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Abstract 
 

Plant stresses, in particular fungal diseases, basically show a high variability in space 

and time with respect to their impact on the host. Recent ‘Precision Agriculture’ 

techniques allow for a spatially and temporally adjusted pest control that might 

reduce the amount of cost-intensive and ecologically harmful agrochemicals. 

Conventional stress detection techniques such as random monitoring do not meet 

demands of such optimally placed management actions. The prerequisite is a 

profound knowledge about the controlled phenomena as well as their accurate 

sensor-based detection. Therefore, the present study focused on spatiotemporal 

dynamics of stress factors in wheat, Europe’s main crop. Primarily, the 

spatiotemporal characteristics of the fungal diseases, powdery mildew (Blumeria 

graminis) and leaf rust (Puccinia recondita), were analysed by remote sensing 

techniques and geo-statistics on leaf and field scale. 

 

Basically, there are two different approaches to sensor-based detection of crop 

stresses: near-range sensors and airborne-/satellite-borne sensors. In order to 

assess the potential of both approaches, various experiments in field and laboratory 

were carried out with the use of multiple sensors operated at different scales. 

Besides the spatial dimension of crop stresses, all studies focussed on the temporal 

dimension of these phenomena, since this is the key question for an operational use 

of these techniques. In addition, a comparison between multispectral and 

hyperspectral data gave an indication of their suitability for this purpose.  

 

The results exhibit very high spatiotemporal dynamics for both fungal diseases. 

However, powdery mildew and leaf rust showed different characteristics, with leaf 

rust showing a more systematic temporal progress. The physiological behaviours of 

the phenomena, which are strongly influenced by various environmental factors, 

define the optimal disease detection date as well as the temporal resolution required 

for sensor-based disease detection. Due to the high spatiotemporal dynamics of the 

investigated diseases, a general recommendation of optimal detection periods can 

not be given, but critical periods are highlighted for each pathogen.  
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The results indicate that multispectral remote sensing data with high spatial 

resolution shows a high potential for quantifying crop vigour by using spectral mixture 

analyses. Simulated endmembers for the identification of stressed wheat areas were 

utilized, whereby promising results could be achieved. However, due to the low 

spectral resolution of these data, a discrimination of stress factors or early disease 

detection is not possible. Hyperspectral data was therefore used to point out the 

potential of early detection of crop diseases, which is a crucial and restrictive factor 

for Precision Agriculture applications. In a laboratory experiment, leaf rust infections 

could be detected by hyperspectral data five days after inoculation. In a field 

experiment with respect to early stress detection, it could be demonstrated that 

hyperspectral data outperformed multispectral data. High accuracy for the detection 

of powdery mildew infections in the field was thereby achieved. 

 

Due to the fact that typical spatiotemporal characteristics for each pathogen were 

found, there is a high potential for decision support systems, considering all variables 

that affect the disease progress. Besides the further analysis of hyperspectral data 

for disease detection, the development of a decision support system is the subject of 

the upcoming last period of the Research Training Group 722. 
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Chapter 1 

 

Introduction 

1.1 Precision Agriculture 

Crop production undergoes a change since the early 1980’s, when technological 

progress entered the agricultural management. The implementation of new 

technologies such as terrestrial, airborne and spaceborne sensor systems, 

Geographic Information Systems (GIS), and the Global Positioning System (GPS) 

allow a more precise cultivation of agriculturally-used area (Kühbauch & Hawlitschka 

2003, McBratney et al. 2005, Pinter Jr. et al. 2003). Recent trends in agriculture thus 

show a fundamental transition to a more sustainable management (Bongiovanni & 

Lowenberg-Deboer 2004). Due to political demands on sustainable crop production, 

these trends were enforced by various directives. Apart from ‘Agenda 2010’ (United 

Nations Conference on Environment and Development (UNCED), in 1992) which 

stipulates sustainable farming, the ‘White Book on Food Safety’, published by the 

European Commission in 1999, aims for a regulation of maximum limits for residues 

of pesticides and contaminants on food. Pesticides, in particular, have a harmful 

impact on the environment as they not only harm living target organisms, but often 

contaminate soil, water and food resources. ‘One group of chemicals that requires 

particular attention is pesticides. (...) They can affect human health via their 

contamination of groundwater, soil, food and even the air. Gaps in the current data 

on the issue make it difficult to be precise about the scale and trends of the problem 

but there is sufficient evidence to suggest it is serious and growing.’ (European 

Commission 2002). 

 

In order to fulfil the requirements of a sustainable agriculture, a modernization of crop 

production is essential. A basic prerequisite is thereby the substitution of the 

traditional uniform land management for a site-specific management, i.e. Precision 

Agriculture, also referred to as ‘Precision Farming’. 
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Even though existing definitions of Precision Agriculture are inconsistent (McBratney 

et al. 2005), they generally describe that management actions are adjusted to within-

field heterogeneities of parameters that are relevant for crop growth, such as 

topography, climate, soil, availability of nutrients and water, stressors or man-made 

impacts. Precision Agriculture uses technologies that provide detailed, spatial 

information in a high resolution about fields and crop conditions and constitute an 

information-based approach of crop production. By using modern technologies, 

cultivation can be adjusted to field varieties, and agrochemicals can be applied in a 

site-specific way, targeted to where they are needed. This can result in a more 

sustainable management of agriculture due to an increase of yield and a reduction of 

cost-intensive agrochemicals while reducing the impact on the environment 

(Bongiovanni & Lowenberg-Deboer 2004).  

 

1.2 Impact of stress factors on crops 

Stress factors on crops are multifarious. Unfavourable soil conditions, water 

availability, nutrient deficiency, weeds and pests are the main factors causing crop 

stress (Pinter Jr. et al. 2003). These biotic and abiotic stressors cause changes in 

plant physiology and thus affect crop growth. As a result, depending on the types and 

impacts of stresses, the productivity of crop areas may be strongly reduced 

(Machado et al. 2002, Thomas et al. 1989). Soil conditions are comparatively stable 

(slow-variable), whereas pests are highly dynamic in spatial and temporal dimension 

(fast-variable). In addition, various types of pests have diverse spatiotemporal 

characteristics and thus a high variability of impacts on the host. Pests comprise 

fungi, virus, bacteria, insects and nematodes. The fact that pests show very 

heterogenic characteristics in space and time requires a detailed understanding of 

stress factors, which are the main challenges for effective stress management.  

Fungal pathogens are the most frequently controlled pests in Germany and the 

European Union (European Commission 2002). This is mainly due to the fact that 

pathogens are rather common in cereals which constitute the main cultivated plants 

in the European Union (36.401.000 hectares out of 130.443.000 hectares utilized 

agricultural area in 2000 (European Commission 2002)), resulting in a large amount 

of fungicides being applied.  
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Blumeria graminis – causing powdery mildew – and Puccinia recondita – causing leaf 

rust – are among the most common fungal pathogens producing characteristic 

symptoms on cereal leaves in Central Europe. Both diseases have polycyclic 

characteristics, i.e. pathogens repeatedly infect plants during the growing season 

(Mount & Slesinski 1971, Braun 1987, Cummins & Hiratsuka 2003). These fungal 

pathogens can cause defoliation of plants or even the death of the entire host plant, 

resulting in considerable yield losses in quantity and quality (Moshou et al. 2006, 

Moschini & Pérez 1999, Hunger & Jackson 2004, Glawe & Grove 2006). Table 1.1 

shows the approximate yield loss caused by leaf rust in relation to severity of rust on 

the flag leaf at various growth stages. In particular leaf rust infections at early growth 

stages have the highest impact on the yield. 

 

Table 1.1: Approximate yield loss (%) in relation to severity of rust on the flag 

leaf at various growth stages 

Leaf Rust Severity 

on Flag Leaf  
10% 25% 40% 65% 100% 

Growth Stage Loss (%) 

Flowering 10 15 20 30 35 

Milk 2 5 8 14 20 

Soft Dough 1 3 4 7 10 

Hard Dough 1 1 1 3 5 

Adapted from: Hunger & Jackson (2004) 

 

Even though, airborne pathogens causing powdery mildew and leaf rust are both 

obligate biotrophs that require a living plant tissue for growth and reproduction, they 

have different characteristics and life cycles as shown in figures 1.1 and 1.2 (Braun 

1987, Wright et al. 2000).  

 

Blumeria graminis belongs to the Ascomycetes in the order Erysiphales that initially 

affect the plants leaf surface by producing mycelia (vegetative structure) and conidia 

(asexual spores). Their white and dusty appearance is responsible for the name of 

the disease powdery mildew (figure 1.1). Under optimal environmental conditions, 

Blumeria graminis starts producing a primary germ tube about 0.5 to 3 hours after 

inoculation of the host and appressorial germ tubes (microscopic structures) about 12 

to 16 hours after inoculation that enables the mycelia to stick to plant surfaces (Mount 
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& Slesinski 1971, Nielsen et al. 2000, Wright et al. 2000, Carver et al. 2001, Wright et 

al. 2002). Special outgrowth called ‘haustoria’ then penetrates the cells of the host 

(15 to 24 hours after inoculation) and absorbs nutrients that allow the conidia to 

develop (Carver et al. 2001). After 2-3 days, nutrients supplied by the growing 

primary haustorium become insufficient to support the young colony, and a second 

generation of appressoria is initiated (Carver et al. 2001). 4-5 days after inoculation, 

the first conidiophores develop and sporulation starts, when spores are transportable 

to other hosts (Braun 1987, Carver et al. 2001). Optimal environmental conditions for 

the development of powdery mildew are temperatures of 15°C to 20°C with a relative 

humidity >95% for the infection process (Kluge et al. 1999). The incubation period of 

this disease is about three to five days. 

 

Inoculation

Primary 
germ tube

Appresorial 
germ tube

haustorium
Basal cell

Conidia 
development

Conidia 
transportation

plant cellplant cell

 
 

Figure 1.1: Life cycle of Blumeria graminis  
Figure based on:  Braun (1987), Carver et al. 2001 and anonym author of Risø National Laboratory 

(2007) 
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Due to its worldwide distribution, leaf rust is one of the most important diseases in 

cereals. Pathogens are able to move long distances and develop rapidly under 

optimal environmental conditions (Marsalis & Goldberg 2006). Symptoms are small 

round or oval, orange spots on the upper surface of infected leaves that have a rusty 

appearance. Pustules are highly productive with about 1000 new spores per day, 

each of which is capable of infecting a plant (Lipps 2006, Watkins 2005). Leaf rust 

has a more complex life cycle than powdery mildew (figure 1.2).  

 

Germination

& meiosis

Spermogonial stage

aeciospore

Uredinial
stage

Aecial stage

Uredo-
sporesTelial stage

Telio-
spores

Basidio-
spores

Germination

& meiosis

Spermogonial stage

aeciospore

Uredinial
stage

Aecial stage

Uredo-
sporesTelial stage

Telio-
spores

Basidio-
spores

 
 

Figure 1.2: Life cycle of Puccinia recondita 
Figure based on: Marsalis & Goldberg (2006), Watkins (2005)  
 

Basic spore states of Puccinia recondita can be categorized in five spore-producing 

structures: spermogonium, aecium, uredinium, telium and basidium (Cummins & 

Hiratsuka 2003). Spermogonia are produced that results from infection by 

basidiospores. Spermogonia as well as aecia, which preceded or accompanied 

spermogonia, are produced on the same haploid thallus. Then unicellular 

aeciospores develop, which produce mycelium upon germination that produces either 

uredinia or telia, but not aecia again. Uredinia is the state that is repeated in the rust 
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life cycle. Urediniaspores produce mycelium when they germinate that gives rise to 

telia and teliospores. Teliospores are able to survive unfavourable environmental 

conditions such as extreme temperatures. Teliospores produce basidia and 

basidiospores upon germination, which allow for another initialisation of the life cycle 

(Cummins & Hiratsuka 2003). Under optimal environmental conditions, heavy rusting 

occurs that causes a loss of infected leaves that reduces the grain filling period and 

results in smaller kernel size (Lipps 2006, Watkins 2005). Dew, light rain, or high 

relative humidity of 100% for at least four hours and temperatures of 13°C to 23°C 

are ideal for rust development (Maclean 1982, Kluge et al. 1999). 

 

An important fact for the prediction, diagnosis and control of powdery mildew and leaf 

rust is that they usually occur at different growth stages due to their different 

demands on environmental conditions: powdery mildew usually occurs earlier in the 

growing season than leaf rust. However, they can also exist at the same time, 

resulting in mixed infections.  

Plant diseases are complex multi-factorial and multi-dimensional phenomena. Their 

spatial and temporal development is influenced by various biotic and abiotic factors 

(Moschini & Pérez 1999). The interaction between host, micro-organism and 

environment is a complex system which is influenced by factors like soil 

characteristics, topography, plant density, host resistance, host growth stage, 

inoculums level, cultural practice, air temperature, humidity etc. (Mount & Slesinski 

1971, Roelfs 1972, Nelson & Campbell 1993, Tubajika et al. 2004, Moschini & Pérez 

1999). Hence, detection, modelling or control of fungal infections in crops is a 

challenge that requires an understanding of each impact factor and their inter-

relationships. 

 

1.3 Remote sensing for stress detection 

According to the characteristics of plant diseases, a site-specific crop management 

requires a high spatial and temporal information density with regard to the status of 

any crop growth-relevant parameter. Traditional field-sampling methods based on 

visual inspections are labour-, cost- and time-intensive and cannot meet 

requirements of Precision Agriculture at all. Innovative sensor techniques, GIS, and 

data processing methods can provide detailed information about field and crop 
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conditions with a high spatial resolution. Satellite-, airborne- or near-range remote 

sensing have the potential to identify field heterogeneities in a non-invasive way 

(Blakeman et al. 2000, Bravo et al. 2004, Kühbauch & Hawlitschka 2003). For the 

detection and mapping of stress factors in crops, sensor-based methods are of 

increasing importance, particularly for the detection of spatiotemporally dynamic 

stress phenomena like plant diseases. A prerequisite is therefore a profound 

knowledge about spectral characteristics of vegetated surfaces and remote sensing 

approaches for vegetation monitoring as well as basic remote sensing and digital 

image analysis techniques. In this thesis, no introduction to these topics is given, 

because many references give excellent overviews about remote sensing of 

vegetation and analysis techniques, e.g. Jensen (2000), Löffler (1994).  

 

In general, there are two different sensing-based approaches for a detection of crop 

stresses: far-range satellite-/airborne sensor systems and near-range sensors that 

acquire data in a scope of application close to the target. West et al. (2003) provided 

a detailed overview of the sensor-based detection of stress. First, each sensor 

system covers a different geographic scale, i.e. satellite imagery covers a larger area 

than near-target sensors. Second, each system has a different resolution scale, i.e. 

the smallest identifiable object in the images is limited by the spatial resolution/pixel 

size of the sensor system (Cao and Lam 1997). Near-range systems thus operate on 

the highest resolution scale and the lowest geographic scale, whereas satellite 

imagery shows reverse characteristics. Airborne sensor systems operate on 

intermediate scales (figure 1.3).  

 

However, the suitability of each sensor system for the detection of plant stresses 

depends primarily on the operational scale of the monitored phenomenon (the scale 

in which the stress operates) and the temporal scale/resolution of the sensor. Hence, 

monitoring of complex biochemical systems such as plant diseases is limited by the 

geographic, resolution and temporal scale of a technical sensor system. For instance, 

Voss (2005) demonstrated the limitations of the resolution scale for a detection of 

crop stresses. Detailed analyses of the operational and temporal scale of plant 

diseases (spatiotemporal dynamics) and the potential of each sensor approach for 

the detection and monitoring of these phenomena are required respectively. 

Knowledge about the impact of diseases on plants obtained by sensor systems at 
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near-range scale can also be valuable for up-scaling processes, i.e. transferability to 

larger scale systems such as satellite remote sensing. An understanding of stress-

dependent causes to the reflection behaviour of plant leaves or entire canopies 

monitored by near-range sensors helps to interpret remote sensing data with lower 

spatial resolution.  

 

Satellite-
sensors
(m-resolution)

Airborne-
sensors
(cm-resolution)

Near-range-
sensors

(mm-resolution)

Satellite-
sensors
(m-resolution)

Airborne-
sensors
(cm-resolution)

Near-range-
sensors

(mm-resolution)

 
Figure 1.3: multiscale sensor approach  

 

Each of the above mentioned stress factors were already analysed by using various 

sensors, with some of the studies revealing the high potential for stress detection with 

remote sensing systems.  

 

Dalal & Henry (1986), for example, derived different soil characteristics using the 

spectral reflectance of soil surfaces which was measured by a spectroradiometer in 

field. The spatial variability of soil and the caused impact of water stress on crops 
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was analysed by Smith et al. (1989), who remotely sensed the thermal emission of 

stands. Furthermore, Mathieu et al. (2003) estimated the moisture and organic 

content of cultivated soils on the basis of radar remote sensing imagery. The 

influence of various soil types on spectral properties of cereals was estimated by 

Verma et al. (2002) with a multispectral vegetation index. 

 

The impact of water stress was described by Jackson et al. (1981) by thermal sensor 

measurements. Water stress causes a reduced evapotranspiration and thus an 

increased temperature of plants (Carter 1991). A data fusion method was developed 

using vegetation indices and measurements of plant temperature (Crop Water Stress 

Index (CWSI)) to estimate evapotranspiration. In addition, Moran et al. (1994) 

presented the Water Deficit Index (WDI) that reduced the impact of soil temperature 

on the CWSI. Recent studies focused on the differentiation of water stress and 

nutrient deficiency (Casa & Jones 2003, Estep et al. 2004). 

 

Nutrient deficiency and weed are the most frequently remotely sensed stress factors 

in crops. Most of the studies identify nutrient deficiency stressed plants by analysing 

reflectance changes in the visible spectrum caused by changed chlorophyll contents 

(Blackmer et al. 1995, Fillela et al. 1995, Hansen & Schjoerring 2003). The potential 

of the Photochemical Reflectance Index (PRI) for the detection of nutrient deficiency 

was analysed by Gamon et al. (1997).  

 

The impact of weeds on crop growth and spatial distribution was intensely assessed 

by remote sensing. In general, there are two approaches to control weed infestations 

by using sensor systems: first, weed mapping (satellite-borne or near-range sensors), 

which is carried out prior to herbicide applications (Gebhardt et al. 2006, Gerhards 

and Oebel 2006), and second, online-/real-time-approaches (near-range sensors). 

Several studies revealed the potential of remote sensing particularly for weeds that 

appear in patches at initial crop growth stages (Benlloch & Rodas 1998). Some 

online-/real-time-systems with mounted sensors already exist that detect weeds in 

front of a tractor, thus allowing for a precise herbicide application in the rear (Ahrens 

1994, Tian et al. 1999, Blasco et al. 1998). 
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Even though airborne-imagery was first used as early as 1929 to detect diseases in 

crops (Taubenhous et al.1929), there are not many remote sensing studies that take 

this stress factor into account. Near-range sensors, on the other hand, are more 

widely applied. Lorenzen & Jensen (1989) differentiated between healthy and 

powdery mildew infected barley leaves by using a spectroradiometer. They observed 

an increased reflectance of infected leaves in the chlorophyll-absorbing region of the 

spectrum. Larsolle & Hamid Muhammed (2007) came to similar conclusions. They 

observed a flattened peak in the green and an increased reflectance in the red along 

with a decreased reflectance in the near-infrared region of the spectrum. Moshou et 

al. (2004, 2006) differentiated healthy, nutrient stressed and yellow rust (stripe rust) 

infected wheat stands by using a spectrograph with a classification accuracy of about 

95%. They developed disease detection algorithms, based on band filtering, data 

normalisation and neural networks. An on-site system for the discrimination of yellow 

rust infected wheat stands by various regression analyses of vegetation indices was 

developed by Huang et al. (2004). West et al. (2003) created a hypothetical optimal 

disease detection system. In these studies, various sensor systems have been used 

in a scope of application close to the target.  

There is also a high potential for disease mapping with satellite-/airborne remote 

sensing data. In 1974, for example, Kanemasu et al. detected diseases in wheat prior 

to the harvest by ratios of ERTS-1 bands. Apan et al. (2004) discriminated sugarcane 

crops which were severely infected by orange rust diseases from non-infected crops 

by using several hyperspectral indices. By applying a linear spectral unmixing 

method for multispectral and hyperspectral airborne data, Du et al. (2004) 

successfully detected citrus pest stress. Jacobi & Kühbauch (2005) distinguished 

between infected and non-infected wheat plots using the Normalized Difference 

Vegetation Index (NDVI). Meanwhile, soybean anomalies caused by iron chlorosis 

were found by Shaw & Kelley (2005) via supervised classification analysis of 

multispectral aerial images.  

Further work is nevertheless needed for a better understanding of the spatiotemporal 

characteristics of plant diseases, to develop detection tools that are applicable for 

multitemporal analyses and the temporal dimension of crop diseases and their 

sensor-based identification has to be analyzed in greater detail. In addition, a 

comparison between the potential of near-range sensor approaches and remote 

sensing has still to be done.  
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1.4 Importance of the temporal dimension of crop diseases 

Besides the spatial dimension, Precision Agriculture also has a temporal dimension, 

as plant stresses – in particular plant diseases – develop dynamically in both 

dimensions. Management actions are precisely adjustable in space and time, 

depending on the location where in-field heterogeneities occur and the date on which 

management actions are feasible and most effective. The number of agrochemical 

applications may thus be reduced and their timing improved. With regard to fungicide 

applications, the identification of temporal similarities and differences between 

different plant diseases is important for a determination of the course of epidemics. It 

can help to predict yield losses (Xu & Ridout 1998, Pethybridge et al. 2005) and allow 

for a pathogen-specific fungicide application.  

 

In addition, the temporal dimension of stressors is of high importance for a sensor-

based detection of plant diseases as fungicide applications are limited to crop growth 

stages (West et al. 2003), the detection-date of crop infections is a crucial and 

restrictive factor. The use of sensor-techniques is still cost-intensive and a more 

profound knowledge about the optimal time of detection (growth stage) and required 

temporal resolution of sensor data is needed. In 1986, Jackson et al. emphasized 

that timeliness, frequency of coverage, and spatial resolution of satellite-based 

sensors are the major constraints for a utilization of these data for farm management 

applications. Timeliness implies the time between data acquisition and data provision 

for the farmer, whereas frequency of coverage describes the temporal resolution of a 

sensor system (repetition rate) that is additionally affected by cloud cover. In the 

meantime, satellite sensor data are available with substantially improved spatial 

resolution in such a way as to enable them to get used for Precision Agriculture. A 

remaining limitation is thus the temporal character of the data, which can be 

overcome by future sensor systems with improved temporal resolution (e.g. 

RapidEye). Declining timeliness and/or decreasing frequency of coverage reduce 

usefulness of data for farmers.  

Multitemporal studies of the spatiotemporal dynamics of crop diseases may provide 

information about these required parameters to avoid temporal over- or under-

sampling. While over-sampling via sensor data would cause higher costs due to 

additional data acquisition and processing, under-sampling may results in a 

reproduction of a pseudo-phenomenon (figure 1.4). This case is called ‘aliasing’ and 
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is a common problem in signal processing (e.g. audio and video) (Flaten & Parendo 

2001). However, aliasing and in particular temporal aliasing is transferable into other 

disciplines. Temporal aliasing may happen whenever a phenomenon is sampled with 

a frequency (fs sample frequency) lower than the maximal frequency of the 

phenomenon (fp phenomenon frequency). Extreme alias occur when the 

phenomenon has a sine curve. An example frequency of a phenomenon, as given in 

figure 1.4 (blue line), that is sampled with the frequency fs (sample dates are 

indicated by vertical lines) results in an alias (red line) that models the actual 

phenomenon incorrectly. Hence, in cases of phenomena like sensor-detected plant 

diseases, infection peaks could be missed and epidemics not accurately reproduced. 

To avoid temporal aliasing caused by under-sampling or inappropriate sensor-sample 

dates, a better understanding of the temporal dimension of plant diseases is 

essential. 
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Figure 1.4: Temporal aliasing (fs < fp) 

 

1.5 Objectives of the thesis and framework for analyses 

Due to the varying impact of stresses, particularly Powdery mildew and leaf rust, on 

main crops in Central Europe, it is important to ecological and economical analyse 

these phenomena in greater detail. Understanding of their spatial and temporal 

characteristics as well as the potential of sensor-based detection methods of these 
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stressors may help to implement a precise stress control system in agricultural 

practices in the future. Due to their agricultural importance, this study primarily 

focuses on the detection of powdery mildew and leaf rust in wheat. It was 

accomplished in the second period of the Research Training Group 722 ‘Information 

Techniques for Precision Plant Protection’ from 2004 until 2007, which is funded by 

the German Research Foundation (DFG).  

During the first period (2001-2004), the remote sensing projects focussed on the 

detection of plant heterogeneities by using multispectral vegetation indices (Jacobi 

2005), and the effect of spatial resolution (resolution scale) of satellite remote 

sensing data on the accuracy of crop stress classification (Voss 2005). The main 

objective during the first period was the determination of the minimal spatial 

resolution required for the discrimination of crop stresses. Recent studies of the 

second period, as described here, analysed the temporal dimension of crop stress 

detection, while the upcoming third period (2007-2010) will aim at assessing an 

optimal spectral resolution of remote sensing data for Precision Agriculture 

applications. Figure 1.5 shows the coordinated focuses within the remote sensing 

projects of the Research Training Group 722. 
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Figure 1.5: coordinated periods of the remote sensing projects of the DFG-

Research Training Group 722 
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In order to shed light on the temporal dimension of leaf rust and powdery mildew, this 

thesis mainly focuses on an analysis of the spatiotemporal dynamics of these 

phenomena, as well as a multitemporal sensor-based detection approach. 
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Figure 1.6: Structure of the thesis with studies presented in chapters 2-7 

 

In a number of analyses and experiments carried out in field and in laboratory, 

various multiscale sensors for the detection of plant diseases were tested. Figure 1.6 

shows the structure of the thesis with the analyses and experiments that were carried 

out. Chapter 2 and 3 conduce to build an important knowledge base for a detailed 

understanding of the spatiotemporal as well as spectral characteristics of the 

phenomenon plant disease. In chapter 4, a comparison was drawn between a 

multispectral and a hyperspectral near-range imaging system, in order to show the 

potential of the sensors for disease detection. Chapter 5 and 6 focus on multispectral 
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remote sensing techniques for disease detection, whereas in chapter 7 airborne 

hyperspectral data was used for the same purpose. These studies are all briefly 

described in the following. 

 

In chapter 2, typical spectral changes of wheat leaves and canopies, caused by 

stress impact as described in the literature, were compared to measurements taken 

in laboratory and field. Hyperspectral imaging data and spectroradiometer 

measurements of leaf rust and powdery mildew infected wheat plants were the basis 

for this study. A spectral mixture analysis (SMA) was applied to spectroradiometer 

measurements in order to derive pure endmembers, which gives information about 

the spectral characteristics of severely infected wheat. 

 

The spatiotemporal dynamics of leaf rust and powdery mildew in wheat were 

analysed in a field experiment (chapter 3) in order to gain a deeper understanding of 

the phenomena and define typical species-dependent characteristics of disease 

spread. Disease severity data as well as other relevant plant parameters were 

collected multitemporally. Spatial dynamics of both diseases were assessed by 

cluster analysis (SADIE, Spatial Analysis by Distance Indices) while temporal 

characteristics (epidemic trend) were assessed by using statistical parameters. 

Thereby, a feature selection procedure determined statistical parameters that are 

relevant for a categorization of disease trends into four classes which are 

characterized by different temporal dynamics. In addition, critical periods for each 

disease were defined to accurately control the epidemics.  

 

A laboratory experiment helped to determine the potential of two different near-range 

sensor systems for multitemporal monitoring of leaf rust infected wheat crops with 

regard to an early detection of infected stands, which is described in chapter 4. A 

comparison between a hyperspectral (120 spectral bands) and a multispectral (3 

spectral bands) imaging system showed the benefits and limitations of each 

approach. 

 

The potential of multispectral remote sensing for a multitemporal analysis of crop 

diseases was analyzed in a field experiment aiming at early detection of crop 

infections (chapter 5). A 6-ha field plot of winter wheat, containing all possible 
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infective stages of the leaf rust and powdery mildew pathogens, was monitored with 

three satellite images with high spatial resolution in order to assess the 

spatiotemporal analysis of the infection dynamics with remote sensing. An image 

classification method using spectral mixture analysis (SMA) results and a vegetation 

index was applied to classify the data into areas showing different levels of disease 

severity. 

 

In chapter 6, simulated endmembers were used for a SMA of spatially high-resolution 

multispectral data in order to detect unspecific crop stresses without the use of any 

ground truth. In order to assess typical reflection changes of crop canopies caused 

by stress impact, four different fields showing apparent characteristics were 

investigated. With the resulting information, simulated endmembers were then 

generated and used for a SMA. The developed method is a simple and beneficial tool 

to identify areas of reduced crop vigour or to quantify site-specific stress impact 

without having knowledge about field conditions. 

 

The last chapter (chapter 7) provides an outlook for the third period of the Research 

Training Group 722 and addressed both the potential of, and differences between, 

hyperspectral and multispectral remote sensing data for early detection of powdery 

mildew in wheat. Optimal endmembers were selected from the images using an 

endmember selection procedure and endmembers were modelled representing pure 

characteristics. Disease severity as observed in field was compared to the fraction 

images of the SMA by regression analyses.  

 

The integration of this thesis in geosciences and Geography results from the key 

questions that are traditionally closely related to these sciences, such as: how is a 

phenomenon distributed in space; how can its pattern be detected; how operate 

phenomena in the environment and how are different phenomena spatially related? 

Neither remote sensing, nor Geographic Information Systems (GIS) are discrete 

sciences, but rather modern tools used by various sciences in order to find solutions 

for these questions (Löffler 1994). One of the first Geographers that ever used 

airborne images for studies of the landscape ecology was Carl Troll in the 1930’s 

(Troll 1966). In the present thesis, these tools were used to analyse the 

spatiotemporal characteristics of the phenomenon plant disease based on 
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geographical methodology and approaches, but it is also related to agricultural 

topics. Precision Agriculture can be seen as a science located in the intersection of 

geosciences and agricultural sciences, where the methodologies from geosciences 

are often applied to monitor agricultural phenomena. Thus, topics of Precision 

Agriculture cause novel subjects and fields of research in Geography closely related 

to remote sensing and GIS (Voss 2005). Jürgens (2000), for instance, published an 

article in a geographic journal that deals with remote sensing approaches in Precision 

Agriculture. In addition, at the Department of Geography of the University of 

Regensburg in Germany a project was realized in 2001, in order to evaluate the 

acceptance of Precision Agriculture (Voss 2005). 

 

Experimental designs, sensors and data 

1.6 Study area and experimental designs of the field studies 

The study areas are located near the cities of Bonn and Cologne in North Rhine-

Westphalia in Germany (figure 1.7).  

 
Figure 1.7: Location of the Study area. Map showing the relief with the river Rhine 

and lakes, a true-colour HyMap scene indicating the landscape structure of the study 

area 
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Typical agricultural units of this region vary between four and nine hectares field size 

with the main crops being wheat, sugar beet, barley and maize. The main test site is 

located at 50°37'N, 6°59'E at an altitude of 175 m ASL and is part of the experimental 

farm ‘Klein-Altendorf’ of the University of Bonn. The annual mean temperature of this 

area is 9.2°C with about 600 mm rainfall and 1534 sun hours per year. The field plot 

to be investigated has a size of six hectares and was chosen because of its flat 

topography in order to avoid complications by interpretation of remote sensing data.  

 

A second test site is located at the experimental farm ‘Dikopshof’ of the University of 

Bonn at 50°48’N, 6°57’E with an altitude of 62 m ASL. Climatic conditions and 

agricultural characteristics very similar to those of the test site ‘Klein-Altendorf’. 

 

In 2005, an experimental field plot was designed at the experimental farm ‘Klein-

Altendorf’ for a detailed analysis of the spatiotemporal dynamics of leaf rust and 

powdery mildew (figure 1.8).  

 
Figure 1.8: experimental design of the investigated field plot in Klein-Altendorf 

in 2005 
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The winter wheat cultivar ‘Chancellor’ that is vulnerable to these pathogens was 

sown in November 2004. The field plot was divided into three sub-areas: While plot 1 

had a width of 45 m (3 tractor lanes with a management width of 15 m), plot 2 had a 

width of 30 m and plot 3 showed a width of at least 120 m. To reduce the presence of 

undesirable stress factors such as nitrogen deficiency or weed infestation, all plots 

were treated uniformly with fertilizers and herbicides.  

 

The three sub-plots received different fungicide applications to ensure a variety of 

disease severity. In order to ensure that at least one area remained disease-free, plot 

1 was treated with fungicides twice (11 May 2005 at BBCH 34 and 09 June 2005 at 

BBCH 57) (the BBCH-scale is a system for a uniform coding of phenologically growth 

stages developed by Zadocks et al. 1974). A mixture of the fungicides – Opus Top 

(BASF, Ludwigshafen, Germany) at a dose rate of 0.8 l ha-1 and Flexity (BASF, 

Ludwigshafen, Germany) at a dose rate of 0.4 l ha-1 – was applied on the first 

application date. For the second application of plot 1, the fungicide Juwel Top (BASF, 

Ludwigshafen, Germany) was used at a dose rate of 1.0 l ha-1. Plot 2 was only 

treated once, with the same fungicides and rates as plot 1 (11 May 2005 at BBCH 

34), to cause a reduced or delayed infection. This analysis focuses on plot 3, the 

largest plot with no fungicides applied so that the fungal infections could spread 

naturally. Without any artificial inoculation of pathogens, powdery mildew and leaf 

rust appeared in the field.  

 

1.7 Data and sensors 

On 10 dates between 21 April 2005 (BBCH 30) and 23 June 2005 (BBCH 73), 

ground truth data were collected at 50 sample points in field. These were defined in a 

GIS prior to the vegetation period. In addition, another four sample points (points 51-

54) representing areas with obvious crop infections were defined during field 

inspections (stratified sampling) and were used for remote sensing analyses only. At 

each sample point, particularly, severity (percentage of infected leaf area) of 

pathogens, growth stage, growth height and DGPS readings were collected. In order 

to accurately define the percentage of vegetation cover, digital images (nadir taken) 

covering an area of about one m2 were acquired at each sample point by a Canon 

PowerShot A95 with a resolution of 5 mega pixels. Vegetation pixels in the images 
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were identified by a supervised image classification procedure that is described 

below. A combine-mounted yield-mapping system provided quantitative information 

about yield distribution. Soil characteristics were investigated by EM38 

measurements of the apparent electrical conductivity (ECa) (Geonics Limited, 

Ontario, Canada), which represents a useful tool to obtain information about soil 

heterogeneity.  

 

Sensor data such as spectroradiometer measurements were taken by an ASD 

FieldSpecPro (Analytical Spectral Devices (ASD), Boulder, Colorado, USA) over the 

whole vegetation period in 2005 at certain sample points. This spectroradiometer has 

a spectral resolution of 1.4 nm and measures in 512 bands in the spectral range of 

350 to 1050 nm. In order to ensure comparability of these multitemporal 

measurements, all spectra were sampled around solar noon, at a maximum of 

possible irradiance (incoming radiation intensity per unit solid angle in Watt per 

steradian per square metre (W sr-1 m-2)), respectively. 

 

Remote sensing data from the spatially high-resolution multispectral QuickBird 

sensor were acquired for both study areas in 2002 and 2005. The sensor has four 

spectral bands in the visible (VIS) and near-infrared (NIR) spectrum with a spatial 

resolution of 2.4 m (center wavelengths: band 1: 495nm, band 2: 560nm, band 3: 

660nm, band 4: 830nm). In addition, a flight campaign from the German Aerospace 

Center (DLR) with the airborne Hyperspectral Mapper (HyMap) sensor was carried 

out on 28 May 2005. The HyMap-system is a whisk-broom scanner with an ax head 

double mirror which acquires 126 spectral bands with a bandwidth of 16nm (in the 

VIS and NIR region) in the spectral range between 450 nm and 2480 nm at a 

nominal spatial resolution of 4.0 m. 

 

In a laboratory experiment, a hyperspectral and a multispectral imaging system were 

used to monitor leaf rust infections in wheat. Hyperspectral data were acquired by the 

SOC-700 (Surface Optics, Corp., San Diego, CA, USA), a portable line-scanning 

push broom imaging system. Spatial and spectral image dimensions were 640 x 640 

pixels with 120 equally distributed bands in the range of 410-910 nm. Spectral 

resolution was about 4 nm by a mean full width at half maximum (FWHM) of 4.55 nm. 

The main components of the sensor system are a pair of folding mirrors, a C-mount 
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lens (Schneider Xenoplan 1.9/35mm) and an imaging spectrometer (IMSpector V9). 

One of the mirrors is rotating to provide scanning. The lens images a column of 

scanned data to a slit of the spectrometer with a width of 25 microns. A ‘row’ of 

imaged points is spread out spectrally along the y-axis and afterwards imaged on to a 

640 x 480 pixel silicon CCD array, with a 12 bit dynamic range. The data is binned by 

4 in the y-dimension with the result of a 640 pixel-row of data. Each data set provides 

640 scans, stored as 16 bit unsigned integer images. Recorded radiometric values 

are convertible to reflectance values by presence of a calibrated reflectance standard 

in the image. The rotating mirror of SOC-700 makes it possible to acquire a dark 

image prior to each measurement, which represents the instrument noise caused by 

the detector or electronics (Rascher et al. 2007). 

 

Multispectral data were acquired using the MS3100 camera (Redlake DuncanTech, 

San Diego, CA, USA). The spatial dimension of images was 1392 x 1040 pixels with 

a spectral dimension of 3 bands in the VIS and NIR. The output was stored as 10 bit 

images. The MS3100 uses a beam splitting prism and three CCD sensors to acquire 

imagery within the 400-1100 nm spectral range. Different band configurations could 

be chosen with a total spectral coverage of 5 bands. Due to three available CCD-

sensors, the system acquires only three bands at once. For this analysis, the ‘CIR’-

configuration with green, red and near-infrared band was chosen. Center wavelength 

of the green band was 550 nm with a FWHM of 40 nm, 660 nm for the red band 

(FWHM 40 nm) and 800 nm for the near-infrared band (FWHM 65 nm). 

 

Figure 1.9 provides an overview of the spatial, spectral and temporal resolution of all 

sensors used in this analysis. Only very high spatial resolution data was used with 

the coarsest resolution of 4 m of the HyMap data. The range of spectral resolution of 

the sensors varied between 3 and 512 spectral bands. The x-, y- and z-values are 

given in brackets for each sensor. 
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Figure 1.9: Spatial, spectral and temporal Resolutions of the used sensor 

systems. Near-range sensors are indicated by an underline. 
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Chapter 2 
 

Spectral responses of wheat plants to fungal infections 

 

2.1 Introduction 

This chapter aims for building a knowledge-base for a detailed understanding of the 

spectral characteristics of the phenomenon plant disease. A detection of crop 

stresses is only possible by detecting symptoms caused by a stressor. The most 

challenging part is to distinguish different stress factors by the spectral characteristics 

of their symptoms, because most stresses cause very similar spectral changes 

(Bauer 1985). A detection of fungal infections in wheat requires profound knowledge 

about changes of reflection behaviour of single leaves or entire canopies affected by 

pathogens. A comprehensive review regarding typical spectral properties of healthy 

vegetation canopies and leaves was provided by Bauer (1985).  

 

Basically, there are typical changes in reflection behaviour of plants caused by 

diseases. In general, pathogens cause a reduction of plant chlorophyll content due to 

necrotic or chlorotic lesions that affect the reflection in the VIS and red-edge region of 

the spectrum (550 nm; 650-720 nm), due to necrotic or chlorotic lesions. Browning 

effects by senescence of infected spots influence the VIS and NIR (680-800 nm) as 

well as the short wavelengths infrared (SWIR) (1400-1600 nm and 1900-2100 nm) 

due to dryness. Regarding the canopy structure, pathogen infection changes the 

canopy density and leaf area, which can be observed in the NIR and cause an 

increased transpiration rate in thermal infrared (TIR) spectrum (8000-14000 nm) 

(Malthus and Madeira 1993, West et al. 2003). In addition, some pathogen species 

show a characteristic compound of pigments at higher infection stages. Due to these 

characteristics, there is a high potential for sensor-based detection of infected crops.  

Lorenzen & Jensen (1989) analysed healthy and powdery mildew infected barley 

leaves using a spectroradiometer and observed an increased reflectance of infected 

leaves in the 498 and 664 nm chlorophyll-absorbing region of the spectrum. Larsolle 

& Hamid Muhammed (2007) came to similar conclusions. They observed a flattened 
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peak in the green, an increased reflectance in the red together with a decreased 

reflectance in the near-infrared region of the spectrum. Sasaki et al. (1998) found 

similar characteristics by analysing spectral reflectance measurements of infected 

cucumber plants on leaf scale. 

 

The objectives of this chapter were (i) to track the multitemporal variability of vital 

wheat canopy reflectance; (ii) to determine the spectral differences between different 

infection stages of wheat at canopy scale in order to compare it to the conclusions of 

previous studies; (iii) to quantify reflectance deviations caused by fungal infections at 

leaf scale and (iv) to derive a pure spectral signature of a 100% powdery mildew 

infected wheat canopy by spectral mixture model applied to spectroradiometer 

measurements. 

 

2.2 Methodology 

Reflectance spectra of the wheat canopy were multitemporal collected in field by an 

ASD FieldSpecPro spectroradiometer from 21 April 2005 (BBCH 30) to 23 June 2005 

(BBCH 73). A calibrated reflectance standard (Spectralon, Labsphere, North Sutton, 

NH, USA) was used as reference prior to each measurement to allow for conversion 

to reflectance values. The sensor head was tripod mounted at a height of 1.5 m 

above ground. In addition, pure soil spectra were collected.  

In order to indicate the multitemporal variation of healthy wheat spectra, data 

collected at sample point 14 (see figure 1.7) was used over the growing season. 

Selected field spectra were also used to demonstrate differences between the 

spectral characteristics of healthy, medium and severely leaf rust infected wheat 

canopies. Therefore, the measured spectra of the sample points 20 (healthy), 47 

(20% infected leaf area) and 25 (40% infected leaf area) taken on 23 June 2005 were 

used exemplarily. All spectra were pre-processed; in particular a Savitzky–Golay filter 

was applied to smooth the data (Savitzky & Golay 1964). In contrast to moving 

average filters, the Savitzky-Golay filter tends to maintain relevant features in the 

spectra. Based on a polynomial regression within a certain interval (in this case 6 

wavelengths) this approach calculates a filtered value at each wavelength (Savitzky 

& Golay 1964). For a more detailed analysis of the spectral differences caused by 

leaf rust, the percentages of differences between healthy and infected spectra were 
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calculated in order to indicate relevant wavelengths. In addition, wheat stands were 

monitored in laboratory by the hyperspectral imaging system SOC-700. Spectra 

indicated characteristics of single infected leaves and were compared to those of 

entire canopies. On the basis of these images, spectra of healthy, infected and 

senescent wheat leaves were obtained. The image acquisition of these data is shown 

figure 4.1 (chapter 4). 

This chapter additionally focussed on the derivation of pure spectral signatures 

(endmembers) of absolute healthy and completely powdery mildew infected wheat 

canopies. Whereas healthy wheat stands can mostly be found in field, completely 

infected stands with 100% infected leaf area are rare or even nonexistent. 

Accessorily, most spectra collected in field – the healthy as well as the infected wheat 

spectra - are influenced by soil fractions, due to common vegetation covers of less 

than 100%. In this case, four different endmembers/components existed in the wheat 

field: healthy wheat, powdery mildew infected wheat, soil and shade. Most collected 

field spectra thus represent a mixture of these endmembers.  

 

A spectral mixture analysis (SMA) assumes that each pixel spectrum is a linear 

combination of finite number of endmembers. The spectrum of an endmember ideally 

represents the signature of a pure component (100% of the signal). A pixel 

containing multiple endmembers can be mathematically described using a linear 

spectral mixing model (Adams et al. 1986). If the spectra of all pure endmembers that 

are contained in a pixel spectrum are known, the fraction of each endmember in a 

pixel can be modelled for each wavelength by the following equation (Adams et al. 

1986):  

∑
=

+∗=
n

j
ijiji EFRDN

1
)(

                                                                  (1) 

where, 

i = band 

j = number of endmembers 

DNi = reflectance value of a pixel in band i 

Rij = known reflectance of the endmember j in band i 

Fj = pixel fraction of the endmember j 

Ei = error for band i 
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SMAs are usually applied to remote sensing image data, in order to estimate the 

fraction of certain components/endmembers within each pixel (abundance). However, 

a spectrum measured with a spectroradiometer can be considered as one pixel and 

thus a spectral mixture analysis was applied to this kind of data. For the investigated 

wheat field and the collected spectra, the exclusive presence of the four mentioned 

components could be ensured, documented by digital images taken at the same 

locations as the spectra. On 28 May 2005, a high vegetation cover was dominant and 

thus only shaded soil appeared. Therefore, spectra of pure shaded soil were 

collected. To derive pure endmember of healthy wheat and infected wheat, spectra 

taken at two sample points were used. Whereas at sample point 42 – where no 

fungal infection occurred – a spectrum of healthy wheat was collected, at sample 

point 51 a spectrum of powdery mildew infected wheat with a disease severity of 40% 

was measured. These two sample points were chosen due to similar vegetation 

cover fractions of over 90%.  

The soil fraction of each spectrum was determined by a supervised classification of 

the digital images using the ENVI 4.2 software (Research Systems Inc., Boulder, CO, 

USA). A maximum likelihood classifier used manually chosen regions of interests 

(representing soil and vegetation) to classify the images into the class soil and 

vegetation. The vegetation and soil fractions were calculated by image statistics 

respectively. In order to reduce an error caused by larger viewing angles, only the 

central parts of the classified images were used. Figure 2.1 shows the process of 

derivation of the vegetation fraction using the nadir taken digital images. 

 

 
Figure 2.1: Derivation of the vegetation fractions at the sample points. 

Red indicates vegetation and green represents soil 
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Vegetation and soil fractions at the two sample points as well as the pure 

endmember of shaded soil were known parameters. Shade corresponds to 

brightness and different shade fractions can thus be simply adjusted by multiplying a 

coefficient to spectra if the shade fraction is known. However, in this case shade 

fraction is at both sample points very similar and occurs in healthy and in infected 

stands in almost the same manner and was therefore not considered in the spectral 

mixture analysis. Due to the fact that the presence of unknown components could be 

excluded, the error coefficient in equation 1, which accounts for unmodelled 

reflectance and represents unknown endmembers, was in this case negligible (Ei=0).  

 

In order to derive a pure endmember of a completely (100%) powdery mildew 

infected wheat canopy with spectroradiometer data, equation 1 can be re-arranged. 

Since the pure endmember of shaded soil is known, the pure endmember of healthy 

wheat can be derived by unmixing the soil fraction from the spectra taken at sample 

point 42. This is a prerequisite for the unmixing of pure infected endmember. The 

following equation was applied to each band of the spectroradiometer data, where 

the coefficients represent vegetation and soil fraction of the spectra: 

 

08.0*92.0*
iii soilhph RDNDN +=                                                 (2) 

where, 

DNphi = reflectance of the pure endmember of healthy wheat of band i 

DNhi = reflectance of the spectrum of healthy wheat collected at sample point 42 of 

band i 

Rsoili = reflectance of the known pure endmember of shaded soil of band i 

 

With the known disease severity observed in field at sample point 51 (40% infected 

leaf area), the pure endmember of completely powdery mildew infected wheat was 

modelled. For each band the following equation was applied, where the coefficients 

of the first term represent vegetation and soil fraction of the spectra and the 

coefficient in the last term represents the fraction of healthy wheat (observed 40% 

powdery mildew severity). This coefficient is less than 0.6 due to a soil fraction of 4%: 

 

 



28 

)59.0*()04.0*96.0*(
iiii phsoilpmppm DNRDNDN −+=     (3) 

 

where, 

DNppmi = reflectance of the pure endmember of completely powdery mildew infected 

wheat of band i 

DNpmi = reflectance of 40% powdery mildew infected wheat collected at sample point 

51 of band i 

 

2.3 Results 

Canopy spectra of healthy wheat, multitemporal collected at sample point 14, showed 

a high variation over the growing season (figure 2.2). In particular the green region of 

the VIS spectrum and the NIR spectrum showed the widest differences of up to 15% 

reflectance.  

 

 
Figure 2.2: Multitemporal reflectance variation of a healthy 

wheat canopy 

 

This is caused by a changing chlorophyll content of the plants and by an increase of 

biomass/changing vegetation cover fraction and leaf area index (LAI). Whereas at the 

beginning of the growing season green and NIR reflectance increase due to an 

increase of biomass and a decrease of soil fraction (development of leaves), the 

reflectance in these regions decrease at higher growth stages due to maturation of 
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the wheat and a changing canopy structure (development of fruit). In addition, there 

is a slight variability due to changing factors such as sun azimuth etc. at dates when 

spectra were collected. 

 

Figures 2.3a and 2.3b demonstrate the differences between healthy and leaf rust 

infected wheat canopies. Obviously, the NIR reflectance is more affected by the leaf 

rust infection as the VIS due to browning effects of infected spots that corresponds to 

senescence of leaves. A difference also occurred in the red-edge region, where the 

more healthy canopies show a steeper shape. A more detailed inspection of the 

changes in the VIS (figure 2.3b) shows that the difference between the peak in the 

green (550 nm) and the trough in the red (680 nm) decreases when plants are 

infected by leaf rust. That indicates a decreased chlorophyll content as chlorophyll 

usually reflects the green portion of incoming light and absorbs the red portion.  

 

 
Figure 2.3a: Reflectance curves of healthy and leaf rust infected 

wheat canopies as measured by a spectroradiometer at sample points 20, 47 

and 25 respectively, on 23 June 2005 
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Figure 2.3b: Reflectance curves of healthy and leaf rust infected 

wheat canopies in the VIS as measured by a spectroradiometer at sample 

points 20, 47 and 25 respectively, on 23 June 2005 

 

Considering the percentage differences between healthy and infected stands, 

greatest differences occur in the VIS, particularly in the blue region of the spectrum 

with up to 39% for the strong infected spectrum (figure 2.4). However, the blue region 

is not playing a major role for vegetation analyses and is often influenced by noise or 

brightness due to a weak signal. Leaf rust infections cause lower reflectance values 

over almost the entire range. A more systematic offset is only obvious from about 700 

nm. 

 

 
Figure 2.4: reflectance differences (%) between healthy and infected wheat 

canopies as derived from spectroradiometer measurements taken on 23 June 2005 
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The comparison of spectral signatures of healthy, infected and senescent wheat at 

leaf scale, which were acquired by the hyperspectral imaging system SOC-700, 

showed similar results for the red and NIR spectrum (figure 2.5). The more senescent 

leaves, regardless of the reason for senescence, show higher reflectance values in 

the red and a strong decrease of the NIR reflectance. In contrast to the spectra 

representing entire canopies, an increased reflection in the green region of the 

spectrum was found for the leaf rust infected leaf. Considering the percentage 

differences between healthy and infected wheat leaves (figure 2.6), similar 

characteristics of the curve shape occurred as for entire canopies, whereas a wider 

range of differences was obvious. Widest differences showed negative 

characteristics with values of -112% for the senescent wheat leaf and -65% for the 

infected wheat leaf with a trough in the red spectrum. The differences between 

healthy and senescent wheat leaves showed similar shapes as canopies, but with 

more distinct characteristics.  

 

 
Figure 2.5: Reflectance curves of healthy, leaf rust infected and 

senescent wheat leaves, derived from SOC-700 images taken in laboratory 
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Figure 2.6: reflectance differences (%) between healthy, infected and 

senescent wheat leaves as derived from SOC-700 images taken in laboratory 

 

Figure 2.7 displays the results of the spectral mixture model applied to the collected 

field-spectra in order to derive a pure endmember of completely powdery mildew 

infected wheat. Whereas a pure soil spectrum could be collected in field, the 

endmember healthy wheat was derived using equation 2. The endmember 

representing wheat with 40% severity of powdery mildew corresponds to the result of 

the first term of equation 3. The red spectrum represents pure completely powdery 

mildew infected wheat as a result of equation 3. This endmember has a similar shape 

as expected from a senescent stand, except the lower red reflectance. In all modelled 

endmembers a similar portion of shade is still included. 

 

 
Figure 2.7: Spectral signatures of pure endmembers as collected with a 

spectroradiometer on 28 May 2005 and modelled 
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2.4 Discussion and conclusion 

A high multitemporal variation of reflectance spectra of a healthy wheat canopy, 

collected over the entire growing season, was found. Plant development causes 

manifold changes of plant’s spectral responses at certain wavelengths. Particularly 

changing canopy structure, biomass, LAI and soil fraction as well as maturation 

influences the spectra. Even though all spectra were collected at similar 

environmental conditions, there is a variance caused by different sun/target/sensor 

geometry. This might be a critical factor for each multitemporal analysis using 

spectral measurements, especially in cases if this variation exceeds the spectral 

difference caused by a factor to be observed. Hence, using multitemporal collected 

spectra for multitemporal analyses of crop parameters like stress effects is in some 

cases critical. Analysis comparing spectra taken at the same date or by a near-range 

imaging system - that allows for the separation of the vegetation fraction – are 

generally more suitable. Remote sensing data with a coarser resolution or 

spectroradiometer measurements covering a larger area, which causes an averaging 

of spatially high dynamical parameters such as canopy structure etc., are also 

preferable for multitemporal monitoring of crop parameters. 

Spectral differences between healthy and leaf rust infected wheat canopies and 

leaves found in this study basically correspond to characteristics showed in previous 

studies that are mentioned above, e.g. Lorenzen & Jensen (1989), Malthus and 

Madeira (1993), West et al. (2003). Only the higher reflectance values in the green 

region of the spectrum found for the leaf rust infected wheat at leaf scale differs from 

previously assessed characteristics. It could be demonstrated that a more systematic 

offset exists in the NIR spectrum. This might be an important fact for further analyses, 

modelling and possible simulations of endmembers as exemplified in chapter 6. 

 

The exemplarily modelling of a pure healthy and a completely powdery mildew 

infected wheat endmember showed promising results. Only in the red spectrum of 

the 100% infected wheat endmember - under consideration of the effects of 

infections to the spectral characteristics demonstrated above - higher reflectance 

values were expected. Even though completely infected wheat canopies rarely 

occurs in natural environments – a comparison to actual measured spectra was 

therefore not possible – the knowledge about their spectral characteristics can play 

an important role for spectral mixture analyses of image data. The modelled 
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spectrum shows similar characteristics like a senescent wheat canopy, but with a 

slight red-edge. Nevertheless, modelling of pure endmembers is only an 

approximation. Basically, this approach of a linear spectral unmixing of field spectra 

might be a suitable method for a derivation of pure endmembers for a spectral 

mixture analysis of hyperspectral data as proved in chapter 7.  
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Chapter 3 
 

Geo-statistical analysis of the spatiotemporal dynamics of powdery 

mildew and leaf rust in wheat 

 

3.1 Introduction 

A multitemporal remote sensing-based analysis of fungal crop diseases, such as, for 

instance, described in chapters 5, require a profound knowledge about the 

spatiotemporal characteristics of the phenomenon. This chapter therefore focus on a 

geo-statistical analysis of the dynamics of powdery mildew (Blumeria graminis) and 

leaf rust (Puccinia recondita), to aim for a knowledge-base that is helpful to interpret 

the results from remote sensing studies.  

Fungal crop diseases often appear in patches and thus the application of pesticides 

on those areas where the stressors occur may be highly effective (Oerke et al. 1994). 

However, wind dispersed pathogens such as powdery mildew (Blumeria graminis) 

and leaf rust (Puccinia recondita) pose the greatest problem to site-specific fungicide 

application because the produced spores may spread over varying distances (West & 

McCartney 2002). Spraying of visible disease patches early in an epidemic would 

only be effective for diseases with low epidemic growth rates and thus an estimation 

of the area of latent infections of diseases with higher growth rates is required (West 

et al. 2003). In order to realize effective site-specific disease control and to reduce 

the number and improve timing of fungicide applications, a more profound knowledge 

about the spatial and temporal variability of each pathogen and its pattern is 

fundamental (Pethybridge et al. 2005). The identification of similarities and 

differences between epidemics is important for a determination of the course of 

epidemics and can help to predict yield losses (Xu & Ridout 1998, Pethybridge et al. 

2005). 

 

Pattern of plant disease epidemics are influenced by biotic and abiotic factors and 

reflect the interaction between host, micro-organism and environment (Mount & 

Slesinski 1971). Depending on the pathogen species, soil characteristics, 
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topography, plant density, host resistance, host growth stage, amount of existing 

spores, temperature, humidity etc. affect the spatial spread of plant diseases (Mount 

& Slesinski 1971, Roelfs 1972, Nelson & Campbell 1993, Tubajika et al. 2004). 

Moschini & Pérez (1999) analysed the influence of planting date, host resistance and 

weather variables to leaf rust development in multiple wheat fields and developed an 

empirical predictive model for general leaf rust occurrence in that region. Modelling of 

such complex multi-factorial and multi-dimensional systems at field scale requires 

detailed understanding of these interactions in a higher spatial resolution. More 

detailed studies that focus on the spatiotemporal dynamics of epidemics are 

therefore needed. 

 

For more effective disease control the optimal timing of management actions is 

important. Several studies therefore focused on the first occurrence and the temporal 

development of plant diseases. Pethybridge et al. (2005) described the 

spatiotemporal dynamics of Phoma ligulicola in Tasmanian Pyrethrum fields and 

defined critical infection periods in order to provide information for accurate 

management of epidemics. Shah et al. (2001) determined foci of a fungal foliar and 

glume disease in wheat caused by Stagonospora nodorum and analysed their 

spread. They differentiated primary and secondary spread as disease management 

strategies could be adjusted. A multitemporal analysis of disease severity of septoria 

leaf spot (Septoria lycopersici) in tomato rows was done by Parker et al. (1997). They 

pointed out that additional information about epidemic development is needed to 

ascertain the date when fungicide applications are most effective. Analytical 

modelling of epidemics executed by Yang & TeBest (1992) showed that aggregated 

pattern of primary infections will slow down the rate of disease development. More 

uniform patterns at this stage showed higher rates of disease incidence.  

As mentioned in the introduction, multitemporal studies of the spatiotemporal 

dynamics of crop diseases may additionally provide information about optimal 

disease detection dates for sensor approaches. Hence, the topic that is described in 

chapter 1.4, i.e. the importance of the temporal dimension of crop diseases, was 

analysed in greater detail. 

 

This chapter focus on the spatiotemporal dynamics of powdery mildew and leaf rust 

in wheat stands in order to (i) describe and discriminate the spatial spread of these 
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diseases, (ii) to assess their temporal dynamic/stability, (iii) to find measures that are 

suitable to monitor epidemics, (iv) to highlight critical infection periods that may help 

to find optimal disease detection/fungicide application dates and (v) to quantify yield 

losses they cause. 

 

3.2 Methodology 

In-field collected data of the field plot as described in chapter 1.6 were used for this 

analysis. In particular severity (percentage of infected leaf area) of each pathogen, 

growth stage, growth height and percentage of vegetation cover that were collected 

at 10 dates from 21 April 2005 (BBCH 30) until 23 June 2005 (BBCH 73) at 50 

sample points were further analysed. For the derivation of the percentage of 

vegetation cover, an image classification of in-field/terrestrial taken images as 

described in chapter 2.2 was applied. Additionally, a combine-mounted yield-

mapping-system provided quantitative information about yield distribution. Soil 

characteristics were investigated by EM38 measurements of the apparent electrical 

conductivity (ECa) (Geonics Limited, Ontario, Canada). Neudecker et al. (2001) 

noted that generally low ECa-values are typical for sandy soils (5-15 mS m-1) and 

higher values (30-60 mS m-1) represent more clayey soils with intermediate ranges 

typical for loamy soils. The EM38 measurements of the field plot showed only slight 

variability of the apparent electrical conductivity (ECa). About 92% of the measured 

values ranged between 20-30 mS m-1 indicating a soil texture of loamy silt. Hence, 

due to the minimization of other stress variables by adequate treatments and the 

indicated homogeneous soil conditions, it could be assumed that the spread of the 

pathogens was only marginally affected by other stress factors. 

 

3.2.1 Analysis of the spatial dynamics of powdery mildew and leaf rust 

In order to analyse the spatial pattern of the diseases, the Spatial Analysis by 

Distance Indices (SADIE) methodology introduced by Perry (1995) was applied to the 

in-field collected disease severity data. Particularly in plant pathology, SADIE is now 

being used more frequently for analysing disease patterns (Xu & Madden, 2004). 

Detailed descriptions of SADIE have been presented in previous studies (Perry 1995, 

Perry 1998, Perry et al. 1999, Perry & Dixon 2002). In addition, SADIE has been 
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applied successfully in the past to analyse spatial distributions of field pests like 

insects, diseases and weeds (Thomas et al. 2001, Warner et al. 2003, Blackshaw & 

Vernon 2006, Shah et al. 2001, Pethybridge & Turechek 2003, Pethybridge et al. 

2005, Winder et al. 2001). A brief explanation of this method is given here. 

 

A so-called transportation algorithm first determines the minimum total distance Dc 

that 2-dimensional spatially referenced data values c need to move in order to obtain 

a ‘regular’ arrangement, called ‘distance to regularity’. This observed Dc is compared 

with several calculated Dc obtained by randomizations that use actually existing 

values. The observed Dc is compared with its distribution under the null hypothesis of 

randomness. The ratio of the observed and the mean Dc of the randomizations give 

the index of aggregation Ia that indicates the degree of spatial aggregation and allows 

for a comparison between different data sets. The approach thus provides an overall 

measure of spatial aggregation data sets with spatially referenced space. Values of 

Ia>1 thereby indicate aggregated pattern in data sets. In addition to this aggregation 

measurement of a complete data set, SADIE aims for the more detailed identification 

and measurement of clusters in spatial data and provides a cluster index v for each 

sample point, giving the degree of affiliation to a cluster. This cluster index based on 

the ‘distance to regularity’ method applied to each unit. The spatial arrangement and 

density of values in the data is analyzed by executing different randomizations. This 

allows an index value giving the degree of clustering at the sample location, which is 

independent of the original observed value. It is distinguished between two types of 

clusters; (i) patches (vi) constitute neighbourhoods of relatively high values that are 

larger than the sample mean m and (ii) gaps (vj) are distinguished by 

neighbourhoods of relatively low values that are less than m. For random 

arrangements of the values c, the expectation of vi is 1 and a sample point that is part 

of a patch is indicated by vi>1, whereas the expectation of vj is -1 and a sample point 

belonging to a gap has an index value vj<-1, respectively (Perry 1995, 1998). In 

epidemiology, a cluster is defined as a number of diseased plants grouped together 

(Nelson 1996). 

Results of SADIE give cluster index values for each sample point and date, which 

were interpolated applying the kriging technique subsequently. For the interpolation, 

the software ArcGIS 9.0 (ESRI, Redlands, CA, USA) was used and the cluster 

indices were contoured (by isolines of same cluster index value) and visualized.  
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3.2.2 Analysis of the temporal dynamics of powdery mildew and leaf rust 

An analysis of the temporal dynamic of epidemics gives information about the 

occurrence of diseases, their progress and possible trends. It can help to discriminate 

different diseases due to typical disease courses, and thus allow for a more accurate 

disease management. In addition to the temporal dynamic of diseases, the temporal 

stability of diseases is an important factor. The longer the disease impact the plant, 

the less their yield. The temporal disease stability thus indicates their effect on the 

yield as well as possible regeneration of infected plants.  

Xu & Ridout (1998) emphasized that the most important parameter to describe the 

temporal progress of an epidemic is the growth rate of the disease. However, in order 

to describe the temporal dynamics more precisely, additional parameters are 

required that describe all characteristics of an epidemic. For multidimensional 

systems such as disease patterns, more than one parameter or statistics is needed 

to adequately represent the system (Xu & Madden 2003). 

Following statistical parameters were calculated for the in-field collected 

multitemporal disease severity curves for each sample point (50) and two diseases: 

mean, standard deviation, coefficient of variation, root-mean-square variation, total 

variation, mean total variation, mean of absolute deviations from the linear regression 

(Bahrenberg et al. 1999) and a specially created parameter, the relative number of 

phenomenon’s frequency-curve intersections of the mean, which gives information 

how often a disease-curve intersects the mean (equation 4 – 11). 
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Coefficient of variation 
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Root-mean-square variation; di-1
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Relative number of disease-curve intersections of the mean (cmi)  
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A posterior assessment of the 100 severity curves and the assignment to 4 

predefined categories that describe their temporal characteristics was made. The first 

class ‘stable’ characterizes sample points with temporally constant disease severity 

values. The class ‘dynamic (low)’ represents fluctuating (dynamic) severity curves 

with lower rates and the class ‘dynamic (high)’ represents curves showing same 
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characteristics with higher infection rates. Disease severity curves that show strongly 

increasing trends were assigned to class ‘increasing’. In order to select those 

statistical parameters that are relevant to classify disease severity curves into these 

classes, a feature selection procedure was performed using the decision tree 

software ‘see5’ (RuleQuest Research Pty Ltd, NSW, Australia). The decision tree 

learning algorithm is a commercial decision tree and rule induction engine developed 

by Quinlan (1993). The ‘C4.5’/’C5.0’ algorithms clearly indicated which parameters 

are important for a classification. The input for this procedure was a training data set 

containing the 8 above mentioned statistical parameters for each of the 100 manually 

categorized multitemporal disease curves (50 for each disease).  

 

3.2.3 Analysis of the spatiotemporal dynamics of powdery mildew and leaf rust 

For spatiotemporal analyses of the disease spread, the spatial development of 

disease patches that were detected by SADIE was observed (size etc.). In order to 

investigate the spatial dynamics of the diseases only the identified patches were 

further analysed, since gaps are characterized by low values, i.e. healthy plant areas. 

By applying a threshold to the interpolated cluster indices (=1) patches were selected 

that correspond to areas showing high disease severity. In order to analyse their 

spatiotemporal dynamics, their size (area) and their centroids were calculated and 

monitored multitemporally. 

 

3.3 Results 

Highest yield with a mean of 8.38 t ha-1 was found for plot 1 that was treated by 

fungicides two times, whereas the one time treated plot 2 had a reduced yield with a 

mean of 7.07 t ha-1 (figure 3.1). The untreated plot 3 showed only low yield (a 

reduced yield of 2.2 t ha-1 in comparison to plot 1) caused by a strong infection of 

wheat crops with a mean of 6.18 t ha-1. Lowest yield was observed along a 15 m 

wide stripe along the creek in the whole eastern part of the sample plot as well as 

along the south-western tip, because these areas were never treated by any 

agrochemicals.   
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Figure 3.1: Kriging-interpolated yield distribution of the 3 differently 

fungicide treated winter wheat plots for 2005 as detected by the 

combine-mounted yield mapping system 

 

Whereas growth height showed a monotonous increase (figure 3.2a), the percentage 

of vegetation cover, as derived from nadir taken images, showed a more fluctuating 

trend (figure 3.2b). At growth stage BBCH 31, when tillering was already completed, 

wheat started to grow (growth height increased), which caused a lower vegetation 

cover fraction. Vegetation cover increased by the development of more wheat leaves 

from BBCH 34. At higher growth stages (BBCH 41) this trend reversed, due to a 

strong increase of wheat leaf rust severity in plot 3 as well as maturation at higher 

growth stages. Particularly in the fungicide untreated plot 3, the strong leaf rust 

infection of the wheat already affected the canopy structure that caused significant 

decreasing vegetation cover fractions. 
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Figure 3.2a/b: Boxplots (median, quartiles and outliers) showing the development 

of the crop canopy. Figure 3.2a represents growth heights (cm) measured at 

50 sample points for each sampling date; figure 3.2b shows the percentage 

vegetation cover as derived by classification of the images taken at the same 

locations 

 

3.3.1 Spatial dynamics of powdery mildew and leaf rust 

SADIE results showed that both diseases occurred in patches if they show critical 

disease severity rates. The results for leaf rust are displayed in figure 3.3. The 

contours represent the cluster indices (patches >1 and gaps <-1) as detected by the 

SADIE algorithm, the graduated points symbolize the in-field observed disease 

severity and the grey-scale image gives the mean cluster index of all dates. Due to 

the fact that leaf rust occurred at BBCH 34, cluster indices could not be calculated for 

prior dates. Through growth stage BBCH 45 no leaf rust patches were identified, due 

to very low infection rates observed. With BBCH 45 cluster index scored values 

greater than 1 that are defined to be part of a patch. Two patches were identified at 

BBCH 57 and one clear patch was found for BBCH 61 and 73, with extreme disease 

severity rates up to 70%. Low mean cluster index values that were particularly found 

in plots 1 and 2 indicate the effectiveness of the fungicide applications. In addition, in 

some parts of the fungicide untreated plot 3 low mean cluster index values are 

obvious as well, resulting from prevailing gaps.  

 

The spatial pattern of powdery mildew infection showed different characteristics 

(figure 3.4). Whereas no leaf rust infection occurred at lower growth stages, even at 
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BBCH 30 and 31 large powdery mildew patches were identified by SADIE in the 

southern part of plot 3. At BBCH 33, these patches disappeared and a small patch in 

the northern part occurred. No patch was found at BBCH 34 and at BBCH 37 and 41 

only patches with lower cluster indices (less than 1.5) were identified. A new powdery 

mildew patch emerged at BBCH 45 that grew through BBCH 61 and abate until 

BBCH 73. In contrast to the leaf rust severity, powdery mildew rates were generally 

lower with a maximum of 30% infected leaf area at BBCH 31 and 57. Mean powdery 

mildew cluster indices reveal that even in the fungicide treated plots disease patches 

occurred. Similar to the leaf rust results, an area in the eastern part of untreated plot 

3 was identified, characterized by low cluster index values, where disease patches 

never occurred. 
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Figure 3.3: Maps display the interpolated and contoured leaf rust cluster 

index for each observation date that represents patches and gaps as identified by 

SADIE. Graduated points symbolize the in-field observed disease severity and grey-

scale images give the mean cluster index of all dates 

 

Figure 3.4 (next page): Maps display the interpolated and contoured powdery 

mildew cluster index for each observation date that represents patches and 

gaps as identified by SADIE. Graduated points symbolize the in-field observed 

disease severity and grey-scale images give the mean cluster index of all dates 
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3.3.2 Temporal dynamics of powdery mildew and leaf rust 

Figures 3.5a-f display the temporal progress of leaf rust and powdery mildew 

epidemics from BBCH 30 until BBCH 73 for each plot. In plot 1 and 2, severe leaf 

rust infection could be avoided by fungicide treatments. Even in the single fungicide 

treated plot 2, only leaf rust infection rates less than 10% infected leaf area were 

observed. Leaf rust infections occurred late in the season and an exponential 

increase of infection rates was observed in plot 3 from BBCH 41. The infection rate 

increased rapidly from BBCH 61 with maximum infection rates of 70% infected leaf 

area. In contrast, powdery mildew occurred early in the season. Even at BBCH 30, 

25% infected leaf area was observed in some parts of plot 3. In untreated plot 3, a 

more dynamic progress of the powdery mildew epidemic was obvious, i.e., powdery 

mildew severity fluctuated throughout the season.  

 

 
Figure 3.5a-f: Boxplots (median, quartiles and outliers) indicating the temporal 

development of leaf rust and powdery mildew severity in each plot 

 

In order to assess typical trends, all disease severity curves of the 50 sample points 

were categorized into four classes of different temporal dynamics that are described 

above: ‘stable’, ‘dynamic (low)’, ‘dynamic (high)’ and ‘increasing’. For leaf rust, the 

temporal dynamics at 4 sample points were categorized as dynamic with low 
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infection rates (‘dynamic (low)’) and at 3 sample points curves were defined as 

dynamic with high infection rates (‘dynamic (high)’). 11 disease curves were 

categorized as ‘stable’, whereas 32 of 50 leaf rust severity curves showed an 

‘increasing’ trend. For powdery mildew, the temporal dynamic at 23 sample points 

were categorized as ‘dynamic (low)’ and 10 were categorized as ‘dynamic (high)’, 

whereas 9 were localized in plot 3. The temporal disease dynamics at 17 sample 

points were categorized as ‘stable’, no ‘increasing’ curves were found for powdery 

mildew. Thus the temporal progress of powdery mildew followed generally a more 

dynamic trend than the epidemics of leaf rust.  

In order to determine only relevant description parameters for a classification of 

temporal disease curves in these four classes, 8 statistical parameters (equations 4-

11) were calculated for each multitemporal disease curve, which were the input for 

the applied feature selection with the software ‘see5’. The result showed that only the 

following 5 of the 8 statistical parameters were relevant to discriminate 4 classes of 

temporal disease dynamics (sorted by their importance):  

 

1. Relative number of disease-curve intersections of the mean 

2. Total variation 

3. Mean of absolute deviations from the linear regression 

4. Standard deviation 

5. Coefficient of variation 

 

The mean, mean total variation and root-mean-square variation could not be 

identified as relevant parameters for this classification. By the use of the selected 

statistical parameters, a detailed description and classification of multitemporal 

disease severity data is possible.  

 

3.3.3 Spatiotemporal dynamics of powdery mildew and leaf rust 

Similar to the temporal development of powdery mildew and leaf rust severity as 

shown in figures 3.5a-f, the trend of the percentage number of infections at sample 

points in fungicide untreated plot 3 developed (figure 3.6). Whereas powdery mildew 

infections were found at 85% of all sample points for BBCH 30, no leaf rust infections 

were found until BBCH 34. Leaf rust infections spatially spread continuously while the 
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number of locations with powdery mildew infections varied and declined from BBCH 

57. The opposite directions of these trends at higher growth stages – and in this case 

particularly higher leaf rust infection rates – indicate possible interdependencies. 

 

 
Figure 3.6: Percentage number of infections found at sample points in 

fungicide untreated plot 3 

 

Disease patches as identified by SADIE (cluster indices >1) were further analysed in 

order to ascertain spatiotemporal trends for each pathogen. Therefore, the number of 

patches, the total patch size in hectares, the maximal cluster index and the patch 

centroids were determined. Figure 3.7 and 3.8 show the courses of leaf rust and 

powdery mildew patch characteristics. The maximal number of leaf rust patches 

occurred at BBCH 57, maximal number of powdery mildew patches occurred at 

BBCH 45. Similar to the temporal characteristics of powdery mildew epidemic, the 

dynamics of the spatial dimension of this disease is higher than those of leaf rust. 

Powdery mildew patches occurred earlier in the season, which collapsed and rebuild 

over the season. Nevertheless, some powdery mildew infections were observed at 

BBCH 34, but they did not appear in patches. The courses of the total patch size and 

maximal cluster index were similar in both cases with two peaks for powdery mildew 

at BBCH 31 and 61. The mean total patch size of both diseases was similar, by slight 

higher values for powdery mildew.  
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Figure 3.7: Courses of disease patch characteristics for leaf rust 

 

 
Figure 3.8: Courses of disease patch characteristics for Powdery 

Mildew 

 

The move of the calculated centroids of each patch was tracked, in order to extract 

general trajectories of disease spread. The centroids were assumed to be a 

representative measure for the patch position because patches exhibited a compact 

shape with high circularity. Only those patches were monitored, which could be found 

at several dates, i.e. patches that occurred only at one date were not considered and 

patches that merged were separately tracked before merging and after merging. The 

general move of powdery mildew patch centroids showed a direction that was 

diagonal to the seeding row (drilling direction), which corresponds to the spatial 
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distribution of the mean cluster index that is displayed in figure 3.4. In contrast, leaf 

rust patch centroids moved nearly parallel to the seeding rows with a deviation of 

only 0.7°. 

 

3.4 Discussion and conclusion 

Plant diseases develop dynamically in space and time. These systems have – 

depending on their spatiotemporal characteristics – different impacts on the host and 

yield. In this analysis, these diseases caused a reduced yield of 2.2 t ha-1 in 

fungicide-untreated plot 3. In plot 2, disease severity, in particular leaf rust severity, 

could be reduced by only one fungicide treatment per season, which caused higher 

yields. Thus, by reducing the number of fungicide treatments to one per season, 

severe infections could be avoided in this case. The progress of the epidemics 

implies that the effectiveness of treatments could be improved by an optimal timing of 

disease control actions. 

 

For powdery mildew and leaf rust in wheat, general differences were found in their 

spatial as well as in their temporal dimension. At BBCH 45, the first leaf rust patch 

was identified by SADIE. This patch was strongly developed and spatially stable, 

which caused high mean cluster indices at this location. The late occurrence of leaf 

rust - in comparison to powdery mildew - was already observed by Everts et al. 

(2001) and they determined that leaf rust had a relatively greater impact on yield 

quality. In contrast, powdery mildew patches that occurred early in the season were 

spatially more dynamic. During the observation period, some developed patches 

disappeared and some new patches grew at different locations. Even though 

powdery mildew severity rates up to 10% were observed at BBCH 34, no patch was 

existent. In addition, the movement of powdery mildew patches was more dynamic 

than those of leaf rust. While the dominant spread direction of powdery mildew was 

diagonal to the seeding row, leaf rust patches moved nearly parallel.  

 

The higher spatial dynamics of powdery mildew was strongly associated with their 

high temporal dynamics. In some areas powdery mildew infected wheat recovered 

from infections and disease patches disappeared. The temporal dynamics of 

powdery mildew was much higher than those of leaf rust. Higher maximal disease 
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severity rates of 70% infected leaf area were observed for leaf rust. However, the 

overall impact of powdery mildew on the hosts (but not necessarily on the yield), with 

maximal 30% infected leaf area, might be higher because of the longer period in 

which the disease could affect the plant. Powdery mildew infections were observed 

early in the season. In contrast, first slight leaf rust infections could not be found until 

BBCH 34 and severe infection not until BBCH 61. The temporal progress of leaf rust 

infection showed a nearly exponential trend in plot 3. The temporal progress of 

powdery mildew was more fluctuating and no general trend could be observed.  

 

A categorization and description of temporal disease curves allow for a discrimination 

of both diseases via classification of their courses with relevant statistical parameters 

that were assessed by a feature selection procedure. Thus, in order to describe, 

distinguish, model or manage epidemics, their temporal dimension, particularly the 

date of occurrence, is more important than their spatial dimension. In addition, a 

derivation of disease trends might be important for optical disease detection systems 

that are often able to detect diseases without being able to discriminate different 

pathogens. Nevertheless, the spatial dimension plays an important role for potential 

spatially adjusted disease control in field. 

 

Different spatiotemporal characteristics of the diseases cause different impacts on 

the wheat plants. Particularly leaf rust infections affected the wheat canopy structure 

as pathogens accelerates the withering of leaves. Increasing leaf rust severity (figure 

3.5c) corresponded to decreasing fraction of vegetation cover (figure 3.2b). At the 

last observation date, this process was additionally intensified by natural maturation 

of the wheat.  

 

At higher growth stages (from BBCH 57), epidemic progresses of each disease in 

plot 3 indicate that the diseases influence one another (particularly the opposite 

trends of disease severity (figures 3.5c, 3.5f), percentage number of infections at 

sample points (figure 3.6) and patch characteristics (figure 3.7 and 3.8)). Severe leaf 

rust infections suppressed powdery mildew infections. However, this could also result 

from changing abiotic factors, which are favourable for one and unfavourable for the 

other pathogen.  
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In this case, the most critical period for both epidemics was between BBCH 41 and 

45, when both diseases increased in spatial and temporal dimension. In this period 

the optimal time for a fungicide application was situated for powdery mildew and leaf 

rust. However, even a single fungicide application in plot 2 at BBCH 34 avoided 

severe leaf rust infections, which could already be demonstrated by Everts et al. 

(2001). Due to the fact that powdery mildew occurred early in the season, specific 

powdery mildew control at BBCH 30 could have reduced their spread. Hence, in this 

case, an early disease control for powdery mildew at BBCH 30 and a specific 

fungicide application for leaf rust between BBCH 41 and 45 would probably had been 

optimal disease management dates, which means a reduction of fungicide 

applications and a more precisely, pathogen-dependent disease control. Site-specific 

management of powdery mildew is however more complicated due to their higher 

spatiotemporal dynamic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 

Chapter 4 
 

Multi- and hyperspectral imaging of leaf rust infected wheat plants 

 

4.1 Introduction 

As already mentioned in the introduction, site-specific control of fungal pathogens 

requires an accurate sensor-based detection of the location and spatial variability of 

pathogens. Several recent studies have therefore focused on detecting crop stress 

caused by pathogenic fungi by near-range sensors. For this purpose, several sensor 

systems have been used to develop in-field-detection systems or to test possible 

applications of remote sensing. Cognitions obtained by near-range sensor systems 

can also be valuable for transferability to a larger scale like remote sensing, i.e. up-

scaling processes.  

 

West et al. (2003) created a hypothetical, optimal disease detection system and 

provided an overview concerning the sensor-based detection of stress. Moshou et al. 

(2004, 2006) discriminated healthy, nutrient stressed and yellow rust (stripe rust) 

infected wheat by using a spectrograph. They developed disease detection 

algorithms, based on band filtering, data normalisation and neural networks. 

Lorenzen & Jensen (1989) differentiated between healthy and powdery mildew 

infected barley leaves using a spectroradiometer. Sasaki et al. (1998) analysed 

spectral reflectance measurements of infected cucumber plants on leaf scale. 

 

The objective of this analysis was to evaluate the potential of different sensor 

systems for multitemporal monitoring of leaf rust (Puccinia recondita) infected wheat 

crops, with the aim of early detection of infected stands. It focused on the direct 

comparison of sensor systems with different spectral resolutions. A comparison 

between a hyperspectral (120 spectral bands) and a multispectral (3 spectral bands) 

imaging system points out the benefits and limitations of each approach.  
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4.2 Methodology 

In greenhouse, wheat was seeded in three boxes with a dimension of one square 

meter. All wheat plants were treated with specific fungicides to avoid infections of 

other undesirable pathogens. The stand of box 1 was inoculated with leaf rust at 

growth stage BBCH 33. Reflectance data of the wheat canopy were collected 

between growth stage BBCH 33 and 56 with different sensors. Hyperspectral imaging 

data were acquired on four dates, from 2 days before stand 1 was inoculated with 

leaf rust (BBCH 33) to 17 days after inoculation (BBCH 41). Sampling of multispectral 

imaging, in total four dates, began 10 days after inoculation (BBCH 35) until 41 days 

after inoculation (BBCH 56). Reflectance data of the different dates were always 

collected on the same time of the day. A constant illumination source was used to 

illuminate the boxes. Every external light was eliminated, to avoid interfering 

illumination conditions.  

Both imaging systems were placed in a nadir position 175 cm above the soil surface 

of the boxes (figure 4.1).  

 

 
Figure 4.1: Experimental set-up showing sensor/illumination geometry 
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The light source was placed in a distance of 80 cm above ground with an incidence 

angle of 60 degrees. The distance between light source and target was 92 cm. For 

the hyperspectral images, a spectralon (Spectralon, Labsphere, North Sutton, NH), 

with a reflection rate of 50%, was placed in one corner of the FOV for subsequent 

conversion to reflectance values. 

 

Hyperspectral data were acquired by the SOC-700 (Surface Optics, Corp., San 

Diego, CA, USA) that is described in chapter 1.7. A sample RGB-image of a wheat 

stand acquired by the SOC-700 is shown in Figure 4.2a. 

The first pre-processing step for hyperspectral data was a linear correction by 

eliminating the instrument noise using dark images. Afterwards, reflectance was 

calculated. The pre-processing was accomplished by the program HSAnalysis 2.0 

(Surface Optics, Corp., San Diego, CA, USA), all further processing using the ENVI 

4.0 software (Research Systems Inc., Boulder, CO, USA). 

A minimum noise fraction transformation (MNF) was applied to a subset of the data. 

This subset, which was the basis for all further processing-steps, excluded the area 

of the spectralon. The MNF transformation ordered the data in terms of image quality, 

due to a segregation of noise (Green et al. 1988). MNF transformations consist of two 

principal component transformations (PCA). The first transformation estimates the 

noise covariance matrix and rescales the noise. The second transformation is a 

common PCA, whereby new bands get produced. Bands with higher order of data 

quality contain the majority of information. The data space of these bands is 

associated with large eigenvalues. Higher order bands still contain a portion of signal, 

but noise becomes predominant. Thus, results of MNF-transformation show 

negligible information contents from band 16 to 120 (eigenvalues near zero). For 

further processing the first 15 MNF bands with large eigenvalues (<1.5 assumed to 

be negligible) and the compressed information were used. 

Multispectral data were acquired using the MS3100 camera (Redlake DuncanTech, 

San Diego, CA, USA) that is described in chapter 1.7. A sample of a false-colour 

image of a wheat stand acquired by the MS3100 is shown in Figure 4.2b (bands: R: 

NIR, G: green, B: red). By pre-processing of multispectral data a minimum noise 

fraction transformation was applied as well. All 3 MNF transformed bands were used 
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for further processing of the data. The multispectral pre-processing was carried out 

using the ENVI 4.0 software. 

 

 
Figure 4.2: SOC-700 hyperspectral imaging system (A) and MS3100 

multispectral imaging system (B) with image examples of wheat stand #1 at 

BBCH 33 (A: center wavelengths: R: 701 nm (band 70), G: 581 nm (band 41), B: 490 

nm (band 19); B: R: NIR, G: Red, B: Green) 

 

4.2.1 Hyperspectral leaf rust detection 

The mixture tuned matched filtering algorithm (MTMF), a specific SMA, requires a 

MNF transformed image and endmember spectrum. A SMA assumes that each pixel 

spectrum is a combination of endmembers (Adams et al. 1986). The output of a SMA 

consists of fraction images containing a subpixel-estimation of the abundance for 

each endmember. The requirement for a SMA is a spectral library containing all 

spectral signatures of each endmember which appear in the pixel spectrum. The 

MTMF differs from SMA that only one endmember must be known. It is a ‘partial’ 

unmixing, in which the known signature gets matched. Similar to the SMA, the result 

is an MF-fraction image representing estimated relative degree of match to the 

reference spectrum (Boardman 1998, Williams & Hunt 2002). In addition, the MTMF 

provides an infeasibility image which estimates the possibility that a pixel, in spite of 

its high MF-fraction values, has characteristics of unknown endmembers (false 

positives). Thus, low infeasibility values and high fraction values indicate a good 

match of the endmember. 
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The endmembers ‘leaf rust infected wheat’ and ‘wheat senescent’ were extracted 

from image-pixels with apparent characteristics.  

In this case, the creation of the spectral library might be a source of error, due to the 

lack of diffuse light in the wheat stands. The artificial light produced a strong gradient 

of illumination, causing areas of specular reflectance and deep shade. Thus, spectral 

signatures of an endmember vary between well illuminated and shaded leaf areas 

and might differ from averaged spectra in the library. Data acquired under natural or 

artificial diffuse light may provide a more accurate basis to extract typical spectral 

endmembers. 

 

4.2.2 Multispectral leaf rust detection 

Similar to the hyperspectral processing steps, a spectral library containing the 

endmembers ‘leaf rust infected wheat’ and ‘wheat senescent’ was created. For 

multispectral data, the mentioned uncertainties caused by the artificial light producing 

highly intensive reflection areas on leaves (specular reflectance), could recognised 

for this data too. Multispectral signatures of pathogen infected leaves showed slight 

different characteristics to hyperspectral signatures. In comparison to healthy leaves, 

lower green reflection values were observed in hyperspectral and multispectral 

signatures. But in contrast to hyperspectral signatures, multispectral leaf rust infected 

wheat signatures showed increased red reflection.  

 

4.3 Results 

4.3.1 Hyperspectral analysis 

A sample scatterplot of the MTMF result for the endmember ‘leaf rust infected wheat’ 

of day 17 after inoculation (BBCH 41) is given in Figure 4.3. Best MTMF-match 

shows high MF-fraction values and low infeasibility values. Pixels associated with 

high MF-fractions and high infeasibility values were identified as false positives (red 

circle). For these pixels the MTMF-estimation identified similar spectral 

characteristics of strongly infected leaf areas and senescent leaves. Thus, these 

false positives were pixels, which probably got mismatched by MTMF. The 

endmember ‘senescent wheat’ was accounted for as well by the MTMF. A threshold 
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(1.0) for the MF-fraction of the endmember ‘senescent wheat’ was used, eliminating 

pixels, which appeared as false positives in the MF-fraction band ‘leaf rust infected 

wheat’. ‘Leaf rust infected wheat’ showed a clear separation line along the MF-

fraction value of 1.3 (black line in figure 4.3). This criterion was used as an adequate 

separation threshold for the class ‘leaf rust infected wheat’.  

 
Figure 4.3: Hyperspectral MTMF-result scatterplot showing MF-

fractions and infeasibility values for endmember ‘leaf rust 

infected wheat’ (day 17 after inoculation, BBCH 41). Conspicuous is a clear 

separation line along the MF-fraction value about 1.3 (notified by the black line). The 

red circle indicates false positives 

 

A decision tree was created to classify all pixels showing leaf rust infections in each 

image automatically (figure 4.4). The first step was to mask all non soil pixels by an 

unsupervised ISO-data classification. ISO-data classification calculates class means 

in data space and cluster pixels via a minimum distance operator. Each pixel was 

classified to the nearest class. In our case, class 1 corresponded to soil pixels. 

Afterwards, only vegetation pixels of the MTMF-estimation were taken into account. 

The second decision classified all senescent wheat pixels using the MF-fraction 

threshold of 1.0 in the MTMF-fraction band ‘senescent wheat’. Thus, remaining pixels 

corresponded to healthy and infected wheat pixels. The last decision separated these 

classes by using the MF-fraction threshold of 1.3 in the ‘leaf rust infected wheat’ 

band, which is shown in the scatterplot.  
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Figure 4.4: Decision tree for hyperspectral classification of leaf rust 

infected wheat pixels 

 

Figure 4.5 displays the classification results of infected leaf areas of leaf rust 

inoculated stand 1. Figure 4.5a shows the classified image 2 days before inoculation 

(BBCH 33). Purple colour represents leaf rust infected pixels; black colour represents 

‘wheat healthy’, ‘wheat senescent’ and ‘soil’. Obviously, some leaf areas were 

classified as ‘leaf rust infected’, which might be a mismatch by MTMF. However, the 

presence of unknown stress factors that show similar spectral characteristics as the 

leaf rust infection is possible. 5 days after inoculation (figure 4.5b, BBCH 34) an 

increased number of pixels showing leaf rust infections were classified, even though 

only few infected spots were visible. On day 11 after inoculation (BBCH 35) a clear 

leaf rust infection was visible on some leaves and on day 17 after inoculation (BBCH 

41) these infection areas widened and the stand showed strong symptoms. This 

corresponded to an increasing trend of classified pixels in Figure 4.5a to d, whereas 

the classifications of the control stands 2 and 3 indicated almost healthy plants.  

There was no clear explanation for the presence of clustered false positives in figure 

4.5a, c and d. 
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Figure 4.5: Hyperspectral MTMF-estimated leaf rust infections of stand 

#1 of all 4 dates (A to D). For display purposes the class ‘leaf rust infected wheat’ has 

been exchanged with original MF-fraction values and classified by a colour table 

(purple). Black pixels correspond to soil, healthy and senescent wheat pixels. The 

brighter the pixels, the higher the MF-fraction values 

 

The fractions of infected leaf area (healthy-, infected- and senescent wheat pixels 

without soil) were calculated for each stand to have a normalised indicator of 

percentage infected leaf area (figure 4.6). 2 days before inoculation, all stands were 

similar classified by the MTMF-algorithm with values between 0.48% and 0.73% of 

infected leaf area of the vegetation fraction. 5 days after inoculation an increased 

amount of pixels showing leaf rust infections was observed for stand 1. As infection 
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developed, 5% infected leaf area was detected at day 11 after inoculation and 10% 

at day 17 after inoculation. The amount of as ‘leaf rust infected’ classified pixels of 

the control plants always remained under a value of 1.5% (maximum value of stand 

#2, 17 days after inoculation) during all dates. 
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Figure 4.6: Percentage fraction of infected leaf area of the total 

vegetation fraction for the hyperspectral classification result 
 

4.3.2 Multispectral analysis 

Multispectral MTMF-estimations of pathogen infected wheat pixels showed similar 

characteristics as hyperspectral results in the 2-band scatterplot of MF-fraction and 

infeasibility band of endmember ‘leaf rust infected wheat’ (figure 4.7). The 

endmember ‘leaf rust infected wheat’ appeared above a MF-fraction value about 1.3. 

This level was used as separation threshold (black line in figure 4.7). False positives 

had infeasibility values greater than 12.0 and were eliminated. In contrast to the 

hyperspectral MTMF results, where only senescent wheat pixels represented these 

false positives, ‘over-illuminated’ leaf areas caused accuracy problems for 

multispectral data (figure 4.8b).  
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Figure 4.7: Multispectral MTMF-results scatterplot showing MF-

fractions and infeasibility values for endmember ‘leaf rust 

infected wheat’ (day 11 after inoculation, BBCH 41). Similar to the hyperspectral 

MTMF-scatterplot a clear separation line along the MF-fraction value about 1.3 

(notified by the horizontal black line) is conspicuous. The red circle indicates false 

positives. Vertical black line represents the infeasibility threshold to eliminate false 

positives (=12.0) 

 

The decision tree used for hyperspectral classification of leaf rust infected pixels was 

changed in one respect: a term was added in the last decision node to eliminate false 

positives. In addition to the MF-fraction threshold of 1.3, only pixels with infeasibility 

values less than 12.0 were classified as ‘leaf rust infected wheat’.  

Figure 4.8 shows two examples of the classification result of leaf rust infected stand 

#1, 11 and 27 days after inoculation. 11 days after inoculation a satisfying result was 

achieved using multispectral data. All obviously infected wheat pixels with spores 

were classified as leaf rust infected. Only few pathogen stressed leaf areas without 

spores could be detected. In contrast, classification result of day 27 after inoculation 

provided poor accuracy, due to problems caused by sensor-orientated leaf areas with 

specular reflectance. Only pixels with highest brightness could be eliminated. At this 

date the spectral signatures of leaf rust infected pixels and well illuminated healthy 

leaf areas showed similar characteristics.   
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Figure 4.8: Multispectral MTMF-estimated leaf rust infections of stand 

#1, 11 (A) and 27 (B) days after inoculation by decision tree classification. For display 

purposes the class ‘leaf rust infected wheat’ has been exchanged with original MF-

fraction values and classified by a colour table (purple). Black pixels correspond to 

soil, healthy and senescent wheat pixels. The brighter the pixels, the higher the MF-

fraction value 
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Figure 4.9: Fraction of infected leaf area of the total vegetation fraction for 

the multispectral classification results 
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The fraction of infected leaf area was derived from multispectral classification results 

as well (figure 4.9). For the first acquisition date of multispectral data (10 days after 

inoculation), infected leaf area of stand 1 was 1.82%. Control stands showed values 

of 0.27% and 0.62% respectively. 17 days after inoculation, the amount of infected 

pixels of the inoculated stand (1.53%) was only 0.1% higher than control stand #3 

(1.43%). 27 days after inoculation a strongly increased amount of classified infected 

pixels of all stands were detected, which resulted from accuracy problems caused by 

specular reflectance. At the last observation date, infected leaf area as classified 

dropped under the value of control stand #3. 

 

4.4 Discussion and conclusion 

This chapter explored the potential of near-range acquired hyperspectral and 

multispectral imaging data for the detection of leaf rust infected wheat plants. The 

hyperspectral remote sensing system achieved satisfactory results. However, a 

detailed accuracy assessment was not possible due to the lack of information about 

the actual condition of the wheat plants (at initial infection stages it is not possible to 

determine spots where an infection occurs). No proper discrimination of infected and 

healthy wheat stands was possible with the multispectral 3-band system. However, 

given a substantially improved illumination condition, disease detection might be 

possible using multispectral imaging data. 

 

Depending on the spatial resolution of the system, the sensor should be placed about 

2 m above ground, to cover a representative area and to make a detection of small 

initial infection spots possible. Image area should be protected from direct sunlight. 

MTMF-algorithm proofed as a suitable image analysis method to detect leaf rust 

infections. On the one hand, to achieve higher classification accuracies, a 

multitemporal spectral library is desirable, i.e. a library for each growth stage, to 

account for typical changes in spectral characteristics of wheat during growth. On the 

other hand, to reduce computation rate, particularly with regard to a creation of 

online-stress detectors, spectral libraries of each growth stage should contain only 

few spectra showing averaged characteristics of ‘healthy wheat’, ‘senescent wheat’, 

and ‘leaf rust infected wheat’.  
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The results of this analysis suggest that a hyperspectral imaging system such as the 

SOC-700 and hyperspectral data analyses are suitable tools for detecting crop stress 

caused by leaf rust, particularly with regard to early detection, which is required for an 

effective site-specific fungicide application. On day 5 after inoculation, more stressed 

leaf areas could be detected by hyperspectral data than were visible at this time. 

Even though, this is a very promising result, at this early infection stage a reliable 

validation of these results was impossible, due to the lack of information about the 

real condition of the wheat leaves, because there is no system available that directly 

measures the stress status of leaves. For discrimination of infected and healthy 

stands the infected leaf area derived from classification results was a suitable 

indicator. To make a binary decision whether a fungicide application is needed, a 

threshold determination of this parameter is useful. Minimum threshold value must be 

greater than the maximum value of control stands (in this case 1.5%). 

 

Classification accuracy could be enhanced by improved illumination conditions. A 

strong illumination gradient (shaded and over-illuminated leaf areas) was the main 

reason of misclassifications of both data types. Multispectral imaging data show 

higher sensitivity to these external factors than hyperspectral data.  
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Chapter 5 
 

Multitemporal wheat disease detection by multispectral remote 

sensing 

 

5.1 Introduction 

In contrast to - or in synergy with near-range sensor systems such as presented in 

chapter 4, remote sensing sensors, which provide information about entire fields, 

may be an appropriate tool to monitor the heterogeneity of crop vigour and could be 

useful to reduce fungicide application by aiding decisions on the location, timing, and 

dose of spray application (West et al. 2003). However, site-specific or timely adjusted 

fungicide treatments require sensor-based detection of the spatial variability of fungal 

infections at early infection stages.  

Some studies have shown high potential for disease mapping with airborne or 

satellite remote sensing systems. Apan et al. (2004) discriminated sugarcane crops 

severely infected by orange rust diseases from non-infected crops by the use of 

several hyperspectral indices. A successful citrus pest stress detection using a linear 

spectral unmixing method for multispectral and hyperspectral airborne data was 

achieved by Du et al. (2004). Jacobi and Kühbauch (2005) distinguished between 

infected and non-infected wheat plots using the NDVI.  

 

In this chapter, a multitemporal remote sensing-based analysis of the spatiotemporal 

occurrence of wheat diseases is described, which was carried out in order to: i) point 

out the potential of multispectral data with high spatial resolution for multitemporal 

monitoring of fungal wheat infections; ii) investigate the earliest detection date of 

fungal infected wheat areas with these data; iii) find out about suitable data 

processing methods that constitute important requirements of precision agriculture 

applications; and, iv) ascertain the suitability of spatially high-resolution multispectral 

data for the derivation of site-specific fungicide application maps in respect to the 

spatial identification of diseases. This study focussed on the most common 

pathogens in cereals in Central Europe, powdery mildew and leaf rust. 
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5.2 Methodology 

The investigated wheat field of this analysis is located at the experimental farm of the 

University of Bonn as described in chapter 1.6. Remote sensing data were acquired 

by QuickBird on 22 April 2005 (BBCH 31) and on 20 June 2005 (BBCH 65). 

Additional airborne hyperspectral HyMap data were acquired on 28 May 2005 (BBCH 

45). Ground truth data as described in chapter 1.7 was used to validate the results. 

Due to the minimization of other stress variables by adequate treatments and soil 

analyses, it could be assumed that existent crop stress was predominantly caused by 

fungal infection. 

  

5.2.1 Pre-processing 

An accurate pre-processing of remote sensing data, including a precise radiometric 

and geometric data correction, constitutes one of the most important requirements for 

Precision Agriculture applications. A site-specific treatment of agrochemicals based 

on remote sensing-derived application maps can only be effective if the exact 

location of field heterogeneities is reproducible in data. In addition, to avoid 

uncertainties in data quality caused by inconsistent pre-processing-parameters in 

multitemporal analyses, a comparison of data sets and, if necessary, an inter-

correction of data is essential. A creation of a master data set is therefore considered 

useful. Such master data set can constitute the basis for subsequent geometric inter-

corrections as well as for validation of atmospheric corrections; and if necessary for 

radiometric normalization (e.g. via pseudo-invariant features) of multitemporal data. 

The reduction of the influence of atmospheric effects in the measured remote sensing 

signal is a fundamental but difficult pre-processing step. Thus, in-situ 

spectroradiometer measurements are essential to control the quality of the 

atmospheric correction, especially for multitemporal Precision Agriculture 

applications. 

The atmospheric correction of both QuickBird images was done by the use of the 

software ATCOR3 for Erdas Imagine (GEOSYSTEMS GmbH, Germering, Germany). 

HyVista Corp. and the German Aerospace Center (DLR) carried out the pre-

processing of the HyMap data. The validation of the atmospheric corrections was 

performed against in-situ measurements obtained with the ASD FieldSpec Pro 

spectroradiometer.  



69 

In addition to the repeated collection of reflectance spectra in the field, to ground 

truth remotely sensed data, 9 uniformly distributed white markings (0.5 m2 each) 

were installed in the plot, the exact positions of which were measured by DGPS. 

These markings were identified in the QuickBird images and used as ground control 

points (GCP) for the geometric image correction using the ENVI 4.2 software 

(Research Systems Inc., Boulder, CO, USA). This image was used as a master data 

set for subsequent image-to-image corrections of the HyMap and QuickBird images.  

 

To extend the QuickBird data set with a third scene, the HyMap image of 28 May 

2005 was spectrally resampled to obtain a multispectral image with spectral 

characteristics similar to those of QuickBird. An in-house developed IDL-program 

‘BaSim’ facilitates any user-predefined multispectral band simulation with regard to 

the band-specific relative spectral response (RSR) function. Thereby, the 126 HyMap 

reflectance values of each pixel were thereby multiplied by the 126 wavelength 

corresponding RSR-values of each QuickBird band. The sum of these products was 

divided by the sum of the 126 band-specific RSR-values. For a multispectral sensor 

simulation, each band (b) was simulated according to the following equation (12): 
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where, 

Rsimb is the simulated pixel reflectance value of the simulated band b, Ri is the pixel 

reflectance value of the HyMap band and rsri,b is the relative spectral response value 

of the simulating band at each HyMap corresponding wavelength.  

 

The results are simulated QuickBird bands that provide spectral information similar to 

those of the original sensor. Slight differences from original data caused by different 

sun/sensor/target geometry still exist.  The performance of this simulation method 

and their validation was analysed in greater detail in a separate study, which is 

described in a special chapter in the appendix. The code of the developed IDL-

program for simulation is given as well.  



70 

5.2.2 Classification 

Lorenzen and Jensen (1989) revealed that differences in reflectance between 

powdery mildew-infected plants and healthy plants first occur in the visible region of 

the spectrum. In contrast, only very small differences in the NIR occurred in their 

study, indicating that infections cannot be detected with NIR imagery until the canopy 

structure is affected by the infection. This is only the case in late powdery mildew 

infection stages, when the optimal time for fungicide treatment has past (Lorenzen & 

Jensen 1989). Therefore, VIS/NIR-vegetation indices have limited potential for early 

detection of pathogen infections. Apan et al. (2004) as well as Jacobi & Kühbauch 

(2005) confirm this assumption, as they only detected crop infections with the sole 

use of vegetation indices at severe infection stages. Hence, an analysis of all 

available data bands is probably more suitable for early detection of crop diseases 

than the sole use of vegetation indices. For instance, Lelong et al. (1998) and Du et 

al. (2004) demonstrated the potential of SMA of hyperspectral data for stress 

detection that allows a quantification of disease severity at subpixel level.  

 

The potential of a SMA method for stress detection was therefore tested for 

multispectral data that is described in this chapter. To use multiple classification 

parameters for the detection of infected wheat areas, a decision tree using both SMA 

results and vegetation index information was built. While thresholds, used by decision 

tree classifiers, which are optimally defined for each individual date gain higher 

classification rates, a classifier that performs well for various scenes is preferable. 

The requirements of an automated classification system for precision agriculture 

applications have already been described by Shaw and Kelley (2005). To create 

such a classifier, all thresholds used in a decision tree must be invariant against data 

acquisition dates (e.g. growth stage). Therefore, the use of vegetation indices for a 

decision tree classifier is critical, because their values change in time. In order to 

nevertheless make use of these indices, another parameter was created: the 

deviation of the NDVI from the mean NDVI of the plot. The mean NDVI of the plot 

was calculated by using a region of interest that was congruent to the plot area. Each 

pixel NDVI-value of the plot was then subtracted from the mean NDVI. Negative 

values indicate NDVI-values above the mean and positive ones, NDVI-values below 

the mean. This parameter has a more constant range over time (range-normalization 

by the use of the mean NDVI) than the NDVI and does not change the spatial 
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distribution of the original NDVI characteristics. In our case, this parameter was found 

to be suitable for the definition of thresholds suitable for all three data collection 

dates. 

In addition, all bands were used for the classification by applying a SMA method, 

particularly the mixture tuned matched filtering algorithm (MTMF), which is described 

in chapter 4.2.1. MTMF results are suitable for the definition of decision tree 

thresholds as two scaled parameters (MF-fraction and infeasibility) are adaptable to 

indicate a class.  

A spectral library was created for each date including the endmembers ‘infected 

wheat’ and ‘healthy wheat’, by extracting this information from image-pixels. Five 

ground truth sample points, showing apparent characteristics for each endmember 

were therefore chosen in the image. For the endmember ‘infected wheat’, only 

sample points with total disease severity above 20% (percentage of infected leaf 

area) were selected, in order to achieve a representative spectral signature of this 

endmember. The four adjacent pixels around the five sample points were considered 

and averaged (20 pixels for each endmember per image) for the spectral library.  

 

A decision tree was built to classify the data into four classes (Figure 5.1). For the 

definition of thresholds used in the decision tree, the data from each collection date 

were empirically investigated by the use of the ‘n-dimensional visualizer’ in ENVI. The 

facts that the MTMF results have scaled values (giving the relative degree of match 

to the reference spectrum) and that the NDVI parameter used is temporally more 

robust than the original NDVI, allow for the averaging of thresholds from different 

dates. Although the use of optimal decision tree thresholds for each date would 

probably result in higher classification rates, the use of a decision tree that is suitable 

for various dates is preferable in multitemporal analyses. Thus, the defined 

thresholds of all three dates of each decision were averaged. These mean 

thresholds, which are shown in Figure 5.1, were used in the decision tree to classify 

the data. The first class represented wheat that is severely infected by pathogens or 

areas with low vegetation cover. Several studies revealed that the NDVI is an 

adequate indicator for LAI and biomass (Huete et al. 1999). To separate severely 

infected crop areas or areas with low amount of biomass/LAI, the mentioned NDVI 

parameter was used. The separation of healthy wheat areas and the classification of 

the residual pixels in different disease severity classes were achieved by the use of 
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the MTMF results of the endmember ‘healthy wheat’ and ‘infected wheat’. The results 

are images with four classes of disease severity. In order to obtain smooth areas by 

removing single separated pixels, a majority analysis with a 5x5 kernel was applied to 

the classification result.  

 

Separation of areas with low biomass/LAI
NDVI deviation of the field mean ≥ 0.02

‚low biomass/LAI‘Separation of healthy wheat areas
MF-fraction ‘healthy’ ≥ 0.2 and Infeasibility ≤ 4

‚healthy wheat‘Differentiation of disease severity
MF-fraction ’infected’ ≥ 0 and Infeasibility ≤ 4

‚strong infected wheat‘‚infected wheat‘

YES

YES

YES

NO

NO

NO

Separation of areas with low biomass/LAI
NDVI deviation of the field mean ≥ 0.02

‚low biomass/LAI‘Separation of healthy wheat areas
MF-fraction ‘healthy’ ≥ 0.2 and Infeasibility ≤ 4

‚healthy wheat‘Differentiation of disease severity
MF-fraction ’infected’ ≥ 0 and Infeasibility ≤ 4

‚strong infected wheat‘‚infected wheat‘

YES

YES

YES

NO

NO

NO

 
Figure 5.1: Decision tree for QuickBird data classification of fungal disease 

severity of wheat 

 

5.3 Results 

An example of the MTMF result of 20 June 2005 is shown in figure 5.2. The matched 

filtering fraction image of the endmember ‘wheat healthy’ that was calculated with 

QuickBird data allowed a clear discrimination of healthy and less healthy crops. 

Brighter pixels indicate areas with healthy wheat crops, darker ones indicate areas 

dominated by other unknown endmembers (in this case: soil and infected crop 

areas). Obvious are the lanes of the tractor that are dominated by soil/less biomass. 
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Figure 5.2: Matched filtering (MF)-fraction image of the endmember 

‘wheat healthy’ of 20 June 2005 

 

Figure 5.3 depicts the classification of the QuickBird image from 22 April 2005, with 4 

classes of wheat disease severity. At this time, no fungicide treatment had yet been 

applied and fungal infections of the wheat crop were detected for relative small areas 

spread over the entire plot. In-field observations revealed only slight powdery mildew 

infections with a percentage of infected leaf area between 0-18%. A few plants with 

higher rates up to 40% were observed. No leaf rust infection was observed in the 

field at this early growth stage. However, aside from the dominant class, ‘healthy 

wheat’, image classification revealed large infected areas, which indicates an 

overestimation of disease severity by image classification for this date. 
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Figure 5.3: Image classification result of 22 April 2005 with 4 classes of 

different wheat disease severity. The three sub areas of different fungicide treatments 

are displayed as well 

 

Seventeen days after the first fungicide treatment, data classification from 28 May 

2005 (Figure 5.4) revealed increased disease severity with predominant areas of the 

class ‘infected wheat’ and ‘strongly infected wheat’, even in some parts of the 

fungicide treated plot 1. Obviously, infected crop areas that had already been 

detected on 22 April 2005, further expanded by 28 May 2005. On this date, ground 

observations showed only slight leaf rust and stronger powdery mildew infections of 

crops, with total severity for both pathogens up to 53% infected leaf area in some 

areas. 
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Figure 5.4: Image classification result of 28 May 2005 with 4 classes of 

different wheat disease severity. The three sub areas of different fungicide treatments 

are displayed as well 

 

The classification result of 20 June 2005 (figure 5.5) displayed a strong crop infection 

in plot 3 and mostly healthy crop areas in plot 1 (treated twice with fungicides) as well 

as in plot 2 (treated once with fungicides). This indicates the success of the fungicide 

applications. The clear discrimination between fungicide-untreated and treated plots, 

i.e. infected and non-infected plots, was observed in the field in almost the same 

manner. On this date, powdery mildew showed infection rates up to 15% infected leaf 

area, whereas leaf rust infection was strongly predominant, with infection rates up to 

70% infected leaf area. 
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Figure 5.5: Image classification result of 20 June 2005 with 4 classes of 

different wheat disease severity. The three sub areas of different fungicide treatments 

are displayed as well 

 

The optimal date for fungicide applications in respect of their effectiveness is a crucial 

and restrictive factor because fungicide applications are limited to crop growth and 

infection stages, and depend on crop resistance and other external factors such as 

meteorological parameters (Moschini & Pérez 1999, West et al. 2003). However, to 

support sensor-based detection of the occurrence of infection for the generation of 

fungicide application maps, only a binary decision for each pixel is required, whether 

crops are infected or not. Thus, the classes ‘low biomass/LAI’, ‘infected wheat’ and 

‘strongly infected wheat’ were combined to obtain images indicating areas of healthy 

and infected wheat. To assess the accuracy of the classification, the remaining 44 

ground truth sample points were used (10 sample points were used for each date as 

training samples to build the spectral library). To discriminate ground truth sample 

points affected by pathogens from those without infection, an in-field observed total 

disease severity threshold of 10% (percentage of infected leaf area) was employed. 
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This threshold was determined because crops with estimated total infection rates 

below 10% affected leaf area showed negligible symptoms, which were only detected 

through intensive inspection. Ground truth sample points were thus classified in two 

classes as well, in order to compare them with remote sensing classification results.  

 

The classification accuracy is displayed in Table 5.1. For the first data collection date, 

an overall classification accuracy of only 56.8% was achieved. In particular, the 

37.5% of sample points wrongly classified as ‘infected’ was unsatisfactory, because 

actually infected crops were classified as ‘healthy’ and thus these crop areas would 

not be considered for possible fungicide treatments. Higher classification accuracy 

was achieved for the scene taken on 28 May 2005. The classification of this date 

showed an accuracy of 76.5% of correctly classified ‘infected’ sample points and an 

overall accuracy of 65.9%. Actual infected sample points were wrongly classified in 

23.5% of cases. Highest classification accuracies were achieved on the 20 June 

2005, when 96.2% of infected sample points were correctly classified and the overall 

accuracy of correct classifications was 88.6%. Only 3.8% of the actually infected 

sample points were classified incorrectly. Due to the subjective estimation of the 

disease severity in the field and the use of thresholds for data classification, these 

accuracies had higher or lower values than the actual accuracies. 

 

Table 5.1: Classification accuracies of the remote sensing imagery (relating 

to ground truth sample points) 

classified sample points / date 04/22/2005 05/28/2005 06/20/2005 

correctly classified ‘healthy’ sample points 55.6 % 59.3 % 77.8 % 

correctly classified ‚infected’ sample points 62.5 % 76.5 % 96.2 % 

wrongly classified ‘healthy’ sample points 44.4 % 40.7 % 22.2 % 

wrongly classified ‚infected’ sample points 37.5 % 23.5 % 3.8 % 

overall accuracy (correctly classified) 56.8 % 65.9 % 88.6 % 
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5.4 Discussion and conclusion 

The results presented in this chapter demonstrate that multispectral data with high 

spatial resolution are suitable to detect in-field heterogeneities in wheat vigour, 

particularly if the crop is strongly affected by fungal infections. It was demonstrated 

that these data can be effectively used to control the success of fungicide treatments. 

Particularly at later growth stages, satisfactory classification accuracies were 

achieved. However, multispectral remote sensing data have a low spectral sensitivity 

to detect initial infection stages, particularly when only lower leaves are infected. 

Hence, disease detection with these data at initial infection stages of powdery 

mildew, which occurs at early growth stages of the plant, is critical. Since fungicides 

are often applied twice per growing season (according to the development of an 

infection), a remote sensing-based mapping of disease occurrence at later growth 

stages, when a second application is required, might be suitable. These data seem to 

be more useful for the detection of leaf rust which, in this case, occurred late in the 

growing season with high infection growth rates affecting the whole canopy rapidly.  

 

Although the input of remote sensing to support application management decisions 

may play an important role, the effectiveness of remote sensing-based application 

maps have to be investigated in greater detail. West et al. (2002) already 

emphasized the potential of optical sensing and mapping to optimize fungicide 

applications against fungal diseases, but also mentioned that optically derived 

disease maps will underestimate disease patch size and latent infections will thus 

result in secondary infection areas. Therefore, it is useful to model disease spread, 

which requires knowledge of the spatiotemporal dynamics of each pathogen, in order 

to define buffer zones around detected patches that would improve the accuracy of 

disease maps. In comparison to the multispectral data used, hyperspectral remote 

sensing data may improve the identification rate as they have a higher spectral 

resolution, which is analysed in chapter 7. 

 

Spatially high-resolution multispectral remote sensing data hold the potential for 

multitemporal monitoring of fungal wheat diseases, though they are only moderately 

suitable for early detection, due to the high misclassification rate observed in this 

study at early growth stages, when fungicide applications are feasible. Even though 

some areas of reduced crop vitality were detected at early growth stages, the 
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classification accuracy was too low to generate fungicide application maps. However, 

at later growth stages and/or higher infection rates, the use of multispectral remote 

sensing data for the detection of infections yielded positive results. This indicates the 

suitability of these data for the detection of diseases with late occurrence and/or high 

infection growth rates. The low temporal resolution of current spatially high-resolved 

sensor systems is a restrictive factor for practical implementation. The launch of 

future observation systems with improved repetition rates can open up a wider field of 

application.  
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Chapter 6 
 

Identification of site-specific crop growth anomalies using 

simulated endmembers for spectral mixture analyses 

 

6.1 Introduction 

In chapter 5 it was demonstrated that recent sensor systems with a high spatial 

resolution allow for site-specific identification of stress-caused anomalies of crop 

vigour. In general, remote sensing methods are required that extract the desired 

information accurately and quickly. In chapter 5, the suitability of spectral mixture 

analyses (SMA) for the quantification of crop stress severity was demonstrated. 

Usually, to obtain spectral endmembers for reference, image pixels or 

spectroradiometer measurements of objects with apparent spectral characteristics 

are used. These methods require ground truth information, whose collection is often 

time and cost-intensive or in some cases even not possible. Thus, the use of 

endmembers that are independent from any ground truth information is preferable. 

There are typical spectral responses of plants to stress impact. This knowledge can 

be used to simulate endmembers that represent stress affected crop canopies.  

 

In this analysis, stress-dependent changes of the reflection rates of vegetation were 

quantified and the potential of simulated endmembers for spectral mixture analyses 

was tested, in order to remotely detect several crop stresses or crop growth 

anomalies of cereal fields with multispectral QuickBird data that have a high spatial 

resolution.  

 

6.2 Methodology 

In 2002 and 2005, several field experiments concerning stress monitoring in cereals 

were conducted on two experimental farms of the University of Bonn. The stress 

factors nitrogen deficiency, fungal infection, soil condition and weed infestation were 

considered. Both study areas have a flat morphology that avoids complicated 
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interpretation of remote sensing data caused by heterogeneous topography. The field 

sizes vary between 2 and 9 ha. As shown in table 6.1, four different fields (plots a-d) 

were considered for a comparison between averaged spectral signatures of entire 

fields and signatures of areas that contain stressed crops. In another two fields (plots 

e, f), the detection method was proved, in order to identify areas of crop growth 

anomalies. 

 

6.2.1 Study sites 

In 2002, a field with winter wheat (plot a) that was partly treated with reduced 

nitrogen rates and a field plot, which in some parts was never treated with fungicides 

(plot b) were observed. Thus, in each field heterogeneous crop growth appeared; in 

the first case, due to different nitrogen treatment and in the other case, due to the 

appearance of powdery mildew and leaf rust. Ground truth data such as biomass, 

leaf nitrogen level and pathogen infestation rates were collected over the growing 

season.  

 

In addition, to investigate the effect of weed infestations on the spectral signature of 

wheat, a field showing weed patches was investigated in 2005 (plot c). Anomalies of 

barley growth caused by very heterogeneous soil conditions were investigated in 

another field (plot d). Potential stress due to soil condition was indicated by EM38 

measurements of the apparent electrical conductivity (ECa) (Geonics Limited, 

Ontario, Canada). The values of the EM38 measurements of the investigated field 

plots varied between 4 and 21 mS m-1 thus indicating sandy and loamy soils. The 

lower field capacity of the areas with sandy soils resulted in lower crop growth and 

thus in lower yield that was mapped by a combine-mounted yield-mapping system. 

These heterogeneities of crop growth were investigated in greater detail by the use of 

remote sensing data and their spectral signatures were compared. 

 

Plot e, showing similar soil stress conditions, and a plot showing different fungal 

infection rates (plot f) were used to prove the stress detection method. A description 

of location, treatments and conditions of plot f can be found in chapter 1.6.  
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Table 6.1: Overview of field Experiments used in this analysis 
 

Experimental plot Stress type use 

Plot a Nitrogen deficiency Training data 

Plot b Fungal infection Training data 

Plot c Weed infestation Training data 

Plot d Unfavourable soil condition Training data 

Plot e Unfavourable soil condition Classification/evaluation 

Plot f Fungal infection Classification/evaluation 

 

Remote Sensing data from the spatially high-resolution multispectral QuickBird 

sensor were acquired in June 2002 and in June 2005 for both study areas. The 

atmospheric corrections of the QuickBird images were done using the ATCOR3 

software from Erdas Imagine (GEOSYSTEMS GmbH, Germering, Germany). The 

validation of the atmospheric corrections was performed against in-situ 

measurements obtained with a spectroradiometer. For the geometric image 

correction, the ENVI 4.2 software (Research Systems Inc., Boulder, CO, USA) was 

used.  

 

6.2.2 Endmember simulation and data processing 

A SMA allows a quantification of disease severity at subpixel level. A SMA relies on a 

spectral library containing all spectral signatures of each endmember, which appear 

in the pixel spectrum (Adams et al. 1985). As opposed to the classical SMA, matched 

filtering (MF) needs only one endmember in the spectral library. The Matched 

Filtering is a similar SMA method as the Mixture Tuned Matched Filtering (MTMF), 

but no infeasibility image is provided. 

In order to generate required reference spectra synthetically, a closer examination of 

the effect of stress impact on plant physiology is necessary, i.e. how does stress 

affect the reflection of crop canopies. These effects were already investigated in 

previous studies, e.g. Lorenzen & Jensen (1989) and were also described in chapter 

2. In summary, stress affected plants are predominantly characterized by a reduction 

of the reflection rates in the NIR spectrum and less systematically by changes in the 

VIS. 
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The fundamental idea of endmember simulation is on the one hand based on the 

knowledge of typical spectral responses of plants to stress that could be used to 

modify spectral signatures of unstressed crop areas. On the other hand, in most 

cases stress factors only occur in some parts of fields. These site-specific 

heterogeneities allow for the use of mean spectral signatures of whole fields as a 

basis for simulated endmembers. Thus, spectral signatures can be derived from 

image-pixels that are used to simulate endmembers of stressed vegetation under 

consideration of the knowledge of typical stress-induced changes of plants spectral 

characteristics. However, this simulation requires a quantification of known stress-

dependent changes of the reflection rates. Therefore, the spectral signatures of crop 

areas affected by different stress factors such as nitrogen deficiency, fungal infection, 

soil condition and weed infestation, were compared to the mean spectral signature of 

the whole corresponding field. 

 

6.3 Results 

The remote sensing data, covering the four field experiments (plot a-d) that address 

these different stress factors, were analysed (table 6.1). For example, Figure 6.1 

shows spectral signatures of a fungal infected wheat area and the mean spectral 

signature of the corresponding field as derived from QuickBird data. 

 

In all cases, only slight changes of the reflection in the blue and green spectrum were 

ascertained, whereas a considerable increase of the red reflection was obvious. A 

reduction of the NIR reflection from 4.8% up to 21.4% was predominant. This 

comparison showed that different stresses cause different spectral signatures (table 

6.2). 
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Figure 6.1: Spectral signature of a fungal infected wheat area and 

the mean spectral signature of the corresponding field as derived 

from QuickBird images 

 

With the use of this knowledge, the mean spectral signatures of two fields (plots e 

and f), (where anomalies of crop vigour caused by the stress factors soil condition 

and fungal infection were observed), were modified to generate endmembers for the 

SMA. Therefore, the observed mean difference of the reflection rates (table 6.2) were 

used as examples for general stress detection, i.e. the mean spectral signatures of 

plot e and f were reduced by 5% in the red and by 9% in the NIR band.  

 

Table 6.2: Percentage deviation (band-wise) of reflectance values 

of stress affected areas from the corresponding field mean for 

different stressors in cereals 
 

QuickBird 

band 

Fungal 

infection 

Nitrogen 

deficiency 

unfavourable 

soil condition 

Weed 

infestation 
mean 

1 0.0 1.8 -0.6 4.8 1.5 

2 0.4 6.3 -1.4 0.0 1.3 

3 6.4 10.9 -1.1 5.0 5.3 

4 -21.4 -6.3 -4.8 -4.8 -9.3 
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For a more precise detection of a specific stress, the specific band-wise difference 

values that are given in table 6.2 would be more suitable. Hence, simulated 

endmembers representing stress affected wheat areas were generated and used as 

reference (MNF transformed) for the MF, in order to identify areas with crop growth 

anomalies without the use of any ground truth data. Ground truth was only used to 

validate the results of this approach.  

 

Figure 6.2 displays the result of the matched filtering using the simulated endmember 

‘stress affected barley’ as well as the EM38- measured ECa (mS m-1) of plot e. 

Brighter pixels in the MF-fraction image indicate areas with good match to the 

reference spectrum (in this case to the simulated endmember). A comparison 

between the spatial distribution of the measured ECa values (contours) and the MF 

result demonstrate a good agreement. ECa values less than 15 mS m-1 indicate 

areas of sandy soils, which have a reduced field capacity (Neudecker et al. 2001). 

Thus, in these areas barley growth anomalies occurred that resulted in lower yield. 

The proposed remote sensing-based detection method using simulated endmember 

achieved an appropriate identification of these stress affected crop areas. 
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Figure 6.2: Matched fraction image of the simulated endmember 

‘stress affected barley’ with the EM38- measured apparent electrical 

conductivity (mS m-1) of plot e 

 

In plot f, where in some parts no fungicides were applied (plot f-3; south-eastern 

part), a strong fungal infection of the wheat occurred. Figure 6.3 shows the result of 

the matched filtering using simulated endmember (MF-fraction image) and figure 6.4 

displays the interpolated disease severity map (ground truth). A visual comparison of 

the image and the map indicate a satisfactory agreement between stress affected 

and vital wheat areas. In order to validate the results, a correlation analysis between 

MF-results and in-field collected disease severity data (percentage of infected leaf 

area) was applied. Therefore, around each sample point (50 points), a buffer of 4m 

was applied and the mean of these parameters was calculated. The correlation 

between MF-fraction values and disease severity showed a positive correlation with a 

Pearson correlation coefficient of r = 0.69. 
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Figure 6.3: Matched fraction image of the endmember ‘stress 

affected wheat’ of plot f 

 

 
Figure 6.4: Disease severity map (interpolated infected leaf area in %) as 

observed in field plot f 
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In order to validate the benefit of this ground-truth independent SMA method, its 

results were compared with the NDVI that constitutes the most often used indicator of 

vegetation conditions. The correlation between NDVI values and disease severity for 

plot f showed a negative correlation of r = -0.68 and thus showed similar results as 

the presented SMA method (r = 0.69). However, the correlation between the NDVI 

values and the MF-values showed only r = -0.46. That means that the NDVI and the 

SMA are generally both suitable to detect unspecific stress areas, but do not give 

congruent information. Hence, a synergistic use of both methods probably achieves 

the best stress detection result. Besides the fact that the MF-method presented here 

showed a slight higher correlation coefficient (even with the applied endmember 

modifications of the more general mean differences), the advantage of the method is 

that simulated endmembers are adjustable to the stress that should be detected. In 

contrast, the NDVI is not modifiable. Thus, given an optimal stress-dependent 

modification of mean field spectral signatures - for example with the given differences 

showed in table 6.2 - a more specifically stress detection is possible. 

6.4 Discussion and conclusion 

The proposed SMA method using simulated endmembers is suitable to identify areas 

of site-specific crop growth anomalies. The detection accuracy could be improved by 

the use of optimal stress-dependent modification rates for simulated endmembers. 

However, in the present study, even averaged modification rates achieved 

satisfactory results. Observed changes of reflection rates depended on the degree of 

stress impact on the observation date, which in some cases (e.g. fungal infections) is 

a dynamic process.  

 

The use of averaged spectral signatures of whole fields as a basis for the simulation 

of endmembers is on the one hand beneficial, since no ground truth is required to 

generate adequate endmembers. On the other hand, this could affect the result of 

the SMA adversely; in some cases, for instance if the field heterogeneity of crop 

growth is exceptionally high, extremely stress affected areas would not be identified, 

because the simulated endmember (based on the field mean) would not represent 

these areas sufficiently. In cases of homogeneous crop growth, only tractor lanes 

would be identified, due to lower vegetation covers.  
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The proposed method using simulated endmembers for SMA is a suitable tool to 

quantify stress impact. The knowledge-based simulated endmembers represented 

spectral signatures of areas with a reduced crop vigour sufficiently. These 

endmembers, which constitute modified mean spectral signatures of fields - under 

consideration of typical changes of reflection rates of stressed crops - allow for a 

ground truth-independent detection of areas that require adjusted management 

actions. This approach showed to be more effective than NDVI-analyses and can be 

alternatively and/or synergistically used.  
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Chapter 7 
 

The potential of airborne hyperspectral and multispectral remote 

sensing data for the identification of powdery mildew in wheat  

 

7.1 Introduction 

Previous studies presented here primarily focussed on the temporal dimension of 

crop diseases and their sensor-based detection as described in chapter 1.5. In 

context of a detection of these phenomena, however, the temporal dimension 

depends on the spectral resolution of the used data because improved spectral 

resolutions may result in earlier detection of crop stress. In chapter 5 it was 

demonstrated that multispectral data is not suitable for early detection of crop 

diseases due to their low spectral resolution. In contrast to multispectral sensors, 

which record reflected radiance in broad spectral bands, hyperspectral sensors are 

able to collect data in various spectrally narrow and continuous bands. This allows – 

in addition to a differentiation of photosynthetic active and non-active material – for a 

more detailed analysis of the phenological stage and the condition of vegetation 

(Moran et al. 1997). By the use of hyperspectral data, recent studies even focussed 

on the discrimination of different stress factors in plants (Moshou et al. 2006). Estep 

& Davis (2000) also emphasized the advantage of hyperspectral data for agricultural 

applications. This final chapter constitutes an outlook on the next period of the 

Research Training Group, when the main focus will be the spectral dimension of 

remote sensing data used for crop stress detection (see figure 1.5).  

 

The preliminary analysis was carried out, in order to (i) compare the potential of 

hyperspectral and multispectral remote sensing data for quantification of powdery 

mildew severity in wheat; (ii) to test an approach that derives appropriate 

endmembers from image data and (iii) to approve the suitability of modelled 

endmembers for a detection of disease severity by a SMA of image data.  
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7.2 Methodology 

The investigated wheat field was the one described in chapter 1.6. Remote sensing 

data were acquired by the airborne hyperspectral Mapper (HyMap) on 28 May 2005 

(BBCH 45). In order to compare multi- and hyperspectral data, HyMap data was 

resampled to the spectral characteristics of the multispectral QuickBird sensor as 

described in the special chapter presented in the appendix. Data characteristics of 

both data types thus were identical (apart the spectral characteristics), which allows 

for a direct comparison of the potential of each data type for early detection of 

powdery mildew.  

Information of the disease severity collected at the 54 sample points in field were 

used to validate the results. On 28 May 2005, powdery mildew constituted the 

predominant stress, whereas only marginal leaf rust infections occurred at some 

sample points (figure 3.5).  

 

7.2.1 Endmember selection 

The quality of SMA results, in general, highly depends on the availability of 

representative endmembers (Tompkins et al. 1997). Endmembers used in SMA can 

either be derived from image pixels or from a spectral library that contains reference 

endmembers derived from measurements taken in field, in laboratory, from radiative 

transfer models or derived from other images. Several approaches for the selection 

of optimal/representative endmembers were developed in the past. For instance, 

Bateson & Curtiss (1996) presented a manual selection approach (a similar approach 

was used in the study presented in chapter 5), Boardman et al. (1995) developed the 

Pixel Purity Index (PPI). In addition, the Count-based Endmember Selection (CoB) 

(Roberts et al. 2003), the Endmember Average RMSE (EAR) (Dennison & Roberts 

2003) and the Minimum Average Spectral Angle (MASA) (Dennison et al. 2004) were 

presented in the past. In contrast to the PPI, these approaches require knowledge 

about the spectrum characteristics to assign each spectrum to a certain class. The 

CoB indicates optimal endmembers of a spectral library that model the greatest 

number of spectra within a class. Endmembers are assessed by whether they meet 

fraction, RMSE and residual constraints when any other spectrum in the library is 

unmixed (Roberts et al. 2003). The CoB provides several quality parameters that 

allow for a ranking of representative endmembers. The in-CoB parameter gives the 
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total number of spectra modelled within the class, the out-CoB gives the total number 

of models outside of the class and the Count-Based Index (CoBI), developed by 

Clarke et al. (2005), represents the ratio of in-CoB to out-CoB with the denominator 

multiplied by the  number of spectra within a class. A high CoBI and a high in-CoB 

represent an excellent choice (Roberts et al. 2007).  

The EAR calculates the average RMSE produced by a spectrum when it is used to 

model all other members of a class. The optimum spectrum produces the lowest 

average RMSE (Roberts et al. 2007). 

The MASA calculates the average spectral angle between the reference spectrum 

(candidate model) and all other spectra within the same class. The best endmember 

is selected as the one that produces the lowest average spectral angle (Dennison et 

al. 2004). 

The approaches CoB, EAR and MASA that identify optimal/representative 

endmembers are implemented in the software ‘VIPER tools’, developed at the 

Department of Geography of the University California Santa Barbara 

(www.vipertools.org). The free software package ‘VIPER tools’ is an ENVI add-in that 

provides several processing tools for hyperspectral and multispectral remote sensing 

data. The major components are tools for creating and managing spectral libraries, 

for the selection of optimal endmembers for SMA and for calculating and interpreting 

Multiple Endmember Spectral Mixture Analyses (MESMA). For this analysis, the 

‘Viper tools’ were used for the creation of spectral libraries and for the selection of 

optimal endmembers.  

 

A spectral library was created containing spectra of the 54 pixels where the sample 

points were located and disease severity data was collected in field. Metadata, in 

particular powdery mildew severity and the percentage fraction of vegetation cover 

was linked to each spectrum. Accessorily, in order to categorize the disease severity, 

which is required for the optimal endmember selection procedure, 4 categories were 

defined: ‘vital wheat’ (<10% disease severity), ‘low infected wheat’ (10 – 20%), ‘mid 

infected wheat’ (21 – 30%) and ‘strong infected wheat’ (>30%).  Thus, 34 sample 

points were defined as representing ‘vital wheat’, 14 ‘low infected wheat’, 3 ‘mid 

infected wheat’ and 3 represented ‘strong infected wheat’. Afterwards, EAR, MASA 

and CoB were calculated for each spectrum. Thereby, only one optimal endmember 

could be selected (pixel of sample point 21) for the category ‘vital wheat’ that showed 
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high CoBI- and low EAR and MASA values, whereas no representative endmember 

could be selected for the other categories.  

 

7.2.2 Pure endmember derivation and SMA 

Especially at early infection stages, representative endmembers of infected wheat do 

not occur in field due to mostly low disease severity rates. As the result of the 

endmember selection showed, optimal endmember could only be found for healthy 

wheat. Therefore, to derive pure endmember the method of a linear spectral 

unmixing of spectra – as described in chapter 2 – was applied to image data. A pixel 

spectrum of a sample point with high powdery mildew severity (30%) and similar 

vegetation fraction as sample point 21 was chosen (sample point 53). The selected 

endmember representing vital wheat was spectrally unmixed of its soil fraction (using 

a pure soil spectrum) and used for a spectral unmixing of the pixel spectrum at 

sample point 53. The results were pure endmember of healthy wheat and 100% 

powdery mildew infected wheat (shade fraction was not considered). These pure 

endmembers were used for a SMA of the hyperspectral and simulated multispectral 

data, whereas for the multispectral data the same pure endmember derivation 

procedure was applied (using the multispectral pixel spectra of the same sample 

points).  

 

The Multiple Endmember Spectral Mixture Analysis (MESMA) of the ‘VIPER tools’ 

was not used, due to the fact that only single endmembers were used for the SMA. 

Therefore, the Mixture Tuned Matched Filtering (MTMF) was applied to estimate 

fractions of endmembers ‘healthy wheat’, ‘completely infected wheat’ and ‘soil’ in the 

image pixels. A regression analysis between the MF-fractions of each endmember 

and the in-field observed disease severity at the sample points was afterwards 

applied. All processing steps were carried out for hyperspectral and multispectral 

data.  
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7.3 Results 

Figure 7.1 displays the three hyperspectral pure endmembers used for the SMA. 

Whereas the soil spectra was derived from a pixel in the HyMap image with apparent 

characteristics, the pure endmembers ‘healthy wheat’ and ‘completely infected wheat’ 

were spectrally unmixed as described in chapter 2. The modelled pure 100% 

powdery mildew infected wheat endmember shows typical vegetation features, but as 

expected a strongly decreased NIR-plateau. Considering plant’s typical physiological 

response to stress, a higher reflection in the red spectrum would be expected. This 

modelled endmember is only an approximation and shows some unexpected 

features. However, no real spectrum that represents 100% infected wheat exists and 

this endmember is helpful to estimate the disease severity by image data. 

 

 
Figure 7.1: Spectral signatures of pure endmembers from HyMap as 

retrieved from image pixels and endmember modelling 

 

The MF-fractions of each endmember in the investigated field plot are displayed in 

figure 7.2 as a synthetically RGB-image. Red colours indicate high fractions of 

infected wheat, green gives predominantly healthy wheat fractions and blue 

represents high soil fractions. Obvious is a large area of infected wheat in plot 3, 

where no fungicides were applied that corresponds to in-field observations.   
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Figure 7.2: Image of the field plot showing MF-fractions of the 

endmembers ‘pure infected wheat’ (R), ‘pure healthy wheat’ (G) and ‘soil’ (B) as 

estimated by the MTMF 

 

A correlation analysis between the MF-results and in-field collected powdery mildew 

severity data (percentage of infected leaf area) was performed to validate the results. 

Therefore, around each sample point (54 points) a buffer of 4m was applied in a GIS 

and the mean of pixels intersected by these buffer zones was calculated for each 

parameter.  

 

Figure 7.3 shows the correlation between disease severity and the MF-fractions of 

the healthy wheat endmember as estimated by the MTMF for the hyperspectral data. 

A negative correlation was found with a Pearson correlation coefficient of r = -0.74 

and r2 = 0.55. A positive correlation was found for disease severity and MF-fractions 

of the modelled powdery mildew infected wheat endmember by r = 0.82 and r2 = 0.67 

(figure 7.4). 
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In contrast, only a poor correlation was found for multispectral data. The correlation 

between disease severity and the MF-fractions of the healthy wheat endmember 

showed a Pearson correlation coefficient of r = -0.15 and a r2 = 0.02. The Pearson 

correlation coefficient for the relationship between powdery mildew severity and MF-

fractions of the modelled multispectral powdery mildew infected wheat endmember 

was r = 0.2 and r2 = 0.04. 

 

 
Figure 7.3: Correlation of disease severity and MF-values of the 

pure healthy wheat endmember as estimated by the MTMF for hyperspectral 

data 
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Figure 7.4: Correlation of disease severity and MF-values of the 

pure 100% powdery mildew infected wheat endmember as estimated 

by the MTMF for hyperspectral data 

 

7.4 Discussion and conclusion 

This chapter comprises a comparison of multispectral and hyperspectral airborne 

remote sensing data for a detection of powdery mildew infections in wheat using a 

SMA. An approach for the selection of optimal/representative endmembers was 

used, which is implemented in the ENVI add-in software ‘VIPER tools’. Thus, an 

optimal endmember representing healthy wheat could be selected from an image 

pixel. In addition, the endmember selection process gave information about the 

potential for early crop stress detection. The fact that no representative endmember 

for infected wheat could be found indicates that a satisfying early detection of 

infected wheat is actually not possible using SMA, due to the lack of required 

endmembers. This is particularly the case for early infection stages when only a few 

small areas are infected and thus only few pixel spectra of these areas could be 

considered as possible endmembers. That indicates that a detection of infected 

wheat areas is only possible via a detection of healthy wheat areas, because other 

areas than healthy wheat areas could be considered as stress affected. The 

regression analysis of MF-fractions representing healthy wheat and disease severity 
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as observed in field showed satisfactory results for hyperspectral data (r = -0.74), 

which demonstrates the potential for this kind of indirect disease detection. 

 

The most challenging part for a direct plant disease detection using SMA is the 

derivation of appropriate endmembers. To provide such appropriate endmember 

representing infected wheat, a linear mixture model was applied to the spectra. An 

endmember was generated approximately representing a wheat canopy with 100% 

infected leaf area by unmixing the powdery mildew infected plant fraction of a mixed 

pixel spectrum. The regression analysis of MF-fractions of the modelled 

hyperspectral infected wheat endmember and in-field observed disease severity 

showed even more satisfactory results with a Pearson correlation coefficient of r = 

0.82. Hence, using modelled endmembers representing infected wheat for SMA, a 

direct identification of powdery mildew severity is possible with hyperspectral data.  

 

The results of the SMA of multispectral image data indicated that detections of 

powdery mildew infections are not possible at this infection stage, neither by the use 

of the healthy wheat endmember, nor by using the modelled completely infected 

wheat endmember. This was most likely caused by the unexpected observed low 

reflectance rates in the modelled red spectrum of the multispectral infected 

endmember that represented an endmember with inappropriate characteristics. 

 

This analysis revealed a high potential for the detection of powdery mildew infections. 

The comparison to multispectral data clearly pointed out the advantage of 

hyperspectral data. Hence, even a detection of this phenomenon at early infection 

stages seems possible by the use of this data.  
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Conclusion 

Summary 

Precision Agriculture essentially contributes to sustainable agricultural management 

by taking site-specific heterogeneities of crop growth by spatially and temporally 

adjusted management actions into account, resulting in a declining use of cost-

intensive and ecologically harmful agrochemicals. Precision Agriculture, however, 

requires detailed information about current crop status. Remote sensing has the 

potential to identify crop growth anomalies due to typical spectral responses of crops 

to stress factors. In contrast to spatiotemporally relative stable stress factors – such 

as soil conditions – highly dynamic stress phenomena require monitoring in a high 

temporal resolution. Only detailed analyses of the spatiotemporal processes of these 

phenomena provide information about appropriate temporal resolutions of stress 

detection systems.  

 

Present studies focussed on the potential of multiscale remote sensing techniques for 

multitemporal detection of two most common and harmful wheat diseases, powdery 

mildew (Blumeria graminis) and leaf rust (Puccinia recondita), which cause 

considerable yield losses (a yield loss of up to 2.2 t ha-1 was observed in this 

analysis). Prerequisites for remote sensing-based multitemporal observations of 

fungal infections are, first, a profound knowledge about spectral responses of plants 

to fungal infections and, second, an understanding of the spatiotemporal 

characteristics of the phenomena.  

 

Chapter 2 focussed on the spectral characteristics of vital and fungal infected wheat 

at leaf and canopy scale. Systematic differences between the spectra were found in 

either case. A linear mixture model was applied to canopy spectra, in order to derive 

a spectrum representing a wheat canopy with 100% disease severity. In a field 

experiment, the dynamics of powdery mildew and leaf rust were analysed in their 

spatial and temporal dimension by statistics and geo-statistics. Various statistical 

parameters were selected to describe and differentiate epidemics. Powdery mildew 

and leaf rust generally occurred in patches while offering different temporal 

characteristics. In particular for leaf rust, a more typical progress was observed. 
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Results indicated critical growth stages when diseases should be controlled (in this 

particular case, optimal disease control/detection dates were between growth stage 

BBCH 41 and 45 for both pathogens and additionally BBCH 30 for powdery mildew). 

It was demonstrated that even a single fungicide application per growing season was 

sufficient to successfully control leaf rust.  

 

Further analyses (chapters 4-7) addressed sensor-based detection of fungal infected 

wheat in laboratory and field experiments. In the laboratory, five days after 

inoculation of wheat plants with Puccinia recondita, discrimination between infected 

and vital stands was achieved by the use of a hyperspectral imaging sensor, whereas 

satisfactory disease detection by near-range acquired multispectral image data was 

not possible (chapter 4). 

 

In a field experiment, described in chapter 5, the potential of multispectral remote 

sensing data with high spatial resolution for multitemporal stress monitoring was 

assessed using images from April, May and June of the growth period in 2005. 

Results of spectral mixture analyses (SMA) and a parameter giving site-specific 

variations of a vegetation index were suitable to identify crop areas with reduced 

vitality caused by diseases. This data also showed high potential for monitoring the 

effectiveness of fungicide applications. The higher the disease severity or growth 

stage, the higher the classification accuracy (April: 56.8%, May: 65.9% and June: 

88.6%). However, the required early stress detection was not possible with 

multispectral remote sensing data.  

 

In another experiment (chapter 6), several cereal fields were monitored by in-field 

observations and multispectral remote sensing data, in order to assess stress-

dependent changes of wheat spectral signatures. It demonstrated that stress factors 

generally result in typical deviations from field mean spectral signatures, regardless 

of the stress type (only magnitude of changes varied depending on the stress 

impact). An approach was developed to generate simulated endmembers without any 

of the ground truth information usually required for representative endmember 

derivation. Mean field spectral signatures were thereby modified on the basis of the 

plant’s known physiological responses to stress. Crop areas showing growth 

anomalies could thus be successfully identified and quantified. 
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A comparison of airborne multi- and hyperspectral data with respect to powdery 

mildew detection was drawn in chapter 7. A sophisticated endmember selection 

procedure was used, whereby only one representative endmember for healthy wheat 

could be derived. A linear spectral mixture model was therefore applied to a pixel 

spectrum with known characteristics, in order to derive an endmember representing 

100% powdery mildew infected wheat. Regression analyses of matched fraction 

estimates of this endmember and in-field observed powdery mildew severity showed 

promising results for hyperspectral data (r = 0.82 and r2 = 0.67). Due to the fact that 

these results were achieved using data acquired in May, even earlier detection of 

infections seems possible using hyperspectral data. In contrast, this approach was 

not suitable for multispectral data (r = 0.2 and r2 = 0.04), because modelled spectral 

signatures showed less representative characteristics.  

 

Discussion 

The results of these studies indicate that sensor-based approaches have a high 

potential for the identification and quantification of fungal diseases and stresses in 

crops. Nevertheless, some sensors are more suitable than others.  

Given an optimal detection date and a spatially sufficient image sampling density, 

near-range hyperspectral imaging sensors are the most suitable for detecting crop 

diseases at early stages, which is required for highly effective site-specific fungicide 

applications. Near-range sensors, particularly imaging sensors, have the advantage 

of sensing the stress symptoms in greater detail. However, multitemporal stress 

monitoring is in some cases critical, because even vital canopies show high spectral 

variability during development (chapter 2). Spectroradiometer measurements as well 

as multispectral imaging data can be used for a discrimination of infected and vital 

crop areas, but in this case, an optimal near-range stress detection sensor for 

multitemporal approaches represented a hyperspectral imaging sensor (chapter 4). 

In contrast, spatially high-resolution satellite- or airborne sensing systems allow for 

identification and mapping of stressed crop areas with total field coverage. Site-

specific crop growth anomalies can thus be designated and maps showing areas 

requiring specific management actions can be derived. Even though high disease 

detection accuracy for powdery mildew (Blumeria graminis) was achieved using 

hyperspectral HyMap data (chapter 7) and even earlier disease detection seems thus 
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to be possible, detection of initial infections is not possible. Initial infections occur on 

single leaves, whereas recent remote sensing systems cover 5.7m2 per pixel (high-

resolution QuickBird sensor). Studies of chapter 6 and 7 showed that multispectral 

remote sensing data is not suitable for discriminating different stress factors or even 

pathogens without in-field information, but has a high potential to identify areas of 

reduced crop vigour or growth anomalies. Moran et al. (1997) and West et al. (2003) 

draw similar conclusion.  

 

The results of the present studies lead to the following conclusions: (i) near-range 

hyperspectral imaging sensors are valuable tools for the detection of initial onset of 

crop diseases; (ii) airborne- or satellite remote sensing data are suitable to identify 

general crop stress at advanced stages; (iii) hyperspectral data thereby achieves 

higher accuracies than multispectral data and (iv) hyperspectral data thus basically 

allows for early detection of stress factors. 

 

Data processing by SMA generally allowed for a quantification of stress at subpixel 

level as already mentioned by Lelong et al. (1998) and Du et al. (2004). In contrast, 

vegetation indices are not sensitive to the onset of stress but are useful in evaluating 

the consequences of stress (Jackson et al. 1986) and were thus synergistically used. 

The quality of a SMA, however, highly depends on the appropriateness of utilized 

endmembers, which is a limiting factor for each SMA. By the onset of a disease or in 

cases of sparsely infected crop areas, appropriate endmembers which sufficiently 

represent infected crops are difficult to derive. Endmember selection procedures 

showed that only endmembers of vital crops could be found (chapter 7). Identification 

of stressed crop areas is thus only indirectly possible via detection of vital crop areas. 

This problem was solved by different approaches. Successful direct estimation of 

disease severity was achieved for hyperspectral data by modelled endmembers 

representing completely infected wheat. Another endmember modelling approach for 

multispectral data was modified spectral signatures of the field mean (chapter 6). 

Promising SMA results for identifications of unspecific crop stresses could be 

achieved. In order to map in-field heterogeneities, this approach taking relative 

deviations of the field mean into consideration, was also suitable for vegetation 

indices that could then be used for multitemporal classifications (chapter 5). These 



103 

approaches can be used for crop stress quantification, in case no ground truth or 

appropriate endmembers are available. 

 

As the context of Precision Agriculture implies, the main focus of remote sensing 

approaches for Precision Agriculture applications must be a maximum accuracy of 

data pre-processing. However, it must be noted that achieved results include some 

uncertainties due to common inconstancies in multitemporal remote sensing data 

(such as varying acquisition geometry etc.) and a variance of in-field collected 

disease severity data. Parker et al. (1995) mentioned that there is no standardized 

method to estimate disease severity and visual estimations thus vary.  

 

In context of Precision Agriculture, the availability of remote sensing data at key times 

for management actions is a limiting factor, as the temporal resolution of spatially 

high-resolution data is low (frequency of coverage). In addition, clouds and the 

processing time required by the data provider complicate a near-real time acquisition 

of data (timeliness). Jackson et al. (1986) emphasized that the factors of timeliness 

and frequency of coverage must be considered when air- or satellite-borne sensors 

are used to provide information for farm management. Usefulness of remote sensing 

data for crop management declines with increasing time required for data acquisition 

and processing and/or decreasing temporal resolution of data. Some limitations may 

be reduced by the use of airborne sensor systems or by the launch of future satellite 

missions providing temporally high-resolution data, e.g. RapidEye. Until today, no 

spatially high-resolution spaceborne remote sensing system is available that provides 

data near-real time as required from these applications. Hence, together with their 

high potential for early stress detection found in this study, near-range sensors meet 

the requirements of Precision Agriculture more than remote sensing systems as they 

are highly flexible with respect to timeliness and frequency of coverage. 

Nevertheless, satellite/airborne remote sensing data may be used for identification of 

stress factors with lower spatiotemporal dynamics such as soil characteristics or for 

monitoring the effectiveness of pest control as demonstrated in chapter 5. Near-

range detection systems and satellite/airborne remote sensing systems constitute 

complementary tools for Precision Agriculture applications.  
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Sensor systems and data processing in Precision Agriculture – no matter if near-

range, airborne or satellite systems – are still cost-intensive and thus optimal sensor 

application dates must be chosen. These are primarily defined by the spatiotemporal 

dynamics of the observed phenomena itself (in this case by the spatiotemporal 

dynamics of powdery mildew and leaf rust as analysed in chapter 3). Optimal sensor 

application dates are bounded to times of disease onset and to periods when 

fungicide applications are the most effective. Even though for this experiment these 

dates could be derived for both diseases by multitemporal analyses, no general 

conclusions can be made, since high spatiotemporal dynamics of observed diseases 

were found that depend on manifold environmental factors. In order to define dates 

for sensor-based stress detection, decision support systems are therefore required, 

considering case-dependent impact factors on crop diseases. Assessments of the 

temporal dimension of crop stresses demonstrate that required temporal resolution of 

stress detection systems (as displayed in figure 1.5) is primarily dominated by 

individual characteristics of phenomena. Hence, complex bio-physiological systems 

such as fungal crop diseases dictate the requirements of technical systems used to 

detect them.  

 

Outlook 

Practical use of remote sensing data for farm management has yet to be realized. In 

recent years, no system that meets the requirements of Precision Agriculture in 

respect to the spatial, temporal, and spectral resolution was available. The launch of 

future satellite systems such as RapidEye with a high frequency of 

coverage/repetition rate, for instance, offers a wider scope of applications. However, 

their suitability and economical benefit for Precision Agriculture has to be proven.  

Further studies should focus on the general efficiency of site-specific pest control. 

More analyses of their ecologic and economic benefits, such as the study of Godwin 

et al. (2003), are necessary in either case. Studies of the last period of the Research 

Training Group 722 will focus on decision support systems for Precision Agriculture 

using input parameters derived by remote sensing and measurements of 

environmental conditions. In addition, optimal spectral resolutions of sensor data for 

stress detection will be determined as well as the potential of fusion techniques for 

near-range acquired multisensoral data.  
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Appendix 

A1. Special Chapter: Inconsistencies in remote sensing data caused 

by sensor-specific relative spectral response functions 

 

A1.1 Introduction 

 
Time series analyses are powerful tools for vegetation monitoring applications. Due 

to low temporal resolutions of some space-borne sensors, the use of various sensors 

of different platforms is essential for multitemporal or temporally highly resolved 

vegetation monitoring. However, different sensor characteristics cause 

inconsistencies in remote sensing data. The acquisition geometry of the sensor, like 

viewing- and solar angle, atmospheric conditions, topography and spatial resolution 

influence the reflectance values. This study contributes to another important factor, 

the spectral characteristics of sensor bands. This factor influences reflectance values 

of monitored targets caused by different sensitivities of bands (different relative 

spectral response (RSR) functions). Values of vegetation indices (VI) like the most 

often used VI (Bannari et al. 1995), the Normalized Difference Vegetation Index 

(NDVI) particularly vary to the according sensor. Thus, a direct comparison or a 

synergistic use of the NDVI of different sensor systems is critical. Several studies 

indicated these NDVI offsets caused by spectral band characteristics and/or all 

influencing factors and supposed approaches to minimize those variations 

(Trishchenko et al. 2002, Steven et al. 2003, Franke & Menz 2005, Miura et al. 2006, 

van Leeuwen et al. 2006). 

 

In this analysis, a spectral simulation of 3 different multispectral sensor systems 

(Landsat 5TM, QuickBird and SPOT5) based on airborne hyperspectral HyMap data 

was performed. The simulation accuracy was evaluated with real Landsat 5TM 

imagery acquired on the same day. The objective of this study was to develop an 

accurate multispectral band simulation method in order to quantify NDVI differences 

between Landsat 5TM, QuickBird and SPOT5, caused by the effect of sensor-

dependent RSR functions.  
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A1.2 Band characteristics 

 
A spectral band of a sensor can be described by its spectral range, bandwidth, center 

wavelength and full width at half maximum (FWHM). In more detail, it can be 

characterised by its RSR function that takes into account all the features describing a 

band. The RSR of each band of a sensor system is characterized by the effective 

spectral quantum efficiency (QE) of the detector. The QE indicates the spectral 

sensitivity of a charge-coupled device (CCD) to incoming light at each wavelength. 

More precisely it gives the number of electrons produced in the detector per incoming 

photon (dimensionless or amps/watt). The effective spectral QE includes not only the 

type-dependent sensitivity of the CCD, but also losses due to the light reflecting or 

transmitting components of the detector (e.g. optics, mirrors, filters, coatings etc.). 

Variable sensor systems thus have different spectral sensitivity, which are described 

by their individual RSR functions.  

 

Sensor-dependent RSR functions
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Figure A1.1: Relative spectral response functions of the red and near-

infrared bands of Landsat 5TM, QuickBird and SPOT5 with 2 typical land cover 

spectra 
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Sensor-related RSR differences of the RED bands
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Figure A1.2a/b: Sensor-related differences (%) of the relative 

spectral response functions of the red (a) and near-infrared (b) bands of the 

sensors  

 

Figure A1.1 shows the RSR functions of the red and NIR bands of the different 

sensors used in this study. Two typical spectra of different land cover are plotted as 

reference. The band-specific RSR functions differ in shape and central wavelength 

location. In particular, RSR functions of the sensors vary in the NIR region. 

Conspicuous is that the gap between the red and NIR band of Landsat 5TM as well 

as of SPOT5 is wider than the gap between the QuickBird bands, where even an 

overlap exists. Thus, the QuickBird bands are closer to the red edge. The red bands 

of the 3 sensors are more similar than the NIR bands, which is more obvious in figure 

A1.2 that shows the RSR differences between the red (figure A1.2a) and NIR (figure 
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A1.2b) sensor bands. Whereas the red bands of QuickBird and SPOT5 are similar, 

the NIR bands of these sensors show the widest differences up to over 80% at 

0.77µm. Due to the wide differences between the NIR bands, the RSR functions of 

these bands affect the NDVI more than those of the red bands.  

 

A1.3 Study site and data 

 

The test site is shown in chapter 1.6. The HyMap flight campaign took place on 28 

May 2005 (12.00 am). HyVista corp. and the DLR (German Aerospace Center) 

carried out the geometric and atmospheric correction of the data. 

The Landsat 5TM acquisition was on the same day at 10.30 am. The pre-processing 

of the image included an atmospheric correction with the software ATCOR 3 by the 

use of a digital elevation model. Spectroradiometer measurements with a FieldSpec 

Pro (Analytical Spectral Devices, Boulder, CO, USA), taken at the same day, were 

used to validate the atmospheric correction. Afterwards, the Landsat 5TM and 

HyMap image were co-registered with a RMS-error less than 0.5.  

 

A1.4 Methodology 

Some sensor simulation methods have tried to take the geometric and spectral 

differences of the sensors into account (Kavzoglu 2004). Because the main objective 

of this special chapter is to assess spectral differences solely caused by different 

RSR functions, only the spectral characteristic of the sensors were simulated by 

constant side-parameters.  

As a prerequisite for the following data simulation, the RSR values of each 

multispectral band were attached to the according wavelengths of the 126 

hyperspectral bands. Therefore, each HyMap center wavelength was linked with the 

mean RSR value (in the range of FWHM of the hyperspectral band) of the simulating 

band.   

An in-house developed IDL-program facilitates any user-predefined multispectral 

band simulation with regard to the band-specific RSR function. The 126 HyMap 

reflectance values of each pixel were thereby multiplied by the 126 wavelength 

corresponding RSR values of the simulating band. The sum of these products is 
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divided by the sum of the 126 band-specific RSR values. For a multispectral sensor 

simulation, each band must be simulated according to the following equation, where 

Rsimb is the simulated pixel reflectance value of the simulated band, Ri is the pixel 

reflectance value of the HyMap band and rsrb,i is the RSR value of the simulating 

band at each HyMap corresponding wavelength. 
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The results were simulated multispectral bands that provide spectral information 

similar to those of the original sensor bands. Nevertheless, differences to original 

data caused by different spatial resolution or sun/sensor/target geometry still exist. 

This fact has to be considered by following validation of the simulation. 

 

In order to assess the accuracy of the simulation method an extensive evaluation 

was performed by the use of an original Landsat 5TM image. Reflectance differences 

of the imagery were assessed as an indication of the data simulation quality. The 

overall differences of both data sets do not differ significantly with values between 

0.08% and 1.45% reflectance (table A1.1), by a mean of 0.79%. Highest congruence 

between original and simulated data could be achieved in band 3, widest differences 

existed in band 7.  

 

Obvious was a general underestimation of reflectance values of the simulated data. 

These slight statistical differences had various reasons. In comparison to the original 

Landsat 5TM data set, the simulation did not consider variations due to different 

spatial resolution or sun/sensor/target geometry. In addition, different atmospheric 

corrections of original and simulated data caused slight variations as well. Generally, 

variations in reflectance values occur due to different overpass time and off-nadir 

viewing. The last point is particularly critical for airborne sensors (Schiefer et al. 

2006). Bi-directional reflectance factor effects caused by different illumination and 

observation angles within the HyMap scene were negligible due to a south to north 
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flight direction at noon. In addition, the solar illumination geometry was similar at 

Landsat 5TM and HyMap overpass times (within 1.6°). 

 

Table A1.1: Band-wise mean and standard derivation of 

reflectance in % and ndvi for original- and simulated Landsat 

5tm of the entire scene, as well as reflectance/NDVI differences 

 
 

Kerekes & Landgrebe (1989) estimated the effect of these differences causing 

factors from 5-10% in reflectance. In the study of Kalman & Peltzer (1993), a 

simulation of Landsat TM imagery on the basis of AVIRIS data was accomplished. 

The comparison showed an offset of the mean DN values from 0.4% up to 5.3% 

according to the band. Teilet et al. (2003) compared Landsat 5TM and 7ETM+ and 

showed a spectral band difference in the range of 2-7% depending on the band that 

lead to NDVI differences of 1% to 4% (mean 2.5%). 

 

The validation of the NDVI differences between original and simulated Landsat 5TM 

shows a high congruence as well. Table A1.1 also shows NDVI differences of 

simulated and original Landsat 5TM. The differences in the NDVI values were 

marginal, with a difference of 0.004 (0.62%). Finally, the validation by a comparison 

between original and simulated Landsat 5TM imagery showed a well performance of 

the simulation method.  

 

Simulated Landsat Original Landsat 
 

Mean STDEV Mean STDEV 
absoluteD

IFF 

Band 1 4.0 % 4.0 % 5.0 % 3.3 % 0.96 % 

Band 2 6.9 % 5.4 % 7.7 % 4.8 % 0.80 % 

Band 3 7.5 % 6.6 % 7.5 % 6.1 % 0.08 % 

Band 4 34.3 % 12.4 % 34.8 % 10.2 % 0.46 % 

Band 5 18.0 % 8.3 % 19.0 % 7.3 % 1.01 % 

Band 7 11.0 % 8.7 % 12.4 % 8.1 % 1.45 % 

NDVI 0.635 0.277 0.639 0.258 0.004 
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A1.5 Results 

The advantage of the comparison between simulated data sets, which were 

simulated according equation A1.1, is that only differences of interest are included. 

Thus, the NDVI of the simulated images were calculated, in order to assess the NDVI 

differences solely caused by different sensor-dependent RSR functions. Landsat 

5TM showed a mean NDVI of 0.64, QuickBird of 0.62 and SPOT5 of 0.66. 

 

Table A1.2: Minimum, Maximum, Mean and percentage NDVI differences between 

simulated Landsat 5TM, QuickBird and SPOT5 simulated imagery 

 
 

Table A1.2 shows the minimum, maximum and mean NDVI differences (in %) of the 

simulated images. The lowest mean differences of NDVI with 2.2% occurred between 

Landsat 5TM and QuickBird. A mean difference of 3.9% showed the comparison of 

Landsat 5TM and SPOT5, whereas the widest range of differences occurred (from -

0.126 up to 0.157). Widest NDVI differences showed QuickBird and SPOT5 with 

6.3%, due to the widest difference in RSR functions of the NIR bands (figure A1.1). 

Those NDVI differences were also obvious in the histograms of the NDVI 

distributions of the 3 simulated images (figure A1.3). Considering the sensor-

dependent NDVI distributions, a similar shape of the histograms by a shift in range 

became apparent as well as the wide difference between QuickBird and SPOT5 

caused by wide differences between their RSR functions in the NIR. An important 

fact is that the higher the NDVI value, the wider the differences, which is obvious by 

closer examination of both peaks. Primarily, the similar shapes of the histograms that 

showed a shift in range and a slight stretch indicate a systematic but non-linear NDVI 

offset of the different sensors. 

  
Min. NDVI 
difference 

Max. NDVI 
difference 

Mean NDVI 
difference 

Difference 
(%) 

Landsat-
QuickBird 

-0.064 0.099 0.014 2.2 

Landsat-SPOT 
-0.126 0.157 -0.025 3.9 

QuickBird-
SPOT 

-0.083 0.074 -0.039 6.3 
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Figure A1.3: Sensor-dependent NDVI distributions of simulated SPOT5, 

QuickBird and Landsat 5TM imagery 

 

A1.6 Conclusion 

 
In this chapter, the performance quality of a sensor simulation method that allows the 

simulation of multispectral data was empirically investigated. This approach uses 

specific RSR functions of the simulating sensors and creates bands that are 

spectrally similar to original multispectral data sets. The main objective of this method 

was an accurate modelling of spectral band features. The validation of the simulation 

approach showed a high congruence between original and simulated Landsat 5TM 

images and approved the performance quality. Thus, NDVI data sets were created 

that contained differences solely caused by spectral characteristics of the sensors. 

 

The assessment of NDVI differences between Landsat 5TM, QuickBird and SPOT5 

showed substantial differences between the sensor systems. Wide NDVI differences 

could be traced back to wide differences of the sensor-dependent RSR functions. An 

important factor for possible sensor-intercalibration approaches is that a systematic, 

but non-linear NDVI offset occurred. Therefore, an intercalibration approach using a 

polynomial order is suggested to adjust NDVI differences caused by varying RSR 

functions. A similar approach was already suggested by Trishchenko et al. (2002). 

Due to the fact that NDVI differences caused by different RSR functions are clearly 

determinable against other differences causing factors, a stepwise sensor NDVI 

intercalibration is desirable. Thereby, the spectral characteristics of the sensors have 
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to be taken into account in a first step, residual factors such as different 

sun/sensor/target geometry, different spatial resolution etc. could be realized in a 

second step. Such an intercalibration is necessary for multisensoral NDVI analyses, 

in order to ensure comparability of results. 

 

A1.7 References of the special chapter 

 
Bannari, A., Morin, D., and F. Bonn (1995): A review of vegetation indices. 

Remote Sensing Review. 13. 95-120. 

Franke, J. and G. Menz (2004): Sensor intercalibration- adjustment of MODIS-

NDVI to AVHRR-NDVI data. IEEE Conference Proceedings of the 

International Geoscience and Remote Sensing Symposia. Anchorage, 

USA. Vol. III. 1719-1722. 

Kalman, L.S. and G.R. Peltzer (1993): Simulation of Landsat Thematic Mapper 

Imagery using AVIRIS hyperspectral imagery. Conference 

Proceedings of the AVIRIS Airborne Geoscience Workshop. 97-100. 

Kavzoglu, T. (2004): Simulating Landsat ETM+ imagery using DAIS 7915 

hyperspectral scanner data. International Journal of Remote Sensing. 

20. 5049-5067. 

Kerekes, J.P. and D.A. Landgrebe (1989): Simulation of Optical Remote 

Sensing Systems. IEEE Transactions on Geoscience and Remote 

Sensing. 26(6). 762-771. 

Miura, T., Huete, A., and H. Yoshioka (2006): An empirical investigation of 

cross-sensor relationships of NDVI and red/near-infrared reflectance 

using EO-1 Hyperion data. Remote Sensing of Environment. 100(2). 

223-236. 

Schiefer, S., Hostert, P. and A. Damm (2006): Correcting brightness gradients 

in hyperspectral data from urban areas. Remote Sensing of 

Environment. 101(1). 25-37. 



128 

Steven, M.D., Malthus, T.J., Baret, F., Xu, H., and M.J. Chopping (2003): 

Intercalibration of vegetation indices from different sensor systems. 

Remote Sensing of Environment. 88(4). 412-422.  

Teilet, P.M., Barker, J.L., Markham, B.L., Irish, R.R., Fedosejevs, G. and J.C. 

Storey (2001): Radiometric cross-calibration of the landsat-7 ETM+ 

and landsat-5 TM sensors based on tandem data sets. Remote 

Sensing of Environmen. 78(1-2). 39-54. 

Trishchenko, A.P., Cihlar, J., and Z. Li (2002): Effects of spectral response 

function on surface reflectance and NDVI measured with moderate 

resolution satellite sensors. Remote Sensing of Environment. 81(1). 

1-18.  

van Leeuwen, W.J.D., Orr, B.J., Marsh, S.E. and S.M. Herrmann (2006): Multi-

sensor NDVI data continuity: Uncertainties and implications for 

vegetation monitoring applications. Remote Sensing of Environment. 

100(1). 67-81. 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 

A2. IDL-source code of the QuickBird-bands simulation program 

Simulation of QuickBird's multispectral bands with hyperspectral HyMap data 

 

; *Jonas Franke & Albert Moll 11/2005* 

; *jonasfranke@uni-bonn.de* 

; 

; DO NOT SELECT A SPATIAL OR SPECTRAL SUBSET IN THE 'CHOOSE IMAGE' 

; WINDOW 

; 

;***MAIN*** 

; 

;declaration of variables 

;HyMap band definition (information only) 

;hymap_wl = fltarr(126) 

;hymap_wl = [438.000, 450.000, 462.400, 478.100, 493.400, 508.500, 524.100, 

;539.400, 554.900, 570.200, 585.200, 600.200, 616.300, 631.700, 646.500, 661.600, 

;677.100, 692.400, 707.500, 722.900, 738.100, 753.000, 768.000, 783.100, 798.300, 

;813.400, 828.500, 843.900, 859.200, 874.300, 878.200, 895.400, 911.100, 926.900, 

;943.300, 959.100, 974.600, 990.400, 1006.400, 1021.700, 1037.200, 1052.700, 

;1067.900, 1082.900, 1098.000, 1112.900, 1127.800, 1142.400, 1157.100, 

;1171.600, 1186.000, 1200.400, 1214.800, 1229.000, 1243.100, 1257.400, 

;1271.600, 1285.500, 1299.200, 1313.300, 1327.300, 1340.500, 1404.200, 

;1418.800, 1433.000, 1447.100, 1460.900, 1475.200, 1489.000, 1502.600, 

;1516.300, 1529.900, 1543.300, 1556.600, 1570.000, 1583.200, 1596.100, 

;1609.100, 1622.200, 1635.100, 1647.800, 1660.600, 1673.200, 1685.700, 

;1698.000, 1710.400, 1722.800, 1735.100, 1747.100, 1759.400, 1771.500, 

;1783.400, 1795.100, 1807.000, 1951.100, 1970.300, 1989.500, 2008.500, 

;2027.000, 2045.300, 2063.700, 2082.100, 2100.400, 2118.500, 2136.200, 

;2153.500, 2170.800, 2187.900, 2205.800, 2224.000, 2240.800, 2258.000, 

;2274.500, 2291.600, 2308.800, 2325.000, 2341.300, 2357.400, 2373.200, 

;2389.200, 2405.300, 2421.500, 2437.100, 2452.600, 2467.800, 2483.000] 
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;QB band definition (center wavelengths) 

QB_wl = fltarr(5) 

QB_wl = [700.000,480.000,545.000,652.000,810.000] 

 

;QB relative spectral response definition (fitted to HyMap-bands center wavelenghts) 

QB_sens = fltarr(126,5) 

 

;pan band RSR-values 

QB_sens[*,0] = [0.178943, 0.216273, 0.266911, 0.345567, 0.369244, 0.417356, 

0.500333, 0.615882, 0.748656, 0.861359, 0.936789, 0.970886, 0.994809, 0.980535, 

0.928783, 0.886836, 0.888825, 0.889041, 0.868937, 0.871558, 0.895546, 0.923035, 

0.912846, 0.881965, 0.850109, 0.861187, 0.842633, 0.842943, 0.792530, 0.749004, 

0.700333, 0.645481, 0.588863, 0.502526, 0.409906, 0.317245, 0.257470, 0.209824, 

0.163008, 0.122757, 0.078367, 0.037481, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000] 

 

;blue band RSR-values 

QB_sens[*,1] = [0.216377, 0.530611, 0.757708, 0.935744, 0.969845, 0.576632, 

0.168714, 0.059823, 0.019905, 0.012656, 0.010256, 0.009897, 0.007884, 0.002897, 

0.002605, 0.002898, 0.009827, 0.019657, 0.007592, 0.008299, 0.002761, 0.003293, 

0.003512, 0.003208, 0.003139, 0.003543, 0.004127, 0.004637, 0.005731, 0.005252, 

0.005160, 0.005927, 0.009516, 0.009297, 0.004731, 0.002253, 0.001385, 0.001183, 

0.001083, 0.001309, 0.001566, 0.000406, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 
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0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000] 

 

;green band RSR-values 

QB_sens[*,2] = [0.004626, 0.013833, 0.026761, 0.160995, 0.421598, 0.752954, 

0.874378, 0.975975, 0.981433, 0.976526, 0.781324, 0.332658, 0.094533, 0.030157, 

0.026362, 0.015515, 0.012683, 0.005689, 0.003259, 0.007146, 0.004020, 0.002606, 

0.003096, 0.004055, 0.003811, 0.003095, 0.003212, 0.004403, 0.007924, 0.009122, 

0.008300, 0.007566, 0.008025, 0.006690, 0.003565, 0.001726, 0.001182, 0.000925, 

0.000850, 0.001118, 0.000987, 0.000287, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000] 

 

;red band RSR-values 

QB_sens[*,3] = [0.002445, 0.002991, 0.002901, 0.002469, 0.002713, 0.003507, 

0.005277, 0.006611, 0.008994, 0.014446, 0.034541, 0.092791, 0.343687, 0.783802, 

0.944286, 0.996026, 0.859333, 0.367390, 0.059699, 0.020918, 0.018618, 0.007060, 

0.004401, 0.005915, 0.004573, 0.002537, 0.002489, 0.002520, 0.002483, 0.002294, 

0.002053, 0.002004, 0.002679, 0.001734, 0.001017, 0.000786, 0.000692, 0.000631, 
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0.000694, 0.000846, 0.000817, 0.000277, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000] 

 

;NIR band RSR-values 

QB_sens[*,4] = [0.003589, 0.004741, 0.004541, 0.005346, 0.003276, 0.002659, 

0.003743, 0.009325, 0.005859, 0.007307, 0.004878, 0.003657, 0.004433, 0.006184, 

0.008625, 0.012140, 0.014500, 0.022586, 0.041335, 0.074445, 0.174780, 0.496183, 

0.915085, 0.967438, 0.874058, 0.832026, 0.803899, 0.710577, 0.609807, 0.511680, 

0.394341, 0.219116, 0.089248, 0.024957, 0.007388, 0.003615, 0.002250, 0.001860, 

0.001691, 0.002069, 0.001779, 0.000667, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000] 

 

QB_sens[*,0] = QB_sens[*,0]/26.322581  ; devided by sum of relative spectral 

response of pan band 

QB_sens[*,1] = QB_sens[*,1]/4.412846    ; devided by sum of relative spectral 

response of blue band 
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QB_sens[*,2] = QB_sens[*,2]/6.584972    ; devided by sum of relative spectral 

response of green band 

QB_sens[*,3] = QB_sens[*,3]/4.621948    ; devided by sum of relative spectral 

response of red band 

QB_sens[*,4] = QB_sens[*,4]/7.887684    ; devided by sum of relative spectral 

response of NIR band 

;-------------------------------------------------------------------------------- 

;image selection 

 

envi_select, title='Choose image', $ 

             fid=fid, dims=dims,pos=pos 

    if (fid eq -1) then return 

 

input_array_xsize = dims[2]-dims[1]+1 

input_array_ysize = dims[4]-dims[3]+1 

input_array_bands = n_elements(pos) 

if (input_array_bands) ne 126 then return 

;-------------------------------------------------------------------------------- 

spec_bands_quickbird = 5; 

;-------------------------------------------------------------------------------- 

; tiling to enable processing of whole scene 

 

tile_id=envi_init_tile(fid,pos, num_tiles=num_tiles, ys=dims[3], ye=dims[4], 

interleave=1) 

 

TLB = WIDGET_AUTO_BASE(title='Ausgabe quickbird') 

P = widget_outf(TLB, uvalue='Dateiname', /auto) 

result = auto_wid_mng(TLB) 

if (result.accept eq 0) then begin 

return 

endif 

 

openw, unit, result.Dateiname , /get_lun 
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im_sz_str=string(num_tiles) 

envi_report_init, ['Lines to be processed:   ', $ 

im_sz_str], title='Status', base=zuweiser, /interupt 

for tile_index=0L,num_tiles-1 do begin 

 

    tile_data = envi_get_tile(tile_id, tile_index , ys=ys, ye=ye) 

    ;-------------------------------------------------------------------------------- 

    ;Matrix multiplication 

    ;result is a 5 band QuickBird-simulated image (same image dimensions as input) 

    ;equation: (pixel value (R) * relative spectral response QB)/sum of rel. spectral  

    ;response QB (each band) 

 

    output_data=QB_sens##tile_data 

    writeu, unit, output_data 

    envi_report_stat, zuweiser, tile_index, num_tiles-1 , CANCEL = Abbruch 

    if Abbruch eq 1 then begin 

       envi_report_init, base=zuweiser, /finish 

       return 

    endif 

 

endfor 

 

envi_report_init, base=zuweiser, /finish 

envi_tile_done, tile_id 

;-------------------------------------------------------------------------------- 

;Ausgabe 

 

free_lun, unit 

map=envi_get_map_info(fid=fid) 

envi_setup_head ,fname=result.Dateiname, ns=input_array_xsize, $ 

        nl=input_array_ysize, nb=spec_bands_quickbird $ 

       ,data_type=4, interleave=1, map_info=map, /write ; 

 

end 


