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Abstract

The soil moisture analysis systems of current operational weather prediction

models mainly rely on observations of screen-level (2-metre) air temperature and

humidity and thus require a strong coupling between the soil and the atmo-

spheric boundary layer by the latent and sensible heat fluxes. Satellite-borne

brightness temperature observations in the low-frequency microwave range are

independent of the weather situation and can provide land surface soil moisture

information from regional to global scales. In the context of the European Union

research project ELDAS (complete title: Development of a European Land Data

Assimilation System to predict floods and droughts), the European Centre for

Medium-Range Weather Forecasts (ECMWF) developed an experimental soil

moisture analysis system which, embedded in the single-column version of the

ECMWF weather forecast model, is able to assimilate both screen-level vari-

ables and microwave brightness temperatures. The Meteorological Institute of

the University of Bonn contributed to this system by incorporating the Land

Surface Microwave Emissivity Model (LSMEM). Based on measurements from

the Southern Great Plains Hydrology Experiments (SGP97 and SGP99), this

dissertation investigates the impact of potential systematic and random errors

on the performance of the ELDAS soil moisture analysis and discusses how to

cope with these errors in operational applications. Three topics are addressed in

detail:

(a) An error propagation experiment simulates the effects of erroneous precip-

itation forcing on the soil moisture of different model layers. The non-systematic,

depth-dependent errors found are integrated into the model error covariance ma-

trix. Analysed soil moisture and modelled surface heat fluxes from assimilation

runs using this covariance matrix are compared to results from reference runs

using a vertically uniform model error. The different model error covariance

matrices significantly affect model soil moisture and fluxes; a preferable setting,

however, can not be identified.

(b) An easy-to-apply method of accounting for systematic errors of obser-

vations, forward operators and the background soil moisture in an operational

large-scale forecast environment is to correct the observations used for the as-

similation procedure by the so-called innovation bias (the systematic deviation

of the observations from the model equivalents). Such a correction is carried out

based on data from an SGP97 site and is shown to improve the performance

of the soil moisture analysis. The simulation of the surface latent and sensible



heat fluxes, however, does not benefit from the improved analysis. Significant

contributions to the innovation biases are shown to result from the microwave

forward operator (the LSMEM) and a dry bias of the modelled near-surface soil

moisture.

(c) Land surface schemes of current weather forecast models do not suffi-

ciently resolve the top few centimetres of the soil from where the main brightness

temperature signal originates. In case of non-uniform near-surface soil moisture

and temperature profiles in reality, the assimilation of the corresponding bright-

ness temperature observations can lead to misinterpretations by the soil moisture

analysis. The relevance of this model shortcoming is investigated with artificial

profiles created on the basis of SGP99 soil moisture and temperature measure-

ments. Mean brightness temperature errors of up to ± 5 K are found depending

on the days elapsed after a rainfall event. A simple bias correction method is

presented and applied for the SGP97 period.

The assimilation studies prove that microwave brightness temperature ob-

servations are a valuable information source for analysing model soil moisture.

However, accurate knowledge of the accompanying systematic and random errors

is needed.



Zusammenfassung

Die Bodenfeuchteanalyseverfahren in gegenwärtigen operationellen Wetter-

vorhersagemodellen beruhen hauptsächlich auf Beobachtungen der 2m-Tempera-

tur und -Feuchte und erfordern daher eine ausgeprägte Kopplung zwischen dem

Erdboden und der atmosphärischen Grenzschicht über die latenten und fühlbaren

Wärmeflüsse. Satellitengetragene Beobachtungen der Helligkeitstemperatur im

unteren Mikrowellenfrequenzbereich sind unabhängig von der Wettersituation

und können Informationen über die regionale bis globale Bodenfeuchteverteilung

liefern. Im Rahmen des EU-Forschungsprojektes ELDAS (vollständiger übersetz-

ter Titel: Entwicklung eines Europäischen Landdatenassimilationssystems zur

Vorhersage von Hochwassern und Trockenheiten) hat das Europäische Zentrum

für mittelfristige Wettervorhersage (EZMW) ein experimentelles Bodenfeuch-

teanalysesystem entwickelt, mit dem, eingebettet in die eindimensionale Ver-

sion des EZWM-Wettervorhersagemodells, die Ausnutzung sowohl von opera-

tionellen Beobachtungen der 2m-Temperatur und -Feuchte als auch von Mikro-

wellenhelligkeitstemperaturen möglich ist. Das Meteorologische Institut der Uni-

versität Bonn ergänzte dazu das EZMW-Modell mit einem Mikrowellenemissi-

vitätsmodell für Landoberflächen (LSMEM). Basierend auf Feldmessungen der

Southern Great Plains Hydrology Experiments (SGP97 und SGP99) untersucht

diese Dissertation, welche Auswirkungen potentielle systematische und zufällige

Fehler auf die Güte der ELDAS-Bodenfeuchteanalyse haben und wie diese Feh-

ler im operationellen Modellbetrieb berücksichtigt werden können. Drei The-

menschwerpunkte werden diskutiert:

(a) In einem Fehlerausbreitungsexperiment werden die Auswirkungen von

fehlerhaften Niederschlagsdaten auf die Bodenfeuchte in verschiedenen Modell-

schichten simuliert. Die dabei gefundenen, von der Bodentiefe abhängigen Un-

sicherheiten werden in die Kovarianzmatrix des Modellfehlers integriert. Die

auf Basis dieser Kovarianzmatrix berechneten Bodenfeuchten und Flüsse la-

tenter und sensibler Wärme werden mit entsprechenden Ergebnissen aus Re-

ferenzläufen, bei denen ein vertikal konstanter Modellfehler angenommen wurde,

verglichen. Die unterschiedlichen Kovarianzmatrizen des Modellfehlers beeinflus-

sen signifikant die Modellbodenfeuchte und -flüsse. Welche Festlegung der Kova-

rianzmatrix insgesamt besser ist, kann aber anhand der vorhandenen Ergebnisse

nicht festgestellt werden.



(b) Eine einfach anzuwendende Methode, um systematische Fehler der Be-

obachtungen, der Vorwärtsoperatoren und der Hintergrundbodenfeuchte im ope-

rationellen Betrieb eines großskaligen Vorhersagemodells zu berücksichtigen, ist

die Korrektur der zu assimilierenden Beobachtungen um den Betrag des so ge-

nannten Innovationsbias (die systematische Abweichung der Beobachtungen von

den entsprechenden Modellwerten). Eine solche Korrektur wurde anhand von

Daten eines SGP97-Messfeldes durchgeführt. Die Güte der Bodenfeuchteanalyse

(verglichen mit Messungen) konnte dadurch verbessert werden. Die Simulation

der oberflächennahen latenten und fühlbaren Wärmeflüsse profitiert jedoch nicht

von der verbesserten Bodenfeuchteanalyse. Es wird gezeigt, dass der Mikrowellen-

Vorwärtsoperator (das LSMEM) und ein trockener Bias der modellierten ober-

flächennahen Bodenfeuchte die wesentlichen Beiträge zum Innovationsbias lie-

fern.

(c) Die Bodenmodelle in gegenwärtigen Wettervorhersagemodellen erfassen

die obersten Zentimeter des Bodens nur ungenügend. Aus diesem Bereich kommt

allerdings der wesentliche Beitrag zum Helligkeitstemperatursignal. Wenn der

Boden in der Realität kein konstantes Feuchte- oder Temperaturprofil aufweist,

kann deshalb die Assimilation der entsprechenden Helligkeitstemperaturbeobach-

tungen zu falschen Interpretationen durch die Bodenfeuchteanalyse führen. Die

Relevanz dieser Modellunzulänglichkeit wird anhand von künstlichen Profilen,

die auf Basis von SGP99-Messungen der Bodenfeuchte und Bodentemperatur er-

zeugt wurden, untersucht. Bei den modellierten Helligkeitstemperaturen ergeben

sich durchschnittliche Fehler von bis zu ± 5 K, abhängig von der Anzahl der

Tage, die seit dem Auftreten eines Regenereignisses vergangen sind. Es wird eine

einfache Biaskorrektur vorgeschlagen und für den SGP97-Zeitraum angewendet.

Insgesamt zeigen die Assimilationsstudien, dass Beobachtungen von Mikro-

wellenhelligkeitstemperaturen eine wertvolle Informationsquelle für die Analyse

der Modellbodenfeuchte sind. Eine genaue Kenntnis der damit verbundenen sys-

tematischen und zufälligen Fehler ist aber unerlässlich.
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Chapter 1

Motivation and objectives

1.1 Relevance of soil moisture

Water is an essential component of the Earth’s climate system: almost 71 % of

the Earth’s surface is covered by oceans; the continents are characterised by a

variety of surface and subsurface water reservoirs (e.g. rivers, lakes, and ground-

water); during winter, snow and ice spread over up to 42 % of the Northern

Hemispheric land area (Robinson et al., 1993); two-thirds of the planet are on

average cloud-covered (Peixoto and Oort, 1992; Rossow and Schiffer, 1999); and

the troposphere contains a varying portion of water vapor (up to a few percent

by volume). Water thus naturally occurs in the solid (ice), liquid and gaseous

(water vapor) phase under the prevailing pressure and temperature conditions

on Earth. Evapotranspiration, condensation and sublimation processes, pre-

cipitation, ocean currents, atmospheric winds and land surface streams build a

complex system of persistent water and energy transports on our planet, driven

by the solar insolation. A schematic diagram of this global water cycle, also

referred to as hydrological cycle, is shown in Fig. 1.1. The quantities of water

volumes and fluxes are estimates adopted from Oki (1999). Precise values are

not known yet; therefore, the specified numbers can differ from others given in

the literature (see e.g. Peixoto and Oort (1992) and Hartmann (1994)). However,

Fig. 1.1 illustrates the qualitative proportions of the global water reservoirs and

transports.

A fraction of the water at land is held in the soil between the surface and the

groundwater level due to hygroscopic and capillary forces. The volume or mass

ratio of the bound water to the soil media is called soil moisture or soil water

content. Although comparatively small in the absolute amount (see Fig. 1.1),

the soil water can be of significant importance to human activities:

1



CHAPTER 1. MOTIVATION AND OBJECTIVES

Figure 1.1: Schematic diagram of the Earth’s water cycle. Reservoir volumes
(boxes) are stated in 103 km3, water fluxes (arrows) in 103 km3 per year. Values
are adopted from Oki (1999).

a) Plants extract water from the soil through their roots. Depending on

vegetation type, soil type, and water availability, the roots reach depths from a

few centimetres to several metres. An appropriate soil water content of the root

zone, i.e. not too dry and not too wet over a longer time period, is essential for

plants to survive. Therefore, the cultivation of plants requires knowledge of their

appropriate root zone moisture and of the prevalent soil water content, e.g. in

order to effectively irrigate crop fields.

b) The ability of the soil to take up a certain amount of water can have a

significant influence on the occurrence and intensity of floodings. The field ca-

pacity, which is the soil water content below which the soil can hold back water

against the force of gravity, varies from about 0.10 m3/m3 for very sandy soils

to about 0.35 m3/m3 for heavy clay (Dingman, 2002). Consequently, a cubic

metre of dry soil media is able to absorb a water volume of several ten to a few

hundred litres. The ability of the soil to take up rainwater decreases when the

soil media is very dry and compact, partly frozen, or when the precipitation is

too intense. Nevertheless, a dry soil can act as a significant detention reservoir

in case of heavy rain, extenuating the runoff into rivers. If the soil was already

saturated all precipitating water would be directly discharged at the surface or

underground, enhancing the possibility or aggravating the intensity of floodings

2



CHAPTER 1. MOTIVATION AND OBJECTIVES

(e.g. Bundesanstalt für Gewässerkunde, 2002). Therefore, not only an accurate

precipitation forecast but also the knowledge of the actual soil moisture is im-

portant for the prediction of flooding events.

c) As long as enough water is available in the upper soil layers and the atmo-

sphere on top is not saturated, evaporation takes place at the soil surface. Plants

also continuously release water into the air mainly from their leaf surfaces, al-

though they are able to control this process by their stomata. In general, the rate

of evapotranspiration depends on the temperature and water content of the soil

surface, of the vegetation, and of the atmosphere on top, on the wind speed, and

on the ability of the soil (by hygroscopic and capillary forces) and the plants (by

closing their leaf pores) to hold back the water (Hartmann, 1994). The higher the

evapotranspiration rate, the more energy is needed for the transition from the

liquid to the gaseous phase. Therefore, the soil water content affects the energy

budget at the soil surface, namely the partitioning of the available energy into

the sensible and latent heat fluxes. Soil moisture thus has an indirect influence

on the dynamics of the planetary boundary layer and therefore on the weather.

This relation was demonstrated by several sensitivity simulations with numerical

models. Seuffert et al. (2002), for instance, showed in a late-summer case study

over the Sieg catchment that the precipitation forecast can significantly depend

on the initialisation and spatial representation of the model soil moisture. Schär

et al. (1999) found similar results in a sensitivity study covering Europe during

midsummer of 1990 and 1993. However, the regional effects of area-wide vari-

ations in initial soil moisture on the precipitation amount were quite different.

In some regions, doubling the soil water content or reducing it by half accounts

for precipitation modifications of the same factor, while no significant changes in

precipitation were simulated at other locations. Dirmeyer et al. (2000) showed

that the sensitivity of the turbulent surface fluxes to the soil moisture strongly

depends on the type of vegetation cover and on the wetness of the soil itself.

They found that the correlation of the evaporative fraction, which is the ratio

of latent heat flux to the sum of latent and sensible heat flux, with the soil

water content is largest for regions with sparse vegetation and dry soils. The

turbulent fluxes over forested or wet surfaces revealed the smallest sensitivity

to soil water variations. Ament and Simmer (2006) demonstrated on the basis

of measurements from the LITFASS domain near Berlin, Germany, that surface

flux simulations with the Lokal-Modell (LM) of the German Weather Service

(Deutscher Wetterdienst, DWD) significantly improve when (a) the operational

soil moisture analysis, which is solely based on 2-metre temperature and relative

humdity (Hess, 2001), is replaced by a measurement-forced soil moisture analysis

(MSMA), which also uses wind, radiation and radar-retrieved precipiation obser-

3



CHAPTER 1. MOTIVATION AND OBJECTIVES

vations, and (b) when the vegetation stomatal resistance and albedo is defined

land-use-dependent. These selected studies show that an accurate knowledge of

the soil water content, in conjunction with a proper definition of the vegetation

characteristics, is essential for the simulation of the land surface turbulent fluxes

and therefore for the numerical prediction of weather conditions.

1.2 Current simulation of soil moisture in nu-

merical weather prediction models

Provided that nearly all of the soil water that plants take up in the root zone

is transpired and only a negligible fraction is used for the plant’s growth, the

change of soil water storage at an arbitrary location is the sum of precipitation,

evapotranspiration, surface runoff, percolation, and horizontal water transports

within the soil (e.g. Peixoto and Oort, 1992). The water balance equation for

the land surface can therefore be written as follows:

S = P − E −R0 −Ru (1.1)

Here S denotes the change of soil water storage, P precipitation, E evapotran-

spiration, R0 surface runoff, and Ru subsurface runoff including percolation. In

principle, numerical land surface schemes simply have to solve Eq. (1.1) to cal-

culate the spatial distribution and temporal evolution of the soil water content.

However, the simulation of soil moisture in atmospheric models is still unsatis-

fying (e.g. Richter et al., 2004; Ament and Simmer, 2006). The deficiencies can

be traced back to the following issues:

a) The modelled values of surface net radiation and precipitation are often

inaccurate because the forecast models still have problems with properly sim-

ulating the development and movement of low-pressure systems, of convective

systems inducing showers and thunderstorms, and of low-level clouds often oc-

curring in winterly high-pressure inversion conditions (e.g. Jung and Tompkins,

2003).

b) A couple of static or slowly varying soil and vegetation characteristics (e.g.

soil texture, rooting depth, and leaf area index) affect the amount of water the

soil can absorb and hold back against evaporation and percolation and determine

how much water the plants take up through their roots and transpire from their

leafs. The absolute values and the spatial distribution of these parameters are

only approximately known.

c) Physical, chemical and biological processes usually take place on much

smaller scales than a numerical model used for weather prediction or climate
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simulations is able to resolve. These processes thus have to be represented by

approximate equations, the so-called parameterisations. Parts of these param-

eterisations and the process coefficients they contain cannot be deduced from

theory. Hence, they are often derived from a limited number of measurements

which have been recorded under certain conditions at selected locations or in a

laboratory, and thus might be valid for specific situations only. Additionally, the

complexity of atmospheric and land surface processes and the still limited com-

puting power requires compromises between simulation quality and efficiency in

weather forecast models (e.g. radiative transfer calculations and cloud physics).

These error sources can cause drifts in the simulated soil moisture away from

reality over weeks and months. Consequently, modelled root zone soil moisture

has to be regularly corrected by measurements. A widely-used procedure to

incorporate observations into numerical models is the technique of data assim-

ilation. It combines the information content of measurements with the math-

ematical and physical constraints of the models so that a physically consistent

image of the state of the system under consideration (e.g. the atmosphere) can

be retrieved. However, a global network of in-situ soil moisture measurements

that could provide data on the model’s grid scale does not exist at present. Con-

sequently, proxy observations for root zone soil moisture are used. Current op-

erational analysis systems rely on observations of screen-level variables, namely

2-metre temperature and 2-metre relative humidity, which are coupled to the

land surface by the turbulent fluxes of sensible and latent heat. At Météo France

and the European Centre for Medium-Range Weather Forecasts (ECMWF), an

Optimal Interpolation method (Douville et al., 2000) is used to initialise soil

moisture operationally, while the German Weather Service (DWD) applies an

Extended Kalman filter as described by Hess (2001). Another helpful proxy ob-

servation type is the land surface heating rate derived from satellite temperature

observations (e.g. Jones et al., 1998a,b). This method makes use of the temper-

ature increase during the morning hours which is higher for a dry soil than for a

wet one.

Soil moisture analysis systems using proxy observations of air temperature

and humidity rely on strong thermal interactions between the soil surface and

the atmospheric layers on top. In case of a weak coupling, i.e. during strong

horizontal winds and weak insolation, the application of these analysis methods

might even adjust the model soil moisture into the wrong direction. Therefore,

theses types of soil moisture analysis systems are modified for these specific me-

teorological conditions (e.g. Douville et al., 2000; Mahfouf, 1991). The use of

satellite-observed heating rates requires clear skies so that several days or even

weeks might pass between two soil moisture analyses. In contrast to these current
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soil moisture analysis systems, the impact of weather conditions on the informa-

tion from passive microwave remote sensing is negligible. Therefore, microwave

data might prove to be an additional valuable data source for soil moisture anal-

ysis as described in the next section.

1.3 Potential benefits from passive microwave

remote sensing

The brightness temperature of a body is defined by the mathematical product of

its emissivity and its temperature. In passive microwave remote sensing applica-

tions, the brightness temperature is usually used as a measure of the radiation

intensity, to which it is proportional for typical Earth surface temperatures and

frequencies in the microwave range (1 – 300 GHz) according to the radiation law

of Rayleigh and Jeans (e.g. Ulaby et al., 1981). Passive microwave brightness

temperature observations of the land surface from satellites are a more direct

information source of the near-surface soil moisture than 2-metre temperature,

2-metre humidity and heating rates and are not subject to the constraints of

these proxy observation types discussed in the previous section (e.g. Jackson

et al., 1999; Njoku and Entekhabi, 1996; Ulaby et al., 1981, 1982, 1986).

What makes microwave radiation interesting for soil moisture sensing is the

fact that the real part of the dielectric constant of water and dry soil material

significantly differ at microwave frequencies. Fig. 1.2(a) shows an example of this

difference. As a result, the emissivity of a soil volume varies significantly with

its water content. Fig. 1.2(b) shows an example for a loamy soil with a smooth

surface at 1.4 GHz. The emissivity for the microwave radiation decreases from

nearly 0.9 for a dry case to less than 0.6 for a high water content. This results in

brightness temperature variations of up to 90 K for a soil temperature of 300 K.

Microwaves below 2 GHz (L-band) are especially well-suited for the remote

sensing of soil moisture because the soil penetration depth significantly increases

towards lower frequencies (e.g. Njoku and Entekhabi, 1996). Moreover, the im-

pact of the atmosphere and clouds on the low-frequency microwave radiation is

negligible (Barrett and Kniveton, 1995; Drusch et al., 2001; Ulaby et al., 1981).

Since purely from the technical point of view microwave brightness temperatures

can be measured with an accuracy of better than 1 K (Njoku and Entekhabi,

1996), the signal-to-noise ratio is large and illustrates the potential of passive mi-

crowave remote sensing for monitoring the land surface soil moisture. However,

a dense vegetation canopy can obscure the soil moisture signal in the microwave

radiation received by a satellite-borne or air-borne sensor although the impact
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(a) (b)

Figure 1.2: Examples of (a) the real part of the dielectric constants of water and
dry soil and (b) the soil emissivity with varying water content. (The curves are
calculated with the Land Surface Microwave Emissivity Model (LSMEM, section
2.1.3) for a loamy soil with a bulk density of 1.35 g/cm3 and water with a salinity
of 0.65 psu and a temperature of 20 °C. Viewing angle and frequency used for
plot (b) are 0° and 1.4 GHz, respectively.)

of vegetation on the microwave emission of a soil surface decreases towards lower

microwave frequencies (Ulaby et al., 1986; Wegmüller et al., 1995). Vegetation

effects thus need to be taken into account in data assimilation applications using

microwave remote sensing data (also see Sec. 2.1.3).

Current passive microwave sensors flying onboard satellites are the Special

Sensor Microwave Imager (SSM/I; Hollinger et al., 1987), the Advanced Mi-

crowave Scanning Radiometer (AMSR-E; Kawanishi et al., 2003), and the Trop-

ical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI; Kummerow

et al., 1998). SSM/I sensors fly onboard satellites of the United States Air Force

Defense Meteorological Satellite Program (DMSP) since 1987. They globally ob-

serve brightness temperatures at four channels and two polarisations between 19

and 85 GHz. TMI is a similar instrument onboard the TRMM satellite, which is

jointly operated by the National Aeronautics and Space Administration (NASA)

of the United States and the National Space Development Agency (NASDA)

of Japan since 1998, with an additional channel at 10.7 GHz. It provides pas-

sive microwave observations at latitudes between 40° North and 40° South. The

AMSR-E sensor finally was launched onboard NASA’s Earth Observing System

(EOS) Aqua satellite in 2002 in cooperation with NASDA. This instrument pro-

vides, in addition to frequencies similar to TMI, global observations at 6.9 GHz.

The available frequencies are not optimal for soil moisture retrieval applica-

tions (see above). Therefore, the European Space Agency (ESA) is preparing

to launch the Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al.,
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2001) — currently scheduled for 2007 — which will provide 1.4 GHz brightness

temperature observations on a global scale for at least 3 years. Data will be

delivered with a spatial resolution of about 50 kilometres and a revisit time of

3 days at the equator. This project will provide the opportunity to assess the

benefits of supplementing current land data assimilation systems with passive

microwave brightness temperatures as another source of proxy observations of

surface soil moisture. It is expected that this method can further improve the soil

moisture analysis in weather forecast systems leading to a better representation

of the planetary boundary layer dynamics. Another satellite project, NASA’s

Hydrosphere State (HYDROS) mission (Entekhabi et al., 2004), was planned

to start operation in 2010 in order to provide global L-band brightness tem-

peratures, too. The funding for this project has however been ceased recently

(http://hydros.gsfc.nasa.gov/).

1.4 Thesis objectives and outline

Publications in the reviewed literature have already demonstrated the usefulness

of passive microwave observations in land data assimilation applications (Mar-

gulis et al., 2002; Crow and Wood, 2003; Seuffert et al., 2003, 2004; Reichle and

Koster, 2005). However, very little research has been done on the effects of in-

evitable systematic and random errors of observations, models, and forcing data

on the outcome of the soil moisture analysis systems. The quality of the analysis

strongly depends on an accurate determination of these errors for two reasons

(Bouttier and Courtier, 1999; Talagrand, 1997): a) Assimilation techniques rely

on bias-free observations and model formulations. Any systematic error must be

corrected before the analysis is performed. b) Assimilation techniques weight the

information from the observations and from the model background, which e.g.

can be the results of an antecedent forecast, by their uncertainties. The larger

the mean random error of an observation or background variable is, the less it

shall influence the analysis. Incorrect assumptions or non-consideration of these

errors can significantly degrade the performance of a soil moisture analysis as

recently shown by Crow and van Loon (2006) for the model error in an ensemble

Kalman filter system.

In preparation for the use of L-band microwave brightness temperatures in

land data assimilation systems, this thesis examines:

� Errors occurring in both the observations and the model.

� How these errors effect the analysed soil moisture and the resulting surface

fluxes of latent and sensible heat.
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� How to take these errors into account in the soil moisture analysis.

These questions are addressed using ECMWF’s European Land Data Assimila-

tion System (ELDAS) soil moisture analysis.

Section 4.1 quantifies the effect of erroneous precipitation forcing on the

model’s first guess of the soil water content profile. The difficulties of current

numerical weather prediction models to accurately forecast the intensity of pre-

cipitation events are represented by performing a set of forecasts with randomly

perturbed rain amounts. The resulting soil moisture uncertainties are integrated

into the model error covariance matrix which has then been applied in a 4-week

assimilation run using data from the Southern Great Plains 1997 Hydrology Ex-

periment (SGP97). Section 4.2 addresses the so-called innovation vector, which

contains the differences between the observations and their equivalent model val-

ues. The innovation vector needs to be unbiased for a well-defined assimilation

system. On the basis of SGP97 data, sources for biases are discussed and the

impact of a bias correction, which can be easily applied in operational forecast

systems, on the performance of the soil moisture analysis and the resulting tur-

bulent surface heat fluxes is examined.

In section 4.3, this thesis focuses on the systematic error which is introduced

by the insufficient vertical resolution of the soil close to the surface in current

large-scale meteorological and hydrological land surface models. Passive mi-

crowave measurements are most sensitive to the moisture profile in the top few

centimeters of the soil, but in models, this zone is often represented by only one

layer. In this case, the modelled brightness temperature in the data assimilation

system, which is based on the modelled soil moisture value of the top layer of the

land surface model, will be equal to the observation only if the true soil moisture

profile is uniform. In case of a non-uniform profile a vertically integrated mean

soil moisture content will introduce errors. The model will compute too high

brightness temperatures from the uniform model profile whenever, in reality, the

top of that particular layer is wetter than the average and too low brightness

temperatures for the opposite situation. This study quantifies this systematic

error based on in-situ observations from the SGP99 experiment. The most so-

phisticated approach to eliminate profile biases in the assimilation of microwave

brightness temperatures would be to include more soil layers in the hydrological

land surface model. However, land surface model modifications always affect a

range of parameters and processes which then would need additional elaborate

testing and learning. A more practical way to cope with these systematic errors

is to correct the observed brightness temperatures for the effect of a non-uniform

soil moisture profile. Therefore, a correction method in observation space is pre-

sented and applied to the ELDAS (European Land Data Assimilation System)
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soil moisture analysis system. It has been tested with SGP97 data based on

assimilation experiments performed by Seuffert et al. (2004).
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Chapter 2

ELDAS data assimilation system

In the context of the European Union’s Fifth Framework Program, the research

project ELDAS, an acronym for Development of a European Land Data Assimila-

tion System to predict floods and droughts, was carried out ”to develop a general

data assimilation infrastructure for estimating soil moisture fields on the regional

(continental) scale, and to assess the added value of these fields for the prediction

of the land surface hydrology in models used for numerical weather prediction

and climate studies” (cited from http://www.knmi.nl/samenw/eldas/). Sev-

eral European hydrological and meteorological institutions and weather centres

(e.g. the European Centre for Medium-Range Weather Forecasts (ECMWF),

Météo France, and the German Weather Service (DWD)) exchanged their exper-

tise in land data assimilation and worked on coordinated and efficient enhance-

ments of their land data assimilation systems. As a part of ELDAS, ECMWF

developed an experimental soil moisture analysis system which is able to pro-

cess both screen-level observations (air temperature and humidity at 2 m height)

and microwave brightness temperatures observed from satellite or aircraft. The

Meteorological Institute of the University of Bonn contributed to this system by

integrating the microwave forward operator. The purpose was to test the possi-

ble future usage of remotely sensed passive microwave observations in land data

assimilation systems. The soil moisture analyis has been coupled with ECMWF’s

single-column model (SCM) which is a limited version of ECMWF’s operational

Integrated Forecast System (IFS, version number Cy23r4). The SCM only ad-

dresses interactions and processes active in the vertical direction so that changes

in the atmospheric column due to horizontal advection have to be specified as

input. Apart from that, it comprises the complete physical package of the IFS

and therefore is a useful tool for computing-time-effective testing of new physical

parameterisations. This chapter introduces selected characteristics of the SCM

(atmospheric model plus land surface scheme). A detailed description of the
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IFS can be found under http://www.ecmwf.int/research/ifsdocs/. Further-

more, this chapter addresses the newly implemented microwave radiative transfer

model and details the ELDAS soil moisture analysis.

2.1 Single-column model

2.1.1 Atmosphere

The single-column model is a hydrostatic model based on the primitive equa-

tions incorporating 60 atmospheric vertical levels (ECMWF, 2001). Since single-

column models by definition have no information about the spatial distribution

of meteorological variables, the SCM needs to be regularly provided with data

from a separate four-dimensional model. In this study, the SCM has been driven

every six hours by the geostrophic wind vector, the vertical velocity, and the

advection tendencies of wind components, temperature, and specific humidity,

which have been taken from the ERA-40 reanalysis (Uppala et al., 2005). Addi-

tionally, in order to prevent drifts away from reality during a simulation period,

the horizontal wind vector, temperature, surface pressure, specific humidity, spe-

cific cloud liquid and ice water content, and cloud fraction have been initialised

every 24 hours.

2.1.2 Land surface

The turbulent fluxes of momentum, sensible heat and latent heat at the bottom

boundary of the atmosphere are simulated with the Tiled ECMWF Scheme for

Surface Exchanges over Land (TESSEL). Fig. 2.1 shows a schematic diagram of

this model. It includes four soil layers with a thickness of 7 cm (surface layer),

21, 72 and 189 cm, respectively, labeled layer 1 to layer 4 throughout this thesis.

Most of the vegetation root zone is represented by the three top layers (van den

Hurk et al., 2000; ECMWF, 2001), which together equal a depth of one metre

and are summarised as the root zone layer in the following. Each model grid box

can be subdivided into up to 6 surface types (tiles) over land, which are bare

ground, low and high vegetation, intercepted water, shaded and exposed snow,

and up to two types over sea and freshwater, which are open and frozen water. A

mixing of the two water tiles with land surface tiles is not possible, i.e. a grid box

is either 100 % land or 100 % ocean. For each tile the surface turbulent fluxes

are calculated separately based on a resistance parameterisation which depends

on the characteristics of the surface type. The resulting surface fluxes are then
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Figure 2.1: Schematic diagram of the Tiled ECMWF Scheme for Surface Ex-
changes over Land (TESSEL, ECMWF (2001)).

weighted by the area fractions of the corresponding tiles to obtain mean values

of the grid box fluxes.

The resistance approches applied in TESSEL can mainly be subdivided into

three categories (van den Hurk et al., 2000; ECMWF, 2001): a) surfaces at which

the real evaporation is equal to the potential evaporation (open and frozen water,

snow on low vegetation), b) surfaces at which the real evaporation (evapotran-

spiration) is generally lower than the potential values due to the ability of plants

and soil material to hold back water (low and high vegetation, bare soil, intercep-

tion reservoir), and c) the case of snow under high vegetation which is a mixture

of the categories above. For the assimilation studies presented in this thesis only

the approaches under b) need to be used. They are described in more detail in

the following.
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The turbulent flux of latent heat E at a bare soil surface is calculated with

E =
ρa

ra + rs

[qL − qsat(Tsk)] (2.1)

where qL denotes the specific air humidity at the lowest atmospheric model level

(about 10 m above the surface), qsat the saturation humidity at the surface

skin temperature Tsk, and ρa the air density. The atmospheric resistance term

ra controls that the flux becomes stronger with increasing wind speed and an

increasing exchange coefficient1. The exchange coefficient varies from tile to tile

depending on the surface roughness lengths of momentum and moisture and

on the atmospheric layering (stability) above the surface (see ECMWF, 2001,

for more details). rs stands for the soil’s resistance against evaporation and is

a function of a predefined minimum resistance value rs,min and the soil water

content:

rs = rs,min fs (2.2)

with

1

fs

=


0 θ < θpwp

θ−θpwp

θcap−θpwp
θpwp ≤ θ ≤ θcap

1 θ > θcap

(2.3)

Here, θ, θpwp, and θcap are the soil water contents of the first soil model layer, at

the permanent wilting point, and at the field capacity of the soil, respectively.

The standard values for θpwp and θcap within TESSEL are 0.171 m3/m3 and 0.323

m3/m3. It can be seen from Eqs. (2.2) and (2.3) that the resistance receives its

maximum (infinity) for soil moisture values at or below the permanent wilting

point, i.e. that evaporation is cut off completely for dry soils. This limitation

is recognised as a shortcoming of the approach. However, an alternative pa-

rameterisation that has been tested until this work started shows other serious

deficiencies (ECMWF, 2001). At or above field capacity, evaporation over bare

soil reaches its maximum.

For high and low vegetation, the latent heat flux is calculated similar to Eq.

(2.1); only rs is replaced by a canopy resistance rc which is a complex function

of the downward shortwave radiation Rs, the leaf area index LAI, the average

unfrozen root zone soil moisture θ, the atmospheric water vapor deficit Da, and

a minimum stomatal resistance rst,min (see ECMWF, 2001, for details):

rc =
rst,min

LAI
f1(Rs) f2(θ) f3(Da) (2.4)

1The atmospheric resistance term is the inverse of the product of the horizontal wind speed
and the turbulent exchange coefficient.
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The term f2 is determined similarly to fs in Eq. (2.3) but additionally includes

the water content and the root zone fractions in all four layers.

In case of an interception reservoir, rs in Eq. (2.1) is replaced by a resistance

term that accounts for the amount of water available. If this amount is sufficient

to sustain potential evaporation the resistance term is set to zero.

The sensible heat flux is calculated as a function of the gradient of the dry

static energy:

H =
ρa

ra

[cpTL − cpTsk + gz] (2.5)

Here cp denotes the heat capacity of the moist air, TL the temperature at the

lowest atmospheric level, and gz the geopotential at the height z with an accel-

eration due to gravity g (all other variables as in Eq. (2.1)).

The coupling between the two heat fluxes takes place in a model skin layer,

which represents the soil-atmosphere interface, through the skin temperature,

which in turn is determined by the surface energy balance equation:

(1− fRs)(1− α)Rs + ε(RT − σT 4
sk) + H + LE = Λsk(Tsk − T1) (2.6)

The first and second term on the left side represent the net shortwave and long-

wave radiation, respectively, the third and fourth term the sensible and latent

heat flux while the heat conductance from the soil is included on the right. In

more detail, α and Rs denote the surface reflectivity and the incoming shortwave

radiation, respectively. The term 1 − fRs accounts for partial absorption of the

net shortwave radiation (1 − α)Rs in the skin layer (ECMWF, 2001). Further-

more, ε is the longwave surface emissivity, RT the incoming longwave radiation,

σ the Stefan-Boltzmann constant, L the latent heat of evaporation, Λsk the heat

conductivity of the skin layer (predefined for each tile), and T1 the temperature

of the top soil layer.

Analogue to the surface fluxes, the model values of air temperature and rel-

ative humdity at 2 m height depend on the near-surface gradients of the dry

static energy and the specific humidity, respectively. The 2-metre temperature

is interpolated from the surface temperature and the one of the lowest atmo-

spheric level, accounting for the stability of the atmospheric layering and the

roughness lengths of heat and momentum. Correspondingly, the 2-metre humid-

ity is a function of the specific humidity at the lowest atmospheric model layer,

the saturation humidity for the skin temperature, the atmospheric stability and

the roughness lenghts of momentum and moisture. A detailed description of the

underlying equations is given in the IFS documentation (ECMWF, 2001).
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The change of water storage in a soil layer is calculated with

ρw
∂θ

∂t
= −∂Fw

∂z
+ ρwSθ (2.7)

where ρw denotes the water density, θ the volumetric water content, t time, z

the soil depth, Fw the vertical water flux (positive downwards), and Sθ a sink

term due to root extraction. The vertical water flux is determined according to

Darcy’s law by

Fw = ρw

(
λ

∂θ

∂z
− γ

)
(2.8)

where λ and γ are the hydraulic diffusivity and hydraulic conductivity, respec-

tively, which are calculated as a function of the soil water content according to

the formulations by Clapp and Hornberger (see ECMWF, 2001, for details). For

the determination of the sink term Sθ it is assumed that the water amount bound

by the plants for their growth is negligible so that all the water extracted from

the soil by the vegetation roots is transpired. The water extraction in each layer

can then be calculated from the total evapotranspiration, the soil fraction cov-

ered by vegetation, the vertical root distribution (predefined for each vegetation

type) and the vertical soil moisture distribution. Infiltration (e.g. from rainfall

or snow melt) and evapotranspiration are the boundary condition for the water

transports at the top of the soil. At the bottom of the deepest layer, excessive

water can freely drain.

2.1.3 Microwave radiative transfer

In order to be able to use remotely sensed microwave brightness temperatures in

the ELDAS land data assimilation system, we upgraded the ECMWF weather

forecast model (in this early experimental state the SCM) with a microwave

radiative transfer model which calculates the model equivalents of the brightness

temperature observations from the model’s soil, vegetation and atmospheric state

variables and parameters. The radiative transfer model LSMEM (Land Surface

Microwave Emissivity Model) chosen as the observation operator has already

been applied in several other studies (e.g. Drusch, 1998; Drusch et al., 2001;

Seuffert et al., 2003, 2004; Gao et al., 2004, 2006).

The LSMEM is designed to simulate the measurements of passive microwave

sensors on satellites or aircraft over land surfaces with sparse to medium veg-

etation at frequencies between 1 and about 20 GHz. It accounts for radiation

polarisation, viewing geometry as well as scattering, absorption and emission at

the rough soil surface, by an idealized vegetation layer, and by atmospheric gases.
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Figure 2.2: Schematic diagram of the radiation components of the LSMEM (Kerr
and Njoku, 1990).

Fig. 2.2 shows a schematic diagram of the radiation components included in the

LSMEM: (1) Upwelling atmospheric emission: Its intensity can be expressed by

the effective brightness temperature TB,au which accounts for the atmospheric

temperature and water vapor profile. (2) Microwave radiation emitted from the

soil surface and attenuated by the vegetation layer and the atmosphere: If the

degree of attenuation is expressed by the optical thicknesses τveg and τatm, this

radiation component is denoted by TB,s,p · exp(−τveg) · exp(−τatm), where TB,s,p

stands for the radiation intensity emitted from the bare soil. It is polarisation-

dependent as indicated by the index p. (3) Downwelling cosmic background radi-

ation attenuated by the atmosphere plus the atmospheric emission which both are

attenuated by the vegetation layer, partly reflected at the surface, again attenu-

ated by the vegetation layer, and finally attenuated by the atmosphere: This can

be expressed by the term (Tsky exp(−τatm)+TB,ad) ·rs,p ·exp(−2τveg) ·exp(−τatm)

where Tsky denotes the cosmic background radiation, TB,ad the downwelling at-

mospheric radiation, and rs,p the soil surface reflectivity. (4) Upwelling emission

from the vegetation layer attenuated by the atmosphere: Similar to the soil and

the atmosphere, the radiation intensity emitted from the vegetation layer can

be expressed by an effective brightness temperature TB,veg. The radiation com-

ponent then is TB,veg · exp(−τatm). (5) Downwelling vegetation emission partly
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reflected at the soil surface and then attenuated by the vegetation layer and the

atmosphere: In terms of the preceding specifications, this component is denoted

by TB,veg · rs,p · exp(−τveg) · exp(−τatm). The brightness temperature seen from

the microwave sensor TB,p can then be calculated with

TB,p = TB,au +
(
TB,s,pe

−τveg + TB,veg

)
e−τatm

+
([

Tskye
−τatm + TB,ad

]
e−τveg

)
rs,pe

−(τveg+τatm)
(2.9)

Each radiation component depends on the frequency and the viewing angle θv.

If vegetation does not completely cover the soil (as it is generally the case) the

brightness temperature observed by the microwave sensor is determined by a

linear combination of the bare soil contribution and the one coming from the

vegetation-covered soil

TB,p = (1− cveg) TB,bs,p + cveg TB,vs,p (2.10)

where cveg denotes the fraction of the soil covered with vegetation. TB,bs,p and

TB,vs,p are the brightness temperature over bare soil and over vegetation-covered

soil, respectively.

The emission contribution of the soil is determined by the soil’s temperature

profile, which can be summarised in an effective temperature Ts eff,p, and the

soil’s emissivity εs,p:

TB,s,p = εs,p Tseff,p = (1− rs,p) Ts eff,p (2.11)

Two options exist in the LSMEM for calculating the soil reflectivity. In the first

approach the soil is represented by one semi-infinite layer. Reflection only takes

place at the soil’s surface and is calculated with the Fresnel equations (e.g. Ulaby

et al., 1981). It depends only on the sensor’s viewing angle and the soil’s complex

dielectric constant. This one-layer approach is accurate under the assumption

that the vertical soil moisture and temperature distributions are uniform so that

no gradients in the dielectric constant exist and therefore no reflections occur

within the soil. In order to accurately represent vertically inhomogeneous soils

the multi-layer approach of Wilheit (1978) is implemented in the LSMEM. It

calculates the surface microwave emission based on the contributions of each soil

layer and explicitly takes into account the reflections occurring at the interfaces

between adjacent layers. Reflections at the soil-air interface or at inner-soil inho-

mogeneities are determined by the complex dielectric constants of the soil layers.

These dielectric constants are calculated as a function of the layer’s temperature,

water content, texture, density, and water salinity following a parameterisation
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proposed by Dobson et al. (1985).

Natural land surfaces are generally not smooth but show varying degrees of

roughness. The height fluctuations on distances of the order of the microwave

wavelength significantly affect the radiative characteristics of a land surface at

this wavelength. The reflectivity of a surface decreases with increasing rough-

ness (Choudhury et al., 1979; Wang and Choudhury, 1981; Njoku and Entekhabi,

1996). This implies an increase in emissivity and therefore in brightness tem-

perature. Additionally, the radiation intensity at each polarisation is differently

affected by the soil surface roughness. The difference between the vertically and

horizontally polarised brightness temperatures is lower for a rough surface than

for a smooth one and highest for large viewing angles, while it becomes zero at

zenith. In order to account for the surface roughness effects on the microwave

emission of the soil, two different parameterisations are implemented in the mi-

crowave radiative transfer model (Choudhury et al. (1979); Wang and Choudhury

(1981); and Wegmüller and Mätzler (1999)). Both calculate the reflectivity of

a rough surface as a function of the smooth surface reflectivity (given by the

Fresnel equations), the incidence angle, and a characteristic roughness height of

the surface. While Wegmüller and Mätzler (1999) use the standard deviation of

the surface height which can be directly measured, the formulation of Choud-

hury et al. (1979) and Wang and Choudhury (1981) is based on a roughness

parameter h which needs to be derived from measurements by regression meth-

ods. Since h was derived for the SGP97 region, the latter approach was used in

our assimilation experiments.

The effective soil temperature in Eq. (2.11) is either the temperature of the

semi-infinite soil layer or calculated by Wilheit’s multi-layer model which weights

the emission contributions of each soil layer.

Eq. 2.9 requires the radiation intensity emitted from the vegetation layer (i.e.

its brightness temperature) and its optical thickness. The brightness temperature

can be determined with (Kerr and Njoku, 1990)

TB,veg = (1− ω)(1− e−τveg)Tveg (2.12)

where ω is the effective single scattering albedo, which accounts for reflections at

leaves, stalks, etc. and has to be defined as input in the LSMEM. Two parameter-

isations can be used to calculate the canopy optical thickness (Kirdyashev et al.,

1979; Wegmüller et al., 1995). Both approaches strongly depend on a coefficient

which accounts for the vegetation structure. Since a vegetation canopy generally

is a chaotic-arranged composition of plant components, this structure coefficient

needs to be derived from brightness temperature measurements, which is not
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feasible for operational large-scale applications, or estimated based on the vege-

tation type. It can be a significant source of uncertainty for microwave radiative

transfer calculations which has to be taken into account in the ELDAS assimi-

lation system (a bias analysis is presented in Sec. 4.2.2). The results of the two

parameterisations differ only marginally below 5 Ghz, and since the formulation

of Kirdyashev et al. (1979) requires less input parameters, it was used in our

assimilation studies.

In the atmosphere, microwave radiation can significantly be influenced by

the gases oxygen and water vapor as well as by water droplets in clouds and

precipitation. However, these effects become negligible at frequencies below 5

GHz (Barrett and Kniveton, 1995; Ulaby et al., 1981). Therefore, this part of the

LSMEM is only addressed in brief here. Atmospheric absorption is based on the

millimeter-wave propagation model of Liebe (1989) which includes the absorption

lines of oxygen and water vapor. Water droplets are so far not included in the

LSMEM. The atmospheric part requires the vertical profiles of temperature,

humidity and pressure as input for an arbitrary number of layers. An overview

of all necessary input data for the LSMEM is listed in Appendix A.

2.2 Soil moisture analysis

The aim of any assimilation system is to find a solution for a state vector x that

optimally combines (modelled) background data and observations by weighting

all information sources depending on their uncertainties. According to variational

analysis, the best estimate of x is achieved by minimising the so-called cost

function (e.g. Courtier, 1997)

J(x) = (y −Hx)T R−1 (y −Hx) + (x− xb)
T B−1 (x− xb) (2.13)

which means to solve ∇J = 0. The vectors xb and y contain the background

state vector and the observations, respectively. The first guess equivalents of

the observations are calculated from the model state vector x with the generally

non-linear forward operator H (also called observation operator). The random

observation and background errors are taken into account by the covariance

matrices

R = (y −Hxt)(y −Hxt)T (2.14)

and

B = (xb − xt)(xb − xt)T (2.15)
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where the index t denotes the true values of x, the exponent T stands for the

transpose and the overbar indicates the expectation value of the term underneath.

The mean errors y −Hxt and xb − xt are assumed to be zero.

∇J = 0 represents a non-linear system of equations, a solution can only be

deduced iteratively. However, an analytical solution of the system can be found

by linearising the forward operator H, i.e. it is assumed that small perturbations

of the initial state xb result in only linear changes of the parameters calculated

by the forward operator. This can be mathematically expressed by

Hx−Hxb = H(x− xb) (2.16)

where H denotes the linearised forward operator.

The soil moisture analysis in the ELDAS data assimilation system is based

on the extended Kalman filter (see e.g. Bouttier and Courtier, 1999). The sys-

tem is designed to perform an analysis every 24 hours by using the microwave

brightness temperature, 2-metre air temperature and 2-metre relative humid-

ity observations available from between two analyses. The best estimate of the

model soil moisture state vector xa, which results from minimising the cost func-

tion (2.13), is

xa(t) = xb(t) + K[t−24h,t]

(
y[t−24h,t] −H[t−24h,t]xb,[t−24h,t]

)
(2.17)

xb denotes the background soil moisture at the time step t; y[t−24h,t] contains the

screen-level and brightness temperature observations from the 24-hour window

preceding the analysis, H[t−24h,t]xb,[t−24h,t] the corresponding model equivalents;

K is the Kalman gain which performs the weighting of all available information.

The state vector x contains three elements which are the volumetric moisture

values in layer 1, 2, and 3. The bottom soil layer is omitted because it’s water

content is only very weakly related to the turbulent surface fluxes. The dimen-

sion of the observation vector y[t−24h,t] is flexible and depends on the number of

observations. The background vector xb results from the forecast based on the

preceding analysis, i.e.

xb(t) = M(t−24h)→t xa(t− 24h) (2.18)

where M(t−24h)→t stands for the model which performs the forcast calculations.

The forward operator H includes (a) the parameterisations used to compute

the model values of 2-metre temperature and 2-metre relative humidity, and (b)

the microwave radiative transfer model which calculates brightness temperatures

directly within the regular forecast run. The gain matrix K[t−24h,t] is calculated
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by

K[t−24h,t] = (B−1(t) + HT
[t−24h,t]R

−1H[t−24h,t])
−1HT

[t−24h,t]R
−1 (2.19)

The size of the quadratic observation error covariance matrix R depends on the

number of observations. For the experiments described in this study, it has been

assumed to be constant over time.

For calculating the observation operator matrix H[t−24h,t], the tangent linear

hypothesis (Eq. (2.16)) is applied. H[t−24h,t] can then be determined from one-

side finite differences. This requires one additional perturbed forecast run for

each state variable. The resulting matrix elements of H[t−24h,t] are

hij =
(Hxp)(t(i), j)− (Hxb)(t(i))

xp (t(i), j)− xb (t(i), j)
(2.20)

where Hx denotes the model equivalents of the observation vector, and x the

state vector to be analysed. The indices p and b stand for the perturbation

and background run, respectively. The index i indicates the observation number

within the observation vector y = (y1, ..., yi, ..., yn). The index j denotes the

number of the soil layer within the state vector x = (x1, x2, x3) and, at the same

time, the number of the perturbation run, since only layer 1 is perturbed in the

first additional forecast run, only layer two in the second run, etc. Accordingly,

the linearised observation operator H[t−24h,t] is a n×3-matrix. Finally, t(i) is the

time of the observation yi and the model equivalent (Hx)(i).

The background error covariance matrix B temporarily evolves by

B(t) = MA(t− 24h)MT + Q(t− 24h) (2.21)

where A denotes the analysis error covariance matrix, M the linearised model

operator and Q the model error covariance matrix. A is recalculated at every

analysis time step according to

A(t) = (B−1(t) + HT
[t−24h,t]R

−1H[t−24h,t])
−1 (2.22)

The linearised model operator M can be derived similarly to the observation

operator H by assuming that small perturbations of the initial state xa result in

only linear changes of the forecast:

Mx(t)−Mxa(t) = M(x(t)− xa(t)) (2.23)

After calculating one-side finite differences, the matrix elements of M are assessed

22



CHAPTER 2. ELDAS DATA ASSIMILATION SYSTEM

by

mij =
(Mxp)(i, j)− (Mxa)(j)

xp(i)− xa(i)
(2.24)

where xp(i) is the perturbed soil moisture of layer i at the beginning of the 24-

hour time-frame and xa(i) the equivalent unperturbed value (determined by the

preceding analysis). (Mxp)(i, j) stands for the soil moisture of layer j simulated

at the end of the 24-hour window resulting from the forecast run where the

initial soil moisture of layer i is perturbed. (Mxa)(j) denotes the corresponding

background soil moisture. The indices i and j are determined by the number

of the root zone soil layers for which the soil moisture analysis is performed.

Consequently, M is a quadratic matrix of dimension 3× 3.

The model error covariance matrix Q in Eq. (2.21) covers random errors of

the forecast that can be attributed to shortcomings in the model. Systematic

errors are not included and should have been minimised before the Kalman filter

is applied. The quantification of Q is subject of a separate discussion (Sec. 4.1).

Equations 2.17 – 2.22 and 2.24 are the basis for the ELDAS soil moisture

analysis system applied in this study. At the beginning of a forecast cycle,

the analysis system requires the initialisation of the state vector xa(t = 0) and

its error covariance matrix A(t = 0). Furthermore, the error covariances of the

model and of the observations have to be specified. Settings for input parameters

and initialisation values are described in detail in section 3.3. An advantage of the

extended Kalman filter (EKF) is that the background error covariance matrix is

recalculated every analysis time step depending on the meteorological situation.

In contrast to 4D-Var (Bouttier and Courtier, 1999), where a perfect model is

assumed, the model errors are taken into account. In doing so, the calculation

efforts and the storage demands noticeably increase. However, this disadvantage

is of minor importance here since the soil moisture analysis is applied on a three-

element state vector only.
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Chapter 3

Data and reference assimilation

experiments

The work presented in this thesis is mainly based on observations from the two

Southern Great Plains Hydrology Experiments carried out in 1997 and 1999 (de-

noted by SGP97 and SGP99) over parts of the U.S. state Oklahoma. Required

meteorological and hydrological variables that were not provided by the field ex-

periments have been taken from ECMWF’s 40-year global reanalyses. Seuffert

et al. (2004) also used these datasets to test the feasibility and the potential ben-

efit of the new ELDAS data assimilation system. Their assimilation experiments

are the basis for the error analyses presented in this thesis and are summarised

in section 3.3.

3.1 Southern Great Plains Hydrology Experi-

ments

3.1.1 SGP97

The SGP97 field experiment was carried out from 18 June to 17 July, 1997. The

observed region is defined by a 40 km by 280 km area ranging from 34.5°N to

37.0°N centered at approximately 97.8°W (see Fig. 3.1(a)). On selected days, an

aircraft equipped with the passive microwave Electronically Scanned Thinned

Array Radiometer (ESTAR) overflew the area during the first half of the day on

predefined flight lines at 7.5 km height. ESTAR provided brightness temperature

observations at 1.4 GHz which were normalised to zenith viewing angle and

mapped to a horizontal resolution of about 800 m (Jackson et al., 1999). Fig.

3.1(b) shows an example of such a map. ESTAR data is available for 18 of
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(a) (b)

Figure 3.1: (a) Outline map of observation facilities in Oklahoma and southern
Kansas (SGP97 Experiment Plan, 1997). The SGP97 area is indicated by the
parallelogram. (b) Example of an SGP97 brightness temperature map (http:
//disc.gsfc.nasa.gov/fieldexp/SGP97/estar.html).

the 30 experiment days (June 18 – 20, 25 – 27, June 29 – July 3, and July

11 – 17). A time series of observed brightness temperatures is shown in Fig.

3.2 for the field site LW02, which is the location for which the assimilation

experiments of this study were performed. At this site, ESTAR data was also

not available on July 15 and 17. The lacking measurements could have been

substituted by artificially generated data. However, this study was intended to

exclusively deal with observations facing all the problems potentially occurring

under operational circumstances. Furthermore, Calvet et al. (1998) showed that

assimilating surface soil moisture information every third day is sufficient for

analysing root zone soil moisture when atmospheric forcing and precipitation are

known. Site LW02 was chosen because of the comprehensive pool of auxiliary

data available for that site (see below).

Simultaneous to the brightness temperature measurements, gravimetric soil

moisture samples were collected at three main observation areas (see Fig. 3.1):

(a) the Central Facility (CF) of the Atmospheric Radiation Measurement (ARM)

Cloud and Radiation Testbed (CART) operated by the United States Depart-
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Figure 3.2: NOAA/ATDD 2-metre air temperature and 2-metre relative humdity
observations (daily means) and ESTAR brightness temperature measurements
(from around 11 LST) at SGP97 site LW02.

ment of Energy, (b) the Grazinglands Research Lab at El Reno (ER) operated

by the Agricultural Research Service (ARS) of the United States Department of

Agriculture (USDA), and (c) the USDA ARS Little Washita watershed (LW) in

the south of the SGP97 region. A number of fields (LW: 23, ER: 16, CF: 9) have

been defined in each observation area for which, besides gravimetric soil moisture,

several auxiliary soil and vegetation characteristics have been determined, e.g.

soil temperature, vegetation type, vegetation water content, soil surface rough-

ness, soil bulk density, and soil texture. The gravimetric soil moisture data is

provided as daily area means for each field together with daily standard devia-

tions. The area means and standard deviations result from 14 samples extracted

from the top 5 cm of the soil at each field each day whenever possible (field size:

800 m × 800 m). With the corresponding soil bulk density, the gravimetric val-
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(a)

(b)

Figure 3.3: (a) Volumetric soil moisture at site LW02 during SGP97. The plus
signs were derived from surface gravimetric samples (0 - 5 cm depth) taken once
a day. A soil bulk density of 1.22 g/cm3 was used for conversion as derived from
samples of the soil’s top 5 cm. The lines represent soil moisture values determined
from hourly matric potential observations according to van Genuchten (1980),
averaged to daily means (solid line = 5 cm depth, dashed line = average of 10,
15, 20, and 25 cm depth, and dotted line = 60 cm depth). (b) Daily means of
measured soil temperatures at the NOAA/ATDD flux-monitoring station during
SGP97. The solid line is an average of measurements at 2 and 4 cm depth, the
dashed line shows the recordings from a depth of 16 cm, the dotted one from 60
cm.

ues can be converted into volumetric water contents. Fig. 3.3 shows the available

surface soil moisture observations for site LW02 (plus signs).

Land use and the type of vegetation in the SGP area are subdivided into 13

classes based on satellite observations and on-site surveys. The vegetation water

content, the bulk density, and the surface roughness parameter h (see page 19)

are set constant for each of these classes based on sample measurements. Only

for three vegetation types the water content is calculated as a function of a

contemporary measured normalised difference vegetation index (NDVI). Finally,

the soil texture is based on sample measurements and the state soil geographic
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Figure 3.4: (a) Aerial photo showing land cover near the NOAA/ATDD site
(SGP97 Experiment Plan, 1997).

database (STATSGO). A more detailed description of the data available for all

fields can be found in (Jackson et al., 1999).

At some fields, additional data is available due to special measuring cam-

paigns or regularly operating observing systems. This is the case for the SGP97

site LW02 located in the North-East of the Little Washita watershed south-west

of the city of Chickasha (34°58’N, 97°57’W). This region is mainly covered with

grass and patchy forests (Fig. 3.4). At site LW02, the Atmospheric Turbulence

and Diffusion Division (ATDD) of the U.S. National Oceanic and Atmospheric

Administration (NOAA) operated a flux-monitoring site (Meyers, 2001). The

station provided half-hourly observations of wind speed, wind direction, 2-metre

air temperature, 2-metre relative humidity, surface pressure, precipitation, in-

coming shortwave radiation, surface net radiation, skin temperature, soil tem-

perature at six depths between 2 and 64 cm, sensible heat flux, latent heat flux,

ground heat flux, and, since June 1997, volumetric soil moisture for the top 10

cm zone. Time series of the daily means of the 2-metre temperature and relative

humidity, which are two of the three variables that are assimilated for the soil

moisture analysis, are shown in Fig. 3.2. The humidity values presented are 7

% lower than the values originally recorded due to a measuring bias (Seuffert

et al., 2004). The temporal evolution of selected soil temperature measurements

as they are used to represent the three root zone layers of the soil model TESSEL

is shown in Fig. 3.3.

Another data source at LW02 are soil matric potential observations provided

by the USDA ARS as part of the Soil Heat and Water Measurement System
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(SHAWMS). The matric potential characterises the ability of the soil to bind

water, which in turn depends on the soil’s water content, and can be determined

with heat dissipation sensors (Reece, 1996). The available data consists of hourly

matric potential values at depths of 5, 10, 15, 20, 25, and 60 cm for the com-

plete SGP97 period and therefore supplements the gravimetric measurements

of surface soil moisture with profile information. The conversion of the matric

potentials to volumetric soil moisture values was done following van Genuchten

(1980). Time series of daily means of these soil moisture retrievals interpolated to

the three root zone layer depths of TESSEL are shown in Fig. 3.3 together with

the values derived from the gravimetric measurements. The amplitude of sur-

face soil moisture derived from the matric potential observations for the model’s

top layer (solid black line) is significantly smaller than that derived from the

gravimetric measurements (plus signs). This results from the different sampling

depths of the two datasets. While the gravimetric probes represent the water

content of the top 5 cm of the soil, the matric potential closest to the surface

has been measured at a depth of 5 cm where the fluctuations of soil moisture

are generally smaller than in the layer above. However, Fig. 3.3 shows that soil

moisture gradients at the soil surface can be quite large, confirming the need

of investigating the effects of the surface soil moisture profile in an assimilation

setup that uses microwave brightness temperatures (section 4.3).

3.1.2 SGP99

The SGP99 experiment covered the period from July 8 to July 20, 1999. The

campaign was designed to further evaluate the feasibility of deriving soil moisture

from satellite observations (SGP99 Experiment Plan, 1999). Many of the SGP99

datasets resemble the ones described in the SGP97 section, e.g. again ESTAR

observations and gravimetric soil moisture measurements have been provided

for more than thirty sites. A comprehensive description can be found under

http://hydrolab.arsusda.gov/sgp99/sgp99b.htm.

One major rainfall event during the night of July 9 and the early morning of

July 10 caused a significant increase in soil moisture in the entire SGP region,

followed by a dry down period until the end of the experiment. The amounts of

rainfall varied from up to 107 mm at the very centre of the storm located in the

El Reno (ER) area, about 40 mm in the northern experiment area around the

Central Facility (CF) to 10-40 mm in the Little Washita (LW) area in the south

(Drusch et al., 2004). Simultaneous to the ESTAR flights, which took place

mainly in the morning hours, gravimetric soil moisture estimates were sampled

(22 fields in the LW area, 6 at ER, and 5 at CF). Again, fourteen samples were
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taken on each field to capture the spatial variability, but different from SGP97,

soil moisture was determined for the top 0 to 2.5 and 2.5 to 5 cm separately.

At 10 observation sites in the Little Washita watershed (LW numbers 02 – 06,

09, 12 –14, and 21), soil temperature measurements for the surface and depths

of 1, 5, and 10 cm were performed. The data was mainly collected during the

morning hours between 8 and 11 local time.

3.2 ECMWF’s ERA-40 reanalysis

Required data not available from SGP observations has been extracted from

ECMWF’s ERA-40 archive which is a reanalysis of the meterorological state of

the atmosphere from September 1957 to August 2002 (Uppala et al., 2005). The

archive provides global data every six hours with a spatial resolution of 125 km.

The grid point which coincides best with the location of the NOAA/ATDD site

has been chosen as the source for remaining data needs, which are downwelling

surface longwave radiation, vertical velocity, geostrophic wind components, ad-

vection values of temperature, specific humidity and horizontal wind, cloud frac-

tion, and specific cloud liquid and ice water content.

3.3 Reference data assimilation experiments

Seuffert et al. (2004) tested the ELDAS data assimilation system using measure-

ments from the SGP97 site LW02 and the NOAA/ATDD flux monitoring site.

Selected model parameter settings, derived from observations and vegetation

characteristics, and the LSMEM parameterisations they used are summarised

in Tab. 3.1. These specifications have been adopted for this study. The only

changes that have been carried out are (a) a necessary transfer to another hard-

and software environment (from ECMWF’s IBM server to a Linux-PC including

a compiler change) and (b) a revised initialisation of soil and skin temperatures

(NOAA/ATDD site observations are used instead of values from the ERA-40

reanalysis). Mainly the second point causes small changes in the resulting er-

ror statistics. However, they do not affect the conclusions obtained from the

reference assimilation experiments.

Model simulations started on 15 July 1997 with soil moisture values derived

from the SHAWMS profile measurements. At every 20 minute time step the

single-column model was forced with surface observations of precipitation and

downward shortwave radiation recorded at the NOAA/ATDD station. The at-

mospheric conditions were re-initialised every 24 hours at local midnight with
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TESSEL

High vegetation type (area fraction) Interrupted forest (3 %)

Low vegetation type (area fraction) Tall grass (97 %)

Wilting point 0.26 m3/m3

Field capacity 0.11 m3/m3

LSMEM

Fractions of sand/clay/silt 35/20/45 %

Surface roughness 0.5 cm

Vegetation coverage 0.8

Vegetation water content 0.34 kg/m2

Single-scattering albedo 0.1

Vegetation structure coefficient 0.003

Dielectric mixing model Dobson et al. (1985)

Smooth surface reflectivity Fresnel equations

Rough surface reflectivity Wang and Choudhury (1981)

Vegetation opacity Kirdyashev et al. (1979)

Atmosphere Liebe (1989)

Table 3.1: TESSEL/LSMEM parameter settings and parameterisations used in
the LW02 reference assimilation experiments (Seuffert et al., 2004, for parame-
terisation details see Sec. 2.1.3).

data from ECMWF’s ERA-40 reanalysis. The soil moisture analysis was per-

formed once per day, also at local midnight, provided that screen-level and/or

microwave brightness temperature observations are available within the 24 hours

before. 2-metre temperature and relative humidity observations were assimi-

lated at 09, 12, and 15 local standard time (LST), since the coupling of the

atmospheric boundary layer to the soil is in general strongest around noon (e.g.

Garratt, 1992). ESTAR brightness temperatures were applied at 11 LST when-

ever available. The uncertainties of the observations were set to 2 K for the

2-metre temperature and the brightness temperature, and to 10 % for the rela-

tive humidity. The main diagonal of the observation error covariance matrix R

was therefore defined by 4 K2 and 100 %2, respectively. Since the errors of the

observation types were assumed to be uncorrelated, the covariances are zero, i.e.

R =

4 K2 0 0

0 100 %2 0

0 0 4 K2

 (3.1)
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Four different model runs with varying usage of observation types were carried

out for the SGP97 period. The control run (CTRL) was performed without

any soil moisture analysis. The three data assimilation runs used (1) screen-

level variables alone (KTR), (2) brightness temperatures alone (KB), and (3) all

three observations together (KTRB). For each of these assimilation setups, three

additional forecast runs were performed every 24 hours in which the initial soil

moisture of the first, second, and third root zone layer was slightly perturbed by

a factor of 0.00001, respectively, i.e.

Θi,pert = Θi,back ±Θi,back · 0.00001 (3.2)

where Θi,back denotes the background soil moisture of the i-th root zone layer

and Θi,pert the perturbed value. The direction of the soil moisture perturbation

(i.e plus or minus) depends on the deviation of the modelled background of the

assimilation variables from the corresponding observations. The finite difference

method outlined in section 2.2 can then be applied. The observation and model

operators H and M are given by Eqs. 2.20 and 2.24, respectively. The model

error covariance matrix was set to (more details in section 4.1)

Q =

0.005 m3/m3 0 0

0 0.005 m3/m3 0

0 0 0.005 m3/m3

 (3.3)

Modelled turbulent fluxes and analysed soil moisture for the three top model

layers from the different assimilation runs have been compared against observa-

tions from the NOAA/ATDD site. The main results of the reference runs can be

summarised as follows (also see Figs. 3.5, 3.6, 3.7 and (Seuffert et al., 2004)): (1)

If the initial soil moisture conditions are well known and the forcings are of high

accuracy, the land surface model is able to reproduce root zone soil moisture very

well. (2) The assimilation of screen-level variables alone improves the modelled

turbulent surface fluxes but significantly degrades the accuracy of the resulting

analysed root zone soil moisture. (3) Assimilating brightness temperatures alone

leads to a smaller improvement in predicted fluxes but deteriorates the analysed

root zone soil moisture to a much lesser degree than the assimilation of screen-

level variables alone. (4) The combined assimilation of screen-level variables and

brightness temperatures leads to the best results for both the turbulent fluxes

and the water content in the soil model’s top layer. At the same time, however,

the model soil moisture drifts away from reality in the deeper root zone layers.

(5) It was not possible to improve the accuracy of both root zone soil moisture

and turbulent heat fluxes at the same time for the entire period. The KTRB runs
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Figure 3.5: Daily means of observed and modelled 2m temperature, relative hu-
midity and microwave brightness temperature from 15 June to 20 July 1997 in
the reference data assimilation experiments. The plus signs stand for observa-
tions [OBS] (brightness temperature observations are from around 11 LST only);
lines denote results from model runs (solid = no assimilation [CTRL], dashed =
assimilation of 2m temperature and relative humidity alone [KTR], dash-dotted
= assimilation of brightness temperature alone [KB], dotted = assimilation of all
observation types together [KTRB]). Specified statistic quantities are correlation
coefficient [Corr], bias [Bias] and bias-corrected root-mean-square error [RMS] of
the modelled variables in comparison to the observed values.

.
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Figure 3.6: Daily means of observed and modelled soil moisture in the three
top model layers and the resulting root zone soil moisture from 15 June to 20
July 1997 in the reference data assimilation runs. Plus signs denote SHAWMS
observations: values from a depth of 5 cm are chosen to represent model layer
1; the mean from 10, 15, 20 and 25 cm corresponds to layer 2; the 60-cm mea-
surement stands for layer 3. The diamonds represent water contents derived
from the gravimetric probes whenever available (not used for calculation of error
statistics). For the meaning of the lines and the statistic data see Fig. 3.5.
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Figure 3.7: Daily means of surface latent and sensible heat fluxes from 15 June
to 20 July 1997 in the reference data assimilation runs (further denotations see
Fig. 3.5).

served best in simulating the fluxes, whereas root zone soil moisture deteriorates

least from observations when assimilating only the brightness temperature. Some

of these findings will be discussed further in section 4.4 in light of the following

error analyses.
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Chapter 4

Assimilation studies and error

analyses

First results from the single-column tests with the ELDAS data assimilation

system (Chap. 2) have been published by Seuffert et al. (2003, 2004). They

proved the applicability and the potential benefits of passive microwave remote

sensing information in the ECMWF weather prediction model. Based on these

assimilation experiments, which are in part recapitulated in chapter 3.3, we ad-

dress in more detail a set of errors affecting the soil moisture analysis. A revised

quantification of the random model error is presented in chapter 4.1. Chapter

4.2 concentrates on biases caused by the model background, observations and

forward operators and how to take them into account in an operational data

assimilation setup. Chapter 4.3 finally addresses the systematic errors caused by

the insufficient vertical near-surface resolution of the soil model.

4.1 Quantification of the model error covari-

ance matrix

The background error covariance matrix evolves in time as a function of the anal-

ysis errors, the forecast operator (i.e. the model), and the model error covariance

matrix (Eq. 2.21). The model error εmod at an arbitrary analysis time step i is

defined as the deviation of the forecast from the true model state vector xt:

εmod(i) = Mi−24h→i xt(i− 24h)− xt(i) (4.1)

Mi−24h→i denotes the model or forecast operator applied to the model state

vector. Model errors can originate from imperfect parameterisations or inevitable
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discretizations in time and space. They also include forecast errors arising from

uncertainties in the model’s forcing data.

The model error covariance matrix is defined by

Q = (εmod − εmod)(εmod − εmod)T (4.2)

where the overbars denote the expectation values and T marks the transpose.

The Kalman filter assumes that the forecast model is free of biases so that the

mean error in Eq. (4.2) becomes zero. Since x represents the soil moisture of

the three model root zone layers in the assimilation system used here, εmod is

a three-element vector at each analysis time step. The model error covariance

matrix Q for the ELDAS soil moisture analysis system is therefore given by

Q =

 ε2
mod,1 (εmod,1 · εmod,2) (εmod,1 · εmod,3)

(εmod,2 · εmod,1) ε2
mod,2 (εmod,2 · εmod,3)

(εmod,3 · εmod,1) (εmod,3 · εmod,2) ε2
mod,3

 (4.3)

where εmod,1, εmod,2, and εmod,3 represent the soil moisture model errors of the

top, middle and lowest root zone layer, respectively.

In practice, the determination of the model error covariance matrix is difficult

because theoretically all single model errors, i.e. magnitudes and interdependen-

cies, have to be known. Seuffert et al. (2004) applied an indirect method. They

searched for a Q with which an optimal combination of observational and back-

ground information is achieved by checking the compliance with

(y −Hxt)(y −Hxt)T − (y −Hxa)(y −Hxb)T = 0 (4.4)

where y denotes the observation vector, H the linearised forward operator, and

xt, xb and xa the true, background and analysed soil moisture state vector,

respectively. The first term on the left side is the observation error covariance

matrix R (also see Sec. 2.2). The second term resembles the first one, but

additionally accounts for errors caused by the model (via xb) and the analysis (via

xa). In case of an optimal analysis, xb and xa would, on average, be equal to the

true state so that the second term converts to the observation error covariance

matrix and Eq. (4.4) is fulfilled (provided that systematic model errors have

been eliminated and the assumption of a linearised forward operator holds). In

a suboptimal analysis which tends to stay too close to the observations, the

absolute values of the deviations y −Hxa and y −Hxb would, on average, be

smaller than y − Hxt so that Eq. (4.4) becomes positive. Accordingly, if the

background field is weighted too much, it would become negative. Therefore,
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Eq. (4.4) provides an opportunity to assess the balance of the analysis.

Seuffert et al. (2004) performed a number of case studies with varied model

error covariance matrices. For the observation error covariance matrix, they used

variances of (2 K)2 for 2-metre temperature and brightness temperature and (10

%)2 for relative humidity to allocate the diagonal; covariances were set to zero

(these settings have been adopted in this thesis). By assuming Q to be diagonal

and constant in time, too, they found that a model error covariance matrix with

εmod = 0.005 m3/m3 for all three root zone layers best matches Eq. (4.4).

However, two types of observations are used in the ELDAS assimilation sys-

tem which mainly depend on the soil water storage in different depths: Screen-

level variables are closely linked to the available water in the entire root zone,

while the microwave brightness temperature mainly represents the soil moisture

content of the surface layer. Consequently, it is likely to achieve an improved soil

moisture analysis when the vertical distribution of the model error is resolved

more accurately.

4.1.1 Error propagation experiment with perturbed pre-

cipitation

As mentioned above, the forcing data for the land surface model is one potential

major error source contributing to Q. It is possible to estimate this contribution

from an ensemble of model runs with artificially perturbed forcing data. Precip-

itation was chosen because of its direct impact on the soil water budget: a rain

event can cause a significant wetness increase in the root zone within hours while

the effects of radiation and wind are much smoother.

Forcing errors from precipitation can be quite large because current atmo-

spheric models still have difficulties to accurately forecast the movement and

intensity of low-pressure systems and are hardly able to simulate the develop-

ment of single showers and thunderstorms. Therefore, we decided to perturb

the measured amount of rainfall randomly by a value of up to 100 % each day,

i.e. we assumed that in the worst case the model simulates no precipitation or

the double amount of what really occurs. Since the probability of correctly fore-

casting the weather situation ”dry” or ”not dry” is much higher than the prob-

ability of forecasting the correct rain amount, days without precipitation have

not been perturbed. Based on 10 perturbed rainfall time series for site LW02,

the same number of model runs without any data assimilation were performed.

Fig. 4.1 shows the perturbed precipitation amounts and the resulting soil water

contents of the model’s root zone layers. The soil moisture values of each run

with perturbed precipitation were then compared to the corresponding values of
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Figure 4.1: Daily observed (black) and perturbed (colored) precipitation amounts
and resulting soil moisture values in the model’s root zone layers at SGP97 site
LW02.

the unperturbed control run and the respective bias-corrected root-mean-square

deviations (representing the random forcing errors) were calculated. This pro-

cedure yields a mean rms error of 0.0045 ± 0.0004 m3/m3 for the root zone soil

moisture.

The analysis of the single soil layers reveals that perturbing precipitation does

not have the same effect in all model layers. For the surface layer, a mean rms

error of 0.0086 ± 0.0008 m3/m3 was found when compared to the soil moisture

of the run using observed rain amounts. The soil moisture for layers 2 and 3 are

39



CHAPTER 4. ASSIMILATION STUDIES AND ERROR ANALYSES

characterised by values of 0.0096 ± 0.0007 m3/m3 and 0.0013 ± 0.0004 m3/m3,

respectively. Since the infiltration process smoothes the randomly distributed

errors, the value for layer 3 is comparably low. At the same time, it might

be surprising that the rms error of the top layer is smaller than that of the

second layer since errors in the precipitation forcing are expected to have the

strongest impact on the surface. This unexpected behavior can be explained

by a comparison of the soil moisture evolutions in layer 1 and 2 resulting from

the precipitation perturbations (second and third plot in Fig. 4.1). The two

strong rain events on day 185 and 191 mainly affect the second soil layer because

the surface layer already gets very wet both days in the control run. In those

perturbation runs with more precipitation than observed the additional water

quickly percolates into the layer below, leading to a significant increase in soil

moisture which noticeably affects the examined rms errors. To a lesser degree

this can also be observed at day 168.

For the following data assimilation experiments it is assumed that precipita-

tion uncertainties result in errors of the same magnitude in model layer 1 and 2.

Model error variances of (0.010 m3/m3)2 and (0.0015 m3/m3)2 have been used for

the two upper layers and the bottom root zone layer, respectively. These values

are slightly higher than the ones found above. However, by this adjustment the

difference between the root zone means of the model error resulting from the

error propagation experiment (0.0045 m3/m3) and found by Seuffert et al. (2004,

0.0050 m3/m3) is reduced. The approximately identical mean errors allow for

a comparison of the different analysis setups which only takes the effect of the

vertical distribution of the layer-specific model errors into account.

It has to be noted that the outcome of this error propagation experiment

strongly depends on the chosen perturbations. If, for instance, the temporal

evolution of the rainfall events (i.e. the days of their occurence) was addition-

ally changed or the actual amount of precipitation was perturbed with larger

increments, the model errors integrated in Q would be larger as well. Therefore,

the choice of the perturbations also affects the weighting of the observational

and background information in the soil moisture analysis. As a consequence, the

optimal combination of the available information as requested by Eq. (4.4) may

no longer be ensured. Therefore, Eq. (4.4) is additionally checked with the new

finding of Q and compared to the corresponding values from the reference ex-

periment with the vertically constant model error. Results are presented for the

KTRB run only, because the outcome of the KTR and KB setup is qualitatively

the same.

For the reference experiment (REF), the left side of Eq. (4.4) yields (values
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are rounded to integer for better readibility)

R− (y −Hxa)(y −Hxb)T =



0 −3 −2 7 8 7 −1

−3 0 −3 6 13 14 0

−2 −3 −1 7 12 22 0

7 7 7 44 −58 −58 10

8 13 12 −56 15 −87 3

6 14 22 −55 −87 −45 −1

0 1 0 5 0 −3 −9


(4.5)

while using the new Q setting results in

R− (y −Hxa)(y −Hxb)T =



0 −2 −2 6 7 6 1

−2 0 −3 5 13 12 2

−2 −3 −1 6 11 19 1

6 6 6 49 −52 −49 4

7 13 11 −50 17 −80 −3

5 12 18 −45 −79 −21 −8

1 2 2 −3 −9 −13 −6


(4.6)

At first sight, the matrices look quite similar. For an easier interpretation, the

values of the main diagonal have been normalised by the observation variances

(which are (2 K)2 for air and brightness temperature and (10 %)2 for relative

humidity). This normalisation results in

0.08 · · · · · · · · · · · · · · · · · ·
· · · −0.06 · · · · · · · · · · · · · · ·
· · · · · · −0.34 · · · · · · · · · · · ·
· · · · · · · · · 0.44 · · · · · · · · ·
· · · · · · · · · · · · 0.15 · · · · · ·
· · · · · · · · · · · · · · · −0.45 · · ·
· · · · · · · · · · · · · · · · · · −2.13


REF

(4.7)

and 

0.10 · · · · · · · · · · · · · · · · · ·
· · · −0.11 · · · · · · · · · · · · · · ·
· · · · · · −0.19 · · · · · · · · · · · ·
· · · · · · · · · 0.49 · · · · · · · · ·
· · · · · · · · · · · · 0.17 · · · · · ·
· · · · · · · · · · · · · · · −0.21 · · ·
· · · · · · · · · · · · · · · · · · −1.44


Q

(4.8)
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Matrix (4.7) stands for the reference experiment and matrix (4.8) for the run

with the new Q. Beginning at the top left, the single elements represent air

temperature at 9, 12, and 15 LST, relative humidity at the same times, and

brightness temperature, respectively, similarly to the order in the observation

vector y. As written above, a negative value indicates an analysis which tends

to stick too close to the background. A positive sign represents an analysis which

overweights the observations, and a value of zero stands for an optimal analysis.

The new setting of Q noticeably improves the analysis, in terms of a more

balanced processing of observations and background, for the air temperature and

relative humidity data at 15 LST and the brightness temperatures (compare 3rd,

6th, and 7th element of the diagonal). The other values hardly change. The new

model error covariance matrix therefore seems to be a reasonable estimate. How-

ever, the check of the analysis balance reveals that for the brightness temperature

the background might be weighted too much in comparison to the observations.

The easiest way to level this out would be to reduce the brightness temperature

observation error. Nevertheless, for a consistent comparison of the runs with dif-

ferent Q, this adjustment has not been done in this study. A revised brightness

temperature observation error will be tested and potentially incorporated in a

subsequent one-year assimilation study (see Sec. 5)

4.1.2 Application of a revised model error covariance ma-

trix

The revised setting of the model error covariance matrix has been applied in an

assimilation experiment at SGP97 site LW02. Two different setups concerning

precipitation have been chosen: (a) observed, quality-controlled precipitation

(solid line in the top plot of Fig. 4.1), and (b) rain amounts set to zero so that

the response of the analysis system to false precipitation forcing data can also be

assessed. In both precipitation setups and analogous to the reference experiment,

model runs have been performed without assimilation (CTRL), with the assim-

ilation of screen-level variables alone (KTR), with the assimilation of brightness

temperatures alone (KB), and with the assimilation of all observations together

(KTRB). The results in terms of the bias-corrected rms deviation of modelled

soil moisture and fluxes from the corresponding observations are summarised in

Tab. 4.1(a) (observed precipitation) and 4.1(b) (precipitation set to zero).

The change of Q significantly modifies the rms errors in the KTR and KTRB

runs. The model drift away from the soil moisture measurements within layer

3 caused by the reference assimilation setup is clearly reduced when the revised

model errors are used (also shown in Fig. 4.2 for the KTRB run). This improve-
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CTRL 0.19 1.80 0.89 0.38 21.9 23.0

REF 2.15 1.64 1.30 2.62 17.6 20.3
KTR

Q 1.14 2.15 1.56 1.14 20.8 22.5

REF 2.13 1.33 1.18 2.67 15.0 18.0
KTRB

Q 1.16 1.61 1.54 1.25 18.1 18.9

REF 0.45 1.47 1.05 0.56 19.0 19.1
KB

Q 0.40 1.50 1.11 0.45 18.9 18.6
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CTRL 0.67 2.77 1.59 0.45 30.4 28.5

REF 1.72 2.78 1.04 2.33 19.8 20.5
KTR

Q 1.12 3.05 1.83 1.18 26.6 24.7

REF 2.14 2.19 1.03 2.85 17.4 17.7
KTRB

Q 1.14 2.17 2.22 1.18 21.7 21.3

REF 0.61 2.26 1.79 0.51 24.4 21.0
KB

Q 0.61 2.36 1.50 0.46 25.0 19.8

Table 4.1: (a) Bias-corrected rms errors of model soil moisture and surface fluxes
(compared to observations) resulting from the assimilation experiments with ap-
plying the vertically constant model error according to Seuffert et al. (2004,
REF) or with applying the revised depth-varying model error according to the
precipitation sensitivity study (Q) [all runs use observed precipitation; CTRL
= no soil moisture analysis applied; KTR = assimilating screen-level variables
alone; KTRB = assimilating screen-level variables and brightness temperature
together; KB = assimilating brightness temperature alone]. (b) Same as (a), but
using precipitation set to zero.
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Figure 4.2: Soil moisture in the third soil model layer simulated without any
assimilation (solid line), with using the model error setting of Seuffert et al.
(2004) (dashed line) in the KTRB assimilation run, and with applying the revised
model error according to the rainfall sensitivity study (dotted line, also KTRB).
The plus signs denote observations.

ment is achieved by the smaller model error setting for layer 3. It gives more

weight to the background soil moisture which is closer to the observations than

the model values resulting from the reference assimilation runs (CTRL vs. REF).

At the same time, however, the KTR and KTRB simulations for layer 1 and 2

become worse by the revised model errors (except for layer 1 soil moisture in the

KTRB run with no precipitation). Nevertheless, since layer 3 contributes most

to the root zone, analysed root zone soil moisture in the Q runs fits substantially

better to the observations than in the reference.

In contrast to root zone soil moisture, the simulation of the surface turbulent

heat fluxes does not benefit from the new estimate of the model error. The rms

deviation between model values and observations increases in all KTR and KTRB

runs. This opposing behavior of root zone soil moisture and turbulent fluxes in

the soil moisture data assimilation system has also been observed by Seuffert

et al. (2004) and Drusch and Viterbo (2006). Obviously, the deterioration of

layer 1 and 2 soil moisture simulations has a larger effect on the surface fluxes

than the improved modelling of layer 3 soil moisture due to the predominantly

shallow roots of the main vegetation type grass. However, the improvement in

root zone soil moisture calculations (the rms error decreases by 45 % in the

KTRB run with observed precipitation) is larger than the loss of performance in

sensible and latent heat fluxes (rms error increase of 5 and 21 %, respectively).

Different from the KTR and KTRB outcome, the assimilation of brightness

temperature alone provides reduced rms errors for the root zone soil moisture

as well as for the surface heat fluxes in the case of using observed precipitation.

This result might indicate that the depth-varying model error setting is preferable
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when using passive microwave data. However, the improvements found are small

and do not consistently occur in the zero-precipitation setup.

The exercise presented in this section shows that a vertically varying model

error is able to improve the performance of the root zone soil moisture analysis in

comparison to a vertically constant model error. However, this improvement was

found to be either small (KB setup) or to come along with worse surface heat flux

simulations (KTR and KTRB setups) which are not desirable for atmospheric

modelling applications. Thus, a definite conclusion on the preferable setting

of the model error covariance matrix can not be given yet. Furthermore, the

determination of Q as applied in this thesis is based on a single forcing variable

only. Ideally, before applying the assimilation system in a future operational

forecast environment, a number of variables (e.g. precipitation, radiation, and

wind speed) should be examined in similar sensitivity studies and the individual

perturbations should be correlated to represent a meteorologically consistent

situation. This should further improve the outcome of the soil moisture analysis.

Finally, contributions from model errors caused e.g. by discretization procedures

and imperfect parameterisations have to be assessed. However, it becomes clear

from this study that the specification of the model error covariance matrix can

be of essential importance for the performance of the extended Kalman filter soil

moisture analysis and therefore requires thorough calibration efforts.

4.2 Correcting for background, observation and

forward operator biases

4.2.1 Approach

Prerequisites for an accurate setup of a data assimilation system based on the

least-squares estimation are that the background state vector xb is unbiased and

that no systematic deviation exists between the observations y and the model

equivalents Hxt calculated from the true state vector xt via the forward operator

H (Bouttier and Courtier, 1999), i.e.

xb − xt = 0 (4.9)

y −Hxt = 0 (4.10)

In the data assimilation system of this study, xb contains the model soil mois-

ture of the three root zone layers. Observed assimilation variables denoted by
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y are 2-metre temperature, 2-metre relative humidity and 1.4 GHz brightness

temperature. The overbar indicates that the term beneath is time-averaged.

Deviations from Eqs. (4.9) and (4.10) degrade the quality (optimality) of

the soil moisture analysis and should be minimised. Causes for a model soil

moisture bias can be, for instance, imperfect parameterisations, incorrect settings

of soil and vegetation characteristics and biased forcing data (see Sec. 1.2). Non-

compliance with Eq. (4.10) can originate from biased observations and from a

non-perfect forward operator. Only when the systematic errors induced by the

observations and the forward operator are equal in magnitude and sign, Eq.

(4.10) would still be fulfilled.

In practice, a verification of the prerequisites (4.9) and (4.10) is difficult

because the true soil moisture state vector xt is not known. However, when

assuming a quasi-linear forward operator H (see Eq. 2.16), a consequence of Eqs.

(4.9) and (4.10) is that the mean difference between the observed assimilation

variables y and the model equivalents Hxb calculated from the background soil

moisture state xb becomes zero (e.g. Dee and da Silva, 1998):

y −Hxb ≈ y −Hxb = 0 (4.11)

The differences between the elements of y and Hxb are called innovations (Bout-

tier and Courtier, 1999) or observed-minus-forecast residuals (Dee and da Silva,

1998). Equation (4.11) describes a prerequisite for an optimally set up soil mois-

ture analysis which can be checked easily in an operational data assimilation

system. Existing innovation biases can then be accounted for by adjusting the

observations before they are assimilated into the model.

4.2.2 Bias analysis for the SGP97 assimilation experi-

ment

In the reference assimilation experiment, mean innovations of +2.18 K for the 2-

metre temperature, -9.71 % for the 2-metre relative humidity, and +9.55 K for the

brightness temperature were found (Fig. 3.5). Possible sources for these biases

are the observations, the forward operators and the background soil moisture.

In general, it is difficult to quantify the single bias contributions. However, some

qualitative assumptions can be made for the assimilation system used in this

study:

� The contribution of the observations to the innovation biases is expected to

be small since these datasets have been subject to quality checks (Jackson
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et al., 1999; Meyers, 2001; Seuffert et al., 2004). A bias of 7 % occurring

in the relative humidity measurements has already been substracted.

� The forward operators for the screen-level variables (2m air temperature

and relative humidity) are also expected to cause negligible biases because

these parameterisations (see ECMWF, 2001, for details) have already ex-

tensively been tested and used in ECMWF’s operational weather forecast

system.

� The forward operator for calculating the model equivalents of the brightness

temperature observations is, in this thesis, represented by the microwave

radiative transfer model LSMEM (Sec. 2.1.3). This model has already

widely been used in studies combining hydrological and remote sensing

aspects (e.g. Drusch, 1998; Drusch et al., 2001; Gao et al., 2004). In the

reference assimilation experiments, the settings of parameterisation options

and static input variables have been set according to previous studies and

measurements available from the SGP field experiments (see Sec. 3.3 and

Seuffert et al. (2004)). However, the surface roughness and the vegetation

structure coefficient, which significantly influence the brightness temper-

ature calculations, are only estimates, and the parameterisations used in

the model cannot completely reproduce reality. Consequently, the LSMEM

may be a source for a serious innovation bias.

� A large contribution to the innovation bias can also be expected from the

model’s surface soil moisture, which is significantly lower than the obser-

vations throughout the SGP97 period (Fig. 3.6).

Assuming that the SGP97 soil moisture retrievals derived from the SHAWMS

matric potential observations and the soil temperature measurements are a rea-

sonable approximation of the true soil state, the contribution of the background

to the innovation biases can be assessed by comparing two different control runs

(i.e. no soil moisture analysis is performed): (a) model soil moisture and tem-

perature are re-initialised by the observations (representing the truth) at every

model time step; (b) model soil moisture and temperature are freely run as in

the reference control run. The differences of the resulting innovation biases can

be attributed to the model background.

For setup (a), the soil moisture observations for the top soil layer in model

space are represented by the mean of the three SHAWMS measurements from a

depth of 5 cm. The second layer (7 – 28 cm) soil moisture was provided by the

mean of the observations from depths of 10, 15, 20, and 25 cm, and the third

layer (28 – 100 cm) value was taken from the 60-cm measurement. The model’s
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soil temperature was set equal to the observations determined from depths of 2

and 4 cm for the top layer, 16 cm for the second and 64 cm for the third layer.

In the control run regularly re-initialised with these soil moisture and soil tem-

perature observations (MP run), the innovation biases of the modelled 2-metre

temperature and 2-metre relative humidity are significantly reduced from 2.18

K to 0.56 K and from -9.71 % to -0.27 %, respectively (Fig. 4.3). This distinct

convergence of the model values towards the observations confirms the expec-

tation of basically unbiased screen-level observations and forward operators as

stated above. In contrast to the screen-level variables, the brightness tempera-

ture innovation bias resulting from the revised control run is quite large (-12.88

K). This bias can probably be traced back to the microwave forward operator,

i.e. the LSMEM, as described above.

However, it can be doubted that the SHAWMS soil moisture values from a

depth of 5 cm are representative for the surface layer since the comparison with

the gravimetric probes shows that the fluctuations at 5 cm are much smaller than

within the top 5 cm. Therefore, the control run using observations was repeated

with a modified determination of the ”real” soil moisture in the surface layer by

using a depth-weighted average of gravimetric and matric potential retrievals,

filling gaps in the gravimetric data with interpolated values (Fig. 4.3, GVMP

run in the bottom plot). As expected, these settings lead to a larger amplitude

in the resulting brightness temperatures (Fig. 4.3). The overall bias, however,

does not change substantially (-12.88 K vs. -13.88 K).

Despite of the potential deficiencies of the soil moisture measurements, the

outcome of the modified control runs strongly indicate that the main contribu-

tions to the innovation biases result from the systematically too dry model soil

moisture and the microwave forward operator. These biases could be minimised

for every observation site separately by adjusting e.g. the surface roughness or

the vegetation structure coefficient in the LSMEM or predefined soil properties

like the hydraulic conductivity in TESSEL. However, in an operational appli-

cation, a bias correction as described in Sec. 4.2.1 would be the most feasible

way to achieve compliance with Eq. (4.11). The effects of such a correction on

the analysed model soil moisture and on the simulation of the surface fluxes of

sensible and latent heat is examined next.

4.2.3 Application of a bias correction

In order to fulfill prerequisite (4.11), the observations were corrected by the

corresponding innovation biases found from the reference control run (2-metre

temperature: +2.18 K, relative humidity: -9.71 %, and brightness temperature:
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Figure 4.3: Model evolution of 2m temperature, relative humidity, brightness
temperature, and top layer soil moisture during SGP97 based on different soil
moisture and soil temperature settings. In the REF run (solid line), model soil
moisture and temperature evolve freely. The MP run (dashed line) is initialised
every model time step with soil moisture values derived from the SHAWMS
matric potential observations and soil temperature measurements taken at the
NOAA/ATDD station (see text for details). The GVMP run (dotted line) resem-
bles the MP run, only the soil moisture of the first model layer is replaced by a
depth-weighted average of matric potential and gravimetric retrievals. Plus signs
denote observations. In case of soil moisture (bottom plot), the plus signs and
diamonds stand for the soil moisture retrievals from the 5 cm matric potential
and from the 0 - 5 cm gravimetric measurements, respectively.
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+9.55 K, see Fig. 3.5) before they are assimilated into the single-column model.

All assimilation setups (KTR = using screen-level variables alone, KB = bright-

ness temperature alone, and KTRB = all observations together) have then been

re-run. The evolution of the corrected observations and the corresponding model

simulations are shown in Figure 4.4, the resulting moisture increments applied

by the soil moisture analysis in Fig. 4.5. Consistent with the physical depen-

dencies — the brightness temperature signal mainly originates from the top few

centimetres of the soil while 2-metre temperature and humidity rely on the soil

moisture distribution in the whole root zone — significant moisture increments

in the KB run are predominantly applied in model layer 1 (red lines in Fig. 4.5)

whereas the soil moisture analysis based on screen-level variables affects all three

root zone layers (black lines), with slightly increasing increments from the top

layer to layer 3.

The most significant deviations of modelled values from the bias-corrected

observations occur from day 181 to day 184 (Fig. 4.4). The modelled 2-metre

temperature is higher, the relative humidity lower than the observations, sug-

gesting a too dry soil in the model. Consequently, the soil moisture analysis

aims to increase the soil water content during these days (solid black line in Fig.

4.5). At the same time, the modelled brightness temperatures are lower than

the bias-corrected observations. Thus, in contrast to the calculated increments

based on the screen-level variables, the analysis tries to remove water especially

from the top soil layer (solid red line in Fig. 4.5). This opposite behavior can

also be observed on day 178, 180, 192, and 193.

The effects of these different soil moisture adjustments on the model perfor-

mance during SGP97 at site LW02 are shown in Fig. 4.6 for the soil moisture

of all root zone layers (for a similar plot for fluxes, see Appendix B). The bias-

corrected root-mean-square deviations of modelled soil moisture and fluxes from

the independent observations (they are not used in the assimilation procedure)

again serve as a measure of the quality of the analysis. These rms errors are

summarised in Tab. 4.2.

When using observations corrected by the innovation bias, the assimilation

of brightness temperatures alone performs best for the soil moisture of the top

model layer (bias-corrected rms errors of volumetric soil moisture: CTRL 1.80

%, KB 1.68 %, KTR 1.98 %, KTRB 1.73 %). For layer 2, the best results are

obtained from the assimilation of the screen-level variables alone whereas layer

3 soil moisture does not benefit from the assimilation procedures at all. The

rms error of the root zone soil moisture also gets worse for all assimilation runs,

especially for the KTR and KTRB run.

In comparison to the reference runs, however, the bias correction of the obser-
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Figure 4.4: SGP97 daily means of observed and modelled 2m temperature, rel-
ative humidity and microwave brightness temperature in the assimilation runs
using observations corrected by the innovation biases. The plus signs stand for
bias-corrected observations [OBS] (brightness temperature observations are from
around 11 LST only); lines denote results from model runs (solid = no assimi-
lation [CTRL], dashed = assimilation of 2m temperature and relative humidity
alone [KTR], dash-dotted = assimilation of brightness temperature alone [KB],
dotted = assimilation of all observation types together [KTRB]). Specified statis-
tic quantities are correlation coefficient [Corr], bias [Bias] and bias-corrected
root-mean-square error [RMS] of the modelled variables in comparison to the
bias-corrected observed values.
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Figure 4.5: Soil moisture increments applied by the analysis in the reference
assimilation experiments (dotted lines) and in the assimilation runs using biased-
corrected observations (solid lines).

vations significantly improves the performance of the soil moisture simulations

for the root zone. This improvement relies on the model’s soil moisture evolution

in layer 2 and 3 which is in better agreement with the observations when the bias

correction is applied, whereas the rms error for the soil moisture of the top soil

model layer increases in comparison to the reference run. However, the rms error

values for layer 1 should be taken with care since the soil moisture retrievals from

the matric potential measurements can probably not fully represent the ampli-

tude of the real soil moisture evolution within the top 7 cm of the soil, as the

gravimetric measurements indicate. Secondly, the top layer model soil moisture

has already reached its minimum (the predefined wilting point) from day 182

to 184 (Fig. 4.6). The removement of water, as calculated by the soil moisture
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Figure 4.6: SGP97 daily means of observed and modelled soil moisture in the
three top model layers and the resulting root zone soil moisture in the assimilation
runs using observations corrected by the innovation biases (lines, symbols, and
statistic data as in Fig. 3.5 and 3.6).
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CTRL 0.19 1.80 0.89 0.38 21.9 23.0

REF 2.15 1.64 1.30 2.62 17.6 20.3
KTR

BCO 1.39 1.98 0.85 1.72 24.1 26.2

REF 2.13 1.33 1.18 2.67 15.0 18.0
KTRB

BCO 1.57 1.73 0.89 1.98 23.4 25.3

REF 0.45 1.47 1.05 0.56 19.0 19.1
KB

BCO 0.24 1.68 0.93 0.40 21.9 22.4

Table 4.2: Bias-corrected rms errors of model soil moisture and surface fluxes
(compared to observations) in the reference assimilation experiments (REF)
and in the assimilation runs using observations corrected by the innovations
biases (BCO). The different assimilation settings: assimilating screen-level vari-
ables and brightness temperature together (KTRB), screen-level variables alone
(KTR), brightness temperature alone (KB), and applying no soil moisture anal-
ysis (CTRL).

analysis in the KTRB and KB runs (see Fig. 4.5), could therefore not be applied

for these days.

Despite of the reduced rms errors of the root zone soil moisture in the bias-

corrected assimilation runs in comparison to the reference experiment, the rms

error of the fluxes increases in all assimilation runs (see Tab. 4.2). This opposite

behavior was already described in Sec. 4.1.2. The soil moisture analysis based

on the soil scheme TESSEL is apparently not able to improve both root zone

soil moisture and turbulent surface heat fluxes at the same time. However, when

looking at the different observation types, the best overall performance during

SGP97 seems to be obtained from using brightness temperatures alone.

The study presented in this section shows that, in comparison to the reference

assimilation runs, the observation correction based on the innovation biases is

able to significantly improve the quality of the soil moisture analysis for the root

zone. It has to be emphasised that this improvement solely affects the bias-

corrrected rms deviation of the modelled soil moisture from the observations;

the extended Kalman filter, like other assimilation systems based on the least

square estimation, is not designed to reduce model state vector biases as they
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occur during SGP97 (systematically too dry near-surface soil moisture in the

model). Such biases need to be minimised by other means: accurate calibration

of the soil model for different soil types (only one is included in TESSEL) could

for instance reduce biases in advance; and when screen-level observations and

their forward operators can be assumed to be basically bias-free (as indicated for

SGP97 in Sec. 4.2.2), monitoring the innovation biases of these observations for

days with a strong atmosphere-to-surface coupling can give hints on model soil

moisture biases.

In view of the practical application of the bias correction presented here, it

has to be noted that this study is based on only 16 brightness temperature ob-

servations with larger gaps in between (e.g. from day 185 to 191). This limited

dataset is sufficient to qualitatively examine the potential effects of an innova-

tion bias correction on the assimilation performance but can hardly provide an

accurate quantitative estimate of the ”real” biases occurring during a complete

annual cycle. Especially the model’s near-surface soil moisture bias which sig-

nificantly contributes to the innovation bias may be a specific characteristic of

the SGP97 period. Since such model soil moisture biases should be corrected

separately, in general only the innovation bias caused by the microwave forward

operator needs to be corrected (assuming that observations and the screen-level

forward operators are free of systematic errors). As a result of SGP97 for in-

stance, observed brightness temperatures would be reduced by -12.88 K (see MP

run in Fig. 4.3).

4.3 The impact of non-uniform soil moisture

and temperature profiles

The main contribution to the microwave radiation measured by an aircraft-borne

or satellite-borne sensor originates from the top few centimetres of the soil. Con-

sequently, in order to be able to accurately interpret observed brightness temper-

atures, not only bulk characteristics of the soil (e.g. texture) have to be known;

it is also necessary that the soil model is capable of resolving the vertical near-

surface soil moisture distribution. In the case of ECMWF’s soil model TESSEL,

in which the top layer covers the upper 7 cm, this prerequisite is not fulfilled.

The potential effects of this shortcoming are illustrated in Fig. 4.7 for an arbi-

trary artificial soil moisture profile (black line) as it may occur in reality (e.g.

Shutko et al., 1995; Dingman, 2002). This profile is characterised by a vertical

mean of 0.2 m3/m3 (= 20 % volumetric water content) within the top 7 cm.

Ideally, exactly this value should be derived for the soil model’s first layer from

55



CHAPTER 4. ASSIMILATION STUDIES AND ERROR ANALYSES

Figure 4.7: Example of a potential misleading interpretation of L-band brightness
temperature observations in the ELDAS land data assimilation system due to
TESSEL’s inadequate resolution of the near-surface soil moisture profile.

corresponding brightness temperature observations. However, a look at the 1.4

GHz brightness temperatures that would be observed over the true profile (cal-

culated with the LSMEM), and those that would result from the uniform profile

within the soil model (green line) reveals differences of several Kelvin at horizon-

tal as well as vertical polarisation. The uniform profile that corresponds to the

observed brightness temperatures would have a vertically constant value of 27

%. Consequently, the soil water content of the first soil model layer that would

be derived from the brightness temperature observations differs by 7 % from the

ideal value. The impact of such a systematic error source on a potential opera-

tional assimilation system using microwave brightness temperatures is examined

in this section.

The upgrade of the soil model with additional near-surface layers would re-

quire elaborate re-calibration and validation of the model and in addition in-

creases computing time and memory demands. Easier-to-apply possibilities of

accounting for the systematic profile errors in the soil moisture analysis are: (a)

parameterising the near-surface soil moisture (e.g. as a function of the model’s

top layer soil moisture, the time elapsed since the last rain event and the evapora-

tion intensity) for the microwave radiative transfer calculations; (b) adjusting the
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brightness temperature observations based on sensitivity studies (also accounting

for rain events and drying periods). Since this latter statistical approach can be

carried out offline without modifying the model itself and since the adjustment of

the brightness temperature observations has to be done anyway when accounting

for potential innovation biases (as presented in Sec. 4.2), option (b) was chosen

for this study.

The vertical resolution of soil moisture observations from field experiments is

usually too low to study its effect on modelled brightness temperatures. However,

during SGP99 gravimetric samples were taken from depths of 0 to 2.5 cm and 2.5

to 5 cm. Soil temperatures were measured at depths of 1 cm and 5 cm. Based

on these observations, ensembles of 99 artificial soil moisture and temperature

profiles have been generated for site LW03 each day. From these ensembles,

brightness temperatures have been calculated following the single-layer approach

as used in the reference assimilation experiments and the multi-layer radiative

transfer model proposed by Wilheit (1978, Sec. 2.1.3) in order to quantify the

errors in modelled brightness temperatures which can result from the insufficient

vertical resolution of the soil model.

4.3.1 Ensembles of artificial profiles

Soil moisture

The two-layer gravimetric soil moisture measurements and the observed soil bulk

densities from 33 SGP99 sites (LW02–14, LW17, LW18, LW21–27, ER1, ER5,

ER17–20, CF01, CF02, CF04, CF05, CF11) have been used to calculate vol-

umetric soil moisture differences between the first layer (0–2.5 cm depth) and

the second layer (2.5–5 cm). The distribution of these differences grouped by

the days after the rainfall event of July 10 is shown in Fig. 4.8. The spread in

differences at individual days is large due to the local differences in the amount

of rainfall, soil and vegetation characteristics, and errors of the in-situ measure-

ments. Nevertheless, the daily averages of the layer differences show a clear

trend: One day after the rainfall event the upper layer is nearly 3% wetter than

the bottom layer. During the following days the drying of the surface layer due

to evaporation and infiltration leads to a decrease and a change of sign of the

mean soil moisture difference. The difference remains almost constant at a value

of approx. 2 % from day 6 after the rainfall.

Then, artificial soil moisture profiles have been calculated for the layer-

resolving radiative transfer model. The mean differences and the corresponding

standard deviations resulting from Fig. 4.8 are constraints in the generation pro-

cess. It has been assumed that the soil moisture profiles are of logarithmic shape
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Figure 4.8: Differences between measurements of volumetric soil moisture in layer
1 (0–2.5 cm depth) and layer 2 (2.5–5 cm depth) as a function of the elapsed
time since the rainfall event on the 10th of July 1999 for all available SGP99
sites. The line represents the mean.

(this choice is further commented at the end of this subsection) following

θ(z) = a ln(z + b) + c (4.12)

where θ is the volumetric soil moisture and z the soil depth. The parame-

ters a, b, and c determine the shape of the profile and are defined by the ob-

servation statistics: (1) The vertically integrated soil moisture of the artificial

profile shall be equal to the soil moisture value of the uniform profile wich is

given by the observed mean from the two different moisture sampling depths,

i.e. θm = (θ0−2.5cm + θ2.5−5cm)/2. (2) The difference between the profile’s soil

moisture value θ1 at a depth of z1 = 1.25 cm (centre of the upper observation

layer) and θ2 at z2 = 3.75 cm (centre of the lower observation layer) is determined

by

θ1 − θ2 = ∆i + r σ∆i
(4.13)

where ∆ is the mean soil moisture layer difference and σ∆ the corresponding

standard deviation for day i as given by Fig. 4.8. r is a random number (with

Gaussian distribution) with zero mean and a standard deviation of 1. These
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constraints lead to

a = (θ1 − θ2)/(ln
z1 + b

z2 + b
) (4.14)

and

c = θm − a ln(z + b) (4.15)

where the overbar denotes the vertical mean. The parameter b, which determines

the magnitude of the vertical gradients in the profile, cannot be unambiguously

fixed. In order to obtain soil moisture values in a realistic range, b has been set

to random values between 0.1 and 10 calculated by b = 100red/10 where red is a

random number equally distributed between 0 and 1.

Figure 4.9 shows the soil moisture profiles generated for site LW03 for the 10

days following the rainfall event. Each of these profiles would match the 5 cm

mean of the soil moisture measurements obtained at the particular date. It can

be seen that just after the rainfall, profiles with a wet surface are dominating in

number as expected, but that the variance illustrated by Fig. 4.9 also allows for

profiles which are dryer at the surface than at deeper layers. During the following

days without relevant precipitation the profiles on the whole move towards lower

water contents, with the surface drying faster than the underlying soil. In the

last six plots some artificial profiles with surface soil moisture values lower than

zero have been removed. They also have not been included in the subsequent

calculations.

It has to be noted that the assumption of a logarithmic-shaped profile most

of the time does not match the real soil moisture distribution. Depending on the

soil characteristics and on the history of precipitation events and drying periods,

the shape of the profile can be very inhomogeneous with strong gradients (see

e.g. Shutko et al., 1995; Dingman, 2002; Raju et al., 1995). However, this study

does not focus on single events and the model soil moisture always represents a

spatial mean of the grid boxex. Therefore, the assumption of logarithmic profiles

as applied here is, on average, a reasonable first guess approximation which takes

into account that the gradients at the surface are most of the time larger than

in deeper layers.

Soil temperature

Artificial temperature profiles were produced in a similar way (keeping in mind

the comments of the preceding paragraph which, when replacing the history of

precipitation events and drying periods with the history of heating and cooling

conditions, hold for soil temperature profiles, too). The SGP99 temperature

observations at depths of 1 cm and 5 cm from the 10 available sites were used as
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

Figure 4.9: Ensembles of artificial near-surface soil moisture profiles generated
for site LW03 under the constraints described in the text. (1) One day after
rainfall (July 11), (2) two days after rainfall, etc.
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Figure 4.10: Differences between measurements of the soil temperature at 1 cm
and 5 cm depth from ten SGP99 sites in the Little Washita watershed (no data
from the Central Facility and the El Reno area available). The rainfall event
occured at the 10th of July (denoted by 710).

constraints. Since no clear temporal dependency between the vertical gradient

and the elapsed time after the rainfall event has been found (Fig. 4.10) and due

to the limited number of available measurements, the temperature differences

between 1 cm and 5 cm depth have been averaged over all days and sites. This

results in a mean difference of 0.79 K; the corresponding standard deviation is

0.86 K. The reason for the positive systematic deviation of the 1 cm temperature

from the 5 cm value is that measurements have been carried out in the morning

hours when increasing solar insolation heats the surface.

Similar to the soil moisture profile, it has been assumed that the temperature

profiles show a logarithmic shape (also see Raju et al., 1995) described by

T (z) = aT ln(z + bT ) + cT (4.16)

And following the same pattern as above we get

T1 − T2 = 0.79 K + r 0.86 K (4.17)

aT = (T1 − T2)/(ln
z1 + bT

z2 + bT

) (4.18)

and

cT = Tm − aT ln(z + bT ) (4.19)
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where Tm is the mean of the observed temperatures from the depths of 1 cm and

5 cm. It was assumed that this value could best represent the temperature of

the uppermost layer of the soil model. The only unknown parameter left is bT .

It was randomly set to values between 0.001 and 10 calculated with the formula

10000red/1000 (red obtained as described in the previous section).

The resulting soil temperature profiles are presented in Fig. 4.11. In contrast

to soil moisture, the ensembles look similar for each day, since the constraints

for the profile gradients have been chosen to be independent of the date. Only

the mean soil temperature noticeably varies as given by the observations.

4.3.2 Effects on modelled brightness temperature

The generated ensembles of soil moisure and temperature profiles have been

used to simulate the corresponding L-band brightness temperatures. For the

radiative transfer calculations, the top 5 cm of the soil have been represented by

50 layers of 1 mm depth in the LSMEM. This choice is based on sensitivity studies

performed by Wilheit (1978) who showed that for soil moisture transition zones

with thicknesses from λ/100 to 10λ — with λ being the microwave wavelength

(21.4 cm in this study) — 40 to 80 model layers are in most cases sufficient to

achieve a brightness temperature accuracy of better than ± 0.5K.

Figure 4.12 shows that — based on the artificial profiles — a wide range of

brightness temperatures could be observed for a given mean soil moisture value

of the top 5 cm. For July 11 for instance, the modelled brightness temperatures

range from 216 K to 236 K. After six days of dry-down (July 16), the values

vary from 246 K to 274 K. The histograms on the whole clearly move towards

higher brightness temperatures during the drying period which can only in part

be attributed to the soil temperature (see top 5 cm soil temperatures in Fig.

4.11). The main contribution comes from the soil moisture decrease. It has to be

emphasised that, although the effects of the soil moisture profiles on the observed

brightness temperatures are significant, the brightness temperature probability

density function of the first day after the rain event (July 11) and those of July

16 or later do not overlap. Therefore, the effect of rainfall on soil moisture is

at least qualitatively observable with L-band, independent of the actual vertical

distribution within the soil.

For each individual day the mean brightness temperature of the artificial en-

semble (TBA) has been derived and compared with the corresponding brightness

temperature calculated from the mean soil moisture value using the single layer

radiative transfer model (TBU). Fig. 4.13 shows the mean differences between

TBU and TBA for the experiment period. It can be seen that just after the
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

Figure 4.11: Ensembles of artificial near-surface soil temperature profiles gener-
ated for site LW03 under the constraints described in the text. (1) One day after
rainfall (July 11), (2) two days after rainfall, etc.
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

Figure 4.12: Frequency distributions of brightness temperature calculated from
the soil moisture and temperature profile ensembles shown in Figs. 4.9 and 4.11.
(1) One day after rainfall (July 11), (2) two days after rainfall, etc. The dashed
line indicates the brightness temperature resulting from the uniform profile.
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Figure 4.13: Mean difference between brightness temperatures calculated from
uniform soil moisture and temperature profiles and brightness temperatures cal-
culated from non-uniform soil moisture and temperature profiles (solid line). The
error bars indicate the daily standard deviation of the differences. The dashed
line shows the systematic error as it was used in the soil moisture analysis.

rain TBU is almost 5 K higher than TBA. This can be attributed to the fact

that most profiles from the ensemble are characterised by wet surfaces (see Fig.

4.9). Therefore, the corresponding brightness temperature is lower than the one

modelled with the uniform soil moisture profile. The following days the surface

dries quicker than the soil below so that the absolute value of the systematic

error between TBU and TBA decreases and becomes negative. After five days of

dry down the difference remains nearly constant at values between - 3 and - 5 K.

The rms deviation between the two brightness temperature simulation methods

shows no significant dependency on the elapsed days after the rain event. Its

daily value fluctuates between 3.7 and 8.0 K with an average of 6.3 K (see error

bars in Fig. 4.13 or rms errors specified in the daily plots of Fig. 4.12).

At first sight, the relatively large error bars in Fig. 4.13 may lead to doubts

about the significance of the relation found between the systematic brightness

temperature error and the occurence of raining and drying periods. However, the

uncertainties shown are the result of the underlying database which is a collection

of sites from a large area with differing soil types and differing amounts of initial

rainfall. Therefore, the error bars show the variance within the set of single

sites. They would likely be significantly smaller if all sites would have had the

same soil and vegetation characteristics and the same forcing. The fact that the

relationship shown by Fig. 4.13 occurs despite of the large spatial heterogeneities
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Q 1.16 1.61 1.54 1.25 18.1 20.0
KTRB

PCB 1.15 1.62 1.61 1.18 18.7 20.7

Q 0.40 1.50 1.11 0.45 18.9 18.6
KB

PCB 0.34 1.46 1.05 0.42 17.5 18.1

Table 4.3: Bias-corrected rms errors of model soil moisture and surface fluxes
(compared to observations) resulting from the assimilation experiments with
(PCB) and without (Q) applying the systematic error correction of observed
brightness temperatures due to the profile sensitivity study (KTRB and KB as
supplied before).

rather confirms that a correction of brightness temperatures due to soil model

resolution deficiencies is necessary. For that purpose, the curve in Fig. 4.13 has

been smoothed as indicated by the dashed line.

4.3.3 Application of error corrections

The relationship between the systematic brightness temperature error and the

days elapsed after the rain event has been derived from SGP99 data. A correction

procedure is now applied for the SGP97 assimilation runs (using the depth-

varying model errors determined in section 4.1). The daily precipitation amounts

for the SGP97 period at site LW02 are shown in Fig. 4.1 (solid line within the

top plot). There were six days with significant rainfall and another six days

with minor rainfall which are classified as dry in the correction procedure. The

observed brightness temperatures (see Fig. 3.2) have been adjusted according

to the six rain events following the fitted curve outlined in Fig. 4.13. June 26

(day 177) was the only day when rain occured and a brightness temperature

measurement existed. Since a correction for this case can not be derived from

the available data shown in Fig. 4.13 (day equals 0), the observation of that day

has not been corrected. The LW02 KTRB and KB assimilation runs have then

been repeated applying the systematic error correction. These runs are denoted

by PCB in the following, their results in comparison to the Q runs are listed in

Tab. 4.3.
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In the case of assimilating only brightness temperatures (KB), the systematic

error correction leads to an improvement of modelled variables. This improve-

ment is relatively small, but in contrast to previous experiences affects both soil

moisture and turbulent fluxes. When using all three observation types (KTRB),

there is not such a clear impact: the analysed layer 3 soil moisture tends to be

closer to reality in the PCB than in the Q experiments while the accuracy of the

modelled fluxes and of the upper two model layers is slightly reduced. It seems

that the improved information content of the corrected brightness temperature

observations (as indicated by the KB runs) still conflicts with the 2-metre tem-

perature and humdity measurements. However, the results in the KB-runs are

promising, and further additions to the simple correction scheme, for example

by accounting for precipitation amount and soil type, may further reduce the

errors.

4.4 Summary of the assimilation experiments

The results of all assimilation studies are summarised in Tab. 4.4 in terms of the

bias-corrected rms error of soil moisture and surface fluxes. The table lists the

outcome of the revised quantification of the model errors (Q), the pre-assimilation

bias correction of observations based on the innovations biases (BCO), and the

correction of brightness temperature observations based on the profile sensitivity

study (PCB, including the revised model errors).

The overall picture can be described as follows: With quality-controlled forc-

ing data and a close-to-reality model initialisation the SCM is able to reproduce

the evolution of root zone soil moisture quite well (as already stated by Seuffert

et al. (2004); also see top plot of Fig. 3.6). All assimilation runs — to a varying

extent — deteriorate the modelled root zone soil moisture in comparison to the

CTRL run while the turbulent surface fluxes are improved in most cases. Only

in the BCO-KTR and BCO-KTRB analysis, the rms error of both fluxes and

soil moisture increase. The assimilation of screen-level variables was expected to

reduce the rms error of modelled fluxes since 2-metre temperature and humidity

are in general directly linked to the sensible and latent heat transports under

summer conditions like during the SGP experiments. However, also the use of

microwave brightness temperatures has a positive effect on the simulated fluxes.

In the reference setup, the KB run leads to flux improvements comparable to the

KTR run. The smallest rms error was obtained from using all observation types

(KTRB). When applying analysis system modifications as proposed by this the-

sis, the assimilation of brightness temperatures alone even provides better results
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CTRL 0.19 1.80 0.89 0.38 21.9 23.0

KTR 2.15 1.64 1.30 2.62 17.6 20.3
REF KTRB 2.13 1.33 1.18 2.67 15.0 18.0

KB 0.45 1.47 1.05 0.56 19.0 19.1

KTR 1.14 2.15 1.56 1.14 20.8 22.5
Q KTRB 1.16 1.61 1.54 1.25 18.1 20.0

KB 0.40 1.50 1.11 0.45 18.9 18.6

KTR 1.39 1.98 0.85 1.72 24.1 26.2
BCO KTRB 1.57 1.73 0.89 1.98 23.4 25.3

KB 0.24 1.68 0.93 0.40 21.9 22.4

KTRB 1.15 1.62 1.61 1.18 18.7 20.7
PCB

KB 0.34 1.46 1.05 0.42 17.5 18.1

Table 4.4: Bias-corrected rms errors of model soil moisture and surface fluxes
(compared to observations) in all assimilation experiments using observed precip-
itation and assimilating screen-level variables alone (KTR), brightness temper-
ature alone (KB), or all observation types together (KTRB). [CTRL = no soil
moisture analysis applied, REF = reference experiments according to Seuffert
et al. (2004), Q = using the revised model errors according to the precipitation
sensitivity study (Sec. 4.1), BCO = applying a correction of the assimilation
variables based on the innovation biases found from the reference control run
(Sec. 4.2), PCB = applying the systematic error correction of observed bright-
ness temperatures based on the profile sensitivity study (including the revised
model errors, Sec. 4.3)].

than the KTR (in all cases) and the KTRB runs (in almost all cases) for both

soil moisture and fluxes.

The increased rms error of root zone soil moisture mainly relies on worse

simulations in layer 2 and 3 whereas the rms error of layer 1 is reduced on average

(although layer 1 values should be interpreted with care). Since this behavior

results in better fluxes in most cases, the sensible and latent heat transports

in the model are apparently mainly determined by the soil characteristics of

the top 7-cm layer. The vertical water transport and the transpiration by the
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vegetation seem to be of lesser importance in this study, although the model

vegetation types which are chosen to represent the LW02 site are characterised

by vertical root distributions with significant fractions for layer 2 and 3: for

tall grass the root fractions are defined by 27, 37, 27, and 9 % from the top

to the bottom layer; for interrupted forest the values are 19, 35, 36, and 10

%. In the light of the dominating impact of the surface layer on the model

fluxes as found from the assimilation experiments, it is not surprising that the

1.4 GHz brightness temperature, which essentially depends on the near-surface

soil moisture, has proven to be a helpful information source for enhancing the

quality of the modelled turbulent fluxes. At the same time, in comparison to the

assimilation of the screen-level variables the use of the brightness temperatures

provides a better simulation of the soil moisture in the root zone as a whole.

Consequently, when looking at both root zone soil moisture and turbulent fluxes

the assimilation of brightness temperatures serves best, even when compared to

the combined usage of all three observation types.

The net effects of each analysis system modification (i.e. the revised model

error and the systematic-error corrections of observations) carried out in this

thesis on the simulation of soil moisture and surface fluxes are summarised in

Tab. 4.5. Negative values denote a reduction of the rms error and therefore an

improved performance of the soil moisture analysis. Each modification reduces

the bias-corrected rms error of the root zone soil moisture. At the same time, the

simulation of the fluxes gets worse in most cases. Only the revised model error

and the rain-event-based correction of the brightness temperature observations in

combination with assimilating brightness temperature alone improve both root

zone soil moisture and surface fluxes, although these changes are small. Table 4.5

also shows that, similar to the behavior described above, the fluxes seem to be

correlated predominantly to the near-surface soil moisture while the deeper root

zone soil moisture and the fluxes react contrarily to the analysis modifications

applied.

The largest improvements in root zone soil moisture were obtained from us-

ing the soil-layer-dependent model error (setup Q in Tab. 4.5) in the KTR and

KTRB runs instead of the vertically constant setting as in the reference runs.

However, these improvements only rely on model layer 3 where the deterioration

of the soil moisture simulation caused by the soil moisture analysis is signifi-

cantly attenuated; the modelled soil moisture in the top two layers and also the

turbulent fluxes get worse in comparison to the reference. The assimilation of

brightness temperature alone is able to improve both root zone soil moisture

and surface fluxes, but the changes are marginal in comparison to the KTR and

KTRB runs. Therefore, a definite statement about which of the model error
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KTR −1.01 +0.51 +0.26 −1.48 +3.2 +2.2
Q KTRB −0.97 +0.28 +0.36 −1.42 +3.1 +0.9

KB −0.05 +0.03 +0.06 −0.11 −0.1 −0.5

KTR −0.76 +0.34 −0.45 −0.90 +6.5 +5.9
BCO KTRB −0.56 +0.40 −0.29 −0.69 +8.4 +7.3

KB −0.21 +0.21 −0.12 −0.16 +2.9 +3.3

KTRB −0.01 +0.01 +0.07 −0.07 +0.6 +0.7
PCB

KB −0.06 −0.04 −0.06 −0.03 −1.4 −0.5

Table 4.5: Net changes of bias-corrected rms errors of model soil moisture and
surface fluxes (compared to observations) resulting from each assimilation exper-
iment using observed precipitation (for the acronyms see Tab. 4.4).

settings applied here is preferable can not be given. While atmospheric models

primarily need correct heat flux simulations hydrologic applications rather rely

on well-determined soil moisture values. Nevertheless, from the significant effects

in the assimilation runs using screen-level variables the importance of a correct

setting of the model error covariance matrix becomes clear. A further future

consideration of radiation and wind speed forcing in a sensitivity study like the

one performed with precipitation may prove helpful in this context.

The pre-assimilation correction of the screen-level and microwave observa-

tions based on the innovation biases (setup BCO) also shows positive net effects

on root zone soil moisture especially for the runs where the screen-level variables

are used (KTR and KTRB). Different from the effects of setup Q, not only the

bias-corrected rms error of layer 3 but also of layer 2 is reduced. The net increase

of the rms error of the surface flux simulations is higher, though, in the BCO runs

than in the Q runs. However, when looking only on the state variable, which is

soil moisture, accounting for biases from observations, forward operators and the

model background by correcting for the innovations found from regular forecast

runs is an appropriate and, in the sense of least-squares optimality, a necessary

means to improve the quality of the model simulations.

The innovations resulting from the reference assimilation experiments were
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found to have large contributions from a significant dry soil moisture bias in

the top soil model layer during SGP97. Since SGP97 lasted only four weeks, it

is unclear whether this state vector bias is a persistent systematic error of the

soil model TESSEL or whether it is a specific characteristic of the SGP97 pe-

riod. Therefore, the innovation values found from the SGP97 period can hardly

be transfered to an operational long-term forecast system. If a persistent state

vector bias does not exist or is removed by separate correction schemes, the

results of the additional control run with observation-driven soil moisture and

soil temperature values (Sec. 4.2.2) indicate that the screen-level forward opera-

tors are essentially unbiased so that only the brightness temperature innovations

caused by the microwave forward operator LSMEM need to be taken into ac-

count. Further studies comprising a full annual cycle are necessary and will be

carried out in the context of a subsequent project supported by the Deutsche

Forschungsgemeinschaft (see outlook in Sec. 5).

In the profile sensitivity study (setup PCB) it was shown that the vertical

distribution of the soil water content and the soil temperature can have a signif-

icant effect on the corresponding brightness temperature. A mean uncertainty

of up to ± 5 K was found from the artificial profile ensembles. The magnitude

and sign of the error depends on the history of precipitation events and drying

periods. In case of assimilating only brightness temperatures, the positive effect

of correcting observations due to the insufficient vertical resolution of the soil

model has been proven (PCB-KB in Tab. 4.5); in the KTRB run, however, it is

attenuated by the influence of the screen-level variables. In general, the benefits

of applying such a simple correction scheme have been, although visible, com-

paritively small in the setup used here. A further refinement of the method, e.g.

by accounting for the rain amounts and soil characteristics like texture might

lead to more significant improvements.

Finally, Tab. 4.4 and 4.5 show that it is not possible with TESSEL to better

adjust simulations of both root zone soil moisture and turbulent heat fluxes

significantly closer to the observations at the same time, whatever assimilation

setup is chosen. Independent of the apparently prevailing correlation between

surface layer soil moisture and surface heat fluxes already described before, this

behavior could hint to inconsistent observations or to deficiencies in the physics

and parameterisations of the soil model (the Q-KTR run, for instance, improves

the fluxes in comparison to the CTRL run although, at the same time, the soil

moisture rms errors increase in all model layers (see Tab. 4.4)). However, the

best compromise for site LW02 in summer seems to be to assimilate brightness

temperature alone with applying the observation correction resulting from the

profile sensitivity study and using the revised model error covariance matrix.

71



CHAPTER 4. ASSIMILATION STUDIES AND ERROR ANALYSES

An additional correction of the brightness temperature observations, based on

an innovation bias determined over a full annual cycle at least, would probably

further improve the quality of the soil moisture analysis. In any case, the results

show that passive microwave remote sensing can be a valuable information source

for soil moisture analyses.
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Conclusions and Outlook

Passive microwave remote sensing has been identified as a suitable technology

to monitor land surface soil moisture on scales used in current global numerical

weather prediction models (10 – 50 km spatial resolution). Especially microwave

observations below 5 GHz are able to penetrate the atmosphere (including clouds

and rain) and, to a lesser degree, a vegetation canopy and can therefore deliver

valuable information about the surface wetness. In the near future, space-borne

1.4 GHz microwave brightness temperatures will become available for the first

time on a global scale through the Soil Moisture and Ocean Salinity (SMOS)

mission. These new observations are expected to prove helpful in adjusting the

soil moisture in hydrological models and numerical weather prediction systems,

supplementing other proxy data sources like screen-level atmospheric variables,

active microwave measurements, stream flow observations, infrared-derived heat-

ing rates, etc.

Due to the limited penetration depth of microwaves in soils, the technique

of passive microwave remote sensing only provides information about the top

centimetres of the soil whereas applications in hydrology and meteorology de-

pend on the water distribution in the whole root zone. Therefore, brightness

temperature observations have to be combined with a hydrological model that

integrates their information content vertically, constrained by the model physics.

The assimilation procedure relies on well-defined specifications of the model’s

and observation’s uncertainties in order to optimally weight model background

and measurements. This study has addressed different systematic and random

errors affecting the soil moisture analysis of ECMWF’s operational land surface

model TESSEL when using L-band brightness temperature observations. For

that purpose, the single-column assimilation experiments described in Seuffert

et al. (2004) have been revisited with a set of modified error specifications and

compared against the former assimilation runs. The types of errors discussed in
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this thesis are:

� the uncertainty of the model’s precipitation forcing (a random error source

which can be integrated in the model error covariance matrix)

� biases caused by observations, forward operators, and the background state

vector which degrade the optimality (and quality) of the soil moisture anal-

ysis (they can be assessed by the easy-to-determine innovation biases)

� the insufficient representation of the near-surface soil moisture and temper-

ature profiles (which determine the brightness temperature value) in the

soil model TESSEL (a systematic error which can be captured by correcting

the brightness temperature observations).

At first, the effect of a revised model error covariance matrix has been inves-

tigated. The model error in the reference experiment described by Seuffert et al.

(2004) was assumed to be 0.005 m3/m3 for each of the three root zone soil lay-

ers. An error propagation study with perturbed rainfall resulted in soil moisture

uncertainties of 0.010 m3/m3 for the two top model layers and 0.0015 m3/m3 for

the third layer. The impact of the modified model error is rather small when as-

similating only brightness temperature (KB), but in the KTRB-setup (combined

assimilation of screen-level variables and brightness temperatures) the revised

model error covariance matrix leads to an improved description of analysed vol-

umetric root zone soil moisture. The rms error was reduced by approximately

45 %. The accuracy of the analysed fluxes and of the surface and middle-layer

soil moisture, however, decreases, but to a much lesser percentage. A reduced

model error for the third layer gives the modelled first guess a larger weight and

makes it more difficult for the screen-level variables to deteriorate root zone soil

moisture for the correction of the surface fluxes. Although a preferred setting of

the model error covariance matrix can not be given at the moment, it became

clear that a correct definition is essential for a well-functioning analysis system.

Secondly, the innovations of the assimilation variables, i.e. the deviations of

the measurements of 2-metre air temperature, 2-metre relative humidity and 1.4

GHz brightness temperature from their model equivalents, have been examined.

Biases of +2.18 K for air temperature, −9.71 % for relative humidity and +9.55

K for brightness temperature have been found in the reference control run. The

microwave bias can be attributed to deficiencies in the microwave radiative trans-

fer model LSMEM, caused by uncertainties about some input parameters and

imperfect parameterisations, but to a high degree also to the large dry bias of the

model soil moisture in the surface layer during the SGP97 simulation period. At
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the same time, this systematic state vector error contributes most to the innova-

tion biases of the screen-level variables whereas their forward operators and the

observations seem to be basically free of systematic errors. Forcing the model

with observed soil moisture and soil temperatures to minimise the state vector

bias reduces the innovation biases to +0.56 K for the 2-metre temperature and

−0.27 % for the relative humidity. The resulting innovation bias of the brightness

temperature indicates that the microwave forward operator as used in the SGP97

assimilation experiments causes a bias of −12.88 K. Since an accurate grid-box

calibration of the LSMEM and TESSEL proved to be difficult and would not be

feasible for every grid box in a large-scale model, a correction of measured bright-

ness temperatures and screen-level variables by the innovation biases found from

the reference run has been applied before they are assimilated into the model.

This procedure is also necessary to maintain the optimality of the soil moisture

analysis in the sense of the least-square estimation. As expected, the systematic

corrections of the assimilation variables improve the analysis of the root zone

soil moisture (compared to observations). The simulations of the surface heat

fluxes, however, again do not benefit from that. In operational applications the

observation correction can be easily realised to account for observation, forward

operator and model background (soil moisture) biases in the soil moisture anal-

ysis. When the background soil moisture can be assumed to be bias-free over a

longer period of time (e.g. a year) or when a serious background bias as occurring

during SGP97 is captured by a separate correction procedure, the adjustment

of the brightness temperature observations would be sufficient for a well-defined

assimilation system (provided that systematic errors from screen-level observa-

tions and forward operators are negligible as generally assumed and supported

by the results presented in this thesis).

The vertical distribution of surface soil moisture, its effects on the land sur-

face microwave emissivity, and the implications on the data assimilation system

is the third and main topic of this study. Based on SGP99 observations, real-

istic surface soil moisture and soil temperature profiles have been generated. It

was found that the poor vertical near-surface resolution of current operational

weather prediction models can introduce mean brightness temperature errors of

± 5 K. This model shortcoming could be corrected by upgrading the soil scheme

with additional near-surface soil layers, but such a modification requires elab-

orate re-calibration and validation of the soil model. Therefore, a correction

method in observation space has been presented, which depends on the time

period between an observation and the antecedent rainfall event. The correction

function has been derived from SGP99 observations and has been applied to the

data assimilation experiment carried out for SGP97. For the KTRB experiments,
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the correction scheme does not have a consistent impact but in the KB assimi-

lation runs both soil moisture and the turbulent fluxes are more accurate when

the correction scheme is applied. However, improvements are small yet, but this

can probably be traced back to the simple approach which relies on observations

averaged over a large area with partly very different initial rain amounts. A

refinement of the correction scheme is expected to give a better representation of

the local near surface infiltration and evapotranspiration. It would be possible to

introduce more parameters, e.g. the amount of rainfall, soil texture, or vegetation

characteristics, as additional constraints in the profile generation process. For a

given area, this would reduce the variability in the profile ensemble and conse-

quently results in a narrower brightness temperature distribution (compared to

the data shown in Fig. 4.12).

Seuffert et al. (2004) showed that it was not possible in the ELDAS data as-

similation system to obtain optimal soil moisture and optimal turbulent surface

fluxes at the same time and for the entire period. The improved error description

in the revised data assimilation runs described in this study could not overcome

this problem. However, for hydrological applications screen-level variables are of

limited use since (computationally expensive) coupled land-atmosphere models

are required. The majority of hydrological data assimilation systems will prob-

ably be similar to the North American LDAS configuration comprising off-line

land surface models (Mitchell et al., 2004). These data assimilation systems will

benefit from the correction method presented in this study as the results from

the KB runs clearly indicate. But even in weather prediction models, the re-

sults of the assimilation experiments indicate that the brightness temperature

alone can provide better soil moisture and heat flux simulations than the use of

2-metre temperature and humidity, whether in combination with the microwave

data or separately. At least, this can be said for a low-to-moderately vegetated

land surface during summer conditions.

This study is restricted to a single location covering only four weeks in total

and is additionally based on a very limited number of brightness temperature

observations. Therefore, to gain a better insight into the error characteristics of

a land data assimilation system that makes use of passive microwave data, it is

essential to expand such studies like this to a longer period covering at least one

year and to areas representing different land use conditions. The extension to a

longer time frame is currently done at the Meteorological Institute of the Uni-

versity of Bonn in a project supported by the Deutsche Forschungsgemeinschaft

(DFG). Assimilation studies are carried out for the same location in Oklahoma as

used in this thesis. Brightness temperature measurements are obtained from the

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) which
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was launched in late 1997. This work will also address the different soil moisture

statistics in model space (constrained by the wilting point and field capacity)

and observation space (which usually shows higher amplitudes). Observation

operators as presented by Drusch et al. (2005) will be applied. Furthermore, the

differences in performance and feasibility of assimilating brightness temperatures

directly or assimilating soil moisture retrievals derived offline from the bright-

ness temperature observations will be investigated. In future studies, it has to

be investigated if the extended Kalman filter, which requires more computing re-

sources than the currently used optimal interpolation procedure, can be applied

in an operational weather prediction environment. This work showed that mi-

crowave brightness temperatures can be of high value for adjusting soil moisture

in hydrological and meteorological models and carried out a further step towards

the assimilation of future L-band satellite observations.
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litendaten. Ph.D. thesis, Meteorological Institute of the University of Bonn,

Bonn, Germany.

Drusch, M. and P. Viterbo, 2006: Soil moisture analysis in ECMWF’s Integrated

Forecast System — Assimilation of screen level variables. Submitted to Monthly

Weather Review .

Drusch, M., E. F. Wood, and H. Gao, 2005: Observation operators for the direct

assimilation of TRMM microwave imager retrieved soil moisture. Geophysical

Research Letters , 32, L15403, doi:10.1029/2005GL023623.

Drusch, M., E. F. Wood, H. Gao, and A. Thiele, 2004: Soil moisture retrieval

during the Southern Great Plains Hydrology Experiment 1999: A comparison

between experimental remote sensing data and operational products. Water

Resources Research, 40, w02504, doi:10.1029/2003WR002441.

Drusch, M., E. F. Wood, and T. J. Jackson, 2001: Vegetative and atmospheric

corrections for the soil moisture retrieval from passive microwave remote sens-

ing data: Results from the Southern Great Plains Hydrology Experiment 1997.

Journal of Hydrometeorology , 2, 181–192.

79



BIBLIOGRAPHY

ECMWF, 2001: IFS Documentation — Cycle 23r4 . ECMWF, Reading, UK,

download version available at http://www.ecmwf.int/research/ifsdocs/.

Entekhabi, D., E. Njoku, P. Houser, M. Spencer, T. Doiron, Y. Kim, J. Smith,

R. Girard, S. Belair, W. Crow, T. Jackson, Y. Kerr, J. Kimball, R. Koster,

K. McDonald, P. O’Neill, T. Pultz, S. Running, J. Shi, E. Wood, and J. van

Zyl, 2004: The Hydrosphere State (HYDROS) mission: An Earth system

pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE

Transactions on Geoscience and Remote Sensing , 42, 2184–2195.

Gao, H., E. F. Wood, M. Drusch, W. Crow, and T. J. Jackson, 2004: Using a

microwave emission model to estimate soil moisture from ESTAR observations

during SGP99. Journal of Hydrometeorology , 5, 49–63.

Gao, H., E. F. Wood, T. J. Jackson, M. Drusch, and R. Bindlish, 2006: Using

TRMM/TMI to retrieve surface soil moisture over the southern United States

from 1998 to 2002. Journal of Hydrometeorology , 7, 23–38.

Garratt, J. R., 1992: The atmospheric bounday layer . Cambridge University

Press, 316 pp.

Hartmann, D. L., 1994: Global Physical Climatology . Volume 56 of International

Geophysics Series, Academic Press.

Hess, R., 2001: Assimilation of screen-level observations by variational soil mois-

ture analysis. Meteorology and Atmospheric Physics , 77, 145–154.

Hollinger, J. P., R. C. Lo, G. A. Poe, R. Savage, and J. L. Peirce, 1987: Spe-

cial Sensor Microwave/Imager user’s guide. Technical report, Naval Research

Laboratory, Washington, D.C., 120 pp.

Jackson, T. J., D. M. Le Vine, A. Y. Hsu, A. Oldak, P. J. Starks, C. T. Swift, J. D.

Isham, and M. Haken, 1999: Soil moisture mapping at regional scales using

microwave radiometry: The Southern Great Plains Hydrology Experiment.

IEEE Transactions on Geoscience and Remote Sensing , 37, 2136–2151.

Jones, A. S., I. C. Guch, and T. H. Vonder Haar, 1998a: Data assimilation of

satellite-derived heating rates as proxy surface wetness data into a regional

atmospheric mesoscale model. Part I: Methodology. Monthly Weather Review ,

126, 634–645.

— 1998b: Data assimilation of satellite-derived heating rates as proxy surface

wetness data into a regional atmospheric mesoscale model. Part II: A case

study. Monthly Weather Review , 126, 646–667.

80



BIBLIOGRAPHY

Jung, T. and A. Tompkins, 2003: Systematic errors in the ECMWF forecast-

ing system. Technical Memorandum 422, European Centre for Medium-Range

Weather Forecasts.

Kawanishi, T., T. Sezai, Y. Ito, K. Imaoka, T. Takeshima, Y. Ishido, A. Shibata,

M. Miura, H. Inahata, and R. W. Spencer, 2003: The Advanced Microwave

Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s

contribution to the EOS for global energy and water cycle studies. IEEE Trans-

actions on Geoscience and Remote Sensing , 41, 184–194.

Kerr, Y. H. and E. G. Njoku, 1990: A semiempirical model for interpreting

microwave emission from semiarid land surfaces as seen from space. IEEE

Transactions on Geoscience and Remote Sensing , 28, 384–393.

Kerr, Y. H., P. Waldteufel, J.-P. Wigneron, J.-M. Martinuzzi, J. Font, and

M. Berger, 2001: Soil moisture retrieval from space: The Soil Moisture and

Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Re-

mote Sensing , 39, 1729–1735.

Kirdyashev, K. P., A. A. Chukhlantsev, and A. M. Shutko, 1979: Microwave

radiation of the earth’s surface in the presence of a vegetation cover. Radio

Engineering and Electronic Physics , 24, 37–44.

Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The

Tropical Rainfall Measuring Mission (TRMM) sensor package. Journal of At-

mospheric and Oceanic Technology , 15, 809–817.

Liebe, H. J., 1989: MPM — an atmospheric millimeter-wave propagation model.

International Journal of Infrared and Millimeter Waves , 10, 631–650.

Mahfouf, J.-F., 1991: Analysis of soil moisture from near-surface parameters: A

feasibility study. Journal of Applied Meteorology , 30, 1534–1547.

Margulis, S. A., D. McLaughlin, D. Entekhabi, and S. Dunne, 2002: Land

data assimilation and estimation of soil moisture using measurements from

the Southern Great Plains 1997 Field Experiment. Water Resources Research,

38, 1299, doi:10.1029/2001WR001114.

Meyers, T. P., 2001: A comparison of summertime water and CO2 fluxes over

rangeland for well watered and drought conditions. Agricultural and Forest

Meteorology , 106, 205–214.

81



BIBLIOGRAPHY

Mitchell, K. E., D. Lohmann, P. R. Houser, E. F. Wood, J. C. Schaake,

A. Robock, B. A. Cosgrove, J. Sheffield, Q. Duan, L. Luo, R. W. Higgins,

R. T. Pinker, J. D. Tarpley, D. P. Lettenmaier, C. H. Marshall, J. K. Entin,

M. Pan, W. Shi, V. Koren, J. Meng, B. H. Ramsey, and A. A. Bailey, 2004: The

multi-institution North American Land Data Assimilation System (NLDAS):

Utilizing multiple GCIP products and partners in a continental distributed

hydrological modeling system. Journal of Geophysical Research, 109, d07S90,

doi:10.1029/2003JD003823.

Njoku, E. G. and D. Entekhabi, 1996: Passive microwave remote sensing of soil

moisture. Journal of Hydrology , 184, 101–129.

Oki, T., 1999: The global water cycle. Global Energy and Water Cycles , K. A.

Browning and R. J. Gurney, eds., Cambridge University Press, 10–27.

Peixoto, J. P. and A. H. Oort, 1992: Physics of Climate. Springer-Verlag, New

York, 520 pp.

Raju, S., A. Chanzy, J.-P. Wigneron, J.-C. Calvet, Y. Kerr, and L. Laguerre,

1995: Soil moisture and temperature profile effects on microwave emission at

low frequencies. Remote Sensing Environment , 54, 85–97.

Reece, C. F., 1996: Evaluation of a line heat dissipation sensor for measuring

soil matric potential. Soil Science Society of America Journal , 60, 1022–1028.

Reichle, R. H. and R. D. Koster, 2005: Global assimilation of satellite soil mois-

ture retrievals into the NASA catchment land surface model. Geophysical Re-

search Letters , 32, l02404, doi:10.1029/2004GL021700.

Richter, H., A. W. Western, and F. H. S. Chiew, 2004: The effect of soil and

vegetation parameters in the ECMWF land surface scheme. Journal of Hy-

drometeorology , 5.

Robinson, D. A., K. F. Dewey, and R. R. Heim Jr., 1993: Global snow cover

monitoring: An update. Bulletin of the American Meteorological Society , 74,

1689–1696.

Rossow, W. B. and R. A. Schiffer, 1999: Advances in understanding clouds from

ISCCP. Bulletin of the American Meteorological Society , 80, 2261–2287.
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Appendix A

Overview of LSMEM input data

� General radiation parameters:

– Microwave frequency

– Incidence angle (or viewing angle)

� Soil characteristics:

– Soil temperature (optional: soil temperature profile)

– Soil water content (optional: profile of soil water content)

– Soil water salinity (of minor importance)

– Soil texture (i.e. sand and clay fraction)

– Soil porosity (i.e. bulk and specific soil density (of minor importance))

– Roughness height of the soil surface (i.e. h-parameter or standard

deviation of surface height)

� Vegetation characteristics:

– Vegetation coverage

– Vegetation temperature

– Vegetation water content

– Vegetation structure coefficient

– Salinity of the vegetation water (of minor importance)

– Single-scattering albedo

– Optional: dry matter fraction of vegetation (of minor importance at

L-band)
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APPENDIX A. OVERVIEW OF LSMEM INPUT DATA

– Optional: leaf thickness (of minor importance at L-band)

� Atmospheric characteristics:

– Air temperature profile

– Relative humidity profile

– Air pressure profile
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Appendix B

Time series of assimilation runs

On the following pages, the modelled daily means of 2m temperature, 2m relative

humidity, brightness temperature, soil moisture, soil temperature, and surface

heat fluxes as well as the daytime evaporative fraction from all SGP97 assimila-

tion runs addressed in this thesis are shown in comparison to the corresponding

observations. The respective results are presented for four different assimilation

procedures: no assimilations, assimilation of 2-metre temperature and relative

humidity alone, of microwave brightness temperature alone, and of all three ob-

servation types together. The different assimilation system setups applied are:

1. Reference assimilation runs according to Seuffert et al. (2004) (Sec. 3.3).

2. Application of the modified model error covariance matrix with depth-

varying model errors due to the error propagation experiment based on

perturbed precipitation amounts (Sec. 4.1).

3. As setup 1. but with precipitation set to zero.

4. Application of the modified model error covariance matrix in the zero-

precipitation setup (Sec. 4.1).

5. Pre-assimilation correction of observations by the innovation biases found

from the reference control run (Sec. 4.2).

6. Pre-assimilation correction of observed brightness temperatures depending

on the occurence of rain due to the profile sensitivity study (using the

modified model error; Sec. 4.3).
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.1a: Daily means of observed and modelled 2m temperature, relative
humidity and microwave brightness temperature from 15 June to 20 July 1997
in the reference data assimilation runs. The plus signs stand for observations
[OBS] (brightness temperature observations are from about 11 LST only); lines
denote results from model runs (solid = no assimilation [CTRL], dashed = as-
similation of 2m temperature and relative humidity alone [KTR], dash-dotted =
assimilation of brightness temperature alone [KB], dotted = assimilation of all
observation types together [KTRB]). Specified statistic quantities are correlation
coefficient [Corr], bias [Bias] and bias-corrected root-mean-square error [RMS] of
the modelled variables with respect to the observed values.
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.1b: Daily means of observed and modelled soil moisture in the root zone
and in the single root zone layers from 15 June to 20 July 1997 in the reference
data assimilation runs. Plus signs denote SHAWMS observations: values from
a depth of 5 cm are chosen to represent model layer 1; the mean from 10, 15,
20 and 25 cm corresponds to layer 2; the 60-cm measurement stands for layer
3. The diamonds represent water contents derived from the gravimetric probes
whenever available (not used for calculation of error statistics). For the meaning
of the lines and the statistic data see Fig. B.1a.
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.1c: Daily means of observed and modelled soil temperature in the
root zone and in the single root zone layers from 15 June to 20 July 1997 in
the reference data assimilation runs. Plus signs denote measurements from the
NOAA/ATDD station: the mean of the values from depths of 2 and 4 cm are
chosen to represent model layer 1; the measurement from a depth of 16 cm
corresponds to layer 2; the 64-cm measurement stands for layer 3. For the
meaning of the lines and the statistic data see Fig. B.1a.
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.1d: Daily means of observed and modelled latent heat and sensible heat
flux and daytime mean of observed and modelled evaporative fraction from 15
June to 20 July 1997 in the reference data assimilation runs. For the meaning
of the lines and the statistic data see Fig. B.1a.
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.2a: Simulations with modified, depth-varying model errors (everything
else as in Fig. B.1a).
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.2b: Simulations with modified, depth-varying model errors (everything
else as in Fig. B.1b).
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.2c: Simulations with modified, depth-varying model errors (everything
else as in Fig. B.1c).
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.2d: Simulations with modified, depth-varying model errors (everything
else as in Fig. B.1d).
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.3a: Simulations with precipitation set to zero (everything else as in Fig.
B.1a).
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.3b: Simulations with precipitation set to zero (everything else as in
Fig. B.1b).
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.3c: Simulations with precipitation set to zero (everything else as in Fig.
B.1c).
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.3d: Simulations with precipitation set to zero (everything else as in
Fig. B.1d).
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Figure B.4a: Simulations with modified, depth-varying model errors and precip-
itation set to zero (everything else as in Fig. B.1a).
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Figure B.4b: Simulations with modified, depth-varying model errors and precip-
itation set to zero (everything else as in Fig. B.1b).
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Figure B.4c: Simulations with modified, depth-varying model errors and precip-
itation set to zero (everything else as in Fig. B.1c).
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Figure B.4d: Simulations with modified, depth-varying model errors and precip-
itation set to zero (everything else as in Fig. B.1d).
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APPENDIX B. TIME SERIES OF ASSIMILATION RUNS

Figure B.5a: Simulations in which observations are corrected by the innovation
biases found from the reference CTRL run before they are assimilated (everything
else as in Fig. B.1a).
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Figure B.5b: Simulations in which observations are corrected by the innovation
biases found from the reference CTRL run before they are assimilated (everything
else as in Fig. B.1b).
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Figure B.5c: Simulations in which observations are corrected by the innovation
biases found from the reference CTRL run before they are assimilated (everything
else as in Fig. B.1c).
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Figure B.5d: Simulations in which observations are corrected by the innovation
bias found from the reference CTRL run before they are assimilated (everything
else as in Fig. B.1d).
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Figure B.6a: Simulations with modified, depth-varying model errors and bright-
ness temperature observations corrected due to the profile sensitivity study before
they are assimilated (everything else as in Fig. B.1a).
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Figure B.6b: Simulations with modified, depth-varying model errors and bright-
ness temperature observations corrected due to the profile sensitivity study before
they are assimilated (everything else as in Fig. B.1b).
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Figure B.6c: Simulations with modified, depth-varying model errors and bright-
ness temperature observations corrected due to the profile sensitivity study before
they are assimilated (everything else as in Fig. B.1c).
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Figure B.6d: Simulations with modified, depth-varying model errors and bright-
ness temperature observations corrected due to the profile sensitivity study before
they are assimilated (everything else as in Fig. B.1d).
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An dieser Stelle möchte ich mich herzlich bei Prof. Dr. Clemens Simmer und

Dr. Matthias Drusch für das in mich gesetzte Vertrauen und die Betreuung der

Arbeit bedanken.

Privatdozent Dr. Hendrik Elbern danke ich für seine Bereitschaft, die Zweitbe-

gutachtung dieser Dissertation zu übernehmen.
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