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Gravity Field Re�nement by Radial Basis Functions from In-situ
Satellite Data

Summary
In this thesis, an integrated approach is developed for the regional re�nement of global gravity �eld solutions.
The analysis concepts are tailored to the in-situ type character of the observations provided by the new
satellite missions CHAMP, GRACE, and GOCE. They are able to evaluate data derived from short arcs of
the satellite's orbit and, therefore, o�er the opportunity to use regional satellite data for the calculation of
regional gravity �eld solutions. The regional character of the approach will be realized at various stages of
the analysis procedure. The �rst step is the design of speci�cally tailored space localizing basis functions. In
order to adapt the basis functions to the signal content to be expected in the gravity �eld solution, they will
be derived from the covariance function of the gravitational potential. To use the basis functions in gravity
�eld modeling, they have to be located at the nodal points of a spherical grid; therefore investigations will
be performed regarding a suitable choice of such a nodal point distribution. Another important aspect in the
regional gravity �eld analysis approach is the downward continuation process. In this context, a regionally
adapted regularization will be introduced which assigns di�erent regularization matrices to geographical
areas with varying signal content. Regularization parameters individually determined for each region take
into account the varying frequency behavior, allowing to extract additional information out of a given data
set. To conclude the analysis chain, an approach will be described that combines regional solutions with
global coverage to obtain a global solution and to derive the corresponding spherical harmonic coe�cients
by means of the Gauss-Legendre quadrature method. The capability of the method will be demonstrated by
its successful application to real data provided by CHAMP and GRACE and to a simulation scenario based
on a combination of GRACE and GOCE observations.

Verfeinerungen des Gravitationsfeldes mit radialen Basisfunktionen
aus in-situ Satellitendaten

Zusammenfassung:
In der vorliegenden Arbeit wird ein ganzheitliches Konzept für die regionale Verfeinerung globaler Gravita-
tionsfeldmodelle entwickelt. Die dazu verwendeten Analyseverfahren sind dem in-situ Charakter der Beobach-
tungen der neuen Satellitenmissionen CHAMP, GRACE und GOCE angepasst. Sie beruhen auf kurzen Bahn-
bögen und ermöglichen somit die Berechnung regionaler Gravitationsfeldmodelle aus regional begrenzten
Satellitendaten. Der regionale Charakter des Ansatzes wird dabei auf verschiedenen Ebenen des Analyse-
prozesses realisiert. Der erste Schritt ist die Entwicklung angepasster ortslokalisierender Basisfunktionen.
Diese sollen das Frequenzverhalten des zu bestimmenden Gravitationsfeldes widerspiegeln; sie werden daher
aus der Kovarianzfunktion des Gravitationspotentials abgeleitet. Um die Basisfunktionen für die Schwere-
feldmodellierung zu verwenden, müssen sie an den Knotenpunkten eines sphärischen Gitters angeordnet
werden. Daher werden Untersuchungen durchgeführt, welche Punktverteilung für diese Aufgabe besonders
geeignet ist. Einen wichtigen Aspekt bei der regionalen Gravitationsfeldanalyse stellt der Fortsetzungsprozess
nach unten dar. In diesem Zusammenhang wird ein regional angepasstes Regularisierungsverfahren entwi-
ckelt, das verschiedene Regularisierungsmatrizen für regionale Gebiete mit unterschiedlichem Schwerefeldsig-
nal ermöglicht. Individuell angepasste Regularisierungsparameter berücksichtigen den variierenden Signalin-
halt, wodurch erreicht wird, dass zusätzliche Informationen aus einem gegebenen Datensatz extrahiert werden
können. Schlieÿlich wird ein Ansatz vorgestellt, der regionale Lösungen mit globaler Überdeckung zu einer
globalen Lösung zusammenfügt und die zugehörigen sphärischen harmonischen Koe�zienten mit Hilfe der
Gauss-Legendre-Quadratur berechnet. Die Leistungsfähigkeit des beschriebenen Ansatzes wird durch eine
erfolgreiche Anwendung auf die Echtdatenanalyse aus Daten der Satellitenmissionen CHAMP und GRACE
und auf ein Simulationsszenario aus einer Kombination simulierter GRACE� und GOCE�Beobachtungen
verdeutlicht.
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1. Introduction

Information about the Earth's gravitational �eld provides valuable insight into the Earth as a complex
dynamic system. Its exact knowledge o�ers a fundamental contribution to geodetic as well as to a wide
variety of geophysical applications. Concerning the geodetic aspects, one important example is the use of the
geoid (i.e. an equipotential surface of the Earth's gravity �eld) as a reference surface for the de�nition of height
systems.To know the location of the geoid exactly is necessary for the derivation of a uni�ed global height
datum. As the geoid constitutes the hypothetical ocean surface at rest, it also plays a decisive role in the
determination of ocean dynamics. The sea surface can be measured with high accuracy by altimeter satellites,
but only by reference to the geoid the ocean circulation can actually be derived from these measurements.
Further examples of the impact of the gravity �eld determination on di�erent geoscienti�c disciplines can
be identi�ed in form of bene�cial contributions, e.g. in the areas of hydrology, glaciology or solid Earth's
dynamics. Especially the time variable part of the gravity �eld allows important insights into mass transport
and mass variation phenomena. An overview of these processes is given by Ilk et al. (2005b).
The determination of the gravity �eld of the Earth from satellite data has been performed during the last
four decades, but with the launch of the new dedicated gravity �eld missions a new epoch has started.
CHAMP was the �rst of the new gravity �eld missions, in orbit since 2000, and has since then provided
a new level of gravity �eld accuracy and valuable experiences being essential for the subsequent missions.
GRACE, launched in the year 2002, is the second mission. Besides the determination of the static part of
the gravity �eld in the low and medium wavelengths, GRACE is especially dedicated to the detection of
time variable gravity �eld features. As an example, the temporal and spatial variations of the continental
water storage have, for the �rst time, become observable on a global scale by the evaluation of GRACE
observations. The third mission will be GOCE with an anticipated launch date in the early summer of 2008.
Its goal is the recovery of the high resolution static part of the gravity �eld with unprecedented accuracy.
The innovative concept of the new gravity �eld missions is the in-situ type character of the observations. Each
of the satellites carries a GPS receiver, and therefore a continuous observation of the respective satellite's
orbit is enabled. Furthermore, the additional observations (precise intersatellite ranges and range-rates in
case of GRACE and gradiometer measurements in case of GOCE) allow the gravity �eld to be exploited
more or less directly, and therefore emphasize the in-situ character. In contrast to earlier e�orts in gravity
�eld determination from satellite data, the new observation types do not require the analysis of satellite
orbits over a long period of time, but are able to cope with short arcs of the satellite's orbit. This is an
important aspect that has enabled the determination of regional gravity �eld solutions from satellite data
observed over the particular geographical region.
Despite the outstanding results already obtained from the satellite missions CHAMP and GRACE, it is ex-
pected that even more information can be extracted out of the given data. As one opportunity in this context
a regional modeling can be identi�ed. The conventionally applied modeling in terms of a spherical harmonic
expansion o�ers an insu�cient possibility of representing regional gravity �eld features. The gravity �eld
in di�erent geographical areas exhibits a strongly varying signal content, especially in the higher frequency
part of the gravity �eld spectrum. These regional characteristics cannot properly be taken into account by
basis functions with global support as provided by spherical harmonics. The degree of instability of the
gravity �eld recovery process, which increases with higher frequencies in the gravity �eld signal, varies with
the speci�c gravity �eld characteristics in di�erent regions. A global regularization applied to account for
the ill-posedness of the downward continuation process causes a global �ltering of the observations leading
to a mean damping of the global gravity �eld features. Therefore, it is expected that a regionally tailored
regularization process would allow more information to be extracted out of the given signal than would be
the case in a global analysis.
It is the goal of this thesis to develop an integrated recovery approach for the calculation of regional gravity
�eld solutions. The regional gravity �elds are to be calculated as re�nements to global models, accounting
for the information that is present in the satellite data in addition to the global model. First of all, the
integrated approach includes the design of space localizing basis functions that are adequately tailored to
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this task and their proper distribution on a reference sphere. But not only the gravity �eld parameterization
is to re�ect the regional characteristics, but the whole analysis procedure should be regionally adapted. This
implies a functional model based on short arcs of the satellite's orbit on the one hand and a regionally
adapted regularization process on the other hand. If desired, regional solutions with global coverage are
to be merged to a global solution (parameterized by a spherical harmonic expansion) in a direct stable
computation step without losing the details of a regional zoom-in. The described considerations are �rst
investigated theoretically and are �nally applied to simulated and real satellite data.
This leads to the following organization of the thesis: In Chapter 2, an overview is given of the regional gravity
�eld determination from the new satellite missions. This includes an introduction of the missions CHAMP,
GRACE, and GOCE and the characterization of their respective measurement principles. Furthermore, it is
speci�ed how the new observation techniques have led to the development of new, tailored analysis strategies
and how these strategies have enabled the recovery of regional gravity �eld solutions. Di�erent approaches
to such a tailored processing of the new satellite data are summarized. Subsequently, a detailed motivation
for a regional approach is given, followed by an overview of existing regional modeling techniques.
In Chapter 3, the di�erent tools are introduced which are required to perform a regional analysis. Possibly the
most important aspect in this context is the speci�cation of the space localizing basis functions to model the
regional solution. In this thesis, basis functions are designed that are derived from the degree variances of the
gravitational potential. This implies that the basis functions re�ect the frequency spectrum of the gravity
�eld to be modeled. Smoothness assumptions based on the design of the basis functions are investigated
within the framework of reproducing kernel Hilbert spaces. As a regional modeling does not only consist of
the shape of the basis functions, but also of their location on a reference surface, di�erent spherical grids are
speci�ed, and it is investigated which of them is particularly adequate to serve as nodal point pattern for
the basis functions.
The de�nition of the functional models to be used in the analysis of the satellite data is presented in Chapter 4.
In this context, di�erent gravity �eld functionals are expressed in terms of space localizing basis functions,
resulting in the speci�cation of the observation equations to be used in the recovery process.
Chapter 5 deals with the solution of the observation equations that are set up in Chapter 4. In this context,
particular focus is put on the ill-posedness of the downward continuation process. The possibility of regionally
adapting the regularization procedure is pointed out as one of the key bene�ts of the regional analysis
approach.
Chapter 6 describes the opportunity to merge regional solutions with global coverage to obtain a global
solution. If required, this global solution can be transformed into a representation by spherical harmonics by
means of quadrature methods.
The numerical results derived from the application of the described analysis approaches are presented in
Chapter 7. This includes a description of the programming system GROOPS, which was developed in our
group in Bonn for gravity �eld calculations and extended for application in regional analysis. Subsequently,
a simulation study concerning di�erent speci�cations of the space localizing basis functions is given. Finally,
the real data analysis of CHAMP and GRACE data and a simulation scenario of a combined GRACE/GOCE
analysis is presented.
Chapter 8 provides a summary of the applied techniques and obtained results and gives an outlook on possible
further research.
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2. Regional Gravity Field Recovery Using

New Satellite Missions

The innovative observation principles of the satellite missions CHAMP, GRACE, and (in the near future)
GOCE have improved our knowledge of the Earth's gravity �eld by several orders of magnitude during the
last couple of years. To demonstrate the potential of these observation techniques, in the �rst part of this
chapter, these dedicated gravity satellite missions will be introduced. Special emphasis is thereby put on the
individual measurement principles featured by the di�erent missions to point out their innovative character.
In the second section, it is described in which way the new observation techniques have led to the development
of new analysis strategies. They partly di�er from the approaches established before the availability of the
new missions. The main focus is on the fact that these new analysis approaches have provided the opportunity
to use short arcs of the satellite's orbit, tailored especially to the recovery of regional gravity �eld solutions.
The bene�t of such regional solutions and their advantages in comparison with the calculation of global
solutions is then pointed out in the following section. At the same time, this provides the motivation for
the regional investigations that will be described throughout the course of this thesis. It is followed by an
overview of regional approaches (using various types of modeling techniques) that have been applied in the
analysis of gravitational �elds from satellite data so far.

2.1 Overview of the Satellite Missions CHAMP, GRACE, and
GOCE

2.1.1 CHAMP

The CHAMP (CHAllenging Minisatellite Payload) mission was proposed by the GeoForschungsZentrum
Potsdam in 1994 in cooperation with the German Aerospace Center (Deutsches Zentrum fuer Luft- und
Raumfahrt, DLR) and a consortium of industrial companies from the former East and West Germany
(Reigber et al. 1999). The development and manufacturing phase began in January 1997 resulting in
the launch of the CHAMP mission on July 15, 2000, from Plesetsk, Russia. It was launched into a near
polar and near circular orbit (inclination of ≈ 87◦, eccentricity of ≈ 0.0004) with an original altitude of
454 km. After seven years in orbit, it has descended to an orbit height of approximately 340 km. The given
altitude constitutes a compromise between the research interests of the CHAMP mission comprising gravity,
magnetism as well as atmosphere and ionosphere. The latter two would have preferred an even higher orbit,
and a rather lower orbit would have been more suitable for gravity �eld research. The satellite moves with
a speed of about 28,000 km/h and has a mean period of 1.5 h resulting in approximately 15 revolutions per
day.
The satellite has a total mass of 522 kg and features a height of 75 cm and an overall length of 8.333 m
including a boom of 4.044m length. The boom is tailored to the requirements of the observation of the
magnetic �eld. In order to avoid disturbances caused by a magnetic stray �eld, the magnetometer is located
at the end of the boom and, in this way, is kept at a su�cient distance from the satellite.
Concerning the task of gravity �eld recovery, the satellite itself can be regarded as a sensor. It carries an
on-board GPS antenna to enable the determination of the precise orbit by the Global Positioning System.
As the satellite's orbit is in�uenced by gravity �eld disturbances, the analysis of the orbit data can provide
information about the structure of the gravity �eld. Thus the satellite positions represent the primary
observable for the task of gravity �eld determination. This primary measurement principle is known as
satellite-to-satellite tracking in the high-low mode (hl-SST), as the orbit of the low �ying CHAMP satellite
is determined by the higher-�ying GPS satellites. Additionally, CHAMP is equipped with an on-board
accelerometer to account for non-gravitational forces acting on the satellite such as atmospheric drag, solar
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Figure 2.1: Schematic illustration of the CHAMP satellite mission and its key instruments (source: GFZ
Potsdam)

radiation, and Earth albedo which in�uence the orbit as well. Star cameras provide high precision attitude
information. Fig. 2.1 shows the most important instruments aboard the satellite in a schematic diagram.

2.1.2 GRACE

GRACE (Gravity Recovery And Climate Experiment) is a joint project of the National Aeronautics and
Space Administration (NASA) and the German Aerospace Center (Deutsches Zentrum für Luft- und Raum-
fahrt, DLR). It was proposed in cooperation with the University of Texas in Austin, the Center for Space
Research (UTCSR), the GeoForschungsZentrum Potsdam (GFZ), the Jet Propulsion Laboratories (JPL), the
Space Systems/Loral (SSL), German Aerospace Center, and the Astrium GmbH in the year 1996. In 1997
GRACE was selected as the second mission in NASA's 'Earth System Science Path�nder Project' (ESSP).
Five years later, on March 17, 2002, the launch took place at Plesetsk, Russia, on a Rockot launch vehicle. A
description of the GRACE mission can be found in Tapley et al. (2004). GRACE is a twin satellite mission
consisting of two identical satellites following each other in the same orbit separated by a distance of about
220 km. The mission duration was designed to be about �ve years; at present the lifetime is predicted to be
twice as long. Both satellites are equipped with an intersatellite ranging system that establishes the connec-
tion by a microwave link enabling the measurement of relative motion (range, range-rate, range-acceleration)
between the two satellites with high accuracy. This K-band ranging system is the key instrument of GRACE
and is capable of measuring the dual one-way range between both satellites with a precision of about 1µm.
This kind of intersatellite gravity measurement principle is known as low-low satellite-to-satellite tracking
(ll-SST). The relative motion is a measure for the inhomogeneities of the gravity �eld of the Earth, as will
be discussed later.
In addition, each satellite carries a GPS receiver to measure its position, thus enabling observations of
the type high-low satellite-to-satellite tracking (hl-SST) as well. The satellite con�guration displaying the
combination of the two satellite-to-satellite tracking measurement principles is illustrated in Fig. 2.2. In
addition to this, the onboard accelerometer accounts for non-gravitational forces such as atmospheric drag,
solar radiation, and Earth albedo which act on the surface of the satellite and disturb the satellite's orbit.
The altitudes of the two satellites were close to 500 km at the beginning of the mission, but will decline to
about 300 km and even lower towards the end of the mission. Therefore, the GRACE twin satellites can be
classi�ed as low Earth orbiters (LEOs). The orbit was chosen to be almost circular (with an eccentricity of
e < 0.0005) and to have an inclination of 89, 5◦ to guarantee a homogeneously distributed data coverage.
Besides the determination of a static gravity �eld solution, the time variable gravity �eld is a main objective
of the GRACE mission.
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Figure 2.2: Satellite con�guration and measurement scenario of the GRACE mission

2.1.3 GOCE

GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) is dedicated to measure the Earth's
static gravity �eld and to model the geoid with extremely high accuracy and spatial resolution. It is the �rst
Earth Explorer Core mission to be developed as part of ESA's Living Planet Programme (ESA 1999), and is
scheduled for launch in May 2008. A detailed description of the mission can be found, e.g., in Drinkwater
et al. (2003). GOCE is designed to determine the static gravity �eld of the Earth with unprecedented
accuracy and spatial resolution. More speci�cally, the mission objectives are the determination of the gravity
�eld with a spatial resolution of about 70 km half wavelength and an accuracy of 1mGal for gravity anomalies
and 1-2 cm for the geoid itself. This is possible only because of the extremely low altitude of GOCE of
approximately 250 km.
GOCE realizes the concept of satellite gravity gradiometry, i.e. the measurement of di�erences in gravitational
acceleration acting on test masses inside the orbiting satellite, as illustrated in Fig. 2.3. The gradiometer
consists of three pairs of orthogonal three-axis accelerometers; each pair of accelerometers is 50 cm apart,
with the three axes oriented along-track, across-track, and directed approximately to the Earth's center (as
completion of a right-handed triade), respectively. The accelerations acting on each proof mass are determined
by measuring the forces necessary to keep the proof mass in the center of its cage. By this constellation,
the gradiometer measures continuously all nine components of the gravity gradient tensor, in the practical
calculations with di�erent accuracies. Thus the observations provided by GOCE are the second derivatives of
the gravitational potential. The gradiometer measurements are supplemented by high-low SST measurements
provided by the onboard GPS receiver and by star-tracker information. Ion-thrusters compensate for surface
forces acting on the satellite and, in this way, ensure a pure free-fall motion to be permanently maintained.
The satellite will feature an extremely low orbit; its altitude constitutes a compromise between gravity
attenuation on the one hand and the in�uence of the surface forces on the other hand. The inclination will
be 96.5◦, which results in a lack of observations around the poles, a consequence that is referred to as the
polar gap problem. The orbit is designed in a sun synchronous way in order to enable a constant energy
supply by the sun panels and to minimize deformation of the satellite caused by temperature �uctuations.
The mission pro�le was designed for energy supply reasons, too. In the original concept, the mission duration
was divided into two six-months' measurement phases, in which the time of eclipse is minimal (< 10 min.
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Figure 2.3: GOCE gradiometer measurement principle (source: GOCE Projektbüro Germany)

per orbit), separated by a hibernation phase of about �ve months during the long-eclipse season. Together
with a three months' commission and calibration phase at the beginning of the mission, this resulted in an
envisaged overall mission duration of 20 months. Because of the delay of the start of mission, its pro�le will
have to be optimized according to the launch date.

2.2 Regional Gravity Field Recovery

2.2.1 New Analysis Techniques for the New Satellite Missions

Gravity �eld recovery from satellite data has been performed for the last 40 years. The classical approach
of satellite geodesy has thereby been based on the concept of deriving the gravity �eld parameters from
the analysis of accumulated orbit perturbations of arti�cial satellites with varying orbit altitudes and orbit
inclinations. Because of the global characteristics of this technique, the gravitational �eld has been mod-
eled by a spherical harmonic expansion. Due to the lack of on-board positioning devices such as a GPS
receiver in former times, the satellite's positions had to be determined by discrete measurements from the
Earth's surface, e.g. by means of precise laser ranging observations. This approach is known as di�erential
orbit improvement technique. Starting from initial values for the satellite's orbit, the partial derivatives of
the observations with respect to the unknown parameters are determined by integration of the variational
equations. Naturally, when dealing with topocentric observations from only a limited number of observation
stations, the coverage with observations is comparably poor. In order to achieve a su�cient redundancy,
the use of rather long arcs over days or even weeks was mandatory. In addition to this, the need for long
arcs was essential in order to cover the characteristic periodic and secular disturbances caused by the small
corrections to the approximated force function parameters. Furthermore, the former gravity �eld missions
were less sensitive to the gravity �eld signal due to rather high orbits of more than 800 km and featured only
limited global coverage due to the given inclinations of the satellites' orbits.
The situation has changed completely with the launch of the present satellite missions CHAMP, GRACE, and
(in the near future) GOCE. The innovative character of all three missions is the nearly continuous, precise
observation of the respective satellite orbits. In case of GRACE additional, extremely precise range and
range-rate K-band measurements are available, and the gradiometer on board the GOCE satellite provides
continuous measurements of the gravity gradient. These measurement principles allow the gravity �eld to be
detected more or less directly. Thus, instead of the analysis of accumulated orbit perturbations of arti�cial
satellites caused by the inhomogeneous structure of the gravity �eld, the new observation techniques can
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be regarded as having more of an in-situ measurement character. This can easily be understood in the
case of satellite gradiometry, as the gradiometer measures directly in-situ the inner geometry of the gravity
�eld, as has been pointed out, e.g., by Rummel (1986). Concerning satellite-to-satellite tracking in the
low-low mode, the K-band measurement axis can be regarded as a one-axis gradiometer with a point mass
distance of about 200 km. The K-band observations determine the distance between the two satellites at a
speci�c point of time and location; for this reason, they can be understood as in-situ measurements as well.
The satellite-to-satellite tracking in the high-low mode with its densely sampled observations can, from its
intrinsic characteristics, also be interpreted as being more of an in-situ observation type compared to the
classical observation techniques.
These new in-situ type observation principles can be taken into account for the development of new analysis
strategies. A variety of di�erent approaches has been proposed and applied to the di�erent types of obser-
vations. Ilk et al. (2005a) divide the in-situ measurement principles into three analysis levels. The �rst
among them is based directly on the observed, precisely determined kinematic positions by relating them to
the speci�c force function via an integral equation of Fredholm type. This kind of equation has been used
by Mayer-Gürr et al. (2005) for the determination of the CHAMP gravity models ITG-Champ01e, 01k
and 01s, and has been adapted to the analysis of GRACE data by Mayer-Gürr (2006). As this analysis
concept is also applied to the regional analysis of CHAMP and GRACE data as described in this thesis,
it will be introduced in more detail in Sections 4.3.1 and 4.3.2. The second analysis level requires the nu-
merical di�erentiation of the time series of the positions on the one hand and the integration of the force
function on the other hand. This possibility allows to exploit the balance equations of classical theoretical
mechanics. The technique has been applied by using the energy balance principle in form of the so-called
Jacobi integral; for example Gerlach et al. (2003) used this approach to derive the CHAMP gravity �eld
TUM-1S. Other examples of the application of the energy balance approach can be found, e.g., in Visser
et al. (2003), Howe et al. (2003), Kusche and van Loon (2004), and Földvary et al. (2005). Löcher
and Ilk (2005) and Löcher and Ilk (2006) investigated additional energy and motion integrals as to their
applicability to gravity �eld recovery and gravity �eld validation. Among them, there are integrals based on
the three scalar components of Newton's equation of motion and integrals based on the linear and angu-
lar momentum. According to their investigations, the alternative integrals of motion provide partly better
mathematical characteristics than the original Jacobi integral. The third analysis level applies to Newton's
equation of motion directly; it thus requires a twofold di�erentiation of the time series of satellite positions.
In an approach introduced by Austen and Reubelt (2000), the satellite positions are approximated by
an interpolation polynomial, and by means of a twofold numerical di�erentiation of the polynomial the lo-
cal acceleration vector is estimated from the relative GPS position time series. More details concerning the
application of this technique to the analysis of CHAMP data can be found in Reubelt et al. (2003) and
Reubelt et al. (2006). A similar technique using weighted averages of three successive satellite positions
has been applied by Ditmar et al. (2006) for the determination of the gravity model DEOS_CHAMP-01C.
Those analysis concepts tailored to the processing of in-situ observations have in common that they can cope
with short arcs of the satellite's orbit. Splitting the orbit into shorter pieces provides the advantage that the
accumulated e�ects of (residual) disturbing forces are kept as low as possible. Furthermore, discontinuities
and gaps in the observation series can easily be dealt with by starting a new arc after each data gap. In
addition, the use of short arcs provides the opportunity to calculate the gravity �eld in a speci�c region
from the satellite observations originating from arcs covering the respective region. This is an inevitable
requirement for the calculation of regional gravity �eld solutions. Thus the new observation and analysis
procedures open the opportunity of regional gravity �eld analysis as a method of re�ning global solutions.
Nevertheless, it has to be mentioned that the classical analysis techniques based on the integration of the
variational equations are still being applied very successfully to the new satellite missions as well. An example
is the so-called dynamic approach (as described in Schmidt 2007) which has been applied to determine
the EIGEN gravity �eld series (see, for example, Förste et al. 2005). Further examples are the calculation
of, e.g., the GGM02c (Tapley et al. 2005) and the celestial mechanics approach, as proposed by Jäggi
et al. (2007) and Prange et al. (2007) and applied to determine the satellite-only gravity �eld model
AIUB-CHAMP01S.
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2.2.2 Motivation for Regional Analysis

The new satellite missions with their innovative observation principles, as described in Section 2.1, in combi-
nation with the tailored analysis strategies, as introduced in Section 2.2.1, have provided an unprecedented
increase in the accuracy of the gravity �eld solutions. So far, the most common way of representing the grav-
ity �eld of the Earth has been an expansion in terms of spherical harmonics. Despite the outstanding results
already achieved, it can be assumed that the signal content present in the satellite observations has not
been fully exploited yet. The reasons for that are manifold, but one major aspect is the insu�cient modeling
of background forces (such as ocean tides or atmospheric variations), which is understood to be primarily
responsible for the fact that, e.g., the projected GRACE baseline accuracy has not been achieved so far. Yet
another reason for sub-optimal signal exploitation could be an insu�cient modeling of the satellite data by
a global representation by means of spherical harmonics. To extract the signal information present in the
satellite and sensor data to full content, it seems reasonable to tailor the analysis process according to the
speci�c characteristics of the gravity signal present in certain areas. Especially in the higher frequency part
of the spectrum, the gravity �eld features vary signi�cantly in di�erent geographical regions. Those hete-
rogeneities are caused by di�erent topographic characteristics featuring rough gravity signal, for example
caused by mountain areas or deep sea trenches, and rather smooth signal areas, for example in parts of the
open oceans. In these cases, the heterogeneity of the gravity �eld cannot properly be taken into account with
the help of spherical harmonics as basis functions with global support. Their resolution can only be de�ned
globally, resulting in the problem that the maximum degree adequate for very rough gravity �eld features
would cause instabilities in the computation procedure of the spherical harmonic coe�cients. Therefore, it
seems to be preferable to represent the global gravity �eld only up to a moderate, safely determinable degree
and to model the additional detailed features by means of space localizing basis functions. The new analysis
strategies described above, which take into account the in-situ type character of the observations, and which
are tailored to densely observed short arcs of the satellite's orbit, have o�ered the possibility of using region-
ally restricted satellite data to explore the gravity �eld in the respective geographical areas. That is why, it
seems to be reasonable to take advantage of this opportunity and to improve global solutions by regional
re�nement strategies. The approach proposed in this thesis is based on a global reference model represented
by spherical harmonics and includes the calculation of regional re�nements in certain geographical areas.
These regional solutions should be modeled by means of radial basis functions that feature local (or nearly
local) support. In this way, the resolution of the parameterization can be adapted according to the given
gravity �eld signal in the region.
However, not only the parameterization itself can be adapted to the speci�c regional characteristics, but
the complete analysis strategy should be adjusted to produce the best regionally adapted results. In this
context, especially the regularization process necessary in connection with the downward continuation process
has to be pointed out, as described, e.g., in Eicker et al. (2004), Ilk et al. (2006), and Eicker et al.
(2006). A global regularization characterized by a uniform global regularization parameter results in an
overall �ltering of the observations, which would lead to a mean dampening of the global gravity �eld
features. Then the problem arises that in regions with rough gravity �eld characteristics there would still
be additional information in the signal that is dampened unnecessarily strongly, whereas in regions with a
smooth signal an even stronger regularization would be advisable. When dealing with space localizing basis
functions, the regularization parameter can be chosen individually for di�erent regions, as will be described
in Chapter 5.2.5. Therefore, di�erent regularization areas can be assigned, and their adapted regularization
parameter can take into account the varying signal content. In this way, it is possible to extract more
information from the given data than would be possible with global gravity �eld determination. Areas with
a smooth gravity �eld signal, for example, can be regularized more strongly without dampening the signal,
and in areas with strong high frequency signal no unnecessary dampening occurs. Results that support the
signi�cant improvements obtainable from such a regionally adapted regularization approach can be found in
Eicker et al. (2007).
A further advantage of the regional re�nement strategy is that it allows to combine the satellite data with
additional data sets in a consistent way. The additional gravity �eld data (e.g. from altimeter observations,
from airborne, or terrestrial data sets) can be included in the computation scheme in a straightforward step by
using the satellite gravity solution as reference �eld and calculating regional re�nements from the additional
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observations. Satellite gravity data usually covers the entire Earth, resulting in a uniformly distributed data
coverage. But when surface data is to be taken into account as well, it has to be considered that the data
could be sparse over some regions and very dense over other regions. Here an additional feature of the regional
approach gets into focus, namely the advantage of dealing with regions with di�erent data coverage more
easily than possible in case of a global recovery strategy. If no data is available (e.g. when analyzing polar
regions in case of the GOCE mission), the regional re�nement may be skipped.
Furthermore, it has to be pointed out that the recovery of the gravity �eld does generally not represent a
stand-alone purpose, but always serves the objective of being interpreted and applied afterwards by geosci-
enti�c users such as oceanographers, hydrologists, geophysicists etc. These related disciplines frequently deal
with regionally limited phenomena and bene�t from regional gravity �eld solutions exactly tailored to their
area of interest. Besides the advantage mentioned above of enhanced signal extraction and tailored design of
the radial basis functions, the regional solutions are easier to handle. Present e�orts are being carried out to
provide a high-resolution global gravity model, the EGM07 (Pavlis et al. 2005), which is to be expanded up
to a spherical harmonic degree of 2160. To explore the full resolution of such a model, the user is faced with
the computation e�ort of having to evaluate 4,669,921 parameters to be used to calculate every single point
value. In case of space localizing basis functions, a comparable resolution can be obtained (for a limited area)
with a signi�cantly reduced number of parameters. Technically, it may be possible to calculate a global model
of the given resolution when using tailored stable algorithms for the evaluation of the associated Legendre
functions. But it can be assumed that spherical harmonic models cannot represent data of heterogeneous
density and quality in a proper way, as pointed out, for example, in Schmidt et al. (2006).
If a spherical harmonic expansion is desired, regional solutions with global coverage can be merged to obtain a
global solution whose spherical harmonic coe�cients can be calculated, e.g. by means of quadrature methods.
The maximum degree of this series expansion is only limited by the most detailed structures of the gravity
�eld present in the regional solutions. This last step can be performed without stability problems and without
losing the details of the regional gravity �eld features.

2.2.3 Existing Approaches to Regional Gravity Field Modeling

As emphasized in the last section, the calculation of regional gravity �eld solutions provides a wide variety
of advantages when compared to the recovery of global models. Therefore, this opportunity is gaining more
and more popularity, and can be considered as a very e�ective supplement to the conventional global models.
While regional gravity �eld solutions have been routinely developed based on terrestrial (surface) data in the
past, the application of regional modeling strategies have become meaningful only recently in the recovery
process based on satellite data. In order to exploit the advantages of a regional analysis, the application of
space localizing basis functions is inevitable. There is a considerably large variety of possibilities of choosing
the proper basis functions to be used for the parameterization. In the following, some of the approaches in
this context will be introduced. The description will thereby be restricted to applications that have been
carried out based on the analysis of satellite data.
A rather early idea of modeling regional gravity �elds from satellite data goes back toWeightmann (1965).
It is based on the modeling of the gravitational potential of the Earth by superposition of the potential
generated by point masses located in the interior of the Earth. The potential originating from a point mass
depends on the reciprocal distance between the evaluation point and the respective mass element. Important
applications of the idea are described, e.g., in Balmino (1972) or Barthelmes (1986).
Another approach is the representation of the gravity �eld by so-called mascons. The term 'mascons' stands
for mass concentration blocks and refers to a small uniform layer of mass over a certain limited geographical
region (such as a spherical block or cap). It was originally applied to specify the concentration of masses
detected on the moon (Muller and Sjogren 1968). Concerning recent applications to the data of the
satellite mission GRACE, the approach is, for example, explained in Rowlands et al. (2005). It is based on
the representation of the di�erence in the gravitational potential caused by the individual mascons in terms
of di�erential potential coe�cients. The mascon parameter belonging to each of the regional areas is then a
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scaling factor to the set of potential coe�cients associated with the mass element. To prevent the solution
from numerical instabilities, spatial and temporal constraints are introduced to ensure pairs of mascons that
are close to each other (either in time or in space) to stay close concering their values, too.
A widely-used idea in the modeling of potential �elds are wavelets. A general description of the concept of
wavelets can be found in literature, for instance in Holschneider (1995), Freeden et al. (1998), Schmidt
(2001), or Keller (2004). Wavelets represent the decomposition of a given signal into di�erent frequency-
dependent detail signals. Therefore, a wavelet representation is referred to as multi resolution representation.
The basis functions consist of scaling functions and wavelet functions, each wavelet function representing the
detail signal of a speci�c frequency band. They can be assumed to have local support in the space and in the
time domain. The application of wavelets to the modeling of functions on the sphere leads to the application
of spherical wavelets. The idea was applied to the analysis of CHAMP data by Fengler et al. (2004) and
Schmidt et al. (2005). Schmidt et al. (2006) used wavelet representations to model time variable gravity
�eld information from GRACE data. Fengler et al. (2007) used wavelets for the representation of time
variable GRACE gravity �elds. They made use of existing global spherical harmonic level 2 products and
applied wavelets to the spherical harmonic coe�cients. In this way the spherical harmonic solutions were
decomposed into di�erent scales.
An attempt to construct functions that concentrate a given signal as optimally as possible both in the time
and the frequency domain is the so-called Slepian approach, see, e.g., Slepian and Pollak (1960) and
Landau and Pollak (1962). Since strict localization in the time and the frequency domain are mutually
exclusive, the approach is based on the concept of maximizing the spatial concentration of a strictly band-
limited function. This function can be found by maximizing the ratio of the norm of the bandlimited function
within the concentration region and the norm of the respective function on the complete sphere; for a more
detailed description of the derivation of the functions, refer to, for instance, Simons et al. (2006). In the
context of analyzing the data of the new satellite missions, the concept of Slepian functions has been applied
by Baur and Sneeuw (2007) under special consideration of the polar gap problem occurring in case of the
GOCE mission. Here the concentration region is a spherical band excluding the polar gap regions. Additional
details of the use of Slepians in the context of the polar gap problem can be found in Simons and Dahlen
(2006). Furthermore, the Slepian functions have recently been applied to the study of regional phenomena
from GRACE data (Han and Simons 2008).
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3.Modeling of the Regional Gravity Field

Within the course of the following chapter, the tools necessary for the modeling of regional gravity �eld
solutions are introduced. In the �rst section, fundamental concepts of potential theory are summarized, as
they present the basic setting in which the modeling has to take place. In the second section, the concept
of reproducing kernel Hilbert spaces will be described. The introduction of spherical harmonics in the third
section concludes the more fundamental part of the chapter. Essential for the modeling of regional gravity
�elds are space localizing basis functions; they will be described in the following section and speci�ed as
spherical splines. Smoothness characteristics implied by the design of the basis functions are investigated
within the framework of the introduced reproducing kernel Hilbert spaces. The basis functions have to be
arranged homogeneously on the sphere. Therefore, di�erent possible choices of spherical point distributions
are described in the last section, together with an investigation of their suitability as nodal point pattern for
the spline functions.

3.1 Fundamentals of Potential Theory

In this section, important facts of the gravity �eld are summarized as far as they are relevant for this
thesis. They establish the basic framework for the design of the basis functions that are used to represent
the gravitational �eld. Further details on potential theory can be found, for example, in Heiskanen and
Moritz (1967).
According to Newton's law of gravitation, one particle with the mass m1 attracts a second particle with the
mass m2 with a force along the line of center of the two objects according to

K12 = −Gm1m2
r2 − r1

|r2 − r1|3
, (3.1)

with the positions of the two masses r1 and r2 and the gravitational constant G = (6672±4)10−14m3s−2kg−1.
The roles of attracting and attracted masses are interchangeable. Alternatively, the situation can be described
by regarding the attracting mass mQ to create a gravitational �eld strength around itself. This �eld strength
can be evaluated at any given point r by

g(r) = −GmQ
r− rQ
|r− rQ|3

. (3.2)

An analog relation can be formulated for the other particle to be considered as source of gravitation. The
force of gravity acting on a mass m within this force �eld can then be expressed by

K = mg. (3.3)
As the gravitational forces of di�erent point masses add up according to the superposition principle, the
gravitational �eld strength of a solid body with the volume Σ can be given at a position r by

g(r) = −G
∫∫∫

Σ

ρ(rQ)
l
l3
dΣ, (3.4)

with the continuous density function ρ(rQ) and the vector l with the length l between the �eld point r and
the attracting particle rQ.
Gravity is a conservative force �eld; it can be derived as the gradient of a scalar potential, the gravitational
potential V (r), according to

g(r) = ∇V (r). (3.5)
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Consequently, the gravitational potential of a continuous body can be determined by
V (r) = G

∫∫∫
Σ

ρ(rQ)
1
l
dΣ, (3.6)

where the integration constant is chosen such that the potential V vanishes at in�nity. V is continuous
throughout the whole space outside the masses and is di�erentiable arbitrarily often.
Of particular importance is the Laplace operator ∆, a di�erential operator that represents the sum of the
second partial derivatives with respect to the three cartesian coordinates, as expressed by

∆V =
∂2V

∂x2
1

+
∂2V

∂x2
2

+
∂2V

∂x2
3

. (3.7)

When dealing with gravitation, two di�erent cases are suitable to be considered separately according to the
question whether a point is inside or outside of the attracting masses. It either satis�es Poisson's equation
or Laplace's equation,

∆V =
{
−4πGρ for r inside Σ (Poisson)

0 for r outside Σ (Laplace). (3.8)

Concerning the determination of the gravitational potential in the exterior of the Earth, Laplace's equation
is relevant. Any function satisfying Laplace's equation at every point of a given region is called harmonic in
this region. Outside of gravitational masses the gravitational potential is a harmonic function, whereas inside
of those masses it is not harmonic, but satis�es Poisson's equation. In the following chapters of this thesis,
only the harmonic case outside the masses will be of further interest. For the mathematical representation
of the harmonic space, refer to Section 3.3.

3.2 Reproducing Kernel Hilbert Space

In Appendix A.1 the mathematical fundamentals dealing with function spaces are de�ned. Of particular
interest is thereby the concept of a Hilbert space introduced as a function space and the space of square
integrable functions L2. For speci�c applications in this thesis, the functions applied have to be restricted
to those ful�lling speci�c smoothness requirements that are stronger than the one in�icted by Eq. (A.16)
for functions belonging to L2. These smoothness conditions can be de�ned by a reproducing kernel, as will
be described below. This is the reason why the respective spaces are denoted as reproducing kernel Hilbert
spaces (RKHS). They are described, for example, in Aronszajn (1950) andMeschkowski (1962), and, for
geodetic applications, in Heiskanen and Moritz (1967), Krarup (1969), and Tscherning and Rapp
(1974). The essential requirement for an RKHS is the fact that the evaluation functional Fx has to be
bounded, i.e.

|Fxf | ≤M ‖f‖ , (3.9)
with the concept of boundedness de�ned in equivalence with Eq. (A.24). An evaluation functional Fx assignsto a function f , belonging to the reproducing Hilbert space HK , its value at a certain point x according to

Fxf = f(x). (3.10)
Eq. (3.9) implies that the value of an evaluation functional can be estimated by the norm of the function f .
From this fact it can be concluded that in a general Hilbert space Fx cannot commonly be assumed to be
bounded. For example, in the Hilbert space L2 outliers at single points change the value of |Fxf |, but do notchange the norm of f . The function can be changed in a countable set of points without changing the norm,
as single function values have no e�ect on the integral of the function.
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The Riesz representation theorem (Riesz 1907), as given in Section A.2, applies to bounded linear function-
als. The application to the bounded evaluation functional in an RKHS guarantees the existence of a function
Kx ∈ HK with

Fxf = f(x) = 〈Kx, f〉K . (3.11)
The symbol 〈·, ·〉K denotes the inner product in HK , which will be speci�ed below. According to the repre-
sentation theorem, Kx is the unique representer of the evaluation functional Fx. The inner product of therepresenters of the evaluation functionals at two points x and y is given by

K(x, y) = 〈Kx,Ky〉K , (3.12)
with K(x, y) being the reproducing kernel of the RKHS HK . The term 'reproducing kernel' is due to its
reproducing property characterized by

f(y) = 〈K(x, y), f(x)〉K . (3.13)
Thus the inner product of the reproducing kernel with a function f reproduces the function itself. An RKHS
is uniquely de�ned by the reproducing kernel (Theorem of Moore-Aronszajn, Aronszajn 1950).
In the following, it will be described how the reproducing kernel de�nes the smoothness condition imposed
on functions in order to belong to HK . These considerations are closely connected to the de�nition of the
inner product in the RKHS. In Appendix A.1 the inner product is de�ned in general, and a speci�cation
for the space L2 is given in Eq. (A.14) and Eq. (A.15). In the following, the L2 is considered on a bounded
domain; in this case it is separable (concerning the concept of separability, refer to Appendix A.1). In L2the scalar product of two functions is introduced, using Parseval's theorem, as the sum of the product of the
Fourier coe�cients of the two functions according to

〈f, g〉L2
=
∫
f(x)g(x)dx =

∞∑
i=0

fi · gi. (3.14)
The eigenvalue decomposition of linear operators in Appendix A.2.0.1 will be needed to understand the
following concepts. According to Mercer's Theorem (Mercer 1909), every positive semi-de�nite kernel can
be expressed by the orthonormal set of the eigenfunctions of the operator associated with the kernel. When
the operator is interpreted as integral operator with kernelK, then the eigenvalue equation can be formulated
as follows∫

K(x, y)ui(y)dy = λiui(x), (3.15)
where λi is the eigenvalue belonging to the respective eigenfunction ui. In a separable Hilbert space, the
kernel can be expressed by an expansion of these eigenfunctions,

K(x, y) =
∞∑
i=0

λi ui(x)ui(y). (3.16)
As mentioned in the context of the spectral decomposition of linear operators, the set of eigenfunctions is an
orthogonal basis for the integral kernel spanning its range. Therefore, an arbitrary function within the range
of the operator can be expanded with respect to the eigenfunctions in equivalence with Eq. (A.12). In the
context of an RKHS, this implies that every function f belonging to HK can also be expanded into a series
of the eigenfunctions of K,

f =
∞∑
i=0

fi ui. (3.17)

Now the scalar product 〈·, ·〉K shall be de�ned. In the framework of an RKHS, the product of the coe�cients
(3.14) is additionally divided by the respective eigenvalue of the reproducing kernel according to

〈f, g〉K =

〈 ∞∑
i=0

fiui,
∞∑
i=0

giui

〉
K

=
∞∑
i=0

fi · gi
λi

. (3.18)
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Then the de�nition of the norm of a function f is given by

‖f‖2K = 〈f, f〉K =
∞∑
i=0

f2
i

λi
. (3.19)

The RKHS can be considered as the closure of the set of all functions ful�lling the condition ‖·‖K < ∞.
Therefore, for f to be in the RKHS de�ned by K, Eq. (3.19) has to be �nite. This imposes the smoothness
condition mentioned above on the function, as the coe�cients of the function f have to approach zero
su�ciently fast to guarantee

∞∑
i=0

f2
i

λi
<∞. (3.20)

This implies that the coe�cients fi have to descend faster than the coe�cients λi of the kernel. Thus thefunctions as elements of an RKHS have to be smoother than the kernel itself. This results in stronger
limitations being imposed on the smoothness of the function f , and thus on the decreasing behavior of the
coe�cients, than it is the case in L2, as can be concluded from the comparison of Eq. (3.20) with Eq. (A.16).
In the following, the scalar product denoted by 〈·, ·〉 and the norm denoted by ‖·‖ will refer to the respective
calculations with respect to L2 without the use of the subscript.
In �nite dimensional spaces, the kernel K becomes the �nite dimensional matrix K. The division by the
singular values in the scalar product given by Eq. (3.18) corresponds to the introduction of the inverse
matrix K−1. The scalar product of the two n × 1 vectors f = (f1, ..., fn)T and g = (g1, ..., gn)T is then
de�ned by

〈f ,g〉K =
〈
f ,K−1g

〉
. (3.21)

Using the de�nition of the scalar product, as given by Eq. (3.18), demonstrates the reproducing character of
the kernel

〈f(x),K(x, y)〉K =

〈 ∞∑
i=0

fiui(x),
∞∑
i=0

λiui(x)ui(y)

〉
K

=
∞∑
i=0

1
λi
fi λi ui(y) =

∞∑
i=0

fi ui(y) = f(y). (3.22)

To provide a better understanding of the concept of reproducing kernel Hilbert spaces, again the di�erence
between an RKHS and L2 shall be demonstrated. In L2 the analogy to a reproducing kernel is the Dirac
delta functional, its reproducing property can be stated symbolically by

f(y) = 〈f(x), δ(x, y)〉 =
∫
f(x)δ(x, y)dx. (3.23)

According to this equation, the Dirac functional is the evaluation functional for the scalar product de�ned in
L2. But it is not an element of L2, and it is not bounded. Therefore, L2 is not an RKHS. The Hilbert space
L2 contains too many functions that are not smooth enough. The RKHS consists only of those functions
satisfying the smoothness condition given by Eq. (3.20), which is a stronger requirement than the one
imposed by Eq. (A.16). Thus the RKHS implied by a speci�c kernel K is smaller than L2, with di�erent
kernels introducing di�erent characteristics of smoothness. Every positive de�nite function is a reproducing
kernel for some RKHS, thus for any given positive de�nite kernel an RKHS can be constructed.



3.3. Spherical Harmonics 21

3.3 Spherical Harmonics

In the following, spherical harmonics as frequently-used tool for the representation of global data on the sphere
are introduced. The use of spherical harmonics in gravity �eld recovery for the purpose of representing global
�elds is a well-established technique. Consequently, most of the existing gravity �eld models are formulated in
terms of spherical harmonic coe�cients. Spherical harmonics are the eigenfunctions of the Laplace operator
given in Eq. (3.7) and represent a set of basis functions with global support. Therefore, they are well-suited
for the representation of global gravity �eld solutions. Their applicability to the modeling of regional �elds
has to be regarded as less appropriate. Within the context of regional gravity �eld recovery as treated in this
thesis, the understanding of spherical harmonics is nonetheless inevitable. On the one hand, it helps to point
out the di�erences when dealing with space localizing basis functions. On the other hand, the construction of
the basis functions, as will be described in Section 3.4, requires concepts applied in connection with spherical
harmonics, too. In the �rst part of this section, a mathematical description of spherical harmonics will be
given, introducing them as the restriction of harmonic polynomials to the unit sphere, as described, e.g.,
by Freeden et al. (1998). Subsequently, the spherical harmonics will be adapted for geodetic applications,
refer to Heiskanen and Moritz (1967). A further comprehensive treatment of the subject of spherical
harmonics can be found in Hobson (1931). As an introduction to the concept of space localizing basis
functions, the covariance function on the sphere is then described in the third part of this section, followed
by the application of the concept of reproducing kernel Hilbert spaces to the sphere.

3.3.1 Mathematical Description

In the following, vectors x and y will be used to denote vectors on the unit sphere |x| = |y| = 1. This
will prove to be helpful, as most of the following considerations will be performed with respect to the unit
sphere Ω with

Ω = {x ∈ IR3 | |x| = 1}. (3.24)
A vector xr ∈ IR3,xr = (rx1, rx2, rx3)T can then be represented by xr = rx with |xr| = r.
A polynomial Hn is homogeneous of degree n in x1, x2, x3 if

Hn(rx) = Hn(rx1, rx2, rx3) = rnHn(x1, x2, x3). (3.25)
A homogeneous polynomial Hn is harmonic if it ful�lls Laplace's equation, as de�ned in Eq. (3.7),

∆Hn = 0. (3.26)
The restriction of any homogeneous harmonic polynomial Hn of degree n to the unit sphere Ω is called a
(Laplace's) surface spherical harmonic Yn of degree n,

Yn = Hn|Ω. (3.27)
It can be proven that if rnYn(x) is harmonic, then 1

rn+1Yn(x) is harmonic as well. These functions
1

rn+1
Yn(x) (3.28)

are called solid spherical harmonics of degree n. They represent the solution to Eq. (3.26), cf. Heiskanen
and Moritz (1967). On the unit sphere the following inner product can be de�ned,

〈u(x), v(x)〉 =
1
4π

∫∫
Ω

u(x) v(x) dΩ. (3.29)
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A basic property of spherical harmonics is orthogonality. If Yn(x) and Yn̄(x) are spherical harmonics of
degree n and n̄, respectively, they are orthogonal in the sense of the inner product de�ned by (3.29),

〈Yn, Yn̄〉 =
1
4π

∫∫
Ω

Yn(x)Yn̄(x) dΩ = 0, n 6= n̄. (3.30)

For every Yn there exist 2n + 1 linearly independent orthogonal basis functions denoted by Ynm with m ∈
[−n, n]. Consequently, the space of spherical harmonics of degree n is of the dimension dimYn = 2n+1, and
Yn can be separated into a series expansion of these basis functions according to

Yn(x) =
n∑

m=−n
cnmYnm(x). (3.31)

The basis functions Ynm are chosen to be orthonormal with respect to the inner product (3.29),
〈Ynm(x), Yn̄m̄(x)〉 =

1
4π

∫∫
Ω

Ynm(x)Yn̄m̄(x) dΩ = δnn̄δmm̄. (3.32)

Consequently, the coe�cients cnm can be calculated by
cnm = 〈Yn(x), Ynm(x)〉 =

1
4π

∫∫
Ω

Yn(x)Ynm(x) dΩ. (3.33)

The basis functions Ynm are also called surface spherical harmonics of degree n and order m. It has to
be distinguished, depending on the speci�c context, whether the term 'spherical harmonic' is referred to
(Laplace's) spherical harmonics Yn or their basis functions Ynm.
Of considerable interest is the addition theorem of spherical harmonics,

n∑
m=−n

Ynm(x)Ynm(y) =
√

2n+ 1Pn(x · y), (3.34)

which establishes a relationship between the (fully normalized) Legendre polynomials Pn(x ·y) = Pn(cos(ψ))
de�ned on the interval [−1, 1] on the one hand and the functions Ynm(x) de�ned on the sphere Ω on the
other hand. The spherical distance ψ between two points is related to the inner product of the two points by

t = cosψ = x · y, (3.35)
and the Legendre polynomials Pn(t) only depend on this spherical distance. Their fully normalized version
is given by

1
2

1∫
−1

Pn(t)Pn̄(t) dt = δnn̄. (3.36)

A connection between the Legendre Polynomials Pn(x · y) and the Laplace's spherical harmonics Yn can be
established when both sides of Eq. (3.34) are multiplied by Yn(x) and subsequently an integration over the
unit sphere is performed. This leads to the following relation,

Yn(y) =
√

2n+ 1
4π

∫∫
Ω

Yn(x)Pn(x · y)dΩ. (3.37)

Any function f(x) ∈ L2(Ω) on Ω can be developed into a series of spherical harmonics. In this context, the
spherical harmonics serve as orthogonal basis functions (as given by Eq. (A.12) for arbitrary Hilbert spaces),

f(x) =
∞∑
n=0

n∑
m=−n

cnmYnm(x). (3.38)
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Eq. (3.38) is denoted as spherical harmonic synthesis. When the spherical harmonic coe�cients are to be
calculated from a given function by using the orthogonality property of surface spherical harmonics,

cnm =
1
4π

∫∫
Ω

f(x)Ynm(x) dΩ, (3.39)

this is known as spherical harmonic analysis. A harmonic function f(xr) in the exterior of Ω can be expanded
in terms of solid spherical harmonics by

f(xr) =
∞∑
n=0

1
rn+1

n∑
m=−n

cnmYnm(x). (3.40)

According to Parseval's theorem, the norm of the function f (in the L2 sense) can be phrased in terms of
the spherical harmonic coe�cients by

‖f(x)‖2 =
1
4π

∫∫
Ω

f(x)2dΩ =
∞∑
n=0

n∑
m=−n

c2nm =
∞∑
n=0

σ2
n. (3.41)

Here σ2
n are called degree variances of degree n. The expansion of a function in spherical harmonics accordingto (3.38) can be interpreted as Fourier expansion on the sphere, with each degree and order being associated

with a certain frequency.

3.3.2 The Use of Spherical Harmonics in Geodesy

The above speci�cations of spherical harmonics have taken place from a merely mathematical point of view.
In the following, the spherical harmonic expansion will be adapted to geodetic problems such as the task of
describing functionals of the gravitational potential of the Earth, as introduced, for example, by Heiskanen
and Moritz (1967). While the mathematical considerations above have been performed with respect to
the unit sphere, a series expansion of the gravitational potential of the Earth is commonly expressed in the
exterior of a sphere ΩR with a radius R being the mean radius of the equator of the Earth. The potential in
the exterior of this sphere can then be represented in terms of solid spherical harmonics by

V (xr) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

cnmYnm(x), (3.42)

with G denoting the gravitational constant and M representing the mass of the Earth. The factor GM/R is
introduced, so that the coe�cients cnm can be identi�ed as dimensionless values, and the potential V (xr) isprovided with the correct units.
So far, the fully normalized spherical harmonics have been used with the orthonormality relation given by
Eq. (3.32). Quite common in geodetic literature is the use of the not normalized version, here denoted by
Ŷnm. It is related to the fully normalized surface spherical harmonics Ynm by

Ynm(x) =

√
(2− δ0m)(2n+ 1)

(n− |m|)!
(n+ |m|)!

Ŷnm(x). (3.43)

In the case of the Earth's gravity �eld, the norm of a function as introduced in Eq. (3.41) can be approximated
by an empirical model known as Kaula's rule of thumb (Kaula 1966),

‖V (x)‖2 =
∞∑
n=0

σ2
n ≈

∞∑
n=0

(2n+ 1)
10−10

n4
. (3.44)
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Here 10−10

n4 corresponds to one single coe�cient of degree n, and the factor (2n + 1) takes care of the fact
that there are (2n+1) coe�cients per degree. Then the standard deviations per degree can be approximated
by

σn =

√
(2n+ 1)

10−10

n4
. (3.45)

In geodetic applications, the introduction of spherical coordinates, radius r, polar distance or co-latitude ϑ,
and geocentric longitude λ is quite common. It holds for the relationship to the rectangular coordinates

xr = (r cosλ sinϑ, r sinλ sinϑ, r cosϑ)T . (3.46)
The basis functions are then chosen according to

Ynm(x) =
{
Cnm(x) = Pnm(cosϑ) cos(mλ) for m = 0, ..., n
Snm(x) = Pn|m|(cosϑ) sin(|m|λ) for m = −n, ...,−1 , (3.47)

with the associated Legendre functions Pn|m|(cosϑ). The coe�cients assigned to the Cnm(x) and Snm(x) are
denoted by cnm and snm, respectively. This results in the following expression for the gravitational potential,

V (xr) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=0

cnmCnm(x) + snmSnm(x). (3.48)

It has to be pointed out that the cnm in (3.48) are di�erent from those applied in (3.38). In most of the
following investigations within this thesis, the expansion of a function in terms of spherical harmonics accord-
ing to Eq. (3.38) will be used. However, when dealing with the discrete orthogonality relations of spherical
harmonics that will be exploited in Section 6.2.1, the di�erentiation between sine and cosine functions is
signi�cant. Therefore, at that point, the use of Eq. (3.48) will be more reasonable.

3.3.3 Covariance Function on the Sphere

The covariance function characterizes the statistical properties of the gravity �eld. It can be applied in signal
modeling or accuracy estimation. In the context of this thesis, it is of particular interest for the design of
the radial basis functions in Section 3.4, as they are directly based on the statistical characteristics given
by the covariance function. When de�ning the covariance function, the gravity �eld functionals have to be
interpreted as signals of a stationary stochastic process on the sphere. Concerning the discussion whether
this is a valid assumption, see, for example, Moritz (1980) and Moritz and Sansò (1981). In case of the
gravity �eld, there is only one realization of the stochastic process available. Therefore, it has to be assumed
to be ergodic, which implies that the average in time can be taken to be equal to the average over the
ensemble, in this case the average over the sphere. This allows for the statistical characteristics to be derived
from one single realization. Furthermore, homogeneity and isotropy are presumed resulting in a dependency
only on the spherical distance between two points. The expectation value of the homogeneous, isotropic, and
ergodic stochastic process on the sphere is given by the average (Moritz 1978),

M(f) =
1
4π

2π∫
λ=0

π∫
ϑ=0

f(ϑ, λ) sin(ϑ)dϑdλ, (3.49)

with M(f) denoting the average operator applied to the function f . The average (3.49) becomes zero if
the corresponding expansion of the function in a series of spherical harmonics does not include a term of
degree n = 0. This will be presumed in later applications throughout this thesis by introducing a reference
�eld whose mass is set equal to the mass of the Earth. Furthermore, the harmonic terms of degree one are
assumed to become zero by an appropriate choice of the origin of the coordinate system. Therefore, in the
expansion of the covariance functions below, the zeroth and �rst order spherical harmonics will be omitted.
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The covariance function C(x,y) can be calculated by averaging the product of two function values according
to

C(x,y) = C(ψ) = M(f(x), f(y)) =
1

8π2

2π∫
λ=0

π∫
ϑ=0

2π∫
α=0

f(ϑ, λ)f(ϑ′, λ′) sin(ϑ)dϑdλdα, (3.50)

and it only depends on the spherical distance ψ between these two points. Here (ϑ, λ) are the spherical
coordinates of point x, and (ϑ′, λ′) are the spherical coordinates of point y. The (ϑ′, λ′) depend on (ϑ, λ) due
to the fact that the two points on the sphere are separated by the spherical distance ψ and that y is located
at azimuth α from x. The integration over λ and ϑ implies homogeneity, and the integration over α denotes
isotropy. The averaging operatorM(f(x), f(y)) can be interpreted as averaging �rst over a circle with radius
ψ located at x and then varying x over the whole sphere. Following the derivations described by Heiskanen
and Moritz (1967), the covariance function can be expanded into a series of spherical harmonics. Since it
depends only on the spherical distance between two points, it can be expressed by Legendre polynomials,

C(x,y) = C(ψ) =
∞∑
n=2

cnPn(cosψ). (3.51)
The coe�cients cn can be obtained by

cn =
1
2

∫ π

ψ=0

C(ψ)Pn(cosψ) sinψ dψ. (3.52)
Inserting Eq. (3.50) into Eq. (3.52) leads to

cn =
1
4π

1
4π

∫ 2π

λ=0

∫ π

ϑ=0

∫ 2π

α=0

∫ π

ψ=0

f(ϑ, λ)f(ϑ′, λ′)Pn(cosψ) sinψ dψ dα · sinϑ dϑ dλ. (3.53)
At �rst the integration with respect to α and ψ shall be considered. Taking into account the addition
theorem of Eq. (3.34) and the spherical harmonic analysis de�ned in Eq. (3.39) and introducing a change of
the integration variables, the integration can be carried out as follows,

1
4π

∫ 2π

α=0

∫ π

ψ=0

f(ϑ′, λ′)Pn(cosψ) sinψ dψdα

=
1
4π

∫ 2π

λ′=0

∫ π

ϑ′=0

f(ϑ′, λ′)Pn(cosψ) sinϑ′ dψdλ′ =
fn(ϑ, λ)√

2n+ 1
. (3.54)

This leads to the formulation of the coe�cients cn by
cn =

1
4π

1√
2n+ 1

∫ 2π

λ=0

∫ π

ϑ=0

f(ϑ, λ)fn(ϑ, λ) sinϑ dϑ dλ. (3.55)
Here fn denotes the Laplace's surface spherical harmonics given by Eq. (3.31), written in the form

f(ϑ, λ) =
∞∑
n′=2

fn′(ϑ, λ). (3.56)
When inserting Eq. (3.56) into Eq. (3.55), it follows by applying the orthogonality relations de�ned by
Eq. (3.30),

cn =
1√

2n+ 1

n∑
m=−n

c2nm =
σ2
n√

2n+ 1
. (3.57)

Thus the coe�cients of the covariance function are the variances of the Laplace spherical harmonics of degree
n, the so-called degree variances as introduced in Eq. (3.41). Then the covariance function is given by

C(x,y) =
∞∑
n=2

σ2
n√

2n+ 1
Pn(x · y) =

∞∑
n=2

σ2
n

2n+ 1

n∑
m=−n

Ynm(x)Ynm(y). (3.58)
The degree variances represent the power spectral density of the function f , thus they give evidence of how
much energy is contained in a certain frequency n.
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3.3.4 RKHS on the Sphere

The concept of a Hilbert space with reproducing kernel, introduced in Section 3.2, can be applied to func-
tions on the sphere, too. In geophysical applications, the functions to be determined are typically bounded
and continuous, which implies that they cannot be arbitrarily rough. Therefore, the space L2(Ω) of square
integrable functions on the sphere contains too many functions that are not smooth enough, as square in-
tegrable functions are not necessarily continuous or bounded. Because of this reason, the restriction of the
functions in question to those satisfying certain smoothness conditions imposed by a reproducing kernel
becomes necessary for certain applications. A reproducing kernel on the unit sphere can be expressed as a
series of Legendre polynomials according to

K(x,y) =
∞∑
n=0

√
2n+ 1 λn Pn(x · y) =

∞∑
n=0

n∑
m=−n

λnYnm(x)Ynm(y), (3.59)

with the spherical harmonics serving as orthogonal eigenfunctions as introduced by Eq. (3.16). For a function
f to be element of the RKHS, the norm as de�ned by (3.19) has to be �nite. This imposes the smoothness
condition on the function, as its coe�cients have to descend su�ciently fast to ensure

‖f(x)‖2K =
∞∑
n=0

n∑
m=−n

c2nm
λn

<∞. (3.60)

As already discussed in Section 3.2, the term 'smoothness' of a function refers to the decreasing behavior
of the coe�cients. The faster the coe�cients cnm descend with increasing n, the less energy is contained in
the higher frequencies. The inner product corresponding to (3.60) is then de�ned for two functions f(x) and
g(x) according to Eq. (3.18) by

〈f(x), g(x)〉K =

〈 ∞∑
n=0

n∑
m=−n

fnmYnm(x),
∞∑
n=0

n∑
m=−n

gnmYnm(x)

〉
K

=
∞∑
n=0

n∑
m=−n

gnmfnm
λn

. (3.61)

Referring to this inner product, the reproduction property of the kernel leads to

〈K(x,y), f(x)〉K =
∞∑
n=0

n∑
m=−n

1
λn

λn fnmYnm(y) = f(y). (3.62)

Generally, in mathematical considerations, the smoothness of a function is de�ned by its di�erentiability,
meaning the more often a function can be di�erentiated, the smoother it is. To illustrate the relationship
between the smoothness requirements imposed by a reproducing kernel and the notion of di�erentiability,
the �rst radial derivative of a function expanded into a series of solid spherical harmonics according to (3.40)
shall be investigated on the unit sphere,

df(xr)
dr

∣∣∣∣
r=1

=
∞∑
n=0

−(n+ 1)
n∑

m=−n
cnmYnm(x). (3.63)

The ampli�cation of the higher frequencies due to the introduction of the factor (n+ 1) becomes evident. A
function f has a derivative in L2 if the series converges∥∥∥∥df(xr)

dr

∥∥∥∥2

=
∞∑
n=0

(n+ 1)2
n∑

m=−n
c2nm <∞. (3.64)

Comparing (3.60) and (3.64) reveals that the demand of di�erentiability in this case is equivalent to requiring
that the function f belongs to an RKHS with the eigenvalues λn = 1/(n+1) of the reproducing kernel. Thus
it can be concluded that the smoothness requirements induced by the demand of a function to belong to a
certain RKHS and to have a corresponding di�erentiability are directly related concepts. For the function to
have a �rst derivative in L2, the degree variances∑n

m=−n c
2
nm have to decrease su�ciently fast with increasing
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degree n to ensure convergence despite division by the descending eigenvalues. Higher order derivatives are
represented equivalently by kernels with eigenvalues that descend even faster. However, it has to be pointed
out that these considerations are valid for functions on the unit sphere. In the outer space, harmonic functions
are di�erentiable in�nitely often and the norm of the function as well as the norm of all its derivatives have
to converge.
Regarding (3.58), under consideration of (3.57), it can be observed that the covariance function gives evidence
of the smoothness of the associated function. This leads to the idea of using the covariance function C(x,y) of
(3.58) itself as a reproducing kernel to de�ne an RKHS HC with the corresponding smoothness characteristics(Tscherning 1972). In this case, the eigenvalues to be inserted into (3.59) have to be chosen according to

λn =
σ2
n

2n+ 1
. (3.65)

As for the covariance function the coe�cients of degree zero and degree one have been assumed to be zero,
this has to be taken into account in the following considerations as well. Since a reproducing kernel has to
be positive de�nite, its eigenvalues have to be positive. Therefore, in this case the series expansion of the
kernel has to start with degree n = 2 to ensure positive de�niteness. This implies that the corresponding
eigenfunctions Ynm span a Hilbert space of functions for which the zeroth and the �rst moment vanish,∫∫

Ω

f(x) dΩ = 0 and
∫∫
Ω

xαf(x) dΩ = 0 with xα = {x, y, z} . (3.66)

In equivalence with Eq. (3.62), the reproducing property can be speci�ed for this kernel as well,

〈C(x,y), f(x)〉C =
∞∑
n=2

n∑
m=−n

2n+ 1
σ2
n

σ2
n

2n+ 1
fnmYnm(y) = f(y). (3.67)

This is valid for an arbitrary function f(x) =
∑∞
n=2

∑n
m=−n fnmYnm(x), as long as it is an element of HC .If, on the contrary, the norm ‖·‖C is calculated for the function (e.g. the gravitational potential) from which

the covariance function and thus the coe�cients (3.65) are derived, this yields

‖V (x)‖2C =
∞∑
n=2

2n+ 1
σ2
n

n∑
m=−n

c2nm =
∞∑
n=2

2n+ 1
σ2
n

· σ2
n =

∞∑
n=2

(2n+ 1) = ∞. (3.68)

Obviously, this contradicts the smoothness condition imposed by the kernel. Thus it can be concluded that
the function, as for example the gravitational potential of the Earth, does not belong to the RKHS de�ned
by its covariance function. This problem as a consequence of choosing the covariance function as reproducing
kernel was also pointed out by Tscherning (1977). A way out of this problem would be to slightly modify
the degree variances by substituting σ2

n by σ2
n(1+ε)n with a small positive quantity ε, as proposed inMoritz

(1980). This results in the modi�ed (and thus slightly rougher) kernel function

C̄(x,y) =
∞∑
n=2

σ2
n(1 + ε)n

2n+ 1

(
R

R′

)n n∑
m=−n

Ynm(x)Ynm(y). (3.69)

The parameter ε can adjust the smoothness of the reproducing kernel. The consideration of the covariance
function as reproducing kernel will be discussed in the context of regularization in Section 5.2. In Section 7.2
the e�ect of a modi�ed covariance function will be investigated. Despite the fact that the problem of con-
vergence is of theoretical interest, it does not seem to have a signi�cant impact on the results of practical
applications.
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3.3.5 Upward Continuation

The above considerations refer to the unit sphere. Introducing solid spherical harmonics, functions can
also be formulated in the exterior of a sphere with arbitrary radius R, as indicated in Eq. (3.42). This
upward continuation from the sphere to a point xr in its exterior with a distance r from the center of the
sphere arises as the solution of a �rst boundary value problem of potential theory, see, e.g., Heiskanen and
Moritz (1967). It can be formulated as the application of an upward continuation operator. The kernel of
this operator can be given by

U(x,xr) =
∞∑
n=0

n∑
m=−n

1
R

(
R

r

)n+1

Ynm

(xr
r

)
Ynm(x). (3.70)

Then the function in the exterior of the sphere can be expressed by applying the upward continuation
operator to the respective function on the sphere,

f(xr) =
∫∫
Ω

U(x,xr)f(x)dΩ =
∞∑
n=0

n∑
m=−n

1
R

(
R

r

)n+1

cnmYnm

(xr
r

)
. (3.71)

The formulation of the upward continuation as operator equation will prove to be helpful when investigating
its spectral properties, especially with respect to the ill-posedness of the downward continuation process that
will be dealt with in Section 5.1.1.

3.4 Space Localizing Basis Functions

The following section will introduce the concept of space localizing basis functions, as they are an essential
tool in regional gravity �eld modeling. At �rst, some remarks are to be made concerning the subject of
localization, because this helps to point out the di�erences of space localizing basis functions compared to
the spherical harmonics that were described in Section 3.3 as basis functions especially for global gravity
�eld modeling.
A function can be localizing in the space as well as in the frequency domain. The term 'localization' refers
to the size of the area in the speci�c domain in which the function does not vanish. The smaller this area is,
the better the function localizes. According to Heisenberg's uncertainty principle (see, for example, Heitz
and Stöcker-Meier 1994), a function cannot have perfect localizing properties in the frequency domain
and at the same time in the space domain. The ratio of both localizations is reciprocally proportional, as
the better the function localizes in one domain, the worse does it localize in the other domain. A schematic
illustration of this matter is given in Fig. 3.1; here also the di�erent basis functions are assigned to their
respective localization properties. The spherical harmonics described above, for instance, have perfect lo-
calizing properties in the frequency domain, as every degree n and order m can be associated with one
single frequency. Consequently, they do not have any localizing features in the space domain at all. Spherical
harmonics are basis functions with global support, resulting in the fact that each spherical harmonic is sig-
ni�cantly di�erent from zero almost everywhere on the sphere. Therefore, changes in one coe�cient always
a�ect the complete sphere. On the other hand, changes in a regionally restricted area of the represented �eld
will a�ect the whole set of spherical harmonic coe�cients. Consequently, the calculation of one single �eld
value requires the evaluation of every coe�cient of the global model. The directly opposite characteristics
provide the Dirac functionals. They are di�erent from zero in only one single point in the space domain, thus
providing perfect localizing properties there. On the other hand, they contain every frequency with equal
weight and, therefore, exhibit no localization in the frequency domain at all. A compromise between space
and frequency localization is provided by kernels such as those that will be applied as basis functions for the
regional modeling in this thesis. Despite no perfect localization in the space domain, they are di�erent from
zero only in a geographically limited area or at least decay fast enough in the space domain to be regarded as
quasi space localizing. Here it can be distinguished between non-bandlimited kernels and bandlimited ones
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no space localization
ideal frequency localization

no frequency localization
ideal space localization

spherical harmonics kernels

bandlimited non−bandlimited

dirac functionals

Figure 3.1: Uncertainty principle (Freeden 1999)

for which frequencies above a certain degree are zero. The non-bandlimited versions exhibit a stronger space
localization than their respective bandlimited counterparts.
The kernel functions to be discussed in the following are radial basis functions, which implies that they only
depend on the spherical distance between a point on the sphere and the respective nodal point at which the
kernel is located. Therefore, in the following part of this section, the idea of modeling a function on the sphere
in terms of radial basis functions will �rst be introduced in general. For further information concerning this
matter, it can be referred, for example, to Freeden et al. (1998). This general introduction is followed by
the speci�cation of the basis functions to be used in the investigations in this thesis. They di�er from existing
radial basis functions by the particular choice of the coe�cients de�ning the shape of the kernels.

3.4.1 Radial Basis Functions

As mentioned above, radial basis functions Φ(x,xi) depend only on the spherical distance between two pointson the sphere expressed by the unit vectors x and xi. Thus they can be regarded as
Φi(x,xi) = Φ(x · xi), (3.72)

with x,xi ∈ Ω. Any radial symmetric basis function can be expressed by a sum of Legendre polynomials,
Φi(x,xi) =

∞∑
n=0

√
2n+ 1 · knPn(x · xi) =

∞∑
n=0

n∑
m=−n

knYnm(x)Ynm(xi). (3.73)
The coe�cients kn de�ne the shape of the function; the question concerning the choice of these coe�cients
will be addressed in more detail below. Any functional on the sphere can be modeled as a series expansion
of the radial basis functions according to

s(x) =
I∑
i=1

aiΦi(x,xi), (3.74)
with the scaling coe�cients ai. x stands for the evaluation point, and the xi denote the nodal points at whichthe basis functions are located on the surface of the sphere. As the gravitational potential is a harmonic
function, the radial basis functions are chosen as harmonic kernel functions as well, meaning that they can
be outward continued harmonically. In later calculations the gravity �eld functionals will be modeled on a
reference sphere ΩR with radius R; the upward continuation into the exterior of ΩR can be performed by
applying the upward continuation operator de�ned in Eq. (3.70),

Φi(xr,xi) =
∫

Ω

U(x,xr)Φi(x,xi)dΩ =
∞∑
n=0

1
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(
R

r

)n+1√
2n+ 1 knPn

(xr
r
· xi
)
. (3.75)

Details concerning harmonic kernel functions can be found in Moritz (1980) or Lelgemann (1981), and
further information is given in Freeden et al. (1998) andFreeden (1999).
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3.4.2 Spherical Splines

The term 'spline' was originally derived from the denomination of a thin bar used in the geometrical design
of ship hulls. This bar assumes a form that minimizes its (one-dimensional) bending energy (Schoenberg
1964a and Schoenberg 1964b). Following this de�nition, splines are functions that minimize the norm of
the mth derivative of a function, ∫ b

a

(
f (m)(x)

)2
dx; in the case m = 2 the minimization of the bending energy

mentioned above is achieved, see alsoWahba (1990). Transferring the one-dimensional concept of a thin bar
to the sphere, it can be visualized as the bending energy of a thin plate covering the surface of the sphere.
Concerning the idea of spherical spline approximation, refer to Wahba (1981) and Freeden (1981). The
minimization of certain derivatives imposes particular smoothness conditions on the function. This leads
to the expansion of the concept of splines to the minimization of norms imposed by reproducing kernels
(see, for example, Freeden 1999). Concerning the relationship between smoothness de�ned by the idea of
di�erentiability and smoothness induced by reproducing kernels, refer to Section 3.3.4. Therefore, the use of
the reproducing kernel Φ of a reproducing kernel Hilbert space HΦ as basis functions in Eq. (3.74) can be
speci�ed as spherical spline representation of the signal s(x), see alsoKusche (2002). It can be distinguished
between spline interpolation and spline approximation. In case of interpolation, the values at N observation
points are reconstructed exactly by the use of N basis functions, one positioned at each observation point. In
contrast to this, spline approximation refers to modeling the (error a�ected) observation values as accurately
as possible (in the least squares sense) by a limited number I < N of basis functions positioned at previously
�xed nodal points. These nodal points are independent of the observation points and generally do not coincide
with them. The latter case of spline approximation is the one relevant in the context of regional gravity �eld
modeling. I basis functions located at the nodes of a spherical grid are applied to represent the gravity
�eld solution obtained from a large amount of observations given at the satellite's positions. An overview
concerning spline representations of functions on the sphere with application in geopotential modeling can,
for example, be found in Jekeli (2005).
When dealing with radial basis functions, the coe�cients kn in Eq. (3.73) are responsible for the shape of
the basis functions, with di�erent choices for kn leading to di�erent functions. The coe�cients to be selected
for the design of the spline functions introduced in this thesis are derived from the covariance function given
in Eq. (3.58),

Φi(x,xi) =
∞∑
n=2

σnPn(x · xi) =
∞∑
n=2

n∑
m=−n

σn√
2n+ 1

Ynm(x)Ynm(xi). (3.76)
This means that the coe�cients kn in Eq. (3.73) are chosen according to

kn =
σn√

2n+ 1
. (3.77)

A comparison with Eq. (3.58) reveals that kn are the square roots of the coe�cients de�ning the covariance
function. Investigations about this choice of coe�cients will be given below in this section, as well as in
Section 3.4.5 and in Section 5.3. As was the case for the covariance function, again the coe�cients of degree
zero and degree one are omitted. The space localizing basis functions are applied to model residual �elds, as
will be described in detail below. Therefore, it is su�cient for them to model a space of functions for which
the zeroth and the �rst moments vanish, as de�ned by (3.66).
The basis functions Φi can again be used to construct a reproducing kernel Hilbert space HΦ with Φ as a
reproducing kernel. The eigenvalues of the kernel are the kn of Eq. (3.77). This leads, under consideration
of Eq. (3.60), to the norm in the space HΦ being de�ned by

‖f(x)‖2Φ =
∞∑
n=2

√
2n+ 1
σn

n∑
m=−n

c2nm. (3.78)
If f(x) is the function (e.g. the gravitational potential) from which the σn are derived, this leads to the
following norm,

‖f(x)‖2Φ =
∞∑
n=2

√
2n+ 1
σn

σ2
n =

∞∑
n=2

√
2n+ 1 σn. (3.79)



3.4. Space Localizing Basis Functions 31

The question arises which implications are induced by the choice of the coe�cients kn. They de�ne the shapeof the spline kernel and thus the norm of the associated Hilbert space. While a variety of di�erent norms
is imaginable, it is reasonable to choose the norm closely adapted to the speci�c characteristics of the data,
e.g. a norm in accordance with a-priori information about the data. Investigating (3.79) reveals that when
assuming Kaula's rule (3.45) for the statistical properties of the gravitational potential on the sphere, the
terms in the series expansion of the norm would behave according to

√
2n+ 1 · σn ∼

1
n
. (3.80)

Thus it can be concluded that the gravitational potential must be assumed to be slightly smoother than
Kaula's rule to become part of the Hilbert space HΦ. This can be realized from the fact that with σ2

n ∼ 1
n3(as proposed by Kaula) Eq. (3.79) results in a summation of terms of the order 1/n, which is exactly the

limit for which a series does not yet converge. As soon as the function is only slightly smoother, i.e. as soon
as the following relationship is given for ε being an arbitrarily small positive value,

∞∑
n=0

1
n(1+ε)

≤ ∞ (3.81)

convergence is guaranteed. This does not pose a problem, however, as Kaula's rule is only an abstract
approximation and does not have to be valid especially for high degrees. An equivalent assumption has to
be made for the gravitational potential to have a �rst derivative in L2 on the sphere. This is shown for the
�rst radial derivative in an overview dealing with convergence issues given in Section 3.4.5.

3.4.3 Bandlimited Spline Functions

So far, the discussion of the basis functions has been related to in�nite dimensional Hilbert spaces. As soon
as one deals with practical calculations, however, the series expansion of the basis functions has to be limited
to a maximum degree N . This leads to a modi�cation of Eq. (3.73),

Φi(x,xi) =
N∑
n=2

√
2n+ 1 knPn(x · xi) =

N∑
n=2

n∑
m=−n

knYnm(x)Ynm(xi). (3.82)

The restriction to a maximum degree corresponds to the omission of higher frequencies. Thus the basis
functions can only model a �nite dimensional Hilbert space spanned by the Ynm up to degree N , which results
in a smoother version of the modeled function. When dealing with bandlimited spline kernels, convergence
issues, as given by (3.79) and as will be discussed in Section 3.4.5, are of minor importance, as an in�nite
norm is impossible in �nite dimensional function spaces. The reasonable upper degree for the truncation of
the series expansion depends on the expected gravity �eld signal to be modeled by the corresponding basis
functions.
In addition to the omission of the high frequencies, the basis functions to be used in actual regional gravity
�eld recovery problems are always applied to the parameterization of residual �elds. Therefore, they are
supposed to model information additional to a given global reference model. That is why the basis functions
have to be selected, so that they re�ect only the spectral characteristics of the residual �eld. This results in
coe�cients kn to be derived from some kind of di�erence degree variances,

kn =
∆σn√
2n+ 1

with ∆σ2
n =

n∑
m=−n

∆c2nm. (3.83)

The di�erence degree variances can either be obtained by actually subtracting the coe�cients of the reference
�eld from alternative global models which describe a-priori well-known high-resolution gravity �eld features.
More appropriate, however, is the use of the formal errors of the coe�cients of the reference model. They
re�ect the residual signal information for each frequency still present in the data, but not yet modeled by the
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reference �eld. For degrees higher than the maximum degree provided by the reference �eld, the di�erence
degree variances become the degree variances themselves or an approximation thereof, e.g. provided by
Kaula's rule. In Fig. 3.2 examples of (normalized) spline kernels for di�erent resolutions are displayed for
a maximum degree of N = 60 (top), N = 120 (middle), and N = 240 (bottom), respectively. They are
calculated according to Eq. (3.82) and each of the basis functions is derived from the error degree variances
of the GRACE gravity solution ITG-Grace02s (Mayer-Gürr 2006). In case of the spline kernel developed
until N = 240, the coe�cients have been padded with degree variances approximated by Kaula's rule above
degree n = 120. The illustrations reveal how the kernels become more space localizing with higher expansion
degree, because their support becomes increasingly narrow. This shows how the maximum degree accounts
for the correlation length of the kernel. However, the bandlimited basis functions are not rigorously space
localizing, as it is indicated by the oscillations in Fig. 3.2. Strictly speaking, they have to be addressed as
functions with global support, because they are not exactly zero outside a certain support area. But as
they decay su�ciently fast, this fact can be neglected, and the spline functions can be referred to as space
localizing basis functions despite these minor simpli�cations. Even if the functions were non-bandlimited, and
thus the expansion in Eq. (3.76) was performed up to in�nity, the functions would converge for n→∞. This
is because the coe�cients kn can be assumed to decay su�ciently fast to assure that the sum in Eq. (3.76)
is �nite. With an assumed frequency spectrum given by Kaula's rule (3.45), they behave according to

∆σn√
2n+ 1

∼ 1
n2
. (3.84)

3.4.4 Arrangement of the Basis Functions on the Sphere

Directly connected to the question of the shape of the basis functions, there arises the problem of the
arrangement of the spline kernels on the sphere being responsible for the distance between the nodal points
of neighboring basis functions. Principally, the radial basis functions are to be distributed as homogeneously
as possible on the surface of the sphere. Therefore, a spherical grid is designed, and the spline kernels are
located at the nodes of this grid. Besides the uniform distribution, the grid is to meet the requirements of
being reproducible and easily implementable on the one hand and of providing the opportunity to chose
the number of grid points as �exibly as possible on the other hand. The latter point is important as the
number of spline kernels de�nes the resolution of the gravity �eld solution. In Section 3.5 several possible
distributions are introduced. The so-called triangle vertex grid has turned out to be the most feasible one.
It is described in Section 3.5.1.6, and its choice is justi�ed in Section 3.5.2.
The given grid can be de�ned for di�erent levels of resolution having to be adopted to the width of the basis
functions to ensure a reasonable coverage. When, for example, spline kernels with narrow support are located
too far apart, no smooth modeling is possible. In the calculations presented in this thesis, the number of
global basis functions has been adopted to the maximum expansion degree N of the spline kernel via the
resolution of a corresponding spherical harmonic expansion of the same degree N . Concerning the discussion
of the comparison between resolution de�ned for spherical harmonics on the one hand and for space localizing
basis functions on the other hand, refer to Section 3.5.3. The number of basis functions, therefore, equals
the number of unknown parameters of the corresponding spherical harmonic expansion. This implies that
the (N + 1)2 spherical harmonic coe�cients lead to the same number of projected spline kernels. Due to the
limitations in the �exible selection of the number of grid points for the chosen spherical grid, this number can
generally not be encountered exactly. This leads to slightly more parameters for the spline representation.
Fig. 3.3 shows an example of three adjoining spline kernels developed up to N = 120 from GRACE error
degree variances and thus being equal to the one displayed in the middle of Fig. 3.2. The resulting grid with
a resolution related to I = 1212 basis functions provides a resolution with a spherical distance between the
kernels of about 1.67◦.
It has to be pointed out that the above considerations are valid when a global homogenous coverage with
basis functions is aspired. But the regional recovery approach would also o�er the opportunity to adapt the
resolution of the gravity �eld according to the signal content in di�erent regions. This would lead to varying
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Figure 3.2: Basis functions for di�erent resolutions, top: N = 60, middle: N = 120, bottom: N = 240, shape
coe�cients derived from error degree variances of ITG-Grace01s, above n = 120 padded by Kaula's rule
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spline kernels and corresponding grids in di�erent geographical areas. In this case the point distribution
has to be de�ned for each region individually. Furthermore, it is thinkable to use the space localizing basis
functions to model particular geophysical phenomena. If so, the basis functions could be arranged in a way
to best re�ect the characteristics of the particular phenomenon.

−0.5
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0.5

1.0

−20˚ −15˚ −10˚ −5˚ 0˚ 5˚ 10˚ 15˚ 20˚

Figure 3.3: Basis functions N = 120, 1.67◦ distance of nodal points

3.4.5 Convergence Issues: Summary

In di�erent sections throughout this thesis, the convergence problem with respect to the norm of di�erent
(reproducing kernel) Hilbert spaces is addressed. The question of convergence of the norm is thereby equiva-
lent to the question whether a function belongs to the respective Hilbert space, or whether it does not satisfy
the smoothness requirements imposed by the corresponding reproducing kernel. To give an overview of the
di�erent Hilbert spaces and to simplify comparisons, the di�erent convergence issues are summarized in the
following. Customarily, Kaula's rule of thumb is assumed as approximation of the power spectral density of
the gravity �eld; therefore it serves as basis for some of the following considerations. As stated in Eq. (3.45),
Kaula's rule implies that the degree variances of the gravitational potential and the corresponding standard
deviations behave according to

σ2
n ∼

1
n3

(Kaula's rule) ⇒ σn ∼
1

n
√
n
. (3.85)

For the gravitational potential modeled as a function f according to (3.38), it is easy to show that its norm
converges in L2,

‖f(x)‖2 =
∞∑
n=0

n∑
m=−n

c2nm =
∞∑
n=0

σ2
n <∞. (3.86)
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In Eq. (3.64) a condition has been speci�ed to guarantee that not only the function itself belongs to L2, butthat its �rst radial derivative is part of L2 as well. Assuming Kaula's rule this implies∥∥∥∥ df(xr)
dr

∣∣∣∣
R

∥∥∥∥2

=
∞∑
n=0

(n+ 1)2
n∑

m=−n
c2nm =

∞∑
n=0

(n+ 1)2 · σ2
n with (n+ 1)2 · σ2

n ∼
1
n
. (3.87)

This relationship between the potential and its �rst radial derivative is part of the so-called Meissl scheme
(Meissl 1971), which also establishes the eigenvalue connections to the second radial derivative and the
upward or downward continuation operator. Rummel and van Gelderen (1995) extended the scheme to
the �rst and second order horizontal derivatives and to mixed horizontal-vertical derivatives, deducing similar
relationships for the behavior of these eigenvalues. From (3.87) it follows that the �rst (radial) derivative of
a function f belongs to L2 if σ2

n <
1
n3 , i.e. if the gravitational potential is assumed slightly smoother than

proposed by (3.85). Concerning the limit of convergence see Eq. (3.81).
To investigate further smoothness properties, it can be examined whether the potential is part of di�erent
RKHS. A quite common choice of the reproducing kernel in geodetic applications is the covariance function
C of the potential. It was already shown in Section 3.3.3 that the potential is not part of this RKHS HC , asit becomes obvious by the relation

‖f(x)‖2C =
∞∑
n=2

2n+ 1
σ2
n

n∑
m=−n

c2nm =
∞∑
n=2

2n+ 1
σ2
n

· σ2
n =

∞∑
n=2

(2n+ 1) = ∞. (3.88)

For the design of the spline kernel Φ to be applied as basis functions in the regional gravity �eld recovery
process, a di�erent norm was introduced in Eq. (3.79). De�ning an RKHS HΦ, this norm is given by

‖f(x)‖2Φ =
∞∑
n=2

√
2n+ 1
σn

n∑
m=−n

c2nm =
∞∑
n=2

√
2n+ 1
σn

·σ2
n =

∞∑
n=2

√
2n+ 1 ·σn with √

2n+ 1 ·σn ∼
1
n
.

(3.89)
This norm converges if σ2

n <
1
n3 , as in this case the requirement (3.81) is ful�lled. Comparing Eq. (3.89) and

Eq. (3.87), it can be concluded that, for a function f to belong to HΦ, the same demand has to be made
for the smoothness of f as is necessary to guarantee its radial derivative to be part of σ2

n <
1
n3 . For bothrequirements the potential has to be slightly smoother than assumed by Kaula's rule. This does not cause

a problem, however, as Kaula's rule only represents an abstract approximation of the frequency behavior
exhibited by the degree variances.
Comparing Eq. (3.88) and (3.89), it can be concluded that the choice of the square root of the coe�cients
of the covariance functions as shape coe�cients in the design of the space localizing basis functions results
in a reproducing kernel for which the norm of the gravitational potential (almost) converges on the sphere.
This would not be the case if the covariance function itself was chosen as basis function.
It shall be mentioned that the investigations of convergence described above were performed on the unit
sphere in order to investigate the mathematical properties of the radial basis functions and the implications
made by di�erent choices of reproducing kernels. In the outer space, the gravitational potential as harmonic
function and all its derivatives have to converge. This is the reason why the Bjerhammer sphere with radius
RB inside of the Earth was introduced, resulting in the introduction of a factor s = RB

R (with R denoting
the mean Earth radius) into the covariance function, see, for example, Tscherning and Rapp (1974).
In the context of regularization (Section 5.2.3), there occurs the norm of the basis function Φ (as a function
of x) in an RKHS de�ned by the covariance function C. This norm is given by

‖Φ(x,xi)‖2C =
∞∑
n=2

n∑
m=−n

2n+ 1
σ2
n

(
σn√

2n+ 1

)2

=
∞∑
n=2

n∑
m=−n

1 = ∞. (3.90)

Obviously, this norm does not converge, a matter that will be discussed in Section 5.2.3.
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3.5 Point Distributions on the Sphere

This section deals with di�erent distributions of points on the surface of the sphere. In the context of regional
gravity �eld recovery as treated in this thesis, the problem of choosing the appropriate arrangement of points
on the sphere occurs at two di�erent occasions.

• In order to model a regional gravity �eld re�nement, a grid of points has to be created as nodal points
for the distribution of space localizing basis functions.

• The combination of di�erent regional gravity �eld models in order to obtain a global spherical harmonic
solution is performed by means of quadrature methods, as described in Section 6.2. In this context the
nodes of the numerical quadrature method also have to be located on a speci�c grid on the sphere.

For both tasks the respective system of points has to meet di�erent requirements. In case of the nodal point
pattern for the location of the spline functions, the grid points are to be as homogeneously distributed as
possible. Concerning the numerical quadrature, the quadrature nodes and their corresponding quadrature
weights (generally associated with the area assigned to the grid points) have to meet the task of calculating
spherical harmonic coe�cients from the gravity �eld functionals, evaluated at the grid points, as accurately
as possible. In the �rst part of this section, several grids on the sphere are introduced, and their point
distributions are described. Subsequently, those grids have to be examined focussing on how well they satisfy
the requirements stated above. Since not all of the described point distributions are suitable for both tasks,
the grids are only examined regarding the demands they are intended to ful�ll. The investigations concerning
the applicability of the uniform grids to suit as nodal point pattern for spline functions are carried out in
the second part of this section. For the study of the di�erent grid types as nodes for respective quadrature
formulas, refer to Section 6.2.1.

3.5.1 Grids

In the following, di�erent speci�cations of point distributions are introduced. This is, by no means, a complete
discussion of all di�erent possible ensembles of points on the sphere, as such an investigation would be far
beyond the scope of this thesis. The discussion is limited to seven grids that are either particularly widely
used or especially suitable for the given tasks. Each of the described point arrangements is given as set of
coordinates (λi, ϑj) on the surface of the unit sphere.

3.5.1.1 Geographical Grid

The term 'geographical grid' is used for an equal-angular point distribution with points located along merid-
ians and along circles of latitude. The angular di�erence between adjacent points along meridians equals the
angular di�erence between adjacent points along circles of latitude. With L denoting the number of parallels,
this implies

∆λ = ∆ϑ =
π

L
, (3.91)

resulting in the following point setting (see Fig. 3.7),
λi =

∆λ
2

+ i ·∆λ with 0 ≤ i < 2L, (3.92)

ϑj =
∆ϑ
2

+ j ·∆ϑ with 0 ≤ j < L. (3.93)
The number of grid points along the parallels is twice the amount of the number of points along a meridian.
This results in a total quantity of points determined by

I = 2 · L2. (3.94)
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3.5.1.2 Gauss - Grid

The arrangement of points on the sphere at the nodes of a Gaussian grid is strongly connected to the Gauss-
Legendre quadrature, as described in Section 6.2.1.2. In this context, it is widely known in numerical analysis
(refer to, e.g., Lanczos 1956) and has been applied to geodesy as well, (see, for example, Payne 1971).
The grid features equiangular spacing along L circles of latitude with

∆λ =
π

L
⇒ λi =

∆λ
2

+ i ·∆λ with 0 ≤ i < 2L. (3.95)
Along the meridians the points are located at L parallels at the L zeros ϑj of the Legendre polynomial ofdegree L,

PL(cosϑj) = 0. (3.96)
Consequently, the number of grid points sums up to

I = 2 · L2. (3.97)
The Gauss grid looks quite similar to the corresponding geographical grid with the same number of parallels.
Its distinctive feature is the unique choice of the location of the circles of latitude (Fig. 3.8).

3.5.1.3 Driscoll - Healy Grid

The Driscoll-Healy grid, as introduced by Driscoll and Healy (1994), has equiangular spacing along the
meridians as well as along the circles of latitude. In longitudinal direction (along the parallels), these angular
di�erences for a given dimension L coincide with those described for the corresponding geographical grid
and Gauss grid. Along the meridians, the size of the latitudinal di�erences is half the size compared to the
geographical grid. This results in the following point pattern (Fig. 3.7),

∆λ =
π

L
⇒ λi =

∆λ
2

+ i ·∆λ with 0 ≤ i < 2L,

∆ϑ =
π

2L
⇒ ϑj = j ·∆ϑ with 1 ≤ j ≤ 2L.

(3.98)

Consequently, the number of grid points is
I = 4 · L2. (3.99)

The Driscoll-Healy grid is strongly associated with the corresponding quadrature formula, as will be described
in Section 6.2.1.1. The concept of the quadrature formula (and the corresponding grid) goes back toNeumann
(1838); Driscoll and Healy (1994) have developed closed expressions for the respective quadrature
weights, therefore the method and the point distribution will in the following be identi�ed as Driscoll-Healy
quadrature and Driscoll-Healy grid.

3.5.1.4 Reuter - Grid

The Reuter grid (Reuter 1982) features equi-distant spacing along the meridians determined by the control
parameter γ according to

∆ϑ =
π

γ
⇒ ϑj = j∆ϑ, with 1 ≤ j ≤ γ − 1. (3.100)

Thus γ+1 denotes the number of points per meridian, as the two poles are included in the point distribution
as well. Along the circles of latitude, the number of grid points decreases with increasing latitude in order
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to achieve an evenly distributed point pattern. This number is chosen, so that the points along each circle
of latitude have the same spherical distance as two adjacent latitudes. The resulting relationship is given by

∆ϑ = arccos
(
cos2 ϑj + sin2 ϑj cos ∆λj

)
. (3.101)

The left hand side of this equation is the spherical distance between adjacent latitudes, the right hand side
stands for the spherical distance between two points with the same polar distance ϑj and a longitudinal
di�erence of ∆λi. This longitudinal distance can be adjusted depending on ϑj to ful�ll Eq. (3.101). The
resulting formula for ∆λi is

∆λj = arccos
(

sin∆ϑ− cos2 ϑj
sin2 ϑj

)
. (3.102)

The number of points γj for each circle of latitude can then be determined by
γj =

[
2π

∆λj

]
. (3.103)

Here the Gauss bracket [x] speci�es the largest integer equal to or less than x. The longitudes are subsequently
determined by

λij =
∆λj

2
+ i · (2π/γj), with 0 ≤ i < γj . (3.104)

The number of grid points can be estimated by
I =≤ 2 +

4
π
γ2, (3.105)

as described, for example, in Freeden et al. (1998). The "≤" results from the fact that the γj are restrictedto integer values.
Approximately the same grid is generated when using the equal area method as in a similar way described
by Rapp (1971) and adapted in Hajela (1973). It constitutes that the area of a surface element of the size
∆λj ×∆ϑ located at an arbitrary polar distance ϑj is set equal to the area of the respective surface elementat the equator,

∆λ
2∫

−∆λ
2

π
2 +∆ϑ

2∫
π
2−

∆ϑ
2

sinϑ dϑ dλ =

∆λj
2∫

−
∆λj

2

ϑj+
∆ϑ
2∫

ϑj−∆ϑ
2

sinϑ dϑ dλ. (3.106)

Solving both integrals leads to the following relationship,
sinϑj∆λj = ∆λ. (3.107)

Here ∆λ denotes the angular di�erence along the equator which coincides with the angular di�erence along
the meridians ∆λ = ∆ϑ. This results in the following angular di�erences along the circles of latitude as an
alternative to (3.102),

∆λj =
∆ϑ

sinϑj
. (3.108)

Regarding Eq. (3.108), it can easily be observed how the distance between longitudes increases when ϑ
approaches either zero or π, and how it reaches its minimum at the equator. Even though the ∆λj di�erslightly when the results of Eq. (3.102) and Eq. (3.108) are compared, the number of points per circle of
latitude γj is equal in just about every case after conversion to integer values. Exceptions are the northern
and southern most circles of latitude, where the two γj may di�er by one, as was tested for a variety of
di�erent resolutions.
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3.5.1.5 Triangle Center Grid

Two di�erent triangular grids will be discussed and evaluated in this chapter. Both, the triangle center mode,
as described here, and the triangle vertex mode, as described in the next section, are based on the geometric
shape of an icosahedron. The icosahedron is a convex polyhedron with 20 faces, all of them being equilateral
triangles, with �ve of them meeting at any one of the 12 vertices. It represents one of the �ve platonic solids,
which are identi�ed by the fact that they are convex regular polyhedrons, implying that their sides, edges,
and angles are all congruent. The icosahedron is the platonic solid with the most possible faces. As the
vertices of every platonic solid lie on a sphere, they can be applied as a basis in the construction of point
distributions on a sphere. To create triangular point distributions, platonic solids featuring triangles as faces
(besides the icosahedron these are the tetrahedron and the octahedron) are best suitable. A triangular grid
based on the icosahedron can be created by placing the icosahedron into the sphere with the 12 vertices at
the surface of the sphere. For the grids discussed here, one vertex is placed coinciding with the north pole and
one with the south pole, although di�erent constellations are possible as well. The surface of the sphere is
then divided into 20 equal area spherical triangles by connecting the adjacent vertices of the icosahedron by
arcs of great circles. This results in 20 equal area spherical triangles, as displayed on the left side of Fig 3.4.
As the icosahedron is the platonic solid with the most (triangular) faces, this arrangement of triangles is the
largest number of exactly equal triangles possible to be arranged on a sphere.
In case of the �rst of the triangle grids, the points of the zeroth level are located at the centers of the
icosahedron triangles. Due to this fact, the resulting grid is here denominated by the term 'triangle vertex'.
To achieve a �ner grid, each of the triangles is divided into four smaller triangles by connecting the midpoints
of the triangle edges, as illustrated for one triangle in the right part of Fig 3.4. The re�ned grid points are
again located at the center of the triangles. Subsequently, the triangles can be further densi�ed up to the
desired level of densi�cation n. This kind of partitioning is widely used in geodetic or geophysical applications,
see, for example, Saff and Kuijlaars (1997), Freeden (1999), Stuhne and Peltier (1999), orKusche
(2002).
The number of grid points for a certain level of densi�cation can be determined by

I = 20 · 4n. (3.109)
Thus the quantity of grid points depends exponentially on the level n, as with every additional level the
number of grid points quadruplicates.

Icosahedron (level 0) Triangle Center (level 1)

Figure 3.4: Construction of the grid triangle center
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3.5.1.6 Triangle Vertex Grid

The second point distribution that is based on the icosahedron is referred to as triangle vertex grid, which
accounts for the fact that the grid points are not located at the centers of the triangles, but at the vertices.
Thus the zeroth level of densi�cation coincides with the 12 icosahedron vertices, as displayed in the upper
left part of Fig. 3.5. Then, depending on the envisaged densi�cation, each triangle edge is divided into n
parts, illustrated in the upper right part of Fig. 3.5. The new nodes on the edges are then connected by
arcs of great circles parallel to the triangle edges. The intersections of each three corresponding parallel lines
become nodes of the densi�ed grid as well. As in case of a spherical triangle those three connecting lines do
not exactly intersect in one point, the center of the resulting triangle is used as location for the new node
(lower left part of Fig. 3.5). The lower right side of Fig. 3.5 �nally shows the densi�ed triangle vertex grid
for a level of n = 3. The number of grid points in dependence of the chosen level of densi�cation can be
calculated by

I = 10 · (n+ 1)2 + 2. (3.110)

Icosahedron Subdivision of the edges

Densified gridConnecting the points on the edges

Figure 3.5: Construction of the grid triangle vertex, level 3



3.5. Point Distributions on the Sphere 41

In the literature dealing with geodetic domes, this kind of partitioning is known as alternate breakdown,
see, for example, Kenner (1976). As an example for geodetic applications, Schmidt (1981) was concerned
with equidistant sampling point distributions on the sphere for the location of sampling functions. In this
context, similar triangular partitionings were mentioned as well.

3.5.1.7 Recursive Quasi Random Grid

This kind of grid distributes an arbitrarily chosen number of I points on the surface of the sphere, following
a recursive, quasi random sequence. In longitudinal direction the pattern follows

∆λ =
2π
I

⇒ ∆λ
2

+ λi = i ·∆λ with 1 ≤ i ≤ I. (3.111)
This implies that every grid point features a unique longitude, with equi-angular longitudinal di�erences.
The polar distance in the form ti = cosϑi for each point is determined by the following recursive sequence:

• Starting from an interval t ∈ [−1, 1].
• If I = 1, then the midpoint of the interval is returned as result of the sequence, and the sequence is
terminated.

• If the number of points is uneven, the midpoint is included into the list of ti.
• Subsequently, the interval is bisected into an upper and lower half, and the sequence is called for both
halves.

• t from upper and lower half are alternately sorted into the list of ti.
• The polar distances are calculated by

ϑi = arccos ti. (3.112)
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Figure 3.6: Points generated by quasi random grid
The result of the recursive sequence is displayed for an exemplary number of I = 71 in Fig. 3.6. It can be
clearly observed that points from the lower half of the sequence (southern hemisphere) and from the upper
half (northern hemisphere) are taken alternately. And when surveying the bisected sequences (e.g. only the
northern hemisphere or bisections thereof), the alternate pattern can be recognized as well.
Alternative sequences can be found, for example, based on van der Corput (1935), e.g. the so-called
Hammersley sequence (cf. Niederreiter 1992).
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3.5.1.8 Comparison of the Point Distributions

The grids described above are displayed in Fig. 3.7. The resolutions of the di�erent point distributions are
chosen such that they provide a comparable point density around the equator. The following speci�cations
of the di�erent grid types have been used:

• Upper left: Geographical grid with ∆λ = ∆ϑ = 3◦

• Upper right: Driscoll-Healey grid of dimension L = 30

• Middle left: Triangle vertex grid of level n = 22

• Middle Right: Triangle center grid of level n = 4

• Lower left: Reuter grid with γ = 64

• Lower right: Quasi-random grid with I = 5200 global points

In the given resolution the Gauss grid is almost indistinguishable from the geographical grid, therefore it is
not displayed separately. In order to illustrate the di�erence between the geographical grid and the Gauss
grid, the two grids are compared for a lower resolution in Fig 3.8 to enable the di�erences to be observed
more clearly.

3.5.2 Applicability as Nodal Points for Splines

The space localizing basis functions Φ(x,xi) are to be distributed evenly over the sphere at the nodes xiof some possibly equi-distant grid. Additionally, in order to accommodate the grid according to the desired
resolution and the necessary number of unknown parameters, the number of grid points should be adjustable
as �exibly as possible. Thus the two requirements for a grid which is applied to build the system of nodal
points for the harmonic spline functions are:

• Uniform distribution
• Flexible adjustment of the number of grid points

This section deals with the investigation in how far the described point distributions are suitable to account
for the two requirements. Since grids such as the geographical grid, the Gauss grid, or the Driscoll-Healy
grid are not capable of providing a uniform distribution at all, they are not taken into account here. Thus
the discussion will be limited to the two di�erent triangular grids, the Reuter grid and the pseudo-random
grid.

3.5.2.1 Uniform Distribution

The term 'uniformly distributed' or 'evenly distributed' points on a sphere does not have a unique de�nition.
On the contrary, it can be used in various ways, resulting in di�erent criteria which can be introduced to
evaluate how even a given point distribution actually is. In a certain sense, only the �ve Platonic solids
achieve regular tesselations, as they are the only ones whose faces are regular and equal, with each vertex
incident to the same number of faces. This fact has been widely observed, see, for example, White et al.
(1992). But generally, even distribution does not focus so much on the induced tessellation, as it does on
the distances and the arrangement of the points/vertices. This leads to a wide variety of criteria to measure
the homogeneity of a point distribution. Among these criteria are the following that will be discussed in this
section:
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Figure 3.7: Overview of di�erent point distributions on the sphere
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Figure 3.8: Comparison of Gauss grid (red) and geographical grid (blue), L=18

• Equal area partitioning
• Minimizing the potential energy of charged particles at the grid points
• Maximizing the minimal distance between grid points (packing problem)
• Minimizing the maximal distance of any point on the sphere from the closest grid point (covering
problem)

There is a variety of additional criteria to measure the evenness of an ensemble of points on a sphere,
maximizing the volume of the convex hull can be given as an example. For more information on this topic
refer to, e.g., Conway and Sloane (1998).
All these measures can be used as optimization criteria, each leading to slightly di�erent point distributions.
The corresponding optimization algorithms modify a given point setting until the chosen criterion is ful�lled
as accurately as possible. The di�culty of such optimization problems on the sphere is that they feature a
lot of local minima (Conway and Sloane 1998), making the calculations quite complex. Except in a few
special cases of numbers of points, it is very hard to prove that a certain arrangement of points is the global
minimum. Therefore, a lot of these problems are still unsolved today. Within the scope of this thesis, it is
not intended to determine an optimal arrangement for a de�nite number of points best satisfying any of
the criteria. The required optimization algorithms would su�er from the problems described above, and the
resulting point distributions would each be valid only for a very speci�c number of points. For a di�erent
resolution, the optimization algorithm would have to be run all over again. Furthermore, the outcome would
depend on the abortion criterion de�ning the convergence of the optimization algorithm. In contrast to
this, the possible nodal point pattern should be reproducible and easy to implement, as this is a necessary
requirement to enable the use of the spline models for subsequent users. Thus the point setting has to follow
a prede�ned speci�cation. Therefore, the criteria of evenness described above do not serve as optimization
criteria, rather will it be investigated how well the point distributions described in Section 3.5.1 ful�ll theses
requirements. The result is the statement which of them is best suitable to serve as nodal point distribution
for the spline functions.
The following investigations will be performed for the two triangle grids, the Reuter grid, and the quasi
random grid, as those are the more or less homogeneous ones, as demonstrated in Fig. 3.7. The resolutions
of those grids are chosen such that they o�er approximately equivalent numbers of grid points. Due to the
restrictions concerning the choice of the number of points in�icted by the respective grid speci�cations, it
is not possible to create the di�erent point distributions with an exactly coinciding quantity of points. The
following speci�cations are applied in the investigations:
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• Triangle vertex grid, level = 22 => 5292 points
• Triangle center grid, level = 4 => 5120 points
• Reuter, γ = 64 => 5180 points
• Quasi random grid with 5200 points

Equal Area Partitioning The criterion of equal area partitioning identi�es the points on a grid to be
the more evenly distributed, the more the sizes of their surface elements agree with each other. In case of
grid points being located at the center of distinctively bounded surface elements as, for example, in the
geographical grid the determination of the area associated with each grid point is fairly straightforward.
This cannot be assumed, however, for all point arrangements dedicated to provide an evenly distributed set
of points. Therefore, the surface element Ωi related to a speci�c grid point xi can more generally be de�ned
as the region of the surface of the sphere being closer to xi than to any one of the other grid points,

Ωi = {x|ψ(x,xi) < ψ(x,xj), i 6= j} . (3.113)
To determine this region, the concepts of Delaunay triangulation and Voronoi diagrams have to be introduced.
The Delaunay triangulation (Delaunay 1934) of a set of points P is a triangulation D(P ) such that no point
of P is located within the circumcircle of any triangle of D(P ). This requirement is known as circumcircle
condition, and its ful�llment simultaneously guarantees the maximization of the minimum interior angle over
all triangles. The Delaunay triangulation yields a unique solution as long as there are not more then three
points on any one of the circumcircles. Otherwise, there is more than one possible Delaunay triangulation. In
this thesis, the Delaunay triangulation is applied in the construction of a Voronoi diagram for arbitrary point
distributions on the sphere. Therefore, the triangulation described above has to be applied to the surface of
the sphere, calculating spherical triangles between grid points.
The Voronoi diagram is named after the Russian mathematician Georgy Voronoi (Voronoi 1908), even
though the same concept was introduced by others as well. The Voronoi diagram V (P ) of a set of points
P is the partition of the space containing P into cells, with each cell consisting of the points closer to one
particular point of P than to any other point of P . The Voronoi diagram of P corresponds to the dual graph
of the Delaunay triangulation, meaning that when a Voronoi diagram is determined for the nodes of V (P ),
then the Delaunay triangulation of the original set of points P is obtained. The Voronoi diagram V (P ) can
be constructed from the corresponding Delaunay triangulation D(P ), as the circumcenters of the triangles
of D(P ) are the nodes of the Voronoi diagram. The circumcenter can be constructed as the intersection
of the perpendicular bisectors of each of the triangle edges. Fig. 3.9 displays the relationship between the
Delaunay triangulation and the Voronoi diagram. The black lines denote the triangulation and the blue lines
the corresponding Voronoi polygons.
In this thesis, the Voronoi diagram is constructed in order to calculate the area associated with individual
grid points for an arbitrary distribution of points on the sphere. This area is equal to the area of the
respective Voronoi polygon. For this purpose, in a �rst step, the Delaunay triangulation is determined. The
circumcenter xc of a spherical triangle (x1,x2,x3) can be calculated by the cross product of the di�erence
vectors between each two of the grid points belonging to the triangle. The normalization takes care of the
fact that the circumcenter has to be located on the surface of the unit sphere,

xc =
(x2 − x1)× (x3 − x1)
|(x2 − x1)× (x3 − x1)|

. (3.114)
An illustration of a global Delaunay tessellation and the corresponding Voronoi diagram is shown for the
grid triangle vertex in Fig. 3.10. To judge how much the areas associated to each grid point vary in di�erent
grids, the use of histograms is a useful tool. They graphically evaluate the distribution of the area sizes.
The histograms of the four evaluated point distributions are displayed in Fig. 3.11. In addition, the standard
deviations of the area sizes are speci�ed in Tab. 3.1. Obviously, in case of the Reuter grid, the grid points



46 3. Modeling of the Regional Gravity Field

90˚ 100˚ 110˚ 120˚
−10˚

0˚

10˚

20˚

90˚ 120˚

0˚

Figure 3.9: Voronoi diagram (blue) and Delaunay triangulation (black)

Figure 3.10: Delaunay triangulation (left) and Voronoi diagram (right) of a triangle vertex grid, level 8

grid σ

Vertex22 0.0041157
Center4 0.0151813
Reuter64 0.0017537

Random5200 0.07275979
Table 3.1: Standard deviation of the area sizes

all have very similarly sized associated areas. This can be observed in the histogram in the upper right part
of Fig. 3.11 as well as from the standard deviation given in Tab. 3.1. It is signi�cantly lower compared to
the standard deviation of the other point distributions. This appears to be a very straightforward conclusion
when considering that the alternative derivation of the Reuter grid, as described by (3.106), is exactly based
on the assumption of equal area per grid point. The Reuter grid is followed by the grid triangle vertex whose
area sizes are fairly close together as well. This is displayed in the lower left part of Fig. 3.11. Its standard
deviation is still considerably smaller than the two remaining options. The grid triangle center and the quasi
random grid perform comparably poorly. Regarding the quasi random grid, it has to be pointed out that the
histogram even extends over a di�erent scale than the one used for the other distributions.
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Figure 3.11: Histogram of area sizes associated with individual grid points (di�erent scale for quasi random
grid)

Minimal Distance Between Grid Points The problem of determining the minimal distance between
two grid points is also referred to as 'packing problem', as it corresponds to the determination of the maximum
diameter of I equal spherical caps to be placed on the sphere without overlap. The larger this diameter is,
the more evenly the points are distributed. Maximizing the minimal distance between grid points is also
known as 'Tammes problem' (Tammes 1930), for further description see, for example, Kottwitz (1991).
For each point xi ∈ P , the nearest neighbor is identi�ed, and the spherical distance between the neighboring
points is calculated,

dmini
= min

xj∈P,i 6=j
ψ(xi,xj). (3.115)

ψ(xi,xj) denotes the spherical distance between two points on the surface of the sphere calculated by
ψ(xi,xj) = arccos(xi · xj). The minimum of these distances over all points is determined as

dmin = min
xi,xj∈P,i 6=j

ψ(xi,xj), (3.116)
and the results are displayed in Tab. 3.2. Here dmin corresponds to the maximum diameter mentioned above,
dmin/2 is, therefore, also known as packing radius. Here the problem arises that in order to perform a fair
comparison, each of the grids would need exactly the same number of points. As this cannot be the case,
some kind of normalization has to be applied to account for the di�erences. Therefore, each distance has to
be divided by the square root of the average surface area per point,

d̄min =
dmin√

4π
I

, (3.117)
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as this corresponds to a division by an optimal distance between neighboring points which should have
the order 1/

√
I (Saff and Kuijlaars 1997). Here only one con�guration of points for each grid type

is investigated, the one with the speci�c number of points as indicated above. But when applying the
normalization (3.117), the value d̄min stays approximately constant for a respective grid type for a wide
variety of point numbers. Therefore, the results obtained for the speci�c point arrangement can be judged
as representative for the respective grid. The Reuter grid and the triangle vertex grid exhibit a very similar

grid I dmin[◦] d̄min

Vertex22 5292 2.758041 56.5987
Center4 5120 2.143979 43.2762
Reuter64 5180 2.812500 57.1021

Random5200 5200 0.219152 4.4581
Table 3.2: Minimal distances between neighboring grid points

minimal point distance which is signi�cantly larger than the one featured by the triangle center grid and the
quasi random grid. Especially the quasi random grid does not perform well concerning this criterion, as the
recursive sequence may place single points quite close to each other. A closer look is taken on the Reuter
and the triangle vertex grid by examining the (normalized) minimum distances d̄mini

for each point in terms
of histograms displayed in Fig. 3.12.

Figure 3.12: Minimal distances between each grid point and the closest of the remaining grid points

Covering Problem Determining the maximum distance from any point on the surface of the sphere to the
nearest of the grid points is indicated as 'covering problem' (Conway and Sloane 1998). It describes the
smallest radius that equal sized caps (located at the grid points) would need to cover the complete surface
of the sphere. In other words, for each surface element Ωi associated with the grid point xi the point x ∈ Ωifarthest away from xi is determined. It satis�es

dmaxi
= sup

x∈Ωi

ψ(x,xi). (3.118)
This farthest point has to be one of the nodes of the Voronoi polygon belonging to the grid point xi. TheVoronoi polygon de�nes the outer bound of the surface element Ωi, and every point on its edges is closer
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to the respective grid points than the corresponding Voronoi nodes. The maximum dmax of these maximum
distances dmaxi

over all points of the grid is given by
dmax = max

i=1,...,I
sup
x∈Ωi

ψ(x,xi). (3.119)
This is also referred to as covering radius or mesh norm, and the given set of points is the more evenly
distributed, the smaller the maximum distance is. This distance, according to Eq. (3.119), is calculated for
the four described grid types, and the results are listed in Tab. 3.3. Again the di�erences regarding the
number of grid points for each point distribution have to be taken into consideration, as mentioned above,

d̄max =
dmax√

4π
I

. (3.120)

From Tab. 3.3 it can be concluded that the triangle vertex grid performs signi�cantly better regarding this
grid I dmax[◦] d̄max

Vertex22 5292 1.7681 36.2828
Center4 5120 2.7153 54.8082
Reuter64 5180 2.2193 45.0586

Random5200 5200 2.5321 51.5086
Table 3.3: Maximum distance of any point on the sphere to its nearest grid point

criterion than the other options, with the Reuter grid being second best. Therefore, a closer look is again
taken at these two point distributions, examining the distances dmaxi between each of the grid points and
the farthest point of its surface element. The results are displayed in terms of histograms in Fig. 3.13.

Figure 3.13: Maximum distance of each grid point and the farthest point of its surface element
The impact of the covering problem can be interpreted as follows: For a given number of points a certain
average area can be allocated to each grid point xi. The points in this area would have the shortest distance
from xi if the surface element Ωi was a spherical cap with xi in its center. Of course, this is not possible in a
real point distribution, as the surface of a sphere cannot be segmented into spherical caps. But the maximal
distance from any point on the sphere to the nearest grid point is a measure for how far the arrangement
of points di�ers from this ideal situation. Segmenting the surface into spherical caps would also be perfect
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Figure 3.14: Voronoi diagram of triangle vertex grid (left, level: 8) and Reuter grid (right, γ = 25)

for the arrangements of space localizing basis functions, as they are isotropic and thus represent a somehow
'circular' shape.
The di�erences between the grid triangle vertex, showing the least maximal distance between arbitrary points
and the nearest grid points, and the Reuter grid, performing second best regarding this criterion, can be
observed in Fig. 3.14. Here the Voronoi diagram, and thus the surface elements associated with the individual
grid points, are displayed. The Voronoi cells in case of the triangle vertex grid with their hexagonal (and
for some points pentagonal) shape can more closely be related to circles than the more quadratical shapes
in case of the Reuter grid. (Even though it has to be notated that such a quadratical surface element is not
valid for every point on a Reuter grid.) Fig. 3.13 reveals that not only the overall maximal distance is smaller
for the triangle vertex grid, but that, for the majority of points, this is also true for the maximal distance
within each individual surface element. This also supports the conclusion that the surface elements have a
more circular shape. The triangle vertex grid exhibits a more isotropic structure, as the distance from one
grid point to its adjacent grid points is approximately the same in all directions, which is not the case for
the Reuter grid. (Adjacency is here de�ned for grid points with contacting Voronoi cells.)

Potential Energy of Charged Particles Another frequently-used de�nition of 'evenness' of a distribu-
tion is the potential energy function of charged particles located at the I grid points. This implies that, in
a global sense, points are as 'far away' from each other as possible. The task of minimzing this potential
energy is also known as 'Thomson's problem' (Thomson 1904) and further described, for example, by Ed-
mundson (1992). The potential energy is de�ned as a sum of the reciprocal distances between two points.
If the spherical distance is applied, then it holds

E =
I∑
i=0

I−1∑
j=i+1

1
ψ(xi,xj)

. (3.121)

Again a normalization has to be applied to account for the di�erent numbers of points for each grid. Since
in Eq. (3.121) I(I − 1)/2 terms are summed up, the result is divided by this factor,

Ē =
E

I(I − 1)/2
. (3.122)

The results are listed in Tab. 3.4. In contrast to the minimum distance between grid points, as given by
Tab. 3.2, here not only the nearest neighbors are regarded, but the reciprocal distance between each point
and every other point is taken into account. Obviously, the potential energy is quite similar for all four point
distributions. Nevertheless, it can again be observed that the triangle vertex and the Reuter grid exhibit
the smallest potential energy, and the triangle center and quasi random grid are less evenly distributed with
respect to the minimum energy criterion.
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grid I normalized energy [1/rad]
Vertex22 5292 0.910989
Center4 5120 0.911538
Reuter64 5180 0.911071

Random5200 5200 0.911973
Table 3.4: Normalized potential energy of the di�erent point distributions

3.5.2.2 Flexible Choice of Grid Points

The second requirement to be demanded of a nodal point pattern for the location of radial basis functions
is the �exibility of the number of grid points. This is particularly important for the modeling of gravity �eld
functionals, as the number of spline nodal points equals the number of unknown parameters, and thus it
speci�es the resolution of the solution. Among the discussed point distributions, the quasi random grid has
the advantage that any arbitrary number of grid points can be applied. For the other point distributions,
the restrictions in the choice of the number of points as given by Eqs. (3.110), (3.109), and (3.105), have to
be considered. The grid triangle vertex is the least �exible, as the quantity of points depends exponentially
on the chosen level of densi�cation by a factor of 4n. During each densi�cation step, the triangles are
divided into four smaller triangles. This does not leave many possibilities in the choice of the number of
unknown parameters, as speci�ed for di�erent levels of densi�cation in Tab. 3.5. The resolution is compared
to the maximum degree of a corresponding spherical harmonic expansion with the same number of unknown
parameters.

level I SH degree
3 1280 35
4 5120 70
5 20480 142
6 81920 285
7 327680 571

Table 3.5: Number of unknown parameters for di�erent levels of densi�cation of the grid triangle center and
the corresponding spherical harmonic degree with a comparable number of coe�cients

The grids triangle vertex and Reuter are adjustable much more easily to a required resolution, as their
number of grid points increases quadratically with the choice of the control parameter. Here the Reuter grid
with an (approximate) factor of 4

π , instead of 10 in case of the grid triangle vertex, is even slightly more
�exible.

3.5.2.3 Discussion

The four grids � triangle vertex, triangle center, Reuter grid, and the quasi random grid � were examined
regarding the question which of them is most suitable to be used as nodal point pattern for the location of
space localizing basis functions. The applied criteria were the evenness of the distribution (de�ned by the
criterion of equal area, minimal distance between neighboring grid points, maximum distance between any
point on the sphere to its nearest grid point, and minimum energy) on the one hand and the �exibility in the
choice of the number of grid points on the other hand. Regarding the even distribution, it became apparent
that the Reuter grid and the triangle vertex grid are superior to the other two options, as they perform better
in all four tested criteria. The Reuter grid exhibits the most uniform area sizes for all points. The standard
deviation of the area sizes is signi�cantly smaller and the respective histogram supports this conclusion as



52 3. Modeling of the Regional Gravity Field

well. Here the grid triangle vertex features the second smallest standard deviation, and the histogram shows
that the area sizes are not as compact as in case of the Reuter grid, but still fairly close together. The area sizes
associated with the triangle center grid and the pseudo random grid di�er considerably more. Concerning the
minimal distance between grid points, the triangle vertex and the Reuter grid are approximately equal, and
again superior to the other two point distributions. Especially the pseudo random grid is out of the question,
as the recursive pseudo random sequence produces points that can, in single cases, be located very close
to each other. This can also be observed in Fig. 3.7. The distance between arbitrary points on the sphere
and the nearest of the grid points is substantially the smallest in case of the grid triangle vertex. Here the
surface elements have a shape that best resembles a spherical cap, which is reasonable for the arrangement of
isotropic basis functions. Second best performs the Reuter grid, the two other point distributions are again
less suitable. Concerning the minimum energy criterion, the four grid versions show approximately similar
results, the triangle vertex grid being slightly ahead, followed by the Reuter grid. Regarding the �exibility in
the number of grid points, the quasi random grid with its freely selectable quantity of points is advantageous,
and the triangle center grid is unfavorable due to the exponential dependency on the level of densi�cation.
The Reuter grid and the triangle vertex grid are su�ciently �exible for the task of representing gravity
�eld functionals of a given resolution, with the Reuter grid showing a slightly larger variety of possible grid
point quantities. Concluding, it can be suggested that both, the Reuter grid and the triangle vertex grid,
are very well suitable as nodal point pattern for space localizing basis functions, especially as they show a
more uniform point pattern than the other two options. This result is con�rmed by the visual impression
when examining the displayed grids in Fig. 3.7 which presents the triangle vertex and Reuter grid as the
most homogeneous point distributions.
From the listed criteria, the one specifying the maximum distance between arbitrary points and the nearest
of the grid points is considered slightly more signi�cant than the other ones. It accounts for the isotropic
characteristics of the grid and thus indicates how well the surface elements resemble spherical caps. For the
location of isotropic basis functions, this is considered more important than, for example, the exact sizes of
the surface elements. Therefore, in the following considerations, the triangle vertex grid is chosen as point
distribution for the arrangement of the spline functions.

3.5.3 Resolution

In order to compare �eld representations using di�erent sets of basis functions, one inevitably has to deal with
the de�nition of resolution. How can spatial resolution be compared when di�erent types of basis function are
applied? In the case relevant for this thesis, one has to deal with space localizing basis functions, de�ned on a
grid and therefore given directly in the space domain on the one hand and spectral models such as spherical
harmonics on the other hand. In case of space localizing basis functions, the resolution of a certain �eld
representation is characterized by the number of basis functions per area. The number of �eld parameters
matches the number of basis functions. And thus the spatial resolution can be regarded as the distance
between nodal points on the grid of kernel functions. As also mentioned by Laprise (1992), there is no
straightforward way to allocate a certain grid size to a given spectral model such as a spherical harmonic
expansion. In this case the determination of an e�ective resolution is more complicated. Concerning the
question of converting a spherical harmonic expansion to a spatial resolution, see also Rummel (1992). A
quite common way to de�ne the resolution of spherical harmonics is given by the size of half a wavelength of
the shortest resolved zonal wave at the equator. A spherical harmonic expansion provides an isotropic and
uniform resolution on the sphere, therefore the wavelength at the equator can be regarded as representative
for the whole sphere. The shortest zonal wave corresponding to a certain maximum degree N is |m| = N .
This leads to a measurement for the resolution of

r =
π

N
. (3.123)

Another way of de�ning the resolution of a �eld represented by spherical harmonics could be proposed in a
similar way as in case of space localizing basis functions. This means by de�ning the resolution by the area
on the Earth's surface assigned to each unknown parameter. This leads to an area of

A =
4π

(N + 1)2
(3.124)
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for each coe�cient with respect to the unit sphere. To convert this to a spatial resolution, di�erent approaches
could be thought of. Firstly, the aperture angle of a spherical cap with equal area can be calculated as follows,

ψ1 = 2 · arccos
(

1− A

2π

)
. (3.125)

Alternatively, the resolution can be de�ned as the square root of the area per unknown parameter (3.124)
according to

ψ2 =
√
A. (3.126)

Furthermore, the number of unknown parameters can be distributed over the nodes of an evenly distributed
grid of a comparable number of points, and the average distance between adjacent points can actually be
calculated. This was performed for the triangle vertex grid (as this was chosen as nodal point pattern for
the spline functions). The results of the di�erent de�nitions of resolution are compared in Tab. 3.6. The �rst
column of the table refers to the maximum degree of the spherical harmonic expansion. The second column
speci�es half of the wavelength of the shortest zonal wave at the equator. In the third column, the number
of unknown parameters corresponding to N is given, which leads to an average area per unknown parameter
given in column four according to Eq. (3.124). Resulting from this, the aperture angle of the corresponding
spherical cap is listed in column �ve and the square root of the area element in column six. Columns seven
and eight specify the level of the triangle vertex grid with comparable resolution and the resulting average
distance between adjacent grid points. Obviously, the square root of the average surface area ψ2 correspondsvery well to the average distance calculated between the nodal points of the given grid. In contrast to this,
taking half of the wavelength at the equator gives results slightly smaller, and the aperture angle of the
spherical cap delivers larger values.

N 0.5 wavelength [◦] # unknowns area per unknown ψ1[◦] ψ2[◦] level minDist [◦]
60 3 3721 0.00338 3.75 3.33 19 3.30
120 1.5 14641 0.00086 1.89 1.68 38 1.69
200 0.9 40401 0.00031 1.14 1.01 63 1.03

Table 3.6: Spatial resolution of a spherical harmonic expansion

When a representation by space localizing basis functions is expected to deliver the same spatial resolution
as a spherical harmonic model, in this thesis, the comparison is performed via the number of unknown
parameters. This is based on the assumption that a uniformly distributed spline representation o�ers the
same amount of information, enclosed in a certain number of unknown parameters, as a spherical harmonic
model with its uniform and isotropic resolution on the sphere. Therefore, a desired resolution referring to
space localizing basis functions can be obtained from the maximum degree N of a corresponding spherical
harmonic expansion by calculating the number of spline kernels according to I = (N + 1)2. The respective
resolution is then calculated from the average distance of the nodal points which agrees quite well with the
square root of the average surface element per point.
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4. Setting up the Observation Equations

The purpose of the satellite missions CHAMP, GRACE, and GOCE is to determine the gravity �eld of
the Earth as accurately as possible. Therefore, a relationship has to be established between the (unknown)
gravity �eld parameters and the provided observations. This is obtained via a functional model that links the
particular observations to the gravity �eld parameters. Combining the observation equations for the di�erent
observation times leads to a (linearized) system of equations that can be solved by a least-squares adjustment
procedure. In the �rst part of this chapter, it will shortly be reviewed how the unknown parameters can be
estimated from a given set of observation equations in general. Subsequently, di�erent gravity �eld functionals
will be expressed in terms of a modeling by radial basis functions. This is a necessary tool to set up the
functional models for a regional analysis. These models will then be described in the following section,
leading to the observation equations for the di�erent types of satellite observations. In detail, these types of
observations can be characterized as satellite-to-satellite tracking in the high-low and in the low-low mode
and by the concept of satellite gravity gradiometry.

4.1 Least Squares Approximation

In the following, it will be described how the unknown gravity �eld parameters are estimated from a given
set of observations. This estimation process represents a standard Gauss-Marko�-Modell, as described, for
example, by Koch (1997) or Niemeier (2002). All n observations can be arranged in a vector ȳ with the
dimension n× 1. The u unknown parameters can also be combined in a column vector x̄ with the dimension
u× 1. The observations can be linked to the unknown parameters via a functional model f(x̄) and can then
be formulated in terms of this model and an additional measurement noise ε according to

ȳ = f(x̄) + ε. (4.1)
Typically, the number of observations n = dim ȳ is considerably larger than the number of unknown pa-
rameters u = dim x̄. If the model is non-linear, a linearization becomes inevitable, therefore approximate
values for the unknown parameters have to be introduced, and approximate observations can be calculated as
functions of the approximate values. In case of a linear model, it is recommended to start with approximate
values for the unknown parameters as well and to calculate their in�uence on the observations,

y0 = f(x0). (4.2)
The linearization procedure of the model f with respect to the unknown parameters can be performed by a
Taylor expansion truncated after the linear term,

ȳ = y0 +
∂f(x̄)
∂x̄

∣∣∣∣
0

(x̄− x0) + ... (4.3)
The reduced observations and the corrections to the unknown parameters are then calculated according to

y = ȳ − y0 and x = x̄− x0. (4.4)
The partial derivatives of the linearization (4.3) can be combined in the design matrix A. It is of dimension
n× u, and its elements are de�ned by the partial derivatives of the function fk(x) with respect to xi,

(A)ki =
∂fk(x̄)
∂xi

∣∣∣∣
0

. (4.5)
This leads to the linear system of equations

y = Ax + ε with C(ε) = σ2P−1
ε . (4.6)
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The standard Gauss-Markov model is based on the assumptions that the measurement errors have an ex-
pectation of zero and that the covariance matrix of the observations is known a-priori,

E {ε} = 0 and C(ε) = C(y) = σ2P−1
ε . (4.7)

Here σ stands for the unknown variance factor, and Pε denotes the weight matrix of the observations. An
estimation by least squares adjustment corresponds to the minimization of the square sum of the residuals,

Ω =
1
σ2

(y −Ax)TPε(y −Ax). (4.8)
The minimum condition can be obtained by di�erentiation according to

∂Ω
∂x̂

= 2ATPεAx− 2ATPεy = 0. (4.9)
This leads to the following system of normal equations,

Nx = n with N = ATPεAx and n = ATPεy. (4.10)
The solution of the normal equations yields the estimation of the unknown parameters by means of least
squares adjustment,

x̂ = (ATPεA)−1ATPεy = N−1n. (4.11)
This solution corresponds to the best linear unbiased estimate and results in the maximization of the like-
lihood function (Koch 1997). The covariance matrix of the unknown parameters C(x̂) can be derived by
applying the law of covariance propagation to (4.11) under consideration of (4.6),

C(x̂) = σ2N−1. (4.12)
The unknown variance factor can be estimated by

σ̂ =
1

n− u
(y −Ax̂)TPε(y −Ax̂), (4.13)

which leads to the estimated covariance matrix of the unknown parameters,
Ĉ(x̂) = σ̂2N−1. (4.14)

4.2 The Gravity Field and its Functionals in Terms of Splines

In this section, the basis functions, as introduced in Section 3.4.2, will be adopted according to the speci�c task
of parameterization and determination of the gravity �eld with its di�erent functionals. The mathematical
considerations above have primarily been performed for functions given on the surface of the (unit) sphere.
When dealing with satellite data, on the contrary, the observation points are located in the exterior of the
Earth. Therefore, the outward continued basis functions (3.75) have to be applied, and a reference sphere ΩRwith radius R approximating the semi-major axis of the Earth is introduced. The spline kernels are located
at nodal points ri on ΩR with

|ri| = R. (4.15)
Arbitrary points in the exterior of this sphere, for example at the satellite's positions, are denoted by r with

|r| = r. (4.16)
For simpli�cation reasons, the spline kernel located at a speci�c nodal point ri will be denoted as Φi(r) inthe following according to

Φi(r) := Φ(r, ri). (4.17)
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The spline kernel evaluated at the point r reads

Φi(r) =
GM

R

∞∑
n=2

kn

(
R

r

)n+1

Pn(t), (4.18)

with
t = cos(ψ) =

r
r
· ri
R
. (4.19)

The factor GM/R is introduced into the basis functions, so that the spline coe�cients ai in (3.74) become
dimensionless values. In the following sections, the representation of the di�erent gravity �eld functionals in
terms of basis functions de�ned by (4.18) will be speci�ed. These gravity �eld functionals are the gravitational
potential, gravity, and the gravity gradient.

4.2.1 Gravitational Potential

The gravitational potential in terms of spline functions (4.18) can be represented as follows,

V (r) =
I∑
i=1

aiΦi(r). (4.20)

The potential as well as gravity and the gravity gradient are linear functionals of the unknown parameters
ai, thus they can be phrased as a matrix-vector product. Therefore, the unknown parameters are arranged
in the vector x,

x = (a0, ..., aI)
T
, (4.21)

and the gravitational potential at N positions of the satellite's orbit can then be expressed byV (r1)...
V (rN )

 = Vx, (4.22)

with the matrix V consisting of the basis functions evaluated at the satellite's positions rk with k = 1, ..., N ,

V =


Φ1(r1) Φ2(r1) . . . ΦI(r1)
Φ1(r2) Φ2(r2) . . . ΦI(r2)... ... ...
Φ1(rN ) Φ2(rN ) . . . ΦI(rN )


N×I

. (4.23)

4.2.2 Gravity

Under consideration of Eq. (3.5), gravity at positions along the arcs of the satellite's orbit can be calculated
according to

g(r) = ∇V (r) =
I∑
i=1

ai∇Φi(r). (4.24)

Again, this can be expressed by the corresponding matrix-vector productg(r1)...
g(rN )

 = Ḡx, (4.25)
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where the elements of the matrix Ḡ contain the gradients of the basis functions,

Ḡ =


∇Φ1(r1) ∇Φ2(r1) . . . ∇ΦI(r1)
∇Φ1(r2) ∇Φ2(r2) . . . ∇ΦI(r2)... ... ...
∇Φ1(rN ) ∇Φ2(rN ) . . . ∇ΦI(rN )


3N×I

. (4.26)

Usually, the gravity vector is obtained by di�erentiating the gravitational potential with respect to the
coordinates of a local north-oriented frame and a subsequent rotation into a cartesian Earth-�xed reference
frame. Here a di�erent method is applied, as the derivatives of the basis functions are directly calculated
with respect to the cartesian coordinates of an Earth-�xed frame by applying the chain rule,

∇Φ =

∂Φ/∂x
∂Φ/∂y
∂Φ/∂z

 =

∂Φ/∂r · ∂r/∂x+ ∂Φ/∂t · ∂t/∂x
∂Φ/∂r · ∂r/∂y + ∂Φ/∂t · ∂t/∂y
∂Φ/∂r · ∂r/∂z + ∂Φ/∂t · ∂t/∂z

 , (4.27)

with the partial derivatives of the basis functions with respect to r and t,
∂Φ
∂r

=
∞∑
n=2

−(n+ 1)
R

kn

(
R

r

)n+2

Pn(t), (4.28)

∂Φ
∂t

=
∞∑
n=2

kn

(
R

r

)n+2
dPn(t)
dt

, (4.29)
and with the partial derivatives of r and t with respect to the cartesian coordinates,

∂r

∂α
=
α

r
and ∂t

∂α
=

αi
rR

− t α

r2
with α = x, y, z. (4.30)

Here α represents the coordinates of r and αi the coordinates of ri. The positions used for the calculation
of the matrix in Eq. (4.26) have to be given in an Earth-�xed co-rotating coordinate system, thus gravity
in Eq. (4.25) is given in this Earth-�xed frame as well. In contrast to this, the functionals of the satellite
movement that will serve as functional models in the gravity �eld determination process, as will be described
in Section 4.3, refer to the inertial reference frame. Therefore, they require gravity to be formulated in this
frame. The corresponding transformation can be expressed as

G := RḠ, (4.31)
with G denoting the matrix related to the inertial reference frame. Using the rotation matrices of the
Earth rotation, as given in the IERS Conventions (McCarthy and Petit 2004) of the International Earth
Rotation and Reference System Service (IERS), the relationship between the International Celestial Reference
Frame (ICRF) as a realization of the quasi-inertial system and the International Terrestrial Reference Frame
(ITRF) as realization of an Earth �xed reference system can be established. The rotations from the ITRF
to the ICRF for each observation time can be given by the matrices R(tk) arranged in the blockdiagonal
matrix

R =

R(t1) . . .
R(tN )

 . (4.32)

Gravity in the ICRF can be obtained by inserting G instead of Ḡ in Eq. (4.25).

4.2.3 Gravity Gradient

In case of satellite gravity gradiometry, the gravity gradient components serve as observations. Therefore,
the functional model for this type of observations is required as well. The gravity gradient is calculated as
second derivatives of the gravitational potential, expressed in terms of spline functions according to

∇∇V (r) =
I∑
i=1

ai∇∇Φi(r). (4.33)
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The corresponding matrix-vector product can be formulated as follows,∇∇V (r1)...
∇∇V (rN )

 = T̄x, (4.34)

with the block matrix T̄ containing the second derivatives of the basis functions,

T̄ =


∇∇Φ1(r1) ∇∇Φ2(r1) . . . ∇∇ΦI(r1)
∇∇Φ1(r2) ∇∇Φ2(r2) . . . ∇∇ΦI(r2)... ... ...
∇∇Φ1(rN ) ∇∇Φ2(rN ) . . . ∇∇ΦI(rN )

 . (4.35)

Here ∇∇Φ denotes the Hessian matrix of the second derivatives of a basis function,
∇∇Φ =

{
∂2Φ
∂α∂β

}
αβ

with α, β = x, y, z. (4.36)

Depending on the speci�c application, these second derivatives can be arranged either in a 3 × 3 tensor or
in a column vector, as will be shown below. Again the chain rule is applied in order to directly calculate the
derivatives in the cartesian Earth-�xed frame,

Φαβ = Φβα =
∂Φ
∂r

· ∂2r

∂α∂β
+
∂Φ
∂t

· ∂2t

∂α∂β
+
∂2Φ
∂r2

· ∂r
∂α

∂r

∂β

+
∂2Φ
∂r∂t

· ∂r
∂α

∂t

∂β
+
∂2Φ
∂r∂t

· ∂r
∂β

∂t

∂α
+
∂2Φ
∂t2

∂t

∂α

∂t

∂β
,

(4.37)

with the second derivatives of the basis functions with respect to r and t,
∂2Φ
∂r2

=
∞∑
n=2

(n+ 2)(n+ 1)
R2

kn

(
R

r

)n+3

Pn(t), (4.38)

∂2Φ
∂r∂t

=
∞∑
n=2

(n+ 1)
R

kn

(
R

r

)n+2
dPn(t)
dt

, (4.39)

∂2Φ
∂t2

=
∞∑
n=2

kn

(
R

r

)n+2
d2Pn(t)
dt2

. (4.40)
The second derivatives of r and t with respect to the cartesian coordinates can be formulated as follows,

∂2r

∂α∂β
=

1
r
δαβ−

αβ

r3
and ∂2t

∂α∂β
= − t

r2
δαβ−

αiβ + αβi
r3R

+
3αβ t
r4

with α, β = x, y, z. (4.41)
Again α and β are the coordinates of r and αi and βi the coordinates of ri. The observations of the secondderivatives are given in the reference frame of the gradiometer, the so-called 'gradiometer reference frame'
(GRF), orientated along the three axes of the gradiometer instrument with origin in the nominal intersection
of the three one-axis gradiometers. In contrast to that, the derivatives in the formulas given above are
formulated in an Earth-�xed reference frame (ITRF) with origin located in the geocenter, z-axis directed
to the pole, x-axis �xed in the equatorial plane in the direction of the Greenwich meridian, and y-axis as
completion to a right-handed system. Therefore, the observation equation has to be transformed from the
ITRF into the GRF. When the second derivatives for each observation point rk are arranged according to

T̄(rk) = ∇∇Φ =

Φxx Φxy Φxz
Φyx Φyy Φyz
Φzx Φzy Φzz

 , (4.42)
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this transformation can be performed by using the transformation formula for tensors,
T(rk) = D(rk)T̄(rk)D(rk)T . (4.43)

T̄ is the tensor of second derivatives in the Earth-�xed frame and T the tensor referring to the gradiometer
reference frame. The matrix D is the 3 × 3 rotation matrix transforming the former frame into the latter.
Further information about the transformation of gravity gradients from one coordinate system into another
one can be found in Koop (1993). For practical calculations, it can often be reasonable to combine the
independent tensor components in a column vector according to

t̄(rk) = (Φxx,Φxy,Φxz,Φyy,Φyz,Φzz)T . (4.44)
Then the transformation described by Eq. (4.43) can be reformulated as a single matrix-vector operation,
as, for example, described by Ditmar et al. (2003),

t(rk) = R(rk)t̄(rk), (4.45)
with t denoting the rotated values. The matrix R(rk) relates the vector t(rk) to the vector t̄(rk); it emergesfrom carrying out the two rotations in Eq. (4.43). When the transformation matrices for the di�erent obser-
vation points are combined into one blockdiagonal matrix according to

R =

R(r1) . . .
R(rN )

 , (4.46)

then the transformation can be applied to the matrix T̄ in Eq. (4.35) as follows,
T = RT̄. (4.47)

The gravity gradient related to the GRF can be obtained by inserting T instead of T̄ in Eq. (4.34).

4.3 Functional Model

In the following section, the functional models providing the relationship between the unknown gravity �eld
parameters and the di�erent types of observations provided by the satellite missions CHAMP, GRACE,
and GOCE will be derived. These observation principles are the concept of precise orbit determination
(POD) derived from satellite-to-satellite tracking in the high-low mode, satellite-to-satellite tracking in the
low-low mode, and satellite gravity gradiometry. The functional models can be applied to di�erent gravity
�eld representations, e.g. spherical harmonic expansions or radial basis functions. The representation of the
di�erent gravity �eld functionals in terms of radial basis functions, as described in Section 4.2, leads to
the speci�c observation equations for the regional gravity �eld recovery. To exploit all the advantages of a
regional gravity �eld recovery, only the data being associated with the respective regional area has to be used.
Therefore, the observation equations are established for satellite data over the selected regional recovery area,
while the coverage with satellite data should be slightly larger than the recovery region itself to prevent the
solution from geographical truncation e�ects. This aspect has to be considered with care especially for the
long wavelength gravity �eld features. Thus the orbit information and additional satellite data have to be
cut out over the regional area. Consequently, the employed observation models necessarily have to be based
on short arcs of the satellite's orbit. The use of short arcs presents further advantages. Unmodeled disturbing
forces acting on the satellite do not accumulate and, therefore, only have a limited impact on the solution.
A further bene�t of short arcs lies in the fact that one can deal with data gaps more easily, as a new arc
can be started after each data gap. In this way, the observations along an arc can be regarded to have equal
distances in time without gaps. Therefore, there is no necessity to consider respective exceptions during the
data processing.
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4.3.1 Precise Orbit Determination

All three satellite missions CHAMP, GRACE, and GOCE carry a receiver for the Global Positioning System
(GPS) in order to acquire satellite-to-satellite tracking data in the high-low con�guration. From this data,
the satellites' orbits can be calculated by means of precise orbit determination (POD), see, for example,
�vehla and Rothacher (2001). In case of CHAMP, this POD information provides the primary type of
observations, but it establishes the basis for the functional model of the mission GRACE as well and is also
used in the GOCE processing. Di�erent approaches to process POD data have been proposed, among them
are the acceleration approach, as developed by Austen and Reubelt (2000), the acceleration approach
using double di�erences, as introduced by Ditmar and van Eck van der Sluijs (2004), and the energy
integral approach as a very popular tool in satellite geodesy. In the context of determining a gravity �eld
solution from CHAMP data, it was, for example, used byGerlach et al. (2003). An overview of the di�erent
methods is given in Ilk et al. (2005a). In the following, only the approach actually used for the calculation
procedure in this thesis will be described. It is based on an integral equation approach, �rst proposed by
Schneider (1968) in the context of orbit determination and then applied to the gravity �eld determination
by Reigber (1969). The following procedure was applied successfully to the calculation of a global CHAMP
gravity �eld model in the space domain by Mayer-Gürr et al. (2005). More details of the method can be
found in Mayer-Gürr (2006).
The relation between the satellite's movement along the orbit and the forces f acting on the satellite is
described by Newton's equation of motion, here formulated with respect to a unity mass element,

r̈(t) = f(t; r, ṙ), (4.48)
with r̈(t) denoting the satellite's acceleration for a given time t and r and ṙ describing the satellite's position
and velocity, respectively. Typically, this di�erential equation is non-linear, as the force function does not
depend linearly on the satellite's positions. Integrating the di�erential equation twice results in an integral
equation for the satellite's orbit. With the boundary values

rA := r(tA), rB := r(tB), tA < tB , (4.49)
for the start and end position of the arc of the satellite's orbit. This integral equation can be formulated as
the solution of a boundary value problem according to

r(τ) = (1− τ) rA + τrB − T 2

1∫
τ ′=0

K (τ, τ ′) f(τ ′, r, ṙ) dτ ′, (4.50)

with the normalized time
τ =

t− tA
T

with T = tB − tA (4.51)
and the integral kernel

K (τ, τ ′) =
{
τ (1− τ ′) , τ ≤ τ ′,
τ ′ (1− τ) , τ ′ ≤ τ,

. (4.52)
Eq. (4.50) is a Fredholm type integral equation of the second kind. The unknowns in this equation are
the boundary values rA and rB and the speci�c force function f(τ ′, r, ṙ) along the orbit. In the following,
the positions r in the force function will be substituted by the positions rε measured by GPS. In case of
POD measurements, they can be assumed as su�ciently accurate, as has been investigated inMayer-Gürr
(2006). Therefore, the dependence of the force function on the unknown satellite orbit can be omitted. When
the same integral equation is used to derive observation equations for the highly accurate satellite-to-satellite
tracking measurements, this dependence has to be considered, as will be described in Section 4.3.1.1. The
satellite's velocity ṙ only in�uences the force function due to the surface forces acting on the satellite. Those
surface forces can directly be determined by the onboard accelerometer, therefore the dependence of the
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force function on the satellite's velocity can be neglected as well. This leads for the POD observations to the
simpli�cation f(τ ′, r, ṙ) = f(τ ′).
As observations serve the satellite positions r(τk) which are determined at N discrete, equidistant normed
points in time τk calculated by

τk =
k − 1
N − 1

for k = 1, ..., N. (4.53)
As equation (4.50) is evaluated for each observed position r(τk) along the arc of the satellite's orbit, one
obtains a system of equations which can be formulated in matrix notation as follows,

l = Bb + h. (4.54)
The vector l represents the observed positions of the satellite,

l =

 r(τ1)...
r(τN )

 . (4.55)

The vector b contains the boundary values and the matrix B the corresponding normalized observation
times,

B =


(1− τ1) τ1
(1− τ2) τ2... ...
(1− τN ) τN

 , b =
(
rA
rB

)
. (4.56)

The vector h stands for the integral evaluated at the N observation epochs,

h =

h(τ1)...
h(τN )

 with h(τk) = −T 2

∫ 1

0

K(τk, τ ′)f(τ ′) dτ ′. (4.57)

In order to establish a relation between the observations and the unknown parameters x, the integral is
expressed as a linearized functional of these parameters,

h = h0 + Ax with (A)ki =
∂h(τk)
∂xi

. (4.58)
This results in the following linear system of observation equations,

l− h0 = Bb + Ax, (4.59)
with the vector of unknown parameters according to Eq. (4.21). The elements of matrix A can be derived
by applying the chain rule, i.e. by partially di�erentiating the integral with respect to the force function and
then di�erentiating f with respect to the unknown parameters,

(A)ki =
∂h(τk)
∂xi

=
∂h(τk)
∂f(τ ′)

∂f(τ ′)
∂xi

. (4.60)

It reads expressed in matrix notation

A = KG with (K)kj =
∂h(τk)
∂fj

and (G)ji =
∂fj
∂xi

. (4.61)
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The set up of matrix G has already been described in Section 4.2.2; it is given according to Eq. (4.26) under
consideration of Eq. (4.31). The speci�c forces along the satellite's orbit can then be expressed in terms of
the unknown gravity �eld functionals according to f(τ1)...

f(τN )

 = Gx + a, (4.62)

with the vector a representing the reference gravity �eld, the tide models, and the disturbing surface forces
as determined by the onboard accelerometer. The observation vector is reduced by these forces which implies
that the accelerometer measurements and force models are assumed to be error-free. The matrix K represents
the numerical integration of the integral (4.57). By means of quadrature methods, a linear relationship
between h and f can be established,h(τ1)...

h(τN )

 = K

 f(τ1)...
f(τN )

 . (4.63)

For more details concerning the calculation of K, refer to Mayer-Gürr (2006). Using this matrix K, the
approximate values h0 for the integral can be calculated from the reference accelerations according to

h0 = Ka. (4.64)
This leads to the following Gauss-Marko� model,

l−Ka = KGx + Bb + ε, (4.65)
where b and x are the vectors of unknown parameters, and ε denotes the noise.

4.3.1.1 Re�nement of the Functional Model

The functional model described so far can be used in the processing of POD measurements. The observation
equations can be modi�ed and subsequently applied to establish the linearized model for intersatellite K-band
measurements as in case of the GRACE mission as well. The superior accuracy of the K-band observations
results in high demands on the accuracy of the functional model. The intersatellite ranges can be observed
with an accuracy of a few µm, thus the errors occurring from the approximations made in the model itself have
to be signi�cantly smaller than these measurement errors. Those approximation errors can originate from the
linearization procedure, from the numerical integration, and from values introduced into the functional model.
The �rst one can be considered by good approximate values or by an iteration of the estimation procedure.
The numerical integration is non-critical as well, as shown by Mayer-Gürr (2006). But the accuracy of
the satellite's positions that are introduced into the functional model poses a more serious problem. In the
integral (4.57), the force function f is evaluated at the speci�c positions of the satellite at speci�c observation
epochs. This results in the force function to depend not only on time, but on the position as well: f(r(τ)). In
case of the POD observations, the inaccuracies of the GPS positions were neglected, but this is not possible
in case of K-band measurements. The positions can be determined with an accuracy of a few cm, which is
not su�cient compared to the high precision measurements provided by the K-band instrument. Therefore,
Mayer-Gürr (2006) proposed the use of re�ned observation equations. This re�nement procedure is shortly
described in the following.
The evaluation of the integral at noisy positions rε results in positions r̂,

r̂(τ) = (1− τ)rA + τrB + T 2

∫ 1

0

K(τ, τ ′)f(rε(τ ′)) dτ ′. (4.66)
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The di�erence compared to the true positions r can be calculated according to
r(τ)− r̂(τ) = T 2

∫ 1

0

K(τ, τ ′) [f(r(τ ′))− f(rε(τ ′))] dτ ′. (4.67)
The above equation can be given in a simpli�ed version,

r− r̂ = K [f(r)− f(rε)] , (4.68)
with the linear integral operator K = T 2

∫ 1

0
K(τ, τ ′)(·) dτ ′. Linearizing the force function,

f(r) = f(rε) +∇f
∣∣
rε
· (r− rε) + . . . , (4.69)

yields
r− r̂ = K∇f · (r− rε). (4.70)

The insertion of Eq. (4.70) instead of r̂ into Eq. (4.66) and some rearrangements lead to
[I − K∇f(rε)] (r− rε) = K f(rε) + b− rε, (4.71)

with I denoting the unity operator and b(τ) = (1 − τ)rA + τrB being the functional of the line of sight
connection. As long as the inverse of the operator [I − K∇f(rε)] exists, the noise-free positions can be
calculated during the linearization process of the force function,

∆r = r− rε = [I − K∇f(rε)]
−1 [K f(rε) + b− rε] . (4.72)

This equation can be discretized analogously to the procedure used with the POD observations,
∆r = (I−KT)−1 (Kf + Bb− rε) , (4.73)

with K being the matrix of the numerical quadrature and B being the matrix containing the functional of
the boundary values as in (4.56). T is the matrix of the gravity gradients according to

T =

∇f(τ1) 0
. . .

0 ∇f(τN )

 . (4.74)

Eq. (4.73) can now be used to calculate error-free positions,
r = rε + ∆r. (4.75)

4.3.2 Low-Low Satellite-to-Satellite Tracking

For the processing of satellite-to-satellite tracking data in the low-low con�guration, as provided by the
K-band measurement instrument onboard the GRACE mission, di�erent approaches have been proposed as
well. Among them are the employment of the energy integral, as proposed by Jekeli (1999), the acceleration
approach, as, for example, used by Sharifi and Keller (2005), and the Hammerstein-Schneider method,
see, for example, Ilk (1984). The approach that is used in the calculations presented here is based on the
integral equation described for the POD observations in Eq. (4.50). This method is explained in more detail
in Mayer-Gürr et al. (2006); in the following it will shortly be reviewed.
If precise intersatellite functionals as line-of-sight ranges or range-rate measurements are available as in case
of the GRACE mission, the mathematical model can be derived by projecting the relative vector between
the two satellites onto the line-of-sight connection,

ρ(τ) = e12(τ) · (r2(τ)− r1(τ)) , (4.76)
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with ρ denoting the range between the two satellites. The vectors r2(τ) and r1(τ) describe the positions ofthe two GRACE satellites, and e12 is the unit vector in line-of-sight direction,
e12(τ) =

r12(τ)
‖ r12(τ) ‖

with r12(τ) = r2(τ)− r1(τ). (4.77)
Analogous formulae can be derived for range-rate and range-acceleration measurements, as described in
Mayer-Gürr (2006). Eq. (4.76) is a non-linear functional of the unknown parameters x. In order to use it
in a Gauss-Marko� model, it has to be linearized,

ρ = ρ0 +
∂ρ

∂x

∣∣∣∣
x0

·∆x + ... (4.78)
The relation between the range measurements and the unknown parameters is not stated explicitly in
Eq. (4.76), but via the satellites' positions along the orbits. Thus the partial derivatives of the range mea-
surements are derived by applying the chain rule and �rst di�erentiating with respect to the positions of the
two satellites. Then the positions are di�erentiated with respect to the force function f and �nally the force
function with respect to unknown parameters,

∂ρ

∂x
=

∂ρ

∂r1
· ∂r1

∂f
· ∂f
∂x

+
∂ρ

∂r2
· ∂r2

∂f
· ∂f
∂x

. (4.79)
The �rst term of each product is the di�erentiation of Eq. (4.76),

∂ρ

∂r1
= −e12,

∂ρ

∂r2
= e12. (4.80)

The second part of the partial derivatives, the linearized relationship between the positions and the unknown
parameters ∂r/∂x = ∂r/∂f · ∂f/∂x, corresponds to the observation equations for the POD case, as given by
Eq. (4.65). The observation equations for the range measurements are then obtained from the ones for the
POD observations by multiplication with the derivatives in Eq. (4.80). This equals a projection onto the line of
sight connection. It has to be pointed out that, in case of K-band observations, the re�ned satellite's positions
given by Eq. (4.75) have to be introduced into the model, as the accuracy of the original GPS positions is
not su�cient. The non-linear relation (4.76) requires a reference gravity �eld model to be introduced as
approximation for the unknown parameters. Furthermore, the range observations have to be reduced by
the in�uence of the other modelled forces, such as surface and tidal forces. The reduced observations are
introduced as pseudo-observations on the left side of Eq. (4.76). For these pseudo-observations a covariance
matrix can be determined, including the noise model of the satellite ranging system and of the accelerometer
observations, see Mayer-Gürr (2006).

4.3.3 Satellite Gravity Gradiometry (GOCE)

The gradiometer instrument, as in case of the GOCEmission, determines the gravity gradient consisting of the
second derivatives of the gravitational potential. The observation equation for these types of measurements
is given by

∇∇V (r) =
I∑
i=1

ak∇∇Φi(r). (4.81)

The design matrix A corresponds to the matrix T already described by Eq. (4.35),
A = T. (4.82)

In this way, the matrix A contains the observation equations that have been rotated into the gradiometer
reference frame. It should be pointed out that in practical observations not all of the nine tensor components
will be measured with equal accuracy. On the contrary, the three components on the main diagonal of the
gravity gradient tensor will be determined with superior accuracy. Therefore, those three components will
serve as primary observations.
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5. Solving the System of Observation

Equations

The following chapter deals with the solution of the observation equations that are set up in Chapter 4.3.
The solution is performed in the sense of a least squares adjustment, as introduced in Section 4.1. Particular
interest is dedicated to the ill-posedness of the downward continuation process that is inevitable when dealing
with data in satellite altitude and aiming at the determination of the gravity �eld on the Earth's surface.,
especially in case of space-localizing basis functions. Therefore, in the �rst part of this chapter, the concept
and the implications of ill-posed problems are reviewed. To overcome the issues imposed by the downward
continuation, the problem can be stabilized by the introduction of prior information. This corresponds to a
regularization according to Tikhonov. Thus in the second part of this chapter, the regularization process is
described for the applied case of a Tikhonov regularization. Subsequently, the implications of this kind of
regularization are speci�ed for the case of a parameterization by the space localizing basis functions used
within this thesis. The regularization parameter is determined by a variance component estimation procedure,
as described afterwards. Finally, the concept of a regionally adapted regularization will be introduced, as
this plays a major role for the bene�t of the regional gravity �eld recovery. In this sense, the regularization
procedure presents an important module for the regional approach presented in this thesis.

5.1 Inverse Problems, Ill-posed Problems

When dealing with geodetic problems, especially in satellite geodesy, the concepts of inverse and ill-posed
problems is of particular importance. The issue has been discussed widely within the geodetic community, see,
for example,Moritz (1966), Schwarz (1971), Rummel et al. (1979), or Ilk (1984). A short introduction
will be given in this section. An overview concerning this topic from the mathematical point of view can be
found in Louis (1989) or Hansen (1997).
Let X and Y be normed vector spaces, and let A : X → Y be the physical model describing the linear
mapping between the two spaces according to

Ax = y, (5.1)
with x ∈ X and y ∈ Y . The task of calculating the output y from a given set of x is described as direct
problem, whereas the calculation of the model parameters indirectly from a given set of observations is
speci�ed as inverse problem. An inverse problem is called 'well posed' according to Hadamard (1923), as
long as A is bijective, and the inverse operator A−1 is continuous. A being bijective means that the equation
is solvable for all y ∈ Y (surjective), and that it has a unique solution (injective). Requiring the inverse
operator to be continuous implicates that the solution x depends continuously on the data (with the concept
of continuity introduced in Appendix A.2). This implies that small changes in x result in small changes
in y. In this case, the problem can be considered as being stable. In the context of a linear operator, the
requirement of continuity is equivalent to assuming that the operator is bounded. As soon as any one of
these requirements (existence, uniqueness, and stability) is violated, the problem is said to be an 'improperly
posed' or 'ill-posed' problem. In geodesy one frequently has to deal with inverse problems, as the model
parameters to be determined are usually not subject to direct observations. Inverse problems are frequently
ill-posed, as very often at least one of the conditions mentioned above is not satis�ed. An example of the
non-uniqueness of the solution is the problem of determining the mass distribution in the interior of the
Earth from the exterior gravitational potential, as in�nitely many mass distributions can result in the same
exterior gravity �eld. The reason for ill-posedness that will be further investigated in this thesis is the lack
of stability. In case of satellite geodesy, the missing stability can have several causes, the most important of
them being listed below:
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• The calculation of gravity �eld functionals on the Earth's surface from measurements in satellite altitude
causes an ill-posed problem, as during the downward continuation the signal is ampli�ed especially in
the high frequency part of the spectrum. This matter will be described in more detail in Section 5.1.1.

• Irregular data distribution or data gaps (such as the polar gap problem in case of the GOCE mission)
lead to instabilities.

• A measurement instrument might not be able to recover the whole spectral domain. (For example, the
GOCE gradiometer is not sensitive with respect to long wavelength features of the gravity �eld.)

5.1.1 Ill-posedness of the Downward Continuation Process

In this thesis, the focus in the context of ill-posed problems is on the downward continuation process in
case of gravity �eld recovery from satellite data. Therefore, this problem shall be dealt with in more detail.
The instability of this process can be observed by analyzing the compact upward continuation operator, as
de�ned by Eq. (3.70),

U(x,xr) =
∞∑
n=0

n∑
m=−n

1
R

(
R

r

)n+1

Ynm

(
xr
|xr|

)
Ynm(x). (5.2)

This operator can be decomposed into its singular values, as described in Section A.2.0.1, with the orthogonal
singular functions Ynm and the singular values

σnm =
1
R

(
R

r

)n+1

. (5.3)
Details concerning these spectral relationships can be found in Meissl (1971) or Rummel and van
Gelderen (1995). The decay of the singular values towards zero with increasing frequency n becomes
evident in Eq. (5.3). Thus high frequencies are associated with small singular values, which indicates the
smoothing property of the kernel. This is a very important characteristic of compact operators, as de�ned
by Eq. (A.37). A consequence of this characteristic is the fact that the inverse of a compact linear operator
cannot be bounded. The inverse of the upward continuation operator is the downward continuation operator
with its singular values approaching in�nity with increasing n. This illustrates the ampli�cation of small
frequencies during the downward continuation process. As boundedness and continuity are equivalent con-
cepts when dealing with linear operators, the downward continuation operator cannot be continuous. Thus
it violates Hadamard's continuity assumption for well-posed problems.

5.1.2 Singular Value Decomposition of the Design Matrix

The instability of a problem given by Eq. (4.6) can be identi�ed by an examination of the spectral behavior
of the design matrix A. Therefore, the theory of spectral decomposition (of �nite dimensional matrices) will
shortly be reviewed in the following, as described, for example, by Hansen (1997). For the case of in�nite
dimensional operators, the singular value decomposition is described in Appendix A.2.0.1. The concepts
introduced there for in�nite problems can help to understand the �nite dimensional problem, as the design
matrix A represents a discretization of the in�nite dimensional operator.
The rectangular matrix A ∈ IRn×u with rank n ≥ u can be decomposed into

A = UΣVT =
u∑
i=1

uiσivTi Σ =
(
Σu

0

)
, (5.4)

with the orthogonal matrices U = (u1, ...un) ∈ IRn×n and V = (v1, ...vu) ∈ IRu×u. The matrix Σ ∈
IRn×u contains the diagonal matrix Σu = diag(σ1, ..σu) with the singular values σi that can be arranged in
descending order according to

σ1 ≥ σ2 ≥ ... ≥ σu > 0. (5.5)
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The vectors ui and vi are the corresponding left and right singular vectors, respectively, satisfying the
following relations,

Avi = σiui

ATui = σivi.
(5.6)

The singular values of the design matrix can be related to the eigenvalues of the normal equation matrix,
as the vi are the eigenvectors of ATA and the ui the eigenvectors of AAT with the same eigenvalues λi forboth matrices. The singular values are then given by σi =

√
λi. As described in Section 5.1.1, singular vectorscorresponding to small singular values can be associated with high frequencies. Using this characteristic, the

smoothing property of the matrix A can be observed when the mapping of an arbitrary vector x into the
range R(A) (see Appendix A.2) is performed,

x =
u∑
i=1

(xTvi)vi Ax =
u∑
i=1

σi(xTvi)ui. (5.7)
From the above Eq. (5.7), it becomes obvious that by the mapping these high frequencies of x are dampened
more strongly than the lower frequencies due to the multiplication with smaller singular values σi. Theopposite is the case as to the solution of the inverse problem,

x̂ =
u∑
i=1

1
σi

(yTui)vi. (5.8)

Eq. (5.8) can be considered as spectral decomposition of x̂ with the coe�cients 1
σi

(yTui) indicating the
spectral properties of x̂. The ampli�cation of the smaller frequencies becomes evident. As formulated by
Eq. (A.40), the observations must not be arbitrarily rough, as the coe�cients (yTui) have to decay faster
than the singular values σi, which imposes a smoothness condition on the observations. In case of a �nite
dimensional operator, (5.8) always converges. But the vector x̂ is the discretization of a continuous function
which can only be continuous if, on the average, the frequency band decays with increasing frequency.
Therefore, the requirement holds for discrete problems as well (Discrete Picard condition, for more details
see, e.g., Hansen 1997). Uncorrelated noise does not decline with higher frequencies, on the contrary, white
noise is of equal magnitude for all frequencies, which poses a contradiction to the Picard condition.
The Picard condition is equivalent to demanding the observations y to be in the range R(A) =
span(u1, ...,uu) of the matrix A. But again, due to measurement noise present in the data, this cannot
necessarily be assumed. The noise does not generally belong to R(A). As a solution to Eq (5.1) only exists
for y ∈ R(A), the system of equations cannot be solved in the rigorous way, but only the distance between
y and Ax can be minimized. This implies that x̂ in Eq. (5.8) is the following solution in the least squares
sense,

x̂ = A+y, (5.9)
with A+ denoting the generalized inverse or Moore-Penrose inverse, see, for example, Groetsch (1977) or
Björck (1996),

A+ = (ATA)−1AT =
u∑
i=1

1
σi

viuTi . (5.10)
In case of compact operators in a Hilbert space, described in Appendix A.2, it is stated that a compact
operator in the in�nite dimensional case can never have a continuous and therefore bounded inverse. In case
of a �nite dimensional operator, if the inverse exists, it is also bounded and thus continuous. Therefore,
strictly speaking, Hadamard's continuity principle is not violated. But, nevertheless, the solution becomes
numerically unstable, and the ampli�ed errors in the observations contaminate the solution.
A linear system of the form (5.1) is regarded as ill-posed if the singular values of A descend very fast.
Crucial is the ratio of the largest singular value compared to the smallest singular value that is referred to
as condition number of the matrix,

cond(A) =
σ1

σu
. (5.11)
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In case of an ill-posed problem, it tends to take very large numbers. The matrix is then said to be ill
conditioned. From Eq. (5.6) it can be assumed that singular values equal to zero span the null space N (A)
of the matrix A, as de�ned by Eq. (A.22). This results in the solution of Eq. (5.1) not to be unique any
more. In case of singular values very close to zero, the system might be uniquely solvable from a strictly
mathematical point of view, but will become severely unstable.
If the design matrix is ill conditioned, the data by itself is insu�cient to obtain a stable solution. Referring
to least squares estimation, this implies that the minimization of the square sum of the residuals,

J(x) =
1
σ2
ε

(Ax− y)T Pε (Ax− y) := ‖Ax− y‖2C(ε) , (5.12)
by itself does not lead to a stable solution. Therefore, additional prior information about the solution has to
be introduced. These can be a-priori values for the unknown parameters, e.g. derived from existing models,
and smoothness assumptions in terms of an a-priori given covariance matrix of the unknown parameters.
The stabilization procedure is known as regularization and will be further described in the next section.

5.2 Regularization

In literature a variety of regularization methods has been proposed; an overview can be found, e.g., in Louis
(1989), Bouman (1998), or Kusche (2002). Among them are the Tikhonov regularization (Tikhonov
1963), the truncated singular value decomposition (see, for example, Hansen 1987), and regularization
techniques taking advantage of the regularizing character of iterative solution strategies (Landweber 1951)
such as conjugate gradients. In this thesis, only the Tikhonov regularization has been applied, therefore it
will be described in more detail in the following.

5.2.1 Tikhonov Regularization

This regularization method was independently developed by Tikhonov (1963) and Philips (1962) and is,
therefore, also referred to as Tikhonov-Philips regularization. The procedure is based on the minimization
of the functional (5.12) under consideration of a 'penalty term' ‖s‖2K that describes the norm of the signal
s given as linear functional Lx of the unknown parameters x,

s = Lx. (5.13)
‖s‖2K stands for a smoothing norm, for example given by the inner product of a reproducing kernel Hilbert
space with kernel K according to (3.21),

‖s‖2K = 〈s, s〉K . (5.14)
The requirement of this norm to be �nite,

‖s‖2K ≤ c <∞, (5.15)
does not only introduce a bound on the norm of the solution, but does also imply a smoothness condition
de�ned by the kernel K in equivalence with the smoothness assumption imposed by the kernel of an RKHS
in Section 3.2. The resulting functional to minimize (5.12) and (5.14) simultaneously can be formulated as
follows,

Jα(x) = ‖Ax− y‖2C(ε) + α ‖s‖2K , (5.16)
with α being the regularization or smoothing parameter. The minimization of Eq. (5.16) constitutes a
compromise between minimizing the residual norm and keeping the penalty term ‖s‖2K small. Due to the
ill-posedness of the original model, small errors in the data lead to large deviations in the solution. In order
to avoid this, the norm of the solution has to be limited.
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5.2.2 Regularization in the Finite Dimensional Model

As smoothing kernel (in the following in the discrete sense de�ned by Eq. (3.21)) can serve an a-priori known
covariance matrix of the signal,

K = C(s) = σ2
sP

−1
s , (5.17)

with σs being the variance factor of the signal. The scalar product in an RKHS de�ned by a (�nite dimen-
sional) matrix can be formulated according to (3.21) as the L2 inner product containing the inverse of the
kernel matrix following

‖s‖2C(s) = 〈s, s〉C(s) =
〈
s,

1
σ2
s

Ps s
〉
. (5.18)

Under consideration of the prior information
E(s) = 0 and C(s) = σ2

sP
−1
s , (5.19)

an equivalent formulation to (5.16) of the Tikhonov regularization based on the Bayes-approach is given by
Jα(x) =

∥∥∥∥(A
L

)
x−

(
y
0

)∥∥∥∥2

C̄
, (5.20)

with the inverse of the extended covariance matrix
C̄−1 =

(
1
σ2

ε
Pε 0
0 1

σ2
s
Ps

)
=

1
σ2
ε

(
Pε 0
0 σ2

ε

σ2
s
Ps

)
. (5.21)

The expectation value E(s) = 0 can be reasoned by the fact that (especially in a regional re�nement
approach) the estimated signal always represents a residual �eld to a (global) reference �eld. The minimum
xα of (5.16) and (5.20) is de�ned by the unique solution of the regularized normal equations,

xα =

[(
AT LT

)(Pε 0
0 σ2

ε

σ2
s
Ps

)(
A
L

)]−1 (
AT LT

)(Pε 0
0 σ2

ε

σ2
s
Ps

)(
y
0

)
= (ATPεA +

σ2
ε

σ2
s

LTPsL)−1ATPεy.

(5.22)

The regularization parameter α in Eq. (5.16) is interpreted here as signal-to-noise ratio,
1
α

=
σ2
s

σ2
ε

. (5.23)
This enables the regularized solution to be expressed according to

xα = (ATPεA + αLTPsL)−1A′Pεy. (5.24)
In this context, xα presents an unbiased least squares estimate of the unknown parameters under considera-
tion of the prior information given in (5.19), when the Tikhonov regularization is interpreted as introduction
of prior information in the Bayesian sense (Koch 1990). It shall be mentioned, however, that the question
whether the regularized solution can be regarded as unbiased is a controversially discussed matter, refer to,
e.g., Xu and Rummel (1994), Xu et al. (2006), and Koch and Kusche (1907).
The choice of the regularization parameter α is a crucial task, as it resembles the trade-o� between the
�tting of the solution to the given data set and the norm and smoothness of the regularized solution. The
larger the regularization parameter is chosen, the stronger is the dampening and the smoother the solution.
The parameter is to be chosen in accordance with the given signal. On the one hand, the solution has to be
regularized as strongly as necessary to obtain a reasonable solution. On the other hand, the signal should
not be dampened too much in order not to lose any information contained in the data. Several procedures
to choose this parameter have been proposed, e.g. the L-curve criterion (Hansen 1992), the generalized
cross validation (going back to Wahba 1977, see also Hansen 1987), minimizing the total mean square
error (Xu 1992), or the discrepancy principle (Morozov 1966). In this thesis, the regularization paramater
is interpreted as signal-to-noise ratio and is determined by variance component estimation as proposed by
Koch and Kusche (2001). Details of this method are given in Section 5.2.4.
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5.2.3 Regularization and Splines

As described in Chapter 5.2, the regularization procedure aims at smoothing the solution of an ill-posed
problem. In order to do so, certain smoothing conditions are imposed on the solution by adding a penalty
term to the minimization functional according to (5.16). This penalty term ‖s‖2K restricts the norm of a
linear functional of the unknown parameters, in this case the spline coe�cients ai being arranged in the
vector x = (a0, ..., aI)

T . The linear functional Lx of the unknown parameters can then be interpreted as

Lx = s(x) =
I∑
i=1

aiΦi(x,xi). (5.25)

Considering the a-priori information given in (5.19) and taking (5.17) into account, the functional (5.16) can
be reformulated according to

Jα(x) = (Ax− y)TPε(Ax− y) + α 〈s, s〉C . (5.26)
The smoothing condition is induced by using the a-priori covariance matrix of the signal C = C(s), in case
of the gravitational potential given by (3.58). With the signal expressed in terms of radial basis functions
according to Eq.(3.74), the scalar product is de�ned by

〈s, s〉C =

〈∑
i

aiΦi,
∑
k

akΦk

〉
C

=
∑
i

∑
k

aiak 〈Φi,Φk〉C . (5.27)

If the scalar products of the basis functions 〈Φi,Φk〉C are combined in the regularization matrix R with the
elements

Rik = 〈Φi,Φk〉C , (5.28)
then (5.26) becomes

Jα(x) = (Ax− y)TPε(Ax− y) + α · xTRx. (5.29)
The regularized solution for the minimization of the functional Jα(x) is then given by

xα(x) = (ATPεA + αR)−1ATPεy. (5.30)
Next, the nature of the regularization matrix R shall be investigated. Therefore, the elements of the regu-
larization matrix in (5.28) will be calculated. In the limit, the inner products represent integrals over the
sphere. If the covariance function (3.58) is chosen as reproducing kernel, and the basis functions are chosen
according to (3.73), the elements of the regularization matrix result in

Ri,k = 〈Φi,Φk〉C =
∫∫
Ω

1
k2
n

[ ∞∑
n=2

n∑
m=−n

knYnm(x)Ynm(xi)

][ ∞∑
n̄=2

n̄∑
m̄=−n̄

kn̄Yn̄m̄(x)Yn̄m̄(xk)

]

=
∞∑
n=2

n∑
m=−n

Ynm(xi)Ynm(xk) = δ(xi,xk).

(5.31)

δ(xi,xk) denotes the Dirac functional, which implies that it has the value zero for two di�erent functions,
but is in�nite in the case i = k with the integral over δ being one. Thus in a certain sense, the basis functions
diagonalize the regularization matrix, as any two functions located at two di�erent points are decorrelated
with respect to the inner product de�ned by the kernel. This is very much appreciated, as it allows the
separation of the regularization matrix, as will be described in Section 5.2.5. But the problem is the fact that
each Φi itself does not possess �nite energy concerning the scalar product de�ned by C. This means that the
norm with respect to C is not �nite,

‖Φi‖C = ∞, (5.32)
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which results in the elements on the main diagonal of R to become in�nite. The implication of Eq. (5.32) is
the fact that the basis functions Φi do not belong to the RKHS de�ned by the covariance function C. They
are not smooth enough to satisfy the requirement imposed by C as reproducing kernel, as has already been
stated in Eq. (3.90)
If one is interested in adapting the basis functions in such a way to make them part of the Hilbert space
de�ned by the reproducing kernel C, the basis functions would have to become smoother. This could be
achieved by introducing a damping factor of (1/

√
1 + ε)n (ε being a small positive number) into the series

expansion,

Φ̄i(x,xi) =
∞∑
n=2

√
2n+ 1 · kn ·

(
1√

1 + ε

)n
P (x · xi), (5.33)

leading to the following elements of the regularization matrix,

Ri,k =
〈
Φ̄i, Φ̄k

〉
C =

∞∑
n=2

n∑
m=−n

(
1

1 + ε

)n
Ynm(xi)Ynm(xk). (5.34)

Eq. (5.34) reveals that, in contrast to the original basis functions, the modi�ed spline kernels lack the
orthogonality regarding the respective inner product.
The above considerations have been made for non-bandlimited spline functions. In practical calculations,
however, the respective basis functions always have to be bandlimited with an upper degree N leading to
the functions de�ned in Section 3.4.3. From this it follows that the series expansion used in the calculation
of the scalar product in (5.31) is truncated at degree N as well. When dealing with a truncated series, of
course, the problem of in�nite energy does not exist any more. Hence, in case of bandlimited spline functions,
the energy on the main diagonal of the regularization matrix becomes �nite, even without introduction of
a damping factor. However, the inner product (5.31) can only be orthogonal if the summation is performed
up to N = ∞. Thus the bandlimited spline functions lose their strict orthogonality in the sense of the inner
product with respect to C. The elements Rik of the regularization matrix re�ect the correlations between
two di�erent basis functions located at two di�erent nodal points xi and xk.
An ideal case would provide a set of basis functions being decorrelated by the scalar product induced by
the covariance function as reproducing kernel, but at the same time having �nite energy with respect to the
norm de�ned by the same kernel. The simultaneous satisfaction of both requirements would result in the
regularization matrix becoming the unit matrix (or at least di�ering from the unit matrix only by a constant
factor which could be absorbed in the regularization parameter). However, the ful�llment of both conditions
is not easily available (especially for bandlimited basis functions) due to the issues of convergence of the
scalar product and the loss of orthogonality discussed above.
Nevertheless, the regularization matrix is to be approximated by the unit matrix. This provides the advantage
of separating the regularization matrix and calculating di�erent matrices for di�erent areas, as will be
discussed in more detail in Section 5.2.5. The approximation

R = I (5.35)
leads to the functional Jα(x) of Eq. (5.29) to be modi�ed according to

Jα(x) = (Ax− y)TPε(Ax− y) + α · xTx, (5.36)
resulting in the regularized solution

xα(x) = (ATPεA + αI)−1ATPεy. (5.37)
It is understood that the use of I instead of R is only an approximation, therefore it has to be investigated
in how far this approximation has any e�ect on the solution. This will be attended to in the following
considerations and in a simulation scenario described in Section 7.2.



72 5. Solving the System of Observation Equations

Figure 5.1: Regularization matrix calculated as the inner products of basis functions, left: original spline
kernel, right: modi�ed spline kernel (modi�cation factor 0.9), basis functions developed up to N = 14,
located on a triangle vertex grid of level 4

To illustrate the e�ect of the non-orthogonality of the bandlimited spline kernels and to show the e�ect of the
modi�ed basis functions (5.33), examples of regularization matrices are plotted in Fig. 5.1. The spline kernels
in this example have been developed up to N = 14 and have been arranged on a matching triangle vertex grid
(see Section 3.5.1.6) of level 4. The left hand side of the �gure shows the regularization matrix resulting from
the (bandlimited) inner products for the unmodi�ed basis functions given by (5.31). The matrix is normalized
to provide the value one for the elements on the main diagonal. The �gure speci�es that the elements apart
from the main diagonal are signi�cantly smaller than one, the highest correlation between two di�erent spline
kernels being about 0.12, as listed in Tab. 5.1. Even though this represents only one example of a speci�c
basis function and grid combination, the situation does not change much when the regularization matrix is
calculated for higher resolution spline kernels and their corresponding nodal point arrangements. The highest
correlation factor is always around 10% of the value on the main diagonal. On the right hand side of Fig. 5.1,
the same regularization matrix is plotted for modi�ed spline kernels and their inner products given by (5.34),
here presented with a modi�cation factor of (1/

√
1 + ε)n = 0.9. This again represents only an exemplary

value, the more ε→ 0, the more the regularization matrix resembles the original one. While the overall sum
of the absolute values of the elements apart from the main diagonal decreases with the modi�cation factor,
the highest correlation and the standard deviation of the o�-diagonal elements increase. The impact of the
modi�cation factor on the basis functions and the resulting regularization matrices will be investigated in a
simulation scenario in Section 7.2. There the impact of the unit matrix to be used as regularization matrix
will be investigated, too.

highest correlation standard deviation sum of absolute values
original kernel 0.128337 6.08808 1163.07

modi�ed kernel (factor 0.9) 0.285343 9.01617 921.36
Table 5.1: Di�erence between the regularization matrix and the unit matrix, triangle vertex level 4, N = 14

Mathematically, the impact of the use of the unit matrix as regularization matrix can be exploited by
investigating the di�erence D between regularized normal equations with fully occupied regularization matrix
compared to the normal equations with the use of the unit matrix according to

D = (ATPεA + αI)−1 − (ATPεA + αR)−1. (5.38)
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With the simpli�cations B = (ATPεA + αI) and B′ = (ATPεA + αR), this reads
D = B−1 −B′−1. (5.39)

Factoring out the matrices B′−1 and B−1 results in
D = B−1(I−BB′−1) = B−1(B′ −B)B′−1. (5.40)

Resubstituting the original matrix expressions results in the following di�erence,
D = (ATPεA + αI)−1(R− I)(ATPεA + αR)−1. (5.41)

This implies that the di�erence between the regularized normal equations can directly be expressed by the
di�erence (R− I) between the matrices themselves.
It shall be pointed out that a regularization matrix equivalent to Eq. (5.34) would be obtained in case of
unmodi�ed basis functions if the modi�ed covariance function C̄, proposed in Eq. (3.69), was applied〈

Φ̄i, Φ̄k
〉
C = 〈Φi,Φk〉C̄ . (5.42)

In this case, the basis functions (even without damping factor) would directly belong to the RKHS de�ned by
C̄. Even though the regularization matrix equals the one given in Eq. (5.34), the basis functions used in the
modeling di�er in both cases. The impact of this modi�ed covariance matrix and the resulting regularization
matrix is also investigated in the simulation scenario presented in Section 7.2.

5.2.4 Variance Component Estimation

If di�erent kinds of observations are to be combined, the determination of the correct relative weighting of
the observations is essential to receive a correct result. In the same context, the choice of the regularization
parameter can be treated if the regularization is interpreted as prior information in the Bayesian sense.
For both tasks the method of variance component estimation (VCE), as described by Koch and Kusche
(2001), can be applied.
The solution can be estimated from a system of (combined) normal equations N which is accumulated
as a weighted sum of the normal equation systems Nk of the individual observation groups. This can be
formulated according to

Nx̂ = n with N =
∑
k

1
σ2
k

Nk and n =
∑
k

1
σ2
k

nk. (5.43)

The weighting factors are the reciprocal variances of the normal equations,
σ̂2
k =

Ωk
rk
, (5.44)

with
Ωk = êk

TPkêk = (Akx̂− lk)TPk(Akx̂− lk), (5.45)
being the square sum of the residuals of the kth group of observations and

rk = nk −
1
σ2
k

tr (NkN−1
) (5.46)

their partial redundancy with nk denoting the number of observations in the kth group. The partial redun-
dancies sum up to the overall redundancy∑k rk = n− u. The solution x̂ and the variances σ2

k are unknowna-priori, consequently an iterative procedure is inevitable, as illustrated in the �ow chart of Fig. 5.2.
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initial values

system of equations solution
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Figure 5.2: Iterative procedure of variance component estimation

As in this thesis the method of VCE is primarily utilized for the task of the determination of the regularization
parameter, this special case of the Tikhonov regularization ought to be stated explicitly as well. Here the
described approximation of the regularization matrix by the unit matrix is assumed, which leads to the
following system,

N =
1
σ2
ε

ATPεA +
1
σ2
s

I, and n =
1
σ2
ε

ATPεl, (5.47)
with σε being the standard deviation of the observations and σs being the standard deviation of the signal.
Both variance components can be treated as above described.

5.2.5 Regionally Adapted Regularization

The process of variance component estimation delivers the optimal regularization parameter under consid-
eration of the given signal-to-noise ratio. In case of a regional gravity �eld determination, this results in
one regularization parameter tailored optimally to the respective recovery region. This is an improvement
in comparison to a global gravity �eld parameterization which allows only one regularization factor for the
complete Earth, resulting in an overall mean damping of the gravity �eld features. But even within smaller
geographical areas, the gravity �eld features may vary signi�cantly. Therefore, it seems reasonable to further
adapt the regularization procedure. The proposed approach does not take into account only one regular-
ization matrix with one associated regularization parameter per region, but allows several matrices with
respective parameters,

N =
1
σ2
ε

ATPA +
1
σ2
s1

R1 + ...+
1
σ2
sn

Rn. (5.48)
The original regularization matrix is, therefore, split up into individual regularization matrices Ri, eachbelonging to a regional regularization area i. To separate the original regularization matrix, the approximation
by a unit matrix (5.35) made above is very convenient. R can only be separated that easily if the basis
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Figure 5.3: Two di�erent regularization areas and the locations of the unknown parameters belonging to each
area

functions are assumed to be orthogonal with respect to the inner product given by (5.31). In this case,
each individual regularization matrix Ri is a diagonal matrix that features a 'one' for each regional spline
parameter located inside the corresponding region and a 'zero' for parameters belonging to basis functions
outside the regularization group,

Ri(j, j) =
{

1 for j inside i
0 for j outside i . (5.49)

The original identity matrix, as applied in the Tikhonov regularization process, has thus been divided into
single diagonal matrices according to the membership of the respective unknown parameters to the di�erent
regularization groups,

R1 + ...+ Rn = I. (5.50)
The possibility of adapting the regularization procedure in this particular way is a unique feature of a �eld
parameterization by space localizing basis functions, as each unknown parameter is related to a particular
geographical location. This is an inevitable premise when the elements of the regularization matrix are sup-
posed to be assigned to a certain region. The separation of a geographical region into di�erent regularization
areas is exemplarily illustrated in Fig. 5.3. Here the two regularization areas are the continental and the
oceanic regions, resulting in the following normal equation matrix,

N =
1
σ2
ε

ATPA +
1

σ2
Land

RLand +
1

σ2
Ocean

ROcean. (5.51)
The separation into land and ocean areas can propose a reasonable choice in certain regions, where the
gravity �eld information on the oceans is signi�cantly less rough compared to the continent areas. In the
presence of deep sea trenches or rough ocean bottom topography, however, this might not always be a valid
assumption. In this case, di�erent choices for the regularization areas are inevitable.
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5.3 Relationship Between Spline Approximation and Collocation
In the following, the relationships shall be investigated that exist between the (regularized) least squares
solution parameterized by the space localizing basis functions de�ned in Section 3.4.2 and the least squares
collocation approach. The considerations will be performed without going into detail about the concept of
least squares collocation; information about this method can be found in the literature, examples areMoritz
(1962), Krarup (1969), and Moritz (1978).
The following formula speci�es the case of least squares collocation with noise. It describes the prediction of
a signal s on the basis of a set of observations l,

s = Cs,l

(
Cl,l + αP−1

ε

)−1
l, (5.52)

with the autocovariance matrix Cl,l of the signal part of the observations, the cross-covariance matrix Cs,lbetween the signal, and the observations and the covariance matrix P of the observation noise. The factor α
can be regarded as signal-to-noise ratio,

1
α

=
σx
σε
. (5.53)

The solution obtained by least squares collocation is optimal in the sense of minimal variance on the basis of
the given observations (Moritz 1980). In the following, it will be assumed that the observations as well as
the functionals to be predicted at di�erent positions are given as gravitational potential. The same prediction
as given in Eq. (5.52) can be performed by using the spline representation,

s = Bx. (5.54)
The vector x contains the estimated spline parameters ai given in Eq. (3.74), and B represents the prediction
matrix according to Eq. (3.76) with the elements

(B)ki =
N∑
n=2

σn · Pn(cos(xk · yi)) =
N∑
n=2

n∑
m=−n

σn√
2n+ 1

Ynm(yk)Ynm(xi). (5.55)
Here the yk are the positions to which the signal is predicted, while xi denote the nodal points of the
spline kernels. By substituting the solution of the least squares adjustment for the estimated parameters in
Eq.(5.54), the following relationship is obtained,

s = B
(
ATPεA + αI

)−1
ATPεl. (5.56)

Rearranging Eq, (5.56) by making use of matrix identities as given in, for example, Koch (1997) yields
s = BAT

(
AAT + αP−1

ε

)−1
l. (5.57)

Comparing Eq. (5.52) and Eq. (5.57) reveals that the two formulas exhibit certain similarities. They would
be identical if the following relationships would held,

BAT = Cs,l and AAT = Cl,l. (5.58)
Carrying out the matrix multiplications results for the individual matrix elements in

BAT
(kj) =

I∑
i=1

(
N∑
n=2

n∑
m=−n

σn√
2n+ 1

Ynm(yk)Ynm(xi)

)(
N∑
n̄=2

n̄∑
m̄=−n̄

σn̄√
2n̄+ 1

Yn̄m̄(yj)Yn̄m̄(xi)

)

=
N∑
n=2

n∑
m=−n

N∑
n̄=2

n̄∑
m̄=−n̄

σnσn̄√
2n+ 1

√
2n̄+ 1

Ynm(yk)Yn̄m̄(yj)
I∑
i=1

Ynm(xi)Yn̄m̄(xi)︸ ︷︷ ︸
≈

R
Ω
Ynm(xi)Yn̄m̄(xi)dΩ=δnn̄δmm̄

≈
N∑
n=2

n∑
m=−n

σ2
n

2n+ 1
Ynm(yk)Ynm(yj) = Cs,l(kj),

(5.59)
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and

AAT
(hj) =

I∑
i=1

(
N∑
n=2

n∑
m=−n

σn√
2n+ 1

Ynm(yh)Ynm(xi)

)(
N∑
n̄=2

n̄∑
m̄=−n̄

σn̄√
2n̄+ 1

Yn̄m̄(yj)Yn̄m̄(xi)

)

=
N∑
n=2

n∑
m=−n

N∑
n̄=2

n̄∑
m̄=−n̄

σnσn̄√
2n+ 1

√
2n̄+ 1

Ynm(yh)Yn̄m̄(yj)
I∑
i=1

Ynm(xi)Yn̄m̄(xi)︸ ︷︷ ︸
≈

R
Ω
Ynm(xi)Yn̄m̄(xi)dΩ=δnn̄δmm̄

≈
N∑
n=2

n∑
m=−n

σ2
n

2n+ 1
Ynm(yh)Ynm(yj) = Cl,l(hj),

(5.60)

with yh and yj denoting the observation points. A comparison with Eq. (3.58) allows the assumption that the
matrix products BAT and AAT in Eq. (5.57) show certain resemblances to the covariance matrices Cs,l and
Cl,l. This is a consequence of the shape coe�cients of the radial basis functions kn in Eq. (3.73) being chosenaccording to Eq. (3.77) as the square root of the coe�cients of the covariance function. This can be regarded
as evidence that the choice of the shape coe�cients seems to be a reasonable one. Nevertheless, Eqs. (5.59)
and (5.60) only represent approximations. The matrix products would only become exactly the covariance
matrices if the sum over the basis functions ∑I

i=1 Ynm(xi)Yn̄m̄(xi) would turn into the integral over the
sphere ∫

Ω

Ynm(xi)Yn̄m̄(xi)dΩ. This would require an in�nitely dense distribution of spline kernels over the
surface of the sphere. Since this is not the case in practical calculations, no one-to-one relationship between
the spline approximation as treated in this thesis and the least squares collocation can be derived from the
above considerations. However, they con�rm the usefulness of the basis functions. Further investigations of
the discussed relationships are necessary.
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6. From Regional to Global Gravity

Fields

For a wide variety of applications, the calculation of regional gravity �eld solutions meets exactly the given
requirements. Nevertheless, for some other applications, it seems to be useful to derive a global gravity �eld
model by spherical harmonics without losing the details of a regional zoom-in. In the geodetic context, a set
of spherical harmonics is often required, as it can easily be distributed and generally be handled without
further instructions. Furthermore, it might be reasonable to deliver a gravity �eld parameterized by spherical
harmonics for purposes of comparison. Most of the existing gravity �eld models are provided in terms of
spherical harmonic coe�cients, and, for instance, comparisons of accuracy are frequently performed on the
basis of error degree variances. Thus if the gravity �eld model is to be published and acknowledged by the
geodetic user community, the allocation of a spherical harmonic expansion appears to be desirable. In the �rst
section of this chapter, it is derived how the spherical harmonic coe�cients can directly be calculated from
the coe�cients of a global model parameterized by radial basis functions. If individual regional gravity �eld
solutions are available with global coverage, then the determination of the spherical harmonic coe�cients
can be performed by means of quadrature methods, as described in the second section of this chapter.

6.1 Conversion from a Global Spline Representation to Spherical
Harmonics

In principle, a gravity �eld representation based on space localizing basis functions cannot only be used
for regional models, but for the representation of global gravity �elds as well. The spline kernels are then
located at a global grid, and a global set of observations is needed. Such a global spline representation can
be transformed into a series of spherical harmonics without loss of information. This can be understood
from the following considerations. Starting point is a representation of the gravitational potential in terms
of splines,

V (r) =
I∑
i=1

aiΦi(r) =
I∑
i=1

ai

[
GM

R

∞∑
n=2

(
R

r

)n+1√
2n+ 1 kn Pn

(r
r
· ri
R

)]

=
I∑
i=1

ai

[
GM

R

∞∑
n=2

(
R

r

)n+1

kn

n∑
m=−n

Ynm

(r
r

)
Ynm

(ri
R

)]
. (6.1)

Eq. (6.1) can be reordered to yield

V (r) =
GM

R

∞∑
n=2

(
R

r

)n+1 n∑
m=−n

(
I∑
i=1

aikn Ynm

(ri
R

))
Ynm

(r
r

)
. (6.2)

Comparing this with the expansion of the gravitational potential in terms of spherical harmonics according
to Eq. (3.42),

V (r) =
GM

R

∞∑
n=2

(
R

r

)n+1 n∑
m=−n

cnmYnm

(r
r

)
, (6.3)

the spherical harmonic coe�cients can be computed directly from the spline coe�cients according to

cnm =
I∑
i=1

ai kn Ynm

(ri
R

)
. (6.4)
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6.2 Patching of Individual Regional Solutions

If regional solutions have been calculated independently, the determination of a spherical harmonic expansion
cannot simply be performed by applying Eq. (6.4). In order to avoid truncation e�ects, the satellite data has
to be taken in an area slightly larger than the evaluation area itself. The radial basis functions are not perfectly
space localizing, therefore those located in the boundary area have to be taken into account as well, as they
have in�uence on the gravity �eld values in the inner evaluation area. The resulting global solution, however,
is only to be composed of the inner areas without the boundaries. Therefore, the patching of the regional
solutions has to be based on perfectly localizing values, and the strategy described by Eq. (6.4) does not work
for individually calculated solutions. Thus a di�erent strategy has to be used. The concept that has been
applied in this thesis is the merging of the regional solutions to a global one by means of quadrature methods,
as introduced in Eicker et al. (2004). From the regional solutions, the gravity functionals, parameterized
by the spline representation in the speci�c regions, can be calculated at the nodes of a global grid. This can
be performed, in principle with arbitrary resolution, and the continuous modeling by spherical splines allows
the functionals to be evaluated at arbitrary grid points. The calculation of the spherical harmonic coe�cients
occurs in a second step by applying tailored quadrature formulas, as introduced in Section 6.2.1.

6.2.1 Quadrature Methods

Quadrature formulas in general, as described for example by Bronstein and Semendjajew (1995), are a
widely-used tool for the numerical evaluation of de�nite integrals. In the context of this thesis, quadrature
procedures are applied to calculate spherical harmonic coe�cients from discrete gravity �eld values provided
on a spherical grid. This results in the numerical solution of the integral (3.39),

cnm =
1
4π

∫
Ω

f(x)Ynm(x)dΩ. (6.5)
The integral is to be approximated by a weighted sum of function values f(xi) at given points xi resultingin

cnm =
1
4π

I∑
i=1

wif(xi)Ynm(xi), (6.6)

where the weights wi can be regarded as the surface element associated with the grid point. The weights
sum up to the surface area of the unit sphere,

I∑
i=1

wi = 4π. (6.7)

Eq. (6.6) only provides the correct result if the orthonormality of the spherical harmonics is preserved when
converting the continuous integral to a discrete (weighted) sum, i.e. if the following relationship holds for
the discrete case,

〈Ynm(x), Yn′m′(x)〉W =
1
4π

I∑
i=1

Ynm(xi)Yn′m′(xi)wi = δnn′δmm′ . (6.8)

This is not generally true for arbitrary point distributions and corresponding weights wi. The problem of
discrete orthogonality can be addressed by investigating the corresponding weighted least squares adjustment
procedures of estimating spherical harmonic coe�cients from gridded data, as, for example, described by
Sneeuw (1994). If the basis functions Ynm are combined in the design matrix A, and the weights are
combined in the diagonal matrix W, the least squares estimate of the coe�cients ĉ is given by

ĉ = (ATWA)−1ATWf . (6.9)
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In order to compare this result with a given quadrature formula, Eq. (6.6) can be formulated in matrix
notation as well,

c = ATWf . (6.10)
Obviously, the two results are identical in case of a normal equation matrix N = ATWA being the identity
matrix,

N = ATWA = I. (6.11)
Every element of N represents the weighted inner product of the spherical harmonics according to Eq. (6.8).
Therefore, the values of N apart from the main diagonal represent the amount of non-orthogonality of the
corresponding discrete spherical harmonics. How much the normal equation matrix di�ers from a diagonal
matrix depends on the grid point density on the one hand and on the grid pattern and the corresponding
weights on the other hand. Therefore, it can be stated that a quadrature formula is the better suited for
calculating spherical harmonic coe�cients, the more accurately the orthonormality relations for spherical
harmonics (3.32) are preserved.
In the following, several of these quadrature formulas will be introduced, each being characterized by the
distribution of their quadrature nodes on the one hand and by the corresponding quadrature weights on the
other hand. Firstly, two exact quadrature rules are investigated, namely the Gauss-Legendre quadrature and
the Driscoll-Healy quadrature. Subsequently, the quadrature method is also tried out with the remaining
point distributions described in Section 3.5.1.

6.2.1.1 Driscoll-Healy Quadrature

It was found out by Neumann (1838) that exact numerical quadrature up to a spherical harmonic degree
N = L − 1 is possible by using 2L circles of latitude. They can be chosen arbitrarily, but have to be
distinct. For example, an equidistant distribution of parallels is possible. This quadrature method is also
quoted as 'Neumann's �rst method', see, for example, Sneeuw (1994). Driscoll and Healy (1994)
have developed a closed representation for the weights of such an equi-angular spaced point distribution.
These weights are applied in the following investigations, therefore the corresponding quadrature method
is identi�ed as Driscoll-Healy quadrature. The weights for the numerical integration along parallels are the
analytical solution of

2L−1∑
j=0

w̄iPk(cos
jπ

2L
) = 2δk0. (6.12)

This leads to the following weights, their derivation can be found in Driscoll and Healy (1994) with
additional explanations provided in Mohlenkamp (1997),

w̄i =
4

2L
sin(ϑi)

L−1∑
l=0

sin [(2l + 1) ϑi]
2l + 1

. (6.13)

To obtain the weights to be applied in Eq. (6.6), the w̄i have to be multiplied with ∆λ,
wi = w̄i ·∆λ. (6.14)

6.2.1.2 Gauss-Legendre Quadrature

This method can be found in the work of Neumann (1838) as well, for this reason it is also referred to
as 'Neumann's second method' (see, for instance, Sneeuw (1994) for a historical review on the di�erent
quadrature methods). Gaussian quadrature methods are widely applied in numerical analysis, here can be
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referred, e.g., to Lanczos (1956), and are used in geodetic applications as well, see, for example, Payne
(1971) and Colombo (1981). In contrast to the Driscoll-Healy quadrature described above, the Gauss-
Legendre quadrature allows the recovery of a spherical harmonic expansion of degree N = L−1 from only L
circles of latitude. On the other hand, the parallels cannot be chosen arbitrarily, but have to be located along
the zeros of the Legendre polynomial of degree L. Therefore, the quadrature nodes of the Gauss-Legendre
quadrature method coincide with the grid points of the Gaussian grid, as described in Section 3.5.1.2. They
feature equi-angular spacing along the circles of latitude, whereas along the meridians the nodal points
are located at the L zeros of the Legendre polynomial of degree L. The orthogonality relations can best be
identi�ed when considering the speci�cation of the spherical harmonic basis functions, as given by Eq. (3.47).
It features a separation of the Ynm into a trigonometric function depending only on the longitude λ and the
associated Legendre functions depending only on the co-latitude ϑ. This allows to separately investigate the
behavior of the basis functions in longitudinal and in latitudinal direction. The determination of the spherical
harmonic coe�cients can be split into a two-step procedure,

am(ϑ)
bm(ϑ)

}
=

1
(1 + δm0π)

∫ 2π

0

f(x)
{

cos(mλ)
sin(mλ)

}
dλ, (6.15)

cnm
snm

}
=

1 + δm0

4

∫ π

0

{
am(ϑ)
bm(ϑ)

}
Pnm(cosϑ) sinϑdϑ. (6.16)

In the following, the analysis of the discretization of the integrals (6.15) and (6.16) will be described separately.

Longitudinal Direction The equi-angular spacing in longitudinal direction features 2L points along each
circle of latitude. On such a regular con�guration, the trigonometric functions obey discrete orthogonality
relations,

2L−1∑
i=0

cosmλi cos m̄λi = (1 + δm0 + δmL) L δmm̄,

2L−1∑
i=0

sinmλi sin m̄λi = (1 + δm0 + δmL) L δmm̄,

2L−1∑
i=0

cosmλi sin m̄λi = 0.

(6.17)

Thus the conversion from the integral in Eq. (6.15) to a discrete sum delivers the exact result. The separate
calculation in longitudinal direction is also bene�cial from a computational point of view, as fast Fourier
techniques (FFT) can be applied to the evaluation of Eq. (6.15).

Latitudinal Direction More crucial is the quadrature along the meridians. Here it can be made use of one-
dimensional Gaussian quadrature procedures, as, for example, described in Bronstein and Semendjajew
(1995), applied to function values evaluated at points de�ned by ti = cosϑi. By the Gaussian quadrature
rule a polynomial of degree 2L− 1 can exactly be integrated by the evaluation of L function values,

b∫
a

f(t)dt =
L∑
i=1

f(ti)wi, (6.18)

if the evaluation nodes ti are chosen as the zeros of orthogonal polynomials. In case of the Gauss-Legendre
quadrature, the orthogonal polynomials are the Legendre polynomials Pn, 1 and the integration interval
equals [a, b] = [−1, 1]. The weights wi can be derived using the characteristics of orthogonal polynomials,

1Equivalent Gaussian quadrature methods exist for Laguerre, Hermite, and Chebychev polynomials as well. They each
require an additional, speci�c weighting function q(t) to be introduced into the integral in (6.18). In case of the Gauss-Legendre
quadrature, this weighting function equals a constant with the value of one and is, therefore, omitted in the above considerations.
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as explained in more detail in Appendix B. For the one-dimensional quadrature along the meridians, the
weights at a given co-latitude are ϑi depend on the number of parallels L and are given by

w̄i(L) =
2

(1− t2i )(P
′
L(cos(ϑi)))2

, (6.19)
cf. Stroud and Secrest (1966). Again, the multiplication with ∆λ yields the �nal weights to be used in
Eq. (6.6),

wi = w̄i ·∆λ. (6.20)
The relationship between the recoverable polynomial of degree 2L−1 and the at maximum possible spherical
harmonic degree N = L − 1 to be determined from the given point distribution will be investigated in the
following.

6.2.1.3 Maximum Degree Determinable by Exact Methods

The spherical harmonic analysis with the goal of calculating spherical harmonic coe�cients from function
values is formulated by Eq. (6.5). Considering Eq. (3.38), it becomes obvious that this requires the integration
of products of spherical harmonics Ynm, as illustrated by

cnm =
1
4π

∫
Ω

f(x)Ynm(x)dΩ =
1
4π

∫
Ω

(
N∑
n̄=0

n̄∑
m̄=−n̄

cn̄m̄Yn̄m̄(x)

)
Ynm(x)dΩ. (6.21)

Thus the key point of the discretization process is to deliver a quadrature method valid for products of two
spherical harmonics. Again, interpreting the integration in latitudinal and longitudinal direction separately
leads to the following integrals,∫ 2π

0

∫ π

0

Pnm(cosϑ)
{

cos(mλ)
sin(mλ)

}
Pn̄m̄(cosϑ)

{
cos(m̄λ)
sin(m̄λ)

}
sinϑdϑ. (6.22)

For m = m̄ this results in evaluating the integral∫ π

0

Pnm(cosϑ)Pn̄m(cosϑ) sinϑdϑ. (6.23)
The product of the two associated Legendre functions Pnm(cosϑ) and Pn̄m(cosϑ) is again a polynomial of
degree at most 2N when N is the maximum degree to be determined. Therefore, the applied quadrature
rule along the meridians needs to have an accuracy level (i.e. the at maximum determinable polynomial
degree) of at least 2N . If quadrature nodes are located arbitrarily, l nodes can provide an accuracy level
of l − 1 (Bronstein and Semendjajew 1995). Therefore, at least 2N + 1 circles of latitude are required
to achieve the accuracy level of 2N and thus to exactly evaluate the integral (6.23). This illustrates that,
in case of the Driscoll-Healy quadrature, the 2L points along the meridians allow the determination of a
maximum spherical harmonic degree N = L − 1. If the quadrature nodes are chosen at the zeros of the
Legendre polynomial of degree L, as in case of the Gauss-Legendre quadrature, the accuracy level of the
corresponding quadrature rule can be enhanced. In this case l nodes allow an accuracy level of 2l + 1, or,
in other words, the L meridians allow the recovery of polynomials up to degree 2L+ 1. From this it results
that the at maximum recoverable spherical harmonic coe�cients are again of degree N = L− 1. This can be
shown, as the product of the Legendre functions has then a maximum degree of 2 · (L− 1) = 2L− 2 which
is smaller than the possible polynomial degree of N = L − 1. In contrast to the Driscoll-Healy quadrature,
however, this resolution can be achieved with only about half the number of circles of latitude. As both grids
feature the same number of 2L grid points in longitudinal direction, the Gauss-Legendre quadrature requires
only half the number of overall evaluation points. This is the reason why the Gauss-Legendre quadrature
will be applied to the calculation of spherical harmonic expansions from regional gravity �eld solutions. The
drawback of the irregular spacing of the quadrature nodes is not relevant, as the continuous representation
of the regional solutions by radial basis functions allows the evaluation of the functionals at arbitrary points.
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6.2.1.4 Quadrature in Case of Arbitrary Point Distributions

In principle, the quadrature formula (6.6) can be applied to any kind of point distribution. For reasons of
completeness and in order to point out the di�erences to the exact quadrature procedures described above,
the performance of the rest of the grids, described in Section 3.5.1, have been investigated as well. Thereby
special emphasis is placed on the question of discrete orthogonality of the spherical harmonic basis functions,
as this de�nes the accuracy of the quadrature method. In Fig. 6.1 the di�erent normal equation matrices, as
given by Eq. (6.11), are displayed for the calculation of spherical harmonic coe�cients up to degree n = 10.
The elements of the normal equation matrices contain the products of the spherical harmonic basis functions
and, therefore, illustrate the discrete orthogonality relations.

Geographical Grid The quadrature weights are chosen as the surface area associated with each grid
point,

wi =

λi+
∆λ
2∫

λi−∆λ
2

ϑi+
∆ϑ
2∫

ϑi−∆ϑ
2

= 2 ·∆λ sin(∆ϑ) sin(ϑi). (6.24)

The discrete orthogonality relations existing in case of the geographical grid can be investigated as to the
longitudinal and latitudinal direction separately, as described above. Along the circles of latitude, the 2L
equi-angular spaced points again preserve the discrete orthogonality of the trigonometric functions, as given
by Eq. (6.17). Therefore, the Cnm and Snm are orthogonal for di�erent orders m, and, within the same
order, the sine and cosine terms are orthogonal as well. Along meridians, the orthogonality among the
associated Legendre functions is destroyed by the transition from the continuous to the discrete case. But
the (anti-)symmetry characteristics of the associated Legendre functions,

Pnm(− cosϑ) = (−1)n−mPnm(cosϑ), (6.25)
can be exploited. They ensure within the same order the independence of the coe�cients of even degrees and
the coe�cients of odd degrees. The resulting normal equation matrix is displayed in the upper left part of
Fig. 6.1. The coe�cients are ordered by order, within each order by degree, with cnm and snm alternating. The
orthogonality between di�erent orders, between sine and cosine, and between even and odd degrees becomes
evident. The blocks along the main diagonal show the dependencies within the same order, the lack of further
blocks indicates the orthogonality among di�erent orders. Reordering the matrix by combining the sine and
cosine terms and within each of those the even and odd degrees, leads to the well-known block-diagonal
structure. The orthogonality relations and the resulting normal equation matrices for di�erent numbering
schemes in case of the geographical grid can be found in Schuh (1996).

Reuter Grid Basically, the Reuter grid shows the same regularities and symmetries as described for the
geographical grid. Along each circle of latitude, the spacing between grid points is again equi-angular, and the
co-latitudes are located symmetrically with respect to the equator. Therefore, in principle, the same discrete
orthogonalities are valid, as is the case for the geographical grid. This becomes evident in the upper right part
of Fig. 6.1 by the blocks along the main diagonal exhibiting equal structure. Their magnitude is larger due to
the declining point density towards the poles. The normal equation matrix of the Reuter grid does, however,
possess additional correlation blocks with non-zero elements apart from those described above. They are
caused by the circles of latitude near the poles for which the number of points γi calculated by Eq. (3.103)
becomes very small. The resulting under-sampling of the trigonometric functions yields correlations between
distinctive orders m and m̄. As to the quadrature weights, the surface elements calculated from the Voronoi
cells, as described in Section 3.5.2.1, can be applied. But due to the approximately uniform distribution,
the use of these weights in�uences the quadrature results signi�cantly less than, for example, in case of the
geographical grid.
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Triangle Vertex and Triangle Center Grid For the two di�erent triangle grids, the normal equation
matrices look very much alike. Therefore, only the one for the grid triangle vertex is displayed in the middle
left part of Fig. 6.1. But the conclusions are valid for the triangle center grid as well. Even though the grids are
not explicitly constructed based on equal- angular spacing between grid points, quite similar structures can be
observed compared to the Reuter grid. The original icosahedron features a somehow regular and symmetrical
structure. And obviously, certain symmetries and regular distributions enabling discrete orthogonalities are
preserved during the densi�cation. Again, the surface elements calculated from the Voronoi cells can be used
as quadrature weights.

Quasi Random Grid In contrast to the other point distributions described in this chapter, the quasi
random grid does not feature any discrete orthogonalities among di�erent spherical harmonic basis functions,
as illustrated by an almost fully occupied normal equation matrix in the middle right part of Fig. 6.1. The
grid points are neither located regularly along parallels, nor are they arranged symmetrically to the equator.
The only exception is the order m = 0, as here the orthogonality between odd and even degrees can again
be observed. This can be explained by the fact that when the dependency on the longitude λ is omitted (as
is the case for the spherical harmonics of order zero), the quasi random sequence positions the grid points
symmetrically to the equator. Again, the surface elements calculated from the Voronoi cells can be used as
quadrature weights.

6.2.1.5 Practical Calculations and Aliasing

Weight Matrix The quadrature weights, as determined in case of the Gauss-Legendre and the Driscoll-
Healy quadrature, are chosen according to the requirement of realizing discrete orthogonality of the spherical
harmonic basis functions. The weights can be combined in the weight matrix W, which results in the normal
equation matrix (6.11) becoming the identity matrix. This is only the case, however, for this particular
choice of W. Introducing an additional weight matrix, e.g. accounting for the stochasticity of the data,
will destroy the orthogonality. So far, the patching process has been performed without error propagation
from the regional to the global solutions. Therefore, no additional weight matrix is introduced. If the error
propagation will be included in the process, this aspect will have to be taken into account.

Aliasing An aliasing e�ect occurs if a signal is undersampled, i.e. if the number of sampling points is not
su�cient to completely reconstruct the original signal. The result is that the signal at higher frequencies
become indistinguishable from that at certain lower frequencies (they are said to become 'aliases' of each
other); thus they distort or create signal at lower frequencies. The aliasing e�ect is well-known from signal
analysis, see, for example, Smith (1997). In order to investigate the corresponding e�ect in the case of
spherical harmonics on the sphere, it proves to be reasonable to again investigate the behavior in longitudinal
and latitudinal direction separately. In the following, the di�erent e�ects are described, and each of them
is illustrated by an example in Fig. 6.2. In the context of calculating spherical harmonic coe�cients from
gravity �eld functionals sampled at discrete data points, the aliasing problem has to be kept in mind. The
grid (and thus the sampling) used for the (exact) quadrature methods described above has to be chosen
su�ciently dense to avoid the e�ects that will be described in more detail below.
As pointed out in Section 6.2.1.3, the point setting of a Gauss-grid with L parallels allows the exact quadrature
in latitudinal direction (i.e. along the meridians) up to a spherical harmonic degree of N = L− 1 using the
Gauss-Legendre quadrature method. The required inner products of two associated Legendre functions of
degree n and n̄, respectively, are accurate in the discrete case as long as n+ n̄ < 2L. As soon as the original
signal contains frequencies higher than N , an aliasing error occurs. If n = L + k, then the inner products
for n̄ ≥ L− k cannot be calculated correctly. The upper part of Fig. 6.2 illustrates this e�ect. Exemplarily,
it shows the errors in spherical harmonic coe�cients calculated from an original signal expanded up to
degree N = 80. The quadrature was performed on a grid with L = 60 circles of latitude, which would have
allowed the exact determination of coe�cients up to degree N = 59. As n, in this scenario, can reach a
degree up to n = L + 20, the coe�cients of degree higher than n̄ = L − 20 = 40 are a�ected due to the
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Figure 6.1: Normal equation matrices for the calculation of spherical harmonic coe�cients up to degree
N = 10 from gridded data
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undersampling. In contrast to Fourier analysis, there is no one-to-one correspondence between a distinctive
high frequency component being mapped onto a single lower frequency (as will be described below in case
of the longitudinal direction). On the contrary, the undersampled function appears as a linear combination
of the lower frequency functions up to degree n̄ ≥ L − k. Only in case of n + n̄ odd, the odd symmetry
characteristics of the Legendre functions provides for the inner product to become correctly zero.
The quadrature in longitudinal direction corresponds to the sampling of trigonometric functions; therefore
aliasing phenomena are equal to those arising in the case of Fourier analysis. In this context, the so-called
sampling theorem declares that in order to reconstruct a signal exactly, the sampling frequency fs has to bemore than twice the highest frequency fmax present in the original signals,

fs > 2fmax. (6.26)
The frequency representing half of the sampling rate is denoted as Nyquist frequency, and all frequencies
smaller than the Nyquist frequency can be reconstructed from the present sampling. As soon as higher
frequencies are present, the aliasing e�ects occur. In case of the Gauss grid, there are 2L sampling points
along each circle of latitude, thus the Nyquist frequency equals a spherical harmonic order of m = L, and
orders up to m = L − 1 can be reconstructed correctly. Concerning the aliasing phenomena, it can be
di�erentiated between re�ective aliasing and periodic aliasing. The term 're�ective aliasing' speci�es the fact
that a frequency of order m = L + k corrupts the coe�cients of order L − k, as can be understood by
considering

cos
(

(L+ k) j
2π
2L

)
= cos

(
(2L+ (k − L)) j

2π
2L

)
= cos(j 2π) cos

(
(k − L) j

2π
2L

)
− sin(j 2π) sin

(
(k − L) j

2π
2L

)
= cos

(
(L− k) j

2π
2L

)
(6.27)

for j = 0 . . . 2L. Equivalent considerations can be made concerning the sine functions resulting in the relation
sin
(

(L+ k) j
2π
2L

)
= − sin

(
(L− k) j

2π
2L

)
. (6.28)

This is illustrated in the middle part of Fig. 6.2 for a point setting of L = 30 parallels enabling the recon-
struction up to a maximum order of m = 29. The original signal that was to be reconstructed only consisted
of the coe�cients c80,38 and s80,38, all the other coe�cients being set to zero. The results con�rm that order
m = L+ 8 = 38 is mapped onto order m̄ = L− 8 = 22. The fact that the single coe�cients in�uence coe�-
cients of di�erent degrees again demonstrates the aliasing e�ect in latitudinal direction, as described above.
Apart from the re�ective aliasing, the periodic character of the trigonometric functions leads to periodic
aliasing as well. This can be understood from

exp
(
i(2L+ k) j

2π
2L

)
= exp(ij2π) exp

(
ikj

2π
2L

)
= exp

(
ikj

2π
2L

)
. (6.29)

This shows that the functions exp(i(2L + k)λ) are indistinguishable from the function exp(ikλ), thus coef-
�cients of order m = 2L + k cause errors in the coe�cients of order m = k. This e�ect is displayed in the
lower part of Fig. 6.2, again for a setting with L = 30. This time all coe�cients apart from c80,68 and s80,68were set equal to zero. The periodic aliasing can be observed by the order m = 68 = 2L + k = 60 + 8k
causing corruption of the order m̄ = 8. At the same time order m̄ = 2L− k = 52 is corrupted as well, as the
re�ective aliasing described above also occurs for multiples of L.
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Figure 6.2: Aliasing e�ects caused by the undersampling of spherical harmonic functions. Upper part: aliasing
in latitudinal direction, middle part: re�ective aliasing in longitudinal direction, lower part: periodic aliasing
in longitudinal direction
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7. Calculations and Results

In the following chapter, the practical calculations in the context of regional gravity �eld re�nement are
described. The chapter starts with the introduction of the programming system GROOPS that was designed
and applied in the calculations. In the second section, a simulation study is presented that is to investigate
the practical implications of theoretical convergence issues discussed in the above chapters of this thesis.
Subsequently, the regionally re�ned gravity �eld solutions calculated from the data of the new satellite
missions are described. In case of CHAMP and GRACE, this implies the analysis of real data. In case of
GOCE, a simulation scenario is presented based on a combined analysis of (simulated) GRACE and GOCE
data.

7.1 (Real) Data Analysis with the Programming System GROOPS

The following section is dedicated to the description of the gravity �eld analysis software GROOPS (GRavity
�eld Object Oriented Programming System). It has been developed and implemented by our group during
the last six years, and it comprises, among others, all the concepts and calculation procedures described and
applied within this thesis. GROOPS is implemented in C++ and features an object-oriented design implying
a completely modularized structure. This evokes a high degree of �exibility to deal with the various tasks
required in the context of a gravity �eld recovery process.
The following introduction will be limited to those parts of the software system that are directly used in the
calculation of static (regional) gravity �eld solutions. A simpli�ed schematic overview of these constituents
can be found in Fig. 7.1. It displays the dependencies between the most important classes (indicated by blue
boxes) and programs (identi�ed by yellow boxes). In each of the classes, the interface of the class is pointed
out in the blue box, the inherited classes that implement the interface are listed in the respective box below.
The arrows in the diagram represent dependencies between classes and programs. An arrow pointing from
one class to another indicates that the former is required by the latter (even though this does not always
have to be true for each one of the inherited classes). Arrows from programs to classes, or vice versa, specify
that the class is needed as input for the program, or that the output of the program is used by the given
class, respectively. (For reasons of clarity, some less important arrows have been neglected in the diagram.)
In the following, the di�erent classes and programs (printed in bold face) and their respective interactions
will be explained.
The analysis procedure starts with the applied data sets; the system can process orbit data, K-band observa-
tions, gradiometer data as well as the information provided by accelerometer and star camera sensors. The
data can either be obtained in form of real satellite data or in form of simulated data. When dealing with
the analysis of real data, the �rst step requires the import of the various data sets and the conversion into a
format processible by the analysis software. In case of a simulation scenario, GROOPS enables a consistent
closed-loop analysis. An extensive simulation tool within the programming system allows the system not
only to be used for the processing of the gravity data, but also to be applied to the generation of simulated
data sets. A tailored noise model implemented for each of the observation types allows to create simulation
scenarios that are as realistic as possible. At the beginning of the processing chain, the di�erent data sets
are imported into the program ArcDesigner. It is responsible for cutting out satellite data over speci�c
regions (in case of a regional analysis) and for splitting the orbit into smaller pieces to enable the use of short
arcs in global analysis, too. In order to determine whether a given satellite position is within a geographical
region, the program needs the boundary of the region on the surface of the Earth. This information can be
obtained from classes inherited from the interface border that de�ne the limits of the regions. The areas
can either be chosen as de�ned between two meridians and two circles of latitude (rectangle), in the shape
of a spherical cap (cap), or by an arbitrary polygon of points on the sphere (polygon). Furthermore, Earth
rotation information is required to transform the position into the Earth-�xed coordinate system; this is
necessary to associate the satellite data (given in a quasi-inertial system) with positions on the Earth. The
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corresponding information is provided by elements of earthRotation, here can be chosen between the spec-
i�cations given by the IERS (iers1996 or iers2003) and simpli�ed versions comprising only the rotation
around the z-axis (gmst and zAxis), the latter two di�ering concerning their rotational angles. The resulting
satellite data prepared by ArcDesigner serve as input in the set-up of the observation equations, as will
be explained below. In addition to the satellite measurements, the disturbing forces acting on the spacecraft
have to be considered. A short summary of the di�erent disturbing forces and the applied models is given
in Section 7.1.1. These models can either directly be included in the observation equations, or alternatively
they can be calculated beforehand at the satellite's positions. This is performed by the program ArcGravity
which calculates a reference acceleration including a reference gravity �eld solution (provided by elements of
the class referenceField), tidal models (given by tides), and the de-aliasing product (also implemented as
referenceField) to account for short-periodic changes of the atmosphere and the reaction of the ocean to
these changes.
In the class observation, the observation equations are set up. GROOPS enables the selection of observation
equations for precise orbit determination, for satellite-to-satellite tracking in the low-low mode, for gradiome-
ter observations, and for terrestrial data sets. The classes podIntegral, graceRange, and sgg represent
the observation equations described in the Sections 4.3.1, 4.3.2, and 4.3.3 and applied in the calculations
in this thesis, as described in Section 7.3. The classes podAcceleration, podEnergy, and graceEnergy
contain alternative functional models based on the acceleration approach and energy balance approach (both
shortly described in Section 2.2.1) that have been implemented for reasons of comparison. The opportunity
to directly use point values on the sphere as observations is o�ered by the class terrestrial. As input, the el-
ements of observation require the observations themselves (preprocessed by ArcDesigner), Earth rotation
information (given by earthRotation), and either the output of the program ArcGravity or the applied
reference �eld and the models of the disturbing forces if they have not been calculated to the satellite's
orbit beforehand. Furthermore, classes of the type observation have to know the desired modeling of the
gravity �eld solution in terms of a set of unknown parameters. This is provided by classes inherited from
the interface representation; here can be distinguished between sphericalHarmonics and splines. The
additionally listed choices timeLinear and timeFourier refer to the modeling of time variabilities and will
not be discussed in detail here. The interaction of the two classes observation and representation very
well emphasizes the �exibility of the analysis software. The observation type and the gravity �eld representa-
tion can be chosen independently, and each one of the observation methods can either be used with a global
representation in terms of spherical harmonics or with a regional modeling in terms of spline functions. In
case of a modeling with radial basis functions, the class representation additionally requires the shape of
the basis functions and their location on a spherical grid. The former is provided by the class coe�cients
inherited from the interface kernel, the shape coe�cients can thereby be calculated by the program Ker-
nelDegreevariance from a given gravity �eld model. The nodal point setting is provided by grid, here all
the point distributions described in Section 3.5.1 are implemented.
The class observation is required by the program NormalsBuild which then accumulates the normal
equations. If desired, a regularization matrix can be included into the calculations, the respective matrix
is calculated by di�erent speci�cations of the program Regularization. These are in detail: Regulariza-
tionDegreevariances which applies the reciprocal degree variances of a given spherical harmonic model
on the main diagonal of the regularization matrix, RegularizationKaula in which the degree variances
are approximated by Kaula's rule of thumb, and RegularizationSigma which uses the reciprocal formal
accuracies of the spherical harmonic coe�cients on the main diagonal. For the regional adaption of the reg-
ularization process, the program RegularizationBorders is of particular importance, as it generates the
regularization matrices for di�erent regularization areas, as described in Section 5.2.5. In order to assign
di�erent basis functions to di�erent regularization areas, the program requires an element of the class bor-
der. The program RegularizationSplines creates the fully occupied regularization matrix containing the
inner products of splines as basis functions, as described in Section 5.2.3. The next step is the solving of the
system of normal equations; di�erent versions of a solver are implemented. A direct solution of the system
of equations via Cholesky decomposition is possible using SolverDirect. The program SolverVariance-
Component iteratively adjusts the weighting factors for di�erent normal equations (and the regularization
matrix) using the variance component estimation procedure described in Section 5.2.4. An iterative solution
of the system of equations, applying the method of preconditioned conjugate gradients, is given by Solver-
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Figure 7.1: Modularized layout of the gravity �eld analysis software GROOPS showing the major classes
(blue) and programs (yellow)
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Figure 7.2: Screenshot of the graphic user interface of GROOPS
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ConjugateGradient; it is especially useful in case of large systems of equations and, therefore, less essential
when dealing with a regional recovery process.
The output made available by the di�erent solver programs is a set of unknown parameters together with
their formal accuracies. The solution derived for the unknown parameters can then be interpreted by the class
fromRepresentation of type gravity�eld which de�nes a gravity �eld from a parameter vector associated
with a given representation. Further options of the interface gravity�eld are the classes potentialCoe�-
cients that constitute a gravity �eld from a given set of spherical harmonic coe�cients, harmonicSplines
creating a gravity �eld from a �le containing spline parameters together with the respective spline kernel and
the nodal point pattern, dealiasing representing the speci�cations provided by a de-aliasing product, and
tides interpreting a given tide model. To evaluate and display the obtained gravity �eld solution, the program
GravityField2GriddedData can be used to calculate gravity �eld functionals at given grid points. These
grid points are again de�ned by the class grid. The classes of the interface kernel can be used to obtain the
di�erent functionals. These are in detail: the gravitational potential (potential, using the Poisson kernel),
gravity disturbances (disturbance, Hotine kernel), geoid heights (geoidheight, applying the Poisson kernel
divided by normal gravity), gravity anomalies (anomalies, Stokes kernel), and the density of a single layer
(density).
As output, GravityField2GriddedData delivers a �le with spherical coordinates of the grid points to-
gether with the corresponding gravity �eld values and the area weights associated with each grid point,
as de�ned in Section 6.2.1. This output can, e.g., be applied in the graphic presentation of the respective
gravity �eld. Furthermore, the program speci�es statistical information about the gravity �eld such as a
weighted RMS of the given solution. If individual regional patches with global coverage are supposed to be
merged to obtain a global spherical harmonic solution, this can be carried out by the program Gridded-
Data2Potentialcoe�cients. It uses the �le provided by GravityField2GriddedData, extracts the grid
points and weights, and calculates the spherical harmonic coe�cients by the corresponding quadrature rule.
The modularized design of GROOPS does not only allow a very �exible combination of the various elements,
but it also helps to avoid the multiple implementation of items that are required at di�erent stages of the
analysis process. For example, the class border can be used for the clipping of the satellite data, for the
de�nition of regionally adapted regularization matrices, and to calculate gravity �eld functionals for certain
areas. Another example is the fact that an element of kernel is needed for the design of the shape of space
localizing basis functions as well as for the conversion between di�erent gravity �eld functionals, even though
these two tasks might not seem to have too much in common at �rst sight.
The con�guration of GROOPS is controlled using the Extensible Markup Language (XML). The adjustment
of the individual programs and classes can either be performed by adapting the respective XML �le, more
comfortable is the use of the tailored graphic user interface. An exemplary screenshot of this interface is
displayed in Fig. 7.2. It features pop-up menus for the individual programs and classes. The given example
shows an extract of a regional gravity �eld determination from GRACE data using the integral approach. The
program NormalsBuild is expanded, showing, e.g., the class graceRange of the interface observation.
Required items are denoted by a red star, additional items are optional and depend on the respective
application. The user interface o�ers the possibility of de�ning repeatedly used variables as global variables,
these are indicated by a red arrow.
GROOPS exists in a version that can be run on an individual computer and in a parallelized version to be
used on a multi-machine computing cluster.

7.1.1 Background Models

If the gravitational �eld of the Earth is to be determined from satellite observations, all the other forces
acting on the satellite have to be reduced beforehand. These disturbing forces can either be approximated
by appropriate models or have to be measured by the on-board accelerometer. A short summary of the
background models that have to be accounted for during the calculations dealing with the current satellite
missions is given in the following.
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Direct Tides Apart from the gravitational force of the Earth, the satellite's orbit is in�uenced by the sun,
the moon, and the planets in form of tidal forces. These tidal forces are the di�erences between the
gravitational forces of the third bodies acting on the Earth on the one hand and on the satellite on the
other hand. They can be calculated from the positions of the third bodies, listed in the Ephemerides
DE 405 provided by the JPL (Standish 1998).

Solid Earth Tides The tidal forces described above cause a deformation of the Earth. This leads to mass
displacements resulting in a change of the gravitational potential denoted as tidal potential of the
solid Earth. The corresponding speci�cations are given in the IERS 2003 conventions (McCarthy
and Petit 2004).

Pole Tides The polar tides are induced by the centrifugal force of the polar motion which generates a
deformation of the Earth and thus a change in the gravitational potential. The related speci�cations
can again be obtained from the IERS 2003 conventions.

Ocean Tides The modeling of the oceanic reaction to the tidal forces and the resulting gravitational e�ects
are determined using the ocean tide model FES2004 (Le Provost 2001).

De-aliasing Short periodic variations of the atmospheric masses and the reaction of the ocean to these mass
variations have to be modeled and reduced, as otherwise they would distort the solution by aliasing
e�ects. The models to account for the short periodic variations are, therefore, denoted as de-aliasing
data (AOD1B), as speci�ed in Flechtner (2005).

Non-gravitational Forces The non-gravitational forces acting on the satellite have to be separated from
the gravitational forces. They cannot easily be approximated by models, therefore they have to be
directly measured by the on-board accelerometer located in the satellite's center of mass. The non-
gravitational forces are in detail the surface forces induced by atmospheric drag, solar radiation, and
Earth albedo, as well as accelerations generated by steering thrusters.

Relativistic Correction The large velocities in combination with the high measurement accuracies would
demand a relativistic formulation of the equation of motion. But since the di�erences are rather small,
the e�ect can be compensated by relativistic corrections, as speci�ed in the IERS 2003 conventions.

7.2 Simulation Study: Basis Functions

The following studies are performed in order to investigate the practical impact of the theoretical consider-
ations outlined in the Sections 3.3.4 and 5.2.3. There the matter of functions belonging to the reproducing
kernel Hilbert space of certain kernels was addressed. When specifying the space localizing spline functions
Φ, it was argued that in a Hilbert space HC de�ned by the covariance function (3.58) of the gravitational
potential as reproducing kernel two basis functions are decorrelated with respect to their inner product, but
possess an in�nite norm, as shown by Eq. (5.31). The problem of in�nite norm could be overcome by intro-
ducing a modi�cation factor according to (5.33), fmod =

(
1/
√

1 + ε
)n, leading to the modi�ed spline kernels

Φ̄. This causes the loss of the orthogonality as a drawback. In practical calculations, the inner product of the
basis functions occurs in the construction of the regularization matrix as de�ned in Eq.(5.28), which implies
that the elements of the regularization matrix are composed of these inner products. In case of bandlimited
basis functions, naturally, no in�nite norm can occur even without application of any modi�cation factor.
But again the regularization matrix cannot strictly be regarded as diagonal matrix, as the decorrelation of
the spline functions with respect to the inner product 〈·, ·〉C only exists if they are expanded up to N = ∞.
Exemplarily, such a fully occupied regularization matrix R containing the inner products of bandlimited
spline functions is displayed on the left side of Fig. 5.1. Nevertheless, the modi�cation factor fmod can also
be applied to bandlimited basis functions, leading to matrices related to the one shown on the right side of
Fig. 5.1. Despite these issues, it would provide advantages to consider the basis functions as uncorrelated and
thus to approximate the regularization matrix by a diagonal (unit) matrix. Here especially the possibility of
a regionally adapted regularization (see section 5.2.5) has to be mentioned, as this procedure necessarily re-
quires that the regularization matrix is separable into di�erent matrices belonging to di�erent regularization
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regions. Such a separation would be impossible in case of a fully occupied matrix. Apart from the fact that
the basis functions do not belong to the RKHS de�ned by C, it can also be argued that the gravitational
potential itself does not belong to the RKHS de�ned by its covariance function. This was illustrated in
Eq. (3.68). There it was proposed (in accordance with Moritz 1980) that a modi�cation of the covariance
functions by a factor fCov = (1 + ε)n, as given in Eq. (3.69), would take care of this problem, leading to the
modi�ed version C̄. According to (5.42), this would lead to the same regularization matrix as described for
the modi�ed spline kernels.
In the following, it will be investigated in how far the above considerations, and especially the approximation
of the regularization matrix as a unit matrix, has any impact on practical calculations. Therefore, a simulation
example was set up, using a CHAMP-like setting to calculate gravity �eld parameters from simulated orbit
data. As pseudo-real �eld served the EGM96 (Lemoine et al. 1998) up to degree n = 300; the satellite
positions were corrupted by simulated noise with 3 cm position accuracy. From this setting, a global solution
was determined parameterized by spline functions. For this study, the calculation of a global spline solution
instead of a regional one was regarded as suggestive to prevent the result from possible other artefacts such
as truncation e�ects. Beforehand, it was investigated by calculating a global spherical harmonic solution
that from this simulation setting gravity �eld features up to a resolution of approximately N = 45 can be
recovered. In order to fully exploit this signal content, the spline functions were located on a triangle vertex
grid of level 16 (leading to 2892 nodal points, approximately corresponding to a spherical harmonic expansion
of N = 50 with 2601 parameters). The expansion of the basis functions themselves was also truncated at
N = 50. Since a global spline solution can be transformed into a spherical harmonic expansion according
to Eq. (6.4), the results can be evaluated in the frequency domain in terms of degree variances. The signal
degree variances of di�erent choices for basis functions and regularization matrices are displayed, as well as
for each choice the di�erence degree variances compared to the pseudo-real �eld EGM96.

Scenario 1: Kernel Without Modi�cation As a reference, a solution was calculated using the original
spline kernel Φ and approximating the regularization matrix by the unit matrix R = I. In Fig. 7.3 to
Fig.7.6, the resulting signal is illustrated by the orange line, and the di�erences compared to the EGM96 are
represented by the red line. In a second step, the same solution was calculated with the only di�erence that
the unit matrix was substituted by the fully occupied regularization matrix, resulting in the light blue signal
and the dark blue error curve in Fig. 7.3. The di�erences between both solutions are marked by the dashed
blue line. Since the lines are very close together, the crucial higher frequency part is magni�ed in each of
the �gures. But even in the enlarged version, the error curves of both solutions are almost indistinguishable,
which can be recognized by the di�erences of the two solutions being by a factor 5-20 smaller than the errors.
This leads to the conclusion that the application of the fully occupied regularization matrix does not provide
any signi�cant improvements, and that it can be approximated by the unit matrix without signi�cant loss
of accuracy when dealing with the original bandlimited spline functions.

Scenario 2: Modi�ed Kernel, Unit Matrix In the second scenario (Fig. 7.4), the spline functions were
modi�ed by the modi�cation factor described above. Two di�erent factors (fmod =

√
0.95 and fmod =

√
0.97)

were tested, and the results are illustrated by the light blue and dark green line, respectively. The error curves
of both results are given by the corresponding dark blue and light green lines. In this case, the regularization
matrix was again approximated by the unit matrix R = I. The modi�cation dampens the high frequencies in
the spline kernels, which obviously leads to a dampening of the signal as well, since the dark blue and light
blue line run signi�cantly below the orange line. This loss of signal in the high frequencies is also re�ected
by a very slight increase in the errors, making the light green and dark blue curve run marginally above the
red line. Thus it can be assumed that when dealing with the modi�ed spline functions, the use of the unit
matrix in the regularization process leads to a loss in resolution and is, therefore, not advisable.

Scenario 3: Covariance Matrix Modi�ed As mentioned above, not only the basis functions do not
belong to the Hilbert space de�ned by the covariance function as reproducing kernel, but also the gravitational
potential itself has an in�nite norm within this space and, therefore, does not su�ce the smoothness condition
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in�icted by the kernel. That is why the idea can arise to introduce the modi�ed covariance function C̄ being
slightly rougher than the original one. This results in the same regularization matrix as will be applied in
Scenario 4, but here only the regularization matrix is modi�ed and not the spline kernel itself. The results
can be seen in Fig. 7.5. As expected, the less strict smoothness condition causes the signal in the higher
frequencies to be less dampened compared to the original solution, as proved by the dark green (fCov = 0.97)
and light blue line (fCov = 0.95) indicating the signal curves to run closer to the signal of the pseudo-real
�eld EGM96. On the other hand, however, the errors represented by the light green and dark blue curves
have become larger as well, giving evidence that this kind of modi�cation of the covariance function does
not increase the accuracy of the solution.

Scenario 4: Modi�ed Kernel With Fully Occupied Covariance Matrix In the last scenario, the
modi�ed spline kernels Φ̄ mentioned above were used for the parameterization of the solutions, and the
corresponding fully occupied regularization matrix was applied. The results are displayed in Fig. 7.6. The
modi�cation by a factor of fmod =

√
0.95 leads to an ampli�cation of the higher frequencies and an increase

of the errors compared to the original solution. In case of a lesser modi�cation (here shown for a factor of
fmod =

√
0.97, but the same is valid for arbitrary higher factors), the signal curve as well as the error curves

almost coincide with that of the original solution. Obviously, the dampening due to the modi�cation of the
spline functions, as observed in the second scenario, is compensated if the appropriate regularization matrix
is applied. However, the results do not show any signi�cant improvement when compared to the original
solution.
Summarizing, it can be stated that the modi�cation of either the spline kernel or the covariance function
have a dampening or amplifying e�ect on the higher frequency part of the solution, each leading to a
worsening of the errors. When the modi�cation of the spline kernels is met with the appropriate regularization
matrix, the e�ect can be compensated. But in none of the di�erent scenarios, a result was derived that is
signi�cantly better than the original solution calculated from the unmodi�ed spline kernel with the unit
matrix as approximation of the regularization matrix. Therefore, it can be concluded that the considerations
described in Sections 3.3.4 and 5.2.3 do have a theoretical value when analyzing the behavior of space
localizing basis functions from a mathematical point of view, but they do not seem to have any signi�cant
impact on the practical calculations. The above simulation study was only performed in detail for a CHAMP-
like scenario, but tests have shown that also in case of GRACE and GOCE no signi�cant drawback seems
to be caused by the approximations described. Possibly, in case of future measurement concepts providing
substantial increase in accuracy and resolution, the discussed issues can be expected to make a di�erence.
But when dealing with the observations provided by the present satellite missions, as processed within the
scope of this thesis, the speci�ed approximations are de�nitively su�cient. This is especially valid when it is
taken into account that the gain in accuracy achieved by the regionally adapted regularization process does
considerably prevail any inaccuracies caused by the approximations made.

7.3 Gravity Field Solutions

In the following section, the regional gravity �eld recovery approach will be applied to the data of the
satellite missions CHAMP, GRACE, and GOCE. In case of CHAMP and GRACE, the presented solutions
are derived from the analysis of real data, in case of GOCE, a simulation scenario is generated. In principle,
the procedure applied to the di�erent data sets can be characterized by the following steps: At �rst, a
global reference �eld is necessary, because the regional solutions are always calculated as re�nements to a
global solution. The reference �eld is usually parameterized by spherical harmonics, even though di�erent
parameterizations are possible as well. The global �eld is particularly responsible for covering the longer
wavelength part of the gravity �eld spectrum; therefore, it is su�cient to be modeled up to a moderate
spherical harmonic degree. The global solution is subtracted from the data, and in a second step the residual
�eld is calculated in regional areas to derive regional re�nements to the global reference �eld. To meet the
regional character of these solutions, they are represented by space localizing radial basis functions. If only
a regional gravity �eld is desired, the procedure is completed at this point. If one is interested in a global
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Figure 7.3: Degree variances of spline solutions, regularization by unit matrix compared to regularization
with fully occupied regularization matrix, basis function unmodi�ed, grid: triangle vertex level 16, N = 50
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Figure 7.4: Degree variances of spline solutions, di�erent modi�cation factors applied to the spline kernels,
regularization by unit matrix, grid: triangle vertex level 16, N = 50
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Figure 7.5: Degree variances of spline solutions, modi�ed covariance functions, basis function unmodi�ed,
grid: triangle vertex level 16, N = 50
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Figure 7.6: Degree variances of spline solutions, di�erent modi�cation factors applied, regularization by fully
occupied regularization matrix, grid: triangle vertex level 16, N = 50
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gravity �eld model, the regional re�nements have to be calculated with global coverage, and the individual
patches have to be combined to achieve a global solution. If desired, this global solution can then be converted
to a parameterization in terms of spherical harmonics, this conversion being carried out by means of the
exact quadrature methods, in this case the Gauss-Legendre quadrature, as described in Section 6.2.1. The
di�erent steps in the regional re�nement procedure are summarized below:

1. Global reference �eld (generally modeled in terms of a spherical harmonic expansion)
2. Calculation of regional re�nements (parameterized by space localizing basis functions)
3. Assembling of regional re�nements with global coverage to obtain a globally re�ned solution (only

necessary if a global gravity �eld solution is aspired)
4. Possibility of converting the globally re�ned solution to a spherical harmonic expansion by means of

numerical quadrature methods

7.3.1 CHAMP

The regional gravity �eld recovery results from real CHAMP data will be presented in the following. The
results are based on the article published by Eicker et al. (2004). The calculations are performed on
the basis of the kinematical orbits derived by D. �vehla and M. Rothacher from the GPS observation of
the CHAMP satellites, as presented in �vehla and Rothacher (2001) and �vehla and Rothacher
(2003). The resulting data set comprises the data of one year, from 2002/03 to 2003/03. This data set
was also used in the determination of the global CHAMP solutions ITG-Champ01s, ITG-Champ01k, and
ITG-Champ01e, as presented by Mayer-Gürr et al. (2005) and described in more detail in Mayer-Gürr
(2006). The various global solutions are distinguishable because of di�erent choices of the regularization
procedure, i.e. without any regularization, by applying Kaula's rule of thumb in the regularization matrix,
and by introducing additional information provided by the EGM96, respectively.

Figure 7.7: Spline kernel applied in the CHAMP gravity �eld recovery: developed until degree n = 120. As
shape coe�cients for the basis functions served the formal errors of ITG-Champ01k up to degree n = 70,
above n = 70 Kaula's rule was used to approximate the coe�cients.
The global solution ITG-Champ01K was chosen to serve as reference �eld in the regional analysis process.
The coe�cients of the global �eld were published up to degree n = 70 via the International Centre for Global
Earth Models (ICGEM)1, and this publicly available solution was introduced as reference �eld. The regional

1http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html
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gravity �eld is supposed to model the signal still present in the data after subtracting the reference �eld.
As described in Section 3.4, the basis functions are constructed on the basis of the degree variances of the
expected gravity �eld signal. Therefore, the formal errors of the global �eld ITG-Champ01k were applied up
to degree n = 70, as they indicate the signal content that is not su�ciently modeled by the global solution.
Above degree n = 70, Kaula's rule was used to approximate the frequency spectrum to be anticipated in the
higher degrees, here up to degree n = 120. The resulting spline kernel is displayed in Fig 7.7. The regional
re�nements were supposed to be calculated with a resolution corresponding to a spherical harmonic degree
n = 120 which features 1212 = 14, 641 unknown parameters. To achieve a comparable resolution, the spline
kernels were arranged according to a triangle vertex grid (as described in Section 3.5.1.6) of level 38, resulting
in 15,212 global spline parameters. The mean nodal point distance de�ning the spatial resolution amounts
to about 188 km. Concerning the question of the comparison of the resolution between a spherical harmonic
expansion and a parameterization in terms of space localizing basis functions, refer to Section 3.5.3. Applying
radial basis functions as parameterization, the regional solutions were calculated in the subsequent step. The
regional areas were de�ned along a geographical grid, and the satellite data was restricted to the respective
region, taking into account an additional strip of 5◦ width around the inner recovery region. The basis
functions were arranged in an area slightly larger than the designated regional solution, here a border of 10◦

has proven to be reasonable. Further enlargement of either the satellite data area or the area containing the
spline kernels did not provide signi�cant improvements in the solutions. Thus it may be concluded that even
though the regional gravity �eld may be in�uenced by mass anomalies of further distance to some extend,
this in�uence seems to be possible to be neglected in the practical calculations.
The results for two exemplary regional re�nement solutions are shown in Figure 7.8. Displayed is the ad-
ditional information that was possible to be extracted from the data set. Obviously, especially in the area
of the Andes and the Himalaya mountains, being regions of the Earth featuring very rough gravity �eld
information, there is still signal present in the data. In Fig. 7.9 the regional re�nement areas are chosen to
provide a complete coverage of the surface of the Earth. The blocks have a size of ∆λ = 90◦ and ∆ϑ = 70◦

with two spherical caps with an aperture angle of 40◦ covering the poles.
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Figure 7.8: Regional re�nements from CHAMP data: Andes and Himalaya region
Observing two adjacent patches reveals that they match very well despite the individual recovery of each
regional solution. By means of the Gauss-Legendre quadrature, the re�nement patches can be merged to
obtain a global spherical harmonic expansion. In order to apply the quadrature formula, the gravity �eld
functionals have to be evaluated at the required quadrature nodes. This does not, however, pose any di�cul-
ties, because from the continuous spline representation the modeled functional can be evaluated at arbitrary
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points on the sphere. The validation of the re�ned solution was performed by comparison with a GRACE
gravity solution, in this case the GGM01s (Tapley et al. 2004), which was calculated from 111 days of
GRACE data. The results obtained from GRACE data can be presumed to provide superior accuracy, and
therefore the quality of a CHAMP gravity �eld can be measured by its di�erences to the GRACE solution. In
order to perform the comparison, �rst the di�erences between the original reference �eld ITG-Champ01k and
the GGM01s were calculated and are shown in Fig. 7.10. The RMS of the di�erences amounts to 96.57 cm
with a maximum deviation of 1031.04 cm. Subsequently, the regional re�nement was added to the reference
solution, and again the di�erences compared to the GGM were determined, as displayed in Fig. 7.11. The
RMS improved to a value of 85.54 cm, and the maximum di�erence was reduced to 920.30 cm. The impact of
the regional re�nement can, therefore, be speci�ed by a signi�cant improvement in accuracy of about 10%.
Because of the conversion from the spline solution to a spherical harmonic expansion, the results can be
investigated in the frequency domain as well. Even though the �eld ITG-Champ01k was published only up
to degree n = 70, it was originally calculated up to degree n = 90. Internal access to this solution allows
the examination up to the higher resolution. Fig. 7.12 shows the degree variances in terms of geoid heights
for the di�erence between the ITG-Champ01k and the GGM01s (blue) and for the di�erence between the
re�ned solution and the GGM01s (red). The directly calculated global solution exhibits smaller di�erences in
the lower frequency part, approximately up to degree n = 50. The higher accuracy in these long wavelengths
would require an extra careful handling of the transitions between re�nement patches. In the higher frequency
part, however, the regionally re�ned solution performs better than the original solution, as can be observed
from the red curve running slightly below the blue curve above degree n = 50. The di�erences of the original
solution intersect with the signal curve (black) at degree n = 90, whereas the re�ned solution seems to contain
information even in the frequency part above degree n = 90. From these investigations, it can be concluded
that restricting the original spherical harmonic solution to degree n = 70 seems to have been too pessimistic,
since Fig. 7.12 reveals the possibility of extracting additional information from the global solution above this
degree. This discrepancy partly explains the large improvements in Fig. 7.11 when compared to Fig. 7.10.
Nevertheless, the solution calculated from regional re�nements still performs better in the higher frequencies
than the global solution expanded up to degree n = 90, as can be observed from the degree variances plot.
Also in the space domain, the global solution up to degree n = 90 provides an RMS of 87.26 cm and a
maximum error of 1021.68 cm when compared to the GGM01s, which again are larger than the di�erences
calculated for the regionally re�ned solution.

Figure 7.9: Individual re�nement patches providing a global coverage of the Earth's surface
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Figure 7.10: Di�erences between ITG-Champ01k (N = 70) and GGM01s (compared up to degree N = 120),
RMS: 95.57 cm, Max: 1031.04 cm

Figure 7.11: Di�erences between ITG-Champ01k (N = 70) re�ned by regional focus and GGM01S (compared
up to degree N = 120), RMS: 85.54 cm, Max: 920.30 cm
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Figure 7.12: Di�erences in degree variances (in terms of geoid heights) between ITG-Champ01k and GGM01s
(blue) and between the re�ned solution and the GGM01s (red)

7.3.2 GRACE

7.3.2.1 One-month Solution

The satellite mission GRACE provides gravity �eld solutions with an accuracy that has never before been
achieved for a global model. Therefore, the validation of the results represents a certain challenge, as no
existing gravity �eld solution can serve as 'true' pseudo-real comparison. A way out of this problem can be
the calculation of solutions from only a limited amount of data, i.e. from only a short period of time, and
the use of solutions calculated from a larger amount of data as references. This procedure allows to make
qualitative valuations about the applied approach. This is why, in the following scenario, a regional solution
was calculated from only one month of GRACE data, to be more speci�c, from the data collected in June
2005. The results were then compared to the global GRACE gravity model ITG-Grace02s (Mayer-Gürr
et al. 2007a). It was derived from three years of GRACE data, therefore it is expected to be of superior
accuracy and can thus serve as comparison. As investigation area was chosen a region containing a large
part of South America and part of the adjoining Paci�c Ocean, the area being limited by the geographical
coordinates λ = [250◦, 310◦] and ϕ = [−50◦, 10◦]. It was selected because of its very pronounced high
frequency signal in the Andes region and a comparably rather smooth signal in the respective part of the
Paci�c. These are conditions that allow the exploration of the strengths provided by the regional recovery
approach particularly well. In geographical areas with strongly varying spectral behavior, the concept of
the regionally adapted regularization procedure described in Section 5.2.5 can be especially helpful. In the
proposed evaluation area, the partitioning into one regularization group for the continental area and one for
the ocean area, as given in Eq. (5.51), seems to be a reasonable choice. As reference �eld served the EGM96
(Lemoine et al. 1998) up to degree n = 240, and the regional solutions were calculated as re�nements to the
reference �eld. For the radial basis functions to model this residual signal content, the error degree variances
of the reference �eld were used as shape coe�cients in the series expansion of the spline kernels, which was
performed up to n = 140. The basis functions were located at a triangle vertex grid of level 45, which results
in a resolution comparable to a spherical harmonic degree n = 140.
The gravity �eld recovery was performed using the integral equation approach, as speci�ed in Section 4.3.2.
The results obtained from the setting described above are presented in Fig. 7.13. Illustrated are the
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di�erences between the regionally re�ned solution compared to the ITG-Grace02s up to degree N = 140.
The left hand side of this �gure shows the outcome in the case of one uniform regularization parameter
determined for the region with an RMS of the di�erences amounting to 16.51 cm. This is compared to the
di�erences for the adapted regularization procedure illustrated on the right hand side of Fig. 7.13. The
introduction of the additional regularization area leads to an improvement of the RMS to 12.86 cm, which is
signi�cantly smaller. To evaluate the quality of the one-month regional spline solution, it was tested against
the same month of the GFZ-RL04 (Flechtner 2007) monthly gravity �elds. In a �rst step, both monthly
solutions were again compared to the ITG-Grace02s. In this case the comparison was only performed up to
degree N = 120, as the GFZ-RL04 series is published only up to this resolution. The results are presented
in Fig. 7.14, for the spline solution on the left side and for the GFZ-RL04 model on the right side. The
relation of the RMS values of 6.6 cm and 13.9 cm, respectively, reveal that the spline solution matches the
ITG-Grace02s model better than is the case for the GFZ-RL04 solution. The examination of the associated
�gures also exhibits the error pattern to be less pronounced in case of the spline solution. Since the
ITG-Grace02s and the regional re�nement model were calculated using the same analysis procedure, this
might not be a fair comparison, however. Therefore, the same di�erences were calculated between the two
monthly solutions and the Eigen-GL04C (GFZ Potsdam 2007). This global model was derived from 2.5
years of GRACE observations supplemented by additional surface gravity data. The results are compared in
Fig. 7.15; again it becomes obvious that the spline solution shows better agreement with the global model
than is the case for the GFZ-RL04 solution. The RMS values of 9.3 cm in contrast to 16.5 cm also support
this conclusion.

Figure 7.13: Di�erences between spline solution (05-2006) and ITG-Grace02s, one uniform regularization
parameter (left, RMS: 16.51 cm) and adapted regularization (right, RMS: 12.86 cm), N = 140
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Figure 7.14: Di�erences between spline solution (05-2006) and ITG-Grace02s (left, RMS: 6.6 cm) and di�er-
ences between GFZ-RL04 (05-2006) and ITG-Grace02s (right, RMS: 13.9 cm), N = 120

Figure 7.15: Di�erences between spline solution (05-2006) and Eigen-GL04C (left, RMS: 9.3 cm) and di�er-
ences between GFZ-RL04 (05-2006) and Eigen-GL04C (right, RMS: 16.5 cm), N = 120



7.3. Gravity Field Solutions 105

7.3.2.2 ITG-GraceSpline03

This section is dedicated to the regional re�nement of the global gravity �eld ITG-Grace03s (Mayer-Gürr
et al. 2007b), the latest GRACE model calculated at the IGG Bonn. The model comprises a static gravity
�eld, represented by a spherical harmonic expansion up to degree n = 180 and a time variable part with
a resolution of up to n = 40. In the time domain it is parameterized either by monthly means or by
quadratic splines. In the following, only the static model will be taken into consideration. It was computed
from accumulated normal equations over a time span from September 2002 to April 2007, using GRACE
data only and without applying any a-priori information or regularization. Concerning the functional model,
the integral equation approach, as described in Section 4.3.2, was applied. Using ITG-Grace03s as a global
reference model, the regional re�nement strategy was supposed to extract additional gravity �eld information
from the same data set using exactly the same analysis procedure as in the case of the global solution. The
reference �eld was restricted to a spherical harmonic degree of n = 145, as the higher degrees are too severely
corrupted by noise. For the construction of the radial basis function, the formal errors of ITG-Grace03s were
used up to n = 145, as they are assumed to re�ect the amount of information for each degree that has not yet
been modeled by the global solution. Above, the series expansion was approximated by Kaula's rule up to
n = 180. The respective basis function is plotted in Fig. 7.16. The spline kernels were located at the nodes of
a grid resembling the resolution of n = 180, that is a triangle vertex grid of level 57 with 33,642 nodal points.
Resulting from this speci�cation, the spatial resolution of the spline solution averages about 123 km nodal
point distance. The surface of the Earth was divided into patches of size ∆λ = 90◦×∆ϑ = 60◦ with a spherical
cap featuring an aperture angle of 60◦ at each of the poles. For each of the areas, a regional re�nement was
calculated, again using the regionally adapted regularization procedure as introduced in Section 5.2.5 with
individual regularization parameters for continental and oceanic regions. From the individual spline solutions,
a global spherical harmonic solution was derived by means of the Gauss-Legendre quadrature. As explained
in Section 6.2.1.2, a number of L = 181 circles of latitude is su�cient to obtain spherical harmonic coe�cients
of up to degree n = 180.

Figure 7.16: Spline kernel applied in the re�nement of the global model ITG-Grace03s: developed until degree
n = 180, formal errors of ITG-Grace03s up to degree n = 145, above n = 145 Kaula's rule

This global solution calculated from individually determined re�nement patches is denoted by ITG-
GraceSpline03, and it is illustrated and evaluated in Fig. 7.17 to Fig. 7.19. Concerning the evaluation or
validation of the obtained solution, there arises the question of a proper comparison. GRACE has delivered
gravity �eld solutions with an accuracy in the long and medium wavelength part of the spectrum that has
never been achieved before. This makes validation a challenging task. The regional re�nement process aims
particularly at the improvement of the higher frequencies, therefore terrestrial gravity �eld information can be
used for evaluation purposes. In the results described here, the global model Eigen-GL04C (GFZ Potsdam
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2007) was chosen as comparison, as the terrestrial gravity data taken into account in addition to the GRACE
data allows the Eigen-GL04C to be assumed of exhibiting superior accuracy in the higher frequency part of
the gravity �eld spectrum. The comparison in the frequency domain is shown in Fig. 7.17 by displaying degree
variances in terms of geoid heights. The signal of Eigen-GL04C is thereby visualized by the black curve. The
ITG-Grace03s and ITG-GraceSpline03 are represented by the blue and red curves, respectively, the dashed
lines stand for the signal and the continuous lines illustrate the di�erences compared to the Eigen-GL04C.
The di�erence between the two ITG solutions is indicated by the green curve. Examining the error curves
reveals that the two directly calculated spherical harmonic solutions Eigen-GL04C and ITG-Grace03s match
better in the lower frequency part, up to about degree n = 70. The extremely high accuracies in the long
wavelengths would require an additionally careful treatment of the transitions between adjacent re�nement
patches. As expected, the bene�t of the regional re�nements becomes evident especially in the higher de-
grees, in the case at hand starting from approximately n = 148. From this point on, the blue error curve
runs signi�cantly above the red one. The blue line intersects the black line at about n = 165, which implies
that above this degree the errors are larger than the signal itself. Therefore, above n = 165 no further gain
of information can be expected from the directly calculated global solution ITG-Grace03s. Since this model
was calculated without any regularization, the ampli�ed errors dominate the respective signal curve (dashed
blue line) in the high frequencies, leading to an unrealistically large signal above n = 140. The noticeable
jump in the error curves (in the red as well as in the blue one) around degree n = 115 originate from an
inadequate weighting of the satellite data and the terrestrial gravity information in the calculation of the
Eigen-GL04C. Regarding ITG-GraceSpline03, there seems to be full signal present in the solution up to al-
most degree n = 160. In the higher degrees the dashed red signal curve becomes signi�cantly dampened due
to the regularization process. But the intersection of the red error curve and the black signal curve does not
occur before approximately n = 180, thus up to this resolution there seems to be information remaining in
the regionally re�ned solution. The obtained results can be evaluated in the space domain as well. Therefore,
the di�erences in geoid heights were calculated between the two ITG solutions and the Eigen-GL04C, the
respective plots are displayed in Fig. 7.18 for ITG-Grace03s and in Fig. 7.19 for ITG-GraceSpline03. As there
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Figure 7.18: Di�erences between ITG-Grace03s and Eigen-GL04C, N = 165, RMS: 20.6 cm
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Figure 7.19: Di�erences between ITG-GraceSpline03 and Eigen-GL04C, N = 165, 17.9 cm
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seems no signal to be provided above n = 165 by the directly determined global solution, the di�erences
were only calculated up to this resolution. A comparison of both �gures reveals that the regional re�nements
have indeed provided signi�cant improvement. The RMS was reduced by about 13% from 20.6 cm to 17.9 cm
supporting this conclusion. It has to be mentioned, however, that the model ITG-Grace03s was calculated
without any regularization applied, resulting in an ampli�cation of the errors in the high frequencies. Possi-
bly, a regularization process would provide enhancement in the resolution of the global model as well. But
nevertheless this would only imply a uniform global dampening of the gravity �eld features. Therefore, it
can be assumed that, in comparison to a globally regularized model, the regionally re�ned solution would
provide a further gain in accuracy and resolution, too.
The results provided by GRACE commonly exhibit a typical error pattern of distinct stripes in north-south
direction. This is evident in Fig. 7.13 to 7.15 as well as in Fig. 7.18 and 7.19. Therefore, concluding remarks
are to be made concerning the nature and causes of this error structure. The following reasons can be
speculated:

• The primary observation, the K-band range or range-rate measurements, are carried out in along-
track direction, thus the constraints given by the measurements are strong in this direction. As the
measurement errors are always directed into the direction in which the model o�ers the largest degree
of freedom, they are directed to across-track direction causing the stripe pattern.

• The second e�ect leading to a stripe pattern in the error display is the fact that the background
models (such as ocean tide model, atmosphere model, etc.) are of insu�cient accuracy compared to
the superior accuracy provided by the GRACE K-band instrument. The unmodeled short periodic
gravity �eld changes cause aliasing e�ects. These are characterized by meridional stripes, because the
observations are sampled along the orbit by a satellite �ying in north-south direction. This results in
arcs that are close to each other in space do not necessarily have to be close in time as well. Between
neighboring arcs there may have passed a considerable period of time due to the orbit con�guration of
the GRACE mission; during this time the situation in the (unmodeled) background models may have
changed completely. Investigations concerning these aliasing e�ects have been carried out, for example,
by Seo et al. (2008).

7.3.3 Combination of GRACE and GOCE

Due to the lack of real GOCE observations, the following calculations were performed in the frame of a
simulation scenario. The simulation example is supposed to demonstrate that a regional re�nement strategy
cannot only be applied to re�ne global solutions, but it can be utilized to combine di�erent data sets as well.
In the scenario at hand, observations of GRACE are supposed to be combined with those of GOCE. The
GRACE solution serves as the global reference �eld, as GRACE provides excellent results especially in the
long and medium wavelength part of the gravity �eld spectrum. The regional re�nements of this solution are
then calculated on the basis of GOCE-like observations, as they cover the short periodic part of the gravity
�eld spectrum with superior accuracy. As additional reference �eld for the higher frequencies, the OSU91
(Rapp et al. 1991) was introduced from degree n = 150 to n = 300. The procedure was described in Eicker
et al. (2005) and Eicker et al. (2006). An extension of this combination approach is suitable to include
terrestrial or airborne gravity data as well.
In order to achieve a consistent data set, both the GRACE and the GOCE solution were calculated from
simulated observations on the basis of the EGM96 (Lemoine et al. 1998) up to degree n = 300. The
observations for GRACE as well as for GOCE were simulated for a period of 30 days with a sampling rate
of 5 sec. In case of the GRACE satellites, the simulated orbit positions were corrupted by a white noise
with a standard deviation of 3 cm and the intersatellite ranges between the GRACE twin satellites with
a white noise of 10 µm. Regarding the GOCE satellite, the gradiometer observations were corrupted by a
colored noise model with a standard deviation of 1.2mE. In this model the PSD is assumed as constant in
the measurement band of the gradiometer and features increasing energy in the long wavelength part of the
spectrum, as the gradiometer is not able to recover these low frequencies. For the satellite positions again
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an accuracy of 3 cm was assumed. From this simulated data set, �rst the GRACE solution up to a spherical
harmonic degree of n = 150 was derived. The analysis of the GRACE data was conducted using the integral
equation approach described in Section 4.3.2. The regional re�nements from GOCE observations were then
calculated as residual �elds to this global solution, applying the functional model indicated in Section 4.3.3.
Using a parameterization by splines as space localizing base functions, the spline kernels are to represent the
gravity �eld features to be determined. Therefore, up to degree n = 150, the error degree variances of the
(simulated) GRACE solution were applied as coe�cients in the series expansion of the spline kernel. These
error degree variances represent the signal which is still in the data in addition to the GRACE solution.
Above degree n = 150, the degree variances were approximated by Kaula's rule of thumb. The resulting
basis function is displayed in Fig. 7.20. The basis functions were located at the nodes of a triangle vertex
grid of level 95. This results in 92,162 global points, guaranteeing a resolution slightly higher than a spherical
harmonic degree of n = 300. The resulting grid pattern exhibits an average nodal point distance of about
74 km. From the setting described above regional solutions were calculated. The results for an individual
regional re�nement are displayed in Fig. 7.21 for the area of the Andes. The �gure shows the di�erences to the
pseudo-real �eld EGM96 in terms of geoid heights. The comparison was only performed up to degree n = 240,
because the higher degrees are too strongly corrupted by noise. Here again the impact of the regionally re�ned
regularization procedure becomes evident, as the RMS value improves from 9.24 cm (left side, one uniform
regularization parameter) to 8.08 cm (right side, adapted regularization for ocean and continental area).
This corresponds to an improvement of 12.5%. Subsequently, regional re�nements were calculated covering
the complete surface of the Earth, with an overlapping border of 10◦ having been taken into account at
the boundaries to avoid truncation e�ects. The individual patches have a size of ∆λ = 40◦ × ∆ϕ = 50◦

Figure 7.20: Spline kernel applied in the combined GRACE-GOCE simulation scenario: developed until
degree n = 300, formal errors of simulated spline solution up to degree n = 150, above n = 150 Kaula's rule
complemented by two spherical caps with an aperture angle of 30◦ covering the poles. The pattern of the
re�nement regions is illustrated in Fig. 7.22. It leads to a number of about 5000 to 9000 spline parameters
to be determined for each region, the size of the patches being limited by storage restrictions. From the
individual spline solutions the gravity �eld functionals were predicted to the nodes of a Gauss-grid with
a spacing of ∆λ = 0.5◦. This corresponds to a number of 360 circles of latitude. From the global �eld, a
spherical harmonics expansion was calculated using the Gauss � Legendre quadrature. The results are shown
in Fig. 7.23, again compared up to degree n = 240. The global RMS amounts to 6.51 cm, including the poles.
Here only the solution with the adapted land/ocean regularization is presented, as on a global scale the
improvements are not as easily detectable, especially as for many of the patches the choice of continental and
oceanic regions does not pose an ideal option. Here a more tailored adjustment of the regularization areas
would be advisable. The global solution can be evaluated in the frequency domain as well; the corresponding
degree variances are displayed in Fig. 7.24. The blue line speci�es the di�erence degree variances between
the global reference �eld and the EGM96, the dark green and red line indicate the di�erences of the re�ned
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solution using one or two regularization parameters, respectively. Naturally, the re�ned curve runs below the
reference curve due to the additional information provided by the GOCE observations. Taking a closer look
at the high frequency part reveals that even though the choice of the regularization areas is not perfectly
tailored, the errors of the solution with adapted regularization are constantly smaller.
It shall be pointed out that the direct computation of the spherical harmonic coe�cients by solving the
improperly posed downward continuation cannot provide a stable solution up to an (arbitrarily) high degree
as it can be achieved by means of the quadrature method. In this application, the maximal degree should be
limited only by the signal content of the gravity gradient measurements. Furthermore, the regional recovery
procedure o�ers a chance to deal with the polar gap problem in a tailored way, as in regions without any data
the regional re�nement can either be skipped or the regularization parameter can be adjusted accordingly.
The concept of taking a global solution and calculating regional re�nements to the global solution presents an
elegant way of combining di�erent data sets. The lower resolution data set can serve as global reference, and
observations with assumed higher resolution can be exploited for the regional re�nements. The regularization
parameters are determined individually for di�erent geographical areas by variance component estimation,
as explained in Section 5.2.4. This procedure optimally chooses the regularization parameter according to the
given signal-to-noise ratio in the respective regularization area. In this way the dampening can be adjusted in
accordance with the residual signal content (i.e. the information additional to the global reference solution).
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Figure 7.21: Di�erences between spline solution from combined GRACE/GOCE analysis (simulation study)
and the pseudo-real �eld EGM96: one uniform regularization (left, RMS: 9.24 cm), two adapted regularization
parameters for land and ocean (right, RMS: 8.08 cm)
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Figure 7.22: Individual patches, di�erences in geoid heights between combined GRACE/GOCE solution and
EGM96

Figure 7.23: Di�erences in geoid heights between EGM96 and the re�ned solution, RMS: 6.51 cm
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and between the re�ned solutions and the EGM96



113

8. Summary and Outlook

In this thesis, an integrated approach was developed for the regional re�nement of global gravity �eld models
on the basis of satellite data provided by the missions CHAMP, GRACE, and GOCE. Such an integrated
approach comprises the design of speci�cally tailored space localizing basis functions together with their
respective location according to a suitable nodal point pattern, a functional model based on short arcs of
the satellite's orbit, and a regional adaptation of the analysis process. Concerning the construction of the
basis functions, they were chosen as radial spline kernels, and their shape coe�cients were derived from the
covariance function of the gravitational potential. In this way, it was achieved that the basis functions re�ect
the frequency behavior of the gravity �eld to be modeled. As to the appropriate choice of a spherical grid
applied in the location of the spline kernels, several di�erent settings were examined, and a triangular grid
obtained from a speci�c uniform densi�cation of the icosahedron has been proven to be most suitable. It shall
be pointed out that, within this thesis, the regional approach does not only imply a regional modeling, but
the complete analysis process chain is adapted to explore the bene�ts of a regional analysis. This starts with
choosing only the satellite data originating from over a speci�c geographical area, resulting in the necessity of
using a functional model based on short arcs of the satellite's orbit. The functional model that was described
as to the analysis of satellite-to-satellite tracking data is based on the solution of an integral equation of
Fredholm type for the high-low mode and on a modi�cation thereof in case of the low-low mode. These models,
as well as the pointwise evaluation of the gravity gradient in case of satellite gravity gradiometry, ful�ll the
requirement of a short-arc analysis and emphasize the in-situ type character of the respective observation
principles. Another important aspect in the regional gravity �eld analysis is the downward continuation
process. In this context, especially a regionally adapted regularization was introduced which assigns di�erent
regularization matrices to geographical areas with varying signal content. Therefore, a global dampening of
the gravity �eld features can be avoided, as the adapted regularization parameter determined for each region
can take into account the varying signal content. Due to this fact, it was expected that it is possible to extract
more information from given data than in case of directly calculated global gravity �eld solutions. To conclude
the analysis procedure, an approach was described that combines regional solutions with global coverage to
obtain a global solution and to derive the corresponding spherical harmonic coe�cients by means of the
Gauss-Legendre quadrature method. This combination procedure o�ers the advantages of a global gravity
�eld solution without losing the details of a regional zoom-in.
The applicability of the regional approach was demonstrated by the analysis of all three satellite missions.
In case of CHAMP and GRACE, this implied the analysis of real data, whereas for GOCE, a simulation
scenario was presented based on a combined analysis of (simulated) GRACE and GOCE data. Regarding
CHAMP, the regional strategy was applied to the re�nement of the global CHAMP model ITG-Champ01k,
resulting in its signi�cant improvement. The analysis of GRACE was carried out in two steps. In a �rst step,
a solution was calculated from one month of data to demonstrate the performance of the regional procedure.
It was possible to show that especially the regionally adapted regularization process can provide a remarkable
enhancement in accuracy. The derived regional models showed better agreement with global models derived
from a signi�cantly larger amount of data than was the case concerning the respective GFZ-RL04 monthly
gravity �eld. This was true for a comparison with the ITG-Grace02s as well as with the Eigen-GL04C. In
a second step, the high resolution model ITG-GraceSpline03 was derived from 4.5 years of GRACE data
as a regional re�nement of the global model ITG-Grace03s. A considerable gain in resolution was achieved
in comparison to the directly calculated global solution, as was illustrated in the space as well as in the
frequency domain. Obviously, the regional re�nement procedure allowed to extract more information out of
the given data set in the high frequencies than was the case for the global model. Concerning the analysis
of GOCE, a simulation scenario was designed dealing with the combination of (simulated) GRACE and
GOCE data. The target of these investigations was not only to demonstrate the suitability of the regional
approach to be used in the GOCE analysis, but also to show its potential to be applied in the combination
of di�erent data sets. In the scenario at hand, the GRACE observations provided the information in the
long and medium wavelength part in terms of a global reference model, and regional re�nements calculated
from GOCE measurements enabled the determination of the high resolution gravity �eld features. Again, the
use of the regionally adapted regularization process turned out to be a valuable advantage. In this way, the
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regional re�nement strategy constitutes a �exible combination tool, the method not being limited to the data
of the satellite gravity missions, but being suitable for the inclusion of terrestrial, airborne, or altimetry data
as well. Especially as these data sets are not available with global coverage, the regional modeling proposes
a very adequate possibility of combining them with global satellite models.
Summarizing, it can be concluded that, indeed, a substantial improvement of global models by regional
re�nement techniques is possible, as was demonstrated by the various results. Especially the signal content
in the higher frequency part of the spectrum can be preferably detected using regionally tailored analysis
and modeling approaches. Therefore, particular success of the regional approach is expected for the analysis
of real GOCE data, hopefully available in the near future, as the primary goal of GOCE is the determination
of the short wavelength part of the gravity �eld. Concerning GOCE, additional advantages of the regional
analysis procedure will come into focus, too. On the one hand, this is the ability of dealing with regions
with di�erent data coverage which will be interesting when having to cope with the polar gap problem.
On the other hand, splitting up the global problem into smaller regional problems provides computational
advantages, particularly motivated in case of GOCE by the large amount of data and the large number of
projected gravity �eld parameters.
Despite the satisfactory results already obtained by the regional re�nement approach, there is still potential
for further improvements of the method. First of all, an advancement of the regional adaptation of the
regularization process can be mentioned. The described choice of two regularization areas, one for continental
and one for oceanic areas, is a reasonable choice for certain areas, but does not represent an optimal selection
for global applications. Further improvement in accuracy could be expected if the regularization areas were
more appropriately tailored according to the signal content in di�erent regions. The respective information
could be obtained from topographic models or a-priori gravity �eld solutions. More than two regularization
areas per regional solution patch are possible as well.
The possibility of achieving a smoother transition between individually calculated patches and regions with
di�erent roughness in the gravity �eld features should further be investigated. This would prevent the re-
�ned solution from remaining truncation e�ects. These e�ects are primarily detectable in the very precise
determined long wavelength part of the gravitational �eld, but are too small to have signi�cant in�uence on
the high frequency part, which is the primary focus of the regional re�nement approach. Measures that can
be taken against the in�uence of the truncation are larger overlapping regions or the averaging of adjacent
solutions in areas close to the border of the patches in the overlapping regions. Thinkable is also to smooth
the transition between two adjacent patches (or regularization regions) by a continuous modi�cation of the
respective regularization parameters.
So far, the resolution of the spline solutions has been de�ned globally, and the distance between nodal points
has been determined by distributing a speci�c number of spline kernels as evenly as possible along the nodes
of a (global) grid. An advantage of a modeling by space localizing basis functions, however, is the possibility
of �exibly adapting the spatial resolution according to the given gravity �eld characteristics. It would be
thinkable, for instance, to locate basis functions with narrow support close together in regions with strong
high frequency signal and to use wider kernels located farther apart in areas featuring a rather smooth signal.
Furthermore, it might be possible to use the space localizing basis functions to model particular geophysical
phenomena. If so, the basis functions could be arranged in a way to best re�ect the characteristics of the
particular phenomenon, for instance along the course of a river basin, etc.
Furthermore, one could consider multi-resolution modeling techniques as, for example, wavelet represen-
tations. Practically speaking, the regional re�nement approach with a global (lower resolution) spherical
harmonic model and additional regional re�nements in terms of radial basis functions represents a two-scale
approach. For the given satellite data, the two-scale modeling seems to be well-tailored and su�cient, as
proven by the acquired results. But especially when combining the satellite models with terrestrial observa-
tions of substantially higher resolution, the extension of the method to further scales and the decomposition
of the signal into di�erent detail signals might turn out to be appropriate.
The combination of di�erent regional solutions to one global solution by the use of the Gauss-Legendre
quadrature has so far been performed without applying any error propagation; this could be included into
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the analysis process in the future. However, it has to be considered that the discrete orthogonality of the
spherical harmonics, and thus the exactness of the quadrature method, is lost when introducing an additional
weight matrix.
Besides the calculation of a static gravity �eld, GRACE enables the recovery of temporal gravity variations as
well. These temporal variations are often regional phenomena, thus a regional modeling seems particularly
reasonable. First investigations concerning the regional analysis of time variabilities were performed by
Eicker et al. (2007), but are not considered here. The promising results encourage further research in this
topic.
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A. Mathematical Fundamentals

In this chapter, some basic mathematical concepts are summarized that will be used in the course of the
thesis. They can by found, e.g., in Bronstein and Semendjajew (1995). The �rst section deals with
mathematical (vector) spaces and their characteristics, resulting in the de�nition of Hilbert spaces. Those
are needed, as the construction of basis functions for the gravity �eld parameterization and their theoretical
discussion takes place in Hilbert spaces. In the second section, the concept of linear operators and linear
functionals is described.

A.1 Function Spaces

Vector Space A vector space is a set of elements that is closed with respect to the two operations vector
addition and scalar multiplication. For each of the two operations certain axioms have to be satis�ed.

Norm, Normed Space A normed space X is a vector space with a norm de�ned on it. The norm ‖·‖ is
a mapping X → IR with the following properties for arbitrary x, y ∈ X:

‖x‖ ≥ 0 (A.1)
‖x‖ = 0 ⇔ x = 0 (A.2)
‖αx‖ = |α| ‖x‖ (A.3)
‖x+ y‖ ≤ ‖x‖+ ‖y‖ . (A.4)

Cauchy Sequence A sequence in a normed space is called Cauchy sequence if for every positive real
number ε > 0 there is a positive integer n ∈ IN such that for all integers k, l ≥ n it holds

‖uk − ul‖ < ε. (A.5)

Scalar Product, Inner Product If X is a vector space, a scalar product (also called inner product) 〈·, ·〉
is a mapping X ×X → IR such that for every x, y, z ∈ X and α ∈ IR the following conditions are ful�lled:

〈x, x〉 ≥ 0 Non-negativity (A.6)
〈x, y〉 = 〈y, x〉 Commutative law (A.7)
〈αx, y〉 = α 〈x, y〉 Linearity (A.8)
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 . Linearity (A.9)

By ‖x‖ = 〈x, x〉
1
2 the inner product induces a norm ‖·‖ in X.

Pre-Hilbert Space A normed vector space on which a norm is de�ned by an inner product is called
pre-Hilbert space. If a Pre-Hilbert space is complete with respect to this inner product, it becomes a Hilbert
space as described below.

Euclidean Space The n-dimensional vector space IRn with an inner product 〈x, y〉 =
∑
k

xkyk is called
Euclidean space.

Completeness A normed space X is called complete if every Cauchy sequence has a limit in X.



A.1. Function Spaces 117

Closure LetM be a subset of a normed space X. Then every pointm0 ∈ X that is a limit of a (convergent)
sequence in M is called accumulation point. m0 itself does not necessarily belong to M . The closure M of
the subset M includes all points of M together with all accumulation points.
The subset M is closed if every convergent sequence in M has its limit in M .

Complete Subspace A subspace M of a normed space X is complete in itself if, and only if, it is closed
in X.

Banach Space Banach spaces are de�ned as complete normed vector spaces. This means that a Banach
space is a vector space V over the real or complex numbers with a norm ‖·‖ such that every Cauchy sequence
in V has a limit in V . In a Banach space the norm does not necessarily have to be de�ned on the basis of an
inner product.

Hilbert Space A Hilbert space H is an inner product space that is complete under its norm
‖x‖ = 〈x, x〉1/2 . (A.10)

Thus the norm is de�ned as the square root of the inner product. The Hilbert space is a generalization
of the Euclidean space applied to in�nite dimensional spaces such as function spaces. In this way simple
geometric concepts such as projection and change of basis can be applied to in�nite dimensional spaces.
In an equivalent de�nition, a Hilbert Space can be introduced as an inner product space that is also a
Banach space (a complete normed space) under the norm de�ned by the inner product. In this way, every
Hilbert space is a Banach space, because, by de�nition, a Hilbert space is complete with respect to the
norm associated with its inner product, where a norm and an inner product are said to be associated if
‖ v ‖2= (v,v) for all v. The converse is not always true; not every Banach space is a Hilbert space. A
necessary and su�cient condition for a Banach space V to be associated to an inner product (which will
then necessarily make V into a Hilbert space) is the parallelogram identity,

‖u+ v‖2 + ‖u− v‖2 = 2
(
‖u‖2 + ‖v‖2

)
. (A.11)

A Hilbert space is separable if there exists a countable dense subset S of H, i.e. each element of H is the limit
of a sequence of elements in S, or in other words, if there is a set S with a countable number of elements
whose closure is equal to H. A separable Hilbert space possesses a countable orthonormal basis with the
basis functions denoted by φi. If this is the case, each function f in H can be expressed by an expansion of
these basis functions,

f =
∞∑
i=0

〈f, φi〉φi =
∞∑
i=0

fi · φi, (A.12)

where fi = 〈f, φi〉 are the coe�cients. Parseval's equality states that

‖f‖2 = 〈f, f〉 =
∞∑
i=0

|〈f, φi〉|2 =
∞∑
i=0

f2
i . (A.13)

This means that the norm of the function can be calculated from the sum of the squared coe�cients fi. Thissum can be interpreted as the power of a function in the frequency domain. This leads to the interpretation
of Parseval's theorem that the power of a function in space domain (given by the norm) equals the power of
the same function in the frequency domain.
In the space of square integrable functions L2, the scalar product is de�ned by

〈f, g〉L2
=
∫
f(x)g(x)dx. (A.14)
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Again Parseval's equality can be used to express the scalar product and the norm as sum of the coe�cients
of an expansion into basis functions being orthonormal with respect to the scalar product established by
Eq. (A.14),

〈f, g〉L2
=

∞∑
i=0

fi · gi, (A.15)

and the norm of a function is given by

‖f‖2L2
= 〈f, f〉L2

=
∞∑
i=0

f2
i <∞ ⇒ lim

i→∞
fi = 0. (A.16)

Interpreted in the frequency domain, for the function f to be a member of L2, the norm has to be �nite.
Thus the coe�cients fi have to approach zero su�ciently fast. In the Section 3.2 about Hilbert spaces with
reproducing kernels, it is demonstrated that in those Hilbert spaces the scalar product and thus also the
norm of a function are de�ned in a slightly di�erent way. This norm results in stronger limitations being
imposed on the smoothness of the function f and thus on the decreasing behavior of the coe�cients. Within
the course of this thesis, the scalar product denoted by 〈·, ·〉 and the norm denoted by ‖·‖ (without subscript)
will refer to the respective calculations with respect to L2.

Sobolev Space The Sobolev space denoted by W k,p is a normed space of functions obtained by imposing
the condition of �nite Lp norm for given p ≥ 1 on a function f and its weak derivatives up to some order k,

‖ u ‖Wk,p (Ω) =

∑
|α|≤k

‖ ∂αu ‖pLp(Ω)

1/p

. (A.17)

A Sobolev-space is complete with respect to this norm; therefore every Sobolev space is also a Banach space.
The case p = 2 leads to a Hilbert space described above.

A.2 Linear Functionals and Linear Operators

In this section, certain characteristics of linear operators on Hilbert spaces shall be introduced. Details can,
for example, be found in Lanczos (1961) and Kress (1989). A linear operator describes the mapping
A : X → Y from one Hilbert space X onto another Hilbert space Y . This mapping of elements of the
respective Hilbert spaces can be expressed by the operator equation

Ax = y, (A.18)
with x ∈ X and y ∈ Y . In case of A representing an integral operator, the operator equation represents a
short notation of

y(s) =
∫
K(s, t)x(t)dt, (A.19)

where K(s, t) is called the kernel of the operator A.

Linearity An operator A : X → Y is called linear if for all elements f1, f2 ∈ X and for all real numbers
α1, α2 the following equation holds

A(α1f1 + α2f2) = α1Af1 + α2Af2. (A.20)
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Range, Nullspace The range R(A) of a linear operator A : X → Y is de�ned by
R(A) = {Ax | x ∈ X} . (A.21)

It is the subspace of Y that can be reached by applying the operator A to elements of X.
The nullspace N (A) of an operator A : X → Y is given by

N (A) = {x ∈ X | Ax = 0} , (A.22)
which implies that the nullspace consists of those x ∈ X that are mapped to zero.

Linear Functionals A linear functional is de�ned as linear map from a Hilbert space X onto the space
of real numbers (or in case of a complex space complex numbers),

F : X → IR. (A.23)
Therefore, linear functionals represent a special case of linear operators.

Dual Space The space of all linear functionals of X is called dual space of X.

Boundedness A linear functional is bounded if for every f ∈ X there is a constant M > 0 ∈ R with
|Ff | ≤M ‖f‖ . (A.24)

Riesz Representation Theorem For every bounded linear functional F on a Hilbert space X , there is
a unique element u ∈ X such that Ff = 〈u, f〉 for all f ∈ X . An element u being assigned in this way to a
linear functional is called the representer of F . Thus every linear functional applied to a function f can be
interpreted as the inner product of the representer of the functional with f .

Adjoint Operator, Self-adjoint Operator The adjoint operator A∗ : Y → X of a bounded linear
operator A : X → Y is de�ned by

〈Ax, y〉Y = 〈x,A∗y〉X . (A.25)
For a bounded linear operator A and its adjoint operator A∗ the following relationships hold

R(A)⊥ = N(A∗) and N(A)⊥ = R(A∗), (A.26)
with R(A)⊥ being the orthogonal complement of R(A). The operator A : X → X is called self-adjoint with
respect to the scalar product 〈·, ·〉X if A∗ = A. The existence of A∗ can be proven by the Riesz theorem.
In case of �nite dimensional linear operators (i.e. matrices), the adjoint operator can be identi�ed as the
transposed matrix.

Boundedness, Norm A linear operator A : X → Y is bounded if there exists a positive number α such
that

‖Af‖Y ≤ α ‖f‖X (A.27)
holds for every f ∈ X. Here ‖·‖X and ‖·‖Y are the norms de�ned on the spaces X and Y , respectively. In
this case, the smallest α for which (A.27) is true for all x is called the operator norm of A and is denoted by
‖A‖.
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Continuity For a mapping A : X → Y to be continuous, this means that for every δ > 0 there exists a
ε > 0 such that for x1, x2 ∈ X and y1, y2 ∈ Y it holds

‖Ax1 −Ax2‖Y = ‖y1 − y2‖Y < ε for all x satisfying ‖x1 − x2‖X < δ. (A.28)
This implies that small changes in x result in small changes in y. Alternatively, it can be insisted that for
every sequence (xk) ∈ X it has to hold

lim
k→∞

xk = x ⇒ lim
k→∞

Axk = Ax. (A.29)
In case of linear operators, boundedness and continuity are equivalent requirements, meaning that a linear
operator is continuous if, and only if, it is bounded. In a �nite dimensional space, every linear operator is
bounded and thus continuous.

Compactness A linear operator A : X → Y is compact if, and only if, for every bounded sequence
(xk) ∈ X there exists a subset (xk) such that the sequence (Axk) converges in Y . A compact linear operator
is necessarily bounded and therefore continuous. The concept of compactness plays a decisive role in the
discussion of inverse problems, as in in�nite dimensional spaces for a compact operator A the inverse operator
A−1 cannot be bounded.

A.2.0.1 Spectral Decomposition

When analyzing linear operators, their spectral analysis presents an important tool. By the evaluation of
its eigenvalues or its singular values, relevant characteristics of the operator can be investigated. This helps,
for example, to understand the concept of inverse or ill-posed problems that are dealt with in Section 5.1.
In the following, the spectral decomposition will be introduced in in�nite dimensional Hilbert space, as in
the examination of reproducing kernel Hilbert spaces (Section 3.2) the concept of spectral decomposition is
needed in the continuous version. The following considerations are limited to compact linear operators that
have a discrete spectrum and thus closely resemble the behavior of matrices in �nite dimensional spaces.
When dealing with discrete ill-posed problems, as in Section 5.1.2, the spectral decomposition is applied to
�nite dimensional matrices, but the concepts described here can easily be transferred to the �nite dimensional
case.

Eigenvalue decomposition Every compact, self-adjoint, positive (semi) de�nite linear operator T : X →
X can be characterized by its eigenvalues and corresponding eigenfunctions. If the following relationship,

T vi = λivi, (A.30)
holds for a vi 6= 0, then λi are called eigenvalues of the operator T , and vi are the eigenfunctions associatedwith the respective eigenvalues. It can be shown that A has a �nite or countably in�nite set of eigenvalues,
and their only possible accumulation point is zero. Therefore, they can be arranged in descending order
according to

λ1 ≥ λ2 ≥ ... ≥ 0. (A.31)
This feature is stated in the Hilbert-Schmidt theorem which indicates that for a compact, self-adjoint operator
there is a sequence of non-zero eigenvalues such that

lim
i→∞

λi = 0. (A.32)
The set of eigenvalues is called the spectrum of the operator. The norm of T is equal to the largest eigenvalue,

‖T ‖ = λ1, (A.33)
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and it is also called spectral radius of T . This de�nition of the norm of an operator is equivalent to the
de�nition given by (A.27). The eigenfunctions are orthogonal and form a basis of R(T ), i.e. of the closure of
the range of T . R(T ) is not necessarily complete, therefore its closure is required. The mapping T : X → X
can then be expressed by the following spectral expansion,

T x =
∞∑
i=1

λi 〈x, vi〉 vi. (A.34)

Singular Value Decomposition The operators A∗A : X → X and AA∗ : Y → Y , with A according to
Eq. (A.18), are compact and self-adjoint under the assumption that A is compact. Both operators have the
same eigenvalues, and the following equations can be formulated in equivalence with Eq. (A.30),

A∗Avi = λivi

AA∗ui = λiui.
(A.35)

By these relations, the singular value expansion of the operator A : X → Y can be derived. With ui beingthe eigenfunctions of AA∗ and vi being the eigenfunctions of A∗A, it follows with σi =
√
λi,

Avi = σiui

A∗ui = σivi.
(A.36)

The triplet {σi, ui, vi} is called the singular system of A, with the singular values σi and the left and right
singular functions ui and vi, respectively. Eq. (A.36) shows that by the operator A any singular function
vi is mapped onto the corresponding function ui, with the singular value σi describing the scaling of the
mapping. The singular values have zero as accumulation point and can be ordered in decreasing order, as is
the case with the eigenvalues,

σ1 ≥ σ2 ≥ ... ≥ 0. (A.37)
The singular functions ui are a complete orthogonal system (thus a basis) for R(A), and the singular functions
vi constitute a basis for R(A∗). The mapping Ax of a function x onto R(A) can be described by

Ax =
∞∑
i=1

σi 〈x, vi〉ui. (A.38)

Here the smoothing e�ect of the operator becomes evident. As is shown in Chapter 5.1.1 for operators
relevant in this thesis, small singular values can be associated with high frequencies. As the singular values
σi decay with increasing i, those high frequency components in x are dampened during the mapping process.On the other hand, when solving for x from the operator equation Eq. (A.18), the solution has the following
spectral expansion,

x̂ =
∞∑
i=1

〈y, ui〉
σi

ui. (A.39)

Here the higher frequencies become ampli�ed due to division by small singular values. For the solution
Eq. (A.39) to exist, its norm has to be �nite, which results in the following requirement,

∞∑
i=1

(
〈y, ui〉
σi

)2

<∞. (A.40)

This is known as Picard condition, and it implies a smoothness requirement on the observations y, as the
coe�cients 〈y, ui〉 have to decay fast enough compared to the singular values to ful�ll Eq. (A.40). Otherwise
the expansion (A.39) does not converge. This requirement is equivalent to the demand that y has to belong
to R(A).
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B. Derivation of the Weights for the

Gauss-Legendre Quadrature

The special feature of the Gauss-Legendre quadrature is the fact that polynomials up to an order of 2N − 1
can be integrated exactly, even though only N evaluation points are used. This requires the quadrature nodes
and weights to be chosen appropriately. It is the goal to determine quadrature weights wi that ful�ll thefollowing equation,

b∫
a

f(t)dt =
N∑
i=1

f(ti)w̄i. (B.1)

Let f(t) be a polynomial of degree 2N−1 and Pn(t) be a set of orthogonal polynomials, in case of the Gauss-Legendre quadrature these are the Legendre polynomials. Then for PN being the Legendre polynomial of
degree N , there are polynomials qN−1 and rN−1, each of degree N − 1, that ful�ll

f(t) = rN−1(t) + PN (t) qN−1(t). (B.2)
This can immediately be understood for the case of pN (t) = tN ,

f(t) = f0 + f1t+ . . .+ f2N−1t
2N−1 = f0 + . . .+ fN−1t

N−1 + tN (fN + fN+1t+ . . .+ f2N−1t
N−1). (B.3)

Integrating both sides of Eq. (B.2) yields∫ 1

−1

f(t)dt =
∫ 1

−1

rN−1(t) dt+
∫ 1

−1

PN (t) qN−1(t)dt =
∫ 1

−1

rN−1(t)dt, (B.4)

as qN−1 can be expressed as a linear combination of P0, . . . , PN−1 and is, therefore, orthogonal to PN (x)
which results in the second integral on the right side to vanish. The evaluation points ti are chosen at the
zeros of the Legendre polynomial PN ; therefore from Eq. (B.2) it follows f(ti) = r(ti) due to PN (ti) = 0.
For the following procedure the Lagrange polynomials

Li(t) =
N∏

l=1,l 6=i

t− tl
ti − tl

(B.5)

have to be introduced. They are equal to one at t = ti and zero at the other points tl for l 6= i. That is why
they are denominated as interpolatory functions. rN−1(t) is of degree N − 1, therfore it can be expressed as
a linear combination of the Lagrange polynomials according to

rN−1(t) =
N∑
i=1

f(ti)Li(t). (B.6)

Inserting this into (B.4) and a comparison with (6.18) provides∫ 1

−1

f(t)dt =
∫ 1

−1

N∑
i=1

f(ti)Li(t) dt =
N∑
i=1

f(ti)
∫ 1

−1

Li(t) dt︸ ︷︷ ︸
w̄i

. (B.7)

The Lagrange polynomial can be formulated in terms of the Legendre polynomials according to
Li(t) =

PN (t)
(t− ti)P ′N (ti)

(B.8)
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to simplify the calculation of the weights. Eq. (B.8) can be understood when taking into account that the
evaluation points are located at PN (ti) = 0, and thus the right side of Eq. (B.8) has the same N − 1 zeros as
the right side of Eq. (B.5). Furthermore, both fractions are equal to one in case of t = ti. Thus both phrases
for Li have N coinciding values, and since a polynomial of degree N − 1 is su�ciently determined by N
speci�c values, both expressions can be regarded as equal. This leads to the weights for the Gauss-Legendre
quadrature method,

w̄i =
∫ 1

−1

PN (t)
(t− ti)P ′N (ti)

dt, (B.9)
or in an alternative representation,

w̄i =
AN
AN−1

∫ 1

−1

[PN−1(t)]2

PN−1(ti)P ′N (ti)
dt. (B.10)

Here P ′L refers to the �rst derivative of the Legendre polynomial of degree L, and An is the coe�cient of tn
in Pn. It can be calculated by

An =
(2n)!

2n(n!)2
, (B.11)

which follows from the closed representation of the Legendre polynomials by the sum

Pn(t) =
N∑
k=0

(−1)k
(2n− 2k)!

2nk!(n− k)!(n− 2k)!
tn−2k. (B.12)

From (B.11) it can thus be concluded
AN
AN−1

=
2N − 1
N

. (B.13)
With the simpli�cation∫ 1

−1

[Pn(t)]2dt =
2

2n+ 1
⇒

∫ 1

−1

[PN−1(t)]2dt =
2

2N − 1
, (B.14)

Eq. (B.10) can be rewritten according to
w̄i =

2N − 1
N

· 2
2N − 1

· 1
PN−1(ti)P ′N (ti)

=
2

NPN−1(ti)P ′N (ti)
. (B.15)

As a last step, the recurrence relation
(1− t2)P ′n(t) = nPn−1(t)− ntPn(t) ⇒ (1− t2i )P

′
N (ti) = NPN−1(ti) (B.16)

can be applied leading to the following version of the quadrature weights that has been applied in the
calculations described in this thesis:

w̄i =
2

(1− t2i )(P
′
L(cos(θi)))2

. (B.17)
It has to be pointed out that w̄i only denotes the weights for the one-dimensional quadrature along the
meridians. The quadrature weights to be used in Eq. (6.6) also include the longitude dependent part and
can be calculated by

wi = ∆λw̄i. (B.18)
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Abbreviations

CHAMP Challenging Minisatellite Payload
CSR Center of Space Research
DEOS Department of Earth Observation and Space Systems, TU Delft
DLR Deutsches Zentrum für Luft- und Raumfahrt
EGM Earth Gravitational Model
EIGEN European Improved Gravity Model of the Earth by New Techniques
ESA European Space Agency
FFT Fast Fourier Techniques
GFZ GeoForschungsZentrum Potsdam
GGM GRACE Gravity Model
GMST Greenwich Mean Sidereal Time
GOCE Gravity Field and Steady-State Ocean Circulation Explorer
GPS Global Positioning System
GRACE Gravity Recovery And Climate Experiment
GRF Gradiometer Reference Frame
GROOPS Gravity Field Object Oriented Programming System
ICRF International Celestial Reference Frame
IERS International Earth Rotation and Reference Systems Service
ITG Institut fuer Theoretische Geodäsie, Universität Bonn
ITRF International Terrestrial Reference Frame
JPL Jet Propulsion Laboratory
KBR K-Band Ranging System
LEO Low Earth Orbiter
LOS Line of Sight
NASA National Aeronautics and Space Administration
POD Precise Orbit Determination
PSD Power Spectral Density
RKHS Reproducing Kernel Hilbert Space
RMS Root Mean Square (Error)
SDS Science Data System
SLR Satellite Laser Ranging
SST Satellite-to-Satellite Tracking
VCE Variance Component Estimation
TUM Technische Universität München
UTCSR University of Texas in Austin, Center for Space Research
XML Extensible Markup Language
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