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Abstract

Weakly Interacting Massive Particles (WIMPs) are one of the leading candidates for

Dark Matter. Currently, the most promising method to detect many different WIMP

candidates is the direct detection of the recoil energy deposited in a low-background

laboratory detector due to elastic WIMP-nucleus scattering. So far the usual procedure

has been to predict the event rate of direct detection of WIMPs based on some model(s)

of the Galactic halo from cosmology and of WIMPs from elementary particle physics.

The aim of this work is to invert this process. In this thesis I will present methods

which allow to extract information on the WIMP velocity distribution function as well

as on the WIMP mass from the recoil energy spectrum as well as from experimental data

directly.

At first I will derive the expression that allow to reconstruct the normalized one-

dimensional velocity distribution function of WIMPs from the recoil spectrum. I will also

derive the formulae for determining the moments of the velocity distribution function. All

these expressions are independent of the as yet unknown WIMP density near the Earth

as well as of the WIMP-nucleus cross section. The only information about the nature of

WIMPs which one needs is the WIMP mass.

Then I will present methods that allow to apply the expressions directly to exper-

imental data, without the need to fit the recoil spectrum to a functional form. These

methods are independent of the Galactic halo model. The reconstruction of the velocity

distribution function will be further extended to take into account the annual modulation

of the event rate.

Moreover, I will present a method for reconstructing the amplitude of the annual mod-

ulation of the velocity distribution. The only information which one needs is the measured

recoil energies and their measuring times. An alternative, better way for confirming the

annual modulation of the event rate will also be given.

Finally, I will present a method for determining the WIMP mass by combining two (or

more) experiments with different detector materials. This method is not only independent

of the model of Galactic halo but also of that of WIMPs. In addition, some meaningful

information on the WIMP mass can already be extracted from less than one hundred

events.
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Chapter 1

Dark Matter

One of the most fundamental open questions in cosmology and elementary particle

physics today is what is the nature of Dark Matter. Earlier the question was whether

Dark Matter actually exists. But nowadays we have some strong evidence to believe that

something which we do not know exists.

As introduction I review briefly the history of the discovery of (the existence of) Dark

Matter in the Universe. It will be seen that, according to some astronomical observations

and measurements, more than 80% of the total mass content of the Universe consists of

Dark Matter. I will also present some models of Dark Matter halo in this chapter.

1.1 Evidence for Dark Matter

We call such something “dark” because it (almost) neither emits nor absorbs elec-

tromagnetic radiation. Historically the observational evidence for the existence of Dark

Matter came only from galactic dynamics and are gravitational [1]. The following discus-

sions in this section show that the observed luminous objects (stars, gas clouds, globular

clusters, or even entire galaxies) can not have enough mass to support the observed grav-

itational effects [1].

1.1.1 Clusters of galaxies

Clusters of galaxies are the largest gravitationally-bound objects in the Universe. For

example, our Milky Way and the M31 galaxy belong to the Local Group of Galaxies and

are part of the Virgo Supercluster of Galaxies.

At the beginning of the 1930s, F. Zwicky and other astronomers measured the total

mass of a few clusters of galaxies and the masses of the luminous objects in these clusters

of galaxies [2], [3]. Their measurements showed that the masses of these clusters of

galaxies required to gravitationally bind their galaxies are much larger than the sum of

the luminous masses of their individual galaxies.
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Figure 1.1: Rotation curve for OB associations in M31, as a function of distance from
the galaxy center (figure from [4]).

1.1.2 Rotation curves of spiral galaxies

The most convincing evidence for the existence of Dark Matter came from the mea-

surement of the rotation curves of spiral galaxies in the 1970s by V. C. Rubin and other

astronomers [4]-[6].

According to Newton’s Second Law, the rotational velocity v of an object on a stable

orbit with radius r from the center of galaxy is 1

v2(r)

r
=

GNM(r)

r2
, (1.1)

namely,

v(r) ∝
√

M(r)

r
, (1.2)

where M(r) is the mass inside the orbit. For an object outside the visible part of the

galaxy, one would expect that

v(r) ∝ 1√
r

. (1.3)

1Here the galaxy is assumed to be spherical symmetric.
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Figure 1.2a: Rotation curves for some simple spiral galaxies. The rotation curves of the
individual components: visible component, gas, and dark halo, are also shown (figure
from [7]).
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Figure 1.2b: Rotation curves for some lower luminosity galaxies. The rotation curves of
the individual components: visible component, gas, and dark halo, are also shown (figure
from [7]).

However, measurements of the circular velocities of clouds of neutral hydrogen in galaxies

by using their 21-cm emission [1] showed that the rotation curves of spiral galaxies are

flat (see Figs. 1.1 and 1.2a) or even rising (see Fig. 1.2b) at distances far away from their

stellar and gaseous components [4]-[8]. This implies the existence of a “dark halo” around

the galaxy with a total mass profile:

M(r) ∝ r , (1.4)

i.e., the profile of the mass density should be

ρ(r) ∝ 1

r2
, (1.5)
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Figure 1.3: The position of the Sun in the Milky Way. The visible (luminous) component
has been shown. It can be seen that our Solar system is already out of the Central Bulge
of the Galaxy.

since

M(r) = 4π
∫ r

0
r′2ρ(r′) dr′ . (1.6)

1.1.3 Escape velocity from the Milky Way

The escape velocity from the Milky Way at the position of our Solar system has been

estimated as [9], [1]

vGalaxy
esc & 450 km/s . (1.7)

It is much larger than can be accounted for by the luminous matter in our Galaxy. It

is not difficult to understand why this result so surprising if one thinks about the huge

difference between the escape velocity from the Sun’s surface [1]:

v¯esc ∼= 617.5 km/s , (1.8)

and that from the Solar system at the position of the Earth [10]:

vsolar
esc

∼= 42.1 km/s . (1.9)

Recall that the gravitational well in our Solar system is essentially only caused by the

Sun’s mass which dominates the total mass of the Solar system. If the mass of the

luminous matter in our Galaxy would also dominate the total mass of the Galaxy (see

Fig. 1.3), the escape velocity from our Galaxy at the position of our Solar system would

also be reduced (at least) one order of magnitude.
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1.2 Cosmological density parameters

The cosmological density parameter of a given component of the total energy of the

Universe i has been defined as the density of this component averaged over the Universe,

ρi, in units of the critical energy density of the Universe, ρcrit,

Ωi ≡ ρi

ρcrit

. (1.10)

The critical energy density of the Universe is the value that makes the geometry of the

Universe flat (a more detailed explanation about the “flat Universe” will be given in

Subsec. 1.2.2) [11]: 2

ρcrit =
3H2

0

8πGN

' 2.775× 1011h2 M¯/Mpc3

' 1.878× 10−29h2 g/cm3 . (1.11)

Here H is the expansion rate of the Universe (the time dependent Hubble parameter)

defined as

H ≡ ȧ

a
(1.12)

with the scale factor of the Universe, a(t), and H0 denotes the expansion rate of the

Universe “at the present epoch” (redshift z = 0),

H0 ≡ 100h km/s/Mpc , (1.13)

with the dimensionless Hubble constant h. Moreover, the Newtonian gravitational con-

stant, the mass of the Sun, and the parsec (pc) are given as [11]

GN = 6.674× 10−11 m3/kg/s2 , (1.14)

M¯ = 1.988× 1030 kg , (1.15)

1 pc ≡ 1 AU

1 arc sec
' 3.0857× 1016 m ' 3.262 c · yr , (1.16)

where the astronomical unit (AU), i.e., the mean distance between the Earth and the

Sun, and the speed of light, c, are given as [11]

1 AU = 1.4960× 1011 m , (1.17)

c ≡ 2.99792458× 108 m/s . (1.18)

In the rest of this section I present briefly some important astronomical measurements

and their current results, by which the cosmological density parameters of different com-

ponents of our Universe can be determined pretty exactly (to one or even two significant

2Note that ρcrit here is the critical “energy density”. However, the factor c2 in the expression has
been usually neglected.
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figure accuracy [12]). Particularly prominent are the measurement of the anisotropy of

the cosmic microwave background (CMB) radiation, led by the three-year results from

the Wilkinson Microwave Anisotropy Probe (WMAP) [13]. In the last subsection we will

see that the cosmological density parameters also show the evidence for (or the necessity

of) the existence of Dark Matter (and, more exactly, also of Dark Energy, both of them

are “something which we do not know”). More details about theoretical explanations

and experimental results of these measurements can be found in e.g., Refs. [14], [15], [12],

and [16]-[18].

1.2.1 Cosmic microwave background (CMB)

The cosmic microwave background radiation (CMBR or CBR) discovered in 1965

provides the fundamental evidence for the hot Big-Bang model of the early Universe [14].

The spectrum of the CBR can be described very well by a blackbody function with the

temperature T [18]. The energy density of “CMB photons” can then be obtained directly

as [11]

ργ =
π2

15

(kBT )4

(h̄c)3
, (1.19)

where the Boltzmann’s constant, kB, and the Planck’s constant, h̄, have been given as

[14]

kB = 1.3807× 10−23 J/K , (1.20)

h̄ = 1.0546× 10−34 J s . (1.21)

The present (mean) CBR temperature has been measured as [11]

T0 = (2.725± 0.001) K . (1.22)

1.2.2 Anisotropy of the CMB radiation

Another important observable quantity from the CMB is its anisotropy: tiny tem-

perature difference (of order of 10−5 of the magnitude of the mean temperature T [18])

between two points on the sky (see Fig. 1.4). The measurement of the anisotropy of the

CBR can be expanded in spherical harmonics as:

δT (θ, φ) =
∑

l,m

almYlm(θ, φ) . (1.23)

Here the multipole number l is given as

l ' 200◦

θ
, (1.24)
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Figure 1.4: Anisotropy of the CMB radiation. The detailed, all-sky picture of the in-
fant Universe from three years of WMAP data. The image reveals 13.7 billion year old
temperature fluctuations (shown as color differences) which correspond to the seeds that
grew to become the galaxies. The signal from our Galaxy was subtracted using the
multi-frequency data. This image shows a temperature range of ±200 µK (figure from
NASA/WMAP Science Team).

and a useful quantity Cl has been defined as

Cl ≡ 〈|alm|2〉 =
1

2l + 1

l∑

m=−l

|alm|2 . (1.25)

The anisotropy of the CBR offers the best means for determining the curvature of the

Universe, Rcurv, [15] and thereby the “total matter/energy density” of the Universe, Ω0,

according to the Friedmann equation [15], [12]:

Ω0 − 1 =
k

R2
curvH

2
0

, (1.26)

where k is a curvature constant which can be chosen to take only three discrete values: ±1

and 0. According to the Friedmann equation, when the total matter/energy density of our

Universe is equal to 1, the Universe is “spatially flat” (Rcurv = ∞, or, equivalently, k = 0).

While, for Ω0 > 1 (Ω0 < 1), the constant k should be +1 (−1) and we call the Universe

“closed” (“open”) [16]. In Fig. 1.5 one can find that the anisotropy power, sometimes

shown as l(l + 1) Cl/2π, oscillates (the so-called “gravity-driven acoustic oscillations”)

with some “acoustic peaks”. Roughly speaking, the angular position of these peaks is a

sensitive probe of the spatial curvature of the Universe: if our Universe is open (close),

these peaks should lie at higher (lower) l [18].

Moreover, according to standard Big-Bang Cosmology, the higher the primordial mat-

ter density, the shorter the duration of the epoch of structure formation and thereby the

larger fluctuations in the CBR [1], or, equivalently, the stronger these acoustic oscillations

8



Figure 1.5: The angular power spectrum of the CMB temperature from three-year data
of the WMAP satellite. The solid curve is the prediction from the best-fitting ΛCDM
model. The error bars on the data points (which are tiny for most of them) indicate
the observational errors, while the shaded region indicates the statistical uncertainty
from being able to observe only one microwave sky, known as cosmic variance, which is
the dominant uncertainty on large angular scales [12]. The first peak around l ∼ 200
corresponds to θ ∼ 1◦ (figure from NASA/WMAP Science Team).

[15]. Hence, the relative height of the first acoustic peak can be used to determine the

“primordial matter density”.

More details about the physics and the analyses of anisotropy of CBR can be found

in Ref. [18].

1.2.3 Age of the Universe

As mentioned in the previous subsection, the higher the primordial matter density, the

faster the Universe expanded and thus the shorter the age of the Universe reaching its

present size. Hence, the measurements of the age of the Universe, TU, and the expansion

rate of the Universe, h, can give the upper and lower limits on the “matter density” in

the Universe.

According to WMAP results combined with other astronomical measurements, the

age of the Universe has been estimated as [13], [11]

TU = 13.7+0.1
−0.2 Gyr . (1.27)
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1.2.4 Present expansion rate of the Universe

According to the Hubble law [15]:

H0 =
v

d
. (1.28)

Here the velocity v can be determined by the redshift, thus the most accurate direct

methods for measuring distances to distant objects d can be used to estimate the Hubble

parameter H0 [19]. Currently, there are two methods for measuring extra galactic dis-

tances [19]: time delays between luminosity variations in different gravitationally lensed

images of distant quasars and the Sunyaev-Zel’dovich effect: Compton scattering of the

CMB by the hot electrons in clusters of galaxies. Note that the error on the estimates

of the Hubble parameter is dominated by one systematic uncertainty: the distance from

out Galaxy to the Large Magellanic Cloud (LMC), which has been used to calibrate the

Cepheid period-luminosity relationship [19].

The dimensionless Hubble constant has been estimated as [13], [11]

h = 0.73+0.03
−0.04 , (1.29)

and the present expansion rate of the Universe can then be given as

H0 = 73+3
−4 km/s/Mpc . (1.30)

1.2.5 Abundances of the light elements

BBN predicts the primordial abundances of the light elements. Thus measurements

of the primordial abundances of the light elements produced in the Big Bang, such as

deuterium (D), helium (3He and 4He), and lithium (7Li), can also give the upper and

lower limits of the “baryon density” in the Universe.

Moreover, among these four light elements, because the primordial abundance of

deuterium depends strongly on the baryon density (∝ ρ−1.7
b ), and it can only be destroyed

by the astrophysical processes, deuterium becomes the most powerful ”baryometer” [15].

Fig. 1.6 shows the theoretically predicted abundances of the four lightest elements

and the observational results.

1.2.6 Gas-to-total mass ratio

The clusters of galaxies formed due to density perturbations with a co-moving size

of the order of 10 Mpc and gathered material from such a large region of the Universe

[15]. Meanwhile, most of the baryons in the clusters of galaxies reside not in the galaxies

themselves but in form of hot intercluster, x-ray emitting gas [15]. Hence, by measuring

the gas-to-total mass ratio of the cluster, fgas/total, and combining with the (measured)

10



Figure 1.6: The predicted abundances of 4He (mass fraction), D, 3He, and 7Li (number
relative to hydrogen) by the standard model of the BBN as a function of the baryon
density. Yp ≡ 2nnnp/(nn + np) ' 0.25, where nn and np are the neutron and proton
number densities. Widths of the curves indicate 2σ theoretical uncertainty. Boxes indi-
cate the observed light element abundances (smaller boxes: 2σ statistical errors; larger
boxes: ±2σ statistical and systematic errors). The narrow vertical band indicates the
CMB measurement of the cosmic baryon density (figure from [17]).
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baryon density in the Universe, Ωb, we can determine the “matter density” in the Universe

[15]:

Ωm =
Ωb

fgas/total

. (1.31)

There are two methods for determining the mass of the intercluster gas: the x-ray

flux emitted from the intercluster gas or the Sunyaev-Zel’dovich CBR distortion caused

by CMB photons scattering off hot electrons in the intracluster gas [15]. While, there

are also three independent methods for estimating the total mass of a cluster: the mo-

tions of cluster galaxies with the virial theorem, assuming that the gas is in hydrostatic

equilibrium and using it to infer the underlying mass distribution, or mapping the cluster

mass directly by gravitational lensing [15], [20]. Within their uncertainties and where

comparisons can be made, the two methods for determining the mass of the intercluster

gas and the three methods for estimating the total mass of a cluster are consistent with

each other, respectively [15].

1.2.7 Mass-to-light ratio

One other method for estimating the “matter density” of the Universe is using the

mass-to-light ratios [15]:

ρm =
(

M

L

)
L , (1.32)

where L is the averaged luminosity density of the Universe [1], [15]. In V-band [1] and

in B-band [15], we have, respectively,

LV = (1.7± 0.6)× 108h L¯/Mpc3 , (1.33a)

and

LB = 2.4× 108h L¯/Mpc3 , (1.33b)

where L¯ is the luminosity of the Sun [11],

L¯ = (3.846± 0.008)× 1026 W . (1.34)

Once we have estimated the mass-to-light ratios of some systems, i.e.,

Υx ≡ M

Lx

, x = V, B. (1.35)

Then, combining Eqs.(1.10), (1.11), (1.32) and (1.33a) or (1.33b), the total matter density

can be obtained as

Ωm,x =
Cx

104h

(
Υx

Υ¯

)
, x = V, B. (1.36)
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Here

CV = 6.1 , CB = 8.6 , (1.37)

and Υ¯ is the mass-to-light ratio of the Sun,

Υ¯ = 5.169× 103 kg/W , (1.38)

where I have used Eqs.(1.15) and (1.34).

1.2.8 Supernovae type Ia (SNe Ia) at high-redshift

If we could measure the present extra galactic distances d0 and velocities v0, they

should obey the Hubble law [15]:

v0

d0

= H0 , (1.39)

since the expansion of the Universe is simply a rescaling. But what we can actually

measure are the distances dz and velocities vz at an earlier time (redshift z). If we

suppose that the expansion of our Universe should slow down due to the attractive force

of gravity, i.e., Hz > H0, the measured galactic velocities should be larger than that

expected by the Hubble law:

vz = dzHz > dzH0 , (1.40)

or, equivalently, for the galaxies with known velocities, their distances should be shorter

than that expected by the Hubble law:

dz =
vz

Hz

<
vz

H0

. (1.41)

In 1998 two groups: the Supernova Cosmology Project and the High-z Supernova

Search Team have published their “magnitude-redshift (Hubble) diagram for fifty-some

type Ia supernovae (SNe Ia) out to redshifts of nearly 1” [15]. By using SNe Ia as standard

candles for estimating the distances to faraway galaxies, the two groups concluded that

distant galaxies are moving slower than predicted by the Hubble law and that this implies

an accelerated expansion of our Universe [15].

In order to explain this observational indication, i.e., in order to find the discrepancy

between the measured total matter(/energy) density, Ω0, and the matter density, Ωm,

(data given in the next subsection), a new term “Dark Energy” 3 (or sometimes also

called “quintessence”) has been introduced [15].

3Dark Energy is beyond the area of my research and thus will not be discussed in this work. Short
reviews and summaries can be found in e.g., [15], [12], [16], and [21].
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1.2.9 Cosmological densities of different components

According to the various astronomical measurements described above (and other

measurements, e.g., the peculiar velocities of galaxies, the shape of the present power

spectrum of density perturbations, and the opacity of the Lyman-α forest toward high-

redshift quasars), we can conclude today the cosmological densities of different compo-

nents as follows.

The total matter/energy density is [13], [11]

Ω0 = 1.003+0.013
−0.017 . (1.42)

It can be separated into Dark Energy [11]:

ΩΛ ≡ Λ

3H2
0

= 0.76+0.04
−0.06 , (1.43)

where we have used

ρΛ =
Λ

8πGN

, (1.44)

and total matter [13], [11]:

Ωm = 0.127+0.007
−0.009 h−2 = 0.24+0.03

−0.04 . (1.45)

The total matter in the Universe can also be separated into baryons [13], [11]:

Ωb = 0.0223+0.0007
−0.0009 h−2 = 0.042+0.003

−0.005 , (1.46)

and non-baryonic Dark Matter [11]:

ΩDM = Ωm − Ωb = 0.105+0.007
−0.010 h−2 = 0.20+0.02

−0.04 . (1.47)

Among the baryons in the Universe there is luminous matter with a density of [1] [22]:

Ωlum ' 0.01 , (1.48)

including the density of the stars [23]:

Ωstars = (0.0023 ∼ 0.0041)± 0.0004 . (1.49)

While, the non-baryonic Dark Matter can be separated into Cold Dark Matter (CDM)

and Hot Dark Matter (HDM) (the definitions and some discussions about the CDM and

HDM will be given in Secs. 2.1 and 2.2, respectively). Finally, among the relativistic

particles (see Sec. 2.2), the density of the CMB photons can be estimated directly by

inserting T0 in Eq.(1.22) into Eq.(1.19) as [11]

Ωγ = (2.471± 0.004)× 10−5 h−2 = (4.6± 0.5)× 10−5 , (1.50)

and the density of the neutrinos has been estimated as [11]

Ων < 0.014 (95% C. L.) . (1.51)
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1.3 Galactic halo models

In this section I present some simple halo models. For estimating some characteristics

of halo Dark Matter, such as the velocity dispersion of Dark Matter particles, v̄, and the

local Dark Matter density, ρ0, the rotation curve of our Galaxy is the most important

observational quantity, since it measures the change in density and sets the scale for the

depth of the Galactic potential well [1]. Essentially, all important direct information

which has been obtained about the halo is provided by the rotation curve [24]. However,

due to our location inside the Milky Way, it is more difficult to measure the accurate

rotation curve of our own Galaxy than those of other galaxies (see Fig. 1.7). In addition,

the “disk contribution” to the rotation curve must be known to infer the halo contribution,

but precise determination of the disk contribution is also difficult.

1.3.1 Standard assumptions of Dark Matter halo

The velocity dispersion of Dark Matter particles 4 in the Solar neighborhood has been

assumed as

v̄ = 〈v2〉1/2 ' 270 km/s . (1.52)

And the IAU standard value for the rotational velocity at the Sun’s distance from the

Galactic center is [11]

v0 ≡ vrot(r0) ' (220± 20) km/s , (1.53)

where the distance from the Sun to the Galactic center is [11]

r0 ' (8.0± 0.5) kpc . (1.54)

On the other hand, the local Dark Matter density (the Dark Matter density near the

Solar system) is given by [1]

ρ0 ≡ ρ(r0) ≈ 0.3 GeV/c2/cm3

≈ 5× 10−25 g/cm3 , (1.55)

with an uncertainty of slightly less than a factor of 2 [1], [15]. Here I have used [25]

1 GeV/c2 = 1.7827× 10−24 g . (1.56)

4 Strictly speaking, the velocity dispersion should be 〈v2〉−〈v〉2. However, since the major component
of Dark Matter should be cold (a detailed discussion will be given in Sec. 2.1) and assumed to have
negligibly small velocity average 〈v〉 in the Galactic rest frame, its rms velocity 〈v2〉 has been called
sometimes simply as the velocity dispersion.
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Figure 2. The rotation curve for the Milky Way for values of R0 � 7:1 kpc;

Q0 � 185 km s21, and R0 � 8:5 kpc; Q0 � 220 km s21. The figure also

shows one of the ways in which the rotation curve can be decomposed into

the contributions from different mass components: the bulge (dotted line);

the stellar disc (filled circles); the H i layer (crosses, where negative values

mean that the force is directed outwards); the H2 layer (circles); and the

dark halo (dashed line). The best-fitting model, which is obtained by

summing the individual components in quadrature, is shown as a full line.

Figure 1.7: Rotation curve for the Milky Way, as a function of distance from the Galactic
center, with two different assumptions for the Sun’s distance from the Galactic center,
r0, and the rotation velocity at r0, vrot(r0) (figure from [8]).
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1.3.2 Canonical isothermal spherical halo model

The simplest halo model is an isothermal spherical halo. An empirically plausible

radial profile for a spherical galactic halo is constrained only by its contribution to the

galactic rotation curve. This means that the radial profile should approach to a constant

near its core so that it gives rise to a linearly rising rotation curve at small radii, and it

should fall as 1/r2 or eventually faster at large radii to provide a flat rotation curve [24].

The density profile of the cored isothermal spherical halo is given by [1]

ρIS(r) = ρ0

(
r2
c + r2

0

r2
c + r2

)
, (1.57)

where ρ0 is the local halo density and rc is the core radius of the isothermal spherical

halo, within which the density ρIS(r) behaves no longer as 1/r2, but goes to a constant

as r approaches 0.

Substituting this expression into Eq.(1.6) and using Eq.(1.1), the rotational velocity

at a radius r from the halo center can be found as

v2
IS(r) = 4πGN · 1

r

∫ r

0
r′2ρ(r′) dr′

= 4πGNρ0

(
r2
c + r2

0

) [
1−

(
rc

r

)
tan−1

(
r

rc

)]
, (1.58)

where I have used
∫ x2 dx

a2 + x2
= x− a tan−1

(
x

a

)
.

Define v∞ as the (measured) rotational velocity as r →∞. One can find that

v2
∞ = v2

IS(r →∞) = 4πGNρ0

(
r2
c + r2

0

)
, (1.59)

thus the local halo density ρ0 in Eq.(1.57) can be expressed as

ρ0 =
v2
∞

4πGN (r2
c + r2

0)
. (1.60)

Meanwhile, combining Eqs.(1.58) and (1.59), the core radius of the isothermal spherical

halo in unit of r0, i.e., rc/r0, can be solved (numerically) by [1]:

(
rc

r0

)
tan−1

(
r0

rc

)
= 1− v2

IS(r0)

v2∞
. (1.61)

Eqs.(1.60) and (1.61) show how we can estimate the local halo density and the halo core

radius in the isothermal spherical halo model once the rotational velocities v0 and v∞
have been measured.

Finally, substituting Eq.(1.60) into Eqs.(1.57) and (1.58) the density profile and the

rotation curve of the isothermal spherical halo model can be rewritten as

ρIS(r) =
v2
∞

4πGN

(
1

r2
c + r2

)
, (1.57’)
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(a)

(b)

Figure 1.8: (a) The radial density profile ρIS(r) given in Eq.(1.57’) and (b) the rotation
curve vIS(r) given in Eq.(1.58’) of the canonical isothermal spherical halo model. Here I
have used v∞ = 220 km/s [24] and rc = 2.6 kpc (see Subsec. 1.3.4).
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and

vIS(r) = v∞
[
1−

(
rc

r

)
tan−1

(
r

rc

)]1/2

, (1.58’)

Figs. 1.8 show the radial density profile (upper frame) and the rotation curve (lower

frame) of the canonical isothermal spherical halo model given in Eqs.(1.57’) and (1.58’),

respectively.

1.3.3 Alternative isothermal spherical halo model

An alternative density profile for the isothermal spherical halo has been given by [24]

ρAIS(r) = ρ0

(
rc + r0

rc + r

)2

, (1.62)

where ρ0 is again the local halo density and rc is the core radius of this alternative

isothermal spherical halo mode. 5 Using Eqs.(1.6) and (1.1), the rotation curve of this

alternative isothermal spherical halo can be found as

v2
AIS(r) = 4πGNρ0 (rc + r0)

2
[
1 +

rc

rc + r
− 2

(
rc

r

)
ln

(
rc + r

rc

)]
, (1.63)

where I have used
∫ x2 dx

(ax + b)2
=

1

a3

[
(ax + b)− b2

ax + b
− 2b ln(ax + b)

]
.

Meanwhile, the core radius of this alternative halo model in unit of r0 can be solved

(numerically) by :

2αc ln
(

αc + 1

αc

)
− αc

αc + 1
= 1− v2

AIS(r0)

v2∞
. (1.64)

where I have defined

αc ≡ rc

r0

. (1.65)

Finally, from Eq.(1.63), one has

v2
∞ = v2

AIS(r →∞) = 4πGNρ0 (rc + r0)
2 , (1.66)

the density profile and the rotation curve of the alternative isothermal spherical halo

model in Eqs.(1.62) and (1.63) can be rewritten as

ρAIS(r) =
v2
∞

4πGN

(
1

rc + r

)2

, (1.62’)

and

vAIS(r) = v∞
[
1 +

rc

rc + r
− 2

(
rc

r

)
ln

(
rc + r

rc

)]1/2

. (1.63’)

Fig. 1.9 shows the equations for solving the ratios of the core radii of two cored

isothermal spherical halo models to the distance from the Sun to the Galactic center,

αc ≡ rc/r0, given in Eqs.(1.61) and (1.64).

5Here, for simplicity, I use the same notation as in Eq.(1.57), but rc for these two halo models are
not the same. The determination of these core radii will be given in Subsec. 1.3.4
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Figure 1.9: The equations for solving the ratios of the core radii of two cored isothermal
spherical halo models to the distance from the Sun to the Galactic center, αc ≡ rc/r0.
The solid (red) line shows Eq.(1.61) and the dash-dotted (blue) line shows Eq.(1.64).
Here the dash (green) line denotes vIS(r0) = vAIS(r0) = vhalo(r0) = 170 km/s [1], [24] and
v∞ = 220 km/s.

1.3.4 Evans’ power-law halo model

Even if we consider only spherical halo distributions, there are still some latitudes in

our choice for the precise form of the radial density profile of a halo model. Meanwhile,

N-body simulations of gravitational collapse produce axisymmetric or triaxial halos [26],

and other spiral galaxies appear to have flattened halos [27], [26].

The equipotentials of elliptical galaxies and the halos of spiral galaxies could be

roughly stratified on similar concentric spheroids [28]. This suggests a useful approx-

imation to their gravity field as [28]:

ψ(r, z) =
ψar

β
c

(r2
c + r2 + z2/q2)β/2

, β 6= 0 , (1.67)

where ψa is the central potential, rc is the core radius of the halo, and q is the axis

ratio of the equipotentials or the so-called flattening parameter. Note that I use here the

cylindrical coordinates and r denotes the distance from the point which one considers

to the rotation axis. The potential is just a power of the spheroidal radius r, thus this

model has been called the power-law halo model [28].

20



Using the Poisson Equation: 6

∇2ψ = −4πGNρ , (1.68)

the density distribution of the gravitational potential described in Eq.(1.67) can be ob-

tained as [28]

ρ(r, z) =
v2

a

4πGN

(
rβ
c

q2

) [
(2q2 + 1)r2

c + (1− βq2)r2 + (2q2 − β − 1)z2/q2

(r2
c + r2 + z2/q2)β/2+2

]
, (1.69)

where

v2
a ≡ βψa . (1.70)

Meanwhile, the velocity of the circular orbit in the equatorial plane with radius r can be

obtained as [28]

vcirc(r) = va

[
rβ
c r2

(r2
c + r2)β/2+1

]1/2

, (1.71)

since the central force

Fcen(r, z = 0) = −∇ψ(r, z) · r̂
∣∣∣
z=0

=
v2

circ(r)

r
. (1.72)

The rotational velocity in Eq.(1.71) is asymptotically falling if β > 0 and rising if β < 0

[28].

On the other hand, the model with spheroidal equipotentials and a completely flat

rotation curve at large radii is well known as an axisymmetric logarithmic potential [29],

[30], [28]:

ψ(r, z) = −v2
a

2
ln

(
r2
c + r2 +

z2

q2

)
, (1.73)

where va is the rotational velocity at large radii (i.e., v∞ used in the previous two sub-

sections). Using the Poisson Equation, the density distribution can be found as [30]

ρ(r, z) =
v2

a

4πGN

[
(2q2 + 1)r2

c + r2 + (2q2 − 1)z2/q2

q2(r2
c + r2 + z2/q2)2

]
. (1.74)

Comparing this expression with the expression in Eq.(1.69), it can be seen that the

logarithmic potential given in Eq.(1.73) has the properties corresponding to the missing

β = 0 case in Eq.(1.67) [28]. The velocity of the circular orbit in the equatorial plane

with radius r due to the potential given in Eq.(1.73) can be obtained as

vcirc(r) = va

(
r2

r2
c + r2

)1/2

. (1.75)

6Note that the Poisson Equation holds actually for the “total” potential and the “total” density
distribution, i.e., for luminous baryonic matter and Dark Matter together, not for each component
separately.
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Furthermore, let q = 1 and use the replacement:

r2 + z2 → r2 , (1.76)

we can rewrite the potential in Eq.(1.73) to the potential for a spherical halo as [30]

ψ(r) = −v2
a

2
ln

(
r2
c + r2

)
. (1.77)

The density distribution and the velocity of the circular orbit of this spherical Evans

model with radius r can be obtained as, respectively [30], [24],

ρPL(r) =
v2

a

4πGN

[
3r2

c + r2

(r2
c + r2)2

]
, (1.78)

and

vcirc(r) = va

(
r2

r2
c + r2

)1/2

. (1.79)

As done in Subsecs. 1.3.2 and 1.3.3, the core radius of the halo in unit of r0 can be solved

by means of the following equation [24]:

rc

r0

=

[
v2

a

v2
circ(r0)

− 1

]1/2

. (1.80)

Finally, using the local rotational velocity given in Eq.(1.53):

vrot(r0) ' 220 km/s , (1.53’)

and the assumption for the disk contribution to the rotational velocity at r = r0 [1], [24]:

vdisk(r0) = 140 km/s , (1.81)

the local halo contribution can be found as

vhalo(r0) ' 170 km/s , (1.82)

since,

vrot(r0) =
√

v2
disk(r0) + v2

halo(r0) . (1.83)

Then the core radii for the canonical, alternative, and Evans spherical halo models given

in Eqs.(1.57’), (1.62’), and (1.78) can be found by means of Eqs.(1.61), (1.64), and (1.80)

as

rc,IS ' 2.6 kpc , (1.84)

rc,AIS ' 0.86 kpc , (1.85)

and

rc,PL ' 6.6 kpc , (1.86)
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(a)

(b)

Figure 1.10: (a) The radial density profiles and (b) the rotation curves of different isother-
mal spherical halo models. The solid (red) lines indicate the canonical halo model in
Eq.(1.57’) with rc ' 2.6 kpc, the dash (blue) lines indicate the alternative halo model in
Eq.(1.62’) with rc ' 0.86 kpc, and the dash-dotted (black) lines indicate the spherical
Evans’ halo model in Eq.(1.78) with rc ' 6.6 kpc. Here I have used v∞ = 220 km/s [24].
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where I used

r0 ' 8.0 kpc , (1.54’)

and the rotational velocity at large radii as [24]

v∞ = va = 220 km/s . (1.87)

Figs. 1.10 show the radial density profiles (upper frame) and the rotation curves (lower

frame) of different isothermal spherical halo models with the core radii obtained above.

1.3.5 NFW halo model

Besides the three spherical halo models presented in the previous three subsections,

there is also the well-known NFW density profile given as [31]-[33]:

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2
. (1.88)

Here ρs is the characteristic density [33]:

ρs = ρcrit

(
λs

3

) [
c3
s

ln(1 + cs)− cs/(1 + cs)

]
, (1.89)

with the virial overdensity λs and the halo concentration parameter cs, and rs is the

characteristic radius [33]:

rs =
rvir

cs

=
1.2× 102

cs

(
Mvir

1011M¯

)1/3

kpc . (1.90)

The virial radius, rvir, defined as the radius, inside which the average overdensity is λs

times the critical density of the Universe, and the virial mass, Mvir is then the total mass

within this virial radius rvir [32]. Usually the average overdensity λs has been chosen as

≈ 200, and the virial radius and the virial mass for λs = 200 have been then specially

labeled as r200 and M200, respectively [32]. However, for a flat Universe, i.e., Ω0 = 1, the

average overdensity λs has been found to be [34]

λs = 18π2 ' 178 . (1.91)

Note that there is a good correlation between cs and Mvir in Eq.(1.90), which results from

the fact that dark halo densities reflect the density of the Universe at the epoch of their

formation and that halos of a given mass are preferentially assembled over a narrow range

of redshifts [32]. Hence, as lower mass halos form earlier, at times when the Universe was

significantly denser, they are more centrally concentrated [32].

Although the NFW density profile given in Eq.(1.88) doesn’t approach the 1/r2 form

for large r, high-resolution N-body simulations of structure formation and some observa-

tional results have shown that the NFW profile indeed provides a good description of the

density distribution in clusters [34], [32].
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Moreover, the NFW density profile given in Eq.(1.88) has been expanded to the

following form [35]:

ρNFWE(r) =
ρs

(r/rs)α(1 + r/rs)ν
. (1.92)

For the original NFW profile, one has α = 1, ν = 2; for a modified NFW profile, one can

use α = ν = 3/2; and for a so-called Hernquist profile one has α = 1, ν = 3 [36], [35].

On the other hand, A. Burkert has suggested a Burkert density profile [32]:

ρB(r) =
ρb

(1 + r/rb) [1 + (r/rb)2]
. (1.93)

Some analyses show that density profiles of dwarfs and low surface brightness galaxies

can be fitted by the Burkert profile much better than the NFW profile [34].

1.3.6 Bulk rotation

So far the halo models presented above are only classified by their density profiles or the

gravity field, namely, their mass distribution. Because, as mentioned in the beginning

of this section, what has been measured is just the rotation curve [24]. However, the

rotation curve is determined by the halo mass distribution and is insensitive to its velocity

distribution [24]. Thus, even though there are some theoretical arguments against a

rotation-dominated velocity distribution, there is no empirical evidence to rule out a

halo with bulk rotation [24]. Note that such bulk rotation can also affect the velocity

distribution of WIMPs seen near the Earth [24]. 7

Halo models with bulk rotation can be constructed by taking linear combination of

the velocity distribution function [26]:

frot(v) = arotf+(v) + (1− arot)f−(v)

=





arotf(v) , for vφ > 0 ,

(1− arot)f(v) , for vφ < 0 .
(1.94)

A non-rotating halo has arot = 0.5, whereas a counter-rotating or a co-rotating one has

0 ≤ arot < 0.5 or 0.5 < arot ≤ 1, respectively [24], [26].

Moreover, arot is related to a dimensionless spin parameter λrot, which usually has

been used to quantify the galactic angular momentum [24]:

λrot = 0.36 |arot − 0.5| . (1.95)

Numerical studies of galaxy formation find that |λrot| < 0.05, corresponding to 0.36 <

arot < 0.64 [26].

7The velocity distribution of WIMPs will be discussed in Chap. 3.
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Chapter 2

Candidates for Dark Matter

As defined in the Introduction, Dark Matter (almost) neither emits nor absorbs

electromagnetic radiation. It is thus non-luminous.

Meanwhile, as described in Secs. 1.1 and 1.2, so far we can “observe” (or, actually,

“feel”) the existence of Dark Matter only through its gravitational effects. Moreover,

according to the observational results for the rotation curves of spiral galaxies (described

in Subsec. 1.1.2), Dark Matter forms halos with an approximately spherical distribution

around galaxies. Hence, Dark Matter (almost) does not interact with ordinary matter and

is collisionless. Otherwise, if Dark Matter could interact with ordinary matter, it would

dissipate its kinetic energy after the interactions, fall onto galaxies, settle deep into the

galactic gravitational wells, and thus form the “galactic disks” with ordinary matter.

On the other hand, (the major part of) Dark Matter particles should moved non-

relativistically in the early Universe or, equivalently, have sufficiently low primordial ve-

locity dispersion, in order to allow it to merge to galactic scale structures (e.g., galaxies

and clusters of galaxies). In contrast, although neutrinos are also collisionless, they

moved relativistically and have thus too large velocity dispersion to build galactic scale

structures.

Therefore, Dark Matter should be some “non-luminous, non-baryonic, non-relativistic,

and collisionless” elementary particles have not yet been discovered. In addition, the

candidates for Dark Matter must satisfy the following cosmological conditions: they

must be stable on cosmological time scales and have the right relic cosmological density

[37].

In this chapter I present some most motivated and studied candidates for Dark Matter.

Most of them are non-baryonic and non-relativistic particles. However, some relativistic

particles and baryonic objects could also be (part of) Dark Matter.

2.1 Cold Dark Matter (CDM)

“Cold” has been used here to indicate that such Dark Matter particles moved non-

relativistically at the matter-radiation decoupling time in the early Universe [22], i.e., at

26



½ -¾

Special relativity

Quantum mechanics

Dirac
Charge-conjugation symmetry =⇒ Particles ←→ Antiparticles

½ -¾

General relativity

Quantum field theory

SUSY models
Supersymmetry =⇒

{
Fermions ←→ Bosonic superpartners

Bosons ←→ Fermionic superpartners

Figure 2.1: Extension of the Standard Model of particle physics to supersymmetric models

the time in which galaxies could just start to form. Due to their relatively slower veloc-

ities Cold Dark Matter would first form some relatively small galactic scale structures;

large galaxies and clusters of galaxies are formed through “hierarchical merging” of these

smaller structures.

2.1.1 Minimal Supersymmetric Standard Model (MSSM)

Supersymmetry has been considered to solve the hierarchy problem in the Standard

Model (SM) of particle physics: Why is the electroweak scale (EEW ' O(100 GeV)) so

small compared to the other known scales such as the grand unification scale (EGUT '
1016 GeV [1]) or the Planck scale (EPl ' 1019 GeV [1])?

As shown in Fig. 2.1, supersymmetry provides a natural framework for discussing the-

ories with large hierarchies of scales and unification with gravity [1]. In supersymmetric

models, for every fermionic degree of freedom there is a bosonic degree of freedom and vice

versa. This means also that, for each “normal” particle, there will be a supersymmetric

partner. Hence, the particle spectrum has been greatly extended in the MSSM.

The particles of typical supersymmetric models are given in Table 2.1. The spectrum

of the normal particles is specified in the same manner as in non-supersymmetric models.

Quark mass matrices determine the masses and the mixing angles, which are encoded

in the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The pattern of gauge-symmetry

breaking is unchanged from the Standard Model, and gives the same tree-level relation

between the masses of the W± and Z0 bosons. Quarks in the Standard Model have spin
1
2
, while their superpartners, squarks, are scalars [1]. There are two squarks (left-hand

and right-hand) for each quark. In some models there is no mixing between different

flavors, and each squark is associated with a given quark [1], for example, ũL and ũR, d̃L

and d̃R. However, generally the three up-quarks can mix among themselves and similarly
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Normal particles SUSY partners

Name Symbol Name Symbol

up-quarks q = u, c, t up-squarks ũL, ũR, c̃L, c̃R, t̃L, t̃R

down-quarks q = d, s, b down-squarks d̃L, d̃R, s̃L, s̃R, b̃L, b̃R

leptons e, µ, τ sleptons ẽL, ẽR, µ̃L, µ̃R, τ̃L, τ̃R

neutrinos νe, νµ, ντ sneutrinos ν̃e, ν̃µ, ν̃τ

gluons g gluinos g̃

photon γ photino γ̃

Z boson Z0 Z-ino Z̃

light scalar Higgs h0

heavy scalar Higgs H0
neutral higgsinos h̃0, H̃0

neutralinos χ̃0
1, χ̃0

2, χ̃0
3, χ̃0

4

pseudoscalar Higgs A0

charged Higgs H± charged higgsinos H̃±

W bosons W± gauginos, W-inos W̃±
charginos χ̃±1 , χ̃±2

graviton G gravitino G̃

axion a axino ã

Table 2.1: Particles of typical supersymmetric models

for the three down-quarks, so there are totally six up-squarks and six down-squarks in

the particle spectrum [1]. Similarly for the leptons. In these models, left-right sfermion

mixing is proportional to the corresponding fermion mass [1]. Thus there is little left-

right mixing for u, d, and s squarks or selectrons or smuons, but mixing of staus and c,

b, and especially t squarks can be substantial [1].

A most important technical difference between the Standard Model and the MSSM

occurs in the Higgs sector. Two weak isospin Higgs doublet fields are required in the

MSSM, whereas only one is required in the SM [1]. This enrichment of the Higgs sector

gives rise to five physical states and provides an important phenomenological window.

The superpartners of the W± and charged Higgs bosons, the gauginos and the charged

higgsinos, carry the same SU(3)×U(1) quantum numbers. Thus they will generally mix

after electroweak-symmetry breaking, and the two resulting mass eigenstates are linear

combinations known as charginos [1]. Similarly for the superpartners of the photon,

Z0 boson, and neutral Higgs bosons. These fields generally mix to create four mass

eigenstates called neutralinos [1]. In many supersymmetric models, constraints on the

Higgs-higgsino sector are therefore an important area of supersymmetric phenomenology

[1].

In Table 2.1, the tilde ∼ has been used to denote a supersymmetric particle. However,

28



the tildes for neutralinos and charginos are sometimes omitted since there is no ambi-

guity for such particles. Moreover, the lightest neutralino is in most models the lightest

supersymmetric particle (LSP) and usually just to be called as “the neutralino”. Note

here that, although the lightest neutralino is the most studied LSP and some authors

even use the LSP to indicate it, there are also some other candidates for LSP, e.g., the

gravitino.

Furthermore, a R-parity should be also presented here [1]:

R = (−1)3(B−L)+2S , (2.1)

where B and L are the baryon and lepton number, S is the spin. For ordinary particles

R = +1 (even) and for supersymmetric particles R = −1 (odd). If the R-parity is

conserved, one SUSY particle (with R = −1) could only decay to a lighter SUSY particle

(with R = −1) and any number of ordinary particles (with R = +1). Certainly, such

decay can not happen with the “lightest” SUSY particle since no SUSY particle can be

lighter than the lightest one. Hence, in models with strict R-parity conservation, the LSP

must be absolutely stable and is then the best candidate for Dark Matter [1].

In contrast, if R-parity is broken, there is no special selection rule to prevent the

decays of the supersymmetric particles in the spectrum with masses of order of a few

GeV or larger [1]. In particular, there were no natural candidate for Cold Dark Matter

[1]. Theories with broken R-parity also possess baryon- and lepton-number violating

interactions with strengths controlled by the scale of R-parity violation [1].

2.1.2 Weakly Interacting Massive Particles (WIMPs)

Weakly Interacting Massive Particles (WIMPs) χ arise e.g., in supersymmetric exten-

sions of the Standard Model of electroweak interactions and are the leading non-baryonic

candidates for Cold Dark Matter [1]. They are stable particles and interact with ordinary

matter only via weak interactions. Typically their masses have been presumed to be be-

tween 10 GeV and a few TeV [1], [37]. They could include neutralinos, sneutrinos, heavy

fourth-generation Dirac and Majorana neutrinos, and non-minimal neutralinos (neutrali-

nos in non-minimal supersymmetric models) [1].

Relic elementary particles are left over from the Big Bang. Stable or long-lived par-

ticles with very weak interactions can remain in sufficient numbers to account for a

significant fraction of critical density [15]. Very weak interactions are necessary for their

annihilations to cease before their numbers are too small [15].

WIMPs exist in thermal equilibrium and in abundance in the early Universe, when the

temperature of the Universe T exceeds their masses mχ (T & mχ) [1]. The equilibrium

abundance is maintained by pair annihilation of WIMPs with their antiparticles χ̄ into

lighter particles l (quarks and leptons, or even gauge- and Higgs-bosons if their masses

are heavy enough) and vice versa (χχ̄ ↔ ll̄) [1]. The rate of this reaction is proportional

to the product of the WIMP number density nχ and the WIMP pair annihilation cross
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section into SM particles σA times the relative velocity between the two WIMPs in their

center-of-mass system v [1], [37]:

Γχ = nχ〈σAv〉 , (2.2)

where 〈· · ·〉 indicates the thermal averaging.

As the Universe cools to a temperature less than the masses of WIMPs (T < mχ),

the equilibrium abundance (number density) of WIMPs drops exponentially until the

rate for the annihilation reaction (χχ̄ → ll̄) becomes smaller than the Hubble expansion

rate of the Universe (Γχ . H). At this point the interactions which maintain thermal

equilibrium “freeze out” and the WIMPs cease to annihilate and drop out of thermal

equilibrium [37]. Hence, a relic cosmological abundance “freezes in” [1], i.e., the density

of the co-moving WIMPs remains essentially constant.

The time evolution of the number density of WIMPs nχ(t) can be described by the

Boltzmann equation [1]:

dnχ

dt
+ 3Hnχ = −〈σAv〉

[
n2

χ −
(
neq

χ

)2
]

. (2.3)

Here neq
χ is the number density of WIMPs in thermal equilibrium. The second term on the

left-hand side accounts for the expansion of the Universe, the first term in the brackets on

the right-hand side accounts for the depletion of WIMPs due to their pair-annihilation,

and the second term arises from creation of WIMPs from the inverse reaction [1]. In

the absence of number-changing interactions, the right-hand side would be zero and we

would find n ∝ 1/a3(t) [1], where a(t) is the scale factor of the Universe in Eq.(1.12).

Note that Eq.(2.3) describes both Dirac particles 1 as well as Majorana particles

[1], which are particles that themselves are also their antiparticles, such as neutralinos

(χ = χ̄) [1]. For the case of Majorana particles (they are so-called “self-annihilating”),

the annihilation rate in Eq.(2.2) should be modified to [1]

Γχ =
(

nχ

2

)
〈σAv〉 . (2.4)

However, in each annihilation, two particles are removed and the factor of 2 can be

canceled. For Dirac particles with no particle-antiparticle asymmetry, i.e., nχ = nχ̄,

Eq.(2.2) is true. But the total number of particles plus antiparticles must be 2nχ [1]. In

the case of Dirac particles with a particle-antiparticle asymmetry, the relic abundance is

generally that given by the asymmetry [1]. For example, the relic proton density is fixed

by the proton-antiproton asymmetry, i.e., the baryon number of the Universe [1].

The early Universe is radiation dominated and the Hubble expansion rate falls with

temperature as [1]

H(T ) = 1.66


g

1/2
∗ T 2

MPl


 . (2.5)

1n2
χ on the right-hand side should be modified to nχnχ̄ for Dirac particles, but often nχ = nχ̄ has

been assumed.

30



Here MPl is the Planck mass [11]

MPl ≡
√

h̄c

GN

= 1.2209× 1019 GeV/c2 = 2.1764× 10−5 g , (2.6)

and the quantity g∗ is the effective number of relativistic degrees of freedom. It is approx-

imately equal to the number of bosonic relativistic degrees of freedom plus 7
8

times the

number of fermionic relativistic degrees of freedom [1]. While, for very high temperature

(T & mχ) [1],

neq
χ ∝ T 3 . (2.7)

Hence, the expansion rate H(T ) in Eq.(2.5) decreases less rapidly than the number den-

sity of WIMPs. This means that, at early times, the expansion term in Eq.(2.3), 3Hnχ,

is negligible compared with the right-hand side, and the number density tracks its equi-

librium abundance [1].

However, at later times or at low temperatures (T . mχ), the right-hand side in

Eq.(2.3) becomes negligible compared with the expansion term, and the co-moving abun-

dance of WIMPs remains unchanged [1]. It can be found that [1]

neq
χ = g

(
mχT

2π

)3/2

e−mχ/T , (2.8)

where g is the number of internal degrees of freedom of the WIMPs and thus their density

is Boltzmann suppressed [1]. If the expansion of the Universe were so slow that thermal

equilibrium was always maintained, the number of WIMPs today would be exponentially

suppressed (essentially, there would be no WIMPs) [1]. The temperature TF at which the

WIMPs freeze out is given by Γχ(TF ) = H(TF ) [1]. Using typical weak-scale numbers,

the freeze-out temperature turns out to be [1]

TF ' mχ

20
. (2.9)

There is a small logarithmic dependence on the mass and annihilation cross section here

[1]. As stated above, after freeze out, the abundance of WIMPs per co-moving volume

remains constant.

Finally, the present relic density of WIMPs is then approximately given by (ignoring

logarithmic corrections) [1], [37]

Ωχh2 ' const.× T 3
0

M3
Pl〈σAv〉 '

0.1c pb

〈σAv〉 =
3× 10−27 cm3/s

〈σAv〉 , (2.10)

where T0 is the current CMB temperature given in Eq.(1.22), and c is the speed of light.

It is inversely proportional to the annihilation cross section of WIMPs. Hence, as the

annihilation cross section is increased, the WIMPs stay in equilibrium longer, and we

are left with a smaller relic abundance [1]. The annihilation cross section is generally

expected to decrease as the WIMP mass is increased, so the relic abundance should be

also increased [1]. Therefore, heavier WIMPs should be more likely to contribute too

much to the mass of the Universe, and then be cosmologically inconsistent [1].
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2.1.3 Neutralinos

As introduced in Subsec. 2.1.1, neutralinos are linear combinations of photino, Z-ino

and neutral higgsinos (the supersymmetric partners of the photon, Z0 and neutral Higgs

bosons, see Table 2.1):

χ̃0
i = aiγ̃ + biZ̃ + cih̃

0 + diH̃
0 , i = 1, 2, 3, 4. (2.11)

In most SUSY models, the lightest neutralino is the lightest supersymmetric particle [37]

and therefore the best motivated and the most widely studied candidate for WIMP Dark

Matter, but not the unique candidate for LSP (e.g., sneutrinos) [37].

There are some theoretical reasons to believe that the lightest neutralino should be

the LSP. First, suppose a charged uncolored SUSY particle, such as a chargino or a

slepton, were the LSP. The relic number density of such particles can be given as roughly

10−6nbM/GeV [1], where nb is the baryon number density and M is the mass of such

particles. Then they would show up in searches for anomalously heavy protons [1].

Null results from such searches rule out such charged particles over a broad mass range

[1]. Moreover, grand unified models predict relations between the masses of the SUSY

particles . In most models the gluino is more massive than the neutralino, and the squarks

are also heavier than the sleptons [1]. In addition, some detailed calculations show that

the lightest neutralino has the desired thermal relic density, ΩDM in Eq.(1.47), in at least

four distinct regions of parameter space [37].

2.1.4 Sneutrinos

Sneutrinos are the spin-0 supersymmetric partner of the neutrinos (see Table 2.1).

There are some reasons to rule out sneutrinos to be good candidate for Dark Matter.

First, in most models, there is a slepton with mass similar to, but slightly smaller than,

the sneutrino mass [1]. Meanwhile, their masses would have to exceed several hundred

GeV for them to make good Dark Matter candidates. This is uncomfortably heavy for the

lightest sparticle [37]. On the other hand, the annihilation cross sections of sneutrinos

are expected to be quite large [37]. Hence, the negative outcome of various WIMP

searches rules out ordinary sneutrinos as primary component of the Dark Matter halo of

our Galaxy [37]. However, in models with gauge-mediated SUSY breaking the lightest

messenger sneutrino could be a good candidate [37].

2.1.5 Heavy fourth-generation Dirac and Majorana neutrinos

They are the first proposed WIMP candidates for CDM [1]. They are heavy, but stable

particles and assumed to have (weak) interactions with ordinary matter though Standard

Model coupling to the Z0 boson [1]. Such neutrinos could annihilate into light fermions

via s-channel exchange of a Z0 boson. For m ¿ MZ the cross section is proportional to

the square of their mass [1]. Because their interactions are fixed by gauge symmetry, the
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only adjustable scale is then their masses [1]. The cosmological abundances of the heavy

Dirac and Majorana neutrinos have been given as [1]

Ων,Dh2 '
(

mν,D

2 GeV

)−2

, (2.12)

and

Ων,Mh2 '
(

mν,M

5 GeV

)−2

, (2.13)

for neutrino masses in the range O(1 GeV) . mν ¿ mZ = 91.19 GeV.

However, there is no obvious reason why such massive neutrinos should not be allowed

to decay [37]. Moreover, an SU(2) doublet neutrino will have a too small relic density if

its mass exceeds Mz/2, as required by LEP data [37].

On the other hand, for such neutrinos with masses greater than the electroweak gauge-

boson masses, annihilations into gauge- and/or Higgs-boson pairs could occur. However,

the cross section would not decrease as the neutrino mass increases [1], so the relic

abundance of neutrinos with masses of the order of 100 GeV remains too small to account

for the Dark Matter in the Galactic halo [1].

Dirac neutrinos interact with nuclei through a coherent vector interaction [1] (some

details about the vector interaction with nuclei will be given in Subsec. 3.4.1). Thus

the Dirac-neutrino-nucleus cross section is expected to be quite substantial [1], and this

would lead to a significant event rate in a direct detection experiment. Null results from

such experiments have ruled out Dirac neutrinos with masses in the range 12 GeV . mν,D

. 1.4 TeV as the primary component of the Dark Matter halo [1].

Meanwhile, Majorana neutrinos interact with nuclei only via an axial-vector inter-

action [1] (some details about the axial-vector interaction with nuclei will be given in

Subsec. 3.4.2), and are therefore difficult to detect directly. However, such neutrinos

would be captured in the Sun by scattering from hydrogen therein and their pair anni-

hilations in the Sun would produce energetic neutrinos from the Sun [1]. Null results

from searches for energetic neutrinos at e.g., Kamiokande have also ruled out Majorana

neutrinos with mass less than a few hundred GeV [1].

2.1.6 Axions

Axion a is also one of the leading candidates for CDM. Axions have been introduced by

Peccei and Quinn to solve the strong CP (charge-conjugation and parity) violation prob-

lem of QCD. They are pseudo Nambu-Goldstone bosons associated with the spontaneous

breaking of a new global Peccei-Quinn (PQ) U(1) symmetry at scale fa [37].

The present relic density of the axions can be given as [37]

Ωa = κa

(
fa

1012 GeV

)1.175

θ2
a , (2.14)
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where κa is a numerical factor lying roughly between 0.5 and a few, θa is a “misalignment

angle” which parameterizes the axion field. Suppose θa ∼ O(1), axions will have the

required cosmological energy density in Eq.(1.47) to be Dark Matter, if fa ∼ O(1011 GeV).

It is pretty comfortably above the laboratory and astrophysical constraints and this would

correspond to an axion mass ma ∼ 10−4 eV [37].

Axions could be detected by looking for their conversion to microwave photons, a → γ,

in a strong magnetic field [37]. Such a conversion could proceed through the loop-induced

aγγ coupling, whose strength gaγγ is thus an important parameter of axion models [37].

Moreover, the conversion rate can be enhanced in a high quality cavity on resonance and,

due to the equation mac
2 = h̄ωres, varying this resonance frequency can give a range of

ma, or, equivalently, fa [37].

2.1.7 Other possible SUSY candidates

Besides the neutralinos and the sneutrinos, some other supersymmetric particles are

also (theoretically) possible to be candidates for Dark Matter. 2

Axino is the spin-1
2

superpartner of the axion. It may be the LSP or the next-lightest

supersymmetric particle (NLSP) and may decay to the LSP [1]. When the axino is the

lightest supersymmetric particle and has a mass of a few keV, it can be a good candidate

for Warm Dark Matter (WDM) [1].

While, gravitino, the spin-3
2

superpartner of graviton, is also a possible candidate for

Dark Matter. The gravitinos will decouple at temperatures of order of the Planck scale

(EPl ' 1019 GeV [1]). Thus the physics of the gravitinos must be considered at energies

and temperatures right up to this scale [1]. In addition, if gravitinos behave as standard

stable thermal relics with an abundance determined by consideration of their decoupling,

the mass of gravitinos should be less than a few keV [1]. However, in some models with

gravitinos as LSP, the NLSP should decay to a gravitino plus ordinary particles [1]. Since

the coupling to gravitinos is so weak, this NLSP will be very long-lived and the products

of its decay will contain γ-ray with high energies [1].

2.2 Hot Dark Matter (HDM)

“Hot” has been used here to indicate that such Dark Matter particles moved relativis-

tically in the early Universe. Due to their fast velocities, they would cover great distances

and then form some very large scale structures. This means that the Hot Dark Matter

forms the structure of our Universe from the top down, with superclusters fragmenting

into clusters and galaxies [15]. It is in contrast to the observational evidence which indi-

2Besides the different supersymmetric extensions of the Standard Model, there are also some theories
based on “flat universal extra dimensions (UED)”. The most studied candidate for CDM in these extra-
dimension models is the first Kaluza-Klein (KK) mode of the hypercharge gauge boson (the lightest KK
particle, LKP) γ(1).
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cates that the structure of our Universe has been formed from the bottom up by merging

dust to galactic scale structures [15].

However, there are still some suggestions in which part of Dark Matter is hot and the

rest is cold. In these models the bulk of the Dark Matter (especially in galactic halos) is

still cold.

2.2.1 Massive neutrinos

The leading candidates for Hot Dark Matter are the massive neutrinos. As shown in

Subsec. 1.2.9, WMAP results combined with other astronomical measurements lead to a

contribution for light (but massive) neutrino species [11]:

Ων < 0.014 . (1.51)

They could include the electron-, muon-, and tauon-neutrinos in the Standard Model

with non-zero masses 3 as well as the forth-generation Dirac and Majorana neutrinos

(described in Subsec. 2.1.5) with extremely light masses.

2.3 Dark baryons

As mentioned above, some CDM particles, e.g., neutralinos and axions, could form

galactic scale structures such as galaxies and clusters of galaxies, while, some HDM

particles, e.g., massive neutrinos, could form larger structures of the Universe. This

means that on different scales Dark Matter might consist of different materials [1]. 4

Moreover, in this chapter I presented some theoretically predicted (SUSY) particles

as candidates for Dark Matter. However, until now there is no direct accelerator evidence

for the existence of supersymmetry [1]. Actually, it is not absolutely certain that Dark

Matter is neither baryons nor neutrinos [1]. There are also some conservative cosmological

models which describe the Universe only in terms of baryons and perhaps neutrinos [1].

On the other hand, as shown in Subsec. 1.2.9, the baryonic matter density in the

Universe is

Ωb ' 0.042 , (1.46’)

but only around 25% of the baryonic matter are luminous:

Ωlum ' 0.01 . (1.48)

Although, as mentioned in Subsec. 1.2.6, most of the baryons in the clusters of galaxies

reside not in the galaxies themselves, but in form of hot intercluster, x-ray emitting gas

3At present we know from ν oscillations that at least two of these three SM neutrinos have small, but
non-vanishing masses.

4However, some recent researches indicate that there should be only one species of Dark Matter in
the Universe.
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[15], such hot gas in the clusters of galaxies only accounts for around 10% of the baryons

in the Universe [15]. Hence, there should (must) be some baryonic Dark Matter. 5

Two most promising possibilities for such dark baryons are diffuse hot gas and dark

stars, which include white dwarfs, neutron stars, black holes, or objects with masses

around or below the hydrogen-burning limit [15].

2.3.1 Massive astrophysical compact halo objects (MACHOs)

Massive astrophysical compact halo objects include, for example, brown dwarfs which

are balls of hydrogen and helium with masses < 0.08M¯ and therefore never begin nuclear

fusion of hydrogen [1] (but they do burn deuterium), jupiters which are similar to brown

dwarfs but have masses ∼ 0.001M¯ [1] and do not burn anything, and white dwarfs

[1]. Actually, objects with masses around or below the hydrogen-burning limit could be

baryonic Dark Matter [15].

Meanwhile, neutron stars and stellar black-hole remnants are also candidates for bary-

onic Dark Matter [1]. Black holes with masses ∼ 100M¯ could be remnants of an early

generation of stars which were massive enough so that not many heavy elements were

dispersed when they underwent their supernova explosions [1]. Primordial black holes

which formed before the era of Big Bang could be counted for non-baryonic Dark Matter

rather than baryonic one [37]. However, such an early creation of a large number of black

holes is possible only in certain somewhat contrived cosmological models [37].

MACHOs might represent a large part of the galactic Dark Matter and could be

detected through the microlensing effect [37]. The MACHO, EROS, OGLE collaborations

have performed programs of observation of such objects by monitoring the luminosity of

millions of stars in the Large and Small Magellanic Clouds [37]. They concluded that

MACHOs contribute . 40% (MACHO) or even . 20% (EROS) to the mass of the galactic

halo [37].

5However, some recent results of the measurement of the opacity of the Lyman-α forest toward high-
redshift quasars indicate that there are probably enough baryons at z ≥ 3, but it is not clear where they
are now.

36



Chapter 3

Direct Detection of WIMPs

By definition, Dark Matter could neither emit nor absorb electromagnetic radiation.

However, as described in Subsec. 2.1.2, WIMPs would have annihilated to some ordinary

matter, e.g., quarks and leptons, in the early Universe. Otherwise, they would have

unacceptable large abundance today. According to the crossing symmetry, the amplitude

for WIMP annihilation to, for example, quarks is related to the amplitude for elastic

scattering of WIMPs from quarks [1]. Therefore, WIMPs should have some small, but

non-zero couplings to ordinary matter.

Due to this coupling to nucleus (through the coupling to quarks), WIMPs could

scatter elastically from target nuclei of the detector material and produce nuclear recoils

which deposit energy in the detector. Hence, one of the most promising methods of

detecting Galactic Dark Matter is the direct detection of WIMPs [38]-[44]. Note that,

although the lightest neutralino is the leading candidate for Dark Matter, such WIMP

direct searches are not specialized to detect the neutralino but any particle with similar

generic properties, e.g., a mass between a few GeV and a few TeV and weakly interacting

with ordinary matter [45]. 1

3.1 Elastic WIMP-nucleus scattering

Using the standard assumption of the WIMP density near the Earth

ρ0 ≈ 0.3 GeV/c2/cm3 , (1.55)

and assuming a WIMP mass

mχ ≈ 100 GeV/c2 , (3.1)

1The lightest Kaluza-Klein particle arising in the extra-dimension models (mentioned as footnote in
Subsec. 2.1.7) can also scatter elastically from the detector nuclei through KK-quark q(1) and Higgs
exchange [46]. Thus such particles could also be detected from direct detection experiments. A brief
description about the interaction between q(1) and Higgs and the analysis using recent experimental
results can be found in Ref. [46].
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the number density of WIMP can be found as

n =
ρ0

mχ

≈ 3× 10−3 cm−3 . (3.2)

Meanwhile, by the assumption that the halo WIMPs are gravitationally bound to the

Galaxy and its halo, the average velocity of WIMP wind is then approximately equal to

the stellar velocity in the Solar neighborhood: 2

〈v〉 ≈ 250 km/s . (3.3)

Therefore, the WIMP flux is ∼ 105 WIMPs per square centimeter of the Earth’s surface

per second.

However, the very low cross section of WIMPs on ordinary material makes the elastic

WIMP-nucleus scattering very rare. In typical SUSY models with neutralino WIMPs,

WIMP-nucleus cross section is about 10−6 ∼ 10−4 pb (10−42 ∼ 10−40 cm2) 3 and the

expected event rate is then at most 1 event/kg/day [37], in some models it is even less

than 1 event/ton/yr [47].

With expected WIMP mass in the range 10 GeV/c2 to 10 TeV/c2 [37], typical nu-

clear recoil energies are of order of 1 to 100 keV. However, as we can see in Fig. 4.1 in

Subsec. 4.2.1, the event rate drops approximately exponentially and most events should

be with energies less than 40 keV (a simple theoretical estimate will be given in Sub-

sec. 3.5.1).

On the other hand, in the energy range from a few to a couple hundred keV, typical

background noise due to cosmic rays and ambient radioactivity is much larger. Thus a

underground laboratory and extensive shielding around the detector to protect against

cosmic-ray induced backgrounds, and selection of extremely radiopure materials are nec-

essary and important [37] (more details about background and its discrimination will be

given in Sec. 3.6).

The event rate of elastic WIMP-nucleus scattering depends on various parameters

coming from astrophysics, particle physics and nuclear physics: the WIMP density near

the Solar system ρ0, the WIMP-nucleus cross section, the WIMP mass mχ, and the

velocity distribution of the incident WIMPs f(v) in the Galactic halo near the Earth.

However, by some standard assumptions about the halo model, e.g., the WIMP density

profiles (have been presented in Sec. 1.3) and velocity distributions (will be discussed in

Subsecs. 3.1.3 and 3.2.1), the expected event rate mainly depends on two unknowns: the

mass of the incident WIMPs and the WIMP-nucleus cross section. Hence the experimen-

tal observable is usually expressed as a contour in the WIMP mass-cross section plane

(e.g., Figs. 3.4 and 3.5), although it is basically the scattering rate and is a function of

energy [37].

2Note that 〈v〉 ≡ 〈|v|〉 is O(v0) even though 〈v〉 = 0 (see footnote on p.15).
31 barn = 10−24 cm2, 1 pb = 10−36 cm2
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3.1.1 Rate for elastic WIMP-nucleus scattering

The direct detection experiment measures the number of events per unit time per

unit mass of detector material as a function of the energy deposited in the detector Q.

Qualitatively, the event rate of direct detection, R, can be simply expressed as [1]

R ≈ n 〈v〉σ
mN

, (3.4)

where 〈v〉 is the average velocity of the incident WIMPs relative to the Earth frame (i.e.,

to the target), σ is the WIMP-nucleus cross section, and mN is the mass of the target

nucleus. Here we multiply the factor 1/mN to get the number of target nuclei per unit

mass of the detector material.

More accurately, one should take into account the fact that the WIMPs move in the

halo with velocities determined by their velocity distribution function f(v), and that the

differential cross section depends on f(v) through an elastic nuclear form factor F (q) [1]:

dσ =
1

v2

(
σ0

4m2
r

)
F 2(q) dq2 . (3.5)

Here σ0 is the total cross section ignoring the form factor suppression,

mr =
mχmN

mχ + mN

(3.6)

is the reduced mass, q is the transferred 3-momentum:

q =
√

2mNQ . (3.7)

Therefore, in general, the differential scattering event rate (per unit detector mass) should

be written as [1]

dR =
ρ0

mχmN

∫
vf1(v) dσ dv

=

(
ρ0σ0

2mχm2
r

)
F 2(Q)

∫ [
f1(v)

v

]
dv dQ , (3.8)

where f1(v) is the one-dimensional velocity distribution function of WIMPs impinging on

the detector, v is the absolute value of the WIMP velocity in the Earth rest frame, and we

have to integrate over all possible incoming velocities. By means of classical mechanics,

the transferred momentum q can be expressed as

q = 2

[
mN

(
mχv

mχ + mN

)]
sin

(
θCM

2

)
= 2mrv

√
1− cos θCM

2
, (3.9)

where θCM is the scattering angle in the center-of-momentum frame. Since

0 ≤ 1− cos θCM ≤ 2 ,
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for a given deposited energy Q, we have

Q =
(2mrvmin)

2

2mN

=
2m2

rv
2
min

mN

,

i.e., the minimal incoming velocity of incident WIMPs that can deposit the energy Q in

the detector can be expressed as

vmin(Q) =

√
mN

2m2
r

√
Q = α

√
Q , (3.10)

where I have defined

α ≡
√

mN

2m2
r

. (3.11)

Then the differential event rate for elastic WIMP-nucleus scattering, Eq.(3.8), can be

rewritten as

dR

dQ
= AF 2(Q)

∫ ∞

vmin

[
f1(v)

v

]
dv , (3.12)

where the constant coefficient A is defined as

A ≡ ρ0σ0

2mχm2
r

. (3.13)

Note that, first, α defined in Eq.(3.11) depends only on the WIMP mass mχ (and the

mass of the target material, mN, which we can choose). The two as yet unknown pa-

rameters, i.e., the WIMP density ρ0 and the total WIMP-nucleus cross section σ0, have

been collected in the coefficient A defined in Eq.(3.13). Second, I assumed here that the

detector essentially only consists of nuclei of a single isotope. If the detector contains

several different nuclei (e.g., NaI as in the DAMA detector [48]), the right-hand side of

Eq.(3.12) has to be replaced by a sum of terms, each term describing the contribution of

one isotope. For simplicity, in the remainder of this work I will focus on mono-isotopic

detectors.

Finally, the total event rate per unit time per unit mass of detector material can be

expressed as

R =
∫ ∞

Qthre

(
dR

dQ

)
dQ , (3.14)

where Qthre is the threshold energy of the detector.

3.1.2 Nuclear form factor (for spin-independent coupling)

Here I present two most commonly used parameterizations of the squared nuclear

form factor F 2(Q) in Eq.(3.12) for spin-independent coupling, which usually dominates

the event rate (more details about WIMP-nucleus couplings will be given in Sec. 3.4).

Moreover, the form factors for spin-dependent coupling are still only poorly understood.
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The simplest form factor is the exponential one, first introduced by Ahlen et al. [49]

and Freese et al. [42]:

F 2
ex(Q) = e−Q/Q0 , (3.15)

where Q is the recoil energy transferred from the incident WIMP to the target nucleus,

Q0 =
1.5

mNR2
0

(3.16a)

is the nuclear coherence energy and

R0 =

[
0.3 + 0.91

(
mN

GeV

)1/3
]

fm (3.16b)

is the radius of the nucleus. The exponential form factor implies that the radial density

profile of the nucleus has a Gaussian form. This Gaussian density profile is simple, but

not very realistic. Engel has therefore suggested a more accurate form factor [50], inspired

by the Woods-Saxon nuclear density profile,

F 2
WS(Q) =

[
3j1(qR1)

qR1

]2

e−(qs)2 . (3.17)

Here j1(x) is a spherical Bessel function, q is the transferred 3-momentum given in

Eq.(3.7), and

R1 =
√

R2
A − 5s2 (3.18a)

with

RA ' 1.2A1/3 fm , s ' 1 fm , (3.18b)

where A is the atomic mass number of the nucleus.

3.1.3 Simple isothermal Maxwellian halo

For the simplest halo model presented in Subsec. 1.3.2, the canonical isothermal

spherical halo, with the assumption that the WIMPs trapped in the galactic field have

attained thermal equilibrium with a Maxwellian velocity distribution [51], the velocity

distribution function is given by [1]

fGau(v) =

(
1

π3/2v3
0

)
e−v2/v2

0 , (3.19)

where v0 is the orbital velocity of the Sun in the Galactic frame:

v0 ' 220 km/s , (1.53’)

which characterizes the velocity of all virialized objects in the Solar vicinity. Then, since

d3v = v2dv dΩ = 4πv2dv ,
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the normalized one-dimensional velocity distribution function has been obtained as [1]

f1,Gau(v) =
4√
π

(
v2

v3
0

)
e−v2/v2

0 . (3.20)

According to Eq.(3.12), the scattering spectrum of the simplest theoretical velocity dis-

tribution given in Eq.(3.20) can be obtained as (a detailed calculation will be given in

App. C.1.1)
(

dR

dQ

)

Gau

= A
(

2√
πv0

)
F 2(Q) e−α2Q/v2

0 . (3.21)

Meanwhile, the mean velocity and velocity dispersion of the halo WIMPs can be obtained

as (detailed calculations will be given in App. B.1.1), respectively,

〈v〉Gau =
∫ ∞

0
vf1,Gau(v) dv =

(
2√
π

)
v0 , (3.22)

and

〈v2〉Gau =
∫ ∞

0
v2f1,Gau(v) dv =

(
3

2

)
v2

0 . (3.23)

For light WIMPs, the effect due to the form factor introduced in Eq.(3.5) can be neglected

and we can use F 2(Q) ≈ 1 [1]. Then the total event rate in Eq.(3.14) can be found directly

as

RGau(Qthre) =
ρ0σ0

mχmN

(
2v0√

π

)
e−α2Qthre/v2

0 . (3.24)

For the case of Qthre = 0, this result can be reduced to

RGau(Qthre = 0) =
ρ0σ0〈v〉Gau

mχmN

, (3.25)

which is exactly the naive estimate in Eq.(3.4). On the other hand, with the exponential

form factor F 2
ex(Q) given in Eq.(3.15), one can find that (a detailed calculation will be

given in App. C.2.1)

RGau,ex(Qthre) =
ρ0σ0〈v〉Gau

mχmN

(
β2 e−α2Qthre/v2

0β2
)

, (3.26)

and then

RGau,ex(Qthre = 0) =
ρ0σ0〈v〉Gau

mχmN

· β2 , (3.27)

where I have defined

β ≡
(

1 +
v2

0

α2Q0

)−1/2

. (3.28)

It can be seen that, for the case that the exponential form factor F 2
ex(Q) can be neglected,

or, equivalently, Q0 →∞, i.e., β → 1, RGau,ex(Qthre) in Eqs.(3.26) and (3.27) will reduce

to Eqs.(3.24) and (3.25).
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Figure 3.1: The Earth orbit in Galactic coordinates. The Sun moves to the left with
about 220 km/s, inducing a WIMP wind (figure from [45]).

3.2 Annual modulation of the event rate

The one-dimensional velocity distribution function f1,Gau(v) given in Eq.(3.20) has

been considered in the Galactic rest frame. More realistically, the orbital motion of the

Solar system in the Galaxy as well as the motion of the Earth around the Sun must be

considered [41]-[43]. As shown in Fig. 3.1, since the speed of the Earth adds to or subtracts

from the speed of the Sun, the event rate for a given recoil energy (or energy range) in

Eq.(3.12) should be a cosinusoidal function with a one-year period (see Figs. 3.3 and 5.1)

and a peak around June 2nd [42]. The expected amplitude of this annual modulation is

around 5%. 4

Originally, such an annual modulation was only expected for the WIMP signal, not for

the background. Thus this effect might serve a method to distinguish the WIMP signal

from the background. And actually, the DAMA collaboration [48] has claimed that they

have observed this annual modulation of the event rate [52]-[54] (more details about the

DAMA result will be given in Subsec. 3.7.3). However, the much larger background might

also be subject to modulation [37]. For example, the dependence of the cosmic muon flux

on the atmospherical temperature, or the dependence of the background neutron flux on

water in rock and concrete. Hence, the signal identification should also be performed.

4The ratio of a theoretically expected amplitude of this annual modulation to the time-averaged
scattering spectrum as function of the recoil energy will be given in Fig. 5.2 in Subsec. 5.2.1. It can be
seen that, for recoil energy between 0 and 50 keV, the modulated amplitude is around −4% ∼ 5%. Some
detailed discussions about the annual modulation of event rate will be given in Secs. 5.1 and 5.2.1.
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3.2.1 Shifted Maxwellian halo

When we take into account the orbital motion of the Solar system around the Galaxy,

as well as that of the Earth around the Sun, the velocity distribution function in Eq.(3.20)

should be modified to [1]

f1,sh(v, ve) =
1√
π

(
v

vev0

) [
e−(v−ve)2/v2

0 − e−(v+ve)2/v2
0

]
(3.29)

with

ve(t) = v0

[
1.05 + 0.07 cos

(
2π(t− tp)

1 yr

)]
, (3.30)

where tp ' June 2nd is the date on which the velocity of the Earth relative to the WIMP

halo is maximal [42]. Eq.(3.30) includes the effect of the rotation of the Earth around

the Sun (second term), but does not allow for the possibility that the halo itself might

rotate (some discussions about such bulk rotation has been given in Subsec. 1.3.6).

Substituting the shifted Maxwellian velocity distribution function in Eq.(3.29) into

Eq.(3.12), the theoretically expected scattering spectrum can be obtained as (a detailed

calculation will be given in App. C.1.2)
(

dR

dQ

)

sh

= A
(

1

2ve

)
F 2(Q)

[
erf

(
α
√

Q+ve

v0

)
− erf

(
α
√

Q−ve

v0

)]
. (3.31)

Here erf(x) is the error function, defined as

erf(x) =
2√
π

∫ x

0
e−t2dt .

Meanwhile, the mean velocity and velocity dispersion in Eqs.(3.22) and (3.23) should be

modified to (detailed calculations will be given in App. B.1.2), respectively,

〈v〉sh =

(
v0√
π

)
e−v2

e/v2
0 +

(
v2

0

2ve

+ ve

)
erf

(
ve

v0

)
, (3.32)

and

〈v2〉sh =
(

3

2

)
v2

0 + v2
e . (3.33)

As what I did in Subsec. 3.1.3, considering the light-WIMP case and using F 2(Q) ≈ 1,

the total event rate for the shifted Maxwellian distribution in Eq.(3.29) can be found as

(a detailed calculation will be given in App. C.1.2)

Rsh(Qthre)

=
ρ0σ0

mχmN

(
v2

0

2ve

) {(
1

2
− S+S−

) [
erf(S+)− erf(S−)

]
+

1√
π

(
S+e−S2

− − S−e−S2
+

)}
,

(3.34)
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where I have defined

S± ≡ α
√

Qthre ± ve

v0

. (3.35)

For the case of Qthre = 0, Rsh(Qthre) in Eq.(3.34) can be reduced directly to

Rsh(Qthre = 0) =
ρ0σ0

mχmN

[(
v2

0

2ve

+ ve

)
erf

(
ve

v0

)
+

(
v0√
π

)
e−v2

e/v2
0

]

=
ρ0σ0〈v〉sh
mχmN

, (3.36)

where I have used

erf(−x) = −erf(x) .

Moreover, for the case with the exponential form factor F 2
ex(Q) given in Eq.(3.15), I have

(a detailed calculation will be given in App. C.2.2)

Rsh,ex(Qthre) =
ρ0σ0

mχmN

(
v2

0

2ve

) (
β2

1− β2

)

×
{

e−(1−β2)α2Qthre/v2
0β2

[
erf(S+)− erf(S−)

]

− βe−(1−β2)v2
e/v2

0

[
erf(T+)− erf(T−)

]}
, (3.37)

where I have defined

T± ≡ α
√

Qthre ± β2ve

v0β
. (3.38)

For the case of Qthre = 0, Rsh,ex(Qthre) in Eq.(3.37) can be reduce to

Rsh,ex(Qthre = 0)

=
ρ0σ0

mχmN

(
v2

0

ve

) (
β2

1− β2

) [
erf

(
ve

v0

)
− βe−(1−β2)v2

e/v2
0 erf

(
βve

v0

)]
. (3.39)

It is not difficult to check that Rsh,ex(Qthre) in Eqs.(3.37) and (3.39) can be reduced to

Eqs.(3.34) and (3.36) when one neglects the form factor F 2
ex(Q), i.e., let β → 1. On the

other hand, as ve ¿ v0, one can also prove that the results in Eqs.(3.32) to (3.34), and

(3.36) can be reduced to Eqs.(3.22) to (3.25).

3.3 Diurnal modulation of the event rate

Similar to the annual modulation caused by the orbital motion of the Earth around

the Sun, due to the rotation of the Earth, the event rate for a given energy (or energy

range) should have a diurnal modulation [45], [22].

There are two different effects caused by this diurnal modulation. The first one is

the shielding of the detector of the incident WIMP flux by the Earth [22] (illustrated
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(a)

(b)

Figure 3.2: Two effects caused by the diurnal modulation: (a) shielding of the detector
of the incident WIMP flux by the Earth (figure from [22]), and (b) directionality of the
WIMP wind (figure from [45]).
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in Figs. 3.2(a)). Some authors claimed that, for WIMP masses close to 50 GeV/c2 and

under certain assumptions, this diurnal modulation due to the shielding of the WIMP

flux could be larger than the annual modulation [43], [22]. However, this requires a large

WIMP-nucleus cross section and recent experimental results have (almost) excluded this

possibility. Moreover, practically, it is still impossible for the detectors nowaday and

should also be very difficult for the next-generation ones to get more than a few singles

per day to prove this effect (more details about the status of the operated experiments

and their results will be given in Secs. 3.7 to 3.9).

On the other hand, the second effect due to the rotation of the Earth is the direc-

tionality of the WIMP wind: a daily forward/backward asymmetry of the nuclear recoil

direction (illustrated in Figs. 3.2(b)). A gaseous detector (e.g., DRIFT [55]) or anisotropic

response scintillators should have the ability to measure this recoil direction [45], [37].

3.4 Target material dependence

The WIMP-nucleus cross section σ0 in Eqs.(3.5) and (3.13) depends on the nature

of the WIMP couplings to nucleons. For non-relativistic WIMPs, one in general has to

distinguish spin-independent (SI) and spin-dependent (SD) couplings [37].

3.4.1 Spin-independent (SI) cross section

The total cross section for “scalar” coupling can be expressed as [1]

σ0,scalar =
4m2

r

π

[
Zfp + (A− Z)fn

]2
. (3.40)

Here mr is the reduced mass of the WIMP and the target nucleus in Eq.(3.6), Z is the

atomic number, i.e., the number of protons, A − Z is then the number of neutrons, fp

and fn are the effective couplings of WIMPs to protons and neutrons, respectively.

Here we have to sum over the couplings to each nucleon before squaring because the

wavelength associated with the momentum transfer is comparable to or larger than the

size of the nucleus [51], the so-called “coherence effect”. In most cases, the couplings to

protons and neutrons are approximately equal [1],

fn ' fp . (3.41)

Then the cross section for scalar interaction in Eq.(3.40) can be reduced to

σ0,scalar ∝ A2 . (3.42)

This means that, due to the coherence effect with the entire nucleus, the cross section

for scalar interaction scales approximately as the square of the atomic mass of the target

nucleus. Hence, higher mass nuclei, e.g., Ge or Xe, are preferred for the search for the

scalar interaction [37].
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On the other hand, WIMPs could also have a “vector” coupling to protons and neu-

trons [1]:

σ0,vector =
m2

r

64π

[
2Zbp + (A− Z)bn

]2
, (3.43)

where bp and bn are the effective couplings to protons and neutrons. However, for Majo-

rana WIMPs (χ = χ̄), e.g., the neutralino, there is no such vector interaction [37].

3.4.2 Spin-dependent (SD) cross section

WIMPs could also couple to the spin of the target nucleus, an “axial-vector” (spin-spin)

interaction. For this spin-spin coupling, only unpaired nucleons contribute significantly to

the interaction, as the spins of the A nucleons in a nucleus are systematically anti-aligned

[51]. And it is obvious that this spin-dependent interaction exists only if the incident

WIMPs carry spin [37].

The total cross section for spin coupling can be expressed as [1]

σ0,axial =
32m2

r

π

[
Λ2J(J + 1)

]
, (3.44)

where J is the total angular momentum of the nucleus and Λ (∝ 1/J) depends on the

axial couplings of WIMPs to the quarks.

Because of the dependence on the nuclear spin factor, the useful target nuclei for

search for spin interaction are 19F and 127 I [37].

3.4.3 Comparison of the SI and SD cross sections

Generally speaking, a WIMP could have both scalar and spin-dependent interactions

with the nucleus. Thus the WIMP-nucleus cross section σ0 in Eqs.(3.5) and (3.13) should

be the sum of the scalar cross section, σ0,scalar, in Eq.(3.40) and the spin cross section,

σ0,axial, in Eq.(3.44).

For the scalar interaction, an analytic nuclear form factor, e.g., the exponential and

the Woods-Saxon form factors presented in Subsec. 3.1.2, can be used. For the spin

interaction, the form factor will differ from nucleus to nucleus and no simple analytic

form factor can provide a very good approximation [1]. Fortunately, for nuclei with

A & 30 , the scalar interaction almost always dominates the spin interaction [1].

3.4.4 Target mass

The scattering event rate depends also on the atomic mass of the target material

directly.

First, according to Eq.(3.10), the smaller α the lower the incoming velocity with which

the incident WIMPs can deposit energy larger than the threshold energy. Meanwhile,

according to the definitions of α and mr in Eqs.(3.11) and (3.6), it can be found that, for
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WIMPs with a given mass and detector with a given threshold energy, α will be smallest

if the mass of the target nucleus mN is equal to the WIMP mass mχ.

Second, for a given total mass of detector material, a larger target mass means also a

smaller number density of the nucleus which can interact with the incident WIMPs. It

will certainly reduce the total event number.

3.5 Measurement of recoil energy

3.5.1 A simple estimate

As an example, we assume a WIMP mass

mχ ≈ 100 GeV/c2 , (3.1)

and use the standard theoretical WIMP rms velocity

〈v2〉1/2 ' 270 km/s . (1.52)

then the average kinetic energy of the incident WIMPs can be estimated as

〈Eχ〉 ≈ 40 keV . (3.45)

On the other hand, by means of classical mechanics, the recoil energy of the target nucleus

due to the elastic scattering can be expressed as

Q =

[
4mχmN

(mχ + mN)2
cos2 θLab

]
Eχ , (3.46)

where θLab is the recoil angle in the laboratory frame. This expression shows that the

maximum recoil energy is obtained when mN = mχ. This is also why this search should

be more efficient for target material with a mass comparable to the WIMP mass.

3.5.2 Induced signals

When a WIMP scatters off a nucleus, the nucleus will at first obtain a few tens of keV

kinetic energy and then dissipate this energy in the detector via three main processes: the

electrons can be stripped by the scattered nucleus and an ionized nucleus-electrons system

will be produced, this electronic activity can emit light, and the movement of the recoiling

nucleus in the lattice can also induce vibrational phonons. Moreover, the ionization and

scintillation energy will convert into phonons that will eventually thermalize and produce

a tiny elevation of the temperature in the detector.

Hence, generally speaking, due to the elastic WIMP-nucleus scattering, the nuclear

recoil can induce three different signals: ionization (charges), scintillation (light), and

heat (phonons).
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3.5.3 Quenching factor

When a photon with energy between keV and MeV enters a detector, it will induce

an electron recoil with a range of the order of the µm and transfer most of its energy to

the electron. However, the range of a nuclear recoil is only of the order of the nm and

the nucleus will lose a substantial part of its energy directly into phonons associated with

atom vibrations as the nucleus is stopped in the lattice [51].

Hence, the quenching factor (the nuclear recoil relative efficiency) for the ionization

detectors has been defined as the ratio of the number of charge carriers produced by a

nuclear recoil due to the WIMP interaction to that produced by an electron recoil with

the same kinetic energy (energy calibrated with a γ-source, called “electron equivalent

energy” or “eee”). Meanwhile, for scintillating detectors, the quenching factor is defined

as the ratio between the light produced by a nuclear recoil and by an electron recoil.

For conventional detectors, this factor is usually lower than 0.3 [22], [51]: ∼ 0.3 for Ge

or Si, ∼ 0.25 for Na, ∼ 0.09 for I, and ∼ 0.2 for Xe. While, for cryogenic detectors

measuring heat, the quenching factor has been measured to be around one for recoiling

nuclei independently of the energy [22].

Note that, due to this quenching factor, the measured recoil energies are often quoted

practically in keVee instead of true recoil energies in unit of keV.

3.5.4 Heat

Basically a cryogenic detector has been made of a crystal with a thermometer glued

on it, and operated at very low temperature (around 20 mK).

When the detectors have been cooled to the operating temperature in a dilution

refrigerator, the heat capacity (∝ T 3) is so low that even a few keV of deposited energy

raises the temperature of one of the detectors by a measurable amount, allowing the

amount of energy deposited to be determined [1].

Moreover, a superconducting-normal phase transition due to the elevation of the tem-

perature has been used by the CRESST collaboration [56]. A thin film of tungsten (W)

can be grown on a silicon detector and held just below the critical temperature. Phonons

created by a WIMP-nucleus scattering would heat the superconducting film, causing it

to go normal, and the change in resistance could be measured [1]. A very low threshold

energy (' 500 eV) of such detector were reached by the CRESST-I experiment with a

262 g sapphire detector [22], [57] (more details about the CRESST experiments and their

results will be given in Subsec. 3.7.2).

Similarly, it is also possible to use some small superconducting granules in a magnetic

field as detector, when one of such detectors is heated by a nuclear recoil, it would go

normal and thereby cause a measurable change in the magnetic flux [1].
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3.5.5 Ionization

A small voltage is placed across the crystal of the detector, and when several atoms

have been ionized, the freed electrons will drift to one side, the collected charges can be

used as a measure of the energy deposited in ionization [1].

Germanium 76Ge used initially in the neutrino-less double-β (0ν2β) decay experiments

has been used as the first detector material for direct WIMP detection experiments by

the Heidelberg-Moscow (HDMS) collaboration [58] (more details about the HDMS ex-

periments and their results will be given in Subsec. 3.7.5). Thanks to the high intrinsic

purity achieved by the semiconductor industries and the technique developed for the 0ν2β

decay experiments, Ge ionization detectors have nowaday very low thresholds and very

good resolutions (Qthre ' 4 ∼ 10 keVee, equivalent to ' 15 ∼ 30 keV recoil energy, for

HDMS [22]). Moreover, silicon (Si) has also been used by e.g., CDMS collaboration [59]

as detector material (more details about the CDMS experiments and their results will be

given in Subsec. 3.7.1). However, the size of such ionization detectors are limited.

3.5.6 Scintillation

Scintillation detectors, e.g., sodium iodine (NaI) or liquid xenon (LXe), are the solution

to accumulate large mass of detector material (≈ 100 kg). However, it is more difficult

to achieve radiopurity comparable to Ge detectors [51].

Moreover, as mentioned in Subsec. 3.5.2, scintillation detectors do not measure the

elevation of the temperature in the crystal, but the light emitted by the electrons produced

due to the ionization, thus the energy threshold for these detectors may be substantially

higher than the thermal calorimeters [1].

Meanwhile, the NaI-based experiments, such as DAMA [48], NaIAD [55], and EL-

EGANT, originally attempted to use a pulse shape discrimination to statistically iden-

tify the WIMP signals from their observed events (detailed discussions about the back-

ground discrimination will be given in Sec. 3.6). It was found that the low number of

detected scintillation photons per keV of incident energy (called “photo-electron per keV”

or “p.e./keVee”) restricts the usefulness of this method at low energy [51]. This means

that the background may be problematic. The technique is now being investigated for CsI

or CaF scintillator, where the difference in time constants between scintillations induced

by electron- and nuclear-recoils are larger than in the NaI detectors [51].

3.5.7 Combinations of two different signals

Actually, most of the direct WIMP detection experiments use detectors with mixed

techniques and measure simultaneously two signals. For example, for cryogenic detec-

tors, the CDMS and EDELWEISS collaborations [59], [60] investigate the heat-ionization

signals (more details will be given in Subsecs. 3.7.1 and 3.7.4), and the CRESST col-
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laboration [56] explores the heat-scintillation channel (more details will be given in Sub-

sec. 3.7.2).

Combining information measuring from two different channels can offer a powerful

event-by-event rejection method for the background discrimination down to 5 to 10 keV

recoil energy [37]. As mentioned in Subsec. 3.5.3, due to the quenching effect of the

detector material, the ratio of the ionization or the scintillation signal to the heat signal is

significantly different for the nuclear recoils and for the electron recoils. Similarly, nuclear

recoils due to WIMP or neutron interactions have a much higher characteristic light

over charge ratio than electron recoils due to electron and γ-ray interactions [61]. Thus

simultaneous measurements of two of the heat, the ionization, or the scintillation signals

can be used to distinguish nuclear recoils induced by WIMPs from electron recoils induced

by electron or γ-ray interactions (more details about different methods for background

discrimination will be given in Sec. 3.6).

3.6 Background and background discrimination

As mentioned in the beginning of this chapter, due to the very low cross section of

WIMPs on ordinary material, the event number of the elastic WIMP-nucleus scattering

is very rare and the backgrounds coming from different sources are much larger.

For example, cosmic rays and cosmic-ray induced γ-rays with energies in the keV to

MeV range, radioactive isotopes in and around the detector (in the equipment) should

be considered. Moreover, neutrons induced by cosmic muons can produce nuclear recoil

events similar to the real events induced by WIMPs. And electron recoils from photons

(x-ray and γ-ray radiations) and electrons are also a major background.

3.6.1 Cosmic muons and underground laboratories

At ground level, approximately 103 cosmic muons pass through per square centimeter

of the Earth’s surface per day [51]. They can induce nuclear transmutations to unstable

isotopes throughout the detector volume [51].

In order to protect from the penetrating cosmic muon flux, it is necessary to place

the detector in deep underground. In underground laboratories such as the Soudan

Underground Laboratory (the CDMS collaboration) in Minnesota in the USA, the Gran

Sasso National Laboratory (the CRESST and DAMA collaborations) in Italy, or the

Laboratoire Souterrain de Modane (LSM, the EDELWEISS collaboration) in the Fréjus

Tunnel in the French-Italian Alps, the muon flux can be reduced by a factor of 105 ∼ 107

[51].
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3.6.2 External natural radioactivity and (passive) shielding

External sources of radioactivity mean the radioactive isotopes in the rock around the

underground laboratory and in the walls of the laboratory.

A shielding from external natural radioactivity can be achieved by surrounding the

detector with thick absorbing material [51]: high-Z materials like lead are very effective

for stopping γ-rays with MeV energy, while low-Z materials are sufficient for stopping

low energy γ-rays as well as α- and β-radiations.

3.6.3 Internal natural radioactivity and radiopure materials

Beyond a thickness of 15 to 25 cm of lead shielding [51], one has to consider the

internal radioactivity of the equipment, of the contamination near the detector or in the

target material, and even of the lead shielding itself.

Internal radioactivity can be reduced very well by using detectors (and the other

experimental equipment) made of radiopure materials. Archeological lead has also often

been used since it has already been shielded from cosmic rays for 2000 years.

3.6.4 Active background rejection

Except passive shielding around the detector, most experiments use also some different

techniques for active background rejection.

Generally there are two different types of background discrimination. Statistical re-

jections are used to ascertain which fraction of the total event sample comes from a

well-defined type of background, but cannot tell for one individual event [51]. Moreover,

this kind of rejections depends strongly on the theoretical predictions about the true

signals induced by WIMPs and the background events.

On the other hand, the event-by-event rejections check each recorded event in the

detector independently of the others (“blind”) and can be used to reject background

events with an almost 100% certainty. Note that, however, in practice there is always a

small probability that some background event may fake the signals induced by WIMPs.

3.6.5 Neutron induced nuclear recoils

Cosmic muons can induce neutrons in the inner lead shielding and such fast neutrons

can induce nuclear recoils similar to those induced by WIMPs.

Fast neutron shielding consists of moderators made of material with a high density of

hydrogen, such as polyethylene or water [51].

3.6.6 Multiple-scatter events and array of detectors

The interaction between WIMPs and ordinary material is too weak, or, equivalently,

the mean free path of a WIMP in ordinary matter is too long (of the order of a light-year
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[51]), so that WIMPs could never interact more than once in a single detector or two

adjacent detectors. In contrast, the mean free path of a neutron or a high energy photon

is of the order of cm, thus multiple-scatter events produced by neutrons are more common

[51].

Hence, an array of closely packed detectors (e.g., the tower with six detectors used by

the CDMS experiment, see Subsec. 3.7.1 and their web page [59]) can efficiently identify

these multiple-scatter events [51].

3.6.7 Electron recoils

Theoretically WIMPs interact only with the nuclei (through the coupling to quarks)

and produce nuclear recoils, while, due to the electromagnetic interaction, the dominant

radioactive backgrounds interact usually with the electrons and produce electron recoils.

Therefore, the experiments which can discriminate between the events due to nuclear

recoils and events due to electron recoils can reject most radioactive background [62].

There are three ways to distinguish nuclear recoils from electron recoils. First, as

mentioned in Subsec. 3.5.3, due to the quenching effect of the detector material, the ratio

of the ionization or the scintillation signal to the heat signal is significantly different for

nuclear recoils and for electron recoils. Thus one can measure simultaneously the heat

signal and the ionization or the scintillation signal to distinguish the nuclear recoil events

from the electron recoil events.

Second, the decay times of pulses for nuclear recoils may be different than that for

electron recoils [62]. Thus some experiments use only a scintillation detector, but measure

also the timing of the signals [62]. However, due to the limited resolution and discrimina-

tion power of this pulse shape analysis at low energies, this effect allows only a statistical

background rejection [37]. This technique has been used by e.g., the DAMA/NaI and

NaIAD experiments (NaI(Tl) detector) [48], [55] and ZEPLIN-I experiment (liquid xenon

detector) [55].

Third, as mentioned in Subsec. 3.5.3, the range of a electron recoil is of the order

of µm and that of a nuclear recoil is only of the order of nm. Thus the nuclear recoils

have a much larger energy loss per unit length, dQ/dx, or, equivalently, produce a much

higher energy density, than the electron recoils. Therefore, some experiments are actually

immune to electron recoils because the energy they deposit is not dense enough to trigger

[62].

3.6.8 Surface events and self shielding

Due to their very long mean free path, WIMPs will interact uniformly throughout the

detector volume. In contrast, due to the short mean free path of the high-energy photons

and neutrons, for a detector with a large volume, the interactions induced by radiations

originating from the surrounding material and surface contamination will occur mostly
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at the detector surface [51].

This “self-shielding” effect leads to the incentive of building large position-sensitive

detectors in order to reject the surface events. Moreover, low-energy photons, α- and

β-rays have very short mean free path (< mm), and can be rejected even if the position

sensitivity is limited [51].

3.6.9 Incomplete charge collection

Some electromagnetic events occurring very near the detector surface can also mimic

nuclear recoils because they produce less ionizations than expected from electron recoils

[45]. But such surface events can also be rejected by the self-shielding effect.

3.6.10 Shape of the recoil energy spectrum

The shape of the recoil spectrum dR/dQ for a given WIMP mass in some simple halo

models can be predicted numerically or even analytically (e.g., (dR/dQ)Gau in Eq.(3.21)

and (dR/dQ)sh in Eq.(3.31)). The measured recoil spectrum should be consistent with

the expectation.

However, first, the overall shape of the expected spectrum is (approximately) expo-

nential, as is the case for many background sources; second, different velocity distri-

bution functions in different halo models could predict totally different recoil spectrum

(cf. (dR/dQ)Gau in Eq.(3.21) and (dR/dQ)sh in Eq.(3.31)). Moreover, the expected signal

events measured by the currently operated detectors and even next-generation ones are

at most only a few per day. Hence, as we will see in Sec. 4.2, at present a meaningful

reconstruction of the recoil spectrum with a small statistical error is actually impossible.

3.7 Cyrogenic detectors

As discussed above, a WIMP detector is constrained by three important requirements:

low threshold, (ultra) low background, and high detector material mass [22].

In the following I will present some important collaborations worldwide and summarize

their recent results and plans in the near future. More details about these collaborations

and their experiments can be found in the references.

3.7.1 CDMS

The Cryogenic Dark Matter Search (CDMS) collaboration [59] uses the Berkeley

Center for Particle Astrophysics (CfPA) germanium cryogenic detector [1]. Their first

test run was at the Stanford University Underground Facility [1], and now moved to the

deep Soudan Underground Laboratory (Soudan mine) in Minnesota in the USA [63]. The

Soudan mine has 780 m rock overburden (2090 meters water equivalent, m.w.e.) [63], the
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surface muon flux is then reduced by a factor of 5×104 [63], and the neutron background

is also reduced by a factor of 400 [22] (∼ 4× 10−4/kg/day [64]).

It was the first experiment to operate a detector measuring simultaneously ionization

and heat signals with a germanium/silicon crystal as the target material [22]. They

developed Z(depth)-sensitive Ionization and Phonon (ZIP) detectors. The principle of

their ZIP detector is basically the same as that discussed in Subsec. 3.5.5, except that

the heat sensor is replaced by a thin film sensor and thus able to detect phonons before

their complete thermalization [51].

Their “tower(s)” with mixed Ge and Si detectors are powerful for subtracting the

neutron background [63]. Except the neutron multiple-scatter events discussed in Sub-

sec. 3.6.6, while Ge and Si have similar scattering rates per nucleon for neutrons, the

WIMP-nucleon scattering rate is expected to be 5-7 times greater in Ge than in Si for

all but the lowest-mass WIMPs. Moreover, the kinematics of neutron elastic scattering

gives a recoil energy spectrum scaled in energy by a factor of ∼ 2 in Si compared to

Ge, whereas the factor would be ∼ 1 or less for WIMP elastic scattering. All of these

three methods can be used (together), in conjunction with Monte Carlo simulations, to

statistically subtract any neutron background.

In addition, because the athermal phonons from electron recoils are faster than those

from nuclear recoils, particularly if the electron recoils occur near a detector surface,

by collecting such fast, athermal phonons with thousands of thin-film sensors, their ZIP

detector can discriminate very well against the surface electron recoils [62].

According to Ref. [63], for recoil energies above 10 keV, events due to the background

photons can be almost perfectly rejected, and more than 96% of the incomplete charge

collection events can also be rejected by using additional information from the shape,

timing, and energy partition of the phonon pulses (namely, only events with both slow

phonon pulses and low ionization have been accepted), while over half of the nuclear-recoil

events should be kept [62].

In the first Soudan run of the CDMS-II experiment (from October 11, 2003 to January

11, 2004) [63], one tower with 4 Ge (each 250 g) and 2 Si (each 100 g) ZIP detectors has

been operated for 52.6 live days, the recoil energy thresholds of these six detectors were

between 10 and 20 keV, only one candidate event with a recoil energy of 64 keV in one

Ge detector has been measured. For a WIMP mass of 60 GeV/c2, a 4 × 10−7 pb upper

limit on the spin-independent WIMP-nucleon cross section 5 from Ge as been achieved.

Meanwhile, thanks to the 73Ge (spin-9
2
) and 29Si (spin-1

2
) content of natural germanium

and silicon, a 0.2 pb upper limit on the spin-dependent WIMP-neutron cross section

for a WIMP mass of 50 GeV/c2 has also been achieved. These were the world’s lowest

limits on the WIMP-nucleon cross-section in the case of spin-independent interactions

and spin-dependent interactions with neutrons.

5Here the cross-section σ0 shown in Eqs.(3.5) and (3.13) is normalized to a single nucleon σχn in order
to allow comparisons between different target nuclei.
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In the second Soudan run (from March 25 to August 8, 2004) [65], [66], and [46],

two towers (one tower with 4 Ge and 2 Si detectors and the other one with 2 Ge and

4 Si detectors) have been operated for 74.5 live days and the recoil energy thresholds

have been improved to be only 7 keV, one more candidate event with a recoil energy of

10.5 keV in one Ge detector has been measured. For a WIMP mass of 60 GeV/c2, the

upper limit on the spin-independent WIMP-nucleon cross section has been given as 1.6

×10−7 pb from Ge and 3.4 ×10−6 pb from Si (see Fig. 3.4). These limits are a factor

of 6 lower than those given by the ZEPLIN-I experiment [55] (see Subsec. 3.8.5) and an

order of magnitude lower than those of the CRESST and EDELWEISS collaborations

[62]. Moreover, their results excluded the overlap between the CDMS and DAMA/NaI

allowed regions at WIMP masses & 25 GeV/c2, though compatible regions at lower masses

remain [66] (see Fig. 3.4).

Now the CDMS collaboration is preparing for five towers with totally 19 Ge (4.75 kg)

and 11 Si (1.1 kg) ZIP detectors, and will improve their sensitivity a factor of ≈ 10 [46].

Furthermore, they also planned a SuperCDMS project which will start with a total mass

of 25 kg (Phase A, each detector will be 640 g) and be improved to 150 kg (Phase B) and

eventually 1000 kg (Phase C) [46], in order to achieve ∼ 10−9 pb sensitivity (for a WIMP

mass of 60 GeV/c2, Phase A, see Fig. 3.5) [46], corresponding to O(10−4) events/kg/day

event rate in the energy range between 15 and 45 keV [64]. They will also move to

the SNO Underground Laboratory at the Sudbury mine in Canada. The ∼ 6000 m.w.e.

overburden at this site results in over two orders of magnitude suppression in the neutron

background compared to Soudan [64].

3.7.2 CRESST

The Cryogenic Rare Event Search using Superconducting Phase Transition Thermome-

ters (CRESST) collaboration [56] uses heat-scintillation detectors with CaWO4 crystal

in the Gran Sasso National Laboratory in Italy. Their detector provides a good rejection

of surface events as of photons due to the much larger light yield from all electron recoils

relative to nuclear recoils [62].

As mentioned in Subsec. 3.5.4, their detector uses the superconducting-normal phase

transition due to the difference of the temperature. A thin superconducting film of tung-

sten (W) has be grown on a silicon detector and held just below the critical temperature.

Heat produced by WIMP-nucleus scatterings will change the film to its normal state and

the change in resistance could be measured [1]. However, as mentioned in Subsec. 3.5.6,

the threshold energy of such a scintillation detector is relatively higher than for an ion-

ization detector. Thus a disadvantage of the CRESST heat-scintillation detector is that

an event measured by the phonon channel but producing no light may mimic a WIMP

signal [62].

In 2003 CRESST ran two prototype detectors for a couple of months without neutron

shielding. A significant neutron background on the oxygen in their CaWO4 detectors was

57



observed [62] and the light yield for W recoils is significantly less than for Ca or O recoils.

This result indicates that WIMPs are expected to interact primarily with W nuclei, while

neutrons will interact relatively more often with O and Ca nuclei [51].

In early 2004 they operated two 300 g CRESST-II prototype detector modules, 16

events have been recorded and a rate for nuclear recoil energy between 12 and 40 keV of

(0.87±0.22) events/kg/day has been obtained [67]. However, this is compatible with the

rate expected from neutron background, and most of these events lie in the region of the

phonon-light plane anticipated for neutron-induced recoils [67]. Moreover, a particularly

strong limit for WIMPs with coherent scattering results from selecting a region of the

phonon-light plane corresponding to tungsten recoils, where the best module shows zero

events [67]. The sensitivity achieved by the CRESST-II experiment is given in Fig. 3.4.

Now they are preparing the scientific run of the CRESST-II experiment with 33

detectors (each 300 g) and totally ∼ 10 kg target material (see Fig. 3.5).

3.7.3 DAMA

The DArk MAtter (DAMA) collaboration [48] uses a scintillation detector with ∼ 100

kg NaI(Tl) in the Gran Sasso National Laboratory (Laboratori Nazionali del Gran Sasso,

LNGS) in Italy [52]. With 1400 m rock overburden (3500 m.w.e.), the total muon flux is

reduced to ∼ 1/m2/hr (one order of magnitude lower than that of CDMS), the external

γ-ray flux is reduced by a factor of 105.

They are the only collaboration which claimed to detect the signal of halo Dark

Matter due to the annual modulation effect discussed in Sec. 3.2. Figs. 3.3 show the 4-

year and the 7-year results of the DAMA/NaI experiment [53], [54], their threshold energy

is about 2 keVee, corresponding to approximately 22 keV recoil energy [51]. Meanwhile,

they published a WIMP mass mχ ' 52 GeV/c2 and a WIMP-proton cross section σχp '
7.2×10−6 pb [52] under the standard assumptions of WIMP halo described in Subsec. 1.3.1

(see Fig. 3.4).

However, the DAMA collaboration uses the pulse shape discrimination (PSD) tech-

nique (see Subsec. 3.6.7) to statistically (not event-by-event) discriminate the measured

events [51]. On the other hand, the CDMS results [68], [63], [65] and [66] are clearly

incompatible with the signal claimed by DAMA under the standard assumptions of the

WIMP halo and spin-independent WIMP-nucleus coupling [62].

But these two experiments might still be compatible in some exotic scenarios. One

possibility is to postulate rather light (mχ < 10 GeV/c2) and fast WIMPs with large

scattering cross section [69]. Since for this case mI À mχ, the maximal recoil energy

induced by the scattering on iodine will then be smaller than the threshold energy of the

DAMA’s detector and the recorded events have thus been induced by the scattering on

sodium (see Eq.(3.46)). Similarly, the Ge nuclei used by the CDMS experiment could

also be too heavy to deposit recoil energy large enough to be measured. However, the

null results from the Si detector used by CDMS (see Subsec. 3.7.1) should (almost) rule
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(a)

(b)

Figure 3.3: The published results of the DAMA/NaI experiment. (a) In the 2-6 keVee

cumulative energy interval over 4 annual cycles, since January 1st of the first year of data
taking. Theoretically expected minimum (dashed line), maximum (dotted line) (figure
from [53]). (b) In the 2-4 keVee, 2-5 keVee, and 2-6 keVee cumulative energy intervals
over 7 annual cycles and end of data taking in July 2002 (figure from [54]).
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out this possibility. Another possible way out is to postulate that the detected events are

actually inelastic, leading to the production of a second particle that is almost, but not

exactly, degenerate with the WIMP [70].

They are running now the DAMA/LIBRA (Large sodium Iodide Bulk for RAre pro-

cesses) experiment with totally ∼ 250 kg NaI(Tl) [53].

3.7.4 EDELWEISS

The Expérience pour DEtecter Les WIMPs En Site Souterrain (EDELWEISS, EDW)

collaboration [60] is in the Laboratoire Souterrain de Modane (LSM) in the Fréjus Tunnel

in the French-Italian Alps. With ∼ 1800 m rock overburden (∼ 4800 m.w.e.), the muon

flux can be reduced to ∼ 4/m2/day, the fast neutron flux can be reduced to ∼ 1.6 ×
10−6/cm2/s [71].

The EDELWEISS-I experiment has used 3 (each 320 g) cryogenic heat-and-ionization

Ge detector [51]. Their calibrations indicate that the larger ionization/recoil energy ratio

of electron recoils results in very good discrimination ability against photon backgrounds

down to the 20 keV threshold energy [62].

In 2000 to 2002 [47], the EDELWEISS-I experiment has been operated for an exposure

of 13.6 kg-day. The energy threshold was 13 keV and no event has been recorded. In 2003

[47], the second run of the EDELWEISS-I has been operated for an exposure of 48.4 kg-

day (totally 62 kg-day) and 40 nuclear recoil candidate events have been recorded in the

energy range 15 to 200 keV: 18 events between 15 and 20 keV, 16 events between 20 and

30 keV, 3 events between 30 and 100 keV, 3 events between 100 and 200 keV, and more

19 events have been observed below 15 keV; most likely due to remaining background

neutrons and surface electrons. According to these results, they gave exclusion limits for

WIMP masses above 25 GeV/c2 [47] (see Fig. 3.4).

Now they are preparing the EDELWEISS-II experiment with 120 detectors [71] (see

Fig. 3.5).

3.7.5 Heidelberg-Moscow (HDMS)

The Heidelberg-Moscow collaboration [58] uses a ∼ 2 kg 76Ge semiconductor ioniza-

tion detector in the Gran Sasso National Laboratory in Italy and achieved a very low

background count rate (< 0.2 event/kg/day) in the interval 10 ∼ 40 keV, and a threshold

energy Qthre ' 4 ∼ 10 keVee (equivalent to ' 15 ∼ 30 keV recoil energy) [22].

They produced the first limits on WIMP searches and until recently had the best

performance. However, without positive identification of nuclear recoil events, these

experiments could only set limits, e.g., excluding sneutrinos as major component of the

galactic halo [37].
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3.7.6 KIMS

The Korea Invisible Mass Search (KIMS) collaboration [72] in the Yangyang Under-

ground Laboratory (Y2L, ∼ 700 m rock overburden) in South Korea developed a CsI(Tl)

crystal scintillation detector and uses an improved pulse shape discrimination to discrimi-

nate nuclear recoil events induced by WIMPs from electron recoil events induced by γ-ray

background [73].

They have operated 4 detectors with an exposure of 3407 kg-day in the temperature 0◦

C and null signals have been observed [73]. Due to their 133Cs and 127I target nuclei this

result has been used to give the lowest upper limits on the spin-dependent WIMP-proton

cross section for WIMP masses & 30 GeV/c2 [73] (the lowest upper limit on the spin-

dependent WIMP-neutron cross section has been obtained by the CDMS collaboration,

see Subsec. 3.7.1). Moreover, although several experiments have already given exclusion

limits rejecting the DAMA signal region, it is the first time that such a limit obtained by

the crystal scintillation detector containing 127I, which has been usually assumed to be

the dominant nucleus for the spin-independent interaction in the NaI(Tl) crystal.

3.7.7 PICO-LON

The Planar Inorganic Crystals Observatory for LOw-background Neutr(al)ino (PICO-

LON) collaboration in Japan uses detector with multilayer (3 layers for PICO-LON-0

and 16 layers for PICO-LON-I) thin NaI(Tl) crystals [74], [75].

A special advantage of their 0.05 cm thin and 5 cm × 5 cm wide area NaI(Tl) crystals

is the position sensitivity of the recoil events [75]. The position resolution for the thinner

directions is as good as 0.05 cm due to the segmentation of the detector [75]; while, the

position information in the wider area was obtained by analyzing the ratio of the number

of photons collected on the opposite sides of the detector [75] and a circle with ' 0.5 cm

radius has been reached [76]. Moreover, they have also claimed that a very low threshold

energy ∼ 2 keVee has been measured [74], [76].

The PICO-LON-0 experiment has been run at the surface laboratory at Tokushima,

and the PICO-LON detector will be installed into Oto Cosmo Observatory (100 km south

from Osaka) covered by thick rock with ∼ 1200 m.w.e. [75].

3.8 Liquid noble gas detectors

Liquid noble gas detectors have the advantage of easier scaling to large masses since

it is based on liquids [62]. They can also be allowed to operate in higher temperatures:

165 K for xenon, 87 K for argon, and 27 K for neon [77].

Due to its high-A value, liquid xenon (LXe) has been used by the ZEPLIN collabora-

tion [55] as the first liquid noble gas detector material (more details about the ZEPLIN

experiments will be given Subsec. 3.8.5). Recoils in the liquid noble gas such as Xe can
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induce both ionization and excitation of Xe atoms. An excitation produced by a nuclear

recoil usually induces emission with a single photon, whereas that reduced by an electron

recoil emits photons in form of a slow triplet, thus nuclear recoils have a faster pulse

shape than electron recoils [62], [78].

Besides xenon, argon and neon are also suitable detector materials. The effect of

faster pulse shape is particularly clear in Ar and Ne, leading to their extremely good

discrimination based on timing [62]. In addition, due to the form factor effect introduced

in Eq.(3.5) (two nuclear form factors for spin-independent cross section have been given

in Subsec. 3.1.2), the event rate in e.g., argon is less sensitive to the energy threshold

than in xenon [61].

Moreover, as discussed in Subsec. 3.5.7, the scintillation (light) over ionization (charge)

ratio can be used additionally to discriminate the nuclear recoils from the electron recoils

due to electron and γ-ray interactions.

However, discrimination of the radioactive contamination in the detector material,

such as 85Kr in liquid Xe (25 ppm Kr in natural Xe) or especially 39Ar in liquid Ar [62]

as well as of the surface radioactivity from the liquid container [51], and relatively larger

threshold energies could be primary challenges for detectors using liquid noble gases.

3.8.1 ArDM

The Argon Dark Matter (ArDM) experiment at CERN [79] uses a ton-scale detec-

tor with liquid argon (LAr), which measures simultaneously the scintillation and the

ionization signals [80], [61], and [81].

With a recoil energy threshold of 30 keV and a sensitivity of 10−6 pb WIMP-nucleon

cross section, the ArDM experiment has been expected to yield approximately 100 events

per day per ton [61]. By improving the background rejection power and further limiting

the background sources, a sensitivity of 10−8 pb (1 event per day per ton) would become

reachable [61].

3.8.2 WARP

Similar to the ArDM experiment, the WIMP ARgon Programme (WARP) experiment

[82] uses also a dual-phase (gas-liquid) argon detector [62] in the Gran Sasso Underground

Laboratory in Italy [77]. By using a strong electric field, ionization electrons are drifted

out of the liquid argon into gaseous phase, where they are detected via the secondary

luminescence [51], [62]. The discrimination technique is based on both of the pulse shape

of the photon emissions and on the ratio of the scintillation to ionization energies [62]

described in Subsec. 3.5.7.

Their first run of a 2.6 kg (1.87 `) prototype with a 96.5 kg-day exposure resulted in

no candidate events above the threshold energy 55 keV [77] (see Fig. 3.4). Later they will

upgrade the detector to totally 140 kg (> 100 `) [77].
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3.8.3 XENON

The XENON collaboration [83] uses also a dual-phase xenon time projection chamber

(XeTPC) with 3D position sensitivity in the Gran Sasso Underground Laboratory in Italy

[84].

The XENON10 experiment uses 15 kg liquid xenon, the background rate from 85Kr

contamination is reduced by a factor of 5000 by using a commercially available low-Kr (5

ppb) xenon, the self-shielding effect (see Subsec. 3.6.8) of LXe can reduce the background

events in the central region of the LXe target by more than one order of magnitude for

recoil energy below 50 keVee, (5 to 15 keVee corresponds to roughly 15 to 40 keV recoil

energy) [84].

By measuring simultaneously the scintillation and the ionization produced by radia-

tion in pure liquid xenon, the detector can discriminate signals from background down to

4.5 keVee [85]. Between October 6, 2006 and February 14, 2007 the XENON experiment

has been run for 58.6 live days and 10 events have been observed in the energy range 4.5

to 26.9 keVee. However, none of these events are likely WIMP interactions. [85]

Their newest result gives a 90% C. L. upper limit on the spin-independent WIMP-

nucleon cross section of 8.8 × 10−8 pb for a WIMP mass of 100 GeV/c2 [85], a factor

of 2.3 lower than the limit achieved by CDMS-II experiment (see Subsec. 3.7.1). For a

WIMP mass of 30 GeV/c2, the limit is 4.5× 10−8 pb [85] (see Fig. 3.4).

The XENON10 experiment will be upgraded to ∼ 100 kg [51] and a WIMP-nucleon

sensitivity of 2× 10−8 pb in 2008 [86] (see Fig. 3.5).

3.8.4 XMASS

The Xenon Neutrino MASS Detector (XMASS) experiment uses a 100 kg (intend

to ultimately 800 kg) [37] single-phase Xe detector [62] at the SuperKamiokande site in

Japan.

Because of their 100 kg total mass of target material, XMASS has a good position

sensitivity and has demonstrated the self-shielding effect (see Subsec. 3.6.8) to reduce

the background events induced by multiple scattering (see Subsec. 3.6.6) and surface

contamination [37].

Besides the XMASS experiment with liquid Xe, CLEAN (Cryogenic Low-Energy As-

trophysics with Neon) and DEAP are also single-phase experiments. They use Ar or

Ne as detector material in oder to take advantage of the much larger timing difference

between nuclear recoils and electron recoils described above [62], [87].

3.8.5 ZEPLIN

The Zoned Proportional Scintillation in Liquid Noble Gases (ZEPLIN) collaboration

[55] first used a liquid xenon scintillation detector in the Boulby Laboratory (1070 m

underground) in the United Kingdom.
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Figure 3.4: The curves show the sensitivities of (the exclusion limits on) the spin-
independent WIMP-nucleon cross section versus WIMP mass achieved by the CDMS
[65] (the blue solid and the blue dashed lines, for Ge and Si, respectively), the CRESST
[67] (the black solid line), the DAMA [52] (the green area), the EDELWEISS [47] (the
red solid line), the WARP [77] (the dark green solid line), the XENON [85] (the black
dashed line), and the ZEPLIN [78] (the red dashed line) collaborations (plot generated
by http://dmtools.berkeley.edu/limitplots/).

ZEPLIN-I was a single-phase experiment with 6 kg (3.1 kg fiducial) Xe, so it could

not collect the ionization signals, but depended solely on the pulse shape discrimination

[62]. In an exposure of 293 kg-day, no excess consistent with nuclear recoils was seen

[62]. However, the published limits are somewhat controversial, because their calibration

results of the neutron recoil discrimination do not appear to be convincing enough to

consider the limits set on the WIMP signal to be as reliable as the ones set by the

cryogenic experiments [37]. Actually, with only 1.5 photo-electron per keV and a three-

fold coincidence, searching for the WIMP signal in the 2-10 keVee region is for ZEPLIN-I

quite challenging [37].

ZEPLIN-II has been upgraded to a dual-phase experiment with 31 kg Xe [78]. In the

first run with 225 kg-day exposure, 29 events have been observed in an acceptance window

64



defined between 5 keVee and 20 keVee. With a summed expectation of 28.6 ± 4.3 γ-ray

and radon progeny induced background events, these figures provide a 90% C. L. upper

limit to the number of nuclear recoils of 10.4 events in this acceptance window, which

converts to a spin-independent WIMP-nucleon cross-section of 6.6×10−7 pb for a WIMP

mass of 65 GeV/c2 (see Fig. 3.4). For the second run a sensitivity of 2 × 10−7 pb has

been expected (see Fig. 3.5).

3.9 Superheated droplet detectors (SDD)

Metastable liquid droplets immersed in a gel expand (explode) due to a phase transition

to the gaseous phase, when a particle or nucleus with sufficiently high energy density

(energy deposited over unit length, dQ/dx) interacts in the liquid [45]. A broad range of

detector materials could be used and inexpensively scaled to large masses [62].

The main (best) advantage of such integrating detectors is that, by tuning pressure

and temperature, the threshold energy of the detector can be adjusted so that the detector

could be insensitive to the low energy density [62]. Thus electron recoils and α-radiation

events can be rejected automatically.

3.9.1 DRIFT

The Directional Recoil Identification From Tracks (DRIFT) experiment [55] uses a low

pressure Xe-CS2 gas mixture TPC [22]. Using the negative CS2 ions instead of usual e−

as charge carriers can reduce the diffusion and thus achieve millimetric track resolution

[22]. The ionization tracks will be measured with a multi-wire proportional chamber in a

low-pressure gas [45], this offers the most convincing technique to measure the direction

of nuclear recoils [37], [87].

However, one disadvantage of the DRIFT’s detector is the very low target mass and/or

the need of a huge detector volume.

3.9.2 MIMAC-He3

The MIcro-tpc (temporal projection chambers) MAtrix of Chambers of Helium 3

(MIMAC-He3) experiment [88] uses an ultra cold pure 3He detector [37]. The use of 3He

as target material is motivated by its privileged features for Dark Matter search compared

with other target nuclei. First, 3He being a spin-1
2

nucleus with a single neutron, a detector

made of such material will be sensitive to the “neutron spin-dependent” interaction,

leading to a natural complementarity to most existing or planned Dark Matter detectors

as well as proton based spin-dependant detectors [90]. Moreover, the mass of the 3He

atom is 2.81 GeV/c2, the recoil energy range is expected less than 10 keV [89]. Hence,

MIMAC-He3 could be used to measure events with low recoil energies as well as detect

low-mass WIMPs (6 GeV/c2 ≤ mχ ≤ 40 GeV/c2 [90]).
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There are several more advantages for a detector using 3He [89], [90]: first, there are

no intrinsic x-rays; second, a very low Compton cross section to γ-ray (two orders of

magnitude weaker than in Ge) can reduce the natural radioactive background by several

orders of magnitude; third, the neutron signature due to the capture process: n + 3He

→ p + 3H + 764 keV, will be very useful for discrimination of neutron background. On

the other hand, the double detection of the ionization energy and the track projection by

means of the TPC chambers can assure the electron-recoil discrimination.

However, similar to the DRIFT experiment, one disadvantage of their detector is the

very low target mass and/or the need of a huge detector volume.

3.9.3 PICASSO

The Project In CAnada to Search for Supersymmetric Objects (PICASSO) experiment

in the Sudbury Neutron Observatory (SNO) in Canada uses 19F (spin-1
2

isotope) as detec-

tor material and search for spin-dependent Dark Matter particles (see Subsec. 3.4.2)[22].

The principle of the PICASSO detector is as follows: Small superheated freon droplets

imbedded in a gel matrix at room temperature. The nuclear recoil of 19F induces the

explosion of a droplet, creating an acoustic shock wave which will be measured with

piezoelectric transducers [22].

3.9.4 SIMPLE

The Superheated Instrument for Massive ParticLe Experiments (SIMPLE) collabo-

ration in the Laboratoire Souterrain à Bas Bruit (LSBB, ∼ 1500 m.w.e.) in Frence uses

C2ClF5 and CF3I and searches also for spin-dependent Dark Matter interaction [91], [92].

Their results exclude the spin-dependent WIMP-proton cross section above 1.14 pb for a

WIMP mass of 50 GeV/c2 [93] (an upper limit of 0.2 pb on the spin-dependent WIMP-

neutron cross section has been given by the CDMS collaboration, see Subsec. 3.7.1).

3.10 Prospects

So far we did not obtain any convincing signal from experiments searching for Dark

Matter particles. In the future, detector technique, better sensitivities as well as better

background discrimination, will be improved. We need also some new ideas for detector

building as well as application of experimental data.

As described in Subsec. 3.7.1, the CDMS collaboration has achieved a (so far the best)

sensitivity of ∼ 10−7 pb for spin-independent WIMP-nucleon cross section and of ∼ 10−1

pb for spin-dependent WIMP-neutron cross section. Together with the other collabora-

tions described above, direct WIMP detection experiments have started to probe some

possible regions in the parameter space predicted by some supersymmetric models. For

next-generation detectors, sensitivities will be upgraded down to ∼ 10−8 pb (see Fig. 3.5)
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Figure 3.5: The curves show the sensitivities of the spin-independent WIMP-nucleon
cross section versus WIMP mass projected by the SuperCDMS (25 kg), the CRESST-
II (with CaWO4), the EDELWEISS-II, the XENON100 (100 kg), and the ZEPLIN-
II experiments. The indications of the lines as in Fig. 3.4 (plot generated by
http://dmtools.berkeley.edu/limitplots/).

and, in long term, even ∼ 10−10 pb, and the corresponding WIMP-nucleus scattering

event rate is then ∼ 5 events/ton/yr for Ge [37], as needed to probe large regions of

MSSM parameter space. The total mass of detector material will also be improved to the

ton scale. For example, the ∼ 100 kg Xe detector of the XENON and XMASS collabo-

rations. The CDMS collaboration is also preparing for their SuperCDMS projects with

maximum 1100 kg target mass, while the CRESST and the EDELWEISS collaborations

will also build to a larger collaboration “EURECA” (European Underground Rare Event

search with Calorimeter Array).

A nearly perfect background discrimination capability for next-generation detectors is

also necessary. The ultimate neutron background will only be identified by the multiple

interactions in a finely segmented or multiple interaction sensitive detector, and/or by

operating detectors containing different target materials within the same setup [37].
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Furthermore, the measurement of the recoil directions of the target nuclei would

provide additional information on the distribution of WIMPs in our Galaxy [62]. As

described in Subsec. 3.9.1, the most convincing way for determining the recoil direction

is by drifting negative ions in a temporal projection chamber to accurately record the

tiny recoil distance. The DRIFT experiment has provided a proof of the principle, but

it remains to be seen if such gas detectors with enough target material can detect some

signals [62].

By the way, in order to present the WIMP-nucleon cross sections and the detector

sensitivities in the future more conveniently and also suitably, we may consider to use

“zepto” (10−21) or even “yocto” (10−24) [94] barn instead of 10−9 pb (10−45 cm2) or 10−12

pb (10−48 cm2).
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Chapter 4

Reconstruction of the Velocity
Distribution of WIMPs

So far most theoretical analyses of direct detection of halo WIMPs, as discussed in

Subsecs. 3.1.3 and 3.2.1, have predicted the detection rate for a given (class of) WIMPs,

based on a specific model of the galactic halo (e.g., [24], [26], and [95]). The goal of my

work is to invert this process. That is, I wish to study, as model-independently as possible,

what future direct detection experiments can teach us about the WIMP halo.

In this chapter I will use a time-averaged recoil spectrum, and assume that no di-

rectional information exists. One can thus only reconstruct the (time-averaged) one-

dimensional velocity distribution, f1(v). In the first section I will show how to derive

the velocity distribution of WIMPs from the functional form of the recoil spectrum; the

assumption here is that this functional form has been determined by fitting the data

of some (future) experiment(s). I will also derive formulae for moments of the velocity

distribution function, such as the mean velocity and the velocity dispersion of WIMPs,

which can be compared with model predictions.

Then I will present the method for reconstructing the velocity distribution of WIMPs

directly from recorded signal events. This allows statistically meaningful tests of predicted

distribution functions. I will also discuss how to estimate the moments of the velocity

distribution directly from these data.

Finally, I will show how to determine the mass of halo WIMPs, which one needs

for the reconstruction of (the moments of) the velocity distribution, from experimental

data directly. This allows also a useful comparison of the detected WIMPs with the new

particle(s) produced at colliders, e.g., the Large Hadron Collider (LHC).
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4.1 From the scattering spectrum

In this section I will start with the differential rate for elastic WIMP-nuclues scattering

given in Eq.(3.12)

dR

dQ
= AF 2(Q)

∫ ∞

vmin

[
f1(v)

v

]
dv , (3.12)

and show how to find an expression for the one-dimensional velocity distribution function

f1(v) for given (as yet only hypothetical) measured recoil spectrum dR/dQ. To that end,

I first define

dF1(v)

dv
=

f1(v)

v
, (4.1)

i.e., F1(v) is the primitive of f1(v)/v. Then Eq.(3.12) can be rewritten as

1

AF 2(Q)

(
dR

dQ

)
=

∫ ∞

vmin

[
f1(v)

v

]
dv = F1(v →∞)− F1(vmin) . (4.2)

Since WIMPs (as candidate for CDM) in today’s Universe move quite slowly, f1(v) must

vanish as v approaches infinity,

f1(v →∞) → 0 . (4.3)

Hence

dF1(v)

dv

∣∣∣∣∣
v→∞

=
f1(v)

v

∣∣∣∣∣
v→∞

→ 0 . (4.4)

This means that F1(v → ∞) approaches a finite value. 1 Differentiating both sides of

Eq.(4.2) with respect to vmin and using Eq.(3.10), one can find that (detailed derivations

will be given in App. A.2)

dF1(vmin)

dvmin

= − 1

A





d

dvmin

[
1

F 2(Q)

(
dR

dQ

)]

Q=v2
min/α2





=
1

vmin

· 1

A

{
−2Q · d

dQ

[
1

F 2(Q)

(
dR

dQ

)]}

Q=v2
min/α2

. (4.5)

Since this expression holds for arbitrary vmin, one can write down the following result

directly:

f1(v)

v
=

dF1(v)

dv
=

1

v
· 1

A

{
−2Q · d

dQ

[
1

F 2(Q)

(
dR

dQ

)]}

Q=v2/α2

. (4.6)

The right-hand side of Eq.(4.6) depends on the as yet unknown constant A. Recall,

however, that f1(v) is the normalized velocity distribution, i.e., it is defined to satisfy
∫ ∞

0
f1(v) dv = 1 . (4.7)

1The other properties of F1(v) will be discussed in App. A.1.
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Therefore, the normalized one-dimensional velocity distribution function can be expressed

as

f1(v) = N
{
−2Q · d

dQ

[
1

F 2(Q)

(
dR

dQ

)]}

Q=v2/α2

, (4.8)

with the normalization constant N (a detailed derivation will be given in App. A.3)

N =
2

α

{∫ ∞

0

1√
Q

[
1

F 2(Q)

(
dR

dQ

)]
dQ

}−1

. (4.9)

Note that the integral here starts at Q = 0.

In the next step I want to compute the moments of the velocity distribution function:

〈vn〉 =
∫ ∞

vmin(Qthre)
vnf1(v) dv . (4.10)

Here I have introduced a threshold energy Qthre. This is needed experimentally, since at

very low recoil energies, the signal is swamped by electronic noise. Moreover, later we

will meet expressions that (formally) diverge as Q → 0. vmin(Qthre) is calculated as in

Eq.(3.10). Inserting Eq.(4.8) into Eq.(4.10) and integrating by parts, one can find that

(a detailed derivation will be given in App. A.3)

〈vn〉 = N
(

αn+1

2

) 
2Q

(n+1)/2
thre

F 2(Qthre)

(
dR

dQ

)

Q=Qthre

+ (n + 1)In(Qthre)


 , (4.11)

with

In(Qthre) =
∫ ∞

Qthre

Q(n−1)/2

[
1

F 2(Q)

(
dR

dQ

)]
dQ . (4.12)

Physically, 〈v〉 is the average WIMP velocity, while 〈v2〉 gives the velocity dispersion. 2

One emphasis here is that Eqs.(4.11) and (4.12) can be evaluated directly once the recoil

spectrum is known; knowledge of the functional form of f1(v) in Eq.(4.8) is not required.

Note that the first term in Eq.(4.11) vanishes for n ≥ 0 if Qthre → 0. In the same limit,

〈v0〉 → NαI0(0)/2 → 1 by virtue of Eq.(4.9). On the other hand, as written in Eqs.(4.8)

and (4.9), the velocity distribution integrated over the experimentally accessible range

of WIMP velocities gives a value smaller than unity. Using only quantities that can

be measured in the presence of a non-vanishing energy threshold Qthre, Eq.(4.9) can be

replaced by

N (Qthre) =
2

α


 2Q

1/2
thre

F 2(Qthre)

(
dR

dQ

)

Q=Qthre

+ I0(Qthre)



−1

. (4.13)

Using N (Qthre) in Eq.(4.8) ensures that the velocity distribution integrated over v ≥
vmin(Qthre) gives unity.

2The dispersion of the function f1(v) in the statistical sense is given by 〈v2〉 − 〈v〉2.
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From Eqs.(4.8), (4.9), and (4.11) to (4.13), it can be found that the (unrealistic)

“reduced” spectrum (i.e., the recoil spectrum divided by the squared nuclear form factor)

is more useful than the recoil spectrum itself. Meanwhile, note that the reduced spectrum

from (dR/dQ)Gau in Eq.(3.21):

1

F 2(Q)

(
dR

dQ

)

Gau

∝ e−α2Q/v2
0 (3.21’)

is exactly exponential. This remains approximately true for the potentially quasi-realistic

spectrum in Eq.(3.31) as well:

1

F 2(Q)

(
dR

dQ

)

sh

∝ erf
(

α
√

Q+ve

v0

)
− erf

(
α
√

Q−ve

v0

)
. (3.31’)

In order to test these formulae, I have substituted the spectra in Eqs.(3.21’) and (3.31’)

into Eqs.(4.8) and (4.11), taking Qthre = 0. They reproduced the normalized velocity

distribution functions in Eqs.(3.20) and (3.29), as well as the results in Eqs.(3.22), (3.23),

(3.32), and (3.33). The detailed calculations will be given in Apps. B.2.1 and B.2.2,

respectively.

One emphasis here is that the final results in Eqs.(4.8) and (4.11) are independent

of the as yet unknown quantity A defined in Eq.(3.13). They do, however, depend on

the WIMP mass mχ through the coefficient α defined in Eq.(3.11). This mass can be

extracted from a single recoil spectrum only if one makes some assumptions about the

velocity distribution f1(v). In the kind of model-independent analysis pursued here, mχ

can be determined by requiring that the recoil spectra using two different target nuclei

lead to the same moments of the velocity distribution, 〈vn〉, through Eq.(4.11). This

method will be discussed in Sec. 4.3. Note that this can be done independent of the

detailed particle physics model, which determine the value of σ0 for two target nuclei. But,

one will need to know both form factors of the target nuclei, which strongly depend on

whether spin-dependent or spin-independent interactions dominate (see Subsecs. 3.4.1 to

3.4.3). On the other hand, within a given particle physics model, the best determination

of mχ should eventually come from experiments at high-energy colliders. However, we

need also an alternative method as cross-check to prove whether the particle produced

at colliders is the same particle detected by the direct WIMP detection.

4.2 From experimental data directly

In the previous section I have derived formulae for the normalized one-dimensional

velocity distribution function of WIMPs, f1(v), and for its moments 〈vn〉, from the recoil-

energy spectrum, dR/dQ. In order to use these expressions, one would need a functional

form for dR/dQ. In practice this might result from a fit to experimental data. Note that

the expression for f1(v) in Eq.(4.8) requires knowledge not only of dR/dQ, but also of
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its derivative with respect to Q, i.e., we need to know both the spectrum and its slope.

This will complicate the error analysis considerably, if dR/dQ is the result of a fit.

In this section I therefore go one step further, and derive expressions that allow

to reconstruct f1(v) and its moments directly from the data. The assumption we have

to make is that the sample to be analyzed only contains signal events, i.e., is free of

background. This should be possible for the modern (next-generation) detectors (detailed

discussions about the background and its discrimination have been given in Sec. 3.6).

Having a sample of pure signal events, we can proceed with a complete statistical analysis

of the precision with which we can reconstruct f1(v) and its moments.

However, in the absence of a true experimental sample of this kind, I had to resort to

Monte Carlo experiments with an unweighted event generator written by M. Drees. Since

detectors without directional sensitivity have been assumed, a single event is uniquely

characterized by the measured recoil energy Q. Existing experiments such as CDMS

[59] and CRESST [56] can determine the recoil energy quite accurately (some details

about their detectors and experiments have been given in Subsecs. 3.7.1 and 3.7.2). We

will see later that the statistical errors on the reconstructed velocity distribution f1(v)

will be quite sizable even for next-generation experiments, given existing bounds on the

scattering rate. It should therefore be a good approximation to ignore the error of Q in

the analyses.

In the following I do not distinguish between the recoil spectrum dR/dQ and the actual

differential counting rate dN/dQ. Since dR/dQ is usually given per unit detector mass

and unit time, the two quantities differ only by a multiplicative constant. This constant

can be canceled in Eq.(4.8), since it will also appear in the normalization constant N in

Eq.(4.9).

4.2.1 Exponential ansatz for dR/dQ

I divide the total energy range into B bins with central points Qn and widths bn,

n = 1, 2, · · · , B. In each bin, Nn signal events will be recorded. The simulated data

set can therefore be described by

Qn − bn

2
≤ Qn,i ≤ Qn + bn

2
, i = 1, 2, · · · , Nn, n = 1, 2, · · · , B. (4.14)

The standard estimate for dR/dQ at Q = Qn is then

rn =
Nn

bn

, n = 1, 2, · · · , B. (4.15)

The squared statistical error on dR/dQ is accordingly

σ2(rn) =
Nn

b2
n

, (4.16)

since

σ2(Nn) = Nn . (4.17)
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Figure 4.1: The curve shows the theoretical predicted recoil energy spectrum for the
shifted Maxwellian velocity distribution f1,sh(v, ve) in Eq.(3.29) with the Woods-Saxon
form factor F 2

WS(Q) in Eq.(3.17). The data points with error bars show simulated ex-
perimental data produced from this spectrum (5,000 total events, mχ = 100 GeV/c2,
mN = 70.6 GeV/c2 for 76Ge, v0 = 220 km/s, ve = 231 km/s, and the Galactic escape
velocity vesc = 700 km/s as the cut-off velocity of the velocity distribution in Eq.(3.12)).
The vertical error bars show the statistical uncertainties of the measurements, while the
horizontal error bars indicate the bin widths.

As mentioned at the end of the previous section, the predicted recoil spectrum re-

sembles a falling exponential (see Eqs.(3.21’) and (3.31’) in Sec. 4.1). This is confirmed

in Fig. 4.1, which shows the predicted recoil spectrum of a 100 GeV/c2 WIMP on 76Ge

by means of the shifted Maxwellian velocity distribution f1,sh(v, ve) in Eq.(3.29) and the

Woods-Saxon form factor F 2
WS(Q) in Eq.(3.17). This figure also shows the result of a

simulated experiment, where the exposure time and cross section are chosen such that

the expected number of events is 5,000; these have been collected in seven bins in recoil

energy. Note that, in practice the velocity distribution in Eq.(3.12) should be cut off at a

velocity vesc, since WIMPs with v > vesc can escape the gravitational well of our Galaxy.

The cut-off velocity has been taken to be vesc = 700 km/s.

While an approximately exponential function can be approximated by a linear ansatz

only over a narrow range, i.e., for small bin widths, the logarithm of this function can be

approximated by a linear ansatz for much wider bins (some detailed discussions about
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linear approximations can be found in App. D.4). This corresponds to the ansatz
(

dR

dQ

)

n

≡
(

dR

dQ

)

Q'Qn

' r̃n ekn(Q−Qn) ≡ rn ekn(Q−Qs,n) . (4.18)

Here rn is the standard estimator for dR/dQ at Q = Qn given in Eq.(4.15), r̃n is the real

value of the recoil spectrum at the point Q = Qn,

r̃n ≡
(

dR

dQ

)

Q=Qn

, (4.19)

and kn is the logarithmic slope of the recoil spectrum in the n-th Q-bin.

Now our task is to find estimators for r̃n and kn in Eq.(4.18) using (simulated) data.

Note that, for kn 6= 0, r̃n 6= rn = Nn/bn and cannot be estimated from the number of

events Nn in the n-th bin alone. Instead, from the first part of Eq.(4.18), one has

Nn =
∫ Qn+bn/2

Qn−bn/2

(
dR

dQ

)

n

dQ =
∫ Qn+bn/2

Qn−bn/2
r̃n ekn(Q−Qn)dQ = bnr̃n

(
sinh κn

κn

)
, (4.20)

where, for simplicity, I have introduced the dimensionless quantities

κn ≡ bnkn

2
. (4.21)

Hence, it can be found that

r̃n =
Nn

bn

(
κn

sinh κn

)
(4.22)

depends on kn. Moreover, using the first and second moments of the recoil spectrum in

the n-th bin, one can find that

Q−Qn|n =
1

Nn

∫ Qn+bn/2

Qn−bn/2
(Q−Qn)

(
dR

dQ

)

n

dQ =
bn

2

(
coth κn − 1

κn

)
, (4.23)

and

(Q−Qn)2|n =
1

Nn

∫ Qn+bn/2

Qn−bn/2
(Q−Qn)2

(
dR

dQ

)

n

dQ

=

(
bn

2

)2 [
1− 2

(
coth κn

κn

)
+

2

κ2
n

]
, (4.24)

where · · ·|n denotes the average value in the n-th bin. κn, or, equivalently, kn can not

be solved analytically by only using Eq.(4.23). They can, however, be found numerically

once

Q−Qn|n =
1

Nn

Nn∑

i=1

(Qn,i −Qn) (4.25)

is known. Alternatively, multiplying both sides of Eq.(4.23) with bn/κn and adding to

Eq.(4.23), one can calculate the logarithmic slopes as

kn =
8Q−Qn|n

b2
n − 4 (Q−Qn)2|n

, (4.26)
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where

(Q−Qn)2|n =
1

Nn

Nn∑

i=1

(Qn,i −Qn)2 (4.27)

is now estimated from the data directly. Note that kn determined either from Eq.(4.23)

or from Eq.(4.26) is independent of the normalization rn or r̃n.

On the other hand, the second, equivalent expression in Eq.(4.18) means that we can

still use the quantities rn = Nn/bn as normalization. However, the logarithmic slopes,

kn, solved by either Eq.(4.23) or Eq.(4.26) describes the spectrum dR/dQ at the shifted

points Qs,n. Equivalence of the two expressions in Eq.(4.18) implies

Qs,n = Qn +
1

kn

ln

(
sinh κn

κn

)
. (4.28)

Note that, while Qn is simply the midpoint of the n-th Q-bin and can thus be chosen at

will, Qs,n here is a derived quantity and depends on the logarithmic slope kn. However, the

second expression in Eq.(4.18) combined with Qs,n in Eq.(4.28) has two advantages. First,

the prefactor rn can be computed more easily than r̃n in Eq.(4.22). Second, according to

a detailed analysis [96], it has been found that, for a given bin width, one can minimize

the leading systematic error by interpreting the estimator of kn as logarithmic slope of

the recoil spectrum, not at the center of the bin Qn, but at the shifted point Qs,n. Note

that Qs,n itself depends on kn. However, this does not introduce any additional error, if

we simply interpret Eq.(4.28) as an - admittedly somewhat complicated - prescription for

the determination of the Q-values where we wish to estimate the logarithmic slope of the

recoil spectrum.

In the rest of this section I use only Q−Qn|n from Eq.(4.23) to estimate the logarith-

mic slope kn, since it simplifies the error analysis somewhat. Note that, for using both

Q−Qn|n and (Q−Qn)2|n from Eq.(4.26) to estimate kn, the statistical errors of them

are correlated. 3 Using standard error propagation, we have

σ2(kn) =

[
dkn

dQ−Qn|n

]2

σ2
(
Q−Qn|n

)
. (4.29)

The first factor above can be calculated straightforwardly from Eq.(4.23) as

dQ−Qn|n
dkn

=
1

k2
n

[
1−

(
κn

sinh κn

)2
]

=
g(κn)

k2
n

, (4.30)

where I have defined the auxiliary function

g(x) ≡ 1−
(

x

sinh x

)2

. (4.31)

The error on the average energy transfer σ2
(
Q−Qn|n

)
in Eq.(4.29) can be estimated

directly from the data, using

σ2
(
Q−Qn|n

)
=

1

Nn − 1

[
(Q−Qn)2|n −Q−Qn|2n

]
. (4.32)

3In contrast, I will use Eq.(4.26) in Subsec. 5.2.2 due to some other reasons.
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4.2.2 Windowing the data set

From two naive linear approximations discussed in App. D.4, one can find an important

observation that the statistical error of both estimators of the slope of the recoil spectrum

given in Eqs.(D.34) and (D.38) scale like the bin width to the power −1.5 (see Eqs.(D.39)

and (D.40)). This can intuitively be understood from the argument that the variation of

dR/dQ will be larger for larger bins (see Fig. 4.1). Moreover, a detailed analysis for the

relation between the statistical error of kn given in Eq.(4.29) and the bin width bn [96]

shows that, for small bins, the expected error again scales like b−1.5
n and if the bin width

is large, the statistical error decreases even faster with increasing bin width. One would

therefore naively conclude that the errors of the estimated slopes would be minimized by

choosing very large bins.

However, as mentioned above and discussed in Ref. [96], neither a linear approximation

of the recoil spectrum nor the linear ansatz of the logarithm of the spectrum can describe

the real (but as yet unknown) recoil spectrum exactly. The neglected terms of higher

powers of Q−Qn will certainly induce some uncontrolled systematic errors which increase

quickly with increasing bin width bn.

Using large bins has a second, obvious disadvantage: the number of bins scales in-

versely with their size, i.e., by using large bins we would be able to estimate f1(v) only

at a small number of velocities. Fortunately, this can be alleviated by using overlapping

bins, or, equivalently, by combining several relatively small bins into overlapping “win-

dows”. This means that a given data point Qn,i may well contribute to several different

windows, and hence to the estimate of f1(v) at several values of v. This can increase

the total amount of information about f1(v) since the only information we use about the

data points in a given window is encoded in the average recoil energy in this window

(through the estimating of kn by Eq.(4.23)). This averaging effectively destroys informa-

tion. By letting a given data point contribute to several overlapping windows, this loss

of information can be reduced.

One other obvious disadvantage of using large bins or windows is that it would lead

to a quite large minimal value of v where f1(v) can be reconstructed, simply because the

central value Q1, and also the shifted point Qs,1, of a large first bin would be quite large.

This can be again be alleviated by first collecting our data in relatively small bins, and

then combining varying numbers of bins into overlapping windows. In particular, the

first window would be identical with the first bin.

A final consideration concerns the size of the bins. Choosing fixed bin sizes, and

therefore also mostly fixed window sizes, would lead to errors on the estimated logarithmic

slopes, and hence also on the estimates of f1(v), which increase quickly with increasing Q

or v. This is due to the essentially exponential form of the recoil spectrum, which would

lead to a quickly falling number of events in equal-sized bins. A try-error analysis shows

that the errors are roughly equal in all bins if the bin widths increase linearly (some

different variations of binning of the data set will be given in App. D.1).
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These considerations motivate the following set-up for the mock experimental analysis.

One starts by binning the data, as in Eq.(4.14), where the bin widths satisfy

bn = b1 + (n− 1)δ , (4.33)

i.e.,

Qn = Qmin +
(
n− 1

2

)
b1 +

[
(n− 1)2

2

]
δ . (4.34)

Here the increment δ satisfies

δ =
2

B(B − 1)

(
Qmax −Qmin −Bb1

)
, (4.35)

B being the total number of bins, and Qmax,min being the (kinematical or instrumental)

extrema of the recoil energy. Then I collect up to nW bins into a window, with smaller

windows at the borders of the range of Q. In the rest of this section and the next chapter

I use Latin indices n, m, · · · to label bins, and Greek indices µ, ν, · · · to label windows.

For 1 ≤ µ ≤ nW , the µ-th window simply consists of the first µ bins; for nW ≤ µ ≤ B, the

µ-th window consists of bins µ−nW +1, µ−nW +2, · · · , µ; and for B ≤ µ ≤ B+nW−1,

the µ-th window consists of the last nW − µ + B bins. This can also be described by

introducing the indices nµ− and nµ+ which label the first and last bin contributing to the

µ-th window, with

nµ− =





1, µ ≤ nW

µ− nW + 1, µ ≥ nW

, (4.36a)

and

nµ+ =





µ, µ ≤ B

B, µ ≥ B
. (4.36b)

The total number of windows defined through Eqs.(4.36a) and (4.36b) is evidently W =

B + nW − 1, i.e., 1 ≤ µ ≤ B + nW − 1.

As shown in the previous subsection, the basic observables needed for the reconstruc-

tion of f1(v) in Eq.(4.8) are the number of events in the n-th bin, Nn, as well as the

averages Q−Qn|n in Eq.(4.25). Once Nn and Q−Qn|n can be obtained, we can then

use Eqs.(4.15), (4.23) and (4.28) to get rn, kn and Qs,n as well as Eq.(4.29) to get the

statistical error of kn. One can easily calculate the number of events per window as

Nµ =
nµ+∑

n=nµ−
Nn , (4.37)

as well as the averages

Q−Qµ|µ =
1

Nµ




nµ+∑
n=nµ−

NnQ|n

−Qµ , (4.38)
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where Qµ is the central point of the µ-th window.

One drawback of the use of overlapping windows in the analysis is that the observables

defined in Eqs.(4.37) and (4.38) are all correlated (for nW 6= 1). The slope in the µ-th

window, kµ, will again be calculated as in Eq.(4.23) with “bin” quantities replaced by

“window” quantities. We thus need the covariance matrix for the Q−Qµ|µ, which follows

directly from the definition in Eq.(4.38) (detailed deviations for the covariances in this

subsection will be given in App. E.1.1):

cov
(
Q−Qµ|µ, Q−Qν |ν

)

=
1

NµNν

nµ+∑
n=nν−

[
Nn

(
Q|n −Q|µ

) (
Q|n −Q|ν

)
+ N2

nσ2
(
Q−Qn|n

) ]
, (4.39)

where σ2
(
Q−Qn|n

)
is defined as in Eq.(4.32). In Eq.(4.39) I have assumed µ ≤ ν; the

covariance matrix is, of course, symmetric. Moreover, the sum is understood to vanish if

the two windows µ, ν do not overlap, i.e., if nµ+ < nν−.

The ansatz in Eq.(4.18) is now assumed to hold over an entire window. We again can

estimate the prefactor as

rµ =
Nµ

wµ

, (4.40)

wµ being the width of the µ-th window. This implies

cov(rµ, rν) =
1

wµwν

nµ+∑
n=nν−

Nn , (4.41)

where I have again taken µ ≤ ν. Finally, the mixed covariance matrix is given by

cov
(
rµ, Q−Qν |ν

)
=

1

wµNν

n+∑
n=n−

Nn

(
Q|n −Q|ν

)
. (4.42)

Note that this sub-matrix is not symmetric under the exchange of µ and ν. In the

definition of n− and n+ we therefore have to distinguish two cases:

If µ ≤ ν : n− = nν−, n+ = nµ+ ;

If µ ≥ ν : n− = nµ−, n+ = nν+ . (4.43)

As before, the sum in Eq.(4.42) is understood to vanish if n− > n+.

The covariance matrices involving the estimators of the logarithmic slopes kµ, derived

from Eq.(4.23) with n → µ everywhere, can be calculated in terms of the covariance

matrices in Eqs.(4.39) and (4.42):

cov (kµ, kν) =

[
k2

µk
2
ν

g(κµ)g(κν)

]
cov

(
Q−Qµ|µ, Q−Qν |ν

)
, (4.44)

and

cov (rµ, kν) =

[
k2

ν

g(κν)

]
cov

(
rµ, Q−Qν |ν

)
, (4.45)

where κµ is as in Eq.(4.21) with n → µ, and the function g(x) has been defined in

Eq.(4.31).
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4.2.3 Reconstructing the velocity distribution

Now we are ready to put all pieces together to reconstruct the velocity distribution and

compute its statistical error. Substituting the ansatz in Eq.(4.18) (with the replacement

n → µ) into Eq.(4.8), the reconstructed normalized one-dimensional velocity distribution

function can be expressed as

f1,r(vs,µ) = N
[

2Qs,µrµ

F 2(Qs,µ)

] [
d

dQ
ln F 2(Q)

∣∣∣∣
Q=Qs,µ

− kµ

]
, (4.46)

for µ = 1, 2, · · · , B + nW − 1. Here Qs,µ is given by Eq.(4.28) with n → µ, and,

vs,µ = α
√

Qs,µ , (4.47)

as in Eq.(3.10). Finally, the normalization constant N defined in Eq.(4.9) can be esti-

mated directly from the data:

N =
2

α

[∑
a

1√
Qa F 2(Qa)

]−1

, (4.48)

where the sum runs over all events in the sample.

Since neighboring windows overlap, the estimates of f1(v) at adjacent values of vµ are

correlated. This is described by the covariance matrix

cov
(
f1,r(vs,µ), f1,r(vs,ν)

)

=

[
f1,r(vs,µ)f1,r(vs,ν)

rµrν

]
cov (rµ, rν) + (2N )2

[
Qs,µQs,νrµrν

F 2(Qs,µ)F 2(Qs,ν)

]
cov (kµ, kν)

−N
{[

f1,r(vs,µ)

rµ

] [
2Qs,νrν

F 2(Qs,ν)

]
cov (rµ, kν) +

(
µ ←→ ν

)}
, (4.49)

where the covariance matrices involving the normalized counting rates rµ and logarith-

mic slopes kµ have been given in Eqs.(4.41), (4.44), and (4.45). In principle Eq.(4.49)

should also include contributions involving the statistical error of the estimator for N in

Eq.(4.48). However, this error and its correlations with the errors of the rµ and kµ has

been found to be negligible compared to the errors included in Eq.(4.49).

Figs. 4.2 are results for the reconstructed velocity distribution, for “typical” simulated

experiments with 500 (top) and 5,000 (bottom) events. In the top frame B = 5 bins has

been chosen, the first bin having a width b1 = 8 keV, and up to three bins have been

combined into a window. Since the last bin is in fact empty, this leaves us with W = 6

windows, i.e., we can determine f1,r for six discrete values of the WIMP velocity v; recall

that these “measurements” of f1,r are correlated, as indicated by the horizontal bars in

the figure. In the lower frame B = 10 bins with b1 = 10 keV have been chosen, and up to

four bins have been combined into one window. The bins are thus significantly smaller

than in the upper frame. As a result, the last two bins are now (almost) empty, leaving

us with W = 11 windows. Figs. 4.2 indicate that one will need at least a few hundred

events for a meaningful direct reconstruction of f1(v).
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Figure 4.2: The WIMP velocity distribution reconstructed from a “typical” experiment
with 500 (top) and 5,000 (bottom) events. The smooth curves show the input distribu-
tions, which are based on Eq.(3.29). The vertical error bars show the square roots of the
diagonal entries of the covariance matrix given in Eq.(4.49); the horizontal bars show the
size of the window used in deriving the given value of f1,r. The overlap of these horizontal
bars thus shows the range over which the values of f1,r are correlated. Parameters as in
Fig. 4.1.
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Furthermore, a χ2
f distributions has been defined by

χ2
f ≡

1

W

∑
µ,ν

Cµν

[
f1,r(vs,µ)− f1,th(vs,µ)

][
f1,r(vs,ν)− f1,th(vs,ν)

]
. (4.50)

Here f1,r is the estimate in Eq.(4.46) of the velocity distribution, f1,th is a theoretical

predicted velocity distribution (e.g., the input distributions in Figs. 4.2), and C is the

inverse of the covariance matrix of Eq.(4.49). This χ2
f distribution allows statistically

meaningful tests of the predicted velocity distribution function.

More details about this χ2
f distribution and some applications can be found in Ref. [96].

4.2.4 Determining moments of the velocity distribution

As mentioned in the previous subsection, a direct reconstruction of the WIMP ve-

locity distribution f1(v) will only be possible once several hundred nuclear recoil events

have been collected. This is a tall order, given that not a single such event has so far

been detected (barring the possible DAMA observation and a few candidate signals, see

Secs. 3.7 to 3.9). The basic reason for the large required event sample is that, f1(v)

being a normalized distribution, only information on the shape of f1(v) is meaningful. In

order to obtain such shape information via direct reconstruction, we have to separate the

events into several bins or windows. Moreover, each window should contain sufficiently

many events to allow an estimate of the slope of the recoil spectrum in this window.

On the other hand, at the end of Sec. 4.1 I have also given expressions for the moments

of f1(v) in Eqs.(4.11) to (4.13). With the exception of the moment with n = −1, these

are entirely inclusive quantities, i.e., each moment is sensitive to the entire data set; no

binning is required, nor do we need to determine any slope (with one possible minor

exception; see below). It thus seems reasonable to expect that one can obtain meaningful

information about these moments with fewer events.

The experimental implementation of Eq.(4.11) is quite straightforward. For Qthre = 0,

the normalization N has already been given in Eq.(4.48). The case of non-vanishing

threshold energy Qthre can be treated straightforwardly, using Eq.(4.13). To that end

one needs to estimate the recoil spectrum at the threshold energy. One possibility would

be to choose an artificially high value of Qthre, and simply count the events in a bin

centered on Qthre. However, in this case the events with Q < Qthre would be left out of the

determination of the moments. We therefore should keep Qthre as small as experimentally

possible, and to estimate the counting rate at threshold using the ansatz in Eq.(4.18).

Since we need the recoil spectrum only at this single point, we only have to determine the

quantities r1 and k1 parameterizing dR/dQ in the first bin; this can be done as described

in Subsec. 4.2.1, without the need to distinguish between bins and “windows”. Introduce

the shorthand notation

rthre ≡
(

dR

dQ

)

Q=Qthre

= r1e
k1(Qthre−Qs,1) . (4.51)
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Then, combining Eqs.(4.11) and (4.13), the n-th moment of the velocity distribution

function can be rewritten as

〈vn〉 = αn


2Q

1/2
threrthre

F 2(Qthre)
+ I0



−1 

2Q
(n+1)/2
thre rthre

F 2(Qthre)
+ (n + 1)In


 , (4.52)

where the integral In defined in Eq.(4.12) can be estimated through the sum:

In =
∑
a

Q(n−1)/2
a

F 2(Qa)
, (4.53)

as Eq.(4.48). Since all In are determined from the same data, they are correlated with

cov(In, Im) =
∑
a

Q(n+m−2)/2
a

F 4(Qa)
. (4.54)

This can e.g., be seen by writing Eq.(4.53) as a sum over narrow bins, such that the

recoil spectrum within each bin can be approximated by a constant. Each term in the

sum would then have to be multiplied with the number of events in this bin; Eq.(4.54) then

follows from standard error propagation. Note that, when re-converted into an integral,

the expression for cov(I0, I0) will diverge logarithmically for Qthre → 0. Equivalently,

the numerical estimate of this entry can become very large if the sample contains events

with very small Q-values. But, according to some numerical simulations, there should be

no problem for samples with Qthre > 1 keV. Many existing experiments in fact require

significantly larger energy transfers in their definition of a WIMP signal.

In order to calculate the statistical error of 〈vn〉 in Eq.(4.52), one needs at first the

error of rthre which can be obtained from Eq.(4.51) as

σ2(rthre) = r2
thre





σ2(r1)

r2
1

+

[
Qthre −Qs,1 − k1

(
∂Qs,1

∂k1

)]2

σ2(k1)



 . (4.55)

Here the squared errors for r1 and k1 are simply the corresponding diagonal entries of the

respective covariance matrices given in Eqs.(4.41) and (4.44), and the definition of Qs,1

in Eq.(4.28) implies

Qs,1 + k1

(
∂Qs,1

∂k1

)
= Q1 − 1

k1

+

(
b1

2

)
coth

(
b1k1

2

)
, (4.56)

where Q1 is the central Q-value in the first bin. It should be noted that the first term

in Eq.(4.11) is negligible for all n ≥ 1 if Qthre ' 1 keV. However, even for this low

threshold energy it contributes significantly to the normalization constantN , as described

by Eq.(4.13). Of course, the first term in Eq.(4.11) always dominates for n = −1. This

is not surprising, since the very starting point of this analysis, Eq.(3.12), already shows

that the counting rate at Qthre is proportional to the “minus first” moment of the velocity

distribution.

One needs also the correlation between the errors on the estimate of the recoil spec-

trum at Q = Qthre and the integrals In. It is clear that these quantities are correlated,
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since the former is estimated from all events in the first bin, which of course also con-

tribute to the latter. These correlations can be estimated by using the ansatz in Eq.(4.18),

which makes the following prediction for the contribution of the first bin to the integrals:

In,1 = r1

∫ Qthre+b1

Qthre

[
Q(n−1)/2

F 2(Q)

]
ek1(Q−Qs,1) dQ . (4.57)

This immediately implies

∂In,1

∂r1

=
In,1

r1

, (4.58a)

and

∂In,1

∂k1

= In+2,1 −
[
Qs,1 + k1

(
∂Qs,1

∂k1

)]
In,1 . (4.58b)

Note that In,1 and In+2,1 in Eqs.(4.58a) and (4.58b) can be evaluated as in Eq.(4.53),

with the sum extending only over events in the first bin:

In,1 =
N1∑

i=1

Q
(n−1)/2
1,i

F 2(Q1,i)
. (4.59)

The correlation between rthre and In is then given by

cov(rthre, In)

= rthre In,1

{
σ2(r1)

r2
1

+

[
Qthre −Qs,1 − k1

(
∂Qs,1

∂k1

)]

×
[
In+2,1

In,1

−Qs,1 − k1

(
∂Qs,1

∂k1

)]
σ2(k1)

}
. (4.60)

Finally, these ingredients allow us to compute the covariance matrix for the estimates

of the moments of the velocity distribution:

cov
(
〈vn〉, 〈vm〉

)

= N 2
m

[
〈vn〉〈vm〉cov(I0, I0) + αn+m(n + 1)(m + 1)cov(In, Im)

− αm(m + 1)〈vn〉cov(I0, Im)− αn(n + 1)〈vm〉cov(I0, In)

+ DnDmσ2(rthre)−
(
Dm〈vn〉+ Dn〈vm〉

)
cov(rthre, I0)

+ αm(m + 1)Dncov(rthre, Im) + αn(n + 1)Dmcov(rthre, In)
]
. (4.61)

Here I have introduced the modified normalization constant:

Nm ≡
(

α

2

)
N , (4.62)

which exploits the partial cancellation of the α factors between Eqs.(4.11) and (4.13),

and the quantities

Dn ≡ 1

Nm

(
∂〈vn〉
∂rthre

)
=

2

F 2(Qthre)

(
αnQ

(n+1)/2
thre −

√
Qthre 〈vn〉

)
. (4.63)
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Note that, in practice, one can determine 〈vn〉 by a single experiment with a large number

of events, or by averaging over many experiments with a relatively small number of events.

However, numerical simulations [96] show that in the second case the average values of the

reconstructed moments do not exactly converge to the input (exact) values. In order to

understand this, consider the simple case Qthre = 0. The moments are then proportional

to the ratio In/I0 (see Eq.(4.52)). The distortion arises because 〈In/I0〉 6= 〈In〉/〈I0〉,
where the averaging is over many simulated experiments. The leading correction terms

for small Qthre and not very large first bin can be found as (a detailed calculation by

using Taylor expansion to second order will be given in App. E.2)

δ〈vn〉 = αnN 2
m

{
(n + 1)

[
cov(I0, In)−NmIncov(I0, I0)

]

+ 2


 Q

(n+1)/2
thre

F 2(Qthre)




[
cov(rthre, I0)− rthreNmcov(I0, I0)

]}
, (4.64)

where the second line in Eq.(4.60) is significant only for n = −1. Note that this correction

becomes very small if the statistical errors on the In as well as on rthre become small.

Meanwhile, according to some detailed numerical analyses [96], an “error on the error”

should be added. The contribution to the diagonal entries of the covariance matrix given

in Eq.(4.55) can be estimated as

σ2 (cov(In, In)) =
∑
a

Q2n−2
a

F 8(Qa)
, (4.65)

the off-diagonal entries are then scaled up such that the correlation matrix remains unal-

tered. The numerical analyses show also that very rare events with large recoil energies

contribute significantly more to the higher moments. Hence, an experiment with a small

number of events will usually underestimate 〈vn〉 and, especially, its error; the problem

will become worse with increasing n. However, because this method uses whole exper-

imental data together to determine the moments of f1(v), it has also been found that,

based only on the first two or three moments, some non-trivial information can already

be extracted from O(20) events.

More details and discussions about the reconstruction of the velocity distribution and

determination of its moments can be found in Ref. [96].

4.3 Determining the WIMP mass

In the previous two sections I discussed how to use a recoil spectrum from direct Dark

Matter detection as well as experimental data directly (i.e., the measured recoil energies)

to reconstruct the velocity distribution function of WIMPs as well as to determine its

moments. As noted earlier, for both of these reconstruction methods we need to know

the mass of the incident WIMPs mχ. In well-motivated WIMP models from elementary

particle physics, mχ can be determined with high accuracy from future collider experiment
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data. However, one has to check experimentally that the particles produced at colliders

are in fact the same ones seen in Dark Matter detection experiments which form the

Galactic halo. In this section I present a method for (self-)determining the WIMP mass

based on the determination of the moments of the velocity distribution function, 〈vn〉,
(presented in Sec. 4.2.4) from two (or more) experimental data sets with different target

materials. 4

4.3.1 Neglecting Qthre

As mentioned in the end of Sec. 4.1, the basic idea for using two different detector

materials to determine the WIMP mass is that, from independent direct WIMP detection

experiments with different target nuclei, the measured recoil spectra should lead to the

same (moments of the) velocity distribution function of incident WIMPs.

For the case that the threshold energy Qthre can be neglected, the n-th moment of the

velocity distribution function, 〈vn〉, in Eq.(4.52) can be expressed simply as

〈vn〉 = αn(n + 1)
(

In

I0

)
, (4.66)

where In and I0 can be estimated by Eq.(4.53). Suppose X and Y are two target nuclei.

Eq.(4.66) implies

αn
X

(
In,X

I0,X

)
= αn

Y

(
In,Y

I0,Y

)
. (4.67)

Note that the form factor F 2(Q) in Eq.(4.53) for estimating In,X and In,Y are different.

Then, according to the definition of α in Eq.(3.11) with the expression of the reduced

mass mr in Eq.(3.6) and using some simple algebra, one can find the WIMP mass as

mχ =

√
mXmY −mXRn

Rn −
√

mX/mY

, (4.68)

where I have defined

Rn ≡ αY

αX

=

(
In,X

I0,X

· I0,Y

In,Y

)1/n

, n 6= 0, − 1. (4.69)

Fig. 4.3 shows the ratios of the reproduced WIMP masses estimated by Eq.(4.68) with

different combinations of target nuclei to the input (true) one as functions of the input

WIMP mass. 28Si, 40Ar, and 76Ge have been chosen as three target nuclei and thus three

combinations for Rn defined in Eq.(4.69) with n = 1 are shown. Rn has been estimated

by the integral form of In in Eq.(4.12) with a maximal measuring energy of 200 keV.

The theoretical predicted recoil spectrum for the shifted Maxwellian velocity distribution

4Note that the ansatz here is quite different from that used in Ref. [97], which assumes different
WIMP velocity distributions with two input parameters: the WIMP mass and the WIMP-nucleon cross
section, and then analyses with which precision in the usual WIMP mass-cross section plane the WIMP
mass can be reproduced from the direct detection experiment.
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Figure 4.3: The curves show the ratios of the reproduced WIMP masses estimated by
Eq.(4.68) with different combinations of target nuclei to the input (true) one as functions
of the input WIMP mass. Rn with n = 1 has been estimated by the integral form
of In with a maximal measuring energy of 200 keV. The recoil energy spectrum for a
shifted Maxwellian velocity distribution with the Woods-Saxon form factor has been
used (parameters as in Fig. 4.1). The solid (blue) line, the dashed (black) line, and the
dash-dotted (red) line are for 40Ar + 28Si, 76Ge + 40Ar, and 76Ge + 28Si combination,
respectively. The straight dash-dotted (green) line denotes 1.

function, (dR/dQ)sh in Eq.(3.31), with the Woods-Saxon form factor F 2
WS(Q) in Eq.(3.17)

has been used. In Fig. 4.3 one can see obviously a deviation of the reproduced WIMP mass

from the input (true) one as input mχ & 60 GeV/c2. The heavier the nuclear masses

of two target nuclei, e.g., 76Ge + 28Si, the larger the deviation from the true WIMP

mass. This is caused by introducing the maximal measuring energy for estimating In. As

discussed in Subsec. 4.2.4, the heavier the nuclear mass mN, or, equivalently, the larger

α, and the larger n, the more the contribution to In comes from the high Q region, and,

for a fixed maximal measuring energy, the smaller the value for Rn and then for mχ will

be estimated. As shown in Fig. 4.3, for n = 1 and input mχ = 200 GeV/c2, the deviation

with Qmax = 200 keV is around 20%. However, according to the numerical analysis,

with Qmax = 250 keV or 300 keV, this deviation will be reduced to around 10% or even

only 5%. Later we will see, due to a quite large statistical error with very few events, a

deviation around 10% for input mχ = 200 GeV/c2 is not very bad. Moreover, for input

mχ . 120 GeV/c2, the deviation should be less than 5% or even 1% for Qmax = 200 keV
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Figure 4.4: The curves show the statistical errors estimated by Eq.(4.70) with different
combinations of target nuclei as functions of the input WIMP mass. Each experiment has
25 events, i.e., totally 50 events. Parameters and indications of the lines as in Fig. 4.3.

or 250 keV.

Furthermore, the statistical error on the reproduced WIMP mass can be obtained

from Eq.(4.68) directly as

σ(mχ) =

√
mX/mY |mX −mY |

(
Rn −

√
mX/mY

)2 · σ(Rn)

=
Rn

√
mX/mY |mX −mY |

(
Rn −

√
mX/mY

)2

× 1

|n|

[
σ2 (In,X)

I2
n,X

+
σ2 (I0,X)

I2
0,X

− 2cov (I0,X , In,X)

I0,XIn,X

+ (X −→ Y )

]1/2

, (4.70)

where σ2 (In,X) = cov (In,X , In,X) and cov (I0,X , In,X) and so on can be estimated from

Eq.(4.54).

Fig. 4.4 shows the statistical errors estimated by Eq.(4.70) with three different com-

binations of target nuclei as functions of the input (true) WIMP mass. Each experiment

has 25 events, i.e., totally 50 events. Note that, in order to use the integral form of

cov(In, Im) in Eq.(4.54), a threshold energy Qmin = 1 keV has been given. In Fig. 4.4 one

can observe that the larger the mass difference between two detector nuclei, the smaller
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the statistical error will be. Hence, the combination with the largest mass difference, e.g.,
76Ge + 28Si will have the smallest statistical error. In principle one other combination:
131Xe + 40Ar has larger mass difference and should have an even smaller statistical error.

However, because the Woods-Saxon form factor has been used here, the integral form of

cov(In, Im) in Eq.(4.54) has a pole at Q ∼ 100 keV! Thus 131Xe has been not used for this

simulation. On the other hand, despite of the factor 1/|n| in Eq.(4.70), it has been found

that the statistical errors increase with increasing n, except the 40Ar + 28Si combination.

For this combination, the statistical error with n = 2 is a little smaller than with n = 1;

but, with n = 3, the statistical error is significantly larger (and, as discussed above, the

deviation of the reproduced WIMP mass should also be larger). Hence, n = 1 should be

the best choice for mχ and σ(mχ) in Eqs.(4.68) and (4.70), respectively.

Figs. 4.5 show the reproduced WIMP mass with the statistical error by using 76Ge

and 28Si as two target nuclei as a function of the input (true) WIMP mass. From the

upper frame, it can be found that, despite of the very few (25 + 25, totally 50) events and

correspondingly very large statistical error, for mχ ≤ 100 GeV/c2, one can already extract

some meaningful information on the WIMP mass. For example, for mχ = 25 GeV/c2 and

mχ = 50 GeV/c2, we will reproduce mχ ' (25±13) GeV/c2 and mχ ' (50±31) GeV/c2.

For the case with 500 (250 + 250) total events, the statistical error will be reduced to less

than 5 and 10 GeV/c2, respectively! Certainly, as shown in the lower frame of Figs. 4.5,

for the case with 500 total events, the deviation of the reproduced WIMP mass from the

input one becomes important. Nevertheless, in practice, an experiment with more than

200 events should have a larger maximal measuring energy, and, as discussed above, the

deviation can (should) be strongly reduced.

For the simplified simulations with the integral form of In presented above, the event

numbers from both experiments have been considered to be equal. Practically, as de-

scribed in Subsecs. 3.4.1 to 3.4.3, experiments with the higher mass nuclei, e.g., Ge or

Xe, are expected to measure (much) more signal events. However, according to the ex-

pression for σ(mχ) in Eq.(4.70) and the definition of Rn in Eq.(4.69), it can be found

that only the terms in the brackets depends on the event number and the contributions

from the two experiments are independent of each other. Moreover, a detailed analysis

of contributions from different terms of σ(mχ) shows that the prefactor

Rn

√
mX/mY |mX −mY |

(
Rn −

√
mX/mY

)2 (4.71)

which depends practically only on the choice of the combination of the two target nuclei

is very large for every combination, while the terms in the brackets with the factor 1/|n|
are actually quite small. This implies that one can not reduce the statistical error of

mχ estimated by Eq.(4.70) by improving only one experiment with even very large event

number, since the contribution from the other (poor) experiment will dominate the error.
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Figure 4.5: The reproduced WIMP mass with the statistical error by using 76Ge and 28Si
as two target nuclei as a function of the input WIMP mass. The solid (red) line indicates
the reproduced WIMP mass estimated by Eq.(4.68), the dashed (red) lines indicate the 1-
σ statistical error estimated by Eq.(4.70). The straight dash-dotted (green) line indicates
the input (true) WIMP mass. Each experiment has 25 (250) events, i.e., totally 50 (500)
events, in the upper (lower) frame. Parameters as in Fig. 4.3.
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4.3.2 With Qthre > 0

For the case that Qthre in Eq.(4.52) can not be neglected, Rn defined in Eq.(4.69)

should be modified to the following general form:

Rn(Qthre) =


2Q

(n+1)/2
thre,X rthre,X + (n + 1)In,XF 2

X(Qthre,X)

2Q
1/2
thre,Xrthre,X + I0,XF 2

X(Qthre,X)




1/n

×

 2Q

1/2
thre,Y rthre,Y + I0,Y F 2

Y (Qthre,Y )

2Q
(n+1)/2
thre,Y rthre,Y + (n + 1)In,Y F 2

Y (Qthre,Y )




1/n

, (4.72)

where rthre,X and rthre,Y should be determined by Eq.(4.51) (practically) with different

r1, k1, Qs,1, and Qthre. In this general form of Rn(Qthre) there are totally six variables:

rthre,X , In,X , I0,X and the other three for nucleus Y . This should generally produce a

larger statistical error than that estimated by Eq.(4.70) due to the contribution from

rthre (the statistical error of Rn(Qthre) will be given in App. E.3). However, one can

practically reduce the number of variables by choosing n = −1:

R−1(Qthre) =
rthre,Y

rthre,X


2Q

1/2
thre,Xrthre,X + I0,XF 2

X(Qthre,X)

2Q
1/2
thre,Y rthre,Y + I0,Y F 2

Y (Qthre,Y )


 . (4.73)

Then σ(Rn) in the first line of Eq.(4.70) should be replaced by

σ
(
R−1(Qthre)

)

= R−1(Qthre)

{[
I0,XF 2

X(Qthre,X)

2Q
1/2
thre,Xrthre,X + I0,XF 2

X(Qthre,X)

]2

×
[
σ2 (rthre,X)

r2
thre,X

+
σ2 (I0,X)

I2
0,X

− 2cov (rthre,X , I0,X)

rthre,XI0,X

]

+ (X −→ Y )

}1/2

, (4.74)

where σ2 (rthre,X) and cov (rthre,X , I0,X) and so on can be calculated by Eqs.(4.55) and

(4.60).
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Chapter 5

Annual Modulated Event Rate

In the previous chapter I have presented methods for reconstructing the velocity

distribution function and its moments from the time-averaged recoil energy spectrum

fitted to experimental data as well as from data directly. The annual modulation of the

event rate discussed in Sec. 3.2 has been ignored. As shown in Sec. 4.2, in the foreseeable

future with rare signal events, the statistical errors will remain large and thus this is a

reasonable first approximation. However, for the future detectors with strongly improved

sensitivity and (very) large target mass (large exposure), the formulae and methods have

to be extended to allow for an annual modulation of the event rate.

In the first section of this chapter I extend the method developed in the previous

chapter by considering an arbitrary, but cosine-like time-dependent recoil spectrum with

a one-year period. In the second section I present the method for reconstructing the

amplitude of the (possible) annual modulation of the velocity distribution function. An

alternative, better way for checking the annual modulation of the event rate will also be

described.

5.1 Taking into account the annual modulation

For simplicity, in this chapter I take tp = 0 in Eq.(3.30) and rewrite it as

ve(t) = v0

[
1.05 + 0.07 cos(ωt)

]
, (3.30’)

with

ω ≡ 2π

365
. (5.1)

This means that in the following analyses experiments (data) have been assumed to

be started (collected), i.e., t = 0, when ve is maximal (around June 2nd, theoretically

predicted) and the time t will be measured in unit of “day”.

As discussed in Secs. 3.1 and 3.2, roughly speaking, the differential event rate for

direct WIMP detection is proportional to the WIMP flux, or, equivalently, the velocity of

the Earth relative to the WIMP halo. And, due to the motion of the Earth on an elliptical
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orbit around the Sun, the projection of the Earth’s orbital speed on the orbital speed

of the Sun around the Galactic center is approximately a cosine function. Therefore, as

shown in Eqs.(3.30) and (3.30’) above, the differential event rate should theoretically be a

cosinusoidal function (c.f. the DAMA results in Figs. 3.3). On the other hand, substituting

ve(t) in Eq.(3.30’) into Eq.(3.31), it can be found that (dR/dQ)sh are not exact cosine

but cosine-like functions with a period of 365 days (shown in Figs. 5.1). According to

this observation, I assume generally an arbitrary, but cosine-like time-dependent recoil

spectrum with a one-year period and then expand this spectrum and its corresponding

velocity distribution function as Fourier cosine series as:
(

dR

dQ

)

t

=

(
dR

dQ

)

(0)

+

(
dR

dQ

)

(1)

cos(ωt) +

(
dR

dQ

)

(2)

cos(2ωt) + · · · , (5.2)

and

f1(v, t) = f1,(0)(v) + f1,(1)(v) cos(ωt) + f1,(2)(v) cos(2ωt) + · · · . (5.3)

According to Eq.(3.12), (dR/dQ)t and f1(v, t) must satisfy the equation for the time-

dependent WIMP-nucleus scattering spectrum:
(

dR

dQ

)

t

= AF 2(Q)
∫ ∞

vmin

[
f1(v, t)

v

]
dv , (5.4)

and, consequently, each pair of their Fourier coefficients must satisfy a time-independent

equation:
(

dR

dQ

)

(m)

= AF 2(Q)
∫ ∞

vmin

[
f1,(m)(v)

v

]
dv , m = 0, 1, 2, · · · . (5.5)

Moreover, if we neglect (due to the very low detection rate discussed in Sec. 3.1 and the

tiny difference shown in Figs. 5.1, we can practically neglect) the terms with m ≥ 2 in

Eqs.(5.2) and (5.3), (dR/dQ)(0) and f1,(0)(v) above are the time-averaged scattering spec-

trum and the time-averaged velocity distribution function of WIMPs, which we considered

in Chap. 4, and (dR/dQ)(1) and f1,(1)(v) are the amplitudes of the annual modulations

of the scattering spectrum and its corresponding velocity distribution. In addition, since

(dR/dQ)(m) are Fourier coefficients of (dR/dQ)t, we have

(
dR

dQ

)

(0)

=
1

365

∫ 365

0

(
dR

dQ

)

t

dt , (5.6)

and
(

dR

dQ

)

(m)

=
2

365

∫ 365

0

(
dR

dQ

)

t

cos(mωt) dt , m = 1, 2, · · · . (5.7)

Now, as mentioned in Subsec. 4.2.2, the important elements needed for the recon-

struction of f1,r in Eq.(4.46) are the number of events Nµ in the µ-th window given in
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Figure 5.1: The solid (red) curves are the predicted modulations of the recoil energy
spectrum for the shifted Maxwellian WIMP velocity distribution, (dR/dQ)sh in Eq.(3.31),
with the Woods-Saxon form factor F 2

WS(Q) in Eq.(3.21); the dashed (blue) curves are
cosine functions with an amplitude [(dR/dQ)sh(t = 0) − (dR/dQ)sh((t = π/2)]/2. Here
I have used mχ = 100 GeV/c2, mN = 70.6 GeV/c2 for 76Ge, v0 = 220 km/s. The upper
and lower frames are drawn for Q = 15 keV and Q = 30 keV, respectively.
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Eq.(4.37), as well as the averages Q−Qµ|µ given in Eq.(4.38), which are theoretically

defined as, respectively,

Nµ ≡
∫ Qµ+wµ/2

Qµ−wµ/2

(
dR

dQ

)

(0)

dQ , (5.8)

and

(Q−Qµ)λ|µ ≡ 1

Nµ

∫ Qµ+wµ/2

Qµ−wµ/2
(Q−Qµ)λ

(
dR

dQ

)

(0)

dQ , (5.9)

where I have used generally the λ-th moment of the averaged recoil spectrum (dR/dQ)(0).

Substituting Eq.(5.6) into Eqs.(5.8) and (5.9), it can be found easily that, for a time-

dependent recoil spectrum with a one-year period,

Nµ =
1

365

∫ 365

0

∫ Qµ+wµ/2

Qµ−wµ/2

(
dR

dQ

)

t

dQdt =
Nµ,1 yr

365
, (5.10)

and

(Q−Qµ)λ|µ =
1

Nµ

[
1

365

∫ 365

0

∫ Qµ+wµ/2

Qµ−wµ/2
(Q−Qµ)λ

(
dR

dQ

)

t

dQdt

]

=
1

Nµ,1 yr

Nµ,1 yr∑

i=1

(Qµ,i −Qµ)λ , (5.11)

where Qµ,i, i = 1, 2, · · · , Nµ,1 yr, are the measured recoil energies from the direct

WIMP detection experiment in the µ-th window in one year. Note that the “=” sign

in the second line of Eq.(5.11) denotes not mathematically equal but an experimental

estimator for (Q−Qµ)λ|µ.

Comparing these results with the expressions in Eqs.(4.25) and (4.27), Eqs.(5.10) and

(5.11) show that, for an arbitrary time-dependent recoil spectrum with a one-year period

(even though it is not cosine-like), we just have to take the experimental data over some

whole years to find out the average event number (per day) and the annual average value

of the energy transfer (Q−Qµ)λ in the µ-th window (or bin). Then we can reconstruct

the time-averaged velocity distribution by means of the method presented in the previous

chapter directly. Moreover, the results above show also that it is actually not necessary

to know when ve is maximal but only use all events collected in these (whole) years.

5.2 Reconstructing the modulated amplitude of f1(v)

In this section I follow the trick used with (dR/dQ)(0) in the previous section and

develop a method for reconstructing the (annual) modulated amplitude of f1(v). Mean-

while, I will also introduce two criteria for checking the annual modulation of the event

rate.
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5.2.1 Criteria for the annual modulation

Replacing (dR/dQ)(0) in Eq.(5.9) by (dR/dQ)(1) in Eq.(5.7), it can be found that 1

1

Nn

∫ Qn+bn/2

Qn−bn/2
(Q−Qn)λ

(
dR

dQ

)

(1)

dQ

=
1

Nn

[
2

365

∫ 365

0

∫ Qn+bn/2

Qn−bn/2
(Q−Qn)λ cos(ωt)

(
dR

dQ

)

t

dQdt

]

=
2

Nn,1 yr

Nn,1 yr∑

i=1

(Qn,i −Qn)λ cos(ωtn,i) , (5.12)

where tn,i, i = 1, 2, · · · , Nn,1 yr, n = 1, 2, · · · , B, are the “measuring times” at

which we measure the recoil energies Qn,i in the n-th bin in one year. Note that, first,

the “=” sign in the second line of Eq.(5.12) denotes again an experimental estimator;

second, the factor cos(ωtn,i) comes from the integral in Eq.(5.7) (not from the second

term of ve(t) in Eq.(3.30’)!). On the other hand, by substituting ve(t) in Eq.(3.30’)

into (dR/dQ)sh in Eq.(3.31), it can be found that the ratio of the modulated amplitude

of the recoil spectrum, (dR/dQ)(1), to the time-averaged recoil spectrum, (dR/dQ)(0),

increases monotonically with the recoil energy Q and is approximately a linear function

of Q (shown in Fig. 5.2). Hence, I introduce an ansatz for the modulated amplitude of

the recoil spectrum in the n-th bin:
(

dR

dQ

)

(1),n

=

(
dR

dQ

)

(0)

·
[
ln(Q−Qn) + hn

]
, n = 1, 2, · · · , B. (5.13)

Note that (dR/dQ)(0) here indicates generally a time-averaged recoil spectrum, not spec-

ified to the exponential ansatz in Eq.(4.18). Substituting the ansatz for (dR/dQ)(1),n into

the left-hand side of the Eq.(5.12), it can be found that

1

Nn

∫ Qn+bn/2

Qn−bn/2
(Q−Qn)λ

(
dR

dQ

)

(1),n

dQ = ln (Q−Qn)λ+1|n + hn (Q−Qn)λ|n . (5.14)

Setting λ = 0 and 1 and combining Eqs.(5.12) and (5.14), ln and hn in Eq.(5.13) can be

solved as

ln =
2 (Q−Qn) cos(ωt)|n − 2 cos(ωt)|n Q−Qn|n

(Q−Qn)2|n −Q−Qn|2n
, (5.15)

and

hn =
2 cos(ωt)|n (Q−Qn)2|n − 2 (Q−Qn) cos(ωt)|n Q−Qn|n

(Q−Qn)2|n −Q−Qn|2n
, (5.16)

where I have defined

(Q−Qn)λ cosρ(ωt)|n ≡ 1

Nn,1 yr

Nn,1 yr∑

i=1

(Qn,i −Qn)λ cosρ(ωtn,i) . (5.17)

1For simplicity and clarity, I discuss in this section the case with bins, thus µ and wµ in Eq.(5.9) have
been replaced here by n and bn, respectively. However, all formulae given in this section can be used for
the case with windows by substituting n and bn by µ and wµ.
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Figure 5.2: The curve shows the ratio of the modulated amplitude of the recoil spectrum,
(dR/dQ)(1), to the time-averaged recoil spectrum, (dR/dQ)(0), as a function of the recoil
energy Q. Parameters as in Figs. 5.1.

Due to the annual modulation effect, around t = 0 we should get more events than

around t = π. Recall that I have assumed that experiments start when ve is maximal.

Thus, even though
∫ 2π
0 cos(ωt) dt = 0, cos(ωt)|n above are generally not equal to 0.

Moreover, ln in Eq.(5.15) can be rewritten as

ln =
2 cov

(
Q−Qn|n, cos(ωt)|n

)

σ2
(
Q−Qn|n

) , (5.15’)

where cov(Q−Qn|n, cos(ωt)|n) is the covariance between the average value of the mea-

sured recoil energies Qn,i−Qn and that of cos(ωtn,i) in the n-th bin. According to Fig. 5.2

and the ansatz in Eq.(5.14), ln should be generally > 0 and and this means that Q−Qn|n
and cos(ωt)|n should be positively correlated. This result offers a better way to test the

annual modulation effect! Traditionally, in order to confirm the annual modulation of

the event rate, one has to collect the recoil events in a given energy range in several short

time intervals (a few days to a couple weeks) and than compare the numbers of collected

events in the different time intervals in one year (e.g., the DAMA 4-year and 7-year results

shown in Figs. 3.3). As mentioned in Sec. 3.2, the annual modulation of event rate is

expected to be only a few percent (about −4% ∼ 5% in the energy range between 0 and

50 keV, see Fig. 5.2) and this method can be used once more than one hundred events

(in a few days!) have been accumulated. However, according to the discussion above, one

can now collect all recoil events in a relatively larger energy range (since the calculation
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with bins can be extended directly to that with windows) in one year (or even several

years) and then only has to check the following quantities:

∆t ≡ cos(ωt) =
1

Ntot

∑
a

cos(ωta) , (5.18)

and

∆Q,t ≡ cov
(
Q, cos(ωt)

)
=

1

Ntot − 1

[
Q cos(ωt)−Q cos(ωt)

]
, (5.19)

where the averages are over all events in the energy range which one concerns and Ntot

is the total event number in this energy range. If the annual modulation of event rate

exists, one should than get ∆t 6= 0 and ∆Q,t > 0. Note that, for the case that some time-

independent background events mixed into the true signals, the two quantities above will

be underestimated through the averaging; or even worse, if most of the background events

have been discriminated, then the contribution from the rest events can not cancel each

other any more. However, for the case that the time-independent background events

dominate the whole data set, one can use a quantity modified from ∆t in Eq.(5.18):

∆′
t ≡

∑
a

cos(ωta) . (5.20)

The quantity ∆′
t defined here is not the average but the sum of the cosine values of the

measuring times. Hence, the contributions from background events will cancel each other

and not change the value of ∆′
t (too much). But in the statistical error of ∆′

t:
2

σ2 (∆′
t) =

∑
a

cos2(ωta) , (5.21)

there can not be any cancellation, i.e., σ2 (∆′
t) will increase with the total event number

Ntot. In addition, for a “time-dependent” background the quantity in Eq.(5.20) can not

be used any more.

Furthermore, for the check of the quantities in Eqs.(5.18) and (5.19), it is important

to know when ve is maximal. This offers in practice a possibility to determine (to check

theoretically predicted) tp in Eq.(3.30). One sets the starting date of the experiment on

January 1st, inserts a phase ϕ into Eqs.(5.18) and (5.19), and then finds out when the

quantity

∆t−ϕ = cos ω(t− ϕ) (5.18’)

is (almost) equal to 0, which corresponds to tp ± π/2ω, and when the quantity

∆Q,t−ϕ = cov
(
Q, cos ω(t− ϕ)

)
(5.19’)

has a maximal value (positive), a minimal value (negative), or is (almost) equal to 0,

which correspond to tp, tp ± π/ω, or tp ± π/2ω, respectively. Certainly, for the case that

such annual modulation of the event rate does not exist, one will find that ∆t and ∆Q,t

are independent of ϕ and always (approximately) equal to 0.

2Here I have assumed that Ntot À 1 and then used σ2
(
cos(ωt)

)
=

[
cos2(ωt)− cos(ωt)

2
]
/Ntot.
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5.2.2 Reconstructing the modulated amplitude of f1(v)

According to Eq.(4.8), each coefficient of the time-dependent velocity distribution

function, f1(v, t), in Eq.(5.3), can be solved from Eq.(5.5) as

f1,(m)(Q) = N


−2Q · d

dQ


 1

F 2(Q)

(
dR

dQ

)

(m)






 , m = 0, 1, 2, · · · , (5.22)

since, for all m,

f1,(m)(v →∞) → 0 , (5.23)

see Eq.(4.3). Substituting the ansatz for (dR/dQ)(1),n in Eq.(5.14) at first and then the

ansatz for (dR/dQ)(0),n in Eq.(4.18) into Eq.(5.22), the ratio of the modulated amplitude

of the velocity distribution function to the time-averaged one at the point Q = Qn (not

at v = vn!) can be obtained as (a detailed derivation will be given in App. E.4)

ηn ≡ f1,(1),n(Qn)

f1,(0),n(Qn)
= hn − ln

[
d

dQ
ln F 2(Q)

∣∣∣∣
Q=Qn

− kn

]−1

. (5.24)

Note that the first term in the brackets has been evaluated at Q = Qn (not at Q = Qs,n!).

The result in Eq.(5.24) has three advantages. First, since ηn here is the ratio of the

modulated amplitude of the velocity distribution function to the time-average one in the

n-th Q-bin, it is not necessary to combine the data from all bins to get the normalization

constant, each one of these ηn is independent of the others. 3 Second, due to the same

reason, one can estimate the ηn even if he can not obtain (enough) events in the high

energy range (> 100 keV). It is, in contrast, necessary to collect enough events until high

energy (≈ 200 keV for a WIMP mass ∼ 100 GeV/c2 and 76Ge as target nucleus) in order

to determine the normalization constant N in Eq.(4.48). Third, the ηn are independent of

α defined in Eq.(3.11), or, equivalently, independent of the WIMP mass mχ. Certainly,

one can use the method described in Sec. 4.3 to determine the WIMP mass. But for

the case with very rare total events or too few events in the energy range higher than

e.g., 100 keV, the deviation of the estimation of the WIMP mass from the true one and

the statistical error will be very large. However, due to the independence of the ηn of

α, the reconstruction by Eq.(5.24) will not be affected by the (large) uncertainty of the

estimation of the WIMP mass.

The statistical errors of ηn in Eq.(5.24) can be expressed as

σ2(ηn) =
4∑

ν=1

(
∂ηn

∂yν,n

)2

σ2(yν,n) +
4∑

ν,τ=1
τ 6=ν

(
∂ηn

∂yν,n

) (
∂ηn

∂yτ,n

)
cov (yν,n, yτ,n) . (5.25)

Here I have defined

yν,n = Q−Qn|n, (Q−Qn)2|n, cos(ωt)|n, (Q−Qn) cos(ωt)|n , (5.26)

3For the case with windows, the ηn are no more independent of each other. But the off-diagonal
entries of the correlation matrix of the statistical error of the ηn are practically not important.
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and one has

σ2 (yν,n) = cov (yν,n, yν,n) , (5.27)

with

cov
(
(Q−Qn)λ cosρ(ωt)|n, (Q−Qn)ν cosτ (ωt)|n

)

=
1

Nn − 1

[
(Q−Qn)λ+ν cosρ+τ (ωt)|n

− (Q−Qn)λ cosρ(ωt)|n(Q−Qn)ν cosτ (ωt)|n
]
. (5.28)

According to Eqs.(4.26), 4 (5.15), (5.16), and (5.24), the derivatives of ηn with respect to

each of the yν,n in Eq.(5.26) can be found easily as

∂ηn

∂Q−Qn|n
=

hn

σn

(
Q−Qn|n + Kn

)
− ln

σn

[
(Q−Qn)2|n + Q−Qn|n Kn

]

− kn

(
lnK

2
n

Q−Qn|n

)
, (5.29a)

∂ηn

∂Q−Qn|n
=

ln
σn

(
Q−Qn|n + Kn

)
− k2

n

2

(
lnK2

n

Q−Qn|n

)
, (5.29b)

∂ηn

∂cos(ωt)|n
=

2

σn

[
(Q−Qn)2|n + Q−Qn|n Kn

]
, (5.29c)

∂ηn

∂(Q−Qn) cos(ωt)|n
= − 2

σn

(
Q−Qn|n + Kn

)
, (5.29d)

where I have defined

σn ≡ σ2
(
Q−Qn|n

)
=

1

Nn − 1

[
(Q−Qn)2|n −

(
Q−Qn|n

)2
]
, (5.30)

and

Kn ≡
[

d

dQ
ln F 2(Q)

∣∣∣∣
Q=Qn

− kn

]−1

. (5.31)

4Since ln and hn are functions of both Q−Qn|n and (Q−Qn)2|n, for simplicity, I have used here
the expression for kn in Eq.(4.26).
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Chapter 6

Summary and Conclusions

In this thesis I have presented methods which allow to extract information on the

WIMP velocity distribution as well as on the WIMP mass from the recoil energy spectrum

dR/dQ measured in elastic WIMP-nucleus scattering experiments. In the long term the

information on the WIMP velocity distribution can be used to test or constrain models

of the dark halo of our Galaxy; this information would complement the information on

the density distribution of WIMPs, which can be derived e.g., from measurements of the

Galactic rotation curve. Meanwhile, the information on the WIMP mass can be used

to constrain e.g., SUSY models in the elementary particle physics and compare with

information from future collider experiments.

In Sec. 4.1 I have derived the expression that allow to reconstruct the normalized one-

dimensional velocity distribution function of WIMPs, f1(v), given an expression (e.g., a

fit to data) for the recoil spectrum. I have also derived formulae for determining the

moments of f1(v). All these expressions are independent of the as yet unknown WIMP

density near the Earth as well as of the WIMP-nucleus cross section. The only information

about the nature of WIMPs which one needs is the WIMP mass.

Then, in Sec. 4.2, I have presented methods that allow to apply the expressions derived

in Sec. 4.1 directly to experimental data, without the need to fit the recoil spectrum to

a functional form. A good variable that allows direct reconstruction of f1(v) is the

average recoil energy in a given bin (or “window”, introduced in Subsec. 4.2.2). This

average energy is sensitive to the slope of the recoil spectrum, which is the quantity one

needs to reconstruct f1(v). The statistical error of the reconstruction of f1(v) has been

analyzed. Unfortunately it has been found that several hundred events will be needed

for the method to be able to extract meaningful information on f1(v). This is partly

due to the fact that f1(v) is normalized, i.e., only the shape of this distribution contains

meaningful information, and partly because this shape depends on the slope of the recoil

spectrum, which is intrinsically difficult to determine.

Meanwhile, a method for determining the moments of f1(v) has also been presented in

Subsec. 4.2.4. Numerical simulation shows that very rare events with large recoil energies

contribute significantly more to the higher moments. Nevertheless, because this method
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uses the whole experimental data together to determine the moments of f1(v), it has been

found that, based only on the first two or three moments, some non-trivial information

can already be extracted from O(20) events.

As noted earlier, one needs to know the WIMP mass mχ for the reconstruction of

(the moments of) the velocity distribution. Moreover, although in well-motivated WIMP

models mχ can be determined with high accuracy from future collider data, we will have

to check experimentally that the particles produced at colliders are in fact the same ones

seen in direct Dark Matter detection experiments which form the Galactic halo.

In Sec. 4.3 I have developed a method for (self-)determining mχ based on the deter-

mination of the moments of f1(v) by combining two (or more) experiments with different

detector materials. The numerical analysis shows that, the larger the mass difference

between two target nuclei, the smaller the statistical error will be. Hence, the combina-

tions of two semiconductor detectors: Si and Ge and of two liquid noble gas detectors:

Ar and Xe should be good choices. Meanwhile, due to the maximal measuring energy

of the detector, there will be a deviation of the reproduced WIMP mass from the true

one as WIMP masses & 60 GeV/c2. However, the numerical analysis shows also that,

for WIMP masses ≤ 100 GeV/c2 some meaningful information on the WIMP mass can

already be extracted from O(50) total (each experiment O(25)) events.

At the first step I have ignored the annual modulation of the WIMP flux. Given

the large statistical errors expected in the foreseeable future, this is a reasonable first

approximation. However, for the future detectors with strongly improved sensitivity and

(very) large target mass (large exposure), the formulae and methods have to be extended

to allow for an annual modulation of the event rate. Hence, in Sec. 5.1 I have discussed

the extension of the reconstruction of the velocity distribution by taking into account

the time dependence of the recoil spectrum. The analysis shows that the two important

observables for reconstructing the velocity distribution function: the event number and

the average recoil energy measured in a given bin (or window), can be obtained as the

annual average of the total event number (per day) and the average value of the recoil

energies measured in experiments operated over some whole years.

Moreover, in Subsec. 5.2.2 I have presented a method for reconstructing the ratio of

the modulated amplitude of the velocity distribution to the time-averaged one. The only

information which one needs is the measured recoil energies and their measuring times.

This reconstruction is independent of the WIMP mass and can be done even if we can not

obtain (enough) events in the high energy range. Hence, before the sensitivity of detectors

can be improved to offer enough data until high energy range, reconstructing this ratio

directly from experimental data and comparing it with the theoretical predictions might

be the best possibility to test the different models of the halo Dark Matter.

Furthermore, in Subsec. 5.2.1, I have given an alternative, and also better way to

check whether the annual modulation of the event rate exists and thereby test models of

the Dark Matter halo. The main advantage of this test is that, instead of (traditionally)
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comparing the numbers of collected signal events in different, short time intervals in one

year, one can now use information, i.e., the measured recoil energies and their measuring

times, from all signal events collected in one or even several years together. For the case

that the background events dominate the whole data set, this test might be still useful,

if one expects that the background is (almost) time independent.

The analyses of this work are based on several simplifying assumptions. First, all

experimental systematic uncertainties, as well as the uncertainty on the measurement

of the recoil energy Q have been ignored. This should be a quite good approximation,

given that we will have to live with quite large statistical uncertainties in the foreseeable

future. Recall that, as shown in Secs. 3.7 to 3.9, not a single WIMP event has as yet

been unambiguously recorded.

I have also assumed that the detector consists of a single isotope. This is quite realistic

for the current semiconductor (Si or Ge) detectors. On the other hand, for detectors

containing more than one nucleus, by simultaneously measuring two signals, one might

be able to tell on an event-by-event basis which kind of nucleus has been struck (see

Subsec. 3.7.2). In this case, the methods can be applied straightforwardly to the separate

sub-spectra.

The analyses treat each recorded event as signal, i.e., background has been ignored

altogether. At least after introducing a lower cut Qthre on the recoil energy, this may in

fact not be unrealistic for modern detectors, which contain cosmic ray veto and neutron

shielding systems (described in Subsec. 3.6). Background subtraction should be relatively

straightforward when fitting some function to the data, which would allow to use the

expressions given in Sec. 4.1. It should also be feasible in the method described in

Sec. 4.2, if its effect on the average Q-values in the bins can be determined; in particular,

an approximately flat (Q-independent) background would not change the slope of the

recoil spectrum.

In summary, a theoretical exploration of studying what direct Dark Matter detection

experiments can teach us about the properties of Dark Matter particles in our Galac-

tic neighborhood, e.g., their velocity distribution and their mass, the so-called “WIMP

astronomy”, has been started. However, the analyses show that this will require sub-

stantial data samples. Hopefully this work will encourage our experimental colleagues to

plan future experiments well beyond the stage of “merely” detecting Dark Matter. On

the other hand, due to the significantly reduced condition (less than 100 events) for ex-

tracting meaningful information on the WIMP mass by means of data from direct Dark

Matter detection experiments, a championship for finding new particle(s) between the

collaborations of direct Dark Matter detection and that of collider experiments has also

been started.
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Appendix A

Expression of the Velocity
Distribution of WIMPs

In this chapter I discuss at first some properties of the auxiliary function F1(v) defined

in Eq.(4.1). Then I show two different approaches to find out the expression of f1(v) in

Eq.(4.8), and derive the normalization constant N in Eq.(4.9) as well as the expression

of moments of f1(v), 〈vn〉, in Eq.(4.10).

A.1 Properties of F1(v) defined in Eq.(4.1)

First, according to the definition of F1(v) in Eq.(4.1) and noting that the velocity

distribution function f1(v) can not be negative:

f1(v) ≥ 0 , (A.1)

I have

dF1(v)

dv
=

f1(v)

v
≥ 0 . (A.2)

This means that F1(v) increases monotonically with v. Second, f1(v) must vanish as v

approaches infinity:

f1(v →∞) → 0 , (4.3)

since WIMPs (as candidate for CDM) in today’s Universe move quite slowly, then I have

dF1(v)

dv

∣∣∣∣∣
v→∞

=
f1(v)

v

∣∣∣∣∣
v→∞

→ 0 . (4.4)

This means that F1(v) must approach a finite constant F1,∞ as v → ∞. On the other

hand, the three-dimensional velocity distribution function of WIMPs, f(v), must be

bounded:

f(v) ∝ f1(v)

v2
6= ∞ , (A.3)
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Figure A.1: Sketch of the auxiliary function F1(v) defined in Eq.(4.1).

where I have used
∫

f(v) d3v =
∫

f(v) v2 dv dΩ =
∫

f1(v) dv .

Hence,

dF1(v)

dv

∣∣∣∣∣
v=0

=
f1(v)

v

∣∣∣∣∣
v=0

=

[
v · f1(v)

v2

]

v=0

= 0 . (A.4)

This means that F1(v) also approaches a constant F1,0 as v → 0. Actually, F1,0 can be

set to 0 without loss of generality, since Eq.(4.1) defines F1(v) only up to an additional

constant. A sketch of the auxiliary function F1(v) is given in Fig. A.1.

A.2 Derivations for f1(v) in Eq.(4.8)

According to Eq.(3.10), I have

dvmin

dQ
=

α

2
√

Q
=

vmin

2Q
, (A.5)

namely,

dQ

dvmin

=
2Q

vmin

. (A.6)

Differentiating both sides of Eq.(4.2) and using Eq.(4.1), one can obtain that

f1(vmin)

vmin

=
dF1(vmin)

dvmin

= − 1

A





d

dvmin

[
1

F 2(Q)

(
dR

dQ

)]

Q=v2
min/α2




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= − 1

A

{
d

dQ

[
1

F 2(Q)

(
dR

dQ

)]
·
(

dQ

dvmin

)}

Q=v2
min/α2

=
1

vmin

· 1

A

{
−2Q · d

dQ

[
1

F 2(Q)

(
dR

dQ

)]}

Q=v2
min/α2

, (4.5)

namely,

f1(vmin) =
1

A

{
−2Q · d

dQ

[
1

F 2(Q)

(
dR

dQ

)]}

Q=v2
min/α2

=
1

A

{
2Q

F 2(Q)

[
2

F (Q)

(
dF

dQ

) (
dR

dQ

)
− d

dQ

(
dR

dQ

)]}

Q=v2
min/α2

. (A.7)

On the other hand, according to Leibnitz’s Rule for Differentiation of Integrals:

d

dt

[∫ b(t)

a(t)
F (x, t) dx

]
=

∫ b(t)

a(t)

[
∂F (x, t)

∂t

]
dx +

[
F (b, t)

(
db

dt

)
− F (a, t)

(
da

dt

)]
, (A.8)

one can also differentiate both sides in Eq.(3.12) with respect to Q directly and obtain

d

dQ

(
dR

dQ

)

=
d

dQ

{
AF 2(Q)

∫ ∞

vmin

[
f1(v)

v

]
dv

}

= A
[
dF 2(Q)

dQ

] ∫ ∞

vmin

[
f1(v)

v

]
dv +AF 2(Q)

[
−f1(vmin)

vmin

(
dvmin

dQ

)]

vmin=α
√

Q

=

[
2F (Q)

(
dF

dQ

)] [
1

F 2(Q)

(
dR

dQ

)]
−AF 2(Q)

[
f1(vmin)

vmin

(
vmin

2Q

)]

vmin=α
√

Q

=
2

F (Q)

(
dF

dQ

) (
dR

dQ

)
−A

[
F 2(Q)

2Q

]
f1

(
vmin = α

√
Q

)
.

Therefore, it can be also found that

f1(vmin) =
1

A

{
2Q

F 2(Q)

[
2

F (Q)

(
dF

dQ

) (
dR

dQ

)
− d

dQ

(
dR

dQ

)]}

Q=v2
min/α2

. (A.7)

A.3 Normalization constant and moments of f1(v)

Since

v = α
√

Q , (A.9)

I have

dv =

(
α

2
√

Q

)
dQ . (A.10)
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From Eq.(4.8) and according to the normalization condition in Eq.(4.7), I can get
∫ ∞

0
f1(v) dv

= N
∫ ∞

0

{
−2Q · d

dQ

[
1

F 2(Q)

(
dR

dQ

)]} (
α

2
√

Q

)
dQ

= N · (−α)
∫ ∞

0

√
Q · d

dQ

[
1

F 2(Q)

(
dR

dQ

)]
dQ

= N · (−α)

{√
Q

[
1

F 2(Q)

(
dR

dQ

)]∞

0

− 1

2

∫ ∞

0

1√
Q

[
1

F 2(Q)

(
dR

dQ

)]
dQ

}

= N
(

α

2

) ∫ ∞

0

1√
Q

[
1

F 2(Q)

(
dR

dQ

)]
dQ

= 1 , (A.11)

where I have used the conditions:

dR

dQ

∣∣∣∣∣
Q→∞

→ 0 , (A.12)

and

dR

dQ

∣∣∣∣∣
Q→0

6= ∞ . (A.13)

Eq.(4.9) follows immediately from Eq.(A.11).

Using Eqs.(A.9), (A.10) and integration by parts, I can also find the moments of f1(v),

defined in Eq.(4.10) with a lower cut-off Qthre on the energy transfer, as follows:

〈vn〉 =
∫ ∞

vmin(Qthre)
vnf1(v) dv

= N
∫ ∞

Qthre

(
α

√
Q

)n
{
−2Q · d

dQ

[
1

F 2(Q)

(
dR

dQ

)]} (
α

2
√

Q

)
dQ

= N ·
(
−αn+1

) ∫ ∞

Qthre

Q(n+1)/2 · d

dQ

[
1

F 2(Q)

(
dR

dQ

)]
dQ

= Nαn+1

{
Q

(n+1)/2
thre

F 2(Qthre)

(
dR

dQ

)

Q=Qthre

+
n + 1

2

∫ ∞

Qthre

Q(n−1)/2

[
1

F 2(Q)

(
dR

dQ

)]
dQ

}
. (A.14)

This reproduces Eqs.(4.11) and (4.12) in Sec. 4.1.
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Appendix B

Moments of the Velocity
Distribution of WIMPs

In this chapter I derive at first the first and second moments of f1(v), i.e., the mean

velocity and the velocity dispersion of WIMPs, for both of the two simplest semi-realistic

halo models discussed in Subsecs. 3.1.3 and 3.2.1. Then, as tests of the formulae for

reconstructing f1(v) and determining 〈vn〉, I use the reduced spectra given in Eqs.(3.21’)

and (3.31’) in Sec. 4.1 and the expressions for f1(v) in Eqs.(4.8) and (4.9) as well as for

the moments of f1(v) in Eqs.(4.11) and (4.12) to obtain the same results.

B.1 Calculating 〈v〉 and 〈v2〉 from f1(v)

B.1.1 From f1,Gau(v) given in Eq.(3.20)

For a simple isothermal Maxwellian halo, the normalized one-dimensional velocity

distribution function has been given as

f1,Gau(v) =
4√
π

(
v2

v3
0

)
e−v2/v2

0 . (3.20)

One can find directly that

〈vn〉Gau =
∫ ∞

0
vnf1,Gau(v) dv

=
∫ ∞

0
vn

[
4√
π

(
v2

v3
0

)
e−v2/v2

0

]
dv

=
4√
πv3

0

∫ ∞

0
vn+2e−v2/v2

0 dv

=
4√
πv3

0





Γ
[

1
2
(n + 3)

]

2
·
(
v2

0

)(n+3)/2





=

(
2√
π

)
Γ

[
1
2
(n + 1) + 1

]
vn

0

=

(
n + 1√

π

)
Γ

[
1
2
(n + 1)

]
vn

0 , (B.1)
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where I have used

∫ ∞

0
xne−ax2

dx =
Γ

[
1
2
(n + 1)

]

2a(n+1)/2
,

and

Γ(m + 1) = mΓ(m) ,

for m = 0, 1
2
, 1, 3

2
, 2, · · ·. Hence, using

Γ(n + 1) = n! ,

and

Γ
(
n + 1

2

)
=

1 · 3 · · · (2n− 1)
√

π

2n
,

for n = 0, 1, 2, 3, · · ·, Eqs.(3.22) and (3.23) can be obtained directly.

B.1.2 From f1,sh(v) given in Eq.(3.29)

When we take into account the orbital motion of the Solar system around the Galaxy,

the velocity distribution function should be modified to

f1,sh(v, ve) =
1√
π

(
v

vev0

) [
e−(v−ve)2/v2

0 − e−(v+ve)2/v2
0

]
. (3.29)

First, I have

〈v〉sh =
∫ ∞

0
vf1,sh(v, ve) dv

=
1√

πvev0

∫ ∞

0
v · v

[
e−(v−ve)2/v2

0 − e−(v+ve)2/v2
0

]
dv

=
1√
πve

[
1

v0

∫ ∞

0
v2e−(v−ve)2/v2

0 dv − 1

v0

∫ ∞

0
v2e−(v+ve)2/v2

0 dv

]

=
1√
πve

(
V1,− −V1,+

)
. (B.2)

Define

u± ≡ v ± ve

v0

, (B.3a)

i.e.,

v = v0u± ∓ ve , (B.3b)
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it can be found that

V1,− ≡ 1

v0

∫ ∞

0
v2e−(v−ve)2/v2

0 dv

=
1

v0

∫ ∞

−ṽe

(v0u− + ve)
2e−u2

− (v0 du−)

= v2
0

∫ ∞

−ṽe

u2
−e−u2

− du− + 2vev0

∫ ∞

−ṽe

u−e−u2
− du− + v2

e

∫ ∞

−ṽe

e−u2
− du−

= v2
0

(
2

∫ ṽe

0
u2
−e−u2

− du− +
∫ ∞

ṽe

u2
−e−u2

− du−
)

+ 2vev0

∫ ∞

ṽe

u−e−u2
− du−

+ v2
e

(
2

∫ ṽe

0
e−u2

− du− +
∫ ∞

ṽe

e−u2
− du−

)
, (B.4a)

and

V1,+ ≡ 1

v0

∫ ∞

0
v2e−(v+ve)2/v2

0 dv

=
1

v0

∫ ∞

ṽe

(v0u+ − ve)
2e−u2

+ (v0 du+)

= v2
0

∫ ∞

ṽe

u2
+e−u2

+ du+ − 2vev0

∫ ∞

ṽe

u+e−u2
+ du+ + v2

e

∫ ∞

ṽe

e−u2
+ du+ , (B.4b)

where I have defined

ṽe ≡ ve

v0

. (B.5)

Combining Eqs.(B.4a) and (B.4b), one can get

V1,− −V1,+

= 2v2
0

∫ ṽe

0
u2e−u2

du + 2vev0

∫ ∞

ṽe

e−u2

du2 + 2v2
e

∫ ṽe

0
e−u2

du

= 2v2
0

[
−1

2

(
ṽee

−ṽ2
e

)
+

(√
π

4

)
erf(ṽe)

]
+ 2vev0e

−ṽ2
e + 2v2

e

[(√
π

2

)
erf(ṽe)

]

= vev0e
−v2

e/v2
0 +

√
π

(
v2

0

2
+ v2

e

)
erf

(
ve

v0

)
, (B.6)

where I have used the definition of error function

erf(x) =
2√
π

∫ x

0
e−t2dt ,

and
∫ x

0
t2 e−t2dt = −1

2

(
x e−x2

)
+

(√
π

4

)
erf(x) .

Hence, the mean velocity of WIMPs for a shifted Maxwellian halo discussed in Sub-

sec. 3.2.1 can be found as

〈v〉sh =

(
v0√
π

)
e−v2

e/v2
0 +

(
v2

0

2ve

+ ve

)
erf

(
ve

v0

)
. (3.32)
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Meanwhile,

〈v2〉sh =
∫ ∞

0
v2f1,sh(v, ve) dv

=
1√

πvev0

∫ ∞

0
v2 · v

[
e−(v−ve)2/v2

0 − e−(v+ve)2/v2
0

]
dv

=
1√
πve

[
1

v0

∫ ∞

0
v3e−(v−ve)2/v2

0 dv − 1

v0

∫ ∞

0
v3e−(v+ve)2/v2

0 dv
]

=
1√
πve

(
V2,− −V2,+

)
. (B.7)

Using Eqs.(B.3a), (B.3b), and (B.5), it can be found that

V2,− ≡ 1

v0

∫ ∞

0
v3e−(v−ve)2/v2

0 dv

=
1

v0

∫ ∞

−ṽe

(v0u− + ve)
3e−u2

− (v0 du−)

= v3
0

∫ ∞

−ṽe

u3
−e−u2

− du− + 3vev
2
0

∫ ∞

−ṽe

u2
−e−u2

− du−

+ 3v2
ev0

∫ ∞

−ṽe

u−e−u2
− du− + v3

e

∫ ∞

−ṽe

e−u2
− du−

= v3
0

∫ ∞

ṽe

u3
−e−u2

− du− + 3vev
2
0

(∫ ṽe

0
u2
−e−u2

− du− +
∫ ∞

0
u2
−e−u2

− du−
)

+ 3v2
ev0

∫ ∞

ṽe

u−e−u2
− du− + v3

e

(∫ ṽe

0
e−u2

− du− +
∫ ∞

0
e−u2

− du−
)

,(B.8a)

and

V2,+ ≡ 1

v0

∫ ∞

0
v3e−(v+ve)2/v2

0 dv

=
1

v0

∫ ∞

ṽe

(v0u+ − ve)
3e−u2

+ (v0 du+)

= v3
0

∫ ∞

ṽe

u3
+e−u2

+ du+ − 3vev
2
0

∫ ∞

ṽe

u2
+e−u2

+ du+

+ 3v2
ev0

∫ ∞

ṽe

u+e−u2
+ du+ − v3

e

∫ ∞

ṽe

e−u2
+ du+ . (B.8b)

Combining them, one can get

V2,− −V2,+ = 6vev
2
0

∫ ∞

0
u2e−u2

du + 2v3
e

∫ ∞

0
e−u2

du

= 6vev
2
0


Γ

(
3
2

)

2


 + 2v3

e

(√
π

2

)

=

(
3
√

π

2

)
vev

2
0 +

√
π v3

e . (B.9)

Therefore, the mean velocity of WIMPs for a shifted Maxwellian halo can be found as

〈v2〉sh =
(

3

2

)
v2

0 + v2
e . (3.33)
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Finally, according to Leibnitz’s Rule for Differentiation of Integrals given in Eq.(A.8),

one has

d

dx

[
erf(x)

]
=

2√
π

[
d

dx

∫ x

0
e−t2dt

]
=

2√
π

e−x2

. (B.10)

Then it is easily to prove that, for ve ¿ v0, i.e., ṽe ¿ 1, Eqs.(3.32) and (3.33) will reduce

to Eqs.(3.22) to (3.23).

B.2 Calculating f1(v), 〈v〉, and 〈v2〉 from dR/dQ

B.2.1 From (dR/dQ)Gau in Eq.(3.21)

Substituting Eq.(3.21’) in Sec. 4.1 into Eq.(4.8), I have

f1,Gau(v) = NGau

{
−2Q · d

dQ

[
1

F 2(Q)

(
dR

dQ

)

Gau

]}

Q=v2/α2

= NGau

[
−2Q · d

dQ

(
e−α2Q/v2

0

)]

Q=v2/α2

= NGau

[
2

(
v

v0

)2

e−v2/v2
0

]
. (B.11)

Meanwhile, according to Eq.(4.9), the normalization constant NGau can be found as

NGau =
2

α

{∫ ∞

0

1√
Q

[
1

F 2(Q)

(
dR

dQ

)

Gau

]
dQ

}−1

=
1

α





∫ ∞

0

[
1

F 2(Q)

(
dR

dQ

)

Gau

]

Q=q2

dq





−1

=
1

α

(∫ ∞

0
e−α2q2/v2

0 dq
)−1

=
1

α

(
v0

α
·
√

π

2

)−1

=
2√
πv0

. (B.12)

Here, for simplicity, I have defined 1:

Q = q2 , (B.13a)

and then

dQ = 2q dq . (B.13b)

Substituting Eq.(B.12) into Eq.(B.11), the normalized one-dimensional velocity distri-

bution function f1,Gau(v) in Eq.(3.20) can be obtained directly. Moreover, substituting

1I will use this definition in this section and the next chapter. Please do not confuse with the
transferred 3-momentum in Eq.(3.7).
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Eq.(3.21’) into Eqs.(4.12) and (4.11) and using the normalization constant in Eq.(B.12),

one can get

〈vn〉Gau = NGau

(
αn+1

2

)
· (n + 1)

∫ ∞

0
Q(n−1)/2

[
1

F 2(Q)

(
dR

dQ

)

Gau

]
dQ

= NGau(n + 1)

(
αn+1

2

) ∫ ∞

0
Q(n−1)/2e−α2Q/v2

0 dQ

= NGau(n + 1)

(
αn+1

2

) ∫ ∞

0
qn−1e−α2q2/v2

0 (2q dq)

=

(
2√
πv0

)
(n + 1)αn+1

{
1

2

(
v0

α

)n+1

Γ
[

1
2
(n + 1)

]}

=

(
n + 1√

π

)
Γ

[
1
2
(n + 1)

]
vn

0 . (B.1)

Note that I have set Qthre = 0 here.

B.2.2 From (dR/dQ)sh in Eq.(3.31)

According to Eq.(B.10), one can obtain that

d

dQ

[
erf

(
α
√

Q±ve

v0

)]
=

1√
π

(
α

v0

) [
1√
Q

e−[(α
√

Q±ve)/v0]
2
]

. (B.14)

Then, substituting Eq.(3.31’) in Sec. 4.1 into Eq.(4.8), I have

f1,sh(v, ve)

= Nsh

{
−2Q · d

dQ

[
1

F 2(Q)

(
dR

dQ

)

sh

]}

Q=v2/α2

= Nsh

{
−2Q · d

dQ

[
erf

(
α
√

Q+ve

v0

)
− erf

(
α
√

Q−ve

v0

)]}

Q=v2/α2

= Nsh

{
−2Q · 1√

π

(
α

v0

)
1√
Q

{
e−[(α

√
Q+ve)/v0]

2

− e−[(α
√

Q−ve)/v0]
2
}}

Q=v2/α2

= Nsh · 2√
π

(
v

v0

) [
e−(v−ve)2/v2

0 − e−(v+ve)2/v2
0

]
. (B.15)

Meanwhile, as done for NGau in Eq.(B.12), one can use Eqs.(B.13a) and (B.13b) and find

that

Nsh =
1

α





∫ ∞

0

[
1

F 2(Q)

(
dR

dQ

)

sh

]

Q=q2

dq





−1

=
1

α

{ ∫ ∞

0

[
erf

(
αq + ve

v0

)
− erf

(
αq − ve

v0

)]
dq

}−1

=
1

α

[
V0(∞)−V0(0)

]−1
, (B.16)
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where I have defined

V0(q) ≡
∫ [

erf
(

αq + ve

v0

)
− erf

(
αq − ve

v0

)]
dq ≡ V0,+(q)−V0,−(q) . (B.17)

Define

s± ≡ αq ± ve

v0

, (B.18a)

i.e.,

q =
v0s± ∓ ve

α
, (B.18b)

it can be found that

V0,±(q) ≡
∫

erf
(

αq ± ve

v0

)
dq

=
∫

erf(s±)
[(

v0

α

)
ds±

]

=
v0

α

∫
erf(s±) ds±

=
v0

α

[
s±erf(s±) +

1√
π

e−s2
±

]

=
(
q ± ve

α

)
erf(s±) +

1√
π

(
v0

α

)
e−s2

± , (B.19)

where I have used
∫

erf(x) dx = x erf(x) +
1√
π

e−x2

.

Substituting V0,±(q) in Eq.(B.19) into Eq.(B.17), I can get

V0(q) = q
[
erf(s+)− erf(s−)

]
+

ve

α

[
erf(s+) + erf(s−)

]
+

1√
π

(
v0

α

) (
e−s2

+ − e−s2
−

)
.

(B.20)

Now note that, as q →∞,

V0(q →∞) =
(

2

α

)
ve , (B.21)

since

s±(q →∞) →∞ , (B.22)

and

erf(∞) =
2√
π

∫ ∞

0
e−t2dt = 1 .

While, since as q = 0,

s±(0) = ±ve

v0

= ±ṽe , (B.23)
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where I have used the definition in Eq.(B.18a), and

erf(−x) = −erf(x) ,

it can be found that

V0(0) = 0 . (B.24)

Substituting Eqs.(B.22) and (B.24) into Eq.(B.16), the normalization constant Nsh can

be found as

Nsh =
1

α

[(
2

α

)
ve

]−1

=
1

2ve

. (B.25)

Then I can obtain the normalized velocity distribution function in Eq.(3.29) directly.

Meanwhile, substituting Eq.(3.31’) into Eq.(4.11) (Qthre = 0) and using Eqs.(B.13a) and

(B.13b), I have

〈v〉sh = Nsh · α2
∫ ∞

0

[
1

F 2(Q)

(
dR

dQ

)

sh

]

Q=q2

(2q dq)

=
1

2ve

· 2α2
∫ ∞

0
q

[
erf

(
αq + ve

v0

)
− erf

(
αq − ve

v0

)]
dq

=
α2

ve

[
V1(∞)−V1(0)

]
, (B.26)

where I have defined

V1(q) ≡
∫

q
[
erf

(
αq + ve

v0

)
− erf

(
αq − ve

v0

)]
dq ≡ V1,+(q)−V1,−(q) . (B.27)

Using Eqs.(B.18a) and (B.18b), it can be found that

V1,±(q)

≡
∫

q erf
(

αq ± ve

v0

)
dq

=
v0

α

∫ (
v0s± ∓ ve

α

)
erf(s±) ds±

=
(

v0

α

)2 ∫
s±erf(s±) ds± ∓ vev0

α2

∫
erf(s±) ds±

=
1

2

(
v0

α

)2
[(

s2
± −

1

2

)
erf(s±) +

1√
π

s±e−s2
±

]
∓ vev0

α2

[
s±erf(s±) +

1√
π

e−s2
±

]

=
1

2

(
v0

α

)2
{(

s± ∓ 2ve

v0

) [
s±erf(s±) +

1√
π

e−s2
±

]
− 1

2
erf(s±)

}

=
1

2

(
v0

α

)2
[(

s+s− − 1

2

)
erf(s±) +

1√
π

s∓e−s2
±

]
, (B.28)

where I have used
∫

x erf(x) dx =
1

2

[(
x2 − 1

2

)
erf(x) +

1√
π

xe−x2

]
,
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and

v0s± ∓ 2ve = (αq ± ve)∓ 2ve = αq ∓ ve = v0s∓ . (B.29)

Hence, I can get

V1(q) =
1

2

(
v0

α

)2
{ (

s+s− − 1

2

) [
erf(s+)− erf(s−)

]
+

1√
π

(
s−e−s2

+ − s+e−s2
−

) }
.

(B.30)

From Eq.(B.22), it can be found easily that

V1(q →∞) = 0 , (B.31)

and, from Eq.(B.23),

V1(0) = −
(

v0

α

)2
[(

ṽ2
e +

1

2

)
erf(ṽe) +

1√
π

(
ṽee

−ṽ2
e

)]
. (B.32)

Therefore, substituting these results into Eq.(B.26), I can obtain that

〈v〉sh =
α2

ve

{(
v0

α

)2
[(

ṽ2
e +

1

2

)
erf(ṽe) +

1√
π

(
ṽee

−ṽ2
e

)]}

=

(
ve +

v2
0

2ve

)
erf

(
ve

v0

)
+

(
v0√
π

)
e−v2

e/v2
0 . (3.32)

Similarly,

〈v2〉sh = Nsh ·
(

3

2

)
α3

∫ ∞

0
q

[
1

F 2(Q)

(
dR

dQ

)

sh

]

Q=q2

(2q dq)

=
1

2ve

· 3α3
∫ ∞

0
q2

[
erf

(
αq + ve

v0

)
− erf

(
αq − ve

v0

)]
dq

=
3

2

(
α3

ve

) [
V2(∞)−V2(0)

]
, (B.33)

where I have defined

V2(q) ≡
∫

q2
[
erf

(
αq + ve

v0

)
− erf

(
αq − ve

v0

)]
dq ≡ V2,+(q)−V2,−(q) . (B.34)

Using Eqs.(B.18a) and (B.18b), it can be found that

V2,±(q) ≡
∫

q2erf
(

αq ± ve

v0

)
dq

=
v0

α

∫ (
v0s± ∓ ve

α

)2

erf(s±) ds±

=
(

v0

α3

) ∫ (
v2

0s
2
± ∓ 2vev0s± + v2

e

)
erf(s±) ds±

=
(

v0

α

)3
[ ∫

s2
±erf(s±) ds± ∓ 2ṽe

∫
s±erf(s±) ds± + ṽ2

e

∫
erf(s±) ds±

]

116



=
(

v0

α

)3
{

1

3

[
s3
±erf(s±) +

1√
π

(
s2
± + 1

)
e−s2

±

]

∓ ṽe

[(
s2
± −

1

2

)
erf(s±) +

1√
π

s±e−s2
±

]

+ ṽ2
e

[
s±erf(s±) +

1√
π

e−s2
±

] }

=
(

v0

α

)3
{[

1

3

(
α

v0

)3

q3 ±
(

ṽ3
e

3
+

ṽe

2

)]
erf(s±)

+
1√
π

(
s2
±
3
∓ ṽes± + ṽ2

e +
1

3

)
e−s2

±

}
, (B.35)

where I have used
∫

x2erf(x) dx =
1

3

[
x3erf(x) +

1√
π

(
x2 + 1

)
e−x2

]
,

and

s3
±
3
∓ ṽes

2
± + ṽ2

es± =
1

3

[ (
s3
± ∓ 3ṽes

2
± + 3ṽ2

es± ∓ ṽ3
e

)
± ṽ3

e

]

=
1

3

(
v0s± ∓ ve

v0

)3

± ṽ3
e

3

=
1

3

(
α

v0

)3

q3 ± ṽ3
e

3
. (B.36)

Hence, I can get

V2(q) =
(

v0

α

)3
{

1

3

(
α

v0

)3

q3
[
erf(s+)− erf(s−)

]
+

(
ṽ3

e

3
+

ṽe

2

) [
erf(s+) + erf(s−)

]

+
1√
π

[(
s+

3
− ṽe

)
s+e−s2

+ −
(

s−
3

+ ṽe

)
s−e−s2

−
]

+
1√
π

(
ṽ2

e +
1

3

) (
e−s2

+ − e−s2
−

)}
. (B.37)

From Eq.(B.22), it can be found easily that

V2(q →∞) =
(

v0

α

)3
[
2

(
ṽ3

e

3
+

ṽe

2

)]
=

ve

α3

[(
2

3

)
v2

e + v2
0

]
, (B.38)

and, from Eq.(B.22),

V2(0) = 0 . (B.39)

Therefore, substituting these results into Eq.(B.33), I can obtain that

〈v2〉sh =
3

2

(
α3

ve

) {
ve

α3

[(
2

3

)
v2

e + v2
0

] }
= v2

e +
(

3

2

)
v2

0 . (3.33)
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Appendix C

Differential and Total Event Rates

In this chapter I derive the differential and total event rates for the simple and shifted

isothermal Maxwellian halo models from their velocity distribution functions given in

Eqs.(3.20) and (3.29). The case for F 2(Q) ≈ 1 and the case with the exponential form

factor F 2
ex(Q) given in Eq.(3.15) will be considered.

C.1 Setting F 2(Q) ≈ 1

C.1.1 Starting with f1,Gau(v) given in Eq.(3.20)

For a simple isothermal Maxwellian halo, the normalized one-dimensional velocity

distribution function has been given as

f1,Gau(v) =
4√
π

(
v2

v3
0

)
e−v2/v2

0 . (3.20)

I can get directly that
∫ ∞

vmin

[
f1,Gau(v)

v

]
dv =

∫ ∞

vmin

1

v

[
4√
π

(
v2

v3
0

)
e−v2/v2

0

]
dv

=
4√
πv3

0

∫ ∞

vmin

ve−v2/v2
0 dv

=
2√
πv3

0

∫ ∞

vmin

e−v2/v2
0 dv2

=

(
2√
πv0

)
e−v2

min/v2
0 . (C.1)

Using this result and Eqs.(3.10) and (3.12), one can obtain (dR/dQ)Gau in Eq.(3.21) and

then RGau(Qthre) in Eq.(3.24) easily when F 2(Q) has been neglected.

C.1.2 Starting with f1,sh(v) given in Eq.(3.29)

When we take into account the orbital motion of the Solar system around the Galaxy,

the velocity distribution function should be modified to

f1,sh(v, ve) =
1√
π

(
v

vev0

) [
e−(v−ve)2/v2

0 − e−(v+ve)2/v2
0

]
. (3.29)
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First, using Eqs.(B.3a) and (B.3b), it can be found that

∫ ∞

vmin

[
f1,sh(v)

v

]
dv =

1√
π vev0

[∫ ∞

vmin

e−(v−ve)2/v2
0 dv −

∫ ∞

vmin

e−(v+ve)2/v2
0 dv

]

=
1√

π vev0

[∫ ∞

u−,min

e−u2
−(v0 du−)−

∫ ∞

u+,min

e−u2
+(v0 du+)

]

=
1√
π ve

·
√

π

2

[
erfc(u−,min)− erfc(u+,min)

]

=
1

2ve

[
erf(u+,min)− erf(u−,min)

]
, (C.2)

where I have used the definition

erfc(x) =
2√
π

∫ ∞

x
e−t2dt = 1− erf(x) ,

and

u±,min ≡ vmin ± ve

v0

. (C.3)

Combining Eqs.(C.2) and (C.3) with Eqs.(3.10) and (3.12), one can obtain (dR/dQ)sh in

Eq.(3.31). Moreover, by using Eqs.(B.13a) and (B.13b), one can find that
∫ ∞

Qthre

[
erf

(
α
√

Q+ve

v0

)
− erf

(
α
√

Q−ve

v0

)]
dQ

=
∫ ∞

qthre

[
erf

(
αq + ve

v0

)
− erf

(
αq − ve

v0

)]
(2q dq)

= 2
[
V1(q →∞)−V1(qthre)

]

=
(

v0

α

)2
{ (

1

2
− S+S−

) [
erf(S+)− erf(S−)

]
+

1√
π

(
S+e−S2

− − S−e−S2
+

) }
. (C.4)

Here I have defined

qthre ≡
√

Qthre , (C.5)

and used Eqs.(B.27), (B.31), (B.30), (B.18a), and (3.35). Hence, for F 2(Q) ≈ 1, one can

get Rsh(Qthre) in Eq.(3.34) directly.

C.2 Using F 2
ex(Q) given in Eq.(3.15)

C.2.1 Starting with (dR/dQ)Gau given in Eq.(3.21)

Substituting the exponential form factor F 2
ex(Q) given in Eq.(3.15) into Eq.(3.21), one

can get
(

dR

dQ

)

Gau,ex

= A
(

2√
πv0

)
e−(α2/v2

0+1/Q0)Q = A
(

2√
πv0

)
e−α2Q/v2

0β2

, (C.6)
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where β has been defined in Eq.(3.28). Then it is easy to find that

RGau,ex(Qthre) = A
(

2√
πv0

) ∫ ∞

Qthre

e−α2Q/v2
0β2

dQ

=
ρ0σ0〈v〉Gau

mχmN

(
β2 e−α2Qthre/v2

0β2
)

. (3.26)

C.2.2 Starting with (dR/dQ)sh given in Eq.(3.31)

Substituting the exponential form factor F 2
ex(Q) into Eq.(3.31), one can get

(
dR

dQ

)

sh,ex

= A
(

1

2ve

)
e−Q/Q0

[
erf

(
α
√

Q+ve

v0

)
− erf

(
α
√

Q−ve

v0

)]
. (C.7)

Consider
∫

e−Q/Q0 erf
(

α
√

Q±ve

v0

)
dQ

= −Q0 e−Q/Q0 erf
(

α
√

Q±ve

v0

)
+

Q0√
π

(
α

v0

) ∫ 1√
Q

e−Q/Q0−[(α
√

Q±ve)/v0]
2

dQ , (C.8)

where I have used integration by parts and Eqs.(B.14). Using Eqs.(B.13a) and (B.13b),

the integral of the second term on the right-hand side above can be found as
∫ 1√

Q
e−Q/Q0−[(α

√
Q±ve)/v0]

2

dQ = 2
∫

e
−
[
(α2/v2

0+1/Q0)q2±(2αve/v2
0)q+v2

e/v2
0

]
dq

=
√

π

(
v0β

α

)
e−(1−β2)ṽ2

e erf
(

α
√

Q
v0β

± βṽe

)
, (C.9)

where I have used
∫

e−(ax2+bx+c) dx =
1

2

√
π

a
e(b2/4a−c) erf

(√
ax + b

2
√

a

)
,

and the definition in Eq.(B.5). Combining Eqs.(C.7) to (C.9), one can get

Rsh,ex(Qthre)

= A
(

Q0

2ve

){
e−Qthre/Q0

[
erf

(
α
√

Qthre+ve

v0

)
− erf

(
α
√

Qthre−ve

v0

)]

− βe−(1−β2)ṽ2
e

[
erf

(
α
√

Qthre+β2ve

v0β

)
− erf

(
α
√

Qthre−β2ve

v0β

)]}

=
ρ0σ0

mχmN

(
v2

0

2ve

) (
β2

1− β2

)

×
{

e−(1−β2)α2Qthre/v2
0β2

[
erf(S+)− erf(S−)

]

− βe−(1−β2)v2
e/v2

0

[
erf(T+)− erf(T−)

]}
, (3.37)

where I have used the definitions in Eqs.(3.35) and (3.38) as well as

Q0 =
v2

0

α2

(
β2

1− β2

)
. (3.28’)
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Appendix D

Some Old Attempts

In this chapter I present some old attempts for reconstructing the velocity distribution

function, eventually also for determining its moments. I describe also their disadvantages

and problems. However, these unsuccessful attempts could perhaps inspire some new

ideas.

D.1 Binning the data set

The usually used choice for binning a data set is that every bin has that same width:

bn = b =
Qmax −Qmin

B
, (D.1)

and thus

Qn = Qmin +
(
n− 1

2

)
b . (D.2)

However, as discussed in Subsec. 4.2.2, using bins with linearly increasing widths can

make the errors roughly equal:

bn = b1 + (n− 1)δ , (4.33)

here the increment δ satisfies

δ =
2

B(B − 1)

(
Qmax −Qmin −Bb1

)
. (4.35)

Hence, for the n-th Q-bin, one has

Qn,min = Qmin + (n− 1)b1 +

[
(n− 1)(n− 2)

2

]
δ , (D.3a)

and

Qn,max = Qmin + nb1 +

[
n(n− 1)

2

]
δ . (D.3b)

This means that

Qn = Qmin +
(
n− 1

2

)
b1 +

[
(n− 1)2

2

]
δ . (4.34)
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Moreover, one other choice for binning the data set is

bn = b1δ
n−1 . (D.4)

It is more comfortable if we choose δ as the input parameter and then determine b1 as

b1 =

(
δ − 1

δB − 1

) (
Qmax −Qmin

)
. (D.5)

Hence, for the n-th Q-bin, one has

Qn,min = Qmin +

(
δn−1 − 1

δ − 1

)
b1 , (D.6a)

and

Qn,max = Qmin +

(
δn − 1

δ − 1

)
b1 . (D.6b)

This means that

Qn = Qmin +

[
δn + δn−1 − 2

2 (δ − 1)

]
b1 . (D.7)

D.2 Reconstructing f1(v) without derivatives

According to the expression of the differential event rate in Eq.(3.12), I have
(

dR

dQ

)

Q=Qn

= AF 2(Qn)
∫ ∞

vn

[
f1(v)

v

]
dv , (D.8)

where, from Eq.(3.10),

vn = α
√

Qn . (D.9)

Then it can be found that

∫ vn+1

vn

[
f1(v)

v

]
dv =

1

A


 1

F 2(Qn)

(
dR

dQ

)

Q=Qn

− 1

F 2(Qn+1)

(
dR

dQ

)

Q=Qn+1




≡ ∆n . (D.10)

The mean value theorem of calculus implies

∆n

vn+1 − vn

=

[
f1(v)

v

]

v=ṽn

, (D.11)

where vn ≤ ṽn ≤ vn+1. Hence, I can let

ṽn = αnvn+1 + (1− αn)vn = vn + αn(vn+1 − vn) , (0 ≤ αn ≤ 1), (D.12)

and rewrite Eq.(D.11) to

f1(ṽn) =

(
ṽn

vn+1 − vn

)
∆n =

[
1

(vn+1/vn)− 1
+ αn

]
∆n , (0 ≤ αn ≤ 1). (D.13)
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Therefore, the error of f1(ṽn) can be given as

σ
(
f1(ṽn)

)
=

[
1

(vn+1/vn)− 1
+ αn

]
σ(∆n) . (D.14)

Usually, one sets αn = 1
2

and then it can be reduced to

σ
(
f1(ṽn, αn = 1/2)

)
≡ σ

(
f1(vn+1/2)

)
=

1

2

(
vn+1 + vn

vn+1 − vn

)
σ(∆n) . (D.15)

Here, from Eq.(D.10),

σ(∆n) =
1

A

{
1

F 4(Qn)
σ2

[(
dR
dQ

)
Q=Qn

]
+

1

F 4(Qn+1)
σ2

[(
dR
dQ

)
Q=Qn+1

]}1/2

=
1

A

{
1

F 4(Qn)

(
Nn

b2
n

)
+

1

F 4(Qn+1)

(
Nn+1

b2
n+1

)}1/2

, (D.16)

where I have used the standard estimator for for dR/dQ at the point Q = Qn in Eq.(4.15)

and then its statistical error in Eq.(4.16).

This method is straightforward. However, neither f1(ṽn) nor its statistical error is

independent of the unknown constant A. Moreover, this method has an anti-correlation

problem: An upward fluctuation of the counting rate in the n-th Q-bin will lead to too

small f1 in the n− 1-st v-bin, but tends to give too large f1 in the nth v-bin.

D.3 Average logarithmic slope

As shown in Fig. 4.1, the theoretically predicted recoil spectrum is approximately

exponential. And, as discussed in Subsec. 4.2.1, an exponential approximation can ap-

proximate the recoil spectrum for a wider bin. Hence, I have considered the exponential

ansatz in Eq.(4.18), but at beginning only naively combined with the standard estimator

for dR/dQ at the point Q = Qn as
(

dR

dQ

)

Q'Qn

= rnekn(Q−Qn) , (D.17)

where rn = Nn/bn is the standard estimator given in Eq.(4.15). Define the slope of the

straight line with two endpoints (Qn, ln(dR/dQ)Q=Qn) and
(
Qn+1, ln(dR/dQ)Q=Qn+1

)
as

kn,n+1 ≡ ln rn+1 − ln rn

Qn+1 −Qn

, n = 1, 2, · · · , B − 1. (D.18)

Then I can define an average slope for the function ln(dR/dQ)Q'Qn at the point Q = Qn,

n = 2, 3, · · · , B − 1, as (see Fig. D.1)

kn,ave ≡ kn−1,n + kn,n+1

2
=

1

2

(
ln rn − ln rn−1

Qn −Qn−1

+
ln rn+1 − ln rn

Qn+1 −Qn

)
, (D.19a)
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Figure D.1: Sketch of the average slope for the function ln(dR/dQ)Q'Qn at Q = Qn,
kn,ave, defined in Eq.(D.19a).

but, at the point Q = Q1, I have defined

k1,ave ≡ k1,2 =
ln r2 − ln r1

Q2 −Q1

. (D.19b)

The statistical errors on kn,ave can be obtained directly from Eqs.(D.19a) and (D.19b) as

σ2 (kn,ave) =
1

4




(
1

Qn −Qn−1

− 1

Qn+1 −Qn

)2
1

Nn

+

(
1

Qn −Qn−1

)2
1

Nn−1

+

(
1

Qn+1 −Qn

)2
1

Nn+1


 , (D.20a)

for n = 2, 3, · · · , B − 1, and

σ2 (k1,ave) =

(
1

Q2 −Q1

)2 (
1

N1

+
1

N2

)
, (D.20b)

where I have used Eqs.(4.15) and (4.16) to get

σ2(rn)

r2
n

=
1

Nn

. (D.21)

Moreover, the kn,ave given in Eqs.(D.19a) and (D.19b) are correlated. Hence, for kn,ave in

Eq.(D.19a), I have
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cov (kn,ave, kn+1,ave)

=
1

4

[
−

(
1

Qn −Qn−1

− 1

Qn+1 −Qn

) (
1

Qn+1 −Qn

)
1

Nn

+

(
1

Qn+1 −Qn

) (
1

Qn+1 −Qn

− 1

Qn+2 −Qn+1

)
1

Nn+1

]
, (D.22a)

and

cov (kn,ave, kn+2,ave) = −1

4

(
1

Qn+1 −Qn

) (
1

Qn+2 −Qn+1

)
1

Nn+1

, (D.22b)

while, for k1,ave in Eq.(D.19b), I have

cov (k1,ave, k2,ave) =
1

2




(
1

Q2 −Q1

)2
1

N1

+
1

Q2 −Q1

(
1

Q2 −Q1

− 1

Q3 −Q2

)
1

N2


 ,

(D.22c)

and

cov (k1,ave, k3,ave) = −1

2

(
1

Q2 −Q1

) (
1

Q3 −Q2

)
1

N2

. (D.22d)

Now I can begin to reconstruct the recoil spectrum. The basic idea is that I approx-

imate the function ln(dR/dQ) in each bin by a straight line ln rn,ave(Q) which has the

slope kn,ave and passes through the point (Qn, ln rn) (see Fig. D.2):

ln rn,ave(Q)− ln rn

Q−Qn

= kn,ave . (D.23)

Hence, I have
(

dR

dQ

)

Q'Qn

= rn,ave(Q) = rn ekn,ave(Q−Qn) , n = 2, 3, · · · , B − 1, (D.24a)

in the n-th Q-bin:

Qn−1+Qn

2
≡ Qn− ≤ Q ≤ Qn+ ≡ Qn+Qn+1

2
, (D.25a)

and
(

dR

dQ

)

Q'Q1

= r1,ave(Q) = r1 ek1,ave(Q−Q1) , (D.24b)

in the first Q-bin:

Qthre ≡ Q1− ≤ Q ≤ Q1+ ≡ Q1+Q2

2
, (D.25b)
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Figure D.2: Sketch of the reconstructed segment of the function ln(dR/dQ) between
(Qn−1 + Qn)/2 and (Qn + Qn+1)/2, ln rn,ave(Q).

where Qthre is the threshold energy and the kn,ave, n = 1, 2, · · · , B − 1, are given in

Eqs.(D.19a) and (D.19b), respectively. Then, similar to Eq.(4.46), the velocity distribu-

tion function f1(v) given in Eq.(4.8) can be reconstructed as

f1,ave(vn) = Nave

[
2Qnrn

F 2(Qn)

] [
d

dQ
ln F 2(Q)

∣∣∣∣
Q=Qn

− kn,ave

]
, (D.26)

for n = 1, 2, · · · , B − 1. Here vn is given in Eq.(D.9).

The first problem with the expression in Eq.(D.26) is estimating the normalization

constant Nave. One possibility is inserting rn,ave(Q) given in Eqs.(D.24a) and (D.24b)

into Eq.(4.9) directly:

Nave =
2

α

{
B−1∑

i=1

∫ Qi+

Qi−

1√
Q

[
ri,ave(Q)

F 2(Q)

]
dQ

}−1

, (D.27)

where Qi± are given in Eqs.(D.25a) and (D.25b). Similarly, In defined in Eq.(4.12) and

(dR/dQ)Q=Qthre
in Eq.(4.11) can also be estimated as

In =
B−1∑

i=1

∫ Qi+

Qi−
Q(n−1)/2

[
ri,ave(Q)

F 2(Q)

]
dQ , (D.28)

and
(

dR

dQ

)

ave,Q=Qthre

= r1,ave(Qthre) = r1 ek1,ave(Qthre−Q1) . (D.29)
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Figure D.3: Sketch of the elevation from (dR/dQ)real,Q=Qn to rn and from rn to r∗n,ave due
to the concavity of the recoil curve, (dR/dQ)real, and that of the reconstructed spectrum,
rn,ave(Q), between (Qn−1 + Qn)/2 and (Qn + Qn+1)/2, respectively.

However, it should be pretty complicated to estimate the statistical errors of f1,ave(vn)

given in Eq.(D.26) with Nave estimated in Eq.(D.27).

The other serious problem with the ansatz in Eqs.(D.24a) and (D.24b) is that one

must also consider a systematic error caused by using the exponential ansatz with the

standard estimator rn = Nn/bn. Suppose that (dR/dQ)real is the real recoil spectrum and

passes through the point (Qn, (dR/dQ)real,Q=Qn) (see Fig. D.3). During the experiment

we measure deposited energies and count the event rate, which is proportional to the

area under the real recoil spectrum (see Eq.(4.20)), in the n-th Q-bin, and then estimate

rn = Nn/bn. However, because the recoil spectrum is concave, the estimator rn is a

little larger than the real value, (dR/dQ)real,Q=Qn (see r̃n given in Eq.(4.22)). Define this

elevation from (dR/dQ)real,Q=Qn to rn as

∆r,n ≡ rn,ave(Qn)−
(

dR

dQ

)

real,Q=Qn

≡ rn − rn,real , n = 1, 2, · · · , B − 1. (D.30)

On the other hand, it is plausible to suppose that the reconstructed recoil spectrum

rn,ave(Q) in Eq.(D.20a) and (D.20b) are approximately parallel to the real one (dR/dQ)real,

thus I can estimate the elevation by

∆r,n ≈ r∗n,ave − rn , n = 1, 2, · · · , B − 1. (D.31)
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Here r∗n,ave can be calculated from rn,ave(Qn) as

r∗n,ave =
2

Qn+1 −Qn−1

∫ (Qn+Qn+1)/2

(Qn−1+Qn)/2
rn,ave(Q) dQ

=
2

Qn+1 −Qn−1

∫ (Qn+Qn+1)/2

(Qn−1+Qn)/2

[
rn ekn,ave(Q−Qn)

]
dQ

= rn

[
2

kn,ave(Qn+1 −Qn−1)

] [
e

kn,ave

(
Qn+1−Qn

2

)
− e

−kn,ave

(
Qn−Qn−1

2

)]
, (D.32a)

for n = 2, 3, · · · , B − 1, and for n = 1,

r∗1,ave =
2

Q1 + Q2 − 2Qthre

∫ (Q1+Q2)/2

Qthre

r1,ave(Q) dQ

=
2

Q1 + Q2 − 2Qthre

∫ (Q1+Q2)/2

Qthre

[
r1 ek1,ave(Q−Q1)

]
dQ

= r1

[
2

k1,ave(Q1 + Q2 − 2Qthre)

] [
ek1,ave(Q2−Q1

2 ) − e−k1,ave(Q1−Qthre)

]
. (D.32b)

Combining Eqs.(D.30) to (D.32b), the real value of the recoil spectrum (dR/dQ)real at

the point Q = Qn, n = 2, 3, · · · , B − 1, can be obtained (approximately) as

rn,real ≈ 2rn − r∗n,ave

= 2rn

{
1−

[
1

kn,ave(Qn+1 −Qn−1)

]

×
[
e

kn,ave

(
Qn+1−Qn

2

)
− e

−kn,ave

(
Qn−Qn−1

2

)]}
, (D.33a)

and at the point Q = Q1,

r1,real ≈ 2r1 − r∗1,ave

= 2r1

{
1−

[
1

k1,ave(Q1 + Q2 − 2Qthre)

]

×
[
ek1,ave(Q2−Q1

2 ) − e−k1,ave(Q1−Qthre)

]}
. (D.33b)

Note that the correction of rn here is essentially the same as the expression of r̃n in

Eq.(4.22).

Now one can replace rn in Eqs.(D.19a) and (D.19b) by rn,real estimated by Eqs.(D.33a)

and (D.33b) to get kn,ave, and then substitute rn,real and kn,ave into Eqs.(D.26) to (D.29) to

reconstruct f1,ave(vn) and so on. However, due to the dependence of rn,real on rn and kn,ave,

it is very complicated to modify even the statistical errors in Eqs.(D.20a) to (D.22d)!

Moreover, this “average-logarithmic-slope” method has also the same “anti-correlation”

problem as the method described in the previous section. An upward fluctuation in the

n-th Q-bin leads to a too small slope kn−1,n and a too large slope kn,n+1, even though

the fluctuation of the “average” slope kn,ave = (kn−1,n + kn,n+1)/2 could be more or less

decreased and the value of kn,ave should be not very bad.
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Furthermore, as shown in e.g., Eqs.(D.18), (D.24a), and (D.30), from B bins one

can get B − 1 kn,ave, rn,ave(Q), and rn,real. Then, after one replaces rn in Eq.(D.18) by

rn,real and runs the whole process from Eq.(D.18) to Eq.(D.29), one can have only B − 2

f1,ave(vn) given by Eq.(D.26). However, as shown in Figs. 4.2, with 500 (or even 5000)

events, one has only 4 (or 8) bins to use. 1 Hence, it can not be allowed to lose 2 bins

(points) more!

D.4 Linear approximations of (dQ/dR)Q'Qn

As noted in the beginning of Sec. 4.2, according to the expression in Eq.(4.8), one

needs not only an estimator for dR/dQ at Q = Qn but also one for the slope of the recoil

spectrum to reconstruct the velocity distribution. A rather crude estimator of this slope

is

s1,n ≡
[

d

dQ

(
dR

dQ

)]

Q=Qn

=
Nn,Q>Qn −Nn,Q<Qn

(bn/2)2
, (D.34)

where Nn,Q>Qn and Nn,Q<Qn are the numbers of events in bin n which have measured

recoil energy Q larger and smaller than Qn, respectively. This estimator is rather crude,

since it only uses the information in which half of its bin a given event falls.

It is clear intuitively that an estimator that makes use of the exact Q-value of each

event should be better. This can e.g., be obtained from the average Q-value in a given

bin. Taylor-expanding dR/dQ around Q = Qn, keeping terms up to linear order, gives
(

dR

dQ

)

Q'Qn

'
(

dR

dQ

)

Q=Qn

+ (Q−Qn)

[
d

dQ

(
dR

dQ

)]

Q=Qn

= rn + (Q−Qn)sn .

(D.35)

Using this linear approximation for the recoil spectrum, one can find

Nn =
∫ Qn+bn/2

Qn−bn/2

[
rn + (Q−Qn)sn

]
dQ = rnbn , (D.36)

(of course, this reproduces the standard estimator in Eq.(4.15)) and the average value of

the recoil energies in the n-th Q-bin:

Q−Qn|n =
1

Nn

∫ Qn+bn/2

Qn−bn/2
(Q−Qn)

[
rn + (Q−Qn)sn

]
dQ =

(
b2
n

12rn

)
sn . (D.37)

Hence, an improved estimator of the slope of dR/dQ at Q = Qn is

s2,n =
12rnQ−Qn|n

b2
n

. (D.38)

1Not 5 or 10 bins, because the last one or two bin are almost empty, see the discussion in Subsec. 4.2.3.
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According to the definition of s1,n in Eq.(D.34) it can be found that

σ2(s1,n) =

[
1

(bn/2)2

]2 [
σ2

(
Nn,Q>Qn

)
+ σ2

(
Nn,Q<Qn

)]

=
16

b4
n

(
Nn,Q>Qn + Nn,Q<Qn

)

=
16rn

b3
n

, (D.39)

where I have used Eqs.(4.17) and (4.15). On the other hand, according to the expression

of s2,n in Eq.(D.38), and treating the number of events and the average Q-value in a given

bin as two independent variables, one can obtain that

σ2(s2,n) =

(
12Q−Qn|n

b2
n

)2

σ2(rn) +

(
12rn

b2
n

)2

σ2
(
Q−Qn|n

)
=

12rn

b3
n

. (D.40)

Here I have used Eq.(4.16), the definition in Eq.(4.24) with the linear approximation in

Eq.(D.35),

(Q−Qn)2|n =
1

Nn

∫ Qn+bn/2

Qn−bn/2
(Q−Qn)2

[
rn + (Q−Qn)sn

]
dQ =

b2
n

12
, (D.41)

and 2

σ2
(
Q−Qn|n

)
=

1

Nn

[
(Q−Qn)2|n −Q−Qn|2n

]
. (D.42)

This simple calculation shows that the estimator s2,n given in Eq.(D.38) indeed has a

smaller statistical error than the crude estimator s1,n in Eq.(D.34) by a factor of
√

3/4.

D.5 Using the exponential ansatz in Eq.(4.18)

In App. D.3 I have used an exponential approximation with the standard estimator

rn to reconstruct the recoil spectrum. A correction due to the approximately exponential

form of the recoil spectrum has also been discussed. The use of the average logarithmic

slope kn,ave combined with the correction is very complicated, especially for the error

analysis. However, it is clear that an exponential approximation can approximate the

recoil spectrum much better than a linear one. On the other hand, in the previous section

I have introduced the use of the exact Q-value of each event. The analysis done with

two linear approximations has shown that the statistical error can be strongly reduced.

Hence, it is pretty straightforwardly to combine these two techniques and their advantages

together.

By using an exponential ansatz for the recoil spectrum in each Q-bin, combining with

a prefactor which can be adjusted by the event number in this bin, and then estimating

the logarithmic slope by the average value of the recoil energies measured in this bin,

2Strictly speaking, the denominator should be Nn − 1 as I used in Eq.(4.32).
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one can already obtain the expressions given in Subsec. 4.2.1. Substituting the first

expression of the exponential ansatz in Eq.(4.18) into Eq.(4.8) with the logarithmic slope

kn estimated by Eq.(4.23), the velocity distribution function can be reconstructed as

f1,Q(vn) = NQ

[
2Qnr̃n

F 2(Qn)

] [
d

dQ
ln F 2(Q)

∣∣∣∣
Q=Qn

− kn

]
, (D.43)

where vn is given in Eq.(D.9). This expression is already almost the same as the expression

given in Eq.(4.46), except the central point Qn in the n-th Q-bin has been used here

instead of the shifted point Qs,µ in the µ-th Q-window, and thus I have used r̃n instead

of rµ here. Moreover, I have to determine the normalization constant NQ here. It can be

done by Eq.(D.27) with replacing ri,ave(Q) by r̃nekn(Q−Qn):

NQ =
2

α

{
B∑

i=1

∫ Qi+

Qi−

1√
Q

[
r̃nekn(Q−Qn)

F 2(Q)

]
dQ

}−1

, (D.44)

where Qn± have been given as

Qn − bn

2
≡ Qn− ≤ Q ≤ Qn+ ≡ Qn + bn

2
. (D.45)

However, in order to estimate the statistical error of f1,Q(vn) in Eq.(D.43) more easily, I

have defined

f1,n,Q(v) ≡ NQ

{
2Qr̃ne

kn(Q−Qn)

F 2(Q)

[
d ln F 2(Q)

dQ
− kn

]}

Q=v2/α2

, (D.46)

and

f̃1,n,Q(v) ≡ 2

{
Qr̃nekn(Q−Qn)

F 2(Q)

[
d ln F 2(Q)

dQ
− kn

]}

Q=v2/α2

=
f1,n,Q(v)

NQ

, (D.47)

in the n-th v-bin:

α
√

Qn− ≡ vn− ≤ v ≤ vn+ ≡ α
√

Qn+ , (D.48)

for n = 1, 2, 3, · · · , B. The normalization condition in Eq.(4.7) can be rewritten as

B∑

i=1

∫ vi+

vi−
f1,i,Q(v) dv = NQ

[
B∑

i=1

∫ vi+

vi−
f̃1,i,Q(v) dv

]
= 1 . (D.49)

Then the normalization constant can be obtained directly by

NQ =

[
B∑

i=1

∫ vi+

vi−
f̃1,i,Q(v) dv

]−1

, (D.50)

and f1,n,Q(v) in Eq.(D.46) can be rewritten as

f1,n,Q(v) =

[
B∑

i=1

∫ vi+

vi−
f̃1,i,Q(v) dv

]−1

f̃1,n,Q(v) =
f̃1,n,Q(v)

S0

. (D.51)
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Here I have defined

Sλ ≡
B∑

i=1

∫ vi+

vi−
vλf̃1,i,Q(v) dv . (D.52)

Moreover, it is reasonable to define the n-th moment of f1,n,Q(v) as

〈vn〉Q ≡
B∑

i=1

∫ vi+

vi−
vnf1,i,Q(v) dv =

Sn

S0

. (D.53)

Furthermore, in order to estimate the statistical errors of f1,n,Q(v) and 〈vn〉Q given in

Eqs.(D.51) and (D.53), I have denoted first the independent variables of f̃1,n,Q(v) defined

in Eq.(D.47) as xν,j, where the subscript ν stands for different species of variable, and

j = 1, 2, 3, · · · , B stands for the bins. Meanwhile, I have assumed that, in the j-

th Q-bin (and then also in the j-th v-bin), the error of each of these variables xν,j is

approximately equal. Hence, I can use its value at the point Q = Qj, defined as δxν,j, for

the whole j-th Q- or v-bin. From the expression of f1,n,Q(v) in Eq.(D.51), its statistical

error can be found directly as

σ2
(
f1,n,Q(v)

)
=

∑
ν

B∑

j=1

[
∂f1,n,Q(v)

∂xν,j

]2

σ2(xν,j)

=
1

S4
0

∑
ν

B∑

j=1

[
S0

(
∂ν,j f̃1,n,Q(v)

)
− Sν,j;0 f̃1,n,Q(v)

]2

σ2(xν,j) . (D.54)

Here I have defined

∂ν,j f̃1,n,Q(v) ≡ ∂f̃1,n,Q(v)

∂xν,j

, (D.55)

and

Sν,j;λ ≡
B∑

i=1

∫ vi+

vi−
vλ

[
∂ν,j f̃1,i,Q(v)

]
dv . (D.56)

Similarly, from the definition of 〈vn〉Q in Eq.(D.53), it can be found that

σ2
(
〈vn〉Q

)
=

∑
ν

B∑

j=1

(
∂〈vn〉Q
∂xν,j

)2

σ2(xν,j)

=
1

S4
0

∑
ν

B∑

j=1

(
S0 Sν,j;n − Sn Sν,j;0

)2
σ2(xν,j) . (D.57)

According to the expression of f̃1,n,Q(v) in Eq.(D.47) and r̃n and kn given in Eqs.(4.22)

and (4.23), the independent variables of f̃1,n,Q(v) should be chosen as

x1,n = Nn , x2,n = kn , (D.58)
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with σ2(Nn) and σ2(kn) given in Eqs.(4.17) and (4.29). Since f̃1,n,Q(v) depends only on

Nn and kn, Eqs.(D.54) and (D.57) can be reduced to

σ2
(
f1,n,Q(v)

)
=

1

S4
0

∑
ν

B∑

j=1

[
δnjS0

(
∂ν f̃1,Q,n(v)

)
− Iν,j;0 f̃1,Q,n(v)

]2

σ2(xν,j) , (D.59)

and

σ2
(
〈vn〉Q

)
=

1

S4
0

∑
ν

B∑

j=1

(
S0 Iν,j;n − Sn Iν,j;0

)2
σ2(xν,j) . (D.60)

Here I have defined

∂N f̃1,n,Q(v) ≡ ∂f̃1,n,Q(v)

∂Nn

=
f̃1,n,Q(v)

Nn

, (D.61)

∂kf̃1,n,Q(v) ≡ ∂f̃1,n,Q(v)

∂kn

= −f̃1,n,Q(v)



Q−Qn|n +

[
d ln F 2(Q)

dQ
− kn

]−1




Q=v2/α2

, (D.62)

and, from Eq.(D.56),

Iν,j;λ ≡
∫ vj+

vj−
vλ

[
∂ν f̃1,j,Q(v)

]
dv . (D.63)

D.6 Introducing the average value of Qλ/F 2(Q)

The method presented in the previous section has two disadvantages. First, the

estimator of NQ in Eq.(D.50) is the sum of several integrals, this makes the estimation

complicated. Second, and also the worse disadvantage, by using 〈vn〉Q given in Eq.(D.53)

with Sλ defined in Eq.(D.52), one has to know f̃1,n,Q(v) defined in Eq.(D.47), i.e., f1,n,Q(v)

defined in Eq.(D.46). It is not only complicated but also loses the advantage of the

expressions in Eqs.(4.11) and (4.12), by which one can evaluate the moments of f1(v)

without knowing the functional form of f1(v). This problem comes essentially from the

estimator of NQ in Eq.(D.50) obtained from the normalization condition in Eq.(4.7).

Hence, one needs a new estimator for the normalization constant.

Similar to the use of the moments of the recoil spectrum in Eqs.(4.23) and (4.24), I

have defined an average value of Qλ/F 2(Q) for all events in the n-th Q-bin:

1

Nn

∫ Qn+bn/2

Qn−bn/2

Qλ

F 2(Q)

(
dR

dQ

)
dQ =

1

Nn

Nn∑

i=1

Qλ
n,i

F 2(Qn,i)
≡ S2,λ,n . (D.64)

Then, for all recorded events in the sample, I can use

∫ ∞

0

Qλ

F 2(Q)

(
dR

dQ

)
dQ →

B∑

n=1

Nn∑

i=1

Qλ
n,i

F 2(Qn,i)
=

B∑

n=1

NnS2,λ,n ≡ S2,λ,tot . (D.65)
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Note that the recoil spectrum dR/dQ here is not specified to the exponential ansatz

(dR/dQ)n in Eq.(4.18). Using the definition in Eq.(D.65), N in Eq.(4.9) and In in

Eq.(4.12) can be estimated by

N =
2

α

(
1

S2,−1/2,tot

)
=

2

α

(
B∑

n=1

NnS2,−1/2,n

)−1

, (D.66)

and

In = S2,(n−1)/2,tot =
B∑

n=1

NnS2,(n−1)/2,n . (D.67)

The expressions in Eqs.(D.66) and (D.67) are already essentially the same as the expres-

sions given in Eqs.(4.48) and (4.54), respectively.

Now replacing NQ in Eq.(D.43) by N given in Eq.(D.66), the reconstructed velocity

distribution function at point v = vn, f1,n,Q(vn), in Eq.(D.43) can be expressed simply as

f1(vn) = N
[

2Qnr̃n

F 2(Qn)

] [
d

dQ
ln F 2(Q)

∣∣∣∣
Q=Qn

− kn

]
=

2

α

(
f̃1,n

S2,−1/2,tot

)
. (D.68)

Here, similar to f̃1,n,Q(v) defined in Eq.(D.47), I have defined

f̃1,n ≡ 2Qnr̃n

F 2(Qn)

[
d

dQ
ln F 2(Q)

∣∣∣∣
Q=Qn

− kn

]
. (D.69)

Moreover, the n-th moment of the velocity distribution function, 〈vn〉, determined by

Eq.(4.11) can now be expressed as (with Qthre = 0)

〈vn〉 = αn(n + 1)

(
S2,(n−1)/2,tot

S2,−1/2,tot

)
. (D.70)

By means of this expression, one can finally estimate the moments of the velocity distri-

bution function directly from the experimental data given in Eq.(4.14) without knowing

the exact form of f1(vn). Actually, according to Eq.(D.67), the expression of 〈vn〉 given in

Eq.(D.70) is exactly the same as that given in Eq.(4.66), or the general form in Eq.(4.52)

with Qthre = 0.

On the other hand, before beginning to calculate the statistical errors of f1(vn) and

〈vn〉 in Eqs.(D.68) and (D.70), one must pay some special attention with the variables

involved in their expressions. According to the expression of f̃1,n in Eq.(D.69) and of r̃n

and kn in Eqs.(4.22) and (4.23), f̃1,n is a function of only two variables: Nn and Q−Qn|n;

while, according to the definition in Eq.(D.67), S2,λ,tot is a function of 2B variables: Nn

and S2,λ,n for all n = 1, 2, · · · , B. Hence, f1(vn) and 〈vn〉 depend on 2B + 2 and 3B

variables, respectively,

Then, from Eq.(D.68), it can be found that

∂f1(vn)

∂Q−Qn|n
= −f1(vn)

(
Q−Qn|n + Kn

) [
k2

n

g(κn)

]
, (D.71a)
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where Kn has been defined in Eq.(5.31) and I have used dQ−Qn|n/dkn in Eq.(4.30); for

m = 1, 2, · · · , B, one has

∂f1(vn)

∂Nm

= f1(vn)

(
δnm

Nm

− S2,−1/2,m

S2,−1/2,tot

)
, (D.71b)

and

∂f1(vn)

∂S2,−1/2,m

= −f1(vn)

(
Nm

S2,−1/2,tot

)
. (D.71c)

Then the statistical error of f1(vn) estimated in Eq.(D.68) can be expressed as

σ2
(
f1(vn)

)
= f 2

1 (vn)








(
Q−Qn|n + Kn

)
k2

n

g(κn)




2

σ2
(
Q−Qn|n

)
+

1

Nn

+ 2




(
Q−Qn|n + Kn

)
k2

n

g(κn)




(
S2,1/2,n −QnS2,−1/2,n

S2,−1/2,tot

)

+
S4,−1,tot

S2
2,−1/2,tot

− 2S2,−1/2,n

S2,−1/2,tot



 . (D.72)

Here I have used Eq.(4.17) for σ2(Nn), and, for simplicity, set Nm À 1 for all m in order

to use

cov
(
Q−Qn|n, S2,λ,n

)
=

1

Nn

(
S2,λ+1,n −QnS2,λ,n

)
, (D.73)

and

cov
(
S2,λ,n, S2,ρ,n

)
=

1

Nn

(
S4,λ+ρ,n − S2,λ,n S2,ρ,n

)
, (D.74)

with the definition

S4,λ,n ≡ 1

Nn

Nn∑

i=1

Qλ
n,i

F 4(Qn,i)
, (D.75)

and then

S4,λ,tot ≡
B∑

n=1

NnS4,λ,n , (D.76)

see Eqs.(D.64) and (D.65). Meanwhile, from the expression of 〈vn〉 given in Eq.(D.70),

it can be found that

∂〈vn〉
∂S2,(n−1)/2,m

= 〈vn〉
(

Nm

S2,(n−1)/2,tot

)
, (D.77a)

∂〈vn〉
∂S2,−1/2,m

= −〈vn〉
(

Nm

S2,−1/2,tot

)
, (D.77b)
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and

∂〈vn〉
∂Nm

= 〈vn〉
(

S2,(n−1)/2,m

S2,(n−1)/2,tot

− S2,−1/2,m

S2,−1/2,tot

)
. (D.77c)

Hence, the statistical error of 〈vn〉 can be expressed as

σ2
(
〈vn〉

)
= 〈vn〉2


 S4,n−1,tot

S2
2,(n−1)/2,tot

+
S4,−1,tot

S2
2,−1/2,tot

− 2S4,(n−2)/2,tot

S2,(n−1)/2,totS2,−1/2,tot


 , (D.78)

where I have used Eq.(D.74).

Finally, if one considers the reconstruction only in bins, the diagonal entries of the

covariance matrix in Eq.(4.49) can be reduced to

σ2
(
f 2

1,r(vs,n)
)

=
f 2

1,r(vs,n)

Nn

+N 2

[
2Qs,nrn

F 2(Qs,n)

]2

σ2(kn)

= f 2
1,r(vs,n)

[
1

Nn

+ K2
s,nσ

2(kn)
]

, (D.79)

since rn and kn are now two independent variables, and, similar to Eq.(5.31), I have

defined here

Ks,n ≡
[

d

dQ
ln F 2(Q)

∣∣∣∣
Q=Qs,n

− kn

]−1

. (D.80)

The expression in Eq.(D.79) is essentially the same as that in Eq.(D.72) without the

last three terms involving S2,−1/2,tot, which correspond to the statistical error of the

estimator for N and have been neglected in Eq.(4.49). Note that f1(vn) in Eq.(D.68) is

obtained from the first expression of the exponential ansatz in Eq.(4.18) and estimated at

v = vn, while f 2
1,r(vs,µ) in Eq.(4.46) is obtained from the second expression in Eq.(4.18)

and estimated at v = vs,µ, which is not a fixed value like vn but actually depends on

kn through Eqs.(4.28). Hence, since the two expressions in Eq.(4.18) are equivalent,

when one takes into account the uncertainty of the determination of Qs,µ by Eq.(4.28),

the statistical error of f 2
1,r(vs,µ) will be identical to the first two terms of σ2(f1(vn)) in

Eq.(D.72).

Similarly, if one neglects Qthre and thus all terms involving rthre, the diagonal entries

of the general form of the covariance matrix given in Eq.(4.61) can be reduced to

σ2
(
〈vn〉

)
=

1

I2
0

[
〈vn〉2σ2(I0) + α2n(n + 1)2σ2(In)− 2αn(n + 1)〈vn〉cov(I0, In)

]

= 〈vn〉2
[
σ2(I0)

I2
0

+
σ2(In)

I2
n

− 2cov(In, I0)

InI0

]
, (D.81)

where I have used 〈vn〉 in Eq.(4.66). Comparing the definition of S4,λ,tot in Eq.(D.76)

with the expression of cov(In, Im) in Eq.(4.54) and using Eq.(D.67), the expression given

in Eq.(D.78) is exactly identical to that in Eq.(D.81).
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Appendix E

Some Detailed Calculations

In this chapter I give some detailed derivations.

E.1 Derivations of covariances in Sec. 4.2

E.1.1 Covariances in Subsec. 4.2.2

From Eq.(4.37), one has

∂Nµ

∂Nn∗
= 1 , (E.1)

where n∗ denotes a given bin between the nµ−-th and the nµ+-th bins. Then, from (4.38),

one has

∂Q−Qµ|µ
∂Nn∗

=
Q|n∗
Nµ

− 1

N2
µ




nµ+∑
n=nµ−

NnQ|n

 =

Q|n∗ −Q|µ
Nµ

, (E.2)

and

∂Q−Qµ|µ
∂Q|n∗

=
Nn∗

Nµ

. (E.3)

Combining Eqs.(E.1) to (E.3), it can be found that

cov
(
Q−Qµ|µ, Q−Qν |ν

)

=
∑

n∗

[(
∂Q−Qµ|µ

∂Nn∗

) (
∂Q−Qν |ν

∂Nn∗

)
σ2(Nn∗)

+

(
∂Q−Qµ|µ

∂Q|n∗

) (
∂Q−Qν |ν

∂Q|n∗

)
σ2

(
Q|n∗

)]

=
1

NµNν

∑

n∗

[
Nn∗

(
Q|n∗ −Q|µ

) (
Q|n∗ −Q|ν

)
+ N2

n∗σ
2

(
Q|n∗

) ]
. (4.39)

Meanwhile, from Eqs.(4.37) and (4.40), one has

rµ =
1

wµ

nµ+∑
n=nµ−

Nn . (E.4)
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Thus,

∂rµ

∂Nn∗
=

1

wµ

, (E.5)

and then

cov(rµ, rν) =
∑

n∗

(
∂rµ

∂Nn∗

) (
∂rν

∂Nn∗

)
σ2(Nn∗) =

1

wµwν

∑

n∗
Nn∗ , (4.41)

Combining Eqs.(E.2) and (E.5), it can be found that

cov
(
rµ, Q−Qν |ν

)
=

∑

n∗

(
∂rµ

∂Nn∗

) (
∂Q−Qν |ν

∂Nn∗

)
σ2(Nn∗)

=
1

wµNν

∑

n∗
Nn∗

(
Q|n∗ −Q|ν

)
. (4.42)

E.1.2 Covariance in Eq.(4.61)

The expression of 〈vn〉 in Eq.(4.52) can be rewritten as

〈vn〉 = αnNm


2Q

(n+1)/2
thre rthre

F 2(Qthre)
+ (n + 1)In


 , (4.52’)

with

Nm =


2Q

1/2
threrthre

F 2(Qthre)
+ I0



−1

. (4.62’)

Hence, it can be found that

∂〈vn〉
∂In

= Nmαn(n + 1) , (E.6)

and

∂〈vn〉
∂I0

= −αnN 2
m


2Q

(n+1)/2
thre rthre

F 2(Qthre)
+ (n + 1)In


 = −Nm〈vn〉 . (E.7)

Moreover,

∂〈vn〉
∂rthre

= αnNm


 2Q

(n+1)/2
thre

F 2(Qthre)


− αnN 2

m


2Q

(n+1)/2
thre rthre

F 2(Qthre)
+ (n + 1)In





 2Q

1/2
thre

F 2(Qthre)




= Nm

[
2

F 2(Qthre)

] (
αnQ

(n+1)/2
thre −

√
Qthre 〈vn〉

)
. (E.8)

This leads to the definition of Dn in Eq.(4.63). Combining Eqs.(E.6), (E.7), and (4.63),

Eq.(4.61) can be obtained directly.
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E.2 Derivation of the correction terms in Eq.(4.64)

Starting point is the observation that we wish to compute the ratio of two integrals,

G1

G2

=

∫
g1(x) dx∫
g2(x) dx

→
∑

i nig1(xi)∑
j njg2(xj)

. (E.9)

In the second step the integrals have been discretized, i.e., replaced by sums over bins i

with ni events per bin. ni can be written as sum of average value n̄i and fluctuation δni:

G1

G2

=

∑
i(n̄i + δni)g1(xi)∑

j n̄jg2(xj) +
∑

j δnjg2(xj)
. (E.10)

Introducing the notation

Ga =
∑

i

n̄iga(xi) , (E.11)

for a = 1, 2, and expanding up to second order in the δni, one has

G1

G2

' G1 +
∑

i δnig1(xi)

G2


1−

∑
j δnjg2(xj)

G2

+

(∑
j δnjg2(xj)

G2

)2



' G1

G2

+
1

G2

(∑

i

δnig1(xi)

)
− G1

G
2
2

(∑

i

δnig2(xi)

)

− 1

G
2
2

(∑

i

δnig1(xi)

) ( ∑

j

δnjg2(xj)

)
+

G1

G
3
2

(∑

i

δnig2(xi)

)2

. (E.12)

Now consider the average over many experiments. Of course, δni averages to zero, but

the product δniδnj averages to n̄iδij, i.e., it is non-zero for i = j. Hence:
〈

G1

G2

〉
' G1

G2

− 1

G
2
2

(∑

i

n̄ig1(xi)g2(xi)

)
+

G1

G
3
2

(∑

i

n̄ig
2
2(xi)

)
. (E.13)

The sums appearing in the two correction terms also appear in the definition of the

covariance matrix between G1 and G2. Note that we wish to compute the first term on

the right-hand side, since in this case the estimators for G1 and G2 indeed average to the

correct values. This then leads to the final result

G1

G2

−
〈

G1

G2

〉
=

(
1

G
2
2

)
cov(G1, G2)−

(
G1

G
3
2

)
cov(G2, G2) . (E.14)

Applying this result to Eq.(4.52) then immediately leads to Eq.(4.64).

E.3 Statistical error of Rn(Qthre) in Eq.(4.72)

From Eq.(4.72), it can be found directly that

∂Rn(Qthre)

∂rthre,X

=
2

n


 Q

(n+1)/2
thre,X I0,X − (n + 1)Q

1/2
thre,XIn,X

2Q
(n+1)/2
thre,X rthre,X + (n + 1)In,XF 2

X(Qthre,X)




×

 F 2

X(Qthre,X)

2Q
1/2
thre,Xrthre,X + I0,XF 2

X(Qthre,X)


Rn(Qthre) , (E.15a)
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∂Rn(Qthre)

∂In,X

=
n + 1

n


 F 2

X(Qthre,X)

2Q
(n+1)/2
thre,X rthre,X + (n + 1)In,XF 2

X(Qthre,X)


Rn(Qthre) ,

(E.15b)

and

∂Rn(Qthre)

∂I0,X

= − 1

n


 F 2

X(Qthre,X)

2Q
1/2
thre,Xrthre,X + I0,XF 2

X(Qthre,X)


Rn(Qthre) . (E.15c)

By first exchanging Q
(n+1)/2
thre,X and (n+1)In,X with Q

1/2
thre,X and I0,X , respectively, and then

replacing X by Y , one can get

∂Rn(Qthre)

∂rthre,Y

= − 2

n


 Q

(n+1)/2
thre,Y I0,Y − (n + 1)Q

1/2
thre,Y In,Y

2Q
(n+1)/2
thre,Y rthre,Y + (n + 1)In,Y F 2

Y (Qthre,Y )




×

 F 2

Y (Qthre,Y )

2Q
1/2
thre,Y rthre,Y + I0,Y F 2

Y (Qthre,Y )


Rn(Qthre) , (E.16a)

∂Rn(Qthre)

∂In,Y

= −n + 1

n


 F 2

Y (Qthre,Y )

2Q
(n+1)/2
thre,Y rthre,Y + (n + 1)In,Y F 2

Y (Qthre,Y )


Rn(Qthre) ,

(E.16b)

and

∂Rn(Qthre)

∂I0,Y

=
1

n


 F 2

Y (Qthre,Y )

2Q
1/2
thre,Y rthre,Y + I0,Y F 2

Y (Qthre,Y )


Rn(Qthre) . (E.16c)

By setting Qthre = 0, the above expressions can be reduced to σ(mχ) given in Eq.(4.70)

directly.

E.4 Derivation of ηn in Eq.(5.24)

From Eq.(5.22), I have

f1,(m)(Q)

2N =
Q

F 2(Q)

(
dR

dQ

)

(m)





2

F (Q)

(
dF

dQ

)
− 1

(dR/dQ)(m)


 d

dQ

(
dR

dQ

)

(m)






 .

(E.17)

Substituting the ansatz for (dR/dQ)(1),n in Eq.(5.13), it can be found that

1

(dR/dQ)(1),n


 d

dQ

(
dR

dQ

)

(1),n




=
1

(dR/dQ)(0)


 d

dQ

(
dR

dQ

)

(0)


 +

ln
ln(Q−Qn) + hn

. (E.18)
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Thus I can obtain that

f1,(m)(Q)

2N
=

Q

F 2(Q)

(
dR

dQ

)

(0)

[
ln(Q−Qn) + hn

]

×




2

F (Q)

(
dF

dQ

)
− 1

(dR/dQ)(0)


 d

dQ

(
dR

dQ

)

(0)


− ln

ln(Q−Qn) + hn





=
f1,(0)(Q)

2N
[
ln(Q−Qn) + hn

]
− ln


 Q

F 2(Q)

(
dR

dQ

)

(0)


 , (E.19)

namely,

f1,(1),n(Q)

f1,(0)(Q)

=
[
ln(Q−Qn) + hn

]
− ln





2

F (Q)

(
dF

dQ

)
− 1

(dR/dQ)(0)


 d

dQ

(
dR

dQ

)

(0)








−1

. (E.20)

Now I use the ansatz for (dR/dQ)(0),n in Eq.(4.18) to get

f1,(1),n(Q)

f1,(0),n(Q)
=

[
ln(Q−Qn) + hn

]
− ln

[
2

F (Q)

(
dF

dQ

)
− kn

]−1

. (E.21)

Let Q = Qn, the expression of ηn in Eq.(5.24) can be obtained directly.
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