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Abstract   
Microbiological and molecular assessment of interactions among the major Fusarium 
head blight pathogens on wheat ears 
 
Investigations on putative interactions among Fusarium species colonizing wheat ears were 
carried out to understand the high frequency of species with low virulence in the presence of more 
virulent ones. To determine inter-species interactions among the major Fusarium head blight 
pathogens, wheat ears were inoculated at mid flowering either with F. graminearum, F. 
culmorum, F. avenaceum and F. poae alone or in combinations of two, three or four isolates under 
field and greenhouse conditions. The isolates and the composition of inoculum significantly 
affected FHB severity, kernel weight, number of Fusarium-infected kernels, fungal biomass and 
mycotoxin production. In single or mixed inoculations, F. graminearum resulted in the highest 
disease ratings, frequency and intensity of kernel colonization and mycotoxin production, 
followed by F. culmorum, F. avenaceum and F. poae, respectively. In mixtures, the frequency of 
F. culmorum, F. avenaceum and F. poae infected kernels and fungal biomass in most cases was 
lower than in single inoculations, while the mycotoxin productivity significantly increased. The 
study demonstrated that significant interactions exist between or among Fusarium isolates during 
kernel colonization, such as competition and amensalism. These interactions were 
disadvantageous to less-virulent isolates, although to different degrees, no additive effects were 
detected. Competitiveness and virulence of isolates varied as quantified by the different 
parameters; they decreased in the order Fusarium graminearum, F. culmorum, F. avenaceum and 
F. poae, respectively. The frequency of infected spikelets increased with sampling time either in 
inoculation alone or in mixtures. For F. graminearum, the increase in the percentage of infected 
spikelets was unaffected by the presence of other isolates, while the other isolates were inhibited 
by its presence in mixed inoculations. The frequency of infection of wheat flower parts by 
Fusarium isolates decreased in the order lemma, palea, glume and developing kernel. One to three 
weeks after mixed inoculations, a high number of spikelets (10-20%) were infected by more than 
1 isolate. In contrast, there was relatively low percentage of kernels bearing two Fusarium isolates 
at harvest (2% ≥). The highest levels of infection with two Fusarium isolates were observed in 
mixtures including F. avenaceum and F. culmorum. In contrast, infection frequencies were lowest 
in co-inoculations with F. poae. The comparison of frequency and intensity of kernel colonization 
proved differences in virulence and development of the isolates in the kernels. Only for the most 
virulent isolate, application of microbiological and real-time PCR assays gave similar results. For 
the other species, the intensity of kernel colonization was lower than expected from the frequency 
of infection. The high frequency of low-virulent Fusarium isolates in a FHB complex has to be 
attributed to others factors than direct interactions with highly virulent isolates during 
establishment on the wheat ears. The investigations indicated the biological complexity of 
multiple Fusarium-infections, head-Scab development and mycotoxin contamination of cereals. 
 

 

 

 

 



Zusammenfassung 
Untersuchung von Wechselwirkungen zwischen Fusarium spp., den Erregern der 
Partiellen Taubährigkeit im Weizen, unter Verwendung mikrobiologischer und 
molekularbiologischer Methoden 
 
Die durchgeführten Untersuchungen bezüglich mutmaßlicher Wechselwirkungen von Fusarium-
Arten  in infizierten Weizen-Ähren sollen dazu beitragen, das häufige Auftreten weniger 
aggressiver Arten bei gleichzeitigem Vorhandensein von aggressiven Fusarium-Arten zu 
verstehen. Zur Bestimmung inter-spezifischer Wechselwirkungen zwischen bedeutenden Erregern 
der Partiellen Taubährigkeit im Weizen wurden Ähren zum Zeitpunkt der Blüte entweder einzeln 
mit F. graminearum, F. culmorum, F. avenaceum und F. poae oder durch die Kombination von 
zwei, drei oder vier Arten im Gewächshaus und in Feldversuchen inokuliert. Die einzelnen Isolate 
als auch deren Kombination im Inokulum beeinflussten signifikant das symptomatische Auftreten 
der Partiellen Taubährigkeit, die Tausendkornmasse, die Häufigkeit infizierter Körner, die 
pilzliche Biomasse und die Mykotoxin-Bildung. Bei Einzeinokulation oder 
Kombinationsinokulation mit mehreren Isolate zeigte F. graminearum die höchste Pathogenität, 
die größte Häufigkeit und Intensität infizierter Körner sowie die stärkste Mykotoxin-Bildung, 
gefolgt von F. culmorum, F. avenaceum und F. poae. Im Vergleich zur Einzelinolukation von F. 
culmorum, F. avenaceum und F. poae führte Inokulation in Kombinationen einerseits zu einer 
Reduktion der Häufigkeit infizierter Körner sowie der pilzlichen Biomasse, andererseits jedoch zu 
einer signifikant höheren Mykotoxinproduktion. Die Ergebnisse aus den Untersuchungen 
verdeutlichen, dass während der Infektion und Ausbreitung von Fusarium spp. im Korn zwischen 
den beteiligten Fusarium-Isolaten signifikante Wechselwirkungen wie Konkurrenz und 
Amensalismus vorkommen. Diese Wechselwirkungen benachteiligten die weniger aggressiven 
Isolate, wenn auch zu einem unterschiedlichen Grad. Es wurden hier keine additiven Effekte 
nachgewiesen. Die Häufigkeit infizierter Ährchen stieg mit dem Zeitpunkt der Probennahme, 
sowohl bei Einzel- als auch Kombinationsinokulationen. Bei F. graminearum wurde der Anstieg 
der Häufigkeit infizierter Ährchen durch das Vorkommen anderer Isolate nicht beeinflusst, 
hingegen wurden die weiteren Isolate durch ihre Präsenz in Kombinations-Inokulationen 
gehemmt. Die Infektionshäufigkeit der Blütensegmente durch Fusarium spp. verringerte sich 
absteigend von Deckspelze, Vorspelze und Hüllspelze zu dem sich entwickelnden Korn. Ein bis 
drei Wochen nach Kombinationsinokulationen waren eine hohe Anzahl von Ährchen (10-20%) 
von mehr als einem Isolat besiedelt. Es wurde aber nur von einem geringen Prozentsatz der 
geernteten Körner zwei oder mehr verschiedene Fusarium-Isolate isoliert (2% ≥). Der Vergleich 
von Häufigkeit und Intensität des Fusarium-Befalls infizierter Körner zeigt, dass es Unterschiede 
hinsichtlich Virulenz und Entwicklung der Fusarium-Isolate in den Körnern gibt. Nur bei dem 
Isolat mit der höchsten Virulenz kam es zu einem übereinstimmenden Ergebnissen bei der 
mikrobiologischen und der Real-Time PCR-Untersuchung. Bei den anderen Arten war die war die 
Intensität der Besiedlung der Körner geringer als die Infektionshäufigkeit vermuten lies. Die 
große Häufigkeit von Fusarium-Isolaten mit geringer Virulenz muss auf andere Faktoren als die 
direkte Wechselwirkung mit hoch virulenten Isolaten währen der Entwicklung auf den 
Weizenähren zurückgeführt werden. Die Untersuchungen zeigten die biologische Komplexität 
von multiplen Fusarium-Infektionen, Krankheitsentwicklung und Mykotoxin-Belastung von 
Weizen. 
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1. Introduction  

The infection of crops by plant pathogenic fungi impairs both quality and quantity 

causing huge economic losses to farmers as well as immense effects on human and animal 

health. This implies that fungal colonization may affect seed size, weight, seed germination 

rate, protein and carbohydrate contents, baking quality and other quality parameters. In 

addition to these impairments, the most serious consequence of fungal colonization is 

contamination of agricultural products with mycotoxins. 

Several fungi are able to produce mycotoxins, as secondary metabolites, particularly 

species of Aspergillus, Fusarium, Penicillium, Claviceps and Alternaria. Mycotoxins 

comprise a group of several hundreds of chemically different toxic compounds.  Aflatoxins, 

ochratoxins, trichothecenes, zearalenone, moniliformin, enniatins and fumonisins are the most 

common mycotoxins produced in agricultural products (William, 1989; Moss, 1996; Rotter et 

al., 1996; Sweeney and Dobson, 1998). Fusarium species are able to produce a wide range of 

mycotoxins namely trichothecenes, zearalenone and fumonisins even though aflatoxins 

produced by Aspergillus spp. are the most dangerous group.  

In nature, all fungi often interact directly or indirectly in order to survive in their 

habitat. Interactions among fungal species have been reported to influence the predominant 

species, disease-producing ability and – as a consequence - mycotoxin production. 

Fusarium head blight (FHB), also known as scab, has reemerged worldwide as a 

disease of economic importance in recent years reducing yield quantity and quality, especially 

associated mycotoxin accumulation in infected grains (McMullen et al., 1997). The disease is 

caused by a complex of several Fusarium species in most areas, differing in ecological and 

biological features. Recent epidemics throughout the world have made researchers to focus on 

FHB pathogens and their epidemiology (Bai and Shaner, 1994; Parry et al., 1995; McMullen 

et al., 1997; Miedaner, 1997; Rossi et al., 2001; Logrieco et al., 2002; Rossi et al., 2002; 

Akinsanmi et al., 2004; Desjardins, 2006; Köhl et al., 2007).  

The occurrence of FHB pathogens among and within fields is highly varied and 

independent of each other from year to year. Therefore, most of the models developed for 

predicting FHB pathogens outbreak may produce error under field conditions. This is because 

more than one species co-exist in one site, different requirements for infection and 

development and besides there are usually significant interactions among them. This makes 

the task of forecasting and understanding epidemiology of FHB pathogens and mycotoxin 

formation under field conditions difficult. The presence of toxin-producing and non-

producing species within the disease complex, along with isolates of differing chemotypes 
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greatly complicate attempts to understand the factors that influence disease development and 

toxin accumulation (Nicholson et al., 2003). The infection of cereal grains with Fusarium 

species and contamination with their mycotoxins is a threat to food and feed supply 

throughout the world (McMullen et al., 1997). Accumulation of mycotoxins in grains can be 

harmful to humans and animals (Placinta et al., 1999). Concerns about human health arise 

when grains or other field crops are found to contain mycotoxins. Animals have a higher risk 

of mycotoxin contamination since they may get their feed mainly from a single or the same 

source unlike humans who may get their supplies from many sources, which are varied, in the 

content of mycotoxins. On the other hand, agricultural products with low quality are mostly 

used in feedstuff production rather than in human foods. To protect consumers, many 

countries have set up regulations to limit exposure to mycotoxins (D'Mello et al., 1999; 

Dohlman, 2003). 

The existence of high variability in fungal community at ecological niches indicates 

interactions for nutrients and space. These interactions can broadly be classified in 9 

categories based on the effects or mechanisms of the interaction between the two species and 

range from neutural through beneficial to harmful for one or the two species. FHB pathogens 

may interact in different ways on growing plant parts. Therefore, interactions can occur 

during the first stages of infection such as early interactions (spore germination and 

penetration) or late interactions (tissue colonization) using various mechanisms to occupy the 

ecological niches. Such interactions resulted in predominant of one species while the others 

occur in low levels. Therefore, it is difficult to explain how similar species can co-exist and 

how to measure the competition. Little information is available on effects of interactions 

among FHB pathogens on disease severity, the predominant species, disease development and 

mycotoxin production by Fusarium complexes under different environmental conditions. 

Quantification of fungal DNA in different plant matrices is becoming more common 

in the epidemiology of plant pathogens (Henson and French, 1993; Martin and Le´vesque, 

2000; Schaad et al., 2004; Schena et al., 2004; Waalwijk et al., 2004; Mulè et al., 2005). 

Different quantitative approaches have been developed for quantification of fungal biomass in 

infected plant samples. 

 Real-time PCR is a technique of collecting data throughout the PCR process as it 

occurs, thus combining amplification and detection into a single step (Wong et al., 2005). 

Recently real-time PCR using non-specific double-stranded DNA intercalator dyes like SYBR 

Green I and internal labelled probes have been developed for the major FHB pathogens in 

different tissue and plant matrices. The main objective of quantification of FHB pathogens is 
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monitoring the individual populations to understand the nature of ecology, biology, 

pathogenicity and aggressiveness towards host plant. 

  

 

Fusarium head blight (FHB) 

In most areas, FHB is caused by a complex of various Fusarium species differing in 

important biological and ecological characteristics, e.g. virulence on cereals, host range, 

mycotoxin production, optimum growth conditions, survival on crop debris and in the soil 

(Parry et al., 1995; Hörberg, 2002; Logrieco et al., 2002; Rossi et al., 2002; Akinsanmi et al., 

2004; Desjardins, 2006; Köhl et al., 2007). When cereal plants are infected with these fungi, 

there is a risk that grain may become contaminated with Fusarium mycotoxins, which may 

subsequently be transferred to compound feeds (Placinta et al., 1999). The distribution and 

predominance of FHB pathogens differ significantly among climatic conditions, geographical 

zones, countries, and years (Doohan et al., 2003; Kosiak et al., 2003; Waalwijk et al., 2003; 

Xu, 2003; Xu et al., 2005).  

In Western Germany, five Fusarium species have been reported to predominate in the 

FHB complex (Schütze et al., 1997; Birzele et al., 2002; Müllenborn et al., 2007): Fusarium 

graminearum Schwabe (teleomorph = Gibberella zeae (Schwein.) Petch), F. culmorum 

(Smith) Sacc., F. avenaceum (Corda ex Fr.,) (teleomorph = G. avenaceum Cook), F. poae 

(Peck) Wollenw., and F. tricinctum (Corda) Sacc) (teleomorph = G. tricincta El-Gholl, 

McRitchie, Schoult. & Ridings).  

F. graminearum is the predominant species in China, the USA, Canada, some 

European countries and Southern Germany (Parry et al., 1995; McMullen and Gallenberg, 

1997; Bottalico and Perrone, 2002; Logrieco et al., 2003; Xu et al., 2005). F. culmorum is a 

major component of FHB in wheat growing areas with cool weather conditions. It has been 

suggested to be one of the main causative agents of FHB in several European countries, for 

example in Denmark, Romania, Bulgaria, Belgium and some parts of Germany (Mills, 1989; 

Birzele et al., 2002; Bottalico and Perrone, 2002). F. avenaceum appears to be the most 

abundant species associated with FHB in northern European countries and has been reported 

from a wide range of different climatic zones (Parry et al., 1995; Kosiak et al., 2003; Loiveke 

et al., 2003; Henriksen and Elen, 2005; Xu, et al., 2005). F. poae is described to be less 

virulent than other FHB pathogens. This species, however, is able to produce mycotoxins, e.g. 

nivalenol, zearalenone, diacetoxyscirpenol, fusarenone, enniatins, HT-2 toxin and T-2 toxin 

(Desjardins, 2006). It has been frequently reported to occur in wheat kernels in Estonia, 
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culmorum, allowing increased numbers of Michrodocium nivale (referred to by former name 

Fusarium nivale, Schaffnit, 1912) isolates; however this caused the possibility of 

underestimating M. nivale populations  which are sensitive to benomyl. 

Morphological detection of Fusarium species showing similarities with other species 

makes the task difficult when identifying closely related species, which are morphologically 

similar but genetically divergent, making it necessary to use DNA based methods. These are 

widely used in almost all disciplines in plant pathology. For example, F. avenaceum and F. 

arthrosporioides are very difficult to separate by their morphological characteristics and are 

often confused with each other (Yli-Mattila et al., 2004). The close relationship between these 

species is supported by the IGS, ITS, and β-tubulin sequence and metabolite profile results 

(Yli-Mattila et al., 2002). Using species-specific primers based on RAPD-PCR, UP-PCR and 

positive/negative classical PCR, it is possible to separate most of the F. arthrosporioides 

isolates from the closely related F. avenaceum isolates (Yli-Mattila et al., 2004).  

The development and use of these assays is complicated by the difficulty of correctly 

identifying isolates in axenic culture and still limited understanding of phylogeny within the 

Fusarium genus. For example, relationship between F. avenaceum and F. tricinctum revealed 

a close relationship between them in spite of different morphological taxonomic sections 

(Roseum and Sporotrichiella, respectively). However, RAPD-based phylogenetic profiling 

revealed interspecies differences large enough to distinguish clearly between isolates of the 

two species (Turner et al., 1998). Generally, it would appear that the nuclear rDNA and ITS 

sequences may not always contain sufficient polymorphism to allow the design of completely 

species-specific primers (Turner et al., 1998). 

Recent advances in molecular systematic of fungi provide extensive DNA sequence 

information that is of great benefit in molecular detection and diagnostics,  especially for large 

genera whose species have overlapping morphological characteristics (e.g. Fusarium and 

Pythium) (Martin et al.,  2000). Recently, a number of molecular techniques are being utilized 

in order to understand the nature and diversity of the FHB pathogens, interactions between 

pathogens and their host and pathogens themselves alone with environmental factors 

(Nicholson et al., 2003; Schena et al., 2004).  PCR assays based on species-specific primers 

offer accurate, rapid identification and quantification for the major FHB pathogens in 

different tissues and plant matrixes in singleplex or multiplex PCR, simultaneously 

(Nicholson et al., 2003; Schena et al., 2004). 

Current methods such as visual assessment of disease severity, infected ears or 

spikelets and damaged or infected kernels estimate pathogen populations, indirectly (Jones 
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and Mirocha, 1999; Paul et al., 2005). Direct incidence of FHB pathogens can be examined 

microbiologically by isolating and identifying the fungi morphologically. The biomass of 

various fungi may be estimated microscopically using labelled species-specific probes or 

using molecular techniques for the quantification of fungal DNA in infected plant samples. 

Detection using real-time PCR can be easily done, in less than 1 day compared to the 2-3 

weeks required for the microbiological detection. Molecular tools make facility to study 

interactions among different strains within one species that is not possible using of the micro 

and macro-morphological features. Quantification of trichothecene-producing Fusarium spp. 

within harvested grain has been used to determine the efficacy of fungicides on spectrum of 

trichothecene-producing Fusarium spp. within the FHB complex disease (Edwards et al., 

2001; Simpson et al., 2001).   

Effective, reliable and rapid species identification and detection of FHB pathogens are 

essential keys and a milestone work for basic and practical research in different disciplines. 

Many species-specific primers for detection Fusarium species have been designed (Parry and 

Nicholson, 1996; Turner et al., 1998; Chelkowski et al., 1999; Nicholson et al., 2003; 

Waalwijk et al., 2003; Demeke et al., 2005; Waalwijk et al., 2004; Jurado et al., 2005; 

Leisova et al., 2006). Using additional sets of primers in a multiplex PCR, enables the 

simultaneous detection more than one species in every PCR reaction. 

 

 

Quantification of Fusarium species 
Quantification of the amount of fungal DNA in different plant matrix samples is 

becoming more common in the epidemiology of plant pathogens (Mulè et al., 2005; Henson 

and French, 1993; Martin and Le´vesque, 2000; Schaad et al., 2003; Schena et al., 2004; 

Waalwijk et al., 2004).  

The PCR offers a sensitive and potentially specific means to detect, identify and 

quantify the fungal species present within plant tissues. A number of assays have been 

produced to permit detection of many of the major pathogens associated with FHB (Parry and 

Nicholson et al., 1996; Schilling et al., 1996; Nicholson et al., 1998; Turner et al., 1998; 

Yoder and Christianson, 1998; Chelkowski et al., 1999; Nicholson et al., 2003; Waalwijk et 

al., 2003; Bluhm et al., 2004; Nicholson et al., 2004; Schena et al., 2004; Waalwijk et al., 

2004; Yli-Mattila1 et al., 2004).  

Theoretically, there is a quantitative relationship between the amount of starting 

material and the PCR product at any cycle of the PCR (Rasmussen et al., 1998). This 
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indicates that PCR may allow the amount of fungal DNA to be measured. In traditional PCR, 

results were expressed in terms of presence/absence. The major reasons why traditional PCR 

has not been adopted, are poor precision, Low sensitivity, short dynamic range, low 

resolution, non-automated, size based discrimination only, results are not expressed as 

numbers, ethidium bromide for staining is not quantitative, post PCR processing, detection in 

the plateau phase (the data would not truly represent the initial amount of starting materials). 

To overcome difficulties of quantification in traditional PCR, quantitative PCR 

methods like competitive or non-competitive PCR has been developed (Freeman et al., 1999; 

Edwards et al., 2001). Developments of more recent techniques like real-time quantitative 

PCR (Higuchi et al., 1992) have been proposed for DNA quantification. These new 

approaches can eliminate the variability associated with traditional quantitative PCR, thus 

allowing routine and reliable quantification of PCR products. 

Real-time PCR technologies open increasing opportunity to detect and study 

phytopathogenic and antagonistic fungi (Schena et al., 2004; Waalwijk et al., 2004; Leisova 

et al., 2006).  They combine the sensitivity of conventional PCR with the generation of a 

specific fluorescent signal providing real-time analysis of the reaction kinetics and allowing 

the quantification of specific DNA targets (Schena et al., 2004). Real-time PCR is the 

technique of collecting data throughout the PCR process as it occurs, thus combining 

amplification and detection into a single step (Wong et al., 2005).  

The quantitative information in a PCR reaction comes from those few cycles where 

the amount of DNA grows logarithmically from barely above background to the plateau. 

Often only 4 or 5 cycles out of 40 will fall in this “log-linear” portion of the curve. The 

position of these precious few cycles contains most of the quantitative information (Holland et 

al., 1991; Higuchi et al., 1992 and Rasmussen et al., 1998). The advantage of this technique 

are (i) data collection in the exponential phase of PCR, (ii) no post PCR processing, (iii) more 

precise and fast to perform, (iv) simultaneous detection and quantification, (v) less laborious, 

(vi) can be used in multiplex PCR, and (vii) eliminating potential source of carryover 

contamination, gene expression, genotyping, single-nucleotide polymorphisms (SNP) and 

allele discrimination analysis.  

One of the first things to run real-time PCR for the samples is which QPCR chemistry 

has to be used. Different Real-time detection systems can be divided into two approaches both 

of which are applicable for quantification (Ishiguro et al., 1995; Wittwer et al., 1997; 

Morrison et al., 1998; Whitcombe et al., 1999).  
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The first approach utilizes standard enzymology in the presence of two sequence-

specific primers and a non-specific double-stranded DNA (dsDNA) intercalator dye such as 

SYBR Green I (Morrison et al., 1998) or YO-PRO-1 (Ishiguro et al., 1995). Ethidium 

bromide was the first double stranded DNA specific fluorescent binding dye used for 

simultaneously DNA amplification and detection (Higuchi et al., 1992; Wetmur, 1995). Later 

SYBR Green I as a substituted dye was used, because it has a stronger fluorescent signal 

(Wittwer et al., 1997). In solution, the unbound SYBR Green I exhibit relatively low 

fluorescence, but when bound to dsDNA its fluorescence enhanced upon DNA-binding. The 

fluorescence increases proportionately to DNA concentration. So with this property of the 

dye, it is possible to track the accumulation of PCR product. As the target is amplified, the 

increasing concentration of dsDNA in the solution can be directly measured by the increase in 

fluorescence signal. Since, SYBR Green I, intercalate to non-specific PCR amplification 

products as well target products, requires a meticulous attention to primer design and 

condition optimization in order to eliminate the formation of non-specific amplicons, as well 

as of primer-dimers. A non-specific signal can be easily detected at end of the reaction by 

heating the PCR products from 30–40 to 95 °C whilst continuously monitoring the 

fluorescence (melting curve analysis) (Ririe et al., 1997; Freeman et al., 1999). The products 

with different length and/or sequence can be observed as distinct fluorescent peaks. SYBR 

Green I fluorescent dye is extremely versatile, inexpensive, easy to use, detect any PCR 

products and the results are accurate enough comparison to probe based techniques 

(Rasmussen et al., 1998 and Lipsky et al., 2001). 
The second approach utilizes internal probes labeled with different reporter dyes. This 

approach will provide a higher level of detection and specificity, as well as detection more 

than one target product in a single reaction (multiplex PCR) comparison to a non-specific 

dsDNA intercalator dye such as SYBR Green I. There are several amplicon sequence specific 

detection methods based on the use of oligonucleotide probes labeled with a donor 

fluorophore and an acceptor dye (quencher), (Didenko, 2001 and Schena et al., 2004). For 

example, linear and Structural probes (Holland et al., 1991; Mergeny et al., 1994), scorpion 

primers (Whitcombe et al., 1999) and Molecular Beacons (Tyagi and Kramer, 1996). 

 

 

Formation of mycotoxins by Fusarium species 

Several Fusarium species reported throughout world are responsible for the formation 

of mycotoxins in infected plants and in plant products (Placinta et al., 1999; Bottalico et al., 
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2002; Lorieco et al., 2003).  When cereal plants are infected with these fungi, there is a risk 

that grain may become contaminated with Fusarium mycotoxins, which may subsequently be 

transferred to compound food and feed (Placinta et al., 1999). Trichothecenes, zearalenones, 

fumonisins, enniatins and moniliformin may be considered as important Fusarium 

mycotoxins in animal and human health.   

Trichothecenes are a family of over 150 structurally related compounds mainly 

produced by Fusarium species. Trichothecenes are relatively simple alcohols and short chain 

esters, share a tricycle nucleus named trichothecene, and usually contain an epoxide at c-12 

and c-13, which is essential for toxicity (Desjardins et al., 1993). Biosynthesis of these 

mycotoxins proceeds from trichodiene and leads through several oxygenation, isomerization, 

cyclization and esterification steps to many of the more complex trichothecene toxins, such as 

diacetoxyscirpenol, T-2 toxin and 3-acetyldeoxynivalenol (Desjardins et al., 1993). According 

to chemical properties, trichothecenes can be subdivided into four basic groups, with type A 

and type B representing the most important members with regard to negative effects. The 

difference between of type A and B is the absence or presence of a keto group at C-8 of the 

trichothecene skeleton, respectively. The type a trichothecenes include T-2 toxin, HT-2 toxin, 

neosolaniol (NEO) and diacetoxyscirpenol (DAS), type B trichothecenes include 

deoxynivalenol (DON) and its 3- acetyl and 15-acetyl derivatives (3-ADON and 15-ADON, 

respectively), nivalenol (NIV) and fusarenon-X. Trichothecenes have been well documented 

to be host nonspecific in their toxicity and to inhibit protein synthesis in a wide range of 

eukaryotic organisms, including animals, fungi, and higher plants (Cutler, 1988; Desjardins et 

al., 1993). 

According to the spectrum of mycotoxin production in Fusarium species, different 

chemotypes can be identified. Based on trichothecene production, different isolates of F. 

graminearum have been divided into nivalenol and deoxynivalenol producing chemotypes. 

The nivalenol chemotype include nivalenol and fusarenone X, while deoxynivalenol 

chemotype include deoxynivalenol and acetyldeoxynivalenol (Ichinoe et al., 1983). 

Functioning of Tri13 and Tri7 genes is required for the production of NIV and 4-

acetylnivalenol, respectively. The results indicated that isolates with a non-functional tri7 

gene would be capable of synthesizing NIV, but not 4-NIV, whereas isolates with a non-

functional tri13 or tri 13 and tri 7 genes could make neither NIV nor 4-NIV and instead 

synthesized DON (Lee et al., 2001 and 2002 and Chandler et al., 2003).  

It has been documented that, in some Fusarium species and with the same conditions, 

toxin production by Fusarium strains may vary, sharply. Some strains are able to produce 
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large amounts of trichothecenes, while others produce small or undetectable amounts of 

trichothecenes (Muthomi et al., 2000; Muthomi, 2001; Walker et al., 2001; Bakan et al., 

2002). According to the tri5-tri6 sequence data, specific PCR primers were designed to allow 

differentiation of high-producing from low-producing F. culmorum strains using a duplex 

PCR (Bakan et al., 2002).  

Several Fusarium species are able to produce zearalenone (ZEA) as a secondary 

metabolite in a wide variety of crop plants throughout world (Caldwell et al., 1970; Tanaka et 

al., 1988; Vesonder et al., 1991; Hestbjerg et al., 2002; Logrieco, et al., 2002; Binder et al., 

2007; Glenn, 2007; Krska et al., 2007). However, cereal grains are the most important source 

of ZEA in food and feed diets. Zearalenone has been frequently reported as Fusarium 

mycotoxin in FHB from European countries (Bottalico and Perrone, 2002; Logrieco et al., 

2002). Zearalenones differ in presence and reduction state of hydroxyl groups and their 

acetylation, however ZEA is the major homologue produced by Fusarium species, but other 

metabolites, such as ß-zearalenol and 4-acetylzearalenol, can occur at low levels in naturally 

contaminated grains (desjardins, 2006). The concentration of ZEA can vary from 0.001 and 

175 mg/kg in cereal grains intended for human consumption, depending on plant variety, 

geographic region and climatic conditions (Vrabcheva et al., 1996; Binder et al., 2007; Fink-

Gremmels and Malekinejad, 2007). This indicated when the environmental conditions favor 

the fungal infection and later on development; the concentration of ZEA can dramatically 

increase either in field or storage conditions. Zearalenone is not degraded in common food 

and feed processing procedures, as it has been shown its presence in grain products like bread, 

locally brewed beers and processed feeds (Scott, 1996; Ryu et al., 2003; Fink-Gremmels and 

Malekinejad, 2007; Jouany, 2007). 

 Fumonisins are mainly produced by F. verticillioides (syn. F. moniliforme), and F. 

proliferatum and some other Fusarium species in food and feed commodities (Gelderblom et 

al., 1988; Bolger et al., 2001; Seefelder et al., 2002; Kritzinger et al., 2003; Logrieco et al., 

2003; Binder et al., 2007; Glenn, 2007). Fumonisins were carcinogenic in experimental 

rodents, and consumption of grain contaminated with fumonisins has been associated 

epidemiologically with human disease (Desjardins, 2006). However, causality between 

fumonisins and human disease is unproven; this is not the case for animals (Voss et al., 2007). 

Several reports have been published showing that feed contaminated with F. 

verticillioides, and by inference containing fumonisins, are the cause of poultry disease 

(Morgavi and Riley, 2007). Fumonisins are a family of over 28 homologues and more are 

likely to be found (Rheeder et al., 2002; Humpf and Voss, 2004; Voss et al., 2007). Amongst 
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the characterized compounds, fumonisins B1 (FB1) and fumonisin B2 (FB2) present the 

greatest mycotoxicological concern (Logrieco et al., 2003). Fumonisins differ structurally in 

the number and placement of hydroxyl groups on the molecule’s hydrocarbon backbone 

(Voss et al., 2007). Fumonisins have not any discernable role in the frequency and intensity of 

colonization of plant hosts (Proctor et al., 2002). 

Enniatins are non-ribosomal, cyclic depsipeptides with general antibiotic and 

phytotoxic activity (Desjardins, 2006). Several Fusarium species are able to produce 

enniatins, however little is known about the occurrence of these mycotoxins and their role in 

human and animal disease. The results on virulence of enniatins indicated that it is not 

essential for the successful infection of potato tuber tissue by Fusarium strains. However, it 

could still play a role in the pathogenicity of the strains that produce it (Herrmann et al., 

1996). The study on natural occurrence of these mycotoxins in conventional and organic 

grain-based products from Italian and Finnish markets showed that Enniatins as well as 

deoxynivalenol are the most predominant mycotoxins and were present in 97% of the samples 

analyzed (Jestoi et al., 2004). Enniatins are a group of cyclic hexadepsipeptides with low-

molecular-weight produced by Fusarium species (Gaeumann et al., 1950). It has been 

suggested that enniatins can occur at significant levels in wheat affected by  

F. avenaceum and F. poae in some European countries (Logrieco et al., 2003) and further 

study concerning their occurrence and toxicity are needed. It also will be important to 

determine if there are synergistic effects with other toxins, e.g., moniliformin and 

trichothecenes, to better evaluate the toxicological risk to humans and animals (Logrieco et 

al., 2002). 

 

 

Interaction between Fusarium species 

In nature, all fungi most often interact in order to survive in their habitat. This 

interaction can be achieved by the development of different mechanisms, which could be 

direct or indirect, including: neutral, commensalisms, mutualism, competition, parasitism and 

synergism. The organisms and the physico-chemical conditions present in an ecological niche 

will delimit the type of interactions that can be observed. 

 Competition is a detrimental interaction in ecological niches (habitats) since fungi 

present need to survive. It is also known that when fungi in an ecological niche utilize the 

same type of substrates, they must compete in different mechanisms. Competitive exploitation 

is the ability of one organism or population to consume the resources (without reducing the 
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access of the other organisms to the same resource pool), whereas interference competition 

involves chemical or behavioral mechanisms that the access to resource is influenced by the 

presence of competitor (Carroll and Wicklow, 1992). Amensalism interaction has been used 

to describe interactions with a negative outcome for only one species (Tuininga, 2005).   

Fusarium head blight is often caused by more than one Fusarium species. It can be 

assumed that a determined kernel colonized by one Fusarium species or more than one 

species.  So interaction between or among the pathogens may happen during infection process 

in different parts of wheat ears. These interactions can occur during spore germination (early 

interactions, outside of plant tissue), penetration or tissue colonization (late interactions, 

inside of the plant tissue) with different mechanisms. Interactions between fungal species 

have been reported to influence the predominance of species and – as a consequence - 

mycotoxin production (Reid et al., 1999; Velluti et al., 2000; Simpson et al., 2004). 

Environmental factors such as water activity, temperature, relative humidity, irradiation and 

pH value may influence the spectrum of different Fusarium species on wheat ears and in 

different areas and also their interactions (Rossi et al., 2002; Doohan et al., 2003; Llorens et 

al., 2004).  

It has been suggested that interaction may exist among Fusarium species on the ears 

and will influence the severity of diseases and species profile. Very little information is 

available on inter- species interactions among mycotoxigenic FHB pathogens on wheat ears. 

However, this subject has been studied on other crops, especially interaction between toxin 

producing and non-toxin producing fungi. 

Information from studies of interactions among pathogens may be useful in the 

forecasting of head blight on cereals and assessing the risk of mycotoxins accumulating in 

grain. Interactions between fungal species have been reported to influence the predominance 

of species and – as a consequence - mycotoxin production (Reid et al., 1999; Velluti et al., 

2000; Simpson et al., 2004). 

Populations of Fusarium moniliforme and F. proliferatum on irradiated maize grains 

were reduced to a greater or lesser extent by the presence of F. graminearum under different 

conditions (different water activity and temperature) tested. While, the presence of F. 

proliferatum or F. moniliforme had a limited inhibitory effect on fungal population of F. 

graminearum on maize (Marin et al., 1998; Velluti et al., 2000). In contrast, Marin et al., 

(1998) reported that all the three species appear to coexist in the same niche at 25 ± 30 °C. 

While F. graminearum may be at a competitive advantage over F. moniliforme and F. 

proliferatum at 15 °C, F. proliferatum was more competitive than F. moniliforme over a wide 
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Germany, Ireland, Hungary, and UK, while other authors detected this species in low 

frequency (Bai and Shaner, 1994; Parry et al., 1995; Yli-Mattila et al., 2002; Rohacik and 

Hudec, 2005; Xu, et al., 2005).  

A survey in four European countries showed that prevalent pathogens differed 

significantly among countries. Four major FHB pathogens such as F. graminearum, F. 

culmorum, F. avenaceum and F. poae were identified during study. All pathogens were 

commonly detected in Ireland, F. graminearum and F. poae, detected in Italy and Hungary, 

Fusarium culmorum was rarely detected except in Ireland. The frequency of FHB pathogens 

increased significantly from anthesis to the milky-ripe stage and to harvest (Xu et al., 2005). 

Research findings in some European countries during the last two decades ago 

indicated a shift of the population from F. culmorum to a higher percentage of F. 

graminearum (Birzele et al., 2002; Obst et al., 2002; Waalwijk et al., 2003; Xu et al., 2005). 

Additionally, these species are able to produce important mycotoxins such as trichothecenes 

in food and feed that are hazardous to human and animal health.  

Studies on the virulence of major FHB pathogens indicated that F. graminearum and 

F. culmorum are the most virulent species; F. avenaceum is mildly to moderately virulent and 

F. poae is the least virulent species (Mihuta-Grimm and Forster, 1989; Wong et al., 1995; 

Miedaner and Schilling, 1996; Miedaner et al., 1996; Akinsanmi et al. 2004; Fernandez and 

Chen, 2005). In addition to inter-species variability in virulence, isolates within a species have 

been reported to differ significantly in disease-causing ability. Nevertheless, in experiments 

determining the frequency of Fusarium-infected wheat kernels, the less virulent species F. 

avenaceum and F. poae predominated in the FHB complex in the Rhineland area, Germany.  

Recently, a number of nucleic acid-based techniques have been utilized to understand 

the nature and diversity of FHB pathogens, the size and dynamics of populations of Fusarium 

species, interactions between pathogens and their host and among pathogens (Nicholson et al., 

2003; Schena et al., 2004). Molecular tools allow the detection, identification and 

quantification of closely related fungal species in a one-step procedure. 

 

 

Identification of Fusarium species 

Attempts to evaluate the frequency of fungal species in a particular context, in the 

absence of selective media is confound, because the relative amount of each pathogen may 

not be accurately determined (Nicholson, 2003). For example, Pettitt et al., (1993) reported 

that benomyl in agar media effectively reduced competition from fast growing Fusarium 
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range of temperature and water activity conditions. Reid et al. (1999) reported that dry and 

warm conditions during growth of maize strongly affect the infection of ears by F. 

moniliforme and F. graminearum. Fusarium moniliforme has at least one competitive 

advantage over F. graminearum, because of a broader response to temperature that confers 

direct and indirect benefits.  Marin et al. (1998) showed that F. moniliforme and F. 

proliferatum are able to dominate several other common maize-contaminating fungi over a 

wide range of temperature and water availability conditions – e.g. Aspergillus spp. and 

Penicillium spp.  

Marin et al. (2001) showed complex interactions between aflatoxin and fumonisin 

producing fungi in maize grain and influence of environmental conditions on the outcome of 

dominance fungi and mycotoxin production. Generally, Aspergillus parasiticus reduced 

populations of Fusarium spp., but did not affect fumonisin B1 production by them. While, 

Fusarium spp. were not able to decrease populations of A. parasiticus, they significantly 

reduced the amount of aflatoxin B1 accumulation.  

Data on effects of different fungicides to control FHB indicated that fungicides are 

able to produce differential controls depending on spectrum of Fusarium spp., efficacy of 

fungicides, and concentrations of fungicides, time of applications, perhaps method of 

application and interactions among them and also with cultivar. Greenhouse and field trials 

carried out to assess the efficacy of fungicides against FHB pathogens have yielded 

inconsistent results.  

During 2 years of field studies, application of prochloraz and tebuconazole at mid 

flowering caused a significant reduction in FHB severity and incidence as well as DON 

content. The use of tebuconazole-azoxystrobin mixture in the same study significantly 

decreased FHB severity and incidence as well as the DON contents in 2003. However, in 

2002 the DON content of kernels was higher than that for the untreated control, with 

particularly high values in the cooler and wetter sites (Blandino et al., 2006). In contrast, 

Haidukowski et al. (2005) showed that application of tebuconazole-azoxystrobin mixture 

significantly reduced the FHB severity and DON content in the grain as compared to the 

inoculated control (a mixture of F. culmorum and F. graminearum). A report by Simpson et 

al. (2001) showed that fungicides could change pathogen populations on wheat ears. For 

example, following the application of azoxystrobin Microdochium nivale was selectively 

controlled while Fusarium spp., were largely unaffected or markedly increased. In contrast, 

tebuconazole generally reduced Fusarium more than Microdochium.  
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The level of efficacy of different fungicides against certain Fusarium species can be 

different. For example, the efficacy of some fungicides tested against the major FHB 

pathogens decreased towards the species with higher pathogenicity (Kamil, 2006). For 

example, a mixture of triazoles and strobilurins significantly reduced FHB severity, while 

they have different effects on DON content. Applications of some fungicides may give certain 

combinations or alter the proportion of Fusarium spp. within the FHB complex and the rate of 

mycotoxins synthesis (Jennings and Turner, 2000; Edwards et al., 2001). Cromey et al. 

(2001) showed that application of azoxystrobin, tebuconazole and carbendazim at end of 

heading or mid flowering on winter wheat plots naturally infected with Fusarium spp. 

reduced the FHB severity compared to the control treatment. Tebuconazole and carbendazim 

significantly decreased the amount of DON and NIV in grain, while azoxystrobin did not have 

any effect on these mycotoxins. Fusarium graminearum reacted in various ways when 

incubated in the presence of sub-lethal concentrations of some fungicides such as prochloraz, 

tebuconazole, benomyl, carbendazim and thiabendazole (Matthies et al., 1999). 

Effective chemical control of FHB is further confounded by the fact that FHB is a 

disease caused by a complex of pathogens where interaction may exist among them and also 

with common saprophytic fungi such as Alternaria spp. and Cladosporium spp. One of the 

best ways to reduce the risk of FHB is applying fungicide in a timely manner. For example, an 

early fungicide application may suppress the saprophytic microflora or reduce inhibitory 

effects of other micro-organisms on the grains, while the Fusarium species are less affected. 

This could have given an advantage to the Fusarium species and increase level of FHB after 

fungicide application (Henriksen and Elen, 2005).  Liggitt et al. (1997) stated that common 

saprophytic flora of wheat ears and F. culmorum could be competing for the same niche and 

therefore applications of some fungicides may preferentially inhibit the saprophytes, allowing 

the niche to become occupied by the pathogen and lead to greater colonization of wheat ears 

by the pathogen, due to the removal of antagonistic saprophytes. These workers demonstrated 

that inoculation saprophytic fungi prior to F. culmorum at mid flowering were able to reduce 

FHB severity by 46 % to 78 % compared to plants inoculated only with F. culmorum. This 

information indicated that fungicides may influence the spectrum of fungal species and 

change the ratio between toxigenic and non-toxigenic or common saprophytic fungi.  

Applying fungicides or herbicides need knowledge on inter-species interactions 

among FHB complex disease on wheat ears.  Some researchers used a mixture of inoculum to 

favour the approach. However, it is questionable, because of the possibility of multiple 

ecological interactions among these pathogens in negative or positive ways in natural 
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infections, the pathogens may differ in prevalence and potential damage and some fungicides 

may be effective for the suppression of one pathogen but not for the other.  

There is evidence that glyphosate based herbicides may or may not increase FHB 

pathogens under controlled conditions and field (Hanson and Fernandez, 2003; Henriksen and 

Elen, 2005).  In Canada, the observation has indicated that the effect of glyphosate is 

incremental or detrimental on growth of F. avenaceum and F. graminearum, respectively 

(Hanson and Fernandez, 2003). 

 

 

Aims of study  
Investigations on putative interactions among Fusarium species colonizing wheat ears 

were carried out to explain the preference of infection of wheat kernels by F. avenaceum and 

F. poae in the presence of inoculum of more virulent Fusarium species, which affect the 

spectrum of mycotoxins. To achieve this aim, molecular and microbiological tools were used 

to determine frequency and intensity of colonization of wheat ears. This was quantified by 

determining the amount of Fusarium DNA and infection for individual species in single or 

mixed inoculations and establishing the species effect on the plants (symptoms, yield 

formation).  

The specificity of available species-specific primers for F. graminearum, F. 

culmorum, F. avenaceum and F. poae were evaluated using conventional PCR and then a 

SYBR green real-time PCR was optimized to determine the content of fungal biomass in a 

matrix including fungal and plant DNA. Different DNA extraction methods were tested in 

order to quantify the amount of Fusarium DNA in wheat using real-time PCR. There were 

some problems to produce inoculum in F. graminearum in high quantities. Thus, a rapid and 

simple method for spore production was developed for the tested Fusarium species. 

 

 

Objectives  
Different experiments were conducted to understand the nature of virulence (to the 

host plant), interactions among the Fusarium species as well as with host plant and the effects 

on the plants (yield formation) during host physiological maturation under greenhouse and 

field conditions. The most important aspect of the study was to get knowledge on mycotoxin 

productivity under interactions of different Fusarium isolates. 

This was done with the following investigations: 
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1- Establish the preference of Fusarium isolates in two consecutive inoculations with one-day   

interval. 

2- Study the effects of single and mixed inoculations of the isolates on the virulence of FHB 

pathogens to wheat ears under greenhouse and field conditions.  

3- Investigate competitive abilities among the isolates on wheat ears. In these experiments, all 

possible combinations of four Fusarium isolates with 2, 3 and 4 isolates in mixture which 

result in 6, 4 and 1 combinations, respectively. The total inoculum concentration varied or 

not in order to compare the frequency of infected kernels, intensity of kernel colonization, 

disease severity and the content of mycotoxins in kernels by the isolates in the presence of 

one, two, or three other isolates.  

4- Investigate susceptibility of glume, lemma, palea and kernel to Fusarium isolates under 

field conditions. 

5- Study development of Fusarium isolates on spikelets and wheat flower parts in single and  

mixed inoculations.  

6- Study the frequency of spikelets and kernels infected by more than one Fusarium isolates. 

 

Various parameters were assessed to characterize the interactions among the isolates 

in different experiments including ratings of disease severity, 1000-kernel weight, frequency 

of infected kernels, species–specific DNA amount of fungal isolates and the content of 

mycotoxins in kernels. 
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2. Experimental parts  

2.1 Materials and methods 

2.1.1 Organisms 

2.1.1.1 Plant  

The following wheat cultivars (Triticum aestivum L.) were used in this study: 

- Cultivar ‘Munk’ for greenhouse experiments  

- Cultivars ‘Drifter’ and ‘Taifun’ for field experiments in 2005 and 2006, respectively.  

 

2.1.1.2 Fungi 

The fungal isolates listed in the Table 1 were used in this study. The source of all 

Fusarium isolates were wheat kernels, except F. poae DSM 62376 that its origin was Avena 

sativa. Other fungal isolates were isolates from wheat plant, which had been grown under 

greenhouse conditions.  

 

 

2.1.2 Chemicals for molecular and microbiological assays 

Biomol (Hamburg): Phenol, Phenol/Chlorophorm/Isoamyl alcohol (25:24:1), Lambda DNA 

                                 Eco91I (BstE II) and Lambda DNA HindIII 

Biozym Dianostic: SequiTherm EXCELTMII, Sequagel XR sequencing gel (National 

                               Diagnostics)  

Qiagen (Hilden): RNeasy, DNAse plant Mini kit 

Roth (Karlsruhe): Acetic acid, Agar-Agar, Ampicillin, Ammonium peroxide sulphate (APS),   

Ethylenediaminetetraacetic acid (EDTA), Ethanol, Ethidium bromide, 

Hydrochloric acid, Isopropyl β-D-thiogalactoside (IPTG), Kohrsolin. FF, 

Nitric acid, Pepton, Potassium dihydrogen phosphate, 2- Propanol, Silver 

nitrate, Sodium acetate, Sodium carbonate, Sodium chloride,  

Sodium  hydroxide, Trichloromethane/chlorophorm, Tris, X-Gal (5-bromo-

4- chloro-3-indolylbeta-Dgalactopyranoside), Yeast extract. 

Sigma-Aldrich Chemie GmbH (Munich): Agarose, Ammonium acetate, Calcium chloride, 

Calcium chloride dihydrate, Calcium lactate, Dulbecco’s phosphate 

buffered saline (D-PBS), Isopropanol, Magnesium chloride, Magnesium 

chloride hexahydrate, 2-Mercaptoethanol, Oligonucleotide primers, 

Penicillin, 10 X PCR reaction buffer, Potassium chloride, Sodium 

hydrogen carbonate, Sodium hydrogen phosphate, Sodium hydrogen 
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sulfate, Streptomycin sulfate, Taq DNA polymerase, GenEluteTM plasmid 

mini kit 

STARLAB GmbH (Ahrensburg): Rigid thin wall 96 X 0.2 mL skirted microplates 

Promega: PGEM®-T and PGEM®-T Easy Vector Systems Promega 

 

 

Table 1: Fungal species used in this study (all isolates were from the Institute of Crop Science 

and Resource Conservation, University of   Bonn, Germany; besides of DSM 62376, 

Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, 

Germany) 

 

Fungal species Isolate  Fungal species Strain 
Fusarium graminearum 5.1 Fusarium poae 7.3 
Fusarium graminearum 5.10 Fusarium poae 7.5 
Fusarium graminearum 5.15 Fusarium poae 7.6 
Fusarium graminearum 5.17 Fusarium poae 7.8 
Fusarium graminearum 5.19 Fusarium poae 7.9 
Fusarium culmorum 3.6 Fusarium poae 7.10 
Fusarium culmorum 3.2 Fusarium poae 7.11 
Fusarium culmorum 3.6 Fusarium poae 7.12 
Fusarium culmorum 3.9 Fusarium poae 7.14 
Fusarium culmorum 3.11 Fusarium poae 7.15 
Fusarium culmorum 3.12 Fusarium poae 7.16 
Fusarium culmorum 3.14 Fusarium poae DSM 62376 
Fusarium culmorum 3.16 Fusarium langsethae 18.1 
Fusarium culmorum 3.17 Fusarium tricinctum 10.10 
Fusarium culmorum 3.18 Fusarium sporotrichioides 9.9 
Fusarium culmorum 3.22 Fusarium sporotrichioides 9.10 
Fusarium culmorum 3.33 Fusarium  cerealis*  
Fusarium culmorum 3.35 Blumeria graminis*  
Fusarium culmorum 3.36 Puccinia triticina *  
Fusarium culmorum 3.37 Alternaria sp.*  
Fusarium avenaceum 1.7 Trichoderma sp.*  
Fusarium avenaceum 1.8 Aspergillus sp.*  
Fusarium avenaceum 1.12 Penicillium sp. *  
Fusarium avenaceum 1.12   
Fusarium avenaceum 1.16   
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Table 2: Sequences of species-specific primers for detecting Fusarium species, PCR  

                 chemotypes and large and small amount of DON 

 

Fragment name Sequence of primer Target Size  
(bp) 

Annealing 
temperatur

e 
A
 F. graminearum 

GGCGCTTCTCGTGAACACA 
TGGCTAAACAGCACGAATGC 

F. 
graminearum 94 55  ºC 

A
 F. culmorum TCACCCAAGACGGGAATGA 

GAACGCTGCCCTCAAGCTT 
F. culmorum 60 55  ºC 

A
 F. avenaceum CAAGCCCACAGACACGTTGT 

CCATCGCCGTGGCTTTC 
F. avenaceum 58 57   ºC 

B F. poae CAAGCAAACAGGCTCTTCACC 
TGTTCCACCTCAGTGACAGGTT 

F. poae 220 60   ºC 

C GzTri7F 
GzTri7R 

GGCTTTACGACTCCTCAACAATGG 
AGAGCCCTGCGAAAG(C\T)ACTGGTGC 

NIV & DON 162+11
× n 60   ºC 

D Tri13F 
Tri13R 

TACGTGAAACATTGTTGGC 
GGTGTCCCAGGATCTGCG 

NIV  &  DON 234 or 
415 60   ºC 30 s 

E 4056 
3551 

ATCCCTCAAAAACTGCCGCT 
ACTTTCCCACCGAGTATTTC 

DON, Low I 600 55   ºC 

E N1-2 
N1-2R 

CTTGTTAAGCTAAGCGTTTT 
AACCCCTTTCCTATGTGTTA 

DON, High I 200 50/40  ºC 

F Tri303F 
Tri303R 

GATGGCCGCAAGTGGA 
GCCGGACTGCCCTATTG 

3-AcDON 586 51/46   ºC 

F Tri315F 
Tri315R 

CTCGCTGAAGTTGGACGTAA 
GTCTATGCTCTCAACGGACAAC 

15-AcDON 549 60   ºC 30 

G ITS-FUF 
ITS-FUF 

CAACTCCCAAACCCCTGTGA 
GCGACGATTACCAGTAACGA 

Fusarium 
genus 398 55   ºC 30 

H ITS-1F 
ITS-4R 

CTTGGTCATTTAGAGGAAGTAA 
TCCTCCGCTTATTGATATGC 

ITS 500-600 54   ºC 30 

A, Waalwijk et al., (2004); B, Parry and Nicholson, (1996); C, Lee et al., (2001); D, Waalwijk et al., (2003); E, 

Bakan, (2002); F, Jennings et al ., (2004); G, Abd-Elsalam et al., (2003); H, White et al.,  (1990); I, detection 

low and high producer of deoxynivalenol NIV, nivalenol; DON, deoxynivalenol; 3-AcDON,3-

acetyldeoxynivalenol;15-AcDON,15-acetyl-deoxynivalenol; ITS, internal transcribed spacer 
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2.1.3 The following buffers were used for molecular assays 

TAE (50x) buffer, PH 8  Hydroxymethyl (Tris) 242.0 mg 

 Acetic acid   57.1 mL 

 EDTA (186.1 mg/mL) 100.0 mL 

 Water  1000.0 

   

TE  buffer, PH = 8, for 250 

mL 

Tris-HCl, 10 (mM) 2.5 mL M

 EDTA (1 mM) 0.5 mL M

 Water 250 mL 

 Filter sterilized   

Ethanol (70 % v/v) Ethanol (100 %) 70 mL 

 Water 30 mL 

Proteinase K (10mg/mL) Proteinase K 50 mg 

 Water   5 mL 

RNase (10 mg/mL) RNase  50 mg 

 Water (Boiled  for 5 min)   5 mL 

CTAB buffer 

 Tris 1.21 g 

 EDTA 7.44 g 

 Cetyltrimethylammonium bromide (CTAB) 7.28 g 

 NaCl 46.4 g 

 N-lauryl sarcosine 8.80g 

 Sorbitol 23.68 g 

 Polyvinylpolypyrrolidone (PVPP) 10.0 g 

 Water 1000.0 

X-gal X – gal  50.0 mg 

 N, N’-dimethylformamide 1.0 mL 

LB-broth:  Sodium chloride  8.0 g 

 Peptone  8.0 g 

 Yeast extract 4.0 g 

 Sodium hydroxide (40.0 mg/mL) 480.0 μL 

 Water up to 800.0 mL 
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2.1.4 Equipments for nucleic acid and mycotoxin quantification 

ABI PRISM 7000 SDS  Applied Biosystems,  Foster city, USA 

CEQ 8000 genetic analysis  apparatus Beckman Coulter, Inc, USA 

Electrophoresis (for agarose gels)  Bio Rad München, Germany 

Icycler  Bio Rad Laboratories, München, Germany 

Memmert CO2 incubator  Fisher Scientific Leicestershire, UK 

Millipore apparatus  Millipore Corporation, USA 

Millipore Corporation (PTC 100) Millipore Corporation 

Spectrophotometer (Ultrospec™ 2100)  Amersham Bioscience Freiburg, Germany 

QTrap 4000 LC/MS/MS system Applied Biosystems, Foster City, USA 

HPLC system (1100 Series) Agilent, Waldbronn, Germany 

C18 HPLC column Phenomenex, Torrance, USA 

security guard cartridge Phenomenex, Torrance, USA 

 

 

2.1.5 Culture media for cultivation of Fusarium species 

All the media are recipes per litre of distilled water. The culture media were 

autoclaved at 121 ºC for 20 min at one bar pressure.     

 

Czapek-Dox-Iprodione-Dicloran Agar (CZID) (Abildgren et al., 1987) 

Czapek Dox agar 35.0 g 
CuSo4

.5H2O   5.0 mg 
ZnSo4

.7H2O 10.0 mg 
Chloramphenicol  50.0 mg 
Dicloran   2.0 mg 
Agar 10.0 g 
When the media had cooled to about 55 ºC, the following were added. 
Penicillin     50.0 mg 
Streptomycin     50.0 mg 
Rovral (Iprodione)       6.0 mg 

 

 

 

 



MATERIALS AND METHODS 
 

 22

Synthetic Nutrient Agar (SNA) (Nirenberg, 1981) 

KH2PO4   1.0 g 

KNO3   1.0 g 

MgSO4.7H2O   0.5 g 

KCl   0.5 g 

Glucose   0.2 g 

Sucrose   0.2 g 

Agar 20.0 g 

Potato Dextrose Agar (PDA) (Merck, Darmstadt Germany) 

Potato dextrose agar 39.0 g 

Penicillin  50.0 mg 

Streptomycin  50.0 mg 

Ampicillin  50.0 mg 

 Low Strength Potato Dextrose Agar (LSPDA, Merck, Darmstadt Germany) 

Potato dextrose agar 12.5 g 

Penicillin  50.0 mg 

Streptomycin  50.0 mg 

Ampicillin  50.0 mg 

Agar  19.0 g 

 

 

Banana Leaf Agar (BLA) 

Fresh banana leaves were cut into 1 - 2 cm2 pieces and dried in an oven at 50 - 55 ºC 

between 2 and 3 h. The banana leaf pieces were sterilized in 1.3 % sodium hypochlorite 

(NaOCl) for 5 min and then in ethanol for 30 s. The pieces were dried under a laminar flow 

cabinet for 30 min. Five leaf pieces were placed on Petri-dishes including cooled water agar 

or SNA. To check for possible contaminations, the plates were left at room temperature for 

three days before use.  
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2.1.6 Plant cultivation  

2.1.6.1 Greenhouse 

Seeds of spring wheat (cv. Munk) were planted in 10 L-pots, (22 cm diameter) with 15 

seeds per pot using a 12:7:1 mixture of organic potting substrate, field soil (soil horizon C) 

and sand, respectively. After emergence, plants were thinned to 12 and were grown under 

greenhouse conditions with a 16-h light photoperiod at 23.5 ± 4 ºC and  24.6 ± 2 ºC in 2005 

and 2006, respectively. The intensity of light was 300-µmol m -2 s -1 in plant height. Plants 

were fertilized at GS 29 using NPK (4-2-3 g/l).  

 

 

2.1.6.2 Field 

Field trials were conducted at the Poppelsdorf experimental station, University of 

Bonn, Germany. In 2005, winter wheat cv. Drifter was planted in October and sprayed with 

Fandango ® (prothioconazole + Fluoxastrobin) to control powdery mildew. In 2006, spring 

wheat cv. Taifun was sown in April and sprayed with Tristar ® (Acetamiprid) to control 

aphids. The plots were separately harvested using a combine harvester on August 03 and July 

24 in 2005 and 2006, respectively. The kernels were stored at −20°C for further analysis. 

 

 

2.1.7 Design of experiments  

2.1.7.1 Greenhouse 

Wheat ears cv. Munk were inoculated at mid flowering - growth stage (GS) 65 (Meier, 

1997) with one species and combinations of two, three or four Fusarium spp. (Table 3 and 4). 

In 2005, wheat ears were inoculated with variable inoculum concentrations, while variable 

and constant inoculum concentrations were used in the investigations in 2006.  

In the variable concentration approach, mixtures of two, three and four species were 

produced resulting in 120 mL inoculum with a final concentration of 1 × 105, 1.5 × 105 and 2 

× 105 conidia mL-1, respectively, while the concentration of individual species in the mixture 

was maintained at 5 × 10 4 conidia mL-1 (Table 5).  

In the constant concentration approach, the final inoculum concentration was 5 × 104 

conidia mL-1 for all treatments; in mixtures of two, three and four Fusarium spp. the conidia 

concentration of each species was half, one third and one quarter the concentration in single 

inoculations. Control plants were sprayed with sterile distilled water in the same way. 

Experiments were conducted in a completely randomized design with 5 replicates.  
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Table 3: Experimental design using a variable concentration of conidia approach   

 

Inoculation Concentration of conidia mL-1 [x 1000] 
FG FC FA FP Total 

F. graminearum (FG) 50    50 
F. culmorum (FC)  50   50 
F. avenaceum (FA)   50  50 
F. poae (FP)    50 50 
FG + FC 50 50   100 
FG + FA 50  50  100 
FG + FP 50   50 100 
FC + FA  50 50  100 
FC + FP  50  50 100 
FA + FP   50 50 100 
FG + FC + FA 50 50 50  150 
FG + FC + FP 50 50  50 150 
FG + FA + FP 50  50 50 150 
FC + FA + FP  50 50 50 150 
FG + FC + FA + FP 50 50 50 50 200 
 

 

 

Table 4: Experimental design using a constant concentration of conidia approach  

 

Inoculation Concentration of conidia mL-1 [x 1000] 
FG FC FA FP Total 

F. graminearum (FG) 50    50 
F. culmorum (FC)  50   50 
F. avenaceum (FA)   50  50 
F. poae (FP)    50 50 
FG + FC 25 25   50 
FG + FA 25  25  50 
FG + FP 25   25 50 
FC + FA  25 25  50 
FC + FP  25  25 50 
FA + FP   25 25 50 
FG + FC + FA 16.7 16.7 16.7  50 
FG + FC + FP 16.7 16.7  16.7 50 
FG + FA + FP 16.7  16.7 16.7 50 
FC + FA + FP  16.7 16.7 16.7 50 
FG + FC + FA + FP 12.5 12.5 12.5 12.5 50 
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Table 5: Experimental designs using a variable (2005, 2006) and a constant (2006) conidia     

concentration approach  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.7.2 Field  

Wheat ears cv. Drifter were inoculated at mid flowering (GS 65) (Meier, 1997) in two 

consecutive days with 1-day interval. The first day (01.06.2005), F. graminearum, F. 

culmorum, F. avenaceum and F. poae were inoculated in four plots comprising of four sub-

plots (0.5 m2), separately (Table 6). The second day (02.06.2005), single inoculations of the 

four Fusarium spp. was carried out in every sub-plot resulting in either a two species 

combination or a double-single species inoculation. For the single inoculations, the first day, 

every sub-plot was inoculated singly with Fusarium spp. The sub-plots were sprayed with 

sterile distilled water in the second day. A concentration of 9.1 x 104 conidia mL-1 was used in 

all of the inoculations. Experiments were conducted in a completely randomized design.  

In 2006, wheat ears cv. Taifun were inoculated alone or in two, three and four species 

combination of Fusarium species in constant and variable approaches, as described for 

greenhouse experiments (Table 3 and 4).  Each treatment was inoculated separately in 4 

replicate plots (1.5 m2). The inoculated plots were separated at least 1 m 2 from each other to 

minimize plot-by-plot interferences. Experiments were conducted in a completely randomized 

block design with 4 replications.  

 

 

 

Number of Fusarium 
species in inoculum Concentration of conidia mL-1 [x 1000] 

Variable conc. approach Constant conc. approach 

 Per species Total Per species Total 

1 50 50 50 50 

2 50 100 25 50 

3 50 150 16.7 50 

4 50 200 12.5 50 
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Table 6: Experimental design of consecutive inoculations approach in 2005 

 

Inoculation  Inoculation 
First day (01.06.2005) Second day(02.06.2005) 

FG + FG FG FG 
FC + FG FC FG 
FA + FG FA FG 
FP + FG FP FG 
FG + FC FG FC 
FC + FC FC FC 
FA + FC FA FC 
FP + FC FP FC 
FG + FA FG FA 
FC + FA FC FA 
FA + FA FA FA 
FP + FA FP FA 
FG + FP FG FP 
FC + FP FC FP 
FA + FP FA FP 
FP + FP FP FP 
FG + W FG W 
FC + W FC W 
FA + W FA W 
FP + W FP W 

FG, F. graminearum; FC, F. culmorum; FA, F. avenaceum; FP, F. poae; A concentration of 

9.1 x 104 conidia mL-1 was used in all of the inoculations 

 

 

2.1.8 Pathogens  

The Fusarium isolates FA 1.7 (F. avenaceum), FC 3.11 (F. culmorum), FG 5.1 (F. 

graminearum), and FP 7.8 (F. poae) had been isolated from winter wheat fields in North 

Rhine-Westphalia, Germany; FA 1.7 (Dormagen, 1995), FC 3.11 and FP 7.8 (Lage-Ohrsen, 

2002), FG 5.1 (Blankenheim, 1996) were used. Single-hypha isolates were used for the all 

experiments.  

The following Fusarium isolates were used for rapid spore production method; F. 

avenaceum (1.7, 1.15, 1.16, 1.17), F. culmorum (3.2, 3.11, 3.35, 3.38, AG 6a), F. 

graminearum (5.1, 5.15, 5. 17, 5.18, AG 23d), F. poae (7.8, 7.9, 7. 15, R8 a), F. tricinctum 

(10.2, 10.12, 10.11), F. verticillioides (AG 11i) and F. proliferatum (AG 31g).  
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2.1.9 Inoculation  

2.1.9.1 Inoculum production  

Conventional method  

In 2005, F. graminearum, F. culmorum, F. avenaceum and F. poae were grown 

LSPDA for 21 days under near ultra violet light. Conidia were harvested by adding sterile 

distilled water including some droplets of Tween 20 and slightly scraping with a spatula. The 

suspension was passed through double-layered cheesecloth. 

 

 

Rapid spore production method 

In 2006, a new method of spore production was developed. In the new method, 

Fusarium spp. were cultured in potato-dextrose broth (24 gl-1) in 1000 mL Erlenmeyer flasks 

for five days in darkness on a shaker (200 rpm) at 22 ºC. After 1, 2, 3, 4 and 5 days of 

incubation, 500-1000 microliter suspension were spread over the surface of petri-dishes 

containing  LSPDA, water agar (agar-agar 20 g/l-1) and synthetic nutrient-poor mineral agar 

(SNA, Nierenberg, 1981) using a sterile bent-glass rod in five replications. To remove excess 

water, the cultures were dried under a laminar flow cabinet for 20 to 30 min.  

The plates were incubated under near ultra violet light at 22 ºC for 2 to 14 days. The 

cultures were examined daily during this period for spore production. Conidia were harvested 

by adding sterile distilled water including some droplets of Tween 20 and slightly scraping 

with a spatula. The suspension was passed through double layered cheesecloth. The number 

of conidia per mL was determined using a haemocytometer. The produced conidia on PDA 

were adjusted to 5 × 104 conidia mL-1 and used in experiments aimed at studying the quality 

of conidia. Other media such as SNA and WA were included in the experiments to assess the 

ability of conidia production on different media. The concentration of conidia was determined 

using a haemocytometer. Inoculum concentrations of 5 × 104 conidia mL-1 were prepared for 

individual isolates of Fusarium species.  

At mid flowering (GS 65, Meier et al., 1997) sixty wheat ears (Triticum aestivum, cv. 

Munk) were inoculated with 120 mL spore suspension (5 x 105 conidia mL-1) of the Fusarium 

isolates 1.7 (F. avenaceum). 3.11 (F. culmorum), 5.1 (F. graminearum), and 7.8 (F. poae), 

respectively. Control plants were sprayed with sterile distilled water in the same way. After 

inoculation, the plants were covered with plastic bags for 48 hours to ensure high relative 

humidity for optimum infection conditions. The experiments were conducted in a completely 

randomized design with 5 replicates (5 pots with 12 ears). 
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2.1.9.2 Inoculation techniques  

The concentration of conidia was adjusted as summarized in the Tables 3 to 6 and 

used for the inoculations. The plants were inoculated using a hand sprayer under greenhouse 

experiments, while a manual sprayer used for field inoculations. After inoculation, plants 

were covered with plastic film for 48 hours to ensure high relative humidity for infection.  

 

 

2.1.10 Assessment of disease  

2.1.10.1 Visual disease ratings and yield assessment   

Assessment of disease severity was done in two trial experiments under greenhouse 

conditions, while in field experiments the symptoms were visible to assess only in 2006. 

Disease severity was assessed as the percentages of bleached spikelets 14, 21 and 28 days 

after inoculation using a nine-class rating scale (Miedaner et al., 1996) with 1 = no infection, 

2 = <5; 3 = 5-15;  4 = 16 to 25%; 5 = 26 - 45%; 6 = 46 - 65%; 7 =  66 - 85%; 8 = 86 - 95%, 

and 9 = 96 - 100% of bleached spikelets. The mean value of the three disease severity ratings 

was determined.  

 

 

2.1.10.2 Microbiological detection of Fusarium-infected kernels  

Czapek-Dox-Iprodione-Dicloran agar (Abildgren et al., 1987) was used for re-

isolation of Fusarium spp. Synthetic nutrient-poor mineral agar (Nierenberg, 1981) and 

Banana leaf agar (Seifert, 1996) were used to grow the isolates for morphological 

identification. Fusarium species were identified according to Nelson et al. (1983).  

 

 

2.1.10.3 Morphological identification of Fusarium species 

Fungal isolates were cultured on PDA for 21 days under near ultra violet light. 

Conidia were harvested by adding sterile distilled water including some drops of Tween 20 to 

wash the mycelium and lightly scraping with a spatula to dislodge the conidia. The suspension 

was passed through double layered cheesecloth. The suspension was diluted and spread on 

WA (water agar 2 %) using a sterile bent-glass rod. After 10 to 24 h the plates were examined 

using a stereo-microscope and single germinated conidia were transferred on PDA.  

For morphological identification, Fusarium species were sub-cultured on PDA, SNA 

and BLA. The cultures were incubated under near ultra violet light for 2-3 weeks.  Fusarium 
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species were identified according to Nelson et al. (1983). PDA was used for morphological 

features such as growth rates, aerial mycelium, and colour of back side of the colony, cultural 

appearances and pigmentation. Microscopic observations were carried out on SNA and BLA.  

 The microscopic characters used were the macroconidia morphology (size, abundance,  

number of septa, shape, length  of macroconidia, basal and apical cells, production in aerial 

mycelia or sporodochia), microconidia (present or absent, abundance, shape, number of 

septate, produced in false heads or in chains), types of conidiophores and chlamydospores 

(present or absent, abundance, whether produce intermediately or terminally and 

appearances).  

 
 
 
2.1.11 Sampling 

2.1.11.1 Greenhouse  

For the frequency of kernel colonization and the amount of fungal DNA, 50 kernels 

per replicate were cut into two pieces perpendicular to kernel length axis (one part for 

microbiological detection, the other for real-time PCR). To extract DNA and later on real-

time PCR assays the pieces of the kernels were ground to fine powder using a blender 

machine and 250 mg of kernels weight were included in the experiments. The mean value per 

replicates was recorded and used for statistical analysis. 

 

 

2.1.11.2 Consecutive field inoculations (2005) 

Wheat flower parts 

To determine the frequency of infection of individual parts of the wheat flower parts 

sampling was carried out 7, 21 and 35 days after inoculation. Wheat flower parts were 

manually separated to glume, palea, lemma and kernel. The mean value of infection for each 

part per ear was used for statistical analysis.  

 

 

At harvest 

Firstly, 5 wheat ears with FHB symptoms from each sub-plot were randomly 

harvested. Wheat ears were separately cut and threshed using small combine harvester (Kurt 

pelz, Waldendurg, Germany) to obtain the grains.  The kernels from every ear were cut into 

two pieces perpendicular to the length axis (one piece for microbiological assays, the other 
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one for the content of Fusarium-kernel DNA using real-time PCR). To extract DNA and later 

on real-time PCR assays the pieces of the kernels were ground to fine powder using a blender 

machine and 250 mg of kernels weight were included in the experiments.  The mean value of 

frequency of infected kernels of every wheat ear and the amount of fungal DNA per milligram 

dry weight were determined. 

Secondly, the Wheat ears in every sub-plot were separately cut and threshed using 

combine harvester to obtain the grains. Thirty kernels in five replicates from every sub-plot 

were randomly used to determine the frequency of Fusarium-infected kernels using 

microbiological assays. 10-grams of kernels per sub-plots were ground to fine powder using a 

blender machine. To assess the content of species-specific content of Fusarium-kernel DNA 

250-mg of the fine powder in three replicates were used for molecular assays. 

 

 

2.1.11.3 Simultaneous field inoculations (2006) 

Spikelet  

Ten wheat ears per plot were randomly sampled seven (GS 73), 14 (GS 83) and 21 

(GS 89) days after inoculation. The frequency of Fusarium-infected spikelets was determined 

for each wheat ear.  The mean values of infected spikelets were determined for each plot and 

used for statistical analysis. 

 

 

Wheat flowers parts  

To determine the frequency of infection of wheat flower parts sampling was carried 

out seven (GS 73), 14 (GS 83) and 21 (GS 89) days after inoculation from plots, which had 

been inoculated with a mixture of four isolates (constant inoculum concentration, 5 × 104). 

Wheat flower parts were manually separated to glume, palea, lemma and kernel. The mean 

value of infection for each part of the florescence was used for statistical analysis.  

 

 

At harvest 

The Wheat ears in each plot were separately cut and threshed using combine harvester 

to obtain the grains.  Thirty kernels from every plot with five replicates were randomly used 

to determine the frequency of Fusarium-infected kernels and the content of fungal DNA using 

microbiological and molecular assays. The kernels were cut into two pieces perpendicular to 
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the length (one piece for microbiological assays, the other one for the content of Fusarium-

kernel DNA using real-time PCR). The mean value of frequency of infected kernels and 

amount of fungal DNA for every plot was determined. 

 

 

2.1.12 Yield assessment 

In greenhouse experiments kernel weight was recorded for every replicate. Data are 

shown based on 1000-kernel weight which was calculated from kernel weight and number of 

kernels per replicate. In field experiment, data were determined based on 3 or 4 times 

calculating kernel weight for 1000-kernels per replicate. 

 

 

2.1.13 Molecular assay 

2.1.13.1 DNA extraction methods 

DNA purification for quantitative PCR 

DNA was extracted from a 5 day cultures of Fusarium spp. in potato-dextrose broth 

(Merk, Darmstadt, Germany) (24g/L) in 1000 mL Erlenmeyer flasks (25 °C, 200 rpm). The 

contents of flasks were filtered and washed three times with sterile distilled water using a 

vacuum pump. The mycelia were collected in 2 milliliter tubes and frozen at -80 °C. Mycelia 

(100 - 250 mg) were ground under liquid nitrogen to a fine powder using mortar and pestle 

and then transferred to 50 milliliter tubes. DNA was extracted as described below for grain. 

Further chloroform-isoamyl alcohol (24:1) and ammonium acetate precipitation steps were 

done to obtain high quality DNA. The quality and quantity of isolated DNA were checked on 

agarose gel and with a spectrophotometer. A 10-fold dilution series (from 0.9 to 9000 pg/µL) 

of Purified DNA were used as standard curve in every real-time PCR assays.  

 

 

DNA extraction from grain samples 

The efficacy and suitability of CTAB method (Stewart and Via 1993; Brandfass and 

Karlovsky, 2005) with some modifications, Plant Mini kit Method (QIAGEN Germany) and 

combination of two methods were compared on wheat grain samples that had been colonized 

by Fusarium spp. using quantitative PCR, agarose gel and spectrophotometer assays. Based 

on quality and quantity a modified CTAB method was used in all further experiments. 
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CTAB method 

Twenty mL of CTAB-extraction buffer (10 mM Tris, 20 mM EDTA, 0.02 M CTAB, 

0.8 M NaCl, 0.03 M N-laurylsarcosine, 0.13 M sorbitol, 1%(w/v) polyvinylpolypyrolidone, 

pH set to 8.0 with NaOH), 40 μL mercaptoethanol and 50 μL proteinase K (from a stock 

solution 10 mg/mL), were added to 250 mg ground grains in 50–mL centrifugation tube and 

mixed vigorously. The mixture was incubated at 65 °C for 60 min and mixed after every 10 

min. Eight hundred μL of the upper phase was transferred to a 2 mL new tube containing 5 μL 

of RNAase (50 mg/mL) and incubated for 10 min at 65 °C, Eight hundreds μL of chloroform-

isoamyl alcohol (24:1) was added into each tube. The samples were mixed by inverting the 

tubes and centrifuged for 10 min at 5,000 g at room temperature. The aqueous phase was 

transferred into a 1.5 mL tube containing 500 μL isopropanol, mixed and incubated for 20 

min at room temperature and centrifuged for 15 min at 15,000 g at room temperature. The 

pellet was washed with 70% (v/v) ethanol, dried and dissolved in 200 μL TE buffer and 

incubated at 4 °c over night and then in -20 °c. 
 

 

Plant Mini kit Method, QIAGEN Germany 

DNA was extracted according to the manufacturer’s protocol. 

 

 

CTAB and DNA DNeasy Plant Mini kit Method, QIAGEN Germany 

Twenty mL of CTAB-extraction buffer (10 mM Tris, 20 mM EDTA, 0.02 M CTAB, 

0.8 M NaCl, 0.03 M N-lauryl sarcosine, 0.13 M sorbitol, 1 % (w/v) PVPP, pH set to 8.0 with 

NaOH), 40 μL mercaptoethanol and 50 μL proteinase K (from a stock solution 10 mg/mL), 

were added to 250 mg ground grains in 50–mL centrifugation tube and mixed vigorously. The 

mixture was incubated at 65 °C for 60 min and mixed after every 10 min. Eight hundred μL of 

the upper phase was transferred to a 2 mL new tube containing 5 μL of RNAase (50 mg/mL) 

and incubated for 10 min at 65 °C, Eight hundreds μL of chloroform-isoamyl alcohol (24:1) 

was added into each tube. The samples were mixed by inverting the tubes and centrifuged for 

10 min at 5,000 g at room temperature. The aqueous phase was transferred into a 1.5 mL tube 

containing 500 μL isopropanol, mixed and transfer into the DNeasy Mini Spin Column sitting 

of Plant mini kit (Qiagen, Germany). Subsequently, the samples were further processed 

according to the manufacturer’s protocol and DNA was dissolved in 200 μL AE buffer. 

 



MATERIALS AND METHODS 
 

 33

2.1.13.2 Primer specificity  

Sequence specific primers were used to amplify specific fragment using classical PCR 

(Thermocycler BIO RAD iCycler BIO RAD, München) (Table 2). All of the primers were 

synthesized by Carl Roth Company (Karlsruhe, Germany). DNA was extracted from 50-100 

mg fresh mycelia growing on the surface of agar media using the Plant DNeasy Mini Kit 

(Qiagen, Hilden, Germany). The DNA was used to determine the specificity of primers 

(Species-specific amplification). The PCR products were loaded on 0.7 % - 1 % (w/v) agarose 

gel and run in 1 X TAE buffer by staining with ethidium bromide. The bands were then 

visualized under UV light and specific gel slices containing the bands were cut for further 

analysis. The fungal strains and matrix DNA utilized for the specificity and sensitivity of 

primers are listed in Table 1. 

 

 

2.1.13.3 DNA purification and sequencing  

The PCR products were loaded on the 0.8 % agarose gel and run in 1x TAE buffer 

containing ethidium bromide. The target band was visualized under UV light. The band were 

cut and placed in 1.5 mL tube and frozen at -20 oC for 30 min. The frozen gel was ground 

using 1 mL pipette tip. 500 μL of 1 x TE buffer was added and homogenized using syringe. 

An equal volume (500 μL) of phenol-chloroform (1:1) was added. The mixture was 

homogenised by needle and syringe and then centrifuged for 20 min at 10,000 g at 20 oC. The 

supernatant was transferred into a new tube including 500 μL chloroform. The mixtures was 

mixed and centrifuged for 15 min. The upper phase was carefully transferred into a new 2-mL 

tube and 1:10 volume (v/v) of 3 M sodium acetate as well as two volumes (v/v) of 100 % 

ethanol were added and incubated at -20 °C overnight. The samples were centrifuged for 30 

min at 14,000 g at 4 oC. The DNA pellet was washed by 1mL ethanol (70 %) and centrifuged 

for 10 min. The DNA was dried for 5 - 10 min at room temperature and then dissolved in 7 

μL Millipore water.  

For further purification, 1 μL of ExoSAP-IT were added to 5 μL of PCR products and 

incubated at 37 oC for 45 min and then followed by ExoSAP-IT inactivation at  80 oC for 15 

min. The clean DNA template was subsequently used for the sequencing PCR which 

contained 8 μL of milli-pore water, 2 μL of either forward and reverse primer and 4 μL of 

DTCS Quick Start Master Mix (Beckman Coulter). The PCR reaction was performed with 30 

cycles (96 oC for 20 sec, 50 oC for 20 sec, 60 oC for 4 min). The stop solution was prepared in 

a volume of 2.0 μL of 3M NaOAc (pH = 5.2), 2.0 μL of 100 mM EDTA (pH = 2.0) and 1.0 
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μL of glycogen (20 mg/mL). The PCR product was transferred to a 1.5 mL sterile tube and 

mixed with 5 μL stop solution. A volume of 60 μL cold ethanol (98 %) was added and mixed 

by vortex and then centrifuged for 15 min at 4 oC. The supernatant was removed and the 

pellet washed 2 times with 200 μL cold ethanol (70 %) and centrifuged for 5 min at 4 oC. The 

pellet was dried by the speed vacuum machine at 35 oC and re-suspended in 40 μL SLS 

(Sample loading solution). The sample was loaded into plates and sequenced using the  

CEQ8000 Genetic Analysis System. The sequence of the fragments was utilized to  

confirm the specificity of primers using available information in data bank 

(http://www.ncbi.nlm.nih.gov/BLAST/).  

 

 

2.1.13.4 Real-time PCR reactions 

Real-time PCR reactions were performed in an ABI Prism®7000 SDS instrument. 

Prior to quantification, primer optimisation was carried out for forward and reverse primers. 

Different combinations of forward and reverse (0.1, 0.2 and 0.4) were used in presence of 

template (DNA) and non-template as control to avoid primer dimmer formation (Table 7). At 

the end of the run, the dissociation curves were generated to check the absence of the non-

specific amplification and subsequent confirmation by analysis of the PCR products on 

agarose gel electrophoresis. The combination with the lowest threshold cycle and without 

primer dimmer formation was used to perform subsequent PCRs.  

 

 

Table 7: Concentration (pg/µL) of forward and reverse primers used in real-time PCR for 

primer optimization  

 
Forward 

primer 
Reverse primer 

10 20 40 
10 10/10 10/20 10/40 
20 20/10 20/20 20/40 
40 40/10 40/20 40/40 

 

 

Standard curves were generated using a serial dilution (0.9, 9, 90, 900 and 9000 pg) of 

purified genomic DNA of Fusarium spp. Polymerase chain reactions (PCRS) were carried out 

in 20 μL reaction volume containing 10 μL Sybr® Green Jump startTM Taq Ready MixTM, 

0.2 µl Rox as internal reference dye, 0.4 µM of each forward and reverse primers, 2 μL 
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genomic DNA. PCR reactions were performed in duplicates for standard curves and samples 

to control the reproducibility of quantitative results. A universal thermal cycling parameter 

(10 s at 50 oC, 10 min at 95 oC, 40 cycles of 15 s at 95 oC and 60 s at 60 oC) was used for the 

quantification. The specificity of amplification was confirmed by generating melting curve at 

the end of PCR reactions. The curves were used as control for the specificity of real-time PCR 

during the quantification. Final quantification of fungal DNA analysis was performed using 

the standard curve method (User bulletin of ABI PRISM 7700 SDS, 

Http://docs.appliedbiosystems.com). The  results were reported as the absolute amount of 

individual specific-species DNA for the Fusarium species using the standard curves for the 

each species. 

 
 
 

2.1.13.5 Validation experiments  

Reproducibility of the experiments were checked on 250 mg aliquots of a positive 

sample for F. graminearum, F. culmorum, F. avenaceum and F. poae using real-time PCR 

assays as described by Waalwijk et al. (2004). 

 

 

2.1.14 Analysis of mycotoxins  

In field experiments, the mycotoxin content of kernel samples were measured as 

described by Sulyok et al. (2006 and 2007). Methanol and acetonitrile (both LC gradient 

grade) were purchased from J.T. Baker (Deventer, The Netherlands) and ammonium acetate 

(MS grade) and glacial acetic acid (p.a.) were obtained from Sigma-Aldrich (Vienna, 

Austria). Water was purified successively by reverse osmosis and a Milli-Q plus system from 

Millipore (Molsheim, France). Mycotoxin standards were purchased from different sources 

and were dissolved in acetonitrile (ACN) if not stated otherwise. Stock solutions of nivalenol 

(NIV), deoxynivalenol (DON), fusarenon X (FUSX), 3-acetyldeoxynivalenol (3ADON), 

Diacetoxyscirpenol (DAS), HT-2 toxin (HT-2), T-2 toxin (T-2), zearalenone (ZON), alpha-

zearalenol (a-ZOL), fumonisins B1 and B2 (FB1, FB2, in ACN/H2O 1+1) were obtained 

from Biopure Referenzsubstanzen GmbH (Tulln, Austria). Moniliformin (MON, dissolved in 

MeOH) were received from Sigma-Aldrich. A stock solution of enniatin A, A1, B and B1 

(ENN A, ENN A1, ENN B, ENN B1) was provided by Dr. Marika Jestoi (EELA Helsinki, 

Finland). Deoxynivalenol-3-glucoside (D3G) was isolated from wheat treated with DON.  

Four combined working standard solutions were prepared weekly by dilution of the 

stock solutions of the analytes in the related solvents, i.e. MeOH (for MON), MeOH/H2O  
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1 + 1 (for Z4S, ERA and ERC), ACN/H2O 1 + 1 (for FB1 and FB2) and ACN (for all other 

analytes), respectively. All solutions were stored at -20 ºC and were brought to room 

temperature before use. 

 

 

Instrumental conditions 

Detection and quantification was performed with a QTrap 4000 LC/MS/MS system 

(Applied Biosystems, Foster City, CA, USA) equipped with a TurboIonSpray ESI source and 

a 1100 Series HPLC system (Agilent, Waldbronn, Germany). Chromatographic separation 

was performed at 25 ºC on a Gemini1 C18 column, 150 × 4.6 mm i.d., 5 mm particle size, 

equipped with a C18 4 × 3 mm i.d. security guard cartridge (all from Phenomenex, Torrance, 

CA, USA). Both eluents contained 5mM ammonium acetate and were composed of 

methanol/water/acetic acid 10+89+1 (v/v/v; eluent A) or 97+2+1 (eluent B), respectively. 

After an initial time of 2 min at 100 % A, the proportion of B was increased linearly to 100 % 

within 12 min, followed by a hold time of 3 min at 100 % B and 4 min column re-

equilibration at 100 % A. The flow rate was 1 mL/min. The column effluent was transferred 

via a six-port valve (VICI Valco Instruments, Houston, TX, USA) either to the mass 

spectrometer (between 2 and 17 min; no flow splitting was used) or to the waste. ESI-MS/MS 

was performed in multiple reactions monitoring (MRM) mode both in positive and negative 

polarity in two separate chromatographic runs per sample.  

 

 

Calibration solutions 

For external calibration, a multi-analyte stock solution was freshly prepared by mixing 

the four combined working solutions (200 mL each) and 800 mL of mobile phase A. This 

solution was further diluted with mobile phase A to obtain appropriate concentrations (for the 

method validations experiments. For the validation experiments, the concentrations were 

matched on each level to the expected analyte concentration in the final diluted extract. 

 

 

Spiking 

Ground wheat kernels (0.250 g) were spiked by consecutively adding the appropriate 

amounts of the four combined working solutions. The samples were subsequently stored for 

overnight at 40 ºC to allow evaporation of the solvent and to establish equilibration between 

the analytes and the matrix. 
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Extraction 

A volume of 1 mL of extraction solvent (CH3CN/H2O/HAc 79+20+1) was added to 

0.25 g of ground wheat kernels. The samples were extracted for 90 min using a GFL 3017 

rotary shaker (GFL, Burgwedel, Germany) and subsequently centrifuged for 2 min at 3000 

rpm (radius: 15 cm) on a GS-6 centrifuge (Beckman Coulter Inc., Fullerton, CA, USA). The 

extracts were transferred into glass vials using Pasteur pipettes and aliquots of 350 µL were 

diluted with the same amount of a mixture containing CH3CN/H2O/HAc (20+79+1). After 

appropriate mixing, 5 µL of the diluted extract were injected into the LC/MS/MS system 

without further pre-treatment. To perform the optimization of the extraction solvent, samples 

were spiked at one concentration level in duplicate or triplicate and extraction  

was performed by adding 2mL of the investigated solvent mixture. Crude extracts  

were diluted 1+9 with eluent A prior to analysis in this experiment to reduce signal 

 suppression/enhancement due to matrix effects. 

 

  

2.1.15 Statistical analysis  

The average values of diseases severity ratings, 1000-kernel weight, frequency of re-

isolation and the content of fungal DNA were separately determined for each replication, sub-

plot or plots. The effects of trials, fungal species, treatment and their interactions on frequency 

of infected kernels, diseases severity ratings, the content of fungal DNA and 1000- kernel 

weight reduction were analysed using Proc GLM procedures (SAS Release Version 9.0, SAS 

Institute, Inc., Cary, NC). Fungal species and treatments considered as a fixed effects in these 

analyses. Mean comparisons were made using Duncan's new multiple range test at 5 % 

probability. When it was necessary data were log-transferred prior to analysis. Simple linear 

regressions were calculated for pairwise comparisons among content fungal DNA, frequency 

of infected kernels, diseases severity ratings and 1000-kernel weight. Pairwise comparisons of 

mean values were made using t-test (Elliott, 2006). The Chi-square goodness of fit test was 

used to study Shift in the ratio among Fusarium species during Fusarium head blight 

development. 
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2.2 Results 

2.2.1 Specificity of primers 

PCR was performed with the species-specific primer pairs resulted in single fragments 

for individual Fusarium species. The Fp82F/R, MGB (minor group binding) GRA, MGBCUL 

and MGBAVE primers amplified fragments with the size of 220, 100, 60 and 58 bp that were 

unique for all isolates of F. poae, F. graminearum, F. culmorum and F. avenaceum, 

respectively. No cross reactivity was observed with other fungal and matrix DNA as well as 

in the negative control (lacking DNA template) (Table 8, Figure 1-7), indicating the 

specificity of the primer sets.  

In some cases, MGBGRA, MGBCUL primers amplified a PCR product with matrix 

plant DNA (Figures 4 and 6). Further assays showed that when the annealing temperature 

increased to 60 ºC, the primers showed specific amplification (Figures 3 and 5). In most cases 

the results of morphological identification of tested Fusarium species was confirmed using 

PCR assays with species-specific primers for individual species. However, there was no 

amplification in three isolates (7.2, 7.10 and 7.13) of F. poae, with Fp82F/R primer (Figure 

1).  

 

Table 8: Specificity of primers for the detection of F. graminearum, F. culmorum,  

F.  avenaceum and F. poae in the presence of matrix DNA and other fungal species 

 
Fungal and matrix 

DNA 

Primer 

F. 

graminearum1 

F. 

culmorum2 

F. 

avenaceum3 

F. 

poae4 

Fusarium 

 spp.5 

Matrix 

DNA6 

Fungal 

species7 

MGBGRA + - - - - - - 

MGBCUL - + - - - - - 

MGBAV - - + - - - -  

Fp82 - - - + - - - 

1F. graminearum isolates, 5.1, 10, 15, 17 and 5.19; 2 F. culmorum isolates, 3.6, 9, 12, 14, 16, 17, 18, 22, 33, 35, 

36 and 3.37; 3 F. avenaceum isolates, 1.7, 8, 12 and 1.16; 4 F. poae isolates, 7.3, 5, 6, 8, 9, 11, 12, 14, 15, 16 and 

DSM 62376; 5 F. langsethae isolate, 18.1, F. tricinctum isolate, 10.10,  F. sporotrichioides isolates, 9.9 and 9.10, 

and F. cerealis; 6 Matrix DNA, DNA of wheat stem, leaf and kernel; 7 fungal species, Blumeria graminis, 

Puccinia sp., Trichoderma sp.,  Alternaria sp., Aspergillus sp. and Penicillium sp. The isolates were sourced 

from Institute of Crop Science and Resource Conservation, University of Bonn, Germany. 

 



RESULTS 
 

 39

 
 
 
 
220 bp 

         
 
Figure 1: Agarose gel electrophoresis of DNA amplification from different isolates of F. poae using primer pair 
                Fp82F/R. Lanes 1-6, F. poae 5.1, 2, 3, 4, 5 and 5.6; Lanes 7-20, F. poae 7.16, 15, 14, 13, 12, 11, 10, 9,  
                8, 6, 5, 3, 2 and 62376, respectively.  
 
 
 
 
 
 

220 bp 

 
 
 

 

Figure 2: Agarose gel electrophoresis of DNA amplification of fungal species commonly found with head blight 
and matrix DNA using primer pair Fp82F/R. C, non-template control (water); Lanes 1-4, F. poae, 
wheat stem, kernel and leaf; Lanes 5-9, Blumeria graminis, Puccinia sp., Trichoderma sp., two 
isolates of Alternaria sp.; Lanes 10-13, F. tricinctum, two isolates of F. sporotrichioides, F. cerealis; 
Lanes 14-15, Aspergillus sp. and Penicillium sp., respectively. Wheat stem and leaf are from healthy 
plant (greenhouse) and wheat kernel from field infected by F. graminearum and F. culmorum. 

 
 

 
 
Figure 3: Agarose gel electrophoresis of DNA amplification from different isolates of F.  graminearum using  

 primer pair MGBGRA F/R. M, DNA ladder; C, non-template control (water); Lanes, 1-3 wheat stem,   
 kernel and leaf; Lanes 4-7, F. graminearum 5.10, 15, 17 and 5.19 isolates, respectively. 

 
 

C       1      2       3       4       5       6        7       8      9     10      11     12     13     14 

3    4    5    6    7    8    9   10   11   12   13  14   15  16 17  18  19  20   C      C    1    2 3    4    5    6    7    8    9   10   11   12   13  14   15  16 17  18  19  20   C      C    1    2

M C 1 2 3 4 5 6 7

 100 bp 
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Figure 4: Agarose gel electrophoresis of DNA amplification of fungal species commonly found with Fusarium 
head blight and matrix DNA using primer pair MGBGRA F/R. M, DNA ladder; C, non-template 
control (water); Lanes 1-4, F. graminearum, wheat stem, kernel and leaf; Lanes 5-9, Blumeria 
graminis, Puccinia sp., Trichoderma sp. and two isolates of Alternaria sp.; Lanes 10-13, F. tricinctum 
and two isolates of F. sporotrichioides,  F. cerealis; Lanes 14-15, Aspergillus sp. and Penicillium sp., 
respectively. 

 
 

Figure 5: Agarose gel electrophoresis of DNA amplification of fungal species commonly found with Fusarium 
head blight and matrix DNA using primer pair MGBFCUL F/R. M, DNA ladder; C, non-template 
DNA (water); Lanes 1-2, Aspergillus sp. and Penicillium sp.; Lanes 3-7, Blumeria graminis, Puccinia 
sp., Trichoderma sp. and two isolates of Alternaria sp.;  Lanes 8-11, F. tricinctum, two isolates of F. 
sporotrichioides and F. cerealis; Lanes 12-15, wheat leaf, kernel, and F. culmorum tester isolate and 
wheat stem, respectively.  

 

Figure 6: Agarose gel electrophoresis of DNA amplification from different isolates of F. culmorum using primer 
pair MGBCULF/R. M, DNA ladder; C, non-template control (water); Lanes 1-3, wheat stem, kernel 
and leaf; Lanes 4-15 F. culmorum 3.6, 9, 12, 14, 16, 17, 18, 22, 33, 35, 36 and 3.37 isolates, 
respectively. 

 

 

 M    C     1     2     3     4      5    6     7      8      9     10     11   12   13    14    15   M    

100 bp 

50 bp 

M C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 M

M C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 M

50 bp 
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Figure 7: Agarose gel electrophoresis of DNA amplification of fungal species commonly found with Fusarium 

head blight, matrix DNA and different isolates of F. avenaceum using primer pair MGBAVEF/R. M, 
DNA ladder; C, non-template control (water); Lanes 1-3, wheat stem, kernel and leaf; Lanes 5-7, 
Blumeria graminis, Puccinia sp., Trichoderma sp. and Alternaria sp.; Lanes 8-11, F. tricinctum, two 
isolates of F. sporotrichioides and F. cerealis; Lanes 12-13 Aspergillus sp. and Penicillium sp.; Lanes,  
13-18 F. avenaceum 1-7, 8, 9, 12, and  1.16, respectively. 

 
 
 
2.2.2 Development of real-time PCR for the quantification interactions among Fusarium  

species on wheat ears 

Melting curve analysis  

The results of real-time PCR using SYBR Green I for Fusarium graminearum, F. 

culmorum, F. avenaceum and F. poae confirmed the results of the primer specificity obtained 

with conventional PCR. Using the species-specific primers for F. graminearum, F. culmorum, 

F. avenaceum and F. poae no PCR amplification or melting curve was observed neither for 

the negative control nor for other Fusarium species or other fungal species commonly found 

on wheat (Figure 8), which indicates the specificity of primers and accuracy of the real-time 

PCR.  Melting curve analysis revealed the presence of a single peak for individual Fusarium 

species. Melting temperatures (MT) for amplicons were 81.2 °C, 77.5 °C, 79.0 °C and 81.4 

°C for F. graminearum, F. culmorum, F. avenaceum and F. poae, respectively. The 

concentration of fungal DNA did not affect the melting temperature of the amplicons. A direct 

correlation existed between the amounts of PCR product and the height of the melting curve.  

 

 

Standard curve 

For the quantification of Fusarium species via real-time PCR, threshold cycles 

correlated with a known amount of Fusarium DNA. For all Fusarium species, standard curves 

were prepared based on ten threshold cycles from ten-fold serially diluted DNA in two 

replications of real-time PCR. Standard curves are presented in Figure 9 for F. graminearum, 

F. culmorum, F. avenaceum and F.  poae.  
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                                      Temperature (°C)                                                                Temperature (°C) 
 
Figure 8: Melting curves (fluorescence derivative dF/dT versus temperature °C) of specific amplicons for F. 

avenaceum, F. culmorum, F. graminearum and F. poae in a matrix of fungal and plant DNA. 
* Peaks or curves indicated species-specific amplification in real-time PCR with a mixture of plant and 
fungal DNA in different samples 
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Figure 9: Standard curve for the quantification of Fusarium spp.  using Sybr green real-time   

PCR 
 
 

Overall, there were highly negative correlations (R2 ≥ 0.99) between threshold cycle 

values and the amounts of fungal DNA for all species. The negative correlations ranged from 

 R2 = 0.99 to 0.999 for F. culmorum and F. graminearum, R2 = 0.989 to 0.997 for F. 

avenaceum and R2 = 0.985 to 0.995 for F. poae. The standard deviation of the negative 

correlations between the threshold cycle values and amount of fungal DNA in different real-

time PCR runs was less than 0.007 for the Fusarium species tested. These results indicated 

that real-time PCR technique was able to quantify the amount of Fusarium DNA in unknown 

samples with high reproducibility. The slope ranged from –3.32 to –3.75 and the 

amplification efficiency varied from 1.88 to 2.0.  

 

 

Validation assays  

Results of reproducibility of DNA extraction procedure, intra and inter assays has 

been summarized in Table 9. The standard deviation of threshold cycles value of nine 

different DNA preparations, intra- and inter-assays of F. graminearum ranged from 0.10 to 
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0.44, F. culmorum 0.10 to 0.15, F. avenaceum 0.2 to 0.33 and F. poae 0.11 to 0.66.  The 

standard deviation of threshold cycle values among DNA preparations was higher than that 

for the other assays and reached 0.66 for F. poae, while intra-assays had the lowest standard 

deviations. Fusarium culmorum had the lowest standard deviation of threshold cycle values in 

all assays. 

 
 
Table 9: The threshold cycle values and standard deviation among DNA preparations using 

CTAB method (n = 9), intra assays and inter assays using real-time PCR assays 

 

Fusarium species Reproducibility 

DNA preparations Intra-assays Inter-assays 

F. graminearum 20.84 ± 0.24 20.95 ± 0.10 20.30 ± 0.44 

F. culmorum 20.37 ± 0.15 20.39 ± 0.10 20.30 ± 0.14 

F. avenaceum 23.98 ± 0.31 24.00 ± 0.20 24.49 ± 0.33 

F. poae 24.80 ± 0.66 24.80 ± 0.11 24.70 ±  0.18 

 
 

 
 
2.2.3 DNA extraction methods 

DNA was extracted from 250 mg ground wheat kernels inoculated with F. 

graminearum, F. culmorum, F. avenaceum and F. poae using three different DNA extraction 

methods. The mean value of optical density in 260/280 and 260/230 ratios was higher than 1.5 

for the CTAB and CTAB + DNeasy Plant Mini kit, while it was less than 1.0 for Plant Mini 

kit method (Table 10). For the DNeasy Plant Mini kit the absorbance of purified DNA had 

two decimal zeros compared to the other methods, which had one decimal zero.  The CTAB 

method gave the highest amount of DNA, followed by CTAB + DNeasy Plant Mini kit and 

Plant Mini kit with the average of 90 % and 16 % of the CTAB DNA, respectively.   
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Table 10: Comparison of absorbance of the purified DNA using three different DNA 

extraction methods in 230, 260 and 280 nm and 260/280 and 230/260 ratios 

 

 
 

 

The CTAB method had the lowest threshold cycles (19.2-23.35) from 250 mg of 

kernel material for detecting different Fusarium species as well as little variation among the 

replicates (0.09 - 0.69) and the extraction process (Table 11). The threshold cycles (19.7-23.8) 

and standard deviations (0.21 - 0.71) in CTAB + DNeasy Plant Mini kit method were a little 

higher than CTAB. The DNeasy Plant Mini kit method had the highest threshold cycles (21.3 

- 25.7) and standard deviation (0.56-0.85). The threshold cycles were different among 

Fusarium species and increased in the order F. culmorum, F. graminearum, F. avenaceum 

and F. poae (Table 11).   

 

 

2.2.4 Inoculum production  

All species produced a large amount of mycelium in PDB. Mucilaginous colonies with 

large quantities of conidia characterized by great reduction in mycelia formation were formed 

within 2 days after transferring the mycelia onto LSPDA (Low Strength Potato Dextrose  

Agar), SNA (Synthetic Nutrient Agar) or WA (Figure 10). With the method described here, a 

high amount of conidia was produced in a short time for Fusarium spp. Most isolates of F. 

graminearum did not led to produce enough spores with the most common methods, while all 

isolates of tested Fusarium species gave a high amount of conidia in a very short time. For 

example, two days in PDB and two days incubation on LSPDA, WA and SNA, the number of 

conidia produced by F. graminearum, F. culmorum, F. avenaceum, F. poae and F. tricinctum 

was 14.0, 29.0, 15.0, 2.3, and 74.0 times higher than with the conventional method, 

 Method Starting 
material (mg) 230 260 280 260/230 260/280 Amount 

(ng/µl) 
1 CTAB 250 0.013 0.030 0.017 2.21 1.77 59 
2 CTAB 250 0.019 0.035 0.019 1.88 1.81 70 
3 CTAB 250 0.013 0.027 0.015 2.1 1.75 53 
4 CTAB+KIT 250 0.016 0.030 0.017 1.87 1.72 60 
5 CTAB+KIT 250 0.003 0.022 0.013 4.05 1.66 44 
6 CTAB+KIT 250 0.010 0.031 0.017 3.11 1.79 61 
7 KIT 250 0.005 0.009 0.007 1.8 1.21 17 
8 KIT 250 0.007 0.004 0.003 0.59 1.40 9 
9 KIT 250 0.013 0.003 0.003 0.2 0.87 5 
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respectively (Table 12). This was in comparison to the conventional methods which required 

1 to 3 weeks and still resulted in lower conidiation especially for F. graminearum.  
 

  

Table 11: The mean threshold cycle values and standard deviations among three different 

DNA extraction methods using real-time PCR assays 

 

 

 

The conidia-producing ability using the new method decreased in the order F. 

tricinctum, F. culmorum, F. avenaceum, F. poae and F. graminearum. F. avenaceum, F. poae 

and F. tricinctum produced all types of conidia with the new method, while with the 

conventional method they mostly produced microconidia and only very few number of 

macroconidia.  

In tests on the virulence of conidia produced with the different methods, the frequency 

of kernel infection, FHB severity and Fusarium biomass of kernels as measured Fusarium 

DNA content were not significantly different for both methods (Table 13). For highly virulent 

species, symptoms were observed within 1 to 2 days after inoculation. For both methods, F. 

graminearum resulted in the highest rates of infection and colonization as well as FHB 

severity, followed by F. culmorum, F. avenaceum and F. poae, respectively.  
 

 

 

 

 

 

Fusarium species Threshold cycle 

CTAB CTAB + Plant Mini kit Plant Mini kit 

F. graminearum 19.70 ± 0.20 20.20 ± 0.60 22.30 ± 0.60 

F. culmorum 19.27 ± 0.09 19.70 ± 0.44 21.30 ± 0.56 

F. avenaceum 22.77 ± 0.63 23.14 ± 0.21 24.50 ± 0.85 

F. poae 23.35 ± 0.69 23.85 ± 0.71 25.70 ± 0.66 
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Table 12: Comparison of number of conidia produced by conventional and the new spore 

production methods on different media (data × 10 6 are the number of conidia per 

plate) 

 

Fusarium species Conventional on 

LSPDA1 

New method on  

LSPDA1 SNA2 WA3 

F. graminearum 1.3 19.5 20.5 14.5 

F. culmorum 2.8 145.0 60.0 35.5 

F. avenaceum 4.3 28.0 120.0 42.5 

F. poae 23.8 50.0 65.0 50.0 

F. tricinctum 2.3 200.0 225.0 85.0 

1 Low-strength PDA;   2 Synthetic nutrient-poor agar;   3 Water agar   

 

 

Table 13: Comparison conventional and new spore production methods in frequency and  

 intensity of kernel colonization, and ratings of disease severity of wheat ears (cv. 

 Munk) inoculated with Fusarium spp. at GS 65 

 
Inoculation  Disease severity 

[ratings] 
Freq. infected kernel 

[ % ] 

Amount of fungal 
biomass [ng/mg 

kernel dry weight] 
CONVE. NEW CONVE. NEW CONVE. NEW 

Non-inoculated 1.0 1.0     
F. graminearum  6.5 7.1 65.2 63.5 15.9 17.4 
F. culmorum  4.5 5.2 49.6 47.5  9.4 10.5 
F. avenaceum  3.4 3.5 35.2 28.5 1.0 0.6 
F. poae  1.0 1.0 2.0 7.0* 0.05 0.06 
* Significantly different from conventional method (t-test, p ≤ 0.05)  
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Figure 10: Comparison of mycelia and conidia produced with a conventional and the new 

spore production method. A and B, conventional method, F. graminearum 10 

days old on LSPDA; C and D, new method, F. graminearum 2 days on LSPDA; E 

and F, new spore production F. culmorum and F. avenaceum, respectively. 

 

 

2.2.5 Greenhouse experiments  

Wheat ears inoculated at mid-flowering with one single isolate of Fusarium species or 

a mixture of two to four isolates, respectively, were investigated under controlled conditions 

for visible disease development during ripening, the effect on 1000-kernel weight, the 

frequency of infected kernels as well as the Fusarium species-specific amount of DNA. In 

both years of investigation, inoculum concentration increased with the number of Fusarium 

isolates in the mixture (5 x 104 for one isolate, 2 x 105 for the mixture of four isolates; = 

variable conc.). In 2006, additional treatments with a constant concentration (5 x 104 conidia 

ml-1; = constant conc.) were used.   

 

 

 

 



RESULTS 
 

 49

2.2.5.1 Effects of single and mixed inoculations with Fusarium spp. on disease severity 

ratings 

The Fusarium species isolates as well as the composition of inoculum significantly affected 

visible FHB severity. With single isolate inoculation, F. graminearum (Fg) resulted in the 

highest disease level, followed by F. culmorum (Fc), F. avenaceum (Fa) and F. poae (Fp), 

respectively (Table 14).  

 

 

Table 14: Visual ratings of Fusarium head blight severity (1 to 9) after inoculation of wheat 

ears (cv. Munk) with different combinations of Fusarium species at GS 65 (data are 

the average of three ratings 14, 21 and 28 days after inoculation)  
 

1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 

1.7; FP, F. poae isolate 7.8 
2 Inoculation with variable inoculum concentrations of (50,000 conidia ml -1 per species)  
3 Inoculation with constant amount of inoculum (50,000 conidia ml -1)  
4 Means with the same letters within a column are not significantly different (Duncan test, 

   p ≤ 0.05)  

 * Pairwise comparison variable and constant inoculum (2006), t-test (p ≤ 0.05) 

 

 

  Fusarium head blight (FHB) severity slightly increased with increasing inoculum 

concentration in the mixture (variable conc.). However, no significant differences were 

Inoculum 1 2005 2006 2006 
 Variable conc. 2 Variable conc. 2 Constant conc. 3 
F. graminearum (FG) 6.5 C 4 7.1 D 7.1 A-C 
F. culmorum (FC) 4.5 DE 5.2 F 5.2 F 
F. avenaceum (FA) 3.4 F 3.5 G 3.5 G 
F. poae (FP) 1.0 H 1.0 H 1.0 H 
FG + FC 7.6 B 7.8 BC 7.4 AB * 
FG + FA 7.7 B 6.5 E 7.7 A * 
FG + FP 7.0 BC 7.2 CD 6.9 BC * 
FC + FA 4.9 D 6.6 E 5.0 F * 
FC + FP 3.4 F 6.9 DE 6.0 DE * 
FA + FP 2.3 G 3.2 G 3.7 G 
FG + FC + FA 7.6 B 7.8 B 7.5 AB 
FG + FC + FP 7.4 B 7.5 BC 7.7 A 
FG + FA + FP 6.3 C 7.8 B 6.9 BC * 
FC + FA + FP 3.8 EF 6.5 E 5.9 E * 
FG + FC + FA + FP 8.7 A 8.5 A 6.5 CD * 
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observed for most of the treatments including F. graminearum in mixture with one or two 

other isolates. The mixture of all isolates resulted in the highest disease ratings, with FHB 

indices 1.5 to 2 and 0.7 to 1.0 higher than those for ears inoculated with F. graminearum 

alone and the other mixtures, respectively. In 2005, FHB severity of ears inoculated with F. 

culmorum was similar to or a little bit higher than FHB indices for the combinations with F. 

avenaceum, F. poae and the three-party mixture. In 2006, these combinations gave 

significantly higher disease indices. Combinations of the less virulent F. avenaceum and F. 

poae with other more virulent isolates resulted in disease indices very similar to the more 

virulent ones alone. 

With a constant inoculum concentration, F. graminearum isolate alone or in mixtures 

with one, two or three other isolates, gave high disease severities, which did not differ 

significantly from each other (Table 14). Mixtures of Fusarium species isolates differing in 

virulence gave disease indices similar to or only slightly higher (Fc with Fp, Fc with Fa and 

Fp, Fa with Fp) than those of the more virulent ones alone. As expected from the lower total 

number of conidia inoculated, the inoculation with constant number of conidia resulted in a 

significantly lower disease index than that with variable inoculum concentrations for 7 out of 

11 combinations; there was only one case with an opposite effect (Fg with Fa). Also with the 

constant inoculum approach, combinations of isolates had no additive or synergistic effects on 

disease severity.  

  

 

2.2.5.2 Effects of single and mixed inoculations with Fusarium spp. on reduction of 1000-  

kernel weight  

For variable concentrations of inoculum, inoculations with F. graminearum isolate 

alone or in mixtures with other isolates reduced the kernel weight by 40 to 50 %; the effect of 

F. culmorum was significantly lower (Table 15). In mixtures, the reduction of kernel weight 

by F. graminearum was hardly affected by the other isolates, except for the mixture of all 

isolates and the combinations with F. culmorum in 2006, which increased the damage. Kernel 

weights of plants inoculated with F. avenaceum and/or F. poae were not significantly 

different from those of non-inoculated control plants. Mixtures with F. culmorum gave 

slightly higher damage, but only in 2006, the combination Fa with Fc resulted in an additive 

effect on 1000-kernel weight reduction. Pairwise comparisons of the 2006 data demonstrated 

that only five treatments with constant inoculum concentration resulted in a lower reduction 

of kernel weight than the variable concentration approach.  
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Table 15: Effect of different combinations of Fusarium species on the 1000-kernel weight of 

wheat (cv. Munk) after inoculation of ears at GS 65  

 

1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate   

  1.7; FP, F. poae isolate 7.8 
2 Inoculation with variable inoculum concentrations of (50,000 conidia ml -1 per species) 
3 Inoculation with constant amount of inoculum (50,000 conidia ml -1) 
4 Means with the same letters within a column are not significantly different (Duncan test, p ≤  

  0.05)  
* Pairwise comparison variable and constant inoculum (2006), t-test (p ≤ 0.05)  

 

 

 

 

 

 

Inoculum 1 2005 2006 2006 

 Variable conc.2 Variable conc.2 Constant conc.3 

Non-inoculated 25.8 A 4 27.7 A 27.7 A 

F. graminearum (FG) 12.9 E-G 16.1 DE 16.1 E-G 

F. culmorum (FC) 18.4 B-D 24.5 AB 24.5 AB 

F. avenaceum (FA) 21.6 A-C 26.1 A 26.1 A 

F. poae (FP) 22.5 AB 27.7 A 27.7 A 

FG + FC 11.3 FG 10.6 FG 13.3 G 

FG + FA 10.6 FG 11.7 E-G 14.5 G 

FG + FP 10.9 FG 14.3 EF 12.6 G 

FC + FA 18.9 B-D 19.2 CD 25.8 A * 

FC + FP 20.3 BC 21.0 BC 21.6 B-D 

FA + FP 22.7 AB 23.0 A-C 23.8 A-C 

FG + FC + FA 12.5 E-G 9.1 G 15.3 FG * 

FG + FC + FP 14.6 D-F 10.7 FG 16.6 E-G * 

FG + FA + FP 16.5 DE 12.6 E-G 19.0 D-F * 

FC + FA + FP 21.0 A-C 20.1 B-D 21.7 B-D 

FG + FC + FA + FP 8.4 G 10.0 FG 20.1 C-E * 
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2.2.5.3 Effects of single and mixed inoculations with Fusarium spp. on frequency of 

Fusarium-infected kernels  

In single isolate inoculations, F. graminearum resulted in the highest rate of infected 

wheat kernels followed by F. culmorum, F. avenaceum and F. poae, respectively (Table 16 

and 17). For variable concentrations of inoculum, the frequency of kernels infected with  

F. graminearum was similar for all combinations including this isolate, except the mixture 

with F. culmorum isolate, which resulted in a significant lower frequency of F. graminearum 

infected kernels. In this combination, however, the frequency of F. graminearum was twice as 

high as that of F. culmorum. The frequency of kernels infected with F. culmorum, F. 

avenaceum and F. poae, respectively, was lower in mixed inoculations than when inoculated 

alone; in most cases this effect was significant demonstrating decreasing competitiveness of 

the isolates in the order F. graminearum, F. culmorum, F. avenaceum, and F. poae. Mixtures 

generally resulted in a higher total frequency of Fusarium infected kernels with the mixture of 

all isolates reaching almost 97% in 2005 and 81% in 2006; mixtures of two or three isolates 

gave lower infection rates. The total infection rates resulting from Fusarium mixtures were 

significantly lower than the sum derived from single isolate inoculations demonstrating 

significant interactions between isolates during kernel colonization.  

With a constant inoculum concentration of 5 x 104 conidia ml-1 in all treatments, 

inoculation with F. graminearum isolate alone gave the highest infection rate (Table 17). The 

reduction in the number of F. graminearum conidia in mixtures by the factor of 2, 3, and 4 

reduced the frequency of F. graminearum-infected kernels by 14 % (in combination with F. 

poae) to 45 % (with F. culmorum) demonstrating significant differences in the 

competitiveness of the isolates. In all mixtures, the reduction in the frequency of Fusarium 

infected kernels compared to single isolate inoculations was more pronounced than in the 

experiments with variable inoculum concentrations; this effect was strongest for F. 

graminearum and often resulted in a frequency of almost 0 for F. poae. Especially for the 

combinations involving F. graminearum and F. culmorum isolates, the total rate of infected 

kernels was significantly lower than that detected with variable inoculum concentrations. This 

effect increased with the number of isolates in the mixture resulting in similar total rates for 

mixtures of two, three or four isolates.   
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Table 16: Frequency of Fusarium-infected wheat kernels (cv. Munk) after inoculation of ears 

with different combinations of Fusarium species at GS 65 (2005, variable inoculum 

concentrations)  

 

Inoculum 1 Infected kernels  [ % ] 

 FG FC FA FP Total 

F. graminearum (FG) 65.2 A 2     3 65.2 C-E 2

F. culmorum (FC)   49.6 C    49.6 E-G 

F. avenaceum (FA)    35.2 DE   35.2 GH 

F. poae (FP)     2.0 H 2.0 I 

FG + FC 52.0 BC 24.0 EF    76.0 BC 

FG + FA 68.0 A  10.0 GH   78.0 A-C 

FG + FP 71.2 A   0 H 71.2 B-D 

FC + FA   37.2 D 19.6 FG   56.8 D-F 

FC + FP   37.6 D  1.6 H 39.2 F-H 

FA + FP    27.2 D-F 2.2 H 29.4 H 

FG + FC + FA 60.0 A-C 19.4 FG 10.0 GH   89.4 AB 

FG + FC + FP 60.0 A-C 18.8 FG  1.2 H 80.0 A-C 

FG + FA + FP 65.2 A  18.0 FG 0 H 83.2 A-C 

FC + FA + FP   35.2 DE 20.0 FG 0.4 H 55.6 D-F 

FG + FC + FA + FP 62.8 AB 24.0 EF 9.2 GH 0.8 H 96.8 A 

LSD 16.6  13.9 7.3 1.4   

1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate    

  1.7; FP, F. poae isolate 7.8 
2 Means were separated by independent multivariate analyses for Fusarium isolates and total 

Fusarium infected kernels, respectively (Duncan test, p ≤ 0.05)  
3 The total number of infected kernels is the sum of the individual isolates  

LSD, least significant difference within columns (Duncan test, p ≤ 0.05)  
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Table 17: Frequency of Fusarium-infected wheat kernels (cv. Munk) after inoculation of ears with variable and constant inoculum concentrations, 

respectively, of Fusarium species at GS 65 (2006)  

 

Inoculum 1 Variable inoculum concentration 2  Constant inoculum concentration 3 
FG FC FA FP Total FG FC FA FP Total 

F. graminearum (FG) 63.5 AB 3    5 63.5 CD 4 63.5 A3    5 63.5 A4 
F. culmorum (FC)   47.5 EF   47.5 E  47.5 C   47.5 B-D 
F. avenaceum (FA)    28.5 G  28.5 F   28.5 F  28.5 E 
F. poae (FP)     7.0 K-M 7.0 G    7.0 IJ 7.0 F 
FG + FC 56.0 DC 12.5 JK   68.5 C 35.0 E   * 13.0 GH   48.0 B-D * 
FG + FA 65.0 AB  3.0 M  68.0 C 47.0 C   *  2.0 JK  49.0 B-D * 
FG + FP 67.0 A   0 M 67.0 C 55.0 B   0 K 55.0 B 
FC + FA   37.5 G 6.0 K-M  43.5 E  27.0 F   * 1.5 J   *  28.5 E     * 
FC + FP   45.0 F  3.0 M 48.0 E  41.5 D  0.4 K  * 42.0 D 
FA + FP    24.0 HI 5.5 K-M 29.5 F   24.0 F 2.0 J 26.0 E 
FG + FC + FA 53.0 DE 11.5 J-L 5.0 K-M  69.5 BC 35.0 E   * 11.0 I 2.0 JK *  48.0 B-D * 
FG + FC + FP 59.0 B-D 17.5 IJ  1.0 M 80.5 AB 38.0 DE * 16.0 G  0 K   * 54.0 BC  * 
FG + FA + FP 61.0 A-C  7.0 K-M 2.0 M 70.0 A-C 50.0 C   *  2.0 JK * 1.0 K 53.0 BC  * 
FC + FA + FP   47.0 EF 6.5 K-M 0 M 53.5 DE  41.5 D   * 4.0 JK 0 K 45.5 CD 
FG + FC + FA + FP 59.5 B-D 15.0 J 5.0 K-M 1.5 M 81.0 A 40.0 DE * 9 HI  3.0 JK 0 K   * 52.0 BC  * 
LSD 9.6  6.6  4.0  2.6   6.6  6.6  4.2  1.0    
1FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 1.7; FP, F. poae isolate 7.8  

 2 Inoculum concentration 5 x 104 conidia ml-1 per species in mixture 
3 Inoculum concentration constant (5 x 104 conidia ml-1) 
4 Means were separated by independent multivariate analyses for Fusarium isolates and total Fusarium colonization within inoculation (Duncan 

test, p ≤ 0.05) 

 * Significantly different from variable inoculum concentration (t-test, p ≤ 0.05) 
5 The total number of infected kernels is the sum of the individual isolates; LSD, least significant difference within columns (Duncan test, p ≤ 0.05)   
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2.2.5.4 Effects of single and mixed inoculations with Fusarium spp. on fungal biomass 

measured as species-specific DNA content  

Results from experiments in two years demonstrated high reproducibility of the 

variability among the isolates regarding fungal biomass of wheat kernels (Table 18 and 19). 

For inoculations with one isolate, F. graminearum gave by far the highest amount of fungal 

DNA, followed by F. culmorum, F. avenaceum and F. poae with 60%, 5%, and 0.3%, 

respectively, of the fungal DNA content in kernels as compared to F. graminearum. Similar to 

the frequency of infected kernels, the F. graminearum biomass was not affected in most 

combinations with other isolates, except for the two-isolate mixture with F. culmorum when 

DNA content was significantly reduced. In these interactions, the content of F. graminearum 

DNA decreased - relative to single isolate inoculation – by 30% compared to almost 50% for 

F. culmorum (Tables 5 and 6).  

The inherent low DNA content of F. avenaceum and F. poae was further reduced in 

mixtures with the other isolates even though to a non-significant level. For F. poae isolate, 

some mixtures even resulted in a non-significant increase in DNA content at a very low level. 

Although low in biomass, these isolates significantly reduced the biomass production by F. 

culmorum in kernels when inoculated in mixtures with this isolate. Wheat ears inoculated 

with a mixture of all four isolates (variable inoculum concentration) had the highest total 

DNA content, which was similar to those produced by the mixtures including F. graminearum 

isolate.  

Mixed inoculations with a constant concentration of conidia resulted in a decrease in 

the total fungal DNA content of the four isolates in wheat kernels largely reflecting the 

dilution factors in the inoculum mixtures (Table 19). The combination of all four isolates 

resulted in a total DNA concentration almost 50 % lower than that of the most virulent isolate 

and very close to the arithmetic mean for all isolates (8.8 vs. 7.2 ng mg-1 kernel dry weight). 

This effect was more pronounced for the DNA content than for the frequency of infected 

kernels (52 vs. 37 %). The reciprocal inhibition in development among isolates was very 

pronounced in the combination F. graminearum with F. culmorum when both isolates 

produced only about one third of the biomass they did after single isolate inoculations.  
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Table 18: Biomass of Fusarium species measured as fungal DNA content in wheat kernels 

(cv. Munk) after inoculation with variable inoculum concentrations at GS 65 

(2005)  

 

Inoculum 1 Fungal DNA content [pg/mg kernel dry weight] 

FG FC FA FP 2 Total 

F. graminearum (FG) 15921 A 3     
15921

C 3 

F. culmorum (FC)   9356 BC    
9356

D 

F. avenaceum (FA)    1065 FG   
1065

E 

F. poae (FP)     46 G 
46

E 

FG + FC 11241 B 5014 DE    
16255

C 

FG + FA 17565 A  679 G   
18244

A-C 

FG + FP 16387 A   95 G 
16482

BC 

FC + FA   3228 D-G 620 G 0 G 
3848

E 

FC + FP   4534 D-F  61 G 
4595

DE 

FA + FP    845 G 53 G 
898

E 

FG + FC + FA 15597 A 6596 CD 521 G   
22714

A 

FG + FC + FP 15007 A 2073 E-G  30 G 
17110

A-C 

FG + FA + FP 18111 A  864 G 145 G 
19120

A-C 

FC + FA + FP   2279 E-G 287 G 29 G 
2595

E 

FG + FC + FA + FP 17392 A 4181 D-F 529 G 0 G 
22102

AB 

LSD 4775  2983  754  ns   

Inoculation with variable inoculum concentrations (5 x 104 conidia ml-1 per species)  
1FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate  

  1.7; FP, F. poae isolate 7.8   
2 DNA content in pg/mg kernel dry weight  
3 Means were separated by independent multivariate analysis within Fusarium isolates and     

   total Fusarium DNA content (Duncan test, p ≤ 0.05)  

LSD, least significant difference within columns (Duncan test, p ≤ 0.05)  

NS, Not significant  
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Table 19: Biomass of Fusarium species measured as fungal DNA content of wheat (cv. Munk) kernels after inoculation with variable and      

 and constant inoculum concentrations, respectively, of Fusarium species at GS 65 (2006)  

Inoculum 1 Fungal DNA content of wheat kernels [pg/mg kernel dry weight] 
Variable inoculum concentration 2 Constant inoculum concentration 3 

FG FC FA FP Total FG FC FA FP Total 
F. graminearum (FG) 17360 AB 4    17360 AB 4 17360A 4    17360 A 4 
F. culmorum (FC)   10571 DE   10571 C  1057 B   1057 B-D 
F. avenaceum (FA)    620 H  620 D   620F  620 EF 
F. poae (FP)     59 H 59 D    59 F 59 F 
FG + FC 11904 DC 5460 G   17364 AB 5195CD * 3173 D-F   8368 B-D * 
FG + FA 15263 AB  333 H  15596 B 10976B  253F  11229 B 
FG + FP 17005 AB   77 H 17082 AB 10571B   36 F 10607 B-D 
FC + FA   7169 FG 286 H  7455 C  5410 C-E 188F  5598 C-E 
FC + FP   7969 E-G  187 H 8156 C  5911 CD  27 F 5938 B-D 
FA + FP    334 H 170 H 504 D   122F 92 F 214 EF 
FG + FC + FA 14625 BC 4936 G 347 H  19908 AB 4814DE * 4234 DE 174F  9222 B-D * 
FG + FC + FP 15684 AB 5579 G  142 H 21405 A 6506DC * 4381 DE  76 F 10963 BC  * 
FG + FA + FP 18339 A  286 H 149 H 18774 AB 8275BC *  283F 53 F 8611 B-D * 
FC + FA + FP   6532 FG 179 H 55 H 6766 C  4814 DE * 46F 65 F 4925 D-F * 
FG + FC + FA + FP 15848 AB 5619 G 271 H 251 H 21989 A 6423DC * 2211 EF * 180F 35 F 8849 B-D * 
LSD         5412 2983  458 ns   5002      3645    351 ns   
1FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 1.7; FP, F. poae isolate 7.8 

  2 Inoculum concentration 5 x 104 conidia ml-1 per species in mixture 

 3 Inoculum concentration constant (5 x 104 conidia ml-1) 
4 Means were separated by independent multivariate analyses for Fusarium isolates and total Fusarium colonization within inoculation (Duncan    

  test, p ≤ 0.05) 
* Significantly different from variable inoculum concentration (t-test, p ≤ 0.05) 

LSD, least significant difference within columns (Duncan test, p ≤ 0.05); NS, Not significant 
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2.2.5.5 Relationship among disease parameters  

Disease severity, 1000-kernel weight reduction, frequency of Fusarium infected 

kernels and total fungal biomass were significantly correlated to each other with linear 

correlation coefficients summarized in Table 20.  

Using microbiological assays for wheat ears inoculated with F. poae, this isolate could be 

detected only in a very limited number of kernels. On the other hand, the frequency of F. 

avenaceum infected kernels was moderate to low. Real-time PCR, however, was able to 

determine DNA of F. poae and F. avenaceum isolates at low to medium levels, respectively. 

The coefficients of determination, therefore, were low for these isolates. In most cases, 

correlation coefficients were poor or non-significant between the estimated parameters for F. 

graminearum and in some cases for F. culmorum.  
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Table 20: Coefficients of determination (p ≤ 0.001) among Fusarium DNA content, frequency 

of infected wheat kernels, disease severity and kernel weight reduction  

A Variable concentration of inoculum  
B  Constant concentration of inoculum  
C  Total frequency of Fusarium-infected kernels  
D  ns, Not significant  

FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 1.7; 

FP, F. poae isolate 7.8 

 

 
Disease 

severity 

Kernel 

weight

Infected 

kernels 

Fungal DNA content 

Total FG FC FA FP 

Disease severity  

2005A   0.77 0.64 0.15 ns ns ns 

2006A   0.77 0.64 ns 0.27 ns ns 

2006B   0.70 0.39 ns 0.19 0.17 ns 

Fr
eq

ue
nc

y 
of

 in
fe

ct
ed

 k
er

ne
l 

Total 

2005A    0.64     

2006A    0.67     

2006B    0.45     

FG 

2005A ns ns   0.12    

2006A ns ns   ns    

2006B ns ns   0.45    

FC 

2005A 0.29 0.15    ns   

2006A 0.60 0.74    0.22   

2006B 0.39 0.34    0.28   

FA 

2005A 0.54 0.52     ns  

2006A 0.73 0.45     ns  

2006B 0.58 0.24     0.25  

FP 

2005A 0.19 0.12      ns 

2006A 0.36 0.12      ns 

2006B 0.74 0.41      0.11 

Kernel weight  

2005A 0.56  0.43 0.50 ns ns ns ns 

2006A 0.60  0.62 0.53 ns 0.34 ns ns 

2006B 0.55  0.42 0.31 ns ns ns ns 
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2.2.6 Field experiments  

The preference of establishment of Fusarium isolates was studied in two consecutive 

inoculations with one-day interval in 2005. In 2006 wheat ears were inoculated at mid-

flowering with one isolate or all possible combinations of four isolates in two approaches of 

inoculum concentrations were investigated. To monitor development of the isolates on wheat 

ears and at harvest, FHB severity, 1000-kernel weight, frequency of infected kernels and 

Fusarium species-specific amount of DNA were investigated.  

 

 

2.2.6.1 Effect of single and mixed inoculations with Fusarium spp. on severity of 

Fusarium head blight (constant inoculum concentration) 

In inoculation with F. graminearum alone and it mixtures with other isolates resulted 

in high disease severities, which did not differ significantly from each other (Table 21). This 

indicated that the disease severity was not directly proportional to the dilution factors of F. 

graminearum conidia in the mixtures and no additive effects in the mixtures to produce more 

disease. This was true for F. culmorum and its mixtures with low virulence isolates, except in 

combination with F. poae, where the amount of disease severity was significantly less than 

inoculation with F. culmorum alone. The disease severity of wheat ears in mixture including 

F. avenaceum and F. poae was similar to ears inoculated with these isolates alone. 

 

 

2.2.6.2 Effect of single and mixed inoculations with Fusarium spp. on reduction of 1000- 

kernel weight  

For variable and constant inoculum concentrations, inoculations with isolates alone or 

in mixtures, the kernel weight was hardly affected by inoculations (Table 21). Only kernel 

weight of plants, which had been inoculated with F. graminearum alone or in mixtures were 

significantly different from those of non-inoculated control plants. Only three combinations 

caused about 22% reduction in kernel weight in two inoculation approaches. In most cases, 

plant inoculated with constant and variable inoculum concentrations produced more and less 

similar kernel biomass. This is in contrast to greenhouse experiments, where the kernel 

weight was significantly reduced in inoculations with high virulent isolates.  

 

 



RESULTS 
 

 61

Table 21: Visual ratings of Fusarium head blight severity (1 to 9) and kernel weight reduction 

after inoculation of wheat ears (cv. Taifun) with various combinations of Fusarium 

spp. at GS 65 (2006) 
 

1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 

1.7; FP, F. poae isolate 7.8 
2 Inoculation with variable inoculum concentrations of (50,000 conidia ml -1 per species)  
2 Inoculation with constant amount of inoculum (50,000 conidia ml -1)  
3 Means with the same letters within a column are not significantly different (Duncan test, p  

≤ 0.05)  

  Data are the average of three disease severity ratings (7, 14 and 21 days after inoculation)  

 

 

 

 

 

1000-kernel weight Disease severity 
ratings 

Inoculum 1 

Variable conc. 2 Constant conc. 3 Constant conc. 3 

Nom-inoculated  36.5 AB 36.5 AB  

F. graminearum (FG) 28.8 CD 28.8 D 6.7 A 

F. culmorum (FC) 32.0 A-D 32.0 CD 4.3 CD 

F. avenaceum (FA) 36.6 A 36.6 AB 2.0 F 

F. poae (FP) 36.4 AB 36.4 AB 1.0 F 

FG + FC 29.6 CD 32.9 B-D 5.6 A-C 

FG + FA 28.7 CD 31.7 CD 6.4 AB 

FG + FP 30.1 CD 30.4 CD 5.9 B-C 

FC + FA 31.6 B-D 33.5 A-C 4.6 CD 

FC + FP 32.8 A-D 33.4 A-C 2.3 EF 

FA + FP 35.9 AB 37.4 A 1.9 F 

FG + FC + FA 30.7 CD 33.7 A-C 4.9 B-D 

FG + FC + FP 28.3 D 31.5 CD 6.4 AB 

FG + FA + FP 30.7 CD 31.6 CD 5.8 A-C 

FC + FA + FP 33.2 A-C 33.7 A-C 3.7 DE 

FG + FC + FA + FP 29.5 AB 33.2 A-C 7.0 A 
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2.2.6.3 Effects of single and mixed inoculations with Fusarium spp. on disease 

development on spikelets  

Spikelets from wheat plots inoculated at GS 65 with Fusarium isolates alone or in 

mixture of 2, 3 or 4 species had infection rates ranging from 15 to 50 %, 23.4 to 67.1% and 

36.5 to 88.2% after 7, 14 and 21 days after inoculation, respectively (Table 22, 23 and 24). 

The number of infected spikelets increased during maturation of wheat ears.  

The virulence of Fusarium isolates on the spikelets increased in the order F. poae, F. 

avenaceum, F. culmorum and F. graminearum when inoculated alone. In mixed inoculations, 

the frequency of infected spikelets reduced for all isolates due to the decrease in the number 

of spores per isolate. However, the degree of reduction was depended on the composition of 

the mixture. This effect became more pronounced in the low virulent isolate F. poae in the 

mixtures including three to four isolates. Mixtures including F. graminearum gave higher 

total frequency of infected spikelets than the mixtures without this isolate. The presence of F. 

graminearum in the mixtures strongly reduced the frequency of infected spikelets caused by 

the other isolates. The frequency of infected spikelets in mixture including F. avenaceum and 

F. poae was similar to ears inoculated with these isolates alone. 

The number of infected spikelets increased during the milk ripening either in 

inoculation with one Fusarium isolate or in co-inoculations (Table 25). For example, in 

inoculation with one isolate, the number of infected spikelets increased 37.0, 33.5, 28.0, and 

21.5 % for F. graminearum, F. culmorum, F. avenaceum and F. poae, respectively. As 

exemplified for the combination of F. graminearum, F. culmorum and F. avenaceum in 

Figure 11, For F. graminearum, the increase in the number of infected spikelets was 

independent whether this isolate had been inoculated alone or in mixture with other isolates. 

The presence of F. graminearum in the mixtures significantly reduced the increase in the 

number of infected spikelets by 78 %, 90 % and negatively increased, in co-inoculations with 

F. culmorum, F. avenaceum and F. poae respectively compared to when these isolates 

inoculated alone.  

Disease development by F. culmorum on the spikelets was similar either when 

inoculated alone or in mixtures including F. avenaceum and/or F. poae. On the other hand, 

disease development attributed to these isolates was inhibited in the presence of F. 

graminearum in the mixtures. F. poae proved to be the weakest competitor among isolates 

and showed a decrease in the rate of infected spikelets in four out of seven combinations.  
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Table 22: Frequency of Fusarium-infected spikelets 7 days after inoculation of wheat ears 

(cv. Taifun) with various combinations of Fusarium species (2006, constant 

inoculum concentration) 

 

1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate  

  1.7; FP, F. poae isolate 7.8 
2 Total lower than sum of species because some spikelets infected by two species  
3 Means were separated by independent multivariate analyses for isolates and total Fusarium 

  infected spikelets, respectively (Duncan test, p ≤ 0.05) 

 

 
 
 
 
 
 

Inoculum 1 Infected spikelets [ % ] 

FG FC FA FP Total 2 

FG (F. graminearum) 50.0 A 3     50.0 A 

FC (F. culmorum)   33.5 B-D    33.5 C 

FA (F. avenaceum)    31.6 C-D   31.6 C 

FP ( F. poae)     15.0 I-N 15.0 D 

FG + FC 33.3 B-D 12.6 K-O    44.7 A-C 

FG + FA 40.9 B  13.7 J-O   48.3 AB 

FG + FP 42.1 AB   5.3 O-R 44.5 A-C 

FC + FA   27.2 C-F 21.4 E-J   37.1 A-C 

FC + FP   25.5 C-G  10.3 L-Q 31.3 C 

FA + FP    24.4 D-H 13.8 J-O 35.2 BC 

FG + FC + FA 20.9 F-J 11.9 K-P 7.4 M-R   35.3 BC 

FG + FC + FP 31.2 C-D 11.8 K-P  1.5 QR 35.4 BC 

FG + FA + FP 34.3 BC  8.1 M-R 2.8 P-R 39.3 A-C 

FC + FA + FP   26.7 C-G 16.1 H-M 6.2 N-R 37.6 A-C 

FG + FC + FA + FP 23.7 E-I 9.0 M-R 9.7 L-R 0.3 R 40.0 A-C 
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Table 23: Frequency of Fusarium-infected spikelets 14 days after inoculation of wheat ears 

(cv. Taifun) with various combinations of Fusarium species (2006, constant 

inoculum concentration) 

 

1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate      

  1.7; FP, F. poae isolate 7.8 
2 Total lower than sum of isolates because some spikelets infected by two isolates  
3 Means were separated by independent multivariate analyses for isolates and total Fusarium  

  infected spikelets, respectively (Duncan test, p ≤ 0.05) 

 
 
 
 
 
 
 
 

Inoculum 1 Infected spikelets [ % ] 

FG FC FA FP Total 2 

FG (F. graminearum) 63.6 A 3    63.7 A-C 

FC (F. culmorum)   48.4 B-D    48.4 E 

FA (F. avenaceum)    36.9 EF   36.9 F 

FP ( F. poae)     23.4 GH 23.4 G 

FG + FC 41.8 DE 16.8 H-K    51.7 C-E 

FG + FA 55.9 AB  18.5 H-J   66.0 AB 

FG + FP 51.8 BC   5.6 L-N 54.6 A-E 

FC + FA   43.1 C-E 29.3 FG   55.4 A-E 

FC + FP   42.4 DE  13.1 I-L 50.2 DE 

FA + FP    38.1 EF 23.7 GH 54.3 B-E 

FG + FC + FA 40.0 DE 17.8 H-J 10.2 J-M   60.2 A-E 

FG + FC + FP 53.4 B 18.1 H-J  1.5 MN 67.1 A 

FG + FA + FP 56.5 AB  12.5 J-L   62.1 A-D 

FC + FA + FP   41.9 DE 21.2 G-I 7.8 N 53.9 B-E 

FG + FC + FA + FP 41.2 DE 14.4 H-L 14.4 H-L 0.9 MN 55.0 A-E 
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Table 24: Frequency of Fusarium-infected spikelets 21 days after inoculation of wheat ears 

(cv. Taifun) with various combinations of Fusarium species (2006, constant 

inoculum concentration) 

  

1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate  

1.7; FP, F. poae isolate 7.8 
2 Total lower than sum of isolates because some spikelets infected by two isolates  
3 Means were separated by independent multivariate analyses for isolates and total Fusarium 

infected spikelets, respectively (Duncan test, p ≤ 0.05) 

 
 
 
 
 
 
 
 

Inoculum 1 Infected spikelets [ % ] 

FG FC FA FP Total 2 

FG (F. graminearum) 87.0 A 3   87.0 A 

FC (F. culmorum)   67.1 B-D   67.1 BE 

FA (F. avenaceum)    59.6 DE   59.7 C 

FP ( F. poae)     36.5 GH 36.5 D 

FG + FC 70.9 B-D 20.0 I-K    74.3 AB 

FG + FA 67.8 B-D  18.1 I-K   75.0 AB 

FG + FP 74.3 A-C   1.5 LM 74.3 AB 

FC + FA   58.2 DE 41.8 GF   69.1 BC 

FC + FP   61.5 B-D  16.8 J-K 67.5 BC 

FA + FP    59.3 DE 19.6 I-K 67.4 BC 

FG + FC + FA 61.6 B-E 22.9 I-K 12.5 K-M   76.2 AB 

FG + FC + FP 75.2 AB 22.6 I-K  0.6 LM 88.2 A 

FG + FA + FP 66.5 B-D  27.4 H-J 0.0 M 86.5 A 

FC + FA + FP   49.6 EF 31.2 G-I 1.8 LM 66.4 BC 

FG + FC + FA + FP 60.9 C-E 14.3 J-L 12.4 K-M 0.3 LM 76.8 AB 
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Table 25: Increase in the number of infected spikelets within two weeks after inoculation of 

wheat ears (cv. Taifun) with various combinations of Fusarium spp. at GS 65 

(2006, constant inoculum concentration) 

 

Inoculum 1 Increase of infected spikelets within 14 days [ % ] 

FG FC FA FP Total  

FG (F. graminearum) 37.0 A-D 2    37.0 A-C 2

FC (F. culmorum)   33.5 A-E    33.5 A-C 

FA (F. avenaceum)    28.0 A-G   28.0 BC 

FP ( F. poae)     21.5 C-I 21.5 C 

FG + FC 37.6 A-C 7.4 H-L    29.6 BC 

FG + FA 26.9 A-G  4.0 I-L   26.6 BC 

FG + FP 32.3 A-F   -3.8 L 29.8 BC 

FC + FA   29.0 A-F 19.1 E-J   31.9 A-C 

FC + FP   36.0 A-E  6.6 H-L 36.1 A-C 

FA + FP    35.0 A-E 5.9 H-L 32.2 A-C 

FG + FC + FA 40.7 AB 11.0 G-L 5.1 I-L   40.9 A-C 

FG + FC + FP 44.0 A 10.7 G-L  -0.9 KL 52.7 A 

FG + FA + FP 32.2 A-F  19.4 E-J -2.8 L 47.1 AB 

FC + FA + FP   22.9 B-H 15.1 F-K -4.4 L 28.7 BC 

FG + FC + FA + FP 37.6 A-D 5.3 H-L 2.8 J-L 0.0 KL 36.7 A-C 
1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate  

1.7; FP, F. poae isolate 7.8 
2 Means were separated by independent multivariate analysis for all isolates and total 

infection, respectively (Duncan test, p ≤ 0.05)  

Sampling was done 7, 14 and 21 days after inoculations  
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Figure 11: Increase in the frequency of wheat spikelets infected by Fusarium graminearum,  

F. culmorum and F. avenaceum, respectively, within 14 days when inoculated 

either alone (filled marks) or in a mixture of three isolates (open marks) at GS 65 

(cv. Taifun; all treatments were inoculated with a total of 50,000 spore ml-1)  

 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum 

isolate  1.7; FP, F. poae isolate 7.8 

 

 

 

2.2.6.4 Effects of inoculation with Fusarium spp. on frequency of infected glume, lemma, 

palea and kernel  

From late flowering to milk ripening various parts of wheat flower parts were 

differentiated for their colonization by isolates (Table 26 and 27). In both years, the frequency 

of Fusarium infection decreased in the order lemma, palea, glume and developing kernel, 

respectively. However, in some cases there were no significant differences for the species on 

the wheat flower parts. Fusarium graminearum and F. culmorum were the predominant 

isolates on the different parts of spikelets in 2005 and 2006, respectively, while F. poae had 

the lowest infected levels.  

Similar to the spikelets, the colonization of all parts of wheat flower increased with the 

time after inoculation (Table 28 and 29). The increase in the frequency of infection was more 

pronounced in most virulent isolates increasing with sampling times. For isolate with low 

virulence, the increase in infection of wheat flower parts in different sampling times was 
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similar in 2006, while in 2005 there were significant differences in frequency of infection 

among the sampling times. For F. poae there was no significant difference among the 

sampling times. 

 

 

Table 26: Frequency of infected glume lemma, kernel and palea after consecutive 

inoculations of wheat ears (cv. Drifter) in one interval with Fusarium spp. (2005) 

 

Inoculation wheat ears with 91,000 conidia ml -1 in two individual consecutive days  
1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate  

1.7; FP, F. poae isolate 7.8 
2 Means separated by independent multivariate analysis (Duncan test, p ≤ 0.05)  

Data are the average of three times samplings (14, 21 and 35 d p.i.)  

 

 

Table 27: Frequency of infected glume, lemma, palea and kernel of wheat ears (cv. Taifun) 

after inoculation with a combination of four Fusarium spp. at GS 65 (2006) 

 

Fusarium species 1 Frequency of infection  [ % ]  
Glume Lemma Palea Kernel 

F. graminearum 31.0 BC 2 38.0 A 32.6 AB 26.6 CD 
F. culmorum 13.0 F 22.3 D-F 18.6 E 9.6 FG 
F. avenaceum 5.6 GH 10.0 FG 5.0 GH 2.6 H 
F. poae 1.0 H 1.6 H 0.3 H 0.3 H 

Inoculation wheat ears with 91,000 conidia ml -1 in two individual consecutive days  
1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate  

1.7; FP, F. poae isolate 7.8 
2 Means separated by independent multivariate analysis (Duncan test, p ≤ 0.05)  

Data are the average of three times samplings (7, 14 and 21 d p.i.) 

Fusarium species 1 Frequency of infection  [ % ] 

Glume Lemma Palea Kernel 

F. graminearum 41.7 D 2 54.6 C 47.1 D 45.8 D 

F. culmorum 58.3 C 72.1 A 70.8 A 64.6 B 

F. avenaceum 23.8 F 41.2 D 35 E 23.8 F 

F. poae 5.0 G 7.5 G 4.6 G 5.8 G 



RESULTS 
 

 69

Table 28: Frequency of Fusarium spp. within five weeks after consecutive inoculations of 

wheat ears (cv. Drifter) in one interval with Fusarium spp. at GS 65 (2005) 

 

Inoculation wheat ears with 91,000 conidia ml -1 in two individual consecutive days  
1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate  

1.7; FP, F. poae isolate 7.8 
2 Means separated by independent multivariate analysis (Duncan test, p ≤ 0.05)  

 

 

Table 29: Frequency of Fusarium spp. within two weeks after of wheat ears (cv. Taifun) after 

inoculation with a combination of four Fusarium spp. at GS 65 (2006) 

 

Inoculation wheat ears with 91,000 conidia ml -1 in two individual consecutive days  
1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate  

1.7; FP, F. poae isolate 7.8 
2 Means separated by independent multivariate analysis (Duncan test, p ≤ 0.05)  

 

 

 

  

 

 

 

 

Fusarium species 1 Frequency of infection  [ % ] 
7 d p.i. 21 d p.i. 35 d p.i. 

F. graminearum 14.7 FG2 62.2 C 65.0 C 
F. culmorum 19.3 F 85.3 B 94.7 A 
F. avenaceum 10.3 GH 31.9 E 50.6 D 
F. poae 6.9 HI 5.6 HI 4.7 I 

Fusarium species 1 Frequency of infection  [ % ] 
7 d p.i. 14 d p.i. 21 d p.i. 

F. graminearum 9.5 E2 33.0 B 53.8 A 
F. culmorum 5.3 E-G 15.8 D 26.8 C 
F. avenaceum 2.0 F-H 6.8 EF 8.8 E 
F. poae 0.8 GH 0.0 H 1.8 F-H 
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2.2.6.5 Shift in the ratio among Fusarium species during Fusarium head blight 

development on wheat ears 

The Chi-squared goodness of fit was applied to compare theoretical (expected) and 

observed frequency of infection and content of fungal DNA on wheat ears (Table 30). From 

wheat anthesis (the time of inoculation) to harvest, a shift in the composition of the Fusarium 

species colonization the ears could be observed. The ratio (frequency of infection and content 

of fungal DNA) among isolates using the test differed significantly from the ratio 1 : 1 : 1 : 1 

expected for equal virulence and competitiveness the isolates.  

The proportion of F. graminearum either in inoculation alone or in mixtures increased 

during the growth period and reached the highest value for the DNA content of kernels 

(reached 80 % of total amount of fungal DNA in the four-isolate mixture). For example, in a 

four-isolate mixture, the frequency of F. graminearum infected spikelets increased from 55.0 

to 69.3 % within two weeks after inoculation.With reduction in the number of conidia in 

mixtures by a factor of 2, 3, and 4, the infection ratios increased for F. graminearum and in 

some cases F. culmorum, while the infection ratios for F. avenaceum and F. poae reduced and 

resulted in a infection ratio of almost 0 for F. poae in a three isolate-combination (Fa, Fg with 

Fp).  

For the combination of F. avenaceum, F. culmorum, and F. poae, for instance, not 

only the overall colonization of spikelets increased with the incubation time, but also the 

proportion of F. culmorum, the most aggressive species in this mixture (Figure 12). The 

proportion of F. culmorum increased during the growth period and reached the highest value 

for the DNA content of kernels. In two-isolate combinations, the observed and expected 

frequencies were significantly different. Nevertheless, F. avenaceum and F. culmorum proved 

are not significantly different in their capability to colonize the wheat spikelets after anthesis; 

this was also true for F. avenaceum and F. poae in the first stages of disease development. 

 The ratios increased corresponding to the virulence and competitive abilities of the isolates. 

When wheat ears were inoculated with the mixtures including of F. avenaceum and/or F. 

poae, the ratios of these species on the spikelets were higher than those obtained by frequency 

and intensity of kernel colonization, which indicated differences in development of the 

isolates in the spikelets and kernels.  
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 Table 30: Comparison of expected and measured ratios of Fusarium infections of spikelets (7, 14, and 21 days after inoculation) and kernels at 

harvest (frequency and species-specific amount of Fusarium DNA) after inoculation of wheat ears (cv. Taifun) at GS 65 (2006) 

Inoculation with 50,000 conidia ml -1 for all treatments FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 

1.7; FP, F. poae isolate 7.8 

* Expected and actual ratio significantly different (Chi-square test on goodness of fit, p ≤ 0.05) ns, not significant  

Fusarium species Expected 

ratio 

Actual frequency and content of fungal DNA 

Spikelets Kernels at harvest 

7 dpi. 14 dpi. 21 dpi. Frequency  DNA content 

FG + FC 1:1 1.45:0.55 * 1.43:0.57 * 1.56:0.44 * 1.59:0.41 * 1.52:0.48 * 

FG + FA 1:1 1.50:0.50 * 1.50:0.50 * 1.58:0.42 * 1.81:0.19 * 1.96:0.04 * 

FG + FP 1:1 1.78:0.22 * 1.80:0.20 * 1.96:0.04 * 1.94:0.06 * 1.98:0.02 * 

FC + FA 1:1 1.12:0.88 ns 1.19:0.81 Ns 1.17:0.83 ns 1.53:0.47 * 1.60:0.40 * 

FC + FP 1:1 1.42:0.58 * 1.53:0.47 * 1.57:0.43 * 1.91:0.09 * 1.80:0.02 * 

FA + FP 1:1 1.28:0.72 ns 1.23:0.77 Ns 1.50:0.50 * 1.77:0.23 * 2.00:0.00 * 

FG + FC + FA 1:1:1 1.56:0.89:0.55 * 1.76:0.79:0.45 * 1.91:0.71:0.39 * 2.10:0.79:0.11 * 2.07:0.87:0.05 * 

FG + FC + FP 1:1:1 2.01:0.80:0.10 * 2.19:0.74:0.06 * 2.29:0.69:0.02 * 2.63:0.35:0.02 * 2.09:0.87:0.04 * 

FG + FA + FP 1:1:1 2.28:0.54:0.19 * 2.46:0.54:0.00 * 2.12:0.88:0.00 * 2.84:0.16:0.00 * 2.98:0.02:0.00 * 

FC + FA + FP 1:1:1 1.63:0.99:0.38 * 1.77:0.89:0.33 * 1.80:1.13:0.07 * 2.26:0.68:0.06 * 2.44:0.41:0.14 * 

FG + FC + FA + FP 1:1:1:1 2.22:0.84:0.91:0.03 * 2.32:0.81:0.81:0.05 * 2.77:0.65:0.56:0.01* 2.85:0.91:0.22:0.02* 3.21:0.67:0.09:0.04 * 
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Figure 12: Shift in the ratio of Fusarium isolates colonizing wheat spikelets 7, 14, and 21 days  

after inoculation, and kernels at harvest, respectively, after ear inoculation at GS 

65 with a mixture of F. poae, F. avenaceum, and F. culmorum (cv. Taifun; total  

 concentration of 50,000 conidia ml-1; 2006)  

 

 

2.2.6.6 Effect of inoculation of with Fusarium spp. on frequency of spikelets and kernels 

infected by more than one Fusarium species  

Especially the spikelets of wheat ears proved to be infected by more than one isolate 

when inoculated in mixtures (Table 31). The frequency of single spikelets infected by two 

Fusarium isolates increased with the time and reached 1.6 (Fg with Fp) to 30.9 % (Fc with 

Fa) after 21 days after inoculation. Most of the combinations including F. poae showed only a 

slight increase over time, whereas mixtures with F. avenaceum and F. culmorum resulted in 

the highest percentage of kernels colonized by two isolates. In contrast to the overall increase 

in co-colonization of spikelets, the percentage of kernels bearing two Fusarium isolates was 

relative low at harvest (up to 2.5 %). In the combination Fa with Fp – total frequency of 

infected kernels only 12 % - no co-colonization was detected, whereas other mixtures 

including F. avenaceum resulted in the highest frequencies.  

In consecutive inoculations only two-isolate combinations including Fa with Fc, Fa 

with Fg as well as Fc with Fg resulted in double-infected kernels. Inoculation of  

F. avenaceum in the second day resulted in the highest frequency of infected kernels with  

F. graminearum and F. culmorum.  
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Table 31: Shift in the frequency of spikelets and kernels infected by at least two Fusarium 

species after inoculation of wheat ears 65 (cv. Taifun) with various combinations of 

Fusarium spp. at GS (2006, constant inoculum concentration) 

 

Inoculation 1 Plant part infected by two Fusarium spp. [ % ] 
Spikelets Kernel 

7 d p.i. 14 d p.i. 21 d p.i. harvest 
FG + FC 1.3 D 2 6.9 B 16.6 BC 0.3 C 
FG + FA 6.3 BC 8.4 B 10.9 CD 2.5 A 
FG + FP 2.9 CD 2.8 B 1.6 E 0.3 C 
FC + FA 11.5 A 17 A 30.9 A 2.0 A-C 
FC + FP 4.5 CD 5.3 B 10.9 CD 0.8 BC 
FA + FP 3.0 CD 7.5 B 11.6 CD 0 C 
FG + FC + FA 4.9 CD 7.8 B 20.9 B 0.5 C 
FG + FC + FP 9.1 AB 5.9 B 10.3 CD 0.3 C 
FG + FA + FP 5.9 BC 6.9 B 7.5 DE 1.0 A-C 
FC + FA + FP 11.4 A 17.0 A 16.3 BC 1.3 A-C 
FG + FC + FA + FP 2.7 CD 16.0 A 11.3 CD 2.3 AB 
1FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 

 1.7; FP, F. poae isolate 7.8. 

2 Means were separated by independent multivariate analyses for each time and kernel at 

harvest (Duncan test, p ≤ 0.05) 

 

 

2.2.6.7 Effect of inoculation with Fusarium spp. on the frequency of Fusarium-infected 

kernels  

Simultaneous inoculation  

As expected from infections of spikelets, F. graminearum proved to be most virulent 

isolate on wheat kernels in single isolate inoculations alone. The ranking in virulence among 

isolates became even more obvious when inoculated in mixtures. For variable inoculum 

concentrations, the infection rates with F. graminearum did not affect by the presence of F. 

avenaceum and/or F. poae in mixtures, while mixtures including F. culmorum significantly 

reduced F. graminearum infection frequency (Table 32).  
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Table 32: Frequency of Fusarium-infected wheat kernels (cv. Taifun) after inoculation of ears 

with variable combinations of Fusarium species at GS 65 (2006, variable inoculum 

concentrations) 

 

Inoculum 1 Infected kernels  [ % ] 

 FG FC FA FP Total 

F. graminearum (FG) 62.5 A2     62.5 BC2 

F. culmorum (FC)   45.3 D    45.3 DE 

F. avenaceum (FA)    12.3 F   12.3 F 

F. poae (FP)     5.0 G-J 5.0 F 

FG + FC 52.5 C 10.3 FG    62.5 BC 

FG + FA 66.0 A  4.5 G-J   68.0 AB 

FG + FP 66.8 A   0.8 IJ 66.3 AB 

FC + FA   40.0 D 7.8 F-H   44.0 DE 

FC + FP   51.0 C  2.0 H-J 51.8 CD 

FA + FP    26.0 E 4.0 G-J 35.5 E 

FG + FC + FA 54.8 C 10.0 FG 3.3 H-J   62.5 BC 

FG + FC + FP 52.0 C 13.3 F  0.5 J 62.5 BC 

FG + FA + FP 56.3 BC  7.3 F-I 0.0 J 60.0 BC 

FC + FA + FP   40.3 D 8.5 F-H 0.0 J 46.0 DE 

FG + FC + FA + FP 61.5 AB 13.5 F 2.8 H-J 0.0 J 76.5 A 

1FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate  

1.7; FP, F. poae isolate 7.8. 

2 Means were separated by independent multivariate analyses for isolates and total Fusarium 

infected kernels, respectively (Duncan test, p ≤ 0.05)  

 

 

Mixtures generally gave lower frequency of F. culmorum, F. avenaceum and F. poae 

infected kernels than when these isolates were inoculated alone. The total infection rates in 

the mixtures were contributed by the isolate with high virulence and were significantly lower 

than the sum derived from single inoculations demonstrating significant interactions between 

or among the isolates during kernel colonization. 

In inoculation with constant inoculum concentration, F. graminearum clearly 

dominated kernel infection suppressing not only F. poae but also F. avenaceum and F. 
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culmorum. Although diluted in mixtures by a factor of 2 to 4, F. graminearum resulted in 60 – 

90 % (mixtures of 2 species), 57 - 83% (mixtures of 3 species), and 62% (mixture of four 

species), respectively, of the infection frequency when inoculated alone (Table 33).  

 

Table 33: Frequency of Fusarium infected kernels after inoculation of wheat ears (cv.  

Taifun) with various combination at GS 65 (2006, constant amount of inoculum) 

 

1FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 

1.7; FP, F. poae isolate 7.8 

2 Means were separated by independent multivariate analyses for Fusarium spp. and total 

Fusarium infected kernels, respectively (Duncan test, p ≤ 0.05)  

 

 

Infection of kernels by F. poae was very low in most combinations, and reduced – to 

the single inoculation - by at least 50 % in the mixture with F. avenaceum. Although  

F. culmorum was the second most successful isolate when inoculated alone, competition from 

F. graminearum strongly suppressed its development in mixture. In mixtures, the frequency 

Inoculum 1 Infected kernels  [ % ] 

FG FC FA FP Total 

FG (F. graminearum) 62.5 A2       62.5 A2 

FC (F. culmorum)   45.3 C-F     45.3 C-F 
FA (F. avenaceum)     12.3 JK   12.3 GH 
FP ( F. poae)       5.0 L-N 5.0 H 
FG + FC 38.5 F-H 9.8 KL     48.0 B-E 
FG + FA 47.5 CD   5.0 L-N   50.0 B-E 
FG + FP 58.8 AB     1.8 L-N 60.3 AB 
FC + FA   31.0 HI 5.5 L-N   34.5 F 
FC + FP   40.0 D-G   1.8 L-N 41.0 D-F 
FA + FP     9.5 KL 2.5 L-N 12.0 G 
FG + FC + FA 35.5 G-I 13.3 JK 1.8 L-N   50.1 B-E 
FG + FC + FP 46.8 C-E 6.3 K-N   0.3 MN 53.1 A-D 
FG + FA + FP 52.3 BC   3.0 L-N 0.0 N 54.3 A-C 
FC + FA + FP   29.5 I 8.8 K-M 0.8 MN 37.8 EF 
FG + FC + FA + FP 39.0 E-G 12.5 KJ 3.0 L-N 0.3 MN 52.5 A-E 



RESULTS 
 

 76

of infected kernels with F. graminearum, F. culmorum and F. avenaceum were inhibited to 

different degrees ranging from 6 to 43 %, 35 to 86 % and 28 to 85 %, respectively, compared 

to when these isolates inoculated alone. This indicated reduction in the number of conidia in 

the mixtures by a factor of 2, 3, and 4 and significant interactions among the isolates on wheat 

ears. The frequency of F. poae infected kernels was similar either in single or mixed 

inoculations. In mixed inoculations, the total frequency of Fusarium-infected kernels was 

similar to the frequency of individual isolates with high virulence. This indicated that most of 

the infection could be contributed to the high virulence isolates.  

 

 

Consecutive inoculations 

As expected, the frequency of infected kernels with two time single isolate 

inoculations in two consecutive days increased by 52, 62 and 26 % for F. graminearum, F. 

culmorum and F. avenaceum, respectively compared to one time inoculation (Table 34). 

However, the infection rates were not significantly different among the isolates. The 

frequency of F. poae-infected kernels was similar in one or two time inoculations with one-

day interval.  

The frequency of F. graminearum infected kernels was not affected when F. 

avenaceum was inoculated either in the first or second day, compared to one time inoculation 

with F. graminearum alone. In Fg with Fc combination, the frequency of infected kernels 

reduced for the two isolates when they were inoculated either before or after each other. This 

effect was more pronounced in F. culmorum. Establishment of F. culmorum or F. avenaceum 

on the wheat ears reduced the colonization of the kernels by each other when inoculated in the 

second day by 42 and 47 % respectively demonstrating different competitive abilities of the 

species in time and space. The presence of F. poae did not affect the infection rates by F. 

graminearum and F. culmorum, while the frequency of F. avenaceum-infected kernels 

reduced in the presence of F. poae. When F. poae was inoculated either alone or in 

combination with other isolates, there was no significant difference in the F. poae infection 

rates.  
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Table 34: Frequency of Fusarium-infected kernels (cv. Drifter) after two consecutive    

 inoculations with two-species combinations of Fusarium species at GS 65 (2005) 

 

Inoculation with 91,000 conidia ml -1 in two individual consecutive days 

FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 1.7; 

FP, F. poae isolate 7.8 

1 Means were separated by independent multivariate analyses for Fusarium spp. (Duncan test,     

  p ≤ 0.05)  

 

 

 

The first  
day 

The second 
day 

Infected kernels  [ % ] 
FG FC FA FP 

(FG) F. graminearum  

 

FG 95.3 A 1     

FC 39.3 I 53.3 D-F    

FA 47.7 FG  56.0 DE  

FP 51.3 E-G    1.3O 

 

(FC) F. culmorum  

 

FG 30.7 JK 67.3 C    

FC  94.0 A    

FA  71.3 C 30.7 JK  

FP  54.0 D-F   1.3O 

(FA) F. avenaceum  

 

FG 28.0 K 9.3 LM 52.0 E-G  

FC  41.3 HI 58.6 D  

FA   92.0 A  

FP   90.6 A 0.0P 

(FP) F. poae  

FG 59.3 D    3.3M-P 

FC  82.0 B   0.0P 

FA   51.3 E-G 2.0N-O 

FP   6.6 L-P 8.0L-N 

FG 

Water 

46.0 GH     

FC  36.0 IJ 10.0 L  

FA   68.0 C  

FP     6.6L-O 



RESULTS 
 

 78

2.2.6.8 Effects of inoculation of Fusarium species on fungal biomass measured as species-

specific DNA content  

Simultaneous inoculation  

Similar to greenhouse experiments, the ranking among Fusarium species became even 

more pronounced when assessing fungal biomass of kernels as measured by the species-

specific Fusarium DNA content (Table 35 and 36). For inoculations with one isolate, F. 

graminearum gave by far the highest amount of fungal DNA, followed by F. culmorum, F. 

avenaceum and F. poae with 36 %, 7 %, and 3 %, respectively, of the fungal DNA content in 

kernels as compared to F. graminearum.  

With variable inoculum concentration the amounts of F. graminearum DNA was 

similar in all combinations, except in Fc with Fg and Fa, Fc with Fg combinations where 

DNA content was significantly reduced by 47 % and 38 % respectively relative to single 

inoculation. The amount of F. culmorum DNA in mixed inoculations was 26 to 78 % lower 

than when this isolate was inoculated alone even though the differences were not significant. 

The inherent low DNA content of F. avenaceum and F. poae was further reduced in mixtures 

with the other isolates to a lower degree. The total amount of Fusarium DNA in co-

inoculations of all isolates was similar to those produced by the most virulent isolate F. 

graminearum demonstrating significant interactions among the isolates on wheat ears.   

With constant inoculum concentration, the content of F. graminearum DNA was not 

directly proportional to the dilution factors of its conidia in the mixtures. The reduction of 

DNA content of F. graminearum was ranging from 14 to 84 % in mixtures with F. culmorum 

and F. avenaceum, and F. poae, respectively (Table 36). For example, in combination with F. 

poae, F. graminearum resulted in almost the same biomass despite of the fact that only half of 

the conidia had been inoculated for this isolate. F. graminearum DNA was reduced by F. 

culmorum and to a lesser extent also by F. avenaceum. The content of F. culmorum DNA 

reduced in combination with other isolates especially in mixtures with F. avenaceum and/or 

F. poae even thought; there were no significant differences for F. culmorum DNA in the 

mixtures.  

Overall, the total Fusarium DNA was negatively affected by interactions among the 

isolates in mixtures relative to inoculation with one isolate. This demonstrated competition 

between these isolates resulting in an overall low Fusarium biomass in wheat kernels. For 

example, in Fa, Fc with Fg and Fa, Fc with Fp combinations, the total Fusarium biomass was 

76 % and 86 % lower than single inoculations with the most virulent isolates in the mixtures. 

In two or three isolate-mixtures including F. culmorum, F. avenaceum and /or F. poae, the 
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total Fusarium DNA were similar to the low virulence isolates. In the combination of all 

isolates, F. graminearum accounted for 81 % of total Fusarium biomass and where it was a 

quarter of the total spore concentration, while the total fungal biomass was 45 % of 

inoculation with F. graminearum alone.   

 

 

Table 35: Content of fungal DNA in wheat (cv. Taifun) kernels after inoculation with 

different combination of Fusarium spp. at GS 65 (2006, variable inoculum 

concentrations)  

 

1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 

1.7; FP, F. poae isolate 7.8 

2 DNA content in pg/mg kernel dry weight 
3 Means were separated by independent multivariate analyses for isolates and total amount of 

Fusarium-DNA of infected kernels (Duncan test, p ≤ 0.05) 

 

  

Inoculum 1 Fungal biomass  [ng/mg kernel dry weight ] 

FG FC FA FP 2 Total 

FG (F. graminearum) 11.8 A 3     11.8 A 3 

FC (F. culmorum)   4.3 C-E    4.3 B-D 

FA (F. avenaceum)    0.8 DE   0.8 D 

FP ( F. poae)     359.6 E 0.4 D 

FG + FC 5.6 B-D 1.9 DE    7.4 A-C 

FG + FA 10.8 A  0.06 E   10.9 A 

FG + FP 12.1 A   0.0 E 12.1 A 

FC + FA   2.9 DE 0.3 E   3.2 CD 

FC + FP   2.9 DE  0.0 E 2.9 CD 

FA + FP    0.5 E 0.0 E 5.3 D 

FG + FC + FA 4.5 C-E 1.0 DE 0.02 E   5.5 B-D 

FG + FC + FP 7.9 A-C 1.3 DE  16.5 E 9.3 AB 

FG + FA + FP 10.5 A  0.07 E 110.0 E 10.7 A 

FC + FA + FP   3.2 C-E 0.07 E 300.5 E 3.6 CD 

FG + FC + FA + FP 9.8 AB 1.4 DE 0.3 E 0.0 E 11.5 A 
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Table 36: Content of fungal DNA in wheat (cv. Taifun) kernels after inoculation with 

different combination of Fusarium spp. at GS 65 (2006, constant inoculum  

concentrations)  

1 FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 

1.7; FP, F. poae isolate 7.8 
2 DNA content in pg/mg kernel dry weight  
3 Means were separated by independent multivariate analyses for isolates and total amount of 

Fusarium-DNA of infected kernels (Duncan test, p ≤ 0.05)  

 

 

Consecutive inoculations  

In consecutive inoculations, wheat ears which had been inoculated two times in one 

day interval with individual isolates resulted in two and three times increase in the amount of 

species-specific DNA than one time inoculation for F. graminearum, and F. culmorum and F. 

avenaceum, respectively (Table 37). One time inoculation with F. graminearum either alone 

or in combination with other isolates resulted in similar amount of fungal DNA by this isolate.  

Inoculum 1 Fungal biomass  [ng/mg kernel dry weight ] 

FG FC FA  2 FP 2 Total 

FG (F. graminearum) 11.8 A 3     11.8 A 3 

FC (F. culmorum)   4.3 C-E    4.3 E 

FA (F. avenaceum)    778.6 F    0.8 G 

FP ( F. poae)     359.6 F  0.4 G 

FG + FC 4.7 CD  1.5 F   6.2 D 

FG + FA 8.8 B   245.2 F   8.8 C 

FG + FP 10.2 AB     62.2 F  10.4 B 

FC + FA   0.8 F 186.0 F   0.9 G 

FC + FP   0.7 F  76.0 F  0.8 G 

FA + FP    123.7 F  0 F  0.1 G 

FG + FC + FA 1.9 EF  0.8 F 50.4 F   2.8 F 

FG + FC + FP 2.4 D-F  1.0 F  49.4 F  3.4 EF 

FG + FA + FP 5.6 C   41.6 F  0 F  5.7 D 

FC + FA + FP   0.6 F 53.4 F  35.0 F  0.6 G 

FG + FC + FA + FP 5.3 C  1.1 F 145.1 F  60.0 F  6.5 D 
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Table 37: Content of fungal DNA in wheat (cv. Drifter) kernels after two consecutive 

inoculations with a 1-day interval with Fusarium spp. at GS 65 (2005) 

 

 The first day The Second 

day 

Fungal biomass  [ng/mg kernel dry weight] 

FG FC FA FP 

 

F.graminearum (FG) 

 

 

FG 9.5 A 1     

FC 3.6 C-F 2.6 EH    

FA 4.3 B-E  0.9 HI  

FP 4.7 B-D    0.05 I

 

F.culmorum (FC) 

 

 

FG 3.5 C-G 4.1 C-E    

FC  6.1 B    

FA  3.8 C-F 1.0 HI  

FP  3.3 D-G   0.03 I

 

 

F. avenaceum (FA) 

 

FG 1.8 G-I 0.7 I 0.3 I  

FC  4.0 C-E 1.0 HI  

FA   1.3 HI  

FP   0.5 I 0.05 I

 

 

F. poae (FP) 

 

FG 3.7 C-F    0.01 I

FC  5.3 BC   0.0 I

FA   0.4 I 0.04 I

FP   0.4 I 0.002 I

FG 

Water 

4.5 B-E     

FC  1.9 F-I 0.3 I  

FA   0.4 I  

FP      0.09 I

Inoculation with 91,000 conidia ml -1 in two individual consecutive days 
1 Means were separated by independent multivariate analyses for isolates (Duncan test, p ≤    

0.05)  

FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 

1.7; FP, F. poae isolate 7.8 
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This indicated inoculation with other isolates before or after establishment of F. 

graminearum on wheat ears, does not affect development of F. graminearum DNA content 

kernels. Inoculation with F. graminearum one day before F. culmorum resulted in significant 

reduction of the amount of F. culmorum. While, the content of F. culmorum DNA were 

similar when F. avenaceum and F. poae inoculated either before or after this isolate.  

 

 

2.2.6.9 Effects of inoculation of Fusarium species on kernel mycotoxin contents  

For the quantification of mycotoxins in the grain samples using LC/MS/MS the peak 

area correlated with a known amount of mycotoxins. For all mycotoxins, standard curves 

were prepared based on ten and two fold serially diluted mycotoxins in two replications. The 

standard curves were used for the quantification of mycotoxins in unknown kernel samples. 

Standard curves for some important mycotoxins are presented in Figure 13-15.  

 

 

Figure 13: Standard curve used for quantification of enniatin B  
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Figure 14: Standard curve used for quantification of 15-Acetyl-deoxynivalenol  

 

Figure 15: Standard curve used for quantification of deoxynivalenol 
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Simultaneous inoculation  

As expected from microbiological and molecular assays, F. graminearum resulted in 

the highest content of mycotoxins in the kernels in either single inoculation or co-inoculations 

with other isolates. In single-isolate inoculations, F. graminearum produced both derivates of 

deoxynivalenol, while F. culmorum produced 3-ACDON. The deoxynivalenol and 

Deoxynivalenol-3-glucoside productivity of F. graminearum was seven and five times, 

respectively higher than for F. culmorum when these isolates were inoculated alone (Table 

38).  

In inoculation with constant inoculum concentration, F. graminearum clearly 

contributed to the mycotoxin contents of kernels. The amount of deoxynivalenol was similar 

in inoculation with F. graminearum alone or in mixtures, which included this isolate (Table 

38). However, in co-inoculations with F. avenaceum, production of deoxynivalenol was two 

times higher than inoculation with F. graminearum alone. Although F. graminearum diluted 

in mixtures by a factor of 2 to 4, the amount of deoxynivalenol was not significantly different, 

which demonstrate existence of significant interactions in the mixtures resulting in an increase 

in the ability of mycotoxin production by the isolates. 

For F. culmorum, the frequency and intensity of infected kernels reduced in two-

isolate combinations with F. avenaceum and F. poae and the conidia concentration by a factor 

of 2 in two-isolate mixtures, the production of deoxynivalenol was two and four times higher 

in co-inoculations with F. avenaceum and F. poae, respectively than inoculation with F. 

culmorum alone.  

For Deoxynivalenol-3-glucoside and derivatives of deoxynivalenol, the results were 

very similar to deoxynivalenol in co-inoculations of the isolates. However, there were no 

significant differences in the amounts of derivatives of deoxynivalenol.  

The presence of F. graminearum in the mixtures had negative effects on production of 

enniatin A1, B, B1, and moniliformin, while in mixtures including F. culmorum and F. poae, 

there was an increase in production of these mycotoxins. This effect was more obvious for 

moniliformin in mixtures including F. graminearum. For example, in Fa with Fp the 

production of enniatin A1, B, B1, and moniliformin increased by 4, 3, 3 and 25 times higher 

than inoculation with F. avenaceum alone, respectively even though with reduction of the 

conidia in the mixtures by factors 2, 3 and 4. This indicates that significant interactions 

among the isolates in the mixtures. F. poae was the only isolate produced nivalenol in low 

amounts in some combinations, which were not significantly different.  
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Table 38: Amount of detected mycotoxins in wheat (cv. Taifun) kernels after inoculations with constant inoculum concentrations of Fusarium  
 species at GS 65 in 2006 

 

FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 1.7; FP, F. poae isolate 7.8; LSD, Least significant 

differences within columns; DON, deoxynivalenol; D3G, Deoxynivalenol-3-glucoside; 3-AcDON,3-acetyldeoxynivalenol;  ZON, zearalenone; 

Alpha -ZOL, alpha-zearalenol; MON, moniliformin; ENN, enniatin; NIV, nivalenol; least significant differences within each column. 

Inoculum     Fungal mycotoxin  (ng/g kernel dry weight) 
DON D3G ZEAR 3-ACDON 15-ACDON ENNA1 ENNB1 ENNB MON NIV 

F. graminearum (FG) 18343 1876 4 120 223      
F. culmorum (FC) 2488 366 3 102      
F. avenaceum (FA)  5 68 153 5  
F. poae (FP)  1 72 26 
FG + FC 20050 2443 24 283 199 1 9 52  
FG + FA 27535 3610 165 144 5 37 106  
FG + FP 37000 3930 2 188 329  
FC + FA 5716 483 4 207 16 8 80 262 143  
FC + FP 9816 878 14 337 3 9 26 
FA + FP  22 231 517 128 9 
FG + FC + FA 15910 2027 1 215 123 6 20  
FG + FC + FP 14315 1757 90 116 1 2  
FG + FA + FP 16960 1712 8 295 216 4 37 55  
FC + FA + FP   2980 2 47 17 166 463 134 16 
FG + FC + FA + FP 17175 2330 145 156 1 13 254 7 
No-inoculation   1 2 13 28 48  
LSD 13050 1334 ns ns ns ns 128 302 ns ns 
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In inoculation with variable inoculum concentration, ranking in mycotoxin production 

by the isolates became even more obvious when inoculated in mixtures. Although, the 

infection rates and fungal biomass of F. graminearum were not affected by the presence of F. 

avenaceum and/or F. poae in mixtures, the mycotoxin content of kernels dramatically 

increased (Table 39). This demonstrated the existence of significant interactions in the 

mixtures resulting in an increase in the ability of mycotoxin production by F. graminearum. 

In Fc with Fg combination, the biomass of both isolates was reduced to different degrees 

while the ability of deoxynivalenol production increased by a factor of 1.5 and 12 times 

higher than inoculation with F. graminearum and F. culmorum alone, respectively. 

 The ranking in deoxynivalenol, Deoxynivalenol-3-glucoside and derivatives of 

deoxynivalenol was more obvious in inoculation with F. culmorum alone or in co-

inoculations with F. avenaceum and/or F. poae. For example, the ability of deoxynivalenol 

production in co-inoculations with F. avenaceum and/or F. poae increased by 3 to 7 times 

higher than when this isolate was inoculated alone. In two-isolate mixtures, F. culmorum with 

F. avenaceum or F. poae, the amount of detected deoxynivalenol was higher than when this 

isolate was inoculated in three isolate mixture with F. avenaceum and F. poae isolates.  

Similar to constant inoculum concentration approach, the production of enniatins 

increased in mixed inoculations with two or three isolate mixtures including F. avenaceum 

or/and F. poae and F. culmorum. The production of enniatins and moniliformin was reduced 

in mixtures including F. graminearum and in some mixtures. This effect was more pronounce 

for the moniliformin in those mixtures including F. graminearum. In Fa with Fp combination, 

the production of enniatin A1, B, B1, and moniliformin increased by 11, 11, 8 and 39 times 

respectively than inoculation with F. avenaceum alone. Similar to constant inoculum 

concentration approach, nivalenol was detected in the same levels only in inoculation with F. 

poae either alone or in mixtures. In co-inoculation with F. avenaceum, the amount of this 

mycotoxin was 3 times higher than single inoculation with F. poae, but the differences were 

not significant.  

 
 
 
 
 
 
 
 



RESULTS 
 

 87

Table 39: Amount of detected mycotoxin in wheat (cv. Taifun) kernels after inoculations with variable inoculum concentrations of Fusarium species 
at GS 65 in 2006  

 

FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 1.7; FP, F. poae isolate 7.8; LSD, Least significant 

differences within columns; DON, deoxynivalenol; D3G, Deoxynivalenol-3-glucoside; 3-AcDON,3-acetyldeoxynivalenol;  ZON, zearalenone; 

Alpha -ZOL, alpha-zearalenol; MON, moniliformin; ENN, enniatin; NIV, nivalenol; LSD, least significant differences within each column.  

Inoculum Fungal mycotoxin  (ng/g kernel dry weight) 
DON D3G ZEAR 3-ACDON 15-ACDON ENNA1 ENNB1 ENNB MON NIV 

F. graminearum (FG) 18343 1876 3.7 120 223  
F. culmorum (FC) 2488 366.4 2.9 102  
F. avenaceum (FA)  5 68 153 5  
F. poae (FP)  1 72 26 
FG + FC 28475 2216 11 258 314  
FG + FA 37350 2932 2 253 443 6 54 4  
FG + FP 39250 3200 239 397 158 11 
FC + FA 11005 1248 50 266 5 50 43 15  
FC + FP 16150 1784 7 322 0.0 118  
FA + FP  56 521 770 195 77 
FG + FC + FA 26230 820 4 264 254 1 7 316 11 
FG + FC + FP 21675 3084 0.6 153 273 1 25 
FG + FA + FP 45700 890 83 332 393 3 28 45 12  
FC + FA + FP 8805 1672 12 291 14 16 165 247 46  
FG + FC + FA + FP 28650 4348 3 239 314 3 24 126  
LSD 14390 1404 ns 183 172 14 132 299 84 ns 
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Consecutive inoculation  

Similar to microbiological and molecular assays, with two time single isolate 

inoculations in two consecutive days, the amount of deoxynivalenol significantly increased by 

46 and 30 % for F. graminearum and F. culmorum, respectively compared to one time 

inoculation (Table 40).  

When F. graminearum was inoculated with other isolates either before or after, the 

amount of deoxynivalenol for Fg with Fc was significantly higher than the combinations with 

other isolates. Production of deoxynivalenol by F. graminearum was not affected when F. 

avenaceum or F. poae were inoculated in the first day, compared to one time inoculation with 

F. graminearum alone. However, inoculation with F. graminearum in the first day resulted in 

significant increase of deoxynivalenol.  

In most cases, where F. culmorum was inoculated with other isolates resulted in the 

same amount of deoxynivalenol similar to inoculations with this isolate alone. Overall, the 

amount of zearalenone were similar in most combinations. Only two-time inoculations with 

F. graminearum and in Fa with Fg combination, where F. avenaceum was inoculated one day 

after F. graminearum, the amount of zearalenone were higher than the other inoculations.  

The moniliformin and enniatin B1 productivity of F. avenaceum increased when this 

isolate was inoculated two times with one-day interval or in combinations with other isolates 

compared to one-time inoculations. For example, wheat ears which had been inoculated two 

times with one-day interval with F. avenaceum isolate resulted in 6 and 3.5 times increase in 

the amount of moniliformin and enniatin B1, respectively. However, inoculation with F. poae 

one day after F. avenaceum reduced the production of the two mycotoxins. 
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Table 40: Amount of detected mycotoxins in wheat kernels (cv. Drifter) after two consecutive inoculations with 1-day interval with Fusarium spp. 
at GS 65 (2005, inoculation with 91,000 conidia ml -1 in two individual consecutive days) 

Inoculation with 91,000 conidia ml -1 in two individual consecutive days; FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA,  

F. avenaceum isolate 1.7; FP, F. poae isolate 7.8; LSD, Least significant differences within columns; DON, deoxynivalenol; 3-AcDON,3-

acetyldeoxynivalenol; ZON, zearalenone; Alpha -ZOL, alpha-zearalenol; MON, moniliformin; ENNB1, enniatins B1 

The first  
day 

The second  
day 

Fungal mycotoxin  [ng/g kernel dry weight]  
DON 3-AcDON HT2-toxin ZON MON ENNB1 

 
F. graminearum (FG) 

 

FG 3203 357  211   
FC 4395 161  88   
FA - - - - - - 
FP 2267  11 366   

 
F. culmorum (FC) 

 

FG 4356 188  89 10  
FC 6917 309  44 16  
FA 4171 279  74 242 2400 
FP 3435 180  35   

 
F. avenaceum (FA) 

 

FG 1885 55  82 127 1276 
FC 6404 260  124 112 1536 
FA  45   432 3685 
FP   12  43 218 

 
F. poae (FP) 

 

FG 1599 46  77 23  
FC 4799 175  43 18  
FA   124 48   207 2374 
FP    14   

FG  
Water 

 

1725      
FC 4804      
FA     70 1066 
FP       

No-inoculation 116  12 14  304 
LSD (least significant differences within each column) 392 85 4 47 17 269 
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3. Discussion  

Fusarium head blight (FHB) of small grains was first described over a century ago and 

considered a major threat to wheat and barley during the early years of the last century. In 

recent years, FHB has again increased worldwide with great concerns arising from mycotoxin 

contamination and increase in the risk of human and animal health (Stack and McMullen, 

1985; McMullen et al., 1997).  

There is little information on interactions between or among Fusarium species. To 

understand and identify such interactions a study was carried out using microbiological and 

molecular assays based on available species-specific primers. This study involved consecutive 

and simultaneous inoculations of wheat ears with four Fusarium species either alone or in a 

mixture of two to four species. Experiments were carried out using single isolates for each 

species under field and greenhouse conditions. Therefore, interpretation of the results on 

content of fungal biomass, disease severity, kernel weight and frequency of infected kernels 

have been generalized to the isolates even though in some cases the term species is used.  

Several species-specific fragments in different Fusarium species have been identified 

(Parry and Nicholson, 1996; Turner et al., 1998; Chelkowski et al., 1999; Nicholson et al., 

2003; Waalwijk et al., 2003; Demeke et al., 2005; Waalwijk et al., 2004; Jurado et al., 2005; 

Leisova et al., 2006). These fragments have no similarity with each other to design unique 

species-specific primers for selective amplification of individual Fusarium species in a 

complex of non-target DNA. Different primers were used in this study, which selectively 

amplified specific fragments corresponding to the individual species in a mixture of different 

fungal or plant DNA either in conventional PCR or in real-time PCR assays.   

The results confirmed the specificity of the primers as reported by Waalwijk et al. 

(2004) Parry and Nicholson (1996). In most cases, the results of identification based on 

morphology of Fusarium species were certified with species-specific primers.  

In a few cases, contradictory results were obtained by conventional PCR assays as 

compared to morphological identification in isolates of F. poae. These isolates had been miss-

identified as F. poae based on morphological identification. These isolates were later 

identified as F. langsethiae and F. sporotrichioides. The results demonstrated that molecular 

identification using species-specific primers is a superior tool to confirm Fusarium species.  

Detection, quantification and amplification of a specific part of DNA fragment 

allowed  monitoring phytopathogenic fungi for epidemiological studies over time and space. 

For FHB disease complex, it is necessary to study the spectrum, role and contribution of 

individual species to the disease using molecular tools. The SYBR green real-time PCR 
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proved to be highly specific for individual detection of the species in a mixture including 

fungal and plant DNA. Existing DNA of plant materials or other fungal DNA, even with other 

DNA of FHB pathogens, did not affect the assays.  

This method can be applied in monitoring of a large number samples for identification 

and quantification of Fusarium species in a complex matrix. The results of validation assays 

indicated that amplifications using real-time PCR were highly reproducible within replicates 

of the same sample DNA preparations as well as between different sample preparations. 

The dynamic range for detection of Fusarium species varied from 9000 to 0.9 pg the 

pathogens. When the subsequent dilution of 0.09 pg was used, the results could be obtained in 

some of the real-time PCR experiments. Waalwijk et al. (2004) reported that the 

concentration of 0.09 pg could be used to calculate the detection limit of the real-time PCR 

assays. The genome sequence of F. graminearum (Whitehead Institute, 2003) predicts a 

genome size of 36 Mb (equal to 0.04 pg). Therefore, the detection limit of the assays can be 

calculated to be less than five genome equivalents. 

The DNA extraction methods produced different yields of fungal DNA. High quality 

DNA was obtained using CTAB and CTAB + DNeasy plant mini kit methods. However, 

CTAB method was much more efficient than the CTAB + DNeasy plant mini kit method. 

This method was therefore routinely used to extract DNA in further experiments. The 

procedure described here works well for extracting high quality DNA from all wheat plant 

tissue and the mycelium of Fusarium species tested. High quality purified DNA using the 

CTAB method was extracted from a matrix of plant and fungal DNA. Reproducibility among 

replicates of the grain samples using real-time PCR confirmed the reliability of this protocol 

for quantification of FHB pathogens using real-time PCR.  

In many other studies either routine DNA extractions or comparison of different DNA 

extraction methods, CTAB method has been involved and mentioned as one of the best 

methods (Chen and Ronald, 1999; Drabkova et al., 2002; Drabkova, 2004; Sharma et al., 

2003). 

A simple and rapid spore production method was developed for some Fusarium 

species. All species produced a large amount of mycelium in PDB (Potato Dextrose Broth). 

Mucilaginous colonies with large quantities of conidia characterized by great reduction in 

mycelia formation were formed within 2 days after transferring the mycelia onto LSPDA, 

SNA or WA (Low Strength Potato Dextrose Agar, Synthetic Nutrient Agar, Water Agar). As 

the presence of liquid medium in the culture prevented species from producing conidia, it was 

important to dry the culture plates before incubation.  
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In the conventional method, all species produced mycelia, conidia or visible 

sporodochia, even though mycelia were the main biomass. Most isolates of F. graminearum 

did not produce high amounts of spores with the most common method. F. graminearum 

showed high variability in spore production even among the plates within a single isolate.  

The extreme change from liquid to solid and dry media is likely to trigger response 

mechanisms by the Fusarium species/isolates to form mucilaginous colonies with large 

quantities of conidia in culture. This may be explained by the fact that Fusarium species 

produce a high amount of mycelium in PDB. Therefore, a high amount of mycelia in liquid 

medium depleted of nutrients and extreme changes in environmental conditions – dryness and 

aeration - may shift the metabolism and ontogenesis of the fungi to exponential production of 

phialids and conidia in mucilaginous colonies. Many filamentous fungi conidiate poorly or 

not at all in submerged culture even though such proliferation may be abundant during growth 

on open surfaces (Kølmark, 1984).  

In tests on the virulence of conidia produced with both methods, the frequency of 

kernel infection, FHB severity and Fusarium biomass of kernels as measured by Fusarium 

DNA content were not significantly different. This indicated that the pathogenic potential of 

conidia produced with the new method was similar to those conidia produced with the 

conventional method. For highly virulent species, symptoms were observed within 1 to 2 days 

after inoculation which indicated the efficiency of conidia to produce disease. For both 

methods, F. graminearum resulted in the highest rates of infection and colonization as well as 

FHB severity, followed by F. culmorum, F. avenaceum and F. poae, respectively.  

The method has been successfully applied to produce inoculum in various 

experiments, for example on maize ear rot caused by F. graminearum, F. culmorum, F. 

verticillioides and F. proliferatum and interactions among the major FHB pathogens on wheat 

ears. The method described here facilitates studies on different aspects of Fusarium species 

and their conidia.  

F. graminearum was the most virulent Fusarium isolate from Rhineland area, 

Germany, infecting wheat spikelets and kernels at harvest, followed by F. culmorum, F. 

avenaceum and F. poae, respectively. This is in agreement with reports from Miedaner et al. 

(1997), Muthomi et al. (2000), and Fernandez and Chen (2005), Xu et al. (2007). In contrast, 

Wong et al. (1995) and Mihuta-Grimm and Forster (1989) observed higher virulence for F. 

culmorum than for F. graminearum, whereas Fernandez and Chen (2005) reported no 

difference in virulence between these two species. Large variation in virulence among the 

isolates of Fusarium species as reported by Miedaner and Schilling (1996), Muthomi et al. 



DISCUSSION 
 

 93

(2000), Miedaner et al. (2004), and Fernandez and Chen (2005) may explain differences 

between these studies.  

F. graminearum also proved to be more competitive than the other isolates under 

greenhouse and field conditions. Similar to virulence, the competitiveness of isolates 

decreased in the order F. graminearum, F. culmorum, F. avenaceum and F. poae. This 

indicates the competitive ability of an isolate may be associated to virulence. This implies that 

an isolate with high competitive ability could be more virulent than its low competitive 

counterpart. In co-inoculations other isolates was out-competed by the presence of F. 

graminearum in the mixtures. This effect was more pronounce under greenhouse experiments. 

In the two-party mixture, for example, the amount of fungal DNA of F. graminearum and F. 

culmorum was 30 % and 48 % lower than in single inoculations, while kernel colonization 

was lowered by 16 % and 62 %, respectively. These two isolates exhibited co-suppression 

even though F. graminearum was more suppressive to F. culmorum on wheat ears. The most 

likely explanation for this case is that the virulence of isolates in co-inoculation is reduced by 

competition. The effect of interaction and especially competition may have resulted in the 

fungus expending more energy in production of inhibitors for competitors and hence reduced 

virulence.  

Four out of the six possible two-party interactions were competitive - F. graminearum 

x F. culmorum, F. avenaceum x F. culmorum, F. culmorum x F. poae, F. avenaceum x F. 

poae - and two combinations - F. graminearum x F. avenaceum, F. graminearum x F. poae - 

showed amensalism. Competitive interactions between isolates were more disadvantageous to 

the less-virulent isolates and did not confer any advantage to the more virulent affiliate in the 

mixture which was not able to produce more disease than when was inoculated alone. These 

interactions were detrimental to both isolates - although to a different degree. These results 

are similar to the observations of Simpson et al. (2004), who reported that in mixed 

inoculations, F. culmorum suppressed the growth of Microdochium species on wheat 

seedlings. However, when M. majus became established on the seedlings, it was able to co-

suppress colonization by F. culmorum.  

Competitive interaction among pathogenic fungi in any stages of their life cycle in the 

same ecological niches may be due to exploitation and interference mechanisms (Carroll and 

Wicklow, 1992). Competitive exploitation is an indirect interaction associated with the ability 

of an organism to consume available resources (without reducing access of the other 

organisms to the same resource pool). FHB pathogens may interact in different way during 

growing plant parts. Early germination, fast-growing germ tubes and mycelia associated with 
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fast absorption of nutrients (Wagacha et al., unpublished) and rapid growth on different parts 

of spikelets may have an effect on the competitiveness of isolates during the infection process. 

The conidia of Fusarium spp. germinated on the surface of wheat flower parts after 6-12 h 

p.i., but germ-tubes did not penetrate into host tissue immediately (Kang and Buchenauer, 

2002; Kang et al., 2005). The researchers also showed a dense hyphal network developed on 

the inner surface of wheat flowers during the first days after inoculation and infection was 

observed after development of the network. Therefore, interactions can occur during the first 

stages of infection such as early interactions (spore germination and penetration) using 

various mechanisms to occupy the ecological niches. Such interactions resulted in 

predominance of one isolate while the others occurred in low levels.   

Interference competition is a direct interaction and involves chemical or behavioural 

mechanisms that influence the access of fungi to resources. Many fungi produce secondary 

metabolites such as mycotoxins that may influence competitive outcomes. Mixed inoculation 

showed that competitive interactions among the major FHB pathogens may or may not lead to 

reduction of fungal biomass, while the mycotoxin production dramatically increased (Xu et 

al., 2007). Deoxynivalenol (DON), 3-acetyl-DON and nivalenol have been shown to be 

detectable in early stages of infection and are discussed to be important for differences in 

virulence at the very beginning of infection (Kang and Buchenauer, 2002; Maier et al., 2005).  

This may also explain differences in competitiveness of the most virulent isolate 

compared to isolates with moderate to low virulence. The effect of mycotoxins on other fungi, 

however, is largely unknown. Among four isolates of F. culmorum, Miedaner et al. (2004) 

observed superior competitive ability of two DON-producing isolates as compared to NIV-

producing isolates. Xu et al. (2007) mentioned that co-inoculations of wheat with the major 

FHB pathogens resulted in dramatic increase of mycotoxins. 

F. graminearum suppressed the frequency and intensity of kernel colonization by F. 

avenaceum and/or F. poae; however, these isolates had no effect on F. graminearum. These 

results indicated that asymmetrical competitive interactions (amensalism) may also occur 

during wheat ear colonization. Similarly, the presence of F. proliferatum or F. moniliforme 

had limited inhibitory effect on the population of F. graminearum on maize (Velluti et al., 

2000).  

With variable inoculum concentrations of conidia in single and mixed inoculations, 

neither the amount of F. graminearum DNA nor the frequency of kernels infected by this 

isolate significantly differed, except in the two-party combination with F. culmorum. By now 

we have no explanation for the lack of competition of F. culmorum in mixtures of three or 



DISCUSSION 
 

 95

four species; maybe in these cases F. avenaceum and/or F. poae reduced the effect of F. 

culmorum on F. graminearum.  

In field experiments, F. culmorum and F. graminearum were the predominant species 

in 2005 and 2006, respectively while F. poae was the lowest. This may be explained by 

differences in environmental conditions since the mean daily temperatures in 2005 in most 

days were less than 15 ºC, while in 2006 were more than 25 ºC (Figure 16 and 17). F. 

culmorum is a major component of FHB in wheat growing areas with cool weather conditions 

(Mills, 1989; Birzele et al., 2002; Bottalico and Perrone, 2002). Reid et al. (1999) reported 

that dry and warm conditions during growth of maize strongly affect the infection of ears by 

F. moniliforme and F. graminearum. Fusarium moniliforme has at least one competitive 

advantage over F. graminearum, because of a broader response to temperature that confers 

direct and indirect benefits. Marin et al. (1998) showed that F. moniliforme and F. 

proliferatum are able to dominate several other common maize-contaminating fungi over a 

wide range of temperature and water availability conditions – e.g. Aspergillus spp. and 

Penicillium spp.  

The Chi-square test on goodness of fit demonstrated a shift in the composition of the 

Fusarium isolates colonizing wheat ears from anthesis through harvest. The ratio (in the 

frequency of infected spikelets) differed significantly from the ratio 1 : 1 : 1 : 1 expected for 

equal aggressiveness and competitiveness of isolates. The differences in the proportions of 

frequency and intensity of colonization on spikelets and kernel at harvest were more obvious 

in low virulent isolates F. avenaceum and F. poae in mixtures with high virulence one. This 

indicated difference in ability of the isolates to colonize spikelets and kernels. On the other 

hand, the infection ratios proved existence of significant interactions among the isolates on 

spikelets and kernels. In most cases, one isolate out-competed the other ones resulting in an 

increase of its proportions in the kernels at harvest. This indicates the isolates varied in the 

competitiveness and virulence to host plant. The infection proportion of F. graminearum 

increased from anthesis to harvest in all inoculations. This was demonstrated by reaching the 

highest value for its DNA content in kernels, while the proportions of other isolates decreased 

in co-inoculations with F. graminearum. While other isolates showed reduction depending on 

the composition of mixtures including F. graminearum.  The proportionate content of fungal 

DNA in mixed inoculations indicated that the ability of the isolates to colonize kernels is 

different. The differences in virulence and competitive abilities of the isolates may explain 

differences in the ratios test on the spikelets and kernels, which decreased in the order F. 

graminearum, F. culmorum, F. avenaceum and F. poae. 
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The number of infected spikelets and wheat flower parts increased from anthesis 

through early ripening in inoculation either alone or in mixtures. The degree of increase was 

dependent on the isolates and composition of the mixtures and decreased in the order F. 

graminearum, F. culmorum, F. avenaceum and F. poae, respectively. Several factors may 

explain differences in the frequency of infected spikelets in three times sampling. After 

inoculation, part of the inocula is not able to establish and penetrate the host. This means that 

not all inocula have the ability to produce disease.  This may imply differences in potential of 

inoculum which depends on cultivar resistance, defence mechanisms of the plant and plant-

pathogen interactions. The disease-producing ability of Fusarium spp. on the abaxial and 

adaxial surfaces of wheat flower parts (susceptibility) is different. Differences in the 

development of Fusarium spp. on the abaxial and adaxial surfaces of wheat spikelet were 

observed by Kang and Buchenauer (2002) and Kang et al. (2005). They showed that 

relatively little hyphal network developed on the outer surface of the glume, lemma, palea and 

rachis and no direct penetration of the abaxial surfaces of the spikelet was observed 3-4 days 

after inoculation. The researchers also showed that penetration of host tissues occurred by 

infection hyphae on the inner surfaces of lemma, glume and palea, and on the upper part of 

the ovary. No infection was observed after inoculating the outer surface of glume using a 

conidia suspension of F. graminearum (Strange and Smith, 1971). This may explain 

differences in susceptibility of surfaces of wheat floret. The frequency of infected spikelets by 

low virulence isolates was reduced by co-inoculation with high virulence ones. This indicated 

existence of different degrees of competitive interactions between isolates in turn affected the 

frequency of infected spikelets from anthesis through early ripening. For example, there was a 

negative increase of F. poae in the presence of higher aggressive species in three-species 

combinations. In contrast, it has been shown that after initial infection, Fusarium species are 

able to move in vascular tissue and into rachis by hyphal growth inside of plant tissue. Kang 

and Buchenauer (2000) and Guenther and Trail (2005) showed that FHB pathogens reach the 

rachis and systemically grow upwards and downwards inter- and intra-cellularly in vascular 

bundles and cortical parenchyma tissue of the rachis. There was similarity in increase of F. 

graminearum infected spikelets from anthesis to ripening either when inoculated alone or in 

mixtures. This may be explained by high competitiveness of F. graminearum in the mixtures 

with other isolates and linked to high virulence to host plant and high amount of 

deoxynivalenol in the kernels. Trichothecenes production has been shown to contribute to 

virulence of G. zeae on head blight (Proctor et al., 2002). The mycotoxins have also been 

shown to play a role in hyphal growth of the pathogen from one infected floret to neighboring 
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ones through the rachis internodes. Jansen et al. (2005) showed that in the absence of 

trichothecene production, the Fusarium fungus is prevented in wheat to move into the rachis 

by the development of strong cell wall fortifications in the rachis node.  

In both years, the frequency of infected wheat flower parts decreased in the order 

lemma, palea, glume and developing kernel, respectively. This is in agreement with reports 

from Kang and Buchenauer (2000), Kang et al. (2005) and Wanyoike et al. (2002), who 

showed differences in structure of epidermal cells of wheat florets. The adaxial surface of 

wheat glumes has thick-walled epidermal and hypodermal cells, while the adaxial epidermal 

cell walls of lemma and palea are thin-walled. They also showed that inside of the floret 

cavities greatly facilitates hyphal growth and penetration of the adaxial surfaces of lemma and 

palea by FHB pathogens. At flowering stage, the open floret (the extruded anthers and the 

crevices between palea and lemma) also present an avenue for FHB conidia to reach the 

interior of spikelets either under artificial inoculation or natural infection. Lewandowski and 

Bushnell (2001) showed that under warm and mist-irrigated field conditions, colonies of F. 

graminearum on the exterior surface of the palea (near the keel) and on interior surfaces of 

the palea and lemma facing the floret mouth serve as starting points for floret invasion.  

While the spikelets demonstrated high frequency of infection with more than one 

Fusarium isolate, kernels showed low infection frequency, especially under greenhouse 

experiments. This indicated that in inoculations with multiple isolates, only one isolate is fast 

grower and resulted in kernel colonization. On the other hand, early interactions between or 

among the isolates occur during the infection process on different wheat flower parts and 

result in an increase in the single species colonization. The observation may show the 

aggregation of FHB pathogens on the spikelets. This is because of multiple isolates 

inoculations and spreading the infection to the neighboring ones, however the rate of infection 

depends on the weather conditions and composition of the mixtures. Xu et al. (2004) observed 

the aggregation of FHB infected spikelets on one wheat ear. They mentioned that aggregation 

of the inoculum landed on individual ears and subsequent colonization of healthy spikelets 

may explain the aggregation of FHB infected spikelets on one wheat ears. Overall, the 

presence of F. poae in the mixtures showed no or only a slight increase in infected spikelets 

and kernels at harvest over time, whereas mixtures with F. avenaceum resulted in the highest 

percentages of kernels colonized by two isolates. The ability to produce or negate inhibitors 

by the isolates as well as the speed of growth on wheat flower parts may explain differences 

in the frequency of infection with more than one isolates. For example, under stress 

conditions or multi-species inoculations the isolates shifted to produce varied secondary 
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metabolites or more mycotoxins. Xu et al. (2007) reported that the amount of mycotoxins 

dramatically increased when FHB pathogens were inoculated as mixtures.    

In greenhouse experiments, kernel weight was greatly reduced in single or mixed 

inoculations, where F. graminearum was in mixture with the other isolates, for example, 50 % 

and 42 % reduction in single inoculations of F. graminearum compared to non-treated control 

plants in 2005 and 2006, respectively. However, in field experiments, inoculations with 

Fusarium species alone or in mixtures, hardly affected kernel weight. For example, in 

inoculations wheat ears with F. graminearum and its mixtures in most cases the kernel weight 

was similar with non-inoculated control plants, in contrast to high fungal biomass and 

frequency of infected kernel. Weather conditions, infection process, the content of fungal 

biomass and method of harvesting may explain differences in kernel weight under greenhouse 

and field experiments. For example, in inoculation with F. graminearum and its mixtures 

under greenhouse conditions, symptoms on the spikelets develop within 10 days after 

inoculation, while symptoms development under field experiments required more time. Under 

field conditions where harvesting was done using a combine harvester, kernels with low 

density were discarded unlike in greenhouse experiments where manual harvesting was 

applied thereby retaining low-weight-kernels that were highly colonized. This may also 

explain differences for fungal biomass under greenhouse and field experiments. The kernel 

weight of plants inoculated with F. avenaceum and/or F. poae was not significantly different 

from that of non-inoculated plants. Low fungal biomass production by these species under 

field and greenhouse conditions did not affect yield. Additionally, the mode of infection and 

colonization by these species may differ from the most virulent species (Doohan et al., 1999).  

Comparison of frequency and intensity of kernel colonization proved that there exist 

differences in the virulence and development of the isolates in the kernels. For example, under 

greenhouse conditions in inoculation with one species, the frequency of infection ratios of F. 

graminearum was 1.34, 2.0 and 14.5 and the amount of its DNA was 1.67, 19.74 and 85.11 

times higher than for F. culmorum, F. avenaceum and F. poae, respectively. 

Overall, mycotoxin production dramatically increased in co-inoculations compared to 

inoculations with one isolate alone. This represented a significant increase in mycotoxin 

productivity (per unit of fungus) with a corresponding the reduction or no-reduction of the 

biomass of isolates in mixed inoculations under interactions. 

F. graminearum had the highest ability of mycotoxin production under field 

conditions. Similar to other estimated parameters, the ability of mycotoxin production of the 

isolates decreased in the order F. graminearum, F. culmorum, F. avenaceum and F. poae. 
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This indicated the competitive ability and virulence of an isolate may be associated to 

mycotoxin production or the ability of mycotoxin production.  

Although the low biomass of F. poae further reduced in mixed inoculations, its 

presence in mixtures increased ability of mycotoxins production by other isolates. This 

indicated the consequence of competitive interaction among the isolates resulted in negative 

and synergistic effects on the fungal biomass and mycotoxin production, respectively. This 

may be explained by the fact that under stress conditions the isolates may produce more 

mycotoxins, i. e. competition for nutrients and space. Mycotoxins are secondary metabolites, 

which suggest that where Fusarium is present, production of mycotoxins may be more 

important in acquiring and retaining an ecological niche. 

This is true for the mixed inoculations with F. avenaceum, F. poae and F. culmorum.  

For other mixtures including F. graminearum, F. avenaceum and F. poae, the results 

indicated that in mixed inoculations the biomass of F. graminearum was similar to 

inoculation with this isolate alone, while the ability of mycotoxin production was increased. 

This means other isolates may have stimulatory or synergistic effects on mycotoxin 

productivity by F. graminearum. Previous studies showed that the effects of fungal 

interactions on mycotoxin production might result in decrease, increase or remain at constant 

level similar to the no-competition. For example, presence of F. graminearum in the mixtures 

inhibited enniatins and moniliformin production by F. avenaceum and in some mixtures, its 

presence resulted in no detection of moniliformin. The results are similar to the finding of 

Velluti et al. (2000), who revealed different behaviour in fumonisin B1 production by F. 

moniliforme and F. proliferatum in the presence of F. graminearum. They also mentioned that 

fumonisin B1 production by F. proliferatum was inhibited under all the conditions tested. On 

the other hand, F. graminearum was able to inhibit fumonisin B1 production by F. 

moniliforme at 15 ºC, while at 25 ºC fumonisin B1 was significantly increased.  

Previous studies have shown that there is direct relation between aggressiveness of 

Fusarium graminearum and F. culmorum and their deoxynivalenol and nivalenol-producing 

capacity. It has been shown that more highly aggressive isolates produced more severe 

infection, more fungal biomass, more ergosterol and more deoxynivalenol (Alexander et al., 

1997; Gang et al., 1998; Muthomi et al., 2000; Mesterházy, 2002). The results of Gang et al. 

(1998) indicated that head blight rating and deoxynivalenol content of grain were significantly 

correlated in the field experiments. Alexander et al. (1997) also mentioned that trichothecenes 

are not necessary for pathogenicity, although increase the extent of the disease. 
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It has been shown that deoxynivalenol was detectable 48 h after inoculation (Mirocha 

et al., 1997). The amount of deoxynivalenol in this very early phase of pathogenesis may be 

more important for differences in virulence at the very beginning of infection (Kang and 

Buchenauer, 2002; Maier et al., 2006). Mesterházy et al. (1999) reported that a close 

relationship was usually found between the aggressiveness of an isolate and its 

deoxynivalenol production.  

It has been reported that population of Fusarium culmorum consists of different 

individuals or lines having different pathogenic characters including toxin-producing ability 

(Mesterházy, 2002). However, the deviations are not large and the very close correlations 

show the basic trends that is, higher isolate aggressiveness results in higher FHB severity, 

higher Fusarium damage kernel, higher yield loss and higher deoxynivalenol production. This 

may explain high virulence of F. graminearum and F. culmorum isolates which could be 

linked to their high disease severity, fungal biomass, frequency of infected kernels and 

amount of deoxynivalenol in the kernel samples.  

Regarding increase in the amount of mycotoxins in co-inoculations, it can be stated 

that under field conditions or in most natural head blight epidemics where there are more than 

one isolate this should result in higher mycotoxin accumulation in grain. 

Higher biodiversity within FHB pathogens living in the same ecological niche seems 

likely to reduce the overall resulting disease intensity; no synergism effects detected among 

Fusarium species infecting wheat kernels. However, previous studies showed that interaction 

may result in reduction of fungal biomass while the ability to produce mycotoxins can be 

varied causing either an increase or a decrease (Velluti, et al., 2000; Xu et al., 2007). 

Although these results do not explain the composition of the Fusarium head blight complex in 

the Rhineland, high frequency of the less virulent isolates of F. avenaceum and F. poae in the 

presence of F. graminearum and F. culmorum has been reported in various studies in the 

region. It is likely that a large spectrum of competitors for nutrients and space is less 

dangerous to food and feed production than the predominance of the highly virulent and 

competitive F. graminearum in other regions. The prevalence of F. avenaceum and F. poae 

may be due to specific inoculum sources, differences in optimum incubation conditions – 

temperature, relative humidity – and lower sensitivity to fungicides applied for the control of 

other diseases.  

Although these two species have been reported in high frequency under field 

conditions, their biomass was found to vary from low to very low. Based on mycotoxin data it 

can be concluded that mycotoxin contamination of wheat is closely correlated to the Fusarium 
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biomass in kernels. The toxicity of mycotoxins produced by the Fusarium species, however, 

largely varies and it is known that other mycotoxins are more toxic to mammals than the well-

known deoxynivalenol produced by F. graminearum and F. culmorum (Bhatnagar et al., 

2002).  

The present study demonstrated the existence of interactions between FHB pathogens 

on wheat ears. Competition for nutrients and infection sites played an important role in 

disease incidence, fungal biomass and as a consequence - mycotoxin production. This could 

be concluded from the reduction in disease severity, incidence and fungal biomass with a 

corresponding increase in the content of mycotoxins in kernels. However, it should be 

considered that these conclusions are drawn from studies based on single isolates of the four 

Fusarium species.  

In addition to the present study, several studies showed that the Fusarium species 

varied in the spectrum and amount of mycotoxins, virulence to host plant and response to 

environmental conditions. It would be interesting to investigate intra- and inter-species 

interactions between or among FHB pathogens under different environmental conditions.  

Additionally, the effects of interactions among FHB pathogens on the amount and spectrum 

of mycotoxins produced on host plants with different genotypes should be investigated.  It is 

also necessary to carry out studies on the possible interaction outcomes of high and low 

mycotoxin-producing isolates on wheat.  
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6. Appendices 

Table 41: Frequency of infected kernels by Fusarium spp. after two consecutive  

 inoculations of wheat ears (cv. Drifter) with a 1-day interval at GS 65 (2005, 

FHB field) 

 

 The first day The Second day Infected kernels  [ % ] 

FG FC FA FP 

 

F. graminearum (FG) 

 

 

FG 94.8 AB1       

FC 51.1 GI 48.0 HI     

FA 84.0 B-D   18.8 L-N   

FP 81.1 CD     6.8 NO 

 

F. culmorum (FC) 

 

 

FG 24.9 KL 67.4 EF     

FC  97.2 A     

FA  82.6 B-D 20.0 LM   

FP  78.0 DE   3.0 O 

 

 

F. avenaceum (FA) 

 

FG 35.6 JK 26.5 KL 43.4 IJ   

FC  83.8 B-D 20.4    

FA   81.7 CD   

FP   56.9 F-H 3.5 O 

 

 

F. poae (FP) 

 

FG 84.5 B-D    0.5 O 

FC  92.4 A-C   5.2 O 

FA   82.0 B-D 1.5 O 

FP     14.5 L-O 

FG 

Water 

75.6 DE      

FC  76.1 DE     

FA    62.3 FG   

FP       11.0 M-O 

Inoculation with 91,000 conidia ml -1 in two individual consecutive days 

Wheat ears with FHB symptoms were randomly sampled  
1 Means were separated by independent multivariate analyses for isolates (Duncan test, p ≤    

0.05)  

FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 

1.7; FP, F. poae isolate 7.8 



APPENDICES 
 

 121

Table 42: Content of fungal DNA in wheat (cv. Drifter) kernels after two consecutive    

inoculations with a 1-day interval with Fusarium spp. at GS 65 (2005, FHB field) 

 

 The first day The Second day Fungal biomass  [ng/mg kernel dry weight] 

FG FC FA FP 

 

F. graminearum (FG) 

 

 

FG 75 A1    

FC 13 F 6 HI   

FA 44 CD  1 K-M  

FP 20  1 J-M  0.0 M 

 

F. culmorum (FC) 

 

 

FG 8 GH 11 FG   

FC  23 E   

FA  5 IJ 0.4 LM  

FP  4 I-L  1 J-M 

 

 

F. avenaceum (FA) 

 

FG 55 B  2 J-M  

FC  2 J-M 0.3 M  

FA   3 I-M  

FP   0.3 M 1  

 

 

F. poae (FP) 

 

FG 46 C   2 J-M 

FC  3 I-M  2 J-M 

FA   0.4 LM 0.0  

FP    1 K-M

FG 

Water 

42 D    

FC  8 GH   

FA   1 K-M  

FP     1 K-M

Inoculation with 91,000 conidia ml -1 in two individual consecutive days 

Wheat ears with FHB symptoms were randomly sampled  
1 Means were separated by independent multivariate analyses for isolates (Duncan test, p ≤    

0.05)  

FG, F. graminearum isolate 5.1; FC, F. culmorum isolate 3.11; FA, F. avenaceum isolate 

1.7; FP, F. poae isolate 7.8 
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Figure 16: Mean daily temperature at the Poppelsdorf experimental station, University of 

Bonn, Germany, in 2005 

Figure 17: Mean daily temperature at the Poppelsdorf experimental station, University of    

Bonn, Germany, in 2006 
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