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Abstract

The structure of the proton and the neutron is of fundamental importance for the
study of the strong interaction dynamics over a wide range of momentum transfers.
The nucleon form factors encode information on the internal structure of the nucleon
as probed by the electromagnetic interaction, and, to a certain extent, reflect the
charge and magnetisation distributions within the proton and the neutron.
In this thesis we report on our investigation of the electromagnetic form factors of
the proton and the neutron with dispersion relation techniques, including known
experimental input on the ππ, KK̄ and the ρπ continua and perturbative QCD
constraints. We include new experimental data on the pion form factor and the
nucleon form factors in our simultaneous analysis of all four form factors in both
the space- and the timelike regions for all momentum transfers, and perform Monte-
Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss
the implications of our results on the pion cloud of the nucleon, the nucleon radii
and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent
approach to estimating two-photon effects in elastic electron-proton scattering.
The results of this thesis have been published in parts:

[1] Novel evaluation of the two-pion contribution to the nucleon isovector form fac-
tors, M. A. Belushkin, H.-W. Hammer, Ulf-G. Meißner, Phys. Lett. B 633 (2006)
507-511 [arXiv: hep-ph/0510382]

[2] Dispersion analysis of the nucleon form-factors including meson continua,
M. A. Belushkin, H.-W. Hammer, Ulf-G. Meißner, Phys. Rev. C 75 (2007) 035202
[arXiv: hep-ph/0608337]

[3] Model-independent extraction of two-photon effects in elastic electron-proton scat-
tering, M. A. Belushkin, H.-W. Hammer, Ulf-G. Meißner, in preparation.
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Chapter 1

Introduction

Nucleons - the proton and the neutron - are building blocks of matter. Nev-
ertheless, they are not fundamental. They are complex composite objects, their
constituents being quarks and gluons. The discovery of the proton and the neutron
have played a key role in the development of the theory of the strong force - quantum
chromodynamics (QCD).

Ever since the proton and the neutron were discovered, they have posed
challenges of increasing complexity to nuclear physics. At first, the nucleons were
considered to be point-like, structureless spin-1

2
Dirac particles. Their masses were

known to be nearly identical. The proton was known to have a positive charge, the
neutron - no net charge. The strength of the interaction between any pair of nucleons
was also known to be the same. The combination of these facts hinted at a symmetry
of the underlying Hamiltonian. The symmetry would necessarily be approximate,
since the masses of the proton and the neutron are not exactly the same. In 1932,
Heisenberg [Hei32] introduced the concept of isospin in analogy to the particle spin.
He proposed that the proton and the neutron are two states of the same particle -
the nucleon. Both particles are isospin 1

2
, but, by definition, the projection of isospin

onto a fixed direction in isospin space is I3 = +1
2

for the proton, and I3 = −1
2

for the
neutron. Heisenberg presented a mathematical formulation of the isospin symmetry:
the underlying Hamiltonian of the strong interactions is invariant under the action
of the Lie group SU(2). We now know that isospin symmetry is a subgroup of a
much larger flavour symmetry group.

Due to the charges of the nucleons, enormous Coulomb repulsion must
necessarily exist within the nuclei. The existence of a new fundamental force, the
strong force, was evident. In 1935, Yukawa postulated a new particle [Yuk35],
the pion, which was, in analogy to the photon and the electromagnetic interac-
tion, the quantum field responsible for mediating the strong interaction. The pion
mass was determined by the range of the nuclear force. Experimental evidence for

1



2 Chapter 1. Introduction

the existence of two charged pions came in 1947 with the works of Powell and his
collaborators [LMOP47, LOP47a, LOP47b]. Powell was awarded the 1950 Nobel
Prize for this discovery. The neutral pion was discovered in 1948, completing the
pion triplet. The fundamental role of the pion cloud surrounding the nucleons was
already becoming evident.

Alongside the studies of the nucleon interactions, first evidence of the
composite nature of the nucleons was emerging. In 1933, R. Frisch and O. Stern
[FS33] performed a measurement of the proton’s magnetic moment. A point-like
spin-1

2
Dirac particle possesses a magnetic moment of ∼ 1 nuclear magnetons. The

measurement of Frisch and Stern yielded a value ”between 2 and 3 nuclear magne-
tons” [FS33]. Further experimental evidence for the composite nature of the proton
was to come in the 1950’s.

In 1952, another breakthrough came as Glaser introduced the bubble
chamber [GR55], a discovery for which he was awarded the Nobel Prize in 1960.
This paved the way to the discovery of a large number of particles - by the late
1960’s, over 100 particles were known. A classification scheme for baryons and
mesons was proposed by Gell-Mann [Gel62] and Ne’eman [Nee61] in 1961, called the
Eightfold way. This was an extension of the original isospin symmetry proposed by
Heisenberg. Gell-Mann organised the mesons and spin-1

2
baryons into octets, and the

spin-3
2

baryons into a decuplet within a SU(3) scheme, now known as flavour-SU(3).
The decuplet predicted a new particle - the Ω−, which was indeed experimentally
observed in 1964, proving the success of the approach.

At the same time, new experimental evidence for the composite nature
of the nucleons came from the Stanford Linear Accelerator Centre (SLAC). In 1955,
high-energy elastic electron-proton scattering experiments were performed [HA55].
Strong deviations in the measured cross section compared to the cross section for
scattering on a point-like particle were observed. A prediction for the charge radius
of the proton emerged - 〈r2〉1/2 ∼ 0.8 fm [Hof57]. The composite nature of the proton
helped explain many other experimental results at that time, i.e. the abundance of
pions produced in electron-positron reactions in Frascati, and a large number of
inelastic reactions at a neutrino beam in CERN.

As the number of particles being discovered grew, it became apparent
that they can not all be fundamental particles. In 1964, Gell-Mann [Gel64] and
Zweig [Zwe64] independently proposed that hadrons are composed from quarks:
baryons from three quarks or anti-quarks, and mesons from quark-antiquark pairs.
The nuclear force no longer is the fundamental force of the strong interaction -
nucleons and pions are composite particles, and the field of the strong interaction
is not the pion but the gluon field, coupled to the colour charges of the quarks.
The nuclear force is the remnant of the strong force. For his works, Gell-Mann was
awarded the Nobel Prize in Physics in 1969, and the research laid the foundation of
the theory of strong interactions - quantum chromodynamics (QCD).

When quarks were first proposed, it was not clear whether they are
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merely a convenient mathematical concept or new subnuclear particles, especially
due to the fact that experimental searches for free quarks gave negative results.
Quarks are confined within hadrons, and, as the colour force increases with increas-
ing distance between them, they can not be separated. Experiments dealing with
deep inelastic scattering of electrons on the nucleons were to a large extent respon-
sible for the present conviction that we can determine the properties of the quarks
even though they can not be isolated - just as the early experiments dealing with the
scattering of electrons on nuclei implied that the electron scatters off some charged
particle which stays intact while the nucleus breaks into pieces, similar evidence was
obtained in high energy electron-proton scattering experiments.

The study of the internal structure of the nucleons not only provides a
fundamental test of QCD, but is also important for the understanding of a wide
range of nuclear reactions. For example, precise knowledge of the nucleon form
factors is of great importance in the analysis of parity violation experiments designed
to probe the strangeness content of the nucleon [Mue97, Ani98]; investigations of
the electromagnetic interactions of nuclei like the deuteron [Phi06] or 16O [Fis04], as
well as other light nuclei [Sic01] also require high precision knowledge of the nucleon
structure.

This thesis is organised as follows. In Chapter 2, an introduction to
the problem of the structure of the nucleons is presented. The nucleon structure
functions - the form factors - are introduced. Elastic electron-nucleon scattering, a
time-honoured tool to probe the electromagnetic structure of the nucleons, is dis-
cussed in the one-photon exchange approximation. The scattering process is related
to intermediate meson exchange processes, and dispersion relations are introduced
as a model-independent framework for the analysis of the nucleon form factors.

In Chapter 3, the theoretical input and the constraints for the form fac-
tors is discussed. It is shown how certain contributions from the intermediate states
can be constructed from experimental data. Asymptotic constraints are discussed,
and two models that we have developed to enforce these constraints and, at the same
time, parameterise the unknown multi-particle exchange contributions are presented.

Chapter 4 presents two modern techniques used to extract information
about the structure of the nucleons from experimental data. Corrections to the one-
photon exchange and their influence on the process of obtaining the form factors are
discussed in relation to a long-standing discrepancy between the results obtained
using different experimental techniques.

In Chapter 5 a mathematical formulation of the analysis of experimental
data is given. Different regression methods and the implementation of constraints
are presented, and the use of Monte-Carlo techniques for the production of the
theoretical uncertainty estimates is discussed.

The results of our form factor analyses are presented in Chapter 6. First,
our reanalysis of the important two-pion exchange contribution is given together
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with our investigation of the pion cloud of the nucleon. It is followed by our results
for the form factors obtained within the two models developed to enforce the correct
asymptotic form factor behaviour. The chapter concludes with the results of our
analysis of potential additional structure in the neutron electric form factor, the
implications of such structure for the pion cloud of the nucleon, and the analysis of
the preliminary experimental data from the CLAS collaboration.

In Chapter 7 we present the results of our cross section analysis, and
our model-independent estimate of additional corrections not present in the stan-
dard corrections applied to experimental data. We conclude that the difference
between the results of different experimental techniques is not as dramatic as origi-
nally thought, and it can indeed be explained by two photon exchange effects.

Finally, a summary of our results and an outlook on future refinements
and upcoming experimental data are presented in Chapter 8.



Chapter 2

The Structure of the Nucleon

The determination of the structure of the nucleon is one of the key problems of
hadronic physics. Nucleons are composite systems, the constituents being quarks
and gluons bound by increasingly strong forces for decreasing momentum transfers,
which corresponds to increasing distances. In the GeV region, the spacial scale is
∼ 1 fm - the order of the range of the nuclear force, the strong running coupling
constant αs(Q

2) becomes increasingly large. This brings the problem into the sphere
of non-perturbative quantum chromodynamics. In this regime, confinement is ex-
tremely important - i.e. the fact that the strong force confines quarks into pairs and
triplets - and the nucleon structure and interactions are determined by hadronic
degrees of freedom, rather than quarks and gluons.

2.1 Electron Scattering as a Probe of Nucleon

Structure

Elastic electron-nucleon scattering is traditionally the simplest and most effective
way to extract information about the nucleon structure. If the nucleons were point-
like, structureless particles, the cross section for electron-nucleon scattering would
be given by the Mott cross section. More than 50 years have passed since the early
experiments at SLAC [HA55] revealed deviations of the cross section for the scat-
tering of electrons on protons at rest from the Mott cross section. During this time,
the problem of hadronic structure in general, and of nucleon structure in particular,
has received wide interest from both the experimental and the theoretical sides.

The earliest theoretical investigations of the problem of nuclear structure
as probed in elastic electron-nucleon scattering experiments are usually credited
to Rosenbluth [Ros50]. In 1950, he used the then-novel Feynman techniques to

5



6 Chapter 2. The Structure of the Nucleon

calculate the cross section for high-energy elastic electron-nucleon scattering, which
involved modified charge and magnetic moment expressions for the proton. They
were calculated under the assumption that the proton in the reaction spends part of
the time in the state of a neutron and a positively charged meson. While Rosenbluth
did not introduce the structure functions of the proton explicitly in his expression for
the cross section, the modified charge and magnetic moment he calculated depended
on a kinematical variable for the process, describing the effects of the charge and
magnetisation distributions within the proton.

In 1956, Hofstadter related the electron-proton cross section for elastic
scattering to the Mott cross section for the scattering of an electron on a point-like
proton [Hof56] directly through the charge density distribution within the proton.
He introduced the structure functions - the form factors - explicitly as a Fourier
transform of the charge distribution function. This laid the foundations for the
development of the first method for the extraction of the nucleon structure func-
tions from the experimental data on the cross sections for elastic electron-nucleon
scattering.

Since 1968, an alternative approach to measuring the nucleon form factors
has been actively developed - polarisation transfer (PT) [AR68, Dom69, AR74,
ACG80, DR85, RD88]. In polarisation transfer experiments, a polarised electron
beam scatters on an unpolarised nucleon target, and the electron polarisation is
transferred to the recoil nucleon. In double polarisation experiments, a polarised
electron beam scatters on a polarised nucleon target, and the recoil nucleon acquires
an additional polarisation vector component.

In recent years, high-precision polarisation transfer experiments have
been widely performed. Their results do not agree with the results of previous
unpolarised scattering experiments which employ the Rosenbluth separation tech-
nique. This discrepancy has been a subject of intense investigation. In Chapter 4 a
detailed explanation of both techniques and the possible origins of this problem are
discussed, and in Chapter 7 the results of our analysis of this problem are presented.

In addition to elastic scattering processes, which provide information for
the form factors in the so-called spacelike region, a number of inelastic processes also
allow one to access information about the structure of the nucleons in the so-called
timelike region. For example, the form factors in the timelike region have been
measured in electron-positron annihilation into a nucleon-antinucleon pair. The
form factors in the spacelike and the timelike regions are not independent. In fact,
if the form factors in one of these regions were known with infinite precision, the
form factors in the other region would be uniquely determined. A discussion of the
analytic properties of the nucleon form factors is presented in Section 2.5 of this
Chapter.
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2.2 Kinematics

In the laboratory frame, an electron of mass me and initial four-momentum k =
(E,~k) scatters on a nucleon of mass MN at rest. The initial four-momentum of
the nucleon is p = (MN ,~0). In the Born approximation, the scattering is described
by the exchange of a single virtual photon with four-momentum q = k − k′, where
k′ = (E ′, ~k′) is the four-momentum of the outgoing electron.

The elastic scattering process e(k) + N(p) → e(k′) + N(p′) is depicted
on Figure 2.1 to leading order in the Born approximation (the one-photon exchange
approximation). Here k, k′, p, p′ are the initial and final four-momenta of the
electron and of the nucleon, respectively. The scattering process can be described
with the help of the Lorentz-invariant Mandelstam variables:

s = (k + p)2, t = (p′ − p)2, u = (k − p′)2 . (2.1)

Here t = q2 = (p′ − p)2 is the invariant four-momentum transfer squared. It is also
convenient to introduce Q2 = −q2. In the spacelike region, Q2 > 0 and q2 < 0, and
in the timelike region q2 > 0 and Q2 < 0. The variable q = (ω, ~q) is often referred
to as the photon virtuality.

The Mandelstam variables are related to the kinematic variables in the
laboratory frame as:

Q2 = 2EE ′(1− cos θ) , (2.2)

s = 2EMN +M2
N +m2

e , (2.3)

where θ is the electron scattering angle.

Due to total momentum conservation, only two of these invariants are
independent, satisfying the condition

s+ t+ u = 2M2
N + 2m2

e , (2.4)

where MN and me are the masses of the nucleon and the electron, respectively.
Furthermore, the four-momenta of the incoming and outgoing electrons and nucleons
must satisfy the on-shell conditions:

k2 = k′ 2 = m2
e, p2 = p′ 2 = M2

N . (2.5)

Due to the spins of the particles involved, in general there are 24 = 16
helicity amplitudes required to describe the full scattering process, where helicity
is defined as the projection of the total angular momentum onto the direction of
motion:

h = ~J · p̂, p̂ =
~p

|~p| . (2.6)
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Figure 2.1: The Feynman diagram for the one-photon exchange approximation for
elastic electron-nucleon scattering.

Assuming parity and time-reversal invariance [GNO57], only 6 independent invari-
ant amplitudes remain. Furthermore, three more vanish as the electron mass is
neglected, a valid approximation since highly relativistic energies are required to
probe the nucleon structure. In the Born approximation, where the scattering pro-
cess is described by the exchange of a single photon as shown on Figure 2.1, one
more amplitude vanishes, and all information about the process is encoded in two
form factors, which are functions of the invariant four-momentum transfer squared
only. They encode all information about the structure of the nucleon as seen by the
electromagnetic interaction.

Up until recently, the lowest-order Born approximation corresponding to
the Feynman diagram on Figure 2.1 was the only contribution under consideration.
While the form factors are intrinsic properties of the nucleons and are therefore in-
dependent of this approximation, their extraction from experiment is not. Terms of
higher order in the fine structure constant α were included as radiative corrections.
Their calculation, however, involved a number of approximations - for example,
the effect of the internal structure of the nucleons was neglected. The discrepancy
between the Rosenbluth and the polarisation transfer techniques has sparked re-
newed interest in the consistent treatment of higher order corrections. This topic is
discussed in Chapter 4.

2.3 Nucleon Form Factors

The matrix element for the Feynman diagram (Figure 2.1) can be written as:

M = −4πije
µ(k′, k)

1

q2
Jem

µ (p′, p) , (2.7)
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where je
µ(k′, k) is the electron’s charge current density,

je
µ(k′, k) = −ieū(k′)γµu(k) , (2.8)

and the current density Jem
µ (p′, p) = ieū(p′)Γµu(p) encodes information about the

nucleon’s electromagnetic structure.

It has been shown [Fol52, Sal55, YLR57] using Lorentz and gauge invari-
ance that the most general form of the matrix element of the vector current operator
between two nucleon states is:

〈p′|Γµ|p〉 = ū(p′)
[
F1(t)γµ + i

F2(t)

2MN

σµνq
ν
]
u(p) , (2.9)

where F1(t) and F2(t) are the Dirac and Pauli form factors, respectively. They
encode information about the structure of the nucleons. At low q2 they are deter-
mined by the gross properties such as the charges and the magnetic moments, while
at high momentum transfers they encode information about the quark substructure
of the nucleons. Thus, they are normalised at t = 0 to the charges and anomalous
magnetic moments of the proton and the neutron:

F p
1 (0) = 1, F n

1 (t) = 0, F p
2 (0) = κp, F n

2 (0) = κn , (2.10)

where κp = 1.793 and κn = −1.913 in units of nuclear magnetons.

It should be noted that although Eq. (2.9) is the most general way of
writing the current vertex, it is not the only way - there are many possible terms
that satisfy the invariance requirements. However, by using the Dirac equation, all
the forms can be reduced to the form given by Eq. (2.9).

Instead of discussing the proton and neutron form factors directly, it is
convenient to introduce an isospin decomposition:

F
(s)
i =

1

2
(F p

i + F n
i ) , (2.11)

F
(v)
i =

1

2
(F p

i − F n
i ) ,

where F s
i (F v

i ) are the isoscalar (isovector) form factors, respectively. The importance
of this decomposition will be discussed in the following sections.

Another important linear combination of the form factors is given by the
Sachs form factors:

GE(t) = F1(t)− τF2(t), GM(t) = F1(t) + F2(t), τ = − t

4M2
N

. (2.12)

The physical meaning of the Sachs form factors is best understood when the
hadronic current is written in the Breit frame, where the energy transfer ω = 0
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and Q = |~qBreit|. In that frame in the non-relativistic limit the Sachs form fac-
tors can be considered to be the Fourier-transformed charge and magnetic current
density distributions ρC and ρM, respectively:

ρC,M(r) =
4π

(2π)3

∞∫

0

GE,M(Q)
sinQr

Qr
Q2dQ (2.13)

The charge and magnetisation distributions determined by Eq. (2.13)
should not, however, be interpreted strictly as the physical distribution of charge
and magnetic moment within the nucleons. Such an interpretation is only possible
in the non-relativistic limit, but the experimental data for the form factors is well
in the relativistic regime.

The experimental data for the nucleon form factors is usually given in
terms of the Sachs form factors. It is convenient to present the form factor results
for Gn

M , Gp
E and Gp

M normalised to the dipole form factor,

GD(Q2) =

(
1 +

Q2

m2
D

)−2

, (2.14)

with m2
D = 0.71 GeV2 determined from a fit to the low-Q2 form factor data. The

dipole form factor describes the electric and the magnetic form factors of the proton
and the magnetic form factor of the neutron reasonably well at low momentum
transfers. It is a Fourier transform of the exponential radially symmetric charge and
magnetisation distributions,

GD(Q2) =
m3

D

2

∞∫

0

e−mDr sin(qr)

q
r dr . (2.15)

2.4 Theoretical Investigation of the Nucleon

Form Factors

A number of approaches aimed at describing the nucleon structure which are not
based on dispersion relation techniques exist. The applicability of most, however, is
limited in the range of momentum transfers. This section gives a brief overview of
some of the main alternative approaches.

2.4.1 Constituent Quark Models

In its simplest form, the nucleon is a three-body bound-state problem, the solution
of which is difficult to obtain even if the interactions would be well known. A number
of constituent quark models (CQM) aimed at describing the nucleon structure exist.
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• Cardarelli et al. have performed a calculation using a One-Gluon-Exchange
(OGE) potential [CPSS95, CS00]. Their calculation yields values of Gn

E qual-
itatively consistent with the experimental data, but their prediction for the
ratio Gp

M/G
n
M turns out to be inconsistent with experimental data.

• Wagenbrunn, Boffi et al. have calculated the nucleon electromagnetic form
factors using the Goldstone-Boson-Exchange (GBE) potential [WBKP00,
BGKP01]. They obtain a reasonably good description of the experimental
data, but deviations at increasing Q2 values become significant for the mag-
netic form factor of the proton.

• A manifestly covariant CQM calculation using the Bethe-Salpeter equation
and an instanton-induced interaction between the quarks was performed by
Merten et al. [MLKM02]. The results obtained are in quantitative agreement
with experimental data, and the correct scaling of the ratio Gp

E/G
p
M is pre-

dicted, although the rate of the decrease of the ratio is too large compared to
experimental data.

• Gross and Agbakpe performed a covariant CQM calculation using a covariant
spectator model [GA04]. Using a ten parameter fit to experimental data, they
obtain a good overall description of the form factors in the spacelike region,
although the behaviour of Gn

M at high Q2 values does not describe several
experimental points in that region.

2.4.2 Cloudy Bag Model

Pions, as the lightest hadrons, provide the longest-range contribution to the nucleon
interactions. An improvement of the CQM models - pion cloud models - include the
pionic degrees of freedom.

In the Cloudy Bag model, three constituent quarks are surrounded by a
pion cloud. A difference is made between the bare nucleon, which consists of three
constituent quarks, and the physically observable nucleon, surrounded by the pion
cloud. The photon can interact either with the bare nucleon, the nucleon in the
presence of a pion, or with a charged pion from the cloud of the nucleon.

Miller recently performed a light-front cloudy bag model calculation
[Mil02]. The result of the calculation describes the neutron form factor data reason-
ably well, but the proton magnetic form factor is not well reproduced, especially at
increasing Q2 values.

2.4.3 The Skyrme Model

The Skyrme model was developed in 1961 as a non-linear theory of interacting pions
[Sky61, Sky62]. It incorporates the symmetries of QCD in a minimal Lagrangian,
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operating on a 2×2 unitary field. The fundamental fields entering the non-linear
σ-model Lagrangian consist of just the pion fields. The ”Skyrmions”, i.e. non-
trivial classical solutions of the underlying non-linear σ-model, are used to model
baryons: in the initial approximation, the nucleon is obtained as a certain classical
configuration of pion fields.

Meißner et al. have performed a calculation of the nucleon electromag-
netic form factors within the framework of an extended Skyrme model, where ρ and
ω vector mesons are introduced explicitly as dynamical gauge bosons [MKW86].
The results of the calculation provide a satisfactory agreement of the experimental
values up to Q2 ∼ 0.5 GeV2.

More recently, Holzwarth has performed a calculation of the nucleon form
factors within the Skyrme model [Hol96]. The results of the calculation reproduce
the main features of the form factors up to Q2 ∼ 1.0 GeV2, although the electric
form factor of the proton shows a steep decrease starting at Q2 ≈ 0.5 GeV2 which
is not supported by the experimental data.

2.4.4 Lattice QCD

Lattice QCD calculations provide an ab initio calculation of quantities such as the
nucleon electromagnetic form factors from the underlying theory of QCD. Lattice
QCD is a discretised version of QCD formulated in terms of path integrals on a
space-time lattice. The continuum theory is restored by extrapolating the results
obtained at finite lattice spacings to a zero lattice spacing. Due to high computation
costs, the calculations are also performed with unphysically large quark masses.
Extrapolation to the physical quark masses is not a simple nor a straightforward
task, and the uncertainties arising from the extrapolation are large.

There exist two distinct contributions to the calculation of the nucleon
electromagnetic form factors using lattice QCD. They are schematically depicted
in Figure 2.2. In the connected diagram, the photon couples to one of the quarks
in either the initial or the final nucleon. The quark lines correspond to dressed
quarks, i.e. include an arbitrary number of gluon exchanges between the quarks. In
the so-called quenched approximation, the fluctuations of these gluons into quark-
antiquark pairs are neglected. The unquenched calculation additionally includes
sea-quark insertions into the gluon lines.

In the second, disconnected diagram, the photon couples to a quark-
antiquark pair, which then interacts with the nucleon via the exchange of gluons.
The calculation of this contribution in lattice QCD is extremely expensive in terms
of computation time, and is neglected in current calculations. It cancels in the
isovector form factors, however.

A recent calculation of the nucleon isovector form factors performed by
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Figure 2.2: Schematic illustration of the two graphs contributing to the calculation
of the nucleon electromagnetic form factors in lattice QCD.

the Nicosia-MIT group [AKNT06, Ale06] significantly overestimates the nucleon
isovector form factors within both the quenched and the unquenched calculations.

Göckeler et al. from the QCDSF collaboration have also performed a
calculation of the nucleon form factors in quenched lattice QCD [GHHP03]. They
find a good agreement of the calculated ratio µpG

p
E/G

p
M with the experimental data

up to Q2 ∼ 3.5 GeV2.

2.4.5 Chiral Perturbation Theory

Chiral perturbation theory (χPT) is a low-energy effective field theory of QCD.
The Lagrangian of this effective field theory is constructed to have the symmetries
of the QCD Lagrangian. In particular, it incorporates the spontaneously broken
chiral symmetry of QCD, as a consequence of which pions emerge as nearly massless
Goldstone bosons.

All terms entering the effective Lagrangian are ordered by powers of
momentum and masses which are considered small on hadronic scales (e.g. the pion
mass), and studied order by order. Different soft scale expansion schemes (power-
counting schemes) have been developed in the literature. χPT can also be extended
to describe the interactions of Goldstone bosons with heavy ground state baryons.
At low momentum transfers, the nucleon form factors can be studied with χPT.

Bernard et al. have performed a calculation of the nucleon form factors
in the framework of an effective chiral Lagrangian including pions, nucleons and the
∆(1232) [BFHM98] up to Q2 ∼ 0.2 GeV2. Their results are in good agreement with
the dispersion-theoretical analysis of Ref. [MMD95].

Kubis and Meißner have performed a calculation of the nucleon electro-
magnetic form factors to fourth order in covariant baryon χPT with a phenomeno-
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logical extension to include vector mesons [KM00]. They obtained an accurate
description of all four nucleon form factors in the spacelike region up to momentum
transfers Q2 ∼ 0.4 GeV2.

Schindler et al. have calculated the nucleon form factors up to fourth
order in manifestly Lorentz-invariant chiral perturbation theory with vector mesons
as explicit degrees of freedom [SGS05]. They obtain results similar to the results of
Ref. [KM00].

2.4.6 Generalised Parton Distributions

Parton distributions are conveniently introduced in the study of deep inelastic scat-
tering processes, where the individual quarks and gluons are resolved. Parton distri-
butions encode information about the distribution of the longitudal momentum and
polarisation carried by quarks, antiquarks and gluons within a fast moving hadron.
Generalised parton distributions are an extension of parton distributions. They ad-
ditionally contain information about the distribution of the partons in the plane
transverse to the direction in which the hadron is moving - this information is in-
tegrated out in the ordinary parton distributions. Generalised parton distributions
(GPDs) are studied in a variety of exclusive scattering processes.

Guidal et al. have performed a calculation of the nucleon electromagnetic
form factors using GPDs [GPRV04]. Their results for the electric form factor of the
neutron and for the ratio Gp

E/G
p
M are in good agreement with experimental data,

but the description of the magnetic form factors of both the proton and the neutron
is not as precise, and misses a lot of the structure present in the form factors.

2.5 Dispersion Relations

Dispersion relations provide a powerful model-independent non-perturbative frame-
work for the analysis of the electromagnetic structure of the nucleons simultaneously
in both the spacelike and the timelike regions. In this section, a brief overview of
the basic properties of analytic functions is presented, and dispersion relations for
the nucleon form factors are introduced.

2.5.1 Some Properties of Analytic Functions

Analyticity is a strong constraint for functions of a complex variable. Let f(x) =
u(z) + iv(z) be a complex function of a complex variable z. In order for f(z) to
be complex-differentiable with respect to z, the derivative must be independent of
the choice of direction with respect to which it is taken, since z = x + iy. This de-
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mand leads to the well-known Cauchy-Riemann equations for complex-differentiable
functions: {

du/dx = dv/dy ,

du/dy = −dv/dx . (2.16)

A complex function is analytic in a region R if it is complex differentiable at every
point in R, and the partial derivatives entering Eq. (2.16) exist. An important
consequence is that if a function is analytic, so are all of its derivatives.

The real and imaginary parts of an analytic function are not arbitrary
- they must satisfy the Cauchy-Riemann condition, Eq. (2.16). Therefore, if the
real (imaginary) part of an analytic function is given, the imaginary (real) part is
determined up to an additive constant. The relation between the real and imaginary
parts of an analytic function can be further strengthened by applying the well-known
Cauchy integration rules.

Points at which a function is not analytic are called singularities.
Cauchy’s theorem states that if a function f(z) is an analytic function, continu-
ous within and on a smooth contour C, then∮

f(z)dz = 0 . (2.17)

An important consequence of the Cauchy’s theorem is the Cauchy integral formula,
which states that

∮

C

f(z)

z − a
dz = 2πif(a)





1, if a is within C ,
1
2
, if a is on C ,

0, if a is outside C .
(2.18)

Cauchy’s formula is a very powerful tool for the investigation of the properties
of analytic functions - it shows the strong correlation between the values of the
analytic function all over the complex plane. An important consequence of Cauchy’s
formula are the integral relations between the real and imaginary parts of an analytic
function, which form the basis of dispersion relation techniques:

u(x, 0) =
1

π
P

+∞∫

−∞

v(ξ, 0)

ξ − x
dξ , (2.19)

v(x, 0) = − 1

π
P

+∞∫

−∞

u(ξ, 0)

ξ − x
dξ .

Here P denotes the principal value of the integral.

2.5.2 Dispersion Relations for the Nucleon Form Factors

Dispersion relations are a powerful tool used to connect the absorptive and the
dispersive behaviour of the nucleons. They have a long successful history of appli-
cations to the analysis of the structure of the nucleons [CKGZ58, FGT58, HP75,
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Figure 2.3: The spectral decomposition of the nucleon matrix element of the elec-
tromagnetic current jem

µ .

HPSB76, MMD95, HMD96]. Based on unitarity and analyticity, dispersion rela-
tions connect the real and imaginary parts of the electromagnetic form factors of
the nucleon. Assuming the convergence of an unsubtracted dispersion relation for
the form factors, one can write for a generic form factor F (t):

F (t) =
1

π

∞∫

t0

ImF (t′)
t′ − t− iε

dt′ , (2.20)

where t0 is the threshold of the lowest cut of F (t), and iε defines the integral for
values of t on the cut. Using Eq. (2.20) the electromagnetic structure of the nu-
cleon can be related to its absorptive behaviour: the imaginary part Im F entering
Eq. (2.20) can be obtained from a spectral decomposition [CKGZ58, FGT58]. For
this purpose, it is convenient to consider the electromagnetic current matrix element
in the timelike region:

Jµ = 〈N(p)N(p)|jem
µ (0)|0〉 = u(p)

[
F1(t)γµ + i

F2(t)

2M
σµν(p+ p)ν

]
v(p), (2.21)

where p and p are the momenta of the nucleon and the antinucleon created by
the current jem

µ , respectively. The four-momentum transfer squared in the timelike
region is t = (p+ p)2.

Using the Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism,
the imaginary part of the form factors is obtained by inserting a complete set of
intermediate states [CKGZ58, FGT58] as schematically depicted on Figure 2.3:

ImJµ =
π

Z
(2π)3/2N

∑

λ

〈p|J̄N(0)|λ〉〈λ|jem
µ (0)|0〉v(p̄)δ4(p+ p̄− pλ) , (2.22)

where N is a nucleon spinor normalisation factor, Z is the nucleon wave function
renormalisation, and JN(x) = J†(x)γ0 with JN(x) a nucleon source:

(6∂ +m)ψ(x) = JN(x) , (2.23)

where ψ(x) is the nucleon field operator. This decomposition relates the spectral
function to the on-shell matrix elements of other processes: the virtual photon first
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Figure 2.4: Schematic illustration of the analytic structure of the form factors in
the complex t plane. The light shaded areas show the regions where the nucleon
form factors are measured. The spacelike region corresponds to t < 0. It contains
no cuts or poles. In the timelike region t > 0. The lowest cut opens at t0. As will
be discussed in the following Chapter, it corresponds to the two-pion cut for the
isovector form factors, and the three-pion cut for the isoscalar form factors. In the
timelike region, the form factors are measured at t ≥ tNN , where tNN = 4M2

N is the
threshold of nucleon-antinucleon production.

produces a certain on-shell intermediate state, which proceeds to interact with the
nucleons.

Figure 2.4 shows a schematic illustration of the analytic structure of the
nucleon form factors. The light shaded areas denote the regions where the form
factors are measured. In the spacelike region, t < 0, no cuts or poles are present.
The nucleon form factors in the spacelike region are measured in elastic electron-
nucleon scattering experiments. In the timelike region, cuts corresponding to multi-
particle exchange and poles corresponding to resonance contributions are present.
The lowest cut opens at t0. As detailed in the following Chapter, in the isovector
channel t0 = 4M2

π which corresponds to two-pion exchange. In the isoscalar channel,
the lowest-mass contribution starts with the exchange of three pions and t0 = 9M2

π .
These contributions generate an imaginary part of the form factors, which is related
to the real part through the dispersion relation (2.20).

2.6 The Pion Cloud of the Nucleon

Before the advent of QCD, it was already well known that mesons play a key role
in determining the properties of the nucleon interactions [Yuk35, FHK38] - the bare
nucleon is surrounded by a meson cloud, and the pion, as the lightest meson, defines
the longest-range part of the nuclear force. This concept was made more precise
using dispersion theory in the 1950s [CKGZ58, FGT58]. Within the framework of
pure vector meson dominance (VMD), the virtual photon first decays into a meson,
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which in turn interacts with the nucleons. The lowest-mass vector mesons are the
ρ(770), ω(782) and φ(1020). In the timelike region, the process e+e− → hadrons,
these mesons show up as resonances for appropriate q2 values, q2 > 0. In the
spacelike region, one therefore expects the interaction eN → eN to be dominated
by these low-lying poles. For the form factors, this is reflected in the fact that the
form factors in the spacelike region (q2 < 0) are an analytic continuation of the
form factors in the timelike region (q2 > 0). Single pion exchange would provide
the longest-range contribution to the interaction; however, as will be discussed in
Section 3.1, single pion exchange is prohibited in the electromagnetic interaction,
and the contribution starts with the two-pion exchange. In 1959, Frazer and Fulco
wrote down partial wave dispersion relations that relate the nucleon electromagnetic
structure to pion-nucleon scattering and predicted the existence of the ρ resonance
[FF59, FF60b]. The two-pion contribution can be determined from experimental
data. Information about the pion cloud of the nucleon can be extracted from the
analysis of the two-pion contribution, although such an extraction is necessarily
model-dependent.

The analysis of the nucleon form factors in terms of vector meson domi-
nance allows to estimate important meson parameters. The meson-nucleon coupling
constants can be determined; isospin violating effects directly enter the analysis
through ρ− ω mixing. The analysis of specific low-Q2 features of the nucleon form
factors allows to estimate the possible mass regions where additional contributions
would be required, and qualitative constraints on additional non-resonant contribu-
tions which are not explicitly included can be placed.

An analysis of the lowest-mass pionic contributions provides a means to
determine the extent of the pion cloud of the nucleons. Additionally, an estimate
of the strangeness content of the nucleons is made possible through an analysis of
the coupling of the φ meson. The results for the φ coupling are based on a maximal
violation of the OZI rule, however, since we assume the contribution to the isoscalar
spectral function in the region of 1 GeV2 to come entirely from the φ meson pole.
In order to refine this analysis and provide more realistic values for the strangeness
content of the nucleon, other contributions have to be considered [MMSO97].

In this framework, the size of the nucleons can also be extracted in a
trivial way.
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The Theoretical Input

Certain contributions to the spectral functions can be constructed directly from
experimental data. Additional contributions have to be parameterised. In this
Chapter, the theoretical input for the spectral functions is discussed together with
the constraints placed on the form factors.

3.1 The Spectral Functions

The states |λ〉 entering Eq. (2.22) are asymptotic states of momentum pλ, and they
carry the same quantum numbers as the current jem

µ . The photon is a spin-1 particle
odd under parity and charge conjugation, JPC = 1−−. The isospin is not fixed, it can
be I = 0 (isoscalar) or I = 1 (isovector). Combined with G-parity, defined as charge
conjugation and a rotation in isospin space by 180o around the 2nd axis I2, the
allowed intermediate states must possess the quantum numbers (IG)JPC = 0−(1−−)
or 1+(1−−). The exchange of a single pion is prohibited by charge conjugation:
the electromagnetic current changes sign under the transformation, Jem

µ → −Jem
µ ,

whereas a single pion state does not, |π0〉 → |π0〉, thus 〈π0|Jem
µ |0〉 = 0. Furthermore,

a single pion has a total angular momentum J = 0, while J = 1 is required. The
next lowest-mass state consists of two pions. The required angular momentum
J = 1 corresponds to a relative P -state, which is odd under particle exchange; thus,
in order to satisfy overall Bose symmetry, the state vector has to be odd in isospin
space too, corresponding to I = 1. Generally, this follows fromG-parity conservation
- the contribution to the isovector channel comes from only even numbers of pions
exchanged, and to the isoscalar channel only from odd numbers of pions exchanged.

19
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3.1.1 Two-Pion Exchange

Already as early as in 1959, it was pointed out by Frazer and Fulco [FF59] that a pure
vector meson dominance (VMD) approach is at odds with the general constraints of
unitarity. In particular, in the isovector channel one notices a strong non-resonant
contribution starting at t0 = 4M2

π and extending all the way to the ρ(770) peak.
This contribution is due to the two-pion continuum, and arises from the projection
of the nucleon born graphs, or, in modern language, the nucleon triangle diagram.
This leads to a logarithmic singularity on the second Riemann sheet located at
tc = 4M2

π −M4
π/M

2
N = 3.98M2

π , very close to the two-pion threshold. Neglecting
this important unitarity contribution leads to a gross underestimate of the nucleon
isovector radii.

The unitarity relation of Frazer and Fulco [FF59, FF60a, FF60b] de-
termines the isovector spectral functions for the two-pion exchange contribution in
terms of the pion form factor and the P-wave pion-nucleon scattering amplitudes:

ImGE(t) =
(t/4−M2

π)3/2

MN

√
t

Fπ(t)∗f 1
+(t) (3.1)

ImGM(t) =
(t/4−M2

π)3/2

√
2t

Fπ(t)∗f 1
−(t)

where Fπ(t) is the pion form factor, and f 1
±(t) are the pion-nucleon scattering am-

plitudes.

Strictly, this relation gives the exact two-pion exchange contribution in
the q2 range starting from the two-pion threshold, t0 = 4M2

π , up to the four-pion
channel threshold, t = 16M2

π . However, the four-pion contribution is small up to
t ∼ 50M2

π , which means the phase of Fπ(t) and f 1
±(t) is the same in this region, and

Eq. (3.1) is valid all the way up to q2 ∼ 1 GeV2.

It is important to note that the pion-nucleon scattering amplitudes, f 1
±(t),

are required in the unphysical regime, 4M2
π ≤ t ≤ 4M2

N . This problem is solved by
analytic continuation - a method used to extend the domain of definition of a given
analytic function by performing a power series expansion with a sufficiently large
radius of convergence. For a data set with no errors, the process of analytic con-
tinuation is unique. However, error bars on experimental measurements introduce
an unavoidable ambiguity in the technique. Two independent analyses of analytical
continuation of πN scattering amplitudes exist [Hoh83, Pie], however, and the final
results obtained for the scattering amplitudes agree. A modern re-analysis of the
πN scattering amplitudes with the inclusion of data collected since the works of
Höhler and Pietarinen would be welcome.

With the availability of new high-precision data on the pion form fac-
tor from the CMD-2 [Akh99], KLOE [Alo04] and SND [Ach05] collaborations, we
have re-analysed the two-pion contribution to the isovector nucleon form factors. A
detailed report of this analysis is given in Section 6.1. It is important to note for
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further discussion that the resulting two-pion contribution to the nucleon isovector
form factors can be conveniently parameterised by a simple function of the form

F v,2π
i (t) =

ai + bi(1− t/ci)
−2/i

2(1− t/di)
, i = 1, 2, (3.2)

where ai, bi, ci and di are constants extracted from the full dispersion integrals.

3.1.2 KK̄ exchange

The KK̄ exchange contribution to the nucleon electromagnetic form factors has
been evaluated in Ref. [HR99a, HR99b] from an analytic continuation of the KN
scattering amplitudes. The KK̄ contribution to the spectral functions is given by
[HR99a, HR99b]

ImF
(s),KK̄
1 (t) = Re

{(
MNqt
4p2

t

)[ √
t

2
√

2MN

b
1/2,−1/2
1 (t)− b

1/2,1/2
1 (t)

]
FK(t)∗

}
, (3.3)

ImF
(s),KK̄
2 (t) = Re

{(
MNqt
4p2

t

)[
b
1/2,1/2
1 (t)−

√
2MN√
t

b
1/2,−1/2
1 (t)

]
FK(t)∗

}
,

where pt =
√
t/4−M2

N , qt =
√
t/4−M2

K , FK(t) represents the kaon form factor,

and b
1/2,±1/2
1 are the J = 1 partial waves for KK̄ → NN̄ .

In principle, a logarithmic singularity on the second Riemann sheet also
exists in this case, located at tc,KK̄ = 4M2

K −M4
K/M

2
N . However, since the kaon is

much heavier than a pion, this singularity is shifted further away from the two-kaon
threshold. Additionally, the KK̄ cut opens up at the φ(1020) mass, and is thus
dominated by the φ peak from threshold. Therefore, it is possible to parameterise
the contribution of the KK̄ continuum to the nucleon form factors in terms of a
simple pole at the φ mass with fixed residua as determined by a full analysis using
Eq. (3.3) [HR99a, HR99b]:

F s,KK̄
i (t) =

1

π

∞∫

4M2
K

ImF s,KK̄
i (t′)
t′ − t

dt′ ≈ aKK̄
i

M2
φ − t

, i = 1, 2 (3.4)

where aKK̄
1 = 0.1054 GeV2 and aKK̄

2 = 0.2284 GeV2. This form of the KK̄ con-
tribution is used in our analysis as a fixed contribution to the isoscalar spectral
functions.

3.1.3 Correlated ρπ exchange

It has been shown [JHS94] that the interaction between a pion and a ρ meson has
a strong influence on the nucleon-nucleon interactions. The correlated ρπ exchange
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contribution has been calculated in Ref. [MMSO97] in the framework of the Bonn-
Jülich model [Hol95]. The contribution to the nucleon form factors can be evaluated
in terms of a dispersion integral, and the result can be conveniently parameterised
with a fictious ω′ pole, Mω′ = 1.12 GeV [MMSO97]:

F s,ρπ
i (t) =

1

π

∞∫

(Mπ+Mρ)2

ImF s,ρπ
i (t′)
t′ − t

dt′ ≈ aρπ
i

M2
ω′ − t

, i = 1, 2 (3.5)

where aρπ
1 = −1.01 GeV2 and aρπ

2 = −0.04 GeV2. This result is used on all our
analysis as a fixed contribution to the form factors in the isoscalar channel.

3.1.4 One-Meson Exchange

In addition to the fixed continuum contributions discussed in the previous sections,
contributions from vector mesons are parameterised in terms of vector meson poles.
The two-pion continuum explicitly generates the contribution from the ρ(770) me-
son, and thus no pole is required at the ρ mass. The next two low-mass mesons
are the ω(781) and the φ(1020) mesons, which contribute to the isoscalar spectral
functions. In our analysis, they are included as poles with a fixed mass, but their
residua can vary. No further poles are allowed with a mass below ∼ 1 GeV, and
higher-mass poles are included to parameterise the contributions from the higher-
mass resonances. Thus, the general structure of the spectral functions is:

ImF s
i (t) = F s,KK̄

i (t) + F s,ρπ
i (t) +

∑

V =ω,φ,s1,...

πaV
i δ(M

2
V − t) , i = 1, 2, (3.6)

ImF v
i (t) = F v,2π

i (t) +
∑

V =v1,v2,v3,...

πaV
i δ(M

2
V − t) , i = 1, 2,

where MV is the resonance mass, and aV
i are the residua, related to the meson-

nucleon coupling constants gV NN
i by:

aV
i =

M2
V

fV

gV NN
i . (3.7)

The coupling constants fV are known from the widths of the leptonic decays V →
e+e−:

fV = α

√
4π

3

MV

Γ(V → e+e−)
, (3.8)

with α = e2/4π the fine structure constant.

We have investigated the possibility of using the Breit-Wigner form with
an adjustable width instead of pole terms for the resonance contributions. This
approach did not produce any sizeable improvement of our results, but drastically
increased the number of free parameters. This has a negative effect on the mathe-
matical stability of the problem. Instead, we have developed two models to account
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Figure 3.1: OZI-forbidden and OZI-allowed meson decay processes.

for the additional continuum contributions beyond the ππ, KK̄ and the ρπ exchange
contributions which are included explicitly. Both models generate an imaginary part
of the form factors beyond the NN̄ threshold in the timelike region. They are pre-
sented at the end of this Chapter.

3.1.5 The Okubo-Zweig-Iizuka rule

The Okubo-Zweig-Iizuka (OZI) rule was proposed independently by Okubo in 1963,
Zweig in 1964 [Zwe64] and Iizuka in 1966. It states that in a meson decay, the quark-
antiquark pair forming the meson does not annihilate into hard gluons. Instead, a
quark-antiquark pair is produced from the vacuum. It recombines with the quark-
antiquark pair from the meson, as schematically shown on Figure 3.1.

This rule imposes a restriction on the coupling of the φ meson to the
nucleon. If the φ was composed only of a strange quark-antiquark pair - a pure ss̄
state - and the nucleon had no strangeness component, a direct coupling of the φ
to the nucleon would be forbidden. The only possible coupling would be through a
φ→ KK̄ decay, with the KK̄ pair subsequently coupling to the nucleon.

However, the φ meson is not a pure ss̄ state - it has a small amount of
the uū + dd̄ admixture, through which it can couple to the nucleon. The nucleon
also has a small strangeness component. Therefore, a consequence of the OZI rule
is the fact that the direct φ coupling to the nucleon must be small, and that the
KK̄ continuum contribution should account for the rest of the φ strength.

Thus, the inclusion of an explicit pole at the φ mass is not excluded
in the VMD analysis, even with the inclusion of the KK̄ continuum discussed in
Section 3.1.2. The explicit coupling constant determined by such an analysis, in
cases where the φ pole can unambiguously treated as a physical meson, can put
constraints on the OZI-rule violating effects, and can be used in an analysis of the
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strangeness content of the nucleons.

3.2 The Size of the Nucleon

At low momentum transfers, the electron probes the outer region of the nucleon
charge distribution. Expanding a generic form factor, F (Q2), in this regime, the
following expression is obtained:

F (Q2) = F (0)

(
1− 1

6
〈r2〉Q2 +O(Q4)

)
, (3.9)

where 〈r2〉 is called the mean square radius. Its definition stems from a non-
relativistic description of the scattering process, in which a point-like particle in-
teracts with a given charge distribution ρ(r):

〈r2〉 =

∞∫

0

4πr2ρ(r)dr = − 6

F (0)

dF (Q2)

dQ2

∣∣∣∣∣
Q2=0

. (3.10)

Eq. (3.10) can be used for all form factors except F n
1 and Gn

E, which vanish in the
limit Q2 → 0. In this case, the leading normalisation term in the expansion (3.9) is
left out, and the definition of the mean square radius becomes

〈r2〉nE = −6
dGn

E(Q2)

dQ2

∣∣∣∣∣
Q2=0

(3.11)

for the neutron charge radius. The same expression holds for 〈r2〉n1 after replacing
Gn

E with F n
1 . The slopes of Gn

E and F n
1 are related:

dGn
E

dQ2

∣∣∣∣∣
Q2=0

=
dF n

1

dQ2

∣∣∣∣∣
Q2=0

− F n
2 (0)

4M2
N

, (3.12)

where the second term on the right hand side of the equation is called the Foldy
term. It gives the dominant contribution to the slope of Gn

E.

Thus, the analysis of the form factors of the nucleons provides a direct
way to estimate the nucleon size. Alternative methods for the determination of the
nucleon charge and magnetic radii exist, allowing to perform a comparison of the
results of the form factor analysis to other determinations:

• Lamb shift measurements in hydrogen determine the proton charge radius
with high precision: recent measurements [Bou96, Sch99] have been analysed
in Ref. [Mel99]. The result of the analysis gives a value of rp

E = 0.883(14) fm.

• A recent re-analysis of the world data on elastic electron-nucleon scattering
with the inclusion of Coulomb corrections provides a value for the proton
magnetic radius [Sic03] rp

M = 0.855(35) fm.
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Figure 3.2: A schematic perturbative QCD picture for the interaction of the virtual
photon with the nucleon at asymptotically large momentum transfers.

• A value for the neutron charge radius, (rn
E)2 = −0.115(4) fm2, has been derived

in a recent re-evaluation of the ORELA experiment [KKRS97].

• Electron-deuteron scattering allows to determine the magnetic radius of the
neutron. A recent analysis [Kub01] gives rn

M = 0.873(11) fm.

3.3 Perturbative QCD Constraints

At asymptotically large values of Q2, perturbative QCD (pQCD) constrains the
behaviour of the nucleon form factors - photons of sufficiently large virtuality see a
nucleon consisting of three quarks moving collinear with the nucleon. In order for
the momentum of the virtual photon to be distributed evenly between the quarks,
gluon exchanges are required, as schematically depicted on Figure 3.2. For the
scaling behaviour, Brodsky and Lepage find [LB80]:

Fi(t) −→
Q2→∞

1

Q2(i+1)

[
ln

(Q2

Q2
0

)]−γ

, i = 1, 2, (3.13)

where Q0 ' ΛQCD, and the anomalous dimension γ ≈ 2 depends weakly on the
number of flavours [LB80].

The leading power scaling of the form factors can be easily understood in
terms of gluon exchange. The propagator associated with the exchange of a single
gluon is proportional to 1/Q2. Thus, the helicity conserving Dirac form factor F1(Q

2)
scales roughly as 1/Q4, since two gluon exchanges are required. The Pauli form
factor F2(Q

2) involves a helicity flip between the initial and final nucleons, which
requires the exchange of another gluon. Thus, its leading power scaling behaviour
is 1/Q6.

The asymptotic behaviour of the form factors has recently been studied in
connection with the unexpected behaviour of the ratio Q2F2(Q

2)/F1(Q
2) measured
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at Jefferson Lab [JLAB00, JLAB01] shown on Figure 3.3: the ratio QF2(Q
2)/F1(Q

2)
is constant for Q2 ≥ 1.5 GeV2, and not Q2F2(Q

2)/F1(Q
2) as one expects from the

pQCD prediction (3.13). Two new independent analyses predict different logarith-
mic corrections [BJY02, RJ03]. Although the experimental data for the current
range of Q2 values does not suggest the onset of asymptotic pQCD behaviour, our
analysis includes the leading power constraints on the form factors. This guarantees
the correct asymptotics, and allows to estimate the order of magnitude of the Q2

values where the pQCD behaviour of the form factors becomes evident.
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Figure 3.3: The ratios QF p
2 (Q2)/F p

1 (Q2) and Q2F p
2 (Q2)/F p

1 (Q2) measured at JLab
[JLAB00, JLAB01]. Figure taken from [JLAB01]. Our definition of the form factors
differs from the conventions of [JLAB00, JLAB01] by a normalisation factor κp. The
lines indicate the different model predictions.

In order to obtain the correct leading power behaviour,

F1(t)−→
t→∞

1

t2
, (3.14)

F2(t)−→
t→∞

1

t3
,

terms up to order 1/t must cancel in the expansion of Fi(t), i = 1, 2, in the limit
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t → ∞. For F2(t), terms at order 1/t2 must also vanish. Written in terms of the
spectral functions, these conditions dictate:

∞∫

t0

ImFi(t)t
ndt = 0, i = 1, 2, (3.15)

with n = 0 for F1 and n = 0, 1 for F2.

The pQCD constraints can be included in different ways. A previous
analysis [MMD95] also included the logarithmic corrections. The way they were im-
plemented, however, lead to an unphysical singularity in the timelike region. Instead,
we have constructed two models which parameterise the contributions from continua
which are not included explicitly and which enforce the correct leading power pQCD
scaling behaviour. Both models are discussed in detail in the following sections.

3.3.1 The Superconvergence Approach

The constraint dictated by Eq. (3.15) can be directly translated into constraints on
the parameters of the resonance poles included in the analysis - the superconvergence
relations. In a pure VMD approach, where the form factor is given by

F (t) =
∑
V

aV

M2
V − t

, (3.16)

the 1/t expansion gives:

F (t) = −
∑
V

aV

(
1

t

)
−

∑
V

aVM2
V

(
1

t2

)
−

∑
V

aVM4
V

(
1

t3

)
+ . . . (3.17)

The requirement that the leading terms up to order 1/t vanish places the constraint
on the residua of the resonance poles:

∑
V

aV = 0 . (3.18)

For the Pauli form factors, terms up to order 1/t2 must vanish, leading to an addi-
tional constraint: ∑

V

aVM2
V = 0 . (3.19)

These constraints hold for the isoscalar form factors, since theKK̄ and the correlated
ρπ exchange processes are parameterised in terms of simple meson poles. For the
isovector form factors, however, the two-pion contribution has a more complicated
functional form, given in Eq. (3.2). By performing an expansion in powers of t in
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the limit t → ∞, the superconvergence relations for the isovector form factors can
be derived. Using Eq. (3.2), they have the following form:

a1d1

2
+

∑
V

aV = 0 forF v
1 ,

a2d2

2
+

∑
V

aV = 0

a2d
2
2 − b2c2d2

2
+

∑
V

aVM2
V = 0





forF v
2 .

(3.20)

In addition, we add a very broad resonance to both the isoscalar and the
isovector form factors. This contribution has the structure

F I,broad
i (t) =

aI
i (M

2
I − t)

(M2
I − t)2 + Γ2

I

, i = 1, 2, I = s, v. (3.21)

It parameterises weak continuum contributions in addition to the explicitly included
two-pion, KK̄ and ρπ continua, and generates an imaginary part of the spectral
functions in the timelike region for t ≥ 4M2

N . The width-like parameter ΓI [GeV2] is
very large, of the same order of magnitude as M2

I . A typical value is ΓI ∼ 10 GeV2.
Thus, Eq. (3.21) is only a convenient parameterisation of continua - it must not
be understood as a physical resonance. The broad resonance contributions are also
accounted for in the superconvergence relations.

It is convenient to write down the complete set of superconvergence re-
lations as a set of linear equations for the resonance pole residua in matrix form,
additionally enforcing the correct form factor normalisation dictated by Eq. (2.10).
For the Dirac form factors, the normalisation conditions and the superconvergence
relations fix the residua of two resonances. For the Pauli form factors, the additional
superconvergence relation allows to fix the residua of a third resonance. Without
loss of generality, the linear equations can be written down for the residua of two
(three) lowest-mass resonance poles for the Dirac (Pauli) form factors, respectively.
Thus, the set of linear equations takes the form

(
M−2

I1
M−2

I2
M−2

I3

1 1 1

) (
aI1

1

aI2
1

)
= ~CI

1 , (3.22)



M−2

I1
M−2

I2
M−2

I3

1 1 1
M2

I1
M2

I2
M2

I3






aI1

2

aI2
2

aI3
2


 = ~CI

2 ,

I = s, v ,
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where

~CI
1 =



F I

1 (0)− ∑
k>2

a
Ik
1

M2
Ik

− a
Ibroad
1 M2

Ibroad

M4
Ibroad

+Γ2
Ibroad

− δI,v
a1+b1

2

− ∑
k>2

aIk
1 − δI,v

a1d1

2


 (3.23)

~CI
2 =




F I
2 (0)− ∑

k>3

a
Ik
2

M2
Ik

− a
Ibroad
2 M2

Ibroad

M4
Ibroad

+Γ2
Ibroad

− δI,v
a2+b2

2
,

− ∑
k>3

aIk
2 − δI,v

a2d2

2

− ∑
k>3

aIk
2 M

2
Ik
− δI,v

(
a2d2

2

2
− b2c2d2

2

)



,

I = s, v . (3.24)

These equations constrain 10 parameters in total: two residua for each of F s
1 and

F v
1 and three residua for each of F s

2 and F v
2 .

3.3.2 The Explicit pQCD Approach

An alternative approach to enforcing pQCD behaviour is the addition of an explicit
term compatible with Eq. (3.13). Superconvergence relations are still enforced in
order to cancel the leading powers in the 1/t expansion, but, generally, no broad
resonance is added. We have chosen terms of the form:

F I,pQCD
i =

aI
i

1− c2i t+ b2i (−t)i+1
, i = 1, 2, I = s, v. (3.25)

Such a term behaves like an effective resonance pole for low values of t, and explicitly
enforces pQCD behaviour for large values of t.

The parameters bi and ci are the same for the isoscalar and isovector
form factors, while the residua aI

i depend on the channel. This method allows for a
smooth interpolation between the low-t and the high-t regions.

Another important consequence of this approach to enforcing the pQCD
constraints is the investigation of the onset of pQCD behaviour. Perturbative QCD
can not predict the scale at which the asymptotic behaviour should become evi-
dent in experiment. Non-perturbative tools are required for such an analysis, and
dispersion relations provide this opportunity.

In order to provide predictions for the Q2 values where the asymptotic
behaviour sets on, we investigate the ratio R(Q2) = Q2F p

2 (Q2)/F p
1 (Q2). Numeri-

cally, it can be constructed directly from our form factor analyses. However, there
is a difference between the expectations for the results of the SC and the pQCD
approaches.

Analytically, finding the onset of pQCD behaviour amounts to solving
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the following equation:
dR(Q2)

dQ2
= 0 (3.26)

for Q2. In a pure VMD approach, where the form factors are given by (3.16), the
solution of Eq. (3.26) yields a denominator of the form:

Q2
pQCD ∼ (

∑
V

aV
1

∑
V

aV
2 )−1 . (3.27)

Due to the pQCD constraints on the residua (3.18), the denominator vanishes.
Similar structures appear in the numerator of the solution, therefore Q2

pQCD remains
finite, but one expects large estimates forQ2

pQCD within the SC approach. The pQCD
terms, however, are not bound by superconvergence relations, since they provide the
correct asymptotic behaviour by construction. The solution of Eq. (3.26) depends
on free parameters - the pQCD term parameters aI

i , bi and ci. The pQCD approach
is therefore expected to provide a more realistic estimate of the onset of pQCD
behaviour.



Chapter 4

Cross Section Analysis

In this Chapter, the problem of the extraction of the form factors from experimental
data for both elastic and inelastic scattering is discussed. Radiative corrections
applied to the cross section measurements are introduced. The discrepancy between
the Rosenbluth and the polarisation transfer techniques is discussed on the basis of
the two-photon corrections.

4.1 Rosenbluth Separation

Before the advent of polarisation transfer experiments, our knowledge about the
nucleon form factors came almost exclusively from elastic ep scattering experiments.
The form factors were extracted from the differential cross section measurements
using the Rosenbluth formula for the differential cross section [Ros50]:

dσ

dΩ
=

( dσ
dΩ

)
Mott

τ

ε(1 + τ)
[G2

M(Q2) +
ε

τ
G2

E(Q2)] , (4.1)

where ε = (1 + 2(1 + τ) tan2(θ/2))−1 is the virtual photon polarisation and θ is the
scattering angle.
The Mott cross section for the scattering from a point particle is:

( dσ
dΩ

)
Mott

=
α2E ′ cos2(θ/2)

4E3 sin4(θ/2)
, (4.2)

where E and E ′ are the energies of the initial and scattered electron, respectively,
and α = e2/4π is the electromagnetic fine structure constant.

Because the form factors in Eq. (4.1) are functions of Q2 only, by per-
forming measurements at a fixed Q2 for different values of ε it is possible to extract

31
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Figure 4.1: The kinematics for the polarisation transfer experiments. A longitudi-
nally polarised electron scatters on a proton with the exchange of a virtual photon.

G2
M from the cross section measured at ε = 0, and the ratio GE/GM from the slope

in ε.

Similar measurements for the neutron form factors are nearly impossible.
The contribution of Gn

E to the differential cross section is very small. It provides
only ∼ 5% of the en cross section. In addition, the absence of a free neutron
target is a strong limitation. The experiments on a deuterium target produce large
uncertainties due to the corrections for ep scattering, as well as corrections for
nuclear effects in deuterium.

4.2 Polarisation Transfer Separation

In 1968, Akhiezer and Rekalo [AR68] pointed out the possibility of using a polarised
electron beam scattering on a nucleon target to obtain the nucleon form factors
by measuring the polarisation of the recoiling nucleon. The kinematics for such
a scattering process are schematically shown on Figure 4.1. In a further review
paper [AR74] they discussed the possibility of obtaining Gp

E in the presence of a
dominant Gp

M from the reaction ~ep → e~p at large momentum transfers. In 1982,
Arnold, Carlson and Gross [ACG80] presented the methods for the measurement of
the neutron form factors in the reaction 2H(~e, e

′
~n)p.

For the scattering of longitudinally polarised electrons off an unpolarised
target, there are only two non-zero polarisation components for the recoil nucleon:
transverse Px and longitudinal Pz. For a 100% longitudinally polarised electron
beam, they are related to the electric and magnetic form factors [ACG80]:

I0Px = −2
√
τ(1 + τ)GEGM tan(θ/2) , (4.3)

I0Pz =
1

MN

(E + E ′)
√
τ(1 + τ)G2

M tan2(θ/2) ,

where I0 = G2
E(Q2) + τ

ε
G2

M(Q2). Thus, the longitudinal and transverse polarisation
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Figure 4.2: The kinematics for the double polarisation transfer experiments. A
longitudinally polarised electron scatters on a polarised proton with the exchange
of a virtual photon.

components are proportional to G2
M and GEGM , respectively. The ratio of the form

factors in polarisation transfer experiments is given by:

GE

GM

= −Px

Pz

(E + E ′)
2MN

tan(θ/2) . (4.4)

Another possibility for measuring the form factors with polarisation
transfer techniques was discussed in 1969 by Dombey [Dom69]. He proposed double
polarisation experiments: the scattering of longitudinally polarised electrons on a
polarised nucleon target. The kinematics for the process are schematically depicted
on Figure 4.2. Donnelly and Raskin [DR85, RD88] related the measurable asymme-
try for two different beam helicities to the ratio of the electric and magnetic form
factors:

A = − A1GEGM + A2G
2
M

G2
E + τ(1 + 2(1 + τ) tan2(θ/2))G2

M

, (4.5)

where A1 and A2 depend on the kinematical variables and the orientation of the
nucleon polarisation vector ~P with respect to the scattering plane, and

A =
σ+ − σ−
σ+ + σ−

. (4.6)

The cross sections σ+ and σ− correspond to the two different beam helicities. The
asymmetry in parallel kinematics, where the momentum transfer vector ~q is parallel
to the target polarisation vector, is proportional to the nucleon’s magnetic form
factor squared. The asymmetry in perpendicular kinematics, where the momentum
transfer vector is perpendicular to the target polarisation vector, is proportional to
the product GEGM .

The polarisation transfer techniques provide several advantages over the
Rosenbluth separation method:

• If the polarisations can be measured simultaneously, only one measurement at
a given Q2 is required. This reduces systematic errors associated with angle
and beam energy changes.
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• For the extraction of the ratio GE/GM the knowledge of the beam polarisation
is not required.

• Two-photon effects are suppressed. A discrepancy exists between the Rosen-
bluth and the polarisation transfer form factor extraction, which may be ex-
plained by two-photon physics. This topic is discussed in detail in Section 4.4.

4.3 Radiative Corrections

With the advent of the new continuous beam electron accelerators such as CE-
BAF (Jefferson laboratory), ELSA (Bonn) and MAMI (Mainz), a large amount of
high precision data on the cross sections for electron-nucleon scattering has become
available. It is therefore clear that if meaningful results are to be obtained for the
nucleon form factors, one has to take into account effects higher order in the fine
structure constant α than the one-photon exchange approximation. Depending on
the experimental conditions - initial beam energy, momentum transfer and detec-
tor resolution, the radiative corrections can be as large as 30% of the uncorrected
cross section. These corrections include the QED processes of radiation of an unob-
served real photon, vacuum polarisation, lepton-photon vertex corrections and the
two-photon exchange box diagrams. The set of elastic diagrams to be considered is
shown on Fig. 4.3, and the inelastic diagrams are shown on Fig. 4.4.

Another important reason to study the higher order corrections carefully
is the apparent discrepancy between the form factors extracted using the Rosenbluth
and the polarisation transfer techniques. World data on the ratio µpG

p
E/G

p
M is

shown on Figure 4.5. The apparent discrepancy between the two approaches has
been a subject of intense discussion in recent years, leading to fundamental questions
regarding the validity of one of the techniques.

When the discrepancy in Figure 4.5 was first observed, it was noted that
the values of Gp

E extracted using the Rosenbluth separation technique are not con-
sistent with each other. It was often assumed that the difference between the two
techniques can therefore be explained by systematic uncertainties in the Rosenbluth
extractions. This scattering of values is largely explained by the fact that new
experiments extracted the data from a combination of the new cross section mea-
surements and older results. The normalisation uncertainties arising from such a
treatment were often neglected. A global reanalysis of the Rosenbluth data [Arr03]
showed that only the data from individual measurements are consistent. Never-
theless, the results of the global data analysis still disagreed with the polarisation
transfer results. This lead to speculations of a fundamental problem with either
the Rosenbluth, or the polarisation transfer methods. Currently, this discrepancy is
believed to be due to hard two-photon exchange corrections, discussed in detail in
Section 4.4.

Several independent analyses of the radiative corrections exist. Schwinger
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Figure 4.3: Feynman diagrams for elastic amplitudes contributing to the radiative
corrections: vacuum polarisation (a), vertex corrections (b1, b2), self-energy correc-
tions (c1, c2, d1, d2) and two-photon exchange corrections (2γ1, 2γ2).
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Figure 4.4: Feynman diagrams for inelastic amplitudes contributing to the radiative
corrections (Bremsstrahlung).

related the corrected and uncorrected cross sections by a factor of (1 + δ) [Sch49]:

(
dσ

dΩ

)

measured

=

(
dσ

dΩ

)

Born

(1 + δ) . (4.7)

In 1961, Tsai [Tsa61] calculated the contributions from a subset of the diagrams
contributing to the radiative corrections for ep scattering neglecting any effects of
the structure of the proton. His calculation was applicable to experiments in which
only the scattered electrons are detected. Meister and Yennie [MY63] performed a
calculation for the case when either, but not both, outgoing particles are detected. In
1969, Mo and Tsai [MT68] extended the original calculation of Ref. [Tsa61]. They
compared the result to the result of Meister and Yennie, finding very good agreement.
The result given by Mo and Tsai has been applied to almost all experimental data
for the unpolarised cross section measurements.

Both of these calculations involve both purely mathematical and physical
approximations. The mathematical approximations are made in order to perform
the integrations. The physical ones reflect a more complex underlying problem which
appears for all diagrams. We discuss this problem using the two-photon diagrams,
since two-photon effects beyond the ones included in the calculations discussed so
far have been shown to have a large effect on the cross section analysis.

The matrix elements of the box and crossed box diagrams of Figure 4.3
are:

M2γ = e4
∫

d4k

(2π)4

[
Na(k)

Da(k)
+
Nb(k)

Db(k)

]
, (4.8)
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Figure 4.5: World data on the ratio µpG
p
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2
M . The circles are the data obtained

using the Rosenbluth separation technique. The diamonds are the data obtained
using the polarisation transfer technique. The apparent discrepancy between the
two techniques has been a subject of intense investigation in recent years, and may
be explained by two-photon exchange effects.

where the numerators are

Na(k) = u(p3)γµ(6p1 − 6k)γνu(p1)u(p4)Γ
µ(q − k)(6p2 + 6k +M)Γν(k)u(p2), (4.9)

Nb(k) = u(p3)γν(6p3 + 6k)γµu(p1)u(p4)Γ
µ(q − k)(6p2 + 6k +M)Γν(k)u(p2),

and the denominators are the products of the scalar propagators,

Da(k) = [k2 − λ2][(k − q)2 − λ2][(p1 − k)2 −m2][(p2 + k)2 −M2], (4.10)

Db(k) = [k2 − λ2][(k − q)2 − λ2][(p3 + k)2 −m2][(p2 + k)2 −M2].

Here λ is an infinitesimal photon mass introduced in order to regulate the infrared
divergences.

The current Γµ(k) entering Eq. (4.9) involves the form factors of the
nucleons. It is given in Eq. (2.9). This creates a tautology, since these corrections
are used to determine the experimental form factors. Ideally, a dynamic analysis of
the form factors could be performed - i.e. the corrections corresponding to a given
phenomenological form of the form factors would be computed for each variation of
the form factors. The numerical complexity associated with the evaluation of these
diagrams, especially the two-photon exchange diagrams, however, makes such an
approach not feasible.

In the calculations discussed so far, the effects of the structure of the
nucleon were neglected. In a recent re-evaluation of these corrections, Maximon
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and Tjon [MT05] have considered the effects of the finite size of the nucleon and
removed the mathematical approximations of the original calculation of Mo and
Tsai. They found deviations for δ at the 2% order. However, their treatment of the
two-photon box and crossed-box diagrams still employs the soft-photon exchange
approximation: the detailed effects of the nucleon structure are neglected.

Another important contribution to the radiative corrections are the
Coulomb corrections. They arise due to the distortion of the electron scattering
waves in the Coulomb field of the proton. In terms of Feynman diagrams, this cor-
responds to multiple photon exchange between the electron and the proton. The soft
photon parts of the two-photon diagrams of Figure 4.3 are a subset of the Coulomb
corrections. Therefore, the soft contributions have to be subtracted from the cal-
culations of the Coulomb corrections in order to avoid double counting. Ingo Sick
has provided us with numerical results for the Coulomb corrections [Sic06] which we
apply to the experimental data for the cross sections in our analyses.

Since the independent calculations with increasing levels of precision
agree within a few percent accuracy, a rigorous evaluation of the effects of the
two-photon exchange which have been neglected in the calculations discussed has
become necessary.

4.4 Two-Photon Exchange

Several recent investigations of the magnitude of the two-photon effects have been
performed. In [ABCC05, CABC04], a calculation of the two-photon exchange cor-
rections is performed within the framework of generalised parton distributions. The
authors find that the calculated correction only partially resolves the discrepancy
between the Rosenbluth and the polarisation transfer techniques. Their result in
comparison to the world data on the ratio µpG

p
E/G

p
M is shown on Figure 4.6.

Blunden, Melnitchouk and Tjon have performed a direct analysis of the
two-photon box and crossed-box diagrams. Their first analysis [BMT03] included
only a proton intermediate state and approximated the proton form factors required
for the calculation by a simple monopole. It was further extended to parameterise
the form factors with a sum of monopoles [BMT05], and include the contribution
of the ∆ intermediate state [KBMT05]. The parameterisation of the form factors
introduces an unavoidable model dependence into such a calculation.

The results of the calculated corrections applied to the form factor ratio
are shown on Figure 4.7. Again, the authors find that the calculated corrections only
partially resolve the disagreement between the Rosenbluth and polarisation transfer
techniques. Their result is comparable in magnitude to the result of Afanasev et al.
[ABCC05, CABC04].

In the same analysis, the two-photon effects for the polarisation transfer
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Figure 4.6: The result of Afanasev et al. [ABCC05, CABC04] applied to the ratio
of the electric and magnetic form factors of the proton in comparison to the world
data. Figure taken from Ref. [ABCC05]. The hollow and filled circles show the
polarisation transfer results. The hollow triangles show the Rosenbluth technique
results. The filled squares are the results obtained after the calculated missing two-
photon effect corrections are applied to the Rosenbluth data.

techniques are found to be negligible in magnitude.

We have performed a model-independent estimate of the two-photon cor-
rections by comparing the analysis of the polarisation transfer data to a direct analy-
sis of the elastic unpolarised electron-proton scattering differential cross section data.
Assuming the cross section obtained from the form factors measured with polarisa-
tion transfer techniques is free of two-photon corrections, as suggested in [BMT05],
the difference between it and the unpolarised cross section provides a prediction
for the missing two-photon corrections. The results are presented and discussed in
detail in Section 7.2.
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Figure 4.7: The result of Blunden, Melnitchouk and Tjon [BMT05, KBMT05] ap-
plied to the ratio of the electric and magnetic form factors of the proton in com-
parison to the world data. The hollow diamonds are the results of the Rosenbluth
analyses, the hollow circles are the results of polarisation transfer experiments. The
filled squares and the filled circles show the Rosenbluth results corrected for the cal-
culated two-photon exchange under two different assumptions. Figure taken from
Ref. [BMT05].

4.5 Inelastic Scattering

In the timelike region, several scattering processes can be used in order to measure
the form factors. For example, the cross section for the process pp̄→ e+e− without
kinematic prefactors is given by:

dσ

dΩ
∼ |Gp

M |2(1 + cos2(θ)) +
4M2

p

s
|Gp

E|2 sin2(θ) . (4.11)

Additional Coulomb terms are included in the cross section analysis [Tza70] in order
to account for the final state nucleon interactions. These corrections make the cross
section non-zero at threshold.

The PS 170 experiment by the LEAR collaboration measured the proton
magnetic form factor in the timelike region in the reaction pp̄→ e+e− [Bar94]. The
reaction pp̄ → e+e− was further measured in the E835 experiment [Amb99]. The
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BABAR collaboration [Aub05] used the process e+e− → pp̄γ. The DM2 collabora-
tion [Bis90] measured the proton magnetic form factor in the process e+e− → pp̄.
Only one measurement of the neutron form factor in the timelike region exists. The
pioneering FENICE experiment [Ant93] measured the neutron magnetic form factor
in the reaction e+e− → nn̄.

The expressions for the cross sections for these reactions do not provide
a simple way to separate the electric and the magnetic form factors. For example, in
Eq. (4.11) both Gp

E and Gp
M enter with angular dependent prefactors. Therefore, in

order to extract the form factors from the measured cross sections, assumptions are
made. The form factors are extracted either assuming |Gp

E| = 0, or Gp
E = Gp

M . This
limitation can be overcome only if an analysis of the differential cross section data
in the timelike region would be performed. Generally, however, differential cross
section data is not readily available.

The world data for the proton and the neutron magnetic form factors
in the timelike region is shown on Figure 4.8. The steep threshold behaviour of
the proton magnetic form factor has recently been studied. Several interpretations
of this enhancement have been given in terms of NN̄ bound states or unobserved
meson resonances close to threshold. However, it has been shown that an expla-
nation of the enhancement can be given in terms of final-state interactions in the
proton-antiproton system [HHMS06]. The results of our analysis do not rule out the
possibility of a near-threshold meson resonance, but show that neither is it required
to explain the proton magnetic form factor at threshold, nor does the presence of
a resonance pole at threshold necessarily provide this behaviour. The results are
presented in Chapter 6.
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M shows the steep threshold behaviour
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Chapter 5

Data Analysis

In this chapter, an overview of the mathematical formulation of the problem of the
analysis of the experimental data is presented, and the use of Monte-Carlo techniques
for generating error estimates on the results is discussed.

5.1 The Experimental Data Sets

The experimental data for the form factors used in the analysis is taken from
Ref. [FW03] and in addition includes the new data that have appeared since 2003
and the timelike data. The timelike form factor data for the proton come from
CERN [Bas77], Orsay [Del79], the DM2 experiment [Bis90], the FENICE experi-
ment [Ant94], LEAR at CERN [Bar94], the E835 collaboration [Amb99], the CLEO
collaboration [Ped05], the BES collaboration [Abl05] and the new high precision
data from the BABAR collaboration [Aub05]. The pioneering FENICE experiment
measured the neutron form factor in the timelike region [Ant93, Ant98]. The new
data in the spacelike region come from the E93-038 collaboration at Jefferson Lab
[Pla05], the A1 collaboration at Mainz [Ber03, Gla04], the E93-026 collaboration
at Jefferson Lab [War03], the BLAST collaboration at MIT-BATES [Zis05] and the
E95-001 collaboration at Jefferson Lab [And06]. The CLAS collaboration at Jef-
ferson Lab has performed measurements of the neutron magnetic form factor for
momentum transfers 0.6 ≤ Q2 ≤ 5 GeV2 [Lac05]. These data are still preliminary,
and are therefore generally not included in the fits. Nevertheless, we have performed
a combined analysis of these data and the world data. The results of this analysis are
discussed in Section 6.6. The data for the elastic electron-proton differential cross
sections are a compilation of a wide range of publications. This compilation has
been provided by Ingo Sick [Sic06]. In addition, numerical results for the Coulomb
corrections for the differential cross section data have been provided to us [Sic06].

43
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Interpolation is performed to obtain the Coulomb corrections for arbitrary values of
the incoming electron energy and the electron scattering angle.

In total, there are 210 experimental form factor data points included in
the spacelike region and 72 in the timelike region. There are 500 elastic electron-
proton differential cross section data points. When Coulomb corrections are in-
cluded, this number reduces to 374 due to the limited amount of data for the
Coulomb corrections for forward and backward scattering. This leads to difficulties
with interpolation, and differential cross section data at points where no reliable
interpolation of the corrections can be performed are discarded in the analysis. This
does not influence the analysis significantly. We have performed a test analysis of
the full cross section data set without the inclusion of Coulomb corrections, and the
results are in qualitative agreement with the results of the analyses of the smaller
data set with the inclusion of Coulomb corrections. The application of the Coulomb
corrections to the cross section values brings better agreement with polarisation
transfer data compared to the analysis of uncorrected cross section data.

5.2 Formulation of the Mathematical Problem

Let ~Pfull be the full space of the free adjustable parameters - the resonance masses,
residua, the width parameters for the broad resonance terms in the SC approach,
and the explicit pQCD term parameters in the pQCD approach. The dimension
dimPfull ≡ f is the number of free parameters. Physical constraints restrict the pos-
sible values of the parameters - for example, the resonance masses must be positive
and greater than 1 GeV. Let ~P ⊂ ~Pfull denote the physically acceptable parametric

space. A vector ~p ∈ ~P encodes all information necessary to calculate the form factors
and cross sections. Therefore, the problem of the analysis of the experimental data
is the problem of finding all possible vectors ~pi for which the agreement between the
phenomenological form factors and cross sections and the experimental data is best.
In order to discuss the generation of errors, it is convenient to introduce a cuboid
P in the parameter space centred around a point ~p0. Its volume is defined by all
possible vectors ~pell the components of which satisfy pi

ell ∈ [pi
0− xi; pi

0 + xi], where ~x
is a constant vector.

The experimental data is sorted into datasets. There are 6 datasets:
Gn

E(Q2), Gn
M(Q2), Gp

E(Q2), Gp
M(Q2) in the spacelike region, Gp

M(q2) in the time-
like region, and the unpolarised elastic electron-proton scattering differential cross
sections dσ/dΩ(E, θ). It is important to note that the cross section data and the
proton form factors in the spacelike region are not independent. In our form factor
analyses, only the form factor data are included. In turn, the form factor data for
the proton in the spacelike region are excluded from the cross section analyses. Each
dataset contains the experimental data points: the measured values at given Q2 and
their errors for the form factors, and the measured values at given E and θ and their
errors for the cross section data. A given set of parameters determined by a vector
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~p ∈ ~P uniquely determines the phenomenological functions corresponding to each
dataset.

In order to perform regression, a χ2 function is constructed following the
prescription of Höhler [HPSB76]:

χ2(~P ) =
N

r(N − f)

∑
ρ=1...r

∑
i=1...nρ

1

nρ

(
F ρ(ξi)− Φρ

i

ερi

)2

, (5.1)

where r is the number of datasets corresponding to the different form factors and
cross section data, N is the total number of experimental data points under consid-
eration, nρ is the number of experimental points in a given dataset, f is the number
of free parameters, F ρ are the parameter-dependent phenomenological functions for
a given dataset, Φρ are the experimental data points, and ερ are their corresponding
experimental errors.

The chosen form of the χ2 function (5.1) differs from the standard form,

χ2(~P ) =
1

N − f

∑
i=1...N

(
F ρ(ξi)− Φρ

i

ερi

)2

, (5.2)

in its sensitivity to the number of experimental points in a given dataset. The
sensitivity to data sets in which the number of experimental data points is much
smaller than in other data sets is significantly enhanced when using Eq. (5.1). This
leads to a better description of all experimental data, while maintaining the proba-
bilistic likelyhood interpretation of the obtained results based on the χ2 distribution
[HPSB76], therefore allowing to introduce the theoretical 1σ uncertainty error bands
as described in detail in Section 5.5.2.

The dimensions of the parameter space ~P - the number of free parameters
in the problem - is restricted by stability criteria discussed in detail in Ref. [Sab80].
An increase in the number of free parameters eventually leads to large oscillations,
which shows the mathematical instability of the problem. In short, we take the
minimum number of poles necessary to fit the data. The number of free parameters
is also strongly reduced by the normalisation and perturbative QCD constraints
discussed in Section 3.3.

5.3 Function Minimisation Methods

In order to minimise the χ2 function, two function minimisation routines imple-
mented in the GNU Scientific Library (GSL) [GSL] have been used: the Fletcher-
Reeves and the Polar-Ribière conjugate gradient algorithms. They feature much
higher convergence stability than the traditional method of steepest descent.

In the steepest descent approach, during each iteration a step propor-
tional to the gradient of the function with respect to all independent degrees of
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freedom at the current point ~P0 is taken. The path along which the function is
minimised is built as a discrete set of points ~pi ∈ ~P :

~pi+1 = ~pi + γi
~∇χ2(~pi) , (5.3)

where the step size, γi, is adjusted each iteration such that χ2(~pi+1) ≤ χ2(~pi) along
the direction of the gradient. This simple method features poor convergence stability.

Conjugate gradient algorithms are an improvement of the steepest de-
scent method. Whereas steepest descent approaches the minimum asymptotically,
conjugate gradient methods find the solution in a finite number of iterations. The
direction of minimisation is computed from, but not determined by, the gradient
at the current point in parameter space. The path along which the function is
minimised is built as a discrete set of points ~pi ∈ ~P :

~pi+1 = ~pi − λi
~hi ,

~hi = ~∇χ2(~pi) + γi−1
~hi−1 (5.4)

γi−1 =
‖~∇χ2(~pi)‖2

‖~∇χ2(~pi−1)‖2
,

where λi minimises the χ2 function in the search direction ~hi.

The Polak-Ribière conjugate gradient algorithm differs only in the selec-
tion of the weight parameter γi:

γi−1 =
(~∇χ2(~pi)− ~∇χ2(~pi−1))~∇χ2(~pi)

‖~∇χ2(~pi−1)‖2
. (5.5)

The gradient ~∇χ2(~p) is computed using an adaptive central difference
algorithm for each degree of freedom as implemented in the GSL.

5.4 Implementation of Additional Soft Con-

straints

Two types of additional constraints can be enforced: error bar reduction constraints
and composite soft constraints. Error bar reduction can be used to investigate
certain features of the form factors within a narrow Q2 region. In this approach,
the error bars within a given dataset are artificially reduced by an adjustable factor.
This simple technique has been used in order to investigate the spectral functions
required to reproduce a bump-dip structure in the electric form factor of the neutron
in the range Q2 ∼ 0.25 GeV2.

Composite soft constraints allow to enforce a certain range of values for
a composite variable x which, in general, may be a complicated function of the
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parameters ~p. This approach has been employed in order to constrain the radii or
enforce resonance mass separation. Let 〈x〉 be the central value desired for x. A
term of the following form is explicitly added to the χ2 function:

χ2 → χ2 + κ(x− 〈x〉)2 exp(κ(x− 〈x〉)2) , (5.6)

where x is the value computed for the current parameter set ~p, and κ is a variable
strength parameter which determines the extent of the acceptable deviation of the
constrained variable from the desired central value. The chosen form of the additive
term (5.6) has been shown to provide good convergence stability, and the adjustable
parameter κ allows for necessary freedom in the selection of the acceptable devia-
tions.

5.5 Monte Carlo Simulations

5.5.1 Sampling of Initial Guess Values

Conjugate gradient methods are sensitive to the initial guess value ~p0 from which the
minimisation starts. In order to control the stability of convergence, it is necessary
therefore to choose a point ~p0 which is close to a local minimum of χ2(~p). In order to
find suitable starting points, Monte-Carlo sampling is performed in the parameter
space ~P : during each iteration, random values for the parameters are chosen within
the physically acceptable volume ~P , producing a vector ~pMC. The value of χ2(~pMC)
is computed, and, if the condition χ2(~pMC) ≤ χ2

max is satisfied, the parameters are
saved as a starting point for minimisation. The optimal value of χ2

max has been
found to be χ2

max ∼ 100 based on an analysis of the convergence stability.

5.5.2 Generation of Error Bands

In order to provide a theoretical error estimate on our results, we use the prescription
of Ref. [Yao06] to generate the 68% confidence intervals - the 1σ error bands. We
start by computing the p-value for a given number of degrees of freedom [Yao06].
The problem is reduced to finding all solutions in the interval χ2 ∈ [χ2

min;χ2
min + δ],

where δ is determined by the p-value equations, and χ2
min is the final χ2 of a fit. In

our case, δ ≈ 1.04.

A two-step Monte-Carlo simulation process is employed to produce the
error bands. Let ~pmin be a vector in parameter space ~P corresponding to the χ2

min

of a fit. We first start by defining a cuboid P by varying each component of ~pmin

by a fixed percent level, pj
min → pj

min ± xpj
min, where x is the variation parameter,

typically x ∼ 0.05. A sampling is then performed on the surface of P - random
vectors lying on the surface are taken, and the corresponding χ2 value is computed.
If a solution χ2 ∈ [χ2

min;χ2
min + δ] is found, the value of the variational parameter
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x is increased, and the simulation is repeated. The iterations continue until such a
value of x is found that no solutions on the surface of P exist.

In the second stage, a simulation within the full volume of the cuboid
defined by a given value of x is performed: random parametric vectors belonging
within the volume of P are taken, and the corresponding values of χ2 are calculated.
If χ2 ∈ [χ2

min;χ2
min + δ], the values of the parameters and the form factor and cross

section curves are saved. The number of iterations taken is much greater than the
number of iterations that would be required to compute the geometrical volume of
the region satisfying χ2 ≤ χ2

min +δ lying within the given cuboid with high precision
using Monte-Carlo techniques. This ensures a large enough sampling rate. The
final result of the simulation gives the lower and upper estimates for the individual
parameters and the form factor and cross section curves corresponding to the 1σ
confidence interval.

This technique relies on the assumption that the experimental data follow
the normal distribution. To test whether this assumption is fulfilled, good knowledge
of the theoretical function expected to describe the data is required. Since the
phenomenological form factors are our objects of investigation, such a test can not
be performed. Generally, one expects experimental data to be normally distributed.
If that is not the case, a probabilistic interpretation of the 1σ uncertainty bands is
still valid by means of the Chebyshev inequality: at least 50% of the data are within
the 1.4σ range. In our analysis, we assume that the experimental data follow the
normal distribution.



Chapter 6

Results of the Form Factor
Analysis

In this Chapter, our results for the two-pion contribution, the pion cloud of the
nucleon, and the nucleon form factors analysed within both the SC and the explicit
pQCD approaches are presented. An analysis of the preliminary neutron magnetic
form factor data measured by the CLAS collaboration is included. The final fit
parameters and the nucleon radii are discussed.

6.1 The Two-Pion Continuum

With the availability of new experimental data from three experimental groups
[Akh99, Alo04, Ach05], we have re-analysed the pion form factor [BHM05] in a
model-independent way using a Gounaris-Sakurai parameterisation [MMD95, GS68]
including ρ− ω mixing:

Fπ(t) = F ρ
π (t)

1 + αωF
ω
π (t)

1 + αω

, FR
π (t) =

m2
R + dmRΓR

DR(t)
, R = ρ, ω ,

DR(t) = (m2
R − t) + ΓR(m2

R/k
2
R)[k2(h(t)− h(m2

R)) + (6.1)

k2
Rh

′(m2
R)(m2

R − t)]− imRΓR(k/kR)3(mR/
√
t) ,

where

k =
√
t/4−m2

π , (6.2)

h(t) =
2

π

k√
t
ln

√
t+ 2k

2mπ

.

The result of the analysis is shown in Fig. 6.1. Some discrepancy between the
experimental results is evident in the region of the ρ peak. Due to the structure
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of the dispersion relations (2.20), however, this only introduces an error at the
1% level in the final calculation, since higher-energy contributions are increasingly
suppressed. The resulting sets of parameters used to reproduce the pion form factor
results are given in Table 6.1.
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Figure 6.1: The pion electromagnetic form factor in the timelike region. The dashed,
solid and dash-dotted lines are our model parameterisations. The inset shows the
discrepancy in the ρ− ω resonance region.

KLOE SND CMD-2
mρ [GeV] 0.77079 0.778473 0.778757
Γρ [GeV] 0.14657 0.146781 0.150601
dρ 0.89313 1.00281 1.01525
mω [GeV] 0.780707 0.781797 0.782215
Γω [GeV] 0.008 0.00822332 0.00906794
dω 0.7 1.00863 1.01001
αω 0.00190765 0.00151575 0.00171781

Table 6.1: List of parameters for the pion form factor in Eq. (6.1).

The second important ingredient of Eq. (3.1) are the P-wave pion-nucleon



6.1. The Two-Pion Continuum 51

scattering amplitudes. They are tabulated in [Hoh83] (as well as in an independent
unpublished analysis [Pie]). We have performed an interpolation for the listed values
in order to obtain the contribution to the spectral functions. The resulting two-pion
contribution to the spectral functions is shown on Fig. 6.2. There are two important
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Figure 6.2: The two-pion spectral functions weighted by 1/t2 for GE (solid line) and
GM (dashed line). The previous results by Höhler [Hoh83] without the inclusion of
ρ − ω mixing (gray dash-dotted line), as well as the result for a ρ resonance only
contribution (dotted line) are shown.

features of the two-pion contribution to the spectral functions. First, as already
pointed out in Ref. [FF59], they contain the contribution of the ρ meson peak at
t ' 30M2

π . Second, on the left shoulder of the ρ, there is a strong enhancement of the
spectral functions. The threshold enhancement comes from the logarithmic singular-
ity on the second Riemann sheet located at tc = 4M2

π−M4
π/M

2
N = 3.98M2

π , very close
to the two-pion threshold (t = 4M2

π), due to the triangle diagram (Fig. 6.3). If one
were to neglect this important unitarity correction, one would severely underestimate
the nucleon isovector radii [HP75]. This singularity has also been analysed at lead-
ing one-loop order in relativistic chiral perturbation theory (ChPT) [GSS87, Mei91],
as well as in heavy baryon chiral perturbation theory [BKM96, Kai03] and in a co-
variant calculation based on infrared regularisation [KM00, SGS05]. Thus, the most
important 2π contribution can be calculated using unitarity or ChPT (in the latter
case, the ρ contribution is included in a low-energy constant).
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Figure 6.3: The pion-nucleon triangle diagram. The wavy line denotes the photon.

The contribution of the two-pion continuum to the nucleon form factors
is obtained by inserting the spectral functions into the dispersion relations (Eq. 2.20)
and performing the integration. It is convenient to use a simple parameterisation of
the result to save computation time:

F
(v),2π
i (t) =

ai + bi(1− t/ci)
−2/i

2(1− t/di)
, i = 1, 2 , (6.3)

where a1 = 1.10788, b1 = 0.109364, c1 = 0.36963 GeV2, d1 = 0.553034 GeV2,
a2 = 5.724253, b2 = 1.111128, c2 = 0.27175 GeV2, d2 = 0.611258 GeV2. In our
analysis, we use this simple parameterisation for the two-pion contribution to the
isovector form factors of the nucleons.

6.2 The Pion Cloud of the Nucleon

In order to obtain information about the spacial distribution of the pion cloud,
Eq. (2.13) can be applied to the obtained two-pion spectral functions after the con-
tribution of the ρ resonances has been subtracted. While this procedure introduces a
model dependence in the calculation of the charge and magnetisation density distri-
butions due to the pion cloud, it nontheless serves as a good quantitative estimate
of these distributions, and allows to determine the ρNN vector and tensor cou-
pling constants. Following Ref. [Kai03], the contribution of the ρ resonance can be
parameterised as

ImGV,ρ
I (t) = bI

M2
ρ

√
tΓρ(t)

(M2
ρ − t)2 + tΓ2

ρ(t)
, (6.4)

where Γρ(t) = g2(t− 4M2
π)3/2/48πt, Mρ = 769.3 MeV, and the coupling g = 6.03 is

determined from the empirical value Γρ(M
2
ρ ) = 150.2 MeV. The parameters bI are

adjusted to the height of the resonance peak. In order to evaluate the ρNN coupling
constants, the same procedure is applied to the Dirac and Pauli form factors, F v,2π

i ,
i = 1, 2.

The result of our analysis of the charge and magnetisation densities is
shown on Figure 6.4. It is in good agreement with alternative determinations - a
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recent review is given in Ref. [Mei07]. There is a peak at r ∼ 0.4 fm, and the
distributions fall off smoothly for larger values of r - the pion cloud contribution
effectively extends to r ∼ 1.5 fm. As a result of a similar analysis of the Dirac
and Pauli form factors, the following ρNN couplings are obtained: g1

ρNN ∼ 3.0,
κρNN = 5.9.
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Figure 6.4: The densities of charge and magnetisation due to the pion cloud:
4πr2ρ(r) for the isovector magnetic (dashed line) and electric (solid line) Sachs
form factors.

Friedrich and Walcher performed an analysis of the electric form factor
of the neutron [FW03] using a modified Galster parameterisation,

Gn
E(Q2) =

aQ2

(1 + bQ2 + cQ4)5
+

dQ2

(1 + eQ2)(1 + fQ2)2
. (6.5)

The second term in Eq. (6.5) corresponds to the Galster parameterisation. The
first term was added in order to reproduce additional structure in Gn

E around
Q2 ∼ 0.25 GeV2. This is the so-called ”bump-dip” structure. By applying a Fourier
transform to Gn

E, they obtain a prediction for the charge distribution in the neutron
attributed to the pion cloud. This leads to a much larger pion cloud range pre-
diction, r > 2 fm, which is at odds with the results we have obtained through the
analysis of the two-pion contribution to the spectral functions. A detailed analysis
of the possibility of additional structure in the neutron electric form factor, and the
implications for the pion cloud of the nucleon, is presented in Section 6.5.
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6.3 Results for the Superconvergence Approach

The results of the data analysis using superconvergence relations with the inclusion
of a broad resonance (3.21) in both the isoscalar and the isovector channels are shown
on Figure 6.6 for the form factors in the spacelike region, and on Figure 6.7 for the
form factors in the timelike region. The resulting spectral functions corresponding
to this analysis are shown on Figure 6.5. This fit has 17 free parameters and a total
χ2/dof of 1.8. The χ2/dof for the spacelike data alone is χ2

S = 0.99. The parameters
corresponding to this analysis are listed in Table 6.2.
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Figure 6.5: The spectral functions corresponding to the form factor analysis using
the superconvergence relations approach with the inclusion of a broad resonance.
The dashed lines correspond to F I

1 , the solid lines to F I
2 , I = s, v.

In addition to the ω and the φ meson poles, one additional effective pole
term and one broad resonance term are included in the isoscalar channel, and four
effective pole terms and one broad resonance term are included in the isovector
channel. The spectral functions show a strong interference of the effective isoscalar
pole at Ms1 = 1.125 GeV with the ρπ contribution parameterised by a fictious pole
at Mω′ = 1.12 GeV. In the isovector channel, the mass splitting between the effective
resonance poles is larger. The residua are comparable in magnitude and differ in sign
between the higher-mass resonances. This leads to a dipole behaviour of the form
factors - resonances with close masses and opposite-sign residua produce dipole-
like structures. This behaviour is consistent with the previous analyses [HPSB76,
MMD95, HMD96, HM03].

The contribution of the broad resonance terms to the spectral functions
is very small - it is not visible on the plot - in comparison to the other contributions
due to the large value of the width-like parameters ΓI . This is consistent with
the notion of parameterising weak continuum contributions beyond the dominant
contributions which we include explicitly.
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Figure 6.6: Description of the form factors in the spacelike region using the super-
convergence relations approach with the inclusion of a broad resonance. The solid
lines indicate the best fit result, the dashed lines show the theoretical 1σ uncertainty
bands.

A good description of both the space- and the timelike data is obtained.
In the spacelike region, the electric form factor of the proton is well described in the
low Q2 range, an important result for the discussion of the proton charge radius,
which is directly proportional to the derivative of the electric form factor at the
origin (3.10). Some of the experimental data for the proton electric form factor at
Q2 ∼ 1 GeV2 do not fall within the 1σ uncertainty bands. Those data are the highest
Q2 data extracted using the Rosenbluth separation technique which are included in
the analysis. They are not entirely consistent with the polarisation transfer data in
that region, and our analysis favours the polarisation transfer results. The neutron
electric form factor is smooth, without any hint of additional structure at low Q2.

In the timelike region, the proton magnetic form factor is well described,
except for the two experimental data points which suggest more enhancement of
the form factor at threshold. Both of these points, however, are within our 1σ un-
certainty bands. Some additional structure seen at q2 ≈ 4.5 GeV2 by the BABAR
collaboration is not reproduced. This behaviour is not suggested by the data ob-
tained by the LEAR collaboration. More experimental data at the threshold region
are required in order to resolve this discrepancy, and several promising experiments
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Figure 6.7: Description of the form factors in the timelike region using the super-
convergence relations approach with the inclusion of a broad resonance. The solid
lines indicate the best fit result, the dashed lines show the theoretical 1σ uncertainty
bands.

- PANDA and PAX at GSI - are under preparation. A small discrepancy also exists
at q2 ≈ 10 GeV2. The experimental data suggest a faster form factor decrease in
that region, but the data points are still largely within the 1σ uncertainty band.

The neutron magnetic form factor in the timelike region does not partic-
ipate in the analysis since the only available data are the result of one experiment.
It is therefore a genuine prediction - the few available experimental data points lie
well within our theoretical uncertainty error bands.

The values and error estimates extracted for the nucleon radii are given
in Table 6.3. Despite the fact that the proton electric form factor is well described
at low Q2 values, the proton charge radius is significantly smaller than suggested by
Lamb shift measurements [Mel99], rp

E = 0.883(14). The reason for this discrepancy
is not fully understood at this time.

The φNN residua obtained can not be assigned direct physical signifi-
cance in this analysis due to the close-lying pole at Ms1 ≈ 1.125 GeV, which strongly
influences the residua of the φ. The ω residua are comparable to those reported in
a previous analysis [HM03], but the tensor coupling differs in size and magnitude
from older determinations [MMD95, HMD96].

The analysis of the ratio Q2F p
2 /F

p
1 corresponding to this fit shows that

the onset of pQCD behaviour occurs aroundQ2 ≈ 100 GeV2. The currently available



6.4. Results for the Explicit pQCD Approach 57

Resonance Mass [GeV] a1 [GeV2] a2 [GeV2] Γ [GeV2]

ω 0.782 0.755960 0.370592 −
φ 1.019 −0.776537 −2.913229 −
s1 1.124860 0.902379 2.484859 −
s2 2.019536 0.022798 −0.130622 5.158635

v1 1.062128 −0.127290 −2.162533 −
v2 1.300946 −1.243412 3.704233 −
v3 1.493630 4.191380 −7.091021 −
v4 1.668522 −3.176013 3.723858 −
v5 2.915451 0.048987 0.075965 19.088297

Table 6.2: Fit parameters in the superconvergence relations approach. This fit has
17 free parameters and a total χ2/dof of 1.8.

Radius Best value Error estimate
(rn

E)2 [fm2] −0.117 −0.128 - −0.110
rp
E [fm] 0.844 0.840 - 0.852
rn
M [fm] 0.862 0.854 - 0.871
rp
M [fm] 0.854 0.849 - 0.859

Table 6.3: Radii values and error estimates extracted using the analysis within the
SC approach.

experimental data lie very far from this prediction.

6.4 Results for the Explicit pQCD Approach

The results of the analysis with the inclusion of an explicit pQCD term (3.25) in
both the isoscalar and the isovector channels are shown on Figure 6.8 for the form
factors in the spacelike region, and Figure 6.9 for the form factors in the timelike
region. This fit has 14 free parameters and a total χ2/dof of 2.0. The χ2 for the
spacelike data alone is χ2

S = 1.23. The resonance parameters corresponding to this
fit are listed in Table 6.4, and the pQCD term parameters in Table 6.5. In addition
to the ω, ππ, KK̄, the ρπ contributions and an explicit φ pole, there is one additional
resonance pole included in the isoscalar channel, and three resonance poles in the
isovector channel. The spectral functions corresponding to this fit are similar in
their essential features to the spectral functions obtained in the SC approach. Close-
lying effective resonance poles have residua of comparable size and opposite in sign.
The effect of the pQCD term on the spectral function is more difficult to calculate
rigorously, as the integration cut in the dispersion integral is undefined in this case.
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The values of aI
i , i = 1, 2, I = s, v are very small in magnitude, however, and one

therefore expects a very weak contribution to the spectral functions in comparison
to the continuum contributions we include explicitly.
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Figure 6.8: Description of the form factors in the spacelike region using the explicit
pQCD term approach. The solid lines indicate the best fit result, the dashed lines
show the theoretical 1σ uncertainty bands.

Similar to the broad resonance approach, a good description of the data is
obtained in both the space- and the timelike regions. More generally, the approaches
have been shown to yield similar results under similar constraints. This leads to a
very important conclusion: given pQCD constraints are satisfied, the inclusion of a
weak parameterisation of continua to provide an imaginary part of the form factors
in the timelike region beyond the NN̄ threshold is an important ingredient of the
form factor analysis, while the actual functional form of the continua does not play
a major role.

The φ pole in this analysis is free from other close-lying poles, except
the explicitly included KK̄ and ρπ continuum contributions. Therefore, a rough
estimate of the φNN coupling constants can be made: g1

φNN ≈ 2.0, κφNN ≈ −2. The
interpretation of these couplings as the pure φ meson couplings, however, is difficult
without considering other exchange mechanisms in addition to the KK̄ exchange
[MMSO97]. Nevertheless, it is useful to compare the explicit φ pole strength to
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Figure 6.9: Description of the form factors in the timelike region using the explicit
pQCD term approach. The solid lines indicate the best fit result, the dashed lines
show the theoretical 1σ uncertainty bands.

the contributions included with the KK̄ and ρπ exchange terms. The strength
of each contribution is presented on Figure 6.10. This result can be compared to
the result of Ref. [MMSO97]: the contribution to the vector coupling is largely
determined by the KK̄ contribution; the contribution to the tensor coupling, on the
other hand, largely cancels with the contribution from the KK̄ continuum due to
other processes. In our present analysis, the φ contribution indeed largely cancels
the KK̄ contribution in the case of the Pauli form factor. One therefore expects the
vector coupling of the pure φ to be somewhat larger than the value obtained in our
analysis, and the ratio of the tensor to vector couplings to be significantly smaller.

The radii values corresponding to this analysis are given in Table 6.6.
The proton charge radius comes out lower than in the SC approach - this can also
be seen from the somewhat poorer description of the low-Q2 proton electric form
factor data. In the timelike region, the threshold behaviour of the proton magnetic
form factor remains largely unreproduced, even though there are effective resonance
pole contributions close to the NN̄ threshold in both the isoscalar and the isovector
form factors at MV ∼ 1.8 GeV. The neutron magnetic form factor in the timelike
region does not participate in the fit, but the available experimental data are still
within the theoretical uncertainty bands.

Our results for the ratiosQF p
2 (Q2)/F p

1 (Q2) andQ2F p
2 (Q2)/F p

1 (Q2) within
the pQCD approach are shown on Figure 6.11 in comparison to the JLab data
[JLAB00, JLAB01]. The analysis of the ratio Q2F p

2 /F
p
1 corresponding to this fit
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Figure 6.10: Contribution of the KK̄, ρπ and the explicit φ terms to the isovector
spectral functions as obtained in the explicit pQCD approach analysis.

Resonance Mass [GeV] a1 [GeV2] a2 [GeV2]

ω 0.782 0.616384 0.114681
φ 1.019 0.159562 −0.329255
s1 1.799639 0.128654 0.026174

v1 1.000000 −0.309199 −1.078695
v2 1.627379 3.695960 −4.301057
v3 1.779245 −3.693109 3.630255

Table 6.4: Resonance parameters for the fit with explicit pQCD continuum. This
fit has 14 free parameters and a total χ2/dof of 2.0.

as
1 av

1 b1 [GeV−2] c1 [GeV−1]
0.002321 −0.028391 0.152903 0.161871

as
2 av

2 b2 [GeV−3] c2 [GeV−1]
−0.126598 −0.011693 1.159998 1.150000

Table 6.5: Parameters of the explicit pQCD term for the fit with explicit pQCD
continuum. This fit has 14 free parameters and a total χ2/dof of 2.0.

predicts the onset of pQCD behaviour at Q2
pQCD ≈ 40 GeV2. As expected, this

prediction is smaller than the prediction obtained within the SC approach. This
prediction also agrees with the findings of Ref. [MMD95], where an estimate of
Q2

pQCD ≥ 30 GeV2 is given. The ratio QF p
2 (Q2)/F p

1 (Q2) is consistent with the
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Radius Best value Error estimate
(rn

E)2 [fm2] −0.118 −0.13 - −0.11
rp
E [fm] 0.829 0.822 - 0.835
rn
M [fm] 0.863 0.859 - 0.871
rp
M [fm] 0.849 0.843 - 0.852

Table 6.6: Radii values and error estimates extracted using the pQCD continuum
approach.
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Figure 6.11: The ratios QF p
2 (Q2)/F p

1 (Q2) and Q2F p
2 (Q2)/F p

1 (Q2) obtained within
the pQCD approach compared to experimental data from JLab [JLAB00, JLAB01].
The inset shows the high-Q2 behaviour of QF p

2 (Q2)/F p
1 (Q2).

available experimental data. It starts to decrease at Q2 ≈ 15 GeV2. The slope
changes, and eventually the ratio behaves like 1/Q, as shown in the inset. The
currently available experimental data for the form factors are still far from the
asymptotic pQCD regime.

6.5 The Gn
E Bump-Dip Structure

In Ref. [FW03], a very long-range contribution to the nucleon charge distribution
in the Breit frame extending to ∼ 2 fm was found based on a phenomenological fit
to the nucleon form factors using an ansatz for the pion cloud based on the idea
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that the proton can be thought of as a virtual neutron - positively charged pion
pair. The results produced an extra structure in the electric form factor of the
neutron around Q2 ∼ 0.25 GeV2, the so-called bump-dip structure. A first inves-
tigation of the pion cloud of the nucleon based on the dispersion-relation analysis
of the two-pion contribution to the electromagnetic form factors was undertaken in
Ref. [HDM03]. The findings were in disagreement with the results of Friedrich and
Walcher [FW03]. The effective extent of the pion cloud was found to be less than
1.5 fm. We have performed an analysis of this problem using the updated two-pion
continuum analysis described in Section 6.1.

In order to reproduce the pronounced bump-dip structure suggested by
Friedrich and Walcher [FW03] in the neutron electric form factor, constraints of
the masses of the effective resonance poles had to be removed. In addition, both
the SC and the pQCD continuum approaches were combined. There is no physical
motivation for combining the two continuum approaches, but we have found that
this allows to increase the number of free parameters in the problem slightly without
affecting the convergence stability significantly. Data in the timelike region were
excluded from the fit. Experimental error bars for Gn

E in the region Q2 ∼ 0.25 GeV2

as seen by the minimisation routines had to be significantly artificially reduced.
The error bar reduction factor was of the order 10. This fit has 22 free parameters
and a total χ2/dof of 0.9 (spacelike data only). The spectral functions resulting
from this analysis are shown on Figure 6.12. A strong modification of the two-pion
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Figure 6.12: The spectral functions corresponding to the form factor analysis repro-
ducing the bump-dip structure in Gn

E. The dashed lines correspond to F I
1 , the solid

lines to F I
2 , I = s, v.

contribution close to threshold emerges. Another low-lying effective pole appears
close to the ω, producing a strong interference in the isoscalar channel. It is not
possible to reproduce the bump-dip structure without allowing for these low-mass
modifications to the spectral function, which are at odds with what is known about
the two-pion continuum from unitarity.
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The results for the form factors in the spacelike region are shown on
Figure 6.13. The dash-dotted line for Gn

E shows the bump-dip structure proposed
by Friedrich and Walcher. It corresponds to the parameterisation:

Gn
E(Q2) =

aQ2

(1 + bQ2 + cQ4)5
+

dQ2

(1 + eQ2)(1 + fQ4)2
, (6.6)

with a = 0.37 GeV−2, b = 0.39 GeV−2, c = 1.68 GeV−4, d = 0.12 GeV−2, e = f =
0.5 GeV−2 given in [FW03]. A good overall description of the form factors in the
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Figure 6.13: Description of the form factors in the spacelike region reproducing the
bump-dip structure in Gn

E. The solid lines indicate the best fit result, the dashed
lines show the theoretical 1σ uncertainty bands.

spacelike is obtained. Within the 1σ uncertainty bands, some additional structure
in Gp

E emerges in the region Q2 ≈ 2 GeV2. This influences the low-Q2 error bands
for the electric form factor of the proton, resulting in a large range of values for
the proton charge radius, with the highest value rp

E = 0.90 fm. The central value
is comparable to our other fits. The result for the neutron charge radius, however,
is lower than in our other analyses, and is not in good agreement with the value
(rn

E)2 = −0.115(4) fm2 from an alternative determination [KKRS97]. The radii
values and error error estimates are given in Table 6.9.

The results for the form factors in the timelike region are shown on
Figure 6.14. Although the timelike data was not included in this analysis, it is non-
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theless reasonably well described within the theoretical uncertainty bands. This fit
has 22 free parameters and a total χ2/dof of 0.9 (spacelike data only). The resulting
resonance parameters are listed in Table 6.7, and the pQCD term parameters in
Table 6.8.
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Figure 6.14: Description of the form factors in the timelike region reproducing the
bump-dip structure in Gn

E. The experimental data in the timelike region did not
participate in the fit. The results obtained in the timelike region are a genuine
prediction. The solid lines indicate the best fit result, the dashed lines show the
theoretical 1σ uncertainty bands.

To summarise, neither the current experimental data, nor the preliminary
results of the measurements of Gn

E at MAMI support any additional structure in the
neutron electric form factor in the region Q2 ∼ 0.25 GeV2. The additional strength
in the spectral functions required to produce the bump-dip structure suggested by
Friedrich and Walcher must indeed originate in the ππ contribution, close to the
two-pion threshold. Such a contribution is at odds with what is known about the
ππ continuum from unitarity as detailed in Section 6.1.
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Resonance Mass [GeV] a1 [GeV2] a2 [GeV2] Γ [GeV2]

ω 0.782 −3.088199 1.516336 −
s1 1.087524 −9.309347 5.152311 −
s2 0.857075 7.969599 −3.102716 −
s3 1.145783 5.332548 −3.754331 −
v1 0.315028 0.002785 −0.008642 −
v2 1.523890 −3.257202 3.767630 −
v3 1.323997 2.770486 −5.497436 −
v4 2.834388 0.177584 −0.011050 13.477161

Table 6.7: Resonance parameters for the fit with the bump-dip structure in Gn
E.

This fit has 22 free parameters and a total χ2/dof of 0.9 (spacelike data only). Note
that s2 and v1 are the additional low-mass poles necessary to generate the bump-dip
structure.

as
1 av

1 b1 [GeV−2] c1 [GeV−1]
−0.786259 −0.320320 0.971368 1.235451

as
2 av

2 b2 [GeV−3] c2 [GeV−1]
−0.000484 0.033410 0.091209 0.994702

Table 6.8: Parameters of the explicit pQCD term for the fit with the bump-dip
structure in Gn

E. This fit has 22 free parameters and a total χ2/dof of 0.9 (spacelike
data only).

Radius Best value Error estimate
(rn

E)2 [fm2] −0.187 −0.263 - 0.113
rp
E [fm] 0.854 0.807 - 0.904
rn
M [fm] 0.845 0.810 - 0.875
rp
M [fm] 0.828 0.799 - 0.854

Table 6.9: Radii values and error estimates extracted from the Gn
E bump-dip struc-

ture fit.
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6.6 Analysis of Preliminary CLAS Data for Gn
M

The CLAS collaboration has recently measured the magnetic form factor of the
neutron in the spacelike region for momentum transfersQ2 = 0.5 . . . 4.5 GeV2. These
preliminary results disagree with the world data on Gn

M in the region Q2 ∼ 1 GeV2.
In order to analyse the effect of this discrepancy, we have performed a simultaneous
analysis of both the world data and the preliminary CLAS data. The result of the
analysis for the form factors in the spacelike region is shown on Figure 6.15, and for
the form factors in the timelike region on Figure 6.16. This fit has 15 free parameters
and a total χ2/dof of 2.2. The larger χ2 compared to other fits is explained by the
discrepancy between the world data and the preliminary CLAS data. The resulting
resonance parameters are listed in Table 6.10, and the pQCD term parameters in
Table 6.11. An analysis of both data sets using the SC approach has also been
performed. It yields similar results, and is therefore not further discussed here.
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Figure 6.15: Description of the form factors in the spacelike region with the inclusion
of preliminary CLAS data for Gn

M . The solid diamonds denote the new CLAS data,
the circles show the world data. The solid lines indicate the best fit result, the
dashed lines show the theoretical 1σ uncertainty bands.

The initial expectation for the outcome of this analysis was that in the
region of the discrepancy between the world data and the preliminary CLAS data the
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Figure 6.16: Description of the form factors in the timelike region with the inclusion
of preliminary CLAS data. The solid lines indicate the best fit result, the dashed
lines show the theoretical 1σ uncertainty bands.

phenomenological result for Gn
M would lie between the two datasets. Our analysis

clearly strongly favours the preliminary CLAS data. The same result was obtained
in the analysis of these two datasets within the SC approach. Some of the world data
for Gn

M in the region Q2 ≈ 0.7 GeV2 even lie outside of the theoretical 1σ uncertainty
bands. The reason for the discrepancy is not yet understood. In order to further
investigate this problem within our approach, an analysis of the differential cross
section data would be required.

In the timelike region, the threshold behaviour of the magnetic form
factor of the proton is not reproduced. Both experimental points close to threshold
lie within our theoretical 1σ uncertainty band, but they are not described by the
best fit result. The neutron form factor data, which do not participate in the fit,
are mostly within the theoretical uncertainty.
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Resonance Mass [GeV] a1 [GeV2] a2 [GeV2]

ω 0.782 0.669166 −0.135957
s1 1.045277 −0.025807 0.001144
s2 1.400423 0.261240 −0.053588

v1 1.022008 −0.279441 −1.215307
v2 1.644552 3.823047 −4.561225
v3 1.770845 −3.849954 4.027035

Table 6.10: Resonance parameters for the fit including the preliminary CLAS data
for Gn

M . This fit has 15 free parameters and a total χ2/dof of 2.2.

as
1 av

1 b1 [GeV−2] c1 [GeV−1]
−0.000186 −0.026941 0.219241 0.169695

as
2 av

2 b2 [GeV−3] c2 [GeV−1]
0.000527 −0.001835 0.004155 0.106343

Table 6.11: Parameters of the explicit pQCD term for the fit including the prelim-
inary CLAS data for Gn

M . This fit has 15 free parameters and a total χ2/dof of
2.2.
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6.7 The Proton Charge Radius

In the fits discussed so far, the charge radius of the proton comes out smaller than
the result obtained in Lamb shift measurements [Mel99], rp

E = 0.883(14) fm. Two-
photon exchange corrections are not likely to be responsible for this discrepancy
[BS05]. In order to investigate this problem, we have performed an analysis of the
form factors with the inclusion of a soft constraint (5.6) on rp

E.

The results for the form factors in the spacelike region are shown on
Figure 6.17. Except for Gp

E, a good overall description of the spacelike data is
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Figure 6.17: Description of the form factors in the spacelike region with the large
rp
E constraint. The solid lines indicate the best fit result, the dashed lines show the

theoretical 1σ uncertainty bands.

obtained. No bump-dip structure in Gn
E is observed. Some additional structure in

Gp
E appears at Q2 ∼ 1 GeV2. It is not consistent with the experimental data in that

range. The low-Q2 data points for Gp
E are described within the error bars, but the

best fit result lies on the lower side of the experimental errors.

The results for the form factors in the timelike region are shown on
Figure 6.18. A good description of the proton form factor data is obtained. The
neutron form factor data in the timelike region does not participate in the fit. The
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Figure 6.18: Description of the form factors in the timelike region with the large
rp
E constraint. The solid lines indicate the best fit result, the dashed lines show the

theoretical 1σ uncertainty bands.

prediction obtained for Gn
M does not describe the FENICE data.

The resonance parameters corresponding to this fit are given in Ta-
ble 6.12, and the pQCD term parameters in Table 6.13.

Resonance Mass [GeV] a1 [GeV2] a2 [GeV2] Γ [GeV2]

ω 0.782 1.382925 −0.819172 -
φ 1.019 −5.879633 7.058426 -
s1 1.115133 5.829356 −7.428656 -
s2 1.490044 −0.428048 1.001002 2.701229

v1 1.000000 1400.860230 −281.350784 -
v2 1.000266 −1402.617490 280.444607 -
v3 1.469113 1.507977 −0.951056 -
v4 4.123999 −0.057065 0.107735 20.876270

Table 6.12: Resonance parameters for the fit with the large rp
E constraint. This fit

has 23 free parameters.

Table 6.14 lists the radii values and error estimates extracted from the
analysis. The resulting proton charge radius is comparable to the Lamb shift re-
sults. However, the additional structures generated in Gp

E are not supported by the
experimental data. In order to reproduce the large rp

E value, strong soft constraints
are required. The determinations of other radii are comparable to the alternative
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as
1 av

1 b1 [GeV−2] c1 [GeV−1]
−0.005412 0.204322 0.538308 0.0

as
2 av

2 b2 [GeV−3] c2 [GeV−1]
0.085930 −0.074038 0.154637 0.646499

Table 6.13: Parameters of the explicit pQCD term for the fit with the large rp
E

constraint. This fit has 23 free parameters.

Radius Best value Error estimate
(rn

E)2 [fm2] −0.118 −0.151 - −0.087
rp
E [fm] 0.886 0.879 - 0.905
rn
M [fm] 0.875 0.859 - 0.891
rp
M [fm] 0.852 0.841 - 0.864

Table 6.14: Radii values and error estimates corresponding to the fit with the large
rp
E constraint.

determinations. Since we perform a global data analysis, we conclude that the cur-
rent form factor data do not suggest a value of rp

E as high as predicted in Lamb shift
measurements. The inconsistency between the two radii values remains an open
question.

6.8 The Meson-Nucleon Coupling Constants

The ωNN and ρNN coupling constants are of great importance, e.g. in the evalua-
tion of isospin violating effects [KL06]. Our model dependent determination of the
ρNN coupling constants discussed in Section 6.2, g1

ρNN ∼ 3.0 and κρNN ∼ 5.9, is
in good agreement with previous results [MMD95] and alternative determinations
[Gre77, FW89].

The ωNN coupling constants, however, are not determined so well. Al-
though the vector residua of the ω are fixed relatively well by the fits, a1

ω =
0.60 . . . 0.83 GeV2, even the sign of the tensor residua can not be determined,
a2

ω = −0.13 . . . 0.37 GeV2. This leads to the following range for the ωNN coupling
constants:

g1
ωNN = 16.7 . . . 23.1, and g2

ωNN = −3.6 . . . 10.3. (6.7)

We have not extracted the coupling of the φ to the nucleon because the φ
strength also appears in the KK̄, ρπ and other continua such as K̄∗K−K̄K∗, K̄∗K∗

and ΣΣ̄+ΛΛ̄ [MMSO97] which are not included in our analysis. The interpretation
of the φ pole is therefore ambiguous.
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Chapter 7

Results of the Cross Section
Analysis

In this Chapter, our results of the direct analysis of the elastic unpolarised electron-
proton differential cross section data with the inclusion of Coulomb corrections are
presented. The results are in better agreement with polarisation transfer data in
comparison to the original Rosenbluth analyses which do not include Coulomb cor-
rections. We have employed a comparison of the Rosenbluth cross section data to the
phenomenological cross sections obtained using the form factor analyses described
in the previous Chapter in order to provide an estimate for the two-photon exchange
effects. The results agree with alternative determinations, and explain the discrep-
ancy between the Rosenbluth and the polarisation transfer data when applied to
cross section data directly.

7.1 Analysis of the Cross Section Data

We have performed a direct analysis of the unpolarised elastic electron-proton scat-
tering cross sections with the inclusion of Coulomb corrections. Instead of including
the spacelike proton form factors, the world data on the differential cross sections
was used. The Rosenbluth formula (4.1) was used to construct the differential cross
section using our phenomenological form factors, and the same minimisation tech-
niques as for the form factors employed in order to perform the fits.

73
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7.1.1 Superconvergence Approach

Figure 7.1 shows the results obtained in the cross section analysis within the SC
approach for several sample cross section ranges - two for fixed electron incoming
energies (left panel), and two for fixed electron scattering angles (right panel). A
comparison to all experimental data is given in Table 8.1 in the Appendix. Fig-
ure 7.2 shows the ratio µpG

p
E/G

p
M extracted from the analysis. The dash-dotted

line corresponds to an analysis of all the cross section data without the inclusion of
the Coulomb corrections. The timelike data were excluded from the latter analysis.
The χ2 for the spacelike data corresponding to the fit without Coulomb corrections
is χ2

s = 1.1, and the parameter values are only slightly different than the parame-
ter values corresponding to the best fit discussed in this Section. The result is in
qualitative agreement with the analysis that includes the Coulomb corrections, but
shows larger deviations in comparison to the polarisation transfer data.
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Figure 7.1: The differential cross section normalised to the dipole cross section ob-
tained from the cross section analysis in the SC approach compared to experimental
data. The solid lines indicate the best fit result, the dashed lines are the theoretical
uncertainty estimates.

Figure 7.3 shows the results for the form factors in the spacelike region
and Figure 7.4 the results for the form factors in the timelike region. This fit has 12
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Figure 7.2: The ratio µpG
p
E/G

p
M extracted from the cross section analysis in the SC

approach. The solid lines indicate the best fit result, the dashed lines are the the-
oretical uncertainty estimates. The dash-dotted line corresponds to a cross section
analysis within the SC approach without the inclusion of Coulomb corrections. The
time-like data were not included in the latter analysis.

free parameters and a total χ2/dof of 1.4. The χ2/dof for spacelike data only (cross
section data and the neutron form factor data) is 0.86.

The first important - and unexpected - result is the ratio of the elec-
tric and magnetic form factors. While the discrepancy between the Rosenbluth
and the polarisation transfer experiments has long been known, our analysis of the
form factor data within the Rosenbluth framework produces a result which is in
much better agreement with the polarisation transfer data than the original Rosen-
bluth form factor analyses suggest. Some of the µpG

p
E/G

p
M data extracted using the

Rosenbluth technique lie outside our theoretical uncertainty band. The reasons for
this discrepancy are two-fold. First, the inclusion of the Coulomb corrections is an
important factor for the analysis of the cross section data. Secondly, our approach
to the analysis does not have an explicit problem of the dominance of the magnetic
form factor at large momentum transfers - the sensitivity to small changes in the
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Figure 7.3: Description of the form factors in the spacelike region from a direct
cross section analysis within the SC approach. The form factors of the proton in
the spacelike region did not participate in the fit. The solid lines indicate the best
fit result, the dashed lines show the theoretical 1σ uncertainty bands.

electric form factors is improved when analysing all available data in the full range
of the outgoing electron angles θ, and no additional uncertainties are introduced.

The extracted form factors in the spacelike region are also in much better
agreement with the polarisation transfer results than the original Rosenbluth anal-
yses suggest. Moreover, the polarisation transfer data lie within the 1σ theoretical
uncertainty bands obtained by the analysis of the cross section data.

These results are a first indication that the discrepancy that is attributed
to two-photon corrections is not as dramatic as previously thought. Secondly, by
analysing the difference between the cross sections obtained from the form factors
describing the polarisation transfer form factor data and the cross section analysis
performed here one can obtain a model-independent theoretical estimates for the
magnitude of the two-photon effects.

The interference between the Born and the two-photon exchange ampli-
tudes changes sign when the charge of one of the particles if flipped. An exper-
iment aimed at measuring the two-photon exchange effects through the asymme-
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try in electron-proton and positron-proton scattering is in preparation at Jefferson
Lab, experiment E04-116, and a similar experiment has been proposed at VEPP-3.
Therefore, a theoretical prediction in addition to the model-dependent calculations
discussed in Section 4.4 is a very important step.

Resonance Mass [GeV] a1 [GeV2] a2 [GeV2] Γ [GeV2]

ω 0.782 0.589337 0.459612 -
φ 1.019 0.183528 −2.659541 -
s1 1.163239 0.084414 2.115484 -
s2 2.339565 0.047321 −0.103954 17.038504

v1 1.008434 −0.757949 −0.849667 -
v2 1.281405 16.226588 −5.205650 -
v3 1.304220 −15.725391 4.143527 -
v4 2.922907 −0.049596 0.162292 23.6932

Table 7.1: Resonance parameters for the fit to cross section data within the SC
approach. This fit has 12 free parameters and a total χ2/dof of 1.4.
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Figure 7.4: Description of the form factors in the timelike region from a direct cross
section analysis within the SC approach. The solid lines indicate the best fit result,
the dashed lines show the theoretical 1σ uncertainty bands.
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7.1.2 pQCD Approach

We have also performed an analysis of the cross section data within the pQCD
approach. We have additionally investigated the sensitivity of the solution to the
high-Q2 behaviour of Gp

E as follows:

• We impose a soft constraint on the high-Q2 behaviour of Gp
E using Eq. (5.6).

We start by setting a central value (Gp
E(Q2)/GD(Q2)) |Q2=7GeV2 ∼ 1, which

corresponds to the dipole behaviour of Gp
E. After performing a fit with

this constraint in place, we vary the constrained value slowly down to
(Gp

E(Q2)/GD(Q2)) |Q2=7GeV2 ∼ 0.7, which favours the polarisation transfer
data.

• We study the response of the χ2 function in response to varying the strength
parameter κ of the constraint as the central constraint value varies. The
strength parameter is adjusted in such a way that the contribution of the
constraint to the χ2 value does not exceed ≈ 1% of the χ2.

We find that variations of Gp
E as large as 20% at Q2 ≈ 7 GeV2 do not affect the χ2

- variations of the χ2 function are less than 1%. The main reason for this result are
the large errors on the high-Q2 experimental data points for the cross sections. We
stress that a global analysis features improved sensitivity to the ε dependence when
compared to analyses of the individual experiments.

As in the SC approach, we find a final result which is more compatible
with the polarisation transfer data than the world Rosenbluth data suggest. Fig-
ure 7.5 shows the results obtained in the cross section analysis within the pQCD
approach for several sample cross section ranges - two for fixed electron incoming
energies (left panel), and two for fixed electron scattering angles (right panel). A
comparison to all experimental data is given in Table 8.2 in the Appendix. Fig-
ure 7.6 shows the ratio µpG

p
E/G

p
M extracted from the analysis. The results for the

ratio µpG
p
E/G

p
M are again closer to the polarisation transfer results than the orig-

inal Rosenbluth data suggest. Figure 7.7 shows the results for the form factors in
the spacelike region and Figure 7.8 the results for the form factors in the timelike
region. This fit has 20 free parameters and a total χ2/dof of 1.14. The χ2/dof for
spacelike data only (cross section data and the neutron form factor data) is 0.91,
slightly higher than in the SC approach.

By comparing Figures 7.6 and 7.2, we observe that the SC approach
result is much more compatible with the polarisation transfer data, while featuring
a marginally larger χ2 value. The deviations of the pQCD approach results from the
polarisation transfer data become more significant at increasing Q2 values. In the
following section, we compare both of these results to the results of our analyses of
the form factors in order to obtain a model-independent estimate of the magnitude
of the corrections not present in the treatment of Mo and Tsai. Due to the fact that
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Figure 7.5: The differential cross section normalised to the dipole cross section
obtained from the cross section analysis in the pQCD approach compared to exper-
imental data. The solid lines indicate the best fit result, the dashed lines are the
theoretical uncertainty estimates.

Resonance Mass [GeV] a1 [GeV2] a2 [GeV2]

ω 0.782 0.922627 0.542880
φ 1.019 −4.669677 −6.351886
s1 1.076079 5.040852 5.817876
s2 1.829403 −0.389202 −0.197270

v1 0.950331 −0.170927 −0.886366
v3 1.691873 5.201568 −10.000607
v2 1.764510 −5.336988 9.137475

Table 7.2: Resonance parameters for the fit to the cross section data within the
pQCD approach. This fit has 20 free parameters and a total χ2/dof of 1.14.

the pQCD results deviate from the polarisation transfer results more strongly, we
expect a larger estimate to emerge from this analysis.
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Figure 7.6: The ratio µpG
p
E/G

p
M extracted from the cross section analysis in the

pQCD approach. The solid lines indicate the best fit result, the dashed lines are
the theoretical uncertainty estimates. The uncertainty comes out somewhat smaller
than in the SC approach due to the particular configuration of the parameter space
in the vicinity of the minimum. Both approaches agree well within the theoretical
1σ uncertainty bands.

as
1 av

1 b1 [GeV−2] c1 [GeV−1]
−0.044889 −0.022396 0.254491 0.426109

as
2 av

2 b2 [GeV−3] c2 [GeV−1]
0.016038 −0.027308 0.000104 0.727139

Table 7.3: Parameters of the explicit pQCD term for the fit to the cross section data
within the pQCD approach. This fit has 20 free parameters and a total χ2/dof of
1.14.

7.2 Two-Photon Exchange Effects

At present, the difference between the form factors extracted using the Rosenbluth
and the polarisation transfer methods provides indirect access to two-photon ex-
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Figure 7.7: Description of the form factors in the spacelike region from a direct cross
section analysis within the pQCD approach. The form factors of the proton in the
spacelike region did not participate in the fit. The solid lines indicate the best fit
result, the dashed lines show the theoretical 1σ uncertainty bands.

change effects. Other higher-order corrections may be responsible for some part of
this problem, however.

In order to evaluate the two-photon and other corrections not present
in the treatment of Mo and Tsai, we compare out results of the analysis of the
polarisation transfer form factor data with our results of the unpolarised elastic
electron-proton differential cross section analysis. Because the two-photon effects
are negligible in the polarisation transfer technique [BMT05], we construct the cross
section using our analysis of the polarisation transfer data for the form factors,

(
dσ

dΩ

)

PT

=

(
dσ

dΩ

)

Mott

[
G2

E + τG2
M

1 + τ
+ 2τG2

M tan2(θ/2)

]
, (7.1)

using the Rosenbluth expression. (dσ/dΩ)PT is then the cross section in the one-
photon exchange approximation free of two-photon effects.
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Figure 7.8: Description of the form factors in the timelike region from a direct cross
section analysis within the pQCD approach. The solid lines indicate the best fit
result, the dashed lines show the theoretical 1σ uncertainty bands.

7.2.1 Results of the Superconvergence Approach

We use our results (dσ/dΩ)Ros of the direct ep cross section analysis of Section 7.1.1
in order to obtain an estimate of the additional two-photon effects not included in
the standard correction given by Mo and Tsai [MT68]. We use Eq. (4.7) to now
relate (dσ/dΩ)PT and (dσ/dΩ)Ros:

(
dσ

dΩ

)

Ros

=

(
dσ

dΩ

)

PT

(1 + ∆2γ) , (7.2)

where ∆2γ are the missing corrections responsible for the discrepancy. In what fol-
lows, we assume that two-photon exchange is responsible for the difference. There-
fore,

∆2γ =

(
dσ

dΩ

)

Ros

/ (
dσ

dΩ

)

PT

− 1 . (7.3)

The propagation of errors for ∆2γ is performed in the standard manner.
Using a short-hand notation, σ1 ≡

(
dσ
dΩ

)
Ros

, σ2 ≡
(

dσ
dΩ

)
PT

,

δ∆2γ =

√(
∂∆2γ

∂σ1

δσ1

)2

+

(
∂∆2γ

∂σ2

δσ2

)2

+ 2
∂∆2γ

∂σ1

∂∆2γ

∂σ2

cov(σ1, σ2) , (7.4)

where cov(σ1, σ2) = 〈σ1σ2〉 − 〈σ1〉〈σ2〉. In our approach, the cross sections are not
treated as independent random variables. For a known ∆2γ, i.e. taken from future
experimental results or the analysis of [BMT05], the knowledge of one cross section
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Figure 7.9: Results for ∆2γ within the SC approach for several values of Q2. The
solid lines indicate the best fit result, the dashed lines are the theoretical uncertainty
bands. The dash-dotted line corresponds to the analysis of Ref. [BMT05].

uniquely determines the other. Therefore, we include the covariance tensor element
in Eq. (7.4). Since the cross sections are connected via Eq. (7.2), the covariance
tensor element can be calculated explicitly,

cov(σ1, σ2) = (δσ2)
2(1 + ∆2γ) . (7.5)

Our results for ∆2γ can be directly compared to the results of the
calculation of Blunden, Melnitchouk and Tjon [BMT05] and Afanasev et al.
[ABCC05, CABC04].

Our result for ∆2γ(Q2, ε) are shown on Figure 7.9. Numerical results are
given in Table 8.3 in the Appendix. The correction depends linearly on ε, which is
in agreement with the linear discrepancy between the form factor ratios (Figure 4.5)
since the reduced cross section depends linearly on ε.

Our determination is in very good agreement with the determinations of
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Blunden et al. [BMT05]. Our results agree well with the calculation of Afanasev
et al. [ABCC05, CABC04]. At Q2 = 5 GeV2, the ∆2γ correction to the differential
cross section crosses zero at ε ∼ 0.5, and becomes positive at larger values of ε.

7.2.2 Results of the pQCD Approach

We use the results of the form factor analysis discussed in Section 6.4 and the results
of the cross section analysis detailed in Section 7.1.2 in order to obtain an estimate
for ∆2γ within the pQCD approach. The results are shown on Figure 7.10. The
numerical results are given in Table 8.3 in the Appendix.

As already discussed, estimates significantly larger than the results of
the SC approach for high Q2 values are obtained. At Q2 < 2 GeV2, the analysis is
still in good agreement with the findings of Ref. [BMT05]. The results indicate that
the possibility of further corrections, i.e. from the inclusion of excited intermediate
nucleon states in the calculation of the two-photon exchange diagrams and higher
order corrections, is not ruled out, and could have a significant impact on ∆2γ.

Overall, our estimate of the two-photon effects is in qualitative and quan-
titative agreement with alternative determinations. It is derived directly from cross
section data. Applying the two-photon exchange corrections to the unpolarised cross
section data has the potential to resolve the discrepancy between the Rosenbluth
and the polarisation transfer techniques within experimental errors. In order to ap-
ply the corrections to the form factors, a careful reanalysis of the Rosenbluth results
with the inclusion of the Coulomb corrections to the cross section data is required.
It is important to stress that a global reanalysis of all the available unpolarised cross
section data is required, since, as already mentioned, these data are consistent with
each other only within one given experiment [Arr03]. It is also important to further
investigate the sensitivity of such a global analysis to the variation of Gp

E - the esti-
mates of the missing corrections within the SC approach show that good agreement
between the Rosenbluth and the polarisation transfer techniques can be achieved
with the current state of the experimental data if the two-photon corrections are
applied to cross section data.
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Figure 7.10: Results for ∆2γ within the pQCD approach for several values of Q2. The
solid lines indicate the best fit result, the dashed lines are the theoretical uncertainty
bands. The dash-dotted line corresponds to the analysis of Ref. [BMT05].
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Chapter 8

Summary and Outlook

We have investigated the problem of the structure of the nucleons using dispersion
relation techniques. Our analysis differs from the previous analyses in several ways:

• We have explicitly included the two-pion, KK̄ and ρπ continua all together as
fixed contributions. The two-pion and the KK̄ contribution are determined
from unitarity and experimental data, and the ρπ contribution comes from a
model calculation.

• Two models to enforce the correct asymptotic form factor behaviour and, at
the same time, to provide a parameterisation of the continua which are not
explicitly included have been developed as part of this work.

• We have analysed all four form factors simultaneously in both the spacelike
and the timelike regions.

• A rigorous investigation of the possibility of additional structure in Gn
E, the

bump-dip structure, has been performed in our analysis.

• The preliminary CLAS data for Gn
M have been included for the first time.

• Our analysis of the elastic unpolarised electron-proton scattering cross section
data has produced results which suggest the discrepancy between the Rosen-
bluth and the polarisation transfer techniques is not as dramatic as the original
data suggest.

• The cross section analysis has allowed us to provide model-independent esti-
mates of the two-photon exchange effects, which are in agreement with other
calculations. The two-photon corrections are indeed capable of resolving the
discrepancy between the Rosenbluth and the polarisation transfer techniques
within the experimental errors.

87
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• For the first time, we have developed a consistent method for generating the
1σ error bands on the results of our analyses.

• Our approach complies with the Phragmen-Lindeloff theorem, which states
that the asymptotic limit of an analytic function on the complex plane is the
same regardless of the direction in which it is taken. The superconvergence
relations ensure that the form factors in the space- and the timelike regions
are asymptotically real and equal.

Our analyses of the form factors within both the SC and the pQCD
approaches have provided results which are in very good agreement with the available
experimental data. We have given all the parameters required to reproduce the form
factors, as well as error estimates for both the form factors and the nucleon radii.
Our results can be easily incorporated into other calculations which depend on the
knowledge of the form factors of the nucleons - for example, the analysis of the
structure of the deuteron. We have investigated the threshold behaviour of the
magnetic form factor of the proton in the timelike region, and conclude that while
a resonance just below threshold is not excluded, it is neither required nor does its
presence necessarily generate the steep threshold enhancement. We have also given
a prediction for the Q2 range where the asymptotic behaviour of the form factors
becomes apparent, and have presented results consistent with the experimental data
for the ratio QF2(Q

2)/F1(Q
2). Our results for the nucleon radii and their error

estimates are consistent with alternative determinations, with the exception of the
proton charge radius, rp

E, which comes out significantly smaller than the result given
by Lamb shift measurements. The reason for this discrepancy is not yet understood.

Our analysis of the possibility of additional structure in Gn
E at low mo-

mentum transfers has given results consistent with the results of Friedrich and
Walcher. A significant modification of the two-pion pion contribution is required
to reproduce this behaviour. Such a modification, however, is at odds with unitar-
ity. Moreover, preliminary data for the neutron electric form factor from MAMI
do not support the bump-dip structure hypothesis. We conclude that the neutron
electric form factor is smooth, and our best fits within both the SC and the pQCD
approaches provide correct results for its low-Q2 behaviour.

The investigation of the preliminary data for Gn
M from the CLAS collab-

oration that we have undertaken has provided results which favour the CLAS data.
Some of the world data do not even fall within our 1σ error bands in the region of
the discrepancy. The physical meaning of this result is not yet well understood. A
combined analysis of all the original cross section data within our approach could
give an insight into this problem.

We have also extended the investigation of the structure of the nucleons to
a direct analysis of the unpolarised elastic electron-proton differential cross section
data. The Coulomb corrections have been included. Our results indicate that a
good description of the cross section data can be obtained with form factors which
are in much better agreement with polarisation transfer data than the previous



89

results of the analysis of the data from individual experiments suggest. To this
end, a global reanalysis of the Rosenbluth technique data with the inclusion of the
Coulomb corrections is required in order to obtain the data for the form factors.

Using our results, we have also presented a model-independent estimate
of the two-photon exchange effects. We find values for the two-photon exchange
corrections which are consistent with previous model calculations if we use the
Coulomb-corrected global analysis of the cross section data. We conclude that the
two-photon effects indeed explain the long-standing problem of the discrepancy be-
tween the two techniques, but one must compare to the original data for the cross
sections, or reanalyse the form factors extracted using the Rosenbluth technique
globally.

There are several areas in which future improvement of our approach can
be made.

• The number of free parameters in the fits should further be reduced. This
may be possible through a detailed analysis of our results for the unknown
continuum contributions in order to provide fixed estimates for use in future
fits. The development of more efficient Monte-Carlo sampling techniques may
also help reduce the number of effective poles required to reproduce the data.

• The current method of generating the error bands on our results does not
take into account the fact that some of the experimental form factor data are
strongly correlated. This can be solved by introducing an explicit correlation
function into the Monte-Carlo sampling technique. This requires the calcu-
lation of the covariance tensor for those experimental data points which are
correlated, and including it in the computation of the errors in a similar way
as described by Eq. (7.4).

• Two-photon exchange corrections should be further investigated. The results
of Blunden et al. and Afanasev et al. should be independently applied to the
unpolarised elastic electron-proton differential cross section data, and a global
analysis of the resulting cross sections performed. The result of the analysis
should be compared to polarisation transfer data, as well as the experimental
results for the two-photon effects when they appear.

• The difference between the results of the form factor analyses and the Lamb
shift measurements for the proton charge radius remains a mystery, and is not
explained by two-photon effects. It is important to eventually understand the
reasons for this discrepancy.

• The threshold enhancement of the proton magnetic form factor in the timelike
region is not well described with the current amount of available experimental
data. It should be reanalysed when new data from experiments currently in
preparation arrives.



90 Chapter 8. Summary and Outlook

• The difference between the CLAS data for Gn
M and the world data for the

magnetic form factor of the neutron should be further investigated through a
cross section analysis.

• Finally, when a compilation of all available experimental information for the
cross sections and polarisation observables becomes available, fits to cross sec-
tions for the proton and polarisation observables for the proton and the neutron
should be performed in the space- and timelike regions. This provides a global
data analysis, and removes any model assumptions in the extraction of the
form factors.

Although a large number of good results have been obtained, and a num-
ber of long standing problems resolved, many open questions still remain. With new
experiments in preparation aimed at measuring the form factors with high precision
at higher and higher Q2 values, this analysis should be compared to, and updated
with, the upcoming results. Results from future experiments on two-photon physics
should also be included in the analysis. Cross section data is also vital for the con-
tinuation of this work. Analysis of cross sections not only provides a gateway into
two-photon physics, but may also help explain and resolve certain discrepancies in
the data coming from different experiments.



Appendix

Results of the fit to cross section data within the

SC approach

Table 8.1 gives the numerical results of the analysis of the cross section data for
unpolarised elastic electron-proton scattering within the SC approach compared to
the experimental data.

Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
SC
/
(

dσ
dΩ

)
dipole

0.006 0.149 30.000 0.996± 0.006 0.998+0.001
−0.001

0.008 0.149 35.000 1.001± 0.005 0.997+0.001
−0.001

0.010 0.149 40.000 0.995± 0.006 0.996+0.001
−0.001

0.011 0.082 85.190 1.000± 0.010 0.995+0.001
−0.001

0.012 0.082 85.180 0.995± 0.006 0.995+0.001
−0.001

0.012 0.111 60.000 0.980± 0.029 0.996+0.001
−0.001

0.012 0.144 45.000 1.012± 0.025 0.996+0.001
−0.001

0.012 0.149 45.000 0.991± 0.005 0.995+0.001
−0.001

0.013 0.150 45.000 0.974± 0.016 0.995+0.001
−0.001

0.013 0.090 84.780 0.996± 0.006 0.995+0.001
−0.002

0.014 0.200 35.000 1.000± 0.006 0.995+0.001
−0.001

0.015 0.149 50.000 0.995± 0.005 0.994+0.002
−0.002

0.015 0.096 84.450 1.010± 0.006 0.994+0.002
−0.002

0.015 0.150 50.000 0.977± 0.016 0.994+0.002
−0.002

0.015 0.096 84.410 0.995± 0.006 0.994+0.002
−0.002

0.017 0.102 84.090 0.994± 0.006 0.994+0.002
−0.002

0.018 0.200 40.000 0.987± 0.004 0.994+0.002
−0.002

0.018 0.149 55.000 1.000± 0.006 0.993+0.002
−0.002

0.018 0.150 55.000 0.977± 0.016 0.993+0.002
−0.002
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
SC
/
(

dσ
dΩ

)
dipole

0.018 0.180 45.000 0.970± 0.016 0.994+0.002
−0.002

0.019 0.143 60.000 0.963± 0.028 0.993+0.002
−0.002

0.019 0.109 83.730 0.987± 0.008 0.993+0.002
−0.002

0.021 0.090 115.330 0.988± 0.018 0.991+0.002
−0.002

0.021 0.149 60.000 0.985± 0.006 0.992+0.002
−0.002

0.021 0.150 60.000 0.980± 0.016 0.992+0.002
−0.002

0.022 0.180 50.000 0.980± 0.016 0.992+0.002
−0.002

0.022 0.200 45.000 0.982± 0.004 0.992+0.002
−0.002

0.022 0.200 45.000 0.972± 0.017 0.992+0.002
−0.002

0.023 0.159 60.000 0.958± 0.030 0.991+0.003
−0.003

0.023 0.206 45.000 1.006± 0.026 0.992+0.002
−0.002

0.023 0.086 150.000 0.943± 0.028 0.986+0.002
−0.002

0.024 0.149 65.000 0.991± 0.006 0.991+0.003
−0.003

0.024 0.150 65.000 0.987± 0.016 0.991+0.003
−0.003

0.026 0.180 55.000 0.965± 0.015 0.991+0.003
−0.003

0.026 0.119 93.230 0.984± 0.008 0.990+0.003
−0.003

0.026 0.200 50.000 0.988± 0.006 0.991+0.003
−0.003

0.026 0.200 50.000 0.959± 0.018 0.991+0.003
−0.003

0.027 0.149 70.000 0.982± 0.006 0.990+0.003
−0.003

0.027 0.150 70.000 0.965± 0.017 0.990+0.003
−0.003

0.027 0.250 40.000 0.971± 0.018 0.991+0.003
−0.003

0.029 0.229 45.000 0.955± 0.017 0.990+0.003
−0.003

0.030 0.180 60.000 0.969± 0.015 0.990+0.003
−0.003

0.030 0.150 75.000 0.956± 0.017 0.989+0.003
−0.003

0.030 0.298 35.000 0.958± 0.016 0.990+0.003
−0.003

0.031 0.129 92.640 0.991± 0.008 0.988+0.003
−0.003

0.031 0.200 55.000 0.977± 0.007 0.989+0.003
−0.003

0.033 0.150 80.000 0.980± 0.016 0.988+0.003
−0.003

0.033 0.275 40.000 0.963± 0.017 0.989+0.003
−0.003

0.034 0.180 65.000 0.963± 0.015 0.988+0.003
−0.003

0.034 0.250 45.000 0.966± 0.017 0.989+0.003
−0.004

0.034 0.229 50.000 0.957± 0.017 0.988+0.004
−0.004

0.035 0.197 60.000 0.962± 0.031 0.988+0.003
−0.004

0.036 0.200 60.000 0.986± 0.008 0.988+0.004
−0.004

0.036 0.200 60.000 0.960± 0.017 0.988+0.004
−0.004

0.038 0.180 70.000 0.966± 0.017 0.987+0.004
−0.004

0.039 0.150 90.000 0.975± 0.016 0.986+0.004
−0.004

0.039 0.298 40.000 0.956± 0.017 0.987+0.004
−0.004



93

Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
SC
/
(

dσ
dΩ

)
dipole

0.039 0.113 150.000 0.989± 0.029 0.980+0.003
−0.003

0.039 0.208 60.000 0.966± 0.029 0.987+0.004
−0.004

0.039 0.269 45.000 0.972± 0.025 0.987+0.004
−0.004

0.040 0.229 55.000 0.936± 0.017 0.987+0.004
−0.004

0.041 0.139 104.000 0.976± 0.029 0.984+0.004
−0.004

0.041 0.250 50.000 0.955± 0.019 0.987+0.004
−0.004

0.041 0.275 45.000 0.949± 0.017 0.987+0.004
−0.004

0.042 0.180 75.000 0.965± 0.017 0.985+0.004
−0.004

0.044 0.150 100.000 0.976± 0.016 0.983+0.004
−0.004

0.046 0.200 70.000 0.955± 0.017 0.985+0.004
−0.004

0.046 0.180 80.000 0.963± 0.019 0.984+0.004
−0.004

0.047 0.229 60.000 0.944± 0.016 0.985+0.005
−0.005

0.048 0.250 55.000 0.952± 0.019 0.985+0.005
−0.005

0.048 0.298 45.000 0.951± 0.016 0.985+0.005
−0.005

0.049 0.275 50.000 0.954± 0.016 0.984+0.005
−0.005

0.050 0.150 110.000 0.968± 0.016 0.981+0.004
−0.004

0.054 0.150 120.000 0.982± 0.016 0.978+0.005
−0.005

0.054 0.180 90.000 0.961± 0.018 0.981+0.005
−0.005

0.055 0.250 60.000 0.956± 0.016 0.983+0.005
−0.005

0.056 0.200 80.000 0.954± 0.019 0.981+0.005
−0.005

0.057 0.298 50.000 0.949± 0.017 0.982+0.006
−0.006

0.057 0.275 55.000 0.949± 0.016 0.982+0.006
−0.006

0.058 0.180 95.000 0.960± 0.018 0.979+0.005
−0.005

0.058 0.150 130.000 0.982± 0.016 0.975+0.005
−0.005

0.059 0.229 70.000 0.952± 0.016 0.981+0.006
−0.006

0.061 0.166 111.600 1.016± 0.031 0.977+0.005
−0.005

0.062 0.161 120.000 1.048± 0.033 0.975+0.005
−0.005

0.062 0.180 100.000 0.960± 0.018 0.978+0.005
−0.006

0.062 0.152 135.000 1.017± 0.031 0.973+0.005
−0.005

0.062 0.250 65.000 0.966± 0.019 0.981+0.006
−0.006

0.063 0.194 90.000 1.007± 0.027 0.979+0.006
−0.006

0.063 0.268 60.000 1.018± 0.027 0.981+0.006
−0.006

0.066 0.200 90.000 0.960± 0.019 0.978+0.006
−0.006

0.066 0.180 105.000 0.962± 0.018 0.976+0.006
−0.006

0.066 0.229 75.000 0.954± 0.016 0.979+0.006
−0.006

0.066 0.275 60.000 0.943± 0.017 0.980+0.006
−0.006

0.067 0.298 55.000 0.941± 0.017 0.980+0.006
−0.006

0.069 0.180 110.000 0.942± 0.018 0.974+0.006
−0.006
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
SC
/
(

dσ
dΩ

)
dipole

0.070 0.250 70.000 0.954± 0.017 0.978+0.006
−0.007

0.072 0.229 80.000 0.956± 0.018 0.977+0.006
−0.007

0.072 0.180 115.000 0.952± 0.018 0.973+0.006
−0.006

0.075 0.200 100.000 0.965± 0.018 0.974+0.006
−0.006

0.076 0.180 120.000 0.948± 0.018 0.971+0.006
−0.006

0.077 0.298 60.000 0.939± 0.017 0.977+0.007
−0.007

0.077 0.250 75.000 0.963± 0.018 0.977+0.007
−0.007

0.078 0.230 84.000 0.946± 0.028 0.976+0.007
−0.007

0.078 0.167 150.000 0.964± 0.029 0.965+0.006
−0.007

0.079 0.200 105.000 0.951± 0.019 0.972+0.006
−0.007

0.079 0.390 45.000 0.978± 0.029 0.978+0.008
−0.008

0.081 0.180 130.000 0.953± 0.016 0.968+0.006
−0.006

0.083 0.200 110.000 0.945± 0.017 0.970+0.007
−0.007

0.084 0.275 70.000 0.950± 0.016 0.975+0.008
−0.008

0.084 0.229 90.000 0.957± 0.018 0.973+0.007
−0.007

0.084 0.250 80.000 0.929± 0.019 0.974+0.007
−0.008

0.086 0.180 140.000 0.970± 0.020 0.965+0.007
−0.007

0.086 0.316 60.000 0.986± 0.027 0.976+0.008
−0.008

0.087 0.298 65.000 0.940± 0.017 0.975+0.008
−0.008

0.087 0.200 115.000 0.943± 0.017 0.969+0.007
−0.007

0.091 0.200 120.000 0.955± 0.017 0.967+0.007
−0.007

0.097 0.298 70.000 0.940± 0.016 0.972+0.009
−0.009

0.097 0.200 130.000 0.948± 0.016 0.963+0.007
−0.007

0.098 0.250 90.000 0.944± 0.019 0.970+0.008
−0.009

0.101 0.275 80.000 0.937± 0.016 0.971+0.009
−0.009

0.102 0.200 140.000 0.939± 0.017 0.960+0.008
−0.008

0.106 0.229 110.000 0.949± 0.019 0.966+0.008
−0.008

0.111 0.229 115.000 0.951± 0.018 0.964+0.009
−0.009

0.111 0.250 100.000 0.937± 0.021 0.966+0.009
−0.009

0.115 0.229 120.000 0.949± 0.018 0.962+0.009
−0.009

0.116 0.210 150.000 0.972± 0.031 0.955+0.009
−0.010

0.117 0.249 105.000 0.977± 0.029 0.965+0.009
−0.009

0.117 0.275 90.000 0.943± 0.016 0.967+0.010
−0.010

0.120 0.605 35.200 0.909± 0.048 0.971+0.011
−0.011

0.123 0.229 130.000 0.952± 0.019 0.959+0.009
−0.010

0.123 0.250 110.000 0.941± 0.021 0.963+0.010
−0.010

0.129 0.229 140.000 0.968± 0.018 0.956+0.010
−0.010

0.132 0.275 100.000 0.934± 0.016 0.963+0.010
−0.011
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0.134 0.250 120.000 0.932± 0.020 0.959+0.010
−0.010

0.142 0.250 130.000 0.939± 0.018 0.956+0.011
−0.011

0.146 0.275 110.000 0.939± 0.016 0.959+0.011
−0.011

0.148 0.242 150.000 0.928± 0.035 0.951+0.012
−0.012

0.149 0.545 45.000 0.961± 0.031 0.967+0.013
−0.014

0.150 0.250 140.000 0.968± 0.019 0.953+0.011
−0.012

0.156 0.368 75.000 0.955± 0.030 0.963+0.013
−0.013

0.156 0.259 135.000 0.895± 0.028 0.953+0.012
−0.012

0.156 0.559 45.000 0.999± 0.031 0.967+0.014
−0.014

0.158 0.275 120.000 0.948± 0.016 0.955+0.012
−0.012

0.168 0.275 130.000 0.953± 0.016 0.952+0.013
−0.013

0.176 0.275 140.000 0.956± 0.016 0.949+0.013
−0.014

0.179 0.603 45.000 0.948± 0.029 0.964+0.016
−0.016

0.179 0.351 90.000 0.918± 0.029 0.959+0.014
−0.014

0.179 0.474 60.000 0.910± 0.029 0.963+0.015
−0.016

0.179 0.297 120.000 0.906± 0.028 0.952+0.013
−0.014

0.179 0.399 75.000 0.930± 0.029 0.960+0.014
−0.015

0.179 0.282 135.000 0.945± 0.029 0.950+0.013
−0.014

0.179 0.275 145.000 0.916± 0.029 0.948+0.014
−0.015

0.183 0.275 150.000 0.952± 0.016 0.947+0.014
−0.015

0.194 0.296 135.000 0.985± 0.030 0.948+0.014
−0.015

0.195 0.418 75.000 1.020± 0.031 0.960+0.015
−0.016

0.195 0.690 40.600 0.941± 0.029 0.964+0.017
−0.017

0.211 0.311 135.000 0.942± 0.034 0.947+0.016
−0.017

0.211 0.438 75.000 0.960± 0.033 0.959+0.017
−0.017

0.212 0.304 145.000 0.992± 0.036 0.945+0.016
−0.017

0.212 0.328 120.000 0.994± 0.035 0.951+0.015
−0.016

0.233 0.690 45.500 1.020± 0.031 0.962+0.020
−0.020

0.233 0.331 135.000 0.910± 0.029 0.947+0.017
−0.018

0.234 0.464 75.000 0.938± 0.029 0.958+0.018
−0.019

0.234 0.550 60.000 0.955± 0.030 0.960+0.019
−0.020

0.272 0.364 135.000 0.884± 0.028 0.947+0.020
−0.021

0.273 0.434 95.000 0.854± 0.027 0.954+0.020
−0.020

0.273 0.449 90.000 0.988± 0.036 0.955+0.020
−0.020

0.273 0.600 60.000 0.952± 0.029 0.959+0.021
−0.022

0.273 0.356 145.000 0.927± 0.029 0.946+0.021
−0.022

0.273 0.508 75.000 0.954± 0.030 0.957+0.021
−0.021

0.291 0.380 135.000 0.908± 0.029 0.947+0.021
−0.023
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0.292 0.399 120.000 0.879± 0.028 0.949+0.021
−0.022

0.292 0.528 75.000 0.936± 0.029 0.957+0.022
−0.023

0.292 0.624 60.000 0.947± 0.029 0.959+0.023
−0.024

0.292 0.468 90.000 0.922± 0.029 0.955+0.022
−0.022

0.311 0.396 135.000 0.901± 0.028 0.947+0.023
−0.024

0.311 0.647 60.000 0.965± 0.030 0.959+0.024
−0.025

0.311 0.647 60.000 0.902± 0.028 0.959+0.024
−0.025

0.311 0.387 145.000 0.957± 0.030 0.947+0.023
−0.025

0.311 0.690 55.300 0.894± 0.028 0.960+0.024
−0.025

0.312 0.549 75.000 0.925± 0.029 0.957+0.023
−0.024

0.312 0.416 120.000 0.973± 0.036 0.950+0.022
−0.024

0.350 0.692 60.000 0.912± 0.029 0.960+0.026
−0.028

0.350 0.588 75.000 0.932± 0.029 0.958+0.026
−0.026

0.350 0.427 135.000 0.942± 0.029 0.950+0.026
−0.027

0.388 1.249 31.700 0.916± 0.044 0.964+0.031
−0.032

0.389 0.736 60.000 0.953± 0.029 0.961+0.029
−0.030

0.389 0.457 135.000 0.927± 0.029 0.953+0.028
−0.030

0.389 0.557 90.000 0.969± 0.036 0.958+0.028
−0.028

0.389 0.557 90.000 0.958± 0.030 0.958+0.028
−0.028

0.389 1.009 40.600 1.010± 0.137 0.963+0.030
−0.032

0.389 1.009 40.600 0.967± 0.133 0.963+0.030
−0.032

0.389 0.696 64.700 0.940± 0.043 0.960+0.029
−0.030

0.389 0.447 145.000 0.941± 0.029 0.952+0.029
−0.030

0.389 0.848 50.100 0.923± 0.044 0.962+0.030
−0.031

0.389 0.556 90.300 0.956± 0.044 0.958+0.028
−0.028

0.390 0.627 75.000 0.941± 0.029 0.960+0.028
−0.029

0.390 0.479 120.000 0.926± 0.029 0.954+0.027
−0.029

0.390 1.231 32.300 0.939± 0.044 0.964+0.031
−0.032

0.390 0.900 46.600 1.010± 0.031 0.962+0.030
−0.031

0.390 1.142 35.200 0.944± 0.044 0.964+0.031
−0.032

0.397 0.745 60.000 0.933± 0.031 0.962+0.030
−0.031

0.397 0.485 120.000 0.957± 0.040 0.954+0.028
−0.030

0.428 0.486 135.000 0.959± 0.030 0.955+0.031
−0.033

0.429 0.664 75.000 0.951± 0.029 0.962+0.031
−0.031

0.429 0.950 46.600 1.010± 0.031 0.964+0.032
−0.034

0.467 0.900 53.000 0.974± 0.030 0.965+0.034
−0.036

0.467 0.950 49.500 0.993± 0.030 0.966+0.034
−0.036

0.467 0.504 145.000 0.969± 0.030 0.958+0.034
−0.036
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0.468 0.515 135.000 0.955± 0.030 0.959+0.033
−0.036

0.468 0.700 75.000 0.947± 0.029 0.964+0.033
−0.034

0.487 0.717 75.000 0.923± 0.029 0.965+0.034
−0.035

0.506 0.950 52.500 1.010± 0.031 0.968+0.037
−0.038

0.506 0.543 135.000 0.942± 0.029 0.963+0.036
−0.038

0.507 0.735 75.000 0.918± 0.029 0.967+0.036
−0.036

0.545 0.570 135.000 0.958± 0.030 0.967+0.038
−0.041

0.545 0.950 55.600 1.050± 0.032 0.970+0.039
−0.040

0.545 0.900 59.800 0.977± 0.030 0.970+0.039
−0.040

0.545 0.769 75.000 0.923± 0.029 0.969+0.038
−0.038

0.546 0.559 145.000 1.020± 0.031 0.967+0.039
−0.041

0.579 1.171 44.500 0.943± 0.044 0.973+0.041
−0.044

0.583 1.629 30.200 0.989± 0.045 0.973+0.043
−0.045

0.583 0.597 135.000 0.988± 0.030 0.971+0.040
−0.044

0.584 0.886 64.700 0.959± 0.044 0.972+0.041
−0.042

0.584 0.647 110.000 0.959± 0.046 0.972+0.039
−0.042

0.584 0.802 75.000 0.928± 0.029 0.972+0.040
−0.040

0.584 0.718 90.000 1.020± 0.040 0.972+0.039
−0.041

0.584 0.718 90.000 1.040± 0.048 0.972+0.039
−0.041

0.584 1.522 32.700 0.953± 0.044 0.973+0.043
−0.045

0.584 0.645 111.000 0.981± 0.046 0.972+0.039
−0.043

0.585 0.717 90.300 0.973± 0.044 0.972+0.039
−0.041

0.585 1.072 50.100 0.951± 0.044 0.973+0.041
−0.043

0.585 0.950 58.800 1.050± 0.032 0.973+0.041
−0.042

0.585 0.718 90.100 0.972± 0.044 0.972+0.039
−0.041

0.585 0.892 64.200 0.971± 0.044 0.973+0.041
−0.042

0.585 1.042 52.000 0.977± 0.045 0.973+0.041
−0.043

0.585 1.540 32.300 0.968± 0.044 0.973+0.043
−0.045

0.586 1.431 35.200 0.975± 0.044 0.973+0.043
−0.045

0.621 1.520 34.100 0.927± 0.085 0.975+0.045
−0.047

0.623 0.624 135.000 0.974± 0.030 0.975+0.043
−0.046

0.623 0.835 75.000 0.919± 0.029 0.976+0.042
−0.043

0.623 1.652 31.000 1.040± 0.109 0.976+0.045
−0.047

0.623 1.652 31.000 1.020± 0.107 0.976+0.045
−0.047

0.623 0.900 67.000 0.980± 0.030 0.975+0.043
−0.044

0.623 0.950 62.000 0.979± 0.030 0.976+0.043
−0.044

0.623 0.802 80.000 0.996± 0.030 0.975+0.042
−0.043

0.623 0.612 145.000 0.990± 0.030 0.975+0.043
−0.047
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0.661 0.867 75.000 0.973± 0.030 0.979+0.045
−0.045

0.662 0.950 65.400 1.010± 0.031 0.979+0.045
−0.046

0.662 0.651 135.000 1.050± 0.032 0.980+0.045
−0.049

0.664 1.190 48.200 1.040± 0.072 0.978+0.046
−0.048

0.665 1.680 31.700 0.981± 0.090 0.978+0.047
−0.050

0.670 0.805 86.000 0.952± 0.033 0.980+0.044
−0.046

0.681 0.883 75.000 1.010± 0.031 0.980+0.046
−0.046

0.701 0.899 75.000 1.020± 0.031 0.982+0.047
−0.047

0.701 0.864 80.000 0.970± 0.030 0.982+0.046
−0.048

0.701 0.950 68.900 1.060± 0.032 0.982+0.047
−0.048

0.701 0.677 135.000 0.977± 0.030 0.984+0.047
−0.052

0.701 0.664 145.000 0.991± 0.030 0.984+0.048
−0.052

0.739 0.930 75.000 1.110± 0.033 0.986+0.049
−0.050

0.740 0.950 72.600 1.030± 0.031 0.985+0.049
−0.050

0.740 0.703 135.000 1.040± 0.031 0.989+0.050
−0.054

0.766 1.104 59.900 1.030± 0.041 0.987+0.051
−0.052

0.778 0.784 110.000 1.010± 0.045 0.992+0.050
−0.055

0.778 0.961 75.000 1.080± 0.032 0.989+0.051
−0.052

0.778 0.728 135.000 1.180± 0.035 0.993+0.052
−0.056

0.779 0.865 90.000 1.020± 0.041 0.990+0.050
−0.053

0.779 0.900 83.800 0.933± 0.029 0.990+0.050
−0.053

0.779 0.950 76.500 1.110± 0.033 0.989+0.051
−0.052

0.779 1.789 32.700 0.981± 0.045 0.985+0.053
−0.056

0.779 0.925 80.000 0.937± 0.029 0.989+0.051
−0.053

0.779 0.865 90.100 1.010± 0.046 0.990+0.050
−0.053

0.779 0.715 145.000 1.020± 0.031 0.993+0.052
−0.057

0.780 1.064 64.200 0.964± 0.046 0.988+0.051
−0.052

0.780 1.392 44.500 1.000± 0.045 0.986+0.052
−0.055

0.780 1.683 35.200 0.985± 0.050 0.986+0.053
−0.056

0.784 1.190 55.000 1.040± 0.111 0.988+0.052
−0.054

0.852 1.250 55.100 1.060± 0.090 0.993+0.056
−0.057

0.856 0.764 145.000 1.160± 0.034 1.002+0.057
−0.062

0.857 1.022 75.000 1.160± 0.034 0.996+0.055
−0.057

0.857 1.975 31.000 1.110± 0.115 0.990+0.057
−0.060

0.857 0.779 135.000 1.210± 0.035 1.002+0.056
−0.061

0.857 0.950 85.100 1.010± 0.031 0.997+0.054
−0.058

0.973 1.003 90.100 1.040± 0.048 1.008+0.060
−0.065

0.973 0.915 110.000 1.000± 0.053 1.011+0.061
−0.067
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0.973 1.718 40.200 1.060± 0.046 0.999+0.062
−0.065

0.974 1.224 64.200 1.030± 0.046 1.004+0.061
−0.062

0.975 1.913 35.200 1.020± 0.045 0.999+0.063
−0.066

1.002 1.048 86.000 1.050± 0.037 1.010+0.061
−0.066

1.012 0.862 145.000 1.100± 0.033 1.019+0.065
−0.071

1.090 0.910 145.000 1.060± 0.032 1.027+0.069
−0.075

1.120 1.104 90.000 1.040± 0.053 1.021+0.067
−0.073

1.167 1.135 90.100 1.050± 0.048 1.025+0.069
−0.075

1.167 1.040 110.000 1.090± 0.068 1.030+0.071
−0.077

1.167 1.162 86.000 1.050± 0.034 1.024+0.069
−0.075

1.168 1.910 40.300 1.070± 0.059 1.012+0.071
−0.074

1.168 1.375 64.200 1.080± 0.047 1.019+0.070
−0.072

1.169 0.958 145.000 1.030± 0.031 1.034+0.073
−0.080

1.169 2.358 31.000 1.160± 0.123 1.009+0.071
−0.075

1.169 2.358 31.000 1.170± 0.122 1.009+0.071
−0.075

1.169 2.358 31.000 1.070± 0.116 1.009+0.071
−0.075

1.169 1.137 90.000 1.260± 0.144 1.026+0.069
−0.076

1.169 1.137 90.000 1.140± 0.136 1.026+0.069
−0.076

1.169 1.137 90.000 1.070± 0.036 1.026+0.069
−0.076

1.362 1.512 64.700 1.090± 0.055 1.032+0.078
−0.082

1.363 1.263 90.300 1.070± 0.053 1.041+0.078
−0.085

1.364 1.160 111.000 1.060± 0.057 1.046+0.080
−0.088

1.364 1.790 50.100 1.030± 0.049 1.027+0.078
−0.081

1.501 1.383 86.000 1.070± 0.040 1.049+0.083
−0.092

1.514 1.700 59.900 0.914± 0.101 1.039+0.084
−0.088

1.516 1.870 51.800 1.100± 0.103 1.036+0.084
−0.087

1.517 2.250 40.000 0.954± 0.100 1.031+0.084
−0.088

1.518 1.520 72.700 1.090± 0.094 1.045+0.083
−0.090

1.518 1.520 72.700 1.160± 0.103 1.045+0.083
−0.090

1.525 2.710 31.600 0.980± 0.088 1.028+0.085
−0.089

1.525 2.710 31.600 1.030± 0.141 1.028+0.085
−0.089

1.525 1.710 59.800 1.060± 0.092 1.040+0.084
−0.089

1.557 1.282 110.000 1.110± 0.055 1.060+0.089
−0.097

1.557 1.389 90.100 1.070± 0.060 1.054+0.086
−0.095

1.558 1.661 64.200 1.140± 0.058 1.044+0.085
−0.091

1.751 1.512 90.000 1.090± 0.041 1.065+0.094
−0.103

1.752 1.597 80.000 1.160± 0.064 1.061+0.092
−0.102

1.752 1.789 64.700 1.100± 0.053 1.054+0.091
−0.099
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1.752 1.513 90.000 1.160± 0.161 1.065+0.094
−0.103

1.752 1.513 90.000 1.270± 0.183 1.065+0.094
−0.103

1.753 1.544 86.000 1.090± 0.034 1.064+0.093
−0.103

1.753 1.511 90.300 1.150± 0.061 1.065+0.094
−0.103

1.753 2.988 31.000 1.300± 0.136 1.037+0.093
−0.097

1.753 2.988 31.000 1.370± 0.141 1.037+0.093
−0.097

1.753 2.988 31.000 1.190± 0.136 1.037+0.093
−0.097

1.753 2.988 31.000 1.180± 0.124 1.037+0.093
−0.097

1.754 1.397 111.000 1.090± 0.077 1.072+0.096
−0.106

1.946 1.632 90.100 1.060± 0.069 1.075+0.101
−0.111

1.964 1.644 90.000 1.130± 0.250 1.075+0.101
−0.112

1.995 2.998 34.100 1.080± 0.044 1.047+0.100
−0.104

2.001 1.699 86.000 1.090± 0.037 1.075+0.102
−0.113

2.001 1.699 86.000 1.100± 0.034 1.075+0.102
−0.113

2.330 1.670 129.000 1.230± 0.208 1.100+0.117
−0.129

2.331 1.901 86.000 1.140± 0.042 1.087+0.112
−0.125

2.331 2.630 47.100 1.110± 0.139 1.065+0.108
−0.117

2.334 2.220 62.500 0.901± 0.120 1.074+0.108
−0.120

2.335 2.670 46.100 1.040± 0.095 1.064+0.108
−0.117

2.336 1.904 86.000 1.080± 0.035 1.087+0.112
−0.125

2.337 1.870 90.000 0.989± 0.128 1.089+0.113
−0.125

2.338 1.880 88.900 1.470± 0.139 1.088+0.113
−0.125

2.341 3.460 32.100 1.050± 0.097 1.055+0.108
−0.115

2.342 2.220 62.800 0.865± 0.086 1.075+0.108
−0.121

2.497 3.294 36.200 1.060± 0.044 1.061+0.112
−0.121

2.498 2.998 41.400 1.060± 0.044 1.064+0.112
−0.122

2.499 3.296 36.200 1.050± 0.045 1.061+0.112
−0.121

2.922 2.216 90.000 1.550± 0.261 1.099+0.128
−0.144

2.922 2.216 90.000 1.840± 0.323 1.099+0.128
−0.144

2.922 4.070 31.000 1.380± 0.184 1.062+0.120
−0.133

3.000 2.300 86.000 1.090± 0.047 1.098+0.129
−0.146

3.000 2.300 86.000 1.100± 0.036 1.098+0.129
−0.146

3.112 3.470 41.200 0.944± 0.102 1.071+0.124
−0.141

3.117 4.120 32.200 1.100± 0.115 1.064+0.124
−0.139

3.121 2.670 65.200 1.050± 0.134 1.088+0.127
−0.146

3.743 3.996 40.000 1.040± 0.045 1.069+0.133
−0.157

3.895 2.777 90.000 1.920± 0.544 1.097+0.145
−0.172

3.895 2.777 90.000 1.920± 0.449 1.097+0.145
−0.172
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
SC
/
(

dσ
dΩ

)
dipole

3.895 2.777 90.000 2.010± 0.608 1.097+0.145
−0.172

3.896 4.874 31.000 1.320± 0.154 1.061+0.134
−0.158

3.896 4.874 31.000 1.330± 0.203 1.061+0.134
−0.158

3.896 4.874 31.000 1.340± 0.241 1.061+0.134
−0.158

4.142 3.870 47.300 1.020± 0.114 1.071+0.139
−0.169

4.188 3.110 76.500 1.000± 0.112 1.087+0.146
−0.177

4.275 3.460 61.500 1.180± 0.157 1.078+0.144
−0.175

4.895 4.340 47.600 0.940± 0.106 1.058+0.149
−0.184

5.879 4.960 47.500 0.975± 0.110 1.033+0.159
−0.199

6.830 5.540 47.500 0.840± 0.098 1.003+0.164
−0.209

7.826 6.130 47.600 0.894± 0.102 0.970+0.167
−0.215

8.774 5.710 75.100 0.927± 0.283 0.939+0.173
−0.231

9.560 6.130 75.700 1.040± 0.419 0.910+0.173
−0.233

Table 8.1: Comparison of the fit to the cross section data
within the SC approach to the experimental results. Here
Q2 is the invariant four-momentum transfer squared, E
is the incoming electron energy, θ is the electron scatter-
ing angle,

(
dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

is the experimental cross

section data normalised to the dipole cross section, and(
dσ
dΩ

)
SC
/
(

dσ
dΩ

)
dipole

is the Coulomb-corrected cross section

obtained in the cross section fit within the SC approach.

Results of the fit to cross section data within the

pQCD approach

Table 8.2 gives the numerical results of the analysis of the cross section data for
unpolarised elastic electron-proton scattering within the pQCD approach compared
to the experimental data.

Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

0.006 0.149 30.000 0.996± 0.006 0.997+0.002
−0.002

0.008 0.149 35.000 1.001± 0.005 0.996+0.002
−0.002

0.010 0.149 40.000 0.995± 0.006 0.994+0.003
−0.003

0.011 0.082 85.190 1.000± 0.010 0.993+0.003
−0.003

0.012 0.082 85.180 0.995± 0.006 0.993+0.003
−0.003
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

0.012 0.111 60.000 0.980± 0.029 0.994+0.003
−0.003

0.012 0.144 45.000 1.012± 0.025 0.994+0.003
−0.003

0.012 0.149 45.000 0.991± 0.005 0.993+0.003
−0.003

0.013 0.150 45.000 0.974± 0.016 0.993+0.003
−0.003

0.013 0.090 84.780 0.996± 0.006 0.992+0.004
−0.003

0.014 0.200 35.000 1.000± 0.006 0.993+0.003
−0.003

0.015 0.149 50.000 0.995± 0.005 0.992+0.004
−0.004

0.015 0.096 84.450 1.010± 0.006 0.992+0.004
−0.003

0.015 0.150 50.000 0.977± 0.016 0.992+0.004
−0.004

0.015 0.096 84.410 0.995± 0.006 0.992+0.004
−0.004

0.017 0.102 84.090 0.994± 0.006 0.991+0.004
−0.004

0.018 0.200 40.000 0.987± 0.004 0.991+0.004
−0.004

0.018 0.149 55.000 1.000± 0.006 0.991+0.005
−0.004

0.018 0.150 55.000 0.977± 0.016 0.991+0.005
−0.004

0.018 0.180 45.000 0.970± 0.016 0.991+0.005
−0.004

0.019 0.143 60.000 0.963± 0.028 0.990+0.005
−0.005

0.019 0.109 83.730 0.987± 0.008 0.990+0.005
−0.004

0.021 0.090 115.330 0.988± 0.018 0.988+0.005
−0.004

0.021 0.149 60.000 0.985± 0.006 0.989+0.005
−0.005

0.021 0.150 60.000 0.980± 0.016 0.989+0.005
−0.005

0.022 0.180 50.000 0.980± 0.016 0.989+0.005
−0.005

0.022 0.200 45.000 0.982± 0.004 0.989+0.005
−0.005

0.022 0.200 45.000 0.972± 0.017 0.989+0.005
−0.005

0.023 0.159 60.000 0.958± 0.030 0.988+0.006
−0.005

0.023 0.206 45.000 1.006± 0.026 0.989+0.006
−0.005

0.023 0.086 150.000 0.943± 0.028 0.985+0.004
−0.004

0.024 0.149 65.000 0.991± 0.006 0.988+0.006
−0.005

0.024 0.150 65.000 0.987± 0.016 0.988+0.006
−0.006

0.026 0.180 55.000 0.965± 0.015 0.987+0.006
−0.006

0.026 0.119 93.230 0.984± 0.008 0.987+0.006
−0.006

0.026 0.200 50.000 0.988± 0.006 0.987+0.006
−0.006

0.026 0.200 50.000 0.959± 0.018 0.987+0.006
−0.006

0.027 0.149 70.000 0.982± 0.006 0.986+0.007
−0.006

0.027 0.150 70.000 0.965± 0.017 0.986+0.007
−0.006

0.027 0.250 40.000 0.971± 0.018 0.987+0.007
−0.006

0.029 0.229 45.000 0.955± 0.017 0.986+0.007
−0.006

0.030 0.180 60.000 0.969± 0.015 0.985+0.007
−0.007

0.030 0.150 75.000 0.956± 0.017 0.985+0.007
−0.007
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

0.030 0.298 35.000 0.958± 0.016 0.986+0.007
−0.007

0.031 0.129 92.640 0.991± 0.008 0.985+0.007
−0.006

0.031 0.200 55.000 0.977± 0.007 0.985+0.007
−0.007

0.033 0.150 80.000 0.980± 0.016 0.984+0.008
−0.007

0.033 0.275 40.000 0.963± 0.017 0.984+0.008
−0.007

0.034 0.180 65.000 0.963± 0.015 0.984+0.008
−0.007

0.034 0.250 45.000 0.966± 0.017 0.984+0.008
−0.007

0.034 0.229 50.000 0.957± 0.017 0.984+0.008
−0.008

0.035 0.197 60.000 0.962± 0.031 0.983+0.008
−0.008

0.036 0.200 60.000 0.986± 0.008 0.983+0.008
−0.008

0.036 0.200 60.000 0.960± 0.017 0.983+0.008
−0.008

0.038 0.180 70.000 0.966± 0.017 0.982+0.009
−0.008

0.039 0.150 90.000 0.975± 0.016 0.981+0.009
−0.008

0.039 0.298 40.000 0.956± 0.017 0.982+0.009
−0.008

0.039 0.113 150.000 0.989± 0.029 0.979+0.006
−0.005

0.039 0.208 60.000 0.966± 0.029 0.982+0.009
−0.008

0.039 0.269 45.000 0.972± 0.025 0.982+0.009
−0.009

0.040 0.229 55.000 0.936± 0.017 0.981+0.009
−0.009

0.041 0.139 104.000 0.976± 0.029 0.980+0.009
−0.008

0.041 0.250 50.000 0.955± 0.019 0.981+0.010
−0.009

0.041 0.275 45.000 0.949± 0.017 0.981+0.010
−0.009

0.042 0.180 75.000 0.965± 0.017 0.980+0.010
−0.009

0.044 0.150 100.000 0.976± 0.016 0.979+0.009
−0.009

0.046 0.200 70.000 0.955± 0.017 0.979+0.010
−0.009

0.046 0.180 80.000 0.963± 0.019 0.979+0.010
−0.009

0.047 0.229 60.000 0.944± 0.016 0.979+0.011
−0.010

0.048 0.250 55.000 0.952± 0.019 0.979+0.011
−0.010

0.048 0.298 45.000 0.951± 0.016 0.979+0.011
−0.010

0.049 0.275 50.000 0.954± 0.016 0.978+0.011
−0.010

0.050 0.150 110.000 0.968± 0.016 0.977+0.010
−0.009

0.054 0.150 120.000 0.982± 0.016 0.974+0.010
−0.009

0.054 0.180 90.000 0.961± 0.018 0.975+0.011
−0.010

0.055 0.250 60.000 0.956± 0.016 0.976+0.012
−0.011

0.056 0.200 80.000 0.954± 0.019 0.975+0.012
−0.011

0.057 0.298 50.000 0.949± 0.017 0.975+0.013
−0.012

0.057 0.275 55.000 0.949± 0.016 0.975+0.013
−0.012

0.058 0.180 95.000 0.960± 0.018 0.974+0.012
−0.011

0.058 0.150 130.000 0.982± 0.016 0.972+0.009
−0.009
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

0.059 0.229 70.000 0.952± 0.016 0.975+0.013
−0.012

0.061 0.166 111.600 1.016± 0.031 0.972+0.011
−0.010

0.062 0.161 120.000 1.048± 0.033 0.972+0.011
−0.010

0.062 0.180 100.000 0.960± 0.018 0.972+0.012
−0.011

0.062 0.152 135.000 1.017± 0.031 0.971+0.009
−0.009

0.062 0.250 65.000 0.966± 0.019 0.974+0.014
−0.012

0.063 0.194 90.000 1.007± 0.027 0.973+0.013
−0.012

0.063 0.268 60.000 1.018± 0.027 0.974+0.014
−0.013

0.066 0.200 90.000 0.960± 0.019 0.972+0.013
−0.012

0.066 0.180 105.000 0.962± 0.018 0.971+0.012
−0.011

0.066 0.229 75.000 0.954± 0.016 0.972+0.014
−0.013

0.066 0.275 60.000 0.943± 0.017 0.972+0.014
−0.013

0.067 0.298 55.000 0.941± 0.017 0.972+0.015
−0.013

0.069 0.180 110.000 0.942± 0.018 0.970+0.012
−0.011

0.070 0.250 70.000 0.954± 0.017 0.971+0.015
−0.013

0.072 0.229 80.000 0.956± 0.018 0.970+0.015
−0.013

0.072 0.180 115.000 0.952± 0.018 0.968+0.012
−0.011

0.075 0.200 100.000 0.965± 0.018 0.968+0.014
−0.013

0.076 0.180 120.000 0.948± 0.018 0.967+0.012
−0.011

0.077 0.298 60.000 0.939± 0.017 0.969+0.016
−0.015

0.077 0.250 75.000 0.963± 0.018 0.969+0.016
−0.014

0.078 0.230 84.000 0.946± 0.028 0.969+0.015
−0.014

0.078 0.167 150.000 0.964± 0.029 0.965+0.009
−0.009

0.079 0.200 105.000 0.951± 0.019 0.967+0.014
−0.013

0.079 0.390 45.000 0.978± 0.029 0.969+0.017
−0.016

0.081 0.180 130.000 0.953± 0.016 0.965+0.012
−0.011

0.083 0.200 110.000 0.945± 0.017 0.965+0.014
−0.013

0.084 0.275 70.000 0.950± 0.016 0.967+0.017
−0.016

0.084 0.229 90.000 0.957± 0.018 0.967+0.016
−0.015

0.084 0.250 80.000 0.929± 0.019 0.967+0.017
−0.015

0.086 0.180 140.000 0.970± 0.020 0.963+0.011
−0.010

0.086 0.316 60.000 0.986± 0.027 0.967+0.018
−0.016

0.087 0.298 65.000 0.940± 0.017 0.966+0.018
−0.016

0.087 0.200 115.000 0.943± 0.017 0.964+0.014
−0.013

0.091 0.200 120.000 0.955± 0.017 0.962+0.014
−0.013

0.097 0.298 70.000 0.940± 0.016 0.964+0.019
−0.017

0.097 0.200 130.000 0.948± 0.016 0.960+0.013
−0.012

0.098 0.250 90.000 0.944± 0.019 0.963+0.018
−0.016
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

0.101 0.275 80.000 0.937± 0.016 0.963+0.019
−0.017

0.102 0.200 140.000 0.939± 0.017 0.958+0.013
−0.011

0.106 0.229 110.000 0.949± 0.019 0.961+0.017
−0.015

0.111 0.229 115.000 0.951± 0.018 0.959+0.017
−0.015

0.111 0.250 100.000 0.937± 0.021 0.960+0.018
−0.017

0.115 0.229 120.000 0.949± 0.018 0.958+0.016
−0.015

0.116 0.210 150.000 0.972± 0.031 0.955+0.013
−0.012

0.117 0.249 105.000 0.977± 0.029 0.959+0.019
−0.017

0.117 0.275 90.000 0.943± 0.016 0.959+0.020
−0.018

0.120 0.605 35.200 0.909± 0.048 0.960+0.024
−0.022

0.123 0.229 130.000 0.952± 0.019 0.956+0.016
−0.014

0.123 0.250 110.000 0.941± 0.021 0.958+0.019
−0.017

0.129 0.229 140.000 0.968± 0.018 0.955+0.015
−0.014

0.132 0.275 100.000 0.934± 0.016 0.956+0.021
−0.019

0.134 0.250 120.000 0.932± 0.020 0.955+0.018
−0.017

0.142 0.250 130.000 0.939± 0.018 0.954+0.018
−0.016

0.146 0.275 110.000 0.939± 0.016 0.954+0.021
−0.019

0.148 0.242 150.000 0.928± 0.035 0.952+0.015
−0.014

0.149 0.545 45.000 0.961± 0.031 0.956+0.028
−0.026

0.150 0.250 140.000 0.968± 0.019 0.952+0.017
−0.015

0.156 0.368 75.000 0.955± 0.030 0.954+0.027
−0.024

0.156 0.259 135.000 0.895± 0.028 0.952+0.018
−0.016

0.156 0.559 45.000 0.999± 0.031 0.955+0.029
−0.027

0.158 0.275 120.000 0.948± 0.016 0.952+0.020
−0.019

0.168 0.275 130.000 0.953± 0.016 0.951+0.020
−0.018

0.176 0.275 140.000 0.956± 0.016 0.950+0.019
−0.017

0.179 0.603 45.000 0.948± 0.029 0.952+0.032
−0.030

0.179 0.351 90.000 0.918± 0.029 0.952+0.027
−0.025

0.179 0.474 60.000 0.910± 0.029 0.952+0.031
−0.028

0.179 0.297 120.000 0.906± 0.028 0.949+0.022
−0.020

0.179 0.399 75.000 0.930± 0.029 0.951+0.029
−0.027

0.179 0.282 135.000 0.945± 0.029 0.949+0.020
−0.018

0.179 0.275 145.000 0.916± 0.029 0.949+0.018
−0.017

0.183 0.275 150.000 0.952± 0.016 0.949+0.018
−0.017

0.194 0.296 135.000 0.985± 0.030 0.948+0.021
−0.019

0.195 0.418 75.000 1.020± 0.031 0.950+0.031
−0.028

0.195 0.690 40.600 0.941± 0.029 0.951+0.035
−0.032

0.211 0.311 135.000 0.942± 0.034 0.948+0.022
−0.021
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

0.211 0.438 75.000 0.960± 0.033 0.950+0.033
−0.030

0.212 0.304 145.000 0.992± 0.036 0.947+0.021
−0.019

0.212 0.328 120.000 0.994± 0.035 0.949+0.025
−0.023

0.233 0.690 45.500 1.020± 0.031 0.949+0.039
−0.035

0.233 0.331 135.000 0.910± 0.029 0.949+0.024
−0.022

0.234 0.464 75.000 0.938± 0.029 0.949+0.035
−0.032

0.234 0.550 60.000 0.955± 0.030 0.949+0.037
−0.034

0.272 0.364 135.000 0.884± 0.028 0.950+0.027
−0.025

0.273 0.434 95.000 0.854± 0.027 0.950+0.035
−0.032

0.273 0.449 90.000 0.988± 0.036 0.950+0.036
−0.033

0.273 0.600 60.000 0.952± 0.029 0.948+0.041
−0.037

0.273 0.356 145.000 0.927± 0.029 0.950+0.025
−0.024

0.273 0.508 75.000 0.954± 0.030 0.949+0.039
−0.035

0.291 0.380 135.000 0.908± 0.029 0.951+0.028
−0.027

0.292 0.399 120.000 0.879± 0.028 0.950+0.031
−0.029

0.292 0.528 75.000 0.936± 0.029 0.950+0.040
−0.037

0.292 0.624 60.000 0.947± 0.029 0.949+0.043
−0.039

0.292 0.468 90.000 0.922± 0.029 0.950+0.037
−0.034

0.311 0.396 135.000 0.901± 0.028 0.952+0.030
−0.028

0.311 0.647 60.000 0.965± 0.030 0.950+0.045
−0.041

0.311 0.647 60.000 0.902± 0.028 0.950+0.045
−0.041

0.311 0.387 145.000 0.957± 0.030 0.952+0.028
−0.027

0.311 0.690 55.300 0.894± 0.028 0.949+0.045
−0.041

0.312 0.549 75.000 0.925± 0.029 0.951+0.042
−0.038

0.312 0.416 120.000 0.973± 0.036 0.952+0.032
−0.030

0.350 0.692 60.000 0.912± 0.029 0.951+0.048
−0.044

0.350 0.588 75.000 0.932± 0.029 0.952+0.045
−0.041

0.350 0.427 135.000 0.942± 0.029 0.956+0.032
−0.031

0.388 1.249 31.700 0.916± 0.044 0.952+0.056
−0.051

0.389 0.736 60.000 0.953± 0.029 0.954+0.051
−0.047

0.389 0.457 135.000 0.927± 0.029 0.960+0.035
−0.034

0.389 0.557 90.000 0.969± 0.036 0.957+0.044
−0.041

0.389 0.557 90.000 0.958± 0.030 0.957+0.044
−0.041

0.389 1.009 40.600 1.010± 0.137 0.952+0.055
−0.050

0.389 1.009 40.600 0.967± 0.133 0.952+0.055
−0.050

0.389 0.696 64.700 0.940± 0.043 0.954+0.050
−0.046

0.389 0.447 145.000 0.941± 0.029 0.961+0.033
−0.033

0.389 0.848 50.100 0.923± 0.044 0.953+0.053
−0.048
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Q2 [GeV2] E [GeV] θ [o]
(
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dΩ

)
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dΩ
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/
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0.389 0.556 90.300 0.956± 0.044 0.957+0.044
−0.041

0.390 0.627 75.000 0.941± 0.029 0.955+0.048
−0.044

0.390 0.479 120.000 0.926± 0.029 0.959+0.038
−0.036

0.390 1.231 32.300 0.939± 0.044 0.952+0.056
−0.051

0.390 0.900 46.600 1.010± 0.031 0.953+0.054
−0.049

0.390 1.142 35.200 0.944± 0.044 0.953+0.055
−0.050

0.397 0.745 60.000 0.933± 0.031 0.955+0.052
−0.047

0.397 0.485 120.000 0.957± 0.040 0.960+0.038
−0.037

0.428 0.486 135.000 0.959± 0.030 0.964+0.037
−0.037

0.429 0.664 75.000 0.951± 0.029 0.959+0.050
−0.046

0.429 0.950 46.600 1.010± 0.031 0.956+0.057
−0.052

0.467 0.900 53.000 0.974± 0.030 0.959+0.058
−0.053

0.467 0.950 49.500 0.993± 0.030 0.959+0.059
−0.054

0.467 0.504 145.000 0.969± 0.030 0.970+0.038
−0.039

0.468 0.515 135.000 0.955± 0.030 0.969+0.040
−0.040

0.468 0.700 75.000 0.947± 0.029 0.962+0.053
−0.049

0.487 0.717 75.000 0.923± 0.029 0.964+0.054
−0.050

0.506 0.950 52.500 1.010± 0.031 0.963+0.061
−0.056

0.506 0.543 135.000 0.942± 0.029 0.975+0.042
−0.043

0.507 0.735 75.000 0.918± 0.029 0.967+0.055
−0.052

0.545 0.570 135.000 0.958± 0.030 0.980+0.044
−0.045

0.545 0.950 55.600 1.050± 0.032 0.967+0.062
−0.058

0.545 0.900 59.800 0.977± 0.030 0.968+0.062
−0.057

0.545 0.769 75.000 0.923± 0.029 0.971+0.058
−0.054

0.546 0.559 145.000 1.020± 0.031 0.981+0.043
−0.044

0.579 1.171 44.500 0.943± 0.044 0.969+0.067
−0.062

0.583 1.629 30.200 0.989± 0.045 0.967+0.070
−0.065

0.583 0.597 135.000 0.988± 0.030 0.985+0.046
−0.048

0.584 0.886 64.700 0.959± 0.044 0.973+0.062
−0.059

0.584 0.647 110.000 0.959± 0.046 0.982+0.051
−0.051

0.584 0.802 75.000 0.928± 0.029 0.975+0.060
−0.057

0.584 0.718 90.000 1.020± 0.040 0.978+0.056
−0.054

0.584 0.718 90.000 1.040± 0.048 0.978+0.056
−0.054

0.584 1.522 32.700 0.953± 0.044 0.967+0.070
−0.064

0.584 0.645 111.000 0.981± 0.046 0.982+0.051
−0.051

0.585 0.717 90.300 0.973± 0.044 0.978+0.056
−0.054

0.585 1.072 50.100 0.951± 0.044 0.970+0.066
−0.061

0.585 0.950 58.800 1.050± 0.032 0.972+0.064
−0.060



108 Chapter 8. Summary and Outlook

Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

0.585 0.718 90.100 0.972± 0.044 0.978+0.056
−0.054

0.585 0.892 64.200 0.971± 0.044 0.973+0.063
−0.059

0.585 1.042 52.000 0.977± 0.045 0.971+0.066
−0.061

0.585 1.540 32.300 0.968± 0.044 0.967+0.070
−0.064

0.586 1.431 35.200 0.975± 0.044 0.968+0.069
−0.064

0.621 1.520 34.100 0.927± 0.085 0.971+0.072
−0.066

0.623 0.624 135.000 0.974± 0.030 0.991+0.048
−0.051

0.623 0.835 75.000 0.919± 0.029 0.980+0.062
−0.059

0.623 1.652 31.000 1.040± 0.109 0.971+0.072
−0.067

0.623 1.652 31.000 1.020± 0.107 0.971+0.072
−0.067

0.623 0.900 67.000 0.980± 0.030 0.978+0.064
−0.061

0.623 0.950 62.000 0.979± 0.030 0.977+0.065
−0.062

0.623 0.802 80.000 0.996± 0.030 0.981+0.060
−0.059

0.623 0.612 145.000 0.990± 0.030 0.992+0.047
−0.050

0.661 0.867 75.000 0.973± 0.030 0.984+0.064
−0.062

0.662 0.950 65.400 1.010± 0.031 0.982+0.066
−0.064

0.662 0.651 135.000 1.050± 0.032 0.997+0.050
−0.053

0.664 1.190 48.200 1.040± 0.072 0.978+0.071
−0.067

0.665 1.680 31.700 0.981± 0.090 0.975+0.075
−0.069

0.670 0.805 86.000 0.952± 0.033 0.988+0.061
−0.061

0.681 0.883 75.000 1.010± 0.031 0.986+0.064
−0.063

0.701 0.899 75.000 1.020± 0.031 0.989+0.065
−0.064

0.701 0.864 80.000 0.970± 0.030 0.990+0.064
−0.063

0.701 0.950 68.900 1.060± 0.032 0.987+0.067
−0.066

0.701 0.677 135.000 0.977± 0.030 1.002+0.052
−0.056

0.701 0.664 145.000 0.991± 0.030 1.003+0.051
−0.055

0.739 0.930 75.000 1.110± 0.033 0.993+0.067
−0.067

0.740 0.950 72.600 1.030± 0.031 0.993+0.068
−0.067

0.740 0.703 135.000 1.040± 0.031 1.007+0.054
−0.058

0.766 1.104 59.900 1.030± 0.041 0.992+0.073
−0.071

0.778 0.784 110.000 1.010± 0.045 1.008+0.060
−0.064

0.778 0.961 75.000 1.080± 0.032 0.998+0.069
−0.069

0.778 0.728 135.000 1.180± 0.035 1.012+0.056
−0.061

0.779 0.865 90.000 1.020± 0.041 1.002+0.065
−0.067

0.779 0.900 83.800 0.933± 0.029 1.001+0.066
−0.068

0.779 0.950 76.500 1.110± 0.033 0.998+0.068
−0.069

0.779 1.789 32.700 0.981± 0.045 0.985+0.080
−0.076

0.779 0.925 80.000 0.937± 0.029 0.999+0.067
−0.068
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

0.779 0.865 90.100 1.010± 0.046 1.002+0.065
−0.067

0.779 0.715 145.000 1.020± 0.031 1.014+0.055
−0.060

0.780 1.064 64.200 0.964± 0.046 0.995+0.072
−0.071

0.780 1.392 44.500 1.000± 0.045 0.989+0.077
−0.075

0.780 1.683 35.200 0.985± 0.050 0.986+0.079
−0.076

0.784 1.190 55.000 1.040± 0.111 0.992+0.075
−0.073

0.852 1.250 55.100 1.060± 0.090 0.999+0.077
−0.077

0.856 0.764 145.000 1.160± 0.034 1.024+0.059
−0.065

0.857 1.022 75.000 1.160± 0.034 1.007+0.072
−0.074

0.857 1.975 31.000 1.110± 0.115 0.992+0.083
−0.081

0.857 0.779 135.000 1.210± 0.035 1.023+0.060
−0.066

0.857 0.950 85.100 1.010± 0.031 1.010+0.069
−0.072

0.973 1.003 90.100 1.040± 0.048 1.025+0.072
−0.078

0.973 0.915 110.000 1.000± 0.053 1.031+0.068
−0.075

0.973 1.718 40.200 1.060± 0.046 1.005+0.086
−0.086

0.974 1.224 64.200 1.030± 0.046 1.014+0.079
−0.082

0.975 1.913 35.200 1.020± 0.045 1.003+0.087
−0.087

1.002 1.048 86.000 1.050± 0.037 1.026+0.074
−0.080

1.012 0.862 145.000 1.100± 0.033 1.042+0.066
−0.074

1.090 0.910 145.000 1.060± 0.032 1.051+0.069
−0.079

1.120 1.104 90.000 1.040± 0.053 1.039+0.078
−0.086

1.167 1.135 90.100 1.050± 0.048 1.043+0.079
−0.088

1.167 1.040 110.000 1.090± 0.068 1.050+0.076
−0.086

1.167 1.162 86.000 1.050± 0.034 1.041+0.080
−0.089

1.168 1.910 40.300 1.070± 0.059 1.019+0.091
−0.096

1.168 1.375 64.200 1.080± 0.047 1.031+0.085
−0.092

1.169 0.958 145.000 1.030± 0.031 1.058+0.072
−0.083

1.169 2.358 31.000 1.160± 0.123 1.015+0.093
−0.097

1.169 2.358 31.000 1.170± 0.122 1.015+0.093
−0.097

1.169 2.358 31.000 1.070± 0.116 1.015+0.093
−0.097

1.169 1.137 90.000 1.260± 0.144 1.043+0.079
−0.088

1.169 1.137 90.000 1.140± 0.136 1.043+0.079
−0.088

1.169 1.137 90.000 1.070± 0.036 1.043+0.079
−0.088

1.362 1.512 64.700 1.090± 0.055 1.044+0.091
−0.101

1.363 1.263 90.300 1.070± 0.053 1.057+0.086
−0.098

1.364 1.160 111.000 1.060± 0.057 1.065+0.082
−0.095

1.364 1.790 50.100 1.030± 0.049 1.036+0.095
−0.103

1.501 1.383 86.000 1.070± 0.040 1.063+0.090
−0.104
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

1.514 1.700 59.900 0.914± 0.101 1.049+0.096
−0.108

1.516 1.870 51.800 1.100± 0.103 1.044+0.098
−0.109

1.517 2.250 40.000 0.954± 0.100 1.037+0.101
−0.111

1.518 1.520 72.700 1.090± 0.094 1.057+0.093
−0.106

1.518 1.520 72.700 1.160± 0.103 1.057+0.093
−0.106

1.525 2.710 31.600 0.980± 0.088 1.033+0.103
−0.112

1.525 2.710 31.600 1.030± 0.141 1.033+0.103
−0.112

1.525 1.710 59.800 1.060± 0.092 1.050+0.097
−0.108

1.557 1.282 110.000 1.110± 0.055 1.076+0.088
−0.104

1.557 1.389 90.100 1.070± 0.060 1.068+0.091
−0.106

1.558 1.661 64.200 1.140± 0.058 1.054+0.096
−0.109

1.751 1.512 90.000 1.090± 0.041 1.075+0.097
−0.114

1.752 1.597 80.000 1.160± 0.064 1.070+0.098
−0.115

1.752 1.789 64.700 1.100± 0.053 1.061+0.101
−0.116

1.752 1.513 90.000 1.160± 0.161 1.075+0.097
−0.114

1.752 1.513 90.000 1.270± 0.183 1.075+0.097
−0.114

1.753 1.544 86.000 1.090± 0.034 1.073+0.098
−0.114

1.753 1.511 90.300 1.150± 0.061 1.075+0.097
−0.114

1.753 2.988 31.000 1.300± 0.136 1.039+0.108
−0.120

1.753 2.988 31.000 1.370± 0.141 1.039+0.108
−0.120

1.753 2.988 31.000 1.190± 0.136 1.039+0.108
−0.120

1.753 2.988 31.000 1.180± 0.124 1.039+0.108
−0.120

1.754 1.397 111.000 1.090± 0.077 1.083+0.095
−0.112

1.946 1.632 90.100 1.060± 0.069 1.079+0.103
−0.121

1.964 1.644 90.000 1.130± 0.250 1.079+0.104
−0.122

1.995 2.998 34.100 1.080± 0.044 1.044+0.113
−0.128

2.001 1.699 86.000 1.090± 0.037 1.077+0.105
−0.123

2.001 1.699 86.000 1.100± 0.034 1.077+0.105
−0.123

2.330 1.670 129.000 1.230± 0.208 1.093+0.111
−0.133

2.331 1.901 86.000 1.140± 0.042 1.078+0.114
−0.135

2.331 2.630 47.100 1.110± 0.139 1.053+0.119
−0.138

2.334 2.220 62.500 0.901± 0.120 1.064+0.117
−0.137

2.335 2.670 46.100 1.040± 0.095 1.052+0.119
−0.138

2.336 1.904 86.000 1.080± 0.035 1.078+0.114
−0.135

2.337 1.870 90.000 0.989± 0.128 1.080+0.114
−0.135

2.338 1.880 88.900 1.470± 0.139 1.079+0.114
−0.135

2.341 3.460 32.100 1.050± 0.097 1.042+0.121
−0.140

2.342 2.220 62.800 0.865± 0.086 1.064+0.117
−0.137
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Q2 [GeV2] E [GeV] θ [o]
(

dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

2.497 3.294 36.200 1.060± 0.044 1.044+0.124
−0.145

2.498 2.998 41.400 1.060± 0.044 1.047+0.123
−0.144

2.499 3.296 36.200 1.050± 0.045 1.044+0.124
−0.145

2.922 2.216 90.000 1.550± 0.261 1.070+0.126
−0.155

2.922 2.216 90.000 1.840± 0.323 1.070+0.126
−0.155

2.922 4.070 31.000 1.380± 0.184 1.033+0.132
−0.158

3.000 2.300 86.000 1.090± 0.047 1.066+0.127
−0.157

3.000 2.300 86.000 1.100± 0.036 1.066+0.127
−0.157

3.112 3.470 41.200 0.944± 0.102 1.036+0.133
−0.163

3.117 4.120 32.200 1.100± 0.115 1.029+0.134
−0.163

3.121 2.670 65.200 1.050± 0.134 1.052+0.131
−0.162

3.743 3.996 40.000 1.040± 0.045 1.018+0.141
−0.179

3.895 2.777 90.000 1.920± 0.544 1.039+0.139
−0.181

3.895 2.777 90.000 1.920± 0.449 1.039+0.139
−0.181

3.895 2.777 90.000 2.010± 0.608 1.039+0.139
−0.181

3.896 4.874 31.000 1.320± 0.154 1.007+0.143
−0.182

3.896 4.874 31.000 1.330± 0.203 1.007+0.143
−0.182

3.896 4.874 31.000 1.340± 0.241 1.007+0.143
−0.182

4.142 3.870 47.300 1.020± 0.114 1.010+0.144
−0.187

4.188 3.110 76.500 1.000± 0.112 1.024+0.142
−0.187

4.275 3.460 61.500 1.180± 0.157 1.014+0.144
−0.189

4.895 4.340 47.600 0.940± 0.106 0.987+0.149
−0.201

5.879 4.960 47.500 0.975± 0.110 0.958+0.153
−0.215

6.830 5.540 47.500 0.840± 0.098 0.932+0.159
−0.226

7.826 6.130 47.600 0.894± 0.102 0.907+0.166
−0.234

8.774 5.710 75.100 0.927± 0.283 0.882+0.168
−0.239

9.560 6.130 75.700 1.040± 0.419 0.862+0.171
−0.242

Table 8.2: Comparison of the fit to the cross section
data within the pQCD approach to the experimental re-
sults. Here Q2 is the invariant four-momentum trans-
fer squared, E is the incoming electron energy, θ is the
electron scattering angle,

(
dσ
dΩ

)
exp

/
(

dσ
dΩ

)
dipole

is the ex-

perimental cross section data normalised to the dipole
cross section, and

(
dσ
dΩ

)
pQCD

/
(

dσ
dΩ

)
dipole

is the Coulomb-

corrected cross section obtained in the cross section fit
within the pQCD approach.
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Results of the ∆2γ extraction

Table 8.3 gives the numerical results of the estimates of the two-photon exchange
corrections in both the SC and the pQCD approaches.

Q2 [GeV2] ε ∆2γ
SC ∆2γ

pQCD

0.25 0.00 −0.01155± 0.00900 −0.00991± 0.01869
0.25 0.10 −0.00467± 0.00856 −0.00787± 0.02391
0.25 0.20 0.00051± 0.00605 −0.00642± 0.02814
0.25 0.30 0.00450± 0.00568 −0.00527± 0.03105
0.25 0.40 0.00764± 0.00588 −0.00431± 0.03333
0.25 0.50 0.01025± 0.00554 −0.00360± 0.03532
0.25 0.60 0.01234± 0.00594 −0.00296± 0.03686
0.25 0.70 0.01414± 0.00577 −0.00244± 0.03820
0.25 0.80 0.01569± 0.00542 −0.00200± 0.03934
0.25 0.90 0.01699± 0.00446 −0.00161± 0.04029
0.50 0.00 −0.02009± 0.01867 −0.01005± 0.03192
0.50 0.10 −0.01382± 0.01820 −0.00807± 0.03723
0.50 0.20 −0.00827± 0.01603 −0.00625± 0.04204
0.50 0.30 −0.00351± 0.01426 −0.00474± 0.04592
0.50 0.40 0.00068± 0.01335 −0.00338± 0.04905
0.50 0.50 0.00436± 0.01449 −0.00220± 0.05169
0.50 0.60 0.00762± 0.01476 −0.00115± 0.05408
0.50 0.70 0.01053± 0.01465 −0.00021± 0.05620
0.50 0.80 0.01315± 0.01525 0.00063± 0.05811
0.50 0.90 0.01552± 0.01538 0.00139± 0.05983
0.75 0.00 −0.02649± 0.02812 −0.01156± 0.04182
0.75 0.10 −0.02121± 0.02771 −0.00951± 0.04655
0.75 0.20 −0.01622± 0.02626 −0.00764± 0.05133
0.75 0.30 −0.01171± 0.02438 −0.00599± 0.05550
0.75 0.40 −0.00757± 0.02282 −0.00446± 0.05925
0.75 0.50 −0.00379± 0.02264 −0.00307± 0.06234
0.75 0.60 −0.00033± 0.02353 −0.00178± 0.06497
0.75 0.70 0.00288± 0.02367 −0.00061± 0.06717
0.75 0.80 0.00584± 0.02392 0.00049± 0.06917
0.75 0.90 0.00859± 0.02491 0.00151± 0.07101
1.00 0.00 −0.03147± 0.03745 −0.01776± 0.04979
1.00 0.10 −0.02702± 0.03711 −0.01550± 0.05419
1.00 0.20 −0.02273± 0.03626 −0.01360± 0.05837
1.00 0.30 −0.01871± 0.03407 −0.01180± 0.06220
1.00 0.40 −0.01495± 0.03266 −0.01010± 0.06574
1.00 0.50 −0.01142± 0.03139 −0.00854± 0.06917
1.00 0.60 −0.00811± 0.03164 −0.00704± 0.07206
1.00 0.70 −0.00500± 0.03185 −0.00567± 0.07469
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Q2 [GeV2] ε ∆2γ
SC ∆2γ

pQCD

1.00 0.80 −0.00207± 0.03203 −0.00433± 0.07680
1.00 0.90 0.00069± 0.03241 −0.00309± 0.07870
1.25 0.00 −0.03531± 0.04592 −0.02761± 0.05632
1.25 0.10 −0.03157± 0.04519 −0.02534± 0.06026
1.25 0.20 −0.02785± 0.04456 −0.02328± 0.06420
1.25 0.30 −0.02433± 0.04353 −0.02133± 0.06785
1.25 0.40 −0.02098± 0.04198 −0.01949± 0.07124
1.25 0.50 −0.01780± 0.04067 −0.01773± 0.07435
1.25 0.60 −0.01477± 0.03949 −0.01604± 0.07716
1.25 0.70 −0.01189± 0.03977 −0.01444± 0.07981
1.25 0.80 −0.00913± 0.04001 −0.01292± 0.08214
1.25 0.90 −0.00649± 0.04023 −0.01144± 0.08392
1.50 0.00 −0.03813± 0.05316 −0.03939± 0.06197
1.50 0.10 −0.03491± 0.05232 −0.03703± 0.06530
1.50 0.20 −0.03169± 0.05160 −0.03486± 0.06891
1.50 0.30 −0.02861± 0.05092 −0.03278± 0.07237
1.50 0.40 −0.02564± 0.05051 −0.03077± 0.07565
1.50 0.50 −0.02279± 0.04928 −0.02884± 0.07863
1.50 0.60 −0.02004± 0.04755 −0.02698± 0.08144
1.50 0.70 −0.01739± 0.04731 −0.02519± 0.08412
1.50 0.80 −0.01485± 0.04762 −0.02345± 0.08663
1.50 0.90 −0.01239± 0.04789 −0.02177± 0.08869
1.75 0.00 −0.04009± 0.06008 −0.05144± 0.06806
1.75 0.10 −0.03729± 0.05918 −0.04901± 0.07099
1.75 0.20 −0.03444± 0.05838 −0.04674± 0.07402
1.75 0.30 −0.03169± 0.05762 −0.04453± 0.07691
1.75 0.40 −0.02901± 0.05721 −0.04238± 0.07967
1.75 0.50 −0.02643± 0.05714 −0.04031± 0.08227
1.75 0.60 −0.02393± 0.05553 −0.03828± 0.08495
1.75 0.70 −0.02149± 0.05452 −0.03632± 0.08755
1.75 0.80 −0.01915± 0.05482 −0.03441± 0.09006
1.75 0.90 −0.01686± 0.05514 −0.03256± 0.09223
2.00 0.00 −0.04124± 0.06675 −0.06273± 0.07379
2.00 0.10 −0.03872± 0.06579 −0.06027± 0.07643
2.00 0.20 −0.03616± 0.06492 −0.05789± 0.07915
2.00 0.30 −0.03366± 0.06409 −0.05558± 0.08178
2.00 0.40 −0.03123± 0.06331 −0.05331± 0.08431
2.00 0.50 −0.02885± 0.06326 −0.05110± 0.08662
2.00 0.60 −0.02654± 0.06264 −0.04894± 0.08885
2.00 0.70 −0.02428± 0.06177 −0.04682± 0.09103
2.00 0.80 −0.02208± 0.06162 −0.04476± 0.09317
2.00 0.90 −0.01994± 0.06163 −0.04274± 0.09503
2.25 0.00 −0.04163± 0.07317 −0.07272± 0.07906
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Q2 [GeV2] ε ∆2γ
SC ∆2γ

pQCD

2.25 0.10 −0.03935± 0.07217 −0.07023± 0.08145
2.25 0.20 −0.03698± 0.07125 −0.06776± 0.08405
2.25 0.30 −0.03466± 0.07034 −0.06533± 0.08660
2.25 0.40 −0.03240± 0.06905 −0.06296± 0.08909
2.25 0.50 −0.03018± 0.06841 −0.06063± 0.09142
2.25 0.60 −0.02800± 0.06789 −0.05834± 0.09363
2.25 0.70 −0.02588± 0.06759 −0.05609± 0.09579
2.25 0.80 −0.02378± 0.06742 −0.05388± 0.09787
2.25 0.90 −0.02174± 0.06761 −0.05172± 0.09959
2.50 0.00 −0.04139± 0.07854 −0.08124± 0.08475
2.50 0.10 −0.03922± 0.07783 −0.07862± 0.08709
2.50 0.20 −0.03699± 0.07718 −0.07606± 0.08956
2.50 0.30 −0.03480± 0.07607 −0.07353± 0.09198
2.50 0.40 −0.03265± 0.07454 −0.07105± 0.09435
2.50 0.50 −0.03052± 0.07352 −0.06858± 0.09664
2.50 0.60 −0.02845± 0.07325 −0.06618± 0.09875
2.50 0.70 −0.02639± 0.07298 −0.06378± 0.10083
2.50 0.80 −0.02439± 0.07271 −0.06147± 0.10273
2.50 0.90 −0.02242± 0.07266 −0.05916± 0.10438
2.75 0.00 −0.04045± 0.08332 −0.08794± 0.09036
2.75 0.10 −0.03841± 0.08255 −0.08534± 0.09257
2.75 0.20 −0.03627± 0.08184 −0.08268± 0.09491
2.75 0.30 −0.03415± 0.08142 −0.08005± 0.09720
2.75 0.40 −0.03207± 0.08039 −0.07744± 0.09945
2.75 0.50 −0.03002± 0.07888 −0.07488± 0.10166
2.75 0.60 −0.02799± 0.07849 −0.07234± 0.10375
2.75 0.70 −0.02599± 0.07821 −0.06982± 0.10575
2.75 0.80 −0.02402± 0.07792 −0.06735± 0.10744
2.75 0.90 −0.02208± 0.07764 −0.06491± 0.10905
3.00 0.00 −0.03898± 0.08832 −0.09308± 0.09579
3.00 0.10 −0.03698± 0.08761 −0.09037± 0.09788
3.00 0.20 −0.03489± 0.08712 −0.08761± 0.10011
3.00 0.30 −0.03281± 0.08660 −0.08486± 0.10230
3.00 0.40 −0.03076± 0.08574 −0.08214± 0.10445
3.00 0.50 −0.02874± 0.08420 −0.07945± 0.10658
3.00 0.60 −0.02673± 0.08361 −0.07678± 0.10865
3.00 0.70 −0.02476± 0.08331 −0.07415± 0.11045
3.00 0.80 −0.02280± 0.08299 −0.07153± 0.11205
3.00 0.90 −0.02088± 0.08257 −0.06897± 0.11364
3.25 0.00 −0.03696± 0.09361 −0.09653± 0.10108
3.25 0.10 −0.03499± 0.09265 −0.09375± 0.10307
3.25 0.20 −0.03291± 0.09193 −0.09087± 0.10521
3.25 0.30 −0.03085± 0.09124 −0.08802± 0.10731
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Q2 [GeV2] ε ∆2γ
SC ∆2γ

pQCD

3.25 0.40 −0.02881± 0.09037 −0.08518± 0.10937
3.25 0.50 −0.02679± 0.08936 −0.08237± 0.11132
3.25 0.60 −0.02478± 0.08861 −0.07956± 0.11326
3.25 0.70 −0.02281± 0.08823 −0.07681± 0.11505
3.25 0.80 −0.02085± 0.08776 −0.07406± 0.11663
3.25 0.90 −0.01890± 0.08727 −0.07134± 0.11819
3.50 0.00 −0.03443± 0.09845 −0.09838± 0.10624
3.50 0.10 −0.03248± 0.09740 −0.09555± 0.10814
3.50 0.20 −0.03040± 0.09655 −0.09256± 0.11010
3.50 0.30 −0.02833± 0.09579 −0.08957± 0.11204
3.50 0.40 −0.02628± 0.09491 −0.08662± 0.11397
3.50 0.50 −0.02424± 0.09386 −0.08369± 0.11587
3.50 0.60 −0.02223± 0.09319 −0.08078± 0.11776
3.50 0.70 −0.02022± 0.09288 −0.07788± 0.11962
3.50 0.80 −0.01823± 0.09239 −0.07499± 0.12119
3.50 0.90 −0.01626± 0.09190 −0.07213± 0.12274
3.75 0.00 −0.03149± 0.10319 −0.09885± 0.11108
3.75 0.10 −0.02951± 0.10208 −0.09586± 0.11285
3.75 0.20 −0.02740± 0.10111 −0.09275± 0.11477
3.75 0.30 −0.02531± 0.10026 −0.08966± 0.11666
3.75 0.40 −0.02322± 0.09925 −0.08657± 0.11855
3.75 0.50 −0.02116± 0.09801 −0.08352± 0.12042
3.75 0.60 −0.01912± 0.09730 −0.08047± 0.12227
3.75 0.70 −0.01707± 0.09713 −0.07743± 0.12411
3.75 0.80 −0.01505± 0.09695 −0.07441± 0.12577
3.75 0.90 −0.01304± 0.09645 −0.07141± 0.12732
4.00 0.00 −0.02810± 0.10722 −0.09782± 0.11580
4.00 0.10 −0.02611± 0.10614 −0.09479± 0.11754
4.00 0.20 −0.02397± 0.10517 −0.09156± 0.11941
4.00 0.30 −0.02184± 0.10432 −0.08834± 0.12128
4.00 0.40 −0.01972± 0.10340 −0.08513± 0.12314
4.00 0.50 −0.01761± 0.10210 −0.08194± 0.12498
4.00 0.60 −0.01551± 0.10096 −0.07874± 0.12681
4.00 0.70 −0.01343± 0.10085 −0.07558± 0.12863
4.00 0.80 −0.01136± 0.10093 −0.07244± 0.13036
4.00 0.90 −0.00929± 0.10091 −0.06929± 0.13193
4.25 0.00 −0.02435± 0.11120 −0.09556± 0.12050
4.25 0.10 −0.02232± 0.11004 −0.09243± 0.12221
4.25 0.20 −0.02014± 0.10900 −0.08908± 0.12407
4.25 0.30 −0.01796± 0.10806 −0.08574± 0.12591
4.25 0.40 −0.01579± 0.10712 −0.08240± 0.12775
4.25 0.50 −0.01364± 0.10608 −0.07909± 0.12958
4.25 0.60 −0.01149± 0.10490 −0.07578± 0.13139
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Q2 [GeV2] ε ∆2γ
SC ∆2γ

pQCD

4.25 0.70 −0.00935± 0.10453 −0.07248± 0.13320
4.25 0.80 −0.00722± 0.10454 −0.06919± 0.13497
4.25 0.90 −0.00510± 0.10454 −0.06591± 0.13660
4.50 0.00 −0.02028± 0.11515 −0.09218± 0.12520
4.50 0.10 −0.01819± 0.11390 −0.08890± 0.12690
4.50 0.20 −0.01595± 0.11282 −0.08543± 0.12874
4.50 0.30 −0.01372± 0.11177 −0.08197± 0.13058
4.50 0.40 −0.01150± 0.11078 −0.07851± 0.13240
4.50 0.50 −0.00929± 0.10997 −0.07507± 0.13422
4.50 0.60 −0.00708± 0.10919 −0.07162± 0.13603
4.50 0.70 −0.00488± 0.10832 −0.06819± 0.13783
4.50 0.80 −0.00269± 0.10812 −0.06475± 0.13961
4.50 0.90 −0.00051± 0.10805 −0.06135± 0.14134
4.75 0.00 −0.01587± 0.11914 −0.08763± 0.12972
4.75 0.10 −0.01375± 0.11786 −0.08430± 0.13145
4.75 0.20 −0.01145± 0.11670 −0.08071± 0.13333
4.75 0.30 −0.00916± 0.11579 −0.07712± 0.13519
4.75 0.40 −0.00687± 0.11488 −0.07354± 0.13701
4.75 0.50 −0.00460± 0.11399 −0.06995± 0.13878
4.75 0.60 −0.00233± 0.11309 −0.06639± 0.14055
4.75 0.70 −0.00007± 0.11220 −0.06283± 0.14231
4.75 0.80 0.00219± 0.11167 −0.05926± 0.14406
4.75 0.90 0.00444± 0.11152 −0.05572± 0.14581
5.00 0.00 −0.01120± 0.12332 −0.08219± 0.13424
5.00 0.10 −0.00902± 0.12216 −0.07874± 0.13596
5.00 0.20 −0.00666± 0.12111 −0.07502± 0.13783
5.00 0.30 −0.00430± 0.12006 −0.07131± 0.13966
5.00 0.40 −0.00195± 0.11901 −0.06760± 0.14145
5.00 0.50 0.00039± 0.11797 −0.06390± 0.14323
5.00 0.60 0.00273± 0.11694 −0.06020± 0.14500
5.00 0.70 0.00506± 0.11590 −0.05650± 0.14678
5.00 0.80 0.00739± 0.11497 −0.05280± 0.14854
5.00 0.90 0.00971± 0.11487 −0.04912± 0.15031

Table 8.3: Values of ∆2γ in both the SC and the pQCD
approaches. Here Q2 is the invariant four-momentum
transfer squared and ε is the virtual photon polarisation.
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[Hoh83] G. Höhler, Pion-Nucleon Scattering, in: H. Schopper (Ed.), Landolt-
Börnstein, vol. I/9b, Springer, Berlin, 1983.

[Hol95] K. Holinde, Prog. Part. Nucl. Phys. 36 (1996) 311 [arXiv:nucl-
th/9512001].

[Hol96] G. Holzwarth, Z. Phys. A 356 (1996) 339 [arXiv:hep-ph/9606336].

[HP75] G. Hohler and E. Pietarinen, Phys. Lett. B 53 (1975) 471.
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