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Abstract 

Development of new drugs, especially in the area of oncological and infectious diseases, 

represents today one of the most important research fields. The marine environment is a 

tremendous source of natural products. Drug development is now turning toward potentially 

more selective ways (e.g. inducement of certain signaling molecules) in disease treatments, 

especially when concerning cancer. Sphingolipids (SLs) are ubiquitous constituents of 

eukaryotic cellular membranes that are involved in cell growth, proliferation, differentiation 

and apoptosis. These sphingolipid-regulated processes are crucial in cancer development and 

progression. Pharmacological or molecular manipulations of any of the enzymes involved in 

SL metabolism have been proposed as new strategies in the treatment of cancer or diseases 

caused by disrupted sphingolipid balance. The toxic effects of some fungal metabolites were 

related to their ability to interfere with SL metabolism. The aim of this study was the 

investigation of secondary metabolites produced by marine-derived fungi with cytotoxic 

properties and the isolation of new compounds with potent biological activity, preferably with 

the potential to influence sphingolipid metabolism. 

Extracts of seven fungal strains, including five algal-derived and two sponge-derived strains, 

were chemically investigated. This investigation resulted in the isolation and structure 

elucidation of 29 pure compounds. Four compounds, arugosin G and H, spicellamide A and 

B, proved to be new. Arugosins G and H, together with arugosins A and B, were isolated 

from algicolous fungus Emericella nidulans var. acristata. They are benzophenone 

derivatives, biosynthetically related to xanthones, which showed moderate antitumor activity 

toward individual tumor cell lines. Cyclohexadepsipeptides spicellamide A and B, isolated 

from sponge-derived fungus Spicellum roseum, exhibited moderate cytotoxicity in 

neuroblastoma cells. Bioassay-guided isolation of cytotoxic compounds revealed the presence 

of cytochalasins from an Arthrinium sacchari extract, of aflatoxins from an Emericella 

nidulans var. acristata extract and of trichothecenes from a Spicellum roseum extract.  

Trichothecenes are cytotoxic compounds that have several inhibitory effects on eukaryotic 

cells. Tests on sphingolipid metabolism exhibited alterations in the expression of 

glycosphingolipids by two compounds from trichothecene family, 8-deoxy-trichothecin and 

trichodermol. In cerebellar neurons and neuroblastoma cells both compounds inhibit 

lactosylceramide synthase activity and induce an accumulation of glucosylceramide. These 

data describe a new effect of trichothecenes. However, further studies have to clarify the fate 

and physiological consequence of accumulated glucosylceramide and also its correlations 

with known effects of trichothecenes.  
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1 Introduction 
 

1.1 Fungi as a source of biologically active metabolites 

 

Since the discovery of penicillin, a potent antibiotic produced by Penicillium notatum, 

(Fleming, 1929), a new area in natural product research has started. Fungi were noticed as a 

source of chemically new compounds with various biological activities. The isolation from 

soil was a common method to get fungal isolates. However, fungal strains from terrestrial 

sources yielded often already described secondary metabolites. Thus, fungi from new origins 

were needed. The marine environment offers a wide array of potential fungal sources 

including sediment, sand, driftwood, mangrove wood, sea water, algae, sponges and other 

invertebrates (Jensen and Fenical, 2000). Fungi obtained either from sponges, algae, or 

wooden substrates account for about 70 % of chemistry described from marine-derived fungi. 

Sponge-derived fungi comprise about 33 % of the total compounds in the literature and have 

the highest number of novel metabolites. Algicolous fungi take the second place accounting 

for 24 % of the total number of compounds with 27 % of them being new metabolites (Bugni 

and Ireland, 2004). Fungal strains, residing inside sponge or algal tissue, can be isolated by 

placing algal thalli or tissues of the sponge, after surface sterilization to remove unwanted 

epibionts, on suitable agar media. Interestingly, most of the isolated endophytic fungi are not 

obligate marine fungi. However, they are a tremendous source of natural products, which is 

not surprising if considering the complex ecological situation of the endophyte within the host 

plant (König et al., 2006).  

The present work thus deals with the investigation of marine fungal strains, derived from 

algae or sponges, aiming at finding new bioactive natural products. 

 

1.1.1 Cytotoxic fungal metabolites 

Marine-derived fungi are an extremely interesting and valuable source of novel natural 

products (Bhadury et al., 2006). Biological activities are mainly focused in the areas of 

antibiotic and anticancer properties (Donia and Hamann, 2003; Simmons et al., 2005), but 

other selective activities include antiviral, antiparasitic, neuritogenic activity, phosphatase and 

kinase inhibition (Butler, 2005). Development of new anticancer drugs represents today one 

of the most important research areas. An analysis of the number of chemotherapeutic agents 

and their sources indicates that over 60 % of the approved drugs are derived from natural 
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compounds (da Rocha et al., 2001). The present study is thus devoted to the investigation of 

cytotoxic properties of fungal extracts. 

 

First report of novel cytotoxic metabolites from a sponge-derived fungus describes 

gymnastatins that are obtained from a strain Gymnascella dankaliensis derived from the 

sponge Halichondria japonica (Numata et al., 1997). Gymnastatins A, B and C exhibited 

potent cytotoxicity in a P388 lymphocytic leukemia test system with LC50 values of 18, 108, 

and 106 ng mL-1, respectively.  

Asperazine, isolated from a Hyrtios proteus sponge-derived Aspergillus niger showed 

selective cytotoxicity against leukemia cells while exhibiting no antimicrobial activity, 

suggesting asperazine has a specific mammalian target (Varoglu and Crews, 2000).  
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One of the largest classes of cytotoxic metabolites from algicolous fungi is the leptosin family 

of dimeric diketopiperazines (Takahashi et al., 1994; Takahashi et al., 1995). The compounds 
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were isolated from algicolous fungus Leptosphaeria sp. Leptosins A and C exhibited 

cytotoxic activity against a P388 leukemia cell line with a mean LC50 of 1.85 and 1.75 ng mL-

1, respectively (Pettit et al., 2002). 

Studies on Penicillium isolate OUPS-79 (obtained from the marine alga Enteromorpha 

intestinalis) resulted in the isolation of two unrelated classes of cytotoxic compounds, 

penochalasins (Iwamoto et al., 2001) and penostatins (Iwamoto et al., 1999). Penochalasins 

and penostatins have various effects on cells mainly due to their ability to cap F-actin, and 

have been useful tools for cytoskeletal research. They showed potent cytotoxic activity 

against P388 leukemia cells exhibiting an LC50 of 0.4 ng mL-1, (penochalasin A), 0.3 ng mL-1, 

(penochalasin B) and 0.5 ng mL-1, (penostatin A) (Maruta et al., 1999). 

Cytotoxic sesquiterpenoid nitrobenzoyl esters, isolated from Aspergillus versicolor, showed a 

mean LC50 of 1.1 µg mL-1 in 60 cell-line panel (Belofsky et al., 1998).  
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Cytotoxic metabolites obtained from fungi isolated from other sources are compounds like 

phomopsidin. Phomopsidin is isolated from Phomopsis sp., obtained from a submerged 

mangrove branch, which exhibited an inhibition of microtubule assembly with an LC50 5.7 

µM (Kobayashi et al., 2003).  

Neomanigicols were isolated from Fusarium sp. which was obtained from a driftwood sample 

in a mangrove habitat. Neomanigicols A and B showed cytotoxic activity against an MCF-7 

human breast carcinoma with an LC50 value of 4.9 µM and 27 µM, respectively (Renner et 

al., 1998). 
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One of the best evaluated fungal metabolite in oncological research is fumagillin. Fumagillin 

was first isolated from Aspergillus fumigatus and it was used for treatment of intestinal 

ameobiasis (Killough et al., 1952; Griffith et al., 1998). It was later found to inhibit 

angiogenesis through binding to methionine aminopeptidase 2 (Liu et al., 1998; Kim et al., 

2004). A number of fumagillin analogues were prepared (Marui et al., 1992; Lee et al., 2007) 

including TNP-470, which was found to have higher potency and lower toxicity than 

fumagillin (Ingber et al., 1990), and is one of the first inhibitors of angiogenesis to reach 

clinical trials (Kruger and Figg, 2000). CKD-732 (Han et al., 2000) is currently undergoing 

clinical trial and exhibited better potency and less cytotoxicity compared with TNP-470 (Lee 

et al., 2004; Kim et al., 2007). 

   

  

OR

OCH3

O

O

Fumagillin R = CO(CH=CH)4CO2H
TNP-470  R = CONHCOCH2Cl
CKD-732 R = COCH=CHC6H5OCH2CH2N(CH3)2  

 

 

Halimide was discovered concurrently from a marine and a terrestial fungus, Aspergillus sp., 

and is produced as a mixture of (+) and (-) enantiomers (Kanoh et al., 1997; Fairchild et al., 

1998). Early studies showed that the (-) enantiomer inhibited cell proliferation by binding at 

the colchicine-binding site of tubulin and disrupting the microtubule network, which resulted 

in G2/M cell cycle arrest (Kanoh et al., 1999a; Kanoh et al., 1999b). Additionally, the (-) 

enantiomer exhibited elevated cytotoxic activity against various tumor cells including lung, 

colon, breast and leukemia with IC50 values in the low to submicromolar range (Kanoh et al., 

1999a). To remove chirality and optimize biological activity, a series of synthetic analogs was 

generated, including NPI-2358. Nereus Pharmaceuticals has initiated a Phase I clinical trial to 

evaluate the safety of tumor vascular disrupting agent NPI-2358 for the treatment of patients 

with solid tumors (Spear, 2007). 
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From the literature review it can be concluded that most of the cytotoxic metabolites are 

produced by genus of Aspergillus or Penicillium. One explanation for the high number of 

compounds reported from these two genera is that are both of them salt tolerant, fast growing 

species and are easily obtained from many substrates. Additionally, Aspergillus and 

Penicillium spp. are known to produce extracts with a wide variety of activities. Thus, 

decreasing the isolation number of ubiquitous species could represent a valid method to 

increase the probability of the isolation of novel chemical structures.  
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1.2 Sphingolipids 

 

1.2.1 Sphingolipid metabolism and function. General remarks 

In 1884 J. L. W. Thudichum discovered a new class of lipids while studying the chemical 

composition of the brain. He named them sphingolipids after the sphinx of Greek mythology 

because of the riddle of their structure (Thudichum, 1884). Sphingolipids (SLs) are ubiquitous 

constituents of eukaryotic cellular membranes. Although sphingolipids have been considered 

for many years only as structural components of membranes, it is now acknowledged that 

they are also involved in controlling cellular processes such as proliferation, growth, 

migration, differentiation, senescence, and apoptosis (Cuvillier, 2002; Hannun and Obeid, 

2002; Malisan and Testi, 2002; Spiegel and Milstien, 2003). Hence, they are currently 

recognized as signaling molecules capable of determining cellular fate.  

The basic building block of all sphingolipids is sphingosine (4E-(2-amino-1,3-dihydroxy)-

octadecene) having the D-erythro (or 2S, 3R) configuration, or sphinganine 

(dihydrosphingosine). A fatty acid is attached to carbon-2 of the sphingoid base via an amide 

bond, yielding ceramide, and attachment of hydrophilic head groups to the OH-group at C-1 

yields complex SLs.  

The metabolic pathways of simple and complex SLs are shown in Figure 1-2-1. It is clear 

from that figure that the metabolites are interconvertible which complicates determination 

concerning the specific role of each one of them. De novo synthesis of sphingolipids occurs at 

the cytosolic face of the endoplasmic reticulum (ER), and starts by the condensation of serine 

and palmitoyl-CoA catalyzed by serine palmitoyltransferase (SPT), which is a 

pyridoxalphosphate dependent enzyme (Mandon et al., 1992). Its product, 3-ketosphinganine, 

is immediately reduced by the NADPH dependent 3-ketosphinganine reductase yielding D-

erythro-sphinganine. After acylation of sphinganine to dihydroceramide by the enzyme 

(dihydro)ceramide synthase, ceramide is subsequently formed by introduction of a 4,5-trans 

double bond by dihydroceramide desaturase (Rother et al., 1992; Michel et al., 1997). 

Ceramide is the central lipid in the metabolism of sphingolipids (van Echten-Deckert and 

Herget, 2006). Once formed, it is subsequently transported from the ER to the Golgi complex 

where it serves as a substrate for the synthesis of sphingomyelin and more complex 

glycosphingolipids (GSLs). Sphingomyelin biosynthesis requires the transfer of 

phosphorylcholine headgroup from phosphatidylcholine to ceramide, liberating diacylglycerol 

through the action of sphingomyelin synthase (Ramstedt and Slotte, 2002). 
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Figure 1-2-1. Scheme of sphingolipid metabolism.  
Ceramide is the central molecule in the metabolism of sphingolipids. It can be formed de novo (red arrows), 

from hydrolysis of sphingomyelin or glycosphingolipids, or from dephosphorylation of ceramide-1-phosphate 

(C1P) (black arrows) or recycling of sphingosine (salvage pathway). Ceramide can serve as a precursor in many 

biosynthetic pathways (green arrows). The major pathway for catabolism of ceramide is its deacylation by 

ceramidases to sphingosine, which in turn is phosphorylated to generate sphingosine-1-phosphate (S1P) (dark 

blue arrows). S1P can be irreversibly cleaved by lyase to phosphoetanolamine and hexadecenal (dark blue 

arrows) or it can be dephosphorylated by phosphatases that regenerate sphingosine in the ceramide salvage 

pathway (light blue arrows).  GSL, gycosphingolipids; PLP, pyridoxal phosphate; NADPH, nicotine adenine 

dinucleotide phosphate (Wedeking and van Echten-Deckert, 2006). 
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The biosynthesis of most GSLs requires the glucosylation of ceramide which is catalyzed by 

glucosylceramide (GlcCer) synthase on the cytosolic surface of the Golgi apparatus 

(Futerman and Pagano, 1991). Almost all gangliosides are derived from lactosylceramide 

(LacCer), which is formed by the transfer of galactose to GlcCer (van Echten-Deckert and 

Herget, 2006). This reaction is catalyzed by the enzyme lactosylceramide synthase which is 

found on the luminal leaflet of Golgi membranes (Lannert et al., 1998; Giraudo and 

Maccioni, 2003). Addition of one or two sialic acid molecules to LacCer results in formation 

of GM3 and GD3 (Figure 1-2-2), respectively, which represent precursors of more complex 

gangliosides that are particularly enriched in brain (van Echten-Deckert and Herget, 2006).  

 

    
 

Figure 1-2-2. Biosynthesis of glycosphingolipids. 
GlcCer, glucosylceramide; LacCer, lactosylceramide. Modified from (van Echten and Sandhoff, 1993). The 

terminology of gangliosides (GM3, GD3, GA2, GM2, GD2, GA1, GM1, GD1b, GM1b, GD1a, GT1b, Gd1c, 

GT1a, GQ1b) is according to Svennerholm (Svennerholm, 1963). 

 

Interestingly, the topology of GlcCer biosynthesis differs from that of LacCer formation. 

Thus, GlcCer synthesized at the cytosolic face of the Golgi apparatus (Coste et al., 1986; 

Lannert et al., 1998) or a pre-Golgi compartment (van Echten and Sandhoff, 1989) must be 

translocated across the Golgi membrane to be accessible for the enzyme LacCer synthase, 

which is active at the luminal face of Golgi membranes. It has been suggested that multidrug 

resistance (MDR) proteins (MDR1 P-glycoprotein (Pgp) and multidrug resistance protein1 
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(MRP1)) can act as GlcCer flippases in Golgi membranes in several cell lines (Raggers et al., 

1999; De Rosa et al., 2004). 

Another important metabolite that can be generated from ceramide is ceramide-1-phosphate, 

which is formed by the action of ceramide kinase (Bajjalieh et al., 1989). 

 

Catabolism of sphingolipids occurs after endocytosis primarily in the lysosomes by the 

stepwise action of specific hydrolases that remove the headgroups of complex SLs, resulting 

in the formation of ceramide (Hannun et al., 2001) (Figure 1-2-1). Other subcellular 

compartments, including Golgi apparatus and plasma membranes, contain hydrolases and 

contribute in degradation of SLs (Goni and Alonso, 2002). Sphingomyelin and 

glycosphingolipids are degraded to ceramide through the action of sphingomyelinases and 

exoglycosidases, respectively (Hannun, 1994; van Echten-Deckert and Herget, 2006). 

Ceramide is then deacylated by ceramidases to sphingosine (Hassler and Bell, 1993). 

Sphingosine may be phosphorylated into sphingosine-1-phosphate, or it can enter the salvage 

pathway to form ceramide (Hannun et al., 2001). Sphingosine-1-phosphate can also enter the 

salvage pathway by the action of phosphatases that regenerate sphingosine, or it can be 

irreversibly cleaved to phosphoethanolamine and hexadecenal by a pyridoxal 5`-phosphate 

(PLP)-dependent lyase (Van Veldhoven, 2000; Ikeda et al., 2004). The aldehyde intermediate 

is oxidized to fatty acid whereas phosphoethanolamine can be utilized for the synthesis pf 

phosphatidylethanolamine. Thus, both of SL-breakdown products may enter glycerolipid 

metabolic pathway (Hannun et al., 2001). 

 

Sphingolipids are essential for the growth of not only mammalian cells but also invertebrate 

and fungal cells (Hanada et al., 1992; Dickson, 1998; Adachi-Yamada et al., 1999), and 

modulate various cellular events including proliferation, differentiation, and apoptosis (Pettus 

et al., 2002; Proia, 2003; Watterson et al., 2005). In addition, sphingolipids, along with 

cholesterol, form detergent-resistant membrane microdomains, so called “lipid rafts”, which 

are implicated in signal transduction and membrane trafficking (Barenholz, 2004; Lucero and 

Robbins, 2004). The pathological aspects of SLs have also been receiving attention. Inborn 

dysfunctions of enzymes or accessory factors involved in the degradation of sphingolipids 

often cause infant lethality, suggesting that the abnormal accumulation of SLs is toxic to cells 

or tissues (Futerman and van Meer, 2004; Kolter and Sandhoff, 2006). Also, various types of 

pathogens exploit sphingolipids of host cells as membrane receptors (Wedeking and van 
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Echten-Deckert, 2006). In addition, lipid-rafts of host cells can be platforms for infection 

signaling and entry of intracellular parasites (Hanada, 2005). 

 

1.2.2 Sphingolipids in cancer 

As already mentioned above, sphingolipids generate biologically active signals that affect cell 

proliferation, differentiation and apoptosis. These sphingolipid-regulated processes are crucial 

in cancer development and progression, and influence the efficacy of anti-cancer therapeutics 

(Kok and Sietsma, 2004; Fox et al., 2006; Ogretmen, 2006). A dynamic sphingolipid 

equilibrium has been described where pro-apoptotic SLs exist in a balance with pro-survival 

SLs (Cuvillier et al., 1996).  

 

 

Figure 1-2-3. The biological roles of sphingolipids. 

 

The most common example of this equilibrium is the balance between ceramide and 

sphingosine-1-phosphate (Figure 1-2-3). When this balance shifts either way, it can lead to 

cellular death or growth arrest in the case of ceramide accumulation or alternatively to 

proliferative disorders (i.e. cancer, angiogenesis) in the case of formation of sphingosine-1-

phosphate. In addition, other sphingolipid-based second messengers, including ceramide-1-

phosphate and glycosphingolipids are also in dynamic flux with ceramide. Thus, 

pharmacological or molecular manipulations of any of the enzymes involved in SL 

metabolism have been proposed as a tool to increase the sensitivity of tumors to various 

therapeutic agents (Modrak et al., 2006). Sphingosine kinase, sphingomyelinase, ceramidase, 

and glucosylceramide synthase, among other enzymes important to SL metabolism, are being 

studied as potential new drug targets. 
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1.2.2.1 Ceramide  

The function of ceramide as a mediator of apoptosis suggests novel therapeutic approaches 

based on elevating levels of endogenous ceramide and/or mimicking its actions. A number of 

clinically important cytotoxic agents appear to be effective because of their ability to activate 

ceramide-mediated pathways in cancer cells (Figure 1-2-4). Drugs can impact ceramide 

metabolism by promoting ceamide synthesis de novo, by activating sphingomyelinase, and/or 

by blocking glucosylceramide formation. Targeting enzymes of ceramide formation appears 

to elevate endogenous levels of ceramide, leading to increased cytotoxic responses in various 

cancer cells (Ogretmen and Hannun, 2004; Reynolds et al., 2004). 

 

 
Figure 1-2-4. Compounds that contribute to increased levels of cellular ceramide. 
↑, stimulation; ↓, inhibition. Modified from Duan, 2005; (Duan, 2005).  

 

Both of the anthracyclines doxorubicin and daunorubicin effectively elevate ceramide levels 

in several cell types. It is reported that daunorubicin promotes ceramide formation and 

apoptosis by stimulating ceramide synthase activity (Bose et al., 1995) or via hydrolysis of 

sphingomyelin (Jaffrezou et al., 1996). Some of the cytotoxic properties of vinca alkaloids 

(vincristine and vinblastine), widely used in the treatment of leukemia patients, may be due to 

increase de novo formation of cellular ceramide (Zhang et al., 1996). The effects of paclitaxel 

inhibited microtubule depolymerization in different solid tumors were also linked to de novo 
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synthesis of ceramide (McCloskey et al., 1996; Charles et al., 2001). On the other hand, 

triphenylethylene antiestrogens, such as tamoxifen, block conversion of ceramide to 

glucosylceramide (Cabot et al., 1996) and, thereby, promote increases in cellular ceramide. 

Multidrug treatments, such as a combination of tamoxifen with agents that elevate de novo 

ceramide formation like doxorubicin, increase the anti-tumor effect of a single drug (Lucci et 

al., 1999). 

 

Until recently, cancer chemotherapy has focused primarily on targeting DNA, critical cellular 

proteins or metabolites involved in DNA synthesis and repair, or on targeting microtubule 

disruption. Cancer drug development is now turning toward potentially more selective ways 

to inducing tumor cell death or cytostasis (Reynolds et al., 2004). The ability of ceramide and 

ceramide-generating drugs to induce cytotoxicity in cancer cells via few apoptotic signaling 

pathways provides new approaches in cancer therapy. 

 

1.2.2.2 Glucosylceramide and other glycosphingolipids 

Glycosphingolipids (GSLs) are biosynthetically derived from ceramide backbone linked to an 

oligosaccharide chain of variable length and complexity. Gangliosides are prominent 

members of GSLs that are distinguished by the presence of one or more sialic acid residues. 

GSLs are involved in important physiological processes including differentiation, migration, 

proliferation and apoptosis (Bektas and Spiegel, 2004; Wedeking and van Echten-Deckert, 

2006). Thus, disturbance of GSL metabolism results in various pathological disorders. This is 

obvious in GSL storage diseases, such as Gaucher and Tay-Sachs disease, in which 

glucosylceramide and GM2 accumulate, respectively, due to malfunctioning of the proteins 

responsible for their degradation (Buccoliero and Futerman, 2003). 

The simplest GSL, glucosylceramide (GlcCer), in contrast to the apoptotic effect of its 

biosynthetic precursor ceramide, was reported to have growth stimulatory and anti-apoptotic 

effects (Datta and Radin, 1988; Marsh et al., 1995; Marchell et al., 1998). Moreover, 

increased GlcCer synthesis appears to be connected with multidrug resistance (MDR), in 

which cells lose sensitivity for anti-cancer drugs due to the decreased levels of ceramide 

(Senchenkov et al., 2001). It is reported that a number of cancer cell lines accumulate this 

noncytotoxic metabolite (Lavie et al., 1996; Lucci et al., 1998). Therefore, limiting the 

synthesis of glycolipids could be one approach to dampening drug resistance. Well-known 

drug resistance modulators such as tamoxifen, verapamil, and cyclosporine A have been 

shown to exert part of their effect by inhibition of glucosylceramide synthase (Senchenkov et 
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al., 2001; Bleicher and Cabot, 2002). Thus, inhibition of GlcCer synthesis could reduce 

multidrug resistance and increase ceramide effects. 

While GlcCer elicits antiapoptotic role, ganglioside GD3 has been shown to sensitize human 

hepatoma cells to treatment with ionizing radiation or daunorubicin (Garcia-Ruiz et al., 2000; 

Paris et al., 2002). Ergo, sialyltransferase II, the enzyme that catalyzes formation of GD3 

from GM3 by addition of a sialic acid molecule, might be another good target for anticancer 

therapy. 
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1.3 Influence of fungal metabolites on sphingolipid metabolism 

 

Since sphingolipids are involved in various cellular functions, each disturbance in 

sphingolipid homeostasis can lead to serious pathological effects. Thus, strategies which 

either mimic/antagonize these lipids or modulate their levels could provide novel therapeutic 

possibilities. Several inhibitors of SL biosynthesis have been described. They have been 

isolated from natural sources or have been generated by design and chemical synthesis. Most 

of the synthetic inhibitors are structural analogs of cellular SLs.  

Although analogs of natural SLs can possess higher membrane permeability then natural ones 

(Modica-Napolitano and Aprille, 2001; Senkal et al., 2006), some of them that are 

synthesized as SL enzyme inhibitors, probably on account of their structural similarity to 

natural SLs, are also reported to have several physiological functions which may not be 

related to their enzyme inhibition (Igarashi et al., 1989; Khan et al., 1990; Sweeney et al., 

1996). Thus, specific SL enzyme inhibitors are desired. 

 

During the last two decades several compounds have been isolated from natural sources, 

mostly from fungi, that inhibit the activity of enzymes involved in sphingoid base 

metabolism. The most representative ones are discussed below. 

 

1.3.1 Inhibitors of serine palmitoyltransferase 

The first step of sphingolipid biosynthesis is the condensation of serine and palmitoyl CoA, a 

reaction catalyzed by serine palmitoyltransferase (SPT) to produce 3-ketodihydrosphingosine. 

Fungal metabolites that inhibit SPT activity are shown in Figure 1-3-1. 

 

Myriocin (ISP-1), the structure of which resembles that of sphingosine, was initially isolated 

as an antibiotic and immunosuppressant from a culture broth of Isaria sinclairi (Fujita et al., 

1994). Myriocin inhibits the activity of SPT, the rate-limiting enzyme in de novo biosynthesis 

of SLs. Thus, ISP-1 inhibits de novo formation of all sphingolipids in mammalian cells with 

IC50 values in the nanomolar range (Miyake et al., 1995). Myriocin is also known to induce 

apoptosis of cytotoxic T cells (Fujita et al., 1994; Nakamura et al., 1996).  
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Figure 1-3-1. Inhibitors of serine palmitoyltransferase (SPT). 

 

Chemical modification of ISP-1 led to a novel synthetic compound, FTY720 (Figure 1-3-2), 

which has more potent immunosuppressive activity and less toxicity than ISP-1 (Kiuchi et al., 

2000).  

Although structurally similar to sphingosine, FTY720, unlike ISP-1, does not inhibit serine 

palmitoyltransferase. It has been reported that FTY720 is effectively phosphorylated by 

sphingosine kinase 2 and that FTY720-phosphate (FTY720-P) is a high affinity agonist for 

sphingosine-1-phosphate (S1P) receptors (Brinkmann and Lynch, 2002; Paugh et al., 2003) 

which play an important role in inflammatroy processes. FTY720 is currently being evaluated 

by Novartis in Phase III clinical trials for use in transplantation and autoimmune diseases such 

as multiple sclerosis.  
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Figure 1-3-2. Structures of FTY720 and FTY720-phosphate. 
It has been published that only (S)-configured enantiomer acts as agonist on S1P receptors (Kiuchi et al., 1998; 

Albert et al., 2005) 

 

Other sphingosine analogs, the sphingofungins, isolated from two species of thermotolerant 

fungi, Aspergillus fumigatus and Paecilomyces variotii (Horn et al., 1992; Zweerink et al., 

1992), inhibit activity of mammalian and yeast SPT. Sphingofungin B caused growth 

inhibition of a Chinese hamster ovary cell line which was due to inhibition of sphingolipid 

synthesis (Hanada et al., 2000). 

Lipoxamycin from Streptomyces sp. is an antifungal compound that inhibits SPT from 

Saccharomyces cerevisiae (Mandala et al., 1994). 

Viridofungins from Trichoderma viride are potent inhibitors of SPT but they also inhibit 

squalene synthase (Mandala et al., 1997; Onishi et al., 1997), while sulfamisterin, derived 

from the fungus Pycnidiella sp., is a specific SPT inhibitor (Yamaji-Hasegawa et al., 2005).  

 

1.3.2 Inhibitors of ceramide formation 

Fumonisins are a group of mycotoxins initially isolated from corn culture material of 

Fusarium moniliforme (Gelderblom et al., 1998). Later they have been isolated from other 

Fusarium species (i.e. F. verticillioides and F. proliferatum) and from Alternaria alternata 

(Chen et al., 1992). Until now several fumonisins have been isolated and characterized of 

which fumonisin B1 is the most toxic. Contamination of food with those toxins causes a 

neurodegenerative disease of horses called equine leucoencephalomalacia (Marasas et al., 

1988) as well as pulmonary edema in pigs (Harrison et al., 1990) and liver and renal damage 

in numerous animals (Kriek et al., 1981; Voss et al., 1990). Consumption of corn 

contaminated with F. moniliforme has been correlated with human esophageal cancer in areas 

of southern Africa and China (Yang, 1980). Most or all of the toxicities resulting from 
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exposure to fumonisins can be explained by their ability to alter sphingolipid metabolism by 

inhibiting ceramide synthase (Merrill et al., 2001; Riley et al., 2001).  
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Figure 1-3-3. Structure of fumonisin B1. 

 

Fumonisins are structurally similar to sphingosine. Fumonisin B1 is comprised of a long-

chain aminopentol backbone with two ester-linked tricarballylic acids (Figure 1-3-3). 

Fumonisin B1 inhibits ceramide synthase in a way that the aminopentol backbone competes 

for binding of the sphingoid base substrate, whereas the anionic tricarballylic acids interfere 

with binding of the fatty acyl-CoA (Merrill et al., 2001). Fumonisins cause rapid elevations in 

sphinganine due to inhibition of de novo sphingolipid biosynthesis (Figure 1-3-4). This most 

often results in growth arrest (Ciacci-Zanella et al., 1998; Zhang et al., 1999) and apoptosis 

(Schmelz et al., 1998) due to increased levels of sphinganine. However, in some cells 

fumonisins are growth stimulatory instead of toxic. These effects appears when the synthesis 

of sphinganine-1-phosphate is increased due to the accumulation of sphinganine (Smith and 

Merrill, 1995). All those mentioned effects of fumonisins are reflected on protein kinase C 

activity, cell growth and differentiation, apoptosis, carcinogenicity and lipid peroxidation 

(Soriano et al., 2005). Thus, interference with sphingolipid metabolic pathway causes 

numerous effects in cells.  
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Figure 1-3-4. Disruption of SL metabolism by fumonisin B1 (FB1).  
Shown are the inhibition of ceramide formation from sphinganine and sphingosine by fumonisin B1, resulting in 

elevations in these sphingoid bases (and sometimes sphingoid base 1-phosphate) and reduction in complex 

sphingolipids (Desai et al., 2002). 

 

 

Alternaria toxin, isolated from Alternaria alternata (Shier et al., 1991) (Figure 1-3-5) is a 

phytotoxin with structural similarity to the sphingolipid backbone. It inhibits SL biosynthesis 

on the stage of ceramide formation but with less potency than fumonisins (Merrill et al., 

1993b). 

Australifungin (Sporomiella australis) (Figure 1-3-5) is a potent antifungal agent that was 

reported as an inhibitor of sphinganine N-acyltransferase (Mandala et al., 1995). 
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Figure 1-3-5. Structures of australifungin and alternaria toxin. 
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2 Scope of the present study 
 

The main goal of the present study was the isolation of new and preferably biologically active 

secondary metabolites from marine-derived fungi with an emphasis on such compounds that 

influence on sphingolipid metabolism. 

 

2.1 Biological and chemical screening of fungal extracts 

 

Selected fungal strains were cultured in small scale and extracted which enabled biological 

tests and chemical screening. These tests mainly consisted of agar diffusion assays for 

antibacterial, antifungal and antialgal activity, cytotoxic assays in a panel of 6 cancer cell 

lines and assays for sphingolipid metabolism alterations. Additional investigations by 1H 

NMR and MS were used for chemical characterization of the fungal extracts. The results 

obtained with those methods were used for the selection of strains which were subsequently 

subjected to detailed chemical and biological analyses.  

 

2.2 Chemical investigation of selected fungal strains 

 

In order to isolate pure and biologically active metabolites, selected strains were cultured on a 

large scale, extracted, and the extracts separated using diverse chromatographic methods, 

mainly HPLC. The chemical investigations were completed by structure elucidation, using 1D 

and 2D NMR techniques and by physical characterization of the isolated metabolites. 

 

2.3 Biological evaluation of isolated pure compounds 

 

Pure compounds isolated in this study were tested in the same assays as used for the 

evaluation of the extracts. Additionally, specific cytotoxicity assays and tests on sphingolipid 

metabolism were used for the compounds that exhibited potent activity in order to describe 

their mechanism of action.  
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3 Materials and methods 
 

3.1 Fungal strains 

 

3.1.1 Isolation of the fungal strains 

All chemically investigated fungal strains, described in this study, were obtained from fungal 

culture collection of Professor G. M. König (Institute for Pharmaceutical Biology, University 

of Bonn), and were isolated by Ekaterina Eguereva or by former Ph. D. students Dr. Ulrich 

Höller and Dr. Christine Klemke.  

 

3.1.1.1 Isolation from algal material 

After sterilization of the algal material with 70 % ethanol, algal samples were rinsed with 

sterile water and pressed onto agar plates to detect any residual fungal spores on their surface. 

The water used for media was artificial sea water (ASW) containing the following salts: 

[(g/L): KBr (0.1), NaCl (23.48), MgCl2 x H2O (10.61), CaCl2 x 2H2O (1.47), KCl (0.66), 

SrCl2 x 6H2O (0.04), Na2SO4 (3.92), NaHCO3 (0.19), H3BO3 (0.03)]. Sterilized algae were 

then cut into pieces and placed on agar plates containing isolation medium: biomalt 20 g/L, 15 

g/L agar, 1 L ASW, benzyl penicillin and streptomycin sulphate (250 mg/L). Fungal colonies 

growing out of the algal tissue were transferred onto medium for sporulation: 15 g/L agar and 

20 g/L biomalt extract in artificial sea water (Klemke, PhD Thesis). 

 

3.1.1.2 Isolation from the sponge          

Fungal strains were isolated by inoculating small pieces of the inner tissue of the sponge on 

glucose peptone yeast extract agar at room temperature: Glucose 1 g/L, peptone from Soya 

0.5 g/L, yeast extract 0.1 g/L, streptomycin sulfate 250 mg/L, agar 15 g/L, 1 L ASW (Höller 

et al., 2000). Fungal colonies growing out of the tissue of the sponge were transferred to 

medium for sporulation (15 g/L agar, 20 g/L biomalt extract, 1 L ASW). 

 

3.1.2 Fungal strains for chemical investigation  

All strains, described in this study, were identified by the Centraalbureau voor 

Schimmelcultures, Utrecht, The Netherlands. 

 

Aspergillus terreus was isolated from the alga Cystoseira sp. collected around Greece.  
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Emericella nidulans var. acristata (Fennell & Raper) Subramanian was isolated from a green 

alga collected from Sardinia (Italy, Mediterranean Sea). 

 

Spicellum roseum (Nicot & Roquebert) was isolated from the sponge Ectyplasia perox 

collected around the Caribbean island of Dominica. 

 

Arthrinium sacchari (Speg) M.B. Ellis anamorph of Apiospora montagnei Saccardo was 

isolated from the green alga collected at the Adriatic Coast (Croatia). 

 

Paecilomyces lilacinus (Thom) Samson was isolated from unidentified algae sample collected 

around the Island of Tenerife. 

 

Fusarium oxysporum was isolated from the alga Pelvetia sp. collected at South Atlantic Coast 

(France). 

 

Fusarium dimerum complex (contains many species) was isolated from the sponge 

Callyspongia sp. collected in Australia. 

 

3.1.3 Cultivation of fungal strains 

Fungal strains were cultivated in Fernbach flasks at room temperature for one to three months 

(specific cultivation conditions see in the “Results” chapter). The solid media used for the 

cultivation were (a) biomalt agar medium (20 g/L biomalt, 17 g/L agar and ASW), (b) 

peptone agar medium (20 g/L biomalt, 10 g/L peptone form Soya, 17 g/L agar and ASW), or 

(c) malt-yeast agar medium (4 g/L yeast extract, 10 g/L malt extract, 4 g/L glucose, 15 g/L 

agar and ASW, pH 7.3). For the screening examinations fungal strains were cultivated in Petri 

dishes for one month on three different media: (a) biomalt agar medium, (b) malt-yeast agar 

medium, or (c) czapek agar medium (35 g/L Czapek solution agar, 15 g/L agar and ASW). 

 

3.2 Chromatography 

 

3.2.1 Thin layer chromatography (TLC) 

TLC was carried out using either TLC aluminium sheets silica gel 60 F254 (Merck) or TLC 

aluminium sheets RP-18 F254 (Merck) as stationary phase. Standard chromatograms of fungal 

extracts and fractions were prepared by applying 20 µL of solution (5 mg/mL) to a TLC plate 
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and using PE/acetone or MeOH/H2O mixtures as mobile phases under saturated conditions. 

Chromatograms were detected under UV light (254 and 366 nm), and with vanillin-H2SO4 

(0.5 g vanillin dissolved in a mixture of 85 ml methanol, 10 mL acetic acid and 5 mL 

sulphuric acid, TLC plate heated at 110°C after spraying) giving colored spots on a white 

plate.  

 

3.2.2 Vacuum liquid chromatography (VLC) 

Sorbents for VLC were silica gel 60 (0.063-0.200 mm, Merck) or Polygoprep 60 C18 (0.05 

mm, Macherey-Nagel). Columns were filled with the appropriate sorbent, compressed under 

vacuum and soaked with PE or MeOH. Before applying the sample solution, the columns 

were equilibrated with the first designated eluent. 

 

3.2.3 Size exclusion chromatography (SEC) 

SephadexTM LH-20 (0.018-0.111 mm, Pharmacia Biotech AB; size exclusion material) was 

used as column material with MeOH as eluent. Before applying the sample solution, the 

column was wet packed with MeOH. 

 

3.2.4 High performance liquid chromatography (HPLC) 

HPLC was performed on either (a) a Merck-Hitachi system equipped with an L-6200A pump, 

an L-4500A photodiode array detector, a D-6000A interface with D-7000 HSM software and 

a Rheodyne 7725i injection system or (b) a Waters system, controlled by Waters millennium 

software, consisting of a 717 plus autosampler, 600 controller pump with in-line degasser and 

a 996 photodiode array detector. A third system (c) was equipped with a Rheodyne 7725i 

injection system, a Waters 515 HPLC pump, a Knauer RI detector K-2300 and a Linseis L 

250 E recorder. Columns used were: 

 

  A: Knauer Eurospher-100, C-8, 250 x 8 mm, 5 µm 

  B: Knauer Si Eurospher-100, 250 x 8 mm, 5 µm 

  C: Macherey-Nagel Nucleodur 100-5 C18, 250 x 4.6 mm, 5 µm 

  D: Phenomenex Synergi Hydro-RP, 250 x 4.6 mm, 4 µm 

  E: Phenomenex Synergi Max-RP, 250 x 4.6 mm, 4 µm 

  F: Phenomenex Max C12, 250 x 4.6 mm, 5µm 

  G: Phenomenex Chirex 3126 (D), 4.6 x 5 mm, 5 µm 
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Typical flow rates were 1.5 or 2.0 mL/min (250 x 8 mm column), or 1.0 mL/min (250 x 4.6 

mm column). All solvents, except H2O, were distilled prior to use. The eluents were degassed 

under reduced pressure. 

 

3.3 Structure elucidation 

 

Structures were elucidated mainly using one and two dimensional NMR techniques and 

various MS methods. Furthermore optical rotation and UV parameters as well as IR properties 

provided additional information. Additionally, calculated NMR data of the assumed structures 

with ACD software helped to elucidate most structures. Identity of isolated compounds with 

compounds reported in literature was stated, based on 1H NMR and 13C NMR, spectroscopic 

data, and specific optical rotation. Based on literature searches, using the MarinLit database, 

Sci Finder-database and Antibase, the structures were designed as known or as new. 

 

3.3.1 NMR spectroscopy 

All NMR spectra of extracts and pure compounds were recorded using either a Bruker 

Avance 300 DPX operating at 300 MHz (1H) and 75 MHz (13C) or a Bruker Avance 500 

DRX spectrometer operating at 500 MHz for 1H and 125 MHz for 13C, respectively. 

Spectra of pure compounds were processed using Bruker 1D WIN-NMR, 2D WIN-NMR or 

XWIN-NMR Version 2.6, 3.1 and 3.5 software. Spectra were referenced to residual solvent 

signals with resonances at δH/C 3.35/49.0 for CD3OD, δH/C 7.26/77.0 for CDCl3, δH/C 2.04/29.8 

for (CD3)2CO. From DEPT experiments multiplicity for 13C could be derived: s = C, d = CH, t 

= CH2, q = CH3. Structural assignments were based on spectra resulting from one or more of 

the following NMR experiments: 1H, 13C, DEPT135, 1H-1H COSY, 1H-13C direct correlation 

(HMQC and HSQC), 1H-13C long range correlation (HMBC), 1H-1H NOESY and 1H selective 

NOE. 

 

3.3.2 Mass spectrometry 

Mass spectral measurements were performed by Ms. C. Sondag (Department of Chemistry, 

University of Bonn) using a Kratos MS 50 (EI), Kratos Concept 1H (FAB) and a Finnigan 

MAT 95 (EI, ESI) spectrometer. 

HPLC-MS (ESI) measurements were conducted by Dr. A. Krick, Institute for Pharmaceutical 

Biology, Bonn, Germany employing an Agilent 1100 Series HPLC including DAD (205 nm), 

with reversed phase C18 column (Macherey-Nagel Nucleodur 100, 125 x 2 mm, 5 µm) and 
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gradient elution (from MeOH/H2O 10/90 to MeOH/H2O 100/0 in 20 min, MeOH 100% for 10 

min, with added NH4Ac, 2 mmol), coupled with an API 2000, Triple Quadrupole, 

LC/MS/MS, Applied Biosystems/MDS Sciex and ESI source. 

 

3.3.3 UV measurements 

UV spectra were recorded on a Perkin-Elmer Lambda 40 with UV WinLab Version 2.80.03 

software, using 1.0 cm quartz cells. Compounds were measured in methanol. The molar 

absorption coefficient was determined in accordance with the Lamber-Beer-Law: 

 

  
[ ]

A   A= c b L
molmol cm c b

L

ε ε ⎡ ⎤× × ⇔ =⎢ ⎥× ⎡ ⎤⎣ ⎦ ×⎢ ⎥⎣ ⎦
cm

 

 

A = absorption at peak maximum 

c = concentration 

b = layer thickness of solution 

 

3.3.4 IR spectroscopy 

IR spectra were recorded as film, using a Perkin-Elmer FT-IR Spectrum BX spectrometer 

together with Spectrum v3.01 software. 

 

3.3.5 Optical rotation 

Optical rotation measurements were conducted on a Jasco model DIP-140 polarimeter (1 dm, 

1 cm3 cell). The samples were dissolved in methanol and measured at λ=589 nm 

corresponding to the sodium D line at room temperature. Specific optical rotation [α]  was 

calculated pursuant to: 

T
D

    
lc

xT

D ×
= αα 100][  

 

T: temperature [ºC] 

D: sodium D line at λ=589 

c: concentration [g/100 mL] 

d: cell length [dm] 
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For each compound at least 10 measurements were accomplished and the average value was 

calculated and assigned as α. 

 

3.3.6 Molecular modeling 

The configurations of spicellamide A and B were revealed by conformation search 

(Boltzmann jump) using the CVFF1.01 force field refined with 500 iterations of smart 

minimization as implemented in the Cerius2 4.0 (MSI) molecular modeling software package. 

Calculations were performed using a Silicon Graphics O2 workstation (Irix 6.5.6). 

 

3.4 Amino acids analysis 

 

3.4.1 Marfey`s method 

Depsipeptides (spicellamide A and B, 0.4 mg each) were hydrolyzed with 6 M HCl (0.5 mL) 

at 110 ºC for 16 h. After concentration to dryness, the residues were dissolved in H2O (50 

µL). A 1 % 1-fluoro-2,4-dinitrophenyl-5-L-alaninamide (FDAA) solution in acetone 

(Marfey`s reagent, 100 µL) and 1 M NaHCO3 (20µL) were added. In this manner FDAA 

reacts with the α-amino group of L- and D-amino acids yielding diastereomers (Figure 3-1A) 

which can be separated by HPLC due to large differences in their capacity factors which come 

from intramolecular H-bonding (Figure 3-1B) (Bhushan and Bruckner, 2004). The mixtures 

were incubated at 80 ºC for 40 min, cooled down to room temperature, neutralized with 2 M 

HCl (10 µL), and evaporated to dryness (Marfey, 1984).  
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Figure 3-1. (A) Formation of L-L and L-D diastereomers. (B) Structure of L-L-diastereomer 

showing H bonding (Brückner and Keller-Hoehl, 1990). 

 

The residues were resuspended in DMSO (100 µL) and subjected to HPLC-MS using a 

reversed-phase C18 column (Macherey-Nagel Nucleodur 100, 125 x 2 mm, 5 µm) and 

gradient elution (from MeOH/H2O 10/90 to MeOH/H2O 100/0 in 20 min, MeOH 100% for 10 

min, with added NH4Ac, 2 mmol). The retention times and molecular weights of the FDAA 

derivatives of standards were compared with those of hydrolyzed depsipeptide samples. 
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3.5 Cell culture 

 

3.5.1 Primary cultured neurons 

Cells were prepared from cerebella of six-day-old NMRI (Navy Marine Research Institute) 

mice, which were bred in the animal house of the University of Bonn (Germany), according 

to Trenkner and Sidman (Trenkner and Sidman, 1977). The cerebellum was dissected out and 

immersed in Ca2+/Mg2+-free isotonic solution (CMF) under sterile conditions, washed three 

times in CMF and incubated in trypsin/DNase for 14 min at room temperature. 

Trypsin/DNase solution was removed and the cells were washed three times with 10 % heat-

inactivated horse serum (30 min at 57 ºC) in Dulbecco`s modified Eagle`s medium (DMEM). 

The cells were then dissociated by repeated passage through a constricted Pasteur pipette in a 

DNase solution (10 % horse serum + 0.05 % DNase in DMEM) and collected by 

centrifugation at room temperature for 7 min at 1000g.  The cells were suspended in DMEM 

containing 10 % heat-inactivated horse serum and plated onto poly-L-lysine-coated 8 cm2 

Petri dishes (6 x 106 cells/dish). At 24 h after plating, cytosine arabinose was added to the 

medium (4 x 10-5 M) to arrest the division of non-neuronal cells. After 5-6 days in culture, 

cells were used for metabolic studies. Experiments were performed in minimum essential 

medium (MEM) containing 0.3 % horse serum and 1 % cytosine arabinoside. 

 

3.5.2 Neuroblastoma B104 cell line 

The rat neuroblastoma B104 cell line (ICLCATL99008) that originates in the central nervous 

system (Schubert et al., 1974). Neuroblastoma B104 cells were routinely cultured in DMEM, 

supplemented with 2 mM glutamine, 10 % heat-inactivated fetal calf serum, and antibiotics 

(penicillin 100 U/l and streptomycin 100 mg/l). For experiments, cells were subcultured in 8 

cm2 Petri dishes. Medium was renewed every 48 h until confluency was reached. Experiments 

were performed in MEM supplemented with 0.3 % heat-inactivated fetal calf serum. 

 

 

3.5.3 Sphingolipid labeling in cultured cells 

From the culture dishes medium was removed, and the cells were rinsed two times with MEM 

supplemented with 0.3 % horse serum and 1 % cytosine arabinoside (cerebellar neurons), or 

with 0.3 % fetal calf serum (neuroblastoma B104 cells). The cells were then incubated in the 

same media containing substances, wanted to be tested, diluted in 70 % ethanol, or only 70 % 

ethanol as control. Incubation temperature was 35.5 ºC for primary cultured neurons, and 37 



Materials and methods 30

ºC for neuroblastoma B104 cells, while the saturation with CO2 was 5 % for the both cell 

types. For the sphingolipid analysis, 4 h after the stimulation of the cells, 1 µCi/ml of either 

[14C] serine or [14C] galactose were added in the medium.  

 

3.5.4 Cell viability assay 

Cell viability was tested in CellTiter-Blue Cell Viability Assay (Promega) that is based on the 

conversion of resazurin to the fluorescent product resofurin exclusively by metabolically 

active (viable) cells. The neuroblastoma B104 cell line or primary cultured neurons were 

cultured in 8 cm2 Petri dishes as described above. After 24 h of the incubation with different 

fungal metabolites, 100 µL of CellTiter-Blue reagent (resazurin) were added to each cell 

culture dish and incubation continued for 1 h. Then an aliquot of 100 µL from each culture 

dish was transferred to a 96-well microtiter plate and fluorescence of resorufin was recorded 

(544Ex/590Em nm). The values were presented as percentages of control. 

 

3.5.5 Cell harvesting 

After 24 h of the incubation with different fungal metabolites, cells were washed two times 

with 500 µL of ice-cold phosphate-buffered saline (PBS), harvested with plastic scraper in 1.5 

mL PBS, and centrifuged at 4 ºC for 10 min at 3000g. Then PBS was removed and the pellets 

were stored at -20 ºC until the further analysis.  

 

3.5.6 Protein determination 

The protein concentration was determined with the Bradford method in a 96-well microtiter 

plate (Bradford, 1976). The method is based on the binding of Coomassie Blue to protein 

which causes a shift in the absorption maximum of the dye from 465 to 595 nm. This increase 

in absorption at 595 nm is monitored. Bovine serum albumin (BSA) was used as a standard 

for which was calculated a standard curve from the absorptions obtained from 10 standard 

solutions ranging from 0 to 250 µg/mL. Always, 20 µL of standard or aliquots of protein 

sample (see Chapter 3.6.1) were added to 200 µL of Bradford reagent (Coomassie-blue R250) 

diluted 1:5 in Millipore water. The microtiter plate was incubated for 10 min in the absence of 

light and the absorption measurements and calculations of sample concentrations were carried 

out photometrically on a Multiskan Ascent readout instrument.  
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3.6 Sphingolipid analysis 

 

Sphingolipid extraction and analysis by thin layer chromatography (TLC) were done 

according to van Echten-Deckert (van Echten-Deckert, 2000). 

 

3.6.1 Extraction of lipids 

The cell pellets were suspended in 400 µL of water and homogenized by repeated passage 

through plastic pipette tips. At this step aliquots for other measurements were taken (e.g. 

protein determination, see Chapter 3.5.6). For the extraction of total lipids, 5.85 mL mixtrure 

of chlororfom-methanol (2:1, v/v) was added to the homogenized pellets. Extraction was 

preformed for 24 h at 50 ºC with continuous stirring. To avoid solvent loss by evaporation 

during extraction, screw-capped Pyrex tubes with Teflon inlays were used throughout. After 

extraction, denaturated protein particles were removed by passing the samples through cotton 

wadding introduced into glass Pasteur pipettes, which were used as filtration columns. Prior 

to application of the lipid extract, the wadding filter was rinsed with 0.5 mL of extraction 

solvent chloroform-methanol-water (20:10:2, v/v/v). The filtered sample was collected in a 

new screw-capped Pyrex tube with Teflon inlay placed under the pipette tip. Finally, the 

wadding filter was rinsed with 2 mL of extraction solvent that was collected in the same tube. 

The solvent was evaporated under a stream of nitrogen. 

 

3.6.2 Removal of lipid contaminants 

Phospholipids, extracted along with sphingolipids, comigrate with sphingolipid separation by 

TLC, and therefore they should be removed from lipid extracts. For the removal of 

phospholipids, extracts were dissolved in 2.5 mL of methanol and sonicated for 5 min in a 

sonifier (Sonorex RK 100, Bandelin, Berlin, Germany). Then 62.5 µL of sodium hydroxide (4 

M stock solution in water) was added. After shaking for 2 hours at 37 ºC, samples were 

neutralized by addition of about 10 µL of concentrated acetic acid. Finally the solvent was 

evaporated under a stream of nitrogen. 

 

3.6.3 Removal of salts by reversed-phase chromatography 

Small hydrophilic molecules such as salts, amino acids, sugars, small peptides extracted along 

with sphingolipids, as well as salts formed by addition of sodium hydroxide, interfere with 

lipid behavior during separation by TLC. Reversed-phase liquid chromatography (RP-LC) 

was used to remove polar nonlipid contaminants. The silica gel RP18 (silica gel LiChroprep 
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RP18, 40-63 µm, Merck) used for RP-LC was suspended in chloroform-methanol (2:1, v/v) 

and shaked for 30 min. After the gel was settled down supernatant was removed. The gel was 

resuspended in methanol (1:1, v/v), shaked for 30 min, settled down and the supernatant was 

removed. This step was repeated 3-4 times with fresh methanol. Finally, the gel suspended in 

methanol was stored at 4 ºC until the use. 

For the column preparation, small pieces of silanized glass fiber wadding (Macherey-Nagel) 

were introduced into glass Pasteur pipettes and 2 mL of the silica gel RP18 suspension was 

added. The columns were rinsed two times with 1 mL of chloroform-methanol-0.1 M 

potassium chloride (3:48:47, v/v/v). In the mean time, samples were dissolved in 1 mL of 

methanol and sonicated for 5 min. Then 1 mL of ammonium acetate (300 mM in H2O) was 

added to each sample, and the samples were applied to the columns. Empty sample tubes 

were rinsed two times with 0.5 mL of ammonium acetate (200 mM in methanol-water, 1:1, 

v/v) which was applied to the column. Columns were washed with 6 mL of water to elute all 

polar contaminants. Then new tubes were placed under each column. Lipids were eluted with 

1 mL of methanol and 8 mL of chloroform-methanol (1:1, v/v). Solvent was evaporated under 

a stream of nitrogen. 

 

3.6.4 Separation of sphingolipids by thin-layer chromatography 

Sphingolipids were separated by thin layer chromatography using glass-backed silica gel 60 

precoated TLC plates (Merck). Samples were dissolved in maximum 50µL of chloroform-

methanol-water (20:10:2, v/v/v) and applied as 1 cm bands on the TLC plate using small glass 

capillaries (length 50 mm, diameter 0.5 mm, Hilgenberg, Malsfeld, Germany). TLC plates 

were dried overnight in a desiccator under vacuum before development. 

The solvents used for the development of chromatograms were freshly mixed and added to 

the tank at least 90 min prior to initiating chromatography for the formation of the vapor-

liquid equilibrium. The solvent system used for the separation of most sphingolipids was the 

mixture of chloroform-methanol-0.22% aqueous CaCl2 (60:35:8, v/v/v). For a good resolution 

of ceramide, the TLC plate was run twice consecutively in chloroform-methanol-acetic acid 

(190:9:1, v/v/v). Neutral sphingolipids (glucosylceramide, lactosylceramide, sphingomyelin, 

GM3 and sphingosine) were separated in solvent system of chloroform-methanol-2 M 

aqueous ammonia (65:25:4, v/v/v). 

After running, TLC plates were removed from the tank, and solvents were allowed to 

evaporate. Sphingolipids were visualized by autoradiography using the bio-imaging analyzer 
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Fujix Bas1000 software, TINA 2.09 (Raytest, Straubenhardt, Germany) and identified by Rf 

values of standards. 

 

3.6.5 Lactosylceramide synthase (LacCer) assay 

In a total volume of 50 µl, the assay mixture contained 100 µM GlcCer (Biotrend, Cologne, 

Germany), 100 µg of Triton X-100, 64 mM sodium cacodylate (Sigma-Aldrich, Steinheim, 

Germany), HCl buffer (pH 7.35), 10 mM Mn2+, 10 mM Mg2+, 20 mM CDP-choline (Sigma-

Aldrich, Steinheim, Germany), 500 µM UDP-galactose (Sigma-Aldrich, Steinheim, 

Germany) and 500 µM UDP-[14C] galactose (8000 cpm/nmol), and 100 µg of cell protein. 

Incubation was for 30 min at 37 ºC. Radioactivity of the reaction product was quantified in a 

liquid scintillation counter. The radioactive product of the enzyme assay co-migrated with 

authentic lactosylceramide when applied to TLC (solvent system: chloroform, methanol, 

0.22% agueous CaCl2 (60:35:8, by volume)). Blanks containing no glycolipid acceptor were 

run in parallel. 

 

3.7 Reverse transcription-polymerase chain reaction (RT-PCR) 

 

Total RNA was isolated from neuroblastoma B104 cells and cerebellar neurons using the 

RNeasy mini kit and the RNaseFreeDNaseI-set (Qiagen GmbH, Hilden, Germany) following 

provider`s instructions. The principle of the procedure of the kit is the selective binding of 

RNA to a silica membrane while the rest of the cell components are washed away. 

As starting material, cells were disrupted by addition of buffer contaning 1 % β-

mercaptoethanol (Sigma) and homogenized to reduce viscosity of lysates. Afterwards, 70 % 

ethanol was added to provide proper binding conditions to the silica-gel membrane of the 

columns provided by the kit. Finally, RNA was eluted in 60 µL of water. The concentration 

(µg/mL) of isolated RNA was quantified by measuring RNA/protein absorption (260/280 nm) 

using spectrophotometer (SmartSpecTMPlus, Bio-Rad). 

To obtain DNA copy (cDNA), approximately 0.4 µg of total RNA was reverse-transcribed 

using SuperScript II First-Strand Synthesis System for RT-PCR with Hexamer Random 

Primers (Invitrogen, Karlsruhe, Germany) according to manufacturer`s instructions. 

Semiquantitative PCR was performed using the both gene-specific primers pairs (representing 

intron spanning sequences, respectively) for LacCer synthase: 5`-

CCTCCCTCCACATTTCTCC-3` (forward), 5`-ATCTTCCTCTGCCCTACCA-3` (reverse), 

23 cycles; and 5`-CATGATCAGGCTGTATACCAATAAA-3` (forward), 5`-
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CTTGTATTATTGCCTTCGGGATA-3` (reverse), 25 cycles with similar results; for 18 S 

rRNA: 5`-AAACGGCTACCACATCCAAG-3` (forward), 5`-

CCTCCAATGGATCCTCGTTA-3` (reverse), 7 cycles. All reactions were carried out with 

taq DNA polymerase (Invitrogen, Karlsruhe, Germany) in a MJ PTC 200 thermal cycler 

(Biozym, Hess. Oldendorf, Germany). Annealing was at 59 ºC and product size was between 

100 and 150 base pairs. 

In order to observe PCR products they were run on a 1.7 % agarose gel (agarose in Tris-

Acetate-EDTA buffer). For analysis, 10 % ethidium bromide was added to the gel to allow 

visualization under a UV lamp. Samples were applied on the gel with 10 % of loading dye 

and run with power supply of 120V, 110A for 60 min. 

 

3.7.1 RT-PCR protocols  

RNA isolation 

Cells (8 cm2 Petri dish) were washed two times with 1 mL of sterile 37 ºC warm PBS, 

harvested with plastic scraper in 600 µL of buffer contaning 1 % β-mercaptoethanol (Sigma) 

and homogenized to reduce viscosity of lysates. Isolation of RNA was preformed using the 

RNeasy mini kit and the RNaseFreeDNaseI-set (Qiagen GmbH, Hilden, Germany). The 

protocol used is summarized as follows: 

- Mix 600 µL of lysis buffer with 600 µL 70 % EtOH 

- Load 700 µL of the sample into column and centrifuge (20 s, 10000 rpm), discard waste, 

load rest of the sample and repeat the procedure 

- Add 350 µL wash buffer RW1, centrifuge (20 s, 10000 rpm), discard waste 

- Mix 10 µL DNase with 70 µL RDD buffer, add on the membrane and leave for 15 min 

- Add 350 µL wash buffer RW1, centrifuge (20 s, 10000 rpm), discard waste 

- Add 500 µL wash buffer RPE (+ EtOH), centrifuge (20 s, 10000 rpm), discard waste, repeat 

and centrifuge (2 min, 10000 rpm), discard waste and centrifuge to dry (1 min, max) 

- Place column in tube, add 30 µL RNase free water, centrifuge (1 min, 10000 rpm), add 

another 30 µL RNase free water and repeat the procedure 

 

Reverse transcription 

PrimerMix   1 x [µL] 

Random Hexamers     1 

dNTP-Mix      1 

H2O       3 
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Add PrimerMix to 5 µL RNA. 

65 ºC 5 min 

0 ºC 2 min  

 

MasterMix   1 x [µL] 

10X RT Buffer     2 

MgCl2       2 

H2O       2 

DTT       2 

RNase Out      1 

SS III       1 

Add MasterMix to each sample. 

25 ºC 10 min 

50 ºC 50 min 

85 ºC 5 min 

0 ºC 2 min 

 

Add 1 µL RNaseH, spin with the pipette. 

37 ºC 20 min 

 

Polymerase chain reaction 

MasterMix   1 x [µL] 

10X Buffer      4 

Forward-Primer     2 

Reverse-Primer     2 

dNTP-Mix      1 

H2O       28.5 

Taq       0.5 

Add PrimerMix to 2 µL cDNA, spin with the pipette, centrifuge (Short). 

 

Example of PCR program: 

Initial denaturation step: 94 ºC 2:30 min 

Cycle Step 1 – Denaturation: 94 ºC 0:30 min 

Cycle Step 2 – Annealing 55-60 ºC 0:30 min (dependent upon primer used) 
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Cycle Step 3 – Elongation 68 ºC 1:0 min 

Repeat cycle steps accordingly between 7 to 35 times. 

Final Elongation Step: 68 ºC 9:0 min 

Cooling: 0 ºC 5:0 min 

PCR products were either stored at 4 ºC or ran on a 1 % agarose gel for analysis. 

 

3.8 MRP1- and Pgp-related transport activities 

 

MRP1- and Pgp-related transport activities were investigated by using the fluorescent probes 

5-carboxyfluorescein diacetate (CFDA) and rhodamine-123 (Rh123) in efflux and 

accumulation assays (Neyfakh, 1988; Laupeze et al., 1999). The neuroblastoma B104 cells 

and cerebellar neurons were cultivated in 8 cm2 Petri dishes at 37 ºC (neuroblastoma) or 35.5 

ºC (cerebellar neurons) and 5% CO2. At confluence, cells were washed twice with Hank`s 

balanced salt solution (HBSS) (1.3 mM CaCl2, 5.4 mM KCl, 0.44 mM KH2PO4, 0.83 mM 

MgSO4, 137 mM NaCl, 4.2 mM NaHCO3, 0.34 mM Na2HPO4 and 25 mM D-glucose, pH 7.2 

– 7.6) at 37 ºC.  

 

3.8.1 MRP1- and Pgp-mediated accumulation assay 

For MRP1- and Pgp-mediated accumulation assay cells were pre-incubated 1 h at 37 ºC with 

HBSS containing ethanol (2% v/v) or tested compounds (30 µM 8-deoxy-trichothecin, 30 µM 

trichodermol, 20 µM MK571 and 15 µM cyclosporine A). CFDA (2 µM, MRP1-assay) and 

Rh-123 (20 µM, Pgp-assay) were then added for an incubation of 2 h at 37 ºC. The 

accumulation of CFDA and Rh-123 was stopped by washing the cells five times with cold 

PBS and the cells were lysed with 0.1 % Triton X-100 at room temperature. Fluorescence of 

CFDA and Rh-123 in media and cell lysates was measured using a spectrofluorometer 

(Labsystems Fluoroskan II, GMI, USA) at a wavelength of 485 nm for excitation and 538 nm 

for emission. 

 

3.8.2 MRP1- and Pgp-mediated efflux assay 

For MRP1- and Pgp-mediated drug efflux assay cells were loaded with 2µM CFDA in the 

presence or absence of the MRP1 inhibitor MK571 (20µM), or with 20 µM Rh-123 in the 

presence or absence of the Pgp inhibitor cyclosporine A (15µM) for 2 h at 37 ºC. Cells were 

then washed five times with HBSS and incubated with HBSS containing 30 µM 8-deoxy-

trichothecin, 30 µM trichodermol, 20 µM MK571 (MRP1-assay), 15 µM cyclosporine A 
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(Pgp-assay) or ethanol (2% v/v) as a control. After incubation for 1 h  at 37 ºC, cells were 

washed five times with cold PBS and lysed with 0.1 % Triton X-100 at room temperature. 

The fluorescent of CFDA and Rh-123 in media and cell lysates was measured as described 

above. 
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3.9 Biological tests 

 

3.9.1 Agar diffusion assay 

Antimicrobial tests of extracts and HPLC fractions were performed by E. Neu following the 

method described by Schulz et al. (Schultz et al., 1995). The bacteria Bacillus megaterium de 

Bary (Gram positive) and Escherichia coli (Migula) Castellani & Chambers (gram negative), 

the fungi Microbotryum violaceum (Pers.) Roussel (Ustomycetes), Eurotium rubrum 

(formerly E. repens) König, Spieckermann & Bremer (Ascomycetes) (all from DSMZ; 

Braunschweig, Germany), Mycotypha microspora Fenner (Zygomycetes) and the green 

microalga Chlorella fusca Shih Krass (Chlorophyceae) (both kindly provided by B. Schulz, 

Institute of Microbiology, University of Braunschweig, Germany) were used as test 

organisms. 

 

Sample solutions contained 1 mg/mL per test sample. 50 µL (equivalent to 50 µg) of each 

solution were pipetted onto a sterile antibiotic filter disk (Schleicher & Schuell 2668), which 

was then placed onto the appropriate agar medium and sprayed with a suspension of the test 

organism. Growth media, preparation of spraying suspensions, and conditions of incubation 

were carried out according to Schulz et al. (Schultz et al., 1995). For tested samples, a growth 

inhibition zone ≥ 3 mm or a complete inhibition ≥ 1 mm, measured from the edge of the filter 

disk, were regarded as a positive result; growth inhibition: growth of the appropriate test 

organism was significantly inhibited compared to a negative control; complete inhibition: no 

growth at all in the appropriate zone. Benzyl penicillin (1 mg/mL MeOH), streptomycin 

(1 mg/mL MeOH) and miconazole (1 mg/2 mL DCM) were used as positive controls. 

 

3.9.2 Cytotoxicity test against human cancer cell lines 

All cytotoxicity data were provided by Dr. G. Kelter and Dr. A. Maier, Oncotest GmbH, 

Institute for Experimental Oncology, Freiburg, Germany. For screening purpose cytotoxicity 

of fungal extracts against the following six cell lines were performed according to Roth et al. 

(Roth et al., 1999): GXF 251L (gastric), LXFL 529L (large cell lung carcinoma), 

MEXF 462NL (melanoma), RXF 486L (renal), UXF 1138L (uterus carcinoma), 

MAXF 401NL (breast carcinoma). Extracts were tested in concentrations of 10 µg/mL. 

The cytotoxicity of pure compounds was tested at Oncotest GmbH using 36 human tumor cell 

lines. The origin of the donor xenografts was described in Fiebig et al. (Fiebig et al., 1992): 
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Bladder     BXF 1218L, BXF T24 

CNS      CNXF 498NL, CNXF SF268 

Colorectal     CXF HCT116, CXF HT29, CXF SW620 

Gastric      GXF 251L 

Lung LXF 1121L, LXF 289L, LXF 526L, LXF 529L, LXF 629L, 

LXF H460 

Mammary      MAXF 401NL, MAXF MCF7 

Melanoma MEXF 276L, MEXF 394NL, MEXF 462NL, MEXF 541L, 

MEXF 520L 

Ovary       OVXF 1619L, OCXF 899L, OVXF OVCAR3 

Pancreas      PAXF 1657L, PAXF PANC1 

Prostate      PRXF 22RV1, PRXF DU145, PRXF LNCAP, PRXF PC3M 

Pleuramesothelioma     PXF 1752L 

Renal       RXF 1781L, RXF 393NL, RXF 486L, RXF 944L, 

RXF UO31 

Uterus body      UXF 1138L 

 

Cell death of ≥  70 % was regarded as active while moderate activity was defined as 50-70 % 

cell death. 

 

3.9.3 Immunostimulating activity 

All immunostimulating analyses were preformed by Dr. M. Maurer, Oncotest GmbH, 

Institute for Experimental Oncology, Freiburg, Germany. The immunostimulating effects of 

selected pure compounds were investigated by analyzing the stimulation of cytokine 

production by peripheral blood mononuclear cells (PBMCs) from healthy donors as described 

in Kralj et al. (Kralj et al., 2006). The cytokines IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ 

were quantitatively measured with a Coulter Cytomics FC500 cytometer using the cytometric 

bead array (Morgan et al., 2004). The results were analyzed with the Coulter Cytomics Bead 

Array Analysis program. 
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3.10 Chemicals and other materials 

 

3.10.1 Apparatus and expendable materials 

 

Agarose gel electrophoresis    ComPhor Midi; Biozym (Oldendorf, 

Germany) 

Analytical balance     Sartorius (Göttingen, Germany) 

Autoclave      Labortechnik (Oberschleissheim, 

Germany) 

Balance      Sartorius (Göttingen, Germany) 

Bench centrifuge     Centrifuge 5417R; Eppendorf (Hamburg, 

Germany) 

Cell culture flasks     Costar (Cambridge, MA/USA) 

Cell scrapers      Costar (Cambridge, MA/USA) 

Centrifuge      Megafuge 2.0 R; Heraeus 

       Multifuge 3 S-R; Heraeus (Hanau, 

Germany) 

Centrifuge tubes, 15 mL    Greiner (Nürtingen, Germany) 

Centrifuge tubes, 50 mL    Falcon (Heidelberg, Germany) 

Plastic tubes, 0.5/1.5/2.0 mL    Eppendorf (Hamburg, Germany) 

Fernbach flasks (1800 mL)    Schott Duran (Wertheim, Germany) 

Filter paper      Macherey-Nagel (Düren, Germany) 

Fluorimeter      Digitalfluorimeter Modell 8-9; Locarte, 

Dynex Hybaid Labsystems (Frankfurt, 

Germany) 

Gel analyzing system     AlphaDigiDoc; Biozym (Oldendorf, 

Germany) 

Heating-agitator     IKA Werke (Staufen, Germany) 

Imager-Plates (Screens)    BAS MS 2040 Imaging Plate, Raytest 

(Staubenhardt, Germany) 

Incubators      Heraeus (Hanau, Germany) 

       Memmert (Schwabach, Germany) 

Incubation shaker     Ika-Labortechnik (Staufen, Germany) 

Laminar flow      Biohazard; Gelaire (Mailand, Italy) 



Materials and methods 41 

       Heraeus (Hanau, Germany) 

Microtiter plates     Falcon (Heidelberg, Germany) 

Parafilm      AAC (Greenwich, USA) 

Petri dishes, 8 cm2     Falcon (Heidelberg, Germany) 

         57/143 cm2    Greiner (Nürtingen, Germany) 

Photometer      Smart Spec 3000; Biorad (Munich, 

Germany) 

pH-Meter      InoLab WTW (Weilheim, Germany) 

Pipettes      Eppendorf Research 0.5-10, 2-20, 10-200, 

100-1000 (Hamburg, Germany) 

Pipette tips      Greiner (Nürtingen, Germany) 

Rotational evaporator     Heidolph (Kelheim, Germany)  

Röntgen cassette     Chronex; DuPont (de Nemour, France) 

Pyrex tubes      VWR (Darmstadt, Germany) 

Scintillation counter     Packard Tricarb 1600 TR (Rodgau 

Jügesheim, Germany) 

Scintillation vials     Packard (Frankfurt, Germany) 

Shaking water bath     Gesellschaft für Labortechnik 

(Burgwedel, Germany) 

Sonicator      Sonorex RK 100, Bandelin (Berlin, 

Germany) 

Spectrofluorometer     Labsystems Fluoroskan II, GMI 

(Minnesota, USA) 

Termal cycler      MJ Research PTC-200 (Biozym, Hess. 

Oldendorf, Germany) 

SmartSpecTMPlus, Bio-Rad (CA/USA) 

Ultrasonicator      Sonifer B12 with water cooled cup-horn; 

Branson Sonic Power Company (Danbury, 

USA) 

Vortex       Bender-Hohlbein (Zürich, Switzerland) 

Voltage supply source    Consort; Biometra (Göttingen, Germany) 

PowerPac 3000; BioRad (Munich, 

Germnay) 

Water filtration apparatus    EasypureUV/UF; Barnstedt/Werner 
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(Leverkusen, Germany) 

MembraPure; Millipore (Schwalbach, 

Germany) 

 

3.10.2 Cell culture media 

 

DMEM      PAA Laboratories (Pasching, Austria) 

MEM       PAA Laboratories (Pasching, Austria) 

HBSS       Sigma-Aldrich (Steinheim, Germany) 

 

3.10.3 Chemicals and solvents 

 

All solvents were research grade and supplied by Infracor or BASF. Acetone, CHCl3, CH2Cl2, 

EtOAc, MeOH and PE were distilled prior to use. Water used was de-ionised using a IBM 

Wasseraufbereitung VC 30 WE. Water for HPLC was de-ionised using a Millipore (milli-Q® 

academic) system. 

 

Acetic acid      Merck (Darmstadt, Germany) 

Acetone-d6 99.8%     Deutero GmbH (Kastellaun, Germany) 

Acetonitrile      KMF (Lohmar, Germany) 

Acetyl chloride     Lancaster (Frankfurt/Main, Germany) 

Agar       Fluka (Buchs, Switzerland) 

Agarose EEO      AppliChem (Darmstadt, Germany) 

D-Alanine 99%     Sigma-Aldrich (Steinheim, Germany) 

L-alanine 99%     Sigma-Aldrich (Steinheim, Germany) 

N-Methyl-DL-alanine     Sigma-Aldrich (Steinheim, Germany) 

N-Methyl-L-alanine     Sigma-Aldrich (Steinheim, Germany) 

Ammonium acetate     Merck (Darmstadt, Germany) 

Ammonium hydroxide    Merck (Darmstadt, Germany) 

Benzyl penicillin     Fluka (Buchs, Switzerland) 

Biomalt       Villa Natura (Kirn, Germany) 

Bovine serum albumin    Sigma-Aldrich (Steinheim, Germany) 

CaCl2       Merck (Darmstadt, Germany) 

CDP-choline      Sigma-Aldrich (Steinheim, Germany) 
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CFDA       Fluka (Buchs, Switzerland) 

Chloroform      Merck (Darmstadt, Germany) 

Chloroform-d1 99.8%     Deutero GmbH (Kastellaun, Germany) 

Coomassie-blue R260    Serva (Heidelberg, Germany) 

CuSO4        Merck (Darmstadt, Germany) 

Cyclosporin A      Fluka (Buchs, Switzerland) 

Cytosine arabinose     Sigma-Aldrich (Steinheim, Germany) 

Czapek Solution Agar    Becton Dickinson (MD, USA)  

Dimethylsulphoxide     AppliChem (Darmstadt, Germany) 

DNase       Roche (Mannheim, Germany) 

Ethanol      Riedel de Haen (Seelze, Germany) 

Ethidium bromide     AppliChem (Darmstadt, Germany) 

1-Fluoro-2,4-dinitrophenyl-5-L-alaninamide Sigma-Aldrich (Steinheim, Germany) 

Foetal bovine serum     PAA Laboratories (Pasching, Austria) 

Glucose      Merck (Darmstadt, Germany) 

Glutamax®      Sigma-Aldrich (Steinheim, Germany) 

H3BO3       Serva (Heidelberg, Germany) 

HCl, 37%      Merck (Darmstadt, Germany) 

H2SO4       Merck (Darmstadt, Germany) 

D-Hydroxyisocaproic acid    Bachem (Weil am Rhein, Germany) 

L-Hydroxyisocaproic acid    Bachem (Weil am Rhein, Germany) 

D-Hydroxyisovaleric acid    Fluka (Buchs, Switzerland) 

L-Hydroxyisoovaleric acid    Fluka (Buchs, Switzerland) 

Horse serum      Cytogen (Berlin, Germany) 

KBr       Merck (Darmstadt, Germany) 

KCl       Merck (Darmstadt, Germany) 

KH2PO4      Merck (Darmstadt, Germany) 

Lichenysin A      kindly provided by Dr. Golyshin 

(Department of Environmental 

Microbiology, Braunschweig, Germany) 

Malt-extract      Roth (Karlsruhe, Germany) 

Methanol      Fluka (Buchs, Switzerland) 

Methanol-d4 99.8 % D    Deutero GmbH (Kastellaun, Germany) 

MgCl2 × 6 H2O     Merck (Darmstadt, Germany) 
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MK571      Alexis biochemicals (Lausen, 

Switzerland) 

MnCl2 x 4 H2O     Merck (Darmstadt, Germany) 

NaCl       Merck (Darmstadt, Germany) 

NaHCO3       Merck (Darmstadt, Germany) 

NaOH       Merck (Darmstadt, Germany) 

Na2SO4       Merck(Darmstadt, Germany) 

Penicillin/Streptomycin    Biomol GmbH (Hamburg, Germany) 

Peptone from Soya     Fluka (Buchs, Switzerland) 

N-Methyl-D-phenylalanine    Sigma-Aldrich (Steinheim, Germany) 

N-Methyl-L-phenylalanine    Sigma-Aldrich (Steinheim, Germany) 

Rhodamine-123     Sigma-Aldrich (Steinheim, Germany) 

Sephadex® LH-20     Pharmacia Biotech (Uppsala, Sweden) 

Sodium cacodylate     Sigma-Aldrich (Steinheim, Germany) 

SrCl2 × 6 H2O      Merck (Darmstadt, Germany) 

Streptomycin sulphate    Fluka (Buchs, Switzerland) 

Surfactin      kindly provided by Dr. Golyshin 

(Department of Environmental 

Microbiology, Braunschweig, Germany) 

Taq DNA polymerase     Invitrogen (Karlsruhe, Germany) 

Tetrahydrofuran-d8     Deutero GmbH (Kastellaun, Germany) 

Tris-Acetate-EDTA buffer    AppliChem (Darmstadt, Germany) 

Tritone-X 100      Sigma-Aldrich (Steinheim, Germany) 

Tween 20      Roth (Karlsruhe, Germany) 

UDP-Galactose     Sigma-Aldrich (Steinheim, Germany) 

Yeast extract      Roth (Karlsruhe, Germany) 

Vanillin      Merck (Darmstadt, Germany)  

 

All other chemicals were supplied by Merck (Darmstadt, Germany), Fluka (Buchs, 

Switzerland), Roth (Karlsruhe, Germany) and Sigma-Aldrich (Steinheim, Germany). 

 

3.10.4 Kits 

 

CellTiter-Blue Cell Viability Assay   Promega (Mannheim, Germany) 
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RNeasy mini kit     Qiagen GmbH (Hilden, Germany) 

RNaseFreeDNaseI-set    Qiagen GmbH (Hilden, Germany) 

 

3.10.5 Lipids 

 

Glucosylceramide     Matreya LLC (PA/USA) 

Lactosylceramide     Matreya LLC (PA/USA) 

 

3.10.6 Primers 

All primers were purchased from Invitrogen (Karlsruhe, Germany) and diluted to final 

concentration of 2.5 nmol. 

 

LacCer synthase  5`-CCTCCCTCCACATTTCTCC-3` (forward) 

    5`-ATCTTCCTCTGCCCTACCA-3` (reverse) 

 

    5`-CATGATCAGGCTGTATACCAATAAA-3` (forward) 

    5`-CTTGTATTATTGCCTTCGGGATA-3` (reverse) 

 

18 S rRNA   5`-AAACGGCTACCACATCCAAG-3` (forward) 

    5`-CCTCCAATGGATCCTCGTTA-3` (reverse) 

 

3.10.7 Radioactivity 

 

L-[3-14C] serine     Amersham Biosciences (Braunschweig, 

Germany) 

D-[U-14C] galactose     Amersham Biosciences (Braunschweig, 

Germany) 

UDP-D-[U-14C] galactose    Amersham Biosciences (Braunschweig, 

Germany) 
14C8-Lactosyl-S-Ceramide    synthesized by Dr. G. Schwarzmann 
14C8-Glucosyl-S-Ceramide    synthesized by Dr. G. Schwarzmann 
14C8-GM3      synthesized by Dr. G. Schwarzmann 
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3.10.8 Solutions and buffers 

 

Ca2+/Mg2+-free isotonic solution (CMF)  Isotonic solution I  50 % (v/v) 

       Isotonic solution II  49.5 % (v/v) 

       Phenol-red   0.3 % (v/v) 

       NaHCO3   0.2 % (v/v) 

Coomassie-blue R260-stock    Coomassie-blue R260 0.05 % (w/v) 

solution      Ethanol   25 % 

       85 % Phosphoric acid  50 % (v/v) 

Isotonic solution I     Glucose   0.4 % (w/v) 

       KCl    0.06 % (w/v) 

       NaCl    1.6 % (w/v) 

Isotonic solution II     KH2PO4   0.005%(w/v) 

       NaH2PO4   0.01 % (w/v) 

Phosphate buffered saline (PBS)   KCl    3 mM 

       KH2PO4   1.5 mM 

       NaCl    140 mM 

       Na2HPO4   16 mM 

Poly-L-lysine-solution, pH 8.4   H3BO3    100 mM 

       Poly-L-lysine   1 mg/100 ml 
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4 Results 
 

4.1 Screening of fungal extracts for biologically active metabolites 

 

In this study marine-derived fungi were taken as a source of biologically active natural 

products.  

For screening purposes the strains were cultivated on 500 mL of solid media in Petri dishes. 

Each strain was cultivated on three different media: biomalt agar medium (BMS), malt-yeast 

agar medium (MYA) and czapek agar medium (CZ). After one month of cultivation, fungal 

biomass, together with the medium, was homogenized and extracted three times with 100 mL 

ethyl acetate. Each extract was characterized by 1H NMR and LC-MS, and tested in different 

biological assays. 

The major criterion for selection of fungi for further tests and analyses was the significant 

cytotoxic activity. The selected cytotoxic strains were further screened for their influence on 

sphingolipid metabolism. On the basis of their biological activity and/or chemical 

characteristics (1H NMR and MS data), some of the fungal strains were chosen for mass 

cultivation and detailed chemical and biological examinations. 

 

4.1.1 Screening of fungal extracts for cytotoxic activity 

Extracts of 82 fungal strains, cultivated on three different media, were screened for their 

cytotoxic activity against six human cancer cell lines in a concentration of 10 µg/mL. The 

results of the most active extracts are given in Tables 4-1-1. Out of 82 tested strains, 29 

strains (35.4 %) exhibited an activity with test/control value smaller than 30 % in at least one 

cell line. If a strain showed activity in more than one medium, only the extract from the most 

active medium was counted. Most of the active extracts revealed high activity against uterus 

and lung carcinoma, while only few showed activity against a gastric cancer cell line. Extract 

652 of the fungal strain Emericella nidulans (not listed in the tables below) was tested in a 

panel of 36 cell lines and effected tumor activity in 31 out of 36 cell lines at 5 µg/mL, which 

is indicative of possible high antitumor effects. 

According to the antitumor activity, 1H NMR and LC-MS data, extracts marked in blue in 

Table 4-1-1 were chosen for further studies. 
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Tables 4-1-1. In vitro antitumor activity of selected fungal strains.1 

 
concentration: 10 µg/ml

1. run 2. run both runs
cell line: Tum or Typ / Nam e / FU control 1. + 2. Run

mean s.d. GXF LXFL MAXF MEXF RXF UXF mean s.d. GXF LXFL MAXF MEXF RXF UXF mean tot. %
fungal extract2 % T/C [%] [%] 251L 529L 401NL462NL 486L 1138L % T/C [%] [%] 251L 529L 401NL462NL 486L 1138L T/C act.** act.*

1 738BMS 100 5 4 5 3 13 8 2 2 100 5 3 5 2 8 8 2 3 5 12 100
2 96BMS 100 9 6 18 5 12 15 3 2 100 9 6 15 5 13 14 4 2 9 12 100
3 74MYA 100 9 7 19 5 13 13 1 3 100 9 6 15 6 15 12 2 3 9 12 100
4 74BMS 100 10 7 17 6 15 17 3 2 100 8 6 16 6 11 11 2 2 9 12 100
5 273MYA 100 10 7 16 7 17 14 2 2 100 9 6 15 8 16 11 2 3 9 12 100
6 96CZ 100 10 7 19 5 17 13 3 2 100 9 6 16 5 15 14 3 3 10 12 100
7 71MYA 100 10 6 16 9 15 15 3 3 100 9 5 16 7 14 12 4 3 10 12 100
8 96MYA 100 10 7 18 6 18 14 3 3 100 10 8 21 5 15 15 3 3 10 12 100
9 620MYA 83 17 11 15 9 19 22 36 2 83 23 28 17 10 16 17 78 2 20 10 83
10 193BMS 100 18 9 24 11 22 19 29 4 67 23 12 28 13 23 32 39 5 21 10 83
11 727BMS 83 22 13 40 11 26 21 28 4 67 21 12 37 12 30 15 28 5 22 9 75
12 74CZ 83 18 10 24 10 33 19 12 8 67 27 18 22 11 38 25 58 11 22 9 75
13 738CZ 67 25 18 43 27 14 13 49 5 83 32 20 27 30 19 18 72 27 29 9 75
14 741BMS 67 32 17 53 23 28 29 50 8 83 27 12 30 24 26 27 45 9 29 9 75
15 18MYA 67 31 28 37 25 22 17 83 4 50 35 30 39 28 20 30 92 3 33 7 58
16 585-2 50 36 20 61 26 21 32 59 15 50 32 15 49 22 18 30 53 23 34 6 50
17 190CZ 50 38 27 25 19 35 50 86 12 50 41 30 28 25 38 38 101 18 40 6 50
18 194MYA 83 18 9 32 13 16 18 20 6 0 49 11 44 44 52 50 69 37 33 5 42
19 16BMS 50 28 24 54 11 58 31 3 9 33 58 33 81 28 90 76 7 65 43 5 42
20 211MYA 33 39 27 37 17 31 56 82 8 33 40 25 37 24 34 56 80 11 40 4 33
21 85MYA 33 46 31 72 14 41 54 86 7 33 48 27 66 27 48 50 88 12 47 4 33
22 211BMS 33 40 15 43 28 48 48 58 17 17 46 18 61 35 48 49 66 16 43 3 25
23 12BMS 17 61 25 77 60 16 52 81 78 33 43 20 67 43 21 52 18 58 52 3 25
24 193MYA 17 43 21 41 33 39 62 69 12 17 45 22 44 34 41 58 78 13 44 2 17
25 741MYA 17 43 19 65 39 50 35 57 13 17 47 21 80 41 53 35 53 18 45 2 17
26 187CZ 17 53 20 53 40 55 62 84 25 17 58 23 61 46 60 70 91 22 56 2 17
27 75BMS 33 51 28 75 83 37 23 70 17 0 77 22 79 116 72 57 82 54 64 2 17
28 54MYA 17 70 34 102 100 46 71 86 14 17 69 30 93 88 56 73 90 15 70 2 17
29 192BMS 17 48 20 42 41 35 53 86 29 0 53 20 59 44 35 61 87 33 50 1 8
30 244BMS 17 49 15 42 44 47 58 73 29 0 55 19 41 68 51 56 85 30 52 1 8
31 187MYA 17 46 19 50 44 32 61 73 19 0 59 19 55 74 37 63 85 39 53 1 8
32 192CZ 17 53 21 50 53 38 58 90 28 0 54 24 51 41 46 52 101 32 54 1 8
33 132BMS 17 53 17 41 63 74 51 65 27 0 59 17 85 57 66 49 62 35 56 1 8
34 193CZ 17 59 23 65 56 37 75 91 29 0 65 21 64 80 47 77 90 35 62 1 8
35 192MYA 0 47 18 44 41 34 50 80 30 0 53 20 57 45 38 51 91 37 50 0 0
36 136BMS 0 74 16 91 52 59 80 89 71 0 79 9 83 62 78 76 87 85 76 0 0
37 187BMS 0 72 10 80 87 63 68 69 64 0 85 2 87 87 87 83 81 83 78 0 0
38 57BMS 0 81 18 86 109 80 84 73 54 0 77 19 67 107 85 69 80 52 79 0 0
39 585-3 0 73 12 81 58 56 76 85 79 0 89 15 88 112 76 71 89 97 81 0 0
40 35BMS 0 81 10 77 98 69 83 80 80 0 84 8 68 90 90 87 85 84 83 0 0

cell line: Tum or Typ / Nam e / FU contro 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
concentration: 10 µg/ml

1. run 2. run both runs
cell line: Tum or Typ / Nam e / FU contr1. + 2. Run

GXF LXFL MAXF MEXF RXF UXF GXF LXFL MAXF MEXF RXF UXF mean tot. %
fungal extract2 % 251L 529L 401NL462NL 486L 1138L % 251L 529L 401NL462NL 486L 1138L T/C act.** act.*

1 706MYA 67 34 21 15 39 28 8 50 36 19 20 43 43 10 26 7 58
2 712CZ 50 31 17 17 62 73 9 67 30 18 20 76 88 10 38 7 58
3 714MYA 33 49 39 19 57 104 12 50 36 22 26 41 99 24 44 5 42
4 588MYA 33 47 23 37 45 33 12 33 38 17 40 49 46 17 34 4 33
5 706CZ 50 41 25 23 34 36 10 17 32 32 41 58 59 24 35 4 33
6 706SPG 50 26 39 30 63 62 27 0 34 59 35 61 89 37 47 3 25
7 726BMS 17 83 33 31 51 37 25 17 80 32 32 56 54 30 45 2 17
8 719CZ 33 32 41 22 60 87 12 0 41 67 30 81 89 35 50 2 17
9 714BMS 17 39 41 30 73 94 31 17 33 49 29 65 89 34 51 2 17
10 714CZ 33 67 56 28 99 3 46 0 67 82 38 81 98 72 61 2 17
11 717CZ 17 49 63 20 80 82 30 0 68 82 43 97 81 42 61 1 8
12 598BMS 17 71 23 113 93 100 89 0 97 98 104 75 93 99 88 1 8
13 630MYA 17 121 25 94 101 93 87 0 94 95 103 67 95 96 89 1 8
14 705CZ 17 104 20 113 94 88 104 0 84 96 118 107 95 95 93 1 8
15 588BMS 0 81 63 68 81 77 53 0 59 58 67 79 71 59 68 0 0
16 588CZ 0 75 60 82 89 93 84 0 72 78 78 48 95 69 77 0 0
17 715CZ 0 69 68 62 99 92 54 0 91 90 90 66 93 86 80 0 0
18 628CZ 0 98 96 90 88 93 60 0 83 91 95 99 86 50 86 0 0
19 315/3 0 117 95 68 96 89 73 0 94 93 80 90 79 71 87 0 0
20 729MYA 0 95 77 93 66 90 102 0 94 93 94 82 72 90 87 0 0
21 588SPG 0 121 49 122 103 80 81 0 87 86 105 75 77 70 88 0 0
22 588MB 0 81 85 77 100 92 92 0 77 111 92 99 88 84 90 0 0
23 723CZ 0 106 88 107 101 92 69 0 103 89 102 33 95 105 91 0 0
24 716BMS 0 101 37 90 105 106 85 0 87 67 104 115 107 84 91 0 0
25 711MYA 0 92 85 101 103 88 51 0 96 102 99 110 95 71 91 0 0
26 710BMS 0 98 103 84 95 94 80 0 97 78 102 100 80 93 92 0 0
27 712BMS 0 103 91 112 80 83 97 0 89 84 92 84 98 95 92 0 0
28 707BMS 0 109 94 92 103 97 52 0 96 105 112 113 95 41 92 0 0
29 722BMS 0 63 48 109 91 101 95 0 102 105 103 91 99 107 93 0 0
30 729BMS 0 89 87 88 99 111 60 0 87 106 97 104 105 82 93 0 0
31 711CZ 0 75 103 123 104 79 70 0 103 100 109 66 86 97 93 0 0
32 711BMS 0 96 81 82 96 93 90 0 103 90 125 88 82 91 93 0 0
33 719BMS 0 93 95 95 109 87 65 0 102 99 95 87 91 102 93 0 0
34 684MYA 0 83 92 83 95 97 97 0 95 98 85 104 98 95 94 0 0

cell line: Tum or Typ / Nam e / FU contr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Test/control value smaller than 30 %, green; 30 – 50 %, yellow, higher than 50 %, red. 
2 This number refers to the fungal collection (Institute for Pharmaceutical Biology, Bonn); BMS, biomalt-agar 

medium; MYA, malt-yeast medium, CZ, czapek agar medium. 
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4.1.2 Antimicrobial and antialgal activities of fungal extracts 

Cytotoxic fungal extracts (marked in blue in Tables 4-1-1.) were tested for their antimicrobial 

and antialgal activities in a concentration of 1 mg/mL. The active extract (Table 4-1-2) 

originated from the strain Spicellum roseum (strain nr. 74) with inhibition zones of 5 and 11 

mm against Eurotium rubrum and Mycotypha microspora, respectively. A strain of Fusarium 

oxysporum (strain nr. 588) exhibited antibacterial and antifungal activities, inhibiting the 

growth of Bacillus megaterium (5 mm) and Mycotypha microspora (3 mm). Antifungal 

activity was exhibited also by the strain Arthrinium sacchari (strain nr. 727) which showed a 

zone of 4 mm growth inhibition of Mycotypha microspora. All other strains showed slightly 

or no antimicrobial activity while algal growth was not inhibited by any of the tested strains. 

 

Table 4-1-2. Results of agar diffusion assay of cytotoxic fungal extracts. 

 
Escherichia 

coli
Bacillus 

megaterium
Microbotryum 

violaceum
Eurotium 
rubrum

Mycotypha 
microspora

Chlorella 
fusca

12 BMS Monochaetia sp. 0 0 0 3 0 0
16 BMS Stagonospora sp. 0 0 0 0 0 0
18 MYA Fusarium  dim erum 0 0 0 0 0 0
74 BMS Spicellum  roseum 0 0 0 5 11 0
75 BMS Phom a sp. 0 0 0 0 0 0
85 MYA Sporothrix sp. 0 0 0 0 0 0
96 BMS Microsphaeropsis  sp. 0 0 0 0 0 0
187 CZ Monodicys putredinis 0 0 0 0 0 0
190 CZ Ulocladium  sp. 0 0 0 0 0 0

193 BMS Paecilomyces lilacinus 0 0 0 0 0 0
194 MYA Alternaria japonica 0 0 0 0 0 0
211 MYA Paecilom yces sp. 0 0 0 0 0 0
273 MYA Acrem onium  sp. 0 0 0 0 0 0
588 MYA Fusarium  oxysporum 0 5 0 0 3 0
598 BMS Fusarium  sp. 0 0 0 0 0 0
620 MYA Chaetom ium  sp. 0 0 0 0 0 0
630 MYA Rhinocladella sp. 0 0 0 0 0 0
652 BMS Emericella nidulans 0 2 0 0 0 0
705 CZ GrKo2 EtOH 0 0 0 0 0 0
712 CZ Microsphaeropsis sp. 0 0 0 0 0 0
714 MYA Trichoderm a harz ianum 0 0 0 0 0 0
726 BMS Cro2 CA EtOHa 0 0 0 0 0 0
727 BMS Arthrinium  sacchari 0 0 0 0 4 0
738 BMS Acrem onium  sclerotigenum 0 2 0 0 0 0
741 BMS Phom a m acrostom a 0 0 0 0 0 0

A. T. Aspergillus terreus 0 0 0 0 0 0

Inhibition of test organism (mm)
Fungal strainExtract1

 

 

 

 

 

 

 

 

 

 

 

 

 
1 This number refers to the fungal collection (Institute for Pharmaceutical Biology, Bonn); BMS, biomalt-agar 

medium; MYA, malt-yeast medium, CZ, czapek agar medium. 
 

4.1.3 Influence of fungal extracts on sphingolipid metabolism 

Of 25 tested cytotoxic fungal extracts, seven altered sphingolipid metabolism. The influence 

of fungal extracts on sphingolipid metabolism (Figure 4-1-1) of cerebellar neurons and 

neuroblastoma cells was studied by following the incorporation of L-[3-14C] serine into 

cellular sphingolipids (Figure 4-1-1). 
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As shown in Figure 4-1-2, cells incubated with extracts 

96, 738, 588 and 74 exhibited an accumulation of 

glucosylceramide (GlcCer) along with the reduced 

levels of lactosylceramide (LacCer) and complex 

gangliosides (A, D), which indicated an inhibitory 

activity of these extracts on formation of LacCer and 

gangliosides (Figure 4-1-1). Increased levels of 

ceramide were noticed in extracts 18, 96 and 738 (B). 

Fungal extract 193 showed reduced levels of GlcCer, 

LacCer and complex gangliosides (A), while extract 16 

displayed alterations in the levels of LacCer and  

Figure 4-1-1. Scheme of      sphingosine/sphinganine (So/Sa) (C) when compared 

sphingolipid pathway.     to control cells. 

 

The activity of fungal extracts on sphingolipid pathway was the main lead for the selection of 

strains for further investigations. Hence, all strains which showed any modifications in 

sphingolipids were chosen for detailed examinations. Also, the extracts with no influence on 

sphingolipids but with prominent cytotoxic activity and/or interesting 1H NMR and MS data 

were selected for a large-scale cultivation and further studies. 

 

Thus, the following strains were investigated in this study: 
 

Extract No.1  Isolation No.2   Taxonomy of fungal strain 

16   193 A 26   Stagonospora sp. 

18   193 A 28   Fusarium dimerum 

74   193 H 15   Spicellum roseum 

96   193 H 48   Microsphaeropsis sp. 

193   195 21 W   Paecilomyces lilacinus  

588   Fr S1 5N   Fusarium oxysporum 

652   Sar 14 15E   Emericella nidulans var. acristata 

727   Cro2 CA EtOHb  Arthrinium sacchari 

738   Lau 4K CM   Acremonium sclerotigenum 

A. T.   GrK4 5N   Aspergillus terreus 

 
1,2 Numbers refers to the fungal collection (Institute for Pharmaceutical Biology, Bonn). 
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Figure 4-1-2. Effects of fungal extracts on SL metabolism. 
Primary cultured neurons (A, B and D) or neuroblastoma cells (C) were incubated in the absence (C, control) or 

presence of different fungal extracts (10 µg/mL). After 4 h 1 µCi of [14C]serine was added to the medium. 

Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, and detected as 

described in Materials and Methods. TLC plates were developed in CHCl3-MeOH-0.22 % aqueous CaCl2 

(60:35:8; v/v/v) (plates A, C and D), or in CHCl3-MeOH-CH3COOH (190:9:1; v/v/v) (plate B). FA, fatty acids; 

Cer, ceramide; GlcCer, glucosylceramide; LacCer, lactosylceramide; So, sphingosine; Sa, Sphinganie; SM, 

sphingomyelin.     
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4.2 Arugosins G and H: Prenylated polyketides from the marine-derived fungus 

Emericella nidulans  var. acristata (Strain number 652) 

 

4.2.1 Introduction 

Emericella nidulans var. acristata was isolated from a green alga collected around Sardinia in 

the Mediterranean Sea. HPLC-MS and HPLC-DAD investigations of various extracts 

identified this fungus as a producer of several polyketide type metabolites. The crude extract 

also showed cytotoxicity toward six cultured tumour cell lines with a mean IC70 of 8.30 

µg/mL. Two new compounds from the arugosin family, arugosins G (1) and H (2) were 

isolated together with the known arugosins A and B (3 and 4). Apart from arugosins, which 

possess a benzophenone skeleton, and the biosynthetically related (Scheme 4-2-1) xanthones 

5, 6, 9 and 10, the indole alkaloid 7, and the furanone 8 were obtained. A prominent feature of 

most of these metabolites is their substitution with a prenyl moiety, with the isoprene unit 

being attached either to a carbon atom of the polyketide nucleus or connected via an ether 

bridge. The fungus Emericella nidulans var. acristata was cultivated on a solid biomalt 

medium with added artificial sea salt. Successive fractionation of the EtOAc extract by 

normal phase vacuum liquid chromatography (VLC), followed by separation over Sephadex, 

and normal and reversed phase HPLC yielded two new (1 and 2), and eight known (3 - 10) 

compounds. Arugosins A and B (3 and 4) were isolated as a mixture, as in all previous 

investigations (Ballantine et al., 1970; Kawahara et al., 1988). The structural elucidation of 

compounds 1 and 2 is based on NMR and MS data and on comparison of data with those of 

the known compounds 3 and 4.  
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Scheme 4-2-1. Proposed biosynthetic relationship of Emericella nidulans var. acristata 

secondary metabolites. 
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4.2.2 Cultivation, extraction and isolation 

 

The fungus (Emericella nidulans var. acristata, strain number 620, Sar 14 15E) was 

cultivated at room temperature for one month in 32 x 8 L Fernbach flasks. The solid biomalt 

medium contained 20 g/L of Biomalt, 17 g/L agar and artificial seawater. The fungal biomass, 

including the medium, was homogenized using an Ultra-Turrax and the mixture was extracted 

with EtOAc (3 x 8 L). After evaporation of the organic phase 47 g of dark purple oil was 

obtained. The extract was fractionated by VLC (Si gel 60, 0.063-0.200 mm) with a CH2Cl2 - 

EtOAc - MeOH gradient, to yield 11 fractions. Of these, fractions 2 - 6, on the basis of TLC 

results, were combined and separated on a Sephadex LH-20 column, with MeOH as eluent to 

give 5 fractions (1-5). Sephadex fraction 2 was further separated on a normal phase HPLC 

column (Knauer Si Eurospher-100, 250 x 8 mm, 5 µm), eluting with petroleum ether/acetone 

9:1 and yielded 10 fractions (S1-S10). Of these, fractions S3 was identified as a mixture of 

compounds 3 and 4, whereas fraction S7 contained compound 7, fraction S10 compound 2, 

and fraction S10 compound 10. Fraction S1 was separated into compounds 5 and 6 with 

hexane/EtOAc 20:1 using normal phase HPLC (Knauer Si Eurospher-100, 250 x 8 mm, 5 

µm). Fraction S2 was eluted on reversed phase HPLC (Phenomenex Max C12, 250 x 4.6 mm, 

5 µm) with MeOH/H2O 9:1 and yielded compound 1. Sephadex Fraction 5 gave compound 8 

after fractionation on reversed phase (Knauer, Eurospher-100, C-8, 250 x 8 mm, 5 µm) HPLC 

with MeOH/H2O 8:2. Sephadex fraction 3 was further fractionated using reversed phase 

HPLC (Knauer C8 Eurospher-100, 250 x 8 mm, 5 µm) with gradient elution from MeOH/H2O 

7:3 to MeOH in 90 min, 1.5 mL/min, to afford compound 9. 

 

4.2.3 Results and discussion 

The molecular formula of compound 1 was established by high-resolution mass measurement 

(HREIMS) as C30H36O6 implying 13 degrees of unsaturation. The 13C NMR spectrum showed 

30 signals for 7 x CH3, 3 x CH2, 6 x CH and 14 x C. These data also revealed the presence of 

10 double bonds (1 x CO, 9 x C=C) (Table 4-2-1). Thus, compound 1 was tricyclic. 

Considering the molecular formula and the IR data (νmax 3438 cm-1), it was obvious that three 

protons had to be present as hydroxyl groups. UV maxima at 305 and 366 nm pointed towards 

an extended aromatic moiety. This was supported by two singlet resonances in the 1H NMR 

spectrum at δ 7.26 and δ 6.89 for two aromatic protons. A 1H NMR resonance at δ 7.03 could 

be attributed to H-11, which is attached to a doubly oxygenated carbon resonating at 92.2
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ppm, as evident from the 13C NMR and HSQC spectrum. These structural features suggested 

compound 1 to be an arugosin derivative, i.e. closely related to arugosin A (3) and B (4). 
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The major difference between the NMR data for 3 and 4, and 1 was the presence of signals for 

nine additional protons (δH 1.70, 3.29, 5.30; H-1``` to H-5```) and five further carbons (δC 

17.8, 25.8, 28.4, 123.4, 132.5; C-1``` to C-5```) (Table 4-2-2) in the case of 1. 
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Table 4-2-1. 1D and 2D NMR spectral data for compound 1 

Atom 
Number 

13Ca,b

(δ in ppm) 

1Ha,b

(δ ppm, mult.,  
J in Hz) 

Članak I.
OSYa,b 

Članak II. H
MBCa,c 

1 160.5 (C)    
2 122.9 (C)    
3 138.8 (CH) 7.26 (s) 1`d, 1```d 1, 4a, 9ad, 1`, 1``` 
4 122.9 (C)    
4a 150.0 (C)    
5 120.9 (CH) 6.89 (s) 6-Me 7, 8d, 8a, 9d, 10a 
6 141.8 (C)    

6-Me 16.9 (CH3) 2.35 (s)  5, 6, 7, 8d

7 146.3 (C)    
8 133.2 (C)    
8a 119.6 (C)    
9 199.4 (C)    
9a 114.9 (C)    
10a 157.6 (C)    
11 92.2 (CH) 7.03 (s)  7, 8a, 10ad

1` 29.4 (CH2) 3.24 (brd, 7.32) 2`, 3,  1, 3, 2`, 3` 
2` 123.8 (CH) 5.23 (t, 7.32) 1` 1` 
3` 132.8 (C)    
4` 25.8 (CH3) 1.67 (s)  2`, 3`, 5` 
5` 17.8 (CH3) 1.70 (brs)  2`, 3`, 4` 
1`` 72.2 (CH2) 4.42 (d, 7.32) 2`` 2``, 3``, 7 
2`` 120.8 (CH) 5.59 (t, 7.32) 1`` 1`` 
3`` 138.9 (C)    
4`` 25.8 (CH3) 1.78 (s)  2``, 3``, 5`` 
5`` 18.0 (CH3) 1.69 (s)  2``, 3``, 4`` 
1``` 28.4 (CH2) 3.29 (d, 7.32) 2```, 3 3,  4ad, 2```, 3``` 
2``` 123.4 (CH) 5.30 (t, 7.32) 1``` 1``` 
3``` 132.5 (C)    
4``` 25.8 (CH3) 1.70 (brs)  2```, 3```, 5``` 
5``` 17.8 (CH3) 1.70 (brs)  2```, 3```, 4``` 

1-OH  13.21 (s) 3d 1, 2, 3d, 9d, 9a 
10a-OH  10.59 (s)  5, 6d, 8a, 10a 
11-OH  6.73 (brs)  8d

 
aAcetone-d6, 300/75.5 MHz. bAssignments are based on extensive 1D and 2D NMR measurements (HMBC, 

HSQC, COSY). cNumbers refer to carbon resonances. dWeak signal. 
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The 1H-1H COSY correlation (Table 4-2-1) between H-2``` and H2-1```, and 1H-13C HMBC 

correlations between H2-1``` and C-2``` and C-3```, and between both H3-4``` and H3-5``` and 

C-2``` and C-3```, suggested compound 1 to contain a third 3-methylbut-2-enyl group, which 

was corroborated by the mass difference between 1 and 3 or 4. The position of this additional 

group in compound 1 was deduced from HMBC correlations between H2-1``` and both C-4a 

and C-3. Thus, it was evident that the 3-methylbut-2-enyl group replaced the aromatic proton 

H-4 of compound 3 (Table 4-2-2), a deduction supported by 1H NMR data, which showed the 

absence of the signal at δH 6.44 (H-4 in 3) (Kawahara et al., 1988). All other spin systems 

deduced from the 1H-1H COSY and HMBC correlations were consistent with the proposed 

structure for 1 (Figure 4-2-1). Thus, the new compound 1 is the 4-(3-methylbut-2-enyl) 

derivative of 3. Due to the similarity between compounds 1 and 3 or 4, we propose the name 

arugosin G. 

 

As already stated by Gloer et al. for arugosin F (Hein et al., 1998), arugosin G also has a 

small negative optical rotation. Due to the small amount of compound isolated, we did not 

determine whether the hemiacetal function of arugosin G gives rise to an enantiomeric 

mixture. The stereochemistry of arugosins A-F has not been reported.  
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Figure 4-2-1. Significant HMBC (left, from H to C) and 1H-1H COSY (right) correlations for 

arugosin G (1). 
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Table 4-2-2. 1H and 13C NMR spectral data for compounds 3 and 4 

Atom 
Number 

13Ca,b 

(δ in ppm) 
       (3)                        (4) 

1Ha,b 

(δ ppm, mult., J in Hz) 
         (3)                          (4) 

1 163.2 (C)               162.2 (C)  
2 122.7 (C)               120.3 (CH)                           6.57 (d, 6.22) 

3                   138.0 (CH) 7.32 (d, 6.22)        7.05 (d, 
6.22) 

4 119.6 (CH)             119.8 (C) 6.43 (d, 6.22) 
4a 153.3 (C)                152.0 (C)  
5                   120.7 (CH) 6.93-6.89 (brs) 
6                   141.9 (C)  

6-Me                     17.0 (CH3) 2.34 (s) 
7                   146.4 (C)  
8                   133.1 (C)  
8a 115.2 (C)                114.6 (C)  
9                   199.3 (C)  
9a 111.6 (C)                111.4 (C)  
10a 157.6 (C)                157.5 (C)  
11   92.3 (CH)              92.0 (CH) 6.93-6.89 (brs) 
1`   28.3 (CH2)           27.8 (CH2) 3.27 (brd, 7.32) 
2` 123.8 (CH)            123.5 (CH) 5.31 (t, 7.32) 
3`                   133.0 (C)  
4`                     25.9 (CH3) 1.70-1.66 (brs) 
5` 18.0 (CH3) 1.70-1.66 (brs) 
1``   72.2 (CH2)           72.1 (CH2) 4.40 (t, 7.32) 
2``                   120.9 (CH) 5.56 (t, 7.32) 
3`` 139.1 (C)                138.5 (C)  
4`` 25.9 (CH3) 1.70-1.66 (brs) 
5`` 18.0 (CH3) 1.70-1.66 (brs) 

   

OH  13.37 (s)                       12.77 
(s) 

OH  10.60 (s)                       10.55 
(s) 

 
aAcetone-d6, 300/75.5 MHz. bAssignments are based on extensive 1D and 2D NMR measurements (HMBC, 

HSQC, COSY). 

 

The molecular formula of compound 2 was found to be C20H20O6 as deduced from HREIMS 

and NMR data, implying 11 degrees of unsaturation. The 13C NMR spectrum showed 20 

carbon signals attributable to 3 x CH3, 1 x CH2, 5 x CH and 11 x C (Table 4-2-3). Considering 
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the molecular formula and according to the IR data (νmax 3237 cm-1), it was evident that the 

four remaining protons had to be part of hydroxyl groups. The 1H and 13C NMR chemical 

shifts and HSQC spectra, suggested the presence of one carbonyl (δC 200.4) and one aldehyde 

(δC 196.2, δH 9.86) group, a deduction supported by IR absorptions at νmax 1698 and 1615 cm-

1, and seven C=C double bonds. These data, together with the number of unsaturations, 

required two rings within the molecule, both of which were aromatic.  

 

Table 4-2-3. 1D and 2D NMR spectral data for compound 2 

Atom 
Number 

13Ca,b

(δ in ppm) 

1Ha,b

(δ ppm, mult.,  
J in Hz) 

Članak III.
OSYa,b 

Članak IV. 
MBCa,c 

1 162.0 (C)    
2 121.0 (C)    
3 138.4 (CH) 7.19 (d, 8.20) 1`d, 4 1, 1`, 4a,  
4 106.8 (CH) 6.29 (d, 8.20)  2, 4ad,  9d, 9a 
4a 159.4 (C)    
5 127.5 (CH) 7.04 (s) 6-Me 7, 8a, 9d, 10ad

6 128.6 (C)    
6-Me   15.3 (CH3) 2.07 (s)  5, 7, 8 

7 154.5 (C)    
8 117.6 (C)    
8a 131.7 (C)    
9 200.4 (C)    
9a 113.0 (C)    
10a 146.0 (C)    
11 196.2 (CH) 9.86 (s)   

1`   27.8 (CH2) 3.24 (d, 7.32) 4`, 5` 1, 2, 3, 2`, 3`, 
4`d, 5`d

2` 123.1 (CH) 5.29 (t, 7.32) 1`, 4`, 5` 1`, 4`, 5` 
3` 132.8 (C)    
4`   25.9 (CH3) 1.69 (s)  3`, 5` 
5`   17.8 (CH3) 1.69 (s)  3`, 4` 
OH  12.84 (s)   
OH  11.30 (s)   
 
aAcetone-d6, 300/75.5 MHz. bAssignments are based on extensive 1D and 2D NMR measurements (HMBC, 

HSQC, COSY). cNumbers refer to carbon resonances. dWeak signal. 

 

The 1H NMR data showed three aromatic protons, two of them (H-3 and H-4) with an ortho 

coupling, and the third one (H-5) as a singlet. The 1H NMR spectrum also contained a 
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resonance for an aryl methyl group (δ 2.07, H3-6-Me), and two hydrogen-bonded phenolic 

OH groups (δ 12.84 and 11.30). The location of the carbonyl group (C-9), as a link between 

two aromatic rings at the position C-8a and C-9a, was supported by weak HMBC correlations 

from both H-4 and H-5 to C-9. The 1H NMR signals observed at δ 1.69 (CH3-4` and CH3-5`), 

δ 3.24 (CH2-1`) and δ 5.29 (CH-2`) were assigned to a 3-methylbut-2-enyl group, according 

to the 1H-1H COSY correlations between H2-1` and H-2`, and HMBC correlations between all 

H2-1`, H3-4` and H3-5`, to C-3`. The position of the 3-methylbut-2-enyl group was proven to 

be at C-2 by correlations in the 1H-1H COSY spectrum between H-3 and H2-1`, and in the 

HMBC spectrum between H2-1` and C-1, C-2 and C-3. Carbon C-4a had to be hydroxylated 

due to its resonance in the 13C NMR spectrum (δ 159.4). An ortho coupling between H-3 and 

H-4, and HMBC correlations between H-4 and C-2, C-4a (weak), C-9 (weak) and C-9a and 

between H-3 and C-4a and C-1 confirmed the substitution pattern of the aromatic ring A.  

The remaining two hydroxyls, the aldehyde, and the methyl group resided at the aromatic ring 

B. Correlations from the 1H-1H COSY between H-5 and H3-6Me and HMBC correlations 

from H3-6Me to C-5 and C-7, and from H-5 to C-7, C-8a, C-9 (weak), and C-10a (weak) 

indicated the position of the methyl group at C-6 and the positions of the carbons C-5 and C-7 

in the aromatic ring B. Hydroxylation of C-7 was suggested by its 13C NMR chemical shift at 

δC 154.5. Although, the position of the aldehyde group showed no coupling with any of the 

neighboring carbons, its position was assigned to C-8 on the basis of C-8 being the only 

remaining nonprotonated carbon. These results are consistent with a bicyclic arugosin 

structure with the middle ring open. This deduction is supported by biosynthetic 

considerations (Scheme 4-2-1) (Holker et al., 1974; Chexal et al., 1975). For compound 2 the 

name arugosin H is proposed. 

 

The structures of arugosin A and B (3 and 4) (Ballantine et al., 1973), shamixanthone (5) 

(Holker et al., 1974; Chexal et al., 1975), emericellin (6) (Kawahara et al., 1988), emindole 

DA (7) (Nozawa et al., 1987), microperfuranone (8) (Fujimoto et al., 1998), sterigmatocystin 

(9) (Pachler et al., 1976; Cox et al., 1977), and averufin (10) (Gorst-Allman et al., 1977) were 

identified by comparing their spectroscopic data and optical rotations with published values. 

 

Fungi of the genus Emericella (anamorph: Aspergillus) produce a great diversity of secondary 

metabolites (Hensens et al., 1991; Itabashi et al., 1992; Itabashi et al., 1996; Fujimoto et al., 

2000). Among them is a family of compounds called arugosins which are of interest with 

regard to the biosynthesis of several structural types of fungal polyketides, e.g. anthrones, 
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anthraquinones, benzophenones, xanthones (Chexal et al., 1974; Holker et al., 1974; Chexal 

et al., 1975). Arugosin A and B, two substituted dibenz[b,e]oxepins, are the major metabolites 

of Aspergillus rugulosus (Ballantine et al., 1970), A. variecolor (Chexal et al., 1975), and A. 

silvaticus (Kawahara et al., 1988). Arugosin C (Ballantine et al., 1973), D (Chexal et al., 

1975), and E (Kawahara et al., 1988) also occur in Aspergillus spp., whereas arugosin F was 

found in Ascodesmis sphaerospora (Hein et al., 1998). Biosynthetic studies (Chexal et al., 

1974; Holker et al., 1974; Chexal et al., 1975) suggested that the bi- and tricyclic arugosins 

and compounds from xanthone family are biogenetically related. Arugosin H (2) may be 

derived from chrysophanol anthrone which undergoes oxidative cleavage to form the 

aldehyde function, followed by C-prenylation and hydroxylation (see Scheme 4-2-1). The 

aldehyde function can be converted to a hemiacetal function as seen in the further prenylated 

and tricyclic arugosins G, A, and B (1, 3 and 4). Alternatively, cyclodehydration of the 

benzophenone intermediate yields shamixanthone (5) and emericellin (6). 

On the other hand, a member of indole diterpenes, emindole DA (7) is formed by epoxidation 

of a common intermediate, 3-geranylgeranylindole and subsequent cyclization (Fueki et al., 

2004), while sterigmatocystin (9) and averufin (10) as precursors of aflatoxins, toxic and 

carcinogenic fungal metabolites, are biosynthesized from norsolorinic acid which undergoes 

12 to 17 enzymatic reactions (Yabe and Nakajima, 2004) to form 9 and 10. Thus, the isolation 

of compounds 1 – 10 testifies, once more, about a diversity of natural products and a 

complexity of metabolic pathways in one strain. 

 

Compounds 1 – 10 were tested in antibacterial, antifungal and antialgal assays (Schultz et al., 

1995) at the 50 µg/disk level. Compound 2 showed inhibition zones against Mycotypha 

microspora (3 mm) and Chlorella fusca (2 mm); compounds 3 and 4 (as a mixture) were 

active against Bacillus megaterium (4 mm), while compound 9 and 10 inhibited M. 

microspora (11 mm and 3.5 mm, respectively) and C. fusca (5 mm and 3 mm, respecitvely). 

 

The effects of the crude extract as well as the pure compounds 1 – 8 on tumor growth in vitro 

were investigated in a survival and proliferation assay in a panel of 36 human tumor cell lines 

representing 11 different tumor types. Anti-tumor activity was defined as test/control value 

smaller than 50% compared to the untreated control cells. The crude extract effected anti-

tumor activity in all 36 cell lines (100%) at 50 µg/mL, in 31 out of the 36 cell lines (86%) at 5 

µg/mL, and in 2/36 (6%) cell lines at 0.5 µg/mL. This is indicative for a selective and 

concentration-dependent antitumor activity of this extract and one or more of its ingredients. 
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Among the pure compounds, compound 7 gave the highest activity score, exhibiting a mean 

IC50 value of 5.5 µg/mL. At a concentration of 10 µg/mL 33 out of 36 cell lines (92%) were 

inhibited. As expected, the reference compound adriamycin tested in parallel in the same 

assays was more potent (IC50 0.016 µg/mL). Compounds 3 and 4 were active in 7 out of the 

36 cell lines (19%) at the highest concentration of 10 µg/mL. The other five compounds 

showed either only marginal or no anti-tumour activity in vitro. 

Compounds 9 (sterigmatocystin) and 10 (averufin) are known from the literature (Wang and 

Groopman, 1999; Bunger et al., 2004) to be potent cytotoxic agents and were thus not 

evaluated in the current study. 

The immunostimulating effects of compounds 1 - 8 were investigated by analysing the 

stimulation of cytokine production by PBMCs from two healthy donors. All compounds were 

tested at concentrations of 0.1 and 1 µg/mL. These concentrations were not cytotoxic in the 

monolayer cytotoxicity and proliferation assay. LPS at 1 µg/mL, PMA at 10 ng/mL, and 

ionomycin at 1 µg/mL were used as positive controls. Twenty-four hours after exposure of 

PBMCs to the test compounds, PBMC supernatants were quantitatively tested for IL-2, IL-4, 

IL-6, IL-10, TNF-α and IFN-γ by flow cytometry with the Cytometric Bead Array (CBA) 

(Morgan et al., 2004). None of the compounds induced the production of any of the 

cytokines. Negative PI-staining of PBMCs after removal of the supernatant confirmed that the 

failure of the test compounds to induce cytokine production by PBMCs was not due to 

cytotoxicity. 

 

Arugosin G (1) was isolated as bright yellow solid (2.8 mg). UV (MeOH) λmax (log ε) 226 nm 

(sh) (4.20), 271 nm (3.84), 305 nm (3.82), 366 nm (3.75); IR (ATR) νmax 3438, 2920, 1608, 

1477, 1422, 1344, 1213, 1115, 1071, 998; 1H and 13C NMR spectral data (see Table 4-2-1); 

HREIMS m/z 492.2517 (calcd for C30H36O6 492.2512); [α]24
D -1.1° (c 0.29, MeOH). 

 

Arugosin H (2) was isolated as bright orange solid (10.8 mg). UV (MeOH) λmax (log ε) 225 

nm (4.50), 274 nm (4.33), 291nm (sh) (4.21), 382 nm (3.93); IR (ATR) νmax 3237, 2921, 

1698, 1615, 1417, 1353, 1222, 1111, 1047, 982, 899, 816 cm-1; 1H and 13C NMR spectral data 

(see Table 4-2-3); HREIMS m/z 356.1266 (calcd for C20H20O6 356.1260). 

 

Arugosin A and B (3, 4) were isolated as a viscous, yellow oil (80.3 mg). 1H and 13C NMR 

spectral data (see Table 4-2-2). 
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Shamixanthone (5) was isolated as yellow needles (4.0 mg). 1H NMR (300 MHz, CDCl3); δ 

12.60 (1H, s, 1-OH), 7.44 (1H, d, J = 8.42, H-3), 7.30 (1H, s, H-5), 6.74 (1H, d, J = 8.42, H-

2), 5.41 (1H, s, H-25), 5.31 (1H, t, J = 7.32, H-15), 4.80 (1H, s, H-22a), 4.59 (1H, s, H-22b), 

4.45-4.32 (2H, m, H2-19), 3.50 (2H, d, J = 7.32, H2-14), 2.74 (1H, s, H-20), 2.36 (3H, s, H3-

24), 1.85 (3H, s, H3-23), 1.80 (3H, s, H3-17), 1.75 (3H, s, H3-18); 13C NMR (75.5 MHz, 

CDCl3) δ 184.5 (s, C-13), 159.7 (s, C-1), 152.8 (s, C-10), 152.2 (s, C-11), 149.4 (s, C-7), 

142.6 (s, C-21), 138.3 (s, C-6), 136.5 (d, C-3), 133.3 (s, C-16), 121.7 (d, C-15), 121.0 (s, C-

8), 119.3 (d, C-5), 118.9 (s, C-4), 116.9 (s, C-12), 112.3 (t, C-22), 109.7 (d, C-2), 109.2 (s, C-

9), 64.6 (t, C-19), 63.2 (d, C-25), 45.0 (d, C-20), 27.5 (t, C-14), 25.8 (q, C-18), 22.6 (q, C-23), 

17.9 (q, C-17), 17.4 (q, C-24); C25H26O5 (406.18); [α]24
D +10.0° (c 0.51, CHCl3), (lit. (Chexal 

et al., 1974); [α]24
D +11.9° (c 1.92, CHCl3); (Bringmann et al., 2003); [α]24

D +25.2° (c 0.33, 

CHCl3)). 

 

Emericellin (6) was isolated as yellow oil (5.1 mg). 1H NMR (300 MHz, CDCl3); δ 12.51 

(1H, s, 1-OH), 7.42 (1H, d, J = 8.05, H-3), 7.30 (1H, s, H-5), 6.70 (1H, d, J = 8.05, H-2), 5.60 

(1H, t, J = 6.95, H-2``), 5.28 (1H, t, J = 6.95, H-2`), 5.06 (2H, s, H2-11), 4.43 (2H, d, J = 6.95, 

H2-1``), 3.47 (2H, d, J = 6.95, H2-1`), 2.45 (3H, s, H3-6Me), 1.80 (3H, s, H3-5``), 1.78 (3H, s, 

H3-5`), 1.74 (3H, s, H3-4``), 1.71 (3H, s, H3-4`); 13C NMR (75.5 MHz, CDCl3) δ 184.6 (s, C-

9), 159.9 (s, C-1), 154.0 (s, C-10a), 152.8 (s, C-4a), 152.6 (s, C-7), 142.6 (s, C-6), 139.1 (s, C-

3``), 136.9 (d, C-3), 134.2 (s, C-8), 133.3 (s, C-3`), 121.6 (d, C-2`), 119.6 (d, C-2``), 119.4 (d, 

C-5), 119.0 (s, C-8a), 118.9 (s, C-4), 117.9 (s, C-9a), 110.0 (d, C-2), 72.2 (t, C-1``), 57.1 (t, C-

11), 27.4 (t, C-1`), 25.9 (q, C-5``), 25.8 (q, C-5`), 18.1 (q, C-4``), 17.9 (q, C-4`), 17.7 (q, C-

6Me); C25H28O5 (408.19). 

 

Emindole DA (7) was isolated as bright yellow solid (8.5 mg). 1H NMR (300 MHz, 

(CD3)2CO); δ 7.52 (1H, d, J = 7.68, H-5), 7.31 (1H, d, J = 7.68, H-7), 7.06-7.02 (1H, m, H-2), 

6.98 (1H, d, J = 1.10, H-6), 6.96 (1H, d, J = 1.10, H-4), 5.15 (1H, t, J = 6.95, H-21), 4.43 (1H, 

s, H-27a), 4.09 (1H, s, H-27b), 3.63-3.58 (1H, brs, H-17), 3.15 (1H, dd, J = 4.03, 14.64, H-

8a), 2.77 (1H, dd, J = 10.25, 14.64, H-8b), 2.38 (1H, dt, J = 5.12, 13.54, 27.08, H-11a), 2.16-

2.06 (3H, m, H-11b, H2-20), 2.08 (1H, s, H-9), 1.86-1.80 (1H, m, H-13), 1.75-1.70 (2H, m, 

H2-16), 1.67 (3H, s, H3-24), 1.64 (3H, s, H3-23), 1.41 (2H, m, H2-12), 1.31-1.27 (2H, m, H2-

19), 1.26-1.23 (2H, m, H2-15), 0.99 (3H, s, H3-26), 0.81 (3H, s, H3-25); 13C NMR (75.5 MHz, 

(CD3)2CO) δ 149.6 (s, C-10), 137.6 (s, C-7a), 131.0 (s, C-22), 128.6 (s, C-3a), 126.3 (d, C-

21), 123.5 (d, C-6), 121.6 (d, C-2), 119.3 (d, C-5), 119.0 (d, C-4), 115.3 (s, C-3), 112.0 (d, C-
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7), 110.0 (t, C-27), 73.4 (d, C-17), 59.7 (d, C-9), 41.8 (s, C-18), 39.5 (d, C-13), 38.6 (s, C-14), 

38.1 (t, C-19), 35.3 (t, C-15), 31.5 (t, C-11), 28.6 (t, C-16), 25.9 (q, C-24), 24.1 (t, C-8), 23.8 

(t, C-12), 23.7 (q, C-26), 22.5 (t, C-20), 17.8 (q, C-23, C-25); C28H39NO (405.30); [α]24
D -

23.4° (c 0.86, MeOH), (lit. (Nozawa et al., 1988); [α]24
D -30.7° (c 2.32, MeOH)). 

 

Microperfuranone (8) was isolated as colorless solid (1.5 mg). 1H NMR (300 MHz, 

(CD3)2CO); δ 7.53 (2H, d, J = 6.95, H-8, H-10), 7.46 (2H, d, J = 6.95, H-7, H-11), 7.44-7.41 

(1H, m, H-9), 7.33-7.24 (5H, m, H-14, H-15, H-16, H-17, H-18), 5.96 (1H, s, H-5), 3.98 (2H, 

dd, J = 14.27, 71.35, H2-12); 13C NMR (75.5 MHz, (CD3)2CO) δ 170.8 (s, C-2), 159.6 (s, C-

4), 137.5 (s, C-13), 130.8 (s, C-6), 130.2 (s, C-3), 129.9 (s, C-8, C-10), 129.7 (s, C-15, C-17), 

129.6 (s, C-9, C-14, C-18), 129.3 (s, C-7, C-11), 127.7 (s, C-16), 97.5 (d, C-5), 32.9 (t, C-12); 

C17H14O3 (266.09); [α]24
D -4.4° (c 0.27, MeOH), (lit. (Fujimoto et al., 1998); [α]24

D -6.8° (c 

0.60, MeOH)). 

 

Sterigmatocystin (9) was isolated as white crystals (4.0 mg). 1H NMR (300 MHz, (CD3)2CO); 

δ 13.41 (1H, s, 3-OH), 7.60 (1H, t, J = 8.42, H-5), 6.96 (1H, s, H-4), 6.93 (1H, s, H-14), 6.72-

6.69 (1H, m, H-6), 6.65-6.63 (1H, m, H-17), 6.61 (1H, s, H-11), 5.54 (1H, q, J = 2.56, 5.12, 

8.42, H-16), 4.93-4.89 (1H, m, H-15), 3.96 (3H, s, H3-18); 13C NMR (75.5 MHz, (CD3)2CO) 

δ 181.7 (s, C-1), 165.7 (s, C-10), 164.4 (s, C-12), 163.2 (s, C-7), 156.0 (s, C-3), 154.9 (s, C-

8), 146.2 (d, C-17), 136.7 (d, C-5), 114.5 (d, C-14), 111.6 (d, C-6), 109.6 (s, C-2), 107.7 (s, C-

9), 106.9 (d, C-4), 106.4 (s, C-13), 103.4 (d, C-16), 91.5 (d, C-11), 57.0 (q, C-18), 48.7 (d, C-

15); C18H12O6 (324.06); [α]24
D -106.2° (c 0.25, CHCl3). 

 

Averufin (10) was isolated as orange solid (11.5 mg). 1H NMR (300 MHz, THF); δ 7.31 (1H, 

d, J = 2.20, H-7), 7.27 (1H, s, H-4), 6.68 (1H, d, J = 2.20, H-5), 5.43-5.41 (1H, brs, H-1`), 

2.18-2.13 (2H, m, H-2`a, H-4`a), 2.00-1.92 (2H, m, H-2`a, H-4`a), 1.73-1.67 (2H, m, H2-3`), 

1.65 (3H, s, H3-6`); 13C NMR (75.5 MHz, THF) δ 192.0 (s, C-9), 182.9 (s, C-10), 167.9 (s, C-

6), 167.5 (s, C-8), 162.7 (s, C-3), 161.2 (s, C-1), 137.6 (s, C-14), 135.9 (s, C-11), 118.3 (s, C-

2), 111.2 (s, C-12), 111.0 (s, C-13), 110.9 (d, C-7), 110.1 (d, C-5), 109.8 (d, C-4), 103.3 (s, C-

5`), 68.6 (d, C-1`), 37.8 (t, C-4`), 29.4 (t, C-2`), 29.2 (q, C-6`), 17.5 (t, C-3`); C20H16O7 

(368.09); [α]24
D -26.6° (c 1.0, CHCl3). 
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4.3 Two New Depsipeptides from the Marine Fungus Spicellum roseum (Strain 

number 74) 

 

4.3.1 Introduction 

Cyclic peptides and depsipeptides are of special interest due to their potent biological 

activities. Cyclodepsipeptides like beauvericin and enniatins are secondary metabolites from 

different species of Fusarium with cytotoxic (Calo et al., 2004), antibiotic (Dobler et al., 

1969) and insecticidal effects (Gupta et al., 1991). Moreover, beauvericin was reported to be 

an inhibitor of acyl-CoA: cholesterol acyltransferase (Tomoda et al., 1992).  

In our continuing research on novel bioactive fungal metabolites, we have examined a fungal 

strain whose extract inhibited the growth of Eurotium rubrum and Mycotypha microspora in 

agar diffusion assays, and showed the alternations in sphingolipid metabolism (Chapter 4.6). 

The bioassay-guided isolation revealed the presence of two known compounds belonging to 

the trichothecenes, i.e. trichodermol and 8-deoxy-trichothecin (Chapter 4.6) which were 

responsible for the activity. Further investigations of the crude extract gave two new 

depsipeptides (11 and 12) containing 2-hydroxyisovaleric acid and N-methylphenylalanine. 

The later two units are also present in beauvericin (Dobler et al., 1969). The structure 

elucidation and absolute configuration of the beauvericin analogs 11 and 12 are based on 

NMR and MS data, chiral HPLC and computer modeling. 
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4.3.2 Cultivation, extraction and isolation 

The fungal strain (Spicellum roseum, strain number 74, 193 H 15) was cultivated at room 

temperature for one month in 4 L (16 Fernbach flasks) in solid peptone biomalt medium 

containing 20 g/L of Biomalt, 10 g/L of peptone from Soya, 17 g/L of agar and artificial 

seawater. The fungal biomass, including the medium, was homogenized using an Ultra-

Turrax and the mixture was extracted with EtOAc (4 x 4 L). After evaporation of the organic 

phase 1.8 g of dark brown oil was obtained. The extract was fractionated by VLC (Si gel 60, 

0.063-0.200 mm) with a petroleum ether – EtOAc – MeOH gradient, to yield 8 fractions. 

Fraction 5 contained depsipeptides and was subjected to HPLC using a reversed-phase 

column (Phenomenex Synergi Hydro-RP, 250 x 4.60 mm, 4 µm) with MeOH/H2O gradient as 

eluant at a flow rate of 1 mL/min to obtain compounds 11 and 12. 

 

4.3.3 Absolute configuration of spicellamide A (11) and spicellamide B (12) 

Spicellamide A (11, 0.4 mg) and spicellamide B (12, 0.4 mg) were hydrolyzed with 6 M HCl 

(0.5 mL) at 110 ºC for 16 h. After concentration to dryness, the residues were dissolved in 

H2O (50 µL). A 1 % 1-fluoro-2,4-dinitrophenyl-5-L-alaninamide solution in acetone 

(Marfey`s reagent, 100 µL) and 1 M NaHCO3 (20µL) were added. The mixtures were 

incubated at 80 ºC for 40 min, cooled down to room temperature, neutralized with 2 M HCl 

(10 µL), and evaporated to dryness. The residues were resuspended in DMSO (100 µL) and 

subjected to HPLC-MS using a reversed-phase C18 column (Macherey-Nagel Nucleodur 100, 

125 x 2 mm, 5 µm) and gradient elution (from MeOH/H2O 10/90 to MeOH/H2O 100/0 in 20 

min, MeOH 100% for 10 min, with added NH4Ac, 2 mmol). The retention times of the FDAA 

derivatives of standards were at 8.77 min (L-Ala), 11.47 min (D-Ala), 9.73 min (N-Me-L-

Ala), 10.84 min (N-Me-D-Ala), 13.17 min (N-Me-L-Phe) and 13.74 min (N-Me-D-Phe). 

Thus, the presence of N-Me-D-Phe, N-Me-L-Ala and both D- and L-Ala was determined for 

both spicellamide A and spicellamide B. 

The configuration of hydroxycarboxyl acids was determined by chiral HPLC. Portions of 

hydrolysate were evaporated to dryness and resuspended in solution which was used as 

mobile phase (100 µL). Chiral HPLC analyses were carried out using a Phenomenex Chirex 

3126 (D), 4.6 x 50 mm column; detection at 254 nm, with 2 mM CuSO4 in MeCN/H2O 

(15:85) as eluant at a flow rate of 1 mL/min. The retention times of authentic standards were 

at 8.05 min (L-2-hydroxyisovaleric acid), 11.57 min (D-2-hydroxyisovaleric acid), 24.05 min 

(L-2-hydroxyisocaproic acid), 27.12 min (D-2-hydroxyisocaproic acid). These analyses 

revealed that the hydrolysate of 11 consisted of L-2-hydroxyisovaleric and L-2-
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hydroxyisocaproic acid moieties. For hydrolysate of 12 the configuration of 2-

hydroxyisocaproic acid was determined as L-form.  

 

4.3.4 Results and discussion 

The molecular formula of compound 11 was determined by HREIMS and 13C NMR as 

C31H46N4O8 implying 11 elements of unsaturation. The 1H and 13C NMR spectral data (Table 

4-3-1) revealed six carbonyl carbon signals at δC 173.2, 172.9, 172.3, 170.5, 168.9, and 168.7 

and six α-proton signals at δH 5.62, 5.15, 5.09, 4.87, 4.79, and 3.99 suggesting compound 11 

to a peptide-like metabolite composed of six subunits. The 1H NMR spectrum showed two 

signals (δH 6.98 and 7.92) characteristic for amide protons and two signals (δH 3.28 and 2.99) 

characteristic for N-methyl protons. The chemical shifts of C-19 (δC 71.2) and C-28 (δC 78.1) 

clearly demonstrated that these carbons are oxygenated, proposing that two of the six 

carbonyl groups belonged to hydroxycarboxylic acids. Thus, compound 11 was a 

hexadepsipeptide consisting of four amino acid and two hydroxycarboxylic acid residues. 

Absorption bands at 1638 cm-1 (amide carbonyls) and 1742 cm-1 (ester carbonyls) in the IR 

spectrum supported this deduction. Analyses of 1H-1H COSY and HMBC spectroscopic data 

disclosed the structures of hydroxycarboxylic and amino acid residues (Table 4-3-1). The 

presence of an aromatic moiety was clearly visible from 1H and 13C NMR spectra. 1H-1H 

COSY correlations between all five aromatic methine groups (CH-12 to CH-16) and H2-10, 

and 1H-13C HMBC couplings between α-CH-9 and H2-10, assigned the aromatic ring to a 

phenylalanine residue. HMBC correlations from amide methyl protons (δH 2.99) to α-CH-9 

indicated the N-phenylalanine residue to be N-methylated. Furthermore, three spin systems 

typical for alanine moieties were found, i.e. 1H-1H COSY correlations between H-2 and H3-3, 

between H-6 and H3-7, and between H-25 and H3-26. As deduced from the 1H-13C HMBC 

correlations between α-CH-2 and CH3-4 (δH 3.28), one of the alanine moieties had a 

methylated amino group. The other two α-protons, α-CH-6 and α-CH-25, showed couplings 

to their adjacent amide NH protons, NH (1) (δH 6.98) and NH (2) (δH 7.92), respectively. 1H-
1H couplings between α-CH-19 and H2-20 and between H2-20 and H-21, H3-22 and H3-23 

revealed a 2-hydroxyisocaproic acid partial structure. Finally, the last residue of the 

hexadepsipeptide 11 was evident from 1H-1H COSY correlations between α-CH-28 and H-29 

and between H-29 and CH3-30 and CH3-31, and identified as a 2-hydroxyisovaleric acid 

residue. Determination of the sequence and connection of the six residues (two alanine, N-

methylalanine, N-methylphenylalanine, 2-hydroxyisocaproic acid and 2-hydroxyisovaleric 

acid moieties) was accomplished from HMBC and NOESY correlations. 
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Table 4-3-1. 1D and 2D NMR spectral data for compound 1 (δ in ppm; J in Hz) 

Carbon δC 
a,c δH 

a,c COSY b,c HMBC b,d NOESY b,c

1 168.9     
2 61.1 3.99 (q; 6.59) 3 1, 3, 4, 5 3, 4 
3 13.9 1.53 (d; 6.59) 2 1, 2 NH2w, 2, 4w

4 37.3 3.28 (s)  2, 5 2, 3w, 6, 7 
5 172.3     
6 46.9 4.79 (quint; 6.95) NH1, 7 5, 7, 8 NH1, 4, 7 
7 18.2 1.32 (d; 6.95) 6 5, 6 NH1, 6, 17w

8 168.7     

9 57.5 5.62 (dd; 5.12, 
11.71) 

10 8, 10, 17, 18 NH1, 10 

10 33.6 

3.32 (dd; 5.12, 
15.0) 
2.93 (dd; 11.71, 
15.0) 

9 8, 9, 11-16, 17 12-16, 9 

11 138.9     
12 129.7 7.23 (m) 10, 13-16 10 10, 17, 20w, 22w, 23w

13 129.0 7.26 (m) 10, 12, 14-
16 

10  10, 17, 20w, 22w, 23w

14 127.1 7.19 (m) 10, 12, 13, 
15, 16 

10 10, 17 

15 129.0 7.26 (m) 10, 12-14, 
16 

10 10, 17, 20w, 22w, 23w

16 129.7 7.23 (m) 10, 12-15 10 10, 17, 20w, 22w, 23w

17 29.5 2.99 (s)  9, 18 NH1, 7w, 12-16, 19, 
20w, 22w, 23w

18 173.2     
19 71.2 5.15 (q; 5.49) 20 18, 20, 21 17, 20, 21, 22, 23 

20 39.9 1.47 (m);  
1.13 (m) 

19, 21, 22, 
23 

19, 21, 22, 23 19, 22, 23 

21 24.6 1.17. (m) 20  19 
22 22.8 0.78 (d; 6.22) 20 23 17w, 19, 20, 26w

23 23.2 0.75 (d; 6.22) 20 22 17w, 19, 20, 26w

24 172.9     

25 47.5 4.87 (dq; 8.78, 
7.32) 

NH2, 26 24, 26, 27 NH2, 26 

26 19.7 1.42 (d; 7.32) 25 24, 25 NH2, 22-23w, 25, 30-
31w

27 170.5     

28 78.1 5.09 (d; 2.56) 29 1, 27, 29, 30, 
31 

NH2, 29, 30, 31 

29 29.2 2.50 (hept d; 7.32, 
2.56) 

28, 30, 31 30, 31 28, 30, 31 

30 19.3 0.92 (d; 7.32) 29 28, 31 26w, 28, 29 
31 16.2 0.84 (d; 7.32) 29 28, 30 NH2w, 26w, 28, 29 

NH (1)  6.98 (d; 6.95) 6  6, 7, 9, 17 
NH (2)  7.92 (d; 8.78)  25  3w, 25, 26, 28, 31w

a Acetone-d6, 300 MHz. b Acetone-d6, 500 MHz. c Assignments are based on extensive 1D and 2D NMR 

measurements (HMBC, HSQC, COSY, NOESY). d Numbers refer to carbon resonances. w Weak signal. 
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The position of the N-methylphenylalanine residue was established by 1H-13C HMBC 

correlations between α-H-9 and both C-8 and C-18 and between H3-17 and C-18. The α-

proton H-6 showed 1H-13C long range coupling with carbonyl carbon C-8 which connected N-

methylphenylalanine with one of the alanine residues (Ala-1). These data together with 

heteronuclear long range couplings of α-H-6, H3-7, α-H-2 and H3-4 with carbonyl carbon C-5 

disclosed the location of this alanine residue between N-methylphenylalanine and N-

methylalanine. N-methylalanine was further linked to the 2-hydroxyisovaleric acid residue as 

deduced from HMBC correlations between α-H-2 and C-1, between H3-3 and C-1, and 

between α-H-28 and C-1. The carbonyl carbon C-27 showed long range correlations with both 

α-H-28 and α-H-25 which connected the second alanine moiety (Ala-2) to the 2-

hydroxyisovaleric acid residue. The α-proton of the 2-hydroxyisocaproic acid residue H-19 

did not show clear HMBC correlations with carbonyl groups but NOESY data suggested that 

α-H-19 was bound to C-18. Thus, NOESY correlations were detected between α-H-19 and 

CH3-17, and between CH3-26 and both CH3-22 (weak) and CH3-23 (weak). This allowed to 

position the 2-hydroxyisocaproic acid moiety, the last moiety of compound 11, between N-

methylphenylalanine and an alanine residue (Ala-2). 

To establish the absolute configuration of the four amino acids, compound 11 was 

hydrolyzed, derivatized with Marfey`s reagent and analyzed by HPLC-MS. Comparison of 

retention times and mass spectral data of hydrolysed products of 11 with those of standards, 

allowed to deduced the configuration of the amino acids as N-Me-D-Phe, N-Me-L-Ala, L-Ala 

and D-Ala. The configuration of the hydroxycarboxylic acids was determined by chiral HPLC 

analysis of the acid hydrolysate, and determined as L for both, 2-hydroxyisocaproic and 2-

hydroxyisovaleric acid. 

At this point of the structure elucidation the position of D- and L-alanine had to be solved. 

Molecular modeling calculations were used to address this problem. Minimum energy 

conformations of the two possible isomers of 11 (6S, 25R and 6R, 25S) were calculated 

(Figure 4-3-1) and analyzed with regard to the NOESY correlations observed. The most 

conspicuous difference between the two models was the spatial orientation of proton H-6 and 

the amide methyl protons (H3-4). H-6 and CH3-4 showed NOESY correlations, which seemed 

only possible in the 6R, 25S isomer. In the model with 6S, 25R configuration H-6 is 

positioned below and H3-4 above the plane of the depsipeptide ring with a distance of approx. 

4.0 Å to each other, while in the model with 6R, 25S configuration they are on the same side 

of the plane with a distance of approx. 2.2 Å. Thus, the 6R, 25S configuration is suggested for 

compound 11, for which we propose the trivial name spicellamide A. 
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Figure 4-3-1. Minimum energy conformation of the 6S, 25R isomer (A) and 6R, 25S isomer 

(B) of 1. 

 

HREIMS and NMR data of compound 12 imparted a molecular formula of C31H46N4O9. The 
1H and 13C NMR spectral data indicated high structural similarity between compounds 12 and 

11. The only difference was evident from 1H and 13C NMR chemical shifts of the 2-

hydroxyisovaleric acid residue (Table 4-3-2). Hydroxylation of C-29 in 12 was suggested due 

to its 13C NMR chemical shift at δC 72.2 and due to the missing signal for proton H-29 in the 
1H NMR spectrum of 12. Thus, 2-hydroxyisovaleric acid was replaced with 2,3-

dihydroxyisovaleric acid moiety in compound 2. All other COSY, HMBC and NOESY 

correlations were the same as for compound 11. 

The absolute configuration of spicellamide B was also determined by Marfey`s method. The 

HPLC-MS analysis gave the same configurations for the amino acid residues as deduced for 

11 (N-Me-D-Phe, N-Me-L-Ala, L-Ala and D-Ala). Analysis by chiral HPLC revealed the 

configuration of the 2-hydroxyisocaproic acid residue as L, whereas 2,3-dihydroxyisovaleric 

acid, however could not be detected after acid hydrolysis due to its instability under acidic 

conditions. Literature reports proposed that during acidic hydrolysis 2,3-dihydroxy acids 

dehydrate and decarboxylate (Luesch et al., 2000). Therefore, the configuration of 2,3-

dihydroxyisovaleric acid in 12 could not be determined. However, due to the high structural 

homology of depsipeptides 11 and 12 and the close to identical spectroscopic data we 

suggested the same configuration for both compounds. For compound 12 the trivial name 

spicellamide B is proposed.  
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Table 4-3-2. 1D and 2D NMR spectral data for compound 2 (δ in ppm; J in Hz) 

Carbon δC 
a,c δH 

a,c COSY b,c HMBC b,d NOESY b,c

1 170.1     
2 60.9 4.04 (q; 6.71) 3 1, 3, 4, 5 3, 4 
3 13.7 1.53 (d ; 6.71) 2 1, 2 2 
4 37.3 3.29 (s)  2, 5 2, 6, 7w

5 172.4     

6 46.8 4.81 (quint; 
6.71) 

7 5, 7, 8 4, 7, 9w

7 18.2 1.32 (d; 6.71) 6 5, 6 6, 17w

8 168.6     

9 57.5 5.62 (dd; 5.19, 
11.60) 

10 8, 10, 17, 18 10, 12, 13, 15-17 

10 33.6 

3.34 (dd; 5.19, 
14.95) 
2.93 (dd; 11.60, 
14.95) 

9, 12-16 8, 9, 11-16 9, 12, 13, 15, 16 

11 138.9     
12 129.7 7.23 (m)  10, 13-16 10, 11 9, 10, 17, 19, 21-23w

13 129.0 7.25 (m) 10, 12, 
14-16 

10, 11 9, 10, 17, 19, 21-23w

14 127.1 7.18 (m) 10, 12, 13, 
15, 16 

10, 11 21-23w

15 129.0 7.25 (m) 10, 12-14, 
16 

10, 11 9, 10, 17, 19, 21-23w

16 129.7 7.23 (m) 10, 12-15 10, 11 9, 10, 17, 19, 21-23w

17 29.5 3.0 (s)  9, 18 7w, 9, 12-16, 19, 22w, 
23w

18 172.9     

19 71.4 5.18 (dd; 5.49, 
8.54,) 

20, 21 18, 20, 21 17, 21-23, 26w

20 39.8 1.48 (m) 
1.18 (m) 

19, 21 21, 22, 23  

21 24.5 1.16 (m) 19, 20, 22, 
23 

22, 23 12-16w, 19, 22, 23 

22 22.8 0.75 (d; 6.41) 21  12-16w, 19, 21 
23 23.2 0.79 (d; 6.41) 21  12-16w, 19, 21 
24 172.9     

25 47.6 4.89 (dq; 8.59, 
7.32) 

26 24, 26, 27 26 

26 19.5 1.45 (d; 7.32) 25 24, 25 19w, 22w, 23w, 25, 30w

27 170.5     
28 77.3 5.04 (s) 30, 31 1, 27, 29, 30, 31 30, 31 
29 72.2     
30 25.0 1.21 (s) 28 28, 29 26w, 28 
31 26.9 1.11 (s) 28 28, 29 28 

NH (1)  6.98 (d; 6.71)    
NH (2)  8.23 (d; 8.59)    

a Acetone-d6, 300 MHz. b Acetone-d6, 500 MHz. c Assignments are based on extensive 1D and 2D NMR 

measurements (HMBC, HSQC, COSY, NOESY). d Numbers refer to carbon resonances. w Weak signal. 
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Cytotoxicity of both compounds was tested in neuroblastoma cells. Compound 12 exhibited 

an IC50 value of 6.2 µg/mL while compound 11 was less cytotoxic with an IC50 value of 30 

µg/mL. In agar diffusion assay both depsipeptides were inactive up to a concentration of 50 

µg/plate.  

 

Spicellamide A  (11): colorless solid (1.5 mg); [α]24
D – 59.5° (c 0.12 MeOH); UV(MeOH) λ 

250-300 nm (br); λmax (log ε) 203 (4.64), 205 (4.62), 208 (4.60), 227 sh (4.45) nm; IR (ATR) 

γmax 3364, 2925, 2457, 2361, 1742, 1638, 1454, 1236 cm-1; 1H and 13C NMR spectral data 

(see Table 4-3-1); HREIMS m/z 602.3312 (calcd for C31H46N4O8 602.3316). 

 

Spicellamide B (12): colorless solid (1.0 mg); [α]24
D – 19.04° (c 0.11 MeOH); UV(MeOH)  

λmax (log ε) 203 (4.26), 205 (4.15), 208 (4.04); IR (ATR) γmax 3323, 2926, 2359, 1745, 1638, 

1456, 1417, 1230 cm-1; 1H and 13C NMR spectral data (see Table 4-3-2); HREIMS m/z 

618.3256 (calcd for C31H46N4O9 618.3265). 
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4.4 Lipopeptides from the strain Fusarium dimerum complex (Strain number 18) 

 

4.4.1 Introduction 

Microorganisms are well known producers of biosurfactants that attracted researchers 

attention in the last 20 years (Cameotra and Makkar, 2004; Singh and Cameotra, 2004). 

Surfactants are amphiphilic compounds which can reduce surface and interfacial tensions. 

Due to these properties they increase the solubility, mobility, bioavailability of hydrophobic 

or insoluble organic compounds. Biosufractants play an important role in motility of 

microorganisms and take part in cellular signalling and differentiation as well as in biofilm 

formation (antibiotic resistance by bacteria) (Van Hamme et al., 2006). Literature 

distinguishes high- and low-molecular mass surfactants (Rosenberg and Ron, 1999). The 

high-molecular mass surfactants are proteins, lipopolysaccharides and lipoproteins, while the 

low-molecular mass surfactants are glycolipids and lipopeptides. The most active and the 

most investigated cyclic lipopeptide is surfactin. Natural surfactin, produced by bacterial 

strain Bacillus subtilis (Arima et al., 1968), includes a  mixture of lipopeptides which differ in 

chain length of hydroxyl fatty acid residue and in amino acid substitutions of the peptide ring 

(Figure 4-4-1) (Kowall et al., 1998). A similar surface-active compound, described as 

lichenysin A, was isolated from Bacillus licheniformis by Yakimov et al. (Yakimov et al., 

1995). 

Fungal strain number 18 was identified as Fusarium dimerum complex that contains many 

Fusarium species (Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands). 

Fusarium is a large genus of filamentous fungi distributed in soil and in association with 

plants and marine organisms.  Some species produce mycotoxins that can contaminate food 

and affect human and animal health (Gelderblom et al., 1998; Creppy, 2002). The Fusarium 

extract inhibited the growth of 6 cancer cell lines at the concentration of 30 µg/mL and 

exhibited an IC50 value of 9.4 µg/mL. Mass spectra of the crude extract showed series of ions 

at m/z [M]+ 951 to 1008, evidencing the presence of a peptide mixture. 

 

4.4.2 Cultivation, extraction and isolation 

The fungal strain (Fusarium dimerum complex, strain number 18, 193A 28) was cultivated on 

a solid biomalt medium containing antibiotics (benzyl penicillin and streptomycin sulphate, 

250 mg / L). After the colonies were grown, the strain was transferred to a solid malt-yeast 

agar medium and cultivated in a big scale (10 L) for two months at room temperature. The 

fungal biomass and the media were homogenized using an Ultra-Turrax and the mixture was 
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extracted with EtOAc (4 x 8 L). After filtration, the filtrate was dried under reduced pressure 

to yield 2.5 g of orange extract. The fractionation of the extract by VLC (Si gel 60, 0.063-

0.200 mm) with a petroleum ether - DCM - EtOAc - MeOH gradient yielded 11 fractions. In 

the cytotoxic assay fraction 8 was the most active with an IC50 value of 8.5 µg/mL. Thus, it 

was further fractionated by reversed-phase VLC (Polygoprep 60 C18, 0.05 mm) with a MeOH 

– H2O gradient into 8 fractions. Of these, the last VLC fraction (eluted only with MeOH) was 

elucidated as a mixture of lipopeptides (13, 400 mg) which could not be further separated.  

 

4.4.3 Results and discussion 

The 1H NMR spectrum of fraction 13 displayed proton signals characteristic for α- and β-

protons of a peptide structure, in the regions from 4.0 to 5.3 ppm and from 2.3 to 3.5 ppm, 

respectively. Also, the 13C NMR spectrum showed carbonyl carbon signals between 168 and 

177 ppm and α-carbon signals between 50 and 63 ppm. The DEPT spectrum revealed signals 

in the region from 24 to 31 ppm typically for alkyl groups. Taken together, 1H and 13C NMR 

data implied fraction 13 to be a mixture of chemically similar lipopeptides. Literature and 

data base search indicated similarities to biosurfactants, lichenysins and surfactins, isolated 

from different species of Bacillus (Bonmatin et al., 1995; Yakimov et al., 1995; Kowall et al., 

1998). 

Surfactin, lichenysin A, B, C are mixtures of cyclic lipopeptides built from variants of a 

heptapeptide and β-hydroxy fatty acids with different chain lengths. The peptide moiety of 

surfactin contains two acidic residues (aspartate and glutamate) and five (four leucine and one 

valine) hydrophobic residues (Bonmatin et al., 1995), whereas in lichenysin A either aspartate 

or glutamate are present in their amide form (Yakimov et al., 1995) (Figure 4-4-1). 

 

CH3 (CH2)8-10 CH

CH2

CO

O Leu Leu Asp

Glu Leu Leu

Val

(Asn)

(Gln) LICHENYSIN  m/z (n=8) = 1006
                         m/z (n=9) = 1020
                         m/z (n=10) = 1034

SURFACTIN  m/z (n=8) = 1007
                        m/z (n=9) = 1021
                        m/z (n=10) = 1035

 

Figure 4-4-1. Structures of surfactin and lichenysin 
The molecular weights of surfactin and lichenysin of different chain length are calculated considering suggested 

amino acid residues by Yakimov et al., 1995. In the case when leucine is replaced with valine there is a 

difference of 14 Da. 
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 +Q1: Exp 1, 20,987 to 23,130 min from Sample 1 (18-8-8) of 18-8-8.wiff (Turbo Spray) Max. 2,6e6 cps.
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 -Q1: Exp 2, 21,011 to 23,153 min from Sample 1 (18-8-8) of 18-8-8.wiff (Turbo Spray) Max. 3,2e6 cps.
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Figure 4-4-2. EIMS spectra of mixture 13. 
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A 

 +Q1: Exp 1, 22,232 to 23,929 min from Sample 1 (Lichensin A) of Lichensin A.wiff (Turbo Spray) Max. 6,0e5 cps.
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 +Q1: Exp 1, 21,036 to 24,223 min from Sample 1 (Surfact) of Surfact.wiff (Turbo Spray) Max. 6,2e5 cps.
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Figure 4-4-3. EIMS spectra of lichenysin A (A) and surfactin (B) in positive mode. 
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The comparison of EIMS spectra of fraction 13 (Figure 4-4-2) to the spectra of both surfactin 

and lichenysin A (Figure 4-4-3) pointed to the resemblance of fraction 13 to both of them. As 

seen from mass spectra (Figure 4-4-3), lichenysin A consists of structural analogs that have 

even-numbered molecular weights ranging from 992 to 1034, while surfactin has odd-

numbered molecular weights in the range from 979 to 1035. The difference of 1 Da in 

molecular weight is due to the presence of the amide form of either glutamic or aspartic acid 

in lichenysin A. The EIMS analysis of fraction 13 revealed series of ions at m/z 951 to 1008 

in the positive-ion mode and at m/z 949 to 1006 in the negative-ion mode, implying a mixture 

of even- (950, 964, 978) and odd-numbered (979, 993, 1007) molecular weights. Mass shifts 

of 14 Da between structural analogs come from variations of fatty acid chain, or from 

replacement of leucine or isoleucine by valine (Horowitz and Griffin, 1991; Peypoux et al., 

1991). Literature describes surfactins and lichenysins as mixtures of lipopeptides which alter 

in lengths of fatty acid chain from C8 to C15 and in number of leucine and valine residues, e.g. 

in molecular weights from 979 to 1035 for surfactin and from 978 to 1034 for lichenysin A 

(Yakimov et al., 1995; Kowall et al., 1998). Analysis of mass spectra imparted fraction 13 

(Figure 4-4-2) as a mixture of lichenysin and surfactin analogs. To confirm the exact 

structures of lipopeptide analogs further structural elucidation should be performed. 

 

In antimicrobial tests fraction 13 exhibited an antibacterial activity inhibiting growth of 

Bacillus megaterium (2 mm) and Microbotryum violaceum (5 mm) at a concentration of 1 

µg/µL. The antibacterial activity of surfactins and lichenysins was described previously 

(Yakimov et al., 1995). In vitro antitumor assay revealed an IC50 value of 7.7 µg/mL (see 

Appendix). 

 

Since the isolation of surfactins and lichenysins has been reported only from bacteria, mostly 

from different species of Bacillus (Bonmatin et al., 1995; Yakimov et al., 1995; Kowall et al., 

1998), Fusarium dimerum was cultivated on media supplemented with antibiotics. Although 

classical microscopic studies did not reveal the presence of bacteria, it is possible that bacteria 

exist as endosymbionts in the fungus. Thus, further studies are necessary to shed light on the 

genuine producer organism of the lipopeptides. 
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4.5 Secondary metabolites from selected marine fungi 

 

4.5.1 Arthrinium sacchari 

In the preliminary screening for antitumor activity in a 6 cell line panel, the extract of the 

fungus Arthrinium sacchari showed antitumor activity in 2 out of 6 cell lines (33%) and in 5 

out of 6 cell lines (83%) at a concentrations of 3 µg/mL and 30 µg/mL, respectively. In agar 

diffusion assay the crude extract displayed inhibition zone against Mycotypha microspora of 4 

cm at 250 µg/disc. The biological activity in the mentioned assays and 1H NMR data 

addressed the fungus for detailed investigations. 

 

The fungal strain (Arthrinium sacchari, strain number 727, Cro2 CA EtOHb) was cultivated 

at room temperature for one and a half month in Fernbach flasks. The solid biomalt medium 

(11 L) contained 20 g/L of Biomalt, 17 g/L agar and artificial seawater. Mycelia and medium 

were homogenized using an Ultra-Turrax®, and the mixture was extracted with EtOAc (3 x 8 

L). After the evaporation of the organic phase, 4.6 g of dark red oil was obtained. The extract 

was applied on VLC (Si gel 60, 0.063-0.200 mm), with a CH2Cl2/acetone/MeOH gradient, to 

bring 11 fractions. In cytotoxic assay VLC fraction 3 revealed the highest activity with a 

mean IC50 value of 3.3 µg/mL while all other fractions did not show desirable activity in 

concentration less than 30 µg/mL. VLC fraction 3 was fractionated by another VLC (Si gel 

60, 0.063-0.200 mm), with a CH2Cl2/EtOAc/MeOH gradient, into 10 further fractions. The 

cytotoxic activity was indicated to subfraction 3.5 (a mean IC50 value of 0.17 µg/mL) which 

was separated on reversed-phase HPLC (Macherey-Nagel Nucleodur 100-5 C18, 250 x 4.6 

mm, 5 µm) with MeOH/H2O (6:4; flow 0.8 mL/min) and yielded compounds 14 and 15. 

Subfraction 3.2 was eluted with petroleum ether/acetone (8:2; flow 1.5 mL/min) on normal-

phase HPLC column (Knauer Eurospher-100, C-8, 250 x 8 mm, 5 µm) and gave compounds 

16 and 17. 

 

Structure elucidation of compounds 14-17 was accomplished with 1D and 2D NMR data, 

mass spectrometry and data base search. The structure of compounds 14 and 15 was assigned 

to group of cytochalasins, structure of 16 to coumarins and of 17 to sterols. 
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Cytochalasin K (14) and its ∆6,12 isomer (15) are formally isolated from Aspergillus clavatus 

by Steyn and van Heerden (Steyn and van Heerden, 1982). In antitumor activity assay 

compounds 14 and 15 displayed a mean IC50 value of 1.59 µg/mL and 0.014 µg/mL, 

respectively. At a concentration of 1 µg/mL compound 15 showed higher activity inhibiting 

growth of 30 cell lines out of 36 (83 %), and at a concentration of 10 µg/mL growth of 34 out 
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of 36 cell lines (94 %), while compound 14 inhibited 6 % (2/36) cell lines at 1 µg/mL and 

23/36 cell lines (64 %) at 10 µg/mL (see Appendix). 

 

Sclerotinin B (16) was first isolated by Sassa et al. (Sassa et al., 1968) as plant growth 

promoting metabolite. In an antitumor assay compound 16 did not affect the growth of any 

cell type. 

 

Ergosterol (17) is a common lipid produced by most of the fungi (Shirane et al., 1996). 

Ergosterol showed a mean IC50 value of 4.67 µg/mL inhibiting growth of 27 out of 36 cell 

lines (75 %) at a concentration of 10 µg/mL without selectivity on a specific tumor type. 

 

None of the compounds showed any activity in the agar diffusion assay. 

 

Cytochalasin K (14) was isolated as white crystals (14.6 mg). 1H NMR (300 MHz, CDCl3); δ 

7.31 (2H, d, J = 6.95, H-3`, H-5`), 7.28 (1H, s, H-4`), 7.15 (2H, d, J = 6.95, H-2`, H-6`), 6.64 

(1H, d, J = 11.34, H-20), 6.23-6.15 (1H, m, H-13), 5.65 (1H, d, J = 11.34, H-19), 5.43-5.33 

(1H, m, H-14), 3.93-3.89 (2H, m, H-4, H-7), 3.52-3.48 (1H, m, H-3), 2.98-2.90 (1H, m, H-

16), 2.84-2.66 (4H, m, H-8, H2-10, H-15a), 2.17 (1H, s, H-15b), 1.67 (3H, s, H3-11), 1.50 

(3H, s, H3-18Me), 1.48 (3H, s, H3-12), 1.17 (3H, d, J = 6.59, H3-16Me); 13C NMR (75.5 

MHz, CDCl3) δ 211.5 (s, C-17), 170.2 (s, C-1), 149.0 (s, C-22), 142.4 (d, C-20), 136.6 (s, C-

1`), 133.6 (d, C-14), 131.7 (s, C-5), 129.3 (d, C-2`, C-6`, C-13), 128.9 (d, C-3`, C-5`), 127.1 

(d, C-4`), 125.2 (s, C-6), 120.4 (d, C-19), 86.3 (s, C-9), 77.2 (s, C-18), 70.0 (d, C-7), 59.1 (d, 

C-3), 49.9 (d, C-8), 48.2 (d, C-4), 44.0 (t, C-10), 40.9 (d, C-16), 39.0 (t, C-15), 24.6 (q, C-

18Me), 20.2 (q, C-16Me), 17.6 (q, C-12), 14.0 (q, C-11); C28H33NO7 (495.23); [α]24
D +23.8° 

(c 0.45, MeOH). 

 

∆6,12 isomer of Cytochylasin K (15) was isolated as white crystals (9.7 mg). 1H NMR (300 

MHz, CDCl3); δ 7.32-7.29 (3H, brs, H-3`, H-4`, H-5`), 7.15-7.12 (2H, brs, H-2`, H-6`), 6.54 

(1H, d, J = 11.34, H-20), 5.77-5.68 (1H, m, H-13), 5.62 (1H, d, J = 11.34, H-19), 5.37 (1H, s, 

H-12a), 5.33-5.29 (1H, brs, H-14), 5.16 (1H, s, H-12b), 3.81 (1H, brs, H-7), 3.33 (2H, brs, H-

3, H-5), 3.04-2.86 (4H, brs, H-4, H-8, H-10a, H-16), 2.73-2.58 (2H, brs, H-10b, H-15a), 2.17 

(1H, s, H-15b), 1.50 (3H, s, H3-24), 1.16 (3H, s, H3-23), 1.11 (3H, s, H3-11); 13C NMR (75.5 

MHz, CDCl3) δ 211.8 (s, C-17), 169.2 (s, C-1), 152.7 (s, C-22), 149.5 (s, C-6), 142.2 (d, C-

20), 136.6 (s, C-1`), 133.8 (d, C-14), 129.3 (d, C-2`, C-6`), 128.9 (d, C-3`, C-5`), 128.2 (d, C-
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13), 127.2 (d, C-4`), 120.2 (d, C-19), 114.5 (t, C-12), 86.2 (s, C-9), 76.8 (s, C-18), 69.3 (d, C-

7), 53.6 (d, C-3), 48.7 (d, C-8), 47.9 (d, C-4), 44.4 (t, C-10), 40.8 (d, C-16), 38.7 (t, C-15), 

32.0 (d, C-5), 24.2 (q, C-24), 20.2 (q, C-23), 14.6 (q, C-11); C28H33NO7 (495.23); [α]24
D 

+8.3° (c 0.66, MeOH). 

 

Sclerotinin B (16) was isolated as a pale brown solid (3.1 mg). 1H NMR (300 MHz, 

(CD3)2CO); δ 3.85 (2H, s, H2-4), 2.57 (3H, s, H3-11), 2.14 (3H, s, H3-12), 2.13 (3H, s, H3-13); 
13C NMR (75.5 MHz, (CD3)2CO) δ 172.2 (s, C-1), 158.2 (s, C-6), 158.0 (s, C-8), 132.4 (s, C-

10), 120.0 (s, C-7), 118.1 (s, C-5), 110.8 (s, C-3, C-9), 37.3 (t, C-4), 32.1 (q, C-11), 12.1 (q, 

C-12), 8.8 (q, C-13); C12H14O5 (238.08); [α]24
D -15.1° (c 0.28, MeOH). 

 

Ergosterol (17) was isolated as amorphous white powder (2.8 mg). 1H NMR (300 MHz, 

(CD3)2CO); δ 5.52 (1H, dd, J = 2.20, 5.85, H-6), 5.38-5.34 (1H, m, H-7), 5.26-5.22 (2H, m, 

H-22, H-23), 3.55-3.43 (1H, m, H-3), 2.39 (1H, d, J = 14.27, H-4a), 2.23 (1H, d, J = 14.27, H-

4b), 2.09 (1H, s, H-20), 1.98-1.83 (5H, m, H2-2, H-9, H-16a, H-17), 1.81-1.75 (2H, m, H-1, 

H-24), 1.71-1.62 (3H, m, H2-11, H-15a), 1.50-1.45 (1H, m, H-25), 1.43-1.34 (2H, m, H-14, 

H-16b), 1.33-1.29 (1H, m, H-15b), 1.28 (2H, s, H2-12), 1.05 (3H, d, J = 6.59, H3-21), 0.93 

(3H, s, H3-19), 0.91 (3H, s, H3-28), 0.85 (3H, d, J  = 5.12, H3-27), 0.82 (3H, d, J = 5.12, H3-

26), 0.66 (3H, s, H3-18); 13C NMR (75.5 MHz, (CD3)2CO) δ 141.6 (s, C-5), 141.3 (s, C-8), 

136.6 (d, C-23), 132.7 (d, C-22), 119.9 (d, C-6), 117.4 (d, C-7), 70.2 (d, C-3), 56.5 (d, C-14), 

55.2 (d, C-17), 47.1 (d, C-9), 43.7 (d, C-24), 53.5 (s, C-13), 41.8 (t, C-4), 41.3 (d, C-20), 39.9 

(t, C-12), 39.2 (t, C-1), 37.8 (s, C-10), 33.8 (d, C-25), 32.8 (t, C-2), 29.0 (t, C-16), 23.7 (t, C-

15), 21.7 (t, C-11), 21.5 (q, C-21), 20.3 (q, C-27), 19.9 (q, C-26), 18.1 (q, C-28), 16.6 (q, C-

19), 12.3 (q, C-18); C28H44O (396.34); [α]24
D -51.0° (c 0.19, MeOH). 

 

4.5.2 Aspergillus terreus 

Aspergillus species are highly aerobic and are found in almost all oxygen-rich environments. 

Some of the metabolites produced by Aspergillus terreus, like lovastatin – inhibitor of 

cholesterol synthesis, are of great clinical importance (Manzoni et al., 1998). On the basis of 

the interesting 1H NMR spectrum of the crude extract, the strain was chosen for further 

analysis. 

Mycelia and 4L of solid biomalt medium were diluted with water (100 mL/L) and 

homogenized using an Ultra-Turrax® T25 at 5000 rpm for 2 minutes. The resulting mixture 

was exhaustively extracted with EtOAc (3 x 4 L), filtrated and evaporated under reduced 
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pressure to yield 2.0 g of dark red extract. The EtOAc extract was fractionated by VLC (Si gel 

60, 0.063-0.200 mm), normal-phase silica (gradient dichlomethan – EtOAc - methanol) to 

give 16 fractions. According to 1H NMR spectral data fractions 4, 5 and 7 were further 

fractionated on normal-phase HPLC column (Knauer Si Eurospher-100, 250 x 8 mm, 5µm) 

using different mixtures of petroleum ether and acetone. VLC fraction 4 was separated into 

compounds 18 (butyrolactone I) and 19 (butyrolactone II) with petroleum ether/acetone (7:3; 

flow 2.0 mL/min). VLC fraction 7 yielded terrein (20) with petroleum ether/acetone (1:1; 

flow 2.0 mL/min). And finally, elution of VLC fraction 5 with petroleum ether/acetone (7:3; 

flow 2.0 mL/min) afforded itaconic acid (21). 
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All compounds were previously isolated also from Aspergillus terreus. Butyrolactone I (18) 

and II (19) are first time described in 1983 (Nitta et al., 1983), terrein (20) and itaconic acid 

(21) in 1935 (Raistrick and Smith, 1935). 

In a cytotoxic assay and agar diffusion tests none of the compounds show significant activity 

(see Appendix). 

 

Butyrolactone I (18) was isolated as red solid (73.2 mg). 1H NMR (300 MHz, (CD3)2CO); δ 

9.06 (1H, s, 2-OH), 8.88 (1H, s, 7-OH), 8.08 (1H, s, 17-OH), 7.64 (2H, d, J = 8.78, H-5, H-9), 
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6.97 (2H, d, J = 8.78, H-6, H-8), 6.56 (2H. brs, H-16, H-19), 6.49 (1H, s, H-15), 5.07 (1H, t, J 

= 6.95, H-2`), 3.72 (3H, s, H3-12), 3.45 (2H, s, H2-13), 3.10 (2H, d, J = 6.95, H2-1`), 1.61 (3H, 

s, H3-4`), 1.54 (3H, s, H3-4`); 13C NMR (75.5 MHz, (CD3)2CO) δ 170.9 (s, C-11), 168.6 (s, C-

1), 158.8 (s, C-7), 154.7 (s, C-17), 139.0 (s, C-3), 132.4 (s, C-3`), 132.3 (d, C-15), 130.1 (d, 

C-5, C-9), 129.5 (d, C-19), 128.1 (s, C-2), 127.9 (s, C-14), 124.9 (s, C-18), 123.3 (d, C-2`), 

122.8 (s, C-4), 116.6 (d, C-6, C-8), 115.0 (d, C-16), 85.9 (s, C-10), 53.7 (q, C-12), 39.2 (t, C-

13), 28.5 (t, C-1`), 25.9 (q, C-4`), 17.7 (q, C-5`); C24H24O7 (424.15); [α]24
D +55.4° (c 1.0, 

EtOH), (lit. (Nitta et al., 1983); [α]24
D +86.0° (c 0.5, EtOH)). 

 

Butyrolactone II (19) was isolated as dark orange solid (37.8 mg). 1H NMR (300 MHz, 

(CD3)2CO); δ 7.69 (2H, d, J = 8.78, H-5, H-9), 7.01 (2H, d, J = 8.78, H-6, H-8), 6.72 (2H, d, J 

= 8.78, H-15, H-19), 6.62 (2H, d, J = 8.78, H-16, H-18), 3.83 (3H, s, H3-12), 3.53 (2H, s, H2-

13); 13C NMR (75.5 MHz, (CD3)2CO) δ 170.8 (s, C-11), 168.6 (s, C-1), 158.9 (s, C-7), 157.3 

(s, C-17), 139.0 (s, C-3), 132.2 (d, C-15, C-19), 130.0 (d, C-5, C-9), 128.2 (s, C-2), 124.8 (s, 

C-14), 122.7 (s, C-4), 116.6 (d, C-6, C-8), 115.4 (d, C-16, C-18), 85.9 (s, C-10), 53.7 (q, C-

12), 39.1 (t, C-13); C19H16O7 (356.09); [α]24
D +42.5° (c 1.4, EtOH), (lit. (Nitta et al., 1983); 

[α]24
D +85.0° (c 1.0, EtOH)). 

 

Terrein, 5,6-dihydroxy-4-(1-propenyl)cyclopent-4-en-7-one (20) was isolated as white 

crystals (140.7 mg). 1H NMR (300 MHz, (CD3)2CO); δ 6.87-6.75 (1H, m, H-7), 6.42 (1H, d, J 

= 15.73, H-6), 5.95 (1H, s, H-5), 4.72 (1H, s, H-2), 4.07 (1H, d, J = 2.20, H-3), 1.89 (3H, dd, 

J = 1.46, 6.95, H3-8); 13C NMR (75.5 MHz, (CD3)2CO) δ 203.6 (s, C-1), 169.1 (s, C-4), 140.1 

(d, C-7), 126.3 (d, C-6), 125.7 (s, C-5), 82.2 (d, C-2), 77.8 (d, C-3), 19.3 (q, C-8); C8H10O3; 

(154.06); [α]24
D +168.0° (c 1.2, H2O), (lit. (Grove, 1954); [α]24

D +192.0° (c 0.2, H2O)). 

 

Itaconic acid (21) was isolated as white crystals (132.6 mg). 1H NMR (300 MHz, (CD3)2CO); 

δ 6.26 (1H, d, J = 1.10, H-5a), 5.80 (1H, d, J = 1.10, H-5b), 3.34 (2H, d, J = 1.10, H2-3); 13C 

NMR (75.5 MHz, (CD3)2CO) δ 172.2 (s, C-1), 167.8 (s, C-4), 135.8 (s, C-2), 128.4 (t, C-5), 

37.6 (t, C-3); C5H6O4 (130.03). 

 

4.5.3 Fusarium oxysporum 

The extract of the fungus Fusarium oxysporum exhibited an IC50 value of 6.5 µg/mL in in 

vitro antitumor assay inhibiting growth of 5 out of 6 cell lines in a concentration of 30 µg/mL. 

Moreover, the screening tests in sphingolipid metabolism assay revealed an accumulation of 
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glucosylceramide (Figure 4-1-2). Therefore, the strain Fusarium oxysporum (strain number 

588, Fr S1 5N) was selected for mass-cultivation (10 L (40 Fernbach flasks) of solid malt-

yeast agar medium, room temperature for 3 months). The fungal biomass, including the 

medium, was homogenized using an Ultra-Turrax and the mixture was extracted with EtOAc 

(4 x 8 L). After evaporation of the organic phase 1.5 g of brown oil was obtained. The extract 

was fractionated by VLC (Si gel 60, 0.063-0.200 mm) with a petroleum ether - EtOAc - 

MeOH gradient, to yield 8 fractions. Fractions 3 and 4 were combined together according to 
1H NMR and LC/MS data, and the cytotoxic assay in which they exhibited an IC50 value of 

2.4 µg/mL in a 6 cell line panel. In addition, both fractions induced an accumulation of 

glucosyceramide along with reduction of downstream glycosphingolipids. Thus, they were 

further fractionated by reversed-phase VLC (Polygoprep 60 C18, 0.05 mm) with a MeOH – 

H2O gradient to give 5 fractions. Of these, fraction 2 was eluted with MeOH/H2O (9:1) on 

reversed-phase HPLC (Macherey-Nagel Nucleodur 100-5 C18, 250 x 4.6 mm, 5 µm, flow 2.5 

mL) to yield compound 22. 
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Structure elucidation of compound 22 was achieved with 1H and 13C NMR spectra, mass 

spectrometry and literature search. Equisetin was isolated previously by Phillips et al. 

(Phillips et al., 1989) from Fusarium equiseti. In agar diffusion assay equisetin exhibited an 

antibacterial and antifungal activity inhibiting growth of Bacillus megaterium (11 mm), 

Microbotryum violaceum (5 mm), Eurotium rubrum (4 mm) and Mycotypha microspora (5 
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mm). Compound 22 also exhibited an IC50 value of 4.8 µg/mL in in vitro antitumor activity 

assay.  

 

 
Figure 4-5-1. Effect of equisetin (22) on glycosphingolipid metabolism of neuroblastoma 

cells (A) and primary cultured neurons (B). 
Cells were incubated in the absence (C, control) or presence of indicated concentrations of euisetin. After 4 h 

1µCi of [14C]serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, 

isolated, separated by TLC, and detected as described in Materials and Methods. TLC plates were developed in 

chloroform-methanol-0.22 % aqueous CaCl2 (60:35:8; v/v/v). FA, fatty acids; Cer, ceramide; GlcCer, 

glucosylceramide; LacCer, lactosylceramide; So, sphingosine; Sa, sphinganine; SM, sphingomyelin; *, 

unidentified bands.  

 

The influence of equisetin on sphingolipid metabolism was studied by following the 

incorporation of L-[3-14C] serine into cellular sphingolipids of cerebellar neurons and 

neurobalstoma B104 cells. Incubation of neuroblastoma cells with 5 µM and 10 µM of 

equisetin revealed a 3fold increased content of GlcCer along with the reduced levels of 
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LacCer and complex gangliosides (Figure 4-5-1A), whereas in primary cultured neurons 

levels of glycosphingolipids in cell treated with compound 22 (10 µM) were comparable with 

the control cells (Figure 4-5-1B). However, further experiments in neuroblastoma cells 

showed that the potency of equisetin to alter glycosphingolipid metabolism is dependent on 

cell confluence and the passage number of cell line. Thus, the experiments could not give 

reliable results and, for that reason, no further investigations were conducted.  

 

Equisetin (22) was isolated as colourless oil (65 mg). 1H NMR (300 MHz, (CD3)2CO); δ 5.40-

5.39 (2H, brs, H-4, H-5), 5.23-5.21 (2H, brs, H-13, H-14), 4.00 (2H, dd, J = 3.50, 12.00, H2-

6`), 3.70 (1H, t, J = 3.50, 7.00, H-5`), 3.37 (1H, s, H-3), 3.06 (3H, s, H3-7`), 2.08 (1H, s, H-

10a), 1.85-1.79 (6H, m, H-6, H2-7, H2-9, H-11), 1.52 (1H, s, H-8), 1.56 (3H, d, J = 6.50, H3-

15), 1.46 (3H, s, H3-12), 1.09 (1H, s, H-10b), 0.94 (3H, d, J = 6.50, H3-16); 13C NMR (75.5 

MHz, (CD3)2CO) δ 197.1 (s, C-4`), 191.0 (s, C-1), 177.8 (s, C-2), 132.0 (d, C-5), 130.6 (d, C-

13), 127.4 (d, C-4), 127.3 (d, C-14), 101.6 (s, C-3`), 68.8 (d, C-5`), 60.0 (t, C-6`), 45.7 (s, C-

2), 49.0 (d, C-3), 43.0 (t, C-7), 39.4 (d, C-11), 39.2 (d, C-6), 36.4 (t, C-9), 34.1 (d, C-8), 28.7 

(t, C-10), 27.5 (q, C-7`), 22.8 (q, C-16), 17.7 (q, C-15), 15.2 (q, C-12); C22H31NO4 (373.23); 

[α]24
D -99° (c 1.13 CHCl3). 

 

4.5.4 Paecilomyces lilacinus 

The extract of the fungus Paecilomyces lilacinus inhibited growth of 2 out of 6 cancer cell 

lines at the concentration of 3 µg/mL exhibiting an IC50 value of 0.09 µg/mL. Also, 

preliminary tests on sphingolipid metabolism showed reduced levels of ceramide and 

glycosphingolipids (Figure 4-1-2) which addressed the fungus for detailed studies. 

The fungus (Paecilomyces lilacinus, strain number 193, 195 21 W) was cultivated at room 

temperature for one month in 4 L of solid biomalt agar medium containing 20 g/L Biomalt, 17 

g/L agar and artificial sea water. Mycelia and medium were homogenized using an Ultra-

Turrax and the resulting mixture was exhaustively extracted with EtOAc and filtrated. The 

filtrate was evaporated under reduced pressure to yield 0.8 g of dark brown gum. The extract 

was fractionated by VLC (Si gel 60, 0.063-0.200 mm), with a hexane - petroleum ether – 

EtOAc – MeOH gradient, to yield 10 fractions. Unfortunately, none of the fractions and the 

extract by its self showed any alterations in sphingolipid metabolism. Thus, a bioassay-guided 

isolation was done according to the cytotoxic activity. Fractions 7 and 8 showed an IC50 value 

of 0.01 µg/mL and of 0.9 µg/mL, respectively, in a 6 cell line panel cytotoxic assay. Both 

fractions displayed similar 1H NMR and LC/MS spectra and, thus, were combined to be 
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fractionated by reversed-phase VLC (Polygoprep 60 C18, 0.05 mm) with a MeOH – H2O 

gradient to give 5 fractions. Of these, fraction 3 was purified on reversed-phase (Phenomenex 

Synergi Hydro-RP, 250 x 4.60 mm, 4 µm, flow 1.0 mL/min) HPLC with MeOH - H2O 

gradient into compound 23.  
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Gregatin D was first isolated in 1975 by Kobayashi and Ui (Kobayashi and Ui, 1975) as 

phytotoxic substance. In our antitumor assay in a panel of 36 human tumor cell lines gregatin 

D displayed an IC50 value of 9.4 µg/mL inhibiting growth of 3 out of 36 cell lines in a 

concentration of 30 µg/mL.  

Compound 23 and the extract from mass cultivation did not show any effect on sphingolipid 

metabolism. 

 

Gregatin D (23) was isolated as orange oil (14.8 mg). 1H NMR (300 MHz, MeOD); δ  6.45-

6.35 (1H, m, H-5), 6.03 (1H, t, J = 14.64, H-4), 5.90-5.82 (1H, m, H-3), 5.58 (1H, d, J = 

14.64, H-6), 4.29 (1H, brs, H-13), 3.95-3.83 (5H, m, H2-12, H3-15), 2.14 (2H, t, J = 7.32, H2-

2), 1.52 (3H, s, H3-16), 1.29 (3H, d, J = 5.85, H3-14), 1.04 (3H, t, J = 7.32, H3-1); 13C NMR 

(75.5 MHz, MeOD) δ 206.4 (s, C-10), 197.5 (s, C-11), 170.0 (s, C-8), 140.3 (d, C-3), 133.4 

(d, C-5), 129.2 (d, C-4), 126.7 (d, C-6), 112.4 (s, C-9), 92.1 (s, C-7), 66.9 (d, C-13), 56.7 (q, 

C-15), 49.5 (t, C-12), 26.7 (t, C-2), 24.0 (q, C-14), 22.7 (q, C-16), 13.8 (q, C-1); C16H22O5 

(294.15); [α]24
D + 102° (c 0.99 CHCl3), (lit. (Kobayashi and Ui, 1975); [α]24

D +152.0° (c 0.93 

CHCl3)). 
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4.6 Influence of fungal metabolites from the strain Spicellum roseum on sphingolipid 

metabolism 

 

4.6.1 Alterations of glycosphingolipid profile by the extract of Spicellum roseum 

Preliminary screening studies for the influence of fungal extracts on sphingolipid metabolism 

imparted the extract of fungal strain Spicellum roseum as a producer of metabolites with 

potential impact on SLs.  

 

The effect of the fungal extract (FE) on de novo sphingolipid 

biosynthesis of cerebellar neurons was studied by following the 

incorporation of L-[3-14C] serine into cellular sphingolipids. Cells 

incubated with 10 µg/mL of FE exhibited an accumulation of 

GlcCer, GM3 and GD3 while the formation of LacCer and more 

complex gangliosides was reduced (Figure 4-6-1). These 

observations were similar to the effects of fungal metabolite 

brefeldin A (BFA), previously published by van Echten et al. (van 

Echten et al., 1990b), with the exception concerning LacCer 

formation. In contrast to BFA that was shown to induce 

accumulation of newly formed LacCer (van Echten et al., 1990b), 

the fungal extract clearly reduced its formation. Therefore, the 

extract of fungal strain Spicellum roseum was subjected to further 

investigation.  

 

 

 

 

Figure 4-6-1. Influence of the fungal extract of strain Spicellum roseum on [14C] serine 

incorporation into sphingolipids of primary cultured neurons.  
Cells were incubated in the absence (C, control) or presence of fungal extract (FE, 10 µg/mL). After 4 h 1µCi of 

[14C]serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, 

isolated, separated by TLC, and detected as described in Materials and Methods. TLC plates were developed in 

chloroform-methanol-0.22 % aqueous CaCl2 (60:35:8; v/v/v). The terminology of gangliosides (GQ1b, GT1b, 

GD1b, GD1a, GD3, GM1 and GM3) is according to Svenerholm (Svennerholm, 1963). GlcCer, 

glucosylceramide; LacCer, lactosylceramide; So, sphingosine; Sa, sphinganine; SM, sphingomyelin; *, 

unidentified bands.  
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4.6.2 Cultivation, extraction and bioassay-guided isolation 

The fungal strain Spicellum roseum (strain number 74; 193 H 15) was isolated from the 

sponge Ectyplasia perox as previously described (Höller et al., 2000). The strain was 

cultivated on a solid biomalt medium (10 L) for two months. The fungal biomass, together 

with media, was homogenized using an Ultra-Turrax® and extracted with EtOAc (3x8L). 

After the evaporation of the organic phase 4.0 g of dark brown extract was obtained. The 

extract was fractionated by VLC with a petroleum ether-acetone-methanol gradient into four 

fractions.  

 

Primary cultured neurons were incubated with 

different VLC fractions and their influence on 

de novo SL synthesis was followed by 

incorporation of L-[3-14C] serine into cellular 

sphingolipids. Figure 4-6-2 clearly shows that 

cells treated with fractions 1 and 2 exhibited 

alterations of glycosphingolipids while cells 

treated with fractions 3 and 4 showed no 

difference in expression of SLs when 

compared to control cells. As seen on Figure 

4-6-2, both fractions (1 and 2) increased the 

levels of GlcCer and reduced the levels of 

LacCer. Additionally, fraction 1 reduced the 

expression of all gangliosides which was less 

in the case for fraction 2. Therefore, VLC 

fractions 1 and 2 were addressed for further 

investigation and isolation of the compounds 

responsible for exhibited activity. 

 

Figure 4-6-2. Influence of VLC fractions of the extract from Spicellum roseum on 

sphingolipid metabolism of primary cultured neurons.  
Cells were incubated in the absence (C, control) or presence of VLC fractions (1, 2, 3, 4; 10 µg/mL). After 4 h 

1µCi of [14C]serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, 

isolated, separated by TLC, and detected as described in Materials and Methods. TLC plates were developed in 

chloroform-methanol-0.22 % aqueous CaCl2 (60:35:8; v/v/v). The terminology of gangliosides (GQ1b, GT1b, 

GD1b, GD1a, GD3, GM1 and GM3) is according to Svenerholm (Svennerholm, 1963). FA, fatty acids; Cer, 



Results 90

ceramide; SM, sphingomyelin; So, sphingosine; Sa, sphinganine; GlcCer, glucosylceramide; LacCer, 

lactosylceramide; *, unidentified bands.  

 

The fractionation of VLC fractions and the isolation of the compounds 24 – 29 are shown in 

Scheme 4-6-1. 

 

Scheme 4-6-1. Extract fractionation and the isolation of compounds 24-29. 

 

 
 

 

Structure elucidation of compounds 24-29 was accomplished with 1D and 2D NMR data, 

mass spectrometry and data base search. Compounds 24, 25, 27 and 28 are sesquiterpenoid 

metabolites that belong to the family of trichothecenes. Trichothecenes have various effects 

on eukaryotic cells. Their biological activity will be discussed later (Chapter 4.6.4). Isolation, 

chemical characteristics and biosynthetic studies of trichothecenes are well described in 

literature – compunds 25, 27, 28 (Hanson et al., 1974), compound 24 (Plattner et al., 1988; 

Tanaka et al., 2001). The 1H and 13C NMR data of brefeldin A (26) were similar with those 

published by Glaser et al. (Glaser et al., 2000). Compound 29 was described previously 

(Achenbach et al., 1985). 
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8-deoxy-trichothecin (24) was isolated as colorless oil (400 mg). 1H NMR (300 MHz, 

(CD3)2CO); δ 6.45-6.34 (1H, m, H-3`), 5.77 (1H, dd, J = 1.83, 11.34, H-2`), 5.63 (1H, dd, J = 

3.66, 7.68, H-4), 5.33 (1H, d, J = 5.12, H-10), 3.66-3.62 (2H, m, H-2, H-11), 3.00 (1H, d, J = 

4.39, H-13a), 2.80 (1H, d, J = 4.39, H-13b), 2.48 (1H, dd, J = 8.05, 15.32, H-3a), 2.11 (3H, 

dd, J = 1.83, 6.95 H3-4`), 1.96-1.85 (4H, m, H-3b, H-7a, H2-8), 1.66 (3H, s, H3-16), 1.45-1.41 

(1H, m, H-7b), 0.93 (3H, s, H3-15), 0.67 (3H, s, H3-14); 13C NMR (75.5 MHz, (CD3)2CO) δ 

166.5 (s, C-1`), 145.9 (d, C-3`), 139.3 (s, C-9), 121.4 (d, C-2`), 120.4 (d, C-10), 79.6 (d, C-2), 

75.3 (d, C-4), 71.1 (d, C-11), 66.0 (s, C-12), 49.8 (s, C-5), 47.8 (t, C-13), 41.1 (s, C-6), 37.3 

(t, C-3), 28.6 (t, C-8), 25.1 (t, C-7), 23.3 (q, C-16), 16.2 (q, C-15), 15.5 (q, C-4`), 6.2 (q, C-

14); C19H26O4 (318.18); [α]24
D -5.5° (c 1.0, MeOH). 

 

Trichodermol (25) was isolated as white crystals (500 mg). 1H NMR (300 MHz, (CD3)2CO); 

δ 5.29 (1H, d, J = 5.49, H-10), 4.38 (1H, dd, J = 3.29, 7.32, H-4), 3.55 (1H, d, J = 5.12, H-2), 

3.49 (1H, d, J = 5.49, H-11), 2.91 (1H, d, J = 4.76, H-13a), 2.70 (1H, d, J = 4.76, H-13b), 
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2.39 (1H, dd, J = 7.32, 15.37, H-3a), 1.93-1.90 (3H, m, H-7a, H2-8), 1.77-1.75 (1H, m, H-3b), 

1.63 (3H, s, H3-16), 1.42-1.39 (1H, m, H-7b), 0.81 (3H, s, H3-15), 0.73 (3H, s, H3-14); 13C 

NMR (75.5 MHz, (CD3)2CO) δ 139.0 (s, C-9), 120.7 (d, C-10), 79.7 (d, C-11), 73.4 (d, C-4), 

70.9 (d, C-2), 66.1 (s, C-12), 49.5 (s, C-5), 47.1 (t, C-13), 40.7 (s, C-6), 40.2 (t, C-3), 28.6 (t, 

C-8), 25.1 (t, C-7), 23.2 (q, C-16), 16.0 (q, C-15), 6.4 (q, C-14); C15H22O3 (250.16); [α]24
D -

26.6° (c 1.0, CHCl3), (lit. (Krohn et al., 2003); [α]24
D -30.0° (c 0.1, CHCl3)). 

 

Brefeldin A (26) was isolated as white crystals (30 mg). 1H NMR (300 MHz, MeOD); δ 7.50 

(1H, dd, J = 3.29, 15.37, H-2), 5.89 (1H, d, J = 1.83, H-3), 5.84-5.75 (1H, m, H-10), 5.32 (1H, 

dd, J = 8.78, 14.27, H-11), 4.87-4.79 (1H, m, H-6), 4.26 (1H, t, J = 5.12, H-13), 4.08 (1H, d, J 

= 1.83, H-1), 2.49-2.38 (1H, m, H-11a), 2.21-2.12 (1H, m, H-12a), 2.06-2.01 (2H, m, H-9a, 

H-14x), 1.94-1.79 (5H, m, H-7a, H-8a, H-9b, H-14y, H-14a), 1.67-1.58 (1H, m, H-7b), 1.53-

1.44 (1H, m, H-12b), 1.28 (3H, d, J = 6.22, H3-15), 0.99-0.88 (1H, m, H-8); 13C NMR (75.5 

MHz, MeOD) δ 168.3 (s, C-4), 155.1 (d, C-2), 138.1 (d, C-11), 131.4 (d, C-10), 117.8 (d, C-

3), 76.6 (d, C-1), 73.2 (d, C-6), 73.0 (d, C-13), 53.2 (d, C-14a), 45.5 (d, C-11), 44.1 (t, C-12), 

41.8 (t, C-14), 35.0 (t, C-7), 33.0 (t, C-9), 28.0 (t, C-8), 21.1 (q, C-15); C16H24O4 (280.17); 

[α]24
D +89.7° (c 1.6, MeOH), (lit. (Härri et al., 1963); [α]24

D +96.0° (MeOH)). 

 

Trichothecin (27) was isolated as amorphous white solid (2.0 mg). 1H NMR (500 MHz, 

CDCl3); δ 6.49 (1H, d, J = 4.76, H-10), 6.44-6.32 (1H, m, H-3`), 5.83 (1H, d, J = 11.71, H-

2`), 5.58 (1H, q, J = 2.93, 6.95, H-4), 3.96-3.93 (2H, m, H-2, H-11), 3.14 (1H, d, J = 3.66, H-

13a), 2.91-2.85 (2H, m, H-7a, H-13b), 2.63 (1H, dd, J = 8.05, 16.10, H-3a), 2.30 (1H, d, J = 

14.64, H-7b) 2.15 (3H, d, J = 6.59, H3-4`), 1.92-1.89 (1H, m, H-3b), 1.83 (3H, s, H3-15), 1.07 

(3H, s, H3-16), 0.72 (3H, s, H3-14);  13C NMR (125 MHz, CDCl3) δ 198.7 (s, C-8), 166.2 (s, 

C-1`), 146.2 (d, C-3`), 138.2 (s, C-9), 137.1 (d, C-10), 120.3 (d, C-2`), 79.6 (d, C-2), 73.3 (d, 

C-4), 70.1 (d, C-11), 65.5 (s, C-12), 47.5 (s, C-5), 47.5 (t, C-13), 43.7 (s, C-6), 42.1 (t, C-7), 

37.0 (t, C-3), 18.5 (q, C-16), 15.5 (q, C-4`), 15.4 (q, C-15), 5.7 (q, C-14); C19H24O5 (332.16); 

[α]24
D +22.0° (c 0.1, CH2Cl2), (lit. (Loukaci et al., 2000); [α]24

D +29.3° (c 1.59, CH2Cl2)). 

 

Trichothecolone (28) was isolated as amorphous white solid (2.3 mg). 1H NMR (500 MHz, 

(CD3)2CO); δ 6.47 (1H, dd, J = 1.46, 5.85, H-10), 4.42 (1H, dd, J = 3.29, 7.32, H-4), 3.94 

(1H, d, J = 5.85, H-11), 3.72 (1H, d, J = 5.12, H-2), 2.98 (1H, d, J = 4.03, H-13a), 2.86-2.81 

(2H, m, H-7a, H-13b), 2.52 (1H, dd, J = 7.32, 15.37, H-3a), 2.17 (1H, dd, J = 1.46, 15.37, H-

7b), 1.93-1.85 (1H, m, H-3b), 1.71 (3H, s, H3-16), 0.92 (3H, s, H3-15), 0.75 (3H, s, H3-14); 
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13C NMR (125 MHz, (CD3)2CO) δ 199.1 (s, C-8), 138.7 (d, C-10), 137.6 (s, C-9), 80.4 (d, C-

11), 72.6 (d, C-4), 70.5 (d, C-2), 66.1 (s, C-12), 49.7 (s, C-5), 46.8 (t, C-13), 44.0 (s, C-6), 

42.8 (t, C-7), 40.2 (t, C-3), 18.4 (q, C-15), 15.3 (q, C-16), 6.1 (q, C-14); C15H20O4 (264.14); 

[α]24
D +25.0° (c 0.2, CHCl3), (lit. (Loukaci et al., 2000); [α]24

D +22.5° (c 1, CHCl3)). 

 

3-O-Alkylcyclopolacid (29) was isolated as pale yellow solid (12.0 mg). 1H NMR (300 MHz, 

MeOD); δ  6.73 (1H, s, H-3), 4.0 (8H, d, J = 2.56, H3-1`, H3-2`, H2-4a), 2.26 (3H, s, H3-6Me); 
13C NMR (75.5 MHz, MeOD) δ 169.3 (s, C-1), 166.5 (s, C-7), 159.2 (s, C-5), 149.2 (s, C-3a), 

115.4 (s, C-6), 108.0 (s, C-4), 107.6 (s, C-7a), 97.0 (d, C-3), 65.3 (t, C-4a), 56.9 (q, C-1`), 

56.4 (q, C-2`), 10.3 (q, C-6Me); C12H14O6 (254.08); [α]24
D -0.4° (c 0.9, MeOH
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4.6.3 Brefeldin A – uncoupling of ganglioside biosynthesis 

Primary cultured neurons were incubated with isolated pure compounds 24-29 and their 

interference with glycosphingolipid (GSL) metabolism was studied using [14C] galactose as 

the radioactively labeled precursor.  

 

         
 

Figure 4-6-3. Effect of brefeldin A and of two tricothecenes isolated from Spicellum roseum 

crude extract on the incorporation of [14C] galactose into glycosphingolipids of primary 

cultured cerebellar neurons.  
Cells were incubated in the absence (C, control) or presence of brefeldin A (BFA, 20 µM), 8-deoxy-trichothecin 

(8-dT, 30 µM) or trichodermol (Td-ol, 30 µM). After 4 h 1µCi of [14C]galactose was added into the  medium. 

Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, and visualized as 

described in Materials and Methods. TLC plates were developed in chloroform-methanol-0.22 % aqueous CaCl2 

(60:35:8; v/v/v). The terminology of gangliosides (GQ1b, GT1b, GD1b, GD1a, GD3, GM1, GM2 and GM3) is 

according to Svenerholm (Svennerholm, 1963). GlcCer, glucosylceramide; LacCer, lactosylceramide. 

 

Brefeldin A (BFA, 26) induced the accumulation of labeled GlcCer, LacCer, GM3 and GD3 

(Figure 4-6-3) confirming previously published data (van Echten et al., 1990b; Sadeghlar et 
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al., 2000). Brefeldin A (26), a macrocyclic lactone, is a fungal metabolite originally isolated 

from Penicillium brefeldianum (Härri et al., 1963). It has been reported that BFA blocks 

protein transport from the endoplasmatic reticulum (ER) to Golgi. This causes a redistribution 

of the proximal Golgi into the ER and a block of transport from these compartments to the 

distal Golgi (Donaldson and Klausner, 1994). Since GlcCer, LacCer, GM3 and GD3 are 

synthesized in the proximal Glogi (Figure 4-6-4), BFA uncouples ganglioside biosynthesis 

beyond GM3 and GD3 and, in that way, causes the accumulation of GlcCer, LacCer, GM3 

and GD3 in cells (van Echten et al., 1990b; Sadeghlar et al., 2000).  

 

 
 

Figure 4-6-4. Scheme of glycosphingolipid biosynthesis. 
Modified from Giraudo and Maccioni (Giraudo and Maccioni, 2003). ER, endoplasmatic reticulum; Cer, 

ceramide; GlcCer, glucosylceramide; LacCer, lactosylceramide; BFA, brefeldin A. The terminology of 

gangliosides (GM3, GD3, GD2, GM2, GA2, GD1b, GM1, GA1, GT1b, GD1a, GM1b) is according to 

Svenerholm (Svennerholm, 1963). 
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4.6.4 Effect of trichothecene derivatives on glycosphingolipid metabolism 

As shown in Figure 4-6-3, cells treated with trichothecene derivatives, 8-deoxy trichothecin 

(8-dT, 24) or trichodermol (Td-ol, 25), exhibited accumulation of GlcCer whereas the 

formation of LacCer and of all other GSLs located distal of LacCer was markedly impeded. 

The bands representing more complex gangliosides, which are metabolically derived from 

GM3 and GD3, can be explained by the glycosylation of the respective endogenous 

precursors to act as acceptors for the added [14C] galactose (van Echten et al., 1990a).  

These findings led to the assumption that the two trichothecenes interfere with LacCer 

formation in neurons (see also Figure 4-6-4). 

 

The other two isolated compounds from the trichothecene family, trichothecin (27) and 

trichothecolone (28), showed the same effect as compounds 24 (8-dT) and 25 (Td-ol) (data 

not shown). Therefore, all further experiments were performed only with compounds 24 and 

25, and the obtained results were taken as equivalence for compounds 27 and 28. 

Compound 29 did not show any modification on sphingolipid pathway. 

 

The influence of 8-deoxy-trichothecin (8-dT, 24) and trichodermol (Td-ol, 25) on 

sphingolipid biosynthesis was studied in primary cultured cerebellar neurons and 

neuroblastoma cells by following the incorporation of L-[3-14C] serine into cellular 

sphingolipids. In cells incubated for 24 hours with 8-dT (30 µM) and Td-ol (30 µM) a 3fold 

increased content of de novo formed GlcCer was detected along with a 5fold reduced amount 

of LacCer as well as of all downstream gangliosides, when compared with control cells 

(Figure 4-6-5). These results indicate that 8-dT as well as Td-ol blocked the formation of 

LacCer thereby causing the accumulation of GlcCer. As shown in Figure 4-6-5, formation of 

sphingomyelin and of long chain sphingoid bases was not affected. Note that in the presence 

of the applied trichothecene concentration for 24 hours cell viability always amounted about 

70 % of untreated controls. 
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Figure 4-6-5. Effect of 8-deoxy-trichothecin and trichodermol on [14C] serine incorporation 

into sphingolipids of primary cultured cerebellar neurons (A) and neuroblastoma B104 cells 

(B).  
Cells were incubated in the absence (C, control) or presence of 30 µM 8-deoxy-trichothecin (8-dT) or 

trichodermol (Td-ol), as indicated. After 4 h 1µCi of [14C]serine was added to the medium. Twenty hours later 

cells were harvested and lipids were extracted, isolated, separated by TLC, visualized by autoradiography and 

quantitatively evaluated as described under Materials and Methods. TLC plates were developed in chloroform-

methanol-0.22 % aqueous CaCl2 (60:35:8; v/v/v). In the two histograms the amount of radioactivity determined 

in the respective lipid fraction is expressed relative to total lipid associated radioactivity. Data are from one 

representative out of three independent experiments that gave similar results. Note that the content of de novo 
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formed sphingomyelin (SM) and also of free long chain bases (So/Sa) is not affected by tricothecenes in both 

cell types. The terminology of gangliosides (GQ1b, GT1b, GD1b, GD1a, GD3, GM1 and GM3) is according to 

Svenerholm (Svennerholm, 1963). GlcCer, glucosylceramide; LacCer, lactosylceramide; Sa, sphinganine; SM, 

sphingomyelin; So, sphingosine; *, unidentified bands.  

 

4.6.4.1 Influence of trichothecenes on lactosylceramide synthase in neural cells 

Reduction of lactosylceramide biosynthesis by tricothecenes could be due either to an 

inhibitory effect of these compounds on the enzyme responsible for LacCer formation by 

catalyzing the addition of galactose to GlcCer or to an interference of tricothecenes with the 

translocation of GlcCer from the cytosolic face where it is formed to the luminal face of the 

Golgi membrane where it is used for LacCer formation. 

 

 
Figure 4-6-6. Effect of 8-deoxy-trichothecin and trichodermol on LacCer synthase of neural 

cells.  
Cells were cultivated in the presence of 30 µM of 8-deoxy-trichothecin (8-dT) or trichodermol (Td-ol), 

respectively. After 24 h cells were harvested and LacCer synthase activity was assessed in cell homogenate as 

described in Materials and Methods. Blanks (B) with boiled cell homogenate were run in parallel.  

 

To examine both possibilities, we first analyzed whether trichothecenes act as inhibitors of 

LacCer synthase (galactosyltransferase I). Cells were preincubated prior to determination of 
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LacCer synthase activity for 24 h with 30 µM of trichothecene derivatives. The results shown 

in Figure 4-6-6 reveal a decrease of LacCer synthase activity by about 90% in both cell types 

treated with trichodermol or 8-deoxy-trichothecin, when compared to control cells. This effect 

was concentration dependent (Figure 4-6-7) with half maximal inhibition at 0.5 µM for 8-

deoxy-trichothecin and 1µM for trichodermol. These findings demonstrate that 8-dT (24) and 

Td-ol (25) reduce catalytic activity of LacCer synthase in cultured cells. 

However, in vitro the same concentrations of trichothecenes directly added to the assay 

mixture, exhibited no effect on LacCer synthase activity (data not shown). These observations 

indicate that cell integrity plays a crucial role for the effect of both, trichodermol and 8-

deoxy-trichothecin on LacCer synthase activity. 

 

 
Figure 4-6-7. Concentration dependence of the effect of 8-deoxy-trichothecin and of 

trichodermol on the incorporation of [14C] serine into sphingolipids of neuroblastoma B104 

cells.  
Cells were incubated with the indicated concentrations of 8-deoxy-trichothecin (8-dT) and of trichodermol (Td-

ol). After 4 h 1µCi of [14C] serine was added into the cultured medium. After 20 h cells were harvested and 

lipids were extracted, isolated, separated by TLC, and detected as described under Materials and Methods. TLC 
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plates were developed in chloroform-methanol-0.22 % aqueous CaCl2 (60:35:8; v/v/v). The results are presented 

as percentages of control and are means from three independent experiments. 

 

We then analyzed whether the compounds affect transcription of LacCer synthase. As 

illustrated in Figure 4-6-8A in neuroblastoma cells treated with 8-deoxy-trichothecin and 

trichodermol, respectively, transcription of LacCer synthase mRNA was markedly decreased 

amounting only about 20% of untreated controls. By contrast, in primary cultured neurons 

(Figure 4-6-8B) the level of mRNA was the same in control cells and in cells treated with 

trichothecenes. Collectively, these findings show that the trichothecene derivatives, 8-dT (24) 

and Td-ol (25), isolated from Spicellum roseum decrease LacCer synthase activity in both cell 

types, albeit by different mechanisms: in neuroblastoma cells they interfere with enzyme 

transcription, while in cerebellar neurons they act on a post-transcriptional level. 

 

 
 

Figure 4-6-8. Effect of 8-deoxy-trichothecin and of trichodermol on mRNA levels of LacCer 

synthase in neuroblastoma B104 cells (A) and in primary cultured neurons (B).  
Cells were incubated for 24 h in the absence (control) or presence of 8-deoxy-trichothecin (Td-ol, 30 µM) or of 

trichodermol (8-dT, 30 µM). Levels of LacCer synthase mRNA were determined by RT-PCR as described in 

Materials and Methods. Shown is one representative of three different experiments, each performed with double 

determinations. 

  

4.6.4.2 Influence of trichothecenes on galactosyltransferase II 

Galactosyltransferase II catalyses the transfer of galactose from UDP-galactose to 

gangliosides GA2, GM2 and GD2 generating the formation of GA1, GM1 and GD1b, 

respectively (Figure 4-6-4). Galactosyltransferase I (LacCer synthase), whose activity was 

inhibited by trichothecenes (Chapter 4.6.4.1), shows 96 % identity with galactosyltransferase 

II in terms of amino acid sequence (Nomura et al., 1998). 

To test if compounds 24 and 25 also inhibit galactosyltransferase II, neuroblastoma cells were 

treated with 8-dT (24, 30 µM) and Td-ol (25, 30 µM) and labelled either with [14C8] 
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lactosylceramide or [14C8] GM3. As shown in Figure 4-6-9, both compounds had no influence 

on a-series gangliosides formation (GM1 and GD1a). However, levels of b-series 

gangliosides (GD1b, GT1b, GQ1b) in cells treated with trichothecene derivatives were visibly 

reduced. These observations suggest that trichothecenes have an additional effect on GSL 

expression which includes reduced formation of acidic gangliosides. 

 

 
Figure 4-6-9. Effect of 8-deoxy-trichothecin (8-dT) and trichodermol (Td-ol) on [14C8] 

LacCer (A) and [14C8] GM3 (B) incorporation into glycosphingolipids of neuroblastoma B104 

cells. 
Cells were incubated in the absence (C, control) or presence of 30 µM 8-deoxy-trichothecin (8-dT) or 

trichodermol (Td-ol), as indicated. After 4 h 1µCi of [14C8]LacCer or [14C8]GM3 were added to the medium. 

Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, visualized by 

autoradiography and quantitatively evaluated as described under Materials and Methods. TLC plates were 

developed in chloroform-methanol-0.22 % aqueous CaCl2 (60:35:8; v/v/v). Data are from one representative out 

of three independent experiments that gave similar results. The terminology of gangliosides (GQ1b, GT1b, 

GD1b, GD1a, GD3, GM1, GM2 and GM3) is according to Svenerholm (Svennerholm, 1963). LacCer, 

lactosylceramide. 
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4.6.4.3 Influence of trichothecenes on the translocation of glucosylceramide 

Next, we examined whether trichothecenes also affect GlcCer translocation from the cytosolic 

side, where it is formed to the luminal side where it is galactosylated to yield LacCer (Figure 

4-6-4).  

 

First, we analyzed the activity of Pgp (also known as ABCB1) and MRP1 (also known as 

ABCC1), two potential translocators of GlcCer, towards known fluorescent substrates. In both 

cell types, the ability of cyclosporin A (CsA) (10µM), an inhibitor of Pgp activity as well as 

of MK571 (20µM), an inhibitor of MRP1 activity was tested using rhodamine-123 (R-123) 

and/or 5-carboxyfluorescein diacetate (CFDA) as fluorescent substrates for Pgp and MRP1, 

respectively. In both cell types CsA showed no effect on efflux of R-123 indicating that Pgp 

was not active towards this substrate in neural cells. On the other hand MK571 caused 

significant accumulation of CFDA (Figure 4-6-10) in neuroblastoma cells but not in 

cerebellar neurons, pointing to an activity of MRP1 towards the used substrate only in 

neuroblastoma cells.  

 

Figure 4-6-10. Effect of 8-deoxy-trichothecin (8-dT) and of trichodermol (Td-ol) on MRP1 

transport activity in neuroblastoma B104.  
Transport activity was assessed over 2 h by CFDA accumulation assay as described in Materials and Methods. 

MK571 was used as a positive control. Results are given relative to untreated controls and represent means from 

three independent experiments.  
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Since MRP1 was only demonstrated to function as a translocator for short chain lipid analogs 

across cellular membranes (Raggers et al., 1999) we tested whether MRP1 also acts as a 

flippase for endogenous long-chain glucosylceramide across the Golgi membrane. Therefore, 

neuroblastoma B104 cells were incubated with different concentrations of MK571 and the 

incorporation of L-[3-14C] serine into cellular GSLs was followed. As illustrated in Figure 4-

6-11, levels of labeled GlcCer in MK571 treated cells were 3-4fold higher than in control 

cells. However, the amounts of labeled LacCer and other GSLs were comparable with those 

of control cells (not shown), indicating that additional mechanisms exist that obviously allow 

translocation of sufficient amounts of GlcCer for de novo GSL biosynthesis. In primary 

cultured neurons, however, no changes either in GlcCer or in downstream GSL biosynthetic 

labelling were observed in the presence of MK571. These observations suggested MRP1 to 

function as a GlcCer translocase across Golgi membranes at most in neurobalstoma B104 

cells. 

 
Figure 4-6-11. Effect of MK571 on [14C] serine incorporation into sphingolipids of 

neuroblastoma B104 cells.  
Cells were incubated in the absence (C, control) or presence of the indicated concentrations of MK571. After 4 h 

1µCi of [14C]serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, 

isolated, separated by TLC, and detected as described under Materials and Methods. TLC plates were developed 

in chloroform-methanol-0.22 % aqueous CaCl2 (60:35:8; v/v/v). GlcCer bands were scraped and their 
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radioactivity was quantified in a liquid scintillation counter. The results are presented as percentages of control 

and are means from three independent experiments. 

 

We therefore tested the effect of 8-dT and Td-ol on CFDA accumulation in neuroblastoma 

cells. As shown in Figure 4-6-10, neither 8-dT (24) nor Td-ol (25) altered CFDA 

accumulation. It thus appears that 8-deoxy-trichothecin and trichodermol do not affect the 

function of ABC transporters. 

 

4.6.4.4 Influence of trichothecenes on ceramide level in neural cells 

Trichothecenes are well known apoptotic compounds (Yang et al., 2000; Pestka and 

Smolinski, 2005). Ceramide, a biosynthetic precursor and also a catabolic product of GlcCer, 

has been shown to be involved in many forms of apoptosis (Pettus et al., 2002; Gulbins, 

2003). Therefore, we investigated the influence of compounds 24 and 25 on the formation of 

ceramide. 

 

The incorporation of L-[3-14C] serine into ceramide was studied in primary cultured neurons 

and neuroblastoma cells after incubation of the cells with compounds 24 (8-dT, 30 µM) or 25 

(Td-ol, 30 µM) for 24 h. In neuroblastoma cells trichothecenes significantly elevated level of 

ceramide (3-4fold), while in cerebellar neurons there was no difference between 

trichothecene-treated and control cells (Figure 4-6-12). 
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Figure 4-6-12. Effect of 8-deoxy-trichothecin (8-dT, 24) and of trichodermol (Td-ol, 25) on 

ceramide level in neuroblastoma cells and primary cultured neurons. 
Cells were incubated in the absence (C, control) or presence of 8-dT (30 µM) or Td-ol (30 µM). After 4 h 1µCi 

of [14C]serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, 

isolated, separated by TLC, and detected as described under Materials and Methods. TLC plates were developed 

in chloroform-methanol-acetic acid (190:9:1; v/v/v). Ceramide bands were scraped and their radioactivity was 

quantified in a liquid scintillation counter. The results are presented as percentages of control and are means 

from three independent experiments. 

 

These findings demonstrate, once more, that trichothecenes exhibit different mechanism of 

action in cerebellar neurons and neuroblastoma cells. 
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5 Discussion 
 

The focus of this study was the investigation of marine-derived fungi aiming to find natural 

products with potent biological activity and/or novel chemical structures. Fungi are an 

extremely valuable source of novel natural products with a wide array of biological activities 

(König and Wright, 1996; Blunt et al., 2005). Several fungal metabolites, e.g. fumagillin, 

illudin S (McMorris, 1999; Butler, 2005; Furness et al., 2005; Senzer et al., 2005), are 

undergoing clinical trials as antitumour compounds and inspired the current study. Also, 

fungal metabolites are reported to interfere with sphingolipids (SLs), compounds of 

eukaryotic cells that are connected with different signaling pathways including regulation of 

cell growth and death (Merrill et al., 1993a; Mandala et al., 1994). The isolated fungal 

metabolites and their biological activity are discussed below according to the results presented 

in the previous chapter.  

 

5.1 Selection of fungal strains 

 

Search for new anticancer drugs is today of utmost importance for therapy. Natural products 

are an important source of anticancer drugs (Simmons et al., 2005; Altmann and Gertsch, 

2007). Therefore, fungal strains from the culture collection of the Institute for Pharmaceutical 

Biology (Bonn) were screened in a panel of six human tumor cell lines in cooperation with 

Oncotest GmbH, Institute for Experimental Oncology (Freiburg). The results of the present 

study are based on cytotoxic screening of around 80 fungal strains. Due to the significant 

advances in cancer biology much of the research is focused on cancer-specific mechanisms 

and molecular targets (McLaughlin et al., 2003). Sphingolipids, mediators of apoptosis and 

cell growth, were recognized in the last 20 years as molecules with an important role in cancer 

pathogenesis and treatment (Ogretmen and Hannun, 2004; Radin, 2004; Modrak et al., 2006). 

Hence, the extracts of fungal strains with cytotoxic activity were screened for their 

interference with sphingolipid metabolism. In preliminary screening studies out of 25 

cytotoxic extracts seven showed alterations in expression of sphingolipids (Figure 4-1-2, 

Chapter 4-1-2) and were, thus, chosen for mass cultivation. Though, extracts of the strains 

Emericella nidulans, Arthrinium sacchari and Aspergillus terreus did not interfere with 

sphingolipids, they were selected for further studies due to interesting NMR (low field 1H 

NMR resonances) and MS data (m/z 900-1100).  
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After large scale cultivation and extraction some of the fungal strains revealed a different 

profile of biological activity as compared with that of the screening extracts. Extracts of the 

strains Microsphaeropsis sp. and Acremonium sclerotigenum (strain number 96 and 738, 

respectively) lost their cytotoxic effects together with the effect on SLs. The activity on SL 

metabolism was lost in extracts from the strains of Fusarium dimerum and Paecilomyces 

lilacinus.  

The loss of biological activity is one of the problems encountered when screening for 

biological compounds in microorganisms. It may be explained by physiological changes of 

fungal strains which loose, due to many passages, the ability to produce their active 

metabolites.  

 

5.2 Isolated natural products 

 

A major problem within natural product isolation is rediscovery of already known 

compounds. A careful selection of organisms based on taxonomy may not help, especially 

when dealing with fungi. Certain fungal secondary metabolites are often found in more than 

one species and some are typical for several genera. Also, the output of LC-MS spectra of 

extracts or VLC fractions is usually a list of possible candidates, and it is hard to determine 

whether the peaks belong to known compounds or not, especially when molecular weights are 

smaller than 500 Da. Thus, the selection of strains in the current project was based on 

biological activity of extracts and VLC fractions. 

 

It has to be stated, however, that most of the isolated compounds responsible for the 

bioactivity of the extracts were known.  

The cytotoxic effect of the Emericella nidulans extract resulted from the toxicity of 

sterigmatocystin (9) and averufin (10), biosynthetic precursors of aflatoxins (Yabe and 

Nakajima, 2004). Aflatoxins are metabolites of different species of Aspergillus that induce 

DNA damage and immune suppression, and are associated with toxicity and carcinogenicity 

in animals and humans (Bennett and Klich, 2003; Preston and Williams, 2005). 

Bioassay-guided isolation of cytotoxic compounds from an Arthrinium sacchari extract 

revealed the presence of cytochalasins (14, 15), a group of toxic metabolites known from 

different genera of fungi (Liu, 2005) which show a wide range of biological activities. Many 

cytochalasins bind to actin filaments and block polymerization and elongation of actin which 

leads to the inhibition of cell division and apoptotic responses (Cooper, 1987; Rubtsova et al., 



Discussion 108

1998). They have also been reported to inhibit HIV-1 protease (Lingham et al., 1992) and to 

have antibiotic and antitumor activities (Carter, 1967; Mookerjee et al., 1981).  

Trichothecenes (24, 25, 27 and 28) were identified as the major compounds in a strain of 

Spicellum roseum. They are well described in the literature as cytotoxic compounds that bind 

to eukaryotic ribosomes and inhibit translation (Pestka and Smolinski, 2005). 

The bioassay-guided isolation is not always a suitable approach in the isolation of new natural 

products. Mostly, the activity of extracts or VLC fractions comes from the presence of known 

compounds. The reason for that is probably due to the general validity of the assays used. 

Preliminary antitumor assays consider only the percentage of dead cells and, by that, are not 

suitable for detailed analysis and selection. 

 

New fungal metabolites (1, 2, 11, 12) elucidated in this study were isolated in small amounts 

(1.5 – 3.0 mg) and usually had no significant biological activity. These, compounds present as 

“traces” are biosynthetic products of specific metabolic pathways of a certain fungus. 

Compounds 1 and 2 belong to a family of arugosins which are of interest with regard to the 

biosynthesis of several structural types of fungal polyketides, e.g. anthrones, anthraquinones, 

benzophenones and xanthones (Chexal et al., 1974; Holker et al., 1974; Chexal et al., 1975). 

Compounds 11 and 12 are cyclodepsipeptides, analogs of beauvericin and enniatins which 

were reported to have cytotoxic and antibiotic activity (Dobler et al., 1969; Calo et al., 2004). 

Thus, they clearly demonstrate the chemical diversity of fungal-derived natural products. 

 

5.3 Interference of fungal metabolites with sphingolipid metabolism 

 

In the current study the influence of cytotoxic fungal extracts on sphingolipid metabolic 

pathway has been investigated. Sphingolipid metabolism bears potential valuable targets for 

cancer therapy since sphingolipids are involved in important cellular functions (Fox et al., 

2006; Ogretmen, 2006). Isolation of sphingolipids, their purification and separation in 

individual species is well described by van Echten-Deckert (van Echten-Deckert, 2000). Thin 

layer chromatography has proven to be a valuable method for metabolic studies of lipids. In 

this study the influence of fungal metabolites on SL biosynthesis was examined in primary 

cultured neurons and neuroblastoma cells by following the incorporation of L-[3-14C] serine 

into cellular sphingolipids. For examination of specific glycosphingolipids other labeled 

precursors were also used. Neurons are enriched in complex gangliosides which enables their 

detection (van Echten-Deckert and Herget, 2006), whereas neuroblastoma cell line originates 
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in central nervous system (Schubert et al., 1974). Interference of fungal toxins trichothecenes 

with sphingolipids is discussed below. 

 

5.3.1 Trichothecenes – alterations of glycosphingolipid profiles 

In a screening approach we investigated the effect of more than 20 different crude extracts 

from fungal species of the genera Fusarium, Acremonium, Trichoderma, Microsphaeropsis, 

Chaetomium and Arthrinium on sphingolipid metabolism in neural cells. Most interesting was 

a crude extract of the fungal strain Spicellum roseum. When added to the culture medium it 

displayed a similar effect with that previously described in the presence of brefeldin A (BFA) 

in primary cultured neurons (van Echten et al., 1990b; Sadeghlar et al., 2000) except that no 

accumulation but rather a strongly reduced formation of de novo biosynthesized LacCer was 

observed.  Further fractionation of the crude extract indeed revealed BFA as one of the 

components produced by Spicellum roseum. The effect of BFA known to induce an 

accumulation of newly formed GlcCer, LacCer, GM3 and GD3 along with a reduction of the 

formation of complex gangliosides and also of sphingomyelin due to the redistribution of the 

proximal Golgi into the endoplasmatic reticulum was obviously accompanied by an additional 

effect regarding LacCer formation. Indeed two additional compounds were identified which 

belong to the trichothecene family.  

Trichodermol (Td-ol, 25) was decribed as an isolate from different fungal species (Grove, 

1988; Krohn et al., 2003), while its isocrotonyl ester 8-deoxy-trichothecin (8-dT, 24) was 

identified so far only in Spicellum roseum (Plattner et al., 1988; Tanaka et al., 2001). The 

trichothecenes are a group of about 180 diverse sesquiterpenoid metabolites produced by 

various fungal species of the genera Fusarium, Trichothecium, Cephalosporum and 

Stachybotrys (Grove, 1988; Grove, 2000). Consumption of food contaminated with these 

mycotoxins causes severe pathological effects in animals and humans (Lautraite et al., 1997; 

Li et al., 1999; Pestka and Smolinski, 2005). Trichothecenes are cytotoxic compounds that 

have multiple inhibitory effects on eukaryotic cells (summarized in review (Rocha et al., 

2005)) like inhibition of protein, DNA and RNA synthesis (Ji et al., 1994). At the molecular 

level, trichothecenes inhibit the peptidyltransferase reaction by binding to the 60S ribosomal 

subunit, suggesting that one of the cytotoxic mechanisms is translational inhibition (Ueno, 

1984). Later, it was shown that trichothecenes activate mitogen-activated protein kinases 

(MAPKs) which induce the production of proinflammatory cytokines, implying the immune 

system as the most important target of trichothecenes (Shifrin and Anderson, 1999; Zhou et 

al., 2003; Pestka et al., 2004). Despite a vast number of studies on various effects of this 
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mycotoxin family, results described in this study are the first report on an interference of 

tricothecenes with GSL metabolism.  

 

The analysis of the effects of trichothecenes on sphingolipid metabolism showed that both 

compounds blocked de novo formation of LacCer (lactosylceramide) and of its downstream 

derivatives (Figure 4-6-4, Chapter 4-6), leading simultaneously to an accumulation of GlcCer 

in neural cells. A similar uncoupling of GSL biosynthesis at the level of LacCer synthase was 

described in embryonic chicken neurons incubated with epoxy-glucosylceramide, a synthetic 

analog of GlcCer (Zacharias et al., 1994). Like shown for this truncated GlcCer-analog, cell 

integrity was also required for the inhibitory action of trichothecenes in the two neural cell 

types investigated in the present study. Thus, a reduction of LacCer synthase activity was 

observed only after pretreatment of neural cells with trichothecenes but not when directly 

added to the enzyme assay in vitro. This of course raised the question whether not the enzyme 

itself but a flippase responsible for the translocation of the substrate from the cytosolic face, 

where it is formed, to the luminal face, where it is galactosylated, might be the in vivo target 

of trichothecenes action. In neuroblastoma B104 cells we could clearly show that this was not 

the case. However, in these cells both trichothecenes clearly decreased transcription of 

LacCer synthase, which explains the importance of cell integrity for the inhibitory effect in 

this cell type. On the other hand in primary cultured cerebellar neurons we could detect 

neither a protein responsible for GlcCer translocation nor an effect of trichothecenes on 

transcription of LacCer synthase. Obviously in terminally differentiated post-mitotic neurons 

different metabolic requirements imply different regulatory mechanisms when compared with 

undifferentiated rapidly dividing neuroblastoma cells. Terminally differentiated neurons 

exhibit a characteristic ganglioside composition, which is known to change upon cell 

transformation (van Echten-Deckert and Herget, 2006) (see also Figure 4-6-5, Chapter 4-6). 

Although the exact function of certain complex ganglioside species is not known yet, the 

development of mouse models deficient in gangliosides clearly document the essential 

function of these complex membrane components for brain development and function (Proia, 

2004; Yamashita et al., 2005). 

It is thus not surprising that in rapidly dividing neuroblastoma cells trichothecenes act on the 

transcriptional level whereas in terminally differentiated post-mitotic neurons a fine tuning on 

post-transcriptional and/or post-translational level appears to be decisive for the activity of 

LacCer synthase, which yields the common precursor for all cellular complex GSLs. Note 

that LacCer synthase has been purified and cloned from rat brain about one decade ago 
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(Nomura et al., 1998). Different mechanisms of action in different cell types are also 

demonstrated in ceramide level of trichothecene treated cells. Both trichothecene derivatives 

increased cellular level of ceramide in neuroblastoma cells but not in cerebellar neurons. Yet, 

these effects require detailed investigations in future studies. 

Collectively these data document a new effect of two trichothecene derivatives in neural cells. 

Trichodermol (25) and 8-deoxy-trichothecin (24) considerably interfere with the activity of 

LacCer synthase albeit by different cell type specific mechanisms. As a consequence GSL 

biosynthesis is uncoupled at the level of LacCer accompanied by the accumulation of GlcCer. 

 

As already mentioned, one of the most important effects of trichothecenes is the modulation 

of the immune system by inducement of the production of proinflammatory cytokines and 

chemokines (Pestka et al., 2004). It is known that sphingolipids can act as regulators and 

mediators of inflammatory responses (El Alwani et al., 2006). Memon et al. (Memon et al., 

2001) reported that inflammation caused by bacterial endotoxin lipopolysaccharide increased 

ceramide and glucosylceramide content in Syrian hamsters. These results suggest a possible 

role of GlcCer in inflammation and, by that, a possible relation between the inflammatory 

effects of trichothecenes on one side and trichothecene-induced GlcCer accumulation on the 

other side. 

Moreover, it was demonstrated (Yang et al., 2000; Zhou et al., 2005) that trichothecenes, 

although strong apoptotic compounds, initiate competing apoptotic and survival pathways. 

Since GlcCer was reported to have growth stimulatory and anti-apoptotic effects (Datta and 

Radin, 1988; Marsh et al., 1995; Marchell et al., 1998), in contrast to its metabolic precursor 

ceramide, there is a possibility that GlcCer accumulation induced by trichothecenes to act as a 

link between trichothecenes and survival pathways. 

 

However, further studies will clarify the fate and physiological consequence of accumulated 

GlcCer in trichothecene-treated cells and also the correlation of known effects of 

trichothecenes with those presented here. 

 

5.4 General discussion 

 

As already discussed above, a general bioassay-guided isolation (cytotoxicity and 

antimicrobial assays) is not always a favorable for the isolation of new compounds with 

potent biological activity. However, when a specific cellular function is recognized as a target 
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for potential therapeutics and used for screening, there are more chances for the isolation of 

compounds that serve as tools for biological research and/or are leads for clinical medicines. 

Various sphingolipid metabolites appear to modulate various cellular events including 

proliferation, differentiation, and apoptosis. These sphingolipid-regulated processes are 

crucial in cancer development and progression, and influence the efficacy of anti-cancer 

therapeutics. In addition, defects of enzymes catalyzing SL degradation are responsible for 

various genetic, so called sphingolipid storage diseases.  

Till today, only few compounds of natural origin and several synthetic compounds are known 

to interfere with sphingolipid metabolism. Considering plenty of cellular functions regulated 

by SLs and their importance, sphingolipid metabolism represents a wealthy source for 

pharmacological targets. 
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6 Summary 
 

Development of new drugs, especially in the area of oncological and infectious diseases, 

represents today one of the most important research fields. An analysis of the number of 

chemotherapeutic agents and their sources shows that over 60 % of approved drugs are 

derived from natural compounds. The marine environment is a tremendous source of natural 

products. Moreover, many of the new compounds isolated from marine micro- and 

macroorganisms showed prominent biological effects, mostly antibiotic and cytotoxic 

activities. Drug development is now turning toward potentially more selective ways (e.g. 

inducement of certain signaling molecules) in disease treatments, especially when concerning 

cancer. Sphingolipids (SLs) are ubiquitous constituents of eukaryotic cellular membranes that 

are involved in cell growth, proliferation, differentiation and apoptosis. These sphingolipid-

regulated processes are crucial in cancer development and progression, and influence efficacy 

of anti-cancer therapeutics. Pharmacological or molecular manipulations of any of the 

enzymes involved in SL metabolism have been proposed as new strategies in the treatment of 

cancer or diseases caused by disrupted sphingolipid balance. The toxic effects of some fungal 

metabolites were related to their ability to interfere with SL metabolism. The aim of this study 

was the investigation of secondary metabolites produced by marine-derived fungi with 

cytotoxic properties and the isolation of new compounds with potent biological activity, 

preferably with the potential to influence sphingolipid metabolism. 

 

Extracts of seven fungal strains, including five algal-derived and two sponge-derived strains, 

were chemically investigated. This investigation resulted in the isolation and structure 

elucidation of 29 pure compounds. Four compounds, arugosin G and H, spicellamide A and 

B, proved to be new. Arugosins G and H, together with arugosins A and B, were isolated 

from algicolous fungus Emericella nidulans var. acristata. They are benzophenone 

derivatives, biosynthetically related to xanthones, which showed moderate antitumor activity 

toward individual tumor cell lines. Cyclohexadepsipeptides spicellamide A and B, isolated 

from sponge-derived fungus Spicellum roseum, exhibited an IC50 value of 30 µg mL-1 and 6.2 

µg mL-1, respectively, in neuroblastoma cells.  

Bioassay-guided isolation of cytotoxic compounds revealed the presence of cytochalasins 

from an Arthrinium sacchari extract, of aflatoxins from an Emericella nidulans var. acristata 

extract and of trichothecenes from a Spicellum roseum extract.  
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Trichothecenes are cytotoxic compounds that have several inhibitory effects on eukaryotic 

cells. Tests on sphingolipid metabolism exhibited alterations in the expression of 

glycosphingolipids by two compounds from trichothecene family, 8-deoxy-trichothecin and 

trichodermol. In cerebellar neurons and neuroblastoma cells both compounds inhibit 

lactosylceramide synthase activity and induce an accumulation of glucosylceramide (Figure 

6-1). These data describe a new effect of trichothecenes. However, further studies have to 

clarify the fate and physiological consequence of accumulated glucosylceramide and also its 

correlations with known effects of trichothecenes.  

 

O
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Trichodermol             R =  H  
 

Figure 6-1. Structures of trichothecene derivatives and their interference with sphingolipids. 
Trichothecenes inhibit the activity of lactosylceramide (LacCer) synthase which leads to the accumulation of 

glucosylceramide level and reduction of lactosylceramide level in the cells. 

 

Fungal metabolites are recognized as a valuable source of new and biologically active 

metabolites. Since sphingolipid metabolites modulate various cellular events, they are a 

wealthy source of pharmacological targets. Results obtained in this study demonstrate that 

targeting specific cellular pathways, e. g. sphingolipid metabolism, in a combination with 

additional biological assays, e. g. cytotoxic tests, represents good strategy in detection of new 

chemical structures and/or compounds with desirable biological effects. 
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8 Appendix 
 

Assays were performed as described in the Materials and Methods chapter. 
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8.1 Cytotoxicity of extracts and VLC fractions 

 

IC50 IC70

Fungal strain König Oncotest [µg/ml] [µg/ml]
sel.1)/  
total

% select. rating2)

018MYA-8 MNEB127F 8,511 14,717 0/6 0% 6/6 100% 0/6 0% -
Fusarium 018MYA MNEB119F 9,404 15,817 0/6 0% 6/6 100% 0/6 0% -
dimerum 018MYA-9 MNEB128F 9,778 16,050 0/6 0% 6/6 100% 0/6 0% -
(18 MYA) 018MYA-1 MNEB120F 10,141 16,915 0/6 0% 6/6 100% 0/6 0% -

018MYA-7 MNEB126F 10,127 17,626 0/6 0% 6/6 100% 0/6 0% -
018MYA-5 MNEB124F 14,091 22,433 0/6 0% 5/6 83% 0/6 0% -
018MYA-6 MNEB125F 21,048 29,064 0/6 0% 3/6 50% 0/6 0% -
018MYA-4 MNEB123F 21,751 39,031 0/6 0% 2/6 33% 0/6 0% -
018MYA-11 MNEB130F 27,744 44,033 0/6 0% 0/6 0% 0/6 0% -
018MYA-10 MNEB129F 28,892 59,052 0/6 0% 0/6 0% 0/6 0% -
018MYA-2 MNEB121F >30 >30 0/6 0% 0/6 0% 0/6 0% -
018MYA-3 MNEB122F <30 >30 0/6 0% 0/6 0% 0/6 0% -

Arthrinium 727/3 MNEB003 3,302 5,753 3/6 50% 6/6 100%

sacchari 727 BMS MNEB012 4,751 10,288 2/6 33% 5/6 83%

(727 BMS) 727/4 MNEB004 23,213 >30 0/6 0% 2/6 33%

727/1 MNEB001 >30 >30 0/6 0% 0/6 0%

727/10 MNEB010 >30 >30 0/6 0% 0/6 0%

727/2 MNEB002 28,243 >30 0/6 0% 0/6 0%

code active/total* at Tumor selectivity

3 µg/ml 30 µg/ml

 



 

IC50 IC70

Fungal strain König Oncotest [µg/ml] [µg/ml]
sel.1)/  
total % select. rating2)

727/5 MNEB005 >30 >30 0/6 0% 0/6 0%

727/6 MNEB006 >30 >30 0/6 0% 0/6 0%

727/7 MNEB007 >30 >30 0/6 0% 0/6 0%

727/8 MNEB008 >30 >30 0/6 0% 0/6 0%

727/9 MNEB009 >30 >30 0/6 0% 0/6 0%

727-11 MNEB011 >30 >30 0/6 0% 0/6 0%

subfractionation 727/3-5 MNEB053F 0,172 2,435 3/6 50% 5/6 83%

of fraction 3 727/3-6 MNEB054F 0,507 1,776 3/6 50% 4/6 66%

727/3-4 MNEB052F 0,883 8,607 3/6 50% 3/6 50%

727/3-7 MNEB055F 5,353 13,094 1/6 17% 5/6 83%

727/3-1 MNEB049F >30 >30 0/6 0% 0/6 0%

727/3-2 MNEB050F >30 >30 0/6 0% 0/6 0%

727/3-3 MNEB051F >30 >30 0/6 0% 0/6 0%

727/3-8 MNEB056F >30 >30 0/6 0% 0/6 0%

727/3-9 MNEB057F >30 >30 0/6 0% 0/6 0%

727/3-10 MNEB058F >30 >30 0/6 0% 0/6 0%

code active/total* at Tumor selectivity

3 µg/ml 30 µg/ml

 
 

 

 

 



 

IC50 IC70

Fungal strain König Oncotest [µg/ml] [µg/ml]
sel.1)/  
total

% select. rating2)

Fusarium 588MYA MNEB177F 6,459 15,082 0/6 0% 5/6 83% 1/6 17% ++

oxysporum 588-4 MNEB181F 2,385 5,123 2/6 33% 6/6 100% 0/6 0% -

(588 MYA) 588-3 MNEB180F 2,351 5,526 2/6 33% 6/6 100% 0/6 0% -

588-5 MNEB182F 9,391 17,784 0/6 0% 6/6 100% 0/6 0% -

588-7 MNEB184F 11,648 22,016 0/6 0% 4/6 67% 0/6 0% -

588-6 MNEB183F 14,142 25,915 0/6 0% 5/6 83% 0/6 0% -

588-8 MNEB185F 17,807 30,691 0/6 0% 3/6 50% 0/6 0% -

588-1 MNEB178F >30 >30 0/6 0% 0/6 0% 0/6 0% -

588-2 MNEB179F 70,558 >30 0/6 0% 0/6 0% 0/6 0% -

Paecilomyces 193BMS-8 MNEB104F 0,012 2,589 2/6 33% 3/6 50% 2/6 33% ++

lilacinus 193BMS-10 MNEB106F 0,038 4,060 2/6 33% 2/6 33% 2/6 33% ++

(193 BMS) 193BMS-7 MNEB103F 0,928 4,716 1/6 17% 4/6 67% 2/6 33% ++

193BMS MNEB096F 0,091 5,448 2/6 33% 5/6 83% 2/6 33% ++

193BMS-9 MNEB105F 0,275 3,873 1/6 17% 3/6 50% 1/6 17% +

193BMS-4 MNEB100F 1,611 4,372 3/6 50% 6/6 100% 0/6 0% -

193BMS-5 MNEB101F 1,659 5,075 1/6 17% 6/6 100% 0/6 0% -

193BMS-6 MNEB102F 21,830 >30 0/6 0% 0/6 0% 0/6 0% -

193BMS-3 MNEB099F >30 >30 0/6 0% 0/6 0% 0/6 0% -

code active/total* at Tumor selectivity

3 µg/ml 30 µg/ml

 
 

 



 

IC50 IC70

Fungal strain König Oncotest [µg/ml] [µg/ml]
sel.1)/  
total

% select. rating2)

193BMS-1 MNEB097F >30 >30 0/6 0% 0/6 0% 0/6 0% -

193BMS-2 MNEB098F >30 >30 0/6 0% 0/6 0% 0/6 0% -

Acremonium 738BMS-6 MNEB090F 0,331 0,698 6/6 100% 6/6 100% 1/6 17% +

sclerotigenum 738BMS-5 MNEB089F 5,311 9,960 1/6 17% 6/6 100% 1/6 17% +

(738 BMS) 738BMS-7 MNEB091F 0,692 1,340 6/6 100% 6/6 100% 0/6 0% -

738BMS-8 MNEB092F 14,036 22,158 0/6 0% 5/6 83% 0/6 0% -

738BMS MNEB084F 13,065 22,917 0/6 0% 4/6 67% 0/6 0% -

738CZ MNEB083F 20,399 31,010 0/6 0% 2/6 33% 0/6 0% -

738BMS-4 MNEB088F 37,434 90,759 0/6 0% 0/6 0% 0/6 0% -

738BMS-9 MNEB093F 28,035 >30 0/6 0% 0/6 0% 0/6 0% -

738BMS-11 MNEB095F 42,753 >30 0/6 0% 0/6 0% 0/6 0% -

738BMS-10 MNEB094F >30 >30 0/6 0% 0/6 0% 0/6 0% -

738BMS-3 MNEB087F >30 >30 0/6 0% 0/6 0% 0/6 0% -

738BMS-2 MNEB086F >30 >30 0/6 0% 0/6 0% 0/6 0% -

738BMS-1 MNEB085F >30 >30 0/6 0% 0/6 0% 0/6 0% -

code active/total* at Tumor selectivity

3 µg/ml 30 µg/ml

 
 

 

 

 

 



 

IC50 IC70

Fungal strain König Oncotest [µg/ml] [µg/ml]
sel.1)/  
total

% select. rating2)

Microsphaeropsis 96BMS-6 MNEB112F 25,110 29,250 0/6 0% 1/6 17% 0/6 0% -

sp. 96BMS-5 MNEB111F >30 29,584 0/6 0% 1/6 17% 0/6 0% -

(96 BMS) 96BMS-7 MNEB113F >30 >30 0/6 0% 0/6 0% 0/6 0% -

96BMS-4A MNEB110F >30 >30 0/6 0% 0/6 0% 0/6 0% -

96BMS MNEB107F >30 >30 0/6 0% 0/6 0% 0/6 0% -

96BMS-3 MNEB108F >30 >30 0/6 0% 0/6 0% 0/6 0% -

96BMS-4 MNEB109F >30 >30 0/6 0% 0/6 0% 0/6 0% -

96BMS-8 MNEB1114F >30 >30 0/6 0% 0/6 0% 0/6 0% -

96BMS-9 MNEB115F >30 >30 0/6 0% 0/6 0% 0/6 0% -

96BMS-10 MNEB116F >30 >30 0/6 0% 0/6 0% 0/6 0% -

96BMS-11 MNEB117F >30 >30 0/6 0% 0/6 0% 0/6 0% -

96BMS-12 MNEB118F >30 >30 0/6 0% 0/6 0% 0/6 0% -

code active/total* at Tumor selectivity

3 µg/ml 30 µg/ml

 
 

 

 

 

 

 

 

 



 

IC50 IC70

Fungal strain König Oncotest [µg/ml] [µg/ml]
sel.1)/  
total

% select. rating2)

Stagonospora 16-6 MNEB173F 3,666 6,813 2/6 33% 6/6 100% 2/6 33% +++

sp. 16-5 MNEB172F 0,700 1,259 6/6 100% 6/6 100% 1/6 17% ++

(16 BMS) 16-8 MNEB175F 7,903 12,231 0/6 0% 4/6 67% 1/6 17% ++

16-4 MNEB171F 7,409 12,773 1/6 17% 6/6 100% 1/6 17% ++

16BMS MNEB167F 1,304 2,851 3/6 50% 6/6 100% 0/6 0% -

16-2 MNEB169F 6,781 15,416 0/6 0% 5/6 83% 0/6 0% -

16-7 MNEB174F 11,233 18,796 0/6 0% 6/6 100% 0/6 0% -

16-3 MNEB170F 10,050 19,312 0/6 0% 6/6 100% 0/6 0% -

16-1 MNEB168F 25,703 38,005 0/6 0% 0/6 0% 0/6 0% -

16-9 MNEB176F 27,783 38,442 0/6 0% 0/6 0% 0/6 0% -

code active/total* at Tumor selectivity

3 µg/ml 30 µg/ml

 
 

 

Samples were dissolved in methanol and tested in concentrations of 10 µg/mL against six tumor cell lines. Details are given in 3.9.2 chapter. Each 

test series was run in duplicate.  

 
1) individual IC70 < 1/3 mean IC70; for example if mean IC70 = 2.1 µM the threshold for above average sensitivity was IC70 < 0.7 µM 
2) – (% selective = < 4 %); + (4 % > = 10 %); ++ (10 % > % selective >= 20 %); +++ (% selective > 20 %) 

 

 

 

 



 

8.2 Cytotoxicity of isolated compounds 

 

compound Oncotest König
mean 
IC50 

[µg/ml]

mean 
IC70 

[µg/ml]

select.1)/  
total

% select. rating2)

1 MNSB009 EM 7.2.4 >10 >10 0/36 0% -

2 MNSB012 EM 7.10 >10 >10 0/36 0% -

3 and 4 MNSB010 EM 7.3 9,5 >10 0/36 0% -

5 MNSB006 EM 6.0.8 >10 >10 0/36 0% -

6 MNSB007 EM 6.0.9 >10 >10 0/36 0% -

7 MNSB011 EM 7.7 5,5 9,8 0/36 0% -

8 MNSB008 EM 6.6.2 >10 >10 0/36 0% -

10 MNSB013 EM 13 0,51 1,6 4/37 11% ++

13 MNSB049 018-8-8 7,706 13,621 1/36 3% 36/36 100% 1/36 3% -

14 MNSB035 727-V3-5-4 1,59 5,24 2/36 6% 23/36 64% 4/36 11% ++

15 MNSB034 727-V3-5-3 0,014 0,094 30/36 83% 34/36 94% 10/36 28% +++

16 MNSB033 727-V3-2-11 >10 >10 0/36 0% 0/36 0% 0/36 0% -

17 MNSB032 727-V3-2-2-3 4,67 8,14 0/36 0% 27/36 75% 0/36 0% -

18 MNSB041 A. T. 3.4 >10 >10 0/36 0% 0/36 0% 0/36 0% -

19 MNSB042 A. T. 4.7 >10 >10 0/36 0% 0/36 0% 0/36 0% -

20 MNSB044 A. T. 7.3 3,473 6,671 0/36 0% 35/36 97% 0/36 0% -

Tumor selectivity

1 µg/ml 10 µg/ml

Identification Potency active/total at

 



Samples were dissolved in methanol and tested against 36 tumor cell lines. Details are given in 3.9.2 chapter. Each test series was run in duplicate.  

compound Oncotest König
mean 
IC50 

[µg/ml]

mean 
IC70 

[µg/ml]

select.1)/  
total

% select. rating2)

21 MNSB043 A. T. 5.2 >10 >10 0/36 0% 0/36 0% 0/36 0% -

22 MNSB045 588-3.4-2.4 4,768 8,754 0/36 0% 25/36 69% 0/36 0% -

23 MNSB046 193-7.8-3.4 9,403 9,965 0/36 0% 3/36 8% 0/36 0% -

24 MNSB016 74-v1-5 0,07 0,15 2/36 6% +

25 MNSB017 74-v2-2 0,17 0,42 2/36 6% +

26 MNSB031 74-v2-8-4 0,005 0,014 34/36 94% 35/36 97% 8/36 22% +++

29 MNSB030 74-v2-9-1 >10 >10 0/36 0% 0/36 0% 0/36 0% -

Tumor selectivity

1 µg/ml 10 µg/ml

Identification Potency active/total at

 

1) individual IC70 < 1/3 mean IC70; for example if mean IC70 = 2.1 µM the threshold for above average sensitivity was IC70 < 0.7 µM 
2) – (% selective = < 4 %); + (4 % > = 10 %); ++ (10 % > % selective >= 20 %); +++ (% selective > 20 %) 
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8.2 1H and 13C NMR spectra of isolated compounds 
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