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Infrared Spectro-Interferometry of Massive Stars:

Disks, Winds, Outflows, and Stellar Multiplicity

by Stefan Kraus

ABSTRACT

Interferometry is the ultimate technology for overcoming the limitations which diffraction and the

atmosphere-induced seeing impose on the resolution achievable with ground-based telescopes. The lat-

est generation of long-baseline interferometric instruments (in particular VLTI/AMBER and VLTI/MIDI),

combines the high spatial resolution (typically a few milliarcseconds) with spectroscopic capabilities,

allowing one to characterize the geometry of a continuum-emitting region over a wide spectral range or

to spatially resolve the emitting region of Doppler-broadened spectral lines in many velocity channels.

One branch of astrophysics which might particularly benefitfrom these advances in technology is

the study of massive (O–B type) stars. In order to characterize these stars and their companions and to

study accretion and outflow processes in their vicinity withunprecedented angular resolution, we have

performed interferometric studies on four key objects, representing the still most enigmatic evolutionary

phases of massive stars; namely the pre-main-sequence (MWC147, NGC 7538 IRS1,θ1Ori C) and the

post-main-sequence phase (η Carinae).

MWC 147: As indicated by its strong infrared excess, this young Herbig Be star (B6-type) is still

associated with residual material from its formation; maybe arranged in a circumstellar disk. In or-

der to investigate the geometry of the material, we combined, for the first time, long-baseline spectro-

interferometric observations at near- (NIR) and mid-infrared (MIR) wavelengths (using VLTI/AMBER,

VLTI /MIDI, and archival PTI data). Fitting analytic models to theobtained interferometric data revealed

a significant elongation of the continuum-emitting region.For a physical interpretation, we modeled the

geometry of the dust distribution using 2-D radiative transfer simulations of Keplerian disks with and

without a puffed-up inner rim, simultaneously fitting the wavelength-dependent visibilities and the SED,

which we complemented with archivalSpitzer/IRS spectra. Surprisingly, we found that passive disk

models, which can reproduce the SED well, are in strong conflict with the interferometric data. How-

ever, when including emission from an optically thick innergaseous disk, good quantitative agreement

was found for all observables, suggesting that MWC 147 harbours a still actively accreting disk.

NGC 7538 IRS1/2: NGC 7538 IRS1 is a high-mass (O7-type) protostar with a CO outflow, an asso-

ciated ultracompact H region, and a linear methanol maser structure, which might trace a Keplerian-

rotating circumstellar disk. We investigated the NIR morphology of the source with unprecedented

resolution using NIR bispectrum speckle interferometry obtained at the BTA 6 m and the MMT 6.5 m

telescopes. Our high-dynamic range images show fan-shapedoutflow structures, in which we detected

18 stars and several blobs of diffuse emission. Complementary archivalSpitzer/IRAC images were used



to relate the detected structures with the outflow at larger scales. We found a misalignment of various

outflow axes and interpreted this in the context of a disk precession model, also using molecular hydro-

dynamic simulations. As a possible triggering mechanism, we identified non-coplanar tidal interaction

of an (yet undiscovered) close companion with the circumbinary disk. Finally, our observations resolved

the nearby massive protostar NGC 7538 IRS2 as a close binary with a separation of 195 mas, finding

indications for shock interaction between the outflows fromIRS1 and IRS2.

θ1Ori C /D: Located in the Orion Trapezium Cluster,θ1Ori C is one of the youngest and nearest high-

mass (O5–O7) stars. The star is also known to be a close binarysystem. We traced the orbital motion

from 1997.8 to 2004.8 using visual and NIR bispectrum speckle interferometry at the BTA 6 m telescope.

In 2005.9, we obtained first IOTA long-baseline interferometry on theθ1Ori C system, allowing us to

derive preliminary solutions for the dynamical orbit and the dynamical mass. Taking the measured

flux ratio and the derived location in the HR-diagram into account, we estimated the spectral types and

masses ofθ1Ori C1 and C2 to be O5.5 (M � 34.0 Md) and O9.5 (M � 15.5 Md), respectively. Thus,

the companion C2 appears to be much more massive than previously thought, suggesting strong wind-

wind interaction during the periastron passage, which we predict for epoch 2007.5 with a small physical

separation of only� 1.5 AU. From the IOTA data onθ1Ori C, we reconstructed the first optical aperture

synthesis image of a young star. We also obtained IOTA data for θ1Ori D, which appears resolved,

perhaps indicating the presence of a close, faint companion.

η Carinae: Using VLTI/AMBER, we performed the first NIR spectro-interferometry ofthe Lu-

minous Blue Variable (LBV)η Car, simultaneously obtaining high spatial and spectral resolutions

(λ{∆λ � 1 500 and 12 000). The measured wavelength-dependent visibilities, differential phases, and

closure phases were used to constrain the geometry of the continuum-emitting region, as well as the

Brγ 2.166µm and He I 2.059µm line-emitting region. We compared the measured visibilities with pre-

dictions of the radiative transfer model of Hillier et al. (2001), finding good agreement. For the interpre-

tation of the non-zero differential and closure phases measured within the Brγ line, we present a simple

geometric model of an inclined, latitude-dependent wind zone. Thus, our observations support theoreti-

cal models of anisotropic winds from fast-rotating, luminous hot stars with enhanced high-velocity mass

loss near the polar regions. In the He I 2.059µm line, we measured non-zero phases as well, indicating

asymmetries in the brightness distribution, which we discuss in the context of wind-wind interaction be-

tweenη Car and its hypothetical hot binary companion. Using simulations, we examined the possibility

to directly detect this companion in future observations.

Besides these astrophysical results of my dissertation, I present work related to methodological and

technical aspects of infrared interferometry. The principles of a data reduction software developed for

IOTA/IONIC3 and a pipeline for VLTI/AMBER are discussed. Furthermore, I summarize comparative

studies which aim to evaluate the performance of different image reconstruction algorithms in order to

explore the prospects and limitations of optical aperture synthesis imaging.
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1 Introduction

1.1 Motivation and Outline of this Thesis

In the last few decades, the tremendous advances in instrumentation have resulted in a significant im-

provement of our understanding of the formation process andthe evolution of stars. This is particularly

true for low-mass stars, where detailed observational investigations could establish a new paradigm for

the star formation process. For several reasons, the life-cycle of massive (O–B type) stars is not as well

understood. Some of the challenges which these stars pose onobservations are that high-mass stars are

very distant, scarce in number, have very short evolutionary time scales, and form and evolve in dense

clusters with strong dynamical interaction, stellar winds, and outflows. Therefore, high-angular resolu-

tion studies are required to achieve further progress in understanding the evolutionary sequence of these

stars.

Comparing the fractional number of low- (� 93.9% for M   1 Md, Kroupa 2002), intermediate-

(� 5.7% for 1 Md   M   8 Md) and high-mass stars (� 0.4% for M ¡ 8 Md) reveals that massive

stars make up only a small fraction of the total galactic stellar population. Nevertheless, these stars have a

tremendous impact on their environment throughout their entire life-cycle. Shortly after their birth, they

start to disperse the natal molecular cloud with strong stellar winds and outflows and photoevaporate

the protoplanetary disks around nearby low-mass stars. After a short (Bernasconi & Maeder 1996)

hydrogen-burning phase, they pass very short-lived evolutionary phases asLuminous Blue Variable

(LBV) and Wolf-Rayetstars, both dominated by extreme mass-loss, before the mostmassive stars end

their evolution as supernovae, enriching the interstellarmedium (ISM) with metals and triggering the

next generation of stars by compression through supernova shock waves.

In the course of my PhD thesis, I have applied infrared interferometric techniques to study intermedi-

ate and high-mass stars at evolutionary stages reaching from the protostellar to the LBV phase, covering

a wide mass range from� 7 Md to 100Md. By using the latest generation of infrared interferometric

instruments, we aim not only to study the continuum emissionfrom these objects at a single wavelength,

but also to combine the high-angular resolution with spectroscopic capabilities. This can be used either

to spatially resolve the continuum-emitting region over a broad wavelength range (such as applied in

our studies on MWC 147 andθ1Ori C), or to perform interferometry in spatially and spectrally resolved

spectral lines, which allows us to study the kinematics of gas emerging in stellar winds or wind-shock
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Chapter 1 Introduction

regions (as in our study onη Carinae). Whenever possible, we combine the information obtained at

high angular resolution with conventional imaging as provided by theSpitzerSpace Telescope and by

observations at radio wavelengths (as in our study on NGC 7538 IRS1), or with conventional spectra.

Because infrared long-baseline interferometry only recently went beyond the stage of experimental

technology, it is missing established general user software for data processing, interpretation, and mod-

eling. Therefore, a large fraction of my PhD work involved developing, implementing, and testing data

reduction routines for state-of-the-art infrared interferometers like VLTI/AMBER and IOTA, as well as

software related to model fitting, radiative transfer modeling, and the reconstruction of aperture synthe-

sis images.

This thesis is structured as follows: First, as part of this introduction, I sketch our current knowledge

about the life-cycle of massive stars(Sect.1.2), simultanously placing the studied objects in a broader

context. Then I briefly review the fundamental challenges weface when dealing with high-angular

resolution imaging at visual and infrared wavelengths, andthe technologies which have been developed

to face them(Sect.1.3). In Sect.2, I introduce the basic principles of long-baseline interferometry

and its observables. In the two following sections, I describe the two near-infrared (NIR) instruments

used for my thesis work, namely IOTA/IONIC3 (Sect.3) and VLTI/AMBER (Sect.4), and outline

some of my work related to data reduction procedures for these instruments. Data from two other

instruments, namely the mid-infrared (MIR) instrument VLTI/MIDI and the NIR interferometer PTI,

were also used for one of my PhD projects. As I could use existing data reduction software on these

data sets, these instruments are not presented in a separatechapter, but only introduced in the context of

the corresponding science project (Sect.6). Sect.5 presents a brief summary of our studies related to

aperture synthesis imaging.

The following four Chapters present the astrophysical aspects of my PhD work and are based on four

articles published, submitted, or close to submission to A&A. They are structured as individual units

and cover the following topics:

Sect. 6: VLTI /MIDI and VLTI /AMBER observations of the Herbig Be star MWC 147 and radiative

transfer modeling of its active accretion disk.

Sect. 7: Bispectrum speckle imaging of the high-mass protostars NGC7538 IRS1 and IRS2 and mod-

eling of its possibly precessing outflow.

Sect. 8: Bispectrum speckle and IOTA/IONIC3 interferometry of the Orion Trapezium starsθ1Ori C

andθ1Ori D and determination of a preliminary orbital solution for theθ1Ori C system.

Sect. 9: VLTI /AMBER spectro-interferometry and modeling of the aspherical stellar wind and the

potential wind-wind interaction region around the LBVη Carinae.

—14—



1.2 The Life-Cycle of Massive Stars

1.2 The Life-Cycle of Massive Stars

Figure 1.1: Schematic evolutionary sequence of the stages in

the low- and high-mass star formation process (Image credit:

http://physics.uwyo.edu/~chip/).

It is believed that massive stars form

through the collapse of cold, dense

cores. These cores set the stage for

high-mass star formation and might

be observed asinfrared dark clouds

(IRDCs). IRDCs are massive (a few

hundred to a few thousandMd),

cold (10–20 K), star-less aggrega-

tions of gas and dust, which appear in

absorption against the mid-infrared

(MIR) galactic background (Menten

et al. 2005). IRDCs seem to col-

lapse tohot cores(labeled as Class

0 in Figure1.1), which are internally

heated (50–250 K) and rather com-

pact (  0.1 pc, Rathborne et al.

2006). Further on in the evolution,

molecular outflows and maser emis-

sion appear. From the large num-

ber of maser species found in high-

mass star-forming regions, Class II

methanol masers (6.7 GHz) were

identified as especially reliable trac-

ers of the earliest stages of high-mass

star formation (Pestalozzi et al. 2005;

Ellingsen 2006). Shortly after its birth, the formed protostar already starts to ionize its environment, cre-

ating hyper- (HCH) or ultra-compact (UCH) regions (Hoare 2005, Class I). The natal molecular

cloud is dispersed by strong (sometimes collimated) outflows and stellar winds. Once the density and

extinction of the envelope are sufficiently reduced, the star emerges from its parental cloud asa mid- or

near-infrared source. By the time, an O star appears at optical wavelengths, it has already burned a noti-

cable fraction of its central hydrogen content and has developed towards the main-sequence (Bernasconi

& Maeder 1996).

Another effect of the dramatic influence of the intense ultraviolet (UV)radiation field on its vicin-

ity was discovered in the Orion Trapezium Cluster, where thewinds and UV-flux of the most massive
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Trapezium star,θ1Ori C, disperses and ionizes the protoplanetary disks around nearby low- and inter-

mediate mass stars. The line-emission of theseproplydswas first observed rather early (Laques & Vidal

1979), although their precise structure and properties were notrevealed before very sensitive Hubble

Space Telescope observations could be performed in the late90’s (O’dell 1998).

Another characteristic of high-mass star formation is thatit tends to occur in dense clusters, as

sketched in the right-hand column of Figure1.1. This has not only the consequence that strong grav-

itational interaction between the OB stars leads to stellarejection or merging (Zinnecker 2004), but

also seems to be reflected in the stellar multiplicity rate, which is much higher for high-mass than for

low-mass stars (Preibisch et al. 1999; Köhler et al. 2006).

After the central hydrogen-burningphase, which typicallylasts just a few million years, the most mas-

sive stars enter another short-lived phase as Luminous BlueVariables (LBVs, Conti 1984). This phase

is dominated by strong mass loss via stellar winds. Perhaps the most studied, but still mysterious exam-

ple for this evolutionary stage isη Carinae. With its� 100Md, it is also one of the most massive stars

known in the galaxy. Forη Carinae, the LBV-typical, near-Eddington-limit mass-loss also manifests

in the surrounding complex Homunculus reflection nebula, which was likely ejected during an outburst

around 1840. Further enhancing the mass loss, the most massive stars become completely obscured by

their optically thick wind and enter theWolf-Rayetphase before they ultimatively explode as supernovae.

Despite the general picture presented above, some fundamental aspects of the life-cycle of massive

stars are still poorly understood. This concerns, in particular, the pre-main-sequence (PMS) stage. For

low- to intermediate-mass stars, it now seems well-established that the formation of these stars happens

through accretion of envelope material through an accretion disk. The accretion disk geometry allows

the transport of large amounts of material towards the stars, while a smaller fraction of the material,

carrying most of the angular momentum, is transported outwards (Lynden-Bell & Pringle 1974). In fact,

for the young B6-type star MWC 147, which we observed with long-baseline interferometry, we found

strong indications for the presence of an actively accreting circumstellar disk (see Chapter6).

For stars with even higher masses (&10 Md), early spherical symmetric calculations suggested that

the accretion scenario might halt due to strong radiation pressure. Therefore, it was proposed that high-

mass stars might not form by accretion, but by stellar merging instead (Bonnell et al. 1998). Recent

theoretical work has loosened the originally derived radiation pressure limit by considering more com-

plex disk and infall geometries (e.g.Yorke & Sonnhalter 2002). However, even these studies have found

a barrier around 40Md, at which the radiation pressure stops or even reverses the accretion process.

Possible solutions to this problem are currently discussedin literature (e.g.Krumholz et al. 2005), but

the results are still inconclusive.

Observationally, the accretion disk hypothesis for massive stars is mainly supported by the detection

of large rotating, disk-like structures in mm-radio lines (e.g. Cesaroni et al. 2005) and by very extended
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disk-like structures imaged in the infrared continuum (e.g. Chini et al. 2006). Further evidence for disk-

like Keplerian rotating disks around massive stars comes from modeling the line profiles of hydrogen

recombination lines (Bik & Thi 2004). The appearance of masers in linear or arc-like alignment was

also often discussed as a possible tracer of circumstellar disks, as the spatial alignment is sometimes

accompanied by a well-defined velocity gradient indicatingordered motion (Norris et al. 1998; Minier

et al. 2000). One source where the maser-disk hypothesis has been deeply tested is the methanol maser

feature A in NGC7538-IRS1 (Pestalozzi et al. 2004). It was found that the observed velocity gradient

can be fitted very accurately assuming a Keplerian rotating circumstellar disk 750 AU in radius around

a 30 Md star. As an alternative explanation for the appearance of linear-aligned maser features, it was

suggested that these masers might form within shocks or outflows (Walsh et al. 1998; De Buizer 2003;

Dodson et al. 2004), which are then traced on larger scales by CO line emission or within shock-tracer

lines like H2, [Fe], or [S].

As stars with masses above 100Md clearly seem to exist, further observational evidence is clearly

needed to unambigously identify the different phases of the complex formation process of massive stars.
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1.3 Interferometry and the Quest for Spatial Resolution

Progress in astronomy has often been driven by revolutions in instrumentation. One of the most funda-

mental optical properties, which limits the performance ofany telescope and the amount of details we

can image on celestrial objects, isFraunhofer diffraction. For a telescope with circular aperture (diame-

ter D), perfect optical properties, and without the perturbing influence of the terrestrial atmosphere, the

theoretical limit in spatial resolution is given by the Rayleigh criterion

Θ � 1.22λD�1. (1.1)

Here,Θ gives the angular separation of two point sources for which the first diffraction minimum co-

incides with the maximum of the other (for a particular wavelengthλ). While Θ might be a realistic

measure for the achievable resolution of space telescope facilities like the Hubble Space Telescope

(HST) or theSpitzerSpace Telescope, ground-based telescopes additionally have to face the problem of

atmospheric turbulence.

1.3.1 The turbulent Earth atmosphere

Figure 1.2: Speckle pattern caused by the tur-

bulent structure of the terrestrial atmosphere.

This K-band speckle interferogram was taken by

our group in 1999 at the BTA 6 m telescope

on the 76 mas binary HIP4849 (Image Credit:

http://www.mpifr-bonn.mpg.de/div/

ir-interferometry/).

The Earth atmosphere can be considered as a large

number of turbulence cells of different temperatures

and densities. As the diffractive index depends on the

temperature, these cells scatter the incident stellar light

in a random pattern, which causes the image of a point

source to break up into aspecklepattern (see Fig.1.2).

Long-exposure imaging, as performed in conventional

astrophotography (with detector integration times of

a few seconds and longer), records a time-averaged

speckle pattern, the so-calledseeing disk. Due to the

random nature of the intensity and phase variations,

induced by the Earth’s atmosphere, the brightness of

the seeing disk is approximately Gaussian distributed.

The atmospheric conditions are characterized by the

spatial coherence lengthr0 (Fried parameter), which is

the characteristic scale over which the incoming wave

front suffers no distortions, and the coherence timet0,

over which temporal changes in the atmosphere can

be neglected, and the atmosphere can be considered as
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“frozen”. Fromr0, the FWHM of the seeing diskǫ � 0.98λ{r0 can also be computed for a particular

wavelengthλ (Sarazin & Roddier 1990). For visual wavelengths (e.g.λV � 550 nm), typical values

aret0 � 10 ms andr0 � 10 cm (Buscher 1988), corresponding to a size of the seeing disk of� 1.21.

Towards longer wavelengths, the restrictions relax slightly, asr0 increases asr0 9 λ6{5 (for Kolmogorov

turbulence,Sarazin & Roddier 1990).

1.3.2 Speckle interferometry and adaptive optics imaging

Great efforts have been taken to overcome the limitations imposed by the atmospheric influence. In

1970, a first success was achieved byLabeyriewith the speckle interferometry method. This technique

uses short exposure times (i.e. comparable tot0) to “freeze” the atmospheric turbulence. Therefore,

each speckle interferogram represents a convolution of theobject brightness distribution with the current

transfer function of the “frozen” atmospheric screen. The method proposed byLabeyriedoes not retrieve

the phase information of the image, but computes the autocorrelation of the speckle interferograms.

Therefore, this method is not applicable to objects with very complex brightness distributions, but can

be used, for instance, to measure the separation and position angle (PA) of binary stars, although even

in these cases a 180� degeneracy remains.

To extract real images from speckle data, other methods havebeen developed. A method proposed by

Knox & Thompson(1974) cancels the atmospheric influence by dividing the average cross-spectrum of

the target speckle interferograms with those of a referencestar. Then the phases can be recursively re-

constructed. The bispectrum speckle interferometry method (Weigelt & Wirnitzer 1983; Lohmann et al.

1983; Hofmann & Weigelt 1986), which evolved historically from speckle masking (Weigelt 1977), also

reobtains the phases recursively. By using the average bispectrum (see Sect.2.2.2), this method makes

use of the property that on triangles in Fourier space (whichare defined by two spatial frequency vectors;

thereforebispectrum), phase errors cancel out. Furthermore, for each triangle the phase information can

be retrieved on various paths, which provide reduced residual errors on the reconstructed phase signal

after averaging.

Although speckle interferometry can provide diffraction-limited imaging at visual and NIR wave-

lengths, it is limited in sensitivity (typically V�14m and K�12m) due to its short integration times. Re-

cently, adaptive optics (AO) systems were developed which also allow long integration times (typically

a few minutes), exploiting the full sensitivity provided bythe large aperture of the current generation of

telescopes. These systems operate routinely at NIR wavelengths and correct the atmospheric wave front

distortions using deformable mirrors (e.g. NAOS-CONICA onthe VLT).
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1.3.3 Long-baseline interferometry

As speckle imaging and AO systems are already pushing towards the theoretical diffraction-limit of a

single-dish telescope, a conceptual turn has to be taken to gain further resolution in optical astronomy.

The most basic principles of optical (i.e. visual and infrared) interferometry were already formulated in

1868 by Armand Fizeau, who proposed to place a mask with two holes in front of a telescope aperture.

He suggested measuring the diameter of stars by finding the hole separation at which the formed inter-

ference pattern (thefringe) vanished. This technique was used four years later by Edouard Stéphan to

obtain an upper limit for the diameter of some stars and was successfully applied by Albert Abraham

Michelson to measure for the first time the diameter of the Galilean moons (Michelson 1891). In 1919,

Michelson enhanced the resolution of the 100-inch Hooker telescope by mounting 20-foot beams on

top, resulting in the first measurement of a stellar diameter(Michelson & Pease 1921). Another mile-

stone was reached in 1974 when Antoine Labeyrie succeeded incombining the light of two separate

telescopes, spaced 12 m apart. At this stage, the radio astronomy community had already developed im-

portant concepts for long baseline radio interferometry which could be adopted to optical wavelengths.

Some important contributions were the development of Earthrotation aperture synthesis (e.g.Ryle &

Hewish 1960) and the concept of the closure phase (Rogers et al. 1974), allowing to obtain accurate

phase information even in presence of strong atmospheric perturbations. The first optical aperture syn-

thesis images were presented byBuscher et al.(1990) andBaldwin et al.(1996), and imaged the surface

of Betelgeuse and the binary star Capella, respectively.

In the following Sections, I will introduce the basic principles of long-baseline interferometry (Sect.2)

and adopt these to the IOTA/IONIC3 (Sect.3) and VLTI/AMBER (Sect.4) instrument. Then I present

some of our studies related to aperture synthesis imaging (Sect.5).
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2 Principles of Long-Baseline

Interferometry

2.1 Basics of Interferometry

One solution to the time-independent Helmholtz equation (and thus also the Maxwell equations) is the

monochromatic, stationary planar waveΨsp~xq (Bergmann & Schaefer 1993). The propagation of this

wave through source-free vacuum can be expressed by

Ψp~x, tq � Ψsp~xqe�ıpckt�φq, (2.1)

wherek � 2πν{c � 2π{λ is thewave numberandφ the phaseof the wave. As usual,c denotes the

speed of light in vacuum,ν the frequency, andλ the wavelength.

For long-baseline interferometry, the same electromagnetic waveΨ is sampled with several apertures.

While propagating throughout the optical system, the wave experiences optical path differences, which

we take into account by including a delay termτi for each spatially filtered wave front. Additionally

there are rapidly changing phase modulations induced by theatmosphere, which we denote withζi (this

piston might be wavelength dependent). Therefore, for the wave that reaches the detector from aperture

i, we yield

ψip~x, tq � b
Pip~xqΨip~x, tqe�ıckpτi�ζiq, (2.2)

wherePip~xq denotes the pupil function (including transmission).

The intensity Ii of the light from this telescope is then given by the absolutesquare of the complex

wavefunctionψi . Due to the finite sampling time, we compute the time-averaged intensity with

I ip~x, tq � x|ψip~x, tq|2y (2.3)� Pip~xqx|Ψip~x, tq|2y (2.4)
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If light from N apertures is superposed, the measured signal is given by

Ip~x, tq � x����� Ņ

i�1

ψi

�����2y (2.5)� x Ņ

i, j�1

ψiψ
�
j y (2.6)� Ņ

i�1

x|ψi |2y � ¸
1¤i  j¤N

2ℜxψiψ
�
j y (2.7)� Ņ

i�1

I i �
i̧  j

2ℜxψiψ
�
j y (2.8)� Ņ

i�1

I i �
i̧  j

2
a

PiP jℜ

�xΨie
�ıckpτi�ζiq �Ψ je

�ıckpτ j�ζ jq	�y� (2.9)� Ņ

i�1

I i �
i̧  j

2
a

I i I jℜ

��� xΨiΨ
�
j ybx|Ψi|2yx|Ψ�j |2ye�ırckpτi�ζiq�ckpτ j�ζ jqs��� (2.10)

whereψ� is the complex conjugate ofψ. The real (imaginary) part of a complex function is denoted

withℜpq andℑpq. We define the complex visibilityVi j , which is identical with the complex degree of

coherence, with

Vi j :� xΨiΨ
�
j y|Ψi||Ψ�j | (2.11)

which, for the interferogram given above yields:

Ip~x, tq � Ņ

i�1

I i �
i̧  j

2
a

I i I jℜ

�
Vi j e

�ıckpτi�τ j�ζi�ζ jq� (2.12)

:� IDCp~xq �
i̧  j

2ℜ
�
I

AC
i j p~x, τi , τ jq� (2.13)

While the first term in equation2.13corresponds to a constant, underlying continuum (IDC, this term has

to be removed at the data reduction stage), the interferencepattern is given by the second term (real part

of IAC). For a single planar wave (corresponding to an unresolved point-source),|Vi j | � 1 everywhere.

A more general case will be considered in Section2.5.
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The fringe patternγi j at the detector shows a cosine modulation, with an amplitudegiven by the

visibility Vi j � |Vi j |:
Ip~x, tq � Ņ

i�1

I i �
i̧  j

2
a

I i I jVi j cosr�ckpτi � τ j � ζi � ζ jq � pφi � φ jqs (2.14)

:� Ņ

i�1

I i �
i̧  j

2γi j

a
I i I j (2.15)

2.2 Interferometric Observables

2.2.1 Visibility

The most fundamental observable in interferometry is thefringe contrast, given by the amplitude of the

complex visibility (see definition in2.11). While the phase ofVi j is strongly affected by atmospheric

perturbations, the atmospheric (and instrumental) effects on the fringe amplitude vary rather smoothly

and can be corrected using measurements on calibrator stars. Therefore, it is common to use the (phase-

independent) absolute square of the complex visibility as observable:

V2
i j :� |Vi j |2 . (2.16)

This quantity can be extracted from the interferogram powerspectrum, although the removal of under-

lying background and bias terms has to be done with caution.

2.2.2 Closure phase and bispectrum

Besides the fringe amplitude (i.e.V2, as defined in equation2.16), the phase of the complex visibility

carries additional information about the source brightness distribution. The Fourier phaseφ of the

complex visibility is given by � φ � argpVq � tan�1

�
ℑpVq
ℜpVq
 . (2.17)

However, when extracting this quantity from an interferogram which was obtained with a ground-based

interferometer, the phase signal will be completely corrupted by the piston introduced by the turbulent

atmosphere. This atmospheric phase screen can be describedby theζ’s in equation2.2and following.

One possibility for overcoming this phase corruption is currently being investigated using the technique

of phase referencing, such as with the PRIMA fringe tracker (Delplancke et al. 2003) for the VLTI.
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Figure 2.1: Definition of the vector directions in the CP triangle.

However, in 1958Jennisonnoted that some of the phase information can also be retrieved with non-

phase-referenced interferometers. The underlying idea isillustrated in Figure2.1and makes use of the

fact that for observations with three or more apertures, theatmospheric disturbance termsζ cancel out

when adding the phase terms in a closed triangle telescope configuration. If we consider the case for

N � 3 and denote the telescopes with 1, 2, and 3, then we obtain thefollowing interferogram phases:

ϕ12 :� � argpIAC
12 q � φ12� ckpζ1 � ζ2 � τ1 � τ2q (2.18)

ϕ23 :� � argpIAC
23 q � φ23� ckpζ2 � ζ3 � τ2 � τ3q (2.19)

ϕ31 :� � argpIAC
31 q � φ31� ckpζ3 � ζ1 � τ3 � τ1q, (2.20)

whereφi j :� φi � φ j .
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Adding theseϕi j yields the remarkable result that the phaseΦ (also known asClosure Phase) is

invariant to the atmospheric phase perturbation terms:

Φ � ϕ12� ϕ23� ϕ31 (2.21)� φ12� φ23� φ31. (2.22)

Due to this property, closure phases (CPs) are also self-calibrating; i.e., no calibrator measurements are

needed to monitor changes in the atmospheric conditions (asrequired forV2 measurements). For an

array ofN telescopes (N ¡ 2), in totalpN � 1qpN � 2q{2 CPs may be defined (Readhead et al. 1988).

For N ¡ 3, someAmplitude Closure Relationscan additionally be obtained (Rogers et al. 1974).

As was pointed out later, the CP is mathematically equivalent to the phase of thebispectrum(Lohmann

et al. 1983). If we denote with̃I the Fourier transform ofI, the bispectrumB can be defined as

B :� xĨAC
12 Ĩ

AC
23 Ĩ

AC�
13 y (2.23)� ��ĨAC

12

�� ��ĨAC
23

�� ��ĨAC�
13

�� � (2.24)�e�ırφ12�ckpτ1�ζ1q�ckpτ2�ζ2qs � e�ırφ23�ckpτ2�ζ2q�ckpτ3�ζ3qs � eırφ13�ckpτ1�ζ1q�ckpτ3�ζ3qs� ��ĨAC
12

�� ��ĨAC
23

�� ��ĨAC�
13

�� � e�ırφ12�ckpτ1�ζ1q�ckpτ2�ζ2q�φ23�ckpτ2�ζ2q�ckpτ3�ζ3q�φ13�pckτ1�ζ1q�pckτ3�ζ3qs� ��ĨAC
12

�� ��ĨAC
23

�� ��ĨAC�
13

�� � e�ırφ12�φ23�φ13s. (2.25)

Thus, we find that the argument ofB is identical to the CP, as defined in equation2.22:

argpBq � φ12� φ23� φ31 (2.26)� Φ. (2.27)

2.2.3 Differential observables

From spectrally dispersed interferograms, differential observables can be extracted in addition to the

before-mentioned absolute observables. In analogy to theV2 estimator, thedifferential visibilitymea-

sures the relative change of the visibility in adjacent spectral channels. Perhaps even more powerful

is thedifferential phase, which resembles the wavelength-dependence of the individual Fourier phases.

Similar to the CP, differential observables are self-calibrating; i.e., they do not require a calibrator mea-

surement to compensate for atmospheric effects.
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2.3 Array Geometry and Optical Path Delays

The waves from the individual telescopes must experience the same time delay before they can be

recombined. Therefore, it is important to identify the effects which delay the wavefronts with respect

to each other. Once identified, these delays can be compensated by using delay lines, allowing us to

observe the fringe pattern at zero optical path delay (OPD).

One cause of delay might be due to path differences in the optical trains (internal delays). Another

important contributor is thegeometric path delayτgeom, which results from the geometric arrangement

of the apertures (see Fig.2.2). As this geometric delay changes constantly while the observed star

moves across the sky, it has to be compensated with high frequency during the observation.τgeomcan be

computed from the relative ground coordinates of the telescope stations. When observing a star towards

direction~r (~B is the baseline vector), thenτgeom for this particular baseline is given by sinp~B~rq{c. The

projected baseline Bp, which also defines the effective resolution of the observation, is given by

Bp � cosp~B~rq � |~B| cosz, (2.28)

wherezdenotes the zenith angle of the observations.

2.4 Fringe Signal Coding

Long-baseline interferometers collect the same wave with different apertures and then recombine it in a

beam combiner. In order to ensure that the sampled light combines coherently, two distinct strategies can

be used (Malbet et al. 1999; Schöller et al. 2000). While thecoaxialcombination scheme superposes the

wave at the same position on the detector, but modulates the time when the waves arrive there (yielding

temporal self-coherence), themultiaxialcombination scheme records the interferogram at one time, but

spread in space (spatial self-coherence).

2.4.1 Coaxial beam combination

In the coaxial combination scheme, the beams are first aligned and then combined in the pupil plane.

The signals from the beam combiners are then focused at a detector, which might consist of a single

pixel, although it is advantageous to record the two phase-shifted output signals from the beam splitter,

which requires two pixels per beam combiner.

To scan the fringe signal, the delay between the beams has to be temporally modulated. This is

done by modifying the OPDτ systematically by introducing an additional delay of knownamplitude.

Technically, this can be realized, for instance, using Piezo scanners, which introduce a sawtooth-shaped

delay onN� 1 of theN baselines (at one baseline the delay may stay fixed).
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Figure 2.2: Basic components of a Michelson stellar interferometer. The wavefront requires different light travel
times to reach the telescopes, introducing the geometric delay τgeom, which depends on the position of the star on
the sky.

This concept is similar to the one applied in the Michelson-Morley interferometer. For stellar inter-

ferometers, coaxial beam combination is used at the IOTA, VLTI/VINCI, VLTI /MIDI, and some other

interferometers.

2.4.2 Multiaxial beam combination

In multiaxial beam combination, the fringe signal can be recorded at one time (in one exposure), but is

spread in the image plane over many pixels on the detector plane. The spatial fringe coding is achieved

by placing the exit pupils at certain distances to each otherand then to superpose the beams using, for

instance, a lens, introducing geometric path differences. ForN ¡ 2 telescopes, confusion between the

formed fringes can be avoided by placing the corresponding exit pupils at varying distances to each

other. This results in different frequencies in the carrying waves, which allows one toseparate the
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Figure 2.3: Basic principles used in the current generation of optical interferometric beam combiners:Left: Coaxial
beam combination.Right: Multiaxial beam combination.

interferograms from the different baselines during data reduction.

An intuitive example for multiaxial beam combination is Young’s double slit experiment or Michel-

son’s 20-foot steller interferometer. Nowadays, this method is realized at GI2T or VLTI/AMBER.

2.5 The van-Cittert-Zernike Theorem

The van-Cittert-Zernike theorem (Thompson et al. 1986) relates the complex visibility (as defined in

equation2.13) with the source brightness distributionIpx, yq and provides, therefore, the basic theory

for any modeling of interferometric data. The coordinatesx andy shall be measured parallel to the right

ascension (RA) and declination axis (DEC), respectively. Then, the van-Cittert-Zernike theorem relates

V with the Fourier transform of the irradiance distributionĨpx, yq, i.e.

Vpu, vq � Ĩpx, yq � » 8�8 » 8�8 Ipx, yqe�ıkpux�vyqdxdy. (2.29)

The new coordinatesu andv are measured in frequency space (e.g. in cycles per mas) and give the East

and North component of the sky projected ground baseline vector ~B. For a point source (unresolved)

V � 1, whereas for uniformly bright background emission fillingthe whole FOV (overresolved source)

V � 0.

2.5.1 Basic analytic visibility profiles

Based on the van-Cittert-Zernike Theorem, it is straight-forward to compute the visibility profile for

arbitrary brightness distributions. Since for some of our studies the brightness distribution of the studied

objects is rather complicated (e.g. on MWC 147,η Car) or follows an exotic center-to-limb variation
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(CLV), these cases require a direct application of equation2.29. However, it can be useful to find ana-

lytic descriptions for the visibility profiles of simple geometries like binary stars (applied forθ1Ori C),

uniformly bright disks, or Gaussian CLVs (forη Car). As the derivation of these analytic descriptions

is rather straightforward and already demonstrated in literature (e.g.Millan-Gabet et al. 2001; Kraus

2003), we give the descriptions for the following, commonly usedbrightness profiles without derivation:

Uniform Disk (UD): The visibility function for a disk with diameterΘ and of uniform brightnessI ,

depends on the projected baseline as

VUDpΘq � 2
J1pkΘBpq

kΘBp
, (2.30)

whereJ1 denotes the Bessel function of first kind and first order.

Gaussian Brightness Distribution: If we consider a Gaussian brightness distribution of full width

half maximum (FWHM) diameterΘ, the visibility profile is given by

VGausspΘq � exp

��pkΘBpq2
4 ln 2

�
. (2.31)

Binary source: Let us consider a brightness distribution which contains two components, each having

an arbitrary intensity (I1 and I2) and visibility profile (V1 andV2). Then the complex visibility

depends on the component separation vector~sas

VBinaryp~sq � I1V1 � I2V2e�ik~B~s

I1 � I2
. (2.32)
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3 The IOTA/IONIC3 Interferometer

Figure 3.1: The IOTA with the IONIC3 instrument.

—31—



Chapter 3 The IOTA/IONIC3 Interferometer

3.1 Overview and Context

The Infrared Optical Telescope Array(IOTA) was used for observations for one of my PhD projects;

namely, onθ1Ori C and D (Sect.8). Due to the low brightness, the data reduction process for these

sources was rather challenging and could not be performed with the data reduction algorithms which

I had implemented earlier in the context of my Master thesis work on IOTA (Kraus 2003). Therefore,

it was necessary to implement new algorithms, which are verybriefly described and illustrated in this

chapter.

3.2 Instrument Design and Signal Coding

The IOTA is a three telescope interferometer located at the Fred Whipple Observatory atop Mount

Hopkins, Arizona. It was jointly constructed by the Smithsonian Astrophysical Observatory, Harvard

University, the University of Massachusetts, the University of Wyoming, and the MIT/Lincoln Labo-

ratory (Traub et al. 2003). IOTAs telescopes can be moved on an L-shaped track and are mounted on

stations 5 and 7 m apart. With track lengths of 15 m (southeastdirection) and 35 m (northeast direction),

baselines up to 38 m can be formed. The collecting optics consist of f/2.5 45 cm Cassegrain primary

mirrors, which are fed by siderostats. The atmosphericallyinduced motion of the image is compensated

by tip-tilt servo systems mounted behind the telescopes.

Passing various mirrors and path-compensating delay lines, the beams are deflected into the labo-

ratory, where the infrared component of the beam is coupled into fibers. The fibers feed the spatially

filtered signal into the IONIC3 integrated optics beam combiner (Berger et al. 2003), which combines

the beams coaxially (see Sect.2.4.1) and pairwise with a ratio of 50:50. For each baseline, the beam

combination produces two complementary outputs, which areshifted in phase byπ with respect to each

other, and which are recorded on a PICNIC camera (Pedretti et al. 2004). Although the information

recorded by these two channels is in principle redundant, itcan be used to remove residual photometric

fluctuations simply by subtracting the signals from the two channels.

Piezo scanners installed at two of the telescopes modulate the OPD to temporally scan the interference

fringe pattern (for the AB and AC baseline the OPD stroke is 50µm, resulting in a stroke of 100µm for

the BC baseline). Thus, for eachτ we record six signalsI j (1¤ j ¤ 6). In the following, we denote the

output of the beam combiner which combines telescopes A and Bwith I1, I2, the beam combiner output

from A and C withI3, I4, and the one from B and C withI5, I6.

Because we observed with IOTA using anH-broadband filter, the assumption of a monochromatic

wave, which was used in the derivation of the interferometric equation in Sect.2.1, cannot be used to

describe IOTA interferograms. Therefore, we integrate theinterferometric equation over the spectral

window of an rectangular-shaped filter (central wavelengthλc and bandwidth∆λ) and yield that the

—32—



3.3 Constructing the interferograms

cosine fringe signal (see equation2.15) is convolved with the function sincrπ∆λpt � τi � τ j � ζi �
ζ jq � pφi � φ jqs (with sincpxq � sinpxq{x; for a derivation seeKraus 2003). The width of this envelope

function is inversely proportional to∆λ, and it is symmetrically centered around the so-calledwhite light

fringe. In Figure3.3we show a typicalH-band IOTA interferogram.

Following each object observation (during which several datasets were recorded, typically consisting

of 200 scans), four calibration files were acquired. One of these files measures the camera background

signal with the light from all telescopes shuttered out (this is required for subtraction of the thermal

background). For the other three files, the light of two telescopes is shuttered out alternately. This

allows us to determine the coefficients of the transfer matrix (κ matrix, Coude Du Foresto et al. 1997).

Theκ matrix quantifies the light contributions of a certain telescope to both beam combiner outputs of

the three baselines (j=1...6):

I j � κ jAFA � κ jBFB � κ jCFC (3.1)

3.3 Constructing the interferograms

To achieve a high accuracy in the visibility, the recorded interferograms must be corrected for photo-

metric fluctuations (Coude Du Foresto et al. 1997), which requires to record the photometry simultane-

ously to the interferometric signal. Two-telescope beam combiners (like FLUOR, VINCI, or MIDI in

SCI-PHOT mode) or multiaxial beam combiners (like AMBER) obtain this photometric information by

separating a certain fraction of the light before the beam combination and recording the photometry in

separate channels.

However, if three or more telescopes are combined pairwise,the photometric information can also be

extracted from the interferometric signal without additional channels. An important advantage of this

procedure is the reduced complexity of the optical design and the increased flux in the interferometric

channels. To my knowledge, this procedure was first suggested by Ned Carleton for IOTA-3T. I thank

John Monnier for discussion on this topic, who applied a similar procedure also to asymmetric beam

combiners (Monnier 2001).

With all shutters open, we obtain the interferometric signals

I1 � κ1AFA � κ1BFB � κ1CFC � 2γ�AB

a
κ1Aκ1BFAFB (3.2)

I2 � κ2AFA � κ2BFB � κ2CFC � 2γ�AB

a
κ2Aκ2BFAFB (3.3)

I3 � κ3AFA � κ3BFB � κ3CFC � 2γ�AC

a
κ3Aκ3CFAFC (3.4)

I4 � κ4AFA � κ4BFB � κ4CFC � 2γ�AC

a
κ4Aκ4CFAFC (3.5)

I5 � κ5AFA � κ5BFB � κ5CFC � 2γ�BC

a
κ5Bκ5CFBFC (3.6)
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Figure 3.2: Illustration of the signal processing applied to IOTA interferograms: From the intensities recorded on
the IOTA/PICNIC detector (green and blue curve in left-handed column), the photometric information is retrieved
using equation3.11(magenta and grey curve, shown with arbitrary offset). The photometry-correct curves (equa-
tions 3.13 to 3.17) are shown in the column in the middle. The final interferograms (right-handed column) are
obtained using equations3.18to 3.20. The data shown was recorded on the calibrator star HD34137 (H=4.4, for
more details see caption of Figure3.3).
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Figure 3.3: IOTA fringes on the science targetθ1Ori C (H=4.4) and the calibrator star HD34137 (H=4.4), both
recorded on 2005-12-06 (datasets #72 and #140).

I6 � κ6AFA � κ6BFB � κ6CFC � 2γ�BC

a
κ6Bκ6CFBFC (3.7)

whereγ�x pτq andγ�x pτq are the interference patterns of interest (compare with equation2.15).

For a perfect detector, theκ’s corresponding to the telescopes which do not contribute light to a certain

output (e.g.κ1C for I1 in equation3.2) are identical to zero. However, infrared detectors (as HAWAII

or NICMOS) are known to exhibit detector biases; i.e., they have the property that the pixels on the

detector are not completely independent. Let us consider the case that the signals on two pixels X and

Y (located in different corners on the detector) are read, with pixel X shuttered out, simply recording

the detector background. Illuminating pixel Y will result in a bias on the background signal measured

on X (the more flux on pixel Y, the stronger the negative bias onpixel X). Assuming that the bias on X

depends linearly on the flux on Y, this bias can be taken into account in a natural way with the presented

method. Theκ’s corresponding to these bias terms have the opposite sign than theκ’s for the contributing

telescopes.
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With some arithmetics, the coherence terms (γx) can be cancelled out by adding the outputs from each

beam-combiner pair-wise:���� I1{?κ1Aκ1B � I2{?κ2Aκ2B

I3{?κ3Aκ3C � I4{?κ4Aκ4C

I5{?κ5Bκ5C � I6{?κ6Bκ6C

�ÆÆ� M ����� FA

FB

FC

�ÆÆ (3.8)

I � M � F (3.9)

with

M � ����� b
κ1A
κ1B
� b

κ2A
κ2B

b
κ1B
κ1A
� b

κ2B
κ2A

κ1C?
κ1Aκ1B

� κ2C?
κ2Aκ2Bb

κ3A

κ3C
� b

κ4A
κ4C

κ3B?
κ3Aκ3C

� κ4B?
κ4Aκ4C

b
κ3C

κ3A
� b

κ4C

κ4A

κ5A?
κ5Bκ5C

� κ6A?
κ6Bκ6C

b
κ5B
κ5C

� b
κ6B
κ6C

b
κ5C
κ5B

� b
κ6C
κ6B

�ÆÆÆ. (3.10)

The diagonal terms inM (upper right to lower left) correspond to the detector bias terms; i.e., for a

perfect detector, these terms are identical zero. The photometry can be obtained by performing a matrix

inversion:

F � M�1 � I ���� FA

FB

FC

�ÆÆ� M�1 ����� I1{?κ1Aκ1B � I2{?κ2Aκ2B

I3{?κ3Aκ3C � I4{?κ4Aκ4C

I5{?κ5Bκ5C � I6{?κ6Bκ6C

�ÆÆ (3.11)

Using the obtained photometric information, the interferograms can be corrected for photometric fluc-

tuations:

γ�AB � I1 � κ1AFA � κ1BFB � κ1BFC

2
?
κ1Aκ1BFAFB

(3.12)

γ�AB � I2 � κ2AFA � κ2BFB � κ2BFC

2
?
κ2Aκ2BFAFB

(3.13)

γ�AC � I3 � κ3AFA � κ3BFB � κ3CFC

2
?
κ3Aκ3CFAFC

(3.14)

γ�AC � I4 � κ4AFA � κ4BFB � κ4CFC

2
?
κ4Aκ4CFAFC

(3.15)

γ�BC � I5 � κ5AFA � κ5BFB � κ5CFC

2
?
κ5Bκ5CFBFC

(3.16)

γ�BC � I6 � κ6AFA � κ6BFB � κ6CFC

2
?
κ6Bκ6CFBFC

(3.17)
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Figure 3.4: The wavelet spectral density power
spectra shown in the bottom panels are cal-
culated from the corresponding raw interfero-
grams. On the ordinate of the CWT plots, the
scale quantity is given, which is equivalent to
the period and inversely proportional to the fre-
quency of the corresponding rescaled wavelet.
The contours demonstrate how our departition-
ing algorithm removes regions not connected to
the area with the highest peak and separates the
fringe peak from the piston and resonances for
the visibility estimation.

Remaining photometric fluctuations can be removed by subtracting the two channels, yielding the

final interferograms for the three baselines:

γAB � γ�AB� γ�AB

2
(3.18)

γAC � γ�AC � γ�AC

2
(3.19)

γBC � γ�BC � γ�BC

2
. (3.20)

3.3.1 Extracting the visibility using the Continous Wavele t Transform

The methods which have been proposed to extract the visibility from OPD-modulated interferograms,

such as those recorded by IOTA, can be mainly subdivided intothose which measure the fringe am-

plitude in the time-domain (i.e. by fitting an analytic function to γpτq) or in the frequency domain (i.e.

by measuring the fringe power in the power spectrumP � |γ̃pτq|2). An important advantage of the

frequency-domain approach is that the power-spectra of an arbitrary number of interferograms can be

averaged, even if the fringe packet moves due to the influenceof atmospheric piston. In the averaged

power-spectrum, the fringe power can be easily obtained by integrating the power over the fringe peak

to estimate the fringe amplitude (squared visibility,V2).

Recently, another approach to obtain the visibility was identified, making use of the continuous

wavelet transform (Ségransan et al. 2003; Kraus 2003; Kervella et al. 2004c; Kraus et al. 2005b). In

contrast to the Fourier Transform (FT, which measures the signal against periodic, non-localized cosine

waves), the CWT decomposes the signal into a localizedmother waveletfunctionψpτq (Torrence &

Compo 1998). For the decomposition, a mother wavelet is used which roughly resembles the analytic

fringe function, such as the Morlet wavelet (which is given by a cosine wave modulated with a Gaussian
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envelope,k0 is the wavenumber)

ψpηq � π�1{4eik0η�η2{2. (3.21)

Then the CWTWpτ, sq and the wavelet spectral density power spectrumPWpτ, sq are defined as

Wpτ, sq :� 1?
s

8»�8 Iredptqψ� �τ� t
s



dt (3.22)

PWpτ, sq :� |Wpτ, sq|2, (3.23)

where thescale sis equivalent to the period and inversely proportional to the frequency of the corre-

sponding rescaled mother wavelet. For the computation of the CWT, we used the algorithm described

by Torrence & Compo1.

In contrast to the power spectrum fitting approach, the CWT has the advantage that the information

about the position of the fringe in the OPD is conserved, which can be used to effectively separate the

fringe from underlying non-localized signals (e.g. noise). In our original implementation of the CWT

algorithm (Kraus 2003; Kraus et al. 2005b), we used the integral over the fringe peak inPWpτ, sq as

visibility estimator, which was very efficient in removing contributions from disturbing resonances in

the IOTA interferograms of very bright objects such as Capella (H=-1.6). However, when we started

working on interferograms for the significantly fainter objectsθ1Ori C and D (H=4.6 andH=5.9), we

found this original algorithm unsuitable, as the fringe signal in the CWT of an individual interferogram

is too noisy.

Therefore, we had to implement a modified CWT algorithm, which combines the advantages of the

CWT with the major advantages of the power spectrum fitting algorithm; namely that the fringe signal

can be constructively built up by averaging. We apply a method similar to the procedure presented

by Kervella et al.(2004c). First, the fringe peak is localized in the CWT. In order to minimize noise

contributions, a small window around the fringe peak position is cut out. Then, we integrate along

the OPD axis, yielding a power spectrum. After recentering the fringe peak position for each scan (to

compensate frequency changes induced by atmospheric piston), we average the power spectra for all

scans within a dataset. In the resulting averaged power spectrum, we fit and remove the background

contributions and integrate over the fringe power to obtainan estimate forV2.

In order to use only high-quality interferograms for the visibility computation, we apply the following

selection criteria:

• We reject the leading ten scans from each dataset, as these scans are degenerated by electronic

noise.

1The algorithm by Torrence & Compo allows to compute the wavelet transform efficiently using Fast Fourier Transforms (FFTs),
as described on the websitehttp://atoc.colorado.edu/research/wavelets/wavelet3.html
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3.3 Constructing the interferograms

aq Triple Amplitude

bq Bispectrum Phase cq Bispectrum Phase (after selection)

Figure 3.5: Illustration of the bispectrum algorithm used to extract CPs from the IOTA scans. The plot shows
the averaged bispectrum for the HD34137 calibrator datasets mentioned in Figure3.3. For a description of the
algorithm, we refer to the text.

• We reject scans which seem not to contain any fringe signal. For the signal detection we use the

AMES fringe tracker software.

• We reject scans which are strongly affected by atmospheric piston. These scans are identified by

measuring the extension of the fringe packet in the CWT of each scan both along the scale and

the OPD axis.

3.3.2 Extracting the closure phase

Another refinement in our software concerns the CP estimation. In contrast to our earlier approach,

where we used the FT to determine the phase for each interferogram separately (Kraus 2003; Kraus

et al. 2005b), we found that for low-SNR data the best results can be obtained by averaging the bispectra
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θ1Ori C HD34137
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Figure 3.6: After applying the selection process illustrated in Figure3.5, we average the phases of individual
bispectrum elements in the complex plane, yielding the finalaveraged CP (same datasets as in Figure3.3).

from all scans. The bispectrum (equation2.24) is given by the triple product of the FT of the scans

at the three baselines (Hofmann & Weigelt 1993). Figure3.5 shows the average triple amplitude and

bispectrum phase of a representative IOTA dataset comprised of 200 scans. Using the triple amplitude

(Figure3.5a), we identify the bispectrum elements with the highest SNR,for which we select the best

bispectrum phase measurements (b before selection,c after selection). Finally, the bispectrum phases

of the triple-amplitude selected bispectrum elements are averaged in the complex plane to obtain the

average CP.
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Figure 4.1: Mosaic of the VLT/VLTI infrastructure (4 UTs, to the right) with the AMBER instrument, which is
located in the optical laboratory. In the upper left corner,one of reflectors of the VLTI delay lines is shown (Image
Credits: ESO & AMBER consortium).

4.1 Optical Design and Signal Coding

4.1.1 The VLT interferometer and its infrastructure

AMBER (Astronomical Multi-BEam combineR, see Figure4.1, Petrov et al. 2003a, 2006a,b) is the

first-generation near-infrared (J-, H-, K-band) beam-combiner instrument of theVery Large Telescope

Interferometer. The VLTI array (see Figure4.2) comprises four 8.2 m unit telescopes (UTs, arranged in

a half-moon shaped configuration including baseline lengths from 47 to 130 m) and four 1.8 m auxiliary

telescopes (ATs, which can be mounted on 30 differents stations, forming baselines between 8 and

202 m).
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Figure 4.2: Besides the four UTs, the VLTI infrastructure offers four ATs

(Image Credit:Glindemann et al. 2003).

The UTs are equipped with

MACAO adaptive optics systems

(Ivanescu et al. 2004), which op-

timize the Strehl ratio. Each

beam is redirected into a VLTI

delay line, where the OPD dif-

ference between the telescopes is

compensated (providing an accu-

racy of 0.05µm over a length of

120 m). Finally, the beams en-

ter the optical laboratory, where

the atmospherically-induced mo-

tion of the beam is compensated

by the IRIS instrument (Gitton

et al. 2004, operating in theH- or

K-band). Although this beam sta-

bilization increases the flux on AMBER, it cannot compensatethe phase-fluctuations which are imposed

by the atmosphere. The FINITO fringe tracker (Gai et al. 2004), which is currently under commission-

ing, will remove these random phase shifts in the near future, allowing AMBER to use integration times

much longer than the atmospheric coherence time.

4.1.2 The AMBER instrument

The AMBER instrument was built by an international consortium comprising French, Italian, and Ger-

man institutes, and installed on Cerro Paranal in Spring 2004. As the sketch in Figure4.3 shows, the

light from up to three VLTI telescopes is first spatially filtered using single-mode fibers (correspond-

ing to a field-of-view diameter of 65 mas for the UTs and 280 masfor the ATs on the sky). After the

spatial filtering, a beam splitter separates a small fraction of the light from each beam and redirects it

into photometric channels, whereas the main part of the light is combined using the multiaxial beam

combination scheme (see Sect.2.4.2). The three exit pupils are placed in separations of 1:2:3, which

leads to different fringe frequencies in the formed interferogram, making the fringes from the three

baselines clearly distinguishable (although they still slightly overlap in Fourier space). Then, both the

interferometric and the photometric beams are spectrally dispersed using a spectrograph. Three different

dispersive elements can be chosen, resulting in three different spectral modes:

Low-resolution (LR) mode: Using a PRISM, the interferograms are spectrally dispersedwith a res-

olution of R=λ{∆λ=75. The LR mode provides the highest sensitivity, and allowsto cover the

—42—



4.2 AMBER Data Reduction Pipeline

Figure 4.3: Sketch of the AMBER instrument design: The three beams, which enter AMBER are spatially filtered
using single-mode fibers, recombined on the detector plane and then spectrally dispersed using a spectrograph
(Image Credit:Tatulli et al. 2006).

widest spectral range (J-, H-, K-band in one exposure).

Medium-resolution (MR) mode: Using a GRISM withR=1 500, this mode offers a compromise be-

tween moderate sensitivity and sufficient spectral resolution to separate spectral features and to

resolve Doppler-broadened spectral lines typically over afew spectral channels.

High-resolution (HR) mode: With R=12 000 (using a GRISM), this mode allows detailed kinematic

studies in spectral lines, which are resolved over typically a few dozens of spectral channels.

On the AMBER detector, not only the interferometric (IF) andthree photometric channels (P1, P2,

P3; each measuring 32 pixel in spatial direction and an arbitrary number of pixels in spectral direction),

are recorded, but also a narrow dark strip (DK; 20 pixel in spatial direction). The DK records the detector

noise and thermal background. Therefore, only a small fraction of the 512�512 pixels on the HAWAII

detector contains scientific information. To reduce the detector readout time, the AMBER detector

electronics and software allows one to read-out individualsub-windows, which are placed along the

before-mentioned stripes (arranged on the detector in the following order: from left to right DK, P1, P2,

IF, P3). These sub-frames are then stored in FITS data cubes for further processing.

4.2 AMBER Data Reduction Pipeline

AMBER interferograms allow one to extract a large number of observables, including the spatially-

filtered object spectrum, visibilities, differential visibilities (DV), differential phases (DP), and CPs. To

extract these observables, the AMBER consortium has developed the software libraryamdlib, which

employes thePixel-to-Visibility-Matrix (P2VM) algorithm. This algorithm, somewhat similar to the

ABCD method (Colavita 1999), fits the three fringe systems in the interferogram in imagespace (Tatulli
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et al. 2006). For each spectral channel, the complex visibilities and squared visibilities are computed

and then stored in the OI-FITS data format. Consortium members have also developed an interactive

user-interface based on the real-time interpreter languageyorick, calledammyorick, which can be used

to remove the influence of wavelength-dependent piston, yielding differential observables (Millour et al.

2006). Besides the science files (containing the interferogramsand the recorded photometry), ten cali-

bration files (P2VM files), a sky file, a bad pixel mask (BPM), and a flat-field mask are needed as input

for this software.

In the course of my PhD, I have developed complementary software, which uses these existing soft-

ware packages (namelyamdlib to extract complex visibilities andammyorickto obtain the differential

observables) and processes and manages the data in a pipeline. Besides a high efficiency in reducing

large amounts of data, this approach allows us to study the influence of the various free data reduction

parameters on the final averaged observables. Such parameter studies are important to identify the opti-

mal parameter sets for data reduction, and also to trace downdata reduction artefacts. The AMBER data

reduction pipeline also performs the averaging and calibration of the derived observables and produces

summary plots. The pipeline (consisting of C programs, which are embedded in C bourne shell scripts)

is complemented by tools which allow, for instance, to generate mosaic plots from the raw data (such as

shown in this chapter), or to bin several spectral channels of the raw interferograms.

In the following sections, I discuss some procedures and present some studies related to AMBER

data reduction, namely on data selection (Sect.4.4) and on the dependence of the results on the BPM

(Sect.4.6). For all studies shown here, we used amdlib 2.4/ammyorick 0.56 for data reduction of LR

data, and amdlib 2.19/ammyorick 0.59 for MR data. These software packages are available from the

websitehttp://amber.obs.ujf-grenoble.fr.

4.3 Determining Wavelength Shifts

As the photometric and interferometric channels of AMBER pass different optical components, the

spectral channels are often shifted with respect to each other by a few pixels (see Figure4.4, left column).

In case the flux in adjacent spectral channels changes significantly (as in the wings of spectral lines or

in atmospheric telluric features), such shifts could introduce strong artefacts in the derived visibilities

and phases. Therefore, these shifts have to be determined accurately. Although at Paranal a software is

estimating these shifts automatically, we found that a careful refinement can significantly improve the

obtained results. Furthermore, during the early operationof AMBER, the before-mentioned software

was not operational, so that we wrote independent software which extracts the spectra from the AMBER

raw data, and computes the autocorrelation of the extractedspectra in order to determine the optimal

shift value (see Figure4.4, right column).
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a) LR data on MWC 147
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b) MR data onη Carinae (He I line)
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Figure 4.4: Left: The spectra from the photometric and interferometric channels of AMBER are typically
shifted by a few spectral channels.Right: Computing the autocorrelation of the spectra, we determinethe optimal
recentered position. In order to reach sub-pixel accuracy,we perform a spline-interpolation of the extracted spectra.

—45—



Chapter 4 The VLTI/AMBER Interferometer

4.4 Data Selection

In Spring 2004, the first on-sky observations with AMBER haveshown that the quality of the AMBER

interferograms is limited by the influence of high-frequency jitter, which is imposed on the telescope

beams by some components in the VLTI infrastructure. This jitter degenerates the fringe contrast and

systematically biases the derived interferometric observables. As the technical and engineering work,

which aims to eliminate this disturbing effect, is ongoing, the problem has currently to be faced at the

data reduction stage. For example, one can carefully selectthose interferograms which are least affected

by the influence of the jitter. We perform a four-stage data selection procedure, which incorporates the

following steps:

1.) The leading ten frames of each data set are typically degenerated by electronic noise. Therefore,

these frames are rejected.

2.) Frame selection based on the photometry, where we set thresholdsa) on the flux collected by each

telescope, andb) on the flux balance between the beams contributing to a certain baseline.

3.) Frame selection based on fringe SNR.

4.) Frame selection based on piston.

In the following sections, we describe the selection steps 2.) to 4.) in more detail and illustrate them

using real science raw data from our projects on MWC 147 (LR data,K � 5.7,K-band) and onηCarinae

(MR data,K � 0.2, Brγ line). We refer to chapters Chapters6 and9 for more details on these data sets

and on the extracted observables.

4.4.1 Photometric selection

In order to obtain a clear interference pattern on a baselineformed by telescopesi and j, a sufficient

number of photons from both telescopes (corresponding to intensitiesI i , I j) must enter the fibers and

reach the detector. Furthermore, equation2.15shows that high-quality interferograms also require that

the flux ratio between the telescopes is rather balanced, i.e. that the beams from both telescopes have to

be roughly equally bright.

If for a certain interferogram one of these conditions is notsatisfied, we reject this interferogram from

the further processing. Rejecting this scan (which cannot contain real fringes) seems advisable, since

detector fringes1 (which are spurious time-variable fringe patterns appearing randomly on the AMBER

detector) could confuse theamdlibfringe fitting results.

1see also the discussion by Gianluca Li Causi at the websitehttp://www.mporzio.astro.it/˜licausi/ADC/
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4.4 Data Selection

Photometric selection (for BL12)

LR data
a) Accepted frames b) Rejected frames

MR data
a) Accepted frames b) Rejected frames

Figure 4.5: Mosaic of AMBER raw data (FileAMBER.2006-02-20T03:21:24.572.fits), sorted by the photo-
metric contrast (best frames top left, worst frames bottom right, here selected for baseline BL12). Each AMBER
raw data set comprises an image of the interferometric channel (IF, left), and three photometric channels (2nd from
left: P1 (corresponding to the baseline B12, combining telescope #1 and #2), 3rd from left: P2 (B23), 4th from left:
P3 (B31). Whereasa) shows frames which passed the chosen photometric criteria,b) shows the frames which were
rejected from further processing.
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For LR-interferograms of MWC 147, we defined the following criteria (where the intensities are inte-

grated over all spectral and spatial channels and background-subtracted using a sky file; the background

flux Ibg is measured in the DK):

I1{Ibg ¥ 1.5 (4.1)

I2{Ibg ¥ 1.5 (4.2)

I1{I2 ¤ 10 (4.3)

I2{I1 ¤ 10 (4.4)

4.4.2 Fringe SNR selection

In the P2VM algorithm, a fringe contrast quality criterium can be defined (see equation 20 inTatulli

et al. 2006). Therefore, it seems a reasonable approach to use this fringe SNR as a criterium to select

those interferograms which are least degenerated by jitter. However, one has to keep in mind that any

criterium which judges the quality of the fringe pattern itself could lead to systematic biases in the

derived fringe contrast (visibility). Especially, if the correlated flux (i.e. either the brightness or the

intrinsic visibility) between the target and the calibrator star is different, a fringe SNR selection could

lead to biases in the absolute calibration. Therefore, we donot select the best interferograms for the

target and the calibrator based on a fixed fringe SNR threshold, but keep a fixed fraction (typically 30%)

of all recorded interferograms. Ideally, above a certain fractional threshold, one reaches a convergence-

like behaviour in the derived visibility, as can be seen in Figure4.7.

We select the frames for each baseline separately and determine the best frames not with respect to

single data files, but relative to the whole data set (taking all files on a particular object and in a particular

instrument mode into account).

4.4.3 Piston selection

Wavelength-dependent piston causes the fringe pattern to “tilt” with respect to the wavelength-axis. If

the piston reaches the order of the coherence length, this effect can significantly degenerate the fringe

contrast and thus bias the derived absolute visibility as well as the wavelength-dependent differential

visibility. Of course, the importance of this effect correlates with the width of the recorded spectral

window, i.e. for observations in the HR and MR mode the influence of piston can generally be neglected,

while it must be clearly taken into account for LR mode observations.

In a first approach we select those frames for which the piston(as determined byamdlib), is less

than 0.5 times the coherence lengthλ2{∆λ. We found that this significantly improves the data reduction

results for LR data. Future investigations could also attempt to model the bias induced by piston and
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Fringe SNR selection

LR data
a) Accepted frames b) Rejected frames

MR data
a) Accepted frames b) Rejected frames

Figure 4.6: Similar as Figure4.5, but showing some of the AMBER raw frames selected/rejected by the fringe
SNR criterium.
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a) V2 vs. SNR b) V2 distribution
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Figure 4.7: a) The squared raw visibility is plotted against the fringe SNRcriterium for five data sets taken during
the AT commissioning run on 2006-07-16 on the star HD 216763.Fringes with low SNR show a systematically
lower visibility, as expected if these interferograms are degenerated by jitter. The vertical lines depict the selection
thresholds for the best 30%, 10%, and 5% of all interferograms (from left to right). Under good conditions, above
a certain selection threshold, one reaches a convergence-like behaviour.b) This histogram shows the distribution of
the derivedV2 values. With increasing selection, the distribution ofV2 values becomes more Gaussian-like, defining
a clear mean value. This can be seen, for instance, by comparing the red curve (corresponding to no selection) with
the magenta curve (corresponding to 5% selection).

correct it to some extend in the course of data processing.

4.5 Data Averaging and Calibration

Following the data selection, we useamdlib to extract visibilities and CPs from the pre-selected AM-

BER raw data files. Theamdlib software bins an arbitrary number of interferograms to extract these

observables (Tatulli et al. 2006) and stores the results in OI-FITS files. Then we apply weighted aver-

aging in order to obtain mean visibilities and CPs includingstatistical errors for each spectral channel.

The CPs are averaged in the complex plane, similar to the method described in Section3.3.2.

The same procedure is applied to the target and to the calibrator measurement. Finally, before dividing

the target visibilities through the calibrator visibilities, we correct for the calibrator UD diameter (using

equation2.30).

4.6 Investigating the Dependence of AMBER Results on the

Bad Pixel Mask

In the course of our work on AMBER data reduction, we noticed that the use of certain BPMs might

introduce significant artefacts in the derived observables. The first artefacts we noticed appeared within
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Piston selection

LR data
a) Accepted frames b) Rejected frames

MR data
a) Accepted frames b) Rejected frames

Figure 4.8: Similar as Figure4.5, but showing some of the AMBER raw frames selected/rejected by the piston
SNR criterium.
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a) AMBER BPM fuzzy img.fits b) bpm-normal.fits
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Figure 4.9: Upper row: The current default BPM (AMBER BPM fuzzy img.fits, left column) and the new BPM
(bpm-normal.fits, right column) superposed as red spots on theη Carinae MR data set, averaged over all frames
(from left to right: IF, P1, P2, P3, DK; same data set as shown in Figures4.5 to 4.8). Middle and Lower row:
Visibilities and CPs derived from the same data set. Within the Brγ line, a strong CP signal appears. For the CP we
show one processing without any selection (red curve) and with a selection of the 30% best frames (blue curve).
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the CP signal derived from AMBER-GTO medium resolution data, acquired onη Carinae during the

night 2004-12-26. Using the data reduction pipeline, we derived an average CP signal of� �140�
within the blue-shifted wing of the Brγ line. With a data selection of 30% (based on the fringe SNR),

this value dropped to� �100� (see Figure4.9a).

To investigate the influence of the BPM on the obtained results, our software engineer Matthias

Heiniger generated three new BPMs from detector calibration data taken during the AMBER com-

missioning run #2 (for a description of our criteria for bad pixel identification, we refer toKraus et al.

2005a). Using these new BPMs (one of which, namelybpm-normal.fits, is shown in Figure4.9),

we re-reduced theη Carinae data and compared the results to the results obtained using the current

default BPM-fileAMBER BPM fuzzy img.fits. Whereas the derived visibility seems to depend only

marginally on the BPM file used (variance  0.03 for the calibrated visibility), we obtained a signifi-

cantly different result for the CP within the Brγ line (Φ   40�). This value is more consistent with the

CP signal derived from AMBER-data taken during the GTO run inFebruary (Φ   40�) with a similar

instrumental setup and baseline configuration (see Chapter9).

Therefore we recommend to usebpm-normal.fits as a new default BPM. In addition, it seems

advisable to check for the consistency of the obtained data reduction results using several BPMs and to

update the BPM on a regular basis, e.g. every six months.
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5 Image Reconstruction Algorithms

Summarizing results which appeared in an AJ article and two SPIE articles:

Kraus, S., Schloerb, F. P., Traub, W. A., et al., AJ 130, 246 (2005)

Hofmann, K.-H., Kraus, S., Lopez, B., et al., Proc. of SPIE 6268, 88 (2006)

Lawson, P. R., Cotton, W., Hummel, C. A., et al., Proc. of SPIE6268, 59 (2006)

5.1 Overview and Context

Extracting scientific results from interferometric observables is, in general, not a trivial task. Most

commonly, the interpretation of optical interferometric data consists of fitting analytic profiles (such

as those presented in Sect.2.5) to the measured visibilities and CPs. However, this model fitting ap-

proach requires a-priori knowledge about the source structure, and might therefore be not applicable

(if insufficient is known about the source), or lead to biased results (if we have a wrong idea about

the source structure). Therefore, it is highly desirable toobtain model-independent aperture synthesis

images. Such imaging capabilities will also be of special importance for the upcoming generation of

groundbased (such as VLTI/MATISSE or VLTI/VSI) and space interferometers (such as DARWIN or

TPF-I).

In principle, the van-Cittert-Zernike theorem (equation2.29) can be inverted (by applying an inverse

Fourier transform) to re-obtain the source brightness distribution on the sky. However, this approach

would require a complete sampling of theuv-plane, in contrast to the very limited coverage achievable

with the current optical interferometric arrays. Furthermore, from the ground only CPs can be measured

due to the atmospherically induced phase variations, whichmakes aperture synthesis imaging of phase-

instable interferometers a highly non-linear problem. Thus, sophisticated algorithms are required to

retrieve the lost phase information.

The radio astronomy community has developed various strategies, which seem suitable for this task,

including the conventionalHybrid Mapping(CHM; Cornwell & Wilkinson 1981) and theDifference

Mapping(DFM; Pearson et al. 1994) algorithm. In both algorithms, the individual phases are recovered
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from the measured CP by self-calibration (Pearson & Readhead 1984). The necessary deconvolutions

can be performed with the CLEAN algorithm (Högbom 1974). However, there are indications that these

algorithms, which were developed and optimized for interferometric imaging at radio wavelength (i.e.

using relatively large arrays such as the VLA withN � 27 and suffering typically only from marginal

phase-instabilities) do not optimally meet the requirements for imaging with optical interferometers,

which typically employN � 3 telescopes and suffer from a complete loss of the Fourier phases.

Therefore it is important to develop image reconstruction algorithms, which are optimized for the

conditions provided by optical interferometry and to test and refine these algorithms using simulated

and observational data.

Hofmann & Weigelthad presented in 1993 an algorithm, which was originally developed to recon-

struct images from bispectrum speckle data, but which seemsalso very promising for application to

long-baseline interferometric data. When starting my PhD work, Karl-Heinz Hofmann provided Fortran

code fragments of this algorithm, which I incorporated intoa new C software. In close collaboration

with Karl-Heinz Hofmann, both the Fortran and C software wasrefined and used for independent studies

on simulated datasets (MATISSE: Sect.5.3; IAU Imaging Beauty Contest 2006: Sect.5.4) and observa-

tional interferometric data (Capella: Sect.5.2; θ1Ori C: Sect.8). All image reconstruction shown here

were obtained with my C software implementation.
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5.2 Reconstruction of Simple Binary Structure

5.2 Reconstruction of Simple Binary Structure

In the context of my Master thesis work (Kraus 2003), I have implemented the CHM and DFM algo-

rithms and applied them to IOTA measurements on the bright binary star Capella. We applied the BBM

algorithm to the same dataset in order to compare the qualityof the resulting images.

The data set was taken within five nights of IOTA/IONIC3 observations (2002 November 12–16) in

two array configurations (2002 Nov 12–14: A35, B15, C0; 2002 Nov 15–16: A15, B15, C0) on the

bright (H=-1.6),� 44 mas separation binary Capella. The Capella system (d � 12.94� 0.15 pc)

consists of a G8 III and a G1 III giant, which makes the stellarsurfaces (ΘAa � 8.9� 0.6 mas,ΘAb �
5.8� 0.8 mas) of the binary components marginally resolvable.

Due to the period ofP � 104.022 days (Hummel et al. 1994), the PA of the binary pair changed by� 14� over the five successive nights covered by our observations.In order to combine the data from

the five nights (yielding a betteruv-coverage) for our comparative study of the CHM, DFM, and BBM

image reconstruction algorithms, we applied a rotation-compensating coordinate transformation (Kraus

et al. 2005b). The resultinguv-coverage is shown in Figure5.1a. When applying our image recon-

struction software, we obtained with identical initial conditions the aperture synthesis images shown in

Figure5.1b. All three algorithms successfully reobtained the binary structure of the brightness distribu-

tion, although the intensity ratioIAa{IAb measured within the maps (CHM: 1.9; DFM: 1.6; BBM: 1.8)

slightly deviates from the intensity ratio obtained by model fitting (1.49�0.10). For the stellar diameter,

we measured within the unconvolved BBM mapΘmap
Aa � 8.3�1.6 mas andΘmap

Ab � 6.8�1.2 mas, which

is in good agreement with the fitting results given above (forthe other maps we did not extract the stellar

diameters, as these algorithms do provide only convolved maps). The noise features and artefacts are

similarly strong in all maps (� 5%). Therefore we conclude that for this dataset the three algorithms

performed equally well.

In order to test the performance on a even pooreruv-coverage, we subdivided the data set into three

subsets (2002Nov 12-13, 2002 Nov 14, 2002 Nov 15-16). Since we observed during the first two epochs

with the telescope configuration including the longest baseline (and hereby missing lower frequencies),

the convergence of the maps had to be supported by limiting the reconstruction area. We attempted to

reconstruct images with all three algorithms, but succedded only with the BBM algorithm to reconstruct

maps from this very pooruv-coverage. The resulting maps (Figure5.2) make the orbital motion of the

Capella giants over the five successive nights clearly perceivable. Also the intensity of the stars (from

left to right: IAa{IAb � 1.6, 1.7, 1.6) could be estimated reliably.
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aq uv-coverage

Figure 5.1: Aperture synthesis maps of Capella gener-
ated with IOTA data from 2002 Nov 12-16. Maps gen-
erated with the CHM (top), DFM (middle), and BBM
(bottom) algorithm are shown. Each map shows the
surface brightness plotted with 5% interval contours
(scaled to the peak intensity) and the beam (5.4� 2.6
mas) depicted in the upper-left corner. To compensate
for the motion of the stars over the observed interval
(� 14�), theuv-plane was moved synchronously to the
orbital motion. The maps are oriented north up, east
left.

bq Reconstructed Images
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20 0 -20 20 0 -20 20 0 -20

10 0 -10 10 0 -10 10 0 -10

Figure 5.2: Image reconstructions from subsets of our complete data setrevealing the orbital motion of the stars
between three epochs. To compensate the marginal orbital motion within the subsets, theuv-plane was rotated
synchronously to the reference position of the components at the intermediary modified julian dates MJD=91.437,
93.907 and 94.262 (MJD=JD�2452500). The crosses within the maps indicate the “centersof light” of the stars
within the other images. Whereas the positions fit the expectations accurately (¤ 1 mas), the intensity ratio between
the two stars was not always obtained properly due to the poorsampling (the coverage is shown below each map).
The contours show 10% intervals scaled to the peak.
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5.3 Reconstruction of Complex Structure
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Figure 5.3: uv-coverage of the data set simulated in

the course of the MATISSE image reconstruction study

(3 nights with 4 ATs). For eachuv-point, visibitilies

and closure phases for only one spectral channel (at

10.5 µm) were simulated.

In a second image reconstruction experiment,

which was performed in the context of a study for

the VLTI second-generation instrument MATISSE

(Lopez et al. 2006; Lagarde et al. 2006), we recon-

structed aperture synthesis images from simulated

data. The simulations were designed to demon-

strate that the 4-beam combiner MATISSE will al-

low interferometric imaging within realistic obser-

vation time constraints.

The input data was provided by our collabora-

tors at the MPIA in Heidelberg (in particular Frank

Przygodda and Sebastian Wolf). As input image,

a protostellar disk around a T Tauri star (M �
0.5 Md) was simulated. Using the radiative trans-

fer code MC3D (Wolf 2003), our collaborators gen-

erated a 10.5µm image of such a disk as seen under

an inclination of 60�, assuming a distance of 140 pc

and an inner disk radius of 4 AU. Visibilities and

CPs were computed, assuming observations on 3 nights with 4 ATs (9 hours of observation each night,

one measurement per hour, telescopes mounted on the stations B5-G1-J3-D0, B5-B1-K0-D1, G2-A0-

J2-J6; see Figure5.3).

From these data sets, we generated aperture synthesis images using the CHM and the BBM algorithm.

To test the algorithms also in presence of noise and to distinguish limitations on the image quality due to

theuv-coverage from limitations due to the SNR, we reconstructedimages from data with and without

noise.

Comparing the reconstructed images with the input image (see Figure5.4), we find that in the absence

of noise, both algorithms succeed in reconstructing the basic structure, although the CHM image shows

significantly stronger artefacts. When introducing 5% noise, our implementation of the CHM algorithm

can barely recover the ring-like morphology, whereas the disk is still clearly perceptible in the BBM

image.
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bq Reconstructed Images BBM
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Figure 5.4: In the context of our image reconstruction study for the MATISSE instrument, we reconstructed images from a data set corresponding to just
3 nights of observations with 4 telescopes (see Figure5.3 for the correspondinguv-coverage). Besides a data set without noise (middle column), we used
a data set to which 5% noise was added (right column). The leftcolumn shows the input image, depicting a low-mass protostellar disk. Both the CHM
algorithm (upper row) and the BBM algorithm (lower row) wereused for this experiment.
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5.4 Reconstruction of Complex, Extended Structure: The IAU

Imaging Beauty Contest 2006
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Figure 5.5: uv-coverage of the data set of the IAU

Imaging Beauty Contest 2006. For eachuv-point, J-,

H-, andK-band visibilities and CPs were provided.

In order to stimulate the development and refine-

ment of image reconstruction algorithms, members

of the IAU Working Group on Optical/IR Interfer-

ometry have initiated a contest, in which the perfor-

mance of image reconstruction algorithms is eval-

uated in a blind test. Up to now, two of these “In-

terferometry Imaging Beauty Contests” have been

organized, namely in 2004 (Lawson et al. 2004) and

2006 (Lawson et al. 2006).

In the 2006 contest, five groups participated us-

ing the following algorithms: BSMEM (Fabien

Baron, John Young), MACIM (Markov Chain Im-

ager; Michael Ireland), MIRA (Eric Thiebaut),

Recursive Phase Reconstruction (Sridharan Ren-

gaswarmy), and BBM (Building Block Mapping;

Stefan Kraus, Karl-Heinz Hofmann, Gerd Weigelt).

The contest data set consisted of simulated visibilities and CPs, generated by Christian Hummel using

a model image of an optically thin circumstellar disk (provided by Olivier Chesneau). The data set,

which was delivered to the contestants without informationabout the physical nature or structure of the

source, was rather challenging due to the simulated pooruv-coverage (corresponding to four nights of

observations with VLTI/AMBER in the LR-JHK mode on the UTs, see Figure5.5) and also due to the

simulated low (allV2 ¤ 8%) and noisy visibility data.

The organizers judged the quality of the images submitted bythe various groups by convolving them

to the same resolution. Following a normalization of the intensity, the RMS between the model and the

reconstructed image was computed taking all intensities inside a rectangular area into account (boxes

marked in Figure5.6). As can be seen in Figure5.6, four of the five algorithm successfully reconstructed

the basic source geometry inspite of the challenging conditions. Based on the RMS measure, the quality

of the entries was ranked as follows: BSMEM (RMS=90.5), MIRA (RMS=97.2), BBM (RMS=109.1),

MACIM (RMS=114.7), and Recursive Phase Reconstruction (RMS=885.73).

—62—



5.4 Reconstruction of Complex, Extended Structure: The IAU Imaging Beauty Contest 2006

aq Input Image bq BSMEM

cq BBM dq MACIM

eq MIRA f q Recursive Phase Reconstruction

Figure 5.6: For the IAU imaging beauty contest 2006, a image of a optically thin disk had to be reconstructed
(Figurea). Figuresb to f depict the entry images by the contestants. Whereas the contours show the brightness
distribution, the greyscale shows the residuals relative to the original image (Image Credit:Lawson et al. 2006).
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5.5 Conclusions

From the studies presented in this chapter, we conclude thatmodel-independent aperture synthesis imag-

ing is coming in reach of optical interferometry:

• Our comparative study using observational data of Capella (Section5.2), has demonstrated that

simple source geometries, such as binary stars, allow the reconstruction of real images already

with very sparseuv-coverage. In this case, the quality of the reconstruction did not depend

strongly on the algorithm used (CHM, DFM, BBM), although forvery poor coverage (corre-

sponding to observations on only one 3-telescope configuration) we succeeded only using the

BBM algorithm and assuming a restricted reconstruction area.

• Our work on simulated data in the context of the MATISSE studyshowed that with a reasonable

amount of observing time (3 nights with 4 ATs), also complex,astrophysical highly relevant

objects such as protoplanetary disks, can be mapped with optical interferometers. Especially in

the presence of noise (5%), the maps obtained with the BBM algorithm showed a significantly

higher quality than the CHM results.

• For the IAU Interferometry Imaging Beauty Contest 2006, we have contributed aperture synthesis

reconstructions obtained with the BBM algorithm. The contest has demonstrated that already

several sophisticated algorithms are available, which candeal even with very challenging data

sets, corresponding to only 4 nights with 3 UTs, and resembling objects with extended structure.

Comparing our image with the aperture synthesis images contributed by other groups, the quality

of our reconstruction was ranked as #3 out of 5.
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6 Radiative Transfer Modeling of the Active

Accretion Disk around MWC 147

Based on an article to be submitted to ApJ.

Kraus, S., Preibisch, Th., Ohnaka, K.

6.1 Overview and Context

For Herbig AeBe stars, several indications for their pre-main-sequence evolutionary stage have been

found. Perhaps most characteristic is their strong near- tofar-infrared excess emission, which is gen-

erally interpreted as the presence of substantial quantities of gas and dust; the residual material from

their formation. These stars were also found to possess lineemission, e.g. from hydrogen or helium,

maybe tracing ongoing accretion from the circumstellar disk onto the star via magnetospheric accretion

columns.

While it is well established that circumstellar dust is responsible for the IR excess emission charac-

teristic for an HAeBe star, the three-dimensional distribution of this material is still being debated. By

modeling the spectral energy distribution (SED), various authors attempted to constrain the distribution

of the circumstellar matter; assuming as different geometries as optically thick accretion disks (e.g.Hil-

lenbrand et al. 1992), optically thin spherical envelopes (Miroshnichenko et al. 1997), envelopes with

bipolar outflow cavities (Hartmann et al. 1993), or combinations of disk and halo geometries (Vinković

et al. 2006). However, as demonstrated byMen’shchikov & Henning(1997) and others, these SED

model fits are highly ambiguous, and only the combination of SED modeling with high-resolution imag-

ing can provide crucial constraints on the real geometry of the circumstellar matter.

In recent years, first near-infrared (NIR) interferometricstudies on Herbig AeBe stars could make

important contributions for a better understanding of the structure of the circumstellar material around

these stars. For instance, a survey performed byMillan-Gabet et al.(2001) with the IOTA interferometer

provided the surprising result that the NIR emission is bestdescribed by ring-like or spherical geometries
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Figure 6.1: Size-Luminosity relation for Herbig AeBe stars (Figure adopted fromMillan-Gabet et al. 2007),
containing continuum long-baseline interferometric observations from various interferometers. While the measured
sizes for most T Tauri and Herbig Ae stars seem to follow the dust sublimation radiusRsubl corresponding to
sublimation temperatures between 1000 and 1500 K (dotted line), some Herbig Be stars (including MWC 147,
marked as cross) show significantly smaller diameters.Monnier & Millan-Gabet(2002) interpreted this trend with
the presence of optically-thick gas shielding the dust at the inner rim and causing the measured sizes to shrink.

rather than with the “classical” optically thick, geometrically thin accretion disk models (e.g.Lynden-

Bell & Pringle 1974; Hillenbrand et al. 1992; Chiang & Goldreich 1997). This observational result

also stimulated theoretical work, especially for passive irradiated circumstellar disks; e.g. byNatta et al.

(2001), Dullemond et al.(2001), and Isella & Natta(2005). These models reproduce the ring-like

morphology by introducing pronounced, hot dust emission atthe inner rim of the circumstellar disk.

Monnier & Millan-Gabet(2002) found a correlation between the NIR size and the stellar luminosity,

suggesting that the NIR continuum emission mainly traces hot dust at the inner sublimation radius,

missing any shielding by optically thick gas inside of the sublimation radius. However, for the most

luminous Herbig Be stars, deviations from the simpleR9 L1{2 size-luminosity relation were found (see

Fig. 6.1) with measured sizes smaller than expected from the stellarluminosity. Monnier & Millan-

Gabetspeculated that for these hot stars, the inner rim might be located closer to the star due to the

presence of an inner gaseous disk, which shields the dust disk from the stellar radiation.

In order to resolve this puzzle, we studied the particularlyluminous Herbig Be star MWC 147. The
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6.1 Overview and Context

spectral type of B6 (corresponding to a stellar mass of� 6.6 Md) places MWC 147 at the upper end

of the mass-range covered by the Herbig Be class. By combining, for the first time, near- and mid-

infrared long-baseline interferometric observations on one Herbig AeBe star, we probe different dust

temperatures and regions within the putative accretion disk. We have obtained spectro-interferometric

observations of MWC 147 with the VLTI instruments MIDI (N-band) and AMBER (K-band) and com-

plement our data sets with archival PTI NIR broadband interferometry. The emission from MWC 147

is clearly resolved and has a characteristic physical size of � 1.3 AU and� 9 AU (Gauss FWHM for

d � 800 pc) at wavelengths of 2.2 µm and 11µm, respectively. The spectrally dispersed AMBER

and MIDI interferograms both reveal a strong increase of thecharacteristic size towards longer wave-

lengths, much steeper than predicted by analytic disk models assuming power-law radial temperature

distributions.

To derive constraints on the geometrical distribution of the dust, we compare our interferometric

measurements to 2-D, frequency-dependent radiation transfer simulations of circumstellar disks and

envelopes. These models take the SED from the optical to the far-infrared into account and are also

constrained by complementary archival spectra from IRS onboard theSpitzerSpace Telescope. We

consider Keplerian disk models with and without a puffed-up inner rim. The shape of the rim is refined

iteratively by our radiative transfer code, taking the density-dependence of the sublimation temperature

into account. We also consider accretion luminosity from a gaseous disk inside the dust sublimation

zone as a potential contributor to the continuum emission.

We find that radiative transfer models of passive irradiateddisks, which match the SED very well,

predict visibilities that are considerably lower than measured. As this corresponds to an overestimation

of the angular size by factors of 4 (at 2.2 µm) and 2 (at 11µm), respectively, such models can be ruled

out. Including the radiation from an inner gaseous accretion disk leads to good agreement between the

model predictions and the observed SED, NIR visibilities, and MIR visibilities.

This project was conducted in close collaboration with Thomas Preibisch, who also wrote the initial

ESO proposals, in which frame the VLTI data was collected. For the radiative transfer modeling, I

applied the Monte Carlo radiative transfer codemcsimmpi written by Keiichi Ohnaka. He also gave

assistance on using the code and introducing accretion luminosity. Besides implementing various new

disk and envelope geometries, I adopted the code to iteratively refine the shape and location of the inner

dust rim. The software was also embedded in a software framework, which allows us to manage a

large number of simulations and which analyses the resulting SEDs and images and fits them to spectro-

interferometric data. Thomas Preibisch gave important feedback in the course of the modeling process

and also commented the A&A paper draft.
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6.2 Introduction

The distribution of the circumstellar material around Herbig Ae/Be (HAeBe) stars, i.e. intermediate-

mass, pre-main sequence stars, is still a matter of debate. Until recently, the spatial scales of the inner

circumstellar environment (a few AU, corresponding to. 0.12) were not accessible to optical and

infrared imaging observations, and conclusions drawn on the spatial distribution of the circumstellar

material were, in most cases, entirely based on the modelingof the spectral energy distribution (SED).

However, fits to the observed SEDs are highly ambiguous. For example, the SEDs of some HAeBes

could be equally well explained with very different models such as geometrically thin disks and spherical

envelopes (Hillenbrand et al. 1992; Miroshnichenko et al. 1997). More complex models like disks

surrounded by a spherical envelope (Natta & Kruegel 1995; Natta et al. 2001; Miroshnichenko et al.

1999), flared outer disks, puffed-up inner disk rims (Dullemond et al. 2001), and disk plus inner halo

models (Vinković et al. 2006) have also been used to successfully fit the observed SEDs of HAeBes.

To make further progress on this topic, observations with spatial resolution at the level. 10 milli-

arcseconds (mas) are needed to explore the inner circumstellar regions of these objects in detail. Such

observations can only be performed with long-baseline interferometry.

In recent years, NIR interferometry made important contributions towards a better understanding of

the structure of the circumstellar material around HAeBe stars. Malbet et al.(1998) andAkeson et al.

(2000) partially resolved the circumstellar environment of several YSOs with the Palomar Testbed Inter-

ferometer (PTI). Later, a survey performed by Millan-Gabetet al. (2001, ApJ 546, 358) with the Infrared

Optical Telescope Array (IOTA) showed that the NIR continuum emission is best described by ring-like

or spherical geometries. Other NIR interferometric studies on YSOs were carried out using the Keck

interferometer (e.g.Eisner et al. 2004) and the Very Large Telescope Interferometer (VLTI,Malbet

et al. 2006a).

Due to their limiteduv-coverage, most existing studies could not investigate thegeometry of individ-

ual sources in detail and derived only characteristic sizesof the emission via the comparison of the data

to simple analytic models. The correlation between the characteristic NIR size and the stellar luminosity

is consistent with the idea that the NIR continuum emission mainly traces hot (Tsubl � 1 500 K) dust

close to the inner dust sublimation radiusRsubl (Monnier & Millan-Gabet 2002). While a rather simple

R9 L1{2 scaling law between stellar luminosityL and NIR sizeR appears to hold throughout the low-

to medium luminosity part of the observed stellar sample, the very luminous early B-type stars exhibit

some deviations from this size-luminosity relation; in some cases the derived NIR sizes are smaller than

predicted.Monnier & Millan-Gabet(2002) speculated that this might be due to the presence of an inner

gaseous disk which shields the dust disk from the stellar radiation, allowing the inner rim of the dust

disk to exist closer to the star. This shielding effect would be most efficient for hot stars since they

emit strong UV radiation, which would be particularly efficiently scattered by an optically thick gaseous
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Table 6.1: Stellar parameters for MWC 147 fromHernández et al.(2004), assumingRV � 3.1.

Parameter Value

Spectral Type B6
Effective Temperature Teff 14,125 K

Luminosity L 1,550Ld
Mass M 6.6 Md
Age t 0.32 Myr

Distance d 800 pc
Extinction AV 1.2 mag

Stellar Radius RÆ 6.63Rd
inner disk.

At mid-infrared (MIR) wavelengths, MIDI observations of HAeBe stars byLeinert et al.(2004) re-

vealed characteristic dimensions of the emitting regions at 10µm, which ranged from 1 AU to 10 AU.

Again, due to the poor uv-coverage, only very limited information about the geometry of the dust dis-

tribution could be derived. A more detailed interferometric study of one Herbig Ae star, HR 5999, was

performed recently by our group (Preibisch et al. 2006), based on a set of ten MIDI measurements at dif-

ferent projected baseline lengths and position angles. Detailed modeling with 2-D, frequency-dependent

radiation transfer simulations provided a good fit of the MIDI data with a model of a geometrically thick

disk, which is truncated at� 2.7 AU and seen under an inclination angle of� 60�. Other recent MIR

studies tried to determine the geometry of FU Orionis objects (Ábrahám et al. 2006; Quanz et al. 2006).

MWC 147 (alias HD 259431, BD+10 1172, HBC 529, V700 Mon) is a well-studied Herbig Be star

in Monoceros. There is some uncertainty concerning the distance and the physical parameters of this

star. From the analysis of the Hipparcos parallax data byvan den Ancker et al.(1998), a lower limit on

the distance of¡ 130 pc was derived, while a reanalysis suggested a distance of 290�200�84 pc (Bertout

et al. 1999). This distance estimate, however, is in conflict with the apparent location of MWC 147 in

the NGC 2247 dark cloud, which is part of the cloud complex in the Monoceros OB1 association at a

distance of� 800� 900 pc (Oliver et al. 1996, A&A 315, 578). In this paper, we assume a distance of

800 pc for MWC 147 (consistent with most other recent studiesof MWC 147) and use the main stellar

parameters as listed in Table6.1, which were taken from the study ofHernández et al.(2004).

Numerous observational results strongly suggest the presence of a circumstellar disk around MWC 147.

The object shows a strong infrared excess of about 6 mag at MIRwavelengths, clearly demonstrating

the presence of circumstellar material.Hillenbrand et al.(1992) fitted the SED of MWC 147 with a

model assuming a massive, actively accreting disk (9Macc� 1.01�10�5Mdyr�1). Mid-infrared (10µm

and 18µm) observations revealed an elongated diffuse emission component around MWC 147 along
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PA�60�, extending out to�62 and contributing� 34% to the total flux (Polomski et al. 2002). Man-

nings(1994) determined the 1.1 mm flux of MWC 147 and estimated the mass inthe circumstellar

disk/envelope to be  0.09Md. The study of the far UV spectrum of MWC 147 byBouret et al.(2003)

also suggested the presence of a flared circumstellar disk.Polomski et al.(2002) imaged MWC 147 in

the MIR and concluded that the star is surrounded by a moderately flared disk and probably also an ex-

tended envelope. Measurements byJain et al.(1990) showed a significant amount of linear polarization

(�1% along PA� 106�) but no wavelength-dependence of the polarization. The high observed rota-

tional velocity ofvsini � 90 km s�1 (Boehm & Catala 1995) suggests a high inclination of the rotation

axis of MWC 147 with respect to the line-of-sight; this implies that the orientation of the circumstellar

disk should be closer to edge-on than to face-on.

Evidence for a strong stellar wind from MWC 147 comes from theobserved P Cygni profiles in

several emission lines (Bouret et al. 2003). A quantitative modeling of FUSE spectra revealed multiple

absorption components with different temperatures, consistent with a flared disk interpretation (Bouret

et al. 2003). Based on the intensity ratio of infrared hydrogen lines,Nisini et al.(1995) estimated a mass

loss rate of 2.0� 0.4� 10�7Mdyr�1, which is slightly higher than the mass loss rates determined from

radio observations (0.68� 10�7Mdyr�1, Skinner et al. 1993).

First interferometric measurements on MWC 147 were presented byMillan-Gabet et al.(2001), pro-

viding an upper limit on theH-band size.Akeson et al.(2000) observed MWC 147 with the Palomar

Testbed Interferometer (PTI) and resolved its emission in theK-band at baselines around 100 m. They

derived a best-fit uniform disk diameter of 2.28 mas (0.7 AU) in theK-band.

The star has a visual companion at a projected separation of 3.12 (� 2 500 AU, Baines et al. 2006).

While Vieira & Cunha(1994) classified MWC 147 as a spectroscopic binary with a period ofabout one

year, this claim could not be confirmed in more recent observations (Corporon & Lagrange 1999).

6.3 Observations and Data Reduction

6.3.1 PTI

The Palomar Testbed Interferometer (Colavita et al. 1999) is a NIR long-baseline interferometer oper-

ated by the Jet Propulsion Laboratory (JPL). Its three 40 cm-telescopes can be combined pairwise to

measure the visibility amplitude. The FOV corresponding tothe diffraction-limited beam of the PTI

telescopes is about 1.24, while the interferometric FOV is about 25-30 mas (Monnier et al. 2006).

MWC 147 was observed on the NS (Akeson et al. 2000) and NS & NW baselines (Wilkin & Ake-

son 2003). Yet unpublished data for the SW baseline was retrieved from the PTI archive. To obtain a

uniformly calibrated dataset, we processed the new datasettogether with the previously published data
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Table 6.2: Calibrator stars information for the interferometric observations presented in Table9.1.

Star V K N Spectral dUD,K dUD,N

[Jy] Type [mas] [mas]

HD 42807 6.44 4.85 0.5 G2V 0.45� 0.03a

HD 43042 5.20 4.13 1.0 F6V 0.59� 0.10b

HD 43587 5.71 4.21 1.0 F9V 0.48� 0.30c

HD 45415 5.55 3.02 3.3 G9III 1.06� 0.02a

HD 46709 5.91 2.62 4.4 K5III 1.66� 0.02a

HD 50692 5.76 4.29 0.8 G0V 0.56� 0.10b

HD 25604 4.35 2.03 7.2 K0III 1.88� 0.05a

HD 31421 4.09 1.41 13.6 K2IIIb 2.58� 0.15a

HD 49161 4.78 1.58 7.2 K4III 2.88� 0.17a

Notes – TheV-band magnitudes were taken from SIMBAD, theK-band magnitudes from the
2MASS point source catalog, and theN-band (12µm) flux density from the IRAS point source catalog
V2.0

a UD diameter taken from the CHARM2 catalog (Richichi et al. 2005).
b UD diameter taken from the CHARM catalog (Richichi & Percheron 2002).
c UD diameter adopted fromPasinetti Fracassini et al.(2001), using the Hipparcos parallax of

51.76 mas measured for HD 43587.

using the V2Calib V1.4 software1. The individual PTI measurments were binned so that each bincon-

tains datasets covering less than 15� variation along PA. As the measurements on the PTI-NS baseline

also cover a relatively wide range of PAs (� 23�), we divided those measurements into two halves

(depending on PA) before averaging.

Taking the projection of the telescope baselines onto the sky into account, the length of the baselines

range from 78.6 m to 105.1 m (see Table9.1), corresponding to angular resolutions of 7.21 and 5.23 mas

(=5.7 AU, 4.3 AU) at 2.24µm.

6.3.2 VLTI/AMBER

AMBER (Petrov et al. 2003b, 2006a) is the NIR beam-combiner of the ESO Very Large Telescope In-

terferometer and allows one to combine the light from up to three telescopes simultaneously, providing

not only three simultaneous visibility amplitudes, but also the closure phase relation. With our obser-

vations on MWC 147, we obtained spectrally dispersed interferograms in the low resolution (LR) mode

(R � λ{∆λ � 35), which resolves theK-band into 11 spectral channels. The observations were con-

ducted within ESO open time (OT) programme 076.C-0138 (P.I.Th. Preibisch) using the 8.4 m unit

telescopes UT1-UT3-UT4. Due to problems with the fiber injection during that night, the flux reaching

1The V2Calib software is available from the websitehttp://msc.caltech.edu/software/V2calib/
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the AMBER beam combiner from UT4 was about a factor of 3 lower than from the other telescopes.

Therefore, clear fringes were detectable only on one of the three baselines (UT1-UT3), and no closure

phase signal could be measured. The length and orientation of the projected baseline for this AMBER

measurement (101 m, PA 40�) is similar to the measurement at the PTI-NS baseline, but adds the infor-

mation about the spectral dependence of the visibility along theK-band. Since AMBER uses fibers as

spatial filters to convert phase variations into amplitude modulations, the FOV is given by the diameter

of the fibers on the sky (� 60 mas).

The AMBER data were reduced with version 2.4 of theamdlib software (Tatulli et al. 2006). Due

to the absence of a fringe tracker, a large fraction of the interferograms is of rather low contrast (see

discussion inPetrov et al. 2006a). Therefore, we remove those frames from our dataset for which (a)

the light injection from the contributing telescopes was unsatisfying; i.e., the intensity ratio between the

photometric channels was larger than 4,(b) the atmospheric piston was larger than1{4 of the coherence

lengthλ � R, or (c) the fringe contrast was decreased due to instrumental jitter (the 20% best interfero-

grams were selected based on the Fringe SNR criteria, as defined inTatulli et al. 2006). In Fig. 6.3 the

calibratedK-band visibilities derived from the AMBER and PTI measurements are shown as a function

of wavelength.

6.3.3 VLTI/MIDI

The MIDI instrument allows one to coherently combine the light of two VLTI telescopes and operates

at MIR wavelengths (N-band, 8-13µm). The recorded spectrally dispersed interferograms are produced

by modulating the optical path delay (OPD) around the point of zero OPD. From these scans, not only

the spatially filtered flux (FOV 22), but also the visibility amplitude can be derived for each wavelength

bin separately. For a more detailed description of the MIDI instrument and observation procedure, we

refer toPrzygodda et al.(2003) andLeinert et al.(2004).

The MIDI observations presented in this paper were carried out for the OT programme 074.C-0181

(P.I. Th. Preibisch), using the NaCl prism as dispersive element (providing a spectral resolution of

R� 30) and the HIGH-SENS instrument mode. In total, seven observations were carried out on three

different baseline configurations, including the telescope pairs UT2-UT4, UT2-UT3, UT3-UT4. The

lengths of the projected baselines range from 46.5 to 89.4 m,yielding an effective angular resolution

between 54 and 28 mas at a wavelength of 10µm (corresponding to 43 and 23 AU).

To extract visibilities from the MIDI data, we used the data reduction software package MIA+EWS2

(Release 1.3). This package contains two data reduction programs which are based on independent

algorithms; namely, a coherent (EWS) and an incoherent approach (MIA). The reduction results ob-

tained with both algorithms agree very well (within 3% for the calibrated visibility) with the datasets

2The MIA+EWS software package is avaiable from the websitehttp://www.mpia-hd.mpg.de/MIDISOFT/
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Figure 6.4: Visibilities measured with MIDI as a function of wavelength.

from 2004-10-30, 2004-11-01, 2004-12-30, 2004-12-31, 2004-12-29, and 2005-01-01, indicating a good

quality of these datasets. However, by inspecting the acquisition image for the dataset from 2005-02-28,

we found that the beam overlap was poor for this measurement and, thus, rejected it from our further

analysis. The inspection of the acquisition images also indicated that the visual companion at a sep-

aration of 3.21 was not in the MIDI FOV and therefore does not affect the measured visibilities. The

wavelength-dependent calibrated visibilities of the remaining six datasets are shown in Fig.6.4.

For all interferometers used within our study, the visibility measurements were corrected for atmo-

spheric and instrumental effects using calibrator stars observed during the same night.The calibrator

stars as well as their assumed angular diameters are listed in Table8.1. Fig. 9.4 shows theuv-plane

coverage obtained with the presented observations.

6.3.4 Complementary Spitzer/IRS spectra

In order to constrain the SED for our radiative transfer modeling as tightly as possible, we obtained MIR

spectra from theSpitzerSpace Telescope Archive. These spectra were recorded on 2004-10-26 within

GTO programme ID 3470 (P.I. J. Bouwman) using the Infrared Spectrograph IRS (Houck et al. 2004).

The dataset is comprised of four exposures, two taken in the Short-High mode (SH, wavelength range
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from 9.9 to 19.6µm) and two taken in the Long-High mode (LH, 18.7 to 37.2µm). Both modes provide

a spectral resolution ofR� 600. With slit sizes of 4.27� 11.23 (SH mode) and 11.21� 22.23 (LH mode),

IRS integrates flux from areas much larger than those collected in the spatially filtered MIDI spectrum.

The spectra were pre-processed by the S13.2.0 pipeline version at the Spitzer Science Center (SSC) and

then extracted with the SMART software, Version 5.5.7 (Higdon et al. 2004).
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Table 6.3: Observation log for interferometric observations on MWC 147. For more detailed information about the calibrator stars, we refer to Table8.1.

Instrument Date HA Band/ Baseline Projected Baseline Calibrators Ref.
(UT) Spectral Mode Length [m] PA [�]

Near-Infrared
IOTA/FLOUR 1998 H 38m � 22 � 25 see Ref. 1 1
IOTA/FLOUR 1998 K’ 38m � 21 � 15 see Ref. 1 1
PTI 1999, 2000, 2003   0 K NS 105.1 29 HD 42807, HD 43042, 2,3¥ 0 NS 98.9 17 HD 43587, HD 46709,

HD 50692
PTI 2004 K NW 85.7 76 HD 43042, HD 46709 3

HD 50692
PTI 2003, 2004   0 K SW 78.6 -26 HD 42807, HD 46709¥ 0 SW 84.4 -37 HD 50692
VLTI /AMBER 2006-02-20 03:14 K/LR UT1-UT3 101.0 40 HD 45415

Mid-Infrared
VLTI /MIDI 2004-10-30 08:49 N/PRISM UT2-UT4 89.4 82 HD 31421, HD 49161
VLTI /MIDI 2004-11-01 05:23 N/PRISM UT2-UT4 55.9 90 HD 25604, HD 49161,

HD 31421
VLTI /MIDI 2004-12-30 02:33 N/PRISM UT3-UT4 59.6 114 HD 49161
VLTI /MIDI 2004-12-31 04:26 N/PRISM UT3-UT4 61.6 108 HD 49161
VLTI /MIDI 2005-01-01 05:43 N/PRISM UT3-UT4 54.7 106 HD 31421, HD 49161
VLTI /MIDI 2004-12-29 06:42 N/PRISM UT2-UT3 46.5 46 HD 49161
VLTI /MIDI (rej.) 2005-02-28 00:04 N/PRISM UT2-UT3 39.3 44 HD 49161

References –1 Millan-Gabet et al. 2001, and re-processing of data presented in2 Akeson et al. 2000and3 Wilkin & Akeson 2003
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6.4 Results

6.4.1 MIR spectrum

In the overlapping wavelength regime between 10 and 13µm, the MIDI andSpitzer-IRS spectra show

good quantitative agreement, both in the absolute level of the continuum flux and in the spectral slope

(see Fig.6.5). However, the IRS spectrum exhibits some line features which do not appear in the

MIDI spectrum. As these emission lines are most pronounced at wavelengths of 11.0, 11.2, 12.8, 14.5,

and 16.4µm, we attribute these features to the presence of PolycyclicAromatic Hydrocarbons (PAHs,

Allamandola et al. 1985; van Dishoeck 2004). For the strong and rather broad emission feature at

11.2µm, contributions from the 11.3µm crystalline silicate feature are also possible.

PAHs were found towards a large variety of objects, including T Tauri stars and HAeBe stars (Acke &

van den Ancker 2004). Meeus et al.(2001) found that the PAH bands are, on average, stronger in sources

with strong far-infrared/millimeter excess. Since a strong far-infrared excess emission is often attributed

to a flared disk geometry, this might indicate that the PAH emission mainly arises from the outer regions

of a flared disk. This scenario is also supported by our data, as the PAH spectral features are only seen

in theSpitzer-IRS spectrum, but not in the MIDI spectrum with its much smaller field-of-view of only� 22. This effect agrees qualitatively with observations of other sources which attributed large fractions
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of the PAH emission either to surrounding reflection nebulae(e.g.van Boekel et al. 2004b, Rho et al.

2006) or to the outer regions of HAeBe disks (Habart et al. 2004, 2006). This difference in the beam

size is probably also causing the bump which appears in the IRS spectrum at the transition between the

two gratings (see Fig.6.5).

6.4.2 Geometric model fits

As a direct image reconstruction is not yet feasible with thecurrent generation of infrared interferome-

ters, the measured observables (e.g. visibilities) are used to constrain the parameters of a model for the

object morphology. In most studies presented until now, either purely geometric profiles (in particular

uniform disk (UD) and Gaussian profiles) or physically motivated geometries, such as ring profiles or

analytic accretion disk models with a temperature power laware employed. Ring models are justified by

the theoretical expectation that most of the NIR emission originates from a rather small region around

the dust sublimation radius (e.g.,Millan-Gabet et al. 2001; Monnier & Millan-Gabet 2002). A common

problem with such simple geometric models is that the observed emission does not originate exclusively

from the circumstellar material: a certain fraction comes directly from the central star and contributes as

a spatially (nearly) unresolved component, and the existence of extended background emission, which

is fully resolved, is also possible. For the model fits one therefore has to specify which fraction of

the total fluxFtot at any wavelength has to attributed to the different spatial components. The stellar

flux contribution fstar{totpλq � Fstar{Ftot is often estimated from the SED, while the extended compo-

nent fext{totpλq � Fext{Ftot is usually assumed to be identical zero. These assumptions are, however,

associated with a considerable uncertainty.

To allow comparison with earlier NIR interferometric studies on MWC 147, we keep the flux ratios

from Millan-Gabet et al.(2001), namely fstar{totp2.1 µmq � 0.16, andfext{totp2.1 µmq � 0.0 for the ana-

lytic fits. The same flux ratio was assumed byWilkin & Akeson (2003), whileAkeson et al.(2000) used

fstar{totp2.1 µmq � 0.10. At mid-infarad wavelengths, the stellar contribution is likely to be negligible

for a B6-type star; i.e.,fstar{totp10µmq � 0. In Sect.6.6.6.3we will discuss the reliability of these values

based on the results of our radiative transfer modeling.

6.4.2.1 Wavelength-dependent characteristic sizes

To obtain a first estimate for the object size, we fit the most common analytic profiles to our inter-

ferometric data; namely, the Gaussian, UD, and ring profiles. For mathematical descriptions of these

profiles, we refer toKraus et al.(2005b, UD profile) andMillan-Gabet et al.(2001, Gaussian & ring

profile). For consistency withMonnier et al.(2005) and others, for the ring profile we assume a uniform

bright ring with average diameterΘ and a fixed width of 20%. As the apparent object size is expected to

change with wavelength, we fitted these profiles to subsets ofour data, covering the wavelength ranges
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of 2.0-2.4µm, 8.2-9.9µm, 10.5-11.8µm, and 12.0-13.1µm. The visibilities measured in these subbands

are fitted to the visibility profiles using a Levenberg-Marquardt least-square fitting algorithm, taking the

chromatic change in resolution within the bandwidth into account.

The fits were performed for the case of circular symmetry (e.g. a disk seen face-on) and also for

elliptical structures (e.g. an inclinded disk). The obtained diameters and goodness-of-fit values (χ2
r �°�pV2 � V2

mq{σV

�2 {NV, with V2 the measured squared visibility,V2
m the squared visibility computed

from the model, andNV the number of measurements) are given in Tables6.4and6.5.

Theχ2
r values already indicate that the elliptical geometries area significantly better representation of

our data than the circular models. In order to illustrate this object elongation, we show the corresponding

geometries in Fig.6.7. As the detection of object elongation requires strict uniformity in the observa-

tional methodology, we did not include the single-baselineAMBER measurement because the mixture

of broadband and spectrally dispersed interferometric observations might easily introduce artefacts.

Whereas the elongation is only marginally evident in the PTINIR measurements, a significant elon-

gation was found in the MIR data.

It is interesting to compare the elongation found in the interferometric observations with the 11.7{18.2µm

color temperature map published byPolomski et al.(2002, see Fig.6.7cq). Although these color tem-

perature maps show structures of scales of several arcseconds (e.g. on scales a hundred times larger),

they reveal an orientation (�60�) and axis ratio similar to those of the structure seen in our MIDI obser-

vations.

Our combined IOTA/PTI/AMBER/MIDI dataset also allows us to study the wavelength-dependence

of the apparent size. For this, we fitted the visibility measurement in each individual spectral channel

with the analytic formula for Gaussian intensity profiles (the result does not depend strongly on the as-

sumed profile). The determined diameters are shown in Fig.6.6. The increase of the apparent size with

wavelength is usually interpreted as a consequence of the radial temperature profile for the circumstellar

material (i.e. material at larger distances from the star iscooler). It will be interpreted qualitatively in

Sect.6.5.1and is also discussed in the context of our radiative transfer modeling in Sect6.6.

Akeson et al.(2000) examined the possibility whether the measured visibilities could indicate the

presence of a close companion. Since PTI has observed MWC 147several times over a period of� 4 yrs and found no significant variations on the NS-baseline,we consider the binary scenario as very

unlikely. For example, assuming, just for the sake of argument, a total system mass of 7Md and a

semi-major axis of 10 AU, this would give an orbital period of� 12 yrs and should result in significant

visibility variations over the covered 4 yrs.
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6.5 Interpretation

6.5.1 Wavelength-dependent size and comparison with analy tic disk models

While the NIR flux is dominated by thermal emission from hot (� 1 500 K) dust in the innermost

disk regions close to the dust sublimation radius, the MIR flux originates predominantly from cooler

(� 200� 300 K) dust further out in the disk, leading to the observed increase of the apparent size

with wavelength. Infrared spectro-interferometry covering a wide wavelength range therefore provides

a unique insight into the radial disk structure.

The most previous interferometric studies of Herbig Be disks have focussed either on the NIR or MIR

morphology. Our combined NIR+ MIR dataset provides, for the first time, a much wider wavelength

coverage, ranging from� 2µm to 13µm, and allows us to test whether the disk models routinely applied

for NIR or MIR interferometric observations can reproduce the wavelength-dependence of the size.

Analytical models, both of passive irradiating circumstellar disks (Friedjung 1985) as well as viscous,

actively accreting disks (Lynden-Bell & Pringle 1974), predict that the radial temperature profile of

YSO disks should follow a simple power-lawTprq 9 r�α. Most studies infer a power law index of

α � �3{4 (Millan-Gabet et al. 2001; Eisner et al. 2005) or �1{2 (e.g. Leinert et al. 2004). Using

this radial temperature power law and the assumption that each disk annulus radiates as a blackbody,

—80—



6.5 Interpretation

aq Near-Infrared ( K-band)

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 1.5  1  0.5  0  0.5  1  1.5

 1

 0.5

 0

 0.5

 1

 1  0.5  0  0.5  1

dD
E

C
 [m

as
]

dD
E

C
 [A

U
]

dRA [mas]

dRA [AU]

2.24 µm

N

E

Circular Gaussian (d=1.81 mas)

Ell. Gaussian (a=2.13 mas, b=1.61 mas, φ=12°)

cq Color temperature map 11.7/18.2µm
(from Polomski et al. 2002)

Figure 6.7: a), b)Polar diagrams, showing the best-
fit circular ring and elliptical ring geometries fit-
ted to the visibility data. Whereasa) depicts PTI
and VLTI/AMBER data for the NIR wavelength
2.24µm, the VLTI/MIDI visibilities in b) were av-
eraged over certain wavelength ranges in the silicate
feature (11.0µm) and in the surrounding continuum
(9.0 µm and 12.5 µm). c) shows the 11.7/18.2µm
color temperature map published byPolomski et al.
(2002), revealing an elongated structure of similar
orientation and axis ratio as our model fits to the
MIR interferometric data.

bq Mid-Infrared ( N-band)

 12.5

 10

 7.5

 5

 2.5

 0

 2.5

 5

 7.5

 10

 12.5

 10

 5

 0

 5

 10

 10  5  0  5  10

dD
E

C
 [m

as
]

dD
E

C
 [A

U
]

dRA [AU]

8.1-9.1 µm

N

E

Circular Gaussian (d=8.74 mas)

Ell. Gaussian (a=14.02 mas, b=7.46 mas, φ=60°)

 12.5

 10

 7.5

 5

 2.5

 0

 2.5

 5

 7.5

 10

 12.5

 10

 5

 0

 5

 10

dD
E

C
 [m

as
]

dD
E

C
 [A

U
]

10.3-11.7  µm

N

E

Circular Gaussian (d=11.84 mas)

Ell. Gaussian (a=20.16 mas, b=10.05 mas, φ=66°)

 12.5

 10

 7.5

 5

 2.5

 0

 2.5

 5

 7.5

 10

 12.5

 12.5 10  7.5  5  2.5  0  2.5  5  7.5  10 12.5

 10

 5

 0

 5

 10

dD
E

C
 [m

as
]

dD
E

C
 [A

U
]

dRA [mas]

11.9-13.1 µm

N

E

Circular Gaussian (d=12.41 mas)

Ell. Gaussian (a=16.32 mas, b=10.93 mas, φ=64°)

—81—



Chapter 6 Radiative Transfer Modeling of the Active Accretion Disk around MWC 147

Table 6.4: Model fits assuming circular geometries. For theK-band fits, we attribute 16% of the total flux to the
unresolved stellar component. At a distance of 800 pc, 1 mas corresponds to 0.8 AU.

K-band 9 µm 11µm 12.5 µm
Diameter χ2

r Diameter χ2
r Diameter χ2

r Diameter χ2
r

[mas] [mas] [mas] [mas]
UD 2.6� 0.2 1.44 12.8� 2.0 1.38 17.3� 2.2 0.95 18.1� 2.2 0.89
Gaussian 1.6� 0.1 1.30 7.9� 1.4 1.19 10.8� 1.5 0.75 11.2� 1.5 0.90
Ring 1.8� 0.1 1.51 8.7� 1.4 1.49 11.8� 0.3 1.07 12.4� 1.3 0.90

Table 6.5: Similar as Table6.4, but fitting inclined geometries.

K-band 9 µm
Diameter Incl. PA χ2

r Diameter Incl. PA χ2
r

[mas] [�] [�] [mas] [�] [�]
Incl. UD 3.0� 2.4 39 12 0.33 20.1� 10.8 58 58 1.04
Incl. Gaussian 1.8� 1.4 39 11 0.30 18.5� 6.5 69 66 0.89
Incl. Ring 2.1� 1.6 41 12 0.34 14.0� 7.5 58 60 1.06

11µm 12.5 µm
Diameter Incl. PA χ2

r Diameter Incl. PA χ2
r

[mas] [�] [�] [mas] [�] [�]
Incl. UD 20.8� 15.3 43 53 0.59 23.5� 15.7 48 70 0.58
Incl. Gaussian 23.3� 8.9 68 65 0.31 23.5� 9.0 68 74 0.49
Incl. Ring 20.2� 10.1 60 66 0.48 16.3� 10.9 48 64 0.59

we can compute the wavelength-dependence of the disk size corresponding to a certain analytic model.

To model the wavelength-dependence of the size of an accretion disk model with constant power law,

we simulated disks withTprq � r�α, wherer is chosen to be in units of the disk inner radius with

a temperature at the inner dust rim ofTp1q � 1 500 K. The outer disk radius is chosen such that the

temperature drops well below 100 K. After computing the intensity profile we determine the disk size

apλq for these analytic disk models using the half-light radius definition byLeinert et al.(2004). Finally,

we scale the half-light diameter to fit the NIR size measured on MWC 147ap2.1µmq � 2 mas and show

the resultingapλq-curve for the before-mentioned representative values forα (Fig. 6.6).

It is obvious that this analytic model underestimates the measured MIR-sizes considerably. To under-

tand the strong increase of the apparent size with wavelength, contributions from the following effects

might be of importance:

(a) Analytic disk models generally do not include the effects of scattered light, which can provide

significant heating of the outer parts of the disk and thus increase the apparent disk size at MIR wave-

length.

(b) It has been suggested that the disks around YSOs may not be flatbut flare with increasing radius;
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Figure 6.8: Total MIDI spectrum and the uncorrelated flux at the 56 m and 98m baselines.

such a flaring is also expected from vertical hydrostatic equilibrium considerations (Kenyon & Hartmann

1987). As a result, the outer disk regions intercept more stellarflux, resulting in an increased luminosity

and apparent size at MIR wavelengths.

(c) The flux contribution from an extended cold envelopefenv{totpλq might be non-negligible in the

MIR.

(d) The NIR size might be underestimated if the amount of NIR emission originating from close to the

star is inadequately estimated (e.g. due to a biasedfstar{diskpλq or due to additional accretion luminosity).

This enumeration illustrates that the currently routinelyapplied analytic disk models contain several

problematic points. A more physical and consistent approach requires radiative transfer modeling. In

the next section, we will present 2-D radiative transfer modeling for MWC 147.

6.5.2 The correlated spectrum – indications of grain growth

As discussed in Section6.5.1, the visibilities measured with MIDI show significant variations along the

recorded wavelength range. In particular, we detect a drop of visibility within the 10µm silicate feature.

A similar behaviour has already been observed for several HAeBe stars; e.g., in the samples ofLeinert

et al.(2004) andvan Boekel et al.(2004a).

As the silicate emission feature is generally attributed tothe presence of rather small silicate grains

(r . 0.2 µm, REF), it is possible to probe the radial dust mineralogy bycomparing the uncorrelated

spectrum at various baseline lengths with the total spectrum Ftot. The uncorrelated spectrumFuncorr

corresponds to the flux integrated over the spatial area which is unresolved by the interferometer for

a particular baseline lengthB. Therefore, for each baseline lengthB, the uncorrelated fluxFuncorrpBq
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10.99µm, 11.55µm), Casey(1991, 160µm, 370µm), Mannings(1994, 450µm).

can be computed by multiplying the total spectrum measured by MIDI in the photometry files with the

visibility measured for a certain baseline. In order to probe the radial dependence of the dust minerology,

measurements taken at similar PAs should be used in order to avoid contaminations by changes in the

source geometry. We therefore choose the measurements from2004-11-01 (B � 56 m, PA=82�) and

2004-10-30 (B � 89 m, PA=90�), as they have very similar PAs. The comparison of the correlated

spectra for these baselines with the uncorrelated spectrum(Fig.6.8) shows that the 10µm silicate feature

flattens out with increasing resolution. This change in the correlated spectrum might indicate spatial

variations in the dust composition, with the more evolved dust grains (i.e. larger grains with their weaker

silicate feature) in the innermost disk regions.
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6.6 2-D Radiative Transfer Simulations

6.6.1 SED analysis

As an additional contraint for our radiative transfer modeling, we assembled the SED (Fig.6.9) of

MWC 147 by collecting photometric data from the literature.The contribution of the visual companion

(Baines et al. 2006, separation 3.21) to the SED is unknown. Furthermore, the photometric data may

be contaminated by the ambient reflection nebula NGC 2247 (Casey 1991). Polomski et al.(2002)

studied the appearance of the circumstellar environment ofMWC 147 at MIR wavelengths and found

an extended structure of� 122 diameter (� 9 600 AU) at 10µm.

6.6.2 Modeling procedure and simulation setup

For a physical interpretation of the measured visibilitiesand the SED, we employ the radiative transfer

codemcsimmpi (Author: K. Ohnaka), which solves the radiative transfer problem self-consistently

using a Monte Carlo approach. This code was introduced inOhnaka et al.(2006) and also applied in

Hönig et al.(2006). In short, the stellar flux is treated as a finite number of photon packets, which are

emitted in arbitrary directions. While propagating through the cells of the simulation grid, the photon

packet can be either scattered or absorbed, where the probability of these events is given by the density

and the optical properties of the dust in each particular cell. Whereas for scattering events simply the

propagation direction of the photon packet changes (we assume isotropic scattering), absorption events

deposit energy into the cell while the packet is isotropically re-emitted immediately. For each absorption

event, the temperature of the cell is corrected using the scheme byBjorkman & Wood(2001), resulting

in a self-consistent determination of the dust temperaturedistribution. After tracing the propagation of

a large number of photon packets through the simulation grid, the SED is computed by summing the

flux from all packets. The code is parallelized using the LAM/MPI library, which allows the user to

distribute the Monte Carlo computation on a large number of computers within a network.

Once the radiative transfer computation is completed, a ray-trace program is used to compute synthetic

images for any wavelength of interest. For this project, we compute synthetic images for 3 wavelength

bins covering theH-band, 3 bins for theK-band, and 8 bins for theN-band. Finally, visibilities are

computed from the simulated images for the points of theuv-plane covered by the data. In order to

treat the visibility slope in the spectro-interferometricobservations properly, we compute the visibility

for each spectral channel of the MIDI and AMBER observationsseparately, using the synthetic image

computed for a wavelength as close as possible to the centralwavelength of the spectral bin.

As we require particularly high spatial resolution in the inner disk region to properly resolve the

structure of the inner dust rim (at scales of less than one AU)but also need to include structures with

large radial extension (10 000 AU scale), we employed a spherical grid with logarithmic radial grid
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spacing. The number of radial cells was chosen to be 500, while the latitudional grid resolution is

2�. We used 108 photon packages per simulation, which ensures sufficient statistics for Monte-Carlo

radiative transfer.

As input stellar spectrum we used a Kurucz stellar atmosphere model (Kurucz 1970) for a B6-type star

of solar metallicity (Teff � 14 000 K, logg � �4.04). For the optical dust properties we use a mixture

of warm silicate (Ossenkopf et al. 1992) and amorphous carbon (Hanner 1988) grains. The grain size

distribution follows the dependence suggested byMathis et al.(1977, npaq 9 a�3.5, whereamin ¤ a ¤
amax). For the outer envelope we use small grains (amin � 0.005µm; amax � 1.0 µm), whereas for

the inner disk region we mix in also larger dust grains (amin � 1.0 µm; amax � 1000µm), which is in

qualitative agreement with the indications for grain growth found in the inner disk regions (Sect.6.5.2).

The species of large and small grains are treated separatelyin the radiative transfer computations. A

minimum dust density of 10�27 g cm�3 is assumed.

6.6.3 Iterative determination of the location and shape of t he inner rim

A proper treatment of both the location and the shape of the inner rim of the dust distribution (i.e. the

dust sublimation radius) is of particular importance to explain both the NIR SED and the NIR interfero-

metric data. In the DDN01 model, the structure of the inner rim is described as a vertical wall, causing

strong deviations from centro-symmetry when seen under inclination. As discussed by DDN01, this

description is likely not physically reasonable. Furthermore, the strong “skew” in the NIR disk mor-

phology predicted by a DDN01-like vertical wall also seems to contradict the recent YSO closure phase

survey conducted byMonnier et al.(2006).

Thus, we added an option to our software which allows us to refine the geometry of the inner rim iter-

atively, taking the dust sublimation into account. For this, we first compute the temperature distribution

resulting from the original density description and then check for grid cells which exhibit a temperature

above the local dust sublimation temperature. For these cells, the dust density is decreased by a factor

of 10�2 before the next iteration step. This iteration procedure isrepeated until convergence is reached.

Isella & Natta(2005) have pointed out that the dust sublimation temperatureTsubl depends on the

gas density, which results in a higher sublimation temperature in the disk midplane than in the disk

atmosphere, causing a curved shape of the inner rim. To modelthis effect, we computeTsublpxq for each

grid cell x separately assuming a gas-to-dust ratio of 100 and the relation byPollack et al.(1994):

Tsublpρq � 2 000 K� ργ (6.1)

with γ � 1.95�10�2. This iteration should improve the appearance of the disk inner rim in the synthetic

images, which are then fitted to the interferometric data. Wedo not iterate on the vertical hydrodynamic

disk structure as we consider this a second-order effect, which is out of the scope of this paper.
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6.6.4 Inner gaseous accretion disk

As suggested by the rather high accretion and mass loss ratesreported for MWC 147 (9Macc� 10�5Mdyr�1,9Mwind � 2.0� 10�7Mdyr�1, see introduction), it might be of importance to include accretion in our

model. In active accretion disks, large amounts of gas are transported inwards of the dusty inner rim.

Inside the corotation radius, where the Keplerian angular velocity matches the stellar angular velocity,

the matter is then accreted onto the star through magnetospheric accretion columns. While the energy

of the magnetospheric accretion process is mainly radiatedaway in the UV continuum and in UV and

optical emission lines, the infalling matter in the gaseousinner disk can also affect the infrared SED,

mainly by two effects:

(a) Thermal emission from optically-thick gas in the inner gaseous disk, located between the corota-

tion radius and the inner dust rim.

(b) Shielding of the inner dust rim by an optically thick gaseousinner disk. The gas might effectively

scatter the stellar UV radiation, allowing dust to exist closer to the star.

Muzerolle et al.(2004) found that even for 9Macc � 10�6Mdyr�1, the gaseous inner accretion disk

is typically a factor of� 8 times thinner than the puffed-up inner dust disk wall and is optically thick.

Therefore, we consider(a) to be the dominant effect and include the thermal emission from the gaseous

inner disk into our radiative transfer models using a similar approach asAkeson et al.(2005).

In this model, the accretion luminosity is emitted from a viscous accretion disk (Pringle 1981) which

emits at each radiusr as a black-body of temperature

T4
gasprq � �

3GMÆ 9M
8πσr3

��
1� b

RÆ{r
1{2
. (6.2)

We runr from the magnetic truncation radius (for which we assume 5RÆ) to the dust sublimation radius

Rsubl. In our Monte Carlo radiative transfer simulation grid, thephotons corresponding to the accretion

luminosity are emitted isotropically from two cells aroundthe disk midplane and then propagate through

the simulation grid. The modeling of gas absorption is out ofthe scope of this paper, and therefore the

gaseous inner disk in our simulation does not provide shielding to the dusty inner rim.

6.6.5 Simulated geometries

Besides the dust geometry iteration scheme and the inclusion of accretion luminosity, we extended the

mcsimmpi code by adding dust geometries, including extended envelopes (see Sect.6.6.5.1), inner

shells (Sect.6.6.5.2), and various circumstellar disk geometries, especially flared Keplerian disks with

(Sect.6.6.5.4) and without a puffed-up inner rim (Sect.6.6.5.3).

Before the radiative transfer simulation, the density distribution is defined using either analytic density

profiles or the density distribution is computed iteratively within external software. In the later case, we
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use the publically available IDL code CGplus3 (version 2.1, Author: C.P. Dullemond) to pre-compute

the radial density profile and vertical scale height for eachdisk radius.

In order to avoid unrealistically sharp cutoffs at outer edges in the density distribution, we used a

Fermi-type functionFprcutoffq to obtain a smooth truncation of the density distribution around the radius

rcutoff :

Fprcutoffq � �
1� exp

�
r � rcutoff

ǫrcutoff


��1

, (6.3)

whereǫ � 0.05 defines the relative width of the transition region.

6.6.5.1 Extended envelope

In the course of our modeling of the SED of MWC 147 with the before-mentioned inner geometries

(spherical shell, Keplerian disk with and without an inner rim), we found that an additional component

is required which contributes large amounts of the MIR to FIRflux (see SED in Fig.6.9).

In particular, we did not succeed in modeling the pronouncedchange in slope in theSpitzer-IRS spec-

trum (around 15µm, see Fig.6.5) with a single component, but had to include an additional extended

envelope component. For this envelope, we tried various geometries, in particular rotating, infalling

envelopes with and without polar outflow cavities, such as those parametrized byWhitney et al.(2003).

However, those geometries generally contributed too much flux around� 20 µm and also cannot suc-

cessfully reproduce theSpitzer-IRS spectrum. The best agreement was obtained for a simple power-law

dust distribution with a rather flat slope

ρenv� ρ0

�
r
r0


�1{2 � Fprcutoffq. (6.4)

whereρ0 is the dust density at an arbitrary characteristic radiusr0.

After fine-tuning the parameters of the envelope to match theSED above 15µm, we fixed the geome-

try of the envelope and varied in the following studies (Sections6.6.5.2to 6.6.5.4) only the geometry of

the innermost circumstellar component, being the dominantcontributor to the NIR and MIR emission

probed by our interferometric observations.

6.6.5.2 Model SHELL: Spherical shell geometry

Miroshnichenko et al.(1997) proposed that optically thin shells can reproduce the SED of HAeBe stars.

In order to investigate whether these shell models or the disk models presented in the following sections

3The CGplus IDL library is available from the websitehttp://www.mpia.de/homes/dullemon/radtrans/
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6.6 2-D Radiative Transfer Simulations

provide a better fit to our simultaneous SED+ visibility fits, we simulate a density distribution given by

ρShell � ρ0

�
r
r0


�p � Fprcutoffq (6.5)

with p� 1.5, as suggested byMiroshnichenko et al.(1997).

6.6.5.3 Model KEPLER: Flared Keplerian disk

One solution for a passive disk which is gravitationally dominated by the central star, vertically isother-

mal, and in vertical hydrodynamic equilibrium, is given by aflared Keplerian disk geometry (Kenyon &

Hartmann 1987)

ρKepler� ρ0

�
r
r0


�3{2
exp

��π
4

�
z
hz


2
�� Fprcutoffq. (6.6)

The vertical pressure scale heighthz is coupled to the temperature at a certain radius, which results in

a flaring of the disk at large radii. We use the analytic description by Chiang & Goldreich(1997), as

implemented in the CGplus software, to determinehz as a function of radius.

6.6.5.4 Model PUFFED-UP-RIM: Flared Keplerian disk with pu ffed-up inner rim

As the dust at the inner rim (at the dust sublimation radius) is directly exposured to the stellar radiation,

the vertical scale in this region is significantly increased. Natta et al.(2001) andDullemond et al.(2001)

proposed a modification of the flared Keplerian disk geometrydiscussed in Sect.6.6.5.3; namely, a

“puffed-up” inner rim. To include this effect in our simulation, we computehzprq using the CGplus code

and then apply the iterative procedure described in Sect.6.6.3to refine the shape of the inner rim. Again,

the outer edge of the disk is truncated by applying the function Fprcutoffq.
6.6.6 Modeling procedure and results

6.6.6.1 Fitting procedure

The fits were performed using the following approach: First,we fixed the geometry of the extended

envelope to match the MIR to FIR SED (Sect.6.6.5.1). Then, we tried different geometries for the

inner component (Sect.6.6.5.2to 6.6.5.4) to obtain the best fit to the NIR and MIR SED. Finally,

the agreement of the model with the interferometric observables was tested. The analytic model fits

presented in Table6.5indicate that the disk should be notably inclined (� 40 to 60�), therefore we fixed

for the radiative transfer modeling the disk inclination to45� (yielding for most models also the best

agreement with the spectral shape of the SED). In total, about one thousand radiative transfer models

have been computed to identify the best-fit models presentedin the following sections.
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Chapter 6 Radiative Transfer Modeling of the Active Accretion Disk around MWC 147

6.6.6.2 Results for models without accretion

When neglecting the optically thick emission from an gaseous inner accretion disk (as is most often

assumed for the interpretation of HAeBe NIR/MIR interferometric data) we found that especially the

NIR visibilities predicted by the models were always much smaller than the measured visibilities (see

Fig. 6.11and6.12). A similar, although less pronounced deviation was found in the MIR visibilities.

Therefore, the radiative transfer modeling confirms and quantifies the general tendency already ob-

served in the geometric model fits; namely, that without considering accretion luminosity (or shielding

of a gaseous inner disk, see discussion in Sect.6.6.4), the measured NIR radius of�0.65 AU (see Ta-

ble6.4) is a factor of 4 smaller than the dust sublimation radius, as expected from the radiative transfer

models. We conclude that, although passive irradiated circumstellar disk models are able to reproduce

the SED of MWC 147, these models are in strong conflict with theinterferometric measurements (re-

sulting inχ2
r � 40 both for the KEPLER and the PUFFED-UP-RIM model; see Table6.6and Fig.6.11

and6.12). Including large grain sizes in the inner disk regions decreases the discrepancies, but we did

not succeed in solving the discrepancy quantitatively solely by varying the dust chemisty.

Whereas the shell geometry can roughly reproduce the SED, itprovides only a very poor fit to our

interferometric observables (χ2
r � 93.2; see Fig.6.10) and can thus be rejected.

6.6.6.3 Results for models with accretion

Including accretion luminosity from a gaseous inner disk (as described in Sect.6.6.4) provides a much

better agreement between model predictions and observed visibilities.

With a flared disk geometry (without puffed-up inner rim) and an accretion rate of9Macc � 1.2 �
10�5Mdyr�1, both the SED and the interferometric visibilities (see Fig. 6.13and Table6.6) are rea-

sonably well reproduced (χ2
r � 2.6). When using disk geometries with puffed-up rim, the inner rim

contributes significant NIR emission, which increases the apparent size of the disk, resulting in a poorer

fit to the interferometric data (χ2
r � 6.7; see Fig.6.14).

6.7 Conclusions

We have presented infrared long-baseline interferometricobservations of MWC 147, constraining the

inner circumstellar environment around a Herbig Be star over the wavelengh range from 2 to 13µm.

The archivalSpitzer-IRS spectra show distinct PAH line features which were not detected in the

spatially filtered MIDI spectrum, indicating that the PAHs originate in the outer disk or envelope. Also,

the MIDI uncorrelated spectra exhibit that the strength of the silicate feature decreases with baseline

length which can be interpreted in the context of grain growth towards the inner disk regions.
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6.7 Conclusions

The interferometric data obtained from the PTI archive and with VLTI /AMBER suggest a diameter

of just� 1.3 AU (Gaussian FWHM) for the NIR emitting region, while the MIR structure is about a

factor of 7 more extended (9 AU at 11µm). Within theK-band, we measured a significant increase of

size with wavelength. A comparison of the wavelength-dependence of the characteristic size with the

predictions from commonly used disk models with a simple temperature power-law indicate that these

analytic models do significantly underestimate the size of the emitting region at MIR wavelengths. To

test whether more realistic physical models of the circumstellar dust environment yield better agreement,

we employed 2-D radiative transfer modeling. The radiativetransfer models were constructed to fit

the SED from 0.3 to 450µm, including an extended envelope and an inner shell/dust disk geometry.

Beside flared Keplerian disks without puffed-up inner rim, we also examined the case where the rim at

the dust sublimation radius of this disk is puffed-up as parametrized byDullemond et al.(2001). To

refine the shape of the rim in our radiative transfer models, we have used an iterative approach, also

taking the density-dependence of the dust sublimation temperature into account. While such models

of passive irradiated disks are able to reproduce the SED, they are in conflict with the interferometric

observables, significantly overestimating the size of boththe NIR and MIR emission. Therefore, we

incorporated accretion luminosity, emitted from a gaseousinner disk, in our radiative transfer models,

yielding significantly better agreement both with the SED and the interferometric data. The best-fit was

obtained with a flared Keplerian disk without puffed-up inner rim, which is seen under an inclination of� 45�, extending out to 100 AU, and exhibiting a mass accretion rate of 1.2� 10�5 Mdyr�1.

Shell geometries result in a poor fit to the interferometric data, as they cannot reproduce the asymme-

try inherent in particular in the measured MIDI visibilities. Furthermore, they significantly overestimate

the size of the NIR emitting region.

Our detailed study suggests that infrared long-baseline interferometry, especially if combined with

spectroscopic observations, has outgrown the stage of a pure size-estimating technique and is able to

provide unique constraints on the geometry and density profile of the circumstellar environment and

the active accretion processes in the innermost region of YSO circumstellar disks. To obtain physically

meaningful results, a proper treatment of a large variety ofphysical effects, e.g. dust scattering, dust

sublimation, and gas accretion is required, demanding rather complex radiative transfer modeling.
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Table 6.6: Parameters and fitting results for our 2-D radiative transfer models.

SHELL KEPLER PUFFED-UP-RIM KEPLER PUFFED-UP-RIM
& Accretion & Accretion

(Fig. 6.10) (Fig. 6.11) (Fig. 6.12) (Fig. 6.13) (Fig. 6.14)
Outer radius [AU] 100 100 100 100 100
Dust density at 10 AU [g�cm�3] 1.2� 10�23 – – – –
Disk dust mass [Md] – 5.0� 10�12 4.0� 10�11 8.0� 10�11 4.0� 10�10

Grain Size Small Small Small Small & Large Small & Large
Radial power lawα 1.5 1.5 1.5 1.5 1.5
Vertical power lawβ – 1.175 1.175 1.175 1.175
Mass accretion rate [Mdyr�1] – – – 1.2� 10�5 9.0� 10�6

Inclination – 45� 45� 45� 45�
Best fit PA – 50� -50� 60� 90�
χ2

r NIR 279.5 204.9 181.0 3.5 21.9
χ2

r MIR 49.7 4.3 4.8 2.4 3.2

χ2
r total 93.2 42.2 38.1 2.6 6.7

Extended Envelope –For all models we include an extended outer envelope in orderto fit the MIR to FIR SED (see Sect.6.6.5.1). The
envelope is composed of small dust grains, with a density distributionρ 9 r�1{2 with ρ0 � 1.8� 10�25 g�cm�3 at r0 � 10 AU (see equation
6.4). The inner radius was set to 1.8 AU, consistent with a dust sublimation temperature of 1 500 K, whereas the outer cutoff radius
rcutoff � 50 000 AU was chosen such that the dust temperature drops below 10 K.
Dust Composition –Mixture of warm silicates (Ossenkopf et al. 1992) and amorphous carbon (Hanner 1988). The size distribution follows
npaq 9 a�3.5. ForSmall Grainswe chooseamin � 0.005µm andamax� 1.0 µm, whereas forLarge Grainswe useamin � 1.0 µm and
amax� 1000µm.
Minimum Dust Density – For all models, we assume a minimum dust density of 10�27 g�cm�3.
Inner Gaseous Accretion Disk –The inner accretion disk is modeled to be optically thick andto extend from 5 to 50RÆ.



Spherical Model (χ2
r=93.2)
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Figure 6.10: Radiative transfer model computed for MWC 147 assuming aSpherical Shell geometry. For the
model parameters see Table6.6. In aq andbq, we show the dust density distribution and temperature for the small
(left) and large (right) dust grain population.cq and dq shows the raytraced images for two representive NIR
(2.25 µm) and MIR (10.0 µm) wavelengths. In order to increase the dynamic range in these images, the direct
stellar flux is skipped in the raytraced images and later introduced again in the visibility computation.eq shows the
SED for various inclination angles, whereasf q gives the SED for 45� and separates the flux which originates in
stellar photospheric emission, thermal emission, dust irradiation, and accretion luminosity. Finallygq andhq depict
the NIR and MIR visibilities computed from our radiative transfer models.



Flared Keplerian Disk (χ2
r=42.2)

aq Dust density distribution bq Dust temperature
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Figure 6.11: Similar as Figure6.10, but showing the radiative transfer model for aFlared Keplerian disk geome-
try without pu ffed-up inner rim .



Flared Keplerian Disk with puffed-up rim (χ2
r=38.1)

aq Dust density distribution bq Dust temperature

cq Image K-band dq Image N-band
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Figure 6.12: Similar as Figure6.10, but showing the radiative transfer model for aFlared Keplerian disk geome-
try with pu ffed-up inner rim .



Flared Keplerian Disk & Gaseous Accretion Disk (χ2
r=2.6)
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Figure 6.13: Similar as Figure6.10, but showing the radiative transfer model for aFlared Keplerian disk geome-
try without pu ffed-up inner rim, including accretion.



Flared Keplerian Disk with puffed-up rim & Gaseous Accretion Disk (χ2
r=6.7)
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Figure 6.14: Similar as Figure6.10, but showing the radiative transfer model for aFlared Keplerian disk geome-
try with pu ffed-up inner rim, including accretion.





7 Signatures of Outflow Precession from

the Young High-Mass Star NGC 7538 IRS1

Based on an article which appeared in A&A:

Kraus, S., Balega, Y. Y., Elitzur, M., et al., A&A 455, 521 (2006)

7.1 Overview and Context

Figure 7.1: Color composite image of the NGC 7538 star forming

region (Image Credit: McCoughrean).

NGC 7538 IRS1 is a particularly

young high-mass (O7-type) proto-

star which is still deeply embed-

ded in its natal cloud, making the

site nearly invisible at visual wave-

lengths. Since the discovery of a

strong methanol maser feature to-

wards IRS1 byMenten et al.(1986),

the site has gained a lot of atten-

tion from the radioastronomy com-

munity. Later, VLBI observations re-

vealed that the methanol masers are

linearly aligned and might trace a

Keplerian-rotating circumstellar disk

(Pestalozzi et al. 2004). The rel-

atively early evolutionary stage of

NGC 7538 IRS1 (Class I) is also sup-

ported by the presence of an ultracompact H region and a CO outflow. Surprisingly, the various asso-

ciated axes are misaligned with each other.
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Chapter 7 Signatures of Outflow Precession from the Young High-Mass Star NGC 7538 IRS1

To investigate the NIR morphology of the source at high angular resolution and to clarify the relations

among the various axes, our group performed speckle interferometric observations on NGC 7538 IRS1

at the Russian BTA 6m telescope and at the 6.5m MMT. Our high-dynamic range images show a fan-

shaped outflow structure in which we detect 18 stars and several blobs of diffuse emission. Complemen-

tary IRAC images from theSpitzerSpace Telescope Archive were used to relate the detected outflow

with structures at larger scales.

We interpret the misalignment of various outflow axes in the context of a disk precession model,

including numerical hydrodynamic simulations of the molecular emission. The precession period is� 280 years and its half-opening angle is� 40�. A possible triggering mechanism is non-coplanar tidal

interaction of an (undiscovered) close companion with the circumbinary protostellar disk.

In addition, our observations resolve the nearby massive protostar NGC 7538 IRS2 as a close binary

with separation of 195 mas. We find indications for shock interaction between the outflow activities in

IRS1 and IRS2. Finally, we find prominent sites of star formation at the interface between two bubble-

like structures in NGC 7538, suggestive of a triggered star-formation scenario. To date, indications of

outflow precession have been discovered in a number of massive protostars, all with large precession

angles (� 20–45�). This might explain the difference between the outflow widths in low- and high-mass

stars and add support to a common collimation mechanism.

The reconstruction of the bispectrum speckle images was done by Karl-Heinz Hofmann. I was re-

sponsible for theSpitzer-related data processing, the scientific interpretation and modeling, and the

illustration and writing of major parts of the manuscript. The molecular hydrodynamics simulation and

its description in Sect.7.5.4.4was kindly contributed by Alex Rosen. Very valuable input concerning

the proper interpretation of the maser data was provided by Moshe Elitzur at discussions during his visits

at the MPIfR. In this context, I would also like to note the telephone conferences of theNGC 7538 Col-

laboration, which included: Roy Booth, John Conway, James De Buizer, Moshe Elitzur, Stefan Kraus,

Vincent Minier, Michele Pestalozzi, and Gerd Weigelt.

7.2 Introduction

Protostellar disks and outflows are essential constituentsof the star formation process. For high-mass

protostellar objects (HMPOs), direct evidence for the presence of compact circumstellar disks is still

rare, whereas outflows seem to be omnipresent in the high-mass star forming regions. Outflows remove

not only angular momentum from the infalling matter, but also help to overcome the radiation pressure

limit to protostellar accretion by carving out optically thin cavities along which the radiation pressure

can escape (Krumholz et al. 2005).

How outflows are collimated is a matter of ongoing debate and may depend on the stellar mass of the
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7.2 Introduction

outflow-driving source. One of the arguments in support of this conclusion is that outflows from high-

mass stars appear less collimated than the outflows and jets from their low-mass counterparts (Wu et al.

2004). Therefore, it has been suggested that outflows from HMPOs might be driven by strong stellar

winds, lacking a recollimation mechanism. Since HMPOs typically form in dense clusters, another

possibility is confusion by the presence of multiple collimated outflows.

However, since there is evidence that the binary frequency is significantly higher for high-mass than

for low-mass stars (e.g.,Preibisch et al. 1999), another possibility is that outflows from HMPOs simply

appear wider, assuming they undertake precession. A few cases where outflow precession have been

proposed for HMPO outflows (e.g.Shepherd et al. 2000; Weigelt et al. 2002, 2006) show precession

angles of� 20 to 45�; considerably wider than the jet precession angles of typically just a few degrees

observed towards low-mass stars (Terquem et al. 1999). This is in agreement with the general picture

that high-mass stars form at high stellar density sites and therefore experience strong tidal interaction

from close companions and stellar encounters.

The detection of precessing jet-driven outflows from HMPOs adds support to the hypothesis of a

common formation mechanism for outflows from low to high-mass stars. Furthermore, jet precession

carries information about the accretion properties of the driving source and, simultaneously, about the

kinematics and stellar population within its closest vicinity, yielding a unique insight into the crowded

places where high-mass star formation occurs.

In this study, we report another potential case of outflow precession concerning the outflow from the

high-mass (30Md, Pestalozzi et al. 2004) protostellar object NGC 7538 IRS1.

We obtained bispectrum speckle interferometry of IRS1 and IRS2, which provides us with the spa-

tial resolution to study the inner parts of the outflow, detecting filigreed fine structure within the flow.

Information about even smaller scales is provided by the intriguing methanol maser feature, which was

detected at the position of this infrared source and which was modeled successfully as a protostellar

disk in Keplerian rotation (Pestalozzi et al. 2004). To search for outflow tracers on larger scales, we also

present archivalSpitzer/IRAC images. In addition, this allows us to relate the sources studied with bis-

pectrum speckle interferometry with the overall star forming region and we find new hints for triggered

star formation in this region.

7.2.1 Previous studies of NGC 7538

The NGC 7538 molecular cloud is located in the Cas OB2 association in the Perseus spiral arm at a

distance of� 2.8 kpc (Blitz et al. 1982). Several authors noted that NGC 7538 might present a case

of triggered or induced star formation since it shows ongoing star formation at various evolutionary
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Chapter 7 Signatures of Outflow Precession from the Young High-Mass Star NGC 7538 IRS1

stages, apparently arranged in a northwest (most developed) to southeast (youngest evolutionary stage)

gradient (McCaughrean et al. 1991).

At optical wavelengths, the appearance of the region is dominated by diffuse H emission, which

extends several arcminutes from the southeast to the northwest (Lynds & O’Neil 1986). In 1974,Wynn-

Williams, Becklin, & Neugebauerdetected eleven infrared sources (IRS1-11) in the NGC 7538 region,

wherein IRS1–3 are located on the southeast-corner of the fan-shaped H emission in a small cluster of

OB-stars. IRS1 is the brightest NIR source within this cluster and is embedded within an ultracompact

(UC) H  region whose size was estimated to be� 0.24 (ne � 105 cm�3, measured in 5 and 15 GHz

CO continuum,Campbell 1984). The spectral type was estimated to be O7 (Akabane & Kuno 2005),

which implies a luminosity� 9.6�104Ld. VLA observations with a resolution down to 0.21 (=180 AU)

also revealed a double-peaked structure of ionized gas within the UC core (peaks separated by� 0.22),

which was interpreted as a disk collimating a north-south-orientedoutflow (Campbell 1984; Gaume et al.

1995). This interpretation is also supported by the detection ofelongation of the dust-emitting region

at mid-infrared (MIR) wavelengths (5µm: Hackwell et al. 1982; 11.7µm and 18.3µm: De Buizer &

Minier 2005) and imaging studies performed in the sub-millimeter continuum (350µm, 450µm, 800µm,

850µm, 1.3 mm:Sandell & Sievers 2004, showing an elliptical source with a size of� 11.26�7.26 along

PA1 � �80�) and CO line emission (Scoville et al. 1986, showing a disk-like structure extending� 222
in the east-west direction). Also, polarization measurements of the infrared emission around IRS1 can

be construed in favor of the disk interpretation (Dyck & Capps 1978; Tamura et al. 1991). Kawabe et al.

(1992) carried out interferometric CS (J=2 Ñ 1) observations and found a ring-like structure, which

they interpret as a nearly face-on protostellar disk of dense molecular gas.

Further evidence for outflow activity was found byGaume et al.(1995), who measured the profile

of the H66α recombination line and derived high velocities of 250 km s�1, indicating a strong stellar

outflow from IRS1. CO (J=1 Ñ 0) spectral line mapping showed a bipolar flow (Fischer et al. 1985).

The mass outflow rate9Moutflow from IRS1 was estimated to be� 5.4�10�3 Md yr�1 (Davis et al. 1998).

Interferometric observations byScoville et al.(1986, beam size 72) show that the blue and red-shifted

lobes are separated by 282 with a position angle of�45�, and IRS1 is located on this axis just between

the lobes of this high-velocity (�76 to�37 km s�1) CO outflow. In comparing the data obtained with

various beam sizes (Campbell 1984; Kameya et al. 1989), these seem to indicate a change in the position

angle of the flow direction at different spatial scales, ranging from PA� 0� at 0.23, PA� �25� at 22,
PA� �35� at 72, to PA�40� at 162.

Within the immediate (� 0.25) vicinity of IRS1, a large variety of masers has been discovered, includ-

ing OH (Dickel et al. 1982), H2CO (formaldehyde,Rots et al. 1981; Hoffman et al. 2003), NH3 (am-

monia, Madden et al. 1986), CH3OH (methanol, five features A, B, C, D, E were detected at 6.7

and 12.2 GHz: Menten et al. 1986; Minier et al. 1998, 2000), 15NH3 (Johnston et al. 1989), and

1Following the convention, we measure the position angle (PA) from north to east.
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H2O (Kameya et al. 1990). Some of the masers show only vague signs for a systematic alignment

within linear (15NH3, PA� �60�) or ring-like structures (H2O, methanol-maser feature E). However,

the methanol-maser feature A represents one of the most convincing cases of systematic alignment, in

both linear spatial arrangement (PA� �62�) and well-defined velocity gradient, observed to date in any

maser source. The qualitative interpretation of this structure as an edge-on circumstellar disk (Minier

et al. 1998) was later confirmed by the detailed modeling ofPestalozzi et al.(2004), which showed that

the alignment in the position–line-of-sight (LOS) velocity diagram of maser feature A can be modeled

accurately assuming a protostellar disk with Keplerian rotation.

Aiming for a more complete picture, several authors (e.g.Minier et al. 1998; De Buizer & Minier

2005) also tried to incorporate the presence of methanol maser features B, C, D, and E in the circumstel-

lar disk model for feature A and interpreted them as part of anoutflow which is oriented perpedicular

to feature A. Since these maser features are southwards of the putative circumstellar disk, it remains un-

clear why they appear blue-shifted with respect to feature A(Minier et al. 1998), whereas the southern

lobe of the CO-outflow is red-shifted.

Besides the circumstellar disk interpretation for the origin of the maser feature A mentioned above, an

alternative scenario was proposed byDe Buizer & Minier (2005), who suggested that feature A might

trace the walls of an outflow cavity.

The region was also intensively observed in the infrared. Survey images of the infrared continuum

emission were presented byCampbell & Persson(1988, H, K) andOjha et al.(2004, J, H, Ks) and

showed diffuse emission, which extends from the IRS1–3 cluster in a fan-shaped structure towards the

northeast and north, approximately tracing the optical H region. The northeast border of this NIR

emitting region also appears very pronounced in the continuum-subtracted H2 2.122µm maps byDavis

et al. (1998), possibly tracing the illuminated surfaces of nearby molecular clouds or the inner walls

of a vast outflow cavity. Furthermore,Davis et al.(1998) discovered two bowshock-shaped structures,

centered roughly on the IRS1–3 cluster and orientated againalong the northwest–southeast direction

(PA� �30�) in H2 2.122µm. With imaging at arcsecond resolution and the use of several spectral filters

(J, H, K, [Fe II] 1.65µm, Brγ 2.165µm, H2 2.122µm, and 3.29µm), Bloomer et al.(1998) attempted

to identify the source and mechanism of the outflow. Based on acometary-shaped morphology in the

[Fe II] line images and shell-like rings observed in theJ, H, andK-bands, these authors propose a stellar

wind bowshock model in which the motion of IRS2 relative to the molecular cloud produces the diffuse

NIR emission within the vicinity of the IRS1–3 cluster.

The firstK-band speckle images, taken with the 3.5 m-telescope on Calar Alto were presented byAl-

varez et al.(2004) and showed substructure in the vicinity of IRS1; namely, two strong blobs (A,

PA� �45�; B, PA� �70�), a diffuse emission feature (C, PA� 0�) as well as several faint point-like

sources (a- f ).
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7.3 Observations

7.3.1 Bispectrum speckle interferometry

The first set of observations was performed on 2002-09-24 using the 6.0 m BTA (Big Telescope Alt-

azimuthal) telescope of the Special Astrophysical Observatory located on Mt. Pastukhov in Russia.

Additional data were gathered 2004-12-20 with the MMT (Multiple Mirror Telescope) on Mt. Hopkins

in Arizona, which harbors a 6.5 m primary mirror. As detector, we used at both telescopes one 512�512

pixel quadrant of the Rockwell HAWAII array in our speckle camera. All observations were carried out

using aK’ -band filter centered on the wavelength 2.12µm with a bandwidth of 0.21µm. During the

BTA observation run, we recorded 420 speckle interferograms on NGC 7538 IRS1 and 400 interfero-

grams on the unresolved star BSD 19-901 in order to compensate for the atmospheric speckle transfer

function. The speckle interferograms of both objects were taken with an exposure time of 360 ms per

frame. For the MMT observations, the star 2MASS 23134580+6124049 was used for the calibration

and 120 (200) frames were recorded on the target (calibrator) with an 800 ms exposure time. The

modulus of the Fourier transform of the object (visibility)was obtained with the speckle interferome-

try method (Labeyrie 1970). For image reconstruction we used the bispectrum speckle interferometry

method (Weigelt 1977, Weigelt & Wirnitzer 1983, Lohmann et al. 1983, Hofmann & Weigelt 1986).

With pixel sizes of 27.0 mas (BTA) and 28.7 mas (MMT) on the sky, the reconstructed images possess

fields of views of 13.28 (BTA) and 13.21 (MMT), respectively.

We found that the BTA data allows the highest spatial resolution (and is therefore perfectly suited for

the identification of point-sources within the field), whereas the image reconstructed from the MMT data

allows a high dynamic range in the diffuse emission. Therefore, we show the diffuse emission within an

image of moderate resolution (reconstructed from MMT data,see Figure7.2a) and perform point-source

identifications within the higher resolution image reconstructed from BTA data (Figure7.2b). In order to

distinguish point-sources and diffuse structures reliably, we reconstructed images of various resolutions

(146 mas, 97 mas, 72 mas) and carefully examined changes in the peak brightness of the detected

features. Whereas for point-sources the peak brightness increases systematically, it stays constant or

decreases for diffuse structures.

To perform an absolute calibration of the astrometry in our images, we measured the position of

IRS1 and IRS2 in the Two Micron All Sky Survey (2MASS)Ks Atlas images and use the determined

absolute positions as reference for our astrometry. We estimate that the accuracy reached in the relative

astrometry is� 0.21. The absolute calibration introduces further errors (� 0.22).
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7.3 Observations

a) MMT speckle image (334 mas resolution, 2004-12-20)

b) BTA speckle image (146 mas resolution, 2002-09-24)

Figure 7.2: Bispectrum
speckle images (K1-band)
reconstructed from data taken
with aq the 6.5m MMT andbq
the 6m BTA telescope. To show
the weak emission features, the
intensity of IRS1 was clipped
to 2% of the total flux. Within
the high-resolution imagepbq,
speckle-noise artifacts appear
around IRS1 (marked with a
circle). These weak features
represent small distortions of
the point-spread-function (PSF)
on the 1%-level and do not
influence the reliability of the
identification of point sources
within the image. The absolute
coordinates of IRS1 areα �23h

13m 45.s35 and δ ��61� 281
10.284 (J2000, determined from
2MASS, accuracy� 0.25).
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Figure 7.3: Figure a) shows the Spitzer/IRAC 4.5 µm image with the position of the infrared sources
(IRS1 to 11 and 2MASS sources) and H2O masers marked. Furthermore, the position of the sub-millimeter
(450 µm and 850 µm) clumps reported byReid & Wilson (2005) are shown. The position of the
2MASS sources 2MASS 23135808+6130484, 2MASS 23131660+6128017, 2MASS 23134351+6129372,
2MASS 23144651+6129397, 2MASS 23131691+6129076, 2MASS 23130929+6128184, and
2MASS 23133184+6125161 are labeled explicitly.

7.3.2 Spitzer /IRAC Archive data

In order to relate our high-resolution images with the morphology of the NGC 7538 molecular cloud at

large scales, we examined archival 3.6, 4.5, 5.8, and 8.0µm images (PI: G. G. Fazio), taken with the

Infrared Array Camera (IRAC,Fazio et al. 2004) on theSpitzerSpace Telescope. The four bands are

recorded simultaneously using two InSb (3.6µm, 4.5µm) and two Si:As (5.8µm, 8.0µm) detectors. The

central wavelengths and bandwidths of the IRAC bands (Hora et al. 2004) are 3.56µm (∆λ � 0.75µm),

4.52µm (∆λ � 1.01 µm), 5.73µm (∆λ � 1.42 µm), and 7.91µm (∆λ � 2.93 µm). Each image

consists of 256� 256 pixels, corresponding to a� 51 � 51 field-of-view on the sky. The data used

include 48Spitzerpointings taken on 2003 December 23 in the High Dynamic Range(HDR) mode. In

HDR mode, for each pointing, images are taken with two exposure times (0.6 s and 12 s) in order to

—106—



7.3 Observations

IRAC color composite: 3.6/4.5/5.8µm

Figure 7.4: Color-composite produced from the 3.6µm (blue), 4.5µm (green), and 5.8µm (red) IRAC bands. The
intensity of each image was scaled logarithmically. North is up and east to the left.
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IRAC color composite: 3.6/4.5/8.0µm

Figure 7.5: Color-composite produced from the 3.6µm (blue), 4.5µm (green), and 8.0µm (red) IRAC bands. The
intensity of each image was scaled logarithmically. North is up and east to the left.
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record both bright and faint structures. However, the two brightest sources, IRS1 and IRS9, are saturated

even within the 0.6 s exposure.

We used themopexsoftware (2005-09-05 version), released by the Spitzer Science Center (SSC),

to process both the long and short exposure images. Beside the basic calibration steps applied by the

Basic Calibrated Data (BCD) pipeline (S11.0.2), we performed Radhit detection, artifact masking, and

pointing refinement. Finally we generated a mosaic in which the saturated pixels of the long exposure

image were replaced by the corresponding pixels of the 0.6 s exposure. The optical design of IRAC

induces a shift of� 6.18 between the 3.6/5.8 µm and 4.5/8.0 µm pointings, leaving an overlap of 5.11
between all four bands.

In Figures7.4 and7.5, color composites of the 3.6/4.5/5.8µm and 4.5/5.8/8.0µm band images are

shown.

The diffuse emission in three of the four IRAC bands is dominated by Polycyclic Aromatic Hydrocar-

bons (PAHs,Churchwell et al. 2004), which trace the border of regions excited by the UV photonsfrom

HMPOs particularly well. Contributions are also expected from several vibrational levels of H2 (Smith

& Rosen 2005b), atomic lines, CO vibrational bands, and thermal dust grain emission.

7.4 Results

7.4.1 Bispectrum speckle interferometry: Small-scale str uctures around

IRS1/2

7.4.1.1 IRS1 Airy disk elongation and diffuse emission

In our speckle images, the Airy disk of IRS1 itself appears asymmetric, being more extended towards

the northwest direction (PA� �70�, see Figure7.2b and inset in the lower left of Figure7.6). In the

same direction (PA� �60�), we find two strong blobs (A, B� B1) of diffuse emission at separations of� 12 and 22. These blobs and additional diffuse emission seem to form a conical (fan-shaped) region

with a 90� opening angle extending from IRS1 towards the northwest.
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Figure 7.6: Bispectrum speckle image with identified point sources (triangles) atop marked. The astrometry for the
point-sources was performed using the high-resolution BTAimage, whereas the image shown was reconstructed
from MMT data. The contours trace 0.25%, 0.5%, 0.75%, 1.0%, 1.25%, and 1.5% of the peak intensity. The inset
on the upper left shows a reconstruction of the vicinity of IRS2 using a resolution of 80 mas (BTA data). In the
lower left, IRS1 is shown using a different color table, emphasizing the elongation of the IRS1 Airy disk (MMT
data) overplotted with the 15 GHz radio continuum (the contours show -1, 1, 2.5, 5, 10, 20, ..., 90% of the peak
flux) and the position of the OH (circles) and methanol (crosses) masers (image fromHutawarakorn & Cohen 2003
using data fromGaume et al. 1995). In the lower right we show the integrated brightness of themethanol masers as
presented byPestalozzi et al.(2004, contour levels of 1, 3, 5, 10, 30, 50, 70, and 90% of the peak flux density are
shown).
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Table 7.1: NGC 7538 IRS1 outflow directions reported for various tracers.

Tracer Structure Beam Size Scale PA of Dynamical Ref. Comments
[2] [2] outflow Agef (Velocities in [km s�1])

direction [�] [103 yrs]
Methanol masers 0.03c +19a,d – [8] see Fig.7.6
1.0 cm cont. inner core. 0.25 0.13 0.4 +0a   0.03 [9] te � 0.15 yrse

1.3 cm cont. inner core. 0.24 0.11 0.4 +0a   0.02 [5]
6.0 cm cont. inner core. 0.275 0.35 0.4 +0   0.04 [1]
1.0 cm cont. outer core& 0.25 0.13 1.0 -25a ¡ 0.03 [9] te � 0.3 yrse

1.3 cm cont. outer core& 0.24 0.11 1.0 -25a ¡ 0.02 [5]
6.0 cm cont. outer core& 0.275 0.35 1.0 -15 ... -20 ¡ 0.04 [1]
6.0 cm cont. outer core& 0.25 0.4 1.0 -25a ¡ 0.03 [9]
MIR 11.7µm IRS1 Elongation 0.43 3 -45 0.16 [10] see Fig.7.10k
MIR 18.3µm IRS1 Elongation 0.54 4 -45 0.16 [10] see Fig.7.10l
NIR K’ -band IRS1 Elongation 0.3 0.6 -78 0.03 – see Fig.7.6
NIR K’ -band feature A 0.3 1.6 -65 0.08 – see Fig.7.6
NIR K’ -band feature F 0.3 2.1 -33 0.11 – see Fig.7.6
NIR K’ -band feature B 0.3 3.0 -39 0.16 – see Fig.7.6
NIR K’ -band feature B’ 0.3 3.3 -57 0.18 – see Fig.7.6
NIR K’ -band feature C 0.3 4.8 +6 0.25 – see Fig.7.6
NIR K’ -band feature E 0.3 6.2 -20 0.33 – see Fig.7.6
NIR K’ -band feature D 0.3 7.4 +10 0.39 – see Fig.7.6
NIR K’ -band eastern wall 0.3 – +25 – – see Fig.7.6
NIR K’ -band western wall 0.3 – -65 – – see Fig.7.6
[Fe II] 1.65µm 1 15a N-Sa 0.8 [7] around IRS2; see Fig.7.10i
H2 northern bow 30a N-S 1.5 [6]
H2 1 27a -25a 1.4 [7] shell-like structure; see Fig.7.10i
H2 southern bow 45a 155a 2.3 [6] see Fig.7.10h



Table 7.1– Continued

Tracer Structure Beam Size Scale PA of Dynamical Ref. Comments
[2] [2] outflow Agef (Velocities in [km s�1])

direction [�] [103 yrs]
CO low velocities 7 5a,b E-W 0.9 [3] �11  Ṽb   �6; 2  Ṽr   9; see Fig.7.10g
CO high velocities 7 15b -35 15 [3] �17  Ṽb   �11; 9  Ṽr   15; see Fig.7.10g
CO 34 18b -50a 15 [2] �24  Ṽb   �8; 9  Ṽr   22
CO 16 13a,b -40 14 [4] �14  Ṽb   �9; 11  Ṽr   16; see Fig.7.10f
CO 45 12a,b -50a 10 [3] �24  Ṽb   �8; 9  Ṽr   22

Note –Ṽr andṼb are measured relative to the velocity of methanol maser feature A (Ṽ � V � 56.25 km s�1)
a Estimated from figures presented within the reference paper; therefore, with limited accuracy.
b The half-separation between the red- and blue-shifted CO lobe is given.
c For VLBI observations, we give the estimated error on the absolute position of the measured maser spots.
d The expected outflow direction is given; i.e., perpendicular to the measured orientation of maser feature A.
e Electron recombination time given in the reference paper.
f Assuming an outflow velocity of 250 km s�1, which was measured byGaume et al.(1995) within the H66α recombination line. For

the CO emission, we also use the measured CO outflow velocity and provide the corresponding dynamical age in brackets. Since all
velocities are measured along LOS, this timescale can only provide upper limits.
References: [1]Campbell(1984); [2] Fischer et al.(1985); [3] Scoville et al.(1986); [4] Kameya et al.(1989); [5] Gaume et al.(1995);
[6] Davis et al.(1998); [7] Bloomer et al.(1998); [8] Minier et al.(2000); [9] Franco-Hernández & Rodrı́guez(2004); [10] De Buizer &
Minier (2005)
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Figure 7.7: By mea-
suring the speckle
noise around the PSF
of IRS1, we can rule
out binarity of IRS1 on
a 3σ-level as a function
of apparent separation
and intensity ratio.

A careful examination of the power spectrum of IRS1 has shownthat the detected asymmetry of

IRS1 is not caused by a companion, but seems to represent diffuse emission. Therefore, we can rule out

a close binary system of similar-brightness components down to the diffraction limit of� 70 mas. For

the case of a binary system with components of significantly different brightnesses, we can put upper

limits on the brightness of the hypothetical companion as a function of the projected binary separation

(see Figure7.7).

The PA of the elongation of the Airy disk is similar to the PA ofK’ blobsA, B, andB1. Another strong

feature (C) can be seen towards PA� 0�. The blobs seem to be connected by a bridge of diffuse emission

extending from featureB to C. Overall, the diffuse emission seems to form a fan-shaped region which

is extending from IRS1 towards the northwest with an openingangle of nearly 90� . We identified some

further features and list their position angles and separations in Table7.1. The directions, which were

reported for various outflow tracers, are also listed in thistable and illustrated in Figure7.8.

Our featuresA, B� B1, andC appear to coincide with the featuresA, B, andC identified byAlvarez

et al.(2004). A comparison suggests that featuresA� B� B1, C, D correspond to the peaks 1W, 1N,

and 1NW in Tamura et al.(1991).

7.4.1.2 Binarity of NGC 7538 IRS2

IRS2 appears resolved as a close binary system. Using an image reconstructed from BTA data with

a spatial resolution of 80 mas (see inset in the upper-left corner of Figure7.6), we determined the

separation to be 195 mas and found a PA of�123� for the 1.m9 fainter companion (2002-09-24). We

designate the brighter component in theK’ -band as IRS2a and the fainter as IRS2b.
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Figure 7.8: Illustration showing the outflow directions in the various tracers. The CO contours byKameya et al.
(1989, red and blue) are overlaid on the H2 map (greyscale) byDavis et al.(1998). The orientation of the conjectural
methanol maser disk (green), the fan-shaped structure detected in ourK’ -band image (orange), and the averaged
direction of H2 (red arcs) are shown schematically. The arrows indicate thedirection prependicular to the alignment
of the methanol masers (green), the orientation of the inner(  0.52) and outer (¡ 0.52) core detected in the 1.0, 1.3,
and 6.0 cm radio continuum (white), and the direction along which the IRS1 Airy disk was found to be elongated
(MIR: De Buizer & Minier 2005; NIR: this study).
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Table 7.2: Point sources identified in our speckle images. For details about IRS1 and the binary system IRS2a/b,
we refer to the text. We identify componentsa to f with the stars already discovered in the image byAlvarez et al.
(2004).

Name RA (J2000)a DEC (J2000)a K’ Magnitudeb Comment
a 23h 13m 45.s33 61� 281 21.202 10.m94
b 44.s81 10.263 11.m29
c 44.s95 12.233 11.m46
d 45.s11 09.269 11.m73
e 45.s37 15.212 11.m77 embedded in featureC
f 45.s34 15.293 11.m73 embedded in featureC
g 45.s36 14.280 11.m73 embedded in featureC
h 45.s31 14.272 11.m86
i 45.s29 13.274 11.m71
j 45.s27 13.225 11.m73
k 45.s25 13.205 11.m81
l 45.s24 13.228 11.m83
m 45.s22 12.271 11.m71
n 45.s36 12.299 11.m75
o 45.s50 10.250 11.m60
p 45.s29 18.242 11.m73
q 45.s16 19.269 11.m77
r 45.s33 08.248 11.m71

a For the astrometry, the relative errors are of the order of 0.21. The absolute calibration using the
reference position of IRS1 in 2MASS introduces further errors (0.22).

b The photometry was done relative to IRS1 with an uncertaintyof 0.m3. For the conversion to
absolute photometry, we assumed a IRS1 magnitude of 8.m9 (Ojha et al. 2004).

7.4.1.3 Detection of fainter cluster members

Besides IRS1 and IRS2a{b, we were able to identify 18 additional fainter point-like sources (a-r) within

the BTA image, whose positions andK’ -band magnitudes are listed in Table7.2.

In order to test whether these sources are physically related to NGC 7538, one can compare the stellar

number density for the brightness range 11.m0 to 12.m0 in our speckle image,NSpeckle� 18{128 arcsec2 �
2.1�106{deg2, with the number expected from the cumulativeK-band luminosity function (KLF) of the

NGC 7538 field2 Nfield � 1.8�103{deg2. Although these number densities were obtained with different

spatial resolution, the clear over-density of stars in our speckle image is significant and we conclude that

most of the detected stars are likely members of the NGC 7538 star forming region. When using the

KLF for the IRS 1-3 region instead of the whole NGC 7538 field, the stellar over-density in our speckle

image becomes even more evident (NIRS1�3 cluster� 1.4� 103{deg2). Since these stars are about 5 to

2TheK-band luminosity function byBalog et al.(2004) for the whole NGC 7538 region, corrected with the on-cluster KLF, and
cumulated for the magnitude range 11.m0 to 12.m0 was used.
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6 magnitudes fainter than IRS1, they are likely to be part of the associated intermediate mass stellar

population.

The arrangement of the stars within the fan-shaped nebula does not appear to be random, but follows

theS-structure of the diffuse blobs (see Figure7.6). Most remarkable, more than half of the stars seem

to be aligned in a chain reaching from featureB to C (PA� 45�). Within the diffuse blobs close to IRS1

(A, B, B1), no stars were found, whereas embedded in blobC, three stars could be detected.

7.4.2 Spitzer /IRAC: Morphology at large spatial scales

Imaging of NGC 7538 at optical wavelengths showed that diffuse emission can mainly be found in the

vicinity of IRS5 (Lynds & O’Neil 1986). At NIR wavelengths (Ojha et al. 2004), a diffuse structure can

be found extending from the IRS1-3 cluster towards the northwest with the strongest emission around

IRS5.

The Spitzer/IRAC images reveal a more complex, bubble-like structure (see Figures7.4 and7.5),

whose western border is formed by a pronounced ridge-like filament connecting IRS1-3 with IRS4

and reaching up to IRS5 (see Figure7.3). At the western border of the bubble a wide conical struc-

ture is located, with a vertex on 2MASS 23135808+6130484. Another conical structure can be de-

tected close to the northern border of the bubble. Several other outflow structures can be found in the

IRAC image; most noteworthy, the unidirectional reflectionnebula around 2MASS 23144651+6129397,

2MASS 23131691+6129076, and 2MASS 23130929+6128184 (see Figure7.3).

The sources 2MASS 23131660+6128017 and 2MASS 23133184+6125161 appear to be embedded in a

shell-like cloud.

Besides the position of the strongest NIR sources, Figure7.3 shows also the position of the submil-

limeter (450µm, 850µm) clumps reported byReid & Wilson(2005). These clumps trace the filaments

and knots of the bubble, which can be seen in the IRAC images, very well. Besides this, the submillime-

ter clumps suggest another bubble-like structure to the southwest of IRS4 (see also the images inReid &

Wilson 2005). This bubble seems to be invisible at near- and mid-infrared wavelengths, although several

NIR sources are located on its border (2MASS 23130929+6128184, 2MASS 23133184+6125161).

As already pointed out byReid & Wilson (2005), it is interesting to compare the position of the

detected H2O masers with the position of the centers of high-mass star formation in the region and to

find agreement in many cases (IRS1–3, IRS9, NGC 7538S). However, as can be seen in Figure7.3,

for four locations of H2O masers, no MIR counterpart can be found in the IRAC images (the detection

limits for point sources in the four IRAC bands are roughly 3.6, 5.3, 31, and 34µJy for the IRAC bands

at 3.6, 4.5, 5.8, and 8µm assuming medium sky background).
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Figure 7.9: Comparison of the outflow direction imaged with Speckle interferometry with the bubble-like structure
imaged withSpitzer-IRAC.

7.5 Discussion

7.5.1 Nature of the observed K’ -band emission

In the wavelength range of theK’ -band filter (λ0 � 2.12 µm, ∆λ � 0.21 µm), we record not only

continuum radiation (e.g. scattered light, thermal dust emission, stellar continuum emission), but also

line emission (e.g. H2). However, bothBloomer et al.(1998, see Figure7.10) andDavis et al.(1998)

did not detect significant amounts of H2 emission around IRS1. Furthermore, deep optical imaging by

Elsaesser et al.(1982) andCampbell & Persson(1988) reveal a weak optical source offset 2.22 north

of the radio source IRS1. The latter authors argue that the strong extinction (AV � 13) derived for

IRS1 makes it highly unlikely that this optical emission is connected to IRS1 itself but that it most

likely represents scattered light. The measured offset suggests that the faint optical source should be

associated with blobsA andB in our images, making scattering the most likely radiation mechanism for

the detectedK’ -band emission. This conclusion is also supported by polarization measurements (Dyck

& Lonsdale 1979) which show a strong polarization of the 2µm emission, tracing either scattered light

or light transmitted through aligned grains. Henceforth wepresume continuum to be the most important

contributor to the detected emission.
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a) 3.6 µm p1202 � 1202q b) 4.5 µm p1202 � 1202q c) 5.8 µm p1202 � 1202q
d) 8.0 µm p1202 � 1202q e) 3.6{4.5{5.8µm� K 1 p1202 � 1202q f) 3.6 µm�CO pKam89q p1202 � 1202q

g) 3.6 µm�CO pSco86q p1202 � 1202q h) H2 pDav98q � K 1 p1202 � 1202q i) H2, [Fe II ] pBlo98q � K 1 p602 � 602q
j) J,H,K pBlo98q � K 1 p602 � 602q k) K 1 � 11.7 µm pDeB05q p132 � 132q l) K 1 � 18.3 µm pDeB05q p132 � 132q

Figure 7.10: Mosaic showing the IRS1–3 cluster at various wavelengths. Beside the speckleK1-band image (also
marked as red box) and IRAC images, data fromScoville et al.(1986, CO),Kameya et al.(1989, CO),Bloomer
et al.(1998, J, H, K, H2, [Fe II]), Davis et al.(1998, H2), andDe Buizer & Minier(2005, 11.7 µm, 18.3 µm) was
incorporated.
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7.5.2 Methanol maser feature A: Protostellar disk or outflow ?

We note that the 2MASS position of IRS1 (α �23h 13m 45.s35, δ ��61� 281 10.28, J2000) and the

position of the methanol maser feature A (α �23h 13m 45.s364,δ ��61� 281 10.255, J2000) reported

by Minier et al.(2000) coincide within the errors3. Therefore, the methanol masers and the outflow driv-

ing source are likely causually connected, however a randomcoincidental alignment cannot be ruled out.

Since methanol masers can trace both protostellar disks andoutflows, it is not a priori clear how

the linear alignment of the methanol maser feature A and the observed velocity gradient should be in-

terpreted. For IRS1, both claims have been made (Pestalozzi et al. 2004; De Buizer & Minier 2005).

However, detailed modeling has provided strong quantitative support for the disk interpretation but is

still missing for the outflow interpretation. Furthermore,a study by Pestallozi et al. (in prep.) suggests

that simple outflow geometries cannot explain the observed properties of feature A.

A major difference between these two scenarios is the orientation of thedisk associated with the

outflow driving source: Whereas in the disk scenario the methanol masers are lined up within the disk

plane (PA� �62�), the outflow scenario suggests an orientation of the disk plane perpendicular to the

maser alignment (PA� �28�). The observed asymmetry in our NIR speckle images, as well as the

elongation of the emission observed in the 11.7 and 18.3µm images byDe Buizer & Minier(2005), can

be explained within both scenarios:

Scenario A: If maser feature A traces anoutflow cavity, the detected asymmetry might simply reflect

the innermost walls of this cavity (oriented northwest), whereas the southeastern cavity of a presumably

bipolar outflow might be hidden due to inclination effects.

Scenario B: Alternatively, if the masers trace an edge-oncircumstellar disk, the asymmetry of the

infrared emission could trace the western wall of an outflow cavity with a wide half-opening angle. The

asymmetry cannot be attributed to the disk itself because the detection of stellar radiation scattered off

the disk surface at such a large distance is highly unlikely.

For completeness, we also mention the interpretation byKameya et al.(1989), who attributed the

change between the direction observed in the UCH region (PA 0�) and the high-velocity CO flow

(PA�60�) to flow deflection, either by large-scale magnetic fields or due to density gradients.

We proceed now to discuss both scenarios within an outflow-cavity model (Sec.7.5.3) and a precess-

ing jet model (Sec.7.5.4), incorporating the large amounts of evidence collected byvarious authors over

the last three decades.

3The astrometric accuracy of the 2MASS catalogue was reported to be� 0.215
(seehttp://ipac.caltech.edu/2mass/releases/allsky/doc/expl-sup.html).
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7.5.3 Scenario A: Outflow cavity model

Since the intensity of the diffuse emission in our images seems to decrease with distance from IRS1

and the vertex of the fan-shaped region appears centered on IRS1, we cannot support the hypothesis

by Bloomer et al.(1998), who identified IRS2 as the likely source of the diffuse NIR emission. Instead,

the observed fan-shaped region can be interpreted as a cavity that was formed by outflow activity from

IRS1. Because the walls of the fan-shaped structure are well-defined, we can measure the opening angle

of the proposed outflow cavity from the eastern wall (PA 25�) to blob A (PA �65�), obtaining a wide

total opening angle of 90�.
The unidirectional asymmetry of IRS1 in the NIR and MIR images (see Figure7.10) is naturally

explained in this context as scattered light from the inner (  1500 AU) walls of the cavity. This scenario

is also consistent with the southeast–northwest orientation of the CO outflow, aligned roughly parallel

to the methanol masers (PA� �62�). BlobsA, B, B1 are located within the same direction and might

resemble either clumps in the cavity or recent ejecta from the outflow. The various blobs might also

indicate the presence of several outflows.

In order to resolve the misalignment of the radio-continuumcore with respect to the other outflow

tracers, it was proposed that the radio-continuum emissionmight arise from a photoevaporated disk

wind (Lugo et al. 2004).

However, as noted above, the methanol maser feature A lacks aquantitative modeling up to now.

7.5.4 Scenario B: Precessing jet model

7.5.4.1 Constraints from the methanol maser disk

The circumstellar-disk modeling presented byPestalozzi et al.(2004) reproduces the observational data

for maser feature A in minute detail. Assuming a central massof 30Md and Keplerian rotation, this

model confines the inner (r i � 290 AU) and outer (ro � 750 AU) radii of the disk (these radii scale aspM{30Mdq�1{3 with the central massM). The model does not set strict constraints on the inclination

and orientation of the disk on the sky.

An uncertainty in the disk inclination arises from the assumption that methanol is formed within a

surface layer of the disk from photoevaporation of H2O. The midplane of the disk might therefore be

inclined within certain limits. A distinct inclination is suggested by the fact that the NIR/MIR continuum

emission, as well as the H2 shock tracer line emission, appears more pronounced towards the north than

towards to south (see Figures7.2and7.10h). An inclination of the northern outflow towards us is also

indicated by CO outflow observations (e.g.Kameya et al. 1989), which show the blueshifted CO lobe of

IRS1 towards the northwest (see Figures7.10f & 7.10g).

The disk orientation on the sky can only be constrained by themaser observations with a limited
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Figure 7.11: Top: Illustration of
the analytic precession model pre-
sented in Sec.7.5.4.3. Bottom:
MMT speckle image overplotted
with the trajectory of ejecta from
a precessing outflow projected onto
the plane of the sky (thick blue line)
as described by the analytic pre-
cession model. For the counter-
clockwise precession, the parame-
ters Pprec � 280 yrs,Θ � 40�,
α � �30�, ψ � 0� (precession
axis within the plane of the sky),
and φ0 � 0� were used. In or-
der to simulate a finite collimation
of the flow, we varied bothα and
ψ by �5�, yielding the trajectory
given by the thin blue lines. The
red contours show the 15 GHz radio
continuum map byHutawarakorn &
Cohen 2003(using data byGaume
et al. 1995).
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accuracy since the masers only trace a narrow latitudinal arc of the disk, missing potential disk warping.

Nevertheless, it is still reasonable to identify the disk orientation with the linearly-aligned feature A.

7.5.4.2 Indications for disk and jet precession

Assuming that the alignment of the masers is representativeof the orientation of the disk midplane (i.e.

assuming disk warping is negligible4), it is evident that the direction perpendicular to the diskplane

(PA �19�, the expected outflow direction) is significantly misaligned from the axes of the bipolar CO

outflow and the NIR fan-shaped region (PA� �20�; illustrated within Figure7.6). Also, the observed

bending (Campbell 1984; Gaume et al. 1995) in the radio continuum could indicate a change in the

outflow direction. Whereas the inner core (. 0.25) is orientated along PA� 0�, the outer core (0.25
– 1.20) bends slightly towards the west (PA� �25�). This might indicate that the outflow changed

its direction by this amount within the times needed by the jet to propagate the appropriate projected

distances (� 25 and� 50 years).

The bending detectable in the UC H region on scales of. 1.20 seems to continue at larger scales

within the morphology observed in our speckle images, suggesting anS-shaped fine-structure of the

diffuse emission extending from IRS1 initially towards the northwest and further out towards north. The

blobsA, B, andB1 observed close to IRS1 (PA� �60�) might represent the most recent ejecta, whereas

the weak features which appear further away in our images (C, D) might trace earlier epochs of the

history of the outflow.

Based on these indications, we suggest a disk and jet precession model. The fan-shaped diffuse

emission in which theS-structure is embedded can be explained as scattered light from the walls of an

outflow cavity, which was cleared by the proposed wandering jet.

The western wall of this wide, carved-out outflow cavity might appear within our NIR and the MIR

images as an elongation of IRS1. Since this elongation extends mainly towards the northwest, there

must be an additional reason why the western wall of this cavity appears more prominent than the

eastern wall. A possible explanation might be shock excitation of the western wall, which would cool

through emission in shock tracer lines like H2, which is contributing to the recordedK’ -band.

Assuming the precession period derived in Sec.7.5.4.3, the outflow (which currently points towards

PA � 19�) would have excited the western wall of this cavity� 140 years ago, which corresponds

roughly to the H2 radiative cooling time.

The arrangement of the fainter cluster members embedded within the diffuse emission can be under-

stood in this context, too: Taking into account that IRS1 is still deeply embedded in its natal circumstellar

cloud, the jet would have cleared the envelope along its wandering path. The decreasing column density

results in lower extinction along the jet’s path, revealingthe fainter stars which likely formed in the

4Interestingly, the converse assumption (that disk warpingis non-negligible) implies disk precession as well, as the jet would be
launched perpendicular to the warped surface of the inner part of the disk.
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vicinity of IRS1. The fainter stars might therefore be detectable only in those regions where the precess-

ing jet reduces the extinction sufficiently. Within the blobs closest to IRS1, stars may be undetectable

because of either inclination effects or confusion with the significantly higher surface brightness of blobs

IRS1A, B, andB1 (limiting the sensitivity to detect point sources), or because of the high density of the

outflowing material itself, providing intrinsic extinction.

The outflow tracers observed at rather large scales (CO, H2, see Figure7.10) are oriented roughly

in the same direction as the NIR fan-shaped structure. The COchannel maps byScoville et al.(1986,

Figure7.10g) suggest a change in the orientation of the CO outflow lobes for low and high velocities.

Whereas the low velocity CO outflow is oriented along the east-west direction, the high velocity lobes

are oriented along PA� �35�. As CO traces material swept-up by the outflow and has a relatively long

cooling time (of the order of 104 yrs), the different orientations observed at low- and high velocities are

more difficult to interpret.

Finally, we speculate that the precession model might also explain why the velocities of the methanol

maser features B, C, D, and E are in the same range as the velocities of the CO outflow (De Buizer &

Minier 2005), but show opposite signs for the LOS velocity with respect to feature A (maser features B,

C, D, and E are blue-shifted, whereas the southern CO lobe is red-shifted). Assuming precession, the

CO outflow would trace the average outflow direction around the precession axis (with the southern axis

oriented away from the observer), whereas the methanol masers might trace clumps very close to the

source, which were excited more recently when the southern part of the outflow was pointing towards

the observer5.

In general, precession can explain the change in the flow orientation, but potential alternative expla-

nations include density gradients in the surroundings of IRS1, the presence of multiple outflows, and

flow deflection.

7.5.4.3 Analytic precession model

In order to get a rough estimate for the precession parameters, we employ a simple analytical model

with constant radial outflow speed v. On the radial motion we superpose a precession with periodPprec,

leading to the wave number

k � 2π
vPprec

; (7.1)

by the time that ejected material travels a distancer from the source, the direction of the jet axis changes

by the anglekr.

To describe the jet propagation in three dimensions we introduce a Cartesian coordinate system cen-

tered on IRS1 whosez-axis is along the line of sight (see Figure7.11, top). The precession axis is in the

5This is consistent with the precession parameters determined in Sect.7.5.4.3, where we find that the half-opening angle of the
precessionΘ is larger than the inclination of the precession axis with respect to the plane of the skyψ.
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y� z plane inclined by angleψ to the plane of the sky6, and the jet axis makes an angleΘ with it. For

counter-clockwise7 precession, the coordinates of material at distancer from the origin are���� x

y

z

�ÆÆ� r ����� sinΘ cosφ

cosΘ cosψ� sinΘ sinφ sinψ� cosΘ sinψ� sinΘ sinφ cosψ

�ÆÆ (7.2)

whereφ � φ0 � kr is the jet’s azimuthal angle from thex-axis. The initial phaseφ0 can be taken as 0�
since the direction perpendicular to the methanol feature Aseems to coincide with the eastern wall of

the outflow cavity. The PAα of they-axis can be set from the average angle of the fan-shaped region

in the speckle images asα � �30�. Using v � 250 km s�1, as measured byGaume et al.(1995)

within the H66α recombination line, leaves as free parametersPprec, Θ, ψ, and the sense of rotation.

Trying to fit the orientation of the maser disk, the orientation of the UC H region, and the position of

the NIR blobs with these parameters simultaneously, we find reasonable agreement with a precession

periodPprec� 280�10 yrs, a precession angleΘ � 40��3�, a counter-clockwise sense of rotation, and

small inclinationψ � 0� � 10�. At larger inclination angles (& 10�) loops start to appear, significantly

degrading the agreement. In Figure7.11, we show the projected trajectory of the proposed wandering

jet with the thick line, whereas the thin lines give the path obtained with a variation of�5� in α andψ,

resembling the finite width of the flow.

The analytic model presented in this section might suffice in order to get a rough estimate of the

precession parameters, although it does not take into account the interaction of the flow with the ambient

medium nor the excitation and cooling of the ambient material.

These parameters can be used to predict how the orientation of the methanol maser disk changes with

time. Using the PA at the phaseφ0 � 0� as reference, one expects that the PA changes only marginally

(less than 1�) within 10 yrs. A much more significant change of 10� (20�) would be expected after

36 yrs (50 yrs), which would be detectable with future VLBI observations.

7.5.4.4 Numerical molecular hydrodynamic simulations

A large number of studies about the structure and evolution of precessing protostellar jets can be found

in literature (e.g.Raga & Biro 1993; Völker et al. 1999; Raga et al. 2004; Rosen & Smith 2004; Smith

& Rosen 2005a), although most of these studies focus on jets from low-massstars with rather narrow

precession angles. As the number of simulations carried outfor wide precession angles is much more

limited (e.g.Cliffe et al. 1996), we performed a new hydrodynamic simulation. Besides the general

morphology, we aim for comparing the position of the newly discovered fainter stars with the column

6Positive values ofψ indicate an inclination out of the plane of the sky towards the observer.
7For the sense of rotation, we follow the convention that counter-clockwise rotation (as measured from the source along the

precession axis) corresponds to a positive sign of the phaseφ.
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a) Synthetic imagespφ � 0�q b) Synthetic imagespφ � 90�q
Unconvolved Convolved Unconvolved Convolved

c) Column densities d) CO channel maps

Figure 7.12: a), b): Synthetic images (H2 1Ñ 0, 2Ñ 1; CO R(1), R(5)) from our ZEUS-3D molecular hydrody-
namic simulation, shown for two different projections. In Figurea) the images are also shown after a convolution
with a Gaussian which roughly resembles the resolution obtained in our speckle observation (Figure7.6). Figurec)
shows the total gas column density and the H2 column density for the same projections. Finally, ind) we show
channel maps of the CO outflow for four velocity bins. Each velocity bin has a width of 5 km s�1 and the central
velocity is given by the number on the left of each image (in kms�1). The two numbers on the right of each image
indicate the log of the maximum integrated luminosity in anysingle element in the image (Top, in erg s�1) and the
log of the total integrated luminosity in the entire velocity bin (Bottom).
The angleφ gives the angle between thezaxis and the LOS, corresponding to a rotation around the precession axis
(x axis). Please see the text (Sec.7.5.4.4) for a description of the complete model parameters.
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density variations caused by a precessing jet, which was beyond the scope of earlier studies.

We use the version of the ZEUS-3D code as modified bySmith & Rosen(2003), which includes

some molecular cooling and chemistry, as well as the abilityto follow the molecular (H2) fraction. The

large precession envisioned for the flow associated with NGC7538 IRS1 requires that the simulation be

performed on a very wide computational grid. Due to computational limits, we were restrained to use for

this simulation a 3D Cartesian grid of 275 zones in each direction, where each zone spans 2� 1014 cm

in each direction. This grid balances the desire for some spatial resolution of the flow with the ability to

simulate a sufficiently large part of the observed flow associated with NGC 7538 IRS1. Still, the total

grid size (� 0.018 pc) is smaller than the projected distance between IRS 1 andK’ -band featureC.

Owing to the rather small physical size of the grid, we have chosen a nominal speed of 150 km s�1,

reduced from the inferred value of 250 km s�1 for this source. The flow is precessed with a nearly 30�
precession angle, with the amplitude of the radial components of the velocity 0.55 of that of the axial

component. The precession has a period of 120 years, which leads to 1.25 cycles during a grid crossing

time. The flow is also pulsed, with a 30% amplitude and a 30 yearperiod. This short period assists

in the reproduction of the multiple knots ofK’ -band emission near NGC 7538 IRS1. The jet flow also

is sheared at the inlet, with the velocity at the jet radius 0.7 that of the jet center. We have chosen a

jet number density of 105 hydrogenic nuclei cm�3, while the ambient density is 104. The simulated

jet radius is 4.0 � 1015 cm (20 zones). Thus, the time-averaged mass flux is 2.6 � 10�6 Md yr�1,

which is three orders of magnitude lower than the value as determined for the CO outflow (Davis et al.

1998). Similar calculations of the momentum flux and kinetic energy flux, or mechanical luminosity,

yield values of 3.8� 10�4 km s�1 Md yr�1 and 4.7Ld, respectively.

After the convolution with a PSF resembling the resolution obtained in real observations the H2 emis-

sion in our simulation shows a morphology which is similar tothe one seen in theK’ -band speckle

image. In particular, the simulations might also explain featuresD andE as associated with the pro-

posed precessing jet (compare Figure7.12a with Figure7.6). The simulations also show that the CO

emission, which can be expected for a precessing jet at larger distances from the driving source, appears

very smooth, which is also in accordance with the CO observations made for NGC 7538 IRS1.

We note that the fainter starse to n reported in Sec.7.4.1.3are located in the region where the

column density in our precessing jet simulation appears particularly low (see Figure7.12c, left column),

supporting the scenario proposed in Sec.7.5.4.2.

7.5.4.5 Possible precession mechanisms

Several mechanisms have been proposed which can cause jet bending or jet precession, although most

of them were established for low- and intermediate stars andcan cause precession angles of only a few

degrees (Fendt & Zinnecker 1998; Eislöffel & Mundt 1997). For the case of high-mass stars and larger
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precession angles (Θ � 40�), Shepherd et al.(2000) summarized the three most promising concepts that

could induce precession into circumstellar disks. We discuss how well these mechanisms can explain

the observations of IRS1. For all cases, it is assumed that the outflow is launched close to the center

of the disk and that a precession of the inner parts of the diskwill translate into a precession of the

collimated flow (Bate et al. 2000).

1. Radiative-induced warping:Armitage & Pringle(1997) suggested that geometrically thin, optically

thick accretion disks can become unstable to warping if the incident radiation from the stellar source is

strong enough. As this warping instability is expected to occur only at disk radii larger than a critical

radiusRcrit, we can estimate whether radiative-induced disk warping isexpected at the inner part of the

IRS1 disk. Using a stellar mass ofM � 30 Md (Pestalozzi et al. 2004), a mass accretion rate of the

order of the mass outflow rate9Macc� 9Moutflow � 5.4� 10�3 Md yr�1 (Davis et al. 1998), and a lumi-

nosity L � 9.6� 104 Ld (Akabane & Kuno 2005), we use equation 5 byArmitage & Pringle(1997)

and the assumptions listed inShepherd et al.(2000) and obtain a critical radiusRcrit � 200 pc. Since

this is far beyond the inner edge of the disk where the jet collimation is expected to happen, it is very

unlikely that the radiation emitted by the star or due to accretion causes any noticeable warping within

the disk.

2. Anisotropic accretion events:The impact/merging of (low mass) condensations can change the ori-

entation of the disk angular momentum vector. In such a dramatic event, angular momentum can be

transferred from the impactor onto the accretion disk, potentially resulting in a net torque in the rota-

tion of the disk. To estimate the precession angle, which could result from anisotropic accretion, very

detailed assumptions about the disk, the impacting condensation, and their kinematics must be made.

Since no data is available to estimate these quantities, we refer to the example computed byShepherd

et al. (2000) and note that in extreme cases, such an accretion event could cause a sufficiently large

precession angle in the case of NGC 7538 IRS1 as well. However, in this scenario one would expect

rather sudden changes in the jet direction rather than a smooth precession.

3. Tidal interactions with a companion: Warping and precession of the disk could be caused by tidal

interactions with one or more companions on non-coplanar orbits. We assume the simplest case of a

binary: with stellar massesMp (primary) andMs (secondary), an orbit with inclinationi with respect to

the disk plane, and a semimajor axisa. The mass ratio shall be denotedq� Mp{Ms and will be assumed

as unity. Our observations place an upper limit on the separation of such a companion (see Figure7.7).

Two cases can be considered:

3a) circumprimary disk ( a ¡ ro): Because tidal torques would truncate the disk at about 0.3 times

the binary separation (Lubow & Ogilvie 2000), we obtain a lower limit for the binary separation (for

a circular orbit), namely,a ¡ 2 500 AU. However, a binary with such a large separation wouldbe not
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suited to explain the observations since the orbital periodwould be¡ 2�104 yrs (Mp�Ms � 30 Md),

implying a disk precession rate of¡ 4� 105 yrs (Bate et al. 2000). Assuming an extreme eccentricity

might yield a short precession period of the order of 102 yrs but implies strong, periodic interactions

between the companion and the disk during each perihelion passage. As this would quickly distort and

truncate the disk, we see this assumption contradicts the methanol maser structure, which suggests a

smooth extension of the methanol layer from� 290 AU to� 750 AU.

3b) circumbinary disk (a   r i): Smoothed particle hydrodynamic simulations byLarwood & Pa-

paloizou(1997) showed that a binary on a non-coplanar orbit with large inclinationi could cause strong

quasi-rigid body precession of the circumbinary disk (forq¡ 10) and strong warping, especially on the

inner edge of the disk (q� 1). The same authors report that the disk precession frequencyωprec should

be lower than the orbital frequency of the binaryωbinary. To make an order-of-magnitude estimation

for the orbital period that would be expected for this hypothetical IRS1 binary system, one can assume

ωprec � ωbinary{20 (Bate et al. 2000) to obtainPbinary � 14 yrs for the binary period, corresponding to

a separation ofabinary � 19 AU (� 7 mas). This binary separation then puts a lower limit on the radius

of the inner edge of the circumstellar disk. As this scenariocan trigger the fast disk precession without

truncating the extended disk structure traced by the methanol masers, we consider a circumbinary disk

as the most plausible explanation.

7.5.5 The IRS2 companion and flow interaction with the IRS2 UC H  region

The spectral type of IRS2 was estimated to be O4.5 (Akabane & Kuno 2005), corresponding to a lumi-

nosity of� 6.4� 105Ld. Using the measuredK1-band flux ratio, one can make rough estimates for

the spectral type of the two components reported in Sec.7.4.1.2. By assuming the total luminosity is

attributed only to the two components, we obtain a spectral type of O5 for IRS2a and O9 for IRS2b

(using the OB star luminosities fromVacca et al. 1996).

Within our images, the wide-opening angle outflow cone from IRS1 seems to extend well out to

IRS2. This offers an explanation for the shock tracer line emitting regionthat was imaged around

IRS2 (Bloomer et al. 1998, see Figure7.10i). The bowshock-like morphology of the [Fe II] and H2

emission suggests that the shock is excited from the south (which is roughly the direction towards IRS1).

In the direction opposite IRS1, the [Fe II] and H2 emission even shows a cavity-like structure, which also

appears in the 6 cm-radio continuum.Bloomer et al.(1998) suggested a stellar wind bowshock scenario,

in which IRS2 moves with a speed of�10 km s�1 towards the southwest through the ambient molecular

cloud. We note that the morphology could also be explained byinteraction between the IRS1 outflow

and IRS2 outflows. Based on its young age, IRS2 might also launch a powerful wind itself, causing the
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distinct shock zone which appears within the shock tracer emission (see Figure7.10i) and which is also

detectable in ourK’ -band image (arc-like morphology between featuresG andH).

7.5.6 Outflow structures from IRS1 at larger spatial scales

Figure7.10a to d shows mosaics of the vicinity of IRS1 in the four IRAC bands. Although IRS1 and

IRS2 appear saturated in these images (shown in logarithmicscaling) and banding (vertical and hori-

zontal stripes produced by IRS1 and IRS9) appears especially in the 5.8 and 8.0 µm images, structures

potentially related to IRS1 can be observed. About 402 towards the southeast of IRS1, a bowshock

structure can be seen, which is also present in the H2 image byDavis et al.(1998). This bowshock

points in the same direction as the redshifted lobe of the CO outflow (see Figure7.10f ) and just opposite

to the outflow direction identified in our speckle image at small scales. Thus, it is possible that this bow

traces the southeastern part of the IRS1 outflow. In our speckle image, the inner part of this southeastern

outflow is not visible; likely a result of strong interveningextinction.

Furthermore, it is interesting to note that the “ridge” connecting the IRS1–3 cluster with IRS4 and

IRS5 follows the western wall of the outflow direction identified in our speckle image (see top of Fig-

ure7.10). It is possible that the total extent of the IRS1 outflow alsoreaches much further northwest

than the structure seen in the speckle image, contributing to the excitation of the western part of the

bubble seen in the IRAC bands and the shocks in the H2 image byDavis et al.(1998, see Figure7.10h).

7.6 Evidence for Triggered Star Formation in the NGC 7538 Star

Forming Region

It has been proposed by many authors that star formation seems to propagate southeastwards through-

out the NGC 7538 complex (Werner et al. 1979; McCaughrean et al. 1991; Ojha et al. 2004). This is

indicated by the spatial arrangement of the members of this star forming region, which also seems to

agree with the expected evolutionary sequence: starting about 31 northwest of IRS1, O stars located in

the H region represent the most developed evolutionary state, followed by the IRS1–3 cluster and their

associated UCH regions, with the compact reflection nebula around IRS9 representing the youngest

member of this star formation site. In agreement with this picture,Balog et al.(2004) measured the red-

dening of stars throughout NGC 7538 and found a gradient in reddening with the most heavily reddened

sources in the southeast.

The presented IRAC images can also be interpreted in supportof this scenario since the ridgelike fea-

ture connecting IRS1-3, IRS4, IRS5 seems to trace the interface between the northeastern bubble (visible

at NIR/MIR wavelengths) and the submillimeter bubble, which appears in the 450µm and 850µm-maps
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by Reid & Wilson(2005, see Figure7.3). This suggests that in NGC 7538, star formation was triggered

by the compression of gas just at the interface layer of theseexpanding bubbles, sequentially initiating

the formation of the observed chain of infrared sources.

Ojha et al.(2004) suggested that IRS6, the most luminous source in the NGC 7538 region, might

be the main exciting source responsible for the optical H region. Inspecting the IRAC color com-

posites, this scenario is supported by the morphology of thebright, curved structure west of IRS6.

In the IRAC 8 µm band (red in Figure7.5), this structure appears particularly prominent. As it is

known that emission in this IRAC band is often associated with PAHs, this suggests that this region

is illuminated by strong UV radiation from IRS6. Other features, such as the conical structure around

2MASS 23135808+6130484 and the structure northeast of IRS7, also show a symmetry towards IRS6.

7.7 Summary and Conclusions

Bispectrum speckle interferometry and archivalSpitzer/IRAC imaging of the massive protostars NGC 7538

IRS1/2 and their vicinity are presented. We summarize our resultsas follows:

1. The clumpy, fan-shaped structure seen in our speckle images most likely traces recent outflow

activity from IRS1, consistent with the direction of the blue-shifted lobe of the known CO outflow.

A bowshock structure noticeable in the IRAC images� 402 southeast of IRS1 suggests that the

total extent of the outflow might be several parsecs. The outflow might have also contributed

to shaping and exciting the bubble-like structure, which isprominent in all four IRAC bands

(although contributions from several other sources, especially IRS6, are also evident).

2. A companion around the high-mass star NGC 7538 IRS2 was discovered. Furthermore, we see

indications for interactions between the IRS1 flow and outflows or stellar winds from IRS2 (neb-

ulosity surrounding IRS2).

3. A jet precession model seems suitable to describe the features observed within our NIR im-

ages, simultaneously explaining the misalignment betweenthe putative methanol maser disk, the

UCH  region, and the outflow tracers detected at larger scales (CO). A simple analytic preces-

sion model was used to extract order-of-magnitude estimates for the precession parameters. Using

these we estimate tidal interaction of a close binary systemwith a circumbinary disk as the most

plausible gyroscopic mechanism, which is triggering the precession.

4. The presented molecular hydrodynamic simulations can reproduce some of the fine-structure ob-

served in our NIR images and indicate that the arrangement ofthe detected fainter stars might be

explained as a column-density effect, caused by the proposed precessing jet.
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5. The prominent sites of ongoing high-mass star formation in NGC 7538 seem to be located just at

the interface between two bubble-like structures — one is visible in the presented IRAC images,

the other traced by submillimeter observations. The gas compression caused by the expansion of

these bubbles might have triggered star formation in this region.

While it is well established that the outflows of HMPOs generally appear less collimated than those

of their low-mass counterparts, the recent discovery of evidence for outflow precession for an increas-

ing number of massive YSOs might indicate a common launchingmechanism for all outflow driving

sources of all stellar masses. The observed widening in HMPOoutflows might be due to selection ef-

fects (Shepherd 2005) and/or precession of a collimated jet. The large precession angles reported for

IRAS 20126+4104 (Shepherd et al. 2000), S140 IRS1 (Weigelt et al. 2002), IRAS 23151+5912 (Weigelt

et al. 2006), and now NGC 7538 IRS1 (this study) might point towards a rather dramatic precession

mechanism, maybe the presence of very close, high-mass companions on non-coplanar orbits.

We strongly encourage further observations of IRS1, especially to detect potential companions either

by NIR long-baseline interferometry or radial velocity measurements.
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8 Visual/Infrared Interferometry of the Orion

Trapezium stars θ1Ori C and D

Based on an article which appeared in A&A:

Kraus, S., Balega, Y. Y., Berger, J.-P., et al., A&A, 466, 649-659 (2007)

8.1 Overview and Context

Figure 8.1: Mosaic zooming in from an HST image of the M42 H region into the Trapezium cluster and the
θ1Ori C system, as seen with our speckle and IOTA imaging.
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The Orion Nebula Cluster, at a distance of just 450 pc from earth, is the nearest high-mass star-forming

region and a perfect laboratory for studying the birth of massive stars. In particular the brightest and

most massive (44�5Md, Donati et al. 2002) of the Trapezium stars,Θ1Ori C (see Figure8.1), has been

the target of numerous studies. With an age of just 200 000 yrs(Howarth & Prinja 1989), this O7V-type

star is also one of the youngest O-type stars known in the sky,and its strong Lyman radiation dominates

the whole Orion Nebula.Θ1Ori C also illuminates the proplyds and shapes its environment with strong

stellar winds (9M � 4� 10�7 Md yr�1, Howarth & Prinja 1989).

One very unique aspect of this star was revealed by a long series of spectroscopic observations, show-

ing strictly periodic (P� 15.422� 0.002 d) variations both in the intensity and profile of variousemis-

sion and absorption lines detected towardsθ1Ori C (Stahl et al. 1993, 1996). To explain this periodicity,

in 1997Babel & Montmerleapplied themagnetically confined wind shock(MCWS) model toθ1Ori C.

This model, originally developed for magnetic Ap-Bp stars,describes how radiation-driven winds from

both hemispheres are channeled along the magnetic field lines and collide at high velocities, forming

a thin, nearly stationary shock region in the equatorial plane (Babel & Montmerle 1997; Donati et al.

2002; Gagné et al. 2005; Simón-Dı́az et al. 2006). Within this disk-like structure, the plasma corotates

with the field lines, cools, and is then either transferred back onto the star or expelled as asymmetric

wind (Donati et al. 2002). Recently, the same period was detected in spectropolarimetric observations,

tracing the strength of the magnetic field, which further confirms this interpretation (Wade et al. 2006).

Besides its amazing properties as a magnetic rotator,θ1Ori C was found to be a particularly interesting

close binary system. Since the discovery of the companion byour group in 1997 (Weigelt et al. 1999),

we have detected significant orbital motion using bispectrum speckle interferometry. Tracing the orbital

motion opens the prospect of determining dynamical masses of the system, yielding a characterization

of the individual components and, ultimatively, also new constraints for stellar evolution models in the

high-mass regime. In 1999, the largest binary separation was found to be 43 mas (Schertl et al. 2003).

Since then, the separation has constantly decreased. In 2005 we found that the system was unresolved

on the Russian 6 m BTA telescope with near-infrared (NIR) speckle interferometry. Thus, we performed

first NIR long-baseline interferometric observations onθ1Ori C in December 2005 using the IOTA. With

baseline lengths of up to 38 m, we obtained the most precise position measurement of the binary so far.

The combined Speckle and IOTA position measurements cover the interval 1997.8 to 2005.9, from

which we determined a preliminary orbital solution, which suggests a highly eccentric (e� 0.91) and

short-period (P � 10.9 yrs) orbit. As the current astrometric data only allows rather weak constraints

on the total dynamical mass, we present the two best-fit orbits. Of these two, the one implying a system

mass of 48Md and a distance of 434 pc to the Trapezium cluster can be favored. When also taking the

measured flux ratio and the derived location in the HR-diagram into account, we find good agreement

for all observables, assuming a spectral type of O5.5 forθ1Ori C1 (M � 34.0 Md, Teff � 39 900 K) and

O9.5 for C2 (M � 15.5 Md, Teff � 31 900 K).
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We find indications that the companion C2 is massive itself, which makes it likely that its contribution

to the intense UV radiation field of the Trapezium cluster is non-negligible. Furthermore, the high

eccentricity of the preliminary orbit solution predicts a very small physical separation during periastron

passage (� 1.5 AU, next passage around 2007.5), suggesting strong wind-wind interaction between the

two O stars.

The IOTA data onθ1Ori C was also used to reconstruct the first NIR long-baselineaperture synthesis

image of a young star. With IOTA, we also obtained first interferometric observations onθ1Ori D, finding

some evidence for a resolved structure, maybe by a faint, close companion.

All speckle observations for this project were acquired with the BTA 6.0 m telescope and recorded

in the context of observing programmes by our Russian colleague Yuri Balega (measurements at visual

wavelengths) or by members of the MPIfR group (measurementsat NIR wavelengths). The fits to the

power spectra of these observations were performed by members of the Balega group and by Dieter

Schertl. The IOTA observations were performed by Keiichi Ohnaka and myself within an observing run

covering 10 nights in November and December 2005. As the observed sources were significantly fainter

than the sources to which the IDRS data reduction software was applied earlier, this software had to be

refined and new algorithms had to be implemented both for visibility and closure phase estimation (see

Sect.3). For the IOTA data, I performed the model fits and the aperture synthesis image reconstruction

using the BBM image reconstruction algorithm (Chapter8.4). As the measurement of the dynamical

masses is a major scientific objective, it is also necessary to compute orbital elements from the obtained

relative position measurements, yielding the total systemmass and the orbital parallax. The algorithm

by Docobo(1985) is an orbit calculation method, which, for the last two decades, has also provided

robust results for orbits where the observational data covers only a small fraction of the complete orbit. I

implemented this and another algorithm (which scans the seven-dimensional parameter space on a grid)

in order to find first preliminary orbital solutions for theθ1Ori C orbit.
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8.2 Introduction

The stellar mass is the most fundamental parameter, determining, together with the chemical composi-

tion and the angular momentum, the entire evolution of a given star. Stellar evolutionary models connect

these fundamental parameters with more easily accessible,but also highly uncertain observables such as

the luminosity and the stellar temperature. Particularly towards the pre-main-sequence (PMS) phase and

towards the extreme stellar masses (i.e. the low- and high-mass domain), the existing stellar evolutionary

models are still highly uncertain and require further empirical verification through direct and unbiased

mass estimates, such as those provided by the dynamical masses accessible in binary systems. Recently,

several studies were able to provide dynamical masses for low-mass PMS stars (e.g.Tamazian et al.

2002; Schaefer et al. 2003; Boden et al. 2005), while direct mass measurements for young O-type stars

are still lacking.

Furthermore, in contrast to the birth of low-mass stars, theformation mechanism of high-mass stars

is still poorly understood. In particular, the remarkably high binary frequency measured for young

high-mass stars might indicate that the way high-mass starsare born differs significantly from the mass

accretion scenario via circumstellar disks, which is well-established for low- and intermediate-mass

stars. For instance, studies conducted at the nearest high-mass star-forming region, the Orion Nebular

Cluster (ONC, at a distance of 450� 50 pc, Genzel & Stutzki 1989), revealed& 1.5 companions per

primary (for high-mass starsM ¡ 10Md, Preibisch et al. 1999), which is significantly higher than the

binary frequency for intermediate and low-mass stars.

In the very center of the ONC, four OB stars form the Orion Trapezium; three of which (θ1Ori A, B, C)

are known to be multiple (Weigelt et al. 1999; Schertl et al. 2003). θ1Ori D (alias HD 37023, HR 1896,

Parenago 1889) has no confirmed companion, although a preliminary analysis of the radial velocity by

Vitrichenko(2002a) suggests that it might be a spectroscopic binary with a period of� 20 or 40 days.

A particularly intruiging young (  1 Myr, Hillenbrand 1997) high-mass star in the Trapezium cluster

is θ1Ori C (alias 41 Ori C, HD 37022, HR 1895, Parenago 1891).θ1Ori C is the brightest source within

the ONC and also the main source of the UV radiation ionizing the proplyds and the M42 H region.

A close (33 mas) companion with a near-infrared flux ratio of� 0.3 between the primary (θ1Ori C1)

and the secondary (θ1Ori C2) was discovered in 1997 using bispectrum speckle interferometry (Weigelt

et al. 1999). Donati et al.(2002) estimated the mass ofθ1Ori C to be 44� 5Md, making it the most

massive star in the cluster. The same authors give an effective temperature of 45 000� 1 000 K and a

stellar radius of 8.2� 1.1 Rd. Long series of optical and UV spectroscopic observations revealed that

the intensity and also some line profiles vary in a strictly periodic way. With 15.422� 0.002 days, the

shortest period was reported byStahl et al.(1993). Several authors interpret this periodicity, which in

the meantime was also detected in X-ray (Gagne et al. 1997), within an oblique magnetic rotator model,

identifying 15.422 d with the rotation period of the star.Stahl et al.(1996) detected a steady increase in
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radial velocity, confirmed byDonati et al.in 2002, which suggests a spectroscopic binary with an orbital

period of at least 8 years.Vitrichenko(2002b) searched for long-term periodicity in the radial velocity

and reported two additional periods of 66 days and 120 years,which he interpreted as the presence of,

in total, three components in the system.

Given the unknown orbit of the speckle companion, it still has to be determined which one of these

periods corresponds to the orbital motion of C2. Since the discovery of C2 in 1997, three measurements

performed with bispectrum speckle interferometry showed that the companion indeed undertakes orbital

motion (Schertl et al. 2003), reaching the largest separation of the two components in autumn 1999

with 43� 2 mas. In order to follow the orbital motion, we monitored thesystem using infrared and

visual bispectrum speckle interferometry and in 2005, for the first time, also using infrared long-baseline

interferometry.

An interesting aspect of the dynamical history of the ONC waspresented byTan(2004). He proposed

that the Becklin-Neugebauer (BN) object, which is located 452 to the northwest of the Trapezium stars,

might be a runaway B star, ejected from theθ1Ori C multiple system approximately 4 000 yrs ago.

This scenario is based on proper motion measurements which show that BN andθ1Ori C recoil roughly

in opposite directions, and by the detection of X-ray emission potentially tracing a wind bow shock1.

Three-body interaction is a crucial part of this interpretation, and C2 is currently the only candidate

which could have been involved. Therefore, a high-precision orbit measurement of C2 might offer

the unique possibility to recover the dynamical details of this recent stellar ejection. However, another

study (Rodrı́guez et al. 2005) also aimed to identify the multiple system from which BN wasejected, and

identified Source I as the likely progenitor system. Later,Gómez et al.(2005) added further evidence to

this interpretation by identifying Sourcen as a potential third member of the decayed system.

8.3 Observations and Data Reduction

8.3.1 Bispectrum speckle interferometry

Speckle interferometric methods are powerful techniques for overcoming the atmospheric perturbations

and for reaching the diffraction-limited resolution of ground-based telescopes, both at near-infrared and

visual wavelengths. Since the discovery ofθ1Ori C2 in 1997, we have monitored the system with the

Big Telescope Alt-azimuthal(BTA) 6.0 m telescope of the Special Astrophysical Observatory located on

Mt. Pastukhov in Russia. For the speckle observations at visual wavelengths, a 1280� 1024 pixel CCD

with a multialkali S25 intensifier photocathode was used. The near-infrared speckle observations were

carried out using one 512�512 pixel quadrant of the Rockwell HAWAII array in our speckle camera,

1However, the more recent detection of X-ray variability in intensity and spectrum makes it unlikely that this X-ray emission
really originates in a wind bow shock, as pointed out byGrosso et al.(2005).
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Table 8.1: IOTA Calibrator Stars Information

Star V H Spectral Adopted UD diameter
Type [mas]

HD 14129 5.5 3.3 G8.5III 1.01� 0.01a

HD 20791 5.7 3.5 G8.5III 0.89� 0.01a

HD 28322 6.2 3.9 G9III 0.82� 0.01a

HD 34137 7.2 4.4 K2III 0.80� 0.01a

HD 36134 5.8 3.2 K1III 1.16� 0.02a

HD 50281 6.6 4.3 K3V 0.77� 0.10b

HD 63838 6.4 3.6 K2III 0.95� 0.01a

HD 74794 5.7 3.5 K0III 1.07� 0.01a

Notes –a UD diameter taken from the CHARM2 catalog (Richichi et al. 2005).
b UD diameter taken from getCal tool

(http://mscweb.ipac.caltech.edu/gcWeb/gcWeb.jsp).

with pixel sizes of 13.4 mas (J-band), 20.2 mas (H-band), and 27 mas (K-band) on the sky.

For the speckle observations at infrared wavelengths, we recorded interferograms ofθ1Ori C and of

the nearby unresolved starθ1Ori D in order to compensate for the atmospheric speckle transfer function.

The number of interferograms and the detector integrationetimes (DITs) are listed in Table9.1.

The modulus of the Fourier transform of the object (visibility) was obtained with the speckle inter-

ferometry method (Labeyrie 1970). For image reconstruction we used the bispectrum speckle interfer-

ometry method (Weigelt 1977, Weigelt & Wirnitzer 1983, Lohmann et al. 1983, Hofmann & Weigelt

1986).
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Table 8.2: Observation Log.

Target Instrument Date Filtera Detectorb No. Interferograms Calibratorsd

and Configuration [UT] and Modec Target/Calibrator

θ1Ori C BTA 6m/Speckle 1997.784 H P/DIT=150ms 519/641 θ1Ori D
θ1Ori C BTA 6m/Speckle 1998.838 K1 H/DIT=120ms 438/265 θ1Ori D
θ1Ori C BTA 6m/Speckle 1999.737 J H/DIT=100ms 516/244 θ1Ori D
θ1Ori C BTA 6m/Speckle 1999.8189 G1 S/DIT=5 ms 500/– –
θ1Ori C BTA 6m/Speckle 2000.8734 V1 S/DIT=5 ms 1 000/– –
θ1Ori C BTA 6m/Speckle 2001.184 J H/DIT=80ms 684/1 523 θ1Ori D
θ1Ori C BTA 6m/Speckle 2003.8 J H/DIT=160ms 312/424 θ1Ori D
θ1Ori C BTA 6m/Speckle 2003.9254 V1 S/DIT=2.5ms 1 500/– –
θ1Ori C BTA 6m/Speckle 2003.928 V1 S/DIT=2.5ms 2 000/– –
θ1Ori C BTA 6m/Speckle 2004.8216 V1 S/DIT=5 ms 2 000/– –
θ1Ori C BTA 6m/Speckle 2006.8 V1, R1 – – –
θ1Ori C IOTA A35-B15-C0 2005 Dec 04 H 1L7R, 2L7R 11 400/8050 HD 14129, HD 36134, HD 34137,

HD 50281, HD 63838
θ1Ori C IOTA A35-B15-C10 2005 Dec 02 H 2L7R, 4L7R 4 400/4950 HD 34137, HD 50281, HD 63838
θ1Ori C IOTA A35-B15-C10 2005 Dec 03 H 2L7R 4 600/2450 HD 28322
θ1Ori C IOTA A35-B15-C15 2005 Dec 01 H 2L7R, 4L7R 7 250/5000 HD 20791, HD 34137, HD 36134
θ1Ori C IOTA A25-B15-C0 2005 Dec 06 H 2L7R, 4L7R 5 250/4875 HD 28322, HD 34137, HD 36134,

HD 74794
θ1Ori D IOTA A35-B15-C0 2005 Dec 04 H 2L7R 800/2 800 HD 14129, HD 36134, HD 34137,

HD 50281, HD 63838
θ1Ori D IOTA A25-B15-C0 2005 Dec 06 H 2L7R, 4L7R 1 800/4875 HD 28322, HD 34137, HD 36134,

HD 74794

Notes –aq Filter central wavelength and bandwidth, in nm (λc/∆λ) – V1: 545/30;G1: 610/20;R1: 800/60; J: 1 239/138;H: 1 613/304;
K1: 2 115/214.

bq P: PICNIC detector, H: HAWAII array, S: Multialkali S25 intensifier photocathode
cq For the IOTA measurements, we used different detector read modes to adapt to the changing atmospheric conditions. The two

numbers in the given 4-digit code denote the value of theloopandreadparameter (Pedretti et al. 2004) of the PICNIC camera. Since data
taken in different readout modes is calibrated independently, the scattering between the data sets also resembles the typical calibration errors
(see Figure8.5).

dq The dash symbol in the calibrator column indicates speckle measurements for which no calibrator was observed.
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8.3.2 IOTA long-baseline interferometry
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Figure 8.2: uv-plane coverage obtained onθ1Ori C with the four IOTA

array configurations used. The relatively strong asymmetryin the uv-

plane coverage mainly results from the position ofθ1Ori C relatively

close to the celestrial equator.

The Infrared Optical Telescope Ar-

ray (IOTA) is a three-telescope long-

baseline interferometer located at the

Fred Lawrence Whipple Observatory

on Mount Hopkins, Arizona, operat-

ing at visual and near-infrared wave-

lengths (Traub et al. 2003). Its three

45 cm primary Cassegrain telescopes

can be mounted on stations along an

L-shaped track, reaching 15 m to-

wards a southeastern and 35 m to-

wards a northeastern direction. Af-

ter passing a tip-tilt system (Schuller

et al. 2004), which compensates the

atmospherically induced motion of

the image, and path-compensating

delay lines, the three beams are fed

into fibers and coupled pairwise onto

the IONIC3 integrated optics beam

combiner (Berger et al. 2003). The

interferograms are recorded by tem-

poral modulation around zero optical path delay (OPD). During data acquisition, a fringe tracker soft-

ware (Pedretti et al. 2005) continuously compensates potential OPD drifts. This allows us to measure

the three interferograms nearly simultaneously within theatmospheric coherence time, preserving the

valuable closure phase (CP) information.

For our IOTA observations, we used four different array configurations (see Table9.1), obtaining the

uv-coverage shown in Figure8.2. θ1Ori D was observed on two different array configurations, as shown

in Figure8.3. During each night, we systematically alternated between the target star and calibrators in

order to determine the transfer function of the instrument.For more details about the calibrator stars and

the number of recorded Michelson interferograms, refer to Table8.1.

In order to extract visibilities and CPs from the recorded IOTA interferograms, we used the IDRS

data reduction software. Basic principles of the algorithms implemented in this software package were

already presented inKraus et al.(2005b), although several details have been refined to obtain optimal

results for fainter sources as well, such as those observed in this study (see Section3).
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Figure 8.3: uv-plane coverage obtained onθ1Ori D with two IOTA ar-

ray configurations. The meaning of the colors and symbols is the same

as in Figure8.2.

Interpreting optical long-baseline in-

terferometric data often requires

a priori knowledge about the ex-

pected source brightness distribu-

tion. This knowledge is used to

choose an astrophysically motivated

model whose parameters are fitted to

the measured interferometric observ-

ables (as applied in Sect.8.5).

However, the measurement of CPs

allows a much more intuitive ap-

proach; namely, the direct recon-

struction of an aperture synthesis im-

age. Due to the rather small num-

ber of telescopes combined in the

current generation of optical interfer-

ometric arrays, direct image recon-

struction is limited to objects with

a rather simple source geometry, in

particular multiple systems (for im-

ages reconstructed from IOTA data,

seeMonnier et al. 2004; Kraus et al. 2005b).

Using our software based on theBuilding Block Mappingalgorithm (Hofmann & Weigelt 1993),

we reconstructed an aperture synthesis image of theθ1Ori C system from the data collected during our

IOTA run. Starting from an initial single delta-function, this algorithm builds up the image iteratively

by adding components in order to minimize the least-square distance between the measured bispectrum

and the bispectrum of the reconstructed image.

The resulting image is shown in Figure8.4 and provides a model-independent representation of our

data. By combining the data collected during six nights, we make the reasonable assumption that the

orbital motion over this interval is negligible.

The clean beam, which we used for convolution to obtain the final image, is rather elliptical (see inset

in Figure8.4), representing the asymmetries in theuv-coverage.
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Figure 8.4: Left, Middle:Bispectrum speckleJ andV1-band images reconstructed from BTA-data.Right: Aperture synthesis image ofθ1Ori C reconstructed
from our IOTA H-band data. Besides the false-color representation in the upper row, we show the images below as contours with the best-fitted positions
marked with star symbols (see Table8.3). In the image in the lower right corner, the restoring beam for the IOTA aperture synthesis image is shown as an
inset. Over the six year interval covered by the images, orbital motion is clearly conceivable (1999/2004/2005: ρ=43/24/14 mas;Θ=214�/191�/163�).
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8.5 Model Fitting

8.5.1 Binary model fitting for θ1Ori C

Although the aperture synthesis image presented in the lastsection might also be used to extract pa-

rameters like binary separation, orientation, and intensity ratio of the components (IC2{IC1 � 0.26,

ρ � 14.1 mas,Θ � 162�), more precise values, including error estimates, can be obtained by fitting the

measured visibilities and CPs to an analytical binary model.

The applied model is based on equations 7–12 presented inKraus et al.(2005b) and uses the least-

square Levenberg-Marquardt method to determine the best-fit binary separation vector and intensity

ratio. In order to avoid potential local minima, we vary the initial values for the least-square fit on a grid,

searching for the global minimum.

As the apparent stellar diameter ofθ1Ori C is expected to be only� 0.2 mas at the distance of Orion,

for our fits we assume that both stellar components appear practically unresolved to the IOTA baselines.

Furthermore, we assume that the relative position of the components did not change significantly over

the 6 nights of observation.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

-30 -20 -10  0  10  20  30

V
is

ib
ili

ty

x [m]

A-B
A-C
B-C

Figure 8.6: Projection of the sampled Fourier plane along the fitted

binary PA of 162.74� (x � ucosΘ � vsinΘ), clearly revealing the

binary signature. The dashed line shows the theoretical cosine visibility

profile for a binary star with separation 13.55 mas and intensity ratio

0.28.

Figure 8.5 shows the measured

IOTA visibilities and CPs and the ob-

servables corresponding to our best-

fit binary model (χ2
V2{dof � 1.35,

χ2
CP{dof � 1.48). The separationρ,

PA Θ, and intensity ratio of this bi-

nary model are given in Table8.3,

together with the positions derived

from the speckle observations. To

illustrate more clearly that the mea-

sured IOTA visibilities resemble a

binary signature, in Figure8.6 we

show a projection of the sampled

two-dimensional Fourier plane along

the binary vector, revealing the co-

sine modulation corresponding to the

Fourier transform of a binary bright-

ness distribution.

For the speckle data (providing a complete Fourier samplingup to the spatial frequency corresponding

to the diameter of the telescope primary mirror), we determine the binary parameters by fitting a two-

dimensional cosine function directly to the 2-D speckle interferogram power spectrum.
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Figure 8.5: Visibilities and Closure Phases derived from the recorded IOTA interferograms forθ1Ori C as a function
of hour angle (points with error bars). The solid line shows the binary model fit, described in more detail in
Section8.5. The different symbols represent the different detector modes used (see Table9.1). The data for each
detector mode was calibrated separately, so the scatteringof the data groups represents the typical calibration errors.
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Table 8.3: Relative astrometry and photometry for theθ1Ori C binary system

(O–C) Orbit #1 (O–C) Orbit #2
Telescope Date Filter Flux ratio Θa ρ Ref. Θ ρ Θ ρ

FC2{FC1 [�] [mas] [�] [mas] [�] [mas]

BTA 6m/Speckle 1997.784 H 0.26� 0.02 226.0� 3 33� 2 b +3.0 +0.5 +3.0 +0.0
BTA 6m/Speckle 1998.838 K’ 0.32� 0.03 222.0� 5 37� 4 b +3.8 -2.5 +3.8 -2.6
BTA 6m/Speckle 1999.737 J 0.31� 0.02 214.0� 2 43� 1 c -0.9 +1.5 -0.9 +1.5
BTA 6m/Speckle 1999.8189 G’ 0.39� 0.04 213.5� 2 42� 1 – -1.1 +0.5 -1.1 +0.5
BTA 6m/Speckle 2000.8734 V’ 0.39� 0.03 210.0� 2 40� 1 – -0.9 -0.8 -0.8 -0.8
BTA 6m/Speckle 2001.184 J 0.29� 0.02 208.0� 2 38� 1 c -1.7 -2.1 -1.6 -2.1
BTA 6m/Speckle 2003.8 J 0.30� 0.02 199.3� 2 29� 2 – +2.8 +0.5 +3.9 +0.5
BTA 6m/Speckle 2003.9254 V’ – 199.0� 2 29� 2 – +3.4 +1.3 +3.6 +1.3
BTA 6m/Speckle 2003.928 V’ – 199.1� 2 29� 2 – +3.6 +1.3 +3.8 +1.3
BTA 6m/Speckle 2004.8216 V’ 0.38� 0.04 190.5� 4 24� 4 – +4.0 +2.4 +4.2 +2.4
IOTA 2005.92055 H 0.28� 0.03 162.74� 2 13.55� 0.5 – -1.0 +0.0 -0.5 +0.0
BTA 6m/Speckle 2006.8 V’, R – –   15 – – – – –

Notes – a) Following the convention, we measure the positionangle (PA) from north to east.
References – b)Weigelt et al. 1999, c) Schertl et al. 2003
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8.5.2 Resolved structure around θ1Ori D: Potential detection of a companion

Besides the main target of our observational programme,θ1Ori C, during the two nights with the best see-

ing conditions, we also recorded four datasets onθ1Ori D. Despite lower flux (θ1Ori D: H=5.9,θ1Ori C:

H=4.6), the quality of the derived visibilities and CPs seems reliable, although slightly larger errors

must be assumed.θ1Ori D appears resolved in our measurements with a significantnon-zero CPs signal

(� 10�) on the A35-B15-C0 baseline. This CP indicates deviations from point-symmetry, as expected

for a binary star. We applied the binary model fit described inSect.8.5.1and found as best-fit model

(χ2{dof� 1.36) a binary system with an intensity ratio of 0.14,ρ � 18.4 mas andΘ � 41� (Figure8.7).

However, considering theuv-coverage of the existing dataset, this solution is likely not unique and

it can not be ruled out that other geometries, such as for inclined circumstellar disk geometries with

pronounced emission from the rim at the dust sublimation radius (see e.g.Monnier et al. 2006), might

also produce the asymmetry required to fit the data.

8.6 Results

8.6.1 Preliminary physical orbit and dynamical masses of th e θ1Ori C binary

system

Our multi-epoch position measurements of theθ1Ori C system can be used to derive a preliminary dy-

namical orbit. To find orbital solutions, we used the method described byDocobo(1985). This method

generates a class of Keplerian orbits passing through threebase points. From this class of possible so-

lutions, those orbits are selected which best agree with themeasured positions, where we use the error

bars of the individual measurements as weight. In order to avoid over-weighting the orbit points which

were sampled with several measurements at similar epochs (two measurements in 1999.7-1999.8 and

three measurements in 2003.8-2003.9), we treated each of these clusters as single measurements. The

dynamical mass of the total system is computed using Kepler’s third lawMC1 � MC2 � a3{P2 (wherea

is given in AU,P in years andM in solar masses).

In Table8.4 we give the orbital elements corresponding to the two best orbital solutions found. As

theχ2{dof values of the two presented orbits are practically identical, the existing data does not allow

us to distinguish between these solutions. These orbits andthe corresponding O–C vectors are shown

in Figure8.8 (see Table8.3 for a list of the O–C values). As the ephemerids in Table8.5 and also

the position predictions (dots) in Figure8.8 show, future high-accuracy long-baseline interferometric

measurements are needed to discriminate between these orbital solutions.

Potentially, additional constraints on theθ1Ori C binary orbit could be provided by radial velocity
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Figure 8.7: Visibilities and Closure Phases derived from the recorded IOTA interferograms forθ1Ori D (points with
error bars). The solid line shows the binary model fit, described in more detail in Section8.5.2.
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Table 8.4: Preliminary orbital solutions forθ1Ori C

Orbit #1 Orbit #2
P [yrs] 10.98 10.85
T 1996.52 1996.64
e 0.909 0.925
a [mas] 41.3 45.0
i [�] 105.2 103.7
Ω [�] 56.5 56.9
ω [�] 65.7 68.2

χ2{dof 1.61 1.59
πdyn

aq [mas] 2.304� 0.066 2.585� 0.074
ddyn

aq [pc] 434� 12 387� 11pMC1� MC2qaq [Md] 47.8� 4.2 44.8� 3.9

Notes –aq The errors on the dynamical parallaxes and corresponding distances were estimated by
varying the measured binary flux ratio within the observational uncertainties, the assumed spectral types
for the bolometric correction by one sub-class, the extinction by�0.2 magnitudes, and by using three
different MLRs (byBaize & Romani 1946; Heintz 1978; Demircan & Kahraman 1991). However, the
given errors do not reflect the uncertainties on the orbital elementsa andP. Due to the presence of the
multiple orbital solutions, it is currently not possible toquantify these errors reliably.

measurements, such as those published byVitrichenko(2002b) and in the references therein. However,

the complexity of theθ1Ori C spectrum – including the line variability corresponding to the magnetically

confined wind-shock region expected towardsθ1Ori C – makes both the measurement and also the in-

terpretation of radial velocities forθ1Ori C very challenging. Since it is unclear whether these velocities

really correspond to the orbital motion of the binary systemor perhaps to variations in the stellar wind

from θ1Ori C, we did not include these velocity measurements as a tough constraint in the final orbital

fit, but show them in Figure8.8 together with the radial velocities corresponding to our best-fit orbit

solutions.

Both orbital solutions suggest that during periastron passage, the physical separation between the C1

and C2 decreases to� 1.5 AU, corresponding to just� 30 stellar radii. Besides the strong dynamical

friction at work during such a close passage, strong wind-wind interaction can also be expected.

It is worth mentioning that besides the presented best-fit orbital solutions, a large number of solutions

with longer orbital periods exist, which are also fairly consistent with the astrometric measurements.

However, since these orbits have slightly higherχ2{dof values than the solutions presented above and

also correspond to physically unreasonable masses (MC1 � MC2 . 20 or& 140Md), we rejected these

formal solutions.
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Table 8.5: Ephemerides for theθ1Ori C orbital solutions presented in Table8.4

Epoch Orbit #1 Orbit #2
Θ ρ Θ ρ

[�] [mas] [�] [mas]

2007.0 100.9 8.7 101.8 8.7
2007.5 28.6 1.9 -22.4 0.8
2008.0 229.1 21.7 227.9 23.0
2008.5 224.6 30.1 223.8 31.0
2009.0 221.7 35.1 221.1 35.8
2010.0 217.5 40.2 217.0 40.5
2011.0 213.9 41.6 213.4 41.6
2012.0 210.3 40.5 209.8 40.2
2013.0 206.3 37.5 205.8 37.0
2014.0 201.4 33.0 200.8 32.3
2015.0 194.6 27.1 193.7 26.3
2016.0 183.4 20.1 181.7 19.2
2017.0 159.7 12.8 155.1 12.0

8.6.2 Dynamical masses and parallaxes

Kepler’s third law relates the major axisa and the orbital periodP with the product of the system mass

and the cube of the parallax; i.e.pMC1�MC2q � π3 � a3{P2 (wherea andπ are given in mas,P in years,

andM in solar masses).

In order to separate the system mass and the parallax in absence of spectroscopic orbital elements, the

method byBaize & Romani(1946) can be applied. This method assumes that the component masses

follow a mass-luminosity relation (MLR), which, together with a bolometric correction and extinction-

corrected magnitudes, allows one to solve for the system mass MC1 � MC2 and the dynamical parallax

πdyn. When using the MLR byDemircan & Kahraman(1991), the bolometric correction for O5.5 and

O9.5 stars byMartins et al.(2005), and the extinction corrected magnitudes given in Table8.6, we derive

the dynamical masses and parallaxes given in Table8.4. When comparing the distances corresponding

to the dynamical parallaxes derived for Orbit #1 (ddyn � π�1
dyn � 434 pc) and Orbit #2 (ddyn � 387 pc)

with distance estimates from the literature (e.g.d � 440� 34 pc fromJeffries 2007; see also references

herein), orbit solution #1 appears much more likely. The dynamical system mass corresponding to Orbit

#1 is 47.8 Md, which must be scaled by a factorpd{ddynq3 when distances other thanddyn � 434 pc are

assumed.
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8.6.3 The orbital parameters in the context of reported peri odicities

Several studies have already reported the detection of periodicity in the amplitude, width, or velocity of

spectral lines aroundθ1Ori C. This makes it interesting to compare whether one of those periods can be

attributed to the presence of companion C2:

P � 15.422� 0.002 d: By far the best established periodicity towardsθ1Ori C was detected in hydro-

gen recombination lines and various photospheric and stellar-wind lines (Stahl et al. 1993, 1996;

Walborn & Nichols 1994; Oudmaijer et al. 1997). Later, the same period was also found in the

X-ray flux (Gagne et al. 1997) and even in modulations in the Stokes parameters (Wade et al.

2006). Although possible associations with a hypothetical low-mass stellar companion were ini-

tially discussed (Stahl et al. 1996), this period is, in the context of the magnetic rotator model,

most often associated with the stellar rotation period. We can rule out that C2 is associated with

this periodicity, as we do not see significant motion of C2 within the seven days covered by the

IOTA measurements.

60 d  P   2 yrs, P � 120 yrs: Vitrichenko(2002b) fitted radial velocity variations assuming the

presence of two companions and determined possible periodsof 729.6{L days (withL an integer  13) for the first, and� 120 yrs for the second companion. As our orbital solutions donot match

any of these periods, we consider an association ofθ1Ori C2 very unlikely.

P & 8 yrs: Stahl(1998) reported a steady increase in radial velocity.Donati et al.(2002) confirmed

this trend and estimated that this increase might correspond to the orbital motion of a companion

with a period between 8 yrs (for a highly eccentric orbit) and16 yrs (for a circular orbit). With

the found period of� 11 yrs, it is indeed very tempting to associateθ1Ori C2 with this potential

spectroscopic companion. However, as noted in Sect.8.6.1, the set of available spectroscopic

radial velocity measurements seems rather inhomogeneous and fragmentary and might contain

observational biases due to the superposed shorter-periodspectroscopic line variations, as noted

above.

8.6.4 Nature of the θ1Ori C components

Most studies which can be found in literature attributed thewhole stellar flux ofθ1Ori C to a single com-

ponent and determined a wide range of spectral types including O5.5 (Gagné et al. 2005), O6 (Levato

& Abt 1976; Simón-Dı́az et al. 2006), O7 (van Altena et al. 1988), to O9 (Trumpler 1931). In order to

resolve this uncertainty, it might be of importance to take the presence ofθ1Ori C2 into account. Be-

sides the constraints on the dynamical masses derived in Section 8.6.1, additional information about the

spectral types ofθ1Ori C1 and C2 can be derived from the flux ratio of the components in the recorded

bands.
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Figure 8.9: Measured intensity ratio of theθ1Ori C components as a function of wavelength (points with errorbars).
For various spectral type combinations, the curves show theexpected intensity ratio, assuming the stars contribute
purely photospheric emission (black-body emission with luminosities and effective temperatures as given in the
stellar evolution models fromMartins et al.(2005, M05) andClaret(2004, C04)).

Table 8.6: Derived dereddened magnitudes and colors for theθ1Ori C components. For the photometry of the total
system, we used data fromHillenbrand et al.(1998, J=4.63,H=4.48,K=4.41) andHillenbrand(1997, V=5.12).
An extinction ofAV � 1.74 (Hillenbrand 1997) was assumed (using the reddening law byMathis 1990and, similar
to Mathis & Wallenhorst 1981, a highRV � 5.0).

V J H K V–J V–H V–K J–H J–K H–K
θ1Ori C1 3.70 4.35 4.38 4.49 -0.65 -0.69 -0.80 -0.04 -0.15 -0.11
θ1Ori C2 4.87 5.65 5.81 5.73 -0.78 -0.94 -0.86 -0.15 -0.08 0.07

In contrast to our earlier studies (Weigelt et al. 1999; Schertl et al. 2003), we can now also include

theV-band flux ratio measurement to constrain the spectral typesof the individual components. TheV-

band is of particular interest, as a relative increase of theflux ratio FC2{FC1 from the visual to the near-

infrared would indicate the presence of circumstellar material, either as near-infrared excess emission

or intrinsic extinction towards C2 (assuming similar effective temperatures for both components). Our

speckle measurements indicate thatFC2{FC1 stays rather constant from the visual to the near-infrared.

Therefore, in the following we assume that the major contribution of θ1Ori C2 to the measured flux is

photospheric.

In Figure8.9 we show the measuredFC2{FC1 as a function of wavelength and compare it to model

curves corresponding to various spectral-type combinations for C1 and C2. To compute the model

flux ratios, we simulate the stellar photospheric emission as black-body emissionBpTeffq with effective
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temperaturesTeff and stellar radiiR, as predicted by stellar evolutionary models (Claret 2004; Martins

et al. 2005): �
FC2

FC1


 pλq � BpTC2
eff qR2

C2

BpTC1
eff qR2

C1

(8.1)

Under these assumptions, the companion C2 would have to be rather massive (MC2{MC1 � 0.45�0.15)

to obtain reasonable agreement with the measured flux ratios(see Figure8.9). Using a value forAV

from literature, the flux ratios can also be used to estimate the photometry of the individual components

(Table8.6). Then, the spectral type of C1 and C2 can be determined by comparing the location of the

stars in the HR-diagram with stellar evolution models. For this, we adopt the procedure fromSchertl

et al. (2003) and convert the derived photometry into locations in the HR-diagram using the colors

and bolometric corrections fromKenyon & Hartmann(1995, and references therein) andMartins &

Plez(2006). Assuming coevality for both stars, the spectral type of the individual components can be

constrained by finding the location where the curves for the various spectral bands and the isochrone

intersect. As can be seen in Figure8.10, the allowed locations for C1 intersect the Zero-Age Main

Sequence2 (ZAMS) aroundTeff � 46 000� 4 000 K, logL{Ld � 5.3� 0.2 (corresponding to O5) and

aroundTeff � 33 000� 2 000 K, logL{Ld � 4.5� 0.1 (corresponding to O9) for C2.

We conclude that the spectral type combination, which simultaneously provides good agreement to

the measured flux ratios, the HR-diagram, and the dynamical masses derived in Sect.8.6.1, is given by

the following stellar parameters (using the evolutionary models fromMartins et al. 2005):

C1: O5.5 (M � 34.0 Md, Teff � 39 900 K, logL{Ld � 5.41)

C2: O9.5 (M � 15.5 Md, Teff � 31 900 K, logL{Ld � 4.68)

8.6.5 Nature of the potential θ1Ori D companion

Although theθ1Ori D binary parameters presented in Sect.8.5.2 must be considered preliminary, it

might be interesting to determine the spectral type of the putative components. We apply the procedure

discussed in Sect.8.6.4to determine the photometry of the components from the measured intensity ratio

(photometry for the unresolved system fromHillenbrand et al. 1998: H=5.84) and deriveHD1=5.98 and

HD2=8.12, respectively. Searching again for the intersection between the allowed locations in the HR-

diagram with the isochrones applicable to the ONC (Figure8.10) yields for D1 best agreement with

Teff � 31 500� 4 000 K, logL{Ld � 4.25� 0.1 (corresponding to O9.5). Accordingly, D2 might be

either a B4 or B5 type star which has just reached the ZAMS (Teff � 16 000� 4 000 K, logL{Ld �
2.6� 0.2) or a pre-main-sequence K0 type star (Teff � 5 000� 1 000 K, logL{Ld � 1.3� 0.2).

Vitrichenko(2002a) examined radial velocity variations ofθ1Ori D and presented preliminary spec-

troscopic orbital elements for a companion with a 20.2 d period (or twice that period, P=40.5 d). As-

2With a dynamical age of� 3� 105 yrs, it seems justified that the Trapezium stars are real ZAMSstars (Schulz et al. 2003),
although the strong magnetic activity fromθ1Ori C was also associated with a pre-main-sequence origin (Donati et al. 2002).
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suming 20Md as the system mass, these periods correspond to a major axis of 0.05 or 0.08 AU (� 0.1

or 0.2 mas). Since this is far below the 18 mas suggested by our binary model fit, we do not associate

our potential companion with the proposed spectroscopic companion.

The multiplicity rate in a young stellar population such as the Trapezium cluster is an important quan-

tity, which might allow us to draw conclusions about the mechanisms controlling the star formation pro-

cess. In particular, the significantly different binary frequencies determined for the low- and high-mass

population in the ONC were interpreted as evidence that different formation mechanisms (e.g. stellar

coalescence vs. accretion) might be at work in different mass regimes (Preibisch et al. 1999). The de-

tection of a new companion aroundθ1Ori D further increases the multiplicity rate for high-massstars in

the ONC, althoughKöhler et al.(2006) have recently also presented an upwards-correction for the rate

of low-mass star binaries.

8.7 Conclusions

We have presented new bispectrum speckle interferometric and infrared long-baseline interferometric

observations of the Orion Trapezium starsθ1Ori C and D. This data was used to reconstruct diffraction-

limited NIR and visual speckle images of theθ1Ori C binary system and, to our knowledge, the first

model-independent, long-baseline aperture-synthesis image of a young star at infrared wavelengths.

For θ1Ori D, we find some indications that the system was resolved bythe IOTA interferometer.

Although the non-zero closure phase signal suggests asymmetries in the brightness distribution (maybe

indicative of a close companion star), further observations are required to confirm this finding.

From our multi-epoch observations onθ1Ori C (covering the interval 1997.8 to 2005.8), we derived

the relative position of the companions using model-fittingtechniques, clearly tracing orbital motion. We

presented two preliminary orbital solutions, of which one can be favoured due to theoretical arguments.

This solution implies a period of 10.98 yrs, a semi-major axis of 41.3 mas, a total system mass of� 48Md, and a distance of 434 pc. Furthermore, we find strong indications thatθ1Ori C2 will undergo

periastron passage in mid 2007. As the binary separation at periastron is expected to be� 1 mas, further

long-baseline interferometric observations onθ1Ori C are urgently needed to refine the orbital elements,

the stellar masses, and orbital parallaxes. Through comparison with stellar evolutionary models and

modeling of the measured intensity ratio, we find evidence that the companionθ1Ori C2 is more massive

(MC2{MC1 � 0.45� 0.15) than previously thought; likely of late O (O9/9.5) or early B-type (B0). The

contribution of the companion to the total flux ofθ1Ori C and the interaction between both stars might

be of special importance for a deeper understanding of this intriguing object. Therefore, we strongly

encourage observers to acquire high dispersion spectra of the system in order to trace the expected radial

velocity variations and the wind-wind interaction of the system.
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9 Near-Infrared interferometry of η Carinae

with high spatial and spectral resolution

using the VLTI/AMBER instrument

Based on an article which appeared in A&A:

Weigelt, G., Kraus, S., Driebe, T., et al., A&A 464, 87-106 (2007)

9.1 Overview and Context

Figure 9.1: Image of the Homunculus nebula surrounding

η Carinae, as seen by HST. Besides the bipolar lobes, it also

reveals the equatorial disk-like feature.

Although located in the active star-forming

region NGC 3372 (Carina Nebula),η Cari-

nae is already approaching the end of its

stellar evolution. Of course, this is due

to the comparatively short lifetime (roughly

106 yrs) of a star as massive as� 100 Md,

andη Car might end its life in a supernova

explosion within the next 105 yrs.

Due to its extreme mass and the LBV

evolutionary stage,η Car is highly unstable

and undergoing violent outbursts. Photo-

metric measurements reaching back to 1500

show that the star has undergone several out-

bursts; the most important one in 1843 when

η Car became the brightest star in the sky

(V � �1) after Sirius (Viotti 1995). After

this event, the brightness dropped toV � 7
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within two decades, likely due to obscuration by dust ejected around that time, nowadays forming the

famousHomunculus Nebula(see Fig.9.1). Besides the Homunculus (extending about 82 towards the

northwest and southeast), aLittle Homunculusis known, perhaps originating from a minor eruption

event around 1890 (Ishibashi et al. 2003). However, the major source of opacity between us and the star

is caused by an optically thick stellar wind, which originates fromη Car. Besides continuum emission,

this wind is also traced by various lines from ultraviolet toinfrared wavelengths, whose intensity and

profile could be reproduced by the line radiative transfer models fromHillier et al. (2001). By measur-

ing the spectrum of the reflected light at various positions of the Homunculus,Smith et al.(2003) found

indications for latitude-dependent effects in the stellar wind, suggesting an aspherical geometrywith

enhanced mass loss in the polar direction. This can be understood in the context of equatorial gravity

darkening on a rapidly rotating star, as predicted byZeipel(1925).

One particularly puzzling piece of evidence is the periodicspectroscopic variability, which was dis-

covered in spectral lines in various wavelength regimes. Especially the 5.54 yr period, which has also

been detected in the X-ray flux, was proposed as a strong indication for wind-wind interaction, sugges-

tive of the presence of a hot companion star.

As the separation of theη Car components is expected to be only 8 mas, any direct detection of the

proposed companion requires the high spatial resolution only achievable with optical interferometry.

Besides the potential to directly image the continuum emission of the companion, the unique spectro-

scopic capabilities of VLTI/AMBER provide the possibility to study the proposed wind-wind interaction

zone in spectral lines. One line which is believed to be a goodtracer for the associated bow shock and

ionization front is the He I line at 2.059µm.

We obtained observations on this enigmatic object in the context of AMBER’s GTO programme

using three 8.2 m Unit Telescopes and baselines from 42 to 89 m, corresponding to a high spatial

resolution of 5 mas (11 AU). The raw data are spectrally dispersed interferograms obtained with spectral

resolutions of 1 500 (MR-K mode) and, for the first time, also 12 000 (HR-K mode). This allows us to

investigate thewavelength dependenceof the visibility, differential phase, and closure phase ofη Car.

The MR-K observations were performed in the wavelength range around both the He I 2.059µm and the

Brγ 2.166µm emission lines; the HR-K observations only in the Brγ line region.

In this project, I was responsible for the reduction of the AMBER data (Sect.9.3). As our group had

no earlier practical experience in the processing of this kind of data, this required the development of the

AMBER data reduction pipeline (described in more detail in Chapter4). The results of the data process-

ing were discussed in a working group, including Gerd Weigelt, Thomas Driebe, Karl-Heinz Hofmann,

and Dieter Schertl. Following these meetings, I continuously improved the data reduction pipeline, im-

plementing various methods for data selection, data averaging, and data presentation. The wavelength

calibration was done in collaboration with Thomas Driebe. To yield an independent confirmation of our

findings, Karl-Heinz Hofmann applied his own AMBER data reduction software to theη Car data.
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Starting in summer 2005, we continued within the same team todiscuss the astrophysical interpreta-

tion. Geometrical model fits to the measured visibilities within the continuum and within the line were

performed by Thomas Driebe (Sect.9.4). To yield a physically motivated model which would allow a

quantitative interpretation not only of the visibilities,but also of the measured differential phases and

closure phases (Sect.9.4.5), I adopted my self-made modeling software to also compute these observ-

ables for wavelength-dependent brightness distributions. Motivated by theoretical work about stellar

winds with enhanced polar mass loss, I considered an aspherical wind, whose velocity distribution is

latitude-dependent, as geometry for this modeling, yielding the Brγ model presented in Sect.9.4.6. The

He I P-Cygni line data, potentially tracing the wind-wind interaction zone between theη Car primary

and the proposed hot companion, was modeled using a similar procedure (Sect.9.4.7.1). It shows that

all observables can, in fact, be represented reasonably well assuming a He I-emitting region which is

offset by a few mas from the continuum emitting region, such as expected by the wind-wind interaction

scenario. To make statements about the direct detectability of the continuum emission from the hypo-

thetical hotη Car companion, I adopted the software to simulate the effect of such a companion on the

visibilities and closure phases. Using a statistical argument and the measured non-zero closure phase

signal allowed us to put upper limits on the flux ratio of the hypothetical companion. For the manuscript,

I was responsible for writing Sect.9.3, 9.4.5, 9.4.6, 9.4.7, 9.4.7.1, and9.4.7.2.

9.2 Introduction

The enigmatic objectη Car is one of the most luminous and most massive (M � 100Md) unstable

Luminous Blue Variables suffering from an extremly high mass loss (Davidson & Humphreys 1997).

Its distance is approximately 2300�100 pc (Davidson & Humphreys 1997; Davidson et al. 2001; Smith

2006). η Car, which has been subject to a variety of studies over the last few decades, is surrounded by

the expanding bipolar Homunculus nebula ejected during theGreat Eruption in 1843. The inclination

of the polar axis of the Homunculus nebular with the line-of-sight is� 41�, with the southern pole

pointing towards us (Davidson et al. 2001; Smith 2006). The first measurements of structures in the

innermost sub-arcsecond region of the Homunculus were obtained by speckle-interferometric observa-

tions (Weigelt & Ebersberger 1986; Hofmann & Weigelt 1988). These observations revealed a central

object (component A) plus three compact and surprisingly bright objects (components B, C, and D) at

distances ranging from approximately 0.21 to 0.22. HST observations of the inner 1
2

region (Weigelt et al.

1995) provided estimates of the proper motion of the speckle objects B, C, and D (velocity� 50 km/s;

the low velocity suggests that the speckle objects are located within the equatorial plane), and follow-up

HST spectroscopy unveiled their unusual spectrum (Davidson et al. 1995). The central object (speckle

object A) showed broad emission lines, while the narrow emission lines came from the speckle objects
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B, C, and D. Therefore, A is certainly the central object while B,C, and D are ejecta. Recent observations

of η Car byChesneau et al.(2005) using NACO and VLTI/MIDI revealed a butterfly-shaped dust envi-

ronment at 3.74 and 4.05µm and resolved the dusty emission from the individual speckle objects with

unprecedented angular resolution in the NIR. Chesneau et al. also found a large amount of corundum

dust peaked� 1
2

south-east of the central object.

Spectroscopic studies of the Homunculus nebula showed thatthe stellar wind ofη Car is aspherical

and latitude-dependent, and the polar axes of the wind and the Homunculus appear to be aligned (bipolar

wind model;Smith et al. 2003). Using Balmer line observations obtained with HST/STIS,Smith et al.

(2003) found a considerable increase of the wind velocity from theequator to the pole and that the wind

density is higher in polar direction (parallel to the Homunculus; PA of the axis�132�; Davidson et al.

2001) than in equatorial direction by a factor of�2. van Boekel et al.(2003) resolved the optically

thick, aspheric wind region with NIR interferometry using the VLTI/VINCI instrument. They measured

a size of 5 mas (50% encircled-energy diameter), an axis ratio of 1.25� 0.05, and a position angle (PA)

of the major axis of 134�� 7�, and derived a mass-loss rate of 1.6� 10�3 Md{yr�1. The aspheric wind

can be explained by models for line-driven winds from luminous hot stars rotating near their critical

speed (e.g.,Owocki et al. 1996, 1998). The models predict a higher wind speed and density along the

polar axis than in the equatorial plane. In addition, van Boekel et al. showed that theK broad-band

observations obtained with VINCI are in agreement with the predictions from the detailed spectroscopic

model byHillier et al. (2001).

TheHillier et al. (2001, 2006) model was developed to explain STIS HST spectra. The luminosity of

the primary (5�106 Ld) was set by observed IR fluxes (see discussion byDavidson & Humphreys 1997)

and the known distance of 2.3 kpc toηCar. Any contribution to the IR fluxes by a binary companion was

neglected. Modeling of the spectra was undertaken using CMFGEN, a non-LTE line blanketed radiative

transfer developed to model stars with extended outflowing atmospheres (Hillier & Miller 1998). For

the modeling ofη Carinae (aliasη Car, HD 93308), ions of H, He, C, N, O, Na, Mg, Al, Si, S, Ca, Ti, Cr,

Mn, Fe, Ni, and Co were included. The mass loss was derived from the strength of the hydrogen lines

and their associated electron scattering wings. Due to a degeneracy between the mass-loss rate and the

He abundance, the H/He helium abundance ratio could not be derived, but was set at5:1 (by number),

which is similar to that found byDavidson et al.(1986) from nebula studies. CNO abundances were

found to be consistent with those expected for full CNO processing. With the exception of Na (which

was found to be enhanced by at least a factor of 2), the adoption of solar abundances for other metal

species was found to yield satisfactory fits to the STIS spectra. A more recent discussion of the basic

model, with particular reference to the UV and outer wind, isgiven byHillier et al. (2006).

Because the wind is optically thick, the models are fairly insensitive to the radius adopted for the

hydrostatic core (i.e., the radius at which the velocity becomes subsonic). One exception was the He I

lines, which decreased in strength as the radius increased and, in general, were very sensitive to model
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details. Additional HST STIS observations show that the He Ilines are strongly variable and blue-

shifted throughout most of the 5.54-year variability period. These observations cannot be explained

in the context of a spherical wind model. It now appears likely that a large fraction of the He I line

emission originates in the bow shock and an ionization zone,associated with the wind-wind interaction

zone in a binary system (Davidson et al. 1999; Davidson 2001; Hillier et al. 2006; Nielsen et al. 2006).

Consequently, the hydrostatic radius derived byHillier et al. (2001) is likely to be a factor of 2 to 4 too

small. Because the wind is so thick, a change in radius will not affect the Brγ formation region, and it

will only have a minor influence on the Brγ continuum emitting region. If this model is correct, the He I

emission will be strongly asymmetrical and offset from the primary star.

A variety of observations suggest that the central source ofη Car is a binary.Damineli (1996) first

noticed the 5.5-year periodicity in the spectroscopic changes of this object (seeDamineli et al. 1997,

2000; Duncan et al. 1999; Ishibashi et al. 1999; Davidson et al. 1999, 2000; van Genderen et al. 2003;

Steiner & Damineli 2004; Whitelock et al. 2004; Corcoran 2005; Weis et al. 2005). On the other hand,

to date, the binary nature of the central object inη Car and its orbital parameters are still a matter of

debate (see, e.g.,Zanella et al. 1984; Davidson 1999, 2001; Davidson et al. 1999, 2000, 2005; Ishibashi

et al. 1999; Smith et al. 2000; Feast et al. 2001; Ishibashi 2001; Pittard & Corcoran 2002; Smith et al.

2003; Martin et al. 2006).

The 1997.9 X-ray peak with the subsequent rapid drop to a few-month-long minimum was detected

by RXTE (seeCorcoran 2005). Then the first spectra with HST/STIS were obtained at 1998.0, demon-

strating changes in both the central star and the aforementioned speckle objects (Davidson et al. 1999;

Gull et al. 1999). Pittard & Corcoran(2002) demonstrated that the CHANDRA X-ray spectrum can be

explained by the wind-wind collisions of the primary star (9M � 2� 10�4 Md{yr�1 at 500 km/s) and a

hot companion (9M � 10�5 Md{yr�1 at 3 000 km/s). Verner et al.(2005) used models calculated with

the CLOUDY code to demonstrate that during the spectroscopic minimum, the excitation of the speckle

objects is supported by the primary stellar flux, but that theUV flux of a hot companion consistent with

an O7.5V, O9I, or early WN star was probably necessary to excite the speckle objects during the broad

spectroscopic maximum.

In this paper we present the first spectro-interferometricK-band observations ofη Car obtained with

the VLTI beam-combiner instrument AMBER with medium and high spectral resolution and in the

projected baseline range from 28 to 89 m.

The paper is organized as follows: In Sect. 2 we give an overview of the AMBER observations ofη

Car and describe the data reduction procedure in detail, andin Sect. 3, the analyses of the continuum

data and the measurements within the Brγ and He I lines are discussed individually.
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Table 9.1: Summary of the AMBERη Car observations using the UT2, UT3, and UT4 telescopes.

Date [UT] Time [UT] Orbital spectral line within DITd N f
η Car Calibrator Ng

calib. Calibrator
Start End phasee mode spectral range uniform disk

[ms] diameter [mas]

2004 Dec. 26 07:52 08:16 0.267 MR-K Brγ 40 7 500 HD 93030 5 000 0.39a

08:19 08:32 0.267 MR-K He I 2.059µm 40 5 000 HD 93030 5 000 0.39a

2005 Feb. 25 04:33 04:43 0.298 MR-K Brγ 50 5 000 HD 89682 2 500 3.08b

04:55 05:05 0.298 MR-K He I 2.059µm 50 5 000 HD 89682 2 500 3.08b

2005 Feb. 26 08:16 08:57 0.299 HR-K Brγ 82 7 500 L Car 2 500 2.70c

Notes –a Uniform disk (UD) diameter estimated using the method described byDyck et al.(1996).
b UD diameter taken from the CHARM2 catalog (Richichi et al. 2005).
c UD diameter of L Car at the time of the AMBER high-resolution observations derived from the limb-darkened diameterdLD � 2.80 mas
at the L Car pulsation phaseφ=0.0 (Kervella et al. 2004b, 2006) anddUD{dLD � 0.966 (Kervella et al. 2004a).
d Detector integration time per interferogram.
e The orbital phase was computed assuming a zero point at JD 2 450 800.0 and a period of 2024 days (Corcoran 2005).
f Number ofη Car interferograms.
g Number of calibrator interferograms.
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9.3 AMBER Observations and Data Processing

Figure 9.2: Spectrally dispersed VLTI/AMBER

Michelson interferograms ofη Car. The two panels

show the spectrally dispersed fringe signal (IF) as

well as the photometric calibration signals from the

three telescopes (P1-P3) in high (HR, upper panel)

and medium spectral resolution mode (MR, lower

panel). In both panels, the bright regions are associ-

ated with the Doppler-broadened Brγ emission line.

η Car was observed with AMBER on 2004 Decem-

ber 26, 2005 February 25, and 2005 February 26 with

the three 8.2 mUnit TelescopesUT2, UT3, and UT4.

With projected baseline lengths up to 89 m, an an-

gular resolution of�5 mas was achieved in theK-

band. As listed in Table9.1, the MR-K observa-

tions were performed in the wavelength range around

both the He I 2.059µm and the Brγ 2.166µm emission

lines. The HR-K observations were only performed in

a wavelength range around the Brγ line. The widths

of the wavelength windows of the obtained MR-K and

HR-K observations are approximately 0.05µm and

0.02µm, respectively.

Figure9.2 shows two AMBER raw interferograms

taken in the wavelength range around the Brγ line in

HR (top) and MR (bottom) mode. In the MR data sets,

the Doppler-broadened Brγ line covers� 8 spectral

channels, whereas in HR mode, the line is resolved by� 50 spectral channels.

For the reduction of the AMBER data, we used ver-

sion 2.4 of theamdlibsoftware package. This software

uses the P2VM (pixel-to-visibilities matrix) algorithm

(Tatulli et al. 2006) in order to extract complex visi-

bilities for each baseline and each spectral channel of

an AMBER interferogram. From these three complex

visibilities, the amplitude and the closure phase are de-

rived. While the closure phase is self-calibrating, the

visibilities have to be corrected for atmospheric and in-

strumental effects. This is done by dividing theη Car

visibility through the visibility of a calibrator star mea-

sured on the same night. In order to take the finite size

of the calibrator star into account, the calibrator visi-

bility is corrected beforehand through division by the

expected calibrator star visibility (see Table9.1). In the case of the MR measurement performed on
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Figure 9.3: AMBER observables derived from ourη Car data around the Brγ line for three independent mea-
surements (Left: MR, 2004 December 26,Middle: MR, 2005 February 25,Right: HR, 2005 February 26). The
first row shows the continuum-normalized spectra as extracted from the interferometric channels, followed by the
derived calibrated visibilities and the differential visibilities. In the fourth and fifth row, the differential phase and
the closure phase are presented. In the spectra we mark the wavelength regimes, which we defined as continuum for
our analysis (shaded regions). The vertical grey line marksthe rest-wavelength of Brγ (λvac� 2.1661µm; the small
correction due to the system velocity of -8 km/s (Smith 2004) has been neglected). We show different error bars
within each panel: The left error bars correspond to the total (including statistical and systematic) error estimated
for the continuum wavelength range, and the error bar towards the right visualizes the total error for the wavelength
range within the line. For the HR 2005-02-26 measurement, data splitting showed that for a small wavelength range
(hatched areas in the two lower right panels), the differential phase for the longest and middle baseline as well as
the closure phase become very noisy and are therefore not reliable. Furthermore, the HR differential phase of the
longest baseline is noisy at all wavelengths. See Sect.9.3 for further details.
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2005-02-25, the interferograms recorded on the calibratorcontain only fringes corresponding to the

shortest baseline (UT2-UT3). Thus, theη Car visibility for this night could only be calibrated for this

shortest baseline.
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Figure 9.4: uv-coverage of the AMBERη Car observa-

tions. The data obtained with medium spectral resolution

in Dec. 2004 and Feb. 2005 are indicated by red squares

and green bullets, respectively, while the high-resolution

measurements are shown as blue triangles. Filled sym-

bols denote observations around the Brγ line, and open

symbols denote observations around the He I line.

Besides the calibrated visibility and the clo-

sure phase, the spectral dispersion of AMBER

also allows us to compute differential observ-

ables; namely the differential visibility and the

differential phase (Petrov et al. 2003a, 2006a,b;

Millour et al. 2006). These quantities are par-

ticularly valuable, as they provide a measure of

the spatial extent and spatial offset of the line-

emitting region with respect to the continuum

emission. Since the measured complex visibili-

ties are affected by wavelength-dependent atmo-

spheric piston (optical path difference), the piston

has to be estimated and subtracted. This was done

using theammyoricktool (version 0.56).

Since a large fraction of the interferograms is

of low contrast (probably due to vibration; see

Malbet et al. 2006b), we removed a measurement

from the data sets if(a) the intensity ratio of two

of the photometric channel signals is larger than

4 (a large ratio means that the interferograms are

very noisy since the signal is very weak in one

channel) or(b) it belongs to the 70 percent of the interferograms with the lowest fringe contrast SNR

(with the SNR defined as inTatulli et al. 2006). In order to optimize the selection for each baseline of

the telescope triplet, both of these criteria are applied for each telescope pair individually. Furthermore,

the first 10 frames in each new sequence of recorded interferograms are removed since they are degraded

by electronic noise.

Figures9.3and9.5show the spectra as well as the wavelength dependence of the visibilities, differen-

tial visibilities, differential phases, and closure phases derived from the AMBER interferograms for the

observations around the Brγ and He I emission lines. Theuv-coverage of the observations is displayed

in Fig. 9.4.

TheηCar spectra were corrected for instrumental effects and atmospheric absorption through division

by the calibrator spectrum. For the HR 2005-02-26 measurement, we found that the calibrator itself

(L Car) shows prominent Brγ line absorption (see Fig.9.14). Therefore, we had to remove this stellar
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line by linear interpolation before the spectrum could be used for the calibration. The wavelength

calibration was done using atmospheric features, as described in more detail in Appendix9.6.

In order to test the reliability of our results, we split eachof the raw data sets into 5 subsets, each con-

taining the same number of interferograms. The results obtained with these individual subsets allowed

us to test that the major features detected in the visibility, differential visibility, differential phase, and

closure phase are stable, even without any frame selection applied. As an exception, we found that for

a small wavelength range of the HR 2005-02-26 data set (hatched areas in the two lower right panels

of Figure9.3), the differential phase corresponding to the middle and longest baselines and the closure

phase vary strongly within the subsets and are, therefore, unreliable. This is likely due to the very low

visibility value on these two baselines, resulting in a low fringe SNR within this wavelength range.

Furthermore, with this method we found that the differential visibility, differential phase, and closure

phase extracted from the MR 2005-02-25 He I data set are very noisy and not reliable. Therefore, these

differential quantities and closure phases were dropped from our further analysis.

The subsets were also used to compute statistical errors. Weestimated the variance for each spectral

channel and derived formal statistical errors for both the continuum and line wavelength ranges. In each

panel of Figures9.3and9.5, we show two types of error bars corresponding to these regions, which not

only take these statistical errors but also a systematic error (e.g. resulting from an imperfect calibration)

into account.

9.4 Observational Results and Interpretation

9.4.1 Comparison of the observed wavelength dependence of t he visibility

with the NLTE radiative transfer model of Hillier et al. (200 1)

For the analysis presented in this chapter, we used the AMBERdata sets from 2004 Dec. 26 and 2005

Feb. 25 and 26, presented in Figs.9.3and9.5, and compared the AMBER visibilities and spectra with the

NLTE radiative transfer model ofHillier et al. (2001). To directly compare the AMBER measurements

with this model, we derived monochromatic model visibilities for all wavelengths between 2.03 and

2.18µm (with ∆λ � 10�4 µm) from the model intensity profiles, assuming a distance of 2.3 kpc for

η Car. The comparison is visualized in Fig.9.6 for the individual AMBER HR and MR measurements.

The first row displays the AMBER and model spectra, while all other panels show the AMBER and

model visibilities for the different projected baselines. We note that for the comparison shown in Fig.9.6,

we used the original model ofHillier et al. (2001) without any additional size scaling or addition of a

background component.

As the figure reveals, the NLTE model ofHillier et al. (2001) can approximately reproduce the AM-

BER continuumobservations for all wavelengths (i.e. 2.03–2.18µm) and all baselines. Moreover, the
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Figure 9.5: Similar to Fig.9.3, but showing the MR measurement from 2004 December 26 covering the region
around the He I line. The vertical grey line marks the He I rest-wavelength (λvac� 2.0586µm).
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wavelength dependence of the model visibilities inside theBrγ line is also similar to the AMBER data.

There is a slight tendency for the model visibilities in the Brγ line to be systematically lower, which

can be attributed to the overestimated model flux in the line.On the other hand, there is an obvious

difference in the wavelength dependence of the visibility across the He I line between the observations

and the model predictions. This difference probably indicates that the primary wind model does not

completely describe the physical origin and, hence, the spatial scale of the He I line-forming region.

The discrepancy is possibly caused by additional He I emission from thewind-wind interaction zone

between the binary components and by theprimary’s ionized wind zonecaused by the secondary’s UV

light illuminating the primary’s wind (e.g.,Davidson et al. 1999; Davidson 2001; Pittard & Corcoran

2002; Steiner & Damineli 2004; Hillier et al. 2006; Nielsen et al. 2006; Martin et al. 2006), as discussed

in Sects.9.2, 9.4.4.2, and9.4.7.2in more detail.

Figure9.7shows the AMBER and model visibilities as a function of spatial frequency and the corre-

sponding model center-to-limb intensity variations (CLVs) for seven selected wavelengths (2 continuum

wavelengths; center, blue-shifted, and red-shifted wingsof Brγ emission; center of both He I emission

and absorption). As Fig.9.7reveals, at several wavelengths we find a very good agreementbetween the

visibilities measured with AMBER and the visibilities predicted by the model ofHillier et al. (2001).

This is especially true for the continuum data (upper two panels).

From the model CLVs, FWHM model continuum diameters of 2.24 mas and 2.33 mas can be derived

for λ � 2.040 and 2.174µm, respectively. If we allow for a moderate rescaling of the size of the model,

we find that the bestχ2 fit at both continuum wavelengths can be obtained with scaling factors of 1.015

and 1.00, respectively. This means that the model size has tobe increased by only 1.5% atλ � 2.040µm

and that the best fit at 2.174µm is indeed obtained with the original Hillier model with a scaling factor

of 1.0. Thus, taking the slight rescaling for the bestχ2 fit into account, we can conclude that, based on

the NLTE model fromHillier et al. (2001, 2006) and the AMBER measurements, the apparent FWHM

diameters ofη Car in theK-band continuum atλ � 2.040µm and 2.174µm are 2.27 mas and 2.33 mas,

respectively (see Table 2), corresponding to a physical size of approximately 5 AU.

Since the deviations between the model and the measurementsare larger in the case of the Brγ and

He I line data (lower 5 panels in Fig.9.7), the scaling factors corresponding to the bestχ2 fit in the lines

show stronger deviations from unity. For the Brγ emission line, we find scaling factors of 0.74, 0.76,

and 0.78 forλ � 2.1661, 2.1635, and 2.1669µm, corresponding to FWHM diameters of 1.83, 9.52 and

2.02 mas (see Table 2).

For the He I emission line, rescaled models with scaling factors of 1.24 and 1.11 provide the bestχ2

fit for the peaks of the emission and absorption within the He Iline (λ � 2.058 and 2.056µm), resulting

in FWHM diameters of 4.24 and 4.19 mas, respectively.

In addition to the inner CLV core, at several wavelengths, the CLVs show a very extended wing

corresponding to the extended Brγ and He I line emission regions. Since the intensity in the wing
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Figure 9.6: Comparison of the AMBER spectra and visibilities with the NLTE model predictions ofHillier et al.
(2001). The figure displays the spectra (upper row) and visibilities (lower three rows, see labels for projected
baselines) of the four AMBER measurements (green lines) andthe corresponding data of the Hillier et al. NLTE
model (red lines). The errors of the AMBER continuum and linevisibility measurements are indicated by the two
vertical error bars (see Figs.9.3and9.5; the left bar is the continuum error bar), and the uncertainty of the AMBER
wavelength calibration is indicated by the horizontal error bar. As the figure shows, we find good agreement
between the AMBER data and the model predictions for the continuum visibilities as well as the shape and depth
of the visibility inside the Brγ line. In the case of the He I line, the wavelength dependence of the model visibility
inside the line differs considerably from the AMBER measurements, indicating adifferent physical process involved
in the line formation(see Sect.9.4.1). The He I wavelength shift can be attributed to a combination of both Doppler
shift (e.g.Nielsen et al. 2006; Hillier et al. 2006) and uncertainties in the wavelength calibration of the AMBER
data. Note that no additional scaling has been applied to theHillier et al. model. The model spectra and visibilities
have a spectral resolution (λ{∆λ � 20 000) comparable to the HR measurements.
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Figure 9.7: Left: Comparison of the AMBER visibilities (filled green squares; baseline range 28–89 m) as a
function of spatial frequency with the NLTE model predictions of Hillier et al. (2001) (solid red lines) for two
continuum wavelengths (upper two panels; see labels for theexact wavelengths), the central wavelength of the
Brγ emission line (third), wavelengths in the blue and red wing of the Brγ emission line (fourth and fifth row;
at these wavelengths, the AMBER data show the strongest differential and closure phase signals), and the central
wavelengths of the He I emission and P Cygni absorption (lower two panels). The blue triangles are the background-
corrected VINCIK-band measurements fromvan Boekel et al.(2003). Right: Center-to-limb variation (CLV;
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is much lower than 50% of the peak intensity, the FWHM diameter is not very sensitive to this part

of the CLV. In other words, in the case of CLVs with multiple orvery extended components, a FWHM

diameter can be quite misleading. In such a case, it seems to be more appropriate to use, for instance, the

diameter measured at 10% of the peak intensity (d10%) or the50% encircled-energy diameter(d50% EED).

For example, atλ � 2.1661µm we obtaind10% � 9.39 mas andd50% EED � 9.58 mas, while for the

continuum at 2.174µm we findd10% � 5.15 mas andd50% EED � 4.23 mas. Thus, based ond50% EED,

η Car appears� 2.2 times larger atλ � 2.1661µm compared to the continuum atλ � 2.174µm.

The best-fit model diameters at the other wavelengths are listed in Table 2. The errors of the diameter

measurements are�4% for the two continuum diameters and�10% for the line diameters, derived from

the visibility errors and the uncertainty of the fitting procedure.

Table 9.2: Diameters obtained by fittingHillier et al. (2001) model visibilities to the measured AMBER visibilities.
Errors are�4% for the diameters in the continuum and�10% in the lines (see text).

Spectral region WavelengthdFWHM d10% d50% EED

[µm] [mas] [mas] [mas]

continuum 2.0400 2.27 4.85 3.74
continuum 2.1740 2.33 5.15 4.23
Brγ (center) 2.1661 1.83 9.39 9.58
Brγ (blue wing) 2.1635 9.52 16.46 9.60
Brγ (red wing) 2.1669 2.02 9.61 9.78
He I (absorption) 2.0560 4.24 8.22 5.36
He I (emission) 2.0580 4.19 4.30 6.53

dFWHM = FWHM diameter,
d10%= diameter measured at 10% peak intensity,

d50% EED= 50% encircled-energy diameter.

9.4.2 Continuum visibilities

9.4.2.1 Comparison of the continuum visibilities with the H illier et al. (2001) model

predictions

The comparison of the AMBERcontinuumvisibilities with the NLTE model fromHillier et al. (2001,

2006) is shown in the two upper left panels of Fig.9.7for the continuum near the He I 2.059µm and Brγ

2.166µm emission lines (the exact wavelengths are described in Fig. 6). Taking a slight rescaling into

account, we concluded in the previous section that, based onthe NLTE model fromHillier et al. (2001)

and the AMBER measurements, the apparent 50% encircled-energy diametersd50% EEDof η Car in the

K-band continuum atλ � 2.040µm and 2.174µm are 3.74 mas and 4.23 mas, respectively (see Table

2). These diameters are in good agreement with the 50% encircled-energyK-band diameter of 5 mas
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reported byvan Boekel et al.(2003).

For comparison, we also fitted the AMBER visibilities with simple analytical models such as Gaussian

profiles, as described in more detail in Sect.9.7 in the Appendix. From a Gaussian fit of the AMBER

visibilities, we obtain a FWHM diameter ofdGauss � 4.0 � 0.2 mas in theK-band continuum. As

outlined in Sect.9.7, the diameter value strongly depends on the range of projected baselines used for

the fit, since a Gaussian without an additional background component is not a good representation of

the visibility measured with AMBER. As discussed in Appendix 9.7, using a Gaussian fit with a fully

resolved background component as a free parameter results in a best fit with a 30% background flux

contribution (see alsoPetrov et al. 2006a).

9.4.2.2 Comparison of the VINCI and AMBER continuum visibil ities

In Fig. 9.7 (left, second row) displaying the averaged Brγ continuum data, the visibilities ofη Car

obtained with VLTI/VINCI are shown in addition to the AMBER data. These VINCI measurements

were carried out in 2002 and 2003 using the 35 cm test siderostats at the VLTI with baselines ranging

from 8 to 62 m (for details, seevan Boekel et al. 2003). Like AMBER, VINCI is a single-mode fiber

instrument. Therefore, its field-of-view is approximatelyequal to the Airy disk of the telescope aperture

on the sky, which is� 1.24 in the case of the siderostats. From the VINCI measurementsand using

only the 24 m baseline data,van Boekel et al.(2003) derived a FWHM Gaussian diameter ofdGauss� 7

mas for the wind region ofη Car. At first glance, this diameter measurement seems to contradict the

dGauss� 4.0 mas FWHM diameter derived from the AMBER data. This is not the case, however, since

the diameter fit is very sensitive to the baseline (or spatialfrequency) fit range, because a Gaussian is not

a good representation of the visibility curve at all, as can be seen in Fig.9.15. If only the VINCI data

points are fitted, which have spatial frequencies  60 cycles/arcsec (corresponding to projected baselines  28 m),dGauss� 7 mas provides the best fit. On the other hand, if the data pointat 136 cycles/arcsec

(corresponding to a projected baseline of� 62 m) is included in the fit, we obtaindGauss� 4.3 mas (see

also the discussion Sect.9.7). Thus, when using comparable baseline ranges for the Gaussian fits, there

is good agreement between the AMBER and VINCI measurements.

To account for the background contamination of the VINCI data caused by nebulosity within VINCI’s

large 1.24 field-of-view (in which, for instance, all speckle objectsB, C, and D are located), van Boekel

et al. introduced a background component (derived from NACOdata) providing 55% of the total flux.

Adding this background component to the model ofHillier et al. (2001), they found a good match

between the model and the observations. Since our AMBER observations were carried out with the 8.2 m

Unit Telescopes of the VLTI, the field-of-view of the AMBER observations was only�60 mas. Thus,

the background contamination of the AMBER data can be expected to be much weaker, if not negligible,

compared to the VINCI measurements. To check this, we first performed a fit of theHillier et al. (2001)
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model, which not only contains the size scaling as a free parameter, but also a fully resolved background

component. As we expected, we found the best fit (smallestχ2) with no background contamination.
1 Therefore, when we finally compared the AMBER observations with the model fromHillier et al.

(2001), we did not introduce a background component. In Fig.9.7 (second row, left) we plot both the

AMBER visibilities (no background correction required) plus the background-corrected VINCI data

(assuming a 55% background contribution; blue triangles).As can be seen from the figure, these VINCI

points nicely match the AMBER data and the corresponding fit of the NLTE model fromHillier et al.

(2001). Therefore, from the analysis of the continuum data, we canconclude that the background

contamination in the AMBER measurements is negligible and that the AMBER measurements are in

good agreement with both the previous VINCI measurements and the model predictions fromHillier

et al.(2001).

9.4.3 Elongated shape of the continuum intensity distribut ion

To look for detectable elongations of the continuum intensity distribution, we fitted an elliptically

stretched 2-D version of the radiative transfer model visibilities from Hillier et al. (2001) to the mea-

sured visibilities. Our bestχ2 fit reveals a projected axis ratio ofξ � 1.18�0.10 and PA� 120� 15�.
Comparison with the results found byvan Boekel et al.(2003) shows that the projected axis ratioξ

derived from the AMBER data is in basic agreement with theK-broad-band values ofξ � 1.25� 0.05

and PA� 138� 7� from van Boekel et al.(2003).

We also studied the elongation inside the Brγ emission line atλ � 2.166µm, following the same

procedure as in the continuum; i.e., we fitted an elliptically stretched 2-D version of the Hillier et al.

model shown in Fig.9.7to the AMBER data. However, since the global shape of the model function at

λ � 2.166µm shows stronger deviations from the measurements than in the continuum, the elongation

determination suffers from larger uncertainties, resulting in large error bars of the fit parameters. For

instance, forλ � 2.166µm we obtainedξ � 1.66� 0.60 and PA=81�40� from the best ellipse fit.

The 2-D ellipse fitting was also performed for the continuum near the He I emission line and in the

center of the He I line (λ � 2.057µm), where our model fits give an axis ratio ofξ � 1.35� 0.30 and a

PA of the major axis of 98�40� in the continuum, andξ � 1.74�0.60 and PA= 159�40� in the center

of the He I emission line. It should be noted that for the He I line region, only four visibility points are

available, covering the small PA range of only 60�. Because of this limited number of data points and

the small PA coverage, we conclude that the He I elongation measurements in the continuum as well as

the line region are not reliable and abandoned in the furtherelongation analysis of the He I data.

1 An additional argument in favor of only a very faint background contribution in the AMBER UT observation can be found in
the shape of the high spectral resolution line: the light from the speckle objects B, C, and D is produced in areas with velocities
smaller than 50 km/s. Therefore, it produces a narrow emission line which should appear in the center of the broad Brγ line.
Just looking at the shape of the line, it can be concluded thatsuch an effect is negligible.
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From theK-band VINCI data,van Boekel et al.(2003) derived a PA of 138� 7� for the major axis,

very well aligned with the Homunculus (132�, Davidson et al. 2001) and in agreement with our results

(PA� 120� 15�). Van Boekel’s and our continuum elongation measurements favor the physical model

according to whichη Car exhibits an enhanced mass loss in polar direction as proposed, for instance,

by Owocki et al.(1996, 1998) or Maeder & Desjacques(2001) for stars rotating close to their critical

rotation speed. Axis ratios of the order of 1.2 appear reasonable in the context of such polar-wind

models. Suppose, for example, that the wind’s polar/equatorial density ratio is 2 at any given radius

r, as reported bySmith et al.(2003) to explain latitude-dependent changes in the Balmer line profiles.

Relevant absorption and scattering coefficients have radial dependencies betweenne � r�2 (Thomson

scattering) andn2
e � r�4 (most forms of thermal absorption and emission). A meridional map of

projected optical thickness through the wind would show cross-sections of prolate spheroids, correlated

with the appearance of the configuration. With the radial dependencies and polar/equatorial density ratio

mentioned above, these spheroids have axial ratios betweenabout 1.2 and 1.4; i.e., appreciably less than

2. Viewed from an inclination anglei � 45�(Davidson et al. 2001), the apparent (projected) axis ratios

are between 1.1 and 1.2. This is merely one example, and we have omitted many details, but it illustrates

that the polar/equatorial density ratio is around 2, in agreement withSmith et al.(2003).

Finally, Smith et al.(2003) suggested that the stellar wind should become basically spherical during

an event at periastron. This prediction can be tested if VLTI/AMBER data are obtained at the next

periastron passage.

9.4.4 Continuum-corrected visibilities

9.4.4.1 Continuum-corrected visibility in the Br γ emission line

To investigate the brightness distribution in the Brγ line in more detail, we tried to disentangle the

continuum and pure line emission from both the AMBER data as well as the model data to derive the

size of the pure Brγ line-emitting region. Since the visibility measured inside an emission or absorption

line is the composite of a pure line component and an underlying continuum, the measured line visibility,

Vtot (see Fig.9.8 top), has to be corrected for the continuum contribution to obtain the visibilityVline of

the line emitting (absorbing) region. As discussed inMalbet et al.(2006b), Vline can be calculated if the

continuum level within the line is known. If the continuum within the line is equal to the continuum

level outside the line for an optically thin environment, asassumed in Fig.9.8, we obtain:

Vline � Vtot � Ftot � Vcont � Fcont

Fline
(9.1)

with Ftot � Fcont� Fline being the total measured flux andVtot being the measured visibility (also see

Fig. 9.8 top for illustration). As outlined in the Appendix, taking anon-zero differential phaseΦ1 into
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Figure 9.8: Left, top: The solid and
dashed red lines show the continuum-
corrected visibility inside the Brγ line of
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ing Eq. (9.2) are indicated in the fig-
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Figure 9.9: Visibility in the He I line. Right,
top: The figure is similar to Fig.9.8 (top)
but displays the MR-2004-12-26 data with the
shortest projected baseline (43m). As in the
case of the Brγ emission, the figure reveals
that the region dominated by line emission
is fully resolved by the AMBER measure-
ments. As in Fig.9.8 (top), the continuum-
corrected visibility is shown with a dashed
line in the blue-shifted region of the emission
line to indicate that in this region, the line
visibility is highly uncertain due to the pres-
ence of the P Cygni absorption.Right, bot-
tom: Continuum-corrected AMBER visibili-
ties (filled blue squares) in the red region of
the He I emission line as a function of spa-
tial frequency and continuum-corrected visi-
bility curve (solid red line) according to the
NLTE model ofHillier et al. (2001). To de-
rive the visibilities according to Eq. (9.2), the
data in the wavelength range 2.057–2.058µm
were averaged before the continuum correc-
tion. The model curve predicts much larger
visibility values in the line, which indicates
that the size of the line-emitting region in
the model is probably underestimated by the
model. A rescaling of the size of the model
by a factor of�2.3 (green line) reveals better
agreement with the AMBER measurements.
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account introduces an additional term in Eq. (9.1), leading to

Vline � a|VtotFtot|2 � |VcontFcont|2 � 2VtotFtotVcontFcont � cosΦ1
Fline

(9.2)

We applied Eq. (9.2) to the line-dominated AMBER data in the 2.155-2.175µm Brγ wavelength

range to derive the continuum-corrected visibility of the region emitting the Brγ line radiation. Onebig

uncertaintyin this correction is the unknown continuum flux within the line. Due to intrinsic absorption,

the continuum flux might be considerably lower within the line than measured at wavelengths outside

the line. Especially the blue-shifted wing of the Brγ emission line might be affected by the P Cygni-

like absorption, as discussed below. In case such an absorption component is present, our continuum-

correction would overestimate the size of the line-emitting region. The influence of this effect on the

red-shifted wing of the line is likely to be much smaller, as PCygni-like absorption mainly affects the

blue-shifted emission.

The visibility across the Brγ line is shown in Fig.9.8 (top) for the HR data corresponding to the

shortest projected baseline. The results for the other datasets are similar. From Fig.9.8 (top), one

can see that after the subtraction of a continuum contribution equal to the continuum outside the line,

the visibility reaches very small values in the center of theemission line. This means that the pure

line-emitting region is much larger than the region providing the continuum flux.

Fig. 9.8 (top) shows a strongasymmetrybetween the blue- and red-shifted part of the visibility in

the line with respect to the spectrum. While the visibility (Vtot as well asVline) rises concomitantly

with the drop of the line flux on the red side, the situation is very different on the blue side line center.

In agreement with the model predictions fromHillier et al. (2001), this indicates the existence of a P

Cygni-like absorption component in this wavelength region. In fact, atλ � 2.1625µm, we see a small

dip in the Brγ spectrum in both the model spectrum fromHillier et al. (2001) and the HR AMBER

observations. If such an absorption component is present, it can explain the asymmetric behaviour of

the line visibility with respect to the spectrum. The P Cygniabsorption in the blue wing of the Brγ

line makes the continuum correction of the visibility uncertain for wavelengths shorter than the central

wavelengthλc of the emission line. Because of this uncertainty, in Fig.9.8(top) the continuum corrected

visibility is shown with a dashed line forλ   λc, and the following discussion is restricted to the red-

shifted region of the Brγ line emission.

The continuum-corrected AMBER visibilities in the red-shifted region of the Brγ line are displayed

in Fig. 9.8 (bottom) for all data sets. To derive the visibilities in thered region, the data in the wave-

length range 2.1661–2.1670µm were averaged before the continuum correction. To now compare

the continuum-corrected AMBER visibilities with the modelpredictions (2.1661–2.1670µm), we con-

structed a model intensity profile of the pure Brγ emission line region by subtracting the Hillier et al.

intensity profile of the nearby continuum from the combined line+ continuum profile.

—177—



Chapter 9 Near-Infrared Interferometry of η Carinae using VLTI/AMBER

As Fig.9.8 illustrates, the model prediction is in agreement with the low visibilities found for spatial

frequencies beyond 60 cycles/arcsec. On the other hand, the figure also clearly indicates that mea-

surements at smaller projected baselines are needed to further constrain the Hillier et al. model in the

line-emitting region. With the baseline coverage providedby the current AMBER measurements, we

obtain a FWHM diameter of& 15.4 mas (lower limit) for the (continuum-corrected) line-emitting region

in the red line wing.

9.4.4.2 Continuum-corrected visibility in the He I emission line

As can be seen in Fig.9.5, the AMBER spectrum of the He I line shows a P Cygni-like profile with

a prominent absorption and emission component. This is in agreement with earlier findings bySmith

(2002) from long-slit spectroscopy using OSIRIS on the CTIO 4m telescope.

To estimate the spatial scale of the region emitting the He I emission line, we followed the same

approach as outlined in the previous section for the Brγ line; i.e., we first applied Eq. (9.2) and then

compared the continuum-corrected visibility with the continuum-corrected radiative transfer model of

Hillier et al. (2001). Figure9.9 (top) shows the measured flux and visibility for the MR-2004-12-26

measurement with the shortest projected baseline (43m) as well as the continuum-corrected visibility

across the He I emission component (solid red line). Becauseof the P Cygni-like absorption component,

the continuum subtraction is highly uncertain in the blue region of the emission line (dashed red line in

Fig. 9.9), as already discussed in the context of the Brγ line in Sect.9.4.4.1.

In Fig. 9.9 (bottom), the continuum-corrected visibility of all AMBERdata in the red region of the

He I emission line (averaged over the wavelength range 2.057–2.058µm) is shown as a function of

spatial frequency. As the figure reveals, similar to the Brγ emission, the visibilities inside the He I

emission line region reach rather low values. As the comparison shows, the line visibilities predicted by

the model are much higher than the line visibilities measured with AMBER, indicating that the size of

the line-emitting region in the model is too small. Rescaling of the model size by a factor of 2.4 results

in a much better agreement between the model and observations (green curve in Fig.9.9, bottom) and

a FWHM diameter of& 8.2 mas, which is 3.6 times larger than the FWHM diameter of 2.3 mas in the

continuum. Due to the lack of interferometric data at small projected baselines, this value can only give

a rough lower limit of the size.

The results for the visibility inside the He I line can possibly be explained in a qualitative way in

the framework of the binary model for the central object inη Car (e.g.Davidson et al. 1999; Davidson

2001; Pittard & Corcoran 2002; Hillier et al. 2006; Nielsen et al. 2006). In a model of this type, He I

emission should arise near the wind-wind interaction zone between the binary components. The hot

secondary star is expected to ionize helium in a zone in the dense primary wind, adjoining the wind-
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wind interaction region. Such a region can produce He I recombination emission.2 The wind-wind

shocked gas, by contrast, is too hot for this purpose, while the density of the fast secondary wind is

too low. Since the AMBER measurements (Dec. 2004 and Feb. 2005, at orbital phasesφ � 0.268 and

φ � 0.299, see Table9.1) were obtained at an intermediate phase between periastronin July 2003 and

apoastron in April 2006, the extension of the He I emission zone is expected to be rather diffuse and

larger than the continuum size. In other words, the He I emission zone should be fairly extended and

larger than the Hillier et al. model prediction, which is in agreement with the AMBER data.

9.4.5 Differential Phases and Closure Phases

The measurement of phase information is essential for the reconstruction of images from interferometric

data, but such an image reconstruction is only possible withan appropriate coverage of theuv-plane.

Nevertheless, even single phase measurements, in particular of the closure phase and differential phase,

provide important information.

The closure phase (CP) is an excellent measure for asymmetries in the object brightness distribution.

In our AMBER measurements, as illustrated in Figs.9.3and9.5, we find that the CP in thecontinuum

is zero within the errors for all the various projected baselines of the UT2-UT3-UT4 baseline triplet,

indicating a point-symmetric continuum object. However, in the line emission, we detect a non-zero

CP signal in all data sets. In both MR measurements covering the Brγ line, we find the strongest CP

signal in the blue wing of the emission line atλ � 2.164µm (-34� and -20�) and a slightly weaker CP

signal in the red wing of the emission line atλ � 2.167µm (+12� and+18�). We also detected non-zero

CP signals in the HR measurement around Brγ taken at a different epoch. In the case of the He I line,

a non-zero CP could only be detected atλ � 2.055µm, just in the middle between the emission and

absorption part of the P Cygni line profile.

The differential phase (DP) at a certain wavelength bin is measured relative to the phase at all wave-

length bins. Therefore, the DP measured within a wavelengthbin containing line emission yields ap-

proximately the Fourier phase of the combined object (continuum plus line emission) measured relative

to the continuum. This Fourier phase might contain contributions from both the object phase of the

combined object and a shift phase, which corresponds to the shift of the photocenter of the combined

object relative to the photocenter of the continuum object.Significant non-zero DPs were detected in

the Doppler-broadened line wings of the Brγ line. Particularly within the blue-shifted wings, we found

a strong signal (up to� �60�), whereas the signals are much weaker within the red-shifted line wings.

These DPs might correspond to small photocenter shifts, possibly arising if the outer Brγ wind region

consists of many clumps which are distributed asymmetrically. The small differential phases of up to

2For a qualitative sketch of the geometry, see “zone 4” in Figure 8 ofMartin et al.(2006), even though this figure was drawn to
represent He�� in a different context. For reasonable densities, the predicted He� zone has a quasi-paraboloidal morphology.
In addition, some extremely dense cooled gas, labeled “zone6” in the same figure, may also produce He I emission.
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Chapter 9 Near-Infrared Interferometry of η Carinae using VLTI/AMBER� �15� for the different baselines of the blue-shifted light in the He I line canperhaps also be explained

by the above-mentioned asymmetries or within the frameworkof the binary model discussed in previ-

ous sections. In the binary model, a large fraction of the He Iis possibly emitted from the wind-wind

collision zone, which is located between the primary and thesecondary (Davidson et al. 1999; Davidson

2001; Pittard & Corcoran 2002; Hillier et al. 2006; Nielsen et al. 2006).

9.4.6 Modeling with an inclined aspherical wind geometry

The goal of the modeling presented in this section is to find a model which is able to explain several

remarkable features in our data; in particular,(a) the asymmetry in the Brγ line profile (showing less

emission in the blue-shifted wing than in the red-shifted wing) and the P Cygni-like absorption dip

in the blue-shifted Brγ wing, (b) the strong DP in the blue-shifted wing and a weaker DP signal in the

red-shifted wing, and(c) the structure of the CP, showing a change in the sign between the blue- and red-

shifted line wing. We aimed for a geometrical but physicallymotivated model which would reproduce

these features at all wavelength channels simultaneously.For this, we concentrate on the Brγ line, as

this line shows a stronger phase signal than the He I line and was measured with a betteruv-coverage.

As Smith et al.(2003) convincingly showed, the stellar wind fromηCar seems to be strongly latitude-

dependent, with the highest mass flux and velocities at the poles. This anisotropy can be understood

in the context of theoretical models (see, e.g.,Maeder & Desjacques 2001), which take the higher

temperatures at the poles (geff-effect) and the equatorial gravity darkening on a rapidly rotating star

into account (von Zeipeleffect, Zeipel 1925). As these models are quite successful in explaining the

bipolar structure of the Homunculus nebula, we investigated whether such bipolar geometries with a

latitude-dependent velocity distribution might also be suited to explain our interferometric data.

Due to its success in reproducing both the spectrum and the measured visibilities, we based our

wind model on the spherical Hillier et al. (2001) model and superposed a weak aspherical stellar wind

geometry, which is inclined with respect to the line-of-sight. Our model includes three components (see

Fig. 9.10); namely,

(1) a continuum component (using the Hillier et al. continuum CLV, see Fig.9.7top) with a blue-shifted

absorption component,

(2) a spherical stellar wind (using the Hillier et al. continuum-subtracted Brγ CLV), and

(3) an aspherical wind geometry, represented by a 41� inclined ellipsoid.

The relative contribution of these different constituents to the total flux is given by the input spectra

shown in the upper row of Fig.9.11. For the spherical and aspherical wind component, we assume

Gaussian-shaped spectra. The original Hillier et al. CLVs slightly underestimate the size of the observed
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Figure 9.10: Left: Illustration of the
components of our geometric model for
an optically thick, latitude-dependent
wind (see text for details). For the
weak aspherical wind component, we
draw the lines of latitudes to illustrate
the 3D-orientation of the ellipsoid.Be-
low (a, b): The upper row shows the
brightness distribution of the modeled
aspherical wind component (item (3) in
the text) for two representative wave-
lengths. The figures below show the to-
tal brightness distribution after adding
the contributions from the two spherical
consituents of our model.

a) Blue-shifted line wing b) Red-shifted line wing
λ � 2.1635µm λ � 2.1669µm
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structures (see Fig.9.6). Therefore, we rescaled them by 10% to obtain a better agreement for the

visibilities at continuum wavelengths.

The aspherical wind ofη Car is simulated as an ellipsoid with an inclination similarto the inclination

angle of the Homunculus (41�, Smith 2006). While the south-eastern pole (which is inclined towards

the observer) is in sight, the north-western pole is obscured. The latitude-dependent velocity distribution

expected for theη Car wind was included in our model by coupling the latitude-dependent brightness

distribution of the ellipsoid to the wind velocity. At the highestblue-shiftedvelocities, mainly thesouth-

eastern polar regioncontributes to the emission (see Fig.9.10a). In thered-shiftedline wing, mainly

the (obscured)north-western poleradiates (see Fig.9.10b). The axis of the ellipsoid was assumed to be

oriented along the Homunculus polar axis (PA 132�, Smith 2006) and its axis ratio was fixed to 1.5.

As our simulations show, such an asymmetric geometry can already explain the measured DPs and

CPs with a rather small contribution of the asymmetric structure to the total flux (see black line in

Fig. 9.11, upper row). Although the large number of free parameters prevented us from scanning the

whole parameter space, we found reasonable agreement with asize of the ellipsoid major axis of 8 mas.

Fig. 9.11shows the spectrum, visibilities, DPs, and CPs computed from the model.

As our model was inspired by physical models, but does not take the complicated radiation transport

and hydrodynamics involved in reality into account, we would like to note that our model allows us to

check for consistency between the considered geometry and the AMBER spectro-interferometric data,

but can neither constrain the precise parameters of a possible aspherical latitude-dependent stellar wind

aroundη Car, nor can it rule out other geometries. We summarize some qualitative properties of our

wind model as follows:

• The strong underlying spherical component mainly accountsfor the very low visibilities measured

within the line.

• The aspherical wind component introduces the asymmetry required to roughly explain the mea-

sured phase signals. In particular, it reproduces the larger DPs and CPs within the blue-shifted

line wing compared to the red-shifted wing, as the red-shifted emission region is considerably

obscured. It also accounts for the flip in the CP sign, as the photocenter of the line emission shifts

its location between the blue- and red-shifted wing relative to the continuum photocenter.

• The absorption component which we introduced in the blue-shifted wing of the Brγ line allows

us to reproduce the asymmetry measured in the shape of the Brγ emission line profile (showing

an increase of flux towards red-shifted wavelengths) and theweak dip observed at far-blue-shifted

wavelengths. Furthermore, with the decrease of the continuum contribution, the absorption com-

ponent helps to lower the visibilities in the blue-shifted line wing, simultaneously increasing the

asymmetry in the brightness distribution (increasing the phase signals). Finally, with the interplay
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Figure 9.11: Observables computed from our optically thick, latitude-dependent wind model (see Fig.9.10for a
model illustration). The points (crosses) represent the measurements (as also shown in Fig.9.3), and the solid lines
give the observables computed from our model. The upper row shows the contributions from the various model
components to the total flux. Besides the continuum emission(purple line), we introduced a spherical (blue line)
and an aspherical (black line) wind component.
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between the absorption and emission component, our simulation reproduced äbumpı̈n the visibil-

ity similar to the one observed on the shortest baseline of our HR measurement (λ � 2.163µm).

9.4.7 Feasibility of the detection of the hypothetical hot c ompanion and the

wind-wind interaction zone

One of the most intriguing questions regardingη Car is whether or not its central object is a binary, as

suggested to explain cycle (e.g.,Damineli 1996).

9.4.7.1 A simple binary continuum model

To investigate whether the AMBER measurements presented here can shed more light on the binarity

hypothesis, we used the following approach: We constructeda simple binary modelconsisting of a

primary wind component with a CLV according to the continuummodel of Hillier et al. (2006; FWHM

diameter� 2.3 mas; see upper panels in Fig.9.7) and an unresolved binary companion represented

by a point-like source (uniform disk with� 0.1 mas FWHM diameter). The secondary component

is predicted to be approximately located at PA –36� with a separation of 8 mas from the primary for

the time of the AMBER observations (Nielsen et al. 2006). The continuum flux ratioq was treated

as a free parameter. We would like to note that in our model, weassumed that allK-band light from

the secondary is reaching us unprocessed; i.e. we ignored a possible dilution or re-distribution of the

secondary’s radiation.

We calculated the 2D visibility function (see Fig.9.12c) of this model intensity distribution for dif-

ferent values ofq, as well as the closure phases for the baselines and PAs corresponding to our AMBER

measurements (Fig.9.12d). Finally, we compared the results with those obtained from a single compo-

nent model where only the primary wind is present (Fig.9.12b). The differences of the visibilities and

closure phases between the single star and the binary model (at the baselines and PAs corresponding to

our AMBER measurements) are displayed in Fig.9.12d as a function of theK-band flux ratio of the

binary components.

Fig. 9.12d shows two interesting results: First, the closure phase ismore sensitive to the binary sig-

nature than the visibilities and, thus, a more suitable observable to constrain the binary hypothesis. And

second, given the accuracies of our first AMBER visibility and closure phase measurements (indicated

by the horizontal dashed-dotted lines), we can conclude, for the particular model shown in Fig.9.12,

that the AMBER closure phases put an intensity ratio limitqmin � 110 on the binaryK-band flux ratio.

This limit is in line with the estimateq � 200 given byHillier et al. (2006). Thus, based on the model

shown in Fig.9.12, the AMBER measurements are not in conflict with recent modelpredictions for the

binary.
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To investigate whether we can put similar constraints on theminimum K-band flux ratioqmin for

arbitrary separations and PAs, we calculated a larger grid of binary models and compared the residuals

of visibilities and closure phases analogue to the example shown in Fig.9.12.

For these grid calculations, we used values in the range from4 to 14 mas for the binary separation

with increments of 1 mas, and PAs of the secondary in the wholerange from 0� to 360� in steps of 10�.
TheK-band flux ratioq of the binary components was varied in the range from 1 to 250 with ∆q � 4.

As a result of the grid calculation, we obtained the minimumK-band flux ratioqmin as a function of

binary separation and orientation.

Whereas the study with a fixed companion position presented above allowed us to put rather stringent

constraints onqmin (see Fig.9.12), this systematic study revealed that due to the rather pooruv-coverage,

a few very specific binary parameter sets exist where we are only sensitive toqmin � 10. Nevertheless,

for the above-mentioned separation interval (4 to 14 mas), we found that we are able to detect com-

panions up toqmin � 50 at more than 90% of all PAs. In order to push this sensitivity limit in future

observations, a betteruv-coverage will be required. Together with the expected higher closure phase ac-

curacy, AMBER will be sensitive up toq¡ 200 and, therefore, have the potential to probe the currently

favored binary models.
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a) Continuum emission
with binary

b) 2D-Visibility
without binary

c) 2D-Visibility
with binary

d) Residuals between models with/without a binary
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Figure 9.12: Simulation illustrating the
signatures of a binary companion at the pre-
dicted position (for the orbital phase at the
time of our continuum observations around
the Brγ line; separation� 8 mas,PA ��36�; seeNielsen et al. 2006). For the pri-
mary component, we assume a continuum
emission CLV fromHillier et al. (2006), to
which we add a uniform disk of 0.1 mas di-
ameter to account for the binary companion
(seea). Figure b shows the 2D-visibility
function of a single component model con-
taining only the continuum-emitting object
with Hillier-type CLV. Figurec shows the
2D-visibility corresponding to the binary
model shown in panela for a smallK-band
flux ratio q � 10 between the continuum
emitting region (Hillier-type CLV) and the
companion. Ind the residuals of the vis-
ibilities (upper panel) and closure phases
(lower panel) between the models with and
without a companion are shown as a func-
tion of flux ratio q for baselines and PAs
corresponding to the seven AMBER mea-
surements. The dashed horizontal lines in-
dicate the uncertainty of the measurements.
Given these uncertainties, the figure illus-
trates that a companion signature should
be visibile from the AMBER closure phase
measurements, if the binary is less than�

110 times fainter compared to the primary.
See text for details.
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9.4.7.2 Can AMBER detect a He I wind-wind interaction zone shifted a few mas from the

primary wind?

In the context of the binary hypothesis, it is also importantto discuss the implications for the interpre-

tation of the AMBER He I measurements. According to the binary model, a large fraction of the He I

line emission should arise from the wind-wind collision zone expected between the primary and the

secondary (Davidson et al. 1999; Davidson 2001; Hillier et al. 2006; Nielsen et al. 2006). The exact in-

tensity ratio of primary He I wind and He I emission from the wind-wind interaction zone is not known.

Figure 9.6 suggests that during the AMBER observations, the total He I flux was roughly two times

larger than the model prediction ofHillier et al. (2001) for the primary He I wind.

At the orbital phases of the AMBER measurements, the wind-wind collision zone should be at resolv-

able distances fromη Car’s primary (resolution� 5 mas; companion separation� 8 mas, PA� –36�,
Nielsen et al. 2006). Looking at the AMBER He I data, we see that the differential as well as the closure

phases are zero everywhere except for the transition regionbetween the absorption and emission part

of the He I line, where we find differential phases of� 10–20� and a closure phase of�–30�; i.e., the

phases measured across the He I line are significantly weakercompared to the Brγ line. The question is

now, why AMBER measured weaker phase signals within the He I line and if this result is in line with

the predictions of the wind-wind collision model.

One possible explanation for the small measured phases could be the orientation of the binary orbit.

If the orbit’s major axis is nearly aligned with the line-of-sight, the photocenter shift inside the He I line

will be very small. In addition, the deviations from point symmetry would be rather small. Therefore,

in the case of this special geometry, both differential phases and the closure phase would be small, in

qualitative agreement with the AMBER data. Another explanation could be that the contribution of

the wind-wind collision zone to the He I line emission is muchweaker than that of the primary wind.

However, this is not very likely (seeHillier et al. 2006).

A different explanation for the weak phases can be found from a modeling approach similar to the one

for the Brγ line region outlined in Sect.9.4.6. Based on the results presented in Sects.9.4.1and9.4.4.2,

we constructed a simple He I model consisting of a spherical primary wind component with a Hillier-

type CLV (2.5 mas FWHM diameter) and an extended spherical HeI line-emitting region with Gaussian

CLV and a 7 mas FWHM diameter (i.e., for simplicity, we assumed that all He I flux is emitted from the

wind-wind interaction region; however, some fraction of HeI is also emitted from the primary wind; see

Hillier et al. 2006 and Fig.9.6of the present paper). The center of the line-emitting component of this

model is located 3 mas away from the primary wind component towards PA 132�; i.e., in the direction

of the Homunculus axis. The spectra of the continuum and line-emitting components were chosen in

such a way that the combined spectrum resembles the observedHe I line spectrum.

The modeling results show that this simple model is approximately able to simultaneously reproduce
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Figure 9.13: Observables computed for our He I line model. For this model we assume beside a Hillier-type CLV
for the continuum emission a He I emitting region with Gaussian profile, offset by 3 mas along the Homunculus
axis (PA 132�).
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the observed spectrum and the wavelength dependence of visibilities, differential phases (10–20�), and

closure phases (�–30�). Thus, our simple model example illustrates that the AMBERmeasurements

can be understood in the context of a binary model forη Car and the predicted He I wind-wind collision

scenario (e.g.Davidson et al. 1999; Davidson 2001; Hillier et al. 2006; Nielsen et al. 2006). We note

that the model parameter values given above are of preliminary nature. A more detailed, quantitative

modeling is in preparation and will be subject of a forthcoming paper. Furthermore, we would like to

emphasize, as already discussed in previous sections, thatthere are likely to bethreesources of He I

emission - the primary wind, a wind-wind interaction zone (bow shock), and the ionized wind zone

caused by the ionization of the secondary. For both the bow shock and the ionized wind zone, the

ionizing UV radiation field of the secondary is of crucial importance. On the basis of the observed

blue-shift and the weakness of the He I during the event, we believe that the primary wind contribution

is small. It is not yet possible to decide on the relative contributions of the bow shock and the ionized

wind region.

9.5 Conclusions

In this paper we present the first near-infrared spectro-interferometry of the enigmatic Luminous Blue

Variableη Car obtained with AMBER, the 3-telescope beam combiner of ESO’s VLTI. In total, three

measurements with spectral resolutions ofR � 1 500 andR � 12 000 were carried out in Dec. 2004

(φ � 0.268) and Feb. 2005 (φ � 0.299), covering two spectral windows around the He I and Brγ

emission lines atλ � 2.059 and 2.166µm, respectively. From the measurements, we obtained spectra,

visibilities, differential visibilities, differential phases, and closure phases. From the analysis of the data,

we derived the following conclusions:

• In the K-band continuum, we resolvedη Car’s optically thick wind. From a Gaussian fit of

the K-band continuum visibilities in the projected baseline range from 28–89 m, we obtained a

FWHM diameter of 4.0� 0.2 mas. Taking the different fields-of-view into account, we found

good agreement between the AMBER measurements and previousVLTI /VINCI observations of

η Car presented byvan Boekel et al.(2003).

• When comparing the AMBERcontinuumvisibilities with the NLTE radiative transfer model from

Hillier et al. (2001), we find very good agreement between the model and observations. The best

fit was obtained with a slightly rescaled version of the original Hillier et al. model (rescaling

by 1–2%), corresponding to FWHM diameters of 2.27 mas atλ � 2.040µm and 2.33 mas at

λ � 2.174µm.

• If we fit Hillier et al. (2001) model visibilities to the observed AMBER visibilities, weobtain, for

—189—



Chapter 9 Near-Infrared Interferometry of η Carinae using VLTI/AMBER

example, 50% encircled-energy diameters of 4.2, 6.5, and 9.6 mas in the 2.17µm continuum, the

He I, and the Brγ emission lines, respectively.

• In the continuum around the Brγ line, we found an asymmetry towards position angle PA=120��
15� with a projected axis ratio ofξ � 1.18� 0.10. This result confirms the earlier finding of

van Boekel et al.(2003) using VLTI/VINCI and supports theoretical studies which predict an

enhanced mass loss in polar direction for massive stars rotating close to their critical rotation rate

(e.g. Owocki et al. 1996, 1998).

• For both the Brγ and the He I emission lines, we measured non-zero differential phases and non-

zero closure phases within the emission lines, indicating acomplex, asymmetric object structure.

• We presented a physically motivated model which shows that the asymmetries (DPs and CPs)

measured within the wings of theBrγ line are consistent with the geometry expected for an as-

pherical, latitude-dependent stellar wind. Additional VLTI/AMBER measurements and radiative

transfer modeling will be required to determine the preciseparameters of such an inclined aspher-

ical wind.

• Using a simple binary model, we finally looked for a possible binary signature in the AMBER

closures phases. For separations in the range from 4 to 14 masand arbitrary PAs, our simple

model reveals a minimumK-band flux ratio of�50 with a 90% likelihood.

Our observations demonstrate the potential of VLTI/AMBER observations to unveil new structures of

η Car on the scales of milliarcseconds. Repeated observations will allow us to trace changes in observed

morphology overη Car’s spectroscopic 5.5 yr period, possibly revealing the motion of the wind-wind

collision zone as predicted by theη Car binary model. Furthermore, future AMBER observations with

higher accuracy might be sensitive enough to directly detect the hypothetical hot companion.
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Figure 9.14: Left, top: Spectral calibration
of the AMBER observations. The figure
shows the spectrum ofη Car (blue) and the
calibrator star L Car (green) around the Brγ

line obtained from the HR measurements in
Feb. 2005. In addition, a telluric spectrum
from the Kitt Peak Observatory is shown in
red. The original telluric spectrum with a
spectral resolution ofR� 40 000 was spec-
trally convolved to match the resolution of
the AMBER measurements. For the flux
calibration of theη Car spectrum, the Brγ
line in the L Car spectrum was interpolated
before the division. See text for further de-
tails. Left, bottom: Same as top panel, but
for both MR measurements around the He I
emission line. Together with theηCar spec-
tra, the spectra of the calibrators HD 93030
and HD 89682 are displayed. In addition,
the telluric spectrum obtained at Kitt Peak
with R� 40 000 and a spectrally convolved
telluric spectrum is shown, which matches
the spectral resolution of the MR measure-
ments (R � 1 500). The figure illustrates
that the forest of telluric lines forms a quasi-
continuum which modulates the AMBER
spectra.

To obtain both an accurate wavelength calibration of the AMBER raw data and properly calibrated

spectra ofη Car, we compared the AMBER raw spectra ofη Car as well as the calibrator stars L Car,

HD 93030, and HD 89682 with aK-band telluric spectrum recorded at the Kitt Peak Observatory with

a spectral resolution of 40 000. For the comparison with the AMBER spectrum, this telluric spectrum

was spectrally convolved to match the spectral resolution of the AMBER measurements with high (R�
12 000) and medium (R� 1 500) spectral resolution.

The result of the comparison is shown in Fig.9.14. In the upper panel, the high spectral resolution

AMBER spectra ofηCar and the calibrator L Car are shown together with the telluric spectrum withR�
10 000. From the comparison with the telluric spectrum, we identified 7 prominent telluric absorption

features in the L Car spectrum, which are indicated by the dashed vertical lines. The strongest absorption

line seen in the L Car spectrum is not telluric, but can be identified as intrinsic Brγ absorption in L Car.
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Therefore, to properly calibrate theη Car spectrum with the L Car spectrum, we had to interpolate the

Brγ line region in the L Car spectrum before dividing the two spectra. From the spectral calibration

shown in Fig.9.14, we estimated a wavelength calibration error of the AMBER data∆λ � 3�10�4 µm

The lower panel in Fig.9.14shows the wavelength calibration of the medium spectral resolution data

in the wavelength region around the He I line. The figure contains the twoη Car MR spectra and the

spectra of the two corresponding calibrator stars, HD 93030and HD 89682, as well as the telluric spectra

with spectral resolutions ofR� 40 000 andR � 1 500. As the telluric spectra reveal, there is a forest

of telluric lines in the spectral region around the He I line.As can be seen in Fig.9.5, the modulation of

the continuum flux introduced by the telluric quasi-continuum cancels out completely when theη Car

spectra are divided by the corresponding calibrator spectra, which show no prominent intrinsic line

features. Since there are no sharp spectral features in the 2.03–2.08µm region of either the calibrator or

telluric spectras which could be used for the spectral calibration, we estimated a wavelength calibration

error∆λ � 6� 10�4 µm for the MR He I data. On the other hand, for the MR data around the Brγ line,

we found∆λ � 4� 10�4 µm.

9.7 APPENDIX: Continuum Uniform Disk and Gauss Diameter

Fits

For each spectral channel as well as for an averaged continuum, we performed 1-D fits to the visibility

data using simple uniform disk (UD) and Gaussian models. In this step of the analysis, possible asym-

metries were ignored and all visibility points at a given wavelength were fitted together, regardless of the

position angle of the observations. The results of these 1-Dfits are illustrated in the two upper panels of

Fig. 9.15for the averaged continuum data in the wavelength ranges 2.03–2.08µm and 2.155–2.175µm,

respectively. As the figure reveals, neither a uniform disk nor a single Gaussian provides a good fit to

the continuum data. At least, this is true as long as no contamination by a fully resolved background

component is taken into account.

The wavelength dependence of the apparent size obtained from the UD and GAUSS model fits for the

individual spectral channels is shown in the lower left panel of Fig. 9.15. This panel illustrates that the

equivalent UD and GAUSSK-band diameters ofη Car derived from the AMBER data are�4 and�6.5

mas, respectively.

It should be added here that a good fit of the AMBER data using, for instance, a Gaussian can indeed

be obtained when a certain amount of contamination due to a fully resolved background component is

taken into account (see alsoPetrov et al. 2006a). To illustrate that, we performed Gaussian fits to the

AMBER data, where we introduced such a fully resolved component as a free fitting parameter. We

found that the best Gaussian fit is obtained with a FWHM diameter dGauss� 3.01 mas and a� 29%
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Figure 9.15: 1-D visiblity fits of the AM-
BER continuum measurements. The two pan-
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Figure 9.16: Dependence of the Gaussian FWHM
diameter on the fit range. The figure shows
the background-corrected visibilities obtained with
VLTI /VINCI (see van Boekel et al. 2003) as well
as Gaussian fits of (a) all four data points (long-
dashed green line), (b) only the point withq � 45
cycles/arcsec (short-dashed blue), (c) only the point
corresponding to the longest baseline (dotted pur-
ple), and (d) only the point corresponding to the
shortest baseline (dashed-dotted light blue). See the
labels for the Gaussian FWHM diameters resulting
from the different fits. The figure illustrates that
the fitted diameter strongly depends on the spatial
frequency range which is used to fit the data. The
strong diameter variation (in this case, the diameter
changes by a factor of� 3) occurs since a Gaussian
is not a good representation of the measured visibil-
ity function. See text for further discussion.
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background contamination for the He I continuum region anddGauss� 3.32 mas and a� 30% back-

ground contamination for the Brγ continuum region. Thus, from this fit we would derive a background

contamination which is only� 50% smaller than in the VINCI data. We think that such a large amount

of background contamination is not very likely given the small AMBER fiber aperture (60 mas) of the

8.2 m telescopes. We think that the large amount of background contamination needed to find a rea-

sonable Gauss fit just reflects the fact that a Gaussian is not appropriate to describe the observations.

This is confirmed by the fact that for the fit of the radiative transfer model ofHillier et al. (2001), no

background component has to be taken into account to reproduce the AMBER measurements.

We would like to note here that the Gaussian FWHM diameters oftypically � 4 mas found from

the AMBER measurements are not in contrast to the valuedGauss� 7 mas found byvan Boekel et al.

(2003) from VLTI /VINCI observations for the following reason: Since a Gaussian is not a good rep-

resentation of both the VINCI and the AMBER visibilities, the diameter resulting from a Gaussian fit

strongly depends on the fit range. This is illustrated in Fig.9.16for the four VINCI measurements given

in Fig. 1 of van Boekel et al.(2003). As the figure shows, from a Gaussian fit of all four data points,

dGauss� 6.0 mas is obtained. If only the data point withq � 45 cycles/arcsec is fitted (corresponding

to a projected baseline length of� 24 m), we getdGauss� 7.65 mas. This is in agreement with the

values given invan Boekel et al.(2003) for the elliptical Gaussian fit of the large number of VINCI

measurements with a projected baseline of 24 m (see their Fig. 2). On the other hand, if we fit only the

VINCI data point corresponding to the longest projected baseline (q � 136 cycles/arcsec), a Gaussian

fit providesdGauss� 4.39 mas (see Fig.9.16), which is very close to the diameter we obtain from the

AMBER measurements forλ � 2.174µm (dGauss� 4.35 mas). This is not surprising since the spatial

frequency of this VINCI data point agrees with the average spatial frequency of our AMBER observa-

tions (q �50–200 cycles/arcsec). Thus, it can be concluded that good agreement between the Gaussian

FWHM diameters derived from the AMBER and VINCI measurements is found if a comparable spatial

frequency range is used for the fit.
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9.8 APPENDIX: Visibility and Differential Phase of an Emission

Line Object

We assume that the target’s intensity distribution can be described by two components: the continuum

spectrumocontpx, y; λq and the emission line spectrumolinepx, y; λq. In the part of the spectrum containing

the emission line, bothocont andoline contribute to the total intensity distributionotot. According to

the van-Zittert-Zernike theorem, the Fourier transformsOcontpB{λq andOlinepB{λq of ocontpx, y; λq and

olinepx, y; λq are measured with an optical long baseline interferometer at wavelengthλ and projected

baseline vectorB. In the following, we assume that all Fourier spectra are normalized to 1 at frequency

zero. The complex Fourier spectrumOtotpB{λq of the intensity distributionotot measured at the emission

line λline is given by

Otot � 1
Fcont� Fline

pFcont �Ocont� Fline �Olineq, (9.3)

whereFcont and Fline are the fluxes of the continuum componentocont and the line componentoline,

respectively. In the emission line, the total flux measured is Ftot :� Fcont� Fline.

From the spectrally dispersed interferometric data, we canderive the differential phase, which is the

difference of the Fourier phases of the continuum componentocont and the total intensityotot in the

emission line. The differential phaseΦ1pB{λlineq in the emission line atλline is given by

Ocont �O�
tot � Vcont � Vtot � eiΦ1 , (9.4)

whereΦ1pB{λlineq :� ΦcontpB{λlineq � ΦtotpB{λlineq. ΦcontpB{λlineq is the Fourier phase of the contin-

uum component, andΦtotpB{λlineq denotes the Fourier phase ofotot at the position of the emission line

λline. The asterisk� in this equation denotes conjugate complex operation.VcontpB{λlineq describes the

visibility of the continuum component at the position of theemission lineλline, andVtotpB{λlineq is the

visibility measured at the position of the emission lineλline. Inserting Eq. (9.3) into Eq. (9.4) yields

Vcont � Vtot � ei Φ1� Vcont

Fcont� Fline
� pFcontVcont� FlineVlineei ∆Φq, (9.5)

where∆ΦpB{λlineq denotes the difference of the Fourier phases of the continuum and line components;

i.e., ∆ΦpB{λlineq :� ΦcontpB{λlineq � ΦlinepB{λlineq. ΦcontpB{λlineq andΦlinepB{λlineq are the Fourier

phases of the continuum and line components, respectively.

In the vector representation of complex numbers, the three quantitiesFcontVcont, FlineVline, andFtotVtot

form a triangle with one corner placed at the center of the coordinate system. According to the law of
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cosines, the correlated flux of the line component is given byEq. (9.2) (see Sect.9.4.4.1):|FlineVline|2 � |FtotVtot|2 � |FcontVcont|2 ��2 � FtotVtot � FcontVcont � cospΦ1q. (9.6)

Since the fluxFline can be calculated from the measured fluxesFcont andFtot, the visibility Vline of the

line component can be derived using Eq. (9.6).

Applying the law of sines to this triangle in the complex plane yields the differential phase∆ΦpB{λlineq,
which is the difference between the Fourier phaseΦcontpB{λlineq of the continuum component and the

Fourier phaseΦlinepB{λlineq of the line component:

sinp∆Φq � sinpΦ1q � |FtotVtot||FlineVline| , (9.7)

whereΦ1pB{λlineq is the differential phase measured at the position of the emission lineλline.
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As part of my PhD thesis, I have used state-of-the-art infrared interferometric techniques to investigate

a selection of massive stars and their circumstellar environment with unprecedented angular resolution.

For these studies, the VLTI (AMBER and MIDI) and the IOTA interferometer as well as bispectrum

speckle interferometry on 6 m-class telescopes were used. My work included the development of...

• a comprehensive IOTA data reduction software package (Chapter3).

• an AMBER data processing pipeline which pre-processes AMBER raw data files, reduces them

using theamdlib consortium software, and post-processes and presents the observables (Chap-

ter 4).

For the astrophysical modeling and interpretation of the obtained data, I have worked on...

• radiative transfer modeling of circumstellar disk and envelope geometries (see Chapter6). For

this purpose, the Monte Carlo radiative transfer code by Keiichi Ohnaka (Ohnaka et al. 2006) was

extended to perform an iterative refinement of the dust geometry. Furthermore, the software was

embedded in a framework, which allowed us to scan with hundreds of models a wide range of the

parameter-space, varying both the complex dust geometry and the dust chemistry.

• the modeling and least-square fitting of spectro-interferometric data, using either radiative transfer

images (such as applied for MWC 147, see Chapter6, and HR 5999, seePreibisch et al. 2006) or

geometric, wavelength-dependent models (such as applied for θ1Ori C, see Chapter8, andη Car,

see Chapter9).

• the implementation, refinement, and testing of aperture synthesis image reconstruction algorithms

(Chapter5), in particular of the Building Block mapping algorithm developed by Karl-Heinz

Hofmann.

• the implementation of sophisticated orbit fitting algorithms, in particular byDocobo(1985, see

Section8.6.1).

In the following, I review the astrophysical results of my PhD work and give an outlook of potential

future interferometric investigations on these targets.
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10.1 Radiative Transfer Modeling of the Active Accretion Disk

around MWC 147

Summary:Herbig AeBe stars provide excellent targets for studying the structure of circumstellar disks

and the accretion process. With MWC 147 (spectral type B6), we chose a star in the upper mass range

of the Herbig Be class (M � 7 Md). We obtained VLTI/AMBER and VLTI/MIDI long-baseline in-

terferometric data which was complemented by archival PTI data, resolving the circumstellar environ-

ment around MWC 147 on the AU-scale. To also optimally constrain the SED, we used archival high-

resolution mid-infraredSpitzer/IRS spectroscopy. When applying sophisticated 2-D radiative transfer

modeling, we found that the commonly favoured irradiated disk models can easily reproduce the SED

of MWC 147, but are in strong conflict with the interferometric data. As this discrepancy could not be

resolved by modifying the disk geometry (e.g. including a puffed-up inner rim) nor by varying the disk

chemistry, we modified the radiative transfer code to include an actively accreting inner gaseous disk.

Using a flared Keplerian disk geometry with an outer radius of100 AU, an outer envelope, and an inner

accretion disk with an mass accretion rate of 1.2� 10�5Mdyr�1 resulted in a good fit both to the SED

and the NIR and MIR visibilities. Combining this surprisingresult (obtained from our detailed, physical

modeling of the SED and the NIR+MIR interferometric data) with the general trend found byMonnier

(2003) in the size-luminosity relation for Herbig AeBe stars might suggest that with increasing mass

and stellar luminosity, the NIR emission gets dominated by accretion luminosity originating from an

optically thick gaseous disk close to the star.

Outlook: The best-fit geometry which we found with our radiative transfer modeling (including an inner

accretion disk and an outer irradiated disk) predicts a distinct visibility profile, especially for higher spa-

tial frequencies. Besides the continuum visibility profile, new observations using VLTI/AMBER (and

the VLTI fringe tracker) could separate the accretion and dust emission using spectro-interferometric

observation on accretion diagnostic hydrogen recombination (e.g., Brγ) or atomic lines (e.g., Na I, O I,

or Ca II).

10.2 Signatures of Outflow Precession from the Young

High-Mass Star NGC 7538 IRS1

Summary:Likely at a similar evolutionary stage as MWC 147, but with a spectral type of O7 far more

massive (M � 30 Md), we searched for indications of accretion and outflows around NGC 7538 IRS1

using bispectrum speckle interferometry. Earlier radio VLBI observations had detected a Class II

methanol maser feature, which was interpreted as a Keplerian-rotating circumstellar disk, providing

indirect evidence for an accretion-based high-mass star formation scenario. However, as an alternative
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explanation (and in better agreement with the direction defined by the CO outflow), it has been suggested

that the linear alignment and systematic velocity-gradient of the maser feature could trace an outflow

cavity. In order to clarify this issue and to resolve the misalignment found between various outflow axes,

we imaged the NIR emission with unprecedented resolution, finding a fan-shaped cavity and several

blobs of diffuse emission, likely indicating outflow activity from IRS1.Using archival high-sensitivity

Spitzer-IRAC images, we can trace the same outflow out to large scales, ceasing in a bow-shock-like

structure. Although we cannot rule out that the potentiallysystematic arrangement of the discovered

blobs results from the presence of multiple outflows, we employed an analytic flow precession model,

as well as a full hydrodynamic simulation, and found that this NIR morphology could also be caused by

a precessing outflow originating from a compact disk. As the likely mechanism triggering the potential

short period (� 280 yrs), wide-angle (� 40�) precession, we identified tidal interaction with a close (yet

undiscovered) companion. Indeed, for the nearby, even moremassive protostar NGC 7538 IRS2 (O4.5

type), we discovered a close (195 mas) companion in our speckle images.

Outlook: To achieve further progress on IRS1, higher sensitivity andhigher angular resolution imaging

(i.e. speckle or AO imaging) of the outflow structures are required. On the scale of several decades,

the precession should also become detectable using VLBI imaging of the methanol maser feature. Ul-

timatively, infrared long-baseline interferometry should also be able to directly detect the putative IRS1

companion star causing the precession, although currentlyno long-baseline interferometer on the north-

ern hemisphere complies with the technical requirements for such observations.

10.3 Visual/Infrared Interferometry of the Orion Trapeziu m

Stars θ1Ori C and D

Summary:For the intruiging high-mass starθ1Ori C, a very close (� 30 mas) companion was already

discovered in 1997 using speckle interferometry. In order to track its orbital motion, we have monitored

the system over the past eight years using speckle interferometry at infrared and visual wavelengths. As

the separation of the components already diminished far below the theoretical diffraction-limit of single-

dish telescopes, we obtained first long-baseline interferometric observations using the IOTA array. The

obtained high-accuracy position measurement allowed us toderive a preliminary orbit solution, from

which we identify 53Md as the most likely value for the dynamical mass of the system.By modeling

the wavelength-dependence of the flux ratio between the components (and examining their position in

the HR-diagram), we estimate that – in contrast to earlier expectations – the companion is rather massive

itself (MC2{MC1 � 0.45� 0.15). Especially during periastron passage, which we predict will take place

in the near future (mid 2007), this might result in strong wind-wind interaction between the two O-stars

(O5 and O9.5).
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Outlook: Over the last few months, several VLTI/AMBER observations onθ1Ori C have been obtained,

which should allow us to verify the preliminary orbit solution presented in Section8.6.1. The refined

orbit should also result in more precise dynamic masses, which can be used to contrain stellar evolution-

ary models. Ultimately, AMBER’s MR mode might also allow a direct imaging of the geometry of the

putative wind-wind interaction region in emission lines.

10.4 Near-Infrared Interferometry of η Carinae using

VLTI/AMBER

Summary: η Carinae (M � 100 Md) is also proposed to be a binary system with a strong wind-

wind interaction zone, although this hot-companion scenario is still strongly debated. Using AMBER’s

medium (R� 1 500) and high spectral resolution mode (R� 12 000), our study onη Car provides a first

glimpse into the bright future of NIR spectro-interferometry on spectrally resolved, Doppler-broadened

lines. We find (in agreement with earlier studies) that theK-band continuum emission fromη Car is

dominated by an optically thick wind, resulting in an emission region with 2.3 mas FWHM diameter

and a radial intensity profile which follows the predictionsfrom the 1-D line radiative transfer model

by Hillier et al. (2001) very well. For the Brγ hydrogen recombination line, we also find remarkable

agreement for the line profile as well as for the wavelength-dependence of the measured visibilities. In

the wings of the Brγ line, we measure non-zero differential phases and closure phases. As this points

towards asymmetries in the brightness distribution and is,therefore, beyond the 1-D approach of the

Hillier et al. model, we successfully employ a geometric model of an inclined, aspherical, latitude-

dependent stellar wind to reproduce the measured phases. This result strengthens models with enhanced

mass loss at the polar regions around rapidly rotating stars, as predicted byOwocki et al.(1996). For

the He I line, we find significant deviations between theHillier et al. predictions and the measured line

profiles and visibilities. This, and our modelling of the measured non-zero phase signals, might indicate

that the He I line forms in a wind-wind interaction zone, as expected in the context of the hot-companion

scenario.

Outlook: As demonstrated with the simulations presented in Section9.4.7.2, VLTI /AMBER currently

seems to be the most powerful instrument to directly detect the proposed hot companion using the

continuum closure phase. For this purpose, and to trace temporal variations over the 5.54 yrs period, we

have obtained several new VLTI/AMBER observations onηCar within the last year, maybe resulting in a

new insight in the process causing the variability. Furthermore,ηCar will be a prime target for aperture-

synthesis imaging of the putative bow-shaped wind-wind interaction zone or its aspherical stellar wind,

yielding mas-resolution NIR images in hundreds of fine-sampled velocity bins; somewhat similar to the

well-establishedchannel mapsin radio astronomy.
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10.5 Future Perspectives

From our pioneering studies on a number of key objects (covering a broad range of stellar masses,

as well as evolutionary states), I conclude that studies on massive stars might benefit to a dramatical

extent, and maybe more than any other field of stellar astrophysics, from the recent advent of infrared

interferometry. This is due to the essential need of high angular resolution to study these distant objects

and their compact (AU-scale) circumstellar environments,often located in the heart of dense, compact

clusters. In addition, during their most enigmatic evolutionary phases (namely the pre- and post-main-

sequence phase), these objects are deeply obscured by ambient material, making the infrared the optimal

wavelength range for detailed studies. The intriguing phenomena, which can now be studied on massive

stars using infrared long-baseline interferometry, include mass accretion processes (e.g. the structure of

circumstellar accretion disks), mass ejection and outflow collimation processes (e.g. to reveal the origin

and collimation processes of YSO jets), stellar winds (their geometry and kinematics), the geometry of

wind-wind interaction regions, and likely many other applications yet to be identified.

As also demonstrated in the framework of this thesis, aperture synthesis imaging is coming into reach

for optical interferometric arrays. However, we expect that the number of studies applying imaging

techniques will remain limited with the current generationof interferometric arrays, due to the substan-

tial amount of observing time required for the imaging of complex structures. Therefore, this requires

new initiatives for next-generation instruments (like VLTI/MATISSE and VLTI/VSI), and international

collaborations to realize future arrays that will combine alarger number of apertures.

Inspite of this limitation of the imaging capabilities of the current generation of instruments, it is

important to point out the tremendous scientific potential of the spectro-interferometric capabilities of

the latest generation of instruments, allowing one to physically characterize the detected structures and

to study their kinematics. Once the imaging and spectroscopic capabilities can be combined and made

accessible to the broad astronomical community, optical interferometry will deploy its full potential;

likely revolutionizing galactic and maybe also extra-galactic observational astronomy.
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Malbet, F., Benisty, M., de Wit, W. J.,Kraus, S., Meilland, A., Millour, F., Tatulli, E., Berger, J.-P.,
Chesneau, O., Hofmann, K.-H., Isella, A., Petrov, R., Preibisch, Th., Stee, P., Testi, L., Weigelt, G., and
the AMBER consortium (invited paper):Disentangling the wind and the disk in the close surround-
ing of the young stellar object MWC297 with AMBER/VLTI, ESO Workshop: ”The power of optical/IR
interferometry: recent scientific results and 2nd generation VLTI instrumentation”, April 4-8, 2005 in
Garching, Germany; F. Paresce, A. Richichi, A. Chelli & F. Delplancke (eds.), Springer-Verlag series
“ESO Astrophysics Symposia”, in press (2006)

Petrov, R. G., Millour, F., Chesneau, O., Weigelt, G., Bonneau, D., Stee, Ph.,Kraus, S., Mourard, D.,
Meilland, A., Vannier, M., Malbet, F., Lisi, F., Antonelli,P., and Kern, P., Beckmann, U., Lagarde, S.,
Perraut, K., Gennari, S., Lecoarer, T., Driebe, Th., Accardo, M., Robbe-Dubois, S., Ohnaka, K., Busoni,
S., Roussel, A., Zins, G., Behrend, J., Ferruzi, D., Bresson, Y., Duvert, G., Nussbaum, E., Marconi, A.,
Feautrier, Ph., Dugu, M., Chelli, A., Tatulli, E., Heininger, M., Delboulbe, A, Bonhomme, S., Schertl,
D., Testi, L., Mathias, Ph., Monin, J.-L., Gluck, L., Hofmann, K.-H., Salinari, P., Puget, P., Clausse,
J.-M., Fraix-Burnet, D., Foy, R., and Isella, A.:First AMBER/VLTI observations of hot massive stars,

—205—



List of Publications

ESO Workshop: ”The power of optical/IR interferometry: recent scientific results and 2nd generation
VLTI instrumentation”, April 4-8, 2005 in Garching, Germany; F. Paresce, A. Richichi, A. Chelli & F.
Delplancke (eds.), Springer-Verlag series “ESO Astrophysics Symposia”, in press (2006)

Preibisch, Th., Driebe, T.,Kraus, S., Lachaume, R., van Boekel, R., Weigelt, G.:VLTI MIDI observa-
tions of the Herbig Ae star HR 5999, ESO Workshop: ”The power of optical/IR interferometry: recent
scientific results and 2nd generation VLTI instrumentation”, April 4-8, 2005 in Garching, Germany; F.
Paresce, A. Richichi, A. Chelli & F. Delplancke (eds.), Springer-Verlag series “ESO Astrophysics Sym-
posia”, in press (2006)

Benistry, M., Berger, J.-P., Cheasneau, O., Isella, A.,Kraus, S., Malbet, F., Meilland, A., Petrov,
R., Stee, P., Tatulli, E., Testi, L., Weigelt, G.+ AMBER consortium,+ ESO AMBER astronomers,
VLTI/AMBER resolves disk-outflow interaction region of the B1.5Vstar MWC297, IAU Symposium
227- ”Massive Star Birth: A Crossroads of Astrophysics”, May 16-20, 2005 in Acireale, Italy.

Kraus, S., Schloerb, F. P., 2004,Infrared imaging of Capella with the IOTA interferometer, Proceed-
ings of SPIE: Vol. 5491, 56, Traub, W.A., Monnier, J.D., Schöller, M., eds. (2004)
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Köhler, R., Petr-Gotzens, M. G., McCaughrean, M. J., et al.2006, A&A, 458, 461[ADS] 1.2, 8.6.5

Kraus, S. 2003, Master’s thesis, University of Massachusetts, Amherst, USA2.5.1, 3.1, 3.2, 3.3.1, 3.3.1,
3.3.2, 5.2

—216—

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1989ApJS...69..527H&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1994AJ....107.1859H&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2003MNRAS.345..175H&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2005A..899I&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001ASPC..242...53I&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999ApJ...524..983I&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2003AJ....125.3222I&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004SPIE.5490.1534I&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1990A..237J&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1958MNRAS.118..276J&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1989ApJ...343L..41J&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1989ApJ...339..222K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1990ApJ...355..562K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1992PASJ...44..435K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1987ApJ...323..714K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1995ApJS..101..117K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004ApJ...604L.113K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2006A..623A&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004A..941K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004A.1161K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1974ApJ...193L..45K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2006A..461K&db_key=AST


Bibliography

Kraus, S., Heiniger, M., & Weigelt, G. 2005a, Investigatingthe dependence of AMBER results on the
Bad Pixel Mask, AMBER Memo, 2005-10-19, Max-Planck-Institute for Radioastronomy4.6

Kraus, S., Schloerb, F. P., Traub, W. A., et al. 2005b, AJ, 130, 246[ADS] 3.3.1, 3.3.1, 3.3.2, 5.2, 6.4.2.1,
8.3.2, 8.4, 8.5.1

Kroupa, P. 2002, Science, 295, 82[ADS] 1.1

Krumholz, M. R., McKee, C. F., & Klein, R. I. 2005, ApJ, 618, L33 [ADS] 1.2, 7.2

Kurucz, R. L. 1970, SAO Special Report, 309[ADS] 6.6.2

Labeyrie, A. 1970, A&A, 6, 85[ADS] 1.3.2, 7.3.1, 8.3.1

Lagarde, S., Lopez, B., Antonelli, P., et al. 2006, in Advances in Stellar Interferometry. Edited by
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