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Abstract 
Today, a large quantity of the Earth’s land surface has been affected by human induced land 
cover changes. Detailed knowledge of the land cover is elementary for several decision support 
and monitoring systems. Earth-observation (EO) systems have the potential to frequently 
provide information on land cover. Thus many land cover classifications are performed based 
on remotely sensed EO data. In this context, it has been shown that the performance of remote 
sensing applications is further improved by multisensor data sets, such as combinations of 
synthetic aperture radar (SAR) and multispectral imagery. The two systems operate in different 
wavelength domains and therefore provide different yet complementary information on land 
cover.   

Considering the increase in revisit times and better spatial resolutions of recent and upcoming 
systems like TerraSAR-X (11 days; up to1 m), Radarsat-2 (24 days; up to 3 m), or RapidEye 
constellation (up to 1 day; 5 m), multisensor approaches become even more promising. 
However, these data sets with high spatial and temporal resolution might become very large and 
complex. Commonly used statistical pattern recognition methods are usually not appropriate for 
the classification of multisensor data sets. Hence, one of the greatest challenges in remote 
sensing might be the development of adequate concepts for classifying multisensor imagery. 

The presented study aims at an adequate classification of multisensor data sets, including SAR 
data and multispectral images. Different conventional classifiers and recent developments are 
used, such as support vector machines (SVM) and random forests (RF), which are well known 
in the field of machine learning and pattern recognition. Furthermore, the impact of image 
segmentation on the classification accuracy is investigated and the value of a multilevel concept 
is discussed. To increase the performance of the algorithms in terms of classification accuracy, 
the concept of SVM is modified and combined with RF for optimized decision making. 

The results clearly demonstrate that the use of multisensor imagery is worthwhile. Irrespective 
of the classification method used, classification accuracies increase by combining SAR and 
multispectral imagery. Nevertheless, SVM and RF are more adequate for classifying 
multisensor data sets and significantly outperform conventional classifier algorithms in terms of 
accuracy. The finally introduced multisensor-multilevel classification strategy, which is based 
on the sequential use of SVM and RF, outperforms all other approaches. The proposed concept 
achieves an accuracy of 84.9%. This is significantly higher than all single-source results and 
also better than those achieved on any other combination of data. Both aspects, i.e. the fusion of 
SAR and multispectral data as well as the integration of multiple segmentation scales, improve 
the results. Contrary to the high accuracy value by the proposed concept, the pixel-based 
classification on single-source data sets achieves a maximal accuracy of 65% (SAR) and 
69.8% (multispectral) respectively. The findings and good performance of the presented 
strategy are underlined by the successful application of the approach to data sets from a second 
year. Based on the results from this work it can be concluded that the suggested strategy is 
particularly interesting with regard to recent and future satellite missions. 
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1 Introduction 
Mankind is changing dramatically the global ecosystem, reasons such as the clearing of natural 
forests, intensifying farmland production and increasing urbanization (Foley et al. 2005). These 
impacts on the ecosystem were more dominant in the last 50 years than at any other time in 
human history (MA 2005). A large part of the environment is dominated by humanity and only 
17% of the land surface is not directly impacted by human actions (Vitousek et al., 1997; 
Sanderson 2002). Between 1950 and 1980 more land was transformed to cropland than in the 
150 years between 1700 and 1850 and today approximately 50% of Earths surface has been 
transformed for the cultivation of crops or to graze. More than half of the Earth’s forests have 
disappeared by this land transformation (MA 2005). 
Although modern agriculture techniques are increasing food productivity, this causes extensive 
environmental damage, which affects ecosystem services, including many that are important for 
agriculture productivity (Foley et al., 2005). In addition the increased demand for food has been 
achieved focusing efforts on planting and consuming a small variety of crops, barley, maize, 
rice and wheat occupied almost 40% of cropland (Tilman et al., 1996). Vitousek et al. (1997) 
pointed out that land transformations are the driving force in the loss of biological diversity 
worldwide. Moreover these changes affect the Earth’s ecosystems far beyond the boundaries of 
original impacted region and can influence the climate directly at local and even regional scales. 
Thus, the detailed knowledge and information on land cover is an important input for decision 
support and environmental monitoring systems, e.g. in the area of flood forecast, subsidy 
control, land degradation, urban sprawl and food security. Earth-observation (EO) systems have 
the potential to provide spatially distributed and temporally frequent information on land cover 
and its environmental state over extended and remote areas. Compared to man-based field 
campaigns costs can be significantly reduced. Moreover satellite systems provide near-real time 
information, which seems particularly important for operational applications, e.g. in the context 
of natural hazards and disaster management.  
Consequently, the manner of how our planet is observed was revolutionized during the last 
decades. Remote sensing became a valuable and powerful instrument to monitor the Earth and 
had a significant impact on the manner environmental data is acquired and analyzed (Rosenquist 
et al., 2003). Beside scientific-driven research significance, EO-data plays a major part in 
supporting the operation of several multilateral environmental and political charters 
(Peter, 2004; Rosenquist et al., 2003, Backhaus and Beule, 2005), as the Kyoto Protocol, the 
Convention on Biological Diversity (CBD), or the European initiatives Coordinated Information 
on the European Environment (CORINE Land Cover) and Global Monitoring for Environment 
and Security (GMES). Regarding the enormous resources of the EO-technology, Rosenquist et 
al. (2003) have mentioned that the observation of the land cover and the detection and spatial 
quantification of land cover change are major areas, where remote sensing imagery could be 
integrated to support the operation of the treaty and assist countries to meet the commitments 
under the Kyoto protocol. The monitoring of aforestation, deforestation and human induced 
land cover fragmentation, for example, is important regarding the Kyoto Protocol and CBD 
respectively. 
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The European MARS-project (Monitoring Agriculture through Remote Sensing techniques) of 
the Joint Research Center (JRC) integrates EO technologies to receive independent and timely 
information on crop areas and yields. Overall MARS provide a basis for the European capability 
for global food security assessment and agricultural monitoring (MARS, 2007). Another 
example of the relevance of remote sensing imagery is given by Europe’s Common Agricultural 
Policy (CAP), which forces the member states to provide digital information on agricultural 
land use. The corresponding Integrated Agricultural Administration and Controlling System 
(i.e., InVeKoS, “Intetrgriertes Verwaltungs und Kontrollsystem”) employs remotely sensed data 
for obligatory agricultural subsidy controls. 
Driven by the Baveno manifesto in 1998, the European Commission, the European Space 
Agency (ESA) and national agencies have started the GMES program (Peter 2004; Backhaus 
and Beule 2005). GMES is aiming to provide the potential of remote sensing services 
operationally, to support Europe’s aims in sustainable development, and environmental and 
security-related policies (Brachet 2004, Peter, 2004). The GMES project contains so-called 
service elements (GSE) as GSE Forest Monitoring (GSE-FM) and GSE Land Information 
Services (GSE Land).  GSE Land is aimed to deliver geo-information services over wide areas 
and for various land applications, focusing on the GMES priorities "Land Cover Change in 
Europe", and "Environmental Stress in Europe". The information on land cover and vegetation 
is derived from remote sensing data and is harmonised and standardised enabling cross-border 
applications and comparisons. The information and services GSE-FM are designed to support 
more informed decisions, operational applications and improved policies that significantly 
enable sustainable forest management (GMES, 2007).  
The European project CORINE Land Cover (CLC) is aimed at the provision of a unique and 
comparable data set of land cover for Europe. In Germany the project was led by the German 
Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) on behalf of the 
Federal Environmental Agency (UBA). The land cover mapping is performed on the basis of 
satellite remote sensing images on a scale of 1:100,000. CORINE Land Cover 2000 (CLC2000) 
is an update of an early data set from 1990 (CLC1990) and an acquisition of changes has been 
conduced using the year 2000 as reference. The recent update CLC2006, will be performed as a 
part of the GMES Fast track service on land monitoring. 
Geoland, DeCover and Enviland are other selected examples of international and national 
projects in context of land cover monitoring. The primary objective of the German project 
Enviland, funded by the DLR and Federal Ministy of Economics and Technology (BMWi) is 
the development of novel and outstanding approaches for the generation of land cover products, 
utilising the synergetic usage of multitemporal SAR and optical data. The major is the 
development of scale-independent, stable and cost efficient methods for the generation of land 
cover products.  
These various European and national projects underlines the relevance of land cover products in 
context of remote sensing, which was also confirmed by a study of German Federal Ministry for 
the Environment, Nature Conservation and Nuclear Safety. The ministry has launched a study, 
to receive information on requirements of remote sensing, particularly in context of the GMES 
program (Backhaus and Beule, 2005). Regarding this study, which was completed in May 2004, 



Introduction 

3 

Backhaus and Beule (2005) have pointed out that the most frequently required products are 
focused on observation of land cover and land use.  
Overall the derivation of land cover information from remote sensing imagery is an important 
application, regarding the support of multilateral environmental agreements, decision support 
and monitoring systems. The international initiative Global Earth Observation System of 
Systems (GEOSS) will coordinate the various requirements of different nations for temporal 
consistent global information as a basis for decision making. The vision is to initialize a 
development wherein decisions for the benefit of humankind will be supported by coordinated, 
comprehensive and sustainable EO-data and information, for an improved monitoring of the 
Earth and a better understanding of the environmental processes (GEO, 2005) 

1.2 Scientific framework and scope of the dissertation 
Today a variety of complementary remote sensing imagery is available, provided by different 
sensors that operate in different wavelengths, as synthetic aperture radar (SAR) and 
multispectral systems (Figure 1.2.1). The NASA’s Landsat-5 TM and Landsat-7 ETM+, the 
ASTER sensor on the Terra platform, the French SPOT satellites or the AVNIR-2 on ALOS 
operated by JAXA are some examples of well-known multispectral systems. These passive 
optical EO systems will be supplemented by upcoming missions, as the German RapidEye. The 
RapidEye constellation, which will be consists of five satellites, is expected to be operationally 
available in early 2008. 

 
Figure 1.2.1: Landsat 5 TM image (April - bands: 4/3/2) and multitemporal SAR composite 

(Apr. / May / Jun.) of an agricultural region near Bonn, Germany. 
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The European ERS-2 and Envisat ASAR instruments as well as the Canadian Radarsat-1 are 
providing SAR imagery since several years. The availability of SAR data is further increased 
with recently launched and upcoming systems as the German TerraSAR-X, the Japanese ALOS 
PALSAR, the Italian Cosmo-SkyMed or the enhanced system Radarsat-2. 
Multispectral and SAR systems operate in different wavelengths, ranging from visible to 
microwave. The interaction with the illuminated target and the amount of radiation that is 
reflected by the land surface varies with the wavelength. These two systems consequently 
provide different, but complementary information improving the monitoring of land cover. In 
Figure 1.2.1 a multitemporal SAR composite and a multispectral image is shown. A simple 
visible assessment illustrates the different nature of the data types and the dissimilar information 
content. Beside this, various imagery from a multitude of different SAR systems are available, 
which operate in different wavelength and hence provide diverse information, e.g., Envisat 
ASAR and ERS-2 acquired C-band data (~5.3 cm), ALOS PALSAR operates in L-Band (~23 
cm) and TerraSAR-X in the short X-band (~3.1 cm) domain. 
Thus, a combination of different image sources, e.g. multispectral imagery with SAR data or 
even different SAR imagery alone, seems worthwhile and it has been shown in several studies 
that multisensor analysis significantly improves the performance of land cover classifications 
(see Section 2). Regarding the growing data diversity, increased revisit times and enhanced 
spatial resolutions of upcoming and recent missions, as for example TerraSAR-X (11 days; up 
to1 m), Radarsat-2 (24 days; up to 3 m), or RapidEye (up to 1 day; 5 m), concepts of 
multisource image analysis become even more attractive. On the other hand such diverse data 
sets result in the demand of adequate classifier concepts, which enable the handling of diverse 
information, of different spectral, spatial, and temporal resolution. 
Driven by the rapid development of remote sensing applications, the community has attained a 
step, where a multitude of adequate and widely known classifier concepts are available. Today 
the analysts can choose between diverse remote sensing imagery as well as a number of widely 
used methods. Nevertheless, the development of adequate concepts and algorithms for 
classifying multisource information is perhaps the most challenging research topic in the field of 
remote sensing (Richards, 2005). 
Data sets of upcoming missions with enhanced spatial and temporal resolution might become 
very large and complex. Furthermore individual sources (e.g., a specific SAR acquisitions or a 
specific multispectral band) may not be equally reliable. One source can be more adequate to 
separate a specific land cover class and perhaps another source is more applicable to describe 
another class. Thus, it might be appropriate to weight different sources during the classification 
process, but conventional statistical classifiers do not allow such weighting. Moreover the 
derivation of spatial (e.g., texture) and temporal information might be useful to increase the 
classification accuracy, particularly in regard to enhanced spatial resolution and increased orbit 
repetition rates. On the other hand such additional derived information contributes to an 
increased complexity of the data set. 
Another development in the classification of remote sensing imagery is that of segment-based 
applications. Often segment-based classifications are more accurate than conventional per-pixel 
approaches and reduce effects, which occur in pixel-based classifications. They seem 
particularly interesting for agricultural areas that are dominated by typical spatial patterns of 
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planted crops. Segment-based approaches, on the other hand, require the definition of an 
adequate segmentation scale that might be critical. In several studies this problem is solved by 
multilevel approaches, which employ various segmentation levels. 
Thus, regarding complex multisensor and multitemporal data sets, perhaps by different 
segmentation scales, the imagery should be processed by adequate classifiers, which can handle 
such diverse data sets and makes best use of the relevant information. The increased size of the 
input data sets for example, demands a classifier, which is less sensitive to the curse of 
dimensionality (i.e., Hughes effect). On the other hand the classification of segmented imagery 
that is often limited to the few classifiers available in proprietary software. Moreover, widely 
used parametric classifiers that rely on certain conditions, e.g. a maximum likelihood classifier 
that often assumes a Gaussian distribution, can often not be applied to segmented data with a 
reduced feature space and a small number of training samples. In addition the class distributions 
generally cannot be modeled by an adequate multivariate statistical model, when classifying 
multisensor imagery. 
Overall, it seems more appropriate to employ techniques, which were successfully applied to 
more complex data sets, as high-dimensional imagery and multisource data sets. The objective 
of the presented dissertation addresses the development of concepts and algorithms for an 
efficient image analysis of multisensor data, consisting of multitemporal SAR data and 
multispectral imagery:  
In regard to this, the following main questions seem worth to investigate in the context of this 
dissertation: 

 Does multisensor imagery generally improve the quality of land cover classifications?  
 How do recent classifier developments perform on multitemporal and multisensor 

remote sensing data? 
 What impact has image segmentation on classifying multisensor imagery? 
 Can sophisticated classifier algorithms be further improved? 

 

1.3 Outline of the dissertation 
In Section 2 a general guide to land cover classifications is given, with a focus on multitemporal 
and multisource applications. In this context different classifier algorithms (e.g., maximum 
likelihood classifier and support vector machines) are introduced in detail. In addition, concepts 
for combing classifiers and segment based approaches are discussed. In Section 3 the study site 
and relevant data sources (i.e., remote sensing imagery and auxiliary data) are described. 
Afterwards the obligatory image preprocessing is briefly illustrated in Section 4. Different 
applications and results of multisensor image analysis are presented in Section 5. These 
applications are focusing on (1) the classification of multitemporal SAR data, (2) an adequate 
fusion of multisensor imagery, (3) the introduction of a multilevel-multisensor classification 
strategy, and (4) the transfer of the final classification strategy to another data set (Figure 1.3.1). 
Section 6 discusses results and concludes in a synopsis. 
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Figure 1.3.1:  Overview on selected components of the dissertation. The green boxes indicate 4 different 
applications, with the corresponding main research questions.  
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2 Classifier Algorithms and Concepts 
Land cover classifications are the widest used application in the field of remote sensing. Since 
satellite imagery is available the research community is aiming to produce precise classification 
maps of the data. Consequently the available literature is numerous and a significant quantity of 
published papers is considering the field of image classification (Wilkinson, 2005). Although 
the number of studies increased during the recent decades, remote sensing image analysis is not 
a new research subject and Richards (2005) remarked that the classification of remote sensing 
imagery had “its genesis in the signal processing methods of the 1950s and 1960s and their 
extension to handling image data”.  
The recent development of algorithms for land cover classification was primarily affected by 
three driving factors, which are closely interrelated: (1) an increased availability of diverse 
remote sensing imagery, (2) the enhanced computer power, and (3) a growing demand of more 
powerful machine learning algorithms and hence a shift from statistical methods to complex and 
more sophisticated methods for image classification (Richards, 2005, Jain et al., 2000). Beside 
these progresses, the use of object- or segment-based classification approaches is another 
development in the context of remote sensing image analysis.  
Richards (2005) declares the sensor development as one driving factor for the progress in image 
analysis algorithms: The technical enhancement of optical EO-systems, with an increased 
number of bands and high spatial resolution as well as the availability of multidimensional SAR 
data at different wavelengths and polarizations. Beside the technical progress of the sensor 
systems, the rapidly increasing computer power enables faster processing of huge and diverse 
datasets. In addition complex data and increased performance requirements like speed and 
accuracy demand the development of more sophisticated classifier concepts (Jain et al., 2000). 
In contrast to this, many early classification methods were taken directly from signal processing, 
due to previous data limitations. Thus they were often based on simple data models and 
approaches (Richards, 2005). 
The general aim of land cover classification is the association of each pixel within the imagery 
with a specific land cover class. Generally this is performed by methods of machine learning 
and pattern recognition. A pattern can be understood as a unique structure or attribute, which is 
capable to describe a specific phenomenon (e.g., a land cover type). During a classification 
process unknown patterns (i.e., pixels) are identified and assigned to a predefined class or they 
are combined to unknown clusters, depending on their similarity. In the context of remote 
sensing, patterns are often referred to as signatures. In the case of multispectral or hyperspectral 
imagery for example, the set of spectral radiances measured in the different bands can be 
regarded as a signature. Beside simple pixel values (i.e., spectral radiances or backscatter 
intensities), spatial and/or temporal image information can be used (Lillesand and Kiefer, 2000). 
Using texture analysis, the spatial relationships between a pixel and the neighborhood can be 
extracted and considered in the subsequent classification process (e.g., Haralick et al., 1973; 
Soares et al., 1997). The availability of image time series enables the derivation of temporal 
information, as multitemporal mean and variance, which can be included in the subsequent 
image analysis (e.g., Bruzzone et al., 2004).  
In general the numerous classification methods can be grouped – depending on the available 
information – into the main categories unsupervised and supervised: In unsupervised 
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classifications pixels are assigned to specific classes without having a prior knowledge of the 
classes. During an unsupervised classification process the data is aggregated into natural groups 
or clusters that have similar properties. Often conventional clustering methods are used like the 
widely used ISODATA and the k-means algorithm (Richards and Jia, 1999; Duda et al., 2000.). 
A general problem of unsupervised algorithms is that data can be consisting of clusters with 
different shapes and sizes. An applicable definition of clusters and the selection of an adequate 
indicator for similarity are difficult (Jain et al., 2000). The advantage of unsupervised methods 
is that an image classification is possible without having a priori knowledge. On the other hand 
the algorithm is not providing any final membership decision and in general the analyst must 
assign each cluster a specific class label. Furthermore class memberships (i.e., class labels) and 
other knowledge about the image source do not impact the clustering algorithm, solely the 
interpretation of the final clusters (Jain et al., 2000). 
Unlike unsupervised methods, supervised approaches are based on a priori knowledge of the 
land cover classes. Generally each class is represented by a sample set, which is used for the 
training of the classifier. The trained classifier is applied to the unknown pixels to determine the 
final class membership. A widely used classification strategy is the maximum likelihood 
classifier. This parametric classifier is based on the assumption that the probability density 
function for each class is multivariate, and often a Gaussian distribution is assumed. In contrast 
to parametric approaches, nonparametric methods are not constrained to any assumptions on the 
distribution of input data. Hence techniques as artificial neural networks, decision trees and 
support vector machines can be applied, even if the class conditional densities are not known or 
can not be estimated.  
Generally all these classifier methods produce a conventional land cover map that consists of 
discrete categories. Each pixel is associated to a class, but only one single land cover class. In 
contrast to these hard classifications, a pixel can be assigned to different classes, depending on 
the class-specific likelihoods. The discriminant function can be assumed as imprecise or fuzzy 
and is leading to a soft or fuzzy classification map. Another dichotomy in context of remote 
sensing image classification is that of pixel-based versus segment-based methods. In segment-
based approaches neighboring pixels with similar properties are combined to image segments. 
After the segmentation process, information on the segments' mean spectral or backscatter 
value, their texture and shape as well as spatial relationships can be derived and included in the 
classification process. In hybrid methods a pixel-based (pre-)classification is performed. 
Afterwards a simple majority vote is performed within each segment, to determine the final 
class membership of each image segment. In analogy to other studies, in this dissertation the 
terminology segment-based is used, contrary to the expression object-based classification. In 
doing so the term object is referred to real natural features, as a field plot or a settlement, which 
appear as a single (image)segment in the data.  
Whereas dichotomies as (un)supervised and (non-)parametric define some requirements of the 
classifier algorithms itself, expressions as pixel- and segment-based describe the general 
classification concept. For example, a parametric maximum likelihood classifier, which is 
generally used for pixel-based hard classifications, can be applied to segmented imagery (e.g. 
Geneletti and Gorte, 2003) or extended to a fuzzy classification concept (e.g. Schowengerdt, 
1996).  
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2.1 Multitmeporal, Multisensor and Multisource Applications 
Many remote sensing applications include data from areas, which are characterized by great 
temporal variability and typical spatial patterns of highly frequent land cover changes between 
vegetation canopies. Single-date applications are often inefficient, due to the phenology of 
planted crops. Whereas a specific data might not be appropriate to distinguish specific land 
cover classes, another acquisition date might be inefficient for other classes. In contrast to a 
single-date acquisition, the use of the whole multitemporal information enables a better 
differentiation between several classes (Figure 2.1.1) 

This fact is confirmed by the results of several studies, where multitemporal imagery 
significantly improves the results achieved by monotemporal applications: In Guerschman et al. 
(2003) the impact of the number of acquisitions of a Landsat TM time series on the 
classification accuracy was investigated. The dimension of the time series was successively 
increased from 1 to 4 acquisitions, considering all potential image combinations. The results 
show that the accuracy is significantly improved with an increasing size of the data set. Whereas 
the accuracies of the 4 three-date classifications vary between 49-56%, the overall accuracy is 
improved up to 63%, using all images. Blaes et al. (2005) have used a set of 2 Spot XS and a 
Landsat ETM+ image for crop identifications. The classification of the full image set achieves 
an overall accuracy of 74%, whereas the accuracies achieved by a mono-temporal approach 
vary between 22% and 64%.  
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Figure 2.1.1: Comparison between multitemporal characteristics of different land cover classes, collected at a 
test site near Bonn in 2005 (ERS-2, C-Band, VV polarization) 
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In another study a crop classification was increased by 26% respectively, using two Landsat TM 
scenes, in contrast of one acqusition (Brisco and Brown, 1995). However, these studies include 
multispectral remote sensing data, but the availability and efficiency of optical imagery is often 
limited by illumination and weather conditions, particularly in regions of Central Europe. 
Multitemporal datasets within one growing season can be best produced reliably, using 
synthetic aperture radar (SAR). This EO-system is almost independent from weather conditions, 
thus SAR data is particularly interesting for near-real time applications and operational 
monitoring systems. Considering missions with high revisit times and better spatial resolutions 
like TerraSAR-X and Cosmo-SkyMed, SAR-based multitemporal approaches become even 
more attractive. Even the classification and interpretations of SAR data seems often more 
difficult than those of multispectral imagery, several studies are based on SAR data and 
assessed the positive impact of multitemporal imagery on the classification accuracy: In Brisco 
and Brown (1995) the overall accuracy of a classification that is based on 4 SAR acquisitions 
was increased up to 24%, compared to results achieved with two images. Blaes at al. (2005) 
have compared the performance of various multitemporal ERS data sets. The classification 
accuracies were significantly increased by increasing the quantity of images. Depending on the 
number of scenes and the acquisition date, the overall accuracies vary between 40% and 65%. 
Similar results have been reported from Chust et al. (2004), which classified ERS data from a 
Mediterranean region. In addition these results show that the variance of the overall accuracy is 
decreased with an increasing number of images.  
As mentioned the availability of multisensor imagery is increasing and in several studies the 
classification accuracies were increased by multisource applications (e.g., Benediktsson and 
Kanellopoulos , 1999; Blaes et al, 2005; Michelson et al., 2000; Le Hégarat-Mascle et al. 2000; 
Chust et al. 2004; Huang 2007). Brisco and Brown (1995) significantly improved the 
classification accuracy of two Landsat TM images by additional multi-date SAR data. In Blaes 
at al. (2005) Landsat imagery was combined with multitemporal ERS-2 data. Thereby total 
accuracy was increased at least by 5%. Huang et al. (2007) fused Radarsat and Landsat imagery 
to enhance a land cover classification. Whereas the use of two Landsat images results in a total 
accuracy of 74%, a combined approach increases the accuracy up to 84%. 
Although some studies employ conventional methods like the well known maximum likelihood 
classifier (e.g., Brisco and Brown, 1995; Chust et al., 2004; Huang et al., 2007) such widely 
used statistical classifiers are often not optimal for classifying multisource and multitemporal 
data sets. In most cases the class distributions cannot be modeled by adequate multivariate 
statistical models (Benediktsson et al, 1990, Bruzzone at al., 2004). Consequently other studies 
use more sophisticated classification strategies and nonparametric algorithms: 
Artificial neural networks (ANN) are a nonparametric method, which have been used 
successfully for the classification of diverse remote sensing imagery. The overall accuracies are 
often significantly improved compared to conventional statistical classifiers: Benediktsson et al. 
(1990) have used a backpropagation ANN for the classification of multisource data sets, 
containing multispectral data and topographical information. In other experiments ANN were 
used for the classification of time series of SAR imagery (e.g., Stakiewicz, 2006; Bruzzone at 
al., 2004) and multisensor data (e.g., Serpico and Roli, 1995; Bruzzone et al., 1999). 
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Besides several classifications that are based on multispectral imagery (e.g., Friedl and Brodely, 
1997; Pal and Mather, 2003) and SAR data (Simard et al., 2000, 2002), decision tree classifiers 
(DT) are also used for and multisource and multitemporal applications. Fitzgerald and Lees 
(1994) applied DT to multisource data, including remote sensing imagery and topographical 
data. Another study aims on mapping multitemporal vegetation changes (Rogan et al. 2002). 
The results demonstrate that a DT is adequate for this purpose and outperforms a maximum 
likelihood classifier in terms of accuracy. In Hodgonson et al. (2003) a decision tree classifier is 
used for mapping impervious surfaces, using LIDAR data and air-borne imagery.  
In several studies the performance of DT is further increased by classifier ensembles or multiple 
classifier systems: Brown de Colstoun applied a decision tree on multitemporal images from the 
Enhanced Thematic Mapper-Plus (ETM+) to differentiate between 11 land cover types. The 
overall accuracy was significantly increased by classifier ensembles techniques, as boosting. 
Carreiras et al. (2006) performed a classification of agricultural and pastures land within the 
Brazilian Amazon using a time series of SPOT 4 Vegetation data. In this study a DT-based 
classifier ensemble significantly outperforms all other approaches (i.e., maximum likelihood 
classifier, simple decision tree and k-nearest neighbor) in terms of overall accuracy. Briem et al. 
(2002) successfully used various classifier ensembles for classifying different multisource data 
sets, including SAR and multispectral imagery among other data types. Breimans’ classifier 
system random forests (2001) was used in diverse remote sensing studies (Ham et al. 2005, 
Lawrence et al. 2006, Gislason et al. 2006, Pal 2004). The results in Ham et al. (2005) assessed 
a good performance of the random forests (RF) for classifying hyperspectral data with a limited 
sample set. In Gislason et al. (2006) the RF method was applied to a multisource data set, 
consisting of Landsat MSS data and topographical data. RF perform better than a single 
decision tree and comparable to other ensembles methods, whereas the computation time is 
much faster. Pal (2005) has used the approach for the classification of a Landsat ETM+ scene 
from an agricultural region. In this study the technique achieved promising results and the 
accuracies were comparable to computationally more complex methods like support vector 
machines.  
In contrast to these classifier ensembles, which combine variants of the same classifier, other 
concepts are based on the combination of different algorithms, from now on referred to as 
multiple classifier systems: Steele (2000) combined a spatial classifier with a k-nearest 
neighbour and a linear discriminant algorithm, for land cover mapping of Landsat TM imagery. 
Liu et al. (2004) used a decision tree in combination with a neural network for the classification 
of NOAA AVHRR data. Benediktsson and Kanellopoulos (1999) combine neural networks and 
statistical methods for classifying multisensor data. The SAR and multispectral data undergo a 
separate classification. The outputs of the individual classifiers are combined by decision 
fusion. In Jeon and Landgrebe (1999) the concept of decision fusion was used for classifying a 
set of multitemporal Landsat images. Fauvel et al. (2006, 2007) used the strategy to increase the 
classification accuracy of remote sensing imagery for an urban area.  
Support vector machines (SVM) are well known in the field of machine learning and pattern 
recognition (Vapnik, 1998; Schölkopf and Smola, 2002) and recently introduced in context of 
remote sensing image analysis (Huang et al., 2002; Foody and Mathur, 2004; Melgani and 
Bruzzone, 2004). The approach still exhibits further modification, e.g., in context of semi-
supervised and ill-posed classification problems (Bazi and Melgani, 2006; Bruzzone et al., 
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2006; Chi and Bruzzone, 2007). In Huang et al. (2002) SVM were applied successfully for 
classifying multispectral imagery and outperformed other methods in the very most recent 
cases. In Foody and Mathur (2004) a multispectral image was classified, focusing on 
agricultural classes, as for example wheat, sugar beet, carrots, grassland. The results clearly 
demonstrate that SVM perform more accurately than other classification techniques (e.g., DT 
and ANN). Beside a Landsat image Pal and Mather (2006) applied SVM on DAIS data from a 
Mediterranean region, which is predominantly used for agriculture. As in other studies the SVM 
produce higher accuracies than other classifiers, as a maximum likelihood classifier, an ANN 
and a simple decision tree. Overall it can be assessed that SVM perform well with a small 
number of training samples, even when applied on high-dimensional data sets (e.g., Melgani 
and Bruzzone, 2004, Pal and Mather , 2006). In contrast to these classifications, which are 
based on optical imagery, in other studies SVM were applied successfully on SAR data 
(Lardeux et al., 2006, Fukuda and Hirosawa, 2001). 
Although SVM have shown promising accuracy on a multitude of different data sets, only a few 
studies are known which use SVM for classifying multisource or multitemporal data: In Song et 
al. (2005b), SVM were used for classifying geospatial data, consisting of multispectral images 
and topographical information among other data types. Halldorsson et al. (2003) extended a 
common SVM kernel function for classifying a multisource data set, containing Landsat MSS 
data and topographical information. In Camps-Valls et al. (2006) composite kernels were 
introduced for combining spectral and spatial information of a hyperspectral image. Fauvel et 
al. (2006) combined SVM to fuse spectral and spatial information (i.e., extended morphological 
profiles) of a hyperspectral ROSIS-03 data. At first the two SVM classifiers were trained 
separately on the spectral image on one hand and the extended morphological profiles on the 
other. Afterwards the outputs were fused by using different voting schemes, e.g., absolute 
maximum and majority voting. 
Beside this shift to recent machine learning algorithms as classifier ensembles and support 
vector machines, segment-based approaches are another development in land cover 
classifications (e.g., Lobo, 1996; Tso and Mather, 1999; Marcal et al., 2005). In several of these 
studies segment-based classifications are more accurate than conventional per-pixel 
classifications (Tso and Mather, 1999; Smith and Fuller, 2001; Geneletti and Gorte, 2003; Lee 
and Warner, 2006). Whereas some studies use common statistical classifiers (e.g., Genelitti and 
Gorte, 2003) other segment-based classifications are based on non-parametric algorithms: Llyod 
et al. (2004) used ANN for a segment-based classification approach. Lailberte et al. (2007) 
applied a DT-classifier on segmented mulitspectral imagery. In other studies classification 
approaches were presented that are based on support vector machines (Marcal et al. 2005, 
Bruzzone and Carlin, 2006; van der Linden et al. 2007). 
Contrary to several studies, which are based on a single segmentation level (e.g., Tso and 
Mather, 1999; Smith and Fuller, 2001; Marcal et al., 2005) other approaches use various levels 
of aggregation: Shackelford and Davis (2003) successfully combined information from pixel- 
and segment-level to differentiate classes that appear similar at pixel level, using a fuzzy logic 
classifier. Lailberte et al. (2007) use a fine aggregation level to classify a specific land cover 
class. Afterwards the class was masked out and another, coarser aggregation scale was used to 
differentiate other land cover classes. 
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However, the definition of adequate aggregation levels is critical, particularly for classifying 
heterogeneous imagery (e.g., van der Linden et al. 2007). Song et al. (2005a) discussed how an 
inaccurate segmentation reduced the classification performance. The total accuracy decreases by 
errors in segmentation and classification. Moreover a misclassification of a single segment 
results in a misclassification of all pixels included by this segment. Moreover two different 
natural objects (i.e., two field plots with different land cover classes) can be merged to one 
image segment by an imprecise segmentation. This results in a misclassification of (at least) one 
of these natural objects. Bruzzone and Carlin (2006) discussed the simultaneous use of different 
segmentation results at various scales as a feature-extraction module that adaptively models the 
spatial context of each pixel. They show that different levels contribute different types of 
information. Hence multilevel approaches (van der Linden et al. 2007, Bruzzone and Carlin, 
2006) seem more effective. 

2.2 Supervised Algorithms 
The classification framework of this dissertation belongs to the group of supervised methods 
and various parametric and non-parametric techniques have been introduced in the literature. 
Supervised classifiers require a priori knowledge and each class is usually described by a 
training data set. In general the training data is extracted from the imagery, using expert 
knowledge and ground truth knowledge as reference information. This class-specific 
information and data structures, derived from the training samples, are used within the training 
process of the classifier.  
A simple method is the minimum distance to mean (or minimum distance) classifier. In the 
initial phase of the classification procedure, the training data is used to calculate a class-specific 
mean vector, containing the averaged values for each image feature (e.g., spectral radiances 
within each band). For the classification of unknown pixels the distance between pixel and the 
mean vector is calculated and a pixel is assigned to the closest class (i.e., the minimum 
distance). Although the approach is computationally simple it has several disadvantages. The 
main limitation is that the inter class variances are not considered. Hence the approach is 
inefficient for classifying more complex class distributions (Lillesand and Kiefer, 2000).  
In other concepts the data is assumed to have class-specific probability density functions. Hence 
a sample x belonging to class ω is assumed as a sample that is randomly selected from the class 
conditional probability function. A widely used decision strategy is the Bayes’ decision rule, 
whereas the well-known maximum likelihood classifier (MLC) is a particularly case of the 
Bayes rules (Section 2.2.1). The MLC is derived from the Bayes rule when classes have equal 
priorities. It is based on the assumption that the probability density function for each class is 
multivariate, and often a Gaussian distribution is assumed (Lillesand and Kiefer, 2000; Richards 
and Jia, 1999). 
Although methods like the MLC are widely used, they are often not appropriate for the 
classification of multisource and multitemporal data, because in most cases such data sets 
cannot be modeled by a convenient multivariate statistical model (Benediktsson et al., 1990; 
Bruzzone et al., 2004). Furthermore, individual data sources may not be equally applicable. One 
source – for example a specific band of a multispectral image or an specific acquisition of a 
multitemporal SAR data set – can be more reliable to describe a land cover class than other 



Classifier Algorithms and Concepts 

14 

imagery and perhaps another piece of information is more adequate for classifying another class 
type. Thus, it can be appropriate to weight the different image sources during the classification 
procedure. However, common statistical classification techniques do not enable such weighting 
processes. For these reasons, other methods are more adequate in the context of multisensor and 
multitemporal image analysis and several non-parametric approaches have been introduced, 
e.g., k-nearest neighbor, artificial neural networks, self-learning decision trees and support 
vector machines. 
These approaches enable the derivation of the decision boundary without having knowledge of 
the class conditionals densities, by estimating the density functions or directly estimating 
a posteriori probabilities directly. The nearest-neighbor classifier allows the direct generation of 
the decision boundary on the training data, without knowing class-conditional densities or 
without estimating the densities functions (Jain et al. 2000). It’s classifying an unknown pixel x 
to the corresponding class ω of the sample nearest to x. The k-nearest-neighbor rule is an 
extension of the single-neighbor classifier, assigning a pixel to the most frequently class among 
the k nearest samples. As the minimum distance classifier the method is based on metric to 
measure the distance between the sample patterns, and often the Euclidean metric is used.  
Although in some studies nearest neighbor methods are superior or comparable to other 
classifiers (Collins et al., 2004; Carreiras et al., 2006) more sophisticated algorithms generally 
achieves higher accuracies (Marcal et al., 2005; Debeir, 2002, Roli and Fumera, 2001).  
Furthermore the method needs to compute the distances between an unknown pixel and all 
samples in the training set. This requires that all data are stored in the memory, resulting in a 
computational more demanding approach. 
Artificial neural networks (ANN) are a nonparametric method, which have been used 
successfully for the classification of diverse remote sensing imagery. The overall accuracies are 
often significantly compared to conventional statistical classifiers: Benediktsson et al. (1990) 
have used a backpropagation ANN for the classification of multisource data sets, containing 
multispectral data and topographical information. In other experiments ANN were used for the 
classification of multitemporal SAR data (e.g., Stakiewicz, 2006; Bruzzone at al., 2004) and 
multisensor imagery (e.g., Serpico and F. Roli, 1995). Stakiewicz (2006), for example, 
classified a timer series of ENVISAT ASAR and ERS-2 imagery of an agricultural region. 
Beside the long training time, neural networks have no consistent rules for the network design 
and their performance is affecting by several factors, e.g. the network architecture (Foody and 
Arora 1997), which is dependent on the user. A general introduction to neural networks is given 
by Bishop (1995). An overview in context of remote sensing is given by Kanellopoulos and 
Wilkinson (1997) and Benediktsson et al. (1990). 
Decision trees (DT) are another non-parametric classifier that was applied to diverse remote 
sensing data sets (Friedl and Brodley, 1997; Simard et al., 2000; Briem et al., 2002; 
Pal and Mather, 2003; Laliberte et al., 2007). In contrast to other classifier algorithms, which 
use the whole features space at once and makes a single membership decision – a decision tree 
is based on a multistage or hierarchical concept. At each node the most relevant feature only is 
selected and used for the construction of the decision boundary. The handling of DT is rather 
simple and their training time is relatively low compared to computationally complex 
approaches as for example neural networks (Friedl and Brodley, 1997; Pal and Mather, 2003). 
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Beside this, their visible classification scheme allows a direct interpretation of the decision in 
regard to the impact of individual features. 
The performance of DT is increased by classifier ensembles or multiple classifier systems 
(Gislason et al. 2004, Briem et al., 2002; Carreiras et al., 2006; Pal, 2005). By training a 
classifier on resampled input data (i.e., features or samples) a set of independent classifiers is 
generated. Afterwards the different outputs are combined to create the final result. This concept 
is not restricted to decision trees and classifier ensembles that are based on other algorithms 
have been introduced (Hansen and Salamon, 1990; Kim et al., 2003). Nevertheless, DT 
classifiers are particularly interesting due to their simple handling and fast training time. In 
contrast to these classifier systems, which are based on the same classifier, in other approaches 
different algorithms are combined (Benediktsson and Kanellopoulos, 1999; Steel, 2000; Fauvel 
et al., 2006). In doing so, the different advantages of the algorithms can be joint.  
Support vector machines (SVM), which are well known in the field of machine learning and 
pattern recognition (Vapnik, 1998), are a recent development in the context of remote sensing 
image analysis (Huang et al., 2002, Foody and Mathur, 2004a, Pal and Mather, 2005,). The 
concept is based on fitting an optimal seperating hyperplane to the training samples of two 
classes, such that the pixels from each class are finally on the correct side of the hyperplane. 
The position of the hyperplane is determined only by the closest training samples of both 
classes. This is one reason why support vector machines perform well, even with a small 
number of available training samples (Huang et al., 2000; Melgani and Bruzzone, 2004, Pal and 
Mather, 2006). Foody and Mathur (2004b) pointed out that an entire description of each class is 
not obligatory for an accurate classification. Because only samples near the hyperplane are 
considered, other training data have no impact on the analysis. Nevertheless a larger number of 
training samples ensures the employment of adequate samples Foody and Mathur (2004a).  
Even the framework of this dissertation is focused on land cover classification, a consideration 
of all algorithms and concepts would be beyond the scope of this work. Methods as 
unsupervised algorithms or fuzzy approaches are not considered in this work. The presented 
study is only focusing on supervised algorithms. Nevertheless, a detailed introduction of all 
supervised classifier concepts is also beyond the scope of the dissertation. Interested readers can 
be referred to several references: A general introduction to pattern recognition and classification 
is given in the textbooks by Duda et al. (2000) and Bishop (1996, 2006), and in the review 
paper by Jain et al. (2000). A detailed introduction in context of remote sensing is given by 
Richards and Jia (1999) and Landgrebe (2003), a general overview by Richards (2005). 
The presented study employs a selection of well known methods on the one hand and recent 
developments in pattern recognition and remote sensing on the other: (1) Although the use of 
the maximum likelihood classifier might be critical in context of multisource data, a comparison 
is worthwhile. Regarding the numerous remote sensing applications of this well-known method, 
it can be assumed as reference classifier. (2) Decision trees and DT-based classifier systems are 
also interesting for a detailed investigation. The training time is low and the handling is rather 
simple; the performance can be simply increased by classifier systems. Moreover DT classifiers 
are often used as benchmarks in pattern recognition experiments. (3) The investigation of more 
sophisticated and latest developments is also interesting. In recent literature the high 
performance of support vector machines is reported and the method is particularly interesting 
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for high-dimensional datasets. Nevertheless, a few multisource and multisensor applications are 
known, which use support vector machines. Hence the consideration of SVM is interesting in 
the scientific context of the dissertation. In the following a general guide to the concepts of 
maximum likelihood classifier, decision trees and support vector machines is given. Afterwards 
the concepts of classifier systems and segment-based approaches are introduced. The section is 
closed with a brief overview to the methods of classifier assessment. 

2.2.1 Maximum Likelihood Classification 
The maximum likelihood classification (MLC) is one of the most common supervised 
classification techniques in the field of remote sensing. As stated before, the MLC is based on 
the Bayes rule when classes have equal priorities. It assumes that the probability density 
function for each class is multivariate, and in the context of remote sensing image analysis, 
often a Gaussian distribution is assumed. A pixel is finally classified to that class, for which has 
the highest likelihood. A detailed introduction to the MLC is given for example by Richards and 
Jia (1999) and Lillesand and Kiefer (2000). In the following an overview is given. 
A classification problem consists of n land cover classes that are described by Ω = {ωi}, with 
i=1,...,n. Let in a d-dimensional feature space dℜ , x = {x1, x2,…xd) be a sample (or pattern) 
belonging to a class ωi. The determination of the class membership of x is defined by the 
conditional probability p(ωi|x). This so-called posterior probability describes the likelihood that 
ωi is the correct class for x. The maximum probability value final determines the final class 
membership. Consequently the decision rule can determine as follows: 

 )|()|( xωpxωpifωx jii >∈  (2.2-1)  

The decision rule in equation 2.2-1 – also called maximum a posteriori (MAP) rule – is a 
simplified case of the Bayes rule. In general the decisions can be weighted by a loss function 
that reflects the loss incurred in associating x to ωi when the true class is ωj. With the 
knowledge of all class-conditional probabilities p(ωi|x), the Bayes decision rule can be simply 
applied to the imagery. 
On the other hand, class-conditional densities are usually not known. In this case the training 
samples can be used to estimate a probability density function p(x|ωi) for each class (Jain et al., 
2000). This function is given the probability to find a member from class ωi at pixel position x. 
For a pixel x, a set of probabilities – with as many functions as there are classes – can be 
calculated that gives the relative likelihoods that a pixel belongs to each occurring class. 
The relationship between the known p(x|ωi) and the required p(ωi|x) is described as fallows 
(Richard and Jia, 1999): 

 ( ) )()()|(| xpωpωxpxωp iii =  (2.2-2) 

with p(ωi) as the probability that class ωi occurs in the imagery.  
The so called a priori probability p(ωi) is an estimation of the class membership that is based on 
a priori knowledge before the classification; i.e., if 30% of an image belonging to class ωi then 
p(ωi) = 0.3. 
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The probability to find a sample of any class at location x is described by p(x). Equation 2.2-1 
can be modified by using 2.2-2 and removing p(x) as a common factor: 

 )()|()()|( jjiii ωpωxpωpωxpifωx >∈  (2.2-3) 

Equation 2.2.3 is based that the probability distribution p(x|ωi) can derived from the training and 
that p(ωi) is known or can be estimated. In general it is assumed that the probability density 
functions for the classes are of the form of multivariate normal models (i.e., Gaussian models). 
In doing so p(x|ωi) is determined, solely by the class-specific mean vector and the covariance 
matrix. If the number of available training samples is limited, the covariance matrix can be ill-
conditioned and the efficiency of the classification is reduced (Richards and Jia, 1999; Lillesand 
and Kiefer, 2000) 

2.2.2 Decision Trees 
DT classifiers successively partition the training data into an increasing number of smaller 
homogenous classes by producing efficient rules, estimated from the training data. Whereas a 
specific class can be considered in several nodes of the tree another class might be separate by 
only one test. The most commonly used DT classifiers are binary trees. They use only one 
single feature at each node, resulting in feature axis parallel decision boundaries (Figure 2.2.1). 
Hence, they seem less adequate for complex class distributions. On the other hand the approach 
has several advantages as the fast training time and simple handling. A detailed introduction to 
decision tree classifiers is given by Safavian and Landgrebe (1991). A brief introduction is 
given below. 
Let, for a 3-class problem in a 2-dimensional feature space, a, b and c the corresponding class 
labels. For the example, shown in Figure 2.2.1, five tests were applied to discriminate between 
the three classes. A potential decision tree is shown in Figure 2.2.2 
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Figure 2.2.1: Distribution of the classes a, b, c in a 2-dimensional 

feature space. The dotted lines indicate the decision 
boundaries of the corresponding test Ti. 
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The discrimination of the training samples is performed by the decision rule at each split, which 
is generally derived from the training data, using statistical methods. Consequently the method 
that is used for this purpose might be a crucial element of the method. The fundamental strategy 
underlying the creation of rule T at node N is that of purity, defining T in a way making the 
descendent nodes as pure as possible. The contrary formalization of the strategy is more 
convenient, using the impurity rather than the purity (Duda et al., 2002). If all samples 
contained by N, belong to the same class, the node is pure and the impurity is 0, whereas it’s 
large, if all classes are equally distributed.  
Several concepts for the determination of the split rule and the measure of the impurity were 
introduced (Zambon et al., 2006), whereas Quinlans’ information gain ratio and Breimans’ gini 
index are commonly used splitting criterions (Breiman, 1998; Quinlan, 1993). 
The information gain ratio is based on the entropy or entropy impurity. The criterion is used to 
find a test that differentiate the training data set in node N, where n is the number of training 
samples in N with their corresponding class labels Ω = {ωi}, with i=1,...,l. 
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Figure 2.2.2: Schematic overview of a decision 

tree, separating three classes 
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The expected information provided at the node with respect of the class membership or required 
information to identify the class for an samples in N can be describe as: 

 ∑
=
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where p(ωi) denotes the probability or the relative frequency of class ωi: 
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with nωi as the number of samples belonging to class ωi. 
The test T differentiates N in z outputs {N1, N2, ..., Nz).  The total information content after 
applying the split rule T is denoted by the sum over the outputs:   
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The difference of equation 2.2-4 and 2.2-6 is the information gain that is achieved by separate N 
using rule T:  

 gain(T) = E(N) – ET(N) (2.2-7) 

Using 2.2-7, the test T which maximizes the information gain is selected. A drawback of this 
approach is that the information gain prefers tests with a relatively large number of splits, i.e., 
an attribute with a relatively high variance or numerous values would be selected. Hence the 
expression is normalized by the information by the split itself:  
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The final splitting criterion is defined as: 

 infogain ratio(T)= gain(N)/ES(N) (2.2-9) 

The information gain ratio aims to reduce the entropy of the data that are separated by each 
split. The rule T at each split is selected that maximizes the reduction in the entropy (i.e, 
maximizes the ratio) of the descendant nodes. 
The gini index measures the impurity at a given node and aims to separate the largest 
homogeneous group within the training data from the remaining samples (Zambon et al., 2006). 
The index is described as: 
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where iωp , the probability or the relative frequency of class ωi at node T is defined as, with nωi 
as the number of samples belonging to class ωi and n as the total number of samples within 
training set N. 

 
n

n
p iω

iω =  (2.2-11) 

with nωi as the number of samples belonging to class ωi and n as the total number of samples 
within training set N. The impurity (i.e., gini index) of all sub-partitions is summed for each 
potential split rules and the test that causes the maximum reduction in impurity is selected (Apte 
and Weiss, 1997). 
As other classifiers (e.g., neural networks) decision trees can be easily over trained. This is 
generally avoided by pruning. Pruning eliminates the inefficient, weak branches of a tree, to 
produce a more compact tree, which is not over trained (Duda et al., 2000). In general there are 
two concepts to generate a simplified tree: (1) the successive partitioning of the training is 
stopped before the whole (complex) tree is completed or (2) some parts of the DT are removed 
afterwards by recursive partitioning. A brief overview to pruning is given by Pal and Mather 
(2003).    

2.2.3 Support Vector Machines 
Support vector machines (SVM) were originally introduced as a binary classifier (Vapnik, 
1998). SVM are based on an optimal linear separating hyperplane (OSH), which is fitted to the 
training samples of two classes within a multi-dimensional feature space. The optimization 
problem that must be solved is based on structural risk minimization. It aims to maximize the 
margins between the OSH and the closest training samples – the so-called support vectors 
(Vapnik, 1998). Hence, the approach only considers samples close to the class boundary and 
work well with small training sets, even when high dimensional data sets are classified. A 
detailed introduction to the general concept of SVM is given by Burges (1998) and Schölkopf 
and Smola (2002). An overview in the context of remote sensing is given by Huang et al. (2002) 
and Melgani and Bruzzone (2004), a brief introduction is given below: 
For a binary classification problem in a d-dimensional feature space dℜ , Mix d

i ,...,2,1, =ℜ∈  
is a training set of M samples with their corresponding class labels { }1,1 −∈iy . The hyperplane 
f(x) is described by a normal vector dw ℜ∈ and the bias ℜ∈b , where wb  is the distance 
between the hyerplane and the origin, with ||w|| as the Euclidean norm from w.  

 bxwxf +⋅=)(  (2.2-12) 

The support vectors are located on two hyperplanes 1±=+⋅ bxw  , which are parallel to the 
OSH. The margin maximization leads to the following optimization problem: 
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with ξi as the slack variables and C as the regularization parameter that are introduced to handle 
misclassified samples in non-separable cases. 
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The constant C is added as a penalty for cases that lie on the wrong side of the hyperplane 
(Figure 2.2.3). Effectively it controls the shape of the solution and thus affects the 
generalization capability of the SVM, e.g., a large value of C might cause an over-fitting to the 
training data. 
In non-linear separable cases the linear approach is extended by so-called kernel methods. This 
concept is based on a non linear mapping of the data into a higher dimensional feature space, 
e.g., )'(: ' ddH dd >→ℜΦ . In doing so, an OSH can be fit to a more complex class 
distribution that is generally not-separable in the original feature space. The transformed sample 
x is described by )(xΦ  in the new high-dimensional space. 
This computationally extensive transformation process of ))()(( ixx ΦΦ  in a high dimensional 
space is reduced by using a positive definite kernel function k, which must meets Mercers 
conditions (Vapnik, 1998): 

 ),()()( jiji xxkxx =ΦΦ  (2.2-14) 

Thus the final hyperplane decision function can be described as follow: 
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where αi are Lagrange multipliers. 
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Figure 2.2.3:  Concept of a SVM for a linearly non-separable case. The squares and diamonds indicate the 
samples of class ωi (yi =+1) and class ωj (yj =-1) respectively. The encircled samples refer to 
the support vectors, which lie on the two hyperplanes w·x+b=-1 and w·x+b=+1. The OSH 
lies between this two functions. 
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The so-called kernel-trick enables to work in the newly transformed feature space, without 
explicitly knowing Ф, but only the kernel function k. The polynomial and the Gaussian radial 
basis function (RBF) kernels are widely used kernel functions (Vapnik, 1998; Schölkopf and 
Smola, 2002): 
Polynomial Kernel 

 ( ) ( )ajiji xxxxk 1, +⋅=  (2.2-16) 

Gaussian kernel 
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The SVM application requires the estimation of the kernel parameter, e.g., γ and the 
regularization parameter C. Different approaches for an automated model definition have been 
introduced (e.g., Chapelle et al. 2001; Chung et al. 2003), which based generally on a leave-
one-out procedure. 
In contrast to other classifier algorithms (e.g. decision tree) the original output of a 
SVM (2.2-15) does not contain the final class label. The imagery contains the distances of each 
pixel to the optimal separating hyperplane, from now on referred to as rule images. These rule 
images are used to determine the final class membership, depending on the multiclass strategy. 

Multiclass strategies 
As mentioned above, SVM have originally been introduced for binary classification problems 
that typically do not occur in the context of remote sensing image analysis. Hence several 
concepts have been developed for solving multiclass problems. In general a n-class problem is 
divided into several sub-problems and the individual binary SVM are combined in a set of 
classifiers. Two main strategies exist: the one-against-one strategy (OAO) and the one-against-
all strategy (OAA).  
Let Ω = {ωi} with i=1,...,l  be a set of l possible class labels (i.e., land cover classes). The OAO 
strategy is based on the training of l(l-1)/2 binary SVM, one for each possible pair-wise 
classification problem, discriminating ωi and ω (ωi ≠ ωj), e.g. cereals vs. forest, cereals vs. 
urban, forest vs. urban, etc. Consequently a set of l(l-1)/2 rule images is created. The sign of the 
distance to the hyperplane (i.e., the rule images) is used within the voting scheme. For the 
classification a score function Si is computed for each class ωi. All positive (i.e., sgn=+1) and 
negative (i.e., sgn=-1) votes for the specific class are summed and the final class membership of 
x is derived by a simple majority vote: 
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In contrast to the OAO approach the OAA concept is based on the training of l SVM. Each class 
ωi is separated from the remaining Ω-ωi, e.g., cereals vs. rest, forest vs. rest, urban vs. rest, etc. 
The absolute maximum distance to the hyperplane (i.e., the absolute maximum value within the 
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rule images) determines the final class membership, instead of using the simple sign of the 
decision function as done in the OAO. This approach is also known as “winner takes all”, 
because only one value – the maximum – is used for the membership decision. In contrast to 
these two multicass methods, other approaches directly defined the SVM as one multiclass 
problem (Hsu and Lin, 2002; Sebald and Bucklew, 2001). However, a simultaneous 
differentiation of more than two classes leads to more complex optimization problem (Sebald 
and Bucklew, 2001). Consequently such approaches might be less efficient compared to 
conventional multiclass strategies. In Melgani and Bruzzone (2004) a computationally favorable 
hierarchical tree-based SVM was introduced as an alternative concept. Nevertheless compared 
with the original OAO concept the method achieved a slightly lower overall accuracy. 

2.3 Classifier systems 
Land cover classifications based on multiple classifier systems have been performed 
successfully during the recent years and are particularly interesting for multisource and high-
dimensional data sets. Besides several applications in the context of remote sensing and pattern 
recognition, it has been shown theoretically that the classification accuracy can be increased by 
combining different independent classifiers (Schapire, 1990, Turmer and Gosh 1996, 
Kittler 1998). Two strategies exist to generate a multiple classifier system: (1) a combination of 
different classifier algorithms and (2) a combination of variants of the same algorithm. 
By training the so-called base classifier on modified input data (i.e., training samples or input 
features) a set of independent classifiers can be produced, from now on referred to as classifier 
ensembles. For generating the final result these outputs are combined by a voting scheme 
(Figure 2.3.1). Often a simple majority vote is used, which can be effective than more complex 
voting strategies.  

The concept is based on the assumption that independent classifiers produce individual errors, 
which are not produced by the majority of the other classifiers. Various strategies for generating 
classifier ensembles have been introduced as for example a resampling of the training data (i.e., 
bagging or boosting) and the input features (e.g., random feature selection). 
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Figure 2.3.1: Schematic diagram of a classifier ensemble 
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Banfield et al. (2007) give an introduction and assessment to various types of classifier 
ensembles; a brief overview to the main concepts is given below. Breimans’ (1996) bootstrap 
aggregating (bagging) describes the random generation of training sample subsets also known 
as bootstrapped aggregates or bags. The approach is based on the random and uniform selection, 
with replacement , of n samples from a training set of same size n. i.e., a training sample can be 
selected several times in the same sample set and perhaps other samples are not considered in 
this particularly bag. Afterwards an individual decision tree is trained on each of these bags, 
resulting in various independent classifier outputs. The final classification map is generated by 
combining the individual outputs. 
The concept of boosting was originally introduced by Schapire (1990) as an approach to 
improve the performance of a weak learning algorithm. For the iterative training process, all 
training samples are equally weighted in the beginning. Boosting successively changed the 
weights of the training samples during the training process, comparing the outputs with the 
known class memberships of the samples. Whereas in the initial phase all training samples are 
equally weighted, misclassified samples are assigned a stronger weight than those classified 
correctly. The next DT within the ensemble uses the newly distributed, reweighed samples. In 
doing so, the classifier is forced to concentrate on the misclassified samples that are more 
difficult to classify and can reduce the variance and bias of the classification. Unlike bagging 
that can be performed simultaneously, boosting generates the different classifiers in a 
sequentially procedure. Consequently it computation time is relatively slow. The AdaBoost.M1 
approach (Freund and Schapire, 1996) is widely used in the field of pattern recognition and 
remote sensing. 
Besides resampling of the training data, the modification of the input feature space, e.g. by a 
random selection of features, is another concept for generating independent classifiers (Ho, 
1998; Bryll et al. 2003). It has been shown that this random feature selection approach can be 
superior to bagging and boosting (Ho, 1998; Bryll et al., 2003). In contrast to the two 
aforementioned data partitioning strategies, the training samples remain unchanged by this 
concept. For each DT a subset of features is created. Unlike bagging that collects n samples 
from a sample set of size n, the method normally selects a subset of the available input features 
without replacement.  
Breiman’s (2001) random forests technique use a set of decision trees {DT(x, Um), m=1,…,}, 
where Um denotes independent identically distributed random vectors and x an input pattern 
(i.e., signature). Each tree within the ensemble is trained on a subset of the original training 
samples (i.e., bagging); in addition the split rule at each split is determined, using only a 
randomly selected feature subset of the input data. A simple majority vote is used to create the 
final classification result ( 
Figure 2.3.2).  The number of selected features within the subset is user-defined, and the 
parameter is usually set to the square root of the number of input features (Gislason et al. 2006). 
The computational complexity of the individual DT classifier is simplified, by reducing the 
number of features at each split.  
This enables random forests to handle high-dimensional data sets. In addition the correlation 
between the classifiers is decreased, which generally improves the performance of a classifier 
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system. The method is from a computational view lighter than bagging and boosting concepts, 
because it is only based on subsets of input data (Gislason et al. 2006). 
In contrast to the aforementioned classifier ensembles, other concepts are based on the 
combination of different classifier algorithms, from now on referred to as multiple classifier 
systems. By using different classifier algorithms, it can be assumed that different outputs are 
created; moreover the individual advantages of each method can be used. Perhaps the methods 
were developed in a diverse context and enable a different description of the same classification 
problem. Furthermore each method may have its own region in the feature space where it 
performs the best (Jain et al., 2000). Several of these studies are based on decision fusion, 
which is also used for combing different data sources (e.g., Jeon and Landgrebe, 1999; 
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Figure 2.3.2: Schematic diagram of random forests 
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Bachmann et al., 2003; Fauvel et al., 2006; Gamba et al., 2007). Decision fusion can be defined 
as a strategy of combining information from different data sources, after each source has been 
classified separately.  The decision fusion concept can be based on consensus theory for 
example, which employs single probability functions to summarize estimates from various 
sources (Benediktsson and Swain, 1992), using consensus rules. The linear opinion pool and the 
logarithmic opinion pool are common consensus rules. Nevertheless, his technique requires the 
costly selection of weights, which generally reflect the reliability of the input data 
(Benediktsson et al., 1997). In contrast to this computationally complex approach, other studies 
uses voting concepts like majority voting and complete agreement (Benediktsson and 
Kanellopoulos, 1999; Fauvel et al. 2006a). 

2.4 Segment-based classification  
In segment-based approaches adjacent pixels with similar properties are aggregated into image 
segments. In several of these studies segment-based classifications are more accurate than 
conventional per-pixel classifications. By image segmentation information on the segments' 
mean spectral or backscatter value, their texture and shape as well as neighborhood 
relationships can be derived, which can be used during subsequent classification. Moreover 
such an approach can solve or reduce the effects of two common problems, which are often 
arising in pixel based classifications (Smith and Fuller, 2001; de Wit and Clevers, 2004): (1) 
The variability of spectral reflectance and backscatter intensities within an object as an 
agricultural parcel can be affected by site-internal variations, e.g., like moisture, soil 
heterogeneities and plant infections. Hence pixel values vary on plot level and a definite 
assignment to a single land cover class might be difficult. (2) The spectral properties of pixels, 
which lie along the boundaries of two objects might be a mixture between both classes (e.g., 
two different field plots). Consequently these mixed pixels do not represent either of the two 
land cover types. By image segmentation the pixel values can be averaged and the mixed pixels 
are eliminated. In regard to SAR imagery, which is affected by speckle, image segmentation has 
the positive effect that the noise is leveled out. In Tso and Mather (1999) the classification 
accuracy of multitemporal ERS-2 imagery was significantly improved by an segment based 
approach. 
In general two main concepts of segment-based classifications can be distinguished: In the first 
approach the training and classification process is performed on previously segmented imagery. 
In contrast to this method, another approach is based a conventional pixel-based classification. 
After the classification is performed, the majority class within each segment is calculated and all 
pixels belonging to the segment are assigned to this specific class. The approaches used in this 
dissertation belong to the first concept. 
Several techniques have been developed for image segmentation (Le Moigne and Tilton, 1995; 
Baatz and Schäpe, 2000; Evans et al., 2002). Boundary-based approaches are using the contrast 
in the grey-level distribution function of pixel values. Region-growing or region-based methods 
perform under the assumption that pixels of the same natural feature have a certain spectral 
homogeneity. A well-known method is based on a region-growing algorithm (Baatz and 
Schäpe, 2000). A description of the approach is given by Shackelford and Davis (2003), general 
constraints of the concept are described in Bruzzone and Carlin (2006).  
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In the beginning, each pixel is considered as an individual segment and is subsequently merged 
with adjacent segments into new larger segments. For the merge of two segments, the difference 
∆h between the heterogeneity of the new segment (e.g., spectral or backscatter heterogeneity) 
and the heterogeneity of the constituent segments is calculated as follows: 
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where hmi denotes the heterogeneity of the potentially merged segment for the heterogeneity 
measure i (e.g., the variance in a specific band). Those of the two individual segments are 
described by h1i and h2i. The number of pixels belonging to the segments is defined by ρ1 and ρ2. 
The weight θi controls the impact of the specific heterogeneity. 
The merge is performed, when this increase is below a user defined stopping criterion, hs. The 
segmentation process stops as soon as this condition can not be fulfilled by any possible merge. 
Consequently segment size is driven by hs. In general, ∆h is based on the spectral/back-scatter 
variance within user-defined bands and on segment shape (e.g., the compactness or 
smoothness). 

2.5 Evaluation of classifiers - accuracy assessment 
The evaluation of the algorithm and the corresponding classification results is an important 
issue in context of digital image analysis and land cover classification. Beside the performance 
of the algorithm, the classification result is affected by several factors: e.g., land cover types, 
which have to be classified, quality of the training samples and available input imagery (i.e., 
temporal, spatial and spectral resolution). In addition the geographical properties of a study area 
might have a dominant impact on classification accuracy. Smith et al. (2002) have shown that 
the classification accuracy significantly decreases with an increasing heterogeneity of the 
landscape and in contrast the accuracy is improved with increasing patch sizes. 
A general classifier assessment can be based on a qualitative evaluation, using expert 
knowledge or a quantitative assessment, using statistical methods and a priori information. The 
main measurement of performance is the classification error or the corresponding overall 
accuracy. The measurement describes the total fraction to which degree the produced image 
classification agrees with the reality (i.e., the reference that is assumed to be truth). Thus a 
divergence between the map and reference information is a classification error (Foody, 2002). 
Contrary to the overall accuracy a classification method can be also assessed in terms of 
reproducibility, robustness to noise, dependency on the training patterns or computational 
advantages (DeFries and Chan, 2000). However, the main criterion – which is generally used in 
each evaluation, is the classification accuracy. 
Before introducing a methodology for an accuracy assessment, it should be mentioned that – 
beside the classification error – several kind of errors exists (Foody, 2002). Spatial distortions, 
e.g., due to geometrical correction and resampling of the image data, can be a major source of 
misclassifications (Muller et al., 1998). Errors in the ground truth and reference data are another 
error-source that affects the classification accuracy (Foody, 2002). Man-based ground truth 
campaigns might be subjective and dependent on the field analysts. Moreover the field mapping 
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strategy is often based on natural features and objects, particularly in context of regions that are 
dominated by agricultural land use. Hence the sampling unit in the ground truth data might be 
different to the classified imagery (e.g. field plot versus pixel). 
In generally the accuracy assessment is based on the accuracy or confusion matrix, which 
compares ground truth data with the corresponding classification for a given set of validation 
samples (Congaltion and Green, 1999; Foody, 2002). The accuracy matrix enables the 
derivation of the most common evaluation criterions: (1) overall accuracy, (2) producer 
accuracy, (3) user accuracy. A detailed overview is given by Foody (2002) and Congaltion and 
Green (1999). A brief introduction is given below. 
Let, for a l-class classification problem, N be the total number of reference samples. The 
corresponding confusion matrix is illustrated in Figure 2.5.1. The number of samples that 
classified as class ωi (i=1,2,..,l) and belong to land cover class ωj (j=1,2,…,l) are described by 
nij, e.g. n11 denotes the number of samples that belongs to class 1 and correctly assigned to class 
1, whereas n21 define the samples belonging to class 1, but incorrectly classified to class 2. The 
diagonal elements ncc (i.e., the highlighted elements in Figure 2.5.1) of the error matrix contain 
the number of correctly classified samples. The overall accuracy can be derived by their sum 
divided by the total number of samples N: 

N

n
accuracyoverall

L

c
cc∑

== 1  (2.5-1) 

Another measurement for the assessment of the overall accuracy is Cohen’s kappa coefficient, 
which is often used for a comparison of maps from different regions. In the presented 
dissertation, the overall accuracy is used. 
In addition the confusion matrix can be used to derive class-specific accuracies (i.e., producer 
and user accuracy) or corresponding error rates. An error of omission is excluding a sample 
from a class in which it originally does belong. A commission error on the other hand assigned 
a sample to a wrong class. Consequently each error is an omission from the correct class and a 
commission to a wrong class. In this work the contrary (positive) formalization of the indices is 
used, i.e., the producer and user accuracy 
The producer accuracy for class c is calculated by dividing the number of correct samples of c 
by the total number of reference samples of class c. 
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The user accuracy describes how many samples that have been classified as c are actually 
belonging to class c. The measurement is derived by:  
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For classifier training and an adequate accuracy assessment independent samples sets are 
required. Sample sets can be generated in different ways: e.g. (1) simple random sampling, (2) 
systematic sampling, and (3) stratified random sampling. When using the first one each sample 
(e.g., pixel) has an equal chance to be selected, the systematic approach selects samples with an 
equal interval over the test site. The stratified random sampling combines some prior knowledge 
about the regions with the simple random sampling. The stratified random sampling seems 
advantageous, because the approach guarantees that all classes are included in the sample set 
(Congalton and Green, 1999). In the presented study an equalized random sampling strategy is 
performed, guaranteeing that all classes are uniformly included in the sample set. 
 

 
 Ground truth information  

 
 Class1 Class 2 Class c S 

Class 1 n11 n12 n1c n1+ 

Class 2 n21 n22 n2c n2+ 
C

la
ss

ifi
ca

tio
n 

re
su

lt 

Class c nc1 nc2 ncc nl+ 

 
S n+1 n+2 n+c N 

Figure 2.5.1: Schematic diagram of a confusion matrix, the highlighted 
elements contain the number of correctly classified samples  
(Congalton and Green, 1999, modified) 
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3 Study site and data 

3.1 Study site 
The study area is located near Bonn in the German state North Rhine-Westphalia (NRW), in the 
Köln Aachener Bucht (Figure 3.1.1). The annual mean temperature vary approximately between 
9.2°C and 9.5°C and the precipitation between 600 mm and 630 mm per year. The almost flat 
region is characterized by a predominant agricultural use with wheat and sugar beets as one of 
the main crop types. A visual assessment clearly shows that the study is characterized great 
variability and typical spatial patterns of high-frequent land cover changes between, relatively 
small, individual plots (Figure 3.1.1).  

3.2 Remote sensing data 
SAR and multispectral EO-systems operate in different wavelengths, ranging from visible to 
microwave domain. The interaction between the land surface and the radiation is different (e.g., 
Kühbauch and Hawlitschka, 2003), consequently the two systems provide different information. 
In the visible range of the electromagnetic spectrum the energy is highly absorbed by vital 
vegetation. Chlorophyll, for example, strongly absorbs the energy in the blue and range, 
whereas the green wavelength is highly reflected. Thus healthy vegetation is appears as green 
colour. The amount of reflected energy significantly increases at about 0.7 µm. The internal 
structures of plants that impact the electromagnetic spectrum in the range 0.7 to 1.3 µm are 

Figure 3.1.1: Location of the study site, the red polygon indicates the location of the main study site.
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clearly vary between different species. Thus, this information often enables a separation of 
vegetation types, which are similar in the visible domain Lillesand and Kiefer (2000).  
In case of soil reflectance characteristics the signal is dependent on characteristics as soil 
moisture, soil texture, iron oxide and organic matter content. Beside this various properties, the 
reflection in the optical range is also impact by characteristics, as illumination and viewing 
properties and geometrical properties of target. Bauer et al. (1986) give an introduction and 
quantitative description to the complex interaction between vegetation, soil, atmosphere, and 
illumination and sensor geometries in context of agricultural crops (1986). A general overview 
can be found in several text books, e.g., Lillesand and Kiefer (2000) and Jensen (1996).  
Microwaves, on the other hand, interacts with vegetation canopy primarily with their volume 
and their structural elements, leaves and stems. In general these interactions depend on several 
factors: (1) sensor parameters as wavelength, polarization and local incident angle, (2) 
characteristics of the illuminated target as roughness, dielectric properties and topography: The 
penetration depth of the electro magnetic (EM) waves generally increases with decreasing 
frequency. Relatively short wavelengths (i.e., high frequency) are reflected from the upper 
surface of a medium, e.g., from the leaves of a vegetation canopy, consequently the surface 
scattering from the underlying surface is minimal. Lower frequencies (i.e., higher wavelength) 
on the other hand, can penetrate deeper into the illuminated medium. The backscatter results 
from corner reflections between the stems and the underlying surface (i.e., volume scattering). 
The polarization of microwaves is another important parameter, affecting the backscatter signal. 
The electro magnetic wave consists of three vector fields: (1) direction of propagation, (2) 
electric filed and (3) magnetic field. The active microwave consists of a polarized component, 
which is defined by the electro magnetic field vector of the wave (Henderson and Lewis, 1999). 
The (transmitted and received) electric field can be polarized horizontally (H) or vertically (V) 
in terms of to the direction of propagation. Whereas in co-polarized systems the transmitted and 
received polarization is identical, cross-polarization is referred to as different transmit-receive 
combinations. However, the impact of polarization and wavelength varies with varying 
geometrical target properties. In context of crop monitoring for example, an increasing density 
of a vegetation canopy (with a generally corresponding decrease in stem diameter) is leading to 
a decrease of the adequate wavelength. Consequently lower frequencies appear more convenient 
for mapping crops as maize and root crops, whereas shorter C and X-band waves seems more 
appropriate for monitoring cereals as wheat and barley. Vertical polarized data (VV) provide the 
most significant information for crops, which are dominated by vertical structures (e.g. wheat 
and barley). In contrast to this, the cross-polarization HV (i.e., horizontally transmitted and 
vertically received) is more applicable for ramified crops, as maize and rapeseed and a general 
differentiation between different crops types (Brisco et al., 1992; Ferrazzoli, 2002). Besides the 
surface roughness, the backscatter mechanism of EM-waves is significantly forced by the 
dielectric properties of the medium. In general the dielectric constant describes the interaction 
of the medium with an electric field. The dielectric constant of water is significantly higher 
compared to those of most natural materials (Henderson and Lewis, 1999). Consequently the 
backscattering mechanisms are significantly influenced of the water content of the target media 
(e.g., soil moisture). Increasing moisture content is leading to higher backscatter intensities, 
whereas at the same time the penetration depth decreases.  
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3.2.1 Multispectral data 
For this study multispectral imagery from different EO-mission were available. The 
Landsat 5 Thematic Mapper (TM) was launched 1984 in cooperation between the National 
Geological Survey (USGS) and the National Oceanic and Atmospheric Administration 
(NOAA). The Landsat sensor is a “whiskbroom scanner”, which uses an oscillating mirror to 
reflect the incoming radiance to a detector system.  
Furthermore data from SPOT-2 and SPOT-5 (Systeme Pout l’Observation de la Terra) were 
used, which were launched by the French space agency CNES in 1990 and 2002. In contrast to 
Landsat, the SPOT system is based on a pushbroom scanner, which uses a linear array of CCDs 
arranged along a line vertical to the satellite orbit track (Lillesand and Kiefer, 2000; Richards 
and Jia, 1999). A technical overview to the main sensor parameters of the two systems is given 
in Table 3.2.1 (USGS, 1984; Spot, 2005). 

3.2.2 SAR data 
In this study SAR data from the European satellites Envisat and ERS-2 are used. After the 
launch of the first European Remote Sensing Satellite (ERS-1) in 1991, the ERS-2 has been 
launched in 1995, containing the Active Microwave Instrument (AMI). The Advanced Synthetic 
Aperture Radar (ASAR) is the biggest instrument boarded on the ENVISAT platform, which 
has been launched in 2002. In comparison to the previous ERS-1/2 missions the microwave 
instrument was further enhanced, enabling the acquisitions of different polarizations, incident 
angles and image modes. An overview to the technical specifications is given by ESA (2002). 
Table 3.2.2 shows the main configuration parameters of the two instruments. The ASAR 
instrument provides 5 different imaging modes, with different spatial resolution and coverage. 
Furthermore by selecting a predefined swath, images with different incident angle can be 
acquired. 

Table 3.2.1: Overview to sensor configurations of Landsat-5 TM, SPOT-2 and SPOT-5 

Parameter Configuration 
 Landsat-5 TM SPOT 2 SPOT 5 

Orbit altitude 705 km 822 km 

Orbit repitition rate 16 days 26 days 

Incident angle range - ±31.06° 

Swath width [km] 185 km 60-80 km 

Spectral bands 6* 3** 4** 

Band width [mm] 

B1: 0.45 - 0.52  
B2: 0.52 - 0.6 
B3: 0.63 - 0.69 
B4: 0.76 - 0.9 
B5: 1.55 - 1.73 
B7: 2.08 - 2.35 

B1: 0.50 - 0.59 
B2: 0.61 - 0.68 
B3: 0.78 - 0.89 

 

B1: 0.50 - 0.59 
B2: 0.61 - 0.68 
B3: 0.78 - 0.89 
B4: 1.58 - 1.75 

spatial resolution 30 m 20 m B1-B3: 10 m 
B4: 20 m 

* thermal band is not considered **panchromatic band is not considered 
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The imaging modes are defined by the user before the acquisition: The Image Mode (IM) 
enables the selection between any of the 7 available swaths. Due to the dual-polarization of the 
system, the electromagnetic field can be polarized horizontally or vertically, resulting in co-
polarized images (HH or VV). The spatial resolution of precision products is approximately 30 
m, with a spatial coverage between 56 km (swath 7) and 100 km (swath 1) across track. Using 
the Alternating Polarization (AP) mode, two co-registered images are generated per image 
acquisition. Thus, a simultaneous acquisition of different polarized data sets is possible. In 
contrast to common co-polarized systems, the AP mode enables different transmit-receive 
combinations (i.e, cross-polarization), and operates in three potential combinations:  HH/VV, 
HH/HV or VV/VH. Furthermore the instrument enables wide area coverage with a medium 
spatial resolution of approximately 150 m (Wide Swath mode) and 1 km (Global Monitoring 
mode). In addition a wave mode is available for ocean monitoring. 
The selectable swaths (Table 3.2.3) enable the observation of a study area from different orbit 
paths, increasing the temporal resolution of the image data set. Furthermore different incident 
angels provide dissimilar information. Moreover for a certain application a specific incident 
angle is more adequate than another and perhaps for other application another incident angle is 
more appropriate.  

Table 3.2.2: Overview to sensor configurations of ERS-2 AMI and Envisat ASAR. 

Parameter Configuration 
 ERS-2 ASAR 

Orbit altitude 785km ~799 km 

Orbit repitition rate ~35 days ~35 days 

Incident angle range 19-27° 14-45°* 

Swath width 100 km  58-109km* 

Frequenzy / wavelenght 5.3GHz / 5.66 cm 5.331GHz / 5.62cm 

Polarization VV VV / HH / VH / HV* 

Calibration accurcay ±0.5 dB ±0.5 dB 

spatial resolution** ~30 m 

* dependant on selected mode, ** appr. Resolution of PRI products 

Table 3.2.3: Configurations of ASAR image swaths 

Image swath configurations 
Swath number Incident angle [°]  Swath width [km] 

IS 1 15.0 - 22.9 105 

IS 2 19.2 - 26.7 105 

IS 3 26.0 - 31.4 82 

IS 4 31.0 - 36.3 88 

IS 5 35.8 - 39.4 64 

IS 6 39.1 - 42.8 70 

IS 7 42.5 - 45.2 56 
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3.3 Auxiliary data 
For generating training and validation data two extensive ground truth campaigns were 
conducted in during summer 2005 (Figure 3.3.1) and 2006 (Figure 3.3.2), with a focus on 
agricultural land use. Regarding the dominant agricultural land use and the typical crop 
penology within study area, it is assumed that no critical changes are present during the periods 
of image acquisition. For the field campaigns a Geographical Information System (GIS) was 
generated, using a priori information and high-resolution aerial photography. The polygon 
layers were modified, using the image information. During the field campaigns the actual 
boundaries of natural features were controlled by Global Positioning Systems (GPS) and the 
vector files within the GIS project were updated. For each object (e.g. a forest area, an 
agricultural parcel or an urban feature) the actual land cover was recorded on plot level. Beside 
the remote sensing imagery and ground truth information a Digital Elevation Model (DEM) was 
available.  
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 Figure 3.3.1: Study site and corresponding land use in 2005. 
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 Figure 3.3.2: Study site and corresponding land use in 2006. 
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4 Data preprocessing 
Before remote sensing data can be analyzed, a geometric and radiometric preprocessing must be 
performed, because the imagery can contain systematic and non-systematic distortions, as a 
consequence of the EO-system and the characteristics of the Earth surface. Such distortions can 
impact the geometry of the imagery as well as the radiometric information (Richards and Jia, 
1999; Henderson and Lewis, 1999). In Figure 4.1.1 an overview to the preprocessing is given. 
Below a brief introduction to the different preprocessing steps is given. 

4.1 Preprocessing of multispectral data 

4.1.1 Radiometric correction 
The signal measured at the satellite is an outcome of the interaction between the solar irradiance 
with the illuminated surface and its two-fold way of the radiance through the atmosphere. Due 
to this interaction, different radiance fluxes illuminate the target surface and can be measured at 
the sensor system respectively (Jensen, 1996; Mather, 1999). Hence, the at-satellite reflectance 
is dependent on several factors, as surface characteristics and atmospherically absorptions and 
scattering processes, by gaseous and aerosols components. Consequently the actual constitution 
of the atmosphere has a significantly impact on remote sensing imagery and a correction of 
these impacts seems worthwhile (Mather, 1999; Tanré 1987, Hill und Sturm, 1991). At the 
satellite the incoming radiances are converted to a digital signal, which can be described by a 
calibration function. The further radiometric pre-processing is based on actual physical 
measurements of spectral radiances; hence the digital numbers (DN) are converted to radiance 
values. The sensor calibration is described by: 

 ( ) bDNaλL +⋅=  (4.1-1) 

with DN as digital number (i.e. pixel value), a as  sensor gain and b as sensor offset. 
Beside several simple approaches, as scene averaging or empirical line correction (e.g. Richards 
and Jia, 1999), several approaches are based on the physically modeling of the atmospheric 
processes (Tanré 1990, Hill and Sturm, 1991). In the study presented here, the simplified and 
fast correction approach ATCOR (Richter, 1996a; Richter, 1996b) was used. In contrast to more 
sophisticated radiative transfer models as Modtran (Berk, 1989), the approach is based on 
inverting previously results of Modtran calculations.  

4.1.2 Geometrical correction 
For matter of comparison and combination of different information sources, like remote sensing 
imagery from diverse sensor systems, ground truth data and topographical information (e.g., 
DEM), all available data have to be transferred into a reference cartographic projection system, 
to generate a generally valid data basis. As a consequence all geometrical errors must be 
corrected. Significant geometrical errors within the Landsat imagery are for example earth 
rotation skew, panoramic distortion, pixel size distortions, and variations in platform speed and 
elevation (Richards and Jia, 1999; USGS, 1984). Those distortions are considered by the system 
correction regularly applied to the imagery prior delivery (USGS, 1984). The system corrected 
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imagery need to be transferred into a reference cartographic projection system (e.g., UTM, 
WGS-84). The relation between the image to be corrected and the reference system is compute 
by identifying corresponding positions in the imagery and a reference scene that is already 
available in the desired cartographic projection. These positions are located by Ground Control 
Points (GCPs), which are used to derive a transfer function between the imagery and the 
reference system, i.e., the master scene. Using a DEM the image is orthorectified with spatial 
accuracy of approximately one pixel. The resampling is performed by cubic convolution. Even 
this technique modifies the output values; it usually generates a much smoother output image. 
The geometric correction of the SPOT imagery is performed similar. As before a correction of 
systematic distortions, including panoramic effect, earth curvature and rotation and variations in 
the satellite orbit, was performed prior delivery. In addition the data is corrected by normalizing 
the CCD response to adjust radiometric variations due to detector sensitivity (Spot, 2005). 
Finally, the SPOT data were resampled to the pixel size of the Landsat TM image (30 m) and 
orthorectified with a spatial accuracy of approximately one pixel, using a digital elevation 
model and the corrected Landsat scene as a reference image.   

4.2 Preprocessing of SAR data 
In this study SAR precision imagery (PRI) is used. Preprocessing steps as slant to ground range 
conversion and multilooking are already performed and the data is delivered in radar brightness, 
antenna pattern and range spreading loss corrected. The discussion of the generation of these 
data products would be beyond the scope of the dissertation. A good introduction to the topic of 
SAR image formation is given, e.g., by Oliver and Quegan (1998) as well as Henderson and 
Lewis (1999). An overview to preprocessing of ERS-2 and Envisat ASAR products is given by 
Lauer et al. and ESA (2002) respectively, whereas the preprocessing of the used data products is 
comparable. The preprocessing chain of the SAR data within this study is dived into four 
components: (1) radiometric calibration, (2) co-registration, (3) speckle filtering, and (4) 
geometrical correction. 
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Figure 4.1.1: Schematic overview of the preprocessing 
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4.2.1 Radiometric calibration 
The radar backscatter coefficient sigma can be derived from the intensity values within the 
image data. For ground range detected products, the backscatter coefficient σ0 can be derived by 
(ESA, 2002): 

 ασ sin
2

0 ⋅=
k

DN  (4.2-1) 

with DN as digital number (i.e., pixel value), a denotes the incident angle and k the calibration 
constant, which is provided with the image product.  
Although during the normal image processing a flat earth is assumed, the radar backscatter is 
affected by local topography. Hence, different concepts for the correction of these effects have 
been introduced (Zyl et al., 1993, Ulander 1996). On the other hand the study area is almost flat. 
First test have shows no significant differences between terrain corrected and “original” image, 
consequently a terrain correction is not conducted. Afterwards acquisitions with same viewing 
properties were co-registered with a spatial accuracy of approximately one pixel, using a 
maximum correlation approach. 

4.2.2 Speckle filtering 
One drawback of SAR data is a random noise within the image, known as speckle. The speckle 
is caused by interferences between the radar waves reflected from multiple scattering elements 
within an individual resolution cell (Oliver and Quegan, 1998; Henderson and Lewis, 1999). 
The speckle degrades the image quality; reduces the image information content and hampers 
image analysis like land cover classifications and image segmentation (Touzi, 1988, Lee and 
Jurkevich 1989, Capstick and Harris, 2001, Herold et al, 2005). In the context of adaptive filter 
algorithms the speckle is described by a multiplicative model and assumed to be fully 
developed. The multiplicative speckle mode is defined as:  

 ( ) ( ) ( )yxsyxIyxI ,,', ⋅=  (4.2-2) 

where I(x,y) is the intensity of image pixel i,j. The unbiased backscatter intensity is defined by 
I’(x,y). The speckle noise is denoted by s(x,y) and is modeled by a Gamma distribution 
(Lee, 1986). 
A multitude of filter algorithms have been developed (Lee et al., 1994, for a review) and an 
appropriate method minimizes the speckle and preserves a maximum of image information at 
the same time. In several studies the impact of the filter method on the overall accuracy of a 
land cover classification was investigated (Capstick and Harris, 2001, Herold et al, 2005, 
Nyoungui et al. 2002). Although the conclusions are contrary in terms specific filter 
performances, the experimental results in these studies clearly demonstrate the positive effect of 
speckle reduction. In regard to multitemporal data sets a modification of the filter term is 
possible (Quegan et al., 2000). However, in this study a monotemporal filter approach was used, 
regarding the variety of the time series (i.e., different polarizations, sensors, and viewing 
angles). An enhanced Frost filter (Lopes et al., 1990) was applied to the imagery, using a 7×7 
window. In Figure 4.2.1 a comparison between original and unfiltered images is shown. 
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4.2.3 Geometrical correction 
For a precise geocorrection of the SAR imagery a digital elevation model and knowledge about 
the orbit of the sensor platform is required. Generally the orbit information is provided as orbit 
state vectors in the image product header. Furthermore a master scene with corresponding GCPs 
was used. The optical image, which was already employed for the geocoding of the 
multispectral imagery, was used as reference information. In doing so a more accurate spatial 
accuracy between the multisensor imagery is assumed. Using the (optical) master scene, GCPs 
were collected for the SAR imagery. Due to the prior image registration, this step must be 
performed only once for each set of images. Finally, the SAR images (12.5 m) were resampled 
to the pixel size of the Landsat TM scene (30 m) and orthorectified with a spatial accuracy of 
approximately one pixel, using a digital elevation model, orbit state vectors and the Landsat 
image as a reference information.   

 
Figure 4.2.1: Multitemporal ERS-2 composite, comparison between filtered and unfiltered images. 
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5 Multitemporal and multisensor land cover classification, 
applications and results 

In the following section different multitemporal and multisensor applications are presented with 
their corresponding results: The first experiment is focusing on the performance of classifier 
ensembles, in the context of classifying multitemporal SAR data. In addition the value of 
multipolarized imagery is investigated. The subject of an adequate fusion of multitemporal SAR 
data and multispectral imagery is investigated in the second application. The application that is 
presented in 5.3 is dealing with the impact of image segmentation and discusses the value of a 
multilevel strategy. Finally a multisensor-multilevel fusion strategy is presented which is based 
on the combination of support vector machines and random forests. To conclude the application 
section, the prior introduced classification strategy is applied on another data set, to underline 
the aforementioned findings. 

5.1 Classifying multitemporal SAR data by classifier ensembles 
As stated before, monotemporal land cover classifications are often inefficient, due to great 
temporal differences in crop phenology, and multitemporal concepts are more appropriate in 
this context. Regarding upcoming SAR missions with increased revisit times and better spatial 
resolutions like TerraSAR-X or Radarsat-2, concepts that are based on multitemporal SAR 
imagery become even more promising. However, such future datasets with high temporal and 
spatial resolution might become very large. Although classifier ensembles used successfully for 
classifying multisource data and high-dimensional imagery, they have rarely been used for 
classifying SAR imagery and large multitemporal data sets.   
In the following a random forests classifier is applied to a multitemporal SAR data set, 
containing Envisat ASAR and ERS-2 images. The investigation is focusing on (1) the general 
performance of classifier ensembles, (2) a comparison of random forests with different 
ensemble techniques and conventional methods, and (3) the impact of different polarizations on 
the total classification accuracy.  

5.1.1 Dataset and Preprocessing 
A dataset of 14 images from 9 acquisition dates, containing 5 Envisat ASAR alternating 
polarization and 4 ERS-2 precision images, was used for this experiment (Figure 5.1.1 and 
Table 5.1.1). Thus, the feature set, ranging from April to September, comprised information 
from varying phenological stages. Moreover the different polarizations provide dissimilar image 
information. The imagery was preprocessed as described in the aforementioned chapter (see 
Section 4). In this experiment the following eight classes were investigated: Arable crops, 
Cereals, Forest, Grassland, Orchards, Rapeseed, Root crops, and Urban. For classifier training 
a sample set of 300 samples per class was selected from the field survey areas using equalized 
random sampling as described in Section 2.5. Using the same sampling strategy an independent 
validation set was generated, including 500 samples per classes.  
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Figure 5.1.1: Subset of the multitemporal SAR data set, VV Datum (Apr. 21 / May 26 / Jun 30), 

HH (Apr.12/ Jul. 22 / Sep. 18), HV (Apr. 12 / Jul. 22 / Sep. 18), and HH-HV-VV 
(May 26 / Jul. 22 / Jul. 22). 
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5.1.2 Methods 
As stated in Section 2, classifier ensembles can be constructed using different approaches. In 
this study the performances of four different ensemble approaches was investigated: (1) 
bagging, (2) boosting, (3) random feature selection (rfs), and Breimans’ random forests (RF). 
The random forests application is based on a FORTRAN code by Breiman and Cutler (2003). 
For the other ensembles the DT algorithm C5.0 (Quinlan 1993) was used, which was used 
successfully in several remote sensing studies (e.g., Friedl et al. 1999; Simard et al, 2002). For 
matters of comparison, two common classification methods were applied to the data set, a 
maximum likelihood classifier (MLC) and a conventional decision tree (DT). 
Beside the number of trees within the ensemble the feature partitioning methods (i.e., rfs and 
RF) requires the definition of the number of randomly selected features that are used for the 
entire tree and at each split respectively. In the beginning the feature subset size of the rfs and 
RF was increased stepwise and individual classifier ensembles were generated. In doing so the 
ideal feature subset size (in terms of classification accuracy) was verified. A subset size of 10 
was used for the rfs approach. For the RF classifier a feature subset size of 3 was selected. This 
value is approximately equivalent to the standard value, which is often denoted as square root of 
the number of features (Gislason et al., 2006) In order to investigate the impact of the number of 
trees on the total accuracy, the size of each ensemble was increased stepwise (from know on 
referred to as ensemble size). To underline the value of multipolarization imagery the RF 
classifier was applied to individual image subsets, containing single polarizations (i.e., HH, HV, 
and VV) and combinations of these data sets (i.e., HH+VV). 
 
 
 
 
 

 

Table 5.1.1: Image characteristics multitemporal SAR data set, 2005. 

Image characteristics SAR data 
Sensor 

Date Track/Swath Polarization Orbit 

ASAR 12-Apr-05 6208 HH / HV Asc 

ERS-2 21-Apr-05 337 VV Des 

ERS-2 26-May-05 337 VV Des 

ERS-2 30-Jun-05 337 VV Des 

ASAR 13-Jul-05 3029 HH / HV Asc 

ASAR 22-Jul-05 7158 HH / HV Asc 

ERS-2 4-Aug-05 337 VV Des 

ASAR 14-Aug-05 2487 HH / HV Asc 

ASAR 18-Sep-05 2487 HH / HV Asc 



Classifying multitemporal SAR data by classifier ensembles 

46 

5.1.3 Experimental results 
The accuracy assessment shows that a classifier ensemble significantly improves the results of a 
conventional decision tree and performs better than a maximum likelihood classifier (49.7%). 
Whereas the overall accuracy of a simple decision tree is 51.8%, the classifiers ensemble 
already performs better, irrespectively of the generation strategy (Figure 5.1.2). Even ensembles 
of a small size (e.g., 10) outperform a simple DT in terms of total accuracy and achieve 
accuracies between 59.7% (RF) and 62.4% (boosting). Regarding the differences between the 4 
ensemble methods, it can be assessed that in case of very small ensembles boosting performs 
slightly better than the other approaches. On the other hand the different concepts perform 
comparably, with a larger ensemble size, whereas random forests method outperforms the other 
approaches.  

Regarding the class-specific accuracies, i.e., user and producer accuracy, the random forests 
achieve the highest accuracies in the most cases (Table 5.1.2). In general the classification 
accuracy for the land cover classes Arable crops and Orchards is lower compared to other 
classes. A reason for the lower accuracy could be the variability within the two classes. Both 
classes are characterized by spatial varieties, e.g. the surface beneath Orchards is often covered 
by meadow. Hence this class can appear as a mixture between the two classes Grassland and 
Forest. In contrast to this, classes like Cereals and Root crops are less variable and consist 
mainly of winter wheat and sugar beets, respectively.  
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Figure 5.1.2: Overall accuracies [%], applying different classifier ensembles on the multitemporal 
SAR data set. 
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These classes consequently were classified with relatively high accuracies. A detailed 
investigation of the impact of different polarizations shows the worth of the multisource data 
set, consisting of ERS-2 and Envisat ASAR data of various polarizations (Table 5.1.3). The 
random forests classification results, which are based on a single-polarization, vary between 
43% and 49%. In contrast to that, the accuracies achieved with two polarizations range between 
59% and 62%. However employing all data (i.e, three different polarizations) the overall 
accuracy is further increased by 6%. The positive impact of different polarizations was also 
confirmed by other studies (e.g., Del Frate et al., 2003; Stankiewicz, 2006). Beside the 
advantage of multipolarized imagery, the combination of the ASAR and ERS-2 products also 
increases the multitemporal information content. Hence, one might argue that the improved 
classification accuracy is a result of the additional multitemporal information. However, the 
ASAR alternating polarization imagery that provide two polarizations with a single acquisition, 
clearly demonstrate the positive effect of two polarizations. Whereas the individual 
classification results of the HH and HV data are 46% and 49% respectively, the total accuracy is 
increased by up to 10% by a combination of both polarizations. An assessment of the individual 
class-specific accuracies confirms the advantage of multipolarized data sources (Table 5.1.2): 
Cereals are best discriminated by the VV polarization, whereas the highest accuracies for 
Grassland and Urban are based on the HH data.  The 5 other land cover classes are best 
classified by the HV imagery. 

Table 5.1.3: Overall accuracy [%], applying RF on 
different single- and multi-polarization datasets. 

Polarization Overall accuracy 

ERS-2 VV 43.4 

ASAR HH 45.9 

ASAR HV 49.0 

ASAR HH-HV 58.6 

ASAR / ERS-2 HH-VV 60.2 

ASAR / ERS-2 HV-VV 61.7 

all data 68.1 

Table 5.1.2: Class-specific accuracies [%], using different classifier ensembles, with a size of 500. 

Boosting Bagging RFS random forests Land cover 
class prod. acc. user acc. prod. acc. user acc. prod. acc. user acc. Prod. acc. user acc. 

Arable crops 56.0 55.6 63.0 54.4 57.8 57.9 62.8 54.7 

Cereals 73.0 66.0 73.4 66.6 72.8 65.2 74.6 65.3 

Forest 76.2 70.9 80.0 69.0 78.4 69.0 82.0 71.1 

Grassland 72.0 71.3 71.4 73.0 73.0 70.3 73.2 74.2 

Orchards 49.6 54.3 50.4 56.5 47.8 55.8 51.2 59.8 

Rapeseed 68.4 71.5 66.2 70.6 67.4 70.8 68.0 73.4 

Root crops 67.8 60.2 65.2 64.9 68.0 64.9 66.8 66.5 

Urban 64.8 80.4 61.8 80.5 65.8 77.2 66.0 84.2 
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An assessment of the individual class-specific accuracies confirms the advantage of 
multipolarized data sources (Table 5.1.4): Cereals are best discriminated by the VV 
polarization, whereas the highest accuracies for grassland and urban are based on the HH data.  
The 5 other land cover classes are best classified by the HV imagery. These findings correspond 
to other studies: Ferrazzoli (2001) mentioned that VV polarization is more adequate for 
monitoring of crops that are dominated by vertical structures, as wheat and barley, whereas HV 
is more applicable for ramified crops, as root crops and rapeseed. Brisco et al. (1992) have 
underlined the general value of cross-polarization for discriminating crop types. 

 
Figure 5.1.3:  Classification result, using a single DT and random forests with an ensembles size of 500. 

Table 5.1.4: Class-specific accuracies, using different polarizations. 

HH HV VV Land cover 
class prod. acc. user acc. prod. acc. user acc. prod. acc. user acc. 

Arable crops 35.4 30.4 38.6 34.6 31.4 32.0 

Cereals 31.4 31.7 39.4 38.7 67.4 58.9 

Forest 51.6 40.7 69.6 57.3 38.2 32.9 

Grassland 69.2 63.3 47.6 48.9 60.8 52.6 

Orchard 28.8 36.1 46.2 42.1 25.6 31.9 

Rapeseed 44.0 47.8 60.4 62.0 34.0 38.1 

Root crops 42.4 49.1 52.2 52.2 50.6 45.3 

Urban 64.2 71.3 38.2 63.0 38.8 51.9 
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A visible comparison (Figure 5.1.3) of the classification maps underlines the improvement of 
accuracy: The map produced by a simple decision tree shows the general structures of the study 
site. Nevertheless parcels that are homogeneous in reality appear very noisy, sometimes to a 
degree that the true land cover class can not be assigned to the entire area. Sharp boundaries 
along individual fields appear blurred; consequently they are hard to be to identify. The 
confusion and noise is significantly reduced by random forests. Almost all features can be 
assigned to a specific land cover and edges appear clear. 

5.1.4 Discussion and Conclusion 
The investigation clearly shows that results from classifier ensembles are superior to those from 
a simple decision tree. Regardless of ensemble size and the method used for the generation of 
classifier ensembles a higher accuracy is reached. Comparing the results achieved by different 
classifier ensembles, it can be assessed that random forests are superior to other concepts in 
terms of overall accuracy. The class-specific accuracy assessment shows that the approach 
achieves the highest user and producer accuracies for almost each class.  
The main reason for the success can be the underlying assumption of classifier ensembles. As 
mentioned above (see Section 2), the strategy requires the generation of independent classifiers 
and the performance is directly influenced by this independency. Given the relative 
independence of images from different acquisition times, a concept which is based on a random 
selection of the input features (i.e., rfs and RF) seems well suited for multi-temporal 
approaches. The independence of the individual classifiers and thus the performance of the 
ensemble are further increased by combining this feature selection with a random selection of 
training samples, as done in RF. Boosting performs slightly better with a very low number of 
decision trees. On the other hand boosting must be computed sequentially. Hence it is 
computationally much more costly than random forests. 

Figure 5.1.4: Corresponding subset of the land cover map 2005.  
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In the visual interpretation of the produced maps the positive effect of the statistical assessment 
is more than confirmed: the degree of noise is significantly decreased and the image is classified 
into more homogeneous areas. The differences between the maps from the simple decision trees 
and classifier ensembles are comparable to the differences between pixel-based and segment-
based approaches. Classifier ensembles –   particularly random forests – thus appear very well 
suited for noise inherent SAR data. The impact of different polarizations on the classification 
accuracies demonstrates that the various data sets contribute unequally to the classification of 
different land cover classes. Hence, the different sources appear not equally reliable. The good 
results for separating agricultural classes, which are hard to be distinguished in monotemporal 
imagery, generally underline the importance of multitemporal analyses as well as the positive 
impact of different polarizations. 
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5.2 Classifying multisensor data by support vector machines 
As stated in the prior sections, SVM often outperform other algorithms in terms of classification 
accuracies, even when classifying high-dimensional data sets with small training sets. 
Nevertheless only a few approaches are known, which use SVM for classifying multisource 
datasets: Whereas Fukuda and Hirosawa (2001) and Song et al. (2005b) used “conventional” 
SVM for classifying multisource data, in other applications the SVM approach was modified for 
classifying diverse datasets: Halldorsson et al. (2003) extended a radial basis kernel function for 
a combined classification of Landsat MSS imagery and topographical data. Camps-Valls et al. 
(2006) proposed so-called composite kernels (i.e., a combination of different kernel functions) 
for the classification of spectral and spatial information of a hyperspectral imagery. Fauvel et al. 
(2006) applied two individual SVM classifiers to the original spectral data set and the 
corresponding spatial information, which was derived by using extended morphological 
profiles. The SVM were trained separately on the two sources, the spectral image and the spatial 
information. Afterwards the different outputs were fused by various voting schemes, e.g., 
absolute maximum and majority voting. Overall the results of these studies have shown that the 
performances of a SVM classifier can be improved by modifying the kernel functions or using 
separate SVM when classifying diverse datasets. Thus, in case of multisensor imagery, it could 
be more applicable to handle various sources separately.  
In the following a multisensor classification strategy is presented, which is based on support 
vector machines. The individual image sources, i.e., the SAR data and the multispectral image 
were preliminary classified, using conventional SVM. For the subsequent fusion process the 
outputs of the SVM classifiers are combined by voting strategies, i.e., majority voting and the 
absolute maximum rule. In a more sophisticated decision fusion approach the outputs of the 
SVM are combined by an additional SVM classifier to generate a multisensor classification. 
The investigation is focused on (1) the general impact of multisensor imagery on the 
classification results, (2) the performance of support vector machines for classifying 
multitemporal/multisensor imagery, and (3) the potential of an alternative modified SVM-based 
classification strategy. 

5.2.1 Data set and preprocessing 
For the application a multisensor data set from 2005 was used, consisting of multitemporal SAR 
data and a Landsat image from May-26 (Figure 5.2.1). The SAR imagery contains the same 
Envisat ASAR and ERS-2 data that were already used in Section 5.1 (see Table 5.1.1). The data 
was preprocessed, following the methods introduced in Section 4. The multisensor data set was 
coregistered with a spatial accuracy of approximately one pixel. In addition the images were 
normalized before the SVM training, to simplify the parameter selection for the kernel function. 
For the presented investigation, two different training sets for 8 land cover classes, i.e., Arable 
crops, Cereals, Forest, Grassland, Orchards, Rapeseed, Root crops, and Urban, were 
generated, using equalized random sampling. Each class has the same sample size, containing 
50 and 300 samples per class, respectively (from now on referred to as training set #50 and 
training set #300). In doing so, the impact of the samples size on the classifier performance can 
be investigated. Using the same sampling strategy as before, an independent validation sets was 
generated, containing 4000 samples, 500 of each class.  
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The SVM was applied on three different data sets: (1) the multitemporal SAR data set, (2) the 
Landsat TM image, and (3) the multisensor data set, containing both sources. In addition 
different fusing schemes are presented. 

In the experiments a Gaussian kernel was used, which was employed in several remote sensing 
studies (e.g., Huang et al., 2002; Melgani and Bruzzone, van der Linden; 2007). In comparison 
to a polynomial kernel, which requires more parameters than a Gaussian kernel, the 
computational complexity of model is decreased. In contrast to a simple linear kernel, which is a 
special case of the Gaussian kernel, a Gaussian RBF function can handle more complex, non-
linear class distributions (Keehrti and Lin, 2003). Thus the use of the Gaussian kernel seems 
adequate in context of this study. As state before the SVM training requires the estimation of the 
kernel parameter γ and C, which is normally solved by approaches, which based generally on a 
leave-one-out procedure. 
In the presented application, the training of the SVM with Gaussian kernel and the generation of 
the rule images were performed using imageSVM (Janz et al., 2007). imageSVM is a freely 
available IDL/ENVI plug-in that is based on the LIBSVM approach by Chen and Lee (2001) for 
the training of the SVM. The strategy determines the best values for γ and C within a user 
defined range of possible parameters using a 10-fold cross validation. In doing so, the outputs of 
the final discriminant function (i.e. rule images) were calculated for each binary classification 

 
Figure 5.2.1: Subset of the multisource data set 2005. Multispectral false-colour composite (bands: 4/3/2) 

and multitemporal ERS-2 composite (Apr-21 / May-26 / Jun-30). 
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problem. Following the common OAO procedure (i.e., majority vote) the final classification 
results were generated for the three data sets (single SVM). Although the OAO approach results 
in a larger number of binary SVM classifiers, the approach was selected, because the 
classification problem as a whole is separated into many simpler ones. The OAA strategy on the 
other hand, which is based on a separation between a specific class and the rest, can involve the 
estimation of a more complex hyperplanes. Regarding the 8 land cover classes, the application 
of the SVM with the OAO strategy generates 28 rule images per data set (see Section 2.2.3).  
Beside the application of one single SVM on the whole multisource data set, the 
pre-classifications of the two single-source SVM were combined to create the final result. For 
this purpose, three different decision fusion strategies were applied to the rule images: (1) a 
simple majority vote, (2) an absolute maximum rule and (3) an additional SVM. 
Similar as in the conventional majority vote, which is used for the OAO multiclass strategy, all 
positive and negative votes for a specific class are summed (see Section 2.2.3). Contrary to the 
single-source classification, the rule images of both sources (i.e., SAR and Landsat) are used for 
the multi-source majority voting. The second fusion approach – the absolute maximum rule – is 
based on the concept which is used in the conventional OAA strategy. The final class is the one 
with the highest absolute value (i.e., distance to the hyperplane). The original OAA decision 
rule was modified for the multisensor classification problem, similar to what was done in Fauvel 
et al. (2006): For each binary two-source classifier, separating the classes ωi and ωj (ωi ≠ ωj), 
the rule images of the two SVM (i.e., fSAR and fTM) were compared. The absolute maximum 
value within the rule images (i.e., maximum distance) determines the decision for this two-
source classification problem (5.2-1). Afterwards, a simple majority vote is applied to derive the 
final class membership.  

 )(),()(max xfxfAbsMaxxF optSAR=  (5.2-1) 

For the third fusion concept all information from the two rule image sets (i.e., 2×28) are simply 
combined in to a single data set, containing 56 rule images. In doing so a feature vector is 
generated that includes the outputs fsar(x) and fopt(x) of the two individual SVM classifiers. To 
determine the final class membership an additional SVM (SVM fusion) was trained on this data 
set (Figure 5.2.2). Besides the SVM, three different classifier algorithms were applied on the 
data sets: (1) MLC, (2) DT, and (3) RF. Contrary to the SVM fusion, which performs the data 
fusion at decision level, the other approaches perform the fusion at the data level (maximum 
likelihood classifier) and at the feature level respectively (decision tree and random forests). A 
comparison with these algorithms is worthwhile, because of this dissimilarity and also because 
of the numerous studies that are uses the well-known methods. 
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5.2.2 Experimental results 
The experimental results clearly show the positive impact of a multisensor data set. 
Independently of the training sample set, the overall accuracy is significantly increased by using 
multisensor imagery (Table 5.2.1). Comparing the multisource-based results of the single SVM, 
the total accuracy increased by 10% compared to the classification results achieved on the 
optical images (training set #300) and by 14% when compared to the accuracy achieved on the 
SAR data (training set #50). 

Comparing the different methods for classifying multisensor imagery, the results show that the 
single DT performed worst in terms of accuracy. The SVM outperform the other algorithms in 
terms of accuracy, except from the RF, which generally achieved the highest overall accuracies. 
Hence random forests could seem more adequate for classifying the multisensor imagery. On 
the other hand the performance of multisource SVM can further increased when the SVM 
training process is conducted separately for the two image sources and an adequate fusion 
technique is used (see Table 5.2.2). 

Table 5.2.1: Overall accuracies [%], achieved by 
SVM, using different data types and training sets. 

Training set 
Data Set 

#50 #300 

SAR 58.5 64.7 

TM 63.8 68.0 

SAR + TM 72.6 78.3 

SVM

rule  images

SVM

rule  images

full set of rule images

SAR data Landsat image

decision fusion

land cover map

SVMSVM Fusion

SVMSVM

rule  images

SVMSVM

rule  images

full set of rule images

SAR data Landsat image

decision fusion

land cover map

SVMSVMSVM Fusion

 
Figure 5.2.2: Schematic diagram of the SVM-based decision fusion
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The proposed concept – which combines the individual rule images of the pre-classification by 
an additional SVM – outperforms the other algorithms and fusion strategies in terms of 
accuracies. Compared to the single SVM that was trained directly on the whole multisource 
dataset the overall accuracies are increased by up to 3%. Compared to the RF, the differences 
between the overall accuracies are less dominant, but the fusion approach performs slightly 
better. In contrast a fusion by the simple majority seems inefficient and the overall accuracy 
even drop below the accuracy achieved by a single SVM, whereas the application of the 
absolute maximum rule is more efficient and increases the total accuracies.  

In general the experimental results clearly demonstrate that the overall accuracy is improved by 
increasing the number of training samples. Whereas the SVM fusion is increased by 
approximately 5%, the MLC is improved by 9%, due to a larger sample set.  
Regarding the class-specific accuracies (i.e., producer and user accuracy), the experimental 
results show the positive effect of the proposed fusion technique. This impact is particularly 
obvious for classes, which are classified with relatively low accuracies by both single-source 
classifications. Compared to the SAR data and the Landsat image the producer accuracy of 
Arable crops is increased by 15% and 12% respectively, that of Orchards is increased at least 
by 18%. The producer accuracy of these classes is increased by 9.8% and 6.2% using the SVM 
fusion concept, in comparison to the application of a single SVM on the full multisensor dataset. 
Contrary, there is a reduction in accuracies (1.2% - 2.4%) for a few classes (Cereals, Forest, 
Grassland) comparing the proposed strategy with a single (multisource) SVM. But those classes 
were still classified with relatively high accuracies. Another advantage of the multisensor fusion 
concept is that the achieved producer and user accuracies are less variable (Table 5.2.3 and 
Table 5.2.4): Whereas the application of the single SVM results in standard deviations of 9.8 
and 11.7 respectively, the SVM fusion reduces the values to 6.7 and 8.5. Thus the results are 
more homogeneous over the different land cover classes. Moreover compared to the results, 
which are based on a single data source, the producer and user accuracies of the multisensor 
classification are more balanced.  

Table 5.2.2: Overall accuracies [%] for multisensor data, using 
different classifiers and fusing schemes. 

Training set Classifier / 
 fusion strategy #50 #300 

MLC 64.8 74.0 

DT 61.2 69.1 

RF 74.4 79.6 

Single SVM 72.6 78.0 

Majority vote 72.5 75.6 

Absolute maximum 74.3 78.6 

SVM fusion 75.6 80.4 
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The visual assessment interpretation (Figure 5.2.3) clearly shows a high degree of noise in the 
SAR-based classification map. In contrast to this, the classification that is based on the Landsat 
scene appears more homogenous. The comparison of the single-source maps shows some 
divergences within the results, underlining the fact that the two sources provide different 
information. The fused map on the other hand, appears as a mixture of both single-source maps. 
Contrary to the visibly good performance of the multisensor classification, the elimination of 
the highway in the center of the image, which was classified correctly in the multispectral data, 
might be considered as a possible disadvantage of a multisensor approach. In Figure 5.2.4 the 
final classification result is shown. 
 
 
 
 
 

Table 5.2.3: Class-specific accuracies [%] of single-source results, using SVM and training set #300. 

Producer accuracies User accuracies 
Land cover class 

 SAR TM  SAR TM 

Arable crops 59.6 53.4 50.5 59.2 
Cereals 73.4 80.2 69.0 59.9 
Forest 78.6 92.2 69.2 95.3 

Grassland 67.8 41.8 71.8 54.0 
Orchards 55.2 45.4 50.5 44.9 
Rapeseed 59.4 74.2 65.9 79.4 

Root crops 62.2 77.4 67.9 66.4 
Urban 61.8 79.2 80.9 87.4 

Table 5.2.4: Class-specific accuracies [%] of multisource results (SAR+TM), using single SVM 
applied on the whole data set and SVM fusion, using training set #300. 

Producer accuracies User accuracies 
Land cover class 

Single SVM SVM fusion Single SVM SVM fusion 

Arable crops 65.4 75.2 65.1 73.5 

Cereals 82.4 80.8 76.3 80.4 

Forest 94.6 92.2 94.4 93.7 

Grassland 73.6 72.8 77.6 81.9 

Orchards 67.2 73.4 60.7 67.4 

Rapeseed 82.4 84.2 88.2 88.0 

Root crops 73.4 79.4 75.8 74.9 

Urban 85 85.4 88.7 85.5 

standard deviation 9.9 6.7 11.7 8.5 
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Figure 5.2.3: Ground truth information (legend see Fig. 5.2.4) and classification maps of the two 
single-source SVM classifications and the SVM fusion result 
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Figure 5.2.4: Classification result, using SVM fusion. 
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A detail visual interpretation of the classification results that are based on different data sources, 
clearly illustrates the different and complementary information of the imagery (Figure 5.2.5 and 
Figure 5.2.6). Using the TM image, the Arable crops parcels are incorrectly classified as Root 
crops and some fractions as Urban areas. In the SAR data, these regions are almost correctly 
classified as Arable crops, and the data fusion eliminates most of the errors achieved in the 
multispectral result. Within the largest Arable crops field, some pixels in the TM image are 
misclassified as Urban land cover, whereas these pixels are correctly classified by the SAR 
data. Contrary to this, pixels that are accurately recognized in the TM image are classified as 
Orchards in the SAR data. This confusion is eliminated by the proposed fusion concept. The 
classification results within Grassland and Orchards regions are other selected examples to 
underline the value of multisensor image analysis (Figure 5.2.5).  

 

Figure 5.2.5: Comparison between single-source and fused classification results. The polygons indicate parcels of 
Arable crops, Grassland, and Orchards.  



Classifying multisensor data by support vector machines 

60 

The TM-based classification results in a misclassification of Grassland pixels and classifies the 
two smaller patches as Arable crops. The pixels within the large Orchards region are 
erroneously assigned to Grassland. Contrary to this, the SAR data recognized most pixels 
within these regions accurately and thus improves the final classification results. 
The classification outputs within Forest and Urban regions visualize the positive impact of the 
TM data, underlining the inherent noise in the SAR data on the one hand and the homogenous 
outputs of the Landsat image on the other (Figure 5.2.6). The noise within the SAR-based 
classification, which is mainly confusion between Forest and Urban, is significantly reduced by 
the multisensor fusion. Moreover the regions appear more homogenous than the TM-based 
classification.  

5.2.3 Discussion and conclusion 
In this chapter, a strategy for an improved classification of multisensor imagery, consisting of 
multitemporal SAR data and a multispectral image, was introduced. The SVM fusion is based 
on the decision fusion of support vector machines that were individually trained on different 
image sources, i.e., the SAR data and Landsat image. In general, SVM might be more accurate 
in classification of complex data sets when compared to conventional multivariate classifiers, 
since a convenient statistical model is often not known for such imagery. Furthermore the 
performance of a statistical classifier as the MLC is more dependent on the size of the training 
sample set. These assumptions are conformed by the experimental results. 
The accuracy assessment shows that the separate training of the SVM and a subsequent fusion 
of the pre-classified outputs by another SVM outperforms the other parametric and non-
parametric classification methods including random forests and a single SVM, which was 

 
Figure 5.2.6: Comparison between single-source and fused classification results. The polygons indicate parcels 

Forest  and Urban. 



Classifying multisensor data by support vector machines 

61 

trained on the full multisensor dataset. Particularly the accuracies of land cover classes, which 
are critical in terms of accuracy, were significantly increased.  
The main reason, that the proposed classification strategy outperforms the single SVM in terms 
of accuracy, could be the heterogeneous multisensor imagery. That multitemporal SAR data and 
optical imagery provide different information is clearly shown by the class-specific results of 
the single-source classifications. In addition the imagery may not be equally reliable and one 
image-source (e.g. a specific SAR acquisition or band of the Landsat image) might be more 
adequate to describe a class, and perhaps another source seems more adequate for another class. 
The application of a single SVM for the full multisensor dataset requires the definition of one 
specific kernel function. Regarding the heterogeneous imagery, it seems more adequate to 
define the kernel functions for each data source individually and combine the derived outputs in 
a subsequent process.  
In general it can be assessed that SVM and RF classifiers perform well on the multisensor 
imagery. The “simple” RF can be pointed out as a simple yet accurate approach. The results are 
further improved by the proposed decision fusion strategy. It is assumed that a modification of 
the presented conceptual framework would further increase the classifier performances. 
In other studies the total accuracy was imporved by using segment-based approaches, which 
seems also interesting for the study site in this dissertation. Hence in the following step the 
fusion strategy is further modified and transferred to a diverse dataset, which consist of 
multisensor imagery at different levels of segmentation.  
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5.3 Classifying multisensor data by a multilevel decision fusion 
concept  

As introduced before, one development in the classification of remote sensing imagery is that of 
segment-based approaches. On the one hand segment-based approaches can overcome problems 
of pixel-based classifications. On the other hand the definition of a single segmentation level 
might be critical, and the application of multilevel concepts seems more adequate. 
In the following, the fusion strategy introduced in Section 5.2 is modified and extended to a 
multilevel component. The approach is applied to a multisource dataset, consisting of 
multitemporal SAR data and a Landsat image at various segmentation scales. Image 
segmentation is performed separately for each source and each segmentation level is separately 
classified with support vector machines. Afterwards the decision fusion is performed. Beside an 
additional SVM, the fusion is also performed by random forests. Both methods perform well in 
the prior presented applications. Hence the concept is assumed to make an efficient utilization 
of both, the ability of SVM to model complex class distribution in a high dimensional feature 
space and the strength of RF to utilize diverse combinations of input features for optimized 
decision making. The results are compared to the results achieved by conventional SVM and 
RF, which were applied on the whole multisource-multilevel dataset. In the prior section it was 
clearly demonstrated that the maximum likelihood classifier or a simple decision tree are 
achieving lower results than the other approaches, consequently a comparison with theses 
algorithms is neglected. The investigations in this section are focusing on (1) the general impact 
of image segmentation on classifying multisensor imagery, (2) the performance of a multilevel 
classification approach, and (3) the combination of different classifier algorithms, i.e., SVM and 
RF. 

5.3.1 Data set and preprocessing 
The same multisource data set as in Section 5.2 was used for this approach. As a last pre-
processing step, image segmentation was performed. Various algorithms for image 
segmentation have been introduced (Baatz and Schäpe, 2000; Evans et al., 2002). In this study a 
frequently applied method was used (Shackelford and Davis, 2003; Song et al., 2005a, van der 
Linden et al., 2007). This method is based on a region-growing algorithm (Baatz and Schäpe, 
2000). General constrains of the segmentation concept are introduced in Bruzzone and Carlin 
(2006). A brief description is given in Section 2.4. 
The different levels of aggregation are generated for each data set using only the spectral or 
backscatter intensity information. For both data sources, the multitemporal SAR data and the 
Landsat image, the average segment sizes are between approximately 10 and 55 pixels (Figure 
5.3.1). The segments of the smallest aggregation level #1 include usually only fractions of 
natural features and a few pixels. In contrast to this, outlines in the two larger segmentation 
levels #2 and #3 rather correspond to natural objects. Further aggregation merges several natural 
features into single image segments and therefore do not provide any useful additional 
information. Consequently larger levels were not considered in the subsequent classification 
process. 
 



Classifying multisensor data by a multilevel decision fusion concept 

63 

 

 

Figure 5.3.1:  Subsets of the original Landsat 5 TM image and the SAR data, with the corresponding 
segmentation levels. 
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5.3.2 Methods 
The proposed concept for the classification of multilevel data from two different sources is 
illustrated in Figure 5.3.2. As a last preprocessing step, the SAR data and Landsat image are 
independently segmented. Afterwards a pre-classification is performed: individual SVM are 
trained on the original pixel-based data and each aggregation level of the two data sets, 
generating the corresponding rule images. The application of the SVM with the OAO multi-
class strategy provides 28 rule images per source. These rule images are combined to one data 
set, which consequently includes 8×28 rule images. Finally the information of these rule images 
is combined by performing an additional SVM classification on the outputs as already done in 
Section 5.3 (i.e., SVM fusion). Furthermore random forests are used for fusing the rule images 
(from now on referred to as RF fusion).  
Analogous to the other applications the same 8 land cover classes were considered for the 
classification: (1) Arable crops, (2) Cereals, (3) Forest, (4) Grassland, (5) Orchards, (6) 
Rapeseed, (7) Root crops, and (8) Urban. Again, 150 samples per class were selected from the 
ground mapping by equalized random sampling, guaranteeing that all 8 classes are included in 
the sample set. These samples were used during all stages of the classification approach. Once 
an independent validation set with 500 samples per class was employed for the accuracy 
assessment.  
The SVM was performed as done before in Section 5.3., employing imageSVM (Janz et al., 
2007). Using a Gaussian kernel and the OAO multiclass-strategy, individual rule images were 
generated for each aggregation level and the original pixel level of the SAR data and the 
multispectral image. The rule images were fused employing random forests (RF fusion) and an 
additional SVM (SVM fusion), which were trained on all rule images (Figure 5.3.2). To assess 
the performance of the presented multilevel-multisource fusion concepts, a conventional SVM 
and RF were applied directly to (1) each individual aggregation level, (2) individual multilevel 
stacks from both source, (3) a single-level multisource dataset, and (4) a stack of all aggregation 
levels from both sources.  
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Figure 5.3.2: Schematic overview on the multisensor-multilevel fusion concept. 
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5.3.3 Experimental Results 
Single-source results 
The different segmentation levels of the two image sources were separately classified using both 
a common SVM and RF. Experimental results clearly show the positive effect of image 
segmentation. Independent from the classifier and data source, the total accuracy is significantly 
improved by prior image segmentation. Using the coarse segmentation level #3, the total 
accuracies increased by 14% and 9% compared to the classification results achieved on the 
original pixel-based SAR and Landsat imagery, respectively. Even the use of the fine 
segmentation level #1, increases the overall accuracy of the SAR data by 10% and of the optical 
image by 6% (Table 5.3.1). The results clearly demonstrate that image segmentation is 
particularly worthwhile for the noise inherent SAR imagery: The accuracies of the original SAR 
data are below that of the multispectral imagery, whereas the results are comparable at level #1 
and #2. The accuracies of the SAR data are further increased by employing level #3 and 
outperform that of the multispectral Landsat image. The application of the classifiers to stacked 
data sets including the pixel and all aggregation levels of an individual image source do not 
further improve the results (Table 5.3.1). 

Regarding the class-specific accuracies the results illustrate the dissimilarity of the different 
image sources and aggregation levels. Neither an individual image source (i.e., SAR and 
multispectral) nor a specific level of segmentation is ideal to differentiate between all classes 
(Table 5.3.2 and Table 5.3.3). Whereas in the SVM-based classifications Grassland and 
Orchards better differentiated in the SAR data, irrespective of the segmentation level, the TM 
scene is more appropriate for the other classes.  Regarding the producer accuracies achieved by 
the SVM on the TM image for example, it can be assessed that the segmentation level #2 is 
adequate to describe Root crops and Cereals, whereas Arable crops and Grassland are better 
classified by segmentation level #3. Consequently a definition of an adequate segmentation 
level for all class is difficult. 
 
 
 
 
 

Table 5.3.1:  Overall accuracy [%], using SVM and RF on single-source imagery at different 
segmentation levels. 

SAR TM 
Segmentation level 

 SVM RF  SVM RF 

#0 (original data) 63.3 65.0 69.8 68.8 

#1 (~10 pixel) 73.3 75.6 73.9 74.8 

#2 (~23 pixel) 75.0 78.1 75.5 77.2 

#3 (~55 pixel) 77.8 79.7 75.3 77.6 

all levels 75.9 79.9 74.5 77.7 
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Multisensor-Multilevel Results 
To generate the final multilevel-multisensor classification, the different segmentation levels of 
both data sources were combined by the presented strategy of SVM fusion and RF fusion. 
Moreover usual SVM and RF classifier were trained directly on a stacked dataset, containing 
the imagery and not the SVM rule images from the pre-classifications of each level and image 
source. The accuracy assessment clearly shows the positive influence of a synergetic use of 
multisensor imagery at various segmentation levels: The highest accuracies achieved on single-
source imagery are 79.9% on the SAR data and 77.7% on the multispectral image (Table 5.3.1), 
whereas the application of SVM and RF directly on of the stacked data set increases the 
accuracy at least up to 81.1% and 83.6% respectively (Table 5.3.4). The performance is further 
increased to 84.9% by the proposed fusion strategies (RF fusion).  

Table 5.3.2: Producer and user accuracies [%], using SVM on single-source two data sets at different 
segmentation levels. 

SAR TM 
Producer Accuracy User Accuracy Producer Accuracy User Accuracy 

Land cover  
class 

#2 #3 #2 #3 #2 #3 #2 #3 

Arable crops 72.4 72.8 71.7 83.1 71.2 81.6 79.1 70.2 

Cereals 79.8 80.2 63.1 60.1 81.2 74.4 67.6 65.6 

Forest 88.2 91.0 87.9 96.2 93.4 92.2 96.5 96.9 

Grassland 65.8 65.4 77.4 70.8 55.8 62.0 71.7 70.3 

Orchard 75.4 77.8 66.4 72.6 62.6 63.0 58.0 67.2 

Rapeseed 70.8 75.6 85.7 88.1 73.8 70.6 82.4 77.6 

Root crops 71.6 76.4 71.5 71.7 80.2 74.8 66.5 70.7 

Urban 76.2 83.2 83.9 90.0 86.2 84.0 88.9 87.1 
standard 
deviation 6.8 7.5 9.2 12.2 12.3 10.4 12.8 11.0 

Table 5.3.3: Producer and user accuracies [%], using RF on single-source data sets at different 
segmentation levels. 

SAR TM 
Producer Accuracy User Accuracy Producer Accuracy User Accuracy 

Land cover 
class 

#2 #3 #2 #3 #2 #3 #2 #3 

Arable crops 77.4 81.0 75.7 77.1 77.0 83.6 71.6 70.4 

Cereals 81.6 76.4 66.9 64.4 76.2 72.6 74.4 73.5 

Forest 90.4 92.8 86.3 95.5 92.8 92.6 96.1 97.9 

Grassland 70.8 69.6 79.0 75.0 61.0 70.4 72.8 67.3 

Orchard 80.2 81.8 70.5 73.2 71.6 66.2 62.9 70.9 

Rapeseed 77.4 80.6 82.2 83.6 75.4 76.0 83.2 82.3 

Root crops 72.0 71.8 81.3 83.3 77.2 74.0 70.8 74.0 

Urban 75.2 83.6 88.7 90.9 86.4 85.6 89.8 87.9 
Standard 
deviation 6.2 7.3 7.5 10.0 9.5 8.8 11.0 10.5 
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The advantage of using diverse image sets is also underlined by the class-specific accuracies, 
shown in Table 5.3.5. In general fusing different image sources increase the class specific 
accuracies. Moreover the accuracies are more balanced. Producer and user accuracies of the 
single-source results vary strongly (Table 5.3.2 and Table 5.3.4) whereas the classifications that 
are based on the fusion concept are less variable, resulting in a reduced standard deviation 
(Table 5.3.5). This underlines the worth of combining different sensor sources at different 
segmentation levels. 

One might argue that a multisensor fusion of individual segmentation level could be more 
appropriate than the use of various levels. To assess the impact of the multilevel approach and 
to underline the value of the proposed mutisensor-multilevel strategy, the RF fusion was applied 
to a multisensor data set, including only single segmentation scales. The achieved classification 
results demonstrate the worth of a multilevel approach (Table 5.3.6): Whereas the use of a 
single segmentation level increases the multisensor pixel-based result by 3.7% and 6.4%, using 
level #1 and #2 respectively, the multisensor-multilevel classification outperforms 
all single-level classifications in terms of accuracy, resulting in an overall 
accuracy of 84.9% (Table 5.3.4).  

Table 5.3.4: Overall accuracy [%] of the multilevel-
multisensor classification, using different classifiers 
and fusion strategies. 

Classifier / 
fusion strategy Overall accuracy 

single SVM 81.1 

SVM fusion 83.5 

single RF 83.6 

RF fusion 84.9 

Table 5.3.5:  Class-specific accuracies [%], using different fusion strategies. 

SVM fusion RF fusion 
Land cover class 

Prod. Acc. User Acc. Prod. Acc. User Acc. 

Arable crops 79.6 84.8 78.2 95.1 

Cereals 81.4 78.8 85.2 76.3 

Forest 94.8 96.9 94.6 97.7 

Grassland 76.6 76.4 82.2 76.7 

Orchard 81.6 78.7 83 81.2 

Rapeseed 84.8 84.8 89 79.6 

Root crops 80.8 78.6 78.8 85.3 

Urban 88.2 89.4 88.4 92.3 

standard deviation 5.7 6.9 5.6 8.5 
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Table 5.3.6: Overall accuracy [%], fusing different 
individual segmentation levels, using RF fusion. 

Segmentation level Overall 
accuracy [%] 

#0 (pixel) 77.4 

#1 81.1 

#2  83.8 

#3  83.5 

Figure 5.3.3: Classification results, using a conventional SVM and RF fusion on pixel data and 
multilevel data 



Classifying multisensor data by a multilevel decision fusion concept 

69 

Figure 5.3.4: Multisensor-multilevel classification result, using RF fusion
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A visual assessment of the classification results confirms the positive impact of the 
classification strategy. Concerning the image segmentation, the noise within the pixel-based 
results is clearly reduced, in particular the speckle in the SAR imagery. Natural objects, e.g. 
field parcels, appear more homogeneous. Moreover some typical errors, e.g. a confusion of 
forest and urban in the SAR data, are eliminated. Furthermore the classification results illustrate 
the complementary character of the multitemporal SAR data and the multispectral image. 
Contrary to the visibly good performance of the RF fusion, and as in the approach introduced in 
Section 5.2, the disappearance of the highway that was recognized in the TM data (located in 
the in the middle of the image subset), shows possible drawbacks of the multisensor 
classification. 

5.3.4 Discussion and Conclusion 
In this section the issue of classifying multisensor data at different segmentation levels was 
addressed. The use of information from different sensors as well as and the integration of the 
spatial context at various segmentation level with different scales performs well. Both, the 
sensor fusion as well as the image segmentation contributes to an increased overall accuracy.  
The RF fusion achieves an accuracy of 77.4% when applied to the two data sets (i.e., SAR and 
TM) at pixel level. This is significantly higher than results achieved by single-source pixel-
based classification. The accuracy is improved by 3.7% and more by prior image segmentation 
and the multisource results that are based on a single segmentation level are generally higher 
than results achieved on segmented single-source imagery. Finally results achieved by the 
proposed multilevel-multisource approach are always better than those achieved on any other 
combinations of data. The assessment of the producer and user accuracies underlines the general 
good performance of the proposed RF fusion concept. Results from SVM fusion on the other 
hand, show a very positive balance between producer and user accuracies of the classes. 
The experimental results underline the different nature of the image sources, which provide 
diverse information. Moreover different aggregation levels contribute unequally to the 
classification of the various land cover classes and the definition of an ideal segmentation level 
is difficult. The multilevel approach that is based on the RF fusion strategy appears appropriate 
for decision making in this context. As in the previous sections both classification techniques, 
the SVM and RF, perform well. The main reason for the success of the proposed RF fusion is 
the sequential use of both algorithms. The complex class distributions that are modelled by the 
SVM and the RF classifier, which is based various combinations of input features for optimized 
decision making. In this context the pre-classification by SVM can be regarded as a class-
specific data transformation. By applying a SVM, the image data is transformed into a new 
feature space that is made-up of the distance values of the individual SVM rule images. This 
transformation is performed separately for each image source and segmentation level and the 
individually generated rule images are better comparable than the original data sets. This could 
be simplifying the definition of the split rules during training of the RF and thus, results in the 
highest accuracies. The experimental results also underline the findings in 5.2, that it is more 
than adequate to define the kernel functions for each data source and level separately, instead of 
using a single kernel function for the whole data set. 
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5.4 Transfer of the multisensor-multilevel strategy  
The presented applications have shown that the two methods, random forests and support vector 
machines are adequate for classifying multisource dataset. Moreover a combination of the two 
classifiers in a multisensor-multilevel fusion strategy achieves the highest classification 
accuracies. Thus in the following the proposed concept is applied to a data set from another 
year, to assess the reproducibility and transferability of the approach. The classification 
complexity is increased by additional land cover classes. Furthermore the multispectral time 
series is extended.  

5.4.1 Dataset and preprocessing 
As before, a multisensor dataset consisting of SAR and optical imagery was available for the 
known study site. The SAR dataset includes 4 Envisat ASAR AP and 6 ERS-2 acquisitions 
from a period between April and September 2006 (Table 5.4.1). Contrary to the other 
applications, the multispectral dataset includes three SPOT acquisitions (Table 5.4.2). The 
preprocessing is performed following the common procedures that are described in Section 4. 
For matter of comparison all data are resampled to 30 m spatial resolution. Again as a last 
preprocessing step, multilevel image segmentation was performed, generating different 
segmentation levels for each data set, i.e., the multitemporal SAR and the multitemporal Spot 
imagery (Figure 5.4.1). 
 
 
 
 
 
 
  
 

 
 
 

 

Table 5.4.1: Image characteristics multitemporal SAR data set, 2006. 

Image characteristics SAR data 
Sensor 

Date Track/Swath Polarization Orbit 

ERS-2 06-Apr-06 337 VV Des 

ASAR 16-Apr-06 2487 HH / HV Des 

ERS-2 11-May-06 337 VV Des 

ASAR 21-May-06 2487 HH / HV Des 

ERS-2 09-Jun-06 258 VV Asc 

ERS-2 15-Jun-06 337 VV Des 

ASAR 25-Jun-06 2487 HH / HV Des 

ERS-2 20-Jul-06 337 VV Des 

ASAR 30-Jul-06 2487 HH / HV Des 

ERS-2 24-Aug-06 337 VV Des 

Table 5.4.2: Image characteristics multispectral imagery, 2006. 

Image characteristics, multispectral imagery  
Sensor 

Date # band Band width 
[µm] 

Spatial 
resolution 

[m] 
SPOT 2 11-May-06 3 0.5-0.89 20 

SPOT 5 24-Jun-06 4 0.5 - 1.75 10/20 

SPOT 2 17-Jul-06 3 0.5-0.89 20 
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Figure 5.4.1: Subsets of the original SPOT and SAR data, and corresponding segmentation levels.  
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5.4.2 Methods 
The approach is following the methods described in Section 5.3. As a last preprocessing step, 
the SAR data and Spot images are independently segmented, using only the spectral or 
backscatter intensity information. For both data sets three segmentation scales are generated 
(#1, #2, #3), with an average segment sizes are approximately 11 and 50 pixels. Separate SVM 
are trained on the original pixel-based data and each segmentation level of the two data sets, 
generating the corresponding rule images. The information is combined by applying random 
forests on the stacked rule images (i.e., RF fusion).  
For matters of comparison conventional SVM with OAO strategy and conventional RF were 
applied to various data sets. In contrast to the SVM fusion and RF fusion these classifiers were 
directly trained on the original data and not on the corresponding rule images (i.e., single SVM 
and single RF). The methods were applied to (1) each individual aggregation level, (2) 
multilevel stacks from single sources, and (3) a stack of all aggregation levels from both data 
sources. In addition to this, the RF fusion was applied on a multisensor data set, which includes 
only single segmentation levels. 
In contrast to the other applications 11 land cover classes were classified: Arable crops, 
Cereals, Coniferous forest, Mixed forest, Grassland, Gravel pits, Maize, Orchards, Rapeseed, 
Root crops, and Urban. Again, 150 samples per class were selected from the ground mapping, 
using by equalized random sampling strategy.  

5.4.3 Experimental results 
Single Source results 
As in Section 5.3, the classification results clearly show the positive effect of image 
segmentation. Independent from the algorithm and data source, the total accuracy is 
significantly improved. The positive impact of image segmentation is more dominant for the 
speckle inherent SAR data. Whereas the image segmentation of the SAR data improves the 
overall accuracy by up to 21% that of the multispectral imagery is increased by up to 4.5%. A 
“simple” combination of all segmentation levels do not improves the results, expect for the RF-
based classification of the Spot images (Table 5.4.3). Moreover the application of a SVM on a 
multilevel data set reduces the overall accuracies, achieved on a single segmentation level.  In 
contrast to the results in 5.3, the classification results achieved on the multispectral imagery are 
always more accurate compared to the results achieved on the SAR data. 

Table 5.4.3: Overall accuracy [%], using individual SVM and RF on SAR and SPOT data from 
2006, at different segmentation levels.  

SAR SPOT 
Segmentation level 

 SVM RF  SVM RF 

#0 (pixel) 45.9 48.7 75.2 73.8 

#1 60.1 63.8 76.9 77.3 

#2  63.0 66.6 75.7 77.9 

#3  67.2 68.7 78.1 78.3 

all levels 60.1 69.8 78.4 79.2 
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The difficulty to define an ideal segmentation level is confirmed by the class-specific accuracies 
(Table 5.4.4 and Tabel 5.4.5). The results demonstrate the differences of the various image 
sources and segmentation levels; no single level seems to be ideal to differentiate between all 
classes Using a SVM for example, Cereals and Root crops are better classified by segmentation 
level #2, but Rapeseed is more accurately classified better by level #3. Scale #3 achieves the 
highest overall accuracies from all single-level results, whereas the results of level #2 are less 
variable, resulting in a reduced standard deviation of the class-specific accuracies. 

Table 5.4.5: Producer and user accuracies [%] and corresponding standard deviation, using individual SVM 
on SAR and multispectral data sets at different segmentation levels. 

SAR SPOT 

Producer Accuracy User Accuracy Producer Accuracy User Accuracy Land cover 
class 

#2 #3 #2 #3 #2 #3 #2 #3 

Arable crops 57 74 57.3 61.1 74.2 71 72.6 72.3 

Cereals 73.4 67.4 52.2 52.1 80.6 80.6 66.9 67.5 

Coniferous 48.4 68.2 50.2 58.8 84.4 92.2 66.7 66.5 

Mixed forest 51 48.4 48.7 57.8 56 54 75.3 82.3 

Grassland 60.2 58.2 64.3 73.3 65.4 67.2 69.7 74.2 

Gravel 72 89.6 90 85.2 78.2 92 86.9 90.2 

Maize 67.6 61.2 67.7 68.3 76.2 83 91.5 92.8 

Orchard 64.6 68.6 63.5 65.2 78.6 78.6 66.0 68.71 

Rapeseed 67.2 68.2 86.82 90.7 81.2 79.6 80.6 88.4 

Root crops 64.6 61.8 62.9 62.5 76.6 78 75.9 75.6 

Urban 67.4 74.2 65.1 76.8 81.4 82.8 91.5 93.4 
standard 
deviation 8.1 10.5 13.5 12.0 8.2 10.9 9.7 10.5 

Table 5.4.4: Producer and user accuracies [%] and corresponding standard deviation, using individual RF on 
SAR and multispectral data sets at different segmentation levels. 

SAR SPOT 

Producer Accuracy User Accuracy Producer Accuracy User Accuracy Land cover 
class 

#2 #3 #2 #3 #2 #3 #2 #3 

Arable crops 65.6 71.8 60.4 62.0 73.2 75.6 74.1 72.8 

Cereals 73.4 71.0 56.5 54.9 81.2 77.6 72.8 68.8 

Coniferous 64.2 69.2 52.2 58.0 81.4 75.6 67.1 62.9 

Mixed forest 38.0 44.0 48.0 55.8 59.6 54.8 74.5 68.2 

Grassland 63.6 62.0 68.8 74.7 67.0 68 71.9 75.6 

Gravel 78.2 88.0 89.1 89.8 85.8 95 87.2 91.3 

Maize 71.4 69.2 75.2 67.7 82.2 85.2 91.9 92.8 

Orchard 69.0 69.8 66.0 70.2 82.0 83 67.5 75.0 

Rapeseed 75.0 74.0 88.7 84.3 85.8 84.4 89.2 87.0 

Root crops 67.8 61.4 68.5 68.1 77.6 77 78.7 79.2 

Urban 66.4 75.4 69.3 78.5 81.6 85.2 89.7 92.4 
standard 
deviation 10.6 13.3 10.8 11.6 8.2 10.5 9.3 10.6 
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Multisensor-Multilevel Results 
For a multisensor-multilevel fusion, the different source, which were separately pre-classified 
by a SVM, were combined by random forests (RF fusion). For matter of comparison a single 
SVM and a single RF were trained directly on a stacked data set, consisting of the imagery and 
not the SVM rule images (single RF and single SVM).  
As the results achieved in 5.3, the positive impact of a synergetic use of multisensor imagery at 
different segmentation levels is demonstrated. Where as the highest single-source result 
achieved on a single segmentation level is 68.7% and 78.3% respectively (Table 5.4.3), the 
classification of the mulitsensor-mulitlevel data set achieves accuracies of 77.5% and 80.1%. 
The performance of a multilevel-multisensor classification is further increased by up to 82.7% 
(RF fusion) by the proposed fusion strategy (Table 5.4.6). Most of the class-specific accuracies 
are increased by the RF fusion. The standard deviations of the class-specific accuracies are 
reduced by the multilevel-multisensor approach in some cases, compared to the results achieved 
with single-source data at individual segmentation levels (Table 5.4.7). The final classification 
result of the multilevel-multisensor approach for 2006 is shown in Figure 5.4.2.  

  

Table 5.4.6: Overall accuracy [%], using different 
classifiers on the multilevel-multisensor data set.  

Classifier 
algorithm Overall accuracy [%] 

Single SVM 77.5 

Single RF 80.1 

RF fusion 82.7 

Table 5.4.7: Producer and User accuracies [%], using RF fusion. 

Land cover class Producer 
accuracy 

User 
accuracy 

Arable crops 80.6 76.0 

Cereals 86.0 72.9 

Coniferous 89.8 67.9 

Forest 55.8 81.8 

Grassland 72.2 77.3 

Gravel 95.0 96.9 

Maize 84.0 94.0 

Orchard 86.4 82.0 

Rapeseed 88.0 94.4 

Root crops 82.4 80.5 

Urban 89.0 94.9 

standard deviation 10.6 10.0 
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Figure 5.4.2: Multisensor-multilevel classification result 2006, using RF fusion. 
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The visual interpretation of the final classification result, confirms the aforementioned findings. 
Natural features, e.g. field parcels, appear almost more homogeneous and the typical noise is 
eliminated, due to image segmentation. Even smaller natural features are correctly classified. 
The RF fusion was also applied to multisensor imagery, using only individual segmentation 
levels (Table 5.4.8). As in the section before, results clearly demonstrate the positive impact of 
image segmentation and the value of the multilevel fusion strategy: The RF fusion, which is 
applied on pixel data, results in a total accuracy of 75.6%, whereas a “simple” segmentation 
improves the results by 4% and more. The use of all segmentation levels and the application of 
the introduced multisensor-multilevel approach results in the highest overall accuracy. 

 

5.4.4 Conclusion and Discussion  
The results clearly confirm the findings from Section 5.3. The combination of different data 
sources as well as the integration of spatial information at different scales (i.e., image 
segmentation) contributes significantly to improved classification accuracy. The definition of an 
ideal single segmentation level is critical and even if a “simple” single-level approach improves 
the results of a pixel-based classification, a multilevel strategy achieves the highest accuracies.  
In contrast to the single-sensor results in 5.3, the extended multispectral time series outperforms 
the SAR data in terms of accuracy, irrespective of the segmentation level. This fact underlines 
the worth of multitemporal optical imagery. Nevertheless, the integration of SAR data still 
improves the classification accuracies. Thus, the value of multisensor image analysis is more 
than confirmed. It can be expected that the positive impact is further strengthen by recent and 
upcoming multitemporal SAR data with enhanced spatial resolution and increased revisit times.  
 

Table 5.4.8: Overall accuracy [%], applying RF 
fusion on individual segmentation levels. 

Classifier 
algorithm Overall accuracy [%] 

#0  (pixel) 75.6 

#1 79.7 

#2 80.5 

#3 80.5 

all levels 82.7 



Transfer of the multisensor-multilevel strategy  

78 

 
 
 
 



 

79 

6 Synopsis 

6.1 Main Findings 
It can be demonstrated that the different information provided by synthetic aperture radar and 
multispectral sensor systems are complementary for an improved land cover classification. 
Although multisensor approaches can improve the results irrespectively from the classifier 
algorithm, the application of recent non-parametric concepts is useful. Support vector machines 
and random forests significantly outperform the classification results achieved by conventional 
algorithms. As shown in other studies, image segmentation usually improves the classification 
accuracy compared to common pixel-based approaches. Nevertheless, the definition of a single 
segmentation level is difficult, and a multilevel approach is worthwhile. Finally it can be 
assessed that the results achieved by recent classifier developments (i.e., support vector 
machines and random forests) are further improved by modifying and combining these 
concepts. In the following the findings of the different application are summarized and 
discussed. 
The results clearly demonstrated that the RF approach is well suited for classifying 
multitemporal SAR data. The achieved overall accuracies are higher than that of traditional 
classifier and other classifier ensembles. Compared to other recent developments as SVM, RF 
performs at least comparable. The SAR inherent noise in significantly reduced and the image is 
classified into more homogeneous areas. The differences between the maps from the simple 
decision trees and classifier ensembles are comparable to the differences between pixel-based 
and segment-based approaches. In addition the result achieved on the SAR data underlines the 
assumption and findings in other studies that multitemporal and multipolarized imagery is 
worthwhile for an improved crop differentiation.  
The classification accuracies are further improved by combining multitemporal SAR data and 
multispectral imagery. Even when a set of multispectral imagery is available, which can achieve 
higher overall accuracies compared to SAR data, a combination is useful. In general this 
improvement is achieved for all considered land cover class. Although the results of 
conventional classifiers can be improved by such heterogeneous multisource data sets, the use 
of complex techniques is more adequate in this context. Especially random forests can be 
pointed out as an accurate as well as simple approach. Nevertheless the performance of these 
two recent classifier algorithms can be further improved in context of classification accuracy, as 
demonstrated by the experimental results. 
The training of SVM for the full multisensor data sets demands the definition of a specific 
kernel function. In context of heterogeneous imagery, it is more adequate to define individual 
kernel functions for each data source and fuse the outputs in a subsequent process. 
The sequential use of SVM and RF combine the strengths of both algorithms: SVM can model 
complex class distributions and RF performs an optimized decision making on a basis of 
various combinations of input features. By generating SVM-based pre-classifications, the 
imagery is transformed into a new feature space that is composed of the distance values of the 
SVM outputs. This pre-classification, which is based on a one-against-one multiclass-strategy, 
can be regarded as class-specific data transformation. The values of the generated rule images 
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are better comparable than the original data sets. This simplifies the determination of the split 
criterion during the training phase of the RF. Consequently the application of the RF fusion 
leads to the highest accuracies, as shown in the results. 
Segment-based approaches are well suited for increasing the classification accuracy. Especially 
the segmentation inherent speckle reduction significantly improves the accuracy for the SAR 
data and emphasizes the quality of multitemporal data for the classification of agricultural areas. 
On the other hand the result underlines the assumption and findings from other studies, that 
different segmentation levels provide different information and that a definition of a single 
segmentation size is critical. The different image sources provide diverse information and 
various aggregation levels contribute unequally to the classification of the various land cover 
classes. Thus the different information sources are not necessarily equally reliable. One specific 
source (i.e. image type or specific aggregation level) is more applicable to describe a specific 
class and not appropriate for another class, whereas another one seems more adequate to 
classify another land cover class. Consequently the use of information from different sensors as 
well as the integration of spatial context from various segmentation levels with different scales 
is valuable. This statement was clearly confirmed by the results of the presented applications.  
 

6.2  Summary 
Overall the results underline that multitemporal and multisensor imagery are worthwhile for an 
improved land cover classification. The use of image segmentation further improves the results 
and is particularly worthwhile for the noise inherent SAR data. The adequate utilization of the 
wide information content of such complex data sets requires recent classifier developments. The 
synergetic use of different classifier algorithms seems useful, to combine the strengths of 
different techniques. Regarding the initial research questions, the findings can be summarized: 

 Multisensor imagery improves the accuracy of land cover classifications, normally 
independent form the land cover class and the classifier algorithm. 

 Recent classifier developments as classifier ensembles and support vector machines are 
adequate in this context and significantly outperform conventional methods. 

 A “simple” image segmentation can increase the classification accuracy. Nevertheless 
the definition of a single segmentation level for all land cover classes and the whole 
multisensor data set is critical. Thus, a multilevel approach is to prefer. 

 The performance of recent classifier developments can be further improved by a 
combination of different concepts.  
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6.3 Prospect 
Regarding the continuously increasing availability of various remote sensing data, multisensor 
applications become even more attractive. Moreover, recent and upcoming satellite missions, as 
TerraSAR-X, Radarsat-2, provide spatially enhanced and temporally more detailed information: 
The improved spatial resolution might result in more valuable textural information content for 
example, whereas increased revisit times results in more current information on the 
environmental state. SAR missions as ALOS PALSAR and TerraSAR-X are the first space-
borne systems, which provide temporally frequent polarimetric imagery. In addition several 
recent SAR systems operate in different wavelength (e.g., X-band, C-band, L-band). Overall a 
multitude of different but complementary information on land cover is provided. On the other 
hand the dimensionality and complexity of such data sets is further increased and thus it might 
demand more sophisticated classifier concepts. Future research within this context should 
concentrate on the integration of these new data sets to include additional information provided 
by recent Earth Observation systems. Regarding space-borne polarimetric SAR data the 
integration of methods, which were originally introduced for airborne data seems feasible.  
In addition it is expected that the positive impact of segmentation and the presented multilevel 
strategy becomes even more dominant in the context of high-resolution imagery. Thus future 
studies may concentrate on the integration of additional segment features as shape on the one 
hand and alternative segmentation algorithms on the other hand.  
The pre-processing of remote sensing data is an important step for image analysis, particularly 
in multisensor image analysis. One research focus could be set on an adequate multisensor 
preprocessing, for example an improved co-registration between SAR systems and multispectral 
imagery or a temporal extension of the segment-based speckle reduction, as introduced in 
Waske et al. (2007). 
Overall the universality of the proposed concepts and findings can be underlined by transferring 
the methods to other study sites. Thus, beside an application on the well-known agricultural test 
site near Bonn, the investigations should be performed on urban regions as well as rural test 
sites, with different environmental settings. In context of operational applications and products, 
the integration of enhanced land cover products into monitoring and decision support systems 
seems interesting to underline the general worth of the products and upcoming missions. 
In summary, the following main subjects are worth to investigate in detail: (1) the derivation of 
additional temporal information, using temporal high resolution imagery, as RapidEye and 
TerraSAR-X data, (2) the integration of textural information, e.g. derived from spatial high 
resolution SAR data, as TerraSAR-X or Cosmo-SkyMed, (3) the utilization of polarimetric 
satellite imagery, as provided by ALOS PALSAR and TerraSAR-X, and (4) the use of 
multifrequenzy approaches, using for example, ALOS Palsar, TerraSAR-X or Cosmo-SkyMed, 
and Radarsat-2 data. 
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