Entwicklung und Validierung von Phänotypisierungsmethoden für die Cytochrom P450-Enzyme CYP1A2, CYP2B6, CYP2C9 und CYP2C19 des Menschen

Dissertation

zur Erlangung der Doktorwürde (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

> vorgelegt von TOBIAS KLAASSEN aus Emsdetten

> > Bonn 2006

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelm-Universität Bonn

Die vorliegende Arbeit wurde im Bereich Klinische Pharmazie des Pharmazeutischen Instituts angefertigt.

1. Gutachter: Prof. Dr. Uwe Fuhr

2. Gutachter: Prof. Dr. Ulrich Jaehde

Tag der mündlichen Prüfung: 03. November 2006

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online_elektronisch publiziert.

Erscheinungsjahr 2007

Für meine Eltern

INHALTSVERZEICHNIS

INHAL	TSVERZEICHNIS	Ι
DANKS	SAGUNG	VI
ABKÜF	RZUNGEN	VII
1	EINLEITUNG	1
1.1	Das Cytochrom P450-Enzymsystem des Menschen	1
1.2	Einflussfaktoren auf die Variabilität von CYPs	5
1.2.1	Polymorphismus	5
1.2.2	Induktion	6
1.2.3	Inhibition	8
1.2.4	Sonstige Einflussfaktoren	9
1.2.4.1	Geschlecht und Alter	9
1.2.4.2	Krankheit	10
1.2.4.3	Nahrungs- und Genussmittel	11
1.3	Phänotypisierung	12
1.3.1	Phänotypisierungsparameter und Testsubstrate	14
1.3.2	Cocktailstudien	16
1.4	Charakterisierung der phänotypisierten CYP-Enzyme	18
1.4.1	Cytochrom P450 1A2	18
1.4.2	Cytochrom P450 2B6	19
1.4.3	Cytochrom P450 2C9	21
1.4.4	Cytochrom P450 2C19	23
1.5	Untersuchte Phänotypisierungssubstrate	25
1.5.1	Mephenytoin	25
1.5.2	Tolbutamid	31
1.5.3	Coffein	33
2	ZIELE DER ARBEIT	35
3	MATERIAL UND METHODEN	36
3.1	Materialien	36
3.1.1	Referenzsubstanzen	36
3.1.2	Reagenzien	36

3.1.3	Hergestellte Puffer und Lösungen	36
3.1.4	Geräte	37
3.1.5	Verbrauchsmaterialien	38
3.2	Phänotypisierungsstudien	39
3.2.1	Studienpopulation	39
3.2.2	Phänotypisierungscocktail und -prozedur	40
3.2.3	Urinsammlung	43
3.2.4	Blut- und Plasmasammlung	43
3.3	Bestimmung von Mephenytoin und seiner beiden Phase-I-Metabolite	
	im Urin	45
3.3.1	Methodenentwicklung	45
3.3.2	Herstellung von Stamm- und Arbeitslösungen	46
3.3.2.1	Matrix	46
3.3.2.2	Stamm- und Arbeitslösungen	46
3.3.2.3	ISTD-Stammlösung	47
3.3.3	Probenaufarbeitung	47
3.3.4	Chromatographie	48
3.3.5	MS/MS-Detektion	49
3.3.6	Peakintegration	50
3.3.7	Kalibrierung	50
3.3.8	Einsatz zur Messung von Probandenproben aus den Studien A bis D	51
3.4	Bestimmung von Coffein, Paraxanthin und Tolbutamid in Humanplasma	51
3.4.1	Methodenentwicklung	51
3.4.2	Herstellung von Stamm- und Arbeitslösungen	53
3.4.2.1	Stamm- und Arbeitslösungen	53
3.4.2.2	ISTD-Stammlösungen	53
3.4.3	Probenaufarbeitung	54
3.4.3.1	Matrix	54
3.4.3.2	Kalibrierstandards und Qualitätskontrollproben	54
3.4.4	Chromatographie	55
3.4.5	MS/MS-Detektion	58
3.4.6	Peakintegration	58
3.4.7	Kalibrierung	58
3.4.8	Einsatz zur Messung von Probandenproben aus den Studien C und D	59

3.5	Validierung analytischer Methoden	59
3.5.1	Herstellung von Stammlösungen	59
3.5.2	Kalibrierung	60
3.5.3	Selektivität	60
3.5.4	Präzision und Richtigkeit	61
3.5.4.1	Definitionen	61
3.5.4.2	Variabilität innerhalb eines Tages (intra-day assay)	61
3.5.4.3	Variabilität an verschiedenen Tagen (inter-day assay)	61
3.5.4.4	Bewertung von Genauigkeit und Richtigkeit	62
3.5.5	Wiederfindung des Analyten (recovery)	62
3.5.6	Stabilität	62
3.5.6.1	Stabilität unbehandelter Proben (processing stability)	63
3.5.6.2	Stabilität aufgearbeiteter Proben (autosampler stability)	63
3.5.6.3	Stabilität nach dreimaligem Einfrieren und Auftauen(freeze thaw	
	stability)	63
3.5.6.4	Langzeitstabilität	64
3.5.7	Sicherung der Validität einer Methode bei Messung von Proben mit	
	unbekannten Konzentrationen	64
3.5.8	Nachmessungen von Probandenproben	64
3.6	Bestimmung der Genotypen	65
3.6.1	Genotypisierung CYP2B6	65
3.6.2	Genotypisierung CYP2C9	65
3.6.3	Genotypisierung CYP2C19	65
3.7	Pharmakokinetische Datenanalyse	65
3.7.1	Auswertung von Konzentrationen unterhalb des Quantifizierungslimits	65
3.7.2	Modellunabhängige pharmakokinetische Auswertung	66
3.8	Statistische Verfahren	67
3.8.1	Deskriptive Statistik	67
3.8.2	Beurteilende Statistik	68
3.8.2.1	Untersuchung der Wechselbeziehung zwischen CYP2C19-Genotyp und	
	40HM-Recovery	68
3.8.2.2	Ermittlung des intraindividuellen Variationskoeffizienten CV(intra) [%]	
	und Fallzahlschätzung	68
3.8.2.3	Korrelationsanalyse	69

4	ERGEBNISSE	70
4.1	Unerwünschte Arzneimittelwirkungen durch die verwendeten	
	Cocktailsubstanzen	70
4.2	Methodenvalidierung	70
4.2.1	Validierung der Methode zur Quantifizierung von Mephenytoin, Nirvanol	
	und 4'-Hydroxymephenytoin im Urin	70
4.2.1.1	Linearität und untere Quantifizierungsgrenze	70
4.2.1.2	Präzision und Richtigkeit	72
4.2.1.3	Selektivität	73
4.2.1.4	Wiederfindung	74
4.2.1.5	Stabilität	74
4.2.1.6	Sonstige Prüfungen	76
4.2.1.7	Gesamtergebnis der Validierung	76
4.2.2	Validierung der Methode zur Quantifizierung von Coffein, Paraxanthin	
	und Tolbutamid in Plasma	77
4.2.2.1	Linearität und untere Quantifizierungsgrenze	77
4.2.2.2	Präzision und Richtigkeit	79
4.2.2.3	Selektivität	80
4.2.2.4	Wiederfindung	81
4.2.2.5	Stabilität	82
4.2.2.6	Gesamtergebnis der Validierung	83
4.3	Ermittlung des geeignetsten Maßes zur Phänotypisierung von CYP2C19	84
4.3.1	Ergebnisse der CYP2C19-Genotypisierung	84
4.3.2	Ergebnisse der 40HM-Quantifizierung	84
4.3.3	Untersuchung des Einflusses des CYP2C19-Genotyps auf die 4OHM-	
	Recovery	85
4.3.4	Ermittlung der intraindividuellen Variabilität der 40HM-Recovery	88
4.3.5	Fallzahlschätzung 4OHM-Recovery	90
4.4	Ermittlung des geeignetsten Maßes zur Phänotypisierung von CYP2B6	91
4.4.1	Ergebnisse der CYP2B6-Genotypisierung	91
4.4.2	Ergebnisse der NIR-Quantifizierung	92
4.4.3	Untersuchung des Einflusses des CYP2B6-Genotyps auf die	
	NIR-Recovery	93
4.4.4	Intraindividuelle Variabilität der NIR-Recovery und Fallzahlschätzung	94

4.4.5	Fallzahlschätzung NIR-Recovery	95
4.4.6	Korrelationsanalyse: Einfluss der CYP2C9-Aktivität auf die	
	Wiederfindung von NIR	96
5	DISKUSSION	98
5.1	Messmethode zur Quantifizierung von Mephenytoin, Nirvanol und	
	4'-Hydroxymephenytoin in Urin	98
5.2	Messmethode zur Quantifizierung von Coffein, Paraxanthin und	
	Tolbutamid in Urin	100
5.3	Das geeignetste Maß zur Phänotypisierung von CYP2C19	102
5.4	Das geeignetste Maß zur Phänotypisierung von CYP2B6	110
6	ZUSAMMENFASSUNG	115
7	SUMMARY	117
8	LEBENSLAUF	119
9	LITERATURVERZEICHNIS	120
10	ABBILDUNGSVERZEICHNIS	134
11	TABELLENVERZEICHNIS	136
12	ANHANG	142
12.1	Demographische Daten, Randomisierung und Genotypen der Probanden	142
12.2	Statistische Untersuchungsergebnisse zur Selektivität (40HM)	146
12.3	Studie A: Urinkonzentrationen von MEP, NIR und 4OHM	148
12.4	Studie B: Urinkonzentrationen von MEP, NIR und 40HM	153
12.5	Studie C. Urinkonzentrationen von MEP, NIR und 40HM	169
12.6	Studie D. Urinkonzentrationen von MEP, NIR und 40HM	181

ABKÜRZUNGEN

4MME	4'-Methoxymephenytoin
40HM	4'-Hydroxymephenytoin
40HN	4'-Hydroxynirvanol
50НО	5-Hydroxyomeprazol
7HET	7-(β-Hydroxyethyl)theophyllin
ACN	Acetonitril
AhR	Arylhydrocarbon-Rezeptor
AUC	Fläche unter der Konzentrations-Zeit-Kurve
BMI	Body Mass Index
CAR	konstitutiver Androstan-Rezeptor
CL	Clearance
CL(met)	partielle Clearance
CL(tot)	totale Clearance
C _{max}	Maximalkonzentration
COF	Coffein
СРР	Chlorpropamid
CS	Kalibrierstandard
CV(intra)	intraindividueller Variationskoeffizient
СҮР	Cytochrom P450
DNA	Desoxyribonucleinsäure
EM	extensive metabolizer
ESI	Elektrospray-Ionisierung
F	systemisch verfügbare Fraktion der verabreichten Dosis
GC	Gaschromatographie
GC-MS	Gaschromatographie mit massenspektrometrischer Detektion
HPLC	Hochleistungs-Flüssigkeitschromatographie
IM	intermediate metabolizer
ISTD	interner Standard
LC	Flüssigkeitschromatographie
LC-MS/MS	HPLC-Tandemmassenspektrometrie
LLOQ	lower limit of quantification (unteres Quantifizierungslimit)

МеОН	Methanol
MEP	Mephenytoin
NIR	Nirvanol
OMEP	Omeprazol
PAX	Paraxanthin
PM	poor metabolizer
PXR	Pregnan-X-Rezeptor
QC	Qualitätskontrollprobe
RXR	Retinoid-X-Rezeptor
SNP	single nucleotide polymorphism
SOP	Standard Operation Procedure
TOL	Tolbutamid
ТРН	Theophyllin
UAW	unerwünschte Arzneimittelwirkung
UGT	Uridin-5´-diphosphat-Glucuronosyltransferase
ULOQ	upper limit of quantification (oberes Quantifizierungslimit)
UM	ultrarapid metabolizer

1 Einleitung

1.1 Das Cytochrom P450-Enzymsystem des Menschen

Die Arzneimittelwirkung im menschlichen Organismus wird durch eine Vielzahl von Faktoren determiniert. Jeder Mensch vereint in sich eine individuelle Kombination dieser Faktoren, wie z.B. Geschlecht oder ethnische Abstammung. Außerdem ist der Organismus einer Fülle nicht genetisch bedingter Einflussfaktoren etwa den Ernährungsgewohnheiten, Krankheiten oder zahlreichen Umwelt- und Genussgiften ausgesetzt. Die Wirkung eines Pharmakons zwischen einzelnen Individuen ist daher trotz gleicher Dosis häufig variabel und manchmal sogar unvorhersagbar.¹

Die Verstoffwechslung von Arzneistoffen stellt häufig den geschwindigkeitsbestimmenden Schritt bei der Eliminierung einer Substanz oder der Bildung aktiver Metabolite dar. Aus diesem Grund hat die Variabilität des enzymatischen Metabolismus einen entscheidenden Anteil an den beobachteten interindividuellen Unterschieden der Arzneimittelantwort.² Einen besonderen Stellenwert innerhalb des Metabolismus nahezu aller Arzneistoffe nimmt das Cytochrom P450-System ein. So wird geschätzt, dass es für 70-80% aller Phase-I-Umwandlungen klinisch relevanter Pharmaka verantwortlich ist.³

Die Entdeckung der Cytochrom P450-Enzyme durch Klingenberg datiert aus dem Jahr 1958. Dieser fand ein Kohlenmonoxid-bindendes Pigments in der mikrosomalen Fraktion von Rattenlebern, das in seiner reduzierten Form ein Absorptionsmaximum von 450 nm besaß. Das zunächst noch "Mikrosomales Kohlenmonoxid-bindendes Pigment" terminierte Enzym erhielt seinen endgültigen Namen im Jahre 1962, nachdem Omura und Sato es als Hämprotein identifizieren konnten.⁴

Heute ist bekannt, dass CYP-Enzyme – über den gesamten Organismus verbreitet – vornehmlich in der Phospholipidmatrix des glatten endoplasmatischen Retikulums lokalisiert sind. Einige CYPs werden als Komponenten der Atmungskette auch in den inneren Membranen der Mitochondrien exprimiert. Die Lokalisation in Biomembranen bedingt den hydrophoben Charakter der CYPs und dadurch auch ihre primäre Funktion im Arznei- und Fremdstoffmetabolismus, nämlich der Biotransformation lipophiler Substrate in polarere Metabolite – ein Verfahren, das sich im Laufe der Evolution zur Verbesserung der renalen Eliminierung von Xenobiotika bewährt hat.

Die Proteine bestehen aus einem ungefähr 480 bis 560 Aminosäuren großen

Apoprotein und enthalten eine prosthetische Hämgruppe. Das Häm besteht aus einem Protoporphyrin IX-Ring mit einem zentralen Eisenatom als Chelatliganden. Die beiden freien Koordinationstellen des Eisenatoms werden mit einer Cystein-Thiolgruppe bzw. einem Wassermolekül besetzt. Letzteres wird während der Katalyse durch das Substratmolekül verdrängt. Um im endoplasmatischen Retikulum katalytisch aktiv sein zu können, benötigt ein CYP-Enzym neben dem P450 eine NADPH-abhängigen Cytochrom P450-Reduktase. Dies ist ein Flavoprotein, welches pro Mol Apoprotein 1 Mol Flavinadenindinucleotid und 1 Mol Flavinmononucleotid als prosthetische Gruppen gebunden enthält. Die für den Katalysemechanismus notwendige Wechselwirkung zwischen beiden Proteinen wird durch die in der Biomembran enthaltenden Phospholipide, insbesondere Phosphatidylcholin, erleichtert. Bei einer Oxygenisierungsreaktion wird ein Sauerstoffmolekül gespalten, wobei das eine Atom auf das Substrat übergeht und das andere als Teil eines Wassermoleküls abgegeben wird. Der Katalysezyklus von CYP besteht aus mindestens sieben Schritten:⁵

- 1. Bindung des Substrats an die Fe(III)-Form des Enzyms
- 2. Reduktion des Fe(III) zu Fe(II) durch Elektronenübertragung
- 3. Bindung eines Sauerstoff-Moleküls an das Enzym
- 4. Bindung eines Elektrons und eines Protons an das Eisenatom
- 5. Wasserabspaltung aus dem Enzymkomplex unter Spaltung der O-O-Bindung
- 6. Oxidation des Substrates durch den Enzymkomplex
- 7. Abspaltung des Substrates

Die Reduktionsäquivalente in Form von NADPH werden von der Cytochrom P450-Reduktase bereitgestellt.

Zu den oxidativen Biotransformationen, die durch CYP-Monoxygenasen vermittelt werden gehören neben der Aromaten- und Seitenkettenhydroxylierung auch die N-, Ound S-Desalkylierung, die N-Oxidation, die Sulfoxidation, die Epoxidierung, die N-Hydroxylierung, die Desaminierung, die Dehalogenisierung und die Desulfurierung. Die Implementierung von Hydroxylgruppen in ein vormals lipophiles Molekül bildet häufig die Basis für die Konjugation des Phase-I-Metaboliten mit Glucuronsäure oder Sulfongruppen im Rahmen der Phase-II-Biotransformation. Viele Reduktionsreaktionen werden ebenfalls durch CYP-Enzyme ermöglicht. Die CYPs nehmen daher eine Schlüsselstellung in der Biosynthese und Biotransformation unzähliger endogener und exogener Substrate ein. Darüber hinaus scheinen sie essentiell für das Überleben sämtlicher eukaryoter Lebewesen zu sein, denn sie konnten ubiquitär im gesamten Tierund Planzenreich sowie in Bakterien nachgewiesen werden.^{6, 7} Die Liste endogener Substrate umfasst zahlreiche wesentliche Intermediär- und Endprodukte des Stoffwechsels: Arachidonsäure und Eicosanide, Cholesterin und Gallensäuren, Steroide, Vitamin D₃-Derivate, Retinoide und Uroporphyrinogene. Des weiteren sind die CYPs entscheidend an der Biotransformation und Entgiftung mannigfaltiger exogener Verbindungen und Schadstoffe, darunter auch Arzneistoffe (siehe oben), beteiligt.⁸ Im menschlichen Organismus besitzt demzufolge die Leber als Zentrum der Biotransformation den höchsten Gehalt und die höchste Aktivität an CYP. Eine vergleichsweise hohe Expression von CYP-Protein weisen ferner vor allem diejenigen Organe und Gewebe auf, welche entweder einer besonders hohen Xenobiotikabelastung ausgesetzt sind oder besonders empfindlich auf chemische Noxen reagieren. Die enzymatische Barrierefunktion der CYPs ist daher besonders ausgeprägt im Respirations- und Gastrointestinaltrakt bzw. in Hirnregionen, die nicht von der Blut-Hirn-Schranke geschützt werden (z.B. Area postrema).⁹⁻¹¹

Neben einer Detoxifizierung kann es durch die Aktivität der CYPs aber auch zur "Giftung" vormals unschädlicher Substanzen kommen. Die Mitwirkung bei der metabolischen Aktivierung von Präkanzerogenen, wie etwa den Aflatoxinen oder Nitrosaminen, aber auch die therapeutisch erwünschte Bioaktivierung bestimmter Zytostatika (z.B. Cyclophosphamid oder Tamoxifen), können hierfür als Beispiele angeführt werden.^{12, 13}

Die standardisierte Nomenklatur der CYP-Enzyme richtet sich nach der Homologie ihrer Aminosäuresequenzen. Alle Enzyme erhalten den Präfix "CYP", gefolgt von einer arabischen Ziffer, welche ihre Zugehörigkeit zu einer bestimmten Genfamilie angibt. Aus einer Genfamilie stammen alle Enzyme, deren Aminosäuresequenz zu 40% oder mehr identisch ist. Darauf folgt ein Buchstabe für die Subfamilie, deren Sequenz zu mehr als 55% übereinstimmen muss. Abschließend folgt eine weitere arabische Ziffer, die das individuelle Enzym kennzeichnet. Für jedes Enzym wird das häufigste oder auch Wildtyp-Allel mit *1 bezeichnet. Alle Allelvarianten werden in der Reihenfolge ihrer Entdeckung bzw. Beschreibung durchnummeriert (*2, *3, ... etc.).⁶

Im Menschen sind zur Zeit (Dezember 2005) 18 verschiedene Genfamilien und 42 Subfamilien von CYP-Enzymen bekannt. Diese codieren 59 verschiedene aktive Gene und 48 Pseudogene.⁷ Ungeachtet dessen scheinen lediglich die Familien CYP1, CYP2 und CYP3 einen nennenswerten Anteil am Arzneistoffmetabolismus zu haben. Darüber hinaus weisen sie im Gegensatz zu den übrigen Familien, die allesamt von Bedeutung für den endogenen Stoffwechsel sind, eine relativ geringe Affinität zu ihren Substraten auf.

Abbildung 1. Relative Häufigkeit und Bedeutung der wichtigsten arzneistoffmetabolisierenden Cytochrom P450-Enzyme ^{3, 14}

Eine Darstellung der relativen Häufigkeit der wichtigsten CYPs in der Leber, einschließlich ihrer relativen Bedeutung für die durch CYP vermittelte Biotransformation von 315 exemplarisch ausgesuchten Pharmaka aller therapeutischen Klassen befindet sich in Abbildung 1. Auffällig ist, dass kein direkter Zusammenhang zwischen der Menge hepatischer CYPs und ihrer relativen Bedeutung für den Arzneistoffmetabolismus besteht.

1.2 Einflussfaktoren auf die Variabilität von CYPs

Wie bereits in Abschnitt 1.1 erwähnt, ist die individuelle Variabilität der CYP-Enzyme ein wesentlicher Faktor für die markanten interindividuellen Unterschiede der Biotransformation von Arzneistoffen. Hierfür ist häufig – von bedeutenden Ausnahmen wie etwa CYP3A4 abgesehen – der stark ausgeprägte Polymorphismus der für CYP codierenden Gene, d.h. die genetisch inhärente Variabilität der CYP-Aktivität, verantwortlich.¹ Kaum weniger bedeutsam für eine variable Arzneimittelantwort ist die Interaktion von Arzneistoffen mit Umweltgiften, Nahrungsbestandteilen oder anderen Pharmaka. Die Fähigkeit jedes einzelnen CYPs, den Metabolismus einer Vielzahl strukturell und pharmakologisch verschiedener Substrate zu vermitteln, bildet die Grundlage von wechselseitiger Induktion oder Inhibition.⁸ Besonders ausgeprägt ist die potentielle Gefahr klinisch relevanter Wechselwirkungen im Rahmen von Multidrug-Therapieschemata, wie sie zum Beispiel im Rahmen einer immunsuppressiven oder antiretroviralen Therapie Anwendung finden. Weiterhin können Faktoren wie Alter, Geschlecht, ethnische Herkunft oder Krankheitszustand erheblichen Einfluss auf die Aktivität der CYP-Enzyme ausüben.

1.2.1 Polymorphismus

Das Auftreten erblich bedingter Allelvarianten, sogenannter Polymorphismen, konnte für alle arzneistoffmetabolisierenden Enzyme nachgewiesen werden. Polymorphismen sind definitionsgemäß genetische Varianten mit einer Häufigkeit von mindestens 1% und basieren zum Großteil auf Punktmutationen einzelner Basenpaare im DNA-Strang, auch SNP (single nucleotide polymorphism) genannt. Im Falle der CYPs wurden auf SNPs beruhende Mutationen gefunden, die zu verlagerten splice sites, frameshift mutations, verfrühten stop codons oder sogar zur kompletten Genauslöschung und somit zu nicht funktionsfähigen bzw. nicht vorhandenen CYP-Proteinen führen.¹ SNPs $CYP2C9^{15}$ oder $CYP2D6^{16}$, im Falle von können aber auch, wie Aminosäuresubstitutionen verursachen, die in einer qualitativ und quantitativ veränderten katalytischen Aktivität im Vergleich zum Wildtyp resultieren. Daneben führen manche SNPs zu einem sogenannten stillen Polymorphismus, bei dem der Austausch von Nukleotiden nicht zu einem Austausch von Aminosäuren führt. Besonders einflussreich ist die Lokalisation der Substitution im CYP-Protein. So ist beispielsweise ein Austausch in der Substraterkennungsdomäne eher mit einer

schwerwiegenden Alteration der Funktionalität verbunden, als ein Austausch an einer anderen Stelle im Protein.¹

Die Identifizierung von Polymorphismen bei arzneistoffmetabolisierenden Enzymen ermöglicht die Einteilung einer Population in verschiedene Gruppen mit charakteristischer enzymatischer Aktivität (Phänotypen). Diejenigen Personen, die zu einer normalen Metabolisierung befähigt sind, da ihr CYP-Enzym von zwei aktiven Wildtyp-Allelen codiert wird, nennt man *extensive metabolizer* (EM). Dagegen werden Individuen mit zwei mutierten wenig aktiven oder gänzlich inaktiven Allelen als *poor metabolizer* (PM) bezeichnet. Die sogenannten *intermediate metabolizer* (IM) sind heterozygot für ein aktives und ein defizientes Allel und stehen hinsichtlich ihres Vermögens, Substrate zu verstoffwechseln, zwischen den EM und PM. Sie werden manchmal auch als heterozygote EM bezeichnet. Einen Sonderfall stellen die sogenannten *ultrarapid metabolizer* (UM) dar. Aufgrund einer Genmultiplikation wird bei ihnen das Gen mehrfach exprimiert. Sie sind daher zu einer erhöhten Stoffwechselleistung fähig.

Die weitreichenden klinischen Auswirkungen eines genetisch bedingten Polymorphismus werden besonders beim hochgradig polymorphen CYP2D6 offenbar, welches am Metabolismus von bis zu 25%³ aller klinisch relevanten Pharmaka beteiligt ist. Die genetischen Varianten der CYP2D6-Aktivität können in Kategorien mit abwesender, verminderter, normaler, erhöhter oder qualitativ veränderter Aktivität eingeteilt werden. Während das *5-Allel für eine vollkommene Abwesenheit von CYP2D6-Protein verantwortlich ist (PM-Phänotyp), sorgt das Allel *2 bei über 5% aller Europäer und bis zu 30% aller Äthiopier für bis zu 12 zusätzliche Genkopien (UM-Phänotyp).¹⁶ Die auf Auswirkungen den von CYP2D6 vermittelten Arzneistoffmetabolismus sind dramatisch. So existieren Dosisempfehlungen für zahlreiche Neuroleptika und Antidepressiva (z.B. Imipramin, Olanzapin oder Doxepin) die sich um den Faktor 5 bis 6 zwischen dem PM- und dem UM-Phänotyp unterscheiden.¹⁷

1.2.2 Induktion

Die meisten fremdstoffmetabolisierenden CYPs sind durch Xenobiotikabelastung des Organismus zur verstärkten de novo-Exprimierung von Enzymprotein fähig. Diese Enzyminduktion führt zu einer erhöhten Geschwindigkeit der Biotransformation, wodurch die Konzentration des Ausgangssubstrats rascher abnimmt. Ein derartiges positives Feedback auf Umweltgifte, schädliche Nahrungsbestandteile, aber auch zahlreiche Arzneistoffe, ist als entwicklungsgeschichtliche Adaption auf erhöhte Fremdstoffbelastungen des Körpers zu interpretieren. Einige Arzneistoffe können sowohl die Biotransformation anderer Verbindungen wie auch ihre eigene Metabolisierung induzieren. Beispiele für diese sogenannte Autoinduktion sind Carbamazepin¹⁸, Ifsofamid¹⁹ und Artemisinin²⁰. Weiterhin sind viele CYP-Induktoren für eine Co-Induktion von Phase-II-Enzymen, wie etwa den Uridin-5'-diphosphat-Glucuronosyltransferasen (UGT) oder Glutathion-S-Transferasen verantwortlich.²¹ Auch eine simultane Induktion zahlreicher Phase-III-Transporter wurde beobachtet. Die koordinierte Aktivierung einer umfassenden Biotransformations- und Tranportkaskade erhöht die Effizienz der Entgiftung schädlicher Umwelteinflüsse.²²

Ein Anstieg der CYP-Proteinexpression wird für gewöhnlich transkriptional kontrolliert. Dabei binden die Substrate an cytosolische Rezeptoren. Diese dimerisieren dann mit je einem weiteren cytosolischen Rezeptor zu Homo- bzw. Heterodimeren. Der resultierende Rezeptorkomplex kann dann mit dem *response element* eines DNA-Promoters interagieren und dadurch die Transkription aktivieren.

Die Expression von *CYP1*-Genen wird unter dem Einfluss zahlreicher polyzyklischer Aromaten, wie sie im Zigarettenrauch oder holzkohlegegrilltem Fleisch enthalten sind, durch den Arylhydrocarbon-Rezeptor (AhR) vermittelt.⁸ Die Promotoren der *CYP*-Familien 2 und 3 werden dagegen durch den konstitutiven Androstan-Rezeptor (CAR) und den Pregnan X-Rezeptor (PXR), bzw. deren Heterodimere mit dem Retinoid X-Rezeptor (RXR), aktiviert. Die induzierenden Liganden unterscheidet man in den Phenobarbital-Typ (CAR) sowie den Dexamethason- und Rifampicin-Typ (PXR).²¹

Die Interaktionen diverser CYP3A4-Substrate mit Inhaltsstoffen des Johanniskrauts (*Hypericum perforatum*) stellen prominente Beispiele für die gravierenden klinischen Folgen von auf CYP-Induktion beruhenden Arzneistoffwechselwirkungen dar. Hyperforin, ein Inhaltsstoff des Johanniskrautextrakts, ist ein potenter Aktivator des PXR und beschleunigt dadurch die Biotransformation gleichzeitig verabreichter CYP3A4-Substrate.²³ Als Konsequenz wurden Transplantatabstoßungen und ungewollte Schwangerschaften infolge einer erhöhten Cyclosprin bzw. Ethinylestradiol-Clearance unter Johanniskrautselbstmedikation beschrieben.^{24, 25}

1.2.3 Inhibition

Wann immer mehrere verschiedene Arzneistoffe zeitnah eingenommen werden, besteht die Gefahr ungewollter Arzneistoffinteraktionen in Form einer Hemmung des Metabolismus dieser Arzneistoffe. Denn ebenso wie zwei Pharmaka um Bindungsstellen an Rezeptoren oder Plasmaproteinen konkurrieren, können sie auch um das katalytische Zentrum eines arzneistoffmetabolisierenden Enzyms konkurrieren. Die geringe Substratspezifität der CYPs (siehe Kapitel 1.1) ist ein zusätzlicher Faktor für die große Anzahl klinisch bedeutender Interaktionen, die auf Inhibition von CYPs beruhen.⁵ Durch eine Hemmung der Enzymaktivität kommt es, im Gegensatz zu Induktion, zu einem verlangsamten Abbau der Ausgangssubstanz(en). Die Folgen reichen von einer pharmakologischen bis erhöhten Inzidenz verlängerten Wirkung zur arzneistoffvermittelter Toxizität. Der Mechanismus der Inaktivierung kann grob in zwei verschiedene Typen eingeteilt werden: die reversible und die irreversible Inhibition.⁵

Beide Typen unterscheiden sich grundlegend in ihren Konsequenzen. Die reversible Inhibition beruht auf einem kompetitiven Mechanismus und hält nur vorrübergehend an. Nachdem der Inhibitor eliminiert wurde, besitzt das jeweilige CYP wieder seine volle Aktivität. Außerdem kann der Inhibitor (zumindest theoretisch) durch eine Konzentrationserhöhung des Substrates aus der Enzymbindung verdrängt werden. Die Wirkung eines irreversiblen Inhibitors hält dagegen auch nach dessen Elimination an und kann nicht durch Erhöhung der Substratkonzentration antagonisiert werden. Der einzige Weg zur Wiederherstellung der Enzymaktivität ist die *de novo*-Biosynthese von Enzymprotein. Aus diesem Grund ist die irreversible Hemmung von CYP häufiger mit Arzneistoffinteraktionen behaftet als die reversible.²⁶

Ein bekanntes **Beispiel** für die schwerwiegenden Konsequenzen einer Arzneistoffinteraktion durch CYP-Inhibition ist die Wechselwirkung zwischen dem H₁-Antihistaminikum Terfenadin und dem Antimykotikum Ketoconazol. Das CYP3A4-Substrat Terfenadin unterliegt einem ausgeprägten first pass-Metabolismus und wird in der Leber schnell und nahezu vollständig in einen aktiven Metaboliten (Fexofenadin) und in einen inaktiven Metaboliten biotransformiert.^{26, 27} Wird die Biotransformation durch das Imidazol-Derivat Ketoconazol gehemmt, steigt die Plasmakonzentration der Muttersubstanz Terfenadin deutlich an. Dadurch kann es zu einer Blockade myokardialer Kalium-Kanäle kommen. Die Folge ist eine verlängerte QT-Zeit, die in lebensbedrohliche Kammertachykardien vom Typ Torsade de pointes mit teilweise fatalem Ausgang münden kann.^{26, 28}

In manchen Fällen ist die Hemmung einer CYP-Isoform jedoch therapeutisch erwünscht, etwa in der fixen Kombination der beiden Proteaseinhibitoren Lopinavir und Ritonavir (Kaletra[®]). Dabei stellt das Lopinavir die eigentlich antiretroviral wirksame Komponente dar. Eine alleinige Applikation kommt aber wegen der hohen metabolischen Labilität des Lopinavirs gegenüber CYP3A4 nicht in Frage. Die Coadministration von Ritonavir, einem potenten Suizidinhibitor des CYP3A4s, hemmt die Biotransformation der Lopinavirs und verringert dadurch dessen Clearance um ein vielfaches.^{29, 30}

1.2.4 Sonstige Einflussfaktoren

1.2.4.1 Geschlecht und Alter

Generell ist zu konstatieren, dass die Datenlage hinsichtlich des Einflusses von Geschlecht und Alter auf die Aktivität arzneistoffmetabolisierender CYPs nicht immer eindeutig und häufig sogar widersprüchlich ist. Hiefür mag der relativ geringe Anteil dieser Faktoren an der allgemein sehr hohen Schwankung der CYP-Aktivität zwischen einzelnen Individuen verantwortlich sein.³¹ Als weitere bedeutende geschlechts- und altersabhängige Einflussgrößen sind anzuführen: Unterschiede in Körperwasser- und Körperfettgehalt, abweichende Plasmaeiweißbindung oder ein schwankender Hormonspiegel. Nicht alle Studien weisen eine angemessen hohe Fallzahl auf, die dieser Tatsache Rechnung tragen. Außerdem kann es zur gegenseitigen Überlagerung der Faktoren kommen, wenn keine ausreichende Stratifizierung in Subgruppen vorgenommen wird.³² Dennoch gibt es eine gewisse Konsistenz in der Datenlage für beide Faktoren.

Durch die autosomal rezessive Natur der Vererbung von CYP-Polymorphismen ist die Häufigkeit einzelner Genotypen prinzipiell unabhängig vom Geschlecht. Da jedoch auch Menge, Lokalisation und Aktivität einzelner CYP-Isoformen genetisch determiniert sind, konnten geschlechtsspezifische Unterschiede insbesondere für CYP1A2, CYP2E1 und CYP3A festgestellt werden. So ist eine allgemein niedrigere Aktivität und Induzierbarkeit von CYP1A2 bei Frauen durch zahlreiche Studien belegt.³¹⁻³³ Frauen scheinen außerdem eine geringere CYP2E1-Aktivität aufzuweisen. Dagegen wurde eine, im Vergleich zu männlichen Studienteilnehmern, um 20-50% erhöhte *in vivo*-Clearance für zahlreiche CYP3A-Substrate, wie zum Beispiel Nifedipin, Verapamil und Methylprednisolon gefunden.³³

Neugeborene und Kleinkinder weisen eine zum Teil stark abweichende Expression und Aktivität einzelner CYP-Isoformen auf. So enthält die Leber von Neugeborenen in den ersten Wochen nach der Geburt noch große Mengen des fötalen Haupt-CYPs CYP3A7, bevor dessen Anteil langsam abnimmt und durch CYP3A4 ersetzt wird. Die auffälligsten Unterschiede gegenüber Erwachsenen bestehen jedoch für CYP1A2 und CYP2E1. Beide Enzyme sind in den Lebern von Neugeborenen nicht nachweisbar. Zudem ist die Aktivität von CYP2C9, CYP2C19 und CYP2D6 kurz nach der Geburt bis zu dreimal geringer als bei Erwachsenen. Eine Angleichung auf Erwachsenenniveau findet jeweils erst in den folgenden Lebensjahren statt.^{34, 35}

Auch in späteren Lebensjahrzehnten unterliegt die Aktivität einzelner CYPs einer altersbedingten Fluktuation. Jedoch ist die Studienlage hinsichtlich der Richtung des Effekts (Zu- oder Abnahme) nicht eindeutig. Für CYP2C19 wurde eine signifikant niedrigere Aktivität bei Probanden über fünfzig Jahren gefunden. Unterstützt wird diese Beobachtung durch zahlreiche Studien, in denen eine allgemeine Aktivitätsabnahme arzneistoffmetabolisierender CYPs bei älteren Probanden (>70 Jahre) festgestellt werden konnte.³⁵ Im Gegensatz dazu wurden auch erhöhte Metabolisierungsraten im Alter, z.B. für Substrate von CYP2E1 und CYP3A4, vorgefunden.³¹

Die zum Teil beträchtlichen ethnischen Unterschiede im Metabolismus vieler Arzneistoffe beruhen zu einem Großteil auf der stark abweichenden Verteilung und Häufigkeit genetischer Polymorphismen zwischen Asiaten, Schwarzafrikanern, Kaukasiern und anderen ethnischen Gruppen. So ist die immer wieder beobachtete niedrigere CYP2D6-Aktivität von Asiaten im Vergleich zu Kaukasiern insbesondere mit dem wesentlich häufigerem Auftreten des funktionell beeinträchtigten CYP2D6*10-Allels (50% vs. 5%) verbunden.³⁶

1.2.4.2 Krankheit

Im Rahmen von Entzündungsreaktionen wie auch zahlreicher viraler, bakterieller oder parasitischer Infektionen, kommt es im Regelfall neben einer Veränderungen der Plasmaproteinzusammensetzung, des interstitiellen Flüssigkeitsvolumens, des pH-Wertes und der Gewebeperfusion auch zur merklichen Aktivitätsabnahme zahlreicher CYPs.³⁷ Beispielsweise wurde eine signifikant niedrigere Aktivität von CYP3A4 und CYP2D6 bei Hepatitis-B-Patienten im Vergleich zu gesunden Testpersonen nachgewiesen. Dieser Unterschied verschwand bei 50% aller Patienten nach einmonatiger Behandlung der Hepatitis mit Interferon-alpha und Ribavirin.³⁸ In einer

anderen Studie wurde eine inverse Korrelation der Aktivität von CYP2C19 mit den Plasmaspiegeln der entzündungsvermittelnden Zytokine Interleukin-6 (IL-6) und TNF- α (Tumornekrosefaktor- α) bei Patienten mit kongestiver Herzinsuffizienz beobachtet.³⁹

Auch Lebererkrankungen setzen den durch CYP vermittelten Arzneistoffmetabolismus herab. Dabei korreliert die Aktivitätsabnahme mit der Schwere der Lebererkrankung. Bei zirrhotischen Patienten scheint insbesondere die metabolische Clearance für Substrate von CYP1A2, CYP2C19 und CYP3A reduziert zu sein.⁴⁰

1.2.4.3 Nahrungs- und Genussmittel

Neben zahlreichen Arzneistoffen besitzen auch viele Inhaltsstoffe von Nahrungs- und Genussmitteln die Fähigkeit, CYPs Enzym-spezifisch zu inhibieren bzw. zu induzieren. Eine Vielzahl klinisch relevanter Interaktionen sind die Folge.

Ein besonders ausführlich beschriebenes Phänomen ist die Induktion von CYP1A2 durch Tabakrauch, bzw. die in ihm enthaltenden polyzyklischen aromatischen Kohlenwasserstoffe. Es existieren Fallbeispiele, in denen eine abrupte Beendigung dieser Induktion durch plötzlichen Verzicht auf Zigarettenkonsum zu schweren UAW infolge stark erhöhter Plasmaspiegel des CYP1A2-Substrats Clozapin führte.⁴¹ Ferner sind gemeinsame Inhaltsstoffe von Brokkoli, Rosenkohl und anderen Kohlgemüsen für eine CYP1A2-Induktion verantwortlich. Darüber hinaus ist Ethanol in der Lage CYP1E2 zu induzieren.⁴²

Im Gegensatz dazu ist der Konsum grapefruithaltiger Getränke und Speisen mit einer Inhibition von intestinalem CYP3A4 verbunden. Die Folge ist eine teilweise ausgeprägte Erhöhung der Bioverfügbarkeit von Substanzen wie Felodipin, Nicardipin, Simvastatin, Lovastatin, Diazepam oder Saquinavir.⁴³

1.3 Phänotypisierung

Unerwünschte Arzneimittelwirkungen (UAW) sind ein ernsthaftes gesellschaftliches Problem. So wird geschätzt, dass sie jährlich für mehr als 100.000 Todesfälle alleine in den Vereinigten Staaten von Amerika verantwortlich sind und die US-Gesellschaft bis zu 100 Milliarden Dollar pro Jahr kosten. Ferner stellen sie den Grund für 13% aller Einweisungen in internistische Krankenhausabteilungen in Schweden und 7% aller Krankenhauseinlieferungen in Großbritannien dar.¹⁴ Auch wenn bestimmte UAW als unvermeidbar gelten, hilft eine optimierte Arzneimitteltherapie, die sich ausschließlich an den individuellen Bedürfnissen jedes einzelnen Patienten orientiert, UAW zu vermeiden. Wie in Kapitel 1.2 darlegt, ist der individuelle Dosisbedarf jedes Patienten verschiedene Einflussfaktoren durch die Aktivität durch _ v.a. der arzneistoffmetabolisierenden CYPs - determiniert und daher außerordentlich variabel. Dieser Tatsache wird jedoch nur selten Rechnung getragen. Im Regelfall wird vielmehr eine empirisch ermittelte Standarddosis ohne Kenntnis der individuellen Besonderheiten des Patienten verabreicht. Die Wahl der Standarddosis beruht auf der Mutmaßung, dass sie die optimale Dosierung für den Bevölkerungsdurchschnitt darstellt. Unter diesen Bedingungen ist eine Dosisindividualisierung nur retrospektiv durch Beobachtung des therapeutischen Effekts oder eventuell auftretender UAW möglich. Nur wenigen Arzneistoffen mit besonders geringer therapeutischer Breite ist eine Therapiekontrolle mittels Therapeutischem Drug Monitorings vorbehalten.⁴⁴ Es wäre daher von großem therapeutischen Nutzen, die hochvariable Arzneistoffantwort sowie mögliche Interaktionen zwischen gemeinsam verabreichten Arzneistoffen individuell vorhersagen zu können. Potentielle UAW könnten so schon im Vorfeld einer Behandlung evaluiert und vermieden werden. Außerdem könnte ein solcher Ansatz dabei helfen, teure, aber unterdosierte, Therapien zu optimieren.

Die Auswertung zahlreicher Studien ergab, dass 59% aller häufig in UAW-Studien angeführten "Problem"-Arzneistoffe durch polymorphe Phase-I-Enzyme, darunter zu 86% CYPs, verstoffwechselt werden.⁴⁵ Der genetische Polymorphismus arzneistoffmetabolisierender CYPs ist demzufolge einer der Hauptgründe für die großen interindividuellen Wirkungsschwankungen zahlreicher Pharmaka. Einfache und preiswerte DNA-Tests zur verlässlichen Identifizierung aller relevanten CYP-Allelvarianten wurden entwickelt. Dieser, auch Genotypisierung genannte, Ansatz hat jedoch einen entscheidenden Nachteil: Wie bereits in Kapitel 1.2 beschrieben, ist der

Genotyp neben zahlreichen anderen Faktoren nur eine Determinante des Phänotyps und deshalb lediglich in dem Ausmaß klinisch relevant, wie er den Phänotyp vorhersagt.⁴⁶ Die Problematik wird besonders am Beispiel von CYP3A4 und CYP1A2 deutlich. Beide Enzyme, die zusammen hauptverantwortlich für den Metabolismus von mehr als 55%³ aller Arzneistoffe sind, weisen keinen relevanten funktionellen Polymorphismus auf. Dennoch kann ihre Aktivität bis zu 100% (CYP3A4)⁴⁷ bzw. 60% (CYP1A2)⁴⁸ innerhalb einer Population variieren.

Die tatsächliche metabolische Kapazität eines arzneistoffmetabolisierenden Enzyms kann in vivo durch Verabreichung selektiver Testsubstrate ermittelt werden. Die anschließend gewonnenen pharmakokinetischen Parameter dienen zur Aktivitätsbestimmung des jeweiligen Enzyms. Ein Vorgehen nach diesem Muster wird "Phänotypisierung" genannt. Da im Rahmen einer Phänotypisierung intrinsische und extrinsische Einflüsse gleichermaßen berücksichtigt werden, liefert sie eine Momentaufnahme der gegenwärtigen Enzymaktivität. Diese Eigenschaft macht die Phänotypisierung zu einem wichtigen Werkzeug der Grundlagenforschung und Arzneistoffentwicklung. Sie wird eingesetzt, um die Beeinflussung des CYP vermittelten Arzneistoffmetabolismus durch Faktoren, wie Alter, Krankheitszustand oder Nahrungsaufnahme, abzuschätzen und die Beziehung zwischen der Aktivität bestimmter CYPs und Erkrankungen (z.B. Krebs) zu untersuchen.¹ Außerdem gibt es Ansätze, die mit Hilfe einer Phänotypisierung bestimmte metabolische Kapazität einzelner Organe als funktionellen Test für die Organfunktion anzuwenden.⁴⁴

Von besonderem therapeutischen Interesse sind jedoch phänotypische Untersuchungen zur Vorhersage toxischer Reaktionen bzw. eines Therapieversagens in Folge konventioneller Arzneistoffdosierungen. In den letzten Jahrzehnten wurden aus diesem Grund unzählige klinische Studien durchgeführt. Ziel dieser Studien war die Etablierung "alltagstauglicher" Phänotypisierungsparameter, mit einer möglichst hohen prädiktiven Aussagekraft für die Aktivität einzelner CYPs. Doch trotz des klaren Zusammenhangs, welcher in einigen Fällen zwischen der durch Phänotypisierung ermittelten Aktivität einiger CYPs und dem Risiko für schwere UAW gefunden wurde,⁴⁹ hat sich die Phänotypisierung – ähnlich wie die Genotypisierung – selbst vor Beginn mit schweren Nebenwirkungen behafteter Therapien im klinischen Alltag nicht durchgesetzt.44

Eine wachsende Bedeutung kommt der Phänotypisierung bei der Charakterisierung von Arzneistoffinteraktionen zu. Ausschlaggebend hierfür sind die negativen Erfahrungen, die in den vergangenen Jahren beispielsweise mit der Wechselwirkung zwischen Terfenadin und Inhibitoren des CYP3A4 gemacht wurden (siehe Kapitel 1.2.3). So hat die Anwesenheit klinisch relevanter Arzneistoffinteraktionen in der Vergangenheit immer wieder zum frühen Abbruch der klinischen Entwicklung, zur Verweigerung der Zulassung, strengen Verschreibungsvorschriften und zum nachträglichen Entzug der Zulassung geführt.⁵⁰ Arzneistoffinteraktionen treten besonders häufig unter Multidrug-Therapieregimes auf, da das Risiko von Wechselwirkungen exponentiell mit der Zahl der verabreichten Pharmaka ansteigt.^{51, 52} Hieraus leitet sich die besondere Gefahr für die zumeist ohnehin vorgeschwächten Empfänger einer zytostatischen oder antiretroviralen Therapie sowie geriatrischer Patienten ab. Eine systematische Untersuchung potentieller Arzneistoffwechselwirkungen vor Antrag auf Marktzulassung wird mittlerweile von allen maßgeblichen staatlichen Zulassungsbehörden in Richtlinien vorgeschrieben. Die Richtlinie der amerikanischen Zulassungsbehörde FDA befürwortet eine Überprüfung des Interaktionspotentials während aller Phasen der Arzneistoffentwicklung.^{50, 53, 54} Das Prinzip einer in vivo-Phänotypisierung zur Abschätzung von Arzneistoffinteraktionen basiert auf der gemeinsamen Verabreichung einer Testsubstanz und eines spezifischen Enzymsubstrates. Eine induktive oder inhibitorische Aktivität der Testsubstanz führt dabei zur Veränderung der Plasma- bzw. Urinkonzentration des Enzymsubstrates oder seiner Metabolite. Durch einen Abgleich mit einem Referenzdurchgang, in dem anstatt der Testsubstanz lediglich Placebo verabreicht wird, lässt sich das induktive bzw. inhibitorische Potential der Testsubstanz berechnen.

1.3.1 Phänotypisierungsparameter und Testsubstrate

Als aussagekräftigstes Maß der *in vivo*-Enzymaktivität gilt die partielle Clearance (CL(met)) durch Bildung eines Metaboliten, wobei f(m) den Anteil der Ausgangssubstanz darstellt, der als Metabolit in den Urin ausgeschieden wird (Formel 1).² Auch für den Fall, dass ein Testsubstrat durch mehrere Enzyme gleichzeitig verstoffwechselt wird, gilt die partielle Clearance mit der eine Substanz spezifisch durch das phänotypisierte Enzym metabolisiert wird als Goldstandard.^{44, 55}

$$CL(met) = f(m) \cdot CL(tot)$$
 (1)

Bei Substraten, die praktisch nur über einen Weg eliminiert werden, wird statt dessen oft die totale Clearance (CL(tot)) der Ausgangssubstanz verwendet. Diese kann durch

Bestimmung der Fläche unter der Konzentrations-Zeit-Kurve (AUC) nach peroraler Applikation bestimmt werden, wobei F die systemisch verfügbare Fraktion der verabreichten Arzneistoffdosis darstellt:

$$CL(tot) = F \cdot Dosis/AUC$$
 (2)

Obwohl die totale Clearance eines Testsubstrats eine genaue Aussage über die Aktivität eines phänotypisierten Enzyms zulässt, ist ihre Bestimmung in der Praxis mit Nachteilen verbunden, denn sie erfordert die zumeist invasive Probennahme über mehrere definierte Zeitpunkte. Ihre Anwendung bedeutet deshalb sowohl einen hohen zeitlichen, personellen und analytischen Aufwand, als auch eine erhöhte Belastung von Patienten bzw. Probanden. Anstelle einer umfassenden pharmakokinetischen Evaluation wird daher in der Praxis häufig auf Ersatzparameter zurückgegriffen, die auf Einzelmessungen basieren. Bei diesen indirekten Indizes handelt es sich im Allgemeinen um metabolische Quotienten der Konzentrationen von Ausgangssubstanz und Metabolit in Plasma oder Urin. Auch Quotienten, welche die Wiederfindung eines Metaboliten im Urin beschreiben werden häufig angewendet.

Ein Grund für die bis dato fehlende Anwendung der Phänotypisierung im klinischen Alltag ist der Mangel an ausreichend validierten Phänotypisierungsassays. So sind viele Prozeduren nur wenig spezifisch für das zu charakterisierende Enzym, hochempfindlich gegenüber fehlender Compliance durch Patienten bzw. Probanden, schlecht reproduzierbar und abhängig von mehrfacher invasiver Probennahme.⁴⁴ Die Problematik ist nicht auf die Dosisindividualisierung beschränkt, sondern betrifft gleichermaßen auch die anderen Anwendungsgebiete der in vivo-Phänotypisierung. Klinische Interaktionsstudien sind auf besonders selektive und reproduzierbare Phänotypisierungsparameter angewiesen. Doch trotz intensiver Forschung besteht selbst für wichtige arzneistoffmetaboliserende Enzyme wie CYP2C19 oder CYP2B6 noch immer die Ungewissheit, welches Testsubstrat bzw. welcher Testparameter den induzierenden oder inhibierenden Einfluss eines potentiellen Arzneistoffes möglichst wiedergibt.⁴⁶ Die Bedeutung einer systematischen Validierung von exakt Phänotypisierungssubstraten und -parametern wird daher immer wieder betont; ebenso wurden eine Reihe strikter Validierungskriterien aufgestellt.^{44, 50, 56} Die wichtigsten Validierungskriterien in vivo sind:

- eine enge Korrelation mit der Aktivität des Zielenzyms in vitro,
- eine hohe Spezifität für das untersuchte Enzym,

- eine hohe Selektivität, d.h. die genaue Wiedergabe des Einflusses von Polymorphismen bzw. Inhibitoren und Induktoren auf die Aktivität *in vivo*,
- eine gute Reproduzierbarkeit, d.h. eine geringe intraindividuelle Variabilität bei mehr als nur einem Studiendurchgang
- und die Unabhängigkeit gegenüber nicht-metabolischen Faktoren.⁴⁴

Neben der impliziten Ungefährlichkeit für den Einsatz an Patienten und Probanden sind eine verlässliche, validierte Analytik, eine möglichst nicht-invasive Probennahme und die klinische Relevanz der Phänotypisierungssubstrate weitere wichtige Kriterien.⁵⁰

1.3.2 Cocktailstudien

Ein klares Defizit der in Kapitel 1.3.1 beschriebenen Phänotypisierung ist, dass für jeden untersuchten Arzneistoff mehrere aufeinanderfolgende Untersuchungen notwendig sind, um das Interaktionspotential mit der gesamten Bandbreite aller relevanten arzneistoffmetabolisierenden Enzyme zu erfassen. Die gleichzeitige Verabreichung mehrerer Testsubstrate im Rahmen eines Phänotypisierungs-"Cocktails" erlaubt dagegen die Abschätzung verschiedener metabolischer Pfade in einem einzigen Experiment.² Die Cocktailmethode kann durch ihre stark erhöhte Effizienz zu einer drastischen Einsparung von Zeit und Kosten führen. Ferner wird der Einfluss nichtgenetischer Einflussfaktoren minimiert und so die intraindividuelle Variabilität der Arzneistoffantwort auf eine unvermeidliche Restvariabilität reduziert.²

Den offensichtlichen Vorteilen eines Cocktails stehen erhöhte Anforderungen an Testsubstrate, Analytik und Probennahme entgegen. Durch simultane Verabreichung mehrerer pharmakologisch wirksamer Substanzen sind Probanden und Patienten einer erhöhten Belastung ausgesetzt. Aus Sicherheitsgründen muss die Dosierung jedes einzelnen Cocktailbestandteils deshalb so gering wie möglich gewählt werden, ohne dabei eine Unterschreitung des analytischen Quantifizierungslimits zu riskieren. Auch die Reduktion der Anzahl von Probennahmen auf ein notwendiges Minimum hilft, die Belastung der Versuchspersonen zu begrenzen und erleichtert darüber hinaus die klinische Durchführung der Studie. Im Vordergrund steht jedoch die Abwesenheit metabolischer und klinischer Interaktionen zwischen den gemeinsam verabreichten Substraten. Zugleich muss eine gegenseitige analytische Interferenz ausgeschlossen werden. Sicherheit über die Abwesenheit potentieller Interaktionen bzw. Interferenzen kann nur eine systematische Validierung des Cocktails und der analytischen Methode bieten.

In den vergangenen Jahren konnte sich die ebenso selektive wie empfindliche HPLC-Tandemmassenspektrometrie (LC-MS/MS) als neuer bioanalytischer Standard etablieren. Mit ihrer Hilfe lässt sich die wechselseitige analytische Beeinflussung der Analyten untereinander im Regelfall ohne großen experimentellen Aufwand vermeiden.^{57, 58} Für die Validierung einer fehlenden metabolischen Interaktion zwischen gemeinsam verabreichten Testsubstraten bedarf es aufwendiger Studien, in denen für jedes Substrat ein Vergleich zwischen der Einzel- und der Cocktailverabreichung stattfindet. Eine Auswahl validierter Cocktailmethoden findet sich in Tabelle 1.

	Substrate für CYP-Isoenyme					
Cocktail	1A2	2C9	2C19	2D6	2E1	3 A
Setiabudy et al. 1994 ⁵⁹	-	-	Mephenytoin	Metoprolol	-	Dapson
Frye et al. 1997 ⁶⁰	Coffein	-	Mephenytoin	Debrisoquin	Chloroxazon	Dapson
Streetman et al. 2000 ⁶¹	Coffein ^a	-	Omeprazol	Dextro- methorphan	-	Midazolam
Zhu et al. 2001 ⁶²	Coffein	-	Mephenytoin	Metoprolol	Chloroxazon	Midazolam
Christensen et al. 2003 ⁶³	Coffein	Losartan	Omeprazol	Debrisoquin ^b	-	Chinin
Blakey et al. 2004^{64}	Coffein	Tolbutamid	-	Debrisoquin	Chloroxazon	Midazolam

Tabelle 1. Validierte Cocktailmethoden mit phänotypisierten Enzymen und Testsubstraten

a: Coffein zur simultanen Phänotypisierung von CYP1A2, Xanthinoxidase und N-Acetyltransferase-2

b: Signifikante Interaktion zwischen Debrisoquin und den restlichen Cocktailsubstraten gefunden

Die Cocktailstrategie hat sich in der Vergangenheit als effizientes Screening-Werkzeug zur Untersuchung verschiedenster Einflussfaktoren auf das CYP-System bewährt. So wurden mit ihrer Hilfe die Wechselwirkung zwischen Johanniskrautextrakt⁶⁵, Clarithromycin⁶⁶, Acetylsalicylsäure⁶⁷ oder Propiverin⁶⁸ und dem CYP-System untersucht. Ebenso wurde mit Hilfe von Cocktailinteraktionsstudien der Effekt bestimmter Entzündungsmediatoren³⁹ und Krankheitszustände^{69, 70} auf die Aktivität wichtiger arzneistoffmetabolisierender Enzyme evaluiert.

1.4 Charakterisierung der phänotypisierten CYP-Enzyme

1.4.1 Cytochrom P450 1A2

Im Gegensatz zu einer Vielzahl nicht organspezifisch exprimierter CYPs scheint die Präsenz von CYP1A2 beinahe ausschließlich auf die Leber beschränkt zu sein.⁷¹ Bezogen auf den Gesamtgehalt aller CYPs, stellt es dort mit ca. 13% das zweithäufigste arzneistoffmetabolisierende CYP dar⁷² – ein Hinweis auf die hervorstechende Rolle im Metabolismus zahlreicher Pharmaka, endogener Substrate, Umweltgifte und diätetisch aufgenommener Verbindungen, aber auch in der Bioaktivierung von Prä-Karzinogenen.^{8, 14}

Obwohl eine Reihe von SNPs im CYP1A2-Gen gefunden wurden,⁷³ sind Polymorphismen in codierenden DNA-Regionen rar und nur selten mit einer veränderten CYP1A2-Aktivität *in vivo* verbunden.⁷⁴ Bisher konnten lediglich zwei seltene Allelvarianten mit einer signifikant erhöhten⁷⁵ bzw. niedrigeren^{76, 77} Induzierbarkeit von CYP1A2 bei Rauchern assoziiert werden. Ein Großteil der im Extremfall bis zu 60-fach schwankenden⁴⁸ Aktivität von CYP1A2 basiert daher nicht auf genetischen Faktoren, sondern auf externer Einflussnahme. So ist CYP1A2, wie bereits in Abschnitt 1.2.4.3 dargelegt, durch eine Vielzahl chemischer Verbindungen, induzierbar. Andere Substanzen, wie z.B. Ciprofloxacin⁷⁸ oder Fluvoxamin⁷⁹, haben sich wiederum als potente Inhibitoren von CYP1A2 erwiesen.

Laut einer Schätzung werden mindestens 3% aller Arzneistoffe primär durch CYP1A2 metabolisiert.³ Bei einer großen Anzahl weiterer Pharmaka ist CYP1A2 nicht unerheblich am Metabolismus beteiligt. Tabelle 2 enthält eine Auflistung wichtiger CYP1A2-Substrate. Aufgrund ihrer geringen therapeutischen Breite ist die Wechselwirkung von Clozapin bzw. Olanzapin mit Inhibitoren und Induktoren des CYP1A2s von besonderer klinischer Relevanz (siehe Abschnitt 1.2.4.3).

Als einziges Phänotypisierungssubstrat konnte sich Coffein etablieren. Es erfüllt die meisten der in Kapitel 1.3.1 angeführten Validierungskriterien.⁷⁴

Substrat	Stoffklasse	Reaktion	Referenz
Clozapin	Neuroleptikum	N-Demethylierung	Bertilsson et al. 1994 ⁸⁰
Coffein	Genussmittel	N-Demethylierung	Tang & Kalow. 1996 ⁸¹
Fluvoxamin	Antidepressivum	N-Demethylierung	Carrillo et al. 1996 ⁸²
Naproxen	NSAR	O-Demethylierung	Miners et al. 1996 ⁸³
Olanzapin	Neuroleptikum	N-Demethylierung	Ring et al. 1996 ⁸⁴
Östradiol	Sexualhormon	Hydroxylierung	Kerlan et al. 1992 ⁸⁵
Tacrin	Cholinesterase-Hemmer	Hydroxylierung	Spaldin et al. 1995 ⁸⁶
Theophyllin	Antiasthmatikum	N-Demethylierung	Ha et al. 1995 ⁸⁷
Triamteren	Diuretikum	Hydroxylierung	Fuhr et al. 2005 ⁸⁸

Tabelle 2. Klinisch relevante Substrate von CYP1A2

1.4.2 Cytochrom P450 2B6

Cytochrom P450 2B6 gehört zu den bisher am wenigsten untersuchten Enzymen des menschlichen Arzneistoffmetabolismus. Man nahm aufgrund früher Studien zunächst an, dass CYP2B6 nur 1% des gesamten hepatischen CYP-Gehaltes ausmache und darüber hinaus nur in 20 bis 30 % aller Lebern exprimiert werde.^{72, 89-91} Erst durch Einführung spezifischerer CYP2B6-Antikörper und empfindlicherer Detektionsmethoden konnte eine weitaus höhrere Expression nachgewiesen werden. Neueren Untersuchungen zufolge geht man davon aus, dass CYP2B6 in nahezu allen menschlichen Lebern exprimiert wird und für etwa 6-7% des gesamten hepatischen CYPs verantwortlich ist.^{14, 92} CYP2B6-Expression sowie CYP2B6-mRNA konnte außerdem in Dünndarm, Niere, Gehirn und Lunge nachgewiesen werden.⁹³

Eine hervorstechende Eigenschaft des CYP2B6 ist seine 20- bis 250-fach variable Expression in der Leber.⁹⁴ Diese Variabilität spiegelt sich auch auf der Ebene der Aktivität wieder, welche, je nach verwendetem Substrat, *in vitro* ebenfalls 25- bis 80fach variiert.^{95, 96} Lange Zeit wurde diese hohe Variabilität insbesondere der Induktion von CYP2B6 durch Induktoren vom Phenobarbital-, Dexamethason- und Rifampicin-Typ zugeschrieben.⁹⁷ Außerdem konnten eine Reihe von Pharmaka, beispielsweise Clopidogrel⁹⁸ und Thiotepa⁹⁹, als potente Inhibitoren von CYP2B6 identifiziert werden. Erst im Jahr 2001 konnten Lang et al. zeigen, dass eine weitere Ursache der variablen CYP2B6-Expression und Enzymaktivität in vielfältigen und häufigen genetischen Polymorphismen im kodierenden Bereich von CYP2B6 begründet liegen.⁹⁷ Tabelle 3 führt die im Rahmen dieser Dissertation bestimmten Allele auf.

Allel	SNP-Position	SNP	Aminosäuretausch	Referenz
*1	-	Wildtyp	-	Yamano et al. 1989 ¹⁰⁰
*2	Exon 1	C64T	Arg22Cys	Lang et al. 2001 ⁹⁷
*3	Exon 5	C777A	Ser259Arg	Lang et al. 200197
*4	Exon 5	A785G	Lys262Arg	Lang et al. 200197
*5	Exon 9	C1459T	Arg487Cys	Lang et al. 200197
*6	Exon 4/5	G516T; A785G	Gln172His; Lys262Arg	Lang et al. 200197
*7	Exon 4/5/9	G516T; A785G; C1459T	Gln172His; Lys262Arg; Arg487Cys	Lang et al. 2001 ⁹⁷

Tabelle 3. Untersuchte CYP2B6-Allele

Die funktionelle Bedeutung vieler Mutationen ist noch nicht eindeutig geklärt und Gegenstand zahlreicher aktueller Studien. Ein leicht erhöhte CYP2B6-Aktivität konnte mittlerweile *in vitro*¹⁰¹ und *in vivo*¹⁰² bei Trägern des *4-Allels nachgewiesen werden. Das *5-Allel scheint dagegen mit einer erniedrigten Metabolisierungskapazität verbunden zu sein.^{97, 101} Die Datenlage für das *6-Allel ist widersprüchlich.^{103, 104} Mittlerweile wurden eine Reihe weiterer Mutationen gefunden, die mitunter sogar Ursache sogenannter Nullallele mit fehlender Proteinexpression sein können.^{105, 106}

Etwa 4% aller Arzneistoffe werden primär durch CYP2B6 metabolisiert.³ Daneben ist das Enzym auch teilweise am Metabolismus der Designerdroge Ecstasy¹⁰⁷, Nikotin¹⁰⁸ und des endogenen Substrats Testosteron¹⁰⁹ beteiligt. Tabelle 4 enthält eine Auflistung klinisch relevanter CYP2B6-Substrate.

Folgende Reaktionen wurden bereits zur in *vivo*-Phänotypisierung von CYP2B6 benutzt: die (S)-Mephenytoin-N-Demethylierung¹¹⁰ und die Hydroxylierung von Bupropion.^{102, 111, 112} Bisher liegt noch keinem dieser Testsubstrate eine systematische Validierung zugrunde, die den unter 1.3.1 angeführten Kriterien genügen würde.

Substrat	Stoffklasse	Reaktion	Referenz
Artemisinin	Antimalariamittel	Unbekannt	Svensson et al. 1999 ¹¹³
Buproprion	Antidepressivum	Hydroxylierung	Hesse et al. 2000 ¹¹⁴
Cyclophosphamid	Zytostatikum	Hydroxylierung	Roy et al. 1999 ¹¹⁵
Efavirenz	Virostatikum	Hydroxylierung	Ward et al. 2003 ¹¹⁶
Ifosfamid	Zytostatikum	N-Dechloroethylierung	Granvil et al. 1999 ¹¹⁵
Ketamin	Narkotikum	N-Demethylierung	Yanagihara et al. 2001 ¹¹⁵
Methadon	Opioid-Analgetikum	N-Demethylierung	Gerber et al. 2004 ¹¹⁷
Propofol	Narkotikum	Hydroxylierung	Court et al. 2001 ¹¹⁸
Selegelin	Antiparkinsonmittel	N-Demethylierung	Hidestrand et al. 2001 ¹¹⁷

Tabelle 4. Klinisch relevante Substrate von CYP2B6

1.4.3 Cytochrom P450 2C9

Die menschliche CYP2C-Subfamilie besteht aus vier im hohen Maße homologen Genen: CYP2C8, CYP2C9, CYP2C18 und CYP2C19.⁶ Je nach Literaturquelle repräsentieren alle vier Gene zusammen 18-34% des gesamten hepatischen CYP-Gehalts.^{14, 72} CYP2C9 stellt sowohl das häufigste, als auch das für den Arzneistoffmetabolismus bedeutsamste Enzym dieser Subfamilie dar.³ Mittlerweile sind mehr als 50 SNPs in den regulativen und kodierenden Regionen des CYP2C9-Gens beschrieben worden.⁷³ In allen bislang untersuchten Populationen ist ein funktionell beeinträchtigtes Protein jedoch nahezu ausschließlich mit der Anwesenheit von Allel *2 und/oder *3 verbunden (siehe Tabelle 5).¹¹⁹

Allel	SNP-Position	SNP	Aminosäuretausch	Referenz
*1	-	Wildtyp	-	Romkes et al. 1991 ¹²⁰
*2	Exon 3	C430T	Arg144Cys	Rettie et al. 1994 ¹²¹
*3	Exon 7	A1075C	Ile359Leu	Sullivan-Klose et al. 1996 ¹²²

Aus der Kombination von Wildtyp-, *2- und 3*-Allel resultieren sechs verschiedene Genotypen, deren Aktivität *in vivo* als normal (*1/*1), schwach reduziert (*1/*2), mäßig reduziert (*2/*2, *1/*3 oder *2/*3) und stark reduziert (*3/*3) beschrieben werden kann.¹²³ Die Reduktion der CYP2C9-Aktivität ist zudem stark substratspezifisch.¹²⁴

Etwa zwei Drittel aller Kaukasier exprimiert den Wildtyp-Genotyp (*1/*1), ein Drittel exprimiert entweder den *1/*2- oder *1/*3-Genotyp und 2,5% exprimiert die Genotypen *2/*2, *2/*3 oder *3/*3. In asiatischen und afroamerikanischen Populationen sind die Allele *2 und *3 hingegen praktisch abwesend.¹¹⁹

CYP2C9 ist verantwortlich für den Metabolismus diverser endogener Substrate, wie auch zahlreicher klinisch bedeutsamer Arzneistoffe (siehe Tabelle 6). Dabei handelt es sich wie bei den Vitamin-K-Antagonisten, oralen Antidiabetika und Phenytoin, häufig um Substanzen mit enger therapeutischer Breite. Von einer erhöhten Gefahr schwerer Blutungen in der Warfarin-Initialtherapie oder hypoglykämischer Zustände insbesondere bei Trägern des *3/*3-Genotyps wurde in der Vergangenheit immer wieder berichtet.¹⁵

Anders als bei CYP1A2 und Coffein gibt es keinen Standardassay zur Phänotypisierung von CYP2C9. Die am häufigsten verwendeten Substrate sind: Tolbutamid, Losartan, Diclofenac und Phenytoin.¹²⁵ Die beste Datenlage existiert für Tolbutamid.^{126, 127}

Substrat	Stoffklasse	Reaktion	Referenz
Diclofenac	NSAR	Hydroxylierung	Leeman et al. 1993 ¹²⁸
Glipizid	Orales Antidiabetikum	Hydroxylierung	Kidd et al. 1999 ¹²⁹
Ibuprofen	NSAR	Hydroxylierung	Leeman et al. 1993 ¹²⁸
Losartan	AT1-Rezeptorantagonist	Oxidierung	Stearns et al. 1995 ¹³⁰
Fluvastatin	Lipidsenker	Hydroxylierung und Deisopropylierung	Fischer et al. 1999 ¹³¹
Phenprocoumon	Vitamin-K-Anatagonist	Hydroxlyierung	Ufer et al. 2004 ¹³²
Phenytoin	Antiepileptikum	Hydroxylierung	Veronese et al. 1991 ¹³¹
Tolbutamid	Orales Antidiabetikum	Hydroxylierung	Veronese et al. 1991 ¹³¹
Warfarin	Vitamin-K-Anatagonist	Hydroxylierung	Rettie et al. 1992 ¹³³

Tabelle 6. Klinisch relevante Substrate von CYP2C9

1.4.4 Cytochrom P450 2C19

Die stark eingeschränkte Fähigkeit einzelner Individuen, das Antiepileptikum Mephenytoin zu metabolisieren, führte 1979 zur einer der ersten Beschreibungen genetischer bedingter Variabilität im Metabolismus von Arzneistoffen.¹³⁴ Das verantwortliche Enzym, damals noch (S)-Mephenytoin-Hydroxylase benannt, konnte 1994 als CYP2C19 identifiziert werden.^{135, 136} Aus dem selben Jahr stammt die Beschreibung der beiden häufigsten Allelvarianten, CYP2C19*2 und CYP2C19*3, durch de Morais et al. (siehe Tabelle 7).^{137, 138} Beide Mutationen führen zu verkürzten Proteinen mit fehlender Häm-Bindungsstelle und somit fehlender katalytischer Aktivität.¹³⁴ Obwohl mittlerweile über 15 weitere Allele beschrieben wurden, ist eine erniedrigte bzw. vollständig abwesende metabolische Aktivität fast ausschließlich durch CYP2C19*2 oder *3 bedingt.^{73, 139} Je nach Kombination von Wildtyp-, *2- und *3-Allel existieren Genotypen mit drei verschiedenen phänotypischen Ausprägungen: homozygote EM (*1/*1), heterozygote EM (*1/*2 und *1/*3) und PM (*2/*2, *2/*3 und *3/*3).

Allel	SNP-Position	SNP	Aminosäuretausch	Referenz
*1A	-	Wildtyp	-	Romkes et al. 1991 ¹²⁰
*2	Exon 5	C99T; G681A; C990T; A991G	Splicing-Defekt	de Morais et al. 1994 ¹³⁸
*3	Exon 4	G636A	Trp212Stop	de Morais et al. 1994 ¹³⁷

Die Verteilung der drei häufigsten CYP2C19-Allele unterscheidet sich beträchtlich zwischen einzelnen ethnischen Gruppierungen. Die Häufigkeit des *2-Allels beträgt 30%, 17% und 15% für Chinesen, Amerikaner afrikanischer Abstammung und Kaukasier. Das *3-Allel ist ebenfalls weitaus häufiger bei Chinesen (5%) als bei Amerikanern afrikanischer Abstammung (0,4%) und Kaukasiern (0,04%) anzutreffen. Eine unmittelbare Folge ist das vermehrte Auftreten des PM-Genotyps bei Asiaten (12-23%) im Vergleich zu Kaukasiern (1-6%) und Schwarzafrikanern (1-7%). Während die Allele *2 und *3 für nahezu alle PM in schwarzafrikanischen und asiatischen Populationen verantwortlich sind, erklären sie nur 75-85% aller kaukasischen PM. Unter Berücksichtigung der geringen Häufigkeit des PM-Genotyps in kaukasichen Populationen, liegt die Frequenz alternativer defekter Allele jedoch unter 1%.^{134, 139}

CYP2C19 wird hauptsächlich in der Leber exprimiert. Eine signifikante Aktivität konnte auch in der Mucosa des Dünndarms nachgewiesen werden.¹⁴⁰ Die Beteiligung an der oxidativen Umwandlung zahlreicher häufig verschriebener Arzneistoffe macht CYP2C19 zu einem der wichtigsten CYPs im Arzneistoffmetabolismus.³ Besonders bedeutsam scheint der Einfluss des CYP2C19-Genotyps auf den Erfolg einer Therapie mit Protonenpumpenhemmern zu sein. Die bei PM und heterozygoten EM beobachteten erhöhten Plasma-AUCs von Omeprazol oder Lansoprazol waren in zahlreichen Studien mit einer überlegenen *Helicobacter pylori*-Eradikation verbunden.¹⁴¹ Tabelle 8 enthält eine Auflistung klinisch relevanter CYP2C19-Substrate. Neben Mephenytoin, dem Modellsubstrat für den CYP2C19-Polymorphismus (siehe oben), wird auch Omeprazol standardmäßig zur Phänotypisierung eingesetzt.

Substrat	Stoffklasse	Reaktion	Referenz	
Amitriptylin	Antidepressivum	N-Demethylierung	Venkatakrishnan et al. 1998 ¹⁴²	
Citalopram	Antidepressivum	N-Demethylierung	Sindrup et al. 1993 ¹⁴³	
Diazonom	Tranquilizar	N-Demethylierung und	Andersson et al. 1990 ¹⁴⁴	
Diazepain	Tranquinzer	Hydroxylierung		
Iminromin	Antidoprossivarm	N-Demethylierung und	Koyama et al. 1997 ¹⁴⁵	
mipranini	Antidepressivum	Hydroxylierung		
Lansoprazol	Protonenpumpenhemmer	Hydroxylierung	Pearce et al. 1996 ¹⁴⁶	
Moclobemid	Antidepressivum	Hydroxylierung	Gram et al. 1995 ¹⁴⁷	
Omeprazol	Protonenpumpenhemmer	Hydroxylierung	Andersson et al. 1993 ¹⁴⁸	
Pantoprazol	Protonenpumpenhemmer	O-Demethylierung	Tanaka et al. 1997 ¹⁴⁹	
Proguanil	Antimalariamittel	Oxidation	Birkett et al. 1994 ¹⁵⁰	

Tabelle 8.	Klinisch	relevante	Substrate	von CYP2C19
------------	----------	-----------	-----------	-------------

1.5 Untersuchte Phänotypisierungssubstrate

1.5.1 Mephenytoin

Physikochemische Eigenschafte

Name	3-Methyl-5-ethyl-5-phenylhydantoin
Summenformel	$C_{12}H_{14}N_2O_2$
Molmasse [g/mol]	218,11
Schmelzpunkt [°C]	135
pK _a -Wert	8,51
log P (Octanol/Wasser)	1,69
Wasserlöslichkeit bei 25°C [g/L]	1,72

Abbildung 2. Strukturformel von (S/R)-Mephenytoin

Klinische Anwendung und Pharmakodynamik

Mephenytoin (MEP) wurde 1945 als Antiepileptikum zur Behandlung von Grand Mal-, Jackson- und fokalen Anfällen eingeführt. Allerdings ist nicht Mephenytoin selbst, sondern Nirvanol (NIR), ein Phase-I-Metabolit des Mephenytoins, für den Hauptteil der antikonvulsiven Wirkung verantwortlich.¹⁵¹ Aufgrund seiner vergleichsweise hohen Toxizität ist Mephenytoin heute ein Therapeutikum der dritten Wahl und wird nur noch bei ansonsten therapierefraktären Patienten angewendet. Die Initialdosis zu Behandlungsbeginn beträgt 100 mg pro Tag. Im Rahmen einer antiepileptischen Therapie wird Mephenytoin dreimal täglich in einer Dosis von 100 mg verabreicht. Mephenytoin ist in Deutschland nicht mehr auf dem Markt.

Abbildung 3. Vermuteter stereoselektiver Metabolismus von Mephenytoin¹⁵²⁻¹⁵⁹ (Gluc: Glucuronid; UDPT: Uridin-5´-diphosphat-Glucuronosyltransferase)
Pharmakokinetik und Metabolismus

MEP wird als Racemat verabreicht und nach oraler Einnahme rasch und vollständig absorbiert. Die Plasmaeiweißbindung beträgt 60%. Die mittlere maximale Plasmakonzentration (C_{max}) nach Einnahme von 50 mg MEP wird nach 45 bis 120 Minuten erreicht und beträgt 400-600 ng/mL.¹⁵¹ Die Eliminationshalbwertzeit von MEP wird mit 8 bis 24 Stunden angegeben.¹⁶⁰

Mephenytoin besitzt ein Asymmetriezentrum in Position 5 des Hydantoinrings und sein Metabolismus verläuft streng stereospezifisch (Abbildung 3).^{152, 153} Das S-Enantiomer wird rasch und beinahe quantitativ durch CYP2C19 zu S-4OHM hydroxyliert und nach erfolgter Konjugation mit Glucuronsäure schnell renal eliminiert.¹⁵² Zu diesem metabolischen Schritt sind jedoch nur CYP2C19-EM fähig, da homozygote Träger defekter CYP2C19-Allele (PM) über kein funktionstüchtiges CYP2C19 verfügen. Ebenso sind ausschließlich CYP2C19-EM in der Lage, ein pHlabiles S-MEP-Cystein-Konjugat zu bilden.¹⁵⁴ R-MEP wird hingegen wesentlich langsamer und unabhängig vom CYP2C19-Phänotyp primär zu R-NIR Ndemethyliert.¹⁵² Das verantwortliche Enzym wurde bislang noch nicht identifiziert. Die para-Hydroxylierung von R-MEP, von der angenommen wird, dass sie durch CYP2C9 vermittelt wird, spielt eine untergeordnete Rolle.¹⁵⁵ Selbst mit Hilfe empfindlicher analytischer Assays (LLOQ=10 ng/mL) ist R-4OHM nur in den seltensten Fällen nachzuweisen.¹⁶¹ Die ausgeprägte Diskrepanz der bei CYP2C19-EM und -PM vorgefundenen 40HM-Konzentrationen in Plasma und Urin kann zur Unterscheidung der beiden Phänotypen herangezogen werden. Ein gebräuchliches Maß ist die prozentuale Wiederfindung der verabreichten Menge MEP in Form von 40HM im Urin.¹⁵⁶

Mit Hilfe humaner Lebermikrosomen und rekombinanter CYPs konnte nachgewiesen werden, dass die N-Demethylierung von S-MEP *in vitro* durch CYP2B6 als low affinity/high capacity-Enzym (K_m =1911 µM; V_{max} =3984 pmol/mg protein/min) und CYP2C9 als high affinity/low capacity-Enzym (K_m =174,1 µM; V_{max} =170,5 pmol/mg protein/min) katalysiert wird.¹⁵⁷⁻¹⁵⁹ Sie verläuft erheblich langsamer als die Hydroxylierung des S-Enantiomers, ist jedoch für CYP2C19-PM die einzige Möglichkeit zum Abbau von S-MEP und in ihrer Kinetik mit der N-Demethylierung von R-MEP vergleichbar.¹⁵² Für PM beträgt die mittlere orale Clearance von S- und R-MEP 0,029 und 0,020 L/min. Infolge dessen werden einander entsprechende Konzentrationen für beide Enantiomere im Plasma und Urin von PM gefunden.

Dagegen verfügen CYP2C19-EM infolge der bei ihnen dominierenden Hydroxylierung von S-MEP über eine im Vergleich zu R-MEP bis zu 200-fach höhere mittlere orale CL für S-MEP (orale CL= 4,7 L/min). Bei ihnen überwiegt daher ganz eindeutig die Anwesenheit von R-MEP in Plasma und Urin. Auch dieser Gegensatz kann durch enantioselektive Bestimmung des unverändert ausgeschiedenen Mephenytoins und anschließender Quotientenbildung (S-MEP/R-MEP-Quotient oder auch S/R-Ratio) zur *in vivo*-Charakterisierung der CYP2C19-Aktivität herangezogen werden.¹⁶²

R-NIR (bzw. R- und S-NIR bei CYP2C19-PM) akkumuliert über 4-6 Tage im Organismus, bevor es mit einer Halbwertzeit von 200 h eliminiert wird.¹⁵² Außerdem wird ein Teil des NIR analog zum MEP in *para*-Stellung des Phenylrings hydroxyliert. Die Reaktion läuft ebenfalls stereospezifisch und vermutlich unter Beteiligung der gleichen Enzyme wie bei der MEP-Hydroxylierung ab. Diese Tatsache leitet sich aus der fehlenden Bildung von S-4'-Hydroxynirvanol (40HN) durch CYP2C19-PM, der wesentlich rascheren Enstehung von S-40HN bei CYP2C19-EM und aus den zu vernachlässigenden Plasmakonzentrationen von R-40HN ab.¹⁵³

Anwendung zur Phänotypisierung

Mephenytoin ist das Standardsubstrat zur Phänotypisierung von CYP2C19 und konnte erfolgreich zur Untersuchung diverser Einflussfaktoren auf die Aktivität von CYP2C19 eingesetzt werden.^{31, 39, 65} In dieser Funktion ist es zudem ein häufiger Bestandteil von Phänotypisierungscocktails (siehe Tabelle 1). Seit über 20 Jahren kommt zur Phänotypisierung sowohl der S/R-Quotient unverändert ausgeschiedenen MEPs,¹⁶² als auch die Wiederfindung von 40HM in Urin zum Einsatz.¹⁵⁶ Der S/R-Quotient scheint der weniger verlässliche Phänotypisierungsparameter zu sein, da er signifikant von der Entstehung des pH- und lagerinstabilen S-MEP-Cystein-Konjugats abhängt und dadurch in Einzelfällen (1,5%) zur falschen Zuordnung des CYP2C19-Phänotypisiererstatus führt.¹⁶³ Wie aus Abbildung 3 hervorgeht, ist die Wiederfindung von 40HM in Urin dagegen unabhängig von der Enstehung labiler Metaboliten. Außerdem scheint die intraindividuelle Variabilität der S-MEP-Hydroxylierung 15% nicht zu überschreiten.^{60, 62} Daneben wurde ein klarer gene dose-Effekt, d.h. eine Genotypisierung signifikante Übereinstimmung der Resultate von und Phänotypisierung, für die 4OHM-Wiederfindung beobachtet.¹⁶⁴ Insgesamt betrachtet Anwendung 40HM-Wiederfindung erscheint die der daher vorteilhaft.

Seit Einführung der 40HM-Wiederfindung als Maß für die CYP2C19-Aktivität im Jahre 1984 gilt eine achtstündige kumulierte Urinsammlung nach vorheriger Verabreichung von 100 mg MEP als Standard. Doch trotz langjähriger Anwendung ist der Phänotypisierungsparameter "40HM-Wiederfindung" nie systematisch validiert und optimiert worden. Die optimale Dauer der Urinsammlung, fraktioniert oder kumuliert, ist daher de facto unbekannt. Weiterhin wurde bisher noch nicht untersucht, ob die ebenfalls seit 1984 standardmäßig angewandte Hydrolyse des 40HM-Glucuronids vor Beginn der Analytik zwingend notwendig ist, oder ob auch die Ausscheidung der ungebundenen Fraktion von 40HM die Aktivität von CYP2C19 ausreichend reflektiert. Zusätzlich scheint eine Dosis von 100 mg MEP speziell bei Personen mit (sehr) niedrigem Body Mass Index (BMI) – und teilweise auch bei PM – schwere sedierende Nebenwirkungen hervorzurufen.^{165, 166} Da der Einsatz von 100 mg MEP auch vor dem Hintergrund des damals vorherrschenden analytischen Standards HPLC zu betrachten ist (siehe Abschnitt Analytik), stellt sich die Frage, ob nicht auch geringere Mengen von MEP zur Phänotypisierung ausreichen.

Trotz der wachsenden Beachtung, die CYP2B6 in den letzten Jahren zugemessen wird, herrscht Ungewissheit, welches Substrat sich am besten zur dessen Phänotypisierung eignet. Da die N-Demethylierung von S-NIR *in vitro* vorzugsweise durch CYP2B6 vermittelt wird, scheint es naheliegend, MEP als duales Phänotypisierungssubstrat für CYP2C19 und CYP2B6 einzusetzen. Während jedoch der Einsatz von MEP zur *in vitro*-Aktivitätsmessung von CYP2B6 relativ etabliert ist,^{96, 97, 114, 118, 167, 168} existiert erst eine einzige Studie zur *in vivo*-Phänotypisierung.¹¹⁰

Unerwünschte Arzneimittelwirkungen

Die wichtigsten UAW, die mit einer Verabreichung von MEP in Verbindung gebracht werden, sind: Müdigkeit, Hautausschlag, Leukopenie, Fieber, Lymphadenopathie, exfoliative Dermatitis und aplastische Anämie¹⁵¹ Diese Nebenwirkungen beziehen sich jedoch auf die Dosierungen einer chronischen Therapie mit MEP. Es wurde erwartet, dass die hier im Rahmen der Phänotypisierung verabreichten 50 mg lediglich zu Müdigkeit und Übelkeit bei einem Teil der Probanden führen werden.

<u>Analytik</u>

In den letzten 20 Jahren wurden verschiedene Verfahren zur Quantifizierung von 40HM in Urin für die Hochleistungs-Flüssigkeitschromatographie (HPLC) publiziert.

Doch obwohl ihre Praxistauglichkeit durch zahlreiche Anwendungen belegt ist, sind allen Methoden die Nachteile einer umständlichen Probenaufarbeitung und einer geringen analytischen Empfindlichkeit (LLOQ zwischen 500 und 2000 ng/mL) gemeinsam.^{60, 169-171} Eine Bestimmung der Urinkonzentrationen von MEP, NIR und freiem 4OHM ist mit Hilfe dieser Methoden nicht möglich. Weiterhin wurden zahlreiche Methoden für die Gaschromatographie (GC), insbesondere zur enantioselektiven Bestimmung von S- und R-MEP entwickelt, die allesamt den Vorteil einer weitaus höheren analytischen Empfindlichkeit gegenüber der HPLC aufweisen. Jedoch erfordern auch diese Verfahren arbeitsintensive Derivatisierungs- und Aufarbeitungsprozeduren. Zudem stehen analytische Laufzeiten von 28 Minuten und mehr einem akzeptablen Probendurchsatz entgegen.¹⁷²⁻¹⁷⁶

In letzter Zeit wurden vermehrt LC-MS-Methoden zur in vivo-57 und in vitro-177-179 Quantifizierung von 40HM (und MEP) im Rahmen von Phänotypisierungscocktails veröffentlicht. Diese Methoden weisen eine nahezu 50-fach niedrigere Quantifizierungsgrenze als die konventionellen HPLC-Methoden auf. Allerdings sind diese Methoden nur für einen begrenzten Konzentrationsbereich validiert, der nicht an die tatsächlich vorgefundenen Konzentrationen von 40HM im Urin nach Verabreichung von 50 oder 100 mg MEP angepasst ist. Außerdem ist bisher für keine Methode die simultane Bestimmung von MEP und seiner beiden Phase-I-Metaboliten beschrieben. Zusätzlich bedient sich die bislang einzige Methode zur Quantifizierung 40HM Urin kostspieligen Probenaufarbeitung von in einer mittels Festphasenextraktion.¹⁷⁷

Der entscheidende Nachteil aller angeführten HPLC-, GC- und LC-MS-Methoden ist jedoch die fehlende oder unzureichende Validierung der analytischen Selektivität gegenüber co-administrierten Substanzen und potentiellen Metaboliten. Ihre Eignung für den Einsatz im Rahmen von Cocktailstudien ist daher fraglich.

1.5.2 Tolbutamid

Physikoc	hemische	e Chara	kterisier	ung

Name	1-Butyl-3-(4-methylphenylsulfonyl)harnstoff
Summenformel	$C_{12}H_{18}N_2O_3S$
Molmasse [g/mol]	270,10
Schmelzpunkt [°C]	128,5
pK _a -Wert	5,16
logP (Octanol/Wasser)	2,34
Wasserlöslichkeit bei 25°C [g/L]	0,109

Abbildung 4. Strukturformel von Tolbutamid

Klinische Anwendung und Pharmakodynamik

Tolbutamid stimuliert die Insulinausschüttung aus den β -Zellen des Pankreas, indem es ATP-gesteuerte K⁺-Kanäle hemmt und so einer Membrandepolarisierung Vorschub leistet. Es dient der Senkung erhöhter Glucosekonzentration im Plasma von Patienten mit Diabetes mellitus. Die Standarddosis beträgt 1 g pro Tag.

Metabolismus und Pharmakokinetik

Tolbutamid wird nach peroraler Gabe gut absorbiert und weist eine Bioverfügbarkeit von 85-100% auf. Im geschwindigkeitsbestimmenden Schritt des Metabolismus wird Tolbutamid durch CYP2C9 zu 4'-Hydroxytolbutamid hydroxyliert, wobei *in vitro* eine nicht unerhebliche Beteiligung (14-22%) von CYP2C19 nachgewiesen werden konnte.¹⁸⁰ Der Einfluss von CYP2C19 *in vivo* wird jedoch aufgrund des im Vergleich zu CYP2C9 wesentlich geringen Gehalts an CYP2C19 in humanen Lebern als unerheblich eingeschätzt.¹⁸¹ Das entstandene Hydroxyprodukt unterliegt einer weiteren Oxidation zu 4'-Carboxytolbutamid durch Alkohol- und Aldehydehydrogenase.¹⁸²

Anwendung zur Phänotypisierung

Mit Hilfe der auch in dieser Dissertation angeführten Studien A und B (siehe Kapitel 3.2.2) konnte nachgewiesen werden, dass die 24 h-Plasmakonzentration von Tolbutamid signifikant vom CYP2C9-Genotyp beeinflusst wird und überdies mit der oralen Tolbutamid-Clearance korreliert.¹²⁷ Diese Ergebnisse konnten unlängst durch eine andere Arbeitsgruppe bestätigt werden.¹²⁶ Die Messung der Plasmakonzentration, 24 Stunden nach Verabreichung von 125 mg Tolbutamid, birgt zahlreiche Vorteile gegenüber herkömmlichen CYP2C9-Phänotypisierungsassays und kann als validiert betrachtet werden.¹²⁷

Unerwünschte Arzneimittelwirkungen

Die häufigste und schwerste UAW von Tolbutamid ist eine überschießende Reduzierung der Blutglucose-Konzentration. Die Folgen einer Tolbutamid-induzierten Hypoglykämie können von Tremor und übermäßigem Schwitzen bis hin zur Bewusstlosigkeit und Krampfanfällen (sehr selten) reichen. Die im Rahmen der Phänotypisierung verabreichte subtherapeutische Dosis von 125 mg gilt als sicher.¹²⁷

<u>Analytik</u>

Neben zahlreichen HPLC-Assays zur Bestimmung von Tolbutamid (und seiner beiden Metabolite) in verschiedenen biologischen Matrices^{125, 183-185} wurden in den letzten Jahren mehrere LC-MS/MS-Methoden zur selektiven Bestimmung von Tolbutamid im Plasma publiziert.^{58, 127, 186} Letztere weisen allesamt einen angepassten analytischen Messbereich und einfache Probenaufarbeitungsverfahren auf. Eine einfache Adaption dieser Methoden verbietet sich jedoch, da ihre analytische Selektivität nicht explizit für die in dieser Dissertation angeführten Cocktailsubstanzen validiert ist.

1.5.3 Coffein

1,3,7-Trimethlyxanthin
$C_8H_{10}N_4O_2$
194,08
238
10,4
-0,07
21,6

Abbildung 5. Strukturformel von Coffein

Klinische Anwendung und Pharmakodynamik

Coffein (COF) erregt als Antagonist von A_{1} - und A_{2A} -Adenosinrezeptoren das Zentralnervensystem, wirkt psychoanaleptisch, in größeren Dosen auch erregend auf das Atem- und Vasomotorenzentrum. Es wirkt positiv inotrop, in kleinen Dosen negativ und in höheren Dosen positiv chronotrop. Zur Wirkung am Herzen trägt außerdem die unselektive Hemmung von Phosphodiesterasen bei. Es ist Inhaltsstoff zahlreicher Erfrischungsgetränke, stimulierender Bestandteil von Tabletten mit sedierenden H₁- Antihistaminika (Dosis 50 bis 200 mg) und in Kombination mit Codein oder Paracetamol in Schmerzmitteln enthalten (Dosis 30 bis 65 mg).

Metabolismus und Pharmakokinetik

Durch Beteiligung zahlreicher Phase-I- und Phase-II-Enzyme ist der Metabolismus von COF sehr komplex. Es konnte jedoch gezeigt werden, dass etwa 95% der gesamten Coffein-Plasmaclearance durch CYP1A2 vermittelt wird.¹⁸⁷ Die Hauptmetaboliten von Coffein sind Paraxanthin >> Theobromin > Theophyllin.

Anwendung zur Phänotypisierung

Coffein ist das einzige standardmäßig eingesetzte Substrat zur *in vivo*-Charakterisierung der CYP1A2-Aktivität und für diese Anwendung erschöpfend validiert. Als Phänotypisierungsparameter hat sich der PAX/COF-Quotient, d.h. das Verhältnis der Plasmakonzentration des primären Coffeinabbauprodukts Paraxanthin (PAX) zu Plasmakonzentration der Muttersubstanz sechs Stunden nach Einnahme von 150 mg COF, bewährt.^{188, 189}

Unerwünschte Arzneimittelwirkungen

Relevante UAW werden nach Einnahme einer Phänotypisierungsdosis von 150 mg Coffein (entspricht ungefähr der Menge in 1,5 Tassen Kaffee) nicht erwartet.

<u>Analytik</u>

Ähnlich wie für Tolbutamid existieren bereits empfindliche LC-MS/MS-Methoden zur Quantifizierung von Coffein und Paraxanthin im Rahmen von Phänotypisierungscocktails.^{57, 58} Darüber hinaus ist eine Methode zur simultanen Bestimmung von Coffein und 11 seiner Metabolite publiziert.¹⁹⁰ In Analogie zu Tolbutamid verbietet sich jedoch die einfache Adaption dieser Methoden aufgrund nicht ausreichend validierter Selektivität gegenüber den im Rahmen dieser Dissertation eigesetzten Cocktailsubstraten.

2 Ziele der Arbeit

Im Mittelpunkt dieser Arbeit stand die Validierung der Wiederfindung von 4'-Hydroxymephenytoin im Urin als Maß für die Aktivität von CYP2C19 *in vivo*.

Zu diesem Zweck sollte zunächst ein einfaches und verlässliches analytisches Verfahren zur Konzentrationsbestimmung von Mephenytoin und seiner beiden Phase-I-Metabolite, Nirvanol und 4'-Hydroxymephenytoin, im Urin entwickelt werden. Da es speziell für Messungen im Rahmen von Cocktailsstudien bestimmt war, sollte ein besonderes Augenmerk auf die Validierung der analytischen Selektivität gelegt werden.

Im nächsten Schritt sollte die analytische Methode zur Konzentrationsbestimmung von Mephenytoin, Nirvanol und 4'-Hydroxymephenytoin im Urin von insgesamt 54 Teilnehmern von 4 verschiedenen Cocktail-Phänotypisierungsstudien eingesetzt werden. Dabei sollte zur Überprüfung der Notwendigkeit einer initialen Deglucuronidierung von 4'-Hydroxymephenytoin sowohl der Anteil des ungebunden ausgeschiedenen Metaboliten als auch die Gesamtausscheidung von 4'-Hydroxymephenytoin bestimmt werden.

Mit Hilfe der gewonnenen Daten sollte danach die Evaluierung des optimalen Phänotypisierungsmaßes für CYP2C19 durchgeführt werden. Die Ergebnisse der Phänotypisierung sollten dazu durch eine Genotypisierung der Probanden verifiziert werden.

Um die potentielle Eignung von Mephenytoin als duales Phänotypisierungssubstrat für CYP2C19 und CYP2B6 zu untersuchen, sollte zusätzlich getestet werden, ob sich die N-Demethylierung von Mephenytoin zu Nirvanol und dessen Wiederfindung im Urin für die *in vivo*-Charakterisierung der Aktivität von CYP2B6 eignet.

Außerdem sollte ein robustes und sensitives Verfahren zur Quantifizierung von Coffein, Paraxanthin und Tolbutamid im Plasma entwickelt und validiert werden. Die Methode sollte zur Phänotypisierung von CYP1A2 und CYP2C9 bei den Probanden der Studien C und D dienen (siehe Kapitel 3.2.2).

3 Material und Methoden

3.1 Materialien

3.1.1 Referenzsubstanzen

Mephenytoin	TRC Inc., North York, Kanada
Nirvanol	TRC Inc., North York, Kanada
4'-Hydroxymephenytoin	TRC Inc., North York, Kanada
4'-Methoxymephenytoin	Ultrafine Chemicals, Manchester, UK
Coffein	Sigma-Aldrich, St. Louis, USA
Paraxanthin	Sigma-Aldrich, St. Louis, USA
Tolbutamid	Sigma-Aldrich, St. Louis, USA
Chlorpropamid	Ultrafine Chemicals, Manchester, UK
7-(β-Hydroxyethyl)theophyllin	Sigma-Aldrich, St. Louis, USA

3.1.2 Reagenzien

Acetonitril, HPLC Gradient Grade	Carl Roth GmbH & Co., Karlsruhe
Ameisensäure, 99% p.a.	Merck KGaA, Darmstadt
Ammoniumacetat, p.a.	Carl Roth GmbH & Co., Karlsruhe
β-Glucuronidase, Typ VII-A	Sigma-Aldrich, St. Louis, USA
Essigsäure, 98-99% p.a.	Merck KGaA, Darmstadt
Methanol, HPLC Gradient Grade	Carl Roth GmbH & Co., Karlsruhe
Milli-Q [®] -Wasser (s. Kapitel 3.2.4)	Millipore, Eschborn
Natriumchlorid, p.a.	Carl Roth GmbH & Co., Karlsruhe

3.1.3 Hergestellte Puffer und Lösungen

Ammoniumacetatpuffer

Zur Herstellung von 1 L 0,2 mM-Ammonimacetatpuffer wurden 15,46 mg Ammoniumacetat eingewogen und in 1 L Wasser gelöst. Die Einstellung auf einen pH-Wert von 4,75 erfolgte mit Essigsäure (98-99%). Der Puffer wurde bei +4°C gelagert.

β-Glucuronidase-Lösung

Zur Herstellung von β -Glucuronidase-Lösung wurde das lyophilisierte Enzym in 0,2%iger Natriumchlorid-Lösung in einer Konzentration von 3200 Einheiten/mL gelöst. Die Lösung wurde nach Aliquotierung bis zu ihrer Verwendung bei –20°C gelagert.

3.1.4 Geräte	
Analysenwaage	Sartorius MC1 RC D-OD1
	Sartorius AG, Göttingen
HPLC-Säulen	<u>Mephenytoin-Analytik</u> Aquasil C18 (100 x 3,0 mm; 5µm) mit entsprechender Vorsäule (10 x 3,0 mm; 5µm)
	Thermo Electron Runcorn UK
	<u>Coffein-/Tolbutamid-Analytik</u> Hypersil Gold (50 x 2,1 mm; 5μm) mit entsprechender Vorsäule (10 x 3,0 mm ; 5μm)
	Thermo Electron, Runcorn, UK
Kühlzentrifuge	Heraeus Labofuge 400 R Thermo Electron, Dreieich
pH-Meter	pH 323 WTW GmbH, Weilheim
Pipetten	Eppendorf Research [®] (10-100 mL und 100-1000 mL) Eppendorf AG, Hamburg
	Eppendorf Multipette [®] (100-10.000 mL) Eppendorf AG, Hamburg
	Nichiryo Model 5000 (100-1000 mL) Nichiryo Co., Tokyo, Japan
Tiefkühlschränke	Deep Freezer VX 570 S Thermo Electron, Dreieich
	Forma Bio-Freezer 8281 Forma Inc., Marietta, USA
	GSL 351./GS 35 K O Siemens Elektrogeräte, Essen
Ultraschallbad	Transonic 780 Elma GmbH, Singen

Vortex-Mixer	Reagenzien-Mixer Eckli, Zürich, Schweiz
Wasseraufarbeitung	Milli-Q®-Plus Millipore, Eschborn
Wasserbad	Julabo P Julabo GmbH, Seelbach
Zentrifugalverdampfer	Jouan RC 10.22 Thermo Electron, Dreieich
Zentrifuge	Centrifuge 5417 C Eppendorf AG, Hamburg
LC-MS/MS-System	Autosampler: Surveyor Autosampler
(s. Kapitel 3.3.1)	<u>LC-Pumpe:</u> Surveyor MS Pump <u>MS/MS-Detektor:</u> TSQ-Quantum <u>Steuerungssoftware:</u> Finnigan Xcalibur 1.3 <u>Quantifizierungssoftware:</u> LCQuan 1.3 Thermo Electron, San Jose, USA

3.1.5 Verbrauchsmaterialien

Autosampler Vial (1,5 ml) mit Kappe	Thermo Electron, Dreieich
Micro Insert für Autosampler Vial	Thermo Electron, Dreieich
Combitips für Multipette [®] (2,5 und 5 mL)	Eppendorf AG, Hamburg
EDTA-Monovetten 9 mL	Sarstedt AG & Co., Nürmbrecht
Li ⁺ -Heparin-Monovetten	Sarstedt AG & Co., Nürmbrecht
Pipettenspitzen (100 und 1000 μ L)	Brand GmbH, Wertheim
Probengefäße, konisch (1,5 und 2 mL)	Sarstedt AG & Co., Nürmbrecht

3.2 Phänotypisierungsstudien

3.2.1 Studienpopulation

Insgesamt 54 gesunde, männliche Probanden kaukasischer Abstammung nahmen an vier Cocktailstudien (A, B, C und D) zur Phänotypisierung wichtiger arzneistoffmetabolisierender Enzyme und Transporter teil. Zwei Probanden nahmen an mehr als einer Studie teil. Dadurch sind die Probanden B09 und B11 identisch mit Proband D16 bzw. C10. In beiden Fällen wurden ausschließlich die Daten der ersten Studienteilnahme zur weiteren Auswertung herangezogen. Tabelle 9 enthält die demographische Statistik aller vier Studienpopulationen und Angaben zur Anzahl der Raucher unter den Probanden. (Eine detailierte Auflistung der individuellen Daten aller Studienteilnehmer findet sich im Anhang.)

Tabelle 9. Demographische Statistik und Raucherstatus der Studienpopulationen

Studie	Anzahl der Probanden (Raucher ^b)	Alter ^a [Jahre]	Körpergröße ^a [cm]	Körpergewicht ^a [kg]
А	10 (5)	31 (25-40)	185 (177-199)	85 (74-98)
В	16 (0)	29 (23-42)	182 (171-195)	78 (71-101)
С	12 (2)	36 (24-49)	181 (172-198)	80 (60-103)
D	16 (0)	29 (21-43)	182 (173-194)	80 (66-99)
Total	54 ^c (7)	31 (21-49)	182 (171-199)	81(60-103)

a: Arithmetischer Mittelwert (Bereich) zum Zeitpunkt der Voruntersuchungen

b: Konsum < 3 Zigaretten pro Tag

c: Nur 52 verschiedene Studienteilnehmer. Proband B09 und B11 sind identisch mit Proband D16 und C10.

Alle vier Studien wurden durch die unabhängige Ethikkommission der Medizinischen Fakultät der Universität zu Köln genehmigt und nach den Regularien der Deklaration von Helsinki sowie den entsprechenden europäischen und internationalen Richtlinien durchgeführt. Alle Probanden gaben eine schriftliche Einverständniserklärung zur Studienteilnahme ab, nachdem sie zuvor über die potentiellen Risiken einer Partizipation aufgeklärt worden waren.

Die Gesundheit der Probanden wurde im Rahmen von Vor- und Nachuntersuchungen überprüft. Diese Untersuchungen bestanden aus einer gründlichen körperlichen Untersuchung, der Messung von Vitalzeichen, dem Anfertigen eines Elektrokardiogramms und umfassenden klinischen Labortests. Während der Studientage wurden die Probanden in definierten Abständen nach UAW befragt. Zudem wurde ihr Wohlbefinden durch regelmäßiges Messen von Blutdruck und Pulsrate überwacht. Um potentielle Interaktionen mit dem Cytochrom P450-System zu vermeiden, wurden alle Studienteilnehmer angewiesen, sowohl auf anstrengende körperliche Betätigungen, als auch auf den Verzehr Methylxanthin-, Grapefruit- oder Alkoholhaltiger Nahrungsmittel bzw. Getränke von mindestens 48 Stunden vor, bis 48 Stunden nach Verabreichung des Phänotypisierungscocktails zu verzichten. Während Studie C und D war außerdem der Konsum chininhaltiger Getränke bis zum Ende der Nachuntersuchungen untersagt. Die Einnahme anderer Medikamente war von 2 Wochen vor Beginn bis zur Beendigung der Studien verboten.

3.2.2 Phänotypisierungscocktail und -prozedur

Allen Studien war die Verabreichung eines Cocktails mit mindestens fünf verschiedenen Phänotypisierungssubstraten gemeinsam. Studie A bestand aus einem einzigen Durchgang. Bei den restlichen Studien handelte es sich um Interaktionsstudien, in deren Verlauf der Einfluss eines Testpräparates (Testperiode) auf die Aktivität ausgewählter CYPs und Arzneistofftransporter gegenüber Placebo (Referenzperiode) untersucht wurde. Tabelle 10 führt die verwendeten Cocktailbestandteile und ihre jeweiligen Dosierungen auf.

Substrat	Studie A	Studie B	Studie C	Studie D
Amoxicillin	100 mg	-	-	-
Coffein	150 mg	150 mg	150 mg	150 mg
Chloroxazon	250 mg	-	-	-
Dextromethorphan	30 mg	30 mg	30 mg	30 mg
Digoxin	0.5 mg	-	0.5 mg	-
Mephenytoin	50 mg	50 mg	50 mg	50 mg
Midazolam p.o.	2 mg ^a	2 mg ^b	2 mg ^b	2 mg ^b
Midazolam i.v.	1 mg ^a	1 mg ^b	1 mg ^b	1 mg ^b
Nikotin	0.5 mg	-	-	-
Tolbutamid	125 mg	125 mg	125 mg	125 mg

Tabelle 10. Bestandteile der Phänotypisierungscocktails und ihre Dosierungen

a: Studie A: Erfassung der hepatischen und intestinalen CYP3A4-Aktivität: Zuerst 1 mg Midazolam i.v., 90 min später 2 mg Midazolam p.o.

b: Studie B, C und D: Erfassung der intestinalen und hepatischen CYP3A4-Aktivität: Zuerst 2 mg Midazolam p.o., 240 min später 1 mg Midazolam i.v.

Um eine korrekte Urinsammlung sicherzustellen, mussten die Probanden vor Einnahme des Cocktails ihre Blase vollständig leeren. Danach wurden ihnen (neben anderen Substraten) die für diese Arbeit relevanten Phänotypisierungssubstrate MEP, COF und TOL wie folgt verabreicht:

- 50 mg MEP, entsprechend einer halbierten Tablette Epilan Gerot[®] (Gerot Pharmazeutika, Wien, Österreich). Um die tatsächlich verabreichte Menge MEP zu bestimmen, wurde jede Tablettenhälfte gewogen.
- 150 mg COF in Form von 3 Tabletten Percoffedrinol[®] (Herbert J. Passauer GmbH & Co. KG, Berlin)
- 125 mg TOL, entsprechend einer geviertelten Tablette Tolbutamid RAN[®] (R.A.N. Novesia AG, Neuss). Um die tatsächlich verabreichte Menge TOL zu bestimmen, wurde jedes Tablettenviertel gewogen.

Studie A war eine offene, Ein-Perioden-Pilotstudie zur Etablierung eines niedrig dosierten Phänotypisierungscocktails. Morgens um 7:00 Uhr erhielten zehn gesunde, kaukasischer junge Probanden Abstammung den oralen Anteil des Phänotypisierungscocktails mit Ausnahme von Midazolam. Direkt im Anschluss wurde 1 mg Midazolam intravenös injiziert. Nach 90 Minuten folgte die Adminstration von 2 mg Midazolam p.o.. Allen Studienteilnehmern war die Einnahme fester Nahrung von 10 Stunden vor bis 5 Stunden nach Cocktaileinnahme untersagt und auch die Einnahme von Flüssigkeit in Form von stillem Wasser war limitiert. Die weiterführende Einnahme von Nahrung und Flüssigkeit war standardisiert.

<u>Studie B</u> war eine offene, Placebo-kontrollierte Interaktionsstudie im zweifachen Crossover-Design und primär für die Erstellung eines Interaktionsprofils von Propiverin *in vivo* bestimmt.⁶⁸ Sechzehn gesunde, männliche Nichtraucher wurden sechs Tage lang jeweils morgens und abends im Abstand von ungefähr 12 Stunden ambulant mit Propiverin (15 mg, 2x täglich) oder Placebo vorbehandelt. Am Morgen des siebenten Studientags wurde der orale Anteil des Cocktails zusammen mit einer weiteren Dosis Propiverin bzw. Placebo eingenommen. Vier Stunden später wurden allen Probanden 1 mg Midazolam intravenös appliziert. Die Einnahme von fester Nahrung und Flüssigkeit in Form von Stillem Wasser war standardisiert und die *wash out*-Phase zwischen den beiden Studienperioden betrug zwei Wochen.

<u>Studie C</u> war eine randomisierte, nicht verblindete Arzneistoff-Cocktail-Interaktionsstudie im doppelten Crossover-Design mit 12 männlichen Teilnehmern kaukasischer Abstammung. Der Wirkstoff von Studie C befindet sich noch in der klinischen Entwicklung und darf daher aus patenschutzrechtlichen Gründen nicht gennant werden. An Tag 1 und 2 der Studie erhielten die Probanden jeweils morgens eine Dosis des Testpräparates oder Placebo. Zwei Stunden nach der zweiten Dosis wurde der orale Anteil des Phänotypisierungscocktails verabreicht. Nach weiteren vier Stunden wurden allen Probanden 1 mg Midazolam intravenös appliziert. Allen Studienteilnehmern war die Einnahme fester Nahrung von 10 Stunden vor bis 6 Stunden nach Cocktaileinnahme untersagt und auch die Einnahme von Flüssigkeit in Form von Stillem Wasser war limitiert. Die weiterführende Einnahme von Nahrung und Flüssigkeit war standardisiert. 48 Stunden nach Cocktailverabreichung wurden die Probanden aus der klinischen Obhut entlassen. Jeweils 86 und 158 Stunden nach Cocktailverabreichung mussten alle Probanden für zwei stationäre, nächtliche Urinsammlungen die Probandenstation wieder aufsuchen. Die *wash out*-Phase zwischen den beiden Studienperioden betrug 4 Wochen.

<u>Studie D</u> war eine randomisierte, doppelblinde Cocktailphänotypisierungsstudie im zweifachen Crossover-Design. Auch der Wirkstoff von Studie D darf aus patentschutzrechtlichen Gründen an dieser Stelle nicht genannt werden. Vor Gabe der Phänotypisierungscocktails wurde jeder der 16 männlichen, kaukasischen Nichtraucher über 6 Tage, jeweils morgens ambulant mit Testmedikation oder Placebo, vorbehandelt. Am Morgen von Tag sieben wurde dann der orale Part des Cocktails zusammen mit der letzten Dosis des Testpräparates bzw. Placebo eingenommen. Vier Stunden später wurde allen Probanden 1 mg Midazolam intravenös appliziert. Die Einnahme von fester Nahrung und Flüssigkeit in Form von Stillem Wasser war standardisiert. Die *wash out*-Phase zwischen den beiden Studienperioden betrug 2 Wochen.

Die Studien A und B dienten der Etablierung des Phänotypisierungscocktails und hatten demzufolge Pilotcharakter. Anhand der durch sie gewonnenen Daten sollte insbesondere die Notwendigkeit einer initialen β -Glucuronidasebehandlung des Urins untersucht, sowie kumulierte und fraktionierte Urinsammelperioden gegeneinander verglichen werden. Studie B diente darüber hinaus zur Gewinnung erster Informationen zur intraindividuellen Variabilität der 4OHM-Ausscheidung. (Überdies bildeten die Studien A und B die Datengrundlage für die Validierung der 24 h-Plasmakonzentration von TOL als CYP2C9-Phänotypisierungsparameter.¹²⁷)

Die vornehmliche Aufgabe von Studie C im Rahmen dieser Dissertation bestand in der Generierung zusätzlicher Daten, zur Bestätigung der mit Hilfe von Studie A und B gewonnenen Informationen zur Selektivität und Variabilität der 4OHM-Ausscheidung. Durch die siebentägige Überwachung der Urinausscheidung und die lange Auswaschphase zwischen den Studienperioden diente sie darüber hinaus zur Evaluierung der intraindividuellen Variabilität der NIR-Exkretion. Aufgrund fehlender Genotypisierung konnte Studie D nur zur Bestätigung der zuvor erlangten Daten zur intraindividuellen Variabilität der 4OHM-Ausscheidung herangezogen werden.

3.2.3 Urinsammlung

Der Urin wurde in allen Studien in 2-Liter-Kunststoffbehältern gesammelt. Während der Sammlung wurden die Behälter auf +4°C gekühlt. Vor Beginn des jeweils folgenden Sammelintervalls waren die Probanden angehalten, ihre Blase vollständig zu leeren. Die Anzahl und Dauer der einzelnen Sammelperioden differierte beträchtlich zwischen den vier Studien:

- Studie A: Predose, 0-2, 2-4, 4-6, 6-8, 8-12 und 12-24 h
- Studie B: Predose, 0-2, 2-4, 4-6, 6-8, 8-12, 12-16 und 16-24 h
- Studie C: Predose, 0-4, 4-8, 8-12, 12-16, 16-24, 24-36, 36-48, 86-94 und 158-166 h
- Studie D: Predose, 0-6 und 6-12 h

Die exakte Dauer jedes Sammelintervalls und der pH-Wert des Urins wurden schriftlich festgehalten. Zur Volumenbestimmung des Urins wurden die Behälter vor und nach der Befüllung gewogen und von einer mittleren Dichte von 1 g/mL Urin ausgegangen. Anschließend wurden mehrere Aliquots zu 10 mL in Plastikröhrchen gefüllt und bis zur Analyse bei -80°C gelagert.

3.2.4 Blut- und Plasmasammlung

Für die Genotypisierung wurde allen Probanden vor der ersten Verabreichung von Studienmedikation eine Vollblutprobe in Monovetten mit Ethylendiamintetraessigsäure (EDTA-Monovetten 9 mL, Sarstedt AG & Co., Nürmbrecht) abgenommen.

Nur Studie C und D: Zur Phänotypisierung von CYP1A2 und CYP2C9 wurde den Probanden je eine Plasmaprobe vor und sechs Stunden (CYP1A2) bzw. 24 Stunden (CYP2C9) nach Verabreichung von Coffein und Tolbutamid in Lithium-HeparinMonovetten (Sarstedt AG & Co., Nürmbrecht) abgenommen. Nach Plasmaherstellung in der Kühlzentrifuge bei +4°C und Aliquotierung in Plastikröhrchen wurden die Proben bis zur Analyse bei -80°C gelagert.

3.3 Bestimmung von Mephenytoin und seiner beiden Phase-I-Metabolite im Urin

3.3.1 Methodenentwicklung

Die Methodenentwicklung erfolgte an einem LC-MS/MS-System der Firma Thermo Electron (San Jose, USA), das aus einem Surveyor Autosampler mit temperaturkontrollierter Probenlagerung und Säulenofen, einer Surveyor MS-Pumpe und einem TSQ Quantum Triple Quadrupol-Massenspektrometer mit einem Interface zur Elektrospray-Ionisierung (ESI) bestand. Das System wurde durch die implementierte Xcalibur-Software (Version 1.3) kontrolliert.

Zur Entwicklung der geeigneten MS/MS-Parameter wurden wässrige Stammlösungen von MEP, NIR, 4OHM und des internen Standards (ISTD) 4'-Methoxymephenytoin (4MME) in einem Gemisch von Wasser und MeOH (80:20 v/v) mit Konzentrationen von ca. 1000 ng/mL hergestellt. Hieraus erfolgte die Verdünnung zu einer wässrigen Gesamtstammlösung mit einer Konzentration von 100 ng/mL.

Für jeden Analyten wurde durch Direktinfusion der Einzelstammlösungen und mit Hilfe der Quantum Tune Master-Software (Thermo Electron, San Jose, USA) das Tochterionen-Fragment mit der höchsten Signalintensität detektiert. Anschließend wurden die optimalen MS/MS-Bedingungen durch Direktinfusion der Einzelstammlösungen und Loop-Injektionen der Gesamtstammlösung ermittelt. Zur Optimierung des Selected Reation Monitorings (SRM) wurden zu diesem Zweck folgende Parameter sequentiell variiert:

- Ionisierungsquelle:
 - Ionisierungsenergie
 - Mantelgas (*sheath gas*)-Fluss (Stickstoff)
 - Hilfsgas (aux gas)-Fluss (Fluss)
- Detektor:
 - Temperatur der Ionentransferkapillare
 - Kollisionsenergie (CE)
 - Kollisionsgas-Fluss (Argon)

Die chromatographische Trennung der Analyten wurde durch Flussinjektion wässriger Stammlösungen und gespikter, aufgearbeiteter Urinproben entwickelt. Das Verfahren wurde durch Variation verschiedener Säulenmaterialen, der Laufmittelzusammensetzung und -flussgeschwindigkeit, der Temperatur des Säulenofens und des zeitlichen Verlaufs des Laufmittelgradienten optimiert.

die Entwicklung eines einfachen robusten Verfahrens Für und zur orientierender Probenaufarbeitung nach Ermittlung der maximalen wurde Urinkonzentrationen bei 3 Probanden der Studie B die geeignetste Verdünnung des Urins bestimmt. Um die Dauer der optimalen Inkubationsperiode zur kompletten Degluguronidierung von 40HM-Glucuronid zu ermitteln, wurden sechs Verumproben der Studie B (2-4 h-Sammelintervall) für jeweils 3, 6, 12 und 24 h mit β-Glucuronidase-Stammlösung inkubiert. Es stellte sich heraus, dass bereits eine 3-stündige Inkubation zur vollständigen Hydrolyse des Konjugats ausreichte. Aus Sicherheitsgründen wurde die Inkubationszeit auf 6 h verlängert. Außerdem wurde überprüft, ob es durch die thermische Belastung während der Inkubation zu einem Konzentrationsabbau der Analyten kommt. Zu diesem Zweck wurden drei Sätze Qualitätskontrollproben mit β-Glucuronidase inkubiert und mit zwei Sätzen nicht vorbehandelter Kalibrierproben vermessen. Da es zu keiner signifikanten Konzentrationsabnahme kam, wurden alle Qualitätskontrollproben und Kalibrierproben auf zeit- und arbeitsschonende Weise ohne vorherige Deglucuronidierung aufgearbeitet.

3.3.2 Herstellung von Stamm- und Arbeitslösungen

3.3.2.1 Matrix

Arzneistofffreier Urin (Leerurin) von sechs gesunden weiblichen und männlichen Mitarbeitern des Instituts für Pharmakologie der Universität zu Köln wurde, mit Ausnahme eines geringen Volumens zur Validierung der Selektivität, gepoolt, in geeignete Volumina aliquotiert und bis zu seiner Verwendung bei –20°C gelagert.

3.3.2.2 Stamm- und Arbeitslösungen

Zur Herstellung der Stammlösungen von MEP, NIR und 4OHM wurden jeweils 2,5 mg Substanz in 5 mL einer Mischung von 0,2M-Ammoniumacetat-Puffer mit MeOH (80:20 v/v) gelöst. Dabei erfolgte die Einwaage für Kalibrier- und Qualitätskontrollproben getrennt.

Zwei separate Gesamtstammlösungen in den Konzentrationen 10000 ng/mL (Kalibrierproben) und 9000 ng/mL (Qualitätskontrollproben) wurden durch geeignete Mischung und Verdünnung der jeweiligen MEP-, NIR und 4OHM-Stammlösungen mit arzneistofffreiem Urin hergestellt. Beide Lösungen dienten gleichzeitig als

Kalibrierstandard bzw. Qualitätskontrollproben mit der jeweils höchsten Konzentration (CS1 und QC1).

Sieben weitere Kalibrierstandards (CS) und drei Qualitätskontrollproben (QC) wurden durch geeignete Verdünnung der entsprechenden Gesamtstammlösungen mit Leerurin produziert. Die Urinmatrix wurde dabei mit weniger als 1% MeOH (v/v) verdünnt. Die nominellen Konzentrationen betrugen 10000 ng/mL, 5000 ng/mL, 1500 ng/mL, 500 ng/mL, 150 ng/mL, 50 ng/mL, 25 ng/mL und 15 ng/mL für die Kalibrierstandards 1 bis 8 und 9000 ng/mL, 3000 ng/mL, 30 ng/mL und 20 ng/mL für die Qualitätskontrollproben 1 bis 4. Alle Stamm- und Arbeitslösungen wurden aliquotiert und bei –20°C gelagert.

3.3.2.3 ISTD-Stammlösung

Der interne Standard 4MME wurde mit einer Konzentration von 5000 ng/mL in Methanol gelöst. Die Stammlösung wurde aliquotiert und bei –20°C gelagert.

3.3.3 Probenaufarbeitung

Folgendes Aufarbeitungsschema galt für alle CS- und QC-Proben, sowie alle Probandenproben der Studien A und B, die ohne vorherige Inkubation mit β -Glucuronidase gemessen wurden: Nach Auftauen und zehnsekündigem Vortexmischen wurde 50 µL eines Aliquots Arbeitslösung bzw. Probandenurin zu je 250µl 0,2M-Ammoniumacetatpuffer (pH 4,75) und 700 µL ISTD-Stammlösung in ein verschließbares 1,5 mL-Probenröhrchen pipettiert. Nach zehnsekündigem Schütteln auf dem Vortex-Mixer und Zentrifugation bei Raumtemperatur (10 min, 14000 g) wurden 100 µL des Überstands in ein Autosampler Vial mit Micro Insert gefüllt.

Für eine initiale Vorbehandlung der Probandenproben mit β-Glucuronidase wurden die Proben nach dem Auftauen für 10 sec Vortex-gemixt. Danach wurden 125 μ L 0,2M-Ammoniumacetatpuffer (pH 4,75) und 125 μ L β-Glucuronidase-Stammlösung zu 50 μ L Urin in ein verschließbares 1,5 mL-Probenröhrchen gegeben. Die Probenröhrchen wurden fest verschlossen, um ein Verdampfen ihres Inhalts zu vermeiden, und für sechs Stunden bei 37°C in einem Wasserbad inkubiert. Nach Beendigung der Inkubation diente die Zugabe von 700 μ L methanolischer ISTD-Lösung gleichzeitig zur Präzipitation der β-Glucuronidase. Der weitere Ablauf der Aufarbeitung war indentisch mit dem für nicht deglucuronidierte Proben.

3.3.4 Chromatographie

Die Chromatographie wurde mit einer Surveyor MS-Pumpe mit einem Rheodyne Sechskanalventil im Partial Loop-Modus betrieben. Zum Schutz der analytischen Trennsäule wurde stets mit einer geeigneten Vorsäule gearbeitet. Laufmittel A bestand aus einer Mischung von 5mM-Ammoniumacetatpuffer/ACN/MeOH in Verhältnis 90:5:5 (v/v/v). Laufmittel B bestand aus 5mM-Ammoniumacetatpuffer/ACN/MeOH im Mischungsverhältnis 10:45:45 (v/v/v). Folgende HPLC-Bedingungen wurden gewählt:

Analytische Trennsäule	Aquasil C18 (100 x 3,0 mm; 5µ)
Vorsäule	Aquasil C18 (10 x 3,0 mm; 5µ)
Autosampler	
Probeninjektionsvolumen	20 µL
Spülflüssigkeit	МеОН
Spülzyklus	nach jeder Injektion
Spülvolumen Dosierspritze	400 µL
Spülvolumen Spritzennadel	400 µL
Temperatur Säulenofen	30°C
Temperatur Probentrays	5°C
LC-Pumpe	
Flussrate	300 µL/min

Flussrate

Stopzeit

9 min

Abbildung 6. Schematische Darstellung des für die Quantifizierung von MEP, NIR und 4OHM verwendeten Laufmittelgradientens. (A. Eluent A; B: Eluent B)

Zur chromatographischen Separation der Analyten von der Probenmatrix wurde ein linearer Laufmittelgradient eingesetzt. Die Probe wurde dazu zunächst mit 100% Laufmittel A isokratisch eluiert. Nach 1 min, wurde die Laufmittelzusammensetztung innerhalb von 2 min linear auf 100% Eluent B angehoben und 3,5 min konstant gehalten. Anschließend wurde innerhalb von 1 min die Ausgangskonzentration von 100% Laufmittel A wiederhergestellt und zur Equilibrierung der Säule über zusätzliche 1,5 min gehalten (Abbildung 6).

Abbildung 7. Chromatogramm einer Kalibrierprobe 3 (Konz. 1500 ng/mL)

Eine Blockade der Ionentransferkapillare während langer Mesequenzen wurde mittels eines Schaltventils (divert valve) vermieden. Dieses leitete den anfangs stark matrixhaltigen Laufmittelstrom während der ersten 3,5 min in einen Abfallbehälter. Erst danach wurde der Laufmittelstrom in den angekoppelten MS/MS-Detektor gespült. Die Retentionszeiten konnten je nach Nutzungsgrad der eingesetzten Trennsäule in einem gewissen Rahmen variieren, betrugen aber im Mittel 5,2 min für MEP, 5,0 min für NIR, 4,7 min für 4OHM und 5,3 min für den ISTD. Abbildung 7 zeigt ein typisches Chromatogramm einer Kalibrierprobe 3 (1500 ng/mL).

3.3.5 MS/MS-Detektion

Das TSQ Quantum Triple Quadropol-Massenspektrometer mit der angeschlossenen ESI-Quelle arbeitete im Selected Reaction Monitoring-Modus für negativ geladene

Ionen. Als Sheath und Auxiliary Gas wurde Stickstoff (Reinheitsgrad 5.0) mit einem Druck von 30 bzw. 10 Hilfseinheiten (arbitrary units) angewendet. Als Kollisionsgas wurde Argon (Reinheitsgrad 5.0) mit einem Druck von 1,5 Torr eingesetzt. Die Spannung des ESI-Sprays wurde auf 3,6 kV, die Temperatur der Ionentransferkapillare auf 400°C eingestellt. Zusätzlich zur ESI-Ionisierung wurde eine leichte Spannung von 8,0 V zur Kollisions-induzierten Dissoziation (CID) eventuell entstandener Lösungsmittelcluster an die Quelle angelegt. Folgende SRM-Übergänge von [M-H]⁻-Mutterionen zu Tochterionen wurden zur Detektion der drei Analyten und des internen Standards verwendet (Tabelle 11):

Tabelle 11. SRM-Übergänge und Kollisionsenergien zur MS/MS-Detektion von MEP, NIR,4OHM und 4MME (ISDT)

Analyt	SRM-Übergang [m/z]	Kollisionsenergie [eV]
Mephentoin	217,11 → 188,10	22
Nirvanol	203,09 → 174,10	24
4'-Hydroxymephenytoin	233,00 → 190,10	20
4'-Methoxymephenytoin	247,02 → 203,10	28

Als massenspektrometische Auflösung, gemessen als Halbwertsbreite (FWHM), wurden für den ersten und dritten Quadrupol (Q1 und Q3) 0,70 Da gewählt. Für alle SRM-Übergange wurde eine Scanweite von 0,60 Da verwendet. Die Zeit eines SRM-Scans betrug 0,200 sec.

3.3.6 Peakintegration

Alle LC-MS/MS-Peaks wurden automatisch durch die Quantifizierungssoftware LCQuan (Version 1.3) unter Nutzung des ICIS Peak Detektion Algorhitmus integriert. Alle Chromatogramme wurden optisch überprüft und, falls notwendig, manuell nachintegriert.

3.3.7 Kalibrierung

Die Kalibriergeraden wurden mit Hilfe von zwei Sätzen Kalibrierstandards erstellt, welche jeweils am Anfang und am Ende einer Probensequenz analysiert wurden. Der nominelle Konzentrationsbereich lag dabei zwischen 15 und 10000 ng/mL. Die Berechnung der 1/x-gewichteten, linearen Kalibriergeraden basierte auf dem Quotienten der Peakflächen von Analyt und ISTD.

3.3.8 Einsatz zur Messung von Probandenproben aus den Studien A bis D

Die Messung der Proben von Studie A, B, C und D erfolgte gemäß dem in 3.3.2 bis 3.3.7 beschriebenen Verfahren. Eine Probensequenz bestand aus je einem vollständigen Satz an Kalibrierungsproben am Anfang und am Ende einer Messreihe, 40 bis 50 Urinproben mit unbekannter Konzentration und drei Sätzen QCs, wobei eine QC-Probe mindestens alle 8 Probandenproben analysiert wurde. Die Test- und Referenz-Perioden einzelner Probanden wurden dabei innerhalb einer Sequenz vermessen.

Für die Studien A und B wurde 40HM sowohl mit, als auch ohne vorherige Deglucuronidierung bestimmt. Dagegen wurde 40HM in Studie C und D nur noch nach Vorbehandlung des Urins mit β -Glucuronidase bis zu 12 h nach Verabreichung von MEP quantifiziert. Für Studie C wurde NIR im Urin aller Sammelintervalle gemessen.

3.4 Bestimmung von Coffein, Paraxanthin und Tolbutamid in Humanplasma

3.4.1 Methodenentwicklung

Die Methodenentwicklung erfolgte nach dem bereits in Kapitel 3.3.1 beschriebenen Schema. Die geeignetesten SRM-Übergänge und Geräteparameter für die MS/MS-Detektion wurden durch Direkt- und Loopinfusion eigens hergestellter Stamm- und Gesamtstammlösungen ermittelt. Zur Probenaufarbeitung und -aufreinigung wurde ein bereits für die Midazolam-Analytik validiertes Verfahren adaptiert. Auch die Entwicklung der chromatographischen Trennung erfolgte entsprechend der unter 3.3.1 erläuterten Vorgehensweise. Im Rahmen einer Vorvalidierung zur analytischen Selektivität wurde jedoch festgestellt, dass PAX und Theophyllin (TPH) neben einer identischen Muttermasse auch ein kongruentes Fragmentspektrum (siehe Abbildung 8) aufwiesen und der chromatographische Peak des TPHs darüber hinaus nahezu gleichzeitig mit dem des PAXs co-eluierte.

Abbildung 8. Fragmentionenspektrum von a) Paraxanthin und b) Theophyllin mit Vorschlag für die Fragmentierung des in beiden Fällen intensivsten SRM-Übergangs: 181,2→124,2 [m/z]

Trotz umfangreicher Bemühungen konnte, bei einer gleichzeitig angestrebten Laufzeit von maximal 5 min pro Chromatogramm, keine Basislinientrennung der beiden Peaks erzielt werden. Wie Abbildung 9 beweist, ist jedoch der Einfluss des TPHs auf die Peakhöhe des PAXs zu vernachlässigen, zumal die Konzentrationen von TPH *in vivo* nur bei etwa 10% der Konzentration von PAX liegen,¹⁹¹ weshalb in der Folge nicht der Peakflächen-Quotient, sondern der Peakhöhen-Qutient von PAX und und dem ISTD 7-(β-Hydroxyethyl)theophyllin (7HET) zur Quantifizierung von PAX eingesetzt wurde.

Abbildung 9. Vergleich eines PAX- und TPH-Chromatogramms. Geringer Einfluss des TPH-Peaks auf die Peakhöhe von PAX.

3.4.2 Herstellung von Stamm- und Arbeitslösungen

3.4.2.1 Stamm- und Arbeitslösungen

Zur Herstellung der Stammlösungen von COF und PAX wurden jeweils 2,5 mg Substanz in 5 mL Wasser gelöst. Zur Herstellung der Stammlösung von TOL wurden 7,5 mg Substanz in 5 mL MeOH gelöst. Für alle drei Substanzen erfolgte die Einwaage für Kalibrier- und Qualitätskontrollproben getrennt.

Zwei separate Gesamtstammlösungen in den Konzentrationen 100.000 ng/mL für COF und PAX sowie 300.000 ng/mL für TOL wurden durch geeignete Mischung und Verdünnung der jeweiligen COF-, PAX und TOL-Stammlösungen mit Wasser hergestellt. Aus diesen Gesamtstammlösungen wurden sieben bzw. vier Arbeitslösungen für Kalibrierproben und Qualitätskontrollproben durch geeignetes Verdünnen der entsprechenden Gesamtstammlösungen mit Wasser produziert. Alle Stamm- und Arbeitslösungen wurden aliquotiert und bei -20°C gelagert

3.4.2.2 ISTD-Stammlösungen

7-(β-Hydroxyethyl)theophyllin (7HET), der interne Standard zur Quantifizierung von COF und PAX, wurde mit einer Konzentration von 50.000 ng/mL in Wasser gelöst.

Chlorpropamid (CPP), der interne Standard zur Quantifizierung von TOL, wurde mit einer Konzentration von 50.000 ng/mL in MeOH gelöst.

Eine kombinierte 7HET/CPP-Stammlösung wurde durch geeignetes Mischen und Verdünnen beider ISTDs mit Wasser hergestellt. Die kombinierte ISTD-Stammlösung wurde aliquotiert und bei –20°C gelagert.

3.4.3 Probenaufarbeitung

3.4.3.1 Matrix

Arzneistofffreies Lithium-Heparin-Plasma (Leerplasma) von sechs gesunden weiblichen und männlichen Mitarbeitern des Instituts für Pharmakologie der Universität zu Köln wurde, mit Ausnahme eines geringen Volumens zur Validierung der Selektivität, gepoolt, in geeignete Volumina aliquotiert und bei -20°C gelagert. Die SpenderInnen waren zuvor gebeten worden, mindestens drei Tage vor Abgabe der Plasmaspende auf den Konsum coffeinhaltiger Produkte (Kaffee, Tee, Erfrischungslimonade und Schokolade) zu verzichten.

3.4.3.2 Kalibrierstandards und Qualitätskontrollproben

Zur Herstellung von Kalibrierstandards und Qualitätskontrollproben wurden 150 μ L Leerplasma mit 50 μ L kombinierter ISTD-Lösung, 400 μ L ACN und 50 μ L CS- oder QC-Arbeitslösung versetzt und 10 sec mit einem Vortex-Mixer gemischt. (Zur Herstellung von Leerproben wurde Leerplasma, anstatt des internen Standards und der Arbeitslösung, mit 100 μ L Wasser versetzt.) Nach zehnminütiger Zentrifugation bei Raumtemperatur und 14000 g wurden 500 μ L des klaren Überstands abpipettiert, in ein neues Probengefäß gegeben und im Zentrifugalverdampfer (Jouan RC 10.22) in 120 min bis zur Trockne eingedampft. Der Rückstand wurde in 100 μ L 0,1%iger Ameisensäure/MeOH (95:5; v/v) aufgenommen, zentrifugiert (10 min, 14.000 g) und 85 μ L des Überstandes in ein Autosampler Vial mit Micro Insert gefüllt.

Zur Aufarbeitung der Probandenproben wurden 150 μ L Probandenplasma mit 50 μ L kombinierter ISTD-Lösung, 400 μ L ACN und 50 μ L Wasser versetzt. Der weitere Ablauf der Aufarbeitung war identisch mit dem für die Kalibrierstandards und Qualitätskontrollproben. Tabelle 12 und Tabelle 13 enthalten die Pipettierschemata zur Herstellung von CS, QC, Leer- und Probandenproben.

Nominelle Konz. ^a CAF/PAX (TOL)		WS1	ISTD	H ₂ O						
[ng/mL]	Name	[µL]								
0	Leer	-	-	-	-	-	-	-	-	100
5000 (15000)	CS1	50	-	-	-	-	-	-	50	-
1500 (4500)	CS2	-	50	-	-	-	-	-	50	-
500 (1500)	CS3	-	-	50	-	-	-	-	50	-
150 (450)	CS4	-	-	-	50	-	-	-	50	-
50 (150)	CS5	-	-	-	-	50	-	-	50	-
15 (45)	CS6	-	-	-	-	-	50	-	50	-
3.33 (10)	CS7	-	-	-	-	-	-	50	50	-
Probandenproben	-	-	-	-	-	-	-	-	50	50

Tabelle12.Pipettierschema zur Herstellung von Kalibrierstandards (CS), Leer- undProbandenproben

a: Effektive Konzentration der Kalibrierungsstandards nach erfolger Aufarbeitung. Arbeitslösungen (WS) dreimal höher konzentriert.

Tabelle 13. Pipettierschema zur Herstellung von Qualitätskontrollproben (QC)

Nominelle Konz. ^a CAF/PAX (TOL) [ng/mL]	Name	QC-WS1 [µL]	QC-WS2 [µL]	QC-WS3 [µL]	QC-WS4 [µL]	ISTD [µL]
4500 (13500)	QC1	50	-	-	-	50
450 (1350)	QC2	-	50		-	50
30 (90)	QC3	-	-	50	-	50
5 (15)	QC4	-	-	-	50	50

a: Effektive Konzentration der Kalibrierungsstandards nach erfolger Aufarbeitung. Arbeitslösungen (WS) dreimal höher konzentriert.

3.4.4 Chromatographie

Die Chromatographie wurde mit einer Surveyor MS-Pumpe, ausgestattet mit einem Rheodyne Sechskanalventil im Partial Loop-Modus betrieben. Zum Schutz der analytischen Trennsäule wurde stets mit einer geeigneten Vorsäule gearbeitet. Laufmittel A war 0,1%iger Ameisensäure. Laufmittel B war MeOH. Folgende HPLC-Bedingungen wurden gewählt:

Analytische Trennsäule	Hypersil Gold (50 x 2,1 mm; 5µ)
Vorsäule	Hypersil Gold (10 x 3,0 mm; 5µ)
Autosampler	
Probeninjektionsvolumen	20 µL
Spülflüssigkeit	МеОН
Spülzyklus	nach jeder Injektion
Spülvolumen Dosierspritze	500 µL
Spülvolumen Spritzennadel	2000 μL
Temperatur Säulenofen	30°C
Temperatur Probentrays	5°C
LC-Pumpe	
Flussrate	300 µL/min

Stopzeit

4,5 min

Abbildung 10. Schematische Darstellung des für die Quantifizierung von COF, PAX und TOL verwendeten Laufmittelgradientens.

Zur chromatographischen Separation der Analyten von der Probenmatrix wurde ein linearer Laufmittelgradient eingesetzt (siehe Abbildung 10). Die Probe wurde dazu zunächst mit 95% Laufmittel A isokratisch eluiert. Nach 0,5 min wurde die Laufmittelzusammensetzung innerhalb von 1 min linear auf 90% Eluent B angehoben und 2 min konstant gehalten. Anschließend wurde innerhalb von 0,5 min die

Ausgangskonzentration von 95% Laufmittel A wiederhergestellt und zur Equilibrierung der Säule über zusätzliche 0,5 min gehalten.

Eine Blockade der Ionentransferkapillare während langer Messequenzen wurde mittels eines Schaltventils (divert valve) vermieden. Dieses leitete den anfangs stark matrixhaltigen Laufmittelstrom während der ersten 2,0 min in einen Abfallbehälter. Erst danach wurde der Laufmittelstrom in den angekoppelten MS/MS-Detektor gespült. Die Retentionszeiten konnten je nach Nutzungsgrad der eingesetzten Trennsäule in einem gewissen Rahmen variieren, betrugen aber im Mittel 2,8 min für COF, 2,6 min für PAX, 3,3 min für TOL, 2,6 min für 7HET und 3,3 min für CPP. Abbildung 11 zeigt das typische Chromatogramm einer CS2 mit einer mittleren Konzentration (1500 ng/mL für COF/PAX und 4500 ng/mL für TOL) der Analyten.

Abbildung 11. Chromatogramm einer Kalibrierprobe (Konz. 1500 ng/mL COF/PAX bzw. 4500 ng/mL TOL)

3.4.5 MS/MS-Detektion

Das TSQ Quantum Triple Quadropol-Massenspektrometer mit der angeschlossenen ESI-Quelle arbeitete im Selected Reaction Monitoring-Modus für positiv geladene Ionen. Als Sheath und Auxiliary Gas wurde Stickstoff (Reinheitsgrad 5.0) mit einem Druck von 30 bzw. 5 Hilfseinheiten (arbitrary units) angewendet. Als Kollisionsgas wurde Argon (Reinheitsgrad 5.0) mit einem Druck von 1,5 Torr eingesetzt. Die Spannung des ESI-Sprays wurde auf 5,0 kV, die Temperatur der Ionentransferkapillare auf 400°C eingestellt. Zusätzlich zur ESI-Ionisierung wurde eine leichte Spannung von 10,0 V zur Kollisions-induzierten Dissoziation (CID) eventuell entstandener Lösungsmittelcluster an die Quelle angelegt. Folgende SRM-Übergänge von [M+H]⁺-Mutterionen zu Tochterionen wurden zur Detektion der drei Analyten und der beiden internen Standards verwendet (Tabelle 1):

Tabelle 14. SRM-Übergänge und Kollisionsenergien zur MS/MS-Detektion von COF, PAX, TOLsowie der beiden ISTDs 7HET und CPP

Analyt	SRM-Übergang [m/z]	Kollisionsenergie [eV]
Coffein	195,20 → 138,16	24
Paraxanthin	181,20 → 124,15	24
Tolbutamid	271,30 → 91,20	38
7-(β-Hydroxyethyl)theophyllin	225,00 → 181,20	24
Chlorpropamide	277,00 → 111,10	38

Als massenspektrometische Auflösung, gemessen als Halbwertsbreite (FWHM), wurden sowohl für den ersten und dritten Quadrupol (Q1 und Q3) 0,70 Da gewählt. Für alle SRM-Übergange wurde eine Scanweite von 0,60 Da verwendet. Die Zeit eines SRM-Scans betrug 0,150 sec.

3.4.6 Peakintegration

Siehe Kapitel 3.3.6.

3.4.7 Kalibrierung

Die Kalibriergeraden wurden mit Hilfe von zwei Sätzen CS erstellt, welche jeweils am Anfang und am Ende einer Probensequenz analysiert wurden. Dabei wurden für die TOL-Analytik alle sieben, für die COF/PAX-Analytik nur die sechs konzentriertesten Standardlösungen verwendet. Der nominelle Konzentrationsbereich lag dabei zwischen 15 und 5000 ng/mL für COF und PAX und zwischen 10 und 15000 ng/mL für TOL. Die Berechnung der 1/x-gewichteten, linearen Kalibriergeraden basierte für COF und TOL auf dem Quotienten der Peakflächen von Analyt und ISTD. Die ebenfalls 1/x-gewichtete, lineare Kalibriergerade von PAX wurde mit Hilfe des Peakhöhen-Quotienten berechnet.

3.4.8 Einsatz zur Messung von Probandenproben aus den Studien C und D

Die Messung der Proben von Studie C und D erfolgte gemäß dem in 3.4.2 bis 3.4.7 beschriebenen Verfahren. Eine Probensequenz bestand aus je einem vollständigen Satz an Kalibrierungsproben am Anfang und am Ende einer Messreihe, 40 bis 50 Plasmaproben mit unbekannter Konzentration und drei Sätzen QCs, wobei eine QC-Probe mindestens alle 8 Probandenproben analysiert wurde. Die Test- und Referenzperioden einzelner Probanden wurden dabei innerhalb einer Sequenz vermessen.

3.5 Validierung analytischer Methoden

Bei der Methodenvalidierung werden eine Reihe von Tests durchgeführt, mit denen die Annahmen geprüft werden, auf denen eine Analysenmethode beruht, und zugleich die Leistungsmerkmale einer Methode beschrieben und dokumentiert werden. Auf diese Weise kann nachgewiesen werden, ob eine Methode für einen bestimmten oder nicht. Wichtige Leistungsmerkmale Analysezweck geeignet ist von Analysemethoden sind: Richtigkeit, Präzision, Selektivität, Wiederfindung, Quantifizierungsgrenze und der analytische Arbeitsbereich.

Sowohl für die Konzentrationsbestimmung von MEP, NIR und 40HM im Urin, als auch für die Quantifizierung von COF, PAX und TOL in Plasma wurde eine Methodenvalidierung vorgenommen. Als formale Grundlage dienten die auf internationalen Richtlinien¹⁹²⁻¹⁹⁵ basierenden, internen SOP-Vorschriften der Arbeitsgruppe Klinische Pharmakologie, Köln.

3.5.1 Herstellung von Stammlösungen

Die Einwaage der Referenzsubstanzen für Kalibrier- und Qualitätskontrollösungen musste aus zwei getrennten Wägungen stammen und die Herstellung weiterer Verdünnungen unabhängig voneinander und unter Gewichtskontrolle stattfinden.

Für Kalibrierlösungen sollten sich zwei benachbarte Konzentrationen nicht mehr als um den Faktor $\sqrt{10}$ unterscheiden. Die höchste Konzentration der Kalibrierproben lag über der höchsten erwarteten Konzentration in den zu messenden Proben und über der höchsten Konzentration der Qualitätskontrollproben, die niedrigste Konzentration der Kalibrierproben unter der niedrigsten Konzentration der Qualitätskontrollproben. Für die Qualitätskontrollproben wurden Lösungen der Analyten im Konzentrationsbereich der unteren Quantifizierungsgrenze (LLOQ), im mittleren Quantifizierungsbereich und an der oberen Quantifizierungsgrenze hergestellt, wobei die niedrigst konzentrierte Qualitätskontrollprobe gleichzeitig das LLOQ markierte. Eine detaillierte Beschreibung der Herstellung von Stamm-, Kalibrier- und Qualitätskontrollösungen findet sich in den Kapiteln 3.3.2 (MEP) und 3.4.2 (COF/TOL).

3.5.2 Kalibrierung

Zur Erstellung der Kalibriergerade sollte möglichst ein linearer Zusammenhang, also das einfachste Modell zur Beschreibung des Verhältnisses zwischen der Konzentration und dem Signal des MS/MS-Detektors, gewählt werden. Die Wichtung der Datenpunkte sollte mit 1/x erfolgen. Eine Kalibrierungskurve galt als geeignet, wenn für zumindest zwei Drittel der Datenpunkte folgende Bedingungen erfüllt waren:

- Abweichung vom Sollwert nicht über 20 % an der Quantifizierungsgrenze
- Abweichung vom Sollwert nicht über 15 % für alle anderen Konzentrationen

Datenpunkte, die diese Kriterien nicht erfüllten, konnten von der Kalibrierung ausgeschlossen werden.

3.5.3 Selektivität

Unter Selektivität wird die Fähigkeit einer analytischen Methode verstanden, den Analyten in Gegenwart anderer Bestandteile der Probe zu identifizieren und zu quantifizieren. Folgende Untersuchungen zur Selektivität wurden durchgeführt:

- Messung von Leerproben und von Proben mit der jeweils niedrigsten g
 ültigen QC-Konzentration der Analyten in der entsprechenden biologischen Matrix aus 6 verschiedenen Quellen (jeweils 3-fach)
- Messung von Proben der jeweils niedrigsten g
 ültigen QC-Konzentration der einzelnen Analyten und einer hohen Konzentration gleichzeitig in der Probe vorhandener Analyte, sowie Cocktailsubstrate und derer (Haupt-)Metabolite (jeweils 3-fach)

In einer gesonderten Selektivitätsuntersuchung wurde die Eignung der COF/TOL-Methode getestet, PAX im Rahmen der erlaubten Variabilität (siehe Kapitel 3.5.4.4) in Anwesenheit der maximal erwarteten TPH-Konzentration über die Peakhöhe zu quantifizieren. Dazu wurden je drei QC-Proben aller drei Konzentrationslevel mit einem konstanten Anteil TPH in Höhe von 30% der jeweiligen PAX-Konzentration versetzt und anschließend vermessen.

3.5.4 Präzision und Richtigkeit

3.5.4.1 Definitionen

Als Genauigkeit (engl. *precision*) bezeichnet man die Übereinstimmung zwischen unabhängigen Tests (= Messungen) unter gleichen Bedingungen. Die Genauigkeit einer Messreihe gibt Aufschluss über die Reproduzierbarkeit der Probenaufbereitung und - messung. Das Maß wird angegeben als Variationskoeffizient CV. Dieser berechnet sich allgemein aus dem Quotient der Standardabweichung SD und dem arithmetischen Mittelwert \bar{x} . Für die Genauigkeit einer Messreihe gilt Formel 3.

Genauigkeit einer Messreihe =
$$\frac{\text{Standardabweichung der Ist-Konzentrationen}}{\text{mittlere Ist-Konzentration}} \cdot 100\%; \text{ in } [\%]$$
(3)

Mit Richtigkeit (engl. *accuracy*) wird die Übereinstimmung zwischen dem Messergebnis und dem tatsächlichen Gehalt bezeichnet, angegeben als mittlere Abweichung in Prozent, die sich nach Formel 4 berechnet. Die Richtigkeit einer Messreihe gibt Aufschluss über mögliche systematische Fehler in der Probenaufbereitung und -messung.

 $Richtigkeit einer Messreihe = \frac{(mittlere Ist-Konzentration) - (Soll-Konzentration)}{Soll-Konzentration} \cdot 100\%; in [\%]$ (4)

3.5.4.2 Variabilität innerhalb eines Tages (intra-day assay)

Es wurden mindestens fünf Proben in den unter 3.5.1 angegebenen Konzentrationen gemeinsam aufbereitet und in einem Messvorgang bestimmt und ausgewertet.

3.5.4.3 Variabilität an verschiedenen Tagen (inter-day assay)

An mindestens fünf verschiedenen Tagen wurden Proben in den unter 3.5.1 angegebenen Konzentrationen gemeinsam aufbereitet und mit einer gleichbleibenden Messvorrichtung und -methode bestimmt und ausgewertet.

3.5.4.4 Bewertung von Genauigkeit und Richtigkeit

Für die Bewertung der Genauigkeit der Methode innerhalb eines Tages (*intra-day-precision*) wurde der Betrag des Medians der Werte herangezogen, die für die Genauigkeit innerhalb eines Tages jeweils an den verschiedenen Messtagen erhalten wurden. Entsprechendes galt für die Genauigkeit der Methode zwischen verschiedenen Tagen (*inter-day-precision*). Diese Werte sollten im Bereich von ≤15% (CV) liegen. An der Quantifizierungsgrenze durften die Abweichungen maximal 20% betragen. Werte oberhalb dieser Grenzen kennzeichneten die untere Quantifizierungsgrenze (LLOQ).

Für die Bewertung der Richtigkeit der Methode innerhalb eines Tages (*intra-day-accuracy*) wurde der Median des Betrags der Einzelwerte für die jeweiligen Werte der Richtigkeit innerhalb eines Tages herangezogen. Entsprechendes galt für die Richtigkeit der Methode zwischen verschiedenen Tagen (*inter-day-accuracy*). Diese Werte sollten im Bereich von $\leq 15\%$ (CV) liegen. An der Quantifizierungsgrenze durften die Abweichungen maximal 20% betragen.

3.5.5 Wiederfindung des Analyten (recovery)

Als Wiederfindung (engl. *recovery*) bezeichnet man das Detektorsignal durch eine der Matrix zugesetzten Substanzmenge nach Aufarbeitung der Probe im Vergleich zum Detektorsignal durch eine direkt aus einer wässrigen Standardlösung gemessenen Substanzmenge. Zur Ermittlung der Wiederfindung wurden je drei Messungen bei niedrigen, mittleren und hohen Konzentrationen durchgeführt und die mittleren Ist-Konzentrationen nach Formel 5 zueinander in Relation gesetzt.

$$Recovery = \frac{\text{mittlere Ist-Konzentration (Matrix)}}{\text{mittlere Ist-Konzentration (Wasser)}} \cdot 100\%; \text{ in } [\%]$$
(5)

(Genau betrachtet werden durch diese Vorgehensweise zwei, sich überlagernde Effekte untersucht. Zum einen der Effekt der Aufarbeitung auf die analytische Wiederfindung, zum anderen ein mögliches Quenching (oder Enhancement) der Messsignale bei der ESI-Ionsation durch co-eluierende Ionen.)

3.5.6 Stabilität

Die Stabilität der einzelnen Analyten wurde unter ausgewählten Messbedingungen und verschiedenen Lagerungsverhältnissen geprüft, um Aufschluss über eventuelle Veränderungen der Proben unter den gewählten Prüfungsbedingungen zu erhalten. Zu
diesem Zweck wurden die gemessenen Konzentrationen von Untersuchungsproben auf Abweichungen gegenüber (frisch hergestellten) Referenzproben untersucht. Für die Bewertung der Stabilität wurde die relative Abweichung der mittleren Ist-Konzentration

nach Prüfung der entsprechenden Bedingungen zur mittleren Ist-Konzentration der jeweilige Referenzproben (siehe Formel 6) herangezogen.

$$Stabilität = \frac{(mittlere Ist-Konzentration (Test)) - (mittlere Ist-Konzentration (Referenz))}{mittlere Ist-Konzentration der (Referenz)} \cdot 100\%; in [\%]$$
(6)

Der obere Grenzwert hierfür lag bei 10 % in der oberen (und mittleren) Konzentration sowie bei 15 % im Bereich der Quantifizierungsgrenze. Traten einzelne Abweichungen bei nachgewiesener Präzision und Richtigkeit der Methode und ansonsten ausreichender Stabilitätsergebnisse der restlichen geprüften Konzentrationen auf, so konnten diese toleriert werden.

3.5.6.1 Stabilität unbehandelter Proben (processing stability)

Es wurden jeweils drei Proben der höchsten und niedrigsten QC-Konzentrationen für die Dauer der maximalen Probenbearbeitungszeit bei Raumtemperatur gelagert und dann im Vergleich zu frischen oder frisch aufgetauten Proben aufgearbeitet und vermessen.

3.5.6.2 Stabilität aufgearbeiteter Proben (autosampler stability)

Es wurden jeweils drei Proben der höchsten und niedrigsten QC-Konzentrationen zur Messung aufbereitet, dann vermessen und nach Ablauf der maximalen erwarteten Lagerungsdauer von Proben im Autosampler nochmals vermessen.

3.5.6.3 Stabilität nach dreimaligem Einfrieren und Auftauen (freeze thaw stability)

Es wurden jeweils drei Proben der höchsten und niedrigsten QC-Konzentrationen dreimal von der Lagerungstemperatur (-80 °C) ohne übermäßige Erwärmung auf Raumtemperatur aufgetaut, wieder eingefroren und anschließend zusammen mit Referenzproben aufbereitet und vermessen.

3.5.6.4 Langzeitstabilität

Es wurden jeweils drei Proben der höchst und niedrigst konzentrierten QC-Level für die vorgesehenen Lagerungsbedingungen und für die vorgesehene Lagerungszeit oder zumindest einen wesentlichen Teil davon eingelagert. Die Proben wurden vor und nach Ende der Lagerzeit im Vergleich mit neu angesetzten Proben vermessen.

3.5.7 Sicherung der Validität einer Methode bei Messung von Proben mit unbekannten Konzentrationen

Nach erfolgreicher Validierung konnten die Methoden zur Konzentrationsbestimmung bei unbekannten Proben herangezogen werden. Dazu wurden auch hier je ein vollständiger Satz an Kalibrierungsproben (einschl. Leerproben) am Anfang und am Ende einer Messreihe mitgeführt. Zusätzlich werden je Messreihe mindestens drei vollständige Sätze an Qualitätskontrollproben mitgeführt (siehe Kapitel 3.3.7 und 3.3.8 (MEP) sowie 3.4.7 und 3.4.8 (COF/TOL) für Details).

Eine Messung galt als verwertbar, wenn die Kalibrierungskurve als geeignet gelten konnte (s. 3.5.2) und wenn für zumindest 2/3 der Qualitätskontrollproben galt:

- Abweichung vom Sollwert nicht über 20 % an der Quantifizierungsgrenze,
- Abweichung vom Sollwert nicht über 15 % für alle anderen Konzentrationen,

wobei nicht mehr als 50 % der Qualitätskontrollproben einer Konzentration außerhalb der Grenzen liegen durften. Wurden diese Kriterien nicht erfüllt, war die ganze Messreihe zu wiederholen.

3.5.8 Nachmessungen von Probandenproben

Aus mehreren Gründen mussten Nachmessungen von Probandenproben vorgenommen werden. Der erste Grund war die Überschreitung des oberen Quantifizierungslimits (ULOQ). In diesem Fall wurden die Probandenproben mit einem geeigneten Volumen arzneistofffreier Matrix verdünnt und im Anschluss daran genauso aufgearbeitet und vermessen wie die unverdünnten Proben. Die anderen Gründe waren offensichtliche Fehler bei der Probenaufarbeitung (z.B. fehlender ISTD) sowie eine von den theoretisch erwarteten Werten stark abweichende Konzentration einzelner Proben. Folgender Algorithmus wurde zur Auswahl des finalen Messwertes gewählt:

Wenn das erste Messergebnis durch die Wiederholungsmessung mit einem Unterschied von < 15% bestätigt werden konnte, wurde der zuerst gemessene Wert

ausgewählt. Lag der Unterschied zwischen 15 und 30%, wurde das arithmetische Mittel der beiden Messwerte angegeben. Bei Unterschieden > 30% wurde eine zweite Wiederholungsmessung durchgeführt. Wenn sich danach zwei der drei Messergebnisse um weniger als 15% unterschieden, wurde der Median aller Messwerte angegeben. War keine solche Übereinstimmung zu beobachten, wurde das Messergebnis als "nicht auswertbar" angeführt.

3.6 Bestimmung der Genotypen

3.6.1 Genotypisierung CYP2B6

<u>Studie A und B:</u> Die Genotypisierung von CYP2B6 wurde im Labor von Frau Dr. Julia Kirchheiner am Institut für Klinische Pharmakologie der Charité in Berlin durchgeführt. Zu diesem Zweck wurden die Studienteilnehmer auf die SNPs der CYP2B6-Allele *2 (C64T in Exon 1), *3 (C777A in Exon 5), *4 (A785G in Exon 5), *5 (C1459T in Exon 9), *6 (G516T und A785G in Exon 4 und5) und *7 (G516T, A785G und C1459T in Exon 4, 5 und 9) mit Hilfe des 2001 durch Lang et al.⁹⁷ beschriebenen Verfahrens untersucht. Jeder Proband wurde doppelt und unter Mitführung von Qualitätsstandards mit homozygoter und heterozygoter DNA genotypisiert.

3.6.2 Genotypisierung CYP2C9

Die Studienteilnehmer wurden im Labor von Frau Dr. Julia Kirchheiner am Institut für Klinische Pharmakologie der Charité in Berlin auf die Allele *2, *3, *4, *5 und *11 durch direkte Sequenzierung der Exons 3 und 7 genotypisiert.¹²⁷

3.6.3 Genotypisierung CYP2C19

<u>Studie A, B und C:</u> Die Teilnehmer der Studien wurden im Labor von Frau Dr. Julia Kirchheiner am Institut für Klinische Pharmakologie der Charité in Berlin auf ihren CYP2C19-Genotyp untersucht. Die DNA wurde mittels einer standardisierten Phenol-Chloroform-Extraktionsmethode gewonnen und anschließend nach de Morais et al.^{137, 138} auf das Vorliegen der CYP2C19*2- und *3-Mutation (*3 nur für Studie C) getestet.

3.7 Pharmakokinetische Datenanalyse

3.7.1 Auswertung von Konzentrationen unterhalb des Quantifizierungslimits

Bei der Auswertung der Datensätze wurden Urinkonzentrationen unterhalb des LLOQ folgendermaßen bewertet:

- Sammelperiode von zwei Sammelperioden umgeben, deren Konzentrationen ebenfalls <LLOQ war → Konzentration: 0 ng/mL
- Sammelperiode nur einer bzw. keiner Sammelperiode benachbart, deren Konzentration <LLOQ war → Konzentration: LLOQ/2 (Ausnahme: Predose-Proben)

3.7.2 Modellunabhängige pharmakokinetische Auswertung

Die folgenden nicht modell-abhängigen pharmakokinetischen Parameter wurden ermittelt:

Ausscheidungsmenge

Für jedes Sammelintervall wurde die Ausscheidungsmenge (A_e) aus dem Produkt der Urinkonzentration (C_{Urin}) und des Urinvolumens (V) errechnet.

$$A_e = C_{\text{Urin}} \cdot V \tag{7}$$

Ausscheidungsrate

Zur Berechnung der Ausscheidungsraten (R) wurden die Ausscheidungsmengen durch die zeitliche Dauer des jeweiligen Sammelintervalls dividiert.

$$\mathbf{R} = \frac{A_e}{t} \tag{8}$$

Prozentuale Wiederfindung im Urin

Die prozentuale Wiederfindung (*recovery*) von 4OHM und NIR als Quotient der molaren Menge des ausgeschiedenen Metabolits im Urin zur exakten molaren Dosis (D) MEP wurde für jede fraktionierte Sammelperiode berechnet.

Recovery
$$[\%] = \frac{A_e}{D}$$
 (9)

Die prozentuale Wiederfindung für kumulierte Sammelperioden wurde durch Addition der fraktionierten Sammelintervalle berechnet.

Abschätzung der ausgeschiedenen Menge NIR während unterbrochener Sammelintervalle (Studie C)

Um zu schätzen, welche Mengen NIR in den Perioden ohne Urinsammlung, d.h.

zwischen 48-86 h und 94-156 h nach Verabreichung von MEP ausgeschieden wurden, wurde folgende Formel eingesetzt:

$$A_{e(1-2)} = \sqrt{R1 \cdot R2} \cdot (t1 - t2)$$
(10)

Dabei stellt R die Ausscheidungsrate der jeweiligen Sammelintervalle vor bzw. nach einer Periode ohne Urinsammlung und t den jeweiligen Zeitpunkt dar, an denen diese angrenzenden Intervalle endeten bzw. anfingen.

3.8 Statistische Verfahren

Die allgemeine statistische Auswertung und Beurteilung der Messergebnisse wurde mit Hilfe von SPSS 11.0 (SPSS Inc., Chicago, USA) und Excel 2000 (Microsoft Corp., Redmond, USA) durchgeführt. Zur Bestimmung der intra-individuellen Variationskoeffizienten und des Punktschätzers wurde das Programm BIAV (Autor: Stefan Rietbrock, 1994) benutzt. Das Signifikanzniveau (α) wurde auf 0,05 festgesetzt. Soweit nicht anders spezifiziert, sind alle Ergebnisse in der Form "arithmetischer Mittelwert ± Standardabweichung" angegeben.

3.8.1 Deskriptive Statistik

Zur Darstellung und Zusammenfassung der erhobenen Daten sowie der Ergebnisse der pharmakokinetischen Datenanalyse wurden verschiedene Lage- und Streuungsmaße herangezogen:

<u>Lagemaße</u>

- Arithmetischer Mittelwert (\bar{x})
- Median (\tilde{x})

<u>Streuungsmaße</u>

- Bereich (*range*, R)
- Standardabweichung (σ)
- Variationskoeffizient (coefficient of variation, CV)

$$\operatorname{CV}\left[\%\right] = \frac{s}{\overline{x}} \tag{11}$$

3.8.2 Beurteilende Statistik

Bei der beurteilenden Statistik steht die Prüfung von Hypothesen im Vordergrund. Schätzfunktionen, Vertrauensbereiche (Konfidenzintervalle) und statistische Tests sind hierbei entscheidende Hilfen. Mit der Irrtumswahrscheinlichkeit (p) wird die Wahrscheinlichkeit angegeben, mit der die Annahme, der untersuchte Parameter der Grundgesamtheit liege innerhalb des geschätzten Konfidenzintervalls, falsch ist. Die Teststärke (*power*) zeigt an, mit welcher Wahrscheinlichkeit ein Signifikanztest zugunsten der Alternativhypothese H₁ entscheidet, falls diese richtig ist.

3.8.2.1 Untersuchung der Wechselbeziehung zwischen CYP2C19-Genotyp und 4OHM-Recovery

<u>Studie A, B und C:</u> Der Einfluss des CYP2C19-Genotyps auf die renale Ausscheidung von 4OHM wurde für alle fraktionierten und kumulierten Sammelintervalle der jeweiligen Referenzperioden mit und ohne vorherige Deglucuronidierung mit Hilfe des Kruskal-Wallis-Tests überprüft.

3.8.2.2 Ermittlung des intraindividuellen Variationskoeffizienten CV(intra) [%] und Fallzahlschätzung

<u>Studie B, C und D:</u> Um den erforderlichen Stichprobenumfang (Fallzahl) zukünftiger Studien mit Hilfe der in dieser Dissertation untersuchten Phänotypisierungsmaße für CYP2C19 (und CYP2B6) abzuschätzen, wurde unter Annahme eines multiplikativen Modells, d.h. nach logarithmischer Datentransformation, zunächst der intraindividuelle Variationskoeffizient (CV(intra) [%]) der 4OHM- bzw. NIR-Recovery durch multifaktorielle ANOVA (*analysis of variance*) für fraktionierte und kumulierte Sammelinteralle, jeweils mit und ohne vorheriger Deglucuronidierung, berechnet. Dabei wurden zur Bestimmung der intraindividuellen Variabilität der CYP2C19-Aktivität der Test- und der Referenzdurchgang der Studien B, C und D und zur Bestimmung der intraindividuellen Variabilität der CYP2B6-Aktivität lediglich die beiden Perioden von Studie C herangezogen. Im nächsten Schritt wurden die Fallzahlen zur Erzielung einer Power von 80% anhand der intraindividuellen Variationskoeffizienten CV(intra) [%] und Punktschätzer [μ_T/μ_R] unter Annahme eines Signifikanzniveaus von 5% für die Bioäquivalenzgrenzen von 0,8 und 1,25 durch das von Diletti et al. beschriebene Verfahren ermittelt.¹⁹⁶

3.8.2.3 Korrelationsanalyse

<u>Studie A, B und C:</u> Um den Einfluss von CYP2C9 auf die Bildung von NIR zu untersuchen, wurden die 24 h-Plasmakonzentration von TOL und die Recovery von NIR in 24 h kumuliert gesammeltem Urin als Aktivitätsindizes für CYP2C9 bzw. CYP2B6 auf ihre Korrelation analysiert. Hierzu wurde der Korrelationskoeffizient (r) nach Pearson berechnet und die einzelnen Wertepaare grafisch dargestellt.

4 Ergebnisse

4.1 Unerwünschte Arzneimittelwirkungen durch die verwendeten Cocktailsubstanzen

Im Allgemeinen wurde der niedrig dosierte Phänotypisierungscocktail gut vertragen. Im Speziellen wurden schwere unerwünschte Arzneimittelwirkungen durch Einnahme von 50 mg Mephenytoin weder für den einzigen CYP2C19*2/*2-homzygoten Probanden, noch für alle anderen Studienteilnehmer beobachtet. Ein Proband zog seine Teilnahme an Studie D noch vor der ersten Verabreichung der Cocktailsubstanzen aus persönlichen Gründen zurück und wurde ersetzt.

4.2 Methodenvalidierung

4.2.1 Validierung der Methode zur Quantifizierung von Mephenytoin, Nirvanol und 4'-Hydroxymephenytoin im Urin

4.2.1.1 Linearität und untere Quantifizierungsgrenze

Für die Methodenvalidierung wurden Kalibrierstandards in den folgenden Konzentrationen hergestellt (Tabelle 15):

Name	MEP [ng/mL]	NIR [ng/mL]	40HM [ng/mL]
CS1	9988	10008	9966
CS2	4969	4996	4975
CS3	1491	1494	1488
CS4	499	500	498
CS5	151	152	151
CS6	51	51	51
CS7	25	25	25
CS8	15	15	15

Tabelle 15. Konzentrationen der Kalibrierstandards (CS) von MEP, NIR und 4OHM

Für alle drei Analyten konnte bei einer 1/x-Wichtung der Datenpunkte ein linearer Verlauf der Kalibriergeraden ($r^2 > 0,999$) über den gesamten Konzentrationsbereich beobachtet werden. In Abbildung 12 bis Abbildung 14 sind exemplarische Kalibriergeraden abgebildet, wie sie im Rahmen der Validierung entstanden.

Abbildung 12. Kalibriergerade für MEP

Abbildung 13. Kalibriergerade für NIR

Abbildung 14. Kalibriergerade für 4OHM

4.2.1.2 Präzision und Richtigkeit

Zur Bestimmung der Präzision und Richtigkeit der Methode wurden QCs in den folgenden Konzentrationen hergestellt (Tabelle 16):

labelle	16. Konzent	rationen dei	Qualitatsk	ontroliproben	i (QC) fur	MEP, NIR U	na 40HM

	Konzentration [ng/mL]					
Analyt	QC1	QC2	QC3	QC4		
MEP	8986	3205	32	21		
NIR	8917	3180	32	21		
40HM	9047	3224	32	21		

Für alle drei Analyten erfolgte die Validierung der Präzision und Richtigkeit unter den in Kapitel 3.5.4 beschriebenen Vorgaben durch Aufarbeitung und Messung von jeweils fünf Proben aller QC-Konzentrationen an fünf aufeinader folgenden Messtagen. Tabelle 17 listet die Variabilitäten innerhalb eines Tages und an verschiedenen Tagen auf.

		Intra	Intra-day		r-day
Substanz	QC-Level	Richtigkeit [%]	Genauigkeit [%]	Richtigkeit [%]	Genauigkeit [%]
MEP	QC1	5,0	0,8	4,8	3,4
	QC2	5,7	1,2	5,9	1,7
	QC3	7,6	6,9	4,7	10,4
	QC4	-1,0	16,7	-1,2	15,6
NIR	QC1	8,5	2,6	9,5	3,7
	QC2	8,7	4,1	9,4	4,1
	QC3	3,3	7,8	3,4	10,5
	QC4	9,0	11,2	10,5	12,2
40HM	QC1	-1,2	4,1	0,0	5,5
	QC2	-1,1	5,0	-2,1	5,6
	QC3	2,1	4,7	0,8	7,3
	QC4	7,5	7,6	5,6	9,5

Tabelle 17. Validierte Präzision und Richtigkeit von fünf aufeinander folgenden Proben gleicher Konzentration (Intraday-assay) an fünf aufeinander folgenden Tagen (Interday-assay) für alle QC-Level von MEP, NIR und 4OHM

Während NIR und MEP nur bis zur Konzentration von QC3 mit der in Kapitel 3.5.4.4 geforderten Präzision und Richtigkeit validiert werden konnten, entsprachen alle QC-Level von 40HM den Vorgaben. Es ergaben sich demnach folgende LLOQ:

Mephenytoin	32 ng/mL
Nirvanol	32 ng/mL
4'-Hydroxymephenytoin	21 ng/mL

4.2.1.3 Selektivität

Selektivität in arzneistoffreiem Urin

Die in Kapitel 3.5.3 geforderte Prüfung auf Selektivität wurde mit arzneistofffreiem Urin von sechs verschiedenen Spendern durchgeführt. Es wurden keine störenden Signale während der Retentionszeit der Analyten und des ISTDs beobachtet.

Selektivität in Urin mit der jeweils niedrigsten QC-Konzentration

Die in Kapitel 3.5.3 geforderte Prüfung auf Selektivität wurde mit Urin in der jeweils niedrigsten QC-Konzentration durchgeführt. Es wurde kein störender Einfluss auf die Konzentration der QCs beobachtet.

Weiterhin wurde für jeden einzelnen Analyten die Selektivät von Proben der jeweils niedrigst gültigen QC-Konzentration nach Zugabe einer Lösung mit allen potentiell im Urin vorhandenen Substanzen und Metaboliten getestet. Dazu wurde Plasma mit einer Lösung, welche die niedrigste QC-Konzentration eines Analyten und die beiden anderen Analyten in ihrer Maximalkonzentration enthielt, und einer Selektivitäts-Testlösung versetzt, und anschließend wie in Kapitel 3.3.3 beschrieben aufgearbeitet. Die folgenden Substanzen waren in hoher Konzentration in der Selektivitäts-Testlösung enthalten: Coffein, Paraxanthin, Theophyllin, Theobromin, Tolbutamid. 4-Hydroxytolbutamid, Carboxytolbutamid, Midazolam, 1'-Hydroxymidazolam, 4-Hydroxymidazolam, Dextromethorphan und Dextrorphan. Es wurde kein störender Einfluss durch die zugesetzten Substanzen auf die Konzentration der QCs beobachtet.

4.2.1.4 Wiederfindung

Die Ergebnisse, der nach Kapitel 3.5.5 durchgeführten Untersuchung auf Wiederfindung, sind in Tabelle 18 aufgelistet.

	QC-Level				
Substanz	QC1	QC2	QC3		
MEP	81	94	102		
NIR	97	98	101		
40HM	110	111	114		

Tabelle 18. Mittlere Recovery von MEP, NIR und 4OHM aus Urin (n=3)

4.2.1.5 Stabilität

Processing-Stabilität

Die Überprüfung der Stabilität der Proben während der Aufarbeitung ergab die in Tabelle 19 angegebenen mittleren Konzentrationsveränderungen nach sechsstündiger Lagerung bei Raumtemperatur gegenüber direkter Probenaufarbeitung.

	QC-Level		
Processing-Stabilität	QC1	QC3	QC4
Mittlere Abweichung der MEP -Konz. im Vergleich zur Referenzmessung [%]	1,4	8,6	-
Mittlere Abweichung der NIR -Konz. im Vergleich zur Referenzmessung [%]	-0,7	-10,1	-
Mittlere Abweichung der 40HM -Konz. im Vergleich zur Referenzmessung [%]	-1,1	-	-4,7

Tabelle 19. Untersuchung der Stabilität von MEP, NIR und 4OHM in Urinproben (n=3) während der Probenaufarbeitung

Autosampler-Stabilität

Messungen von aufgearbeiteten Proben nach Lagerung im Autosampler bei 5°C für 24 Stunden zeigten die in Tabelle 20 aufgeführten mittleren Konzentrationsveränderungen gegenüber direkt gemessenen Proben.

Tabelle 20. Untersuchung der Stabilität von MEP, NIR und 4OHM in Urinproben (n=3) nach 24stündiger Lagerung im Autosampler bei 5°C

	QC-Level		
Autosampler-Stabilität	QC1	QC3	QC4
Mittlere Abweichung der MEP-Konz. im Vergleich zur Referenzmessung [%]	1,8	6,4	-
Mittlere Abweichung der NIR -Konz. im Vergleich zur Referenzmessung [%]	3,7	1,2	-
Mittlere Abweichung der 40HM -Konz. im Vergleich zur Referenzmessung [%]	6,7	-	5,9

Freeze-Thaw-Stabilität

Bei der Überprüfung der Stabilität der Proben nach dreimaligem Einfrieren und Auftauen zeigten sich im Vergleich zu Messungen von unbehandelten Proben die in Tabelle 21 angegebenen mittleren Konzentrationsveränderungen.

	QC-Level			
Freeze/Thaw-Stabilität	QC1	QC3	QC4	
Mittlere Abweichung der MEP-Konz. im Vergleich zur Referenzmessung [%]	0,6	12,6	-	
Mittlere Abweichung der NIR- Konz. im Vergleich zur Referenzmessung [%]	-0,8	2,7	-	
Mittlere Abweichung der 4OHM -Konz. im Vergleich zur Referenzmessung [%]	1,8	-	7,0	

Tabelle 21. Untersuchung der Stabilität von MEP, NIR und 4OHM in Urinproben (n=3) nach 3 Einfrier- und Auftauzyklen

Langzeitstabilität

Zur Überprüfung der Langzeitstabilität wurden die vorgeschriebenen Proben für über 7 Monate (16.06.2003 bis 29.01.2004) bei -80°C gelagert und gegen am Tag der Messung neu angesetzte Kalibrierproben vermessen, dabei zeigten sich die in Tabelle 22 angegebenen mittleren Konzentrationsveränderungen.

Tabelle 22. Untersuchung der Stabilität von MEP, NIR und 4OHM in Urinproben (n=3) nach Lagerung bei –80°C für über sieben Monate

	QC-Level		
Langzeitstabilität	QC1	QC3	QC4
Mittlere Abweichung der MEP -Konz. im Vergleich zur Referenzmessung [%]	-8,6	-9,0	-
Mittlere Abweichung der NIR-Konz. im Vergleich zur Referenzmessung [%]	4,5	2,4	-
Mittlere Abweichung der 40HM -Konz. im Vergleich zur Referenzmessung [%]	3,9	-	7,8

4.2.1.6 Sonstige Prüfungen

Die Rohdaten und Auswertungen zur Ermittlung der optimalen Inkubationsdauer mit β -Glucuronidase, sowie zur thermischen Belastbarkeit der Analyten während der Aufarbeitung (siehe Kapitel 3.3.1) gingen durch einen Virusschaden am Computersystem verloren, so dass sie an dieser Stelle nicht präsentiert werden können.

4.2.1.7 Gesamtergebnis der Validierung

Die Ergebnisse der Validierung entsprachen allesamt den in Kapitel 3.5 angeführten Validierungskriterien. Demnach konnte die Methode zur Quantifizierung von MEP, NIR und 40HM in Urin eingesetzt werden.

4.2.2 Validierung der Methode zur Quantifizierung von Coffein, Paraxanthin und Tolbutamid in Plasma

4.2.2.1 Linearität und untere Quantifizierungsgrenze

Tabelle 23 führt die nach erfolgter Probenaufarbeitung gemessenen Konzentrationen der zur Methodenvalidierung genutzten Kalibrierstandards auf. Die Kalibriergeraden für COF und PAX wurden mit Hilfe der Kalibrierstandards 1 bis 6, die für TOL mittels aller sieben Kalibrierstandards gebildet.

Name	COF [ng/mL]	PAX [ng/mL]	TOL [ng/mL]
CS1	5293	5348	15104
CS2	1742	1750	4972
CS3	525	531	1498
CS4	170	171	486
CS5	52	53	149
CS6	17	17	48
CS7	a	а	10

Tabelle 23. Finale Konzentrationen der Kalibrierstandards (CS) von COF, PAX und TOL

a: CS7 nicht zur Kalibrierung von COF und PAX genutzt.

Für alle drei Analyten konnte bei einer 1/x-Wichtung der Datenpunkte ein linearer Verlauf der Kalibriergeraden ($r^2 > 0,999$) über einen Konzentrationsbereich von 15 bis 5000 ng/mL für COF und PAX bzw. von 10 bis 15000 ng/mL für TOL beobachtet werden. In Abbildung 15 bis Abbildung 17 sind exemplarische Kalibriergeraden abgebildet, wie sie im Rahmen der Validierung entstanden.

Abbildung 15. Kalibriergerade für COF

Abbildung 16. Kalibriergerade für PAX

Abbildung 17. Kalibriergerade für TOL

4.2.2.2 Präzision und Richtigkeit

Zur Bestimmung der Präzision und Richtigkeit der Methode wurden QCs in den folgenden Konzentrationen hergestellt (Tabelle 24):

	Konzentration [ng/mL]					
Analyt	QC1	QC2	QC3	QC4		
COF	4622	460	30	_a		
PAX	4698	465	31	_a		
TOL	13541	1346	89	14		

Tabelle 24. Konzentrationen der Qualitätskontrollproben (QC) für MEP, NIR und 4OHM

a: QC4 nicht zur Validierung von COF und PAX genutzt.

Für alle drei Analyten erfolgte die Validierung der Präzision und Richtigkeit unter den in Kapitel 3.5.4 beschriebenen Vorgaben durch Aufarbeitung und Messung von jeweils fünf Proben aller QC-Konzentrationen an fünf aufeinader folgenden Messtagen. Tabelle 25 listet die Variabilitäten innerhalb eines Tages und an verschiedenen Tagen auf.

		Intra-day		Inte	r-day
Substanz	QC-Level	Richtigkeit [%]	Genauigkeit [%]	Richtigkeit [%]	Genauigkeit [%]
COF	QC1	-0,2	3,1	0,6	5,0
	QC2	5,7	4,2	5,4	4,8
	QC3	2,9	6,2	1,9	5,6
PAX	QC1	10,8	5,2	11,0	5,2
	QC2	6,3	5,1	6,1	5,5
	QC3	11,0	3,7	12,1	5,2
TOL	QC1	6,5	5,2	5,8	4,9
	QC2	5,4	4,6	4,2	4,2
	QC3	3,6	5,7	3,6	6,0
	QC4	-12,3	5,5	-11,4	7,2

Tabelle 25. Validierte Präzision und Richtigkeit von fünf aufeinander folgenden Proben gleicher Konzentration (Intraday-assay) an fünf aufeinander folgenden Tagen (Interday-assay) für alle QC-Level von COF, PAX und TOL

COF und PAX wurden bis zur Konzentration von QC3, TOL bis zur Konzentration von QC4 mit der in Kapitel 3.5.4.4 geforderten Präzision und Richtigkeit validiert. Es ergaben sich folgende LLOQ:

Coffein	30 ng/mL
Paraxanthin	31 ng/mL
Tolbutamid	14 ng/mL

4.2.2.3 Selektivität

Selektivität in arzneistoffreiem Plasma

Die in Kapitel 3.5.3 geforderte Prüfung auf Selektivität wurde mit arzneistofffreiem Plasma von sechs verschiedenen Spendern durchgeführt. Trotz einer bis zu siebentätigen Abstinez von coffeinhaltigen Produkten wurden Spuren von COF und PAX in allen Leerplasmen entdeckt. Für TOL wurden keine störenden Signale während der Retentionszeit der Analyten und des ISTDs beobachtet.

Selektivität in Plasma mit der jeweils niedrigsten QC-Konzentration

Die in Kapitel 3.5.3 geforderte Prüfung auf Selektivität wurde mit Plasma in der jeweils niedrigst gültigen QC-Konzentration durchgeführt. Es wurde kein störender Einfluss auf die Konzentration der QCs beobachtet. Weiterhin wurde für jeden einzelnen Analyten die Selektivät von Proben der jeweils niedrigst gültigen QC-Konzentration nach Zugabe einer Lösung mit allen potentiell im Plasma vorhandenen Substanzen und Metaboliten getestet. Dazu wurde Plasma mit einer Lösung, welche die niedrigste QC-Konzentration eines Analyten und die beiden anderen Analyten in ihrer Maximalkonzentration enthielt, und einer Selektivitäts-Testlösung versetzt, und anschließend wie in Kapitel 3.4.3 beschrieben aufgearbeitet. Die folgenden Substanzen waren in hoher Konzentration in der Selektivitäts-Testlösung enthalten: Mephenytoin, Nirvanol, 4'-Hydroxymephenytoin, Theophyllin, Theobromin, 4-Hydroxytolbutamid, Carboxytolbutamid, Midazolam, 1'-Hydroxymidazolam, 4-Hydroxymidazolam, Dextromethorphan und Dextrorphan. Es wurde kein störender Einfluss durch die zugesetzten Substanzen auf die Konzentration der QCs von COF und TOL beobachtet. Die im Rahmen der Validierung festgestellte massenspektrometrische und chromatographische Interferenz von PAX und TPH führte zu der unter 3.4.1 näher beschriebenen Maßnahme, PAX nicht über das Peakflächen- sondern über das Peakhöhenverhältnis zum ISTD zu quantifizieren (siehe unten).

Selektivität der Paraxanthin-Messung in Anwesenheit von 30% Theophyllin

Bei der in Kapitel 3.5.3 beschriebenen Selektivitätsbestimmung von PAX in Anwesenheit von TPH über alle drei QC-Konzentrationslevel konnte keine Abweichung von der erlaubten Variabilität (20% am LLOQ, 15% für die QC-Level 1 und 2, siehe Kapitel 3.5.4.4) beobachtet werden.

4.2.2.4 Wiederfindung

Die Ergebnisse der nach Kapitel 3.5.5 durchgeführten Untersuchung auf Wiederfindung sind in Tabelle 26 aufgelistet. Aufgrund der geringen, etwa 50% igen Wiederfindung aller drei Analyte nach Probenaufarbeitung im Plasma wurde unter Berücksichtung der Wiederfindung der jeweiligen ISTDs (7HET für COF und PAX, CPP für TOL), zusätzlich auch die relative Recovery berechnet.

			ecovery [%]	Relative Recovery [%]
Substanz	QC-Level	Analyt	ISTD	(Analyt/ISTD)
COF	QC1	59	54	108
	QC2	62	54	115
	QC3	62	52	120
PAX ^a	QC1	48	53	89
	QC2	46	51	89
	QC3	44	49	90
TOL	QC1	44	39	114
	QC2	45	48	117
	QC3	49	42	117

Tabelle 26. Mittlere absolute und relative Recovery von COF, PAX und TOL aus Plasma (n=3)

a: Recovery mittels Peakhöhenhöhenverhältnis von PAX und 7HET ermittelt

4.2.2.5 Stabilität

Processing-Stabilität

Die Überprüfung der Stabilität der Proben während der Aufarbeitung ergab die in Tabelle 27 angegebenen mittleren Konzentrationsveränderungen nach sechsstündiger Lagerung bei Raumtemperatur gegenüber direkter Probenaufarbeitung. Die Abweichung von 16,4% für das QC3-Level von PAX wurde aufgrund nachgewiesener Präzision und Richtigkeit der Methode und ansonsten ausreichender Stabilitätsergebnisse toleriert.

 Tabelle 27. Untersuchung der Stabilität von COF, PAX und TOL in Plasmaproben (n=3)

 während der Probenaufarbeitung

	QC-Level		
Processing-Stabilität	QC1	QC3	QC4
Mittlere Abweichung der COF-Konz. im Vergleich zur Referenzmessung [%]	-0,5	-0,5	-
Mittlere Abweichung der PAX -Konz. im Vergleich zur Referenzmessung [%]	3,8	16,4	-
Mittlere Abweichung der TOL -Konz. im Vergleich zur Referenzmessung [%]	0,8	-	4,1

Autosampler-Stabilität

Messungen von aufgearbeiteten Proben nach Lagerung im Autosampler bei 5°C für 24 Stunden zeigten die in Tabelle 28 aufgeführten mittleren Konzentrationsveränderungen gegenüber direkt gemessenen Proben.

	QC-Level			
Autosampler-Stabilität	QC1	QC3	QC4	
Mittlere Abweichung der COF-Konz. im Vergleich zur Referenzmessung [%]	-5,3	-6,8	-	
Mittlere Abweichung der PAX -Konz. im Vergleich zur Referenzmessung [%]	-3,1	-2,8	-	
Mittlere Abweichung der TOL -Konz. im Vergleich zur Referenzmessung [%]	-7,8	-	-9,5	

Tabelle 28. Untersuchung der Stabilität von COF, PAX und TOL in Plasmaproben (n=3) nach 24-stündiger Lagerung im Autosampler bei 5°C

Freeze-Thaw-Stabilität

Bei der Überprüfung der Stabilität der Proben nach dreimaligem Einfrieren und Auftauen zeigten sich, im Vergleich zu Messungen von unbehandelten Proben, die in Tabelle 29 angegebenen mittleren Konzentrationsveränderungen.

Tabelle 29. Untersuchung der Stabilität von COF, PAX und TOL in Plasmaproben (n=3) nach 3 Einfrier- und Auftauzyklen

	QC-Level			
Freeze/Thaw-Stabilität	QC1	QC3	QC4	
Mittlere Abweichung der COF -Konz. im Vergleich zur Referenzmessung [%]	0,6	-0,8	-	
Mittlere Abweichung der PAX -Konz. im Vergleich zur Referenzmessung [%]	1,5	2,4	-	
Mittlere Abweichung der TOL -Konz. im Vergleich zur Referenzmessung [%]	-4,9	-	-7,8	

Langzeitstabilität

Auf eine Untersuchung der Stabilität für die vorgesehenen Lagerbedingungen und die vorgesehene Lagerungszeit wurde verzichtet, da die Langzeitstabilität von COF, PAX^{189, 197} und TOL¹²⁷ für vergleichbare Lagerbedingungen und -zeiten bereits durch andere publizierte Methoden nachgewiesen werden konnten.

4.2.2.6 Gesamtergebnis der Validierung

Die Ergebnisse der Validierung entsprachen allesamt den in Kapitel 3.5 angeführten Validierungskriterien. Demnach konnte die Methode zur Quantifizierung von COF, PAX und TOL im Plasma eingesetzt werden.

4.3 Ermittlung des geeignetsten Maßes zur Phänotypisierung von CYP2C19

4.3.1 Ergebnisse der CYP2C19-Genotypisierung

<u>Studie A, B und C:</u> Die Ermittlung der CYP2C19-Genotypen ergab 24 für CYP2C19*1/*1 homozygote und 13 für CYP2C19*1/*2 heterozygote Personen, sowie eine Person, die für CYP2C19*2/*2 homozogyt war. Dabei nahm ein Träger des CYP2C19*1/*2-Allels an Studie B und C teil, weshalb er von der Auswertung für Studie C ausgeschlossen wurde. Bei keinem Teilnehmer von Studie C wurde das *3-Allel entdeckt. Tabelle 30 enthält die nach Studien unterteilte Verteilung der Genotypen; eine individuelle Zuordnung der Genotypen befindet sich im Anhang.

Studie	*1/*1	*1/*2	*2/*2
А	5	5	-
В	12	3	1
С	7	4 (5) ^a	-
Total	24	12 (13) ^a	1

Tabelle 30. Verteilung der CYP2C19-Genotypen für Studie A, B und C

a: Eigentlich fünf Träger des CYP2C19*1/*2-Genotyps in Studie C. Da aber Proband C10 bereits an Studie B teilgenommen hatte, wurde er von der weiteren Auswertung für Studie C ausgeschlossen.

4.3.2 Ergebnisse der 4OHM-Quantifizierung

<u>Studie A, B, C und D:</u> Während der Messung von Proben mit unbekannter Konzentration wurden alle der in Kapitel 3.5.7 geforderten Vorgaben zur Sicherung der Validität der Methode eingehalten. Außerdem wurden keine störenden Signale während der Retentionszeit von 40HM und des ISTDs beobachtet. Nach Deglucuronidierung befanden sich, mit Ausnahme der Predose-Proben, alle 40HM-Urinkonzentrationen oberhalb des LLOQ. 24% aller Proben mussten trotz eines Messbereichs von 15-10000 ng/mL wegen Überschreitung des ULOQ mit einer geeigneten Menge Leerurin verdünnt und nachgemessen werden. Eine Auflistung aller gemessenen 40HM-Urinkonzentrationen befindet sich in den Tabellen 42 bis 95 im Anhang.

<u>Studie A und B:</u> Von den 326 ohne vorherige Deglucuronidierung quantifizierten 40HM-Konzentrationen lagen 41 (13%) unterhalb des LLOQ. Darunter befanden sich alleine 13 Proben des Trägers des CYP2C19*2/*2-Genotyps, in dessen Urin ohne vorherige Deglucuronidierung durchweg kein 40HM nachgewiesen werden konnte.

4.3.3 Untersuchung des Einflusses des CYP2C19-Genotyps auf die 4OHM-Recovery

<u>Studie A, B und C:</u> Im Rahmen der statistischen Evaluierung der Messergebnisse wurde zunächst der Einfluss des CYP2C19-Genotyps auf die renale Exkretion von 4OHM durch das in Kapitel 3.8.2.1 beschriebene Verfahren ermittelt. Ziel dieser Untersuchung war die Identifizierung von Sammelintervallen, welche eine möglichst selektive (und statistisch signifikante) Zuordnung der 4OHM-Recovery zu den einzelnen Genotypen erlaubten. Die Abbildungen 18 und 19 zeigen die mittlere prozentualeWiederfindung von 4OHM im Urin bei Trägern der verschiedenen CYP2C19-Genotypen mit (Abbildung 18) und ohne (Abbildung 19) vorheriger Deglucuronidierung des Urins.

Obwohl alle rechnerisch möglichen fraktionierten und kumulierten Urinsammelperioden mit Hilfe des Kruskal-Wallis-Tests untersucht wurden, konnte ein signifikanter Effekt des CYP2C19-Genotyps auf die 4OHM-Recovery nur für deglucuronidierten Urin und kumulierte Sammelintervalle ab einer Dauer von 6 Stunden oder mehr nach Einnahme von MEP beobachtet werden. Die einzige Ausnahme bildete – ebenfalls nach erfolgter Deglucuronidierung – die fraktionierte 2-8 h Sammelperiode (siehe Tabelle 31).

Abbildung 18. Studie A, B und C. Mittlere Wiederfindung (inklusive Standardabweichung, wenn n>2) von 4OHM im Urin bei Trägern verschiedener CYP2C19-Genotypen nach β -Glucuronidase-Vorbehandlung. (n=37, Proband C10 mit CYP2C19*1/*2-Genotyp wurde von der Auswertung von Studie C ausgeschlossen, da er schon als Proband B11 an Studie B teilgenommen hatte.)

Abbildung 19. Studie A und B. Mittlere Wiederfindung (inklusive Standardabweichung, wenn n>2) von 4OHM im Urin bei Trägern verschiedener CYP2C19-Genotypen ohne β -Glucuronidase-Vorbehandlung. (n=25, Keine Ausscheidung von 4OHM für den CYP2C19*2/*2-PM nachweisbar und daher nicht darstellbar.)

Tabelle 31. Urinsammelperioden mit statistisch signifikantem Einfluss des CYP2C19-Genotyps								
auf	die	40HM-Recovery	(arithmetischer	Mittelwert	±	Standardabweichung).	Alle	40HM-
Recoverys nach Deglucuronidierung. (95%-KI = 95%-Konfidenzintervall)								

			*1/*1		*1/*2		*2/*2 ^b	
Sammel- intervall	Studie	Anzahl der Prob. ^a	4OHM- Recovery [%]	95%-KI	4OHM- Recovery [%]	95%-KI	4OHM- Recovery [%]	p-Wert
0-6 h	A/B	26 (17/9/1)	20,6±3,8	18,7-22,6	17,1±3,4	14,3-20,0	0,10	0,029
0-8 h	A/B/C	37 ° (24/12/1)	26,3±3,8	24,7-27,9	23,3±4,6	20,4-26,2	0,15	0,040
0-12 h	A/B/C	37 ° (24/12/1)	29,7±3,7	28,2-31,3	26,9±4,2	24,2-29,6	0,24	0,048
0-16 h	В	16 (12/3/1)	31,8±3,0	29,9-33,7	25,6±2,6	19,2-32,0	0,32	0,025
0-24 h	A/B	26 (17/9/1)	31,9±3,7	30,0-33,9	27,9±3,3	25,1-30,7	0,49	0,028
2-8 h	A/B	26 (17/9/1)	21,8±4,0	18,8-23,9	18,8±1,8	17,3-20,4	0,12	0,036

a: Die Zahlen in Klammern geben die Anzahl der jeweiligen Genotypen folgendermaßen wieder (CYP2C19*1/*1 / CYP2C19*1/*2 / CYP2C19*2/*2)

b: Keine Berechnung des 95%-KI, da n=1

c: Die tatsächliche Gesamtzahl der Teilnehmer an den Studien A, B und C betrug 38. Da Proband C10 bereits an Studie B teilgenommen hatte, wurde seine Untersuchungsergebnisse aus Studie C von der Auswertung ausgeschlossen.

Die offensichtliche Notwendigkeit einer Deglucuronidierung war der Grund, weshalb nach Zwischenevaluierung der Messdaten von Studie A und B beschlossen wurde, alle weiteren Messungen für Studie C und D nur noch nach enzymatischer Dekonjugierung des 40HM-Glucuronids durchzuführen. Eine ausführliche Auflistung aller statistisch untersuchten kumulierten und fraktionierten Sammelintervalle befindet sich in den Tabellen 40 und 41 im Anhang.

Im Gegensatz dazu konnte der CYP2C19*2/*2-Homozygote mit Hilfe aller fraktionierten und kumulierten Sammelperioden als *poor metabolizer* identifiziert werden, da seine mittlere 4OHM-Ausscheidung nach Deglucuronidierung etwa 100-fach geringer als die der Träger mindestens eines *1-Allels und ohne Deglucuronidierung überhaupt nicht nachzuweisen war. Ein nach Genotyp aufgeteilter Vergleich der Ausscheidungsraten von 4OHM verdeutlicht dies (Abbildung 20 und 21).

Abbildung 20. Studie A, B und C. Mittlere 4OHM-Ausscheidungsraten für verschiedene CYP2C19-Genotypen nach Deglucuronidierung in den Referenzperioden der jeweiligen Studien. Man beachte die unterschiedliche Skalierung der zweiten Ordinate für den homozygoten Träger des CYP2C19*2-Allels. (n=37, Proband C10 mit CYP2C19*1/*2-Genotyp wurde von der Auswertung ausgeschlossen, da er schon als Proband B11 an Studie B teilgenommen hatte)

Abbildung 21. Studie A und B. Mittlere 4OHM-Ausscheidungsraten für verschiedene CYP2C19-Genotypen <u>ohne</u> Deglucuronidierung in den Referenzperioden der jeweiligen Studien. Man beachte die unterschiedliche Skalierung der Ordinate im Vergleich zu Abbildung 20. (n=25, Keine Ausscheidung von 4OHM für den CYP2C19*2/*2-PM nachweisbar und daher nicht darstellbar.)

4.3.4 Ermittlung der intraindividuellen Variabilität der 4OHM-Recovery

Studie B, C und D: Studie B hatte bei der Auswertung der intraindividuellen Variabilität Pilotcharakter. Abbildung 22 zeigt, dass in Analogie zu einer nicht signifikanten Genotyp-Phänotyp-Korrelation sowohl das Unterlassen der Deglucuronidierung als auch die fraktionierte Urinsammlung mit einer unzureichenden Reproduzierbarkeit der 40HM-Recovery verbunden waren. Besonders auffällig war, dass kurze kumulierte, sowie alle fraktionierten Sammelintervalle Abweichungen von vom Urinsammelprotokoll besonders deutlich beeinflusst wurden. Dabei basierte die allgemein hohe intraindividuelle Variabilität der ersten beiden Sammelperioden insbesondere auf den fehlenden Urinproben der Probanden B07 (2-4 h), B08 (0-2 h und 2-4 h) und B12 (2-4 h). Bei kumulierter Urinsammlung kam es mit wachsender Sammelzeit, trotz sporadisch fehlender Urinproben (Proband B09: 6-8 h, Proband B12: 6-8 h, Proband 14: 16-24 h), zur Nivellierung einzelner Abweichungen vom Sammelprotokoll. Bei fehlender
ß-Glucuronidasevorbehandlung war die Variabilität doppelt so hoch wie nach vorangegangener Deglucuronidierung.

Abbildung 22. Studie B (n=16). Intraindividuelle Variabilität der 4OHM-Recovery für fraktionierte und kumulierte Sammelintervalle mit und ohne Vorbehandlung des Urins mit β -Glucuronidase. (Die Datenpunkte befinden sich in der Mitte der jeweiligen Sammelintervalle deren Dauer durch die Markierungen im unteren Teil der Abbildung angedeutet wird.)

Weiterhin ist aus Abbildung 22 ersichtlich, dass die intraindividuelle Variabilität nach 12- bzw. 16-stündiger kumulierter Sammlung ihr Minimum erreichte. Aus diesem Grund und wegen der bereits zuvor für die Genotyp-Phänotyp-Korrelation ermittelten Resultate wurde der Urin für Studie C und D nur noch nach erfolgter Deglucuronidierung und bis 12 h nach Verabreichung von MEP vermessen.

Ein Vergleich der intraindividuellen Variationskoeffizienten für alle drei ausgewerteten Studien zeigte eine deutliche Übereinstimmung der intraindividuellen Variabilität für die gemeinsamen 0-8 h- und 0-12 h-Sammelperioden. Demgegenüber wiesen die 0-4 h- bzw. 0-6 h-Sammelintervalle der Studien C und D, aufgrund Variabilität vollständiger Urinsammlung, eine weitaus niedrigere als die korrespondieren Sammelintervalle von Studie B auf (Abbildung 23). Die Auswertung aller drei Studien bestätigt außerdem das initiale Ergebnis einer minimalen intraindividuellen Variabilität für kumulierte Sammelintervalle zwischen 12 und 16 h nach Verabreichung von MEP.

Abbildung 23. Studie B, C und D (n=42, da doppelte Probanden C10 und D11 von Auswertung für Studie C bzw. D ausgeschlossen). Intraindividuelle Variabilität kumulierter Sammelintervalle nach Vorbehandlung des Urins mit β -Glucuronidase. (Die Datenpunkte befinden sich in der Mitte der jeweiligen Sammelintervalle.)

4.3.5 Fallzahlschätzung 4OHM-Recovery

Mit Hilfe der ermittelten intraindividuellen Variationskoeffizienten wurden schließlich die in Tabelle 32 aufgeführten Fallzahlen für alle kumulierten Sammelperioden nach vorheriger Deglucuronidierung bestimmt. Aufgrund seines signifikanten *gene dose*-Effekts, d.h. der Übereinstimmung zwischen 40HM-Recovery als Maß für den CYP2C19-Phänotyp und den CYP2C19-Genotypen, wurde zusätzlich auch das 2-8 h-Sammelintervall in die Auswertung eingeschlossen.

Sammel- intervall	Studie	Anzahl Probanden	CV(intra) [%]	Punktschätzer [µ _T /µ _R]	Fallzahl [n]
0-2 h	В	16	66,8	1,05	> 38
0-4 h	B/C	27 ^a	57,4	0,97	>40
0-6 h	B/D	31 ^b	22,2	0,94	24
0-8 h	B/C	27 ^a	10,8	0,95	8
0-12 h	B/C/D	42 ^{a,b}	7,3	0,98	6
0-16 h	В	16	6,0	0,97	6
0-24 h	В	16	11,0	0,98	6
2-8 h	В	16	14,8	0,90	22

Tabelle 32. Nach Diletti et al.¹⁹⁶ mittels intraindividuellem Variationskoeffizienten CV(intra) [%] und Punktschätzer (μ_T/μ_R) bestimmte Fallzahlen zur Erzielung einer Power von 80% bei einem Signifikanzniveau von 5%. Alle Sammelintervalle nach Deglucuronidierung.

a: Proband C10 von der Auswertung ausgeschlossen

b: Proband D11 von der Auswertung ausgeschlossen

4.4 Ermittlung des geeignetsten Maßes zur Phänotypisierung von CYP2B6

4.4.1 Ergebnisse der CYP2B6-Genotypisierung

<u>Studie A und B:</u> Die folgenden CYP2B6-Genotypen wurden unter den Studienteilnehmern gefunden: *1/*1, n=5; *1/*2, n=2; *4/*4, n=1; *1/*5, n=1; *5/*5, n=2, *1/*6, n=8, *6/*6, n=1 und *1/*7, n=2. Bei keinem Teilnehmer wurde das *3-Allel entdeckt. Vier Probanden konnte keiner der untersuchten Genotypen zugeordnet werden, da bei diesen Studienteilnehmern mit Hilfe des verwendeten Genotypisierungsassays nicht eindeutig geklärt werden konnte, auf welchem DNA-Strang die entsprechenden SNPs lagen. Sie wurden daher in den weiteren Auswertungen zum CYP2B6-Genotyp nicht weiter berücksichtigt. Tabelle 33 enthält die nach SNPs aufgeschlüsselte Unterteilung der einzelnen Genotypen (siehe Kapitel 1.4.2).

single nucleotide polymorphism (SNP)						
Proband	C64T	G516T	C777A	A785G	C1485T	Genotyp
A01	0	1	0	1	0	*1/*6
A02	0	0	0	0	1	*1/*5
A03	0	0	0	0	0	*1/*1
A04	0	1	0	1	0	*1/*6
A05	0	1	0	1	1	*1/*7
A06	0	1	0	1	0	*1/*6
A07	0	0	0	0	0	*1/*1
A08	1	0	0	0	0	*1/*2
A09	0	0	0	2	0	*4/*4
A10	0	1	0	1	0	*1/*6
B01	0	0	0	0	2	*5/*5
B02	0	0	0	0	0	*1/*1
B03	0	0	0	0	0	*1/*1
B04	1	-	0	0	0	*1/*2
B05	0	1	0	1	0	*1/*6
B06	0	-	0	1	0	а
B07	0	1	0	1	1	*1/*7
B08	1	1	0	1	0	а
B09	0	0	0	0	2	*5/*5
B10	0	1	0	1	0	*1/*6
B11	0	0	-	0	0	*1/*1
B12	0	0	0	1	1	а
B13	1	0	0	0	1	а
B14	0	2	0	2	0	*6/*6
B15	0	1	0	1	0	*1/*6
B16	0	1	0	1	0	*1/*6

Tabelle 33. Ergebnis der CYP2B6-Genotypisierung von Teilnehmern der Studie A und B(Codierung der SNPs: 0=nicht anwesend, 1=heterozygot, 2=homozygot)

a: Keine eindeutige Zuordnung zu den untersuchten Genotypen möglich

4.4.2 Ergebnisse der NIR-Quantifizierung

<u>Studie A, B, C und D:</u> Während der Messung von Proben mit unbekannter Konzentration wurden alle der in Kapitel 3.5.7 geforderten Vorgaben zur Sicherung der Validität der Methode eingehalten. Außerdem wurden keine störenden Signale während der Retentionszeit von NIR und des ISTDs beobachtet. Die kurzen Auswaschphasen der Studien B und D (Dauer zwei Wochen) resultierten in noch deutlich nachweisbarer NIR-Exkretion zu Beginn der zweiten Studienperiode. Infolgedessen konnte die intraindividuelle Variabilität der NIR-Recovery nur mit Hilfe von Studie C bestimmt werden, obwohl auch hier, trotz vierwöchiger Auswaschphase, geringe NIR-Konzentrationen in den Predose-Proben von sieben Probanden zu Beginn des zweiten Durchgangs quantifiziert wurden. Für Studie B (und D) galt indes, dass die in Kapitel 4.4.3 und 4.4.6 beschriebenen Untersuchungen nur anhand der Messdaten aus der ersten Studienperiode, d.h. ohne Rücksicht auf die randomisierte Reihenfolge der Test- bzw. Referenzdurchgänge, unternommen werden konnten.

Während die NIR-Urinkonzentrationen des 0-2 h- und teilweise auch des 2-4 h-Sammelintervalls der ersten Phänotypisierungsperiode von Studie A und B in der Regel (92% bzw. 50%) unterhalb des LLOQ lagen, befanden sich für Studie C und D, abgesehen von zwei 0-4h-Sammelperioden, alle Konzentrationen oberhalb des LLOQ. Eine Auflistung aller gemessenen NIR-Urinkonzentrationen befindet sich in den Tabellen 42 bis 95 im Anhang.

4.4.3 Untersuchung des Einflusses des CYP2B6-Genotyps auf die NIR-Recovery

Studie A und B:

Aufgrund einer Anzahl von 8 verschiedenen Genotypen bei nur 22 eindeutig genotypisierten Probanden war die statistische Evaluierung der Einflussnahme des CYP2B6-Genotyps auf die Wiederfindung von NIR im Urin nicht möglich. Dessen ungeachtet konnte eine vergleichbare renale NIR-Exkretion für die Träger des *2-, *5-, *6- und *7-Allels und dem Wildtyp beobachtet werden, wobei Probanden mit mindestens einem *5 bzw. *7-Allel tendenziell weniger NIR auszuscheiden schienen. Besonders hervorstechend war jedoch die stark erhöhte NIR-Ausscheidung für den CYP2B6*4/*4-homzygoten Probanden, dessen NIR-Recovery nach 24-stündiger, kumulierter Sammlung 2,3-fach (2,7-/3,4-/3,1-/2,4-/3,1-fach) höher als für Träger des *1/*1-Genotyps (*1/*2-; *1/*5-, *5/*5-; *1/*6-; *6/*6-;*1/*7-Genotyps) war (siehe Abbildung 24).

Abbildung 24. Studie A und B (n=26). Mittlere Wiederfindung (inklusive Standardabweichung) von NIR im Urin bei Trägern verschiedener CYP2B6-Genotypen. Legende: Auflistung der Genotypen nach Reihenfolge der NIR-Recovery.

4.4.4 Intraindividuelle Variabilität der NIR-Recovery und Fallzahlschätzung

<u>Studie C:</u> Die lückenlose Bestimmung der intraindividuellen Variationskoeffizienten erfolgte unter Zuhilfenahme der interpolierten Ausscheidungsmengen (48-86 h und 94-158 h) bis sieben Tage nach Verabreichung von MEP. In Analogie zu 40HM war eine zufriedenstellend niedrige intraindividuelle Variabilität der Wiederfindung von NIR im Urin nur durch eine kumulierte Urinsammlung zu erzielen (siehe Abbildung 25). Ein direkter Vergleich der intraindividuellen Variationskoeffizienten beider Metabolite zeigt jedoch, dass die 40HM-Recovery das weitaus reproduzierbarere Phänotypisierungsmaß darstellt. So war ein intraindividueller Variationskoeffizient von 22% innerhalb von 6 h für 40HM, aber erst nach 48 h für NIR erreicht (siehe Tabelle 32 und 34).

Abbildung 25. Studie C (n=12). Intraindividuelle Variabilität der NIR-Recovery für fraktionierte und kumulierte Sammelintervalle. (Die Datenpunkte befinden sich in der Mitte der jeweiligen Sammelintervalle deren Dauer durch die Markierungen im unteren Teil der Abbildung angedeutet wird.)

4.4.5 Fallzahlschätzung NIR-Recovery

Für den potentiellen Einsatz der NIR-Recovery als Phänotypisierungsmaß zur Aktivitätsbestimmung von CYP2B6 wurden die folgenden Stichprobenumfänge (Fallzahlen) mit Hilfe der berechneten intraindividuellen Variationskoeffizienten nach Diletti et al. bestimmt:¹⁹⁶

Tabelle 34. Studie C (n=12): Nach Diletti et al.¹⁹⁶ mittels intraindividuellem Variationskoefffizienten CV(intra) [%] und Punktschätzer (μ_T/μ_R) bestimmte Fallzahlen zur Erzielung einer Power von 80% bei einem Siginifkanzniveau von 5%.

Sammelintervall	CV(intra) [%]	Punktschätzer [µ _T /µ _R]	Fallzahl [n]
0-4 h	62,5	1,44	> 642
0-8 h	29,1	1,09	68
0-12 h	27,7	0,96	34
0-16 h	30,7	1,00	32
0-24 h	26,5	0,96	28
0-36 h	22,9	0,97	24
0-48 h	21,8	0,96	24
0-94 h	22,4	1,03	20
0-166 h	18,5	1,00	14

4.4.6 Korrelationsanalyse: Einfluss der CYP2C9-Aktivität auf die Wiederfindung von NIR

<u>Studie A, B und C:</u> Als selektives Maß für die Aktivität von CYP2C9 wurde die 24 h-Plasmakonzentration von TOL eingesetzt (siehe Abbildung 26a). Die Quantifizierung von Tolbutamid in den Plasmaproben von Studie A und B wurde von Frau Dr. Martina Kinzig-Schippers am "Institut für Biomedizinische und Pharmazeutische Forschung" in Nürnberg durchgeführt. Die Wahl der NIR-Recovery in 24 h-Sammelurin als Phänotypisierungsmaß für CYP2B6, stellt einen praktisch bedingten Kompromiss aus geringst möglicher Variabilität und maximaler Fallzahl dar. Studie D konnte wegen einer maximalen Urinsammelzeit von 12 h und teilweise fehlerhafter NIR-Messung nicht in die Auswertung miteinbezogen werden.

Abbildung 26. Studie A, B und C (n=37, da doppelter Proband C10 für Studie C von

Wie aus Abbildung 27 hervorgeht, konnte kein signifikanter Zusammenhang (p=0,136 und r²=0,0623) zwischen der Aktivität von CYP2C9 und der Wiederfindung von NIR in 24 h kumuliert gesammeltem Urin nachgewiesen werden. Trägt man, wie in Abbildung 26b geschehen, die 24 h-Recovery von NIR gegen die verschiedenen CYP2C9-Genotypen auf, bestätigt sich dieser Befund. Trotz einer möglichen Tendenz zu niedrigeren NIR-Wiederfindungsraten bei heterozygoten Trägern der Allele *2 und *3 scheint der Einfluss von CYP2C9 auf die Recovery von NIR in 24 h Urin eher gering, wenn überhaupt vorhanden zu sein.

TOL: 24 h-Plasmakonzentration [µg/ml]

Abbildung 27. Studie A, B und C (n=37, da doppelter Proband C10 für Studie C von Auswertung ausgeschlossen): Korrelation zwischen der 24 h-Plasmakonzentration von TOL als selektivem Maß für die Aktivität von CYP2C9 und der Recovery von NIR in 24 h kumuliert gesammeltem Urin (p=0,136).

5 Diskussion

Die ausgeprägte Variabilität der individuellen Arzneistoffantwort ist zu einem erheblichen Anteil Folge der hochvariablen Aktivität arzneistoffmetabolisierender Cytochrom P450-Enzyme. Die Phänotypisierung, d.h. die Aktivitätsbestimmung dieser Enzyme unter Berücksichtigung genetischer und exogener Faktoren *in vivo*, kann wertvolle Informationen für wissenschaftliche und klinische Anwendungen liefern.

Die para-Hydroxylierung von MEP zu 40HM (und dessen Wiederfindung im Urin) wird seit über 20 Jahren als selektive Markerreaktion zur *in vivo*-Phänotypisierung von CYP2C19 genutzt. Allerdings wurde das Verfahren bislang noch nie systematisch optimiert.

Das Hauptziel dieser Arbeit war die systematische Evaluierung des geeignetsten Urinsammelintervalls – fraktioniert oder kumuliert, unbehandelt oder deglucuronidiert – zur selektiven und reproduzierbaren Aktivitätsbestimmung von CYP2C19 *in vivo*. Außerdem sollte untersucht werden, ob sich die N-Demethylierung von MEP zu NIR für die *in vivo*-Phänotypisierung von CYP2B6 eignet.

Zu diesem Zweck wurden insgesamt 54 Probanden in vier Cocktailphänotypisierungsstudien mit 50 mg MEP phänotypisiert und eine verlässliche LC-MS/MS-Messmethode zur Quantifizierung von MEP und seiner beiden Phase-I-Metaboliten entwickelt. Um die Messdaten zu verifizieren, wurde ein Großteil der Probanden zusätzlich auf die häufigsten Mutationen der CYP2C19-, CYP2B6- und CYP2C9-Gene untersucht.

Zur Phänotypisierung von CYP1A2 und CYP2C9 wurde außerdem eine selektive LC-MS/MS-Methode für die simultane Konzentrationsbestimmung von Coffein, Paraxanthin und Tolbutamid in Plasma entwickelt.

5.1 Messmethode zur Quantifizierung von Mephenytoin, Nirvanol und 4'-Hydroxymephenytoin in Urin

Für die simultane Quantifizierung von MEP, NIR und 40HM in Urin konnte eine ebenso robuste wie selektive LC-MS/MS-Methode entwickelt werden. Im Rahmen der Methodenvalidierung wurde nachgewiesen, dass das Verfahren allen Kriterien der arbeitsgruppeninternen SOP, und somit international gültigen Richtlinien entsprach.¹⁹²⁻
Das bewusst einfache Probenaufarbeitungsverfahren kombiniert ein unkompliziertes Pipettierschema mit einer geringen Matrixbelastung der Proben. Durch 20-fache Verdünnung der Urinmatrix sowie den Einsatz des divert valves konnte ein reibungsloser Langzeitbetrieb der Messmethode auch ohne umständliche und oftmals verlustreiche Extraktionsverfahren gewährleistet werden. Die Abwesenheit chromatographischer und massenspektrometrischer Interferenzen der Analyten und des internen Standards mit anderen endogenen sowie exogenen Substraten konnte sowohl durch die Methodenvalidierung als auch im Routinebetrieb bei der Vermessung von mehr als 1000 Probandenproben nachgewiesen werden. Diese Tatsache belegt die besondere Eignung der Methode für den Einsatz unter den erhöhten analytischen Anforderungen von Cocktailstudien.

Der Messbereich über vier Größenordnungen (15-10000 ng/mL) erwies sich als adäquat zur Quantifizierung der nach Einnahme von 50 mg MEP – mit oder ohne Deglucuronidierung – vorherrschenden Konzentrationen von MEP, NIR und 4OHM in Urin. Allerdings erzwang die beträchtliche Diskrepanz zwischen den teilweise wenigen ng/mL hohen Konzentrationen von NIR, MEP und unbehandeltem 4OHM und den, andererseits bis zu 50000 ng/mL hohen 4OHM-Konzentrationen nach erfolgter Deglucuronidierung, einen Kompromiss in der Festlegung des Messbereichs. Durch die 20-fache Verdünnung im Rahmen der Probenaufarbeitung lagen nahezu alle (86%) freien 4OHM-Konzentrationen oberhalb des LLOQ und gleichzeitig mussten nur 24% aller Proben wegen Überschreitung des ULOQ nachgemessen werden.

Speziell in diesem Punkt ist die Methode dem bisher einzig anderem veröffentlichten LC-MS/MS-Verfahren zur Quantifizierung von MEP und 40HM in Urin überlegen. Der 1999 durch Scott et al. publizierte Assay wurde lediglich über einen Konzentrationsbereich von 100-3000 ng/mL (20-2500 ng/mL) für 4OHM (MEP) validiert und ist infolgedessen nicht an die tatsächlich vorgefundenen angepaßt.⁵⁷ Urinkonzentrationen von 40HM Wäre erwähntes Verfahren zur Vermessung der Studienproben eingesetzt worden, hätten im Falle der Konzentrationsbestimmung von deglucuronidiertem 40HM 59% aller Probandenproben verdünnt und nachgemessen werden müssen. Zusätzlich hätten sich 49% aller Konzentrationen des freien 40HM unterhalb des LLOQ befunden. Davon abgesehen, bedient sich die Methode eines (unnötig) kostspieligen Probenaufarbeitungsverfahrens per Festphasenextraktion (SPE).

Im Vergleich zu publizierten HPLC-Methoden weist das entwickelte LC-MS/MS-

Verfahren – systemimmanent – eine bis zu 100-fach¹⁷¹ niedrigere untere Quantifizierungsgrenze auf. War für eine Konzentrationsbestimmung von 4OHM per UV-Detektion eine Vorbehandlung des Urins mit β -Glucuronidase noch unerlässlich, so ist die Deglucuronidierung bei einem LLOQ von 20 ng/ml, zumindest vom analytischen Standpunkt betrachtet, nicht mehr zwingend erforderlich. Zudem liefert die Methode die analytische Grundlage für eine umfassende pharmakokinetische Überwachung der bislang wenig untersuchten, weil geringen, renalen Ausscheidung von NIR und MEP.

Die Anwendung der LC-MS/MS-Technologie ermöglicht zudem den Verzicht auf eine zeit- und arbeitsaufwendige Probenaufarbeitung, wie sie in Form von umständlichen Derivatisierungs- und/oder Extraktionsverfahren für die Quantifizierung per GC, GC-MS und HPLC noch unentbehrlich war. Anders als bei stärker matrixbelasteten Plasmaproben, reicht die einfache Verdünnung des Urins in Kombination mit einem chromatographischen Gradienten zur Probenaufreinigung aus und minimiert zusätzlich die Fehleranfälligkeit durch bedeutend weniger Pipettierschritte.

Trotz aller aufgezählten Vorzüge ließe sich das entwickelte Verfahren mit wenig Aufwand für den Routinebetrieb noch weiter optimieren. Nach Auswertung der Messdaten aller vier Cocktailstudien scheint es wahrscheinlich, dass die Methode in Zukunft nur noch zur Quantifizierung von deglucuronidiertem 40HM eingesetzt wird. In diesem Fall könnte die Anzahl der Proben, welche das ULOQ überschreiten und deshalb nachgemessen werden müssen, durch eine höhere (40- oder 60-fache) Verdünnung des Urins mit Puffer oder ISTD-Stammlösung drastisch reduziert werden, ohne dass es zu einer kompletten Neuvalidierung für den dann insgesamt zu höheren Konzentrationen verschobenen Messbereich kommen müsste.

5.2 Messmethode zur Quantifizierung von Coffein, Paraxanthin und Tolbutamid in Urin

Für die Bestimmung von COF, PAX und TOL in Plasma konnte eine robuste und vor allem selektive LC-MS/MS-Methode entwickelt und nach internationalen Richtlinien validiert werden.¹⁹²⁻¹⁹⁴ Das Verfahren konnte anschließend erfolgreich zur Phänotypisierung von CYP1A2 und CYP2C9 im Rahmen der Studien C und D eingesetzt werden. Mit Ausnahme der Predose-Proben, lagen alle quantifizierten Konzentrationen innerhalb der Grenzen der gewählten Messbereiche von 30 bis 5000 - 101 -

ng/mL für COF und PAX bzw. 15 bis 15000 ng/mL für TOL.

Obwohl die Plasmakonzentrationen aller drei Analyten durchweg weit über dem LLOQ lagen und eine Probenverdünnung ohne messtechnische Konsequenzen geblieben wäre, wurde dennoch auf eine einfache Plasmaproteinfällung verzichtet, um sich eine schnelle, unkomplizierte Probenaufarbeitung nicht auf Kosten häufiger Systemausfälle durch stark matrixverunreinigte Proben zu erkaufen. Statt dessen wurde der verbliebene Probenrückstand nach erfolgter Proteinfällung und Evaporation des Fällungsmediums im hydrophilen Laufmittel angelöst, um so eine weitere Abtrennung vornehmlich lipophiler Plasmakomponenten zu erreichen. Ungeachtet dessen ist die durchschnittlich nur 50% ige absolute Recovery aller drei Analyten als Hinweis auf eine Suppression der ESI-Ionisierung durch co-extrahierte, hydrophile (?) Matrixbestandteile zu werten. Allerdings wurden die Matrixeffekte durch die beiden ISTDs egalisiert, so dass die relative Recovery, d.h. das Verhältnis der analytischen Wiederfindung von Analyt und ISTD, insgesamt innerhalb der Grenzen von 80-120% lag. Dennoch ist das entwickelte Verfahren anderen LC-MS/MS-Methoden zur Bestimmung von COF, PAX und/oder TOL in Plasma, die mittels Festphasenextraktion absolute Recoverys von über 90% für alle drei Analyte erzielen, in punkto Wiederfindung nicht ebenbürtig.^{57, 58}

Der besondere Vorteil der entwickelten Methode liegt vielmehr im Bereich einer sorgfältig evaluierten Selektivität. Denn ist eine geringe, aber konstante analytische Recovery tolerierbar und ohne Einfluss auf die Messergebnisse, sofern - bei nachgewiesener Selektivität der Methode - Probandenproben und Kalibrier- bzw. Qualitätskontrollproben identisch aufgearbeitet werden, kann die beobachtete chromatographische und massenspektrometrische Interferenz von PAX und TPH zu Fehlern bei der Bestimmung des CYP1A2-Phänotyps führen. Keine der beiden bereits erwähnten LC-MS/MS-Methoden berücksichtigt das Phänomen der identischen SRM-Übergange von PAX und TPH. Darüber hinaus ist eine chromatographische Basislinientrennung der zwei COF-Metabolite bei einer Laufzeit von 3,558 bzw. 4,057 vorstellbar, eine ungewollte Simultanbestimmung aber umso min wenig wahrscheinlicher. Auch wenn der Anteil von TPH im Plasma durchschnittlich weniger als 20% der Konzentration von PAX entspricht,191 kann eine Beeinflussung des PAX/COF-Quotienten als metabolischem Index für die Aktivität von CYP1A2 nicht ausgeschlossen werden. Das im Rahmen dieser Arbeit entwickelte Verfahren trägt dem identischen analytischen Verhalten beider Substanzen Rechnung, indem es die Peaks beider COF-Metabolite ausreichend weit chromatographisch antrennt, um PAX selektiv

über sein Peakhöhenverhältnis zum ISTD zu quantifizieren. Im Rahmen der Validierung konnte PAX, ungeachtet einer "Störkonzentration" von 30% TPH, für alle QC-Konzentrationslevel im Rahmen der erlaubten Variabilität quantifiziert werden. Der Versuch, PAX und TPH vollständig chromatographisch zu trennen, wurde aufgegeben, nachdem sich trotz Einsatz verschiedenster analytischer Trennsäulen und Laufmittelzusammensetzungen zwar eine Basislinientrennung der beiden Substanzen erzielen ließ, dafür aber drastisch angestiegene Retentionszeiten von TOL und CPP in Kauf genommen werden mussten.

Insgesamt betrachtet konnte ein analytisches Verfahren entwickelt werden, dass im Gegensatz zu anderen, eplixizit für die Phänotypisierung konzipierten LC-MS/MS-Methoden die richtigeren Ergebnisse zur Phänotypisierung von CYP1A2 liefern dürfte. Die analytische Interferenz der beiden COF-Metabolite PAX und TPH ist ein anschauliches Beispiel dafür, welcher Stellenwert einer sorgfältigen Untersuchung der analytischen Selektivität und besonders auch der chromatographischen Trennung im Rahmen der Methodenentwicklung eingeräumt werden sollte. Ein häufig beobachtetes Defizit vieler publizierter LC-MS/MS-Methoden ist, dass infolge einer immer wieder vermeintlich angenommenen absoluten Selektivität der MS/MS-Detektion, die teilweise essentielle chromatographische Trennung der Analyten zu Gunsten eines maximalen Probendurchsatzes vernachlässigt wird.¹⁹⁸

5.3 Das geeignetste Maß zur Phänotypisierung von CYP2C19

Die systematische Untersuchung verschiedener fraktionierter und kumulierter Urinsammelperioden nach Verabreichung von 50 mg MEP ergab, dass die prozentuale Wiederfindung von 40HM in 0-12 h kumuliert gesammeltem und mit β -Glucuronidase vorbehandeltem Urin das geeignetste MEP-basierte Maß zur Phänotypisierung von CYP2C19 darstellt. Unter genannten Bedingungen konnte ein signifikanter Einfluss des CYP2C19-Genotyps auf den Phänotyp beobachtet werden und die intraindividuelle Variabilität der CYP2C19-Aktivität betrug lediglich 7%. Bei Anwendung des ermittelten Phänotypisierungsmaßes für zukünftige Interaktionsstudien reicht daher die geringe Fallzahl von n=6 Probanden aus, um den potentiellen inhibitorischen bzw. induktiven Effekt eines Arzneistoffes auf CYP2C19 zu erfassen.

Wie in Kapitel 1.3.1 näher erläutert, sollte ein Testsubstrat zur Phänotypisierung arzneistoffmetabolisierender Enzyme gut verträglich und problemlos verfügbar sein sowie nicht mit anderen, gemeinsam verabreichten Cocktailsubstraten interagieren. Der gewählte Phänotypisierungsparameter sollte vor allem jedoch reproduzierbar, selektiv und möglichst spezifisch für das untersuchte Enzym sein.

Die meisten dieser Kriterien treffen auf MEP zu. So konnten Goldstein et al. eine signifikante Korrelationen zwischen der immunchemisch quantifizierten CYP2C19-Menge in humanen Lebermikrosomen (HLM) und der Aktivität der S-MEP-4'-Hydroxylase nachweisen ($r^2 = 0.79$, p<0.0001).¹³⁵ Im Rahmen der Untersuchungen durch Lasker et al. wurde neben einer ebenfalls guten Korrelation zwischen dem CYP2C19-Gehalt mikrosomaler Inkubate und der 4'-Hydroxylierung von S-MEP (r²= 0,912, p<0,0001) sowie der 5-Hydroxylierung von Omeprazol (r^2 = 0,906, p<0,0001), einer anderen Markerreaktion für CYP2C19, auch eine 98%- bzw. 85%-ige Inhibition Hydroxylierungsreaktionen durch polyklonale CYP2C19-Antikörper beider beobachtet.¹⁸¹ In mehreren Probandenstudien konnte die Selektivität sowohl der 40HM-Recovery, als auch der S/R-Ratio durch eine signifikante gene dose-Beziehung zwischen CYP2C19-Genotyp und -Phänotyp nachgewiesen werden.^{164, 175, 199} Ein ausgeprägter gene dose-Effekt wurde für beide metabolischen Indizes auch für die Rifampicin-vermittelte Induktion von CYP2C19 in einer Studie mit 12 chinesischen Teilnehmern beschrieben.²⁰⁰ Weiterhin konnte speziell für die 4OHM-Recovery eine niedrige intraindividuelle Variabilität (siehe Tabelle 35) und die Abwesenheit metabolischer Interferenzen mit zahlreichen gebräuchlichen Cocktailsubstraten, nämlich Midazolam, Coffein, Chloroxazon, Debrisoquin, Metoprolol und Dapson, bewiesen werden.^{59, 60,} 62 Zusätzlich kam es nach einmaliger Verabreichung einer Phänotypisierungsdosis von 100 mg MEP an 30 männliche Probanden nicht zu den, chronischer MEP-Therapie bei 6-23% unter aller Patienten auftretenden hämotologischen Nebenwirkungen.²⁰¹

Allerdings existieren auch Argumente gegen den Einsatz von MEP zur CYP2C19-Phänotypisierung. So wurde speziell für (asiatische) *poor metabolizer* und Personen mit niedrigem BMI eine gravierende Sedierung durch eine Dosis von 100 mg MEP beschrieben.^{165, 166} Zusätzlich konnte in diversen Studien keine signifikante Korrelation zwischen der S/R-Ratio und einem auf der renalen Exkretion von 4OHM beruhendem Maß für die Aktivität von CYP2C19 festgestellt werden.^{162, 175, 202} Des Weiteren werden die Ergebnisse der S/R-Ratio durch die Präsenz des lager- und säureinstabilen S-MEP-Cystein-Konjugats verfälscht. Denn obwohl der labile Metabolit maximal 1% der verabreichten MEP-Dosis im Urin von *extensive metabolizern* ausmacht, beeinflusst sein Abbau die S/R-Ratio angesichts allgemein niedriger S-MEP-Konzentrationen (im Regelfall < 500 ng/mL) erheblich.¹⁷¹ Nach Lagerung bei -20° C für 1, 3, 6 bzw. 24 Monate betrug der mittlere prozentuale Anstieg der S/R-Ratio 6,9%, 20%, 177% und 216%.²⁰³ In einer anderen Studie nahm die S/R-Ratio um 22% nach Kurzzeitlagerung (< 7 Monate) bzw. um 85% nach Langzeitlagerung (> 7 Monate) zu, was in 1,5% der Fälle (einer von 66 Probanden) zu einer fehlerhaften Klassifizierung des Phänotyps führte.¹⁶³ Im Gegensatz dazu konnte die Lagerstabilität von 40HM im Rahmen der analytischen Methodenvalidierung dieser Arbeit nachgewiesen werden (siehe Kapitel 4.2.1.5). Die teilweise extrem niedrigen Konzentrationen von S-MEP im Urin von extensive metabolizern bilden die Grundlage für einen weiteren entscheidenden Nachteil der S/R-Ratio. So befanden sich in einer von Brockmöller et al. durchgeführten Studie 45% bzw. sogar 74% aller S-MEP-Konzentrationen der 0-5 h- und 5-8 h-Sammelperioden unterhalb des LLOQ von 50 ng/mL und mussten deshalb von der Auswertung ausgeschlossen werden.¹⁷⁵ Für die 4OHM-Recovery wurde insbesondere die Anfälligkeit gegenüber nicht vollständiger Urinsammlung, einem generellen Problem aller Urin-basierten Phänotypisierungsmaße, moniert.¹⁶² Zusätzlich ist MEP in den USA und den meisten europäischen Staaten nicht mehr kommerziell erhältlich, weil es seine klinische Relevanz als Antiepileptikum verloren hat.

Vor dem Hintergrund dieser Defizite wurden Proguanil und Omeprazol (OMEP) als alternative Phänotypisierungssubstrate für CYP2C19 vorgeschlagen. Omeprazol zeigt neben seiner bereits erwähnten Spezifität für CYP2C19 eine klare Genotyp-Phänotyp-Korrelation für den Quotienten der Muttersubstanz zu 5-Hydroxyomeprazol (5OHO) in 3 h-Plasma^{204, 205} und eine signifikante Korrelation zur S/R-Ratio von MEP.^{202, 204} Doch ungeachtet dessen weist auch OMEP einige Nachteile auf. Erstens wird OMEP (und auch 5OHO) parallel zur 5-Hydroxylierung durch CYP3A4 sulfoxidiert.¹⁴⁸ Potentielle Interaktionen mit gleichzeitig verabreichten CYP3A4-(Phänotypisierungs-)Substraten sind die Folge und die bisher für OMEP validierten Phänotypisierungscocktails vermeiden die simultane perorale Verabreichung von OMEP und CYP3A4-Markersubstanzen. Im Falle des "Karolinska Cocktails" wird das CYP3A4-Substrat Chinin erst acht Stunden nach OMEP oral verabreicht,⁶³ wohingegen im Falle des "Cooperstown Cocktails" eine alleinige Bestimmung der hepatischen CYP3A4-Aktivität durch intravenöse Injektion von Midazolam vorgenommen wird.^{61, 206} Die sequentielle Bestimmung der hepatischen und intestinalen CYP3A4-Aktivität, wie sie unter anderem im Rahmen der Studien A bis D vollzogen wurde, ist daher in beiden Fällen nicht möglich.^{207, 208} Zweitens muss, infolge der kurzen OMEP-Plasmahalbwertzeit (t_{1/2}=40 min),²⁰⁹ die Probennahme innerhalb von 2 bis 3 Stunden nach Verabreichung stattfinden – also zu einem Zeitpunkt, in der die Plasmakonzentrationen von OMEP und seinem 5-Hydroxymetabolit noch maßgeblich durch die Absorption und/oder die galenische Freisetzung der Muttersubstanz beeinflusst werden können.²¹⁰ Hinzu kommt, dass – analog zu S-MEP – bei einem hohen Prozentsatz aller Probanden keine detektierbaren Konzentrationen von OMEP und seiner Metabolite im Plasma zu finden sind. In einer Studie von Marinac et al. waren bei 21% aller Probanden weder OMEP noch 5OHO im 2 h-Serum detektierbar.²¹¹ Ungeachtet einer Vielzahl von Studien zur Behebung dieser Problematik ist bis heute weder die optimale Phänotypisierungsdosis von OMEP noch der geeignetste Zeitpunkt der Plasmaprobennahme bekannt.⁴⁶ Drittens weisen alle Phänotypisierungsmaße, die auf der metabolischen Umwandlung von OMEP zu 5OHO basieren, eine inakzeptabel hohe intraindividuelle Variabilität (35~40%)⁵² auf (siehe auch Tabelle 35).

Die Oxidation von Proguanil zu Cycloguanil korreliert *in vitro* zwar mit der S/R-Ratio von MEP $(r^2=0,71, p<0,00001)^{212}$ und der 5-Hydroxylierung von OMEP $(r^2=0,882, p<0,01)$, aber auch mit dem CYP3A-Gehalt von HLM $(r^2=0,643, p<0,01)$ und zahlreichen CYP3A-Markerreaktionen, etwa der Bildung von Omeprazolsulfon $(r^2=0,506, p<0,01)$.¹⁵⁰ Diese Ergebnisse veranlassten Birkett et al., eine bis zu 70%ige Beteiligung von CYP3A an der Entstehung von Cycloguanil zu postulieren.¹⁵⁰ Darüber hinaus konnte mit Hilfe der Proguanil/Cycloguanil-Ratio keine klare phänotypische Trennung von CYP2C19-*extensive* und *poor metabolizern* erreicht werden.^{212, 213} Aus genannten Gründen stellen daher sowohl Omeprazol, als auch Proguanil keine sinnvollen Alternativsubstrate dar, so dass MEP auch weiterhin die erste Wahl zur Phänotypisierung von CYP2C19 bleibt.

Nach grundlegender Bewertung des derzeitigen Wissenstands scheint die prozentuale Wiederfindung von 4OHM in Urin das vorteilhafteste Maß zur Phänotypisierung von CYP2C19 zu sein. Die Präferenz für die 4OHM-Recovery entspringt neben den bereits angeführten Argumenten ausdrücklich auch aus den bereits geschilderten Nachteilen der S/R-Ratio. Doch ungeachtet aller Vorteile wurde das Verfahren der 4OHM-Recovery, wie schon in Kapitel 1.5.1 der Einleitung angedeutet, bislang noch nie systematisch optimiert bzw. validiert. Obwohl die "traditionell" achtstündige, kumulierte Sammlung von Urin im Jahre 1984 a) lediglich anhand der Ausscheidungsmengen je eines *extensive metabolizers* und eines *poor metabolizers* und b) aus – so wörtlich – "Gründen

der Bequemlichkeit" für ein gemeinsames Sammelintervall von S/R-Ratio und 4OHM-Recovery festgelegt wurde,¹⁶² wurden in den letzten 20 Jahren nur eine Handvoll Studien mit zeitlich abweichenden Urinsammelschema durchgeführt.^{175, 201, 214, 215} Aus diesem Grund wurden in dieser Arbeit verschiedene kumulierte und fraktionierte Urinsammelintervalle gegeneinander verglichen, um das optimale Sammelintervall für eine möglichst selektive und reproduzierbare Aktivitätsbestimmung von CYP2C19 zu ermitteln. Zur Vereinfachung der Probenaufarbeitung wurde außerdem untersucht, ob auch die Fraktion des freien, unkonjugierten 4OHMs die Aktivität von CYP2C19 zufriedenstellend reflektiert.

Wie bereits in Kapitel 1.5.1 erwähnt, war es in der Vergangenheit aufgrund unterer Quantifizierungsgrenzen von 500¹⁶⁹, 1000⁶⁰ oder 2000¹⁷¹ ng/mL unerlässlich, alle Urinproben vor ihrer Messung per HPLC zu deglucuronidieren. Trotz der weitaus empfindlicheren LC-MS/MS-Analytik (LLOQ 20 ng/mL) waren die Untersuchungsergebnisse bereits nach Zwischenevaluierung der Studien A und B so eindeutig, dass alle Urinproben der Studien C und D wieder ausschließlich nach erfolgter Deglucuronidierung vermessen wurden. So war der Verzicht auf eine β-Glucuronidase-Vorbehandlung mit einer wesentlich schlechteren Reproduzierbarkeit und einer ausnahmslos insignifikanten Genotyp-Phänotyp-Beziehung verbunden. Die ausgeprägte inter- und intraindividuelle Variabilität der UDP-Glucuronosyltransferasen scheint demnach einen bedeutenden Störfaktor darzustellen. So ist eine mehr als 10fache Variabilität der Aktivität dieser Phase-II-Enzyme zwischen den Individuen einer Population nicht die Ausnahme, sondern die Regel.²¹⁶

Eine statistisch signifikante Übereinstimmung zwischen der 4OHM-Recovery und den für die Studien A, B und C ermittelten CYP2C19-Genotypen (*1/*1, *1/*2 und *2/*2) wurde für kumulierte, mindestens sechsstündige Urinsammelperioden nach enzymatischer Deglucuronidierung gefunden. Dieses Resultat steht im Widerspruch zur bisher die vergleichbaren Rahmenbedingungen einzigen Studie. unter (Phänotypisierungsdosis von 50 mg MEP; Probanden kaukasischer Abstammung) durchgeführt wurde, und die einen signifikanten gene dose-Effekt zwar für die S/R-Ratio, nicht aber für die 40HM-Recovery nachweisen konnte.¹⁷⁵ Der Grund für diese Diskrepanz scheint in der damaligen Wahl von 0-5 h- bzw. 5-8 h-Sammelintervallen zu liegen, denn auch für die vergleichbaren 0-4 h- bzw. 4-8 h-Sammelintervalle dieser Arbeit wurde kein signifikanter Einfluss des CYP2C19-Genotyps auf die Ausscheidung von 40HM gefunden (p=0,189 bzw. p=0,226). Die prägnante Überlappung der 95%-

Konfidenzintervalle für *1/*1-homozygote und *1/*2-heterozygote *extensive metabolizer* (siehe Tabelle 31) macht darüber hinaus deutlich, dass eine klare Subklassifizierung beider Genotypen mit Hilfe der 4OHM-Recovery nicht praktikabel ist. Damit bestätigt diese Arbeit bereits bestehende Studienergebnisse für die 4OHM-Recovery.¹⁶⁴ Allerdings ist eine eindeutige Diskriminierung von Trägern des CYP2C19*1/*1- und CYP2C19*1/*2-Genotyps genauso wenig mit Hilfe der S/R-Ratio^{175, 199, 217} und dem metabolischen Quotienten von OMEP möglich.^{204, 205, 218} Obwohl homzygote *extensive metabolizer* im Vergleich zu heterozygoten *extensive metabolizern* eine leicht höhere CYP2C19-Aktivität zu besitzen scheinen, lassen vergleichbare Ergebnisse für verschiedene Phänotypisierungsmaße darauf schließen, dass dieser geringe Unterschied auch für andere, überwiegend durch CYP2C19 metabolisierte Arzneistoffe klinisch nicht relevant ist.

Die intraindividuelle Variabilität eines Phänotypisierungsmaßes ist einer der wichtigsten Einflussfaktoren auf die statistische Power und somit auch auf den benötigten Stichprobenumfang zur rationalen Durchführung von Arzneimittelstudien. Eine niedrige intraindividuelle Variabilität führt zu einer geringeren Anzahl von Studienteilnehmern, einem reduzierten Zeit- und Materialbedarf und dadurch zu insgesamt geringeren Kosten für z.B. Interaktions- oder Dosisoptimierungsstudien. Besonders relevant ist eine niedrige intraindividuelle Variabilität führt cocktailstudien, denn die Fallzahlschätzung für einen Phänotypisierungscocktail beruht in der Regel auf dem größten intraindividuellen Variationskoeffizienten aller Cocktailkomponenten, da nur so eine ausreichende statistische Power für alle untersuchten CYPs erzielt werden kann.⁵²

Referenz	Мав	Dosis [mg]	Anzahl der Studien- teilnehmer	Anzahl der Studien- perioden	CV(intra) [%]	Art der Berechnung
Christensen et al. ⁶³	OMEP- MR ^a	20	24	2	25	"coefficient of variation"
Kim et al. ²¹⁰	OMEP- MR ^b	30 ^g /40 ^h	24	6	18.5 6.3-51.3	"median CV%" and range
Balian et al. ²⁰²	OMEP- MR ^b	20	5	3	5.8-64.3	"range of variability after repeated determinations"
Yin et al. ²¹⁸	OMEP- MR ^c	40	27	3	18.2 4.5-37.7	"mean coefficient of variation" and range
Tamminga et al. ²¹⁷	S/R ^d	100	129	2	28	"mean of all individual coefficients of variation"
Frye et al. ⁶⁰	40HM recovery ^e	100	14	3	7.4	"median within-subject coefficient of variation"
Zhu et al. ⁶²	40HM recovery ^e	100	14	4	10.3	"median within-subject coefficient of variation"
Diese Arbeit	40HM recovery ^f	50	40 ⁱ (27 ^j)	2	7 (11)	Intraindividueller Variationskoeffizient berechnet durch ANOVA

Tabelle 35. Literaturvergleich der intraindividuellen Variationskoeffizienten verschiedener Phänotypisierungsmaße von CYP2C19 (OMEP-MR = Metabolische Ratio Omeprazol, S/R = Mephenytoin S/R-Ratio, 4OHM = 4OHM-Recovery)

a: berechnet als Plasmaquotient Omeprazol/5-Hydroxyomeprazol 3 Stunden postdose

b: berechnet als Plasmaquotient Omeprazol/5-Hydroxyomeprazol 2 Stunden postdose

c: berechnet als Plasmaquotient AUC(Omeprazol)/AUC(5-Hydroxyomeprazol) 12 Stunden postdose

d: berechnet als Konzentrationsquotient (S)-Mephenytoin/(R)-Mephenytoin im 8 h-Urin

e: berechnet als totale Recovery von 4'-Hydroxymephenytoin im 0-8 h-Urin

f: berechnet als molare Recovery von 4'-Hydroxymephenytoin im 0-12 h-Urin (Daten für 0-8 h-Sammelperiode in Klammern)

g: Körpergewicht 45-66 kg

h:Körpergewicht 67-90 kg

i: Tatsächlich 42 anstatt 40 Probanden, da aber die Probanden C10 und D16 bereits and Studie B teilgenommen hatten, wurden die Messergebnisse von Studie C und D von der weiteren Auswertung ausgeschlossen.

j: Tatsächlich 28 anstatt 27 Probanden, da aber Proband C10 bereits and Studie B teilgenommen hatte, wurden die Messergebnisse von Studie C von der weiteren Auswertung ausgeschlossen.

War die im Rahmen dieser Arbeit beobachtete intraindividuelle Variabilität für die "traditionelle" achtstündige, kumulierte Urinsammlung mit 11% schon sehr gering, wurden für die zwölf- bzw. sechzehnstündige Urinsammlung sogar noch niedrigere intraindividuelle Variationskoeffizienten gefunden (7% bzw. 6%). Wie bereits angedeutet, wirkt sich dieser Unterschied direkt auf die Schätzung des Stichprobenumfangs aus. Während für die achtstündige Urinsammlung eine Fallzahl von n=8 bestimmt wurde, so beträgt die Fallzahl für das 0-12 h- bzw. 0-16 h-Sammelintervall n=6 Probanden. Prinzipiell scheinen zwei Faktoren für eine parallel mit der Sammeldauer wachsende Reproduzierbarkeit verantwortlich zu sein: Erstens, die in Kapitel 4.3.4 näher erläuterte geringere Anfälligkeit kumulierter Sammelperioden gegenüber Abweichungen vom Urinsammelprotokoll. Zweitens, das inverse Verhältnis von Sammeldauer und der Interferenz zwischen 40HM-Auscheidung und MEP-Liberation, -Absorption und -Distribution.

Vergleicht man die teilweise recht unterschiedlich berechneten intraindividuellen Variationskoeffizienten der gebräuchlichsten CYP2C19-Phänotypisierungsmaße (Tabelle 35), so fällt auf, dass die 4OHM-Recovery die bei weitem geringste intraindividuelle Variabilität aufweist. Darüber hinaus besteht eine bemerkenswerte Übereinstimmung zwischen den Ergebnissen dieser Arbeit und den Daten aus der Literatur. Die tatsächliche intraindividuelle Variabilität der 4OHM-Recovery scheint daher 5 bis 10% zu betragen.

Die überlegene Reproduzierbarkeit der 4OHM-Recovery scheint überwiegend analytische Ursachen zu haben. Nach erfolgter Deglucuronidierung findet die massenspektrometrische Detektion von 4OHM in Konzentrationsbereichen statt, die in der Regel mehr als 200-fach über der unteren Quantifizierungsgrenze des Analyten liegen. Dagegen befindet sich ein Großteil der Urin- bzw. Plasmakonzentrationen von S-MEP und OMEP nur knapp oberhalb, und ein nicht geringer Anteil sogar unterhalb des LLOQ der jeweiligen, zumeist HPLC-basierten Messmethoden (siehe oben). Es ist daher sehr wahrscheinlich, dass sich die höhere analytische Variabilität am LLOQ direkt auf die Variabilität der S/R-Ratio bzw. des metabolischen Quotienten von OMEP überträgt.

Die im Rahmen dieser Arbeit vorgenommenen Untersuchungen beweisen, dass die prozentuale Wiederfindung von 4OHM im Urin das geeignetste MEP-basierte Phänotypisierungsmaß für CYP2C19 darstellt und darüber hinaus auch dem mittlerweile häufig eingesetzten OMEP insbesondere im Punkte der intraindividuellen Variabilität überlegen ist. Die systematische Evaluierung verschiedener fraktionierter und kumulierter Sammelintervalle bildete die Grundlage für die Empfehlung, die Deglucuronidierung von 4OHM unbedingt beizubehalten, den Urin dafür aber in Zukunft für 12 anstatt für 8 Stunden kumuliert zu sammeln. Durch ihre hohe Reproduzierbarkeit und Selektivität eignet sich die 4OHM-Recovery insbesondere für den Einsatz in (Cocktail-)Arzneistoff-Interaktionsstudien. Aufgrund der guten Verträglichkeit einer Phänotypisierungsdosis von 50 mg MEP und der nicht-invasiven Probensammlung, ist ein Einsatz – Compliance vorausgesetzt – aber auch im Rahmen eines (ambulanten) Dosisindividualisierungsscreenings bei Patienten denkbar.

5.4 Das geeignetste Maß zur Phänotypisierung von CYP2B6

Der Vorschlag, MEP als duales Probesubstrat für CYP2C19 und CYP2B6 zu nutzen, existiert, seitdem Heyn et al. im Jahre 1995 eine enge Korrelation ($r^2=0,91$, p<0,001) zwischen der S-Mephenytoin-N-Demethylase-Aktivität und der Deethylierung von 7-Ethoxytriflouromethylcumarin (7EFC), der damals selektivsten Markersubstanz für CYP2B6, entdeckten und zusätzlich die Entstehung von S-NIR durch den CYP2B-Inhibitor Orphenadrin zu 51% hemmen konnten.¹⁵⁸ In den folgenden Jahren wurde die tragende Rolle von CYP2B6 an der N-Demethlyierung von S-MEP durch weitere *in vitro*-Studien verifiziert.^{95, 97, 157} Untersuchungen von Enkins et al. ergaben eine signifikante Korrelation zwischen der Aktivität der S-Mephenytoin-N-Demethylase und dem interindividuell stark schwankendem CYP2B6-Gehalt humaner Lebermikrosomen ($r^2=0,81$, p<0,001).⁹⁵

Insgesamt betrachtet sind die Erkenntnisse zur Eignung von MEP als *in vivo*-Phänotypisierungssubstrat für CYP2B6 jedoch limitiert. Anlass hierfür ist vor allem die geringe Bedeutung, die CYP2B6 noch bis vor wenigen Jahren beigemessen wurde. Die im Rahmen dieser Arbeit durchgeführten Untersuchungen zur Praktikabilität einer CYP2B6-Phänotypisierung mit Hilfe der renalen Auscheidung von NIR sind die ersten ihrer Art. In der bislang einzigen, publizierten Probandenstudie, in der MEP als Markersubstanz zur *in vivo*-Phänotypisierung von CYP2B6 eingesetzt wurde, kam der Plasma-AUC-Quotient von S-NIR/S-MEP zum Einsatz.¹¹⁰

Des Weiteren ist die quantitative Beteiligung von CYP2C9 an der N-Demethylierung von S-MEP noch nicht zufriedenstellend geklärt und die Datenlage konträr. Auf der einen Seite existieren Untersuchungen durch Heyn bzw. Enkins et al., welche weder die Bildung von S-NIR durch cDNA-exprimiertes humanes CYP2C9,¹⁵⁸ noch eine Korrelation zwischen der immunchemisch quantifizierten CYP2B6-Menge in humanen Lebermikrosomen und dem Metabolismus der beiden CYP2C9-Substrate TOL und Diclofenac belegen konnten.⁹⁵ Auf der anderen Seite konnten Ko et al. eine signifikante

Teilnahme von CYP2C9 an der N-Demethylierung von S-MEP nachweisen und die Bildung von S-NIR bei S-MEP-Konzentrationen von weniger als 50 µM zu 60-70% durch TOL hemmen. Diese Resultate veranlassten die Autoren, eine 30%-ige Beteiligung von CYP2C9 an der N-Demethylierung von S-MEP für die nach 100 Verabreichung von mg MEP vorherrschenden geringen S-MEP-Plasmakonzentrationen (<15 µM)¹⁵¹ zu postulieren. Allerdings betonen die Autoren auch, dass diese Prozentangabe nur den Charakter einer groben Schätzung trägt. Die tatsächlichen Substratkonzentrationen in der Leber könnten wesentlich höher und die Beteiligung von CYP2C9 dadurch deutlich niedriger sein.¹⁵⁹

Das Design der Studien A bis D war nicht dazu bestimmt, absolute Aussagen über die Beteiligung von CYP2C9 an der Entstehung von S-NIR zu treffen. Zu diesem Zweck hätte es vergleichender Studiendurchgänge mit und ohne TOL-Verabreichung sowie der enantioselektiven Quantifizierung des entstehenden S-NIR bedurft. Dennoch lässt die fehlende Korrelation ($r^2=0,0623$, p=0,136) zwischen der 24 h-Plasmakonzentration von TOL und der Recovery von NIR in 24 h kumuliert gesammeltem Urin den Schluss zu, dass die Beteiligung der high affinity/low capacity Komponente CYP2C9 in vivo selbst nach einer Dosis von nur 50 mg MEP – wenn überhaupt vorhanden – nur sehr gering sein dürfte.

Es wurde bis dato noch nie untersucht, welches CYP für die N-Demethylierung von R-MEP verantwortlich ist. Geht man davon aus, dass lediglich das S-Enantiomer durch CYP2B6 (und eventuell CYP2C9) abgebaut wird, basieren die theoretischen Sammelintervall auf folgenden Überlegungen für ein optimales (Plasmapharmakokinetischen) Fakten (siehe auch Kapitel 1.5.1): Bei CYP2C19-poor metabolizern weisen S- und R-MEP infolge abwesender (bzw. zu vernachlässigender) 4'-Hydroxylierung mit 63 h und 77 h vergleichbare Eliminationshalbwertzeiten auf. Sund R-NIR akkumulieren über 4 bis 6 Tage und zeigen eine apparente Halbwertzeit von 146 h bzw. 200 h.152 Bei CYP2C19-extensive metabolizern beträgt die Peakkonzentration (Cmax) von S-MEP aufgrund der dominierenden 4'-Hydroxylierung nur etwa 25% der von R-MEP. Während sich das weitere Schicksal von R-NIR nicht von dem von CYP2C19-poor metabolizern unterscheidet (Eliminationshalbwertzeit 76 h), erreicht S-NIR sein c_{max} schon wenige Stunden nach Verabreichung von MEP. Bereits nach 3-5 Tagen ist S-NIR aufgrund seiner bevorzugten Biotransformation zu S-40HN nicht mehr im Plasma detektierbar.¹⁵² Diese Ergebnisse werden durch eine andere Studie bestätigt, in deren Rahmen eine 46-fach größere AUC_∞ sowie eine 45fach geringere apparente orale Clearance (CL/F_{app}) für R-NIR im Vergleich zu S-NIR bei CYP2C19*-extensive metabolizern* nach Verabreichung von 200 mg MEP gefunden werden konnte.¹¹⁰

Auch wenn aus den angeführten Plasmadaten nicht direkt auf die jeweiligen Ausscheidungsmengen geschlossen werden kann, lassen sich jedoch folgende Zusammenhänge für das Verhältnis von S- und R-NIR im Urin von CYP2C19*extensive metabolizern* extrapolieren: Zur Produktion von S-NIR steht a) nur ein Bruchteil der für R-NIR vorhandenen Muttersubstanz zur Verfügung. Zusätzlich wird das entstehende S-NIR b) wesentlich schneller und quantitativer zu 40HN umgewandelt, so dass c) der relative Anteil des mit dem Urin ausgeschiedenen S-NIR von Beginn an geringer als der des R-NIRs ist und überdies mit zunehmender Sammelzeit immer weiter abnimmt. Die Folge ist ein stetig sinkender Einfluss von CYP2B6 auf das insgesamt ausgeschiedene NIR. Es stellt sich daher die Frage, ob eine nicht enantioselektive Messung der NIR-Urinkonzentration überhaupt dazu geeignet ist, die Aktivität von CYP2B6 zu bestimmen: Eine Kaschierung der S-NIR-Ausscheidung durch die intraindividuelle Variabilität der wesentlich größeren R-NIR-Ausscheidung ist unter genannten Umständen sehr wahrscheinlich.

Ungeachtet aller theoretischen Einwände wurde eine deutlich erhöhte NIR-Recovery bei einem homozygoten Träger des CYP2B6*4-Allels entdeckt. Diese Beobachtung stimmt mit in vitro-Versuchen überein. eine erhöhte in denen 7-Ethoxytriflouromethylcumarin-O-Deethylase-Aktivität für COS-1-Zellen in exprimiertes CYP2B6*4 gefunden wurde.¹⁰¹ Außerdem konnten Kirchheiner et al. eine 1,66-fach erhöhte Clearance für das selektive CYP2B6-Substrat Bupropion⁹⁶ bei CYP2B6*4-heterozygoten Individuen in einer Studie mit 21 männlichen Kaukasiern nachweisen.¹⁰² Weiterhin wurde eine zumindest tendenzielle Reduktion der NIR-Recovery bei hetero- und homozygoten Trägern des Aminosäureaustausches Arg⁴⁸⁷Cys (CYP2B6*1/*5, CYP2B6*5/*5 und CYP2B6*1/*7) im Vergleich zum Wildtyp gefunden. Auch dieses Resultat deckt sich mit den Ergebnissen von in vitro-Untersuchungen. So wurde eine 2,4- bzw. 8-fach verminderte CYP2B6-Expression sowie eine 1.9 bzw. 2,2-mal niedrigere Aktivität der S-MEP-N-Demethylase in den Lebern hetero- bzw. homozygoter Träger der CYP2B6-Allele *5 und *7 ermittelt.⁹⁷ In einer anderen Studie war die Anwesenheit des Arg⁴⁸⁷Cys-Aminosäureaustausches mit einer signifikant niedrigeren, ebenfalls per S-MEP-N-Demethylierung quantifizierten CYP2B6-Aktivität bei Kaukasierinnen verbunden.¹⁰⁶

Obwohl die angeführten Ergebnisse zum Einfluss der CYP2B6-Genotyps auf die prozentuale Recovery von NIR aufgrund der geringen Fallzahl von nur 22 eindeutig genotypisierten Probanden keine statistisch valide Unterscheidung zulassen und zudem eine relativ hohe intraindividuelle Variabilität der NIR-Recovery für das untersuchte 0-24 h-Sammelintervall zu erwarten ist (siehe unten), spiegelt die renale Ausscheidung von NIR den CYP2B6-Genotyp mit einer Eindeutigkeit wieder, die vor dem Hintergrund der zuvor geäußerten Einwände nicht zu erwarten war. Angesichts dieser Beobachtung, sowie vergleichbarer pharmakokinetischer Daten für den Metabolismus beider MEP-Enantiomere¹⁵² und einer identischen Induzierung des Abbaus von S- und R-Mephenytoin durch Artemisinin bei CYP2C19-*poor metabolizern*,¹¹⁰ liegt die Vermutung nahe, dass auch die N-Demethylierung von R-NIR zumindest in einem gewissen Umfang durch CYP2B6 katalysiert wird.

Die intraindividuelle Variabilität der NIR-Recovery konnte lediglich anhand der Messdaten von 12 Probanden (Studie C) bestimmt werden. Aus diesem Grund besitzt die Fallzahlschätzung nur bedingte Aussagekraft für die Planung zukünftiger Studien. Dennoch ist festzustellen, dass eine adäquate Reproduzierbarkeit analog zur 40HM-Recovery lediglich nach kumulierter Urinsammlung erzielt wurde. Im Gegensatz zur intraindividuellen Variabilität der CYP2C19-Aktivität werden allerdings wesentlich längere Urinssammelintervalle von mindestens 0-36 h benötigt, um zufriedenstellende intraindividuelle Variationskoeffizienten von weniger als 25% bzw. einen Stichprobenumfang von n=24 Probanden zu erhalten.

Einen weiteren entscheidenden Nachteil stellt die extrem geringe renale Clearance von NIR dar. Die beobachtete Verschleppung von NIR in die Predoseproben von Studie C, also trotz 28-tägiger Wartezeit zwischen den beiden Studiendurchgängen, läßt eine mindestens 6-wöchige Auswaschphase notwendig erscheinen.

Neben der ungewissen Datenlage zur Beteiligung von CYP2C9 an der Bildung von S-NIR und der der unklaren Rolle von CYP2B6 bei der N-Demethylierung von R-NIR, stehen einer Anwendung von MEP als Phänotypisierungssubstrat für CYP2B6 demnach auch praktische Nachteile gegenüber. Ist eine 36-stündige kumulierte Urinsammlung trotz eines erhöhten Zeit- und Personalbedarf noch praktikabel, so scheint eine CYP2B6-Phänotypisierung mittels MEP aufgrund der hohen benötigten Fallzahlen und der langen erforderlichen Auswaschphase wenig empfehlenswert.

Eine vielversprechende Alternative scheint Bupropion zu sein. Dessen Hydroxylierung scheint außerordentlich selektiv durch CYP2B6 vermittelt zu werden⁹⁶ und in ersten Probandenstudien konnte der inhibitorische Effekt verschiedener Pharmaka auf die mittels Bupropion gemessene Aktivität von CYP2B6 ermittelt werden.^{111, 112} Allerdings steht auch hier bisher eine lange Probennahmezeit – es wird die Plasma-AUC von Bupropion und seinem Hydroxymetabolit bis 72 h nach Appliktion der Muttersubstanz bestimmt – einer schnellen und praktikablen Phänotypisierung entgegen. Einfacher zu bestimmende Ersatzparameter, wie etwa ein metabolischer Quotient wurden bislang noch nicht validiert. Die ausgeprägte Variabilität der individuellen Arzneistoffantwort ist zu einem erheblichen Anteil Folge der hochvariablen Aktivität arzneistoffmetabolisierender Cytochrom P450-Enzyme (CYPs). Die Phänotypisierung, d.h. die Aktivitätsbestimmung dieser Enzyme unter Berücksichtigung genetischer und exogener Faktoren *in vivo*, kann wertvolle Informationen für wissenschaftliche und klinische Anwendungen liefern. Ein wichtiger Grund, weshalb sich die Phänotypisierung trotz jahrzehntelanger Foschung im klinischen Alltag bis dato nicht etablieren konnte, ist die mangelnde Optimierung und Validierung zahlreicher Phänotypisierungsassays.

Mephenytoin (MEP) wird seit über 20 Jahren standardmäßig zur Phänotypisierung von CYP2C19 eingesetzt. Die Entstehung von 4'-Hydroxymephenytoin (4OHM) erfolgt selektiv durch CYP2C19, weshalb die renale 4OHM-Ausscheidung die individuelle Enzymaktivität reflektiert. Das geeignetste Phänotypisierungsmaß für die 4OHM-Wiederfindung hinsichtlich optimaler Urinsammeldauer, kumulierter oder fraktionierter Sammlung und einer Probenaufarbeitung mit oder ohne β-Glucuronidase wurde jedoch bisher nie umfassend evaluiert. Das Hauptziel dieser Dissertation war daher die systematische Validierung des geeignetsten Urinsammelintervalls für die selektive und reproduzierbare Aktivitätsbestimmung von CYP2C19 *in vivo*. Außerdem wurde untersucht, ob sich die renale Wiederfindung von Nirvanol (NIR), ein weiterer Metabolit des MEPs, der *in vitro* durch CYP2B6 gebildet wird, für die *in vivo*-Phänotypisierung von CYP2B6 eignet.

Zu diesem Zweck wurden insgesamt 52 Probanden in vier Cocktailphänotypisierungsstudien u.a. mit 50 mg MEP phänotypisiert und ihr Urin in verschiedenen Intervallen bis zu 166 h postdose gesammelt. Zur Quantifizierung von MEP, NIR und 40HM im Urin wurde eine robuste LC-MS/MS-Messmethode entwickelt und nach internationalen Richtlinien validiert. Um die Messdaten zu verifizieren, wurde ein Großteil der Probanden zusätzlich auf die häufigsten Mutationen der *CYP2C19-*, *CYP2B6-* und *CYP2C9-*Gene untersucht.

Die eindeutigsten Unterschiede zwischen den einzelnen CYP2C19-Genotypen, sowie die geringste intraindividuelle Variabilität (7% und weniger) ergaben sich für die kumulierte zwölf- bis sechzehnstündige Ausscheidung von 4OHM, kombiniert mit einer β-Glucuronidasevorbehandlung des Urins. Die renale Eliminierung von NIR wies Halbwertzeiten von mehreren Wochen auf und war – mit Ausnahme einer 2,3-fach höheren Ausscheidungsrate bei einem einzelnen Probanden mit CYP2B6*4/*4-Genotyp – identisch für alle anderen untersuchten Genotypen. Darüber hinaus variierte sie intraindividuell wesentlich stärker (>28% nach 12-stündiger kumulierter Urinsammlung) als für 4OHM.

Die kumulierte renale Ausscheidung von deglucuronidiertem 4OHM bis 12 h nach Verabreichung von 50 mg MEP ist ein empfindliches und reproduzierbares Phänotypisierungsmaß für CYP2C19, bei dessen Anwendung in zukünftigen Interaktionsstudien die geringe Fallzahl von 6 Probanden ausreicht, um den potentiellen inhibitorischen bzw. induktiven Effekt eines Arzneistoffes auf CYP2C19 zu erfassen. Während die prozentuale Wiederfindung von NIR im Urin die Aktivität von CYP2B6 *in vivo* widerzuspiegeln scheint, stellt sie aufgrund der langsamen Eliminierung und der hohen intraindividuellen Variabilität kein optimales Phänotypisierungsmaß für CYP2B6 dar.

Im Gegensatz zu CYP2C19 und CYP2B6 wurden die Phänotypisierungsmaße für CYP1A2 und CYP2C9 bereits in der Vergangenheit validiert. Die Ermittlung des CYP1A2-Phänotyps erfolgt über den Quotienten der Plasmakonzentrationen von Paraxanthin (PAX) und Coffein (COF) 6 h nach Verabreichung von COF. Zur Aktivitätsbestimmung von CYP2C9 hat sich die 24 h-Plasmakonzentration von Tolbutamid (TOL) etabliert.

Zur routinemäßigen CYP1A2- bzw. CYP2C9-Phänotypisierung von Probanden aus Cocktailphänotypisierungsstudien wurde eine LC-MS/MS-Methode zur simultanen Bestimmung von COF, PAX und TOL entwickelt und nach internationalen Richtlinien validiert. Im Vergleich zu publizierten Methoden wurde ein besonderes Augenmerk auf die Selektivität der Methode gelegt, so dass eine analytische Interferenz zwischen PAX und Theophyllin, einem weiteren Metaboliten des Coffeins, vermieden werden konnte.

7 SUMMARY

The pronounced variability of individual drug response is caused to a considerable extent by the highly variable activity of drug metabolizing Cytochrome P450 enzymes (CYPs). Phenotyping, i.e. the determination of enzyme activity with respect to genetic and exogenous factors *in vivo*, can deliver valuable information for scientific and clinical applications. Despite already two decades of research, the lacking optimization and validation of numerous phenotyping metrics is an important reason why phenotyping is not yet established in clinical practice.

Mephenytoin (MEP) is a standard phenotyping agent for CYP2C19. Formation of 4'hydroxymephenytoin (4OHM) is selectively mediated by CYP2C19, and urinary excretion of 4OHM reflects individual enzyme activity. However, the best urinary metric with respect to duration of collection period, cumulative vs. fractioned collection and glucuronidase pretreatment remains to be defined. Moreover, it is not clarified yet, whether CYP2B6 mediated N-demethylation of MEP to nirvanol (NIR) and thus urinary excretion of NIR represents an appropriate metric to determine CYP2B6 activity.

In four clinical studies, 50 mg of mephenytoin was administered orally to 52 healthy young men as part of several phenotyping cocktails. Urine was collected in different intervals up to 166 hours postdose. A robust LC-MS/MS assay was developed and validated according to international guidelines to quantify the urinary excretion of racemic MEP, 40HM and NIR in urine. To verify the measured data most study participants were genotyped for frequent mutations of the CYP2C19, CYP2B6 and CYP2C9 genes.

Cumulative excretion of 4OHM in urine collected up to 12-16 hours combined with β -glucuronidase treatment showed the greatest difference between CYP2C19 genotypes and had the lowest intraindividual coefficient of variation (7 % and lower). Renal elimination of NIR had a half live of several weeks and was similar for all CYP2B6 genotypes tested except a 2.3-fold higher excretion rate for a *4/*4 individual compared to wild-type individuals. Moreover urinary excretion of NIR showed a much higher intraindividual variability (>28% after cumulative collection for 12 h) compared to 40HM.

Cumulative urinary excretion of 4'-hydroxymephenytoin 0-12 hours after adminstration of 50 mg MEP is a convenient, sensitive and reproducible metric of CYP2C19 activity, allowing a small sample size of n=6 volunteers to assess a potential effect of a drug on CYP2C19 in cross-over studies. While nirvanol excretion may reflect CYP2B6 activity *in vivo*, it is not optimal for CYP2B6 phenotyping because of the slow elimination and a high intrasubject variability.

Contrary to CYP2C19 and CYP2B6 the phenotyping metrics for CYP1A2 and CYP2C9 have already been validated in the past. The CYP1A2 phenotype is determined by the ratio of the paraxanthine (PAX) and caffeine (CAF) plasma concentrations 6 h after oral administration of caffeine. The CYP2C9 phenotpye can be specified by the 24 h concentration of tolbutamide (TOL) in plasma.

A LC-MS/MS assay for the simultaneous quantification of CAF, PAX and TOL in plasma was developed and validated according to international guidelines for the routine phenotyping of CYP1A2 and CYP2C9. Compared to published assays, a special attention was put on the selectivity of the method. An analytical interference between PAX and theophylline, an other metabolite of CAF, could be avoided this way.

9 LITERATURVERZEICHNIS

- 1. Frye RF. Probing the world of cytochrome p450 enzymes. Mol Interv 2004; 4(3): 157-62.
- 2. Breimer DD, Schellens JH. A 'cocktail' strategy to assess in vivo oxidative drug metabolism in humans. Trends Pharmacol Sci 1990; 11(6): 223-5.
- 3. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32(3): 210-58.
- 4. Estabrook RW. A passion for P450s (rememberances of the early history of research on cytochrome P450). Drug Metab Dispos 2003; 31(12): 1461-73.
- 5. Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 35(5): 361-90.
- 6. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6(1): 1-42.
- 7. http://drnelson.utmem.edu/CytochromeP450.html. Cytochrome P450 Homepage. 2005.
- 8. Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet 2002; 360(9340): 1155-62.
- 9. Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 2003; 43149-73.
- 10. Hukkanen J, Pelkonen O, Hakkola J, Raunio H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol 2002; 32(5): 391-411.
- 11. Ghersi-Egea JF, Leninger-Muller B, Suleman G, Siest G, Minn A. Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J Neurochem 1994; 62(3): 1089-96.
- 12. Ioannides C, Lewis DF. Cytochromes P450 in the bioactivation of chemicals. Curr Top Med Chem 2004; 4(16): 1767-88.
- 13. Patterson LH, Murray GI. Tumour cytochrome P450 and drug activation. Curr Pharm Des 2002; 8(15): 1335-47.
- Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 2004; 369(1): 89-104.
- 15. Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001; 52(4): 349-55.
- 16. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 2005; 5(1): 6-13.
- Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9(5): 442-73.
- 18. Eichelbaum M, Ekbom K, Bertilsson L, Ringberger VA, Rane A. Plasma kinetics of carbamazepine and its epoxide metabolite in man after single and multiple doses. Eur J Clin Pharmacol 1975; 8(5): 337-41.

- 19. Kerbusch T, de Kraker J, Keizer HJ, van Putten JW, Groen HJ, Jansen RL, et al. Clinical pharmacokinetics and pharmacodynamics of ifosfamide and its metabolites. Clin Pharmacokinet 2001; 40(1): 41-62.
- 20. Hassan Alin M, Ashton M, Kihamia CM, Mtey GJ, Bjorkman A. Multiple dose pharmacokinetics of oral artemisinin and comparison of its efficacy with that of oral artesunate in falciparum malaria patients. Trans R Soc Trop Med Hyg 1996; 90(1): 61-5.
- 21. Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 2002; 3(5): 481-90.
- 22. Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 2005; 28(3): 249-68.
- 23. Wentworth JM, Agostini M, Love J, Schwabe JW, Chatterjee VK. St John's wort, a herbal antidepressant, activates the steroid X receptor. J Endocrinol 2000; 166(3): R11-6.
- 24. Ruschitzka F, Meier PJ, Turina M, Luscher TF, Noll G. Acute heart transplant rejection due to Saint John's wort. Lancet 2000; 355(9203): 548-9.
- 25. Schwarz UI, Buschel B, Kirch W. Unwanted pregnancy on self-medication with St John's wort despite hormonal contraception. Br J Clin Pharmacol 2003; 55(1): 112-3.
- 26. Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, et al. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet 2005; 44(3): 279-304.
- 27. Yun CH, Okerholm RA, Guengerich FP. Oxidation of the antihistaminic drug terfenadine in human liver microsomes. Role of cytochrome P-450 3A(4) in N-dealkylation and C-hydroxylation. Drug Metab Dispos 1993; 21(3): 403-9.
- 28. Honig PK, Wortham DC, Zamani K, Conner DP, Mullin JC, Cantilena LR. Terfenadine-ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. Jama 1993; 269(12): 1513-8.
- 29. Kumar GN, Dykstra J, Roberts EM, Jayanti VK, Hickman D, Uchic J, et al. Potent inhibition of the cytochrome P-450 3A-mediated human liver microsomal metabolism of a novel HIV protease inhibitor by ritonavir: A positive drug-drug interaction. Drug Metab Dispos 1999; 27(8): 902-8.
- 30. Sham HL, Kempf DJ, Molla A, Marsh KC, Kumar GN, Chen CM, et al. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother 1998; 42(12): 3218-24.
- 31. Bebia Z, Buch SC, Wilson JW, Frye RF, Romkes M, Cecchetti A, et al. Bioequivalence revisited: influence of age and sex on CYP enzymes. Clin Pharmacol Ther 2004; 76(6): 618-27.
- 32. Anderson GD. Sex and racial differences in pharmacological response: where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J Womens Health (Larchmt) 2005; 14(1): 19-29.
- 33. Thurmann PA. [Gender-related differences in pharmacokinetics and pharmacodynamics]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2005; 48(5): 536-40.
- 34. Strolin Benedetti M, Baltes EL. Drug metabolism and disposition in children. Fundam Clin Pharmacol. 2003; 17(3): 281-99.
- 35. Dorne JL. Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluation. Fundam Clin Pharmacol 2004; 18(6): 609-20.

- 36. Kim K, Johnson JA, Derendorf H. Differences in drug pharmacokinetics between East Asians and Caucasians and the role of genetic polymorphisms. J Clin Pharmacol 2004; 44(10): 1083-105.
- 37. Renton KW. Cytochrome P450 regulation and drug biotransformation during inflammation and infection. Curr Drug Metab 2004; 5(3): 235-43.
- Becquemont L, Chazouilleres O, Serfaty L, Poirier JM, Broly F, Jaillon P, et al. Effect of interferon alpha-ribavirin bitherapy on cytochrome P450 1A2 and 2D6 and N-acetyltransferase-2 activities in patients with chronic active hepatitis C. Clin Pharmacol Ther 2002; 71(6): 488-95.
- 39. Frye RF, Schneider VM, Frye CS, Feldman AM. Plasma levels of TNF-alpha and IL-6 are inversely related to cytochrome P450-dependent drug metabolism in patients with congestive heart failure. J Card Fail 2002; 8(5): 315-9.
- 40. Villeneuve JP, Pichette V. Cytochrome P450 and liver diseases. Curr Drug Metab 2004; 5(3): 273-82.
- 41. Skogh E, Bengtsson F, Nordin C. Could discontinuing smoking be hazardous for patients administered clozapine medication? A case report. Ther Drug Monit 1999; 21(5): 580-2.
- 42. http://medicine.iupui.edu/flockhart/. Drug-Interactions.com. 2005.
- 43. Dahan A, Altman H. Food-drug interaction: grapefruit juice augments drug bioavailability--mechanism, extent and relevance. Eur J Clin Nutr 2004; 58(1): 1-9.
- 44. Zaigler M, Tantcheva-Poor I, Fuhr U. Problems and perspectives of phenotyping for drug-metabolizing enzymes in man. Int J Clin Pharmacol Ther 2000; 38(1): 1-9.
- 45. Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. Jama 2001; 286(18): 2270-9.
- 46. Streetman DS, Bertino JS, Jr., Nafziger AN. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000; 10(3): 187-216.
- 47. Wacher VJ, Silverman JA, Zhang Y, Benet LZ. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 1998; 87(11): 1322-30.
- 48. Sesardic D, Boobis AR, Edwards RJ, Davies DS. A form of cytochrome P450 in man, orthologous to form d in the rat, catalyses the O-deethylation of phenacetin and is inducible by cigarette smoking. Br J Clin Pharmacol 1988; 26(4): 363-72.
- 49. Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH. The effect of an individual's cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res 2000; 6(4): 1255-8.
- 50. Tucker GT, Houston JB, Huang SM. Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential--towards a consensus. Br J Clin Pharmacol 2001; 52(1): 107-17.
- 51. Kohler GI, Bode-Boger SM, Busse R, Hoopmann M, Welte T, Boger RH. Drugdrug interactions in medical patients: effects of in-hospital treatment and relation to multiple drug use. Int J Clin Pharmacol Ther 2000; 38(11): 504-13.
- 52. Zhou H, Tong Z, McLeod JF. "Cocktail" approaches and strategies in drug development: valuable tool or flawed science? J Clin Pharmacol 2004; 44(2): 120-34.
- 53. FDA. In Vivo Drug Metabolism/Drug Interaction Studies Study Design, Data Analysis, and Recommendations for Dosing and Labeling. http://www.fda.gov/cder/guidance/2635fnl.pdf 1999.

- 54. FDA. Guidance for Industry: Drug Metabolism/Drug Interaction Studies in the Drug Development Process: Studies in vitro. http://www.fda.gov/cder/guidance/clin3.pdf 1997.
- 55. Kalow W, Tang BK. The use of caffeine for enzyme assays: a critical appraisal. Clin Pharmacol Ther 1993; 53(5): 503-14.
- 56. Watkins PB. Noninvasive tests of CYP3A enzymes. Pharmacogenetics 1994; 4(4): 171-84.
- 57. Scott RJ, Palmer J, Lewis IA, Pleasance S. Determination of a 'GW cocktail' of cytochrome P450 probe substrates and their metabolites in plasma and urine using automated solid phase extraction and fast gradient liquid chromatography tandem mass spectrometry. Rapid Commun Mass Spectrom 1999; 13(23): 2305-19.
- 58. Yin OQ, Lam SS, Lo CM, Chow MS. Rapid determination of five probe drugs and their metabolites in human plasma and urine by liquid chromatography/tandem mass spectrometry: application to cytochrome P450 phenotyping studies. Rapid Commun Mass Spectrom 2004; 18(23): 2921-33.
- 59. Setiabudy R, Kusaka M, Chiba K, Darmansjah I, Ishizaki T. Dapsone Nacetylation, metoprolol alpha-hydroxylation, and S-mephenytoin 4hydroxylation polymorphisms in an Indonesian population: a cocktail and extended phenotyping assessment trial. Clin Pharmacol Ther 1994; 56(2): 142-53.
- 60. Frye RF, Matzke GR, Adedoyin A, Porter JA, Branch RA. Validation of the five-drug "Pittsburgh cocktail" approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther 1997; 62(4): 365-76.
- 61. Streetman DS, Bleakley JF, Kim JS, Nafziger AN, Leeder JS, Gaedigk A, et al. Combined phenotypic assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the "Cooperstown cocktail". Clin Pharmacol Ther 2000; 68(4): 375-83.
- 62. Zhu B, Ou-Yang DS, Chen XP, Huang SL, Tan ZR, He N, et al. Assessment of cytochrome P450 activity by a five-drug cocktail approach. Clin Pharmacol Ther 2001; 70(5): 455-61.
- 63. Christensen M, Andersson K, Dalen P, Mirghani RA, Muirhead GJ, Nordmark A, et al. The Karolinska cocktail for phenotyping of five human cytochrome P450 enzymes. Clin Pharmacol Ther 2003; 73(6): 517-28.
- 64. Blakey G, Lockton J, Perret J, Norwood P, Russell M, Aherne Z, et al. Pharmacokinetic and pharmacodynamic assessment of a five-probe metabolic cocktail for CYPs 1A2, 3A4, 2C9, 2D6 and 2E1. Br J Clin Pharmacol 2004; 57(2): 119-20.
- 65. Wang LS, Zhu B, El-Aty AM, Zhou G, Li Z, Wu J, et al. The influence of St John's Wort on CYP2C19 activity with respect to genotype. J Clin Pharmacol 2004; 44(6): 577-81.
- 66. Bruce MA, Hall SD, Haehner-Daniels BD, Gorski JC. In vivo effect of clarithromycin on multiple cytochrome P450s. Drug Metab Dispos 2001; 29(7): 1023-8.
- 67. Chen XP, Tan ZR, Huang SL, Huang Z, Ou-Yang DS, Zhou HH. Isozymespecific induction of low-dose aspirin on cytochrome P450 in healthy subjects. Clin Pharmacol Ther 2003; 73(3): 264-71.
- 68. Tomalik-Scharte D, Jetter A, Kinzig-Schippers M, Skott A, Sörgel F, Klaassen T, et al. Effect of propiverine on cytochrome P450 enzymes: a cocktail interaction study in healthy volunteers. Drug Metab Dispos 2005.

- 69. Liu S, Frye RF, Branch RA, Venkataramanan R, Fung JJ, Burckart GJ. Effect of age and postoperative time on cytochrome p450 enzyme activity following liver transplantation. J Clin Pharmacol 2005; 45(6): 666-73.
- 70. Harbrecht BG, Frye RF, Zenati MS, Branch RA, Peitzman AB. Cytochrome P-450 activity is differentially altered in severely injured patients. Crit Care Med 2005; 33(3): 541-6.
- 71. Daly AK. Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 2003; 17(1): 27-41.
- 72. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270(1): 414-23.
- 73. www.imm.ki.se/CYPalleles/cyp2c19.htm, *Home Page of the Human Cytochrome P450 (CYP) Allele Nomenclature Committee*. 2005.
- 74. Faber MS, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice: Why, How, and When? Basic Clin Pharmacol Toxicol 2005; ???(???): XXX-YY.
- 75. Sachse C, Brockmöller J, Bauer S, Roots I. Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 1999; 47(4): 445-9.
- 76. Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T. Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo) 1999; 125(4): 803-8.
- 77. Eap CB, Bender S, Sirot EJ, Cucchia G, Jonzier-Perey M, Baumann P, et al. Nonresponse to clozapine and ultrarapid CYP1A2 activity: clinical data and analysis of CYP1A2 gene. J Clin Psychopharmacol 2004; 24(2): 214-9.
- 78. Fuhr U, Anders EM, Mahr G, Sörgel F, Staib AH. Inhibitory potency of quinolone antibacterial agents against cytochrome P450IA2 activity in vivo and in vitro. Antimicrob Agents Chemother 1992; 36(5): 942-8.
- 79. Brøsen K, Skjelbo E, Rasmussen BB, Poulsen HE, Loft S. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 1993; 45(6): 1211-4.
- 80. Bertilsson L, Carrillo JA, Dahl ML, Llerena A, Alm C, Bondesson U, et al. Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br J Clin Pharmacol 1994; 38(5): 471-3.
- 81. Tang BK, Kalow W. Assays for CYP1A2 by testing in vivo metabolism of caffeine in humans. Methods Enzymol 1996; 272124-31.
- Carrillo JA, Dahl ML, Svensson JO, Alm C, Rodriguez I, Bertilsson L. Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996; 60(2): 183-90.
- 83. Miners JO, Coulter S, Tukey RH, Veronese ME, Birkett DJ. Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem Pharmacol 1996; 51(8): 1003-8.
- 84. Ring BJ, Catlow J, Lindsay TJ, Gillespie T, Roskos LK, Cerimele BJ, et al. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther 1996; 276(2): 658-66.

- 85. Kerlan V, Dreano Y, Bercovici JP, Beaune PH, Floch HH, Berthou F. Nature of cytochromes P450 involved in the 2-/4-hydroxylations of estradiol in human liver microsomes. Biochem Pharmacol 1992; 44(9): 1745-56.
- Spaldin V, Madden S, Adams DA, Edwards RJ, Davies DS, Park BK. Determination of human hepatic cytochrome P4501A2 activity in vitro use of tacrine as an isoenzyme-specific probe. Drug Metab Dispos 1995; 23(9): 929-34.
- Ha HR, Chen J, Freiburghaus AU, Follath F. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol 1995; 39(3): 321-6.
- 88. Fuhr U, Kober S, Zaigler M, Mutschler E, Spahn-Langguth H. Rate-limiting biotransformation of triamterene is mediated by CYP1A2. Int J Clin Pharmacol Ther 2005; 43(7): 327-34.
- Baker MT, Olson MJ, Wang Y, Ronnenberg WC, Jr., Johnson JT, Brady AN. Isoflurane-chlorodifluoroethene interaction in human liver microsomes. Role of cytochrome P4502B6 in potentiation of haloethene metabolism. Drug Metab Dispos 1995; 23(1): 60-4.
- 90. Mimura M, Baba T, Yamazaki H, Ohmori S, Inui Y, Gonzalez FJ, et al. Characterization of cytochrome P-450 2B6 in human liver microsomes. Drug Metab Dispos 1993; 21(6): 1048-56.
- 91. Edwards RJ, Adams DA, Watts PS, Davies DS, Boobis AR. Development of a comprehensive panel of antibodies against the major xenobiotic metabolising forms of cytochrome P450 in humans. Biochem Pharmacol 1998; 56(3): 377-87.
- 92. Stresser DM, Küpfer D. Monospecific antipeptide antibody to cytochrome P-450 2B6. Drug Metab Dispos 1999; 27(4): 517-25.
- 93. Gervot L, Rochat B, Gautier JC, Bohnenstengel F, Kroemer H, de Berardinis V, et al. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 1999; 9(3): 295-306.
- 94. Faucette SR, Wang H, Hamilton GA, Jolley SL, Gilbert D, Lindley C, et al. Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab Dispos 2004; 32(3): 348-58.
- 95. Ekins S, Vandenbranden M, Ring BJ, Gillespie JS, Yang TJ, Gelboin HV, et al. Further characterization of the expression in liver and catalytic activity of CYP2B6. J Pharmacol Exp Ther 1998; 286(3): 1253-9.
- 96. Faucette SR, Hawke RL, Lecluyse EL, Shord SS, Yan B, Laethem RM, et al. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos 2000; 28(10): 1222-30.
- 97. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, et al. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 2001; 11(5): 399-415.
- 98. Richter T, Mürdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, et al. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther 2004; 308(1): 189-97.
- 99. Richter T, Schwab M, Eichelbaum M, Zanger UM. Inhibition of human CYP2B6 by N,N',N"-triethylenethiophosphoramide is irreversible and mechanism-based. Biochem Pharmacol 2005; 69(3): 517-24.
- 100. Yamano S, Nhamburo PT, Aoyama T, Meyer UA, Inaba T, Kalow W, et al. cDNA cloning and sequence and cDNA-directed expression of human P450 IIB1: identification of a normal and two variant cDNAs derived from the

CYP2B locus on chromosome 19 and differential expression of the IIB mRNAs in human liver. Biochemistry 1989; 28(18): 7340-8.

- Jinno H, Tanaka-Kagawa T, Ohno A, Makino Y, Matsushima E, Hanioka N, et al. Functional characterization of cytochrome P450 2B6 allelic variants. Drug Metab Dispos 2003; 31(4): 398-403.
- 102. Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Mürdter TE, et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003; 13(10): 619-26.
- 103. Tsuchiya K, Gatanaga H, Tachikawa N, Teruya K, Kikuchi Y, Yoshino M, et al. Homozygous CYP2B6 *6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenzcontaining regimens. Biochem Biophys Res Commun 2004; 319(4): 1322-6.
- 104. Xie HJ, Yasar U, Lundgren S, Griskevicius L, Terelius Y, Hassan M, et al. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 2003; 3(1): 53-61.
- 105. Lang T, Klein K, Richter T, Zibat A, Kerb R, Eichelbaum M, et al. Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles. J Pharmacol Exp Ther 2004; 311(1): 34-43.
- 106. Lamba V, Lamba J, Yasuda K, Strom S, Davila J, Hancock ML, et al. Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J Pharmacol Exp Ther 2003; 307(3): 906-22.
- 107. Kreth K, Kovar K, Schwab M, Zanger UM. Identification of the human cytochromes P450 involved in the oxidative metabolism of "Ecstasy"-related designer drugs. Biochem Pharmacol 2000; 59(12): 1563-71.
- 108. Yamazaki H, Inoue K, Hashimoto M, Shimada T. Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol 1999; 73(2): 65-70.
- 109. Hanna IH, Reed JR, Guengerich FP, Hollenberg PF. Expression of human cytochrome P450 2B6 in Escherichia coli: characterization of catalytic activity and expression levels in human liver. Arch Biochem Biophys 2000; 376(1): 206-16.
- 110. Simonsson US, Jansson B, Hai TN, Huong DX, Tybring G, Ashton M. Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 2003; 74(1): 32-43.
- 111. Palovaara S, Pelkonen O, Uusitalo J, Lundgren S, Laine K. Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin Pharmacol Ther 2003; 74(4): 326-33.
- 112. Turpeinen M, Tolonen A, Uusitalo J, Jalonen J, Pelkonen O, Laine K. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther 2005; 77(6): 553-9.
- Svensson US, Ashton M. Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br J Clin Pharmacol 1999; 48(4): 528-35.
- 114. Hesse LM, Venkatakrishnan K, Court MH, von Moltke LL, Duan SX, Shader RI, et al. CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab Dispos 2000; 28(10): 1176-83.

- 115. Roy P, Yu LJ, Crespi CL, Waxman DJ. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 1999; 27(6): 655-66.
- 116. Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 2003; 306(1): 287-300.
- 117. Gerber JG, Rhodes RJ, Gal J. Stereoselective metabolism of methadone Ndemethylation by cytochrome P4502B6 and 2C19. Chirality 2004; 16(1): 36-44.
- 118. Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology 2001; 94(1): 110-9.
- 119. Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002; 12(3): 251-63.
- 120. Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Goldstein JA. Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry 1991; 30(13): 3247-55.
- 121. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR. Impaired (S)warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994; 4(1): 39-42.
- 122. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996; 6(4): 341-9.
- 123. Kirchheiner J, Brockmöller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 2005; 77(1): 1-16.
- 124. Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M, Chiba K. CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics 2000; 10(2): 95-104.
- 125. Lee CR, Pieper JA, Frye RF, Hinderliter AL, Blaisdell JA, Goldstein JA. Tolbutamide, flurbiprofen, and losartan as probes of CYP2C9 activity in humans. J Clin Pharmacol 2003; 43(1): 84-91.
- 126. Lee CR, Hawke RL, Pieper JA. Twenty-four hour tolbutamide plasma concentration as a phenotypic measure of CYP2C9 activity. Eur J Clin Pharmacol 2005; 61(4): 315-6.
- 127. Jetter A, Kinzig-Schippers M, Skott A, Lazar A, Tomalik-Scharte D, Kirchheiner J, et al. Cytochrome P450 2C9 phenotyping using low-dose tolbutamide. Eur J Clin Pharmacol 2004; 60(3): 165-71.
- 128. Leemann TD, Transon C, Bonnabry P, Dayer P. A major role for cytochrome P450TB (CYP2C subfamily) in the actions of non-steroidal antiinflammatory drugs. Drugs Exp Clin Res 1993; 19(5): 189-95.
- 129. Kidd RS, Straughn AB, Meyer MC, Blaisdell J, Goldstein JA, Dalton JT. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 1999; 9(1): 71-80.
- 130. Stearns RA, Chakravarty PK, Chen R, Chiu SH. Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of

cytochrome P4502C and 3A subfamily members. Drug Metab Dispos 1995; 23(2): 207-15.

- 131. Fischer V, Johanson L, Heitz F, Tullman R, Graham E, Baldeck JP, et al. The 3hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions. Drug Metab Dispos 1999; 27(3): 410-6.
- Ufer M, Svensson JO, Krausz KW, Gelboin HV, Rane A, Tybring G. Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol 2004; 60(3): 173-82.
- 133. Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 1992; 5(1): 54-9.
- Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41(12): 913-58.
- 135. Goldstein JA, Faletto MB, Romkes-Sparks M, Sullivan T, Kitareewan S, Raucy JL, et al. Evidence that CYP2C19 is the major (S)-mephenytoin 4'-hydroxylase in humans. Biochemistry 1994; 33(7): 1743-52.
- Wrighton SA, Stevens JC, Becker GW, VandenBranden M. Isolation and characterization of human liver cytochrome P450 2C19: correlation between 2C19 and S-mephenytoin 4'-hydroxylation. Arch Biochem Biophys 1993; 306(1): 240-5.
- de Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 1994; 46(4): 594-8.
- 138. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA. The major genetic defect responsible for the polymorphism of Smephenytoin metabolism in humans. J Biol Chem 1994; 269(22): 15419-22.
- 139. Wedlund PJ. The CYP2C19 enzyme polymorphism. Pharmacology 2000; 61(3): 174-83.
- 140. Lapple F, von Richter O, Fromm MF, Richter T, Thon KP, Wisser H, et al. Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics 2003; 13(9): 565-75.
- 141. Klotz U, Schwab M, Treiber G. CYP2C19 polymorphism and proton pump inhibitors. Basic Clin Pharmacol Toxicol 2004; 95(1): 2-8.
- 142. Venkatakrishnan K, Greenblatt DJ, von Moltke LL, Schmider J, Harmatz JS, Shader RI. Five distinct human cytochromes mediate amitriptyline Ndemethylation in vitro: dominance of CYP 2C19 and 3A4. J Clin Pharmacol 1998; 38(2): 112-21.
- 143. Sindrup SH, Brøsen K, Hansen MG, Aaes-Jorgensen T, Overo KF, Gram LF. Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit 1993; 15(1): 11-7.
- 144. Andersson T, Cederberg C, Edvardsson G, Heggelund A, Lundborg P. Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin Pharmacol Ther 1990; 47(1): 79-85.
- 145. Koyama E, Chiba K, Tani M, Ishizaki T. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-

mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther 1997; 281(3): 1199-210.

- 146. Pearce RE, Rodrigues AD, Goldstein JA, Parkinson A. Identification of the human P450 enzymes involved in lansoprazole metabolism. J Pharmacol Exp Ther 1996; 277(2): 805-16.
- 147. Gram LF, Guentert TW, Grange S, Vistisen K, Brøsen K. Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: a panel study. Clin Pharmacol Ther 1995; 57(6): 670-7.
- 148. Andersson T, Miners JO, Veronese ME, Tassaneeyakul W, Meyer UA, Birkett DJ. Identification of human liver cytochrome P450 isoforms mediating omeprazole metabolism. Br J Clin Pharmacol 1993; 36(6): 521-30.
- 149. Tanaka M, Ohkubo T, Otani K, Suzuki A, Kaneko S, Sugawara K, et al. Metabolic disposition of pantoprazole, a proton pump inhibitor, in relation to Smephenytoin 4'-hydroxylation phenotype and genotype. Clin Pharmacol Ther 1997; 62(6): 619-28.
- 150. Birkett DJ, Rees D, Andersson T, Gonzalez FJ, Miners JO, Veronese ME. In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by S-mephenytoin hydroxylase. Br J Clin Pharmacol 1994; 37(5): 413-20.
- 151. Troupin AS, Friel P, Lovely MP, Wilensky AJ. Clinical pharmacology of mephenytoin and ethotoin. Ann Neurol 1979; 6(5): 410-4.
- 152. Wedlund PJ, Aslanian WS, Jacqz E, McAllister CB, Branch RA, Wilkinson GR. Phenotypic differences in mephenytoin pharmacokinetics in normal subjects. J Pharmacol Exp Ther 1985; 234(3): 662-9.
- 153. Küpfer A, Patwardhan R, Ward S, Schenker S, Preisig R, Branch RA.
 Stereoselective metabolism and pharmacogenetic control of 5-phenyl-5ethylhydantoin (nirvanol) in humans. J Pharmacol Exp Ther 1984; 230(1): 28-33.
- 154. Tybring G, Nordin J, Bergman T, Bertilsson L. An S-mephenytoin cysteine conjugate identified in urine of extensive but not of poor metabolizers of S-mephenytoin. Pharmacogenetics 1997; 7(5): 355-60.
- 155. Relling MV, Aoyama T, Gonzalez FJ, Meyer UA. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther 1990; 252(1): 442-7.
- 156. Küpfer A, Preisig R. Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol 1984; 26(6): 753-9.
- 157. Ekins S, VandenBranden M, Ring BJ, Wrighton SA. Examination of purported probes of human CYP2B6. Pharmacogenetics 1997; 7(3): 165-79.
- 158. Heyn H, White RB, Stevens JC. Catalytic role of cytochrome P4502B6 in the Ndemethylation of S-mephenytoin. Drug Metab Dispos 1996; 24(9): 948-54.
- 159. Ko JW, Desta Z, Flockhart DA. Human N-demethylation of (S)-mephenytoin by cytochrome P450s 2C9 and 2B6. Drug Metab Dispos 1998; 26(8): 775-8.
- 160. Theodore WH, Newmark ME, Desai BT, Küpferberg HJ, Penry JK, Porter RJ, et al. Disposition of mephenytoin and its metabolite, nirvanol, in epileptic patients. Neurology 1984; 34(8): 1100-2.
- 161. Jansson B, Simonsson US, Ashton M. Simultaneous enantiospecific separation and quantitation of mephenytoin and its metabolites nirvanol and 4'hydroxymephenytoin in human plasma by liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 791(1-2): 179-91.
- 162. Wedlund PJ, Aslanian WS, McAllister CB, Wilkinson GR, Branch RA. Mephenytoin hydroxylation deficiency in Caucasians: frequency of a new

oxidative drug metabolism polymorphism. Clin Pharmacol Ther 1984; 36(6): 773-80.

- 163. Tamminga WJ, Wemer J, Oosterhuis B, Wieling J, Touw DJ, de Zeeuw RA, et al. Mephenytoin as a probe for CYP2C19 phenotyping:effect of sample storage, intra-individual reproducibility and occurrence of adverse events. Br J Clin Pharmacol 2001; 51(5): 471-4.
- 164. Sviri S, Shpizen S, Leitersdorf E, Levy M, Caraco Y. Phenotypic-genotypic analysis of CYP2C19 in the Jewish Israeli population. Clin Pharmacol Ther 1999; 65(3): 275-82.
- 165. Setiabudy R, Chiba K, Kusaka M, Ishizaki T. Caution in the use of a 100 mg dose of racemic mephenytoin for phenotyping southeastern Oriental subjects. Br J Clin Pharmacol 1992; 33(6): 665-6.
- 166. Jurima M, Inaba T, Kadar D, Kalow W. Genetic polymorphism of mephenytoin p(4')-hydroxylation: difference between Orientals and Caucasians. Br J Clin Pharmacol 1985; 19(4): 483-7.
- 167. Hamaoka N, Oda Y, Hase I, Asada A. Cytochrome P4502B6 and 2C9 do not metabolize midazolam: kinetic analysis and inhibition study with monoclonal antibodies. Br J Anaesth 2001; 86(4): 540-4.
- 168. Oda Y, Hamaoka N, Hiroi T, Imaoka S, Hase I, Tanaka K, et al. Involvement of human liver cytochrome P4502B6 in the metabolism of propofol. Br J Clin Pharmacol 2001; 51(3): 281-5.
- 169. Xie HG, Huang SL, Zhou HH. High-performance liquid chromatographic determination of urinary 4'-hydroxymephenytoin, a metabolic marker for the hepatic enzyme CYP2C19, in humans. J Chromatogr B Biomed Appl 1995; 668(1): 125-31.
- 170. Tanaka M, Kato K, Sudo K, Hakusui H, Ohkubo T, Sugawara K, et al. Simple and selective assay of 4-hydroxymephenytoin in human urine using solid-phase extraction and high-performance liquid chromatography with electrochemical detection and its preliminary application to phenotyping test. J Chromatogr B Biomed Appl 1996; 676(1): 87-94.
- 171. Wedlund PJ, Sweetman BJ, Wilkinson GR, Branch RA. Pharmacogenetic association between the formation of 4-hydroxymephenytoin and a new metabolite of S-mephenytoin in man. Drug Metab Dispos 1987; 15(2): 277-9.
- 172. Yao TW, Zeng S, Wang TW, Chen SQ. Phenotype analysis of cytochrome P450 2C19 in Chinese subjects with mephenytoin S/R enantiomeric ratio in urine measured by chiral GC. Biomed Chromatogr 2001; 15(1): 9-13.
- 173. Wedlund PJ, Sweetman BJ, McAllister CB, Branch RA, Wilkinson GR. Direct enantiomeric resolution of mephenytoin and its N-demethylated metabolite in plasma and blood using chiral capillary gas chromatography. J Chromatogr 1984; 307(1): 121-7.
- 174. Nolin TD, Frye RF. Stereoselective determination of the CYP2C19 probe drug mephenytoin in human urine by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 783(1): 265-71.
- 175. Brockmöller J, Rost KL, Gross D, Schenkel A, Roots I. Phenotyping of CYP2C19 with enantiospecific HPLC-quantification of R- and S-mephenytoin and comparison with the intron4/exon5 G-->A-splice site mutation. Pharmacogenetics 1995; 5(2): 80-8.
- 176. Salsali M, Coutts RT, Baker GB. A rapid electron-capture gas chromatographic procedure for the analysis of p-hydroxymephenytoin. J Pharmacol Toxicol Methods 2000; 44(3): 461-5.

- 177. Dierks EA, Stams KR, Lim HK, Cornelius G, Zhang H, Ball SE. A method for the simultaneous evaluation of the activities of seven major human drugmetabolizing cytochrome P450s using an in vitro cocktail of probe substrates and fast gradient liquid chromatography tandem mass spectrometry. Drug Metab Dispos 2001; 29(1): 23-9.
- 178. Zhang T, Zhu Y, Gunaratna C. Rapid and quantitative determination of metabolites from multiple cytochrome P450 probe substrates by gradient liquid chromatography-electrospray ionization-ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 780(2): 371-9.
- 179. Bu HZ, Knuth K, Magis L, Teitelbaum P. High-throughput cytochrome P450 (CYP) inhibition screening via cassette probe-dosing strategy: III. Validation of a direct injection/on-line guard cartridge extraction-tandem mass spectrometry method for CYP2C19 inhibition evaluation. J Pharm Biomed Anal 2001; 25(3-4): 437-42.
- Wester MR, Lasker JM, Johnson EF, Raucy JL. CYP2C19 participates in tolbutamide hydroxylation by human liver microsomes. Drug Metab Dispos 2000; 28(3): 354-9.
- 181. Lasker JM, Wester MR, Aramsombatdee E, Raucy JL. Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch Biochem Biophys 1998; 353(1): 16-28.
- 182. Miners JO, Birkett DJ. Use of tolbutamide as a substrate probe for human hepatic cytochrome P450 2C9. Methods Enzymol 1996; 272139-45.
- 183. Hansen LL, Brøsen K. Quantitative determination of tolbutamide and its metabolites in human plasma and urine by high-performance liquid chromatography and UV detection. Ther Drug Monit 1999; 21(6): 664-71.
- 184. Csillag K, Vereczkey L, Gachalyi B. Simple high-performance liquid chromatographic method for the determination of tolbutamide and its metabolites in human plasma and urine using photodiode-array detection. J Chromatogr 1989; 490(2): 355-63.
- 185. Veronese ME, Miners JO, Randles D, Gregov D, Birkett DJ. Validation of the tolbutamide metabolic ratio for population screening with use of sulfaphenazole to produce model phenotypic poor metabolizers. Clin Pharmacol Ther 1990; 47(3): 403-11.
- 186. Thevis M, Geyer H, Schanzer W. Identification of oral antidiabetics and their metabolites in human urine by liquid chromatography/tandem mass spectrometry--a matter for doping control analysis. Rapid Commun Mass Spectrom 2005; 19(7): 928-36.
- 187. Faber MS, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol 2005; 97(3): 125-34.
- Fuhr U, Rost KL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics 1994; 4(3): 109-16.
- 189. Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics 1996; 6(2): 159-76.
- 190. Schneider H, Ma L, Glatt H. Extractionless method for the determination of urinary caffeine metabolites using high-performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 789(2): 227-37.

- 191. Fuhr U. Das Cytochrom P450-Enzym 1A2 des Menschen: Grundlagen der Aktivitätsbestimmung und Arzneimittelinteraktion durch Inhibitoren. Habilitationsschrift, Fachbereich Humanmedizin, Johann Wolfgang Goethe-Universität, Frankfurt am Main 1994.
- 192. FDA. Food and Drug Administration, Guidance for Industry: Bioanalytical Method Validation. 2001.
- 193. CPMP/ICH/381/95, EEC Note for Guidance on Validation of Analytical Procedures: Definitions and Terminology. 1994.
- 194. CPMP/ICH/281/95, EEC Note for Guidance, Validation of Analytical Procedures: Methodology. 1996.
- 195. Shah VP, Midha KK, Dighe S, McGilveray IJ, Skelly JP, Yacobi A, et al. Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Conference report. Eur J Drug Metab Pharmacokinet 1991; 16(4): 249-55.
- 196. Diletti E, Hauschke D, Steinijans VW. Sample size determination for bioequivalence assessment by means of confidence intervals. Int J Clin Pharmacol Ther Toxicol 1991; 29(1): 1-8.
- 197. Fuhr U. Persönliche Mitteilung zur Langzeitstabilität von Coffein und Paraxanthin. 2005.
- 198. Jemal M. High-throughput quantitative bioanalysis by LC/MS/MS. Biomed Chromatogr 2000; 14(6): 422-9.
- 199. He N, Yan FX, Huang SL, Wang W, Xiao ZS, Liu ZQ, et al. CYP2C19 genotype and S-mephenytoin 4'-hydroxylation phenotype in a Chinese Dai population. Eur J Clin Pharmacol 2002; 58(1): 15-8.
- 200. Feng HJ, Huang SL, Wang W, Zhou HH. The induction effect of rifampicin on activity of mephenytoin 4'-hydroxylase related to M1 mutation of CYP2C19 and gene dose. Br J Clin Pharmacol 1998; 45(1): 27-9.
- 201. Relling MV, Ayers D, Heideman RL. Mephenytoin phenotyping: lack of haematologic effect and timing of urine collections. Pharmacogenetics 1991; 1(1): 42-9.
- 202. Balian JD, Sukhova N, Harris JW, Hewett J, Pickle L, Goldstein JA, et al. The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: a population study. Clin Pharmacol Ther 1995; 57(6): 662-9.
- 203. Zhang Y, Blouin RA, McNamara PJ, Steinmetz J, Wedlund PJ. Limitation to the use of the urinary S-/R-mephenytoin ratio in pharmacogenetic studies. Br J Clin Pharmacol 1991; 31(3): 350-2.
- 204. Chang M, Dahl ML, Tybring G, Gotharson E, Bertilsson L. Use of omeprazole as a probe drug for CYP2C19 phenotype in Swedish Caucasians: comparison with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype. Pharmacogenetics 1995; 5(6): 358-63.
- 205. Rosemary J, Adithan C, Padmaja N, Shashindran CH, Gerard N, Krishnamoorthy R. The effect of the CYP2C19 genotype on the hydroxylation index of omeprazole in South Indians. Eur J Clin Pharmacol 2005; 61(1): 19-23.
- 206. Chainuvati S, Nafziger AN, Leeder JS, Gaedigk A, Kearns GL, Sellers E, et al. Combined phenotypic assessment of cytochrome p450 1A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the "Cooperstown 5+1 cocktail". Clin Pharmacol Ther 2003; 74(5): 437-47.
- 207. Jabrane W, Fuhr U, Kinzig-Schippers M, Jetter A, Hering U, Walchner-Bonjean M, et al. Sequential i.v. and oral administration of midazolam to estimate hepatic and intestinal CYP3A4 activity. Posterdemonstration auf dem 3. Jahreskongress

für Klinische Pharmakologie 2001, Köln, November 2001. Eur J Clin Pharmacol 2001(57): A35.

208. Jetter A, Kasel D, Kinzig-Schippers M, Harlfinger S, Jabrane W, Tomalik-Scharte D, et al. Comparison of two sequential i. v. and oral midazolam application schedules for CYP3A4 phenotyping. Posterdemonstration auf dem 4. Jahreskongress für Klinische Pharmakologie 2002, Wiesbaden, November 2002. Eur J Clin Pharmacol 2002(58): S87.

- 133 -

- 209. Aktories K, Förstermann U, Hofmann F, Starke K, *Allgemeine und spezielle Pharmakologie und Toxikologie*. 2005: Urban & Fischer Verlag, München.
- 210. Kim MJ, Nafziger AN, Zhang Y, Sellers EM, Gaedigk A, Bertino JS, Jr. Lack of weight-based dose dependency and intraindividual variability of omeprazole for CYP2C19 phenotyping. J Clin Pharmacol 2004; 44(9): 966-73.
- 211. Marinac JS, Balian JD, Foxworth JW, Willsie SK, Daus JC, Owen R, et al. Determination of CYP2C19 phenotype in black Americans with omeprazole: correlation with genotype. Clin Pharmacol Ther 1996; 60(2): 138-44.
- 212. Brøsen K, Skjelbo E, Flachs H. Proguanil metabolism is determined by the mephenytoin oxidation polymorphism in Vietnamese living in Denmark. Br J Clin Pharmacol 1993; 36(2): 105-8.
- 213. Ward SA, Helsby NA, Skjelbo E, Brøsen K, Gram LF, Breckenridge AM. The activation of the biguanide antimalarial proguanil co-segregates with the mephenytoin oxidation polymorphism--a panel study. Br J Clin Pharmacol 1991; 31(6): 689-92.
- 214. Ferguson RJ, De Morais SM, Benhamou S, Bouchardy C, Blaisdell J, Ibeanu G, et al. A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J Pharmacol Exp Ther 1998; 284(1): 356-61.
- 215. Inaba T, Jurima M, Nakano M, Kalow W. Mephenytoin and sparteine pharmacogenetics in Canadian Caucasians. Clin Pharmacol Ther 1984; 36(5): 670-6.
- 216. Burchell B. Genetic variation of human UDP-glucuronosyltransferase: implications in disease and drug glucuronidation. Am J Pharmacogenomics 2003; 3(1): 37-52.
- 217. Tamminga WJ, Wemer J, Oosterhuis B, de Zeeuw RA, de Leij LF, Jonkman JH. The prevalence of CYP2D6 and CYP2C19 genotypes in a population of healthy Dutch volunteers. Eur J Clin Pharmacol 2001; 57(10): 717-22.
- 218. Yin OQ, Tomlinson B, Chow AH, Waye MM, Chow MS. Omeprazole as a CYP2C19 marker in Chinese subjects: assessment of its gene-dose effect and intrasubject variability. J Clin Pharmacol 2004; 44(6): 582-9.

10 ABBILDUNGSVERZEICHNIS

Abbildung 1.	Relative Häufigkeit und Bedeutung der wichtigsten					
	arzneistoffmetabolisierenden Cytochrom P450-Enzyme	. 4				
Abbildung 2.	Strukturformel von (S/R)-Mephenytoin	25				
Abbildung 3.	Vermuteter stereoselektiver Metabolismus von Mephenytoin	26				
Abbildung 4.	Strukturformel von Tolbutamid	31				
Abbildung 5.	Strukturformel von Coffein	33				
Abbildung 6.	Schematische Darstellung des für die Quantifizierung von MEP, NIR					
	und 40HM verwendeten Laufmittelgradientens	48				
Abbildung 7.	Chromatogramm einer Kalibrierprobe 3 (Konz. 1500 ng/mL)	49				
Abbildung 8.	Fragmentionenspektrum von a) Paraxanthin und b) Theophyllin mit					
	Vorschlag für die Fragmentierung des in beiden Fällen intensivsten					
	SRM-Übergangs: 181,2→124,2 [m/z]	52				
Abbildung 9.	Vergleich eines PAX- und TPH-Chromatogramms. Geringer Einfluss					
	des TPH-Peaks auf die Peakhöhe von PAX	53				
Abbildung 10.	Schematische Darstellung des für die Quantifizierung von COF, PAX					
	und TOL verwendeten Laufmittelgradientens.	56				
Abbildung 11.	Chromatogramm einer Kalibrierprobe (Konz. 1500 ng/mL COF/PAX					
	bzw. 4500 ng/mL TOL)	57				
Abbildung 12.	Kalibriergerade für MEP	71				
Abbildung 13.	Kalibriergerade für NIR	71				
Abbildung 14.	Kalibriergerade für 40HM	72				
Abbildung 15.	Kalibriergerade für COF	78				
Abbildung 16.	Kalibriergerade für PAX	78				
Abbildung 17.	Kalibriergerade für TOL	79				
Abbildung 18.	Studie A, B und C. Mittlere Wiederfindung (inklusive					
	Standardabweichung, wenn n>2) von 40HM im Urin bei Trägern					
	verschiedener CYP2C19-Genotypen nach β-Glucuronidase-					
	Vorbehandlung	85				

Abbildung 19.	Studie A und B. Mittlere Wiederfindung (inklusive					
	Standardabweichung, wenn n>2) von 40HM im Urin bei Trägern					
	verschiedener CYP2C19-Genotypen ohne β-Glucuronidase-					
	Vorbehandlung	36				
Abbildung 20.	Studie A, B und C. Mittlere 40HM-Ausscheidungsraten für					
	verschiedene CYP2C19-Genotypen nach Deglucuronidierung in den					
	Referenzperioden der jeweiligen Studien.	37				
Abbildung 21.	Studie A und B. Mittlere 40HM-Ausscheidungsraten für verschiedene					
	CYP2C19-Genotypen ohne Deglucuronidierung in den					
	Referenzperioden der jeweiligen Studien.	38				
Abbildung 22.	Studie B (n=16). Intraindividuelle Variabilität der 40HM-Recovery fü	r				
	fraktionierte und kumuliert Sammelintervalle mit und ohne					
	Vorbehandlung des Urins mit β-Glucuronidase	39				
Abbildung 23.	Studie B, C und D (n=42, da doppelte Probanden C10 und D11 von					
	Auswertung für Studie C bzw. D ausgeschlossen). Intraindividuelle					
	Variabilität kumulierter Sammelintervalle nach Vorbehandlung des					
	Urins mit β-Glucuronidase) 0				
Abbildung 24.	Studie A und B (n=26). Mittlere Wiederfindung (inklusive					
	Standardabweichung) von NIR im Urin bei Trägern verschiedener					
	CYP2B6-Genotypen) 4				
Abbildung 25.	Studie C (n=12). Intraindividuelle Variabilität der NIR-Recovery für					
	fraktionierte und kumulierte Sammelintervalle) 5				
Abbildung 26.	Studie A, B und C (n=37, da doppelter Proband C10 für Studie C von					
	Auswertung ausgeschlossen). Abbildung a: 24 h-Plasmakonzentration					
	von TOL in Abhängigkeit vom CYP2C9-Genotyp. Abbildung b: 24 h-					
	Recovery von NIR in Abhängigkeit vom CYP2C9-Genotyp)6				
Abbildung 27.	Studie A, B und C (n=37, da doppelter Proband C10 für Studie C von					
	Auswertung ausgeschlossen): Korrelation zwischen der 24 h-					
	Plasmakonzentration von TOL als selektivem Maß für die Aktivität vo	n				
	CYP2C9 und der Recovery von NIR in 24 h kumuliert gesammeltem					
	Urin (p=0,136)) 7				
11 TABELLENVERZEICHNIS

Tabelle 1.	Validierte Cocktailmethoden mit phänotypisierten Enzymen und						
	Testsubstraten	. 17					
Tabelle 2.	Klinisch relevante Substrate von CYP1A2	. 19					
Tabelle 3.	Untersuchte CYP2B6-Allele	. 20					
Tabelle 4.	Klinisch relevante Substrate von CYP2B6	. 21					
Tabelle 5.	Untersuchte CYP2C9-Allele	. 21					
Tabelle 6.	Klinisch relevante Substrate von CYP2C9	. 22					
Tabelle 7.	Untersuchte CYP2C9-Allele	. 23					
Tabelle 8.	Klinisch relevante Substrate von CYP2C19	. 24					
Tabelle 9.	Demographische Statistik und Raucherstatus der Studienpopulationen.	. 39					
Tabelle 10.	Bestandteile der Phänotypisierungscocktails und ihre Dosierungen	. 40					
Tabelle 11.	SRM-Übergänge und Kollisionsenergien zur MS/MS-Detektion von						
	MEP, NIR, 40HM und 4MME (ISDT)	. 50					
Tabelle 12.	Pipettierschema zur Herstellung von Kalibriestandards (CS), Leer- und	ł					
	Probandenproben	. 55					
Tabelle 13.	Pipettierschema zur Herstellung von Qualitätskontrollproben (QC)	. 55					
Tabelle 14.	SRM-Übergänge und Kollisionsenergien zur MS/MS-Detektion von						
	COF, PAX, TOL sowie der beiden ISTDs 7HET und CPP	. 58					
Tabelle 15.	Konzentrationen der Kalibrierstandards (CS) von MEP, NIR und						
	40HM	. 70					
Tabelle 16.	Konzentrationen der Qualitätskontrollproben (QC) für MEP, NIR und						
	40HM	. 72					
Tabelle 17.	Validierte Präzision und Richtigkeit von fünf aufeinander folgenden						
	Proben gleicher Konzentration (Intraday-assay) an fünf aufeinander						
	folgenden Tagen (Interday-assay) für alle QC-Level von MEP, NIR ur	ıd					
	40HM	. 73					
Tabelle 18.	Mittlere Recovery von MEP, NIR und 40HM aus Urin (n=3)	. 74					
Tabelle 19.	Untersuchung der Stabilität von MEP, NIR und 40HM in Urinproben						
	(n=3) während der Probenaufarbeitung	. 75					
Tabelle 20.	Untersuchung der Stabilität von MEP, NIR und 40HM in Urinproben						
	(n=3) nach 24-stündiger Lagerung im Autosampler bei 5°C	. 75					

Tabelle 21.	Untersuchung der Stabilität von MEP, NIR und 40HM in Urinproben	
	(n=3) nach 3 Einfrier- und Auftauzyklen	76
Tabelle 22.	Untersuchung der Stabilität von MEP, NIR und 40HM in Urinproben	
	(n=3) nach Lagerung bei –80°C für über sieben Monate	76
Tabelle 23.	Finale Konzentrationen der Kalibrierstandards (CS) von COF, PAX un	d
	TOL	77
Tabelle 24.	Konzentrationen der Qualitätskontrollproben (QC) für MEP, NIR und	
	40HM	79
Tabelle 25.	Validierte Präzision und Richtigkeit von fünf aufeinander folgenden	
	Proben gleicher Konzentration (Intraday-assay) an fünf aufeinander	
	folgenden Tagen (Interday-assay) für alle QC-Level von COF, PAX un	ıd
	TOL	80
Tabelle 26.	Mittlere absolute und relative Recovery von COF, PAX und TOL aus	
	Plasma (n=3)	82
Tabelle 27.	Untersuchung der Stabilität von COF, PAX und TOL in Urinproben	
	(n=3) während der Probenaufarbeitung	82
Tabelle 28.	Untersuchung der Stabilität von COF, PAX und TOL in Urinproben	
	(n=3) nach 24-stündiger Lagerung im Autosampler bei 5°C	83
Tabelle 29.	Untersuchung der Stabilität von COF, PAX und TOL in Urinproben	
	(n=3) nach 3 Einfrier- und Auftauzyklen	83
Tabelle 30.	Verteilung der CYP2C19-Genotypen für Studie A, B und C	84
Tabelle 31.	Urinsammelperioden mit statistisch signifikantem Einfluss des	
	CYP2C19-Genotyps auf die 4OHM-Recovery (arithmetischer Mittelwe	ert
	± Standardabweichung). Alle 40HM-Recoverys nach	
	Deglucuronidierung.	86
Tabelle 32.	Nach Diletti et al. ¹⁹² mittels intraindividuellem Variationskoeffizienten	L
	CV(intra) [%] und Punktschätzer ($\mu T/\mu R$) bestimmte Fallzahlen zur	
	Erzielung einer Power von 80% bei einem Signifikanzniveau von 5%.	
	Alle Sammelintervalle nach Deglucuronidierung	91
Tabelle 33.	Ergebnis der CYP2B6-Genotypisierung von Teilnehmern der Studie A	
	und B	92

Tabelle 34.	Studie C (n=12): Nach Diletti et al. ¹⁹² mittels intraindividuellem
	Variationskoefffizienten CV(intra) [%] und Punktschätzer ($\mu T/\mu R$)
	bestimmte Fallzahlen zur Erzielung einer Power von 80% bei einem
	Siginifkanzniveau von 5%
Tabelle 35.	Literaturvergleich der intraindividuellen Variationskoeffizienten
	verschiedener Phänotypisierungsmaße von CYP2C19108
Tabelle 36.	Studie A: Demographische Daten und Genotypen der
	Studienteilnehmer
Tabelle 37.	Studie B: Demographische Daten, Randomisierung und Genotypen der
	Studienteilnehmer
Tabelle 38.	Studie C: Demographische Daten, Randomisierung und Genotypen der
	Studienteilnehmer
Tabelle 39.	Studie D: Demographische Daten und Randomisierung der
	Studienteilnehmer
Tabelle 40.	Auflistung aller kumulierten und fraktionierten Urinsammelintervalle zur
	Untersuchung des Einflusses des CYP2C19-Genotyps auf die 4OHM-
	Recovery. Alle Ergebnisse nach erfolgter Deglucoronidierung 146
Tabelle 41.	Auflistung aller kumulierten und fraktionierten Urinsammelintervalle zur
	Untersuchung des Einflusses des CYP2C19-Genotyps auf die 4OHM-
	Recovery. Alle Ergebnisse ohne Deglucuronidierung 147
Tabelle 42.	Proband A01. Mephenytoin-Dosis: 229095 nmol 148
Tabelle 43.	Proband A02. Mephenytoin-Dosis: 229095 nmol 148
Tabelle 44.	Proband A03. Mephenytoin-Dosis: 229095 nmol 149
Tabelle 45.	Proband A04. Mephenytoin-Dosis: 229095 nmol 149
Tabelle 46.	Proband A05. Mephenytoin-Dosis: 229095 nmol 150
Tabelle 47.	Proband A06. Mephenytoin-Dosis: 229095 nmol 150
Tabelle 48.	Proband A07. Mephenytoin-Dosis: 229095 nmol 151
Tabelle 49.	Proband A08. Mephenytoin-Dosis: 229095 nmol 151
Tabelle 50.	Proband A09. Mephenytoin-Dosis: 229095 nmol 152
Tabelle 51.	Proband A10. Mephenytoin-Dosis: 229095 nmol 152
Tabelle 52.	Proband B01. Mephenytoin-Dosis: Periode 1: 243798 nmol / Periode 2:
	218240 nmol 153
Tabelle 53.	Proband B02. Mephenytoin-Dosis: Periode 1: 243632 nmol / Periode 2:
	238594 nmol 154

Tabelle 54.	Proband B03. Mephenytoin-Dosis: Periode 1: 210952 nmol / Periode 2:
	232588 nmol 155
Tabelle 55.	Proband B04. Mephenytoin-Dosis: Periode 1: 242105 nmol / Periode 2:
	224700 nmol 156
Tabelle 56.	Proband B05. Mephenytoin-Dosis: Periode 1: 214953 nmol / Periode 2:
	231918 nmol 157
Tabelle 57.	Proband B06. Mephenytoin-Dosis: Periode 1: 232606 nmol / Periode 2:
	226950 nmol 158
Tabelle 58.	Proband B07. Mephenytoin-Dosis: Periode 1: 224905 nmol / Periode 2:
	246563 nmol 159
Tabelle 59.	Proband B08. Mephenytoin-Dosis: Periode 1: 236405 nmol / Periode 2:
	210508 nmol
Tabelle 60.	Proband B09. Mephenytoin-Dosis: Periode 1: 222684 nmol / Periode 2:
	215619 nmol 161
Tabelle 61.	Proband B10. Mephenytoin-Dosis: Periode 1: 212109 nmol / Periode 2:
	221875 nmol 162
Tabelle 62.	Proband B11. Mephenytoin-Dosis: Periode 1: 245858 nmol / Periode 2:
	235169 nmol
Tabelle 63.	Proband B12. Mephenytoin-Dosis: Periode 1: 232183 nmol / Periode 2:
	241094 nmol
Tabelle 64.	Proband B13. Mephenytoin-Dosis: Periode 1: 224926 nmol / Periode 2:
	216199 nmol
Tabelle 65.	Proband B14. Mephenytoin-Dosis: Periode 1: 240015 nmol / Periode 2:
	226818 nmol
Tabelle 66.	Proband B15. Mephenytoin-Dosis: Periode 1: 216824 nmol / Periode 2:
	229778 nmol
Tabelle 67.	Proband B16. Mephenytoin-Dosis: Periode 1: 245914 nmol / Periode 2:
	228529 nmol
Tabelle 68.	Proband C01. Mephenytoin-Dosis: Periode 1: 247881 nmol / Periode 2:
	215349 nmol
Tabelle 69.	Proband C02. Mephenytoin-Dosis: Periode 1: 246964 nmol / Periode 2:
	223826 nmol
Tabelle 70.	Proband C03. Mephenytoin-Dosis: Periode 1: 246227 nmol / Periode 2:
	214433 nmol 171

Tabelle 71.	Proband C04. Mephenytoin-Dosis: Periode 1: 218099 nmol / Periode 2:
	238946 nmol 172
Tabelle 72.	Proband C05. Mephenytoin-Dosis: Periode 1: 255441 nmol / Periode 2:
	211684 nmol 173
Tabelle 73.	Proband C06. Mephenytoin-Dosis: Periode 1: 270103 nmol / Periode 2:
	190149 nmol 174
Tabelle 74.	Proband C07. Mephenytoin-Dosis: Periode 1: 211684 nmol / Periode 2:
	248568 nmol 175
Tabelle 75.	Proband C08. Mephenytoin-Dosis: Periode 1: 224742 nmol / Periode 2:
	238488 nmol
Tabelle 76.	Proband C09. Mephenytoin-Dosis: Periode 1: 207789 nmol / Periode 2:
	260939 nmol 177
Tabelle 77.	Proband C10. Mephenytoin-Dosis: Periode 1: 212829 nmol / Periode 2:
	250401 nmol
Tabelle 78.	Proband C11. Mephenytoin-Dosis: Periode 1: 245590 nmol / Periode 2:
	222680 nmol
Tabelle 79.	Proband C12. Mephenytoin-Dosis: Periode 1: 236197 nmol / Periode 2:
	234264 nmol
Tabelle 80.	Proband D01. Mephenytoin-Dosis: Periode 1: 206186 nmol / Periode 2:
	265292 nmol
Tabelle 81.	Proband D02. Mephenytoin-Dosis: Periode 1: 261168 nmol / Periode 2:
	249485 nmol
Tabelle 82.	Proband D03. Mephenytoin-Dosis: Periode 1: 253150 nmol / Periode 2:
	204811 nmol
Tabelle 83.	Proband D04. Mephenytoin-Dosis: Periode 1: 248568 nmol / Periode 2:
	211455 nmol
Tabelle 84.	Proband D05. Mephenytoin-Dosis: Periode 1: 207102 nmol / Periode 2:
	254296 nmol
Tabelle 85.	Proband D06. Mephenytoin-Dosis: Periode 1: 232532 nmol / Periode 2:
	228866 nmol
Tabelle 86.	Proband D07. Mephenytoin-Dosis: Periode 1: 241924 nmol / Periode 2:
	219931 nmol
Tabelle 87.	Proband D08. Mephenytoin-Dosis: Periode 1: 215120 nmol / Periode 2:
	245361 nmol 183

Tabelle 88.	Proband D09. Mephenytoin-Dosis: Periode 1: 221535 nmol / Periode	2:
	237801 nmol	183
Tabelle 89.	Proband D10. Mephenytoin-Dosis: Periode 1: 216953 nmol / Periode	2:
	241924 nmol	184
Tabelle 90.	Proband D11. Mephenytoin-Dosis: Periode 1: 219931 nmol / Periode	2:
	243528 nmol	184
Tabelle 91.	Proband D12. Mephenytoin-Dosis: Periode 1: 210767 nmol / Periode	2:
	250859 nmol	184
Tabelle 92.	Proband D13. Mephenytoin-Dosis: Periode 1: 221993 nmol / Periode	2:
	231615 nmol	185
Tabelle 93.	Proband D14. Mephenytoin-Dosis: Periode 1: 238717 nmol / Periode	2:
	212829 nmol	185
Tabelle 94.	Proband D15. Mephenytoin-Dosis: Periode 1: 249255 nmol / Periode	2:
	205040 nmol	185
Tabelle 95.	Proband D16. Mephenytoin-Dosis: Periode 1: 227033 nmol / Periode	2:
	229095 nmol	186

12 ANHANG

12.1 Demographische Daten, Randomisierung und Genotypen der Probanden

Tabelle 36. Studie A: Demographische Daten und Genotypen der Studienteilnehmer

	Alter				CYP-Genoty	p
ID	[Jahre]	Größe [cm]	Gewicht [kg]	2B6	2C9	2C19
A01	25	190	76.9	*1/*6	*1/*3	*1/*1
A02	33	178	83.6	*1/*5	*1/*1	*1/*1
A03	27	177	84.6	*1/*1	*1/*2	*1/*2
A04	25	185	87.9	*1/*6	*1/*3	*1/*1
A05	36	199	98.4	*1/*7	*1/*3	*1/*1
A06	31	185	81.1	*1/*6	*1/*1	*1/*2
A07	34	180	87.0	*1/*1	*1/*1	*1/*2
A08	31	182	74.6	*1/*2	*1/*1	*1/*2
A09	27	185	73.5	*4/*4	*1/*2	*1/*1
A10	40	190	97.7	*1/*6	*1/*2	*1/*2
Mittelwert	31	185	85			
StdAbweichung	5.0	6.6	8.7			
Minimum	25	177	74			
Maximum	40	199	98			

	Alter	Größe	Gewicht	t	CYP-Genotyp		р
ID	[Jahre]	[cm]	[kg]	Randomisierung	2B6	2C9	2C19
B01	42	188	84.3	Test/Referenz	*5/*5	*1/*1	*1/*1
B02	27	171	65.0	Referenz/Test	*1/*1	*1/*1	*1/*1
B03	34	189	77.2	Referenz/Test	*1/*1	*1/*1	*1/*1
B04	24	183	77.6	Referenz/Test	*1/*2	*1/*1	*1/*1
B05	27	176	68.5	Referenz/Test	*1/*6	*1/*1	*1/*1
B06	24	181	85.5	Test/Referenz	_ ^a	*1/*2	*1/*1
B07	27	173	73.6	Test/Referenz	*1/*7	*2/*2	*1/*1
B08	23	180	70.5	Test/Referenz	_ ^a	*1/*2	*1/*1
B09	27	190	89.9	Referenz/Test	*5/*5	*1/*2	*1/*1
B10	38	185	80.1	Referenz/Test	*1/*6	*1/*1	*1/*1
B11	34	195	101.0	Referenz/Test	*1/*1	*1/*1	*1/*2
B12	34	174	65.0	Test/Referenz	_a	*1/*1	*1/*2
B13	31	189	83.3	Referenz/Test	_a	*1/*1	*1/*2
B14	25	180	79.2	Test/Referenz	*6/*6	*1/*1	*2/*2
B15	23	175	68.5	Test/Referenz	*1/*6	*1/*1	*1/*1
B16	29	188	86.3	Test/Referenz	*1/*6	*1/*2	*1/*1
Mittelwert	29	182	78				
StdAbw.	5.7	7.2	9.9				
Minimum	23	171	71				

Tabelle 37. Studie B: Demographische Daten, Randomisierung und Genotypen der Studienteilnehmer

42 a: CYP2B6-Genotyp nicht eindeutig zuzuordnen

Maximum

195

101

	Alter	Größe	Gewicht			CYP-Genoty	p
ID	[Jahre]	[cm]	[kg]	Randomisierung	2B6	2C9	2C19
C01	30	165	60	Referenz/Test	-	*1/*1	*1/*2
C02	31	173	73	Test/Referenz	-	*1/*2	*1/*1
C03	49	172	84	Test/Referenz	-	*2/*2	*1/*1
C04	44	172	61	Referenz/Test	-	*1/*1	*1/*1
C05	36	179	64	Referenz/Test	-	*1/*1	*1/*2
C06	34	190	95	Test/Referenz	-	*1/*1	*1/*2
C07	24	198	93	Referenz/Test	-	*1/*1	*1/*2
C08	33	188	103	Test/Referenz	-	*1/*1	*1/*1
C09	47	174	76	Test/Referenz	-	*1/*1	*1/*1
C10	36	195	101	Test/Referenz	-	*1/*1	*1/*2
C11	40	180	84	Referenz/Test	-	*1/*1	*1/*1
C12	32	181	71	Referenz/Test	-	*1/*1	*1/*1
Mittelwert	36	181	80				
StdAbw.	7.4	10.2	15.2				
Minimum	24	172	60				
Maximum	49	198	103				

Tabelle 38. Studie C: Demographische Daten, Randomisierung und Genotypen derStudienteilnehmer

a: CYP2B6-Genotyp nicht bestimmt

-	Alter	Größe	Gewicht		C	CYP-Genoty	р ^а
ID	[Jahre]	Jahre] [cm] [kg] Randomisieru	Randomisierung	2B6	2C9	2C19	
D01	25	178	80.4	Referenz/Test	-	-	-
D02	24	173	71.0	Test/Referenz	-	-	-
D03	37	178	66.3	Referenz/Test	-	-	-
D04	27	185	92.0	Test/Referenz	-	-	-
D05	21	190	79.0	Referenz/Test	-	-	-
D06	29	176	76.0	Test/Referenz	-	-	-
D07	31	185	83.5	Test/Referenz	-	-	-
D08	26	182	83.2	Referenz/Test	-	-	-
D09	25	184	77.5	Referenz/Test	-	-	-
D10	26	184	69.1	Test/Referenz	-	-	-
D11	33	194	91.4	Referenz/Test	-	-	-
D12	43	177	71.1	Test/Referenz			
D13	29	179	78.7	Test/Referenz	-	-	-
D14	30	187	89.0	Referenz/Test	-	-	-
D15	22	176	74.4	Test/Referenz	-	-	-
D16	29	189	99.3	Referenz/Test	-	-	-
Mittelwert	29	182	80				
StdAbw.	5.6	5.9	9.2				
Minimum	21	173	66				
Maximum	43	194	99				

Tabelle 39. Studie D: Demographische Daten und Randomisierung der Studienteilnehmer

a: keine Genotypsisierung vorhanden

12.2 Statistische Untersuchungsergebnisse zur Selektivität (40HM)

Tabelle 40. Auflistung aller kumulierten und fraktionierten Urinsammelintervalle zurUntersuchung des Einflusses des CYP2C19-Genotyps auf die 4OHM-Recovery. AlleErgebnisse nach erfolgter Deglucoronidierung.

			4OHM-Recovery [%]			
Sammel- intervall	Studie	Anzahl Probanden	*1/*1	*1/*2	*2/*2	p-Wert
0-2 h	A/B	26	3,1±2,1	2,6±2,0	0,02	0,199
0-4 h	A/B/C	37 ^a	14,1±5,7	12,9±5,0	0,06	0,189
0-6 h	A/B	26	20,6±3,8	17,1±3,4	0,10	0,029*
0-8 h	A/B/C	37 ^a	26,3±3,8	23,3±4,6	0,15	0,040*
0-12 h	A/B/C	37 ^a	29,7±3,7	26,9±4,2	0,24	0,048*
0-16 h	В	16	31,8±3,0	25,6±2,6	0,32	0,025*
0-24 h	A/B	26	31,9±3,7	27,9±3,3	0,49	0,023*
2-4 h	A/B	26	9,2±3,2	8,1±1,7	0,03	0,134
2-6 h	A/B	26	17,5±3,7	14,7±1,8	0,08	0,055
2-8 h	A/B	26	21,8±4,0	18,8±1,8	0,12	0,036*
2-12 h	A/B	26	25,6±4,2	22,6±2,0	0,21	0,109
2-16 h	В	16	28,7±4,1	24,5±2,3	0,30	0,088
2-24 h	A/B	26	28,8±4,3	25,4±2,5	0,46	0,055
4-6 h	A/B	26	8,9±4,7	6,6±1,2	0,05	0,150
4-8 h	A/B/C	37 ^a	12,2±5,3	10,4±1,7	0,09	0,226
4-12 h	A/B/C	37	12,8±8,2	10,6±5,9	0,18	0,226
4-16 h	В	16	20,0±6,4	17,3±2,3	0,27	0,061
4-24 h	A/B	26	20,2±6,0	17,3±2,8	0,43	0,167
6-8 h	A/B	26	4,3±1,6	4,1±0,9	0,04	0,220
6-12 h	A/B	26	8,1±2,5	7,9±1,4	0,13	0,248
6-16 h	В	16	10,0±3,3	$10,6\pm 2,1$	0,22	0,257
6-24 h	A/B	26	11,3±3,1	$10,7\pm2,1$	0,38	0,236
8-12 h	A/B/C	37 ^a	3,7±1,2	3,8±0,7	0,09	0,225
8-16 h	В	16	5,4±1,7	6,1±2,3	0,18	0,212
8-24 h	A/B	26	7,0±1,9	6,6±1,7	0,34	0,206
12-16 h	В	16	1,5±0,5	2,7±2,5	0,09	0,265
12-24 h	A/B	26	3,6±1,8	2,7±0,4	0,25	0,465
16-24 h	В	16	1,5±0,5	1,3±0,4	0,16	0.170

a: Die tatsächliche Gesamtzahl der Teilnehmer an den Studien A, B und C betrug 38. Da Proband C10 bereits an Studie B teilgenommen hatte, wurde seine Untersuchungsergebnisse aus Studie C von der Auswertung ausgeschlossen.

			40HM-Recovery [%]			
Sammel- intervall	Studie	Anzahl Probanden	*1/*1	*1/*2	*2/*2	p-Wert
0-2 h	A/B	26	0,113±0,079	$0,084{\pm}0,052$	0	0,187
0-4 h	A/B	26	0,307±0,159	$0,303{\pm}0,079$	0	0,246
0-6 h	A/B	26	0,475±0,204	0,426±0,115	0	0,240
0-8 h	A/B	26	$0,540\pm0,207$	0,487±0,133	0	0,255
0-12 h	A/B	26	$0,590\pm0,220$	0,541±0,163	0	0,220
0-16 h	В	16	0,602±0,229	$0,694{\pm}0,197$	0	0,170
0-24 h	A/B	26	$0,626\pm0,220$	0,581±0,175	0	0,199
2-4 h	A/B	26	0,207±0,103	0,219±0,060	0	0,249
2-6 h	A/B	26	0,363±0,163	0,342±0,106	0	0,240
2-8 h	A/B	26	0,428±0,171	0,403±0,129	0	0,248
2-12 h	A/B	26	0,478±0,185	0,457±0,159	0	0,243
2-16 h	В	16	0,501±0,203	0,619±0,170	0	0,126
2-24 h	A/B	26	0,514±0,186	0,497±0,169	0	0,236
4-6 h	A/B	26	0,168±0,169	0,123±0,059	0	0,183
4-8 h	A/B	26	0,233±0,183	$0,184{\pm}0,085$	0	0,183
4-12 h	A/B	26	0,283±0,195	0,238±0,120	0	0,206
4-16 h	В	16	0,320±0,228	0,384±0,115	0	0,088
4-24 h	A/B	26	0,319±0,194	0,278±0,131	0	0,213
6-8 h	A/B	26	$0,065\pm0,032$	0,061±0,028	0	0,206
6-12 h	A/B	26	0,115±0,053	0,115±0,065	0	0,236
6-16 h	В	16	0,130±0,063	$0,198\pm0,082$	0	0,106
6-24 h	A/B	26	0,151±0,060	0,155±0,081	0	0,240
8-12 h	A/B	26	$0,050\pm 0,025$	$0,054{\pm}0,037$	0	0,248
8-16 h	В	16	0,066±0,031	0,108±0,063	0	0,106
8-24 h	A/B	26	$0,086{\pm}0,037$	0,094±0,057	0	0,249
12-16 h	В	16	0,016±0,009	0,026±0,030	0	0,302
12-24 h	A/B	26	0,039±0,027	0,038±0,018	0	0,465
16-24 h	В	16	0,017±0,010	0,025±0,017	0	0,248

Tabelle41.AuflistungallerkumuliertenundfraktioniertenUrinsammelintervallezurUntersuchungdesEinflussesdesCYP2C19-Genotypsaufdie4OHM-Recovery.AlleErgebnisseohneDeglucuronidierung.

12.3 Studie A: Urinkonzentrationen von MEP, NIR und 40HM

Tabelle 42. Proband A01. Mephenytoin-Dosis: 229095 nmol

			4'-Hydroxymephenytoin		Nirvanol		Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	294	0	0	0	0	0	0
0-2	1	700	146	2268	15,8	15,8	45,4	57,2
2-4	1	306	648	15404	53,1	62,3	168	179
4-6	1	344	250	8076	55,6	54,9	175	151
6-8	1	157	292	10433	153	134	149	131
8-12	1	326	169	4768	157	163	80,9	130
12-24	1	553	37,1	3338	258	253	109	101

Tabelle 43. Proband A02. Mephenytoin-Dosis: 229095 nmol

			4'-Hydroxymephenytoin		Nir	vanol	Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	99,0	0	0	0	0	0	0
0-2	1	380	44,4	908	0	0	15,9	15,9
2-4	1	195	449	15174	15,8	15,8	90,8	111
4-6	1	118	641	36517	67,6	76,9	157	178
6-8	1	332	111	7133	38,9	43,4	125	128
8-12	1	345	85,3	6694	82,1	94,6	134	122
12-24	1	512	96,9	7093	152	152	111	131

			4´-Hydroxy	mephenytoin	Nirvanol		Mephenytoin		
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	
Predose	1	266	0	0	0	0	0	0	
0-2	1	380	29,2	1098	0	0	15,9	15,9	
2-4	1	344	232	9544	15,8	15,8	108	125	
4-6	1	92,2	424	42945	32,8	49,1	110	146	
6-8	1	310	105	10005	58,1	58,3	137	155	
8-12	1	184	105	12320	96,4	79,8	108	109	
12-24	1	512	36,9	3156	132	150	101	101	

Tabelle 44. Proband A03. Mephenytoin-Dosis: 229095 nmol

Tabelle 45. Proband A04. Mephenytoin-Dosis: 229095 nmol

			4´-Hydroxy	mephenytoin	Nirvanol		Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	144	0	0	0	0	0	0
0-2	1	596	245	7117	0	15,8	88,2	79,5
2-4	1	414	243	10939	15,8	33,1	131	127
4-6	1	377	218	8121	42,8	37,7	134	131
6-8	1	359	91,7	6110	45,8	48,1	123	123
8-12	1	509	41,0	4592	70,7	85,5	99,9	109
12-24	1	490	32,4	2708	141	153	89,9	88,8

			4´-Hydroxy	mephenytoin	Nirvanol		Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	222	0	0	0	0	0	0
0-2	1	361	89,0	2530	15,8	15,8	15,9	15,9
2-4	1	312	181	14208	34,0	34,4	107	117
4-6	1	195	49,6	16281	59,2	45,9	102	109
6-8	1	365	146	5658	45,4	55,3	107	112
8-12	1	532	31,1	2883	66,6	65,9	78,6	97,7
12-24	1	637	21,4	2387	113	149	71,6	77,8

Tabelle 46. Proband A05. Mephenytoin-Dosis: 229095 nmol

Tabelle 47. Proband A06. Mephenytoin-Dosis: 229095 nmol

			4´-Hydroxymephenytoin		Nir	vanol	Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	449	0	0	0	0	0	0
0-2	1	498	146	6538	15,8	15,8	48,4	51,7
2-4	1	327	417	16915	35,6	34,8	192	193
4-6	1	245	254	16476	57,2	53,5	186	189
6-8	1	256	91,7	7118	60,9	66,2	146	154
8-12	1	269	54,4	7093	102	112	131	147
12-24	1	367	40,7	4211	189	194	123	127

			4´-Hydroxy	mephenytoin	Nirvanol		Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	559	0	0	0	0	0	0
0-2	1	490	169	5484	15,8	0	80,9	81,2
2-4	1	697	122	6719	34,4	15,8	141	126
4-6	1	449	86,6	7183	46,6	45,7	139	129
6-8	1	96,8	136	16995	144	142	96,3	98,5
8-12	1	245	51,3	7265	151	151	80,7	86,2
12-24	1	400	35,5	3848	181	190	70,0	79,4

Tabelle 48. Proband A07. Mephenytoin-Dosis: 229095 nmol

Tabelle 49. Proband A08. Mephenytoin-Dosis: 229095 nmol

			4 ⁻ Hydroxymephenytoin		Nir	vanol	Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	93,4	0	0	0	0	0	0
0-2	1	143	201	6456	15,8	0	15,9	43,0
2-4	1	385	414	13749	38,5	15,8	212	213
4-6	1	270	195	14145	55,1	58,7	153	136
6-8	1	207	126	10817	117	128	151	158
8-12	1	351	46,3	5036	113	121	113	113
12-24	1	431	40,6	2665	219	220	87,8	79,8

			4´-Hydroxy	mephenytoin	Nirvanol		Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	74,1	0	0	0	0	0	0
0-2	1	210	377	8191	31,9	15,8	0	0
2-4	1	379	429	14468	101	93,8	0	0
4-6	1	428	129	8022	110	127	15,8	15,8
6-8	1	207	88,5	8460	206	194	37,9	38,2
8-12	1	207	67,5	8154	376	383	48,0	46,7
12-24	1	466	25,5	2918	486	524	55,2	60,8

Tabelle 50. Proband A09. Mephenytoin-Dosis: 229095 nmol

Tabelle 51. Proband A10. Mephenytoin-Dosis: 229095 nmol

			4'-Hydroxymephenytoin Nirvanol		vanol	Mephenytoin		
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	336	0	0	0	0	0	0
0-2	1	509	89,3	2520	0	0	45,8	40,3
2-4	1	433	227	10434	0	0	141	148
4-6	1	233	160	9736	15,8	15,8	123	128
6-8	1	95,8	227	18160	37,9	38,2	99,8	114
8-12	1	214	104	6748	48,0	46,7	104	96,4
12-24	1	611	61,7	2157	55,2	60,8	96,6	90,0

12.4 Studie B: Urinkonzentrationen von MEP, NIR und 40HM

			4´-Hydroxy	mephenytoin	Nirvanol		Mephenytoin		
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	
Predose	1	514	0	0	0	0	0	0	
0-2	1	1007	48,6	1497	0	0	15,9	15,9	
2-4	1	307	152	7875	0	0	84,9	89,4	
4-6	1	279	163	10064	15,8	15,8	103	97,8	
6-8	1	249	151	9799	35,4	36,6	99,1	112	
8-12	1	1554	57,0	4084	40,2	43,1	112	117	
12-16	1	794	30,6	2192	55,5	61,0	117	117	
126-24	1	600	35,7	2263	117	112	115	108	
Predose	2	726	0	25,7	119	110	0	0	
0-2	2	346	100	2872	103	93,0	56,4	54,6	
2-4	2	546	144	7143	98,5	102	101	110	
4-6	2	360	150	8810	119	117	117	113	
6-8	2	411	163	9462	141	126	116	124	
8-12	2	1165	46,9	3318	110	116	114	117	
12-16	2	691	23,5	1634	118	106	108	113	
16-24	2	701	10,7	1360	155	159	106	111	

 Tabelle 52.
 Proband B01.
 Mephenytoin-Dosis:
 Periode 1: 243798 nmol / Periode 2: 218240 nmol

			4´-Hydroxy	mephenytoin	Nir	vanol	Meph	enytoin
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	472	0	0	0	0	0	0
0-2	1	93,1	431	13192	15,8	15,8	36,9	49,5
2-4	1	134	1293	45894	64,5	49,0	205	209
4-6	1	268	307	19760	62,5	49,0	220	220
6-8	1	316	146	9112	75,1	72,0	199	209
8-12	1	511	68,4	4895	98,4	88,5	193	193
12-16	1	658	20,0	1649	112	110	168	164
126-24	1	107	61,7	5624	301	287	140	138
Predose	2	162	0	0	253	243	0	0
0-2	2	97,1	354	9374	268	245	38,5	40,1
2-4	2	341	225	7077	132	136	97,5	102
4-6	2	586	236	8266	117	118	190	182
6-8	2	217	376	19267	254	225	200	208
8-12	2	676	124	5796	177	164	175	173
12-16	2	581	36,7	2848	202	210	170	175
16-24	2	586	10,7	2032	251	224	156	147

 Tabelle 53.
 Proband B02.
 Mephenytoin-Dosis:
 Periode 1: 243632 nmol / Periode 2: 238594 nmol

			4'-Hydroxy	vmephenytoin	Nir	vanol	Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	276	0	0	0	0	0	0
0-2	1	74,2	262	13464	15,8	15,8	15,9	15,9
2-4	1	131	116	40600	54,3	57,7	147	117
4-6	1	401	161	14616	51,6	47,1	119	123
6-8	1	804	31,7	2983	34,9	40,0	106	114
8-12	1	1387	10,7	1211	45,7	41,6	102	105
12-16	1	1391	0	454	51,5	45,9	90,0	82,1
126-24	1	1195	0	709	83,5	83,5	87,9	87,1
Predose	2	888	0	0	52,5	48,1	0	0
0-2	2	650	115	6100	38,9	38,1	37,5	33,8
2-4	2	594	605	13943	40,4	46,9	95,3	119
4-6	2	524	58,6	6400	65,8	71,8	131	128
6-8	2	835	10,7	2097	58,2	51,7	124	117
8-12	2	3258	0	395	49,0	37,6	118	78,5
12-16	2	636	0	703	98,0	93,7	99,6	91,8
16-24	2	410	0	2182	184	202	90,8	91,1

 Tabelle 54.
 Proband B03.
 Mephenytoin-Dosis:
 Periode 1: 210952 nmol / Periode 2: 232588 nmol

		4´-Hydroxy	mephenytoin	Nir	rvanol	Meph	nenytoin	
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	196	0	0	0	0	0	0
0-2	1	256	30,7	894	0	0	15,9	15,9
2-4	1	495	306	10756	15,8	15,8	106	105
4-6	1	292	392	24733	42,7	36,0	157	160
6-8	1	246	167	14370	52,9	50,5	145	151
8-12	1	701	37,4	3623	54,8	43,8	125	135
12-16	1	562	10,7	1868	70,9	73,4	130	130
126-24	1	241	31,2	3880	123	124	97,3	114
Predose	2	323	0	82,2	136	134	0	0
0-2	2	703	10,7	415	52,0	52,8	15,9	15,9
2-4	2	452	236	10842	78,9	73,7	114	131
4-6	2	577	206	11424	89,6	87,7	144	143
6-8	2	591	73,4	5567	85,1	76,4	140	139
8-12	2	1173	27,3	1873	91,2	89,4	129	138
12-16	2	341	10,7	2761	147	162	115	114
16-24	2	382	10,7	2259	177	178	110	111

 Tabelle 55.
 Proband B04.
 Mephenytoin-Dosis:
 Periode 1: 242105 nmol / Periode 2: 224700 nmol

	-		4'-Hydroxy	mephenytoin	Nirvanol Mephenytoin			nenytoin
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	422	0	0	0	0	0	0
0-2	1	113	1162	31688	15,8	31,5	96,4	104
2-4	1	227	646	26360	68,2	55,6	204	205
4-6	1	313	157	11734	57,9	56,6	177	174
6-8	1	96,7	14,0	1870	68,6	79,0	136	158
8-12	1	469	44,5	3584	76,4	76,3	153	167
12-16	1	203	10,7	1604	146	160	127	127
126-24	1	1211	10,7	625	108	107	120	117
Predose	2	506	0	0	132	131	0	0
0-2	2	375	392	12888	133	130	134	135
2-4	2	456	232	15528	117	134	200	207
4-6	2	474	93,9	8042	117	119	176	189
6-8	2	112	144	15083	311	280	162	159
8-12	2	571	23,9	2905	200	213	143	157
12-16	2	456	10,7	1657	248	241	135	139
16-24	2	363	10,7	1454	317	304	118	130

 Tabelle 56.
 Proband B05.
 Mephenytoin-Dosis:
 Periode 1: 214953 nmol / Periode 2: 231918 nmol

	_		4´-Hydroxy	mephenytoin	Nir	vanol	Meph	enytoin
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	260	0	0	0	0	0	0
0-2	1	141	276	8936	0	15,8	32,9	41,5
2-4	1	120	566	36972	15,8	35,7	127	156
4-6	1	240	241	16725	30,3	34,4	133	150
6-8	1	369	89,2	7387	29,0	32,4	122	131
8-12	1	662	73,6	4807	43,7	44,1	117	129
12-16	1	360	42,8	3391	67,6	54,1	112	109
126-24	1	823	10,7	1376	66,0	67,5	98,1	99,6
Predose	2	507	0	106	271	265	0	0
0-2	2	66,4	1133	42065	385	379	99,5	139
2-4	2	78,9	1246	62316	330	301	165	227
4-6	2	71,1	813	46123	330	360	146	167
6-8	2	120	269	19212	366	370	140	159
8-12	2	336	86,9	5665	350	351	126	134
12-16	2	517	24,5	1298	198	190	115	116
16-24	2	826	23,5	1336	264	273	114	110

 Tabelle 57.
 Proband B06.
 Mephenytoin-Dosis:
 Periode 1: 232606 nmol / Periode 2: 226950 nmol

		4´-Hydroxy	mephenytoin	Nir	vanol	Meph	enytoin	
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	373	0	0	0	0	0	0
0-2	1	466	216	7598	0	0	83,9	87,2
2-4	1	489	179	12065	15,8	15,8	145	162
4-6	1	282	123	10349	40,8	44,0	139	153
6-8	1	340	67,2	7066	38,4	44,3	131	148
8-12	1	401	44,2	4300	67,0	61,7	127	131
12-16	1	417	10,7	1791	67,1	74,3	118	125
126-24	1	356	10,7	1596	117	116	111	124
Predose	2	312	0	46,3	217	212	0	0
0-2	2	187	183	6723	214	205	15,9	15,9
2-4	2	kein Urin	-	-	-	-	-	-
4-6	2	250	610	55345	243	274	174	206
6-8	2	246	134	13434	175	187	153	174
8-12	2	304	44,4	6042	245	257	142	154
12-16	2	123	42,8	5933	303	335	131	146
16-24	2	314	24,9	2710	347	363	117	133

 Tabelle 58.
 Proband B07.
 Mephenytoin-Dosis:
 Periode 1: 224905 nmol / Periode 2: 246563 nmol

			4´-Hydroxy	mephenytoin	Nir	vanol	Meph	enytoin
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	442	0	0	0	0	0	0
0-2	1	kein Urin	-	-	-	-	-	-
2-4	1	kein Urin	-	-	-	-	-	-
4-6	1	73,2	816	29635	34,9	41,3	146	188
6-8	1	869	313	11182	31,4	38,4	145	172
8-12	1	1163	57,4	2029	46,7	39,6	153	146
12-16	1	715	22,1	1076	67,0	63,0	149	139
126-24	1	454	28,1	2041	116	153	117	128
Predose	2	787	0	38,6	243	231	0	0
0-2	2	119	604	12566	241	252	57,5	76,2
2-4	2	13,8	1184	31545	277	249	232	183
4-6	2	561	696	12780	220	194	172	189
6-8	2	305	181	7926	249	274	152	165
8-12	2	320	126	6270	336	387	130	138
12-16	2	900	10,7	971	174	179	128	126
16-24	2	257	10,7	867	254	277	115	117

 Tabelle 59.
 Proband B08.
 Mephenytoin-Dosis:
 Periode 1: 236405 nmol / Periode 2: 210508 nmol

		4´-Hydroxy	mephenytoin	Nir	vanol	Meph	enytoin	
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	360	0	0	0	0	0	0
0-2	1	341	123	5257	0	15,8	15,9	15,9
2-4	1	166	489	21902	15,8	41,5	85,6	134
4-6	1	293	203	11031	42,8	43,9	95,2	114
6-8	1	246	158	10168	58,3	64,7	100	119
8-12	1	292	71,7	5079	83,2	80,3	73,0	97,5
12-16	1	234	39,8	3176	83,7	106	79,9	98,3
126-24	1	190	73,7	3239	150	187	71,5	86,9
Predose	2	403	0	37,0	239	215	0	0
0-2	2	437	177	5016	138	159	55,8	67,2
2-4	2	460	155	7330	88,5	127	82,0	135
4-6	2	338	188	8361	160	147	116	127
6-8	2	kein Urin	-	-	-	-	-	-
8-12	2	370	111	5600	212	231	97,3	110
12-16	2	167	87,7	4063	295	314	86,1	96,8
16-24	2	274	56,5	2233	323	383	80,7	88,1

 Tabelle 60.
 Proband B09.
 Mephenytoin-Dosis:
 Periode 1: 222684 nmol / Periode 2: 215619 nmol

		4'-Hydroxy	mephenytoin	Nir	vanol	Mepł	nenytoin	
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	719	0	0	0	0	0	0
0-2	1	568	33,0	1174	15,8	15,8	15,9	15,9
2-4	1	415	304	17739	43,2	34,7	160	166
4-6	1	402	102	8303	51,0	38,9	132	143
6-8	1	90,7	108	15092	63,7	60,4	101	126
8-12	1	581	23,3	1848	67,3	70,4	95,7	106
12-16	1	289	22,5	1927	105	115	88,0	96,8
126-24	1	256	44,3	3073	157	203	63,2	83,4
Predose	2	1186	0	0	63,2	57,2	0	0
0-2	2	944	117	3775	50,5	49,4	47,9	52,2
2-4	2	347	241	16324	112	116	135	162
4-6	2	351	109	9329	105	94,9	130	145
6-8	2	205	63,3	5690	124	122	111	121
8-12	2	808	10,7	1609	115	129	113	113
12-16	2	188	32,8	2960	261	262	94,3	111
16-24	2	334	38,2	1968	291	279	91,3	83,4

 Tabelle 61. Proband B10. Mephenytoin-Dosis: Periode 1: 212109 nmol / Periode 2: 221875 nmol

		4'-Hydroxy	mephenytoin	Nir	vanol	Meph	enytoin	
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	298	0	0	0	0	0	0
0-2	1	77,3	504	13294	15,8	15,8	15,9	35,3
2-4	1	119	809	42600	47,7	46,0	125	144
4-6	1	197	392	16362	62,8	64,5	130	120
6-8	1	586	65,7	5069	32,6	29,3	113	124
8-12	1	1093	29,9	2155	54,3	50,6	116	123
12-16	1	260	10,7	1948	100	104	107	106
126-24	1	250	28,7	2687	186	184	91,7	88,6
Predose	2	339	0	0	261	265	0	0
0-2	2	207	285	10261	272	305	52,3	56,0
2-4	2	181	257	18909	310	313	103	120
4-6	2	196	145	12859	317	298	99,7	107
6-8	2	308	83,3	7058	249	264	117	124
8-12	2	398	56,3	5634	350	324	106	104
12-16	2	365	24,9	2806	333	368	103	107
16-24	2	461	10,7	1674	325	279	99,4	78,0

 Tabelle 62.
 Proband B11.
 Mephenytoin-Dosis:
 Periode 1: 245858 nmol / Periode 2: 235169 nmol

			4'-Hydroxy	mephenytoin	Nir	vanol	Mephenytoin	
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	kein Urin	-	-	-	-	-	-
0-2	1	650	15,9	15,9	0	15,8	15,9	15,9
2-4	1	kein Urin	-	-	-	-	-	-
4-6	1	660	204	210	74,3	77,3	204	210
6-8	1	kein Urin	-	-	-	-	-	-
8-12	1	1305	167	192	99,4	106	167	192
12-16	1	439	158	159	199	191	158	159
126-24	1	384	139	138	313	304	139	138
Predose	2	443	0	33,0	275	256	0	33,0
0-2	2	239	15,9	15,9	362	381	15,9	15,9
2-4	2	605	213	207	225	214	213	207
4-6	2	340	237	251	407	402	237	251
6-8	2	332	207	212	335	314	207	212
8-12	2	394	188	178	572	639	188	178
12-16	2	kein Urin	-	-	-	-	-	-
16-24	2	203	134	143	874	800	134	143

 Tabelle 63. Proband B12. Mephenytoin-Dosis: Periode 1: 232183 nmol / Periode 2: 241094 nmol

			4'-Hydroxy	mephenytoin	Nir	rvanol	Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	508	0	0	0	0	0	0
0-2	1	257	270	4517	0	15,8	78,0	105
2-4	1	454	311	7699	15,8	32,3	161	172
4-6	1	480	224	7042	33,4	27,8	136	144
6-8	1	147	389	17636	90,6	91,0	123	144
8-12	1	765	91,8	3504	46,7	54,6	103	116
12-16	1	447	55,4	2962	78,1	97,0	98,4	101
126-24	1	274	85,3	4282	129	135	96,9	95,3
Predose	2	381	0	43,3	326	307	0	0
0-2	2	352	153	2028	244	242	74,1	79,2
2-4	2	541	299	6675	173	182	227	229
4-6	2	450	256	8265	218	242	190	189
6-8	2	246	101	8722	111	235	68,7	147
8-12	2	692	101	3320	217	214	125	121
12-16	2	459	87,8	5144	400	415	92,6	96,7
16-24	2	276	66,6	3163	265	294	106	116

 Tabelle 64. Proband B13. Mephenytoin-Dosis: Periode 1: 224926 nmol / Periode 2: 216199 nmol

			4´-Hydroxy	vmephenytoin	Nir	rvanol	Mephenytoin	
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	436	0	0	0	0	0	0
0-2	1	464	0	10,7	0	15,8	63,2	65,9
2-4	1	296	0	75,2	15,8	33,1	320	343
4-6	1	299	0	80,0	42,2	36,1	294	268
6-8	1	75,3	0	300	108	114	252	245
8-12	1	626	0	66,8	81,3	91,7	246	256
12-16	1	411	0	91,6	106	107	244	221
126-24	1	kein Urin	-	-	-	-	-	-
Predose	2	350	0	27,6	582	628	0	32,1
0-2	2	296	0	10,7	443	449	76,0	76,5
2-4	2	276	0	65,3	452	477	275	281
4-6	2	294	0	82,7	360	483	235	310
6-8	2	79,4	0	278	823	799	255	250
8-12	2	761	0	65,0	410	464	240	274
12-16	2	634	0	71,4	430	455	220	251
16-24	2	194	0	443	876	848	223	222

 Tabelle 65.
 Proband B14.
 Mephenytoin-Dosis:
 Periode 1: 240015 nmol / Periode 2: 226818 nmol

			4 ⁻ -Hydroxymephenytoin		Nirvanol		Mephenytoin	
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	60,7	0	0	0	0	0	0
0-2	1	615	74,8	933	0	0	34,9	37,8
2-4	1	661	242	7785	15,8	15,8	163	178
4-6	1	605	154	8364	34,6	37,2	184	176
6-8	1	187	138	9422	79,2	77,3	155	155
8-12	1	591	66,3	4759	97,7	95,9	135	144
12-16	1	792	10,7	1253	92,6	90,5	147	138
126-24	1	561	10,7	1242	141	144	123	107
Predose	2	585	0	0	154	159	0	0
0-2	2	593	170	3324	114	114	49,0	62,4
2-4	2	517	357	14068	151	144	227	227
4-6	2	559	142	7375	159	144	191	191
6-8	2	114	216	18234	306	281	155	171
8-12	2	484	40,9	2891	243	213	158	145
12-16	2	478	22,9	1847	247	271	131	132
16-24	2	248	25,1	2680	398	408	124	111

 Tabelle 66. Proband B15. Mephenytoin-Dosis: Periode 1: 216824 nmol / Periode 2: 229778 nmol

			4 ⁻ -Hydroxymephenytoin		Nirvanol		Mephenytoin	
Sammel- intervall [h]	Studien- periode	– Uringewicht [g]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. deglucuronidiert [ng/mL]
Predose	1	581	0	0	0	0	0	0
0-2	1	609	10,7	604	0	0	15,9	15,9
2-4	1	614	197	7667	15,8	0	126	122
4-6	1	513	154	10046	31,7	0	157	167
6-8	1	883	52,2	3694	24,2	15,8	136	128
8-12	1	1177	32,6	2771	41,2	47,7	124	134
12-16	1	796	10,7	1811	52,0	57,8	114	121
126-24	1	342	39,9	3556	149	157	116	114
Predose	2	468	0	0	133	131	0	0
0-2	2	715	81,5	3031	62,7	62,3	44,2	38,3
2-4	2	505	171	10045	89,6	91,8	127	117
4-6	2	324	157	12000	140	134	123	137
6-8	2	444	61,6	5604	128	113	129	135
8-12	2	862	29,7	2833	110	117	121	126
12-16	2	203	64,3	5591	723	645	142	152
16-24	2	418	30,4	2783	192	201	103	103

 Tabelle 67. Proband B16. Mephenytoin-Dosis: Periode 1: 245914 nmol / Periode 2: 228529 nmol

40HM NIR MEP Sammel-Urinkonz. Urinkonz. Urinkonz. intervall Studien-Uringewicht deglucuronidiert unbehandelt unbehandelt periode [ng/mL] [ng/mL] [ng/mL] [h] [g] 1 0 0 Predose 488 0 0-4 1 534 19804 46,8 197 4-8 1 5702 40,7 1216 238 86,0 8-12 1 1078 1664 219 12-16 1 465 140 180 _ 16-24 1 855 158 167 -24-36 1 1164 231 169 _ 36-48 1 1450 280 150 _ 86-94 1 931 214 86,9 158-166 1 1146 197 40,3 _ Predose 1020 0 0 0 2 0-4 2 868 13164 265 53,8 4-8 2 1620 2731 33,4 184 2 8-12 857 1445 86,3 173 12-16 2 417 150 151 _ 16-24 2 740 172 153 _ 2 24-36 1728 143 122 36-48 2 270 108 721 86-94 2 232 431 66,2 _ 158-166 2 865 182 15,9 -

12.5 Studie C. Urinkonzentrationen von MEP, NIR und 40HM

Tabelle 68. Proband C01. Mephenytoin-Dosis: Periode 1: 247881 nmol / Periode 2: 215349 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	488	0	0	0
0-4	1	839	13590	38,3	197
4-8	1	746	7183	60,5	153
8-12	1	324	4243	127	129
12-16	1	229	-	170	119
16-24	1	405	-	146	104
24-36	1	1088	-	209	103
36-48	1	886	-	215	95,1
86-94	1	749	-	298	68,6
158-166	1	446	-	249	15,9
Predose	2	244	0	32,6	0
0-4	2	840	12416	51,7	149
4-8	2	721	6129	65,7	136
8-12	2	444	2647	121	115
12-16	2	295	-	143	98,1
16-24	2	211	-	153	90,8
24-36	2	1257	-	205	94,4
36-48	2	443	-	313	72,6
86-94	2	458	-	275	52,3
158-166	2	326	-	346	15,9

 Tabelle 69. Proband C02. Mephenytoin-Dosis: Periode 1: 246964 nmol / Periode 2: 223826 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	424	0	0	0
0-4	1	679	16156	32,5	171
4-8	1	593	8415	51,5	154
8-12	1	246	6121	131	130
12-16	1	276	-	132	119
16-24	1	318	-	168	101
24-36	1	539	-	232	89,0
36-48	1	432	-	287	88,5
86-94	1	1402	-	157	70,0
158-166	1	1118	-	168	40,8
Predose	2	585	0	0	0
0-4	2	1059	10468	50,0	155
4-8	2	1741	2581	32,0	126
8-12	2	417	2344	113	104
12-16	2	236	-	161	90,8
16-24	2	590	-	122	86,1
24-36	2	667	-	200	74,8
36-48	2	581	-	273	80,6
86-94	2	321	-	323	56,7
158-166	2	151	-	424	32,9

Tabelle 70. Proband C03. Mephenytoin-Dosis: Periode 1: 246227 nmol / Periode 2: 214433 nmol
			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	639	0	0	0
0-4	1	463	21670	56,9	219
4-8	1	260	13968	97,8	182
8-12	1	149	8042	136	147
12-16	1	161	-	141	126
16-24	1	337	-	163	113
24-36	1	608	-	184	92,1
36-48	1	364	-	201	81,3
86-94	1	263	-	403	54,4
158-166	1	263	-	407	15,9
Predose	2	523	0	95,1	0
0-4	2	557	20309	115	243
4-8	2	684	6298	205	411
8-12	2	149	8568	467	320
12-16	2	219	-	563	301
16-24	2	535	-	239	132
24-36	2	718	-	274	120
36-48	2	209	-	326	91,8
86-94	2	239	-	603	73,2
158-166	2	202	-	484	15,9

 Tabelle 71. Proband C04. Mephenytoin-Dosis: Periode 1: 218099 nmol / Periode 2: 238946 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	390	0	0	0
0-4	1	317	45969	148	255
4-8	1	287	17327	202	229
8-12	1	354	4387	254	207
12-16	1	239	-	354	186
16-24	1	304	-	525	168
24-36	1	655	-	488	132
36-48	1	431	-	544	99,8
86-94	1	646	-	581	77,7
158-166	1	397	-	724	34,1
Predose	2	359	0	57,9	0
0-4	2	617	12483	123	260
4-8	2	837	5428	97,4	204
8-12	2	183	2246	243	176
12-16	2	219	-	334	153
16-24	2	745	-	226	142
24-36	2	779	-	437	113
36-48	2	680	-	381	105
86-94	2	606	-	459	70,3
158-166	2	615	-	529	41,0

 Tabelle 72.
 Proband C05.
 Mephenytoin-Dosis:
 Periode 1: 255441 nmol / Periode 2: 211684 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	739	0	0	0
0-4	1	419	22696	40,5	169
4-8	1	927	7176	41,3	169
8-12	1	582	3490	78,0	145
12-16	1	278	-	99,9	123
16-24	1	734	-	97,6	113
24-36	1	790	-	173	98,7
36-48	1	627	-	221	94,0
86-94	1	454	-	412	78,6
158-166	1	245	-	358	38,1
Predose	2	520	0	80,6	0
0-4	2	662	9552	99,5	159
4-8	2	830	5449	83,2	110
8-12	2	516	2822	130	97,2
12-16	2	274	-	147	72,6
16-24	2	294	-	168	80,0
24-36	2	1200	-	180	66,1
36-48	2	1117	-	171	73,1
86-94	2	315	-	384	44,0
158-166	2	352	-	253	34,4

 Tabelle 73. Proband C06. Mephenytoin-Dosis: Periode 1: 270103 nmol / Periode 2: 190149 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	674	0	0	0
0-4	1	807	7873	15,8	137
4-8	1	730	5916	45,0	126
8-12	1	529	2686	69,1	113
12-16	1	476	-	97,6	102
16-24	1	727	-	97,2	100
24-36	1	1572	-	141	90,3
36-48	1	1604	-	125	77,9
86-94	1	1795	-	172	58,1
158-166	1	248	-	359	15,9
Predose	2	444	0	0	0
0-4	2	1523	7575	39,8	157
4-8	2	1058	5123	56,8	154
8-12	2	482	3582	113	128
12-16	2	987	-	80,9	121
16-24	2	381	-	157	105
24-36	2	1669	-	190	103
36-48	2	1379	-	141	89,9
86-94	2	350	-	325	54,7
158-166	2	1339	-	170	15,9

 Tabelle 74. Proband C07. Mephenytoin-Dosis: Periode 1: 211684 nmol / Periode 2: 248568 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	632	0	0	0
0-4	1	631	20680	34,8	148
4-8	1	280	9863	46,3	98,5
8-12	1	256	6504	116	70,9
12-16	1	278	-	138	70,0
16-24	1	356	-	155	56,3
24-36	1	520	-	210	56,2
36-48	1	518	-	237	48,0
86-94	1	874	-	210	32,1
158-166	1	308	-	234	15,9
Predose	2	146	0	42,9	0
0-4	2	378	35004	90,6	139
4-8	2	586	7421	81,9	109
8-12	2	203	7520	195	85,6
12-16	2	275	-	197	77,4
16-24	2	379	-	194	71,1
24-36	2	382	-	353	59,2
36-48	2	636	-	295	58,2
86-94	2	211	-	422	15,9
158-166	2	1648	-	196	15,9

 Tabelle 75.
 Proband C08.
 Mephenytoin-Dosis:
 Periode 1: 224742 nmol / Periode 2: 238488 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	861	0	0	0
0-4	1	557	16687	59,2	130
4-8	1	459	9507	70,0	134
8-12	1	427	3774	132	109
12-16	1	685	-	119	97,2
16-24	1	942	-	180	92,3
24-36	1	785	-	337	74,6
36-48	1	1090	-	298	63,8
86-94	1	1163	-	281	33,8
158-166	1	1239	-	287	15,9
Predose	2	1066	0	0	0
0-4	2	474	24882	86,3	194
4-8	2	740	7419	79,7	156
8-12	2	354	5098	153	137
12-16	2	207	-	228	115
16-24	2	1001	-	202	114
24-36	2	865	-	320	89,7
36-48	2	1130	-	268	74,8
86-94	2	1183	-	407	40,7
158-166	2	1195	-	375	15,9

 Tabelle 76. Proband C09. Mephenytoin-Dosis: Periode 1: 207789 nmol / Periode 2: 260939 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	627	0	0	0
0-4	1	571	18722	74,6	168
4-8	1	464	8918	50,6	117
8-12	1	253	5859	114	98,0
12-16	1	205	-	154	84,5
16-24	1	306	-	168	74,1
24-36	1	649	-	210	66,8
36-48	1	661	-	226	62,8
86-94	1	416	-	551	41,1
158-166	1	284	-	436	15,9
Predose	2	550	0	46,6	0
0-4	2	756	15571	15,8	127
4-8	2	1626	2929	46,6	122
8-12	2	564	2849	138	128
12-16	2	220	-	233	89,6
16-24	2	321	-	268	93,2
24-36	2	527	-	402	82,2
36-48	2	595	-	379	65,9
86-94	2	337	-	628	40,9
158-166	2	245	-	771	15,9

 Tabelle 77. Proband C10. Mephenytoin-Dosis: Periode 1: 212829 nmol / Periode 2: 250401 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	595	0	0	0
0-4	1	282	23710	71,2	178
4-8	1	605	17832	71,2	154
8-12	1	685	2978	113	119
12-16	1	258	-	170	96,4
16-24	1	619	-	148	93,4
24-36	1	989	-	225	86,9
36-48	1	501	-	310	78,7
86-94	1	291	-	471	51,5
158-166	1	246	-	422	15,9
Predose	2	220	0	73,1	0
0-4	2	1253	10221	77,3	139
4-8	2	466	7009	113	115
8-12	2	274	6445	217	97,2
12-16	2	193	-	213	88,9
16-24	2	278	-	228	74,8
24-36	2	963	-	296	76,7
36-48	2	374	-	362	68,6
86-94	2	265	-	418	44,0
158-166	2	239	-	387	15,9

 Tabelle 78. Proband C11. Mephenytoin-Dosis: Periode 1: 245590 nmol / Periode 2: 222680 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	831	0	0	0
0-4	1	508	23502	48,2	182
4-8	1	957	4860	43,3	168
8-12	1	395	4553	114	144
12-16	1	257	-	138	131
16-24	1	806	-	132	117
24-36	1	953	-	182	101
36-48	1	409	-	174	86,1
86-94	1	671	-	170	36,3
158-166	1	490	-	277	15,9
Predose	2	621	0	33,6	0
0-4	2	798	12844	54,7	159
4-8	2	759	7011	66,5	166
8-12	2	334	5164	124	143
12-16	2	325	-	179	117
16-24	2	378	-	161	108
24-36	2	705	-	213	101
36-48	2	997	-	219	77,4
86-94	2	678	-	307	37,9
158-166	2	408	-	252	15,9

 Tabelle 79. Proband C12. Mephenytoin-Dosis: Periode 1: 236197 nmol / Periode 2: 234264 nmol

12.6 Studie D. Urinkonzentrationen von MEP, NIR und 40HM

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	391	55,8*	219*	0
0-6	1	896	13657	182	164
6-12	1	594	2580	169	97,4
Predose	2	400	42,6	163	0
0-6	2	1419	9659	113	150
6-12	2	216	16334	206	136

Tabelle 80. Proband D01. Mephenytoin-Dosis: Periode 1: 206186 nmol / Periode 2: 265292 nmol

* Verschleppung in Predose-Probe, da Proband D02 die erste Studienperiode aufgrund eines Fehlers bei der Cocktailapplikation im Anschluss an die zweite Studienperiode wiederholen musste.

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	290	65,2*	266*	0
0-6	1	803	19371	288	188
6-12	1	512	6290	371	150
Predose	2	370	152	268	0
0-6	2	923	16384	230	184
6-12	2	489	6457	267	137

 Tabelle 81. Proband D02. Mephenytoin-Dosis: Periode 1: 261168 nmol / Periode 2: 249485 nmol

* Verschleppung in Predose-Probe, da Proband D02 die erste Studienperiode aufgrund eines Fehlers bei der Cocktailapplikation im Anschluss an die zweite Studienperiode wiederholen musste.

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	730	0	0	0
0-6	1	1281	11525	46,8	196
6-12	1	414	9373	176	188
Predose	2	289	0	52,1	0
0-6	2	1347	8515	67,0	186
6-12	2	402	7034	173	129

Tabelle 82. Proband D03. Mephenytoin-Dosis: Periode 1: 253150 nmol / Periode 2: 204811 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	424	0	0	0
0-6	1	1456	9740	49,3	183
6-12	1	744	2948	71,1	128
Predose	2	229	56,2	198	0
0-6	2	1157	9574	152	155
6-12	2	893	3941	206	115

Tabelle 83. Proband D04. Mephenytoin-Dosis: Periode 1: 248568 nmol / Periode 2: 211455 nmol

Tabelle 84. Proband D05. Mephenytoin-Dosis: Periode 1: 207102 nmol / Periode 2: 254296 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	281	0	0	0
0-6	1	279	37653	74,2	138
6-12	1	1337	2007	42,3	121
Predose	2	311	38,8	192	0
0-6	2	324	34580	224	196
6-12	2	1083	5136	176	153

Tabelle 85. Proband D06. Mephenytoin-Dosis: Periode 1: 232532 nmol / Periode 2: 228866 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	585	0	0	0
0-6	1	1805	7362	38,6	153
6-12	1	745	3030	85,8	126
Predose	2	249	0	112	0
0-6	2	737	16938	123	174
6-12	2	871	2929	110	124

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	422	0	0	0
0-6	1	1625	4370	28,8	231
6-12	1	509	9713	97,9	174
Predose	2	857	28,5	219	0
0-6	2	1673	5219	155	198
6-12	2	425	10239	288	149

Tabelle 86. Proband D07. Mephenytoin-Dosis: Periode 1: 241924 nmol / Periode 2: 219931 nmol

Tabelle 87. Proband D08. Mephenytoin-Dosis: Periode 1: 215120 nmol / Periode 2: 245361 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	320	0	0	0
0-6	1	380	28767	58,0	167
6-12	1	518	5797	91,0	133
Predose	2	275	105	143	0
0-6	2	280	41431	300	227
6-12	2	227	11131	234	145

Tabelle 88. Proband D09. Mephenytoin-Dosis: Periode 1: 221535 nmol / Periode 2: 237801 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	159	0	0	0
0-6	1	1102	11028	55,8	174
6-12	1	141	5544	155	123
Predose	2	744	32,3	202	0
0-6	2	814	16248	147	149
6-12	2	275	12462	341	172

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	453	0	0	0
0-6	1	1172	8739	43,1	198
6-12	1	222	7095	160	157
Predose	2	184	27,9	215	0
0-6	2	1072	8271	155	184
6-12	2	793	5718	289	187

Tabelle 89. Proband D10. Mephenytoin-Dosis: Periode 1: 216953 nmol / Periode 2: 241924 nmol

Tabelle 90. Proband D11. Mephenytoin-Dosis: Periode 1: 219931 nmol / Periode 2: 243528 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	558	0	0	0
0-6	1	302	27088	112	160
6-12	1	695	7310	159	119
Predose	2	532	34,0	487	0
0-6	2	283	39227	568	219
6-12	2	782	4981	373	130

Tabelle 91. Proband D12. Mephenytoin-Dosis: Periode 1: 210767 nmol / Periode 2: 250859 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	162	0	0	0
0-6	1	2000	6605	36,3	238
6-12	1	420	2956	96,4	156
Predose	2	166	23,7	217	0
0-6	2	1229	10250	217	294
6-12	2	574	6395	368	199

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	445	0	0	0
0-6	1	1777	6931	30,7	130
6-12	1	533	3347	77,1	131
Predose	2	209	33,4	144	0
0-6	2	977	14200	183	217
6-12	2	1039	1532	165	148

Tabelle 92. Proband D13. Mephenytoin-Dosis: Periode 1: 221993 nmol / Periode 2: 231615 nmol

Tabelle 93. Proband D14. Mephenytoin-Dosis: Periode 1: 238717 nmol / Periode 2: 212829 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	476	0	0	0
0-6	1	977	13877	57,7	196
6-12	1	892	3242	68,1	135
Predose	2	971	50,6	308	0
0-6	2	1446	8832	251	208
6-12	2	872	4138	225	107

Tabelle 94. Proband D15. Mephenytoin-Dosis: Periode 1: 249255 nmol / Periode 2: 205040 nmol

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	182	0	0	0
0-6	1	1064	10338	63,4	227
6-12	1	757	10664	214	141
Predose	2	95,4	44,4	288	0
0-6	2	278	37446	389	178
6-12	2	398	8561	497	162

			40HM	NIR	MEP
Sammel- intervall [h]	Studien- periode	Uringewicht [g]	Urinkonz. deglucuronidiert [ng/mL]	Urinkonz. unbehandelt [ng/mL]	Urinkonz. unbehandelt [ng/mL]
Predose	1	152	0	0	0
0-6	1	524	21439	50,1	102
6-12	1	629	12935	117	102
Predose	2	293	76,1	315	0
0-6	2	439	28453	282	122
6-12	2	164	16142	426	117

 Tabelle 95.
 Proband D16.
 Mephenytoin-Dosis:
 Periode 1: 227033 nmol / Periode 2: 229095 nmol