the one for g, we have to
identify the spinors in the spinor bundles corresponding to each metric to be able
to calculate. Let ψ′ := Aψ, ϕ′ := Aϕ, and for readability, denote ∇aψ := ∇Σ

∂a
ψ,

∇′aψ
′ := ∇Σ′

∂a
(Aψ) and ∇′aϕ̂

′ := ∇Σ′
∂a

(
√

g ′Aϕ):

∣∣WRΣ(ψ,ϕ,g)−WRΣ′ (ψ′,ϕ′,g′)
∣∣= ∣∣〈〈RΣ(∂a,∂b)ψ,ϕ

〉〉
U −

〈〈
RΣ′(∂ ′a,∂

′
b)ψ
′,ϕ′
〉〉

U

∣∣
≤
∣∣∣∣∫U

(∇aψ,∇bϕ̂g)g dx−
∫

U
(∇bψ,∇aϕ̂g)g dx

−
∫

U
(∇′aψ

′,∇′bϕ̂
′
g′)g′ dx+

∫
U
(∇′bψ

′,∇′aϕ̂
′
g′)g′ dx

∣∣∣∣
≤
∣∣∣∣∫U

(∇aψ,∇bϕ̂g)g dx−
∫

U
(A−1

∇
′
aψ
′, A−1

∇
′
bϕ̂
′
g′)g dx

∣∣∣∣
+
∣∣∣∣∫U

(∇bψ,∇aϕ̂g)g dx−
∫

U
(A−1

∇
′
bψ
′, A−1

∇
′
aϕ̂
′
g′)g dx

∣∣∣∣
≤ 2 max

a,b

∣∣∣∣∫U
(∇aψ,∇bϕ̂g)g dx−

∫
U
(∇aψ,∇bϕ̂g′)g dx

∣∣∣∣
≤ 2 max

a,b

∫
U

∣∣∣(∇aψ−∇aψ,∇bϕ̂g)g +(∇aψ,∇bϕ̂g−∇bϕ̂g′)g

∣∣∣dx

≤ 2 max
a,b

∫
U

{
|∇aψ−∇aψ|g |∇b(

√
gϕ)|g

+ |∇aψ|g |∇b(
√

gϕ)−∇b(
√

g ′ϕ)|g
}

dx

≤C1 max
a,b

sup
U

{
|∇aψ−∇aψ|g |∇b(

√
gϕ)|g

+ |∇aψ|g |∇b(
√

g ′ϕ)−∇b(
√

g ′ϕ)|g
+ |∇aψ|g |∇b(

√
gϕ)−∇b(

√
g ′ϕ)|g

}
≤C1 max

a,b
sup
U

{
C2‖∇′(A−1)‖g ‖A‖g

(
|ψ|g |∂a|g |∇b(

√
gϕ)|g

+ |∇aψ|g |
√

g ′ϕ|g |∂b|g
)
+ |∇aψ|g |

√
g−√g ′|g |∇bϕ|g

+ |∇aψ|g |∂b(
√

g−√g ′)|g |ϕ|g
}
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≤C1 max
a,b

sup
U
{|∂a|g |∂b|g }sup

U

{
C2‖∇′(A−1)‖g ‖A‖g

(
|ψ|g |∇(

√
gϕ)|g

+ |∇ψ|g |
√

g ′ϕ|g
)
+ |∇ψ|g |

√
g−√g ′|g |∇ϕ|g

}
+max

a,b
sup
U

{
|∂a|g |∇ψ|g |∂b(

√
g−√g ′)|g |ϕ|g

}
≤C3K2‖∇′(A−1)‖g ‖A‖g

{
‖ψ‖C0‖∇(

√
gϕ)‖C0 +‖∇ψ‖C0‖

√
g ′ϕ‖C0

}
+C1K2‖∇ψ‖C0‖

√
g−√g ′‖C0‖∇ϕ‖C0

+C1K‖∇ψ‖C0‖ϕ‖C0 max
b
‖∂b(
√

g−√g ′)‖C0,

where we have used that there is a K such that maxa supU |∂a|g ≤ K, since the coor-
dinate vector fields ∂a are C0,α .

The spinors ψ and ϕ are C1,α , therefore their norms and the norms of their
covariant derivatives are bounded. We also know, that the norms ‖A‖g, ‖∇′(A−1)‖g
and ‖√g−√g ′‖ are appropriately bounded (see [Pfä03, chapter 1]) and

‖∂b(
√

g−√g ′)‖C0 ≤ 1
2‖
√

g(gcd
∂bgcd− (g′)cd

∂bg′cd)‖C0

+‖(√g−√g ′)(g′)cd
∂bg′cd‖C0

≤ 1
2‖
√

g‖C0
(
‖gcd

∂b(g−g′)cd‖C0 +‖(g−g′)cd
∂bg′cd‖C0

)
+‖(√g−√g ′)(g′)cd

∂bg′cd‖C0

≤ 1
2‖
√

g‖C0
(
‖gcd

∂b(g−g′)cd‖C0 +‖(g−g′)cd
∂bg′cd‖C0

)
+‖(√g−√g ′)(g′)cd

∂bg′cd‖C0

≤ 1
2n2‖√g‖C0

(
‖g‖C0‖∂b(g−g′)‖C0 +‖g−g′‖C0‖∂bg′‖C0

)
+n2‖√g−√g ′‖C0‖g′‖C0‖∂bg′‖C0.
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Summary

Manifolds with Killing spinors and pinching
of first Dirac Eigenvalues

by Andrés Vargas

In this thesis, we introduce spaces and metrics of Hölder class and employ the
theory of convergence of Riemannian manifolds in the C1,α -regularity case, to study
spin manifolds converging in the C1,α -topology. The regularity of the metric and
the convergence of Killing spinor fields is considered. Pinching results are found
for the first eigenvalues of the Dirac operator using this techniques.

In chapter 1, we review basic but important results from the theory of partial dif-
ferential equations in the context of compact manifolds, and establish some elliptic
regularity theorems and estimates needed in chapters 3 and 4.

In chapter 2, a brief discussion on spin geometry appears, to introduce the no-
tions of Killing spinors, Einstein manifolds and their relationship on smooth Rie-
mannian manifolds.

Chapter 3 is devoted to the study of Riemannian manifolds with C1,α -metrics,
making use of the well-known optimal regularity properties of harmonic coordi-
nates. Since curvature is not well-defined without second derivatives of the metric,
we introduce appropriate weak notions of Ricci curvature and the Einstein condi-
tion for C1,α -metrics. Then it is shown that C1,α -metrics satisfying the Einstein
condition weakly, in harmonic coordinates, are actually smooth and Einstein in the
usual sense.

Then, weak spinorial curvature is introduced and with that, it is proved that man-
ifolds with C1,α -metrics carrying a Killing spinor satisfy the weak Einstein condi-
tion and therefore, the smoothness of those metrics is obtained.

In chapter 4, the identification procedure for spinor fields associated to differ-
ent metrics on the base manifold is reviewed, as well as the essential aspects of the
theory of convergence of Riemannian manifolds under appropriate diameter, curva-
ture and volume bounds. Then we study sequences of manifolds carrying “almost
Killing spinors” and consider their convergence in the space of L2-spinors. Exis-
tence of a Killing spinor in the limit, with appropriate regularity, is proved.

In chapter 5 all the material presented before is used to find pinching results for
the first eigenvalues of the Dirac operator on manifolds with upper bounds on diam-
eter and sectional curvature, and with volume bounded from below. In particular,
the existece of a Killing spinor in such manifolds allows to characterize the sphere
for many dimensions. Additionaly, uniform lower bounds on manifolds no diffeo-
morphic to the sphere and with the same geometrical restrictions are presented.
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For manifolds with positive scalar curvature, it was known that proximity of
the first eigenvalue of the Dirac operator to the Friedrich estimate does not impose
topological restrictions on the manifold. Nevertheless, if in addition the manifolds
have the previously mentioned bounds, our result shows that proximity of enough
eigenvalues to this estimate do impose some restrictions.


