
Complex Multiplication, Rationality and
Mirror Symmetry for Abelian Varieties

and K3 Surfaces

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Meng Chen

aus

Peking, China

Bonn 2006



ii

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Referent: Prof. Dr. D. Huybrechts
2. Referent: Prof. Dr. M. Rapoport
Tag der Promotion: 3. April 2007

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb.uni-bonn.de/diss online
elektronisch publiziert.

Erscheinungsjahr: 2007



iii

Summary

This Ph.D. thesis consists of three parts. In the first part (Section 1) we study
abelian varieties and K3 surfaces of CM-type (i.e. their Hodge group is commuta-
tive), aiming at a characterization of complex multiplication via the existence of
special Kähler metrics. We find out that an abelian variety X is of CM-type if and
only if it admits a constant rational Kähler metric (see Theorem 1.2.17). The latter
is a constant Kähler metric which only takes values in Q on the lattice H1(X,Z)
of X. Here we identify the tangent space of X with H1(X,R). For a K3 surface
Y with period σ ∈ H2,0(Y ) we interpret a positive definite 3-dimensional subspace
V ⊂ H2(Y,R) containing R Reσ ⊕ R Imσ as a Kähler metric. We also find some
special V if Y is of CM-type and has high Picard number (≥ 10). This and a
converse statement can be found in Theorem 1.3.18.

In the second part (Section 2) we apply the characterizations we found above
to give sufficient conditions under which a mirror of an abelian variety or of a K3
surface of CM-type is of CM-type as well. We show that if a triple (X ′, G′, B′) is
a mirror abelian variety of (X,G,B), where X is an abelian variety of CM-type,
G a constant rational Kähler metric on X (which does exist in view of Theorem
1.2.17) and B is a rational B-field (i.e. an arbitrary element of H2(X,Q)), then X ′

is also of CM-type (or even stronger, X ′ is isogenous to X). This is the contents of
Theorem 2.2.13. For K3 surfaces Theorem 2.4.4 answers the question. Conditions
on (Y, ω,B), where Y is a K3 surface of CM-type, ω ∈ H1,1(Y,R) has square
〈ω, ω〉 > 0 and B is a B-field (i.e. an arbitrary element of H2(Y,R)), and on a
mirror map are given such that a mirror (Y ′, ω′, B′) is of CM-type.

In the third part (Section 3) we construct a lattice OPE-algebra, which is a
generalization of Kac’s lattice vertex algebra, in the sense that a lattice OPE-
algebra may contain a fermionic and an anti-holomorphic z̄-part. Associated to a
torus it is isomorphic to Kapustin and Orlov’s construction. We define the notion
of a rational lattice OPE-algebra and we show that the N=2 lattice OPE-algebra
V (T,G,B) associated to a complex torus T together with a constant Kähler metric
G and a B-field B ∈ H2(X,R) is rational if and only if both G and B are rational.
This allows us to conclude in view of Theorem 1.2.17 that if an abelian variety X is
of CM-type, then there is a rational N=2 lattice OPE-algebra V (X,G,B) associated
to it, and conversely, if a N=2 lattice OPE-algebra V (X,G,B) is rational, then X
is of CM-type. In Corollary 3.5.5 we also relate this to mirror symmetry.





v

Contents

Introduction 1
1. Complex multiplication, Hodge structures and rational Kähler metric 7
1.1. Hodge structures 7
1.2. Weight 1: abelian varieties 12
1.3. Weight 2: K3 surfaces 22
2. Mirror symmetry, generalized Calabi-Yau structures and complex

multiplication 37
2.1. Generalized Calabi-Yau structures 37
2.2. Abelian varieties 38
2.3. An example of mirror abelian varieties of CM-type 41
2.4. K3 surfaces 44
3. Lattice OPE-algebra, rationality and complex multiplication for abe-

lian varieties 49
3.1. OPE-algebras 49
3.2. Construction of lattice OPE-algebras 51
3.3. Toroidal lattice OPE-algebras 55
3.4. Rationality 55
3.5. Complex multiplication, rationality and mirror symmetry 59
Appendix A: Partition function of superconformal lattice OPE-algebras 61
Appendix B: An isomorphism to Kapustin-Orlov’s N=2 superconformal

OPE-algebra 67
References 69
Index 71





Introduction 1

Introduction

We give successively our goal, a review of previous works, our results and finally
the organization of our work.
Our goal: This work is inspired by Gukov and Vafa’s paper [GV], where they
shared their insight on a surprising and intriguing interplay between complex mul-
tiplication, rational conformal field theory (CFT) and mirror symmetry on Calabi-
Yau varieties. They made the following observation: Let (E′ ∼= C/Z⊕ τ ′Z, G′, B′)
be a mirror elliptic curve of (E ∼= C/Z ⊕ τZ, G,B), where G is a constant Kähler
metric and B ∈ H2(E,R). Then the N=2 CFT C(E,G,B) is rational if and only
if both E and E′ are of CM-type over the same imaginary quadratic field, i.e.
τ, τ ′ ∈ Q(

√
−D). In this case, E and E′ are in particular isogenous. One then

naturally asks whether similar relations hold for abelian varieties of arbitrary di-
mension. We will formulate N=2 CFT in terms of a lattice OPE-algebra based
on Kapustin and Orlov’s construction in [KO] (OPE stands for Operator Product
Expansion, OPE-algebras are generalizations of vertex algebras). More precisely,
our goal is to answer the following question:

Let (X ′, G′, B′) be a mirror partner of (X,G,B), where X is an
abelian variety endowed with a constant Kähler metric G and a
B-field B in H2(X,R). Is the N=2 superconformal lattice OPE-
algebra V (X,G,B) rational if and only if X and X ′ are isogenous
and both of CM-type?

(QAV)

Our work also contains an extension to K3 surfaces. Unfortunately, in this case,
a formulation of the CFT in terms of OPE-algebras is still missing, hence we could
only make a few steps towards the problem by answering the following questions:

Let Y be a (projective) K3 surface of CM-type with period σ.
How to characterize Y by a “Kähler metric” (we mean a three
dimensional positive definite subspace V ⊂ H2(Y,R) which con-
tains R Reσ ⊕ R Imσ and a real (1,1)-form ω with 〈ω, ω〉 > 0)?
How to choose ω and a B-field B ∈ H2(Y,R) such that a mirror
partner (Y ′, ω′, B′) of (Y, ω,B) is again of CM-type?

(QK3)

Previous works: We first review previous works on complex multiplication, ra-
tional CFT and mirror symmetry for abelian varieties. We will only mention those
works which are of direct relevance to us.

Complex multiplication on abelian varieties has been extensively studied in geo-
metry as well as in number theory (see e.g. [Sh2],[L]). Historically, one says that a
simple abelian variety X (i.e contains no abelian subvarieties) is of CM-type if its
endomorphism algebra EndQ X is as big as possible, i.e. is of rank 2 dimX. In this
case EndQ X is isomorphic to a CM-field which is by definition a totally complex
quadratic extension of a totally real number field. For example, in dimension one,
an elliptic curve E ∼= C/Z⊕ τZ is of CM-type if and only if τ lies in an imaginary
quadratic number field Q(

√
−D). In this case we have EndQ X = Q(

√
−D), which

is bigger than in the generic case where the endomorphism algebra is equal to Q.
The name “complex multiplication” comes from the action of

√
−D on E. It is

the multiplication by
√
−D on C which preserves the lattice Z⊕ τZ (see Example

1.2.8).
In physics, toroidal CFTs are also very familiar objects (see e.g. [W] and [En]

and the references therein). From a physicist’s point of view, a CFT is called
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rational, if its partition function can be written as a finite sum of the product of
holomorphic and anti-holomorphic characters (see [GV, §2]), and this is the case
when its chiral part is maximal.

The interplay between CM and rational CFT having a real 2-torus as target space
is already known in Moore’s paper [Mo, §10], and it is generalized by Wendland
to real tori of arbitrary dimension. We can rephrase her Theorem 4.5.5 in [W] as
follows. Let T be a real torus. We say that a constant (Riemann) metric G on T is
rational if it only takes rational values if restricted on H1(T,Z). We say moreover
that a B-field B on T is rational if B lies in H2(T,Q). Then we have: (a) A real
torus T endowed with a rational constant (Riemann) metric G admits a complex
structure I compatible with G such that the complex torus (T, I) is isogenous to a
product of elliptic curves of CM-type. (b) A CFT C(T, G,B) associated to a real
torus T endowed with a constant metric G and a B-field B ∈ H2(T,R) is rational if
and only if both G and B are rational. (c) Combining (a) and (b) one can say that
a real torus T endowed with a rational CFT C(T, G,B) admits a complex structure
I compatible with G such that the complex torus (T, I) is isogenous to a product
of elliptic curves of CM-type.

In [GV] a novelty is that Gukov and Vafa relate complex multiplication and ra-
tionality of CFT to mirror symmetry. We would like to mention the paper [GLO]
where the authors used certain generalized complex structures to formulate mirror
symmetry for abelian varieties although the notion of generalized complex geometry
was invented only later by Hitchin in [Hi]. We will also use generalized structures
to formulate mirror symmetry which shall incorporate [GLO]’s definition (see Def-
inition 2.2.5).

We already mentioned Gukov and Vafa’s observation about elliptic curves. The
difference between their statement and Wendland’s result is that Gukov and Vafa
start with an elliptic curve with a given complex structure endowed with a Kähler
metric, and use an additional N=2 structure on the CFT to encode the complex
structure of the target space, and hence link the complex geometry (e.g. complex
multiplication) of the mirror pair.

For abelian varieties, along with complex multiplication and mirror symmetry,
CFTs and non-linear sigma model received a mathematical treatment by Kapustin
and Orlov in terms of OPE-algebras (see [KO]). This is the terminology given by
Rosellen (see [Ros]). In [KO] they are still called “vertex algebras” although they
generalize the vertex algebras studied by Kac [Kac] among many other authors. In
our work we adopt Rosellen’s terminology.

Up to now we have described our starting point to answer the question (QAV).
Our results are given later. The question (QK3) is an attempt to investigate the
case of K3 surfaces. In order to introduce the notion of a K3 surface of CM-type
we have to mention Mumford’s work. In [Mm2] he proves that a simple abelian
variety X is of CM-type (i.e. rkEndQ X = 2 dimX) if and only if its Hodge group
Hg(X) is commutative. For a not necessarily simple abelian variety X, if Hg(X) is
commutative, then X is isogenous to a product of simple abelian varieties of CM-
type (see Propositions 1.2.6 and 1.2.7 for more complete statements). This leads to
the definition of Hodge structures of CM-type (see Section 1.1 for generalities about
Hodge structures). A Hodge structure V is of CM-type if V is polarizable and its
Hodge group Hg(V ) is commutative (see Definition 1.1.7). This allows us to extend
complex multiplication to any smooth projective variety carrying a Hodge structure,
in particular to projective K3 surfaces. We say that a projective K3 surface Y is of
CM-type if the Hodge structure on its transcendental lattice T (or equivalently on
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H2(Y,Q)) is of CM-type (see Definition 1.3.3). We will essentially use results from
three papers [Za], [Bor] and [PS]. In the first paper Zarhin determines all possible
Hodge groups of Y . In the second Borcea shows that Y is of CM-type if and only
if EndHg(T ) T is a CM-field of the same degree over Q as dimQ T (see Proposition
1.3.4). The third paper presents a construction of K3 surfaces of CM-type (see
Proposition 1.3.9).

Mirror symmetry for K3 surfaces has also been studied by many authors. Let us
mention Huybrechts’ paper [H3, §6.4] where the mirror under a particular mirror
map is calculated. In our work we formulate mirror symmetry for K3 surfaces in
terms of generalized Calabi-Yau structures (GCYSs). This simplifies the formula-
tion given in [H3]. GCYSs are studied in [Hi] and more specially on K3 surfaces in
[H2] (see Section 2.1 for some generalities about them). Recall that mirror symme-
try for abelian varieties is formulated using generalized complex structures. One
can show that they can be induced by GCYSs (see Section 2.2). Thus GCYSs
provide a more general framework for mirror symmetry. Schematically the passage
from abelian varieties to K3 surfaces is an abstraction of structures as follows

complex multiplication on
abelian varieties in terms
of endomorphism algebras

 
Hodge structure

of CM-type
 

K3 surfaces
of CM-type

and

mirror symmetry for
abelian varieties in terms

generalized complex structures
 GCYS  

mirror symmetry for
K3 surfaces.

This gives a unified view to our work on abelian varieties and K3 surfaces.
As to CFT on K3 surfaces there are among many other works several papers

by Wendland. But unfortunately a formulation in terms of OPE-algebras is still
missing. This prevents us from defining rigorously rational CFT and hence from
completely answering a similar question as (QAV) for K3 surfaces.

Our results: It turns out that only one direction of the question (QAV) holds.
More precisely we answer (QAV) by

Corollary 3.5.5. Let (X,G,B) and (X ′, G′, B′) be mirror abelian varieties. If
the N=2 superconformal lattice OPE-algebra V (X,G,B) is rational, then X and
X ′ are isogenous and both of CM-type. Conversely, however, there exist mirror
abelian varieties (X,G,B) and (X ′, G′, B′) such that X and X ′ are isogenous and
both of CM-type, but neither V (X,G,B) nor V (X ′, G′, B′) is rational.

We explain a few important steps which lead us to this statement. Our con-
struction of lattice OPE-algebras (given in Section 3.2) is inspired by Kapustin
and Orlov’s toroidal OPE-algebra, it is actually isomorphic to a toroidal lattice
OPE-algebra (see Section 3.3 and Appendix B). However, our construction has the
advantage of exhibiting more clearly the role of the lattice of the underlying torus.
Hence makes the definition and the study of rationality easier.

Another key step is the following theorem. It shows that complex multiplication,
which is a priori determined solely by the complex structure of the abelian variety,
turns out to be equivalent to the existence of a rational Kähler metric (i.e. a Kähler
metric which takes solely rational values on the lattice of the abelian variety). More
precisely we have
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Theorem 1.2.17. An abelian variety X is of CM-type if and only if X admits a
constant rational Kähler metric.
Note that this theorem differs from Wendland’s result (a) in the fact that the
complex structure of X is given beforehand.

The role of a rational Kähler metric for a lattice OPE-algebra becomes evident
through the following theorem.
Theorem 3.4.3. The N=2 superconformal lattice OPE-algebra V (T,G,B) asso-
ciated to a complex torus T endowed with a constant Kähler metric G and a B-field
B is rational if and only if G and B are both rational.

A few comments are due here. The rationality of a N=2 superconformal lattice
OPE-algebra is defined on the underlying lattice OPE-algebra (i.e. without the
N=2 and superconformal structures, see Definition 3.4.1). Hence this theorem is in
complete accordance with Wendland’s result (b). Moreover, our definition is also
in accordance with rationality defined in terms of the partition function, this is
explained in Remarks 3.2.2 and 3.4.5. Combining the last two theorems we have
Theorem 3.5.4. An abelian variety X is of CM-type if and only if X admits a
rational N=2 superconformal lattice OPE-algebra V (X,G,B).

Now we make the link between complex multiplication and mirror symmetry for
tori. We have
Theorem 2.2.13. Let (X,G,B) and (X ′, G′, B′) be mirror abelian varieties.
Suppose X is of CM-type. If both G and B are rational, then X and X ′ are
isogenous. In particular, X ′ is also of CM-type.

Combined with Theorem 3.4.3 we obtain one direction of Corollary 3.5.5. The
converse is however not true by
Proposition 2.3.1. There are mirror abelian varieties (X,G,B) and (X ′, G′, B′),
such that X and X ′ are isogenous and of CM-type, but neither IJ nor I ′J ′ is
defined over Q, where (I,J ) and (I ′,J ′) denote their induced generalized Kähler
structure (GKS).

Refer to Section 2.2 for GKSs. This proposition leads to the second part of Corol-
lary 3.5.5 which says that on this mirror pair neither V (X,G,B) nor V (X ′, G′, B′)
is rational.

Now we turn to K3 surfaces. We answer the first part of the question (QK3) by
Theorem 1.3.18. Denote L := H⊕3 ⊕ E8(−1)⊕2. Let V ⊂ LR be a positive
definite 3-dimensional subspace of the form

V = Rv1 ⊕ Rv2 ⊕ Rv3,

with
(i) {v1, v2, v3} is an orthogonal basis.
(ii) All vi’s are fully defined over some totally real number field K0 under an

embedding ε : K0 ↪→ R.
(iii) E(vi) ⊥ E(vj) for i 6= j.
(iv) ε−1( 〈vi,vi〉

〈vj ,vj〉 ) ∈ K0 is totally positive.

If a point
[σ] ∈ P(VC) ∩ Ω = {[σ] ∈ P(VC) | 〈σ, σ〉 = 0, 〈σ, σ̄〉 > 0}

defines a projective K3 surface, then a multiple of σ is fully defined over a CM-field.
Conversely, any K3 surface of CM-type Y with period σ and ρ(Y ) ≥ 10 possesses

a 3-dimensional positive definite subspace V ⊂ H2(Y,R) as above which contains
R Reσ ⊕ R Imσ.
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The key notion here is being fully defined over a CM-field. It is an arithmetic
property. We show in Proposition 1.3.14 that if a K3 surface Y is of CM-type over
a CM-field K, then there is an element σ ∈ H2,0(Y ) which is fully defined over
K. Unfortunately, the converse does not hold, so the conditions on V given in the
theorem above are not strong enough to characterize K3 surfaces of CM-type.

The second part of the question (QK3) is answered by
Theorem 2.4.4. Let (Y ′, ω′, B′) be an involutive mirror of (Y, ω,B) under a
mirror map χ, where Y is a K3 surface of CM-type with ρ(Y ) ≥ 10. Suppose
further the following conditions:

(i) 〈U ′, U〉 ≡ 0 and χ
∣∣
L′ = IdL′ .

(ii) ω is as constructed on page 47.
(iii) B = −v∗ + Reσ, where σ ∈ H2,0(Y ) is fully defined over K.
(iv) 〈ω, v〉 = 〈B, v〉 = 0.

Then Y ′ is also of CM-type over K.
The notion of involutive mirror is introduced in Definition 2.4.2. This theorem

is based on explicit calculations of mirror partners given in Proposition 2.4.3.
Organization of our work: Section 1 presents abelian varieties and K3 surfaces of
CM-type (in Section 1.2 respectively 1.3) from the point of view of Hodge structures
of CM-type (reviewed in Section 1.1), and contains characterization of complex
multiplication by certain properties (e.g. rationality) of a Kähler metric.

Section 2 presents mirror symmetry for abelian varieties and K3 surfaces (in Sec-
tion 2.2 respectively 2.4) from the point of view of generalized Calabi-Yau structures
(reviewed in Section 2.1), and contains sufficient conditions for complex multipli-
cation to be transmitted to mirror partners. Section 2.3 contains the construction
of the pair of mirror isogenous abelian varieties of CM-type without their lattice
OPE-algebra being rational.

Section 3 deals with lattice OPE-algebras on abelian varieties and their ratio-
nality. Section 3.5 contains a complete answer to the question (QAV).

Appendix A gives calculations of the partition function of lattice OPE-algebra.
Appendix B shows that toroidal lattice OPE-algebra is isomorphic to Kapustin and
Orlov’s toroidal OPE-algebra.

Acknowledgement:
I am very grateful to my thesis advisor Prof. D. Huybrechts for his interest and

great help. It is also a pleasure to thank Prof. B. van Geemen, Prof. M. Gaberdiel
and Markus Rosellen for corrections. Discussions with and comments by Christian
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1. Complex multiplication, Hodge structures
and rational Kähler metric

Summary of results: The goal of this section is to prove Proposition 1.2.16
which leads to Theorem 1.2.17 and Proposition 1.3.14 which leads to Theorem
1.3.18. The first two claims deal with abelian varieties. They show the equivalence
of the following three conditions: complex multiplication, the compactness of the
set of real points Hg(X)(R) of the Hodge group and the existence of a rational
Kähler metric. The latter two claims treat K3 surfaces. They characterize complex
multiplication with an arithmetic property of the period and with a 3-dimensional
positive definite subspace V ⊂ H2(Y,R). These are the basis for our treatment of
mirror symmetry and OPE-algebras later on.

This section is organized as follows. Section 1.1 contains a reminder of notions
(e.g. CM-field and Hodge structure of CM-type) which we need in the sequel.
We also give a few useful propositions. We omit their proof if a good reference is
available.

In Section 1.2 we specialize to Hodge structures of weight 1 which correspond to
abelian varieties. We recall a construction of abelian varieties of CM-type (due to
Shimura) and two ways of considering them: one with Hodge group, the other with
endomorphism algebra. These two approaches lead to two very different proves of
Theorem 1.2.17.

In Section 1.3 we describe the Hodge structure on H∗,H2 and the transcendental
lattice T of a K3 surface. We present a construction of K3 surfaces of CM-type
(due to Pjateckii-Shapiro and Shafarevich) and introduce the notion of being fully
defined over a number field. This allows us to formulate Theorem 1.3.18.

We give when possible examples which we constructed or calculated. They are
helpful to get a concrete understanding of these structures.

1.1. Hodge structures.

Let us first recollect a few facts about CM-fields and then about Hodge structures
of CM-type. Their relationship is expressed in Proposition 1.1.9.

Definition 1.1.1. A CM-field K is a number field which is a totally complex
quadratic extension of a totally real field K0.

A totally real field is a number field which has only real embeddings. In other
words, all embeddings factorize over R. A totally complex field is a number field,
which in contrast has only complex embeddings, i.e. none of its embeddings into
C factorizes over R. The embeddings of such a field come in complex conjugated
pairs, i.e. the set S of embeddings of K is a union of two disjoint parts S = Φ∪Φ,
if σ ∈ Φ then σ̄ ∈ Φ. The choice of Φ is called a CM-type of K. This determines
the complex structure of the abelian variety constructed from a CM-field as we will
see later.

Besides, a CM-field has an involution induced by the complex conjugation on C,
namely, any embedding σ defines

x 7−→ x̄ := σ−1 ◦ σ̄(x).

It is easy to see that x 7→ x̄ does not depend on the choice of the embedding.
Indeed, for any embedding σ : K ↪→ C, the composition σ−1 ◦ σ̄ is a non-trivial
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automorphism of K which preserves K0. Since GalK/K0 is of order 2, σ−1 ◦ σ̄
must be independent of the choice of σ. For simplicity we call this automorphism
of Kcomplex conjugation. Obviously, K0 is the fixed subfield. The following lemma
gives a method to construct CM-fields and will be used numerous times.

Lemma 1.1.2. A number field K is a CM-field if and only if K is generated by
an element η ∈ K over a totally real subfield K0 with η2 ∈ K0 totally negative (i.e.
η2 is negative under any embedding of K0).

Proof. Let K be a CM-field, so it is of the form K = K0(β) for an element β ∈ K
of degree 2 over K0. Set

η := β − β̄.
Then η2 = β2 + β̄2 − 2ββ̄ lies in K0 as it is invariant under complex conjugation.
Let ϕ : K0 ↪→ R be any embedding of K0 and σ : K ↪→ C be an extension of ϕ to
K. We have

ϕ(η2) = σ(η2) = σ(η)2 = (σ(β)− σ(β))2 = (2i Imσ(β))2 < 0.

Hence η2 is totally negative.
Conversely, one can extend any embedding ϕ of K0 to K by setting

σ(η) :=
√
ϕ(η2) and σ̄(η) := −

√
ϕ(η2).

This shows that K is totally complex and ends the proof. �

As an example of CM-fields we can give the cyclotomic fields Q(ξ), ξn = 1, ξ 6= 1.
Indeed we can write them as

Q(ξ) = Q(ξ + ξ̄)(ξ − ξ̄).
Then K0 = Q(ξ+ ξ̄) and η = ξ− ξ̄ in the notation of the lemma above. We will use
a cyclotomic field for the construction of an abelian variety of CM-type in Example
1.2.13.

Now we turn to Hodge structures.

Definition 1.1.3. Let V be a finite dimensional Q-vector space. A (rational)
Hodge structure of weight n on V is a decomposition

VC =
⊕

p+q=n

V p,q (1.1.1)

over C, where V p,q = V q,p. For simplicity we use the same letter V for the Hodge
structure on it. We call a Hodge structure V irreducible if V does not contain any
non-zero proper Hodge substructure, meaning a Q-vector subspace 0 6= W ( V with

WC =
⊕

p+q=n

W p,q and W p,q = WC ∩ V p,q.

Irreducible Hodge structures of weight 1 characterize simple complex tori as we
will see in Proposition 1.2.1. The Hodge structure on the transcendental lattice of
a K3 surface is also irreducible, shown in Proposition 1.3.1. A morphism of Hodge
structures is a Q-linear map f : V → W which, after C-linear extension, preserves
the decomposition (1.1.1), i.e.

f(V p,q) ⊂W p,q.

We say V and W are isomorphic if f is an isomorphism.
The theory of Hodge structures is based heavily on the study of Hodge groups.

The Hodge group is a linear algebraic group defined over Q which characterizes the
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Hodge structure in a subtle way. We first recall the definition of a linear algebraic
group. Let V be a finite dimensional vector space over a field k of characteristic
0 and K be an algebraically closed extension of k. A subgroup G of GL(V,K)
which is also an algebraic variety is called a linear algebraic group. If the ideal
I(G) is generated by polynomials with coefficients in a subfield k′ ⊂ K, we say
that G is defined over k′ . For a subfield F ⊂ K, the F (-rational)-points of G are
G(F ) := G ∩ GL(V, F ). For simplicity we will henceforth use the term algebraic
group for linear algebraic group (although the first notion is more general than the
second one).

A Hodge structure as in (1.1.1) induces a homomorphism of real algebraic groups
(i.e. the R-points of an algebraic group defined over R):

h : S1 −→ SL(V,R)

z 7−→ (h(z) : v =
∑

vp,q 7→
∑

zpz̄qvp,q),

where S1 is the unit circle. Note that an a ∈ S1 can be considered as an element
of SL(V,R) with a11 = a22, a12 = −a21, a

2
11 + a2

12 = 1. Hence S1 is indeed a real
algebraic group.

Definition 1.1.4. The Hodge group Hg(h) or Hg(V ) of a Hodge structure V is
the smallest algebraic subgroup of GL(V,C) defined over Q, whose R-points contain
the image of S1 under h, i.e.

h(S1) ⊆ Hg(h)(R).

If Hg(h) consists trivially of the identity element, we say that the Hodge structure
V is trivial.

A Hodge structure may be polarizable. This property is closely related to the
projectivity of the corresponding variety, see Proposition 1.2.1 for complex tori and
Proposition 1.3.2 for K3 surfaces for more precise statements.

Definition 1.1.5. A polarization of a Hodge structure V of weight n is a Q-bilinear
form:

E : V × V −→ Q,
which is symmetric if n is even, anti-symmetric if n is odd, and extended C-
bilinearly satisfies

• E(V p,q, V r,s) = 0 unless r = q and s = p,
• E(·, h(i)·) is positive definite, i.e. iq−pE(x, x̄) > 0 for any x 6= 0 in V p,q.

A Hodge structure is called polarizable if one can define a polarization on it.

We see immediately that Hg(V ) preserves the polarization if V is polarizable.
Indeed, the elements of GL(V,C) which preserve the polarization form an algebraic
group G defined over Q and its R-points contain h(S1), hence G contains Hg(V ).
Moreover, it is well known that the Hodge group is connected, and it is reductive
if the Hodge structure is polarizable. These properties will be used in the proof of
Proposition 1.2.16, so we recall these notions.

The identity component of an algebraic group G is the irreducible component
(in Zariski topology) of G containing the identity element. If G consists of the
identity component only, we call G connected. In order to define reductiveness we
need the notion of an algebraic torus. An algebraic torus over k is an algebraic
group over k which is isomorphic over the algebraic closure of k to a product of the
multiplicative algebraic group Gm. It is in particular commutative. An algebraic
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group G over k is called reductive if all k-representations of G are fully reducible
or, equivalently, if G is an almost direct product of a k-torus and a semi-simple
subgroup (i.e. G = GtGs, Gt ∩Gs = {e}). Now let us state precisely the following

Proposition 1.1.6 (Mumford). (i) The Hodge group of any Hodge structure is
connected.
(ii) If a Hodge structure is polarizable, then its Hodge group is reductive and pre-
serves polarizations.

It is easy to see (i). Indeed, since S1 is connected, h(S1) is connected and lies
in the identity component of Hg(h). On the other hand, an irreducible component
of an algebraic group defined over Q is again defined over Q. Hence from the
minimality of the Hodge group, it must coincide with its identity component. As
for the reductiveness, consult [LB, Prop.17.3.6]. The proof therein generalizes to
any polarizable Hodge structure.

We give a name to those polarizable Hodge structures whose Hodge group has
trivial semi-simple part.

Definition 1.1.7. A Hodge structure is of CM-type if it is polarizable and its
Hodge group is an algebraic torus, i.e. commutative.

We will be very interested in the algebra F := EndHg(V ) V in the sequel. These
are the Q-endomorphisms of V which commute with Hg(V ). The reason for our
interest is that F turns out to be the endomorphism algebra of an abelian variety
X if one considers the Hodge structure on H1(X,Q). We extend elements of F
C-linearly on VC. A characterization of F is the following easy fact.

Proposition 1.1.8. Let V be a Hodge structure and f ∈ EndQ V . Then f com-
mutes with Hg(V ) if and only if f preserves the Hodge structure on V .

Proof. If f commutes with Hg(V ), then f also commutes with h(S1). Hence for
any vp,q ∈ V p,q and z ∈ S1 we have

h(z) ◦ f(vp,q) = f ◦ h(z)(vp,q) = f(zpz̄qvp,q) = zpz̄qf(vp,q).

It follows that f(vp,q) ∈ V p,q.
Conversely, consider the centralizerM of f in GL(V,C). Obviously, M is an alge-

braic group defined over Q as f is defined over Q. Moreover, M(R) contains h(S1),
since f preserves the Hodge structure on V . It follows that Hg(V ) is contained in
M , which ends the proof. �

The following fact establishes the relationship between irreducible Hodge struc-
tures and CM-fields.

Proposition 1.1.9. Let V be a non-trivial irreducible Hodge structure. Then it is
of CM-type if and only if F := EndHg(V ) V is a CM-field and dimF V = 1. In this
case we say that the Hodge structure V is of CM-type over F .

Proof. In [Abd] it is shown that if V is a non-trivial (see Definition 1.1.4) irreducible
Hodge structure of CM-type, then F is a CM-field. Further, the commutativity of
Hg(V ) implies that all elements of Hg(V ) are simultaneously diagonalizable over
C. Hence its centralizer in EndC VC contains all diagonal matrices. It follows that
its centralizer in EndQ V must be a Q-algebra of dimension equal to dimQ V . This
shows dimF V = 1.
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Conversely, let V = Fv0 be any isomorphism. Then the action of Hg(V ) on V
is determined by its action on v0. Hence there is an inclusion Hg(V )(Q) ↪→ F ,
and Hg(V )(Q) is commutative. Now we show that Hg(V )(Q) lies in the center
of Hg(V )(C). Indeed, by definition, F commutes with h(S1), hence h(S1) in turn
commutes with Hg(V )(Q). On the other hand, the centralizer of Hg(V )(Q) in
GL(V,C) is defined over Q, and by what we just said contains h(S1), hence the
whole Hg(V ) is contained in the centralizer of Hg(V )(Q) by the very definition of
the Hodge group, i.e.

Hg(V )(C) ⊂ {M ∈ GL(V,C) | [M,Hg(V )(Q)] = 0}.

This shows

Hg(V )(Q) ⊂ Center(Hg(V )(C)) = Center(Hg(V ))(C).

As well known, Hg(V )(Q) is dense in Hg(V )(C) (see [Sp, Cor. 13.3.9] or [Hm,
Thm. in §34.4]), and Center(Hg(V ))(C) is a closed algebraic group defined over Q
(see in [Hm, Cor. §8.2]), hence

Hg(V )(C) = Hg(V )(Q) ⊂ Center(Hg(V ))(C).

This shows the commutativity of Hg(V ). �

More generally for not necessarily irreducible Hodge structures we have the fol-
lowing

Proposition 1.1.10. Let V be a polarizable Hodge structure which decomposes into
a direct sum of polarizable irreducible Hodge substructures as follows:

V = V r1
1 ⊕ · · · ⊕ V rn

n , (1.1.2)

where V ri
i is ri copies of Vi and all Vi’s are pairwise non-isomorphic. Then V is

of CM-type if and only if all Vi’s are of CM-type.

Proof. Put

V ′ := V1 ⊕ · · · ⊕ Vn,

the decomposition (1.1.2) implies an isomorphism and an inclusion

Hg(V ) ∼= Hg(V ′) ↪→ Hg(V1)× · · · ×Hg(Vn).

Now it is obvious that if all Vi’s are of CM-type, then Hg(V ′) must be commutative.
This proves one direction of the claim.

Conversely, let Hg(V ′) be commutative. The following composition of group
homomorphisms:

Hg(V ′) ↪→ Hg(V1)× · · · ×Hg(Vn) πi−→ Hg(Vi)

is surjective for all i, where πi denotes the projection on the i-th factor. This is
because the restriction of the action of S1 on V ′ to each Vi is exactly the Hodge
structure on Vi. It follows that all Hg(Vi) are commutative. �

This proposition has as consequence Proposition 1.2.6 in the next section.
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1.2. Weight 1: abelian varieties.

In this paragraph we specialize to Hodge structures of weight 1. Our goal is to
prove Proposition 1.2.16 and Theorem 1.2.17. Hodge structures of weight 1 have a
beautiful geometric meaning (see [H4, Prop.3.C.10,3.C.11]):

Proposition 1.2.1. There are bijections

{rational Hodge structures of weight 1}/{isom.} 1:1−→ {complex tori}/{isogenies}
V 7−→ V 1,0/W

H1(T,Q)←− [ T,

where W is a maximal Z-module in V and projects injectively into V 1,0.

{polarizable rational Hodge structures of weight 1}/{isom.}
1:1−→ {abelian varieties}/{isogenies}.

We write for a complex torus T

Hg(T ) := Hg(H1(T,Q))

and define

Definition 1.2.2. An abelian variety X is of CM-type if the Hodge structure on
H1(X,Q) is of CM-type.

This is not the first definition of abelian variety of CM-type. Historically, com-
plex multiplication is a term to designate those abelian varieties X whose endo-
morphism algebra EndQ X is as big as possible. There are a few equivalent ways
to view the endomorphism algebra of a complex torus T ∼= Cn/Γ:

End(T ) := {f : T → T | f holomorphic and

preserves the (additive) group structure of T}
= {f : Cn → Cn | f is a C-linear map and f(Γ) ⊂ Γ} (1.2.1)

= {f : Γ→ Γ | fI = If, where I is the complex structure of T,

considered as an element of EndR ΓR with I2 = − Id}

Put EndQ T := End(T ) ⊗Z Q. The relationship between EndQ T and the Hodge
structure on V := H1(T,Q) is established by the following

Proposition 1.2.3 (Torelli Theorem). Let T be a complex torus. Denote V :=
H1(T,Q). We have

EndQ T ∼= {f ∈ EndQ V | f preserves V 1,0}.

By Proposition 1.1.8 we see the well-known fact

Proposition 1.2.4. Let T be a complex torus. Denote V := H1(T,Q). We have

EndQ T ∼= EndHg(V ) V

as Q-algebras.

Together with Proposition 1.1.9 we have easily

Proposition 1.2.5. A simple abelian variety X is of CM-type if and only if EndQ X
is a CM-field.
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Historically this was the first definition of a simple abelian variety of CM-type
(i.e. EndQ X is a CM-field). Mumford showed its equivalence to the commutativity
of the Hodge group. His approach has the advantage to be generalizable to Hodge
structures of higher weight which correspond to other geometric objects. More
generally for not necessarily simple abelian varieties it is known by [Mm2, §2] or
simply by Proposition 1.1.10 that

Proposition 1.2.6 (Mumford). Let X be an abelian variety. The following con-
ditions are equivalent:

(i) X is of CM-type (i.e. Hg(X) is commutative).
(ii) X is isogenous to the product of simple abelian varieties of CM-type.
(iii) EndQ X contains a commutative semi-simple Q-algebra of dimension equal

to 2 · dimC X.

If one strengthens the condition (iii), one gets (see [Sh2, §5] or [L, §2])

Proposition 1.2.7. If EndQ X of an abelian variety X of dimension g contains a
number field of degree 2g over Q, then X is isogenous to a product B×· · ·×B with
a simple abelian variety B of CM-type.

However, the case where EndQ X is a CM-field is rather exceptional. We present
Albert’s classification. It is necessary for the second proof of Theorem 1.2.17 and
also for the understanding of the Hodge structure on the transcendental lattice of
a K3 surface. In general EndQ X of a simple abelian variety X is a division algebra
of finite rank over Q endowed with a positive anti-involution. The latter structure
is due to the presence of a Rosati involution. Recall that an involution f 7→ fσ on
a division algebra A with center K is called positive, if the quadratic form

trA|Q f
σf := TrK|Q(trA|K fσf) (1.2.2)

is positive definite, where trA|K denotes the reduced trace of A over K, and TrK|Q
denotes the usual trace for the field extension K|Q. Albert gave the classification
of such division algebras A (see [LB, Thm 5.5.3, Lemma 5.5.4 and Prop. 5.5.5]):

I. A =totally real number field, left invariant by the positive anti-involution.
II. A =totally indefinite quaternion algebra, there is an element a ∈ A whose

square a2 is in its centerK and is totally negative (i.e. is a negative real num-
ber under any embedding K ↪→ R), such that the positive anti-involution
f 7→ fσ is given by fσ = a(trA|K f − f)a−1.

III. A =totally definite quaternion algebra, and f 7→ fσ is given by fσ =
trA|K f − f .

The first three algebras are of the first kind , i.e. the center is a totally real number
field and coincides with the subfield fixed by the involution.

IV. The center K of A is a CM-field. The positive anti-involution restricted to
K is the complex conjugation.

This is called the second kind , since K is not invariant under complex conjuga-
tion. Being of CM-type for a simple abelian variety is precisely when F = K is
commutative and is of rank 2 · dimC X, and in this case it is a CM-field.

We give two examples:

Example 1.2.8. Let E := C/Zω0 ⊕ Zω1 be an elliptic curve. We show the well-
known fact that E is of CM-type if and only if ω1

ω0
lies in an imaginary quadratic
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number field Q(
√
−D). Indeed, an element γ ∈ EndQ E as in (1.2.1) is of the form

γ : C −→ C
ω0 7−→ γω0 = a1ω0 + a2ω1

ω1 7−→ γω1 = a3ω0 + a4ω1

with {ai} ⊂ Q. Obviously, γ lies in Q if and only if a2 = a3 = 0, a1 = a4 = γ.
Suppose now a2 6= 0 (or equivalently a3 6= 0). Then we have

(γ − a1)ω0 = a2ω1 and (γ − a4)ω1 = a3ω0.

Hence
ω1

ω0
=
γ − a1

a2
=

a3

γ − a4
.

Since Im ω1
ω0
6= 0, we see that γ lies in some Q(

√
−D), D ∈ N∗ with Im γ 6= 0, and

hence ω1
ω0
∈ Q(

√
−D). Conversely, if ω1

ω0
∈ Q(

√
−D), it is easy to see that

√
−D

preserves Qω0 ⊕ Qω1. It follows that Q(
√
−D) ⊆ EndQ E, hence the equality as

EndQ E cannot be of higher rank.

Remark 1.2.9. We give an abelian surface which shows that Gukov and Vafa’s
definition of complex multiplication (see [GV, §7.1]) is looser than ours. They say
that a complex torus T = Cg/(1 T )Z2g, where T is a g × g complex symmetric
matrix, “admits complex multiplication” if there is a non-trivial endomorphism
A ∈ GL(g,C) and integer matrices M ′, N ′,M,N such that N has rank g and
A = M +NT and T A = M ′ +N ′T .

Let us consider the following 2-dimensional complex torus

X := C2/

(
1 0 a b
0 1 b a

)
Z4,

where a =
√

1 +
√

2i and b = 4
√

2i. We have a2 − b2 = −1. Set

T =
(
a b
b a

)
, A =

(
−b −a
a b

)
, M = 0, N =

(
0 −1
1 0

)
, M ′ =

(
0 1
1 0

)
, N ′ = 0,

we see that X “admits complex multiplication” in Gukov-Vafa’s sense.
On the other hand we show that X is isogenous to the following product of two

elliptic curves:

X ′ := E1 × E2 := C/Z⊕ −1 + b

a
Z× C/Z⊕ 4 + 3a

20a+ 16b
Z.

In view of Example 1.2.8 neither E1 nor E2 is of CM-type, hence X is not of
CM-type in our sense.

For an isogeny X ′ → X consider the following invertible C-linear map

ϕ =
(

a 5a+ 4b
b+ 1 3 + 5b+ 4a

)
: C2 ∼−→ C2.

Denote by Γ the lattice of X, i.e.

Γ := Z
(

1
0

)
⊕ Z

(
0
1

)
⊕ Z

(
a
b

)
⊕ Z

(
b
a

)
=: Zω1 ⊕ Zω2 ⊕ Zω3 ⊕ Zω4

and by Γ′ the lattice of X ′, i.e.

Γ′ := Z
(

1
0

)
⊕ Z

(−1+b
a
0

)
⊕ Z

(
0
1

)
⊕ Z

(
0

4+3a
20a+16b

)
=: Zω′1 ⊕ Zω′2 ⊕ Zω′3 ⊕ Zω′4.
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We see that
ϕ(ω′1) = ω2 + ω3, ϕ(ω′2) = −ω1 + ω4,
ϕ(ω′3) = 3ω2 + 5ω3 + 4ω4, ϕ(ω′4) = ω1 + 5

4ω2 + 3
4ω3.

That is ϕ(Γ′Q) = ΓQ. Hence ϕ is an isogeny. We used Ruppert’s method (see [LB,
§10.6]) to determine that X is isogenous to a product of elliptic curves. Then an
explicit isogeny is easy to find.

The next three propositions can be read from [Mm3, §22]. We first present
Shimura’s construction of abelian varieties of CM-type from a given CM-field K
such that EndQ X contains K (see [Sh2]). It is used in the proof of Theorem 1.2.17.

Proposition 1.2.10 (Mumford). For any given CM-field K there is an abelian
variety of CM-type X such that there is an inclusion K ↪→ EndQ X.

Proof. Denote by S the set of embeddings K ↪→ C. We have a decomposition

KC := K ⊗Q C =
⊕
ρ∈S

Kρ, (1.2.3)

where Kρ is the eigenspace of the character ρ under multiplication, in other words

Kρ = {x ∈ KC | a · x = ρ(a)x, ∀a ∈ K}.
To each choice of CM-type Φ one can define a Hodge structure of weight 1 on K

KC =
⊕
ρ∈Φ

Kρ ⊕
⊕
ε∈Φ

Kε =: K1,0 ⊕K0,1. (1.2.4)

One finds a polarization as follows. We need a generator η of K over K0 such that
η2 ∈ K0 is totally negative and Im ρ(η) > 0,∀ρ ∈ Φ. Such η exists. Indeed, let
η be as in Lemma 1.1.2. If η does not already satisfy Im ρ(η) > 0,∀ρ ∈ Φ, by
the Approximation Theorem (see [Wae]) there is α ∈ K0 such that αη satisfies the
condition. Extend all the embeddings C-linearly. For v, w ∈ KC define

E(v, w) :=
∑
ρ∈Φ

ρ(η)(ρ(v)ρ̄(w)− ρ̄(v)ρ(w)). (1.2.5)

It is anti-symmetric. Moreover, as ρ(η) = −ρ̄(η), we have for v, w ∈ K,

E(v, w) = TrK|Q(ηvw̄) ∈ Q.

Since ρ(K0,1) ≡ 0,∀ρ ∈ Φ, we have

E(K1,0,K1,0) ≡ 0 and E(K0,1,K0,1) ≡ 0.

The positivity can be shown for any v1,0 6= 0 ∈ K1,0

i−1E(v1,0, v0,1) =
∑
ρ∈Φ

(−i)ρ(η)︸ ︷︷ ︸
>0

|ρ(v1,0)|2︸ ︷︷ ︸
>0

> 0

by the choice of η. Hence E is a polarization. This polarizable Hodge structure
corresponds to an isogeny class of abelian varieties by Proposition 1.2.1. Let X be
a representant of this isogeny class. Clearly, C-linearly extended multiplication of
K on KC respects the Hodge structure (1.2.4) as it preserves each Kρ. Hence by
Proposition 1.1.8 we have

K ⊂ EndHg(K)K or K ⊂ EndQ X.

By Proposition 1.2.6 X is of CM-type. �
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In general, however, X is not simple, since V may not be an irreducible Hodge
structure. Moreover, if X is not simple, it may not be constructible in this way.
One can easily show

Proposition 1.2.11 (Mumford). The abelian variety X constructed above is simple
if and only if there is no proper subfield L of K satisfying

(a) L is a totally complex quadratic extension of L ∩K0, and
(b) if σi

∣∣
L∩K0

= σj

∣∣
L∩K0

then σi

∣∣
L

= σj

∣∣
L
,∀σi, σj ∈ Φ.

Simple abelian varieties of CM-type are however all constructible in this manner.

Proposition 1.2.12 (Mumford). Any simple abelian variety of CM-type over a
CM-field K is isogenous to one of the type constructed in Proposition 1.2.10.

Proof. By Propositions 1.1.9 and 1.2.1 we have an isomorphism V := H1(X,Q) ∼=
K where K is a CM-field. The Hodge decomposition induces a decomposition

H1,0(X)⊕H0,1(X) = K1,0 ⊕K0,1.

Two different isomorphisms φ, ψ : V ∼→ K induce isomorphic (rational) Hodge
structures on K. This does not change the isogeny class of X. On the other hand,
we also have KC = ⊕ρ∈SK

ρ as in (1.2.3). We show that either Kρ ⊂ K1,0 or
Kρ ⊂ K0,1 (hence the complex structure of X determines a CM-type Φ). Let
x 6= 0 ∈ Kρ and write x = x1,0 + x0,1. Then we have

a · x = ρ(a)x = ρ(a)x1,0 + ρ(a)x0,1.

Since K = EndHg(V ) V , multiplication by K preserves the Hodge structure, hence

a · x1,0 = ρ(a)x1,0 and a · x0,1 = ρ(a)x0,1.

It follows that both x1,0 and x0,1 lie in Kρ. But Kρ is one-dimensional, so x1,0

and x0,1 must be linearly dependent. This implies that either x1,0 = 0 or x0,1 = 0.
Hence we obtain a CM-type

Φ := {ρ ∈ S | Kρ ⊂ K1,0}.
Now the claim is clear. �

We give an example of this construction which will be again used in Section 2.3.

Example 1.2.13. Consider the cyclotomic field K := Q(ξ), ξ5 = 1, ξ 6= 1. It
is a CM-field and satisfies the conditions in Proposition 1.2.11. Indeed, the only
possibility for L would be an imaginary quadratic extension over Q and L∩K0 = Q,
then the condition (b) would not be satisfied. Denote w := e

2π
5 i, one can write the

four embeddings of K into C as

σk : ξ 7−→ wk, k = 1, . . . , 4.

One has σ1 = σ̄4 and σ2 = σ̄3. Choose the CM-type Φ = {σ1, σ2} and choose the
lattice to be the ring of integers

Γ = OK = Z[ξ].

The complex torus X := C2/Φ(OK) is then a simple abelian variety of CM-type
over K.

Now we are near to the proof of Theorem 1.2.17 which says that on an abelian
variety, complex multiplication is equivalent to the existence of a constant rational
Kähler metric. The latter notion is defined as follows
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Definition 1.2.14. We call a (constant Riemannian) metric G on a real torus T
rational if G only takes rational values on the lattice H1(T,Z) of T. A rational
Kähler metric G on a complex torus T is a rational metric on the underlying real
torus and is compatible with the complex structure I of T , i.e. G(·, ·) = G(I·, I·).

Let us first consider the example of elliptic curves.

Example 1.2.15. In Example 1.2.8 we showed that an elliptic curve E = C/Z⊕τZ
is of CM-type if and only if τ lies in an imaginary quadratic field Q(

√
−D). We

also know that on an elliptic curve there is up to scaling only one Kähler metric.
Let us write

H1(E,Z) =: Ze1 ⊕ Ze2, with e2 = τe1.

We claim that the following matrix represents a Kähler metric in the basis {e1, e2}:

[G] =
(

1 Re τ
Re τ τ τ̄

)
.

This matrix is clearly symmetric and positive definite. We show that it is compatible
with the complex structure I. Denote the period matrix by Π = (1 τ), then I in
the basis {e1, e2} is given by the matrix

[I] =
(

Π
Π

)−1(
i 0
0 −i

)(
Π
Π

)
= − 1

Im τ

(
Re τ τ τ̄
−1 −Re τ

)
.

One verifies easily
[I]t[G][I] = [G].

Hence G is Kähler. We see that [G] is a rational matrix if and only if τ ∈ Q(
√
−D).

Its corresponding Kähler form is

[ω] = [G][I] =
(

0 − Im τ
Im τ 0

)
.

It is though not rational. The canonical rational Kähler form which makes an
elliptic curve algebraic is a rational multiple of

[ω0] =
(

0 −1
1 0

)
.

We show that this phenomenon is also true for higher dimensional abelian va-
rieties. Let us start with the following proposition. Recall first the definition of a
Cartan involution. Let G be a connected algebraic group defined over R and denote
by x 7→ x̄ the complex conjugation on G(C). An involution θ of G is said to be
Cartan if the group

G(θ)(R) := {x ∈ G(C) | x = θ(x̄)}
is compact.

Proposition 1.2.16. An abelian variety X is of CM-type if and only if Hg(X)(R)
is compact.

Proof. On Hg(X)(R) we have the conjugation by h(i)

Adh(i) : Hg(X)(R) −→ Hg(X)(R)

M 7−→ h(i)Mh(i)−1,

where h denotes the action of S1 on H1(X,R). As shown in (see [Del, §2]), Adh(i)
is a Cartan involution. If Hg(X) is commutative, then Adh(i) is just the identity
map, and hence Hg(X)(R) is compact by the very definition of Cartan involutions.
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Conversely, if Hg(X)(R) is compact, then the identity map is a Cartan involution.
By [Sat, Chap.1 Cor. 4.3] any two Cartan involutions of a connected reductive
real algebraic group G are conjugate to each other by an inner automorphism of
G. As mentioned in Proposition 1.1.6 Hg(X) is connected and reductive. Hence
we have Adh(i) = Id on Hg(X)(R). This means in particular that for every Q-
point N ∈ Hg(X)(Q) we have Nh(i) = h(i)N . Since the Hodge structure on
H1(X,Q) is of weight 1, N commuting with h(i) implies that N respects the Hodge
decomposition H1(X,C) = H1,0(X)⊕H0,1(X). Hence N commutes with the whole
Hg(X) in view of Proposition 1.1.8. Whence we have

Hg(V )(Q) ⊂ Center(Hg(V )(C)) = Center(Hg(V ))(C).

Now repeat the same arguments at the end of the proof of Proposition 1.1.9 to
conclude that Hg(X)(C) is commutative. This shows the claim. �

Now we show

Theorem 1.2.17. An abelian variety X is of CM-type if and only if X admits a
constant rational Kähler metric.

Proof. ⇐: First suppose G is an arbitrary constant Kähler metric on X. Then for
all z = x+ yi ∈ S1 we have

G(h(z)v, h(z)w) = G((x+ yI)v, (x+ yI)w) = (x2 + y2)G(v, w) = G(v, w),

in other words, h(S1) ⊂ O(G,R). If G is moreover rational, then O(G) is an
algebraic group defined over Q, whose R-points contain h(S1). Hence Hg(X) is
an algebraic subgroup of O(G), and in particular Hg(X)(R) ⊂ O(G,R). Therefore
Hg(X)(R) is compact, and X is of CM-type by Proposition 1.2.16.
⇒: If X is of CM-type, then X is isogenous to a product of simple abelian

varieties of CM-type by Proposition 1.2.6. So we may assume X is simple. By
Proposition 1.2.12, X is then isogenous to a simple abelian variety of CM-type
with a Riemann form E as in (1.2.5). It allows us to define the following bilinear
form on the tangent space:

G(z, w) := E(z, ηw) = TrK/Q(−η2zw̄).

We see that G is compatible with I (as E is), rational, symmetric, and positive
definite (as −η2 is totally positive). The existence of a rational Kähler metric is
preserved under isogeny, this completes the proof. �

Now we adopt the approach of endomorphism algebras to consider simple abelian
varieties of CM-type and eventually give a second proof of ⇐ of the last theorem.
This approach has the advantage of exhibiting more clearly how a rational metric
endows EndQ X with additional structures which force EndQ X to be very “big”.

Let us put F := EndQ X, V := H1(X,Q) and denote by ω0 a (rational) polariza-
tion of X, which always exists, since X is algebraic. The index 0 is to distinguish it
from the Kähler form ω = GI, which is in general not rational. This was illustrated
in Example 1.2.15. Further we denote by f 7→ f ′ the Rosati involution with respect
to ω0 and by G0 the Kähler metric associated to ω0.

The presence of a rational Kähler metric induces two new structures on F :
• A linear map η ∈ EndV determined by

G(·, ·) = ω0(η·, ·). (1.2.6)
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• An involution f 7→ fG on EndV defined by

G(fv, w) = G(v, fGw).

They have the following properties:

Lemma 1.2.18. (i) η ∈ F .
(ii) η′ = −η.
(iii) f 7→ fG defines a positive anti-involution on F .
(iv) The involution f 7→ fG and the Rosati involution are conjugate to each

other by η, i.e. fG = η−1f ′η, ∀f ∈ F .

Proof. (i) Since ω0 and G are compatible with I, we have for all v, w ∈ V :

ω0(ηIv, w) = G(Iv, w) = −G(v, Iw) = −ω0(ηv, Iw) = ω0(Iηv, w),

hence ηI = Iη, i.e. η ∈ F by (1.2.1).
(ii) Since ω0(ηv, w) = ω0(v, η′w), it suffices to show ω0(ηv, w) = −ω0(v, ηw) for

all v, w ∈ V . This follows from

ω0(η−1v, w) = −ω0(w, η−1v)

= −G(η−1w, η−1v)

= −G(η−1v, η−1w)

= −ω0(v, η−1w).

(iii) If f ∈ F , i.e. fI = If , then (fI)G = (If)G and hence IGfG = fGIG. As
IG = −I we get IfG = fGI, i.e. fG ∈ F . Next we show that f 7→ fG defines a
positive anti-involution, i.e. trF |Q f

Gf > 0 for all f 6= 0 ∈ F . Since F acts on V ,
one has V ∼= Fm, and f acts on Fm by left multiplication on each component. On
the other hand, the action of F on itself by left multiplication has trace d · trF |K f

over its center K, where trF |K is the reduced trace and d2 is the degree of F over
K. Denote by Tr f the trace of f ∈ F , when considered as an endomorphism of V .
Then we have

Tr f = m · d · TrK|Q(trF |K f) = m · trF |Q f, ∀f ∈ F. (1.2.7)

In an orthonormal basis with respect to G, fG is just the transposed matrix of f ,
hence Tr fGf > 0, ∀f 6= 0 ∈ F . Then (1.2.7) implies that the involution induced
by G is positive.

(iv) This follows immediately from

ω0(f ′ηv, w) = ω0(ηv, fw) = G(v, fw) = G(fGv, w) = ω0(ηfGv, w)

for all v, w ∈ V , which yields ηfG = f ′η. �

Since Albert classified EndQ X of a simple abelian variety X, we first prove

Lemma 1.2.19. If a simple abelian variety X admits a constant rational Kähler
metric, then EndQ X is a CM-field, i.e.X is of CM-type.

Proof. We proceed by elimination of other types of algebras using Lemma 1.2.18.
Type I is already made impossible by (i) and (ii) of Lemma 1.2.18. On Type

III algebras there is a unique positive anti-involution (see [Sh1, Prop. 3]), hence
f ′ = fG. Then Lemma 1.2.18 (iv) implies that η lies in K, in contradiction with
Lemma 1.2.18 (ii).
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On Type II algebras, positive anti-involutions are not unique and they are all
of the form given in Albert’s classification mentioned earlier. Let us write fρ :=
trF |K f − f , then

f ′ = a1f
ρa−1

1 and fG = a2f
ρa−1

2 ,

for some a1 and a2 in F . Then fG = a2a
−1
1 f ′a1a

−1
2 , and, hence, η = εa1a

−1
2 for

some ε in K. On the one hand, η′ = −η by Lemma 1.2.18 (ii), and on the other
hand, in view of aρ

i = −ai (since a2
i ∈ K and ai /∈ K), we have

η′ = εa−1′

2 a′1

= εa1(a−1
2 )ρa−1

1 a1a
ρ
1a
−1
1

= εa1(−a−1
2 )(−a1)a−1

1

= εa1a
−1
2

= η.

A contradiction.
So it remains to deal with the Type IV algebras. Recall that the center K of F

is a CM-field. Let us write as before V := H1(X,Q), and denote by 2m the rank
of K over Q and put n := g

m . We shall show n = 1, which implies that X is of
CM-type. With respect to I there is the splitting

VC
∼−→ V 1,0 ⊕ V 0,1. (1.2.8)

We extend the action of F on V R-linearly onto VR and denote by ρ its action on
V 1,0 under the isomorphism V 1,0 ∼= VR. Since K is commutative and since there
is an isomorphism V ∼= Kn, the action of K on V diagonalizes on VC, and the
diagonal entries are exactly n copies of the complete set of 2m embeddings of K
into C. The splitting (1.2.8) then implies that ρ(K) even diagonalizes on V 1,0, i.e.
there is a complex basis {e1, . . . , eg} of VR, with respect to which, for all x ∈ K we
have ρ(x)el = ρl(x)el, where Ψ := {ρ1, . . . , ρg} are embeddings of K into C.

We show that ρl and ρ̄l can not both belong to Ψ. As before let us denote
by f 7→ fG the involution induced by G and by f 7→ f ′ the one induced by ω0.
According to Theorem 5.5.6 in [LB] there is a positive anti-involution x 7→ x̂ of the
second kind on F and for every σ : K ↪→ C there is an isomorphism

ϕ : F ⊗σ C ∼−→ Md(C)

such that x 7→ x̂ extends via ϕ to the canonical anti-involution A 7→ Āt on Md(C)
(here d comes from [F : K] = d2). Any other positive anti-involution on F is of the
form

x 7→ ax̂a−1

with a ∈ F, â = a and such that ϕ(a⊗ 1) is a positive definite hermitian matrix in
Md(C) for every embedding σ : K ↪→ C. So for the two induced involutions which
we have, we can write

fG = a1f̂a
−1
1 and f ′ = a2f̂a

−1
2 .

But since f ′ = η−1fGη as shown in Lemma 1.2.18 (iv), we see that

η = a2a
−1
1 ε,

for an element ε in the center K. Further, since η′ = −η we see that ε′ = −ε.
Now because G(·, ·) = ω0(η·, ·) is positive definite and a2a

−1
1 is a positive definite

hermitian matrix under ϕ, the bilinear form

G′(·, ·) := ω0(ε·, ·)
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is also positive definite and hence is a rational Kähler metric. Since ε ∈ K and
ε′ = −ε it follows that ρ(ε) has only purely imaginary diagonal entries, as the
Rosati involution restricted to K is just the complex conjugation. Now suppose
ρ2 = ρ̄1. Since G′ is positive definite on VR, we have

0 < G′(e1, e1) = ω0(ρ(ε)e1, e1)

= ω0(ρ1(ε)e1, e1)

= Im(ρ1(ε))ω0(Ie1, e1)

= Im(ρ1(ε))G0(e1, e1),

and hence Im(ρ1(ε)) > 0. On the other hand,

0 < G′(e2, e2) = ω0(ρ2(ε)e2, e2) = − Im ρ1(ε)G0(e2, e2).

A contradiction. It follows that Ψ consists exactly of n copies of a CM-type Φ :=
{σ1, . . . , σm} of K.

Now we show that this implies

I ∈ K ⊗Q R, (1.2.9)

or equivalently, ρ(I) ∈ ρ(K) ⊗Q R, where K ⊗Q R is considered as a subspace of
F ⊗Q R. Since ρ(I) is just the multiplication by i on V 1,0 and as we showed that
Ψ consists of n copies of Φ, (1.2.9) amounts to show that there is a unique element
x ∈ K ⊗Q R, such that for all σl ∈ Φ we have σl(x) = i. This is clear due to the
isomorphism:

K ⊗Q R ∼−→ Cm

a 7−→ (σ1(a), . . . , σm(a))t,

where we extended σl R-linearly.
Finally, asK acts by left multiplication on each copy ofK under the isomorphism

V ∼= Kn and hence leaves each copy invariant, (1.2.9) implies that I leaves each
copy of K⊗QR invariant under the isomorphism VR ∼= (K⊗QR)n. By the simplicity
of X we get n = 1. This is what we wanted to show. �

Remark 1.2.20. From the proof above, one sees that ε can be taken as β to define
the Riemann form E in (1.2.5). Moreover, we could also conclude the proof above
by pointing out that (1.2.9) means nothing but that the Hodge group Hg(X) is
contained in K, which implies immediately that Hg(X) is commutative and hence
X is of CM-type.

Now we give

The second proof of ⇐ of Theorem 1.2.17. It suffices to reduce the problem to sim-
ple abelian varieties. Indeed, according to Poincaré’s Complete Reducibility The-
orem, any abelian variety X is isogenous to a product of simple abelian varieties.
If G is a rational Kähler metric on X, then it is a such restricted on each of the
simple factors. Hence every simple factor is of CM-type in view of the last lemma.
This implies immediately that X is of CM-type. �

Now we give another interpretation of Theorem 1.2.17 in terms of the twistor
space.

Corollary 1.2.21. Let T be a real torus with a flat rational Riemannian metric
G. Then with respect to any complex structure I which is compatible with G and
provided that the complex torus T := (T, I) is algebraic, T is of CM-type.
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1.3. Weight 2: K3 surfaces.

In this section Proposition 1.3.14 and Theorem 1.3.18 provide an answer to
the first part of the question (QK3) posed in Introduction. The question will be
made clearer after introducing necessary notions. Roughly speaking, we want a
similar statement as Corollary 1.2.21 by replacing T by the underlying differential
manifold M of a K3 surface and the Riemannian metric by a three-dimensional
positive definite subspace V of H2(M,R). The question is which conditions on V
shall play the role of rationality.

In general, for weight 2 we don’t have a such correspondence between Hodge
structures and geometric objects as for weight 1. However K3 surfaces are to a large
extent determined by the Hodge structure on their second cohomology H2(Y,Q)
(although for mirror symmetry we need the whole cohomology as we will see in
Section 2.4). We first review a few well-known facts about K3 surfaces.

By a K3 surface we mean a simply connected compact surface with trivial canon-
ical bundle, i.e. KY = OY and the first Betti number b1(Y ) = 0. As immediate
consequences, its cohomology stops at H4; H1 and H3 are trivial (equal to 0); H0

and H4 are 1-dimensional; and H2 is 22-dimensional. The whole cohomology is
hence

H∗(Y,Q) = H0(Y,Q)⊕H2(Y,Q)⊕H4(Y,Q).
The Hodge decomposition on H2(Y,Q) is due to

h2,0(Y ) = h0(Y,KY ) = h0(Y,OY ) = 1

also clear:

H2(Y,C) = H2,0(Y )⊕H1,1(Y )⊕H0,2(Y ) = Cσ ⊕H1,1(Y )⊕ Cσ̄.
We extend this Hodge structure on the whole H∗(Y,Q):

H∗(Y,C) = H2,0(Y )⊕ (H1,1(Y )⊕H0(Y,C)⊕H4(Y,C))⊕H0,2(Y )

=: H2,0(Y )⊕ H̃1,1(Y )⊕H0,2(Y ).

In general H2(Y,Q) is not an irreducible Hodge structure. Indeed, put

NS(Y ) := H1,1(Y ) ∩H2(Y,Z).

It is called the Néron-Severi group of Y . Tensored with Q, it is

NS(Y )Q := NS(Y )⊗Z Q = H1,1(Y ) ∩H2(Y,Q).

Its rank ρ(Y ) := rkNS(Y ) is called the Picard number of Y . Clearly, NS(Y )Q ⊕
H0(Y,Q) ⊕H4(Y,Q) carries a trivial Hodge substructure of weight 2 of H∗(Y,Q)
i.e. no (2,0)- and (0,2)-parts, hence the Hodge group is trivial (see Definition 1.1.4).

Besides the Hodge structure, we also have the Mukai pairing on H∗(Y,Q). Con-
sider the following product of α = α0 + α2 + α4 and β = β0 + β2 + β4 ∈ H∗(Y,Z):

α ∧M β := −α0 ∧ β4 + α2 ∧ β2 − α4 ∧ β0 ∈ H4(Y,Z).

Let w be a generator of H4(Y,Z) with the orientation determined by σ ∧ σ̄ =
λw, λ > 0. Then the Mukai pairing 〈, 〉 is defined by

α ∧M β =: 〈α, β〉w. (1.3.1)

With respect to 〈, 〉 we can consider the orthogonal complement T of NS(Y )Q ⊕
H0(Y,Q)⊕H4(Y,Q) in H∗(Y,Q). It is called the (rational) transcendental lattice.
Then T carries a Hodge substructure, namely

TC = T 2,0 ⊕ T 1,1 ⊕ T 0,2
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with T 2,0 = H2,0(Y ) = Cσ. From [Za] we know

Proposition 1.3.1. The Hodge structure on the transcendental lattice T is irre-
ducible.

Proof. Let 0 6= M ⊂ T be a Hodge substructure. Then

M2,0 = MC ∩ T 2,0.

Either M2,0 = 0, i.e. M ⊂ T 1,1, this would imply that M also lies in H2(Y,Q),
and hence in NS(Y )Q, which is impossible; or M2,0 6= 0. But since T 2,0 is one-
dimensional, we must have M2,0 = T 2,0 . Then the orthogonal complement of M
in T must lie in T 1,1, which is also impossible by the same argument as before.
Hence M = T and T is irreducible. �

We want to say that a K3 surface is of CM-type if the Hodge structure on T is
of CM-type. In order to make sense of this definition we have to look at the Mukai
pairing more closely to find out when T is polarizable.

From the definition of the Mukai pairing (1.3.1) we see that it restricts to the
intersection form on H2(Y,Z), which we also denote by 〈, 〉. By Poincaré duality,
H2(Y,Z) is unimodular with respect to 〈, 〉. Moreover, by [BV, Exposé IV], 〈, 〉 is
even (i.e. 〈x, x〉 ≡ 0 mod 2,∀x ∈ H2(Y,Z)). The classification of even unimodular
indefinite lattices gives then an isometry

H2(Y,Z) ∼= H⊕3 ⊕ E8(−1)⊕2,

where H is the hyperbolic plane and E8(−1) is the lattice E8 with its intersection
form multiplied by −1. The piece H0(Y,Z)⊕H4(Y,Z) is orthogonal to H2(Y,Z) in
H∗(Y,Z) , and the Mukai pairing makes it into H(−1). We have then an isometry

H∗(Y,Z) ∼= H⊕3 ⊕ E8(−1)⊕2 ⊕H(−1).

The signature of 〈, 〉 is (4,20). Because 〈σ, σ〉 = 0 and 〈σ, σ̄〉 > 0, 〈, 〉 is positive
definite on the 2-dimensional real vector space

R Reσ ⊕ R Imσ = (T 2,0 ⊕ T 0,2) ∩ TR.

Now we show a well-known fact (see [Za]):

Proposition 1.3.2. If a K3 surface Y is projective, then the Hodge structure on
T is polarizable.

Proof. The projectivity of Y is equivalent to the existence of a rational Kähler
class, i.e. an element x ∈ NS(Y )Q with in particular 〈x, x〉 > 0. Then on T , 〈, 〉
has signature (2, n − 2). It is positive definite on (T 2,0 ⊕ T 0,2) ∩ TR as we already
mentioned, and hence negative definite on T 1,1 ∩ TR. Set

E(·, ·) := −〈·, ·〉,
we have then

E(T p,q, T r,s) ≡ 0 unless r = q and s = p

due to the same property of 〈, 〉. We also have for any xp,q 6= 0 ∈ T p,q

i−2E(x2,0, x2,0) = 〈x2,0, x2,0〉 > 0, and

i−2E(x1,1, x1,1) = 〈x1,1, x1,1〉 > 0.

Therefore E is a polarization on T . �

So it makes sense to define
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Definition 1.3.3. Let Y be a projective K3 surface with transcendental lattice
T . We say that Y is of CM-type over (a CM-field) K if the (irreducible) Hodge
structure T is of CM-type over K.

Henceforth by a K3 surface of CM-type we always mean a projective K3 surface.
In view of Proposition 1.1.9 we have immediately (see [Bor])

Proposition 1.3.4 (Borcea). A K3 surface Y with transcendental lattice T is of
CM-type if and only if F := EndHg(T ) T is a CM-field and dimF T = 1.

In [Za] Zarhin gives all the possible endomorphism algebras F := EndHg(T ) T .
The situation here is simpler than for abelian varieties. Indeed, the irreducibility
of the Hodge structure T implies that F is a division algebra (otherwise, the kernel
or the image would be a non-trivial Hodge substructure). Moreover, T 2,0 induces
an embedding:

ε : F ↪→ EndC T
2,0 ∼= C.

Hence F is commutative and is a number field. The intersection form 〈, 〉 induces
a positive involution ′ on F by adjunction, i.e. for a ∈ F :

〈ax, y〉 = 〈x, a′y〉, ∀x, y ∈ T.
By Albert’s classification given in Section 1.2, the pair (F,′ ) can be

(a) either a totally real number field with the identity as the trivial involution,
(b) or a CM-field with complex conjugation as the involution.

Note that F being a CM-field is not sufficient for T to be of CM-type (i.e. Hg(T )
to be commutative), the condition dimF T = 1 is necessary.

Example 1.3.5. We show the well-known fact that any attractive K3 surface
is of CM-type. A K3 surface Y is called attractive or sometimes supersingular if
ρ(Y ) = 20 (it is in particular projective). This condition implies that

TC = H2,0(Y )⊕H0,2(Y )

and 〈, 〉 is positive definite on T . We show that this decomposition is defined over
a quadratic CM-field.

Let {e1, e2} be an orthogonal Q-basis of T . Let

σ := e1 + λ2e2, λ2 ∈ C \ R
be a basis vector of H2,0(Y ). Then

0 = 〈σ, σ〉 = 〈e1, e1〉+ λ2
2〈e2, e2〉

⇒ λ2
2 = −〈e1, e1〉

〈e2, e2〉
< 0.

Hence Q(λ2) is a CM-field and σ lies in T ⊗Q Q(λ2). There is an action of Q(λ2)
on T as follows:

λ2 : T −→ T, e1 7−→ λ2
2e2, e2 7−→ e1.

Then
λ2(σ) = λ2

2e2 + λ2e1 = λ2(e1 + λ2e2) = λ2σ.

So λ2 preserves H2,0(Y ). Hence

Q(λ2) = EndHg(T ) T and dimQ(λ2) T = 1.

This shows that Y is of CM-type over Q(λ2). Note the arithmetic property of the
coefficients {1, λ2} of σ. They generate the CM-field Q(λ2) as a Q-vector space.
This generalizes to K3 surfaces of CM-type with any Picard number. Proposition
1.3.14 gives the exact statement.
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Example 1.3.6. We show that the Kummer surface Y := Km(X) associated to an
abelian surface X of CM-type is of CM-type. As well known (see [BPV, Chap.VIII
§5]), there is an inclusion of Hodge structure of weight 2

ι : H2(X,Q) ↪→ H2(Y,Q).

The Hodge structure on H2(X,Q) is induced by the one of H1(X,Q) as follows.
If h0 : S1 → SL(H1(X,R)) is the Hodge structure on H1(X,R), then the Hodge
structure on H2(X,Q) is

h : S1 −→ SL(H2(X,R))

z 7−→ h(z) := h0(z) ∧ h0(z).

Write
T (X) := (H1,1(X) ∩H2(X,Q))⊥ and T (Y ) := NS(Y )⊥Q ,

then ι restricts to a Hodge isomorphism

ι : T (X) ∼−→ T (Y )

(though not an isometry). So we have

Hg(T (X)) ∼= Hg(T (Y )).

Since the Hodge group fixes the algebraic part, we have

Hg(T (X)) ∼= Hg(H2(X,Q)).

By what we said earlier about the Hodge structure on H2(X,Q), we have an inclu-
sion

Hg(H2(X,Q)) ⊂ Hg(H1(X,Q))×Hg(H1(X,Q)).

Hence the commutativity on the right hand side implies that Hg(H2(X,Q)), Hg(T (X))
and hence Hg(T (Y )) are commutative. This shows the claim.

Example 1.3.7. The Kummer surface associated to the product of two elliptic
curves of CM-type over the same CM-field Q(

√
−D) is attractive and of CM-type

over Q(
√
−D).

The Kummer surface associated to the product of two elliptic curves of CM-type
over two different CM-fields Q(

√
−D1) respectively Q(

√
−D2) is of CM-type over

the compositum of these two fields which is again a CM-field. It has Picard number
18.

More generally, the Kummer surface Y associated to any abelian surface X of
CM-type has Picard number either ρ(Y ) = 18 or ρ(Y ) = 20. The reason is that
if X is of CM-type, i.e. the Hodge group Hg(H1(X,Q)) is commutative, then as
H2(X,Q) = H1(X,Q) ∧H1(X,Q) it follows that Hg(H2(X,Q)) is also commuta-
tive. If we denote N := H1,1(X)∩H2(X,Q) and by U the orthogonal complement
of N in H2(X,Q), then U carries an irreducible (using the same arguments as in
Proposition 1.3.1) Hodge structure of CM-type over some CM-field, and hence its
dimension is an even number. So the Picard number ρ(X) = dimU can be either
2 or 4, and for the K3 surface either ρ(Y ) = 18 or ρ(Y ) = 20.

In parallel with the construction of abelian varieties of CM-type (see Proposition
1.2.10) we present a construction of a K3 surface of CM-type over a given CM-field
of degree ≤ 16 (see [PS]). The reason for the constrain on the degree will be clear
later. For the construction we have to state the surjectivity of the period map.
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As we already mentioned, H2(Y,Z) of a K3 surface Y is isometric to the lattice
L := H⊕3 ⊕ E8(−1)⊕2, but not canonically. Let

ϕ : H2(Y,Z) ∼−→ L

be an isometry. We call a pair (Y, ϕ) a marked K3 surface. After C-linear extension,
the image of H2,0(Y ) under ϕC is a complex line in LC. In the projectivized space
P(LC), α := ϕC(H2,0(Y )) is then a point [α] ∈ P(LC). We call [α] (and by abuse of
language α) the period of Y . Morally, the map

(Y, ϕ) 7−→ [α] = [ϕC(H2,0(Y )]

is called the period map. For a more precise definition see [BV] or [BPV]. Denote
by Ω the period domain, i.e.

Ω := {[x] ∈ P(LC) | 〈x, x〉 = 0 and 〈x, x̄〉 > 0}.
Obviously, the period [α] of any marked K3 surface is contained in Ω. The following
theorem establishes the surjectivity of the period map (see [BPV, Chap.VIII, Cor.
14.2]).

Theorem 1.3.8 (Surjectivity of the period map). Every point of Ω occurs as the
period of a marked K3 surface.

Now we give the construction of K3 surfaces of CM-type (see [PS]).

Proposition 1.3.9 (Pjateckii-Shapiro, Shafarevich). For any CM-field K of degree
≤ 16 there is a K3 surface of CM-type over K.

Proof. Let K be a CM-field of degree n. Denote by S the set of embeddings of K.
The choice of an embedding ε determines a Hodge structure of weight 2 on K:

KC =
⊕
ρ∈S

Kρ = Kε ⊕
⊕

ρ∈S\{ε,ε̄}

Kρ ⊕K ε̄ =: K2,0 ⊕K1,1 ⊕K0,2. (1.3.2)

One can endow K with a bilinear form of signature (2, n − 2). Indeed, by the
Approximation Theorem one finds an element λ ∈ K0 with ε(λ) > 0 and ρ(λ) < 0
for any other embedding ρ : K0 ↪→ R. Define for any a, b ∈ K:

〈a, b〉 := Tr(λab̄) =
∑
ρ∈S

ρ(λab̄) ∈ Q. (1.3.3)

Then 〈, 〉 is positive definite on the two dimensional real subspace

(Kε ⊕K ε̄) ∩KR

and negative definite on the orthogonal complement. Hence the signature is (2, n−
2). It is also even and −〈, 〉 is a polarization. Because K2,0 is one-dimensional this
Hodge structure is irreducible and of CM-type by Proposition 1.1.9.

It still remains to show that there is a K3 surface with such K as its transcen-
dental lattice. As well known, every indefinite rational quadratic form of rank ≥ 5
represents 0, and hence any rational number. So if dimQ K ≤ 16, one can embed
K into LQ. Let N be the orthogonal complement of K in LQ. Now let σ 6= 0 be a
generator of Kε, then

〈σ, σ〉 = 2ε(λ)ε(σ)ε̄(σ) = 0, and

〈σ, σ̄〉 = 2ε(λ)ε(σ)ε̄(σ̄) > 0.
Hence [σ] is a point in the period domain Ω. By the surjectivity of the period map
there is a K3 surface with period σ, NS(Y ) = N ∩L and T ∼= K. It is of CM-type
by construction. This ends the proof. �
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There is also a notion of isogeny for K3 surfaces. See [Mk1, Def.1.7] for Mukai’s
definition. For us, we say that two K3 surfaces S and T are isogenous if there is a
Hodge isometry between H2(S,Q) and H2(T,Q). Theorem 2 in [Mk2] claims the
equivalence of these two definitions. We show

Proposition 1.3.10. Any K3 surface of CM-type is isogenous to one of the type
constructed in the proof of Proposition 1.3.9.

Proof. Let Y be a K3 surface of CM-type with transcendental lattice T . As shown
in Proposition 1.3.4, K := EndHg(T ) T is a CM-field and dimK T = 1. We show
that there is a λ ∈ K0 such that the intersection form 〈, 〉 on T is given by (1.3.3).

By the non-degeneracy of TrK|Q we have a Q-bilinear form

Φ : T × T −→ K

(x, y) 7−→ Φ(x, y)

such that the intersection form 〈, 〉 on T is

〈ex, y〉 = TrK|Q(eΦ(x, y)).

Zarhin already used the map Φ in [Za, p.210]. Let T = Kv0 be any isomorphism
and set

λ := Φ(v0, v0) ∈ K.
Then for any x = av0, y = bv0 ∈ T we have

〈x, y〉 = 〈av0, bv0〉 = 〈ab̄v0, v0〉 = TrK|Q(λab̄).

Due to the symmetry of 〈, 〉 we have

TrK|Q(λab̄) = TrK|Q(λāb), ∀a, b ∈ K.

The non-degeneracy of the trace form implies then that λ̄ = λ, in other words,
λ ∈ K0.

Further, let ε : K ↪→ C be the embedding of K induced by σ, and if {ei} is an
orthogonal basis of T , we write

σ =
∑

λiei =
∑

λiµiv0, λi ∈ C, µi ∈ K.

We have on the one hand

〈λσ, σ̄〉 =
∑

i

λiλ̄i〈λei, ei〉 =
∑

i

λiλ̄i〈λµiµ̄iv0, v0〉 =
∑

λiλ̄i TrK|Q(λ2µiµ̄i) > 0.

The last inequality is due to λ ∈ K0 is totally real, hence λ2 is totally positive, so
is λ2µiµ̄i. On the other hand we have

〈λσ, σ̄〉 = ε(λ)〈σ, σ̄〉.

We see that ε(λ) > 0.
Now let ρ : K ↪→ C be any other embedding. We show ρ(λ) < 0. Indeed, we

have T 1,1 =
⊕

ρ∈S\{ε,ε̄}K
ρ, and 〈, 〉 is negative definite on T 1,1 ∩ TR. Let vρ be a

generator of Kρ. We can also write vρ as a linear combination of {ei}:

vρ =
∑

αiei =:
∑

αiµiv0, αi ∈ C, µi ∈ K.

Then we have on the one hand

〈λvρ, vρ〉 =
∑

αiᾱi〈λei, ei〉 =
∑

αiᾱi〈λµiµ̄iv0, v0〉 =
∑

αiᾱi TrK|Q(λ2µiµ̄i) > 0
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and on the other hand we have

〈λvρ, vρ〉 = ρ(λ) 〈vρ, vρ〉︸ ︷︷ ︸
<0

.

Hence ρ(λ) < 0 for any embedding ρ 6= ε.
Now it is clear that (T, 〈, 〉) is Hodge isometric to K as a Q-vector space endowed

with the bilinear form

〈, 〉K : K ×K −→ Q
(a, b) 7−→ TrK|Q(λab̄)

and the decomposition

KC = Kε ⊕
⊕

ρ∈S\{ε,ε̄}

Kρ ⊕K ε̄.

So (K, 〈, 〉K) together withNS(Y ) defines a K3 surface Y ′ of CM-type. By construc-
tion, H2(Y,Q) and H2(Y ′,Q) are Hodge isometric, hence Y and Y ′ are isogenous.
This completes the proof. �

In order to answer the question (QK3) we try to characterize complex multi-
plication. We first make a tentative with the elementary methods used in Lemma
1.2.18 and the second proof of Theorem 1.2.17. We showed that on abelian vari-
eties, complex multiplication is equivalent to the existence of a constant rational
Kähler metric G. Making abstraction of the geometric meaning of G, it is simply
a positive definite rational bilinear form whose hermitian extension satisfies

G(V p,q, V r,s) ≡ 0 unless p = r, q = s,

where p, q, r, s = 0 or 1. We give the K3 analogue, though it seems to be very
formal and offers no geometric interpretations.

Proposition 1.3.11. A K3 surface Y is of CM-type if and only if the following
conditions are simultaneously satisfied:

(i) There exists a rational symplectic form ω on T , with

ω(T p,q, T r,s) ≡ 0, unless r = q and s = p, (1.3.4)

after C-bilinear extension.
(ii) There exists a rational positive definite symmetric bilinear form G on T ,

such that it extends to a positive definite Hermitian form which is ortho-
gonal to the Hodge decomposition, i.e.

G(T p,q, T r,s) ≡ 0, unless r = p and s = q. (1.3.5)

Proof. Let Y be a K3 surface of CM-type over K. Write K = K0(η) with η2 ∈ K0

totally negative (see Lemma 1.1.2). Define on T :

ω(v, w) := 〈v, ηw〉.
We have

ω(v, w) = 〈v, ηw〉 = 〈η̄v, w〉 = −〈ηv, w〉 = −〈w, ηv〉 = −ω(w, v),

hence ω is symplectic. Then (1.3.4) follows directly from the fact that η ∈ K, hence
preserves the Hodge decomposition.

Further, denote the embedding

ε : K ↪→ EndC T
2,0 ∼= C.
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By the Approximation Theorem, there is an element λ in K0 with ε(λ) > 0, and
ρ(λ) < 0 for any other embedding ρ of K0. Define on T :

G(v, w) := 〈v, λw〉.

Obviously, it is rational and symmetric (due to λ̄ = λ). It is also positive definite,
because for any v 6= 0 ∈ T we have

G(v, v) = 〈v, λv〉
= 〈v2,0, λv0,2〉+ 〈v1,1, λv1,1〉+ 〈v0,2, λv2,0〉
= ε(λ)〈v2,0, v0,2〉+ 〈v1,1, λv1,1〉+ ε̄(λ)〈v0,2, v2,0〉.

The first and the third terms are positive as ε̄(λ) = ε(λ) > 0. The second term is
also positive because by its choice, λ has only negative eigenvalues on T 1,1∩TR and
〈, 〉 is negative definite on it. Hence G is positive definite. Extended hermitianly,
G satisfies (1.3.5).

For the converse, denote F := EndHg(T ) T . Recall that F can either be a totally
real number field and the involution induced by 〈, 〉 is trivially the identity, or, F is
a CM-field with complex conjugation as involution. We use ω to show that F is a
CM-field and use G to show dimF T = 1. First note that each of ω and G induces
an endomorphism of T as follows:

ω(v, w) =: 〈v, ηw〉 and G(v, w) =: 〈v, λw〉.

We claim that both η and λ lie in F . Indeed, in view of (1.3.4), we have for all
v1,1 ∈ T 1,1 and w2,0 ∈ T 2,0:

0 = ω(v1,1, w2,0) = 〈v1,1, ηw2,0〉.

Hence ηT 2,0 ⊂ T 2,0 ⊕ T 0,2. On the other hand, for all v2,0 ∈ T 2,0,

0 = ω(v2,0, w2,0) = 〈v2,0, ηw2,0〉.

Hence ηT 2,0 = T 2,0. Similarly one shows that η preserves all other components of
the Hodge decomposition. Hence η commutes with Hg(Y ) and η ∈ F by Proposition
1.1.8. That λ ∈ F can be shown analogously.

Further, the anti-symmetry of ω implies that η̄ = −η, therefore F is a CM-field.
Write F = F0(ξ), where F0 is a totally real field with [F : F0] = 2. The symmetry
of G implies that λ ∈ F0. Next we use λ to show dimF T = 1.

Let us write T =
⊕m

i=1 F . Under this isomorphism, F acts on each copy of F
by left multiplication. Denote by Φ the set of embeddings of F0 into R, we have
the decompositions

T =
2m⊕
i=1

F0 and TR =
⊕
ρ∈Φ

2m⊕
i=1

T ρ,

where
⊕2m

i=1 T
ρ is the eigenspace of any p ∈ F0 to the eigenvalue ρ(p). The latter

decomposition is orthogonal to 〈, 〉, since for any p ∈ F0 we have

ρ′(p)〈vρ, wρ′〉 = 〈vρ, p(wρ′)〉 = 〈p(vρ), wρ′〉 = ρ(p)〈vρ, wρ′〉.

It follows that 〈, 〉 and λ are simultaneously diagonalizable. Recall that 〈, 〉 has
signature (2, n − 2), where n = dimQ T , and G(·, ·) = 〈·, λ·〉 is positive definite.
We see that λ must have exactly 2 positive and n − 2 negative eigenvalues, which
implies that m = 1. This concludes the proof. �
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Unfortunately, we could not discern any geometric interpretation of ω and G.
Now we turn to the period of a K3 surface of CM-type to gain more geometric
insight on complex multiplication. We find an arithmetic property, for that we
need some new terminology.

Definition 1.3.12. Let V be a finite dimensional Q-vector space and v ∈ VC.
(i) Denote by E(v) the smallest subspace V ′ of V with v ∈ V ′

C.
(ii) We call the width w(v) of v the dimension of E(v), i.e.

w(v) := dimQ E(v).

(iii) The field of definition of v is the smallest field F ⊂ C with v ∈ V ′
F .

(iv) We say that v is fully defined over a number field K under an embedding
ε : K ↪→ C if
(a) F = ε(K) where F is the field of definition of v, and
(b) w(v) = [K : Q].

(v) Let V be additionally endowed with a quadratic form 〈, 〉 and v1, v2 ∈ VC be
two vectors. If E(v1) ∩ E(v2) = 0 and 〈E(v1), E(v2)〉 ≡ 0, then we write

E(v1) ⊥ E(v2).

The width of a vector can be understood as a measure of its non-rationality. For
example, any vector u 6= 0 ∈ V has width 1, E(u) = Qu, and is fully defined over
Q. For more general vectors we give the following explicit description.

Lemma 1.3.13. Let V be a finite dimensional Q-vector space. A vector v ∈ VC is
fully defined over a number field K under an embedding ε : K ↪→ C if and only if v
can be written in the form

v = λ1e1 + · · ·+ λnen, (1.3.6)

where {ei} ⊂ V are Q-linearly independent vectors and {λi} ⊂ C are Q-linearly
independent numbers which generate ε(K) as a Q-vector space. In this case, we
have

E(v) = Qe1 ⊕ · · · ⊕Qen.

Proof. “⇐”: It is clear.
“⇒”: Denote n := w(v). Let {ei}i=1,...,n be a basis of E(v), since v ∈ E(v)C, we

can write
v = λ1e1 + · · ·+ λnen, λi ∈ C.

The coefficients {λi} must be Q-linearly independent, otherwise we can group the
ei’s and w(v) would be smaller. The field of definition of v is F = ε(K), and has
degree n. It follows that {λi} generate F as a Q-vector space. �

Now we give a characterization of, or more exactly a necessary condition for
complex multiplication by the period.

Proposition 1.3.14. Let Y be a K3 surface of CM-type over K, then there is an
element σ ∈ H2,0(Y ) which is fully defined over K under an embedding ε : K ↪→ C.

Proof. Let {ei}i=1,...,n be a Q-basis of T , then one can write a basis of H2,0(Y ) as

σ = λ1e1 + · · ·+ λnen, λi ∈ C.
We can norm λ1 = 1. Write further ε : K ↪→ C for the embedding induced by σ.
As K = EndHg(T ) T and for any a ∈ K we have on the one hand

a(σ) = a(
∑

i

λiei) =
∑

i

λi(
∑

j

ajiej) =
∑

j

(
∑

i

λiaji)ej ,
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and on the other hand

a(σ) = ε(a)σ = ε(a)
∑

j

λjej .

Comparing the coefficients of e1 we obtain the equality

ε(a) =
∑

i

λia1i.

This means that any element ε(a) ∈ ε(K) can be obtained as a Q-linear combination
of {λi}. That {λi} form moreover a minimal family can be seen from E(σ) = T
and w(σ) = dimQ T . The claim follows then from Lemma 1.3.13. �

One could ask whether being fully defined over a CM-field is a sufficient property
for the period σ to imply that the K3 surface is of CM-type. The answer is negative.
Indeed, σ possesses other necessary properties. We explain this.

In any basis {ei} of T one can write σ =
∑

i λiei for some {λi} ⊂ ε(K). While
σ does not depend on the choice of the basis, its coefficients {λi} are uniquely
determined by {ei}. In the following proposition we choose a particular basis in
order to determine the relationship between {λi} and {ei}. In the arguments we
use the proof of Proposition 1.3.10.

Proposition 1.3.15. Let Y be a K3 surface of CM-type over K and {ei} be
an orthogonal basis of the transcendental lattice T with respect to 〈, 〉. Let σ =∑

i λiei ∈ H2,0(Y ) with λ1 = 1 be fully defined over K under ε as claimed in
Proposition 1.3.14. Under the isomorphism T

∼→ K, e1 7→ 1, let us write ei = µie1
for a µi ∈ K. Let further λ = Φ(e1, e1) be as in the proof of Proposition 1.3.10.
Then {µi} satisfy

TrK/Q(λµiµ̄j) = 〈ei, ei〉δij . (1.3.7)

Moreover, the coefficients {λi} in σ are

λi =
〈e1, e1〉
〈ei, ei〉

ε(µ̄i). (1.3.8)

Proof. Since {ei} is an orthogonal basis we have

〈ei, ei〉δij = 〈ei, ej〉 = 〈µie1, µje1〉 = 〈µiµ̄je1, e1〉 = TrK/Q(λµiµ̄j).

We refer to the proof of Proposition 1.3.10 for the last equality. This establishes
the equality (1.3.7).

As to the coefficients {λi} notice that on the one hand

〈σ, ei〉 = 〈
∑

j

λjej , ei〉 = λi〈ei, ei〉,

and on the other hand

〈σ, ei〉 = 〈σ, µie1〉 = 〈µ̄iσ, e1〉 = ε(µ̄i)〈σ, e1〉 = ε(µ̄i)〈e1, e1〉.

Hence

λi =
〈e1, e1〉
〈ei, ei〉

ε(µ̄i).

�
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We see that for the K3 surface to be of CM-type, the conditions on σ are stronger
than just being fully defined over a CM-field.

Another consequence of Propositions 1.3.14 and 1.3.15 is that we can further
decompose T in an orthogonal way according to the arithmetic properties of σ we
just found. This is a preparation for Theorem 1.3.18 later.

Corollary 1.3.16. Let Y, σ,K and ε be as in Proposition 1.3.14. Write K = K0(η)
with η2 ∈ K0 totally negative. Then

(i) Reσ and i
ε(η) Imσ are fully defined over K0.

(ii) In the notation of Definition 1.3.12 we have an orthogonal decomposition

T = E(Reσ)⊕ E(Imσ).

Proof. Since Y is of CM-type, for any 0 6= v0 ∈ T there is an isomorphism ϕ : T ∼→
K, v0 7→ 1. Let λ = Φ(v0, v0) as in the proof of Proposition 1.3.10. We saw there
that the intersection form 〈, 〉 on T is given by

〈x, y〉 = 〈av0, bv0〉 = TrK/Q(λab̄) for any x = av0, y = bv0 ∈ T.
Write K = K0 ⊕ ηK0. We claim that the decomposition

T = ϕ−1(K0)⊕ ϕ−1(ηK0) (1.3.9)

is orthogonal with respect to 〈, 〉. Under the isomorphism ϕ it suffices to show that
K = K0 ⊕ ηK0 is orthogonal with respect to the bilinear form

(, ) : K ×K −→ Q, (a, b) 7−→ TrK/Q(λab̄).

Denote by S a CM-type of K. We have for any α ∈ K0 and ηβ ∈ ηK0

(α, ηβ) = TrK/Q(λαη̄β̄) = TrK/Q(λαβη̄)

=
∑

ρ∈S∪S̄

ρ(λαβη̄) =
∑
ρ∈S

ρ(λαβη̄) + ρ̄(λαβη̄)

=
∑
ρ∈S

ρ(λαβ)(ρ(η̄) + ρ̄(η̄)︸ ︷︷ ︸
=0

) = 0.

Hence the decomposition (1.3.9) is orthogonal.
Now let {e1, . . . , en} and {f1, . . . , fn} be an orthogonal basis of ϕ−1(K0) respec-

tively ϕ−1(ηK0). Here we let e1 play the rôle of v0 above. Under the isomorphism
ϕ we have

ei = µie1 and fi = νie1 for some µi ∈ K0 and νi ∈ ηK0.

While writing σ =
∑n

i=1 λiei +
∑n

i=1 γifi we see in view of (1.3.8) that

λi ∈ K0 and γi ∈ ηK0.

It follows that

Reσ =
n∑

i=1

λiei and Imσ =
n∑

i=1

γifi,

E(Reσ) ∼= K0 and E(Imσ) ∼= ηK0.

This shows at once the claims (i) and (ii). �

Let us now give a more precise meaning to the first part of the question (QK3)
posed in Introduction. In contrast with abelian varieties, there is no easy arithmetic
properties one can impose on the tangent bundle of a K3 surface. This makes
a definition of a rational Kähler metric inappropriate and we can hardly make
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geometric sense of the structures we found in Proposition 1.3.11. We remedy this
problem by considering a positive definite 3-dimensional space V ⊂ LR, where
L := H⊕3 ⊕ E8(−1)⊕2. The intersection

P(VC) ∩ Ω = {[σ] ∈ P(VC) | 〈σ, σ〉 = 0, 〈σ, σ̄〉 > 0}
of the projectivized space P(VC) and the period domain is geometrically an open
subset of a quadric in P2 and is called the twistor space associated to V . It is the
K3-analog of the twistor space for abelian varieties mentioned in Corollary 1.2.21.
One can consider V as a “Riemannian metric” on the underlying manifold M of
a K3 surface (all K3 surfaces are diffeomorphic). A point [σ] in the twistor space
endows M with a complex structure and makes it into a K3 surface Y and V can
be written as

V = R Reσ ⊕ R Imσ ⊕ Rω,
where ω is a real (1, 1)-form on Y with 〈ω, ω〉 > 0. It is a symplectic structure on
Y . Thus V contains information as well about the complex structure of Y (carried
by σ) as about a symplectic structure on Y (carried by ω). This resembles a Kähler
metric G on a complex manifold as it is defined by G(·, ·) := ω(I·, ·), where I is the
complex structure and ω is a Kähler form. In this sense V shall play the role of a
“Kähler metric” on Y .

The following theorem tends to answer the first part of the question (QK3). It
gives conditions on V such that a point [σ] in the twistor space, provided that it
defines a projective K3 surface, is fully defined over a CM-field. In Proposition
1.3.14 we showed that if a K3 surface is of CM-type, then its period is fully defined
over a CM-field, but as we already mentioned, the converse does not hold. Since
an exact characterization of complex multiplication by the period is missing, our
statement in the next theorem is weaker in the sense that the conditions on V are
not sufficient to characterize K3 surfaces of CM-type. In the other direction we can
only show that K3 surfaces of CM-type with high Picard number ≥ 10 possess such
V . First a technical lemma.

Lemma 1.3.17. Let V be a finite dimensional Q-vector space endowed with a non-
degenerate rational quadratic form. Let v1, v2 ∈ VC be fully defined over a number
field K under an embedding ε. Suppose E(v1) ⊥ E(v2). Then for any λ ∈ ε(K),
the vector

v1 + λv2

is fully defined over K under ε.

Proof. Although λv2 may not be in general fully defined over K, the condition
E(v1) ⊥ E(v2) guarantees that

w(v1 + λv2) = max{w(v1), w(λv2)} = w(v1).

This can be easily seen by writing out v1 + λv2 in the form (1.3.6). �

Theorem 1.3.18. Denote L := H⊕3⊕E8(−1)⊕2. Let V ⊂ LR be a positive definite
3-dimensional subspace of the form

V = Rv1 ⊕ Rv2 ⊕ Rv3,
with

(i) {v1, v2, v3} is an orthogonal basis.
(ii) All vi’s are fully defined over some totally real number field K0 under an

embedding ε : K0 ↪→ R.
(iii) E(vi) ⊥ E(vj) for i 6= j.
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(iv) ε−1( 〈vi,vi〉
〈vj ,vj〉 ) ∈ K0 is totally positive.

If a point

[σ] ∈ P(VC) ∩ Ω = {[σ] ∈ P(VC) | 〈σ, σ〉 = 0, 〈σ, σ̄〉 > 0}

defines a projective K3 surface, then a multiple of σ is fully defined over a CM-field.
Conversely, any K3 surface of CM-type Y with period σ and ρ(Y ) ≥ 10 possesses

a 3-dimensional positive definite subspace V ⊂ H2(Y,R) as above which contains
R Reσ ⊕ R Imσ.

Proof. Let V ⊂ LR and [σ] ∈ P(VC) ∩ Ω as in the claim. We can then write

σ = α1v1 + α2v2 + α3v3, αi ∈ C.

Let us abbreviate v2
i := 〈vi, vi〉. If one of the αi’s, say α3, is zero, then after scaling

we can suppose

σ = v1 + α2v2.

We have

0 = 〈σ, σ〉 = v2
1 + α2

2v
2
2

⇒ α2
2 = −v

2
1

v2
2

∈ ε(K0),

so ε−1(α2
2) is totally negative by hypothesis (iv). From (iii) it follows that σ is fully

defined over K0(α2), which is a CM-field by Lemma 1.1.2.
Now let us deal with the case where none of the αi’s is zero. Then we can write

σ = v1 + α2v2 + α3v3.

In order for σ to define a projective K3 surface we have three conditions on σ:

(a) 〈σ, σ〉 = 0, i.e. v2
1 + α2

2v
2
2 + α2

3v
2
3 = 0.

(b) 〈σ, σ̄〉 > 0, i.e. v2
1 + |α2|2v2

2 + |α3|2v2
3 > 0.

(c) There is an x in the orthogonal complement E(σ)⊥ of E(σ) in LQ with
〈x, x〉 > 0. In particular,

0 = 〈σ, x〉 = 〈v1, x〉+ α2〈v2, x〉+ α3〈v3, x〉. (1.3.10)

Since a vector with positive square cannot be perpendicular to V , at least one of
the vi’s satisfies 〈vi, x〉 6= 0. Let v1 be a such vector, then because of (1.3.10) also
〈v2, x〉 6= 0 or 〈v3, x〉 6= 0. Without restriction to the generality, we can assume
〈v2, x〉 6= 0. It follows that

α2 = −α3
〈v3, x〉
〈v2, x〉

− 〈v1, x〉
〈v2, x〉

. (1.3.11)

Substituting this in (a) we get

α2
3(v

2
2〈v3, x〉2 + v2

3〈v2, x〉2) + 2α3v
2
2〈v3, x〉〈v1, x〉+ v2

1〈v2, x〉2 + v2
2〈v1, x〉2 = 0,

⇒ α3 = − v2
2〈v3, x〉〈v1, x〉

v2
2〈v3, x〉2 + v2

3〈v2, x〉2

± 〈v2, x〉
v2
2〈v3, x〉2 + v2

3〈v2, x〉2
√
−v2

1v
2
2〈v3, x〉2 − v2

1v
2
3〈v2, x〉2 − v2

2v
2
3〈v1, x〉2.
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By hypothesis (iv), ε−1
(
(Imα3)2

)
6= 0 ∈ K0 is totally positive. It follows that

Reσ = v1 −
(
〈v1, x〉
〈v2, x〉

+ Reα3
〈v3, x〉
〈v2, x〉

)
v2 + (Reα3)v3,

Imσ = (Imα3)
(
−〈v3, x〉
〈v2, x〉

v2 + v3

)
.

By the last lemma and hypothesis (iii), Reσ is fully defined over K0, and 1
Im α3

Imσ

is fully defined over K0 for the same reason. Writing Reσ and Imσ out as in (1.3.6)
we see that because of the presence of v1 in Reσ, we have E(Reσ) ∩E(Imσ) = 0.
Hence σ is fully defined over K0(i Imα3) which is a CM-field.

Conversely, let Y be a K3 surface of CM-type over K. In view of Corollary 1.3.16
we can set

v1 := Reσ and v2 :=
i

ε(η)
Imσ.

Clearly, ε−1(v2
1

v2
2
) = −η2 ∈ K0 is totally positive.

Now it remains to find v3 with the claimed properties. Denote n := 1
2 dimQ T .

The hypothesis ρ(Y ) ≥ 10 ensures that n ≤ 6 and ρ(Y ) − n ≥ 4. As v2
1 > 0, the

intersection form has signature (1, n− 1) on E(v1). On the other hand, since Y is
projective, the signature of 〈, 〉 on NS(Y )Q is (1, ρ(Y ) − 1), hence 〈, 〉 is indefinite
on NS(Y )Q. Let {e1, . . . , en} be an orthogonal basis of E(v1) with 〈en, en〉 > 0
and 〈ei, ei〉 < 0,∀i 6= n. Since ρ(Y ) ≥ 10 and any indefinite quadratic form over Q
of rank ≥ 5 represents 0 (hence any rational number), one can find a f1 ∈ NS(Y )Q
with 〈f1, f1〉 = 〈e1, e1〉. Then consider the orthogonal complement N1 of Qf1 in
NS(Y )Q. The intersection form 〈, 〉 is still indefinite, then one can choose f2 ∈ N1

with 〈f2, f2〉 = 〈e2, e2〉. The condition ρ(Y )− n ≥ 4 guarantees that one finds thus
successively n vectors {fi} in NS(Y )Q with 〈fi, fi〉 = 〈ei, ei〉. If we write

v1 =
n∑

i=1

λiei

where {ei} is an orthogonal basis of E(v1), set

v3 :=
n∑

i=1

λifi

with the same coefficients. We have then 〈v3, v3〉 = 〈v1, v1〉 and E(v1) ⊥ E(v3),
also E(v2) ⊥ E(v3). Now {v1, v2, v3} satisfy all the requirements. This completes
the proof. �
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2. Mirror symmetry, generalized Calabi-Yau structures
and complex multiplication

Summary of results: The goal of this section is to show Theorem 2.2.13
and Theorem 2.4.4. They describe when a mirror of an abelian variety or a K3
surface of CM-type is again of CM-type. For abelian varieties it suffices to choose a
rational Kähler metric and a rational B-field, but for K3 surfaces we could only find
more complicated conditions. Lemma 2.2.10, Lemma 2.2.11 and Proposition 2.4.3
contain detailed calculations of mirror partners and are decisive for the theorems.
Moreover, Section 2.3 contains an explicit construction of a pair of isogenous mirror
abelian varieties of CM-type, it shows that the converse of Theorem 2.2.13 does not
hold.

This section is organized as follows. We recall in Section 2.1 the definition of
generalized Calabi-Yau structures which provide a more unified point of view for
mirror symmetry for different manifolds.

In Section 2.2 we use the generalized complex structure induced by a generalized
Calabi-Yau structure to formulate mirror symmetry for generalized complex tori
(i.e. real tori endowed with a generalized Kähler structure). Then we show Theorem
2.2.13.

Section 2.3 contains a pair of isogenous mirror abelian varieties of CM-type which
shall refute the converse of Theorem 2.2.13.

In Section 2.4 we formulate mirror symmetry for K3 surfaces and calculate in
Proposition 2.4.3 a special kind of mirror partners. Then we prove Theorem 2.4.4.

2.1. Generalized Calabi-Yau structures.

Hitchin introduced generalized complex geometry in his seminal paper [Hi] (see
also among others [Gu], [H2] and [Be] for further works). A novelty is that one
considers structures on the sum T ⊕ T ∗ of the tangent and cotangent bundles of
a smooth manifold. It offers among other advantages a unified point of view for
complex and symplectic structures. A fundamental structure is

Definition 2.1.1. A generalized Calabi-Yau structure (GCYS) on a smooth ma-
nifold of dimension 2m is a closed even complex form or a closed odd complex form
ϕ which is a pure spinor, i.e. its annihilator

Eϕ := {v + ξ ∈ (T ⊕ T ∗)C | (v + ξ) · ϕ := ι(v)ϕ+ ξ ∧ ϕ = 0} (2.1.1)

is maximal and Eϕ ∩ Eϕ = 0 at each point.

We are most interested in the following two GCYSs. If X is a smooth complex
manifold of dimension m, denote by σ a holomorphic form of top degree m and let
B be a real closed 2-form on X, then

ϕ := (expB)σ := (1 +B +
B2

2
+ · · · ) ∧ σ

is a GCYS. It carries information about the complex structure of X. If M is a
symplectic manifold of dimension 2m with symplectic structure ω and B is again
a real closed 2-form, then

ψ := exp(B + iω) := 1 +B + iω +
1
2
(B + iω)2 + · · ·



38 2. MS, generalized Calabi-Yau structures and CM

is also a GCYS (see [Hi]). It carries information about the symplectic structure of
M . The operator expB is called the B-transform. We will say that B is rational
if its class [B] lies in H2(X,Q). Roughly speaking, a mirror map between two
manifolds endowed with both complex and symplectic structures shall exchange
these two structures. However, technically this goes somewhat differently for K3
surfaces and abelian varieties. We first present mirror symmetry and the behavior
of complex multiplication under a mirror map for abelian varieties.

2.2. Abelian varieties. The aim of this section is to show Theorem 2.2.13. It gives
a sufficient condition which ensures that complex multiplication is transmitted to
the mirror partners, namely, it suffices to choose a rational Kähler metric G and
a rational B-field for any mirror of (X,G,B) to be of CM-type. Mirror symmetry
for abelian varieties was treated in [GLO]. Some of their results can be rephrased
more naturally in terms of generalized complex structures (see [Gu, Chap. 6] or
[K, §8]).

Definition 2.2.1. A generalized complex structure on a smooth manifold Y is a
bundle map I : TY ⊕ T ∗Y −→ TY ⊕ T ∗Y satisfying

(i) I2 = −id,
(ii) I preserves the pseudo-Euclidean metric q on TY ⊕ T ∗Y , where

q((a1, a2), (b1, b2)) := −〈a1, b2〉 − 〈a2, b1〉,
(iii) I is integrable with respect to the Courant bracket.

We will only deal with constant generalized complex structures, so the condition
(iii) is not relevant for us. The JA×Â and IωA

which appeared in [GLO] are examples
of generalized complex structures. Hitchin shows that some of them may be induced
by GCYSs:

Proposition 2.2.2 (Hitchin). Any GCYS ϕ induces a generalized complex struc-
ture I by setting

I
∣∣
Eϕ

:= i · Id and I
∣∣
Ēϕ

:= −i · Id,

where Eϕ respectively Ēϕ is the annihilator of ϕ respectively ϕ̄.

For the purpose of mirror symmetry we are more interested in a pair of general-
ized complex structures.

Definition 2.2.3. A generalized Kähler structure (GKS) on a smooth manifold
Y is a pair (I,J ) of commuting generalized complex structures such that G(·, ·) :=
q(·, IJ ·) is a positive definite symmetric bilinear form on TY ⊕ T ∗Y .

Using GKS, one can define mirror symmetry for a more general class of tori.

Definition 2.2.4. A generalized complex torus (T, I,J ) is a real torus T endowed
with a GKS (I,J ).

Definition 2.2.5. Two generalized complex tori (T = V/Γ, I,J ) and (T′ =
V ′/Γ′, I ′,J ′) are mirror partners if there is a lattice isomorphism

ϕ : Γ⊕ Γ∗ −→ Γ′ ⊕ Γ
′∗,

such that q(·, ·) = q′(ϕ·, ϕ·), I ′ = ϕJϕ−1, and J ′ = ϕIϕ−1. We call ϕ a mirror
map. We also denote by ϕ its R-linear extension.
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This generality is suitable for the notion of mirror symmetry for N=2 lattice
OPE-algebras which we will construct on any generalized complex torus in Section
3.3. However, for the study of complex multiplication under mirror symmetry we
specialize to the following GKS. Let (T,G,B) be a triple consisting of a complex
torus T = Cg/Γ with complex structure I considered as an R-linear map on ΓR with
I2 = − Id. It is also determined by a holomorphic form σ of top degree g by setting
the eigenvalue of I to −i on the annihilator of σ and to i on the complement.
Further, B is an arbitrary real 2-form in H2(T,R) and G is a Kähler metric, it
induces a Kähler form ω(·, ·) := G(·, I·). We will always assume that B and G are
constant. Let us denote by I and J the generalized complex structures induced
by the GCYSs ϕ = (expB)σ and ψ = exp(B + iω) (see Proposition 2.2.2). Easy
calculations show that

I =
(

1 0
B 1

)(
I 0
0 −It

)(
1 0
−B 1

)
=
(

I 0
BI + ItB −It

)
,

J =
(

1 0
B 1

)(
0 −ω−1

ω 0

)(
1 0
−B 1

)
=
(

ω−1B −ω−1

ω +Bω−1B −Bω−1

)
=
(

−IG−1B IG−1

GI −BIG−1B BIG−1

)
,

(2.2.1)

and (I,J ) forms a GKS. For the positivity of q(·, IJ ) just notice that

IJ =
(

G−1B −G−1

BG−1B −G −BG−1

)
and qIJ =

(
1 B
0 1

)(
G 0
0 G−1

)(
1 B
0 1

)t

.

We say

Definition 2.2.6. The triple (T,G,B) induces a generalized complex torus (T, I,J ),
with (I,J ) as in (2.2.1).

Now it is clear that Definition 2.2.5 of mirror symmetry makes sense: morally,
for the generalized complex tori induced by (T,G,B) respectively (T ′, G′, B′), a
mirror map exchanges the complex structure I with the symplectic structure J ′
and the symplectic structure J with the complex structure I ′. Thus, the language
of GKS provides a conceptually clean approach to mirror symmetry. We formulate
this more precisely in the following

Definition 2.2.7. We say that two complex tori (T,G,B) and (T ′, G′, B′) with
complex structure I respectively I ′, a constant Kähler metric G respectively G′ and
a B-field B respectively B′ are mirror partners, if the generalized complex tori they
induce as in Definition 2.2.6 are mirror of each other.

Remark 2.2.8. Suppose (T, I,J ) and (T′, I ′,J ′) are mirror generalized complex
tori and (T, I,J ) is induced by a triple (T,G,B). In general however, (T′, I ′,J ′)
may not be induced by some triple (T ′, G′, B′). Definition 2.2.7 concerns only those
mirror pairs where both partners are induced.

In order to prove Theorem 2.2.13 we give the next lemma which first studies the
rationality of the composition IJ on a generalized complex torus (T, I,J ), then
links the rationality of G and B to the rationality of IJ of the GKS they induce.
The rationality of IJ is defined as follows.

Definition 2.2.9. Let (T = V/Γ, I,J ) be a generalized complex torus. Denote

Λ := Γ⊕ Γ∗.
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We identify the tangent space of T with ΓR. We say that the composition IJ is
defined over Q if IJ preserves the rational lattices:

IJ : ΛQ −→ ΛQ.

Lemma 2.2.10. Let (T, I,J ) be a generalized complex torus. Denote by C± ⊂ ΛR
the eigenspace of IJ with eigenvalue ±1. Then

(i) We have

C± = (± Id+IJ )(ΛR) = ImageΛR
(± Id+IJ ),

and the decomposition

ΛR = C+ ⊕ C−. (2.2.2)

We have I = −J on C+ and I = J on C−. This decomposition is ortho-
gonal with respect to q and it is defined over Q if and only if IJ is defined
over Q.

(ii) If (T, I,J ) is induced by (T,G,B), then we have

C± = GraphΓR
(∓G+B),

and q is positive definite on C+ and negative definite on C−. Moreover, the
following is equivalent:
(a) The decomposition (2.2.2) is defined over Q,
(b) IJ is defined over Q,
(c) G and B are both rational.

Proof. The orthogonality of (2.2.2) follows from I,J ∈ O(q). To prove (ii) it
suffices to note that

IJ
(

1
∓G+B

)
= ±

(
1

∓G+B

)
.

�

The following lemma shows how the lattice of mirror partners is related to each
other.

Lemma 2.2.11. Let (T, I,J ) and (T′, I ′,J ′) be mirror generalized complex tori
and ϕ a mirror map between them. Then

(i) ϕ respects the decomposition (2.2.2), i.e. ϕ : C± → C ′±. In particular,
C+ ⊕ C− is defined over Q if and only if C ′+ ⊕ C ′− is defined over Q.

(ii) If (T, I,J ) and (T′, I ′,J ′) are induced by (T,G,B) respectively (T ′, G′, B′),
then ϕ induces isomorphisms ψ± : ΓR

∼→ Γ′R by

ϕ(a, (∓G+B)a) = (ψ±a, (∓G′ +B′)ψ±a), (2.2.3)

and we have
(a) G(a, b) = G′(ψ±a, ψ±b) for all a, b ∈ ΓR.
(b) I ′ = ψ+ ◦ I ◦ ψ−1

+ = ψ− ◦ I ◦ ψ−1
− .

Proof. (i) is immediate. For (ii)(a) we make an explicit calculation

q ((a, (∓G+B)a), (b, (∓G+B)b)) = ±2G(a, b) ∀a, b ∈ ΓR.

Then use q(·, ·) = q′(ϕ·, ϕ·) to get the claim. For (ii)(b) we verify the equality for
ψ−, the case of ψ+ is similar. Recalling the definition of the generalized Kähler
structure from (2.2.1) we have for any (a′, (G′ +B′)a′) ∈ C ′−:

I ′
(

a′

(G′ +B′)a′

)
=
(
I ′a′

∗

)
, (2.2.4)
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we are only interested in the first component. Using (2.2.3) the left hand side of
(2.2.4) is

ϕJϕ−1

(
a′

(G′ +B′)a′

)
=
(

ψ−Iψ
−1
− a′

(G+B)ψ−Iψ−1
− a′

)
Comparing with the right hand side of (2.2.4), we obtain (ii)(b). �

As mirror symmetry exchanges complex and symplectic structures, two mirror
Calabi-Yau manifolds are in general very different as complex manifolds. This
remains true for abelian varieties, but surprisingly the lemmas above lead to the
following result which shows: it suffices that the composition IJ is defined over Q
for the mirror to be an isogenous complex torus. If the reader is not familiar with
isogeny, see Lemma 2.3.2 for explicit calculations of isogeny.

Proposition 2.2.12. Let (T,G,B) and (T ′, G′, B′) be mirror partners. If G and
B are both rational, then T and T ′ are isogenous.

Proof. By Lemma 2.2.10 (ii), G and B are both rational if and only if IJ is defined
over Q. Then Lemma 2.2.11 (i) implies that G′ and B′ are rational. By (2.2.3) the
ψ± are then defined over Q. Finally, from (ii)(b) of the same lemma, it follows that
some integral multiple of ψ± is actually an isogeny between T and T ′. �

This immediately implies the following

Theorem 2.2.13. Let (X,G,B) and (X ′, G′, B′) be mirror abelian varieties. Sup-
pose X is of CM-type. If both G and B are rational, then X and X ′ are isogenous.
In particular, X ′ is also of CM-type.

At this stage using Theorem 3.4.3 (iii) we can answer one direction of the question
(QAV) posed in Introduction positively. In the next section we will show that the
converse of Theorem 2.2.13 however does not hold, which shows that the other
direction of (QAV) is not true.

2.3. An example of mirror abelian varieties of CM-type.

In this section we show the following proposition. It says that the converse of
Theorem 2.2.13 does not hold. This has as consequence that one of the directions
of the question (QAV) posed in Introduction is not true. To see this, one has to
use Theorem 3.4.3 (ii).

Proposition 2.3.1. There are mirror abelian varieties (X,G,B) and (X ′, G′, B′),
such that X and X ′ are isogenous and of CM-type, but neither IJ nor I ′J ′ is
defined over Q, where (I,J ) and (I ′,J ′) denote their induced GKS.

We shall eventually construct an explicit example of such mirror pairs, we need
first some preparation.

Lemma 2.3.2. Let T ∼= Cg/ΠZ2g and T ′ ∼= Cg/Π′Z2g be complex tori with period
matrix Π and Π′ respectively. Then T and T ′ are isogenous if and only if there is
a complex matrix C ∈ GL(g,C) and a rational matrix γ ∈ GL(2g,Q), such that

Π′ = CΠγ. (2.3.1)

In particular, if there is a such matrix γ, then I ′ = γ−1Iγ and if G is a Kähler
metric on T then G′(·, ·) := G(γ·, γ·) is a Kähler metric on T ′.
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Proof. It is easy to see that the rational respectively analytic representation of
any isogeny provides the matrix γ respectively C. For the converse, recall that in
general, the rational representation of I of a complex torus with period matrix Π
is I =

(
Π
Π

)−1 ( i1 0
0 −i1

) (
Π
Π

)
. Replacing

(
Π
Π

)
by
(

Π′

Π
′

)
=
(

C 0
0 C̄

) (
Π
Π

)
γ for I ′, we get

I ′ = γ−1Iγ. It follows that some integral multiple of γ is an isogeny. The rest of
the claim is obvious. �

Next we give a special form (see (2.3.2) below) of the period matrix, which makes
the construction of an isogenous mirror easier. Later we will give an abelian variety
of CM-type over a cyclotomic field, whose period matrix can be written in the form
(2.3.2). First a lemma which expresses I explicitly.

Lemma 2.3.3. Let Γ be the lattice of a complex torus T generated by e1, . . . , e2g.
Suppose that the period matrix Π of T in the complex basis {e1, . . . , eg} has the
form Π = (1 T1 + T2i), where T1 and T2 are real g× g matrices, then in the basis
{e1, . . . , e2g} we have

I =
(
−T1T

−1
2 −T1T

−1
2 T1 − T2

T−1
2 T−1

2 T1

)
.

Proof. The proof is a matter of calculating the matrix I =
(

Π
Π

)−1 ( i1 0
0 −i1

) (
Π
Π

)
,

where (
Π
Π

)−1

=
i

2

(
T1T

−1
2 − i −T1T

−1
2 − i

−T−1
2 T−1

2

)
.

�

Proposition 2.3.4. If an abelian variety X has a period matrix of the form

Π =
(
1 Ai

)
, (2.3.2)

with a real matrix A ∈ GL(g,R), then by choosing a suitable constant Kähler met-
ric G and by setting B = 0, one can find an isogenous mirror abelian variety
(X ′, G′, B′).

Proof. Suppose that Π has the form in (2.3.2). Then by Lemma 2.3.3 we have
I =

(
0 −A

A−1 0

)
. Let us choose the metric

G =
(
−ρ 0
0 −AtρA

)
,

where ρ is a symmetric negative definite matrix with integral coefficients. One
verifies that G is compatible with I, i.e. ItGI = G, so G is a Kähler metric.
Setting B = 0, then by (2.2.1) I and J have the form

I =


0 −A 0 0

A−1 0 0 0
0 0 0 −A−1t

0 0 At 0

 , J =


0 0 0 ρ−1A−1t

0 0 −A−1ρ−1 0
0 ρA 0 0
−Atρ 0 0 0

 .

Further, we choose

C = ρ and γ =
(
ρ−1 0
0 1

)
to get a new period matrix

Π′ = CΠγ =
(
1 ρAi

)
.
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Then by Lemma 2.3.2 the complex torus X ′ := Cg/Π′Z2g has complex structure
respectively Kähler metric

I ′ = γ−1Iγ =
(

0 −ρA
A−1ρ−1 0

)
resp. G′ = γtGγ =

(
−ρ−1 0

0 −AtρA

)
.

Setting B′ = 0 we get

I ′ =


0 −ρA 0 0

A−1ρ−1 0 0 0
0 0 0 −ρ−1A−1t

0 0 Atρ 0

 , J ′ =


0 0 0 A−1t

0 0 −A−1 0
0 A 0 0
−At 0 0 0

 .

By easy calculations, one verifies that (X,G,B) and (X ′, G′, B′) as defined above
are mirror partners with the mirror map

ϕ =


0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 −1

 : Γ⊕ Γ∗ −→ Γ′ ⊕ Γ
′∗.

Hence, to any abelian variety with period matrix Π = (1 Ai) by choosing a suitable
G and B-field one can find an isogenous mirror abelian variety. �

In order to obtain a mirror pair of CM-type, let us consider the abelian variety
over a cyclotomic field Q(ξ) of degree 4 which we constructed in Example 1.2.13.
Recall the notations. Denote

w := e
2π
5 i =

1
4
(−1 +

√
5) +

i

2

√
1
2
(5 +

√
5),

and the four embeddings are σk : ξ 7→ wk, k = 1, . . . , 4. We chose the CM-type
Φ = {σ1, σ2} and the lattice Γ = OK = Z[ξ]. Let us fix the following generators for
Γ:

Γ = Z · 1⊕ Z(ξ + ξ−1)⊕ Z(ξ − ξ−1)⊕ Z(ξ2 − ξ−2).
Then under Φ the lattice is

Φ(OK) =
(

1 w + w−1 w − w−1 w2 − w−2

1 w2 + w−2 w2 − w−2 w4 − w−4

)
Z =:

(
Z Ai

)
Z.

The left two columns form a real matrix Z, while the right two columns form a
purely imaginary matrix which we write as Ai where A is a real matrix. Choosing
the first two generators to be a complex basis of Φ(OK) ⊗Z R, we get the period
matrix

Π =
(
1 Z−1Ai

)
in the form (2.3.2) with the real matrix Z−1A. Together with

G =
(
−ρ 0
0 −AtZ−1tρZ−1A

)
and B = 0,

the abelian variety (X,G,B) possesses an isogenous mirror (X ′, G′, B′) as con-
structed in Proposition 2.3.4.

The last step to get (I,J ) such that the composition IJ is not defined over
Q is to choose an appropriate ρ. Indeed, as claimed by Lemma 2.2.10 (ii), IJ is
defined over Q if and only if G and B are both rational. We set B = 0 and choose

ρ =
(
−2 0
0 −1

)
,
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then

G =


2 0 0 0
0 1 0 0
0 0 5 + 2√

5
2− 1√

5

0 0 2− 1√
5

3− 2√
5

 ,

which is not rational. Hence IJ is not defined over Q, although X is of CM-
type and has a mirror (X ′, G′, B′) of CM-type over the same field K. This shows
Proposition 2.3.1.

2.4. K3 surfaces.

In this section we define mirror symmetry for K3 surfaces in terms of GCYSs.
Then we specialize to a particular kind of mirror maps, namely χ2 = Id, we call χ
“involutive” (see Definition 2.4.2), and we calculate explicitly an involutive mirror
partner (see Proposition 2.4.3). In Theorem 2.4.4 we give sufficient conditions for
complex multiplication to be transmitted to an involutive mirror.

Let Y be a (not necessarily projective) K3 surface. Recall the Mukai pairing 〈, 〉
on H∗(Y,Z) from Section 1.3: for α, β ∈ H∗(Y,Z) we have

α ∧M β := −α0 ∧ β4 + α2 ∧ β2 − α4 ∧ β0 =: 〈α, β〉w,
where w is a generator of H4(Y,Z) with the orientation σ ∧ σ̄ = λw, λ > 0. Let
furthermore w∗ ∈ H0(Y,Z) be the vector with 〈w∗, w〉 = −1. For a triple (Y, ω,B)
where ω is a real (1,1)-form with 〈ω, ω〉 > 0 and B is arbitrary in H2(Y,R), the
two GCYSs which we will use are as already mentioned in Section 2.1:

ϕ := (expB)σ = σ + 〈B, σ〉w and

ψ := exp(B + iω) = w∗ +B + iω +
1
2
(〈B,B〉 − 〈ω, ω〉+ 2i〈B,ω〉)w.

Consider the following spaces

W1 : = R Reϕ⊕ R Imϕ

= R(Reσ + 〈B,Reσ〉w)⊕ R(Imσ + 〈B, Imσ〉w)
=: Rw11 ⊕ Rw12,

W2 : = R Reψ ⊕ R Imψ

= R(w∗ +B +
1
2
(〈B,B〉 − 〈ω, ω〉)w)⊕ R(ω + 〈B,ω〉w)

=: Rw21 ⊕ Rw22.

A few properties of these spaces are useful for the calculations in the next propo-
sition. One can easily show that the operator expB is orthogonal with respect to
the Mukai pairing, i.e.

〈(expB)α, (expB)β〉 = 〈α, β〉.
Hence because of 〈σ, exp(iω)〉 = 0 we have immediately 〈W1,W2〉 ≡ 0. Further-
more, the four basis vectors {wij} are orthogonal to each other and we have

〈w11, w11〉 = 〈w12, w12〉 = 〈Reσ,Reσ〉 and 〈w21, w21〉 = 〈w22, w22〉 = 〈ω, ω〉.
Hence W1⊕W2 is a positive definite 4-dimensional subspace of H∗(Y,R). We fix an
orientation by taking the bases {w11, w12} and {w21, w22} to be positive oriented
bases of W1 respectively W2. For another triple (Y ′, ω′, B′), denote by w′ij ,W

′
i the

corresponding objects. We define mirror symmetry for K3 surfaces as follows.
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Definition 2.4.1. Consider triples like (Y, ω,B), where Y is a (not necessarily
projective) K3 surface, ω is a real (1,1)-form with 〈ω, ω〉 > 0 and B is an arbitrary
element of H2(Y,R). We say that two triples (Y, ω,B) and (Y ′, ω′, B′) are mirror
partners if there is a (Mukai) lattice isomorphism

χ : H∗(Y,Z) ∼−→ H∗(Y ′,Z),

such that
χ(W1) = W ′

2 and χ(W2) = W ′
1,

while preserving their orientation. We call χ a mirror map.

One sees easily that the inverse map χ−1 is also a mirror map. Denote

U := H(−1) and L := H⊕3 ⊕ E8(−1)⊕2.

Fixing the isomorphisms

H∗(Y,Z) ∼= U ⊕ L and H∗(Y ′,Z) ∼= U ⊕ L,
we can consider χ as a lattice isomorphism:

χ : U ⊕ L ∼−→ U ⊕ L.
Hence it makes sense to talk about χ2 = χ ◦ χ. For calculations we consider a
special kind of mirror map.

Definition 2.4.2. We say that (Y, ω,B) and (Y ′, ω′, B′) are involutive mirror
partners if their mirror map χ satisfies χ2 = Id. Denote furthermore

U ′ := χ(U), v := χ(w) and v∗ := χ(w∗).

The following proposition gives explicitly the mirror of a triple (Y, ω,B) under
an involutive mirror map. Yet some additional assumptions are made.

Proposition 2.4.3. Let (Y, ω,B) and (Y ′, ω′, B′) be involutive mirrors under a
mirror map χ. Suppose additionally that

〈U ′, U〉 ≡ 0 and 〈B, v〉 = 〈ω, v〉 = 0.

Then (Y ′, ω′, B′) is given by

Reσ′ = v∗ + χ(B + 〈B, v∗〉v) +
1
2
(〈B,B〉 − 〈ω, ω〉)v,

Imσ′ = χ(ω + 〈ω, v∗〉v) + 〈B,ω〉v,
B′ = χ(Reσ − v∗ + 〈Reσ, v∗〉v) + 〈B,Reσ〉v,
ω′ = χ(Imσ + 〈Imσ, v∗〉v) + 〈B, Imσ〉v.

Proof. The condition 〈U ′, U〉 ≡ 0 implies U ′ ⊂ L. Lemma 6.7 in [H3] states that
there is an orthogonal decomposition

L = U ′ ⊕ U
′⊥ =: U ′ ⊕ L′.

Since χ is involutive, we have χ(L′) = L′. Then one can write

Reσ = −〈Reσ, v〉v∗ − 〈Reσ, v∗〉v + ν1,

Imσ = −〈Imσ, v〉v∗ − 〈Imσ, v∗〉v + ν2,

where ν1, ν2 ∈ L′R are given by

ν1 := Reσ + 〈Reσ, v〉v∗ + 〈Reσ, v∗〉v,
ν2 := Imσ + 〈Imσ, v〉v∗ + 〈Imσ, v∗〉v.
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Set λ := 〈Reσ, v〉− i〈Imσ, v〉 and σ′ := λσ one gets 〈Imσ′, v〉 = 0. We will see that
ω′ and B′, which depend on σ, are however independent of the scaling of σ. So we
can assume that 〈Imσ, v〉 = 0, and hence

Reσ = −〈Reσ, v〉v∗ − 〈Reσ, v∗〉v + ν1,

Imσ = −〈Imσ, v∗〉v + ν2.

Now we calculate B′. Since χ(W1) = W ′
2, write

χ(w11) = α1w
′
21 + α2w

′
22 and χ(w12) = β1w

′
21 + β2w

′
22.

As we supposed 〈U ′, U〉 ≡ 0, β1 must equal to 0. Since χ preserves orthogonality,
we have α2 = 0. It follows that

χ(w11) = α1w
′
21 and χ(w12) = β2w

′
22.

From
〈w11, w11〉 = 〈w12, w12〉 = 〈χ(w11), χ(w11)〉 = 〈χ(w12), χ(w12)〉

we have
α1 = ±β2.

Further, our assumption χ2 = Id implies

w11 = α1χ(w′21) and w12 = β2χ(w′22).

By rescaling σ with α1 and by the orientation preserving property of χ we can
assume

χ(w11) = w′21 and χ(w12) = w′22. (2.4.1)
Writing the first equation out we get

−〈Reσ, v〉w∗−〈Reσ, v∗〉w+χ(ν1)+〈B,Reσ〉v = w∗+B′+
1
2
(〈B′, B′〉−〈ω′, ω′〉)w.

The terms in w∗ and w on both sides cancel out since we assumed 〈U ′, U〉 ≡ 0. A
closer look at the w∗-terms shows that our scaling implies 〈Reσ, v〉 = −1. Writing
χ(ν1) out we get

⇒ B′ = χ(Reσ − v∗ + 〈Reσ, v∗〉v) + 〈B,Reσ〉v.
From the second equation in (2.4.1) we get

−〈Imσ, v∗〉w + χ(ν2) + 〈B, Imσ〉v = ω′ + 〈B′, ω′〉w
⇒ ω′ = χ(Imσ + 〈Imσ, v∗〉v) + 〈B, Imσ〉v.

Let us now turn to W2. Again, χ2 = Id implies

χ(W2) = W ′
1 ⇔ χ(W ′

1) = W2.

Let us write

χ(w′11) = γ1w21 + γ2w22 and χ(w′12) = δ1w21 + δ2w22.

For the same reason as for σ we can assume 〈Imσ′, v〉 = 0. Hence δ1 = γ2 = 0 and
we can assume γ1 = 1 = ±δ2. Applying again χ = χ−1 and by orientation reasons
we get

χ(w21) = w′11 and χ(w22) = w′12. (2.4.2)
From the first equation we have

v∗ + χ(B) +
1
2
(〈B,B〉 − 〈ω, ω〉)v = Reσ′ + 〈B′,Reσ′〉w. (2.4.3)

We pair both sides with w∗ and get

〈χ(B), w∗〉 = −〈B′,Reσ′〉.
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Thus (2.4.3) becomes

⇒ Reσ′ = v∗ + χ(B + 〈B, v∗〉v) +
1
2
(〈B,B〉 − 〈ω, ω〉v).

One sees that if 〈B, v〉 = 0, then χ(B + 〈B, v∗〉v) lies in L′R and will not give
unwished terms in w∗ (as σ′ is a 2-form). This justifies our assumption on B.

We use the second equation of (2.4.2) to determine Imσ′. We have

χ(ω) + 〈B,ω〉v = Imσ′ + 〈B′, Imσ′〉w.
Again we pair both sides with w∗ and get

〈χ(ω), w∗〉 = −〈B′, Imσ′〉.
So

⇒ Imσ′ = χ(ω + 〈ω, v∗〉v) + 〈B,ω〉v.
Also here we have to impose 〈ω, v〉 = 0 in order to avoid w∗ on the right hand side.
This completes the proof. �

For a sufficient condition for complex multiplication to be transmitted via mirror
symmetry, we consider a special ω. Let Y be a K3 surface of CM-type over K =
K0(η) with ρ(Y ) ≥ 10, η2 ∈ K0 is totally negative, and let σ ∈ H2,0(Y ) be fully
defined over K under ε (see Proposition 1.3.14). As we already saw in Corollary
1.3.16

v1 := Reσ and v2 :=
i

ε(η)
Imσ

are fully defined over K0 and

E(v1) ⊥ E(v2).

Denote n := dimQ E(v2) and let {ei} be an orthogonal basis of E(v2). Since
ρ(Y ) ≥ 10, n ≤ 6 and the intersection form is indefinite on NS(Y )Q, one finds
successively pairwise orthogonal vectors {fi} ⊂ NS(Y )Q with

〈fi, fi〉 = 〈ei, ei〉.
If one writes

Imσ =
n∑

i=1

λiei,

then set

ω :=
n∑

i=1

λifi

with the same coefficients. Then ω has the properties
(i) There is an isometry

E(Imσ) −→ E(ω),
ei 7−→ fi.

(ii) 〈ω, ω〉 = 〈Imσ, Imσ〉 > 0.

Theorem 2.4.4. Let (Y ′, ω′, B′) be an involutive mirror of (Y, ω,B) under a mirror
map χ, where Y is a K3 surface of CM-type with ρ(Y ) ≥ 10. Suppose further the
following conditions:

(i) 〈U ′, U〉 ≡ 0 and χ
∣∣
L′ = IdL′ .

(ii) ω is as constructed above.
(iii) B = −v∗ + Reσ, where σ ∈ H2,0(Y ) is fully defined over K.
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(iv) 〈ω, v〉 = 〈B, v〉 = 0.
Then Y ′ is also of CM-type over K.

Proof. In view of the last proposition, conditions (i) and (iv) imply that there is a
σ′ ∈ H2,0(Y ′) with

Reσ′ = v∗ +B + (〈B, v∗〉+ 1
2
(〈B,B〉 − 〈ω, ω〉))v

Imσ′ = ω + (〈ω, v∗〉+ 〈B,ω〉)v.
Then, in view of 〈ω, ω〉 = 〈Imσ, Imσ〉 = 〈Reσ,Reσ〉, (ii) and (iii) guarantee that

Reσ′ = Reσ and Imσ′ = ω.

Moreover we have a Hodge isometry

T = E(Reσ)⊕ E(Imσ) ∼−→ E(Reσ)⊕ E(ω).

Hence Y ′ is also of CM-type over K. �

Remark 2.4.5. In the case of the proposition above, we have

Reσ′ = Reσ, Imσ′ = ω and ω′ = Imσ.

We see that the mirror map χ is in fact a hyperkähler rotation (see [H5] for more
details on the latter notation).
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3. Lattice OPE-algebra, rationality and complex multiplication
for abelian varieties

Summary of results: We construct a lattice OPE-algebra in Section 3.2 which
generalizes the lattice vertex algebra in [Kac, §5.4]. We give explicitly its parti-
tion function in Remark 3.2.2, calculations are in Appendix A. We explain how to
associate a superconformal lattice OPE-algebra to a generalized complex torus in
Section 3.3. We show in Appendix B that it is isomorphic to the superconformal
OPE-algebra constructed by Kapustin and Orlov in [KO]. In Section 3.4 we define
the notion of rationality for lattice OPE-algebras. Applied to the toroidal ones we
get Theorem 3.4.3 with which we rephrase in Section 3.5 our results on complex
multiplication, rational Kähler metric and mirror symmetry for abelian varieties
obtained in Sections 1 and 2 in terms of lattice OPE-algebras. This is given in
Corollaries 3.5.3, 3.5.4 and 3.5.5.

We begin with generalities on OPE-algebras. OPE stands for Operator Product
Expansion, it is the name for the formulas in (v) of Definition 3.1.1 below.

3.1. OPE-algebras.

We first recall the definition and a few facts about OPE-algebras from [Ros].
They generalize the much-studied vertex algebras.

A very general notion is an E-valued distribution, wehre E is a vector space. It
is a formal sum

a(z, z̄) :=
∑

n,n̄∈R
an,n̄z

−n−1z̄−n̄−1, an,n̄ ∈ E.

Note that the exponents may be real numbers. The space of these distributions
is denoted by E{z, z̄}. If V is a vector space, we can talk about End(V )-valued
distributions. Moreover, for each v ∈ V , there is a map

End(V ){z, z̄} −→ V {z, z̄}

a(z, z̄) 7−→ a(z, z̄)v :=
∑

n,n̄∈R
an,n̄(v)z−n−1z̄−n̄−1.

A field, which is of interest for us, is a special kind of distributions. If for any
v ∈ V , a(z, z̄)v is of the form

a(z, z̄)v =
r∑

i=1

pi(z, z̄)zhi z̄h̄i ,

where hi, h̄i ∈ R and pi(z, z̄) is a power series in z and z̄ with coefficients in V ,
then we call a(z, z̄) a field on V or an End(V )-valued field. Distributions in more
variables are defined similarly.

An OPE-algebra is defined as follows.

Definition 3.1.1. A vector superspace V = V0 ⊕ V1 together with an even vector
1 ∈ V0 and a subspace F ⊂ End(V ){z, z̄} of End(V )-valued distributions is an
operator product expansion (OPE-)algebra if there exists a pair T, T̄ of commuting
even endomorphisms of V such that

(i) 1 is invariant, i.e. T1 = T̄1 = 0.
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(ii) F is weakly creative, i.e. a(z, z̄)1 is a power series in z and in z̄, ∀a(z, z̄) ∈
F .

(iii) F is translation covariant, i.e.

[T, a(z, z̄)] = ∂a(z, z̄) and [T̄ , a(z, z̄)] = ∂̄a(z, z̄).

(iv) F is complete, i.e. the following map is surjective:

s : F −→ V

a(z, z̄) 7−→ a−1,−11.
(3.1.1)

(v) F is local, i.e. for each a(z, z̄), b(z, z̄) ∈ F with parity ã, b̃ (i.e. s(a(z, z̄)) ∈
Vã and s(b(z, z̄)) ∈ Vb̃) there exist End(V )-valued fields Ci(z, z̄, w, w̄) and
hi, h̄i ∈ R with hi − h̄i ∈ Z such that

a(z, z̄)b(w, w̄) =
r∑

i=1

Ci(z, z̄, w, w̄)
(z − w)hi(z̄ − w̄)h̄i

, and

(−1)ãb̃b(w, w̄)a(z, z̄) =
r∑

i=1

(−1)h̄i−hi
Ci(z, z̄, w, w̄)

(w − z)hi(w̄ − z̄)h̄i
,

where the denominators are series as follows

1
(u− v)h(ū− v̄)h̄

=
∞∑

j,j̄=0

(
−h
j

)(
−h̄
j̄

)
(−1)j+j̄vju−j−hv̄j̄ ū−j̄−h̄.

Let F ⊂ End(V ){z, z̄} define an OPE-algebra. A priori, from the definition
above it is not clear that F only contains fields. This is actually a result of Rosellen
[Ros, Prop.2 (iii)] Moreover, only powers z−h−1z̄−h̄−1 with integral difference h−
h̄ ∈ Z occur. More precisely we have

Proposition 3.1.2 (Rosellen). If a subspace F ⊂ End(V ){z, z̄} defines an OPE-
algebra, then F only contains fields. They are of the form

a(z, z̄) =
∑

h,h̄∈R,h−h̄∈Z

ah,h̄z
−h−1z̄−h̄−1.

Note that h− h̄ ∈ Z and field means for any v ∈ V , a(z, z̄)v has bounded negative
powers. We call V the space of states and F the space of fields .

Till now the algebra structure (e.g. a multiplication) is not yet apparent. We
will explain this after giving

Theorem 3.1.3 (Goddard’s Uniqueness Theorem). If F ⊂ End(V ){z, z̄} is a
creative, complete, local subspace, then the map (3.1.1) is an isomorphism. Its
inverse is an even linear map

Y : V −→ F
a 7−→ Y (a, z, z̄).

We call it the state-field correspondence. We have moreover for any a(z, z̄) ∈ F

a(z, z̄) = Y (a−1,−11, z, z̄).

We also write a(z, z̄) = Y (a, z, z̄).
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For our construction of the lattice OPE-algebra in the next section it is more
convenient to give explicitly the state-field correspondence Y than to describe the
subspace F . Moreover, Y endows V with an R2-fold algebra structure, namely, any
(m, m̄) ∈ R2 defines a (not necessarily associative) multiplication

V ⊗ V −→ V

a⊗ b 7−→ a(m,m̄)b := am,m̄(b),
(3.1.2)

where am,m̄ ∈ End(V ) is the coefficient of z−m−1z̄−m̄−1 in the field a(z, z̄).
In order to define rationality we are interested in the subalgebras Vz and Vz̄

which contain fields with integral powers in z respectively z̄. More precisely

Vz := {v ∈ V | Y (a, z, z̄) ∈ End(V )[[z±1]]},

Vz̄ := {v ∈ V | Y (a, z, z̄) ∈ End(V )[[z̄±1]]}.
In [KO] it is shown that Vz and Vz̄ are vertex algebras in Kac’s sense. In Cor.B.6
therein we also find that they supercommute. They act on V with multiplica-
tion (3.1.2) restricted to Z × {−1} and {−1} × Z. This action is compatible with
multiplications on the space of fields, namely the following map:

Y (Vz, z)× Y (V, z, z̄) −→ Y (V, z, z̄)

(a(z), b(z, z̄)) 7−→ a(z)(n)b(z, z̄) := resw(w − z)n[a(w), b(z, z̄)].
(3.1.3)

That a(z)(n)b(z, z̄) is a field and lies in Y (V, z, z̄) is shown in [KO, p.129] by using
Goddard’s Uniqueness Theorem. The compatibility with the product on the space
of states is the fact

a(z)(n)b(z, z̄) = Y (a(n)b, z, z̄).

For the lattice OPE-algebra we construct in the next section we will determine
explicitly Vz and Vz̄. Besides, we need

Definition 3.1.4. A morphism of OPE-algebras is a linear map of vector super-
spaces f : V → V ′ such that

(i) f(1) = 1′.
(ii) fT = T ′f, fT̄ = T̄ ′f .
(iii) For all u, v ∈ V we have Y ′(f(u), z, z̄)f(v) = f(Y (u, z, z̄)v).

One can define additional structures on an OPE-algebra, e.g. superconformal
structure, N=1, N=2 structures. We will see these in the next section. The notion
of morphism shall be accordingly extended to comply with additional structures.

3.2. Construction of lattice OPE-algebras.

In this section we construct a N=2 superconformal lattice OPE-algebra which
generalizes the lattice vertex algebra in [Kac, §5.4] in the sense that it contains the
z- and bosonic parts as well as the z̄- and fermionic parts. In a special case (for a
special decomposition of the lattice) it reduces to Kac’s lattice vertex algebra, see
Remark 3.2.1. Moreover, we give its partition function in Remark 3.2.2 which can
shed some light on its physical interpretation in CFT. How to attach it to tori will
be explained in the next section.

We begin with an integral lattice (Λ, q), together with a (z,z̄)-decomposition

ΛR = Λz ⊕ Λz̄ (3.2.1)



52 3. Lattice OPE-algebras, rationality and CM

over R which is orthogonal with respect to q. In this section q needs not be non-
degenerate, nevertheless we will impose this condition for the discussion on rational-
ity. The data (Λ, q,Λz) shall suffice to construct an N=1 OPE-algebra. If moreover
we endow the vector space ΛR with an almost complex structure I, i.e. I2 = − Id,
then we will get an N=2 OPE-algebra (see [KO, §3] for the definition of N=1,N=2
structures). We shall write a = az − az̄ with az ∈ Λz and az̄ ∈ Λz̄. Introduce two
copies hb = hf = ΛC of ΛC, which both inherit the decomposition

hb = hbz ⊕ hbz̄ and hf = hfz ⊕ hfz̄.

The affinization is the Lie superalgebra

ĥ := C[t, t−1]⊗ hb ⊕ t
1
2 C[t, t−1]⊗ hf ⊕ CK

with even C[t, t−1] ⊗ hb ⊕ CK, and odd t
1
2 C[t, t−1] ⊗ hf . The supercommutators

are described below by (3.2.5). Write C[Λ] for the group algebra of Λ over C, and
denote by ea, a ∈ Λ the basis vectors of C[Λ]. Furthermore, write h<

b := t−1hb[t−1],
and h<

f := t−
1
2 hf [t−1]. The space of states is the superspace

V := Sym h<
b ⊗

∧
h<

f ⊗ C[Λ],

where Sym h<
b is the symmetric algebra of h<

b and
∧

h<
f is the exterior algebra of

h<
f . The vacuum vector 1 = |vac〉 := 1⊗ 1⊗ 1. The parity on V is

p(s⊗ ea) = p(s) + (q(a, a) mod 2), (3.2.2)

for p(s) just note that p(s1 ⊗ s2) = p(s1) + p(s2). The representation π of ĥ on V
is defined as

π := π1 ⊗ 1 + 1⊗ π2,

with π1 the representation of ĥ on Sym h<
b ⊗

∧
h<

f determined by

K 7−→ Id,
h 7−→ 0, h ∈ hb,

n < 0, tnh 7−→ multiplication by tnh, h ∈ hb or h ∈ hf ,

n > 0, tnh 7−→ (t−sh′ 7→ nδn,sq(h, h′)), h, h′ ∈ hbz,

tnh̄ 7−→ (t−sh̄′ 7→ −nδn,sq(h̄, h̄′)), h̄, h̄′ ∈ hbz̄,

tnh 7−→ (t−sh′ 7→ δn,sq(h, h′)), h, h′ ∈ hfz,

tnh̄ 7−→ (t−sh̄′ 7→ −δn,sq(h̄, h̄′)), h̄, h̄′ ∈ hfz̄,

(3.2.3)

and π2 the representation of ĥ on C[Λ] determined by:

K 7−→ 0,

tnh 7−→ (ea 7→ δn,0q(h, a)ea), h ∈ hbz,

tnh̄ 7−→ (ea 7→ −δn,0q(h̄, a)ea), h̄ ∈ hbz̄,

tnh 7−→ 0, h ∈ hf ,∀n.

(3.2.4)

If we write hn := π(tnh), then for h ∈ hbz, h̄ ∈ hbz̄, f ∈ hfz, f̄ ∈ hfz̄, and m,n ∈ Z,
r, s ∈ Z + 1

2 the supercommutators are

[hn, h
′
m] = nδn,−mq(h, h′), [h̄n, h̄

′
m] = −nδn,−mq(h̄, h̄′),

{fr, f
′
s} = δr,−sq(f, f ′), {f̄r, f̄

′
s} = −δr,−sq(f̄ , f̄ ′),

(3.2.5)
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and all other relations are trivial. The state-field correspondence maps a homoge-
neous vector

v = h1
−s1
· · ·hn

−sn
h̄1
−s̄1
· · · h̄n̄

−s̄n̄
f1
−r1
· · · fq

−rq
f̄1
−r̄1
· · · f̄ q̄

−r̄q̄
⊗ ea, (3.2.6)

where si, s̄ī are positive integers and ri, r̄ī are positive half-integers, to the field

v(z, z̄) :=Y (v, z, z̄) =
∑
b∈Λ

ε(a, b)ea Prb z
q(az,bz)z̄−q(az̄,bz̄)

× exp(−
∑
n<0

azn

nzn
+
∑
n<0

az̄n

nz̄n
)

× :
n∏

l=1

∂slH l(z)
(sl − 1)!

n̄∏
l̄=1

∂̄s̄l̄H̄ l̄(z̄)
(s̄l̄ − 1)!

q∏
t=1

∂rt− 1
2F t(z)

(rt − 1
2 )!

q̄∏
t̄=1

∂̄r̄t̄− 1
2 F̄ t̄(z̄)

(r̄t̄ − 1
2 )!

:

× exp(−
∑
n>0

azn

nzn
+
∑
n>0

az̄n

nz̄n
),

(3.2.7)

where Prb is the projection onto Sym h<
b ⊗

∧
h<

f ⊗ eb and

∂H(z) :=
∑
m∈Z

hmz
−m−1, ∂̄H̄(z̄) :=

∑
m∈Z

h̄mz̄
−m−1,

F (z) :=
∑

r∈Z+ 1
2

frz
−r− 1

2 , F̄ (z̄) :=
∑

r∈Z+ 1
2

f̄r z̄
−r− 1

2 ,

and the factor ε(a, b) satisfies the equations (5.4.14) in [Kac]. We give a few exam-
ples:

• v = 1⊗ 1⊗ e0 = 1, Y (v, z, z̄) =
∑

b∈Λ Prb = id,

• v = h−s ⊗ e0, Y (v, z, z̄) = 1
(s−1)!∂

sH(z),

• v = f−r ⊗ e0, Y (v, z, z̄) = 1
(r− 1

2 )!
∂r− 1

2F (z),
• v = 1⊗ 1⊗ ea,

Y (v, z, z̄) =
∑
b∈Λ

ε(a, b)ea Prb z
q(az,bz)z̄−q(az̄,bz̄)

× exp(−
∑
n<0

azn

nzn
+
∑
n<0

az̄n

nz̄n
) exp(−

∑
n>0

azn

nzn
+
∑
n>0

az̄n

nz̄n
).

Next we define the maps T and T̄ . Let {Ei} respectively {Ēi} be a bosonic basis

of Λz respectively Λz̄ and {Ẽi} respectively { ˜̄Ei
} be the dual basis with respect to

q, i.e. q(Ei, Ẽj) = δij and q(Ēi, ˜̄Ej
) = −δij . The fermionic bases are denoted by

{F i}, {F̄ i} and {F̃ i}, { ˜̄F i
}. Then

T :=
∑

i

(∑
n≥0

Ei
−n−1Ẽ

i
n +

∑
r= 1

2 , 3
2 ...

(r +
1
2
)F i

−r−1F̃
i
r

)
, T̄ is analogous. (3.2.8)

So we have all the ingredients for an OPE-algebra. In Appendix B we show that
attached to a torus it is isomorphic to the vertex algebra in [KO] which is an
OPE-algebra.

Further, the superconformal structure is:

L :=
1
2

∑
i

(Ei
−1Ẽ

i
−1 − F i

− 1
2
F̃ i
− 3

2
)⊗ e0, L̄ is analogous.
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Remark 3.2.1. By inspecting the state-field correspondence (3.2.7) one sees that
fields may have non-integral powers in z and z̄ due to the term zq(az,bz)z̄−q(az̄,bz̄)

(recall that the (z,z̄)-decomposition (3.2.1) is only required to be defined over R).
However, the difference of the exponents of z and z̄ is always an integer:

q(az, bz) + q(az̄, bz̄) = q(a, b) ∈ Z.
This implies that in the special case of a trivial decomposition, i.e. Λz̄ = 0 or in
other words ΛR = Λz, the lattice OPE-algebra is nothing but a conformal lattice
vertex algebra in the sense of [Kac, §5.4 §5.5] (plus a fermionic part).

The N=1 structure is

Q :=
i

2
√

2

∑
i

F i
− 1

2
Ẽi
−1 ⊗ e0.

Given an almost complex structure I on the vector space ΛR, the N=2 structure is
denoted by

Q± : =
i

4
√

2

∑
i

(F i
− 1

2
Ẽi
−1 ± F i

− 1
2
(IẼi)−1)⊗ e0,

J :=− i

2

∑
i

F i
− 1

2
(IF̃ i)− 1

2
⊗ e0.

and the analogous z̄-part (see [KO, §3] for the definition of these structures).
Superconformal lattice OPE-algebras find an interpretation in CFT once at-

tached to tori (discussed in the next section). Its partition function is central to
the physical theory. We give explicitly the partition function for any superconfor-
mal lattice OPE-algebra. Since this does not influence our work on rationality we
put these results in a remark and the proofs are given in Appendix A.

Remark 3.2.2. Let ΛR = Λz ⊕ Λz̄ be an orthogonal decomposition of a lattice
(Λ, q). Denote

d := dim Λz and d̄ := dim Λz̄.

Let V (Λ, q,Λz) together with the superconformal vectors (L, L̄) be the associated
superconformal lattice OPE-algebra. Then the central charges are

c =
3d
2

and c̄ =
3d̄
2
.

From the expansion of L(z) = Y (L, z) we get

L0 =
d∑

i=1

1
2
Ei

0Ẽ
i
0 +

∑
n≥1

Ei
−nẼ

i
n +

∑
r= 1

2 , 3
2 ,...

rF i
−rF̃

i
r

 (3.2.9)

(analogously for L̄0). The partition function is then

Z = TrV qL0− c
24 q̄L̄0− c̄

24

=
1

η(τ)dη(τ̄)d̄

(
θ3(τ)
η(τ)

) d
2
(
θ3(τ̄)
η(τ̄)

) d̄
2
(∑

a∈Λ

q
1
2 q(az,az)q̄

1
2 q(az̄,az̄)

)
, (3.2.10)

where we set q = e2πiτ and q̄ = e2πiτ̄ . The two modular forms are Jacobi theta
function θ3 and the Dedekind eta function η. See Appendix A for proofs. The sum
in the last term reveals whether the lattice OPE-algebra is rational, see Remark
3.4.5.
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In the next section we attach a superconformal lattice OPE-algebra to tori and we
will see the case of a circle in Example 3.4.4 where we also discuss about rationality.

3.3. Toroidal lattice OPE-algebras.

Now we explain how tori give rise to lattice OPE-algebras. To a real torus T
together with a constant metric G and a B-field, one can associate a N=1 super-
conformal lattice OPE-algebra V (T, G,B) by setting

Λ = Γ⊕ Γ∗, q((a1, a2), (b1, b2)) := −〈a1, b2〉 − 〈a2, b1〉
and Λz = GraphΓR

(−G+B), Λz̄ = GraphΓR
(G+B)

(3.3.1)

and define the factor ε(a, b) := exp(iπ〈a1, b2〉) for a = (a1, a2) and b = (b1, b2) in
Γ⊕ Γ∗.

To a generalized complex torus (T, I,J ) one can associate two N=2 structures.
Set (Λ, q) and ε(a, b) as in (3.3.1) and

Λz = ImageΛR
(Id+IJ ), Λz̄ = ImageΛR

(− Id+IJ )

(see Lemma 2.2.10 (i)). Now one can choose either I or J to define Q± and J . As
I = −J on Λz and I = J on Λz̄ the two N=2 structures are related as follows:

Q±I = Q∓J , Q̄±I = Q̄±J , JI = −JJ , J̄I = J̄J . (3.3.2)

For simplicity, we denote by V (T, I,J ) either the N=2 superconformal lattice OPE-
algebra defined by I or J . If additionally, (T, I,J ) is induced by (T,G,B) (see
Definition 2.2.6), we also write V (T,G,B) for the N=2 superconformal lattice OPE-
algebra V (T, I,J ).

In Appendix B we prove

Proposition 3.3.1. The N=2 superconformal lattice OPE-algebra V (T,G,B) is
isomorphic to the N=2 superconformal vertex algebra constructed in [KO].

Adopting the viewpoint of lattice OPE-algebras has the advantage of having a
basis-free construction. Moreover, it is more apparent how the lattice determines
the structure of the OPE-algebra. This leads us to the formulation of rationality for
lattice OPE-algebras (see Definition 3.4.1) and eventually to prove that rationality
is completely determined by the size of the so-called chiral sublattice Λch of Λ (see
Proposition 3.4.2). In Example 3.4.4 we look at the case of a circle.

3.4. Rationality.

In this section we suppose that the integral bilinear form q is non-degenerate. We
phrase rationality of a lattice OPE-algebra V := V (Λ, q,Λz) in terms of the size of
its so-called chiral subalgebra (see Definition 3.4.1). It is a subalgebra whose fields
only contain integral exponents in z and z̄, though it is not necessarily a lattice
OPE-algebra. We will explicitly construct it. Roughly speaking, we call V rational
if its chiral subalgebra is so big that V breaks into a finite direct sum of irreducible
representations of it. Theorem 3.4.3 gives necessary and sufficient conditions for
rationality of toroidal lattice OPE-algebras.

In Section 3.1 we mentioned that Vz and Vz̄ which only give rise to fields con-
taining integral powers in z respectively z̄ are vertex algebras in the classical sense.
For lattice OPE-algebras they are easy to determine. Write ΛR = Λz ⊕ Λz̄ and
define

hb,z := Λz ⊗R C, h<
b,z := t−1hb,z[t−1],
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hf,z := Λz ⊗R C, h<
f,z := t−

1
2 hf,z[t−1],

Γz := {λ ∈ Λ | λz̄ = 0}.
Then we get

Vz = Sym h<
b,z ⊗

∧
h<

f,z ⊗ C[Γz], Vz̄ is analogous.

For this equality we need the non-degeneracy of q. Note that in general Vz and Vz̄

do not bear the structure of a lattice OPE-algebra because the rank of Γz may be
smaller than the dimension of Λz. Rationality designates precisely the case where
they do possess the lattice structure. We explain this.

We build the tensor product

Vch := Vz ⊗ Vz̄,

(u⊗ ea)⊗ (ū⊗ eā) := (−1)p(ea)p(ū)(u⊗ ū)⊗ ea+ā,

where the parity p(·) was defined in (3.2.2). Define the chiral sublattice as

Λch := Γz ⊕ Γz̄. (3.4.1)

We have
Λch = {λ ∈ Λ | λz ∈ Λ or equivalently λz̄ ∈ Λ}

and
Vch = Sym h<

b ⊗
∧

h<
f ⊗ C[Λch]. (3.4.2)

With the restricted operators T, T̄ and state-field correspondence Y , Vch is again an
OPE-algebra, though not necessarily a lattice OPE-algebra. We see that all fields
of Vch only contain integral powers in z and z̄. We call Vch the chiral subalgebra of
V . Conversely, the fields of V which only have integral powers in z and z̄ are not
all contained in Vch. This is because the following inclusion

Λch ⊆ {λ ∈ Λ | q(λz, a) ∈ Z,∀a ∈ Λ}

is not an equality in general unless we impose unimodularity on the lattice (Λ, q). In
other words, if (Λ, q) is unimodular, then the chiral subalgebra Vch consists exactly
of the fields of V which only contain integral powers in z and z̄.

Furthermore, Vch has an action on V . Recall the structure of R2-fold algebra
of V from Section 3.1. Then Vch acts on V by restricted Z2-multiplications. They
are compatible with multiplications on the space of fields (defined in (3.1.3)). More
precisely,

Y ((u⊗ ea)⊗ (ū⊗ eā)(n,n̄)(v ⊗ eb), z, z̄)

= Y (u⊗ ea, z)⊗(n) (Y (ū⊗ eā, z̄)⊗(n̄) Y (v ⊗ eb, z, z̄))

= Y (ū⊗ eā, z̄)⊗(n̄) (Y (u⊗ ea, z)⊗(n) Y (v ⊗ eb, z, z̄)).

Now we give

Definition 3.4.1. A lattice OPE-algebra V (Λ, q,Λz) is rational if it decomposes
into a finite sum of irreducible modules over its chiral subalgebra Vch. A N=2
superconformal lattice OPE-algebra is rational, if its underlying lattice OPE-algebra
(without the N=2 and superconformal structures) is rational.

It turns out that rationality is determined by the size of Λch. Indeed, there is
an obvious decomposition of V . For any α ∈ Λ, denote by χα ⊂ C[Λ] the subspace
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spanned by all vectors eα+λ with λ ∈ Λch. Clearly, it is independent of the choice
of the representant of [α] ∈ Λ/Λch, i.e. χα = χα′ for [α] = [α′] ∈ Λ/Λch. Then

V =
⊕

[α]∈Λ/Λch

Sym h<
b ⊗

∧
h<

f ⊗ χα =:
⊕

[α]∈Λ/Λch

Vα, (3.4.3)

and each Vα is a Z2-fold module over the chiral subalgebra Vch. We show

Theorem 3.4.2. Let (Λ, q) be an integral lattice endowed with an orthogonal de-
composition ΛR = Λz ⊕ Λz̄ over R. The following is equivalent.

(i) The lattice OPE-algebra V (Λ, q,Λz) is rational.
(ii) The chiral sublattice Λch is of maximal rank in Λ, i.e. [Λ : Λch] <∞.
(iii) The decomposition of ΛR is defined over Q.
(iv) The chiral subalgebra Vch is a lattice OPE-algebra.

Proof. (i)⇔(ii): If Λch is of maximal rank, the decomposition (3.4.3) is finite. We
show that in this case, each Vα is an irreducible module. Indeed, as Λch is of
maximal rank, Vch is isomorphic to Vα as vector space, and the action of Vch on
Vα is faithful. By [Kac, Prop.5.4] we only need check that if for some v ∈ Vα, we
have (Ei

−1 ⊗ 1)(m)v = 0 and (1 ⊗ ea)(m)v = 0,∀m,∀i and ∀a ∈ Λch and similarly
for the z̄-part, then v = 0. This is clear by inspecting the explicit expressions of
the corresponding field of these vectors (see the examples of fields given in Section
3.2).

Conversely, if V (Λ, q,Λz) is rational, then the sum (3.4.3) must be finite, hence
Λch is of maximal rank.

(ii)⇔(iii): If the decomposition of ΛR is defined over Q, then we have

ΛQ = (Λz ∩ ΛQ)⊕ (Λz̄ ∩ ΛQ),

Γz,Q = Λz ∩ ΛQ, Γz̄,Q = Λz̄ ∩ ΛQ,

hence ΛQ = Λch,Q.
Conversely we have Λz = Γz,R and Λz̄ = Γz̄,R. Hence (iii).
(ii)⇔(iv): This is obvious by (3.4.2). �

For toroidal lattice OPE-algebras, in view of Lemma 2.2.10, Theorem 3.4.2 has
as consequence the following

Theorem 3.4.3. (i) The lattice OPE-algebra V (T, G,B) associated to a real torus
with a constant metric G and a B-field B is rational if and only if G and B are
both rational.

(ii) The N=2 superconformal lattice OPE-algebra V (T, I,J ) associated to a gen-
eralized complex torus is rational if and only if the composition IJ is defined over
Q.

(iii) The N=2 superconformal lattice OPE-algebra V (T,G,B) associated to a
complex torus T endowed with a constant Kähler metric G and a B-field is rational
if and only if G and B are both rational.

We illustrate this theorem in the simplest case.

Example 3.4.4. We describe the lattice OPE-algebra associated to a circle. Let
C := R/Z be a circle of radius R, i.e.

C ∼= Image(R −→ R2, t 7−→ Re2πit).

Consider the standard metric on R2 to be normed such that (1, 0) and (0, 1) are
orthogonal and have norm 1

2π . Thus the pulled-back metric G on C is G = R2. As
to the B-field, for dimension reasons we have B = 0.
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The lattice of the OPE-algebra is

Λ = H1(C,Z)⊕H1(C,Z) ∼= Z⊕ Z.

The decomposition is

ΛR = Λz ⊕ Λz̄

= Graph(−G)⊕Graph(G)
∼= {(x,−R2x) | x ∈ R} ⊕ {(x,R2x) | x ∈ R}.

The exponents in z and z̄ which may not be rational are q(az, bz) and q(az̄, bz̄), a, b ∈
Λ. Let us write

a = (a1, a2) = az − az̄ = (x,−R2x)− (y,R2y) for x, y ∈ R,
b = (b1, b2) = bz − bz̄ = (u,−R2u)− (v,R2v) for u, v ∈ R.

Hence

a1 = x− y, a2 = −R2(x+ y), b1 = u− v, b2 = −R2(u+ v) (3.4.4)

and

q(az, bz) = 2R2xu, q(az̄, bz̄) = −2R2yv. (3.4.5)

Obviously, for a, b ∈ Λ, if R2 ∈ Q, then in view of (3.4.4), we get x, y, u, v ∈ Q ,
hence the numbers in (3.4.5) are rational, and the chiral lattice Λch as in (3.4.1) is
of maximal rank in Λ. The lattice OPE-algebra is thus rational.

Conversely, for Λch to be of maximal rank in Λ, (3.4.5) must be rational numbers
for all a, b ∈ Λ. Substituting (3.4.4) into (3.4.5) one gets the condition

R2a1b1 +
a2b2
R2
∈ Q, ∀a, b ∈ Λ.

Hence R2 must be rational. Moreover one can also consider the superconformal
structure we defined in Section 3.2. The partition function takes an easy form.

Remark 3.4.5. In terms of the partition function Z, we see that the sum in (3.2.10)
can be written as a finite sum over the elements of Λ/Λch if V (T, G,B) is rational.
Indeed, due to the following decomposition over Z:

Λch = Γz ⊕ Γz̄

the sum in Z becomes∑
b∈Λ/Λch

(∑
c∈Γz

q
1
2 q(c+bz,c+bz)

)(∑
d∈Γz̄

q̄
1
2 q(d+bz̄,d+bz̄)

)
.

The first summation is finite if Λch is of maximal rank in Λ.

In the next section we draw some consequences of Theorem 3.4.3.
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3.5. Complex multiplication, rationality and mirror symmetry.

In this section we use Theorem 3.4.3 to rephrase results of Sections 1 and 2 about
abelian varieties in terms of lattice OPE-algebras. Let us start out with an analogue
of [KO, Thm 5.4], which shows that mirror symmetry for generalized complex tori
can be alternatively expressed in terms of their associated lattice OPE-algebras.
First we recall the definition of mirror symmetry for OPE-algebras from [KO].

Definition 3.5.1. Two N=2 lattice OPE-algebras are mirror partners if there is
an isomorphism f : V → V ′ of their space of states, such that

(i) f(1) = f(1′),
(ii) fT = T ′f, fT̄ = T̄ ′f ,
(iii) for all u, v ∈ V , we have Y ′(f(u), z, z̄)v = f(Y (u, z, z̄)v),

with the additional property:

f(Q±) = Q∓
′
, f(J) = −J ′,

f(Q̄±) = Q̄±
′
, f(J̄) = J̄ ′.

Theorem 3.5.2. Two generalized complex tori (T, I,J ) and (T′, I ′,J ′) are mirror
partners if and only if the N=2 lattice OPE-algebras V (T, I,J ) and V (T′, I ′,J ′)
are mirror partners.

Proof. Let ϕ be a mirror map between the two generalized complex tori. Since
ϕ preserves q and the decomposition (2.2.2) (see Lemma 2.2.11 (i)), it induces an
isomorphism f between the representations π of ĥ on V and π′ of ĥ′ on V ′, hence f
satisfies (i)-(iii) of Definition 3.5.1. As ϕ sends I 7→ J ′, we have in view of (3.3.2)

Q±I 7→ Q±
′

J ′ = Q∓
′

I′ JI 7→ J ′J ′ = −J ′I′

Q̄±I 7→ Q̄±
′

J ′ = Q̄±
′

I′ J̄I 7→ J̄ ′J ′ = J̄ ′I′

Similarly for J 7→ I ′, hence the N=2 OPE-algebra mirror morphism for both N=2
structures.

Conversely, the isomorphism between the spaces of states induces a bijective map
ϕ : Λ → Λ′ of the lattices. The requirements (i)-(iii) of Definition 3.5.1 force ϕ to
be compatible with q and q′. Finally, ϕ maps J 7→ I ′ and I 7→ J ′ because of the
N=2 structure of the OPE-algebras. This completes the proof. �

Now we draw a direct consequence of Theorem 3.4.3, which shows that mirror
symmetry has the virtue of letting the rationality of lattice OPE-algebra to be
transmitted:

Corollary 3.5.3. Suppose (T, I,J ) and (T′, I ′,J ′) are mirror generalized complex
tori. Then the N=2 superconformal lattice OPE-algebra V (T, I,J ) is rational if
and only if V (T′, I ′,J ′) is rational.

Proof. From Theorem 3.4.3 (ii) it follows that IJ is defined over Q. Lemma 2.2.10
(i) implies that the decomposition (2.2.2) is defined over Q. Hence the same holds
for (T′, I ′,J ′) due to Lemma 2.2.11 (i). �

Further, by combining Theorem 3.4.3 and Theorem 1.2.17 one gets

Corollary 3.5.4. An abelian variety X is of CM-type if and only if X admits a
rational N=2 superconformal lattice OPE-algebra V (X,G,B).
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Proof. If X is of CM-type, one can choose B = 0 together with the rational Kähler
metric claimed by Theorem 1.2.17 to define a rational N=2 superconformal lattice
OPE-algebra V (X,G,B) in view of Theorem 3.4.3 (iii). Conversely, the rationality
of V (X,G,B) forces G to be rational again by Theorem 3.4.3 (iii), and its N=2
structure means that G is Kähler. Again by Theorem 1.2.17, X is of CM-type. �

Finally, we give an answer to our question (QAV) on the interplay between com-
plex multiplication, rationality of the lattice OPE-algebra and mirror symmetry for
abelian varieties. It is actually a reformulation of Theorem 2.2.13 and Proposition
2.3.1.

Corollary 3.5.5. Let (X,G,B) and (X ′, G′, B′) be mirror abelian varieties. If
the N=2 superconformal lattice OPE-algebra V (X,G,B) is rational, then X and
X ′ are isogenous and both of CM-type. Conversely, however, there exist mirror
abelian varieties (X,G,B) and (X ′, G′, B′) such that X and X ′ are isogenous and
both of CM-type, but neither V (X,G,B) nor V (X ′, G′, B′) is rational.
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Appendix A: Partition function of superconformal lattice
OPE-algebras

We prove equalities (3.2.8) and (3.2.9) and the partition function formula (3.2.10)
for a superconformal lattice OPE-algebra associated to a lattice Λ with a decom-
position

ΛR = Λz ⊕ Λz̄, d := dim Λz and d̄ := dim Λz̄.

Recall the notations. The bosonic bases of Λz and Λz̄ are {Ei} respectively {Ēi}
with dual bases {Ẽi} respectively { ˜̄Ei}, i.e.

q(Ei, Ẽj) = δij and q(Ēi, ˜̄Ej) = −δij .

The fermionic bases are denoted by {F i}, {F̄ i} with dual bases {F̃ i}, { ˜̄Ei}. Recall
the superconformal vector

L :=
1
2

∑
i

(Ei
−1Ẽ

i
−1 − F i

− 1
2
F̃ i
− 3

2
)⊗ e0, L̄ is analogous.

The coefficients Ln and L̄n in

Y (L, z) =
∑
n∈Z

Lnz
−n−2, Y (L̄, z̄) =

∑
n∈Z

L̄nz̄
−n−2

generate the Virasoro algebra. In view of the state-field correspondence (3.2.7) we
have

Y (L, z) =
1
2

∑
i

(: ∂Ei(z)∂Ẽi(z) : − : F i(z)∂F̃ i(z) :).

We calculate the coefficients L−1 and L0. The operators T and T̄ turn out to be
T = L−1 and T̄ = L̄−1.

Claim A.6. We have

L−1 =
d∑

i=1

∑
n≥0

Ei
−n−1Ẽ

i
n +

∑
r= 1

2 , 3
2 ...

(r +
1
2
)F i

−r−1F̃
i
r

 and

L0 =
d∑

i=1

1
2
Ei

0Ẽ
i
0 +

∑
n≥1

Ei
−nẼ

i
n +

∑
r= 1

2 , 3
2 ,...

rF i
−rF̃

i
r

 .

Proof. Note that

∂Ei(z) =
∑
m∈Z

Ei
mz

−m−1 =
∑

m≤−1

Ei
mz

−m−1

︸ ︷︷ ︸
=∂Ei(z)+

+
∑
m≥0

Ei
mz

−m−1

︸ ︷︷ ︸
=∂Ei(z)−

,

F i(z) =
∑

r∈Z+ 1
2

F i
rz
−r− 1

2 =
∑

r=− 1
2 ,− 3

2 ,...

F i
rz
−r− 1

2

︸ ︷︷ ︸
=F i(z)+

+
∑

r= 1
2 , 3

2 ,...

F i
rz
−r− 1

2

︸ ︷︷ ︸
=F i(z)−

.
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Hence

: ∂Ei(z)∂Ẽi(z) : = ∂Ei(z)+∂Ẽi(z) + (−1)p(Ei)p(Ẽi)∂Ẽi(z)∂Ei(z)−

=

 ∑
m≤−1

Ei
mz

−m−1

(∑
n∈Z

Ẽi
nz

−n−1

)

+

(∑
n∈Z

Ẽi
nz

−n−1

)∑
m≥0

Ei
mz

−m−1


: F i(z)∂F̃ i(z) : = F i(z)+∂F̃ i(z) + (−1)p(F i)p(F̃ i)∂F̃ i(z)F i(z)−

=

 ∑
r=− 1

2 ,− 3
2 ,...

F i
rz
−r− 1

2

 ∑
s∈Z+ 1

2

(−s− 1
2
)F̃ i

sz
−s− 3

2


−

 ∑
s∈Z+ 1

2

(−s− 1
2
)F̃ i

sz
−s− 3

2

 ∑
r= 1

2 , 3
2 ,...

F i
rz
−r− 1

2

 .

For L−1 we need look at z−1, we get

L−1 =
1
2

∑
i

( ∑
m≤−1

Ei
mẼ

i
−m−1 +

∑
m≥0

Ẽi
−m−1E

i
m

−
∑

r=− 1
2 ,− 3

2 ,...

(r +
1
2
)F i

r F̃
i
−r−1 +

∑
r= 1

2 , 3
2 ,...

(r +
1
2
)F̃ i

−r−1F
i
r

)

=
1
2

∑
i

(∑
n≥0

Ei
−n−1Ẽ

i
n +

∑
m≥0

Ei
−m−1Ẽ

i
m

−
∑

s= 1
2 , 3

2 ,...

(−s− 1
2
)F i

−s−1F̃
i
s +

∑
r= 1

2 , 3
2 ,...

(r +
1
2
)F i

−r−1F̃
i
r

)

=
∑

i

∑
n≥0

Ei
−n−1Ẽ

i
n +

∑
r= 1

2 , 3
2 ,...

(r +
1
2
)F i

−r−1F̃
i
r

 .

In the second equality above we used∑
i

Ẽi
−m−1E

i
m =

∑
i

Ei
−m−1Ẽ

i
m and

∑
i

F̃ i
−r−1F

i
r =

∑
i

F i
−r−1F̃

i
r

whence the equality for L−1. The calculations for L0 are similar. �

For the partition function

Z = TrV qL0− c
24 q̄L̄0− c̄

24 , where q = e2πiτ and q̄ = e2πiτ̄

we determine first c and c̄.

Claim A.7. We have

c =
3d
2

and c̄ =
3d̄
2
.

Proof. Recall that c is the central charge, it is the number acting by multiplication
in

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
c.
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We show the equality for c (analogous for c̄).
From the proof of [Kac, Thm 5.7] we know that

L2L =
c

2

for vertex algebras. This is also true for lattice OPE-algebras. We have

L2 =
1
2

d∑
i=1

∑
p∈Z

Ei
pẼ

i
2−p +

∑
r∈Z+ 1

2

(r − 5
2
)F i

r F̃
i
−r+2

 .

By easy calculations we get

L2L =
3d
4
.

Hence c = 3d
2 . �

Now we calculate the eigenvalues of L0.

Claim A.8. The eigenvalues of L0 are

{
d∑

i=1

l∑
k=1

pkisk +
d∑

i=1

m∑
k=1

qkitk +
1
2
q(az, az) | l,m ≥ 1, sk < sk+1, pki ∈ N

tk < tk+1 ∈ N +
1
2
, qki ∈ {0, 1}, a ∈ Λ}.

Proof. The term 1
2q(az, az) is due to 1

2

∑
iE

i
0Ẽ

i
0 in L0 which only acts on C[Λ].

More precisely, in view of (3.2.4) we have

1
2

∑
i

Ei
0Ẽ

i
0e

a =
1
2

∑
i

Ei
0q(Ẽ

i
0, a)e

a =
1
2
az0e

a =
1
2
q(az, a)ea =

1
2
q(az, az)ea.

The term
∑d

i=1

∑l
k=1 pkisk is due to

∑d
i=1

∑
n≥1E

i
−nẼ

i
n. Indeed, any bosonic state

is a sum of vectors of the form

v =
d∏

i=1

(Ei
−s1

)p1i · · ·
d∏

i=1

(Ei
−sl

)pli ⊗ ea, si < si+1, pki ∈ N.

This gives
d∑

i=1

∑
n≥1

Ei
−nẼ

i
nv =

d∑
i=1

l∑
k=1

pkiskv. (A.1)

For the proof we show ∑
n≥1

Ej
−nẼ

j
nv =

l∑
k=1

pkiskv.

Indeed,

lhs =
l∑

k=1

Ej
−sk

Ẽj
sk
v,
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each summand is

Ej
−sk

Ẽj
sk
v =

d∏
i=1

(Ei
−s1

)p1i · · ·Ej
−sk

Ẽj
sk

d∏
i=1

(Ei
−sk

)pki ⊗ ea

=
d∏

i=1

(Ei
−s1

)p1i · · ·
∏
i 6=j

(Ei
−sk

)pkiEj
−sk

(sk + Ej
−sk

Ẽj
sk

)pki−1 ⊗ ea

= pkiskv.

This shows (A.1) after summing over k and i.
For fermions the space of states is an exterior algebra, this means that the same

term F i
−tk

cannot occur more than once. So any fermionic state is a sum of vectors
of the form

u =
d∏

i=1

(F i
−t1)

q1i · · ·
d∏

i=1

(F i
−tl

)qli ⊗ ea, si < si+1 ∈ N +
1
2
, qki ∈ {0, 1}.

This gives
d∑

i=1

∑
r= 1

2 , 3
2 ,...

rF i
−rF̃

i
ru =

d∑
i=1

m∑
k=1

qkitku

similarly to bosons. �

In order to express explicitly the partition function we make a reminder about
the Dedekind eta function and the Jacobi theta function. Write q = e2πiτ , they are
defined as follows

η(τ) = q
1
24

∞∏
n=1

(1− qn),

θ3(τ) =
∞∏

n=1

(1− qn)
∏

r∈N+ 1
2

(1 + qr)2.

We see
1

η(τ)
= q−

1
24

∞∏
n=1

(1 + qn + q2n + · · · )

θ3(τ)
η(τ)

=

q−
1
48

∏
r∈N+ 1

2

(1 + qr)

2

.

We show

Claim A.9. The partition function is

Z =
1

η(τ)dη(τ̄)d̄

(
θ3(τ)
η(τ)

) d
2
(
θ3(τ̄)
η(τ̄)

) d̄
2
(∑

a∈Λ

q
1
2 q(az,az)q̄

1
2 q(az̄,az̄)

)
,

Proof. In the partition function the bosonic contribution is

d∏
i=1

q−
1
24

 ∞∑
l=1

∑
pi1,...,pil∈N\{0}

∑
s1<···<sl∈N\{0}

q
Pl

k=1 skpik

× z̄-part+1 =
1

η(τ)d

1
η(τ̄)d̄

.
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The fermionic contribution is
d∏

i=1

q−
1
48

 ∞∑
m=1

∑
t1<···<tm∈N+ 1

2

q
Pm

k=1 tk

× z̄-part + 1 =
(
θ3(τ)
η(τ)

) d
2
(
θ3(τ̄)
η(τ̄)

) d̄
2

.

The term +1 is due to the vacuum state. The contribution of the lattice is∑
a∈Λ

q
1
2 q(az,az)q̄

1
2 q(az̄,az̄).

The shows the claim. �
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Appendix B: An isomorphism to Kapustin-Orlov’s N=2
superconformal OPE-algebra

We show Proposition 3.3.1. Recall the

Definition A.10. Two N=2 superconformal OPE-algebras are isomorphic if there
is an isomorphism f : V → V ′ of their space of states, such that

(i) f(1) = f(1′)
(ii) fT = T ′f, fT̄ = T̄ ′f
(iii) For all u, v ∈ V , we have Y ′(f(u), z, z̄)f(v) = f(Y (u, z, z̄)v)
(iv) fL = L′, fQ± = Q

′±, fJ = J ′, similarly for the z̄-part.

Let (T,G,B) be a complex torus. Recall the charge lattice isomorphism from [H1]:

φ :=
1√
2

(
−G−B 1
G−B 1

)
: ΓR ⊕ Γ∗R −→ Γ∗R ⊕ Γ∗R

with inverse

φ−1 =
1√
2

(
−G−1 G−1

1−BG−1 1 +BG−1

)
.

Elementary calculations show that φ−1 is an isometry, i.e.:

q(φ−1·, φ−1·) =
(
G−1 0

0 −G−1

)
. (A.2)

Writing φ(a) =: (φ1(a), φ2(a)), the decomposition ΛR = Λz ⊕Λz̄ = GraphΓR
(−G+

B)⊕GraphΓR
(G+B) from (2.2.2) corresponds to

a 7→ az := φ−1 ◦ φ1(a) and a 7→ az̄ := −φ−1 ◦ φ2(a).

Write f := φ−1. We show that f is the isomorphism we are looking for. Here we
only give the calculation for the bosonic part. The fermionic part is similar.

We interpret [KO]’s choice of bases as follows: {αi}i=1...2g as the basis of the
first component of Γ∗R ⊕ Γ∗R and {ᾱi}i=1...2g as the basis of the second component
of Γ∗R ⊕ Γ∗R. Set

Ei := f(αi) and Ēi := f(ᾱi).

Then for the dual bases, i.e. {α̃j} ∈ Γ∗R ⊕ 0 and {˜̄αj} ∈ 0⊕ Γ∗R with G−1(αi, α̃j) =
G−1(ᾱi, ˜̄αj

) = δij set

Ẽi := f(α̃i) and ˜̄Ei
:= f(˜̄αi

).

Then in view of (A.2) we have q(Ei, Ẽj) = δij and q(Ēi, ˜̄Ej
) = −δij . On the

representations, f induces the correspondence:

αi
s 7→ Ei

s, α̃
i
s 7→ Ẽi

s for s ∈ Z∗ and (G−1)kjPk 7→ Ej
0.

Then the commutators are

[Ei
s, E

j
p]

(3.2.5)
= sδs,−pq(Ei, Ej)

(A.2)
= sδs,−p(G−1)ij

= [αi
s, α

j
p],

where s, p ∈ Z∗. Similarly for the z̄-part.
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At this stage it is clear that f possesses the properties (i), (ii) and (iv) of Def-
inition A.10. For (iii) we first translate the notations in [KO] into ours. For
(w,m) ∈ Γ⊕ Γ∗:

Pi(w,m) = φ1i(w,m) is the i-th coordinate of φ1(w,m) ∈ Γ∗,

P̄i(w,m) = φ2i(w,m) is the i-th coordinate of φ2(w,m) ∈ Γ∗,

k = φ1(w,m),

k̄ = φ2(w,m).

Then for a = (w,m), b = (w′,m′) ∈ Γ ⊕ Γ∗, we have again by (A.2) q(az, bz) =
G−1(k, k′) and q(az̄, bz̄) = −G−1(k̄, k̄′), and

∂sX(z) = ∂s−1(G−1)jkPk
1
z
− ∂sY j(z) 7−→ ∂s−1

∑
m∈Z

Emz
−m−1,

kjY
j(z)+ = kj

∑
m<0

αj
m

mzm
7−→ φ1j(a)

∑
m<0

Ej
m

mzm
=
∑
m<0

φ−1(
∑

j φ1j(a)αj)m

mzm

=
∑
m<0

azm

mzm
.

Compare the state-field correspondence (3.2.7) with the one given in [KO], the
isomorphism is then obvious.
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- endomorphism algebra, 12, 18

- isogeny, 41

- of CM-type, 12
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algebraic group, 9

algebraic torus, 9

B-transform, 38

Cartan involution, 17

chiral subalgebra, 56

chiral sublattice, 56

CM-field, 7, 10

- complex conjugation, 8
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- Hodge structure of, 10

- K3 surface of, 23

- abelian variety of, 12

- of a CM-field, 7, 15

cyclotomic field, 16, 42

cyclotomic fields, 8

distribution

- E-valued, 49

elliptic curve, 1, 13, 17, 25

field, 49, 50

field of definition of a vector, 30

fully defined over, 30

generalized Calabi-Yau structure (GCYS),

37

generalized complex structure, 38

generalized complex torus, 38

generalized Kähler structure (GKS), 38

Goddard’s Uniqueness Theorem, 50, 51

Hodge group, 9

- connected, 9

- identity component, 9

- reductive, 9

Hodge structure, 8

- irreducible, 8, 10, 11, 23

- morphism of, 8

- of CM-type, 10

- of CM-type over a CM-field, 10

- polarizable, 9, 12, 23

- polarization, 9

- trivial, 9

- weight 1, 12

identity component (see Hodge group), 9

isogeny

- K3 surface, 27

K3 surface, 22

- Kummer surface, 25

- attractive, 24

- isogeny, 27

- marked, 26

- mirror map, 45

- mirror partner, 45

- of CM-type, 23

- of CM-type, construction, 26

- period, 26

- supersingular, 24

Kummer surface, 25

lattice OPE-algebra, 51

- on a circle, 57

- rational, 56

- toroidal, 55

linear algebraic group, 9

- F -rational points, 9

- defined over k, 9

mirror map

- K3 surfaces, 45

mirror partner

- K3 surface, 45

- abelian variety, 38

- generalized complex torus, 38, 39

- involutive, 45

- lattice OPE-algebra, 59

morphism of OPE-algebras, 51

Mukai pairing, 22, 44

N=1 structure, 54

N=2 structure, 54

Néron-Severi group, 22

OPE-algebra, 49

- lattice OPE-algebra, 51

- morphism, 51, 67

partition function, 54, 58, 61

period, 26

period map, 26

Picard number, 22

polarization (see Hodge structure), 9

positive anti-involution, 13, 19

quaternion algebra, 13

rational B-field, 2, 38

rational Kähler metric, 17, 18

rational Riemannian metric, 2, 17

space of fields, 50

space of states, 50

state-field correspondence, 50, 53

superconformal structure, 53

Torelli Theorem, 12

totally complex field, 7
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totally negative, 8, 13

totally real field, 7
transcendental lattice, 22

twistor space, 21, 33

width of a vector, 30


