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Abstract

The broad-leaved dock (Rumex obtusifolius L. (RUMOB)) is one of the most harmful and

persistent weed species on European grassland and it has been spread into the temperate

grassland regions throughout the world. Large dry matter contributions of Rumex obtusifolius

L. reduce the quality of the standing forage considerably because of the poor palatability

of leaves and tillers and withdraw water and nutrient from surrounding plants. For Central

Europe it is estimated that more than 80% of all herbicides used in conventional grassland

farming are used to control Rumex species. Until today, herbicides are applied over the whole

field, even if Rumex plants are not homogeneously distributed area-wide.

Recently developed precision farming techniques based on weed mapping that use mainly

image processing, enable site-specific spraying of weeds in arable crops. Until today those

techniques have not been applied to grassland weed sensing. Compared to the identification of

isolated individual plants on a rather uniform soil background in arable crops, image processing

for a more complex environment as grassland requires a different approach.

The aim of the thesis was to develop an image processing procedure for automatic detection of

grassland weeds using close-range digital colour images, focussing on the detection of RUMOB.

A field experiment has been established with grassland plots populated with RUMOB and the

other typical broad leaved grassland weeds Taraxacum officinale Web. (TAROF) and Plantago

major L. (PLAMA). Digital colour images have been taken from around 1.5 m above ground

at three dates in 2005. Image acquisition was done automatically by a vehicle driven on rails

alongside to the experimental plots, whereby nearly constant recording geometry conditions

were guaranteed. Images were taken during cloud cover in order to avoid direct sunlight.

Using the images from 2005 an object-oriented image classification has been developed.
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Thereby, the leaves of the weeds were separated from the background using parameters of

homogeneity and morphology, resulting in a binary image. The remaining image objects in the

binary image were contiguous regions of neighbouring pixels related to the object classes of the

weed species, soil, and residue objects. Geometrical-, colour and texture features were calcu-

lated for each of these objects. Discriminant analysis exhibited that colour and texture features

contribute most to the discriminating of objects into the different classes. In a Maximum Like-

lihood classification these features were used to differentiate the objects into their respective

classes. High overall accuracies and even higher RUMOB detection rates were achieved. The

algorithm has been modified and applied to images of varying image resolutions. High classi-

fication accuracies have been achieved with all image resolutions, whereby the processing time

could be improved for images with lowest resolutions.

Images were taken at 13 dates over the two grassland growths in 2006. In all the images the

plant species were classified automatically using the developed image classification integrated

in a graphical user interface software. The coordinates of the objects classified as RUMOB

were transformed into Gauss-Krueger system to generate distribution maps of this weed. The

combination of object density and area further decreased its misclassifications. RUMOB clas-

sification rates across the season were analysed and phenological stages have been identified

on which classification performed best.

The results demonstrate high potential of machine vision for weed detection in grassland.

A classification procedure based on image analysis and Geographic Information System (GIS)

post-processing has been developed for detecting Rumex obtusifolius L. and other weeds in

grassland with high accuracy. Future projects might focus on the application to real grassland

conditions and the derivation of RUMOB distribution maps. Thus, herbicide application maps

can be calculated, utilized for site-specific weed control. The development of an image acquisi-

tion unit to be mounted on a driving vehicle along with a standardization of image recording

is going to be the main focus.
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1. Introduction

1.1. Impact of Rumex obtusifolius L. (broad-leaved dock) on

grassland

The broad-leaved dock (RUMOB) (Figure 1.1) is considered as one of the five most widely

distributed non-cultivated plant species in the world (Zaller, 2004). RUMOB is found in

European grasslands and has been spread throughout the world (Cavers & Harper, 1964). It is

found in many widely different plant communities including woods, arable fields, grassland and

waste places. Cavers and Harper (1964) reported that for the growth of this species apparently

no climatic limitations exist. As a ’follower of men’ its absence from high altitude areas is

probably caused by the lack of disturbed ground on these heights (Cavers & Harper, 1964).

The species is present on almost all soil types but less often on peat and rarely on acid soils

(Zaller, 2004; Cavers & Harper, 1964).

Rumex obtusifolius L. competes with sown and native pasture species, and arable crops;

occupying area which could be utilized by more palatable species (Zaller, 2004). The availability

of large concentrations of soil nutrients, especially nitrogen, increases its competitiveness. Open

spaces in damaged grazed swards, high nutrient availability and liquid manure, and high animal

stocking rates improve the conditions for reproduction, germination and rapid expansion of

RUMOB. When harvested with forage, silage, and hay the cattle assimilate the seeds, which

persist in the rumen, as well as in slurry and farmyard manure, and remain viable throughout

hard winters in the sward and soil.

The life cycle of Rumex obtusifolius L., adopted from Elsässer (2004), is illustrated in Figure

1.2. RUMOB has low competitive ability as a seedling and hardly becomes established in

closed communities (Cavers & Harper, 1964). Although once it has produced a deep spreading
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1. Introduction

Figure 1.1.: Grassland field infested with Rumex obtusifolius at the University of Bonn Grassland

Farm in Rengen, Germany.

tap root it is a most troublesome weed and is very difficult to eradicate. By its widely ramified

root systems plants of RUMOB withdraw water and nutrient from surrounding plants. Pieces

of the underground stem can quickly regenerate from dissected roots after ploughing (Cavers &

Harper, 1964). New shoots are quickly sent up from ground level. It then has a great advantage

over the shallower-rooted perennial grasses (Zaller, 2004; Cavers & Harper, 1964). High plant

density of RUMOB significantly reduces the average quality of the standing forage due to the

poor palatability of leaves and tillers. Besides the low palatability, it favours digestive problems

due to contents of oxalic and silicic acids and tanning agents. Once established in grassland,

plants tend to flower freely for several years. The combination of flowering several times a year,

producing a large number of seeds (up to 60.000 seeds per plant) that remain viable in the
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1. Introduction

Rosette

Flowering plant with
developed seeds

Grassland infested
with RUMOB

Viable
seeds

Seedling

3-leaves
stadium

5-leaves
stadium

Viable
seeds

Viable
seeds Viable seeds in hay,

forage and silage

Viable seeds
in slurry

Seeds remain
undigested

Figure 1.2.: The life cycle of Rumex obtusifolius. Adopted from Elsässer (2004).

soil for many years, the ability to quickly establish from seeds and the low seedling mortality,

makes RUMOB a successful weed on agricultural land (Zaller, 2004; Cavers & Harper, 1964).

It is not possible to suppress established RUMOB plants by pasture management practices,

such as cutting frequency, N dosage, or modifying the botanical composition, even when the

competition from neighbouring species is very strong (Niggli, 1985). To achieve lasting im-

provements in the botanical composition of the plant stand, specific interventions are needed

(Niggli, 1985). Necessary preventive actions include: (1) maintaining well-balanced fertiliza-

tion; (2) avoid sod opening and closing of gaps immediately; (3) cutting grassland before plants

flower; (4) apply control practices early. In organic farming, individual plants of RUMOB are

controlled through manual weeding, either by hand or mechanical digging. Each individual

plant must be detected by the worker and cut from the sod using specific spades. Recent de-

velopments aim to replace the manual digging by machines. However, still a worker is required

for guiding the machine to each plant. The operation remains exhausting and the machines

6



1. Introduction

leave unacceptable damage to the field. Those methods are time consuming and expensive.

In Central Europe approximately 80% of all herbicides used in conventional grassland farm-

ing are used to control Rumex species (Galler, 1989). The optimal time for chemical control is

when the plant has completely developed its rosette, preferably in the late summer and autumn

before temperatures are below 25◦C. While each individual RUMOB plant of is harmful, the

reported weed thresholds for controlling are very low. For example, the chamber of agricul-

ture (Landwirtschaftskammer) Niedersachsen, Germany, defines the thresholds as: 5% of the

grassland fields infested with RUMOB or 3 - 5 RUMOB plants per 10 m2 (Hoppe, 2007). The

Swiss consortium on the promotion of crop production (AGGF) recommends that the chemi-

cal control of RUMOB shall be carried out plant individually if only few weeds appear in the

field. However, if abundance of RUMOB increases 1 plant per m2 herbicides shall be applied

over the whole field (Kessler & Ammon, 1996; Zwerger & Ammon, 1999). Using for example

the Asulam herbicide best efficiency is achieved when the RUMOB rosette is fully established

either in the spring growth or in autumn (starting in late August). Amidosulfuron shall be

applied in late summer to autumn (Zwerger & Ammon, 1999).

Elementary rules in chemical weed management are: (i) to favour site-specific management

over whole field treatment, (ii) use of permitted selective herbicides only, (iii) application at

the right time, when leaf area is fully developed and before blossoming and on dry days, (iv)

to keep the recommended waiting period after application, and (v) to close occurred gaps in

the grass sod after application (Pötsch, 2001).

1.2. Precision agriculture for weed management

Weeds do not grow uniformly; there is significant spatial variability in weed plant density and

in weed type across a field (Lamb & Brown, 2001). For operational effectiveness however, the

normal practice of farmers is to spray the entire field at a uniform rate (Stafford & Miller,

1993).

Studies in arable crops, driven by the idea of precision farming and spatially variable chemical

application, specifically “patch spraying technology” have provided quantitative data concern-

ing the degree of patchiness of a number of specific weeds (Gerhards et al. , 1997; Dicke et al.

7



1. Introduction

, 2007). There is a great potential in saving herbicides by targeting applications and vary the

application rate to the weed density. Such precision farming techniques enable the reduction

of herbicides, along with reduced management costs and environmental friendliness (Gerhards

et al. , 2000; Thorp & Tian, 2004; Gerhards & Oebel, 2006).

The basis for site-specific weed control is to know where the weeds appear in the field. Weeds

mapped on a field scale give farm managers the ability to monitor the effectiveness of weed

management strategies and to ascertain the chemical requirements of spraying (Lamb & Brown,

2001). Weed maps provide the navigation source for sprayers guided by a Global Positioning

System (Stafford et al. , 1996; Gerhards et al. , 1997; Dicke et al. , 2004; Dicke et al. , 2007).

In the past, most field-scale weed maps have been constructed from on-ground survey tech-

niques, for example GPS-assisted field walking (Stafford et al. , 1996) or grid sampling (Dicke

et al. , 2007). They are of limited use for commercial weed management, because of issues such

as field mobility, cost, labour and time (Lamb & Brown, 2001). Remote sensing of weeds using

either satellite- or airborne sensors offer a more sophisticated possibility to detect weeds in the

field and to derive weed distribution maps. These approaches for weed mapping work offline

and require four fundamental steps which are: (1) images acquisition; (2) images classification;

(3) derivation of weed distribution and herbicide application map; and (4) spraying herbicides

according to the herbicide application map. Close-range imaging is potentially suitable for

online systems for weed management with sensors mounted at the front of the tractor and the

data classified real-time with on board computers to direct the herbicidation (Marchant et al.

, 1998).

1.3. Remote sensing of weeds

Remote sensing offers an non-invasive method for detection and mapping of weeds. The two

requirements necessary for remote sensing of weeds are: (i) suitable differences in spectral

reflectance or texture exist between weeds and their background soil and plant canopy, and (ii)

the remote sensing instrument has appropriate spatial and spectral resolution to detect weed

plants (Lamb & Brown, 2001).

Airborne remote sensing platforms have been used for weed detection since the early 1980s

8



1. Introduction

(Thorp & Tian, 2004). Multi- and hyperspectral imaging sensors as well as video cameras were

utilized for weed, crop, soil, and residue discrimination in arable crops (Menges et al. , 1985;

Richardson et al. , 1985; Thorp & Tian, 2004; Lopez-Granados et al. , 2006). These systems

depend on differences in the spectral signatures for pixel-based thematic classification.

The separation of crop and weeds from background is much more complicated in range- and

grasslands than in fields with uniform crop cover. However, flowering stages of some weeds

exhibit spectral signatures significantly different from surrounding grasses which improves weed

detection using aerial multispectral video and photography (Everitt et al. , 1984; Everitt et al.

, 1987; Everitt et al. , 1992; Everitt et al. , 1995) and hyperspectral data (Glenn et al. , 2005).

Also, satellite sensors have been used to detect large aggregations of weeds (Everitt et al. ,

1993; Thorp & Tian, 2004). All the above mentioned studies, using either airborne or satellite

remote sensing data are not suitable to detect individual plants and to distinguish between weed

species and crops, because of the insufficient spatial resolution and similar spectral properties

of weeds and crops. For example, Lamb et al. (1999) have mapped continuous populations

of Avena sp. in a field of seedling triticale undersown with clover using 0.5, 1.0, 1.5, and 2.0

m resolution multispectral imagery. The highest resolution imagery was able to discriminate

the lowest weed densities of 17 plants/m2 from the seedling crop, soil background. Below that

weed density, inter-row weeds could not be reliably distinguished from the background.

Due to the low spatial resolution present satellite and airborne remote sensing capability is

limited to the detection of aggregated weed patches only. In contrast to close-range sensors,

the image classification is limited to pixel-based classification using the spectral information of

each pixel.

Sensor platforms at low altitudes, for example drones, balloons, or ground-based sensors,

can overcome the spatial resolution limitations. Greater proximity reduces the pixel sizes to

millimetres or smaller. In the past, researchers have approached ground-based weed sensing

in arable crops using machine vision technology (Thorp & Tian, 2004), with the benefits of

both image analysis methods, pixel-based and object-oriented classification. In object-oriented

image classification, contiguous regions of neighbouring pixels are classified instead of single

pixels. With sufficient spatial resolution (below 1 mm) images collected with ground-based

camera systems and subsequent image processing routines enable to segment vegetation from

9



1. Introduction

soil background and delineate individual weeds from crop (Thorp & Tian, 2004). Soil and

vegetation are thereby separated based on differences in colour (Woebbecke et al. , 1995a;

Marchant et al. , 1998; Tian & Slaughter, 1998; Soille, 2000; Hemming & Rath, 2001; Perez

et al. , 2000) or in the red and infra-red reflectance (Brivot & Marchant, 1996; Lamb & Brown,

2001; Gerhards et al. , 2002; Thorp & Tian, 2004). In a two step agricultural machine vision

application, vegetation is separated from soil background, then weeds are distinguished from

crop, using spectral, spatial, and/or textural information within images (Thorp & Tian, 2004;

Perez et al. , 2000; Kavdir, 2004; Aitkenhead et al. , 2003; Marchant & Onyango, 2003; Brivot

& Marchant, 1996; Onyango et al. , 2005; Tillett et al. , 2001; Hemming & Rath, 2001).

Spectral object properties have been used to identify weed seedlings (Franz et al. , 1991b),

weeds having reddish stems (Zhang & Chaisattapagon, 1995), and to discriminate weeds from

corn plants (Jia & Krutz, 1992). Determining shape parameters were successfully used to

discriminate between different weed species (Petry & Kühbauch, 1989; Franz et al. , 1991a;

Woebbecke et al. , 1995b; Neto et al. , 2006). However, this fails when plant leaves overlap. The

third method for discrimination of plant species in ground-based weed detection applications

involves the measurement of the textural appearance of a plant or plant canopy as a whole

(Thorp & Tian, 2004). For example, Burks et al. (2005), Shearer and Holmes (1990), and

Meyer et al. (Meyer et al. , 1998) determined textural features from the colour co-occurrence

matrices to discriminate weed species.

Lamb and Brown (2001) and Thorp and Tian (2004) provide two very detailed reviews on

literature about the remote sensing of weeds.

Since these studies were conducted on arable crops, the separation of weeds from soil is

somewhat easier than in range land or grassland.

1.4. Objectives of the study

As mentioned above, the potential of image classification for grassland weed detection has

not been investigated and would promote precision farming techniques in grassland farming.

The aim of the study was to investigate the potential of close-range remote sensing colour

images for detecting weeds in grassland. In particular it focused on the identification of one

10



1. Introduction

of the most invasive and persistent weed species on European grassland, the broad-leaved

dock (Rumex obtusifolius L., RUMOB). Future practical applications on permanent grassland

require systematic studies on plant discrimination in mixed swards. Aim of this study was

the development of image classification algorithms to accurately recognize RUMOB in mixed

permanent grassland swards, including distinguishing from herbs frequently associated with

RUMOB, such as TAROF and PLAMA.

Based on images taken during 2005 and 2006 four experiments were conducted. Experiments

1 to 3 deal with the creation and improvement of an image classification algorithm for RUMOB

detection and the investigation of the influence of image resolution on classification accuracy.

In the fourth experiment the image classification results were transformed to distribution maps

of RUMOB. Misclassification was further reduced by combining object area with object den-

sity before deriving herbicide application maps. Additionally, time optimal periods and plant

growth stages across the grassland growing season were identified suitable for RUMOB map-

ping. An introductory summary of each experiment is given below:

Experiment 1: Suitability of close-range sensed colour images and object-oriented image

classification for the detection of broad-leaved dock (Rumex obtusifolius L.) within mixed

grassland swards.

This base study focussed on the applicability of ground-based colour images and subsequent

image classification for weed detection in grassland. At three dates in July 2005, 108 digital

photographs were obtained from a field experiment that is described below. An object-oriented

image classification algorithm was developed. To segment the red, green, blue (RGB) colour

images they were transformed to grey scale intensity images in a first step. Based on that,

local homogeneity images were calculated and a homogeneity threshold was applied to gen-

erate binary images. Finally, morphological opening (image erosion followed by dilation) was

performed. Shape, colour and texture features were calculated for each of the objects remain-

ing after image segmentation. Based on these features, a Maximum Likelihood classification

was done to discriminate RUMOB from other herbs and the soil background. Rank analysis

was used to evaluate the influence that combinations of features had on the classification result.

11



1. Introduction

Experiment 2: An extended algorithm for automatic Rumex obtusifolius detection using

colour and textural object features.

This section describes an improved algorithm that increases classification accuracy and re-

duces confusion of other weeds. The leaves of RUMOB, TAROF, PLAMA, and other homo-

geneous regions were segmented automatically in the digital colour images using local homo-

geneity and morphological operations as in the first experiment. Additional texture and colour

features were identified that contribute to the differentiation through a stepwise discriminant

analysis. Again, Maximum-likelihood classification was performed based the variables retained

after discriminant analysis. The results were compared to those of the first classification algo-

rithm.

Experiment 3: The influence of image resolution on the classification accuracy

Experiments 1 and 2 were performed on eight million pixel images. Processing of these

images, particularly image segmentation, is rather slow, taking up to one minute per image.

Reducing of image size would speed up processing time, however what impact would decreas-

ing image resolution have on the classification results? The eight million pixel images were

resampled to create images at six decreasing resolutions, determining the resolutions of typical

industrial cameras. Processing results of these images were compared to determine the best

resolution, in terms of classification accuracy and processing times.

Experiment 4: Continuous mapping of Rumex obtusifolius during different grassland growths

based on automatic image classification and GIS-based post processing

This experiment combines the results of the object-oriented image classification with geospa-

tial post-processing. Images acquired at 13 dates during two grassland growths in 2006 were

classified automatically. Image objects classified as RUMOB were mapped to a cartographic

coordinate system using coordinate transformation to create weed distribution within GIS.

Finally, object density and area were combined to improve detection accuracy and to derive

herbicide application maps. Both, the distribution and herbicide application maps, were com-

pared to the setup of the observed grassland plot experiment. Further, the best time periods

to achieve high classification accuracies were determined. From this the phenological stages

12



1. Introduction

of RUMOB plants were identified for recommending the appropriate point for the automatic

weed mapping.
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1. Introduction

1.5. Field experiment

Figure 1.3.: Aerial photograph of the experimental site at the University of Bonn Experiment Station

Rengen taken on June, 19th in 2005. Photo is courtasy of Landesamt für Vermessung und Geobasisin-

formation Rheinland-Pfalz, Germany. 24.01.2007; Az.: 26 722-1.51

Investigations on the contribution of machine vision for weed detection require standardised

setups of plant growth and plant communities. Respective experiments can be set up either in

greenhouses or on field experiments. In greenhouses, however, plants grow different to those

under field conditions due to other environmental conditions. To overcome these limitations,

field experiments are required which enable the monitoring of growing plants under natural

conditions, but in a standardized manner.

For this study, a field experiment was set up in spring 2005 at the University of Bonn

Experiment Station Rengen in the Eifel mountains, Germany, about 60 km west of the Rhine

river (50◦13’ N, 6◦51’ E) at 475 m a.s.l. The mean annual precipitation is 811 mm with a mean
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1. Introduction

a

c

b

d
Figure 1.4.: Species planted within the experimental plots: (a) Rumex obtusifolius L., (b) Taraxacum

officinale Web., (c) Plantago major L., (d) Trifolium repens L.. Images were captured on August, 15th

in 2006.

annual temperature of 6-9◦C (1934-91). The soil has been characterized as a pseudo-gley.

The experimental field enclosed a row of 54 plots. Each plot area was around 2.7 × 2 m,

hence the experiment was around 110 meters long. The annotated aerial image taken on June,

19th in 2005 in Figure 1.3 shows the experiment.

On 36 of these plots sods of rye grass (Lolium perenne L.) were established. On the remaining

18 plots bare soil background was kept. From the plots with rye grass 18 were established

without gaps, whereas on the other 18 plots mechanically added gaps were introduced showing

the bare soil background.

When talking about weed detection in grassland we cannot talk about RUMOB exclusively,
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1. Introduction

a b c
Figure 1.5.: Planting setup: (a) non-overlapping individuals of one species, (b) overlapping individuals

of one species, (c) mixture plot with all species. Images were captured on August, 15th in 2006.

even if it is one of the most harmful. There are certain other typical broad-leaved herbs in

European grasslands which might be confused with RUMOB even if they are not necessarily

harmful or are actually wanted in grasslands (e.g. Taraxacum officinale Web. and Trifolium

repens L.). Therefore, together with RUMOB, three more herb species, Taraxacum officinale

Web. (TAROF), Plantago major L. (PLAMA) and Trifolium repens L. were grown in the

greenhouse and then transplanted into the experimental plots in May 2005. Figure 1.4 shows

monitored experimental plots with the established herb species, captured on August, 15th in

2006. To enable the detection of non-overlapping plant individuals only, these species were

planted in plots 1 to 8 at distances far enough apart to avoid overlap (Figure 1.5a). In contrast

to the first eight plots, in the plots 9 to 16 the above species were planted close enough to

allow overlap (Figure 1.5b). Each plot was planted with only one species, whereas in plots 17

and 18 a mixture of overlapping individuals of all the above mentioned species was established

(Figure 1.5c). This method of planting the four species in plots 1 to 18 was repeated for the

remaining 36 plots (19 to 54). The setup of the whole experiment is shown in Figure 1.6.

Nitrogen fertilization at a dosage of 80 kg/ha was applied right after the weeds were planted

in and again directly after cutting all plots on July 11th, 2005.

It has to be mentioned here, that for the 18 plots with bare soil background no contribution

to the classification approach was found and hence with these 18 plots remained unused in 2005.

The images of these plots required an different approach for image segmentation than those

plots with grass sod. Therefore, in autumn 2005 Lolium perenne L. was sown into these plots

as well, giving a total of 54 grassland plots. The experiment was repeated in 2006, whereby two
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grassland growths were monitored. The first grassland cut was on May, 4th while the second

cut was conducted on July, 6th, at a cutting height of 7 cm. In each of the two growths, all 54

plots have been fertilized with nitrogen at a dosage of 80 kg/ha directly after cutting.

Figure 1.6.: Setup of the grassland experiment with 54 plots established at the University of Bonn

Experiment Station Rengen. Four typical dicot herbs of European grasslands have been planted into the

plots either individually or mixed.
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1. Introduction

1.6. Image acquisition

The image recording was done in close-range from about 1.60 m above ground by an au-

tonomous vehicle (Figure 1.7), driven on rails about 110 m long parallel to the row of plots.

The vehicle consisted of a chassis and a rotary arm perpendicular to the driving direction.

The 4-wheel chassis was equipped with the batteries for power supply, 4 electronic motors,

light barriers for guiding the vehicle to the plots and an electronic control box that contains

the hardware and software to manage the movement, positioning and control of the vehicle.

The camera was mounted on the rotary arm adjusted nadir looking to the plot’s centerline.

Guided by the electronic light barriers the vehicle stops automatically at the centre of each

plot. At this point the camera was released remotely, and images of every plot were recorded

separately. The captured images covered almost the whole plot. The system needed 20 minutes

for photographing all experimental plots. The images were taken on daytime. To avoid light

reflectance and shadows in the plots induced by direct sunlight, images were taken only under

diffuse illumination conditions. Prior to recording a set of images of all experimental plots a

manual white balance was applied. Even if the illumination condition changed a little within

the 20 minutes of recording, the white balance ensured an almost constant measuring of the

colours in all images and with that a good image quality.

The utilized camera was a Canon Powershot Pro1 (Canon, Inc.), which is an compact digital

still colour (RGB) camera. This camera features an eight-megapixel Charge-Coupled Device

(CCD) image sensor, and a built-in Canon Luxary Lens. The lens realizes a 7× (equivalent to

28-200mm in 35mm format) optical zoom ratio with an aparture speed range of f/2.4-3.5. For

image acquisition the sensitivity was set to ISO International Organization for Standardization

100. Exposure time was calculated automatically by the camera. The focal length was set to

endless. Auto focus was enabled. With the full resolution of 3264 × 2448 pixels and the

camera height above the surface the pixel size was approximately 0.6 × 0.6 mm at the image

center. To avoid loss of quality, the images were stored as uncompressed Canon RAW files om

compact flash card and transformed to Tagged Image File Format (TIFF) thereafter.

The advantage of this system are the almost constant recording geometry conditions and

the automatic image acquisition.
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Figure 1.7.: Technical setup of the image acquisition in the field. The vehicle is power supplied by

12V batteries (1). The electronic control box (2) contains the hardware and software to manage the

movement, positioning and control of the vehicle. Four electronic motors (3) move the vehicle forward

which automatically stops when a positioning stick (4) at each treatment is suspending the electronic

light barrier (5). At each stop, the camera (6) is released through a remote control (7). Electric light

sources (8) allow image recording at night times under controlled illumination conditions.

In 2005, images were recorded on July 19th, 22nd, and 28th, which equals Day Of Year

(DOY) 200, 203, and 209, respectively. Hence, 162 images were collected. The two grassland

growths in 2006 were monitored at 13 dates from May until September. In the first growing

period, images were taken at May 23rd and 29th, June 14th, 20th, and 26th and July 5th

(DOYs 143, 149, 165, 171, 177, 186). The regrowth of the grass plots was covered by images

taken on July 11th, 20th, and 31st, August 15th and 29th, and September 8th and 12th (DOYs

192, 201, 212, 227, 234, 251, 155) in 2006. A total of 702 images were acquired.
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2. Suitability of close-range sensed colour

images and object-oriented image

classification for the detection of Rumex

obtusifolius within mixed grassland

swards

2.1. Introduction

The detection of individual weed plants is unlikely to be successful with far-range-remotely

sensed image data because of inadequate spatial resolution. Therefore, image analysis has

been introduced to close-range photographs to detect weeds in arable crops mainly.

To date little research has been done on vegetation classification in grassland using near-

range imagery. Tamura et al. (2000) described a method to distinguish clover and gramineous

weeds by applying a micro-shape based feature extraction method. Using images of clover,

gramineous weeds and bare ground as training sections, they defined nine micro shape textures

that could be extracted using a bank of non-linear filters of several sizes. They derived linear

discriminant functions for classification, and 98% of the training sections and 88% of the

test sections were classified correctly. Bonesmo et al. (2004) developed an image processing

system to estimate the canopy cover of white clover in a grass-clover mixtures, based on clover

colour and morphological properties. The efficiency of the system was tested in the field. The

regression coefficient between the canopy cover of clover estimated by image processing and

that estimated by manually marking the clover patches was 0.82. However, non of these studies
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2. Object-oriented image classification for detecting Rumex obtusifolius

focussed on weed identification.

This analysis focusses on the testing of ground-based colour images and subsequent image

classification for detecting herbs in mixed experimental grassland plots, focussing one of the

most harmful weed, Rumex obtusifolius L..

2.2. Image classification procedure

2.2.1. Materials and methods

The development of the subsequent image classification procedure was based on the 108 images

taken at three dates in July, 2005. An object oriented image classification was applied to the

images, which is a common application of pattern recognition in machine vision. The steps

required for this are: (1) image acquisition, (2) pre-processing and image segmentation, (3)

feature extraction and (4) classification (Gonzales & Woods, 1992; Duda et al. , 2001). Image

objects, which are contiguous regions of neighbouring pixels that were extracted in the image

segmentation step, were classified rather than single pixels. These objects were classified using

their mathematical pattern, which is a vector of information comprising their geometry, colour

and texture. In contrast, pixel-based image classification uses the spectral information in one

or more spectral bands, and attempts to classify each pixel based only on this information. In

the following paragraphs the performed processing steps are described.

2.2.1.1. Pre-processing and image segmentation

All image processing steps were applied or developed within Mathworks MATLAB ( c© The

MathWorks, Inc.) using the MATLAB Image Processing Toolbox. In a pre-processing step,

the images were converted from 24-bit red, green, blue (RGB) images to 8-bit intensity images

using standard formula, Eq. (2.1), which is the National Television System Committee (NTSC)

of the United States of America standard for luminance,

I = 0.2989 • R + 0.587 • G + 0.114 • B (2.1)

where R, G and B is the pixel intensity in the red, green, and blue channel, respectively,

and I is the intensity of the resulting grey scale pixel. The intensity depends strongly on the
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2. Object-oriented image classification for detecting Rumex obtusifolius

illumination conditions. However, constant measurement conditions (see chapter 1.6) in this

experiment ensured nearly equal I values, thus enabling simultaneous processing of all images

without illumination interference.

The aim of image segmentation is to locate certain objects of interest, which, in this case,

were the leaves of the weeds. The procedure detects contiguous regions in an image by merg-

ing neighbouring pixels using a defined criterion. The texture of the leaves of RUMOB and

accompanying herbs were identified as more homogenous than those of grass. A measure of

homogeneity was used to separate the leaves of the herbs and of RUMOB from the background.

The local homogeneity was calculated according to Cheng and Sun (Cheng & Sun, 2000). First,

the standard deviation image of I was calculated by

Sij =

√
1

nW
∑

IW∈Wd(Pij)
(IW −mij)2 (2.2)

where Sij is the standard deviation at the central pixel Pij, mij is the mean of nW intensities

IW within the window Wd(Pij) of d× d pixel size with d = 5 in this case, nw is the number of

pixels within the 5 × 5 pixel window W. The gradient Gxij (in direction x) as well as Gyij (in

direction y) was calculated as a measure of the change of grey values at pixel Pij by applying

the Sobel-operator Equations (2.3) and (2.4) to the intensity image I.

Gxij =


−1 0 1

−2 0 2

−1 0 2

 •Wd(Pij) (2.3)

Gyij =


1 2 1

0 0 0

−1 2 1

 •Wd(Pij) (2.4)

The gradient magnitude ∇ f is calculated by Equation (2.5) (Gonzales & Woods, 1992).

The gradient is large where the maximum grey level range within the 3 × 3 window Wd(Pij)

is maximum and low where the grey levels are approximately the same.

∇ fij =
√

G2
xij

+ G2
yij

(2.5)
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The local homogeneity Hij is calculated using the maximum normalized gradient and stan-

dard deviation images ∇ fij/∇ fijmax and Sij/Sijmax , respectively.

Hij = 1−
∇ fij

∇ fijmax

•
Sij

Sijmax

(2.6)

By definition, the Hij value ranges from zero to one. Pixels with a local homogeneity close

to one were considered to be within homogeneous regions, and vice versa. A binary image Bij

was derived from the local homogeneous image by applying a threshold to Hij.

Bij =
0 i f Hij < 0.97

1 otherwise
(2.7)

A threshold value of Hij < 0.97 was identified empirically and performed best in terms

of detecting homogeneous regions. As a final image processing step, morphological opening

(Gonzales & Woods, 1992) was performed on the binary image Bij using Equation (2.8) with

a diamond structure element (S) of radius three pixels. The opening is an erosion E(Bij,S) of

image Bij by S, followed by a dilation D(E(Bij,S),S) of the result by S. The resulting binary

image now consisted of several white objects (e.g. weeds) with grey level 1 and a background

object with grey level 0.

O(Bij,S) = D(E(Bij,S),S) (2.8)

As the leaf size of RUMOB and the other weeds differed markedly from the background, an

area threshold helped to discriminate them from smaller objects in the binary image, such as

grass and clover. An area threshold of 5000 pixels which represents about 17 cm2 on the ground

was applied. The leaves of RUMOB covered larger areas than this threshold for all recording

dates. The constancy of scale and geometry for all images allowed the area of the objects to be

calculated based on the number of pixels within each object. Hence, a transformation of the

image coordinate system to a metric one was unnecessary. An example of image segmentation is

shown in Figure 2.1. The preceding image processing steps enabled the segmentation of leaves

from the grass background. These leaves were represented as clusters (contiguous regions) of

foreground pixels which are defined further on as objects.
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2. Object-oriented image classification for detecting Rumex obtusifolius

Figure 2.1.: Image segmentation procedure and example of classification result: (a) the original red,

green, blue (RGB) image, (b) the intensity image calculated from (a), (c) the gradient image derived from

(b), (d) the standard deviation image derived from (b), (e) the local homogeneity image calculated from

(c) and (d), (f) the binary image after applying the grey-level threshold to the local homogeneous image

and eliminating objects smaller than 5000 pixels, (g) the final binary image derived by morphological

opening of (f) and eliminating objects smaller 5000 pixels, (h) the objects contours and (i) classification

result.
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2.2.1.2. Feature extraction

Feature extraction aims to describe the properties of objects mathematically. Specific features

suitable for separating RUMOB from the remaining object classes needed to be identified.

Visual observations indicated that the leaf shape of RUMOB differed from those of the other

herbs. Consequently, the aim was to identify geometrical features describing these shapes (Du

& Sun, 2004). The simplest features that could be extracted were Area and Perimeter. The

Shape Factor gives information about the compactness of the shape of the object; the most

compact shape is a circle (Shape Factor = 1). The Shape Factor decreases when the perimeter

increases and the area remains constant, for example the leaves of Taraxacum officinale have

a jagged outline. Another parameter describing compactness is Circularity, which is 4 for a

circle and which increases with increasing perimeter for a nearly constant area.

ShapeFactor =
4Π ∗ Area
Perimeter2 (2.9)

Circularity =
Perimeter2

Area
(2.10)

The Eccentricity was calculated from the ratio of the semi-minor and semi-major axes of the

surrounding ellipse.

Eccentricity =

√
1− SemiMinor2

SemiMajor2 (2.11)

The Eccentricity ranges from zero for a circle to almost one for a thin ellipse. In this

approach, Area and Perimeter are not invariant in relation to scale, but we could disregard

this as all images were recorded at the same scale. The geometric representation described

here provided a feature matrix containing as many feature vectors as objects in the images,

including the vector elements Area, Perimeter, Shape Factor, Circularity and Eccentricity.

Objects derived from image segmentation were not always leaves, but also homogeneous soil

objects, which could not be described and discriminated from leaves by their shape alone.

Therefore, colour features of the objects were calculated as well. The mean values of intensity

(µI), as well as the mean grey values of red (µR) and green (µG) channels in the original

RGB image were derived for each object using Equations (2.12)-(2.14). According to Soille
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(Soille, 2000) the blue channel contributes little to discriminate soil from vegetation and so

was disregarded. Veins on the upper side of RUMOB leaves and the herbs give rise to different

degrees of surface roughness. Therefore, the mean value of the gradient (µ∇ f ) computed by

Equation (2.15) within an object was included in the feature extraction as a measure of the

surface roughness.

µI =
1
n

n

∑
i=1

Ii (2.12)

µG =
1
n

n

∑
i=1

Gi (2.13)

µR =
1
n

n

∑
i=1

Ri (2.14)

µ∇ fi =
1
n

n

∑
i=1

∇ fi (2.15)

where n is the number of pixels within an object, and Ii, Gi, Ri, µ∇ fi are the values for

intensity, green, red and gradient in an object at the position i, respectively. The feature

matrix was extended by including the means of I, G, R and ∇ f resulting in a total of nine

vector elements. Six feature matrices were calculated from six available sets of data obtained

for three recording dates.

2.2.1.3. Classification

A Maximum Likelihood Estimation (MLE) (Stork et al. , 2004) was used to classify the objects

into a defined number of classes i, which was either i=5 (RUMOB, TAROF, PLAMA, soil and

residue) or i=2 (RUMOB and residue). The MLE is a parametric classification method. Each

class ωi is represented by a parameter vector θi. These parameters are calculated using a set

of sample objects with known group membership called the training dataset. The calculation

of these parameters is the training of the classifier.

There were marked morphological changes in the plant organs over time. Therefore, the

aim was to determine whether the time span between establishing the training data set and

obtaining the data to be classified had any influence on the result. The classifier was trained
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using subsets of the feature matrices obtained from data recorded on July 19th and July 22nd,

and the corresponding classes for i=5 and i=2 were assigned manually. The first training data

set had 209 objects (45 RUMOB, 29 TAROF, 50 PLAMA, 22 soil, 63 residue for i=5 and 45

RUMOB plus 164 residue for i=2). Then a new training data set was created using the feature

matrix of July, 22nd including 252 objects (55 RUMOB, 37 TAROF, 43 PLAMA, 39 soil, 78

residue). With these two training datasets two classifiers were created. The remaining objects,

which were not included in the training data sets, were then classified separately using both

classifiers. The probability densities in MLE are assumed to depend on θi, so that p(X|ωi,θi)

is the probability of X belonging to class i. For any unknown object with feature vector X,

MLE estimated the class that maximized the probability (Duda et al. , 2001). To determine

the error, the group membership of each object was labelled manually and compared with the

classification results.

2.2.2. Results and discussion

The results of the classification based on the first training data set are given in Table 2.1. The

overall classification accuracy of correctly classified objects (RUMOB, TAROF, PLAMA , soil

and residue) ranged from about 65% to 81% for i=5, whereas for RUMOB vs. residue it was

between 71% and 87%, corresponding to between 66 and 121 objects. Detection appeared to

be decreasing with time, indicating a change in phenology and morphology creating a change

in geometric features.

Finally, the six feature matrices for the six data sets were merged to one feature matrix con-

taining 3861 objects, and then the data were classified again. Overall classification accuracies

and RUMOB detection rates of 71% and 78% were determined, respectively. These results

are confirmed by the confusion matrix of the classification given in Table 2.2. The largest

misclassification rates were for RUMOB and PLAMA, as 125 RUMOB objects (16%) were as-

signed to PLAMA and in turn 113 PLAMA objects (17%) were assigned to RUMOB. Further

misclassifications occurred between the classes residue and soil, with 168 out of 265 soil objects

being classified incorrectly as residue. The misclassification rate between TAROF and PLAMA

was about 13% and 22%, respectively. Reducing the number of classes to i=2 increased the

detection rate considerably (Table 2.1). The overall classification accuracy was on average
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Table 2.1.: Classification results for the classifiers trained with 207 objects from July 19th (RUMOB

(R.o.): 45; TAROF: 29, PLAMA: 50; soil: 22; residue: 63)

Data set Total number Classification into

of i=5 groups a i=2 groups b

Detection rate Total nr. Detection rate Total nr.

(%) of R.o. (%) of R.o.

Objects R.o. Total R.o. Total R.o.

07/19-1 372 82 80.7 80.5 66 90.6 91.5 75

07/19-2 635 128 76.4 86.7 111 90.9 92.2 118

07/22-1 694 142 71.8 75.3 107 90.6 85.9 122

07/22-2 780 146 70.5 82.9 121 87.4 87.7 128

07/28-1 671 157 65.3 73.9 116 88.1 74.5 117

07/28-2 709 127 66.4 70.9 90 89.7 77.9 99

All 3861 782 71.0 78.1 611 89.4 84.3 659

aRumex obtusifolius L., Taraxacum officinale Web., Plantago major L., soil, residue
bRumex obtusifolius L. and residue

90%, whereas the rate of RUMOB detected correctly varied from 75% to 92%, again indicating

a time dependent decrease. The results of the same classification procedure obtained from

the second and independent training set are given in Table 2.3. The total classification rate

for the five classes of 67% to 82% was similar to those obtained before, whereas for RUMOB

the detection rate increased, ranging from 77% to 92%. For the classification into two groups

(RUMOB vs. residue) the overall classification accuracy was similar to that for the July 19th

training data set, whereas the RUMOB detection rate increased to 81% and 95%, respectively.

As before, all feature matrices were merged (3818 objects) and classified. The corresponding

confusion matrix is given in Table 2.2. There was still considerable misclassification for RU-

MOB and PLAMA (9% and 24%, respectively). Incorrect results for PLAMA and TAROF

were 16% and 21%, respectively, and for soil and residue it was 6% and 24%, respectively.

A comparison of Table 2.1 and Table 2.3 shows that the detection rate of RUMOB improved

with the classifier trained with data from July 22nd as compared to the July 19th training

data set. When the classifier was trained with the data derived on July 19th (Table 2.1),
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Table 2.2.: Confusion matrix indicating misclassifications for the classification of all 3861 objects

according to Table 2.1

Predicted class

Residue RUMOB TAROF PLAMA Soil Sum

Original Total Residue 1238 39 122 109 39 1547

class RUMOB 10 611 36 125 0 782

TAROF 88 19 357 128 1 593

PLAMA 25 113 86 450 0 674

Soil 168 8 1 2 86 265

% Residue 80.0 2.5 7.9 7.0 2.5 100

RUMOB 1.3 78.1 4.6 16.0 0.0 100

TAROF 14.8 3.2 60.2 21.6 0.2 100

PLAMA 3.7 16.8 12.8 66.8 0.0 100

Soil 63.4 3.0 0.4 0.8 32.5 100

the accuracy of the classification of the July 28th data was drastically reduced (75% and 78%

RUMOB detection rates). In contrast, with the July 22nd training data set, the July 28th

data showed much greater rates of detection for RUMOB (81% and 85%). This might have

been caused by changes in morphology of the plant leaves during nine days of growth and

phenological development which could be even visually observed. The classification results for

the detection of RUMOB in mixed grassland swards grown together with similar broad leaved

weeds were surprisingly good.

In general, it can be argued that if we fail to identify individual RUMOB plants during

classification, it could have serious implications because of the large number of seedlings per

plant and its large capacity for germination. Consequently, high detection rates need to be

obtained. In this experimental approach, individual plants of RUMOB consisted of more than

one isolated object (leaf) in the images. For example, with data set 2 for July 22nd, 121

objects related to RUMOB were detected correctly out of about 60 RUMOB plants in the

field, indicating about two objects per plant on average. Consequently, the probability of plant

identification must have been greater than the object identification rate of the same individual.
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Table 2.3.: Classification results for the classifiers trained with 252 objects from July 22nd (RUMOB

(R.o.): 55; TAROF: 37, PLAMA: 43; soil: 39; residue: 78)

Data set Total number Classification into

of i=5 groups a i=2 groups b

Detection rate Total nr. Detection rate Total nr.

(%) of R.o. (%) of R.o.

Objects R.o. Total R.o. Total R.o.

07/19-1 581 127 81.8 92.1 117 86.4 91.3 116

07/19-2 635 128 70.6 89.8 115 87.9 95.3 122

07/22-1 442 87 73.3 85.1 74 88.5 90.8 79

07/22-2 780 146 67.2 84.3 123 85.8 92.5 135

07/28-1 671 157 70.2 77.1 121 91.2 80.9 127

07/28-2 709 127 67.3 79.5 101 87.3 85.0 108

All 3818 727 70.6 84.0 611 88.0 89.0 647

aRumex obtusifolius L., Taraxacum officinale Web., Plantago major L., soil, residue
bRumex obtusifolius L. and residue

Three main reasons for misclassification were identified. Firstly, there were many errors in

the residue class, with residue objects being assigned incorrectly. Such errors could arise from

the optical properties of the lens; objects cannot be projected to the image plane without radial

symmetric distortions. This effect increases with the distance from the image centre. Hence,

the geometry of peripheral weed leaves has been distorted and in addition, peripheral residue

objects have been segmented incorrectly. Consequently, derived residue objects varied markedly

in colour, texture and shape features. Some of the object features were similar to those of

the herb and soil features in the respective training data set, hence causing misclassification.

Secondly, greater misclassification of RUMOB occurred at later growth stages, indicating that

differences in colour, texture and shape of RUMOB leaves increased with plant age. Thirdly,

RUMOB and PLAMA objects were assigned incorrectly to their respective classes because

their features were unexpectedly similar. Clearly, the identification features of the two plant

species used so far are not sufficiently typical for either class.
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Table 2.4.: Confusion matrix indicating misclassifications for the classification of all 3818 objects

according to Table 2.3

Predicted class

Residue RUMOB TAROF PLAMA Soil Sum

Original Total Residue 1135 10 111 186 90 1532

class RUMOB 5 651 44 72 0 772

TAROF 86 14 350 125 10 585

PLAMA 12 161 106 399 3 681

Soil 59 1 2 2 184 248

% Residue 74.1 0.7 7.2 12.1 5.9 100

RUMOB 0.6 84.3 5.7 9.3 0.0 100

TAROF 14.7 2.4 59.8 21.4 1.7 100

PLAMA 1.8 23.6 15.6 58.6 0.4 100

Soil 23.8 0.4 0.8 0.8 74.2 100

2.3. Impact of feature combinations

2.3.1. Materials and methods

It was tested how single features of geometry, colour and texture influenced the classification

results. Therefore, seven new training data sets were derived from the data recorded on July

22nd each comprising the following features and combination of features (see also chapter

2.2.1.2).

1. means of ∇ f

2. means of I, G and R

3. Eccentricity, Circularity and Shape Factor

4. Area, Perimeter, Eccentricity, Circularity and Shape Factor

5. means of ∇ f and means of I, G and R

6. means of ∇ f , means of I, G, R, Eccentricity, Circularity and Shape Factor
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7. all features

Based on these training data sets, seven separate classifications were computed with the six

feature matrices recorded on the three dates of image acquisition, plus one feature matrix that

originated from merging the six entire feature matrices. The detection rates were stored in 7 ×

7 matrices according to the seven training data sets and the seven classified feature matrices. As

a result, four such matrices were derived, two matrices each for overall classification accuracies

or RUMOB detection rates both for the classification into either i=5 or i=2 classes.

A rank analysis was done on these four matrices to identify the training data set that

performed best. As there were seven classifiers to be compared, the ranks ranged from one

to seven. The classification with the highest detection rate was ranked one. The mean rank

for all seven classifications was calculated for each of the four matrices, then the means of the

ranks were summed. The classifier with the smallest sum of means was considered to be the

best.

2.3.2. Results

The rank analysis of the experimental data was used to identify those features of the object and

their combinations that provided the best classification results. The average ranks for i=5 and

i=2 of the total and RUMOB specific detection rates are given in Table 2.5. The final column

indicates the sum of these ranks. The lowest ranks indicate the best classification results for all

classifications on average. Separately applied geometric, colour or textural features resulted in

the highest ranks and therefore the poorest classifications. For example, the classification into

i=5 groups using only geometry features (training data sets 2-4) resulted in overall classification

accuracies ranging from 40% to 60%. When using texture features exclusively, the detection

rate was between 60% and 70%. Merging gradient and colour features (training data set

5) increased the overall classification accuracy (65%- 82%). This training dataset led to the

third best classification results in this analysis with a sum of average ranks of 10.4. The best

results were obtained by combining all features (training dataset 7). In general, the overall

classification accuracies of the three best ranked training data sets varied less than about 5%,

but in particular cases the differences were between 10% and 20%.
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Table 2.5.: The average ranks of the detection rates for the classifications of 7 data sets based on

training data sets with different features

Training data set (feature combination) Average ranks of detection Sum of

rates of ranks

i=5 a i=2 b

classification classification

Total RUMOB Total RUMOB

1 (µ∇ f ) 4.0 3.6 2.3 3.3 13.2

2 (µI , µR, µG) 5.7 4.9 6.4 5.3 22.3

3 (Eccentricity, Circularity, ShapeFactor) 5.3 6.4 6.0 6.6 24.3

4 (Eccentricity, Circularity, ShapeFactor, 7.0 5.7 4.9 5.6 23.2

Area, Perimeter)

5 (µ∇ f , µI , µR, µG) 1.6 3.6 1.6 3.6 10.4

6 (µ∇ f , µI , µR, µG, 2.7 1.9 3.0 2.1 9.7

Eccentricity, Circularity, ShapeFactor)

7 (All features) 1.6 1.4 3.4 1.7 8.1

aRumex obtusifolius L., Taraxacum officinale Web., Plantago major L., soil, residue
bRumex obtusifolius L. and residue
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3. Improved image classification algorithm

for automatic Rumex obtusifolius

detection using colour and texture

object features

3.1. Introduction

In chapter 2 an approach for the automatic detection of RUMOB in grassland swards versus

PLAMA and TAROF by digital image processing is described. Colour images were used

taken at close-range from experimental plots planted with different weed species at different

stages of growth. An object-oriented image classification was done on these images using

local homogeneity (Cheng & Sun, 2000) and image morphology for image segmentation. The

remaining objects were classified using a Maximum Likelihood Estimation into five groups: (i)

RUMOB, (ii) TAROF, (iii) PLAMA, (iv) soil (gaps), and (v) a residue class. Nine features

were calculated to describe the shape, colour and texture of each object.

High detection rates of RUMOB were achieved. However, the overall classification accuracy

was rather low, because of high misclassification in the residue class,a non-acceptable high

misclassification of PLAMA with RUMOB and a decrease of classification accuracy at later

growth stages. The study also exhibited a strong contribution of colour and texture features to

the discrimination between weed species, even if highest accuracy was achieved when combining

them with geometrical object features.

With these results and conclusions the classification procedure was modified to answer the

following questions:
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3. Improved image classification algorithm

(1) Is it possible to increase the accuracy of 71% to 92% for RUMOB classification by

calculating more textural and colour features?;

(2) Can the large rates of misclassification of PLAMA be reduced in this context?

3.2. Materials and methods

3.2.1. Modified image processing

This analysis was conducted on the same 108 images as in the previous investigation. All images

were segmented using the same procedure described above. First, the 24-bit red-green-blue

(RGB) images were transformed to 8-bit intensity images (I). The standard deviation image,

S, and the gradient image, ∇ f , were both calculated based on I. The local homogeneity image

H (Cheng & Sun, 2000) was calculated as H = 1 − ∇ fij/∇ fijmax • Sij/Sijmax , where ij/Sijmax

and ∇ fij/∇ fijmax are the maximum normalized standard deviation image and gradient image,

respectively. By applying an empirical threshold, TS, of 0.97 to the local homogeneity image

leaf regions were separated successfully. The remaining regions in the resulting binary image

were not only weed leaves but also blades of grass, which pixels were connected to the weed

pixels in the images and formed contiguous regions. Therefore, morphological opening was

applied to the binary image with a diamond Structure Element (SE) with a radius of three

pixels. Finally, all image regions smaller than 5000 pixels (equivalent to 17 cm2 in nature) were

eliminated. The remaining contiguous image regions, further called objects, were RUMOB,

PLAMA, TAROF, soil, or a residue class.

3.2.2. Feature extraction and feature evaluation

The aim of the analysis is to classify the objects derived by image segmentation into a defined

number of classes according to their specific features. In the previous investigation geometrical

features (Area, Perimeter, Eccentricity, Roundness, ShapeFactor), colour features (means of

the intensity, the red and the green object pixels) and one texture feature (mean of the gradi-

ent object pixels) were calculated for each object. The best classification results were achieved

when all features were included in classification. The texture feature contributed most to the

classification result and when used in combination with the colour features resulted in classi-
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fication rates close to those obtained using all nine features. In this investigation additional

colour and texture features were included resulting in 17 object features (Table 3.1).

Table 3.1.: The calculated object features. µ is the mean and σ is the standard deviation derived from

the object pixels in the red image channel (R), the green image channel (G), the intensity image (I),

the standard deviation image (S), the gradient image (∇ f ) and the local homogeneity image (H)

Total number

Geometry Colour Texture

V1. Area V6. µR V12. µS

V2. Perimenter V7. µG V13. µ∇ f

V3. Eccentricity V8. µI V14. µH

V4. Roundness V9. σR V15. σS

V5. ShapeFactor V10. σG V16. σ∇ f

V11. σI V17. σH

To determine which features contribute most to the classification, a stepwise discriminant

analysis was performed using Statistical Product and Service Solutions (SPSS) 12.0 software

( c© SPSS Inc.) on the 17 object features for the 694 objects derived from the first 18 images

of July 22nd. The group membership for each of the 694 objects was labelled manually and

Wilks’s lambda was used to test the significance of the discriminant functions. Wilks’s lambda

(Λ) is a test statistic used in Multivariate ANalysis Of VAriance (MANOVA) to test whether

there are differences between the means of more than two identified groups of subjects on a

combination of dependent variables. In stepwise discriminant function analysis, a model of

discrimination is built step-by-step. Specifically, at each step all variables are reviewed and

evaluated to determine which one will contribute most to the discrimination between groups,

which is the variable that minimizes the overall Wilks’ Lambda. That variable will then be

included in the model, and the process starts again.

3.2.3. Classification

A Maximum Likelihood classification was used to group the image objects into the five classes:

(i) RUMOB, (ii) TAROF, (iii) PLAMA, (iv) soil, and (v) residue. The MATLAB ( c© The
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Table 3.2.: The variables (features) remaining after stepwise discriminant analysis and Wilks’s Lambda

Step Entered Variables Wilks’Lambda

1 V14 0.209

2 V7 0.150

3 V8 0.092

4 V17 0.079

5 V15 0.070

6 V12 0.046

7 V16 0.040

8 V13 0.038

9 V11 0.036

10 V6 0.034

11 V1 0.032

12 V9 0.031

13 V10 0.029

MathWorks, Inc.) Classification ToolBox (Stork et al. , 2004) was used for this purpose. A

classifier was created with those features (variables) that were not removed by discriminant

analysis. It was trained with the feature vectors of the 694 objects segmented in the first 18

images from July 22nd. The remaining objects not included in training (1261 for July 19th,

780 for July 22nd, 1380 for July 28th) were then classified. Group membership of each object

was labelled manually and compared to the classification results. Total classification accuracy,

RUMOB detection rates and percentage of objects misclassified as RUMOB were calculated.

The classification results were stored in confusion matrices to assess the error. The results

were compared to those of the classifier described in chapter 2.

3.3. Results and discussion

3.3.1. Feature evaluation

In the images of the 19th, 22nd, and 28th of July, 1261, 1474, and 1380 objects were seg-

mented, respectively. The 694 objects from the first 18 images of July 22nd were used in
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Table 3.3.: Confusion matrix indicating classification accuracies (%) and misclassifications (%) for

the classifications of image objects from July, 19th , 22nd and 28th into the defined classes of Rumex

obtusifolius (RUMOB), Taraxacum officinale (TAROF), Plantago major (PLAMA), soil and residue

Data set % Predicted class

Residue RUMOB TAROF PLAMA Soil

July, 19th 82.7 Original Residue 86.0 0.8 8.7 0.4 4.1

class RUMOB 0.0 91.4 3.9 4.7 0.0

TAROF 11.9 4.0 74.4 8.0 1.7

PLAMA 6.8 6.8 16.2 70.3 0.0

Soil 10.6 0.0 0.0 0.0 89.4

July, 22nd 80.4 Original Residue 78.2 0.9 11.8 3.3 5.8

class RUMOB 0.0 92.5 6.2 1.4 0.0

TAROF 15.2 2.0 72.7 9.1 1.0

PLAMA 2.9 1.4 17.4 76.8 1.4

Soil 16.4 0.0 0.0 0.0 83.6

July, 28th 75.9 Original Residue 81.5 1.2 9.6 2.0 5.7

class RUMOB 1.8 85.2 9.2 3.5 0.4

TAROF 20.1 6.7 61.9 11.3 0.0

PLAMA 7.5 3.4 20.7 68.0 0.4

Soil 24.4 0.0 0.0 0.0 75.6

stepwise discriminant analysis, and 13 of the 17 features (variables) were considered to con-

tribute significantly to discrimination (Table 3.2). The mean local homogeneity of the objects

(V14) had the most influence on discrimination. The means of green (V7) and intensity object

pixels (V8) were rated second and third, followed by the remaining texture and colour features.

The four features excluded were features V2-V5, which are the geometric measures. Feature

V1, area, led to calculation errors when training the classifiers and so this feature was also

excluded. For further analysis only the 12 features related to colour and texture were used.
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Table 3.4.: The improved classification results for the new classification algorithm (C2) as compared

to the algorithm (C1) from Experiment 1

Classifier Data Total RUMOB TAROF to PLAMA to SOIL to Residue to

detection detection RUMOB RUMOB RUMOB RUMOB

rate [%] rate [%] error [%] error [%] error [%] error [%]

C1 07/19 75.4 84.7 2.8 15.8 0.0 0.0

07/22 70.0 78.8 2.0 18.8 0.0 0.0

07/28 69.7 71.5 1.7 9.0 0.0 0.2

C2 07/19 82.7 91.4 4.0 6.8 0.0 0.8

07/22 80.4 92.5 2.0 1.4 0.0 0.9

07/28 75.9 85.2 6.7 3.4 0.0 1.2

3.3.2. Classification results

The overall classification accuracy for all the images of July 19th was 82.7%, for July 22nd,

80.4% and for July 28th, 75.9%. The confusion matrices in Table 3.3 show the trends of

misclassification for each of the three sets of data that were classified. Most misclassifications

of RUMOB objects were again with PLAMA and TAROF. However, compared to the results

of chapter 2, the detection rates in the analysis increased dramatically (Table 3.4). With the

classifier of chapter 2 the overall classification accuracy ranged from 69.7% to 75.4%, whereas

with the new classifier accuracies of between 75.9% and 82.7% were achieved. Likewise, the

RUMOB classification accuracy increased to between 85.2% and 92.5%, whereas before it

ranged from 71.5% to 84.7%. Moreover, the misclassification between RUMOB and PLAMA

was reduced: only 1.4% to 4.7% of RUMOB objects were classified wrongly as PLAMA, and

1.4% - 6.8% PLAMA objects were classified wrongly as RUMOB (Table 3.3). Furthermore,

there was misclassification with RUMOB vs. TAROF with 2.0% to 6.7% of TAROF objects

being classified wrongly as RUMOB.

It is hardly possible to value these results in the context to the so far published investigations

on weed species discrimination in arable crops for the reasons mentioned before. However, even

there the reported classification rates vary from moderate to excellent. For example Petry and

Kühbauch (Petry & Kühbauch, 1989) discriminated between six weed species seedlings using
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shape parameters with an average accuracy of 82.3%. Meyer et al. (Meyer et al. , 1998)

discriminated two species of grasses from two broadleaf weed species by Colour Co-occurrence

Method (CCM) with classification accuracies of 93% and 85%, respectively. Classification

accuracies of the individual species only ranged from 30% to 77%. Burks et al. (Burks et al. ,

2000) also used CCM and classified between five weed species and soil with an accuracy of 93%.

In our investigation, overall accuracy of discriminating three grassland weed species, soil, and

residue did not exceed 83%. Still taking into account that our main focus was on detecting

RUMOB the rate was up to very high 93% as related to individual leaf objects. Since the

average RUMOB plant may consist of more than one leaf (see chapter 2.2.2 the rate of plant

identification must have been greater than the object identification rate.
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on the classification accuracy

4.1. Introduction

One major constraint in most published investigations on image classification algorithms for

weed discrimination is the lack of information about processing time. Besides the high reso-

lution required for discriminating weed species individuals, ground-based sensing theoretically

offers the possibility to be implemented in on-line solutions for site-specific weed management.

Those systems, however, are only viable when the processing time of images is rather fast.

Therefore, besides the focus on highest classification accuracies, studies should also concen-

trate on classification performance in terms of processing time. So far, there are only few

studies reporting about real-time solutions. E.g. Marchant et al. (1998) developed an image

processing system for real-time segmentation of plant and weeds in arable crops. With that,

weed species discrimination is not possible. Gerhards and Oebel (2006) recently reported about

practical experiences with real-time image analysis and weed spraying. The image processing,

however, was performed off-line and hence the system so far requires at least three steps, image

collection, image processing and herbicide application.

The time needed for classifying images is mainly defined by the size of the images. Especially

in the image segmentation, where filters or morphological operations are often applied, most

time is used. The only solution for speeding up the classification is to decrease the size of the

images. This requires the knowledge about the influence of the image resolution on the classi-

fication accuracies. In this experiment the images used for algorithm development have been

decreased in six steps, giving pixel sizes ranging from 0.6 up to 3.0 mm. Typical resolutions
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available with commercial industrial cameras have been chosen. The smallest resolution avail-

able with most camera distributors is 480 × 640. This resolution has therefore been chosen

to be the smallest in this investigation. The image segmentation was adjusted to the lower

resolutions. For each image resolution, classifiers were created by training with test samples,

as in the studies before. Classification accuracies and processing time was monitored for each

of the image classifications.

4.2. Materials and methods

The pixels of the same 108 images as in the previous studies were aggregated progressively

to give six different resolutions (Table 4.1). The MATLAB imresize function with nearest-

neighbour interpolation was used to resize the images. The resolutions of the images ranged

from 2448 × 3246 pixels to 480 × 640 pixels. The resulting images were segmented using a

modified version of the procedure described above. As a result of the change of scale in the

upscaled images, the area threshold and size of structure element for morphological opening

were adjusted to the image resolution (Table 4.1). In addition, the grey-level threshold applied

to the local homogeneity image for generating binary images was calculated dynamically for

each image as TS = µH, which is the mean of the local homogeneity over the whole image.

This TS is not static as in chapter 2.2.1.1 and is adjusted to the gradient distribution of every

individual image automatically.

Table 4.1.: The image resolutions and changing parameters in image segmentation

Image Pixel size Area threshold Size of structure

resolution [mm] [pixels] element [pixels]

2448 × 3264 0.6 5000 8

1704 × 2272 0.7 2450 7

1200 × 1600 1.2 1220 6

1024 × 1280 1.5 610 5

768 × 1024 1.9 480 4

480 × 640 3.0 190 3
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Figure 4.1.: Confidence circle CC: only the red objects lying completely within the black circle are

included in the classification

With the previous experiments it could be shown that image distortion led to over-segmentation

at the image borders and to misclassification. Therefore, in this chapter a confidence circle,

(CC) was defined with a diameter of 97% of the image x-dimension (Eq. (4.1)) and with its

origin at the image centre. Only those image objects that were completely contained by the

confidence circle were included in further analyses (Figure 4.1).

CC : (x − xdim

2
)2 + (y− ydim

2
)2 = (

0.92 • xdim

2
)2 (4.1)

As in chapter 3, the 12 features retained by the discriminant analysis were calculated for

those confident image objects. Maximum Likelihood classification was then applied to these

data. Four classes were defined: (i) RUMOB, (ii) PLAMA, (iii) TAROF + residue and (iv)

soil. Because of the small number of residue objects resulting from segmentation at the three

higher image resolutions (see Fig. 4.2) it was not sensible to establish a standalone class and
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so they were combined with the TAROF class. Both, TAROF and residue classes are tolerable

entities in grassland. The objects for the six image resolutions were classified separately. Three

training data sets (T1-T3; all image objects from the first 18 images of July 19th, July 22nd and

July 28th, respectively) were derived for each of these six data sets. The remaining objects not

included in the training data set were then classified. We had three different training datasets

for each of the six image resolutions and three datasets to be classified. Hence, in total we

performed 54 independent classifications.

The result of each of these classifications was represented by a single value, the quality

index (QI). This single measure enables all of the classification results to be compared rather

than using separate measures such as classification accuracies, detection rates for each species

(group) and the respective misclassifications to RUMOB. This index was designed specifically

for the evaluation of this investigation and might not be suitably applied to other studies. It

provides a measure for the quality of a RUMOB distribution map, which can be used to guide

a herbicide sprayer. The RUMOB detection rate should be as large as possible to avoid missing

such plants when spraying. On the other hand, the rate of objects classified wrongly as Rumex

obtusifolius L. should be as small as possible, because they appear as RUMOB in the map and

then would be sprayed wrongly in practice. The quality index QI (Eq. (4.2)) was derived from

the RUMOB classification accuracy (R) (Eq. (4.3)) and the weighted misclassifications (Ew)

of other objects to RUMOB.

QI = 1− R + Ew (4.2)

R =
CRUMOB

NRUMOB
(4.3)

where CRUMOB is the number of RUMOB objects classified correctly and NRUMOB is the total

number of RUMOB objects. The classification accuracy, R, was calculated as an independent

summand in Eq. (4.3). It is not weighted by the total number of objects because every RUMOB

object has to be detected independently from the total number of objects to be classified. The

value of R ranges from 0 to 1; the maximum is where all RUMOB objects have been classified

correctly. The error (E) of objects classified wrongly as RUMOB for the i=3 non-RUMOB

groups xi [i ∈(PLAMA;TAROF/Residue;Soil)] is calculated with Eq. (4.4).
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E =
3

∑
i=1

Exi

Nxi
(4.4)

Exi and Nxi are the number of objects wrongly classified as RUMOB and the total number of

objects within the groups xi, respectively. This error is overestimated if the number of objects

in the classes, xi, is small compared to the number of RUMOB objects. Therefore, each of

the misclassification rates, Exi, was weighted by the total number of objects to be classified

(NTOTAL) (Eq. (4.5)).

Ew =
3

∑
i=1

Exi

Nxi
• Nxi

NTOTAL
=

3

∑
i=1

Exi

NTOTAL
(4.5)

The quality index, QI, ranges from zero to two; it decreases towards to zero for all non-

RUMOB objects misclassified as RUMOB and all RUMOB objects that are misclassified.

The value would be close to one if all non-RUMOB objects are classified as RUMOB and all

RUMOB objects are classified correctly. Values close to two indicate low misclassification and

high RUMOB classification rates.

The QI was calculated for each of the above-mentioned classifications and values were stored

into a 6 × 9 matrix. These values were summed up for each image resolution. The largest

summed values indicated the image resolution most suitable for RUMOB detection.

The time taken for the segmentation and feature extraction of the 36 images from July 22nd

was documented for each of the six image resolutions. The number of objects per image did

not exceed 50, therefore this number was chosen to test the classification performance. The

classification of 50 randomly selected objects was performed 100 times and the elapsed time was

documented. The mean of the elapsed time was considered to be the maximum for processing

the classification of image objects. The time needed for image acquisition was not analysed

because the images did not come directly from the camera but were stored to compact flash

card before transfer to the computer. The analysis was done with MATLAB desktop. The

operating system was Windows XP/2002 Professional. The processor was a Intel Pentium 4

with 1.60 GHz CPU and a working memory of 1024 MB DDR-SDRAM.
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Figure 4.2.: Number of segmented objects at different image resolutions

4.3. Results and discussion

The change of image resolution resulted in a change in the number of segmented objects for

each of the resolutions. Figure 4.2 shows that the number of segmented weeds is comparable

to some extent for all six resolutions. There was a small increase in the number of segmented

objects for the soil class as the image resolution decreases from a maximum of 1024 × 1280

pixels to the lower resolutions. There was more than a 10-fold increase in the number of

residual objects at the lowest image resolution compared with the highest one. This increase

was caused by over segmentation of the low-resolution images (Figure 4.3). In other words,

objects were derived that did not actually represent homogeneous image regions, for example

as weed leaves or soil. Obviously, the chosen resampling method for generating the different

resolutions led to image artefacts, which were the regions segmented wrongly.

For each of the six image resolutions (Table 4.1) three training data sets and hence three

classifiers were established with the objects from the first 18 images of July 19th, 22nd and

28th. The image objects not included in training of all data sets were then classified. The

classification and error rates for the six image resolutions are given in Table 4.2. Classification

accuracy ranged from 65.2% to 86.2%. The lowest rates were for image resolutions of 1024 ×

1280 pixels and 768 × 1024 pixels (65.2% - 76.1% and 67.1% - 78.2%, respectively). For the

other resolutions classification accuracies of up to 86% were achieved. Comparing these results
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Figure 4.3.: The increase in over-segmentation with reduced image resolution: (a) segmented objects

at a resolution of 2448 × 3264 pixels and (b) segmented objects at a resolution of 480 × 640 pixels

to those in Figure 4.4 for all classifications, it is evident that the lower rates of classification

and RUMOB detection were for classifying data from July 28th or when training the classifier

using the July 28th data. The plants showed advanced stages of growth by this date and

there was an increase in the overlap between weed leaves and grasses. Table 4.2 supports these

observations with the classification rates errors for RUMOB. The classification accuracy for

RUMOB is up to 94.7% (Table 4.2). The smallest percentage accuracies are for resolutions

1024 × 1280 pixels and 768 × 1024 pixels (63.0% and 57.1%, respectively). These smallest

detection rates are for the classification of July 28th data using classifiers trained with data

from July 19th or 22nd (Figure 4.4). In general, the errors for PLAMA and TAROF/Res. are

<10%. Errors >10% are for the July 28th data. There was generally no misclassification of

soil. When applying a classificator of one resolution, e.g. 2448 × 3264, to images with differing

resolution the classification accuracy was worse. Actually, the selected object features tend to

be scale independent, since they use the local object histograms only. However, training data

sets derived for one resolution apparently do not represent objects at other image resolutions

sufficiently. This might be caused by the applied nearest-neighbour interpolation resulting in

artefacts as a result of Aliasing.

The quality indices (QI) are given in Table 4.3. The indices for all image resolutions were

summed and then ranked. The largest sum of quality indices has been found with an image

resolution of 1704 × 2272 pixels, followed by image resolutions 2448 × 3264, 480 × 640 and
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Table 4.2.: Classification results derived from images with different resolutions

Image Total RUMOB TAROF/Res. PLAMA to SOIL to

resolution detection detection to RUMOB RUMOB RUMOB

rate [%] rate [%] error [%] error [%] error [%]

2448 × 3264 72.4-83.8 78.5-94.7 2.6-19.7 3.3-12.4 0.0-3-0

1704 × 2272 68.5-86.2 80.3-94.5 3.0-21.6 0.0-8.2 0.0

1200 × 1600 68.5-82.5 72.0-92.1 3.2-17.8 2.7-10.4 0.0

1024 × 1280 65.2-76.1 63.0-84.4 0.0-11.9 2.1-13.7 0.0

768 × 1024 67.1-78.2 57.1-91.2 3.1-12.1 4.4-17.0 0.0

480 × 640 72.4-80.4 81.8-91.4 1.8-9.7 4.3-17.5 0.0-1.4

1200 × 1600 pixels. As indicated in Table 4.2 the image resolutions 1024 × 1280 pixels and

768 × 1024 pixels rank the lowest because they had the lowest RUMOB detection rates. Table

4.4 shows the elapsed time for the image processing steps. For the full resolution images up

to 45 seconds were needed for processing. Reducing the image resolution to 480 × 640 pixels

decreased the processing time considerably to 2.5 seconds on average.

48



4. Influence of image spatial resolution

Table 4.3.: Quality indices for the classification with different training data sets and the different

image resolutions (Img. res.): (a) 2448×3264; (b) 1704×2272; (c) 1200×1600; (d) 1024×1280; (e)

768×1024; (f) 480×640.

Img. RUMOB quality index for classification with: Sum Rank

res. T1: Training T2: Training T3: Training

July 19th July 22nd July 28th

Classified data set

19th 22nd 28th 19th 22nd 28th 19th 22nd 28th

a 1.92 1.92 1.78 1.78 1.89 1.78 1.77 1.89 1.75 16.48 2

b 1.90 1.91 1.76 1.91 1.93 1.80 1.89 1.90 1.86 16.85 1

c 1.72 1.83 1.70 1.88 1.89 1.70 1.83 1.80 1.84 16.20 4

d 1.77 1.78 1.61 1.72 1.79 1.69 1.78 1.75 1.78 15.69 6

e 1.73 1.85 1.77 1.76 1.80 1.55 1.81 1.78 1.78 15.82 5

f 1.83 1.79 1.79 1.84 1.79 1.79 1.87 1.80 1.87 16.35 3

Table 4.4.: Elapsed time in seconds for image segmentation, feature extraction and classification

separated by image resolution

Processing step Image resolution

2448 × 1704 × 1200 × 1024 × 768 × 480 ×

3264 2272 1600 1280 1024 640

Image segmentation 42.7013 21.4804 11.0549 9.9453 5.7607 2.4536

and feature extraction

Classification ≤ 0.0362
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Figure 4.4.: Classification results for the 54 classifications which comprised six image resolutions: (1)

2448 × 3264, (2) 1704 × 2272, (3) 1200 × 1600, (4) 1024 × 1280, (5) 768 × 1024, (6) 480 × 640,

for three training datasets each (the objects from the first 18 images of July 19th, 22nd and 28th data),

and three data sets to be classified comprising the remaining objects from July 19th, 22nd and 28th that

were not included in training. Dark blue: the overall classification accuracy; light blue: the RUMOB

detection rate; green: rate of TAROF and residue misclassified as RUMOB; orange: rate of PLAMA

misclassified as RUMOB; brown: rate of soil misclassified as RUMOB
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5. Mapping Rumex obtusifolius during

different grassland growths based on

automatic image classification and GIS

5.1. Introduction

The date of application of site-specific weed control is limited by two requirements: (1) the

target weeds must be at a growth stage perfectly suited for being detected by the image

classification algorithm. In arable crops for example, where some algorithms focus on weed

discrimination using leaf shape properties (Franz et al. , 1991a; Gerhards et al. , 2002; Neto

et al. , 2006) this is when the weeds are in the seedling stage. However, with starting leaf

overlapping and increasing crop cover, weed discrimination is becoming difficult; (2) the appli-

cation of herbicides must take place when best effectiveness of the chemicals can be achieved.

This is defined by the phenological stage of plants, temperatures or even moisture. The best

weed detection system is the one who brings both dates together. And keeping in mind the

on-line solution this is another fundamental requirement.

In contrast to arable crops, grasslands in Central Europe can be harvested up to three or

even four times the year. Thus, there are multiple grassland growths on which the automatic

RUMOB detection and chemical controlling could be theoretically applied. The best herbicide

efficiency in RUMOB is defined by the phenological stage and the weather conditions. Most

herbicides against RUMOB shall be applied in the late summer, when the rosette is fully

established but before plants start to flower (Kessler & Ammon, 1996; Zwerger & Ammon,

1999).

The present complementary study focuses on the multi-temporal mapping of RUMOB using
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5. Mapping Rumex obtusifolius using automatic image classification and GIS

the same procedure of image processing with the images taken at 13 dates over the spring

growth and the regrowth of grass plots in 2006, as in the year before. The aim was not to

derive classification accuracies of the image classification algorithm again but to translate the

results of image classification into application maps for site-specific spraying. The resulting

herbicide application maps were compared to the reality in the experimental plots. Best results

were figured and compared to herbicide instruction manuals.

5.2. Materials and methods

5.2.1. Image acquisition and classification

The field experiment was extended in late 2005 to give a total of 54 grassland plots (compare

Chapter 1.5). Images were taken using the automated acquisition technology at 13 dates during

two grassland growths in 2006. In the spring growth, images were taken at May 23rd and 29th,

June 14th, 20th, and 26th and July 5th. The second growth of the grass plots was covered

by images taken on July 11th, 20th, and 31st, August 15th and 29th, and September 8th and

12th. In total of 702 images were acquired.

The automatic procedure of image processing and classification applied to the images is

described in chapters 2 - 4. According to the results in chapter 4 all images were resized to 480

× 640 pixels. For the purpose of automatic image classification a software tool was developed

within MATLAB ( c© Mathworks, Inc.) which allows the batch processing of all 54 images per

recording date. The result is a list of 54 vectors with the image coordinates and areas of all

RUMOB objects per image as well as a report of the classification results for each image as

Microsoft Excel c© data sheet.

5.2.2. Mapping of RUMOB distribution and the derivation of herbicide

application maps

The aim of the subsequent processing steps was to transform the image coordinates of all

objects classified as RUMOB into the Gauss-Krueger coordinate system which is the official

topographic coordinate system in Germany. The image coordinates for the objects are calcu-

lated as the centroid from the object boundaries. With that, for an image with n objects a
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5. Mapping Rumex obtusifolius using automatic image classification and GIS

coordinate vector xIMG with n coordinate pairs is available.

xIMG =

 xIMGi

yIMGi

n

i=1

=

 xIMG1 ... xIMGn

yIMG1 ... yIMGn


In total, for each recording date 54 coordinate lists were available for 54 images. The

object coordinates of each image were transformed into the respective experimental plots. The

centroid coordinates xCentroid for each of the 54 experimental plots were derived by GPS survey.

Per definition, the point of origin (OIMG) in the image coordinate system is the upper left image

corner. However, the reference point in the respective plot is the centroid. Therefore, the new

point of origin (O′), which is the image centre, was derived by Eq. (5.1), where xIMGmax and

yIMGmax are the image dimensions in x (640 pixels) and y (480 pixels) direction, respectively.

The new object image coordinates x′ IMG were then calculated according to O′ using Eq. (5.2).

O′ =

 O′
x

O′
y

 =

 xIMGmax
2

yIMGmax
2

 (5.1)

x′ IMG

 x′IMGi

y′IMGi

n

i=1

=

 xIMGi −O′
x

O′
y − yIMGi

n

i=1

(5.2)

After resizing the images to 480 × 640 pixels, the size of a pixel in the image center is

around 3 mm. By multiplying these new coordinates with the spatial pixel size (PS) of 0.003

m the image coordinates were transformed to the metric system (Eq. (5.3)). In doing so, we

simply assumed that the image distortions, which increase towards to the image border, can

be neglected.

xMETRIC = x′ IMG • PS =

 x′IMGi

y′IMGi

n

i=1

• PS (5.3)

By applying an affine transformation (Eq. (5.4)) to xMETRIC the object coordinates were

finally transformed into Gauss-Krueger system.
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xGK = AT • xMETRIC =


cos(α) −sin(α) 0

sin(α) cos(α) 0

PGKx PGKy 0


T

•


xMETRIC1 ... xMETRICn

yMETRIC1 ... xMETRICn

1 ... 1

 (5.4)

xGK is the calculated coordinate vector, A is the transformation matrix, xMETRIC and

yMETRIC are the object coordinates in the image, α a is the rotation angle, PGK is the cen-

troid of the experimental plot in Gauss-Krueger system and n is the number of objects in the

image. The rotation angle a is the azimuth between plot one and plot 54.

The objects were imported into ESRI ( c© ESRI, Redlands, California, USA) ArcGIS. Thir-

teen point shape file, according to the 13 recording dates, were directly created with the known

objects Gauss-Krueger coordinates and the definition of the coordinate system. Along with

the polygon shapes of the experimental plots an ArcGIS project was established. RUMOB

distribution maps were created as points with varying diameter according to the actual object

(leaf) area (Figure 5.1).

Based on the distribution maps RUMOB density maps were calculated, indicating the num-

ber of objects per square meter. Thereby, the GIS ’Kernel’ density function was used to

generate the density layers. Kernel density calculates the density of features in a search radius

around those features. This function assigns greater importance to values near the kernel cen-

ter and was implemented in ArcGIS Spatial Analyst. The radius for each density calculation

was defined as one meter.

It became obvious, that most of the misclassifications were isolated small objects. However,

RUMOB plants were exhibiting either large areas (due to overlapping leaves) or a number of

small objects in higher densities (non-overlapping leaves of individual RUMOB plants). The

combination of object area and density enabled a reduction of misclassification. This was

accomplished by the condition, that either the object size increased 100 square centimeters or

the density at this point increased beyond one object per square meter. The result is a binary

raster with pixel values of one for pixels that fulfilled the conditions and zero for pixels that

did not.

Finally, herbicide application maps were derived by labelling those plots to be sprayed that

intersected objects fulfilling the above mentioned condition. By this means, we assumed that
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Figure 5.1.: Derivation of herbicide application maps as demonstrated over 54 grass plots on the 12th

of September in 2006. Size of objects classified as RUMOB in the images (the upper map) and object

density (second from top) were combined for the reduction of misclassifications. The marked dots in the

third map are identified misclassifications. Based on that, the herbicide application map (lower map)

was calculated. Only those plots that intersected unmarked points are labelled to be sprayed. The plots

with thick boundaries are those where RUMOB plants really appeared.

each experimental plot is a partial area for site-specific treatment. Figure 5.1 illustrates the

derivation of the herbicide application maps.

5.2.3. Quality assessment

With the classification results of all images, maps were calculated figuring the RUMOB distri-

bution and the RUMOB application maps as time series. The quality of the classification was

assessed. Therefore, plots which have been populated with RUMOB plants and were correctly

assigned to be sprayed, were compared to those plots that have not been detected and those

that were wrongly labelled to be sprayed. Rates of correctly detected RUMOB plots were

achieved as well as the rates of misclassified non-RUMOB plots. Also, the apparent save of

herbicide for each of the observation dates was calculated based on the herbicide maps.
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5.3. Results

The image classification results for a plot with RUMOB plants are illustrated in Figure 5.3.

Figures 5.4 and 5.5 show the distribution and application maps for 11 observation dates.

Obviously the number of recognized RUMOB leaves decreased later during the first and second

grassland growth, since the area of detected RUMOB objects increases and decreases during

each of the two growths (Figures 5.2 and 5.3). In the first growing period, RUMOB objects

(leaves) were correctly detected for the first three dates (May, 23rd - June 14th) only. The more

vertical orientation of RUMOB leaves as compared to earlier growth stages and overlapping

of leaves with grass blades disabled the detection of all leaves. There is a strong decrease in

detected leave area from June 20th onwards (Figure 5.2), when overlapping with grasses begins.

In the regrowths, the detection of plants was not possible before 15th of August (Figures 5.3 -

5.4), i.e. about five weeks after cut when the leaves exhibited a sufficient size for being detected

by image segmentation. The area of detected RUMOB objects decreases with the last date,

because more leaves became senescent.

Figure 5.2.: The change of object area for all RUMOB objects within the 18 RUMOB plots between

on (a) May, 23. and (b) 29.05., (c) June 14., (d) 20., and (e) 26., July (f) 05., (g) 20., and (h) 31.,

August (i) 15. and (j) 29., September (k) 08., and (l) 12. in 2006.
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Table 5.1 shows the calculated classification accuracies, the error rates, and the theoretical

save of herbicides. From May, 23rd until June, 26th and from August, 15th to September,

12th all 18 RUMOB plots have correctly been detected after mapping and post-processing,

whereby the results for the 26th of June are irritating, because not all plants in the plots

could successfully be segmented and thus could not be detected, because of the advanced plant

growth with more vertical orientated leaves and overlapping. For this two time frames, the

rate of wrongly classified plots (out of 36) varied from 19% - 58% after mapping and from 3%

- 42% after post-processing, respectively. Given, that all experimental plots together would

represent a paddock in a grassland farm in which RUMOB would have to be controlled, the

maximum save of herbicide would have been 67%, equal to 18 experimental RUMOB plots

out of 54. The GIS-based post-processing accounts for the biological proportions of typical

RUMOB plant growing with more than one leaf per plant. The theoretical save of herbicides

was 28% - 61% after mapping and 39% - 65% after post-processing.

High classification accuracies were achieved for most of the images taken over the two grass-

land growths. However, one has to take into account that the segmentation performance may

and will decrease due to (i) overlapping of grasses with weed leaves and (ii) stronger image

distortions with advanced plant growth. On the one hand, at the later growth stages some

RUMOB plants thus could not be successfully detected. On the other hand, the earliest pos-

sible detection of RUMOB plants could be accomplished only when the leaves exhibited a size

greater than 15 cm2. The combination of object size (leaf area) and density (objects per square

meter) further decreased misclassifications.

5.4. Discussion

Two time frames (May, 23rd until June, 20th and August, 15th to September, 12th) have been

identified where image acquisition and classification provided reasonable results to identify

RUMOB plants. However, the results varied strongly in both periods. For the first period

higher misclassification (overestimation of RUMOB) could be observed within plot 1 to 18

(right to left in Figure 5.4). In these plots grass was sown in autumn 2005 while in the other

it was sown one year before. All weeds however have been planted in spring 2005 in all of
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Table 5.1.: Classification results after image classification and GIS-based post processing. Number of

detected RUMOB (R.o.) plots nR.o. (out of 18), the RUMOB plot detection rate %R.o., number of plots

misclassified as RUMOB nError (out of 36), the respective error rate %Error and the theoretical reduction

of herbicides %Save.

DOY After mapping After post-processing

nR.o. %R.o. nError %Error %Save nR.o. %R.o. nError %Error %Save

143 18 100 9 25 50 18 100 5 14 57

149 18 100 21 58 28 18 100 15 42 39

165 18 100 16 44 37 18 100 13 36 43

171 18 100 8 22 52 18 100 4 11 59

177 18 100 10 28 48 18 100 7 19 54

186 17 94 5 14 59 16 89 2 6 67

201 0 0 0 0 100 0 0 0 0 100

212 16 89 5 14 61 13 72 1 3 74

227 18 100 8 22 52 18 100 2 6 63

234 18 100 13 36 43 18 100 8 22 52

251 18 100 7 19 54 18 100 7 19 54

155 18 100 8 22 52 18 100 1 3 65

the 54 plots. In the 18 plots, the grasses were thus not as dense as in the other 36 and

other herbs accompanied with RUMOB performed better growth and exhibited nontypical

appearance, which resulted in higher confusion with RUMOB in the image classification. In

the regrowth the grasses were well developed and classification mistakes were reduced. Same

problems were faced with the last 8 plots were the grasses did not grow as proper as in the other

plots, because of poor soil properties so that the weeds passed the grass sod more efficiently.

Apart from that the errors are randomly distributed. The image classification procedure is

a Maximum Likelihood Estimation, whereby for each image object the class is calculated to

which it belongs most probably. Even if the probability of the right class is high, it might

be possible that the belonging to another class is more probably. The image classification

algorithm is not able to reduce the misclassification towards to zero. With the post-processing
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however, some mistakes can be eliminated. Hence, for each of the investigated dates an increase

of classification accuracy has been achieved with the GIS based post-classification applied.

Evaluating the ’time frames’ from the plant phenological point of view it appeared that

in both grassland growths best RUMOB detection was achieved from the 3-leaves stadium

onwards. This is when the leaves were large enough to be separated from the background by the

image segmentation. In contrast to the second grassland growth, in the first growths RUMOB

plants were securely detected up to the 5 leaves stadium only. From then on, overlapping with

other herbs reduced the detection accuracy. In the second growth the detection of RUMOB

individuals performed well until the very last day of observation, where the plants had fully

developed their rosette just before they start to flower. This developing stage of RUMOB would

match with recommended application dates of selective herbicides when there is a maximum

of herbicide absorption by the leaves (Kessler & Ammon, 1996; Zwerger & Ammon, 1999).

Further, application of herbicides is recommended during under moderate temperatures up to

25◦C which is case mostly during late summer.
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Figure 5.3.: Example of one plot with results of automatic image classification for the images in the

first growth: (a) May, 23. and (b) 29.05., (c) June 14., (d) 20., and (e) 26., July (f) 05.; and in the

regrowth: (g) 20., and (h) 31., August (i) 15. and (j) 29., September (k) 08., and (l) 12. in 2006.

Objects with thick white lines have been classified as RUMOB.
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Figure 5.4.: Distribution maps of image objects classified as RUMOB. Images have been acquired over

two grassland growths in 2006
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Figure 5.5.: The derived herbicide application maps against RUMOB as result of the combination of

object area and density for each of the observed dates over both grassland growths in 2006
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Motivated by numerous investigations in arable crops, the aim of the doctoral study was to

determine the possibilities and limitations of image analysis techniques for weed detection in

grassland. The analysis was separated into different complementary experiments. The obtained

results show high potential for the implementation of the system either in off-line or on-line

systems for site-specific herbicide applications on grassland. In arable crops, the economic and

environmental benefit through savings of herbicides by site-specific applications has already

been demonstrated.

With the first experiment on this thesis, ground-based colour images were shown well suited

for detecting grassland herbs. Previously, such systems were applied only to arable crops,

where the studies concentrated on the discrimination between crop, weed and soil. Grassland

is a much more complex background. Grass swards with mixtures of several herb species make

the separation of weeds from the grass background more difficult. However, broad-leaved weeds

are distinguishable from monocot grass by their larger homogeneous leaf surface. Where these

leaves are not strongly overlapped the background grasses can be eliminated.

The developed image segmentation procedure in chapter 2 provided good segmentation of

the weed leaves from the grassland background. Segmentation was done using a measure

of homogeneity, the so called Local Homogeneity (Cheng & Sun, 2000), and morphological

operations. Referring to publications on weed discrimination in arable crops (Lamb & Brown,

2001; Thorp & Tian, 2004), 5 geometrical, 3 colour, and 1 texture feature(s) were calculated for

the remaining image objects. A Maximum Likelihood classificator for discriminating the weed

species Rumex obtusifolius L., Taraxacum officinale Web., and Plantago major L. and a soil-

and residue class was established. All images taken under constant geometric and illumination

conditions at three dates in July 2005 were classified. Total classification accuracy ranged
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from 65% to 81%. The rate of correctly detected RUMOB objects was between 71% and

87%. Detection appeared to be decreasing with time, indicating a change in phenology and

morphology creating a change in geometric features.

In this investigation one source of error was high confusion of PLAMA objects with RU-

MOB. Also the negative effect of image distortions in the segmentation and with that wrongly

segmented objects increased the error. The classification result was further determined by

different feature combinations. Although object geometry did not contribute strongly to the

classification accuracy, its integration into the classification procedure gave the best classifica-

tion results. Combining the texture with the colour features gave classification accuracies close

to those with all features.

Based on the results and conclusions of chapter 2 more colour and texture features were

calculated. The modified image classification procedure described in 3 increased the accuracy

of Rumex obtusifolius L. detection and minimized the misclassification. Using stepwise dis-

criminant analysis, colour and texture were the two features identified as key contributors to

classification, whereas geometric features appeared irrelevant for the classification. Geometry

is widely used in arable crops to identify weed species as young seedlings, and such systems

fail when plants overlap at the later stages of growth. In grassland, overlapping of plants is

the norm. Consequently, one can expect shape properties to play a minor role in grassland

plant identification. In general, the rates of detection obtained for RUMOB were large (up

to 95%) with few objects from other classes misclassified as RUMOB. It is worth noting that

an individual RUMOB plant comprises more than one object in the images; its leaves are the

objects that are segmented (provided that they do not overlap) and so the rate of correctly

detected Rumex plants can be assumed to be significantly higher than the object detection

rates.

The image analysis was quite slow. Images were processed offline because the processing

speed is too slow for on-line techniques in precision agriculture. Digital images require consid-

erable computer memory. In this study, most time elapsed in the conversion of RAW to TIFF

images and in image segmentation, especially when calculating the local homogeneity image.

With reduced image resolution the time of processing must decrease.

The experiment described in chapter 4 was conducted to analyse the impact of reduced im-
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age resolutions on the classification results. At the same time, the negative effect of distortions

in the segmentation procedure was eliminated by defining a confidence circle around the image

centre. Only those objects falling into this confidence area were considered for classification.

The segmentation algorithm was applied successfully to different image resolutions. The num-

ber of segmented RUMOB objects was approximately the same at all resolutions. Although

the number of wrongly segmented objects increased at the lower resolutions, this did not affect

the classification results adversely. For all image resolutions, large RUMOB detection rates

were achieved. The lowest classification accuracies were for images with resolutions of 1024 ×

1280 pixels and 768 × 1024 pixels, although they were still high. Surprisingly, classification

of the images with the lowest resolution were ranked third when comparing all results using

the classification quality index. For the lowest image resolution the time required for image

segmentation, feature extraction and classification was less than 3 seconds. For full resolution

images more than 45 seconds was required.

The last experiment (chapter 5) was conducted on data obtained continuously over two grass-

land growths in 2006. All captured images were rescaled to 480 × 640 pixels according to the

results from chapter 4. Image classification was performed automatically using the developed

’Rumex detection toolbox’. The coordinates of the image objects classified as RUMOB were

transformed to Gauss-Krueger coordinate system and imported into GIS software. With that,

distribution maps of every observation date were created. Those were compared to the reality

measured in the field experiment. It became obvious that most misclassification was due to

isolated small objects. The combination of object area and density allowed for a minimization

of those errors. With that post-processing technique the quality of the RUMOB maps were in-

creased in terms of correctness. As result of this experiment, all plots with Rumex obtusifolius

L. have been detected within specific time frames (May, 23rd until June, 20th and from Au-

gust, 15th to September, 12th) during the growing season 2006. The error rate of plots without

RUMOB but classified as RUMOB in these two time frames (containing 8 data sets in total)

was between 3% and 42% resulting in theoretical herbicide saves of 39% - 65% as compared to

conventional application of the whole field. The best results with lowest misclassification were

achieved on September 12th, when most selective herbicides against Rumex obtusifolius L. are

beeing recommended for application for instance during late summer where the leaf rosette is
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fully established and the plants start to flower, as it was the case on the 12th of September.

The classification procedure was implemented in a software called ’Rumex detection toolbox

(RDT)’, a MATLAB ( c© The Mathworks, Inc.) based graphical user interface for batch pro-

cessing of image data sets. The results can be exported as tables. Also the software allows for

an export of RUMOB object coordinates which can be further used in GIS software for map-

ping the distribution of RUMOB individuals and to further minimize the misclassification as

presented in the last experiment. Within GIS herbicide application maps can simply be derived.

Even though the classification results are very much satisfying, one has to take into consider-

ation that the images used for algorithm development and testing have been captured under

constant light conditions. Image recording was dome during cloudy conditions and were not

disturbed by direct sunlight, which will in fact always be a problem due to shadows or strong

reflections of the vegetation. To overcome these problems, the execution of image collection

can take place under cloudy conditions or even in night. The image acquisition unit equipped

with artificial light sources then may ensure a constant illumination during image recording.

Future studies will develop the application technology. An image acquisition unit mounted

on a tractor for weed detection in real field conditions has already been started. This new

unit consists of two high speed industrial colour cameras mounted in front of a driving trac-

tor. Images are Global Positioning System (GPS) referenced and will completely cover the

investigated field. With a short time delay, a spray application can follow behind the tractor,

equipped with a spraying device allowing for a high spatial resolution herbicide application.
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standesführung und Unkrautregulierung im Grünland - Schwerpunkt Ampfer”. Irdning:
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B. Rumex detection toolbox (RDT)

The Rumex Detection Toolbox (RDT) (Figure B.1) is a MATLAB ( c© The Mathworks, Inc.)

based Graphical User Interface (GUI) especially designed for the batch processing of images

used in this thesis. In general the RDTs processing design is following a four-steps approach

which are: (1) selection of images to be classified; (2) training the classifier; (3) classification

of images; and (4) export of classification results.

When starting RDT a start frame shows up (Figure B.1). The only button enable to be

pressed is the ’Select images’ button. Clicking the button opens the image file dialogue (Figure

B.2). A filter enables the selection of the Joint Photographic Experts Group (JPEG) (*.jpg,

*.jpeg) format and TIFF (*.tif;*.tiff). There is no limitation in the number of images that can

be selected.

With the finishing of the image file selection the RDT enables the ’Train classifier’ button.

Starting from the root directory of the RDT the user has the possibility to choose between

a variety of training data sets within the ’training’ folder (Figure B.3). With the current

version training data sets are available for the three common image resolutions: (1) 2448 ×

3264; (2) 1200 × 1600; and (3) 480 × 640, available through the respective subdirectories. All

training data sets are Matlab files (*.mat). Within these files two variables are stored which are

’patterns’ and ’targets’. patterns is a 12 by n matrix with the 12 colour and texture features

for n objects. targets is a vector with the respective class membership for each of the n objects.

Within each subdirectory 6 training data sets are available. Three of them define classifiers

for the 5 classes RUMOB, PLAMA, TAROF, SOIL, and RESIDUE. The remaining three files

define classifications into the 4 classes RUMOB, PLAMA, TAROF/RESIDUE, and SOIL. The

three training data sets within each of these subgroups origin from different recording dates in

July 2005. The date is coded in the file name as ’day after cut’. With the training data set
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B. Rumex detection toolbox (RDT)

Figure B.1.: The RDT start screen.

Figure B.2.: RDT Image file selection dialogue
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Figure B.3.: RDT training data set selection dialogue

’4G 8d 480x640.mat’ for example, an training data set for a classification into 4 groups (4G),

derived 8 days after cut (8d) for an image resolution of 480 × 640 pixels is available. The

suggested training data set for all classifications is the one derived 11 days after cut, which is

the July 22nd data set, which has most frequently been used in this thesis.

After training the classifier the image classification can be performed. Before doing so, the

user should select whether he wants the confidence mask to be applied (see Chapter 4) and

whether he wants the annotated classified images to be automatically stored on the computer.

Both options can be enabled using the respective checkboxes in the RDT GUI.

With the activating of the ’Classify’ button the user has to define the output directory of the

annotated images (Figure B.4). The processing of the images is then started. The information

which image is currently processed is written to the GUI. After an image is processed it is

visualised in the GUI along with the annotated classification results, where red contours show

those image objects classified as RUMOB (Figure B.5). Also, the confidence mask is drawn

in white, independent from whether is was chosen by the user or not. The number of objects

found in the image is shown in the left table of the GUI. The results for each image are written

to a new row. Each row consists of the number of objects found for each of the four or five

classes. The right table comprises the image coordinates for each individual RUMOB object
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Figure B.4.: RDT autosave folder selection dialogue

Figure B.5.: Annotated images showing result of classification
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Figure B.6.: RDT export results dialogue

in the current image along with its size. After the processing of all images has been completed

the classification results for each information can be accessed by clicking on the respective row

in the left table.

There are three export modules available with the RDT. First, the results shown in the

left table can be exported to an Microsoft ( c© Microsoft, Inc.) Excel data sheet (Figures B.6

and B.7) using the ’Export results’ button. In the same way, the coordinates of all RUMOB

objects can be exported to an Excel data sheet by clicking the ’Save coordinates’ button. In

addition to the image coordinates the calculated metric coordinates (in mm) and the area

(in mm2) are stored. With the image id results can be related to the corresponding input

image. Alternatively all results can be stored to a Matlab file using the ’Save features’ button.

With that, all results are available within Matlab, which are all object features (featlist),

coordinates (RCOORD), boundary coordinates (boundlist), areas (arealist) and calculated class

memberships (classlist). The RCOORD variable is also input for the subsequent mapping of

RUMOB objects.
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Figure B.7.: Exported table showing results of classified images
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rumex gui v5.m

function varargout = rumex_gui_v5(varargin)

% RUMEX_GUI_V5 M-file for rumex_gui_v5.fig

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @rumex_gui_v5_OpeningFcn, ...

’gui_OutputFcn’, @rumex_gui_v5_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before rumex_gui_v5 is made visible.

function rumex_gui_v5_OpeningFcn(hObject, eventdata, handles, varargin)
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% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to rumex_gui_v5 (see VARARGIN)

% Choose default command line output for rumex_gui_v5

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% GLOBALE VARIABLES -------------------------------------------------------

global fname;

global pathname;

global classlist;

global boundlist;

% LOAD START IMAGE AND DISPLAY---------------------------------------------

rgb = imread(’start.jpg’); imshow(rgb); drawnow;

% --- Outputs from this function are returned to the command line.

function varargout = rumex_gui_v5_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% IMAGE SELECTION DIALOGUE-------------------------------------------------
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% --- Executes on button press in pushbutton_directory.

function pushbutton_directory_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_directory (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global currentpath;

global fname,

global pathname;

currentpath = pwd; % SET CURRENT DIRECTORY AS WORKING DIRECTORY

[fname, pathname] = uigetfile({’*.jpg;*.jpeg;*.tif;*.tiff;’, ...

’Image Files (*.jpg, *.jpeg, *.tif, *.tiff)’;

’*.jpg;*jpeg’, ’JPG files (*.jpg, *.jpeg)’;...

’*.tif;*tiff’, ’TIFF files (*.tif, *.tiff)’;},...

’Select image files’,’MultiSelect’,’on’);

set(handles.pushbutton_training,’Enable’,’on’); % ENABLE TRAINING SELECTION

% TRAINING DATA SET SELECTION DIALOGUE-------------------------------------

% --- Executes on button press in pushbutton_training.

function pushbutton_training_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_training (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global currentpath;

global training_fname,

global training_pathname;

cd(currentpath); % GOTO WORKING DIRECTORY

[training_fname, training_pathname] = ...

uigetfile(’*.mat’,’Select the M-file’,’MultiSelect’,’off’);

set(handles.pushbutton_classify,’Enable’,’on’); % ENABLE CLASSIFICATION

% CLASSIFY BUTTON ACTION---------------------------------------------------

% INITIALISES THE CLASSIFICATION OF SELECTED IMAGES
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% --- Executes on button press in pushbutton_classify.

function pushbutton_classify_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_classify (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global fname;

global pathname;

global training_fname;

global training_pathname;

global out;

global boundlist;

global classlist;

global featlist;

global arealist;

global R_IMG_COORD; global RCOORD;

global PS; global area; global C;

% OPEN SELECTED TRAINING DATA SET

% returns the variables ’patterns’ and ’targets’ to the workspace

% patterns = sample objects with their features

% targets = class membeship of the sample objects

load (fullfile(training_pathname, training_fname));

procstr = ’Processing’;

% OUTPUT DIRECTORY DIALOGUE FOR ANNOTATED CLASSIFIED IMAGES

outpath = uigetdir(pathname,’Select output directory’);

% GET NUMBER OF INPUT IMAGES

if iscell(fname)

[n,m] = size(fname);

else

m = 1;

end
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% DECLARE OUTPUT VARIABLES

out = []; R_IMG_COORD = []; RCOORD = []; FR = [];

for i=1:m

tic

% EVALUATE FILENAME

if iscell(fname)

thisfile = fname{i};

else

thisfile = fname(i,:);

end

% PRINT STATUS MESSAGE

statusmsg = strcat(’Processing image - ’,...

num2str(i),’/’,num2str(m),’: >>’,thisfile,’<<’);

set(handles.text_status,’String’,statusmsg);drawnow;

% LOAD CURRENT IMAGE FILE

rgb = imread(fullfile(pathname, thisfile));

% GET IMAGE DIMENSION

[ydim xdim zdim] = size(rgb);

% SEGMENTATION PARAMETERS DEPENDING ON IMAGE RESOLUTION (SIZE)

% areathresh = small objects threshold

% se = size of structure element for image morphology

% ps = pixelsize in mm

areathresh = 5000; se = 8; PS = 0.6;

switch xdim

case 640

areathresh = 190; se = 3; PS = 3.0;

case 1024

areathresh = 480; se = 4; PS = 1.9;
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case 1280

areathresh = 610; se = 5; PS = 1.5;

case 1600

areathresh = 1220; se = 6; PS = 1.2;

case 2271

areathresh = 2450; se = 7; PS = 0.7;

case 3264

areathresh = 5000; se = 8; PS = 0.6;

end

% PERFORM IMAGE SEGMENTATION

% F = matrix with image objects features

% B = matrix with image objects boundary coordinates

% X = matrix with image objects centroid coordinates

% A = matrix with image objects area

[F B X A] = A_LHSEG_FE_SCALE_COORD(rgb,areathresh,se);

% CALCULATE CONFIDENCE MASK (CIRLCE) FOR CURRENT IMAGE SIZE

% circle with radius of 97% of image width

% circle has its origin in the image center

% circle consists of 50 vertexes

cm = circle([ydim/2 xdim/2],xdim/2*.97,50);

% APPLY CONFIDENCE MASK IF SELECTED BY USER

% returns only those objects lying completely inside confidence mask

if get(handles.checkbox_cm,’Value’)==1

[F B X A] = isconfident(F,B,X,A,cm);

end

% CLASSIFY IMAGE OBJECTS

% performs maximum likelihood classification

% classlifier is trained by selected training data set

% c = vector with calculated object classes

c = ML(patterns,targets,F’);
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% SAVE RESULTS INTO VARIABLES

featlist{i} = F;

arealist{i} = A;

boundlist{i} = B;

classlist{i} = c;

% CALCULATE MASK FOR EACH CLASS

% ro = rumex obtusifolius

% to = taraxacum officinale

% pm = plantago major

% so = soil

% res = residue

ro = c == 1; to = c == 2; pm = c == 3; so = c == 4; res = c == 5;

% WRITE NUMBER OF OBJECTS PER CLASS FOR CURRENT IMAGE (i) INTO MATRIX ’out’

out(i,:) = [sum(ro) sum(to) sum(pm) sum(so) sum(res)];

% GET LIST OF AREA OF RUMOB OBJECTS

area = A(ro);

% GET RUMEX CENTROID COORDINATES AND TRANSFORM TO IMAGE CENTER

xc = -(xdim/2); yc = -(ydim/2);

MM = [1 0 xc;0 1 yc; 0 0 1]; % translation matrix

XX(:,1) = X(ro,2);

XX(:,2) = X(ro,1);

R_IMG_COORD{i} = [XX area]; % SAVE NEW IMAGE COORDINATES

XX(:,3) = ones(sum(ro),1); % populate with constant z value of 1

XT = ((MM)*XX’)’; % translation

XT(:,2)=XT(:,2).*-1; % mirror y coordinates

XT(:,3) = XT(:,3).*i; % write indicator for image in column 3

% TRANSFORM TO METRIC UNITS AND SAVE COORDINATES INTO CELL

RCOORD{i} = [XT(:,1:2).*PS area.*PS.*PS XT(:,3)];
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clear XX;

% PLOT RESULTS

axes(handles.axes1);

h = imshow(rgb); hold on;

plotbound2image(B(c==1),’r’,2);

plotbound2image(B(c==2),’b’,2);

plotbound2image(B(c==3),’m’,2);

plotbound2image(B(c==4),’k’,2);

plotbound2image(B(c==5),’y’,2);

plot(cm(:,2),cm(:,1),’w’,’LineWidth’,2);

hold off;

% Figure title

resmsg = strcat(’Fig: Result for: ’,’ >>’,thisfile,’<<’);

set(handles.text_result,’String’,resmsg);

% PLOT RESULTS FOR IMAGE CLASSIFICATION INTO LISTBOX

% classified objects

outstr = num2str(out);

set(handles.listbox_results,’String’,outstr);

set(handles.listbox_results,’Max’,i);

% object coordinates and area

outstr_coord = num2str(R_IMG_COORD{i});

% display results on listbox

set(handles.listbox_coords,’String’,outstr_coord);

set(handles.listbox_coords,’Max’,i);

drawnow;

% SAVE ANNOTATED IMAGES

% Check autosave activation

if get(handles.checkbox_autosave,’Value’)==1

disp(’JETZT’)

FR = getframe(gca);

mv(i) = FR;
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[X,Map] = frame2im(FR);

imwrite(X,fullfile(outpath, strcat(thisfile,’.jpg’)),’jpeg’);

end

toc

end % END OF IMAGE CLASSIFICATION

%movie2avi(mv,fullfile(pathname, ’mymovie.avi’));

%avifile(fullfile(pathname, ’mymovie.avi’),’fps’,1);

%movie(mv);

statusmsg = strcat(’Processing finished.’);

% ENABLE EXPORT BUTTONS

set(handles.pushbutton_export,’Enable’,’on’);

set(handles.pushbutton_export_coord,’Enable’,’on’);

set(handles.pushbutton_exp_feat,’Enable’,’on’);

set(handles.text_status,’String’,statusmsg);drawnow;

% LISTBOX FOR CLASSIFICATION RESULTS DISPLAY-------------------------------

% --- Executes on selection change in listbox_results.

function listbox_results_Callback(hObject, eventdata, handles)

% hObject handle to listbox_results (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global fname; global pathname;

global boundlist; global classlist;

global R_IMG_COORD;

% GET SELECTED ITEM NUMBER

k = get(hObject,’Value’);

% LOAD AND DISPLAY RESULTS FOR SELECTED ITEM

if iscell(fname)

thisfile = fname{k};

else
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thisfile = fname(k,:);

end

hold off;

rgb = imread(fullfile(pathname, thisfile));

imshow(rgb);

[ydim xdim zdim] = size(rgb);

cm = circle([ydim/2 xdim/2],xdim/2*.97,50);

hold on;

c = classlist{k}==1;

B = boundlist{k};

plotbound2image(B(classlist{k}==1),’r’,2);

plotbound2image(B(classlist{k}==2),’b’,2);

plotbound2image(B(classlist{k}==3),’m’,2);

plotbound2image(B(classlist{k}==4),’k’,2);

plotbound2image(B(classlist{k}==5),’y’,2);

plot(cm(:,2),cm(:,1),’w’,’LineWidth’,2);

hold off;

resmsg = strcat(’Fig: Result for: ’,’ >>’,thisfile,’<<’);

set(handles.text_result,’String’,resmsg);

outstr_coord = num2str(R_IMG_COORD{k});

set(handles.listbox_coords,’String’,outstr_coord);

% --- Executes during object creation, after setting all properties.

function listbox_results_CreateFcn(hObject, eventdata, handles)

% hObject handle to listbox_results (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.
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if ispc && isequal(get(hObject,’BackgroundColor’),...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% LISTBOX FOR RUMOB COORDINATE DISPLAY-------------------------------------

% --- Executes on selection change in listbox_coords.

function listbox_coords_Callback(hObject, eventdata, handles)

% hObject handle to listbox_coords (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function listbox_coords_CreateFcn(hObject, eventdata, handles)

% hObject handle to listbox_coords (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’),...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% EXPORT CLASSIFICATION RESULTS TO EXCEL----------------------------------

% --- Executes on button press in pushbutton_export.

function pushbutton_export_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_export (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global out;

global fname;

headCell = ...
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{’Filename’,’N_RUMOB’,’N_TAROF/Res.’,’N_PLAMA’,’N_SOIL’,’N_RESID’};

dataCell = num2cell(out);

outCell = [fname’ dataCell];

[file,path] = uiputfile(’output.xls’,’Save file name’);

xlswrite(fullfile(path, file),[headCell;outCell]);

% EXPORT COORDINATES TO EXCEL---------------------------------------------

% --- Executes on button press in pushbutton_export_coord.

function pushbutton_export_coord_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_export_coord (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global R_IMG_COORD; global RCOORD;

headCell = ...

{’IMG_X’,’IMG_Y’,’IMG_AREA’,’IMG_X_M’,’IMG_Y_M’,’AREA’,’IMG_ID’};

dataCell = [cell2mat(R_IMG_COORD’) cell2mat(RCOORD’)];

outCell = num2cell(dataCell);

assignin(’base’,’coords’,cell2mat(RCOORD’));

[file,path] = uiputfile(’coordinates.xls’,’Save file name’);

xlswrite(fullfile(path, file),[headCell;outCell]);

% EXPORT FEATURES TO MATLAB VARIABLE---------------------------------------

% --- Executes on button press in pushbutton_exp_feat.

function pushbutton_exp_feat_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_exp_feat (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global featlist;

global arealist;

global boundlist;

global classlist;

global RCOORD;

[file,path] = uiputfile(’features.mat’,’Save file name’);
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save(fullfile(path, file),...

’featlist’,’arealist’,’boundlist’,’classlist’,’RCOORD’);

% CHECKBOXES---------------------------------------------------------------

% --- Executes on button press in checkbox_autosave.

function checkbox_autosave_Callback(hObject, eventdata, handles)

% hObject handle to checkbox_autosave (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of checkbox_autosave

get(hObject,’Value’)

% --- Executes on button press in checkbox_cm.

function checkbox_cm_Callback(hObject, eventdata, handles)

% hObject handle to checkbox_cm (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of checkbox_cm

A LHSEG FE SCALE.m

function [feat,B,X,A] = A_LHSEG_FE_SCALE(img,AREA,SE_SIZE)

% IMAGE SEGMENTATION AND FEATURE EXTRACTION

% INPUT VARIABLES

% img = RGB image

% AREA = threshold for small objects

% SE = size of structure element for morphologic image opening

% OUTPUT VARIABLES

% feat = matrix with image objects features

% B = matrix with image objects boundary coordinates
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% X = matrix with image objects centroid coordinates

% A = matrix with image objects area

% SEGMENTATION

% get colour bands

R = img(:,:,1);G=img(:,:,2);B=img(:,:,3);

% calculate intensity image

intensity = R.*0.2989+G.*0.5870+B.*0.1140;

% calculate gradient image

GR = grad(intensity);

% calculate standard deviation image

S = stdfilt(intensity);

% normalize

GR_n = GR/max(max(GR));

S_n = S/max(max(S));

% calculate local homogeneity image

LH = 1-GR_n.*S_n;

% calculate grey level threshhold

ts = mean(mean(LH));

% ts = .97;

% calculate binary image

f = im2bw(LH,ts);

% apply morphological opening

SE = strel(’diamond’,SE_SIZE);

f = imopen(f,SE);

% remove small objects

f = bwareaopen(f,AREA);

% get object boundaries, ignore holes

[B,L] = bwboundaries(f,8,’noholes’);

% FEATURE EXTRACTION

% get number of objects

k = max(max(L));
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% do for all objects

for i=1:k

% calculate object centroid

for j=1:k

X(j,1:2) = sum(B{j})./length(B{j});

end

m = L == i;

% get object area

A(i,1) = sum(sum(m));

% calculate object features

% colour features

feat(i,1) = mean(mean(intensity(m)));

feat(i,2) = mean(mean(R(m)));

feat(i,3) = mean(mean(G(m)));

feat(i,4) = std2(intensity(m));

feat(i,5) = std2(R(m));

feat(i,6) = std2(G(m));

% texture features

feat(i,7) = mean(mean(GR(m)));

feat(i,8) = mean(mean(S(m)));

feat(i,9) = mean(mean(LH(m)));

feat(i,10) = std2(GR(m));

feat(i,11) = std2(S(m));

feat(i,12) = std2(LH(m));

end

grad.m

function g = grad(i)

% Gradient of an Graylevel Image

% using the Sobel Operator

sh = fspecial(’sobel’);

104



C. RDT Matlab source codes

sv = sh’;

Rx = imfilter(double(i),sh,’replicate’);

Ry = imfilter(double(i),sv,’replicate’);

% magnitude

g = sqrt(Rx.^2+Ry.^2);

circle.m

function c = circle(center,radius,NOP)

% calculate circle

% center = origin of circle

% radius = radius of circle

% NOP = number of vertex points

% c = list of circle points

THETA=linspace(0,2*pi,NOP);

RHO=ones(1,NOP)*radius;

[X,Y] = pol2cart(THETA,RHO);

X=X+center(1);

Y=Y+center(2);

c = [X’ Y’];

isconfident.m

function [Fout Bout Xout Aout] = isconfident(F,B,X,A,cm);

% FIND OBJECTS COMPLETELY CONTAINED IN CONFIDENCE MASK (circle, polygon)

% get number of objects

nPolys = length(B);

% define index variable

ix = zeros(1,nPolys);

% do for all objects

for j=1:nPolys

% get current object boundary

bnd = B{j};
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% get number of boundary vertexex within confidence mask

% if all points are inside, write to index

in = inpolygon(bnd(:,2),bnd(:,1),cm(:,2),cm(:,1));

if (sum(in) == length(bnd))

ix(j) = 1;

end

end

% get all indexed objects

Bout = B(logical(ix));

Fout = F(logical(ix’),:);

Xout = X(logical(ix),:);

Aout = A(logical(ix’),:);

plotbound2image.m

function plotbound2image(B,c,w)

for k=1:length(B),

boundary = B{k};

plot(boundary(:,2), boundary(:,1), c,’LineWidth’,w);

end

ML.m and classify paramteric.m

These scripts are provided by Stork et al. (2004) available with their book.
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calc gis dbf.m

function f = calc_gis_dbf(R,c)

% CREATE XLS TABLE WITH RUMOB OBJECT COORDINATES AND AREA

% BASED ON THE CLASSIFICATION RESULTS USING AFFINE TRANSFORMATION

% R = cell containing n lists with coordinates (n is the number of

% classified images)

% c = list with centroid coordinates of experimental plots in gauss krueger

% the length of c must be n.

% do for each image

for i=1:length(R)

% get rumob coordinates

oc = R{i};

% scale coordinates to metres and area to sqcm

oc(:,1) = oc(:,1)*.001;

oc(:,2) = oc(:,2)*.001;

oc(:,3) = oc(:,3)*.01;

R{i} = oc(:,1:3);

end

% affine transformation

gk = transform2gk(R,c);

gklist = cell2mat(gk’);

Rlist = cell2mat(R’);

gklist(:,3) = Rlist(:,3);

f = gklist;
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D. Mapping source codes

% export to excell

headCell = {’X’,’Y’,’AREA’};

outCell = num2cell(f);

[file,path] = uiputfile(’2006_xx_xx_G4_d11_links_gis.xls’,’Save file name’);

xlswrite(fullfile(path, file),[headCell;outCell]);

transform2gk.m

function gk = transform2gk(l,c);

% AFFINE TRANSFORMATION FROM METRIC IMAGE COORDINATES TO GAUSS-KRUEGER

% l = list of object coordinates as cell array

% c = list of centroid coordinates in gauss krueger

if length(l)~=length(c)

error(’Length of input data must be equal’);

end

z = length(l);

% calculate rotation angle

alpha = atan( (c(end,1)-c(1,1))/(c(end,2)-c(1,2)) );

% images were capture on head, therefore rotate at 180 degree

alpha = alpha+pi;

% do for all images

for i=1:z

% current centroid

cc = c(i,:);

% tranformation matrix

A = [cos(alpha) -sin(alpha) 0; sin(alpha) cos(alpha) 0; cc(1,1) cc(1,2) 1];

% current image object coordinate list

ll = l{i};

% set unique elevation

ll(:,3) = 1;

% affine transformation

gk{i} = (transpose(A)*ll’)’;

end
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