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Introduction

Low–energy meson reactions on few–nucleon systems are of great interest for they are
one of the best tools to deepen our understanding of the nuclear few–body problem.
In particular, reactions involving the lightest meson, i.e. the pion, are subject of spe-
cial experimental and theoretical efforts since they can provide us with very important
information on various aspects of low–energy hadron dynamics.

One can say that the special role of the pion was conjectured even before the pion
itself was experimentally discovered. In fact, the interaction of nucleons by means of
exchanging mesons consisted the basis of the first theory of nuclear forces formulated by
Yukawa in 1930’s, which gave rise to the meson theory of nuclear forces. The experimen-
tal discovery of the pion in 1948 [1, 2] stimulated a rapid development of Yukawa’s theory
of nuclear forces. For the initial developments on meson theory we refer to Refs. [3, 4]
and references therein. Although the meson theory of nuclear forces has undergone
many developments and modifications since the works of Yukawa, his original idea on
mesonic origin of nuclear forces is still valid. A more detailed historical review together
with the recent developments can be found in Ref. [5].

This special role of the pion becomes even more important in the framework of chiral
perturbation theory (ChPT), which had its foundation in the work of Weinberg [6], and
received initial development in the works of Gasser and Leutwyler [7, 8]. This theory is
a low-energy effective theory of the quantum chromodynamics (QCD), which has been
proven as the theory of the strong interactions for its predictions in the high energy
region are in a brilliant agreement with the experiment. However, the mathematical
structure of the QCD is drastically different at high and at low energies: the coupling
constant of the theory gets small at high energies, thus allowing for perturbation theory,
and grows at low energies, making the conventional expansion in the powers of coupling
constant inapplicable. Remarkably, this difficult situation with the low-energy spectrum
of the theory, which we are interested in, has an elegant solution—namely the treatment
of low–energy hadron interactions within an effective theory—ChPT. The main idea that
underlies ChPT is the idea of symmetry violation. The symmetry of the fundamental
theory—in this case the chiral symmetry of the QCD—should have its reflection in the
properties of the effective theory, which is the theory of interactions of the effective
degrees of freedom, the hadrons, rather than quarks and gluons that are degrees of
freedom of the underlying theory. The chiral symmetry of the QCD appears to be
spontaneously broken in nature, and the pion (along with other lightest pseudoscalars—
the kaons and eta meson) is identified with the Goldstone boson of the spontaneously
broken symmetry. The Goldstone theorem states that the Goldstone bosons do not
participate in any interaction in the low–energy limit. This allows one to expand the
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2 Introduction

observables in powers of small energies of interacting particles. The fact that the pion
is not massless as is mandatory for Goldstone bosons means that the chiral symmetry
is broken also explicitly rather than only spontaneously. However, the smallness of pion
masses allows one to treat the mass terms as a small perturbation as well. Thus, the
theory is expanded in powers of small energies and momenta of interacting particles.
The small expansion parameter, which is a measure of interactions amongst the particles
of the theory, in this case is the ratio of small momenta of order of pion mass mπ to
the scale of chiral symmetry breaking, which is of order of the nucleon mass M (and
is often identified with this large mass). The inclusion of baryons into this scheme
causes some difficulties because of their large mass, but this problem is solved within
the heavy–baryon formalism [9, 10], the idea of which is to integrate the ”heavy“ baryon
component out. We refer to the work of Bernard, Kaiser, and Meißner [11] for a review
of various aspects of chiral perturbation theory. Since the pion is the lightest member of
the Goldstone octet, it appears to be possible to describe the interaction of pions among
themselves [6, 7, 12], pions and nucleons [13], and also few–nucleon systems [14–20], in
terms of chiral Lagrangians that contain only pion and nucleon fields. In Chapter 1 we
will review the formalism of chiral perturbation theory for the processes in few–nucleon
systems in more detail. We should mention here the two advantages of the ChPT
expansion: this technique allows for a systematic—order–by–order—approach to the
calculation of observables, and also allows for an overall error estimate of the calculated
quantities, which is usually based on the so–called ”naturalness“ assumption. The word
”naturalness“ means that one expects the numerical values of the terms, that enter the
expansion at some given order n, to be equal Cnχ

n, where χ ∼ mπ/M is the expansion
parameter, and Cn is a number of order unity.

In this work we consider two specific reactions involving pions on few–nucleon sys-
tems, namely pion production in nucleon–nucleon collisions—the reaction NN → NNπ,
and pion photoproduction on the deuteron in the reaction γd → π+nn. These two re-
actions are closely related to the issue of dispersive and absorptive corrections to the
pion–deuteron scattering length, which we also consider in our analysis. The reaction
γd→ π+nn is also considered as the possible source for a high-precision determination
of the neutron–neutron scattering length.

The production of pions in nucleon–nucleon collisions near threshold—the reaction
NN → NNπ—is of special importance. It is the first hadronic inelasticity of NN scat-
tering, therefore understanding of pion production leads to more profound understand-
ing of the properties of the NN -system. Understanding of the reaction NN → NNπ
is also a prerequisite to the study of isospin violation. Recently the forward-backward
asymmetry of the reaction np → dπ0 [21] was measured. In this reaction, the isospin
violating effects appear as a result of interference of isospin violating and isospin con-
serving amplitudes, therefore it is necessary to have isospin symmetric part well under
control. The understanding of NN → NNπ also allows one to include the dispersive
corrections to the pion–deuteron scattering length in a chiral perturbation theory anal-
ysis. This quantity is necessary for an accurate extraction of the isoscalar pion–nucleon
scattering length from deuteron reactions, which are otherwise difficult to access. An-
other interesting issue that is related to the reaction NN → NNπ is the presence of
large transfer momentum of order of

√
Mmπ À mπ, needed to produce a pion already
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at threshold. This large scale has to be taken into account, and leads to modifications
of the ChPT expansion and of the corresponding counting scheme. This research is still
in progress, and we will report in this work on the first reliable quantitative results we
obtained in this scheme. For a recent review of various aspects of pion production in
nucleon–nucleon collisions near the threshold we refer to the review by Hanhart [22].

As concerning the reaction γd → π+nn, the calculation of this reaction is of high
theoretical interest, because it also provides an important test for our understanding
of those aspects of πNN dynamics that are relevant for pion production reactions on
the deuteron. The first aspect of this interest is related to the possibility to obtain
information on the elementary pion photoproduction amplitude on the neutron by using
the deuteron as an effective neutron target. The second one is the determination of the
nn scattering length from π+ production data. Pion photoproduction on the deuteron
has been studied quite extensively over the past fifty years. Here we refer to the review
of Laget [23], which has a broad coverage of earlier works. We should mention that in
this work we will consider the near threshold pion photoproduction, i.e. excess energies
below 20 MeV, in contrast to most phenomenological studies that were concentrated on
the Delta isobar region, cf. Ref. [24] and references therein; for a recent review see also
Refs. [25–27].

The structure of this thesis is as follows. In Chapter 1 we review the ChPT framework
as applied to the reactions in few–nucleon systems. In particular, we examine Weinberg’s
hybrid approach to the reactions in few–nucleon systems, which is based on the concepts
of reducibility and power counting.

In Chapter 2 we consider the reaction NN → NNπ. We start with the formulation
of the modified counting, which is needed in order to take into account the relatively
large momentum transfer of order of

√
Mmπ typical for this reaction [28–30]. The

expansion parameter in this case is χπ =
√
mπ/M rather than χ. Then we survey

the recent developments of Kaiser and Hanhart [30] who calculated all loop diagrams
for the reaction NN → NNπ, where the pion is in an s-wave with respect to the
NN system, up to next-to-leading order (NLO) in the modified expansion. We show
that the proper treatment of the naively reducible loop diagrams gives rise to genuinely
irreducible pieces of these loops. This results, in turn, in a complete cancellation of
all NLO loops for NN → NNπ, solving thus the problem concerning the s-wave pion
production stated recently by G̊ardestig, Phillips, and Elster [31]. We show that this
treatment simultaneously leads to the enhancement of the leading isovector rescattering
amplitude by a factor of 4/3 compared to what was used commonly in the previous
works. The outcome is a theoretical prediction for the total cross–section of the reaction
pp → dπ+ near the threshold that is in good agreement with experimental data—the
first time within ChPT. We also calculate the p-wave pion production cross–section
near the threshold, providing thus the complete calculation for the total cross–section
of the reaction pp→ dπ+ up to NLO in ChPT expansion in χπ. Our result shows good
agreement with experimental data near the reaction threshold.

In Chapter 3 we perform a calculation for the reaction γd→ π+nn, which is a reac-
tion with typical momentum transfer of order of mπ. Consequently, the usual Weinberg’s
counting and expansion in powers of χ is applied to this reaction. We survey the assump-
tions commonly done in calculations for this reaction. In particular, we consider the
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nucleon recoil corrections that are commonly neglected in few–body calculations. These
corrections were recently shown by Baru et al. [32] to give contributions non-analytic in
χ when taken into account explicitly, i.e. without expanding the corresponding propa-
gators. We calculate these corrections explicitly and show that the static approximation
(that neglects the recoil correction) fails in this case. We calculate the transition op-
erator for γd → π+nn up to χ5/2 in Weinberg’s counting, where non-integer powers
of χ stem from the recoil corrections. The value of the leading pion photoproduction
multipole E0+, which is the only free parameter entering our calculation, is fixed from
the ChPT calculation at N3LO [33]. We show that our results for the total cross–section
agree with experimental data within the uncertainty up to excess energies of 20 MeV.
At the same time we argue that the results of previous calculations that correspond to
our calculation up to NLO in the expansion in χ significantly underestimate the data.

In Chapter 4 we discuss the possibility to determine the neutron–neutron scattering
length from the reaction γd → π+nn. We use the transition operator for this reaction
calculated in Chapter 3. In addition, we employ the NN wave functions evaluated in
the ChPT framework in order to have a fully consistent calculation that allows for a
reliable uncertainty estimate. We use wave functions corresponding to N2LO (i.e. up
to terms O(χ2)) calculation developed in Refs. [18, 34]. We show that for a proper
choice of kinematics and momenta region to be considered, the theoretical uncertainty
for the extraction of neutron–neutron scattering length does not exceed 0.1 fm. The
estimate of uncertainty is performed very conservatively by evaluating the effect of the
calculated NLO and N2LO+χ5/2 corrections on the momentum spectra in the five-fold
differential cross–section. In Appendix E.2.4 we provide a simple analytic expression for
the shape of the differential cross-section we consider. This expression can be used in
the Monte-Carlo simulations for the analysis of possible experimental setup.

In Chapter 5 we turn to the dispersive and absorptive corrections to the pion–
deuteron scattering length. We provide a calculation of these corrections—the first time
within ChPT. In this calculation we apply two counting schemes—the expansion in χπ

for the hadronic part of these corrections and the expansion in χ for the electromagnetic
one. The estimate of order of magnitude of the corrections being considered here is χ3/2.
We show that our result for the absorptive corrections agrees well with the experimental
result for the width of pionic deuterium. As concerning the dispersive corrections, our
result is smaller than in previous works, due to cancellations of individually sizable
terms. We argue that a consistent calculation of the dispersive corrections to the pion–
deuteron scattering length should include several effects that are commonly disregarded
in phenomenological calculations.

We close the discussion with a brief summary of our findings.



Chapter 1

Chiral Effective Theory for
Few–Nucleon Systems

In this chapter we review the formalism which we are working in, that is the chiral
effective theory, to be more specific—its application to the few–nucleon sector. We aim
at a general outline of the formalism rather than at a profound and detailed description.
For the details and further references we refer the reader to the review of Bernard, Kaiser,
and Meißner [11], and the lectures of Leutwyler [35, 36]. The recent developments of
ChPT concerning the nuclear forces along with a vast list of references can be found in
Refs. [19, 37], and a review of the issues related to the effective field theory treatment
of the reaction NN → NNπ is contained in Ref. [22] (we also survey these issues in
Chapter 2).

1.1 Chiral symmetry of QCD

Quantum ChromoDynamics (QCD), which describes the strong interactions, is a non-
Abelian gauge theory. The gauge group of the QCD is SU(3), and the QCD Lagrangian
is given by

LQCD = −1

4
Ga

µνGµν
a + q̄

(
i¡¡D − M̂

)
q, (1.1)

where q stand for the quark fields that transform under the fundamental representation
of SU(3), M̂ is the Nf ×Nf quark mass matrix with Nf being the number of different
quark flavours, and Ga

µν is the gluon field strength tensor which is related to the gauge
(gluon) field Ga

ν that belongs to the adjoint representation of SU(3) via

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gfabcGb

µG
c
ν , a, b, c = 1 . . . 8. (1.2)

Here, fabc are the structure constant of SU(3) specifying the SU(3) Lie algebra:
[
T a, T b

]
= i fabcT c (1.3)

with T a being the SU(3) hermitian generators related to the conventional Gell-Mann
matrices λa as T a = λa/2, and g is the gauge coupling constant. The quark covariant
derivative is given by

Dµq = ∂µq − igT aGa
µq. (1.4)

5



6 Chapter 1. Chiral Effective Theory for Few–Nucleon Systems

Note that the quark field q is also a flavour SU(Nf ) multiplet: qT = (u, d, s, . . . ). We

will assume the mass matrix M̂ to be diagonal (which is achieved in general by an
appropriate transformation of quark fields).

In the limit of massless quarks, the Lagrangian of QCD can be written as

LQCD = −1

4
Ga

µνGµν
a + q̄Ri¡¡DqR + q̄Li¡¡DqL, (1.5)

where qR,L are the right– and left–handed components of the quark fields, defined as

qR =
1

2
(1 + γ5)q ≡ PRq, qL =

1

2
(1− γ5)q ≡ PLq. (1.6)

We have introduced here the left– and right–handed projectors PR,L = (1± γ5)/2 with
γ5 being the usual product of the four Dirac matrices: γ5 = iγ0γ1γ2γ3, (γ5)2 = 1. These
projectors have the following properties:

P 2
R = PR, P 2

L = PL, PRPL = PLPR = 0, PR + PL = 1.

We see that the QCD Lagrangian in the massless limit, besides its invariance with
respect to the gauge SU(3) group, appears to be invariant under additional global
independent transformations of the left– and right–handed components of the quark.
These transformations mix the flavour components of the left– and right–handed quark
fields:

q′R = TRqR, q
′
L = TLqL, TR, TL ∈ U(Nf ) =⇒ L′QCD = LQCD. (1.7)

Here TR and TL are independent matrices belonging to U(Nf ). They can be parameter-
ized as

TR = exp(iθR · tPR), TL = exp(iθL · tPL),

where t={ti}, i = 1, . . . N2
f are the generators of U(Nf ), and θR,L = {θi

R,L}, i = 1, . . . N2
f

are the corresponding unitary rotation angles.
Since TR and TL act independently on the quark field, the symmetry group of the

massless QCD Lagrangian is

U(Nf )R × U(Nf )L −→ U(1)A × SU(Nf )R × U(1)V × SU(Nf )L, (1.8)

where we put explicit labels R, L on the groups that transform the corresponding
components of q, and used the fact that U(N) is isomorphic to U(1)×SU(N), and also
UR(N) × UL(N) is isomorphic to UV (N) × UA(N), where now labels V and A denote
the vector and axial transformations parameterized as

TV = exp(iθV · t), TA = exp(iθA · tγ5),

where θV,A = (θR±θL)/2. The vector U(1)V symmetry corresponds to the conservation
of baryon number. As concerning the axial U(1)A symmetry, it turns to be broken due
to the Abelian anomaly at the quantum level [38, 39], resulting, for instance, in the
decay π0 → γγ. The remaining SU(Nf )R × SU(Nf )L global symmetry group is called
the chiral group. The Noether currents that correspond to this symmetry are given by

J µ a
R,L = q̄γµPR,Lq, a = 1, . . . N2

f − 1. (1.9)
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In reality, the quark masses differ from zero, therefore the chiral symmetry is broken.
However, the masses of the up (u) and down (d) quarks are small compared to the typical
hadronic scales of order of 1 GeV: mu = 1.5 . . . 3.0 MeV, md = 3 . . . 7 MeV#1. This small-
ness allows for perturbative treatment of the quark mass effects, as is discussed below.
The strange quark (s) plays an intermediate role with its mass ms = 70 . . . 120 MeV,
and the remaining three quarks are a lot heavier: mc ≈ 1.25 GeV, mb ≈ 4 GeV,
mt ≈ 170 GeV. In what follows we will consider only the case of two quark flavours:
qT = (u, d).

1.1.1 Spontaneous chiral symmetry breaking

Suppose we have a theory that possesses a certain global continuous symmetry, for
instance, the chiral symmetry of massless QCD. There are two distinct ways how this
symmetry can be realized. The first one that is called the Wigner mode implies that
not only the Lagrangian of the system is invariant under some group of transformations
G, but also the ground state is invariant under the same group. The second way, called
the Goldstone mode, corresponds to the situation when only a subgroup H ⊂ G leaves
the ground state invariant. The necessary condition for H to leave the ground state
invariant is that the generators of H annihilate the ground state. Those generators of G
that do not turn the ground state to zero are called broken generators. As stated by the
Goldstone theorem [41, 42], in this case there should be exactly NG−NH massless bosons
in the theory spectrum, where NG(NH) is the dimension of G(H), respectively (or,
stated differently, one boson corresponds to each broken generator of G). These bosons
are called Goldstone bosons#2. Goldstone bosons have zero spin, and the remaining
quantum numbers of the Goldstone bosons have to be the same as the corresponding
numbers of broken generators of G.

1.1.2 Isospin symmetry

There is another symmetry that is nearly obeyed in the strong interactions and that
was discovered long ago—the isospin symmetry, which is expressed in the existence of
almost degenerate multiplets. For instance, the nucleon doublet (p, n) as well as the
pion triplet (π+, π0, π−) are characterized by a very small mass splitting between the
components of each multiplet: Mn −Mp = 1.3 MeV, mπ± − mπ0 = 4.6 MeV. These
values are so small that the isospin symmetry was believed for a long time to be an
exact symmetry of the strong interactions. Mathematically, isospin symmetry means
that the QCD Lagrangian is invariant under SU(2)V subgroup of the chiral group that
mixes the up and down quarks. This symmetry would be exact given the masses of u-
and d-quarks were equal. We know nowadays that this symmetry is broken since the
masses of up and down quarks are different. However, the values of mu and md are
small compared with the typical hadronic scale of order of 1 GeV, therefore the isospin
breaking effects in the nucleon doublet are small. On the other hand, one could expect

#1These estimates were obtained at the renormalization scale µ ≈ 2 GeV [40].
#2The situation is somewhat more complicated when a gauge symmetry is broken; in this case the

Goldstone bosons appear as components of the gauge field rather than as independent particles—see,
e.g. Ref. [43] and references therein.
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these effects to be large for pions. However, as we will see below, these effects for pions
are suppressed.

1.2 ChPT in mesonic sector

1.2.1 Non-linear realization of chiral symmetry

The main ideas of ChPT for pions were formulated in the fundamental work of Wein-
berg [6]. The concept is very general and allows for the description of the effective
degrees of freedom dynamics, starting from the symmetry properties of the underlying
theory. The way how to implement the transformation properties of the broken sym-
metry group on the Goldstone boson fields was first discussed by Weinberg [44] on an
example of SU(2)V × SU(2)A symmetry group broken to SU(2)V , and was generalized
by Coleman, Callan, Wess and Zumino [45, 46]. The symmetry group G acts on the
quark fields according to Eq. (1.7). The action of G on the effective field is given by the
following representation:

πa g→ ϕa(g, π), (1.10)

where g is a transformation from G. The explicit expression for the corresponding
Noether currents is determined by the form of the function ϕa(g, π). The representation
property

ϕ(g1, ϕ(g2, π)) = ϕ(g1g2, π) (1.11)

fixes the mapping uniquely (up to an isomorphism—see below).

To show this, let us consider the image of the zero, ϕ(g, 0). It is straightforward to
demonstrate that the composition law of Eq. (1.11) dictates that the set of elements h
which map the zero onto itself forms a subgroup H ⊂ G. Moreover, ϕ(gh, 0) coincides
with ϕ(g, 0) for any g ∈ G, h ∈ H. Hence the function ϕ(g, 0) takes values on the
space G/H, which is obtained from G by identifying elements g, g′ differing only by
right multiplication by an element of H, g′ = gh, that is, on the factor group G/H. The
function ϕ(g, 0) thus maps the elements of G/H into the space of effective (pion) field
variables. The mapping is reversible, since from ϕ(g1, 0) = ϕ(g2, 0) follows g−1

1 g2 ∈ H.
Thus, the pion fields πa can be considered as the coordinates of the factor group G/H.

Let us choose a representative element a in each of the equivalence classes {gh, h ∈
H}. This representative element sets a unique decomposition of every group element
given by g = ah. The composition law given by Eq. (1.11) shows that the image a′ of
the element a under the action of g ∈ G is obtained by decomposing the product ga into
equivalence classes a′h—this is the standard action of G on the (homogeneous) space
G/H. Therefore the geometry fully fixes the transformation law of the pion field, except
for the freedom in the choice of coordinates on the manifold G/H.

In the case of G = SU(2) × SU(2) and H = SU(2), the factor group G/H is the
group SU(2). The pion field may be represented as an element of this group, i.e., as
a 2 × 2 matrix field U(x) ∈ SU(2). Alternatively, we can identify the pion field with
the three coordinates π1, π2, π3 that are needed to parameterize the group SU(2). The
choice of coordinates is not unique. Using conventional exponential coordinates, the
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relation between the matrix field U(x) and the pseudoscalar fields πa(x) takes the form

U(x) = exp[i
π(x)

fπ

], π(x) = ~τ~π(x) (1.12)

where ~τ = {τ1, τ2, τ3} are the Pauli matrices, and fπ is the pion decay constant in the
chiral limit. Note that the specific expression of U(x) in terms of πa is unimportant
for our considerations in this chapter; however, in the concrete calculations we use the
so–called sigma representation, where the relation between the pion field and the matrix
U(x) reads

U(x) =

√
1− ~π2(x)

f 2
π

+ i
~τ~π(x)

fπ

. (1.13)

Of course, the physical results do not depend on the parameterization of the field.
As noted above, the action of g ∈ G on the element a ∈ G/H is given by ga = a′h.

In the case under consideration, G consists of pairs of elements g = (TR, TL), while H
contains the equal pairs, TR = TL. As representative elements of the equivalence classes,
we may choose a = (U,1). The transformation law then amounts to

ga = (TR, TL)(U,1) = (TRU, TL) = (TRUT
†
L,1)(TL, TL) = a′h (1.14)

Therefore the transformation law of the pion field reads

U ′(x) = TRU(x)T †L. (1.15)

The matrix U(x) thus transforms linearly. Note, however, that the corresponding trans-
formation law for the pion field πa(x) is nonlinear. The above general discussion indicates
that the occurrence of nonlinear realizations of the symmetry group is a characteristic
feature of the effective Lagrangian technique.

1.2.2 Effective Lagrangian

Now we are at the position to construct the most general Lagrangian coresponding
to the theory describing the dynamics of the Goldstone bosons associated with the
spontaneous symmetry breakdown in QCD. Following the general argument that the
effective Lagrangian should be a Lorentz scalar, and recalling that in the chiral limit we
want the Lagrangian to be invariant under SU(2)L × SU(2)R × U(1)V , and taking into
account that due to the spontaneous symmetry breaking the ground state should only
be invariant under SU(2)V × U(1)V , we straightforwardly get the following expression
for the lowest order effective Lagrangian:

L(2)
eff =

f 2
π

4
Tr

(
∂µU∂

µU †
)
, (1.16)

where U = U(x) is given by Eq. (1.12), and the trace is performed in flavour space. The
label ”2“ stands for the lowest order of πa(x) in the expansion of this Lagrangian. It is
easy to show that the Lagrangian given by Eq. (1.16) has the following properties:
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• The Lagrangian is invariant under global SU(2)R × SU(2)L × U(1)V transforma-
tions:

L(2)
eff

′
=
f 2

π

4
Tr

(
TR∂µUT

†
LTL∂

µU †T †R
)

= L(2)
eff (1.17)

(the invariance under U(1)V is trivial because this transformation does not change
the Goldstone boson field, since its baryon charge equals to zero);

• The Lagrangian has even intrinsic parity, i.e. is a scalar rather than a pseudoscalar,
which is also a criterion that can rule out some terms—see below. One can check
whether an expression constructed from U and ∂µU is a scalar, by substituting
πa(t, ~x) → −πa(t,−~x) or, equivalently, U(t, ~x) → U †(t,−~x). The result for the
Lagrangian should read L0

eff(t, ~x) → L0
eff(t,−~x). Note that the expansion of the

Lagrangian proceeds thus in even powers of πa(x);

• The Lagrangian of Eq. (1.16) is the only possible Lagrangian with minimal num-
ber of derivatives, since other possible terms like Tr(∂µUU

†)Tr(U∂µU †), TrU †U ,
Tr(∂µUU †) either give zero or result in a constant, or can be reduced to the ex-
pression of Eq. (1.16) up to a total derivative.

With the definition of fields πa(x) of Eq. (1.12) (or of Eq. (1.13)) and the Lagrangian
of Eq. (1.16), we get, expanding the exponential matrix U(x): U = 1 + iπ/fπ + · · · ,
∂µU = i∂µπ/fπ + · · · , resulting in

L(2)
eff =

f 2
π

4
Tr

[
i∂µπ

fπ

(
−i∂

µπ

fπ

)]
+ · · · =

1

4
Tr(τa∂µπ

aτb∂
µπb) + · · · =

1

2
∂µπ

a∂µπa + Lint,

(1.18)
thus reproducing the standard form for the kinetic term of a (pseudo)scalar field.

The Lagrangian of fourth order in momenta reads [6, 8]

L(4)
eff =

l1
4

(
Tr(∂µU∂

µU †)
)2

+
l2
4

Tr
(
∂µU∂

νU †
)

Tr
(
∂µU∂νU

†) . (1.19)

The quantities li are the so-called low-energy constants. They can not be determined by
the symmetry arguments, and should be taken from somewhere—either from comparison
with the experiment, or from lattice calculations, or from some model calculations.

1.2.3 Chiral symmetry breaking due to quark masses

It is interesting to see how one deals with the mass terms that break the chiral symmetry.
The term in the QCD Lagrangian that breaks the chiral symmetry reads:

LM = −q̄RM̂qL − q̄LM̂
†qR, (1.20)

where M̂ is the quark mass matrix defined in Eq. (1.1). The idea underlying the treat-
ment of these chiral symmetry breaking terms is that one knows explicitly the law under
which they are transformed by chiral rotations. Therefore one should also write down
in the effective Lagrangian such non–invariant terms, the choice of which, however, is
restricted by the symmetry. This treatment was suggested in the work of Weinberg [6].
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We will, however, follow the equivalent approach by Gasser and Leutwyler [7]. Namely,
we will treat the mass matrix M̂ as an external (spurious, i.e. not dynamical) field,
which interacts with quarks, and transforms under the chiral group as

M̂ ′ = TRM̂T †L. (1.21)

This transformation law makes the quark mass term given by Eq. (1.20) to be invariant
under chiral transformations. Now we have to write down general chirally invariant
Lagrangians that contain mass insertions. At lowest order in M̂ one obtains

Lχsb =
f 2

πB0

2
Tr(M̂U † + UM̂ †), (1.22)

where B0 is a constant with dimension of mass, and the subscript χsb refers to sym-
metry breaking. This Lagrangian is the lowest–order mass insertion that is consistent
with all required symmetries; for instance, the term Tr(M̂U † − UM̂ †) transforms as a
pseudoscalar under parity transformation and therefore is not allowed (since the strong
interactions are known to conserve parity with high accuracy). Notice that because
M̂ = M̂ †, Lχsb contains only terms even in π. Note also that there is also term contain-

ing two traces like TrM̂ Tr(U + U †) which is not chirally invariant in general, however,
for the case of chiral SU(2)R×SU(2)L symmetry this latter term appears to be propor-
tional to Lχsb. Indeed, since an SU(2) matrix U can be parameterized by two complex
numbers a and b such that |a|2 + |b|2 = 1 as

U =

(
a b
−b∗ a∗

)
,

one can write U + U † = (TrU)1. We can rewrite therefore

Lχsb =
f 2

πB0

2
Tr(M̂)Tr(U). (1.23)

Expressing U in terms of the pion field π, one gets

Lχsb = f 2
πB0(mu +md)− B0

2
(mu +md)~π2 +O(~π4). (1.24)

Although the first term of this equation is constant and therefore does not contribute to
the scattering matrix elements, it contains some information about the structure of the
vacuum. For instance, it can be demonstrated [7] that the value of B0 can be related to
the value of quark condensate as

〈0|ūu|0〉 =
〈
0|d̄d|0〉

= −f 2
πB0 + (symmetry breaking corrections of higher orders).

(1.25)
As concerning the second term, it can be identified with the pion mass term −m2

π~π
2/2,

where m2
π is given by

m2
π = B0(mu +md).

Remarkably, the isospin breaking corrections that are proportional to mu −md start to
contribute only at higher orders.

Using the relation between B0 and the quark condensate, it is straightforward to
obtain the well–known Gell-Mann–Oakes–Renner relation [47]:

m2
π = −(mu +md)

f 2
π

〈0|ūu|0〉+O(m2
u,d). (1.26)
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1.2.4 Counting with pions

As we have seen in the discussion above, the symmetry arguments tell one how to
construct the effective Lagrangians describing the low–energy dynamics of QCD. Along
with the notion of chiral symmetry, there is another very important concept, namely—
the possibility for a systematic expansion in a perturbative series. These ideas are the
cornerstones of chiral effective field theory. Weinberg [6] showed how to truncate the
series in order to achieve the desired accuracy. In the discussion on how to construct
the effective Lagrangians, we have seen that the chirally symmetric Lagrangian of order
d contributes a factor of Qd, where Q stands for small momentum scale. Analogously,
the chiral symmetry breaking Lagrangian of order d contributes a factor of md

π, and we
count mπ ∼ Q. Analogously, an internal pion propagator contributes a factor Q−2, and
each loop integration gives a factor of Q4. Using the usual topological identities relating
the number of loops to the one of internal lines and vertices, Weinberg showed the chiral
dimension of an arbitrary Feynman graph with L loops and Nd vertices from L(d)

eff to be

D = 2 +
∑

d

Nd(d− 2) + 2L. (1.27)

The important thing is that the Leff starts from chiral dimension two, therefore the right
hand side of this equation is bounded from below. Furthermore, since the loops as well as
the vertices from Lagrangians of higher orders lead to a suppression of the corresponding
Feynman graph, there is only finite number of diagrams that give contribitions at any
given order. According to Eq. (1.27), at the leading order (D = 2) only tree diagrams
contribute, whereas loops diagrams start to appear only at order Q4. Notice that the
loop diagrams may introduce non–analytic terms in the expansion.

An important property, in which the so obtained expansion in powers of small mo-
menta Q differs from usual renormalizable perturbation theory, is the order–by–order
renormalization. This means that new parameters—the low–energy constants—appear
at each new order in the expansion in Q, opposite to usual renormalizable theories.
These new parameters should be fixed from a comparison with experimental data, or
from lattice calculations etc.

Let us now discuss what should be meant under ”small“ momentum scale. We
suppose that small momenta are much less than some typical hadronic scale, denoted Λχ,
at which spontaneously broken chiral symmetry is not a good approximation anymore.
For instance, the lightest meson that has quantum numbers different from those of
Goldstone bosons, the ρ–meson with mass mρ = 770 MeV, corresponds to a resonance
in ππ scattering, therefore this is a natural barrier to the derivative expansion of the
Goldstone mesons. This implies Q¿ Λχ ∼ 770 MeV. From the other hand, Georgi and
Manohar [48], based on the renormalization scale independence arguments, have argued
that a consistent chiral expansion is possible if Λχ ≤ 4πfπ ≈ 1 GeV. In what follows,
we will assign Λχ ∼ 4πfπ. This choice is more convenient when dealing with baryons,
since there are two expansion parameters in this case, namely Q/Λχ and Q/M , where
M is the nucleon mass, and it appears to be convenient to put them on the same footing
(as we will show in the next section). Anyway, the two ways of reasoning—the meson–
resonance barrier and the renormalization scale independence—give similar estimates
for Λχ.
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1.3 Inclusion of baryons

In the previous section we have considered the purely mesonic sector involving the
interaction of Goldstone bosons (pions) with each other. In this section we will outline,
how ChPT can be extended to describe the dynamics of baryons at low energies.

1.3.1 Transformation properties of baryons

Let us consider how the baryons (we consider here the nucleon doublet) transform
accordingly to the chiral symmetry of the QCD Lagrangian. For the details we refer
to works of Refs. [44–46]. We assume the fields entering the Lagrangian to transform
under irreducible representations of the subgroup H which leaves the vacuum invariant,
whereas the symmetry group G of the Hamiltonian or Lagrangian is nonlinearly realized,
as we saw in the previous section on an example of Goldstone bosons. We aim at a
description of the interaction of baryons with the Goldstone bosons at low energies,
therefore we need to specify the transformation properties of the baryon fields entering
the Lagrangian.

We associate with the neutron and the proton a complex, four-component Dirac field
which we arrange in an isospinor:

Ψ =

(
p
n

)
(1.28)

denotes the nucleon field with two four-component Dirac fields for the proton and the
neutron. For the pion fields, we have already showed that the mapping U → TRUT

†
L,

where U = U(x) is the matrix of pion fields, defines a nonlinear realization of G. Let
us denote the square root of U(x) by u(x), u2(x) = U(x), and define the SU(2)–valued
matrix function K(TR, TL, U) by

u(x) → u′(x) =

√
TRUT

†
L ≡ TRuK

−1(TR, TL, U), (1.29)

i.e.

K(TR, TL, U) = u′−1TRu =

√
TRUT

†
L

−1

TR

√
U. (1.30)

The following homomorphism defines an action of G on the set {(U,Ψ)}:

ϕ(g) :

(
U ′

Ψ′

)
=

(
TRUT

†
L

K(TR, TL, U)Ψ

)
. (1.31)

This action is consistent with the group properties. Let us demonstrate that. First, the
identity leaves (U,Ψ) invariant. Then, since Eq. (1.30) results in that

K(TL1 , TR1 , TR2UT
†
L2

)K(TL2 , TR2 , U) = K((TL1TL2), (TR1TR2), U), (1.32)

we have

ϕ(g1)ϕ(g2)

(
U
Ψ

)
= ϕ(g1)

(
TR2UT

†
L2

K(TL2 , TR2 , U)Ψ

)
=

(
TR1TR2UT

†
L2
T †L1

K(TL1 , TR1 , TR2UT
†
L2

)K(TL2 , TR2 , U)Ψ

)

=

(
TR1TR2U(TL1TL2)

†

K(TL1TL2 , TR1TR2 , U)Ψ

)
=ϕ(g1g2)

(
U
Ψ

)
,
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thus proving the concurrence with the group structure. Note that for a general group
element g = (TL, TR) the transformation behavior of Ψ depends on U . For the special
case of an isospin transformation, TR = TL = TV , one obtains u′ = TV uT

†
V , since

U ′ = u′2 = TV uT
†
V TV uT

†
V = TV u

2T †V = TVUT
†
V .

Comparing with Eq. (1.29) yields K−1(TV , TV , U) = T †V or K(TV , TV , U) = TV , i.e., Ψ
transforms linearly as an isospin doublet under the isospin subgroup SU(2)V of SU(2)L×
SU(2)R. A general feature here is that the transformation behavior under the subgroup
which leaves the ground state invariant is independent of U . Moreover, as one can see
directly from Eq. (1.15), the Goldstone bosons π transform according to the adjoint
representation of SU(2)V , i.e., as an isospin triplet.

1.3.2 Baryonic effective Lagrangian

We will now discuss the most general effective baryonic Lagrangian at lowest order.
Let us start with the construction of the πN effective Lagrangian L(1)

eff,πN . Since the
transformation of the nucleon field depends not only on TR and TL but also on U(x),
which is a function of coordinates, it is natural then to demand the SU(2)L × SU(2)R

symmetry to be local. Recall that the nucleon doublet and U transform as

(
U ′(x)
Ψ′(x)

)
=

(
TR(x)U(x)T †L(x)

K[TL(x), TR(x), U(x)]Ψ(x)

)
, (1.33)

where we assume the matrices TR.L to be explicitly dependent on x. The local character
of the transformation means that we need to introduce a covariant derivative DµΨ which
should transform in the same way as Ψ:

[DµΨ(x)]′=K[TL(x), TR(x), U(x)]DµΨ(x). (1.34)

Since K not only depends on TL and TR but also on U , the covariant derivative will
contain u and u† and their derivatives, as will be shown below.

Let us introduce the so-called chiral connection

Γµ =
1

2

[
u†∂µu+ u∂µu

†] . (1.35)

Using the properties of matrices u and K given by Eq. (1.29), it is easy to show that
the chiral connection transforms as

Γ′µ = KΓµK
† − (∂µK)K†, (1.36)

therefore the covariant derivative of the nucleon doublet given by

DµΨ = (∂µ + Γµ)Ψ (1.37)

indeed transforms covariantly, that is

D′
µΨ′ = [∂µ + Γ′µ]KΨ = K(∂µ + Γµ)Ψ. (1.38)
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There exists another Hermitian building block, the so-called vielbein,

uµ ≡ i
[
u†∂µu− u∂µu

†] , (1.39)

which transforms accordingly to
u′µ = KuµK

†, (1.40)

and under parity transforms as an axial vector:

uµ
P→ i

[
u∂µu

† − u†∂µu
]

= −uµ.

The transformation property of the field Ψ under the chiral rotations tells us that the
most general effective πN Lagrangian describing processes with a single nucleon in the
initial and final states has the form Ψ̄ÔΨ, where Ô is an operator acting in Dirac spinor
and flavor space, transforming under SU(2)L × SU(2)R as Ô′ = KÔK†. As in the
mesonic sector, the Lagrangian must be a Hermitian Lorentz scalar and be even under
the parity, charge conjugation and time reversal transformations.

The most general such Lagrangian with the smallest number of derivatives is given
by [49]

L(1)
eff,πN = Ψ̄

(
i¡¡D −M +

gA

2
γµγ5uµ

)
Ψ. (1.41)

It contains two parameters not determined by chiral symmetry: the nucleon mass M
and the axial-vector coupling constant gA. The overall normalization of the Lagrangian
is chosen such that in the case of no external fields and no pion fields it reduces to that
of a free nucleon of mass M .

1.3.3 Heavy baryon formalism

In a fully relativistic formulation of low–energy theory of interacting nucleons and pions
one loses the one-to-one correspondence between the number of loops and the power of
small external momenta. The origin of this is the large mass of nucleons. The scale
introduced by this mass can not be regarded small and does not vanish in the chiral
limit. A solution of this problem has been proposed by Jenkins and Manohar [9], see also
Bernard et al. [10]. The idea is to expand the amplitudes around the infinitely heavy
nucleons’ limit. This implies a simultaneous expansion in powers of Q/Λχ ∼ Q/(4πfπ)
and Q/M . We outline here how this expansion is done. For a heavy nucleon it is
convenient to parameterize its four-momentum p as

pµ = Mvµ + qµ, (1.42)

where vµ is the nucleon four-velocity satisfying v2 = 1, and qµ is a small residual mo-
mentum such that vµq

µ ¿M . The trivial kinematic dependence of pµ on the large term
Mvµ is now explicit. In the rest frame with vµ = (1, 0, 0, 0) the three-momentum is given

by ~q, and p = (
√
M2 + q2, ~q ). To get rid of the nucleon mass term in the Lagrangian

for the free nucleon field, one can introduce the velocity projected components N and
h of the nucleon field via

N = eiMv·xP+Ψ, h = eiMv·xP−Ψ, (1.43)
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where P± are the four-velocity projector operators defined as

P± =
1

2
(1±½v ). (1.44)

They have the property ½vP± = ±P±. The exponential factor in Eq. (1.43) eliminates
the dependence of the nucleon field on the large momentum Mvµ . The quantities N
and h are usually called the large and small nucleon components, respectively. We can
now express the Lagrangian that in terms of N and h as

Lnuc = Ψ̄(i¶¶∂ −M)Ψ = N̄i(v · ∂)N − h̄(iv · ∂ + 2M)h+ N̄i¶¶∂h+ h̄i¶¶∂N. (1.45)

The equations of motions for N and h obtained from this Lagrangian read

(v · ∂)N = −P+
¶¶∂h,

(v · ∂)h = 2iMh+ P−¶¶∂N.
(1.46)

From the second equation one sees that h = iP−¶¶∂N/2M up to corrections of order 1/M .
Therefore, the large component N obeys the free equation of motion

(v · ∂)N = 0 (1.47)

up to 1/M corrections. The nucleon mass does not enter this equation of motion to
leading order. The small component h can now be completely eliminated from the
Lagrangian with the help of the equations of motion. An analogous procedure can be
done for the nucleon field interacting with the pion field, leading to the counting scheme
analogous to that for the pions. The expansion in this case is performed in powers of
Q/Λχ and Q/M simultaneously, and it is convenient to treat these two numbers on an
equal footing. For the details we refer to the review by Bernard, Kaiser, and Meißner [11]
and references therein. We should mention also the works of Weinberg [50, 51] where
an equivalent way to get rid of the nucleon time derivatives by using the equation of
motion was suggested.

1.4 ChPT for few–nucleon systems

In the previous sections we examined the method how the low-energy interactions of
pions and nucleons can be described. These ideas proved to be a powerful tool for in-
vestigations of ππ [12] and πN [13] systems. However, the boundstates of few–nucleon
systems question already by their existence the possibility to treat them along the very
same guidelines. Indeed, a bound state corresponds to a singularity in the scattering
matrix and therefore can be obtained only as a sum of an infinite number of a per-
turbation theory series. The method how to treat few–nucleon systems in ChPT was
suggested by Weinberg [50–52]. The idea was to use a general chirally invariant La-
grangian describing the interaction among nucleons and pions, which at leading order
in small momenta has the form [50]

L =
1

2
D−2∂µ~π∂µ~π − 1

2
D−1m2

π~π
2

+ N̄ [i∂0 −D−1f−2
π ~τ · (~π × ∂0~π)−M −D−1~τ · (~σ · ∇)~π]N

− 1

2
CS(N̄N)(N̄N)− 1

2
CT (N̄~σN) · (N̄~σN)

(1.48)
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(here the pion field is parameterized by the stereographic coordinates [44], D = 1+~π2/f 2
π ,

and CS, CT are the low-energy constants characterizing the nucleon–nucleon interaction)
and to develop counting and the corresponding chiral expansion. Then, in order to avoid
large factors arising from the nucleon time derivatives, Weinberg suggested to replace
the time derivative according to the nucleon equation of motion that reads

[i∂0 −D−1f−2
π ~τ · (~π × ∂0~π)]N = [M +D−1~τ · (~σ · ∇)~π + . . . ]N ; (1.49)

since this procedure reduces to merely the change of the coefficients of the terms that
do not contain nucleon time derivatives, it was then argued that one can regard the
Lagrangian as if there were no nucleon time derivatives. Of course this approach should
be equivalent to the heavy–baryon formalism. The counting rules are derived from the
Lagrangian as follows:

• The propagator of a nucleon with four-momentum Mv + q is

P+

q0 + iγ
, γ → 0+

hence each nucleon propagator contributes a factor Q−1 to the matrix element;

• Each pion propagator contributes a factor Q−2;

• Each derivative (or pion mass) in any interaction contributes a factor Q. Recall
that we got rid of nucleon time derivatives that would contribute large factors
spoiling the counting;

• Each four-momentum integration contributes a factor Q4.

The total index V of a diagram with L loops, NE external nucleon lines, Vi vertices of
type (di, ni), where di is the number of derivatives and ni is the number of nucleon fields
in ith vertex, is obtained using usual topological arguments, and the resulting expression
reads

V = 2− 1

2
NE + 2L+

∑
i

Vi[di +
1

2
ni − 2]. (1.50)

As in the case of purely pionic systems, the chiral symmetry bounds the number V from
below (for each given number of external nucleon lines). In particular, the numbers
[di + 1

2
ni − 2] are bounded by zero, which is reached for terms written in Eq. (1.48).

As it was already noted, the power counting arguments as given above can be ap-
plied directly only for calculating processes in the pure pionic and in the single–nucleon
sectors. Moreover, there are graphs that are divergent. An example of such a graph is
shown in Fig. 1.1. The matrix element corresponding to this graph is proportional to

∫
d4q

R(q)

(q0 + iγ)(q0 − iγ)(q2 −m2
π)2

,

where R(q) contains terms non-vanishing in the limit q0 → 0. Thus, the integral over
d0 has a pinch singularity: ∫

dq0
1

(q0 + iγ)(q0 − iγ)
,
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p

p p + q

p− q

q q

Figure 1.1: Example of an ”infrared divergent” graph for nucleon–nucleon scattering.

which can not be avoided by shifting the integration contour. This infrared divergency
forces one to include the nucleon kinetic energy term

Lkin = N̄
∇2

2M
N (1.51)

in the Lagrangian. These corrections make the integral over q0 finite, however, this
integral appears to be larger by a factor of order of M/Q than is given by the counting.
Thus, the perturbation theory fails to describe the nuclei, one has to sum an infinite
series of diagrams that are not suppressed. Weinberg suggested how to cope with this,
using the concept or reducibility. In doing the expansion it is convenient firstly to turn
to the conventional time–ordered perturbation theory (TOPT). The idea is to classify all
TOPT graphs accordingly with their reducibility. The (two–nucleon) reducible graphs
are those graphs that contain a purely two–nucleon intermediate state. Those graphs,
which do not contain such a state, are irreducible. These are namely reducible diagrams
that violate the counting, whereas irreducible graphs respect the counting rules. The
way how to sum over the reducible graphs has been known long ago: they are summed by
solving the Lippmann-Schwinger equation. Thus, Weinberg’s approach to few–nucleon
systems is:

• The (TOPT) graphs that do not contain N -nucleon intermediate state are classi-
fied as irreducible ones;

• The irreducible graphs are assigned with their chiral order according to the count-
ing rules;

• The sum of irreducible graphs up to a certain order gives the effective potential;

• The sum of reducible graphs is obtained by solving the N -particle Lippmann–
Schwinger equation, using the effective potential as the kernel.

This approach was also expanded by Weinberg to processes in few–nucleon systems
with external probes—in his work [52] Weinberg calculated the corrections to the pion–
deuteron scattering length. The only modification of the framework in this case is that it
is the transition operator describing the interaction of nucleons with external particles
that is constructed according to the counting rules. This transition operator is then
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convoluted with the few–nucleon wave functions, obtained by solving the Lippmann–
Schwinger equation. This approach is known as ”hybrid approach“ since in its initial
formulation the transition operator obtained using ChPT should be convoluted with the
few-nucleon wave functions obtained from model calculations (reliable wave functions
constructed within the ChPT framework appeared only very recently, see Ref. [19] and
references therein; however, there is still a lot of work to be done, for instance, it is of a
great importance to get a reasonable description of the NN forces at energies close to the
pion production threshold). This approach is closely related with the phenomenological
distorted-wave approximation. In fact, the crucial difference between the DWA and the
hybrid approach is that the latter allows for a systematic expansion and for an error
estimate, which should be considered advantages of the ChPT calculations over the
phenomenology—this point has received numerous confirmations in our work.



Chapter 2

Pion Production in
Nucleon–Nucleon Collisions

In this chapter we consider pion production in nucleon-nucleon collisions close to thresh-
old. We review current theoretical developments concerning the treatment of these re-
actions within ChPT. We present our results for the total cross–section of the reaction
pp → dπ+ near threshold to next-to-leading order (NLO). Already at this order loops
start to contribute.

2.1 Introduction

The production of pions in nucleon–nucleon collisions near threshold — the reaction
NN → NNπ — is of special importance. It is the first hadronic inelasticity of NN
scattering, therefore understanding of pion production leads to more profound under-
standing of the properties of the NN -system. Understanding of reaction NN → NNπ
is also prerequisite to the study of isospin violation. Recently the forward-backward
asymmetry of the reaction np → dπ0 [21] as well as total cross-section of the reaction
dd → απ0 [53] were measured. In the former reaction, the isospin violating effects ap-
pear as a result of interference of isospin violating and isospin conserving amplitudes,
therefore it is necessary to have isospin symmetric part well under control. Recent theo-
retical developments considering these issues can be found in Refs. [54, 55]. Quantitative
description of pion production near threshold also gives a key to calculation of absorp-
tive and dispersive corrections to the pion-deuteron scattering length—we consider this
issue in detail in Chapter 5.

The first attempts to understand NN → NNπ quantitatively were made in the
sixties. In the work of Koltun and Reitan [56], the production of pions in the s-wave
with respect to the NN pair in the reactions pp→ ppπ0 and pp→ dπ+ was investigated.

The authors of Ref. [56] worked in the distorted wave Born approximation. The
diagrams that were included in their calculation are shown on Fig. 2.1. The diagram (i)
corresponds to the direct pion production on one of the nucleons, and the diagram (ii)
to the rescattering of pion off the second nucleon. The strengths of the corresponding
pion–nucleon interactions were defined from πN scattering lengths. The values of the
total cross–sections they obtained showed an agreement with the existing experimental

20
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i) ii)

Figure 2.1: Diagrams included in the calculation of Koltun and Reitan [56]. Diagram
(i) corresponds to direct production, diagram (ii) — to πN rescattering. Blobs denote
NN interaction in the initial and final states.

near-threshold data.

However, highly accurate data close to the production threshold became possible only
quite recently with the advent of cooler synchrotrons. When the first close to threshold
data for the total cross section of the reaction pp→ ppπ0 appeared in 1990 [57], it had
been a big surprise that the model of Ref. [56] (which was revisited in [58]) fell short by a
factor of 5–10. At the same time, the obseved energy dependence of the total pp→ ppπ0

cross–section was correctly reproduced. This was shown [58] to be due to effects of NN
interaction in 1S0 final state (including Coulomb interaction).

To cure the discrepancy between theory and experiment, many different mechanisms
were proposed. For a recent review of these issues see Ref. [22]. The inclusion of the
Delta isobar resulted in an enhancement [59], however not sufficient — the cross–section
was still by a factor of approximately three smaller. The role of Delta isobar was
reinvestigated later in [60], where its importance was confirmed. The papers [61, 62]
suggested to use heavy meson exchanges to enhance the cross–section, and showed that
the inclusion of the corresponding contributions can lead to a satisfactory description of
experimental data. However, in Ref. [63] it was demonstrated that taking into account
offshell effects in πN rescattering also leads to an enhancement of the theoretical number
for pp→ ppπ0 total cross–section and may even lead to an overestimated cross–section
depending on parameterization of πN amplitude used. This issue was further discussed
in Refs. [60, 64–66].
Also meson exchange currents were considered, where pion is emitted from an exchanged
meson [67], as well as resonance contributions [68]. These effects, however, seemed to be
smaller compared to the effects of heavy meson exchanges and offshell πN rescattering.

The total cross sections for the reactions np→ dπ0 and pp→ dπ+ on the other hand
could be described by the calculation of Koltun and Reitan within a factor of two, and
the inclusion of heavy meson exchanges brought the number into an agreement with the
experiment [69], see also [70]. Such a difference between the reactions pp → ppπ0 and
pp → dπ+ is a consequence of the fact that the isovector rescattering that dominates
the charged pion production in pp → dπ+, does not contribute to pp → ppπ0 [56].
Thus, the pion production in this latter reaction goes through many different concurring
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mechanisms and the resulting pattern becomes hard to reveal.
To resolve the situation, various groups started to investigate NN → NNπ using

ChPT. As an effective field theory it is to be free of any ambiguities and people expected
that now the relevant physics of NN → NNπ could be identified. As a big surprise to
many, however, it turned out that, when naively using the original power counting by
Weinberg [52], the discrepancy between theory and data became even larger at next–
to–leading order (NLO) for pp → ppπ0 [28, 71] as well as for pp → dπ+ [65]. The
authors of these works showed, in particular, that the pion rescattering diagram for the
reaction pp→ ppπ0 interferes with the direct production diagram destructively when one
calculates the corresponding matrix element according to the rules of ChPT, contrary
to the phenomenological calculations (see, e.g., Ref. [63]). In Ref. [65] it was stressed
that one should include higher orders in ChPT (i. e. loop diagrams) to understand the
origin of this opposite sign.
In addition, the corrections at one–loop order (next–to–next–to–leading order (N2LO)
in the standard counting) were calculated for pp → ppπ0 and turned out to be much
larger than the NLO tree corrections [72, 73], thus questioning the convergence of chiral
expansion.

At the same time it was already realized that a modified power counting is necessary
to properly take care of the large momentum transfer characteristic for pion production
in NN collisions. This was suggested in Ref. [28]. However, this modified counting
scheme in its original formulation did not change the results neither for neutral [28] nor
for charged pions [29].

Recently there were two developments: one that focused on some technical aspects
related to the evaluation of the matrix elements [74–77] and another regarding the power
counting for the large momentum transfer reactions. Formal inconsistencies of the naive
power counting using the heavy baryon scheme were pointed out in Ref. [78]. Especially
it was noted there that one cannot neglect the nucleon kinetic energy in the nucleon
propagator as it is commonly done in the heavy baryon formalism. The reason for this
is that in the reactions NN → NNπ the production of a pion is provided by kinetic
energies of colliding nucleons and therefore one cannot expand the nucleon propagator
in tree level diagrams.
The ideas concerning a modification of the counting scheme formulated in Refs. [28, 29]
were further developed and improved — it was especially recognized how to properly
estimate loop contributions. This modified scheme was implemented in Refs. [30, 79]
— the essential features are described in detail below. The basic conclusion was that
an ordering scheme exists for the reactions NN → NNπ that can lead to a convergent
series. However, so far full calculations (including the distortions due to the NN inter-
actions) within this scheme existed only for the production of p–wave pions [79], where
the series was demonstrated to converge and an agreement with experimental data was
achieved.

2.2 Power counting and the concept of reducibility

In this section we discuss the modifications of the counting scheme necessary to prop-
erly treat the large transfer momentum. We also remind the reader of the concept of
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a) b) c)

Figure 2.2: Tree level diagrams that contribute at leading ((a) and (b)) and next–to–
leading order (c) to NN → NNπ. The double line denotes a ∆–isobar. Note, in
diagrams (b) and (c)—for illustration—with the one–pion exchange only one part of the
NN and NN → N∆ potential is shown.

reducibility, which is one of the basic ideas of ChPT treatment for few nucleon systems.
Here we follow Ref. [30], where it was demonstrated by explicit evaluation of the leading
loop contributions how the presence of the large momentum scale influences loops. The
central findings of that work were that it is possible to define an ordering scheme for
NN → NNπ, but some loops are to be promoted to significantly lower orders compared
to what is expected from Weinberg’s original counting.

As mentioned in the previous section, the power counting needs to be modified in
order to be applicable for NN → NNπ. The reason for this necessity is the magnitude
of the nucleon center-of-mass momentum ~p required to produce even a pion at rest in
NN collisions. It is given by

p =
√
mπ(M +mπ/4) . (2.1)

Eq. (2.1) exhibits the important feature of the reaction NN → NNπ, namely the large
momentum mismatch between the initial and the final nucleon–nucleon state. This leads
to a large invariant (squared) momentum transfer t ∼ −Mmπ between in– and outgoing
nucleons. In addition, it seems compulsory to include the Delta isobar as an explicit
degree of freedom, since the Delta–nucleon mass difference δ = M∆ −M = 293 MeV is
comparable to the external momentum p ' √

Mmπ = 362 MeV. The hierarchy of scales

mπ ¿ p ' δ ¿M , (2.2)

suggested by this feature is in line with findings within meson exchange models where
the Delta isobar gives significant contributions even close to the threshold [60, 70]#1.
Thus, it is more natural to take as expansion parameter the quantity

χπ =
p

M
=

√
mπ

M
. (2.3)

As a result at leading order only tree level diagrams contribute to the transition operator
(diagrams (a) and (b) of Fig. 2.2).

#1For the channel pp → ppπ0 strong support for an important role played by the Delta isobar was
given by a partial wave analysis [80].
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a1) a2) b) c) d1) d2)

Figure 2.3: Leading loop diagrams for NN → NNπ. Here dashed lines denote pions
and solid lines denote nucleons.

Already at next–to–leading order—in addition to the first diagram that involves
a Delta isobar (diagram (c) of Fig. 2.2)—the first loops appear (see Fig. 2.3). As a
consequence of the two scales p and mπ given in Eq. (2.2) there exists a dimensionless
parameter that is of order χπ, namely mπ/p, that can appear as the argument of non–
analytic functions as a result of the evaluation of loop integrals. Thus, each loop now
contributes not only to a single order, but to all orders higher than the one where it
starts to contribute [22]. In this work we only consider the leading parts of the loops in
Fig. 2.3 that start to contribute at NLO.

Let us now turn to the concept of reducibility in describing few–nucleon systems.
Already the existence of nuclei—the deuteron in particular—shows that perturbation
theory is insufficient to properly describe two–nucleon systems: only an infinite sum of
diagrams can produce a pole in the S–matrix. To bring this observation in line with
power counting, Weinberg proposed to classify all possible diagrams according to the
concept of reducibility [14, 15, 17, 50, 51]: those diagrams that have a two nucleon cut
are called reducible. Those which do not are called irreducible. The latter constitute
the potential that is to be constructed according to the rules of ChPT. The former are
then generated by solving the Schrödinger equation, using the mentioned potential as
kernel. This scheme acknowledges that the two nucleon cut contributions are enhanced
compared to the irreducible parts.

It was also Weinberg who gave a recipe how to calculate processes on few nucleon
systems with external probes [52]: here the transition operators are to be calculated
using ChPT. Then those transition operators must be convoluted with the appropriate
NN wave functions—in full analogy to the so–called distorted wave Born approximation
traditionally used in phenomenological calculations [56], however supplemented with a
power counting.

Therefore it is necessary to disentangle those diagrams that are part of the transition
operator from those that are the result of a convolution of the transition operator with
the wave functions. In complete analogy to NN scattering described above, the former
are called reducible and the latter irreducible. Also here the distinction stems from
whether or not the diagram shows a two nucleon cut. Thus, in accordance to this rule,
the one loop diagrams shown in Fig. 2.3 (b)–(d) are irreducible, whereas diagrams (a)
seem to be reducible.

Following these guidelines, the authors of work [30] obtained the following important
results:
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C) D)

E)

A) B)

F ) G) H)

Figure 2.4: Leading loop diagrams with Delta isobar for NN → NNπ. Here dashed
lines denote pions and solid lines denote nucleons. Double line denote Delta isobars.

• There are several loops with Delta isobar that also start to contribute at NLO—
they are shown in Fig. 2.4. The sum of all NLO contributions of these loops
canceled both for the reaction channels pp → ppπ0 and pp → dπ+#2. The reason
of this cancellation was explained to be the following: the contribution of each of
these loops with Delta isobar is divergent, and there is no counterterm at this order
that would absorb these divergences. Therefore this cancellation was considered
to be an evidence for the consistency of the counting scheme;

• The sum of NLO contributions of leading loops with nucleons (diagrams of Fig. 2.3
(b)–(d)) canceled for the reaction channel pp→ ppπ0. However, the origin of this
cancellation could not be identified;

• The sum of NLO contributions of diagrams of Fig. 2.3 (b)–(d) for the channel
pp → dπ+ gave a finite answer. However, as pointed out in Ref. [31], the ampli-
tude that corresponds to this sum grows linearly with increasing final NN–relative
momentum. This behavior leads to a large sensitivity to the final NN wavefunc-
tion, once the convolution of those with the transition operators is evaluated as
demanded by the non–perturbative nature of the NN interaction. The solution to
this problem proposed in Ref. [31] is to include a new counter term at leading order
to absorb this unphysical behavior. However, chiral symmetry does not allow for
such a structure (see below for the details).

Thus, two important questions were left unanswered: why there is an exact cancel-
lation of the NLO contributions from nucleon loops for pp → ppπ0 and how to avoid
the wave function sensitivity in pp → dπ+. We address these questions below in this
chapter. As we will show, the solutions to both questions are related and at the same

#2Note that some of these loops were found in Ref. [70] to give large contribution in pp → dπ+; see
the corresponding discussion in Sections 2.4, 2.5.
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time shed some light on the concept of reducibility in pion reactions on few–nucleon sys-
tems. Particularly, we mentioned above that in accordance to the rule that the diagrams
that have a two nucleon cut are called reducible, the one loop diagrams (a) on Fig. 2.3
seem to be reducible. However, we will show that diagrams (a) contain a genuine irre-
ducible piece due to the energy dependence of the leading N̄Nππ–vertex, the so–called
Weinberg–Tomozawa term (WT) — see Ref. [81]. Specifically, the energy–dependent
part of the WT vertex cancels one of the intermediate nucleon propagators, resulting in
the irreducible part of diagrams (a).

We further demonstrate that the net effect of the inclusion of the NLO loops, shown
in Fig. 2.3, is to enhance the leading rescattering amplitude by a factor of 4/3, bringing
its contribution to the cross section for pp→ dπ+ close to the experimental value.

2.3 Evaluation of loops

Let us consider the relevant production amplitudes for s-wave pion production (for fur-
ther details see Appendix E). At threshold only two amplitudes are allowed to contribute
to the reaction NN → NNπ, namely A11 and A10, where we used the notation ATiTf

to
label the total isospin of the initial (Ti) and final (Tf ) NN–pair. The third amplitude
allowed by the standard selections rules — A01 — has to have at least one p–wave in
one of the final subsystems. To the reactions pp → ppπ0 and pn → ppπ− only A11 and
to NN → dπ only A10 contribute at threshold, whereas both A11 and A10 contribute to
the reaction pp→ pnπ+.

The only transitions that are allowed to contribute near threshold are 3P0 → 1S0s
for A11 and 3P1 → 3S1s for A10, where small letters denote the pion angular momentum
with respect to the NN system and the NN partial waves are labeled with the standard
notation 2S+1LJ . Those lead to the following transition amplitude structures [22]

T = iA11

(
(~S · ~p) I ′

)
+ A10

(
[~S × ~p ] · ~S ′

)
(2.4)

with I ′ =
(
χ†1′σ2χ

∗
2′

)
/
√

2 and ~S = (χt
2σ2~σχ1)/

√
2 and ~S ′ = (χ†1′~σσ2χ

∗
2′)/

√
2, where

the χ1,2 (χ1′,2′) denote spinors for the incoming (outgoing) nucleons, and χt stands for
transposed spinors. For a deuteron in the final state we need to use

T = A10

(
[~S × ~p ] · ~εd ∗

)
, (2.5)

where now ~εd
∗ denotes the deuteron polarization vector. The transition amplitudes A

are to be convoluted with the corresponding initial and final NN wave functions in
order to obtain matrix elements. We come back to the evaluation of the deuteron cross
section in section 2.5.

If we neglect all NN distortions, we get for the leading rescattering contribution
(Fig. 2.2 (a)) at threshold [30]

A2a
11 = 0 , A2a

10 = 2

(
2mπM

2f 2
π

)
1

p2
µ −m2

π

(
gAM

fπ

)
= −2gAmπM

2

p2f 3
π

(1 +O(χπ)) , (2.6)
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where we used that the πN → πN amplitude to leading order contains not only the
standard WT term that scales as the sum of the incoming and outgoing pion ener-
gies, here equal to mπ and mπ/2, respectively, but also its recoil correction equal to
p2/2M = mπ/2. We also use here and below the shorthand p2

µ = pµpµ for the square
of a four-vector. The relevant terms of the underlying Lagrangian density are given in
Appendix A. Note that with a value of 2mπM/2f 2

π the WT vertex including the recoil
correction as it appears in the NN → NNπ amplitude takes exactly the value it has
for elastic πN scattering at threshold.

In the reaction NN → NNπ the energies of the initial nucleons are of order p2/2M ∼
mπ and the momenta are of order p. In irreducible loops, on the other hand, both
energies and momenta are of order p (see Appendix F for the details). As a consequence
in the evaluation of diagrams (b), (c), and (d) of Fig. 2.3 the nucleon recoil terms (i.e. the
nucleon kinetic energies) can be neglected in the nucleon propagators, since they scale as
mπ. At first glance this seems to be at variance with the recent finding that three body
NNπ cuts that originate from the nucleon recoils play an essential role in pion reactions
on few nucleon systems [32, 82]. However, the reactions studied in these references
had very different kinematics, as they were small momentum transfer reactions, where
in typical kinematics the πNN state was near on–shell. Here, on the other hand, we
are faced with a large momentum transfer reaction: for typical kinematics a πNN
intermediate state is far off–shell. In addition, here there is an additional kinematical
suppression for the πNN cuts: at the cut the typical pion momentum, which sets the
scale for the typical loop momentum, is that of the external pion of order of at most
mπ. As a consequence the πNN cuts do not contribute before N5LO to the reaction
NN → NNπ [22].

By comparison to the full results of Ref. [72], in Ref. [30] it was shown that it is
allowed to expand the integrand of the loop integrals before evaluation in powers of√
mπ/M . As a consequence it was possible to express the leading contribution of all

loops corresponding to diagrams (b)–(d) of Fig. 2.3 in terms of a single integral

I0(p0, ~p ) =
1

i

∫
d4l

(2π)4

1

(l0 − iγ)(l2µ −m2
π)((l + p)2

µ −m2
π)

. (2.7)

One finds I0(p0, ~p ) = I0(~p
2) (1 +O (χπ)) = 1/(16

√
~p 2) (1 +O (χπ)). The assumption

of threshold kinematics (all outgoing momenta vanish) simplifies the operator structure
significantly and we can write — neglecting for the moment the distortions from the
NN interaction — in order [30]

A3b+3c+3d
10 =

g3
AM

2

4f 5
π

(−2 + 3 + 0) p2I0(~p
2) =

g3
AM

2 p

64f 5
π

A3b+3c+3d
11 =

g3
AM

2

4f 5
π

(−2 + 3− 1) p2I0(~p
2) = 0 . (2.8)

Note, here and in what follows we write equalities although we dropped terms of higher
order in χπ. As mentioned in the introduction to this chapter, the sum of the NLO
loops vanishes in case of A11. We will give an explanation for this cancellation below.
Let us now concentrate on A10. In order to obtain matrix elements and thus compare
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the result of Eq. (2.8) to data, the transition operators need to be convoluted with
appropriate NN wave functions. The convolution integrals that arise necessarily involve
non–vanishing ~p ′, denoting the outgoing NN relative momenta, even if we still work
at threshold. However, the structure of the loop integral I0 is such that — to leading
order — only ~p − ~p ′ appears in the integrals and thus one can directly generalize the
expressions of Eqs.( 2.8) (see also Appendix F). As was argued in Ref. [31], this implies
that for large p′ the contributions from the loops grows linearly with p′. When it then
comes to the convolution of those operators with the NN wave function, this linear
growth of the transition operators leads to a large sensitivity to the deuteron wave
functions. Indeed, already with a constant transition operator one would have obtained
the coordinate wave function at origin as a result of convolution, which is not well defined
(see discussion in Ref. [83]); in the case under consideration the result would behave
even worse. However, there should be no sensitivity to the particular wave functions
used, for off–shell quantities are not observable [84, 85]. On the other hand, the chiral
Lagrangian does not allow for a counter term to compensate this linear growth. From
Eqs. (2.4), (2.8) one sees that a counterterm that would absorb this unwanted behaviour
would couple the pion field to the nucleon field neither via a derivative of pion field nor
via pion mass. Therefore, this counterterm would not vanish in chiral limit, violating
the chiral symmetry. The solution given in Ref. [31], namely the inclusion of such a
counter term at leading order, is therefore not consistent with the effective field theory
used. However, as we will show, the loops with the unwanted behavior will be canceled
exactly by the irreducible pieces of diagrams (a) of Fig. 2.3. We proceed as follows: we
first show this cancellation to one loop order without distortions. Then we generalize
the result to the inclusion of the full NN wave functions.

We still assume threshold kinematics and now turn to the evaluation of diagrams (a)
of Fig. 2.3. In doing so one first has to realize that in contrast to the irreducible diagrams
discussed in the beginning of this section, energies in the diagrams with a two–nucleon
cut are of the order of the external energies (l0 ∼ p2/2M ∼ mπ). Therefore, there is a
priori no reason to neglect the nucleon recoils that are of the order of mπ. We thus get
for the full expression for the first diagram of Fig. 2.3 (a), up to higher orders,

A3a1
10 = i

3g3
AM

2

8f 5
π

∫
d4l

(2π)4

[l0 +mπ − (2~p+~l ) ·~l/(2M)]

(l0 − mπ

2
− (~l+~p )2

2M
+ iγ)(−l0 + mπ

2
− (~l+~p )2

2M
+ iγ)

× (~l · (~l + ~p ))

(l2µ −m2
π)((l + p)2

µ −m2
π)

,

A3a1
11 = 0 , (2.9)

where we included the recoil correction to both the WT term in the numerator as well as
the nucleon energies in the denominator, in line with the discussion above. The vanishing
A1a1

11 reproduces the well known result that the WT interaction does not contribute to
the leading rescattering diagram in pp→ ppπ0.

In order to proceed we rewrite the first term in the numerator of the above integral
as [

l0 +mπ − (2~p+~l ) ·~l
2M

]
=

[(
l0 − mπ

2
− (~p+~l )2

2M

)
+ 2mπ

]
,
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where we used that at threshold p2/M = mπ. The first term now exactly cancels the first
nucleon propagator and we are left with an expression that no longer has a two nucleon
cut — it is irreducible. In this irreducible piece we can neglect the recoil corrections in
the remaining nucleon propagator — cf. the discussion at the beginning of this section
— and get

A3a1
10 = i

3g3
AM

2

8f 5
π

∫
d4l

(2π)4

{
(~l · (~l + ~p ))

(−l0 + iγ)(l2µ −m2
π)((l + p)2

µ −m2
π)

+
2mπ

(l0 − mπ

2
− (~l+~p )2

2M
+ iγ)(−l0 + mπ

2
− (~l+~p )2

2M
+ iγ)

(~l · (~l + ~p ))

(l2µ −m2
π)((l + p)2

µ −m2
π)

}
.

(2.10)

Up to higher orders the first term gives

A
3a1(irr)
10 = −

(
3

4

)
g3

AM
2

4f 5
π

p2I0(~p
2) = −3

4

g3
AM

2 p

64f 5
π

, (2.11)

where the label (irr) indicates that this is only the irreducible piece of the diagram.
Analogous considerations for the second diagram of diagrams (a) of Fig. 2.3 give

A3a2
10 = i

g3
AM

2

8f 5
π

∫
d4l

(2π)4

{
(~l · (~l + ~p ))

(−l0 + iγ)(l2µ −m2
π)((l + p)2

µ −m2
π)

− 2mπ

(l0 + mπ

2
− (~l+~p )2

2M
+ iγ)(−l0 + mπ

2
− (~l+~p )2

2M
+ iγ)

(~l · (~l + ~p ))

(l2µ −m2
π)((l + p)2

µ −m2
π)

}
.

(2.12)

The leading piece of the first term gives

A
3a2(irr)
10 = −

(
1

4

)
g3

AM
2

4f 5
π

p2I0(~p
2) = −1

4

g3
AM

2 p

64f 5
π

. (2.13)

Thus we get

A
3a1(irr)+3a2(irr)+3b+3c+3d
10 =

g3
AM

2

4f 5
π

(
−3

4
− 1

4
− 2 + 3 + 0

)
p2I0(~p

2) = 0

A
3a1(irr)+3a2(irr)+3b+3c+3d
11 =

g3
AM

2

4f 5
π

( 0 + 0 − 2 + 3− 1) p2I0(~p
2) = 0 , (2.14)

where we repeat the results for A11 from above for comparison. Thus, in both channels
that contribute at the production threshold the sum of all irreducible loops that appear
at NLO cancels. On the other hand the remaining pieces in the expressions for A1a

10

exactly agree to the convolution of the leading rescattering contribution with the one
pion exchange, however, with the N̄Nππ WT vertex put on–shell. Thus the WT vertex
takes the value 2mπM/(2f 2

π)—cf. Eq. (2.6). The two–nucleon propagators in these
integrals have a unitarity cut and it is this cut contribution that should dominate the
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Figure 2.5: Illustration of the kind of topologies that corresponds to the irreducible
structures (denoted by the filled box on the propagator that gets canceled by the energy
dependence of the πN → πN vertex) that emerge from the convolution of the energy
dependent rescattering term with various contributions to the NN potential.

integral—in line with Weinberg’s original classification as reducible and irreducible. In
other words, these pieces are indeed dominated by the reducible piece#3.

Next we show that for all ingredients of the NN potential but the one–pion exchange
the choice of an on–shell N̄Nππ vertex is of sufficient accuracy. To this end we remind
the reader that the integral corresponding to the irreducible pieces of this first diagram
of Fig. 2.3 (a) had a structure like diagram (b) of that figure. This is illustrated in
part (a) of Fig. 2.5. At leading order in the NN potential there is besides the one pion
exchange also a contact interaction. The convolution of the rescattering diagram with
the WT vertex (diagram (a) in Fig. 2.2) with this part of the NN potential we can again
decompose into a reducible piece with the πN → πN vertex on–shell and an irreducible
piece that takes a structure of an integral with one nucleon less (see part (b) of Fig. 2.5);
this diagram, however, does not contribute below N4LO and is therefore irrelevant to
the order we are working. Thus, all that is to be kept is the convolution of the on–shell
rescattering contribution with the contact NN interaction — in line with the findings
of Ref. [74]. At NLO in the NN potential there are pion loops. Then the irreducible
piece of the convolution of the leading rescattering contribution with this piece results
in a two loop diagram (for a particular example see part (c) of Fig. 2.5) that does not
contribute up to N3LO. Thus, to the order we are working we can safely put the WT
vertex on–shell for the convolution of any piece of the NN potential with the leading
rescattering contribution.

What remains to be shown is that the cancellation of Eq. (2.14) survives (to the given
order) the convolution with the full wave functions. This generalization is straightfor-
ward. The corresponding diagrams are shown in Fig. 2.6 for the inclusion of the final
state interaction that we want to discuss in detail. The argument in case of the initial
state interaction is completely analogous and will not be given. Note that only the
irreducible parts of the diagrams (a) are to be included — the reducible pieces get ab-
sorbed into the wave functions. Let kµ denote the integration variable of the convolution
integral that we chose equal to the four momentum of one of the nucleons. As argued

#3In addition, the relative strength as well as sign in these terms equal to −3 for the pion exchange
in the final Tf = 0 channel compared to +1 for the pion exchange in the initial Ti = 1 channel equal
to the expectation values of the isospin parts of the one pion exchange in the relevant isospin channel,
since 〈TT3|~τ1 · ~τ2|TT3〉 = 2T (T + 1)− 3.
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Figure 2.6: Leading loop diagrams for NN → NNπ, convoluted with the NN T–matrix,
denoted by the ellipse. Here dashed lines denote pions and solid lines denote nucleons.
The filled box on the nucleon propagators of the diagrams (a) indicate that only the
irreducible piece is to be taken. The reducible part gets absorbed into the wave function.

in the previous paragraph, the integral will be dominated by energies close to the corre-
sponding on–shell energies. This sets the scale for k0 — especially we can safely assume
k0 ¿ p. This is all that is needed to neglect k0 in the nucleon propagator of the pion
loop integrals. On the other hand in these loops ~k only enters as ~p−~k. Thus, the terms
that enter in the convolution integrals with the final state interaction to the order we
are working are simply given by replacing ~p by ~p − ~k in Eqs. (2.8), (2.11), and (2.13).
This will obviously not change the relative strength of the individual diagrams — the
cancellation survives the convolution with the wave functions. We therefore conclude
that up to next–to–leading order all irreducible pion loops in the transition operator
cancel with the only effect that the WT vertex in the rescattering diagram is to be put
on–shell.

2.4 Effect of Delta isobar

Let us now turn to the contribution of Delta isobar to the s-wave pion production. As
was argued in Ref. [70], the inclusion of Delta isobar leads to an overestimate of the cross–
section for NN → dπ. Specifically, it was stated in this work that a very significant
contribution comes from processes where Delta in the intermediate state emits a p-
wave pion which is then rescattered on the nucleon in an s-wave. Such a process would
correspond, for instance, to diagram (H) of Fig. 2.4. However, as was already mentioned
in Section 2.2, it was shown in Ref. [30] that if one takes into account all the relevant
loops (which is done in a consistent counting scheme), their total contribution cancels
at this chiral order. Therefore up to NLO there is only one diagram that contains the
Delta isobar, namely diagram (c) of Fig. 2.2. The contribution of this diagram, however,
was shown to be small compared to that of diagram (a) of this figure [29, 60, 70]. In
particular, in Ref. [29] an approximation of the NN → N∆ transition potential by one
pion exchange was used. The contribution of the Delta to pp → dπ+ was found to
be negligible compared to the rescattering one and to be model dependent. The latter
result came due to the use of a static Delta propagator in the calculation of Ref. [29]
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+N→N∆ =

Figure 2.7: NN → N∆ transition potential.

— the matrix element appears in this case to be proportional to the wave function at
origin. However, the static approximation for the Delta appears not to be justified in this
case (see also the discussion concerning recoils in nucleon propagators in Section 5.4).
In addition, we found that there is an error in Ref. [29], namely the formulae (35–40)
that describe the Delta contribution are wrong. We performed calculations under the
same assumptions as in the work of Ref. [29], both in coordinate and momentum spaces.
The results of our two computations for Delta coincided with high precision, and were
different to those of Ref. [29]. We obtained a very large Delta contribution, which was
at the same time extremely model dependent. From the other hand, retaining the Delta
recoil in the corresponding propagator reduces the role of the Delta a lot, however the
Delta contribution is overestimated in this case by a factor about two compared to full
model NN → N∆ potentials. Use of full Delta propagator also suppresses the model
dependence since it leads to a better convergence of the integrals.

In what follows we calculate the Delta contribution to s-wave pion production using
model NN → N∆ transition potentials (see Section 2.5). These phenomenological
potentials include along with the one-pion exchange the ρ-meson exchange, which is
known to cut the pion contribution [5]. This suppresses somewhat the effect of Delta
isobar compared to the case when NN → N∆ transition matrix is given solely by the
one-pion exchange. However, for a consistent NLO calculation one needs as input the
NN → N∆ transition potential consistent with chiral symmetry, that is, along with
the one-pion exchange the corresponding contact term (which is modeled by ρ-meson
exchange in phenomenological potentials) at this order has to be included, as shown on
Fig. 2.7. The corresponding parameters are to be fixed from a fit to NN data. Such a
fit has not yet been performed. However, the model calculations (and also our hybrid
calculation) show that the contribution of the Delta isobar to the s-wave pion production
is only about 10 % in the amplitude [60].
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2.5 Results

Since the NLO loop diagrams discussed in this work contribute only to A10, we will
now discuss their impact on the reaction pp → dπ+ that is fully determined by that
amplitude. The cross section data for this reaction near threshold is traditionally pa-
rameterized as

σ = αη + βη3 , (2.15)

where Coulomb effects were neglected. To the reaction pn → dπ0 both α and β con-
tribute with only half their strength [86] due to isospin Clebsch-Gordan factor. Here
η denotes the outgoing pion momentum in units of its mass. The first term gives the
s–wave strength, whereas the second one denotes the p–wave contribution (as well as
some possible energy dependencies of the s–wave [31]).

Before comparison with experiment is possible, the transition operators are to be
convoluted with appropriate NN wave functions. The details of the formalism used
here can be found in Appendices B, E. To calculate the leading order (LO) rescattering
process (diagram (a) of Fig. 2.2) we use the standard expression for the WT term in
threshold kinematics — thus we put 3/2 mπ at the vertex [56, 69]. In addition we
also evaluate the direct contribution (diagram (b) of Fig. 2.2) which also contributes
to LO according to our counting. We performed two different calculations — namely
neglecting the Delta contribution (which is NLO) given by diagram (c) on Fig. 2.2 and
retaining it. For the NN distortions we use CD–Bonn potential [87] and Argonne AV18
potential [88] in the calculation without Delta and the CCF model [89], which treatsNN ,
N∆, and ∆∆ channels consistently, in the calculation with Delta. We also performed
the calculation with Delta using somewhat more simplistic Hannover model [90, 91].
The obtained values of α are listed in Table 2.1. It is also instructive to define for each
diagram and the corresponding transition operator T̂ the quantity IT as follows:

IT = AT e
−iδpp (2.16)

where AT is the convolution of T̂ with initial and final NN wave functions (see Ap-
pendix E.3), and δpp is the proton-proton scattering phase shift in the 3P1 partial wave
at the pion production threshold. The quantity IT is real and characterizes the magni-
tude of each diagram’s contribution. The values of IT we obtained are listed in Table 2.2.

Model αLO (3/2 mπ) αNLO (w/o Delta) αNLO (w. Delta)
CD Bonn 131 220 –

AV18 115 195 –
CCF 95 168 217

Hannover 105 187 248

Table 2.1: The values of α obtained in calculations with different parameters, µb.

We obtain for various models values of αLO ranged between 95 and 131 µb. These
values are consistent with those given in Ref. [69]. They are dominated by the rescat-
tering contribution. Note that the values of the rescattering contribution depend on
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Figure 2.8: Comparison of our results to experimental data for pp→ dπ+. The dashed
curve shows the LO results. The solid line shows the results at NLO. Both values
correspond to the calculations with the CD Bonn model. The data are from Refs. [86]
(open circles), [92] (filled circles) and [93] (filled squares). Blue diamond corresponds to
the value obtained from the width of pionic deuterium [94]. The hatched bar shows the
theoretical uncertainty as in the text.

the model only marginally, whereas the direct term is known to be quite model de-
pendent [69] as one directly sees from Table 2.2 and is small because of a cancellation
of individually sizable terms. Clearly such a cancellation can not be captured by the
counting scheme. Still, we point out that in an EFT scheme as used here all terms at a
given order have to be retained. Note that the direct term for the CD Bonn potential
is rather large comparing to the other ones; we could not elucidate the reason for this.

As outlined above, in order to include the NLO contributions all we need to do is to
replace the (3/2) mπ in the WT vertex by 2 mπ — or, stated differently, to scale the given
results for αWT, LO by a factor (4/3)2. The corresponding values for the rescattering
piece that we get at NLO — αWT, NLO — range from 166 to 191 µb, whereas the full
result including the direct term (without the Delta contribution) ranges from 168 to 220
µb. The contribution of the Delta isobar to the s-wave pion production appears to be at
the level of 10–15 % of the WT contribution in agreement with previous works [60], and
acts constructively, which improves the description of experimental data in case of the
Hannover and CCF models. The resulting values of αNLO with the Delta contribution
included are between 217 and 248 µb.
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Model Rescattering Direct Delta
CD Bonn −22.11 −2.35 –

AV18 −21.60 −1.47 –
CCF −21.12 −0.26 −2.95

Hannover −22.67 +0.12 −3.45

Table 2.2: The values of IT obtained in calculations with different parameters.

In Fig. 2.8 we compare the results of our calculation for α to the experimental data#4.
One clearly sees that going from LO to NLO improves the description of the data. Note
also that even a change by about a factor of 2 in the cross section is in line with what
is expected from the counting: after all the expansion parameter for the amplitude is
χπ = 0.4. At the same time the relatively large expansion parameter implies a sizable
theoretical uncertainty in αNLO that we estimate to be of order of 2χ2

π ∼ 30 %. Thus,
a calculation to N2LO is clearly called for.

a) b)

Figure 2.9: Tree level diagrams that contribute at leading (a) and next–to–leading
order (b) to p-wave NN → NNπ. The double line denotes a ∆–isobar. Again, in
both diagrams with the one–pion exchange only one part of the NN and NN → N∆
potential is shown.

We also performed a calculation for p-wave pion production close to threshold up
to NLO. The diagrams that enter the p-wave production amplitude near threshold are
shown on Fig. 2.9. We calculated the parameter β in Eq. (2.15), to be precise—its part
stemming from the p-wave diagrams on Fig. 2.9 (the parts that correspond to the energy
dependence of α are of higher orders). Note that loop diagrams start to contribute to
p-wave pion production only at N3LO [22]. Calculations are performed for CCF model.
Taking only nucleons into account results in βN = 297 µb, which largely underestimates
the value of β — the experimental values are β = 790 µb [93] and β = 1220 µb [92].
Taking one pion exchange as an approximate NN → N∆ transition matrix, one gets

#4Note that the data from pn → dπ0 [86] are considerably lower than those for pp → dπ+ [92, 93]. It
appears unclear whether this discrepancy is due to systematic uncertainties (not shown in the figure)
or due to other sources [95].
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Figure 2.10: Comparison of our results to experimental data for pp→ dπ+, including s-
and p-wave pion production as described in the text. The solid line shows the results at
NLO, calculated with NN and N∆ wave functions from CCF model. The data are as
on Fig. 2.8 besides the pionic deuterium datum absent here. Theoretical uncertainty is
shown as the filled stripe.

β1π = 1780 µb, which is far too large. The total result, calculated taking Delta into
account and using full model wave functions, is

βNLO = 1020 µb. (2.17)

This number agrees with both experimental numbers within the uncertainty of 30% that
we assign also to this result. The results for the total cross–section for pp → dπ+ are
shown in Fig. 2.10. Note that we assign the theoretical uncertainty of 2χ2

π ∼ 30 % also
to βNLO. The observed agreement with experimental data is quite good.

In the case of p-wave production Delta gives a very important contribution, which
corresponds to the 1D2(NN) → 5S2(N∆) transition. Two things should be mentioned
concerning this contribution of Delta which is of the same size as the nucleon contribu-
tion. Firstly, comparing to the case of the s-wave production, we see that at threshold
allowed NN → N∆ transitions that contribute are 3P1 → 3P1,

5P1,
5F1 for s-wave

pions and 1S0 → 5D0,
1D2 → 5S2,

5D2,
3D2 for p-wave pions. The N∆ intermediate

state can be in an S-wave in the latter case. S-wave is not suppressed by the centrifu-
gal barrier, and the energy of N∆ system is under threshold, which means that low
momenta in the convolution are the most important. Therefore the 1D2 → 5S2 contri-
bution will be large compared to other Delta contributions, which is indeed the case.
Secondly, the Delta contribution is of NLO in our counting, since we assign M∆−M ∼ p.
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Therefore the Delta propagator gives us an additional factor of mπ/p = χπ compared
to nucleon. However the numerical result for the Delta contribution to p-wave pion
production is large. In fact, the quantity which enters the Delta propagator in this case
is M∆ −M −mπ ∼ mπ. Clearly, the counting can not account for such cancellations in
general.

2.6 Summary of Chapter 2

We have shown that the proper set of diagrams that contributes to the transition op-
erator for the reaction NN → NNπ at NLO in chiral perturbation theory is given by
the diagrams of Fig. 2.2, however, with the N̄Nππ vertex in diagram (a) put on–shell.
To get to realistic results these operators are to be convoluted with proper NN wave
functions. The irreducible chiral loops that arise at this order exactly cancel those terms
that arise from the off–shell parts of the WT vertex. This cancellation is required for
formal consistency of the whole scheme, since the mentioned diagrams show a linear
growth with respect to the outgoing NN momentum. Such a growth would have led
to a large sensitivity to the NN wave function, when the convolution with the final
state interaction is calculated. This, however, would have been in conflict with general
arguments.

This at the same time also explains, why the sum of all loops has to vanish at
next–to–leading order for the reaction pp → ppπ0: in this channel there is no leading
rescattering contribution. Thus, there is also nothing that could cancel the linear diver-
gence discussed above. The consistency of the formalism therefore demands the sum of
all loops to vanish.

As a result of our findings we can conjecture a general recipe on how to deal with
pion reactions in a nuclear environment in the presence of time derivatives in vertices:
one has to calculate all diagrams up to a given order, including those that are formally
reducible. Then the energy dependence in the vertices is used to cancel one of the nucleon
propagators. This produces an irreducible piece that is to be part of the transition
operator as well as a reducible piece, where, however, the energy dependence of the
vertices is replaced by the corresponding on–shell value#5.

This new rule has significant impact on the role of isoscalar rescattering in NN →
NNπ (diagram (a) of Fig. 2.2, but with the leading isoscalar interaction used for
πN → πN). Empirically the isoscalar πN scattering length is known to be very small.
Theoretically it turned out that this smallness is a consequence of an efficient can-
cellation amongst individually large terms [97]. Due to the energy dependence of the
πN → πN operators, however, when evaluated in the kinematics relevant for pion pro-
duction in NN collision this cancellation is much less efficient leading to a significant
contribution from isoscalar rescattering [28, 71]. If, on the other hand, the above rule
is used, isoscalar rescattering enters with the strength of the very small isoscalar πN
scattering length and thus would give a negligible contribution.

We have demonstrated that the net effect of the inclusion of the NLO loops, shown
in Fig. 2.3, is to enhance the leading rescattering amplitude by a factor of 4/3, bringing

#5Note that in the presence of quadratic time derivatives at individual vertices or the simultaneous
appearance of several time derivatives in one diagram, additional vertices are to be included [96].
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its contribution to the cross section for pp→ dπ+ close to the experimental value.
The next steps will be to evaluate the NN → NNπ amplitudes to N2LO for both s–

and p–wave pions for all possible amplitudes. At this order two counterterms enter for
the pion s–waves and one for the pion p–waves both accompanied by S–wave nucleons in
the final state. To this order p–wave pions together with P–wave nucleons are parameter
free predictions. On the other hand there are in total more than 40 observables#6

measured for the reaction channels pp→ ppπ0 [98], pp→ pnπ+ [99], pp→ dπ+ [100] and
pn→ ppπ− [101, 102]. Up to now only one phenomenological calculation was compared
to this large amount of data [22, 66] and it was found that all charged channels are
well described, whereas there are significant discrepancies for the neutral pions. It will
therefore be of strong interest to see if the new structures that emerge from the chiral
Lagrangian are able to cure these discrepancies.

Once the described channels are analyzed within ChPT one should move ahead to
consistently investigate the isospin violating observables measured recently, namely the
forward–backward asymmetry in pn → dπ0 [21] as well as the total cross section for
dd→ απ0 [53]. First steps in this direction were taken in Refs. [54, 55].

Another application of the developed counting scheme is the calculation of dispersive
and absorptive corrections to the pion–deuteron scattering length. These corrections
are directly related to the reaction NN → dπ, and we can directly apply the developed
formalism to the calculation of these corrections. We address this issue in Chapter 5.

#6This large number is achieved by fully exploiting the five–dimensional phase space [98].



Chapter 3

Pion Photoproduction off the
Deuteron: γd → π+nn

In this chapter we present a complete calculation within ChPT up to order χ5/2 for the
reaction γd→ π+nn, where the expansion parameter for the chiral expansion is denoted
by χ = mπ/M .

3.1 Introduction

The calculation of the reaction γd → π+nn is of high theoretical interest, because it
provides an important test for our understanding of those aspects of πNN dynamics
that are relevant for pion production reactions on the deuteron. That understand-
ing is a prerequisite for the reliable extraction of the pion photoproduction amplitude
on the neutron, commonly done from corresponding deuteron data, but also for the
determination of the nn scattering length from π+ production data discussed below.
Data for the total cross–section on the channel γd → π+nn exist for excess energies
Q =

√
s− (2M +mπ) ≤ 20 MeV [103], which allows us to verify our results.

In view of the high accuracy of the data and also because of the high reliability
required for the extraction of the above mentioned quantities involving neutrons it is
now time to critically investigate (and avoid whenever possible) the approximations
traditionally used in pion reactions on few–nucleon systems. Here we will focus on
approximations to the pion rescattering contribution as they are commonly used in
both effective field theory calculations (see Ref. [104] and references therein) as well
as phenomenological calculations (see Ref. [105] and references therein). Especially for
the effective field theory calculations one might wonder how recoil corrections could be
an issue, for the formalism allows for a rigorous expansion in mπ/M that should build
up the recoil corrections perturbatively. However, it was stressed recently [32] that
the πNN threshold introduces non–analyticities in the transition operators that call
for special care: instead of being suppressed by one power in mπ/M compared to the
formally leading rescattering contributions (static term), as one might expect naively,
the nucleon recoil terms turn out to scale as

√
mπ/M relative to the static term. The

only publication we are aware of, where the recoil corrections were treated properly for
the near threshold region, is a phenomenological calculation for γd → π0d presented

39
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(d2)(b2)

(b1) (c1) (d1)

(c2)

(a1)

(a2)

Figure 3.1: Diagrams for γd → π+nn. Shown are one–body terms
(
diagrams (a) and

(b)
)
, as well as the corresponding rescattering contribution (c)—all without and with

final state interaction. The need to include the NN interaction non–perturbatively
implies also the inclusion of diagrams with the two nucleon pair interacting, while a
pion is in flight—this class is shown in diagrams (d). Solid straight, wiggly and dashed
lines denote nucleons, photons and pions, in order. Filled squares and ellipses stand for
the various vertices, the hatched area shows the deuteron wave function and the filled
circle denotes the nn scattering amplitude. Crossed terms (where the external lines are
interchanged) are not shown explicitly. The tree level γp → π+n vertex, as it appears
in diagrams (a1) and (a2), contributes at leading order (order χ0), and order χ1 and χ2,
depending on the one–body operator used. Loops start to contribute at order χ2, the
corresponding recoil corrections enter at order χ5/2.

in Ref. [106] (so far most phenomenological studies concentrated on the ∆–region, cf.
Ref. [24] and references therein).

Recently the effect of the nucleon recoil on rescattering processes of pions in πd
scattering was studied [32, 107, 108] (for previous investigations on the role of the
nucleon recoil see Refs. [109–111]). In particular, in Ref. [32] it was demonstrated
that, at least for the πd system, the nucleon recoil can be neglected as long as the
two–nucleon intermediate state is Pauli forbidden, while the pion is in flight. Thus,
in this case the static approximation for the pion exchange is justified. However, as
soon as the two–nucleon state is Pauli allowed, the nucleon recoil has to be included.
In this case it turned out that the whole rescattering contribution (i.e. static term +
recoil corrections) practically canceled completely. It should be stressed that for πd
elastic scattering the Pauli allowed two–nucleon intermediate states are suppressed by
chiral symmetry. We will study the reaction γd → π+nn with special emphasis on the
abovementioned recoil corrections. In this system the selection rules are such that the
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Figure 3.2: Kinematical variables for γd → π+nn. The relative neutron–neutron mo-
mentum is defined as ~pr = 1

2
(~p1 − ~p2).

S-wave two–nucleon intermediate state during the pion rescattering process is allowed
by the Pauli principle. In addition, once the strength of the one–body operator is fixed
to the reaction γp→ π+n, no free parameters occur in the calculation for γd→ π+nn to
the order where the leading recoil corrections enter and thus we can compare our results
to experimental data directly. At the same time we get a better understanding of the
few–body corrections to γd → π0pn. This reaction will eventually allow one to extract
the amplitude of γn → π0n complementary to using γd → π0d discussed in Ref. [112].
Note that up to now no calculation for γd→ π+nn exists where the nucleon recoil was
properly included.

Before going into the details some comments are necessary regarding the relevant
scales of the problem. In the near threshold regime of interest here (excess energies
of at most 20 MeV above pion production threshold) the outgoing pion momenta are
small compared even to the pion mass. Thus, in addition to the conventional expansion
parameters of ChPT mπ/Λχ and qγ/Λχ, where Λχ denotes the chiral symmetry breaking
scale of order of the nucleon mass (in what follows we assign Λχ = M), and qγ denotes
the photon momentum in the center–of–mass system which is of order of the pion mass,
we can also regard kπ/mπ as small, where kπ denotes the outgoing pion momentum (see
Fig. 3.2 for the definition of kinematical variables). In what follows we will perform an
expansion in two parameters, namely

χm = mπ/M and χQ = kπ/mπ .

Obviously, the value of the second parameter depends on the excess energy. The energy
regime of interest to us are excess energies up to 20 MeV. The maximum value of
χQ, χmax

Q =
√

2Q/mπ, possible at maximum energy is thus about 1/2. Since this is
numerically close to

√
χm we use the following assignment for the expansion parameter

χ ∼ χm ∼ χ2
Q . (3.1)

In this chapter we will concentrate on total cross sections only and thus—up to one
important exception—χQ appears with even powers only. In table 3.1 we show the
powers of χm and χQ that appear in the amplitude as well as the corresponding order
χ for the total cross section. The pertinent diagrams will be discussed in detail below.
Note that the diagrams with πN rescattering (see diagrams (b), (c) and (d) in Fig. 3.1)
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order s–wave p–wave d–wave

1 χ0
m

χ1 χ1
m, χ

2
Q χQ

χ2 χ2
m, χ

2
Qχm, χ

4
Q χQχm χ2

Q

χ5/2 χ2
mχQ, χ

5/2
m , χ

1/2
m χ4

Q

Table 3.1: Pattern of appearance of the expansion parameters χm = mπ/M and χQ =
kπ/mπ on the amplitude level for a given order in χ for the total cross section. The
first column shows the order parameter χ, whereas the other three columns show the
order assignments for the amplitudes of the various pion partial waves of relevance.
Note, as we here consider the total cross section only, different partial waves do not
interfere—this was used in the order assignment.

contribute at order χ2
m as well as at χ2

mχQ, χ
5/2
m and at χ

1/2
m χ4

Q. The origin of the non–
integer power of χ are the two–body πN and three–body πNN singularities. This issue
is discussed in detail in section 3.3.

The small pion momentum in the exit channel leads to a suppression of higher pion
partial waves. As can be seen from table 3.1 we need to consider at most pion d–waves
(here and in what follows we denote pion partial waves by small letters and NN partial
waves by capital letters). On the other hand, at excess energies of 20 MeV the maximum
two nucleon momentum in units of the pion mass is of order 1 and thus there is a priori
no suppression of higher NN partial waves. However, since the NN phase shifts are
only sizable for S- and P -waves at the small energies of relevance, we only include the
NN final state interaction of those partial waves.

To summarize the scope of this work, it aims to improve the existing calculations for
the reaction γd→ π+nn in the following important aspects:

• A first complete ChPT calculation for the reaction γd→ π+nn up to order χ5/2 is
presented. At this order loops contribute and the non–perturbative character of
the NN interaction calls for the use of interacting two nucleon Green’s functions
(leading to up to 3 loop diagrams as shown in diagram (d2) of Fig. 3.1).

• The leading nucleon recoil is included without approximation. It enters at or-
der χ5/2.

• As always in effective field theory studies an estimation of the accuracy of the
calculation can be given. A conservative estimate points at an accuracy of 2 %
for the few–body corrections to the amplitude near threshold which is of the same
order as the uncertainty of the input quantity E0+—the invariant electric dipole
amplitude for γp→ π+n at threshold. Adding the two uncertainties in quadrature
we arrive at a total uncertainty of 3 % for the full transition operator. In this
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Figure 3.3: Typical diagrams for πd scattering. Shown are one–body terms
(
diagram

(a) and (b), as well as the corresponding rescattering contribution (c)
)
. Crossed terms

(where the external pion lines are interchanged) are not shown explicitly.

chapter we use phenomenological NN wave functions and thus we are not in the
position to estimate the uncertainty of the complete matrix elements (see the
corresponding discussion in Section 3.6). We postpone the discussion of this issue
until Chapter 4.

• For the first time pion p– and d–waves as well as the final state interaction in the
NN P–waves are included in a calculation for the near threshold regime. Note
that the significance of NN P–waves even at photon energies below 20 MeV was
established long ago [23], however, so far they were only considered as plane waves
in the impulse term (thus only through diagram (a1) of Fig. 3.1).

This chapter is structured as follows: in Section 3.2 we briefly review the central
findings of Ref. [32]. The three–body dynamics is discussed in detail in Section 3.3. The
same formalism as described for πd scattering in Section 3.2 is applied to the reaction
γd → π+nn in Section 3.4. In Section 3.5 we present the results. We summarize
in Section 3.6. The details of the calculation for the various diagrams are given in
Appendix E.

3.2 Remarks on the πd system

In this section we briefly review the findings of Ref. [32]. The relevant diagrams for
πd scattering are shown in Fig. 3.3. Diagram (a) denotes the tree level one–body con-
tribution, diagram (b) the loop correction to the one–body piece and diagram (c) the
rescattering term. It should be clear that the Pauli principle calls for a consistent si-
multaneous treatment of (b) and (c), for an interchange of the two nucleons while the
pion is in flight (this intermediate state is marked by the perpendicular line in Fig. 3.3)
transforms one diagram into the other.

The calculations of Ref. [32] were based on the effective πN vertex,

V̂ ba
πN = δbag+ +

i√
2
εabcτ cg− , (3.2)
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where a, b, and c are the Cartesian pion indices. We note that this vertex leads, up to
corrections of O(mπ/M), to identical results for the πd scattering length as the leading
order chirally symmetric πN interaction (the Weinberg–Tomozawa term) if we choose
g− = −2

√
2mπM/(2f 2

π) and g+ = 0.
The main issue of Ref. [32] was to properly isolate the single nucleon contribution (the

one that would be measured in πN scattering) from the few body corrections. It is clear
that part of diagram (b) contributes to the former and part to the latter. As outlined in
Ref. [32] the proper prescription to separate these two pieces is to add to the tree level
scattering (diagram (a)) the single nucleon one–loop contribution on the free nucleon
at rest—this sum is the expression for the πN scattering length, a(1−body). The same
loop needs to be subtracted from the full contribution depicted in diagram (b). This
procedure at the same time renders the expression for the loop finite. This difference is
a true two–nucleon operator. To obtain more symmetric, easier to interpret results we
subtracted from the rescattering piece the expression for the static exchange, i.e. the
contribution from diagram (c) of Fig. 3.3 calculated in the static limit. In order to leave

the final result unchanged, this contribution needs to be added as a
(st)
LO (and a

(st)
NLO) to

the expression for the πd scattering length. Thus, the full result for the πd scattering
length reads

a = a(1−body) + a
(st)
LO + a(rec) + a

(st)
NLO , (3.3)

where the individual contributions for the static (st), the recoil (rec) and the NLO
corrections to the static term are given by

a
(st)
LO =(g2

+−g2
−)I0 ; a(rec)=g2

+I++g2
−I− ; a

(st)
NLO'−

mπ

M
(g2

+−g2
−)I0 . (3.4)

Here the terms proportional to g2
+ (g2

−) correspond to isoscalar (isovector) rescattering
and thus to Pauli allowed (Pauli blocked) intermediate NN state. The integrals denoted
by I0 and I± are [32]:

I0 = ξ

∫
d3p d3qΨ(~p− ~q )†

1

~q 2
Ψ(~p) , (3.5)

I± =
ξ

2

∫
d3p d3q |Ψ(~p )±Ψ(~p− ~q )|2

(
1

~q 2 + ρ
− 1

~q 2 + ρ̃

)
, (3.6)

where ξ = [64π4M2 (1 +mπ/(2M))]−1 , ρ = ω(2ε+(~p 2 +(~p−~q )2)/M), and ρ̃ = ω~q 2/M ,
with ε and ω for the deuteron binding energy and the pion energy, respectively, and Ψ
for the deuteron wave function. The integrals I0, I± were evaluated numerically using
the deuteron wave functions from the CD Bonn potential [87]:

I+ = −0.88 I0 , I− = −0.19 I0 .

These numbers clearly reflect the claim made above: for the πd system the isovector
πN interaction, proportional to g−, leads to a Pauli blocked intermediate state and
numerically we find that the recoil corrections lead only to a 20% correction (Integral
I− is numerically small, I− ¿ I0.). When the NLO pieces mentioned above are added,
the correction resulting from recoil and NLO terms together is only 4% and thus the
static pion exchange is a good approximation for the total rescattering contribution. On
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O1 O2

~kπ

~pr −
~kπ/2

−~pr −
~kπ/2

Figure 3.4: Notation used in the discussion of the πNN intermediate state. The ellipses
labeled O1 and O2 denote the transition operators for the various possible reactions;
e.g. for γd → π+nn the operators O1 and O2 refer to γd → π+nn and π+nn → π+nn,
respectively.

the other hand, the isoscalar πN interaction leads to a Pauli allowed intermediate state
and in this case the recoil corrections cancel 90% of the static exchange (I+ is large and
negative, (I0 + I+) ¿ I0). The inclusion of the NLO piece in this case further reduces
the total rescattering contribution down to 3 % of the static term. Therefore, in this
case estimating the total rescattering contribution by the static exchange only is a very
poor approximation. In addition, in this case one has to include the NN interaction in
the intermediate state, which might change the picture [110].

3.3 The role of the πNN cuts

In this section we discuss the role of the three–nucleon cuts in more general terms. All
arguments presented for the three–body dynamics apply to pion–nuclear reactions in
general (as, e.g., πd scattering), however, in this section we will use only the reaction
γd→ π+nn as illustrative example.

Typical diagrams that contain a πNN intermediate state (e.g., diagram (c2) of
Fig. 3.1 — cf. the corresponding Eq. (E.18) in Appendix E), can be cast into the
following form by a proper choice of variables (and dropping terms of higher order in
mπ/M)

IπNN(Q) =

∫
dkπk

2
π dprp

2
r

(2π)6

f(k2
π, p

2
r)

Q− k2
π/(2mπ)− p2

r/M + iγ
, (3.7)

where kπ denotes the pion momentum and pr denotes the relative momentum of the
two nucleons while the pion is in flight (cf. Fig. 3.4), and f(k2

π, p
2
r) is a function that is

supposed to fall off at momenta of order of mπ. Using the static approximation means to
expand the denominator of the integral in Eq. (3.7) in powers of mπ/M before evaluation
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of the integral. Thus, we get in the static approximation#1

I
(static)
πNN (Q) =

∫
dkπk

2
π dprp

2
r

(2π)6

f(k2
π, p

2
r)

Q− k2
π/(2mπ) + iγ

+O
(mπ

M

)
. (3.8)

We will demonstrate now analytically (and in Section 3.5 numerically) that this proce-
dure misses an important contribution to IπNN .

Above the pion production threshold the denominator in Eq. (3.7) has a three–
body singularity that leads to an imaginary part. This imaginary part of IπNN can be
calculated by the replacement

(Q− k2
π/(2mπ)− p2

r/M + iγ)−1 → −iπδ(Q− k2
π/(2mπ)− p2

r/M) .

Thus we find

I
(cut)
πNN(Q) = −iπmπ

∫
dprp

2
r

(2π)6
f(2mπ(Q− p2

r/M), p2
r)

√
2mπ(Q− p2

r/M) . (3.9)

From this formula we see that the imaginary parts of the pion loops in diagrams (b2)
and (c2) of Fig. 3.1 are finite and lead to a strongly energy–dependent contribution.
As long as the momentum dependence of the function f can be neglected, this part
of the amplitude grows like Q2, i.e. like the three–body phase space. These are the
contributions at order χ

1/2
m χ4

Q given in Table 3.1. Note that the corresponding amplitudes
without final state interaction ((b1) and (c1) of Fig. 3.1) do not have a three–body cut
but only a two–body singularity. Thus their imaginary parts scale as χ2

mχQ.

On the other hand, the unitarity cut contribution of I
(static)
πNN reads

I
(cut, static)
πNN (Q) = −iπmπ

√
2mπQ

∫
dprp

2
r

(2π)6
f(2mπQ, p

2
r) .

The most remarkable difference between I
(cut)
πNN and I

(cut,static)
πNN is that in contrast to the

former the latter scales as
√
Q, i.e. like the two body phase space for all diagrams (even

for those with final state interaction) and therefore shows an energy dependence that is
completely wrong—and at variance even with perturbative three–body unitarity.

For values of pr with Q > p2
r/M the integral I

(cut)
πNN(Q) (cf. Eq. (3.9)) contributes to

the imaginary part of IπNN(Q) (cf. Eq. (3.7)). To evaluate the contribution of the cut
to the real part, the square root needs to be analytically continued to negative values
of its argument through

√
2mπ(Q− p2

r/M) → i
√

2mπ(p2
r/M −Q) .

To demonstrate explicitly the impact of this, let us consider the case Q = 0. Then we
get

I
(cut)
πNN(0) = πmπ

√
2mπ

M

∫
dprp

2
r

(2π)6
f(−2mπp

2
r/M, p2

r)pr . (3.10)

#1Note, we here use the phrase ’static approximation’ in a quite broad sense in that we also allow
for the inclusion of correction terms analytic in χ. In phenomenological studies those corrections are
normally dropped.
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The corresponding expression for I
(cut, static)
πNN (0) vanishes. On the other hand, the ex-

pression for the leading static approximation (cf. Eq. (3.8)) gives at threshold

I
(static)
πNN (0) = −2mπ

∫
dprp

2
rdkπ

(2π)6
f(k2

π, p
2
r) . (3.11)

The static approximation Eq. (3.11) only acquires corrections analytic in (mπ/M) and
thus misses the contribution of Eq. (3.10). In fact, Eq. (3.10) corresponds to the thresh-
old value of the mentioned non–analytic contribution from the three–body intermediate
state that is dropped in the static approximation—the extension to arbitrary values of
Q is straightforward. However, the contribution from I

(cut)
πNN is significant as one can

see from a naive dimensional analysis where all momenta—even those in the integral
measure—are replaced by their typical values:

I
(cut)
πNN ∼ −

√
mπ

M
I

(static)
πNN , (3.12)

as claimed in the introduction to this chapter. Therefore, in general the static approx-
imation is to be avoided! As one can see, the contributions from the nucleon recoil
through the three–body singularities to both the real and the imaginary part of the
amplitude appear to be down by

√
χ compared to the leading loop contribution (the

static piece). To be more explicit they contribute at orders χ
5/2
m and χ

1/2
m χ4

Q (cf. table
3.1). On the other hand, if we expand the propagator in Eq. (3.7) before the integration,
we only get terms analytic in the pion mass (order χ corrections to the static piece) and
miss the most prominent correction.

Now we are in the position to discuss in more detail the conjecture presented in
Ref. [32] as well as in the previous section, namely that in general for all those diagrams,
where the S-wave two–nucleon intermediate state that appears while the pion is in flight
is forbidden by the Pauli principle, the various recoil corrections largely cancel, while in
case of Pauli allowed S-wave intermediate states they add coherently. In the latter case
the net effect of the rescattering diagrams was claimed to be small due to a destructive
interference between the recoil corrections and the leading rescattering contribution
(the static term—cf. Eq. (3.8)). We will now discuss the two cases in the light of the
discussion above. The essential observation is that the recoil corrections are the analytic
continuation of the imaginary parts related to on–shell πNN intermediate states.

Pauli forbidden intermediate states: in this case the imaginary contributions stem-
ming from the three-body unitarity cut in diagrams of the type of (b2) and those from
the type of (c2) of Fig. 3.1 need to cancel exactly, for the corresponding πNN state is
forbidden. As a consequence, there will also be a cancellation for the analytic contin-
uations (see Eq. (3.9)), i.e. for the corresponding principal value integrals, and thus
the recoil corrections necessarily cancel to a large degree. Since this statement is based
solely on the Pauli principle it must hold for all reactions.

Pauli allowed intermediate states: contrary to the first option in this case the cor-
responding unitarity cut parts of the diagrams (b2) and (c2) of Fig. 3.1 add coherently
and, as above, the same is to be true for their analytic continuation. It is not possible to
claim in general that the recoil contribution from the principal value integrals completely
cancels the whole static term. However, as illustrated by the estimate of Eq. (3.12), the
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=
(b)(a) (c)

+ + + ...+

Figure 3.5: Diagrams that contribute to the one–body production operator in diagrams
(a1) and (a2) of Fig. 3.1. Only tree level diagrams that contribute to γp→ π+n up to
order χ2 are shown. The dots denote loops that contribute to the s–wave amplitude at
oder χ2 as those shown in Fig. 3.6 (b) and (c).

recoil corrections tend to be of the order of magnitude of the static term and tend to
interfere destructively with it. In addition, there might be significant contributions from
intermediate NN interaction [110]. Here we refer to the discussion in Section 3.5 and
to Fig. 3.11.

As we discussed in the previous section, the leading operator for πN scattering acting
on a deuteron leads to a πNN state, where the S–wave is forbidden for the NN–pair by
the Pauli principle. On the other hand, as will be outlined below, the leading operator
for γN → πN , when acting on a deuteron field, leads to a πNN state, where the NN–
pair is allowed to be in an S–wave. Thus, in the reactions πd → πd, πd → γNN ,
and γd→ π0d the static approximation indeed accounts for a significant fraction of the
few–body corrections, whereas in γd → π+nn and γd → γd, when evaluated near the
pion threshold, the static approximation is expected to work quite poorly. References
for the corresponding calculations are given in the introduction to this chapter.

3.4 The reaction γd → π+nn

We will start with a discussion of the one–body contributions to be used in the diagrams
of type (a1) and (a2) of Fig. 3.1.

At threshold the πγNN vertex at leading order (χ0
m) and at next–to–leading order

(χ1
m) is given by the so–called Kroll–Ruderman (KR) term [113] and its recoil correc-

tion#2,

V̂ KR
πγNN = iegπN

(
1− ωπ

2M

)
(~εγ · ~σ) ε3abτ b , (3.13)

where ~εγ denotes the photon polarization and ωπ is the energy of the outgoing pion.
The corresponding diagram is shown as diagram (a) in Fig. 3.5. Note that we use
gπN = 13.4 in the calculation and the charge e is normalized such that the fine structure
constant is given as e2/(4π) = α = 1/137. This vertex contributes to the one–nucleon
operator (impulse term) as shown in diagram (a1) and (a2) of Fig. 3.1 and also provides

#2A list of the vertices relevant for chiral perturbation theory calculations can be found in Ref. [11];
however, in contrast to that reference we use the spinor normalization ūu = 2M , and this factor 2M is
attributed to vertices and propagators (see Appendix A). In addition we used the Goldberger–Treiman
relation to replace gA/fπ by gπN/M .
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(a) (c)(b)

Figure 3.6: Typical pion loops that contribute to γp→ π+n. Crossed terms for diagrams
(a) and (b) are not shown explicitly.

the production vertex for the virtual pion to be rescattered. As the πγNN vertex is
both spin and isospin dependent, now, in contrast to πd scattering, for the rescattering
contributions the two–nucleon intermediate state that occurs while the pion is in flight
is allowed by the Pauli principle to be in an S–wave.

According to Table 3.1 at order χ we also need to consider the leading correction
in χ2

Q to the s–wave as well as the leading p–wave contribution which is of order of
χQ. Both are provided by the diagram where the photon couples to the pion in flight
corresponding to diagram (b) of Fig. 3.5. The corresponding expression for the effective
πγNN vertex reads

V̂
(b)
πγNN = −iegπN~σ ·

(
~kπ − ~qγ

) ~εγ · ~kπ

ωπ|~qγ | − ~kπ · ~qγ
ε3abτ b , (3.14)

where ωπ denotes the energy of the outgoing pion. This vertex contributes to the leading
p–waves (order χQ for the amplitude — order χ2

Q = χ for the total cross section), the
leading energy dependence of the s–wave (order χ2

Q for the amplitude as well as the cross
section, for this term can interfere with the contribution of order χ0), and to the leading
d–waves (order χ2

Q for the amplitude and thus order χ4
Q = χ2 for the cross section).

At order χ2
m pion loops start to contribute to the s–wave part of the γp → π+n

amplitude (see Fig. 3.6) and thus to the reaction γd→ π+nn. The only additional vertex
needed for the evaluation of these loops is given in Eq. (3.2) with g− = −2

√
2mπM/(2f 2

π)
and g+ = 0. The imaginary part of diagram (a) in Fig. 3.6 contributes at χ2

mχQ whereas
the imaginary part of diagram (b) starts to contribute only at higher order (χ2

mχ
3
Q) and

is thus not explicitly included in the calculation. In contrast to the imaginary parts
the real parts of some of those pion loops on a single nucleon are divergent and need
to be regularized (e.g. diagram (c) of Fig. 3.6) #3. In the calculation of the reaction
γd→ π+nn we use a prescription similar to that used for πd scattering, as described in
the previous section. In practice this means to replace the expression of Eq. (3.13) by

V̂eff = iκE0+(~εγ · ~σ)ε3abτ b , (3.15)

where κ = 4π
√

2 (mπ +M), and E0+ is the electric dipole amplitude. The experimental
value of E0+ from the reaction γp→ π+n is [116]:

E0+ = (28.06± 0.27± 0.45)× 10−3m−1
π .

#3For a complete discussion of all relevant loops we refer to Refs. [114, 115].
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This value coincides within errors with the result of ChPT up to order χ3
m [33]:

E0+ = (28.2± 0.6)× 10−3m−1
π . (3.16)

Although this calculation was performed to higher order than what we aim at here,
we will use the latter value as input quantity for the threshold value of E0+ since the
contributions of order χ3

m are of the order of the assigned uncertainty.
It is straightforward to show that the s–wave contribution derived from Eq. (3.14)

has the same operator structure as Eq. (3.15) and we may simply include its effect by
replacing E0+ in Eq. (3.15) by E0+(k2

π) defined up to order χ4
Q through

E0+(k2
π) = E0+ + E ′

0+

k2
π

m2
π

+ E ′′
0+

k4
π

m4
π

. (3.17)

The leading contribution to both coefficients E ′
0+ and E ′′

0+ can be calculated directly
from Eq. (3.14). At next-to-leading order the energy dependence of the γπNN vertex
enters as well (cf. Eq. (3.13)). Especially, we find

E ′
0+ = −egπN

3κ

(
1 +

mπ

M

)
= −11.3× 10−3m−1

π ,

where |~qγ| that enters Eq. (3.14) was evaluated in the center of mass system of the
reaction γd → π+nn at threshold, and its value is |~qγ| = mπ(1 −mπ/(8M) + O(χ2)).
The slope parameter E ′

0+ is calculated up to its leading and next–to–leading order.
However, we assign an uncertainty of 10 % to this quantity, for higher order corrections
are known to be enhanced by the ∆ resonance [117]. The given value for E ′

0+ compares
well to that from the dispersive analysis of the Mainz group [118] and is consistent with
that used as input in Ref. [116] to extract E0+ from the data.

At order χ2 for our reaction, additional diagrams contribute to the transition γp→
π+n where the photon gets absorbed on the nucleon, e.g. through the magnetic moment,
followed by pion emission (diagrams (c) in Fig. 3.5). Thus, they are accompanied by a
one–nucleon intermediate state. These diagrams, when used as the one–body operator in
diagram (a2) of Fig. 3.1, acquire a two–nucleon cut that leads to an imaginary amplitude
even at threshold due to the kinematically allowed transition γd → pn followed by
pn → π+nn. However, this two–nucleon cut introduces a new (large) momentum scale
p ' √

mπM into the problem that calls for special care. According to the counting rules
for pion production in NN collisions [22, 30, 79] (see also Section 2.2), the contribution

of this two–nucleon cut is therefore suppressed by χ
3/2
m compared to the rescattering

diagram (c2) of Fig. 3.1 (cf. also Section 2.3). It is therefore justified within the ordering
scheme used to replace the two–nucleon propagator by its static limit. The resulting
contribution from the magnetic couplings to the s–wave pion production on the nucleon
is already included in the effective operator of Eq. (3.15). For the pion p–waves we get
the following expression for the sum of the s– and u–channel contributions of Fig. 3.5(c)

V̂
(c)
πγNN = − iegπN√

2Mnmπ

(
A+ ~σ · ~B

)
, (3.18)

where

A = i(µp − µn)~kπ · [~εγ × ~qγ] , (3.19)

~B = −2 (~εγ · ~p )~kπ + (µp + µn)
(

(~εγ · ~kπ) ~qγ − (~qγ · ~kπ)~εγ

)
. (3.20)
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Here ~p denotes the momentum of the incoming nucleon and µp = 2.79 and µn = −1.91
denote the magnetic moments of the proton and the neutron, respectively. The operator
V̂

(c)
πγNN given by Eq. (3.18) was evaluated directly for the channel γp → π+n. As a

consequence the expression does not show any explicit isospin dependence and an isospin
factor of

√
2 appears.

In Ref. [117] it is shown that the pion p–waves converge quite slowly: the next–
to–leading order correction to the dominant p–wave multipoles M1+ and M1− change
the leading result by a factor of 2. The reason for this sizable correction is the large
numerical value of (µp − µn) = 4.7. On the other hand, the contribution of the A–term
to γd→ π+nn is suppressed. One reason can be read off from Eq. (3.18) almost directly:
since the A–term is a scalar in spin space, it will not change the total spin of the two
nucleon system, when used as the one–body operator in diagram (a) of Fig. 3.1. Thus
the final nn state is in a spin–triplet state. However, in the near threshold regime of
interest here, the simultaneous appearance of an nn P–wave (nn spin–triplet states are
to have odd angular momenta as a consequence of the Pauli principle) and a pion p–wave
is suppressed. In addition, it turns out that for the total cross section the A–term does
not interfere with the leading pion p–wave contributions (the term proportional to ~qγ
in Eq. (3.14)) which leads to an additional suppression. For details on the latter point
we refer to the explicit expressions given in Appendix E.2. Thus, we expect a better
behaviour of the contributions from the pion p-waves. One should also note that like
for the slope of the s–wave amplitude, the ∆–isobar gives potentially large corrections
to the p–wave amplitudes [117]. Thus we assign an uncertainty of 10% also to those.

At order χ2, pion rescattering diagrams (see diagrams (b), (c) and (d) in Fig. 3.1)
start to contribute. Here the same diagrams contribute as previously discussed for πd
scattering, but with the first πN interaction being replaced by the γN → πN transition
vertex. These diagrams are depicted in Fig. 3.1 (b2) and (c2). However, there is in
addition a whole new class of diagrams, namely those without final state interaction
(depicted as (b1) and (c1)). Another important difference to πd scattering is that, as
already mentioned above, the S-wave two–nucleon state—while the pion is in flight—is
now allowed by the Pauli principle. This has two consequences: first of all we expect
that the static approximation will not work for the rescattering contribution and, as
a second consequence, now nothing prevents the two–nucleon system to interact while
the pion is in flight. As the NN interaction is to be taken into account to all orders,
these diagrams are also potentially important. The latter statement becomes especially
clear when observing that the scattering length in the nn channel is quite large; note
that in the limit of an infinite scattering length the diagrams (d1) and (d2) acquire a
logarithmic infrared divergence. In fact, then the two–nucleon propagator behaves as if
it would describe the propagation of a massless particle#4.

Starting from the vertices given in this section it is straightforward to write down
the corresponding matrix elements for the diagrams shown in Fig. 3.1. Note that all
diagrams are evaluated in Coulomb gauge. This is a standard choice in ChPT calcu-
lations, for many diagrams with single photons are relegated to higher orders, such as
those where the photon couples to the charge of the nucleon and of the deuteron.

Diagrams, where the photon couples to a rescattered pion in flight turn out to be

#4In a different scheme and for a different reaction this behavior was studied in Ref. [119].
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Figure 3.7: Diagrams where the photon couples to the structure of the deuteron. These
diagrams start to contribute only at order χ3 and are therefore not considered here.

strongly suppressed numerically compared to those shown in Fig. 3.1. The reason for this
is twofold: their imaginary part is suppressed as a consequence of gauge invariance that
forces the photon–pion coupling to be of the order of the (small) pion momentum in the
loop and the appearance of a second pion propagator leads to an additional suppression.
This is in complete analogy to πd scattering as discussed in detail in Ref. [120]. In
addition gauge invariance in principle also calls for the inclusion of diagrams, where
the photon couples to the internal structure of the deuteron. Typical representatives of
this class are shown in Fig. 3.7. However, it is easy to show that these diagrams are
suppressed by at least one power of χ compared to the leading rescattering contribution
and therefore start to contribute at most at order χ3 to γd→ π+nn#5. Therefore these
diagrams are not included in the calculation. As a consequence, the diagrams given in
Fig. 3.1 (together with Figs. 3.5 and 3.6) are all that contribute to the given order.

Details on how the various diagrams are evaluated are given in Appendix E.2. Es-
pecially, there it is explained how we dealt with the three–body singularities that occur
in diagrams (c2), (b2), (d1), and (d2). We want to mention that we evaluated the
loop diagrams for non–relativistic pions (see Appendix E.2) for that largely simplified
the numerics. We checked by direct evaluation of diagrams (c1) and (c2) for threshold
kinematics that switching to relativistic pions changes the individual contributions to
the amplitude by less than 4 % (the contribution of these diagrams does not exceed 5 %
on the amplitude level).

3.5 Results and discussion

In our calculations we use the standard values for the various constants, namely fπ =
92.4 MeV, mπ = 139.57 MeV (only the charged pions contribute to the order we are
working) and M = 938.27 MeV. The deuteron wave function and also the scatter-
ing wave functions needed for the nn scattering amplitudes (in the 1S0,

3P0,
3P1, and

3P2 partial waves) are generated from the (charge–dependent) CD-Bonn potential [87].
Specifically, for the former we employ the analytical representation of the deuteron wave
function provided in that reference because it allows us to perform some integrations
analytically—see Appendix E.2.3. For the same reason the scattering wave functions

#5For this estimate we used mπ as typical momentum in the deuteron. A more accurate estimate
of this quantity would be γ =

√
EBM . If we were to use this for the power counting it would yield a

suppression of the order of γ/M ∼ 0.3χ.
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Figure 3.8: Total cross section of the reaction γd → π+nn at LO (dashed line), NLO
(dash–dotted line) and χ5/2 order (solid line) together with experimental data from
Ref. [103].

are computed from rank 1 separable representations of the CD-Bonn model, constructed
along the lines of Ref. [121] utilizing the so-called Ernst–Shakin–Thaler method [122],
cf. also Appendix E.2.3. Note that the scattering length predicted by the CD-Bonn
potential for the 1S0 partial wave in the nn system is ann = −18.97 fm [87], which is in
line with most of the recent experimental information [123, 124] (note, the analysis of
Ref. [125] gave a significantly lower value). We want to point out that in our calculation
the contribution of the deuteron D-wave is included. This contribution to the leading
diagrams is rather important, because it guarantees the correct normalization of the
S-wave component for the potential used.

The reaction γd → π+nn was calculated in DWBA by many authors in the middle
of the seventies (cf., e.g., the review paper by Laget [23] and references therein). The
approach used in those investigations corresponds to the evaluation of diagrams (a1)
and (a2) of Fig. 3.1 using the γp → π+n vertex of Eq. (3.13); thus, in our language
those were incomplete calculations up to next–to–leading order (χ), because the energy
dependence of the γπNN vertex and higher pion partial waves were neglected. Since
the most important contribution to the γp→ π+n operator in the near threshold region
originates from the Kroll-Rudermann operator and its first correction (see Eq. (3.13)),
which is known, and the convergence of diagram (a2) of Fig. 3.1 is provided by the
universal fall-off of the deuteron wave function for small momenta (fixed by the deuteron
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Figure 3.9: Importance of the slope parameter E ′
0+ defined in Eq. (3.17): The solid line

shows the full result, whereas the long dashed line is produced with E ′
0+ = 0. The two

dotted lines show the estimated uncertainty of full result as described in the text. The
data are from Ref. [103].

binding energy), all those calculations led to very similar results (that we reproduce). To
improve the calculations, some authors used instead of the prefactors of Eq. (3.13) the
experimental input for E0+(k2

π) at threshold as the strength parameter for the one–body
term (see, e.g., Ref. [103]). This, however, corresponds to an incomplete next-to-next-to-
leading order calculation, as discussed above. In addition, none of the works reported in
Ref. [23] considered the D–wave of the deuteron consistently. The slope of E0+(k2

π), pion
p–waves, or the NN final state interaction in the P–waves were also not considered. The
only attempt to improve the mentioned calculations via inclusion of a pion rescattering
contribution was made in Ref. [126], where diagram (c2) of Fig. 3.1 was evaluated in
the static limit, i.e. without nucleon recoil. This contribution was found to be large,
amounting to an increase of around 10 % of the total cross section (see the discussion
of this question in Ref. [23]). However, as we stressed above, the static approximation
is expected to work very poorly in this reaction.

Our results at order χ0, χ, and combined order χ2 and χ5/2 are shown in Fig. 3.8 by
the dashed, dash–dotted and solid lines, respectively. The data are taken from Ref. [103]
and the energy is measured in terms of ∆Eγ = (1+mπ/(2M))Q—the photon lab energy
subtracted by its threshold value. Up to order χ1 the result is parameter free, i.e. it
is determined by the value of gπN only. For the value of E0+(k2

π) at threshold that is
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Figure 3.10: The role of the higher pion partial waves and effect of the NN interaction in
the P–wave. The dashed line shows the calculation where only the S–wave interactions
are taken into account, the dotted line includes also the higher pion partial waves and
the solid line includes in addition the contribution of the NN final state interaction in
the three possible P–waves included in diagram (a2) of Fig. 3.1.

needed as the only input quantity at order χ2, we use the central values of the ChPT
calculation of Ref. [33] (that agrees with the experimental number, as mentioned in the
previous section).

To illustrate the importance of the slope E ′
0+ we show in Fig. 3.9 both the full result

as well as the one we get for a vanishing slope. For ∆Eγ larger than 10 MeV we observe
a quite large sensitivity to the energy dependence of E0+(k2

π).

The counting scheme of Eq. (3.1) calls for an inclusion of p– and d–waves for the
pion. The explicit expressions for the vertices are given in Eqs. (3.14) and (3.18). These
vertices are to be considered embedded in diagrams (a1) and (a2) of Fig. 3.1 only. The
contribution of the higher pion partial waves can be read off the difference of the dashed
and the dotted line in Fig. 3.10.

The significance of NN P–waves, even for ∆Eγ ≤ 20 MeV, was established long ago
[23], however, so far they were only included as plane waves (through diagram (a1) of
Fig. 3.1). In this work for the first time the final state interaction in the NN P–waves
is considered as well: we include the NN interaction in the three possible P–waves
(3P0 ,

3P1 and 3P2) in diagram (a2). The effect of the nucleon P–wave interactions on
the total cross section is shown in Fig. 3.10. We found the contribution of each NN
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Figure 3.11: Quality of the static approximation for diagram (c2) of Fig. 3.1: The
dash–dotted line shows the full calculation for diagram (c2), the dashed one that for
diagram (b2), and the solid line the sum of the two. On the other hand, the result for
diagram (c2) evaluated in the static approximation is given by the dotted line.

P -wave interaction to be small and, in addition, there exists a significant cancellation
amongst the P -wave contributions: it turns out that the contribution of the 3P1 partial
wave, which is enhanced due to constructive interference of the diagram (a1) and (a2) of
Fig. 3.1 for this particular NN partial wave, cancels to a large extent the contributions
of the 3P0 and 3P2 partial waves. Note that the interference pattern of the various
NN P–waves can be traced to the fact that 3P1 is repulsive, whereas 3P0 and 3P2 are
attractive for small relative momenta. The net effect of the NN P -wave interactions in
the final state on the total cross-section is negligible.

To summarize the results, we have calculated higher order chiral corrections to the
impulse term used, e.g., in Ref. [23]. We found that the effect of the NN P–wave final
state interaction on the total cross section is negligible. Moreover, the effects of the
energy dependence of the pion s–wave production (parameterized by the slope E ′

0+)
and of the pion p–waves are rather sizable, but they contribute with opposite signs and
finally compensate each other largely, as one can read from Figs. 3.9, 3.10. In view of this
finding, the good agreement of the results of, e.g., Ref. [23] for the total cross section for
photon energies above 10 MeV with the data should be considered accidental. However,
for differential observables and especially for polarization observables we expect sizable
effects from the chiral corrections calculated here.

Let us now discuss some of the results in detail. We found that all rescattering
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contributions of order χ2 and of order χ5/2 contribute with similar strength. This is true
also for those diagrams where the NN interaction appears inside the loop (diagrams
(d1) and (d2) of Fig. 3.1). This clearly demonstrates the need to take into account the
NN S–wave interaction non–perturbatively also in intermediate states (as it is done
routinely in three-nucleon calculations anyway).

Let us now compare in detail the results of different diagrams at the threshold. Here
contributions from higher partial waves as well as those from the slope parameter E ′

0+

vanish. Therefore the uncertainty of the calculation in this regime can be estimated
much more accurately than at higher energies. The results of the calculation of all
possible contributions to the reaction amplitude at threshold are given in Table 3.2.
Evidently, the total contribution from few–body (rescattering) corrections to the full
amplitude at threshold is about 5 % of the contribution from the distorted wave impulse
approximation. One can also see from this table that the net contribution of the orders
χ2

m and χ
5/2
m cancels largely the NLO contribution (see also the corresponding results in

Fig. 3.8 at low energies). Due to this one might speculate that corrections to this result
from higher orders, especially from χ3

m, may influence the results stronger than suggested
by the power counting. However we think that the uncertainty of the calculation at
low energies is indeed within the uncertainty for E0+ given by Eq. (3.16). Actually,
no additional diagrams to those shown in Fig. 3.1 appear at order χ3

m. Thus, the
contributions to the amplitude at this order originate basically from three sources:

1. NLO correction to the Kroll-Rudermann vertex when being used as a one–body
operator in diagrams (b),(c) and (d) of Fig. 3.1 and the recoil corrections to the
Weinberg–Tomozawa term. These corrections are of order (mπ/2M) · 5% = 0.4%.

2. Relativistic corrections to the diagrams with pion rescattering. For diagram (c2)
the relativistic correction gives only about 4% (to the 3 % contribution to the
amplitude from diagram (c2)). Since there are no reasons a priori which could en-
hance the corresponding corrections to the other rescattering diagrams, we assign
an uncertainty of order of 0.5 % to this effect.

3. The contributions from the coupling to the deuteron structure and the nn scat-
tering T–matrix. These are the hardest to estimate. However, as argued above,
they are expected to be numerically quite small (see footnote #5).

To summarize, we assign an uncertainty of 2 % to the few–body corrections of the
amplitude. On the other hand the contribution at order χ3

m to E0+ at threshold is also
about 2 % [33]. Adding these two uncertainties in quadrature we end up with a total
uncertainty of 3 % for the transition operator near threshold.

In Fig. 3.9 the resulting uncertainty for the full calculation is shown by the two
dotted lines. This range of uncertainties contains besides the 3 % just discussed also
the 10 % uncertainties on both the pion p–waves as well as the slope parameter.

To show that the static exchange is indeed a poor approximation to the exact result
for diagram (c2) of Fig. 3.1, as conjectured above, we compare in Fig. 3.11 the results
for the static approximation with those from the exact calculation as well as with those
for the one–body term (b2). As can be clearly seen, the static approximation fails to
describe the full result in both strength as well as energy dependence. Evidently, for
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operator order diagrams contribution

χ0
m (a1)+(a2) 1

one-body χ1
m (a1)+(a2) −0.07

χ2
m (a1)+(a2) +0.028

χ
5/2
m (b2) −0.016

χ2
m,χ

5/2
m (c1)+(c2) +0.039

few-body

χ2
m,χ

5/2
m (d1) +0.008

χ2
m,χ

5/2
m (d2) +0.024

Table 3.2: Contributions of different diagrams and operators to the reaction amplitude
at threshold are given at different orders. The results in table are normalized to that of
the calculation of diagrams (a1) + (a2) with the leading order Kroll-Rudermann vertex.
Note that diagram (b1) does not contribute at threshold.

the exact calculation the total contribution of the sum of the results for (b2) and (c2) is
extremely small near threshold, i.e. in the region where the real parts of both diagrams
dominate. With increasing energy the contribution from the sum of these two diagrams
increases rapidly. The reason for this effect is that at higher energies the role of the
imaginary parts of both diagrams, which contribute coherently for the Pauli allowed
NN states, is growing rapidly. The resulting contribution for the sum of both diagrams
of Figs. 2 (b2) and 2 (c2) to the total cross section does not exceed 4 %.

3.6 Summary of Chapter 3

We presented a ChPT calculation for the reaction γd → π+nn. We calculated the
diagrams displayed in Fig. 3.1, keeping explicitly the nucleon recoil for the intermediate
states. This corresponds to a complete calculation up to order χ5/2, where χ = mπ/M .

The results of the full calculation are shown in Fig. 3.8 by the solid line. A good
agreement between theory and experiment at low energies is obtained without any free
parameter. The only input parameter was the threshold value for E0+, taken from an
N3LO calculation for γp→ π+n [33]. Estimated conservatively, the uncertainty for the
transition operator of our calculation is about 3 % in the amplitude for photon energies
∆Eγ below 5 MeV.

We found a strong suppression of the pionic rescattering contributions in comparison
to the calculation in the frozen-nucleon approximation, i.e. in the static limit. This
confirms the suggestion made in Ref. [23] and is in line with the general remark of the
recent work of Ref. [32] where it was conjectured that the static limit is not adequate
for pion rescattering processes with Pauli–allowed S-wave intermediate NN states.
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As a next step a fully consistent chiral perturbation theory calculation for the given
reaction should be performed. Such a calculation allows one to reliably assign a theoret-
ical uncertainty to the full calculation and address questions raised in Ref. [127] for the
consistency of the counting scheme and the scaling of four–nucleon operators. Although
we do not expect the latter effects to be numerically significant for the reaction consid-
ered here, they are potentially important for γd→ π0pn, where the leading contribution
vanishes.

Once a fully consistent ChPT calculation and better data are available for the reac-
tion γd → π+nn one can consider to extract the energy dependence of E0+ from this
reaction, for the total cross section is very sensitive to the slope of E0+, as illustrated in
Fig. 3.9. However, before more definite conclusions can be drawn on this issue, better
data on the total cross section as well as the differential cross section in the energy
regime of 15–25 MeV is needed.

The work presented here allows one, amongst other things, to address the theoretical
uncertainty of the nn scattering length extracted from γd → π+nn analogously to the
studies of Ref. [104] for π−d→ γnn. These studies are of high interest in the light of the
significant differences in the values for ann extracted from different groups in different
reactions—cf., e.g., Refs. [123, 124] and Ref. [125]. We discuss the extraction of the nn
scattering length from γd→ π+nn in Chapter 4.



Chapter 4

Neutron–Neutron Scattering Length
from γd → π+nn

In this chapter we discuss the possibility to extract the neutron-neutron scattering length
ann from experimental spectra on the reaction γd→ π+nn. We argue that for properly
chosen kinematics, the theoretical uncertainty of the method can be as low as 0.1 fm.

4.1 Introduction

A precise determination of the neutron-neutron scattering length ann is important, e.g.,
for an understanding of the effects of charge symmetry breaking in nucleon–nucleon
forces [128]. The scattering length ann characterizes scattering at low energies. It is
related to the on–shell 1S0 scattering amplitude f on as

f on(pr) =
1

pr cot δ(pr)− ipr

=
1

−a−1
nn + 1

2
rnnp2

r +O(p4
r)− i pr

, (4.1)

where pr is the relative momentum between the two neutrons, δ(pr) is the scattering
phase shift in the 1S0 partial wave and rnn is the effective range. At low energies the
terms of order p4

r can be neglected to very high accuracy. However, a direct measurement
of ann in a scattering experiment is practically impossible due to the absence of a free
neutron target. For this reason, the value for ann is to be obtained from analyses
of reactions where there are three particles in the final state, e.g. π−d → γnn [123,
129, 130] or nd → pnn [124, 125, 131, 132]. There is some spread in the results for
ann obtained by the various groups. In particular, two independent analyses of the
reaction nd → pnn give significantly different values for ann, namely ann = −16.1 ±
0.4 fm [125, 131] and ann = −18.7 ± 0.6 fm [132], whereas the latest value obtained
from the reaction π−d → γnn is ann = −18.5 ± 0.3 fm [123]. At the same time, for
the proton-proton scattering length, which is directly accessible, a very recent analysis
reports app = −17.3 ± 0.4 fm [88] after correcting for electromagnetic effects. This
means that even the sign of ∆a = app − ann is not fixed. Note, that the value for ann

given is not corrected for electromagnetic effects. However, since those are only of the
order of 0.3 fm [128] they are not relevant for the sign of ∆a, although they ought to be
taken into account for determining charge symmetry breaking effects quantitatively. It

60
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should be also mentioned here that state-of-the-art calculations for the binding energy
difference of 3H and 3He suggest that ∆a is positive [133, 134].

Here we discuss the possibility to determine ann from differential cross sections in the
reaction γd→ π+nn. Specifically, we show that one can extract the value of ann reliably
by fitting the shape of a properly chosen momentum spectrum. In this case the main
source of inaccuracies, caused by uncertainties in the single–nucleon photoproduction
multipole E+

0 , is largely suppressed. Furthermore there is a suppression of the quasi-free
pion production at specific angles. We show that at these angular configurations the
extraction of ann can be done with minimal theoretical uncertainty.

This investigation is based on the developments that were presented in Chapter 3.
We calculated there the transition operator for the reaction γd → π+nn up to order
χ5/2 in ChPT with χ = mπ/M . Half-integer powers of χ in the expansion arise from the
unitarity (two– and three–body) cuts (see also Ref. [32]). The results presented in Chap-
ter 3 for the total cross section are in very good agreement with the experimental data.
The only input parameter that entered the calculation was the leading single–nucleon
photoproduction multipole E+

0 , which was fixed from a N3LO calculation of Bernard et
al. [33]. The uncertainty in E+

0 is the main theoretical error in that calculation. Besides
this transition operator, in this study we use NN wave functions constructed likewise
in the framework of ChPT, namely those of the NNLO interaction of Ref. [19]. This
allows us to estimate the theoretical uncertainty which arises from variations in the
wave functions. In fact, as soon as we include consistently all terms up to order χ5/2,
we expect the ambiguities due to different wave functions not to be larger than a χ3

correction, for only at this order the leading counter term which absorbs these effects
enters. This expectation is indeed quantitatively confirmed in the concrete calculations.

Since we work within chiral perturbation theory we can estimate the effect of higher
orders in terms of established expansion parameters together with the standard as-
sumption that additional short ranged operators, that enter at higher orders, behave
in accordance with the power counting (the so-called naturalness assumption). This
method was also applied in Refs. [104, 135], where the reaction π−d → γnn was inves-
tigated as a tool to extract ann. However, to know the effect of higher orders for sure,
one has to calculate them. Therefore, to derive a reliable uncertainty estimate for the
extraction of ann from the γd→ π+nn reaction, we use our leading order calculation as
baseline result and estimate the theoretical uncertainty from the effects of the higher
orders that we calculated completely. Based on this, we find a theoretical uncertainty
δann . 0.1 fm. We therefore argue that the reaction γd → π+nn appears to be a good
tool for the extraction of ann.#1

4.2 ChPT calculation for γd → π+nn

The formalism that was used for calculation of the transition operator is given in Chap-
ter 3. The diagrams that contribute to the reaction γd→ π+nn are shown on Fig. 3.1.
The kinematical variables are defined in Fig. 3.2.

#1In Ref. [136] a method was proposed to extract scattering lengths from γd. However, this method
can not be used here, since the momentum transfer is not sufficiently large. In addition, with our
explicit calculation we can reach a significantly higher accuracy.
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We remind that we expand the transition operators in the conventional ChPT pa-
rameter χ = mπ/Λχ ∼ χm = mπ/M as well as in the small parameter kπ/mπ, where kπ

denotes the momentum of the outgoing pion. This latter expansion is justified since in
the near threshold regime of interest here (excess energies of at most 20 MeV above the
pion production threshold) the outgoing pion momenta are small compared even to the
pion mass. Thus, we perform an expansion in two parameters

χ = mπ/M and χQ = kπ/mπ .

The maximum value of χQ, χmax
Q =

√
2Q/mπ, at the highest energy considered, which

is 20 MeV above threshold, is about 1/2. Since this is numerically close to
√
χ we use

the following assignment for the expansion parameter:

χ ∼ χ2
Q . (4.2)

The tree level γp→ π+n vertex, as it appears in diagrams (a1) and (a2) in Fig 3.1 (the
vertex is labeled as filled square), contributes at leading order (order χ0), and orders χ1

and χ2, depending on the one–body operator used. Note that the loop diagrams with
πN rescattering (see diagrams (b), (c) and (d) in Fig. 3.1) contribute at order χ2

m as

well as at χ2
mχQ, χ

5/2
m and at χ

1/2
m χ4

Q. The origin of the non–integer power of χ are the

two–body (πN) and three–body (πNN) singularities. Thus, all terms up to χ5/2 are
explicitly taken into account in our calculation of the transition operator.

As already emphasized, we employ wave functions evaluated in the same framework
in order to have a fully consistent calculation. We use the N2LO wave functions cor-
responding to the chiral NN forces introduced in Ref. [18] and based on the spectral
function regularization (SFR) scheme [34]. At this order, the NN force receives the con-
tributions from one-pion exchange, two-pion exchange at the subleading order as well as
from all possible short-range contact interactions with up to two derivatives. In addition,
the dominant isospin-breaking correction due to the charged-to-neutral pion mass differ-
ence in the one-pion exchange potential together with the two leading isospin-breaking
S-wave contact interactions were taken into account [18]. The two corresponding low-
energy constants were adjusted to reproduce the scattering lengths ann and app. The
SFR cutoff Λ̃ is varied in the range 500 . . . 700 MeV. It was argued in Ref. [34] that such
a choice for Λ̃ provides a natural separation of the long- and short-range parts of the
nuclear force and allows to improve the convergence of the chiral expansion [34]. The
cutoff Λ in the Lippmann-Schwinger equation is varied in the range 450 . . . 600 MeV.
For an extensive discussion on the choice of Λ and Λ̃ the reader is referred to [18, 19].

4.3 Differential cross sections: relevant features

In this section we outline the features of the differential cross section for unpolarized
particles that are important for our considerations. For later convenience let us consider
the function F proportional to the square of the matrix element as well as the five–fold
differential cross section

F (pr, θr, ϕr, θπ, ϕπ) = C pr kπ(pr)|M(pr, θr, ϕr, θπ, ϕπ)|2 ∝ d5σ(pr, θr, ϕr, θπ, ϕπ)

dΩ~prdΩ~kπ
dp2

r

,

(4.3)
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Figure 4.1: Left panel: Differential cross section. The solid line corresponds to the
configuration when the quasi–free peak is suppressed (θr = 90◦), whereas the dashed
line corresponds to one of the configurations when the quasi–free production amplitude
is maximal (θr = 0◦). The values of the remaining angles are θπ = 135◦, ϕr = ϕπ = 0◦;
they are the same for both curves.

Right panel: Differential cross section — relative strength of QF and FSI peaks. Here
the dashed curves correspond to the calculation at LO, the solid ones to the calculation
at χ5/2. Curves denoted by ”FSI” (”QF”) are obtained by retaining only those diagrams
of Fig. 3.1 that contain (do not contain) the final or the intermediate nucleon–nucleon
interaction. The labels ”0 degrees” and ”90 degrees” denote the corresponding values
of θr for the ”QF” curves whereas the ”FSI” curves are almost insensitive to this angle.
The values or the remaining angles are as on the left panel of this figure. The overall
scale is arbitrary in both panels but the relative normalization is the same for all curves.

where ~pr (~kπ) stands for the relative momentum of the two final neutrons (momentum of
the final pion) in the center–of–mass frame, θr, ϕr (θπ, ϕπ) for the corresponding polar
and azimuthal angles, respectively, and |M|2 for the squared and averaged amplitude.
In Eq. (4.3) C is an irrelevant dimensionful constant. In what follows we will consider
only shapes of cross sections and therefore the value of C is not important for our
consideration. The value of kπ at given pr and Q is fixed by energy conservation:

Q =
p2

r

M
+

k2
π

4M
+

k2
π

2mπ

, (4.4)

hence we write kπ(pr) in Eq. (4.3). In the following we choose the momentum ~qγ of
the initial photon to be along the z–axis. Then the cross sections at a certain excess
energy Q depend on four variables, namely the magnitude of the relative momentum of
the two final neutrons pr, the polar angles of the vectors ~pr and ~kπ, and the difference
between the azimuthal angles of those two momenta. Unpolarized cross sections are
invariant under rotations around the beam axis, which makes the dependence on the
missing angle trivial.

Typical differential cross sections F are shown in Fig. 4.1 as a function of pr at some
fixed set of angles {ϕr, θπ, ϕπ} and Q = 5 MeV for two different values of θr. One can
see from this figure that for the differential cross section F of Eq. (4.3) there are two
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characteristic regions:

1. The region of quasi-free production (QF) at large pr, which corresponds to the
dominance of those diagrams of Fig. 3.1 that do not contain the NN interaction
in the final or intermediate states. In Appendix E.2.4 (see also Appendix E.2.3)
we give explicit expressions for the diagram a1—the most significant diagram of
this type. At large pr the pion momentum kπ is small (see Eq. (4.4)) and the
arguments of the deuteron wave function in Eqs. (E.34) and (E.35) may become
small for particular combinations of ± ~pr and ~qγ/2. This feature gives rise to a
peak in the differential cross section at large pr.

2. The region with prominence of the strong nn final–state interaction (FSI) at small
pr (in fact, we would have the strongest final state interaction at zero relative
momentum, however the cross section goes to zero at pr = 0 due to the phase
space, therefore we see a peak shape).

One can see from Fig. 4.1 that the FSI peak depends on the value of θr only marginally,
whereas the quasi-free peak shows significant dependence on this angle. In particular, the
quasi-free production is largely suppressed at θr = 90◦ — at this angle the arguments of
the wave functions in both terms in the r.h.s. of Eqs. (E.34) and (E.35) are large. It can
also be seen from Fig. 4.1 (right panel) that the effect of higher orders is more important
for the quasi-free production amplitude — the influence of higher-order effects on the
FSI production is quite small. Another interesting observation is that the contributions
of higher orders change the relative height of the two peaks – the FSI peak goes up
whereas the QF peak goes down when we proceed from the LO calculation to the order
χ5/2. In order to suppress the distortions of the spectrum due to higher orders in the
chiral expansion, which is the condition for an extraction of ann with small theoretical
uncertainty, configurations should be chosen where θr = 90◦.

We now briefly discuss the dependence of the cross section on the remaining angles
θπ, ϕπ (we always may choose ϕr to be zero). The dependence on θπ is illustrated in
Fig. 4.2. One can see from this figure that the dependence on θπ is significant for
both the quasi–free as well as the FSI peak. This can be easily understood from the
explicit expressions for the matrix elements given in Appendix E.2.4 keeping in mind
that already at Q = 5 MeV the maximal value of kπ is about mπ/3 while qγ ≈ mπ.

Thus, the momentum transfer to the nucleon pair, |~qγ −~kπ|, varies in the range 2
3
mπ to

4
3
mπ depending on θπ. Since the S-wave deuteron wave function is large only for very

small arguments, the influence of the direction of ~kπ is significant. In addition, from
Fig. 4.2 it follows that a variation of θπ not only changes the magnitude but also the
shape of the cross section, even in the FSI region. This has to be taken into account in
the analysis of any experiment.

In contrast to the polar angles, the dependence of F on ϕπ is negligible for all
configurations (there is no dependence at all for θr = 0◦, and at θr = 90◦ only the
anyway small QF contribution changes by just 5 %).
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Figure 4.2: Dependence of the differential cross section on θπ. The left panel corresponds
to the suppressed quasi–free amplitude (θr = 90◦), the right panel to the maximal quasi–
free amplitude (θr = 0◦). Solid, dashed, dotted, and dash-dotted lines correspond to
θπ = 0◦, 45◦, 90◦, 135◦ respectively. The values of the remaining angles are ϕr = ϕπ =
0◦. The overall scale is arbitrary in both panels but the relative normalization is the
same for all curves.

4.4 Extraction of ann and estimate of the theoretical

uncertainty

In this section we discuss how to extract the scattering length from future data on
γd → π+nn as well as the resulting theoretical uncertainty. Our focus is especially the
latter point. As in the previous section we will only discuss results at excess energy
Q = 5 MeV. However, the analysis can be repeated analogously at any excess energy
within the range of applicability of the formalism, i.e. Q ≤ 20 MeV.

We are interested in extracting the value of ann, which, in turn, is a low-energy
characteristic of neutron-neutron scattering and manifests itself in the momentum de-
pendence of the cross section at small values of the momentum pr. The influence of the
value of ann on the cross section is illustrated in Fig. 4.3, where the cross sections are
shown for three different values of ann, namely −18, −19, −20 fm. For each value there
are two curves, the dashed one corresponds to θr = 0◦, and the solid one to θr = 90◦.
One can see from Fig. 4.3 that the influence of different values of ann is significant in
the FSI peak and marginal in the quasi–free peak, as one would have expected.

In the previous section we have shown (see right panel in Fig. 4.1) that the relative
height of the quasi-free and the FSI peak changes if the effects of higher orders are
included in the cross sections. Therefore those angular configurations are to be preferred,
where the quasi-free production is suppressed.

The central point of this study is to demonstrate that there is a large sensitivity
of the momentum spectra to the scattering length and that this scattering length can
be extracted with a small and controlled theoretical uncertainty. As outlined in the
introduction to this chapter, we can estimate this uncertainty reliably, because the
effect of the higher orders up to χ5/2 are calculated completely. In order to demonstrate
the effect of those higher orders on the shape of the momentum distribution, in Fig. 4.4
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Figure 4.3: The effect of varying the value of ann on the differential cross section. The
solid and dashed lines correspond to the same angular configurations as in Fig. 4.1, left
panel. The different values of ann are shown on the figure. The overall scale is arbitrary
but the relative normalization is the same for all curves.

we show as the light band the spread in the results for the calculation from LO to χ5/2.
The results also include higher partial waves for the pion as well as the final nn system.

There is some sensitivity to the behavior of the deuteron wave function at short
distances. For the reaction π−d → γnn this sensitivity was identified as the largest
effect at N3LO [104] #2. Guided by this we include in the uncertainty estimate also the
spread in the results due to the use of different wave functions. In order to remove the
effect of the change in normalization when, e.g., changing the chiral order, all curves
are normalized at pnorm = 30 MeV in Fig. 4.4. In the same figure (with the same
normalization) we also show the change in the shape that comes from different values of
the scattering length: the dark band is generated by a variation of ann by ±1 fm around
the central value of −18.9 fm. Clearly, the theoretical uncertainty is negligibly small
compared to the signal of interest.

One way to quantify the theoretical uncertainty is through the use of the function
S, defined as

S(ann,Φ) =

pmax∫

0

dpr

(
F (pr|a(0)

nn ,Φ
(0))−N(ann,Φ) F (pr|ann,Φ)

)2

w(pr) , (4.5)

where pmax =
√
MQ is the maximum value of pr, F (pr|ann,Φ) is proportional to the

five-fold differential cross section as defined in Eq. (4.3). In the latter we refrained
from showing the angular dependence in favor of the parametric dependence of the
cross section on the nn scattering length ann as well as on the multi–index Φ, which
symbolizes the dependence of the cross section on the chosen chiral order and the wave

#2Within the framework of ChPT with a consistent power counting scheme, the quantitative impact
of the wave-function dependence is governed by the order at which a counter term appears that can
absorb this model dependence. The corresponding counter term for the γd as well as the πd reaction
arises at N3LO.
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Figure 4.4: The light (white) band is the error band, and dark (blue) band correspond
to ±1 fm shift in the scattering length from the central value −18.9 fm.

functions used, as outlined above. The weight function w(pr) was introduced to allow
us to suppress particular regions of momenta in the analysis—the role of w(pr) will be
discussed in detail below. For simplicity we may assume that S is dimensionless; all
dimensions can be absorbed into the constant C defined in Eq. (4.3).

The value a
(0)
nn denotes the central value of the scattering length (−18.9 fm) for which

we perform the estimate of the theoretical uncertainty#3 whereas Φ(0) corresponds to the
baseline type of calculation, namely leading order with chiral wave functions as specified
in Appendix E.2.4. The relative normalization N(ann,Φ) is fixed by demanding that S
gets minimized for any given pair of parameters ann,Φ (∂S/∂N = 0). This gives

N(ann,Φ) =

pmax∫
0

dpr F (pr|a(0)
nn ,Φ(0))F (pr|ann,Φ)w(pr)

pmax∫
0

dpr F 2(pr|ann,Φ)w(pr)

. (4.6)

Thus, S characterizes the mean-square deviation of the shape from the baseline cross
section F (pr|a(0)

nn ,Φ(0)). In this way we determine the theoretical uncertainty in full
analogy to the standard method of data analysis.

In order to quantify the theoretical uncertainty we may define Φmax as that chiral
order and choice of wave function, where S(a

(0)
nn ,Φmax) gets maximal:

S(a(0)
nn ,Φmax) = max

Φ

{S(a(0)
nn ,Φ)

}
. (4.7)

Therefore S(a
(0)
nn ,Φmax) provides an integral measure of the theoretical uncertainty of

the differential cross section. Demanding that the effect of a change in the scattering
length by the amount ∆ann matches that by the inclusion of higher orders etc. we can

#3Note that the theoretical uncertainty practically does not change when the central value of the
scattering length varies in the relevant interval ±1 fm.
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Figure 4.5: The functions S(a
(0)
nn ,Φmax) and S(a

(0)
nn + ∆ann,Φ

(0)) are shown by the hori-
zontal and parabolic curves, respectively. The solid curves are obtained by adding the
weight factor in Eq. (4.5) that cuts all momenta above 30 MeV in distinction from the

dashed ones. The calculation is performed for the scattering length a
(0)
nn = −18.9 fm,

θr = 90◦, and θπ = 0◦. The value of ∆ann corresponding to the crossing point of the
horizontal and parabolic curves determines the theoretical uncertainty of the calculation.

identify ∆ann as an uncertainty in the scattering length. Expressed in terms of S, we
may define ∆ann via

S(a(0)
nn + ∆ann,Φ

(0)) = S(a(0)
nn ,Φmax) . (4.8)

This relation is illustrated in Fig. 4.5. The dashed horizontal line corresponds to
S(a

(0)
nn ,Φmax), where we use w(pr) = 1. The dashed parabolic line shows the corre-

sponding S(a
(0)
nn + ∆ann,Φ

(0)) as a function of ∆ann. The calculation is performed for
θr = 90◦, and θπ = 0◦. The crossing point of the curves corresponds to ∆ann = 0.16 fm,
which can be identified as the theoretical uncertainty for the extraction of the scattering
length.

In the previous section we showed that the signal region is located at momenta lower
than 30 MeV. On the other hand, the theoretical uncertainty of the differential cross
section is largest for large values of pr due to the onset of the quasi–free contribution. In
view of these two facts it seems reasonable to use such weight functions w(pr) that sup-
press the contribution of large momenta. For instance, we may use w(pr) = Θ(pcut−pr)
for the weight function. If we choose, e.g., pcut = 30 MeV, the theoretical uncertainty of
the extraction of the scattering length reduces to 0.07 fm, as is demonstrated by the solid
lines in Fig. 4.5. This figure nicely illustrates that the parabolic curve that represents the
signal changes only very little when a restriction to small values of pr is applied. At the
same time this procedure significantly reduces the value of the uncertainty S(a

(0)
nn ,Φmax).

The observation that the dependence of S(a
(0)
nn + ∆ann,Φ

(0)) on ∆ann is very well
approximated by a parabola allows for a more systematic study of the pcut dependence
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Figure 4.6: Left panel: Comparison of the pcut dependence of functions S(a
(0)
nn ,Φmax|pcut)

(dashed curve) and α(pcut) (solid curve). The calculation is performed for the scattering

length a
(0)
nn = −18.9 fm, θr = 90◦, and θπ = 0◦. Right panel: The corresponding

theoretical uncertainty ∆ann as a function of pcut.

of the theoretical uncertainty. We therefore define

α(pcut) =
S(a

(0)
nn + ∆ann,Φ

(0)|pcut)

(∆ann)2
, (4.9)

where the explicit pcut dependence is introduced into the function S through the weight
function w as explained above. The dashed and the solid parabola in Fig. 4.5 can then
be written as α(pcut) (∆ann)2, with α(pmax) = 41 fm−2 and α(30 MeV) = 33 fm−2. In
the left panel of Fig. 4.6 we show α(pcut) as the solid line. In the same panel the dashed

line represents the measure of the theoretical uncertainty given by S(a
(0)
nn ,Φmax|pcut),

multiplied by a factor of 40. This figure makes more quantitative the statement made
above: for very small values of pcut we cut into the signal region and therefore α shows a
very rapid variation. However, as soon as pcut is larger than 30 MeV it goes to a plateau
(in the figure indicated by the arrow). On the other hand, the theoretical uncertainty
is monotonously growing once pcut is larger than 30 MeV. From this figure we deduce
that the ideal value for pcut is between 25 and 40 MeV. This translates into a theoretical
uncertainty between 0.05 and 0.1 fm, as illustrated in the right panel of the same figure.
The value of θπ also has some impact on the theoretical uncertainty, however, in its
whole parameter range the estimated uncertainty stays below 0.1 fm for pcut = 30 MeV.

Clearly, also the experimental data, once they exist, should be analyzed using a
procedure analogous to the one given above. This means that the scattering length
is to be extracted from a χ2 fit of the theoretical curves to the data. In this work
we used the calculation at LO as baseline result and the results at higher orders to
estimate the theoretical uncertainty. Consequently, we propose to use the momentum
spectrum calculated at LO in the fitting procedure of the experiment. The corresponding
analytical expressions are given in Appendix E.2.4. The only parameter to be adjusted
besides the scattering length is the overall normalization. In this fitting procedure only
those data points should be included that are below a given pcut, in order to keep the
theoretical uncertainty small.



70 Chapter 4. Neutron–Neutron Scattering Length

4.5 Summary of Chapter 4

We showed that for the angular configurations that suppress the quasi-free production
the inclusion of higher order effects (NLO, N2LO, and χ5/2) as well as the use of different
wave functions leads only to a minor change in the momentum dependence of the five-
fold differential cross sections.

Based on this observation we propose to use the momentum spectrum calculated
at LO for the extraction of the neutron–neutron scattering length from the data. This
procedure has the advantage that the corresponding matrix elements can be given in
an analytic form (see Appendix E.2.4) that could be used directly in the Monte Carlo
simulation for the experiment analysis. In this way the non–trivial dependence of the
spectra on θπ, discussed above, can be easily controlled. The scattering length can then
be extracted by a two parameter fit to the data where, simultaneous to a variation in
ann, the normalization constant needs to be adjusted.

Note that the leading order calculation basically agrees to the expression given in
Ref. [23] long ago. However, a systematic and reliable study of the theoretical uncer-
tainties of the extraction was possible only within our full calculation up to order χ5/2

in ChPT. In this way we could show that the reaction γd → π+nn is very well suited
for a determination of the nn scattering length. The theoretical uncertainty of order
0.1 fm for the extracted scattering length, estimated in this paper, is of the same order
as that claimed for π−d→ γnn [135] and nd→ pnn [123, 132].

We discussed in detail the theoretical uncertainty for a fixed excess energy of Q =
5 MeV only, however, it should be clear that the procedure can be easily repeated for any
energy within the range of applicability of our approach (Q < 20 MeV). For example,
we checked that the theoretical uncertainty stays below 0.1 fm also at Q = 10 MeV.
Note that the number of events in the signal region scales roughly with

√
Q, the phase

space available for the pion. It remains to be seen what energy is the best for the
corresponding experiment.

We showed that for a proper choice of both kinematics and weight function w,
the theoretical uncertainty for the extraction of the neutron–neutron scattering length
from γd → π+nn can be as low as 0.1 fm. It should be stressed, however, that this
error was evaluated most conservatively—we use our LO calculation as baseline result
and estimate the theoretical uncertainty from the effects of the higher orders that we
calculated completely. This error can be significantly reduced by further studies. For
example, if we include in the uncertainty estimate only the spread in the results due to
the use of different wave functions, which is identified as the largest effect at N3LO for
the reaction π−d → γnn [104], the theoretical uncertainty of the extracted scattering
length reduces by one order of magnitude. This indicates that the theoretical uncertainty
is indeed under control. However to put this N3LO estimation on more solid ground
a complete calculation should be performed to this order. Most of the operators that
are relevant at this order are the same as those of π−d → γnn, given explicitly in
Ref. [137]. One counter term enters, which can be fixed e.g. from nd scattering [20], the
reaction NN → NNπ [79], or from weak decays [135]. Once this is done we may use
our calculation to order χ5/2 as baseline result and estimate the theoretical uncertainty
from the then available N3LO calculation.

Although we have identified the angles θr = 90◦ as the preferred kinematics, also
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other configurations could be studied in order to control the systematics. However, then
the spectra calculated at χ5/2 should be used in the analysis.



Chapter 5

Dispersive and Absorptive
Corrections to the πd Scattering
Length

In this chapter we consider dispersive and absorptive corrections to the pion-deuteron
scattering length aπd. These corrections are closely related to the process NN → NNπ.
We apply the formalism developed in Chapter 2 to calculation of these corrections.

5.1 Introduction

The pion-nucleon (πN) scattering lengths are fundamental quantities of low–energy
hadron physics since they test the QCD symmetries and the pattern of chiral symmetry
breaking. As stressed by Weinberg and Tomozawa long time ago, chiral symmetry
suppresses the isoscalar πN scattering length a+ substantially compared to its isovector
counterpart a− . Thus, a precise determination of a+ demands in general high accuracy
experiments.

Here pion-deuteron (πd) scattering near threshold plays an exceptional role for
Re(aπd) = 2a+ + (few–body corrections) . The first term ∼ a+ is simply generated
from the impulse approximation (scattering off the proton and off the neutron) and is
independent of the deuteron structure. Thus, if one is able to calculate the few–body
corrections in a controlled way, πd scattering is a prime reaction to extract a+ (most
effectively in combination with pionic hydrogen measurements). In addition, already
at threshold the πd scattering length is a complex-valued quantity. It is therefore also
important to gain a precise understanding of its imaginary part—this is one of the issues
addressed in this chapter.

Recently the πd scattering length was measured to be [94, 138]

aexp
πd = (−26.1± 0.5 + i(6.3± 0.7))× 10−3 m−1

π , (5.1)

where mπ denotes the mass of the charged pion. In the near future a new measurement
with a projected total uncertainty of 0.5% for the real part and 4% for the imaginary part
of the scattering length will be performed at PSI [139]. Clearly, performing calculations
up to this accuracy poses a challenge to theory that several groups recently took up

72
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i) ii)

Figure 5.1: Diagrams contributing to the πNN → NN transition up to the order
considered: i) direct contribution and ii) rescattering.

[83, 120, 127, 140–143]. In addition, an interesting isospin violating effect in pionic
deuterium was found, see [144]. For a review on older work we refer to Ref. [145].

The imaginary part for the πd scattering length can be expressed by unitarity in
terms of the πd total cross section through the optical theorem. One gets

4πIm(aπd) = lim
q→0

q {σ(πd→ NN) + σ(πd→ γNN)} , (5.2)

where q denotes the relative momentum of the initial πd pair. The so-called Panofsky
ratio

R = lim
q→0

(σ(πd→ NN)/σ(πd→ γNN)) (5.3)

was measured to be 2.83 ± 0.04 [146]. At low energies diagrams that lead to a sizable
imaginary part of some amplitude are expected to also contribute significantly to its real
part. Those contributions are called dispersive corrections. As a first estimate Brückner
speculated that the real and imaginary part of these contributions should be of the same
order of magnitude [147]. This expectation was confirmed within Faddeev calculations
in Refs. [148, 149]. Given the high accuracy of the measurement and the size of the
imaginary part of the scattering length, another critical look at this result is called for
as already stressed in Refs. [150, 151]. A consistent calculation is only possible within
a well defined effective field theory.

What is needed a priori for such an endeavor is a controlled power counting for
NN → NNπ using chiral perturbation theory (ChPT) that is consistent with the one
used for πd scattering. We showed in Chapter 2 that using of such a counting scheme
leads to a good description of the total cross–section for the reaction NN → dπ.

In addition to the hadronic part of the dispersive and absorptive corrections to the
πd scattering length, we estimate the corresponding contribution from the transition
πd → γNN → πd using the full structure of the one–photon exchange. Note that the
inelastic channel πd→ γNN accounts for 1/4 of the imaginary part of aπd and therefore
one can expect a sizable contribution also to its real part.

This chapter is organized as follows: in Section 5.2 we will present the power counting
for the πd system including the dispersive part. In Section 5.3 we give our results, while
a comparison to previous works is done in Section 5.4. We again close this chapter with
a brief summary.
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a) b) c)

Figure 5.2: Typical Feynman diagrams for πd scattering; shown are the one–body term
(a), the double–scattering contribution (b) and a four–nucleon–contact term (c). Solid
black dots stand for the πN interaction, whereas the hatched area shows the deuteron
wave function.

5.2 Power counting

The basis of any effective field theory calculation is a proper power counting that allows
one to organize the diagrams according to some a priori known hierarchy. The important
thing is to identify the relevant expansion parameter in the transition operators. For πd
scattering in Ref. [52] the series is organized in powers of momenta and pion masses in
units of the chiral symmetry breaking scale Λχ ∼ 1 GeV. The typical one– and two–body
diagrams are shown in Fig 5.2 (a) and (b), respectively. The small binding energy of the
deuteron introduces a new small scale that can be accounted for systematically [120].
In Refs. [32, 82] it was demonstrated how the scheme is to be modified in the presence
of three–body (πNN) cuts — see also the discussion in Sections 3.2, 3.3. Based on
calculations with deuteron wave functions obtained solely from contact NN interactions,
in Refs. [152, 153] it was argued that field theoretical consistency calls for a counter term
at leading order. However, in Refs. [83, 141–143] it was shown that this is no longer
necessary as soon as the finite range of the one–pion exchange is included in the NN
potential.

So far no attempt was made to also include consistently — within ChPT — the
so called dispersive corrections that emerge from the hadronic πd → NN → πd and
photonic πd→ γNN → πd reaction chains. We define dispersive corrections as contri-
butions from diagrams with an intermediate state that contains only nucleons, photons
and at most real pions. Thus, all other potentially important corrections to the πd scat-
tering length that come from, e.g., the ∆ resonance will not be discussed here (although
we outline some issues concerning the Delta contributions). The diagrams contributing
to the hadronic and photonic parts of the dispersive corrections in accordance to our
definition are shown schematically in Figs. 5.3 and 5.4, respectively.

Before we present the results of the calculation we first need to establish the power
counting. The fact that the hadronic reaction chain πd → NN → πd is a process
with large momentum transfer introduces a new scale into the problem that needs to be
accounted for by a modified power counting, in full analogy with our considerations for
the reaction NN → NNπ in Chapter 2.

To establish the counting scheme we focus on two–body currents only — how to
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Figure 5.3: The classes of the hadronic contributions to the dispersive corrections. Dia-
gram (a) and (b) denote the direct and (c) and (d) the crossed terms. The filled ellipse
denotes the NN interaction in the intermediate state. The diagrams contributing to the
πNN → NN transition to the given order are shown in Fig. 5.1. The diagrams with
emission of pion on the second nucleon are not shown explicitly but taken into account
in the calculation.

include one–body currents into the standard scheme is described in Ref. [52]#1. Thus,
in what follows we will compare our two body πNN → NN → πNN operators with
the leading two body operator shown in Fig. 5.2(b). Then it is sufficient to read off
the vertex factors for the πNN → πNN transitions to identify the order of any given
diagram. We therefore estimate m2

π/(f
4
π q

2) for the diagram (b) of Fig. 5.2 where q
here defines the momentum of intermediate pion. Utilizing Weinberg’s counting scheme
where all internal momenta are assumed to be of order mπ we find diagram (b) to be
O(1) — here and in what follows we drop a factor 1/f 4

π common to all diagrams to
get the order estimate. Power counting gives that the 4N2π contact term shown in
Fig.5.2 (c) contributes at O(χ2), where χ = mπ/M is the standard expansion parameter
of ChPT with M for the the nucleon mass. This last contribution comes with a yet
unknown coefficient. As such, an estimate for its size provides the theoretical accuracy
that a calculation for the πd scattering length can have at most. Therefore, assuming
naturalness for the strength of the contact term, the theoretical limit of accuracy is of
order χ2 which translates into a few percent. Reverting this statement, in order to reach
a theoretical accuracy that is comparable to that expected for the experimental value of
the πd scattering length, all contributions of lower order than χ2 should be evaluated.
We will now show that the dispersive corrections contribute to O(χ3/2).

Transitions of the type πNN → NN → πNN — sketched in Fig. 5.3 (a) — get
contributions from small values of the NN intermediate momentum q (q ∼ mπ or
smaller) as well as from large values of q (q ∼ pthr =

√
mπM). The latter value

refers to the on–shell momentum of the intermediate NN state (or, equivalently, to
the threshold initial momentum of the reaction NN → NNπ). The power counting
as given for NN → NNπ relates to the latter part of the contribution. It is based on
the assignment pthr/M = χπ ∼ O(χ1/2) (see Chapter 2). To derive the order of the
dispersive corrections let us start with diagram d1 of Table 5.1. (See footnote #1 for
how to include diagrams of the type d2). For this one we find in units of the amplitude

#1 In Ref. [28] the corresponding recipe is given that needs to be applied to NN → NNπ and
therefore also to the dispersive corrections. It implies that the diagrams shown in Fig. 5.1(a) and (b)
contribute at the same order for s–wave pion production.
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Table 5.1: Hadronic contribution to the real and imaginary part of aπd in units of
m−1

π × 10−3. We only show the typical topologies — all permutations are included as
indicated by the ellipses.
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c4−c6 corresp. terms with intermediate NN interaction = −0.37

sum of all crossed terms = 2.74
direct + crossed

total sum = −1.63 + i 4.25
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Figure 5.4: Diagrams contributing to the dispersive corrections from photon–exchange
interactions: one–body term (a) and double scattering (b). The filled ellipse denotes the
NN interaction in the intermediate state. The solid squares denote the full πN → γN
transition amplitude as depicted in Fig. 5.5.

for diagram (b) of Fig. 5.2 (estimated to be O(1)) #2

[(
mπ

f 3
πq

)2
1

mπ − q2/M + iγ

(
q3

(4π)2

)]/ (
1

f 4
π

)
∼

{ O (χ2) for q ∼ mπ

O
(
χ

3
2

)
for q ∼ pthr

(5.4)

where the first term in the square brackets comes from the πNN → NN transition
operator, the second one from the NN propagator in the intermediate state and the
last one from the integral measure. To arrive at the estimate for q ∼ pthr, where the
l.h.s of Eq. (5.4) involves a singularity, we replaced the two–nucleon propagator by the
corresponding δ-function term for this estimate should apply to both the real part as
well as the imaginary part that emerges from πNN → NN → πNN . Furthermore we
used 4πfπ ' M . The small momentum part of the integral is thus of order χ2 and not
relevant for this study. That is why dispersive corrections were not considered in the
studies of Refs. [120, 127]. However, the part of the integral where q is of the order
of pthr is indeed of lower order than χ2 and thus should be considered. It is important
to stress that as we saw in Chapter 2 for a consistent understanding of NN → NNπ
within ChPT it was also necessary to include the large scale pthr explicitly in the power
counting [22, 28].

For the imaginary part of the amplitude πNN → NN → πNN we have an exper-
imental value — (3/4)Im(aπd)/Re(aπd) ' 1/6, where the factor of 3/4 was introduced
since this fraction of the width comes from πd → NN (see Eqs. 5.2, 5.3). To check
the power counting we need some estimate for the real part of the scattering length,
which is known to be dominated by the double rescattering term (Fig. 5.2(b)) and was
shown above to be O(1). Therefore we expect from the above considerations a relative
suppression of the imaginary part to the real part of the order of (mπ/M)3/2 = 1/17.
Thus, the hadronic contribution to the imaginary part of the πd scattering length is
about a factor of 3 larger than predicted by the power counting — a deviation that is
tolerable.

Since the NN interaction is non–perturbative in diagrams, where a two–nucleon
state contributes near on–shell, the full NN interaction in intermediate states should be

#2For a brief description on how to identify the order of a particular diagram we refer to Appendix
E of Ref. [22].
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= +

(d)(c)(a) (b)
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Figure 5.5: Diagrams contributing to the πN → γN transition operator: Kroll–
Rudermann term (a), pion in flight (b) and nucleon s– (c) and u– (d) channel.

taken into account — the corresponding diagram is depicted in Fig. 5.3(b). These are
also included in our calculation using the techniques outlined in Appendix B. At the
same chiral order there is an additional class of contributions — these are the crossed
terms shown as diagrams (c) and (d) in Fig. 5.3. Already in Ref. [154] an evaluation
of those diagrams was called for, however, a consistent calculation of the terms that
emerge from diagram ii) of Fig. 5.1 has not been possible so far [145]. Since we work
within a consistent field theory no such problem exists. The numerical importance of
some crossed diagrams for πd scattering was already observed before and referred to
as the so-called Jennings mechanism [155]: to understand data measured with tensor
polarized deuterons for elastic πd scattering at backward angles, a particular crossed pion
contribution needs to be included — see also the discussion in Ref. [156]. The order
assignment for the crossed diagrams is obvious once one applies the same procedure that
leads to the estimate given in Eq. (5.4) — the only necessary change is to switch the sign
of mπ in the NN propagator. Note, in these diagrams the two–nucleon intermediate
state is always off–shell in contrast to the NN state in the direct contributions that
are expected to receive the dominant contributions from (near) on–shell nucleons. It is
therefore surprising that direct and crossed terms appear at the same order. However,
one should recall that the chiral expansion is an expansion around the chiral limit.
When approaching the chiral limit the intermediate two–nucleon states of both direct
and crossed diagrams approach the same kinematical point. Therefore it is natural that
they also contribute to the same chiral order for physical pion masses.

A priori there is no rule how to include the electromagnetic contribution to both the
real and the imaginary part of the πd scattering length (see Fig. 5.4) into the power
counting — the fine structure constant α is clearly an independent parameter. Based on
the observation that the electromagnetic and the hadronic contribution to the imaginary
part are of the same order of magnitude, we assign the same chiral order to both — as
it is often done in chiral perturbation theory studies.

5.3 Results

In this section we present the results of our investigations. We first focus on the hadronic
contribution to the dispersive corrections. The results are given in Table 5.1. Note, for
the contributions that involve the NN interaction in the intermediate state we do not
give the individual results explicitly. All calculations are done with the CD-Bonn NN
potential [87].
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First of all we observe that with a value of 4.25 × 10−3 m−1
π the imaginary part

of the scattering length turns out to be very close to the experimental number of
(3/4)Im(aexp

πd ) = (4.7± 0.5)× 10−3 m−1
π (c.f. Eqs. (5.1) and (5.2) and discussion below

the latter). This is not too surprising given the good description for the near threshold
cross section of NN → dπ as we showed in Chapter 2. For the real part on the other
hand we observe a striking pattern: although the individual contributions can be quite
large, the total sum turns out to be rather small. About 1/3 of the contribution from
the direct diagrams of Table 5.1 gets canceled by the corresponding ones with NN in-
teractions in the intermediate state. This is the same pattern as for the imaginary part
— the fact that the latter reduction in the magnitude is natural for processes of the type
NN → NNx was discussed in Ref. [157]. However, about 60 % of the contribution of
the direct diagrams of Table 5.1 is canceled by the corresponding crossed diagrams. As
we will see, part of this cancellation is quite natural. When comparing the direct and the
crossed diagrams we observe that the two–nucleon propagator in the intermediate state
of the former reads 1/(mπ − q2/M) (c.f. Eq. (5.4)), where q denotes the relevant loop
momentum. The corresponding expression for the latter reads 1/(−mπ − q2/M). Thus,
for small values of q, where the two–nucleon propagator becomes static, one obtains
1/mπ and −1/mπ respectively, and some contributions of direct and crossed diagrams,
specifically d2 and c2, will largely cancel. Note, this cancellation does not mean that
the full contribution of each pair of diagrams cancels. The numbers given in the table
also contain the contributions from large values of q, where such a cancellation does
not necessarily occur. Note also that it is the structure of the two–nucleon propagator
that is responsible for the smallness of diagram d1 as compared to its crossed partner
c1. In contrast to diagram c1, the two–nucleon propagator in d1 changes its sign when
passing through the point q2 = mπM whereas all other terms such as vertex functions,
pion propagators, etc., have the same sign throughout the region of integration. Thus,
a strong cancellation takes place for the latter and as a result the real part of diagram
d1 is much smaller than that of c1. The situation for diagram d3 is different to d1, since
also the S-wave deuteron wave function changes sign at q ∼ √

mπM . This leads to a
constructive interference of contributions from small and large momenta.

In Fig. 5.4 we show the diagrams that contribute to the electromagnetic piece of the
dispersive contributions. To evaluate the real part of the one–body contribution (dia-
gram (a)) we use the same prescription as used in Chapter 3 (see also Ref. [32]), namely
we subtract the term corresponding to the one–body operator at zero momentum. This
removes the leading divergence that in a full calculation needs to be absorbed into the
electromagnetic corrections of the πN scattering lengths (note, this quantity was recently
estimated in Ref. [158])#3. To ensure gauge invariance the πN → γN amplitude needs
to contain all diagrams shown in Fig. 5.5. However, since for the calculation of the pho-
tonic part of the dispersive correction the πN → γN amplitude contributes at threshold,
diagrams (c) and (d) are suppressed by one power of χ as compared to diagrams (a) and
(b). Thus, we did not take them into account in this leading order calculation. Because
of the same reasoning we neglect also the contributions to the πN → γN amplitude
from the ∆ resonance [117]. We calculated the full πd → γNN → πd amplitude in

#3A more precise calculation within QCD+QED requires a much more sophisticated framework, see
e.g. [159] — this is beyond the scope of this work.
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Coulomb gauge. The corresponding propagator is given, e.g., in Ref. [160]. The final
result is (−0.1+ i 1.4)×10−3 m−1

π . Again, the imaginary part of the photonic part of the
absorption correction, which is dominated by the imaginary part of the π−p scattering
length due to the process π−p → γn → π−p, is sufficiently close to the corresponding
experimental value of (1/4)Im (aexp

πd ) = (1.6± 0.2)× 10−3 m−1
π , whereas the real part is

negligible. This conclusion is consistent with that of Ref. [150], where the real part was
found to be −0.2× 10−3 m−1

π within a less complete calculation#4.

5.4 Discussion

We now compare our results for the hadronic contributions to other works. The dis-
persive corrections to πd scattering were investigated using Faddeev calculations in
Refs. [148, 149]. Since these works considered only those intermediate states that con-
tain at most one pion at a time, all direct diagrams were included. The authors found
−5.6(1.4)×10−3m−1

π as contribution to the real part — this number was also used in the
reanalysis of πd scattering in Ref. [150]. This is to be compared with −4.37× 10−3m−1

π

from our work, which agrees to the above result within the uncertainty. Note, the Fad-
deev equations produce amplitudes that are non–perturbative in the πN and the NN
interaction simultaneously. Thus, in addition to the direct terms as shown in Table 5.1
there are many more diagrams included like contributions where the NN–pair inter-
acts while there is a pion in flight. However, all those are of higher order in the chiral
expansion. The closeness of our result for the direct terms and the corresponding re-
sult of Ref. [148, 149] is thus an indication for the convergence of the chiral expansion.
Recall that our final result to the real part of aπd is smaller because of a cancellation
of the mentioned contribution with the crossed diagrams that were not included in
Refs. [148, 149].

In Ref. [140] the diagrams d1 of Table 5.1 were evaluated explicitly, besides many
others that are difficult to match to our amplitudes. In this work they contribute with
(0.24 + i6.0)× 10−3m−1

π to the πd scattering length. This number is to be compared to
our (0.49 + i6.68)×10−3m−1

π . In Ref. [140] a value of 3/2mπ was used at the πN → πN
vertex in contrast to the proper 2mπ as derived recently [81]. On the other hand,
Ref. [140] includes a (small) isoscalar piece into this vertex — chiral power counting
assigns a subleading order to this piece. However, the pattern of the result is the same:
a small real part is accompanied by a sizable imaginary part.

Our results for diagrams d2 and c2 agree to those of Ref. [108], once the same πNN
coupling constant is used.

Some of the diagrams in Table 1 where included in the phenomenological studies
of Refs. [140, 151]. In particular, the second diagrams of d3 and c3 contribute to the
so–called SP-interference term (a double scattering diagram, where the first πN →
πN transition is in an s–wave, whereas the second is p–wave). In those studies the
p–wave amplitude was taken from fits to πN data and parameterized as a strength
parameter times the square of the πN relative momentum. Indeed, what appears at

#4In Ref. [161] the corresponding integral was evaluated to be one order of magnitude larger; however,
the author assumes the photon energy q0 in the exchange to vanish instead of using the correct value
of q0 ' mπ.
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the lower nucleon can be regarded as the πN scattering in p–wave but in the boosted
frame. However, this treatment misses an important momentum dependence, since in
the boosted frame the nucleon propagator in the intermediate state contains a term q2/M
in the denominator. As a consequence the p–wave subamplitude in the phenomenological
studies grows quadratically with momentum, even for momenta q2 ∼ mπM and the full
matrix element scales with the wave function at the origin [140], which is theoretically
not controlled. On the other hand, in our case this subamplitude goes to a constant
leading to a controlled behaviour of the matrix element [83]. This is why those parts
of Refs. [140, 151] can not be matched to our results. Based on the arguments given,
we call for microscopic calculations, now possible within ChPT, instead of applying the
phenomenological techniques.

5.5 Summary of Chapter 5

In this chapter we presented a calculation of the absorptive and dispersive corrections to
the πd scattering length using ChPT. To our knowledge, the calculation provided here
is the first calculation of such kind within effective field theory. Especially we found for
the absorptive part

Im(aπd) = ((4.25± 1.2) + (1.4± 0.4))× 10−3 m−1
π (5.5)

to be compared with the experimental value of

Im (aexp
πd ) = ((4.7± 0.5) + (1.6± 0.2))× 10−3 m−1

π . (5.6)

In both Eq. (5.5) as well as Eq. (5.6) we give the hadronic and electromagnetic contribu-
tion separately. We thus find good agreement between theory and experiment for each
of the contributions. The theoretical uncertainty is estimated to be of order 2mπ/M in
both cases#5.

For the corresponding dispersive part we get

adisp
πd = −1.7× 10−3m−1

π =⇒ adisp
πd /Re (aexp

πd ) ∼ 6.5% . (5.7)

The number given for adisp
πd now contains both the hadronic as well as the electromagnetic

contribution and for Re(aexp
πd ) we used Eq. (5.1). This result is quite small given that

the imaginary part of the πd scattering length is about 1/4 of the real part. It is
difficult to provide a proper estimate for the uncertainty of adisp

πd , since it emerged from
a cancellation of individually sizable terms. The most naive method would be to use the
uncertainty of order 2mπ/M one has for, e.g., the sum of all direct diagrams to derive a
∆adisp

πd of around 1.4×10−3m−1
π , which corresponds to about 6 % of Re (aexp

πd ). However,
given that the operators that contribute to both direct and crossed diagrams are almost
the same (see Appendix E.4) and that part of the mentioned cancellations is a direct
consequence of kinematics, this number for ∆adisp

πd is probably too large. A reliable error

estimate for adisp
πd requires an explicit evaluation of the next order contributions.

#5The factor of 2 appears, because the πNN → NN and πNN → γNN transition operators — both
evaluated with an uncertainty of order mπ/M — appear twice in each amplitude.
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We showed that the smallness of the dispersive contribution to the real part of the πd
scattering length is a consequence of efficient cancellations amongst various, individually
sizable terms. To gain a better understanding of the real part of the pion-deuteron
scattering length, a complete calculation of all isospin-breaking corrections at N(N)LO
in the EFT with virtual photons is called for (as also stressed in [144]).



Summary and Outlook

We performed investigations of some reactions in few-nucleon systems involving pions
using techniques of effective field theory. We conclude with a summary of our achieve-
ments and an outlook.

1. In Chapter 2 we considered pion production in nucleon-nucleon collisions close to
threshold within the framework of ChPT. We survey the current situtation with theoret-
ical predictions of NN → NNπ. In particular, we review the most recent developments
of Hanhart and Kaiser [30], who applied in s-wave pion production the modified count-
ing that accounts for large transfer momenta of order of

√
Mmπ typical for this reaction

(in this case the expansion parameter is χπ =
√
mπ/M), and showed that there are

some cancellations between loops that start to enter the transition operator at NLO
(O(χπ))—see Section 2.2.

Within the modified expansion in powers of χπ and the corresponding counting
scheme we solved several problems concerning NN → NNπ risen recently in the liter-
ature, namely:

• We showed that the proper treatment of reducible and irreducible pieces for the
s-wave pion production in NN → NNπ leads to complete cancellation of all loop
diagrams at NLO. This solves the problem pointed out recently by G̊ardestig,
Elster, and Phillips [31], who found the loop diagram contribution to cause huge
off-shell dependence in the channel pp→ dπ+ when convoluted with deuteron wave
functions. We showed in our work that there are genuinely irreducible contribu-
tions arising from diagrams that seem naively reducible, and that these induced
contributions cancel completely the badly behaving loop contributions, thus solv-
ing the problem. We argue that this cancellation is necessary for the consistency
of the whole counting scheme since there are no counterterm at this order that
would have cured the situation otherwise;

• We showed that along with this cancellation of NLO loop contributions the proper
treatment of reducible and irreducible diagrams brings the leading isovector rescat-
tering vertex—the Weinberg–Tomozawa vertex—on-shell, which results in the en-
hancement of the corresponding contribution to the reaction amplitude by a factor
4/3 compared to what was used in the literature before. This enhancement leads
to a ChPT prediction of the total cross–section for pp → dπ+ in agreement with
experimental data—for the first time in the literature. The results of our calcula-
tion are shown in Fig. 2.8. We should notice that this result was obtained owing
to mechanisms completely different from those commonly used in phenomenology,

83
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e.g. from heavy meson exchanges. This difference could reveal itself in polarization
observables in the reaction pp→ pnπ+.

• We also calculated the p-wave pion production total cross–section for pp→ dπ+ up
to NLO, thus providing complete calculation of pp→ dπ+ up to NLO in expansion
in powers χπ. The results agree with the experimental data in a broad range of
energies—see Fig. 2.10;

• We conjecture that in order to deal with pion reactions in a nuclear environment
in the presence of time derivatives in vertices in general one has to calculate all
diagrams up to a given order, including those that are formally reducible. Then the
energy dependence in the vertices is used to cancel one of the nucleon propagators.
This produces an irreducible piece that is to be part of the transition operator as
well as a reducible piece, where, however, the energy dependence of the vertices is
replaced by the corresponding on–shell value. This conjecture, however, remains
to be made more accurate.

2. In Chapter 3 we calculated transition operator for the reaction γd → π+nn up
to χ5/2, where χ = mπ/M is the natural expansion parameter for processes, in which
typical momentum transfer is of order of mπ. We considered this reaction in following
aspects:

• One of the main goals of this work was to critically investigate various approxima-
tions that are commonly used in few-body calculations. In particular, we wanted
to better understand the role of the recoil corrections that are commonly taken into
account by expanding three-body πNN propagator in powers of χ (or neglected—
the so-called static approximation). However, it was recently shown by Baru et
al. [32] that the recoil corrections give non-analytic contribution in χ—they scale as√
χ, therefore they are missed if the propagator is expanded. The recoil contribu-

tion was also shown to be dependent on whether the intermediate nucleon-nucleon
S-wave state is Pauli blocked or allowed. Our numerical results confirm the sug-
gestion that for Pauli allowed intermediate states the static approximation is not
justified. In addition, in the case of Pauli allowed intermediate states one has also
to take into account the complete NN intermediate state interaction, which gives
significant contribution—cf. Table 3.2;

• We also aimed at high–accuracy calculation for γd → π+nn in view of possible
extraction of the neutron-neutron scattering length and the pion photoproduction
multipole strength. Therefore we considered all corrections to the transition oper-
ator up to order χ5/2—the fractional powers of χ came from the recoil corrections
that we took explicitly into account;

• We calculated the total cross–section for γd → π+nn for excess energies up to
20 MeV. We found the contribution of higher chiral orders as well as the contri-
bution of higher nucleon-nucleon and pion-nucleon partial waves to be small due
to eventual cancellations of individually rather sizable contributions. The only
parameter that enters our calculation is E0+—the leading production multipole.
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We took the value of E0+ from a ChPT calculation up to χ3 of Ref [33] (their
value agrees with recent experimental data [116]). The results of our calculation
shown in Fig. 3.8 demonstrate excellent agreement with the experimental data.
We should mention that the previous phenomenological calculations in the litera-
ture (see, e.g. Ref. [23] and references therein) correspond to our calculation up to
NLO. One can see from Fig. 3.8 that the NLO curve systematically underestimates
the data.

3. In Chapter 4 we give arguments in favor of the reaction γd → π+nn as a good
tool to extract the neutron-neutron scattering length ann from experimental data. The
data on the reaction γd → π+nn that would allow for the extraction of ann do not
exist at present; however, experiments of such kind are being actively discussed, for
instance, the free-electron laser–based High Intensity Gamma ray Source (HI~γS) [162]
at TUNL is planned to be able to reach necessary energies after upgrade. We used the
results of Chapter 3 to calculate the transition operator for γd → π+nn. In addition,
we employed the NN wave functions evaluated in the ChPT framework in order to
have a fully consistent calculation and allow for a reliable uncertainty estimate. The
wave functions we used correspond to the N2LO (i.e. up to terms O(χ2)) calculations
developed in Refs. [18, 34]. The object of our analysis was the five–fold differential
cross–section for the reaction γd→ π+nn. The results of our investigation were:

• We showed that at certain angles, at which the quasi-free pion production is sup-
pressed, the effect of high chiral orders (NLO (χ), N2LO (χ2), χ5/2) on the shape
of the momentum distribution of the cross-section is very marginal. At the same
time a large sensitivity of the momentum spectra to the value of ann was observed;

• We showed that taking into account only the low momenta region (up to momenta
about 30 MeV, cf. Fig. 4.4) when extracting the value of ann which corresponds
to the region of dominating final-state neutron-neutron interaction, allows for sig-
nificant reduction of the theoretical uncertainty of ann;

• We showed that for a proper choice of kinematics and momenta region to be
considered, the theoretical uncertainty ∆ann for the extraction of ann does not
exceed 0.1 fm. The estimate of uncertainty was performed very conservatively
by evaluating the effect of calculated NLO and N2LO+χ5/2 on the momentum
spectra in the five-fold differential cross–section. This estimate, however, can be
significantly improved when a consistent calculation for γd → π+nn up to N3LO
is done. For instance, if we estimate the uncertainty as due only to the different
wave functions due to variation of cutoffs—which should be an N3LO effect—the
resulting number for ∆ann decreases by an order of magnitude. We should stress
that the systematic and reliable study of the theoretical uncertainty was possible
only within our full calculation up to order χ5/2 in ChPT;

• In Appendix E.2.4 we provided a simple analytic expression for the shape of the
differential cross-section we consider. This expression can be used in the Monte-
Carlo simulations for the analysis of possible experimental setup.
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4. In Chapter 5 we presented for the first time a calculation of dispersive and absorptive
corrections to the pion-deuteron scattering length aπd using ChPT. Since aπd is a sum of
doubled isoscalar pion-nucleon scattering length a+ and few-body corrections, a precise
knowledge of these latter would allow to extract a+, which is a fundamental quantity of
low-energy hadron physics, from experimental data on pion-deuteron scattering.

The dispersive and absorptive corrections to aπd are closely related to the reactions
NN → NNπ and γd→ πNN . In fact, the absorptive correction, which is nothing else
as imaginary part of aπd, is related to total cross-section of these reactions via optical
theorem. This means, in particular, that the modified power counting that is used in
NN → NNπ in order to account for large momentum transfer should be used here as
well. Therefore we applied the developments of Chapter 2 to calculate the hadronic
corrections to aπd, which resulted in the following:

• We showed that the power counting for dispersive and absorptive corrections based
on the counting for the reaction NN → NNπ gives for these corrections a result
of order χ3/2. Note that at order χ2 a 4N2π counterterm starts to contribute,
therefore the limit of theoretical accuracy for aπd is of order of χ2. Since the
dispersive and absorptive corrections being considered contribute at order χ3/2,
they have to be taken into account;

• We showed that crossed diagrams have to be taken into account along with direct
ones, as explained in Section 5.2, which is necessary for consistent treatment. In
particular, power counting gives the same estimate both for crossed and direct
diagrams. In addition, there is a cancellation of low-momenta (lower or of order of
mπ) contributions between direct and crossed diagrams, which makes the momenta
of order of

√
Mmπ to play the most prominent role—in agreement to what we have

found for NN → NNπ;

• We also calculated the electromagnetic part of the dispersive and absorptive cor-
rections to aπd stemming from the process πd → γNN → πd —it enters at the
same order as the hadronic part. Approximately 1/4 of the absorptive correction
to aπd is known to be due to the electromagnetic process;

• The numerical results we obtained for the corrections to aπd show up the following
properties (see Table 5.1 and Section 5.3):

The result for absorptive correction, i.e. for the imaginary part of aπd, is in
agreement with the experimental results (it is not surprizing since we achieved
theoretical cross–section for pp→ dπ+ in agreement with experimental data—see
Chapter 2);

Due to cancellation of individually sizable terms, the dispersive correction to
aπd is significantly smaller than it was obtained in previous works—in fact, the
corresponding value is compatible with zero within our uncertainty (although this
uncertainty is probably too large as explained in Section 5.5).

It should be mentioned here that our calculation differs from earlier phenomeno-
logical calculations in two very important aspects. First, along with the direct
diagram that were usually included say, in Faddeev type calculations, we included
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crossed diagrams. The total answer appeared to be smaller than in previous works
that did not include the crossed diagrams due to the cancellation, whereas our an-
swer for the direct contributions only agrees nicely with the results of Faddeev-type
calculations. This at the same time is an indication for the convergence of the chi-
ral expansion, since there are many more diagrams of higher chiral orders that
are included in the Faddeev calculations. Second, there are double–scattering di-
agrams of a particular kind (the so-called SP -interference), where one of the πN
rescatterings is in an s-wave, and the second is in a p-wave, as well as the so-called
boost correction diagrams. We showed that the proper treatment of such diagrams
should include the full momentum-dependent (non-static) nucleon propagator. At
large values of momenta the momentum dependence in the propagator suppresses
the quadratic growth of p-wave πN rescattering amplitude. In this case the result
is well-behavied in the sense its wave function dependence is small contrary to
the usual phenomenology calculations where the propagators are considered static
whereas the quadratically growing p-wave amplitude is retained. This growth
makes the full result to be proportional to the wave function at origin for the
SP -interference terms and to the expectation value of the kinetic energy for the
boost correction terms—both of which are off–shell quantities.

5. We developed a diagram technique for calculations of various processes in a two–
baryon system based on expansion of spin operators in a series of spherical tensors.
This technique incorporates in a very natural way the baryon–baryon interaction, and
drastically simplifies algebraic manipulations needed in order to calculate matrix ele-
ments. The formal developments of this technique are contained in Appendices B, C.
In this our work we applied this technique for NN and N∆ systems, however, it can be
straightforwardly generalized to various other two–baryon systems.

6. Further developments of our achievements presented in this work should include the
following aspects:

• The calculation for the reaction NN → NNπ up to N2LO in the expansion in pow-
ers of χπ is definitely called for. There are many accurate data on various channels
of this reaction, unpolarized as well as polarized. Therefore this calculation would
deepen our understanding of low-energy pion and nucleon dynamics. In particular,
it would be interesting to see whether all these data can be well described within
ChPT framework. It should be mentioned that the number of counterterms that
contribute to NN → NNπ at N2LO is quite low (two counterterms for s-wave and
one for p-wave pion production). This calculation would be also a good starting
point for studying isospin violation in pn→ dπ+ and dd→ απ0;

• A calculation for the reaction γd → π+nn up to N3LO could provide better esti-
mate for the uncertainty of ann, if needed;

• On the basis of our calculation, a possibility to determine the value of E0+ from
γd→ π+nn could be discussed;
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• Concerning the pion–deutron scattering length issue, one should calculate contri-
butions to aπd that come from ∆(1232), taking the isobar explicitly into account.
The treatment of Delta as an explicit degree of freedom is necessary since there
are contributions from Delta to the SP interference and to the boost corrections
that have the same properties as those stemming solely from nucleons—see Sec-
tion 5.4. Hence the momentum dependence of the Delta propagator should not be
neglected—in full analogy to our result for nucleons. These diagrams containing
Delta together with the purely nucleonic dispersive and absorptive corerctions ex-
haust the set of diagrams that contribute at order χ3/2. Thus, the calculation of
these corrections would complete the calculation of aπd up to χ3/2.
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a very fruitful team-work that led to the results presented here, and I would like to
express my desire for this work to continue.

I would like to thank Prof. Dr. Siegfried Krewald, Dr. Adreas Nogga, Dr. Alexander
Sibirtsev, Prof. Dr. Nikolay Nikolaev, and other members of IKP, Jülich, for creating a
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Appendix A

Lagrangian Densities

In this appendix we present the Lagrangian densities that are relevant for our calcula-
tions, as well as the corresponding vertices and propagators.

The reaction NN → NNπ and corrections to aπd

The appropriate Lagrangian density, constructed to be consistent with the symmetries
of the underlying more fundamental theory (in this case QCD) and ordered according
to a particular counting scheme, is the starting point for our research. Omitting terms
that do not contribute to the order we consider here, we therefore have for the relevant
terms of the leading and next–to–leading order Lagrangian in sigma gauge for the pion
field [14, 15]

L=
1

2
(∂µπ)2−1

2
m2

ππ2+
1

6f 2
π

[
(π · ∂µπ)2−π2(∂µπ)2

]

+N †[i∂0− 1

4f 2
π

τ · (π × π̇)]N+
gA

2fπ

N †τ · ~σ ·
(
~∇π+

1

2f 2
π

π(π · ~∇π)

)
N

+Ψ†
∆[i∂0−δ]Ψ∆+

hA

2fπ

[N †(T · ~S · ~∇π)Ψ∆+h.c.]+ · · · (A.1)

+
1

2M
N †~∇2N+

1

2M∆

Ψ†
∆
~∇2Ψ∆+

1

8Mf 2
π

(iN †τ · (π × ~∇π) · ~∇N+h.c.)

− gA

4Mfπ

[iN †τ · π̇~σ · ~∇N+h.c.]− hA

2M∆fπ

[iN †T · π̇~S · ~∇Ψ∆+h.c.] , (A.2)

where fπ denotes the pion decay constant in the chiral limit, gA is the axial–vector
coupling of the nucleon, hA is the ∆Nπ coupling, δ = M∆ −M is the Delta–nucleon
mass difference, and ~S and T are the transition spin and isospin matrices; explicit
form of this matrices is given below in this appendix. The dots symbolize that what
is shown are only those terms that are relevant for the calculations of the reactions
NN → NNπ and dispersive and absorptive corrections to aπd. As demanded by the
heavy baryon formalism, the baryon fields N and Ψ∆ are the velocity–projected pieces
of the corresponding relativistic fields, e.g. N = 1/2(1+½v)ψ, where vµ = (1, 0, 0, 0)
denotes the nucleon 4–velocity. The corresponding vertex functions that do not contain
Deltas can be read off directly from Appendix A of Ref. [11]. Note, however, that we
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use different normalizations of spinors, namely χ†χ = 1, which results in additional
factors of 2M (2

√
MM∆) in each nucleon vertex and 1/2M in the nucleon propagators,

compared to Ref. [11]. Note also that we keep the baryon kinetic term in the propaga-
tor if the diagram we are considering is reducible—see the corresponding discussions in
Chapter 2. For the sake of completeness we give below explicit expressions for the ver-
tex functions that contain Delta and Delta propagators. The notations are: ε (~p) is the
energy (momentum) of Delta, and ω (~q) is the energy (momentum) of the outgoing pion.

∆ propagator
i

2M(ε− δ)− p2 + iγ
.

N∆π vertex

−hA

√
MM∆

F
T a(~S · ~q ) +

hA ω

F

√
M

M∆

T a(~S · ~p ).

The matrices Si have the following form:

S1=

(
− 1√

2
0 1√

6
0

0 − 1√
6

0 1√
2

)
, S2=

(
− i√

2
0 − i√

6
0

0 − i√
6

0 − i√
2

)
, S3=


0

√
2
3

0 0

0 0
√

2
3

0


 ,

(A.3)

and the same form for Ti. The matrices ~S and T are normalized such that

SiS
†
j =

1

3
(2δij − iεijkσk) , TiT

†
j =

1

3
(2δij − iεijkτk) . (A.4)

They have the following properties:

εijkσiSj = −i Sk; εijkS
†
jσi = −i S†k; (A.5)

σiSi = 0; S†i σi = 0. (A.6)

The reaction γd → π+nn and electromagnetic correction to aπd

The Lagrangian density relevant for the reaction γd→ π+nn is obtained by gauging the
pion gradient term, nucleon gradient term and pion-nucleon axial coupling, and adding
the interaction of electromagnetic field strength with anomalous magnetic moment of
the nucleon. The expression for the resulting Lagrangian density reads:

LγπN =− egA

2fπ

εab3πaN
†(~σ · ~A) τbN

− e

4M

(
iN †(~σ · ~A)(~σ · ~∇)(1 + τ3)N + h.c.

)
− e

2
(1 + τ3)A0

+
e

4M
N †[~∇× ~A] · ~σ [κp(1 + τ3) + κn(1− τ3)]N

+
1

2
e εab3A

µ(πa∂µπb − πb∂µπa),

(A.7)
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where Aµ = (A0, ~A) is the vector potential of electromagnetic field, e is the electric charge
of proton, κp = 1.79 and κn = −1.93 are proton and neutron anomalous magnetic
moments, respectively. The first line of this equation—the so-called Kroll-Ruderman
term [113]—corresponds to the γπN̄N vertex, and the third line describes the elec-
tromagnetic interaction of nucleon’s anomalous magnetic momenta. We neglected the
terms of higher orders in 1/M as well as in e. These expressions for LγπN are written in

the Coulomb gauge ~∇A = 0. The corresponding vertices are also given in Appendix A
of Ref. [11]. Notice that we do not consider analogous interactions of pions and photons
with Delta since they are of higher orders in our expansion—cf. Chapter 3.

The terms relevant for the calculation of the photonic part of the dispersive and
absorptive corrections to aπd are given by the first and the last lines of this equation.



Appendix B

Diagram Technique

In this appendix we provide the rules of diagram technique we use for evaluation of
amplitudes. The technique we use is based on ideas formulated in Refs. [82, 108]. This
technique appeared to be very useful in calculations of different reactions in two-baryon
system where the initial or final pair of nucleons is in a state with certain values of total
angular momentum, orbital angular momentum, and total spin, i.e. in a certain JLS
state. The main feature of this technique is that it embeds the natural description of
the NN interaction in terms of JLS matrix elements of the NN T -matrix.

B.1 Application of projectors to NN system

B.1.1 Projector expansion of the NN T -matrix

To derive the diagram technique, we will assume that the nucleons are treated non-
relativistically—this assumption is natural when describing low-energy NN interactions.
The matrix elements of the NN T matrix between the states with given momenta ~p, ~p ′

and projections of spins of initial and final nucleons λ1,2, λ1′,2′ (we suppress the energy
dependence of T for shortness) can be written in the following form:

〈 ~p ′λ′1λ′2|T |λ1λ2~p 〉 =
∑
ij

χ†1′ Ôi χ1 Tij(~p, ~p
′)χ†2′ Ôj χ2, (B.1)

where χ with corresponding indices stand for nucleon spinors, Ôi, i = 0, 1, 2, 3 are four
2×2 matrices that make the basis in the linear space of 2×2 matrices, and Tij(~p, ~p

′) are

functions of initial and final momenta. We choose Ô0 = 1/
√

2, Ôi = σi/
√

2, i = 1, 2, 3,
where 1 stands for 2 × 2 unit matrix and σi for Pauli matrices. The form of matrix
elements as in Eq. (B.1) is automatically obtained from (time-ordered) expansion of S-
matrix and subsequent solution of the Lippmann-Schwinger equation (which is needed to
sum up all reducible graphs). The expansion for the matrix element given by Eq. (B.1) is
schematically shown in Fig. B.1.1. The expressions like χ†λ′ Ô χλ correspond to nucleonic
lines going through the diagram. In order to proceed let us apply to the matrix elements
in Eq. (B.1) the Fierz transformation as follows:

χ†1′ Ôi χ1 χ
†
2′ Ôj χ2 =

∑

kl

Cijkl χ
†
1′ Ôk χ

c
2′ χ

c †
2 Ôl χ1, (B.2)
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= + + + + + . . .T

Figure B.1: Series of the diagrams corresponding to the NN T matrix. Solid lined
denote nucleons, dashed lines denote mesons (pions etc.,), black circles stand for various
vertices.

with χc = σ2χ
∗ being the charge conjugated spinors. The transformation coefficients

Cijkl are given by

Cijkl = −Tr
(
ÔiÔlÔ

c
jÔk

)
, (B.3)

where Ôc
j = −σ2Ô

t
jσ2 is a charge conjugated matrix (Ôt

j stands for transposed matrix).
Using Eq. (B.2) we can rewrite the expression for matrix elements of the NN T matrix
as

〈 ~p ′λ′1λ′2|T |λ1λ2~p 〉 =
∑

kl

χ†1′ Ôk χ
c
2′ T̃kl(~p, ~p

′)χc †
2 Ôl χ1,

T̃kl(~p, ~p
′) =

∑
ij

CijklTij(~p, ~p
′). (B.4)

Using the technique of projectors developed in Appendix C, we can write down the
following expansion of 〈 ~p ′λ′1λ′2|T |λ1λ2~p 〉:

〈 ~p ′λ′1λ′2|T |λ1λ2~p 〉=
∑

JLSL′S′

1

4π
χc †

2 PJLS
ij...m(~n)χ1 T

JLS
L′S′(p, p

′)χ†1′ PJL′S′
ij...m (~n ′)† χc

2′ , (B.5)

where ~n = ~p/p, ~n ′ = ~p ′/p′, and T JLS
L′S′(p, p

′) are defined by

T JLS
L′S′(p, p

′) =
4π

2J + 1

∑

kl

∫
dΩ~n

4π

dΩ~n ′

4π
T̃kl(~p, ~p

′) Tr
(
PJLS

ij...m(~n)†Ôl

)
Tr

(
PJL′S′

ij...m (~n ′)Ôk

)
.

(B.6)
We will now justify the expansion of Eq. (B.5) and show that

T JLS
L′S′(p, p

′) = 〈JL′S ′|T |JLS〉 , (B.7)

i.e. T JLS
L′S′(p, p

′) is nothing else but the matrix element of the NN T matrix in the JLS
basis, the relation of which to the on-shell phase shifts is given in Ref. [5]. We will give
here this relation only for the uncoupled partial waves, for which it reads

T JLS
LS (p, p) = − 2

πpM
sin δJLS e

iδJLS . (B.8)

Let us establish the expansion. Consider a single term that enters the sum in the first
line of Eq. (B.4). We can rewrite it, using Eq. (C.30), in the following form:

χ†1′ Ôk χ
c
2′ T̃kl(~p, ~p

′)χc †
2 Ôl χ1 =

= χ†1′ Ôk χ
c
2′

∑
JLS

χc †
2 PJLS

ij...m(~n)χ1

∫
dΩ~n

4π
Tr

(
PJLS

ij...m(~n)
†
Ôl

)
T̃kl(~p, ~p

′),
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where we applied projector expansion separately to the matrix F (~n) = ÔlT̃kl(~p, ~p
′).

Applying the expansion in hermitian conjugate projectors (which means to replace in

Eq. (C.30) PJLS by PJLS† and vice versa) to the matrix F̃ (~n′)=Ôk

∫
dΩ~nT̃kl(~p, ~p

′)/(4π),
we get

χ†1′ Ôk χ
c
2′ T̃kl(~p, ~p

′)χc †
2 Ôl χ1 =

=
∑

J ′L′S′

∑
JLS

χc †
2 PJLS

ij...m(~n)χ1 χ
†
1′ PJ ′L′S′

i′j′...m′(~n′)χc
2′

×
∫
dΩ~n

4π

dΩ~n′

4π
Tr

(
PJLS

ij...m(~n)
†
Ôl

)
T̃kl(~p, ~p

′) Tr
(
PJ ′L′S′

i′j′...m′(~n′) Ôk

)
.

The expansion of the remainder in the hermitian conjugate projectors is dictated by
convenience as will be discussed below in this appendix—see the section on inclusion of
the Delta isobar. Since the matrix elements should be scalars with respect to SO(3), all
tensor indices have to be contracted after the integration over the angles is performed.
From the other hand, the integral over the two solid angles in this equation can have
the only possible tensor structure that is compatible with symmetries of projectors and
that leads to a scalar expression, namely

2δJJ ′

J2 − J + 2
(δii′δjj′ . . . δmm′ + δji′δij′ . . . δmm′ + further permutations− trace),

where permutations are needed to symmetrize the expression with respect to all non-
hatched and hatched indices and trace has to be subtracted since the tensors PJLS are
traceless. This structure arises due to the facts that the integrand depends only on
vectors ~n and ~n′, and the projectors are symmetric with respect to their indices and
give zero when any two indices of a projector are contracted with each other. The factor
2/(J2 − J + 2) accounts for the number of permutations. We also see that the total
angular momentum is conserved.
Inserting this tensor structure into the expansion we consider and summing the result
over k and l, we finally get the expansion for matrix elements of the NN T matrix given
by Eqs. (B.5), (B.6).

We will now turn to Equation (B.7). Let us prove this equation for S = S ′ = 1;
the proof for all other values of S and S ′ is completely analogous. Firstly we rewrite
Eq. (B.6) in the following form:

T JL1
L′1(p, p

′) =
4π

2J + 1

∑

λ1λ2λ1′λ2′

∑

kl

∫
dΩ~n

4π

dΩ~n ′

4π
T̃kl(~p, ~p

′)
(
χ†1PJL1

ij...m(~n)†χc
2 χ

c †
2 Ôlχ1

)

×
(
χc †

2′ PJL′1
ij...m(~n ′)χ1′ χ

†
1′Ôkχ

c
2′

)
.

Making use of Eqs. (C.10), (C.26), we get

T JL1
L′1(p, p

′) =
4π

2J + 1

∑

λ1λ2λ1′λ2′

∑

kl

∑
Jz

∫
dΩ~n√

4π

dΩ~n ′√
4π
T̃kl(~p, ~p

′)
(
χ†1Ψ

†
JL1Jz

(~n)χc
2 χ

c †
2 Ôlχ1

)

×
(
χc †

2′ ΨJL′1Jz(~n ′)χ1′ χ
†
1′Ôkχ

c
2′

)
,
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where
ΨJL1Jz(~n) =

∑
Mm

CJJz
LM1mYLM(~n)Sm

with S±1 = (σ1∓ iσ2)/2, S0 = σ3/
√

2 being the linear combinations of the basis spin op-
erators σi/

√
2, and analogously for ΨJL′1Jz(~n′). These linear combinations Sm transform

as vectors having certain polarizations m along z axis (cf. Eq. (C.22)). Here CJJz
LM1m are

the Clebsch-Gordan coefficients. Using now the fact that

χ†1S†mχc
2 = i C1m

1
2
λ1

1
2
λ2
, (B.9)

we obtain for T JL1
L′1(p, p

′), recalling the definition of Eq. (B.4):

T JL1
L′1(p, p

′) =
4π

2J + 1

∑

λ1λ2λ1′λ2′

∑

kl

∑

MmM ′m′

∑
Jz

∫
dΩ~n√

4π

dΩ~n ′√
4π
T̃kl(~p, ~p

′)χ†1′Ôkχ
c
2′ χ

c †
2 Ôlχ1

× C1m
1
2
λ1

1
2
λ2
C1m′

1
2
λ1′

1
2
λ2′
CJJz

LM1mCJJz

L′M ′1m′Y
∗
LM(~n)YL′M ′(~n′)

=
4π

2J + 1

∑

λ1λ2λ1′λ2′

∑
Jz

∑

MmM ′m′
C1m

1
2
λ1

1
2
λ2
C1m′

1
2
λ1′

1
2
λ2′
CJJz

LM1mCJJz

L′M ′1m′

×
∫

dΩ~n√
4π

dΩ~n ′√
4π

〈L′M ′|~n′〉 〈~p ′λ′1λ′2|T | ~pλ1λ2〉 〈~n|LM〉 ;

since
∫
dΩ~n | ~p 〉 〈~n|LM〉 = |p, LM〉, we have after summation of Clebsch-Gordan coeffi-

cients:

T JL1
L′1(p, p

′) =
1

(2J + 1)

∑
Jz

〈JL′1Jz p
′|T |JL1Jz p〉 = 〈JL′1|T |JL1〉 ,

where we used the fact that the matrix elements do not depend on Jz. The proof is
thus completed. As we mentioned before, the proof for other possible values of S and
S ′ is completely analogous. The only thing that is remaining to be shown is that the
normalization of T JL1

L′1(p, p
′) corresponds to that of Ref. [5]. In order to do this, one has

to perform Fierz transformation of the Lippmann-Schwinger equation for T which reads

〈~pλ1λ2|T |~p ′λ1′λ2′〉 = 〈~pλ1λ2|V |~p ′λ1′λ2′〉+
∑

λ3,λ4

∫
d3q

〈~pλ1λ2|V |~qλ3λ4〉 〈~qλ3λ4|T |~p ′λ1′λ2′〉
E − q2/M + iγ

,

and show that the projected equation coincides with the corresponding equation used
in Ref. [5].

Note that all formalism applied in this section to spin-angular matrix elements of
NN T matrix is applied to its isospin part without significant changes. In particular,
one has to apply Fierz transformation analogous to Eq. (B.2) also to isospinors.

B.1.2 Projector expansion of matrix elements

Now we are going to proceed and write an expansion for matrix elements for various
processes in the NN system. In doing so we will use the hybrid approach, that is
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T T

Figure B.2: Typical diagram for πNN rescattering.

the matrix elements are obtained as a result of convolution of the transition operator
with NN T matrix. We suppose the transition operator to be obtained from some
appropriate Lagrangian density. A typical diagram representing pion rescattering is
shown in Fig. B.2. The matrix element corresponding to this diagram can be written as

Mfi =
∑

λ3λ4

∑

λ5λ6

∫
d3q

(2π)3

d3`

(2π)3

〈~pλ1λ2|T |λ3λ4~q 〉 〈~qλ3λ4|A|λ5λ6
~̀〉〈~̀λ5λ6|T |λ1′λ2′~p

′〉
q2 − k2 − iγ

,

(B.10)
where A is the transition operator. The overall normalization of this matrix element is
not important for us now—we will establish all normalizations later.

Expanding the matrix elements of T as given by Eq. (B.5) and recalling that the
matrix elements of A obtained from the Lagrangian have the form

〈~qλ3λ4|A|λ5λ6
~̀〉 = χ†5Â1(~q, ~̀)χ3 χ

†
6Â2(~q, ~̀)χ4,

where A1,2 are elementary vertices that describe the meson-nucleon interaction, we get
the following expression for the matrix element Mfi:

Mfi =
∑

{JLS}

∑

λ3λ4

∑

λ5λ6

∫
d3q

(2π)3

d3`

(2π)3

χ†5Â1(~q, ~̀)χ3 χ
†
6Â2(~q, ~̀)χ4

q2 − k2 − iγ

× χc †
2 PJLS

ij...m(~n)χ1 T
JLS
L′S′(p, q)χ

†
3 PJL′S′

ij...m (~nq)
† χc

4

× χc †
6 PJ ′L′′S′′

i′j′...m′ (~n`)χ5 T
J ′L′′S′′
L′′′S′′′(`, p

′)χ†1′ PJ ′L′′′S′′′
i′j′...m′ (~n ′)† χc

2′ ,

(B.11)

where {JLS} denotes the whole set of spins and angular momenta, and ~n’s stand for
the corresponding unit vectors. Notice the appearance of χ’s in this equation. Recalling
now the definition for charged conjugate spinors and summing over polarizations, we
obtain

Mfi = −
∑

{JLS}
χc †

2 PJLS
ij...m(~n)χ1 χ

†
1′ PJ ′L′′′S′′′

i′j′...m′ (~n ′)† χc
2′

×
∫

d3q

(2π)3

d3`

(2π)3
Tr

(
PJ ′L′′S′′

i′j′...m′ (~n`)Â1(~q, ~̀)PJL′S′
ij...m (~nq)

† Âc
2(~q,

~̀)
)

× T JLS
L′S′(p, q)T

J ′L′′S′′
L′′′S′′′(`, p

′)
q2 − k2 − iγ

,

(B.12)

where Âc stands for charge conjugated operator. Analogous expression holds for isospin
part of this matrix elements.
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Using the developments presented in this appendix, this formula is straightforwardly
generalized in the form of the following set of rules:

1. When there is a convolution with NN interaction vertices, we expand the NN
T matrix in series of spin-angular and isospin projectors;

2. Due to the Fierz transformation that makes use of charge conjugated spinors, one
of the two nucleon lines becomes charge conjugated, i.e. the product of one-nucleon
operators that describe interaction of one of the nucleons with other particles
should be charge conjugated;

3. The sum over polarizations of intermediate nucleons turns into a trace over the
product of all one-nucleon operators from usual nucleon line times one projector
times the charge conjugated product of one-nucleon operators of charge conjugated
nucleon line times second projector hermitian conjugated—the spin-isospin loop;

4. The external nucleon spinors and isospinors are contracted with external pro-
jectors, spinors and isospinors of one nucleon in each pair of either incoming or
outgoing nucleons become charge conjugated;

5. If there is only one NN interaction vertex corresponding either to the initial or to
the final state interaction, the statements given above should be changed: in this
case there is no trace over the spin and isospin loop. All other statements hold
without changes.

The inclusion of Delta isobar into these rules is straightforward. We restrict ourselves to
N∆ system, since we do not consider ∆∆ states. The matrix elements of N∆ T matrix
are expanded in series of N∆ projectors defined in Appendix C. The development of
the analog of Eqs.(B.5)–(B.7) for the N∆ system proceeds just as for the NN system.
The corresponding Fierz transformation is also completely analogous to that for the
NN system, however is more tedious because of more complicated spin structure of N∆
system. In this case it is convenient to apply Fierz transformation to the corresponding
matrix elements in such a way that only nucleon spinors and isospinors get charge
conjugated. This saves from dealing with charge conjugated matrices Si that couple
N and ∆. In other words, this means that if we have N∆ interaction vertices being
convoluted with some transition operator, we always choose the Delta fermion line to
be not conjugated.
This choice corresponds to the expansion of the T matrix partially in hermitian conjugate
projectors. These hermitian conjugate projectors contain information about the spin-
angular properties of the final two-baryon system. The projectors defined in Appendix C
are constructed in such a way that after expansion the projectors that correspond to
final Delta have to be multiplied by hermitian conjugated Delta spinors χ†∆ rather than
by charge conjugated χc

∆.

B.2 Rules of the diagram technique

Now we are at the position to formulate the rules of diagram technique. We start
from usual Feynman rules and perform non-relativistic expansion of nucleon and Delta
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vertices and propagators. These rules are supplemented by the projector expansion of
NN and N∆ interaction as discussed above in this appendix.

We work with NN and N∆ matrices M which are related to T via

M = −8π2√ε1ε2ε3ε4 T,

rather than directly with T matrix. Here, εi is the energy of i-th particle. In the non-
relativistic case which we are considering the energies equal to masses and this relation
transforms into

M = −8π2
√
M1M2M3M4 T. (B.13)

However, this relation between M and T is valid only for on-shell particles. The relation
between these two operators off-shell is not fixed, although one could extrapolate the
energies by the usual formula ε =

√
p2 +M2, or use the fourth component of the four-

momentum, and so on. The only requirement for the recipe how to connectM and T off-
shell is that the on-shell relation should remain. In this respect this relation between M
and T is something formalism–dependent. We will use for our non-relativistic treatment
of baryons the non-relativistic relation between M and T given by Eq. (B.13).

We modify the usual Feynman rules only in their part that deals with nucleons (and
Deltas). The rules that account for pions, photons etc. remain unchanged. Therefore we
provide here only the changed rules for nucleons, Deltas, and their interactions amongst
themselves and with bosons:

1. a) One of the nucleon lines (free or containing N interaction with bosons) incom-
ing into and one going out from a diagram should be made charge-conjugated
(CC). The choice of charge conjugated lines should be the same for all di-
agrams contributing to a given process. This rule origins from Fierz trans-
formation of the full transition amplitude. This amplitude is the sum of all
diagrams with identical external nucleon legs. Therefore Fierz transforma-
tion makes one of the incoming and one of the outgoing nucleon lines charge
conjugated and also fixes the choice of the charge conjugated external nu-
cleon lines simultaneously for all diagrams that contribute to this particular
process;

b) One in the each pair of internal nucleon lines, i.e. of the pair of nucleon
lines that connect two neighbouring NN interaction vertices, should be made
charge-conjugated. In this case the choice is arbitrary since we sum over all
internal spin and isospin states;

c) In case there are N∆ states, only nucleon lines should be chosen as charge
conjugated. This is always possible since we consider only NN and N∆
states;

2. a) An external incoming nucleon leg (CC nucleon leg) corresponds to spinor χ
(hermitian conjugate CC spinor (χc)†) and isospinor ϕ (hermitian conjugate
CC isospinor (ϕc)†;

b) An external outgoing nucleon leg (CC nucleon leg) corresponds to hermi-
tian conjugated nucleon spinor χ† (CC spinor χc) and hermitian conjugated
isospinor ϕ† (CC isospinor ϕc);
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c) An external incoming (outgoing) Delta leg corresponds to Delta spinor χ∆

(hermitian conjugate Delta spinor χ†∆) and isospinor ϕ∆ (hermitian conjugate
isospinor ϕ†∆);

3. An NN → NN vertex corresponds to a factor

iMNN(~p, ~p ′, E) =
∑

TT ′
IT

α IT ′ †
α

∑

JLSL′S′
PJLS

ij...k(p̂)
i

2
MJLS

L′S′(p, p
′, E)PJL′S′

ij...k (p̂′)†,

where PJLS (IT ) are spin-angular (isospin) projectors defined in Appendix C, and
MJLS

L′S′(p, p
′, E) are matrix elements of NN M matrix in JLS basis:

MJLS
L′S′(p, p

′, E) = 〈JL′S ′|M|JLS〉 .
In this equation the formal sum is over all values of total isospin T , total angular
momentum J and initial (final) spin S and angular momentum L (S ′ and L′).
However in practice most often only a few partial waves are relevant. The vectors
p̂ (p̂′) are unit vectors of the initial (final) relative momenta, whereas E is the
center-of-mass frame energy of two nucleons. The choice of the sign of the relative
momenta should be identical for initial and final two-nucleon systems, i.e. we use
either (~p1 − ~p2)/2 and (~p1′ − ~p2′)/2 or these with both opposite signs. Different
choices would lead to change of the signs of the projectors with odd angular mo-
menta and simultaneous change of the signs of the corresponding MJLS

L′S′ , therefore
the total result would not change. However, it is more convenient to adopt same
conventions for all NN states. The factor 1/2 in the front of MJLS

L′S′ comes from
taking into account identical particles [163];

4. An NN → d vertex corresponds to a factor

iMNNd(~p, E) = I0
∑

L=0,2

P1L1
i (p̂)

i√
2
ψL(p)εd ∗i 4

√
M(p2 + α2),

where ~ε d is the deuteron polarization vector, and ψL(p) are the components of the
deuteron wave function corresponding to angular momentum L. The factor 1/

√
2

is again a consequence of presence of identical particles. The factor 4
√
M(p2 +α2),

where α = MED with ED being the deuteron binding energy, is needed for the
correct normalization as will be discussed below. The vertex corresponding to the
process d→ NN is the hermitian conjugate of the one for NN → d;

5. An NN → N∆ vertex corresponds to the following factor:

iMN∆(~p, ~p ′, E) =
∑

TT ′
IT

α IT ′ †
N∆ α

∑

JLSL′S′
PJLS

ij...k(p̂)
i√
2
MJLS

L′S′(p, p
′, E)PJL′S′

N∆ ij...k(p̂′)†

where PJL′S′
N∆ (IN∆) are spin-angular (isospin) projectors for N∆ system defined

in Appendix C, and MJLS
L′S′(p, p

′, E) are matrix elements of NN → N∆ M matrix
in JLS basis:

MJLS
L′S′(p, p

′, E) = 〈JL′S ′ (N∆)|M|(NN) JLS〉 .
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The factor 1/
√

2 accounts for two identical nucleons in the initial state. The
expressions for the processes N∆ → NN , N∆ → N∆ are analogous: we only
need to put in appropriate projectors and matrix elements for these processes;

6. An elementary interaction vertex for baryon-meson interaction on a normal baryon
line corresponds to usual expression obtained from Lagrangian in the form

iVint = iAS BT (B.14)

with AS (BT ) being spin (isospin) operators;

7. An elementary interaction vertex for nucleon-meson interaction on a CC nucleon
line corresponds to charge conjugated expression

iV c
int = iAc

S B
c
T , (B.15)

where Ac
S = −σ2A

t
Sσ2, B

c
T = −τ2Bt

Sτ2 with At
S, B

t
T being transposed operators;

8. A loop between any two NN or N∆ interaction vertices corresponds to an integral
over loop four-momenta (besides eventual integrations over four-momenta between
these two vertices, i.e. in the transition operator), and to a trace of product of all
spin matrices—projectors and matrices accounting for fermion-boson elementary
interactions—that enter this loop, and analogously for isospin matrices. The order
of the product is given by the direction against the normal fermionic line and along
the CC fermionic line;

9. The choice of normalizations given above corresponds to N and ∆ non-relativistic
propagators in the following form:

iG0
N(ε, ~p ) =

i

2Mε− p2 + iγ
,

iG0
∆(ε, ~p ) =

i

2M∆(ε− δ)− p2 + iγ
,

where δ = M∆ − M is the Delta-nucleon mass difference. The NN and N∆
interaction amplitudes MJLS

L′S′ should be considered as having no singularities as
functions of energy. This is naturally true for we are working at energies below pion
threshold where the first hadronic inelasticity occurs. This assumption leads to
the situation when the pole structure of the integrand in the integrals over zeroth
components of four-momenta is fixed by the propagators of interacting particles.

The only missing thing is to show that the normalization of NN and N∆ vertices is
correct. In order to show this, it is useful to consider the Lippmann-Schwinger equation
for the T matrix. Of course, the diagram technique should reproduce the Lippmann-
Schwinger equation correctly. Using the rules given above and the properties of projec-
tors given in Appendix C, it is straightforward to show that the Lippmann-Schwinger
equation for amplitudes MJLS

L′S′(p, p
′, E) obtained from the diagram technique has the

form

MJLS
L′S′(p, p

′, E) = VJLS
L′S′ (p, p

′, E) +
1

4M

∑

L′′S′′

∫
d3q

(2π)2

VJLS
L′′S′′(p, q, E)MJL′′S′′

L′S′ (q, p′, E)

q2 −ME − iγ
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where VJLS
L′S′ (p, p

′, E) = −8π2
√
M1M2M3M4 V

JLS
L′S′ (p, p′, E) are the matrix elements of the

NN potential scaled with the same factor that connects T and M. Using the relations
between M and T and between V and V , we get the following Lippmann-Schwinger
equation for T JLS

L′S′ (p, p
′, E):

T JLS
L′S′ (p, p

′, E) = V JLS
L′S′ (p, p′, E) +

∑

L′′S′′

∞∫

0

q2dq
V JLS

L′′S′′(p, q, E)T JL′′S′′
L′S′ (q, p′, E)

E − q2

M
+ iγ

,

which coincides with the corresponding equation used in Ref. [5]. This means that we
should use in our technique exactly this definition of T JLS

L′S′ (p, p
′, E), in particular, the

relation between T JLS
L′S′ (p, p, p

2/M) and the scattering phase shifts should be the same as
in Ref. [5].

The correctness of the normalizations for NN → d and NN → N∆ vertices is proved
in full analogy with NN → NN vertices. Note, however, that since the NN → N∆
transitions are off-diagonal, the phase of the corresponding vertices can not be fixed
from the Lippmann-Schwinger equation. In order to obtain the correct phase, one can,
for instance, calculate matrix elements corresponding to a diagram that contributes to
the NN → N∆ transition potential—say, for one-pion exchange—directly from the
Lagrangian. Then one has to compare phases of the so obtained matrix elements with
the phases that correspond to a concrete solution of Lippmann-Schwinger equation, and
fix the missing phases if necessary. For the calculations of matrix elements for one-pion
NN → N∆ transition potential see Appendix D. We note here that in our calculations
with the phases of projectors as in Appendix C and NN → N∆ T matrices taken from
the CCF model [89] there are additional phase factors of (−1) in the front of MJLS

L′S′ for
N∆ partial waves 5F1,

5S2,
5D2, and 5G2.



Appendix C

Projectors

In this appendix we describe basic ideas that underlie the technique of spin–angular
projectors and provide the relevant expressions.

C.1 Spin–angular projectors

C.1.1 Irreducible tensors vs spherical harmonics

Let us firstly discuss the angular part of the wave function of two particles having relative
momentum ~p = (~p1 − ~p2)/2. The usual description of the transformation properties of
two particles having zero spins proceeds in terms of spherical harmonics YLM(~n), where
~n = ~p/p, L = 0, 1, 2, . . . , and M = −L, −L+ 1, . . . L. The spherical harmonics have
the following properties of orthonormality and completeness:

∫
dΩ~n YLM(~n)Y ∗

L′M ′(~n) = δLL′δMM ′ ;

∞∑
L=0

L∑
M=−L

YLM(~n)Y ∗
LM(~n′) = δ(~n− ~n′). (C.1)

These properties of spherical harmonics allow one to expand an arbitrary function of
vector ~n, f(~n), in Fourier series of spherical harmonics:

f(~n) =
∞∑

L=0

L∑
M=−L

fLM YLM(~n),

fLM =

∫
dΩ~n f(~n)Y ∗

LM(~n). (C.2)

From the point of view of theory of group representations (we refer to books [164–
166] for further information on this theory), the functions YLM with fixed value of L
consist a basis of an irreducible representation of the three-dimensional rotation group
SO(3). The rank of these representation is L, which is identified with the angular
momentum of the corresponding state. It is known that these representations of SO(3)

103
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are finite-dimensional, namely the dimension of the rank L representation is 2L + 1 —
this is the number of different values of M at given L.

Instead of using the conventional description in terms of spherical harmonics, one
can describe the angular part of the wave function in terms of any other complete
set of functions, which are in general linear combinations of the conventional spherical
harmonics. For instance, it appears that the choice of the Cartesian irreducible tensors
as the basis states appears to be very convenient when dealing with systems of two
nonrelativistic particles (e.g. NN , N∆). In what follows we describe this formalism.
First of all, we note that a (reducible) representation of SO(3) can be constructed as a
direct product of components of vector ~n:

vL
ijk...m = ninjnk . . . nm, i, j, k, . . .m = 1, 2, 3 (there are L indices). (C.3)

For instance, we have

v0 = 1 — scalar, (C.4)

v1
i = ni — vector, (C.5)

v2
ij = ninj — tensor of rank two, (C.6)

. . . etc.

These representations are in general not irreducible – for L ≥ 2 they contain all irre-
ducible representations of the same parity (−1)L, that is vL

ijk...m contains in fact com-
ponents that transform under representations with ranks L − 2, L − 4, and so on. To
ensure irreducibility, one has to subtract from vL

ijk...m all irreducible representations of
lower ranks analogously to what is done by conventional Clebsch-Gordan expansion. A
straightforward way to construct an irreducible tensor of rank L is to write it in the
form

V L
ijkm...pqrs = vL

ijkm...pqrs + α(δijv
L−2
km...pqrs + δikv

L−2
jm...pqrs + . . . )

+β(δijδpqv
L−4
km...rs + δikδpsv

L−4
jm...qr + . . . ) + . . . ,

(C.7)

where α, β and so on are unknown constants, and sums in brackets are properly sym-
metrized — one has to ensure that the resulting tensor remains symmetric with respect
to interchange of any two of its indices. The values of α, β, . . . are obtained from the
equation

V L
ijkm...pqrsδij = 0. (C.8)

The quantity in the l.h.s. of Eq. (C.8), regarded as function of ni’s, is a polynomial of
power L−2 containing only even (odd) powers of ni’s if L is even (odd). The requirement
that this function is zero gives int(L/2) (where int stands for integer part) conditions
on coefficients of this polynomial. Thus, we have a system of linear equations from
which we find the values of the coefficients α, β, and so on — note that we have exactly
int(L/2) coefficients to determine.
It is easy to show that totally symmetric tensor V L of rank L with zero trace contains
exactly 2L+ 1 independent components. Indeed, an element of this tensor is identified
by two numbers m1 and m2, which in order denote how many Cartesian indices of this
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element are 1’s and how many are 2’s (the number of 3’s is then m3 = L −m1 −m2,
and the values of mi are between 0 and L). The number of different choices of m1 and
m2 is then

Nsym = (L+ 1) + L+ (L− 1) + · · ·+ 1 =
1

2
(L+ 1)(L+ 2),

where L + 1 is the number of different possible choices of m2 at m1 = 0, L — the
number of different possible choices of m2 at m1 = 1, and so on. From the other hand,
the requirement that the trace over any two indices is zero gives additional L(L− 1)/2
constraints on the components — this is the number of different traces. Thus, we get
in total

NL =
1

2
(L+ 2)(L+ 1)− 1

2
L(L− 1) = 2L+ 1 .

Therefore the components of a totally symmetric tensor of rank L which is constructed as
explained above make up an irreducible representation of SO(3) with the rank L. Since
all irreducible representations of SO(3) with the same rank are linearly dependent, there
exists a matrix A that connects the conventional spherical harmonics YLM with given
momentum L and projection on the z axis M to the components of the tensor V L:

V L
ijk...prs =

∑
M

ALM
ijk...prsYLM ,

YLM = A∗LM
ijk...prsV

L
ijk...prs. (C.9)

We assume here, as usual, that over all repeated Cartesian indices a summation is to be
performed. The matrix A can be chosen to be unitary by an appropriate choice of the
normalization of V L:

ALM
ijk...prsA

∗LM ′
ijk...prs = δMM ′ ,

∑
M

ALM
ijk...prsA

∗LM
i′j′k′...p′r′s′ =

2

L2 − L+ 2
(δii′δjj′δkk′ . . . δpp′δrr′δss′

+ permutations− trace) . (C.10)

Here permutations are performed so as to symmetrize the resulting tensor with respect
to its indices. Note there are exactly (L2 − L + 2)/2 different permutations. Trace has
to be subtracted since V L should be traceless.

The expressions for the tensors V L
ijk...m for L ≤ 4 are:

V 0(~n) = 1, (C.11)

V 1
i (~n) = ni, (C.12)

V 2
ij(~n) = ninj − 1

3
δij, (C.13)

V 3
ijk(~n) = ninjnk − 1

5
(niδjk + njδik + nkδij), (C.14)

V 4
ijkl(~n) = ninjnknl

−1

7
(ninjδkl + ninkδjl + ninlδjk + njnkδil + njnlδik + nknlδij)

+
1

35
(δijδkl + δikδjl + δilδjk). (C.15)
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Note that the tensors given by Eqs. (C.15) are not normalized. The normalization condi-
tion can be derived directly from the first equation of Eqs. (C.1), and Eqs. (C.9), (C.10).
It reads

V L
ij...m(~n)

[∫
dΩ~n′ V

L
ij...m(~n′)V L′

i′j′...m′(~n′)
]
V L′

i′j′...m′(~n′′) = V L
ij...m(~n)V L

ij...m(~n′′) δLL′ . (C.16)

However, we choose to normalize the complete spin-angular projectors rather than nor-
malize their spin and angular parts separately — see below in this appendix.#1

C.1.2 Expansion of spin operators

Consider now the spin part of the wave function. A particle having spin 1
2

is characterized
by a two-component spinor χ. The transformation properties of χ under infinitesimal
transformation from SO(3) is given by

χ′ =

[
1− i

θ

2
eiσi

]
χ, (C.17)

where θ is the infinitesimal rotation angle, ~e is the unit vector along the rotation axis
(we assume a right-handed coordinate system), and σi, i = 1, 2, 3 are the usual 2 × 2
Pauli matrices having the following properties:

σ†i = σi, σiσj = δij + iεijkσk, σ2σ
t
iσ2 = σ2σ

∗
i σ2 = −σi ; (C.18)

here and below we assume the Kronecker delta to be multiplied by the unit matrix of an
appropriate rank — which we do not write out explicitly, and σt

i stands for transposed
matrix.

Consider the linear space of the linear operators A that act on 2-component spinors
χ, realized as the linear space of 2 × 2 matrices. The number of dimensions of this
space equals four. It is known that four operators s = 1/

√
2, ti = σi/

√
2, i = 1, 2, 3

form an orthonormal basis in this linear space (with the scalar product of two operators
introduced as (A,B) = TrA†B). This allows us to conclude that any operator A that
acts on 2-component spinors can be expanded as

A = A0s+
∑

i

A1
i ti, (C.19)

where A0 = (A, s), A1
i = (A, ti). The matrices of linear operators A transform under

(infinitesimal) rotations from SO(3) as

A′ = T AT †, (C.20)

#1Note that there exists a simpler normalization condition for angular irreducible tensors based on

the standard addition formula for spherical harmonics (see. e.g., Ref. [167]):
L∑

M=−L

YLM (~n)Y ∗
LM (~n′) =

2L+1
4π PL (cos θ), where PL is the L-th Legendre polynomial and θ is the angle between ~n and ~n ′. For

the tensors V L this translates to V L
ij...m(~n)V L

ij...m(~n′) = 2L+1
4π PL (cos θ).
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where T = 1− i θ
2
eiσi is the matrix that transforms the spinors—see Eq. (C.17). Using

Eqs. (C.18) it is straightforward to show that the transformation laws are different for
the basis operators s and ti and read as follows:

s′ = s (C.21)

t′i =
[
δij − i θIk

ijek

]
tj, i = 1, 2, 3, (C.22)

where Ik
ij = −i εijk are the matrix elements of the generators that correspond to the

SO(3) representation with rank 1.

Thus, the linear space of operators that act on two-component spinors splits into
two subspaces. Each of these subspaces transforms independently under rotations from
SO(3): s transforms as a scalar and ti transform as components of a vector. This
means, in particular, that the corresponding matrix elements of s and ti between any
two spinors χα and χβ transform under rotations from SO(3) as

(
χ†α s χβ

)′
= χ′†α s χ′β (C.23)

(
χ†α ti χβ

)′
=

[
δij − i θIk

ijek

]
χ′†α tjχ′β, i = 1, 2, 3, (C.24)

where χ′ stand for transformed spinors.

C.1.3 Construction of spin-angular projectors

Now one can proceed to the construction of projector operators. We define projector op-
erator PJLS

ijk...m for given values of total angular momentum J , orbital angular momentum
L, and total spin S, as

PJLS
ijk...m(~n) =





CJLS s V L
ijk...m(~n), S = 0, J = L;

CJLS tp V
L
pijk...m(~n), S = 1, J = L− 1;

CJLS ti V
L
jk...m(~n) + symm.− trace, S = 1, J = L+ 1;

CJLS εiprtp V
L
rjk...m(~n) + symm., S = 1, J = L,

(C.25)

where CJLS are normalization constants. Here ”symm.” and ”trace” mean that one
should properly symmetrize the projector and ensure that it gives zero when trace over
any two tensor indices is performed. Note that PJLS

ijk...m is a totally symmetric traceless
tensor of rank J , by construction. Therefore the components of this tensor transform
under a rank J representation of SO(3). Hence they are related to the usual states ΨJJz

with certain J, Jz through the matrix A from Eq. (C.9), in full analogy with angular
momentum tensors:

PJLS
ijk...prs =

√
4π

∑
Jz

AJJz
ijk...prsΨJJz ,

ΨJJz = A∗ JJz
ijk...prs

1√
4π
PJLS

ijk...prs. (C.26)
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The factors of
√

4π are purely conventional. The normalization is given by the following
condition

∫
dΩ~n′

4π
PJLS

ij...m(~n) Tr
(
PJLS

ij...m(~n′)
†PJL′S′

i′j′...m′(~n′)
)
PJL′S′

i′j′...m′(~n′′)
†

=

= PJLS
ij...m(~n)PJLS

ij...m(~n′′)
†
δLL′δSS′ , (C.27)

where Tr stands for the trace of spin matrices (i.e. for the scalar product in the cor-
responding hilbert space). From this equation the values of CJLS are known up to an
arbitrary phase coefficient. Our choice of CJLS is dictated by convenience — see below
in this appendix.

The projectors defined by Eq. (C.25) are constructed as linear combinations of prod-
ucts of quantities V L, s, and t, which transform under representations of SO(3) with
different ranks. It is obvious that there exists a matrix O, which is a tensor analog of
the Clebsch-Gordan coefficients, such that

PJLS
ijk...prs(~n) =

√
4πOJLS

ijk...prs i′j′k′...m′ a′b′...c′V
L
i′j′k...m′(~n)T S

a′b′...c′ , (C.28)

where T S stands for the corresponding irreducible spin operator structure—s, t, or fur-
ther structures if we consider spins different from one half—see below for N∆ case. We
assume that spins should be half-integer and therefore the linear space of spin operators
again splits in subspaces each of which transform under an integer-rank representation
of SO(3).

Consider the states ΨJJz as constructed from states with angular momentum L and
spin S, i.e.

ΨJJz ≡ ΨJJzLS =
∑
MSz

CJJz
LMSSz

YLM(~n)ΨSSz ,

where CJJz
LMSSz

are the Clebsch-Gordan coefficients, and ΨSSz are the corresponding spin

states. This equality allows us to deduce the expression for matrix O through CJJz
LMSSz

and transformation matrix A defined in Eq. (C.9). This expression reads

OJLS
ijk...prs i′j′k′...m′ a′b′...c′ =

∑
JzMSz

CJJz
LMSSz

AJJz
ijk...prsA

∗LM
i′j′k′...m′ A∗SSz

a′b′...c′ (C.29)

This equation will help us to formulate the properties of the projectors defined by
Eq. (C.25), especially the completeness of the set of projectors.

This property of completeness means that any matrix operator F (~n) that acts on
(two-component) spinors and is a well–behaving#2 function of vector ~n can be expanded
in Fourier series as

F (~n) =
∑
JLS

PJLS
ij...k(~n)F JLS

ij...k ,

F JLS
ij...k =

∫
dΩ~n′

4π
Tr

(
PJLS

ij...k(~n′)
†
F (~n′)

)
, (C.30)

#2In the sense that each of four components of this operator is a function that can be expanded in a
series of spherical harmonics.
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in full analogy with Eq. (C.2). Indeed, let us write Eqs. (C.30) in the following way:

F (~n) =
∑
JLS

PJLS
i...k (~n)

∫
dΩ~n′

4π
Tr

(
PJLS

i...k (~n′)
†
F (~n′)

)
.

Changing the order of integration and summation and using Eq. (C.28), we get

F (~n) =

∫
dΩ~n′

4π

∑
JLS

PJLS
ij...k(~n) Tr

(
PJLS

i...k (~n′)
†
F (~n′)

)

=

∫
dΩ~n′

∑
JLS

OJLS
ij...k i′j′...m′ a′b′...c′O∗ JLS

ij...k i′′j′′...m′′ a′′b′′...c′′

×V L
i′j′...m′(~n)T S

a′b′...c′V
∗L
i′′j′′...m′′(~n′) Tr

(
T S †

a′′b′′...c′′F (~n′)
)
. (C.31)

Using now Eqs. (C.29), (C.10), and the properties of the Clebsch-Gordan coefficients,
we can write the following:

∑
J

OJLS
ij...k i′j′...m′ a′b′...c′O∗ JLS

ij...k i′′j′′...m′′ a′′b′′...c′′ =

=
∑

J

∑
JzMSz

∑

J ′zM ′S′z

CJJz
LMSSz

CJJ ′z
LM ′SS′z

AJJz
ij...mA

∗ JJ ′z
ij...m︸ ︷︷ ︸

δJzJ′z

A∗LM
i′j′...m′ ALM ′

i′′j′′...m′′ A∗SSz

a′b′...c′ A
SS′z
a′′b′′...c′′

=
∑

MSzM ′S′z

∑
JJz

CJJz
LMSSz

CJJz

LM ′SS′z

︸ ︷︷ ︸
δMM′δSzS′z

A∗LM
i′j′...m′ ALM ′

i′′j′′...m′′ A∗SSz

a′b′...c′ A
SS′z
a′′b′′...c′′

=
∑
MSz

A∗LM
i′j′...m′ ALM

i′′j′′...m′′ A∗SSz

a′b′...c′ A
SSz

a′′b′′...c′′

=
2

L2 − L+ 2
(δi′i′′δj′j′′ . . . δm′m′′ + . . . )

2

S2 − S + 2
(δa′a′′δb′b′′ . . . δc′c′′ + . . . ) ,

(C.32)

where ellipses in the last line stand for various permutations—cf. Eq. (C.10). Inserting
this result#3 into the expression for F (~n), we get

F (~n) =

∫
dΩ~n′

∑
LS

V L
i′j′...m′(~n)T S

a′b′...c′V
∗L
i′j′...m′(~n′) Tr

(
T S †

a′b′...c′F (~n′)
)
.

Since the spin operators T S
a′b′...c′ form a basis in the linear space of matrices (note that we

do not assume the corresponding matrices be 2×2 matrices; the only assumption is that
the corresponding space splits into subspaces that transform under different irreducible
representations of SO(3)), the equality

F (~n′) =
∑

S

T S
a′b′...c′ Tr

(
T S †

a′b′...c′F (~n′)
)

#3Note that traces that are to be subtracted from these expressions according to Eq. (C.10) give
anyway zero contribution.
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holds for arbitrary matrix that belongs to the linear space under consideration. Since∑
L

V L
i′j′...m′(~n)V ∗L

i′j′...m′(~n′) = δ(~n−~n′), we finally get identity, thus proving the expansion

for F (~n) given by Eq. (C.30).
The projectors for states where one particle has spin 1

2
and the other—spin 3

2
(N∆

states) are defined analogously. The angular part of the projectors for N∆ system is the
same as for NN system. The substantial difference is that along with Pauli matrices σi

there are matrices Si (see Eq. (A.3)) that couple spins 1
2

and 3
2

into spin 1, and total
spin for N∆ system may have values 1 and 2. There are two sets of quantities that can
be constructed for N∆–system analogously to s and ti, namely

di =

√
3

4
Si, i = 1, 2, 3, (C.33)

qij =

√
1

8
(σiSj + σjSi) , i, j = 1, 2, 3; (C.34)

it is easy to show that they form the bases of supspaces that transform under represen-
tations with rank one and two, respectively. Thus, there are in total 8 = 3 + 5 linerarly
independent vectors that form a complete basis in the linear space of all 2× 4 matrices.
Note that the general expression for an irreducible tensor of second rank build up from
σi and Sj has structure (σiSj + σjSi − 2

3
δijσkSk), however the latter term is zero due

to Eq. (A.6), which corresponds to the fact that total spin 0 is not possible in this
case. Note also that the third possible structure is εijkσjSk, which reduces to −i Si (cf.
Eq. (A.5)) in full accordance with the fact that different irreducible representations of
SO(3) that have the same rank are linearly dependent.

The projectors for N∆ system are defined as

PJLS
ijk...m(~n) =





CJLS dp V
L
pijk...m(~n), S = 1, J = L− 1;

CJLS di V
L
jk...m(~n) + symm.− trace, S = 1, J = L+ 1;

CJLS εiprdp V
L
rjk...m(~n) + symm., S = 1, J = L;

CJLS qpr V
L
prijk...m(~n), S = 2, J = L− 2;

CJLS εpriqps V
L
rsjk...m(~n) + symm., S = 2, J = L− 1;

CJLS qip V
L
pjk...m(~n) + symm.− trace, S = 2, J = L;

CJLS εprjqip V
L
rk...m(~n) + symm.− trace, S = 2, J = L+ 1;

CJLS qij V
L
k...m(~n) + symm.− trace, S = 2, J = L+ 2.

(C.35)

The normalization condition for the projectors for N∆ system is the same as for NN
system—see Eq. (C.27). Again, the projectors defined by Eqs. (C.35) have properties
analogous to the projectors defined for NN system with appropriate changes due to
different spin structure, and all arguments concerning the completeness, orthogonality
etc are extended to the N∆ projectors with minimal changes. Particularly, the N∆
projectors form a complete set of functions such that any 2×4 matrix function of vector
~n can be expanded in Fourier series given by Eq. (C.30).

The explicit expressions for projectors relevant for this our work are given below.
For reference we also provide notations in the form 2S+1LJ for the spin–angular states.
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Note that we choose the constants CJLS to be imaginary for 5P1 and 5F1 N∆ projectors.
This makes the corresponding partial wave amplitudes from one-pion exchange between
N and ∆ to be real (see discussion in Appendix D).

NN states

1S0 P000 = s (C.36)
3P0 P011 =

√
3 ti V

1
i (~n) (C.37)

3S1 P101
i = ti (C.38)

3P1 P111
i =

√
3

2
εijk tj V

1
k (~n) (C.39)

3D1 P121
i =

3√
2
tj V

2
ij(~n) (C.40)

3P2 P211
ij =

√
3

4

(
ti V

1
j (~n) + tj V

1
i (~n)− 2

3
δijtk V

1
k (~n)

)
(C.41)

1D2 P220
ij =

√
15

2
s V 2

ij(~n) (C.42)

N∆ states

3P1 P111
i =

√
9 εijk dj V

1
k (~n) (C.43)

5P1 P112
i = −i

√
18

5
qik V

1
k (~n) (C.44)

5F1 P132
i = i

√
15

2
qjk V

3
ijk(~n) (C.45)

5D0 P022 =

√
3

4
qij V

2
ij(~n) (C.46)

5S2 P202
ij = qij (C.47)

3D2 P221
ij =

√
135

2

(
εipr dp V

2
pj(~n) + εjpr dp V

2
pi(~n)

)
(C.48)

5D2 P222
ij =

√
45

14

(
qik V

2
kj(~n) + qjk V

2
ki(~n)− 2

3
δijqkl V

2
kl(~n)

)
(C.49)

5G2 P242
ij =

√
175

8
qkl V

4
ijkl(~n). (C.50)

C.2 Isospin projectors

Analogous considerations apply to the isospin operators. There is no analogy to angular
part in the case of isospin, and the projectors are pure (iso)spin projectors. Again, we
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can construct quantities J 0 and J 1
i for NN system as

J 0 =
1√
2

(C.51)

J 1
i =

τi√
2
, i = 1, 2, 3, (C.52)

where τi are isospin Pauli matrices. The quantities J 0 and J 1
i transform under isospin

rotations as isoscalar and components of isovector, and correspond to total isospin 0
and 1, respectively. For the N∆ system we can construct quantities F1

i and F2
ij, which

correspond to total isospin of N∆ system 1 and 2 in order, analogously:

F1
i =

√
3

4
Ti, i = 1, 2, 3, (C.53)

F2
ij =

√
1

8
(τiTj + τjTi) , i, j = 1, 2, 3, (C.54)

where T i are matrices that couple isospins 1
2

and 3
2

into isospin 1 (they are equal to
Si—see Eq. (A.3)).
The normalization condition for isospin projectors ITij...m with given isospin T reads

ITij...m Tr
(
ITij...m

† ITi′j′...m′

)
ITi′j′...m′

†
= ITij...m ITij...m

†
. (C.55)

The resulting expressions for isospin projectors after the normalization is performed are:

NN states

isospin 0 I0 = J 0 (C.56)

isospin 1 I1
i = J 1

i (C.57)

N∆ states

isospin 1 I1
i = F1

i (C.58)

isospin 2 I2
ij = F2

ij. (C.59)



Appendix D

One-pion exchange NN → N∆

In this Appendix we present expressions for amplitude of NN → N∆ transition via one
pion exchange projected onto 3P1,

1S0, and 1D2 spin-angular states of initial nucleons.
These expressions are needed when one wants to incorporate the full NN → N∆ transi-
tion amplitude obtained from a (model) potential into the diagram technique described
in Appendix B. The correct phase of the NN → N∆ vertex is not defined from the
Lippmann–Schwinger equation since this is a non-diagonal transition—see the discus-
sion in Appendix B. Therefore one has to match phases. A straightforward way to do
it is to calculate the corresponding partial amplitudes from the one-pion exchange with
the vertices taken from the Lagrangian and using projectors with some fixed choice of
phase, and compare with the corresponding amplitudes from the model which the full
amplitudes are taken from.

~p ~p
′

−~p −~p
′

2

1

2
′

Figure D.1: One pion exchange diagram for transition NN → N∆.

The diagram that corresponds to the one-pion exchange transition NN → N∆ is
shown in Fig. D.1. The corresponding amplitude reads

M =
gAhA

F 2
M

√
MM∆

[
ζ†T †bϕ1 ϕ

†
2′τbϕ2

]

[
ξ†

(
~S† · (~p ′ − ~p )

)
χ1 · χ†2′ (~σ · (~p ′ − ~p ))χ2

] 1

(~p ′ − ~p )2 +m2
π

. (D.1)

Here χ, ξ (ϕ, ζ) stand in order for nucleon and Delta spinors (isospinors). This expression
was obtained neglecting pion energies.

In order to get the expressions for partial amplitudes, one has to project amplitude
given by Eq. (D.1) onto corresponding spin-angular states with given total angular

113
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momentum J and orbital momenta and total spins L, S, L′, S ′, and isospin states
with given isospin T , using projectors defined in Appendix C:

MJLS L′S′ =
∑

isospin

∑
spin

∫
dΩ~p

4π

dΩ~p ′

4π
ϕc †

2 IT †
a ϕ1 χ

c †
2 PJLS

i...m(p̂)
†
χ1M ξ†PJL′S′

i...m (p̂′)χc
2′ ζ

†IT ′
a χc

2′ ,

(D.2)
where sum is performed over spin and isospin projections of all four particles, and p̂
(p̂′) denotes unit vector of initial (final) momentum. Resulting expressions for partial
amplitudes are given below for initial states 3P1 (s-wave pion production) and 1S0,

1D2

(p-wave pion production) Note, we give the notations for the initial and partial waves
in the form 2S+1LJ rather then JLS.

Initial NN state 3P1

Final N∆ state

5F1 M = αs

√
4

15
A(p, p′) (D.3)

5P1 M = αs

√
4

10
B(p, p′) (D.4)

3P1 M = αs

√
2

9
(4C(p, p′) +B(p, p′)) , (D.5)

Initial NN state 1S0

Final N∆ state

5D0 M = αp

√
4

15
D(p, p′) (D.6)

Initial NN state 1D2

Final N∆ state

5G2 M =
4

3
αp

√
2

35
E(p, p′) (D.7)

5D2 M =
8

3
αp

√
7

2
F (p, p′) (D.8)

3D2 M = 0 (D.9)

5S2 M = −αp

√
16

5
G(p, p′) , (D.10)



115

where αs = −
√

2
gAhA

4F 2
M

√
MM∆ , αp =

√
2αs , and

A(p, p′) =
p

2p′
(5f3(ν)− 3f1(ν)) +

p′

p
f1(ν) + 3f2(ν)− f0(ν) (D.11)

B(p, p′) =
1

2
f2(ν) +

(
p′

p
+
p

p′

)
f1(ν) +

3

2
f0(ν) (D.12)

C(p, p′) =
1

2
[f2(ν)− f0(ν)] (D.13)

D(p, p′) =
1

12

[
3
p

p′
f2(ν) + 4f1(ν) +

(
2
p′

p
− p

p′

)
f0(ν)

]
(D.14)

E(p, p′) =
3

16

[
35
p

p′
f4(ν) + 40f3(ν)−

(
30
p

p′
− 12

p′

p

)
f2(ν)

− 24f1(ν) +

(
3
p

p′
− 4

p′

p

)
f0(ν)

]
(D.15)

F (p, p′) =
1

28

[
3f3(ν) + 3

(
p

p′
+
p′

p

)
f2(ν) + f1(ν)−

(
p

p′
+
p′

p

)
f0(ν)

]
(D.16)

G(p, p′) = − 1

12

[
3
p′

p
f2(ν) + 4f1(ν) +

(
2
p

p′
− p′

p

)
f0(ν)

]
(D.17)

with

ν =
p2 + p′ 2 +m2

π

2pp′
, (D.18)

fj(η) =

1∫

−1

xj dx

x+ η
. (D.19)

One sees from Eq. (D.9) that partial amplitude in the 3D2 state appears to be zero in
this approximation. In order to match the phase of the amplitude corresponding to this
transition, one has to include nucleon and Delta recoil into the vertices on Fig. D.1, which
are effects of higher orders. In this case the corresponding amplitude will not be zero.
However, since the 3D2 partial amplitude appears to give a negligible contribution to
p-wave pion production (it changes the value of the corresponding p-wave reduced cross–
section by ±5% which is far less than our error estimate), we neglect the contribution
coming from the transition 1D2(NN) → 3D2(N∆).



Appendix E

Matrix Elements and Observables

In this section we give expressions for observables and matrix elements for reactions that
are subject of our study.

E.1 General definitions

The differential cross section for a reaction 2 → N , when there are two particles in the
initial state, is related to the reaction amplitude via [160]

dσ = (2π)4δ(4)(Pf − Pi)
1

4I
|Mfi|2

∏
a

d3pa

(2π)32Ea

, (E.1)

where the product is taken over the phase volumes of all final particles labeled by a,
and Mfi stands for the sum of all amplitudes that are relevant for the calculation. The
quantity I in Eq. (E.1) is the covariant flux factor given by

I =
√

(pµ
1 p2 µ)2 −m2

1m
2
2, (E.2)

where pµ
1,2 and m1,2 stand in order for four–vectors and masses of the corresponding

particles. In addition, if there are Na identical particles of a-th kind in the final state,
then a factor of 1/Na! should be introduced when integration over the phase space is
performed.

When the initial particles are not polarized, and the polarizations of the final particles
are not registered by the detector, which is true in all cases considered by us, the
differential cross–section is given by Eq. (E.1) with the only difference that |Mfi|2
should be substituted by the sum

|Mfi|2 =
1

2S1 + 1

1

2S2 + 1

∑
|Mfi|2, (E.3)

where the sum is performed over the polarizations of initial and final particles, and S1,2

is the spin of the corresponding initial particle. Note that for the photon 2S + 1 should
be substituted by 2 since only two photon polarisations are possible.
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E.2 Reaction γd→ π+nn

E.2.1 Observables

The differential cross–section is given by

dσ = (2π)4δ(4)(Pf − Pi)
1

2

1

4qγ
√
s
|Mfi|2 d3p1

(2π)32E1

d3p2

(2π)32E2

d3kπ

(2π)32ωπ

, (E.4)

where the indices 1 and 2 label momenta and energies of the final nucleons, and kπ

(ωπ) denotes the pion three–momentum (energy). The photon momentum is denoted
by qγ and

√
s = 2M + mπ + Q where M (mπ) and Q are the nucleon (pion) mass and

the excess energy, respectively (we work in the center-of-mass frame of the reaction).
The choice of variables is illustrated in Fig. 3.2. The factor of 1/2 accounts for the two
identical nucleons in the final state.

We treat the nucleons as non-relativistic particles — it is certainly justified as soon
as we consider excess energies not more than 25 MeV. In this case, the nucleon energies
in Eq. (E.4) are replaced by M . It is also convenient to use instead of the momenta of
the two neutrons, ~p1 and ~p2, the relative and the total momenta which are defined as
~pr = (~p1 − ~p2)/2, ~P = ~p1 + ~p2 = −~kπ. This allows to remove the delta function in a
simple way and rewrite the cross–section in the form

dσ =
1

(4π)5

pr k
2
πdkπ dΩπ dΩr

4Mωπqγ(qγ + 2M + q2
γ/4M)

|Mfi|2, (E.5)

where Ωπ (Ωr) are the solid angles of the vector ~kπ (~PR). The values of pr and kπ are
connected by the energy conservation law:

Q =
p2

r

M
+

k2
π

4M
+ ωπ −mπ . (E.6)

In what follows we use nonrelativistic kinematics also for the pion. In this case one
should change ωπ to mπ + k2

π/(2mπ) in these formulae.

E.2.2 Matrix elements

Let us now present the explicit expressions for the amplitudes corresponding to the
diagrams in Fig. 3.1. All calculations are done in the center–of–mass system of the
reaction. Note that in the calculation of the leading diagrams (a1) and (a2) in Fig. 3.1
the D-wave component of the deuteron wave function was taken into account, whereas
in all other diagrams which are already suppressed by χ2

m as compared to the leading
ones, the inclusion of the D-wave is not necessary. This is also true for the diagrams
with NN P -wave final state interaction. The loops are evaluated using nonrelativistic
kinematics even for the pion.

The calculation of the diagrams of Fig.3.1 were done using the rules of the diagram
technique given in Appendix B. The explicit expressions for each individual term are:
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Diagram (a1)

Ma1 =CN2LO χ
†
1(σ · ~εγ) σjεkD

[
u(q2) δ

jk−w(q2)√
2

(
3 q̂j

2q̂
k
2 − δjk

)] σ2√
2
χ∗2 − (1 ↔ 2) , (E.7)

where CN2LO = 16π
√
M (M +mπ)E0+ , ~q1,2 = ~p1,2+~qγ/2, q̂1,2 = ~q1,2/q1,2, and ~εγ and

~εD are polarization vectors of the photon and the deuteron, respectively. The notation
−(1 ↔ 2) points that one has to subtract the same term with spin and momentum
variables of the two nucleons interchanged, in order to get properly anti–symmetrized
amplitude.

Here u(p) and w(p) are the S-wave and D-wave components of the deuteron wave
function defined in Appendix E.2.3. The expression χ†1 Ô χ∗2 corresponds to the spin
structure of the final NN pair:

χ†1 (σ · εγ)(σ · εD)
σ2√

2
χ∗2 = (εγ · εD)

(
χ†1

σ2√
2
χ∗2

)
+i[εγ × εD] ·

(
χ†1 ~σ

σ2√
2
χ∗2

)
(E.8)

and analogously for the D-wave part. Here the first and second terms on the r.h.s. are
the spin-singlet and spin–triplet contributions, respectively (χ†χ = 1). Note that we do
don write out explicitly the isospin part of the amplitude I = ϕ†1τ

−τ 2ϕ∗2, which equals
1 in this case.

Diagram (a2)

Ma2 =CNNLO
1

2M

∫
d3p

(2π)3

{
M0

NN(~p+~kπ/2, ~p12, E12)

(~p+~kπ/2)2− p2
12−i0

u(~p+~qγ/2) (~εγ · ~εD)

(
χ†1

σ2√
2
χ∗2

)

+
M1

NN(~p+~kπ/2, ~p12, E12)αβ

(~p+~kπ/2)2− p2
12−i0

u(~p+~qγ/2) i[εγ × εD]β

(
χ†1 σα

σ2√
2
χ∗2

)}
, (E.9)

where ~p12 = (~p1 − ~p2)/2 and the amplitudes ML
NN are related to the NN partial wave

amplitudes with angular momentum L as given below in this subsection. The energy of
the NN system is E12 = p2

12/M . The formula for Ma2 as given shows the contribution
from the deuteron S–wave only. The inclusion of the D–wave in the convolution with
1S0 NN final state interaction is done like in the expression for diagram (a1). Note that
this diagram is antisymmetrized as well, but in this case the antisymmetrization reduces
just to an additional factor of two, so we have written the resulting expression explicitly.
The same is done for all diagrams with the half off-shell NN final state interaction, i.e.
for the diagrams (b2), (c2), and (d2), and corresponding diagrams with pion higher
partial waves.

The amplitudes ML
NN in this formula are related to the standard NN partial wave

amplitudes fJL
S , where J denotes the total angular momentum, L the angular momentum

in the initial and final state (we do not consider couplings between partial waves with
different angular momenta, e.g., the coupling of the 3P2 to the 3F2 partial wave), and S
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the total spin, through

M0
NN(~p, ~p ′, E) = 16πMf 00

0 (p′, p, E)

M1
NN(~p, ~p ′, E)αβ = 16πM

∑
J

RJ
αβf

J1
1 (p′, p, E) . (E.10)

The fJL
S (p′, p, E) are related on the mass shell to the partial phase shifts via

fJL
S (p, p, p2/M) =

1

2ip

(
e2iδJL

S − 1
)
.

The products of the angular parts of the projectors for the various total angular
momenta with L = L′ = 1 and for the S = 1 read

R0
αβ = p̂′αp̂β ,

R1
αβ =

3

2
εαλτεβρτ p̂′λp̂ρ =

3

2

(
δαβ(p̂, p̂′)− p̂′β p̂α

)
,

R2
αβ =

3

4

(
δλαp̂

′
ρ + δραp̂

′
λ −

2

3
δλρp̂

′
α

)(
δλβ p̂ρ + δρβ p̂λ − 2

3
δλρp̂β

)

=
3

2

(
δαβ(p̂, p̂′) + p̂′β p̂α − 2

3
p̂′αp̂β

)
,

where p̂ = ~p/p and analogously for p̂′.

Diagram (b1)

The real part of the diagram (b1) renormalizes the bare vertex in the leading diagram
(a1) resulting in the experimentally observed value E+

0 for γp → π+n process. Thus,
the real part of this diagram is already included in the expression for diagram (a1). The
imaginary part of (b1) is

Mb1 = iCLO
mπ

8π(1 +mπ/M)f 2
π

u(~p2+~qγ/2) kπN1χ
†
1(~σ · ~εγ)(~σ · ~εD)

σ2√
2
χ∗2 − (1 ↔ 2), (E.11)

where kπNi
=|M~kπ−mπ~pi|/(M+mπ) is the magnitude of the relative momentum of the

final pion and the final nucleon with momentum pi and CLO = 4
√
MgπNe/(

√
2).

Diagram (c1)

Mc1 = −CLO
mπ

2(1 +mπ/M)f 2
π

Ic1 χ
†
1(~σ · ~εγ)(~σ · ~εD)

σ2√
2
χ∗2 − (1 ↔ 2), (E.12)

where the integral Ic1 is

Ic1 =

∫
d3p

(2π)3

u(~p+~qγ/2)

k2
πN1

− (~p+ M
M+mπ

~p1)2 + i0
. (E.13)
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Diagram (b2)

Mb2 = CLO
1

8Mf 2
π

Ib2(~εγ · ~εD)

(
χ†1

σ2√
2
χ∗2

)
, (E.14)

with

Ib2 =

∫
d3pd3l

(2π)6

M0
NN(~p+~kπ/2, ~p12, E12)

p2
12−(~p+~kπ/2)2+i0

u(~p+~qγ/2)

Q− p2

2M
− l2

2M
− (~l+~p)2

2mπ
+i0

(E.15)

The integral with the πN loop, i.e. over d3l, is divergent and has to be renormalized
(cf. discussion of diagram (b1)). After renormalization it takes the form

Ib2 =
−imπ

2π(1+mπ/M)

∫
d3p

(2π)3

M0
NN(~p+~kπ/2, ~p12, E12)

p2
12−(~p+~kπ/2)2+i0

u(~p+~qγ/2) K(Q, p) , (E.16)

where mπN = mπM/(M+mπ), µN = M(M+mπ)/(2M+mπ), and

K(Q, p) =
√

2mπN(Q−p2/2µN) .

Note that the square root needs to be replaced by i
√

2mπN(p2/2µN−Q) for negative
arguments. Thus, we get a purely real, non–vanishing contribution from diagram (b2)
even at production threshold.

Diagram (c2)

Mc2 = CLO
1

8Mf 2
π

Ic2(~εγ · ~εD)

(
χ†1

σ2√
2
χ∗2

)
, (E.17)

with

Ic2 =

∫
d3pd3l

(2π)6

M0
NN(~p+~kπ/2, ~p12, E12)

p2
12−(~p+~kπ/2)2+i0

u(~l+~qγ/2)

Q− p2

2M
− l2

2M
− (~p+~l)2

2mπ
+i0

. (E.18)

The integral Ic2 develops an angle dependent three–body singularity as soon as we
move away from the production threshold. Fortunately, for non–relativistic pions, it
transformed into an angle independent one. Indeed, rewriting the denominator in Ic2
that creates the three–body singularity, as follows

Q− p2

2M
− l2

2M
−(~p+~l )2

2mπ

= Q− p2

2µN

−(~l+mπN

mπ
~p )2

2mπN

,

and shifting the integration variable ~l by mπN

mπ
~p, we get the integral over d3l in Eq. (E.18)

as

∫
d3l

(2π)3

u(~l + ~qγ/2)

Q− l2

2M
− p2

2M
− (~l+~p)2

2mπ
+ i0

= 2mπN

∫
d3l

(2π)3

u(~l + ~qγ/2− mπN

mπ
~p )

K2(Q, p)− l2 + i0
,
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from which one can immediately see that the moving three–body singularity turned to
the frozen one – the pole position does not depend on ~l angles. This is possible, because
in our reaction the initial two nucleons are always off the mass shell – they form a bound
state. Therefore, there is no additional propagator which can cause a singularity.

Furthermore, for non–relativistic pions and specific analytical parameterizations of
the deuteron wave functions, the three body singularity can be integrated analyti-
cally. In particular, using the parameterization for the deuteron wave function (cf.
Appendix E.2.3) we may write

∫
d3l

(2π)3

u(~l + ~qγ/2)

Q− l2

2M
− p2

2M
− (~l+~p )2

2mπ
+ i0

= −γ1

∑
j

Cj

8πir
log

(
βj − iK(Q, p) + ir

βj − iK(Q, p)− ir

)
,(E.19)

where γ1 =
2mπ

1 +mπ/M
and ~r =

1

1 +mπ/M
~p− ~qγ/2. The integration in Eq. (E.19) has

been performed similarly to the case of diagram (a2): we applied an inverse Fourier
transform separately to the deuteron wave function and to the Green’s function. Then
the integration over d3l gives a delta–function, which kills one of the remaining three–
dimensional integrations and the integral reduces to a sum of integrals of the type
considered, e.g., in Ref.[108]. The three–body singularities of the diagrams (d1) and
(d2) can be handled analogously. Also for the NN final state interaction the integration
over one of the loops can be performed analytically after applying the procedure outlined
in Refs. [121, 122] to the NN amplitudes, for they can then be represented in the same
analytical form as the deuteron wave functions, cf. Appendix E.2.3 for details. Moreover,
it turns out that in diagram (d2) one can perform analytically two of the three loop
integrations, thus reducing the nine–dimensional integral to the three–dimensional one.

Diagram (d1)

Md1 = CLO
1

8Mf 2
π

Id1(~εγ · ~εD)

(
χ†1

σ2√
2
χ∗2

)
−(1 ↔ 2), (E.20)

with

Id1 =

∫
d3pd3s

(2π)6

M0
NN(~p+~s/2, ~p2+~s/2, ENN)

MENN−(~p2 + ~s/2)2+i0

u(~p+~q/2)

Q− p2

2M
− s2

2mπ
− (~p+~s)2

2M
+i0

, (E.21)

where ENN = Q−s2/2µπ with µπ = 2Mmπ/(2M+mπ).

Diagram (d2)

Md2 = CLO
1

16Mf 2
π

Id2(~εγ · ~εD)

(
χ†1

σ2√
2
χ∗2

)
, (E.22)

with

Id2 = − 1

M

∫
d3l d3s d3p

(2π)9

M0
NN(~p+~kπ/2, ~p12, E12)

p2
12−(~p+~kπ/2)2+i0

× M0
NN(~l+~s/2, ~p+~s/2, ENN)

MENN−(~p+~s/2)2+i0

u(~l+~q/2)

Q− l2

2M
− s2

2mπ
− (~l+~s)2

2M
+i0

. (E.23)
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Corrections to diagrams (a1) and (a2) from higher pion partial waves

We start from the explicit expression for the pion p–wave contribution (below labeled
as (π−p)) stemming from diagram (b) of Fig. 3.5. To implement this, the term (~σ~εγ) in
the expressions for diagram (a1) and (a2) of Fig. 3.1 (see above) needs to be replaced

by (~σq̂)(~εγ~kπ)/mπ , where q̂ = ~qγ/qγ. Thus we get

M(π−p)
a1 =CLO

1

mπ

(~εγ · ~kπ)χ†1(~σ · q̂)(~σ · ~εD)
σ2√

2
χ∗2 u(~q2) − (1 ↔ 2)

for the diagram without final state interaction and

M(π−p)
a2 = −CLO

1

mπ

(~εγ · ~kπ)
1

2M

(
χ†1

σ2√
2
χ∗2

)

×
∫

d3p

(2π)3

M0
NN(~p+~kπ/2, ~p12, E12)

p2
12− (~p+~kπ/2)2+i0

u(~p+~qγ/2) (q̂ · ~εD) (E.24)

for the diagram with NN final state interaction.

Note, that when the pion is in a p–wave, only those terms where the NN final state is
in an S–wave are to be considered. The simultaneous appearance of two p–waves in the
final state is strongly suppressed by the centrifugal barrier. Our numerical calculations
confirm this statement.

Using the vertex V
(c)
πγNN given by Eq. (3.18) as input for the diagrams (a1) and (a2)

of Fig. 3.1 one can get the corresponding contribution from the s- and u-channel nucleon
pole diagrams (cf. diagrams (c) in Fig. 3.5) to our reaction as follows

Mnuc−su = − CLO

2mπM

{
(Anuc−su + F nuc−su)

(
χ†1

σ2√
2
χ∗2

)
+ ~Bnuc−su ·

(
χ†1 ~σ

σ2√
2
χ∗2

)}
,

(E.25)
where

Anuc−su =u(~q2)
{

2(~εγ · ~p2)(~kπ · ~εD)+(µp + µn)
(

(~εγ · ~kπ)(~qγ · ~εD)−(~qγ · ~kπ)(~εγ · ~εD)
)}

+(1 ↔ 2),

(E.26)

~Bnuc−su =u(~q2)
{

2(~εγ · ~p2)[~kπ × ~εD] + (µp − µn)(~kπ · [~εγ × ~qγ])~εD

+ (µp + µn)
(

(~εγ · ~kπ)[~qγ × ~εD]− (~qγ · ~kπ)[~εγ × ~εD]
)}

− (1 ↔ 2),
(E.27)

and F nuc−su stands for the contributions from the diagrams with NN final state inter-
action:

F nuc−su = (µp + µn)
(

(~εγ · ~kπ)(~qγ · ~εD)−(~qγ · ~kπ)(~εγ · ~εD)
)
F1 − (~kπ · ~εγ)(~kπ · ~εD)F2,
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where

F1 = − 1

2M

∫
d3p

(2π)3

M0
NN(~p+~kπ/2, ~p12, E12)

p2
12− (~p+~kπ/2)2+i0

u(~p+~qγ/2),

F2 = − 1

2M

∫
d3p

(2π)3

M0
NN(~p+~kπ/2, ~p12, E12)

p2
12− (~p+~kπ/2)2+i0

u(~p+~qγ/2)

×
(

1− (~p+ ~kπ/2) · (~kπ/2− ~qγ/2)

(~kπ/2− ~qγ/2)2

)
. (E.28)

E.2.3 Parameterization of the NN wave functions for CD-
Bonn potential

Here we give the parameterization of the wave functions we used in the calculations of
Chapter 3.

For the deuteron wave function, and for the nn scattering amplitudes that appear
in the final-state interaction, we take those of the (charge dependent) CD-Bonn NN
potential [87]. In particular, we utilize the analytic parameterization of the deuteron
wave function provided in Ref. [87] which is given by

u(p) =
√

4π
∑

j

Cj/(p
2 +m2

j); w(p) =
√

4π
∑

j

Dj/(p
2 +m2

j), (E.29)

with parameters listed in Table 20 of Ref [87]. The wave function is normalized according
to

∫
d3p

(2π)3
(u2(p)+w2(p)) = 1 . (E.30)

With this parameterization some of the diagrams can be evaluated analytically. In
order to facilitate also an analytic evaluation of the diagrams involving the nn scattering
amplitude, the CD-Bonn potential in the relevant partial waves (1S0,

3P0,
3P1,

3P2) is
cast into a separable representation by means of the so-called EST method [122]. The
resulting rank 1 separable interactions exactly reproduce the on- and off-shell properties
of the CD-Bonn potential at the chosen approximation energies (ELab = 0 MeV for
1S0 and ELab = 30 MeV for the P waves) [122] and they provide also an excellent
approximation in a broad neighborhood of these energies. The form factors g(p) of
these separable representations, that consist of the scattering solutions of the CD-Bonn
potential at the specified approximation energies [122], are parameterized in analytical
form,

g(p) =
∑

i

ci/(p
2 + β2

i ), (E.31)

for 1S0 and

g(p) =
∑

i

cip/(p
2 + β2

i )2, (E.32)
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for the P waves and the scattering amplitude is then given by

f(p, p′; k) =
2π2MNg(p)g(p′)

±1−MN

∫
d3q g2(q)

q2−k2−i0

. (E.33)

Here the positive sign pertains to the 1S0,
3P0, and 3P2 partial waves, and the negative

sign to the 3P1 partial wave. The parameters ci and βi for each partial wave are listed
in Table E.1.

1S0
3P0

ci [MeV] βi [MeV] ci [MeV2] βi [MeV]
1 -1.6788489 105.64868 5.6091364 87.697924
2 38.388276 208.40749 -47.29225 196.68429
3 -204.19687 311.16630 -52680.52 305.67065
4 -265.30647 413.92511 25403.007 414.65702
5 604.93218 516.68392 140524.04 523.64338

3P1
3P2

ci [MeV2] βi[MeV] ci [MeV2] βi [MeV]
1 -26.122635 151.92170 -169.35853 139.80616
2 107984.65 329.53539 12651.165 243.67922
3 -1107050.3 507.14909 -149453.00 347.55228
4 3691951.8 684.76279 405215.24 451.42534
5 -3372798.2 862.37648 -389168.49 555.29840

Table E.1: Parameters of the form factors for the separable representation of the CD-
Bonn potential.

E.2.4 Parameterization of the ChPT NN wave functions

In this section we provide parameterization of the ChPT NN wave functions that were
used in the analysis of Chapter 4. For the sake of completeness we repeat here explicit
expressions for the amplitudes that appear at leading order in the calculation for γd→
π+nn. As outlined in Chapter 4 these expressions can be used directly in the analysis
of the data for extraction of neutron-neutron scattering length ann, once available. In
addition, they should also proof useful for the design of the corresponding experiment.
Note, as outlined in Chapter 4, only near θr = 90◦ the leading order calculation gives
a sufficiently accurate representation of the spectra. At all other angles one should use
the complete calculation.

At leading order only diagrams a1 and a2 of Fig. 3.1 contribute. Since only the
momentum dependence of the amplitudes is relevant for the experimental analysis we



E.2. Reaction γd→ π+nn 125

drop an overall factor compared to Section E.2. The corresponding amplitudes read:

M s
a1 =

(
u(~pr − ~kπ/2 + ~qγ/2) + u(−~pr − ~kπ/2 + ~qγ/2)

)
(E.34)

M t
a1 =

(
u(~pr − ~kπ/2 + ~qγ/2)− u(−~pr − ~kπ/2 + ~qγ/2)

)
(E.35)

Ma2 = 8π
f on(pr)

g(pr)

∫
d3 p

(2π)3

u(~p− ~kπ/2 + ~qγ/2) g(p)

p2 − p2
r − i0

=
f on(pr)

iqπγ g(pr)

∑
ij

CiDj

p2
r + β2

j

ln

(
αi − ipr + iqπγ

αi − ipr − iqπγ

· αi + βj − iqπγ

αi + βj + iqπγ

)
(E.36)

with u(~p) being the S–wave part of the deuteron wave function in momentum space. We
checked by explicit calculations that the inclusion of the deuteron D-wave changes only
the absolute scale of the differential cross sections but not its momentum dependence.
Thus, the D-wave contribution is not taken into account in this parameterization. The
quantity qπγ is defined as qπγ = |~kπ−~qγ|/2. The labels s and t stand for spin singlet and
triplet final two-nucleon state—we do not write out the corresponding spin structures.
We take into account only the 1S0 partial wave in the final state interaction.

To derive the expression for Ma2 we used the fact that the neutron–neutron scattering
amplitude can be represented to high accuracy in separable form [82, 122]. The neutron–
neutron scattering amplitude, f(p, k;E), can be written in half off–shell kinematics as

f(p, k; k2/M) =
2π2Mg(p)g(k)

1−M
∫
d3q g2(q)

q2−k2−i0

= f on(k)
g(p)

g(k)
, (E.37)

where the corresponding on–shell amplitude f on(k) can then be expressed in terms of
the scattering phase–shifts through

f on(k) = f(k, k; k2/M) =
1

k cot δ(k)− ik
.

For small momenta one can use the effective range expansion for k cot δ(k) = −1/ann +
rnnk

2/2 + O(k4), in agreement with Eq. (4.1). Here ann is the parameter to be fitted
to the data and rnn = 2.76 fm. We checked that changing the value of rnn within
the bounds allowed (±0.1 fm [133]) leads to negligible effects on the extraction of the
scattering length. In this way we expressed the matrix element explicitly in terms of the
scattering length. We checked that the ratio g(p)/g(k) in Eq. (E.37) does not change
when we vary the scattering length within acceptable range bounds.

In order to evaluate the convolution of the deuteron wave function with the nn final
state interaction analytically, we needed to employ the following parameterizations for
the 1S0 nn form factor g(p) (see Eq. (E.37)) and the S-wave deuteron wave function

g(p) =
∑

i

Di

p2 + β2
i

; u(p) =
∑

i

Ci

p2 + α2
i

;

where the parameters corresponding to the ChPT calculation at N2LO with cut offs
{Λ, Λ̃} = {550 MeV, 600 MeV} (see Ref [18] for details) are listed in Table E.2. Note,
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the coefficients in the parameterization of the wave function have to fulfill the relation∑
Ci = 0 in order to ensure the regularity of the deuteron wave function at the origin

in coordinate space [168].

The squared and averaged amplitude to be used in the expression for the differential
cross section, defined in Eq. (4.3) is

|M(pr, θr, ϕr, θπ, ϕπ)fit|2 =
∣∣MS

a1 +Ma2

∣∣2 + 2
∣∣MT

a1

∣∣2 . (E.38)

In a fit to data two parameters are to be adjusted, namely the overall normalization C
of Eq. (4.3) and the object of desire, ann.

1S0 form factor S-wave deuteron w.f.

βi [MeV] Di [MeV] αi [MeV] Ci [MeV1/2]
1 164.53278 31.101228 45.334919 43.543212
2 246.85751 -1310.3056 242.66091 -35.643003
3 329.18224 9455.9603 439.98691 419.25214
4 411.50697 -9666.0268 637.31291 -1833.4708
5 493.83170 -55571.615 834.63891 -3710.8173
6 576.15643 64600.071 1031.9649 24903.150
7 658.48116 149128.85 1229.2909 -31673.576
8 740.80589 -84844.967 1426.6169 26476.636
9 823.13062 -295594.17 1623.9429 -118733.48

10 905.45536 -30332.710 1821.2689 259759.15
11 987.78009 560829.89 2018.5949 -223816.07
12 1070.1048 -307006.25 2215.9209 C12

Table E.2: Parameters of the 1S0 form factor and the S-wave deuteron wave function for
the separable representation of the N2LO chiral NN potential. Here C12 = −∑11

i=1Ci.

E.3 Reaction pp→ dπ+

E.3.1 Observables

The differential cross-section is given by

dσ =
kπ

64π2s p
|Mfi|2dΩ~kπ

, (E.39)

where kπ is the momentum of final pion in the center-of-mass frame, s ≈ 2M+mπ is the
total center-of-mass frame energy of the system, and p is the momentum of one of initial
protons. The relevant diagrams for s– and p–wave pion production near threshold are
shown on Fig. E.1.
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a1

a2

b1

b2

c

a1
′

a2
′

c
′

Figure E.1: Diagrams for reaction pp → dπ+. Left panel corresponds to s-wave pion
production, right panel — to p-wave pion production. Blobs denote the deuteron wave
function and the initial state interaction amplitude.

E.3.2 Matrix elements for s-wave pion production

Here we present the explicit expressions for the amplitudes corresponding to the dia-
grams in Fig. E.1 for s–wave pion production. All calculations are done in the center–
of–mass system of the reaction.

At threshold the s–wave pion production in the reaction pp→ dπ+ corresponds to the
3P1 spin-angular state of initial protons. This corresponds to the following spin-angular
dependence of the amplitude common for all diagrams a1, a2, b1, b2, c of Fig. E.1:

M3P1
= χt

2

σ2

√
2
~σ · [p̂× ~ε ∗d ]χ1A, (E.40)

where ~p is the relative momentum between the two initial protons, p̂ = ~p/p, χ1,2 (χt
1,2)

are spinors (transposed spinors) of initial protons, ϕ1,2 (ϕt
1,2) are their isospinors (trans-

posed isospinors), ~ε ∗d is the polarization of the final deuteron. We provide below expres-
sions for quantities A in which spin-angular part is factorized. In addition, we do not
write out the isospin factor ϕt

2τ
2τ−ϕ1 = 1 for two initial protons.

Diagram a1

Aa1 = −Cs
pf 2

π

M

(
u(p) + w(p)/

√
2
)
, (E.41)

where Cs = 4gAmπM
√

2M/f 3
π , The quantities u(p) and w(p) are the S– and D–wave

components of the deuteron wave functions in order.
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Diagram a2

Aa2 = −Cs 4π

∫
d3 s

(2π)3

u(s) + w(s)/
√

2

s2 − p2 − i 0

sf 2
π

M
f

3P1(p, s, Ep), (E.42)

where Ep = p2/M , and f
3P1(p, s, p2/M) is the half–offshell NN–scattering amplitude

which is related with the scattering phase δ
3P1 as follows:

f
3P1(p, p, Ep) =

1

2ip

(
e2iδ

3P1 − 1
)
. (E.43)

Diagram b1

The calculation according the diagram technique rules gives for the amplitude of this
diagram (including the spin-angular part):

Mb1 = Cs χ
t
2σ

2

∫
d3q

(2π)3

(~σ · (~q + ~p ))(~Γ ∗(~q ) · ~σ)

(~q + ~p )2 + m̃2
π

χ1, (E.44)

where the fixed kinematics approximation was used, and therefore m̃2
π = m2

π−(p2/2M)2

= 3/4m2
π; ~Γ(~q ) = ~εd u(q)/

√
2 − (3(~εd · q̂)q̂ − ~εd)w(q)/2 with q̂ = ~q/q is the deuteron

vertex. It appears then convenient to apply inverse Fourier transform to this expression
according with

∫
d3q

(2π)3

(~q + ~p )j Γk ∗(~q )

(~q + ~p )2 + m̃2
π

=

∫
d3q

(2π)3
d3r d3r′f j(~r ) Γk ∗(~r ′) e−i~q·~r′−i(~q+~p )·~r

=

∫
d3r f j(~r ) Γk ∗(~r ) e−i~p·~r, (E.45)

where Γk ∗(~r ) is the deuteron vertex in coordinate space, and f j(~r ) is given by

f j(~r ) =

∫
d3q

(2π)3
ei~q·~r qj

q2 + m̃2
π

= −i ∂

∂rj

e−m̃πr

4πr
= i r̂j e

−m̃πr

4πr

(
m̃π +

1

r

)

with r̂ = ~r/r. Using this formula and performing the angular integration, after which
the spin-angular part of the amplitude factorizes according with Eq. (E.40) we end up
with the following expression for Ab1:

Ab1 = Cs

∞∫

0

dr

(
cos pr

pr
− sin pr

p2r2

)(
m̃π +

1

r

)
e−m̃πr

(
u(r) + w(r)/

√
2
)
. (E.46)

Note that here u(r) and w(r) are the S and D components of the deuteron wave function
in coordinate space related with their momentum space counterparts according to

∫
d3q

(2π)3
~Γ(~q ) ei~q·~r = ~Γ(~r ) = ~εd u(r)/

√
2− (3(~εd · r̂)r̂ − ~εd)w(r)/2. (E.47)
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Diagram b2

Ab2 = Cs 4π

∫
d3 s

(2π)3

f
3P1(p, s, Ep)

s2 − p2 − i 0
I(s), (E.48)

where

I(s) =

∞∫

0

dr

(
cos sr

sr
− sin sr

s2r2

)(
m̃π +

1

r

)
e−m̃πr

(
u(r) + w(r)/

√
2
)

is the integral corresponding to the diagram b1 (u(r) and w(r) are the S and D com-
ponents of the deuteron wave function in coordinate space).

Diagram c

Ac = Cs∆ 4π

∫
d3 s

(2π)3

s

s2 − 2µN∆(mπ − δ)

(√
3

5
w(s) f 5F1

N∆(p, s, Ep)

+
1

3

√
1

5

(
5u(s)− w(s)/

√
2
)
f 5P1

N∆(p, s, Ep)

+
1

3

(
u(s) + w(s)/

√
2
)
f 3P1

N∆(p, s, Ep)

)
, (E.49)

where Cs∆ = 4hAM
√

2MM∆(M +M∆)/fπ, µN∆ is the nucleon-Delta reduced mass,
δ = M∆−M , and fN∆(p, s, Ep) are NN → N∆ transition amplitudes in corresponding
partial waves (see Appendix B for the details).

E.3.3 Matrix elements for p-wave pion production

Here we present the explicit expressions for the amplitudes corresponding to the dia-
grams in Fig. E.1 for s–wave pion production. Again, all calculations are done in the
center–of–mass system of the reaction. For the case of the p–wave pion production
near threshold in the reaction pp → dπ+ there are two possible spin-angular states of
initial protons, namely 1S0 and 1D2. This corresponds to the following spin-angular
dependences of the amplitude for diagrams a1′, a2′, c′ of Fig. E.1:

M1S0 = χt
2

σ2

√
2
χ1

(
~kπ · ~ε ∗d

)
A

1S0 (E.50)

M1D2 = χt
2

σ2

√
2
χ1

(
3(~kπ · p̂)(~ε ∗d · p̂)− (~kπ · ~ε ∗d )

)
A

1D2 , (E.51)

where ~kπ is the momentum of the final pion, and other notations are the same as for s–
wave pion production. We give below expressions for quantities A in which spin-angular
part is factorized. We again do not write out the isospin factor ϕt

2τ
2τ−ϕ1 = 1 for two

initial protons.
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Diagram a1′

A
1S0

a′1
= Cp u(p)

A
1D2

a′1
= −Cpw(p)/

√
2, (E.52)

where Cp = 4i gAM
√

2M/fπ.

Diagram a2′

A
1S0

a′2
= Cp 4π

∫
d3 s

(2π)3

u(s) f
1S0(p, s, Ep)

s2 − p2 − i 0

A
1D2

a′2
= −Cp 4π

∫
d3 s

(2π)3

w(s) f
1D2(p, s, Ep)

s2 − p2 − i 0
, (E.53)

where f(p, s, Ep) are the half-offshell scattering amplitudes in the corresponding partial
waves.

Diagram c′

A
1S0

c′ = −
√

2

9
Cp∆ 4π

∫
d3 s

(2π)3

w(s) f 5D0
N∆ (p, s, Ep)

s2 − 2µN∆(mπ − δ)

A
1D2

c′ =
2

3

√
5Cp∆ 4π

∫
d3 s

(2π)3

1

s2 − 2µN∆(mπ − δ)

(
1

2
u(s) f 5S2

N∆(p, s, Ep)

− 1

4

√
7

5
w(s) f 5D2

N∆ (p, s, Ep)

)
, (E.54)

where Cp∆ = 4i hAM
√

2MM∆(M +M∆)/fπ, µN∆ is the nucleon-Delta reduced mass,
δ = M∆−M , and fN∆(p, s, Ep) are NN → N∆ transition amplitudes in corresponding
partial waves (see Appendix B for the details).

E.4 Corrections to aπd

In this appendix we present the explicit expressions for the amplitudes depicted in
Table 5.1. Note, in accordance with the definition used for dispersive corrections as
well as the power counting, we only keep those amplitudes that contain two–nucleon
cuts in time–ordered perturbation theory (TOPT). Especially, we dropped the so–called
stretched boxes.

Using the same labels as in the table, one finds for the corresponding corrections
to the πd scattering length for sum of the diagrams without the NN interaction in the
intermediate state:

adisp
πd =

g2
Am

2
π

6πf 6
π(1+mπ/2M)(1+q0/2M)

∫
d3q

(2π)3

q2(F1(q)+F2(q))
2

q2/M − q0 − iε
(E.55)
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where

F1(q) =

(
I1(q)− 3

2
√

2
I2(q)

)
and F2(q) =

f 2
π

M

(
u(q) +

w(q)√
2

)
. (E.56)

Here I1 and I2 are the integrals that correspond to the overlap of the deuteron wave
function (u(q) and w(q) for the S- and D-waves, respectively) with the one pion exchange
operator

I1(q) = −
∫

d3p

(2π)3

(1 + (~p · ~q)/q2)

2ω~p+~q

(
u(p) +

w(p)√
2

)(
1

P1

+
1

P2

)
,

I2(q) = −
∫

d3p

(2π)3

(1− (~p · ~q)2/(p2q2))

2ω~p+~q

w(p)

(
1

P1

+
1

P2

)
(E.57)

where P1 and P2 correspond to the TOPT components of the pion propagator P1 =
q0 − ω~p+~q − (p2 + q2)/2M and P2 = −ω~p+~q − (p2 + q2)/2M with ω~q =

√
~q 2 +m2

π.
The expressions for the amplitudes with the intermediate state interaction read

adisp,NN
πd = 4π

g2
Am

2
π

6πf 6
π(1+mπ/2M)(1+q0/2M)

∫
d3q

(2π)3

d3l

(2π)3

q(F1(q)+F2(q))

q2/M − q0 − iε

×f 3P1(q, l, q0)
l(F1(l)+F2(l))

l2/M − q0 − iε
. (E.58)

The diagrams of Table 5.1 can be easily matched to the individual terms under the
integrals in the r.h.s. of Eqs. (E.55) and (E.58): type 1 contains F 2

1 , type 2 contains F 2
2 ,

whereas the interference terms of type 3 contain 2F1F2. For the direct terms, labeled as
d in the table, one needs to take q0 = mπ and for the crossed terms, labeled as c in the
table, q0 = −mπ.

All integrals are evaluated up to a sharp momentum cut–off of 1 GeV. All higher
momentum components are to be absorbed in a counter term that is to be included
at order χ2 (c.f. discussion in section 2). By enlarging the cut–off by a factor of 20
we checked that the integrals change by less than 10 % — fully in line with the power
counting.



Appendix F

Loops for NN → NNπ

In this appendix we provide details of evaluation of loop diagrams of Fig. 2.3.
In what follows we consider the spin-isospin matrix elements of the transition op-

erator projected on the final state with spin 1 and isospin 0, which corresponds to the
reaction pp → dπ+. The spin matrix element of the transition operator for a general
process is writen in the following form:

T = χ†1′ Ô1(~p, ~p
′ )χ1 χ

†
2′ Ô2(~p, ~p

′ )χ2 + χ†1′ Ô2(−~p,−~p ′ )χ1 χ
†
2′ Ô1(−~p,−~p ′ )χ2, (F.1)

where χ1,2 (χ1′,2′) are the spinors of initial (final) nucleons, and Ô1,2(~q ) are spin operators
(2×2 matrices), which depend on the relative momenta of the initial and final NN pairs
— ~p and ~p ′. The second term in the r.h.s. of Eq. (F.1) corresponds to the interchange
of the two nucleon lines. The part of the spin matrix element that corresponds to the
spin 1 final state is given by (see also Appendices C and B)

T1 =
∑

T × χt
2′
σ2

√
2

(~σ · ~ε )χ1′ , (F.2)

where the sum is performed over the polarizations of the final nucleons, χt stands for the
transposed spinor, and ~ε is the polarization vector that corresponds to the final S = 1
state (for instance, the (complex conjugated) deuteron polarization vector in the case of
deuteron final state). Eq. (F.2) gives a simple recipe how to calculate the spin projected
matrix element. Analogous consideration are applied to projection of the isospin matrix
element — the only difference is that the isospin of the channel that we are investigating
is 0, therefore instead of an isospin analog of (~σ~ε ) one should insert a unit matrix. The
corresponding calculations for the reaction pp→ ppπ0 are also done in full analogy.

Let us as an illustration calculate the spin and isospin projected matrix element
corresponding to isovector rescattering pion production, i.e. to diagram (a) of Fig. 2.2.
We show in Fig. F.1 the definition of relevant momenta and energies. The corresponding
matrix element reads (note that we include the recoil correction to the WT term fully
in line with arguments of Chapter 2):

T WT = χ†1′ ϕ
†
1′
M

2f 2
π

(
(q0 +mπ)− 1

2M
[(−~p+ ~p ′) · (~p+ ~p ′)]

)
εbacτ c χ1 ϕ1

×χ†2′ ϕ†2′
gAM

fπ

[−~σ · (−~p+ ~p ′)] τ b χ2 ϕ2 × 1

q2
µ −m2

π

, (F.3)
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(ε,−~p ) (ε
′′
,−~p

′
)

2

(ε, ~p ) (ε
′
, ~p

′
)

a

(mπ
, 0

)

(q0, ~q )

2
′

1 1
′

Figure F.1: Definition of momenta and energies for diagram (a) of Fig. 2.2. Labels 1
and 2 (1′ and 2′) denote the initial (final) nucleons. Label ”a” corresponds to isospin of
outgoing pion. Zeroth and spatial components of four-vectors are shown explicitly. The
four-vector q is q = (ε− ε′′, ~p ′ − ~p ).

where ϕ’s stand for the corresponding isospinors, and q = (ε− ε′′, ~p ′ − ~p ). Simplifying
this expression using ~p 2/2M = mπ/2 at threshold and neglecting the energies of final
nucleons (which is justified as soon as we suppose the momenta of final nucleons to be
small compared to p ∼ √

mπM), we get

T WT = χ†1′ ϕ
†
1′
M

2f 2
π

(2mπ) εbacτ c χ1 ϕ1

×χ†2′ ϕ†2′
gAM

fπ

~σ · (~p− ~p ′) τ b χ2 ϕ2 × −1

(~p− ~p ′ )2 + 3m2
π/4

. (F.4)

Adding the corresponding term with the interchanged nucleon lines (i.e. with inter-
changed spinor indices 1 and 2, 1′ and 2′ and changed signs of the momenta in Eq. (F.4))
and performing spin and isospin projection according to Eq. (F.2), we end up with the
following result:

T WT
1 =

gAmπM
2

f 3
π

1

(~p− ~p ′ )2 + 3m2
π/4

×χt
2

σ2

√
2

((~σ · (~p− ~p ′))(~σ · ~ε )− (~σ · ~ε )(~σ · (~p− ~p ′))) χ1

×ϕt
2

τ 2

√
2
τ bτ cϕ1ε

abc, (F.5)

which finally gives

T WT
1 =−4gAmπM

2

f 3
π

1

(~p− ~p ′ )2 + 3m2
π/4

χt
2

σ2

√
2
~σ · [(~p− ~p ′)× ~ε ]χ1 ϕ

t
2

τ 2

√
2
τaϕ1 (F.6)

— cf. also Eqs. (2.5), (2.6); note that ϕt
2 τ

2τaϕ1/
√

2 = 1 for the reaction pp → dπ+.
Note an additional factor of two in this equation compared with A2a

10 in Eq. (2.6), which
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(ε,−~p ) (ε
′′
,−~p

′
)

2

(ε, ~p ) (ε
′
, ~p

′
)

(−ℓ0 + ε
′′
,−~ℓ − ~p

′
)

a

(mπ
, 0

)

(ℓ
0
+

q 0
,
~ℓ
+

~q
)

(ℓ
0 , ~ℓ

)

2
′

1 1
′

Figure F.2: Definition of momenta and energies for diagram (b) of Fig. 2.3. The nota-
tions are as in Fig. F.1.

comes due to the fact that here we calculated the sum of the production amplitudes on
each nucleon — those are equal and give the factor of two.

We turn now to the evaluation of pion loops shown in Fig. 2.3. Let us start with
diagram (b) of that figure. The definition of momenta is shown on Fig. F.2. The matrix
element corresponding to this figure reads

T 3b=
g3

AM
3

2f 5
π

∫
d4`

(2π)4

1

[`2µ −m2
π + iγ][(`+ q)2

µ −m2
π + iγ][2M(−`0 + ε′′)− (~̀+ ~p ′ )2 + iγ]

×χ†1′ ϕ†1′ [τaδbc(~σ · ~q ) + τ bδac(~σ · (~̀+ ~q ))− τ cδab(~σ · ~̀)]χ1 ϕ1

×χ†2′ ϕ†2′(~σ · ~̀)(~σ · (~̀+ ~q ))τ bτ cχ2 ϕ2. (F.7)

Adding to this expression the result of interchange of the nucleon lines and using
Eq. (F.2), after straightforward but somewhat tedious calculations one gets the pro-
jected on the final state with spin 1 and isospin 0 matrix element — in full analogy with
the calculation for the isovector rescattering. Note that in doing so we neglected the
energies of final nucleons and also momentum of the final nucleon in the nucleon prop-
agator, since its magnitude is supposed to be much smaller than typical value of ` ∼ p.
Notice that according to these prescriptions q0 = p2/2m. The resulting expression for
T 3b

1 reads:

T 3b
1 =−i g

3
AM

2

f 5
π

∫
d4`

(2π)4

1

[`2µ −m2
π + iγ][(`+ q)2

µ −m2
π + iγ][−`0 − `2

2M
+ iγ]

×χt
2

σ2

√
2

{
(~̀ · (~̀+ ~q ))(~σ · [(3~q + 2~̀)× ~ε ])+2(~σ · [~q × ~̀ ])(~ε · ~̀)+2(~σ · ~̀)(~̀ · [~ε× ~q ])

+ 3(~σ · [~q × ~̀ ])(~ε · ~q )+ 3(~σ · ~q )(~̀ · [~ε× ~q ])
}
χ1 ϕ

t
2

τ 2

√
2
τaϕ1. (F.8)

There are two different tensor structures formed by components of vector ~̀ that appear
in the four last terms in the curly brackets in Eq. (F.8), namely `i`j and `k, contracted
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with constant vectors that can be taken out of the integral sign. Since the only vector
that enters the integral over d3` is ~q, we can substitute these structures according to the
following:

`k → qk
~̀ · ~q
q2

, `i`j → 1

2

(
3

(~̀ · ~q )2

q4
− `2

q2

)
qiqj +

1

2

(
`2

q2
− (~̀ · ~q )2

q4

)
q2δij

— this is a consequence of the rotational invariance. The last two terms in the curly
brackets in Eq. (F.8) therefore appear to be proportional to εijkqiqj and thus give zero,

whereas the second and the third terms cancel each other. The vector 3~q + 2~̀ that
enters the vector product in the first term in the curly brackets is also substituted as
3~q + 2~̀= ~q (3 + 2 ~̀ · ~q/q2). The result of these operations is:

T 3b
1 = −i g

3
AM

2

f 5
π

∫
d4`

(2π)4

(~̀ · (~̀+ ~q ))(3 + 2 ~̀ · ~q/q2)

[`2µ −m2
π + iγ][(`+ q)2

µ −m2
π + iγ][−`0 − `2

2M
+ iγ]

×χt
2

σ2

√
2

(~σ · [~q × ~ε ])χ1 ϕ
t
2

τ 2

√
2
τaϕ1. (F.9)

This expression can be further simplified. First, taking the integral over d`0 gives
∫
d`0
2π

1

[`2µ −m2
π + iγ][(`+ q)2

µ −m2
π + iγ][−`0 − `2

2M
+ iγ]

=
−i

2ω2
~̀ ω

2
~̀+~q

, (F.10)

where ω~̀ =
√
`2 +m2

π and analogously for ω~̀+~q , and we neglected q0 compared to ω~̀+~q .
Then we note that

~̀ · (~̀+ ~q ) =
1

2

(
(~̀+ ~q )2 + `2 − q2

)
, (F.11)

and therefore the following equality is justified:

~̀ · (~̀+ ~q )

2ω2
~̀ ω

2
~̀+~q

=
1

2

(
1

2ω2
~̀

+
1

2ω2
~̀+~q

+
−q2 − 2m2

π

2ω2
~̀ ω

2
~̀+~q

)
. (F.12)

Using this equation, the integral from Eq. (F.8) can be rewritten in the form

I =

∫
d4`

(2π)4

(~̀ · (~̀+ ~q ))(3 + 2 ~̀ · ~q/q2)

[`2µ −m2
π + iγ][(`+ q)2

µ −m2
π + iγ][−`0 − `2

2M
+ iγ]

= − i
2

∫
d3`

(2π)3

(
3 + 2

~̀ · ~q
q2

) [
1

2ω2
~̀

+
1

2ω2
~̀+~q

+
−q2

2ω2
~̀ ω

2
~̀+~q

]

+higher orders in χπ , (F.13)

where we also neglected the term 2m2
π compared to q2. After an appropriate shift of the

integration variable we obtain for the integral I the following expression:

I = −i
∫

d3`

(2π)3

[
1 + ~̀ · ~q/q2

ω2
~̀

− q2 3 + 2 ~̀ · ~q/q2

4ω2
~̀ ω

2
~̀+~q

]
. (F.14)
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Figure F.3: Definition of momenta and energies for diagram (c) of Fig. 2.3. Here
q̃0 = ε′ − ε. The remaining notations are as in Fig. F.1.

Since the first term in the integrand does not depend on large transfer momentum q for
the integral over the angles from ~̀ · ~q is zero, we state that typical momenta ` in the
corresponding part of the integral should be of order mπ, whereas the second part of
the integral depends on q non–trivially (which can be seen after the integration over the
angles), and typical values of ` are of order q ∼ √

mπM in this case, according to the
general counting rules. Note also that the second integral converges. We then substitute
all `’s by their typical values to obtain an estimate — as is usually done in counting —
and get I ∼ mπ for the first term in Eq. (F.14) and I ∼ q for the second. Therefore up
to higher orders in χπ

I = i

∫
d3`

(2π)3

[
q2 3 + 2 ~̀ · ~q/q2

4ω2
~̀ ω

2
~̀+~q

]
. (F.15)

Eq. (F.15) means that we can substitute ~̀ · (~̀+ ~q ) = −q2/2 + (higher orders in χπ ) in
the initial expression for T 3b

1 in Eq. (F.8). Furthermore, we can conclude on the same

grounds that the substitution ~̀ · ~q = −q2/2 + (higher orders in χπ ) is also justified.

Collecting all arguments given above, we are now able to rewrite Eq. (F.8) as

T 3b
1 =

2i q2 g3
AM

2

4f 5
π

∫
d4`

(2π)4

1

[`2µ −m2
π + iγ][(`+ q)2

µ −m2
π + iγ][−`0 + iγ]

×2χt
2

σ2

√
2

(~σ · [~q × ~ε ])χ1 ϕ
t
2

τ 2

√
2
τaϕ1

=−2
g3

AM
2

4f 5
π

(~p− ~p ′)2I0(|~p− ~p ′|2)× 2χt
2

σ2

√
2

(~σ · [(~p− ~p ′)× ~ε ])χ1 ϕ
t
2

τ 2

√
2
τaϕ1

+terms of higher orders in χπ (F.16)

— cf. Eqs. (2.5), (2.8); we again returned here to the integral over d4` in order to match
it to the integral I0 defined in Eq. (2.7). Note again the extra factor of two compared
to Eq. (2.8).

We turn now to the evaluation of diagram (c) of Fig. 2.3. The momenta and energies
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are defined in Fig. F.3. The matrix element corresponding to this figure reads

T 3c=−g
3
AM

3

f 5
π

∫
d4`

(2π)4

1

[`2µ −m2
π + iγ][(`+ q)2

µ −m2
π + iγ][2M(−`0 + ε′′)− (~̀+ ~p ′ )2 + iγ]

×χ†1′ ϕ†1′(~σ · ~q )τ dχ1 ϕ1 χ
†
2′ ϕ

†
2′(~σ · ~̀)(~σ · (~̀+ ~q ))τ bτ cχ2 ϕ2

× [
δacδbd[(`+ q)2

µ −m2
π + 2mπ(`0 + q0)] + δabδcd[`2µ −m2

π + 2mπ`0]

+ δadδbc[(mπ + q̃0)
2 − ~q 2 −m2

π]
]
/(q̃2

0 − ~q 2 −m2
π). (F.17)

After adding to this expression the result of the interchange of the two nucleon lines
and projection on final spin 1 and isospin 0, one gets (we again neglected the energies
of final nucleons and the momentum of the final nucleon in the nucleon propagator):

T 3c
1 =−i g

3
AM

2

2f 5
π

∫
d4`

(2π)4

1

[`2µ −m2
π + iγ][(`+ q)2

µ −m2
π + iγ][−`0 − `2

2M
+ iγ]

×3[(`+ q)2
µ −m2

π + 2mπ(`0 + q0)]− [`2µ −m2
π + 2mπ`0] + 3[(mπ + q̃0)

2 − ~q 2 −m2
π]

(q̃2
0 − ~q 2 −m2

π)

×χt
2

σ2

√
2

{
2(~̀ · (~̀+ ~q ))(~σ · [~ε× ~q ]) + 2(~ε · ~q )(~σ · [~q × ~̀ ]) + (~σ · ~q )(~q · [~̀× ~ε ])

}
χ1

×ϕt
2

τ 2

√
2
τaϕ1. (F.18)

In full analogy to the calculation that we performed above for diagram (b) of Fig. 2.3,
only the first term in the curly brackets in Eq. (F.18) gives a nonzero contribution.

Replacing again ~̀ · (~̀+ ~q ) by −q2/2 and neglecting all contributions of higher orders
analogously to what was done for diagram (b) of Fig. 2.3, we arrive to the following
result for T 3c

1 :

T 3c
1 =−3iq2 g3

AM
2

4f 5
π

∫
d4`

(2π)4

1

[`2µ −m2
π + iγ][(`+ q)2

µ −m2
π + iγ][−`0 + iγ]

×2χt
2

σ2

√
2

(~σ · [~ε× ~q ])χ1 ϕ
t
2

τ 2

√
2
τaϕ1

=3
g3

AM
2

4f 5
π

(~p− ~p ′)2I0(|~p− ~p ′|2)× 2χt
2

σ2

√
2

(~σ · [(~p− ~p ′)× ~ε ])χ1 ϕ
t
2

τ 2

√
2
τaϕ1

+terms of higher orders in χπ (F.19)

— compare with Eqs. (2.5), (2.8). Note again the extra factor of two.
The calculation of diagrams (a) and (d) of Fig. 2.3 is performed analogously to the

calculations presented in this appendix. The essential details on how to treat the WT
vertex and nucleon propagators in diagrams (a) of that figure are given in Chapter 2.
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[17] E. Epelbaum, W. Glöckle, and U.-G. Meißner. Nuclear forces from chiral La-
grangians using the method of unitary transformation. I: Formalism. Nucl. Phys.
A, 637:107–134, 1998.
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[133] R. Machleidt and H. Müther. Charge symmetry breaking of the nucleon-nucleon
interaction: ρ−ω mixing versus nucleon mass splitting. Phys. Rev. C, 63:034005,
2001.

[134] A. Nogga, A. Kievsky, H. Kamada, W. Glöckle, L.E. Marcucci, S. Rosati, and
M. Viviani. Three-nucleon bound states using realistic potential models. Phys.
Rev. C, 67:034004, 2003.

[135] A. G̊ardestig and D. R. Phillips. How low-energy weak reactions can constrain
three-nucleon forces and the neutron-neutron scattering length. Phys. Rev. Lett.,
96:232301, 2006.

[136] A. Gasparyan, J. Haidenbauer, C. Hanhart, and K. Miyagawa. Λn scattering
length from the reaction γd→ K+Λn. EPJA, 2007.

[137] A. G̊ardestig. Chiral O(Q4) two-body operators for s-wave pion photoproduction
on the NN system. Phys. Rev. C, 74:017001, 2006.

[138] D. Chatellard et al. X-ray spectroscopy of the pionic deuterium atom. Nucl. Phys.
A, 625:855–872, 1997.

[139] D. Gotta et al. PSI experiment R-06.03; D. Gotta, private communications.
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