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Abstract

In this thesis we study the relic density nχ of non–relativistic long–lived or stable particles

χ in various non–standard cosmological scenarios. First, we discuss the relic density in the

non–standard cosmological scenario in which the temperature is too low for the particles

χ to achieve full chemical equilibrium. We also investigated the case where χ particles are

non–thermally produced from the decay of heavier particles in addition to the usual thermal

production. In low temperature scenario, we calculate the relic abundance starting from

arbitrary initial temperatures T0 of the radiation–dominated epoch and derive approximate

solutions for the temperature dependence of the relic density which can accurately repro-

duces numerical results when full thermal equilibrium is not achieved. If full equilibrium

is reached, our ansatz no longer reproduces the correct temperature dependence of the χ

number density. However, we can contrive a semi–analytic formula which gives the correct

final relic density, to an accuracy of about 3% or better, for all cross sections and initial

temperatures. We also derive the lower bound on the initial temperature T0, assuming

that the relic particle accounts for the dark matter energy density in the universe. The ob-

served cold dark matter abundance constrains the initial temperature T0 ≥ mχ/23, where

mχ is the mass of χ. Second, we discuss the χ density in the scenario where the Hubble

parameter is modified. Even in this case, an approximate formula similar to the standard

one is found to be capable of predicting the final relic abundance correctly. Choosing the

χ annihilation cross section such that the observed cold dark matter abundance is repro-

duced in standard cosmology, we constrain possible modifications of the expansion rate at

T ∼ mχ/20, well before Big Bang Nucleosynthesis.
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Chapter 1

Introduction

1.1 Motivation

Recent cosmological observations of cosmic microwave background (CMB) anisotropy by

the Wilkinson Microwave Anisotropy Probe (WMAP) provide precise values for the cos-

mological parameters. In particular, the amount of cold Dark Matter (DM) density has

been measured with good precision [1],

0.08 < ΩDMh2 < 0.12 (95% C.L.) . (1.1)

One of the mysterious questions as to cold DM is which kind of particle constitute cold

dark matter. Since there exists no candidate particle for cold DM in the Standard Model

(SM) of particle physics, we are obliged to consider physics beyond the SM looking for

cold DM candidate particles [2, 3]. Moreover, this very restrictive range for the cold DM

energy density requires particle physics models which posses dark matter candidates to

provide the exactly same amount of cold DM as the observed value. In other words, this

precise information allows us to test various models and constrain the parameter space of

surviving models.

So far, many dark matter candidate particles have been proposed. Among them neutral,

long–lived or stable weakly interacting massive particles (WIMPs) χ are excellent candi-

dates. WIMPs are assumed to have the mass of around the weak scale, mχ ∼ 10 − 1000

GeV. It is noticed that its characteristic pair annihilation cross section into lighter particles

is σv ∼ πα2/m2
χ, where v is the relative velocity of the two annihilating WIMPs and α is

a coupling constant of oder of the weak coupling constant. The standard scenario for dark

matter production assumes that the temperature of the early universe was high enough

1



2 1. Introduction

for completely thermalizing WIMPs and that WIMPs were decoupled from the thermal

background when they were non–relativistic. Amazingly enough, based on the above as-

sumptions the predicted relic abundance naturally results in the right order of magnitude

for the DM abundance.

One of the best motivated candidates for WIMPs is the lightest neutralino in supersymmet-

ric (SUSY) models. Assuming that the neutralino is the lightest supersymmetric particle

(LSP) stabilized due to R–parity, its relic abundance has been extensively discussed [3–6].

Other WIMPs appear in models with universal extra dimensions (UED), where the cold

DM candidate is the lightest first excited mode stabilized by KK–parity [7,8]. In the min-

imal UED model, the partner of the hypercharge gauge boson is the lightest Kaluza–Klein

particle (LKP). In little Higgs models with T–parity, scalars, the partner of hypercharge

gauge boson and a heavy neutrino can be cold DM candidates [9–11]. In many cases the

cosmologically favored parameter space of WIMP models can be directly tested at the

CERN Large Hadron Collider (LHC) in a few years [12]. The same parameter space often

also leads to rates of WIMP interactions with matter within the sensitivity of near–future

direct DM detection experiments.

Except WIMPs, there are some other candidates in the extensions of the SM. For example,

axions, which originally appeared to solve the strong CP problem in particle physics [13],

are also dark matter candidates. Their mass is constrained by astrophysical and cosmolog-

ical arguments to lie in the range m ∼ 10−5−10−2 eV [13]. Gravitinos, the supersymmetric

partner of graviton and axinos, the fermionic partner of axion can also be DM candidates.

The consistency between the observed value of cold dark matter and the predicted value of

relic density of thermal WIMPs lets us examine cosmological scenarios with experiments

at high–energy colliders as well as DM searches. In this respect we should emphasize that

the relic abundance of thermally produced WIMPs depends not only on their annihilation

cross section, which can be determined by particle physics experiments, but also in general

on the cosmological parameters during the era of WIMP production and annihilation. Of

particular importance are the initial temperature T0 at which WIMPs began to be ther-

mally produced, and the expansion rate of the universe H.

Bearing this situation in mind, let us take a closer look at the standard cosmological

scenario for WIMP production. It is assumed that the WIMPs were in full thermal and

chemical equilibrium in the radiation–dominated epoch after the period of last entropy
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production, which in standard cosmology means after the end of inflation. In this scenario

the χ number density nχ(T ) drops exponentially once the temperature T falls below the

mass mχ of the relic particles, until the freeze–out temperature TF is reached, at which

point the interaction rate Γ is no longer larger than the expansion rate H of the universe

and χ particles can not annihilate efficiently with each other and thus they decouple. The

relic density remains almost constant from that time. In this case an accurate analytical

expression for nχ(T � TF ) have been derived [6, 14]; one finds that the χ relic density

is essentially inversely proportional to the thermal average of the effective χ annihilation

cross section into lighter particles and there is no dependence on the initial temperature T0.

It should be noted that in non–standard scenarios the relic density can be larger or smaller

than the value in the standard scenario. One example is the case where T0 is smaller than

or comparable to TF , which can be realized in inflationary models with low reheat tem-

perature. Since in many models the inflationary energy scale must be much higher than

mχ in order to correctly predict the density perturbations [15], the standard assumption

T0 > TF is not unreasonable. On the other hand, the constraint on the reheat temperature

from Big Bang Nucleosynthesis (BBN) is as low as T0 >∼ MeV [16, 17]. From the purely

phenomenological viewpoint, it is therefore also interesting to investigate the production

of WIMPs in low reheat temperature scenarios [18–21].

We should emphasize at this point that the reheat temperature TR may not be the highest

temperature of the thermal plasma after inflation. If there is sufficiently fast thermalization,

the inflaton decay products can attain a temperature Tmax � TR while the total energy

density of the universe is still dominated by inflatons [2]. Therefore χ particles may have

been in thermal equilibrium for some range of temperatures T > TR [16,18,22–24], even if

they were never in equilibrium in the radiation–dominated epoch. However, an analytical

treatment of the reheating epoch where T > TR was possible faces several complications

not present in the radiation–dominated epoch: the entropy density was not constant, non–

perturbative (and non–exponential) inflaton decays might have been important [25], and

there might have been significant non–thermal sources of χ particles [23, 24, 26]. On the

other hand, in supersymmetric scenarios thermalization of the inflaton decay products

might be delayed by large vacuum expectation values of scalar fields along flat directions

of the potential [27]. In our work we evade these complications by treating the χ number

density at some initial temperature T0 as a free parameter; in the absence of late entropy

production, T0 should be close to the reheat temperature TR (depending on the exact def-

inition of TR).
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The standard scenario also assumes that entropy per comoving volume is conserved for

all temperatures T ≤ TF . Late entropy production can dilute the predicted relic den-

sity [28, 29]. The reason is that the usual calculation actually predicts the ratio of the

WIMP number density to the entropy density. On the other hand, if late decays of a heavier

particle non–thermally produce WIMPs in addition to the usual thermal production mech-

anism, the resulting increase of the WIMP density competes with the dilution caused by the

decay of this particle into radiation, which increases the entropy density [20,22–24,30,31].

Another example of a non–standard cosmology changing the WIMP relic density is a

modified expansion rate of the universe. This might be induced by an anisotropic expan-

sion [29], by a modification of general relativity [29,32], by additional contributions to the

total energy density from quintessence [33], by branes in a warped geometry [34], or by a

superstring dilaton [35].

These examples show that, once the WIMP annihilation cross section is fixed, with the help

of precise measurements of the cold dark matter density we can probe the very early stage

of the universe at temperatures of O(mχ/20) ∼ 10 GeV. This is reminiscent of constraining

the early evolution of the universe at T = O(100) keV using the primordial abundances of

the light elements produced by BBN.

1.2 Purpose of the Thesis

The main purpose of this thesis is to investigate to what extent the constraint (1.1) on the

WIMP relic abundance might allow us to derive quantitative constraints on modifications

to the standard cosmological scenario for WIMP production [36]. So far the history of

the universe has been established by cosmological observations as far back as the BBN

era. In this thesis we try to derive bounds on cosmological parameters relevant to the

era before BBN. Rather than studying specific extensions of the standard cosmological

scenario, we simply parameterize deviations from the standard scenario, and attempt to

derive constraints on these new parameters. Since we only have the single constraint (1.1),

for the most part we only allow a single quantity to differ from its standard value. We

expect that varying two quantities simultaneously will allow to get the right relic density

for almost any WIMP annihilation cross section. This has been shown explicitly in [20]

for the case that both late entropy production and non–thermal WIMP production are
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considered, even if both originate from the late decay of a single scalar field.

The first part of our work is devoted to the discussion of relic abundance of non–relativistic,

long–lived or stable particles χ in low temperature scenarios. We assume particles never

reach thermal equilibrium in the radiation–dominated era because of the low reheat tem-

perature after inflation. If χ annihilation can be neglected, one finds that the contribution

to the χ relic density from thermal production is directly proportional to the cross section.

We developed an approximate analytic treatment that also works in the intermediate re-

gion, where (for some range of temperatures) both thermal production and annihilation of

χ particles were important. It is based on an expansion in the effective annihilation cross

section. To leading order, only the production term is kept in the Boltzmann equation

describing the evolution of number density of χ particles; this corresponds to the “com-

pletely out of equilibrium” scenario. We add the correction to the leading order solution

due to the χ annihilation effect and treat it as a small perturbation. The first oder result

is linear to the annihilation cross section σ, while the correction is O(σ3) if we start from

vanishing initial abundance. The surprising result is that the terms of higher order in cross

section can be “re–summed” using a simple trick. This can be shown to be exact in the

simple case where the initial abundance is nonzero and thermal production of χ particles

is negligible and works numerically also for non–negligible thermal production.

The above–mentioned study is useful when we analyze the dependence of the WIMP abun-

dance on the initial temperature T0 of the conventional radiation–dominated epoch. We

show that for fixed T0 the predicted WIMP relic density reaches a maximum as the anni-

hilation cross section is varied from very small to very large values. A small annihilation

cross section corresponds to a large TF > T0; in this case the relic density increases with

the annihilation cross section, since WIMP production from the thermal plasma is more

important than WIMP annihilation. On the other hand, increasing this cross section re-

duces TF ; once TF < T0 a further increase of the cross section leads to smaller relic densities

since in this case WIMPs continue to annihilate even after the temperature is too low to

produce WIMP production. Here we turn this argument around, and derive the lower

bound on T0 ≥ mχ/23 under the assumption that all WIMPs are produced thermally. No-

tice that we do not need to know the WIMP annihilation cross section to derive this bound.

In the second part of our work, we discussed the non–standard cosmological scenario for

modified expansion rate. We examine the dependence of the WIMP relic abundance on the

expansion rate in an epoch prior to BBN, with the expansion parameter allowed to depart
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from the standard value. We find that the standard method of calculating the thermal relic

density [2, 14] is found to be still applicable to the scenario with modified expansion rate.

Here in order to avoid unnecessarily complicated calculation we employ a generic Taylor

expanded form for the temperature dependence of the modification factor of the expansion

rate, which should eventually fall into around unity before BBN starts. The change of the

Hubble parameter results in different relic abundances.

1.3 Organization of the Thesis

This thesis is organized as follows: in Chapter 2, we briefly mention the evidences for dark

matter existence, candidate particles for dark matter and the experimental detection for

dark matter. In Chapter 3, we review the calculation of relic abundance in the standard

cosmological scenario, where it is assumed that the relic particles attained full thermal

equilibrium. In Chapter 4, we discuss the calculation of the χ relic abundance in scenarios

where the temperature was too low for χ particles to have been in full equilibrium. Here

we also derive the lower bound on the initial temperature T0. In Chapter 5, the relic

abundance including the decay of heavier particles to χ is investigated. In Chapter 6, we

study the relic abundance in the scenario where the pre–BBN expansion rate is allowed

to depart from the standard one. Using approximate analytic formulae for the predicted

WIMP relic density for this modified expansion rate scenario, we derive constraints on the

early expansion parameter. The last chapter is devoted to conclusions and discussion.



Chapter 2

Dark Matter Puzzle

Dark matter is the matter which does not emit or reflect a detectable amount of elec-

tromagnetic radiation at any wavelength. However, its presence can be inferred from its

gravitational interactions on the visible matter. Although the evidence for dark matter was

noticed by Swiss astronomer F. Zwicky in 1933 through studying the motion of galaxies in

Coma cluster [37], its existence is practically accepted in recent years due to the wide range

of observational evidences like CMB anisotropy [1], galaxy surveys [38, 39], etc. Despite

of such compelling evidences for the existence of dark matter, the composition of dark

matter is still unclear. This situation makes dark matter as one of the hottest research

topic in particle physics, cosmology and astronomy. From particle physics point of view,

many candidates for dark matter have been proposed. Now many experiments are ongoing

and planned aiming for detecting non–baryonic cold dark matter particles. This chapter

is devoted to review of the evidences for the existence of non–baryonic cold dark matter in

various cosmological scales, the proposed candidates for dark matter and the dark matter

detection experiments.

2.1 Evidences for Dark Matter

The most reliable evidence for dark matter on galactic scale comes from the analysis of the

rotation curves of spiral galaxies. The galaxy rotation curves show the circular velocities

of stars and gas clouds as function of the distance r from the galactic center. If the galaxy

has mass M(r) in radius r, then the balance between the centrifugal acceleration and the

gravitational pull demands that its velocity obeys

v2

r
=

GNM(r)

r2
, (2.1)

7



8 2. Dark Matter Puzzle

Figure 2.1: Rotation curve of NGC 6503. The dotted, dashed and dash-dotted lines are the contributions

of gas, disk and dark matter, respectively [40].

where GN = 6.67 × 10−8 cm3 g−1 sec−2 is Newton’s gravitational constant. The above

equation can be rewritten as

v =

√

GNM(r)

r
. (2.2)

According to Newtonian gravity theorem, the mass outside the radius has no contribution

to the gravitational pull at all. If the mass is only in its visible part, the velocity should

drop at large radii as v ∝ 1/
√

r. Instead, at such large distance, observed rotation curves

show the velocity remains almost constant as shown in Fig. 2.1 [40]. The fact that v(r)

is approximately constant implies the existence of dark halo with M(r) ∝ r or ρ ∝ 1/r2.

The abundance of a substance i in the universe (matter, radiation or vacuum energy) is

expressed in units of the critical density ρcrit as Ωi ≡ ρi/ρcrit, where the critical density is

defined by ρcrit = 3H2
0M

2
Pl = 1.05× 10−5 h2 GeV cm−3 with H0 being the Hubble constant

and MPl = 1/
√

8πGN = 2.4 × 1018 GeV the reduced Planck mass, where h ' 0.7 is the

scaled Hubble constant in units of 100 km Mpc−1 sec−1. The mass density averaged over

the entire universe is then Ω =
∑

i Ωi =
∑

i ρi/ρcrit. When the total energy density is equal

to the critical density, Ω = 1, the universe is flat. Galactic rotation curves imply ΩM & 0.1.

Additional evidence for dark matter at galactic scales comes from mass modeling of the

detailed rotation curves, including spiral arm features [41]. Some elliptical galaxies show
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evidence for dark matter via strong gravitational lensing [42].

The evidence from the cluster scale actually was noticed by F. Zwicky in 1933 as we men-

tioned earlier, he inferred [37], from measurements of the velocity dispersion of galaxies in

the Coma cluster, a mass–to–light ratio of around 400 solar masses per solar luminosity,

thus exceeding the ratio in the solar neighborhood by two orders of magnitude. Today,

most dynamical estimates [43–45] are consistent with a value ΩM ∼ 0.2 − 0.3 on cluster

scales.

The observation of the large scale structure bounds the relic density of the matter compo-

nent. Sloan Digital Sky Survey (SDSS) reported ΩMh2 = 0.130 ± 0.010 for Ωbh
2 = 0.024

[46]. The value for the matter density obtained from the large scale structure is more

precise than the values from the galaxy scale and cluster scale.

Today, the WMAP precision data enable us to accurately test cosmological models and

put stringent constraints on cosmological parameters [1]. The WMAP data are power-

ful because they result from a mission that was carefully designed to limit systematic

errors [47, 48]. From the analysis of WMAP data alone, the abundances of baryons and

matter in the universe are found to be

Ωbh
2 = 0.0223+0.0007

−0.0009, ΩMh2 = 0.127+0.007
−0.010. (2.3)

Figure 2.2 shows the energy contents of the universe for the flat ΛCDM model [51].

The matter density obtained from WMAP data is consistent with the matter density

from large scale structure. On the other hand, BBN provides us a stringent constraint on

the baryon abundance. The value of Ωbh
2 obtained from WMAP data is also consistent

with the predictions from BBN [49,50],

0.017 < Ωbh
2 < 0.024 (95% C.L.) . (2.4)

The difference between ΩMh2 and Ωbh
2 shows the dark matter should be non–baryonic.

What kind of particle can be a dark matter particle? Up to now, there are many candidates

proposed in particle physics. In the next, we review the candidates for dark matter.
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Figure 2.2: Energy contents of the universe reported by WMAP [51].

2.2 Candidate Particles for Dark Matter

It was shown that baryons can not reach the required amount of dark matter by the results

reported by the observations of CMB, the primordial light element abundances, the large

scale structure of the universe as mentioned in the previous section. Before going to the

discussion of viable candidates, we mention some excluded candidates.

Massive Compact Halo Objects (MACHOs) [52] are astronomical objects which are too

dark to be detected and thus can be conservative candidates in the sense that no unknown

particle physics model is required. Some part of the baryonic component of the energy

density may contribute to MACHOs, for example, brown dwarfs, Jupitars, neutron stars

and white dwarfs. Using the gravitational microlensing effect, MACHOs in the mass range

of 0.6 × 10−7M� < M < 15M� are ruled out as the primary constituent of our galactic

halo. This result supports the need for non–baryonic DM.

Neutrinos are the only existing hot dark matter candidate particles in the SM [53]. If

the neutrinos were in full equilibrium, their total relic density is predicted to be

Ωνh
2 =

3
∑

i=1

mνi

94 eV
, (2.5)
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where mνi
is the mass of i–th neutrino. From the tritium β–decay experiments [54], an

upper limit on the electron–type neutrino mass is obtained as mνe
< 2.0 eV. Since the

mass differences among the three mass eigenvalues must be very small to explain the solar

∆m2
�

= 8 × 10−5 eV2 and atmospheric ∆m2
⊕

= 2.5 × 10−3 eV2 neutrino anomalies [55],

electron–volt scale neutrinos should be nearly degenerate. Then the maximum contribution

to the matter density is Ωνh
2 < 0.064. Moreover, combination of the WMAP, galaxy clus-

tering and supernovae data put the constraint on the neutrino relic density Ωνh
2 < 0.0072

(95% C.L.) [1]. This implies a limit on neutrino mass,
∑

i mνi
< 0.68 eV, assuming the

usual number density of fermions which decoupled when they were relativistic. From the

above discussions we conclude the neutrinos are not abundant enough to be the dominant

component of dark matter. Therefore, we have to go beyond the SM to search for dark

matter candidates.

WIMPs are most favorable and widely studied cold dark matter candidates in particle

physics. They appear in the extension of the SM. WIMPs as DM candidate should be

electrically neutral and long lived or stable particles. The mass scale of WIMPs is in the

range of the electroweak scale. They interact with ordinary matter only through the weak

force and gravity. Since these particles have roughly the same coupling strength as lep-

tons, it is expected that a large amount of WIMPs were produced in the early universe. As

the universe cools down, the interaction rate of WIMPs becomes weaker and they finally

decouple from the thermal bath. Their relic density remains almost constant after the de-

coupling and found to be naturally consistent with the observed dark matter abundance.

This agreement between observation and theory makes WIMPs very attractive dark matter

candidates.

The best motivated WIMP is the lightest supersymmetric particle, plausibly neutralino [3].

In Minimal Supersymmetric Standard Model (MSSM), the lightest neutralino is a mixture

of the superpartner of B boson (bino), W 0 boson (wino), and two neutral Higgs bosons

(higgsino) present [56]. There is a quantum number called R–parity in supersymmetric

models, which is defined as R = (−1)3B+L+2S with S being the spin, B the Baryon number

and L the lepton number. All the SM particles are assigned R–parity of R = +1 while all

the superpartners R–parity of R = −1. If R–parity is conserved, sparticles can only decay

into an odd number of sparticles (plus SM particles). The lightest supersymmetric particle

is, therefore, stable and can only be destroyed via pair annihilation. The relic density of

neutralino are widely studied [3–6]. The LKP in UED models is also a good dark matter

candidate. Typically the first KK excitation of the U(1)Y gauge boson is the LKP [8].
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Let us turn to non–WIMP candidates. While axions are introduced in an attempt to

solve strong CP problem in particle physics [13], axions are also considered as a dark mat-

ter candidate. Laboratory searches, stellar cooling and the dynamics of supernova 1987A

constrain axions to be very light (. 0.01 eV). Furthermore, they are extremely weakly

interacting with ordinary particles, which implies that they were not in thermal equilib-

rium in the early universe. The calculation of the axion relic density is uncertain, and

depends on the assumptions made regarding the production mechanism. Nevertheless, it

is possible to find an acceptable range where axions satisfy all the present–day constraints

and saturate the dark matter density [13].

In addition to neutralinos, gravitinos and axinos are also considered as viable dark mat-

ter candidates in SUSY model. Gravitinos are the superpartners of graviton. In some

supersymmetric scenarios, for example, the gauge mediated supersymmetry breaking sce-

nario, gravitinos can be the lightest supersymmetric particles and be stable. Gravitinos are

thus very strongly theoretically motivated dark matter candidates as well as neutralinos.

With only gravitational interactions, however, gravitons are very difficult to observe [57].

Axinos, the superpartner of the axion, share similar phenomenological properties to grav-

itinos [58, 59].

Sterile neutrinos were proposed as dark matter candidates in 1993 by Dodelson and Widrow

[60]. These hypothetical particles are similar to the SM neutrinos, but without SM weak

interactions, apart from mixing. A Majorana mass of O(KeV) for the sterile neutrino

leads to warm dark matter. Sterile neutrinos can also be cold dark matter, if there is very

small lepton asymmetry, in which case they are produced resonantly with a non–thermal

spectrum [61].

2.3 Dark Matter Detection

Because WIMPs only interact with matter via the gravitational and weak forces, they are

difficult to detect. However, experimental searches for these dark matter candidates are

conducting and ongoing. The searches for these particles are divided into two categories,

one is direct detection, in which the dark matter particles are observed in a detector. If the

galaxy is filled with WIMPs, then hundreds of thousands of WIMPs should pass through

the Earth, and making it possible to look for the interaction of such particles with matter,
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e.g. by recording the recoil energy of nuclei, as WIMPs scatter of them [62–65]. Many

direct detection experiments are either now operating or are currently in development.

Some of these direct experiments have already produced quite strong limits on the elas-

tic scattering cross section with protons or neutrons of potential dark matter candidates.

DAMA experiment reported an annual modulation of their event rate consistent with the

detection of a WIMP with a mass of approximately 60 GeV and a scattering cross section

of the order of 10−41 cm2 [66]. However, the result from DAMA experiment is conflict

with other experiments, such as EDELWEISS [67] and CDMS [68]. They have explored

the parameter space favored by DAMA without finding any evidence of dark matter. It

is premature to think we have found experimental evidence for WIMPs. In the coming

years, the experiments will improve on current limits by several orders of magnitude. In

near future, hopefully we can detect WIMPs.

The second method is indirect detection, which looks for the products of annihilations

of dark matter particles, either in the galactic halo or in Earth and Sun where WIMPs

may have been accumulated by gravitational capture. If the dark matter annihilation

takes place in galactic halo, these annihilation products may include gamma–rays, neutri-

nos, positrons and anti-protons.

There are observations for gamma–rays directly both from ground–based telescopes and

space based telescopes. When photons interact in the atmosphere, they produce an elec-

tromagnetic cascade and thus a shower of secondary particles, allowing ground–based tele-

scopes to indirectly observe gamma–rays through the detection of secondary particles and

the Cerenkov light originating from their passage through the Earth’s atmosphere. The first

observation of Cerenkov light due to gamma–ray emission from an astrophysical source was

the detection of the Crab Nebula with Whipple observatory 10m reflector [69]. Currently,

only six TeV gamma–ray sources have been confirmed, above 10 GeV, having been detected

by multiple experiments at a high significance level and they have not been confirmed yet.

Many experiments such as MAGIC [70], HESS [71] probably could detect more gamma–ray

sources. The first high–energy GeV gamma–ray space telescope was EGRET (the Ener-

getic Gamma–Ray Experiment Telescope), onboard the Compton gamma–ray observatory.

EGRET was launched in 1991, it has observed the universe in a range of energies extending

up to approximately 30 GeV, amassing a large catalog of observed gamma–ray sources,

although around 60% of these sources remain unidentified [72]. The EGRET experiment

has reported an excess for gamma–rays in the region of the galactic center, in an error cir-

cle of 0.2 degree radius including the positron l=0(deg) and b=0(deg) [73]. The EGRET
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source is not exactly coincident with the galactic center [72]. This makes the interpreta-

tion of the EGRET signal as dark matter annihilation in a density spike problematic. The

next space–based gamma–ray observatory will be GLAST (Gamma–ray Large Area Space

Telescope), which is scheduled for lunch in 2007. GLAST will be sensitive to gamma–rays

up to several hundred GeV in energy [3].

Neutrinos can be produced in the annihilations of dark matter particles in addition to

gamma–rays. AMANDA, ANTARES, and IceCube are high–energy neutrino telescopes

which aim to detect neutrinos from the annihilations of WIMPs. In the GeV–TeV energy

range, neutrinos are most easily observed by their “muon” tracks produced in charged

current interactions inside of or nearby the detector volume. These muons travel through

the detector emitting Cerenkov light which allows their trajectory to be reconstructed.

Though the experiments such as the Lake Baikal experiment [74] and AMANDA [75, 76]

at the South Pole have observed neutrinos produced in the Earth’s atmosphere, they have

not, thus far, identified any extra–terrestrial neutrinos. The constructing experiments

ANTARES [77] and IceCube [78, 79] will be more sensitive to neutrinos, we hope we can

detect neutrinos from annihilation of WIMPs in these experiments.

The observation of cosmic positrons or anti–protons are also providing the evidence of

dark matter annihilations. The HEAT (High–Energy Antimatter Telescope) experiments

measured the spectrum of positrons between 1 and 30 GeV [80]. The results were very in-

teresting, as they indicated an excess in the positron flux. This excess could be a signature

of dark matter annihilation in the local galactic halo [3]. A second HEAT flight in 2000

confirmed this observation [81, 82].

The BESS (Balloon borne Experiment Superconducting Solenoidal spectrometer) experi-

ment had provided the most detailed measurements of the cosmic anti–proton spectrum to

date in the range of about 200 MeV to 3 GeV [83, 84]. Above this energy, up to about 40

GeV, the CAPRICE experiment provides the best anti–proton measurements [85]. There

appears to be a mild excess in the anti–proton spectrum in the hundreds of MeV range,

although it is very difficult to assess this result with any certainty. The ongoing or future

experiments are likely more sensitive to the cosmic positrons and anti–proton spectra. The

satellite borne PAMELA experiments measure the spectra of both cosmic positrons and

anti–protons with considerably improved precision. The primary objective of PAMELA is

to the measure the cosmic anti–proton spectrum in the range of 80 GeV to 190 GeV and

the cosmic positron spectrum in the range of 50 MeV to 270 GeV, far beyond the energies
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measured by HEAT, BESS or CAPRICE [86]. PAMELA is expected to measure these

spectra to far greater precision than the previous experiments, especially at high energies

(above ∼ 10 GeV).
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Chapter 3

Relic Abundance in the Standard

Cosmological Scenario

Although WIMPs are invented in the process of the attempt to solve puzzles in the context

of particle physics, they have the relic abundance in the right regime to explain the dark

matter in the universe by coincidence. In the standard cosmological scenario, it is assumed

that WIMPs were in thermal equilibrium in the early universe and in abundance when

the temperature was higher than the mass of the particles. The equilibrium abundance

is maintained by the annihilation of WIMPs into lighter particles and by other particles

annihilating into WIMPs. Following the cooling of the universe, the temperature falls below

the WIMP mass and the equilibrium abundance drops exponentially until the annihilation

rate Γ becomes smaller than the expansion rate H. At this point, the abundance of

cosmological relics freezes out and remains almost constant until today. In this chapter we

review the calculation of the relic density of WIMPs in the standard cosmological scenario.

3.1 Boltzmann Equation

We start the discussion of the relic density nχ of stable or long–lived χ particles, by re-

viewing the structure of the Boltzmann equation which describes annihilation and creation

of χ particles. Here we assume that χ particles are thermally produced and χ is self–

conjugate1, χ = χ̄, and that some symmetry, for example R–parity, forbids decays of χ

into SM particles; the same symmetry then also forbids single production of χ from the

thermal background. However, the creation and annihilation of χ pairs remains allowed.

The time evolution of the number density nχ in the expanding universe is then described

1The case χ 6= χ̄ differs in a non–trivial way only in the presence of a χ− χ̄ asymmetry, i.e. if nχ 6= nχ̄.

17
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by the Boltzmann equation [2],

dnχ

dt
+ 3Hnχ = −〈σv〉(n2

χ − n2
χ,eq), (3.1)

with nχ,eq being the equilibrium number density of the relic particles. The second term

on the left hand side (LHS) of the equation describes the effect of the expansion of the

universe. The prefactor in the RHS of Eq.(3.1) is the thermal average of the annihilation

cross section σ multiplied with the relative velocity v of the two annihilating χ particles.

The first (second) term on the right–hand side (RHS) of Eq.(3.1) describes the decrease

(increase) of the number density due to annihilation into (production from) lighter parti-

cles. The Boltzmann equation assumes that χ is in kinetic equilibrium with the standard

model particles.

The equilibrium number density in the Boltzmann equation (3.1) is given by

nχ,eq(T ) = gχ

∫

d3p

(2π)3
fχ,eq(p, T ), (3.2)

where gχ denotes the number of intrinsic degrees of freedom for χ particle (e.g. due to

the spin and color). At low temperatures T � mχ, fχ,eq is the equilibrium distribution

function which in the Maxwell–Boltzmann approximation is given by

fχ,eq = e−E/T . (3.3)

Therefore, the equilibrium number density is

nχ,eq = gχ

(

mχT

2π

)3/2

e−mχ/T . (3.4)

At high temperatures, χ are abundant and rapidly annihilate with its own antiparticle χ

into the standard model particles f , f̄ (χχ ∝ f f̄) and vice versa. Shortly after T drops

below mχ (T � mχ), the number density of χ drops exponentially, until the annihilation

rate Γχ = nχ〈σv〉 becomes less than the expansion rate H. The temperature at which the

particle decouples from the thermal bath is called freeze–out temperature TF . Therefore χ

particles are no longer able to annihilate efficiently and the number density per co–moving

volume becomes almost constant.

It is useful to rewrite Eq.(3.1) in terms of the scaled inverse temperature x = mχ/T

as well as the dimensionless quantities Yχ = nχ/s and Yχ,eq = nχ,eq/s. The entropy density
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is given by s = (2π2/45)g∗sT
3, where the effective number of the degrees of freedom g∗s is

given by summing over all relativistic particle species in existence:

g∗s =
∑

i=bosons

gi

(

Ti

T

)3

+
7

8

∑

i=fermions

gi

(

Ti

T

)3

, (3.5)

with Ti being the temperature of species i. Assuming that the universe expands adiabati-

cally, the entropy per comoving volume, sR3, remains constant, which implies

ds

dt
+ 3Hs = 0 . (3.6)

The time dependence of the temperature is then given by

dx

dt
=

Hx

1 −
x

3g∗s

dg∗s

dx

. (3.7)

Therefore the Boltzmann equation (3.1) can be written as

dYχ

dx
= −〈σv〉s

Hx

(

1 − x

3g∗s

dg∗s
dx

)

(Y 2
χ − Y 2

χ,eq) . (3.8)

Thermal production of WIMPs takes place during the radiation–dominated epoch. In this

period, the expansion rate is given by

H =
πT 2

MPl

√

g∗
90

, (3.9)

where

g∗ =
∑

i=bosons

gi

(

Ti

T

)4

+
7

8

∑

i=fermions

gi

(

Ti

T

)4

. (3.10)

For T � mχ the annihilation cross section can often (but not always) be approximated by

the non–relativistic expansion in terms of v2 [6], and its thermal average is

〈σv〉 = a + b〈v2〉 + O(〈v4〉) = a + 6b/x + O(1/x2) . (3.11)

Here a is the v → 0 limit of the contribution to σv where the two annihilating χ particles

are in an S wave. If S wave annihilation is suppressed, b describes the P wave contribution

to σv. In principle, the parameters a and b are calculable once we specify the model. In

the rest of the thesis we adopt a model–independent approach and treat a and b as free

parameters.
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3.2 Approximate Solution for the Boltzmann Equa-

tion

The Boltzmann equation (3.8) can be solved numerically while no general analytical so-

lution to Eq.(3.8) exists. One can solve this differential equation approximately to a very

good accuracy [2,6]. In terms of the variable ∆ = Yχ − Yχ,eq, the Boltzmann equation can

be rewritten as

d∆

dx
' −dYχ,eq

dx
− 4π√

90
mχMPl

G(x)〈σv〉
x2

∆(2Yχ,eq + ∆), (3.12)

where

G(x) =
g∗s√
g∗

(

1 − x

3g∗s

dg∗s
dx

)

. (3.13)

The solution can be discussed in two extreme regimes. At early times (x � xF ), Yχ tracks

its equilibrium value Yχ,eq very closely. Therefore ∆ and d∆/dx are small. Ignoring ∆2

and d∆/dx, we obtain

∆ =
x2

(8π/
√

90)mχMPlG(x)〈σv〉
, (3.14)

where we used dYχ,eq/dx ' −Yχ,eq for x � 1. At late times (x � xF ), one can ignore the

production term in the Boltzmann equation:

d∆

dx
= − 4π√

90
mχMPl

G(x)〈σv〉
x2

∆2. (3.15)

Integrating this equation from xF to infinity and assuming ∆(xF ) � ∆(∞), we have

Yχ,∞ ≡ Yχ(x � xF ) =
xF

1.32mχMPl

√

g∗(xF )(a + 3b/xF )
, (3.16)

where we used the non–relativistic expansion of 〈σv〉 and assumed g∗ ' g∗s, dg∗s/dx ' 0.

As we mentioned in Chapter 2, conventionally the energy density of χ is expressed as

Ωχ = ρχ/ρcrit. The present energy density of the relic particle is given by ρχ = mχnχ,∞ =

mχs0Yχ,∞, with s0 ' 2900 cm−3 being the present entropy density. Therefore, we obtain

the standard approximate formula for the relic density:

Ωχh2 =
ρχ

ρcrit

h2 =
mχs0Yχ,∞

3M2
Pl (100 km sec−1 Mpc−1)2

= 2.7 × 1010 Yχ,∞

( m

100 GeV

)

. (3.17)
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Using Eq.(3.16), we obtain

Ωχh2 ' 8.5 × 10−11 xF GeV−2

√

g∗(xF )(a + 3b/xF )
' 0.2

(

a + 3b/xF

1 × 10−9 GeV−2

)−1
(xF

22

)

(

g∗(xF )

90

)−1/2

. (3.18)

Note that the relic density of the particle is inversely proportional to the annihilation cross

section and that there is no explicit dependence on the mass of the particle. Calculating

the cross section and the freeze–out temperature is sufficient for predicting the relic density.

Freeze–out occurs when the deviation ∆ is of the same order as the equilibrium value:

∆(xF ) = ξYχ,eq(xF ), (3.19)

where ξ is a numerical constant of oder unity. Substituting the early time solution of

Eq.(3.14) into this equation, xF is obtained by iteratively solving

xF = ln
0.382 ξmχMPlgχ(a + 6b/xF )

√

xF g∗(xF )
. (3.20)

It is known that if we choose ξ =
√

2 − 1, the standard formula (3.18) gives a good ap-

proximation of exact numerical results for the relic density. The decoupling temperature

depends only logarithmically on the cross section, typically xF ' 22. Figure. 3.1 shows

the numerical solution to the Boltzmann equation (3.8). Here we take m = 100 GeV,

gχ = 2, g∗ = 90 (constant), a = 1 × 10−8 GeV−2. The figure clearly shows that the

freeze–out occurred around xF = 22 and after the decoupling point the relic abundance

of χ particles shows almost constant as mentioned earlier. Since the typical mass scale of

WIMPs is around weak scale, mχ ∼ 100 GeV, the annihilation cross section is typically

given by 〈σv〉 = πα2/mχ ∼ 10−9 GeV−2, from (3.18) we find that the predicted WIMP relic

density Ωχh2 can naturally be consistent with the observed cold DM energy density ΩDMh2.

The approximate solution (3.18) of Boltzmann equation (3.8) is not always applicable.

There are three exceptions where the standard methods of calculating relic abundance

which we reviewed above fails [6]. For example, when the relic particles are the lightest of

a set of similar particles whose masses are nearly degenerate, the relic abundance of the

lightest particle is determined not only by its annihilation cross section, but also by the

annihilation of the heavier particles, which will decay into the lightest. This process is

called “coannihilation”. An example of the coannihilation is a light squark with neutralino

dark matter. The second situation occurs when the relic particles lies near a mass threshold.

The annihilation into particles heavier than the relic particles was considered kinematically



22 3. Relic Abundance in the Standard Cosmological Scenario

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 1  5  25  125

Y
χ(
x
)

x

Yχ(x)

Yχ,eq(x)

Figure 3.1: Evolution of Yχ(x) (solid red) and Yχ,eq (blue dotted) as function of x for m = 100 GeV,

gχ = 2, g∗ = 90 (constant), a = 1 × 10−8 GeV−2, b = 0.

forbidden, however, if the mass difference is ∼ 5 − 15%, these “forbidden” channels can

dominate the cross section and determine the relic abundance. The third case where the

standard method fails is the case when the annihilation takes place near a pole in the

cross section. In this thesis, in order to extract the effect caused by the low maximal

temperature and the modification of the Hubble parameter clearly, we discard the three

exceptional cases. In the following chapters, we will discuss the relic density of χ particles

in non–standard cosmological scenario.



Chapter 4

Relic Abundance in a

Low–Temperature Scenario

In the previous chapter we calculate the relic density according to the assumption that the

particles were in thermal equilibrium in the early universe and decoupled when they were

non–relativistic. If we look at the final result (3.18), the relic density is anti–proportional

to the annihilation cross section. This result leads to high relic density unless the cross

section is as large as ∼ 10−9 GeV−2. Bearing this situation in mind, it is important to

explore scenarios where the relic density comes out smaller than the standard calculation

and find a useful formula which properly describes the behavior of the relic abundance.

On the other hand, We have direct evidence from BBN for temperatures below MeV

(T < (few) MeV) [16,17]. From a phenomenological view point, we assume particles never

reach thermal equilibrium because of the low reheat temperature after inflation. We start

from some initial temperature with vanishing or non–vanishing initial abundance. We solve

the Boltzmann equation based on this assumption and try to find suitable analytic formula

for the relic density in low temperature scenario.

4.1 Numerical Results

In this section, we solve the Boltzmann equation (3.8) numerically. For later convenience

we first rewrite the Boltzmann equation (3.8), using Eqs.(3.4) and (3.11):

dYχ

dx
= −f

(

a +
6b

x

)

1

x2

(

Y 2
χ − cx3e−2x

)

, (4.1)

where

f = 1.32
√

g∗mχMPl , c = 0.0210 g2
χ/g

2
∗

(4.2)

23
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Figure 4.1: Predicted present relic density Ωχh2 as function of the a and b contributions to the total

cross section, see Eq.(3.11); in frame (a), b = 0 whereas in (b), a = 0. We consider two extreme cases:

χ particles were in full thermal equilibrium (dotted blue line) or the number density of χ vanished (solid

red line) at x0 = 22. The two horizontal double–dotted black lines correspond to the 2σ upper and lower

bounds of the dark matter abundance [1].

are constants. Here we assume g∗ ' g∗s and dg∗s/dx ' 0. Eqs.(3.8) and (4.1) assume

that χ remains in kinetic equilibrium through the entire period with non–negligible time

dependence of Yχ. This is reasonable, since kinetic equilibrium can be maintained through

elastic scattering of χ particles on particles in the thermal plasma. The rate for such reac-

tions exceeds the χ annihilation rate by a factor ∝ Y −1
χ & 107 for temperatures of interest.

For our numerical examples, we consider a Majorana fermion with m = 100 GeV and

gχ = 2 as the relic particle. We choose the relativistic degrees of freedom to be g∗ = 90;

this approximates the prediction of SM of particle physics for temperatures around 10 GeV.

Figure 4.1 shows that the relic density can be reduced if the particles never reach thermal

equilibrium because of the low reheat temperature after inflation. The solid red curves

depict the predicted present relic density Ωχh2 as function of a (a) and b (b) defined in

Eq.(3.11). Here we assume that the relic abundance vanished at the initial temperature of

x0 = 22, which is around the typical WIMP decoupling temperature. Here, as well as in the

subsequent figures, the exact numerical solution of the Boltzmann equation (4.1) has been

obtained using the Runge–Kutta algorithm, with a step size that increases quickly with

increasing x − x0. For large cross section we observe Ωχh2 ∝ 1/〈σv〉, in accord with the
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standard prediction (3.18). However, when the cross section is reduced, the relic density

reaches a maximum, and then decreases ∝ 〈σv〉. For the given choice of initial conditions,

there are therefore two distinct ranges in 〈σv〉 where the relic density comes out in the

desired range [1]. In the following section, we calculate the relic abundance in analytic

way.

4.2 Analytic Calculation of Relic Abundance

We calculated the relic density in approximate way in the standard cosmological scenario.

In the following we attempt to find a convenient approximate analytic formula applicable

even to low temperature scenarios. As zeroth order solution of Eq.(4.1) we consider the

case where χ annihilation is completely negligible,

dY0

dx
= fc(ax + 6b) e−2x . (4.3)

This equation can easily be integrated, giving

Y0(x) = fc
[a

2
(x0e

−2x0 − xe−2x) +
(a

4
+ 3b

)

(e−2x0 − e−2x)
]

+ Yχ(x0) . (4.4)

For x � x0, the relic abundance of the particles becomes constant,

Y0,∞ ≡ Y0(x � x0) = fc
[a

2
x0e

−2x0 +
(a

4
+ 3b

)

e−2x0

]

+ Yχ(x0) . (4.5)

It can be simplified by putting the constants f and c into Y0(x) and let Yχ(x0) = 0,

Y0,∞ ' 0.014g2
χg−3/2

∗
mχMPle

−2x0x0(a +
6b

x0

). (4.6)

The corresponding prediction for the present relic density is given by

Ωχh2 = 2.8 × 108mχY0,∞GeV−1 (4.7)

= 3.9 × 106g2
χg−3/2

∗
m2

χMPle
−2x0x0(a +

6b

x0

) GeV−1.

Here we notice that the relic density is proportional to the cross section, although the

coefficient of proportionality depends on whether a or b is dominant. The final abundance

is found to be enhanced as the cross section or the initial temperature increases. This

solution should be smoothly connected to the one which is obtained in the full thermal

equilibrium case.
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So far no analytic solution has been known for the in–between case where both anni-

hilation and production play a crucial role in determining the relic abundance while ther-

mal equilibrium is not fully achieved. We now attempt to connect the standard scenario

(TR > TF ) and the low reheat temperature scenario (TR < TF ) using some analytic method.

Since we already have the solution only including the production term, the most natu-

ral extension is to add a correction term which describes the effect of annihilation on the

solution for the pure production case:

Y1 = Y0 + δ . (4.8)

By definition δ vanishes at the initial temperature. Since it describes the effect of χ

annihilation, it is negative for x > x0. We put Eq.(4.8) into Eq.(4.1),

d(Y0 + δ)

dx
= −f

(

a +
6b

x

)

1

x2

[

(Y0 + δ)2 − cx3e−2x
]

. (4.9)

As long as |δ| is small compared to Y0, the evolution equation for δ is given by

dδ

dx
= −f

(

a +
6b

x

)

Y0(x)2

x2
. (4.10)

Using Eq.(4.4) for Y0(x), this can again be integrated:

δ(x) = −f 3c2

[

1

4
a3F 4

0 (x, x0) +
1

4
a2(a + 18b)F 4

1 (x, x0)

+
1

16
a(a + 12b)(a + 36b)F 4

2 (x, x0) +
3

8
b(a + 12b)2F 4

3 (x, x0)

]

+ Y0,∞f 2c

[

a2F 2
1 (x, x0) +

1

2
a(a + 24b)F 2

2 (x, x0) + 3b(a + 12b)F 2
3 (x, x0)

]

− Y 2
0,∞f

[

aF 0
2 (x, x0) + 6bF 0

3 (x, x0)
]

, (4.11)

where

F m
n (x, x0) =

∫ x

x0

dt
e−mt

tn
, m = 0, 2, 4 , n = 1, 2, 3 . (4.12)

The functions F m
n (x, x0) can be expressed analytically in terms of the exponential integral

of first order E1(x); a complete list of the relevant F m
n is given in the Appendix, Eqs.(A.6).
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At late times, x → ∞, this simplifies to

δ(x → ∞) = −f 3c2e−4x0

[

a3

4
x0 +

a2(a + 60b)

16
− 9ab(a − 16b)

8x0

+
9b(5a2 − 56ab + 96b2)

32x2
0

]

− f 2ce−2x0Yχ(x0)

[

a2 +
9ab

x0

− 9b(a − 4b)

2x2
0

]

− f(Yχ(x0))
2

(

a

x0

+
3b

x2
0

)

, (4.13)

where we omit higher order terms than O(1/x2
0). Notice that we discard O(1/x2) and

O(1/x3) terms in 〈σv〉, which also contribute to higher order terms in Eq.(4.13). If a 6= 0

we therefore expect additional terms O(1/x0) from terms not included in Eq.(3.11); if

a = 0, higher order terms in the expansion of the cross section only contribute at O(1/x3
0)

in Eq.(4.13). With the vanishing initial abundance, it is simplified to

δ(x → ∞) ' −2.5 × 10−4 g4
χg−5/2

∗
m3

χM3
Ple

−4x0x0

(

a +
3b

x0

)(

a +
6b

x0

)2

. (4.14)

We put the solutions for δ and Y0 together to Y1 and compare the approximate analytic

result with the numerical one. We find there is little deviation when the cross section is

small, the deviation increases fast when the cross section increases. Therefore, we try to

find more useful analytic formula.

Since, for vanishing initial abundance, Y0 is proportional to the cross section σ, δ is pro-

portional to σ3. On the other hand, for sufficiently large cross section we want to recover

the standard expression, where Yχ(x → ∞) ∝ 1/〈σv〉. This suggests to rewrite our ansatz

(4.8) as

Y1 = Y0 + δ = Y0

(

1 +
δ

Y0

)

' Y0

1 − δ/Y0

≡ Y1,r . (4.15)

Although the final approximate equality in Eq.(4.15) only holds for |δ| � Y0, we note

that the resulting expression has the right behavior, Y1,r ∝ 1/σ, for large cross section. In

the following we will show that this “re–summation” of the correction δ is indeed able to

describe the relic density for a wide range of cross sections and temperatures, including

scenarios where the standard treatment is applicable.

In fact, this ansatz solves the Boltzmann equation (4.1) exactly in the simple case where
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thermal χ production can be ignored, but Yχ(x0) is sizable, leading to significant χ anni-

hilation. In this case Eq.(4.1) reduces to

dYχ

dx
= −f

(

a +
6b

x

)

Y 2
χ

x2
. (4.16)

This equation can easily be solved analytically. The solution decreases monotonically from

its initial value Yχ(x0):

Yχ =
Yχ(x0)

1 + fYχ(x0) [a(1/x0 − 1/x) + 3b(1/x2
0 − 1/x2)]

. (4.17)

In order to treat this case using the formalism of Eqs.(4.3)–(4.15), we simply drop all terms

which depend exponentially on x or x0; these terms come from thermal χ production, and

are obviously very small for sufficiently small initial temperature. The zeroth order solution

(4.4) then obviously reduces to the constant Yχ(x0), and the correction δ of Eq.(4.11)

simplifies to

δ(x) → −f (Yχ(x0))
2
[

aF 0
2 (x, x0) + 6bF 0

3 (x, x0)
]

= −f (Yχ(x0))
2

[

a

(

1

x0

− 1

x

)

+ 3b

(

1

x2
0

− 1

x2

)]

; (4.18)

in the last step we have used the last two Eqs.(A.6) in the Appendix. Inserting this in the

last expression in Eq.(4.15), we indeed recover the exact solution (4.17), as advertised.

In principle, we can add further correction terms to the first order approximation of

Eq.(4.8),

Yχ = Y0 + δ + δ2 + δ3 + · · · . (4.19)

The above discussion shows that this corresponds to an expansion in powers of 〈σv〉. Since

Y0 > 0 and δ < 0 by definition, the systematic expansion will lead to an alternating series

which possesses good convergence properties. However, this type of expansion is quite

cumbersome because |δ| often dominates over Y0 for not very small cross sections, as we

will explicitly see later. Therefore the re–summed ansatz Y1,r of Eq.(4.15) is much more

convenient. We will see that it often provides a good approximation to the exact solution

even if thermal χ production is not negligible.



4. Relic Abundance in a Low–Temperature Scenario 29

10-12

10-11

10-10

 0.1  1  10

x-x0

Yχ
Y1,r
Yχ,eq
|δ|

(a)

10-12

10-11

10-10

 0.01  0.1  1  10

x-x0

Yχ
Y1,r
Yχ,eq
|δ|

(b)

10-12

10-11

10-10

 0.1  1  10

x-x0

Yχ
Y1,r
Yχ,eq
|δ|

(c)

10-12

10-11

10-10

 0.01  0.1  1  10

x-x0

Yχ
Y1,r
Yχ,eq
|δ|

(d)

Figure 4.2: Evolution of the exact solution Yχ (solid red curves), Y1,r of Eq.(4.15) (dotted blue), the

equilibrium density Yχ,eq of Eq.(3.4) (double–dotted black), and |δ| of Eq.(4.11) (short–dashed violet) as

function of x−x0. The initial abundance is assumed to be Yχ(x0 = 22) = 0. We take (a) a = 10−9 GeV−2,

b = 0, (b) a = 10−8 GeV−2, b = 0, (c) a = 0, b = 10−8 GeV−2, and (d) a = 0, b = 10−7 GeV−2. In frames

(a) and (c) the curves for Y1,r practically coincide with the solid lines.

In Fig. 4.2 we present the evolution of the exact, numerical solution Yχ (solid red), Y1,r

(dotted blue), Yχ,eq (double–dotted black) and |δ| (short–dashed violet) as function of

x − x0. Here we consider vanishing initial χ density, Yχ(x0 = 22) = 0. Clearly the first

order approximation Y1 of Eq.(4.8) fails to reproduce the exact result once |δ| becomes

comparable to Y0. On the contrary, frames (a) and (c) show that the re–summed ansatz

Y1,r of Eq.(4.15) reproduces the numerical solution very well for all x > x0 if a <∼ 10−9
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GeV−2 and b <∼ 10−8 GeV−2. However, for intermediate values of x− x0, the disagreement

between Y1,r and the exact solution becomes large as the cross section increases. In frames

(b) and (d) of Fig. 4.2 sizable deviations from the exact value are observed at x − x0 ∼ 1

for a = 10−8 GeV−2 or b = 10−7 GeV−2. For larger x the deviation becomes smaller again,

and for x � x0 the difference is insignificant even for these large cross sections.

We also analyzed scenarios with sizable initial χ abundance, Yχ(x0) 6= 0. Figure 4.3 shows

that the re–summed ansatz again matches the numerical result very well for all values of x

if a <∼ 10−9 GeV−2. This is not surprising since, as we saw in the discussion of Eq.(4.18),

it reproduces the exact solution if Yχ(x0) dominates over the thermal contribution. For

a = 10−8 GeV−2, Y1,r again starts to deviate from the exact numerical solution at x ∼ 0.1,

but approaches it for x � x0. Note also that already for the smaller cross section chosen

in this Figure, the final relic density is almost independent of Yχ(x0).

Let us take a closer look at the difference between the exact solution and the re–summed

ansatz. To this end, we define the deviation ε by

Yχ =
Y0

1 − δ/Y0

+ ε . (4.20)

Inserting this ansatz into the Boltzmann equation (3.8) leads to the evolution equation for

ε:

dε

dx
= −f〈σv〉

x2

[

ε2 + 2ε
Y0

1 − δ/Y0

− (δ/Y0)
2

(1 − δ/Y0)2
Y 2

χ,eq

]

, (4.21)

which again resembles the Boltzmann equation. Since initially ε = 0, our re–summed

ansatz works very well as long as δ/Y0 remains suppressed. Note that the inhomogeneous

term on the rhs of Eq.(4.21) is of order (δ/Y0)
2. The analogous correction to our original

first order solution Y1 of Eq.(4.8) would start at O(δ/Y0). Since this inhomogeneous term

is positive, ε(x) > 0 for all x > x0, i.e. Y1,r, like Y1, always under–estimates the exact

solution. As |δ|/Y0 grows, the last term in Eq.(4.21) can become sizable. Note, however,

that it is multiplied with (Yχ,eq)
2, which drops ∝ exp (−2x) with increasing x. Therefore

ε becomes large only if |δ| reaches values of order of Y0 for x − x0 <∼ 1. The homogeneous

terms in Eq.(4.21) imply that for large x − x0 the deviation ε decreases again, similar

to the WIMP relic abundance Yχ. This situation is depicted in Fig. 4.4, which shows

the evolutions of |δ|/Yχ (upper curves) and ε/Yχ (lower curves) as function of x − x0 for

a = 3 × 10−8 GeV−2 (solid red), a = 10−8 GeV−2 (dotted blue) and a = 3 × 10−9 GeV−2

(double–dotted black). Here we choose b = 0 and Yχ(x0 = 22) = 0. Even in the case where
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Figure 4.3: Evolution of Yχ (solid red curves), Y1,r (dotted blue), Yχ,eq (double–dotted black) and |δ|
(short–dashed violet) as function of x−x0. Here we take (a) a = 10−9 GeV−2, Yχ(x0) = 10−8, (b) a = 10−9

GeV−2, Yχ(x0) = 10−10, (c) a = 10−8 GeV−2, Yχ(x0) = 10−7 and (d) a = 10−8 GeV−2, Yχ(x0) = 10−10.

The other parameters are as in Fig. 4.2.

ε becomes sizable for intermediate values of x, it eventually diminishes and hence our an-

alytical formula succeeds in reproducing the present relic abundance Yχ(x → ∞) fairly well.

Following we discuss the dependence of the present relic abundance on the initial tempera-

ture. In Fig. 4.5 we plot the present relic density evaluated numerically (solid red curves),

the old standard approximation (dotted blue) and our new approximation (double–dotted
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Figure 4.4: Evolution of |δ|/Yχ (upper curves) and ε/Yχ (lower curves) as function of x − x0 for a =

3 × 10−8 GeV−2 (solid red), a = 10−8 GeV−2 (dotted blue) and a = 3 × 10−9 GeV−2 (double–dotted

black). Here we choose b = 0 and Yχ(x0 = 22) = 0.

black) as function of x0. Here we take (a) a = 10−8 GeV−2, b = 0 and (b) a = 10−9 GeV−2,

b = 0. We find that our approximation agrees with the exact result very well for x0 > xF .

On the other hand, for x0 < xF , our approximation gives too small an abundance1 while

the old approximation works very well. The transition between the two regimes is very

sharp. For x0 = xF + 2, the old approximation over–estimates the relic abundance by as

much as an order of magnitude, while for x0 = xF both the old and the new approximation

work well.

Fig. 4.5 shows that Y1,r(x0, x → ∞) has a well defined maximum when x0 is varied. This

maximum occurs at a value x0,max which is close, but not identical, to the decoupling

temperature xF of Eq.(3.20). From the asymptotic expressions for Y0, Eq.(4.5), and δ,

Eq.(4.13), we find for Yχ(x0) = 0:

x0,max ' 1

2
ln

f 2c(a + 6b/x0,max)
2

4x0,max

= ln
0.096 mχMPlgχ(a + 6b/x0,max)√

x0,maxg∗
. (4.22)

1For x0 � xF , our expressions predict Ωχh2 ∝ x0.
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Figure 4.5: The present relic density evaluated numerically (solid red curves), the old standard approx-

imation (dotted blue) and our new approximation (double–dotted black) as function of x0. Here we take

(a) a = 10−8 GeV−2, b = 0 and (b) a = 10−9 GeV−2, b = 0.

In deriving this equation, we neglect non–leading terms in 1/x0,max in each combination of

a and b.2 Notice that x0,max coincides with xF of Eq.(3.20), if one chooses ξ = 1/4 (rather

than ξ =
√

2 − 1).

Since the actual relic density is already practically independent of x0 for x0 < x0,max, we

can construct a new semi–analytic solution which describes the relic density for the whole

range of x0: for x0 > x0,max, compute the relic density from Y1,r(x0), but for x0 < x0,max,

use Y1,r(x0,max) instead.

The ratio of this semi–analytic result Ω1,r to the exact value Ωχ is depicted in Fig. 4.6.

As noted earlier, our approximation becomes exact for x0 >∼ xF . For smaller x0 the new

approximation still slightly under–estimates the correct answer, but the deviation is at

most 1.7% for b = 0 (left frame), and 3.0% for a = 0 (right frame). On the other hand, in

the same region the old standard approximation reproduces the present relic abundance

within 1% error. We thus see that for x0 < xF , this new expression works nearly as well

as the old standard result;3 of course, the old result fails badly for x0 > xF . Finally, since

2The next–to–leading correction to the pure a–term would have been relevant, but it cancels. The

non–leading corrections to terms that require both a and b to be non–zero are numerically insignificant,

and of the same order as terms omitted in the expansion (3.11) of the annihilation cross section.
3However, if a = 0, we should expect O(10%) corrections to the relic density from higher order terms in
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Figure 4.6: Ratios of approximate and exact results for the relic density Ω1,r/Ωχ as function of x0−x0,max,

for a 6= 0, b = 0 (left frame) and a = 0, b 6= 0 (right frame). The curves use Y1,r with x0 replaced by

max(x0, x0,max), see Eq.(4.22). In the left frame, a = 10−8 GeV−2 (solid red curves), 10−9 GeV−2 (dotted

blue), 10−10 GeV−2 (double–dotted black), 10−11 GeV−2 (short–dashed violet) with b = 0, whereas in the

right frame, b = 10−7 GeV−2 (solid red), 10−8 GeV−2 (dotted blue), 10−9 GeV−2 (double–dotted black),

10−10 GeV−2 (short–dashed violet) with a = 0.

by definition Y1,r depends only weakly on x0 for x0 ∼ x0,max, the latter quantity need not

be calculated very precisely; in practice, setting x0,max = 20 in the rhs of Eq.(4.22) is often

sufficient. In contrast, the standard approximation (3.18) depends linearly (for b = 0)

or even quadratically (for a = 0) on xF ; several iterations are therefore required to solve

Eq.(3.20) to sufficient accuracy. Altogether, our new semi–analytic formula is evidently a

quite powerful tool in calculating the density of cold relics.

4.3 Constraint on Initial Temperature from Dark Mat-

ter Relic Abundance

In the previous sections, we explore the relic density of WIMPs in the low–temperature

scenario. Bearing the behavior of the final relic abundance in mind, it is worth to investi-

gate its dependence on the initial temperature T0. With the precisely measured abundance

of cold dark matter in the universe we can derive the possible lowest initial temperature

if cold dark matter is mainly composed of thermally produced WIMPs [36]. Some results

the expansion (3.11) of the cross section; if a 6= 0, these higher order terms should only contribute O(1%).
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Figure 4.7: Contour plots of the present relic abundance Ωχh2. Here we take (a) a 6= 0, b = 0, and (b)

a = 0, b 6= 0. We choose Yχ(x0) = 0, mχ = 100 GeV, gχ = 2, g∗ = 90. The shaded region corresponds to

the WMAP bound on the cold dark matter abundance, 0.08 < ΩCDMh2 < 0.12 (95% C.L.).

are shown in Fig. 4.7, where we take (a) a 6= 0, b = 0, and (b) a = 0, b 6= 0. We choose

Yχ(x0) = 0, mχ = 100 GeV, gχ = 2 and g∗ = 90.

The results depicted in this Figure can be understood as follows. For small T0, i.e. large

x0, Eq.(4.6) is valid, leading to a very strong dependence of Ωχh2 on x0. Recall that in

this case the relic density is proportional to the cross section. In this regime one can repro-

duce the relic density (1.1) with quite small annihilation cross section, a + 6b/x0 <∼ 10−9

GeV−2, for some narrow range of initial temperature, x0 <∼ 22.5. Note that this allows

much smaller annihilation cross sections than the standard result, at the cost of a very

strong dependence of the final result on the initial temperature T0.

In this Section we set out to derive a lower bound on T0. In this regard the region of

parameter space described by Eq.(4.6) is not optimal. Increasing the χ annihilation cross

section at first allows to obtain the correct relic density for larger x0, i.e. smaller T0. How-

ever, the correction δ then quickly increases in size; as noted earlier, once |δ| > Y0 a further

increase of the cross section will lead to decrease of the final relic density. The lower bound

on T0 is therefore saturated if Ωχh2 as a function of the cross section reaches a maximum.
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From Fig.4.7 we read off

T0 ≥ mχ/23 , (4.23)

if we require Ωχh2 to fall in the range (1.1).

We just saw that in the regime where this bound is saturated, the final relic density is

(to first order) independent of the annihilation cross section, ∂(Ωχh2)/∂〈σv〉 = 0. If T0 is

slightly above the absolute lower bound (4.23), the correct relic density can therefore be

obtained for a rather wide range of cross sections. For example, if x0 = 22.5, the entire

range 3 × 10−10 GeV−2 <∼ a <∼ 2 × 10−9 GeV−2 is allowed. Of course, the correct relic

density can also be obtained in the standard scenario of (arbitrarily) high T0, if a + 3b/22

falls within ∼ 20% of 2 × 10−9 GeV−2.



Chapter 5

Relic Abundance Including

Non–thermal Production

In this chapter we investigate a scenario where unstable heavy particles φ decay into long–

lived or stable particles χ. We assume that φ decays out of thermal equilibrium, so that

φ production is negligible; however, we include both thermal and non–thermal production

of χ particles. For example in some supersymmetric models neutralinos can be produced

non–thermally through the decay of moduli [30] or gravitinos after the end of inflation.

This chapter is devoted to the calculation of the relic density of WIMPs including the

decay of heavier particles.

5.1 The Boltzmann Equation

The evolution of the cosmological abundance including the decay of heavier particle is more

complicated than in the usual thermal–production case reviewed in the previous chapter.

The number densities of χ and φ obey the following coupled Boltzmann equations:

dnχ

dt
+ 3Hnχ = −〈σv〉(n2

χ − n2
χ,eq) + NΓφnφ ,

dnφ

dt
+ 3Hnφ = −Γφnφ , (5.1)

where N is the average number of χ particles produced in a φ decay, and Γφ and nφ are the

decay rate and the number density of the heavier particle. In contrast to refs. [19] we assume

that φ does not dominate the total energy density, so that the co–moving entropy density

remains approximately constant throughout. The Boltzmann equation for nφ can then

easily be solved analytically, using the fact that t ∝ T−2 ∝ x2 in the radiation–dominated

37
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era. Inserting this solution into the equation for nχ, and again switching variables to

Yχ = nχ/s, Yφ = nφ/s and x, the Boltzmann equation for χ becomes

dYχ

dx
= −〈σv〉s

Hx
(Y 2

χ − Y 2
χ,eq) + NrxYφ(x0) exp

(

−r

2
(x2 − x2

0)
)

, (5.2)

where r = Γφ/Hx2 = (ΓφMPl/πm2
χ)
√

90/g∗ is constant. Comparing to the Boltzmann

equation (4.1), there is extra term which emerged from the decay of heavier particles to

WIMPs. The analytic approximate way which we used in the previous chapter also works

for this case, but the calculation is more complicated than before.

5.2 Analytic Calculation of Relic Abundance

We repeat the same way as in Chapter 4 to solve the Boltzmann equation (5.2) approxi-

mately. The zeroth order solution of Eq.(5.2) is again obtained by neglecting χ annihilation

when the temperature is too low for χ particle to reach thermal equilibrium. Using the

expansion (3.11) of the annihilation cross section, we have

dY0

dx
= f

(

a +
6b

x

)

cxe−2x + NrxYφ(x0) exp
(

−r

2
(x2 − x2

0)
)

. (5.3)

This equation can be integrated, giving

Y0 = fc
[a

2
(x0e

−2x0 − xe−2x) +
(a

4
+ 3b

)

(e−2x0 − e−2x)
]

+ NYφ(x0)
[

1 − exp
(

−r

2
(x2 − x2

0)
)]

+ Yχ(x0) . (5.4)

For x � x0, Y0 becomes constant,

Y0,∞ = fc
[a

2
x0e

−2x0 +
(a

4
+ 3b

)

e−2x0

]

+ NYφ(x0) + Yχ(x0) . (5.5)

For sufficiently large Y0 the annihilation term in Eq.(5.2) becomes significant. We add a

correction term to include this effect, as in Eq.(4.8). Since the new, non–thermal contribu-

tion to χ production is already fully included in Y0, the Boltzmann equation for δ is again
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given by Eq.(4.10). Using now Eq.(5.4) for Y0, we can integrate Eq.(4.10), giving

δ =

{

−f 3c2

[

1

4
a3F 4

0 (x, x0) +
1

4
a2(a + 18b)F 4

1 (x, x0)

+
1

16
a(a + 12b)(a + 36b)F 4

2 (x, x0) +
3

8
b(a + 12b)2F 4

3 (x, x0)

]

+Y0,∞f 2c

[

a2F 2
1 (x, x0) +

1

2
a(a + 24b)F 2

2 (x, x0) + 3b(a + 12b)F 2
3 (x, x0)

]

−Y 2
0,∞f

[

aF 0
2 (x, x0) + 6bF 0

3 (x, x0)
]

}

− N2Y 2
φ (x0)e

rx2

0f [aGr
2(x, x0) + 6bGr

3(x, x0)]

+ 2NYφ(x0)e
rx2

0
/2Y0,∞f [aG

r/2

2 (x, x0) + 6bG
r/2

3 (x, x0)] (5.6)

− NYφ(x0)e
rx2

0
/2f 2c

[

a2Gc
1(x, x0) +

1

2
a(a + 24b)Gc

2(x, x0) + 3b(a + 12b)Gc
3(x, x0)

]

.

The functions Gr
n(x, x0), G

r/2
n (x, x0) and Gc

n(x, x0) are defined by

Gr
n(x, x0) =

∫ x

x0

dt
e−rt2

tn
, n = 2, 3 ,

Gr/2
n (x, x0) =

∫ x

x0

dt
e−rt2/2

tn
, n = 2, 3 ,

Gc
n(x, x0) =

∫ x

x0

dt
e−2t−rt2/2

tn
, n = 1, 2, 3 . (5.7)

Explicit expressions for these functions are given in the Appendix, Eqs.(A.8). Notice that

the expression in curly brackets {...} in Eq.(5.6) has the same form as in Eq.(4.11).

Results for this scenario with b = 0 are shown in Fig. 5.1. We choose r = 0.1 so that

rx2
0 ∼ x0, which leads to the most difficult situation where thermal and non–thermal pro-

duction occur simultaneously. We see that even for the smaller cross section considered,

a = 10−9 GeV−2 (top frames), the simple first–order solution (4.8) soon fails, since |δ|
exceeds Y0. However, the re–summed ansatz Y1,r of Eq.(4.15) describes the exact tem-

perature dependence very well for this cross section, both for large (top left frame) and

moderate (top right) non–thermal χ production. For a = 10−8 GeV−2 (bottom frames) we

again observe sizable deviations for intermediate values of x − x0.

In fact, comparison with Fig. 4.2 shows that non–thermal χ production leads to faster

growth of |δ|, and hence to earlier and larger deviation between Y1,r and the exact solution
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Figure 5.1: Evolution of Yχ (solid red curves), Y1,r (dotted blue), |δ| (double–dotted black), the prediction

for purely thermal χ production Yχ,tp (short–dashed violet) and Yχ,eq (triple–dotted orange) as function

of x − x0, for Yχ(x0 = 22) = 0, r = 0.1, N = 1 and b = 0. The S−wave cross section and the initial φ

density are (a) a = 10−9 GeV−2, Yφ(x0) = 10−10, (b) a = 10−9 GeV−2, Yφ(x0) = 10−11, (c) a = 10−8

GeV−2, Yφ(x0) = 10−9 and (d) a = 10−8 GeV−2, Yφ(x0) = 10−10.

of the Boltzmann equation (5.2). However, comparison with the curves labeled Yχ,tp, where

non–thermal χ production is neglected, show that for this rather large cross section and

short φ lifetime, the non–thermal production mechanism does not affect the final χ relic

density any more. This agrees with the result of Fig. 4.3, where we saw that for the same

values of a and x0, the relic density is independent of the initial value Yχ(x0). As before,

Y1,r approaches the exact result again for x − x0 � 1. We therefore conclude that our
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re–summed ansatz describes scenarios with additional non–thermal χ production as well

as the simpler case with only thermal production.
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Chapter 6

Relic Abundance for the Modified

Expansion Rate

In previous chapters we investigated the relic abundance in low–temperature scenarios. We

find that different cosmological scenarios lead to different quantitive predictions for the relic

density. In this chapter we investigate the relic abundance of WIMPs with the modified

Hubble parameter. The influence of the modified expansion rate on the relic abundance of

WIMP dark matter deserves to be studied for distinguishing among different cosmological

scenarios. Various cosmological models predict a non–standard early expansion history

[32–35]. Here we analyze to what extent the relic density of WIMP Dark Matter can be

used to constrain the Hubble parameter during the epoch of WIMP decoupling [36]. As

long as we assume large T0 we can use a modification of the standard treatment [2, 14] to

estimate the relic density for given annihilation cross section and expansion rate. We will

show that the resulting approximate solutions again accurately reproduce the numerically

evaluated relic abundance.

6.1 Boltzmann Equation and Relic Abundance

In this section we discuss the calculation of the WIMP relic density nχ in modified cosmo-

logical scenarios where the expansion parameter of the pre–BBN universe differed from the

standard value Hst of Eq.(3.9). For most part we will assume that WIMPs have been in full

thermal equilibrium. We introduce the modification parameter A(x), which parameterizes

the ratio of the standard Hubble parameter Hst(x) to the assumed H(x):

A(x) =
Hst(x)

H(x)
. (6.1)

43
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We notice that A > 1 means that the expansion rate is smaller than in standard cosmology.

Allowing for this modified expansion rate, the Boltzmann equation (3.8) is altered to

dYχ

dx
=

4π√
90

G(x)mχMPl

〈σv〉A(x)

x2
(Y 2 − Y 2

χ,eq). (6.2)

The equation can be solved approximately in the same way which is reviewed in the

standard cosmological scenario. We obtain the relic abundance as

Yχ,∞ ≡ Yχ(x → ∞) =
1

(4π/
√

90)mχMPlI(xF )
, (6.3)

where the annihilation integral is defined as

I(xF ) =

∫

∞

xF

dx
G(x)〈σv〉A(x)

x2
. (6.4)

Plugging in numerical values for the Planck mass and for today’s entropy density, the

present relic density can thus be written as

Ωχh2 =
8.5 × 10−11

I(xF ) GeV2
. (6.5)

The constraint (1.1) therefore corresponds to the allowed range for the annihilation integral

7.1 × 10−10 GeV−2 < I(xF ) < 1.1 × 10−9 GeV−2 . (6.6)

The standard formula (3.18) for the final relic abundance is recovered if A(x) is set to be

unity and G(x) is replaced by the constant
√

g∗(xF ). The modification of the expansion

parameter is encoded into the annihilation integral. Using the same method reviewed in

Chapter 2, we find the freeze–out point as

xF = ln

[

√

45

π5
ξmχgχ

〈σv〉A(x)
√

xg∗(x)

(

1 − x

3g∗s

dg∗s
dx

)

]
∣

∣

∣

∣

∣

x=xF

, (6.7)

which can e.g. be solved iteratively. In our numerical calculations we will choose ξ =
√

2−1

[2, 14].

The further discussion is simplified if we use the normalized temperature z = T/mχ ≡ 1/x,

rather than x. Phenomenologically A(z) can be any function subject to the condition that

A(z) approaches unity at late times in order not to contradict the successful predictions

of BBN. We need to know A(z) only for the interval from around the freeze-out to BBN:
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zBBN ∼ 10−5 − 10−4 <∼ z <∼ zF ∼ 1/20. This suggests a parameterization of A(z) in terms

of a power series in (z − zF,st):

A(z) = A(zF,st) + (z − zF,st)A
′(zF,st) +

1

2
(z − zF,st)

2A′′(zF,st) , (6.8)

where zF,st is the normalized freeze–out temperature in the standard scenario and a prime

denotes a derivative with respect to z. The ansatz (6.8) should be of quite general validity,

so long as the modification of the expansion rate is relatively modest. This suits our pur-

pose, since we wish to find out what constraints can be derived on the expansion history

if standard cosmology leads to the correct WIMP relic density.

We further introduce the variable

k = A(z → 0) = A(zF,st) − zF,stA
′(zF,st) +

1

2
z2

F,stA
′′(zF,st) , (6.9)

which describes the modification parameter at late times. Since zBBN is almost zero, we

treat k as the modification parameter at the era of BBN in this paper.1 Deviations from

k = 1 are conveniently discussed in terms of the equivalent number of light neutrino de-

grees of freedom Nν. BBN permits that the number of neutrinos differs from the standard

model value Nν = 3 by δNν = 1.5 or so [87]. We therefore take the uncertainty of k to

be 20%. In the following we treat A(zF,st), A′(zF,st) and k as free parameters; A′′(zF,st) is

then a derived quantity.

Note that we allow A(z) to cross unity, i.e. to switch from an expansion that is faster than

in standard cosmology to a slower expansion or vice versa. This is illustrated in Fig. 6.1,

which shows examples of possible evolutions of A(z) as function of z for zF = 0.05. Here

we take k = 1.2 (left frame) and k = 0.8 (right). In each case we consider scenarios with

A(zF ) = 1.3 (slower expansion at TF than in standard cosmology) as well as A(zF ) = 0.7

(faster expansion); moreover, we allow the change of A at z = zF to be either positive or

negative. However, we insist that H remains positive at all times, i.e. A(z) must not cross

zero. This excludes scenarios with very large positive A′(zF,st), which would lead to A < 0

at some z < zF . Similarly, demanding that our ansatz (6.8) remains valid for some range

of temperatures above TF excludes scenarios with very large negative A′(zF,st). We will

come back to this point shortly.

1Presumably the Hubble expansion rate has to approach the standard rate even more closely for T <

TBBN. However, since all WIMP annihilation effectively ceased well before the onset of BBN, this epoch

plays no role in our analysis.
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Figure 6.1: Examples of possible evolutions of the modification parameter A(z) as function of z for

zF = 0.05. Here we take k = 1.2 (left frame) and k = 0.8 (right). In each frame we choose A(zF ) =

1.3, A′(zF ) = −3 (thick line), A(zF ) = 1.3, A′(zF ) = 9 (dashed), A(zF ) = 0.7, A′(zF ) = −3 (dotted),

A(zF ) = 0.7, A′(zF ) = 9 (dot–dashed).

Eq.(6.7) shows that zF 6= zF,st (xF 6= xF,st) if A(zF ) 6= 1. This is illustrated by Fig. 6.2,

which shows the difference between xF and xF,st in the (A(zF,st), A′(zF,st)) plane. Here we

take parameters such that Ωχh2 = 0.099 in the standard cosmology, which is recovered for

A(zF,st) = 1, A′(zF,st) = 0. Due to the logarithmic dependence on A, xF (or zF ) differs by

at most a few percent from its standard value if A(zF,st) is O(1). Since TF only depends

on the expansion rate at TF , it is essentially insensitive to the derivative A′(zF,st).

In our treatment the modification of the expansion parameter affects the WIMP relic

density mostly via the annihilation integral (6.4). In terms of the normalized temperature

z, the latter can be rewritten as

I(zF ) =

∫ zF

0

dz G(z)〈σv〉A(z) . (6.10)

One advantage of the expansion (6.8) is that this integral can be evaluated analytically:

I(zF ) ' G(zF )
[

k(azF + 3bz2
F ) + (A′(zF,st) − zF,stA

′′(zF,st))
(a

2
z2

F + 2bz3
F

)

+
A′′(zF,st)

2

(

a

3
z3

F +
3b

2
z4

F

)]

. (6.11)



6. Relic Abundance for the Modified Expansion Rate 47

−20

−15

−10

−5

 0

 5

 10

 15

 20

 0.6  0.8  1  1.2  1.4

A
’(z

F
,s

t )

A(zF,st )

xF − x F,st

a = 2.0*10−9  GeV −2

b = 0
k = 1
xF,st = 22.0

−0.4 −0.2 0 0.2 0.4

Figure 6.2: Contour plot of xF − xF,st in the (A(zF,st), A′(zF,st)) plane. Here we take a = 2.0 × 10−9

GeV−2, b = 0, mχ = 100 GeV, gχ = 2, g∗ = 90 (constant) and k = 1. This parameter set produces

xF,st = 22.0 and Ωχh2 = 0.099 for the standard approximation.

Here we have assumed that G(z) varies only slowly.

Before proceeding, we first have to convince ourselves that the analytic treatment de-

veloped in this Section still works for A 6= 1. This is demonstrated by Fig. 6.3, which

shows the ratio of the analytic solution obtained from Eqs. (6.5) and (6.11) to the exact

one, obtained by numerically integrating the Boltzmann equation (6.2), assuming constant

g∗. We see that our analytical treatment is accurate to better than 1%, and can thus safely

be employed in the subsequent analysis.

Now we analyze the impact of the modified expansion rate on the WIMP relic density. In

Fig. 6.4, we show contour plots of the relic abundance in the (A(zF,st), A′(zF,st)) plane.

Recall that large (small) values of A corresponds to a small (large) expansion rate. Since

a smaller expansion rate allows the WIMPs more time to annihilate, A > 1 leads to a

reduced WIMP relic density, whereas A < 1 means larger relic density, if the cross section

is kept fixed.

However, unlike the freeze–out temperature, the annihilation integral is sensitive to A(z)

for all z ≤ zF . Note that A′(zF,st) > 0 implies A(z) < A(zF,st) for z < zF,st ' zF .

A positive first derivative, A′(zF,st) > 0, can therefore to some extent compensate for
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Figure 6.3: Ratio of the analytic result of the relic density to the exact value in the (A(zF,st), A′(zF,st))

plane for a = 2.0 × 10−9 GeV−2, b = 0 (left frame) and for a = 0, b = 1.5 × 10−8 GeV−2 (right). The

other parameters are as in Fig. 6.2.

A(zF,st) > 1; analogously, a negative first derivative can compensate for A(zF,st) < 1. This

explains the slopes of the curves in Fig. 6.4. Recall also that A′(zF,st) = 0 does not imply a

constant modification factor A(z); rather, the term ∝ A′′(zF,st) in Eq.(6.8) makes sure that

A approaches k as z → 0. This explains why a change of A by some given percentage leads

to a smaller relative change of Ωχh2, as can be seen in the Figure. This also illustrates

the importance of ensuring appropriate (near–standard) expansion rate in the BBN era.

Finally, since the expansion rate at late times is given by Hst/k, bigger (smaller) values of

k imply that the χ relic density is reduced (enhanced).

6.2 Constraints on the Modification Parameter

Fig. 6.4 shows that we need additional physical constraints if we want to derive bounds

on A(zF,st) and/or A′(zF,st). Once the annihilation cross section is known, the requirement

(1.1) will single out a region in the space spanned by our three new parameters (including k)

which describe the non–standard evolution of the universe, but this region is not bounded.

Such additional constraints can be derived from the requirement that the Hubble parameter

should remain positive throughout the epoch we are considering. As noted earlier, requiring
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Figure 6.4: Contour plots of the relic abundance in the (A(zF,st), A′(zF,st)) plane. Here we choose (a)

a = 2.0× 10−9 GeV−2, b = 0, k = 1; (b) a = 0, b = 1.5× 10−8 GeV−2, k = 1; (c) a = 2.0 × 10−9 GeV−2,

b = 0, k = 1.2; (d) a = 2.0× 10−9 GeV−2, b = 0, k = 0.8. The other parameters are as in Fig. 6.2.

H > 0 for all T < TF,st leads to an upper bound on A′(zF,st); explicitly,

A′(zF,st) <
2
(

A(zF,st) +
√

kA(zF,st)
)

zF,st
. (6.12)

On the other hand, a lower bound on A′(zF,st) is obtained from the condition that the

modified Hubble parameter is positive between the highest temperature Ti where the ansatz
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(6.8) holds and TF,st:

A′(zF,st) > −
[

1

zi − zF,st

(

2 − zi

zF,st

)

A(zF,st) + k

(

1

zF,st

− 1

zi

)]

, (6.13)

for (1 − zF,st/zi)
2k < A(zF,st), and

A′(zF,st) >
2
(

A(zF,st) −
√

kA(zF,st)
)

zF,st

, (6.14)

for A(zF,st) < (1 − zF,st/zi)
2k, where zi = Ti/mχ.

Evidently the lower bound on A′(zF,st) depends on zi, i.e. on the maximal temperature

where we assume our ansatz (6.8) to be valid. In ref. [21] we have shown that in standard

cosmology (A ≡ 1) essentially full thermalization is already achieved for xi <∼ xF − 0.5,

even if nχ(xi) = 0. However, it seems reasonable to demand that H should remain pos-

itive at least up to xi = xF−(a few). In Fig. 6.5 we therefore show the physical con-

straints on the modification parameter A(z) for xF,st − xi = 4, 10 and k = 1. The dashed

and dotted lines correspond to the upper and lower bounds on A′(zF,st), described by

Eq.(6.12) and Eqs.(6.13), (6.14), respectively. We see that when xF,st − xi = 4 the al-

lowed region is 0.4 <∼ A(zF,st) <∼ 6.5 with −60 <∼ A′(zF,st) <∼ 400 for b = 0 (left frame),

and 0.4 <∼ A(zF,st) <∼ 4.5 with −60 <∼ A′(zF,st) <∼ 300 for a = 0 (right frame). When

xF,st − xi = 10, the lower bounds are altered to 0.6 <∼ A(zF,st), −10 <∼ A′(zF,st) for b = 0

(left frame), and 0.6 <∼ A(zF,st), −20 <∼ A′(zF,st) for a = 0 (right frame). Note that the

lower bounds on A(zF,st), which depend only weakly on xi so long as it is not very close

to xF , are almost the same in both cases, which also lead to very similar relic densities in

standard cosmology. However, the two upper bounds differ significantly. The reason is that

large values of A(zF,st), i.e. a strongly suppressed Hubble expansion, require some degree of

finetuning: One also has to take large positive A′(zF,st), so that A becomes smaller than one

for some range of z values below zF , leading to an annihilation integral of similar size as in

standard cosmology. Since the b−terms show different zF dependence in the annihilation

integral (6.11), the required tuning between A(zF,st) and A′(zF,st) is somewhat different

than for the a−terms, leading to a steeper slope of the allowed region. This allowed re-

gion therefore saturates the upper bound (6.12) on the slope for somewhat smaller A(zF,st).

The effect of this tuning can be seen by analyzing the special case where A′′(zF,st) = 0.
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Figure 6.5: Contour plots of the relic abundance Ωχh2 in the (A(zF,st), A
′(zF,st)) planes. The dashed line

corresponds to the upper bound on A′(zF,st). The dotted lines correspond to the lower bounds calculated

for xF,st −xi = 4, 10. We take a = 2.0× 10−9 GeV−2, b = 0 (left frame) and a = 0, b = 1.5× 10−8 GeV−2

(right frame). The other parameters are as in Fig 6.2.

The modification parameter then reads

A(z) =
A(zF,st) − k

zF,st
z + k . (6.15)

Note that A is now a monotonic function of z, making large cancellations in the annihilation

integral impossible. Imposing that A(z) remains positive for zF,st ≤ z ≤ zi leads to the

lower limit

A(zF,st) >

(

1 − zF,st

zi

)

k . (6.16)

There is no upper bound, since A(z) is now automatically positive for all z ∈ [0, zF,st] if

A(zF,st) and A(0) ≡ k are both positive. Fig. 6.6 shows constraints on the relic abun-

dance in the (A(zF,st), k) plane for A′′(zF,st) = 0. The dotted lines correspond to the lower

bounds (6.16) on A(zF,st) for xF,st − xi = 4, 10. As noted earlier, k is constrained by

the BBN bound. This leads to the bounds 0.5 <∼ A(zF,st) <∼ 1.8 for b = 0 (left frame),

and 0.65 <∼ A(zF,st) <∼ 1.6 for a = 0 (right frame), when xF,st − xi = 10. Evidently the

constraints now only depend weakly on whether the a− or b−term dominates in the anni-

hilation cross section. As the initial temperature is lowered, the impact of the constraint

(6.16) disappears.
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Figure 6.6: Contour plots of the relic abundance Ωχh2 in the (A(zF,st), k) plane for A′′(zF,st) = 0.

The dotted lines correspond to the lower bounds of A(zF,st), calculated for xF,st − xi = 4, 10. We take

a = 2.0 × 10−9 GeV−2, b = 0 (left frame) and a = 0, b = 1.5 × 10−8 GeV−2 (right frame). The other

parameters are as in Fig 6.2.

So far we have assumed in this Section that the reheat temperature was high enough for

WIMPs to have attained full thermal equilibrium. If this was not the case, the initial

temperature as well as the suppression parameter affects the final relic abundance. Here

we show that the lower bound on the reheat temperature derived in the previous Section

survives even in scenarios with altered expansion history as long as WIMPs were only

produced thermally.

This can be understood from the observation that the Boltzmann equation with modified

expansion rate is obtained by replacing 〈σv〉 in the radiation–dominated case by 〈σv〉A.

Increasing (decreasing) A therefore has the same effect as an increase (decrease) of the an-

nihilation cross section. Since the lower bound on T0 was independent of σ (more exactly:

we quoted the absolute minimum, for the optimal choice of σ), we expect it to survive even

if A(z) 6= 1 is introduced.

This is borne out by Fig. 6.7, which shows the relic abundance Ωχh2 in the (A(zF,st),

x0) plane for the simplified case A′′(zF,st) = 0; similar results can be obtained for the more
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Figure 6.7: Contour plot of the relic abundance Ωχh2 in the (A(zF,st), x0) plane. Here we choose

a = 2.0 × 10−9 GeV−2, b = 0, k = 1, A′′(zF,st) = 0. The other parameters are as in Fig. 6.2. The shaded

region corresponds to the WMAP bound on the cold dark matter abundance, 0.08 < ΩCDMh2 < 0.12 (95%

C.L.).

general ansatz (6.8). The shaded region corresponds to the bound (1.1) on the cold dark

matter abundance. As expected, this figure looks similar to Fig. 4.7 if the annihilation

cross section in Fig. 4.7 is replaced by A(zF,st). The maximal value of x0 consistent with

the WMAP data remains around 23 even in these scenarios with modified expansion rate.

Fig. 6.7 also shows that A(zF,st) � 1 is allowed for some narrow range of initial tempera-

ture T0 < TF . This is analogous to the low cross section branch in Fig. 4.7.
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Chapter 7

Conclusions and Discussion

In this thesis, we studied the relic density of non–relativistic long–lived or stable parti-

cles χ in non–standard cosmological scenarios with special emphasis on low–temperature

scenarios and the scenario where the pre–BBN Hubble parameter is modified using both

analytical and numerical methods.

In the low–temperature scenario, we assumed particles never reach thermal equilibrium

because of the low reheat temperature after the end of inflation. Such scenarios are inter-

esting because they lower the predicted relic abundance and therefore open the parameter

space of particle physics models, allowing combinations of parameters which are cosmolog-

ically disfavored in the standard high temperature scenario.

In the case of small χ annihilation cross section or very low temperature, the annihilation

term in the Boltzmann equation (4.1) is negligible, leading to the zeroth order solution Y0

of Eq.(4.4). We add δ as in Eq.(4.8) to describe the effect of annihilation of particles when

both the annihilation and production play a crucial role in determining the relic abundance

while thermal equilibrium is not fully achieved. Unfortunately this approximation breaks

down well before χ attains full thermal equilibrium. On the other hand, we found the

“re–summed” ansatz Eq.(4.15), which is obtained by resumming the annihilation term δ in

Eq.(4.8), and pointed out the solution describes the full temperature dependence of the χ

number density as long as χ does not reach full equilibrium. It works even if a non–thermal

source of χ production is added. For higher cross sections or temperatures even the re–

summed ansatz fails to describe the temperature dependence of the χ number density at

intermediate temperatures. However, by replacing the initial scaled inverse temperature

x0 with the quantity x0,max of Eq.(4.22) our ansatz succeeds in predicting the final relic
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density about as well as the standard semi–analytical high temperature treatment does,

with comparable numerical effort.

From the particle physics point of view, the main effect of a low reheat temperature is

that it allows to reproduce the correct relic density in scenarios with low annihilation cross

section, e.g. for bino–like neutralinos and large sfermion masses. Conversely, the non–

thermal production mechanism studied in Chapter 4 allows to reproduce the correct relic

density for WIMPs with large annihilation cross section, e.g. wino–like neutralinos [30]. As

noticed in [20], the combination of these effects in principle allows to completely decouple

the WIMP relic density from its annihilation cross section. In many studies of expected

WIMP detection rates scenarios yielding too high a relic density under the standard as-

sumptions were not considered; such scenarios typically also lead to low detection rates.

Conversely, in scenarios leading to too low a thermal WIMP density, which typically pre-

dict large detection rates for fixed WIMP density, the predicted detection rates were often

rescaled by the ratio of the predicted to the observed relic density. If one allows lower

reheat temperatures and/or non–thermal WIMP sources, the possible range of signals for

WIMP detection can therefore be enlarged towards both larger and smaller values.

On the other hand, by applying the observed cosmological amount of cold dark matter

to the predicted WIMP abundance, we obtain the lower bound of the initial temperature

T0 of the radiation–dominated period after inflation. In terms of the normalized inverse

temperature the bound is shown to be x0 ≡ mχ/T0 . 23.

We also investigated the effect of non–standard expansion rate of the universe on the

WIMP relic abundance. In general the abundance of thermal relics depends on the ratio

of the annihilation cross section to the expansion rate; the latter is determined in standard

cosmology. We found that even for non–standard Hubble parameter the relic abundance

calculated accurately in terms of an annihilation integral, very similar to the case of stan-

dard cosmology. We assumed that the WIMP annihilation cross section is such that the

standard scenario yields the observed relic density, and parameterized the modification of

the Hubble parameter as a quadratic function of the temperature. At low temperatures the

Hubble parameter approaches its standard value to within ∼ 20% in order not to conflict

with the successful prediction of BBN.

Of course in order to draw the conclusions derived in this thesis, we need to convince

ourselves that WIMPs do indeed form (nearly) all DM. This requires not only the detec-
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tion of WIMPs, e.g. in direct search experiments; we also need to show that their density

is in accord with the local Dark Matter density derived from astronomical observations.

To that end, the cross sections appearing in the calculation of the detection rate need to

be known independently. This can only be done in the framework of a definite theory,

using data from collider experiments. For example, in order to determine the cross section

for the direct detection of supersymmetric WIMPs, one needs to know the parameters of

the supersymmetric neutralino, Higgs and squark sectors [3]. We also saw that inferences

about H(TF ) can only be made if the WIMP annihilation cross section is known. This

again requires highly non–trivial analyses of collider data [88], as well as a consistent overall

theory. We thus see that the interplay of accurate cosmological data with results obtained

from dark matter detections and collider experiments can give us insight into the pre–BBN

universe, which to date remains unexplored territory.
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Appendix A

Exponential Functions

In this appendix, we give explicit expressions for the functions F m
n (x, x0), Gr

n(x, x0),

G
r/2
n (x, x0) and Gc

n(x, x0) which appear in Chapters 4 and 5. These functions are ana-

lytically expressed in terms of the exponential integral of the first order E1(x) and the

error function erfc(x).

First we review the exponential integral and the error function. The exponential inte-

gral of the first order is defined by

E1(x) =

∫

∞

1

dt
e−xt

t
=

∫

∞

x

dt
e−t

t
. (A.1)

We need this function only for x > x0 � 1. We can then use the asymptotic large x

expansion,

E1(x) ∼ e−x

x

∞
∑

n=0

(−1)nn!

xn
. (A.2)

The error function is defined by

erfc(x) =
2√
π

∫

∞

x

dt e−t2 , (A.3)

with asymptotic large x expansion

erfc(x) ∼ e−x2

√
πx

∞
∑

n=0

(−1)n(2n − 1)!!

(2x2)n
. (A.4)

The functions F m
n (x, x0) are defined by

F m
n (x, x0) =

∫ x

x0

dt
e−mt

tn
. (A.5)
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These integrals can be reduced to the form (A.1). The resulting expressions and corre-

sponding asymptotic expansions, computed from Eq.(A.2), are:

F 4
0 (x, x0) =

1

4
(e−4x0 − e−4x) ,

F 4
1 (x, x0) = E1(4x0) − E1(4x)

∼ e−4x0

4x0

(

1 − 1

4x0

)

− e−4x

4x

(

1 − 1

4x

)

+ O
(

e−4x0

x3
0

)

,

F 4
2 (x, x0) =

e−4x0

x0

− 4E1(4x0) −
e−4x

x
+ 4E1(4x)

∼ e−4x0

4x2
0

− e−4x

4x2
+ O

(

e−4x0

x3
0

)

,

F 4
3 (x, x0) =

e−4x0

2x2
0

− 2
e−4x0

x0

+ 8E1(4x0) −
e−4x

2x2
+ 2

e−4x

x
− 8E1(4x)

∼ O
(

e−4x0

x3
0

)

,

F 2
1 (x, x0) = E1(2x0) − E1(2x)

∼ e−2x0

2x0

(

1 − 1

2x0

)

− e−2x

2x

(

1 − 1

2x

)

+ O
(

e−2x0

x3
0

)

,

F 2
2 (x, x0) =

e−2x0

x0

− 2E1(2x0) −
e−2x

x
+ 2E1(2x)

∼ e−2x0

2x2
0

− e−2x

2x2
+ O

(

e−2x0

x3
0

)

,

F 2
3 (x, x0) =

e−2x0

2x2
0

− e−2x0

x0

+ 2E1(2x0) −
e−2x

2x2
+

e−2x

x
− 2E1(2x)

∼ O
(

e−2x0

x3
0

)

,

F 0
2 (x, x0) =

1

x0

− 1

x
,

F 0
3 (x, x0) =

1

2x2
0

− 1

2x2
. (A.6)

The functions Gr
n(x, x0) and G

r/2
n (x, x0) are defined by

Gr
n(x, x0) =

∫ x

x0

dt
e−rt2

tn
,

Gr/2
n (x, x0) =

∫ x

x0

dt
e−rt2/2

tn
, n = 2, 3 . (A.7)

Using Eqs.(A.3) and (A.4), we find the following explicit expressions and corresponding



asymptotic expansions:

Gr
2(x, x0) =

e−rx2

0

x0

−
√

πr erfc(
√

rx0) −
e−rx2

x
+
√

πr erfc(
√

rx)

∼ e−rx2

0

2rx3
0

(

1 − 3

2rx2
0

)

− e−rx2

2rx3

(
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2rx2

)

+ O
(

e−rx2

0

x0(rx2
0)

3

)

,
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2
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2)
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. (A.8)

In the expansion we assume that rx2
0 ∼ x0, so that the effect of non–thermal χ production

is comparable to that of thermal production.

Finally, the functions Gc
n(x, x0) are defined by

Gc
n(x, x0) =

∫ x

x0

dt
e−2t−rt2/2

tn
, n = 1, 2, 3 . (A.9)

They appear in the “interference terms” in Eq.(5.6), which are important only if thermal

and non–thermal contributions to Y0 in Eq.(5.4) are comparable in size. Since the overall

t−dependence of the integrand in Eq.(A.9) is dominated by the numerator, we can, to

good approximation, evaluate these functions by replacing t in the denominator by some



appropriate constant xc:

Gc
n(x, x0) '

∫ x

x0

dt
e−2t−rt2/2

xn
c

=
e2/r

xn
c

√

π
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[

erfc

(
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)

− erfc

(

1√
2r

(rx + 2)

)]

∼ e−2x0−rx2

0
/2

xn
c (rx0 + 2)

[

1 − r

(rx0 + 2)2

]

− e−2x−rx2/2

xn
c (rx + 2)

[

1 − r

(rx + 2)2

]

+O
(

e−2x0−rx2

0
/2

xn−1
0 (rx2

0)
3

)

. (A.10)

In our calculations in Chapter 5 we set xc = x0; this over–estimates Gc
n by a few %, with

negligible error in Y1,r.
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