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Chapter 1

Introduction

Very-large-scale integration (VLSI) design, the process of creating complex integrated
circuits, is one of the most important and appealing application areas for mathematics.
A major part is physical design; it leads to a wide range of combinatorial optimization
problems which are of both theoretical and practical interest. Due to the rapid technology
development and growing complexity of VLSI chips, tools based on very efficient algorithms
are needed to cope with the requirements of a highly automated design process.

Over the last 20 years, the Research Institute for Discrete Mathematics at the University
of Bonn has been developing the BonnTools, a VLSI toolkit for physical design, as part of
a long-term cooperation with IBM Corporation. This software have been used on a large
number of leading-edge chips in design centers all over the world. The package comprises
applications for all major parts of physical design: placement, timing optimization, clock
tree design and routing. In this work, we examine the problem of VLSI routing under
theoretical as well as practical aspects. The practical implementation is called BonnRoute,
the routing program of the BonnTools. Many of the most complex industrial chips have
been designed using BonnRoute.

In this thesis, we start by presenting the routing problem in Chapter 2. Its task is to
find disjoint wire connections between sets of points on the chip. For each individual set
of points to be connected, specific constraints have to be taken into account. Moreover,
routing blockages have to be avoided, and several other types of constraints have to be
obeyed. The three main optimization goals are timing, power and yield. It is usually
desirable to consider more than one of these objectives at the same time.

A simplified view of the VLSI routing problem is as follows. In a subgraph of a three-
dimensional grid we look for vertex-disjoint Steiner trees connecting given terminal sets.
(There are additional complications in practice, which do not change the core algorithmic
problem much.) The standard approach, which is also taken by BonnRoute, is to split
the routing problem into two major parts: first, the global routing consists in packing
Steiner trees in a coarsened grid subject to edge capacities. As a second step, the detailed
routing determines the exact layout, essentially by computing shortest paths sequentially

1



2 CHAPTER 1. INTRODUCTION

within the global routing corridors and using a subsidiary ripup-and-reroute strategy. In
Chapter 2, we go into the theoretical details of both parts.

Steiner trees and shortest paths are the two main mathematical concepts in routing. The
rectilinear Steiner tree problem in the plane asks for a minimum-length tree intercon-
necting a set of terminals and consisting only of horizontal and vertical line segments.
For the instances which typically occur in VLSI design, rectilinear Steiner minimum trees
(RSMTs) can today be computed quickly. As interconnect signal delays are becoming
increasingly important, the length of paths in a tree — or even a measure which reflects
delay directly — should be taken into account in the construction. In Section 3.1 we
consider the problem of finding an RSMT that minimizes a secondary objective related to
signal delay. As a major result of this thesis, we derive structural properties of RSMTs for
which the weighted sum of path lengths from a designated source to the other terminals
is minimized. We also present exact and heuristic algorithms for constructing RSMTs
with the secondary objective of minimizing either the weighted sum of path lengths or the
so-called Elmore delay, a standard wire delay approximation used in VLSI timing analysis.
Finally, computational results for industrial designs are presented.

In Section 3.2 we consider the problem of finding a shortest rectilinear Steiner tree for a
given set of points in the plane in the presence of rectilinear obstacles. The Steiner tree
is not required to avoid the obstacles completely; however, if the Steiner tree intersects
an obstacle, then no connected component of the induced subtree must be longer than a
given fixed length. This reflects the insertion of repeaters in a large wiring tree, which are
necessary for electrical correctness, but must not be placed on top of obstacles. We show
that this problem can be approximated within twice the optimum length in polynomial
time. Another main result of this thesis is a generalization of the Hanan grid theorem.
Using this structural property, we show how to improve the performance guarantee of the
approximation to a factor which is arbitrarily close to the best bound for the classical
Steiner tree problem in graphs.

The second central concept in routing (besides Steiner trees) is to construct a shortest
wiring connection between two metal components that must be connected electrically.
This can be modeled as a shortest paths problem in a partial grid graph and can be solved
with Dijkstra’s algorithm, the classical method for finding shortest paths in digraphs with
non-negative edge lengths. Since a major part of the detailed routing running time is
spent in path-search routines, several speed-up techniques are used routinely today.

Routing speed-ups are a crucial lever for reducing the time needed for the overall design
process. Goal-oriented modifications of Dijkstra’s algorithm are typical approaches. A
further important contribution of this thesis is a framework for speeding up Dijkstra’s
algorithm, which is presented in Chapter 4. Instead of labeling individual vertices, we
start from a partition of the underlying graph into subgraphs and assign labels to the
subgraphs. If their number is small compared to the order of the original graph and
the shortest path problems restricted to these subgraphs are computationally easy, this
approach will lead to a substantial reduction in running time. The framework is generic
and can be specialized in different ways. We apply it to the VLSI routing problem, whose
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computational challenge is due to the fact that we need to find millions of shortest paths
in partial grid graphs with billions of vertices. In this context, the modified path search is
applied twice: first in a coarse abstraction (where the labeled subgraphs are rectangles),
and then in a detailed model (where the labeled subgraphs are intervals). Using the result
of the first algorithm to speed up the second one via goal-oriented techniques leads to
considerably improved running times. Experimental results on leading-edge industrial
chips constitute a practical justification of our approach, complementing the theoretical
worst-case time bounds.

For a routing tool to stay top for more than a decade, extensive efforts in coding, mainte-
nance and testing are mandatory. In Chapter 5 we present computational results achieved
by BonnRoute on real-world VLSI chips. They show that BonnRoute performs excellently
on all traditional quality measures such as wire length and number of vias, but also on
further criteria of equal importance in the every-day work of the designer. Due to today’s
time-to-market pressure it is also necessary to minimize the time needed to complete the
full design process. Our experiments demonstrate that BonnRoute is a very effective and
efficient routing tool and fulfills all requirements of state-of-the-art VLSI routing.
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Chapter 2

Routing

The goal of this chapter is to give an introduction to routing in VLSI design and an
overview of the program BonnRoute. Since routing is the last major step in the design
flow we start with a short description of the overall VLSI design process. We set up
the routing problem and formalize the routing task. In the main part of this chapter
we present the key components of BonnRoute which comprises BonnRouteGlobal and
BonnRouteLocal.

2.1 VLSI Design Flow

In this section we give a basic explanation of the VLSI design process, which consists of
two main parts: logical and physical design.

The functionality of a chip has to be modeled first at the behavioral level and can be
expressed by means of a hardware description language (HDL). The two commonly used
standard HDL formats are VHDL (IEEE [1994]) and Verilog (Thomas and Moorby [2002]).
The HDL compiler translates the specification into a register transfer level (RTL) model
and then into a logic description, which is not optimized yet. This is the first step of
logic synthesis. Another important application of logic synthesis is logic optimization
which is applied during many subsequent stages in the design flow. The objective of logic
optimization is to find an equivalent description of the logic function such that the physical
implementation of the chip is as compact as possible and timing constraints can be met.
After initial logic optimization steps which result in a netlist with standard components
(such as NANDs and NORs), the netlist must be mapped to books of a given library.
A library is a set of logic components (books) which can be used to implement a given
logic function. It contains standard books such as NAND, NOR, or INVERTER and
more complex modules such as ADDER/MUX. There are many instances of each book
which have distinct layout and different properties with respect to area consumption, load
capacitance and timing. These instances are called circuits (or gates). A circuit contains
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6 CHAPTER 2. ROUTING

a set of (pins) which serve as connection points to other circuits. Pins of different circuits
form a net, and they are connected by wires.

For the physical layout some parameters, such as the chip image, the number of routing
layers, and the technology have to be specified in advance. The technology constraints
define the physical characteristics of components of the chip, give capacitance and resis-
tance values for wires and state so-called design rules which are discussed in detail in
Section 5.3.2. For further reading on logic synthesis, see Devadas, Ghosh and Keutzer
[1994].

The second main part of the VLSI design flow is the physical design of a chip which
includes placement, timing optimization and routing.

In placement, all circuits of a chip have to be placed disjointly on the chip area. Although
it is even NP-hard to decide whether there exists a feasible solution to this problem, in
practice, such a solution can usually be found. This is due to the fact that most of the
circuits have standard height and vary only in a few different widths. Moreover, the area
customized by all circuits is sufficiently small compared to the entire chip area.

The objective of the placement step can be manifold: timing-critical nets should be realized
as short as possible. This is done by imposing higher weights on nets which are identified
as timing-critical. In practice, this approach is often managed in a loop which performs
logic optimization and placement changes successively. Another requirement on placement
is that the design is routable and does not contain highly congested regions. Here, a
congestion estimator which runs fast and detects routing-critical areas reliably is essential
to guarantee good results (Brenner and Rohe [2003]). For a good survey on theoretical as
well as practical aspects of placement, see Brenner [2005].

The optimization of the timing behavior of a chip is an important task in the VLSI design
process. Its main goal is to achieve timing closure, i.e. to meeting all timing constraints,
for which various algorithms are applied. Here, we only briefly mention the major design
steps in timing optimization.

The slack at a sink of a net is the difference of required and computed arrival time. A
negative slack indicates that given timing constraints are not met. As feature size shrinks
with new technologies, the interconnect delay becomes increasingly dominant over circuit
delay. Repeaters (buffers and inverters) are used to repower a signal over a long distance.
A repeater tree (also called fanout tree) should be constructed such that it maximizes
worst slack and minimizes total wire length simultaneously.

The timing behavior of a gate strongly depends on two physical characteristics: input
capacitance and driver strength, both depending on area and power consumption of the
gate. A larger gate typically results in a smaller downstream delay and larger upstream
delay. The task of gate sizing is to minimize an objective function, for example power or
area consumption, while meeting all timing restrictions.

The threshold voltage of a gate also affects the timing behavior and power consumption of
the gate. The higher the threshold, the higher the delay through the gate, but the lower the
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leakage power consumption. This trade-off is subject of the Vt-assignment problem which
aims at choosing the right threshold voltage for all circuits to minimize power consumption
without violating timing constraints.

Most computations on a chip are synchronized by a periodic clock signal. This signal
controls the times when bits are stored in storage elements and when they are released for
computations. It can be shown that the overall cycle time can be decreased by assigning
individual clock signal arrival times for the storage elements instead of having simultaneous
clock signals. The task of clock skew scheduling and clock tree synthesis is to determine the
best arrival times for clock signals and to build a clock tree which realizes this assignment.

Logic restructuring changes the logic structure of the netlist and is a mean to improve
the worst slack of a net on top of timing optimization techniques. It can perform local
exchange operations or even replace an entire path by another.

In practice, timing-closure can only be achieved by an iterative approach which calls
optimization steps described above in a timing-driven placement loop. Among a whole
bunch of literature on the subject of timing optimization we refer to Korte, Rautenbach
and Vygen [2007].

There are many papers and books in the literature on VLSI design in general, e.g. consider
the few survey books by Gerez [1998], Sherwani [1999], and Sait and Youssef [1999]. For a
comprehensive and detailed work with the focus on theoretical aspects we refer to Vygen
[2001]. A good overview of the mathematical components of the BonnTools is given
by Korte, Rautenbach and Vygen [2007]. Finally, Alpert, Mehta and Sapatnekar [2008]
publish a book on state-of-the-art VLSI algorithms.

2.2 The Routing Problem

We consider the stage of the design flow, where all placement and timing optimization
steps are assumed to be finished. (This assumption is a slight simplification. In practice,
it may be necessary to return to placement and timing steps in order to insert engineering
change orders or to correct violations produced by routing.) The final task of the VLSI
design flow is — informally expressed — to connect all nets of the netlist disjointly on the
chip such that all given constraints are met. Thereby, properties of the nets have to be
considered and blockages have to be avoided. We now discuss the instance of the routing
task in more detail and formulate the routing problem finally.

2.2.1 Physical Description of a Chip

Let A0 := [xmin, xmax]× [ymin, ymax]× [zmin, zmax] ⊂ R3 be the three-dimensional chip area.
We assume zmin, zmax ∈ Z≥0. A chip has a number of wiring layers zmin, zmin +1, . . . , zmax.
For two adjacent wiring layers z, z + 1 with z ∈ {zmin, . . . , zmax− 1} the interval (z, z + 1)
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is called via layer which is referenced by index z. A (routing) layer is either a wiring layer
or a via layer.

As the output of the logic optimization steps we have a fixed netlist, which consists of a
set N of nets. Each net N ∈ N contains a set of pins of which one serves as the electrical
source and all the others are sinks. All pins of a net have to be connected by wiring. Each
pin can be decomposed into classes of so-called soft and hard pin areas, which are sets of
rectangular metal shapes. Shapes of soft pin areas are not electrically connected to each
other whereas shapes of hard pins are. In practice, most pins consist of only one class,
they are either soft or hard. Most pins are located on the lower wiring layers. Some pins
may be found on upper wiring layers, particularly those of macros. Figure 2.1 visualize
parts of the structure of a real chip including pins and wires.

Figure 2.1: Photo of a real chip taken by an electron microscope. For the sake of
exposure, silicon dioxide has been removed and the metal structure is artificially
colored. It displays pins and wires of lower wiring layers, connected by vias (light
blue).

From a manufacturing perspective, the width of a wire solely must not be smaller than
a technology dependent minimum width. However, routing is often restricted to a set Ω
of wiretypes in order to make routing manageable and to fulfill additional constraints (see
Section 2.2.2). Each net is assigned a set AN of pairs (ω, A) where wiretype ω ∈ Ω is
allowed to be used in the non-empty area A ⊆ A0. The set AN is called wiretyped routing
area.

A wiretype ω ∈ Ω is defined by a set of layer specific wiremodels and viamodels (at
most one model per layer). Each wiremodel is a triple (sz, Rz, Cz) defined on wiring
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layer z ∈ {zmin, . . . , zmax}. The shape of the wiremodel relative to a reference point
(called anchor point) is defined by sz. A very general description of a shape is a tuple
sz = (oW , oE , oS , oN ), defining overhang o. An explicitly required extra spacing may be
associated with a wiremodel in order to force neighboring wires to keep a sufficiently large
distance. For timing optimization and evaluation, vectors Rz and Cz give best, worst and
nominal values for the resistance and capacitance per unit length of every wiretype on a
wiring layer z. Resistance and capacitance of a wire with fixed length only depend on the
width of the wire. The resistance of a wire is proportional to the length divided by the
width, and the capacitance of a wire is proportional to the area of the wire.

A viamodel is defined similarly to a wiremodel. It is a tuple (sbot
z , smid

z , stop
z , Rz) on via

layer (z, z+1) with z ∈ {zmin, . . . , zmax−1}. The outline of the via is defined by its bottom
pad shape sbot

z on wiring layer z, its stem smid
z on via layer (z, z +1) and its top pad shape

stop
z on wiring layer z + 1; see Figure 2.2. Since a via has negligible capacitance, only

its resistance Rz is given. Wiremodels and viamodels may contain some more parameters
which we do not need for our description.

A segment is a triple (ω, (x1, y1, z1), (x2, y2, z2)) ∈ Ω × A0 × A0 with x1 ≤ x2, y1 ≤ y2,
z2 ∈ {z1, z1 + 1} ⊂ Z≥0 and either x1 6= x2 or y1 6= y2 or z1 6= z2. The one-dimensional
line defined by the two end points (x1, y1, z1) and (x2, y2, z2) is referred as the stick-figure
of the segment. In our connectivity model, two segments are electrically connected if and
only if their stick-figures intersect. Although shape connectivity is sufficient, stick-figure
connectivity is helpful in the description of routing. For sake of simplicity, we assume
that two wires intersect only at their endpoints which can always be achieved by splitting
segments at their intersection. We further assume that a segment electrically connects a
pin if and only if its stick-figure intersects the pin.

The length of a segment e is l(e) := |x2 − x1| + |y2 − y1| + |z2 − z1|. A segment defines
the shape of a wire segment (or wire for short) if z1 = z2. The x-y-expansion of the wire
is defined by the shape parameters sz1 of the wiremodel (sz1 , Rz1 , Cz1) on wiring layer z1

of wiretype ω. For sz1 := (oW , oE , oS , oN ) it is [x1 − oW , x2 + oE ] × [y1 − oS , y2 + oN ] ×
{z1} ⊆ A0. We may assume oW + oE = oS + oN , and define the width of a wire by
oW + oE . For z2 = z1 + 1, a via segment (or via for short) is defined by the viamodel
(sbot

z1
, smid

z1
, stop

z1 , Rz1). It connects locations of adjacent wiring layers of the same x- and
y-coordinate and consists of three parts. The bottom pad of the via on wiring layer z1 is
[x1 − oW , x1 + oE ] × [y1 − oS , y1 + oN ] × {z1} ⊆ A0, where sbot

z := (oW , oE , oS , oN ). The
shapes of the stem and the top pad are defined similarly; see Figure 2.2 for illustration.
Vias are undesired for several reasons, including their high electrical resistance and impact
on manufacturing yield.

The wiring W (N) of a net N ∈ N is the set of all segments assigned to that net. Clearly,
a stick-figure connected set of wiring results in an electrically connected path. The wiring
of the chip is the union of the wiring of its nets.
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oW oEoS

oN

Top pad

Stem

Bottom pad

Figure 2.2: A wire model (left) and a via model (right). The corresponding
stick-figure is depicted by a bold line.

2.2.2 Design Constraints

The instance of the routing problem contains various kinds of restrictions and guidance to
routing. We distinguish between blockages which have to be avoided, design rules which
have to be obeyed by routing, and constraints which help to complete the routing task in
practice.

Parts of the chips which are not usable for wiring are modeled as a set of (rectangular)
blockages. The segments of a net have to obey these blockages. There are different types
of blockages: macros which can be large blocks of logic units, book blockages, and power
rails. As the complete wiring of a chip is usually not done at once, but in several steps,
some wires might already exist in the input of the routing task. Often, pre-wiring is
not allowed to be changed. This is particularly applied in one of the last stages in the
VLSI design process in which small modifications in the netlist are necessary (engineering
change order, ECO). Here, it is desired that as few segments as possible change their
layout. Pre-wires of a specific net serve as blockages for all other nets but can be used
to close connections of the same net. Moreover, some user-defined blockages (so-called
reserved areas) belong to the set of blockages.

Manufacturing process related design rules, defined for each routing layer separately, have
to be respected by routing. Design rules have three main goals: first, required design rules
must ensure that constraints of the manufacturing process are respected. They partic-
ularly define when shapes are connected and separated. Second, they are used to avoid
that a signal is affected by another nearby signal (so-called cross-talk). Additionally, there
are specific wiretypes to prevent cross-talk, so-called shielded or isolated wiretypes. Third,
recommended design rules define additional restrictions to the layout of a design to de-
crease the failure probability of a chip further, i.e. to improve the expected manufacturing
yield. We describe some important design rules in more detail in Section 5.3.2.



2.2. THE ROUTING PROBLEM 11

Each wiring layer is usually assigned a preference direction to efficiently use the routing
space. In this work we restrict ourselves to horizontal and vertical directions. Consecu-
tive wiring layers have different preference directions in practice, although this is neither
important from theoretical perspective, nor from an implementation point of view. A jog
is a wire segment running orthogonally to the preference direction within a wiring layer.
Jogs may be necessary to close connections but they may block many wires in preference
direction and should therefore be largely avoided.

A net must connect source and sink pins by a network which does not necessarily have to
be a tree (McCoy and Robins [1994], Kahng, Liu and Mandoiu [2002]). Nevertheless, for
timing analysis and in terms of minimizing net capacitance we assume that every net is
connected by segments which form a Steiner tree.

Some further design specific constraints may be imposed to the routing task. Due to
timing analysis some nets of the netlist are considered to be more critical than others.
These nets can be assigned timing and capacitance constraints.

2.2.3 Optimization Goals

The optimization goal of the VLSI routing problem for a specific chip correlates with that
of the whole design process of a chip and very much depends on the purpose of the chip.
There are three main goals: meeting all timing constraints, minimizing power consumption
and maximizing manufacturing yield. In practice, more than one objective is desirable at
the same time. Hence, one has to find a good (weighted) trade-off between conflicting
goals.

For processor chips and ASICs (application specific integrated circuits) the overall goal is
usually given by the maximum clock speed. This objective is mainly addressed by logic
synthesis and clock scheduling in previous design steps. The remaining task in routing is
to construct a wiring which realizes the required timing. That is, the most timing-critical
nets should be routed almost optimally, while other nets should be routed with minimum
capacitance. In practice, most of the nets are not timing-critical. Applications for this
can be found e.g. in servers, printers, DVD recorders and gaming.

Another important design criterion is power consumption, loosely speaking, it can be
viewed as the (weighted) sum over all capacitances on the chip. As all circuits have been
fixed before routing, the optimization goal in routing is to minimize the capacitance of the
wiring of the chip. Chips with a low power consumption are needed, particularly, where
the operation time for that chip is crucial, such as in battery-powered devises (mobile
phones, microprocessors).

The last optimization goal is manufacturing cost. Decisions on many factors having an
effect on this goal have already been made before routing (e.g. chip size, number of routing
planes). But the wiring has a considerable impact on the production yield (yield for short)
of a chip. Informally expressed, yield is the proportion of chips without any defect on the
wafer. It is influenced by several components (see Section 5.3.2). During routing, this can
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be taken into consideration in many ways, for example by spreading wires, decreasing the
number of vias and avoiding crosstalk; see Section 5.3.3.

2.2.4 Problem Formulation

The task of VLSI routing problem can now be formulated as follows:

VLSI Routing Problem

Instance: • a netlist N ;
• for each net N ∈ N a set AN of wiretyped routing areas;
• a set of blockages;
• a set of design rules;
• a set of design specific constraints;
• an optimization goal.

Task: For each net N ∈ N , find a set of segments within AN which electrically
connects its pins and is separated from blockages and shapes of other nets
such that all design rules and constraints are met and the goal is optimized.

2.3 Routing Grid

In order to simplify the routing process, especially in 90 nm and older technologies, all
metal shapes, such as pins and blockages, are well aligned to a layer-dependent, pre-
defined grid. The distance between adjacent tracks in the grid, often called the wiring
pitch, is usually the minimum width of a wire plus the minimum distance of two wires on
that layer. Therefore, libraries of those technologies are also called gridded. Wiring can
be restricted to follow these tracks of the grid without sacrificing routing space. For this
reason, most industrial routing tools make use of that property and create a fully on-grid
wiring.

The graph typically used for modeling the search space for VLSI routing is a three-
dimensional grid graph. Let G0 = (V0, E0) be the infinite three-dimensional grid graph
with vertex set V0 := Z3, in which two nodes (x, y, z) ∈ V0 and (x′, y′, z′) ∈ V0 are joined
by an edge if and only if |x− x′|+ |y − y′|+ |z − z′| = 1.

As mentioned in the previous section, going from one wiring layer to an adjacent wiring
layer and also going orthogonally to the preference direction within one wiring layer is
costly for routing. This is typically modeled by edge lengths c : E(G0) → Z>0 that prefer
edges within one wiring layer in preference direction: for each wiring layer z ∈ [zmin, zmax]
there are constants cz,1, cz,2, cz ∈ Z>0 such that for all (x, y) ∈ [xmin, xmax]× [ymin, ymax]

c(((x, y, z), (x + 1, y, z))) = cz,1,

c(((x, y, z), (x, y + 1, z))) = cz,2 and
c(((x, y, z), (x, y, z + 1))) = cz (z < zmax),
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i.e., in each wiring layer defined by some fixed z-coordinate there are fixed lengths for
edges in x- and y-direction and there is a fixed length for all edges leading to the wiring
layer above.

Typical values we use in practice and throughout this work are 1 and 4 for edges within
one wiring layer in and orthogonal to the preference direction, and 13 for vias.

In newer technologies, such as 65 nm and beyond, several reasons make routing much more
difficult. Routing tools are faced with shapes which do not have that grid property any
longer. They must follow complex variable rules in width and spacing which force the
wiring to become off-grid. Moreover, the structure of power and blockages, especially
those inside circuits, is much more complex than for older technologies, thus even pin
access becomes difficult.

For an example of comparable circuits of a gridded and gridless library, see Figure 2.3.

90 nm technology (gridded) 65 nm technology (gridless)

Figure 2.3: The layout of a circuit (NAND4) in a gridded (left) and a gridless
(right) 12-track library with pins (yellow), blockages (orange, striped), supply
voltage (orange, filled) and ground (orange, dotted). For the gridded library, all
shapes are simple, lie on pre-defined tracks (white) and have a symmetric overhang
with respect to the tracks. This is in contrast to the circuit of the gridless library.
There, the structure is composed of many non-trivial shapes with non-regular
positions relatively to the grid. Note that the castellated power supply terminals
on the top additionally contribute to a difficult pin access.

For gridless instances, routing tools cannot afford to work on the manufacturing grid, the
smallest geometry manufacturable by a fab. Standard grid-based routing tools (where
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all wires are assigned on pre-defined tracks) make use of a regular detailed grid graph as
described above. Although searching for paths on a uniform grid graph is much easier,
it may waste space available for routing. Our detailed routing tool BonnRouteLocal uses
a very efficient data structure to represent all shapes which is able to answer queries
extremely fast (Hetzel [1995], Panten [2005]). Although path search utilizes an underlying
grid structure, also given in the example of Figure 2.3, it is not restricted to grid-based
routing algorithm. Each shape is associated with one or more nodes of the routing grid
which represent areas containing the shape.

2.4 Complexity

The VLSI Routing Problem contains the following simplified problem which can be
formulated in terms of a network problem:

Simplified VLSI Routing Problem

Instance: • The infinite three-dimensional space Z3;
• a netlist N , each net N ∈ N consists of a set of terminals T (N) ⊂ Z3;

Task: For each net N ∈ N , find a Steiner tree which connects the terminal set T (N)
in Z3 such that the total netlength l(N ) :=

∑
N∈N

∑
e∈W (N) l(e) is minimized.

The Simplified VLSI Routing Problem includes many NP-hard combinatorial opti-
mization problems, e.g. for |T (N)| = 2 for all N ∈ N the vertex-disjoint paths problem
in undirected grid graphs (Kramer and van Leeuwen [1984]), and for |N | = 1 and all ter-
minals lying in one layer the rectilinear Steiner tree problem (Garey and Johnson [1977]).
Hence, the Simplified VLSI Routing Problem is also an NP-hard problem.

2.5 Routing Approaches

Many routing approaches in integrated circuit design systems have been developed during
the last 40 years. First papers described wiring programs for printed circuit boards (Dunne
[1967], Fisk, Caskey and West [1967], Heiss [1968]). The main goal was to interconnect a
given set of terminals in a grid of a few hundred channels on two layers. At about the same
time, the theory on shortest path algorithms received a lot of attention in literature (cf.
Section 4.1), which in turn improved routing in practice of circuit designs considerably. On
the other hand, some theoretical results were motivated by applications in circuit layout;
for example Mikami and Tabuchi [1968] proposed a line search algorithm, and the concept
of line expansion was first described by Heyns, Sansen and Beke [1980].

Due to the huge instance size of today’s VLSI chips, most routing tools consist of at least
two main parts: global routing and detailed routing. In global routing, each net is assigned
a global routing corridor in which it is realized in detailed routing. As global routing works
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on a much coarser instance than detailed routing, it runs much faster than the latter and
is able to globally optimize a given optimization goal such as minimizing netlength or
maximizing yield. The task of detailed routing is to electrically connect each net of the
chip within the global routing corridor.

There are mainly two approaches for global routing. Sequential algorithms route the
nets one by one in a maze running fashion (based on Lee [1961]), with a line search
algorithm (Mikami and Tabuchi [1968], Hightower [1969], Soukup [1978]) or line expansion
technique (Heyns, Sansen and Beke [1980]). Multicommodity flow-based algorithms model
the global routing problem as a multi-terminal multicommodity flow problem, which is
solved approximately in several iterations (Carden IV, Li and Cheng [1996], Albrecht
[2001]). Today’s global routing algorithms are mostly congestion and performance driven
(Vygen [2004], Müller [2006]).

Most detailed routing programs split the task to connect a net in a sequence of shortest
path searches for which standard algorithms and speed-up techniques (e.g. goal-oriented
or bi-directional) are applied; see Section 4.1.2. Two different approaches are commonly
used in practice: in a cell-based approach, the global routing corridor is partitioned into
a sequence of small areas (cells) within local connections are realized. The overall path is
searched from one cell to another. These cells may form a channel expanding only a few
tracks, called channel routing (e.g. Hashimoto and Stevens [1971], Rivest and Fiduccia
[1982], Tseng and Sechen [1999]), or consist of only a small cell with connection points on
all sides, called switch-box routing (e.g. Hitchcock [1969], Hamachi and Ousterhout [1984],
Huijbregts and Jess [1993]). In a point-to-point approach, the connection is searched
without breaking the task into multiple connections. Various methods are applied in
practice. Margarino et al. [1987] presented the idea of expanding tiles which is similar
to the line expansion technique (see Section 4.1.2). Tseng and Sechen [1999] applied an
improved version in their channel based router. Hetzel [1998] developed a goal-oriented
and interval-based version of Dijkstra’s algorithm which has been used in XRouter, the
predecessor routing tool of BonnRoute, used within IBM for many years. Main parts of
the current path search in BonnRoute is still based on his algorithm, see Section 2.6.2.
Zheng, Lim and Iyengar [1996] restricted the search space to an implicitly represented
sparse strong connection graph which is part of the Hanan grid induced by the boundaries
of all obstacles. Following their framework, Cong, Fang and Khoo [2001] and Li, Chen
and Lin [2007] presented combined approaches of a connection graph based router with
tile-expansion.

Although path search plays a dominant role in constructing the wiring of a net, a few
routing programs apply multi-terminal routing. Huijbregts and Jess [1993] propose an
algorithm which routes multi-terminal nets without partitioning them into 2-terminal
nets. They show that their algorithm constructs minimum cost paths.

In order to handle huge instance sizes, some routing engines use intermediate steps or apply
a multi-level routing system. In track assignment (Kay and Rutenbar [2001], Batterywala
et al. [2002]), long routes are embedded within their global routing corridor, i.e. their
ordering is fixed within tiles spanning a very few tracks. The goal of this approach is to
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address problems arising from signal delay, cross-talk and other constraints at moderate
computational complexity. For easy chips, track routing can reduce the running time of
detailed routing significantly. For complex and dense chips, this approach often leads
to a tremendous increase in rip-up and reroute sequences to withdraw and fix wrong
decisions made in track assignment. Instead of a track assignment step, Cong, Fang
and Khoo [2001] add a congestion driven wire-planning stage between global and detailed
routing that plans the route of each net based on available routing resources and individual
requirements of that net. In the last few years, several multilevel routing systems have
been proposed (Ho et al. [2003], Cong et al. [2005], Chen, Chang and Lin [2006]). They
include a coarsening and an uncoarsening stage. Starting with a fine tile partitioning of the
entire chip, the coarsening stage iteratively merges tiles. At each level, it estimates routing
resources. At the coarsest level, an initial route is constructed (e.g. by a multicommodity
flow algorithm). Some multi-level routing engines also perform a track assignment at that
level. The uncoarsening pass moves from a global to a local view. At each level, tile-to-
tile-paths are searched and results of the previous level are refined. At the finest level, a
final path search finds the exact connections within each tile. In contrast, Chen, Chang
and Lin [2006] proposed a reversed flow, i.e. first an uncoarsening stage followed by a
coarsening stage.

For many years, the classical optimization goals of routing algorithms were netlength and
number of vias. With decreasing feature size, wire spacing has become significant for
yield, power consumption and timing of a chip, and is taken into account by the work
of Huijbregts, Xue and Jess [1995], Tseng, Scheffer and Sechen [2001], and Müller [2006].
Moreover, all modern routing systems provide a good rip-up and reroute strategy to revise
decisions already made in an earlier stage of the routing algorithm.

Finally, we would like to remark that some work has also been spent on diagonal wiring
which was already mentioned in a paper by Heiss [1968]. The use of 45°-segments for
routing is reported, for example, in Lodi [1988], Chiang and Sarrafzadeh [1991], Natarajan
et al. [1992] and Ho et al. [2005]. For 45°-routing, Teig [2002] introduced the term X-
architecture. Analogously, a Y-Architecture allowing wires routed in three directions (0°,
120° and 240°) was proposed by Chen et al. [2003a] with an analysis presented in Chen
et al. [2003b]. The practical relevance of both architectures is unclear. All current real-
word VLSI chips allow wiring for only two directions (horizontal and vertical), which will
certainly remain the approach for the next years.

2.6 Some Key Components of BonnRoute

In this section we focus on key algorithmic components of BonnRoute, the routing tool
developed at the Research Institute for Discrete Mathematics at the University of Bonn.
Computational results of BonnRoute achieved on modern industrial chips are presented
in Chapter 5.

In contrast to some of today’s industrial routers, BonnRoute does not follow a hierarchical
approach and does not have the intermediate step of track assignment, mainly for three
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reasons: BonnRouteGlobal contains a very accurate capacity estimation providing a guid-
ance for detailed routing which is well solvable without resorting to large safety margins
in routing capacities. Moreover, it is able to incorporate timing and other constraints
into its optimization goal. Finally, the core routine of BonnRouteLocal, the shortest path
algorithm, is extremely fast.

For very complex and dense chips it may be helpful to split the two-stage flow of global
and detailed routing further. Short nets occupy routing capacities on lower layers and may
block wiring resources of long-distance nets without being seen by global routing. Müller
[2002] implemented a very accurate capacity estimation into BonnRouteGlobal which is
able to respect capacity of blockages and pre-wiring very well. He proposed to pre-route
short nets in a separate step prior to global routing and showed that the new approach
reduces the number of overflows and rip-ups drastically. Moreover, running time of the
overall flow can be saved by up to 60%.

2.6.1 Global Routing

As already explained in the previous section, for every desired electrical connection the
global routing phase determines a three-dimensional subgraph G of G0 in which the con-
nection has to be realized. The main tasks of global routing are elimination of congestion
and timing problems on a global level and providing corridors for detailed routing as a
guidance while optimizing the overall goal. In this section we describe BonnRouteGlobal,
the global routing program which is part of BonnRoute.

The chip area [xmin, xmax] × [ymin, ymax] is partitioned into a set R of axis-parallel rect-
angular regions. Each such region spans about 50–100 channels in horizontal and ver-
tical direction. A global routing tile is a pair of a region R ∈ R and a wiring layer z
with zmin ≤ z ≤ zmax and is associated with a node of the global routing grid graph
G = (V (G), E(G)). Two nodes of G are joined by an edge if and only if for their
corresponding tiles (R1, z1), (R2, z2) hold: if there exist r1 ∈ R1 and r2 ∈ R2 with
(r1, r2) ∈ E(G0), then (R1, R2) ∈ E(G). For each net N of the netlist N , a global
routing net (gnet) is defined as follows: Define P (N) to be the set of pins of net N . For
a electrically connected component c ⊆ P (N) ∪ W (N) let t(c) be a minimal set of tiles
covering all shapes of c in wiring layers. A partition of t(c) into a maximum number of
pairwise non-overlapping sets build the set of global pins (gpins). Every gpin corresponds
to a set of nodes in G, which form a multi-terminal. For each net N , global routing builds
a Steiner tree S(N) in G connecting multi-terminals which correspond to gpins of N . The
set of nodes V (S(N)) ⊆ V (G) correspond to a set of tiles which form the global routing
area for net N . Some sophisticated post-processing is necessary to support detailed rout-
ing, for example add neighbored wiring layers to allow detailed routing to change layers.
See Figure 2.4 for a two-dimensional illustration.

The task of global routing is to construct Steiner trees in G such that the detailed router
can connect all nets within that area simultaneously and the overall goal is optimized. In
order to solve the global routing problem we need to formulate a graph-theoretical problem.
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(a) Pins and gpins (b) gnet (c) Global routing area

Figure 2.4: For a net with eight pins (depicted in different colors), five gpins are
created (a). In (b), a Steiner tree connects the five corresponding multi-terminals
in G which results in a global routing area as shown in (c).

For this, G is a capacitated and weighted undirected grid graph G = (V (G), E(G), u, l),
where u : E(G) → R≥0 and l : E(G) → R≥0. The length l(e) of an edge e = {v, w} ∈ E(G)
is the distance of the midpoints of the tiles corresponding to v and w with respect to the
unit edge lengths c as defined in Section 2.3.

After partitioning the chip area into tiles, V (G), E(G) and l are determined. The first
important problem to set up the global routing task is to compute the edge capacities of
E(G). The capacity u(e) of an edge e = {v, w} ∈ E(G) is an estimation how many detailed
wires of unit length can be routed between t(v) and t(w). It also has to consider blockages
and resources of nets whose pins lie within one tile only. Capacity estimation is crucial
for the quality of global routing. It can be considered as a vertex-disjoint path problem.
There is a commodity for each wiring layer. The paths are allowed to use resources of the
same layer in preference wiring direction and in adjacent layers in the orthogonal wiring
direction. Then the capacity u({v, w}) is the number of vertex disjoint paths between tiles
t(v) and t(w) in a solution which maximizes the total number of vertex-disjoint paths over
all commodities.

Solving each commodity independently with a maximum flow algorithm is far too slow
and too optimistic. For example, on a chip with about one billion paths an implemen-
tation of the Goldberg-Tarjan-algorithm takes more than a week. For the same chip,
BonnRouteGlobal computes a set of vertex-disjoint paths by a new and extremely fast
multicommodity flow heuristic in five minutes (Müller [2002]). The basic idea is to per-
form an augmenting path algorithm which exploits the special structure of the instance.
Here, a bit pattern based path search is performed where bit vectors encode blockages and
flows can be found by a sequence of logical operations on bit vectors. Each augmenting
path requires only O(k) constant-time bit pattern operations, where k is the number of
edges orthogonal to the preferred wiring direction of the corresponding layer. The capacity
estimation finds a feasible integral multicommodity flow solution whose value differs only
by about 10 % from the (weak) upper bound derived from the maximum-flow algorithm.
This bit pattern based and far better approach for capacity estimation allows to pre-route
short nets which lie within one tile only (Müller [2002]).
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After capacity estimation, the global routing instance is fully specified. The global routing
task can now be expressed in graph-theoretical terms:

VLSI Global Routing Problem

Instance: • A global routing graph G with edge capacities and edge lengths;
• a set N of nets;
• for each net N ∈ N a wiretype area AN ;
• a set of design rules;
• a set of design specific constraints;
• an optimization goal.

Task: For each net N ∈ N , find a Steiner tree in G such that the edge capacities
are respected, the design rules and constraints are met and the overall goal is
optimized.

The design rules imposed to the global routing task do not cover most of the design rules
specified by the manufacturing process for the VLSI Global Routing Problem as they
cannot be respected by global routing. However, some of design rules, such as minimum
space restrictions, can be taken into account by BonnRouteGlobal. The set of design
specific constraints may cover rules to respect timing and capacitance constraints or to
increase yield. They can be charged to nets individually or to groups of nets which is
shown in the formulation of the derived mathematical problem below.

Basically, the global routing problem amounts to a Steiner tree packing problem in a graph
with edge capacities. A simplified version can be stated as follows: For each net N ∈ N , let
YN be a set of feasible Steiner trees for N in G, and w(e,N) ∈ R>0 the maximum width of
net N on edge e ∈ E(G). The function w is derived from the wiretyped routing areas AN ,
which allows to set wiretypes depending on planes and regions. An integer programming
formulation for the simplified VLSI Global Routing Problem is as follows:

min
∑

N∈N

∑
e∈E(G)

(
l(e)

∑
Y ∈YN :e∈E(Y )

xN,Y

)

s.t.
∑

N∈N

∑
Y ∈YN :e∈E(Y )

ω(N, e)xN,Y ≤ u(e) for all e ∈ E(G)∑
Y ∈YN

xN,Y = 1 for all N ∈ N

xN,Y ∈ {0, 1} for all N ∈ N , Y ∈ YN

(2.1)

For a net N , the set YN of feasible Steiner trees can be obtained by a Steiner tree algorithm
which construct feasible trees for the given application. In Chapter 3 we present two
Steiner tree algorithms which can be used to build feasible Steiner trees for YN .

A Steiner tree Y ∈ YN is chosen for net N if and only if the decision variable xN,Y is 1. If
each net consists of only two pins, YN contains all possible paths in G connecting both pins
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of N , u ≡ 1, w ≡ 1 and l ≡ 0, the global routing problem reduces to the undirected edge-
disjoint paths problem. As the undirected edge-disjoint paths problem is NP-complete,
even in many special cases (Vygen [1995], Nishizeki, Vygen and Zhou [2001], Marx [2004]),
the decision version of the simplified version of the VLSI Global Routing Problem is
NP-complete. The fractional relaxation of the above program (allowing xN,Y ∈ [0, 1] for
all N ∈ N , Y ∈ YN ) results in the undirected multicommodity flow problem. This can
be solved in polynomial time by means of linear programming. As the LP formulation is
rather huge for today’s instance sizes, it is desirable to apply an efficient combinatorial
algorithm to solve the problem approximately. The first fully polynomial approximation
scheme for the multicommodity problem was developed by Shahrokhi and Matula [1990],
while Carden IV, Li and Cheng [1996] first applied this approach to global routing. An
initial implementation in BonnRouteGlobal is due to Albrecht [2001] who adapted an
approximation algorithm by Garg and Könemann [1998] to global routing.

The simplified description (2.1) does not consider objective functions other than netlength.
In particular, it is not able to take timing, power or yield into account. For example, cou-
pling capacitance could be ignored in older technologies, whereas it becomes increasingly
important with new technologies. A first extended formulation taking space-dependent
costs into account was introduced by Vygen [2004]. He proposed a global routing algo-
rithm which finds a solution arbitrarily close to the optimum. We briefly give the main
idea.

For a net N ∈ N on edge e ∈ E(G) there is a maximum capacitance cost l(e,N) which
is attained at minimum space to neighboring shapes on both sides. We assume that
it reduces linearly by an amount of at most v(e,N) units of coupling capacitance with
increasing extra space until an extra maximum spacing s(e,N) ∈ R≥0 is reached. Note
that coupling capacitance does not depend linearly on the spacing between two shapes
in practice. Nevertheless, this simplification gives very good results in BonnRoute. Let
ye,N ∈ [0, 1] denote the fraction of possible extra space assigned to net N ∈ N on edge
e ∈ E(G). Then, the space requirement of net N on edge e ∈ E(YN ) (YN ∈ YN ) is
w(e,N) + ye,Ns(e,N), resulting in l(e,N)− ye,Nv(e,N) units of capacitance consumed.

Moreover, it is possible to bound the capacitance used by subsets of N . This can, for
example, be used to restrict capacitance along timing-critical paths. Let M a family of
subsets of N with N ∈ M, and U : M → R≥0 the capacitance bound for family M.
Further, we can specify weights c(M,N) ∈ R≥0 for N ∈ M ∈ M. With this notation and
enhancements, the global routing problem can now be formulated as follows: for each net
N ∈ N , find a Steiner Tree YN ∈ YN and numbers ye,N ∈ [0, 1] for each e ∈ E(YN ), which

minimize
∑

N∈N
c(N , N)

∑
e∈E(YN )

(l(e,N)− ye,Nv(e,N))

s.t.
∑

N∈N :e∈E(YN )

(w(e,N) + ye,Ns(e,N)) ≤ u(e) for all e ∈ E(G)∑
N∈M

c(M,N)
∑

e∈E(YN )

(l(e,N)− ye,Nv(e,N)) ≤ U(M) for all M ∈M
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The objective function above minimizes the overall capacitance, i.e., the power consump-
tion of the chip. This integer program can be reformulated whose relaxation then results
to the following linear program:

min λ

s.t. X
Y ∈YN

xN,Y = 1 for all N ∈ N

X
N∈M

c(M, N)

 X
Y ∈YN

X
e∈E(Y )

l(e, N)xN,Y −
X

e∈E(G)

v(e, N)ye,N

!
≤ λU(M) for all M ∈M

X
N∈N

 X
Y ∈YN :e∈E(Y )

w(e, N)xN,Y + s(e, N)ye,N

!
≤ λu(e) for all e ∈ E(G)X

Y ∈YN :e∈E(Y )

xN,Y ≥ ye,N ≥ 0 for all e ∈ E(G), N ∈ NX
Y ∈YN :e∈E(Y )

xN,Y ≥ ye,N ≥ 0 for all e ∈ E(G), N ∈ N

xN,Y ≥ 0 for all N ∈ N , Y ∈ YN

(2.2)

Vygen [2004] developed a fully polynomial approximation scheme for this linear program
and its dual. This algorithm always gives a fractional dual solution.

Theorem 2.1 (Vygen [2004]). Given an approximation parameter ε0, one can find ε, ε1, ε2 ∈
R>0 and t ∈ O

(
log(|E(G)|+|M|)

ε20

)
such that with parameters ε, ε1, ε2 and t, a (1+ε0)-optimal

feasible solution to the global routing LP (2.2) can be computed.

The objective function of the above description is minimizing power consumption for-
mulated in terms of capacitance. Recently, Müller [2006] showed how to use Vygen’s
algorithm to optimize manufacturing yield. The main idea is to replace capacitance by
costs representing the sensitivity of the layout to random defects.

After solving the linear program, randomized rounding based on methods by Raghavan
and Thompson [1987] is applied. Vygen [2004] proved that, after rounding the rational
solution, the maximum integral violation λ can be bounded. The small integrality gap
together with a feasible solution of the dual LP provides a certificate for feasibility of the
instance.

Finally, rip-up and reroute is applied to fix problems caused by randomized rounding.
Running time of critical parts of BonnRouteGlobal can efficiently be parallelized. Müller
[2006] gives a parallelized version of the approximation algorithm by Vygen, which scales
very well with the number of processors.

Saxena, Shelar and Sapatnekar [2007] published a comprehensive book on estimation and
optimization of congestion in VLSI routing. For more detailed information on theoretical
aspects as well as computational results of BonnRouteGlobal we refer to Müller [2002],
Vygen [2004] and Müller [2006].
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2.6.2 Detailed Routing

The task of detailed routing is to realize desired connections of a net within the corridors
computed by global routing before, respecting all given constraints.

The VLSI Detailed Routing Problem equals the VLSI Routing Problem under
the additional constraint, that the routing area for each net N ∈ N is restricted to a set
AN of wiretyped global routing corridors.

Note that our formulation primarily requires to find a feasible rather than optimizes a given
optimization goal. The primary task of the VLSI Detailed Routing Problem is to
determine a feasible layout of the metal realizations of all nets. Of course, objectives such
as netlength and number of vias are taken into account. We assume that all optimization
is already done in previous steps. For example, timing-critical nets are assigned wiretypes
with a sufficiently large extra spacing requirement, and restricted sets of layers they should
be routed on. In global routing, it is possible to incorporate a optimization goals. Further,
we suppose that all timing constraints set up for global routing leave some margin such
that timing specification for the chip are unlikely to be violated by detailed routing —
assuming that the wiring is composed of shortest paths and the area of the global router
is respected by the detailed router. Some post-processing can be applied after connecting
all nets to increase manufacturing yield (Schulte [2006], Bickford et al. [2006]).

Due to the huge instance sizes of detailed routing, i.e. millions of vertex-disjoint Steiner
trees to be found in a graph with billions of nodes, we can not afford to determine all nets
simultaneously. Therefore, we route the nets one at a time. Each net has to obey distance
rules to shapes of blockages and pins, and to shapes of already routed nets by obeying
distance rules. We also restrict paths to corridors computed by global routing. This
information is essential for detailed routing for two reasons: first, capacity estimation
in global routing assures that all paths can be realized within the computed corridors.
Second, restricting to only a small fraction of the entire chip area speeds up path search
tremendously.

Since global routing more or less specifies a tree structure for each net, in practice sufficient
quality is attained by composing Steiner trees from paths in detailed routing.

So the key component of BonnRouteLocal is its path search, which contains two important
ideas allowing to find millions of paths in only a few hours: it is goal oriented and interval
based approach. With the help of a future cost estimate, which is a lower bound on the
distance from a set of nodes to a set of targets, it is possible to guide path search towards
the target. The second factor used in the path search is the way in which we store distance
information. In contrast to the original Dijkstra’s algorithm which labels individual nodes,
we store consecutive nodes in preference wiring direction in intervals. We combine nodes
if they are equal with respect to certain properties, and if their distance to the target can
be expressed very efficiently. Our path search then labels intervals instead of individual
nodes. The following theorem shows that this can be done in a time complexity which
depends linearly on the number of intervals. Note that the number of intervals is typically
about 25 times smaller than the number of nodes:
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Theorem 2.2 (Hetzel [1998]). The running time of path search is O((d+1)I log I), where
d is the detour (actual path length minus lower bound) from the source to the target, and
I is the number of intervals.

In Chapter 4 we give a generalization of Dijkstra’s algorithm which allows to compute a
better future cost estimate for detailed routing as well as to generalize Hetzel’s algorithm.

Figure 2.5 is a very simplified comparison of path search algorithms without and with
future cost, both based on nodes and intervals. This example indicates that the goal-
oriented interval based path search performs the smallest number of labels.

(a) node based (b) goal-oriented node
based

(c) interval based (d) goal-oriented inter-
val based

Figure 2.5: Four different methods to find a shortest path from the red vertex
on the bottom left to the red vertex on the upper right part. Labeled points or
intervals are depicted yellow. In all cases, the running time is roughly proportional
to the labeled nodes (50 versus 24) or intervals (7 versus 4).

Like most routing tools, BonnRouteLocal also contains a rip-up and reroute strategy to
overcome blockages caused by already realized wire segments. When routing a net which
can only be connected by removing wire segments of neighbored nets, our rip-up and
reroute algorithm determines a set of wires to be removed in order to close the connection.
After that, disconnected connections are closed again by finding an alternative route if
possible. Hetzel [1998] presents an efficient rip-up and reroute algorithm by extending an
algorithm by Raith and Bartholomeus [1991].

Although the above mentioned components (global routing corridors and goal oriented, in-
terval based path search) are absolutely necessary to handle today’s large chips instances,
some sophisticated features have been shown to be useful to run detailed routing success-
fully. At this point we would like to name only two strategies: The ordering in which
the nets are routed is crucial for routability and running time. Weighted (mostly timing-
critical) nets are routed first to ensure that they are connected shortest possible to avoid
detours due to other wires. Nets assigned a wide wiretype are also preferred over other
nets as it is more difficult to connect them with increasing wiring density. Among all nets
with equal weight and wiretype properties, those with pins which are difficult to access
are routed before nets with easily accessible shapes. The second strategy is to restrict the
routing area of a net with more than two pins further such that it guides the path search
to label only the part of the global routing area which contains the closest target.
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A multi-threaded implementation for BonnRouteLocal is described in Panten [2005]. For
more theoretical as well as practical details on BonnRouteLocal we refer to Hetzel [1995]
and Rohe [2001].



Chapter 3

Minimum Steiner Tree Algorithms

The rectilinear Steiner tree problem is a key problem in VLSI layout. It appears as a
subproblem in several applications, e.g. in inverter tree and clock tree algorithms as well
as in global and detailed routing. Due to technological constraints on the orientation of
wires, interconnections in VLSI design usually are rectilinear Steiner trees. To handle
the Steiner tree problem efficiently in practice, it is almost always mapped to a two–
dimensional problem. Although this simplification is clearly a restriction, its solution is
sufficient for most algorithms working with Steiner trees.

In the problem we are given a finite set of (electrical) terminals, assumed to be a set of
points Z in the plane. A rectilinear Steiner tree in the plane is a tree that interconnects a
given set of points using only horizontal and vertical line segments. The line segments of
the tree are denoted edges. Edges meet only at vertices in the tree and no vertex intersects
the interior of an edge. Note that all the terminals are vertices. For a given tree T we let
V (T ) denote its vertices and E(T ) its edges. Rectilinear Steiner trees are assumed to have
no overlapping edges, which are clearly sub-optimal with regard to total length. Therefore,
every vertex has at most one incident edge in each of the four directions. The degree of a
vertex is the number of edges it is incident to. A Steiner point is a non-terminal vertex of
degree three or four, while a corner point is a non-terminal vertex of degree two where the
two edges meeting at a corner point are perpendicular. Non-terminal vertices of degree two
with two colinear incident edges are removed by merging both edges. We assume w.l.o.g.
that all interconnections between terminals and/or Steiner points are shortest rectilinear
paths and that no two corner points are adjacent in the tree, i.e., staircase connections are
not allowed. Thus, interconnections between terminals and/or Steiner points consist of
at most two edges. In this chapter, distances are always measured based on the l1 metric
if not otherwise stated. The rectilinear distance between vertices u and v is denoted by
|uv|, whereas the length |T | of a tree T is the sum of the lengths of all its edges. A
shortest rectilinear Steiner tree is called Steiner minimum tree (SMT). The problem to
find a rectilinear Steiner minimum tree connecting a given set of terminals in the plane is
well-known to be NP-hard (Garey and Johnson [1977]).

25
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The literature on the Steiner tree problem is very comprehensive. For an introduction see,
for example, the monographs by Hwang, Richards and Winter [1992], and Prömel and
Steger [2002].

In this chapter, we examine two different questions arising in the construction of rectilinear
Steiner minimum trees with additional objectives and constraints: first, we consider the
problem of finding a rectilinear Steiner minimum tree that — as a secondary objective —
minimizes a signal delay related objective. In the second section, we consider the problem
of finding a shortest rectilinear Steiner tree in the presence of rectilinear obstacles. The
Steiner tree is allowed to run over obstacles; however, if we intersect the Steiner tree with
some obstacle, then no connected component of the induced subtree must be longer than a
given fixed length. As an example, both algorithms can be applied to build feasible Steiner
trees used in the integer programming formulation for global routing; see Section 2.6.1.

Main parts of Sections 3.1 and 3.2 follow Peyer, Zachariasen and Jørgensen [2004], and Müller-
Hannemann and Peyer [2003], respectively.

3.1 Minimum Steiner Trees With Secondary Objectives

In this section we discuss the problem to construct a tree — among all shortest-length
rectilinear Steiner trees — which minimizes a given objective. We mainly focus on the
problem where the objective is defined by the sum of weighted path lengths. We can use
those trees in the design flow, for example, as an initial solution for the integer program-
ming formulations (2.1) and (2.2) for the VLSI Global Routing Problem.

This section is organized as follows: after the formulation of the Rectilinear Steiner
Tree Problem with Weighted Sum of Path Lengths Secondary Objective
(RSTPWP) in Section 3.1.1, we give some basic notation and definitions in Section 3.1.2
which are needed in this section. Structural results for optimal solutions to RSTPWP are
presented in Section 3.1.3, and an exact algorithm for solving the problem is presented
in Section 3.1.4. In Section 3.1.5 we give a heuristic framework for solving RSTPWP
and similar problems, including secondary objectives based on the Elmore delay model.
Comprehensive experimental results are finally presented in Section 3.1.6

3.1.1 Problem Formulation

In the problem we consider we assume that a tree is rooted at the source r ∈ Z, while the
remaining terminals in Z are the sinks. Thus, the tree is actually a Steiner arborescence for
Z rooted at the source. An electrical signal should propagate from the source to the sinks
via the constructed tree. When constructing the tree, several conflicting objectives must
be taken into account. In particular, the following two objectives need to be considered:

� The total length of the tree should be minimized since this reduces area requirements,
congestion and power consumption.
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� The signal delay from the source to the sinks should be minimized since this reduces
the overall clock cycle time.

An optimal solution for the problem that only considers the first objective is a rectilinear
Steiner minimum tree (RSMT). This problem has received significant attention in the
literature (Hwang, Richards and Winter [1992], Kahng and Robins [1995], Zachariasen
[2001a]), and RSMTs of any practical size can be computed quickly (Warme, Winter and
Zachariasen [2000, 2001]). Minimizing total length has traditionally been the prime ob-
jective since this objective is also reasonably good with respect to signal delay in practice.
Furthermore, for most terminal sets (also called nets), signal delay is not important; these
nets are not part of the critical signal path of the chip. However, for those nets that are
part of the critical signal path, signal delay is obviously very important.

In the past, the problem of minimizing sink delay was mainly attacked by using geomet-
rical approaches. The delay of a wire was assumed to be linear in its length. So-called
shallow-light algorithms limit the delay by bounding the radius of the tree (Nastansky,
Selkow and Stewart [1974], Cong et al. [1992], Khuller, Raghavachari and Young [1995],
Naor and Schieber [1997]). A similar approach is due to Alpert et al. [1993] who present
a tradeoff between Prim’s and Dijkstra’s algorithm. Cong, Leung and Zhou [1993] justify
that a Manhattan Steiner arborescence has good approximating properties with respect
to delay. For newer VLSI fabrication technologies interconnect delays are becoming in-
creasingly dominating when compared to gate delays (Cong et al. [1997]), thus linear delay
approximation is not sufficient anymore. Therefore, algorithms directly incorporate a bet-
ter delay approximation function (Prasitjutrakul and Kubitz [1990], Boese, Kahng and
Robins [1993], Hu, Hou and Sapatnekar [1999], Lin, Liu and Hwang [2001]). For a com-
parison between several different performance-driven Steiner tree construction algorithms,
we refer to Alpert et al. [2006]. Boese et al. [1995a] proved that minimizing the sum of
weighted sink delays can be solved to optimality on the Hanan grid. This is not true for
minimizing the maximum sink delay as shown by Boese et al. [1994]. For a good overview,
see also Kahng and Robins [1995].

In this section we consider the problem of constructing RSMTs — which have minimum
total length — that are as good as possible with respect to some signal delay objec-
tive. Therefore, without sacrificing minimum total length, we try to improve signal delay
(if possible), that is, consider signal delay as a secondary objective when constructing
RSMTs. The proposed algorithms can therefore be used to improve all minimum-length
interconnections on the chip. However, for some nets on the critical signal path, it may
be necessary to sacrifice minimum total length using alternative methods (Boese et al.
[1995b], Kahng and Robins [1995], Peyer [2000]). Alpert et al. [2006] show that commonly
used algorithms constructing timing-driven Steiner trees add only at most 2% – 4 % extra
wire length while improving the signal delay from source to sinks. The construction of (al-
ternative) rectilinear Steiner trees that are good with respect to routability was considered
by Bozorgzadeh, Kastner and Sarrafzadeh [2001].

For a given tree T spanning Z, let PT (r, zi) be the path from the source r to a sink
zi ∈ Z \ {r} in T and |rzi|T its length (or the distance in T from r to zi). Furthermore,
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let wi > 0 be a positive weight for sink zi. We mainly focus our study on the following
problem:

Rectilinear Steiner Tree Problem with Weighted Sum of Path Lengths
Secondary Objective (RSTPWP)

Instance: • A terminal set Z in the plane;
• a designated source r ∈ Z;
• weights wi > 0 for all sinks zi ∈ Z \ {r}.

Task: Construct an RSMTr such that
∑

zi∈Z\{r}wi|rzi|T is minimized.

An optimal solution to RSTPWP is denoted by RSMTr. See Figure 3.1 for an illustration.

r r

Figure 3.1: Two RSMTs for the same set of terminals (depicted in black circle).
The RSMT on the right has better signal delay properties than the RSMT on the
left. In fact, the RSMT on the right is an optimal solution to RSTPWP since all
paths from the source r to the sinks are shortest rectilinear paths.

The objectives of RSTPWP are motivated by VLSI design where it is important to build
trees not only as short as possible but also with good timing properties. A signal which is
propagated from the source through a tree must fulfill specified timing constraints. These
constraints can be approximately reflected by weights wi for all sinks zi ∈ Z \ {r}, where
critical sinks receive a higher weight than less critical sinks.

The advantage of the problem formulation of RSTPWP is that it is simple and does not
use any timing parameter. However, the weights must be chosen carefully in order to
appropriately express criticality of sinks. A commonly used delay approximation is due
to Elmore [1948]. The Elmore delay model serves as a good estimation for computing
the signal delay from the source to the sinks in a tree T . Given a source resistance Rd,
resistance Runit and capacitance Cunit per wire unit, and load capacitances ci for every
sink zi ∈ Z \ {r}, the Elmore delay delT (zi) of a sink zi is defined as

delT (zi) := RdCT,r +
∑

e=(u,v)∈E(PT (r,zi))

re

(ce

2
+ CT,v

)
,

where re := Runit · |uv|T and ce := Cunit · |uv|T denote the resistance respectively the
capacitance of edge (u, v) and CT,v the downstream capacitance of the subtree of T rooted
at vertex v. For more details about the Elmore delay model, see Peyer [2000].



3.1. MINIMUM STEINER TREES WITH SECONDARY OBJECTIVES 29

3.1.2 Basic Notation and Definitions

For a given tree T rooted at r we use the following notation for a vertex u ∈ V (T ) \ {r}
(see also Figure 3.2):

� P (u): Predecessor or parent of u.

� S(u): Successor of u, i.e., child of u that is colinear with P (u) and u.
If no such child exists then S(u) = nil.

� L(u): Left child of u when looking from P (u) towards u.
If no such child exists then L(u) = nil.

� R(u): Right child of u when looking from P (u) towards u.
If no such child exists then R(u) = nil.

P (u)

u
L(u)

S(u)

R(u)

Figure 3.2: Neighboring vertices of u in a rectilinear Steiner tree.

A vertex u is called a T-vertex if both L(u) and R(u) exist, but S(u) does not exist;
otherwise u is called a non T-vertex.

A sequence of one or more adjacent, colinear edges is called a segment. A maximal segment
is a segment which is not contained in any other segment. A complete segment is a segment
whose interior vertices all are Steiner points and which is not contained in any other
segment having only Steiner points as interior vertices. Note that any edge is contained
in exactly one maximal/complete segment.

The entering vertex of a segment S is the (unique) vertex on the segment that is closest
to the source. If the entering vertex is not the source itself, the entering edge of S is the
(unique) edge having the entering vertex as its head. (The entering edge of a maximal
segment S is always perpendicular to S.) Similarly, a leaving edge of S is an edge for
which the tail belongs to S while the head does not.

The Hanan grid H(Z) for the terminal set Z is obtained by drawing vertical and horizontal
lines through each point in Z. Correspondingly, the Hanan grid graph HGG(Z) is defined
as follows: the set of intersections in H(Z) are the vertices and a pair of vertices is
connected if and only if the corresponding intersection points are adjacent in the Hanan



30 CHAPTER 3. MINIMUM STEINER TREE ALGORITHMS

grid. The length luv of an edge {u, v} in HGG(Z) is the (Euclidean) distance between
the corresponding Hanan grid intersections. We denote by T (Z) the set of subtrees of
HGG(Z) interconnecting Z and rooted at r ∈ Z.

3.1.3 Full Steiner Trees for RSTPWP

In this section we present a structural result characterizing optimal solutions to RSTPWP.
This result can, e.g., be used in a pre-processing phase to reduce the graph instances for
the exact algorithm presented in Section 3.1.4.

A full Steiner tree (FST) is a Steiner tree for which all terminals are leaves. All interior
vertices in an FST are Steiner points or corner points. An optimal solution RSMTr to
RSTPWP decomposes into directed FSTs, i.e., each FST has one designated terminal as
its local root and all edges are directed away from this root. In the following we give a
characterization of FSTs in any RSMTr. Let F be an FST in an RSMTr with local root
rF . For an edge (u, v) we let F(u,v) denote the subtree of F rooted at u and containing v.

Lemma 3.1. Let u be an internal non T-vertex in F for which L(u) exists. Let v be
the endpoint of the complete segment that contains the edge (u, L(u)) and which is on the
same side of u as L(u) on the complete segment. Then, v is a terminal.

Proof. (In this and the following two lemmas we assume w.l.o.g. that the vertex u has its
neighbors geometrically oriented as in Figure 3.3 such that P (u) is below u.) Assume for
the sake of contradiction that v is a non-terminal. Let u1 := u, u2 := L(u), u3, . . . , uk := v
with k ≥ 2 be the vertices on the segment uv. If we move uv and all its vertices up or

P (u)

u1 := uu2 := L(u)u3u4u5 := v

S(u)

Figure 3.3: Proof illustration, Lemma 3.1.

down, the change in length of F is linear in the movement. Since F is an RSMT, the
change must actually be zero. Thus, uv can be moved towards P (u) without changing
the length of F . Note that the path length from P (u) to all vertices which are both
above segment uv and adjacent to one vertex of u1, . . . , uk does not change as uv is moved
towards P (u). However, if there exists an adjacent vertex w 6= P (u) below uv, then the
path length to w decreases. Since w is either a terminal, or at least one terminal belongs



3.1. MINIMUM STEINER TREES WITH SECONDARY OBJECTIVES 31

to the subtree rooted at w (and all the path weights are positive), the RSMTr is not
optimal with respect to the weighted sum of path lengths secondary objective.

If there is no adjacent vertex except for P (u) below uv, then v must be a corner point
connected directly to u (since otherwise F is clearly not length-optimal). Now, if u is a
corner point, too, then uv is part of a staircase connection. Otherwise, S(u) must exist,
but in this case F is clearly not length-optimal — a contradiction.

We get a similar result for Lemma 3.1 when u is an internal non T-vertex and R(u) exists.

Lemma 3.2. Let u be an internal non T-vertex in F for which L(u) exists. Then F(u,L(u))

contains no corner point.

Proof. From Lemma 3.1 we know that the endpoint v of the complete segment containing
(u, L(u)) (and which is on the same side of u as L(u) on the complete segment) is a
terminal. Thus, none of the vertices on this segment are corner points. Now we recursively
repeat this argument for all the interior vertices on uv; since these vertices are non T-
vertices, the endpoints of the complete segments given by their left/right edges also must be
terminals. Thus, the whole subtree is exhausted without encountering a corner point.

We get a similar result for Lemma 3.2 when u is an internal non T-vertex and R(u) exists.

Lemma 3.3. Let u be an (internal) T-vertex in F . Let vLvR be the complete segment
that contains (u, L(u)) and (u, R(u)) such that vL (respectively vR) is on the same side of
u as L(u) (respectively R(u)) on vLvR. Then either vL or vR (or both) are terminals.

Proof. We use the proof technique from Lemma 3.1. Assume that both vL and vR are
non-terminals, such that the segment vLvR only contains non-terminals. Then vLvR can
be moved freely up or down without changing the length of F . There must be at least one
adjacent vertex except for P (u) below vLvR, since otherwise the tree is not length-optimal.
By moving vLvR towards P (u), the path length to this vertex decreases while the path
length to no other vertex increases — a contradiction to the optimality of F with regard
to the secondary objective.

Theorem 3.4. A full Steiner tree in an optimal solution to RSTPWP has at most one
corner point.

Proof. Consider the local root rF of some FST F . Since rF is a terminal it has exactly one
out-going edge in F ; let rF v be the complete segment that contains this edge. Since all
interior Steiner points on rF v (if any) are non T-vertices, their left/right subtrees contain
no corner point by Lemma 3.2. Therefore, we only need to consider vertex v and its
subtrees (if any). We distinguish between three cases:
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� v is a terminal: Then F clearly contains no corner point.

� v is a corner point: In this case v is the only corner point in F since the subtree
given by v has no corner point by Lemma 3.2.

� v is a T-vertex: Let vLvR be the complete segment containing v as defined by
Lemma 3.3. Either vL or vR (or both) are terminals; assume w.l.o.g. that vR is
a terminal. Then the subtree F(v,R(v)) contains no corner point (we use the same
arguments as in the proof of Lemma 3.2).

Thus, if F contains a corner point it is in F(v,L(v)). Repeat the same arguments
recursively for F(v,L(v)) using v as the local root. Note that a single path is followed
through F and as soon as one corner point is identified (if any), it will be the only
corner point in F .

Therefore, in all three cases we conclude that F has at most one corner point.

Let us now consider the Hanan grid H(Z) for Z (defined in Section 3.1.2). Zachariasen
[2001b] showed that there exists an optimal solution to RSTPWP in H(Z). We can now
prove the following stronger result:

Theorem 3.5. An optimal solution to RSTPWP must be part of the Hanan grid H(Z)
for Z.

Proof. Consider a Steiner point s in an optimal solution to RSTPWP. Clearly s is part
of exactly one maximal horizontal segment and one maximal vertical segment. Consider
the horizontal segment and assume that it contains no terminal. Then the entering edge
of the segment must be perpendicular to the segment. By applying Lemma 3.1 and 3.3 to
the entering vertex, we can prove that the segment must contain a terminal. Similarly, the
vertical maximal segment must contain a terminal. Thus, s is a Hanan grid intersection
point.

3.1.4 Exact Algorithm

In order to construct an optimal solution to RSTPWP it is sufficient to compute an
optimal solution in the corresponding Hanan grid graph by Theorem 3.5. The input is
an undirected edge-weighted graph G = (V,E) in which a set of terminals Z ⊆ V and a
source r ∈ Z are given. Every sink zi ∈ Z \ {r} is assigned a path length weight wi > 0.

In this section we give a (mixed) integer programming (IP) formulation for the general
graph problem; this formulation is solved by standard branch-and-cut methods. The IP
formulation is essentially the so-called directed formulation for the Steiner tree problem in
graphs (Aneja [1980]). In addition, a flow from the source to the sinks measures the value
of the secondary objective, i.e., the weighted sum of path lengths. Let Gd = (V,Ed) be
a directed graph having the same vertices as G and two directed opposite edges for each
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edge in G. We assume that every edge (u, v) ∈ Ed has a positive integer-valued weight
luv = lvu. This makes it easier to handle the secondary objective as the tree length can
be assumed to be integral.

For any non-empty set S ⊂ V define δ+(S) := {(u, v) ∈ Ed : u ∈ S and v ∈ V \ S}
to be the set of edges leaving S and ending in V \ S. Two variables are defined for an
edge (u, v) ∈ Ed: a decision variable xuv = 1 if and only if edge (u, v) ∈ Ed is chosen to
be part of the Steiner tree and 0 otherwise, while a variable fuv gives the amount of flow
traversing the edge; fuv = 0 if the edge is not part of the Steiner tree.

An IP formulation for the graph version of RSTPWP is then

min
∑

(u,v)∈Ed

luv(xuv + fuv)

s.t.
∑

(u,v)∈δ+(S)

xuv ≥ 1 for all S ⊂ V, r ∈ S, (V \ S) ∩ Z 6= ∅ (3.1)

∑
(u,v)∈Ed

fuv −
∑

(v,u)∈Ed

fvu = Dv for all v ∈ V \ {r} (3.2)

fuv ≥ 0 for all (u, v) ∈ Ed

fuv ≤ xuv for all (u, v) ∈ Ed

xuv ∈ {0, 1} for all (u, v) ∈ Ed (3.3)

The constraints (3.1) and (3.3) are directed Steiner tree formulation constraints. The
path length objective is measured by sending a certain amount of flow from the source
to the sinks. The flow demand Dv in constraint (3.2) is zero for a non-terminal vertex
v ∈ V \ Z, that is, we require flow-conservation at non-terminals. The demand Dzi

for a sink zi ∈ Z \ {r} is proportional to its path length weight wi and is defined as
follows: Let L be an upper bound on any path length (e.g., the total length of all edges),
and let W :=

∑
zi∈Z\{r}wi be the total path length weight for all sinks. Then we set

Dzi := wi/(LW ).

Consider a sink zi ∈ Z \ {r}. The contribution to the objective function of the flow
from r to zi is at most L · wi/(LW ) = wi/W . The total contribution is bounded by∑

zi∈Z\{r}wi/W = 1. Consequently, the tree constructed must have minimum length as
edge-weights were assumed to be integer-valued.

The branch-and-cut algorithm used to solve the problem is basically the one by Koch and
Martin [1998], but without the pre-processing algorithm for reducing the size of the prob-
lem. The traditional branching strategy which branches on variables is used; a fractional
edge-variable with LP-value closest to 0.5 is selected. Note that it is enough to ensure
that all edge-variables xuv have integer value. When this is the case the flow-variables are
set accordingly.

Computational results for this algorithm are presented in Section 3.1.6. It is well-known
that solving Steiner tree problems in the Hanan grid graph is computationally difficult
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due to a high degree of symmetry (Koch and Martin [1998]). Graph reduction methods
for the ordinary Steiner tree problem on the Hanan grid graph are proposed by Winter
[1995]. However, not all the proposed reduction tests — and in particular not the more
powerful tests — generalize to RSTPWP. Another avenue for reducing the Hanan grid is
to generate full Steiner trees and overlay these on the Hanan grid (Zachariasen [1999]).
Preliminary results with FST generation for RSTPWP, based on the structural property
stated in Theorem 3.4, appear to make it possible to reduce the Hanan grid significantly
— but we do not elaborate on this subject in this work.

3.1.5 Heuristics

The overall heuristic approach considered in this section is the following. Assume we are
given some RSMT T for the set of terminals Z. Specify a series of (local) modifications
to T that retain total minimum length while decreasing the weighted sum of path lengths
— or some other delay related objective.

Boese et al. [1995b] gave such a post-processing enhancement algorithm, denoted Global
Slack Removal (GSR). This algorithm removes so-called V’s and U’s from the tree until
no removals are possible; these operations are illustrated in Figure 3.4.

u

v

w

u

v

w

(a) V-removal

u

v w

x

u

v w

x

(b) U-removal

Figure 3.4: GSR operations. (a) V-removal: Sequence of three vertices u, v and w
in increasing distance from the source; the subtree is replaced by a shortest path
from u to w and a connection to v. Note that a V-removal is not applicable to
any length-optimal tree. (b) U-removal: Sequence of four vertices u, v, w and x
in increasing distance from the source; the subtree is replaced by a shortest path
from u to x and connections to v and w.

The local modifications performed by GSR are special cases of a so-called segment slide,
which is defined in Section A. In Section B, we give an algorithm to identify a “best”
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segment slide in linear time, and in Section C we describe a new greedy method called
extended GSR (XGSR) for performing a series of slides according to different objectives,
including weighted sum of path lengths and weighted sum of Elmore delays.

Although we only consider input trees that are RSMTs, the XGSR algorithm may also
be applied to trees that are not length-optimal. The only requirement is that the tree is
rooted at some source r ∈ Z and that all corner point connections have been oriented,
that is, corner points are vertices in the trees (as defined in Section 3.1.2). However, some
technical difficulties arise when the input tree is not length-optimal, since this may create
overlapping edges. These difficulties are ignored in this work.

A Segment Slides

Consider a vertex u 6= r in the tree T . This vertex defines a unique maximal segment MS
containing u and being perpendicular to the edge (P (u), u). As a degenerate case MS may
consist solely of the vertex u, but let us assume that MS contains at least one edge. Also,
w.l.o.g. let the edge (P (u), u) be vertical with u above P (u) such that MS is horizontal
(Figure 3.5(a)).

Let u1, u2, . . . , uk be the vertices on MS from left to right, where u = um for some m ∈
{1, . . . , k}. Let S be any segment given by a subsequence of vertices ul, . . . , u, . . . , ur where
1 ≤ l ≤ m ≤ r ≤ k, i.e., u belongs to the segment S. A segment slide for S is defined as
a vertical (downward) movement of its vertices ul, . . . , u, . . . , ur and edges such that all
vertices are moved the same distance ε > 0. The new vertices are denoted u′l, . . . , u

′, . . . , u′r
(Figure 3.5(b)). Depending on whether the original vertices are terminals or Steiner points
— and in which directions these vertices are connected — it may be necessary to keep the
old vertex and connect the original and new vertex (details are given in Section B).

We are obviously interested in segment slides that do not increase total tree length. For
RSMTs the change in tree length should be precisely zero. As shown in Section C, per-
forming a segment slide that does not increase total tree length cannot make the weighted
sum of path lengths (or Elmore delays) worse. Clearly, V-removals and U-removals (Fig-
ure 3.4) are special cases of segment slides. Also, segment slides are strictly more powerful:
Figure 3.6 gives a tree that contains no V’s or U’s, but for which there exists a segment
slide that transforms it into an optimal solution to RSTPWP. However, it is also easy to
construct instances for which no segment slide is possible and the tree is not an optimal
solution to RSTPWP (Figure 3.7).

B Identifying Best Segment Slides

The segment S consists of the vertices ul, . . . , ur. The change in tree length can be
computed by adding up the contributions from each vertex. Assuming that each vertex is
moved by distance ε > 0, the change in tree length for a vertex is either −ε, 0 or +ε. We
say that the vertex has value −1, 0 or +1, respectively. Case analysis gives the following
values for moving a vertex v ∈ {ul, . . . , ur}:
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u1 uul ur uk

P (u)

u1

u′u′l u′r
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P (u)

Figure 3.5: Segment slide example.
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(b) RSMTr

Figure 3.6: (a) An RSMT that cannot be improved using GSR; (b) optimal solu-
tion to RSTPWP.

r

(a) RSMT

r

(b) RSMTr

Figure 3.7: (a) An RSMT that cannot be improved using segment slides; (b) op-
timal solution to RSTPWP.
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Vertex v is an endpoint (v = ul or v = ur) If v is a corner point with a leaving edge
going down it has value −1. If v has no leaving edge going down it has value +1,
and it has value 0 otherwise.

Vertex v is an interior point (v 6= ul and v 6= ur) If v is a Steiner point with a leav-
ing edge going down and no leaving edge going up it has value −1. If v has no leaving
edge going down it has value +1, and it has value 0 otherwise.

We now give an algorithm to find the best (sub)segment for a given maximal segment
defined by an entry vertex u. Consider procedure BestSlide given on page 38. The
segment is the best segment in the sense that it decreases total tree length by as much as
possible as a function of ε (in case of a tie the longest segment is returned). The functions
EvalNodeEndpoint(v) and EvalNodeInterior(v) are assumed to return the values
given above. Note that endpoint evaluation does not depend on whether v = ul or v = ur.
In Section C we give various options for choosing the best segment among all maximal
segments in the tree.

The algorithm BestSlide(u) first finds the best leftmost endpoint vl and then the best
rightmost endpoint vr on the maximal segment. The overall best segment is then ei-
ther segment vl, . . . , u, segment u, . . . , vr or segment vl, . . . , vr. An example is given in
Figure 3.8.

Clearly, BestSlide(u) runs in linear time in the number of edges on the maximal segment.
Since every edge belongs to exactly one maximal segment, running BestSlide(u) for all
vertices u ∈ V (T ) \ {r} takes linear time in the number of edges (or vertices) in the tree.

uul ur

+1 0 +1 −1 +1 −1 0

+1 +1 0 +1 0 +1 0 0 +1

+3 +2 +1 +1 +1 +1 0 +1

Figure 3.8: Identifying a best slide for a maximal segment in the example of Fig-
ure 3.5: The first line of +1,0 and −1’s gives the value of moving the corresponding
vertex downwards as interior vertex. The second line gives the corresponding end-
point values. The third line gives the accumulated value of every endpoint. The
best slide is the segment ul, . . . , ur which has total value zero, i.e., does not change
the length of the tree.



38 CHAPTER 3. MINIMUM STEINER TREE ALGORITHMS

Procedure BestSlide(u)

// find best leftmost endpoint vl of maximal segment given by u
v = L(u); ∆ = 0; ∆l = ∞; vl = u;1

while v 6= nil do2

δ = ∆ + EvalNodeEndpoint(v); // evaluate v as an endpoint3

if δ ≤ ∆l then4

∆l = δ; vl = v;5

end6

∆ = ∆ + EvalNodeInterior(v); v = S(v);7

end8

// find best rightmost endpoint vr of maximal segment given by u
v = R(u); ∆ = 0; ∆r = ∞; vr = u;9

while v 6= nil do10

δ = ∆ + EvalNodeEndpoint(v); // evaluate v as an endpoint11

if δ ≤ ∆r then12

∆r = δ; vr = v;13

end14

∆ = ∆ + EvalNodeInterior(v); v = S(v);15

end16

// find best combined slide (either both sides or only left or right)
∆ = ∞; ul = nil; ur = nil;17

δ = ∆l + ∆r + EvalNodeInterior(u); // both sides18

if δ < ∆ then19

∆ = δ; ul = vl; ur = vr;20

end21

δ = ∆l + EvalNodeEndpoint(u); // left side22

if δ < ∆ then23

∆ = δ; ul = vl; ur = u;24

end25

δ = ∆r + EvalNodeEndpoint(u); // right side26

if δ < ∆ then27

∆ = δ; ul = u; ur = vr;28

end29

return (∆, ul, ur)30
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C XGSR Algorithm

The XGSR algorithm (Figure 3.2) is a greedy method for performing a series of segment
slides. In each iteration, XGSR identifies the overall best segment slide to perform and
applies it to the tree, that is, slides the segment until one of its vertices overlaps with a
neighboring vertex.

First, the overall best segment slide decrease total length as much as possible (for RSMTs
only zero value segment slides are considered). Second, the gain of the segment slide is
maximized. The gain is a measure of how much the segment slide improves the chosen
secondary objective: given a segment ul, . . . , ur with entry vertex u, we assume that the
function ComputeGain(u, ul, ur) returns the gain obtained by sliding the segment; this
function is assumed to return zero when the segment slide increases the total tree length.
ApplySegmentSlide(T, u, ul, ur) applies a slide of that segment to tree T .

Algorithm 3.2: XGSR
// iteratively find slide with best gain and apply it
g∗ = ∞;1

while g∗ > 0 do2

∆∗ = ∞; u∗ = nil; u∗l = nil; u∗r = nil; g∗ = 0;3

forall u ∈ V (T ) \ {r} do4

// find best slide for maximal segment given by u
(∆, ul, ur) = BestSlide(u);5

// is tree length decrease better or equal to best seen so far?
if (∆ < ∞) and (∆ ≤ ∆∗) then6

g = ComputeGain(u, ul, ur);7

if g > g∗ then8

// // this is the best segment slide seen so far
∆∗ = ∆; u∗ = u; u∗l = ul; u∗r = ur; g∗ = g;9

end10

end11

end12

// apply segment slide to tree if gain is positive
if g∗ > 0 then13

T = ApplySegmentSlide(T, u∗, u∗l , u
∗
r);14

end15

end16

return T17

We experimentally evaluate the following four secondary objectives:

1. Weighted sum of path lengths (RSTPWP):
∑

zi∈Z\{r}wi|rzi|T .

2. Maximum path length: maxzi∈Z\{r} |rzi|T .
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3. Weighted sum of Elmore delays (see Section 3.1.2):
∑

zi∈Z\{r}wi delT (zi).

4. Maximum Elmore delay: maxzi∈Z\{r} delT (zi).

The corresponding gain function is equal to the decrease in the secondary objective func-
tion. The first two gain functions can be computed in linear time for all segment slides,
while Elmore delay computations take linear time for each segment slide (Peyer [2000]).

D Properties of the XGSR Algorithm

In this section we present some theoretical properties related to the XGSR algorithm.
First we give a general result concerning terminal sets of size 4. Then we prove that
XGSR cannot make any of the secondary objectives proposed earlier worse.

Lemma 3.6. Applying XGSR to an RSMT where |Z| ≤ 4 produces an optimal solution
to RSTPWP.

Proof. For |Z| ≤ 3 any RSMT is also an optimal solution to RSTPWP, since all inter-
terminal paths are shortest rectilinear paths. We now show that for |Z| = 4, after applying
XGSR to an RSMT, all source-sink paths are shortest rectilinear paths. Therefore, the
tree is obviously an optimal solution to RSTPWP.

Assume on the contrary that T is the output of XGSR, and that there exists a sink zi

for which the path P := PT (r, zi) is not a shortest rectilinear path. This implies that
P contains an edge (P (u), u), a segment S of vertices u, . . . , v and an edge (v, w) that
together form a non-optimal subpath (Figure 3.9a). We may w.l.o.g. assume that neither
u nor v are corner points — otherwise we may flip the corner(s) to form another non-
optimal subpath. Now, u is either a sink or a Steiner point being the root of a subtree
containing at least one sink not belonging to P . The same holds for vertex v. The vertex
w is either identical to zi or is the root of a subtree containing zi. Thus, the vertices u,
v and w represent three distinct sinks. Since |Z| = 4 the tree spans no more sinks, and
therefore the segment S has no interior vertices, i.e., S is an edge (u, v) that can be slid
towards P (u) without changing the length of T . This contradicts the assumption that no
path length improving segment slide exists.

Note that Lemma 3.6 also proves that GSR, given some RSMT, constructs an optimal
solution to RSTPWP; the segment S in the proof is in fact part of a U that should have
been removed by GSR. For |Z| ≥ 5 not all source-sink paths need to be shortest rectilinear
paths (Figure 3.9b). Furthermore, neither GSR nor XGSR always construct an optimal
solution to RSTPWP for |Z| ≥ 5 as shown in the experimental section (see Table 3.5).

The following lemma justifies the use of ApplySegmentSlide in XGSR in order to min-
imize weighted sum of path lengths.

Lemma 3.7. Given a tree T1 ∈ T (Z), let T2 ∈ T (Z) be the output tree of subroutine
ApplySegmentSlide in XGSR if applied to T1. Then
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P (u) w

u v

(a)

r

(b)

Figure 3.9: (a) Proof illustration of Lemma 3.6; (b) A 5-terminal set for which
one source-sink path is not a shortest rectilinear path.

(i) |T2| ≤ |T1|,

(ii) |rz|T2 ≤ |rz|T1 for all terminals z ∈ Z,

(iii) there is at least one terminal z ∈ Z with |rz|T2 < |rz|T1.

Proof. (i) For any cost function, XGSR slides a segment with entry vertex u only if the
return value ∆ of BestSlide(u) is non-positive, that is, the tree does not increase its
total length.

(ii) Let S1 be the segment in T1, and S2 the segment in T2 after sliding S1. W.l.o.g., S1 is
a horizontal segment which is slid downwards. Let (xl, yi) and (xr, yi) be the coordinates
of the leftmost and rightmost vertex of Si (i = 1, 2) with xl < xr and y2 < y1. Let B
denote the induced subgraph of HGG(Z) for which v = (xv, yv) ∈ V (B) if and only if
xl ≤ xv ≤ xr and yv ∈ {y1, y2}. For each terminal z ∈ Z consider the intersection of
PT1(r, z) and PT2(r, z) with B (Figure 3.10). A segment slide only changes those paths
which intersect B. Obviously, B ∩ PT1(r, z) 6= ∅ if and only if B ∩ PT2(r, z) 6= ∅. Hence, if
B ∩ PT1(r, z) = ∅ then |rz|T2 = |rz|T1 . Now consider a terminal z with B ∩ PT1(r, z) 6= ∅.
PT1(r, z) enters B in HGG(Z) at p and leaves B at some vertex q (or ends in z ∈ V (B)).
Obviously, a slide does not change the entering or leaving vertex. But PT2(r, z) ∩ B
is a shortest p-q-path in B. Hence, |pq|T2 ≤ |pq|T1 . Since PT2(r, p) = PT1(r, p) and
PT2(q, z) = PT1(q, z), the path length from r to z does not increase: |rz|T2 ≤ |rz|T1 .

(iii) This follows immediately from the condition g∗ > 0 for which ApplySegmentSlide
is applied.

By Lemma 3.7, the total tree length does not increase and no source-sink-path gets longer
if ApplySegmentSlide is applied to a tree. These properties give rise to the following
definition.

Definition 3.8. A function f is weakly decreasing w.r.t. g if f(g(T )) ≤ f(T ) for every
tree T ∈ T (Z), and f is strongly decreasing w.r.t. g if f(g(T )) < f(T ) for every tree
T ∈ T (Z).
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Figure 3.10: A segment slide does not change the entering or leaving vertex of a
path from the source r to the sink z in B. (The induced subgraph B of HGG(Z)
is marked with a yellow background.)

So the total tree length f(T ) := |T | is a weakly decreasing function, while the weighted
sum of path lengths f(T ) :=

∑
zi∈Z\{r}wi|rzi|T is a strongly decreasing function w.r.t.

ApplySegmentSlide. A similar result can be achieved for the Elmore delay function:

Lemma 3.9. The Elmore delay function del is weakly decreasing w.r.t.
ApplySegmentSlide.

Proof. First we show that a certain path delay does not increase at any sink if a subtree
is moved distance D > 0 closer to the source while increasing the length of the subtree
by at most D. Consider the subtree T v

1 of T1 rooted at v where p is on the path from the
root r to vertex u (Figure 3.11).

By deleting edge (u, v) and reconnecting T v
1 via two edges (p, w) and (w, v) the whole

subtree is moved towards the source by a distance of D := |pu|. Let T2 be the resulting
tree of that replacement. Furthermore, denote by delT (p, v) the Elmore delay in T from p
to v. Then we have
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Figure 3.11: Moving the subtree rooted at v closer to the source does not increase
the Elmore delay at any sink

delT1(p, v)/Runit = |pu|
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2
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)
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2
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)
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(
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Therefore, delT2(p, z) ≤ delT1(p, z) for all sinks z in T v
1 . Sliding a segment can be viewed

as a series of edge slides. By repeating the above argument it is shown that a segment
slide does not increase the path delay from p to any sink in the subtree T v

1 . Since we allow
only those slides which do not increase total tree length — and therefore do not increase
the length of the subtree rooted at p — delT1(p) does not increase either. Moreover,
delT2(u) < delT1(u) holds because the capacitance of CT1,v + Cunit|uv| does not affect the
delay from p to u in T2 anymore. Since all other edges remain the same, the Elmore delay
does not increase at any sink of the whole tree by performing ApplySegmentSlide.

From Lemma 3.7 and 3.9 it follows that the four secondary objectives proposed in Section C
are weakly decreasing w.r.t. ApplySegmentSlide.

E Running Time of the XGSR Algorithm

The running time of XGSR is mainly determined by the number of applied segment slides.
So far it is not clear whether XGSR stops at all. This question is answered by the following
lemma:
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Lemma 3.10. The number of iterations of the algorithm XGSR is O(n3).

Proof. By assumption, XGSR starts with a tree where each Steiner point is a Hanan
vertex. Sliding a segment of a tree T results in a new tree having the same property. For
i ∈ {1, . . . , n − 1} let Pi be the path from the source r to terminal zi in T , and H(Pi)
be the set of Hanan vertices covered by all edges of Pi. By construction, for each path
Pi a slide does not increase the number of Hanan vertices covered by Pi. Moreover, by
Lemma 3.7(iii), there is at least one terminal zj for which the length of Pj decreases. Hence
|H(Pj)| decreases, too. Therefore, the sum of all covered Hanan vertices

∑n−1
i=1 |H(Pi)|

decreases by at least one when a slide is made. Initially, each path covers at most n2

Hanan vertices of the Hanan grid, so all paths cover at most n2(n− 1) vertices (counting
vertices several times if covered by several paths). Since n Hanan vertices are covered by
terminals, XGSR stops after at most n(n2 − n− 1) iterations.

The following example gives a lower bound of n2−n for the number of iterations in XGSR
(see Figure 3.12). For n being a multiple of 4, we define the set of terminals as follows:
There are n

4 vertices {(0, 0), (2, 0), (4, 0), . . . , (n
2 − 2, 0)

}
, n

4 vertices {(0, 2), (2, 2), (4, 2),
. . . , (n

2 − 2, 2)
}

and n
2 vertices

{
(n

2 , 0), (n
2 , 4

n−2), (n
2 , 8

n−2), . . . , (n
2 , 2)

}
. The root r is

(0,0) and the rightmost vertical segment contains n
2 equidistant vertices. Consider now

the RSMT which zig-zags from right to left. Sliding the rightmost horizontal segment
up requires n

2 − 1 steps, sliding the second-right horizontal segment (together with the
rightmost horizontal) again takes n

2 − 1 steps etc. Altogether, it takes n(n−2)
8 steps until

every path from r to a terminal is as short as possible. (Note that in this case all Hanan
vertices are covered at any step during the algorithm, so the total number of Hanan vertices
covered does not decrease.)

r

Figure 3.12: Example for n = 16.

Lemma 3.11. There exist RSMTs for which XGSR terminates after Ω(n2) iterations.

As already pointed out, applying BestSlide(u) for all u ∈ V (T ) \ {r} and running
ApplySegmentSlide takes O(n) time. Thus, we obtain the following lemma.

Lemma 3.12. (i) Let O(t(n)) be the running time of ComputeGain for some function
t. Then, the running time of XGSR is O

(
n3 max(n, t(n))

)
.
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Chip Johannes Ilse Aidan Heinz Johanna
Technology 350 nm 250 nm 180 nm 130 nm 130 nm All
Metal Al Al Cu Cu Cu
#nets in total 180 129 681 665 727 020 3 516 735 355 2 327 685
#nets with 2– 3 pins (%) 75.76 80.16 73.89 80.29 79.84 77.75
#nets with 4– 5 pins (%) 12.84 10.52 12.37 12.00 11.60 11.61
#nets with 6– 7 pins (%) 4.40 2.11 6.12 2.82 3.42 3.95
#nets with 8–10 pins (%) 4.62 3.40 5.95 2.07 2.19 3.90
#nets with 11–20 pins (%) 1.91 2.96 0.53 2.33 1.96 1.99
#nets with 21–40 pins (%) 0.37 0.80 0.82 0.49 0.68 0.62
#nets with ≥ 41 pins (%) 0.10 0.05 0.32 0.00 0.31 0.18
RdCT,r proportion (%) 89.74 81.54 96.40 97.50 98.09 92.38

Table 3.1: Chip characteristics and net statistics. The total number of nets on
each chip and their size distribution is given. The RdCT,r proportion row is
explained in the text.

(ii) If the gain is determined by the weighted sum of path lengths or the maximum path
length, then XGSR runs in O(n4) time.

(iii) If the gain is determined by the weighted sum of Elmore delays, or the maximum
Elmore delay then XGSR runs in O(n5) time.

Based on experiences and experimental results presented in the next section, we conjecture
that XGSR actually terminates after O(n2) iterations — giving a running time of O(n3)
for path length secondary objectives.

3.1.6 Experimental Results

The goals of our experiments are threefold: first, we investigate how much the delay of an
(arbitrary) RSMT can be improved. Second, we compare our new XGSR heuristic to the
GSR heuristic. Finally, we show that both heuristics perform very well in the sense that
most of the trees constructed are optimal for RSTPWP; we do this by computing optimal
solutions to RSTPWP using the exact algorithm described in Section 3.1.4.

All experiments with GSR and XGSR were made on an IBM S85 machine with 18 RS64
IV processors running at 600MHz (all programs were run sequentially, and each processor
is comparable to a 650 MHz Pentium III). The exact algorithm was run on a 933MHz
Pentium III.

All test instances are from real chips, made available by courtesy of IBM. Characteristics
and net statistics for the five chips are given in Table 3.1.

Thinner wires in newer chip technologies result in a smaller capacitance and a larger
resistance per wire unit. In addition, copper (Cu) has better thermal properties and a
smaller resistance than aluminum (Al). Therefore, it is necessary to take the technology
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parameters into account when studying delay properties of chip nets. The general tendency
is that interconnect delays are becoming increasingly dominating when compared to gate
delays (Cong et al. [1997]).

The RdCT,r proportion in Table 3.1 gives the average percentage of the RdCT,r term in
the Elmore delay formula (see Section 3.1.2) relative to the maximum sink delay for the
RSMT. This term is directly proportional to the length of the net and thus a constant
for an RSMT. The percentage is quite high and gives a bound on the possible delay
improvement for the net, e.g., for the newest chip the average delay improvement can
be at most 1.91 %. It should be noted that an increasing RdCT,r proportion for newer
technologies is not a tendency that usually should be expected; rather, it means that the
newer chips in this case have been better optimized for delay than the older chips.

As pointed out in Section D, none of the secondary objectives considered can be improved
for nets having 2 or 3 terminals. In order to have more uniform data, we also excluded
nets with more than 40 terminals. The nets of size 4 to 40 were divided into five groups
as shown in Table 3.1. In total, we performed experiments on 509,792 nets from the five
chips. All path length and Elmore delay weights were set to 1 in our experiments.

RSMTs were constructed using the exact algorithm of Hetzel [1995]. This algorithm has
no knowledge of the source of the net and does not attempt to optimize any secondary
objective. The RSMTs were used as input for GSR and XGSR; below we report on the
improvement of the secondary objectives chosen in Section C.

In Table 3.2 we present the main results of our study. Both heuristics GSR and XGSR are
able to improve each of the secondary objectives considerably; the average improvement
of the Elmore delay is smaller, but the maximum improvement is still significant. The
improvements obtained by GSR and XGSR are similar, but XGSR is clearly better. This
is illustrated by the columns GSR+ and XGSR+ which give the fraction of nets for which
one heuristic is strictly better than the other; for the larger nets, XGSR obtains better
solutions for a considerable fraction of the nets while GSR almost never is better.

In Table 3.3 and 3.4 we give detailed results for each of the four (large) chips. Table 3.3
presents results for RSTPWP while Table 3.4 presents results for the weighted sum of
Elmore delays secondary objective. The path length improvement becomes larger for
newer technologies, while the Elmore delay improvement appears to decrease for newer
technologies (which is related to the fact that the more recent chips are better optimized
for delay — giving fewer opportunities for improvement).

In Table 3.2 the results of the exact algorithm for RSTPWP are also presented (column
OPT). All instances are also solved to optimality. For instances with up to 10 terminals,
the exact algorithm needs less than one second on average, while the average running time
for the size group 11–20 terminals is 12 seconds. For the larger instances, a substantial
computing effort is needed for some instances. The result shows that XGSR produces
excellent solutions; the average excess of the secondary objective from the optimal solution
is less than 0.1 % for nets having at most 7 terminals and less than 0.2 % for nets having
up to 20 terminals. Furthermore, as shown in Table 3.5, most of the trees constructed
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Size GSR XGSR OPT GSR+ XGSR+

Weighted sum of path lengths (RSTPWP)
4–5 1.69 (40.37) 1.69 (40.37) 1.69 (40.37) 0.00 0.00
6–7 2.44 (43.96) 2.46 (43.96) 2.50 (47.20) 0.00 0.79

8–10 2.92 (46.99) 2.98 (46.99) 3.07 (46.99) 0.03 2.34
11–20 2.43 (43.29) 2.51 (43.29) 2.70 (45.55) 0.07 5.56
21–40 2.69 (41.95) 2.83 (41.95) 3.54 (69.34) 0.10 13.46

Average 2.14 (46.99) 2.16 (46.99) 2.23 (69.34) 0.02 1.47

Maximum path length
4–5 1.78 (48.95) 1.78 (48.95) 0.00 0.00
6–7 2.41 (51.69) 2.44 (51.69) 0.00 0.54

8–10 2.94 (55.06) 3.01 (55.06) 0.00 1.55
11–20 2.76 (45.40) 2.87 (45.40) 0.00 3.52
21–40 3.05 (57.53) 3.24 (57.53) 0.03 7.09

Average 2.22 (57.53) 2.26 (57.53) 0.00 0.90

Weighted sum of Elmore delays
4–5 0.07 (22.20) 0.07 (22.20) 0.00 0.00
6–7 0.10 (21.30) 0.10 (21.30) 0.00 0.80

8–10 0.12 (16.21) 0.12 (16.21) 0.03 2.36
11–20 0.21 (19.33) 0.22 (19.33) 0.08 5.56
21–40 0.23 (12.54) 0.24 (12.54) 0.14 13.40

Average 0.10 (22.20) 0.10 (22.20) 0.02 1.47

Maximum Elmore delay
4–5 0.09 (29.45) 0.09 (29.45) 0.00 0.00
6–7 0.14 (21.38) 0.14 (21.38) 0.00 0.82

8–10 0.17 (20.34) 0.17 (20.34) 0.03 2.30
11–20 0.29 (27.72) 0.30 (27.72) 0.06 5.50
21–40 0.32 (17.32) 0.33 (17.32) 0.11 11.66

Average 0.14 (29.45) 0.14 (29.45) 0.01 1.40

Table 3.2: Average improvement of secondary objectives in percent for GSR and
XGSR (maximum improvement given in parenthesis). For RSTPWP the column
OPT gives the improvement of the optimal solution. In column GSR+ (resp.
XGSR+) the fraction of nets for which GSR (resp. XGSR) is strictly better than
XGSR (resp. GSR) is given.
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Size GSR XGSR GSR+ XGSR+

Johannes
4–5 1.47 (37.92) 1.47 (37.92) 0.00 0.00
6–7 2.16 (37.73) 2.18 (37.73) 0.00 0.71

8–10 2.30 (38.11) 2.35 (38.11) 0.08 2.41
11–20 2.68 (40.53) 2.77 (40.53) 0.14 5.72
21–40 3.45 (30.50) 3.65 (30.50) 0.57 14.57

Average 1.88 (40.53) 1.90 (40.53) 0.04 1.28

Ilse
4–5 1.27 (33.95) 1.27 (33.95) 0.00 0.00
6–7 2.23 (42.26) 2.25 (42.26) 0.01 0.78

8–10 2.82 (46.70) 2.89 (46.70) 0.05 2.73
11–20 1.70 (34.66) 1.76 (34.66) 0.10 4.91
21–40 1.46 (33.19) 1.53 (33.19) 0.16 12.62

Average 1.71 (46.70) 1.74 (46.70) 0.03 1.81

Aidan
4–5 1.45 (40.37) 1.45 (40.37) 0.00 0.00
6–7 2.28 (40.85) 2.29 (40.85) 0.00 0.76

8–10 3.01 (46.99) 3.07 (46.99) 0.01 2.07
11–20 2.03 (43.29) 2.12 (43.29) 0.00 7.69
21–40 2.61 (25.05) 2.74 (25.05) 0.05 12.24

Average 2.06 (46.99) 2.08 (46.99) 0.01 1.22

Johanna
4–5 2.35 (38.66) 2.35 (38.66) 0.00 0.00
6–7 2.95 (43.96) 2.99 (43.96) 0.00 0.86

8–10 3.16 (37.79) 3.23 (37.79) 0.04 2.46
11–20 3.51 (39.27) 3.63 (39.27) 0.01 5.87
21–40 4.07 (41.95) 4.29 (41.95) 0.02 15.79

Average 2.72 (43.96) 2.75 (43.96) 0.01 1.55

Table 3.3: Average improvement in percent for GSR and XGSR for weighted sum
of path lengths and each of the four large chips (maximum improvement given
in parenthesis). In column GSR+ (resp. XGSR+) the fraction of nets for which
GSR (resp. XGSR) is strictly better than XGSR (resp. GSR) is given.
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Size GSR XGSR GSR+ XGSR+

Johannes
4–5 0.11 (22.20) 0.11 (22.20) 0.00 0.00
6–7 0.20 (21.30) 0.20 (21.30) 0.01 0.73

8–10 0.19 (10.44) 0.20 (10.44) 0.11 2.42
11–20 0.33 (14.48) 0.34 (14.48) 0.17 5.66
21–40 0.61 (10.31) 0.65 (10.31) 0.57 14.86

Average 0.17 (22.20) 0.17 (22.20) 0.05 1.28

Ilse
4–5 0.16 (22.18) 0.16 (22.18) 0.00 0.00
6–7 0.21 (13.94) 0.21 (13.94) 0.02 0.80

8–10 0.18 (16.21) 0.18 (16.21) 0.04 2.73
11–20 0.29 (16.44) 0.31 (16.44) 0.11 4.91
21–40 0.37 (12.54) 0.39 (12.54) 0.09 12.62

Average 0.19 (22.18) 0.20 (22.18) 0.03 1.81

Aidan
4–5 0.03 (14.99) 0.03 (14.99) 0.00 0.00
6–7 0.08 (12.51) 0.08 (12.51) 0.00 0.77

8–10 0.09 ( 8.39) 0.09 ( 8.39) 0.01 2.10
11–20 0.19 (19.33) 0.20 (19.33) 0.03 7.69
21–40 0.20 ( 9.00) 0.21 ( 9.00) 0.07 12.26

Average 0.07 (19.33) 0.07 (19.33) 0.01 1.23

Johanna
4–5 0.03 ( 8.12) 0.03 ( 8.12) 0.00 0.00
6–7 0.05 (11.89) 0.05 (11.89) 0.00 0.86

8–10 0.06 ( 5.40) 0.06 ( 5.40) 0.03 2.47
11–20 0.07 ( 3.96) 0.07 ( 3.96) 0.04 5.89
21–40 0.05 ( 1.97) 0.05 ( 1.97) 0.22 15.51

Average 0.04 (11.89) 0.04 (11.89) 0.01 1.54

Table 3.4: Average improvement in percent for GSR and XGSR for weighted sum
of Elmore delays and each of the four large chips (maximum improvement given
in parenthesis). In column GSR+ (resp. XGSR+) the fraction of nets for which
GSR (resp. XGSR) is strictly better than XGSR (resp. GSR) is given.
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Size RSMT GSR XGSR Not-Opt GSR-Opt XGSR-Opt
4–5 70.18 99.94 99.94 158 0.00 0.00
6–7 46.45 98.50 99.27 1 380 0.22 51.81

8–10 29.85 95.80 98.08 3 818 0.71 54.50
11–20 15.62 88.80 94.01 4 709 0.53 46.80
21–40 3.09 71.28 82.40 5002 0.28 38.88

Average 52.01 97.06 98.41 15067 0.46 46.09

Table 3.5: Percentage of optimal solutions for RSTPWP. The columns RSMT,
GSR and XGSR give the percentage of optimal solutions for RSMT, GSR and
XGSR, respectively. The Not-Opt column gives the number of nets for which ei-
ther GSR or XGSR does not find an optimal solution; among these the percentage
of nets actually solved to optimality by GSR and XGSR is given in the columns
GSR-Opt and XGSR-Opt, respectively.

by GSR and XGSR are optimal. On average, more than 98 % of the trees constructed by
XGSR are optimal solutions to RSTPWP. Among nets for which either GSR or XGSR
do not find an optimal tree, GSR constructs an optimal solution for less than 1 % of the
nets, while XGSR constructs an optimal solution for almost 50% of the nets. Figure 3.13
and Figure 3.14 give two examples for which XGSR finds an optimal solution while GSR
does not, while Figure 3.15 shows a net for which neither GSR nor XGSR find an optimal
solution

A simple measure of the delay properties of a net is the maximum detour for that net,
i.e., the maximum source-sink tree-distance to rectilinear distance ratio (see Table 3.6).
For nets of size 4–5 this ratio is on average 1.078 for RSMTs; after applying XGSR using
the maximum path length objective this ratio has dropped to 1.014. For nets of size 6–7
the ratio drops from 1.211 to 1.110, and for the largest group (21–40 terminals), the ratio
drops from 2.159 to 2.058. For smaller nets the improvement is therefore significant.

Size Number Average Ratio Maximum Ratio
RSMT GSR XGSR RSMT GSR XGSR

4–5 268 803 1.078 1.014 1.014 3.000 3.000 3.000
6–7 91 513 1.211 1.111 1.110 4.217 3.476 3.476

8–10 90 271 1.359 1.247 1.244 5.052 4.633 4.633
11-20 41 836 1.508 1.433 1.431 6.423 6.015 6.015
21-40 17 369 2.159 2.065 2.058 15.323 14.677 13.839

Table 3.6: Average and maximum ratio of the maximum source-sink tree-distance
to rectilinear distance for RSMT, GSR and XGSR. For XGSR the maximum path
length objective was applied. (Almost the same results are achieved with the total
path length objective.)

The average number of iterations (or segment slides) performed by GSR and XGSR is
given in Figure 3.16. For XGSR we present data for RSTPWP, but the results for the
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RSMT (1116)

r

GSR (1056)

r

XGSR (904)

r

OPT (904)

Figure 3.13: Chip net example. RSMT, GSR, XGSR and OPT, optimal solution
to RSTPWP, are shown. The weighted sum of path lengths is given for each tree.
In this example the XGSR solution (which is optimal) is better than the GSR
solution, since XGSR shifts the whole vertical segment rather than just a part of
it.
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r

RSMT (503)

r

GSR (477)

r

XGSR (359)

r

OPT (359)

Figure 3.14: Chip net example. RSMT, GSR, XGSR and OPT, optimal solution
to RSTPWP, are shown. The weighted sum of path lengths is given for each tree.
In this example GSR and XGSR differ since they shift segments in a different
order. GSR shifts the rightmost vertical segment to the right in the first move,
while XGSR shifts the topmost horizontal segment down in the first move.
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RSMT (1758)
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GSR (1522)
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XGSR (1522)

r

OPT (1198)

Figure 3.15: Chip net example. RSMT, GSR, XGSR and OPT, optimal solution
to RSTPWP, are shown. The weighted sum of path lengths (WPL) is given for
each tree. In this example, neither GSR nor XGSR find an optimal solution as
they are not able to spend a vertical segment near the source while saving another
vertical segment of the same length in the upper part of the tree.
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Figure 3.16: Number of segment slides for heuristics (problem RSTPWP).

other secondary objectives are almost identical. Clearly, the upper bound on the number
of segment slides given by Lemma 3.10 is overly pessimistic, and in practice the average
number of segment slides grows linearly. XGSR performs — as could be expected —
slightly fewer segment slides than GSR.

Before we give some details on the running time of GSR and XGSR, it should be noted
that the trees obtained by minimizing the weighted sum of path lengths were almost the
same as those obtained by minimizing, e.g., the weighted sum of Elmore delays. That
is, using a computationally “cheaper” gain function in XGSR reduces the running time
without any noteworthy change in the resulting tree.

In Figure 3.17, we present running times for GSR and XGSR (problem RSTPWP). On
average, XGSR is about twice as slow as GSR. Obviously, the more sophisticated changes
that are made to the tree and the greedy selection of these come at an additional cost.
But these extra costs are fairly limited. For the Elmore delay secondary objectives the
running times of XGSR are significantly higher. This is due to each segment slide being
evaluated in O(n) time. However, the running times are still moderate compared to the
computational effort of constructing an RSMT — less than 50 ms even for the largest nets.
The total running time for XGSR on all 509,792 nets in this study (using the weighted
sum of Elmore delays secondary objective) was approximately 5 minutes.
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Figure 3.17: Running time for heuristics (problem RSTPWP).

3.2 Minimum Steiner Trees With Obstacles

The second problem we examine in this chapter addresses the rectilinear Steiner tree
problem in the presence of obstacles. In contrast to problems discussed in the literature,
we allow parts of the Steiner tree to run over obstacles, but with a given length restriction
on each of these parts. This problem of length–restricted Steiner minimum trees is inspired
by VLSI design as we discuss in Section 3.2.1. We propose an efficient 2-approximation
algorithm in Section 3.2.2. Based on structural properties for optimum solutions derived
in 3.2.3, we give an improved approximation guarantee in 3.2.4.

3.2.1 Problem Formulation

Throughout this section, an obstacle is a connected region in the plane bounded by one or
more simple rectilinear polygons such that no two polygon edges have an inner point in
common (i.e. an obstacle may contain holes). For a given set B of obstacles we require the
obstacles to be disjoint, except for possibly a finite number of common points (corners of
obstacles). By ∂B we denote the boundary of an obstacle B. Every obstacle B is weighted
with a factor wB ≥ 1; regions not occupied by an obstacle and boundaries of obstacles
all have unit weight. These weights are used to compute a weighted tree length which we
want to minimize.

Note that we allow trees to run over obstacles, however, we introduce length restrictions
for those portions of a tree T which do so. Namely, for each obstacle B ∈ B and given
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obstacle dependent parameter LB ∈ R≥0, we require the following for each strictly interior
connected component TB of (T∩B)\∂B: The (weighted) length `(TB) of such a component
must not be longer than the given length restriction LB. Note that the intersection of a
Steiner minimum tree with an obstacle may consist of more than one connected component
and that our length restriction applies individually for each connected component. So we
can consider the following problem:

Length–Restricted Steiner Tree Problem (LRSTP)

Instance: • A set of terminal points Z in the plane;
• a set of obstacles B such that no terminal point lies in the interior of some
obstacle;
• length restrictions LB ∈ R≥0 for each obstacle B.

Task: Find a rectilinear Steiner tree T of minimum (weighted) length such that for
each obstacle B ∈ B, all connected components TB of (T ∩ B) \ ∂B satisfy
`(TB) ≤ LB.

An optimum solution of an instance of the Length-Restricted Steiner Tree Prob-
lem is called a length-restricted Steiner minimum tree (LRSMT). Obviously, LRSTP is an
NP-hard problem as it contains the rectilinear Steiner minimum tree problem as a special
case.

The motivation to study the Length-Restricted Steiner Tree Problem stems from
its application in the construction of buffered routing trees in VLSI design (see for example
Alpert et al. [2001], Chen, Pedram and Buch [2002], Hu et al. [2002], Alpert et al. [2002],
Hrkic and Lillis [2003], Kahng and Liu [2003], Dechu, Shen and Chu [2005]). Consider
a signal source r to be connected to a set of sinks S. This gives us an instance of the
rectilinear Steiner tree problem with the terminal set Z := {r} ∪ S. A routing tree is a
tree rooted at the source such that each sink is a leaf. (Note that the latter condition can
always be achieved be inserting edges of length zero to sinks which do not fulfill it.) A
buffered routing tree T is a routing tree with buffers located on its edges. A buffer (also
called repeater) is a circuit which strengthens a signal without logically changing it.

The subtree driven by a buffer b (or the source) is the maximal subtree of T which is
rooted at b and has no internal buffers. The capacitive load of a subtree driven by b is
the sum of the subtree wire capacitance and the input pin capacitances of its leaves. The
source, as well as each type of buffer, respectively, can only drive a certain maximum load.
Hence, insertion of buffers in a routing tree may be necessary. One can choose from a
set of buffer types with different characteristics. Roughly speaking, a larger and therefore
stronger buffer type has a larger input capacitance but causes a smaller delay. (Instead
of inserting buffers it is also possible to insert inverters to the tree, as long as the signal
parity at the sinks does not change.) There might be large macros circuits (such as data
caches or processor cores) over which wires can run because there are several wiring layers,
but no buffer circuit can be placed in the area covered by the obstacle (there is only one
layer in which circuits are realized).
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In real world applications, most obstacles are rectangles or of very low complexity. Fig-
ure 3.18 gives an impression of the shape, size and distribution of obstacles on typical chip
designs.

Figure 3.18: Typical shape and distribution of obstacles (macros and other cir-
cuits) on current chip designs by IBM.

W.l.o.g., we can assume a unit weight cost function w. If wB > 1 for some obstacle B, then
replace LB by LB

wB
and the length restriction on obstacle B does not change. For simplicity,

we use the same length restriction for all obstacles in our formulation. However, all our
results carry over to the case that each obstacle B has an individual length restriction LB.
In particular, by setting LB = 0 for an obstacle, we can model the case that the interior
of B must be completely avoided.

Electrical correctness and minimization of power consumption for non-critical nets with
respect to timing motivates the minimum cost buffered routing problem, which we shall
define now. The cost of a buffered routing tree may, for example, be its total capacitance
(wire capacitance plus input capacitance of buffers) as a measure for power consumption,
or merely the number of inserted buffers.

Minimum Cost Buffered Routing Problem

Instance: • A source r and sinks s1, . . . , sk;
• input capacitances of the sinks;
• a library of available buffer types with input capacitances and upper load
constraints.

Task: Find a minimum cost buffered routing tree connecting the source to all sinks
such that the capacitive load of the source and all inserted buffers is within
the given load constraints.

Alpert et al. [2001] give approximation algorithms for the Minimum Cost Buffered
Routing Problem in a scenario without obstacles for a single buffer type. Their algo-
rithms use approximations of the rectilinear Steiner minimum tree as a subroutine because
such trees yield a lower bound on the necessary wiring capacitance. However, in the pres-
ence of large obstacles a feasible buffering of a given tree might not be possible any more.
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We introduce length restrictions on obstacles to overcome this problem as length restric-
tions limit the wire capacitance of a connected tree component which runs over some
blocked area. This is still a simplified model because the load of a subtree also crucially
depends on the input capacitances of its leaves. One way to get rid of this complication
would be to require that each internal connected component running over an obstacle has
not only a length restriction but also a given upper bound on the number of its leaves (a
fanout restriction). A second possibility is to introduce a family of length restriction pa-
rameters L1 ≥ L2 ≥ · · · ≥ Li ≥ . . . with the interpretation that for a component TB with
i leaves the length constraint `(TB) ≤ Li applies. In both models it is then always possible
to insert additional buffers into a tree such that no load violations occur. Moreover, the
length restriction parameter has to be chosen carefully with respect to the available buffer
library and technology parameters, for example unit wire capacitance.

As a first step in extending the approximation results for the Minimum Cost Buffered
Routing Problem to the case with obstacles, we look for good approximation algo-
rithms for LRSTP with one of these additional types of restrictions. For simplicity of
presentation in this section we consider only the version of LRSTP as defined in the
Length–Restricted Steiner Tree Problem. However, fanout restrictions as well as
fanout dependent length restrictions are easily incorporated into the algorithmic approach
and change none of the results with respect to approximation guarantees and asymptotic
running times.

Given a set of terminals in the plane without obstacles, the shortest rectilinear Steiner tree
can be approximated in polynomial time to any desired accuracy using an approximation
scheme by Arora [1998] or Mitchell [1999].

An obstacle which has to be avoided completely is referred to as hard obstacle. Most previ-
ous work dealing with obstacles considered hard obstacles. We define the term Hanan grid
similar to the previous section: given a finite point set Z in the plane and a set of obstacles
B, the Hanan grid is obtained by constructing a vertical and a horizontal line through each
point of Z and a line through each edge used in the description of the obstacles (Hanan
[1966]). The importance of the Hanan grid lies in the fact that it contains a rectilinear
Steiner minimum tree. Ganley and Cohoon [1994] observed that the rectilinear Steiner tree
problem with hard obstacles can be solved on a slightly reduced Hanan grid. An approxi-
mation factor of 2 can easily be obtained by computing the minimum spanning tree on the
Hanan grid (after deleting edges on obstcales). Several more variants and generalizations
of the Steiner tree problem are solvable on the Hanan grid; for a survey see the catalog by
Zachariasen [2001b]. As a consequence, all these variants can be solved as instances of the
Steiner tree problem in graphs. (Given a connected graph G = (V,E), a length function `,
and a set of terminals Z ⊆ V , a Steiner tree T for Z is a tree in G containing all vertices of
Z. T is a Steiner minimum tree for Z if its length is minimum among all Steiner trees for
Z.) The best available polynomial-time approximation algorithm for the Steiner problem
in general graphs has an approximation guarantee α = 1 + ln 3

2 ≈ 1.55; see Robins and
Zelikovsky [2005]. Recently, Müller-Hannemann and Tazari [2007] proposed a near linear
time approximation scheme for Steiner minimum trees in the presence of hard obstacles.
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Their result applies for the Euclidean metric and also for all uniform orientation metrics,
i.e. particularly the rectilinear and octilinear metrics.

Miriyala, Hashmi and Sherwani [1991] solved the case of a single rectangular hard obstacle
to optimality and approximated the Steiner tree for a set of rectangular hard obstacles
provided that all terminals lie on the boundary of an enclosing rectangle, a so–called
switchbox instance. Slightly more general, a switchbox instance with a constant number
of rectangular hard obstacles can be solved exactly in linear time as was shown by Chiang,
Sarrafzadeh and Wong [1992].

Rectilinear shortest path problems with hard obstacles and weighted versions have achieved
a lot of attention. The strongest theoretical result for this kind of problems has been given
by Chen, Klenk and Tu [2000] who provide a data structure to answer two-point shortest
rectilinear path queries for arbitrary weighted, rectilinear obstacles. Such a data structure
can be constructed in O(n2 log2 n) time and space and allows to find a shortest path in
O(log2 n + k) time, where n is the number of obstacle vertices and k denotes the num-
ber of edges on the output path. Many efficient obstacle-avoiding rectilinear Steiner tree
constructions have been proposed in literature. We refer to the recent work by Lin et al.
[2007].

Rectilinear shortest path problems with length restrictions have first been considered by
Müller-Hannemann and Zimmermann [2003] who showed that these problems can easily
be solved to optimality (see also Section 3.2.2).

3.2.2 A 2-Approximation

We now show that the Length–Restricted Steiner Tree Problem can be ap-
proximated within a factor of 2 in polynomial time. In this connection, instances of
the Length–Restricted Steiner Tree Problem with only two terminals, i.e. the
Length–Restricted Shortest Path Problem (LRSPP), are of special interest for
several reasons. In contrast to the general Length–Restricted Steiner Tree Prob-
lem, such instances can be solved to optimality in polynomial time. Müller-Hannemann
and Zimmermann [2003] analyzed the LRSPP and used it as a subroutine for constructing
slack-optimized buffer and inverter trees. An efficient solution to the LRSPP is the ba-
sis for our 2-approximation of the Length–Restricted Steiner Tree Problem. We
summarize the most important properties of the LRSPP for later use.

Lemma 3.13 (Müller-Hannemann and Zimmermann [2003]). Given two terminals s and
t, a set of obstacles B and a length restriction L, there is an optimal length–restricted
s–t–path using only Hanan grid edges.

This property does not hold for Steiner trees. A small counter–example with three termi-
nals is shown in Figure 3.19.

For a set B of obstacles described by mB edges (in total) and a set Z of terminals, the
size of the associated Hanan grid may have as many as O

(
(mB + |Z|)2

)
vertices. For
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Figure 3.19: A small rectilinear Steiner tree instance with three terminals: A
Steiner minimum tree without a length restriction lies on the Hanan grid (left),
whereas a Steiner minimum tree with such a restriction on the rectangular obstacle
does not always lie on the Hanan grid (right).

many applications, see again Figure 3.18, this is by far too pessimistic. Therefore, in
the following we use the actual size of the Hanan grid as a measure of our algorithm’s
complexity.

Lemma 3.14 (Müller-Hannemann and Zimmermann [2003]). Given a Hanan grid with n
vertices, there is a graph G with O(n) vertices and edges in which all s–t–paths are feasible
length–restricted paths and which contains an optimal length–restricted s–t–path for any
pair s, t of terminals. Such a graph can be constructed in O(n) time.

Lemma 3.15 (Müller-Hannemann and Zimmermann [2003]). Given a weighted rectilinear
subdivision of the plane with an associated Hanan grid of size n where a subset of the
regions are obstacles, the weighted shortest path problem with a given length restriction L
can be solved by Dijkstra’s algorithm in O(n log n) time.

To obtain a 2-approximation for LRSTP, we use well-known 2-approximations for the
Steiner tree problem in graphs. Consider an instance G = (V,E, `;Z) of the Steiner
tree problem in graphs, where V is the vertex set and E the edge set of a connected
graph with edge length function `, and Z denotes the terminal set. The distance network
Nd = (Z,EZ , d) is a complete graph defined on the set of terminals Z: for each pair
z1, z2 ∈ Z of terminals there is an edge with exactly the length d(z1, z2) of a shortest
z1–z2-path in G.

For every vertex z ∈ Z let N(z) be the set of vertices in V that are closer to z (with
respect to d) than to any other vertex in Z. More precisely, we partition the vertex set V
into sets {N(z) : z ∈ Z} with N(z1) ∩N(z2) = ∅ for z1, z2 ∈ Z, z1 6= z2 with the property

v ∈ N(z1) ⇒ d(v, z1) ≤ d(v, z2) for all z2 ∈ Z,
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resolving ties arbitrarily. The modified distance network N∗
d = (Z,E∗, d∗) is a subgraph

of Nd defined by

E∗ := {(z1, z2) | z1, z2 ∈ Z and there is an edge (u, v) ∈ E with u ∈ N(z1), v ∈ N(z2)},

and

d∗(z1, z2) := min{d(z1, u) + `(u, v) + d(v, z2) | (u, v) ∈ E, u ∈ N(z1), v ∈ N(z2)},

for z1, z2 ∈ Z.

Mehlhorn [1988] showed that (a) every minimum spanning tree of N∗
d is also a minimum

spanning tree of Nd, and that (b) N∗
d can be computed in O(n log n + m) time (namely,

by one single-source shortest path computation plus bucket sorting).

Algorithm 3.3: Mehlhorn’s Algorithm

Input: Graph G = (V,E, `;Z)
Output: A Steiner Tree T for G
Compute the modified distance network N∗

d for G = (V,E, `;Z);1

Compute a minimum spanning tree T ∗d in N∗
d ;2

Transform T ∗d into a Steiner tree T for G by replacing every edge of T ∗d by its3

corresponding shortest path in G;
Return T ;4

Given an instance G = (V,E, `;Z) of the Steiner tree problem in graphs with n = |V |
and m = |E|, Mehlhorn’s Algorithm computes a Steiner tree with a performance
guarantee of 2 in O(n log n + m) time (Mehlhorn [1988]).

Theorem 3.16. Length–restricted Steiner trees can be approximated with a performance
guarantee of 2 in O(n log n) time.

Proof. Using the results of the previous section, we can efficiently build up the modified
Hanan grid G′ from Lemma 3.14. We apply Mehlhorn’s Algorithm to G′ and obtain
a performance guarantee of 2. The claim on the running time follows immediately as
O(m) = O(n). Finally, the obtained tree is feasible, as no tree in G′ violates any length
restriction.

We finish this section by showing that the approximation guarantee for Mehlhorn’s
Algorithm is tight. The Steiner ratio is the least upper bound on the length of a
minimum spanning tree in the distance network divided by the length of a minimum
Steiner tree for all instances of the Steiner tree problem. We extend this notion to length
restrictions. The length–restricted Steiner ratio is the least upper bound on the length of
a minimum spanning tree in the distance network containing a length–restricted shortest
path between any pair of terminals divided by the length of an LRSMT for all instances of
the Length–Restricted Steiner Tree Problem. In the case without obstacles the
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Steiner ratio is 3
2 as was shown by Hwang [1976]. However, in the scenario with obstacles

and length restrictions the corresponding Steiner ratio is worse, namely 2, and therefore
not better than for the Steiner tree problem in general graphs.

Lemma 3.17. The length–restricted Steiner ratio is 2.

Proof. Clearly, the Steiner ratio is not larger than 2 by the approximation guarantee from
Theorem 3.16. To prove that the Steiner ratio is exactly 2, we provide a class of input
instances for which the length of the minimum spanning tree in the distance network
(based on length–restricted shortest paths) becomes arbitrarily close to twice the length
of a length–restricted Steiner minimum tree.

Figure 3.20: Schematic view on the instance class with a Steiner ratio of 2: the
LRSMT (left) and a minimum spanning tree in the distance network based on
length–restricted shortest paths (right).

For a given length restriction L, we define an instance with k = 2r terminals as follows, see
Figure 3.20. The terminal positions are p1 = (0, 0), p2i = (−rL, iL+3i) for i = 1, . . . , r−1
and p2i+1 = (rL, iL + 3i) for i = 1, . . . , r − 1 and pk = (0, rL + 3r). There are k − 2
rectangular obstacles B1, . . . Bk−2. We specify each rectangle by giving two opposite corner
points, namely the lower left corner `ci and the upper right corner rci for i = 1, . . . k − 2.
Precisely, we define `c2i−1 = (−2rL, iL + 3i + 1), rc2i−1 = (−1, iL + 3i + L + 2) and
`c2i = (1, iL + 3i + 1), rc2i = (2rL, iL + 3i + L + 2), for i = 1, . . . , r − 1. The length of a
length–restricted Steiner minimum tree LRSMT is

|LRSMT | = 2r2L− rL + 3r.

The length of a minimum spanning tree in the distance network, however, is

|MST | = 4r2L− 3rL + r + 4.
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Hence
lim

r→∞

|MST |
|LRSMT |

= 2.

3.2.3 The Structure of Length–Restricted Steiner Minimum Trees

The purpose of this section is to characterize the structure of length–restricted Steiner
minimum trees. In particular, we define a finite graph (a variant of the Hanan grid) which
always contains an optimal solution.

Let Z be a set of terminals with |Z| ≥ 4 and T be a Steiner minimum tree for Z. Then T
is called a fir tree (see Figure 3.21) if and only if every terminal has degree one in T and
one of the following two conditions is satisfied (possibly after reflection and/or rotation):

1. All Steiner points lie on a vertical line and every Steiner point is adjacent to exactly
one horizontal edge, and these horizontal edges alternatingly extend to the left and
to the right. The topmost Steiner point is adjacent to a vertical edge ending in
a terminal, the lowest Steiner point is adjacent to a vertical edge either ending in
a terminal or at a corner. In the latter case, the horizontal edge extends to the
opposite side than the horizontal edge of the lowest Steiner point. (Types (I) and
(II) in Figure 3.21)

2. All but one Steiner point lie on a vertical line. Every Steiner point but the exceptional
one is adjacent to exactly one horizontal edge which alternatingly extend to the left
and to the right and ends in a terminal. The exceptional Steiner point is incident to
two horizontal edges, one of which ends in a terminal. The other edge is a connection
to the lowest Steiner point on the vertical line by a corner from the opposite side
than the horizontal edge of the lowest Steiner point. Finally, the topmost and the
exceptional Steiner point are both adjacent to a vertical edge that extend upwards
and downwards, respectively, and ends in a terminal. (Type (III) in Figure 3.21)

The vertical line connecting all or all but one Steiner point is called the stem of the fir
tree, all horizontal edges are called legs. An edge is called interior with respect to some
obstacle B if it is contained in B and does not completely lie on the boundary of B.

Lemma 3.18. Let Z be a terminal set on the boundary of an obstacle B such that in
every length–restricted Steiner minimum tree for Z

1. all terminals are leaves, and

2. all tree edges are interior edges with respect to B.

Then there exists a length–restricted Steiner minimum tree T for Z such that it either is a
fir tree or has one of the following five shapes (possibly after reflection and/or rotation):
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(I) (II) (III)

Figure 3.21: The three different types of fir trees.

Proof. Almost the same characterization as claimed in the lemma is well-known for rec-
tilinear Steiner trees without obstacles, see, for example, the monograph by Prömel and
Steger [2002], Chapter 10. The general proof idea is to start with an arbitrary optimal
tree and then to perform a series of modifications which does not increase the tree length
until the tree has the claimed structure (or some terminal is no leaf any more and so vio-
lates our assumptions). The only small difference is that this lemma assumes that every
optimal tree lies strictly inside a bounded region. So this gives another reason to stop the
series of modifications but clearly does not change the structure of the resulting tree if the
instance satisfies the premises of this lemma.

Trees of the fourth and fifth shape in Lemma 3.18 are called T -shaped and cross-shaped,
respectively. The two horizontal edges of a T -shaped tree are its stem. Note that the
lemma asserts the following property: for a set of terminals located on the boundary of an
obstacle there is either a LRSMT of the described structure or the tree decomposes into
at least two instances with fewer terminals.

Based on the structural insights from the previous lemma, we can now define a variant of
the Hanan grid, which we call augmented Hanan grid.

Definition 3.19 (augmented Hanan grid). Given a set Z of points in the plane, a set of
rectilinear obstacles B and a length restriction L ∈ R≥0, the augmented Hanan grid is the
graph induced by the following lines:

1. for each point (x, y) ∈ Z, there is a vertical and a horizontal line going through
(x, y),

2. each edge of each obstacle is extended to a complete line, and
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3. for each obstacle B ∈ B, include a line going through the stem of all those T -shaped
trees, and all those fir trees of type (I) or of type (III) which have exactly length L,
have only interior edges, and an arbitrary, odd set of points located on the boundary
of B as their terminals.

From its definition it is not clear whether the augmented Hanan grid has polynomial size
and can be efficiently constructed. For instances with rectangular obstacles both properties
hold: We observe that we need at most four additional lines per obstacle and that we can
find all candidate lines easily.

Lemma 3.20. If all obstacles in B are rectangles, then we have to add at most O(|B|)
additional lines to the ordinary Hanan grid to obtain the augmented Hanan grid.

Proof. Consider one rectangular obstacle R ∈ B of dimension a × b. Let us fix one of its
four sides s, say the bottom side of length a. If L ≤ a, no T -shaped tree can have its leg
on side s. If a < L < a + b, the only position of the stem of any possible T -shaped tree
of length L with its leg being located somewhere on s is exactly L− a units above side s.
Note that no T -shaped tree is possible if L ≥ a+b. Conversely, fir trees are only possible if
L > a+ b. Consider a fir tree of the following kind: its stem runs parallel to s and x units
above s, `b ≥ 2 of its legs are pointing downwards and `b−1 legs are pointing upwards. The
length of such a fir tree T is a function of `b and x, namely L(T, `b, x) = a + (`b− 1)b + x.
As 0 ≤ x < b, there can be at most one solution (`b, x) of L = L(T, `b, x). Note that the
case with more legs pointing upwards than downwards is counted for the upper side of the
rectangle. Hence, we have to include at most one additional line for each side of R.

Similarly, but with more involved counting arguments, one can show that the size of the
augmented Hanan grid is still polynomially bounded if each obstacle can be described by
at most k edges, where k is some given constant.

Next we prove that the augmented Hanan grid has the desired property to contain an
optimal solution.

Lemma 3.21. The Length–Restricted Steiner Tree Problem has an optimal so-
lution which lies completely on the augmented Hanan grid.

Proof. Choose T among all optimal trees such that (a) T has the structure described in
Lemma 3.18 inside obstacles, and (b) T has the fewest number of (inclusion-maximal)
segments q which do not lie on the augmented Hanan grid among all those optimal trees
which already fulfill (a). Assume q > 0 and let s be a non-Hanan segment. Without loss
of generality we assume that s is a horizontal segment. Consider first the case that one
endpoint of s, say the left endpoint p`, is the corner point of a fir tree of type (II) lying
within some obstacle B, and that s is not parallel to the stem (which means that the fir
tree is rotated). Denote by pB the nearest intersection point of segment s with B as seen
from the left endpoint of s. In such a situation, we can modify the fir tree inside B such
that it has the same total length, does not use the edge p`pB and does not create a new
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non-Hanan segment. A similar modification may be necessary for the right endpoint pr

of s. After that modification, we can be sure that no endpoint of the remaining part of s
ends as a leg in a corner point of a fir tree of the second type lying within some obstacle
B.

Now let mu,mb be the number of edges which end in s from above, and from below,
respectively. If mu 6= mb, say mu > mb, then we can slide segment s upwards and thereby
strictly reduce the length of T , which contradicts its optimality. Thus mu = mb. Hence,
we can slide segment s upwards until it first hits a line of the augmented Hanan grid (or
until it overlaps with a preexisting segment of T , which would contradict its minimality
and so does not occur). This modification does not change the length of the tree, but
property (a) may now be violated. However, it is easy to modify the tree further such that
it fulfills property (a) inside obstacles and keeps its minimum length without introducing
any new non-Hanan segment. Hence, the modified tree contradicts our initial choice of T .

It remains to argue that the sliding operation does not violate the length restriction for
some obstacle. Assume that some part of s, say s′, belongs to a subtree which causes
a length violation for some obstacle B′. Then s′ belongs to a fir tree. If it is the stem
of the tree, then the sliding operation would either not change the length of the fir tree
(namely, if the fir tree has an even number of terminals) or it would stop at the latest at
the additional line of the Hanan grid which has been inserted for this type of fir tree and
no violation would occur. Otherwise, if it is not part of the stem, the length of the tree
remains invariant (or become even shorter if two edges of the fir tree collapse).

3.2.4 Improved Approximation for Rectangular Obstacles

In this section, we focus on improved approximation guarantees for instances where all
obstacles are rectangles. The basic idea is to construct an instance of the Steiner tree
problem in graphs with the property that a Steiner tree in the constructed graph imme-
diately translates back to a feasible length–restricted rectilinear Steiner tree. In addition,
the construction is designed to guarantee that the Steiner minimum tree in the graph is
not much longer than the length–restricted Steiner minimum tree. This is inspired by
approximation algorithms for rectilinear Steiner trees which rely on k-restricted Steiner
trees (Zelikovsky [1992], Berman and Ramaiyer [1994]). We say that a Steiner tree is a
k-restricted Steiner tree if each full component spans at most k terminals.

To formalize this general idea, we do the following. Given an instance of the Length–
Restricted Steiner Tree Problem with rectangular obstacles and an integer k ≥ 2,
we construct the graph Gk in three steps:

1. build up the augmented Hanan grid;

2. delete all vertices and incident edges of the augmented Hanan grid that lie in the
strict interior of some obstacle;
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3. for each obstacle R, consider each c-element subset of distinct vertices on the bound-
ary of R for c = 2, . . . , k. Compute an (unrestricted) Steiner minimum tree for such
a vertex set. If the length of this tree is less or equal to the given length bound L and
if the tree has no edge lying on the boundary of R, then add this tree to the current
graph and identify the leave vertices of the tree with the corresponding boundary
vertices of R.

The following lemma shows that the construction of Gk can be done efficiently. In particu-
lar, in Step 3 we do not have to consider all c-element subsets of vertices on the boundary
of a rectangle explicitly. It suffices to enumerate only those subsets of vertices which have
Steiner minimum trees according to Lemma 3.18.

Lemma 3.22. If the augmented Hanan grid has n vertices, then

(a) G2 has at most O(n) vertices and edges, and can be constructed in O(n) time, and

(b) Gk has at most O(nk−2) vertices and edges and can be constructed in O(nk−2) time
for any k ≥ 3.

Proof. For an instance with c terminals located on the boundary of a rectangle, the Steiner
minimum tree can be found in time O(c) as shown by Agarwal and Shing [1990] and
Cohoon, Richards and Salowe [1990]. That is, for a given tree with c ≤ k terminals we
can verify in constant time whether it is optimal and satisfies the given length bound L.
It remains to show how many trees have to be examined for an arbitrary rectangle R
with nR grid vertices. As shown in Lemma 3.14, there are only O(nR) many paths (i.e.
trees with two terminals) to be considered, which already implies the claim for k = 2.
Trees with three terminals can be assumed to be T -shaped. A T -shaped tree is uniquely
characterized by its Steiner point and by the direction of its leg. This implies that there
are at most O(nR) many trees with three terminals. A Steiner tree with four terminals is
either cross-shaped or a fir tree. Clearly, there are only O(nR) many cross-shaped trees.
Fir trees with c ≥ 4 terminals are completely determined by specifying its c − 2 Steiner
points and the direction of the first leg. (Given the Steiner point locations, there are only
two possible directions.) This implies that there are at most O(nc−2

R ) possible fir trees.
Summing up these possibilities over all rectangles and all c ≤ k yields O(nk−2) additional
vertices and edges in Gk, k ≥ 3.

The following lemma yields the basis for our improved approximation guarantee.

Lemma 3.23. Let R be a rectangular obstacle and Z a set of terminals on its boundary.
Then G3 contains a Steiner minimum tree that is at most 5

4 times as long as the length–
restricted Steiner minimum tree for Z. For k ≥ 4, Gk contains a Steiner minimum tree
that is at most 2k

2k−1 times as long as the length–restricted Steiner minimum tree for Z.

Proof. Let LRSMT be a length–restricted Steiner minimum tree for the terminal set Z.
By Lemma 3.21, we may assume that LRSMT lies on the augmented Hanan grid. Thus,
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we may further assume that LRSMT is a full Steiner tree and contains no edge on the
boundary of R, as otherwise LRSMT can be decomposed into smaller instances which
fulfill the hypotheses of this lemma. If |Z| ≤ k, then Gk contains LRSMT by construction.
Otherwise, by Lemma 3.18, LRSMT must be a fir tree with |Z| > k terminals or a cross-
shaped tree if |Z| = 4 and k = 3.

Zelikovsky [1992] and Berman and Ramaiyer [1994] defined four 3-restricted Steiner trees
that each span the same terminals as LRSMT with a total length five times |LRSMT |.
Thus, the shortest of the four trees has length at most 5

4 |LRSMT |. For k ≥ 4, Borchers
et al. [1998] are able to define a collection of 2k − 1 k-restricted full Steiner trees with
total length at most 2k times the length of any full tree. As LRSMT is length-feasible,
all full components used in these k-restricted Steiner trees are also length-feasible as they
are strictly shorter. The lemma follows, since Gk contains all k-restricted full Steiner trees
used in these constructions.

Combining our previous observations, we obtain the main result of this section.

Theorem 3.24. Using a polynomial-time approximation algorithm for the ordinary Steiner
tree problem in graphs with an approximation guarantee α, we obtain a family of polynomial-
time approximation algorithms for the Length–Restricted Steiner Tree Problem
subject to rectangular obstacles with performance guarantee 5

4α and 2k
2k−1α for any k ≥ 4,

respectively.

Proof. Our approximation algorithms solve the Steiner tree problem in graphs on Gk, for
k ≥ 3. For rectangular obstacles, the augmented Hanan grid has polynomial size and can
be constructed in polynomial time. Hence, the algorithms also run in polynomial time.

Let LRSMT be a length–restricted Steiner minimum tree. By Lemma 3.21, we may
assume that LRSMT lies on the augmented Hanan grid. Hence, all edges of LRSMT
which are not interior edges of obstacles are also edges of Gk. Now consider an arbitrary
obstacle R such that the optimal tree restricted to this obstacle TR := LRSMT ∩ R has
edges interior to R. The edges of TR are not necessarily represented in Gk. However, for
each connected component of TR we may consider its leaves Z as terminals of a Steiner
tree instance on obstacle R. By Lemma 3.23, the length of a Steiner minimum tree in G3

for the set Z is at most 5
4 times as long as the length of the corresponding component of

TR. Similarly, the length of a Steiner minimum tree in Gk, k ≥ 4, for the set Z is at most
2k

2k−1 times as long as the length of the corresponding component of TR. Replacing the
subtrees TR by an optimal solution in Gk, gives an overall tree in Gk with the claimed
length bound.

We note again that a similar result holds for a scenario with general obstacles provided
each obstacle is bounded by only a constant number of edges.

Finally, we would like to mention that concepts used in this section are also applied to
prove similar approximability results for octilinear Steiner trees (Müller-Hannemann and
Schulze [2006]).



Chapter 4

Shortest Paths

The shortest path problem is one of the most elementary, important and well-studied
algorithmic problems in graph theory. In a very general setting it can be formulated as
follows: for a given digraph G = (V (G), E(G)), edge lengths c : E(G) → R and vertex
sets S, T ⊆ V (G), find a path P in G from source S to target T whose total length
c(E(P )) =

∑
e∈E(P ) c(e) is minimum. An optimum solution to this problem may not exist

if there is a cycle of negative total length. Therefore, we assume that c is conservative, i.e.
G does not contain a cycle of negative total length. The shortest path problem is a special
case of the transshipment problem (Orden [1956]) and can be solved by means of linear
programming (Dantzig [1957]). Hence, finding a shortest path is polynomially solvable. If
not defined otherwise, let n := |V (G)| and m := |E(G)| throughout this chapter.

A framework used by many algorithms to solve shortest path problems may be stated in
terms of a label-setting based algorithm as follows: every vertex v ∈ V (G) is assigned a
distance value γ(v). Initially, γ(v) := 0 for all v ∈ S, and γ(v) := ∞ for all other vertices.
Now, in each step of the algorithm, an edge (u, v) ∈ E(G) with γ(v) > γ(u) + c((u, v)) is
chosen and γ(v) is set to γ(u) + c((u, v)). The algorithm stops if a target vertex receives
its final distance value or none of the distance values can be improved. There are many
variants of that scheme to improve the running time; see Section 4.1. The main goal is to
prune the number of label adjustments and examine only a small portion of the original
graph.

Note that our formulation does not explicitely construct a shortest path. But this in-
formation can easily be retrieved by keeping track of predecessor information during the
algorithm.

In this chapter we restrict the shortest path problem to non-negative integral edge length.
So, we consider the following problem:

69
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Integral Shortest Path Problem

Instance: • A directed graph G = (V (G), E(G));
• edge lengths c : E(G) → Z≥0;
• vertex sets ∅ 6= S ⊆ V (G) and T ⊆ V (G).

Task: If T is non-empty and reachable from S in G, find the length of a shortest path
from S to T in G, i.e. a path P of minimum total length c(E(P )). Otherwise,
compute the length of shortest paths from S to all vertices in V (G) which are
reachable from S.

Using an algorithm by Johnson [1977] based on Ford [1956] and Bellman [1958] it is
possible to convert conservative edge length c : E(G) → R to non-negative edge length in
O(n(n + m) log n) time while preserving shortest paths.

The Integral Shortest Path Problem appears in countless practical applications,
for example in motion planning (Fitch, Butler and Rus [2001]), road networks (Klunder
and Post [2006]), modeling timetable information (Müller-Hannemann et al. [2007]), and
network routing (Medhi and Ramasamy [2007]). See also Gallo and Pallottino [1988] and
Cherkassky, Goldberg and Radzik [1996].

The motivation for the research presented here originates from the routing problem in
VLSI design where the time needed to complete the full design process is one of the most
crucial issues to be addressed. In typical problem instances today millions of shortest
paths have to be found in graphs with billions of vertices. Therefore, no algorithm which
does not heavily exploit the specific instance structure can lead to an acceptable running
time.

Various methods are proposed in literature to solve the Integral Shortest Path Prob-
lem. Some of them are of pure theoretical interest, others are derived from a practical
background. We give an overview on techniques to find shortest paths in Section 4.1. In
Section 4.2 we present a generic version of our new algorithm which can be viewed as
a generalization of Dijkstra’s algorithm (Dijkstra [1959]). Section 4.3 is devoted to two
applications of our strategy which reduce the overall running time of VLSI routing sig-
nificantly as shown with experimental results in Section 4.4. Main results of this chapter
have been recently published by Peyer, Rautenbach and Vygen [2006].

4.1 Shortest Paths Algorithms

In Section 4.1.1, we introduce commonly used speed-up techniques for the Integral
Shortest Path Problem in general graphs. Since our special focus lies on grid graphs,
main results on grid graphs are presented in Section 4.1.2.
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4.1.1 General Graphs

Shimbel [1955] was probably the first who described a polynomial-time algorithm for the
shortest path problem allowing conservative edge lengths running in O(n4). Ford [1956]
and Bellman [1958] independently gave similar algorithms with time complexity O(nm).
Their running time of O(nm) is still the fastest known strongly-polynomial algorithm for
the shortest path problem.

A number of algorithms has been proposed to solve the Integral Shortest Path
Problem efficiently. An algorithm comparable to that of Ford and Bellman was de-
veloped by Moore [1959] for non-negative edge lengths with the same time complexity.
Dantzig [1960] (with a refinement of Minty [1957]) proposed to choose an edge (u, v) for
which γ(v) + c((u, v)) is smallest possible and achieved an algorithm with running time
O(n2 log n). For a survey on the early history of shortest path algorithms, see Schrijver
[2005].

The basic strategy for solving the Integral Shortest Path Problem is the following
algorithm given by Dijkstra [1959]:

Algorithm 4.1: Dijkstra’s Algorithm

Set γ(v) := 0 for v ∈ S; Set γ(v) := ∞ for v ∈ V (G) \ S;1

Set P := ∅ and Q := S;2

while Q 6= ∅ do3

Choose a vertex v ∈ Q with γ(v) = min{γ(w) : w ∈ Q};4

Set Q := Q \ {v} and P := P ∪ {v};5

if v ∈ T then6

return γ(v);7

end8

forall w ∈ V (G) \ P with (v, w) ∈ E(G) do9

if γ(w) > γ(v) + c((v, w)) then10

Set γ(w) := γ(v) + c((v, w));11

Set Q := Q∪ {w};12

end13

end14

end15

return ∞;16

The algorithm follows the general framework described at the beginning of that chapter.
The set of vertices of V (G) is partitioned into three sets: the set Q contains all vertices
which have already received a feasible distance label possibly not minimum. P is the
set of all vertices known to have received a feasible minimum distance label. These are
called permanently labeled (or scanned). For all remaining vertices v ∈ V \ (Q ∪ P) holds
γ(v) = ∞. In each iteration of the algorithm a vertex of minimum distance value is moved
from Q to P, and all its neighbors are updated. The operation in line 11 of Dijkstra’s
Algorithm is called labeling step. The algorithm stops as soon as a target vertex is
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permanently labeled. If T is empty or not reachable from S the algorithm returns ∞.
Dijkstra [1959] shows that after the execution of Dijkstra’s Algorithm, each vertex
v ∈ P is labeled with the length γ(v) of its shortest path to S.

The running time of Dijkstra’s Algorithm as formulated above is O(n2). It can be
decreased if the order in which vertices are removed from Q is carefully chosen. The
set Q is kept as a data structure supporting operations to insert an element, to decrease
the key of an element and to delete an element with minimum key. Much effort has
been spent to build an efficient data structure which improves the time complexity of
Dijkstra’s Algorithm. If Q is implemented as a Fibonacci heap, the running time
can be decreased to O(m + n log n) for arbitrary non-negative edge lengths (Fredman
and Tarjan [1987]), which is the fastest known strongly polynomial implementation. This
result has been improved further by Thorup [2004] for non-negative integral edge lengths
to O(m+n log log n). For undirected graphs even a linear running time can be achieved for
integral lengths (Thorup [1999]), or on average in a randomized setting (Goldberg [2001],
Meyer [2001]).

If c(v) ≤ C for all v ∈ V (G) and some integer C, Dial [1969] formulated an O(m + nC)-
algorithm using O(nC) space which works well for small values of C. Dial’s idea is to
maintain an array B = [0, . . . , nC] of buckets and store labeled vertices v in B[γ(v)]. This
allows inserting a vertex and decreasing the key in constant time, and finding a vertex
of minimum key in O(C) time. The space bound can be improved to O(C) by using C
many buckets and working modulo C + 1. Alternatively, the time bound can be reduced
to O(m + D) for a biggest distance D in G. Many improvements using different data
structures and computational models can be found in literature; for a short survey see
Thorup [2004].

The main idea of a goal-oriented path search (often called A∗) is to scan fewer vertices such
that path search is guided from the source towards the target. Goal-oriented techniques
have been proven to be very powerful in reducing running time of shortest path algorithms
in practice, so that they are often used in combination with other techniques. They have
first been described as heuristics in the artificial-intelligence setting by Doran [1967], Hart,
Nilsson and Raphael [1968], and later by Rubin [1974].

For this, it uses a lower bound π(v) on the distance from each v ∈ V (G) to T in order to
get a better estimation on the length of a path from S to T using vertex v. At each step
in Dijkstra’s Algorithm, a vertex v ∈ Q with minimum potential cost γ(v) + π(v) is
picked to become permanently labeled. Optimality is not guaranteed in general, but can
be shown if π satisfies

cπ((v, w)) := c((v, w))− π(v) + π(w) ≥ 0 for all (v, w) ∈ E(G). (4.1)

We call cπ the reduced cost with respect to π and π is a feasible node potential if the above
consistency condition (4.1) holds. If π gives exact distances to T , the goal-oriented path
search scans only vertices on shortest paths from S to T . It further can be shown that for
a feasible node potential π and any two vertices v and w in V (G), a shortest v-w-path in
G with respect to c is a shortest v-w-path in G with respect to cπ, and vice versa.
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Let π and π′ two feasible potential functions such that π(t) = π′(t) = 0 for all t ∈ T
and π(v) ≤ π′(v) for all v ∈ V (G) \ T . Then, it is easy to observe that the set of
vertices scanned by A∗ using π′ is contained in the set of vertices scanned by A∗ using
π (assuming a reasonable tie-breaking rule; see, for example, Goldberg and Harrelson
[2005]). Since Dijkstra’s Algorithm can be viewed as a goal-oriented path search
using zero potential cost, any A∗-algorithm with a non-negative feasible node potential
scans no more vertices than Dijkstra’s Algorithm. This property leads to the task
to compute good lower bounds. Lower bounds which are easy to compute are based on
metric dependent distances (Rubin [1974], Sedgewick and Vitter [1986]). In the last few
years, mainly two techniques to determine a good lower bound have been discussed in the
literature: distances obtained from graph condensation (Müller-Hannemann and Weihe
[2001]) and obtained by landmarks (Goldberg and Harrelson [2005]). These approaches
require a pre-processing of the entire graph prior to path search.

Another fundamental approach in the field of shortest path searches is a bi-directional
search. Although Dantzig [1960] already mentioned this idea, the pioneering work is
attributed to Pohl [1971]. In a bi-directional search two searches are performed simul-
taneously. One (forward) path search applies Dijkstra’s Algorithm on the original
graph searching from S to T . The other (backward) path search operates on the reverse
graph Ḡ := (V (G), {(v, u) : (u, v) ∈ E(G)}) and starts at T searching for a shortest path
to S. The algorithm stops when a vertex v has been permanently labeled by both path
searches. Note that upon stopping this vertex v does not necessarily have to be a vertex
of the shortest path. The shortest path can be composed of two shortest paths of both
searches. The performance of a bidirectional path search depends — among other things
such as data structures — on the strategy in which order forward and backward path
search are executed; see Luby and Radge [1989].

For many instances that arise in practice, the graphs have some underlying geometric
structure which can also be exploited to speed up shortest path computations. Techniques
using a pre-processing stage have become popular in the last few years in the context of
public railroad transport and navigation on road networks. They all have in common to
spend some time to retrieve local information which lead to a speed-up in the actual query
time. Those techniques are applicable in practice where many shortest paths are queried
on a static input graph. Instances might allow a natural hierarchical decomposition, where
additional edges are added to the given graph which represent shortest paths between
corresponding vertices. This way, the input graph can be coarsened leading to a sparse
graph. Previous works include a multi-level approach (Schulz, Wagner and Zaroliagis
[2002], Holzer, Schulz and Wagner [2006]), the concept of highway hierarchies (Sanders
and Schultes [2005, 2006]) and the usage of so–called transit nodes (Bast et al. [2007]).
Another pre-processing strategy attaches labels on vertices or edges in advance to indicate
whether a certain vertex or edge has to be considered during the path search. This
includes the approaches of reach-based routing (Gutman [2004]), landmarks (Goldberg
and Harrelson [2005]), geometric containers (Wagner and Willhalm [2003]), edge labels
and arc flags (Schulz, Wagner and Weihe [2000], Möhring et al. [2005]).
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For a comprehensive study on combinations of speed-up techniques we refer to Holzer et
al. [2005]. Computational experiments were presented on the 9th DIMACS Implemen-
tation Challenge [2006] for shortest paths instances. Excellent surveys on shortest paths
algorithms published during the last years can be found in Wagner and Willhalm [2007],
and Sanders and Schultes [2007].

4.1.2 Grid Graphs

Grid graphs play an important role in the application of VLSI design as we have described
in Section 2.3. Although many algorithms for general graphs are also applicable for grid
graphs, special algorithms have been developed which exploit the specific grid structure.
In this section we give a brief overview of research on shortest path algorithms in grid
graphs. Many of the approaches described below have been used by routing programs as
we discussed in Section 2.5.

Maze running algorithms are widely used for routing in grid graphs. They are special
implementations of Dijkstra’s Algorithm. Lee [1961] (with a slight correction by Rubin
[1974]) was the first who formulated an algorithm for the special case c ≡ 1. Instead of
implementing Q as a priority queue, Lee’s algorithm uses a much simpler first-in-first-out
queue. Although his algorithm has a running time of O(n), it was considered to be very
time and memory consuming. Therefore, subsequent papers proposed enhancements to
Lee’s algorithm. Rubin [1974] suggested to use a “rough prediction of the cost function”
from a vertex to the target. He gives a short proof for his goal-oriented approach and shows
that the search space does not become larger. If the integral edge lengths are bounded by
C, Hoel [1976] gave an O(nC)-algorithm working with C many buckets instead of nC + 1
buckets as in Dial [1969]. Combining ideas by Rubin and Hoel, Hadlock [1977] proposed
an algorithm with time complexity between O(

√
n) and O(n) for grid graphs with uniform

edge lengths. Finally, we mention a generic algorithm by Johann and Reis [2000] which
simultaneously uses goal-oriented and bi-directional methods.

A disadvantage of maze running algorithms is that they cannot make use of uniform
structures in large grid graphs. Line search algorithms are developed to overcome this
drawback. Instead of generating wave fronts of labeled vertices, they search for escape lines
to find a way towards the target. Those escape lines do not need to follow an underlying
grid, so that line search algorithms are sometimes called gridless in literature. Line search
algorithms do not necessarily find a shortest path. The first work by Mikami and Tabuchi
[1968] minimizes only the number of bends, while the algorithms by Hightower [1969]
and Dobes [1977] are not even guaranteed to find a path if there exists one. A similar
approach was given by Soukup [1978] who combined the line search approach to run over
long distances with a Lee-type expansion technique to label around obstacles. The latter
two algorithms do find a connection between source and target, but not necessarily the
shortest one. If the grid graph is represented by a set I of lines, Lipski [1984] derived an
O(|I| log |I|)-algorithm which minimizes the number of interval changes.
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The principle of line expansion was first developed by Heyns, Sansen and Beke [1980] and
improved by Sato, Kubota and Ohtsuki [1990] later. In contrast to line search algorithms,
line expansion always finds an existing path, but not necessarily a shortest one. The
idea is to consider not only escape lines but also all lines running orthogonal to them.
This approach can be viewed as a labeling algorithm of two-dimensional rectangles. It is
therefore also called area search.

For more information on many of the above-mentioned algorithms we refer to Lengauer
[1994] and Hetzel [1995].

Hetzel [1998] combined the ideas of maze running and line search and proposed to represent
the partial grid graph by a set of intervals of adjacent vertices and to label these intervals
rather than individual vertices in his goal-oriented version of Dijkstra’s Algorithm.
Part of our work described in the following sections is a generalization of Hetzel’s algorithm.
Motivated by Hetzel and not much different, Shenoy and Nicholls [2002] presented an
efficient database to answer region queries efficiently in their interval-based path search.

Many algorithms have been discovered in the field of computational geometry. They are
mainly of theoretical interest and can hardly be applied in practice. The main approach
here is to develop efficient data structures which reduce the path search complexity; see,
for example, Chen and Xu [2001].

Finally, we mention the work of Xing and Kao [2002] who consider a graph which is part
of the Hanan grid induced by all obstacles, and propagate piecewise linear functions on
the edges of this graph.

4.2 Generalizing Dijkstra’s Algorithm

The new algorithm which we call GeneralizedDijkstra provides a speed-up technique
for Dijkstra’s Algorithm in two ways. First, it can directly be applied to propagate
distance labels through a graph. The main difference to other techniques is that our
approach labels sets of vertices instead of individual vertices. It is beneficial if vertices
can be grouped such that their distances can be expressed by a relatively simple distance
function and updating neighboring sets works fast. In VLSI routing, the vertex sets are
one-dimensional intervals of the three-dimensional grid. A second application of Gener-
alizedDijkstra is the goal-oriented search. Many techniques to determine a good lower
bound have been discussed in the literature, see previous section. The approach proposed
in this chapter is another method to compute lower bounds: it computes shortest distances
from the target to all vertices in a supergraph G′ of the reverse graph of the input graph.
Here, G′ must be chosen such that it approximately reflects the original distances and
allows a partition of the vertex set in order to perform a fast propagation of distance la-
bels. In our VLSI application, G′ is the subgraph representing the global routing corridor,
which is the union of only few rectangles.

One of our main proposals is to introduce three levels of hierarchy. The vertices of the
graph are the elements of the lowest and most detailed level. The middle level is a partition
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of the vertex set. Instead of labeling individual vertices as in the original version of
Dijkstra’s Algorithm, we label the elements of this middle level. Finally, the top level
is a partition of the middle level, i.e. several of the vertex sets of the middle level are
related. The role of the top level of the hierarchy is that it allows to delay certain labeling
operations. We perform labeling operations between elements of the middle level that
are contained in the same element of the top level instantly, whereas all other labeling
operations are delayed. Depending on the structure of the underlying graph, the well-
adapted choice of the hierarchy and the implementation of the labeling operations, we can
achieve running time reductions both in theory and in practice.

Throughout the rest of this chapter, we use the following notation. For vertices u, v ∈ V (G)
we denote by dist(G,c)(u, v) the minimum total length of a path in G from u to v with
respect to c, or ∞ if v is not reachable from u. For a given non-empty source set S ⊆ V (G)
we define a function d : V (G) → Z≥0 ∪ {∞} by

d(v) := dist(G,c)(S, v) := min{dist(G,c)(s, v) | s ∈ S}

for v ∈ V (G). If we are given a target set T ⊆ V (G) we want to compute the distance

d(T ) := dist(G,c)(S, T ) := min{d(t) | t ∈ T}

from S to T in G with respect to c, or ∞ if T is not reachable from S.

Instead of labeling individual vertices with distance-related values, we label subgraphs of
G induced by subsets of vertices with distance-related functions. Therefore, we assume to
be given a set V of disjoint subsets of V (G) and subsets S and T of V such that

V (G) =
⋃

U∈V
˙ U and S =

⋃
U∈S

˙ U and T =
⋃

U∈T
˙ U.

We require that the graph G with V (G) := V and

E(G) := {(U,U ′) | ∃u ∈ U, u′ ∈ U ′, (u, u′) ∈ E(G) with c((u, u′)) = 0}

is acyclic. (Note that we do not need to assume this for G. Moreover, one can always
get this property by contracting strongly connected components of (V (G), {e ∈ E(G) :
c(e) = 0}.) Therefore, there is a topological order V1, V2, . . . , V|V| of V with i < j if
(Vi, Vj) ∈ E(G). For U ∈ V we define the index of U to be I(U) = i iff U = Vi.

Throughout the execution of the algorithm and for every U ∈ V we maintain a function
dU : U → Z≥0 ∪ {∞} which is an upper bound on d, i.e.

dU (v) ≥ d(v) for all v ∈ U, (4.2)

and a feasible potential on G[U ], i.e.

dU (v) ≤ dU (u) + c((u, v)) for all (u, v) ∈ E(G[U ]), (4.3)
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where G[U ] denotes the subgraph of G induced by U .

Initially, we set

dU (v) :=
{

0 for v ∈ U ∈ S,
∞ for v ∈ U ∈ V \ S.

We want to make use of a specific structure of the graph G and distinguish between two
different labeling operations. For this, we additionally require a partition of V into N ≥ 1
sets V1, . . . ,VN , called blocks, and a function B : V → {V1, . . . ,VN} such that

∀ 1 ≤ i ≤ N : ∅ 6= Vi ⊆ V,

∀U ∈ V : U ∈ B(U),
∀ 1 ≤ i < j ≤ N : Vi ∩ Vj = ∅.

Clearly, V =
⋃N

i=1˙ Vi and V (G) =
⋃N

i=1˙
⋃

U∈Vi
˙ U by the definition of blocks.

A central concept of our algorithm GeneralizedDijkstra is the following: We distin-
guish between two operations for a vertex set U ∈ V which is chosen to label its neighbors:
U directly updates the neighboring sets within the same block and registers labeling oper-
ations to vertex sets in different blocks for a later use. This approach has two advantages:
First, many registered labeling operations may never have to be performed if a target
vertex is reached before the registered operations would be processed. Second, if sets in
V typically have few of their neighboring sets within the same block, update operations
between blocks may be much more efficient when performed at once instead of one after
another. For a schematic illustration of our algorithm see Figure 4.1. Two more examples
are given in Section 4.3.

Our algorithm maintains a function key : V → Z≥0 ∪ {∞} and a queue Q = {U ∈ V |
key(U) < ∞}, allowing operations to insert an element, to decrease the key of an element
and to delete an element of minimum key. At any stage in the algorithm, for each U ∈ V,
key(U) is the minimum distance label of any vertex in U that was decreased after the
last time that U was deleted from Q. After U has updated its neighbors or registered a
labeling operation, key(U) is set to infinity. It can be reset to a value smaller than infinity,
as soon a d(u) is reduced for a vertex of u ∈ U by an update operation onto U .

For two sets U ,U ′ ⊆ V and a queue Q ⊆ V we use the following update operation which
clearly maintains (4.2) and (4.3):
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VkB(Vk)

Vi, i < k, key(Vi) > λ Vi, i > k, key(Vi) ≥ λ

R(B(Vk), λ)

Project Registered Update Register

Figure 4.1: Schematic view of vertex sets Vi (circles) and blocks Vi (ellipses).
The left-to-right order of the vertex sets is a topological order of G. The arcs
show update operations. If Vk and B(Vk) are selected in step 7 of Generalized
Dijkstra, then key(Vi) > λ and R(Vi, λ) = ∅ for i = 1, . . . , k − 1, and this
property is maintained. Then first all registered updates onto block B(Vk) are
performed (Project Registered, blue arcs), then the elements of B(Vk) with
key λ are scanned in their order (we show Vk only), updates within the block are
performed directly (Update, red arcs), and updates to other blocks are registered
(Register, green arcs). Each Vk is chosen at most once in phase λ.

Procedure Update(U → U ′,Q)

forall U ′ ∈ U ′ do1

forall v ∈ U ′ do2

Set δ := minU∈U minu∈U

{
dU (u) + dist(G[{u}∪U ′],c)(u, v)}

}
;3

if δ < dU ′(v) then4

Set dU ′(v) := δ;5

Set key(U ′) := min{key(U ′), δ};6

Set Q := Q∪ {U ′};7

end8

end9

end10
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The actual labeling operation is done by Update. For each vertex set U ′ ∈ U ′ and each
vertex v ∈ U ′, it computes the minimum distance in the subgraph determined by U ′ and
all neighboring vertices in vertex sets of U . If the distance label at v can be decreased, the
label of v and the key of U ′ are updated. If U ′ is not in the queue, it will enter. Of course,
this is not done sequentially for each single vertex. Here, the advantage of our algorithm
becomes apparent: instead of performing the labeling steps on a vertex by vertex basis,
it rather updates the distance function of neighboring vertex sets in one step. The more
carefully a partition of V is chosen and the simpler dU becomes, the faster Update can
work. In our main algorithm, Update is called for a single vertex set U := {U} updating
its neighbors in B(U), and for a set of vertex sets with registered labels updating their
neighbors in one block.

The second operation is the registration of labeling operations to be postponed. For this,
we define a set R(U , λ) for each block U ∈ {V1, . . . ,VN} and λ ∈ Z≥0, which consists of
all vertex sets which might cause a label of value λ in some vertex set in U . This set is
filled by the following routine, where EG(U,U ′) := {(u, u′) ∈ E(G) | u ∈ U, u′ ∈ U ′} and
min ∅ := ∞.

Procedure Register(U → U ′,R)

Set λ′ := minU ′∈U ′ min {δ | δ = dU (u) + c((u, v)) < dU ′(v), (u, v) ∈ EG(U,U ′)};1

if λ′ 6= ∞ then2

Set R(U ′, λ′) := R(U ′, λ′) ∪ {U};3

end4

Register is called for a vertex set U and some block U ′ 6= B(U). It computes the
minimum label λ′ which improves a label of at least one vertex in a neighboring vertex
set of U in U ′ and registers U in R(U ′, λ′). If no label can be decreased, U will not be
registered.

Given a block U and a key λ, we apply two major subroutines: First, all labeling operations
of registered vertex sets of U at value λ are performed onto block U in Project Registered.
Afterwards, all vertex sets in U containing vertices with key λ update their neighbors
within the same block and register labeling operations in different blocks in procedure
Project FromBlock. We use the notation Qλ := {U ∈ Q | key(U) = λ} for λ ∈ Z≥0.

Procedure Project Registered(U , λ,Q,R)

if R(U , λ) 6= ∅ then1

Update(R(U , λ) → U ,Q);2

Set R(U , λ) := ∅;3

end4
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Procedure Project FromBlock(U , λ,Q,R)

while there is an element U ∈ Qλ ∩ U do1

Choose U ∈ Qλ with minimum index;2

Set Q := Q \ {U} and key(U) := ∞;3

if U ∈ T then4

return λ;5

end6

forall U ′ ∈ {B(U ′) | U ′ ∈ V \ {U} with EG(U,U ′) 6= ∅} do7

if U ′ = U then8

Set JU := {U ′ ∈ U \ {U} | EG(U,U ′) 6= ∅};9

Update({U} → JU ,Q);10

end11

else12

Register(U → U ′,R);13

end14

end15

end16

Project Registered makes up for all postponed labeling steps onto block U at label
λ. After this, R(U , λ) is empty. Project FromBlock goes over all vertex sets U ∈ U
in the queue whose key equals the current label λ according to their topological order.
If a target vertex set is the minimum element in the queue, the overall algorithm stops.
Otherwise, all neighboring vertex sets in the same block are directly labeled by Update
whereas labeling operations to neighbors in different blocks are registered by Register.

Finally, we can formulate the overall algorithm. It performs labeling operations as long as
no set in T has received a final label and there are still labeling operations which need to
be executed. It runs in so-called phases where in the phase at key λ all vertices with dis-
tance λ receive their final label. In phase with key λ, the block U is chosen which includes
the vertex set of minimum index containing a vertex with key λ. If no such vertex exists,
a block U with postponed labels of value λ is taken. For U , Project Registered and
Project FromBlock are called in that order. Project Registered must be called
before labeling steps from vertices in vertex sets of U are performed within U in order to up-
date vertices at label λ by neighbors of different blocks. Otherwise, Project FromBlock
might be not operate efficiently because a vertex might get a label λ at a later time in the
algorithm which again requires an update operation for neighbors in U . This loop at key
λ is done as long as their is still a vertex to be scanned or a block with postponed labels.
The algorithm stops as soon as a vertex in

⋃
T receives its final label and returns it, or it

returns infinity to indicate that
⋃
T is not reachable.
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Algorithm 4.6: GeneralizedDijkstra(G, c,V,B,S, T )

Set key(U) := 0 and dU (v) := 0 for U ∈ S and v ∈ U ;1

Set key(U) := ∞ and dU (v) := ∞ for U ∈ V \ S and v ∈ U ;2

Set R(U , λ) := ∅ for U ∈ {V1 . . . ,VN} and λ ∈ Z≥0;3

Set Q := S and λ := 0;4

while Q 6= ∅ or R(U , λ′) 6= ∅ for some λ′ ≥ λ and some U ∈ {V1, . . . ,VN} do5

while Qλ 6= ∅ or R(U , λ) 6= ∅ for some U ∈ {V1, . . . ,VN} do6

Choose U ∈ {V1, . . . ,VN} s.t. arg min{I(U) | U ∈ Qλ or R(U , λ) 6= ∅} ∈ U ;7

Project Registered(U , λ,Q,R);8

Project FromBlock(U , λ,Q,R);9

end10

Set λ := min {µ : Qµ 6= ∅ or R(U , µ) 6= ∅ for some U ∈ {V1, . . . ,VN}} ;11

end12

return ∞13

Theorem 4.1. The algorithm GeneralizedDijkstra calculates the correct distance
from S :=

⋃
S to T :=

⋃
T . If there is no path from S to T , the algorithm computes the

minimum distance from S to all reachable vertices in G and returns ∞.

Proof: We first show that for every λ ∈ Z≥0⋃
U∈V

{v ∈ U | dU (v) = λ} =
⋃

U∈V
{v ∈ U | d(v) = λ} (4.4)

holds after execution of phase λ which ends when λ is increased in line 11 of General-
izedDijkstra. For contradiction, assume that there is a λ for which equation (4.4) does
not hold. Choose λ minimum possible. By (4.2), λ = d(v) < dU (v) for some U ∈ V and
v ∈ U . We choose U ∈ V with I(U) minimum possible, and v ∈ U and a shortest path
P from S to v such that |E(P )| is minimum. Let u be the predecessor of v on P . Hence,
λ′ := d(u) ≤ λ and, by the choice of v, dU ′(u) = λ′ for U ′ ∈ V with u ∈ U ′. We show

dU (v) ≤ dU ′(u) + c((u, v)). (4.5)

It directly follows for U = U ′ by (4.3).

For U 6= U ′, let U := B(U) and U ′ := B′(U). If λ′ < λ, then U must have been up-
dated directly from U ′ (if U = U ′) or registered in Project FromBlock(U ′, λ′,Q,R)
(if U 6= U ′) in phase λ′. In the latter case, dU is updated by Update(R(U , λ) → U ,Q)
in Project Registered(U , λ,Q,R). If λ′ = λ, then c((u, v)) = 0. In this case, I(U ′) <
I(U) and U ′ must have been removed from Q before U (line 2 of Project FromBlock).
Consequently, U has been directly updated by U ′ in Project FromBlock(U ′, λ,Q,R)
(if U = U ′), or U ′ was registered in R(U , λ) and has updated its neighbored vertex set U
in Project Registered(U , λ,Q,R). For λ′ < λ as well as for λ′ = λ, we conclude

dU (v) ≤ dU ′(u) + dist(G[{u}∪U ′],c)(u, v) ≤ dU ′(u) + c((u, v)),
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proving inequality (4.5) for U 6= U ′. By (4.5) and our assumption on v and u,

dU (v) ≤ dU ′(u) + c((u, v)) = d(u) + c((u, v)) = d(v) < dU (v),

which is a contradiction. This concludes the proof of (4.4).

All phases with key less than λ have been finished already when phase λ is being processed.
By (4.4), a vertex v ∈ U with d(v) < λ cannot get a distance label dU (v) = λ after phase
λ− 1.

It follows that
{v ∈ U : dU (v) = λ} ⊆ {v ∈ U : d(v) = λ} (4.6)

holds after a vertex set U has been removed from Q at key λ.

Therefore, an element T ∈ T is removed from the queue at minimum distance λ = d(T ) if
T is reachable from S. Otherwise, GeneralizedDijkstra stops and returns ∞ as soon
as Q is empty and there are no labeling registrations left in R. By (4.4), the distance from
S to any vertex v ∈ V (G) that is reachable from S is given by dU (v) for v ∈ U ∈ V.

In addition to the computed distance from S to T or from S to all vertices, we are
often also interested in shortest paths. These can be derived easily from the output of
GeneralizedDijkstra. Alternatively, one could store predecessor information during
the shortest path computation encapsulated in Update.

The theoretical running time of GeneralizedDijkstra as well as its performance in
practice depends on the structure of the underlying graph G and its partition into vertex
sets and blocks. In the special case of N = 1, the running time reduces to

O ((Λ + 1)(|V| log |V|+ φ|E(G)|)) ,

where Λ is the length of a shortest path from S to T and φ is the running time of lines 2
and 3 of Update. If N = 1 and all vertex sets are singletons, GeneralizedDijkstra
equals Dijkstra’s Algorithm with a running time of O (|V (G)| log |V (G)|+ |E(G)|).
The essential difference is that, for general vertex sets, an element of the queue can enter
the queue again if it contains more than one vertex. Consequently, there are at most Λ+1
many queries for the smallest element of the queue. Both time bounds assume that Q is
implemented by a Fibonacci heap (Fredman and Tarjan [1987]).

GeneralizedDijkstra is primarily suitable for graphs with a regular structure, for which
the ground set V can be partitioned into a set V of vertex sets with easily computable
functions dU for all U ∈ V, e.g. linear functions.

4.3 Applications in VLSI Routing

In this section we describe two applications of GeneralizedDijkstra in VLSI routing
where the algorithm is particularly efficient. In the following, we use the instance of the
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third layer

(preference direction: y)
first layer

source

second layer

target

forth layer
(preference direction: x)

(preference direction: y)

(preference direction: x)

Figure 4.2: The source vertex (green) on the lower right corner and the target
vertices (red) on the lower left corner of the picture are connected by a shortest
path (blue) of length 153. The corridor determined by global routing (yellow)
runs over four different layers in this example. The costs of edges running in and
orthogonal to the preference direction are 1 and 4, respectively, the cost of a via
is 13.

detailed routing problem and its solution shown in Figure 4.2 in order to demonstrate
these applications.

4.3.1 Labeling Rectangles

For speeding up the computation of a shortest path in a subgraph of the three-dimensional
grid graph G0 (defined in Section 2.3) using a goal-oriented approach one can use a good
lower bound on the distances. In order to determine this lower bound, we consider just
the corridor computed by global routing and neglect obstacles and previously determined
paths intersecting it. Since these corridors are produced by global routing as a union of
relatively few rectangles. GeneralizedDijkstra computes distances efficiently. In this
first application we use only one block, i.e. N = 1. Consequently, there are no registrations
and Project Registered is not called.
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Let G = (V (G), E(G)) be a subgraph of the infinite graph G0 induced by a set V of
rectangles, where a rectangle is a set of the form

[x1, x2]× [y1, y2]× {z1} :=
{
(x, y, z) ∈ Z3 | x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z = z1

}
for integers x1 ≤ x2, y1 ≤ y2 and z1. Note that x1 = x2 or y1 = y2 is allowed, in which
case the rectangles are intervals or just single points. Two rectangles R and R′ are said
to be adjacent if G0[R ∪R′] is connected.

We assume that V satisfies the following condition which can always be ensured by itera-
tively splitting rectangles while only slightly increasing the number of rectangles for typical
VLSI instances: for every two rectangles R,R′ ∈ V with R = [x1, x2]× [y1, y2]× {z1} and
R′ = [x′1, x

′
2]× [y′1, y

′
2]×{z′1} we have that either x1 > x′2 or x2 < x′1 or (x1, x2) = (x′1, x

′
2),

and similarly, either y1 > y′2 or y2 < y′1 or (y1, y2) = (y′1, y
′
2). Clearly, this condition

implies that each rectangle has at most six adjacent rectangles. As an example, Figure 4.3
shows the partition of the routing area of the instance in Figure 4.2 into such rectangles.

The set Z := {z ∈ Z | ∃x, y ∈ Z with (x, y, z) ∈ V (G)} contains all relevant z-coordinates,
and the sets Ci := {0}∪{c ∈ Z | |c| = cz,i for some z ∈ Z} contain all relevant edge lengths
in x-direction (i = 1) and y-direction (i = 2), respectively. Let ki := |Ci| for i = 1, 2.

Due to the bounded number of different edge lengths, it is possible to store the function
dR corresponding to the function dU of Section 4.2 implicitly as a minimum over k1k2

linear functions assigned to each rectangle R:

dR((x, y, z)) := min{d(R,c1,c2)(x, y) | (c1, c2) ∈ C1 × C2},

where with (c1, c2) ∈ C1×C2 we associate a linear function d(R,c1,c2) : Z2 → Z≥0 ∪ {∞} of
the form

d(R,c1,c2)(x, y) = c1(x− x1) + c2(y − y1) + δ(R,c1,c2).

See Figure 4.3 for examples of these functions.

All information on d(R,c1,c2) is contained in the offset value δ(R,c1,c2). Initially,

δ(R,c1,c2) :=
{

0 for (R, c1, c2) ∈ S × {0} × {0},
∞ for (R, c1, c2) ∈ (V \ S)× {0} × {0}.

During the execution of the algorithm these values are updated as follows: Let (R, c1, c2) ∈
V × C1 × C2, and let R′ ∈ V \ {R} be adjacent to R. For (x′, y′, z′) ∈ R′ let

d((R,c1,c2)→R′)(x
′, y′)

:= min{d(R,c1,c2)(x, y) + dist(G0[R∪R′],c)((x, y, z), (x′, y′, z′)) | (x, y, z) ∈ R}.

The main observation established by the next lemma is that the function d((R,c1,c2)→R′) is
of the same form as d(R′,c′1,c′2) for appropriate values of c′1 and c′2.
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(preference direction: y)

(preference direction: y)

(preference direction: x)
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R’

(preference direction: x)

Figure 4.3: The corridor of the global routing for the instance de-
picted in Figure 4.2 is partitioned into rectangles to propagate dis-
tance functions. As an example, the function dR of the rectan-
gle R containing all target vertices at its boundary is given by
min (4(x− x1),−4(x− x1) + (y − y1) + 16). The function dR′ of the adja-
cent rectangle R′ is min (4(x− x′1) + (y − y′1),−4(x− x′1) + (y − y′1) + 20), where
x′1 = x1 and y′1 = y1 + 4.

Lemma 4.2. If R ∈ V and R′ = [x′1, x
′
2]× [y′1, y

′
2]× {z′} ∈ V are adjacent, and (c1, c2) ∈

C1 × C2, then there are c′1 ∈ C1, c′2 ∈ C2 and δ′ ∈ Z≥0 such that

d((R,c1,c2)→R′)(x
′, y′) = c′1(x

′ − x′1) + c′2(y
′ − y′1) + δ′

for all (x′, y′, z′) ∈ R′.

Proof: We give details for just one case, since the remaining cases can be proved using
similar arguments. Therefore, we assume that R = [x1, x2] × [y1, y2] × {z} and R′ =
[x2 + 1, x3]× [y1, y2]× {z} For (x, y, z) ∈ R and (x′, y′, z) ∈ R′ we have

dist(G0[R∪R′],c)((x, y, z), (x′, y′, z)) = cz,1|x− x′|+ cz,2|y − y′|.
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Since x < x′, this simplifies to cz,1(x′−x)+cz,2(y′−y) for y ≤ y′ and cz,1(x′−x)−cz,2(y′−y)
for y ≥ y′. Hence, by definition, d((R,c1,c2)→R′)(x′, y′) equals

min
{

min
x1≤x≤x2

min
y1≤y≤y′

(
cz,1(x′ − x) + cz,2(y′ − y) + c1(x− x1) + c2(y − y1) + δ(R,c1,c2)

)
,

min
x1≤x≤x2

min
y′≤y≤y2

(
cz,1(x′ − x)− cz,2(y′ − y) + c1(x− x1) + c2(y − y1) + δ(R,c1,c2)

)}
.

Depending on the signs of (c1 − cz,1), (c2 − cz,2) and (c2 + cz,2), this minimum is attained
— independently of the specific value of (x′, y′) — by setting

x :=
{

x1 if c1 − cz,1 ≥ 0,
x2 if c1 − cz,1 < 0

and y :=


y1 if c2 − cz,2 ≥ 0,
y′ if c2 − cz,2 < 0 and c2 + cz,2 ≥ 0,
y2 if c2 + cz,2 < 0

and the desired result follows.

This lemma shows that we can store dR implicitly as a vector with k1k2 entries δ(R,c1,c2) and
that a labeling operation from one rectangle R to another R′ can be done by manipulating
the entries of the vector corresponding to dR′ . This can be done in constant time regardless
of the cardinalities of R and R′.

We can now apply GeneralizedDijkstra implementing Update with the following
operation:

Procedure Project Rectangle(R → U ′,Q)

forall R′ ∈ U ′ do1

forall c1 ∈ C1 and c2 ∈ C2 do2

Compute c′1, c
′
2, δ

′ with d((R,c1,c2)→R′)(x′, y′) = c′1(x
′ − x′1) + c′2(x

′ − x′2) + δ′;3

if δ′ < δ(R′,c′1,c′2) then4

Set δ(R′,c′1,c′2) := δ′;5

Set key(R′) := min{key(R′), δ′};6

Set Q := Q∪ {R′};7

end8

end9

end10

Theorem 4.3. If d(R,c1,c2) for (R, c1, c2) ∈ V × C1 × C2 are the functions produced at
termination by GeneralizedDijkstra(G, c,V,S) implementing Update with procedure
Project Rectangle, then d((x, y, z)) = dR((x, y, z)) for all (x, y, z) ∈ V (G). The
corresponding running time of GeneralizedDijkstra is O

(
k2

1k
2
2|V| log |V|

)
.

Proof. From Lemma 4.2, it follows that Project Rectangle takes O(k1k2) time. The
number of deletions of elements from the queue is bounded by the total number of updates
from any rectangle to any adjacent one, which is at most 6k1k2|V|.
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In our implementation, we improved the running time by applying Project Rectangle
to triples (R, c1, c2) ∈ V ×C1×C2 instead of rectangles, where the current key is attained
by d(R,c1,c2). Here, Project Rectangle takes constant time and the number of updates
from any rectangle to any adjacent one is still bounded by O(k1k2|V|). This leads to an
overall running time of O (k1k2|V| log(k1k2|V|)). As mentioned before, in a typical VLSI
instance k1 and k2 can be as small as 5; see experimental results in Section 4.4.

The example shown in Figure 4.4 illustrates that the lower bound on the distances to the
target can considerably be improved in a goal-oriented path search if the global routing
corridor is respected.

4.3.2 Labeling Intervals

As a second application of GeneralizedDijkstra we consider the core routine in detailed
routing. Its task is to find a shortest path connecting two vertex sets S and T in an induced
subgraph G of G0 with respect to costs c : E(G) → Z≥0, where we can assume c((u, v)) =
c((v, u)) for every edge (u, v) ∈ E(G). We use the variant of GeneralizedDijkstra
as described in Section 4.3.1 to compute distances π(w) from T to each w ∈ V (G) in a
supergraph G′ of G where G′ is determined by the corresponding global routing corridor.
Hence, π(w) is a lower bound for the distance of each w ∈ V (G) to T in G with respect
to c, π(t) = 0 for all t ∈ T , and π(u) ≤ π(v)+ c((u, v)) for all (u, v) ∈ E(G). We call π(w)
the future cost of vertex w. The function π is used to define reduced costs cπ((u, v)) :=
c((u, v)) − π(u) + π(v) ≥ 0 for all (u, v) ∈ E(G). We apply GeneralizedDijkstra to
find a path P from s ∈ S to t ∈ T in G for which

∑
e∈E(P ) c(e) = π(s) +

∑
e∈E(P ) cπ(e) is

minimum by setting dU (v) := π(v) for v ∈ U ∈ S in line 1 and using cπ instead of c.

We generalize Hetzel’s algorithm (Hetzel [1998]) by using a more sophisticated future cost
function π as described in the previous section. Note that Hetzel’s algorithm strongly
relies on the fact that π(v) is the l1-distance between v and T for all v ∈ V (G).

As most wires use the cheap edges in preference direction, it is natural to represent the
subgraph of G induced by a layer z by a set of intervals in preference direction. Horizontal
intervals are rectangles of the form [x1, x2]×{y}×{z}, and vertical intervals are rectangles
of the form {x} × [y1, y2] × {z}. Typically, the number of intervals is approximately 25
times smaller than the number of vertices. Hetzel showed how to operate Dijkstra’s
Algorithm on such intervals, but his algorithm works only for reduced costs defined with
respect to l1-distances. Clearly, the l1-distance is often a poor lower bound. Therefore, our
generalization allows for significant speed-ups. For example, in Figure 4.3 the l1-distance
is 36, our lower bound is 130, and the actual distance is 153. The improved lower bound
of 130 includes 78 units for six vias, and 16 units for the necessary detours in x- and
y-direction.

We again apply GeneralizedDijkstra and the vertex sets in V are the respective inter-
vals. Figure 4.5 illustrates the set of intervals for the example in Figure 4.2. In rare cases
some intervals have to be split in advance to guarantee that π is monotone on an interval.
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Figure 4.4: A comparison of two different computations of lower bounds to the
target in a goal-oriented path search for vertices of the instance depicted in Fig-
ure 4.2. Black numbers at nodes and red numbers at the boundary of rectangles
correspond to the distance functions computed by GeneralizedDijkstra. For
four different nodes in the graph, the lower bound to the target evaluated with
GeneralizedDijkstra (“GD”) is always at least as large as the lower bound
based on the Manhattan distance (respecting only via costs and neglecting penalty
costs for jogs), referred to “MD”. Especially in the near of the source both bounds
differ significantly in that example because “GD” is able to account for vias nec-
essary to find a path within the global routing corridor while “MD” cannot.

A tag is a triple (J, v, δ), where J is a subinterval of U , v ∈ J , and δ ∈ Z≥0. At any stage
we ensure to have a set of tags on each interval.

A tag (J, v, δ) on U ∈ V represents the distance function d(J,v,δ) : U → Z≥0 ∪{∞}, defined
as follows: Assume that U = [x1, x5] × {y} × {z} is a horizontal interval, J = [x2, x4] ×
{y} × {z}, and v = (x3, y, z) with x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5. Then d(J,v,δ)((x, y, z)) :=
δ + dist(G[J ],cπ)(v, (x, y, z)) for x2 ≤ x ≤ x4 and d(J,v,δ)((x, y, z)) := ∞ for x /∈ [x2, x4]. For
vertical intervals, these definitions and properties carry over analogously. For v ∈ U we
define dU (v) to be the minimum of the d(J,v,δ)(v) over all tags (J, v, δ) on U . However,
this function dU is not stored explicitly.
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Figure 4.5: The intervals of the detailed routing for the instance depicted in
Figure 4.2. For each layer, all intervals are sets of adjacent vertices according to
the preference wiring direction of the layer. A block in this example is the set of
intervals belonging to the same shaped area.

At any stage, we have the following properties:

� If (x, y, z), (x + 1, y, z), (x + 2, y, z) ∈ J for some tag (J, v, δ), then cπ(((x, y, z), (x +
1, y, z))) = cπ(((x+1, y, z), (x+2, y, z))) and cπ(((x+2, y, z), (x+1, y, z))) = cπ(((x+
1, y, z), (x, y, z))).

� The tags on an interval U are stored in a search tree and in a doubly-linked list for
U , both sorted by keys, where the key of a tag (J, v, δ) is the coordinate of v which
corresponds to the preference direction.

� If there are two tags (J, v, δ), (J ′, v′, δ′) on an interval U , then

– v 6= v′.

– J ∩ J ′ = ∅
– d(J,v,δ)(v′) > δ′.
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The last condition says that no redundant tags are stored. If there are k tags on U , the
search tree allows us to compute dU (v) for any v ∈ U in O(log k) time.

We can also insert another tag in O(log k) time and remove redundant tags in time pro-
portional to the number of removed tags. As every inserted tag is removed at most once,
the time for inserting tags dominates the time for removing redundant tags.

For a fixed layer z let Vz(G′) be the set of vertices of the supergraph G′ in this layer.
Then G′[Vz(G′)] can be decomposed into a set of maximally connected subgraphs which
become the blocks in GeneralizedDijkstra (Figure 4.5). Obviously, this fulfills the
requirements of blocks given in Section 4.2. It is easy to see that the topological order of
the intervals in V can be chosen according to non-ascending future cost values min{π(v) |
v ∈ U}.

The priority queue Q of GeneralizedDijkstra works with buckets Bδ,W,I with key
δ ∈ Z≥0, block W ∈ {V1 . . . ,VN} and index I ∈ {1, . . . , |V|}. An element U ∈ Q ∩ W
is contained in bucket Bkey(U),W,I(U). The nonempty buckets are stored in a heap and
processed in lexicographical order. This ensures that an interval is removed from Q only
once per key.

The main difficulty is that an interval can have a large number of neighbors, particularly on
an adjacent layer with orthogonal wiring direction. Although a single Update operation to
these neighbors is fast, we cannot afford to perform all the resulting operations separately.
Fortunately, there is a better way.

For neighbored intervals in the same layer we need to insert at most one tag. This
is due to the monotonicity of the function π on an interval. We can register label-
ing operations on intervals in adjacent layers in constant time by updating R. Finally,
Project Registered is performed in a single step for all intervals in U which are al-
ready registered at key λ. Set R := R(U , λ) for short. We maintain a sweepline to process
the elements in R which costs O(|R| log |R|) time. Hetzel [1998] showed that each interval
in U needs to be updated by at most one interval in R. Adding the time for searching
neighbored intervals in R and for the labeling operation itself, the overall running time for
Project Registered applied to block U is O(|R| log |R|+|U|(log |R|+log |U|+log ∆U )),
where ∆U is the maximum number of tags in an interval in U . Since ∆U can be bounded
by the number of intervals in U (Hetzel [1998]), we get the following theorem:

Theorem 4.4. If GeneralizedDijkstra is applied to a set V of intervals partitioning
the vertex set V (G) of a detailed routing instance (G, c, S, T ) and reduced costs cπ with
respect to a feasible potential π, then its running time is

O (min{(Λ + 1)|V| log |V|, |V (G)| log |V (G)|}) ,

where Λ is the length of a shortest path from S to T with respect to cπ.
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4.4 Experimental Results

We analyze two applications of GeneralizedDijkstra of Section 4.3. The algorithm is
implemented in the detailed path search of BonnRoute, which is a state-of-the-art routing
tool used by IBM. Our experiments are made sequentially on an AMD-Opteron machine
with 64GiB memory and four processors running at 2.6 GHz.

We run our algorithm on 12 industrial VLSI designs from IBM. Table 4.1 gives an overview
on our testbed which consists of seven 130 nm and five 90 nm chips of different size and
of different number |Z| of layers. Here, the distance between adjacent tracks of a chip is
usually the minimum width of a wire plus the minimum distance of two wires. We test
our algorithm on about 30 million path searches in total. We use the standard costs with
which BonnRoute is applied with in practice. These costs are 1 and 4 for edges running
in and orthogonal to the preference direction, respectively, and 13 for a via.

Image Size #Paths |V | |V| |R| |Rhyb|Chip Tech ×103 Tracks
|Z| ×103 ×106 ×106 ×106 ×106

Bill 130 nm 26 × 26 7 32 10 385 529 20 5
Paul 90 nm 24 × 24 8 148 19 391 762 393 12
Hannelore 90 nm 36 × 33 8 263 40 434 1 616 903 24
Elena 130 nm 19 × 19 6 896 126 562 5 494 1 707 78
Heidi 130 nm 23 × 23 7 1 537 231 558 8 836 3 172 177
Garry 130 nm 26 × 26 7 1 810 305 100 10 725 3 886 237
Edgar 90 nm 40 × 40 8 1 866 263 836 10 456 3 843 236
Ralf 130 nm 26 × 26 7 2 902 472 826 18 330 9 827 243
Monika 130 nm 35 × 35 7 3 006 513 863 20 323 8 535 263
Edmund 90 nm 44 × 44 9 4 288 573 697 26 290 5 012 358
Hermann 130 nm 46 × 46 7 5 509 899 406 37 768 12 415 626
David 90 nm 53 × 53 9 7 786 953 092 49 341 14 870 1 328
All 30 043 4 410 150 190 470 64 583 3 587

Table 4.1: Testbed characteristics

In Table 4.1, Columns 6–9 give the sum of all instances for each chip. The number of grid
vertices of all detailed routing instances sums up to 4.4 trillion. The seventh column of
Table 4.1 shows that the number |V| of intervals is by a factor of about 23 smaller than
the number |V | of individual vertices. (In practice, the number of labeled intervals is even
smaller by an additional factor of about 3.) This confirms observations by Hetzel [1998].

In Table 4.2 we compare a node-based (“classical”) and interval-based (“old”) path search,
both goal-oriented using l1-distances as future cost (that is, “classical” corresponds to the
algorithm by Rubin [1974] and “old” to Hetzel [1998]). The interval-based implementation
of Dijkstra’s Algorithm decreases the number of labels by a factor of about 9.3, while
the running time is improved by a factor of 16 on average. All running times include the
time for performing initialization routines for future cost queries. These numbers confirm
that it is absolutely necessary to apply an interval-based path search in order to get an
acceptable running time.
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Number of Labels (×106) Running Time (sec)Chip
classical old factor classical old factor

Bill 23 940 1 333 18.0 46 818 1 037 45.2
Paul 6 079 624 9.7 8 008 580 13.8
Hannelore 19 621 2 025 9.7 26 849 1 546 17.4
Elena 33 727 4 277 7.9 53 776 4 604 11.7
Heidi 52 889 6 426 8.2 73 156 6 160 11.9
Garry 83 910 10 330 8.1 121 189 9 715 12.5
Edgar 139 139 13 319 10.4 193 642 12 020 16.1
Ralf 81 436 10 682 7.6 123 421 11 651 10.6
Monika 95 803 12 650 7.6 135 286 12 949 10.4
Edmund 206 289 20 768 9.9 315 541 26 304 12.0
Hermann 366 455 37 363 9.8 661 441 51 190 12.9
David (56 872) 1 859 491 88 639 21.0
All 1 109 288 119 797 9.3 3 618 618 226 395 16.0

Table 4.2: Comparison of the node-based (classical) and interval-based (old) path
search. The results were obtained by two different runs for each of the two ap-
proaches. One run was optimized with respect to running time, the other —
much more time consuming — run counts each single label step. Running the
classical approach on David already took more than a week. Therefore, we have
not evaluated the number of labels for the classical path search on David which
would have taken several weeks of computing time.

Second, we compare the performance of the detailed path search in BonnRoute based
on different future cost computations: Hetzel’s original path search using l1-distances for
future cost values (Hetzel [1998]), and a new version as described in Section 4.3.1.

The number |R| of rectangles used to perform GeneralizedDijkstra on rectangles as
described in Section 4.3.1 is given in the second to last column of Table 4.1. As this
number is only by a factor of about 3 smaller than the number of intervals, and apply-
ing GeneralizedDijkstra on rectangles can take a significant running time, it is not
worthwhile to perform this pre-processing on all instances. Rather we would like to apply
our new approach only to those instances where the gain in running time of the core path
search routine is larger than the time spent in pre-processing. As we cannot know this
a priori, we need to set up a good heuristic criterion to estimate whether this effort is
expected to pay off. While in one of our test scenarios (”new”) we run Generalized
Dijkstra on rectangles for each path search to obtain a better future cost, the second
scenario (”hybrid”) does this only if all of the following three conditions hold:

� the global routing corridor is the union of at least three three-dimensional cuboids.

� the number of target shapes is at most 20, and

� the l1-distance of source and target is at least 50.
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Otherwise the l1-distance is used as future cost. Table 4.3 shows that in the hybrid sce-
nario, extensive pre-processing is used approximately in a quarter of all path searches. We
compared it to a third scenario (”old”) where the l1-distance is always used (as proposed
in Hetzel [1998]). All scenarios run GeneralizedDijkstra on intervals as described in
Section 4.3.2. The last column of Table 4.1 lists the number |Rhyb| of rectangles of the
pre-processing step for the hybrid scenario, where we account for one rectangle if the old
l1-based approach is applied. This shows that the instance size of GeneralizedDijk-
stra on rectangles in the hybrid scenario is significantly smaller than that of the actual
interval-based path search.

#PathsChip
all (×103) ext pp

Bill 32 36.5%
Paul 148 18.3%
Hannelore 263 18.6%
Elena 896 20.2%
Heidi 1 537 23.7%
Garry 1 810 26.9%
Edgar 1 866 25.1%
Ralf 2 902 17.7%
Monika 3 006 18.6%
Edmund 4 288 24.6%
Hermann 5 509 24.2%
David 7 786 33.4%
All 30 043 25.5%

Table 4.3: Portion of total path searches for which extensive preproccesing
(ext pp) is applied in the hybrid scenario

In Tables 4.4 and 4.5, we compare the number of labels and the length of detours, again
summed up over all instances, for each chip of our testbed. The detour of a path is given
by the length of the path minus the future cost value of the source. For each chip, the
sum of all path lengths, given in the second column of Table 4.5, was about the same for
all three scenarios. (They all guarantee to find shortest paths, but they may find different
shortest paths occasionally, leading to different instances subsequently.)

The number of labels clearly decreases by applying the new approach. In the hybrid
and new scenario, the total number of labels can be reduced by about 38 % and 49%,
respectively, on average. The total length of detours decreases by about 36 % and 56%,
respectively, on average.

In Table 4.6, we present the main result of our study which is a significant improvement in
running time of the interval-based path search when using the hybrid scenario compared
to the old scenario.
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Number of Labels (×106)Chip
old hybrid ∆hyb new ∆new

Bill 1 333 544 −59.2% 464 −65.2%
Paul 624 350 −43.9% 248 −60.2%
Hannelore 2 025 823 −59.3% 682 −66.3%
Elena 4 277 2 755 −35.6% 2 099 −50.9%
Heidi 6 426 3 958 −38.4% 2 779 −56.8%
Garry 10 330 5 930 −42.6% 4 601 −55.5%
Edgar 13 319 6 237 −53.2% 5 054 −62.1%
Ralf 10 682 6 409 −40.0% 4 507 −57.8%
Monika 12 650 7 670 −39.4% 5 587 −55.8%
Edmund 20 768 11 384 −45.2% 8 791 −57.7%
Hermann 37 363 22 208 −40.6% 18 732 −49.9%
David 56 872 40 451 −28.9% 36 046 −36.6%
All 176 669 108 719 −38.5% 89 590 −49.2%

Table 4.4: Number of labels for the interval-based path search in three different
scenarios. The improvement in the number of labels is given by ∆hyb and ∆new

for the hybrid and the new scenario, respectively.

Length of Paths Length of Detours (×103)Chip
(×103) old hybrid ∆hyb new ∆new

Bill 59 361 1 454 686 −52.8% 403 −72.3%
Paul 38 544 5 688 4 363 −23.3% 2 838 −50.1%
Hannelore 113 392 9 443 5 659 −40.1% 3 748 −60.3%
Elena 248 355 37 443 24 922 −33.4% 14 853 −60.3%
Heidi 404 564 58 608 40 979 −30.1% 22 903 −60.9%
Garry 605 396 77 874 48 461 −37.8% 30 325 −61.1%
Edgar 809 167 76 813 47 205 −38.5% 26 718 −65.2%
Ralf 661 519 112 238 78 915 −29.7% 47 280 −57.9%
Monika 729 992 118 016 83 559 −29.2% 52 316 −55.7%
Edmund 1 232 087 192 218 130 483 −32.1% 85 654 −55.4%
Hermann 2 314 273 266 446 155 045 −41.8% 97 189 −63.5%
David 2 830 553 565 832 358 058 −36.7% 284 172 −49.8%
All 10 047 203 1 522 073 978 335 −35.7% 668 399 −56.1%

Table 4.5: Length of paths and detours for the interval-based path search in three
different scenarios. The improvement in the length of detours is given by ∆hyb

and ∆new for the hybrid and the new scenario, respectively.
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Chip old hybrid init ∆hyb new init ∆hyb

Bill 1 037 525 12 −49.4% 518 46 −54.5%
Paul 580 459 25 −20.9% 1 590 1 187 −30.7%
Hannelore 1 546 1 031 48 −33.3% 4 355 3 370 −36.2%
Elena 4 604 3 811 169 −17.2% 8 191 4 833 −27.1%
Heidi 6 160 5 077 382 −17.6% 14 571 10 199 −29.0%
Garry 9 715 8 142 529 −16.2% 20 552 13 247 −24.8%
Edgar 12 020 8 627 555 −28.2% 19 898 12 215 −36.1%
Ralf 11 651 9 599 544 −17.6% 42 862 33 944 −23.4%
Monika 12 949 11 030 575 −14.8% 39 502 29 541 −23.1%
Edmund 26 304 20 667 890 −21.4% 32 184 14 078 −31.2%
Hermann 51 190 39 568 1 450 −22.7% 83 235 43 248 −21.9%
David 88 639 80 941 3 213 −8.7% 123 010 47 836 −15.2%
All 226 395 189 477 8 392 −16.3% 390 468 213 744 −21.9%

Table 4.6: Running time (in sec) for the interval-based path search in three differ-
ent scenarios. The improvement in running time for the hybrid scenario is given
by ∆hyb for which an upper bound ∆hyb can be found in the last column. (We
observed running time variations up to 4.3 % with identical code on the same
instance. Therefore, we have run our program three times on each instance and
computed the average CPU time.)

All running times for old, hybrid and new include the time for performing initialization
routines for future cost queries. For the hybrid and new scenario we also give the time
spent in the pre-processing routine of the new approach, which contains initializing the
corresponding graph and performing GeneralizedDijkstra on rectangles. Although
4.4% of the running time of hybrid is spent in the initialization step, we obtain a total
improvement of 16.3 % in comparison to the old scenario. The best result of 33.3 % was
obtained on Hannelore, the worst of 8.7% on David which shows by far the least improve-
ment. Most reductions in running time are in the range of 15–20 %. Only a carefully
chosen heuristic enables us to identify those instances for which it is worthwhile to spend
time on the more expensive computation of a better future cost. In the hybrid scenario
the new approach is called for 25.5 % of the path searches, which, however, takes most of
the running time. We would get a theoretical improvement of 21.9% if we ran the new
scenario and did not take initialization time into account (see last column of Table 4.6).
This shows that our criteria in the hybrid scenario are close to optimal. (Due to unre-
liability in measuring CPU time, we observed an improvement ∆hyb in running time on
Hermann which is bigger than its upper bound ∆hyb.)

The combination of both techniques — the interval-based path search and the usage of
improved future cost values — substantially speed up the core routine of detailed routing,
one of the most time-consuming steps in the layout process. Thus, a significant reduction
of the overall turn-around time from a couple of days to a few hours can be achieved.
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Chapter 5

BonnRoute in Practice

In this chapter, we focus on BonnRoute, the routing tool developed at the Research
Institute for Discrete Mathematics at the University of Bonn. We present data of typical
state-of-the-art industrial VLSI chips and show computational results BonnRoute achieves
during operation on these chips in practice.

5.1 Success of BonnRoute

The BonnTools program package comprises a set of applications providing solutions for
the physical design of integrated circuits. They are developed at the Research Institute for
Discrete Mathematics in Bonn and cover placement, timing optimization, clock synthesis
and routing. During 20 years of cooperation with IBM, they have been used intensively
on leading-edge designs in many design centers all over the world. Since 2005, The Bonn-
Tools are also incorporated into the design system of Magma Design Automation. For
a comprehensive overview on the main ideas of the mathematical algorithms used in the
BonnTools, we refer to Korte, Rautenbach and Vygen [2007].

BonnRoute is the routing tool of the BonnTools. The IBM design center in Böblingen
(Germany) has started to use XRouter, the predecessor of BonnRoute, in 1992. Five years
later, the cooperation was extended to IBM in the U.S.A., where BonnRoute became
the only router within IBM and its customers. BonnRoute supports all recent and new
technologies. It mainly consists of the programs BonnRouteGlobal for global routing and
BonnRouteLocal for detailed routing. It is applicable flexibly, can be driven in various
operating modes and is parallelized very efficiently based on a shared memory architecture;
see Section 2.6 for a more detailed description of the core routines of BonnRouteGlobal
and BonnRouteLocal.

So far, BonnRoute has been successfully used for the layout of more than one thousand
different chips. It has shown its strength on various complex industrial designs, which we
want to demonstrate by giving the following examples:

97
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� BonnRoute has already been applied to a chip with 11 million nets, 1,300 m of total
netlength and about 100,000,000 vias.

� In 2002, the wiring of IBM’s fastest ASIC was realized with BonnRoute. It was
a custom integrated circuit (North Bridge memory controller) for the Apple G5
processor which has been sold more than a million times.

� BonnRoute was involved in the set of tools which achieved IBM’s fastest ASIC turn-
around time.

� IBM’s densest and largest chip with respect to image size (referenced by Hermann
in tables below) with 18.3 mm edge length was routed by BonnRoute in 2003.

� BonnRoute has also been used for routing another large chip of the same image
size: TRIPS (Tera-op, Reliable, Intelligently adaptive Processing System) which is
a prototype chip developed at the University of Texas at Austin and designed in
cooperation with IBM (McDonald, Burger and Keckler [2005]).

� Two of IBM’s first ASICs in 65 nm technology are currently routed by BonnRoute.

5.2 Orders of Magnitude

In this section we characterize our testbed consisting of 17 state-of-the-art chips from IBM.
In the subsequent section we present results we have achieved on these chips.

The CMOS (Complementary Metal Oxide Semiconductor) technology is the dominant
technology for manufacturing integrated circuits. There are different levels of CMOS
technologies which are specified by their process generation. The process generation is
referred to by the drawn length of the silicon gate between the source and drain terminals
in field effect transistors (FETs). The three widely used technologies for state-of-the-art
chips are 130 nm, 90 nm and 65 nm technologies. The generations after that will be 45 nm
and 32 nm. (In contrast, the feature size for chips manufactured in 1989 was 1000 nm.)
For further insight into technological details in general and on CMOS in detail, see e.g.
Weste and Eshraghian [2002].

Our testbed contains seven chips in a 130 nm technology, five chips for a 90 nm and five
for a 65 nm technology. Table 5.1 gives an overview of some key figures we discuss further.

The length and width of an entire chip area, presented in the third column of Table 5.1,
is typically between 7 mm and 18 mm. In hierarchical designs, some small parts of the
chip are defined as RLMs (Random Logic Macros) which form a well defined unit of logic.
RLMs can be designed independently from other RLMs and are connected among each
other and to the peripheral devices at a later stage, called top-level routing. (In our
testbed, three instances are RLMs: Tara, Benedikt and Tina.)

Column 4 of Table 5.1 shows the area size in terms of channels. As explained in Sec-
tion 2.3, routing tools usually make use of a regular grid to efficiently solve the routing
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Chip Tech
Image Size Image Size #Wiring #Nets

(mm) (103 Channels) Layers (×103)

Bill 130 nm 10.2 × 10.3 26 × 26 7 11
Paul 90 nm 6.6 × 6.8 24 × 24 8 68
Hannelore 90 nm 10.0 × 9.2 36 × 33 8 140
Elena 130 nm 7.5 × 7.6 19 × 19 6 421
Tara 65 nm 4.4 × 3.9 22 × 20 7 509
Benedikt 65 nm 3.2 × 2.9 16 × 15 7 528
Tina 65 nm 2.4 × 4.0 12 × 20 7 534
Dorothea 65 nm 6.1 × 6.1 30 × 30 10 679
Edgar 90 nm 11.2 × 11.2 40 × 40 8 772
Heidi 130 nm 9.3 × 9.4 23 × 23 7 777
Garry 130 nm 10.2 × 10.3 26 × 26 7 828
Ralf 130 nm 10.2 × 10.3 26 × 26 7 1 350
Monika 130 nm 13.8 × 13.9 35 × 35 7 1 503
Hermann 130 nm 18.3 × 18.4 46 × 46 7 2 332
Edmund 90 nm 12.4 × 12.4 44 × 44 9 2 609
Larry 65 nm 14.0 × 14.0 70 × 70 10 3 589
David 90 nm 14.8 × 14.8 53 × 53 9 5 751

Table 5.1: Characteristics of our testbed consisting of 17 IBM chips

task. The number of channels corresponds to the number of coordinates in the routing
grid. It is determined by the image size divided by the pitch, which depends on the tech-
nology: Pitches are 400 nm, 280 nm and 200 nm for 130 nm, 90 nm and 65 nm technology,
respectively. Decreasing pitches are the reason that larger chips in one technology may
have a smaller number of channels compared to a smaller chip in a newer technology.
For example, Hermann (130 nm) and Edmund (90 nm) have about the same number of
channels in horizontal and vertical direction, although the image size of Edmund is less
than half of the image size of Hermann.

For current chips, the number of wiring layers is between 6 and 10. RLM instances typically
have fewer wiring layers in order to leave wiring space for the top-level routing.

The number of nets is in the range of millions; the maximum number of nets BonnRoute
has routed on a chip is around 11 millions. In our tests we have run chips with up to 5.8
million nets (column 6 of Table 5.1). These numbers contain not only signal nets but also
nets with wider wiretypes for I/O nets and clock nets. Each signal net contains between
three and four pins on average. RLMs usually do not have I/O nets.

The width of a wire may also vary with the layer it is running on. For example, in a 130 nm
technology with seven layers the width of the wiretype single is 200 nm on wiring layers
1–4, whereas it is 400 nm on wiring layers 5–7. Table 5.2 shows the width of wires of four
different wiretypes for 130 nm, 90 nm and 65 nm technologies. The majority of the nets
are routed with the standard wiretype single which is normally the wiretype defining the
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Wiring 130 nm 90 nm 65 nm
Layer single double io single double io single double io

1 200 600 - 160 440 - 100 300 -
2 200 600 - 140 420 - 100 300 -
3 200 600 - 140 420 - 100 300 -
4 200 600 - 140 420 20 180 100 300 -
5 400 400 18 840 140 420 20 180 200 200 -
6 400 400 18 840 140 420 20 180 200 200 -
7 400 400 18 840 280 280 19 800 200 200 -
8 - - - 280 280 19 800 400 400 12 000
9 - - - - - 19 800 400 400 12 000

10 - - - - - - 2400 - 31 000

Table 5.2: Widths of wires of different wiretypes for 130 nm, 90 nm and 65 nm
IBM technologies (in nm)

thinnest wires. Other often used wiretypes are double and triple. Timing-critical nets
typically have been an assigned wiretype with thick wires. The thickest wires are used for
I/O nets.

Although the number of wiretypes of a technology is in the range of 50–100, the number
of wiretypes actually used for a given instance is typically less than 20.

The minimum space allowed between two neighboring shapes on a fixed layer normally
equals the minimum width of any wire on that layer. For the technologies in Table 5.2 it
is 200 nm in the 130 nm technology, 140 nm in the 90 nm technology, and 100 nm in the
65 nm technology.

Figure 5.1 shows a part of a modern industrial chip in a 65 nm technology, routed with
BonnRoute.

5.3 Experimental Results

In the previous section we have introduced characteristic data of some state-of-the-art
chips. We now present experimental results we achieved with BonnRoute on the testbed
presented in Table 5.1. We distinguish between traditional measures such as wire length,
running time or memory consumption, and wiring integrity errors which is the sum of all
errors a routing tool leaves to be fixed by the designer. At the end of this section, we
briefly introduce functions of BonnRoute which support yield improvement.

5.3.1 Traditional Criteria

In practice, the main objective of BonnRoute is to complete the wiring of a chip without
violating design rules. Thereby, an objective function is optimized (timing, power con-
sumption or yield) which is mainly considered by global routing already. Two aspects have
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also to be taken into account by BonnRoute: the consumption of wiring space on the chip
(wire length and number of vias), and resources of the software program consumed on the
operating system (running time and memory consumption). In this section, we focus on
these traditional performance measures and turn to design rules in the next section.

Chip Tech
#Nets LD LG LD−LG

LG

LS LD−LS
LS

GR
(×103) (m) (m) (m) Cong.

Bill 130 nm 11 23.36 23.31 0.2% 23.27 0.4 % 79.2%
Paul 90 nm 68 9.87 9.83 0.4% 9.75 1.3 % 87.7%
Hannelore 90 nm 140 30.30 30.19 0.4% 30.20 0.3 % 87.8%
Elena 130 nm 421 92.02 92.21 −0.2% 89.06 3.3 % 90.1%
Tara 65 nm 509 50.68 47.73 6.2% 48.14 5.3 % 86.5%
Benedikt 65 nm 528 29.64 27.41 8.1% 28.70 3.3 % 67.8%
Tina 65 nm 534 43.11 41.12 4.8% 41.16 4.7 % 83.4%
Dorothea 65 nm 679 86.08 82.87 3.9% 81.32 5.8 % 90.4%
Edgar 90 nm 772 211.26 210.02 0.6% 210.44 0.4 % 86.0%
Heidi 130 nm 777 150.33 149.41 0.6% 149.15 0.8 % 87.7%
Garry 130 nm 828 221.03 220.58 0.2% 218.15 1.3 % 88.2%
Ralf 130 nm 1 350 236.15 236.99 −0.4% 231.17 2.2 % 88.5%
Monika 130 nm 1 503 262.96 263.75 −0.3% 259.49 1.3 % 88.0%
Hermann 130 nm 2 332 862.53 862.05 0.1% 842.50 2.4 % 91.1%
Edmund 90 nm 2 609 328.07 326.06 0.6% 324.07 1.2 % 88.8%
Larry 65 nm 3 589 380.05 360.44 5.4% 365.88 3.9 % 89.2%
David 90 nm 5 751 768.23 757.28 1.4% 743.63 3.3 % 91.6%
All 22 401 3 785.67 3 741.25 1.2 % 3 696.08 2.4%

Table 5.3: Detailed routing length (LD) compared to global routing length (LG)
and the length of a Steiner minimum tree (LS). “GR Cong.” gives the average
congestion of the worst global routing edges whose crossing wires sum up to 20 %
of the total wire length.

Table 5.3 presents wire length statistics of BonnRoute on all chips of our testbed. In the
fourth column, we give the wire length LD of detailed routing. To measure the quality of
LD, we compare it to two other results: first, we determine the difference of LD to the
estimated wire length LG computed by global routing. This number is small if detailed
routing follows the global routing corridors. The fourth column from the right shows that
the difference is about 1.2 % on average. It is less than 0.5 % on average for chips in 130 nm
and 90 nm technologies and 5.4 % on average for 65 nm.

A lower bound on the wiring length of a net is the length of a two-dimensional Steiner
minimum tree (pins are projected onto the x-y-plane). Steiner minimum trees can be
computed by algorithms as described in Chapter 3. The second column from the right
shows that detailed routing differs from the length of a Steiner minimum tree by 2.4 % on
average on all chips. The average differences are 2.1% and 4.3 % for chips in 130 nm and
90 nm technologies and 65 nm technology, respectively. The increase observed for 65 nm
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Wiring layer 1 Wiring layer 2

Wiring layer 3 Wiring layer 4

Wiring layer 5 Wiring layer 6
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Wiring layer 7 Wiring layer 8

Wiring layer 9 Wiring layer 10

Figure 5.1: Part of signal wiring of Dorothea (65 nm technology) on all ten wiring
layers. The depicted part has a size of 17.4 µm×17.4µm (87×87 channels, about
seven circuit rows), which corresponds to a 122,000th of the chip area. Most pins
(yellow, dotted) and blockages of circuits (orange, striped) are located on layer 1,
the lowest wiring layer. It is mainly used for pin access and does not serve for wire
segments to run over long distances. Wires are depicted as filled segments, mostly
running in preference wiring direction. The preference direction of wiring layers
1, 3, 5, 7 and 9 is horizontal, whereas it is vertical for wiring layers 2, 4, 6, 8 and
10. In this example, all wires are assigned wiretype single. The width of wires
on wiring layers 1–4 equals the minimum width of any wire of that technology.
Compared to the minimum wire width, the wire width is twofold on wiring layers
5–7, and fourfold on wiring layers 8 and 9 (cf. Table 5.2). Via pads are displayed by
small filled rectangles which are slightly wider than their attached wire segments.
Power structure (shadowed) can be found on wiring layers 1 and 4–10. They are
connected by power vias which can be seen by shadowed rectangles on wiring
layers 2 and 3.
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chips can be explained by a combination of causes such as the complicated pin access in
the gridless library and the usage of extra wiring required to fulfill new design rules.

In the last column of Table 5.3 we list the average congestion of a subset of all global
routing edges; more precisely, we sort the edges by congestion and consider only the most
congested ones such that the wires crossing these edges make up 20 % of the total global
wire length. This measure gives a good estimation of the overall congestion of a design. For
less recent technologies, the difference between LD and LS correlates very well with this
congestion measure. On chips with a large increase in wire length (e.g. Elena, Hermann
and David), the congestion exceeds the 90% mark. We do not observe a similar correlation
for chips in 65 nm technology, which still needs to be investigated.

As detailed wire length has a direct influence on the overall capacitance, it is desirable
to minimize total wire length — provided that all other design-specific constraints can be
met. However, a net topology of minimum length may be less desirable than a different
one which leads to improved timing (e.g. Peyer [2000]), and detours can be acceptable to
achieve shortest possible connections for other, timing-critical nets.

Table 5.4 gives statistics on the number of vias, running time and memory consump-
tion. Our experiments were made sequentially on an AMD-Opteron machine with 64 GiB
memory and four processors running at 2.6GHz.

Chip Tech
#Nets #Vias #Vias Running time (CPU) Memory
(×103) (×103) per Pin global detailed (GiB)

Bill 130 nm 11 91 1.83 0:10:53 0:23:20 1.74
Paul 90 nm 68 428 1.60 0:14:38 0:56:02 2.39
Hannelore 90 nm 140 767 1.44 0:30:41 1:53:22 3.38
Elena 130 nm 421 2 494 1.53 0:43:35 3:08:20 2.45
Tara 65 nm 509 4 951 2.64 0:37:08 3:33:15 5.52
Benedikt 65 nm 528 4 163 2.23 0:30:19 2:37:42 4.50
Tina 65 nm 534 5 142 2.44 0:21:56 2:55:51 4.80
Dorothea 65 nm 679 6 581 2.70 2:49:26 6:15:38 8.41
Edgar 90 nm 772 5 700 1.84 1:42:47 10:18:34 7.32
Heidi 130 nm 777 4 453 1.56 0:38:53 4:12:17 4.08
Garry 130 nm 828 5 277 1.70 1:06:28 5:50:04 4.44
Ralf 130 nm 1 350 7 921 1.50 1:26:08 8:37:58 5.68
Monika 130 nm 1 503 8 349 1.51 1:26:49 9:57:36 8.54
Hermann 130 nm 2 332 17 384 1.90 7:55:35 23:03:12 12.15
Edmund 90 nm 2 609 16 520 1.85 3:54:13 28:08:54 15.08
Larry 65 nm 3 589 32 035 2.36 7:12:27 29:18:16 41.04
David 90 nm 5 751 43 648 2.25 16:38:52 91:29:30 32.79

Table 5.4: Statistics on number of vias, running time and memory consumption

A reduction in the number of vias usually has a positive effect on yield because vias are
much more crucial to yield loss than wiring. Although experience shows that BonnRoute
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produces about 10 % less vias than other industrial routing tools, it is not a priori clear
how to give a quantitative interpretation of the number of vias spent in detailed routing.

The number of vias per pin is a good measure to assess the total number of vias. On
average, detailed routing takes about two vias per pin. It averages 1.9% on instances of
130 nm and 90 nm technologies. This figure is higher for 65 nm technology (2.4 %), which is
justified by three reasons: the number of wiring layers is larger for 65 nm, the lowest wiring
layer can rarely be used for wiring, and the average wiring space per layer is decreased
(only four single-wide wiring layers instead of up to six in 90 nm).

Routing takes a large portion of the overall completion time for a chip (turn-around time).
Thus, it is of great importance to keep the running time of BonnRoute as small as possible.
Much effort has been spent to decrease running time of BonnRoute, for example speeding
up the detailed path search using the techniques and approaches presented in this thesis
(cf. Chapter 4). In Table 5.4, the running time is split up into global and detailed routing.
Global routing is much faster than detailed routing. Its running time very much depends
on the congestion of a design (cf. last column of Table 5.3). BonnRouteGlobal takes almost
eight hours on Hermann which is one of the densest design, whereas it only takes about
half the time on Edmund. Once the global routing has found a solution without overloaded
global routing edges, the running time of detailed routing is not as highly dependent on
routing congestion as global routing. For example, the running time of BonnRouteLocal
on Edmund is larger than the running time on Hermann although they have comparable
number of nets and Hermann is more congested than Edmund. David is the most difficult
design in our testbed. It takes more than 100 hours to complete the routing task.

As mentioned above, our experiments were made on a standard AMD-Opteron machine
running at 2.6 GHz. Similar types of machines are also used in design centers at IBM.
(Experiments on an Intel dual quad-core Xeon running at 2.66 GHz have shown that the
running time may still be decreased; for example the running time of detailed routing on
Larry dropped from 29:18:16 to 21:42:24 hours.)

On average, BonnRoute — running sequentially — can complete 1.9 million nets per
day. This can be improved further by BonnRouteGlobal and BonnRouteLocal in a multi-
threaded mode. Experimental results show that the MCF-algorithm of BonnRouteGlobal
scales very well with the number of processors used (Müller [2006]). For BonnRouteLocal
running with four processors we have seen a speed-up of the main routing loop of more
than three on large instances, leading to an overall speed-up of up to 2.5 (Panten [2005]).

Low memory consumption is another important requirement to a state-of-the-art routing
tool. Many of today’s computing machines have 64 GiB RAM. At the same time, cur-
rent chip instances grow in size and complexity such that only a sophisticated memory
management can lead to a reasonable and still feasible memory consumption. Due to the
usage of a gridless library in the 65 nm technology, memory consumption of BonnRoute
is higher on chips in the 65 nm technology than for chips in older technologies. This is
confirmed by the results presented in the last column of Table 5.4.
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5.3.2 Design Rules

In this section we first give a short introduction into the manufacturing process of wiring
layers of integrated circuits in order to motivate and understand various types of design
rules routing is faced with. After that, we describe the most important design rules in more
detail. We conclude this section with experimental results of BonnRoute with respect to
the total number of wiring integrity errors.

A wafer is a thin disk of semiconducting material, typically silicon, and is cut into many
chips. The manufacturing of a wafer is a very complex photolithographic process which
is done layer by layer. The fabrication process of each individual layer is a complex
flow of several optical, chemical and mechanical process steps where each single step can
potentially alter the shapes to be produced.

The fabrication process starts with forming the P and N transistors on the silicon wafer.
Then the wiring and via layers are formed. Each metal layer starts with depositing an
insulation layer to the previous layer. Typical insulation materials are silicon dioxide
(SiO2) or materials with a lower dielectric constant (so-called low-k material). Then this
material is covered with a thin film of photoresist. With the help of a mask, the light-
sensitive resist is exposed to light such that it becomes less chemically robust against
certain edging materials. So, the desired patterns or their inverse are printed on the photo
resist. This exposure step is also called optical lithography. In the etching step, chemical
materials selectively remove the photoresist and the underlying dielectric material from
the layer according to desired patterns on that layer. This step results in holes (for vias)
or trenches (for wires) which is filled with copper. As copper can diffuse into the dielectric,
holes and trenches are sealed with a thin barrier film (called liner) before. The photoresist
is removed after it is no longer needed. The final step in the fabrication of a layer is
planarization (often done by chemical-mechanical polishing) to provide a flat surface for
the subsequent layer on top.

During these manufacturing steps various types of fabrication errors can occur, such as
mask misalignment, rough surfaces or changes in the process parameters, leading to shape
distortions. Shapes can be typically degraded in mask creation, due to exposure and resist
variations, and during etching (Lavin and Liebmann [2002]). As a consequence, there are
two main effects on the circuit function, performance and reliability caused by shape
distortions: variations can lead to a loss of connectivity (opens) as well as to undesirable
connectivity (shorts). Another problem arises when shapes change their physical outline
and when spacing between different shapes becomes too small. This can result in a worse
timing behavior or even in local errors.

Another source of failures on a chip are particles which contaminate the fabrication process
of chips. Although all steps of the manufacturing process are performed in an extremely
clean environment, a certain but very low level of contamination cannot be avoided. Small
particles can result in missing material (if covering patterns prevent shapes from etching)
or in extra material (if particles create extra shapes in mask creation). For a schematic
picture see Figure 5.2.
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Extra material (short) Missing material (open)

Figure 5.2: A particle (dark brown) contaminates the fabrication of wiring (yellow)
which can result in a metal defect (brown).

In practice, there are two main approaches to avoid failures on the chip caused by the
manufacturing process: prevention and correction. Prevention is mainly done by impos-
ing design rules (also called ground rules) which specify constraints on geometric properties
and relations between different shapes. Their task is to ensure that a chip works correctly
after manufacturing even when some small distortions in fabrication occur (within some
tolerance). As design rules define constraints for a routing tool, they must comprise a
relatively small set of simple geometric constraints. Therefore, they cannot cover all pos-
sible shape manipulations and a second approach is necessary as a post-processing solution
after routing. Here, the most important correction method is optical proximity correction
(OPC) to create mask shapes where an inverse distortion is applied to patterns in order
to compensate for shape distortions in one of the fabrication steps. Other correction tech-
niques are, for example, filling and slotting to provide a certain shape density affecting the
etching and planarization process. One problem of post-processing is that some manipu-
lations may not be possible late in the design process. Another drawback is that full-chip
shape processing tend to result in an unacceptable running time and data size. Thus,
issues of post-processing are moved to an earlier step in the design flow, e.g. formulated
as a new or more complex design rule. For more information, see Lavin and Liebmann
[2002].

All design rules aim at reducing the likelihood of failures in the fabrication process. They
can be classified into three different types. Hard required rules specify a limit in order to
achieve at least some minimum acceptable yield, whereas soft required rules shall guarantee
that the timing constraints of the chip are met. Design rules of both types must be satisfied
by the wiring. As manufacturing has a significant impact on yield, recommended rules are
additionally specified to improve yield further. It is not the prime objective to follow
those rules, but desirable if all other design rules can be met. Recommended rules are
often formulated as hard required rules to affect yield mandatorily. Yield can often be
improved further by tightening thresholds of required design rules.

Design rules vary with technologies and they are specified individually for each layer. In
the following, we describe the most important design rules in more detail, assuming some
fixed wiring layer.
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Minimum Width Rule
The minimum width rule sets the minimum width any wire on a specified layer must have.
It is mainly imposed by the resolution of the photolithographic process. Although the
ultraviolet light used for exposure has a wavelength of 200 nm to 400 nm, it is possible by
some tricks (phase shifting) to create structures with width of less than 100 nm. There
always exists a wire (usually called single) having minimum width, see Table 5.2.

Minimum Spacing Rule
Different shapes which do not intersect must keep a minimum distance to each other. The
main reason is to ensure that they do not cause a short after fabrication. In practice, the
distance is defined by the Euclidian distance. Another reason for setting up a spacing rule
is crosstalk where a signal is affected by another nearby signal. Increased spacing (as well
as wire shielding) is used in practice to prevent crosstalk between timing-critical nets.

The minimum spacing between shapes of minimum width is usually the same as the
minimum width. In general, the spacing which must be kept between two shapes depends
on the width of both shapes. As the fabrication process (especially in exposure and
etching) is highly optimized for minimum feature size objects, processes are less adjusted
for larger shapes. This leads to different kinds of variations for large shapes which can be
mitigated by increasing the required minimum space to large shapes. Therefore, minimum
allowed spacing to large shapes is usually larger than to thin shapes. Distance requirements
for shapes of the same net are typically more relaxed than those for different nets.

Minimum Area Rule
Very small metal shapes without any connection to other shapes can detach from the glass
underneath and move to another place on the chip causing a short.

Minimum Enclosed Area Rule
A minimum enclosed area is a region completely enclosed by metal shapes. This non-
metal region is made of dielectric material which can detach if its area fall below a certain
threshold interfering exposure at other places of the chip. Therefore, non-metal regions
must not be smaller than a given threshold.

Short Edge Rule
OPC which is applied to compensate for optical and other process distortions becomes
difficult on certain geometric configurations which, therefore, have to be avoided. Here,
the configuration of two (or more) consecutive short edges on the border of a metal shape
becomes increasingly important with 65 nm and newer technologies. The short edge rule
specifies a threshold for the length of the involved edges.

Via Reliability Rule
Defects in large metal shapes tend to move to locations of attached vias. Therefore, thin
vias meeting large shapes are unstable and must be replaced by multi-cut vias. (A multi-
cut via on a via layer is compounded by several vias of a standard via type which is the
only via type defined on the given via layer.)
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Floating Gate Rule
During fabrication, various steps can provoke an electro-static discharge and a destruction
of already connected gates; particularly polishing, the final step of manufacturing a layer,
is done in a mechanical and chemical process. Two solutions are applied in practice.
First, large electrically connected components in one layer can be avoided by breaking
up long segments and jumping to layers above. Second, a floating gate diode which is
able to discharge an electrical charge can be added between a transistor input gate and
ground. Inserting such an element, however, is possible only if there is sufficient space in
the placement layer. It can be easily applied after routing and is chosen if the first repair
method fails.

With the exception of the floating gate rule, all of the above design rules can be specified
as input to BonnRoute, which then has to respect them. Floating gate problems are not
handled by BonnRoute since there already exists a post-processing step within the design
flow of IBM. Table 5.5 shows the results we have obtained with BonnRoute on chips of
our testbed.

The wiring of all chips was checked by ChipEdit, IBM’s graphical physical design edi-
tor whose checking engine serves as the sign-off tool for the designer to release a chip.
(ChipEdit counts some types of failures twice, such that the actual number of failures is
even smaller.)

The number of connections which are not closed (opens, column 3 in Table 5.5) very much
depends on the instance. Opens can be caused either by dense regions in the neighborhood
of pins making pin access difficult (local problem), or by congested regions in which some
connections cannot be realized (global problem). Column 4 and 5 of Table 5.5 show that
BonnRoute rarely creates minimum space violations between segments of different nets,
but leaves a few minimum space violations between segments of the same net. It turns out
that BonnRoute violates the minimum area rule and the short edge rule only for the 65 nm
technology because both rules are automatically fulfilled in older technologies as long as
all segments are assigned to pre-defined tracks on the routing grid, which in turn is defined
by the minimum pitch. All other rules listed in Table 5.5 are respected by BonnRoute
with only very few exceptions.

Although BonnRoute has proved to be a very successful routing tool, Table 5.5 shows that
the final wiring still contains a few routing errors which are left to be fixed more or less
manually by the designer. The challenge for BonnRoute is to decrease the total number
of failures - in the best case to zero. The only class of failures which might not get fixed
by any routing tool are opens due to non-accessible pins or congested regions. Such an
instance has to be thoroughly investigated for the reasons of the routing failures. Power
structure or the placement may cause non-accessible pins and, therefore, have be revised.
In the case of routing congestion, placement changes are required before rerouting the
design. In rare cases, a designer has to fix the problem manually. It is generally accepted
that about 50 remaining failures per one million nets can be expected to be fixed manually
by a designer with current design sizes.
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Chip
#Nets

Opens
MinSpace Min Min Short Via

Others WIE(×103) diff same Area EArea Edge Rel

130 nm technology
Bill 11
Elena 421 6 16 1 23
Heidi 777
Garry 828 59 3 9 71
Ralf 1 350 1 1 1 1 4
Monika 1 503 10 4 2 16
Hermann 2 332 4 5 3 12

90 nm technology
Paul 68 4 3 7
Hannelore 140 1 16 17
Edgar 772 25 6 113 144
Edmund 2 609 222 21 4 51 5 303
David 5 751 65 11 33 22 4 135

65 nm technology
Tara 509 17 30 14 1 1 63
Benedikt 528 7 7 1 15
Tina 534 1 2 1 8 12
Dorothea 679 34 8 58 12 6 118
Larry 3 589 10 3 58 5 20 96

Table 5.5: Results on wiring integrity errors of BonnRoute (empty entries stand
for 0). Columns 3–10 give detailed statistics on the problems BonnRoute leaves
after routing. In column 10 all failures not described in this section are summed
up. The last column contains the total sum of all failures. The following abbrevi-
ations are used in the table: MinSpace diffnet: Minimum space violations between
segments of different nets; MinSpace same: Minimum space violations between
segments of the same net; Min EArea: Minimum Enclosed Area; Via Rel: Via
Reliability; WIE: wiring integrity errors.

5.3.3 Manufacturing Yield

BonnRoute offers optional functionality to be driven in a yield aware mode. Yield is the
average proportion of chips on the wafer without any defect. A widely used method to
compute the expected number of faults within chip-level wiring is the Monte Carlo dot-
throwing approach (Maly [1985]). It computes critical area values planewise, sums up
these values and finally multiplies the result with chip area.

Based on a formulation of the global routing problem by Vygen [2004] which takes yield
into account, Müller [2006] presents results of BonnRoute showing that the expected num-
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ber of defects in wiring can be reduced by more than 10 % on state-of-the-art industrial
chips when driving BonnRoute in yield aware.

Yield can also be improved in detailed routing by adding links to the wiring of a net
to create redundancy for wires and vias. Particularly, via opens highly contribute to
yield loss. Therefore, so-called redundant vias are inserted into full chip wiring. That is,
each via is substituted by a multi-cut via wherever applicable. However, this approach is
less efficient for newer technologies as it requires additional, partly wrong-way metal on
one of the adjacent wiring layers. The percentage of successfully added redundant vias
highly depends on technology and density of the design. Experiments of Bickford et al.
[2006] show a variance between 88 % in a 130 nm technology and below 70 % in a 90 nm
technology. For that reason, BonnRoute has incorporated another post-processing method
which inserts local loops to a fully wired design. It considerably increases the percentage
of redundant vias compared to previous approaches. Addition of local loops in the vicinity
of single vias increases the robustness to via opens and high resistance vias. It does not
generate wrong-way wiring, and the impact on timing is negligible. As it is applied after
the design is fully wired, it has also no impact on wirability. Bickford et al. [2006] show
that it is superior to add first local loops and insert redundant vias afterwards. This
approach achieves a significant reduction in via open critical area by 82 % on average.
(The insertion of redundant vias without local loops reduces critical area by 77 % only.)
In 2007, BonnRouteLocal was successfully used to complete the chip David for fabrication
including the insertion of local loops.

Furthermore, BonnRoute has been recently utilized to introduce so-called global loops to
wiring for two main reasons: first, adding global loops increases robustness against open
defects further and is more efficient in the sense that more wiring and vias are protected
relative to the number of wires and vias added. Second, global loops reduce on-chip
variations in timing (Panitz et al. [2007]).

Before wire spreading After wire spreading

Figure 5.3: Part of wiring of chip Elena on wiring layer 4
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Wire spreading can also be done as a post-processing routine in BonnRouteLocal where
a reduction of the critical area by 1% to 10 % can be attained (Schulte [2006]). A small
part of the fourth wiring layer of chip Elena is depicted in Figure 5.3 where the effect of
wire spreading is apparent.

Although all of the above methods are expensive with respect to running time, it is worth-
while to spend extra time in a final call of BonnRoute after having met all specified design
rules and constraints.
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Summary

Routing is one of the major steps in very-large-scale integration (VLSI) design. Its task
is to find disjoint wire connections between sets of points on a chip, subject to numerous
constraints. In this thesis, we present new theoretical results on Steiner trees and shortest
paths, the two main mathematical concepts in routing. In the practical part, we give com-
putational results of BonnRoute, a VLSI routing tool developed at the Research Institute
for Discrete Mathematics at the University of Bonn.

The VLSI Routing Problem can be seen as a generalized packing problem for Steiner
trees in three-dimensional grid graphs, where the trees are subject to further technology-
related constraints. To solve this problem, BonnRoute follows a two-stage approach, which
consists of so-called global and detailed routing steps. For each set of metal components
to be connected, global routing reduces the search space by computing corridors in which
detailed routing sequentially determines the desired connections as shortest paths.

The problem of finding a rectilinear Steiner minimum tree (RSMT) for a given set of points
in the plane is NP-complete, but it can be solved extremely fast in practice. However,
length alone is not the only criterion for today’s VLSI instances, since interconnect delays
are becoming increasingly important. Therefore, we examine the problem of constructing
RSMTs which minimize a signal-delay-related function as a secondary objective. We give
a mixed integer programming formulation for the rectilinear Steiner tree problem with the
weighted sum of path lengths as secondary objective (RSTPWP), which can be solved
to optimality by standard branch-and-bound methods. By deriving structural properties,
we prove that each optimal solution to RSTPWP has its Steiner points on the Hanan
grid. We additionally present a heuristic algorithm for constructing RSMTs with various
secondary objectives. Experiments on industrial chips show that the algorithm improves
the delay properties of RSMTs without increasing total tree length, and that it solves
more than 98 % of the instances of RSTPWP optimally.

We further consider the problem of finding a shortest rectilinear Steiner tree in the plane
in the presence of rectilinear obstacles. The Steiner tree is allowed to run over obstacles;
however, if it intersects an obstacle, then no connected component of the induced subtree
must be longer than a given fixed length. We show that this problem can be approximated
with a performance guarantee of 2 in O(n log n) time, where n denotes the number of nodes
of the Hanan grid defined by terminals and obstacles, and that there are optimal length-
restricted Steiner trees with a special structure. In particular, we prove that a certain



graph (called augmented Hanan grid) always contains an optimal solution. Based on this
structural result, we give an approximation scheme for the special case that all obstacles
are of rectangular shape or are represented by at most a constant number of edges. The
restrictions on the obstacles ensure that the augmented Hanan grid has polynomial size.
For such a scenario, we introduce another class of auxiliary graphs with O(nk−2) nodes
and edges, parameterized by some integer k ≥ 3, on which we solve a related Steiner tree
problem (now n denotes the size of the augmented Hanan grid). This yields a 2k

2k−1α-
approximation for any k ≥ 4, where α denotes the performance guarantee for the ordinary
Steiner tree problem in graphs. For k = 3, we obtain a factor of 5

4α.

Turning to the shortest paths problem, we present a new generic framework for Dijkstra’s
algorithm for finding shortest paths in digraphs with non-negative integral edge lengths.
Our key concept is to label entire subgraphs instead of single vertices. In our algorithm,
called GeneralizedDijkstra, we introduce three levels of hierarchy to structure the
graph. The vertices of the original graph are the elements of the bottom level, and the
middle level is a partition of these vertices. The top level is a partition of the middle level;
its purpose is to delay certain labeling operations. Distances are propagated between
elements of the middle level, but we perform direct labeling operations only between those
elements that are contained in the same element of the top level, whereas all other labeling
operations are delayed and thus have the potential to become unnecessary. The algorithm
is suitable for graphs with a regular structure, such as partial grid graphs, where the
number of involved subgraphs is small compared to the order of the original graph and
the shortest path problems restricted to these subgraphs are computationally easy.

GeneralizedDijkstra is applied twice in the context of the VLSI Routing Problem,
where we need to find millions of shortest paths in partial grid graphs with billions of
vertices. In the first application, the original graphs correspond to the global routing
corridors; each corridor is the union of a small number of rectangles. The distance labels
that are output of this algorithm can be used as estimates for the remaining cost to the
target in a goal-oriented path search. In a second application, we label one-dimensional
intervals in the three-dimensional partial grid graph used for modeling detailed routing.
This generalizes an algorithm by Hetzel [1998] from l1-distance to arbitrary non-negative
edge costs. Using the result of the first application as a pre-processing step in connection
with goal-oriented techniques in the second one, we decrease the number of labels by up
to 50 %. This leads to an average running-time reduction of over 16% on leading-edge
industrial chips.

Finally, we present computational results of our routing program BonnRoute, obtained
on real-world VLSI chips. BonnRoute fulfills all requirements of modern VLSI routing
and has been used by IBM and its customers over many years to produce more than one
thousand different chips. To demonstrate the strength of BonnRoute as a state-of-the-
art industrial routing tool, we show that it performs excellently on all traditional quality
measures such as wire length and number of vias, but also on further criteria of equal
importance in the every-day work of the designer.


