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Studies on the Characteristics of the Antagonistic Relationship between 
Radopholus similis (Cobb) Thorne and Mutualistic Endophytic Fungi in 

Nematode-Suppressive Banana Plants (Musa AAA). 
 
The antagonistic relationship of Radopholus similis and seven mutualistic endophytes 
isolated from banana and plantain were investigated in a series of experiments. First, 
prior to field trials and further greenhouse experiments, the vegetative compatibility of 
endophytes identified as Fusarium oxysporum and known pathogenic F. oxysporum 
isolates was tested. Nitrate non-utilizing (nit) mutants were produced and crossed with 
complementary testers from pathogenic F. oxysporum f. sp. radicis-lycopersici, 
lycopersici and cubense strains. None of the endophytic F. oxysporum isolates formed 
heterokaryons with any of the pathogenic strains tested. The nematode-antagonistic 
endophytes are therefore not vegetatively compatible with the pathogenic strains, and 
can not exchange genetic information with them. 
Second, the role of systemic induced resistance to nematode penetration and 
reproduction was tested in a series of split-root tests carried out in greenhouses in 
Germany and Costa Rica. The results revealed that, of the three T. atroviride (MT-20, 
ET-35 and S2) and four F. oxysporum (MF-25, MF-40, S9 and P12) isolates tested, only 
MT-20 and S2 seemed to induce systemic effects in Musa AAA cv. ‘Valery’ plants. S2 
significantly and consistently reduced R. similis penetration, 10 days after nematode 
inoculation, while MT-20 significantly reduced nematode reproduction over a 9 week 
period. None of the tested F. oxysporum isolates induced systemic resistance to 
nematode penetration or reproduction. 
Third, the possible transfer of nematode suppression from endophyte-inoculated Musa 
AAA cv. ‘Valery’ mother plants to daughter plants (suckers) in the field was studied. 
As part of a large scale field trial looking at the suppression of nematodes in the field, 
mother plants were inoculated with endophytes prior to field transfer, and nematode 
populations monitored for 7 months. At the first de-suckering, sword suckers were 
removed from the field and grown in the greenhouse, where they were later challenged 
with R. similis. Results from the field to greenhouse test indicated that, when nematode 
suppression is established in the field, this suppression is transferred from mother to 
daughter plants. 
Finally, the effects of single and combined inoculations of two F. oxysporum and two T. 
atroviride on R. similis biocontrol in Musa AAA cv. ‘Williams’ and on plant growth of 
Musa AAA cvs. ‘Grand Nain’, ‘Valery’ and ‘Williams’ were investigated. Combining 
inoculations of mutualistic endophytes increased nematode control levels and plant 
growth in ‘Williams’ plants inoculated with both R. similis and fungi. Plant growth in 
the absence of R. similis was promoted by single and dual inoculations of T. atroviride 
isolates and by single inoculations of F. oxysporum isolates in ‘Grand Nain’, ‘Valery’ 
and ‘Williams’ plants. Dual inoculations of F. oxysporum and of all four endophytes did 
not positively affect plant growth. 



 

 

Studien zur Characterizierung der Antagonistischen Beziehung zwischen 
Radopholus similis (Cobb) Thorne und Mutualistischen Endophytischen Pilzen in 

Nematoden-Suppressiven Bananen Pflanzen (Musa AAA). 
 
Die antagonistische Beziehung von Radopholus similis und sieben aus Bananen und 
Kochbananen isolierten mutualistischen Endophyten wurden in einer Serie von 
Versuchen durchleuchtet. Vor weiteren Gewächshausversuchen und Feldversuchen, 
wurde erstens die vegetative Kompatibilität der als Fusarium oxysporum identifizierten 
Endophyten und bekannte pathogenen F. oxysporum Isolate getestet. Nitrate nicht 
verwendende (nit) Mutanten wurden produziert und mit komplementären Testern der 
pathogenen Stämme von F. oxysporum f. sp. radicis-lycopersici, lycopersici und 
cubense gegenüber gestellt. Keiner der getesteten endophytischen F. oxysporum Isolate 
formte einen Heterokaryon mit pathogenen Stämmen. Die Nematoden antagonistischen 
Endophyten sind daher nicht mit pathogenen Stämmen vegetativ kompatibel, und 
können keine genetische Information austauschen. 
Zweitens wurde die Rolle der systemisch induzierten Resistenz zu Nematoden 
Penetration und Reproduktion in einer Reihe Split-Root Versuchen im Gewächshaus in 
Deutschland and Costa Rica nachgeprüft. Von den drei T. atroviride (MT-20, ET-35 
und S2) und den vier F. oxysporum (MF-25, MF-40, S9 und P12) getesteten Pilzen, 
induzierten nur MT-20 und S2 eine systemische Reaktionen in Musa AAA cv. ‘Valery’ 
Pflanzen. S2 reduzierte in signifikanterweise und immer wieder die Penetration von R. 
similis, 10 Tagen nach Nematoden Inokulation, wehrend MT-20 in signifikanterweise 
die Reproduktion über eine 9-Wöchige Periode reduzierte. Keins der getesteten F. 
oxysporum Isolate induzierte eine systemische Resistenz, weder zur Penetration noch 
zur Reproduktion von R. similis. 
Drittens wurde die mögliche Übertragung der durch Endophyten hervorgerufene 
Nematoden Suppression in Musa AAA cv. ‘Valery’ Mutterpflanzen an deren Töchter 
(Wurzelschössling) im Feld erforscht. Als Teil eines groß angelegten Feldversuches, 
wurden Mutterpflanzen mit Endophyten vor der Aussaat im Feld inokuliert, und der 
Nematoden Bestand über 7 Monate überwacht. Bei der ersten Schösslingsentfernung, 
wurden Schwertschösslinge vom Feld entnommen und ins Gewächshaus verpflanzt, wo 
sie später mit R. similis inokuliert wurden. Die Ergebnisse des Versuchs deuteten darauf 
hin das, dort wo sich die Nematoden Suppression im Feld etabliert, wird diese auch von 
Mutter- zu Tochterpflanze übertragen. 
Letztlich wurden die Wirkung einzelner und kombinierter Inokulationen von zwei F. 
oxysporum und zwei T. atroviride auf die Biokontrolle von R. similis in Musa AAA cv. 
‘Williams’ und auf das Wachstum von Musa AAA cvs. ‘Grand Nain’, ‘Valery’ und 
‘Williams’ untersucht. In ‘Williams’ Pflanzen die mit R. similis sowie Pilzen inokuliert 
wurden, wurde das Niveau der Nematoden Biokontrolle und des Pflanzenwachstums 
durch kombinierte Inokulationen gesteigert. In der Abwesenheit von R. similis, wurde 
der Wachstum in ‘Grand Nain’, ‘Valery’ und ‘Williams’ Pflanzen durch die Inokulation 
mit einzelnen oder beiden T. atroviride und mit einzelnen F. oxysporum gesteigert. Die 
Inokulation mit beiden F. oxysporum und mit allen Pilzen förderte nicht das Wachstum 
der Pflanzen. 
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1 GENERAL INTRODUCTION 
 

As early as 12 thousand years ago, during the first agricultural revolution, people 

started to cultivate plants to meet their nutritional needs. Through selection and 

breeding, wild plants became crops and were adapted to growth under various 

conditions. Many crops are now produced in lands far removed from their centres of 

origin. Bananas and plantains (Musa spp.) are such far-flung crops and their distribution 

is closely linked to that of human populations in the tropics (De Langhe, 1996). 

1.1 Bananas 

The banana belongs to the family Musacea, genus Musa, and is the world’s largest 

perennial herb, represented by almost 1000 varieties (INIBAP, 2000). The cultivated 

forms belong to two sections of the genus Musa: Australimusa and Eumusa (Rehm & 

Espig, 1991). The section Eumusa is the largest and geographically most widespread 

section, and contains the majority of edible bananas (Simmonds & Shepherd, 1955; 

Simmonds, 1966; Stover & Simmonds, 1987). Originating in the rainforests of 

Southeast Asia, edible fruits of Musa spp. most probably came about as a result of two 

mutation events: female sterility and parthenocarpy (Sharrock, 1998). Triploid Musa 

acuminata cultivars arose from these diploids, perhaps as a result of crosses between 

edible diploids and wild M. acuminata subspecies, resulting in a wide range of 

phenotypes (Sharrock, 1998). M. acuminata triploids, which are more vigorous and 

have larger fruit, have replaced the original M. acuminata diploids in most parts of 

Southeast Asia (Sharrock, 1998). Original edible diploid and triploid M. acuminata 

cultivars are believed to have first been taken by man to areas where M. balbisiana is 

native and natural hybridizations resulted in the formation of hybrid progeny with 

mixed genomes (Simmonds, 1962). It is thought that the subsequent dispersal of edible 

bananas outside Asia was brought about solely by man (Simmonds 1962). Secondary 

diversification within the major groups of cultivated bananas has been the result of 

somatic mutations rather than sexual reproduction (Sharrock, 1998).  

Bananas are generally classified by a code that consists of the genus name, Musa, 

and a number of As and Bs designating their genomic composition and ploidity level 

(i.e. Musa AABB is a tetraploid Musa with two sets of chromosomes from M. 

acuminata and two from M. balbisiana). The most economically important cultivated 
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types used by farmers worldwide are triploids: AAA and AAB dessert bananas, AAA 

East African cooking and beer bananas, ABB cooking banana and AAB plantains 

(Ortiz, 1997). These triploid cultivars are sterile and develop seedless fruit by 

parthenocarpy (Simmonds, 1995). Hence, all bananas plants used for production are 

clones that traditionally developed from corms or suckers of so called mother plants. 

Today, tissue culture plants are gaining importance as planting material in commercial 

operations (Sarah, 2000). 

Mother plants are the plants that bear fruit, and their lateral offshoots are called 

suckers. Banana mother plant, sucker and inflorescence are shown in Figure 1. 

 

 

Source: IPGRI/INIBAP/CIRAD (1996). 

Figure 1. Banana mat with mother plant, sucker and inflorescence. 

There are three types of suckers produced by bananas: the maidenhead sucker - a 

large non-fruiting pseudostem, the sword sucker - a sucker attached to the original 

(mother) rhizome with narrow sword-like leaves, and the water sucker - a sucker next to 

but only superficially attached to the mother rhizome with broad leaves (Simmonds, 

1959). Water suckers produce inferior fruit and are therefore not recommended for
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propagation. The most commonly used sucker for planting is the sword sucker. In 

commercial operations, all suckers are periodically removed from the mother plant. 

Towards the beginning of flowering, the most vigorous sword sucker is chosen as 

follower sucker, and not removed. During harvest, the banana bunch is removed, the 

mother plant cut down and the follower sucker left to grow and bear fruit. The complex 

of mother and sucker plants, including roots and pseudostems is called a banana mat. 

1.2 Bananas in Central America 

There is some evidence that bananas may have been introduced to the west coast of 

South America and Ecuador by Polynesian people as early as 2000 years ago, however, 

only the later introduction of bananas to tropical America by Spaniards and Portuguese 

from the 16th to 19th centuries is clearly documented (De Langhe, 1996). 

The large scale commercial production of dessert bananas for export, for which 

Central American countries are especially renown, started in the late 1890s and early 

1900s, when the interests of the Brooklyn-born Central American railroad baron Minor 

C. Keith merged with those of the Boston Fruit Company, to create the infamous United 

Fruit Company or UFCo (Chiquita, 2000). The expansion of commercial banana 

production was closely tied to the social, cultural, economical and political development 

of Central America, and the UFCo’s power over and corruption of local governments 

and the dependence of these nations on the production and export of bananas lead to 

their designation as Banana Republics. 

Over the years, the UFCo acquired both virgin land and established banana 

plantations throughout Latin America and the Caribbean - controlling an area the size of 

Switzerland by the early 1930s - and becoming the world’s largest banana producer and 

exporter, dominating a third of the world trade (Anonymous, 1999; Banananlink, 2001). 

Presently, the world banana market is dominated by three U.S.-based multinational 

companies: Chiquita Brands International (formerly UFCo) based in Cincinnati, Ohio; 

Dole Food Company (formerly Standard Fruit Company), Westlake Village, California; 

and Fresh Del Monte Produce, Coral Gables, Florida. Together, Chiquita, Dole and Del 

Monte control over 65% of the world banana trade (Van de Kasteele, 1998). 

In 2006, global banana production exceeded 69 million tonnes (Mt), of which over 

a third or 25 Mt was produced in Latin America and the Caribbean (FAOSTAT, 2008). 
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Production in Latin America and the Caribbean accounted for close to 83% or 10.2 Mt 

of world banana exports in 1998 (Lescot & Rosales, 1999; Sharrock & Frison, 1999). 

Of the over 31 Mt of banana and plantain produced on average per year in Latin 

America and the Caribbean, 22 Mt are consumed locally, that is: 7.3 Mt plantain 

(ABB), 6.5 Mt cooking bananas (ABB), 5.8 Mt ‘Figue pomme’/‘Silk’, ‘Pome’ and 

‘Gros Michel’ bananas and >5 Mt Cavendish bananas for local consumption, as shown 

in Figure 2 (Lescot & Rosales, 1999). These fruits are an integral part of the diet of 

most Latin Americans and are usually produced on smaller plantations, small farms and 

backyard plots, while most bananas produced on the large plantations run by the 

multinational companies are destined for the export market. The variety of cultivars 

grown on the large plantations is usually limited to a few Cavendish cultivars, whereas 

locally consumed bananas found at local markets represent a greater variety of cultivars. 

export Cavendish 
.

export Plantain 
.

other 
Dessert 

Bananas .

other Cooking 
Bananas .

3%
Cavendish 

.

Plantain 
.

Source: Lescot & Rosales (1999). 

Figure 2. Diversity of Musa production in Latin America and the Caribbean 

With the spread of the banana’s popularity around the world, it’s pests and 

pathogens were also disseminated into newly opened growing regions (Marin et al., 

1998). One of the most devastating of pests of bananas are nematodes. Among the 

nematodes attacking bananas grown in the tropics, the most important one is 

Radopholus similis (Cobb) Thorne.  
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1.3 Nematode Pests of Bananas in Central America 

The five major nematodes that parasitize banana roots are: Radopholus similis, 

Pratylenchus coffeae, P. goodeyi, Helicotylenchus multicinctus and Meloidogyne spp. 

(Gowen & Quénéhervé, 1990). The migratory endoparasites R. similis and Pratylenchus 

spp. are the most widespread and important ones, followed by the ectoparasite 

Helicotylenchus multicinctus and the sedentary endoparasite Meloidogyne spp. (Sarah, 

2000; Gowen, 2000a; Gowen, 2000b; De Waele, 2000). In Central America, R. similis 

is usually the most common and most damaging nematode encountered, followed by 

Helicotylenchus spp., Meloidogyne spp. and, not so commonly, Pratylenchus spp. 

(Araya et al., 1995; Gowen, 1995; Marin et al., 1998; Gowen, 2000a; Chávez & Araya, 

2001; Moens et al., 2001).  

1.3.1 Radopholus similis (Cobb) Thorne 

Radopholus similis (Cobb) Thorne is a migratory endoparasite that completes its 

life-cycle in 20-25 days in the root and corm tissues of bananas (Sarah et al., 1996). 

Mobile females and juveniles migrate inter- and intracellularly, feeding on cortex cell 

cytoplasm and thereby damaging cells. Males have an atrophied stylet and are not 

considered parasitic. A group of R. similis males and females are shown in Figure 3. 

 

Figure 3. Group of Radopholus similis males and females isolated from banana roots. 

Damage caused by R. similis begins with tunnels of necrotic tissue in roots and 

corms, which affect water and nutrient uptake thereby lengthening the growing period. 

Next, root rot develops, caused by secondary infection of damaged tissue by bacteria 
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and fungi, eventually leading to the Banana Toppling Disease, caused by root 

destruction and loss of anchorage (Gowen & Quénéhervé, 1990; Sarah et al., 1996). 

Parasitic forms of R. similis can not only migrate from necrotic root tissue to adjoining 

fresh tissue but also through the soil, thereby gaining access to non-infested tissue such 

as new roots and freshly planted material (Sarah et al., 1996). Substantial yield 

increases (20-75%) in production areas where nematicides were applied revealed the 

extent of production losses due to R. similis and nematodes in general (Broadley, 1979; 

McSorley & Parrado, 1986; Sarah, 1989; Gowen, 1994). 

1.4 Importance of Radopholus similis in Central America 

R. similis is considered one of the most important root pathogens attacking bananas 

and to be the main nematode problem in intensive, export-oriented, commercial banana 

production, especially of Cavendish cultivars (Sarah et al., 1996). A significant 

correlation between R. similis numbers and root necrosis and damage in follower 

suckers has been observed in commercial banana plantations (Moens et al., 2001). 

However, it was only through the Panama Disease induced switch from ‘Gros Michel’ 

(AAA) to Cavendish (AAA) cultivars that nematodes became a problem in banana 

plantations in Central America, as ‘Gros Michel’ cultivars are partially resistant to 

nematodes, while Cavendish cultivars, though resistant to Panama Disease, are 

susceptible to them. At present R. similis is considered a major limiting factor of banana 

production in Central America, both on commercial, export-oriented plantations and on 

smaller farms (Pinochet, 1986). 

It is commonly believed among Central American banana producers that 

Panamanian and Costa Rican plantations are more heavily infested and damaged by 

nematodes (especially by R. similis) than plantations in Honduras, Guatemala and 

Belize. Pinochet (1988) also reported this regionally varying pathogenicity of R. similis 

populations in Central America. Other authors have studied R. similis populations 

isolated from different production areas both in Central America and in the world, and 

have concluded that there is a large range of intraspecific biological diversity and 

pathogenicity of R. similis (Sarah et al., 1993; Fallas & Sarah, 1995; Fallas et al., 1995). 

Pathogenicity has also been clearly linked to reproductive fitness in plant tissue (Sarah, 

2000). In addition to the pathogenicity and density of nematodes in roots, choice of 

cultivar and abiotic and biotic factors, especially other microorganisms living in the soil 
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and root tissue affect the extent of damage caused by nematodes (Kaplan & Gottwald, 

1992; Gowen, 1995; Spiegel & Chet, 1998; Elsen et al., 2001). 

1.5 Control Measures for Nematodes in Central America 

The economic threshold level of a pest is an important element of Integrated Pest 

Management or IPM (Duncan, 1991). In general, the nematode threshold of 10000 R. 

similis/100 g functional root established by Tartré and Pinochet (1981) is used to 

determine the need for nematicide applications on commercial plantations (Chávez & 

Araya, 2001). In most commercial banana plantations, nematode populations are 

monitored on a monthly basis and other parameters, such as total and functional root 

weight and percent necrotic roots are also included in the data collected during 

monitoring (Moens et al., 2001). 

Though a variety of cultural and physical nematode control measures, such as crop 

rotation, fallow, flooding and soil solarization, have had some success in certain 

management systems, they are next to impossible or impractical in commercial 

plantations where bananas are grown continuously and therefore nematode control in 

these systems is primarily done chemically (Sarah, 1989; Gowen & Quénéhervé, 1990; 

Quénéhervé, 1993; Pinochet, 1996; Forgain & Gowen, 1997; Pocasangre, 2000). 

A few promising microorganisms have been identified for the biological control of 

nematodes, but few are effective in the field as efforts have concentrated on enhancing 

biological control through soil inoculation with nematode-antagonistic organisms 

(Rodríguez-Kábana, 1991; Sarah, 2000). Notable exceptions are Paecilomyces lilacinus 

and P. oxalicum, which are parasites of R. similis eggs, juveniles and adults, and have 

yielded promising results in the Philippines (Sarah, 2000). Other promising 

microorganisms have been isolated from nematode suppressive horticultural and coffee 

soils in Mexico and Costa Rica and were tested on horticultural crops against two 

sedentary ectoparasitic nematodes, Meloidogyne incognita and Rotylenchus (Marban-

Mendoza et al., 1992; Zuckerman et al., 1993; Dicklow et al., 1993; Esnard et al., 

1995). However, in banana, endoparasitic nematodes such as R. similis and 

Pratylenchus spp. dominate and cause the most damage. Looking for antagonists of 

ectoparasitic nematodes in nematode suppressive soils is logical, as these parasites 

spend most of their life in the soil and the chances of finding their natural enemies in 

such soils are high. For lack of a better term, the soils of areas where endoparasitic 
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nematodes are suppressed have also been termed suppressive soils. However, since 

these nematodes spend most of their lives in plant tissue, their antagonists are probably 

also to be found within the plant tissue that hosts them and not in the soil. Restricting 

the search for antagonists of endoparasites to endophytic organisms from host plants in 

areas where suppression is observed is a logical avenue of investigation. 

1.6 Endophytes as Biocontrol Agents of Plant Parasitic Nematodes 

Based on the general definitions of endophytes by Petrini (1991) and Hawksworth 

et al. (1995), endophytic fungi can be defined as fungi that, at some point in their life 

cycle, live within plant tissues without causing disease symptoms and can be isolated 

from healthy plant tissue after surface sterilisation. The use of such fungi to increase 

resistance to nematodes in plants prior to field planting is seen as a novel approach to 

sustainable nematode management in banana (Sikora & Schuster, 1999; Niere, 2001). 

Sikora et al. (1999) coined the term biological enhancement, which is now used to 

describe the targeted application of antagonists into a plant’s pathozone for effective 

biological control (Sikora et al., 2008). 

In their review of mutualistic endophytic fungi and in-planta suppressiveness to 

plant parasitic nematodes, Sikora et al. (2008) note that though the concept of using 

microorganisms to control nematodes is not new, that of using endophytes is relatively 

new, and published literature on the subject is therefore scarce. Studies have been 

carried out primarily on tomatoes and bananas, the vast majority of which included the 

biological enhancement of the plants with non-pathogenic Fusarium oxysporum and 

Trichoderma spp. isolates (Sikora et al., 2008). Menjivar Banajona (2005) was the first 

to run a large scale field trial with endophyte inoculated banana plants. He concluded 

that one application of endophytes prior to field planting can eliminate a round of 

nematicide treatments (Menjivar Barahona, 2005). The application of endophytes can 

not only be limited to the pathozone, but they additionally grow in the very tissues plant 

parasitic nematodes feed on and live in, therefore the potential of endophytes as 

biological control agents (BCAs) of nematodes, especially endoparasitic ones is great. 
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2 RESEARCH OBJECTIVES 
 

The endophytes used in the present study were all isolated from the roots of banana 

and plantain plants, growing in areas where a suppression of R. similis was either 

suspected or confirmed. Prelimiary studies included the isolation, screening, 

identification and selection of nematode antagonistic endophytic fungi. Endophytic 

fungi were isolated from banana and plantain roots from 1) commercial banana 

plantations in Motagua, Guatemala (zum Felde, 2002); 2) commercial plantain 

plantations in Sixaola, Costa Rica (Carñizares Monteros, 2003); and 3) organic banana 

and plantain plantations in Talamanca, Costa Rica (Menenses Hérnandez, 2003). 

The isolates that best controlled R. similis in the greenhouse in in planta experiment 

were identified to the species level in the laboratory of Dr. H. Nierenberg, at the BBA, 

in Berlin, Germany. All proved to be either Trichoderma atroviride isolates or 

Fusarium oxysporum isolates. The seven most effective and non-pathogenic nematode-

antagonistic endophytes were included in the present study. 

The objectives of the present thesis work were: 

1) To test the vegetative compatibility of Radopholus similis-antagonistic 

endophytic Fusarium oxysporum isolates with known pathogenic strains of 

Fusarium oxysporum f. sp. radicis-lycopersici, lycopersici and cubense. 

2) To study whether or not systemic induced resistance plays a role in the 

Radopholus similis antagonistic relationship of endophytic Trichoderma 

atroviride and Fusarium oxysporum isolates in Musa AAA cultivar ‘Valery’. 

3) To investigate the possible transfer of nematode suppression from 

endophyte-inoculated Musa AAA cultivar ‘Valery’ mother plants to 

daughter plants (suckers) in the field. 

4) To examine the effects of single and combined inoculations of mutualistic 

endophytic Fusarium oxysporum and Trichoderma atroviride on Radopholus 

similis biocontrol in and growth of Musa AAA cultivars ‘Grand Nain’, 

‘Valery’ and ‘Williams’. 
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3 TESTING THE VEGETATIVE COMPATIBILITY OF MUTUALISTIC 
ENDOPHYTIC ISOLATES AGAINST KNOWN PATHOGENIC ISOLATES OF 
FUSARIUM OXYSPORUM F. SP. RADICIS-LYCOPERSICI, LYCOPERSICI AND 
CUBENSE 

3.1 Introduction 

The most frequently articulated concern before field trials using beneficial 

endophytic strains of Fusarium oxysporum can be considered, is whether the beneficial 

strain is definitely non-pathogenic. Aside from classical pathogenicity tests on host 

plants of Fusarium diseases, the pathogenicity of F. oxysporum isolates can be tested 

using the vegetative compatibility of nitrate-nonutilizing (nit) mutants of these isolates 

with tester-mutants of known pathogenic F. oxysporum formae speciales (Katan & 

Katan, 1988). Vegetative compatibility has been used to differentiate fungi since the 

1960s, but Puhalla (1985) was the first to use nitrate nonutilizing mutants of F. 

oxysporum to identify and differentiate various strains of this fungi. He postulated that 

there could be a relationship between the pathogenicity of isolates and their ability to 

form heterokaryontes with compatible strains. Katan and Katan (1988) studied 

pathogenic and non-pathogenic isolates of F. oxysporum from cotton. After carrying out 

both pathogenicity and VCG tests with these isolates, they concluded that VCG tests 

were as accurate as pathogenicity tests and could distinguish between pathogenic and 

non-pathogenic isolates in mixed Fusarium populations. Based on the results of these 

and subsequent studies with non-pathogenic F. oxysporum isolates (Correll et al., 1987; 

Elias et al., 1991; Gordon & Okamoto, 1991; Gordon & Okamoto 1992a, b, c; Katan et 

al., 1994; Larkin et al., 1996; Steinberg et al., 1997), VCG testing is increasingly being 

used as an alternative to time and resource consuming pathogenicity tests, when trying 

to establish the non-pathogenic nature of newly isolated F. oxysporum strains. VCG 

tests were therefore carried out with 10 endophytic F. oxysporum isolates with known 

nematode antagonistic activity, a few of which had been earmarked for field trials. 

3.2 Materials and Methods 

Essentially, a VCG test consists of placing the mycelium or agar plugs with the 

mycelium of 2 or more complementary nit mutants (usually nit 1 mutants with a nit M 

tester, as nit 3 mutants are rarely produced) on Minimal Media (MM), at a certain 

distance from each other, and observing their growth at the point where the hyphae of 
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the two fungi meet. Nitrate nonutilizing mutants produce a thin mycelium on MM, 

while F. oxysporum strains able to utilize nitrate produce typical wild-type growth, 

characterized by cottony, aerial mycelium, often tinted pink to violet. If the nit mutants 

growing on MM are vegetatively compatible, heterokaryosis takes place at the junction 

of their hyphae, and the mycelia there produced takes on the characteristics of the wild 

type hyphae. A negative reaction is revealed by an absence of wild type hyphae: both 

fungi keep growing towards each other, mycelia growing over the same area without 

forming heterokaryons. No genetic information is exchanged, nitrate remains unutilized 

and mycelium thin and characteristic of nit mutants. 

A list of the 10 F. oxysporum isolates included in this study is presented in Table 1. 

All endophytic isolates were subcultured on Potato Dextrose Agar (PDA) plates in 

preparation for the tests. Some of the isolates have been worked on for some time in 

Bonn (A1, Fo162 and V5W2), and were revived from cryo-pearl cultures (stored at -

80ºC). Others are recent additions to the local collection (MF-25, MF-40, P3, P7, P12, 

S7 and S9), and were recuperated from the agar blocks in Eppendorf tubes in which 

they had been sent from Costa Rica. 

Table 1. List of mutualistic, endophytic isolates of Fusarium oxysporum used in VCG tests. 

Isolate Origin Endophyte 
ID Code Host Plant Origin Reference 

A1 Musa sp. Indonesia Amin, 1994 
Fo162 Lycopersicon esculentum L. Kenya Hallmann & Sikora, 1994 
MF-25 Musa AAA Guatemala zum Felde, 2002 
MF-40 Musa AAA Guatemala zum Felde, 2002 

P12 Musa AAA Costa Rica Menenses. 2003 
P3 Musa AAA Costa Rica Menenses. 2003 
P7 Musa AAA Costa Rica Menenses. 2003 
S7 Musa AAA Costa Rica Carñizares, 2003 
S9 Musa AAA Costa Rica Carñizares, 2003 

V5W2 Musa sp. Uganda Schuster et al., 1995 
 

Stored testers of known pathogenic F. oxysporum isolates were also revived. 

Available testers consisted of nit M testers for F. oxysporum ff. spp. cubense, radicis-

lycopersici and lycopersici, and nit 1 testers for F. oxysporum f. sp. cubense (Table 2 - 

for a list including isolate origin and identification code, see pp. 22-23 in Niere, 2001).
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Table 2. List of VCG testers from Fusarium oxysporum ff. spp. cubense, radicis-lycopersici 
and lycopersici revived (from soil tube storage) and used in VCG tests in Bonn 
(March to July 2004). 

 VCG Code Phenotype 
 Fusarium oxysporum f. sp. cubense nit M nit 1 

1) 0120    
2) 0121    
3) 0122    
4) 0123    
5) 0124    
6) 0125    
7) 0126    
8) 0128    
9) 0129    

10) 01210    
11) 01211    
12) 01212    
13) 01213    
14) 01214    
15) 01215    
16) 01216    
17) 01217    
18) 01218    
19) 01219    
20) 01220    
21) 01221    
22) 01222    
23) 01223    
24) 01224    

 Fusarium oxysporum f. sp radicis-lycopersici  
25) 0090 subgroup I   
26) 0090 subgroup II   
27) 0090 subgroup III   
28) 0091 subgroup I   
29) 0091 subgroup II   
30) 0092    
31) 0093    
32) 0094 subgroup I   
33) 0094 “Universal”   
34) 0096    
35) 0098    

 Fusarium oxysporum f. sp lycopersici   
36) 0030    
37) 0032    
38) 0033    

 



Chapter 3 - Vegetative Compatibility Tests 

 

14 

The testers, which are conserved on soil tubes at 4ºC in a refrigerator in Bonn, were 

grown first on PDA plates, and later transferred onto MM plates for use in the VCG 

tests. The testers strains for F. oxysporum f. sp. cubense were originally provided by Dr. 

Randy Ploetz, University of Florida, USA, on dried filter paper. Testers for ff. spp. 

lycopersici and radicis-lycopersici were sent on agar blocks in 0.5 ml Eppendorf tubes 

by Dr. Talma Katan, Department of Plant Pathology, The Volcani Center, Israel. All 

testers were revitalized or subcultured on Synthetic Nutrient Agar (SNA) plates, and 

transferred to soil tubes and stored at 4ºC.  

The media used in the present study are essentially those described in Puhalla and 

Spieth’s (1983) work on heterokaryosis in Fusarium moniliforme, in Puhalla’s later 

work (1985) on F. oxysporum VCGs and in Correll et al.’s (1987) work on the use of 

nit mutants in vegetative compatibility (VC) testing. The latter work was the first to 

identify the three now accepted nitrate nonutilizing (nit) mutants that F. oxysporum is 

known to produce (nit 1, nit 3 and nit M). 

List of media used to revive and maintain fungi: 

 

PDA - Potato Dextrose Agar (per liter): 

1 l  distilled H2O 

24 g  Potato Dextrose Broth (Difco) 

17 g  Agar 

 

SNA - Synthetic Nutrient Agar (per litre) modified by Nierenberg (1976): 

1 l distilled H2O  

1 g  KH2PO4 

1 g  KNO3 

0.5 g  MgSO4 * 7 H2O 

0.5 g  KCl 

0.2 g  Glucose 

0.2 g  Sucrose 

0.6 ml NaOH (1 M) 

17 g  Agar 
 

Different media were used to maintain, generate, phenotype and test mutants. Both 

tester mutants and those generated from mutualistic endophytic F. oxysporum strains, 
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were maintained on PDA and MM plates. To generate nitrate nonutilizing mutants, two 

chlorate containing media were used: PDC (Potato Dextrose Agar with chlorate) and 

MMC (Minimal Media with chlorate) (Puhalla, 1985). To phenotype mutants, minimal 

media (MM), nitrite media (NM) and hypoxanthine media (HxM) were used (Correll et 

al., 1987). Generated mutants and testers were grown on MM plates prior to testing, and 

MM was used for the actual tests. 

Aside from PDA and PDC, all media are variations of a common basal medium, 

composed of the following ingredients: 

Basal Media (based on Puhalla, 1985): 

1 liter distilled H2O  

30 g Sucrose 

1 g KH2PO4 

0.5 g  MgSO4 * 7 H2O 

0.5 g  KCl 

0.01 g FeSO4 * 7 H2O 

0.2 ml Sterile Trace Elements Solution 

20 g Difco Agar 

 

Trace Element Solution: 

95 ml distilled H2O 

5 g Citric Acid 

5 g ZnSO4 * 7 H2O 

1g Fe(NH4)2(SO4)2 * 6 H2O 

0.25 g CuSO4 * 5 H2O 

0.05 g MnSO4 * H2O 

0.05 g H3BO3 

0.05 g Na2MoO4 * 2 H2O 

 
The following media were used: 

1) to generate mutants: 
MMC – Minimal Media with Potassium 
Chloride (from Correll et al., 1987): 

1 l Basal Medium 

2 g NaNO3 

15 g KClO3 

 

PDC – Potato Dextrose Agar with 
Potassium Chloride (from Correll et al., 
1987): 

1 l PDA 

15 g KClO3 

2) to maintain and test mutants: 
MM - Minimal Media (from Puhalla, 
1985): 

1 l  Basal Medium 

2 g NaNO3 

 

3) to phenotype mutants: 
HxM – Hypoxanthine Media (from 
Correll et al., 1987): 

1 l Basal Medium 

0.2 g Hypoxanthine (Merck) 

 

NM – Nitrite Media (from Correll et al., 
1987): 

1 l Basal Medium 

0.5 g  NaNO2 
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PDA plates were first produced to revive the testers available in Bonn (Table 2). 

Under a laminar flow hood, a small quantity of the soil was removed from the soil-tubes 

with a flame-sterilized spatula, and sprinkled on a Petri dish containing 100% PDA. All 

plates were incubated in the dark at 25ºC for 1-2 weeks, until soil-free mycelium plugs 

could be removed from the dish. These were subcultured on MM plates until needed for 

VCG testing. 

Since both nit 1 and nit M testers were available, and to increase chances of 

producing compatible mutants, both PDC and MMC plates were used for mutant 

production. F. oxysporum is known to primarily produce nit 1 mutants on both PDC and 

MMC plates, while the likelihood of producing nit 3 and nit M mutants is higher on 

MMC (Correll et al., 1987).  

Mutant Production 

To produce mutants, small (4 mm2) squares of agar with mycelium from PDA 

plates containing the isolates were placed in the middle of 6 cm Ø PDC and MMC 

plates (10 plates of each per isolate). The plates were incubated in the dark at 25ºC for 

1-2 weeks, and checked for mutant production every few days. Chlorate-resistant 

mutant sectors are characterized by thin, fast expanding mycelium (Puhalla, 1985). 

Small blocks of this mycelium were subcultured on fresh MM plates. If the fungus 

continued to exhibit thin but normally expanding growth on MM, it was considered 

nitrate nonutilizing, a nit mutant. 

Mutant Phenotyping 

Additional MM, as well as NM and HxM plates were prepared to phenotype the 

generated mutants. Per mutant growing on MM plates, one mycelial block was 

subcultured on each of the three differential media plates: MM, NM, and HxM (6 cm 

Ø). These were then incubated at 25ºC, in the dark for 1-2 weeks. Depending on the 

growth form expressed on the various plates, mutants were phenotyped according to the 

pattern described in Table 3. Mutants that displayed growth patterns different from 

those presented in Table 3 were rejected, as they presumably had multiple mutations 

and may not have been compatible with phenotyped mutants. 
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Table 3. Growth patterns on differential media used to phenotype nitrate nonutilizing 
mutants of Fusarium oxysporum. 

Differential Medium Type Phenotype Minimal Media Nitrite Media Hypoxanthine Media 
nit 1 - + + 
nit 3 - - + 
nit M - + - 

Wild Type + + + 

-: typical mutant growth, with thin mycelium in agar; +: wild-type growth, with cottony mycelium 
above agar surface and often with typical Fusarium oxysporum coloration. 

All mutants generated were first phenotyped according to the method described by 

Correll et al. (1987). Only complementary mutants from individual strains were then 

tested for self-compatibility, and those that proved to be compatible were included in 

the VC tests with tester strains of pathogenic isolates. The compatibility between a few 

of the endophytic strains was also tested. 

Testing Self-Compatibility of Mutants 

Once mutants had been phenotyped, their self-compatibility was tested. If 

complementary mutants (nit 1 and nit 3 or nit 1 and nit M) generated from the same 

isolate are unable to form heterokaryons with each other, they may be unable to form 

heterokaryons at all. A VC test with complementary mutants from another isolate would 

therefore always yield negative results. The self-compatibility tests were carried out on 

MM plates, and self-compatibility was demonstrated by the growth of wild-type 

mycelium at the junction point of two mycelia. Non-self-compatible mutants were 

eliminated. Complementary self-compatible nit 1 and nit M mutants from each isolate 

were used for VC testing with the available VCG testers.  

Testing the Vegetative Compatibility of Mutants and Testers 

Vegetative compatibility tests were carried out on 6 cm Ø MM plates. A total of 3 

mycelium blocks were placed on each plate, at equal distances from the centre and edge 

of the plate and of each other. Since no nit 3 mutants were produced, all plates 

contained either one nit 1 Tester and two nit M mutants, or one nit M Tester and two nit 

1 mutants. 

Plates were incubated in the dark at 25ºC, and the growth of mycelium observed 

regularly over a 2 week period. 
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3.3 Results 

Many mutants were generated, and phenotyping revealed a number of nit 1 mutants 

for all 10 endophytic F. oxysporum isolates. No nit M mutants could be generated from 

isolates MF-40 and S9 (Table 4), and no nit 3 mutants were generated at all. 

Table 4. Number, frequency and phenotype of nitrate nonutilizing mutants recovered from 
Fusarium oxysporum isolates generated on chlorate containing media. 

Endophyte 
ID Code 

Total Number of 
Mutants Positively 

Phenotyped 

Number and Frequency 
of nit 1 Mutants 

Recovered 

Number and Frequency 
of nit M Mutants 

Recovered 
A1 4 3  (75%) 1  (25%) 
Fo162 6 3  (50%) 3  (50%) 
MF-25 5 3  (60%) 2  (40%) 
MF-40 2 2  (100%) -  - 
P12 8 4  (50%) 4  (50%) 
P3 5 2  (40%) 3  (60%) 
P7 6 5  (83%) 1  (17%) 
S7 9 7  (78%) 2  (22%) 
S9 5 5  (100%) -  - 
V5W2 14 10  (71%) 4  (29%) 

* No nit 3 mutants were generated. 

Where nit 1 and nit M mutants were generated, self-compatibility tests revealed that 

all isolates produced at least one pair of self-compatible mutants. These were selected 

for inclusion in the VC tests. As no nit M mutants were generated for MF-40 and S9, 

the nit 1 mutants for these isolates were tested for compatibility with nit M mutants 

from MF-25 and S7, respectively. One of the nit 1 mutants from MF-40 was compatible 

with an MF-25 nit M mutant, indicating that they are related, while none of the S9 nit 1 

mutants were compatible with any of the S7 nit M mutants (Table 5). In the table, all 

combinations tested are indicate by clear boxes, while combinations not testes are 

shaded. Positive reactions are represented by a “+” sign, and negative ones by a “-“ 

sign. 

The results of the vegetative compatibility tests of selected self-compatible mutants 

with complementary testers of pathogenic F. oxysporum strains are presented in Tables 

6 & 7. None of the nit 1 or nit M mutants generated from endophytic isolates of F. 

oxysporum were found to be vegetatively compatible with any of the VCG testers of 

pathogenic F. oxysporum strains included in the test. 
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Table 5. Results from the self-compatibility test with selected nit 1 and nit M mutants of 
nematode antagonistic endophytic Fusarium oxysporum isolates. (+: compatible 
cross, -: non-compatible cross). 

  nit 1 Mutants 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

nit M 
mutants 

A
1-

5 
Fo

16
2-

1 
Fo

16
2-

c 
Fo

16
2-

f 
M

F-
25

-1
 

M
F-

25
-2
 

M
F-

25
-e
 

P1
2-

1 
P1

2-
c 

P1
2-

d 
P1

2-
f 

P3
-a
 

P3
-c
 

P3
-d
 

P7
-3
 

S7
-3
 

S7
-b
 

V
5W

2-
3 

V
5W

2-
4 

V
5W

2-
6 

V
5W

2-
b 

1 A1-1 +                     
2 A1-4 +                     
3 A1-a +                     
4 A1-b +                     
5 Fo162-a  +                    
6 Fo162-b  +                    
7 Fo162-d   +                   
8 Fo162-e   -                   
9 MF-25-a      +                
10 MF-25-b      +                
11 MF-25-c                      
12 MF-40-1      +                
13 MF-40-a      -                
14 P12-2                      
15 P12-a          +            
16 P12-b         + +            
17 P12-e         +             
18 P3-1                      
19 P3-e             +         
20 P7-1               +       
21 P7-2               +       
22 P7-a               +       
23 P7-b               +       
24 P7-c               +       
25 S7-1                + +     
26 S7-2                 +     
27 S7-a                 +     
28 S7-c                 +     
29 S7-d                 +     
30 S7-e                 +     
31 S7-f                 +     
32 S9-1                - -     
33 S9-2                - -     
34 S9-4                - -     
35 S9-5                - -     
36 S9-6                - -     
37 S9-a                - -     
38 S9-b                - -     
39 V5W2-2                  +    
40 V5W2-5                      
41 V5W2-a                     + 
42 V5W2-c                     + 
43 V5W2-d                     - 
44 V5W2-e                    +  
45 V5W2-f                    +  
46 V5W2-g                    -  
47 V5W2-h                    +  
48 V5W2-i                     + 
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Table 6. Vegetative compatibility of nit 1 mutants of Radopholus similis-antagonistic 
endophytic Fusarium oxysporum isolates and nit M testers of pathogenic Fusarium 
oxysporum f. sp. cubense, radicis-lycopersici, and lycopersici. 

nit 1 Endophyte Mutants 

nit M Testers 

A
1-

1 

Fo
16

2-
a 

M
F-

25
-b

 

M
F-

40
-a

 

P1
2-

e 

P3
-e

 

P7
-2

 

S7
-1

 

S9
-1

 

V
5W

2-
2 

0120 - - - - - - - - - - 
0121 - - - - - - - - - - 
0122 - - - - - - - - - - 
0123 - - - - - - - - - - 
0124 - - - - - - - - - - 
0125 - - - - - - - - - - 
0126 - - - - - - - - - - 
0128 - - - - - - - - - - 
0129 - - - - - - - - - - 
01210 - - - - - - - - - - 
01211 - - - - - - - - - - 
01212 - - - - - - - - - - 
01213 - - - - - - - - - - 
01214 - - - - - - - - - - 
01215 - - - - - - - - - - 
01216 - - - - - - - - - - 
01217 - - - - - - - - - - 
01218 - - - - - - - - - - 
01219 - - - - - - - - - - 
01220 - - - - - - - - - - 
01221 - - - - - - - - - - 
01222 - - - - - - - - - - 

FO
C

 

01223 - - - - - - - - - - 
0090 subgroup I - - - - - - - - - - 
0090 subgroup II - - - - - - - - - - 
0090 subgroup III - - - - - - - - - - 
0091 subgroup I - - - - - - - - - - 
0091 subgroup II - - - - - - - - - - 
0092 - - - - - - - - - - 
0093 - - - - - - - - - - 
0094 subgroup I - - - - - - - - - - 
0094 “Universal” - - - - - - - - - - 
0096 - - - - - - - - - - 

FO
R

L 

0098 - - - - - - - - - - 
0030 - - - - - - - - - - 

FO
L 

0032 - - - - - - - - - - 

FOC: F. oxysporum f. sp. cubense, FORL: F. oxysporum f. sp. radicis-lycopersici, FOL: F. 
oxysporum f. sp. lycopersici; -: negative reaction; +: positive reaction. 
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Table 7. Vegetative compatibility of nit M mutants of Radopholus similis-antagonistic 
endophytic Fusarium oxysporum isolates and nit 1 testers of pathogenic Fusarium 
oxysporum f. sp. cubense. 

nit M Endophyte Mutants 

nit 1 Testers 

A
1-

5 

Fo
16

2-
1 

M
F-

25
-2

 

P1
2-

c 

P3
-c

 

P7
-3

 

S7
-3

 

V
5W

2-
3 

0120 - - - - - - - - 
0121 - - - - - - - - 
0123 - - - - - - - - 
0124 - - - - - - - - 
0125 - - - - - - - - 
0126 - - - - - - - - 
0128 - - - - - - - - 
01210 - - - - - - - - 
01211 - - - - - - - - 
01212 - - - - - - - - 
01213 - - - - - - - - 
01214 - - - - - - - - 
01215 - - - - - - - - 
01218 - - - - - - - - 
01219 - - - - - - - - 
01221 - - - - - - - - 
01222 - - - - - - - - 
01223 - - - - - - - - 

F.
 o

xy
sp

or
um

 f.
 sp

. c
ub

en
se

 

01224 - - - - - - - - 

-: negative reaction; +: positive reaction. 

3.4 Discussion 

The results of mutant production confirm that it is easier to produce nit 1 mutants 

than nit M or nit 3 mutants. No nit M mutants could be generated for isolates MF-40 

and S9, and their self-compatibility could therefore not be tested. For the other 8 

isolates, self-compatible mutants were found, though three sets of complementary 

mutants from the same isolate did not form heterokaryons. These mutants were 

therefore not included in the VCG tests subsequently carried out. Occasionally, such 

self-incompatible mutants are observed (Jacobson & Gordon, 1988; Katan, 1999). 

Jacobson and Gordon (1988) attribute this to the inability of an isolate to initiate or 

complete heterokaryon formation. However, this is not an explanation for why self-

incompatibility occurs, but rather a description of what it is. Self-incompatibility may 

be due to an additional mutation in one or both of the crossed mutants, which render 
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them unable to form heterokaryons with putative complementary mutants. While self-

compatibility of MF-40 mutants could not be tested, the two nit M mutants from MF-40 

were crossed with one nit 1 mutant from MF-25, and formed a heterokaryon. This 

indicates that these two non-pathogenic isolates are related, and should Vegetative 

Compatibility Groups be established for non-pathogenic F. oxysporum isolates, these 

two isolates would be placed in the same VCG. 

VCG tests with complementary mutants from pathogenic F. oxysporum strains and 

endophytic isolates revealed that none of the endophytic F. oxysporum isolates were 

compatible with the tested pathogenic F. oxysporum strains. As mentioned in the 

introduction, researchers working with pathogenic and non-pathogenic strains of F. 

oxysporum believe that VCG tests are a good method of distinguishing between 

pathogenic and non-pathogenic isolates of F. oxysporum in mixed populations (Katan & 

Katan, 1988). Due to the relative ease with which this test can be carried out in the lab, 

it was chosen as an alternative to a classical pathogenicity test. Such a test was 

necessary to address fears of a possible spread of pathogenic F. oxysporum strains 

through the inoculation of endophytic F. oxysporum isolates with biocontrol activity 

onto valuable crop plants, prior to field release. The isolates in question are being 

investigated for their potential as biocontrol agents against the burrowing nematode, 

Radopholus similis (Cobb) Thorne, in banana (Musa spp.). 

This crop is susceptible to a wilt disease caused by F. oxysporum f. sp. cubense 

(Foc), also known as the Panama Disease. Three races of Foc are known to attack Musa 

species: race 1 attacks cultivars in the 'Gros Michel' (AAA) and 'Pome' (AAB) 

subgroups and the 'Silk' (AAB) and 'Pisang Awak' (ABB) clones of banana; race 2 

attacks 'Bluggoe' (ABB) and close relatives; and race 4 attacks cultivars in the 

Cavendish subgroup (AAA) and hosts of races 1 and 2 (Ploetz, 1990; Ploetz & Pegg, 

2000). 

Panama disease devastated the banana industry, based on the ‘Gros Michel’ 

cultivar, in Central America in the 1950s and 60s. This disaster was only overcome by 

the adoption a new group of cultivars, resistant to race 1 of Foc - the Cavendish group 

(Stover & Malo, 1972; Stover, 1990; Rowe, 1990). The adoption of these cultivars 

brought with them other production constraints. For example, Cavendish bananas are 

more susceptible to physical damage (bruising), and therefore have to be treated with 

great care and shipped in boxes. The Cavendish cultivars are also more susceptible to 
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diseases such as Black Sigatoka, caused by the fungus Mycosphaerella fijiensis, as well 

as to nematodes, especially R. similis (Quénéhervé, 1993; Jeger et al., 1996; Davide, 

1996). Until recently, race 4 was only known to attack Cavendish cultivars under sub-

tropical conditions, where cold temperatures are believed to predispose the plants to 

infection by the fungus (Stover & Malo, 1972; Su et al., 1986; Ploetz, 1993; Pegg et al., 

1996). However, the continued reliance on Cavendish cultivars and the possibility of a 

more aggressive form of the Panama Disease developing in Central American 

production areas are real concerns for producers and researchers alike (Ploetz, 1990). A 

variant of race 4, the tropical race 4 (TR4) was recently recognized in Southeast Asia 

(Ploetz & Pegg 2000; Ploetz et al., 2003), and the threat of another disaster like the one 

caused by race 1 of F. oxysporum f. sp. cubense in the mid-20th century is a real one. 

The consequences of a compatibility of F. oxysporum isolates inoculated onto 

banana plantlets prior to field release and a pathogenic strain of F. oxysporum would be 

devastating and exasperate the problem. The results of this study are therefore of 

extreme importance to the continued use of our isolates as potential nematode 

biocontrol agents. Carrying it out was also a pre-requisite to investigate the biocontrol 

effect of the isolates under field conditions. As expected, none of the isolates proved 

compatible with the pathogenic F. oxysporum isolates tested, and their continued 

inclusion in the ever growing arsenal of potential biocontrol agents against R. similis is 

hereby guaranteed. 
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4 ROLE OF SYSTEMIC INDUCED RESISTANCE IN THE NEMATODE-
ANTAGONISTIC RELATIONSHIP OF ENDOPHYTIC FUNGI 

4.1 Introduction 

Plants possess a number of active defence mechanisms to deal with pathogen and 

parasite attacks (van Loon et. al, 1998). When a plant nevertheless succumbs to a 

disease, these defence mechanisms have been breached. This may be because the 

pathogen encountered is very virulent and either avoids triggering or suppresses the 

defensive actions, evades these or is insensitive to them (van Loon et al., 1998). Similar 

to the effects of vaccination in mammals, a plant’s defence mechanisms can be 

activated prior to infection, resulting in decreased disease symptoms. This type of 

reaction is called induced resistance, and defined as “a state of enhanced defensive 

capacity developed by a plant when appropriately stimulated” (Kuc, 1982; Kuc, 1995). 

As the name implies, pathogen-induced systemic acquired resistance (SAR) is the 

result of a local infection by a weak or incompatible form of a pathogen that provides 

the entire plant resistance against future attack by the same and often also other 

pathogens (van Loon et al. 1998). This type of resistance can also be triggered by 

chemicals involved in the plant response to pathogen infection, such as salicylic acid. In 

SAR, the defence response involves the triggering of the salicylic acid (SA)-dependent 

pathway and the production of a set of pathogen related (PR) proteins (van Loon et al. 

1998). Induced systemic resistance (ISR), on the other hand, is the result of a non-

pathogenic trigger, such as rhizospheric or endophytic bacteria and fungi, and involves 

the production of jasmonic acid (JA) and ethylene (Mandeel & Bakker, 1991; Fuchs et 

al., 1997; Alabouvette et al., 1998; van Loon et al., 1998; Vu et al., 2006). 

To differentiate between SA-dependent SAR or JA- and ethylene-dependent ISR, 

the plant’s response has to be investigated at the molecular level. However, the 

involvement of systemic induced resistance (SIR) to pathogens, whether it be SAR or 

ISR, can be investigated with more conventional methods and without delving to the 

molecular level, by using a split-root system. In a split-root system, pathogens and 

potential inducers of resistance are physically separated. Split-root systems have been 

successfully used to identify rhizobacteria and endophytic bacteria and fungi as 

inducers of systemic resistance to plant parasitic nematodes in potato, tomato and 
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banana (Hasky-Günter et al., 1998; Munif et al., 2001; Siddiqui & Shaukat, 2002; 

Hauschild et al., 2004; Vu et al., 2006). 

The majority of fungal endophytes encountered in banana roots and subsequently 

screened for antagonistic activity against the burrowing nematode R. similis were 

Fusarium and Trichoderma spp. (Pocasangre, 2000; Niere, 2001; zum Felde, 2002; 

Carñizares Monteros, 2003; Meneses Hérnandez, 2003). The most effective nematode 

antagonists identified in screening and greenhouse studies carried out in Guatemala and 

Costa Rica by zum Felde (2002), Carñizares Monteros (2003) and Meneses Hérnandez 

(2003) were included in this study. The seven fungi selected were identified as non-

pathogenic Fusarium oxysporum (MF-25, MF-40, S9 and P12) and Trichoderma 

atroviride (MT-20, ET-35 and S2) isolates. Due to international quarantine restrictions, 

the Guatemalan isolates used in Germany (MT-20, ET-35, MF-25 and MF-40) could 

not be transported back to Costa Rica, so experiments carried out in Costa Rica were 

done with a different set of endophytes isolated locally (S2, S9 and P12), in addition to 

the T. atroviride isolate MT-20 from Guatemala, which had been stored in Costa Rica. 

The objective of this study was to verify whether or not the selected R. similis 

antagonistic endophytic fungi induce a systemic resistance to nematode penetration or 

to nematode reproduction in banana plants.  

4.2 Materials and Methods 

A split-root set-up was used to physically separate endophytes from nematodes, 

making it possible to test for the involvement of systemic induced resistance in the 

antagonistic relationship of these fungi and R. similis. Fungi were first inoculated onto 

the inducer side and nematodes later inoculated onto the responder side of the split-root 

set-up (Figure 4). A total of eight split-root tests, designated SR I to SR VIII, were 

carried out (Table 9). In SR I and SR II, carried out in Germany, nematode penetration 

was determined in plants inoculated with one of 3 endophytes, 1- and 2-weeks after 

nematode inoculations, respectively. In SR III and SR IV, also carried out in Germany, 

plants were inoculated with one of 4 endophytes, and nematode penetration evaluated 

10-days after nematode inoculation. SR V to SR VIII were carried out in Costa Rica. 

SR V and SR VII were terminated 10 days after nematode inoculation, to test for 

induced systemic effects on nematode penetration, while SR VI and SR VIII were 

terminated 9 weeks after nematode inoculation, to test for induced systemic effects on
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nematode reproduction. In all tests, tissue culture banana plants were used and the 

planting soil used consisted of a mixture (1:1 by volume) of sterile field soil and sand. 

The original set-up, with one pot simply placed on top of the two bottom ones was 

unstable, with roots tending to become exposed and dry out over time. Plant senescence 

was frequently observed in reaction to exposed roots. To stabilize the system, the set-up 

was successfully modified by cutting part of the bottom pots out and partially inserting 

the top pot into the two bottom pots. 

Figure 4. Illustration of a split-root set-up modified for use with banana plants. 

 
 

Tissue Culture Banana Plants 

In Germany, tissue culture ‘Valery’ plants were obtained from Vitropic S.A. (Saint-

Mathieu-de-Tréviers, France), in agar-based rooting medium. Plants were immediately 

washed free of the agar and transferred to 35-cell multi-trays (75 ml capacity round 

cells) containing planting soil. Plants were then left to develop further in a climate 

chamber at 25ºC, with 16 hrs of artificial light per day, for 6-8 weeks. 

In Costa Rica, tissue culture ‘Valery’ plants ready for transplantation into soil bags 

and greenhouse hardening were obtained from a commercial tissue culture laboratory 

(Cristal Vitro S.A., Concepción de Tres Ríos, Costa Rica), in 96 cell multi-trays. After 

washing seedling substrate from the roots, these plants were planted in plastic potting 

bags, containing planting soil. They were then left to grow over a 6 week period in the 

greenhouse. 
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After the root development period, plants were used in split-root set-ups. 

Fungal Inoculum 

The 7 endophytes tested and their origins are listed in Table 8. Two to four weeks 

before inoculation, fungi were transferred on to fresh 100% potato dextrose agar (PDA) 

plates, by either placing a mycelium plug from an older plate onto a new one, or by 

plating a cryo-bead from a -80ºC stock into the centre of the PDA plate. The PDA plates 

were then placed in an incubator at 25ºC and fungi left to grow and produce conidia for 

2 to 4 weeks. Conidia suspensions were prepared by pouring approximately 20 ml water 

onto the plate surface and gently moving the water over the surface with a flame-

sterilised bacteria spreader. The resulting conidia stock suspension was poured into 100-

ml Erlenmeyer flasks, through 3 layers of gauze or cheese cloth, to separate conidia 

from mycelium. The conidia density in the stock suspensions were determined by 

counting conidia using a Neubauer cell counting chamber. For inoculation of inducer 

roots, suspensions containing 1 x 107 conidia ml-1 were prepared for each species. 

Table 8. List of endophytes used in split-root tests carried out in Germany (2003-2004) and 
Costa Rica (2005-2006). 

Isolate Origin Endophyte 
ID  Species 

Host Plant Origin Reference 
MF-25 Fusarium oxysporum Musa AAA Guatemala zum Felde, 2002 
MF-40 Fusarium oxysporum Musa AAA Guatemala zum Felde, 2002 
ET-35 Trichoderma atroviride Musa AAA Guatemala zum Felde, 2002 
MT-20 Trichoderma atroviride Musa AAA Guatemala zum Felde, 2002 

S2 Trichoderma atroviride Musa AAA Costa Rica Carñizares, 2003 
S9 Fusarium oxysporum Musa AAA Costa Rica Carñizares, 2003 

P12 Fusarium oxysporum Musa AAA Costa Rica Menenses, 2003 
 

Nematode Inoculum 

R. similis were reared on sterile carrot disks and kept in incubators at 30ºC (Speijer 

& De Waele, 1997). The R. similis population maintained in Germany had been 

originally isolated from banana roots in Uganda, and cultures were obtained for the 

laboratory from Prof. Dr. Dirk De Waele. The R. similis population in Costa Rica came 

from banana roots collected by CORBANA in Costa Rica. Once nematodes started 
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exiting the carrot disks and accumulating along the edges of the Petri dishes in which 

the carrot disks were kept, they were washed into a 200-ml Erlenmeyer using tap water, 

and counted. In SR I through SR VI, responder side roots were inoculated with 1000 R. 

similis, while only 500 R. similis were inoculated onto responder roots in SR VII and 

SR VIII. 

Split-Root Set-Up, Fungal and Nematode Inoculations 

The first split-root test carried out in Germany (SR I) was terminated 1 week after 

nematode inoculation, and the second (SR II), 2 weeks after R. similis inoculation 

(Table 9). This was done to determine how long it takes for sufficient nematodes to 

penetrate banana roots to observe significant differences between penetration rates. 

Based on the results of these first two tests, further nematode-penetration tests (SR III-V 

& SR VII) were terminated 10 days after nematode inoculation. The two tests carried 

out to determine whether there was an induced systemic effect on nematode 

reproduction (SR VI & VIII), were terminated 9 weeks after nematode inoculation. 

In all tests, plants with well developed root systems were gently removed from the 

multi-tray cells or potting bags, and substrate was washed from roots, which were then 

separate into two equal roots parts or clusters. Each root cluster was then gently pulled 

through one of two large holes in the bottom of a pot (in Germany: square, 100 ml pots 

were used; in Costa Rica, round, 150-200 ml pots were used). This ‘top pot’ was 

lowered onto two ‘bottom pots’, standing side-by-side, thereby lowering one root 

cluster into each ‘bottom pot’. In SR I - SR IV in Germany and SR VII and SR VIII in 

Costa Rica, both bottom pots were then filled with planting soil. For SR V and SR VII, 

the inducer roots were first dipped in a conidia suspension, before being replaced in the 

bottom pot, which was only then filled with the planting soil. 

For SR I through SR IV, the inducer sides of all plants were inoculated with fungi 

only once, two weeks after the plants had been planted in the split-root set-up (Table 9). 

This was done by pipetting 5 ml of a 1 x 107 conidia/ml conidia suspension into three 1-

cm deep holes around the area where roots entered the inducer side pot from the top 

pot, and then covering these holes with soil. 
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Table 9. Overview of treatments in split-root tests carried out in Germany and Costa Rica. 

Test ID Fungal 
isolates used Number of conidia inoculated 

Number of R. similis 
inoculated & 

termination date 

SR I - 
Germany 

MF-25, 
ET-35, 
MT-20 

5 x 107 conidia, 
2 weeks after planting 

1000 R. similis, 
2 weeks after fungi 

terminated after 1 week 

SR II - 
Germany 

MF-25, 
ET-35, 
MT-20 

5 x 107 conidia, 
2 weeks after planting 

1000 R. similis, 
2 weeks after fungi 

terminated after 2 weeks 

SR III - 
Germany 

MF-25, 
MF-40, 
ET-35, 
MT-20 

5 x 107 conidia, 
2 weeks after planting 

1000 R. similis, 
2 weeks after fungi 

terminated after 10 days 

SR IV - 
Germany 

MF-25, 
MF-40, 
ET-35, 
MT-20 

5 x 107 conidia, 
2 weeks after planting 

1000 R. similis, 
2 weeks after fungi 

terminated after 10 days 

SR V - 
Costa Rica 

Penetration I 

MT-20, 
S2, 
S9, 
P12 

5 min dip in 1 x 106 conidia, at planting; 
2 x 107 conidia, at planting;  

5 x 106 conidia, 3 weeks after planting 

1000 R. similis, 
1 week after fungi 

terminated after 10 days 

SR VI - 
Costa Rica 

Reproduction I 

MT-20, 
S2, 
S9, 
P12 

5 min dip in 1 x 106 conidia, at planting; 
2 x 107 conidia, at planting;  

5 x 106 conidia, 3 weeks after planting 

1000 R. similis, 
1 week after fungi 

terminated after 9 weeks 

SR VII - 
Costa Rica 

Penetration II 

MT-20, 
S2, 
S9, 
P12 

5 x 107 conidia, at planting 
500 R. similis, 

2 weeks after fungi 
terminated after 10 days 

SR VIII - 
Costa Rica 

Reproduction II 

MT-20, 
S2, 
S9, 
P12 

5 x 107 conidia, at planting 
500 R. similis, 

2 weeks after fungi 
terminated after 9 weeks 

In the tests carried out in Germany (SR I to SR IV), N=7. In Costa Rica, N=6 for SR V and SR VI, 
and N=8 for SR VII and SR VIII. 

In Costa Rica, inducer roots in the first two tests (SR V & VI) were dip inoculated 

for 5 min in 300 ml conidia suspension at planting, followed by a soil-injection-

inoculation and a second soil-injection-inoculation 3 weeks after planting (Table 9). For 

soil-injection-inoculation, a 20-ml sterile syringe, mounted with a 5-cm long blunt-

ended needle was used to inject conidia suspensions into the soil at a depth of 1-2 cm, at 

three sites around the roots. As dip inoculations of split-root plants proved very 

difficult, the second set of tests in Costa Rica (SR VII & VIII) were only inoculated 
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once by soil-injection-inoculation. In all experiments, control plants received the same 

treatment as plants inoculated with fungi, but using tap water only. 

The responder sides of SR I to SR IV were inoculated with 1000 R. similis, by 

pipetting 3-5 ml (depending on nematode concentration) of nematode suspension into 

three 1-cm deep holes along the area where roots from the top pot met the responder 

pot. For SR V to SR VIII, R. similis were inoculated as fungi were in these tests, by 

using a blunt-ended needle and syringe to inject nematodes 2-3 cm into the soil in the 

area where roots from top pot met the responder side. Nematodes were inoculated 2 

weeks after fungi in all tests but SR V and SR VI, where nematodes were inoculated 1 

week after the 3rd fungal inoculation. 

Nematode Extraction and Count 

Once an experiment was terminated, responder and inducer roots were carefully 

separated from the top pot, and separately washed free of soil. Weight of roots from 

both sides, as well as shoot weight were taken. In Germany, nematodes were stained 

using Fuchsine Acid for ease of counting. The entire root system was stained, cut into 

approx. 1 cm long pieces, and macerated in 20-50 ml tap water, in a large test tube, 

using an Ultra Turax macerator. The macerated roots were then diluted in 100 ml tap 

water in graduated cylinders and nematodes in two 10-ml sub-samples counted using a 

Nordmeyer chamber. 

In Costa Rica, the sieving maceration method of nematode extraction used was 

adapted from Speijer and De Waele (1997): roots were cut into approx. 1 cm long 

pieces and macerated in a commercial blender, 5 sec at high speed, 5 sec rest, and final 

5 sec at low speed. Macerate was sieved through 3 nested sieves with 500, 150 and 25 

μm opening size, respectively. Nematodes were washed from the 25 μm sieve into 250-

ml pots with caps, and filled to 200 ml. Nematodes in two 2-ml sub-samples were 

counted. Results were averaged for each plant, and the number of nematodes that had 

penetrated the root system was calculated. 

Statistical Analysis 

All data was statistically analyzed for significant differences using the Least 

Significant Difference (LSD) test in the SPSS statistical program (SPSS® 13.0 for Mac). 

Data was not transformed for analysis. 
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4.3 Results 

Nematode Penetration Tests in Germany - SR I & II 

In the first set of tests in Germany, in which three of the four endophytes from 

Guatemala were tested, significant differences in nematode penetration in the responder 

roots were not seen when nematodes were extracted 7 days after being inoculated 

(Figure 5). Of the 1000 R. similis nematodes inoculated, only 13% to 20% penetrated 

the banana root system within the first 7 days (SR I), and treatments with MF-25, ET-35 

and MT-20 reduced penetration by 35, 13 and 10%, respectively. 
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Figure 5. Number of Radopholus similis that penetrated the responder roots of banana plants 
in a split-root system, 7 days after nematode inoculation (SR I - Germany, 08-
09.2003). Means with the same letter are not significantly different, based on LSD 
test (P≤0.05; N=7). 

When extraction was done 14 days after nematode inoculation (SR II), results 

differed from 7-day data, and significant differences in penetration between the 

treatments and the control were observed (Figure 6). MT-20 seemed to be an especially 

promising SIR candidate, significantly reducing R. similis penetration by 44% in this 

test. MF-25 increased penetration non-significantly by 20% and ET-35 reduced it by 

13%. However, total penetration rates were not higher than after 7 days, ranging from 9 

to 20% of inoculated nematodes. A period of 10 days was chosen for further penetration 

tests. 
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Figure 6. Number of Radopholus similis that penetrated the responder roots of banana plants 
in a split-root system, 14 days after nematode inoculation (SR II - Germany, 08-
09.2003). Means with the same letter are not significantly different, error bars 
represent standard error of mean, based on LSD test (P≤0.05; N=7). 

Nematode Penetration Tests in Germany - SR III & IV 

In the second set of tests, where all four Guatemalan endophytes were tested, all 

plants were harvested 10 days after nematode inoculation. Significant differences in 

nematode penetration were observed between endophyte treatments, but not between 

treatments and the control in SR III (Figure 7). MF-25 again non-significantly increased 

penetration (+13%) in this test, while ET-35, MT-20 and MF-40 reduced penetration by 

36, 12 and 34%, respectively. 

Despite the fact that plants were kept in the same greenhouse, and tests ran parallel 

to each other, no significant differences were observed in SR IV (Figure 8). MF-25 

again increased penetration (+15%), and ET-35 reduced it (-7%), while MT-20 and MF-

40 increased penetration by 11 and 6%, respectively. As seen in the SR II, MF-25 

tended to increased nematode penetration, while ET-35 decreased penetration, when 

compared to the control, tough not significantly. 
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Figure 7. Number of Radopholus similis that penetrated the responder roots of banana plants 
in a split-root system, 10 days after nematode inoculation (SR III - Germany, 10-
11.2003). Means with the same letter are not significantly different, error bars 
represent standard error of mean, based on LSD test (P≤0.05; N=7). 
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Figure 8. Number of Radopholus similis that penetrated the responder roots of banana plants 
in a split-root system, 10 days after nematode inoculation (SR IV - Germany, 10-
11.2003). Means with the same letter are not significantly different, error bars 
represent standard error of mean, based on LSD test (P≤0.05; N=7). 
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Nematode Penetration Tests in Costa Rica - SR V & VII 
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Figure 9. Number of Radopholus similis that penetrated the responder roots of banana plants 
in a split-root system, 10 days after nematode inoculation (SR V - Costa Rica, 02-
03.2005). Means with the same letter are not significantly different, error bars 
represent standard error of mean, based on LSD test (P≤0.05; N=6). 
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Figure 10. Number of Radopholus similis that penetrated the responder roots of banana plants 
in a split-root system, 10 days after nematode inoculation (SR VII - Costa Rica, 11-
12.2005). Means with the same letter are not significantly different, error bars 
represent standard error of mean, based on LSD test (P≤0.05; N=7). 
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In both SR V (Figure 9) and SR VII (Figure 10), a similar trend is discernable with 

regard to SIR for the isolates S2 and P12. S2 significantly reduced nematode 

penetration by 71 and 90% compared to the control in SR V and SR VII, respectively. 

P12 tended to reduce penetration, but not significantly compared to the control (29 and 

7% reduction in SR V and SR VII, respectively). S9 did not significantly affect 

penetration, reducing it by 20% in SR V and increasing it by 14% in SR VII. MT-20 

once again gave contradictory effects, increasing penetration non-significantly in SR V 

by 5%, and reducing it non-significantly by 55% in SR VII. 

Nematode Reproduction Tests in Costa Rica - SR VI & VIII 

Plants in the first test looking at systemically induced effects on reproduction of R. 

similis in banana roots in Cost Rica (SR VI) were exposed to extreme temperatures in 

the greenhouse (>60ºC). This is most likely why nematodes did not reproduce in the 

roots over the 9 weeks the experiment ran. No significant differences between nematode 

numbers in roots could be observed and results are inconclusive (data not shown). 
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Figure 11. Number of Radopholus similis that penetrated the responder roots of banana plants 
in a split-root system, 9 weeks after nematode inoculation (SR VIII - Costa Rica, 
11.2005-01.2006). Means with the same letter are not significantly different, error 
bars represent standard error of mean, based on LSD test (P≤0.05; N=7). 

When this test was repeated at lower and more stable temperatures (SR VIII), 

significant effects on nematode reproduction were detected between endophyte 
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treatments, but not between treatments and the control (Figure 11). MT-20 reduced 

nematode reproduction by 93%, while S9 and P12 increased it by 82 and 31%, 

respectively, though not significantly, when compared to the control after 9 weeks. S2 

decreased reproduction non-significantly by 12%. 

4.4 Discussion 

Four effective nematode-antagonistic fungi from Guatemala, as determined by 

greenhouse tests in Costa Rica (zum Felde, 2000; zum Felde et al., 2005), were tested in 

the first set of split-root tests in Germany (SR I - SR IV). The results were variable, 

with every repetition of the test giving apparent contradictory information. There is no 

clear and consistent evidence that any of the fungi tested induce systemic resistance to 

nematode penetration. Nematode penetration was generally low, even in control plants. 

In SR I and SR II, where nematode penetration was evaluated 1- and 2-weeks after 

inoculation, results indicate that nematodes initially penetrated roots to similar degrees, 

irrespective of treatment, and later apparently exited roots, in treatments with the T. 

atroviride isolates ET-35 and MT-20. Nematodes in MF-25 treated plants continued to 

penetrate, reaching levels slightly greater than those in control plants. The plant may 

need a certain amount of time after nematode attack to fully activate its defences, 

despite a potential induction of resistance due to prior fungal infection. The fungi alone 

may not be enough to trigger a full-fledged defensive response, while the interplay of 

fungi and nematode penetration may do so. The time between nematode inoculation and 

extraction may play a role in the success of detecting SIR in banana plants. 

In the second set of split-root tests (SR III and SR IV), when nematodes were 

extracted 10 days after inoculation, the F. oxysporum isolate MF-25 tended to increase 

penetration, while the T. atroviride isolate ET-35 tended to decreased it, as they did in 

test SR II. The T. atroviride isolate MT-20 gave mixed results, as did the F. oxysporum 

isolate MF-40. Only in the MT-20 treatment in test SR II, where nematodes were 

extracted 14-days after nematode inoculation was a significant difference in nematode 

penetration between the control and a fungal treatment observed. Apparently the only 

systemic effect of the F. oxysporum isolate MF-25 is to attract R. similis to banana 

roots. However, it is a proven nematode antagonist (zum Felde et al., 2005). It’s mode 

of action may be restricted to direct interaction with the nematode once it has penetrated 

the root, and only observable over time. Tests run to detect nematode antagonism 
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concentrated on nematode reproduction over 9 weeks, and not on nematode penetration 

(zum Felde et al., 2005). In treatments with the T. atroviride isolates, nematode 

numbers decreased over time. This may be due to the stimulation of the plant’s natural 

defences, after the combined trigger effect of fungal inoculation and nematode 

penetration, or it may be the effect of fungal metabolites reaching distant parts of the 

plant, in response to nematode attack. However, only ET-35 consistently, if only 

slightly, reduced nematode numbers in roots over 10 to 14 days, while nematode 

numbers in plants treated with MT-20 fluctuated. 

Systemic resistance to R. similis penetration was induced by a Ugandan F. 

oxysporum isolate (V5W2) in a study by Vu et al. (2006). They inoculated fungi twice, 

once one week after planting, and again 2 weeks later. In the present study, fungi were 

only inoculated once, 2 weeks after planting, though with five times more conidia per 

plant. Potentially, the two week period between the fungal and the nematode 

inoculations was not enough to allow for the expected systemic effect to manifest itself. 

In Vu et al.’s (2006) experiments, fungi and plants had four weeks of interaction before 

the nematode-challenge inoculation took place. Also, nematode penetration rates in 

control plants in Vu et al.’s (2006) experiments ranged from 50 to 100% of inoculated 

nematodes, while penetration in endophyte treated plants ranged from 35 to 100% of 

inoculated nematodes. These high penetration rates positively influenced the results 

obtained, while the extreme low penetration rates in the present study (max. ≤50%) may 

be partially responsible for a lack of significant results and may have hindered the 

visualisation of a potential induced systemic effect. Nevertheless, the only conclusion 

that can be drawn from the results remains that none of the four Guatemalan fungi 

studied induce systemic resistance to R. similis penetration after 2 weeks of interaction 

with the banana plant under greenhouse conditions in Germany. 

In Costa Rica four endophytes with proven efficiency in controlling R. similis in 

greenhouse trials (zum Felde, 2002; Carñizares Monteros, 2003; Menenses Hérnandez, 

2003) were chosen for split-root tests (SR V - SR VIII). These fungi consisted of the 

Guatemalan F. oxysporum isolate MT-20, which was also tested in Germany, and 3 new 

Costa Rican endophytes: T. atroviride isolate S2 and two F. oxysporum isolates S9 and 

P12. 

In SR V and SR VII, MT-20 continued to give variable results, non-significantly 

increasing nematode penetration in one test and decreasing it in the second. The two F. 
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oxysporum isolates, S9 and P12 never significantly increased or decreased nematode 

penetration, indicating that they do not induce systemic resistance to nematode 

penetration. However, the T. atroviride isolate S2 consistently and significantly reduced 

nematode penetration 10-days after nematode inoculation. It was the only endophyte 

tested that induced systemic resistance to penetration. 

Penetration rates in the SR V were higher than in SR VII, ranging from 5 to 15% in 

S2 treated plants and 26 to 55% in control plants, respectively. In SR V, the period 

between planting, fungal inoculations and nematode inoculation was much larger than 

in SR VII. Plants were inoculated at planting and 3 weeks later in SR V, allowing fungi 

and plants to interact for 4 weeks before being challenged with nematodes. In SR VII, 

fungi were inoculated at planting and nematodes 2 weeks later. This difference in time 

between planting and nematode inoculation may partially explain why overall nematode 

penetration rates were different between the two tests: the longer the roots developed in 

the soil, the more root exudates enter the soil, allowing nematodes to better orient 

themselves and find roots to penetrate. This phenomenon would not have been observed 

in experiments carried out in Germany, as all plants were challenged with nematodes at 

the same time, namely 2 weeks after fungal inoculation and a total of 4 weeks after 

planting. By the time nematodes were inoculated in Vu et al.’s (2006) experiments, 

plants had been in the soil for over 5 weeks, and colonized by the endophytic fungi for 4 

weeks. Banana roots grow very fast and small pots were used. In one week, the roots 

could colonize the soil in the pot more extensively, increasing not only contact area 

with nematodes, but also releasing more exudates into the soil. Fungi could modify or 

add to these root exudates, thereby either increasing or decreasing nematode attraction 

to roots, and consequently affecting nematode penetration rates. However, the longer 

the fungi reside in the plant’s roots, the greater the potential that the effect seen is not 

only due to the activation of the plant’s inherent defence mechanism, but also to fungal 

metabolites that may be carried systemically through the plant. However, whether or not 

fungal metabolites are capable of moving through a plant in a way similar to certain 

systemic fungicides has never been specifically studied. Nevertheless, the toxins 

produced by some pathogenic fungi are known to move through plants (Van Alfen, 

1989), eventually blocking xylem vessels and causing the plant to wilt. These toxins are 

fungal metabolites, so there is evidence that at least some movement of fungal 

metabolites is possible within a plant. 
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In the long-term experiment, where effects on nematode reproduction were studied, 

nematode reproduction was affected by systemic activity. Whether this can be attributed 

to the activation of the plant’s inherent resistance to nematode reproduction, or to 

systemically transported fungal metabolites could not be verified. Generally, treatments 

with T. atroviride tended to limit nematode reproduction to that seen in the control or 

reduce it below control levels, while F. oxysporum treatments tended to increase 

nematode reproduction. 

In conclusion, none of the F. oxysporum isolates tested (MF-25, MF-40, S9 and 

P12) induced systemic resistance to nematode penetration or reproduction. Of the two 

T. atroviride isolates, MT-20 either did not affect nematode penetration significantly or 

decreased it slightly, once significantly. It does however seem to have a significant 

negative effect on nematode reproduction, reducing R. similis reproduction by more 

than 90% over 9 weeks. Isolate S2 consistently and significantly reduced nematode 

penetration compared to the control, and does seem to induce systemic resistance to 

nematode penetration. However, S2 has no effect on nematode reproduction. 

To better understand the type of systemic resistance involved (SAR vs. ISR), the 

molecules produced by the plant and the genes involved in the response to both 

endophyte colonization and nematode attack have to be studied. Without this 

information, one can only confirm that systemic induction occurs, but not which 

specific plant defence pathways are involved. Another unknown factor is role of fungal 

metabolites and their potential systemic transport through plant tissues. Studies looking 

at the plant’s responses to endophyte colonization and nematode attack and the fate of 

fungal metabolites in plant tissues at the molecular level would help identify the type of 

systemic resistance involved in the antagonistic system observed and to clarify whether 

or not fungal metabolites can be systemically transported to distal tissues within plants. 
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5 TRANSFER OF SUPPRESSION IN SUCCESSIVE GENERATIONS OF 
BANANA PLANTS FROM THE FIELD 

5.1 Introduction 

Nematode suppressive fields have been reported for both sedentary and migratory 

nematodes in various regions of the world (Bird & Brisbane, 1988; Crump & Kerry, 

1987; Kerry & Crump, 1977; Kluepfel et al., 1993; Westphal & Becker, 1999). A 

previous study (zum Felde, 2003), confirmed the existence of such an area in the 

Motagua Valley of Guatemala, where Radopholus similis is suppressed in commercial 

banana plantations. The fact that the observed suppression was transferred from one 

farm district (Motagua A) to another (Panchoy) by transplanting corms, lead to the 

conclusion that the suppressive agents must reside within the plant, as opposed to in the 

soil. The banana cultivar used (Musa AAA cv. ‘Valery’) is not resistant to nematodes 

and care was taken during transplantation to not transfer soil along with corms. In fact, 

corms were not only pared prior to being planted in the new field, but also hot water 

treated, so neither soil nor nematodes were transferred into the new field. 

Endophytic fungi were subsequently isolated from banana roots from both districts, 

screened for biocontrol activity in green house tests, and promising biocontrol 

candidates identified. The results confirmed that the suppression observed in Guatemala 

is at least partially due to endophytic fungi. This type of suppression was termed in-

planta suppression. 

Nematode in-planta suppression in the Motagua Valley is long-term, if not 

permanent, and newly planted bananas take on the suppressive character of their 

neighbours. Therefore the endophytes responsible for suppression are presumably 

disseminated, either through the soil or via run-off water or through direct transferred 

from mother to daughter plant. 

This study was undertaken to determine whether the suppression of nematodes 

caused by individual endophytic fungi inoculated onto tissue culture plants prior to field 

planting is transferred to successive generations of banana plants over suckers in the 

field. 
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5.2 Materials & Methods 

This study constituted part of a large scale field trial run by INBAP and the Del 

Monte Fresh Fruit Company, on Del Monte land in Costa Rica. The field trial’s 

objectives were to evaluate the nematode biocontrol and plant growth promoting effects 

of four individual endophytic fungal isolates in the field. Four farms were chosen for 

the experiment: Carmen-2, Bananita, Duacari-2 and Formosa. On each farm, an area of 

approx. 2 ha was cleared by injecting the systemic herbicide Roundup into existing 

banana mats. Rows were cleared in the litter and planted to 1850 plants/ha. Tissue 

culture cv. ‘Valery’ banana plants (Musa AAA) were used. The six treatments tested 

were as follows: four treatments inoculated with one of the four endophytes listed in 

Table 10, a nematicide treatment and an absolute control. The field trial and the transfer 

of suppression experiment were repeated twice, once in the rainy season (planting 

September-October 2004) and once in the dry season (planting June-July 2006). 

Table 10. List of endophytes used to inoculate field trial plants. 

Endophyte Inoculated Endophyte Identity and Origin 

MT-20 Trichoderma atroviride / Motagua, Guatemala 
S2 Trichoderma atroviride / Sixaola, Costa Rica 
S9 Fusarium oxysporum / Sixaola, Costa Rica 
P12 Fusarium oxysporum / Talamaca, Costa Rica 
 

The endophytes used for inoculation were reared on 100% PDA plates in the 

laboratory at CATIE. For inoculation, suspensions of 1.5 x 106 spores/ml were prepared 

and multi-trays containing 96 tissue culture plants were dipped into trays containing the 

spore suspension for 5 minutes. The inoculated plants were then planted into 1.5 L 

plastic bags containing commercial potting soil and left to harden in a commercial 

screenhouse for 6 weeks. Over 13000 plants were thus inoculated, approx. 3250 per 

endophyte treatment. An additional 7000 plants were planted into bags and later served 

as control and nematicide treatment plants. On each farm, 500 plants were planted per 

treatment. 

Nematicides were applied around the planting holes of plants in the nematicide 

treatment blocks according to the following application schedule: 23.3 g Nemacur 15G, 

15 days after planting; followed by an application of a different nematicide every three
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months: first 23.3 g of Mocap 15G, then 20.0 g of Counter 15G and finally 23.3 g 

Rugby 10G. 

Two months after planting, monthly monitoring of nematode populations and 

collection of plant growth parameters started. Sampling was done according to the 

method described by Speijer and Gold (1996). Composite root samples were made up of 

the excavated roots of ten plants per treatment block per farm. Nematode data was 

collected for a period of 7 months, after which monitoring ceased as plants started to 

flower so as not to negatively affect yields. 

Transfer of suppression was evaluated as follows: suckers were collected from the 

field trial 12-14 weeks after field planting, coinciding with the first desuckering of the 

trial plots. Twenty sword suckers, with corms approx. 10 cm in diameter were collected 

per treatment per farm. Suckers were subsequently washed free of soil and the corms 

pared before being transported to the greenhouse for planting and resprouting. 

In the greenhouse, pared sucker corms were planted in 1.5 L plastic bags containing 

sterile potting mix (sand:soil, 1:1 v/v) and regularly watered. Eight to ten weeks after 

planting, sufficient corms (6-10) had sprouted per treatment per farm. Sets of corms 

from the same farm from each treatment were then moved to a new table, arranged in a 

random block design, and inoculated with 1000 R. similis nematodes. Nematodes were 

left to develop in the banana roots for 9 weeks before the experiment was terminated, at 

which point the roots were washed free of soil, weighed and root structure analysed 

using WinRhizo. 

In the laboratory, nematodes were extracted from the roots using the maceration-

sieving technique adapted from the one described by Speijer and De Waele (1997): the 

entire root system was cut into 1 cm pieces, and macerated in a commercial blender in 

200 ml tap water for 5 sec at low, and 5 sec at high speed. The suspension was sieved in 

nested sieves of 1000 mm, 150 mm and 45 mm apertures. The content of the last sieve 

was washed into a 250 ml capacity capped plastic jar and filled with tap water to 200 

ml. 

Nematodes in two 2 ml sub-samples were counted. The number of nematodes per 

root system and per g root were then calculated. Data were analysed using the Tukey 

test (P≤0.05) in the SPSS statistical program (SPSS® 13.0 for Mac). All nematode data 

were ln (x+1)  transformed for analysis. 
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5.3 Results 

Though the collected sucker appeared healthy at the time of collection and after 

paring, not all sprouted after being planted in the greenhouse. From the rainy season 

trial, sufficient corms from Bananita, Duacari-2 and Formosa were recovered and used 

in the transfer of suppression test. Corms from Carmen-2 did not sprout. From the dry 

season trial, only the pared suckers from�Bananita sprouted, while those from Carmen-

2, Duacari-2 and Formosa rotted in the planting bags. Results presented are therefore 

restricted to those from the corms of three farms in the rainy season (Bananita, Duacari-

2 and Formosa) and from Bananita only in the dry season. 

Bananita - Rainy Season 

The overall nematode population in the roots of resprouted corms was lower in 

endophyte treated plants than in the control and nematicide treated plants (Figure 12). 

Field applications of nematicide did not protect the removed suckers from future 

nematode attack while endophyte inoculation of mother plants did. 
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Figure 12. Radopholus similis per root system of banana suckers from Bananita during the 
rainy season, 9 weeks after inoculation. (N=10) Columns with the same letter are 
not significantly different from each other (P≤0.05, Tukey Test). Bars represent 
standard error of means. 
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Figure 13. Radopholus similis density per g root of banana suckers from Bananita during the 
rainy season, 9 weeks after inoculation. (N=10) Columns with the same letter are 
not significantly different from each other (P≤0.05, Tukey Test). Bars represent 
standard error of means. 

Nematode density was affected in endophyte treated plants (Figure 13), with the 

two T. atroviride isolates (MT-20 and S2) having the greatest nematode density 

reducing effect. No residual effect of field nematicide applications could be observed. 

No clear nematode suppression in endophyte treatments was seen in nematode 

populations in the field trial at the time of sucker removal (Table 11). Nematicide 

treatment in Bananita at that time of sucker removal and over time was efficient, and 

over the 7-month run of the experiment, it became obvious that the endophytes did 

suppress R. similis in this farm (Menjivar Barahona, 2005). 

Results indicated that especially the T. atroviride isolate S2 has nematode 

biocontrol activity, comparable in efficiency to the nematicide treatment. The nematode 

density results from endophyte treatments and control corms are comparable to the 7-

month average field trial results, with S2 controlling nematodes the best, followed by 

the other three endophyte treatments with intermediate results. Results for the 

nematicide treatment are of course different, as no nematicides were used in the 

greenhouse and nematode populations in corms from nematicide-treated blocks 

increased as they did in the control corms. 
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Table 11. Radopholus similis population in roots of field trail plants from Bananita during the 
rainy season, at sucker removal (Jan. 2005) and on average, over 7 months of 
monitoring (Dec. 2004-June 2005). (N=10, P≤0.05, Tukey test) Columns with the 
same letter are not significantly different from each other. 

Treatment # R.similis/100g root 
at sucker removal 

# R.similis/100g root 
over 7 months 

Trichoderma atroviride isolate MT-20 16475 ab 21662 bc 
Trichoderma atroviride isolate S2 24950 b 16079 a 
Fusarium oxysporum isolate S9 13600 ab 24832 bc 
Fusarium oxysporum isolate P12 12650 ab 19083 bc 
Nematicide 8683 a 17196 b 

Control 20553 ab 35876 c 
 

Figure 14 shows the dynamics of the field nematode population. Nematode 

populations in the control, nematicide treated and S9 treated plots increased steadily 

over time, while those in MT-20, S2 and P12 treated plots initially increased, then either 

levelled off or decreased, before ending below the level of both control and nematicide 

treated plots. It appears that nematode suppression by endophytes took a few months to 

establish. 

 

0

10000

20000

30000

40000

50000

60000

70000

Dec. 2004 Jan. 2005 Feb. 2005 Mar. 2005 Apr. 2005 May. 2005 Jun.2005

R.
 si

m
ili

s
/1

00
g 

R
oo

t  

MT-20

S2

S9
P12

NEMATICIDE

CONTROL

 

Figure 14. Dynamics of the field population of Radopholus similis during the rainy season in 
Bananita farm (N=10) (adapted from Menjivar Barahona, 2005). 
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Duacari-2 - Rainy Season 

Corms from Duacari-2 did not sprout as readily as did Bananita corms. Only 4 

corms from the control, 5 from the nematicide treatment, 7 from the P12 and 6 from the 

MT-20, S2 and S9 treatments sprouted. This highly variable replica number affected 

both results and the statistical analysis, so that no significant differences in nematode 

population (Figure 15) nor nematode density (Figure 16) could be observed in the roots 

of re-sprouted corms from Duacari-2. 

MT-20 treated plants had the lowest nematode density and population, indicating 

suppression may have been transferred, but not enough suckers sprouted to reveal 

statistically relevant differences. Nematode density and population in nematicide treated 

corms was also quite low, though once again replica numbers were insufficient to reveal 

significant differences. 
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Figure 15. Radopholus similis per root system of banana plants from Duacari-2 during the 
rainy season, 9 weeks after inoculation. (N=4-7) No significant differences were 
found (P≤0.05, Tukey Test). Bars represent standard error of means. 
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Figure 16. Radopholus similis density per g root of banana plants from Duacari-2 during the 
rainy season, 9 weeks after inoculation. (N=4-7) No significant differences were 
found (P≤0.05, Tukey Test). Bars represent standard error of means. 

The field trial nematode populations for Duacari-2 reveal a strange phenomenon 

(Table 12), the nematode population in the control block was extremely low at the 

beginning of the experiment, increased over time, and closely followed the curve of the 

nematode population in the nematicide treated block (Figure 17).  

Table 12. Radopholus similis population in roots of field trail plants from Duacari-2 in the 
rainy season, at sucker removal (Jan. 2005) and on average, over 7 months of 
monitoring (Dec. 2004-June 2005). (N=10, P≤0.05, Tukey test) Columns with the 
same letter are not significantly different from each other. 

Treatment # R.similis/100g root 
at sucker removal 

# R.similis/100g root 
over 7 months 

Trichoderma atroviride isolate MT-20 13650 c 14275 d 

Trichoderma atroviride isolate S2 8400 c 12355 cd 
Fusarium oxysporum isolate S9 8300 c 12249 cd 
Fusarium oxysporum isolate P12 5175 c 7339 bc 
Nematicide 650 b 9182 b 

Control 100 a 7380 a 
 

In general, the nematode population in Duacari-2 was not as great as in the other 

farms included in the field trial (Figure 17). 
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Figure 17. Dynamics of the field population of Radopholus similis during the rainy season in 
Duacari-2 farm (N=10) (adapted from Menjivar Barahona, 2005). 

Formosa - Rainy Season 
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 Figure 18. Radopholus similis per root system of banana plants from Formosa during the rainy 
season, 9 weeks after inoculation. (N=5-6) No significant differences were found 
(P≤0.05, Tukey Test). Bars represent standard error of means. 
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Figure 19. Radopholus similis density per g root of banana plants from Formosa during the 
rainy season, 9 weeks after inoculation. (N=5-6) No significant differences were 
found (P≤0.05, Tukey Test). Bars represent standard error of means. 

More suckers from Formosa were recovered than from Duacari-2, but neither 

nematode densities nor population in corms differed significantly (Figure 19 & Figure 

20). Field nematode population at sucker removal indicted some biocontrol effect in 

treatments MT-20 and S2, and this observation held true over the 7 month run of the 

field trial. In Formosa, nematicide applications did not control nematode populations at 

sucker removal nor over time (Table 13). 

Table 13. Radopholus similis population in roots of field trail plants from Formosa during the 
rainy season, at sucker removal (Jan. 2005) and on average, over 7 months of 
monitoring (Dec. 2004-June 2005). (N=10, P≤0.05, Tukey test) Columns with the 
same letter are not significantly different from each other. 

Treatment # R.similis/100g root 
at sucker removal 

# R.similis/100g root 
over 7 months 

Trichoderma atroviride isolate MT-20 4430 ab 18234 b 

Trichoderma atroviride isolate S2 5760 a 13468 a 
Fusarium oxysporum isolate S9 8020 b 25251 c 
Fusarium oxysporum isolate P12 8230 b 15918 bc 
Nematicide 6400 b 28113 c 
Control 4540 b 28677 c 
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Nematode population dynamics also reveal the non-efficacy of nematicide 

treatment in Formosa farm (Figure 20). Despite fluctuations in nematode densities in 

the field, the MT-20, S2 and P12 endophyte treatments controlled nematode populations 

to a certain degree, especially over time. 
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Figure 20. Dynamics of the field population of Radopholus similis during the rainy season in 
Formosa farm (N=10) (adapted from Menjivar Barahona, 2005). 

Bananita - Dry Season  

Corms taken from Bananita during the dry season sprouted well, though nematode 

penetration was very poor. No significant differences in nematode population or density 

could be observed in the corms, 9 weeks after nematode inoculation (Figures 19 & 20). 

While no significant differences were seen between nematode densities in 

treatments at the time of sucker removal, fewer nematodes were encountered in 

endophyte treated plants in the field compared to those treated with nematicides. Oddly, 

the fewest nematodes were encountered in the control (Table 14). Over the 4-month 

course of the trial, the two T. atroviride treatments (MT-20 and S2) reduced the number 

of R. similis in 100 g roots significantly, as compared to the control, while neither the 

nematicide treatment nor the treatment with F. oxysporum isolate S9 had an effect. A 

non-significant reduction was observed in plants treated with F. oxysporum isolate P12. 
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Figure 21. Radopholus similis per root system of banana plants from Bananita during the dry 
season, 9 weeks after inoculation. (N=9) No significant differences were found 
(P≤0.05, Tukey Test). Bars represent standard error of means. 
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Figure 22. Radopholus similis density per g root of banana plants from Bananita during the 
dry season, 9 weeks after inoculation. (N=9) No significant differences were found 
(P≤0.05, Tukey Test). Bars represent standard error of means. 
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Table 14. Radopholus similis population in roots of field trail plants from Bananita, at sucker 
removal (Oct. 2005) and on average, over 4 months of monitoring (Oct. 2005-Jan. 
2006). (N=10, P≤0.05, Tukey test) Columns with the same letter are not 
significantly different from each other. 

Treatment # R.similis/100g root 
at sucker removal 

# R.similis/100g root 
over 7 months 

Trichoderma atroviride isolate MT-20 2300 a 7294 b 

Trichoderma atroviride isolate S2 4275 a 5387 a 
Fusarium oxysporum isolate S9 4050 a 10100 c 
Fusarium oxysporum isolate P12 2525 a 6367 bc 
Nematicide 7425 a 11245 c 
Control 1900 a 11471 c 

 

Nematode population dynamics (Figure 23) reveal an initial gradual to steep 

increase in nematode numbers over the first 3 months of monitoring in all treatments, 

followed by a drop in all treatments but S2 thereafter, which is the most effective 

nematode-antagonist in the rainy-season farms. Nevertheless, the average 4-month 

nematode density in S2 treated plants was significantly lower than that in control and 

nematicide treated plants (Table 14). 
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Figure 23. Dynamics of the field population of Radopholus similis during the dry season in 
Bananita farm (N=10) (data from C. Castillo and L. Pocasangre, data not 
published). 
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5.4 Discussion 

The cause of suppression in nematode suppressive soils has been related to a 

variety of soilborne microorganisms, including a range of fungi that act either as 

nematode endoparasites (Sayer, 1980; Seinhorst, 1966; Eayre et al., 1987; Jaffee, 1986), 

cyst endoparasites (Velvis & Kamp, 1996), egg pathogens (Kerry et al., 1982; Kerry, 

1990) or nematode trapping/predating fungi (Balan & Gerber, 1972; Gaspard & 

Mankau, 1987; Gray, 1988; Mankau & Wu, 1985). Recently, nematode antagonistic 

endophytic fungi, especially Trichoderma and Fusarium spp. have been isolated from 

roots of tomatoes (Hallmann & Sikora, 1994), bananas (Pocasangre, 2000; zum Felde, 

2002; Menenses Hérnandez, 2003; Carñizares Monteros, 2003) and rice (Le, 2006). 

Notably some of these isolates were recovered from areas with so-called nematode 

suppressive soils. However, as the identified causal agents of the observed suppression 

were endophytes, the designation of the soils as suppressive is misleading, and the term 

in-planta suppression was coined (zum Felde et al., 2005). This phenomenon is 

especially evident in perennial and vegetatively disseminated crops such as bananas, 

where the naturally occurring, endophyte associated suppression not only persists in the 

field over decades, but can also be transferred from one field to another by transplanting 

suppressive suckers (zum Felde et al., 2005). Exactly what set of endophytes are 

responsible for naturally occurring suppressive banana plants has not yet been 

discovered, though a range of endophytes has been isolated from such plants and 

screened for nematode antagonistic activity (Pocasangre, 2000; zum Felde, 2002). 

With suppressive soils, small portions of such soil can be used as an inoculum to 

transfer suppression to a conducive soil (Westphal, 2005). However, using suppressive 

soils to inoculate non-suppressive soils on the large scale is hardly an economically 

viable way of controlling plant parasitic nematodes. In order for endophyte mediated 

nematode suppression to persist in a field with suppressive plants, it is the endophytes 

that must be transferred from one plant to the next. Theoretically, this can occur directly 

from mother to daughter plant, during the period in which both plants share the same 

corm and root system - an in situ transfer. Alternatively, as the identified endophytes 

responsible for nematode suppression are not obligate endophytes, such as mycorrhizal 

fungi, and can survive saprophytically in the soil, transfer may occur by infection of 

new roots from endophyte spores or hyphae present in the soil. In this study, an indirect 

way of investigating the transfer of endophytes was used. As inoculated endophytes 
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could not be readily differentiated from other Fusarium and Trichoderma spp., the 

transfer of nematode suppression as opposed to and as an indicator of endophyte 

transfer was studied. 

Transfer of suppression could only be observed in one of the four sets of suckers 

tested, those from Bananita in the rainy season. Suckers from this farm had the highest 

regeneration rates, and nematodes were clearly suppressed in the field, especially by the 

endophyte S2. Bananita was flooded for part of the month of January 2005, but 

sustained no lasting damage. This unusual situation may have aided the inoculated 

endophytes in establishing themselves and colonizing greater parts of the root system, 

as competitors were hindered from doing so while anoxic conditions reigned. 

Neither transfer of suppression, nor field suppression of nematodes could be 

observed for Duacari-2. In general, the nematode population in this farm was not as 

great as in the other farms included in the field trial. Possibly indigenous nematode-

antagonists played a role in keeping field populations of nematodes low in this farm. 

This putative local suppression was not transferred onto the suckers though, as 

nematode numbers in the corms were not notably different from those in corms from the 

other farms. The low regeneration rates of corms from this farm affected the statistical 

significance of the results.  

While nematodes were suppressed in endophyte treatments in the field in Formosa, 

no transfer of suppression could be observed. As nematicides had no effect on the 

nematode population in the field, it can be assumed that the nematicides were rapidly 

biodegraded in this farm. The highly active microbial population present in soils where 

enhanced biodegradation of nematicides is observed (Moens et al., 2004), and 

presumably also in the roots of plants growing therein, may have affected the inoculated 

endophytes, eventually hindering their transfer to suckers via the soil or displacing them 

in sucker tissues. 

In the only dry season suckers to regenerate, no transfer of suppression could be 

observed, despite nematode suppression in the field in endophyte-treated plants. 

Nematode penetration was very poor in these suckers, maybe due to high temperatures 

in the greenhouse or a less viable nematode inoculum. 

Since the suppression of nematodes in naturally-occurring suppressive plants, as 

seem in the Motagua Valley of Guatemala, can persist at a very high level and for 
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decades, natural transfer of endophytes from one generation to the next must take place. 

In this study, establishment and transfer of suppression due to endophytes was 

positively affected by high soil moisture. Potentially the slower root growth under wet 

soil conditions allows the endophytes to colonize greater portions of the root system. 

Once endophytes colonize banana roots and protect plants from nematode attack, this 

protection was transferred onto at least one following generation, eventually more. This 

is the first time a transfer of suppression could be proven for a set of individual 

endophytes under field and greenhouse conditions. 
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6 EFFECT OF SINGLE AND COMBINED INOCULATIONS OF MUTUALISTIC 
ENDOPHYTIC FUNGI ON NEMATODE CONTROL AND PLANT GROWTH 

6.1 Introduction 

A wide range of microorganisms from both the rhizosphere and the endorhiza have 

been identified as potential biocontrol agents (BCAs) of plant-parasitic nematodes 

(Hoffmann-Hergarten et al., 1998; Kerry, 2000; Meyer et al., 2002; Hallmann et al., 

2001; Chen & Dickson, 2004a, b). Among these potential BCAs are a selection of 

endophytic fungi that have been isolated from diverse crops such as rice, maize, tomato 

and banana (Hallmann & Sikora, 1994; Schuster et al., 1995; Pocasangre, 2000; 

Pocasangre et al., 2000; Niere, 2001; zum Felde, 2002; Menenses Hérnandez, 2003; 

Carñizares Monteros, 2003; Vu, 2005; zum Felde et al., 2005; Le, 2006). Root 

endophytes are very interesting for biological control of nematodes, as they often 

colonize the very same tissues attacked by nematodes. In addition to the nematode 

antagonistic effects of certain endophytes, a number of fungi isolated from banana have 

exhibited plant growth promoting effects in greenhouse and field experiments 

(Pocasangre et al., 2000; zum Felde, 2002; Menenses Hérnandez, 2003; Carñizares 

Monteros, 2003; Menjivar Barahona, 2005). 

Despite ever increasing interest in alternative control measures, one of the critiques 

often aimed at biocontrol systems, is the inconsistency of the control levels attained. 

Where endophytes are concerned, this inconsistency may be due to both abiotic and 

biotic factors affecting an antagonist’s ability to colonize and grow in the endorhiza and 

to improper inoculum application technology (Dababat, 2006).  

In natural nematode suppressive soils, a range of natural enemies of nematodes are 

present, attacking their host at different stages of its life cycle, i.e. eggs, juveniles, 

sedentary females, etc. (Kerry, 1990). Kerry (1990) states that in such systems, each 

antagonist may kill relatively few nematodes, and that it is in fact only the combined 

effects of several nematode antagonists that result in the suppressive character of the 

soil. In an effort to emulate the conditions of naturally nematode suppressive systems in 

the greenhouse, and to attain more consistent and potent nematode biocontrol and plant 

growth promoting effects, plants in this study were inoculated with multiple nematode-

antagonistic endophytes, as opposed to a single isolate. The objectives of this study 
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were to evaluate the effect of single and combined inoculations of fungal endophytes on 

biocontrol of Radopholus similis in banana roots and on plant health and growth. 

To do so, two test were carried out, one with Musa AAA cv. ‘Williams’ plants 

inoculated with both fungi and nematodes, and a second with Musa AAA cvs. ‘Grand 

Nain’, ‘Valery’ and ‘Williams’ plants inoculated only with fungi. The aim was to 

differentiate the purely plant growth promoting effects of the fungi alone, from the plant 

growth ‘permitting’ effect seen in plants inoculated with both nematodes and nematode-

antagonistic endophytes. The three most popular banana cultivars presently used on 

commercial plantations in Latin America were included in the second test to verify 

whether growth promoting effects could be observed across a variety of popular 

cultivars. 

6.2 Materials and Methods 

6.2.1 Nematode Biocontrol and Plant Growth in Endophyte Treated 
Musa AAA cv. ‘Williams’ Plants  

The endophytes used in this study were selected from those previously screened 

and tested by a group of Masters students in the nematology laboratory at CATIE, in 

Costa Rica (zum Felde, 2002; Menenses Hérnandez, 2003; Carñizares Monteros, 2003). 

The selected isolates were the four most effective nematode antagonists discovered: two 

Trichoderma atroviride isolates (MT-20 and S2) and two non-pathogenic Fusarium 

oxysporum isolates (S9 and P12). Eight treatments were included in the first test: four 

single inoculations where plants were inoculated with the conidia of one of the four 

endophytes included in the study and 500 R. similis; two dual inoculations, where 

plants were inoculated with the conidia of either both T. atroviride or both F. 

oxysporum isolates and 500 R. similis; one combined inoculation where plants were 

inoculated with conidia of all four endophytes and 500 R. similis; a control treatment, 

inoculated only with 500 R. similis and an absolute control, which was not inoculated. 

The treatment codes presented in Table 15 will be used from here on to refer to the 

eight treatments used, so as to make presentation of results clearer and avoid cluttered 

figures.
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Table 15. Treatments used to test the effect of inoculations with one, two or four endophytes 
on the biocontrol of Radopholus similis and on the growth of Musa AAA cv. 
‘Williams’ plants. 

Treatment 
Codes 

Endophytes 
Inoculated Endophyte Identity and Origin 

Ta-1  MT-20 Trichoderma atroviride, Motagua, Guatemala 
Ta-2 S2 Trichoderma atroviride, Sixaola, Costa Rica 
Fo-1 S9 Fusarium oxysporum, Sixaola, Costa Rica 
Fo-2  P12 Fusarium oxysporum, Talamaca, Costa Rica 
Ta-Dual MT-20 & S2 Trichoderma atroviride, Guatemala & Costa Rica 
Fo-Dual S9 & P12 Fusarium oxysporum, Costa Rica 
Combined MT-20, S2, S9 & P12 T. atroviride & F. oxysporum, Guatemala & Costa Rica
Nematode Control1 - - 
Absolute Control2 - - 
1 Only R. similis inoculated, but no fungi; 2 Neither R. similis, nor fungi inoculated. 

The isolates were grown on 100% PDA plates for 2 weeks, until they produced 

enough conidia to prepare suspensions. Conidia were washed off media surface using 

sterile tap water and a sterile bacterial spreader, and counted using a Neubauer cell 

counting chamber. Conidial suspensions of 1 x 106 conidia/ml were prepared for each 

isolate. Dip-inoculations were performed on approximately 15 cm high tissue culture 

plants taken from multi-trays. The cone of rooting substrate adhering to the roots was 

not washed off prior to inoculation. The entire root system with adhering substrate of 11 

plants was simultaneously dipped into a conidia suspension for 5 minutes. For multiple 

inoculations, root sytems were successively dipped in conidial suspensions of individual 

endophytes for 5 minutes. 

After inoculation, plants were planted in 500 ml pots containing a sterile mix of 

sand and soil (1:1). Two weeks after planting, all plants inoculated with fungi and the 

control plants were inoculated with 500 mixed stages of R. similis nematodes taken 

from sterile carrot disk cultures, as described by Speijer and De Waele (1997). The 

absolute control was left uninoculated. Plants were watered daily, but never fertilized. 

Two months after nematode inoculation, soil was washed from the roots of plants, 

and the following data was collected: number of leaves and roots, pseudostem diameter, 

root and shoot weight. Nematodes were then extracted from roots using a maceration 

and sieving method (Speijer & De Waele, 1997) as follows: 1) the entire root system 

was cut into 1 cm pieces, and macerated in a commercial blender in 200 ml tap water 
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for 5 sec at low, and 5 sec at high speed; 2) the suspension was sieved in nested sieves 

of 1000 mm, 150 mm and 45 mm apertures; 3) the content of the last sieve was washed 

into a 250 ml capacity plastic beaker and filled up to 200 ml. For each sample, 

nematodes in two 2-ml sub-samples were counted. The total number of nematodes per 

root system (nematode population) and the number of nematodes per g root (nematode 

density) were calculated. 

The experimental design was a completely randomized block design, with nine 

treatments and eleven repetitions. Data was analysed using the Tukey test in the SPSS 

statistical program (SPSS® 13.0 for Mac). Nematode data was ln (x+1) transformed for 

analysis in SPSS. In addition, orthogonal contrasts were carried out using the SAS 

statistical program (SAS/STAT® Software, SAS Institute Inc.) with (x + 0.5)  

transformed nematode data. Plant morphological data was not transformed for analysis. 

6.2.2 Plant Growth Promotion in Endophyte Treated Musa AAA cvs. 
‘Grand Nain’, ‘Valery’ and ‘Williams’ Plants in the Absence of 
Nematodes 

Endophyte treatments in this test were the same as those in the previous test. 

However, as no nematodes were inoculated onto any plants in this test, only one control 

was used. In addition, three Musa AAA cultivars: ‘Valery’, ‘Williams’ and ‘Grand 

Nain’ were tested. Endophyte inoculum was obtained as described in section 6.2.1. 

The inoculation method was slightly modified: as opposed to successive 5 minute 

dip inoculations into single isolate conidia suspensions as used in the previous test, in 

this test, roots of micropropagated banana plants were dipped once into a conidia 

suspension, containing conidia from either 1, 2 or 4 endophytes, for 5 minutes. The 

suspensions for single inoculations contained 1.5 x 106 conidia/ml of one isolate (see 

Table 16 for treatment codes and isolates used), dual isolate inoculations contained 1.5 

x 106 conidia/ml of each isolate used, therefore had a final conidia concentration of 3 x 

106 conidia/ml, while the combined inoculum, contained a final concentration of 6 x 106 

conidia/ml. Plant were then planted in 1L potting bags, containing a sterile soil:sand 

mix (1:1). Plants were watered daily, but never fertilized. Over the next 12 weeks, plant 

height, total number of leaves and pseudostem diameter were taken very two weeks. 

After 12 weeks, plants were harvested, roots washed free of soil, and shoot and root 

weights, as well as the number of roots, leaves and plant height were noted. 
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Additionally, root length, average root diameter, root volume, and root lengths in root 

diameter classes were analysed using the WinRHIZO® program (WinRHIZO® 2004c, 

Regent Instruments Inc.). 

The experimental design was a completely randomized block design, with eight 

treatments and twelve repetitions. Data was analysed using the Tukey test in the SPSS 

statistical program (SPSS® 13.0 for Mac). Data was ln (x+1) transformed for analysis. 

Once again, orthogonal contrasts were carried out using the SAS program (SAS/STAT® 

Software, SAS Institute Inc.), with non-transformed data. 

Table 16. Treatments used to test the effect of single and combined inoculations of 
endophytic fungi on the growth of Musa AAA cultivars ‘Grand Nain’, ‘Valery’ and 
‘Williams’. 

Treatment 
Codes 

Endophytes 
Inoculated Endophyte Identity and Origin 

Ta-1  MT-20 Trichoderma atroviride, Motagua, Guatemala 
Ta-2 S2 Trichoderma atroviride, Sixaola, Costa Rica 
Fo-1 S9 Fusarium oxysporum, Sixaola, Costa Rica 
Fo-2 P12 Fusarium oxysporum, Talamaca, Costa Rica 
Ta-Dual MT-20 & S2 Trichoderma atroviride, Guatemala & Costa Rica 
Fo-Dual S9 & P12 Fusarium oxysporum, Costa Rica 
Combined MT-20, S2, S9 & P12 T. atroviride & F. oxysporum, Guatemala & Costa Rica
Control - - 

6.3 Results 

6.3.1 Nematode Biocontrol and Plant Growth in Endophyte Treated 
Musa AAA cv. ‘Williams’ Plants 

Two months after inoculation with R. similis, the total number of nematodes in 

roots (Figure 24) and their density (Figure 25) were both significantly lower in plants 

inoculated with endophytes than in the control plants. Single inoculations significantly 

reduced both the total number and the density of R. similis in banana roots. Dual 

inoculations controlled R. similis better than single inoculations, while the combined 

inoculation with four fungi yielded the best nematode control results overall. 
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Figure 24. Effects of inoculations with one, two or four endophytic fungi on the number of 
Radopholus similis in the root system of Musa AAA cv. ‘Williams’ plants, 2 
months after nematode inoculation. (N=11) Columns with the same letter are not 
significantly different from each other (P≤0.05, Tukey Test). Bars represent 
standard error of means. 
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Figure 25. Effects of inoculations with one, two or four endophytic fungi on the number of 
Radopholus similis per g root of Musa AAA cv. ‘Williams’ plants, 2 months after 
nematode inoculation. (N=11) Columns with the same letter are not significantly 
different from each other (P≤0.05, Tukey Test). Bars represent standard error of 
means. 
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Single inoculations with F. oxysporum isolates tended to control nematodes better 

than single inoculations with T. atroviride, though the effect of Fo-2 on the density of 

nematodes was poorest among the simple inoculations (Table 17). Fo-Dual inoculations 

with both F. oxysporum isolates controlled nematodes slightly better than the Ta-Dual 

inoculations with both T. atroviride isolates, though not significantly so. 

Table 17. Effects of inoculations with one, two or four endophytic fungi on nematode 
population and density in the roots of Musa AAA cv. ‘Williams’ plants, 8 weeks 
after nematode inoculation. 

Treatment R. similis/root system % reduction R. similis/g root % reduction 

Nematode Control 4582 e - 1721 d - 
Ta-1 2582 d 44 480 bc 72 
Ta-2 2327 cd 49 472 bc 73 
Fo-1 1964 abcd 53 469 bc 62 
Fo-2 2173 bcd 57 661 c 73 
Ta-Dual 1800 abc 61 337 ab 80 
Fo-Dual 1691 ab 63 301 ab 83 
Combined 1600 a 65 245 a 86 

Means in columns followed by different letters are significantly different at P≤0.05, Tukey Test, 
N=11. Data was ln (x+1) transformed for statistical analysis. 

Orthogonal contrasts revealed highly significant differences between the number of 

R. similis per root system and per g root in endophyte inoculated and control plants, as 

well as between combined and dual inoculations (Table 18). Only the R. similis 

population in Ta-Dual and Fo-Dual root systems differed significantly, with Fo-Dual 

containing less nematodes than Ta-Dual, while nematode density was not significantly 

different. The effect of single and dual inoculations of F. oxysporum on R. similis 

differed significantly from each other, with Fo-Dual reducing nematode population and 

density more than Fo-1 or Fo-2. The same can be said when comparing single and dual 

inoculations of T. atroviride: the dual inoculation increased nematode control. 

Nematode control was not significantly different between plants inoculated with only 

one endophyte when comparing effects of inoculations with fungi of the same species 

(Ta-1 vs. Ta-2 and Fo-1 vs. Fo-2). 

For all morphological characteristics studied, orthogonal contrasts revealed highly 

significant differences between inoculated and non-inoculated plants, with inoculated 

plants consistently outperforming control plants (Table 18). 
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Table 18. Orthogonal contrasts carried out on morphological and nematode data collected 
from Musa AAA cv. ‘Williams’ plants inoculated with one, two or four endophytes 
and nematodes, 2 months after nematode inoculation (N=11). 

 Nematode Data Morphological Data 

Contrasts 

R
. s

im
ili

s/
 

ro
ot

 sy
st

em
 

R
. s

im
ili

s/
 

g 
ro

ot
 

Pl
an

t H
ei

gh
t 

Ps
eu

do
st

em
 

D
ia

m
et

er
 

N
r.

 o
f L

ea
ve

s 

Sh
oo

t W
ei

gh
t 

N
r.

 o
f R

oo
ts

 

R
oo

t W
ei

gh
t 

Controls1 vs. Treatments with Fungi ** ** ** ** ** ** ** ** 
Nematode2 vs. Absolute3 Control - - n.s. n.s. n.s. n.s. * n.s. 
Combined vs. Dual Inoculations ** ** ** ** * ** ** ** 
Ta-Dual vs. Fo-Dual * n.s. ** ** n.s. ** n.s. * 
Fo-Dual vs. Fo-1 and Fo-2 * ** ** n.s. n.s. ** ** ** 
Fo-1 vs. Fo-2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Ta-Dual vs. Ta-1 and Ta-2 ** n.s. ** n.s. n.s. ** n.s. n.s. 
Ta-1 vs. Ta-2 n.s. n.s. n.s. n.s. n.s. n.s. ** n.s. 
1 Nematode Control and Absolute Control; 2 Nematode Control: inoculated with R. similis, but not 
with endophytic fungi; 3 Absolute Control: not inoculated with R. similis, nor with endophytic fungi; 
*: significant difference (P≤0.05); **: highly significant difference (P≤0.01); n.s.: no significant 
difference according to SAS Orthogonal Contrasts test. 

R. similis did not significantly affect plant height, pseudostem diameter, number of 

leaves, or shoot and root weight. Only the number of roots was significantly reduced in 

plants inoculated with nematodes, compared to those of the absolute control (Table 19). 

Significant differences were revealed between dual and combined inoculations, with the 

combined inoculation yielding larger and heavier plants, with more roots and leaves 

(Table 19). The dual inoculations with T. atroviride (Ta-Dual) produced plants with 

significantly higher, wider and heavier shoots than the dual inoculation with F. 

oxysporum (Fo-Dual), while F. oxysporum inoculated plants had greater root weight 

and number of roots. Not many significant differences were noted between treatments 

Fo-1 and Fo-2, nor among treatments Ta-Dual, Ta-1 and Ta-2. 

With the exception of plants in treatment Fo-2, all inoculations of individual 

endophytic fungi positively influenced plant growth, as revealed by greater plant height, 

pseudostem diameter, number of leaves and roots, and shoot and root weight, when 

compared to the absolute control and nematode control plants (Table 19). 

 



Chapter 6 - Effect of Single and Combined Inoculations of Endophytes 
 

65 

Table 19. Effects of inoculations with one, two or four endophytic fungi and 500 Radopholus 
similis on growth of Musa AAA cv. ‘Williams’ plants. 

Treatment 
Plant 

Height 
(cm) 

Pseudostem 
Diameter 

(cm) 

Number
of  

Leaves 

Shoot 
Weight 

(g) 

Number 
of 

Roots 

Root 
Weight 

(g) 

Control 12.04 ab 1.27 ab 6 a 25.59 abc 21 a 8.34 ab 
Ta-1 10.73 a 1.14 ab 5 a 24.46 abc 21 a 15.74 d 
Ta-2 12.32 ab 1.30 b 6 a 21.43 ab 21 a 14.38 cd 
Fo-1 11.99 ab 1.30 b 6 a 31.93 c 23 a 18.08 d 
Fo-2 12.37 ab 1.22 ab 5 a 31.36 bc 22 a 15.20 cd 
Ta-Dual 11.93 ab 1.09 ab 5 a 25.21 abc 21 a 10.43 bc 
Fo-Dual 11.73 ab 1.05 a 5 a 19.82 a 21 a 6.26 a 
Combined 12.53 b 1.18 ab 5 a 20.15 a 24 a 6.88 ab 

Means in columns followed by different letters are significantly different at P≤0.05, Tukey Test, 
N=11. 

In general, single inoculations with Trichoderma isolates yielded heavier plants 

than single inoculations with Fusarium isolates, and dual inoculations yielded better 

results than single inoculations. All Ta-Dual and Fo-Dual plants outperformed absolute 

control plants. The combined inoculation consistently produced the best results, 

yielding greatest pseudostem diameter, number of leaves and roots, and root and shoot 

weights than any other treatment. Ta-1, Ta-2 and Ta-Dual plants had greater root and 

shoot weights than Fo-1, Fo-2 and Fo-Dual plants. 

Of the four endophytes inoculated, Fo-2 had the least growth promoting effects and 

was not as effective in controlling nematodes as the other three isolates inoculated 

singly. All inoculations with either one or both T. atroviride isolates (Ta-1, Ta-2, Ta-

Dual or Combined) and the inoculation with both F. oxysporum isolates (Fo-Dual) 

compensated the plant growth reducing effects of R. similis, significantly increasing 

root growth beyond that of the absolute control plants and effectively controlling 

nematodes. 

6.3.2 Plant Growth in Endophyte-Treated Musa AAA cv. ‘Grand 
Nain’, ‘Valery’ and ‘Williams’ Plants 

For the three cultivars studied, changes in plant height, pseudostem diameter and 

total number of leaves followed similar patterns over the 12 weeks of data collection 

and, for the most part, no significant differences could be found between the sets of data 
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from the three cultivars (data not shown). Plant height increased steadily over time in all 

treatments and cultivars, though treatment Ta-2 depressed height increase in ‘Grand 

Nain’ from week 6 to 12. 

Pseudostem diameter also increased steadily over the 12-week run of the 

experiment, with the exception of a slight stagnation of increase towards week 10 in 

‘Grand Nain’ and ‘Valery’ plants in the combined treatment. For all plants and in all 

treatments, the number of leaves increased over the first 6 weeks after planting, 

decreasing thereafter in week 8 and then increasing again to week 10 and finally 

decreasing or stagnating till the end of data collection at week 12. Treatment Fo-2 

positively affected the number of leaves in cv. ‘Williams’ over the 12 weeks of data 

collection, though not for the two other cultivars. Leaf numbers in plants in treatment 

Fo-Dual were slightly depressed on all cultivars, especially over the first 6 weeks, and 

towards the end of data collection in all cultivars in treatments Ta-Dual and Ta-2. The 

drop in total leaf numbers between weeks 6 and 8 and between weeks 10 and 12 was 

due to senescence and removal of older leaves. 

Effect of single, double and multiple inoculations of endophytes on the growth 
of Musa AAA cv. ‘Grand Nain’ plants 

After 12 weeks, neither the height nor the diameter of the pseudostem of ‘Grand 

Nain’ plants, nor the number of leaves or roots produced were significantly affected by 

the endophyte treatments, when compared to the control (Table 20). However, the 

pseudostem diameter of Fo-Dual inoculated plants was noticeably smaller than in other 

treatments. Shoot weights in treatments Fo-Dual and combined were significantly lower 

than those in treatments Fo-1 and Fo-2, but shoot weights did not differ significantly 

between treatments with endophytes and the control. All single inoculations 

significantly increased root weight, when compared to the control. Root weights in the 

two double and the combined treatments did not significantly differ from those of the 

control, and roots weights were lower than those in single treatments. 

Orthogonal contrasts revealed significant differences in root weight, length, 

diameter and volume between control and endophyte inoculated plants (Table 21). Root 

weight is lower in control plants than in all inoculated plants except for Fo-Dual and 

combined plants, where root weight is even lower than in the control plants (Table 20). 
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When comparing combine inoculated plants with the other endophyte inoculated 

plants, significant differences are additionally seen in pseudostem diameter, number of 

leaves and shoot weight.  

Table 20. Effect of inoculations with one, two or four endophytic fungi on growth of Musa 
AAA cv. ‘Grand Nain’ plants, 12 weeks after planting in the greenhouse. 

Treatment 
Plant 

Height 
(cm) 

Pseudostem 
Diameter 

(cm) 

Number
of  

Leaves 

Shoot 
Weight 

(g) 

Number 
of 

Roots 

Root 
Weight 

(g) 

Control 12.04 ab 1.27 ab 6 a 25.59 abc 21 a 8.34 ab 
Ta-1 10.73 a 1.14 ab 5 a 24.46 abc 21 a 15.74 d 
Ta-2 12.32 ab 1.30 b 6 a 21.43 ab 21 a 14.38 cd 
Fo-1 11.99 ab 1.30 b 6 a 31.93 c 23 a 18.08 d 
Fo-2 12.37 ab 1.22 ab 5 a 31.36 bc 22 a 15.20 cd 
Ta-Dual 11.93 ab 1.09 ab 5 a 25.21 abc 21 a 10.43 bc 
Fo-Dual 11.73 ab 1.05 a 5 a 19.82 a 21 a 6.26 a 
Combined 12.53 b 1.18 ab 5 a 20.15 a 24 a 6.88 ab 

Means in columns followed by different letters are significantly different at P≤0.05, Tukey Test, 
N=12. 

Table 21. Orthogonal contrasts carried out on morphological data collected from Musa AAA 
cv. ‘Grand Nain’ plants inoculated with one, two or four endophytes, 12 weeks 
after planting (N=12). 

 Morphological Data WinRHIZO Data 
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Control vs. Treatments n.s n.s n.s n.s n.s ** ** ** ** 
Combined vs. other Inoculations n.s ** * ** n.s ** ** ** ** 
Dual vs. Single Inoculations n.s * * ** n.s ** ** ** ** 
Ta-Dual vs. Fo-Dual n.s n.s n.s * n.s ** ** n.s ** 
Fo-1 and Fo-2 vs. Ta-1 and Ta-2 n.s * n.s ** n.s * * ** ** 
Ta-1 vs. Ta-2 * n.s n.s n.s n.s n.s n.s ** * 
Fo-1 vs. Fo-2 n.s n.s n.s n.s n.s n.s n.s * ** 

*: significant difference (P≤0.05); **: highly significant difference (P≤0.01); n.s.: no significant 
difference according to SAS Orthogonal Contrasts test. 
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Combine inoculated plants generally had a greater shoot height, average 

pseudostem diameter, low shoot and root weight (Table 20), shorter roots with a greater 

average diameter and of lesser volume (Table 22) than other endophyte inoculated 

plants, with the exception of Fo-Dual plants. Dual inoculations were not as effective in 

promoting plant growth as were single inoculations, though the Ta-Dual inoculation had 

a greater positive effect on plant growth than the Fo-Dual inoculation. Inoculations with 

T. atroviride had greater root growth promoting effects than F. oxysporum inoculations, 

with Ta-2 especially increasing root length and Ta-1 increasing root volume and weight. 

No great differences were revealed when comparing inoculations with isolates from 

the same species (Ta-1 vs. Ta-2 and Fo-1 vs. Fo-2). 

Table 22. Effect of inoculations with one, two or four endophytic fungi on root length, 
average root diameter and root volume of Musa AAA cv. ‘Grand Nain’ plants, 12 
weeks after planting in the greenhouse. 

Treatment Root Length (cm) Root Diameter (mm) Root Volume (cm3) 
Ta-1 1928.75 c 1.00 a 20.33 cd 
Ta-2 2021.83 c 1.00 a 17.08 c 
Fo-1 1823.08 c 1.00 a 24.92 d 
Fo-2 1814.58 c 1.00 a 20.00 c 
Ta-Dual 836.42 b 1.00 a 11.58 b 
Fo-Dual 456.33 a 1.00 a 6.25 a 
Combined 559.75 ab 1.17 ab 8.08 ab 
Control 587.33 ab 1.33 b 9.75 ab 

Means in columns followed by different letters are significantly different at P≤0.05, Tukey Test, 
N=12. 

Effect of single, double and multiple inoculations of endophytes on the growth 
of Musa cv. ‘Valery’ plants 

The height, pseudostem diameter, number of roots, and shoot weight of ‘Valery’ 

plants was not significantly affected by the endophyte treatments (Table 23). Of the 

plants inoculated with a single endophyte, only those in treatment Fo-2 had significantly 

less leaves than the control, while the number of leaves in dual and combined 

treatments was non-significantly lower than the control. All single inoculation 

treatments increased root weight, but only treatment Fo-1 was significantly higher than 

the control (Table 23). Root weights in the dual and combined treatments did not 

significantly differ from those of the control, and in the Fo-Dual and the combined 
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treatment, root weights were lower than those of single treatments. Shoot weight of 

‘Valery’ plants was not significantly affected by endophyte treatments, though single 

inoculations slightly increased and multiple inoculations slightly decreased it. This was 

similar to the effect seen in Musa AAA cv. ‘Grand Nain’ plants. 

Table 23. Effect of simple and combined inoculations of endophytic fungi on growth of 
Musa AAA cv. ‘Valery’ plants, 12 weeks after planting in the greenhouse. 

Treatment 
Plant 

Height 
(cm) 

Pseudostem 
Diameter 

(cm) 

Number
of  

Leaves 

Shoot 
Weight 

(g) 

Number 
of 

Roots 

Root 
Weight 

(g) 

Control 13.33 a 1.30 a 6 b 29.85 a 18 a 11.51 ab 
Ta-1 13.69 a 1.34 a 7 b 33.36 a 19 a 18.57 bc 
Ta-2 13.37 a 1.33 a 6 b 35.36 a 20 a 17.93 bc 
Fo-1 12.98 a 1.37 a 7 b 34.28 a 21 a 19.74 c 
Fo-2 12.35 a 1.24 a 4 a 34.99 a 18 a 15.95 abc 
Ta-Dual 13.38 a 1.25 a 5 ab 28.55 a 19 a 13.46 abc 
Fo-Dual 13.08 a 1.22 a 5 ab 30.67 a 17 a 6.07 a 
Combined 13.32 a 1.32 a 5 ab 26.36 a 19 a 8.60 ab 

Means in columns followed by different letters are significantly different at P≤0.05, Tukey Test, 
N=12. 

Orthogonal contrasts revealed few or no significant differences between treatments 

with regard to plant height, pseudostem diameter, number of leaves and roots, and shoot 

weight. As was the case for cv. ‘Grand Nain’, significant differences were revealed for 

root weight, length, average diameter and volume for cv. ‘Valery’ plants (Table 24). 

Control roots generally weighed less (Table 23), were shorter, wider and less 

voluminous (Table 25) than inoculated roots, with the exception of root from plants 

inoculated with both F. oxysporum (Fo-Dual) or all four isolates. 

Combined inoculations did not positively affect root growth. The Ta-Dual 

inoculation had a significantly greater positive effect on root growth than the Fo-Dual 

inoculation, yielding heavier, longer and more voluminous roots. No significant 

differences were observed between any of the single inoculations, nor between single 

inoculations with T. atroviride. Fo-2 did not promote root growth as well as Fo-1 did. 

As was the case for cv. ‘Grand Nain’ plants, inoculation with Fo-2 did not greatly 

increase growth of cv. ‘Valery’ plants, and Dual-Fo and combined inoculations had a 

neutral to negative effect on plant growth. 
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Table 24. Orthogonal contrasts carried out on morphological data collected from Musa AAA 
cv. ‘Valery’ plants inoculated with one, two or four endophytes, 12 weeks after 
planting (N=12). 

 Morphological Data WinRHIZO Data 
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Control vs. Treatments n.s. n.s. n.s. n.s. n.s. ** ** ** ** 
Combined vs. other Inoculations n.s. n.s. n.s. n.s. n.s. ** ** ** ** 
Dual vs. Single Inoculations n.s. * ** n.s. * ** ** n.s. ** 
Ta-Dual vs. Fo-Dual n.s. n.s. n.s. n.s. n.s. ** ** ** ** 
Fo-1 and Fo-2 vs. Ta-1 and Ta-2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Ta-1 vs. Ta-2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Fo-1 vs. Fo-2 n.s. n.s. n.s. n.s. * ** n.s. ** ** 

*: significant difference (P≤0.05); **: highly significant difference (P≤0.01); n.s.: no significant 
difference according to SAS Orthogonal Contrasts test. 

Table 25. Effect of inoculations with one, two or four endophytic fungi on root length, 
average root diameter and root volume of Musa AAA cv. ‘Valery’ plants, 12 weeks 
after planting in the greenhouse. 

Treatment Root Length (cm) Root Diameter (mm) Root Volume (cm3) 
Ta-1 1946.17 bc 1.00 a 20.42 cd 
Ta-2 2045.18 c 1.00 a 21.09 cd 
Fo-1 1941.50 bc 1.00 a 23.50 d 
Fo-2 1873.27 bc 1.00 a 18.55 c 
Ta-Dual 1674.82 b 1.00 a 17.18 c 
Fo-Dual 577.25 a 1.00 a 7.17 a 
Combined 785.00 a 1.08 a 9.83 ab 
Control 860.45 a 1.18 a 12.27 b 

Means in columns followed by different letters are significantly different at P≤0.05, Tukey Test, 
N=12. 

Effect of single, double and multiple inoculations of endophytes on the growth 
of Musa cv. ‘Williams’ plants 

Neither plant height, pseudostem diameter, number of leaves nor shoot height of 

Musa AAA cv. ‘Williams’ plants was significantly affected by endophyte treatments, 

when compared to the control (Table 26). Pseudostem diameter only significantly 
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differed between two treatments (Fo-1 > Ta-Dual). There were significantly less roots 

produced by cv. ‘Williams’ plants in the Fo-2 treatment than in the control, Ta-1, Ta-2, 

and combined treatments (Table 26). Root weights in single and Ta-Dual treatments 

were non-significantly greater than the weight of control roots. In Fo-Dual treatment, 

the root weight was significantly lower than in the control, and non-significantly lower 

than in the combined treatment.  

Shoot weight was not significantly affected by the treatments, though, as in cv. 

‘Grand Nain’ and cv. ‘Valery’ plants, single inoculations tended to increase shoot 

weight. Ta-Dual had positive effect on root weight while Fo-Dual decreased root weight 

significantly, compared to the control and all other treatments but the combined one.  

Table 26. Effect of inoculations with one, two or four endophytic fungi on growth of Musa 
AAA cv. ‘Williams’ plants, 12 weeks after planting in the greenhouse. 

Treatment 
Plant 

Height 
(cm) 

Pseudostem 
Diameter 

(cm) 

Number
of  

Leaves 

Shoot 
Weight 

(g) 

Number 
of 

Roots 

Root 
Weight 

(g) 

Control 12.62 a 1.28 ab 7 a 25.48 a 20 b 10.29 bc 
Ta-1 12.33 a 1.29 ab 7 a 27.12 a 19 b 15.08 c 
Ta-2 12.38 a 1.33 ab 7 a 30.28 a 21 b 16.53 c 
Fo-1 12.10 a 1.36 b 7 a 28.08 a 19 ab 16.96 c 
Fo-2 12.83 a 1.33 ab 6 a 25.55 a 16 a 14.90 bc 
Ta-Dual 12.60 a 1.18 a 6 a 25.31 a 19 ab 13.53 bc 
Fo-Dual 12.62 a 1.28 ab 6 a 20.32 a 18 ab 5.51 a 
Combined 13.27 a 1.24 ab 6 a 23.07 a 20 b 8.13 ab 

Means in columns followed by different letters are significantly different at P≤0.05, Tukey Test, 
N=12. 

Once again, orthogonal contrasts revealed few significant differences with regard to 

plant height, pseudostem diameter, number of leaves and roots, and shoot weight (Table 

27). Root weight, length, average diameter and volume was significantly different 

between control and endophyte inoculated cv. ‘Williams’ plants. Control roots weighed 

less (Table 26), were shorter and less voluminous (Table 28) than inoculated plants, 

with the exception of Fo-Dual and combine inoculated plants. Roots of combine 

inoculated plants were also smaller than other inoculated plants, with the exception of 

Fo-Dual inoculated roots. Effects of Dual inoculations were significantly different from 

one another, with Fo-Dual inoculations not having any root growth promoting effects 
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on cv. ‘Williams’ plants, while Ta-Dual increased root weight, length and volume, and 

decreased root average diameter compared to Fo-Dual inoculated plants. No significant 

differences were observed between the single inoculations, or between inoculations 

with one or the other isolate from the same species (Fo-1 vs. Fo-2 or Ta-1 vs. Ta-2). 

Table 27. Orthogonal contrasts carried out on morphological data collected from Musa AAA 
cv. ‘Williams’ plants inoculated with one, two or four endophytes, 12 weeks after 
planting (N=12). 

 Morphological Data WinRHIZO Data 
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Control vs. Treatments * n.s. * n.s. n.s. ** ** ** ** 

Combined vs. other Inoculations n.s. n.s. n.s. * n.s. ** ** * ** 

Dual vs. Single Inoculations n.s. n.s. ** ** n.s. ** ** * ** 

Ta-Dual vs. Fo-Dual n.s. * n.s. * n.s. ** ** ** ** 

Fo-1 and Fo-2 vs. Ta-1 and Ta-2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Ta-1 vs. Ta-2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Fo-1 vs. Fo-2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

*: significant difference (P≤0.05); **: highly significant difference (P≤0.01); n.s.: no significant 
difference according to SAS Orthogonal Contrasts test. 

Table 28. Effect of inoculations with one, two or four endophytic fungi on root length, 
average root diameter and root volume of Musa AAA cv. ‘Williams’ plants, 12 
weeks after planting in the greenhouse. 

Treatment Root Length (cm) Root Diameter (mm) Root Volume (cm3) 
Ta-1 1927.50 d 1.00 a 19.33 def 
Ta-2 1923.25 d 1.00 a 20.58 ef 
Fo-1 1889.00 d 1.00 a 22.55 f 
Fo-2 1698.73 cd 1.00 a 17.18 de 
Ta-Dual 1477.25 c 1.00 a 15.17 cd 
Fo-Dual 471.83 a 1.25 b 6.50 a 
Combined 698.42 ab 1.00 a 8.92 ab 
Control 822.25 b 1.00 a 11.50 bc 

Means in columns followed by different letters are significantly different at P≤0.05, Tukey Test, 
N=12. 
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6.4 Discussion 

In 2002, Meyer and Roberts reviewed studies looking at the effects of combinations 

of biocontrol agents, and concluded that such combinations are often done in an attempt 

to increase the stability, intensity and/or reliability of biocontrol performance. 

Nevertheless, they are not always beneficial, as antagonism can occur between 

biocontrol organisms, and lead to unchanged control levels (Zaki & Maqbool 1991; 

Viaene & Abanoi 2000) or even to decreased control (Esnard et al., 1998; Chen et al., 

2000), when compared to individual applications of biocontrol agents. However, many 

combinations studied have resulted in increased biocontrol levels (Guetsky et al., 2001; 

Guetsky et al., 2002; Meyer & Roberts, 2002). Combinations tested against nematodes 

include fungi with fungi (Khan et al., 1997; Duponnois et al., 1998; Hojat Jalali et al., 

1998; Chen et al., 2000) and fungi with bacteria (Maheswari & Mani, 1988; de Leij et 

al., 1992; Siddiqui & Mahmood, 1993; Perveen et al., 1998; Chen et al., 2000), with 

most combinations involving two organisms, but few combinations of three or more 

organisms (Esnard et al., 1998). The majority of biocontrol agents tested against 

nematodes were isolated from the rhizosphere or rhizoplane and tested on Meloidogyne 

spp. (Meyer & Roberts, 2002). Diedhiou et al. (2003) tested an arbuscular mycorrhizal 

fungi (AMF), Glomus coronatum, and a non-pathogenic endophytic Fusarium 

oxysporum against Meloidogyne incognita on tomato, with interesting results regarding 

the interaction of the two fungi within the plant, but observed no increased nematode 

control related to combined inoculation. Sikora and Reimann, (2004) studied the effects 

of combining AMF and bacteria. To the best of our knowledge, combinations of two or 

more endophytic fungi have never been studied. All fungi included in this study are 

proven endophytes, having been repeatedly re-isolated from roots of inoculated banana 

plants, occasionally also from corms and pseudostems (Pocasangre et al., 2004). 

Individual application of each of the four tested endophytic fungi significantly 

reduced the total number and density of R. similis nematodes in banana roots. Dual 

inoculations of either both F. oxysporum isolates (Fo-Dual) or both T. atroviride 

isolates (Ta-Dual) increased the positive effects on nematode control. This indicates that 

these isolates of the same species act together, which is especially evident for the 

combination of the Fusarium isolates. Both single F. oxysporum (Fo-1 and Fo-2) 

inoculations significantly reduced the number and density of R. similis in roots, while 

the Fo-Dual inoculation yielded even better biocontrol results. The increased biocontrol 
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effect is partially additive, but not synergistic, as the degree of control does not equal 

that of both individual endophytes, nor does it exceed this ideal additive degree of 

biocontrol, as would be the case in a synergistic relationship, where the combined 

effects are more than the sum of the partial effects. 

The effects of single and double inoculations of the Trichoderma isolates on 

biocontrol were similar, with the Ta-1 and Ta-2 inoculations significantly reducing 

numbers and densities of R. similis in roots, and the Ta-Dual inoculation yielding even 

better results. Inoculating all four endophytes yielded even better nematode biocontrol 

results than single or double inoculations. Once again, the effect was only partially 

additive. 

As was the case for nematode biocontrol, plant growth was promoted in the first 

test where both nematodes and fungi were inoculated. With positive effects increasing 

as the number of fungi inoculated increased. Fo-2 had no significant positive effect on 

plant growth on its own, while Fo-1 had a marked positive effect on plant growth, and 

the effect of the Fo-Dual inoculation greatly surpassed that of individual Fusarium 

inoculations, indicating a synergistic effect of these Fusarium isolates on plant growth. 

The plant growth promotion effects of Trichoderma isolates differed from those of 

Fusarium isolates, in so far as both individual inoculations (Ta-1 and Ta-2) had marked 

positive effects on plant growth, while the Ta-Dual inoculation only increased shoot 

growth, with root weight and numbers not as high as for individual inoculations. 

Inoculating all four endophytes yielded even better results than single or double 

inoculations for all morphological and biocontrol parameters examined. The results 

suggested that combining compatible biocontrol agents stabilizes biocontrol and 

intensifies the protection gained by the plant over the parasite and adds a plant growth 

promoting effect. These effects were neither strictly additive nor synergistic, but simply 

greater than that of individual inoculations. 

However, in the second test, where only fungi were inoculated, combinations of 

endophytes did not additionally increase plant growth, neither compared to the controls 

nor to the single inoculations. In fact, root and shoot weights were always lower in 

plants inoculated with 2 or more fungi than in plants inoculated with only one 

endophyte. This was especially so in plants in the Fo-Dual and combined inoculations. 

However, the combined endophyte inoculations were not entirely responsible for this 

effect. The soil that was used for potting had been autoclaved in large autoclave bags. 
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Approximately half a bag of was used per treatment. The control plants were the first to 

be planted, followed by the single inoculated plants, the dual inoculated plants and 

finally the combine inoculated plants. Fo-Dual and combined inoculated plants were 

planted in soil from the same bag of autoclaved soil. This soil was much finer than that 

used for the first 6 treatments, causing the pores at the bottom of planting bags to get 

clogged with silt. The soil in these bags was therefore very wet for the entire run of the 

experiment. This was only noticed when plants were harvested. Water-logging and the 

associated lack of oxygen is well known to stunt the growth of banana roots and cause 

root necrosis (Turner, 2005). Roots from plants in treatments Fo-Dual and combined for 

all three cultivars were more greatly affected by excess water than by the multiple 

inoculations and the data collected from these plants can be discarded. It does not 

however, explain why plants inoculated with the two T. atroviride isolates (Ta-Dual) 

did not have heavier roots than those plants inoculated with only one of T. atroviride 

isolate, which was the case in both tests. The inoculation method, i.e. successive dips in 

single-isolate conidia suspensions vs. a single dip in a mixed-isolate conidia 

suspensions, may have affected the results, though this seems unlikely, as the isolates 

did not inhibit each other’s growth on Petri dishes. 

Generally, greater growth promoting effects from endophyte inoculation were seen 

in cv. ‘Grand Nain’ than in cvs. ‘Valery’ or ‘Williams’, especially where single 

inoculations were concerned. ‘Valery’ and ‘Williams’ plants did not responded well to 

Fo-2 inoculation alone, and this inoculation was also the least effective in controlling R. 

similis. Fo-1 had the best growth promoting effects, while Ta-1 and Ta-2 had overall 

positive effects on growth. Ta-Dual inoculations had a positive effect on root growth in 

all cultivars. 

As the results for Fo-Dual and combined inoculations did not reveal the effects of 

the inoculations, but rather those of excessive water, this test should be repeated to 

discover the real effects if dual and combined inoculations of endophytes on banana 

growth in the absence of nematodes. Additionally, it would be interesting to test 

whether or not the presence of R. similis triggers additional plant growth promotion by 

endophytes, as appears to have been the case in the first test where both endophytes and 

nematodes were inoculated. 

Guetsky et al. (2002) demonstrated that the use of a combination of biocontrol 

agents improved biocontrol efficacy and consistency. This was also demonstrated in this 
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study. Meyer and Roberts (2002) suggest that more effective disease suppression of 

some combinations of biocontrol agents is due to additive or synergistic effects of their 

combined mechanisms of disease suppression against the pathogen. It is possible that 

such effects play a role in the present study. While the exact modes of action of the 

isolates are not yet known, there are indications that they may in fact be different for 

each isolate, or at least each genus. Both Trichoderma isolates scored high in parasitism 

tests conducted prior to in planta testing (zum Felde, 2002; Carñizares Monteros, 2003), 

while the metabolites of the two Fusarium isolates had in vitro nematistatic and 

nematicidal effects on R. similis (Carñizares Monteros, 2003; Menenses Hérnandez, 

2003). 

Guetsky et al. (2001) postulate that as long as biocontrol agents have different 

ecological requirements, their combined use will increase reliability and decrease 

variability of biocontrol, and Meyer and Roberts (2002) conclude that negative effects 

of combinations of biocontrol agents result from their mechanism(s) of control being 

directed not only at the plant pathogen, but also at the companion biocontrol agent 

within the combination. In fact, Trichoderma and Fusarium spp. have both been 

successfully used to suppress Fusarium wilt (Park et al., 1988; Mao et al., 1998). 

However, though all four tested biocontrol agents were isolated from internal tissues of 

banana roots and presumably occupy the same or at least similar ecological niches, they 

nevertheless do not compete with each other, complementing each other instead, and 

making them ideal candidates for a stable and effective biocontrol strategy, when used 

in combination. 

As to growth promotion, it seems that single inoculations are more consistent than 

combined inoculations. However, if a combination of nematode biocontrol and growth 

promotion are desired, combined inoculations are the better choice, as the increase in 

biocontrol is significant in multiple inoculations and plants inoculated with both 

nematodes and multiple endophytes grow at least as well as, if not better, than plants 

without any endophytes or with only nematodes. The fact that the plants in the first test, 

inoculated with both fungi and nematodes were bigger and heavier than both the control 

and absolute control plants is important, as inoculations with endophytes not only 

allowed plants to compensate for loss of mass usually associated to nematode attack, 

but increase their mass above and beyond that. The results for single inoculations and 
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dual inoculations with T. atroviride in the second test confirmed these positive effects 

on plant growth in the three Musa AAA cultivars tested.  

Niere (2001) postulated that the variation in R. similis control he encountered may 

be cultivar related. Whether biocontrol is equally effective in ‘Grand Nain’, ‘Valery’ 

and ‘Williams’ plants has not been studied as such, though both greenhouse and field 

trials have been carried out with the tested endophytes and cultivars, all with positive 

results (Menenses Hérnandez, 2003; Carñizares Monteros, 2003; Menjivar Barahona, 

2005). This is not surprising, as all the cultivars are from the Cavendish group, and the 

endophytes were isolated for Cavendish, esp. cv. ‘Valery’, plants. 

Further research is needed to verify the plant growth promotion effect of combined 

inoculations, both in the presence and absence of nematodes, to explore the antagonistic 

effects of combined applications of endophytes on nematodes under field conditions, 

and to reveal the mechanisms by which the fungal endophytes promote plant growth. 
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7 GENERAL CONCLUSIONS 
 

The conclusions of the present thesis work are: 

1) The 10 Radopholus similis-antagonistic endophytic Fusarium oxysporum 

isolates tested were not vegetatively compatible with known pathogenic 

strains of F. oxysporum f. sp. radicis-lycopersici, lycopersici or cubense. 

2) Systemic induced resistance to nematode penetration probably plays a role in 

antagonistic relationship of the endophytic Trichoderma atroviride isolate S2 

and R. similis in Musa AAA cultivar ‘Valery’ plants. SIR to nematode 

reproduction may play a role the antagonistic relationship of T. atroviride 

isolate MT-20 and R. similis in ‘Valery’ plants. No SIR to either R. similis 

penetration or reproduction was observed for the four F. oxysporum isolates 

tested: MF-25, MF-40, S9 and P12 in ‘Valery’ plants. 

3) When nematode suppression was established in the field by inoculation of 

mother plants with endophytes prior to field transfer, this suppression was 

transferred from mother to daughter Musa AAA cv. ‘Valery’ plants. 

4) Combining inoculations of mutualistic endophytes increased nematode 

control levels and plant growth promoting effects in Musa AAA cv. 

‘Williams’ in the presence of Radopholus similis. Plant growth in the 

absence of R. similis was promoted by single and dual inoculations of T. 

atroviride isolates and by single inoculations of F. oxysporum isolates in 

Musa AAA cv. ‘Grand Nain’, ‘Valery’ and ‘Williams’. Dual inoculations of 

F. oxysporum and of all four endophytes did not positively affect plant 

growth. 
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