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Preface

Studying the strong force is one of the most fascinating subjects in particle physics.
Described by the theory of Quantum Chromodynamics (QCD), the combination
of a strong coupling and the non-Abelian SU(3) symmetry leads to a multi–faceted
appearance in nature, such as asymptotic freedom or confinement. However, the
very same structure makes any prediction quite difficult — even in times of almost
unlimited computing power. Various techniques have been developed in order to
cope with the problem. The most precise predictions so far are achieved with the
help of perturbation theory. The scope of this approach is however limited to very
high energies.

The HERA electron–proton collider provides such energies. A multitude of
experimental tests of Quantum Chromodynamics are possible: the running of the
strong coupling constant, scaling violations in deep inelastic scattering, measure-
ments of jets and event–shapes, and the production of vector mesons or heavy
quarks. In particular the latter is of some interest, since the heavy quark masses
provide a hard scale which should make perturbative calculations more reliable.
The beam energies of the machine allow for the production of beauty and charm
quarks.

The objective of this thesis is the measurement of beauty and charm produc-
tion cross–sections in ep collision data at HERA recorded with the ZEUS detec-
tor. Since this will be an inclusive measurement, the flavour quantum number for
beauty or charm must be non-zero. This is often referred to as “naked” or “open”
beauty and charm. An essential tool for the analysis are QCD jets. They are
needed to ascertain the event and parton kinematics, as well as to tag the beauty
and charm flavours. The latter is done with the help of semi–leptonic decays of
the beauty and charm hadrons originating from the hadronisation of the heavy
quarks. Here, the electron channel of the semi–leptonic decays is studied. Since
no life–time information of the beauty and charm hadrons is available, the heavy
flavour tagging is based upon the electron identification and the kinematics of the
semi–leptonic decays with respect to the heavy quark jets. A new procedure has
been developed in order to combine all the information and test the beauty or
charm flavour hypothesis for each candidate. It should be mentioned, however,
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that the focus of this analysis lies on the measurement of beauty production. The
charm measurements came as a by-product of the beauty analysis and thus are not
as precise as those for beauty.

For experimental reasons this analysis is restricted to photoproduction. The
physics of hard photoproduction with two jets and the production of heavy quarks
is the subject of Chapter 1. In Chapter 2 the experimental context,i. e. the HERA
machine and the ZEUS detector, is presented. The event samples used, their
selection and the event reconstruction are described in Chapter 3. As already
mentioned, the identification of electrons and positrons plays a major role for
the flavour tagging. For this a general particle identification tool was developed,
which relies mainly on energy loss measurements in the central drift chamber of
the ZEUS detector, but also calorimeter information. Details of the energy loss
measurements and its calibration are given in Chapter 4. Chapter 5 outlines the
particle identification procedure. The actual flavour tagging method and the ex-
traction of the beauty and charm signals are the subject of Chapter 6. Finally, the
measured beauty and charm production cross–sections and their comparison with
predictions from theory are presented in Chapter 7. Chapter 8 then concludes the
thesis.

Beside the physical aspects, the technical side of this analysis is also notewor-
thy. Part of this work was the development of a new analysis framework, which,
in principle, can be used for any type of analysis at ZEUS. The emphasis of this
framework was put on a more efficient and rapid development of physics analyses,
on robust and error–resistant code. A more detailed description of the framework
can be found in Appendix F. The framework is closely related to an earlier project,
the new ZEUS event display, which is described in Appendix E.

II
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Chapter 1

Heavy Quark Production at HERA

1.1 Short Review of QCD

Quantum Chromodynamics is the present theory of the strong interaction. It is a
local gauge theory and thus fits into the common picture of the fundamental forces
in nature, which describes interactions by gauge fields caused by local changes in
the phase of the quantum fields. In QCD the interacting spinors, the “quarks”
possess an internal degree of freedom called colour. The force between the quarks
is mediated by a set of massless gauge bosons, the “gluons”. The quarks come
in three colours and the gluons in eight colour combinations. The underlying
symmetry of the QCD Lagrangian is of type SU(3) which is known to be of non–
Abelian nature. This is exhibited in the fact that the gluons carry colour charge
and hence interact not only with the coloured quarks, but also with each other.

Once the Lagrangian is given, physical observables, such as decay rates or
scattering cross–sections, can be calculated by the help of theS–matrix element
for the process in question. GenerallyS cannot be computed exactly and must be
approximated via a perturbative calculation (pQCD). Usually the kinetic part of
the Lagrangian is taken as unperturbed and the interacting part as the perturbation,
so thatS is given as a power series in the coupling constant of the strong force.
The actual evaluation of the terms in the series is done using F diagram
techniques.

TheS–matrix elements depend on parameters of the bare fields, like the bare
mass and bare coupling constant. If the parameters are regarded asfixed numbers,
then it is found that in the evaluation of manyS–matrix elements by perturba-
tion theory the integrals involved in certain F diagrams diverge1 giving

1There are three types of divergences: (1)Ultraviolet divergences, which appear when the
momenta in the F loop integrals go to infinity. (2)Infrared divergencesshow up in the
calculation when in real and virtual gluon amplitudes the gluon momenta go to zero. However, the
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2 CHAPTER 1. HEAVY QUARK PRODUCTION AT HERA

rise to nonsensical results. The problem is solved by introducing arenormalisa-
tion schemewhich renders results finite. It is based on the idea of allowing the
parameters mentioned above to depend on some cut–off parameters (scales), µR.
Since no physical observable may depend on these artificially introduced scales,
the bare parameters (e. g.couplings) are replaced by effective ones. They are re-
lated via the renormalisation group equation. In particular the dependency of the
strong coupling constant (“running coupling”),αs, is given in first order of QCD
perturbation theory by [LP82]

αs(α
0
s, µR) =

12π

β0 ln
(

µR

Λ2
QCD

) , (1.1)

with

β0 = 33− 2nf and Λ2
QCD = µR

2 e
− 12π
β0 α

0
s .

The bare coupling is denoted byα0
s. It is noteworthy that for deriving this equation

parts of the perturbation expansion are already summed toall orders. Experimen-
tally the value ofΛQCD in leading order is determined to 200 MeV. The depen-
dence on the normalisation scaleµR is shown in Fig. 1.1. In contrast to QED,
αs decreaseswith increasingµR, which results in asymptotic freedom for small
distances and confinement for long distances, the latter being the reason for the
non–existence of free quarks. In the figure the masses of the charm and beauty
quark are indicated showing that the heavy quarks provide ahard scale making
perturbative QCD applicable.

The ep collider HERA provides an opportunity for tests of pQCD, for example
through studying the production of jets above a certain energy threshold and heavy
quarks.

1.2 Electron Proton Scattering

The fundamental, lowest order process in lepton proton scattering is mediated by
the electroweak force either by the exchange of a neutral boson,γ or Z, or a W±

as shown in Fig. 1.2. For obvious reasons the former case is calledneutral current
(NC) and the lattercharged current(CC). The result of the scattering process
can be a high multiplicity hadronic final–state, X. Using the four–momenta of

infrared singularities cancel between real and virtual gluon graphs. In an inclusive measurement,
which implies that one integrates over all momenta in the final–state, the infrared divergence is
no longer present. (3)Collinear or mass singularities appear whenever the momenta of quarks
or gluons become parallel to each other, which is only possible for coupling between massless
particles.
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Figure 1.1: Running of the strong coupling constantαs (courtesy of [Y+06]). If the renor-
malisation scale is defined by the mass of the charm or the beauty quark,αs is small
enough to perform perturbative QCD computations:αs(mc)≈0.39, αs(mb)≈0.22 .
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(a) Neutral Current

p
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(b) Charged Current

Figure 1.2: Electron proton scattering in lowest order. In (a) a neutral vector boson is
mediated (γ or Z) while in (b) a charged W± is exchanged with an undetectable neutrino
in the final state. The hadronic final–state is denoted by X.
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the incoming and scattered lepton,k = (E, ~k ) andk′ = (E′, ~k′ ), and the four-
momenta of the proton and the photon (or Z and W resp.),p = (Ep, ~p ) and
q = (Eγ, ~q ), the kinematics of the process is defined by a set of four L–
invariant quantities:

s = (k+ p)2 , (1.2)

Q2 ≡ −q2 = −(k− k′)2 , (1.3)

y =
q · p
k · p

, (1.4)

xp =
−q2

2p · q
. (1.5)

The centre–of–mass energy,
√

s, is given by the incoming lepton and proton beam
energies and is thus fixed. All other quantities vary.Q2 is the negative square of
the four–momentum transfer of the exchanged boson, which defines its virtuality
and can vary from 0 tos. In the proton rest frame the inelasticity,y, denotes the
fraction of the energy from the lepton taking part in the scattering process. In the
parton modelxp is the fraction of momentum carried by the struck quark. It is
referred to as the Björken scaling variable. One can easily show thatxp andy vary
between 0 and 1 as expected. Neglecting all masses the above four quantities are
related by

Q2 = s xp y . (1.6)

In the exchange of a photon,the cross–section falls rapidly as a function ofQ2.
At low Q2, the photon dominates the cross–section over the weak bosons. Only
when Q2 is sufficiently large are the contributions from the Z and W± bosons
significant. WhenQ2 & M2

Z,W the neutral and charged cross–sections are found to
be of comparable size. The convergence of the NC and CC cross–sections as seen
in Fig. 1.3 is a very nice demonstration of the electroweak theory [Wei67, Sal68,
Gla61]. The highQ2 region is, however, not subject of this thesis so will not be
discussed further.

For largeQ2, the scale is provided by this variable and allows perturbative
calculations to be performed. This is applicable down to∼ΛQCD. ForQ2 � ΛQCD,
the events are referred to asdeep inelastic scattering(DIS). For very lowQ2,
there is an exchange of an almost real photon and the process is referred to as
photoproduction. HereQ2 is not a hard scale: however, the transverse momentum
of jets or the mass of the heavy quarks produced may define a hard scale in the
event.

In the case of photoproduction the exchanged photon is quasi–real and thus
almost completely transversely polarised. The inelastic electron proton scattering
cross–section can be calculated in the equivalent photon approximation (EPA),
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Figure 1.3: Measurement of the NC
and CC cross–sections at HERA
(from [ZEU04]). At low Q2 the
cross–section is dominated by photon
exchange, only atQ2&M2

Z,W are con-

tributions from Z and W significant.

which is often, neglecting the longitudinal photon polarisation and its virtuality,
referred to as the Weizsäcker–Williams approximation (WWA) [vW34, Wil35].
Here, the field of a fast charged particle moving past another particle is similar to
electromagnetic radiation and can be interpreted as a flux of photons with energy
distribution n(y) with y defined as above. The cross–sections can therefore be
reduced to photon proton interactions:

dσep(y,Q
2) = σγp dn(y,Q2) , (1.7)

whereσγp denotes the total photo–absorption cross–section. Integrating the emis-
sion of quasi–real photons in an intervalQ2

min< Q2 < Q2
max and in a small energy

bin dy, the equivalent number of photons is

dn(y,Q2
min,Q

2
max) = fγ/e(y,Q

2) dy (1.8)

with the photon spectrum2

fγ/e =
αem

2π

{
1+ (1− y)2

y
ln

Q2
max

Q2
min

− 2m2
e y

(
1

Q2
min

−
1

Q2
max

)}
. (1.9)

Q2
min is the lower kinematic limit given by

Q2
min =

m2
e y2

1− y
. (1.10)

2The kernel1
y

(
1+ (1− y)2

)
is called thesplitting function Peγ, and it describes the energy

splitting of the outgoing electron and photon.
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Figure 1.4: The energy
spectrum of quasi–real
photons, emitted by elec-
trons, is shown as a function
of the scaled photon en-
ergy y = Eγ/Ee for a
maximum virtuality of
Q2

max = 0.01 GeV2. y
0 0.2 0.4 0.6 0.8 1

/eγf

-210

-110

1

10

Typical values are of the order of 10−7 GeV2. The energy spectrum of quasi–real
photons is shown in Fig. 1.4. The number of photons rises steeply towards small
photon energies.

The accuracy of the Weizsäcker–Williams approximation has been calculated
for the case of photoproduction at HERA[BS89]. For events where the electron
is detected at small scattering angles in the laboratory 1< θ < 10 mrad (tagged
photoproduction), the WWA is better than 1 %. For jet production with transverse
jet energiesEt �

√
Q2 anduntaggedelectrons withQ2 < 4 GeV2, corrections to

the WWA are at the level of a few percent[KKS95].
The calculation of theγp scattering cross–section,σγp, is subject of the next

section.

1.3 Photoproduction

The first generation of fixed–target photon–nucleon scattering experiments re-
vealed that, to a very good approximation, the photon behaves like a hadron that is
quantitatively described by the vector dominance model (VDM). For a review see
[B+78, B+79].3 QCD gives interesting and significant modifications to the VDM
by predicting processes where the photon couples directly with quarks, leading to
hard parton scattering and jets in the final–state (c. f.Fig. 1.5 for the terminology).

Significant deviations from the VDM were found by several fixed–target ex-
periments at CERN and FNAL with centre–of–mass energies up to

√
sγp = 27 GeV.

They observed an excess of final–state hadrons with large transverse momenta

3A more general review on photoproduction is given in [Erd97].
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anomalous VDM
↓ ↓

γ = + +︸     ︷︷     ︸
direct

︸                          ︷︷                          ︸
resolved

Figure 1.5: Apart from the bare photon state (direct), the photon can fluctuate into quark–
anti–quark pairs without forming a hadronic bound state (anomalous), or form a vector
meson (VDM). The photon can therefore interactdirectly, or through itsresolvedstates.

(high pt), which can be quantitatively explained by direct photon–nucleon inter-
actions [Pau92]. The existence of the anomalous coupling was first shown in
measurements of two–photon reactions at the e+e− colliders PETRA and PEP
[BW87, Kol84, KZ88].

At HERA the ep cross–section for theQ2≈0 region is dominated by processes
where the photon fluctuates in a vector meson. Thus photoproduction is very
similar to hadron–hadron collisions. The cross–sections there show a universal
behaviour, rising as [DL92]

σhh ∝ s0.08
hh . (1.11)

Therefore thesep–dependence of the photoproduction cross–section in ep colli-
sions is analogous that of hadron–hadron collisions. Theγp cross–section is ob-
tained by unfolding the photon–flux. Itssγp–dependence is shown in Fig. 1.6. A
fraction of the events shows hardγp scattering processes, which manifest them-
selves in jets with high transverse energies. It should also be mentioned that
roughly 10 % of allγp events at HERA show a large rapidity gap in the forward
distribution of the measured energy flow. This is explained by the exchange of a
colourless object. The events are referred to asdiffractiveevents.

Figure 1.7 shows F diagrams of prominent examples of QCD processes
at HERA both for direct and resolved photoproduction.

1.3.1 Lifetime ofe→ eγ and γ→ qq̄ Fluctuations

The time of an electron fluctuating to an electron–photon state eγ and then into
a q̄q pair given in the target rest frame can be estimated with the help of the
H energy–time uncertainty relation [Hoy95].

The lifetime t(e → eγ) of the electron-photon state is required to be larger
than that of theγ → qq̄ fluctuation. At HERA collisions between protons and
quasi–real photons are studied atγ energies equivalent to 20 TeV in the proton
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160
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Figure 1.6: Measurement of the totalγp cross–section at different centre–of–mass en-
ergies [C+01]. The energy dependence is compatible with that found in hadron–hadron
measurements (the dot–dashed curve is a parametrisation based on [DL92]).

rest frame. For highly virtual photons with momentum transfers aroundQ2 ≈

100 GeV2, t(e → eγ) ≈ 1 fm/c, whereas for quasi–real photons at the kinematic
limit Q2

min ≈ 10−7 GeV2 the lifetime is larger than 1µm. Fluctuations of the pho-
ton into a q̄q pair depend on the energy fractionxγ, which is carried by the quark
relative to the photon energyEγ. For quasi–real photons a symmetric configura-
tion between the quark and the anti–quark,i. e. xγ = 1

2, gives the longest lifetime
for such a q̄q state. For HERA this results in a timet(γ → qq̄) = 104 fm/c.
As mentioned above, the formation of a qq̄ pair from an electron via a photon is
only allowed if the time of the q̄q fluctuation lies within the eγ state. At large
Q2 � 1 GeV2 the timet(γ→ qq̄) is therefore limited by the timet(e→ eγ).

The time of fluctuations involving radiation of gluons is typically 1—2 orders
of magnitude shorter than that of quark fluctuations. Also, because the time of
the photon fluctuation is finite, both direct and resolved photon interactions are
expected.
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(b) QCD C scattering in di-
rect photoproduction
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(c) Boson–gluon–fusion in
resolved photoproduction
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(d) Excitation in the photon

p

e

γ, Z

e′

X1

q, q̄

g

X2
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Figure 1.7: Examples of leading order QCD diagrams for (a,b) direct and (c–e) resolved
photoproduction at HERA. The resolved photon and proton structure are depicted by
the hatched areas. Excitation processes (d,e) are resolved processes in which the (heavy
flavoured) outgoing quark originates from either the photon or the proton. The outgoing
partons usually fragment into jets in addition to the photon and proton remnants (labelled
X1 and X2).
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Figure 1.8: General scheme for the factori-
sation of the photoproduction process into
a hard sub-process, denoted by ˆσi j , calcu-
lable with perturbative QCD, and soft pro-
cesses hidden in the parton distributions
of the photon and the proton. The fac-
torisation scalesµF, µ

′
F separate the short–

distance hard scatter from the parton distri-
butions. Only leading order is shown.

p

γ

µ′F

µF

σ̂i j

X1

X2

f j/p

fi/γ

1.3.2 Generalised Photoproduction Model

The differentialγp cross–section can be written as the sum of the direct and re-
solved contributions

dσγp(pγ, pp) = dσdirect
γp (pγ, pp) + dσresolved

γp (pγ, pp) . (1.12)

With the help of the factorisation theorems in QCD [EGM+79, CSS89] the process
can be split up as depicted in Fig. 1.8

dσdirect
γp (pγ, pp) =

∑
i

∫
dx fi/p(x, µF)

· dσ̂γi
(
pγ, xpp, αs(µR), µR, µF, µγ

)
, (1.13)

dσresolved
γp (pγ, pp) =

∑
i j

∫
dxdxγ f j/γ(xγ, µγ) fi/p(x, µ

′
F)

· dσ̂i j

(
xγpγ, xpp, αs(µ

′
R), µ′R, µ

′
F, µγ

)
, (1.14)

where dσ̂ denotes the short–distance cross–section of the hard sub-process. The
soft processes not calculable by pQCD are hidden in the parton distributions of the
photon and the proton,fi/p and f j/γ, giving the probability of scattering a parton
i and j in the proton and the photon respectively. The renormalisation scales
µR, µ′R of the strong coupling constant,αs, are set proportional to the transverse
momentum, ˆpt, of the final–state partons (or their masses). Sinceαs has to be
small for reliable predictions, the parton transverse momentum (or its mass) has
to be above some minimum value, usually taken to be about ˆpt ≈ 2 GeV.4 The

4In the case of heavy quarks an often used scale is the combination of the transverse momenta

and the mass of the outgoing partons,mHQ, given asµR =

√
1
2

(
p̂2

t,1 + p̂2
t,2

)
+m2

HQ .
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p
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q

µγ Figure 1.9: Ambiguity of direct and
resolved classification inγp interac-
tions. If the virtualitykt of the parton
propagator is lower than the factori-
sation scaleµγ, the splitting process
is included in the photon structure
of the resolved calculation atleading
order; otherwise it is regarded as di-
rect process atnext–to–leadingorder.

small p̂t region corresponds to the regime where the majority of the parton cross–
sections diverge (c. f. Sec. 1.3.3), that is at small and very large scattering angles.
A lower cut–off in p̂t therefore simultaneously solves the divergency problem and
guarantees smallαs. The factorisation scalesµF, µ′F andµγ separate the hard scatter
from the soft long–range interactions in the photon and the proton. They usually
are set equal to the renormalisation scale.

The separation of direct and resolved processes becomes ambiguous beyond
leading order and depends on the factorisation scale of the photon,µγ, as shown
in Fig. 1.9. There is a strict interplay between the direct and resolved component.
The divergences arising from collinear emission of quarks from the incoming di-
rect photon are re-absorbed into the parton densities in the photon appearing in the
resolved component. Thus only the sum of the direct and resolved components
has a physical meaning.

The short–distance cross–sections are the only components that are “pure”
QCD predictions. The observable inclusive cross–sections rely on all the input
distributions mentioned above, and on the factorisation of the different input dis-
tributions. Turning the argument around: Since QCD has been confirmed by many
different experiments, comparisons of data with such calculations potentially give
new information on the input distributions.

1.3.3 Basic Aspects of the Parton Scattering Process

In a simple approach, the hard scatter can be described by elastic parton scattering
in leading–order. The differential cross–section can be written in the form

dσ̂
dt̂
=
|M|2

16π ŝ2
, (1.15)

with the matrix elementM for massless partons listed in Tab. 1.1. The M-
 variables used there for a L–invariant representation of the matrix ele-
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Resolved process|M|2/π2

qq′ → qq′5 64
9 α

2
s

(
ŝ2+û2

t̂2

)
qq→ qq 64

9 α
2
s

(
ŝ2+û2

t̂2 +
ŝ2+t̂2

û2 −
2
3

ŝ2

ût̂

)
qq̄→ q′q̄′ 64

9 α
2
s

(
t̂2+û2

ŝ2

)
qq̄→ qq̄ 64

9 α
2
s

(
ŝ2+û2

t̂2 +
t̂2+û2

ŝ2 −
2
3

û2

ŝt̂

)
qq̄→ gg 128

3 α2
s

(
4
9

t̂2+û2

t̂û −
û2+t̂2

ŝ2

)
qg→ qg 16α2

s

(
ŝ2+û2

t̂2 −
4
9

ŝ2+û2

ŝû

)
gg→ qq̄ 8

3 α
2
s

(
1
3

t̂2+û2

t̂û −
3
4

t̂2+û2

ŝ2

)
gg→ gg 72α2

s

(
3+ t̂2+û2

ŝ2 −
ŝ2+û2

t̂2 +
ŝ2+t̂2

û2

)
Direct process |M|2/π2

γg→ qq̄ 16αsαeme2
q

(
t̂2+û2

t̂û

)
γq→ qg 128

3 αsαeme2
q

(
− ŝ2+û2

ŝû

)
γγ→ qq̄ 32αeme4

q

(
t̂2+û2

t̂û

)
Table 1.1: Leading–order QCD matrix elements for resolved and direct scattering pro-
cesses. The three direct processes are referred to as boson–gluon fusion, QCD Compton
and two–photon process, respectively. Taken from [Kol84, Lev92].

ments are connected to the parton energies and scattering angle of the sub-process
(see Fig. 1.10) by the following relations:

ŝ = 4E1E2 , (1.16)

t̂ = −
1
2

ŝ
(
1− cosθ̂

)
, (1.17)

û = −
1
2

ŝ
(
1+ cosθ̂

)
. (1.18)

Since forward and backward scattering cannot be distinguished by the experi-
ment, only the absolute value ofθ̂ is relevant. In Fig. 1.11 the shapes of the event
rates for the direct and resolved processes are shown as a function of| cosθ̂ | .
As predicted the resolved processes rise more steeply than the direct ones. In
terms of the transverse parton momentum ˆpt =

1
2

√
ŝ sinθ̂ the relative contribu-

tion of the direct processes to the total cross–section increases with ˆpt . This is

5Equivalent to q̄q′ → qq̄′ .



1.3. PHOTOPRODUCTION 13

v- �

E1 E2

Q
Q

Q
Q

Q
Q

QQk

Q
Q

Q
Q

Q
Q

QQs

.
....................

.....................

.....................

....................

θ̂

6

p̂t
√

ŝ

Figure 1.10: An elastic parton scattering process shown in the parton–parton centre–of–
mass system. The centre–of–mass energy is denoted by

√
ŝ, the scattering angle iŝθ, and

p̂t is the transverse momentum of the scattered parton.

reflected in Fig. 1.12 in which the relative contributions of the individual parton
sub–processes to the inclusive jet cross–section are shown as a function of the jet
transverse energy,Et .

Most of the matrix elements diverge at| cosθ̂ | = 1 which corresponds to
small–angle forward and backward scattering. These divergencies are avoided by
introducing a renormalisation scale in the strong coupling constantαs, as already
mentioned above.

A total of four variables are needed to describe the partonic state. The par-
ton centre–of–mass energy,

√
ŝ, can be calculated from the photon and parton

fractional energies and the beam centre–of–mass energy,s

ŝ= y xγ xp s. (1.19)

Neglecting intrinsic transverse momenta of the partons from the photon and the
proton, the transformation from the parton centre–of–mass system (PCMS) to the
laboratory frame is given by6

pt = p̂t , (1.20)

η = η̂ + ηPCMS . (1.21)

Since the parton configuration in the PCMS is back–to–back, their rapidity sum is
η̂1 + η̂2 = 0 . The boost of the PCMS with respect to the laboratory system can be

6The rapidity denotes the argument in the hyperbolic functions of the mixed space–time ro-
tations characterising a L boost and thus is an additive number. In theinfinite momentum
frameneglecting all transverse momenta in the proton, the massless approximation of the rapidity,
thepseudo–rapidityη is given by1

2 ln[(E+ pz)/(E− pz)], wherepz is the component of the proton
momentum along the beam axis. In the laboratory frameη is connected with the scattering angle,
θ, by the relationη=− ln[θ/2] .
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Figure 1.11: Shapes of the parton angularθ̂ distributions are compared for different parton
scattering processes. Event rates of resolved interactions rise more steeply than those of
direct processes.
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Figure 1.12: The relative contributions to jet production inγp scattering are shown as a
function of the transverse jet energy,Et. The jets were found with akt–clustering algo-
rithm with Et > 7 GeV and pseudo–rapidities−2.5 < η < 2.5 which were determined in
the HERA laboratory frame. The calculated was done using the PYTHIA event generator
(c. f. Sec. 1.7.1) for

√
sep= 318 GeV. The contributions are drawn stacked,i. e. the area

below each line includes the sum of all contributions below.
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calculated from the parton rapidities in the laboratory frame

ηPCMS =
1
2

(η1 + η2) . (1.22)

The rapidity difference is L–invariant under boosts along the beam–axis

∆η ≡ η1 − η2 = η̂1 − η̂2 = −2 ln tan
1
2
θ̂ . (1.23)

From this the scattering angle in the PCMS can be computed from the rapidity
difference

cosθ̂ = tanh
1
2
∆η . (1.24)

The scaled photon energyy was defined in Eqn. 1.4. For quasi–real photons (Q2 ≈

0), y then results from the energies of the beam leptonEe and the scattered lepton
E′e

y = 1−
E′e
Ee

(1.25)

Alternativelyy can be determined from the proton four–vector and all final–state
partons, including the photon and proton remnants. Then the scaled photon energy
is given by the transverse momenta and rapidities of all partons

y =
∑

i

pt, i e−ηi

2Ee
. (1.26)

In the same manner the parton fractional energiesxγ andxp can be recovered from
the final–state partons

xγ =
pt

2yEe

(
e−η1 + e−η2

)
, (1.27)

xp =
pt

2yEp

(
e+η1 + e+η2

)
. (1.28)

In the case of untagged (refer to Sec. 2.2) photoproduction Eqns. 1.26–1.28 are
the only way to reconstruct the initial partonic state, since the scattered lepton
remains undetected.

For direct photoproductionxγ is expected to be one, while for resolved events
it should be less than one. This has been observed in dijetγp events at ZEUS,
see Fig. 1.13 [B+98a]. The distributions exhibits two peaks, the large peak at
xγ = 0.2 corresponds to resolved photon–proton scattering processes, the smaller
peak atxγ = 0.8 is associated with the direct photon–proton interactions. For the
latter the values are not exactly at one due to higher order effects, the hadronisa-
tion process and detector effects. The agreement in shape between the data and
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Figure 1.13: Thexγ distribution observed in dijetγp events for ZEUS data (black dots)
compared with HERWIG (solid line and dotted line) with and without multiple parton
interactions (c. f. Sec. 1.6), and PYTHIA Monte Carlo generator with multiple parton
interactions (dashed line) [B+98a]. The shaded area represents direct only events as gen-
erated by HERWIG and the vertical dotted line is the experimental cut to separate direct
and resolved processes. The Monte Carlo generators are explained in detail in Sec. 1.7.

the Monte Carlo prediction is good except below 0.3. Here the soft underlying
event is not correctly described by the generators, even if multiple parton inter-
actions are allowed. A cut onxγ = 0.75 is used to enrich direct and resolvedγp
events respectively and measure their angular dependence. Figure 1.14 confirms
the QCD prediction. The resolved sample show a steeper rise due to the spin–1
gluon propagator as already predicted in Fig. 1.11.

1.3.4 Heavy Quark Photoproduction

In heavy quark production7 up to NLO, two main schemes have been proposed. In
thefixed flavour–number scheme, often referred to in the charm and beauty case
as themassive scheme, the incoming photon and proton are given hadronic struc-
tures (c. f. Sec. 1.4) which contain only three quark flavours (u, d, s), the heavy
quarks do not contribute to the evolution of the running coupling constant and the
structure functions. QCD interactions are then generated in a hard scattering sub-
process which produces heavy quark pairs, whose dynamics are calculated using a
realistic quark mass assignment,mHQ. Since the heavy quark excitation processes

7For a good review seee. g.[Beh05].
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Figure 1.14: Dijet angular cross–
sections for resolved (black dots) and
direct (open circles) photoproduction
at ZEUS compared to leading–order
and next–to–leading order predictions
[D+96].

(see next paragraph) are not treated, and may be important at high energies, this
scheme is expected to work best atpt = O(mHQ), because at highpt neglected
terms of the form ln(p2

t /m
2) become large, and the series diverges. In the mas-

sive scheme, soft and collinear divergences are treated by generating sequences of
correlated events such that cancellation of the sequences occur. This method de-
veloped in [MNR91] removes the need for artificial regularisation required when
a light parton accompanies the heavy quark pair. The massive calculation for
photoproduction [FMNR94] is heavily based on the hadroproduction calculations
[MNR92, MNR93]. The calculation is implemented as an “effective parton Monte
Carlo generator”, known as the FMNR program.8

To enable heavy quark excitation to take place (see Fig. 1.15), charm and
beauty are treated as active flavours in the proton or photon. In the more common
masslessversions, the massmHQ is set to zero allowing the resummation of the
logarithms inpt/m2. QCD processes taking place atpt ≈ mHQ may therefore not
be accurately described, but this approach should work well at highpt [CG96].
Unfortunately up to now no computer codes for massless calculations in higher
orders are available for ep scattering neither for photoproduction nor for deep
inelastic scattering.

8For deep inelastic scattering the program HVQDIS is available [HS95].
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Figure 1.15: Examples of quark excitation processes. In (a) the heavy quark comes from
gluon splitting in the proton. Its counterpart remains undetectable in the proton remnant.
In (b) the heavy quark comes from a fluctuation of the photon.

1.4 Parton Distributions

1.4.1 Photon Structure

The splitting of a photon into a quark–antiquark pair can be calculated in the
quark parton model (QPM). When a photon splits into a qq̄ pair, the quark carries
an energy fractionxγ, measured relative to the photon energy. The functional form
of fq/γ is the same as that offγ/e given in Eqn. (1.9), scaled by the square of the
quark charge,eq, ignoring the correction term 2m2

e y (1/Q2
min − 1/Q2

max) :

fq/γ(xγ)[QPM] =
αeme2

q

π

(
x2
γ + (1− xγ)

2
)

ln
Q2

m2
q

. (1.29)

Heremq is a measure of the mass of “free” quarks.9 To compare with experi-
ments, the probabilitiesfq/γ are summed over all colours and flavours resulting in
a prediction for the photon structure functionFγ

2

Fγ

2(xγ,Q
2) = 3xγ

∑
nf

e2
q fq/γ(xγ,Q

2) , (1.30)

Fγ

2(xγ,Q
2)[QPM] = 3

∑
nf

αeme4
q

π
xγ

(
x2
γ + (1− xγ)

2
)

ln
Q2

m2
q

. (1.31)

9Interestingly enough a measurement of the analogous QED process resulted in a precise de-
termination of theµ mass [C+84].
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This structure function has three features that are different from the hadronic struc-
ture functions:

1. The quark chargeseq contribute with the fourth power, compared with quad-
ratic contributions in the hadronic case.

2. Fγ

2 increases with increasing energy fractionxγ.

3. The quasi–real photon depends directly on the scaleQ2 at which it is probed
by a highly virtual photon. In hadronic structure functions,Q2 only enters
via the parton evolution (see below).

QCD corrections to the simple QPM photon structure function can be calcu-
lated,e. g.from DGLAP evolution equations10[GL72, AP77, Alt82, Lip75, Doc77]

d fq/γ(xγ,Q2)

dlnQ2
=

αem

2π
e2

q Pqγ(xγ) +
αs

2π

{
Pqq(xγ) ⊗ fq/γ(xγ,Q

2) +

+ Pqg(xγ) ⊗ fg/γ(xγ,Q
2)
}

(1.32)

d fg/γ(xγ,Q2)

dlnQ2
=

αs

2π

{
2Pgq(xγ) ⊗

∑
nf

fq/γ(xγ,Q
2) +

+ Pgg(xγ,nf ) ⊗ fg/γ(xγ,Q
2)
}

(1.33)

Here Pij (z) denotes the splitting functions. The first term on the RHS of 1.32
describes the pointlike coupling of the photon. The sum in 1.33 runs over all
quark flavoursnf . Explicit calculations of the leading order QCD diagrams show
that11

P0
qq(z) =

4
3

[
1+ z2

1− z

]
+

, (1.34)

P0
qg(z) =

1
2

[
z2 + (1− z)2

]
, (1.35)

P0
gq(z) =

4
3

[
1+ (1− z)2

z

]
, (1.36)

P0
gg(z) = 6

[
z

(1− z)+
+

1− z
z
+ z(1− z)

]
+

(
11−

2nf

3

)
δ(1− z) . (1.37)

10The convolution integral is defined asa(xγ) ⊗ b(xγ) =
∫ 1

xγ

dy
y a(xγ/y) b(y) .

11The “plus prescription” regularises the divergences of the splitting functions atz = 1 . It is

defined as
∫ 1

x
dxφ(x) [F(x)]+ =

∫ 1

x
dx

[
φ(x) − φ(1)

]
F(x) − φ(1)

∫ x

0
dx F(x) .
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Pqq Pqg Pgq Pgg

Figure 1.16: The lowest order splitting functions. The splitting functionPqq(x/z) is the
probability that a parton q with momentum fractionz emits a gluon and goes down to
momentumx. The same for splitting functionsPgq, Pgg andPqg.

The physical interpretation of the splitting functionPij is given by the variation
of the parton densities. For a variation in lnQ2 it is the probability of finding a
partoni inside partonj with a fractionz of the parent momentum. The DGLAP
equations express the fact that a quark or gluon with momentum fractionx could
have originated from a parent quark with momentumz, wherex < z < 1 in the
splitting functionPqq(x/z), see Fig. 1.16. Hence in the DGLAP evolution one
integrates over the momentum fractionz from x to 1. One can interprete the
equations as description how the momentum distribution of the quark changes as
Q2 is increased, due to an increase of the resolution of the photon with which the
partons are probed.

It can be shown that these QCD corrections preserve the lnQ2 dependence of
the QPM photon structure function (c. f. Eqn. 1.29)[Wit77]. The leading order
QCD prediction for the quark density in the photon is given by

fq/γ(xγ) = e2
q
αem

π

(
x2
γ + (1− xγ)

2
)

ln
Q2

Λ2
QCD

. (1.38)

The corresponding expression for the photon structure function is

Fγ

2(xγ,Q
2) = 3

∑
nf

e4
q
αem

π
xγ

(
x2
γ + (1− xγ)

2
)

ln
Q2

ΛQCD
. (1.39)

This equation accounts for the pointlike and anomalous photon contribution. Note
that possible bound states of quark pairs are not included since they are not calcu-
lable by perturbative theory.

The photon structure functionFγ

2 can be directly measured by deep inelastic
electron–photon scattering experiments (see Fig. 1.17). This was done at the e+e−

colliders PETRA and LEP. These experiments have established the anomalous
photon component and theQ2 scale dependence given in Eqn. 1.31. A compilation
of the experimental results is given in Fig. 1.18. Since the anomalous photon
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Figure 1.17: Deep inelastic eγ scattering: a highly
virtual photonγ∗ (Q2 � 1 GeV) probes the quark
content of a quasi–real photonγ (Q2 ≈ 0 GeV2).

component cannot be separated in a unique way from the hadronic part of the
photon structure function experimentally, a precise determination ofΛQCD from
the measured scale dependence is not possible.

Parametrisation of the Parton Distributions in the Photon

The parton distributions of the photon can be extracted from the measurements
of the photon structure function using Eqn. 1.31 and the evolution equations 1.32
and 1.33. For use in simulations, parametrisations of the parton distributions were
introduced, which contain the parton momenta at some scale,Q2

0, and theirQ2

evolutions. More than a dozen parametrisation sets exist with most of them avail-
able in the PDFLIB [PB93]. They form the basis for the predictions of particle
and jet production in hard photon–proton scattering at HERA.

Throughout this thesis a complete parametrisation of the real photon provided
by G̈, R and V (GRV) is used [GRV92]. This is available at leading
and next–to–leading order (NLO) constructed at very lowQ2

0(LO) = 0.25 GeV2 .
Here it is assumed that the quark distributions in the photon have the same shape
as in the pion structure function. The gluon content is set proportional to the quark
content. The difference between theπ and theγ distributions results from the first
term in the evolution equation (1.32). They fit only one parameter to the DIS eγ

data. Results are shown in Fig. 1.18.
It has to be noted that the DIS eγ data does not contain the gluon distribution

in the resolved photon meaning that for lowxγ . 0.2 the two–jet rate at HERA
cannot be explained by the quark contribution of the photon alone. However,
there are indications that its shape and normalisation are correctly described by
the GRV–LO parametrisation[A+95a].

1.4.2 Proton Structure

In contrast to the photon, the structure of the proton does not depend directly on
the scaleQ2, but enters only via the parton evolution equations 1.32 and 1.33.
In lowest order QCD the parton distributions in the proton do not depend onQ2

at all. This experimentally observed “scaling” of the structure functions in DIS
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Figure 1.18: Measurements of the structure functionFγ2. The data are drawn as a func-
tion of the photon virtualityQ2 and at different parton energy fractionsxγ. The data are
compared with LO parametrisations by GRV[GRV92] and others. This plot is an up-
dated version (state of 2003) of that in [Nis00] taken from the author’s website. Note the
artificial vertical off-set of each set of measurements (0.6 · N).

experiments was the first indication that hadrons consist of pointlike objects, the
partons [Bj̈o69, Fey69, BP69].

Small violations of this scaling behaviour of the structure functions are gener-
ated by radiative QCD corrections. Calculations of these processes show that they
are logarithmically UV divergent. These logarithmic divergences, parametrised by
a scaleµ2

R = Q2
0, are absorbed in the definition of the parton distribution functions.

Moving to a different scaleQ2, the parton distribution functions are redefined to
absorb the logarithmic terms inQ2. Hence the parton distributions at different
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values ofQ2 are related. As stated above the quark structure function can be com-
puted for any values ofQ2 with the help of the DGLAP evolution, given some
reference valuefq/p(xp,Q2

0) .
At high Q2 a quark may have radiated a gluon and consequently have a frac-

tional momentum,xp, less than its original value. Alternatively it may have arisen
from gluon splitting. At large values ofxp, where the valence quarks dominate,
the quark density falls slightly with increasingQ2, whereas at lowxp, the number
of “sea” quarks and gluons is larger, soFp

2 increases withQ2. This dependence of
Fp

2 on Q2 has been demonstrated at HERA[A+93, D+93] as seen in Fig. 1.19.
At small values ofxp both the gluon and quark distributions grow rapidly due

to the splitting of partons in the DGLAP equations. In this region most quarks
are “sea quarks” originating from small–xp gluons. The gluon splitting function is
singular forxp→0, see Eqn. 1.37. This indicates that in higher order perturbation
theory the terms which contain singular parts 1/xp become important at lowx. In
fact, for moderateQ2, they contribute more than the leading logarithmic terms in
Q2. As an alternative to the DGLAP evolution equations, which resum the leading
logarithmic terms inQ2, the B, F, K, L (BFKL) equations
[BL78, KLF76, KLF77] resum the singular1xp

terms. A unification of the two
methods leading to a complete description of the parton distribution function’sxp

andQ2 dependence is an obvious goal, but its experimental verification as well as
the theoretical treatment are challenging.

Parametrisations of the Proton Structure Functions

Similar to the photon parton distribution functions, all parametrisations of the
proton structure functions are based on the QCD evolution of the universal quark
distributions. These PDFs are evolved using the DGLAP equations and thus yield
a parametrisation of the PDFs at allxp andQ2 given a boundary condition at a
particular valueQ2=Q2

0. The aim is to chose the parton distributions atQ2
0 such

that the predicted cross–sections match all measured lepton–hadron and hadron–
hadron data. In practice this means that atQ2

0 a functional form for the quark
distributions is chosen, which contains a number of free, tunable parameters. In a
fit procedure the parameters are adjusted to obtain a parametrisation of the parton
densities that match the existing data from deep inelastic scattering experiments.

There are a number of groups performing the global fit procedures for the
hadronic structure functions. They all use next–to–leading order or even next–
to–next–to-leading order QCD predictions for the evolution and, for DIS, use the
NLO convolutions with the hard scattering to obtain the structure functions.

In this thesis the parametrisation of the CTEQ group [B+93] is used, which is
based on a NLO QCD evolution aroundQ2

0 = 4 GeV2. The flavours u, ū,d, d̄ and
s, s̄ are evolved separately. In total approximately 30 free parameters are included.
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Figure 1.19: Dependence of the proton structure functionFp
2(x,Q2) on the scale,Q2, at

fixed values ofxp. For largexp the structure function is almost independent ofQ2 and
depends only onxp. For low xp the structure function increases withQ2 indicating that at
high Q2 the proton momentum is shared by many partons mainly due to the contributions
of gluon splitting to q̄q pairs (from [Y+06])
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1.5 Fragmentation and Hadronisation

In the end the final–state parton cross-sections have to be transformed into mea-
surable ones via a fragmentation process. Here, infrared safety must be preserved.
A common method is to convolute the parton cross-sections with a fragmentation
function Dh/k(z, µfrag) describing the fragmentation of a final–state parton,k, into
a hadron, h, wherez = Eh/Ek denotes the energy fraction of the hadron relative
to the parton energy, andµfrag is the fragmentation scale usually set equal to the
(mean) hadron transverse momentumµfrag = ph

t . The fragmentation functions
have been parametrised from results of e+e− and p̄p experiments. A standard rep-
resentation of the fragmentation function of heavy quarks, based on phenomeno-
logical considerations, is the P fragmentation function:[P+83]

Dh/k(z) = Ph/k ·
A

z ·
(
1− 1

z −
ε

1−z

)2
, (1.40)

whereA is a normalisation constant andPh/k the total probability for the quark
k to fragment to h. The P–parameterε is determined from experiment
([A+91a, A+92a], [B+88] and [A+96a, A+98, B+00, A+00b]). For a review see
[NO99] or [NO00]. In Fig. 1.20 the fragmentation functionDh/k(z) is shown using
typical values for charm and beauty. As expected B hadrons are generated with
a harder spectrum than charm hadrons. The accuracy of the quark and gluon
fragmentation functions is of the order of a few percent [BKK95]. A list of the
properties of the most frequently produced beauty and charm hadrons is given
in Tab. 1.2. The practical side of modelling the fragmentation process will be
discussed in more detail in Sec. 1.7.

For the light quarks the “LUND symmetric fragmentation function” [BA83]
is often used:

Dh/k(z) = Ph/k ·
A

z
(1− z)a e−bm2

t,h/z , (1.41)

with mt,h denoting the transverse mass of the hadron in question. The parameters
a andb are usually chosen to 0.3 and 0.58 GeV−2, respectively.

Beside the prediction of inclusive cross–sections of hadrons, which is used
in Monte Carlo event generators and the subsequent detector simulation, cross–
sections for jet production are also possible. Here, jet algorithms (c. f.Sec. 3.2) are
used to integrate the energy of the fragmenting parton, as the energy is distributed
to several hadrons during the fragmentation process.
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Hadron Content Mass/MeV cτ / µm I (JP)

B± bu 5279.0± 0.5 501 1
2(0−)

B0 bd 5279.4± 0.5 460 1
2(0−)

B0
s bs 5369.6± 2.4 438 0(0−)

Λb udb 5624± 9 368 0(1
2
+
)

D± cd 1869.4± 0.5 311.8 1
2(0−)

D0 cu 1864.6± 0.5 123.0 1
2(0−)

D±s cs 1968.3 147.0 0(0−)

Λ+c cud 2284.9± 0.6 59.9 0(1
2
+
)

Table 1.2: Properties of the most frequently produced beauty and charm hadrons. The
former have both a higher mass and a longer life–time. The higher mass is given by the
b quark mass whereas the longer life–time results from mainly from the smaller CKM
matrix element||Vcb|| = 0.04 compared with||Vcs|| = 0.97 [Y+06].
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Figure 1.20: The P fragmentationDh/k(z) for typical values ofε for beauty and
charm. Both functions shown are normalised to one. For heavy quarks a hard spectrum
with a peak close to one is expected, since the hadron absorbs most of the parton’s energy.
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1.6 Multiple Parton Interaction

The QCD parton cross–section given above has two inherent problems: It diverges
at small transverse momenta ˆpt of the scattered partons (see Eqn. 1.15), which is
usually solved by introducing a lower cut–off. In addition it was shown that the
integrated parton cross–section exceeds the measured total cross–section at high
centre–of–mass energies [A+95b, D+94a]. A possible solution is to consider the
proton and the resolved photons as beams of partons and to allow for more than
one parton interaction in one observableγp event [SS93, SvZ87]. This also helps
to describe the large measured underlying event energy which is seen for lowxγ
[D+94b].

1.7 Event Generators

For a quantitative analysis of scattering processes and unfolding of cross–sections
event generators based on Monte Carlo methods are used. In combination with a
detailed detector simulation they produce final–states comparable with real data.

A schematic view of a QCD event generator for ep scattering is shown in
Fig. 1.21. The core of the program are the parton scattering processes Eqn. 1.15
together with the matrix elements given in Tab. 1.1. The partons from the photon
and the proton coming into the hard sub–process are chosen via the parton dis-
tribution functionsfi/γ and f j/p . Parton showers originating from initial–state or
final–state partons simulate higher order QCD processes. All partons, including
those of the beam remnants, fragment into hadrons. Some generators allow for
interactions between the beam remnants in addition to the hard parton scattering
process.

In this work the PYTHIA event generator described below had been used.
For completeness the HERWIG program, which is also used very often, will be
discussed too.

1.7.1 PYTHIA

The PYTHIA program [S+02] together with a generator for quasi–real photons
generatesγp interactions. It is based on leading order QCD matrix elements and
includes initial–state and final–state parton showers. Usually the strong coupling
constant,αs, is computed to first order in QCD usingΛQCD = 200 MeV with four
flavours. Renormalisation and factorisation scales are both set to the transverse
mass of the two outgoing partons, given by

µ2
F =

1
2

√
m2

1 + p̂2
t,1 +m2

2 + p̂2
t,2 . (1.42)
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Figure 1.21: Schema of an event generator for hard scattering processes in ep collisions.
The central part is the hard scatter given by the QCD parton cross–section ( (1.15). The
input parton distribution functions arefi/γ for the photon andf j/p for the proton. Theγ
luminosity fγ/e is described by the Weizsäcker–Williams approximation. Incoming and
outgoing partons can radiate other partons (initial–state and final–state parton shower).
Together with the spectator partons of the beam remnants they fragment into hadrons.
Optionally, interactions between the two beam remnants can be generated in addition to
the primary hard parton scattering process (multiple parton interactions).

For comparisons with data a lower cut–off aroundp̂cut
t ≈ 2 GeV is used to avoid

divergences for small transverse momenta.
The parton showers are computed with the help of the DGLAP evolution equa-

tions. Since the hard sub–process sets the overall event kinematics, the initial–
state parton shower is evolved backwards in a sequence of decreasing space–like
virtualitiesQ2 starting at a scaleQ2

max down to a cut–off Q2
0≈1 GeV2 . In a similar

way the final–state radiation is evolved backwards in time–like showers. Branch-
ings on both sides are interweaved in a common sequence of decreasingQ2 values.

The LUND string fragmentation scheme[SB87] is used (Fig. 1.22). Partons
are connected by “strings”, the strength of which is about 1 GeV/fm . As the
partons move away from each other, the strings become more energetic, finally
breaking to produce q̄q pairs. When the energy of a string is too small to enable
further separation the partons, hadrons are formed. The transverse momenta of
the generated q̄q pairs are Gaussian distributed, while the longitudinal compo-
nent is obtained by using the P function for heavy quarks and the LUND
symmetric fragmentation function for light flavours (Sec. 1.5).
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In addition to the primary parton–parton scattering multiple parton interac-
tions may be generated. These are calculated as leading order QCD processes
between partons from the photon and proton remnants. The number of additional
interactions is typically between 1 and 4. The process with the highest momen-
tum in the final–state can be any quark or gluon process (Tab. 1.1). This process
includes initial–state and final–state parton radiation effects and its partons are
connected to the beam remnants by strings. The remaining low momentum inter-
actions are calculated as gluon–gluon scattering processes.

1.7.2 HERWIG

The HERWIG12 generator is based on leading order QCD calculations [MWA+92]
too. The number of free parameters is much reduced. Particular attention is paid
to being as independent as possible from non–perturbative parameters. The fac-
torisation scale for the hard sub–process,µF, is given by

µ2
F =

2 ŝ · t̂ · û

ŝ2 + t̂ 2 + û2
(1.43)

where ŝ, t̂ and û are the Mandelstam variables of the parton scattering process.
The lower cut–off for the transverse momentum of the scattered partons is set to
p̂cut

t ≈2.5 GeV . In contrast to PYTHIA the Weizsäcker–Williams approximation is
only used for resolved processes. For direct events, leading order matrix elements
for 2 → 3 scattering are applied. The program includes a parton shower model,
which allows for interference between initial–state and final–state showers, so-
calledcolour coherence[MW84, MW88]. A cluster model is used for describing
the hadronisation effects (see Fig. 1.22). In this model gluons at the end of the
parton shower are split into q̄q pairs which are then grouped into colour neu-
tral clusters adjacent in phase–space. Each of these clusters is then fragmented
into two hadrons or the lightest hadron of its flavour if the cluster is not mas-
sive enough. The advantage of the cluster fragmentation over the string model is
its small number of free parameters. Also, no assumption about transverse and
longitudinal momentum distributions are needed. HERWIG also has options of
allowing for interactions between the beam remnants in order to describe the soft
underlying event.

In this analysis PYTHIA was used for the simulation. The main reason was,
that large Monte Carlo samples produced with PYTHIA for other analyses were
already existing. This saved a lot of computing time.

12Hadron Emission Reactions with Interfering Gluons
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Figure 1.22: In (a) the colour dipole field of the outgoing qq̄ pair is represented by a uni-
form colour flux tube (string) whose energy increases linearly with its length when the
quarks are moving apart. At some point the energy density becomes high enough, forcing
the string to break up forming a new qq̄ pair. The cluster fragmentation (b) is directly con-
nected with the parton shower. Radiated gluons are split into qq̄ pairs forming colourless
cluster close by in phase–space. The clusters usually fragment into two hadrons.

1.8 Semi–Leptonic Decays

Beauty quarks in hadrons decay weakly into a c or a u quark, where the former
is much more dominant due to the CKM matrix elements. The following decay
channels do exist:

1. External W radiation. Here, the b quark decays into a c quark radiating a
W–boson. The W creates either`ν̄` or dū, s̄d pairs. The decay products are
independent of the newly created charmed hadron. The process is described
in the spectator model: Due to its large mass the decay of the b quark is
not affected by the other constituents in the hadron — they merely act as
spectators. This process is by far the dominant one.

2. Internal W radiation. The W creates a qq̄–pair whose parts connect both
with the decay product of the b quark and the spectator quarks. The process
is suppressed due to colour conservation.

3. W exchange and W annihilation. Both decay channels are suppressed by
helicity arguments. W exchange is further suppressed by colour conserva-
tion, while the small value of the CKM matrix elementVub diminishes the
annihilation process.
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Hadron Content Mass [MeV] τ[ps] Fraction [%]
B+ b̄u 5279.0± 0.5 1.638± 0.011 39.8± 1.2
B0 b̄d 5279.4± 0.5 1.530± 0.009 39.8± 1.2
B0

s b̄s 5367.5± 1.8 1.466± 0.059 10.3± 1.4
Λb bdu 5624± 9 1.230± 0.074 10.0± 2.0

Table 1.3: B hadron properties[Y+06]. The fraction denotes the amount of a particular
hadron type in B hadron admixtures at high energies.

4. Penguin decays. These are higher order flavour changing neutral current
processes which are forbidden in leading order and thus very rare.

Table 1.3 lists a few properties of common B hadrons. On average B hadrons
decay with a probability of 10.57± 0.22 % semi–leptonically into an electron or
muon and the respective neutrino [Y+06]. Modern predictions given by the heavy
quark effective theory (HQET) are in good agreement with the latest measure-
ments from the B factories BABAR and BELLE [A+03, A+02].

Figure 1.23 shows semi–leptonic decay spectra of B mesons into electrons
measured by BABAR and BELLE. Good agreement with the PYTHIA prediction
is found. The PYTHIA prediction is also valid in different production environ-
ments as shown in Fig. 1.24. Therefore the validity of the PYTHIA calculations
for semi-leptonic B decays at HERA is well supported.

Figure 1.23: Branching ratios of semi–
leptonic B meson decays into electrons de-
pendent on the electron momentum in the
centre–of–mass system of the B meson as
measured by the BABAR and BELLE col-
laborations. The circles show the spec-
trum for direct decays whereas the trian-
gles show cascade decays. The measure-
ments are compared to the PYTHIA pre-
diction. Courtesy of [A+03, A+02].
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Figure 1.24: Comparison of predictions for semi–
leptonic decays of B hadrons into electrons and
muons made with PYTHIA. Shown are event rates
dependent on the electron momentum in the B
hadron rest frame for B hadron admixtures at the
Υ(4s) resonance at BABAR/BELLE (solid line) and
at the Z pole at LEP (dotted line). Figure taken from
[CT04].
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1.9 Experimental Results

1.9.1 Heavy Quark Production in Fixed–Target Experiments

Pair production of beauty and charm has been studied at a number of fixed–target
experiments. Since in most of these experiments the centre–of–mass energy typ-
ically is between 10 and 40 GeV, the beauty cross-sections are quite small there.
In Fig. 1.25 a compilation of results for total cross–sections is shown. Overall,
good agreement with QCD next–to–leading order predictions can be seen. The
default choices for the factorisation scale,µF, and the renormalisation scale,µR,
areµF = 2mc, µR = mc for charm, andµF = µR = mb for beauty.13 The bands
around the predictions are obtained by varyingµR between half the central value
and twice this value and, in case of beauty by varying alsoµF in the same way.

1.9.2 Heavy Quark Production at HERA

The study of heavy quark production at HERA is a subject of great interest since
the HERA collider operates at centre–of–mass energies of theγp system roughly
one order of magnitude larger than those of fixed–target experiments. At these
energies the c̄c production cross–section is of the order of 1µb while the beauty
cross–section is about 10 nb. In the following results for charm and beauty pro-
duction obtained by the H1 and ZEUS experiments are discussed.14

13This is because the adopted parametrisations of parton densities are given forQ2 larger than
5 GeV2.

14A recent summary is found in [Beh05].
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(a) Beauty and charm production inπ−N colli-
sions.

(b) Beauty and charm production in pN colli-
sions

(c) Charm production inγN collisions
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Figure 1.25: Different total cross–sections for beauty and charm production in hadro– and
photoproduction observed in fixed–target experiments. The data is in good agreement
with NLO QCD predictions also shown. Figures taken from [FMNR98] and [A+05a].

Charm Photoproduction

For charm production the uncertainties of the next–to–leading order predictions
are large [FMNR95]. The cross–sections for the direct photon component changes
by a factor of four when varying the charm mass in the range 1.2< mc<1.8 GeV,
and by a factor of two when varying the renormalisation scale. The choice of the
proton parton distribution functions gives a 50 % uncertainty at

√
sγp = 300 GeV .

The situation is even worse for the resolved part since the gluon distribution in
the photon is poorly known (c. f. Sec. 1.4.1). Figure 1.26 shows a comparison
between the experimental results and the next–to–leading order QCD predictions.
The calculations were made for different sets of parametrisations of the parton
distributions for the photon and the proton. Only the uncertainty due to a vari-
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Figure 1.26: Total cross–section for charm photoproduction as a function of theγp centre–
of–mass energy. Measurements of fixed–target and the HERA experiments are shown.
The NLO prediction is shown for three different set of photon and proton parton distri-
bution functions. Only the uncertainties due to the choice of the renormalisation scale is
displayed. The fixed–target data is the same as in Fig. 1.25(c), the HERA data was taken
from [A+96b, D+95a]. Figure courtesy of [FMNR98].

ation of the renormalisation scale, as described above, is displayed. Although
the theoretical uncertainties are huge, it is noteworthy that a single choice of in-
put parameters is sufficient to describe the data in the whole energy range. Also,
the importance of the resolved photon component becomes clear from the figure.
It has to be noted that the measured cross–sections are extrapolated to the full
pseudo–rapidity and transverse momentum range. This usually involves extrapo-
lation to the small–x region for which the parton distributions are not very well
determined, as mentioned above.

Charm is often tagged by searching for “golden decays” of D∗± into Kππ via
a D0 intermediate state. In Fig. 1.27 the transverse momentum distribution of D∗

as measured at HERA is shown together with next–to–leading order predictions
computed in a massless and a massive scheme (c. f. Sec. 1.3.4). Neither of the
schemes is able to describe the data well. The massless prediction is better at low
pt, while the massive one looks better at high transverse momenta.

Measurements of the angular dependence in the parton sub-system (for details
see Sec. 1.3.3) of charm dijet events show evidence for a large charm component
in the resolved photon.
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Figure 1.27: Transverse momen-
tum spectrum of D∗ in γp inter-
actions at HERA compared with
massive [FMNR95, F+95] and
massless [K+97, B+97, C+97]
next–to–leading order predic-
tions. The NLO calculations are
generally below the measured
cross–sections. Figure taken
from [B+99].

Charm in Deep Inelastic Scattering

Measurements of theQ2 dependence of charm production cross–sections in deep
inelastic scattering events provide information about the proton structure. A di-
rect determination of the gluon density in the proton is possible via the boson–
gluon–fusion which dominates the charm production. These observations are in
agreement with indirect measurements of the gluon density.

In addition, the charm contribution to the proton structure function,Fcc̄
2 , can

be measured. The ZEUS collaboration has performed such measurements which
are shown in Fig. 1.28 together with a next–to–leading order QCD prediction
[C+04d]. The charm contribution increases with decreasingxp and increasingQ2

due to the increasing gluon density in this region. Charm fractions up to 30 % to
the proton structure functionFp

2 are seen at smallxp.
In general, the charm DIS data is well described by massive next–to–leading

order QCD models.

Beauty Photoproduction

Because of the higher quark mass, perturbative QCD predictions for bb̄ produc-
tion should be more reliable than those for charm. All the uncertainties discussed
above for charm are strongly reduced. In direct photoproduction the uncertainty is
a factor two if all parameters are varied together [FMNR98]. The resolved com-
ponent still has larger uncertainties, but is much smaller than in charm production,
because the small–xp region is probed to a lesser extent.

The production rates for beauty are much reduced due to the smaller phase–
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Figure 1.28: Measurements of
the charm contribution to the pro-
ton structure function,Fcc̄

2 , at
ZEUS in terms of the Bj̈orken
scaling variable,xp, for different
four–momentum transfers,Q2. A
fit with QCD next–to–leading or-
der predictions is also shown.
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space. The total production cross–section ratios are roughlyσuds : σcc̄ : σbb̄ ≈

2000:200:1 at HERA. The kinematical threshold for heavy quark production via
the boson–gluon–fusion process at HERA is estimated by

xg >
m2

HQ

Eγ · Ep
≈

 10−4 charm production,

10−3 beauty production.
(1.44)

From this it becomes clear that beauty production suffers less from the ignorance
of the small–xp region of the proton structure than in the charm case.

First measurements of open beauty production at ZEUS had been done in
dijet photoproduction events of the data taken in 1996/97, corresponding to an
integrated luminosity of 38.5 pb−1, by looking for electrons coming from semi–
leptonic B decays [B+01, Win99]. The transverse momentum of the electron rel-
ative to the closest jet,prel

t , was used for determination of the beauty fraction
by fitting template distributions of beauty, charm and light–flavour Monte Carlo
samples to the data (see Fig. 1.29). Here, theprel

t distribution of electrons coming
from beauty decays is supposed to be harder due to the large B hadron mass. The
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Figure 1.29: First measurements of open beauty production at ZEUS by means of semi–
leptonic B decays into electrons. From theprel

t distribution (a) a beauty fraction of 15 %
was determined [B+01]. In addition the amount of resolved events was observed to be
≈28 % with the help of thexγ distribution. The light bands denote the uncertainty due to
the jet energy scale.

electron identification was done in a simple way by using energy loss measure-
ments in the central drift chamber of the ZEUS detector. This analysis was very
limited in statistics due to the small amount of data available at that time. Also, it
suffered a lot from systematic uncertainties, in particular in the estimation of the
hadronic background and the energy loss measurements. For that reason positrons
coming from the semi–leptonic beauty decays could not be used at all, cutting the
statistics by half. The measured cross–section is substantially above a massive
next–to–leading order prediction (open circle in Fig. 1.30).

Because of their much easier identification, muons from semi–leptonic B de-
cays are often used instead of electrons. However, for a good background sup-
pression the muon has to have a relatively high minimal transverse momentum,
usually abovepmin

t &2 GeV. Such measurements have been performed first by the
H1 collaboration [A+99, A+05c] and later also by ZEUS [Tur02, C+04a, Gut05].
Some results can be seen in Fig. 1.30 (filled circles). All of the measurements lie
systematically above the NLO prediction.

Such measurements can be improved by using life–time information about the
B hadrons in addition to theprel

t variable. For this the beauty decay vertices are
measured by micro–vertex detectors such as the Central Silicon Tracker in the H1
detector, which has been operational since 1997, or the Micro–Vertex Detector in
ZEUS, which is part of the detector since the beginning of the HERA-II period.
Figure 1.31 shows the latest results published by the H1collaboration using only
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muons (filled circles). Also shown is a massive next–to–leading order QCD prediction
calculated with the FMNR program. Figure taken from [C+04a].

Figure 1.31: H1 latest measurement
of beauty photoproduction based on
impact parameter distributions com-
pared to leading order and next–
to–leading order QCD predictions
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impact parameter15 information [A+06a].
Other methods for measuring beauty production cross-sections at HERA are

life–time tagging of J/ψ mesons originating from B decays [Lüd01] or measure-

15The signedimpact parameter is the shortest lateral distance between the beam–spot and a
track helix multiplied by the sign of the helix charge. For tracks originating from long–living
B hadrons the impact parameter is supposed to concentrate at large positive values. The impact
parameter is much easier to reconstruct than the actual decay length of a B hadron.



1.9. EXPERIMENTAL RESULTS 39

ments of correlated D∗µ systems in B cascades decays or di-muons in bb̄ events
[Blo05]. Here also an excess of the measured cross-sections compared to the QCD
predictions is seen.

Beauty in Deep Inelastic Scattering

Similar measurements as above have been done for deep inelastic scattering [C+04c,
A+06b]. From this the beauty contribution to the proton structure function can be
determined. First results given by the H1 collaboration are shown in Fig. 1.32.

Summary on Open Beauty Production at HERA

Figure 1.33 summarises the present situation of open beauty production at HERA
both for photoproduction and deep inelastic scattering. Since the measurements
are defined using different experimental acceptances, they are plotted as a ratio of
the measured cross–sections to the massive QCD predictions at next–to–leading
order. The integrated beauty cross–sections at HERA lie constantly above the the-
ory whenever the experimental errors permit such a statement. The measurements
get much more precise by using impact parameter information. Still, improved
measurements are desirable in order to falsify particular approaches at next–to–
leading order.

For the sake of simplicity theoretical uncertainties are not shown. Only changes
in the prediction caused by using different parametrisations of the proton structure
are indicated. Uncertainties due to variations of the renormalisation and factorisa-
tion scales depending on the b quark mass in the end, and also due to the ignorance
of the gluon contribution to the photon structure are expected to be large. Massless
calculations are not available for the fullQ2 range at HERA. Recent approaches
like the FONLL scheme (see below) do not exist at all for ep collisions.

1.9.3 Heavy Quark Production at LEP

Measurements of open heavy quark production in two–photon processes have
been made at the LEP experiments OPAL, DELPHI and L3. The process used
for the production of heavy quarks is that of deep inelastic eγ scattering (c. f.
Fig. 1.17) which is very sensitive to the parton distributions in the photon. Beauty
and charm contributions were determined by fittingprel

t distributions of electrons
and muons. The L3 results [A+05b] are shown in Fig. 1.34. While the charm
cross–sections are described fairly well by a next–to–leading order prediction, the
beauty measurement is 3σ above the expectation.
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Figure 1.32: Measurements ofFbb̄
2

based on the impact parameter
method [A+06b]. Shown are sets of
measurements for different values of
the Björken scaling variablexp as
a function of the four–momentum
transfer,Q2. Also shown are differ-
ent parametrisations of the proton
structure.
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of the proton structure are indicated.
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1.9.4 Heavy Quark Production at the Tevatron

Beauty production has also been studied in pp̄ collisions at the Tevatron at the
highest possible centre–of–mass energies above 1.8 TeV. The Tevatron run I mea-
surements confirmed the observations made by LEP and HERA. The beauty pro-
duction cross–sections are systematically above the QCD predictions as seen in
Fig. 1.35(a). Over the last years this long standing difference has been reduced by
refining the experimental and most particularly the theoretical methods (for a re-
view see [Man04]). The latter was achieved by introduction of thefixed order and
next–to–leading log scheme(FONLL) resumming higher terms in ln(pt/m) of the
heavy quarks [FM97], and the use of improved fragmentation and parton distri-
bution functions. An example of these promising results is given in Fig. 1.35(b).
Unfortunately those new predictions are not yet available for ep collisions.

1.10 Summary

1. QCD is the present theory of the strong interaction describing an large num-
ber of phenomena. Theoretical predictions in high energy physics are based
on perturbation theory by means of power series in terms of the strong cou-
pling constant,αs.

2. Heavy quark production inγp scattering processes at HERA is described
with the help of the QCD factorisation theorems by dividing the process in
a short–range hard scatter and external soft processes summarised in parton
distribution functions of the photon and the proton. Here, the photon reveals
a large hadronic component, since in the target rest frame the time ofγ→ qq̄
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(a) Run I (b) Run II

Figure 1.35: Open beauty production in pp̄ collisions at the Tevatron. In (a) older mea-
surements from the CDF and D0 collaborations are shown [A+00a]. The beauty contribu-
tion was determined with the help of muons coming from semi–leptonic B decays. The
beauty production cross-sections, shown as function of the transverse b quark momenta,
pb

t , differ a lot from a QCD next–to–leading order prediction also shown. The situation
is much improved in (b). Here, results of an analysis of J/ψ mesons originating from B
decays in Tevatron run II data are shown with improved NLO calculations, FONLL (see
text) and MC@NLO. The latter is a first try of a next–to–leading order QCD Monte Carlo
event generator developed recently. Figure taken from [Man04].

fluctuations is very large compared to the size of a nucleon.

3. For the hard sub-process, predictions at leading order and next–to–leading
order exist. The latter are of great interest, for the dependence on the fac-
torisation and renormalisation scales is much reduced compared to leading
order. Still, uncertainties due to those dependencies are large, for charm
production more than for beauty. Different schemes such as the massive or
the massless schemes have been developed for controlling divergences in
the calculations. From the experimental point of view a decision between
the different approaches is not yet possible.

4. Due to soft interactions and bound states the parton distributions in the pho-
ton are not fully calculable by perturbative QCD. Measurements fromγγ

scattering do exist, although they are not very precise. In particular our
ignorance about the gluon and sea–quark contributions to the photon lead
to a substantial uncertainty. The proton structure has been determined very
precisely by analysing deep inelastic scattering events at HERA over a wide
kinematic range. However, the small–x region is not measured very well,
which in particular affects the predictions for charm production.
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5. Hard gluon radiation and splitting is described by evolution of the parton
distributions mainly by using the DGLAP equations. The fragmentation
process of outgoing partons into final–state hadrons is modelled by phe-
nomenological approaches.

6. Heavy quark production has been observed in fixed–target experiments as
well as in recent collider experiments at LEP, HERA and the Tevatron.
Many measurements and analyses of the still increasing data are ongoing
leading to more precise results. Beside measurements of integrated and
single–differential cross–sections, first measurements of doubly differential
cross–sections have been published, providing more stringent tests of QCD.
By using different experimental methods, cross–checks and reduction of
systematic mis-measurements are possible. The ZEUS collaboration will
publish first measurements utilising its micro–vertex detector in due time.

7. The overall situation of heavy quark production at HERA is unsatisfactory.
Our knowledge, both experimentally and theoretically, is somewhat mixed
and limited. While the experimental side is improving steadily, develop-
ments on the theoretical side are gradual. Many massless calculations are
missing and most important, a generally applicable NLO Monte Carlo event
generator is overdue. The next decade of high energy particle physics will
be dominated by the large hadron collider, LHC. A detailed understanding
of QCD is mandatory before it is possible to claim new physics beyond the
standard model.



Chapter 2

The ZEUS Detector at HERA

In this chapter first the HERA machine is introduced and next an overview of the
ZEUS detector is presented. In addition the ZEUS data acquisition system and the
on-line reconstruction is discussed.

2.1 HERA Collider

The lepton–proton collider HERA located at DESY Hamburg, Germany started
operation in 1992. The centre–of–mass energies are one order of magnitude above
previous similar experiments and reach up to

√
sep≈300, 318 GeV for the HERA-

I running period and 318 GeV for HERA-II, respectively.1 The separate storage
rings for the protons and electrons have a circumference of 6.3 km and provide
four interaction regions. Two of them are used for the collision experiments H1
and ZEUS. Figure 2.1 shows the HERA ring system.

The energy of the proton beam had beenEp = 820 GeV at the beginning and
was increased in 1998 to 920 GeV. The electron energy wasEe = 26.7 GeV and
was slightly raised to 27.5 GeV in 1994 corresponding to a centre–of–mass energy
√

sep=300 GeV. This was increased to 318 GeV by setting the proton beam energy
to 920 GeV in 1998. Instead of electrons more often positrons were filled to get
more stable running conditions. A full list of the HERA running conditions is
given in Tab. 2.1. The asymmetric beam energies satisfy the need for high centre–
of–mass beam energies at minimal synchrotron radiation losses. In principle, a
maximum of 210 electron and proton bunches, separated in time by 96 ns, can
be filled. About 10 electron (proton) bunches are filled without a proton (elec-
tron) bunch partner, so-called pilot bunches, in order to monitor the background
in the experiments. Spread of the interaction points along the beam direction is

1It is planned to run the machine at different lower energies towards the end of the HERA-II
running period in order to measure the longitudinal proton structureFp

L .
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determined by the proton bunch lengths, and shows an approximatily Gaussian
distribution with a width of 11 cm. A proton fill usually lasts one day, a positron
fill around 7 h. The proton storage ring uses superconducting magnets operating at
approximately 4 K, producing a magnetic field of about 4.7 T. The beam currents
are roughly 50 mA for the e± beam and more than 120 mA for the proton beam
at the beginning of a fill. The machine luminosity has increased steadily and has
reachedL = 7.7·1030 cm−2s−1 at the end of the HERA-I running period. A key
feature of the HERA-II upgrade was the increase of the machine luminosity by a
factor of four to five.

2.2 The ZEUS Detector

The ZEUS detector is a multi-purpose detector covering almost the full solid an-
gle. The detector design had to consider the boost in the proton direction of the
final–state particles due to the asymmetric beam energies:e. g.a particle, which
was scattered at 90◦ in theγp centre–of–mass system is atθ≈15◦ in the laboratory
system (Fig. 3.4). The energy of the particle in the laboratory system is approxi-
mately a factor of four above its centre–of–mass energy. This was accounted for
by adapting the interaction lengths in the calorimeter to these conditions and also
by elongating the tracking system in the proton direction. An elaborate descrip-
tion of the detector is given in [ZEU93]. Here, only a short description of those
parts that are relevant to this thesis is given.

The right–handed ZEUS coordinate system [Hil86, GS88] is depicted in Fig.
2.2. It is referenced to zero at the nominal interaction point having the proton
beam direction defining thez–axis. Thex–axis is perpendicular to the beam di-
rection pointing towards the centre of the HERA ring and they–axis upwards.

Figure 2.3 shows cross–sections through the ZEUS detector. As can be seen,
the detector is almost hermetic, with just the beam–pipes preventing it from hav-
ing 4π coverage. Starting from the interaction point and moving radially outwards,
the ZEUS detector consists of charged particle tracking detectors surrounding
the beam–pipe . Since 2001 the innermost section is the micro–vertex detector
(MVD) made of silicon strips for measuring secondary vertices at the mm level.
However, only collision events recorded in the years 1996—2000 are the sub-
ject of this thesis, so the MVD will not be discussed further. The next outermost
component is the Central Tracking Device (CTD) which is surrounded by a super-
conducting magnet providing a magnetic field of 1.43 T.2 The CTD is a central
component for this analysis, used both for tracking and particle identification, and

2A high–field solenoid (B=5 T) situated behind the RCAL compensates the effect of the main
solenoid on the electron beam.
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Figure 2.1: Schematic view of the HERA collider [Deu], four experimental halls and
the pre-accelerator ring with the injection system [Wii91, Wal95]. The ZEUS detector is
located in the south hall.

Year Ee/GeV Ep/GeV Lepton deliveredL /pb−1

HERA-I 1992 — 1993 26.7 820 electrons 0.03
1993 — 1994 27.5 820 electrons 2.2
1994 — 1997 27.5 820 positrons 70.9
1998 — 1999 27.5 920 electrons 25.2
1999 — 2000 27.5 920 positrons 95.0

HERA-II 2003 — 2004 27.5 920 positrons 84.5
2004 — 2005 27.5 920 electrons 204.8

Table 2.1: HERA running conditions. In 1998 the energy of the proton beam was raised
from 820 GeV to 920 GeV increasing the centre–of–mass energy,

√
sep , from 300 GeV to

318 GeV. Since 2003 HERA provides much higher specific luminosities.
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Figure 2.2: Definition of the ZEUS coordinate system. Thez–axis points in the direction
of the proton beam, while thex–axis points towards the centre of the HERA ring, and
they–axis upwards. The transverse momentum of a final–state particle,pt, is measured
with respect to the beam axis. The azimuthal angle around the beam axis is denoted
by φ. The polar angle,θ, is measured relative to the proton direction. Instead ofθ the
pseudo–rapidityη=− ln[tan(θ/2)] is frequently used.

so will be discussed in more detail in Sec. 2.2.1. At both ends of the CTD there are
planar drift chambers, the Forward and Rear Tracking Devices (FTD and RTD).
During the HERA-I running period the FTDs had been interlaced by transition
radiation detectors (TRD) being used for particle identification in the forward di-
rection.3 The four TRD modules were replaced in 2001 by two straw–tube track-
ers (STT) to improve the forward tracking. The last tracking detector is the Small
angle Rear Tracking detector (SRTD) which improves the position resolution for
particles, particularly used for the scattered lepton, in the rear direction. All the
tracking components combined provide an angular acceptance of 7.5◦ < θ < 170◦

for charged particles.
Outside the superconducting magnet lies the ZEUS calorimeter. The ZEUS

calorimeter is a high resolution depleted–uranium scintillator calorimeter (UCAL)
and is divided into three sections: the forward (FCAL), barrel (BCAL) and rear
(RCAL) calorimeter. As the calorimetry is important for the measurement of jets
and cell clusters, which are used to aid electron detection, and the reconstruction
of the hadronic final–state, it will also be discussed in more detail (see Sec. 2.2.2).
In front of the calorimeter scintillating tiles, called the presampler, are used for
the detection of pre-showering particles improving the energy measurement in
the calorimeter. Allied to the UCAL, the yoke of the solenoid serves as addi-

3The combination of the three FTD chambers and the four TRD modules is called the Forward
Detector FDET.
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Figure 2.3: Cross–sections of the ZEUS detector, shown perpendicular to (top) and along
(bottom) the beam direction.
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tional calorimeter (Backing Calorimeter, BAC) by instrumenting the iron with
aluminium proportional tubes, providing measurements of late showering parti-
cles and energy leakage of the uranium calorimeter.

Before and behind the BAC are muon chambers surrounding the iron yoke.
These are used together with information of the inner tracking devices for mea-
suring tracks of muons that traverse the calorimeter,e. g. for identifying muons
from semi–leptonic beauty decays, as well as the suppression of cosmic muon
events.

The VETO wall and the C5 counter signal particles that enter the detector
from the rear direction. The VETO wall is a large iron wall (7.6×0.9 m) covered
on both sides with scintillation counters, positioned 7 m from the interaction point
in the upstream proton direction. It shields the detector against particles from the
proton beam halo and provides a veto against beam–gas interactions that induce a
trigger in the main detector. The C5 counter is positioned around the beam–pipe
at 312 cm from the interaction point in the upstream proton direction, near the
C5 collimator. It consists of two planes of scintillator separated by 5 cm of lead.
The time information of the C5 counter is crucial to measure the arrival times of
the beams, monitor synchrotron radiation and to reject proton beam–gas events.
Further in the direction of the electron beam, two lead scintillators are located at
z=−34 m andz=−44 m which can be used for tagging of photoproduction events.

2.2.1 Central Tracking Device

The CTD [B+98b, FMS+94] is a large cylindrical wire drift chamber with an over-
all length of 240 cm and an outer radius of 85 cm. The active volume has a length
of 203 cm with inner and outer radii of 19 cm and 78.5 cm, respectively, provid-
ing a large angular coverage of 15◦ < θ < 164◦. It contains 72 concentric sense
wire layers, arranged in 9 superlayers (see Fig. 2.4). Each superlayer is divided
azimuthally into cells of 8 sense wires. The number of cells increases from 32
in the innermost superlayer (No

¯ 1) to 96 in the outermost superlayer (No
¯ 9). The

total number of sense wires is 4608. The sense wires are read out and digitised
every 9.6 ns by flash analogue to digital converters (FADCs) with a resolution of
8 bits. The position resolution achieved in (r, φ) is 190µm. The wires of the odd–
numbered superlayers are stretched parallel to the beam axis, whereas the ones
contained in the even–numbered superlayers are tilted by stereo angle of≈ ±5◦.
With this configuration thez–position of a track can be reconstructed with an ac-
curacy of about 2 mm. All wires of superlayer 1 and half the wires of superlayers 3
and 5 are additionally instrumented with az–by–timing system in which both ends
of the wires are read out and thez–position is calculated from the difference in the
arrival times of the pulses at the two ends. This system achieves a resolution inz
of 4.4 cm [BFH+97] and is used primarily for trigger purposes.
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Figure 2.4: Cut through the CTD
in the xy–plane. In (a) the nine
concentric superlayers surrounding
the beam–pipe are shown. In (b)
a single cell consisting of sense
and field forming wires (see text)
and the ionisation drift paths are
depicted. The arrangement of the
wires and their potential ensures
a L angle of 45◦ requiring
the drift electrons to follow straight
paths.

A CTD cell is formed by 8 sense wires, made of gold–plated tungsten, alter-
nated with 9 wires at ground potential in order to make gain and drift field adjust-
ment independent of each other. The boundaries between neighbouring cells are
defined by the field planes of 19 wires, two of which at either end are at maximum
negative potential. Four shaper wires along the radial boundary, together with the
guard wires at the end of the sense wire chain, ensure the uniformity of the drift
field, making the drift velocity of approximately 50µm/ns constant throughout
the cell volume. The magnetic field is perpendicular to the electric field. The
cells are inclined by an angle of 45◦ with respect to the radial direction, so that a
straight track emitted at at the interaction point will cross the sense wire planes
and always produce hits that are close to one or more sense wires.4 These hits have
a drift time short enough (t<96 ns) for the CTD first level trigger (c. f.Sec. 2.2.4)
to assign the track to the correct beam crossing. The field strengths and the gas
mixture are tuned such that the L angle also equals 45◦. As a result, paths
of the drift electrons are almost azimuthal (see Fig. 2.4(b)),i. e. perpendicular to
high momentum tracks coming from the interaction point, which ensures optimal
resolution.

4The orientation of the inclination angle and the magnetic field direction have been chosen to
improve the reconstruction of negatively charged particles rather than positive ones. Originally
HERA was intended to run most of the time with electrons instead of positrons.
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Hits from the outer axial superlayers are combined to form a “seed”, which is
extrapolated back to the vertex. As the procedure of extrapolation occurs, more
hits are gathered thereby increasing the precision. Bad parts of the CTD are ex-
cluded. The pattern recognition is further refined to choose quality tracks which
are fitted to a helix model. The primary and secondary vertices are found by
performingχ2–fits on subsets of these tracks, achieving more precise helix pa-
rameters for the vertex–associated tracks in turn.5 The resolution in transverse
momentum for vertex–refitted tracks is [HWMN+99]

σpt

pt
= 0.0058pt[GeV] ⊕ 0.0065⊕

0.0014
pt[GeV]

, (2.1)

where the first term corresponds to the resolution of the hit positions, the second
term to smearing from multiple scattering within the CTD and the last term to mul-
tiple scattering before the CTD. A detailed description of the track reconstruction
can be found in [HIL+97, Har98].

The CTD is filled with a gas mixture of argon, carbon dioxide and ethane in
the ratio 83 : 5 : 12, which is bubbled through ethanol. This mixture has been
chosen on the grounds of safety and detector life–time [BHP+86].

The CTD is also equipped for measurements of the ionisation energy loss of
particles. The measurement process and ways of using the energy loss information
for particle identification will be described in Chap. 5.

2.2.2 Uranium–Scintillator Calorimeter

The ZEUS calorimeter [A+91b, Ber93, CGM+92, DGH+91] is a high resolution
compensating calorimeter essential for the reconstruction of the hadronic final
state. It has been designed as a sampling calorimeter, where absorber layers alter-
nate with scintillator layers, which are read out optically. Uranium is an advanta-
geous absorber for hadron calorimetry, since it provides a high yield of spallation
neutrons. These impart their energy to the hydrogen nuclei of the scintillator. In
combination with an additional contribution of photons from neutron capture in
the uranium, this helps to compensate the signal loss that hadrons suffer from the
loss of binding energy, nuclear fission fragments and from undetected decay prod-
ucts. Also, the EM component of the shower due toπ0 production is detected with

5At ZEUS the following five parameters are used for the representation of the track helices:
The distance in thexy–plane of the point of closest approach w. r. t. some reference point (usually
the beam–line),Dh, its z–position,Zh, the track curvature times the particle’s charge,Q/R, the
azimuth of the track tangent w. r. t. thex–axis at the point of closest approach and the cotangent of
the polar angle, cotθ. For vertex tracks the distance of closest approach collapses to zero,i. e. the
reference point matches with the vertex.
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Figure 2.5: Different types of shower shapes in the calorimeter. The uranium–scintillator
sandwich structure is drawn for three towers (see text) with the wave–length shifters on
the right side. The penetrating hadrons produce a large shower. The electron shower is
small. The light signal of minimum ionising muons is equally spread over the depth of
the tower.

the same efficiency as the hadronic component. Hadron showers are spread lat-
erally and penetrate deeper into the calorimeter. A parametrisation of the shower
development [Kr̈u92] shows that for an 10 GeV hadron 95 % of the transverse en-
ergy is contained in a cylinder with radius of approximately 20 cm, and penetrates
up to an equivalent of 150 radiation lengths,X0

6.
In contrast electrons and photons do not suffer such losses as they interact

predominantly with the atomic electrons (QED processes like C scattering,
bremsstrahlung or pair–production) and not with the nuclei. Electro–magnetic
showers are small. About 95 % of the energy is contained laterally within two
times the Molìere radius, which is typicallyRM=2 cm. The shower penetrates the
calorimeter to a maximum depth of about 25 radiation lengths,X0.

Highly energetic muons behave as minimum ionising particles. They lose only
a small amount of energy, which is proportional to the number of uranium layers
they traverse. The differences in the shower development for electro–magnetic
showers, hadron showers and muon penetration are used for particle identifica-
tion. The difference of the various types of showers is depicted schematically in
Fig. 2.5.

6For the ZEUS calorimeter the mean free path of hadronic interactions,λ, corresponds roughly
to 25X0.



2.2. THE ZEUS DETECTOR 53

Section Polar angle Pseudo–rapidity

FCAL 2.2◦ < θ < 39.9◦ 1.0 < η < 4.0
BCAL 36.7◦ < θ < 129.1◦ −0.7 < η < 1.1
RCAL 128.1◦ < θ < 176.5◦ −3.5 < η < −0.7

Table 2.2: Angular acceptance of the CAL

Performance of the Calorimeter

In the ZEUS calorimeter, depleted uranium7 plates of 3.3 mm thickness, encased
in a thin stainless steel sheet, serve as the absorber, while polystyrene scintillator
layers of 2.6 mm thickness are used for particle detection. This configuration pro-
vides equal signals for hadrons and electro–magnetic particles of the same initial
energy (“compensating calorimeter”). The signal integration time is 100 ns. Test
beam measurements have verified that the signal heights for hadrons and electrons
agree within 3 % for momenta greater than 2 GeV. The permanent irradiation by
particles from nuclear decays of the uranium plates is detected and used for stabil-
ising the detector calibration within 1 %. The energy resolution for electrons and
hadrons was measured in the test beam to be

σe

E[GeV]
≈

18 %
√

E[GeV]
, (2.2)

σh

E[GeV]
≈

35 %
√

E[GeV]
. (2.3)

For energies between 15 and 110 GeV the calorimeter response to electrons is
linear within 1–2 %.

Mechanical Layout

The CAL is divided into three independent sections (see Tab. 2.2), which alto-
gether cover more than 99 % of the 4π solid angle around the nominal interaction
point. For photon–proton collisions as analysed in this thesis, this calorimeter
is especially well suited to measure the hadronic energy depositions over a wide
range in the photon fragmentation region (c. f. Fig. 3.4) of theγp centre–of–mass
system with a single calorimeter type. The three calorimeter sections are divided
into 80 modules, the largest of which is shown in Fig. 2.6.

The FCAL modules consist of 185 layers of absorbers and scintillators, which
are transversely segmented to form calorimetertowers. The total depth of an
FCAL tower is 7 nuclear absorption lengths,λ. The towers are longitudinally di-
vided into three sections, the electro-magnetic and hadronic calorimeters (EMC,

7DU, alloy of 98.4 % 238U, 1.4 % Nb and less than 0.2 % 235U.
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Figure 2.6: Cut–away view of a FCAL module.
The particles enter the module from the left
traversing the sandwich structure of the towers
made of uranium and plastic scintillators. The
wave–length shifters mounted on the right col-
lect (mainly blue) light emitted by the scintilla-
tors and guide it to the photo–tubes converting
it to green light on the way.

HAC1 and HAC2), which are read out independently. Electro–magnetic parti-
cles deposit most or all of their energy in the EMC, which has a thickness of 26
radiation lengths,X0, and is transversally segmented into cells of 5 cm× 20 cm.
For energetic hadrons the particle shower extends beyond the EMC into the HAC
sections, which are 85X0 deep each. The HAC cells are 20 cm× 20 cm wide.
Wave-length shifters guide the light generated in the scintillator plates to photo–
multiplier tubes on either side of the tower for measuring the pulse–height and
arrival time. For energy deposits more than 4 GeV the resolution of the arrival
time measurement is better than 1 ns.

The RCAL modules do not have HAC2 towers, because the hadronic energies
in the backward direction are kinematically limited to the value of the electron
beam energy. The rear EMC is less finely segmented than in the FCAL and has a
cell size of 10 cm× 20 cm.

The BCAL consists of 32 wedge–shaped modules, which are tilted by 2.5◦

in φ to prevent particles from running undetected along the cracks between the
modules. Its EMC and HAC 1+2 sections are only 23X0 and 52X0 deep, respec-
tively, amounting a total of 5λ. The front face dimensions of the EMC towers are
4.9 cm× 23.3 cm. One HAC tower covers four EMC towers, except for the front
(rear) ring, where only two (three) EMC towers are covered by one HAC tower.
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Figure 2.7: Schematic view of the island clustering algorithm in the ZEUS calorimeter.

Island Finding

The clustering algorithm used in this thesis to aid in the electron identification is
depicted in Fig. 2.7. Energy deposits in the calorimeter are clustered toislands
which are helpful for the reconstruction of the total energy of a single or a bunch
of incident particles. The island finding is performed on calorimeter cells (i. e.
sections within a tower). For each cell the neighbouring cell, which has the highest
energy, is determined and an arrow from each cell to its highest energy neighbour
is drawn. When the cell has no neighbour of higher energy than itself, this is then
considered a “peak”, which will be a centre for an island. Then considering all
cells again and following the arrows until the peak is reached, it is found that all
cells are uniquely associated with some peak and all those associated with a peak
are classified as islands. The island finding is done for each calorimeter section
individually, and they are then joined across boundaries. The centre of the island
is defined by the mean position of all associated cells weighted with the logarithm
of the energy of each cell content.

Energy Flow Objects

The islands described above are two–dimensional objects existing in a particular
layer of calorimeter cells (EMC, HAC1, HAC2). However, in real life a particle
might spread its energy over more than one cell layer. Thus it is wise to combine
cell islands to 3–dimensional, so-calledcone islandsrepresenting the energy flow
of a single particle or a very narrow shower. For charged particles the energy mea-
surement can be further improved by using the momentum of the matched particle
track8, if the relative uncertainty of the momentum measurement is smaller than
that of the energy measurement in the calorimeter. In this case the sometimes am-
biguous correction of the energy flow for dead material in front of the calorimeter

8For the conversion from momentum to energy, the particle is supposed to be a pion.
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Figure 2.8: Reconstruction of energy
flow objects: EMC cell islands 2 and
3 are joined with HAC cell island 1 to
form a cone island. In the next step
the cone islands are matched to tracks
(4). Good tracks which are not asso-
ciated with any calorimeter object are
counted as charged energy. Calorime-
ter objects not associated with any
track are counted as neutral energy
(5). Courtesy of [Tun01].
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is not needed resulting in a more precise energy determination.9 The resulting en-
ergy flow objects (EFOs) consist in the case of charged particles of a cone island
or a particle track, or both. For neutral particles only a cone island is seen. The
situation is depicted in Fig. 2.8. A detailed description of the EFO reconstruction
is given in [Tun01]. The reconstructed energy flow objects are used for jet finding
and the reconstruction of the hadronic final–state (c. f.Chap. 3).

2.2.3 Luminosity Monitor

At ZEUS the luminosity measurement is based on the very precisely known B–
H process, ep→ e′γp, where an electron scatters off a proton under emis-
sion of a bremsstrahlung photon [BH34]. The total cross–section of this QED
process is about 326 mb for photon energies 0.1<Eγ<26.7 GeV [PZ94].

The bremsstrahlung photons emitted in ep collisions at the interaction point
leave the beam–pipe through a copper–beryllium window 82 m downstream in
the electron beam direction and are detected in a 22X0 deep lead–scintillator
calorimeter [A+92b] at a distance of 107 m from the interaction point (c. f.Fig. 2.9).
A carbon filter shields the photon calorimeter from synchrotron radiation. The
photon impact point is reconstructed with a precision of 2 mm. The energy reso-
lution under experimental conditions isσ(E)/E=26 %/

√
E, with E measured in

GeV. Since the differential cross–section is a function of the photon energy, the lu-
minosity is calculable from the Bethe–Heitler formula [BH34]. The largest back-
ground arises from electron bremsstrahlung on the residual gas. Measuring the
currents in the paired and unpaired electron bunches and the bremsstrahlung rate

9In some regions these corrections are larger than 20 %.
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Figure 2.9: The ZEUS luminosity monitoring system. The hatched blocks indicate bend-
ing (B) and quadrupole (Q) magnets. The detectors at 35 m and 44 m measure electrons
that are scattered under very small angles and are used for taggingγp events with a corre-
sponding centre–of–mass energy within the range 70<

√
sγp<120 GeV.

for the unpaired electron bunches, the beam–gas background can be subtracted
statistically. A detailed description of the procedure can be found in [PZ94, PZ95].

2.2.4 Trigger and Data Acquisition

Only a few of the huge number of interactions actually correspond to genuine ep
collision events. The bulk of triggers, however, are due to background events of
various types which have to be recognised and removed. In particular, the cross–
section for collision between protons and rest gas molecules in the beam–pipe
is huge. The rate of this type of interactions is estimated to be approximately
0.5 kHz/m. The spray of particles that is produced during these proton–gas inter-
actions, or products from secondary interactions with accelerator elements such
as magnets and collimators, can enter the calorimeter and deposit energy, thereby
producing a trigger signal. In general, the proton gas interactions occur all along
the proton beam–line, but the signature in the detector depends on their vertices.
First, the particles emanating from proton–gas interactions that have the vertex
downstream of the main detector do not enter the calorimeter and apart from the
fact that they reduce the proton life–time, are completely harmless. Second, the
interactions can occur inside the detector. These background events can deposit
a large amount of energy in the forward calorimeter FCAL, in the direction of
the incident proton, whereas the RCAL remains empty. This type of events is
recognised with the help of energy–momentum conservation. The third class of
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proton–gas interactions occurs upstream of the detector and the spray of particles
can hit both the RCAL and the FCAL. Beam–gas interactions with vertices up
to z≈ 100 m are visible in the calorimeter. The total rate seen in the detector is
of the order of 50 kHz, approximately five times lower than bunch–crossing rate.
This large class of proton–gas interactions is rejected with the beam monitor time
counter C5 and the calorimeter timing information. The VETO wall is also used
to reject this type of background.

A source of the electron beam induced background is the collinear synchrotron
radiation from the electrons. However, most of this radiation occurs at large cur-
vature of the HERA ring, far away from the experiments. Shielding with a set of
masks and collimators in the electron beam reduces the remaining fraction of this
type of background considerably. The electrons can also collide with nuclei of the
remaining rest–gas in the beam–pipe. The collisions of such background events
are analogous to fixed–target events with

√
s≈ 7 GeV. This type of background

events is especially dangerous when it occurs inside the main detector close to the
nominal vertex. The rate of these electron–gas events can be estimated with the
electron pilot bunches, and proved to be small.

Separate classes of non-colliding beam background are the cosmic muon and
beam halo muon events which are rejected by the help of the muon reconstruction.

On-line Trigger

The ZEUS on-line trigger system aims at a rejection factor of 105 while main-
taining full efficiency for interesting physics events. The system operates on three
levels (see Fig. 2.10), that reduce the beam crossing rates of 10 MHz to accepted
trigger rates of 1 kHz, 100 Hz and 5 Hz respectively [S+89, Wig87, vdL93].

First Level Trigger (FLT) Each detector component has its own custom built
front–end and read–out electronics and a logical first level trigger, which
provides a first decision based on a sub-set of the data by means of very fast
hardwaree. g., programmable gate arrays, look-up tables. The global first
level trigger (GFLT) synchronises the component triggers with the HERA
clock. The GFLT expects the FLT decisions from the subdetectors 31 clock
cycles10 after the bunch crossing, and needs additional 15 clock cycles until
an accepted signal is generated from the logical OR of 64 local trigger slots.
Since it takes additional cycles until the accepted signal has been propa-
gated, components like the calorimeter keep their signals in data pipelines.
The CAL is one of the most important components contributing to the GLFT
decision. For the FLT the calorimeter is divided into 448 non-overlapping
trigger towers for both the EMC and the HAC sections. Each trigger tower

10One HERA clock cycle takes 9.6 ns.
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Figure 2.10: The ZEUS trigger and data acquisition system. The event rates shown are
the design values.

is typically formed by a pair of adjacent cells. Whenever the energy deposit
in one of those towers exceed a programmable threshold, a FLT–accept is
issued. The C5 counter is used to veto triggers that are inconsistent with the
beam arrival times. The GFLT is supposed to reduce the rate below 1 kHz.
The experimental dead–time due to trigger and read–out is less than 0.1 %.

Second Level Trigger (SLT) Accepted events are fully digitised and copied to
the second level trigger, which again is local to most of the components.
This step typically takes 30µs and thus creates approximately 3 % dead–
time at 1 kHz. On the SLT level, objects like track momenta, the event ver-
tex and calorimeter clusters are reconstructed, permitting a more restrictive
trigger decision. The result is sent to the global SLT (GSLT) together with
the reconstructed variables for an overall evaluation. Like many of the SLTs,
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the GSLT is based on a transputer network. Each transputer is devoted to
a particular task such as general vetoing or the recognition of certain event
signatures, leading to further reduction down to a level of 50—100 Hz.

Third Level Trigger (TLT) For each event that passes the GSLT, the data from
the various components are handed over to the event builder, which is a
network of custom made transputer models. It combines all the data of an
event into a single record of ADAMO [F+93] database tables and distributes
the assembled events over the processor nodes of the third level trigger. The
ADAMO format is the data structure used at all subsequent levels up to
physics analysis programs. The TLT is a computer farm. Each computer
individually analyses and classifies a single event with a custom version of
the off-line reconstruction software, which uses the full event information.
The accepted events pass the TLT at a rate of≈5 Hz with a size of≈150 kB
each and are written to the event repository consisting of tape robots in the
DESY computer centre.

Event Reconstruction

The ZEUS physics reconstruction program (ZEPHYR) operates on the ADAMO
data structures made by the event builder. In a first phase, ZEPHYR reconstructs
the calibrated energies and track segments for each detector component separately.
After a full reconstruction of the recorded events, a data summary tape (DST),
again in ADAMO format, is created for physics analysis. The physics groups
supply appropriate routines that flag the interesting events to reject a large fraction
of definitely non-interesting triggers.

Monte Carlo Simulation

The complete chain between the ep collisions and reconstruction of the events is
duplicated in Monte Carlo simulation programs. These are indispensable for a
correct understanding of the detector response and background events. The simu-
lated events are used to understand the background events and to correct the data
for acceptance and detector smearing. Event generators such as PYTHIA produce
four–vectors according to the desired type of ep scattering. The four–vectors are
fed into the GEANT3.1 based ZEUS Monte Carlo simulation program [B+87].
It provides an accurate description of the complete ZEUS detector including a
detailed configuration of all sub-detectors with both active and dead material, as
well as it simulates the response and read–out electronics. For the calorimeter,
the shower routines were adapted and modified such that the results of the ZEUS
test–beam data were reproduced by the simulation. An overview of the data and
simulation chain is presented in Fig. 2.11.
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Figure 2.11: Overview of the data and simulation chain.

In principle, the output of the simulation program is indistinguishable from
the data and is processed by the next module, the simulation of the ZEUS trigger
system. Here, the Monte Carlo events that would have been rejected by the trigger
system are identified and marked.



Chapter 3

Event Selection

In this chapter the selection ofγp events containing beauty in ep collisions at
HERA is described. They are represented by the reaction

e±p → bb̄+ e′±X → esl
± + dijet+ e′±X . (3.1)

Here, X indicates the proton and photon remnants, while electrons originating
from the semi–leptonic B decays are denoted by esl .

3.1 Data Sets

For this analysis all physics triggers recorded with the ZEUS detector in the years
1996—2000 are used. Events for which the detector was not in an appropriate
state, because some important component was being switched off or the HERA
machine had not been working properly, are excluded.1 The data sets are sum-
marised in Tab. 3.1. In total an integrated luminosityL=120.4 pb−1 is available,
corresponding to 130 million events.

From 1996—2000 the HERA collider was operated with an energy of the
electron beamEe= 27.5 GeV, while the proton energy was raised from 820 GeV
to 920 GeV in 1998 leading to an increase of the centre–of–mass energy from
√

sep = 300 GeV to 318 GeV. The machine was running most of the time with
positrons, only in 1998 and some of 1999 electrons had been injected.

Event simulation, mainly needed for unfolding the cross–sections in the end,
had been done with the PYTHIA6.2 generator [S+02], whose basic features are
described in Sec. 1.7.1. All QCD processes given in Tab. 1.1 are simulated in
leading order perturbation theory. The simulation was done separately for the

1This is done with the help of the ET database [ZEU06].

62
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Year Ee[GeV] Ep[GeV] Lepton L [pb−1] #Events/106

1996 — 1997 27.5 820 positrons 38.6 45.008
1998 — 1999 27.5 920 electrons 16.7 21.420
1999 — 2000 27.5 920 positrons 65.1 63.016∑

= 120.4
∑
= 129.444

Table 3.1: Data sets used for the analysis. In 1998 the proton energy was raised from
820 GeV to 920 GeV and the lepton beam switched from positrons to electrons for some
months.L denotes the integrated luminosity gathered with the ZEUS detector.

beauty signal, charm and the light flavours (u, d, s).2 The beauty sample is further
split into the different process classes: resolved and direct processes (Sec. 1.3)
as well as excitation in the proton and the photon (Fig. 1.15). In the case of the
charm and light flavours only the direct and resolved processes had were gener-
ated separately — the excitation processes are part of the resolved samples. The
different samples are listed in Tab. 3.2.

For all samples the parametrisations of the proton structure CTEQ–4L (see
Sec. 1.4.2) and GRV–LO (Sec. 1.4.1) for the photon structure were used.3 The
beauty signal samples were generated with the massesmb = 4.75 GeV andmc =

1.35 GeV for the heavy quarks, and massless light–flavours. In the charm and light
flavour samplesall quarks including the heavy ones are massless. The P

fragmentation parameterε was chosen to 0.041 for both beauty and charm (OPAL
fit [A +98]).

Both in real data and in the Monte Carlo, high–Et dijet events are pre-selected
with the help of the third level trigger HPP 14 at an intermediate step. The trigger
decision is mainly based on the results of a fast and simple cone–jet finder (see the
next section about jet finders). The energy threshold is rather low (Et>4.5 GeV),
to prevent the off-line event selection described in the following from bias. In
addition the trigger requires a high totalEt in the calorimeter and uses some simple
decisions to reject beam–gas collisions and other non-physics background. The
complete definition of the HPP 14 trigger is listed in the appendix A. It should
be noted that the selection of dijetγp events discussed in the following is well
established in ZEUS analyses (see [Tur02, Gut05, Blo05] for instance), and will
therefore only be briefly addressed.

2Actually the samples for charm and the light flavours originate from the same source, a big
inclusive dijet sample containing all quark flavours. In the charm case this was achieved by vetoing
those events containing b or u, d, s quarks not produced in the fragmentation process; while for
light–flavour selection all events containing b or c quarks not coming from the fragmentation are
rejected.

3Here “L” or “LO” denotes versions of the parametrisations computed inleading order.
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Configuration Flavour Process σ/nb #Events/106 L/pb−1

Ep = 820 GeV b directγp 4.08 1.02 249.911
b resolvedγp 0.82 0.21 256.475
b excitation inγ 1.50 0.36 240.171
b excitation in p 0.31 0.09 286.481

u,d,s,c,b directγp 630.36 28.36 44.988
u,d,s,c,b resolvedγp 6900.20 309.38 44.745

Ep = 920 GeV b directγp 4.39 1.98 450.573
b resolvedγp 0.91 0.42 459.945
b excitation inγ 1.66 0.72 434.538
b excitation in p 0.36 0.18 506.273

u,d,s,c,b directγp 664.594 57.562 86.613
u,d,s,c,b resolvedγp 7493.29 566.458 75.288

Table 3.2: Monte Carlo Samples. The samples for charm and light–flavours were taken
from a large inclusive sample containing all flavours. The two configurations contain
events simulated in the correct fractions for different trigger and detector configurations
and vertex distributions according to the situation in real data taking.

3.2 Jet Reconstruction

Jets are important objects for the characterisation of high–pt events. They are
built from particle energies byjet finding algorithms. At ZEUS the “kt–clustering”
algorithm [CDW92, CDSW93] is most common. The older “cone” algorithm is
used for trigger purposes only.

The Snowmass Convention [H+92] sets the standard for cone jet algorithms.
Here a two–dimensional grid is used in the plane of the pseudo–rapidity,η, and
the azimuthal angle,φ, requiring a minimum energy deposit in one of the cells of
the grid. The size of the cone is typically chosen to beR=

√
∆η2 + ∆φ2= 1. The

transverse jet energy is calculated from the sum of the transverse energies found
inside the coneEt

jet=
∑

i Et(ηi , φi) . The rapidity and azimuthal positions of the jet
axis are computed from the weighted energy sums of the contributing cells.

The Snowmass Convention does not address the question of overlapping jets
and seed finding for the cone algorithm. This leads to theoretical ambiguity with
respect to jet merging in the final–state and the process is not infrared safe at
next–to–next–leading order (NNLO) without modifications [Sey97]. These prob-
lems are avoided by the use of thekt–algorithm, which decomposes the event
topology into large combined clusters of energy depositions. Based on the open-
ing angle between two energy depositions,En,Em, and their energy, the quantity
kt=min(E2

n,E
2
m) · (1− cosθm,n) is calculated for all pairs of cluster combinations.

The pair with the minimumkt value is combined into a common cluster. The
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process is repeated until no two clusters can be found withkt below ξE2
t , where

Et is the total transverse energy found in the event, andξ is a cut–off parameter.
In photoproduction analyses the algorithm is usually run in the laboratory frame
using the inclusive recombination scheme [ES93] in a mode which is invariant
under longitudinal boosts. For this, massless clusters are assumed. However, in
this analysis thekt–clustering algorithm was run in themassivemode, since heavy
quark jets are involved.4 Furthermore, the “inclusive” mode of the jet finder was
used, in which all clusters including the beam remnant are probed — in contrast
to the “exclusive” mode, where the algorithm tries to separate the hard final state
from the soft beam remnants explicitly.

In this work three different sets of jets are used, all being reconstructed with
thekt–clustering algorithm.

Detector level jets: These jets are reconstructed both in real data and Monte
Carlo. Here, the energy flow objects, defined in Sec. 2.2.2, are used as
input for the jet finder.

Hadron level jets: The hadron level is defined as the true hadronic final–state
in front of the calorimeter and thus valid only in Monte Carlo events. All
stable final-state particles except neutrinos are used for the jet finding.5

Parton level jets: The jet finder runs over all partons just before the fragmenta-
tion process produced by the event generator. All partons originating from
the QCD sub-process and the parton showers are included.

3.3 Kinematics of Photoproduction Events

At ZEUS γp events can be selected in two ways: either by detection of the scat-
tered lepton in the electron detector or luminosity system (c. f. Sec. 2.2.3) in the
kinematical region belowQ2 < 0.01 GeV2 and between 150<

√
sγp < 250 GeV

(“tagged photoproduction”), or by selecting events without scattered lepton seen
in the detector, since at small scattering angles w. r. t. the beam direction the elec-
tron disappears undetected (“untagged photoproduction”). This method is often
used in order to increase statistics, since in the case of tagged photoproduction
the geometric acceptance is small. Untaggedγp events have an average virtual-
ity Q2 = 10−3 GeV2 and a maximum virtuality ofQ2 = 4 GeV2 [D+95b]. In the

4In the massive mode the four–vectors of the clusters are simply added. Pion masses are used
here to obtain the four–vector of each cluster.

5Note however, that in some analyses different definitions of the hadron level are used like
the set of all sufficiently stable hadrons. In particular the B hadrons are not yet decayed in this
definition.
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Figure 3.1: Reconstruction of the
fractional γ energy, y, in simu-
lated b̄b events of direct photo-
production. Shown are the true
values ofy versus the values re-
constructed with Eqn. 3.2. The
light–grey line represents the bi-
secting line. recy
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case of tagged photoproduction the photon energy is derived from the scattered
electron energy (Eqn. 1.25) and in the untagged case from the final–state hadrons
with the help of Eqn. 1.26. Here, the sum over the partons has to be replaced by
a sum running over all reconstructed hadronic final–state objects — the energy
flow objects (EFOs,c. f. Sec. 2.2.2). This method is sometimes referred to as the
“J–B method” [JB79].

y =
1

2Ee

∑
i ∈ all EFOs

(Ei − pz, i) . (3.2)

Since the EFO energies are already corrected, no systematic correction ofy is
needed, as exemplarily shown in Fig. 3.1 for simulated bb̄ events in direct photo-
production.

In this analysis the method of untagged photoproduction is used to gather as
much statistics as possible to compensate for the small beauty production cross–
section. All events containing a scattered electron candidate found by the S

electron finder (see the selection of DIS events in Sec. 4.4.1) with an electron prob-
ability Pe′ > 0.9, and an electron momentumpe′ > 5 GeV are rejected. However,
sometimes the electron finder mis-identifies photons originating fromπ0 decays
as electrons. In order not to throw away too many goodγp events, the above re-
jection cuts are tightened by the requirement ofye < 0.9. Here,ye denotes they
determined by the “electron method”. This method utilises — in contrast to the
J–B method — the information of the scattered electron and gives a
better reconstruction ofy in the case of neutral current DIS events.

ye = 1−
E′e
2Ee

(1− cosθe) . (3.3)
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Figure 3.2: Distribution of the
z–position of the primary vertex
for real data (solid circles) and
Monte Carlo (shaded histogram).
The width of the resolution is
about 11 cm.

Further suppression of residual DIS events is achieved by exploiting the conserva-
tion of the longitudinal momentum,

∑
i(Ei − pz, i), which is expected to be around

two times the energy of the incoming electron for DIS events. A cut ony<0.8 is
used, corresponding roughly to an

∑
i(Ei − pz, i) of 45 GeV.

Background suppression of beam–gas collisions is achieved by the require-
menty>0.2. These events can be thought of as proton collisions on a fixed target,
the produced particles have a small polar angle so that

∑
i(Ei − pz, i) →0. Further

cleaning is done with a cut on thez–position of the primary vertex|zVtx |<50 cm,
which is almost five times the width of thez–vertex distribution, as shown in
Fig. 3.2.

The parton kinematics defined by the fractional energies,xγ and xp, can be
reconstructed in dijet events using Eqns. 1.27 and 1.28 with the outgoing partons
replaced by the two jets

xγ =
1

2yEe

∑
i ∈ jet1,2

Et, i e−ηi , (3.4)

xp =
1

2Ep

∑
i ∈ jet1,2

Et, i eηi . (3.5)

For the study of hard scattering processes, events with sufficiently high transverse
jet energies,Et, are required. In this analysis only events containing at least two
jets withEt>7 GeV for the higher energetic jet andEt>6 GeV for the second jet,
respectively, are selected. The geometric acceptance is limited by the calorimeter
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to |η|<2.5.6 As mentioned in the last section, for the jet finding thekt–clustering
algorithm was used with a massive inclusive recombination scheme running in the
laboratory frame.7 In Fig. 3.3 different jet configurations corresponding to differ-
ent regions of the parton kinematics are shown. The boost of theγp centre–of–
mass system with respect to the laboratory system is on average∆η=2 (compare
the configurations with the event display shown in Fig. 3.11). Figure 3.4 gives a
schematic view of the total tranverse energy of the final–state as a function of the
photon–proton centre–of–mass rapidity,ηγp. The laboratory variablesη andθ are
indicated by additional axes. The region within±1 units aroundηγp= 0 is called
the “mid-rapidity” region dominated by the dijet system. The proton remnant par-
ticles appear as enhancement at positive rapidities, while the photon remnant is
located at negative rapidities. The scattered electron is indicated at large negative
values ofηγp. The geometric acceptance of the ZEUS detector is shown also. The
main detector covers a large fraction of theγ fragmentation region, the centralγp
collision region, and a small part of the proton fragmentation region.

In Fig. 3.5 distributions of the number of jets per event and the jet variablesEt

andη for the most energetic jet in dijetγp collisions are shown, both for real data
and Monte Carlo. The distributions ofEt andη exhibit a good agreement between
real data and the simulation, whereas the number of jets is not very well described
in particular for the higher jet multiplicities. This is a known weakness of the
PYTHIA program. There are indications that the reason is a wrong azimuthal
distribution in the case of higher order jets which might be caused by a breakdown
of the collinear ansatz made in the DGLAP evolution [LZ06].

3.4 Pre-Selection of Electron Candidates

The identification of electrons from semi–leptonic beauty decays is described in
the next two chapters. Before doing so, a pre-selection of possible candidates is
necessary. Since for the particle identification tracking and calorimeter informa-
tion will be used, the energy flow objects (EFOs, see Sec. 2.2.2) are a good starting
point. Of those several classes exist, depending on the track–island–relationship
and the method of energy determination. The situation is depicted in Fig. 3.6 for
the simulated beauty events described in Sec. 3.1. Roughly 90 % of the electrons
and positrons have an unequivocal track–island relationship, are isolated and their

6The actual geometric acceptance of the CAL is wider (−3.5 < η < 4), however due to the
finite spatial resolution the full range cannot be used. The calculation ofη is done w. r. t. the
reconstructed vertex position.

7In a first step the jet finder is run with a minimum cut ofEt > 4 GeV. Afterwards the cuts of
7(6) GeV are applied to the two most energetic jets found (thus affecting the number of jets per
event).
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Figure 3.3: The configuration of the jets and the remnants in two-jetγp events depends
on the parton kinematics: In events with lowxγ and highxp, both jets are typically found
at large rapidities,η (a). At high xγ and highxp, one jet is at positive and the other at
negative rapidities (b). At highxγ and lowxp, both jets are at rapidityη≈ 0. The proton
remnant always points in the proton direction and remains mainly undetected. The photon
remnant goes in the direction of the incoming lepton in the case of directγ interactions.
For resolved photoproduction the direction is changed and might be partially or fully
observed.

momenta are precisely determined by the central drift chamber (labelled by “CTD
1:1” in the figure). Only these are selected for further analysis.

Special care needs to be taken in the region of the super–cracks, the gaps be-
tween the forward and barrel calorimeter, and between the rear and barrel calorime-
ter, respectively. If the energy of a particle is distributed across a calorimeter
boundary, the clustering does not work properly, leading to wrongly reconstructed
energies and barycentres. Although the EFO reconstruction tries to correct this,
the results are still poor. Therefore these cases are filtered out, which is accom-
plished by a cut on the EFO depth

d <

(
(θ − 90◦)2

500
+ 18

)
cm. (3.6)
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Figure 3.4: Schematic view of the total transverse energy of the final–state,Et
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observables in the laboratory frame,η andθ (a mean boost of∆η = 2 between the two
systems is assumed here). The position of the main detector and the electron tagger are
indicated by the dashed lines. The electron peak on the left is not to scale.
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Figure 3.5: The number of jets per event andEt andη of the most energetic jet in dijet
photoproduction events. The filled circles indicate real data while the shaded histograms
represents the simulation. The latter have been normalised to the area of the data distribu-
tions. All plots have been made for the 98—00 running period.
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Figure 3.6: Distribution of EFO classes in simulated bb̄ events for all particle types (a),
and electrons only (b). The classes describe then : m relationships of tracks and islands.
Energies are either determined by the CTD or the CAL (c. f. Sec. 2.2.2). Most of the
electrons possess a 1:1 track–island relationship.

In this context the EFO depth is defined as the distance of the EFO barycentre
from the entry point of the particle in the calorimeter. Equation 3.6 is motivated
by Fig. 3.7. The super–crack regions are clearly visible. In addition, this cut helps
reducing the pion background.

The electron candidates are further constrained by requiring tracks of good
quality which are not possibleγ conversion candidates (see Sec. 4.4.1). For further
background suppression, in particular those from photon conversions and D

decays, a minimum transverse momentum ofpe
t > 0.9 GeV is required, being a

compromise between background suppression and signal acceptance as defined
by the beauty decay spectrum. With this cut a large fraction of the signal is kept.
Note that this particular cut is much lower than the corresponding one in the B→µ

analyses, which is usuallypµt & 2.5 GeV cutting most of the signal away and thus
restricting the visible cross–section very much.

Another requirement is a good reconstruction of the ionisation loss measure-
ment, dE/dx, of the electron candidate, which is most important for the electron
identification. Here, a minimum number of truncated hits per track, which is the
number of CTD hits used for the dE/dx reconstruction process (for details see
Sec. 4.2.2), is required. As discussed in Sec. 4.4.3, a cut ofntrunc>12 is appropri-
ate.

For the identification of semi–leptonic decay electrons it is also necessary
to match the electron candidate with its parent jet. This is best achieved by
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(a) Electrons (b) Pions

Figure 3.7: EFO distribution as a function of the depth,d, and the polar angle,θ, for
electrons (a) and pions (b). The regions of the super–cracks atθ ≈ 35◦ andθ ≈ 130◦ are
clearly visible. The cut defined in Eqn. 3.6 is represented by the black line. Figure taken
from [Jün05].

cutting on the distance between the candidate and the jet in the (η, φ)–plane,
djet=

√
(∆η)2+(∆φ)2 < 1.5, as seen in Fig. 3.8.

3.5 Summary

In the previous sections the selection of dijet photoproduction events containing
possible e± candidates from semi–leptonic decays of heavy hadrons has been de-
scribed. The impact of the selection cuts on the total number of events is shown
in Fig. 3.9. An example of such an event is displayed in Fig. 3.11. Control dis-
tributions of the event kinematics of those are presented in Fig. 3.10. Here, for
the sake of completeness, the electron candidates have been further refined by a
cut on the electron test hypothesis function as will be explained in Sec. 6.3. The
distributions for real data and Monte Carlo agree well except for the highxp and
the low xγ region. The discrepancy for lowxγ values results from the incomplete
description of the soft underlying event. Although the PYTHIA program has the
ability for simulating multiple parton interactions, it is known that the model is
not sufficient to fully describe all the soft interactions at taking place at lowxγ.
The same holds for other Monte Carlo generators too, and the topic is the subject
of recent measurements and discussions (see for instance [Aco]).

In the next two chapters the identification of the electrons from semi–leptonic
decays will be discussed, which is needed for the extraction of the beauty and
charm signals.
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(a) Close–by jet (b) Distant jet

Figure 3.8: Distance of electron candidates to leading jets in the (ηφ)–plane. In (a) the
distances to the nearest jet are shown, while the distribution (b) includes the distances to
the more distant jet. The radius cut at 1.5 is needed for avoiding ambiguous matchings at
large distances. Courtesy of [Jün05]
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Figure 3.9: Effect of the cuts used for the event selection on the total number of events. A
detailed description of the selection criteria is given in the text. Shown are the numbers
for the 98—00 running period.
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Figure 3.10: Control distributions of the event kinematics inγp events containing at least
two jets and an e± candidate coming from a semi–leptonic decay of a beauty or charm
hadron. Shown are the fractional photon energy,y, and the corresponding centre–of–mass
energy in theγp system,

√
sγp, as well as the fractional momenta,xp andxγ, of the proton

and the photon participating in the hard scatter. The Monte Carlo distributions (shaded
histograms) are normalised to the area of the distributions for real data (black dots). The
distributions shown are that for the 98—00 running period (

√
sep=318 GeV).
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Chapter 4

Ionisation Loss Measurements

In this chapter the identification of charged particles by means of energy loss due
to ionisation, dE/dx, in the central tracking chamber is discussed. The particle
identification is needed later for the identification of electrons from semi–leptonic
decays in order to enrich a beauty signal.

In the past, particle identification with dE/dx has been used only in a few
ZEUS analyses and then only in crude ways. A favoured method is that ofstatisti-
cal subtractionwhich has been used at ZEUS for identifying electrons produced in
semi–leptonic decays [Win99, Vac05]. Here, an electron–enriched sample (EMC
fraction fEMC = 1) and a hadron–enriched one (fEMC < 0.4) are selected and their
dE/dx distributions are subtracted from each other. The tiny difference then is
simply fitted with a Gian which is used for defining a cut on the dE/dx vari-
able (see figure 4.1). All tracks with a higher dE/dx value are defined as electron
signal and then used for further analysis. This method has several drawbacks.
The biggest one is the assumption that the hadronic background in the electron–
enriched sample is described correctly by the hadron sample. This assumption is
not necessarily fulfilled, because hadrons withfEMC=1 might differ significantly
from the ones with a lower EMC fraction. In particular the latter ones contain
much more soft pions and anti-protons. This can lead to non-controllable system-
atic errors. Indeed it has been shown that this method has not worked for beauty or
charm decaying semi–leptonically into positrons, only electrons.1 Also, the hard
cut on dE/dx reduces the statistics even further which results in large statistical
uncertainties for the whole analysis.

Another method used sometimes is justcutting thedE/dx bands[C+04b].
Given that the resolution of the energy loss measurement in the CTD usually is
in the order of 10 % this results in a certain amount of contamination in the se-
lected sample which is unwanted. Even more, in regions of crossing bands this

1The beam particle had been always a positron in this analysis.
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Figure 4.1: Statistical subtraction method. The hadron–enriched sample which estimates
the background is subtracted from the electron–enriched sample [Win99].

method is not applicable at all which means that large ranges in momentum have
to be cut out. Table 9.1 of [BR93] shows the allowed momentum ranges for a 2σ
identification of particles in argon.2

A better way to identify particles is combining all available information in
some hypothesis test. From the view of statistics the best possible test is thelikeli-
hood ratio test, which in easy words is the ratio of the likelihood for the hypothesis
to test (the particle being of the type in question) and sum of the likelihood for the
hypothesis and the anti-hypothesis (the particle being of any other type). This is
the method used here which has been applied for identifying B hadrons decaying
semi–leptonically into e±. It will described in more detail in Sec. 6.2.

After a brief introduction to the passages of charged particles through matter,
the measurement process of energy losses in the CTD is discussed. Next, the cal-
ibration of the reconstructed dE/dx for the HERA-I running period is performed
together with a description of the calibration samples needed for this. The last
section deals with ways of using dE/dx in Monte Carlo events. The combined
particle identification using ionisation loss measurements and calorimeter infor-
mation will be discussed in Chapter 5.

2Note that here a much better resolution is assumed.
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(a) Positive charge (b) Negative charge

Figure 4.2: This picture illustrates cutting the dE/dx bands of positive (a) and negative
(b) charged tracks. Used for pion–proton separation within theθ++ analysis [C+04b].

4.1 Ionisation Losses of Particles in Matter

Charged particles traversing the CTD mainly interact by ionisation and excitation
of the gas molecules in the chamber. Other processes like bremsstrahlung etc. are
negligible in the momentum range considered. The energy required for the gas
ionisation is taken from the particle’s kinetic energy and is very small, typically
a few keV per centimetre of gas in normal conditions. The released ionisation
electrons of every track segment drift through the gas and are amplified at the
signal wires in avalanches.3 Electrical signals that contain information about the
original location and ionisation density of the segment are recorded.4

First predictions of energy losses caused by the passage of charged particles
through matter, first observed by B [BK05], were made by B and B
[BB33] and their famous formula. Here, the energy loss per unit of pathlength is
given by

dE
dx
=

4πNe4

mec2 β2
z2

(
ln

2mec2 β2γ2

I
− β2

)
, (4.1)

wherezdenotes the charge of the travelling particle,N the number density of elec-
trons in the matter traversed andI the mean excitation energy of the atom. The
latter is calculable for simple atoms, but has often been considered a parameter to
be fitted from the measurements of the ionisation energy loss near the minimum.
A collection of such determinations ofI is contained in [SB82]. The B–
B formula includes the integral over all the energies lost to the individual

3For the CTD the gas gain is of the order of 104.
4Ample reviews on this subject can be found at [Sau77] and [BR93].
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atoms of the medium extending up to the maximum transferable energy, and is for
this reason only valid for travelling particles heavier than electrons. These are in-
distinguishable from their collision partners resulting in a half as large maximum
energy [Bha38].5 However, when averaging only over transfer energies up to a
certain limit∼10—100 keV [Ueh54], which is much larger than the binding ener-
gies, yet sufficiently small, the energy loss is the same for electrons and hadrons
[Bet30].

At low velocities, the energy loss falls rapidly with increasingβγ due to the
fact that the collision time, during which an atomic electron experiences the elec-
tric field of the charged particle passing by, becomes shorter. After the fast de-
crease dominated by the 1/β2 term, the energy loss reaches its minimum around
β = 0.97 and slowly increases forβ → 1 (relativistic rise). This rise is mainly
caused by the L boost flattening the electric field of the particle, enabling
more distant atoms to take part in the process.

First corrections to this model were made by F [Fer40] correctly stating
that the relativistic rise would not continue to indefinitely large values ofγ. The
restriction is caused by the ‘density effect’ which describes the coherent effect of
surrounding polarisable atoms shielding the field of the travelling particle. More
precise calculations of the correction term and the inclusion of higher order effects
were later performed by S et al. [SBS84] and also B and B
[BB64].

Equation 4.1 cannot be used directly for the determination of the track ioni-
sation in a drift chamber. Above a certain energy, an electron knocked out of a
gas atom will form a second track, aδ electron, and will not contribute to the
primary track any more. Depending on the range of theδ–ray, its ionisation is
no longer attributed to the first track, causing large fluctuations in the energy loss
measurement and thus bringing a statistical aspect into that issue.6 A first analyti-
cal formulation of the problem (c. f.Eqn. 4.2 and Fig. 4.3) was given by L for
thin materials [Lan44]. The fact that in thin materials the total energy loss is given
by a small number of interactions, each one with a very wide range of possible
energy transfers, determines a characteristic shape of the energy loss distribution,
which in a simplified form had been written by L as

f (λ) =
1
√

2π
e−

1
2(λ+e−λ) , (4.2)

5In addition, spin and mass effects had been neglected.
6For example, in 1 cm argon under normal conditions one out of the twenty electrons produced

on average has an energy of 3 keV and a practical range of 100µm. The energy dependence of
the practical range is almost quadratic up to several hundred keV. Electrons with energies above
30 keV have a range larger than 1 cm of argon, and will escape detection from that layer. By
the way, for such high energies theδ–electrons are emittedperpendicularto the incident track.
However, multiple scattering quickly randomises the direction of motion of the electrons.
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Figure 4.3: Probability density function of the energy loss. The L theory takes the
statistical fluctuations of single ionisations into account (solid line) while the classical
B–B prediction (dashed line) is valid only for the average of a large number
of ionisation processes by means of the Central Limit Theorem. In case of the L

function the most probable dE/dx value is different from the mean. The energy loss is
limited by the maximum transferred energy in the ionisation process (maximum energy
loss). Without this cut–off the weighted mean dE/dx value of the L curve would
not be finite.

where the reduced energy variable,λ, represents the normalised deviation from
the most probable energy loss, dE/dxMP:

λ =
dE/dx− dE/dxMP

ξ
, (4.3)

with the scaling factor,ξ, being related to the sampling length, dx, and the parti-
cle’s velocity,β, by ξ∝dx/β .7

The situation is depicted (in absolute units) in Fig. 4.3. The L function
exhibits a long tail at large energy losses, corresponding to events where one or
more energeticδ–electrons have been produced. The energy resolution of a thin
detector for fast particles is therefore very poor.

The L distribution is based upon several assumptions and therefore re-
stricted in application. A statistical formulation, treated with Monte Carlo meth-
ods, is better suited. Thephoto–absorption ionisation model(PAI) by A and
C [AC80] does exactly this. Here, the properties of the medium enter through

7This is valid only for large sampling length of several cm [CE76].
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Figure 4.4: Pulse train on a CTD signal wire. The signal pedestal is determined by av-
eraging the first bins. The pulse–height is the peak level minus the pedestal. The arrival
time of the pulse is defined by a 16 % increase of the signal above the pedestal.

the frequency dependence of the di-electric constant, which in turn is derivable
from experimental photo–absorption coefficients. B and R give a gen-
eralised parametrisation for a description of measured ionisation curves based on
the PAI model [BR93]:

dE
dx
=

p1

βp4

{
p2 − β

p4 − ln

(
p3 +

1
(βγ)p5

)}
, (4.4)

where thepi are five free parameters, to be determined by a fit to the measure-
ments. The exact knowledge of the form given in Eqn. 4.4 can then be used for
testing particle hypotheses of a given track, which will be the subject of Chapter 5.

The large fluctuation in energy loss for individual events has several conse-
quences. First, the amplification electronics of the chamber has to be capable of
handling the large dynamic range of the signals. Secondly, a single measurement
of a track contains very little information about the average energy loss. Thus
when trying to identify particles, one is obliged to sample each track as many
times as possible.

4.2 Energy Loss Measurements

4.2.1 Single Wire Measurements

The avalanche of ion pairs caused by the incident particle passing the drift cell
induce a signal on the sense wire. The electrons drifting with a drift velocity of
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Figure 4.5: Typical pulse–height spectrum
for low momentum pions exhibiting the ex-
pected L shape. The large spike on
the right is caused by saturation effects due
to the 8–bit limitation of the FADCs.

47µm/ns towards the anode are absorbed quickly producing a fast signal there.
The ions moving much more slowly to the cathodes — their drift velocity is sev-
eral 100µm/ns — cause a much slower but nevertheless larger signal because they
experience the almost full potential between the electrodes. The front–end (r, φ)
read–out electronics is de-coupled via a capacitor from the wire and designed in
a way such that the read–out signal height is proportional to the electric charge in
the avalanche which in turn is a linear function of the energy loss due to the pri-
mary ionisation.8 After being shaped and amplified, the signals are digitised every
9.6 ns by an 8–bit FADC awaiting the FLT decision. For accepted events, the sig-
nals are pushed to a digital signal processor (DSP), which analyses sequences of
digitisations,pulse trains, one sample of which is shown in Fig. 4.4. The DSP
determines the pedestal of the signal and its peak level above the pedestal (the
pulse–height), as well as the arrival time of the pulse, which is defined as the mo-
ment when the pulse reaches 16 % of its pulse–height. Both, the arrival time and
the pulse-height are used for track reconstruction, the latter characterising also the
energy loss of the particle in the vicinity of the wire.

The limitation of the read–out to 8 bits causes an artificial saturation of pulse–
heights exceeding the maximum allowed value. This leads to a large spike in the
pulse–height spectrum as seen in Fig. 4.5.

Hit Rejection

Pulse–heights below a certain threshold are rejected for noise suppression, as well
as hits too close to cell boundaries, since the electric field is very distorted there.

8Unfortunately this is not entirely true. As the main purpose of the CTD is the reconstruction
of particle tracks, it had been optimised for a high spatial resolution. The chamber had been run
during the HERA running period with high voltage of 1800 V implying that the CTD operates at
the upper edge of the ‘proportional mode’.
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Similarly, hits with drift distances less than 100µm are rejected, because of the
rapidly increasing electric field close to the wire, the space–time correlation be-
comes invalid leading to a drift distance measurement not usable for the track
reconstruction. Multiple hits on a single wire separated less than 100 ns in time
are discarded as are hits on noisy or hot wires.

Phase 1 Corrections

The main objective of the CTD has never been particle identification and also the
truncated mean (Sec. 4.2.2) of pulse–height measurement is only a rough esti-
mator of the true energy loss. Hence, the observed dE/dx has to undergo many
kinds of corrections to become independent of systematic effects and comparable
with the true energy loss. Those corrections are described briefly here and in the
following section.

During the on-line phase 1 reconstruction several empirical corrections for de-
tector and geometry effects are applied to the pulse–height measurements. This
is done when the track reconstruction is finished so that the 3–dimensional infor-
mation of the hits and the exact particle trajectory is already known. The notation
used for describing the geometry is explained in Fig. 4.6.

1. Path length corrections depending on 1/ sinθ.

2. The relative gain on the signal wires.

3. Corrections depending on the angleψ′. This provides a crude — though
not satisfactory — correction of the differences between positively and neg-
atively charged particles. A more detailed discussion on this effect and a
solution to the problem is given in Sec. 4.3.

4. Corrections for the local L angle,λ depending on the (z, r) position
of the hit. As it turned out this correction is simply wrong, as the dE/dx is
not influenced by the L angle at all. However, for technical reasons
this correction cannot be removed from the phase 1 reconstruction anymore,
so that the correction has to be eliminated later on (see also Sec. 4.3).

5. Due to dispersion of the signal when propagating along the wire, corrections
in terms of thez position of the hit are applied.

6. Drift distance corrections. The drift length relative to the cell size is divided
into ten bins for which correction factors exist. This also turns out to be
insufficient and needs further refinement (c. f.Sec.4.3).

The so corrected pulse–heights, still in FADC units, are comparable now and
called energy loss, dE/dx.
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Figure 4.6: Definition of the L angle,
λ, by which the drift electrons are deflected
due to the magnetic field, and the azimuthal
angleψ′, which is enclosed by the normal
to the drift direction and the track tangent.
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4.2.2 The Truncated Mean Method

The best way of combining the single–wire measurements of the energy loss for
particle identification would be using likelihood methods. However, at ZEUS
those measurements are not stored at the MDST level, which is commonly used
for physics analyses, due to considerations of disk space.9 Instead, during the
phase 1 reconstruction the single hit measurements are averaged along each track
and the resulting mean energy loss per track is stored. Certain fractions of the
lowest and highest pulses of a track are removed from the sample, so that the
resulting mean value becomes close to the most probable value. The is called the
truncated mean, which for large samples yields almost the same accuracy as that
of likelihood methods [JLL+73].

The percentage of hits to be discarded is optimised for best resolution. If
the fraction of selected hits is too low, the truncated mean fluctuates owing to
low statistics; if it is too high, the hits from the tails of the (L–shaped)
distribution cause substantial fluctuations by their large weight (c. f. the difficulties
described Sec. 4.4.3). For the CTD a rejection of the 10 % lowest and 30 % highest
values was chosen.

If too many saturated hits10 are used for the computation, the result underes-
timates the truncated mean. In that case the procedure of thevariable truncated
meanis applied [Ver98]: If for more than 30 % of the hits the pulse–heights are
beyond the saturation limit, all saturated hits are removed before averaging. In a
second step the loss of their contribution is compensated by shifting the truncated

9The full information is still available from the raw–DSTs. However, those are very hard
to access and any analysis using the raw–DSTs would require a full reconstruction of the data
consuming a significant fraction of the computing power at DESY for several months.

10Pulses which have driven the FADC into saturation are marked by the DSP.
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mean value artificially towards a higher value. Ifnkept is the number of hits kept,
andntotsat the total number of saturated hits after the rejection procedure described
above, then the number of hits used for the truncated mean calculation is given by

nlow = int(0.1nkept+ 0.5) ,

nup = int(0.3nkept+ 0.5) ,

nused = nkept− nlow − nup , (4.5)

with int(. . . ) denoting the truncation of a floating point number to its integer value.
The number of remaining saturated hits then is simply

nsat= max(0, ntotsat− n) . (4.6)

Thus the number of hits finally used for the variable truncation is

ntrunc = nused− nsat. (4.7)

The (variable) truncated mean of the pulse–heights,phi, is computed by

〈dE
dx

〉
=

a(nkept,ntotsat)

ntrunc

nlow+ntrunc∑
i=nlow+1

phi . (4.8)

The correction factora used for shifting the mean value upwards in case of satu-
ration is defined as

a(nkept,ntotsat) =

 1; ntotsat≤ nup (saturation< 30 %),

f (0.7)/ f (x); otherwise.
(4.9)

The correction functionf (x) is a fourth–order polynomial fitted to the data:

f (x) = 71.508x4 − 100.4x3 + 55.685x2 + 30.92x+ 26.95, (4.10)

with
x ≡ (nkept− ntotsat)/nkept .

A minimum number ofntrunc = 4 is required, the maximum possible number is
ntrunc = 43.

4.2.3 Run–by–Run Calibration

The measured pulse–heights are affected by additional factors not yet considered.
Variations of the high voltage, the atmospheric pressure and the gas mixture affect
the gas gain and the drift velocity in the chamber. These effects are corrected on



86 CHAPTER 4. IONISATION LOSS MEASUREMENTS

a run–by–run basis at the MDST level,i. e. the truncated mean values undergo
corrections in the off-line physics analysis.11 To obtain the dE/dx scale of each
run, minimum ionising pions are used. These are selected by requiring tracks
with momenta in the range 300—400 MeV. Since most of the pions are minimum
ionising in this range, the dE/dx spectrum exhibits a large peak. By fitting a
Gian function12 to the peak, the number of FADC counts corresponding to
the energy loss of minimum ionising particles (mips) is found,which under normal
operation conditions corresponds to 3 keV/cm.13

The measured dE/dx values surprisingly show a decrease with rising atmo-
spheric pressure. Naı̈vely one would expect an increase due to the also increasing
electron density. However, there are two contrary effects dominating over the rise
in the electron density [Sid95]: The drift velocity is reduced with higher density
of the medium, altering the height–to–area relation of the pulses14, and in addition
argon possesses an absorption edge at 12 eV, which increasingly prohibits ionisa-
tion with growing pressure, leading to a reduction of the gas gain. The air pressure
effects are eliminated by adjusting the measured dE/dx to a nominal pressure of
1013 hPa.

It was shown, that variations of the energy losswithin a run, even long ones,
are small (typically below 2 %), and thus are negligible [Dep99].

4.3 Systematic Corrections of the Energy Loss

When first used for physics analyses [Dep99, Win99], distributions of the mean
dE/dx values per track indicated that the corrections mentioned above are not
sufficient and more corrections of detector systematics would be necessary. An
example is shown in Fig. 4.7, in which the energy loss of electrons produced in
γ→e+e− reactions is depicted as a function of the track polar angle. A large dip at
the centre of the distribution of nearly 10 % is seen. This was the first indication
for the space–charge effect which is explained below. A simple correction of
the angular dependence, as done in [Win99], did not really solve the problem.
This became clear when the analysis which is subject of this thesis was started.
More peculiarities showed up. Energy loss measurements of positive and negative
charged tracks were inconsistent, which was seen partially in [Win99], since this

11The correction factors are provided for each run by the CTD group.
12Which is expected, since the spectrum is a distribution of pulse–heightmeanvalues.
13It has to be noted however, that the fitted peak position is below the true minimum at 550 MeV

for pions. This is due to systematic uncertainties explained in Sec. 4.3. Since the fitted value is only
used for normalising the dE/dx measurements, making the results from different runs comparable,
it does not cause any harm here.

14Remember: A linear dependency between the height of the pulses and their time integral,i. e.
the collected electric charges, is assumed.
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Figure 4.7: Measured energy loss,
dE/dx, of electrons produced inγ
conversions as a function of the
polar angle, θtrk, of the electron
track. The distribution exhibits a
dramatic effect of almost 10 % for
very central tracks. Figure taken
from [Win99].

analysis was not able to deal with dE/dx of positrons, only with that of electrons.15

Therefore extensive studies of systematics effects on energy loss measure-
ments with the CTD were started, together with developments of appropriate cor-
rections. The rich results of this work, ongoing for several years, are collected in
[Bar06b, Bar06a], and can only be briefly discussed here.

Space–charge effect Due to the slow ion drift, tracks with shallow polar angles
generate clouds of ions around the wire shielding the wire for subsequent
drift electrons, thus reducing the measured ionisation. The effect is depen-
dent on 1/ cosθ and vanishes forθ→90◦.

Drift–time di fferencesThe pulses of positively charged tracks are more pro-
nounced than that of negatively ones. Because of the 45◦ tilt of the drift
cells, positive tracks are running for a long time close to an isochrone lead-
ing to almost simultaneous ionisation clusters piling-up to a huge signal on
the wire (see Fig. 4.8). In contrast, negative tracks cut across the isochrones
in the positive direction most of the time, which results in many small pulses
on the wire well separated in time. This effect depends on the local angle
between particle and drift direction,ψ′.

Threshold effect Signals with pulse–heights below a certain threshold are not
accepted by the CTD read-out electronics in order to suppress noise. This

15One reason for the incomplete understanding of energy loss measurement systematics in drift
chambers might be that the issue is not covered widely in literature. The effects have been studied
— if at all — in test–beam set–ups, rather than under under realistic experimental conditions,
especially in a collider experiment (e. g.[VRFC82]). Also the subject tends to be neglected, since
the main goal of a drift chamber is the reconstruction of particle tracks, consuming most of the
available manpower.
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of course can affect the truncated mean value, for small contributions of
energy loss are not considered, leading to a deceptive higher mean value.

Saturation In a similar way the truncated mean value needs to be corrected for
saturated hits. The variable truncated mean described above covers most
but not all of the effect.

Integer effect The truncated mean method cuts fractions of hits. Since hit num-
bers have to be integer values, the fractional values needs truncation, which
results in artificial shifts of the truncated mean, in particular for low total hit
numbers.

Neighbourhood effect Particles running close to each other can induce interfer-
ing signals on the same wire. This also would result in an overestimation of
the truncated mean value.

Lorentz angle As mentioned above, the ionisation measurement is not affected
by the L angle. Although the magnetic field extends the drift paths
of the ionisation electrons, this affects all tracks in the same way. Therefore
the corresponding phase 1 correction must be undone.

Run–by–run corrections The run–by–run corrections already done are not suf-
ficient. Remaining variations of a few percent exist, therefore additional
corrections are needed here. Furthermore, since the run–by–run corrections
are done before the other corrections, they affect the other corrections in the
wrong way. This must be undone also.

Wire gain corrections Similarly, the wire gains show variations, which have to
be corrected. For technical reasons this cannot be done for every single
wire, but only for groups of eight wires (supercells).

Some of the corrections are functions of the true dE/dx itself; therefore they are
determined in an integrated iterative procedure, which converges after a few steps.
The situation is further complicated by the fact that the hit information is not avail-
able, only the information per track. Hence, elaborate track extrapolations are nec-
essary to gain information likeψ′ or thez–position of the track etc. at each single
wire. Sets of corrections have been made for different periods in time, in which the
CTD had been in different operational states,e. g.due to variations in the gas mix-
ture, changes of the high voltage etc. In 2000 the gas bubbled through water for
several weeks to recover the CTD wires from aging effects. The corrected dE/dx
values are stable and comparable for all of these periods including the HERA-I to
HERA-II transition. Also, all of the peculiar dependencies seen before have van-
ished. In particular differences between positive and negative charged particles
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Figure 4.8: The drift time effect. Positive tracks are running close to the isochrones for a
longer time than negative tracks causing larger pulses on the signal wire.

do not exist anymore. The correction procedure is a big success. Compared with
ionisation energy loss measurements done with a drift chamber in other collider
experiments those measurements at ZEUS are extremely well understood.

4.4 Energy Loss Calibration

In order to identify particles, measured values of the energy loss are compared to
predicted ones. For the latter the energy scale of the CTD has to be known. This is
done by fitting the data to theory for very well known particle samples of different
type.

In theory energy losses for a particle are predicted dependent on its L

boostβγ which is not known by default. However, if the particle’s mass is known
the boost can easily be computed by using

βγ =
p
m
. (4.11)

In the case of Monte Carlo this is almost trivial. But here the problem occurs
that the dE/dx provided by the GEANT 3 program used at ZEUS is much too
imprecise for a comparison.16 Therefore real data has to be used. For this, final–
state particles are chosen from very well defined particle reactions for which the
type of the outgoing particles is known exactly. They are referred to in this context
as “calibration samples”. Note that samples from different reactions are used in
order to avoid systematic errors from event topologies. This has the additional
advantage that the particle identification is independent of the particular analysis
which it is applied for. The samples differ in their range of momentum. In these
regions a purity of at least 95 % has been achieved.

16This version of GEANT developed in the late eighties uses a simplified model for the energy
loss calculations to save computing time, which had been a bigger issue at that time.
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Figure 4.9: Fitting the B–B curve
with an inclusive sample — the multi–G
method [Dep99].

Instead of using pure calibration samples for each particle type, one can also
look at an inclusive sample of charged tracks [Dep99, Nac97]. Binning them in
βγ gives dE/dx distributions containing more or less pronounced peaks for each
particle type (e,π, K and p). Fitting a sum of four Gians whose mean values
are fixed to a single (still variable) B–B function to all of the dE/dx slices
simultaneously and repeating this procedure iteratively in particular in regions of
overlapping bands will give you a good idea of the “true” B-B curve (see
Fig. 4.9). This method — called the multi–G method — is fast and easy to
implement, however it is limited in accuracy.

4.4.1 Calibration Samples

The following reactions are used to create pure samples of e,π,K,p andµ in real
data:

K0
s → π+π− Λ0 → pπ
ρ → π+π− φ → K+K−

γ → e+e− J/ψ → e+e−

e p → e′ X

In additionall events containing high–quality muons (mostly from cosmic rays)
are selected. Because of its low purity the following sample is used for cross-
checking only:

D∗ → K ππs

The selections are now discussed in greater detail. All cuts used for the selections
are very stringent to achieve high purity. For decays of the form A→B + C the
following notations for angles will be used:
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1. Theopening angle, α, between the outgoing tracks B and C in the laboratory
system

α = �
(
~pB, ~pC

)
.

2. Thedecay angle, β, which is enclosed by the momentum vector of the decay
particle A, measured in the laboratory frame, and the momentum of one of
the outgoing particles (by convention the positive charged one) in the rest
frame of A,

β = �
(
~p(B)|rest frame of A, ~p(A)|lab frame

)
.

3. The angular difference,δ, between the reconstructed momentum vector of
the decay particle A and the backward extrapolation from the decay vertex
to the primary vertex

δ = �
(
~p(A), (~vprim. vtx − ~vsec. vtx)

)
.

4. Good quality tracksare tracks which have crossed at least 3 superlayers in
the CTD, with a pseudo–rapidity|η|<1.9 and minimum transverse momenta
of pt>100 MeV.

5. Tracks which arepossible photon conversionsare tested by theγ→ e+e−

conversion finder in a less rigorous way compared toconversion candidates.
The search for the latter and details of theγ conversion finder are given
below. The cuts used here areD < 15 (c. f. Eqn. 4.12) andMee< 250 MeV
leading to an increase in the acceptance of the finder but reducing its purity
at the same time. All possible pairs of tracks containing the track in question
are checked.

The Decay of Neutral Short–Lived Kaons

The reaction K0s → π+π− is characterised by two oppositely charged tracks com-
ing from a secondary vertex. Since the decay time,cτ, of the K0

s is of the order
of 2 cm, which is dilated by its boost, its decay vertex can be reconstructed quite
well by the CTD. A cut on the invariant mass of the outgoingπ+π− pair is then
used to select K0s decays with high purity. Comparison with Monte Carlo shows
a remaining background fromΛ0 decays which are discarded by a veto on the pπ

mass hypothesis.17 Additional cuts are made for cleaning the sample.

• Invariant K0
s mass 0.492< Mππ < 0.502 GeV;

• K0
s proper decay time 0.05< τ < 0.40 ns;

17The higher momentum track is supposed to be the proton.
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• Veto onΛ0 invariant massMpπ > 1.1 GeV;

• Veto onγ conversionsMee> 0.25 GeV;

• Momenta of the outgoing pion tracks 0.1 < pπ < 0.8 GeV;

• Decay angle cosβ < 0.8;

• Extrapolation to primary vertex|δ| < 0.8 rad;

• Quality of secondary vertex fitχ2/#(d.o.f.)< 5;18

• Primary vertex position|zprim. vtx| < 50 cm;

• The oppositely charged pion tracks are of good quality and not tagged as
possibleγ conversions (see above).

Lambda Decays

This decayΛ0 → pπ is similar to that of the K0s except for the different masses
of the outgoing particles and the invariant mass to test. Here again, the higher
momentum track is supposed to be the proton. The selection cuts are:

• InvariantΛ0 mass 1.113< Mpπ < 1.119 GeV;

• Decay lengthd > 10 cm;

• Veto on K0
s decaysMπ+π− < 0.48 GeV∨ Mπ+π− > 0.52 GeV;

• Discardγ conversionsMee> 0.27 GeV;

• Momenta of the outgoing tracks 0.2 < pπ < 0.9 GeV∧ 0.4 < pp < 3.0 GeV;

• Minimal transverse track momenta min(pp
t , p

π
t ) > 0.2 GeV;

• Opening angle 0.1 < α < 1.2 rad;

• Decay angle cosβ < 0.9 rad;

• Extrapolation to primary vertex|δ| < 0.1 rad;

• Quality of secondary vertex fitχ2/#(d.o.f.)< 5;

• Again, the oppositely charged outgoing tracks have to be of good quality
and not tagged as possibleγ conversions.

18d.o.f.= degrees of freedom.
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The Decay of Neutral Vector Mesons

Here,ρ, φ and J/ψ mesons are selected in elastic vector meson production events
whose features are a low track multiplicity and a small four–momentum transfer
squared on the proton side,t. Their decay times are too short for a proper re-
construction of secondary vertices. Instead two oppositely charged tracks coming
from the primary vertex are searched for.

ρ→ π+π−:

• Only events containing 2 or 3 tracks coming from the primary vertex
are taken;

• The track pair in question must be of opposite electrical charges. The
tracks have to be of good quality and not marked as possibleγ conver-
sions;

• Invariantρ mass 0.65< Mππ < 0.88 GeV

• At least one of the pion tracks must have a transverse momentum of
pπt > 0.5 GeV;

• Transverse momentum of theρ, pρt > 1 GeV;

• Veto onφ decaysMKK < 1.01 GeV∨ MKK > 1.03 GeV.

φ→ K+K−:

• Only events containing 2 or 3 tracks coming from the primary vertex
are taken;

• The track pair in question must be of opposite electrical charges. The
tracks have to be of good quality and not marked as possibleγ conver-
sions;

• Invariantφ mass 1.01< MKK < 1.03 GeV

• At least one of the kaon tracks must have a transverse momentum of
pK

t > 0.65 GeV;

• Transverse momentum of theφ, pρt > 1.1 GeV;

• Veto onρ decaysMππ < 0.65 GeV∨ Mππ > 0.88 GeV;

• The momentum transfer of the protont < 0.3. In the case of exclusive
vector meson productiont can be computed byt = −(pφ − pe′)2

t with
pe′ being the four–momentum of the scattered electron.
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J/ψ→ e+e−:

• Only 2 tracks per event coming from the primary vertex are allowed;

• Invariant J/ψ mass 3.02< Mee< 3.12 GeV;

• Electron momenta 1.2 < pe < 3.6 GeV;

• Transverse electron momentape
t > 1 GeV;

• Pseudo–rapidity of the electrons|ηe| < 1.4;

• Electro–magnetic energy fraction of the energy flow objects in the
calorimeter (EFOs,c. f.Sec. 2.2.2) corresponding to the electron tracks
EEMC/Etot > 0.99;

• The outgoing electron tracks have to be of good quality and not tagged
as possibleγ conversions.

Photon Conversions

Because of the zero–mass of the photon, the conversion e+e− pair is created with
almost no opening angle between the tracks. Thereforeγ conversions are found
by looking at pairs of tracks in the CTD that are very close and become parallel
at their point of closest approach. This is achieved by restricting the distance
parameter

D =

√(
∆xy
σ∆xy

)2

+

(
∆θ

σ∆θ

)2

, (4.12)

which is composed of the separation∆xy of the two tracks in the (x, y) plane, and
the polar angle difference,∆θ and their corresponding resolutions,σ∆xy andσ∆θ.19

In addition, a hard cut on the invariant photon mass, is used. Further background
reduction is done by selecting only those conversions happening in the inner CTD
wall and the beam–pipe.20 The full list of cuts is

• Distance parameterD < 2.5;

• Invariantγ massMee< 7 MeV;

• Distance of the e− and the e+ track in z–direction at the conversion vertex
∆z< 0.7 cm;

19The resolutions had been determined in [Ver98]. Their values areσ∆xy= (0.08± 0.01) cm and
σ∆θ = (0.017± 0.001) rad for real data, andσ∆xy= (0.11± 0.02) cm andσ∆θ = (0.017± 0.002) rad
for Monte Carlo.

20Due to the higher density conversions in the beam–pipe and the CTD vessel are much more
likely than in the sensitive volume of the chamber. Note also, that the references point for the CTD
and beam–pipe radii are different, since the beams are off-centre w. r. t. the beam–pipe.
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• Radius of the conversion vertex with respect to the beam–pipe centre 5.5 <
Rbeam–pipe< 7.5 cm;

• Radius of the conversion vertex with respect to the centre of the CTD cylin-
der 5.5 < RCTD < 7.5 cm;

• The outgoing tracks have to be of opposite charge and of good quality.

DIS Electrons

For the detection of scattered electrons and positrons in deep elastic scattering
events, the S electron finder [SV97, vS00] is mostly used. This finder is
part of the ZEUS software and consists mainly of an artificial neural network
based on energies of calorimeter cells and tracking information.21 To obtain high
purities only tracks withp > 4 GeV and an electron probabilityP > 99 % are
selected.

Muons

Events containing at least one very good muon candidate are selected. The muon
selection is done with the help of the ZEUS global muon finder GM. This
package is built as a combination of the large collection of local muon finders
using information of various sub-detectors like the muon chambers, the backing
calorimeter, the CAL and the inner tracking. A description can be found,e. g.in
[Blo05]. The GM finder assigns quality numbers in increasing order from 1—
6 to theµ candidates. Here, only candidates with quality 6 are selected. Since all
triggers have been used, the dominant part of this sample are muons from cosmic
rays.

Kaons from D Meson Decays

Beside the decay ofφ mesons, the “golden decay” of D∗ mesons is a good source
of detectable kaons. The decay happens via an intermediate D0 meson, D∗ →
D0πs→Kπ+πs with πs denoting a low momentum (slow) pion. The main charac-
teristics of the decay is the small difference in the invariant masses of the D∗ and
the D0. For reasons of charge conservation and double C suppression only
the combinations D∗+→K−π+π+s and D∗−→K+π−π−s dominate.

21These finders are tuned for the scattered electron which has on average momenta around
28 GeV and relies mostly on the calorimeter information. Thus they work best for the high mo-
mentum region above 10 GeV and are not applicable for the (low momentum) electrons which
are the subject of this analysis. In the low momentum region the mis-identification rate of the
calorimeter becomes too high. Energy loss measurements are not used.
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• Invariant mass difference 0.1435< ∆(MD∗ − MD0) < 0.1475 GeV;

• Invariant D0 mass

1.82< MD0 < 1.91 GeV for pD∗
t < 3.25 GeV

1.81< MD0 < 1.92 GeV for 3.25< pD∗
t < 5.00 GeV

1.80< MD0 < 1.93 GeV for 5.00< pD∗
t < 8.00 GeV

1.79< MD0 < 1.94 GeV for pD∗
t > 8.00 GeV ;

• Transverse D∗ momentumpD∗
t > 1.5 GeV;

• Transverse momenta of the outgoing kaon and pionpK,π
t > 0.4 GeV;

• Transverse momentum of the slow pionpπs
t > 0.12 GeV;

• Good quality tracks originating from the primary vertex.

More details of the features of D∗ decays can be founde. g.in [Irr04].
In Fig. 4.10 some properties of the calibration samples like invariant masses

etc. are shown. All triggers of the 1996—2000 data were used, even those marked
as background events in order to collect all the cosmic muons.

4.4.2 The Bethe–Bloch Fit

With the help of Eqn. 4.11 the L boost,βγ, of each particle in the calibra-
tion samples can be determined. Figure 4.11 shows scatter plots of the measured
energy loss, dE/dx, per track versusβγ for each particle type. The B–B
bands are clearly visible. From these graphs profiles of dE/dx in bins ofβγ are
obtained by averaging the dE/dx values of all entries inside eachβγ bin and as-
signing them to the bin centres (see Fig. 4.12). The bin widths are depicted by
the horizontal line of the marker cross, while the vertical line corresponds to the
statistical error on the dE/dx mean. Outliers more than 3 standard deviations
away from the expectation are removed during the filling process to suppress mis-
identified particles. Here, the dE/dx expectation for a givenβγ value is obtained
by interpolating the profile entries of the nearest bin centre and the adjacent bins
with a third order polynomial. The procedure is illustrated in Fig. 4.12.

The profiles of all five particle types are then combined by computing the
weighted mean of all profiles in each bin ofβγ.22 The so obtained profile is then

22The method described here has been improved very recently [Zim07]. Instead of the bin
centre the barycentre inβγ of a bin is used for positioning the dE/dx mean in theβγ direction. In
addition, the outlier removal is changed. Here, the interpolation procedure is replaced by a direct
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Figure 4.10: Characteristics of the calibration samples. In (a) — (f) invariant mass dis-
tributions of the various decays are presented. The distribution (g) shows the tiny mass
difference between the D∗ and the D0 for the golden D∗ decays. DIS electrons are charac-
terised by their conserved longitudinal momentum,

∑
i(Ei − pz, i), which is expected to be

two times the electron beam energy (h). In (i) the distributions of the polar angle,θ, of all
selected muons is shown. Most of them originate from cosmic rays, which is indicated by
the dashed line showing the expectation for cosmic muons (∝sin2 θ).
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(a) Kaons (b) Protons

(c) Pions

(d) Muons (e) Electrons

Figure 4.11: dE/dx versusβγ for K,p,π, µ and e. The three electron samples are clearly
separated;γ conversion electrons to the left, e± from J/ψ decays in the centre and DIS
electrons on the right. Note the differentβγ ranges between the samples. The correspond-
ing momentum ranges can be seen in 4.14.
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Figure 4.12: Testing for outliers. For each
point the deviation from the dE/dx estimate
is computed. If the deviation is greater than
3 standard deviations, the point will be dis-
carded. The energy loss is estimated by in-
terpolation the centres of 3 adjacent bins.
The determination of the expansion coef-
ficients of the interpolation polynomial is
based on [PTVF92].

used for aχ2–fit of Eqn. 4.4 (PAI model), which is shown in Fig. 4.13. The
parameters of the function determined by the fit are

p1 = (0.2377± 0.0079) Mips,

p2 = 4.363± 0.110,

p3 = 0.08009± 0.00672,

p4 = 1.499± 0.004,

p5 = 0.5922± 0.0093. (4.13)

The fit converges over the totalβγ range of 6 orders of magnitude. This is
possible only because of the systematic corrections mentioned in Sec. 4.3.23 In
Fig. 4.14 the dE/dx scatter plots of all calibration samples are drawn together
with the B–B prediction as function of the track momentum,p, which
demonstrates quite nicely that the method is working properly. The fit result can
be used in order to obtain a dE/dx prediction for a givenβγ, which is needed later
in the hypothesis test used for the particle identification.

4.4.3 Resolution Functions

The second thing needed to compare observed values of the energy loss, dE/dxobs,
with predicted ones is the dE/dx resolution, or better the dE/dx distribution

computation of the significance of each point with the help of already existing dE/dx probability
densities (c. f. Sec. 4.4.3). Since this method is not fully tested yet, it will not be part of this work
but used in subsequent beauty analyses of HERA-II data.

23This is a clear contradiction to the statement at p. 100 in [Dep99], saying that the PAI is not
applicable for some reasons. Without the systematic corrections described above, the data fits
better to the old B–B/S model. With the included corrections, however, the
PAI model gives the better description.
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Figure 4.13: The B–B fit is done by fitting Eqn. 4.4 to the averaged dE/dx versus
βγ profiles of all calibration samples. The fit converges for the wholeβγ range.

Figure 4.14: Scatter plot
of dE/dx versus track
momentum for all cal-
ibration samples. The
results of the B–
B fit for all particle
types are drawn on top.
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around its expectation value, dE/dxpred. To become independent from the actual
dE/dx value,residualsare used, which are distributions of the relative differences
of the measured values to the predicted ones, (dE/dxobs− dE/dxpred)/dE/dxpred.
These distributions are obtained by looping over all calibration samples again and
histogramming the residual dE/dx value for each particle using Eqn. 4.11 and the
B–B fit result for the predictions needed.

The width of the residual distribution is a function of the number of hits used
in the truncated mean calculation,ntrunc, when reconstructing the dE/dx values
per track. From statistical grounds a dependence in the form of∝ 1/

√
ntrunc is

expected, since the resolution should improve with an increasing number of hits,
i. e.single measurements.

In Figs. 4.17 and 4.18 all residuals in bins of the number of truncated hits are
shown. The data covers the region 8< ntrunc< 43. Because of the rather limited
number of measurements per track, the distributions show a remaining asymme-
try due to the L–shaped distributions of the single–wire measurements not
being fully removed by the truncation. The residuals, which later serve as proba-
bility density functions of the energy loss, need to be parametrised for easy access
and to smooth out statistical fluctuations, in particular those in the tails of the
distributions. The parametrisations are done by fitting the residuals with some
analytical function. The form used here, is a piece–wise combination of several
Gian functions to cover the asymmetry:

f (x) =



Atot
√

2π

(
1−

A2

Atot

) {
1

σL1 + σR1
e−

1
2 (x−µ)2/σ2

L1

+
1

σL2 + σR2
e−

1
2 (x−µ)2/σ2

L2

} for x < µ ,

Atot
√

2π
·

A2

Atot

{
1

σL1 + σR1
e−

1
2 (x−µ)2/σ2

R1

+
1

σL2 + σR2
e−

1
2 (x−µ)2/σ2

R2

} for x ≥ µ ,

(4.14)

with the argument,x, defined as

x =
dE/dxobs− dE/dxpred

dE/dxpred
. (4.15)

The fit function contains 7 free parameters: the same expectation value,µ, for all
four G functions, the four widthsσL1, σR1, σL2, σR2, the total area,Atot=
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A1+A2 and the fraction of both,A2/Atot, where the areasA1 andA2 corresponds
to each pair of G functions defined over the whole range. The functions
are further constrained by the requirement of a smooth transition for each pair of
them. In addition, because of the low statistics or even zero entries in some bins,
a maximum likelihood fit is used rather than aχ2–fit. The results are drawn on top
the residual distributions in Figs. 4.17 and 4.18 (solid line).

A different approach is to simulate the truncated mean method by a “toy
model” and compare the result with the dE/dx residuals. In this model the dE/dx
distribution of a single–wire measurement is approximated by the L func-
tion given in Eqn. 4.2. Random values of dE/dx are generated according this
distribution and used for the computation of truncated mean values as described
in Sec. 4.2.2. The values for the most probable energy loss dE/dxMP = 2.0 Mips
and the scaling parameterξ = 0.5 had been determined by the studying varia-
tions of the truncated mean values as a function of the number of truncated hits
[Bar06b]. Frequency distributions of the average energy loss for each number of
truncated hits are filled with 100,000 truncated mean values each. These distri-
butions are then fitted to the residuals mentioned above to fix the normalisation.
Results are given in Figs.4.17 and 4.18 (dashed line). This is mainly done for
checking the analytical parametrisations of the residuals and also to estimate sys-
tematic uncertainties of the particle identification by means of the energy loss (see
Sec. 7.3).

In Fig. 4.15 the mean values and widths of the fitted asymmetric G

functions are shown. As hoped for, the mean values are close to zero and the
widths show a∼ 1/

√
ntrunc behaviour. Only for low values ofntrunc significant

deviations from this dependence are seen. These are caused by statistical fluctua-
tions and systematic mis-measurements not yet taken into account.24 A minimum
number of truncated hits ofntrunc> 12 for good dE/dx reconstruction is recom-
mended.

The parametrised residuals are normalised and in the following interpreted
as probability density functions for the energy loss. How these are used for the
particle identification is described in Sec. 5.2.1.

4.5 Energy Loss in the Monte Carlo

In the case of Monte Carlo the question arises how to obtain dE/dx values com-
parable to those of real data, since the ones generated by the GEANT program are

24In fact these deviations and also the wiggles have been studied and countermeasures are taken
already by extending the systematic corrections [Bar06b] described in Sec. 4.3. These are mostly
caused by uncertainties in the determination ofntrunc. As these are very recent developments, they
cannot, unfortunately, be included in this thesis.
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Figure 4.15: Mean values and r.m.s. as function of the number of truncated hits,ntrunc.
Both show the expected behaviour: the men values are very close to zero, while the widths
follow a ∼1/

√
ntrunc dependence. Only for lowntrunc significant deviations are seen.

not applicable as mentioned above.25 This can be achieved easily by using the nor-
malised dE/dx residuals. After integrating over the full range and inverting, they
are combined with a large–periodic random number generator, producing random
dE/dx values distributed according to the residuals for any given pair ofntrunc and
βγ. The latter is needed for the back–transformation of the argument,x, of the
residuals (c. f. Eqn. 4.15). In the Monte Carlo the particle type of every track is
known, thusβγ is computed easily with the help of Eqn. 4.11.26 A random value
for the energy loss is assigned to each track. Figure 4.16 shows the expected re-
sult. The dE/dx spectra of all good quality tracks in deep elastic scattering events
(a) are compared for real data (solid circles) and a Monte Carlo sample produced
with the event generator ARIADNE (shaded histogram), as well in dijetγp events
(b) described in Sec. 3.1. Both distributions show good agreement over the whole
range supporting the fact, that this method is independent of the event topology.

25Of course, in the Monte Carlo the true type of every particle is known. However, in order to
obtain detector acceptances for the determination of cross–sections, the same procedure of particle
identification as used for real data has to be applied.

26Here, the connection between each reconstructed track and its corresponding true particle is
needed. This is done by looking how many true hits produced by the GEANT program are shared
by the track and any possible true particle [HIL+97].
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Figure 4.16: Comparison between the measured energy loss in real data (solid circles)
and the simulated values in case of Monte Carlo events (shaded histograms). The dE/dx
values in the Monte Carlo have been randomly produced according to the residuals de-
termined with the help of the calibration samples. The distributions consist of all good
quality tracks in deep inelastic scattering events (a) and dijet photoproduction (b). The
Monte Carlo histograms are normalised to those of the real data.
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Figure 4.17: Fitting the dE/dx residuals. The shaded histograms are the residuals as a
function of the number of truncated hits,ntrunc. The solid line is the asymmetric G
fit defined in Eqn. 4.14, while the dashed histograms represents the cross–check by fitting
the results of the toy model (see Sec. 4.4.3 for details). For a better comparison the
results of asymmetricGian fit are indicated also (dotted lines). The results of the
asymmetric G fit are shown in the text boxes. In this figure all distributions for the
range 8≤ntrunc≤25 are shown. All other distributions are plotted on the next page.
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Figure 4.18: dE/dx residuals for 26≤ntrunc≤43. For details see the caption of the figure
on the previous page.



Chapter 5

Particle Identification

In the previous chapter energy loss measurements with the central tracking cham-
ber of the ZEUS detector were presented. Details of the measurement, systematic
corrections, the energy calibration and the determination of resolution functions
were shown, laying the foundation for a particle identification algorithm, which
in principle is generally applicable. This will be the topic of this chapter.

5.1 The Likelihood Ratio Test

The question of a particle being of a specific type is answered by a hypothesis
test. Here, the likelihood for the particle being of the type in question (null–
hypothesis) is compared with the likelihood for the particle being of all other
types (anti-hypothesis). The likelihood,Li, for a particle typei is given by

Li =
∏

j

P(dj |hi) , (5.1)

with i ∈ {e,π, µ,K,p} andP(dj |hi) denoting the probability density of a particle
track being observed with some discriminant variable,dj, under the assumption
of a particle hypothesis,hi.

The best separation power is achieved with alikelihood ratio test. The test
function,T, for a particle being of typei is the quotient of two likelihoods

Ti =
αiLi∑

j ∈ {e,π,µ,K,p}
α jL j

. (5.2)

Theαi denote thea priori probabilities for the particle typei. These have to be
determined by providing frequency distributions for each particle type in the event
samples of the analysis (for details refer to Sec. 5.3).
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pred)  / dE/dxpred − dE/dxobs(dE/dx
−0.4 −0.3 −0.2 −0.1 −0 0.1 0.2 0.3 0.4

Prediction

Measurement

Figure 5.1: The dE/dx residuals are used for a comparison of the observed energy loss,
dE/dxobs, and the prediction, dE/dxpred, for a given mass hypothesis. The actual compar-
ison is done by likelihood methods.

5.2 Discriminant Variables

The likelihood used for the particle identification provides a simple way to com-
bine information of various sub-detectors. In our case information from the central
drift chamber and the calorimeter is taken. These measurements are completely
uncorrelated and also support each other, since the two detectors operate best in
different momentum ranges. Three discriminating variables are used for the hy-
pothesis test: the ionisation loss, dE/dx, as measured by the drift chamber, the
fraction of electro–magnetic energy in the calorimeter,fEMC= EEMC/Etot and the
ratio of the calorimeter energy and the track momentum,ECAL/ptrk.

5.2.1 Ionisation Loss

Here the relative deviation of the observed energy loss, dE/dxobs, in the CTD to
the predicted one, dE/dxpred, for a given assumptionm = mi made for the par-
ticle’s mass, is being used. The latter is needed for computing a prediction for
the energy loss with the help of the Eqns. 4.11 and 4.4. The probability densities
are determined by the normalised residuals defined by Eqn. 4.14 and shown in
Figs. 4.17, 4.18. The basic concept is depicted in Fig. 5.1. The ionisation loss per
track contributes most in the separation of individual particle types.

5.2.2 Fraction of Electro–Magnetic Energy in the Calorimeter

The fraction of electro–magnetic energy in the EMC relative to the total energy,
denoted asfEMC, measured for an energy flow object in the CAL helps mostly in
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Figure 5.2: Amount of electro–magnetic en-
ergy for electrons, pions and muons in sim-
ulated b̄b events. Each entry corresponds to
an energy flow object in the CAL. Almost
all of the electrons leave their energy in the
EMC section. The hadrons, represented by
pions here, show a much wider distribution.
Muons are shifted to lower values, since they
are minimum ionising. All distributions are
normalised to one individually.

separating electrons from hadrons.1 Because of their short interaction length, the
electrons lose all their energy within the electro–magnetic section of the calorime-
ter, while the hadrons and also the muons deposit a considerable amount in the
hadronic part of the calorimeter, as shown in Fig. 5.2. Also seen in the figure
is that a non-negligible amount of hadrons and even muons leave all of their en-
ergy in the EMC. Those are soft particles with momenta of only a few hundred
MeV, which is not enough to reach the hadronic section of the calorimeter — they
simply stuck in the EMC.

Hence the EMC fraction is momentum dependent and must be handled that
way. In addition it might be influenced by the particle’s charge. This is most
obvious for protons and anti-protons. Thus for the computation of the likelihood
normalised frequency distributions binned infEMC and track momentum,p, for
each particle type are necessary. Some of them are shown in Fig. 5.3. An appro-
priate binning was chosen to prevent the distributions from fluctuating too much
at the edges. Each slice inp was normalised to one individually in order to be
used as a probability density function in the likelihood. The distributions were
produced with the help all the Monte Carlo samples mentioned in Sec. 3.1. The
distributions of the individual samples are luminosity–weighted before adding and
normalising them.

5.2.3 Calorimeter Energy over Track Momentum

The original idea for this variable was to achieve a better separation of anti-
protons. Due to the annihilation processes with the detector material, the ratio of
the calorimeter energy of an energy flow object compared to its track momentum,
ECAL/ptrk, is larger than that of other particles, since for a compensating calorime-

1Obviously the energies used for the computation offEMC are those directly measured by the
calorimeter rather than the energies corrected by the track momenta.
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Figure 5.3: Frequency distributions offEMC versus track momentum,p, for all positive
particle types. The distributions are made with the beauty, charm and light–flavour Monte
Carlo samples appropriate for this analysis. Each momentum bin has been normalised
individually.
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a) b) 

c) d) 

Figure 12: a) Number of electromagnetic cells clustered (DCA<100 cm) around the 

track; b) number of HAC cells; c) fraction of EM energy of the clustered cells; d) E/P, 

ratio of the total energy of the clustered cells to the track momentum. 

Figure 5.4: Distributions ofECAL/ptrk for pi-
ons, protons and anti-protons. Because of their
annihilation in the calorimeter the anti-protons
exhibit a peak aroundECAL/ptrk = 2 quite dif-
ferent from the other particle types (courtesy
of [Bru04]). The distributions were made with
70,000 simulated events each containing only a
single track for each particle type. For the track
simulation an equidistant momentum distribu-
tion in the range 0.75< p<2.5 GeV was used.

ter ECAL/ptrk usually is expected to be one. Such a behaviour is seen in Fig. 5.4.
However, the distributions shown were generated under somewhat ideal condi-
tions. Each of the simulated events contains only one track whose momentum and
direction were generated randomly with the help of flat distributions. In physics
events the situation looks different. The mean values of theECAL/ptrk distributions
are shifted dependent on the particle’s mass, since the calorimeter compensation is
a function of the particle’s energy [Dep99]. The way of clustering the calorimeter
energies may also play a role. As seen in Fig. 5.5 the distributions of the lighter
particles are shifted to higherECAL/ptrk values, while the heavy particles move
to lower values. In this figure the normalisedECAL/ptrk distributions of all parti-
cles in the Monte Carlo samples used for this analysis are presented separately for
positive and negative particles. The separation of anti-protons is much reduced,
though it helps to identify muons.

Other methods of using additional calorimeter information for the particle
identification have also been tried [Jün05], in particular longitudinal and lateral
shower profiles. However, the granularity of the ZEUS calorimeter is too coarse
for a clear distinction, at least in the momentum range considered, here below
10 GeV.

5.3 Particle Abundances

The relative abundances of the particle types e,π, µ, K, p and their anti-particles
per event are also needed for the hypothesis test defined by Eqn. (5.2). These are
determined with the help of the Monte Carlo samples introduced in Sec. 3.1. For
a precise description the distributions are binned in the pseudo–rapidity,η, and
the transverse momentum,pt, of the particles. The binning has been optimised for
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Figure 5.5: Relative frequency distributions ofECAL/ptrk for positively and negatively
charged particles obtained from the energy flow objects in the Monte Carlo samples used
for this analysis. The difference between protons and anti-protons is still visible. The
ECAL/ptrk variable helps to separate muons from the other particle types.

electrons and positrons, since they are the particles in question. The distributions
are normalised such that in each bin the sum of all equally charged particle types
is equal to one. The distributions for electrons and positrons are given in Fig. 5.6,
all others are depicted in Fig. 5.7.

5.4 Performance

With the information available it is now possible to compute the test function (5.2)
for all electron candidates (see Sec. 3.4). The results are presented in Fig. 5.8.
Here, the method described above was used to identify electrons and positrons in
simulated beauty events ofγp collisions containing two high–pt jets. For details
of the Monte Carlo simulation and the event selection, see Chap. 3. Figure 5.8
shows the test functions,T, for the e± hypothesis and its anti-hypothesis. It is
common to draw−2 lnT rather thanT.2 In Fig. 5.8 a clear separation between
the signal, located at low values, and the background at higher values is seen.
The integral of the normalised test function,−2 lnT, up to a certain value can be
directly interpreted as the efficiency to find an electron,εe, whereas the integral of
the anti-hypothesis distributions gives the probability for mis-identifying a non-

2The reason is that−2 lnT converges towards theχ2–distribution for Gian shaped proba-
bility densities or very large number of uncorrelated measurements.
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Figure 5.6: Relative abundances of electrons and positrons per event. The distributions
were made from all Monte Carlo samples used for this analysis by luminosity weighting.
The binning inη and pt of the particles was chosen to minimise statistical fluctuations.
Each bin is normalised in a way such that the sum of all particle types equals one.

electron as an electron,εnon–e. These are drawn in the upper right of Fig. 5.8. With
the help of this diagram it is possible to determine the amount of mis-identification
for a given electron finding efficiency.

5.5 Summary

In this and the previous chapter the foundations of a comprehensive particle iden-
tification for the ZEUS experiment have been laid. The method described here is
in general applicable not only for electrons, but for all other particle types also,
in any type of analysis. It is valid for a wide momentum range from several hun-
dred MeV up to 10 or more GeV, which is the range of interest for most analyses
at ZEUS. The geometrical acceptance is also large, reaching roughly from -1.9 to
1.9 in terms of the pseudo–rapidity,η. The method relies mostly on ionisation loss
energy measurements in the CTD, which are quite stable and trustworthy because
of the extensive systematic studies and corrections.

The likelihood method helps by combining the information best and reduces
the mis-identification rate by a considerable amount. Still, for this analysis this
is not enough. Suppose a beauty to light–flavour ratio of 1:2000 multiplied with
a branching ratio of 20 % means that only every 10,000th event contains a beauty
electron.3 Even with a mis-identification efficiency of 0.1h the resulting sample

3This is a very conservative estimate, since the beauty to light–flavour ratio is much improved
by selecting only events containing high–pt jets and other kinematical cuts as applied in this anal-
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Figure 5.8: Performance of electron identification with the help of ionisation losses of par-
ticles in the CTD and calorimeter information for simulated beauty events. The test func-
tion is shown for the e± hypothesis of particle tracks (solid line) and the anti-hypothesis
(dashed line). Both distributions are normalised to one for better comparison. From this
distributions and the knowledge of the true particle type, the efficiency, εe, for finding
electrons and positrons, and the efficiency,εnon–e, for mis-identification of other particles
as e± can be determined. Their dependence is shown in the upper right diagram.

would be hundred percent contaminated. A more stringent electron identification
is therefore needed. Again, the likelihood method provides a way out, because it
is simple to extend the likelihood with information. In our case, information about
the semi–leptonic decay will be added. This is the subject of the next chapter.

ysis. See also the discussion in [Jün05].



Chapter 6

Signal Extraction

In this chapter the extraction of the beauty and charm signal is explained and the
amount of those events is determined. This is done with the help of the particle
identification described in the last two chapters. In addition some characteristic
features of the semi–leptonic decay are used.

6.1 Semi–Leptonic Beauty and Charm Decays

Semi–leptonic decays provide a robust way to identify beauty and charm decays.
The branching ratio for B±/B0/B0

s/b–baryon admixture tòν`+anything had been
determined to 10.59 % [Y+06], which makes a measurement of the beauty fraction
feasible.

A modern way of improving the determination of the beauty and charm frac-
tion is the use of life–time information as provided by micro–vertex detectors.
However, at ZEUS such a detector is only available for the HERA-II running pe-
riod, which is not part of this analysis. Thus other methods must be developed for
the heavy quark tagging. In the next sections two more discriminant variables are
introduced which will be plugged into the hypothesis test (5.2).

6.1.1 Decays of Heavy Hadrons

In the case of beauty hadrons the outgoing particles have a large phase–space to
manoeuvre due to the high mass of the parent particles. Thus the electron emerg-
ing from the semi–leptonic decay has on average higher transverse momenta,prel

t ,
with respect to the jet axis than other particles (see the sketch in Fig. 6.1). The
jet axis is chosen, because it is a reasonable estimate of the direction of the parent
particle, which cannot be directly reconstructed. It is also necessary to match the
electron candidate with the correct jet. This and the pre-selection of the electron

116
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esl

Jet 2

prel
t

Jet axis

Jet 1

Figure 6.1: The heavy hadron being part of
jet 1 decays after a short time. Due to the
large mass of the beauty hadron the electron
emerging from the semi–leptonic decay tends
to have a higher tranverse momentum,prel

t ,
relative to the jet axis compared to the decays
of the lighter flavoured hadrons.

candidates follows the procedure described in Sec. 3.4. Figure 6.2 showsprel
t dis-

tributions for true semi–leptonic beauty and charm decays as well as other decays,
labelled as background. The distributions are made from the Monte Carlo samples
for the different flavours described in Sec. 3.1. All the cuts used for the selection
of dijet γp events are applied. The distributions presented here are the sum of
the distributions of every sample weighted by its integrated luminosity. For later
use and better representation each of the distributions are normalised to one. Be-
cause of its harder spectrum a good separation of the beauty decays from charm
and other decays is possible. Charm cannot be separated from the background,
though.1

6.1.2 Catching the Neutrino

Another source of information is the escaping neutrino from the semi–leptonic de-
cay. Due to its very weak interaction with matter the neutrino will not be directly
observed by the detector. However, since it carries momentum away it will cause
an imbalance in the total four–momentum of the hadronic final–state. Because of
the unknown L boost of the hadronic final–state only the azimuthal com-
ponent is reconstructable. In the absence of any neutrino the vectorial sum of

1In fact, the charm distribution is even below the background. This is a general feature, also
seen inµ analyses. The reason is the higher track multiplicity of charm jets. They contain on
average one particle more than the jets in the background samples, due to the charm decays. Thus
the prel

t distribution of charm is shifted towards lower values. Beauty jets show a much different
behaviour, because in this case the higher track multiplicity is compensated by the higher amount
of available energy.
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Figure 6.2: Relative frequency distributions of theprel
t variable for semi–leptonic beauty

and charm decays and background. The beauty spectrum is harder than the other ones
making a separation of beauty possible. Charm cannot be well–separated by theprel

t
variable. The distributions are made from the beauty, charm and light–flavour Monte
Carlo samples used of this analysis.

the projections of all reconstructed hadronic four–vectors (EFOs) onto the (x, y)–
plane ought to be the zero vector due to four–momentum conservation. Any un-
detected neutrino will manifest itself in a non-zero vector sum, which is called
themissing transverse momentum, p/ t and can be utilised for the neutrino recon-
struction. Up to now this has only be done in charged current analyses at HERA
(c. f. Fig. 1.2(b)) for tranverseν momenta higher than∼ 12 GeV [Wes02]. Since
the transverse momenta of the neutrinos from semi–leptonic beauty decays are
of the order of several GeV only, a precise reconstruction of those is for sure not
possible. However, their azimuth is determined fairly well as seen in Figs. 6.3,
6.4. The first one shows the residualp/ t azimuths comparing reconstructed and
true values in simulated events. The quality of the azimuthalp/ t reconstruction is
passable. In a next step the reconstructedp/ t azimuthal values are compared to the
azimuths of true neutrinos from semi–leptonic decays in simulated events. Re-
sults are shown in Fig. 6.4. Both correlations and residual plots are presented. As
seen it is possible to reconstruct the neutrino azimuthal direction with the help of
the p/ t variable. The picture stays even if additional neutrinos appear in the event.
These are mostly very soft thus not affecting thep/ t vector sum very much. This is
indicated by Fig. 6.5.

For the identification of semi–leptonically decaying beauty and charm hadrons



6.1. SEMI–LEPTONIC BEAUTY AND CHARM DECAYS 119

 (rad)miss
t, mc

 - pmiss
t, rec

p
-4 -2 0 2 4

Ev
en

ts

500

1000

1500

2000

2500

3000

3500

 

Figure 6.3: Goodness of the azimuthalp/ t
reconstruction exemplary for b̄b simulated
events in direct photoproduction. Shown is
the difference of the azimuthal component
between the reconstructedp/ t and the true
one. Figure taken from [Jün05].

the azimuthal difference,∆φ, between the outgoing neutrino and the lepton per-
forms best. The neutrino direction is obtained with the help of the missing trans-
verse momentum, which can be determined quite well as described above (see
also Fig. 6.6 for the definition of∆φ). The measurement of the lepton direction is
very precise, much better than the determination of the direction of the hadronic
decay products which is roughly described by the axis of the corresponding jet.
Thus the∆φ variable is in some way complementary to the already mentionedprel

t

variable. In Fig. 6.7 relative frequency distributions for electrons originating from
semi-leptonic decays of beauty and charm decays are depicted as well as those for
all other electrons (untaggedγ conversions, D decays, DIS background etc.).
The distributions are obtained from all selected dijetγp events in the beauty, charm
and light–flavour Monte Carlo samples used in this analysis. A clear separation of
the beauty and charm signals from the background is seen. In contrast to theprel

t

variable, which identifies only the beauty, the∆φ variable discriminates likewise
beauty and charm from the background making a simultaneous measurement of
production cross–sections for beauty and charm possible.

6.1.3 Systematic Corrections

Both, theprel
t and the∆φ variable suffer from systematic mis-measurements. For

the former this was already noticed in case of the B→ µ analyses at ZEUS (c. f.
[Gut05]). Therefore it is necessary to correct the values ofprel

t and∆φ in real data
before using them for the identification of beauty or charm events. This is done by
comparing theprel

t and∆φ distributions for real data to those of simulated events.
The results are shown in Fig. 6.8. Deviations are seen for highprel

t and low∆φ
values.

To avoid any systematic bias in the signal domain, the correction factors are
determined in the non-signal region, as depicted in Fig. 6.9. This selection is done
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(a) Oneν from semi–leptonic decays per event without any other neutrinos
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Figure 6.4: On the reconstruction of the azimuth of neutrinos from semi–leptonic decays
in simulated b̄b events. On the left correlations of the true azimuth and the reconstructed
one are shown, while on the right side the corresponding residual distributions for both
values are presented. In (a) only one trueν per event is allowed, the one from the semi–
leptonic decay, that is. A clear correlation of the true neutrino and the missing transverse
momentum is seen. The correlation remains even if more neutrinos are part of the event
(b) and the azimuthal resolution is similar. Figures taken from [Jün05].
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∆φ

Figure 6.6: ∆φ denotes the azimuthal angular differ-
ence between the neutrino and the electron both origi-
nating from the semi–leptonic decay.
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Figure 6.9: The corrections forprel
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termined in the non-signal region. Distributions
of the test function (5.2) made of the energy loss
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ter energy to track momentum of electron candi-
dates (as described in Sec. 5.2 are shown for all
simulated events (light shaded histogram) and the
beauty signal only (dark shaded histogram). The
range used, 20<−2 lnT < 40, is indicated by the
dashed–dotted lines. Figure taken from [Jün05].

by the help of the test function defined in Eqn. (6.3) which was made without any
knowledge ofprel

t and∆φ, so as not to spoil the correction factors. These factors
are determined by computing the ratio in every bin ofprel

t and∆φ between real
data and Monte Carlo. Figure 6.10 shows the achieved correction factors. The
correction for theprel

t variable is large, in particular for the highest bin.2 Reasons
might be shortcomings in the parton shower and the hadronisation model, but also
in the CAL shower simulation of the Monte Carlo. The situation is, of course,
unpleasant. For future analyses, a better understanding of the origin of the sys-
tematics and a more thorough correction procedure is desirable. The correction of
the∆φ variable are much smaller, of the order of a few percent only and therefore
no real reason to worry. The corrections are applied to the respective probability
density distributions whenever these are accessed.3

It should be emphasised that the correction factors do not change the values of
prel

t and∆φ directly; they are rather applied to the probability density of a certain
value ofprel

t or ∆φ when computing the likelihood function described in the next
section.

6.2 The Combined Likelihood

With the help of the corrected values for theprel
t and∆φ variables it is now possible

to extend the hypothesis test of electron candidates given in Eqn. 5.2 for testing
the hypothesis whether the candidate originates from a semi–leptonic beauty or

2The correspondingprel
t correction factors of the B→µ analyses at ZEUS (e. g.[Gut05]) show

a similar behaviour in general, however, due to different kinematic ranges and isolation criteria of
the muons, and also due to a different correction procedure they are not directly comparable to the
electron corrections.

3In particular this means that the corrections are applied likewise for real and Monte Carlo
data.
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charm decay, or from something else. With the discriminants given in this and the
last chapter the full likelihood (see Eqn. 5.1) then reads

Li, j = αi(pt, η) · P(dE/dx, p,ntrunc |mi) · P( fEMC, p | i )

· P(ECAL/ptrk | i ) ·

β j(pt, η) · P(prel
t | j ) · P(∆φ | j ) , (6.1)

with αi being the abundance of particle typei (a priori probabilities,c. f.Sec. 5.3)
andβ j denoting the frequency of the different types of electron formation:

i ∈
{
π
±, K±, p|p̄, e±, µ±

}
,

j ∈
{
e± from semi–leptonic beauty decays, e± from semi–leptonic

charm decays, background
}
. (6.2)

The test function again is the ratio of the likelihood for the hypothesis,i∧ j, to that
for all hypotheses,k∧l

Ti, j =
Li, j∑

k,l
Lk,l

. (6.3)

This hypothesis test then is a combination of a test for a particle being an electron
and a second test for the electron candidate originating from a semi–leptonic de-
cay of a heavy–flavoured hadron. It helps to overcome the insufficient separation
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power of the electron identification alone (c. f. Sec. 5.5). In the following the test
function,T, denotes explicitly that for e± originating from semi–leptonic beauty
or charm decays.

6.2.1 Decay Frequencies

Similar to the particle abundances,αi, defined in Sec. 5.3, the relative frequencies
of the different decays into electrons,β j, have to be determined. Three types are
of interest: Semi–leptonic charm and beauty decays defining the signals, and the
background which covers all other sources of electrons like non-taggedγ conver-
sions, D decays, DIS background etc. As with the particle abundances, the
numbers are taken again from the Monte Carlo samples and binned inη andpt for
a more precise description. As an example, results for e− are given in Fig. 6.11.

6.2.2 Control Distributions

Since the method of the beauty and charm extraction depends on the Monte Carlo
simulation, its quality and agreement with real data has to be checked. The pro-
cedure for this is the same as used in Chap. 3. First all distributions of all eight
Monte Carlo samples are added weighted with their integrated luminosities. The
resulting distribution is then area–normalised to the distribution of real data, since
the actual normalisation is unknown and only the shape is of interest.

The first variables to check are the five discriminants used in the likelihood
ratio. In Fig. 6.12 the distributions for real data of all those variables are drawn
on top of the corresponding simulated ones. Good agreement is seen for all of
them, in particular for the dE/dx variable which is most important for the hypoth-
esis test, indicating that the systematic corrections emphasised in Sec. 4.3 work.
Also, the corrected data values ofprel

t and∆φ (see Sec. 6.1.3) fit perfectly to the
simulated ones.

Because the particle abundances and the decay frequencies used in the like-
lihood computation depend on the transverse momentum,pt and the pseudo–
rapidity,η, of the electron candidate, they are also checked as shown in Fig. 6.13.
Here also, no significant deviations between real data and Monte Carlo simulation
is seen.

6.3 Beauty and Charm Extraction

The fraction of beauty and charm in the selected dijet photoproduction events is
determined by a fit of the Monte Carlo prediction to the real data. The fit is per-
formed with distributions of the test function (6.3) for the hypothesis of a particle
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Figure 6.11: Relative frequencies for different types of electron formation per event:
Semi–leptonic beauty decays (a), semi–leptonic charm decays (b) and all other sources
for electrons (c). The numbers are obtained with the help of the true information in all
Monte Carlo events. The frequencies are given in bins of the transverse momentum,pt

and the pseudo–rapidity,η, of the electron. The distributions are normalised such that the
sum of all entries in a certain bin of the three distributions equals one.

being an electron from a semi–leptonic beauty or charm decay. The test function,
T, is computed for each electron candidate defined in Sec. 3.4. Distributions of
−2 lnT are filled separately for real data, for all simulated bb̄ events, for all c̄c
events and all the remaining events, which we denote as background.4 In case

4The filling is done candidate–wise, which means more than one candidate per event is allowed
(the probability for this is small).
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Figure 6.12: Control distributions for the five discriminant variables used in the hypothesis
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Figure 6.13: Control distributions for the transverse momentum,pt, the pseudo–rapidity,
η, and the azimuth,φ, of all electron candidates in 98—00 data. Symbols are the same as
in the previous figure.
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Figure 6.14: Distribution of the test function
for all e± candidates in real data (solid cir-
cles) compared with different types of elec-
tron in the Monte Carlo samples (shaded his-
tograms). The simulated distributions are
drawn stacked. Their areas are luminosity–
normalised to the data. -2 ln T
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of the simulated events the decision of which class a particular event belongs to
is made with the knowledge of the Monte Carlo generator data. Because we are
interested in the total beauty and charm production cross–sections, electrons from
semi–leptonic decays of charmed hadrons originating from beauty decays are as-
signed to the b̄b class. The procedure is done for each Monte Carlo sub-sample
and the resulting distributions are added by means of their luminosity weights.
In Fig. 6.14 all distributions are presented for both the 96—97 running period
(
√

sep= 300 GeV) and the 98—00 running period (
√

sep= 318 GeV). The beauty
signal is left-most, since the hypothesis test had been tuned for the identification
of B→e events. The charm signal is located at the centre, while the background
peaks at high values of−2 lnT. Here, the background exceeds the signal by sev-
eral orders of magnitude. In order to prevent the fit from being dominated and
spoiled by the background, the electron candidates are further constrained by the
requirement of a minimum value of its test function. A cut at−2 lnTmax=10 was
chosen. This rejects most of the background, while the beauty and charm signals
are only slightly diminished. Such a cut also removes the steep fall of the back-
ground distribution at the upper end, which might be difficult to describe. For a
discussion on the stability of this cut see Sec. 7.3.

The fractions of beauty and charm signal in real data are determined by a fit
of the simulated beauty, charm and background distributions of−2 lnT to that of
real data. The fractionsfb, fc and fbkg are varied by the fit, so that in each bin,
i, the total number of simulated entries,fbNb,e

MC+ fcN
c,e
MC+ fbkgN

bkg
MC, is close to the

number of entries for real data,Ne
Data · (N

tot
MC/N

tot
Data) .5 Since the statistics is very

low in some bins, abinned maximum likelihood fitis used here. Furthermore the

5The notation ofNe
Data is somewhat mis-leading, since the electron candidates in data include

a considerable amount of background. However, the important thing to note is, that this number is
meant candidate–wise rather than event–wise.
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√
sep = 300 GeV

√
sep = 318 GeV

fb 0.038± 0.007 0.051± 0.006
fc 0.091± 0.017 0.086± 0.011
fbkg 0.871± 0.017 0.863± 0.010
Nb,e

Data 1 010± 186 2 853± 336
Nc,e

Data 2 420± 452 4 811± 615
Nbkg

Data 23 160± 452 48 282± 559

Table 6.1: Fit results forfb, fc and fbkg and the corresponding absolute numbersNb,e
Data,

Nc,e
Data andNbkg

Data. The error of the latter is given by the statistical uncertainty of the fit.

(rather limited) statistics of the Monte Carlo samples is also taken into account.6

The method used had been developed by B et al. [BB93]. The fit results
are presented in Fig. 6.15. The obtained values for the fractions of beauty, charm
and background, and the corresponding absolute numbers,Nb,e

Data= fb·Ne
Data, Nc,e

Data=

fc·Ne
DataandNbkg

Data= fbkg·Ne
Data, are collected in Tab. 6.1. The goodness of a maximum

likelihood fit can be estimated with the help of the likelihood ratio,λ, for the
fit hypothesis [BC84]. In the case of Gian distributed errors−2 lnλ ≡ χ̃2

converges towardsχ2. The values of ˜χ2 divided by the number of degrees of
freedom,d.o. f ., are7

χ̃2/d.o. f .
∣∣∣∣√

sep=300 GeV
= 6.7/12,

χ̃2/d.o. f .
∣∣∣∣√

sep=318 GeV
= 10.7/12.

The correlations of the fit parameters,fb, fc and fbkg are given by the correlation
matrix

C =

 fb,b fb,c fb,bkg

fc,b fc,c fc,bkg

fbkg,b fbkg,c fbkg,bkg

 ,
6Common fits consider only statistic uncertainties in the data to be fitted to,i. e. the real data

distribution in our case. This is only valid if the uncertainties in the Monte Carlo samples are
negligible. Therefore usually many more simulated events than real ones are produced (at least ten
times more), which is in this analysis not possible due to the huge amount of light–flavour events.

7The number of degrees of freedom is 12, since the fit has two free parameters and one con-
straint, and the distributions consist of 15 bins.
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with

C(
√

sep = 300 GeV )=

 1.00 0.60 −0.24
0.60 1.00 −0.77
−0.24 −0.77 1.00

 ,
C(
√

sep = 318 GeV )=

 1.00 0.68 −0.21
0.68 1.00 −0.67
−0.21 −0.67 1.00

 .

While the beauty signal is very well separated from the background, its correlation
to charm is large. Also, charm is highly correlated with the background. The
reason for the large charm correlation, resulting in a relatively large uncertainty,
is two-fold: First, the test function is computed for the beauty hypothesis, not
for a charm hypothesis. Second, one of the five discriminants,prel

t , separates
only beauty from the background but not charm. However, the main objective
of this analysis, the determination of the beauty fraction, has been reached. The
measurement of the charm fraction, not even dreamed of in the beginning, is a
welcome side–product of the analysis. Equipped with these results we can go on
to the determination of cross–sections, which is subject of the next chapter.
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(b) Running period 98–00,
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sep = 318 GeV

Figure 6.15: Fit of the beauty and charm fractions for 96–97 running period (a) and 98–00
running period (b). The sum of the Monte Carlo distributions is fitted to real data. The fit
range is restricted to−2 lnT<10. The fit takes into account the statistical uncertainties of
bins with low statistics as well as of the simulation.



Chapter 7

Cross–Section Measurements

7.1 Visible Cross–Sections

In the previous chapter the number of events for the dijet photoproduction reac-
tions1

e±p → bb̄+ e′±X → esl
± + dijet+ e′±X , (7.1)

e±p → cc̄+ e′±X → esl
± + dijet+ e′±X , (7.2)

have been determined by fitting Monte Carlo templates to real data. With the
numbers given in Tab. 6.1 the corresponding beauty and charm cross–sections can
be computed with the help of the formula

σi
e±p→esl

±+dijet+e′±X =
fi · Ne

Data

L · αi
e

with i ∈ {b, c } . (7.3)

Here,L is the total gated luminosity for the considered running period, andαi
e the

e± candidate–wise acceptance corrections for beauty and charm given by

αi
e =

Ni,e
MC, rec

Ni,e
MC, gen

. (7.4)

More details of the acceptance calculation are given in Appendix B. The numbers
Ni,e

MC, rec andNi,e
MC, gen represent the numbers of reconstructed and generated elec-

tron candidates with transverse momentape
t > 0.9 GeV in the Monte Carlo. The

results for the 1996/97 and 1998—2000 running periods are presented in Fig. 7.1.

1This includes also beauty and charm production inexcitation processesmentioned in
Sec. 1.3.4. In very rare cases beauty and charm are produced in the fragmentation process or
in weak interaction. Cascade decays of beauty into charm are accounted as beauty production
events.

132
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Figure 7.1: Total visible cross–sections for the reaction e±p→esl
±+dijet+e′±X for electrons

and positrons withpe
t >0.9 GeV. The kinematic region is restricted to 0.2<y<0.8. At least

two jets are required withEt > 7(6) GeV and|η|< 2.5. The error bars denote the squared
sum of the statistical and systematic uncertainties. The small horizontal bars mark the
size of the statistical error. The lines represent the corresponding PYTHIA prediction in
leading order QCD. Here, the

√
sep–dependence is drawn according to the parametrisation

(1.11).

The exact numbers together with the luminosities and acceptances used are listed
in Tab. 7.1. The statistical uncertainties of the cross–sections are the scaled uncer-
tainties of the beauty and charm fractions given by the fitting procedure. Statisti-
cal uncertainties on the numbers of selected events are already included in these
values. The systematic uncertainties of the cross–sections shown are discussed in
Sec. 7.3. The PYTHIA predictions for

√
sep=300 GeV and

√
sep=318 GeV are in-

terconnected with the help of the D–L parametrisationσ∝ s0.08
ep

mentioned in Sec. 1.3.
√

sep [GeV] L [nb−1] αb
e σb [pb] αc

e σc [pb]

300 38.6±0.7 0.20 132±24+2
−5 0.18 350±67+28

−84
318 81.6±0.9 0.19 186±21+4

−16 0.18 340±45+19
−98

Table 7.1: Total visible cross–sections for the reaction e±p→esl
± + dijet+e′±X.
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√
sep [GeV] σb [pb] ∆L σb [pb] ∆Etσb [pb] σLO

b [pb] σb/σ
LO
b ]

300 820±150+20
−30 ±15 ±0 556 1.5±0.3

318 1170±130+30
−100 ±18 +20

−30 597 2.0±0.2

Table 7.2: Total inclusive cross–sections for the reaction e±p→ bb̄+e′±X. Systematic
errors due to statistical uncertainties of the acceptances are omitted, since they are well
below 1 pb.

7.2 Total Inclusive Cross–Sections for Open Beauty
and Charm Production

For the determination of the inclusive cross–sections for beauty and charm pro-
duction it is necessary to transform the e±–wise values given above to event–wise
ones. These are connected by the number of heavy quarks emerging from the
hard sub-process2 and the branching ratios for beauty and charm hadrons decay-
ing semi–leptonically into electrons or positrons. Instead of using a fixed value for
the branching ratio (e. g.from the Particle Data Group tables) the information in-
corporated in the PYTHIA Monte Carlo simulation is used, since the momentum
spectra of the outgoing particles are considered here.3 The validity of the PYTHIA
model for semi–leptonic B decays has already been discussed in Sec. 1.8. In ad-
dition the restriction of the electron momenta,pe

t > 0.9 GeV, is released and the
cross–section is extrapolated to the full range. All this is achieved by using accep-
tance corrections,αi, for a flavouri ∈{b, c}:

αi ≡
Ni,e

MC, rec

Ni,evt
MC, gen

. (7.5)

The denominator,Ni,evt
MC, gen, denotes the number of generated bb̄ or c̄c production

events in the Monte Carlo inside the considered kinematic region, 0.2<y<0.8 and
Et

jet > 7(6) GeV,|ηjet| < 2.5 (see Sec. 3.3 for details). In principle these variables
are reconstructed in the same manner as in real data; however, to become indepen-
dent of the detector, they are reconstructed with respect to the hadron level (c. f.
Sec. 3.2), except fory which is the true value given by the generator. This ensures
the ability to compare with other experiments. The inclusive cross–sections then

2Usually this number equals 2, since the heavy quarks are produced in pairs. In excitation
processes, however, one of the quarks might remain undetected in one of the remnants.

3In the PYTHIA program matrix elements of the form|M |2 = (php`)(pν` ph) are used to dis-
tribute the momenta of the decay products in semi–leptonic decays H→ `ν`h, where H is a beauty
or charm hadron and h an ordinary hadron.
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√
sep [GeV] σc [pb] ∆L σb [pb] ∆Etσb [pb] σLO

c [pb] σc/σ
LO
c

300 6470±1240+510
−1550 ±120 +500

−270 4516 1.4± 0.3
318 6150± 820+350

−1770 ±150 +310
−370 4780 1.3± 0.2

Table 7.3: Total inclusive cross–sections for the reaction e±p→ cc̄+e′±X. Systematic
errors due to statistical uncertainties of the acceptances are omitted, since they are well
below 1 pb.

are defined by

σe±p→bb̄+e′±X =
Nb,e

Data

L · αb
, (7.6)

σe±p→cc̄+e′±X =
Nc,e

Data

L · αc
. (7.7)

In Fig. 7.2 the obtained cross–sections are shown, both for beauty and charm.
The exact numbers are given in Tab. 7.2 and 7.3. These tables include also the
cross–sections of the QCD leading order prediction,σLO, given by the PYTHIA
program, and the ratiosσ/σLO. The latter can be used to normalise the leading
order prediction to the measured values for a better comparison of the shapes of
the distributions. In the figure the result of a similar analysis [Tur02] is shown
also.4 In this analysis the beauty fraction for the ZEUS data 1996—2000 was de-
termined by fittingprel

t distributions of muons from semi–leptonic B decays. The
kinematical constraints on the total bb̄ cross-section are the same as in this anal-
ysis. The muonic result is compatible with the results from the electron analysis.

7.3 Systematic Uncertainties and Consistency

In this section studies of possible systematic effects and consistency checks are de-
scribed. These have been performed in order to detect unforeseen systematic mis-
measurements and provide confidence in the measurements, as well as estimate
the systematic uncertainties of the results gained from uncorrected systematic ef-
fects.5 The following possible sources of systematic uncertainties were studied
separately for beauty and charm measurements:

4The results for the two different ep centre–of–mass energies had been averaged.
5A rich and sometimes amusing source of information about systematic errors is found in

[Bar02] and [Bar00].
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Figure 7.2: Total cross–sections of open beauty (solid circles) and charm (hollow circles)
production for centre–of–mass energies

√
sep=300 GeV and

√
sep=318 GeV. The kine-

matic region is restricted to 0.2<y<0.8. At least two jets are required withEt>7(6) GeV
and |η| < 2.5. The lines indicate the corresponding leading order QCD prediction by the
PYTHIA program. Their functional form is the same as in Fig. 7.1. The star denotes the
result of a similarb→µ analysis [Tur02].

1. Acceptance corrections. Due to statistical uncertainties of the acceptance
correction factors determined by Eqn. B.5 the uncertainty of the cross–
section measurement is increased. The relative uncertainty of the cross–
section equals the relative statistical error of the acceptance.

2. The variation caused by the uncertainty of the luminosity measurement. Ac-
cording to [ZEU06] these are±1.8 % for the

√
sep=300 GeV running period

and±2.25 % for
√

sep= 318 GeV data. Here also, the relative uncertainties
result in cross–section variations are of the same size.

3. The uncertainty of the jet energy scale was determined to be±3 % in pho-
toproduction events [C+03].6 In order to estimate the effect on the cross–

6In the case of deep inelastic scattering this can be improved by exploiting the fact, that the
scattered electron has to balance the total hadronic system [Win02]. In such analyses the error on
the jet energy can be decreased to±1 % for jet energies above 10 GeV.
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Figure 7.3: Results on the study of systematic uncertainties of the cross–section mea-
surements for b̄b production. Shown are the relative deviations from the measured total
cross–section for the cases studied (see text). The light shaded bar represents the varia-
tions for the

√
sep=300 GeV data and the dark shaded bars the ones for

√
sep=318 GeV

data. The statistical error of the latter is indicated by the dashed lines, while the dashed–
dotted line represent the statistical uncertainty of the former.

sections, the energy of jets in real data was varied up and down these values
while leaving the energies unchanged in Monte Carlo data. Then the whole
analysis chain is re-done and new cross–sections are obtained. Finally, the
deviations from the original cross–sections are taken as systematic uncer-
tainties.

4. The energy loss measurements are the key point for the electron identifica-
tion. Although many systematic effects are corrected (see Sec. 4.3), one has
to check for remaining effects, and also the stability of the fit model used to
describe the dE/dx residuals. The test is made by using the toy model intro-
duced in Sec. 4.4.3 for the dE/dx description, which is based on completely
different arguments than the simple analytical model used otherwise. This
is done for both real and Monte Carlo data. Afterwards one proceeds as in
the previous item.

5. The prel
t discriminant used for the beauty and charm extraction is varied

within the statistical uncertainties of the corresponding correction factors
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determined in Sec. 6.1.3. For the variation in the upward direction the sta-
tistical error is added to correction factors larger than one, while being sub-
tracted for the corrections lower than one. A reversed procedure is applied
for the downward variation. The above procedure is applied when comput-
ing the test function for real data as well as for Monte Carlo data. However,
since theprel

t distributions, which are changed by the corrections factors, are
determined with the help of the Monte Carlo data only, the changes of the
correction factors described here operate on the Monte Carlo actually. The
analysis is rerun with the changedprel

t distributions and new cross–sections
are obtained yielding an estimate for the magnitude of this systematic.

6. The systematic effect of the statistical uncertainty for the corrections of the
∆φ variable is done in the same way as forprel

t described above.

The results of the studies are depicted in Fig. 7.3 for the case of beauty production
and in Fig. 7.4 for charm. Beside the relative deviations of the cross–sections the
statistical errors of the original measurements are shown also.
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Figure 7.4: Study of systematic uncertainties of the cross–section measurements for
charm production. The relative deviations from the measured total cross–section are pre-
sented for different effects (see text). The light shaded bars represent the variations for
the
√

sep=300 GeV data and the dark shaded bars the ones for
√

sep=318 GeV data. The
statistical error of the latter is indicated by the dashed lines, while the dashed–dotted line
represent the statistical uncertainty of the former.
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In beauty production no significant deviation from the original cross-sections
is seen. Therefore only the acceptance uncertainty, the luminosity error and the
jet energy scale uncertainty are taken into account, since we know for sure that
these variable are tainted with systematic effects which we cannot correct for.
A larger deviation is seen only for the changed dE/dx model in the case of c̄c
production. The deviation points towards the same direction as the corresponding
one in the case of beauty production (though it is much smaller there). Therefore
the dE/dx systematic is included in the total systematic uncertainty for beauty and
charm production cross–sections. The total systematic uncertainties in upward
and downward directions are computed separately by adding the respective parts
in quadrature.
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(a) Beauty production
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(b) Charm production

Figure 7.5: Various consistency checks (see text for details) of measurements for beauty
production (a) and charm production (b). Shown are the relative deviations from the
measured total cross–sections. The light shaded bars represent the variations for the
√

sep= 300 GeV data and the dark shaded bars the ones for
√

sep= 318 GeV data. The
statistical error of the latter is indicated by the dashed lines, while the dashed–dotted line
represent the statistical uncertainty of the former.

Beside the studies of systematic effects several consistency checks were per-
formed to test the stability of the measurements and look for more possible sys-
tematic effects. The results of these studies are summarised in Fig. 7.5 and Tab. 7.4.

1. The stability of the cut on the transverse momentum of the electrons,pe
t ,

is checked by varying this cut both in real and Monte Carlo data by the
resolution of the tracking program, which is±80 MeV according to Eqn. 2.1.

2. The fit stability was tested by varying the upper limit of fit range, which is
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restricted by−2 lnT <10, by one bin up and down,i. e. +2.59
−2.06 in units of the

test function, and re-do the fit for both cases. It should be mentioned that the
variations of the fit limit has a big effect on the number of background can-
didates. In case of the increased limit the number of background candidates
is almost doubled, while for the decreased limit it is only half as large.

3. The particle identification method is further checked by deliberately omit-
ting discriminant variables from the likelihood ratio. This had been done
separately forECAL/ptrk and fEMC. In order to fit the beauty and charm frac-
tions successfully, the loss in separation power must be compensated by
additional cuts. In the case of omittedECAL/ptrk values fEMC > 0.95 were
required, while for left outfEMC values the energy over momentum fraction
was restricted to 0.5< ECAL/ptrk < 1.2. The procedure was applied for real
data and Monte Carlo.

4. The independence of the beauty and charm extraction method from the par-
ticle charges is probed, for this is one of the most important claims of the
extensive systematic corrections for the energy loss. In a first step, cross-
sections for positively and negatively charged particles are determined sep-
arately. The method is further refined by further splitting the samples into
e+p and e−p runs, which is also a check for a significant contamination of
DIS events. Note however, that the statistical uncertainties of these cross–
sections are significantly higher than those of the original measurements,
because only sub-samples of the available tracks and events are used here.

Neither for the beauty nor for the charm production cross–sections significant
discrepancies are seen, except for the case of decay electrons in e−p collisions.

Another issue of some interest is the question of the isolation of the e± can-
didates. Measurements of the particle’s energy or momentum could be spoiled
by nearby particles. However this is already prevented by the requirement of 1:1
track–island relationships of the EFOs used (c. f.Sec. 3.4). This works quite well,
as seen in Fig. 7.6. Here, the shortest distances from the e± candidate to the near-
est track and energy flow object, respectively are histogrammed, both for real data
and Monte Carlo data. In fact, the electron candidates are quite isolated, so no
measures are taken.

7.4 Differential Cross–Sections

Single–differential cross–sections for the reactions e±p→ bb̄+e′±X and e±p→
cc̄+e′±X were determined for the electron variablespe

t andηe, the energy,Et and
the direction,η of the leading jet, the second most energetic jet as well as the
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Check σb [pb] ∆σstat.
b [pb] σc [pb] ∆σstat.

c [pb]

All,
√

sep=300 GeV 818 148 6465 1241
All,
√

sep=318 GeV 1166 131 6147 815
Only esl

+,
√

sep=300 GeV 784 208 6897 1655
Only esl

+,
√

sep=318 GeV 1252 195 7410 1172
Only esl

−,
√

sep=300 GeV 865 213 6051 1887
Only esl

−,
√

sep=318 GeV 1143 189 4499 1300
Only esl

+ in e+p events 1251 210 7742 1406
Only esl

+ in e−p events 1354 549 5828 2522
Only esl

− in e+p events 882 180 4948 1377
Only esl

− in e−p events 2060 808 4997 7149

Table 7.4: Consistency checks for possible dependencies of the measured bb̄ and c̄c cross–
sections on the sign of the charge of the electrons (positrons) originating from the semi–
leptonic decays and the incoming lepton. The first two rows indicate the original cross–
sections for comparison. Note the, for some of the checks, largely increased statistical
errors due to the reduced statistics.
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Figure 7.6: Isolation of e± candidates, represented by the distance to the impact point of
the nearest track (a) and the distance to the closest energy flow object (b). The black dots
indicate the 1998—2000 data,while the shaded histograms show the corresponding Monte
Carlo data. The different Monte Carlo samples are added with their luminosity weights
and afterwards normalised to the area of the real data distributions. Note, that the left plot
does not contain the 1:1 EFO requirement.
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jet associated with the electron, the number of jets per event,Njet, and the parton
kinematics,y, xγ andxp.

The fitting procedure described in Sec. 6.3 is performed in bins of these vari-
ables, and the beauty and charm fractions are extracted. The binning of the dif-
ferent variables and the gained acceptances and purities are shown in Sec. B.1.
The cross–sections in each bin are that of Equations (7.6) and (7.7) divided by
the respective bin width. On top of each distribution the leading order PYTHIA
prediction is drawn. For a better comparison the predictions are scaled by the
ratios of the measured total cross–sections to the PYTHIA prediction,σ/σLO,
given in Tables 7.2 7.3, averaged for

√
sep= 300 GeV and

√
sep= 318 GeV. The

resulting scaling factors are 1.75 for beauty and 1.35 for charm production. Ap-
pendix C also contains all cross–section numbers together with their statistical
and systematic uncertainties. The systematic uncertainties are those determined
in the previous section for the total cross–sections appropriately scaled.

7.4.1 Beauty Production

In Fig. 7.7 the transverse momentum,pe
t , and the pseudo–rapidity,ηe, of the elec-

trons and positrons coming from the semi–leptonic decays are shown. The distri-
butions show ample agreement with the scaled PYTHIA prediction drawn on top.
The situation is similar for Fig. 7.8, where the energy and the pseudo–rapidity of
the most energetic are presented. Also in Fig. D.2, which shows the cross–section
as a function of the kinematic variables,xγ, xp andy, and the number of jets per
event7, Njet, no significant deviation from the scaled PYTHIA prediction is seen.
More figures on the second most energetic jets and the electron–associated jets
are depicted in Sec. D.1. All cross-section numbers are given in Appendix C.

7.4.2 Charm Production

The same measurements were done for charm production. Figure 7.9 represents
the electron variables,pe

t andηe, while the properties of the leading jet are depicted
in Fig. 7.10. The kinematic variables are shown in Fig. D.6. Differential cross–
sections as a function ofEt andη of the second most energetic jet and the electron–
associated jet are given in Sec. D.2. Again, all cross–section numbers are collected
in Appendix C. Similar to b̄b production, the scaled PYTHIA distributions agree
reasonably well with the measured cross–sections.

7As mentioned earlier, the number of jets per events denotes the number of jets with at least
4 GeV of transverse energy in events containing two high energetic jets ofEt>7(6) GeV. Thus one
has to be careful when interpreting this variable.
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Figure 7.7: Cross–section dependence for beauty production as a function of the trans-
verse momentum,pe

t , and the pseudo–rapidity,ηe, of the semi–leptonic decay electron
for centre–of–mass energies,

√
sep=300 GeV (a) and

√
sep=318 GeV (b). The measured

cross–sections are depicted by the black dots, while the histograms represent the PYTHIA
prediction, scaled by a factor of 1.75 .

7.5 Next–To–Leading Order Comparison

In this section the measurements are compared with massive fixed–flavour predic-
tions in next–to–leading order QCD computed with the FMNR program, which is
described in Sec. 1.3.4. This program produces series of bb̄ or c̄c events with two
or three partons in the final–state, which allows for computing production cross–
sections on the heavy quark parton level. However, due to the non-zero parton
masses a factorisation of the final–state fragmentation, as described in Sec. 1.5,
is not possible. Instead, the b or c quark as generated by the FMNR program is
hadronised into a beauty or charm hadron by re-scaling the three–momentum of
the quark using the P fragmentation function (1.40) with a certain choice
of parameters. The hadron then is decayed afterwards semi-leptonically into an
electron (or muon) and further particles.8 Jets are reconstructed by applying the

8For B hadrons cascade decays via charmed mesons are possible.
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Figure 7.8: Cross–section dependence for beauty production as a function of the trans-
verse energy,Et

jet 1, and the pseudo–rapidity,ηjet 1, of the leading jet in each event for
centre–of–mass energies,

√
sep = 300 GeV (a) and

√
sep = 318 GeV (b). The measured

cross–sections are depicted by the black dots, while the histograms represent the PYTHIA
prediction, scaled by a factor of 1.75.

massivekt–jet algorithm (c. f. Sec. 3.2) to the outgoing partons.9 Because of this
the measured hadron–level cross–sections presented in the previous sections have
to be transformed into parton–level cross–sections before comparing them to the
FMNR predictions.

The heavy quark masses used for the calculations aremb=4.75 GeV andmc=

1.5 GeV, respectively. The renormalisation and fragmentation scales are related
by

µR = µF, γ = µF,p ≡ µ0 . (7.8)

They are functions of the masses and the transverse momenta of the outgoing

9N. B.: The outgoing partons are the only “real” particles generated by the FMNR program.
The hadronisation process and the semi–leptonic decays are accomplished by applying certain
probabilities and branching ratios to the variables of interest before filling them into histograms.
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Figure 7.9: Cross–section dependence for charm production as a function of the trans-
verse momentum,pe

t , and the pseudo–rapidity,ηe, of the semi–leptonic decay electron
for centre–of–mass energies,

√
sep=300 GeV (a) and

√
sep=318 GeV (b). The measured

cross–sections are depicted by the black dots, while the histograms represent the PYTHIA
prediction, scaled by a factor of 1.75.

heavy quarks. A common choice (c. f.Eqn. (1.42) is

µ2
0 = m2

HQ +
1
2

(p̂2
t,1 + p̂2

t,2) , (7.9)

with p̂t,1, p̂t,2 denoting the transverse momenta of the heavy quark and its anti-
particle in the parton rest–frame. The used parton distribution functions are CTEQ–
5M in the case of the proton and GRV–HO for the photon.10 The P frag-
mentation parameter,ε, was chosen to 0.035, also different to that used for the
PYTHIA Monte Carlo generation.

The uncertainties of the FMNR prediction are large [FMNR98], in particular
for charm production. At HERA energies the biggest uncertainty for charm is

10In contrast to the parametrisations of the parton distribution functions used for the PYTHIA
prediction, the sets used here are computed in higher orders using theMS scheme for the pro-
ton and the DIS–γ scheme for the photon according to the used parametrisations of the structure
functions (this includes a different running of the strong coupling,αs).
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Figure 7.10: Cross–section dependence for charm production as a function of the trans-
verse energy,Et

jet 1, and the pseudo–rapidity,ηjet 1, of the leading jet in each event for
centre–of–mass energies,

√
sep = 300 GeV (a) and

√
sep = 318 GeV (b). The measured

cross–sections are depicted by the black dots, while the histograms represent the PYTHIA
prediction, scaled by a factor of 1.75.

mainly due to our ignorance of the gluon density in the photon PDF but also from
that of the proton. Additional uncertainties come from the charm mass and the
scales. Uncertainties by factors of 4—10 are to be expected. In the case of beauty
production the uncertainties are much smaller due to the higher mass. Still the
photon structure function is the dominant part. In total uncertainties of factors of
2—3 are common. Therefore one has to be very careful when comparing mea-
surements to predictions of the FMNR program. Its main use is to study the effect
of taking next–to–leading order processes into account. Here, a straight compari-
son with PYTHIA might be dangerous. Though PYTHIA utilises matrix elements
in leading order QCD, it includes a mature parton shower model and some other
phenomenological parts, such that in some sense it is valid to all orders.11

11For technical reasons in events generated by PYTHIA information about the partons is only
accessible after the parton showering, just before fragmentation. This definition of the parton level
differs from that of the FMNR program.
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In order to get a rough estimate on the uncertainties of the FMNR predictions,
the masses of the heavy quarks and the scale,µ, are varied according to Tab. 7.5.
Variations of the structure functions are not part of this thesis. It should be empha-
sised that the estimation of the uncertainties given here and shown in the following
plots in many cases underestimates the actual uncertainty by far.
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Pythia
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Figure 7.11: Predictions of the FMNR program for cc̄ (upper dashed–dotted line) and
bb̄ production (lower dashed–dotted line). The predictions are made for centre–of–mass
energies

√
sep = 300 GeV and

√
sep = 318 GeV, and are connected with the help of the

parametrisation (1.11). The hatched area around the predictions represents a rough es-
timate of the FMNR uncertainty (see Tab. 7.5). The circles indicate the measured pro-
duction cross–sections for beauty (filled) and charm (hollow). The dotted lines are the
corresponding PYTHIA predictions. All values are w. r. t. the parton level.

The FMNR predictions for the total inclusive production cross–sections of
open beauty and charm production are presented in Fig. 7.11 together with the
measurements and the PYTHIA prediction (unscaled). The

√
sep–dependence of

the predictions is done in the same way as in Figures 7.1, 7.2. A comparison with
other analyses can be seen in Fig. 7.12. Here, a collection of HERA results for bb̄
production is shown as a function ofQ2. The plot is the same as shown already
in Fig. 1.33, extended by the result of this thesis. Since the figure is a mixture
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of total and visible cross–sections measurements, both of them are shown for this
analysis (thick hollow circle and box). It is expected that the visible cross–sections
are closer to the next–to–leading order predictions than the (extrapolated) total
cross–sections, due to their tighter kinematical cuts. Thus it is hard to compare all
the measurements actually. Even worse, the analyses differ in their kinematical
ranges. However, all measurements lay systematically above the NLO predictions
giving the hint, that recent next–to–leading order calculations are not yet mature
enough for a thorough description of the problem.

Comparisons of the single–differential beauty and charm production cross–
sections with the corresponding FMNR prediction are presented in Sec. D.3. The
overall agreement is not very good.

Upper limit Lower limit
Beauty mb = 4.5 GeV∧ µ = 1

2µ0 mb = 5.0 GeV∧ µ = 2µ0

Charm mc = 1.2 GeV∧ µ = 1
2µ0 mc = 1.8 GeV∧ µ = 2µ0

Table 7.5: Variations of the heavy quark masses and the scales used in order to estimate
the uncertainty of the FMNR predictions.
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Figure 7.12: Open beauty production at HERA as a function ofQ2. Plotted is the ratio
of the measured total cross–sections to massive NLO predictions. On the left are theγp
measurements atQ2≈0 compared to predictions of the FMNR program. The deviation to
the cross–section measured in this analysis (averaged for centre–of–mass energies

√
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300 GeV and
√

sep=318 GeV), as determined in Fig. 7.11, is indicated by the thick hollow
circle. The corresponding visible cross–section, scaled with the effective branching ratio,
is shown also (thick empty box). The FMNR uncertainties given by Tab. 7.5 are displayed
by the dashed lines in the photoproduction regime.



Chapter 8

Summary

The main objective of this thesis was to measure cross–sections for open bb̄ pro-
duction at HERA for centre–of–mass energies

√
sep=300 GeV and 318 GeV. For

this, ep collision data recorded with the ZEUS detector in the period 1996—2000
has been analysed. The beauty was tagged by looking for semi–leptonic decays
of B hadrons into electrons or positrons. A dominant part of the analysis was the
development of a proper electron and beauty identification. The kinematic range
was restricted to photoproduction with four–momentum transfersQ2 ≈ 0. Here,
the production rates for b quarks, which are more than three orders of magnitude
lower than those for the light–flavoured quarks at HERA, are higher than in the
case of deep inelastic scattering. Because the heavy quarks are produced mostly in
boson–gluon–fusion–like processes, a common signature is high–pt dijet events.
Moreover, the jets were needed for the B identification.1 Thus photoproduction
dijet events form the basis of this analysis.

Setting up a proper electron identification procedure has been a demanding
task. Since the identification of particles having momenta of several hundred MeV
up to a few GeV depends much on measurements of the energy loss of charged
particles in the central tracking chamber, a detailed understanding of the drift
chamber and any possible systematic mis-measurements as well as ways of cor-
recting them is necessary. Such corrections are now available pinning down the
systematic uncertainty of the energy loss measurements to a level of a few percent
only. In addition a general particle identification procedure for ZEUS data has
been developed, which can be used for any type of particle.

In order to be able to find semi–leptonic B decays, the knowledge about the
electron was combined with kinematic information of the electron, the neutrino
and the jets. The full information was fed to a likelihood–ratio test enriching the

1Beauty identification without jets is possible with the help of life–time measurements. Unfor-
tunately the ZEUS detector had not been equipped with a proper device for doing such measure-
ments during the data taking period considered in this analysis.
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signal. The amount of beauty in the signal region was obtained by fitting Monte
Carlo templates to the real data distribution. A nice by-product of this method is
its ability to determine the amount of cc̄ production at the same time. The un-
certainties of these measurements are larger than those for beauty, because the
whole method was tuned for beauty identification and the intrinsic lesser separa-
tion power due to the fact, that theprel

t -distribution of charm is very similar to the
background.

Measurements of the semi–leptonic decay channel into electrons are compet-
itive to those with muons. The latter is widely used, because of the much simpler
muon identification. However, the muons are required to have transverse mo-
menta larger than∼2 GeV due to in-flight decays or mis-identified hadrons in the
lower momentum region. Also, they have to be energetic enough to penetrate
the calorimeter and reach theµ-chambers. Thus the acceptance is much reduced,
since most of the muons and electrons originating from semi–leptonic decays of
heavy quarks at HERA have lower momenta. The electron identification is more
flexible. In the analysis presented here, electrons with transverse momenta down
to 900 MeV are accepted, making the extrapolation to the full kinematical range
more reliable.

The new method for the particle identification and the tagging of heavy hadrons
has turned out to be very stable and robust, mainly due to its way of combining
information from different sources. Moreover, it is superior to other methods used
before at ZEUS, like the simpleprel

t fits. These methods suffered a lot from known
and unknown systematic effects. For example, in a previous analysis ofb→ e
a proper use of positrons was not possible thus cutting the available statistics by
half. With the new method this has changed. The particle identification now is
independent of the sign of the charge of the particle in question. The relatively
low contamination rates make this method — even in the e± case — competitive
to µ analyses. It also provides a cross–check for the muon analyses done so far.2

Another important advantage of the new method is its simple extensibility.
Information from the other sub-detectors, like life–time information, can easily
be plugged into the likelihood function. Also, the method is not restricted to
electrons — it can be applied to muons as well thus potentially gaining higher
efficiencies. One could even think of analysing the electron and the muon channels
in a single analysis, doubling the statistics.3 This might be of some interest for
double–differential cross–section measurements, for instance when extracting the
proton structure functionsFbb̄

2 , Fcc̄
2 , or measurements of QCD correlations.

2At ZEUS, discrepancies in the efficiencies of theµ–chambers between real data and Monte
Carlo data are seen. The systematic effects on the measured cross–sections caused by this are hard
to estimate.

3The only thing needed is to change the definition of the hypothesis and the corresponding
anti-hypothesis properly.
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The measured b̄b and c̄c production cross–sections systematically exceed the
prediction of the PYTHIA generator (matrix elements in leading order QCD plus
parton shower). However, the shape of the distributions, in particular those for
single–differential cross–sections, fit reasonably well to the prediction. Further-
more, the beauty measurement is compatible with measurements derived from the
µ channel. The measured cross–sections were also compared to next–to–leading
order QCD calculations, which have been performed in a fixed–flavour massive
scheme. As in all other heavy quark analyses at HERA (and also elsewhere), large
discrepancies are seen. The measurements are about three times higher than the
prediction. However, the uncertainties of the predictions are large also. Here, im-
provements of the theoretical models, in particular massless NLO calculations or
the promising mixture of massless and massive approaches, as well as appropriate
Monte Carlo generators, are desirable for HERA.

Currently this analysis is being extended for the HERA-II running period. The
ZEUS detector will collect data until summer 2007, and with the gated luminosity
it will be possible to reduce the statistical errors of the measurements well be-
low 10 % for the total cross–sections and 20 % for differential cross–sections. As
mentioned earlier the likelihood approach forms a solid ground upon which many
extensions of the recent analysis are easily possible. In addition to the electron
channel, the muon channel will also be analysed with the method presented here
using additional information from theµ–chambers and the micro–vertex detector.
With the statistics available it should be possible to determine double–differential
cross–sections, which allows for more stringent tests of QCD. In particular the
gluon content in the photon could be more constrained, but also the amount of
charm and beauty in the proton could be determined by extending the analysis to
the DIS region, thus cross–checking the results determined from the scaling viola-
tions ofFp

2. The beauty and charm content of the proton are of particular interest
for the LHC, since there the dominant process for heavy quark production will be
the gluon gluon fusion. Therefore a precise knowledge of the proton structure is
utterly needed.

Presently heavy flavour physics is a very active and rich field. The HERA
collider at DESY, but also the Tevatron and in the near future the LHC, provide
many measurements to test and to improve our present theory of the strongest
force in the universe — Quantum Chromodynamics.



Appendix A

Trigger Definitions

In this appendix the trigger definitions used for the selection of dijetγp events
(c. f.Chapter 3) are given.

A.1 First Level Trigger

FLT 40: exotic

• EEMC
t, tot > 15 GeV (the three innermost rings in the FCAL and the inner-

most ring in the RCAL excluded from the energy sum)

FLT 41: high Et

• ECAL
t, tot > 30 GeV (two innermost FCAL rings excluded from the energy

sum)

FLT 42: high Et

• ECAL
t, tot > 15 GeV and

• at least one good track

FLT 43: high Et

• ECAL
t, tot > 11.6 GeV (two innermost FCAL rings excluded from the en-

ergy sum)
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A.2 Second Level Trigger

HPP 1: high Et

• (FLT 40 or FLT 41 or FLT 42 or FLT 43) and

• (ep vertex or CTDoff) and

• at least one good track and

•
∑

i(Ei − pz, i) > 8 GeV and

• Et
box > 8 GeV and

• (
∑

i(Ei − pz, i) > 12 GeV) or (
∑

i Ei/
∑

i pz, i < 0.9)

HPP 2: high Et

• equivalent to HPP 1

HPP 3: high Et

• HPP 1 and

• at least one EMC cluster withE > 0.7 GeV and

• Nvtx
trk /N

all
trk > N with N being some function ofNall

trk

A.3 Third Level Trigger

HPP 14: high Et dijet

• (HPP 1 or HPP 2 or HPP 3) and

• at least two cone–jets with|η| < 2.5 andEt ≥

4 GeV; 96—98 running

4.5 GeV; 99—00 running



Appendix B

Acceptance Corrections

Acceptance corrections to the measured cross–sections are determined with the
help of Monte Carlo simulations. Here, the acceptance of the detector and the
reconstruction software is determined by comparing the number of reconstructed
events in the simulation,Nrec, with the number of generated events,Ngen

α =
Nrec

Ngen
. (B.1)

This is done separately for the beauty and the charm signal Monte Carlo simu-
lations. In the case of differential cross–sections acceptances are determined for
each bin.

The error calculation of the acceptances is more subtle. Normally one would
determine the statistical uncertainty of the acceptances by means of the binomial
distribution for givenNrec andNgen. However, since the signal Monte Carlos for
beauty and charm consist of luminosity–weighted sub-samples (direct and re-
solvedγp, excitation), binomial probabilities are no longer applicable. Instead,
the common approach of Gian error propagation is used. To do so, the num-
ber of generated events is split into the number of reconstructed (accepted) events
and the number of rejected events

N′ = Ngen− Nrec . (B.2)

The acceptance is then the ratio of the weighted sum of the number of recon-
structed events to the weighted sum of the number of generated events in all MC
sub-samples. The weightswi are defined by the luminosities,Li, of the samplei

wi =
Li∑
i Li

. (B.3)
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Thus

α =

∑
i wiNrec, i∑

i wi(Nrec, i + N′i )
. (B.4)

The statistical uncertainty of the acceptance is then given by

∆α2 =
∑

i

(
∂α

∂Nrec, i

)2

∆N2
rec, i +

∑
i

(
∂α

∂N′i

)2

∆N′i
2 , (B.5)

with

∆Nrec, i =
√

Nrec, i ,

∆N′i =
√

N′i . (B.6)

Special care needs to be taken in the case of acceptances very close to zero in com-
bination with lowNgen, becauseα−∆α might become lower than zero here. In this
case the lower error is truncated at zero and the corresponding length is added to
the upper part of the error, such that the 1–σ integral of the statistical uncertainty
is preserved. This is achieved with the help of the inverse error function.

Purities are calculated in a similar way. Here, the ratio of the number of events
which have been both reconstructed and generated in the same bin1, Ngen+rec to the
number of reconstructed events,Nrec is taken as purity,π

π =
Ngen+rec

Nrec
. (B.7)

The statistical uncertainties of the purity are computed by means of the Gian
error propagation too. Since the purity is not only limited at zero, but also has an
upper limit at one, asymmetric errors might occur at this limit also. The asymme-
try is achieved in the same manner as at the lower limit.

B.1 Differential Cross–Sections and Binning

Differential cross–sections are measured in bins of the variable in question. The
acceptance in each bin and also its statistical uncertainty are needed for the cross–
section computation. In addition, the acceptances and purities give a good guid-
ance for the choice of the binning. In the following graphs the acceptances and

1It might happen that events generated in another bin (see Sec. B.1)migrate into the bin in
question and are reconstructed there.
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purities in the bins of all variables, for which differential cross–sections are mea-
sured, are presented. Note, that the acceptances for the event–wise variables in-
clude beside the branching ratios for the semi–leptonic decay into electrons the
extrapolation to the full momentum range of the electrons, which reduces the ac-
ceptances roughly by a factor of 5 in the case of beauty events and a factor of 20
in the case of charm events.
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Figure B.1: Acceptances and purities in bins of the kinematic variablesxγ, xp, y andNjet

in beauty events, both for
√

sep = 300 GeV (hollow circles) and
√

sep = 318 GeV (solid
circles).
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Figure B.2: Acceptances and purities in bins of the jet properties,η andEt of the most
energetic, the second most energetic and the electron jet in beauty events, both for

√
sep=

300 GeV (hollow circles) and
√

sep=318 GeV (solid circles).
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Figure B.3: Acceptances and purities in bins of the jet properties,η and Et of the e±–
associated jets in beauty events, both for

√
sep = 300 GeV (hollow circles) and

√
sep =

318 GeV (solid circles).
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Figure B.4: Acceptances and purities in bins of the electron variablespe
t andηe in beauty

events, both for
√

sep=300 GeV (hollow circles) and
√

sep=318 GeV (solid circles).
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Figure B.5: Acceptances and purities in bins of the kinematic variablesxγ, xp, y andNjet

in charm events, both for
√

sep = 300 GeV (hollow circles) and
√

sep = 318 GeV (solid
circles).
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Figure B.6: Acceptances and purities in bins of the jet properties,η andEt of the most
energetic, the second most energetic and the electron jet in charm events, both for

√
sep=

300 GeV (hollow circles) and
√

sep=318 GeV (solid circles).
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Figure B.7: Acceptances and purities in bins of the jet properties,η and Et of the e±–
associated jets in charm events, both for

√
sep = 300 GeV (hollow circles) and

√
sep =

318 GeV (solid circles).
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Figure B.8: Acceptances and purities in bins of the electron variablespe
t andηe in charm

events, both for
√

sep=300 GeV (hollow circles) and
√

sep=318 GeV (solid circles).



Appendix C

Cross–Section Numbers

In the following tables the exact values of the cross–sections presented in Chap-
ter 7 are collected. In addition to the numbers their statistical uncertainties are
given as well as their upper and lower total systematic uncertainty. Details of the
computation of the latter are explained in Sec. 7.3. In most cases the correlated
parts of the systematic uncertainty,i. e. the uncertainty caused by the uncertainty
of the luminosity measurement,∆L σ, and the jet energy scale,∆Etσ, are given as
well. Acceptance uncertainties are negligible.

√
sep=300 GeV dσb

dpe
t

[pb/GeV] ∆L ( dσb
dpe

t
) [pb/GeV] ∆Et (

dσb
dpe

t
) [pb/GeV]

0.9≤ pe
t <2.1 GeV 54±20+1

−2 ±1 +0
−−0

2.1≤ pe
t <3.3 GeV 25±8+0

−1 ±0 +0
−−0

3.3≤ pe
t <4.5 GeV 13±5+0

−0 ±0 +0
−−0

4.5≤ pe
t <7.0 GeV 6±3+0

−0 ±0 +0
−−0

√
sep=318 GeV dσb

dpe
t

[pb/GeV] ∆L ( dσb
dpe

t
) [pb/GeV] ∆Et (

dσb
dpe

t
) [pb/GeV]

0.9≤ pe
t <2.1 GeV 54±20+1

−5 ±1 +1
−+1

2.1≤ pe
t <3.3 GeV 25±8+1

−2 ±1 +0
−+1

3.3≤ pe
t <4.5 GeV 13±5+0

−1 ±0 +0
−+0

4.5≤ pe
t <7.0 GeV 6±3+0

−0 ±0 +0
−+0

√
sep=300 GeV dσc

dpe
t

[pb/GeV] ∆L ( dσc
dpe

t
) [pb/GeV] ∆Et (

dσc
dpe

t
) [pb/GeV]

0.9≤ pe
t <2.1 GeV 179±48+14

−43 ±3 +14
−+7

2.1≤ pe
t <3.3 GeV 83±22+7

−20 ±1 +6
−+3

3.3≤ pe
t <4.5 GeV 19±11+1

−4 ±0 +1
−+1

4.5≤ pe
t <7.0 GeV 2±5+0

−1 ±0 +0
−+0

√
sep=318 GeV dσc

dpe
t

[pb/GeV] ∆L ( dσc
dpe

t
) [pb/GeV] ∆Et (

dσc
dpe

t
) [pb/GeV]

0.9≤ pe
t <2.1 GeV 179±48+10

−51 ±4 +9
−+11

2.1≤ pe
t <3.3 GeV 83±22+5

−24 ±2 +4
−+5

3.3≤ pe
t <4.5 GeV 19±11+1

−5 ±0 +1
−+1

4.5≤ pe
t <7.0 GeV 2±5+0

−1 ±0 +0
−+0

Table C.1: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms of the transverse momentum,pe

t , of the electron.

162



163

√
sep=300 GeV dσb

dηe [pb] ∆L ( dσb
dηe ) [pb] ∆Et (

dσb
dηe ) [pb]

-1.0≤ηe<−0.5 22±14+0
−1 ±0 +0

−−0
-0.5≤ηe<0.0 58±16+1

−2 ±1 +0
−−0

0.0≤ηe<0.5 62±24+1
−2 ±1 +0

−−0
0.5≤ηe<1.5 36±21+1

−1 ±1 +0
−−0

√
sep=318 GeV dσb

dηe [pb] ∆L ( dσb
dηe ) [pb] ∆Et (

dσb
dηe ) [pb]

-1.0≤ηe<−0.5 22±14+1
−2 ±0 +0

−1
-0.5≤ηe<0.0 58±16+1

−5 ±1 +1
−1

0.0≤ηe<0.5 62±24+1
−5 ±1 +1

−1
0.5≤ηe<1.5 36±21+1

−3 ±1 +1
−1

√
sep=300 GeV dσc

dηe [pb] ∆L ( dσc
dηe ) [pb] ∆Et (

dσc
dηe ) [pb]

-1.0≤ηe<−0.5 112±36+9
−27 ±2 +9

−5
-0.5≤ηe<0.0 201±48+16

−48 ±4 +15
−8

0.0≤ηe<0.5 191±69+15
−46 ±3 +15

−8
0.5≤ηe<1.5 29±52+2

−7 ±1 +2
−1

√
sep=318 GeV dσc

dηe [pb] ∆L ( dσc
dηe ) [pb] ∆Et (

dσc
dηe ) [pb]

-1.0≤ηe<−0.5 112±36+6
−32 ±3 +6

−7
-0.5≤ηe<0.0 201±48+11

−58 ±5 +10
−12

0.0≤ηe<0.5 191±69+11
−55 ±4 +10

−11
0.5≤ηe<1.5 29±52+2

−8 ±1 +1
−2

Table C.2: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms of the pseudo–rapidity,ηe, of the electron.

√
sep=300 GeV dσb

dEt
jet 1 [pb/GeV] ∆L ( dσb

dEt
jet 1 ) [pb/GeV] ∆Et (

dσb
dEt

jet 1 ) [pb/GeV]

7.0≤Et
jet 1<10.0 GeV 138±35+2

−5 ±2 +0
−−0

10.0≤Et
jet 1<13.0 GeV 72±24+1

−3 ±1 +0
−−0

13.0≤Et
jet 1<16.0 GeV 42±17+1

−2 ±1 +0
−−0

16.0≤Et
jet 1<30.0 GeV 2±3+0

−0 ±0 +0
−−0

√
sep=318 GeV dσb

dEt
jet 1 [pb/GeV] ∆L ( dσb

dEt
jet 1 ) [pb/GeV] ∆Et (

dσb
dEt

jet 1 ) [pb/GeV]

7.0≤Et
jet 1<10.0 GeV 138±35+3

−12 ±3 +2
−3

10.0≤Et
jet 1<13.0 GeV 72±24+2

−6 ±2 +1
−2

13.0≤Et
jet 1<16.0 GeV 42±17+1

−4 ±1 +1
−1

16.0≤Et
jet 1<30.0 GeV 2±3+0

−0 ±0 +0
−0

√
sep=300 GeV dσc

dEt
jet 1 [pb/GeV] ∆L ( dσc

dEt
jet 1 ) [pb/GeV] ∆Et (

dσc
dEt

jet 1 ) [pb/GeV]

7.0≤Et
jet 1<10.0 GeV 1143±318+91

−274 ±21 +88
−48

10.0≤Et
jet 1<13.0 GeV 632±185+50

−151 ±11 +49
−26

13.0≤Et
jet 1<16.0 GeV 163±96+13

−39 ±3 +13
−7

16.0≤Et
jet 1<30.0 GeV 71±33+6

−17 ±1 +5
−3

√
sep=318 GeV dσc

dEt
jet 1 [pb/GeV] ∆L ( dσc

dEt
jet 1 ) [pb/GeV] ∆Et (

dσc
dEt

jet 1 ) [pb/GeV]

7.0≤Et
jet 1<10.0 GeV 1143±318+64

−329 ±26 +58
−69

10.0≤Et
jet 1<13.0 GeV 632±185+35

−182 ±14 +32
−38

13.0≤Et
jet 1<16.0 GeV 163±96+9

−47 ±4 +8
−10

16.0≤Et
jet 1<30.0 GeV 71±33+4

−20 ±2 +4
−4

Table C.3: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms of the transverse energy,Et

jet 1, of the highest energetic jet.
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√
sep=300 GeV dσb

dηjet 1 [pb] ∆L ( dσb
dηjet 1 ) [pb] ∆Et (

dσb
dηjet 1 ) [pb]

-1.0≤ηjet 1<−0.5 139±160+3
−5 ±3 +0

−−0
-0.5≤ηjet 1<0.0 420±119+8

−16 ±8 +0
−−1

0.0≤ηjet 1<0.8 255±112+5
−10 ±5 +0

−−0
0.8≤ηjet 1<2.5 177±57+3

−7 ±3 +0
−−0

√
sep=318 GeV dσb

dηjet 1 [pb] ∆L ( dσb
dηjet 1 ) [pb] ∆Et (

dσb
dηjet 1 ) [pb]

-1.0≤ηjet 1<−0.5 139±160+3
−12 ±3 +2

−3
-0.5≤ηjet 1<0.0 420±119+10

−36 ±9 +7
−10

0.0≤ηjet 1<0.8 255±112+6
−22 ±6 +4

−6
0.8≤ηjet 1<2.5 177±57+4

−15 ±4 +3
−4

√
sep=300 GeV dσc

dηjet 1 [pb] ∆L ( dσc
dηjet 1 ) [pb] ∆Et (

dσc
dηjet 1 ) [pb]

-1.0≤ηjet 1<−0.5 1916±1179+152
−459 ±34 +147

−80
-0.5≤ηjet 1<0.0 2039±799+162

−488 ±37 +157
−85

0.0≤ηjet 1<0.8 3446±853+273
−825 ±62 +265

−144
0.8≤ηjet 1<2.5 917±533+73

−220 ±17 +71
−38

√
sep=318 GeV dσc

dηjet 1 [pb] ∆L ( dσc
dηjet 1 ) [pb] ∆Et (

dσc
dηjet 1 ) [pb]

-1.0≤ηjet 1<−0.5 1916±1179+107
−551 ±43 +97

−115
-0.5≤ηjet 1<0.0 2039±799+114

−586 ±46 +103
−122

0.0≤ηjet 1<0.8 3446±853+193
−991 ±78 +174

−207
0.8≤ηjet 1<2.5 917±533+51

−264 ±21 +46
−55

Table C.4: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms of the pseudo–rapidity,ηjet 1, of the highest energetic jet.

√
sep=300 GeV dσb

dEt
jet 2 [pb/GeV] ∆L ( dσb

dEt
jet 2 ) [pb/GeV] ∆Et (

dσb
dEt

jet 2 ) [pb/GeV]

6.0≤Et
jet 2<7.5 GeV 218±58+4

−8 ±4 +0
−−0

7.5≤Et
jet 2<10.0 GeV 111±32+2

−4 ±2 +0
−−0

10.0≤Et
jet 2<13.5 GeV 33±16+1

−1 ±1 +0
−−0

13.5≤Et
jet 2<25.0 GeV 0±4+0

−0 ±0 +0
−−0

√
sep=318 GeV dσb

dEt
jet 2 [pb/GeV] ∆L ( dσb

dEt
jet 2 ) [pb/GeV] ∆Et (

dσb
dEt

jet 2 ) [pb/GeV]

6.0≤Et
jet 2<7.5 GeV 218±58+5

−18 ±5 +4
−5

7.5≤Et
jet 2<10.0 GeV 111±32+3

−9 ±2 +2
−3

10.0≤Et
jet 2<13.5 GeV 33±16+1

−3 ±1 +1
−1

13.5≤Et
jet 2<25.0 GeV 0±4+0

−0 ±0 +0
−0

√
sep=300 GeV dσc

dEt
jet 2 [pb/GeV] ∆L ( dσc

dEt
jet 2 ) [pb/GeV] ∆Et (

dσc
dEt

jet 2 ) [pb/GeV]

6.0≤Et
jet 2<7.5 GeV 1353±552+107

−324 ±24 +104
−57

7.5≤Et
jet 2<10.0 GeV 1062±240+84

−254 ±19 +82
−45

10.0≤Et
jet 2<13.5 GeV 320±117+25

−77 ±6 +25
−13

13.5≤Et
jet 2<25.0 GeV 62±24+5

−15 ±1 +5
−3

√
sep=318 GeV dσc

dEt
jet 2 [pb/GeV] ∆L ( dσc

dEt
jet 2 ) [pb/GeV] ∆Et (

dσc
dEt

jet 2 ) [pb/GeV]

6.0≤Et
jet 2<7.5 GeV 1353±552+76

−389 ±30 +68
−81

7.5≤Et
jet 2<10.0 GeV 1062±240+59

−305 ±24 +54
−64

10.0≤Et
jet 2<13.5 GeV 320±117+18

−92 ±7 +16
−19

13.5≤Et
jet 2<25.0 GeV 62±24+3

−18 ±1 +3
−4

Table C.5: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms of the transverse energy,Et

jet 2, of the second highest energetic jet.
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√
sep=300 GeV dσb

dηjet 2 [pb] ∆L ( dσb
dηjet 2 ) [pb] ∆Et (

dσb
dηjet 2 ) [pb]

-1.0≤ηjet 2<−0.5 299±98+5
−11 ±5 +0

−−0
-0.5≤ηjet 2<0.0 206±92+4

−8 ±4 +0
−−0

0.0≤ηjet 2<0.8 284±100+5
−11 ±5 +0

−−0
0.8≤ηjet 2<2.5 189±85+3

−7 ±3 +0
−−0

√
sep=318 GeV dσb

dηjet 2 [pb] ∆L ( dσb
dηjet 2 ) [pb] ∆Et (

dσb
dηjet 2 ) [pb]

-1.0≤ηjet 2<−0.5 299±98+7
−25 ±7 +5

−7
-0.5≤ηjet 2<0.0 206±92+5

−17 ±5 +4
−5

0.0≤ηjet 2<0.8 284±100+7
−24 ±6 +5

−7
0.8≤ηjet 2<2.5 189±85+4

−16 ±4 +3
−5

√
sep=300 GeV dσc

dηjet 2 [pb] ∆L ( dσc
dηjet 2 ) [pb] ∆Et (

dσc
dηjet 2 ) [pb]

-1.0≤ηjet 2<−0.5 1910±737+151
−458 ±34 +147

−80
-0.5≤ηjet 2<0.0 1765±722+140

−423 ±32 +136
−74

0.0≤ηjet 2<0.8 2196±822+174
−526 ±40 +169

−92
0.8≤ηjet 2<2.5 2131±643+169

−510 ±38 +164
−89

√
sep=318 GeV dσc

dηjet 2 [pb] ∆L ( dσc
dηjet 2 ) [pb] ∆Et (

dσc
dηjet 2 ) [pb]

-1.0≤ηjet 2<−0.5 1910±737+107
−549 ±43 +96

−115
-0.5≤ηjet 2<0.0 1765±722+99

−507 ±40 +89
−106

0.0≤ηjet 2<0.8 2196±822+123
−631 ±49 +111

−132
0.8≤ηjet 2<2.5 2131±643+119

−612 ±48 +108
−128

Table C.6: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms of the pseudo–rapidity,ηjet 2, of the second highest energetic jet.

√
sep=300 GeV dσb

dEt
e–jet [pb/GeV] ∆L ( dσb

dEt
e–jet) [pb/GeV] ∆Et (

dσb
dEt

e–jet) [pb/GeV]

6.0≤Et
e–jet<7.5 GeV 21±8+0

−1 ±0 +0
−−0

7.5≤Et
e–jet<10.0 GeV 13±4+0

−1 ±0 +0
−−0

10.0≤Et
e–jet<13.5 GeV 8±3+0

−0 ±0 +0
−−0

13.5≤Et
e–jet<25.0 GeV 2±1+0

−0 ±0 +0
−−0

√
sep=318 GeV dσb

dEt
e–jet [pb/GeV] ∆L ( dσb

dEt
e–jet) [pb/GeV] ∆Et (

dσb
dEt

e–jet) [pb/GeV]

6.0≤Et
e–jet<7.5 GeV 21±8+0

−2 ±0 +0
−1

7.5≤Et
e–jet<10.0 GeV 13±4+0

−1 ±0 +0
−0

10.0≤Et
e–jet<13.5 GeV 8±3+0

−1 ±0 +0
−0

13.5≤Et
e–jet<25.0 GeV 2±1+0

−0 ±0 +0
−0

√
sep=300 GeV dσc

dEt
e–jet [pb/GeV] ∆L ( dσc

dEt
e–jet) [pb/GeV] ∆Et (

dσc
dEt

e–jet) [pb/GeV]

6.0≤Et
e–jet<7.5 GeV 45±17+4

−11 ±1 +3
−2

7.5≤Et
e–jet<10.0 GeV 40±11+3

−9 ±1 +3
−2

10.0≤Et
e–jet<13.5 GeV 15±8+1

−3 ±0 +1
−1

13.5≤Et
e–jet<25.0 GeV 1±2+0

−0 ±0 +0
−0

√
sep=318 GeV dσc

dEt
e–jet [pb/GeV] ∆L ( dσc

dEt
e–jet) [pb/GeV] ∆Et (

dσc
dEt

e–jet) [pb/GeV]

6.0≤Et
e–jet<7.5 GeV 45±17+3

−13 ±1 +2
−3

7.5≤Et
e–jet<10.0 GeV 40±11+2

−11 ±1 +2
−2

10.0≤Et
e–jet<13.5 GeV 15±8+1

−4 ±0 +1
−1

13.5≤Et
e–jet<25.0 GeV 1±2+0

−0 ±0 +0
−0

Table C.7: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms of the transverse energy,Et

e–jet, of the electron associated jet.
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√
sep=300 GeV dσb

dηe–jet [pb] ∆L ( dσb
dηe–jet) [pb] ∆Et (

dσb
dηe–jet) [pb]

-1.0≤ηe–jet<−0.5 25±10+0
−1 ±0 +0

−−0
-0.5≤ηe–jet<0.0 48±15+1

−2 ±1 +0
−−0

0.0≤ηe–jet<0.8 37±22+1
−1 ±1 +0

−−0
0.8≤ηe–jet<2.5 51±24+1

−2 ±1 +0
−−0

√
sep=318 GeV dσb

dηe–jet [pb] ∆L ( dσb
dηe–jet) [pb] ∆Et (

dσb
dηe–jet) [pb]

-1.0≤ηe–jet<−0.5 25±10+1
−2 ±1 +0

−1
-0.5≤ηe–jet<0.0 48±15+1

−4 ±1 +1
−1

0.0≤ηe–jet<0.8 37±22+1
−3 ±1 +1

−1
0.8≤ηe–jet<2.5 51±24+1

−4 ±1 +1
−1

√
sep=300 GeV dσc

dηe–jet [pb] ∆L ( dσc
dηe–jet) [pb] ∆Et (

dσc
dηe–jet) [pb]

-1.0≤ηe–jet<−0.5 126±39+10
−30 ±2 +10

−5
-0.5≤ηe–jet<0.0 135±40+11

−32 ±2 +10
−6

0.0≤ηe–jet<0.8 196±58+16
−47 ±4 +15

−8
0.8≤ηe–jet<2.5 25±51+2

−6 ±0 +2
−1

√
sep=318 GeV dσc

dηe–jet [pb] ∆L ( dσc
dηe–jet) [pb] ∆Et (

dσc
dηe–jet) [pb]

-1.0≤ηe–jet<−0.5 126±39+7
−36 ±3 +6

−8
-0.5≤ηe–jet<0.0 135±40+8

−39 ±3 +7
−8

0.0≤ηe–jet<0.8 196±58+11
−56 ±4 +10

−12
0.8≤ηe–jet<2.5 25±51+1

−7 ±1 +1
−1

Table C.8: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms of the pseudo–rapidity,ηe–jet, of the electron associated jet.

√
sep=300 GeV dσb

dxγ
[pb] ∆L ( dσb

dxγ
) [pb] ∆Et (

dσb
dxγ

) [pb]

0.0≤ xγ<0.5 416±211+8
−16 ±7 +0

−−1
0.5≤ xγ<0.8 869±336+16

−33 ±16 +0
−−1

0.8≤ xγ<0.9 2422±593+44
−93 ±44 +0

−−4
0.9≤ xγ<1.0 632±242+11

−24 ±11 +0
−−1

√
sep=318 GeV dσb

dxγ
[pb] ∆L ( dσb

dxγ
) [pb] ∆Et (

dσb
dxγ

) [pb]

0.0≤ xγ<0.5 416±211+10
−35 ±9 +7

−10
0.5≤ xγ<0.8 869±336+20

−74 ±20 +15
−21

0.8≤ xγ<0.9 2422±593+57
−205 ±55 +42

−58
0.9≤ xγ<1.0 632±242+15

−54 ±14 +11
−15

√
sep=300 GeV dσb

dxγ
[pb] ∆L ( dσb

dxγ
) [pb] ∆Et (

dσb
dxγ

) [pb]

0.0≤ xγ<0.5 2091±2129+166
−501 ±38 +161

−88
0.5≤ xγ<0.8 9947±2438+788

−2383 ±179 +766
−417

0.8≤ xγ<0.9 10547±4289+836
−2527 ±190 +812

−442
0.9≤ xγ<1.0 11278±2547+894

−2702 ±203 +868
−473

√
sep=318 GeV dσb

dxγ
[pb] ∆L ( dσb

dxγ
) [pb] ∆Et (

dσb
dxγ

) [pb]

0.0≤ xγ<0.5 2091±2129+117
−601 ±47 +106

−125
0.5≤ xγ<0.8 9947±2438+556

−2859 ±224 +502
−597

0.8≤ xγ<0.9 10547±4289+590
−3032 ±237 +532

−633
0.9≤ xγ<1.0 11278±2547+630

−3242 ±254 +569
−676

Table C.9: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms ofxγ.
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√
sep=300 GeV dσb

d logxp
[pb] ∆L ( dσb

d logxp
) [pb] ∆Et (

dσb
d logxp

) [pb]

-2.5≤ log xp<−1.9 329±89+6
−13 ±6 +0

−−1
-1.9≤ log xp<−1.5 818±225+15

−31 ±15 +0
−−1

-1.5≤ log xp<−1.1 491±269+9
−19 ±9 +0

−−1
-1.1≤ log xp<−0.5 301±147+5

−12 ±5 +0
−−0

√
sep=318 GeV dσb

d logxp
[pb] ∆L ( dσb

d logxp
) [pb] ∆Et (

dσb
d logxp

) [pb]

-2.5≤ log xp<−1.9 329±89+8
−28 ±7 +6

−8
-1.9≤ log xp<−1.5 818±225+19

−69 ±18 +14
−20

-1.5≤ log xp<−1.1 491±269+11
−42 ±11 +8

−12
-1.1≤ log xp<−0.5 301±147+7

−26 ±7 +5
−7

√
sep=300 GeV dσb

d logxp
[pb] ∆L ( dσb

d logxp
) [pb] ∆Et (

dσb
d logxp

) [pb]

-2.5≤ log xp<−1.9 1048±621+83
−251 ±19 +81

−44
-1.9≤ log xp<−1.5 8333±1930+660

−1996 ±150 +641
−349

-1.5≤ log xp<−1.1 5183±2796+411
−1242 ±93 +399

−217
-1.1≤ log xp<−0.5 789±945+63

−189 ±14 +61
−33

√
sep=318 GeV dσb

d logxp
[pb] ∆L ( dσb

d logxp
) [pb] ∆Et (

dσb
d logxp

) [pb]

-2.5≤ log xp<−1.9 1048±621+59
−301 ±24 +53

−63
-1.9≤ log xp<−1.5 8333±1930+466

−2395 ±187 +421
−500

-1.5≤ log xp<−1.1 5183±2796+290
−1490 ±117 +262

−311
-1.1≤ log xp<−0.5 789±945+44

−227 ±18 +40
−47

Table C.10: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms ofxp.

√
sep=300 GeV dσb

dy [pb] ∆L ( dσb
dy ) [pb] ∆Et (

dσb
dy ) [pb]

0.2≤y<0.3 2048±522+37
−79 ±37 +0

−−3
0.3≤y<0.4 2143±849+39

−82 ±39 +0
−−3

0.4≤y<0.6 1190±437+21
−46 ±21 +0

−−2
0.6≤y<0.8 914±431+16

−35 ±16 +0
−−1

√
sep=318 GeV dσb

dy [pb] ∆L ( dσb
dy ) [pb] ∆Et (

dσb
dy ) [pb]

0.2≤y<0.3 2048±522+48
−173 ±46 +35

−49
0.3≤y<0.4 2143±849+50

−181 ±48 +37
−51

0.4≤y<0.6 1190±437+28
−101 ±27 +21

−28
0.6≤y<0.8 914±431+21

−77 ±21 +16
−22

√
sep=300 GeV dσb

dy [pb] ∆L ( dσb
dy ) [pb] ∆Et (

dσb
dy ) [pb]

0.2≤y<0.3 16993±5218+1347
−4071 ±306 +1308

−712
0.3≤y<0.4 10915±5836+865

−2615 ±196 +840
−458

0.4≤y<0.6 6586±3411+522
−1578 ±119 +507

−276
0.6≤y<0.8 12382±3633+981

−2966 ±223 +953
−519

√
sep=318 GeV dσb

dy [pb] ∆L ( dσb
dy ) [pb] ∆Et (

dσb
dy ) [pb]

0.2≤y<0.3 16993±5218+950
−4885 ±382 +858

−1019
0.3≤y<0.4 10915±5836+610

−3138 ±246 +551
−655

0.4≤y<0.6 6586±3411+368
−1893 ±148 +332

−395
0.6≤y<0.8 12382±3633+692

−3559 ±279 +625
−743

Table C.11: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms ofy.



168 APPENDIX C. CROSS–SECTION NUMBERS

√
sep=300 GeV dσb

dNjet
[pb] ∆L ( dσb

dNjet
) [pb] ∆Et (

dσb
dNjet

) [pb]

Njet = 2 18.0±3.6+0.3
−0.7 ±0.3 +0.0

−−0.0
Njet = 3 7.7±3.0+0.1

−0.3 ±0.1 +0.0
−−0.0

Njet = 4 2.7±2.2+0.0
−0.1 ±0.0 +0.0

−−0.0
Njet = 5 0.1±2.7+0.0

−0.0 ±0.0 +0.0
−−0.0

√
sep=318 GeV dσb

dNjet
[pb] ∆L ( dσb

dNjet
) [pb] ∆Et (

dσb
dNjet

) [pb]

Njet = 2 18.0±3.6+0.4
−1.5 ±0.4 +0.3

−0.4
Njet = 3 7.7±3.0+0.2

−0.7 ±0.2 +0.1
−0.2

Njet = 4 2.7±2.2+0.1
−0.2 ±0.1 +0.0

−0.1
Njet = 5 0.1±2.7+0.0

−0.0 ±0.0 +0.0
−0.0

√
sep=300 GeV dσb

dNjet
[pb] ∆L ( dσb

dNjet
) [pb] ∆Et (

dσb
dNjet

) [pb]

Njet = 2 50.3±8.5+4.0
−12.0 ±0.9 +3.9

−2.1
Njet = 3 11.5±6.8+0.9

−2.8 ±0.2 +0.9
−0.5

Njet = 4 0.0±2.0+0.0
−0.0 ±0.0 +0.0

−0.0
Njet = 5 0.0±1.1+0.0

−0.0 ±0.0 +0.0
−0.0

√
sep=318 GeV dσb

dNjet
[pb] ∆L ( dσb

dNjet
) [pb] ∆Et (

dσb
dNjet

) [pb]

Njet = 2 50.3±8.5+2.8
−14.5 ±1.1 +2.5

−3.0
Njet = 3 11.5±6.8+0.6

−3.3 ±0.3 +0.6
−0.7

Njet = 4 0.0±2.0+0.0
−0.0 ±0.0 +0.0

−0.0
Njet = 5 0.0±1.1+0.0

−0.0 ±0.0 +0.0
−0.0

Table C.12: Single–differential cross–sections for the reactions e±p→bb̄+e′±X and e±p→
cc̄+e′±X in terms of the number of jets per event,Njet.
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Cross–Section Figures

D.1 Beauty Production
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Figure D.1: Cross–section dependence for beauty production as a function of the trans-
verse energy,Et

jet 2, and the pseudo–rapidity,ηjet 2, of the second most energetic jet in
each event for centre–of–mass energies,

√
sep=300 GeV (a) and

√
sep=318 GeV (b). The

measured cross–sections are depicted by the black dots, while the histograms represent
the PYTHIA prediction, scaled by a factor of 1.75.
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Figure D.2: Differential cross–sections for bb̄ production in terms of the kinematic vari-
ables xγ, xp, y and the number of jets per event,Njet, for centre–of–mass energies,
√

sep=300 GeV (a) and
√

sep=318 GeV (b). The measured cross–sections are depicted by
the black dots, while the histograms represent the PYTHIA prediction, scaled by a factor
of 1.75.
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Figure D.3: Cross–section dependence for beauty production as a function of the trans-
verse energy,Et

e–jet, and the pseudo–rapidity,ηe–jet, of the electron associated jet for
centre–of–mass energies,

√
sep = 300 GeV (a) and

√
sep = 318 GeV (b). The measured

cross–sections are depicted by the black dots, while the histograms represent the PYTHIA
prediction, scaled by a factor of 1.75.
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D.2 Charm Production
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Figure D.4: Cross–section dependence for charm production as a function of the trans-
verse energy,Et

jet 2, and the pseudo–rapidity,ηjet 2, of the second most energetic jet in
each event for centre–of–mass energies,

√
sep=300 GeV (a) and

√
sep=318 GeV (b). The

measured cross–sections are depicted by the black dots, while the histograms represent
the PYTHIA prediction, scaled by a factor of 1.35.
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Figure D.5: Cross–section dependence for charm production as a function of the trans-
verse energy,Et

e–jet, and the pseudo–rapidity,ηe–jet, of the electron associated jet for
centre–of–mass energies,

√
sep = 300 GeV (a) and

√
sep = 318 GeV (b). The measured

cross–sections are depicted by the black dots, while the histograms represent the PYTHIA
prediction, scaled by a factor of 1.35.
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Figure D.6: Differential cross–sections for cc̄ production in terms of the kinematic vari-
ables xγ, xp, y and the number of jets per event,Njet, for centre–of–mass energies,
√

sep=300 GeV (a) and
√

sep=318 GeV (b). The measured cross–sections are depicted by
the black dots, while the histograms represent the PYTHIA prediction, scaled by a factor
of 1.35.
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D.3 FMNR Comparisons
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Figure D.7: FMNR comparison for beauty production as a function of the transverse
energy,Et

jet 1, and the pseudo–rapidity,ηjet 1, of the most energetic jet in each event
for centre–of–mass energies,

√
sep = 300 GeV (a) and

√
sep = 318 GeV (b). The mea-

sured cross–sections are depicted by the black dots, while the shaded bands represents the
FMNR prediction. The PYTHIA predictions are also shown (dotted lines).
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Figure D.8: FMNR comparison for beauty production as a function of the transverse
energy,Et

jet 2, and the pseudo–rapidity,ηjet 2, of the second most energetic jet in each
event for centre–of–mass energies,

√
sep = 300 GeV (a) and

√
sep = 318 GeV (b). The

measured cross–sections are depicted by the black dots, while the shaded bands represents
the FMNR prediction. The PYTHIA predictions are also shown (dotted lines).
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Figure D.9: FMNR comparison for beauty production as a function of the kinematic vari-
ablesxγ, xp, y andNjet in events with centre–of–mass energies,

√
sep= 300 GeV (a) and

√
sep=318 GeV (b). The measured cross–sections are depicted by the black dots, while the

shaded bands represents the FMNR prediction. The PYTHIA predictions are also shown
(dotted lines).
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Figure D.10: FMNR comparison for beauty production as a function of the transverse
momentum,pe

t , and the pseudo–rapidity,ηe, of electron from semi–leptonic B decays
for centre–of–mass energies,

√
sep = 300 GeV (a) and

√
sep = 318 GeV (b). The mea-

sured cross–sections are depicted by the black dots, while the shaded bands represents the
FMNR predictions. The PYTHIA prediction is also shown (dotted lines).
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Figure D.11: FMNR comparison for charm production as a function of the transverse mo-
mentum,pe

t , and the pseudo–rapidity,ηe, of electron from semi–leptonic charm decays
for centre–of–mass energies,

√
sep = 300 GeV (a) and

√
sep = 318 GeV (b). The mea-

sured cross–sections are depicted by the black dots, while the shaded bands represents the
FMNR predictions. The PYTHIA prediction is also shown (dotted lines).
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Figure D.12: FMNR comparison for charm production as a function of the kinematic
variablesxγ, xp, y andNjet in events with centre–of–mass energies,

√
sep= 300 GeV (a)

and
√

sep = 318 GeV (b). The measured cross–sections are depicted by the black dots,
while the shaded bands represents the FMNR prediction. The PYTHIA predictions are
also shown (dotted lines).
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Figure D.13: FMNR comparison for charm production as a function of the transverse
energy,Et

jet 1, and the pseudo–rapidity,ηjet 1, of the most energetic jet in each event
for centre–of–mass energies,

√
sep = 300 GeV (a) and

√
sep = 318 GeV (b). The mea-

sured cross–sections are depicted by the black dots, while the shaded bands represents the
FMNR prediction. The PYTHIA predictions are also shown (dotted lines).
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Figure D.14: FMNR comparison for charm production as a function of the transverse
energy,Et

jet 2, and the pseudo–rapidity,ηjet 2, of the second most energetic jet in each
event for centre–of–mass energies,

√
sep = 300 GeV (a) and

√
sep = 318 GeV (b). The

measured cross–sections are depicted by the black dots, while the shaded bands represents
the FMNR prediction. The PYTHIA predictions are also shown (dotted lines).



Appendix E

Zeus Event Visualisation

At the end of the HERA-I running period the question arose what to do about
the event display. The newly built detector components had to be added, and
also the old event display, LAZE [Dor91], had to be ported to L, since the
so far supported old workstations were no longer available. The monolithic ar-
chitecture of LAZE made changes difficult, and also some of the necessary pro-
gram libraries were not supported anymore.1 Therefore the development of a new,
object–oriented event display, ZV, was started. Since the development of the
prototype and main sections of the first stable release was part of this thesis, a
short overview about this project is given here. The code is implemented in C++

and heavily based on the RooT framework [B+06], which is briefly discussed in
Sec. F.2. More details of the ZV project can be found in [K+03]. The new
event display was also the origin of the Z++ framework, which is the subject of
Appendix F.

E.1 Data Model

Two types of data exist: geometry data describing the detector configuration, and
event data containing information about collision events. Both sets are split.

The detector geometry is represented by a nested structure containing nodes
connecting three–dimensional graphics primitives. Some examples are shown in
Fig. E.1. In addition for some parts of the geometry two–dimensional representa-
tions are stored to be used in special projections. This is because in some cases,
the two–dimensional projections cannot be derived from the three–dimensional
representations in a consistent way. The geometry data is usually loaded once
during the initialising phase of the program and stays in memory.

1In addition the LAZE program was very unstable and quite slow.
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(a) Barrel calorimeter and
micro–vertex detector

(b) F/RCAL, CTD and For-
ward Detector

(c) Straw–Tube Trackers,
beam-pipe and MVD

Figure E.1: Examples of three–dimensional views of the detector geometry.

The event information is made of physical objects, like particle tracks, hits,
energy deposits, as well as event header information, for instance run and event
number, a date and time stamp, trigger information etc. The data is stored in a
RooT eventtree(c. f.Sec. F.2.3). The event classes are almost identical to the Z++

event classes, for more details see Sec. F.3.1. The main difference to these classes
is the ability of the ZV objects to be drawn.

E.2 Architecture

In contrast to the old LAZE program, which was able to run at a few specific
machines at the DESY site only, the basic concept for the new event display is
a client–server architecture. Here, the server provides the detector geometry and
the event data, while the client displays the data, see Fig. E.2. The data is trans-
ferred in the form of RooT files via a standard HTTP–server. The RooT files are
serialised objects in (platform–independent) text format. HTTP was chosen, be-
cause it penetrates most firewalls. Beside the necessary C++ code, the server side
is implemented with the help of SHELL and PHP scripts.

Several server types exist:

Geometry server: Each client requests the detector geometry from the geometry
server when started (c. f. Fig. E.3). The geometry server provides several
detector configurations for different running periods. The server response is
usually quick, well below one second. Instead of using a server, the clients
are also able to load geometries locally for test purposes.

Single–event server:This is the most often used server for event data. With the
help of the client the user requests particular collision events. The requests
are received by event agents, which fetch the event from the ZEUS event
database and convert it to a single–event RooT file (z2rootprogram) which
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Figure E.2: ZV clients from everywhere over the world can connect to the servers at
DESY serving detector geometry and event data.

is forwarded to the client via an HTTP server (see Fig. E.4). The access to
the ZEUS event database can be accelerated with the help of a tag database.
The HTTP server handles also the client requests. These are put into afifo
file (first in, first out), which is watched by idle event agents. This simple
mechanism guarantees an efficient processing of incoming requests. Stress
tests have shown that even for numerous simultaneous requests the mean
response time of the server is a few seconds only. This is further reduced if
the events in question are in the cache.

Multi–event server: Sometimes it is useful to download a multi–event file (e. g.
in case of pre-selected event lists etc.) and browse through the events off-
line. The multi–event server (Fig. E.5) allows up to a hundred events in a
row to be downloaded. The latency here is of the order of 10—30 s.

On-line server: An on-line event display gives additional information about the
detector performance to the shift crew in the ZEUS control room. For this,
events are copied from the ZEUS event stream with a rate of∼0.1 Hz. Since
this data is in RAW–format it has to be processed on-line by the recon-
struction program (ZEPHYR, see Sec. 2.2.4) in order to see more complex
objects than hits. Afterwards the data is converted to ZV/Root format
and distributed by the server (Fig. E.6). Every standard ZV client is able
to connect with this server and display the events on-line. That means the
on-line display is not restricted to the ZEUS control room; everybody can
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Figure E.3: ZV geometry server. At start-up every client loads the detector geometry
from the geometry server.

have a look at the current data taking.

E.3 The ZV Client

The client is capable of displaying the detector geometry and event data. It mainly
consists of a graphical user interface. The user can interactively request events
from the server and display them in various formats. The client runs on every
common U platform as well as on L, Mac OSX and Windows computers.
For the three–dimensional rendering a faster graphics card might be useful.

Figure E.7 shows a screen–shot of the ZV client. On the left one sees the
event tree in case of multiple events loaded. The large canvas on the right dis-
plays the event header and two different views of the event. The client is able to
show two and three–dimensional views of an event. Beside simple side views, the
two–dimensional views are usually projections.2 Most common are projections
using the approximatively axial symmetry of the detector,i. e. the projection onto
the xy–plane and the comprehensivezr–projection. Moving and zooming is pos-
sible as well as a fish–eye mode blowing up the inner regions. Three–dimensional
views are possible either in a simple orthogonal wire–frame mode in the canvas,
or, more exclusively, with the help of the x3d or OpenGL graphics libraries in an
external viewer (c. f.Fig. E.1). These viewers provide hidden line and hidden sur-
face removal algorithms as well as common shading models.3 In addition more

2In a projection additive variables like energy deposits aresummedalong the projection axis.
3Filled objects only. Translucity is not (yet) possible.
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Figure E.4: ZV single–event server. Multiple clients can request single collision events
from the server.

Figure E.5: ZV multi–event server. In addition to the single–event mode users can
download multiple events for off-line analysis.
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Figure E.6: ZV on-line server. Access to on-line events is possible from everywhere.

special views are included, for instance the distribution of the energy deposits in
the ηφ–plane, which is most important when studying jets. The graphical user
interface provides several controls to change the way of displaying the informa-
tion. Parts of the detector geometry or the event information can be hidden. The
user is also able to pick graphical objects with the mouse in order to change their
graphics attributes or retrieve textual information about them.

Figure E.7: Screen–shot of the ZV client.



Appendix F

Z++ — An Analysis Framework for
ZEUS

The daily routine of an high energy physicist consists mainly of programming
within large computer systems. In fact the biggest part of the work is the develop-
ment of appropriate software for data acquisitation, simulation, reconstruction and
analysis. Also in this thesis, an essential part of the work was the development of
a modern and efficient analysis framework for the ZEUS experiment. This section
highlights the basic aspects of this framework.1

Already in the mid–nineties it was clear that the systems used for data analy-
sis so far like PAW and also the corresponding data structures ZEBRA or H

could not be used any further. Due to reasons of clarity and maintenance those
systems, mostly written in FORTRAN and based upon nearly 20 year old pro-
gram libraries, are not applicable for future high energy physics experiments like
the LHC which will supersede by far all of the present experiments in the amount
of data and complexity.2 A solution is offered by the use of object–oriented pro-
gramming languages, in particular C++.3

The framework described here is fully object–oriented and heavily based on

1A frameworkprovides a whole infrastructure of functionality — class libraries in this case —
for the user. The user in turn has less code to write because he should be able to use und re-use the
majority of the code from the framework. Since code inherited from the framework has already
been tested and integrated with the rest of the framework it should become more reliable and
robust. Code re-use provides consistency and common capabilities between programs, no matter
who writes them. Frameworks also make it easier to break programns into smaller pieces. In the
end the user can concentrate on his particular problem domain. He does not have to be an expert
in every field for many services are provided by the framework.

2It is estimated that the LHC will produce more than 1 Petabyte of data per year.
3Sometimes the language JAVA is also cited, but one has to admit that time–consuming op-

erations never had been the purpose of this language. Furthermore the licence agreement of Sun
Microsystems Inc. is vague at some points.
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the RooT libraries (see Sec. F.2) and on the class libraries of the event display,
ZV, described in the previous Appendix. Its main feautures are outlined below
(Section F.3).

F.1 Benefits of Object–Oriented Programming

An important insight of the seventies was that the success of a computer program
depends strongly on the underlying data structure but not on the algorithms as
people believed before. This and the growing understanding of modelling com-
plex systems both artificial and in nature led to the object–oriented programming
languages in the eighties. Their most important concepts shall be explained in
more detail now. A good review on all concepts is found in [Wes99].

F.1.1 Abstraction and Encapsulation

Complex systems can often be separated into sub-systems showing both an in-
ternal (hidden) complexity (encapsulation) and external simplicity (abstraction).
Those are the two basic rules of object–oriented programming. Abstraction pro-
vides code which is easy to read and to understand even in vast software projects.
This is supported by encapsulation, because code sections are well separated
(modularised). This is in particular helpful when working with a team of many
developers. Not to mention the enormous advantage for the maintenance of the
system due to the hidden complexity.

F.1.2 Inheritance, Virtual Functions and Polymorphism

Sometimes complex systems share simple ancestors with other systems. The evo-
lution of simple general systems into more complex and specialised ones is part
of the object–oriented model. This kind of inheritance saves the programmer a lot
of code writing. Also, the abstraction level is pushed even further.

By declaring functions of inherited classes asvirtual it is possible to apply
functions with the same name but different meaning onto a heterogeneous mix-
ture of objects. Think of propagating a bunch of charged and neutral tracks for
instance. Such a concept is calledpolymorphism. It is heavily used in the RooT
and in the Z++ framework.
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F.2 RooT

The RooT framework [B+06] has been developed mainly for high energy physics
computing. It comprises libraries for histogramming and graphing in one or more
dimensions, curve fitting and minimisation of functions, statistical tools for data
analsysis, matrix algebra, four–vector computations, standard mathematical func-
tions, multivariate data analysisi. e. neural networks, image manipulatione. g.to
analyse astronomical images, distributed computing, persistence and serialisation
of objects, access to various databases, three–dimensional visualisation (geome-
try), creating files in various formats (like Postscript, PDF, JPEG, SVG, XML), re-
flection & introspection, interfacing Python and Ruby code in both directions, in-
terfaces to event generators, TCP/IP connections, server/client processes , thread-
ing and much more. It can — and has been already — easily be extended to other
domains. Applications to astrophysics, finance mathematics and life–sciences are
reported. RooT is an open project published under the LGPL. Its development and
release philosophy are in the tradition of [Ray00].

F.2.1 Ways of Running RooT

Opposite to the situation before the command language, the scripting language
and the programming language of RooT are all C++ thanks to the builtin C
C++ interpreter [G+02]. This interpreter allows for testing and fast prototyping of
scripts because the time–consuming compile and link cycle drops. If more per-
formance is needed the interactively developed scripts can be compiled using a
common C++ compiler. Thus the user can easily add his own classes (mostly de-
rived from existing RooT classes). These classes usually are bundled in shared
images which can be used either interactively or in batch mode or made further-
more into a standalone executable.

F.2.2 Object Streams

The RooT system supports input/output of C++ objects from/to machine–indepen-
dent files. Moreover, it is possible to send objects through a network via TCP/IP or
HTTP protocol. Thus client–server aplications are easily to be made. Also, RooT
allows for class/schema evolution. That means that RooT files can be read even
if the corresponding class description has changed meanwhile (this might happen
often during an evolution of a project). RooT files are internally compressed very
efficiently.
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F.2.3 Trees

In high energy physics thr requirements for storing event data are demanding due
to the vast amount of data sets. The common way of storing event data had been
data summary tapes (DST) mostly in form of ZEBRA [B+95] banks.4 The advent
of the H package [B+98c] made subsequent analyses much more efficient
by introducing the ability to process only sub-sets of events which had not been
possible so far. However, a major disadvantage of H was its lack of support
for compound data structures. Only flat tables (ntuples) containing native data
types and fixed–length arrays of them are allowed. The RooT system now pro-
vides facilities to cope with that problem. Atree can handle any collection of
objects. Random seek and proccessing of sub-components are possible as well as
persistent relations within an event.

F.2.4 Automated HTML Documentation Generation

Another nice feature of the RooT system is its capability to produce documenta-
tion in hypertext format for any class known to the system by parsing the class
implementation.5 The descriptional text is taken from comments in the source
code provided by the developer. Thus detailed documentation for entire class li-
braries can be made with less effort. The HTML documentation consists of class
descriptions, descriptions of the corresponding data members and member func-
tions and inheritance maps. Even the source code is accessible.

F.3 Z++ Class Overview

The Z++ class libraries are all written in C++ and based upon the RooT framework.
Thus they take all the advantages cited above. In addition they build an integrated
system that means they cover everything needed for any ZEUS analysis. Even
more, because of their open and abstract data structure they can be used for any
kind of analysis or study at ZEUS. Extensions to data structures or functionality
not yet in can be easily developed. The libraries are linked dynamically (shared)
which is in many ways much more efficient than static linked libraries. Some
basic characteristics are shown in Tab. F.1.

4At ZEUS the data is stored in ADAMO [F+93] which is based upon ZEBRA and supports an
entity–relationship data model.

5Similar to the well–known documentation generator tool D.
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No. of classes ∼40
Lines of code ∼105

Developers 8—10
Development time 2—3 years
Language C++
OS L, U

Table F.1: Characteristics of the Z++ project (state of summer 2006).

F.3.1 Event Structure

HERA collision events are stored in a RooT tree in a fully object–oriented way.
Every event inside the tree is an instance of the Z++ event class calledZEvent.
As shown in Fig. F.1 the event object contains sub-objects like an event header
(consisting of run and event number, all trigger bits, beam energies — and in case
of MC — information about the event generator used, the simulated process etc.),
kinematic information and lists of tracks, vertices, jets (at detector, hadron and
parton level), energy flow objects, MC particles, electron and muon candidates etc.
In addition, persistent relationships within the event like track–vertex relations
exist. The event class and its descendants provides much functionality to ease the
analysist’s daily life.

F.3.2 EAZE Interface

As already pointed out in Sec. 2.2.4 ZEUS events are stored in MDST format
after being reconstructed by the program ZEPHYR. For a physics analysis these
data sets of many millions of events are strongly reduced by pre-selection cuts for
further analysis. This is usually done by the program EAZE [Rya97] which allows
the user to store the pre-selected events in a data format he likes (mostly H

ntuples). Frequently the package O is used in combination with EAZE. This
provides some more functionality often needed like jet finding or the application
of calibration constants, systematic corrections etc. The Z++ libraries include an
interface to the EAZE program for a conversion of the MDST and O data
into the object–oriented format (see Fig. F.2). Event selection routines,e. g. for
photoproduction or deep inelastic scattering, are provided as well as finders for
particle decays like D∗ → Kππ,K0

s → π+π−,Λ0→ pπ etc.

F.3.3 Tasks

The sub-sequent analysis usually is organised intasksby which even complicated
analyses can be clearly arranged. The tasks are organised in a folder–like envi-
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Figure F.1: Structure of the Z++ event tree.
Each event object is mounted as super-
branch to the RooT event tree. The event
objects contains sub-objects like event
header, lists of tracks, vertices, jets and
many others. Since the structure is equal
for all event instances most of the memory
occupied by the event can be re-used when
reading or writing the next event. The re-
sult is an tremendous increase in perfor-
mance when processing a tree containing
millions of events.
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ronment. Things like the recursive execution of tasks, de-activating of specific
tasks etc. is possible. The Z++ libraries provide classes for both the submission of
EAZE jobs to the ZEUS batch facility and the often needed processing of a chain
of event trees filling histograms, profiles etc.

F.3.4 Future Prospects

The main application of the Z++ framework so far has been the dE/dx calibra-
tion and the b→ e analysis, but also D∗ measurements as well as tracking and
alignment studies. Currently the framework is being extended for new aspects of
the HERA-II data,i. e. improved tracking and vertexing information. This is part
of recently started b→ µ analyses. Future plans are an interface to ntuple files
produced by the O program as well as the integration with the ZEUS event
display ZV. More information about the Z++ project can be found at the Z++
webpage [Kin06].
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Ntuple
HBOOK

Tree

RooT
EventJets, ZUFOs, ...

Tracks, Vertices, ...

ORANGE

COMMON Blocks

X
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Figure F.2: Z++ analysis scheme. The MDST data is filtered and converted for furtheer
analysis by the help of the EAZE and Orange programs to RooT event trees without the
intermediate step of writing an H ntuple.
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jegliche Freiheiten bei der Durchführung meiner Projekte ließ. Gerade Letzteres
half mir sehr, meine wissenschaftlichen Fähigkeiten zu entwickeln und gab mir
Gelegenheit, neue Wege auszuprobieren.

Des weiteren geht ein großes Dankeschön an Markus J̈ungst, der im Rah-
men seiner Diplomarbeit und seiner beginnenden Promotion einen wesentlichen
Beitrag zu dieser Arbeit geleistet hat, und an Detlef Bartsch, dessen detaillierte
Dissertation zur Energieverlustmessung diese Analyseüberhaupt erst erm̈oglicht
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