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Identifizierung und Validierung funktioneller Kandidatengene für den Stülpzitzendefekt 

beim Schwein 

 

Die Stülpzitze ist der häufigste Erbfehler des Gesäuges von Schweinen. Die Anzahl der 

Gene, die an der Entwicklung dieses Defektes beteiligt sind, ist unbekannt. Das Ziel 

dieser Untersuchung war die Erstellung eines genomweiten Genexpressionsprofils in 

Geweben des Gesäuges von Sauen während der Laktation, die Auswertung der 

Unterschiede zwischen normalen und Stülpzitzen und die Charakterisierung von 

funktionellen Kandidatengenen für den Stülpzitzendefekt beim Schwein. Proben von 

normalen und Stülpzitzen wurden von laktierenden Sauen gesammelt. Die RNA wurde 

extrahiert und für die Microarray Analysen mit genomweiten porcinen Affymetrix- 

Arrays verwendet. Proben wurden weiterhin mit einer real-time PCR untersucht, um die 

Ergebnisse der Expressionanalyse von ausgewählten Genen zu verifizieren. Zusätzlich 

wurden drei Gene aufgrund ihrer beschriebenen Funktion in Publikationen ausgewählt. 

Ihre Expressionsprofile wurden erstellt und die Assoziation mit der Gesäugequalität in 

experimentellen und kommerziellen Schweinepopulationen analysiert.  

Die genomweite Expressionanalyse ergab beim Vergleich von normalen und 

Stülpzitzen 1253 unterschiedlich exprimierte Transkripte, von diesen waren 695 

Transkripte stärker und 558 geringer exprimiert in normalen im Vergleich zu 

Stülpzitzen. Die Validierung von fünf ausgewählten Genen mit eine real-time PCR 

zeigte die signifikant stärkere Expression des CTGF (Connective tissue growth factor) 

und des IGF-II (Insulin-like growth factor 2) Gens in Stülpzitzen, während GDF8 

(Growth differentiation factor 8) in normalen Zitzen stärker exprimiert war. Für die 

beiden Gene EGF (Epidermal growth factor) und EGFR (Epidermal growth factor 

receptor) konnte die unterschiedliche Expression nicht bestätigt werden. 

Zusammenfassend zeigt diese Untersuchung die mögliche Bedeutung der 

Kandidatengene CTGF, IGF-II und GDF8 für den Stülpzitzendefekt beim Schwein. Es 

konnte ebenfalls mit einer real-time PCR nachgewiesen werden, dass zwei der aus der 

Literatur ausgewählte Gene RLN3 (Relaxin 3) und GPCR135 (G-protein coupled 

receptor 135) in Zitzen von betroffenen Sauen stärker exprimiert waren im Vergleich zu 

Geweben von Sauen ohne Gesäugedefekt. Es wurden jeweils zwei Polymorphismen in 

den Sequenzen von RLN3 und GPCR135, detekiert, eine signifikante Assoziation wurde 

zwischen den Haplotypen des RLN3 Gens zu der Stülpzitze nachgewiesen. 



                            
   

Identification and validation of functional candidate genes related to the inverted teat 

defect in pigs 

 

The inverted teat defect is the most common disorder of the teat in pigs. The number of 

genes involved in the development of this disorder is unknown. The aim of this study 

was to investigate the genome-wide gene expression profile in porcine teats at the 

lactating stage, to evaluate the differences between normal and defect teats in lactating 

sows, and to investigate functional candidate genes for the inverted teat defect in pigs. 

Samples of normal and defect teats were collected from lactating sows (n=2). RNA was 

extracted and further used for microarray analysis performed using genome-wide 

porcine Affymetrix arrays. Real-time PCR was performed to validate the expression of 

selected genes. Three additional genes were selected from their described function in 

the literature to analyse their expression profiles and to perform an association study 

using samples of animals from an experimental and commercial pig population.  

The genome-wide expression analysis revealed 1253 differentially expressed transcripts 

between normal and inverted teats, of which 695 transcripts were found being higher 

and 558 transcripts lower expressed in normal compared to inverted teats. Validation of 

five selected genes using real-time PCR revealed a significantly higher expression of 

connective tissue growth factor (CTGF) and insulin-like growth factor 2 (IGF-II) in 

inverted teats, whereas growth differentiation factor 8 (GDF8) was highly expressed in 

normal teats. For both epidermal growth factor (EGF) and epidermal growth factor 

receptor (EGFR) no differentially expression could be verified. In conclusion, this study 

promotes the functional candidate genes CTGF, IGF-II, and GDF8 as candidates for the 

inverted teat defect in pigs. Also for two of the genes selected from the literature, 

relaxin 3 (RLN3) and G-protein coupled receptor 135 (GPCR135) were higher 

expressed in teats from affected sows compared to normal sow using real-time PCR. 

Two polymorphisms were detected in RLN3 and GPCR135, a significant association 

between the haplotype of RLN3 and the inverted teat defect was found. 
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1 Introduction 

The inverted teat defect has a considerably negative impact on the economical 

efficiency of pig production in Germany (Oltmanns 2003). This heritable defect is 

characterized by the failure of nipples to protrude from the udder surface (Große et al. 

1996). The inverted teat defect obviously decreases the number of functional teats and 

results in an increase of the mortality rate of piglets, especially in large litters. It has 

also a negative impact on the possibility of selection regarding other economically 

important traits. The number of genes involved in the defect is unknown, it is important 

to get more knowledge of the genetic cause of the inverted teat defect.  

Candidate genes can be identified in QTL regions as positional candidates, or selected 

as functional candidates based on their biochemical and physiological properties and 

function in metabolism (Stratil and Geldermann 2004, Tabor et al. 2002, Zhu and Zhao 

2007). A number of candidate genes are already identified using QTL analyses and the 

direct candidate gene approach (Jonas et al. 2008, Oltmanns 2003, Ün 2002). The 

association of some genes with the inverted teat defect could be described in pigs of an 

experimental and commercial populations such as relaxin 1 (RLN1) (Chomdej 2005). 

However these association studies could not reveal a strong evidence for any of the 

analyzed genes being a major gene affecting this heritable defect in pigs (Chomdej 

2005, Trakooljul 2004, Yammuen-art et al. 2007b). The application of functional 

genomics using expression profiling is perhaps the most promising approach to identify 

functional candidate genes. Understanding patterns of gene expression is expected to 

provide an insight into the complex regulatory networks and will most probably lead to 

the identification of genes relevant to new biological processes, or genes implicated in 

disease (Nygard et al. 2007).  

The following two different strategies functional candidate genes for the inverted teat 

defect were selected from expression profiling of samples of the porcine mammary 

gland and due to their biological metabolism as described in the literature. Using 

microarray analysis to detect functional candidate genes, differentially expressed genes 

were identified using samples of normal and inverted teats from sows with or without 

defect.  
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The present study was undertaken with the following objectives: 

(1) to identify differentially expressed genes between normal and inverted teats in pigs 

(2) to quantify the transcript abundance of differentially expressed genes between 

normal and inverted teat 

(3) to detect single nucleotide polymorphisms and analyze the association of selected 

candidate genes with the inverted teat defect in pigs 
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2        Literature review 

 

2.1    The mammary gland 

 

2.1.1 Development of the mammary gland 

In the early embryo, three layers can be found including  the ectoderm, the mesoderm, 

and the endoderm. The ectoderm (outer layer) gives rise to the skin (epidermis) and the 

nervous system; the mesoderm (middle layer) develops to muscles, blood vascular 

system, and sexual organs; and the endoderm (inner layer) gives rise to the alimentary 

canal and the digestive glands. The mammary gland is originated from the two layers 

ectoderm and mesoderm (Schmidt 1971). 

The development of the mammary gland begins during the early fetal stage and 

proceeds beyond the initiation of the lactation. The first sign of the development of the 

mammary gland is the thickening of the ectodermal cells (embryonic skin) on the 

ventral surface of the embryo giving rise to the mammary band. Serial changes in the 

thickened area of the ectoderm are identified as the mammary band, mammary streak, 

mammary line, mammary crest, mammary hillock, and mammary bud (Figure 1).  

 

Figure 1:   Developmental stages from the band through the bud of the mammary 

apparatus of the embryo. The relation of the embryo size to the surface of 

the skin is presented (adapted from the review of Schmidt (1971)) 
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The first visible indication of the mammary gland development can be seen during the 

proliferation of areas of epithelial cells in the epidermis of the ventral region. The small 

dissections which can be found at the upper body side are called mammary band, they 

are visible at approximatly day 23 in pigs. These areas of proliferation extend in a line 

between the fetal axilla and the inguinal region and form two indistinct bands called the 

mammary lines. Starting at day 28, the mammary lines regress back to distinct areas 

called mammary hillocks, which are visible around day 40 (Willham and Whatley 

1963). The mammary hillocks represent solid epithelial masses (the mammary buds) 

that continue to evaginate into the underlying stroma and become surrounded by a more 

cellular zone of fibroblast like cells within a dense collagenous mesenchyme. Upon cell 

multiplication, aggregation and differentiation, four configurations called mammary 

buds are formed. The mammary buds are representing the end of the teat in the area 

where in later stages the streak canal can be found. The mammary glands in all species 

arise from the mammary bud. Each mammary bud will give rise to the primary sprout of 

the gland through cell differentiation. The primary sprout is further developing to a 

wide net of sprouts with the opening in the teat channel, which are leading the milk 

from the cistern to the outside of the body in later stages of the development. These 

milk leading channels are also known as galactophores. The number of galactophores 

per teat or nipple varies considerably among mammals. The galactophores are 

predetermined by the primary sprout growing from the mammary bud. The cells are 

multiplied and branched from the primary sprout, giving rise to the secondary sprouts. 

These are the structural features destined to become the mammary ducts. The sprouts 

become canalized shortly before birth (Schmidt 1971). A schematic overview of the 

channel development is shown in figure 2. Another necessary part of the successful 

progression of mammogenesis is an adequately developed mammary fat pad (Schmidt 

1971). The fatty pad arises from the mesoderm during the fetal development. The 

nonglandular portion of the udder, mainly connective tissue, is well developed at birth 

(Schmidt 1971).  

The growth of the mammary gland from the birth to the puberty is in most mammals 

isometric compared to the growth rate of the body (Fenton 2006). 
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Figure 2:   Schematic overview of the proliferation of the gland from the primary sprout 

(1, 2) and the secondary sprouts (3, 4) before birth to the fully formed gland 

cells (5 to 7) during lactations (Schmidt 1971) 

 

During puberty the ductal epithelium undergoes an active proliferation, ramifying into 

the surrounding tissue of the mammary fat pad (MFP). It establishs a ductal network 

that ultimately supports pregnancy associated alveolar development. Terminal end buds 

mediate the elongation and primary branching of ductal epithelium through the fat pad 

at this stage. In the mammary gland of non pregnant females, a large fatty pad still 

exists. The major portion of the mammary gland growth occurs during the pregnancy, 

especially the last part and it is controlled by different hormones. The growth of the 

mammary gland is slow at the beginning of pregnancy, but the rate of growth 

accelerates as the pregnancy advances. As pregnancy progresses, the adipose cells of 

the pad are gradually replaced by ducts, alveoli, blood vessels, and connective tissue. 

Most of the mammary growth during the first half of gestation is mainly ductal growth 

and lobular formation; the alveoli are not formed before the pregnancy is established. In 

the second half of the gestation, ductal growth continues, but the main part of the 

growth is lobuloalveolar. Eventhough with the start of the lactation the mammary gland 

is fully formed, the development of the mammary gland will continue during further 

reproductive cycles as at the end of the lactation involution leads to an apotosis of the 

mammary cells. The mammary gland continues formation, apoptosis and 

morphogenesis during every new cycle of pregnancy and lactation (Ford et al. 2003).  
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2.1.2    The mammary gland in pigs 

The mammary glands in pigs are parallel on each side of the ventral midline. The 

secretory tissue of each teat is separate and independent to the neighbouring teats. There 

are two lactiferous ducts in each teat complex that branch into smaller ducts and 

ductules, which in turn terminate in the alveoli. Each visible gland is composed of two 

simple glands, each with a streak canal in the teat. Therefore the teat of the pig has two 

orifices which are aligned anterior-posterior in the teat end (Schmidt 1971). Each simple 

gland is separated from the other, thus implements that the secretory tissue is 

independent from the adjacent gland (Schmidt 1971).  

The sow has in average 12 to 14 mammary gland complexes (6 to 7 teats on each side). 

The numbers of nipples can range in various breeds between 6 and 32 teats (Schmidt 

1971). In europe mainly commercially used dam lines Large White and different 

Landrace lines were found with an average of 13 to 14 teats per animal (Clayton et al. 

1981). Asian breeds have often a higher number of teats, in Meishan and Jiaxing pigs an 

average of 17 and 19.8 teats were found, respectively (Fernandez et al. 2004, Haley et 

al. 1987). 

 

2.1.3   Genetic background of teat characteristic 

A range of the heritability estimated for the number of teats in pigs is wide. 

Heritabilities between 0.07 and 0.79 are published, most were detected in an interval 

from 0.30 to 0.50 (Hirooka et al. 2001, Lee and Wang 2001, Seo et al. 1996, Wang et al. 

2000, Zhang et al. 2000). In another study the heritability for the number of teats on the 

left side was estimated around 0.20 while the heritability of the number of teats on the 

right side was around 0.18 (Borchers et al. 2002). The estimated values may be 

considerable different as the heritabilities are population and model dependent. The 

phenotypic correlation between the number of teats on the left and the right side range 

between 0.50 and 0.60 (Borchers et al. 2002, Seo et al. 1996).  
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2.1 The inverted teat defect in pigs 

 

2.2.1 Description 

The inverted teat defect has a considerable negative impact on the economical 

efficiency of pig production in Germany (Oltmanns 2003). This heritable defect 

decreases the number of functional nipples and results in a high mortality rate of piglets, 

especially in large litters. Due to the nessecity of selection against this defect in dam 

lines, it has also a considerable negative impact on the possibility of selection to other 

economically important traits. 

The development of the mammary gland in pigs depends on the proliferation of the 

mesenchyme surrounding the epithelial buds, which raise the epithelial bud up from the 

surface. The insufficient proliferation of mesenchyme at the teat ground during the fetal 

development may lead to the development of inverted teat (Günther 1984). The inverted 

teat is characterized by a failure of nipples to protrude from the udder surface (Große et 

al. 1996). It has deformity of the short protruding part of the teat. Because the teat canal 

is held inward and forming a small crater, the milk can not flow out (Figure 3). 

 

 

Figure 3:  The differences between a normal teat (A, B) and inverted teat (C, D) 

(Beilage et al. 1996, Steffens 1993) 
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2.2.2 Genetic background of inverted teat defect 

The mode of inheritance of the inverted teat defect is not fully understand. This disorder 

has a genetic cause, but the number of genes involved is unknown. It is most likely that 

a major gene and a few modifying minor genes are involved. The estimated 

heritabilities of the inverted teat range from 0.2 to 0.5 (Clayton et al. 1981, Meyers et al. 

2005, Molenat and Thibault 1977). The heritability of the number of functional teats is 

lower than the heritability of the total number of teats, but the regression of the 

performance traits on the number of functional teats is larger in absolute magnitude than 

the corresponding regression on the total number of teats (Enfield and Rempel 1961).  

 

2.3 Candidate gene approach 

The candidate gene approach is a useful tool to determine the association of a genetic 

variant with a disorder and to identify the genes of modest effect (Kwon and Goate 

2000). The candidate genes can be searched in identified linkage regions of the 

chromosome as ‘positional candidate genes’. Further genes can be selected based on 

their biochemical and physiological properties and their function in the metabolism as 

‘functional candidate genes’ (Stratil and Geldermann 2004, Tabor et al. 2002, Zhu and 

Zhao 2007). The selection of candidate genes is followed by the identification of 

polymorphisms within the gene and the analysis of association of the genotype at the 

candidate gene loci with the phenotype (Stratil and Geldermann 2004). 

The positional candidate gene approach combines the linkage information of a 

particular trait and the mapping information of a gene. The genetic markers are used to 

identify regions that affect traits which are considered to be quantitative traits. The 

method to detect these loci is called the quantitative trait loci (QTL) analysis. Following 

the analysis, genes can be detected which are mapped in the region of the QTL. 

Additional information may also be obtained using comparative mapping. This enables 

the identification of further candidate genes which are mapped in other species in a 

region of conserved synteny which corresponds to the QTL region. 

The functional candidate gene approach is based on the knowledge of physiology, 

biochemistry or pathology which clearly indicates the mechanism of the trait. The 

identified genes may be structural genes or genes in regulatory or biochemical pathways 

affecting the trait expression. Functional genes can be selected from their described 

function in literature, whereas the information of knock-out or silencing experiments is 
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very useful to identify possible candidate genes. Moreover, the identification of 

functional candidate genes by expression profiling is perhaps the most promising 

application of functional genomics. Gene expression analysis is increasingly important 

in many fields of biological research. Understanding patterns of expressed genes is 

expected to provide an insight into complex regulatory networks and will most probably 

lead to the identification of genes relevant to biological processes, or implicated in 

disease. Two methods to measure transcript abundance have gained much popularity 

and are frequently applied. Microarray analysis allows the parallel analysis of thousands 

of genes in two differentially labeled RNA populations, it is a tool with a major impact 

to understand the transcriptional basis of complex biological systems. The expression of 

thousands of genes in a given tissue or cell type can be measured simultaneously in two 

or more biological conditions, such as ‘infected’ and ‘non infected’, and compared to 

identify differentially expressed transcripts (Hiendleder et al. 2005). The real-time PCR 

provides the simultaneous measurement of gene expression in many different samples 

for a limited number of genes, and is especially suitable when only a small number of 

cells are available (Nygard et al. 2007).  

Using a combination of the positional and functional candidate gene approachs, a 

number of genes were already identified as possible candidate genes for the 

development of the inverted teat defect in pigs. For some functional candidate genes 

such as the androgene receptor (AR), no significant association could be detected 

(Trakooljul et al. 2004). For other genes such as the transforming growth factor beta1 

(TGFB1), RLN1 and parathoroid hormone like hormone (PTHLH), effects on the 

heritable defect were detected (Chomdej 2005). Further positional and functional genes 

were found having a significant effect such as the growth hormone (GH), leucin-rich 

repeat-containing G protein-coupled receptor 7 (LGR7), as well as RLN3 and GPCR135 

for which the results are described in this work (Jonas et al. 2007, Yammuen-art et al. 

2007a).  
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2.3.1 Gene expression in the mammary gland  

The prenatal stage of the mammary development is regulated by sequential and 

reciprocal signaling between the epithelium and the mesenchyme (Robinson 2004). A 

number of recently published studies in human and mouse have identified some of the 

signals that control specific steps during the development, using targeted gene deletion 

and transgenic expression (Robinson 2004). There is a number of efficient methods for 

the study of gene expression profiles known such as the oligonucleotide DNA chip, the 

cDNA microarray, serial analysis of gene expression (SAGE) and large-scale expressed 

sequence tags (ESTs) sequencing (Su et al. 2006).  

The mammary gland development is initiated during the embryonic development. 

Several signaling pathways are active since the early stages of bud development 

(Robinson 2004). Robinson (2004) found in her study that the first indication for an 

involvement of wingless-type MMTV integration site family (Wnt) signals arises from 

the deletion of the lymphoid enhancer factor 1 (LEF1). Among the members of the Wnt 

family, the three genes Wnt6, Wnt10a and Wnt10b start to be expressed in the surface 

ectoderm around day 11.25 of the fetal development in mouse. The importance of Wnt 

signalling is further illustrated by the finding that the expression of dickkopf 1 (Dkk1), 

an inhibitor of Wnt signals, in the mammary anlagen results in an absence of mammary 

buds. The T-box 3 gene (TBX3) encodes a T-box transcription factor that is expressed in 

the mammary bud and other sites of tissue interactions, such as the limb bud. Mice with 

a targeted deletion of TBX3 fail to develop mammary glands and also display limb and 

yolk sac deficiencies. This signal appears to act at a very early stage in mammary 

organogenesis as mammary buds and localized expression of Wnt10b and LEF1 are 

absent in TBX3 knockout mice (Robinson 2004).  

The fibroblast growth factor (FGF) signals play an important role in many sites of the 

epithelial mesenchymal interaction. They are also involved in the mammary bud 

formation. Different members of the FGF family which are further described, are 

known to play a role during the mammary gland development. The fibroblast growth 

factor receptor 2B (FGFR2B) is expressed in the mammary placodes from embryonic 

day 11 onward. The earliest expression of FGF10 is detected at day 15.5 of the 

embryonic development in mouse. Expression of the FGF7 occurs at an earlier stage 

and is thought to compensate for the absence of FGF10 (Robinson 2004).  

The PTHLH gene is not only involved in the regulation of the calcium homeostasis, it 

also mediates the formation of the primary mammary mesenchyme and nipple sheath. 



Literature review                                                                                                              11 
 

PTHLH is expressed in the mammary bud, and the parathyroid hormone receptor 

(PTHR1) is expressed in the ventraldermal mesenchyme (Robinson 2004).  

The mammary glands develop postnatally by a branching morphogenesis creating an 

arborated ductal system on which secretory lobuloalveoli develop at pregnancy (Gary 

2001). It was found that there is a significant increase in the expression of cell cycle 

regulatory genes and a concomitant increase in nucleic acid and macromolecular 

synthesis during gestation (Clarkson et al. 2004). Progesterone, placental lactogens, 

prolactin, and the osteoclast differentiation factor introduce a signal to the alveolar 

proliferation and differentiation during pregnancy and possibly lactation. Estrogen and 

progesterone are primarily known for their role in the development and function of the 

female reproductive system. The need for a functional mammary gland development is 

dependent on a successful pregnancy (Connor et al. 2007, Hennighausen and Robinson 

2001). In addition, IGF-1, EGF, or related peptides, and elements of the activin/inhibin 

family were shown to be necessary for ductal growth. The inhibition of ductal growth, 

and in particular, lateral branching, is necessary to preserve stromal space for later 

lobuloalveolar development. Excellent evidence that TGFB1 naturally inhibits this 

infilling, possibly by blocking hepatocyte growth factor synthesis, is reviewed along 

with an evidence indicating that the action of TGFB1 is modulated by its association 

with the extracellular matrix (Gary 2001).  

The proportion of cell cycle genes is diminished during the lactation. These genes are 

replaced by an increase of genes involved in development and differentiation, including 

fatty acid biosynthesis and other metabolic processes. These genes are important for the 

terminal differentiation and transition to a secretory phenotype. A strong statistical 

relationship exists between involution and immune related genes (Clarkson et al. 2004). 

The gene expression during involution was found being significant associated with 

inflammation, the acute phase response, or humoral immunity and innate cellular 

defence as shown in table 1 (Clarkson et al. 2004). 

The majority of significantly induced genes during the involution are also differentially 

regulated at earlier stages during the pregnancy. This includes a marked increase in 

inflammatory mediators during involution and at parturition, which correlates with the 

signalling of the leukaemia inhibitory factor STAT3 (signal transducer and activator of 

signalling-3). Before the involution starts, an increase of cell proliferation, biosynthesis 

and metabolism-related genes was observed by the study of Clarkson et al. (2004). The 

first 24 hours after weaning are characterized by a transient increase in the expression of 
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components of apoptosis, inflammatory cytokines and acute phase response genes. 

Later regulators of intrinsic apoptosis are induced in conjunction with markers of 

phagocyte activity, matrix proteases, suppressors of neutrophils and soluble components 

of specific and innate immunity (Clarkson et al. 2004) 

 

Table 1: Relationship between the gene expression pattern and gene function in the 12-

point developmental time course (Clarkson et al. 2004). Shown in the cluster, 

the number of transcripts (Tr.), the biological process and molecular function 

Cluster Tr. Biological process Molecular function 

VSL  

(virgin and suppressed 

lactation) 

357 metabolism  

cell surface signal development 

extracellular matrix (ECM) and 

morphogenesis 

immunity  

signal transducer 

G 

(gestation)  

349 cell cycle  

cell growth  

cell cycle  

cytokine 

GSL  

(gestation, suppressed 

lactation 

605 biogenesis  

cell cycle 

cancer  

enzyme  

nucleic acid 

chemokine 

LT  

(lactation, transient) 

35 cell adhesion, metabolism  

cransport, cell surface and 

intracellular signal 

signal transducer  

transport  

cytokine 

L  

(lactation) 

144 biogenesis,  

metabolism,  

transport, 

development, 

ECM and morphogenesis, 

cancer  

transport 

 

LG  

(lactation and 

gestation) 

83 cell cycle  

metabolism  

development 

physiological process 

ECM and morphogenesis 

enzyme 
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Continued Table 1 

 

Cluster Tr. Biological process Molecular function 

IL  

(involution and 

lactation) 

 

 

624 cell death  

metabolism  

transport  

development  

ECM and morphogenesis 

apoptosis  

immunity 

signal transducer 

transport 

 

IT  

(involution, transient) 

245 biogenesis  

cell cycle 

cell growth 

cell surface signal 

intracellular signal 

signal transducer 

IP  
(involution and 
parturition) 
 

156 biogenesis  

homeostasis  

transport  

intracellular signal 

immunity  

signal transducer 

transport 

IG  
(involution and 
gestation) 

582 cell cycle  

metabolism  

proliferation 

transport 

cell cycle  

transport 

 

PC 

(postcoitum) 

93 transport  

ECM and morphogenesis 

transport 

 

 

The gene expression profile of the porcine mammary gland based on the analysis of 

28941 ESTs as well as preliminary results of the comparison of the expression profiles 

using samples of different breeds and within a number of developmental stages present 

the majority of known 4785 genes expressed in the porcine mammary gland during 

lactation (Su et al. 2006).   
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Figure 4:   EST abundance in each major Gene Ontology (GO) molecular function 

category. X-axis represents the molecular function terms based on GO 

comprising 1, antioxidant; 2, receptor binding; 3, glycosaminoglycan 

binding; 4, helicase; 5, lyase; 6, kinase; 7, cell adhesion molecule; 8, DNA 

repair protein; 9, electron transfer flavoprotein; 10, galactose binding 

lectin; 11, heterotrimeric G-protein GTPase; 12, high-density lipoprotein; 

13, ECM structural constituent; 14, structural constituent of cytoskeleton; 

15, structural constituent of muscle; 16, Apoptosis inhibitor; 17, metal ion 

binding; 18, nucleic acid binding; 19, nucleotide binding; 20, protein 

binding; 21, hydrolase; 22, oxidoreductase; 23, transferase; 24, chaperone; 

25, defense/immunity protein; 26, enzyme inhibitor; 27, protein 

degradation tagging; 28, signal transducer; 29, constituent of ribosome; 30, 

transcription regulator; 31, translation regulator. Y-axis is the percentage 

of ESTs of each library. The gene expression profiles of three different 

cDNA libraries comprising MGP (Mammary gland - 7 days pre birth), 

MGM (Mammary gland - 14 days after birth) and MGA (Mammary gland 

- 7 days after weaning) were constructed and analyzed. (Su et al. 2006) 
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A remarkable diversity of porcine mammary gene expression was found at different 

developmental stages. Seven days before parturition, genes of ribosome structural 

constituent were abundantly expressed in the porcine mammary gland. At the same 

time, also genes involved in the regulation of transcription and translation, nucleic acid 

and receptor binding and antioxidants, were abundantly expressed. The genes of the 

whey acidic protein (WAP) and α-lactalbumin were found to be expressed close to the 

end of the gestation. This might be used to determine the maturity of the mammary 

epithelial cells. The number of genes being significantly higher expressed during late 

gestation, was higher than during the other two developmental stages, the end of 

gestation and lactation observed in the same study (Su et al. 2006). Genes of ribosome 

structural constituent were abundantly expressed during late gestation, which might be 

explained by a preparation for the intrinsic protein synthesis during lactation. At the 

same time point, some proteins involved in the regulation of transcription and 

translation were also expressed, such as myostatin, thyroid receptor interactor and 

translation initiation factor. In the middle of the lactation, genes involved in the 

pathways of the biosynthesis of the milk lipid and proteins were also highly expressed 

such as the stearoyl CoA desaturase and fatty acid Coenzyme A ligase (take charge of 

the fatty acid biosynthesis), the phenylalanine hydroxylase (one of the enzymes in the 

tyrosine metabolism), and the α-lactalbumin (participates in the biosynthesis of lactose). 

The expression level of other proteins was decreased significantly after weaning, but the 

β-casein gene was highly expressed at this stage, even higher than in the middle of the 

lactation. This indicated that the gene regulation system of β-casein might be different 

from other primary milk proteins. Most of these large clusters arise from milk protein 

genes, indicating that these genes are highly expressed in the mammary gland during 

the middle of lactation The most abundant ten genes detected in this study were beta 

casein (Csn2), alpha-S1 casein (CSN1S1), beta-lactoglobulin, alpha-S2 casein 

(CSN1S2), hista-mine-releasing factor (HRF), kappa casein, ribosomal protein S27a, 

serum amyloid A-2, eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) and 

alpha-lactalbumin. The mammary gland involution goes through two distinct stages. In 

the first stage, alveolar cells undergo programmed cell death (PCD), but there is no 

remodeling of the lobular-alveolar structure. During the second stage, the lobular-

alveolar structure of the gland is obliterated as proteinases degrade the basement 

membrane and ECM. At that time, lysozyme, some kinds of hydrolases and cathepsin 

are abundantly expressed in the mammary gland. This indicates that during the second 
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stage of the involution, the lysosomes might be involved in degrading the apoptotic cell 

fragments as well as the milk proteins. On the contrary as the lobularalveolar structure 

was gradually destroyed, some membrane protein genes, ECM structural constituents 

and cell adhesion molecule genes were abundantly expressed. The gene of serum 

amyloid A-2 protein and of haptoglobin are extremely high expressed seven days after 

weaning. At the same time, some immunoreaction related genes such as swine 

leucocyte antigen (SLA) class II histocompatibility antigen and beta-2-microglobulin are 

also higher expressed in the mammary gland (Su et al. 2006). 

  

2.3.2 QTL analysis 

Using the linkage analysis to detect QTL for the inverted teat defect, a number of loci 

could be detected on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 14, 16 and 18 (Jonas 2006, 

Oltmanns 2003, Ün 2002). Several genes are known to be mapped in the regions of the 

QTL effects as show in table 2. 
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Table 2:   Suggested candidate genes in the QTL regions for the inverted teat defect 

from previous studies 

SSC positional candidate genes Reference  

1  Relaxin1 (RLN1) 

Estrogen receptor (ESR) 

(Ün 2002) 

(Jonas 2006) 

2  Insulin-like growth factor 2 (IGF-II)  

Follicle-stimulating hormone beta (FSHB) 

(Oltmanns 2003) 

3  Transforming growth factor alpha (TGFA) 

Follicle-stimulating hormone receptor gene (FSHR) 

(Oltmanns 2003) 

(Jonas 2006) 

4 Thyroid stimulating hormone beta (TSHB) (Jonas 2006) 

5 Parathyroid-hormone-like hormone gene (PTHLH) (Jonas 2006) 

6 Transforming growth factor B1 (TGFB1) 

Leptin receptor (LEPR) 

(Ün 2002) 

(Jonas 2006) 

7 Prolactin (PRL) (Jonas 2006)  

8   Fibroblast growth factor 2 (FGF2)  

Epidermal growth factor (EGF) 

Leucin-rich G-protein-coupled receptor 7 (LGR7) 

(Ün 2002) 

 

(Jonas 2006) 

16 Growth hormone receptor (GHR) (Ün 2002) 

18 Insulin like growth factor BP3 (IGFBP3)  

Growth hormone releasing hormone receptor (GHRHR) 

(Ün 2002) 

 

2.4 Candidate genes for the inverted teat defect 

 

2.4.1 Relaxin 3 (RLN3)  

The relaxin-like peptide family belongs to the relaxin/insulin superfamily. This 

superfamily consists of relaxin-like peptides including RLN1, RLN2, and RLN3 (also 

called INSL7), and insulin-like peptides comprising INSL3, INSL4, INSL5, and INSL6. 

RLN3 is the most recently discovered member of the relaxin family of peptide 

hormones. In contrast to RLN1 and RLN2, whose main functions are associated with 

pregnancy, RLN3
 was shown to be involved in neuropeptide signaling in the brain 

(Rosengren et al. 2006). 
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2.4.1.1 Gene structure 

The RLN3 gene contains two exons (Bathgate et al. 2002). It encodes a putative 

prohormone sequence incorporating the classic two-chain comprising an A- and B-

peptide chain linked by disulfide bonds with an intra-chain disulfide bond in the A-

chain, analogous to that of insulin (Figure 5A). The RXXXRXX(I/V) motif in the B-

chain essential for relaxin receptor binding (Figure 5B) (Sherwood 2004).  

 

Figure 5:   The structure of the rat relaxin (A) and the structure of the B and A chains of 

different relaxin genes in comparison (B) (Sherwood 2004)  

 

The human and mouse genes encode deduced proteins of 142 and 141 amino acids, 

respectively. Both have a predicted 27 amino acid B-chain, an 66 amino acid C-peptide, 

and an 24 amino acid A-chain (Bathgate et al. 2002). 

 

2.4.1.2 Gene function 

The mouse RLN1 mRNA is expressed in the mammalian liver, lung, thymus, spleen, 

kidney, skin, testis, epididymis, and myometrium, whereas mouse RLN3 mRNA is 

present the brain, thymus, spleen, lung, testis, ovary, and mammary gland. This gene is 

weakly expressed in the heart, liver, epididymis, prostate, and uterus (Figure 6). Using 

in situ hybridization experiments, it has been clearly demonstrated that the mouse RLN3 

mRNA is expressed in distinct brain regions compared to the RLN1 mRNA. Thus 
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suggests the possible different functions of these two RLN genes in the brain of the 

mouse (Bathgate et al. 2002).  

 

Figure 6:  Mouse RLN1 mRNA (M1) and mouse RLN3 mRNA (M3) expression were 

determined in a number of non-reproductive male tissues (A), in 

reproductive tissues and specific brain regions of the male (B), and in female 

reproductive tissues at different stages of pregnancy (C) (Bathgate et al. 

2002) 

 

Northern blot analysis of human tissues detected weak signals in spleen, thymus, 

peripheral blood leukocytes, lymph node, and testis. Similar analysis using mouse 

tissues revealed an 1.2 kb transcript only in the brain. RT-PCR revealed a high 

expression of RLN3 in brain, ovary, and testis, moderate expression in thymus, lung, 

and spleen, very low expression in heart and liver, and no expression in kidney, skin, 

and gut. In situ hybridization using samples of mouse brain showed that the expression 

is localized in the pons/medulla, with the highest levels in the pars ventromedialis of the 

dorsal tegmental nucleus. RLN3 was also expressed at far lower levels in the 
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hippocampus and olfactory regions. Further use of RT-PCR could detect the expression 

of RLN3 only in brain and testis. In situ hybridization revealed limited RLN3 expression 

in rat brain (Liu et al. 2003b). These results suggesting a still more or less unspecific 

picture of the expression of the RLN3 gene, underlined by the still unknown main 

function of this gene. 

 

The human RLN3 gene maps to chromosome 19p13.3, close to INSL3 (19p13.2) 

whereas the mouse gene could be located to chromosome 8 (Bathgate et al. 2002). 

Comparative mapping shows the possible positon of the porcine RLN3 in the q-chain on 

SSC2 (Meyers et al. 2005). 

 

2.4.2 G-protein coupled receptor 135 (GPCR135) 

The putative receptors or binding proteins for members of the relaxin/insulin family of 

peptides comprise four subtypes of receptors/proteins (Liu et al. 2003b). The first are 

insulin and IGF receptor as the single transmembrane cytokine/growth factor-type 

receptors. The second are the IGF-binding proteins, which are secreted soluble binding 

proteins for IGF1 and IGF2. The third are the leucin-rich repeat containing G-protein 

coupled receptors 7 (LGR7) and LGR8 as the hormone-type receptors for RLN1, RLN3, 

and INSL3. The fourth is the typical type I G protein-coupled receptor (GPCR) such as 

GPCR135, also called SALPR.  The GPCRs represent the largest known family of 

receptors interacting at the plasma membrane with extracellular ligands. They are 

characterised by seven transmembrane domains with an extracellular N-terminus, a 

cytoplasmic C-terminus, and several conserved structural motifs (Bockaert and Pin 

1999, Boels and Chica Schaller 2003). Recently, two closely related LGRs, LGR7 and 

LGR8, have been shown to be receptors for relaxin (Hsu et al. 2002). INSL3 has been 

shown to be a selective ligand for LGR8 and RLN3 has been shown to be an additional 

ligand for LGR7. Because crossover activity has been demonstrated for relaxin 

receptors, it has been tested whether other members of the relaxin/insulin family are also 

ligands for GPCR135. It was found that only RLN3 can activate GPCR135. The porcine 

relaxin stimulates cyclic adenosine monophosphate (cAMP) accumulation in 293 LGR7
 

and LGR8 transfected cells, whereas INSL3 only stimulates the cAMP production in 

LGR8 transfected cells (Kumagai et al. 2002, Sudo et al. 2003).  

LGR7 and LGR8 belong to the GPCR hormone receptor family with significant 

homology to thyroid stimulatory hormone receptor and luteinizing hormone receptor. 
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These hormone receptor GPCRs have long N-terminal extracellular domains (>300 

amino acids) and are known to be involved in stimulation of cAMP. GPCR135 is not 

essentially homologous to LGR7 and LGR8. GPCR135 has a short N-terminal 

extracellular domain (<100 amino acids) and is coupled to cAMP inhibition. It is a 

typical neuropeptide-like receptor with a significant homology to somatostatin 

receptors. 

LGR7 and LGR8 have been identified as the receptors for RLN1, both genes belong to 

the hormone receptor family and share significant homologies with the luteinizing and 

the thyroid stimulating hormone receptor. The RLN3 was demonstrated to be an 

additional ligand for LGR7. Recently, the RLN3 has been reported as a ligand for two 

related orphan GPCRs, GPCR135 and GPCR142 (Bathgate et al. 2002, Chen et al. 

2005, Liu et al. 2003b, Liu et al. 2003a).  

Pharmacological studies indicated that RLN3 is the only member of this family being 

able to activate the GPCR135 gene (Bathgate et al. 2002). Radiolabeled RLN3 saturably 

bound GPCR135 in a monophasic manner with high affinity. The neuroanatomical 

colocalization of GPCR135 and RLN3, coupled with a clear high affinity interaction, 

suggest that GPCR135 is a receptor for RLN3 (Liu et al. 2003b).  

Various ligands use GPCRs to stimulate membrane (Figure 7), cytoplasmic and nuclear 

targets. GPCRs interact with heterotrimeric G proteins composed of α-, β- and γ-

subunits that are guanosine diphosphate (GDP) bound in the resting state. Agonist 

binding triggers a conformational change in the receptor, which catalyses the 

dissociation of GDP from the α subunit followed by guanosine-5'-triphosphate (GTP)-

binding to Gα and the dissociation of Gα from Gβγ subunits. The α-subunits of G 

proteins are divided into four subfamilies: Gαs, Gαi, Gαq and Gα12, and a single GPCR 

can couple to either one or more families of Gα proteins. Each G protein activates 

several downstream effectors. Typically Gαs stimulates adenylyl cyclase and increases 

levels of cyclic AMP (cAMP), whereas Gαi inhibits adenylyl cyclase and lowers cAMP 

levels, and members of the Gαq family bind to and activate phospholipase C (PLC), 

which cleaves phosphatidylinositol bisphosphate (PIP2) into diacylglycerol and inositol 

triphosphate (IP3). The Gβ subunits and Gγ subunits function as a dimer to activate 

many signalling molecules, including phospholipases, ion channels and lipid kinases. 

Besides the regulation of these classical second-messenger generating systems, Gβγ 

subunits and Gα subunits such as Gα12 and Gαq can also control the activity of key 

intracellular signal-transducing molecules, including small GTP-binding proteins of the 
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Ras and Rho families and members of the mitogen-activated protein kinase (MAPK) 

family of serine-threonine kinases, including extracellular signal-regulated kinase 

(ERK), c-jun N-terminal kinase (JNK), p38 and ERK5 (Dorsam and Gutkind 2007). 

 

Figure 7: Diversity of G-protein-coupled receptor signaling (Dorsam and Gutkind 2007) 

 

GPCR activation leads to the stimulation of different RTKs and the subsequent 

activation of the ERK/MAPK cascade. The process is known as GPCR–receptor 

tyrosine kinase (RTK) transactivation and involves different mediators depending on 

the cell type (Figure 8).  

 

Figure 8:  The triple-membrane-passing-signalling model of GPCR activation leads to 

the stimulation of different RTKs and the subsequent activation of the 

ERK/MAPK cascade (Wetzker and Bohmer 2003) 
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GPCR transactivation of the epidermal growth factor receptor (EGFR) occurs in many 

cell types through generation of a cognate ligand, the heparin-binding EGF (HB-EGF), 

which activates the EGFR and subsequently the ERK/MAPK cascade. HB-EGF is 

generated through extracellular proteolytic cleavage of proHB-EGF (a membrane-

spanning, latent form of this growth factor) that is mediated by the action of a 

metalloproteinase (MP). A similar activation might also occur for other latent growth 

factors, such as the precursor of transforming growth factor-α (proTGFA) (Wetzker and 

Bohmer 2003). 

 

2.4.2.1 Gene structure 

The deduced 469 amino acid protein of GPCR135 has the characteristic seven 

transmembrane domain (TM) structure of a GPCR, as well as two putative N-

glycosylation sites in its N-terminal domain. The GPCR135 shares the highest sequence 

similarity with somatostatin receptors and angiotensin receptors. The GPCR135 gene 

contains a single exon (Matsumoto et al. 2000). The putative mouse and rat GPCR135 

receptors are 85% and 86% sequence identical to the human GPCR135, respectively, 

whereas they share a higher homology (94%) with each other. The TM, TM2, TM3, and 

TM6 are conserved among human, mouse, and rat GPCR135 (Figure 9). Between 

mouse and rat GPCR135, almost all TM domains, excluded TM4, are completely 

conserved. The rat GPCR135 cDNA has two putative translational starting codons 

(ATG). The first ATG in the rat GPCR135 gene is unique and leads to a seven amino 

acid (MPKAHLS) addition at the N terminus. The second ATG in the rat GPCR135 

gene is conserved among human, mouse, and rat and corresponds to the apparent 

translation start site for human and mouse genes. The putative rat GPCR135 receptor 

protein derived from using the second ATG as the translational starting codon. Both 

human GPCR135 and rat GPCR135 have 469 amino acids, whereas the mouse 

GPCR135 has 472 amino acids with three extra amino acids between TM5 and TM6 

(Chen et al. 2005). 
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Figure 9:   Amino acid sequence comparison of human, mouse, and rat GPCR135 (Chen 

et al. 2005) 

 

2.4.2.2 Gene function 

The GPCR135 gene is expressed abundantly in the hypothalamus with a discrete 

expression in the paraventricular nucleus of the hypothalamus and supraoptic nucleus as 

well as in the cortex, septal nucleus and preoptical area. The GPCR135 mRNA was 

detected in the brain, testis, thymus, and adrenal gland (Figure 10). The mRNA 

expression of GPCR135 and RLN3 mRNA using in situ hybridization distribution in the 

rat brain showed that RLN3 and its receptor are discretely expressed in different areas of 

the central nervous system (Figure 10). Since the available information regarding the 

RLN3 and GPCR135 genes is limited, their functional roles in mammalian physiology 

remain still unclear (Liu et al. 2003b).  
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Figure 10:   RT-PCR detection of GPCR135 and RLN3 mRNA expression profiles in 

different human tissues (A); GPCR135 mRNA distribution is distinct in 

the paraventricular nucleus (PVN) and supraoptic nucleus (SON) (B); 

brightfield photomicrograph of the paraventricular nucleus showing 

expression of GPCR135 mRNA (C); RLN3 mRNA distribution in the 

central gray and nucleus incertus (D); brightfield photomicrograph of 

central gray (CG) and nucleus incertus (NI) showing expression of RLN3 

mRNA (E) (Liu et al. 2003b) 

 

Using RT-PCR, the GPCR135 gene expression could be detected predominantly in 

brain, with the highest expression in substantia nigra and pituitary, followed by 

hippocampus, spinal cord, amygdala, caudate nucleus, and corpus callosum; the 

expression was very low in cerebellum. In peripheral tissues, a relatively high 

expression was detected in the adrenal gland, and a low expression was detected in 

pancreas, salivary gland, placenta, mammary gland, and testis (Figure 11) (Liu et al. 

2003b, Matsumoto et al. 2000)  
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Figure 11:  The RT-PCR analysis of GPCR135 mRNA in human tissues and brain 

regions and the peripheral tissues. The ethidium-bromide-stained PCR 

products of G3PDH are shown as a quantitative control for each cDNA 

(Matsumoto et al. 2000) 

 

The GPCR135 gene was found being located on chromosome 5p15.1-p14 in human 

using radiation hybrid analysis (Matsumoto et al. 2000). 

 

2.4.3 G-protein coupled receptor 142 (GPCR142, GPR100) 

The GPCR142 gene is a member of the rhodopsin family of the GPCRs (Fredriksson et 

al. 2003). Also the human GPCR142 was reported to be a bradykinin receptor for RLN3 

(Boels and Chica Schaller 2003). 

 

2.4.3.1 Gene structure  

The mouse and human GPCR142 genes contain a single coding exon (Fredriksson et al. 

2003). The GPCR142 gene shows conserved amino acids or amino acid motifs, typical 

for members of the rhodopsin family of GPCRs (Figure 12). This includes an 

asparagine in the first transmembrane domain, an LXXXD motif in the second 

transmembrane domain, tryptophan and proline in the fourth transmembrane domain, an 

FXXXWXP motif in the sixth transmembrane domain, an NPXXY motif in the seventh 

transmembrane domain, and conserved cysteine residues in the first two extracellular 

loops. These cystein residues form an S-S bridge and contribute to protein stability, and 

a partially conserved GPCR signature triplet sequence (typically DRY, here ARY), 

found downstream of the third transmembrane domain.  
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Figure 12: Amino acid sequence comparison of human GPCR135 and rat GPCR142 

(Liu et al. 2003a) 

 

The GPCR142 gene has N-linked glycosylation sites in the N-terminal extracellular 

domain and phosphorylation sites, as well as basic amino-acid clusters in the third 

intracellular loop and in the C-terminal cytoplasmic domain (Boels and Chica Schaller 

2003) as shown in figure 13. 

 

Figure 13: Schematic representation of the GPCR142 protein showing the seven 

putative transmembrane domains (Boels and Chica Schaller 2003) 
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The mouse GPCR142 shares 74% sequence identity to that of human. Human 

GPCR142 has 374 amino acids, whereas the mouse equivalent is longer with 414 amino 

acids. As one important difference between the human and mouse GPCR142, the mouse 

GPCR142 has a different and much longer C-terminal tail (Chen et al. 2005). 

 

2.4.3.2 Gene function 

The GPCR142 belongs to the type I GPCR family similar to somatostatin and 

angiotensin receptors. It is also possible that GPCR142 is activated by a different 

ligand, for example a peptide that is not member of the insulin/relaxin family (Liu et al. 

2003a). Other marked differences between GPCR142 and GPCR135 are their mRNA 

expression patterns. The GPCR135 mRNA is expressed in restricted tissues with the 

predominant expression in the brain, whereas the GPCR142 mRNA is expressed in a 

broader range of peripheral tissues, suggesting that GPCR142 may have a different 

physiological role from that of GPCR135 (Figure 14). Because RLN3 is primarily 

expressed in the brain, the relative abundant expression of GPCR142 in the peripheral 

tissues also demonstrates the possible existence of an additional ligand expressed in 

peripheral tissues.  

 

 

Figure 14: Reverse transcriptase-PCR showed GPCR142 mRNA expression profiles in 

different human tissues (Liu et al. 2003a) 

 

The GPCR142 gene is located on chromosome 1q22 in human and chromosome 3 in 

mouse (Fredriksson et al. 2003). 
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2.4.4 Connective tissue growth factor (CTGF, CCN2)  

The insulin-like growth factor binding proteins (IGFBPs) are a family of homologous 

proteins that regulate the biological activities of the IGFs and may also be capable of 

IGF-independent actions. A number of characteristics of this protein family are of 

potential relevance to the IGFBPs. It has been suggested for some of the IGFBPs, that 

these proteins may be capable of IGF-independent regulation of cell growth. Several of 

the proteins have been shown to interact with both cell surfaces and extracellular matrix 

and being capable of binding to heparin, properties also shared by some members of the 

IGFBP family and several genes from this family are induced by TGFB, as is the case 

for some IGFBPs.  

The CTGF gene, also called insulin-like growth factor-binding protein 8 (IGFBP8) 

belongs to the CCN (Cysteine-rich, angiogenic inducer 61) gene family. Members of 

this family encode cysteine-rich secreted proteins with roles in cell growth and 

differentiation (Brigstock 2002, Grotendorst et al. 2000, Hurvitz et al. 1999, Lau and 

Lam 1999). The CTGF gene is a cysteine-rich mitogen secreted by human umbilical 

vein endothelial (HUVE) cells (Bradham et al. 1991). CTGF and CYR61 stimulate cell 

proliferation, chemotaxis, adhesion, production of ECM components, and play roles in 

processes such as implantation, placentation, embryogenesis, differentiation and 

development (Brigstock 1999, Lau and Lam 1999). 

 

2.4.4.1 Gene structure  

The CTGF gene comprises four exons and shares 28 to 38% amino acid identity with 

IGFBP1 to IGFBP6 (Kim et al. 1997). The CTGF gene is one of six different proteins, 

varying between 348 and 379 amino acids, that are the products of a group of 

immediate-early genes expressed after induction by growth factors or certain oncogenes 

(Kim et al. 1997). Although the similarity of the COOH-terminal sequences is low 

(20%), the NH2-terminal regions are well conserved among these new members and the 

IGFBPs. The CTGF gene also contains the conserved IGFBP motif (GCGCCXXC) in 

the NH2 terminus. It can be suggested that the CTGF gene shares significant structural 

homology with these genes as most of the cysteines are conserved in IGFBP1 to 

IGFBP6. The CTGF gene specifically binds IGF-I and IGF-II, although with relatively 

low affinity as compared with the IGFBPs. The strong changes in the levels of CTGF 
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mRNA occur during follicular and luteal growth, and ovulation which involve processes 

such as angiogenesis and tissue repair (Wandji et al. 2000). 

 

2.4.4.2 Gene function  

The 2.4 kb CTGF mRNA could be detected in a broad spectrum of normal human 

tissues. In particular, the CTGF mRNA is expressed at high levels in spleen, ovary, 

gastrointestinal tract, prostate, heart, and testis (Kim et al. 1997). Proliferative 

endometrium, epithelial and vascular endothelial cells showed strong CTGF 

immunoreactivity, whereas stromal cells are negative or only weakly positive for the 

CTGF protein. During pregnancy, the decidual, epithelial and endothelial cells of the 

endometrium are all immunoreactive to the CTGF gene expression and localization of 

its encoded protein in human uterine tissues. The localization of CTGF supports a role 

for this molecule in regulating aspects of uterine cell growth, migration, and/or matrix 

production during the menstrual cycle and pregnancy. In the rat ovary, the CTGF gene 

is switched on at the very earliest stages of follicular development when gonadotropin-

stimulated rat granulosa cells have just begun to proliferate. A similar pattern of 

expression is observed in pig ovary, where CTGF has been hypothesized to promote 

ovarian cell growth and blood vessel formation during follicular and luteal 

development. The CTGF gene is structurally and functionally related to PDGF and the 

vascular endothelial growth factor, growth factors that are mitogenic for mesenchymally 

derived cells in blood, muscle, bone/cartilage, and connective tissue (Slee et al. 2001). 

The presence of CTGF expression in human mammary tumors suggests that CTGF is 

involved in the connective tissue stromal proliferation of these tumors (Frazier and 

Grotendorst 1997).  

 

Martinerie et al. (1992) assigned the CTGF gene to human chromosome 6q23.1 by a 

combination of study of mouse/human somatic cell hybrids and fluorescence in situ 

hybridization.  

 

2.4.4.3 Polymorphism in the CTGF gene  

A SNP within the CTGF promoter region (G945C) located at the position -743 bp from 

the transcription start site, has recently been published in the dbSNP database (Fonseca 

et al. 2007). The G945C substitution represses the CTGF transcription, and the allele 
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with the base G is significantly associated with susceptibility to systemic sclerosis. The 

G allele is strongly linked to transcriptional activation of CTGF and to the risk of 

systemic sclerosis, particularly in patients with antitopoisomerase I autoantibodies and 

pulmonary fibrosis (Fonseca et al. 2007). 

 

2.4.5 Epidermal growth factor receptor (EGFR) 

The EGFR (also called ERBB1) is a member of the type I RTK family (Hackel et al. 

1999). The EGFR gene is a transmembrane tyrosine kinase that is activated upon 

binding EGF, TGFA, amphiregulin (AREG), HB-EGF, betacellulin (BTC), epiregulin 

(EPIR) or epigen (EPGN), each of which is expressed as a transmembrane precursor 

that is proteolytically shed from the cell surface (Harris et al. 2003).  

 

2.4.5.1 Gene structure 

The EGFR molecule has three regions: one projects outside the cell and contains the site 

for binding EGF; the second is embedded in the membrane; the third projects into the 

cytoplasm of the cell's interior. Each member of the RTK family comprises a conserved 

protein tyrosine kinase domain that resides within the cytoplasm, a transmembrane 

domain that makes a single pass through the plasma membrane, and a glycosylated, 

extracellular ligand-binding domain (Bazley and Gullick 2005). In the EGF receptor 

family, this last domain exhibits four subdomains denominated L1, S1 (CR1), L2 and 

S2 (CR2) (or, more simply, I, II, III and IV respectively) (Lax et al. 1989). Of these 

domains, S1 and S2 are homologous cysteine-rich regions (CR1 and CR2), while L1 

and L2 form the ligand-binding site (Garrett et al. 2002, Ogiso et al. 2002). It is likely 

that they are derived from an ancient gene duplication event, and it is notable that the 

cysteine residues do not form disulphide bonds between the two S1/S2 domains (Figure 

15). 
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Figure 15: Schematic structure of EGFR. The EGFR monomer possesses an 

extracellular domain consisting of two ligand-binding subdomains (L1 and 

L2) and two cysteine-rich domains (S1 and S2) (Bazley and Gullick 2005) 

 

2.4.5.2 Gene function 

The EGFR mRNA and the protein are abundant in the mammary stroma (Luetteke et al. 

1999, Schroeder and Lee 1998). EGF induces EGFR phosphorylation in gland-free fat 

pads (Sebastian et al. 1998). Stromal rather than epithelial EGFR is essential for the 

ductal development (Wiesen et al. 1999). Ductal outgrowth is severely impaired in 

triple-null mice lacking amphiregulin (AREG), EGF and TGFA which are lactation 

incompetent, and variably impaired in mice lacking only AREG (Sternlicht et al. 2005). 

Neither ductal outgrowth nor lactation is affected by the elimination of EGF, TGFA, 

HB-EGF or BTC alone or in various combinations (Jackson et al. 2003, Luetteke et al. 

1999, Sternlicht et al. 2005). During mammary development the crucial EGFR ligand 

AREG comes from the epithelium. EGFR is enriched in the peri-epithelial mammary 

stroma (Coleman et al. 1988, Schroeder and Lee 1998). It could be shown that the 

stromal rather than epithelial EGFR is required for the mammary epithelial development 

in vivo (Wiesen et al. 1999). EGFR signaling promoted steroidogenesis in mouse 

oocyte-granulosa cell complexes and luteinizing hormone (LH), induced steroidogenesis 

in a mouse leydig cell line (Jamnongjit et al. 2005).  

 

The EGFR gene is located on human chromosome 7 (Carlin and Knowles 1982). 
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2.4.6 Insulin-like-growth factor 2 (IGF-II) 

The IGF-I and IGF-II genes are also known as somatomedin C and somatomedin A. 

They are single chain polypeptides that share amino acid sequences with a homology of 

47% with insulin (INS) and about 31% with RLN. The mature 67 amino acid peptide 

shares sequence homology with both INS and IGF-I (O'Dell and Day 1998). IGF-II 

plays a key role during the mammalian growth, influencing foetal cell division and 

differentiation and possibly metabolic regulation (O'Dell and Day 1998). The functions 

of IGF-I and IGF-II include the mediation of growth hormone action, the stimulation of 

growth of cultured cells, the stimulation of the action of INS; these genes are involved 

in development and growth. They appear to be autocrine regulators of the cell 

proliferation. A QTL in the region of IGF-II had a major effect on muscle mass and fat 

deposition in pigs (Jeon et al. 1999, Nezer et al. 1999). 

 

2.4.6.1 Gene structure 

The human IGF-II gene comprises nine exons and four promoters (Brissenden et al. 

1984). The exons 7 to 9 encode the prepro IGF-II protein; the exons 1 to 6 are non-

coding and form alternative 5'-untranslated regions of different RNA molecules which 

are expressed from the four promoters in a tissue and development specific way. The 

structure of IGF-II preprohormone consists of a signal peptide of 24 residues, 67 amino 

acids of the mature peptide and 89 amino acids in a carboxy-terminal extension termed 

the E-domain. Similar to proinsulin, IGF-II is divided into A-, B- and C-domains. A- 

and B-domains are similarly bridged by two inter-domain disulphide bonds, with one 

internal disulphide bond in the A-domain. The A- and B-domains are connected by a C-

domain, which unlike the INS C-domain is not proteolytically cleaved during structural 

maturation. The D-domain is not present in INS. The carboxy-terminal sequence (E-

domain) of the preprohormone is removed during processing. The region involved in 

the recognition of the type 1 receptor is at the same site that binds the insulin receptor. 

The type 2 receptor recognises several residues in the A-domain. Binding of the 

IGFBPs depends on the residues in the first part of the B-domain (Figure 16). 
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Figure 16:  Structure of IGF-II preprohormone divided into A-, B- and C-domains 

(O'Dell and Day 1998) 

 

2.4.6.2 Gene function 

The IGF family plays an important role in embryonic, fetal and placental development. 

The IGF-II mRNAs are present in the mouse fetus at higher levels compared to those of 

IGF-I. Although overexpression of the IGF-II gene alone did not have a major impact 

on the fetal growth, in the absence of IGF-IIR, elevated IGF-II led to severe placental 

and fetal overgrowth (Moore et al. 2007). PRL was shown to induce IGF-II mRNA and 

IGF-II to induce the cyclin D1 (CCND1) protein expression in mouse mammary 

epithelial cultures (Brisken et al. 2002). Alveologenesis was retarded in both IGF-II- 

and CCND1-deficient cells. IGF-II and prolactin receptor (PRLR) mRNAs colocalized 

in the mammary epithelium. IGF-II is a mediator of the PRL-induced alveologenesis; 

PRL, IGF-II, and CCND1 are components of a developmental pathway in the mammary 

gland (Brisken et al. 2002). Several genes, including IGF-II, are involved in growth and 

tissue remodeling and are expressed at relatively higher levels in the villus sections of 

the placenta compared with other tissues (Sood et al. 2006). The loss of IGF-II is 

associated with fetal growth restriction in mice. The precise nature of the loss of uterine 

lumenal IGFs following conceptus elongation suggests that the release of IGFs during 

day 12 and 13 of pregnancy is very critical for subsequent development and survival of 

pig embryos (Ashworth et al. 2005). 

 

The porcine IGF-II maps to chromosome 2 (2p1.7) (Jeon et al. 1999). By in situ 

hybridization (Morton et al. 1986) assigned human IGF-II to 11p15. Using cDNA 
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probes in the analysis of somatic cell hybrids, the IGF-II was demonstrated to be  

located on chromosome 11 (11p15-p11) (Brissenden et al. 1984, Tricoli et al. 1984)  

 

2.4.6.3 Polymorphism in the IGF-II gene 

A paternally expressed QTL affecting muscle growth, fat deposition, and size of the 

heart in pigs maps to the IGF-II region. This QTL is caused by a nucleotide substitution 

in intron 3 of IGF-II (Van Laere et al. 2003). Gaunt et al. (2001) identified three single-

nucleotide polymorphisms (SNPs) in IGF-II which were associated with body mass 

index (BMI) in a cohort of over 2500 middle-aged Caucasoid males. The IGF-II genetic 

variation may be a significant determinant of body weight in middle-aged male. 

 

2.4.7 Epidermal growth factor (EGF) 

EGF is a part of a complex network of growth factors and receptors which help to 

modulate the growth of cells. EGF is released by cells and picked up either by the cell 

itself to stimulate its own growth, or by neighboring cells to stimulate their ability to 

divide. EGF has a profound effect on the differentiation of specific cells in vivo and is a 

potent mitogenic factor for a variety of cultured cells of both ectodermal and 

mesodermal origin (Carpenter and Cohen 1979).  

 

2.4.7.1 Gene structure 

The EGF gene consists of a single polypeptide chain of amino acid residues. The 

predicted protein sequence of the porcine EGF precursor contains 1214 amino acids, 

similar to the human EGF precursor (1207 amino acids, 81% identity). The location of 

the three intramolecular disulfide bonds of the primary amino acid sequence of the 

mouse EGF are shown in figure 17.  
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Figure 17: Amino acid sequence of the mouse EGF with placement of disulfide bonds 

(Carpenter and Cohen 1979) 

 

The disulfide bonds of the mouse EGF are required for their biological activity. Studies 

of the sequences revealed that some residues are completely conserved throughout the 

six cysteines and the glycines at the positions 18 and 39 (Figure 18). The positions 13, 

15, 41 and 47 are at the growth factor receptor interface. There are considerable 

variations among the sequences, especially at the N- and C-termini.  

 

Figure 18:  Structural assignment of the known EGF sequences which bind to the EGFR 

(Campbell et al. 1990) 

 

2.4.7.2 Gene function 

The EGF gene and the receptor are expressed in many tissues, including reproductive 

organs. Both genes are involved in angiogenesis, embryo implantation and development 

as well as in proliferation and differentiation of various cells (Andronowska et al. 2006). 

The EGF expression is regulated during the reproductive cycle and early pregnancy. 

This pattern of gene expression may be important during the development of the early 

conceptus. 

The mRNA for the TGFA, BTC, and HB-EGF genes are present in the virgin mammary 

gland, but the levels decrease during pregnancy until the gene expression is virtually 
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disappearing during the lactation. In contrast, the expression of EGF, which is low in 

the virgin and the pregnant mammary gland, increases dramatically toward the end of 

the pregnancy and peaks during lactation, with high levels of EGF observed in milk. 

Expression of EGF decreases in the involuting mammary gland, while expression of 

TGFA, BTC, and HB-EGF increases. EGF is able to inhibit the apoptosis of apoptotic 

mouse mammary epithelial cells (Rosfjord and Dickson 1999). Immunohistochemical 

studies with antibodies to the extreme C-terminal region of the EGFR revealed 

localization in many of the same cell populations of the developing mouse mammary 

gland, including the cap cell layer (DiAugustine et al. 1997). 

EGF may stimulate epithelial synthesis of type IV collagen, a component of the basal 

lamina which is required for the epithelial attachment and proliferation and is also 

required for the growth of cultured mammary gland. EGF causes the reappearance and 

growth of involuted mammary end buds in ovariectomized mice (Engelman et al. 1995). 

The EGF mRNA in the mouse mammary gland is increased by lactogenic hormones 

(Fenton and Sheffield 1993). PRL inhibits EGF-induced mitogenesis in the mammary 

gland. EGF is able to stimulate DNA synthesis in a normal mammary epithelial cell 

line, but the lactogenic hormone PRL inhibits the mitogenic effect. The inhibition was 

specific for EGF, because PRL did not alter the DNA synthesis induced by cholera 

toxin or IGF-I (Fenton and Sheffield 1993). An analysis of in vivo effects of EGF in 5-

week-old ovariectomized mice has shown that EGF promotes normal ductal 

morphogenesis by stimulating proliferation in the end buds (Coleman et al. 1988). 

 

The EGF gene is located on chromosome chromosome 8q23-q27 in pigs (Mendez et al. 

1999). Brissenden et al. (1984) mapped the EGF locus to 4q21-4qter, possibly near the 

T-cell growth factor (TCGF).  

 

2.4.7.3 Polymorphism in the EGF gene 

Shahbazi et al. (2002) identified a single-nucleotide substitution from G to A, at 

position 61 of the EGF gene in human. Frequencies of the A and G alleles of EGF were 

56% and 44%, respectively. Cells from individuals which were homozygous for the A 

allele produced significantly less EGF than cells from the other homozygotes or the 

A/G heterozygotes. Compared to the A/A genotype, G/G was significantly associated 

with a risk of malignant melanoma. The A-G polymorphism of EGF is also involved in 
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the occurrence but also in the malignant progression of gastric cancer (Hamai et al. 

2005). 

 

2.4.8 Growth differentiation factor 8 (GDF8) 

The TGFB superfamily encompasses a large number of growth and differentiation 

factors that play important roles in regulating the embryonic development and in 

maintaining the tissue homeostasis in adult animals. The GDF8 gene, also called 

myostatin (MSTN) is a member of this superfamily with a role in the control and 

maintenance of skeletal muscle mass (McPherron et al. 1997).  

 

2.4.8.1 Gene structure 

The porcine GDF8 gene is composed of three exons including 373, 374 and 381 bp. The 

active form of the protein comprises an 376 amino acids polypeptide that contains all 

the sequence hallmarks of the TGFB superfamily (Stratil and Kopecny 1999). The 

promoter region of the human GDF8 gene contains an E-box sequence that binds 

muscle regulatory factors of the myogein differentiation antigen (MyoD) family. The 

GDF8 is synthesized as a preprotein activated by two proteolytic cleavages. The 

removal of the signal sequence is followed by a cleavage at a tetrabasic processing site, 

resulting in a 26-kD amino-terminal propeptide and a 12.5-kD carboxy-terminal 

peptide, a dimer of which is the biologically active portion of the protein (Zimmers et 

al. 2002). 

 

2.4.8.2 Gene function 

The GDF8 gene is expressed specifically in developing and adult skeletal muscle. 

During the early stages of embryogenesis, the GDF8 expression is restricted to the 

myotome compartment of developing somites. At later stages and in adult animals, 

GDF8 is expressed in many different muscles throughout the body (McPherron et al. 

1997).  

Postnatally, the GDF8 mRNA was detected in the skeletal muscle and mammary gland 

in pigs. The expression in the tubuloalveolar secretory lobules of the lactating mammary 

gland is intriguing and indicates the possibility that GDF8 performs a regulatory role 

pertaining to gestational or lactational mammary gland growth and development and/or 

metabolism (Ji et al. 1998). 
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The porcine GDF8 gene is mapped to chromosome 15q2.3 by fluorescence in situ 

hybridization (Sonstegard et al. 1998). The GDF8 gene maps to the chromosomal 

region 2q33.2 in human (Gonzalez-Cadavid et al. 1998). 

 

2.4.8.3 Polymorphism in the GDF8 gene 

Three SNPs located in the 3' encoding region, the promoter region and the frist intron 

are already detected in the porcine GDF8 gene. The mutation frequency for the SNP in 

the 3' encoding region (C to T) was relatively low. For the SNP in the 5' promoter 

region (T to A), the allele T dominates in the imported lean-type pig breeds such as 

Yorkshire, Landrace, Duroc, Hampshire, Pietrain and hybrid pigs. A similar pattern for 

the SNP in the region of frist intron (G to A) was found with G the dominant allele in 

Yorkshire, Landrace and their hybrids, while White pigs the frequency of allele A was 

much higher in Erhualian and Hubei (Jiang et al. 2002). 

There were two SNPs in exon 2 at position 480 (G to T) and in  third exon at position 

1008 (A to G). Two mutations did not change the amino acid but there was a significant 

relationship between the polymorphism in third exon and back fat thickness. No 

significant relationship could be detected between the polymorphism in third exon and 

the lean meat percentage (Li et al. 2002). Subsequent DNA sequencing led to the 

detection of a nucleotide substitution (C2150T) in third exon of the GDF8 gene (Cho et 

al. 2005, Stratil and Kopecny 1999). Although the C to T mutation did not change the 

type of the encoded amino acid (Stratil and Kopecny 1999), it could influence the 

mRNA stability (Zhi-Hua and John 1999). The T allele increased the number of muscle 

fibres increased the eye muscle area without decreasing the backfat thickness (Cho et al. 

2005). 
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3       Material and methods 

The aim of this study was to identify functional candidate genes for the inverted teat 

defect in pigs. In total eight functional candidate genes were investigated in this study.  

Genes were selected using two different strategies; in a first approach, genes 

differentially expressed between normal and inverted teats of sows with or without 

defect, were identified by microarray experiment (Figure 19). Thus first approach leads 

to the selection of the five functional candidate genes CTGF, EGFR, IGF-II, EGF and 

GDF8. The different expression of these genes was further validated using real-time 

PCR, an efficient method for quantification of mRNA transcription levels due to its 

high sensitivity, reproducibility and large dynamic range. In addition, real-time PCR is 

fast, easy to use and provides simultaneous measurement of gene expression in many 

different samples for a limited number of genes (Nygard et al. 2007, Radonic et al. 

2004, Vandesompele et al. 2002). Using the method of real-time PCR the transcript 

abundance of the differentially expressed genes was quantified between normal and 

inverted teats. 

 

Figure 19: Overview of the first part of the experiment: analysis of the microarray 

 

Secondly, genes were selected due to their described function in the literature (Figure 

20). The RLN3 gene and two of the known receptors, GPCR135 and GPCR142 were 

selected based on their described function in the literature. Previously an other member 

of the RLN family, the RLN1 gene was already identified as a positional and functional 
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candidate genes, its role for the development in the mammary gland in pig could be 

confirmed (Chomdej 2005). To complete the analysis of these genes regarding their 

function, similar to the expression validation of the genes derived from the first 

approach, a real-time PCR was also performed for these genes. 

 

Figure 20:    Overview of the second part of the experiment, the analysis of the selected 

genes from literature 

 
 
3.1 Animals  

 

3.1.1 Animal for expression studies 

The sows mated for the identification of functional candidate gene for the microarray 

experiment were kept at the experimental farm Frankenforst of the University Bonn. 

The dams derived from a commercial pig population of German breeding companies, 

the samples collected from these animals were used for RNA extraction for the 

microarray experiments, and the validation study using real-time PCR. Further DNA 

was isolated for additional genotyping at candidate genes and microsatellite loci for 

association studies and the validation of possible QTL alleles.  

The sows were chosen according to teat characteristic as sow without defect or sow 

with defect. Two purebred German Landrace (DL) sows were slaughtered two days 

after weaning in a local slaughterhouse (one was sow without defect another one was 
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sow with defect). Teats of the sows were dissected into the different tissues of 

mammary gland, connective tissue and nipple. The samples were snap frozen in liquid 

nitrogen and stored at -80 °C until RNA isolation. Finally, two normal and one inverted 

teats from sow with defect and three teats from sow without defect were used for the 

microarray analysis. Additional teat samples of three young sows from the same 

breeding population were collected at a commercial slaughterhouse. The samples of one 

defect and one normal teat of two different sows with defect and two samples of normal 

teats of sows without defect were used for the experiments. The samples of the whole 

teat were kept into RNAlater (Sigma-Aldrich), one day later dissected into the three 

different tissue types before and stored at -80 °C until RNA isolation. 

During these experiments, it was essential that the teat samples used for quantitative 

transcriptions analysis by real-time PCR where the same as the teat sample for the 

microarray experiments. 

 

3.1.2 Animals for association studies 

For SNP detection and the association analysis, samples of animals from an 

experimental population were used. The experimental population derived from a cross 

between Berlin miniature (MI) and Duroc (DU) pigs. DU sows were mated with a MI 

boar to produce the F1 which were further mated to generate the F2 animals. Later the 

F2 animals were crossed with DU boars; this backcross generation completed the 

DUMI resource population. In special the pure breed MI and the animals of the first 

generations showed a high incidence of the inverted teat defect, about 42% of the F1 

animals were affected. As this defect was genetically based on the MI animals, the 

crossbreed with DU animals with relatively less udder problems provides excellent 

conditions for the detecting of the responsible genetic factors.  

To confirm the findings in the experimental population, genetic studies were also 

performed in animals of the commercially used dam lines. Additional to the animals 

used for the expression studies, animals of this population were selected for association 

studies compromising 130 families according the affected sibpair design. For this 

population, information of the detected QTL regions was available from a previous 

work (Jonas et al. 2008). Purebreed DL and DE animals and their crossbreeds were 

used. This would enable the direct application of the finding to possible selection 

strategies in these commercial populations. For this task, the teat phenotypes of male 

castrated animals, tested at the performance station were observed after slaughtering 
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and teat samples collected. From the records of the animals, sow with defect/ sow 

without defect, fullsibpairs were described from which samples of the parents were 

collected from either artificial insemination stations or other breeding companies. In 

total samples of fullsib offspring including sire and dam of 130 families could be used 

for the association experiments. 

Additional to the sampling of tissue of animals of these two populations, random 

samples of pigs of various breeds were used for the screening of polymorphisms within 

the candidate genes. This comprised samples (n=10) of animals from the breeds DU, 

Hampshire, DL, Pietrain and Wild pig. Because of the expected smaller amount of 

genetic conservation between breeds than within breeds, this strategy was found to 

implement a higher efficiency to detect polymorphisms in genes.  

 

3.1.3 Phenotypes 

Sows for sampling were chosen according their teat characteristics. For each group two 

sows showing at least one inverted teat were used for the experiment. The teat 

classification of animals was made based on the condition characterized by the failure 

of teats to protrude from the udder surface. For the selection of the commercial animals 

at least two inverted teats were detected in the udder of animals classified as affected. 

 

3.2 Material 

3.2.1 Chemicals and Kits 

 

Beckman Coulter (Krefeld):  

 

CEQ™ 8000 Genetic Analysis System, Dye 

Terminator Cycle Sequencing (DTCS), Glycogen, 

sample loading solution (SLS)  

 

Biomol (Hamburg): Phenol 

 

Invitrogen Life Technologies 

(Karlsruhe): 

DTT, SuperScriptTM II RNase H- Reverse 

Transcriptase, 5 × first strand buffer,  

Random Primers 

 

MBI Fermentas (St. Leon-Rot): Glycogen 
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Promega (Mannheim): BSA, pGEM®-T vector, RQ1 RNase-free DNase, 

RNasin Ribonuclease inhibitor, 2×rapid ligation 

buffer, T4 DNA ligase, RsaI endonuclease, TaqI 

endonuclease, MspI endonuclease, HaeIII 

endonuclease 

 

Qiagen (Hilden): RNeasy® Mini kit, GenEluteTM Plasmid  

Miniprep Kit 

 

Roth (Karlsruhe): 

 

Acetic acid, Agar-Agar, Ampicillin, Bromophenol 

blue, Dimethyl sulfoxide (DMSO), 

Ethylenediaminetetraacetic acid (EDTA), Ethanol, 

Ethidium bromide, Hydrochloric acid, Isopropyl -D-

thiogalactoside (IPTG), Nitric acid, Peptone, Sodium 

acetate, Sodium carbonate, Sodium chloride, Sodium 

hydroxide, TrisX-Gal (5 -bromo-4-chloro-3-

indolylbeta-D-galactopyranoside), Yeast extract 

 

Sigma-Aldrich Chemie GmbH 

(Munich): 

Agarose, Ammonium acetate, Calcium chloride, 

Formaldehyde, Glutamine, Isopropanol, Magnesium 

chloride, β-Mercaptoethanol, Oligonucleotide 

primers, Penicillin, 10 × PCR reaction buffer, 

Potassium chloride, Sodium dodecyl sulfate (SDS), 

Taq DNA polymerase, TRIReagent 

 

Stratagene (Amsterdam): 5 c DH Escherichia coli competent cells 

 

USB (Ohio): ExoSAP-IT 
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3.2.2 Reagents and media 

All solutions used in the experiments were prepared with deionized millipore water 

(ddH2O). The pH values were adjusted with either sodium hydroxide (NaOH) or 

hydrochloric acid (HCl).  

 

Agarose loading buffer Bromophenol blue 0.0625 g 

 Xylencyanol 0.0625 g 

 Glycerol 7.5 ml 

 ddH2O added to 25 ml 

   

Ampicillin (10 mg/ml)  Ampicillin powder  2 g 

 Sterile, distilled water 40 ml 

 Filtrate with 0.45 µl filter   

   

DEPC-treated water  DEPC  1 ml 

 ddH2O 1000 ml 

 Incubation at 37 °C and heat inactivated by 

autoclaving (120 °C for 30 min)  

   

Digestion buffer NaCl 100 mM 

 Tris-HCl 50 mM 

 EDTA pH 8.0 1mM 

   

dNTP solution dATP (100 mM) 10.0 µl 

 dCTP (100 mM) 10.0 µl 

 dGTP (100 mM) 10.0 µl 

 dTTP (100 mM) 10.0 µl 

 ddH2O added to 400.0 µl 

   

1M EDTA, pH 8.0 EDTA 37.3 g 

 ddH2O added to 1000 ml 

 

 

 

  



Material and Methods                                                                                                      46 
 

10×FA buffer, pH 7.0 MOPS 41.8 g 

 Sodium acetate 4.1 g 

 EDTA (0.5M) 20.0 ml  

 ddH2O added to 1000.0 ml 

   

1.2% FA gel Agarose 1.2 g 

 10×FA buffer  10.0 ml 

 DEPC ddH2O 90.0 ml 

 Ethidium bromide 2.0 µl 

 Formaldehyde (37%) 1.8 ml 

   

IPTG solution IPTG 1.2 g 

 ddH2O added to 10.0 ml 

   

LB-agar plate Sodium chloride 8.0 g 

 Peptone 8.0 g 

 Yeast extract 4.0 g 

 Agar-Agar 12.0 g 

 Sodium hydroxide (40 mg/ml) 480.0 µl 

 ddH2O added to 800.0 ml 

   

LB-broth Sodium chloride 8.0 g 

 Peptone 8.0 g 

 Yeast extract 4.0 g 

 Sodium hydroxide (40 mg/ml) 480.0 µl 

 ddH2O added to 800.0 ml 

   

Phenol Chloroform  Phenol : Chloroform 1 : 1 (v/v) 

   

Proteinase K solution Protein K in 1×TE bufer 2% (w/v) 

   

SDS solution Sodium dodecylsulfat in ddH2O 10% (w/v) 

 

 

  



Material and Methods                                                                                                      47 
 

3M Sodium Acetate, pH 5.2 Sodium Acetate  123.1 g 

 ddH2O added to 500 ml 

   

TAE (50×) buffer, pH 8.0 Tris  242.0 mg  

 Acetic acid  57.1 ml  

 EDTA (0.5 M) 100.0 ml 

 ddH2O added to 1000.0 ml 

   

TBE (10×) buffer Tris  108.0 g 

 Boric acid  55.0 g 

 EDTA (0.5 M) 40.0 ml 

 ddH2O added to 1000.0 ml 

   

TE (1×) buffer Tris (1 M) 10.0 ml 

 EDTA (0.5 M) 2.0 ml 

 ddH2O added to 1000.0 ml 

   

X-gal X-gal 50.0 mg 

 N, N’-dimethylformamide 1.0 ml 

 

3.2.3 Used software 

 

Association analysis Family-based association test (FBAT); 

http://www.biostat.harvard.edu/~fbat/fbat.htm 

 

Clustering of genes from 

Microarray 

 

Database for annotation, vizualisation and integrated 

discovery (DAVID); http://david.abcc.ncifcrf.gov/ 

 

Correspondences between 

human and pig 

chromosomal segments 

 

Comparative cytogenetic map; 

http://www2.toulouse.inra.fr/lgc/pig/compare/compare.htm 

General sarch, fragment 

comparision  

Basic local alignment search tool (BLAST); 

http://www.ncbi.nlm.nih.gov/BLAST/ 
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Manipulate and display a 

DNA sequence 

 

http://www.vivo.colostate.edu/molkit/manip/index.html 

Multi amino acid 

alignment 

 

http://npsa-pbil.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa_multalinan.html 

 

Multi sequence alignment http://prodes.toulouse.inra.fr/multalin/multalin.html 

 

Prediction to affect protein 

function (SIFT) 

 

http://blocks.fhcrc.org/sift/SIFT.html 

Primer design Primer3; http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi 

 

Restriction enzyme 

analysis 

 

http://tools.neb.com/NEBcutter2/index.php 

 

Statistical analysis SAS (version 9.1); SAS Institute Inc., NC, USA 

 

Translation of a base 

sequence 

 

http://molbiol.ru/eng/scripts/01_13.html 

   

3.2.4 Equipment 

ABI PRISM 7000 SDS Applied Biosystems, Foster city, USA 

 

Centrifuge Hermle, Wehingen, Germany 

 

CEQ™ 8000 Genetic Analysis System Beckman Coulter GmbH, Krefeld, 

Germany 

 

Electrophoresis (for agarose gels)  BioRad, Munich, Germany 

 

Incubator Heraeus, Hanau 
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Millipore apparatus Millipore corporation, USA 

 

PCR thermocycler (PTC100) MJ Research, USA & BioRad, Germany 

 

pH Meter Kohermann 

 

Power supply PAC 3000 Biorad, Munich 

 

Spectrophotometer (DU-62) Beckman, Unterschleissheim-Lohhof 

 

Spectrophotometer, Ultrospec™ 2100 pro 

UV/Visible 

 

Amersham Bioscience, Munich 

Thermalshake Gerhardt John Morris scientific, Melbourne 

 

Tuttnauer autoclave Connections unlimited, Wettenberg 

 

Ultra low freezer (-80oC) Labotect GmbH, Gottingen 

 

UV Transilluminator (Uvi-tec) Uni Equip, Martinsried, Germany 

 

3.3 Methods for transcriptome analysis 

 

3.3.1 RNA isolation and cDNA synthesis 

Samples of different tissues and animals were used for RNA isolation using 

TRIReagent (Sigma-Aldrich, Munich, Germany). The samples were first grinded in a 

mortar, then mixed and homogenized with 1 ml TRIReagent. The samples were 

incubated for 10 min at room temperature to ensure the complete dissociation of the 

nucleoprotein complexes before adding 0.2 ml of chloroform. The mixtures were 

shaken and left at room temperature for 10 min and centrifuged at 7500 x g for 15 min 

and 4 °C. The upper aqueous phases were transferred to another sterilized tube and 

RNA was precipitated using 0.5 ml of isopropanol. After incubation at room 

temperature for 10 min, the samples were centrifuged at 7500 x g for 10 min and 4 °C.  
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After this step the RNA pellet was visible, and subsequently washed using 75% (v/v) 

ethanol. Centrifugation was then performed and the RNA pellets were air-dried and 

resuspended in 40 µl of RNase free water.  

In order to remove possible contaminating genomic DNA, the extracted RNA was 

treated with 5 µl RQ1 DNase buffer, 5 units DNase and 40 units RNase inhibitor in a 40 

µl reaction volume. The mixture was incubated at 37 °C for 1 h followed by purification 

using chemicals and protocols of the RNeasy Mini Kit. The concentrations of the RNA 

after clean-up were determined spectrophotometrically at 260 and 280 nm; the purity of 

the RNA was estimated by the ratio A260/A280 with respect to contaminants that 

absorb the UV. Additional examination of integrity was done in a denaturing agarose 

gel electrophoresis and ethidium bromide staining. Finally, the purified RNA was stored 

at -80 °C for further analysis. 

The individual RNA was used to synthesize first-strand cDNA using SuperScript II 

enzyme. First 1 µl of Oligo (dT)12 primer (100 µM) and 1 µl random primer were added 

to 1 µg of total RNA and incubated at 68 °C for 5 min, followed by cooling on ice for 2 

min. A transcription mixture including 4 µl first strand 5× buffer, 1 µl 0.1 DTT, 1 µl 

dNTP mix (10 mM each), 1 µl (200 units) SuperScript II reverse transcriptase, 1 µl (40 

units) of RNasin Ribonuclease inhibitor and RNase-free water was prepared for a final 

volume of 20 µl. The mix was incubated at 25 °C for 5 min followed by 42 °C for 1h 

and stopped by heating at 70 °C for 15 min. The cDNA was diluted using 80 µl RNase 

free water. The resulting cDNA was tested using housekeeping gene (18S) primers and 

kept at -20 °C until use.  

 

3.3.2 Microarray analysis 

The RNA samples were sent to the Research Institute in Dummerstorf, Germany for 

hybridisation. The microarray analysis was performed by RZPD (Deutsches 

Ressourcenzentrum für Genomforschung GmbH) in Berlin, Germany. The relative 

abundance of the transcript and the p-value which indicate the significance of the 

detection call was determined from the results. According to the algorithm the 

information of whether the gene is expressed with a defined confidence level or not 

(detection call) was providing. The detection call was either present (P), marginal (M) 

or absent (A). The three categories were made depending on the p-values and the 

number of stat pairs used. The number of stat pairs used was either 20, 16, 11 or 9. The 
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default p-values were alpha1 = 0.04 and alpha2 = 0.06 for a number of 16 to 20 stat 

pairs used and alpha1 = 0.05 and alpha2 = 0.065 for 11 probe sets used. The detection 

call was used to determine the change in the hybridization intensity levels of two 

different probe sets on the same array. The house keeping genes Actin and GAPDH 

were used for the normalization of the microarrays. A list of relative expression levels 

of each transcript on the different chips was provided by RZPD. As a one dye 

microarray was used, each microarray chip included the information of one sample. 

 

3.3.3 Ligation and transformation 

A fragment of genomic DNA derived from a PCR reaction was ligated into a plasmid 

pGEM-T vector. In total 5 µl reaction mix containing 2.5 µl 2×ligation buffer, 0.5 µl 

pGEM-T (50 µg/µl), 0.5 µl T4 DNA ligase (3 units/µl) and 1.5 µl target template were 

used. The reaction was incubated at room temperature for 1 h or at 4 °C overnight. It 

was expected that most of the vectors had inserted a DNA fragment after the incubation 

period. 

The entire ligation reaction was added to 100 µl volume of competent JM109 E. coli 

cells and incubated on ice for 30 min. This mixture was further heat-shocked in a 42 °C 

water bath for 90 sec and immediately returned to ice for 2 min. Eight hundred 

microlitres of nutrient medium (LB-broth) were added and the mix was incubated at    

37 °C for 90 min in a thermal shaker. At the same time, ampicillin treated LB-agar (50 

mg/L LB-agar) plates including 20 µl of X-Gal (50 mg/ml in N, N’-dimethyl-

formamide) and 20 µl of IPTG were prepared. At the end of incubation period, each 

transformation culture was plated on two of the prepared LB-agar plates and incubated 

at 37 °C overnight.  

After the incubation, the colonies were screened by blue white screening test based on 

the activity of β-galactosidase as white and blue for the presence and absence of 

inserted DNA fragments. The lacZ gene in the pGEM-T vector produces β-

galactosidase which interacts with IPTG to produce a blue color of the bacteria cultures. 

If the insert is successfully ligated, the lacZ gene is disrupted; β-galactosidase can not 

be produced, the colonies are all white. White bacteria colonies and blue colonies were 

picked up from the plates and suspended in 30 µl 1×buffer for further testing. Each blue 

colony was used as a control of the length of the amplified DNA fragment in 

comparison to the vector without fragment from each plate. The same colonies were 
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cultured in 5 ml ampicillin/LB-broth (5 mg/100 ml) in a shaking incubator at 37 °C for 

further plasmid isolation.  

To confirm the insertion of the right fragments into the plasmid, a M13 PCR was 

performed. The bacterial suspensions were boiled at 95 °C for 15 min and these lysed 

bacterial solutions were used as templates. The M13 PCR was carried out in a 20 µl 

reaction including 1 µl 10×PCR buffer, 10 µl lysed bacterial solution, 0.5 µl dNTP (10 

mM), 0.5 µl (10 µM) of each M13 primer (forward: 5’-TTG-TAA-AAC-GAC-GGC-

CAG-T-3’; reverse: 5’-CAG-GAA-ACA-GCT-ATG-ACC-3’) and 0.1 U Taq 

polymerase. The PCR reaction was performed with a thermal cycling program of 95 °C 

for 5 min followed by 35 cycles of 94 °C for 30 sec, 60 °C for 30 sec, 70 °C for 1 min 

and an additional extension step for 5 min at 70 °C. An aliquot of 5 µl PCR product was 

then electrophoresed in 1.5% (w/v) agarose gel with 0.8 µg/ml ethidium bromide (4 µl) 

in 1×TAE buffer. Under UV-transilluminator, length differentiation of PCR fragments 

was identified. The M13 PCR products from white colonies were selected for 

subsequent sequencing while bacterial cultures of these colonies were expanded in a 

volume of 5 ml and incubated at 37 °C overnight in a shaking incubator for plasmid 

isolation. The M13 products were used as templates for sequencing according to the 

Quick Start Kit (BeckmanCoulter, Krefeld, Germany) including DNA polymerase, 

pyrophosphatase, buffer, dNTP, dye terminator (ddNTP) and either the gene specific 

forward or reverse primer. After the sequencing PCR, 3 M NaOAc, 100 mM EDTA and 

glycogen were added to stop the reaction. To each sample, 60 µl of 98% ethanol (Roth) 

was added and mixed well by vortexing and then centrifuged for 15 min at 12000 x g at 

4 °C. All liquid was removed and replaced with 200 µl 70% ethanol without mixing and 

centrifuged again for 15 min at 12000 x g at 4 °C. The ethanol was then removed and 

the sample was air dried for 10 min. The sample was then resuspended in 40 µl SLS 

(Beckman Coulter) then transferred manually to a CEQ sample plate and overlaid with 

mineral oil. Samples were sequenced using CEQ™ 8000 Genetic Analysis System 

(Beckman Coulter). The sequence method was based on a chain-reaction method. The 

sequencing PCR was performed to amplify the target fragment, by addition of the labled 

base (ddNTP) the amplification reaction stipped after that particular length. Using this 

method it can be suggested that all possible fragment length are amplified in the product 

and can further be detected by sequencing, for example using a capillary sequencer. 

The results from sequence analysis were compared with published sequences using the 

program BLAST (http://www.ncbi.nlm.nih.gov/BLAST/). Plasmids from those clones 
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with identity percentage higher than 90% were considered as the target gene fragment. 

Plasmids were then isolated for downstream application.  

 

3.3.4 Plasmid DNA isolation 

 The GenEluteTM Plasmid Miniprep Kit was used to isolate plasmid DNA from the 

bacteria including the insert after the transformation. of the bacterial culture was 

centrifuged at 12000 x g for 1 min for harvesting cells, the supernatant was discarded. 

These cells were resuspended in 200 µl of resuspension solution, vortexed, 200 µl of 

lysis solution were added and subsequently mixed by inversion of tubes until it became 

a clear and viscous solution. After incubating at room temperature for 4 min 350 µl 

neutralization/binding buffer was added for cell precipitation, mixed gently and 

centrifuged at 12000 x g for 10 min. At the same time, the GeneElute Miniprep column 

was prepared by adding 500 µl preparation solution, centrifuging shortly and discarding 

the flow-through. After that, the clear supernatant was transferred to this binding 

column and centrifuged at 12000 x g for 1 min. The flow-through was discarded and the 

column was washed by adding 750 µl wash solution followed by centrifugation at 

12000 x g for 1 min. To elute the DNA, the column was transferred to a fresh collection 

tube; 50 µl ddH2O was added and centrifuged at 12000 x g for 1 min. The column was 

discarded, the DNA plasmid was collected in the water in the tube. 

For the determination of plasmid size and quality, 5 µl of plasmid DNA was checked 

together with 2 µl loading buffer using agarose gel electrophoresis. In addition, the 

quantity of plasmid was also measured by reading the absorbance at 260 nm in a 

spectrophotometer. An aliquot of the DNA plasmid solution was used to ckeck the 

fragment using sequencing. The remain part was stored at -20 °C and further used as 

template for setting up the standard curve in the real-time PCR.  

 

3.3.5 Real-time PCR 

An ABI Prism 7000 SDS was used for real-time PCR based on the changes in 

fluorescence proportional to the increase of product. SYBR Green, which emits a 

fluorescent signal upon binding to double stranded DNA, was used as a detector. 

Fluorescence values were recorded during every cycle representing the amount of 

product amplified to a point known as threshold cycle (Ct). The higher the initial 

transcript amount, the sooner accumulated product was detected in the PCR process. 
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Using the web-based program Molbiol (http://molbiol.ru/eng/scripts/01_07.html) the 

concentration of the plasmid (ng/µl) was converted into the numbers of molecules used 

for the plasmid serial dilution preparation. The plasmid concentration was diluted 

several folds from 108 to 101 so that the concentration would cover the range of target 

concentration in the samples. The PCR assay was started to test whether a suitable 

standard curve could be achieved revealing a high PCR efficiency. 

The optimal primer concentration was obtained by testing different primer combinations 

from 200 nM to 600 nM prior to the quantification. The list of primers used in real-time 

PCR for quantification transcription analysis is shown in table 3. Results from these 

primer combinations were compared and the one with the lowest threshold cycle and 

minimal non-specific amplification was selected for subsequent reactions. After 

selection of the primer concentration, a final assay consisted of 2 µl cDNA as template, 

iTagTM SYBR® Green Supermix with ROX, optimized level of forward and reverse 

primer and optimized buffer components were performed in 20 µl reaction volume. The 

amplification reaction started with an initial denaturation at 95 °C for 3 min followed by 

40 cycles of 95 °C for 15 sec denaturation and 60 °C for 45 sec annealing and 

extension. A dissociation curve was generated at the end of the last cycle by collecting 

the fluorescence data at 60 °C and observing measurements every 7 sec until the 

temperature reached 95 °C. Final quantification analysis was done by amplifying serial 

dilutions of target plasmid DNA. The concentration of unknown cDNA was calculated 

according to the standard curve, and expression levels of transcripts were described 

relatively to the transcript of the house keeping RPL32 gene. 
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Table 3:  List of primers used for real-time PCR with the sequence, the annealing 

temperature (Ta) and the product size 

Gene Sequence Ta (C°) Product size (bp) 

RLN3 5' GCAGAGGCTGCTGATTTCAC 3' 

5' GCAGAGGCTGCTGATTTCAC 3' 

61 297 

GPCR135 5' CTGCTGGTTCTCTACCTG 3' 

5' GTTCATGGACGTCACTACGG 3' 

59 197 

GPCR142 5' CTTTCTGGGTCAATGCGTCT 3' 

5' AGTGTCAGAAGGTGGGCAAG 3' 

59 197 

CTGF 5´ TTGCAGACTGGAGAAGCAGA 3´ 

5´ AAGGGTGGTGGTTCTGTGAG 3´ 

63 223 

EGFR 5´ CCTTGGGAACTTGGAGATCA 3´ 

5´ GGTTTTATTGGCCCCGTAGT 3´ 

63 208 

IGF-II 5´ ACACCCTCCAGTTTGTCTGC 3´ 

5´ GGGGTATCTGGGGAAGTTGT 3´ 

55 212 

EGF 5´ TGCCTTCCTCTCAGTCCAGT 3´ 

5´ GGGCCAAAACCATTCCTATT 3´ 

55 199 

GDF8 5´AACAGCGAGCAAAAGGAAAA 3´ 

5´ATCAATCAGTTCCCGGAGTG 3´ 

56 201 

 

3.3.6 Semi-quantitative RT-PCR 

The cDNA from tissues of two different male pigs (muscle, heart, spleen, lymph nodes, 

skin, brain, teat, lung, testis, tonsil, liver and kidney) and one sow (uterus and inverted 

teat) was used for semi-quantitative RT-PCR. The forward primer 5'-CGA-GCG-GTC-

ATC-TTT-ACC-TG-3' and reverse primer 5'-GCA-GAG-GCT-GCT-GAT-TTC-AC-3' 

were used for expression analysis of RLN3 gene tissues following the protocol for semi-

quantitative RT-PCR starting with an initial denaturation at 95oC for 5 min followed by 

35 cycles with 95 °C for 30 sec, 55 °C for 30 sec and 72 °C for 1 min with a final 

elongation step at 72 °C for 10 min. 

To analyse the expression pattern of the GPCR135 gene the forward primer 5'-CTG-

CTG-GTT-CTC-TAC-CTG-3' and reverse primer 5'-GTT-CAT-GGA-CGT-CAC-TAC-

GG-3' were used for semi-quantitative RT-PCR. The PCR protocol was slightly 

different, starting with an initial denaturation at 95 °C for 5 min followed by 35 cycles 
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with 95 °C for 45 sec, 59 °C for 45 sec and 72 °C for 1 min with a final elongation step 

at 72 °C for 10 min. 

The forward primer 5'-CTT-TCT-GGG-TCA-ATG-CGT-CT-3' and reverse primer 5'-

CTT-CCT-TTA-GGG-CCA-CCT-GT-3' designed wihin the sequence of the GPCR142 

gene were used to analyse the expression pattern of this genes. The protocol for semi-

quantitative RT-PCR started with an initial denaturation at 95oC for 5 min followed by 

35 cycles with 95 °C for 45 sec, 59 °C for 45 sec and 72 °C for 1 min with a final 

elongation step at 72 °C for 10 min. For all analysis the expression of 18S rRNA was 

used as an internal reference.  

 

3.4 Methods for genome analysis  

 

3.4.1 DNA extraction 

For the DNA isolation the tissue sample (approximately 100 mg) was cut into small 

pieces and placed in a 1.5 ml tube. 700 µl digestion buffer, 70 µl 10% SDS and 18 µl 

proteinase K were added for protein digestion. The mixture was incubated over night at 

37 °C in a thermo shaker at 90 rpm. Completely digested tissue resulted in a viscous 

homogeneous solution. Seven hundred microlitres of phenol-chloroform was added into 

each tube and gently mixed by several inversions until an emulsion was formed. After 

centrifugation at 7000 x g for 10 min the mixture was separated into three phases, a 

lower phenol-chloroform phase, an interphase of precipitated protein and an upper 

phase containing DNA. The DNA phase was transferred to another 2 ml tube, 700 µl 

chloroform were added, mixed and centrifuged at 7000 x g for 10 min. The aqueous 

phase was transferred to a fresh tube and mixed with 700 µl isopropanol and 70 µl 

sodium acetate for DNA precipitation. The solution was centrifuged at 7000 x g for 5 

min, the DNA pellet was then visiable at the bottom of the tube. The supernatant was 

removed and the pellet washed with 200 µl 70% ethanol to remove excess salt. After 

air-drying, the pellet was dissolved in 200 to 500 µl 1×TA buffer. DNA concentration 

and integrity was evaluated by a spectrophotometer. The working solution of DNA was 

prepared by diluting stock DNA in 1×TA buffer to the concentration of 50 ng/µl. Stock 

DNA solution was stored at -20 °C and the working solution was kept at 4 °C. 

A modified protocol was used to isolate DNA from agarose gel. Twenty microlitres of 

the PCR product were separated in a 0.8% (w/v) agarose gel in 1×TAE buffer. The 
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DNA fragment was visualized under an ultraviolet transilluminator, cutted from the gel, 

placed in a fresh tube and kept at -20 °C. After at least 30 min, 500 µl 1×TE buffer were 

added and gel and solution homogenized. An equal volume (500 µl) of 

phenol:chloroform (1:1) was added, mixed and vortexed well. After centrifugation at 

7500 x g for 15 min at 4 °C, the upper aqueous layer was carefully transferred to a new 

microcentrifuge tube. Five hundred microlitres of chloroform were added, shaken 

vigorously and centrifuged at 7500 x g for 10 min. The upper phase was transferred to a 

new tube and DNA was precipitated by adding the double volume of cool 100% ethanol 

and 1:10 volume of 3 M NaOAc (pH 5.2) and mixed by inversion. The precipitation 

was performed by incubation at -20 °C overnight or alternatively at -80 °C for 2 hours. 

The DNA was recovered by centrifugation at 7500 x g for 30 min at 4 °C. To remove 

residual salt in the sample, the DNA pellet was washed in 75% (v/v) ethanol and 

centrifugation for 5 min. In a last step, the ethanol was transferred and the pellet left for 

drying at room temperature before resuspending using 7 µl distilled water. The purified 

DNA were kept at -20oC.  

 

3.4.2 Polymerase chain reaction 

Base on the published sequence of the porcine RLN3 gene (GeneBank accession 

number AB076661) and using the software Primer3 (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi) the forward primer 5'-CGA-GCG-GTC-ATC-TTT-

ACC-TG-3' and reverse primer 5'-TCT-GCG-TTG-GAA-TCT-GTG-TC -3' were 

designed. Primers were used to sequence the start and the end of the intron part of the 

RLN3 gene. After the first sequences were available, different primers were designed to 

sequence the complete RLN3 gene. 

The sequence of the genomic DNA of the porcine GPCR135 gene was obtained starting 

with heterologous primers (forward primer 5'- CTG-CTG-GTT-CTC-TAC-CTG -3' and 

reverse primer 5'-GGT-TGA-GGC-AGC-TGT-TGG-AG-3') designed from conserved 

regions of the human (AY394501), mouse (AY633762) and rat (NM_001008310) and 

subsequent using homologous primers. The forward primer (5'- CCA-TCT-TCT-CCA-

CCA-CCA-TC -3') and the reverse primer (5'- GTT-CAT-GGA-CGT-CAC-TAC-GG-

3') were designed from the 859 bp fragment to screen for polymorphisms within the 

GPCR135 gene. 

The primer pair was designed based on the porcine GPCR142 gene sequence 

(GeneBank accession number AY633768) and using the software Primer3. The forward 
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primer (5'- CTT-TCT-GGG-TCA-ATG-CGT-CT -3') and reverse primer (5'- CTT-

CCT-TTA-GGG-CCA-CCT-GT -3') were used for the PCR reaction to screen for 

polymorphisms within the sequence of the GPCR142 gene 

 

3.4.3 Sequencing 

Comparative sequencing was done to screen for polymorphisms within the PCR 

fragment amplified using specific primers. The PCR product was checked on 1.5% 

agarose gel, 5 µl PCR product was incubated with 1 µl ExoSAP-IT at 37 °C for 30 min 

followed by ExoSAP-IT inactivation at 80 °C for 15 min. After clean up, the PCR 

product was mixed with 2 µl of either forward or reverse primer, 4 µl DTCS master mix 

(DNA polymerase, pyrophosphatase, buffer, dNTPs, and dye terminators) and 8 µl 

ddH2O. The sequence PCR reaction run for 30 cycles, starting with a denaturation step 

at 96 °C for 20 sec followed by annealing at 50 °C for 20 sec and an extension step at 

60 °C for 4 min. A stop solution including 2 µl 3 M NaOAc (pH 5.2), 2 µl of 100 mM 

EDTA (pH 8.0) and 1 µl glycogen (20 mg/ml) were added to the product after the 

sequencing PCR. 60 µl cold 95% ethanol were added. The solution was mixed 

throughly and centrifuged at 12000 x g for 15 min at 4 °C. The supernatant was 

removed and the pellet was rinsed two times with 200 µl cold 70% ethanol with 

centrifugation steps at 12000 x g at 4 °C for 5 min in between. The supernatant was 

removed and the pellet was air dried or vacuum dried for 10 min. The pellet was 

resuspended with 40 µl of sample loading solution, transferred to the wells of the 

sample plate and overlaid with one drop of light mineral oil. The separation buffer was 

prepared in the buffer plate, both plates were loaded into the CEQ8000 sequencer. A 

fragment specific sequencing program was started. A open source software program for 

comparative sequencing was used to polymorphism screening. 

 

3.4.4 Genotyping  

3.4.4.1 Relaxin3 (RLN3) 

Using the DNA samples, animals were genotyped using the PCR-RFLP (restriction 

fragment length polymorphim) method. The restriction enzymes were selected 

according to the recognition (http://tools.neb.com/NEBcutter2/index.php) of the 

polymorphic sites. An 434-bp fragment was amplified using the forward primer 5'-

CTA-GGG-TTG-GCT-TCC-TGC-GG-3' and the reverse primer 5'-TCA-CGG-ATA-



Material and Methods                                                                                                      59 
 

CTA-GTT-GGG-TTC-A-3' within the RLN3 gene to perform the PCR-RFLP analysis 

using RsaI endonuclease. An 334-bp fragment was amplified using the forward primer 

5'-CAG-GCT-GAG-TCA-CAA-GAA-CAG-3' and the reverse primer 5'-GCA-GAG-

GCT-GCT-GAT-TTC-AC-3' of RLN3 gene. TaqI endonuclease was used as the enzyme 

for the PCR-RFLP digestion.  

 

3.4.4.2 G-protein coupled receptor 135 (GPCR135) 

The GPCR135 gene was genotyped by PCR-RFLP using the MspI endonuclease 

restriction enzyme. Digestion of the resulting 859 bp product (forward primer 5'-CTG-

CTG-GTT-CTC-TAC-CTG-3' and reverse primer 5'-GGT-TGA-GGC-AGC-TGT-

TGG-AG-3') with MspI endonuclease revealed the polymorphism with two alleles as 

previous detected by sequencing. An 198 bp fragment was amplified using the forward 

primer 5'-CTG-CTG-GTT-CTC-TA-CCT-G-3' and reverse primer 5'-GTT-CAT-GGA-

CGT-CAC-TAC-GG-3' to genotype animals at the loci of the other SNP detected in the 

GPCR135 gene using the MnlI endonuclease 

 

3.4.4.3 G-protein coupled receptor 142 (GPCR142) 

The forward primer (5'- CTT-TCT-GGG-TCA-ATG-CGT-CT -3') and reverse primer 

(5'- CTT-CCT-TTA-GGG-CCA-CCT-GT -3') generated an 1002 bp fragment in the 

sequence of the porcine GPCR142 gene. PCR-RFLP analysis was performed using the 

HaeIII endonuclease. All PCR and PCR-RFLP products were run in 1.5% and 3.0% 

agarose gels respectively, stained with ethidium bromide, and visualized under UV 

irradiation. 

 

3.5 Statistical analysis 

 

3.5.1 Gene mapping 

The gene positions were mapped using linkage and physical mapping. For the linkage 

mapping, two point and multipoint procedures of the CRI-MAP package version 2.4 

were used (Green 1992).  
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3.5.2 Radiation hybrid (RH) mapping 

The RH mapping of the porcine RLN3 gene was performed using the INRA-Minnesota 

7000 rad radiation hybrid panel (IMpRH) (Yerle et al. 1998). Data analysis was 

performed using software available at IMpRH database (http://imprh.toulouse.inra.fr) 

for chromosome assignment. 

 

3.5.3 Microarray experiment  

A list of all transcriptomes and their relative expression was provided by RZPD for the 

different sample used for the microarray study. In the first step these data were used to 

calculate correlations between the different samples using the procedure PROC CORR 

of the SAS package. Further the different expressed genes were identified comparing 

the transcript expression between two samples (the less correlated plates were used for 

this approach). Genes were considered as differentially expressed if the divison of the 

two expression revealed a value of smaller than 0.5 or larger than 1.5. The genes with 

the most overlapping results were then considered as most interesting candidate genes. 

Further the different expressed genes were used for a cluster analysis using the open 

source program DAVID. 

 

3.5.4 Variance analysis of the expression analysis  

The SAS package version 8.02 (SAS Inc., Cary, NC, USA) was applied for statistical 

analyses. Analysis of variance using PROC GLM of SAS was performed to compare 

relative abundance of mRNA level. Means of the relative abundance of mRNA level 

between inverted and normal teat were compared using a t-test.  

For comparison of the mRNA level from real-time PCR in different tissues only the 

mRNA level data and the phenotypes (inverted teat trait data) were used.  

 

The general linear model used was: 

 

Y =  µ + a + ε 

 

The fixed effect a was the phenotype, the expression Y was tested against the 

phenotype. No random factor was used, the model implemented the overall mean µ and 

the random error ε. 
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3.5.5 Association analysis 

The Family-Based Association Test (FBAT) (version 1.4) was used to perform the 

association analysis of the genotypes with the teat characteristics (Horvath et al. 2001). 

FBAT perform the testing by two-step procedure. First the test statistic is defined 

showing the association between the trait locus and the marker locus. In the second step 

the distribution of the data of genotypes are tested under the hypothesis. The genotypes 

of the offspring are treated as random (Rabinowitz and Laird 2000). 
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4          Results 

 

4.1       Microarray study 

 

4.1.1 Microarray analysis 

The results of the genome-wide gene expression analysis were compared transcript on 

the microarray between the pooled results of the three tissues, mammary gland, 

connective tissue and nipple by calculating the average of the three tissues for each teat 

sample. To investigate the different expressed genes, the results were compared 

between the normal teat from the sow without defect, normal teat from the sow with 

defect and the inverted teat from the sow with defect. In total, the expression of 9273 

transcripts was analyzed. The analysis was focused on the 1253 (13.5% of the 

transcripts assayed) differentially expressed transcripts between normal (from both sow 

without defect and sow with defect) and inverted teats. In total, 695 transcripts were 

found being higher expressed in inverted compared to normal teats. A clustering 

analysis was performed by an internet–based program (DAVID), revealing differentially 

expressed transcript factor were categorized in 15 different clusters. The results were 

shown in appendix 9.1. The clusters from up-regulated genes related with the mammary 

gland development were shown in table 4. 
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Table 4:  The up-regulated genes in inverted compared to normal teats (the divison of 

the two expression revealed a value of larger than 1.5) as grouped in the 

clusters related with the mammary gland development 

Group AFFY_ID Gene Acc Gene name 

Development Ssc.8562.3.A1_at 

Ssc.148.1.S1_at 

Ssc.20.1.S1_at 

NM_213833 

NM_214041 

NM_213997 

CTGF 

IL10  

IL18 

Regulation of 

physiological 

process 

Ssc.148.1.S1_at 

Ssc.8562.3.A1_at 

Ssc.10015.1.A1_at 

Ssc.20.1.S1_at 

Ssc.16187.1.S1_at 

NM_214041 

NM_213833 

NM_214084 

NM_213997 

NM_214228 

IL10  

CTGF 

VEGF-A 

IL18 

PTGDS 

Disulfide bond Ssc.10015.1.A1_at 

Ssc.670.1.S1_at 

Ssc.148.1.S1_at 

Ssc.20525.1.S1_at 

Ssc.11992.1.A1_at 

NM_214084 

NM_214392 

NM_214041 

NM_213883 

NM_213971 

VEGF-A 

LYZ 

IL10 

IGF-II 

CLU 

Phosphorylation Ssc.9075.1.A1_at 

Ssc.9819.1.S1_at 

NM_213880 

NM_213911 

C-JUN 

PGRMC1 

Cell proliferation Ssc.148.1.S1_at 

Ssc.10015.1.A1_at 

Ssc.20.1.S1_at 

NM_214041 

NM_214084 

NM_213997 

IL10 

VEGF-A 

IL18 

Cytokine-cytokine 

receptor interaction 

Ssc.148.1.S1_at 

Ssc.55.1.S1_at 

Ssc.20.1.S1_at 

NM_214041 

NM_214007 

NM_213997 

IL10 

EGFR 

IL-18 

Membrane-bound 

organelle 

Ssc.16187.1.S1_at 

Ssc.3706.1.S1_at,  

NM_214228 

NM_214127 

PTGDS 

SOD2 

Receptor binding Ssc.148.1.S1_at 

Ssc.20525.1.S1_at 

Ssc.10015.1.A1_at 

Ssc.20.1.S1_at 

Ssc.7243.1.A1_at 

NM_214041 

NM_213883 

NM_214084 

NM_213997 

NM_001009580 

IL10  

IGF-II 

VEGF-A 

IL18 

CXCL12 
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In total 558 transcripts were found being lower expressed in the samples of the inverted 

compared to normal teats. A number of genes were also identified being down-regulated 

in inverted compared to normal teats, genes could be assigned to 11 different clusters. 

The results were shown in appendix 9.2. The clusters from up-regulated genes related 

with the mammary gland development were shown in table 5. 

 

Table 5 The up-regulated genes in inverted compared to normal teats (the divison of the 

two expression revealed a value of smaller than 1.5) as grouped in the clusters 

related with the mammary gland development 

Group AFFY_ID Gene Acc Gene name 

EGF-like 

domain 

Ssc.87.1.S1_at 

Ssc.16045.2.A1_at 

Ssc.16345.1.S1_at 

NM_214020 

NM_001001771 

Y11683 

EGF 

FBN1 

pp47 protein; MFG-E8 

Glycoprotein Ssc.16127.1.S1_at 

Ssc.335.1.S2_at 

Ssc.136.1.S1_at 

Ssc.87.1.S1_at 

Ssc.16045.2.A1_at 

Ssc.16345.1.S1_at 

AAC16735 

NM_214435 

NM_214036 

NM_214020 

NM_001001771 

Y11683 

MC2R 

GDF8 

VIPR1 

EGF 

FBN1 

pp47 protein; MFG-E8 

Receptor Ssc.5105.2.S1_a_at 

Ssc.4253.1.S1_at 

Ssc.16006.1.S1_at 

Ssc.136.1.S1_at 

AAG33870 

NM_214272 

NM_214036 

NM_214159 

GPRC5B 

TGFBR3 

PIGR 

VIPR1 

Signal 

transducer 

activity 

Ssc.335.1.S2_at 

Ssc.5105.2.S1_a_at 

Ssc.4253.1.S1_at 

Ssc.16006.1.S1_at 

Ssc.29100.1.S1_at 

NM_214435 

AAG33870 

NM_214272 

NM_214036 

NM_001024695 

GDF8 

GPRC5B 

TGFBR3 

PIGR 

CCL28 

 
Two genes (EGF and GDF8), shown to be lower expressed in the teat of sow with 

defect, were selected according to their biological function as growth factor related to 

development of mammary gland, and CTGF and IGF-II which were shown to be higher 

expressed in the teats of sow with defect were selected according to their biological 
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function as growth factor related to development of mammary gland as well. 

Additional, EGFR which involed the MAPK singnalling pathway as same as EGF were 

seleted from up-regulated gene in the teat of sow with defect. Finally, the results of the 

expression analysis led to five selected functional candidate genes (CTGF, IGF-II, 

EGFR, EGF and GDF8) for the inverted teat defect in pigs.  

 

4.1.2 Validation using real-time PCR 

 

4.1.2.1 Connective tissue growth factor (CTGF)  

The validation of CTGF expression by real-time PCR could confirm the differential 

expression of inverted and normal teats in lactating sows but not in young sows (results 

not shown). The CTGF gene was higher expressed in samples from sow with defect 

than sow without defect (p<0.01). The expression level in samples of inverted teats was 

also higher than in normal teat (p<0.01). Using samples of the same sow with defect, it 

was found that the expression level in samples of inverted teats was similar to normal 

teats but higher than in normal teats from other sow without defect (p<0.01) (Figure 

21). 

 

Figure 21: Relative expression levels of the CTGF gene determined by real-time PCR 

using samples of teats from different lactating sows 
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4.1.2.2 Epidermal growth factor receptor (EGFR) 

The mRNA of the EGFR gene was not differentially expressed in sows with defect 

compared to sow without defect (Figure 22). 

 

Figure 22: Relative mRNA expression of the EGFR gene determined by real-time PCR 

 

4.1.2.3  Insulin-like-growth factor 2 (IGF-II) 

The IGF-II mRNA was higher expressed in tissue samples of sow with defect than sow 

without defect (p<0.01). The expression level in samples of the inverted teats was also 

higher than in normal teats (p<0.01). The expression level found in samples of the 

inverted teat was similar to the normal teat from the same sow with defect but higher 

than the expression level in samples of a normal teat from sow without defect (p<0.01) 

(Figure 23A). The differentially expressed of IGF-II mRNA was found only in lactating 

sows (p<0.05) (Figure 23B), but there was no difference in the expression level 

between samples of inverted and normal teats of young sows (results not shown). 
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(A) 

 

(B) 

 

Figure 23: Relative mRNA expression of the IGF-II gene determined by real-time PCR 

comparing samples of lactating sows and young sows (A) and using samples 

of only lactating sows (B) 
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4.1.2.4  Epidermal growth factor (EGF) 

The mRNA of the EGF gene was not significantly different expressed in samples from 

sow with defect compared with samples from sow without defect (Figure 24). 

 

Figure 24:  Relative mRNA expression of the EGF gene using different samples 

analysed by real-time PCR 

 

4.1.2.5 Growth differentiation factor 8 (GDF8) 

The GDF8 gene was similarly expressed in samples of the sow with defect compared to 

the sow without defect, but the expression level of normal teats was higher than inverted 

teats (p<0.05). The expression levels detected in samples of inverted teats was lower 

than in samples of normal teats either from sow with defect or sow without defect 

(p<0.05) (Figure 25). 
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Figure 25: Relative mRNA expression levels of the GDF8 gene in different samples of 

lactating sows determined by real-time PCR  

 

4.2      Candidate gene study 

 

4.2.1 Expression analysis by semi-quantitative RT-PCR 

The results from the expression profiling of the three functional candidate genes 

selected from literature revealed that the porcine RLN3 gene is highly expressed in lung, 

testis and uterus, moderate in spleen, tonsil, lymph nodes, liver, kidney and skin, lower 

in muscle, heart brain, teat and inverted teat. For the two investigated receptors of 

RLN3, it was found that GPCR135 is moderate expressed in muscle, heart, spleen, 

kidney and uterus while GPCR142 is highly expressed in spleen, tonsil and lung (Figure 

26A and Figure 26B). The expression of the RLN3 mRNA was observed in all 

investigated ovarian stages using samples of the uterus of 20 day of estrous cycle sows, 

sows at day 42 and day 91 of pregnancy as well as two day post partum. The RLN3 

mRNA was highly expressed in the uterus of 20 day of estrous cycle sows, but lower 

expressed in the uterus of 42 day and 91 day pregnant sows. In uterus samples of sows 2 

day post partum, the RLN3 genes was higher expressed (Figure 26C). 
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Figure 26:   Results of the semi-quantitative RT-PCR showed the expression levels of 

RLN3, GPCR135 (A) and GPCR142 (B) in different porcine tissues and 

the RLN3 expression in porcine ovary and uterus at different pregnancy 

stages (C)  
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4.2.2 Relative expression using real-time PCR  

 

4.2.2.1 Relaxin 3 (RLN3) 

The RLN3 mRNA was higher expressed in teat samples of sows with defect compared 

to sows without defect (p<0.01) (Figure 27), whereas the expression level was similar 

between inverted and normal teat within the same sow.  

(A) 

 

(B) 

 

Figure 27:  Relative mRNA expression of the RLN3 gene determined by real-time PCR 

using teat samples of lactating and young sows (A) and only young sows (B) 
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It was found that the expression level of teats from the same animal either sows with or 

without defect were similar whereas the teats with the same phenotype from phenotypic 

different animals (normal teat from sows without defect and sows with defect) were 

differentially expressed (p<0.05). The RLN3 mRNA was higher expressed in samples 

from young sow with defect than young sow without defect but samples from sow with 

defect and sow without defect was not difference at lactation stage. 

 

4.2.2.2 G-protein coupled receptor 135 (GPCR135) 

The mRNA of the GPCR135 gene was higher expressed in teat samples of sow with 

defect compared to sow without defect (p<0.05), whereas the expression level was 

similar between samples of inverted teats and normal teats within the same sows with 

defect (Figure 28). 

 

Figure 28:   Relative mRNA expression of GPCR135 gene determined by quantitative 

real-time PCR (lactating sows and young sows) 
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4.2.2.3 G-protein coupled receptor (GPCR142)  

The mRNA of the GPCR142 gene of sow with defect was not differentially expressed 

compared with sow without defect (Figure 29). 

 

Figure 29:  Relative mRNA expression of the GPCR142 gene determined using real-

time PCR 

 

4.2.3 Candidate genes sequencing analysis 

 

4.2.3.1  Relaxin 3 (RLN3) 

A partial sequence of porcine RLN3 with 2033 bp length was obtained from the 

sequencing analysis this identified sequence fragment covering an intron part of the 

gene. The fragment was deposited with the GenBank accession number DQ974115 

(Figure 30).  
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Figure 30:  Detected nucleotide sequence of the porcine RLN3 gene published under the  

accession number DQ974115 

 

The gene structure of porcine RLN3 comprise 193 bp of first exon, 2033 bp of single 

intron, and 230 bp of second exon as show in figure 31.  

 

 

 

 

Figure 31: The gene structure of porcine RLN3 

 

Exon 1 : 193 bp Exon 2 : 230 bp Intron : 2033 bp 
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The amino acid sequences of the porcine RLN3 gene showed 78%, 71% and 70% 

homology compared with human, mouse and rat, respectively. A comparison of the 

amino acid sequences of the RLN3 gene among human, pig, mouse and rat showed that 

all RLN3 genes and their derived pro-hormone sequences contain a typical signal 

sequence after the ATG start codon. The porcine RLN3
 comprises a B-chain of 27 amino 

acids, a C-peptide of 63 amino acids, and an A-chain of 24 amino acids. 

 

The porcine RLN1 gene has the B-chain motif RXXXRXXV whereas the B-chain motif 

of the porcine RLN3 gene is RXXXRXXI. 

The SNP at the nucleotide position 2338 (A2338G) of the RLN3 gene was mapped to 

codon 101 of the C-chain within the second exon. It was found that this SNP is leading 

to an amino acid change from glutamine (Q) to arginine (R) in the C-peptide region of 

the protein (Figure 32). The analysis of the prediction for amino acid changes of interest 

using the SIFT method was performed. SIFT is based one the premise that important 

amino acids will be conserved among sequences in a protein family, so changes at 

amino acid conserved in the family should affect protein function. SIFT uses sequence 

homology to predict whether an amino acid substitution in a protein will affect protein 

function. SIFT starts with a query protein sequence. Relying on the observation that 

proteins in the same subfamily have high conservation in conserved regions. The 

probability (Pca) of amino acid a appearing at position c is estimated (Henikoff and 

Henikoff 1996). In the most diverse alignment possible, all 20 amino acids might appear 

in a position with equal probability of 0.05 = 1/ 20, whereas in a conserved position 

only two amino acids might appear, one with probability 0.05 and the other with 0.95.  

If 0.05 were chosen as a cutoff for Pca so that substitution to amino acid a in position c 

is predicted to be deleterious when Pca ≤ 0.05, then substitution to any amino acid 

would be predicted as deleterious in the position  (Ng and Henikoff 2001). 

In this study, the analysis of the prediction for amino acid changes of interest using the 

SIFT method revealed that this substitution is predicted to affect the protein function 

with a score of 0.03. 

 



Results                                                                                                                             76 

 

Figure 32: Alignment of the amino acid sequences of the two distinctive nucleotide A 

and G for the porcine RLN3 gene 

 

4.2.3.2 G-protein coupled receptor 135 (GPCR135)  

The sequence of the genomic DNA of the porcine GPCR135 gene was obtained starting 

with heterologous primers designed from conserved regions of the published human, 

mouse and rat gene information and subsequent sequencing using homologous primers. 

The obtained sequence of 859 bp as shown in figure 33 was published under the 

accession number EU443643 at the Genebank database. It was further assumed from the 

comparison with other species that the porcine GPCR135 genes contains only a single 

exon. 

 

Figure 33: Nucleotide sequence of the porcine GPCR135 gene as published under the 

genebank accession number EU443643 
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4.2.4 Comparative sequencing for polymorphism screening 

 

4.2.4.1 Relaxin 3 (RLN3) 

Screening for polymorphisms revealed two SNP within the porcine RLN3 gene (Figure 

34), which were located in intron (C1163T) and the second exon (A2338G), 

respectively.  

 

 

Figure 34:  Image showing the SNP within the intron (C1163T) and the second exon 

(A2338G) of the RLN3 gene using the Investigator program of the CEQTM 

8000 

 

Intron (C1163T)  

Exon (A2338G) 
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4.2.4.2 G-protein coupled receptor 135 (GPCR135) 

Two SNP (C to A and C to T) could be detected within the region of the single exon of 

the porcine GPCR135 gene (Figure 35). 

 

 

Figure 35: Comparative sequencing revealed two SNPs within the exon of the 

GPCR135 gene using the Investigator program of the CEQTM 8000 

 

(base change C to A) 

(base change C to T) 
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4.2.4.3 G-protein coupled receptor 142 (GPCR142)  

Screening for polymorphism revealed one SNP (G to A) within the single exon of the 

porcine GPCR142 gene (Figure 36). It was found that this SNP at nucleotide position 

603 (G603A) does not lead to an amino acid change.  

 

 

Figure 36:  Image showing the detected SNP within the single exon of the porcine 

GPCR142 gene (G603A) 

 

4.2.5 Genotyping and association analysis 

 

4.2.5.1 Relaxin 3 (RLN3) 

Using the PCR-RFLP method to genotype animals at the two detected SNP loci of the 

RLN3 gene, two alternative alleles could be detected at the intron after digestion using 

the RsaI enzyme (allele C: 434 bp, allele T: 359 and 75 bp). Digesting the amplified 334 

bp fragment to genotype animals with the SNP at the second exon, two alleles were 

generated (allele A: 334 bp, and allele G: 217 and 117 bp) as shown in figure 37. 
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Figure 37: Results of PCR-RFLP for genotyping animals at the locus of the RLN3 gene 

using RsaI (A) and TaqI (B) endonuclease. Electrophoresis of the digested 

PCR product was performed in a 3% gel containing ethidium bromide and 

visualized by a UV transiluminator 

 

In the commercial population, the frequencies of the alleles ‘C’ and ‘T’ of the SNP in 

the intron region of the RLN3 gene were 0.15 and 0.85, respectively. The frequencies of 

the alleles ‘A’ and ‘G’ located in the second exon were 0.74 and 0.26, respectively. The 

estimated haplotype frequencies of the haplotypes ‘T-A’, ‘C-G’, ‘T-G’ and ‘C-A’ 

estimated using the FBAT program were 0.79, 0.10, 0.08 and 0.03, respectively (Table 

6), whereas the frequencies of the alleles ‘C’ and ‘T’ in DUMI population were 0.18 

and 0.82, respectively. The frequencies of the alleles ‘A’ and ‘G’ located in the second 

exon were 0.84 and 0.16, respectively. The estimated haplotype frequencies of the 

haplotypes ‘T-A’, ‘C-G’, ‘T-G’ and ‘C-A’ were 0.73, 0.13, 0.08 and 0.06, respectively 

(Table 6). 

 

Table 6:  Allele and  haplotypes frequencies of the two SNP detected within the 

candidate gene RLN3 in the commercial and DUMI population 

RsaI TaqI RLN3 (Haplotype) Population Number 

of animal C T  A G  T-A C-G T-G C-A 

Commercial 225 0.15 0.85 0.74 0.26 0.79 0.10 0.08 0.03 

DUMI 344 0.18 0.82 0.84 0.16 0.73 0.13 0.08 0.06 
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Table 7: Result of association analysis of the candidate gene RLN3 with the inverted 

teat defect genotyping animals of the commercial population 

Number of transmitted alleles Association Trait Allele 

Observed: S 
Expected under null 

hypothesis: E(S) 
Z score P value 

C 5.000 2.500 - 0.632 0.527 
RLN3/ RsaI 

T 5.000 2.500 0.632 0.527  

A 23.500 6.250 1.400 0.162 
RLN3/TaqI 

G 23.500 6.250 -1.400 0.162 

T-A 25.417 5.660 2.347 0.019* 

C-G 2.583 1.410 1.193 0.233 

T-G 7.000 3.500 -2.138 0.032* 

RLN3 

(Haplotype) 

 
C-A 3.000 1.500 -2.449 0.014* 

*: significant (p<0.05); Z score < 0: allele more common in not affected animals 

 

Table 8:  Result of association analysis of the RLN3 gene with the inverted teat defect in 

animals of the DUMI population 

Number of transmitted alleles Association Trait Allele 

Observed: S 
Expected under null 

hypothesis: E(S) 
Z score P value 

C 30 31 -0.254 0.799 
RLN3/ RsaI  

T 90 89   0.254 0.799 

A 105 101.5   0.843 0.399 
RLN3/TaqI 

G 31 34.5 -0.843 0.399 

T-A 61 54.5   2.030 0.042* 

C-G 5 6.5 -0.832 0.405 

T-G 6 7 -0.535 0.592 

RLN3 

(Haplotype) 

 
C-A 6 10 -1.789 0.073 

* significant (p<0.05); Z score < 0: allele more common in not affected animals 
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The association analysis with the inverted teats defect showed no significant results in 

both experimental and the commercial population. Haplotypes constructed using the 

FBAT program revealed a significant association of RLN3 gene with the alleles T-A, T-

G and C-A in the commercial population and the allele T-A in the DUMI population 

(Table 7, Table 8).  

 

4.2.5.2  G-protein coupled receptor 135 (GPCR135) 

An 859 bp fragment of the GPCR135 locus was amplified and further genotyped. PCR-

RFLP leads to the detection of the alternative alleles A (fragments after digestion: 350 

bp, 276 bp and 202 bp), and C (fragments after digestion: 276 bp, 202 bp, 186 bp and 

164 bp). An 198 bp fragment was amplified including SNP which generated the two 

possible alleles T (131 and 57 bp bands after cutting), and C (75, 57 and 56 bp bands 

after cutting) as shown in figure 38. 

 

Figure 38: Results of PCR-RFLP for genotyping the animals at the locus of GPCR135 

gene using MspI (A) and MnlI (B) endonuclease. Electrophoresis of the 

digested PCR product was performed in a 3% agarose gel 

 

In the commercial population, the frequencies of the alleles ‘C’ and ‘A’ of the first SNP 

within the single exon region of the GPCR135 gene were 0.72 and 0.28 respectively. 

The frequencies of the alleles ‘C’ and ‘T’ of the second SNP were 0.80 and 0.20 

respectively. The frequencies of the haplotypes ‘A-C’, ‘A-T’, ‘C-T’ and ‘C-C’, 

estimated using the FBAT program, of this locus were 0.61, 0.22, 0.13 and 0.04 

respectively (Table 9). In DUMI population, the frequencies of the alleles ‘C’ and ‘A’ 

were 0.76 and 0.24 respectively. The frequencies of the alleles ‘C’ and ‘T’ of the second 

SNP were 0.73 and 0.27 respectively. The frequencies of the haplotypes ‘A-C’, ‘A-T’, 

‘C-T’ and ‘C-C’ of this locus were 0.65, 0.15, 0.15 and 0.05 respectively (Table 9).  
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Table 9:  Allele and  haplotypes frequencies of the two SNP detected within the 

candidate gene GPCR135 in the commercial and DUMI population 

MspI MnlI GPCR135 (Haplotype) Population Number 

of animal C A  C T  A-C A-T C-T C-C 

Commercial 217 0.72 0.28 0.80 0.20 0.61 0.22 0.13 0.04 

DUMI 258 0.76 0.24 0.73 0.27 0.65 0.15 0.15 0.05 

 

Haplotypes analysis revealed no significant association between the GPCR135 gene and 

the inverted teat trait. The association analysis between each SNP and haplotype of the 

GPCR135 gene with different characteristic of the teats showed also no significant 

association (Table 10). 

 

Table 10: Result of association analysis of the candidate gene GPCR135 with the 

inverted teat defect in the commercial population 

Number of transmitted alleles Association  Trait Allele 

Observed: S 
Expected under null 

hypothesis: E(S) 
Z score P value 

C 20.000 20.500 -0.229 0.819 n.s. GPCR135/ 

MspI A 12.000 11.500 0.229 0.819 n.s. 

C 44.000 43.500 0.156 0.876 n.s. GPCR135/ 

MnlI T 20.000 20.500 -0.156 0.876 n.s. 

A-C 40.943 40.943 -0.017 0.986 n.s. 

A-T 15.973 15.973 -1.230 0.218 n.s. 

C-T 10.905 9.110 0.851 0.394 n.s. 

GPCR135 

(Haplotype) 

 
C-C 5.095 3.973 1.136 0.256 n.s. 

n.s.: non significant (p>0.05); Z score < 0: allele more common in not affected animals 

 

The association analysis using animals of the DUMI population showed also no 

significant association (Table 11). 
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Table 11:  Result of association analysis of the GPCR135 gene with the inverted teat 

defect in the DUMI population 

Number of transmitted alleles Association Trait Allele 

Observed: S 
Expected under null 

hypothesis: E(S) 
Z score P value 

C 370 366.529 0.496 0.62 n.s. GPCR135/ 

MspI A 126 129.471 -0.496 0.62 n.s. 

C 410 395.662 1.756 0.079 n.s. GPCR135/ 

MnlI T 132 146.338 -1.756 0.079 n.s. 

A-C 238.753 237.55 0.094 0.925 n.s. 

A-T 50.247 53.349 -0.408 0.683 n.s. 

C-T 38.753 33.371 0.915 0.360 n.s. 

GPCR135 

(Haplotype) 

 
C-C 38.247 41.730 -0.492 0.622 n.s. 

n.s.: non significant; Z score < 0: allele more common in not affected animals 

 

4.2.5.3  G-protein coupled receptor 142 (GPCR142) 

Genotyping of animals at the GPCR142 locus was performed using PCR-RFLP. 

Digestion of the resulting 1002 bp PCR product with HaeIII revealed one 

polymorphism. The polymorphism was found segregating in the population with allele 

A with 13 cutting sites for the enzyme showing an extra 153 bp fragment, whereas 

allele G yielded one additional cutting side leading to two additional fragments (126 and 

27 bp). Monomorphic fragments of 222, 170, 109 and 96 bp were also seen for both 

alternative alleles. Additional smaller fragments representing the remaining 51 to 8 bp 

were likely generated by HaeIII digestion but were not detectable in agarose gels 

(Figure 39).  
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Figure 39:  Results of PCR-RFLP for genotyping animals at the locus of the porcine 

GPCR142 gene using HaeIII 

 

The frequencies of the alleles ‘G’ and ‘A’ for SNP in single exon region of the 

GPCR142 gene were 0.96 and 0.04 respectively in commercial population, while the 

frequencies of the alleles ‘G’ and ‘A’ were 0.91 and 0.09 respectively (Table 12 ). 

 

Table 12:  Allele and  haplotypes frequency of SNP detected within the candidate gene 

GPCR142 in the commercial and DUMI population 

Allele Population Number of 

animal G A 

Commercial 189 0.96 0.04 

DUMI 262 0.91 0.09 

 

The association analysis between the SNP of the GPCR142 gene with the different 

characteristic of the teats showed no significant association in the commercial animals 

(Table 13). 
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Table 13: Result of association analysis of the candidate gene GPCR142 with the 

inverted teat defect in the commercial population 

Number of transmitted alleles Association Trait Allele 

Observed: S 
Expected under null 

hypothesis: E(S) 
Z score P value 

G 4 4.5 -0.577 0.563 n.s. GPCR142/ 

HaeIII A 2 1.5 0.577 0.563 n.s. 

n.s.: non significant; Z score < 0: allele more common in not affected animals 

 

The association analysis between the genotypes this loci with the inverted teat defect 

could neither reveal the importance of this gene for the inverted teat defect using 

animals of the DUMI population (Table 14). 

 

Table 14:  Result of association analysis of the GPCR142 gene with the inverted teat 

defect in the DUMI population 

Number of transmitted alleles Association Trait Allele 

Observed: S 
Expected under null 

hypothesis: E(S) 
Z score P value 

G 45 41 1.083 0.278 n.s. GPCR142/ 

HaeIII A 21 25 -1.083 0.278 n.s. 

n.s.: non significant; Z score < 0: allele more common in not affected animals 

 

4.2.5.4 Association analysis for the three genes with the teat number 

The haplotype analysis showed a significance of the allele T-G with the teat number on 

the left, the right side and the total number of teats in animals of the DUMI population 

(Table 15). 
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Table 15: Summary of the results of the association analysis for the three genes with the teat number in the DUMI population 

TL ITL TR ITR TT TIT Trait Allele 

Z score P value Z score P value Z score P value Z score P value Z score P value Z score P value 

C -1.104 0.269 -0.214 0.830 -1.213 0.225 -0.372 0.709 -1.161 0.245 -0.297 0.766 
RLN3/ RsaI 

T 1.104 0.269  0.214 0.830 1.213 0.225 0.372 0.709 1.161 0.245 0.297 0.766 

A 0.245 0.806 0.125 0.900 0.253 0.799 -0.251 0.801 0.250 0.802 -0.066 0.947 
RLN3/TaqI 

G -0.245 0.806 -0.125 0.900 -0.253 0.799  0.251 0.801 -0.250 0.802 0.066 0.947 

T-A 1.248 0.212 0.172 0.863 1.193 0.232 -0.180 0.856  1.222 0.221 -0.006 0.995 

C-G 0.019 0.984 -0.086 0.931  -0.15 0.885 -0.097 0.922 -0.064 0.948 -0.093 0.926 

T-G -2.513 0.011* -0.346 0.729 -2.450 0.014* -0.491 0.623 -2.486 0.012* -0.421 0.674 

RLN3 

(Haplotype) 

(n=334) 
C-A -0.291 0.771 0.128 0.898 -0.023 0.981 0.961 0.336 -0.156 0.875 0.553 0.580 

C 0.545 0.586 0.687 0.492 0.766 0.443 0.611 0.541 1.756 0.079 0.817 0.413 GPCR135/ 

MnlI T -0.545 0.586 -0.687 0.492 -0.766 0.443 -0.611 0.541 -1.756 0.079 -0.817 0.413 

A-C -0.208 0.835 -0.140 0.888 0.163 0.870 -0.258 0.796 0.094 0.925 -0.185 0.853 

A-T -1.124 0.261 -1.381 0.167 -0.467 0.640 -1.264 0.206 -0.408 0.683 -1.337 0.181 

C-T 1.420 0.155 1.740 0.081 0.982 0.325 1.571 0.116 0.915 0.360 1.650 0.098 

GPCR135 

(Haplotype) 

(n=258) 
C-C 0.469 0.638 0.284 0.776 -0.660 0.509 0.615 0.538 -0.492 0.622 0.450 0.652 

G 1.318 0.187 1.322 0.186 1.053 0.292 1.090 0.275 1.203 0.228 1.233 0.217 GPCR142/ 

HaeIII (n=262) A -1.318 0.187 -1.322 0.186 -1.053 0.292 -1.090 0.275 -1.203 0.228 -1.233 0.217 

TL: left teat number; TR: right teat number; TT: total inverted teats;  ITL: inverted teats left; ITR: right inverted teat number;  

TIT: total inverted teats; * significant (p<0.05) 
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4.2.6 Linkage and physical mapping 

The multipoint linkage map revealed a good evidence of RLN3 being mapped on SSC2 in 

relative position of approximately 23 cM (SW2443 -RLN3 - SW240). The most significantly 

linked marker (twopoint analysis) using RH mapping was SSC2F05 on SSC2 (30 cR; LOD 

score 13.91). The multipoint linkage map revealed good evidence GPCR135 being mapped on 

SSC16 (S0111 - GPCR135 - S0026), while the multipoint linkage map revealed good 

evidence of GPCR142 being mapped on SSC4 (S0214 - GPCR142 - S0001). 
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 5        Discussion 

 

5.1 Microarray study 

 

5.1.1 Identification of candidate genes  

The regulation mechanism of the mammary gland development is complex. To further 

understand the molecular mechanisms of the mammary gland development, it might be 

helpful to obtain a high coverage collection of genes relevant to different physiological 

stages and construct the physiological stage specific gene expression profile. The 

lactation performance of sows is correlated with their reproductive performance. 

Previous studies have shown that the production and composition of milk is critical for 

the survival of the suckling piglets. Further the milk production is one of the most 

important factors limiting neonatal pig growth (Su et al. 2006). 

In the present report the gene expression profile of the teat from lactating sows was 

investigated. As a result genes differentially expressed in the mammary gland could be 

identified, specific gene clusters were identified. These genes may be important for the 

reproductive performance or play important roles for milk synthesis, secretion and 

mammary involution. The characterization of the global gene expression profiles may 

help to elucidate important biological processes in both normal and inverted teat. A 

large fraction of normal mammary epithelium specific growth factors (IGF-II, VEGF-

A), chemokines (CXCL12), cytokines (IL10, IL-18, and CTGF), and cytokines receptor 

(EGFR) may play a role during the regulation of normal mammary epithelial cell 

growth, differentiation, and morphogenesis. In the present study, the expression of 

growth factors (EGF, MFGE8, GDF8) and signal transducer activity genes (GPRC5B, 

TGFBR3, PIGR and ccl28) were significantly decreased in samples of inverted teats. On 

the basis of these observations and the aforementioned physiologic roles of growth 

factor in apoptosis induction and potential growth controlling functions in mammary 

epithelial cells, it can be speculated that the observed significant down regulation could 

be associated to an escape of inverted structures from the constraints of such growth 

regulatory mechanisms (Hu et al. 2004).  

It was found in human that several classes of genes are down or up regulated in healthy 

mammary epithelial cells compared with cancer cells. It was considered in that study 

that the down regulation of a set of genes may be the basic mechanism of cancer 
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formation, whereas the upregulation may characterize and possibly control the state of 

evolution of individual inverted teat (Zucchi et al. 2004). This result was consistent with 

other results suggesting that the mammary gland of gilts was prepared for lactating and 

its gene expression was active during the late gestation (Su et al. 2006). Genes of 

ribosome structural constituent were abundantly expressed in this stage and also some 

proteins involved in the regulation of transcription and translation were abundantly 

expressed e.g. GDF8 (Su et al. 2006).  

Similar to the gene expression in mouse mammary gland during lactation, the 

proportion of cell cycle genes had diminished. It was replaced by an increase of the 

number of genes involved in the development and differentiation, including fatty acid 

biosynthesis and other metabolic processes. These three clusters should contain genes 

that are important for terminal differentiation and transition to a secretory phenotype 

(Clarkson et al. 2004). 

The immune related transcripts were expressed in the porcine lactation stage in the 

present study. This is consistent with previous observations of the immune cell 

complement in regressing mouse and murine mammary gland (Clarkson et al. 2004, 

Monks et al. 2002) which showed that a strong statistical relationship exists between 

involution and immune related genes. The gene expression during involution was found 

being significant associated with inflammation, the acute phase response, or humoral 

immunity and innate cellular defence (Clarkson et al. 2004). The pituitary gland plays a 

key role in the regulation of growth, differentiation and function of all cells in the body, 

including the immunocytes. Immune reactions are generated through the proliferation of 

antigen specific lymphocyte clones. In recent years many efforts have been undertaken 

to elucidate the complex interactions between mediators of the endocrine system and 

the immune system. The main effector of GH is IGF-I, an endocrine mediator of growth 

and development under physiological conditions, IGF-I also plays a prominent role in 

the regulation of immunity and inflammation (Heemskerk et al. 1999). The clinical 

consequences of the link between the endocrine and the immune system remain to be 

elucidated (Hansen et al. 2001). The possible impact of the immune related genes on the 

inverted teat defect can therefore be considered deriving from two different hypotheses, 

either the impact of reproductive hormones onto the immune system or the relevance of 

immune related genes during the apoptosis of the mammary gland, which might be of 

relevance for the inverted teat defect. Further it was found that the inverted teat might 

lead to a higher risk of mastitis, a further recommendation of the finding of differential 
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expression of the immune-related gene clusters between normal and defect teats in the 

present study (Varadin and Filipovic 1975). 

 

5.1.2 Validation using real-time PCR 

 

5.1.2.1 Connective tissue growth factor (CTGF)  

The CTGF is a member of the FSH/androgen regulated gene repertoire expressed in the 

mammalian granulosa cells. This gene is implicated in the regulation of the connective 

tissue synthesis (Slee et al. 2001). The CTGF gene is typically up regulated by serum 

enrichment or exposure to tissue growth factors such as TGFB, platelet-derived growth 

factor (PDGF) or FGF. A similar pattern of the expression was observed in pig ovary, 

where CTGF has been hypothesized to promote ovarian cell growth and blood vessel 

formation during follicular and luteal development (Slee et al. 2001). Based on its 

expression profile in the ovary and biological properties in other tissue systems, it was 

suggested that CTGF might contribute to the process of thecal cell recruitment, a crucial 

process in folliculogenesis (Slee et al. 2001). 

The CTGF plays a role in TGFB-mediated formation of granulation tissue. Brigstock  

(1999) suggested that this gene is involved in the regulation of uterine function as it is 

present in uterine fluids in pigs and mice, as well as in the uterus of pigs, mouse and 

human. CTGF is mitogenic for connective tissue cells, it is secreted by fibroblasts and 

endothelial cells, and is selectively induced by fibroblasts after activation with TGFB. 

The high expression of CTGF gene in tissue samples of the inverted teat in the present 

study may support the hypothesis that CTGF might be involved in proliferation of 

mammary gland, further the gene expression profile of the connective tissue may play a 

important role for the development of the inverted teat. Due to the presence of TGFB1 

in mammary carcinomas, CTGF might be involved in stromal proliferation of mammary 

cancer (Frazier and Grotendorst 1997). This factor has a potential role during 

embryogenesis and for the uterine function as the CTGF is produced by the embryo and 

in the uterus. The levels of 
CTGF gene expression have been studied in mammary gland 

tumours, sarcoma cells, chondrosarcoma cells, and various tumours of the nervous and 

vascular systems, but the data could not strongly support the possible functional 

relationship of CTGF in tumour development to the incidence of desmoplasia in 

mammary gland carcinomas (Uzumcu et al. 2000).  
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5.1.2.2 Epidermal growth factor receptor (EGFR) 

Growth factors such as the EGF have also been implicated in the normal mammary 

gland growth and development (Coleman et al. 1988). EGF has been shown to stimulate 

the proliferation of mammary tissues (Sternlicht et al. 2005, Taketani and Oka 1983, 

Yang et al. 1980). The EGF may act synergistically with estrogen (E) and/or 

progesterone (P) (Sheffield and Welsch 1987, Sheffield 1998). The normal mouse 

mammary gland possesses membrane receptors for EGF and the concentration of 

receptors varies at different developmental states. Receptor levels, present in both 

epithelial and stromal cells, are high in the immature pubertal mammary gland and then 

decrease with increasing age. Receptor levels increase again with the onset of 

pregnancy, reaching a peak level at 10 days followed by a rapid decline to very low 

levels during lactation (Sandra et al. 1992). 

EGFR levels increase during the pregnancy at a time when circulating levels of E and P 

are known to be elevated (Edery et al. 1985). Interestingly, the existing level of EGFR 

in the mature gland was not decreased by ovariectomy, indicating that constitutive 

levels of EGFR are increased only when E and P is added. It was found that 

progesterone increases EGFR levels in human mammary carcinoma cell lines that are 

estrogen and progesterone receptor positive. Thus it is possible that the progesterone-

dependent increase of EGFR may be a mammary specific regulatory mechanism 

(Sandra et al. 1992).  

Sandra et al. (1992) showed that the cellular distribution of EGFR demonstrated that the 

receptors are present in epithelial and stromal cells in both pubertal and mature 

mammary glands. These results agree with previous localization of EGFR in stromal 

and epithelial cells of 5-week-old mammary gland (Sandra et al. 1992). The similarly 

expression of the EGFR gene in tissue samples of normal and inverted teat during the 

lactation in the present study could not verify the results of the microarray, where this 

genes was found being differentially expressed between these two tissue types. Anyhow 

further studies including teat samples of fetus where key stages of the ductal 

morphogenesis are expected might explain the role of EGFR during the ductal 

morphogenesis by stimulating proliferation in the end bud regarding the possible impact 

for the inverted teat defect. 

Stromal EGFR was found to be located in close proximity to the end bud and ductal 

epithelium where it was present at levels approximately five fold higher than at more 

distal sites. The stromal EGFR are functional when locally-released EGF induced both 
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epithelial and stromal DNA synthesis in the mammary glands of ovariectomized 

peripubertal and mature female mice (Hovey et al. 1999). 

The EGFR gene is present in the stromal fibroblasts that separate the ducts from the 

fatty stroma. Impaired ductal growth in EGFR knockout mammary glands was 

associated with a marked reduction in the density of periductal fibroblasts. Thus, 

signaling through the EGFR may promote fibroblast survival, which in turn induces 

ductal epithelial cell proliferation. In contrast to the lack of ductal development, 

alveolar development occurred in grafts of both EGFR knockout and wild-type 

mammary glands in response to prolactin produced by the pituitary gland. Although the 

alveoli were morphologically normal in grafts of EGFR knockout mammary glands, 

these structures did not penetrate entirely throughout the fat pad of the EGFR knockout 

mammary glands compared to the wild-type glands, presumably due to the underlying 

defect in ductal development. This defect was not intrinsic to the epithelium, because 

EGFR knockout epithelium transplanted into wild-type cleared pads showed normal 

ductal development and equivalent alveolar development in response to a pituitary graft. 

Therefore, signaling through the EGFR is dispensable for alveolar development, just as 

it is indispensable for ductal development. The EGFR is not essential in the epithelial 

component of the mammary gland in vivo. Instead, the EGFR is absolutely necessary 

for the stromal component, the fat pad, to induce estrogen-dependent ductal growth and 

branching morphogenesis as shown by the tissue recombination studies. These results 

suggest that, under estrogenic conditions, which stimulate the pubertal mammary gland, 

the stroma responds to estrogen action through an EGFR-mediated signaling event that 

is required for stimulation of epithelial growth and development. In contrast, the 

epithelial EGFR is neither necessary nor sufficient (Wiesen et al. 1999). The EGFR axis 

is an essential mammary signaling system in which ADAM17 (A disintegrin and 

metalloproteinase protein) releases epithelial AREG, which then activates stromal EGFR 

(Figure 40), thus eliciting reciprocal responses that further orchestrate mammary 

epithelial development (Sternlicht et al. 2005). 
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Figure 40:   Model depicting epithelial-mesenchymal crosstalk and potential modifiers 

of ADAM17-AREG-EGFR signaling in mammary development (Sternlicht 

et al. 2005) 

 

In the present study the different expression of the EGFR gene was only detected using 

the genome wide expression study, the expression difference between normal and 

inverted teats could not be verified using the real-time PCR. Possibly the total amount 

of this transcript was too low in the tissue samples used for the detection of the 

transcript abundance as is was found that the EGFR transcript abundance in mouse 

mammary gland decline during the late pregnancy and lactation (Sheffield 1998). 

Further Sheffield (1998) also found that this gene is lower expressed in mammary tissue 

of lactating cattle compared to the tissue of nonlactating cattle. This might be one 

possible explaination that in the present study no different expression could be detected 

using the more sensitive real-time PCR method.   

 

5.1.2.3 Insulin-like-growth factor 2 (IGF-II) 

The insulin-like growth factors, IGF-I and IGF-II, are additional peptide growth factors 

with proposed roles in postnatal mammary growth. These peptides and their primary 

signaling receptor, the IGF type I receptor (IGF-IR), are essential for normal 

embryogenesis and have mitogenic, survival and differentiative actions on a variety of 

developing tissues and cell types. The distinct patterns of expression for IGF-I and IGF-

II suggest that the two IGF ligands are distinctly regulated. While this observation may 

simply represent a mechanism to finely regulate or restrict autocrine/paracrine IGF 

actions at specific stages of growth, it is also possible that the two ligands have distinct 

functions in the developing gland. In addition to IGFBP specificity, IGF-II also can 
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mediate fetal growth and cell proliferation through the insulin receptor as well as 

through the IGF-IR. Actions of IGF-II in growth of the mammary epithelium are likely 

subtle since mice carrying a deletion of IGF-II were found to be viable and fertile. 

Female IGF-II mutant mice support litters and thus develop sufficient alveoli for 

lactation, however, careful analyses will be required to determine whether glands from 

these mice have subtle growth deficits (Wood et al. 2000). In the present study using 

samples of pigs, it was found that the IGF-II gene was higher expressed in samples of 

inverted teats compared to normal teats, which was congruent using the microarrays and 

the real-time study. This might promote the impact of this gene for the inverted teat 

defect due to a sufficient alveoli development. 

The IGFs would promote proliferation of the mammary epithelium. This mechanism of 

IGF action is consistent with proposed actions of other growth factors through 

extracellular matrix binding. The extracellular matrix is known to sequester a number of 

growth factors including TGF-b and the FGFs. Finally, since the IGFs and IGF-IR are 

well-characterized survival factors for many cell types, it is possible that IGF-mediated 

epithelial growth is due predominantly to promotion of cell survival. Maintenance of 

mammary epithelial and stromal cells is essential for normal development. Moreover, it 

is known that apoptotic cell death occurs at specific locations and times during postnatal 

mammary growth including in the terminal end buds (TEBs) during formation of ductal 

structures and throughout the alveoli during involution (Loladze et al. 2006, Streuli and 

Haslam 1998). Thus, it is possible that IGFBP regulation of IGF availability and 

localization is critical for promoting or inhibiting IGF-mediated cell survival (Wood et 

al. 2000). 

 

5.1.2.4 Epidermal growth factor (EGF) 

The EGF is a polypeptide which, acting systemically or locally, may effect responses in 

the mammary gland through the fat pad. EGF may stimulate epithelial synthesis of type 

IV collagen, a component of the basal lamina required for epithelial attachment and 

proliferation and required for growth of cultured mammary gland. EGF causes the 

reappearance and growth of involuted mammary end buds in ovariectomized mice. 

Administering EGF to mice may reelevate lowered mammary and intestinal rates of 

epithelial mitosis, expedite mammary development, and reelevate mammary tumor risk. 

The similar expression of EGF in normal and inverted teat indicated that the inverted 

teat defect is not afftected by EGF during lactation because EGF required for early 
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ductal outgrowth. These results are in accordance with report in mice which show that 

EGF specifically binds and stimulates the proliferation of primary mammary epithelial 

cells derived from virgin or pregnant mice, it is reasonable to postulate that ligand 

activation of the EGFR is an integral component of the normal growth regulation of 

these cells (DiAugustine et al. 1997). 

EGF is able to inhibit the apoptosis of apoptotic mouse mammary epithelial cells. 

During the mammary gland development, the growth and development of the ducts are 

directed by the terminal end buds. EGF appears to function as a survival factor, EGF 

receptors are important for the survival of epithelial cells in the mammary gland 

(Rosfjord and Dickson 1999). 

An analysis of in vivo effects of EGF in 5-week-old ovariectomized mice has shown 

that EGF promotes the normal ductal morphogenesis by stimulating proliferation in the 

end buds (Sandra et al. 1992). 

EGF may affect responses in the mammary gland through the fat pad. In addition to its 

presence in epithelial cells, receptors for EGF were detected within the mouse 

mammary fat pad by a ligand binding assay. EGF signals through the stroma and 

controls early ductal outgrowth. Together with E, it also controls ductal elongation and 

branching during puberty. Progesterone, placental lactogens, prolactin, and the 

osteoclast differentiation factor signal alveolar proliferation and differentiation during 

pregnancy and possibly lactation. The signals inducing tissue remodeling during 

involution have not been defined. The genes that control distinct stages of mammary 

development are shown in figure 41. Ductal elongation and branching during puberty is 

controlled by inhibin B, colony-stimulating factor 1 (CSF-1), progesterone receptor, and 

Wnt. Proliferation and differentiation of mammary alveolar cells is controlled by the 

PRLR, signal transducer and activator of signalling-5 (STAT5), receptor activator for 

nuclear factor κ B ligand (RANKL), CCND1, pelargonium flower break virus (p27), Id2, 

and CCAAT/enhancer binding protein (C/EBP). Mammary function during lactation is 

controlled by PRL through STAT5, and tissue remodeling and cell death during 

involution by STAT3 (Hennighausen and Robinson 2001). 
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Figure 41:    The schematic drawing represents different developmental stages. The 

anlage is composed of epithelium (dark knob) and stroma (gray 

surrounding). The oval shown in the postnatal stages depicts the 

mammary fat pad (stroma). The solid green circle represents the nipple 

(N) from which the ducts originate. The ends of growing ducts form TEB 

during puberty (Hennighausen and Robinson 2001) 

 

5.1.2.5 Growth differentiation factor 8 (GDF8) 

GDF8 is predominantly expressed in the skeletal muscle and may be a key regulator of 

the development and growth of skeletal muscle (Ji et al. 1998, Wehling et al. 2000). In 

muscle, the physiological role of 
GDF8 is largely associated with the prenatal period of 

muscle growth in which myoblasts are proliferating, differentiating, and fusing to form 

multinucleated myofibers. The GDF8 performs a regulatory role pertaining to 

gestational or lactational mammary gland growth and development and/or metabolism. 

It seems possible that GDF8 is secreted from the mammary gland into the milk and 

serves a regulatory role in neonatal pigs (Ji et al. 1998). The lower expression of GDF8 

in tissue samples of the inverted teat in this study indicated that the inverted teat may be 

caused by an insufficient of cell proliferation and differentiation due to the lower 

expression of GDF8. It is well established that milk production is positively related to 

milking frequency (Bar-Pelled et al. 1995, Erdman and Varner 1995). The increased 

milking frequency in dairy cattle is associated with alteration of mammary cell- ECM 

interactions and signalling that support milk synthesis (Connor et al. 2008). It is 

demonstrated that milk production of the inverted teats is lower than the normal teats.  
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Because teat canal of inverted teats is held inward and forming a small crater therefore 

the milk can not flow out. As a consequence, the teat stimulation of inverted teat is 

lower than normal teat. It might be also possible that the lower expression level of this 

gene is related to the decreased amount of milk which can be found in the inverted teats 

shortly after the birth as less transcript can also be secreted from the mammary glands 

into the milk which was shown by Ji et al. (1998) to play a regulatory role in neonatal 

pigs. 

 

5.2 Candidate gene study  

 

5.2.1 Expression analysis by semi-quantitative RT-PCR 

 

5.2.1.1 Relaxin 3 (RLN3) 

The expression profile of porcine RLN3 in this study was similar to the RLN3 

expression published in mouse (Bathgate et al. 2002). The murine RLN3 mRNA is 

present in several tissues including the brain, thymus, spleen, lung, testis, ovary, and 

mammary gland. It was also shown being weakly expressed in the heart, liver, 

epidermis, prostate, and uterus. The findings that RLN3 gene is expressed in various 

tissues, confirming that relaxin is more than a hormone of pregnancy and acts on cells 

and tissues other than those of the female reproductive system (Bathgate et al. 2002). 

Relaxin causes a widening of blood vessels (vasodilatation) in the kidney, mesocecum, 

lung, and peripheral vasculature, which leads to increased blood flow or perfusion rates 

in these tissues. It also stimulates an increase in heart rate and coronary blood flow and 

increases both glomerular filtration rate and renal plasma flow. In addition to airway 

fibrosis, relaxin deficiency results in airway structural changes (epithelial thickening) 

and increased lung recoil, suggesting that relaxin may impact other aspects of 

airway/lung structure and function beyond its ability to regulate collagen turnover 

(Samuel et al. 2007). The brain is another target tissue for relaxin, where the peptide has 

been shown to bind to receptors in the circumventricular organs to affect blood pressure 

and drinking (Bathgate et al. 2002, Sherwood 2004).  

The functional role of RLN3 also includes the ability to inhibit myometrial contractions, 

to stimulate remodeling of the connective tissue, and to induce softening of the tissues of 

the birth canal. Additionally, relaxin increases growth and differentiation of the 
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mammary gland and nipple and induces the breakdown of collagen, one of the main 

components of the connective tissue (Sherwood 2004). It was found in female guinea 

pig that the mammary gland is a minor source of relaxin production (Bathgate et al. 

2002). Within the female reproductive tract, relaxin is primarily produced by the corpus 

luteum in pregnant and nonpregnant mammalian species (Knox et al. 1994). Significant 

expression of mouse RLN3 mRNA was observed in different ovarian stages which 

supports the detection of RLN3 mRNA in the ovary of nonpregnant, pregnant and 

lactating sows in the present study in pigs (Bathgate et al. 2002). These results are in 

accordance with the findings that the RLN3 gene is expressed in the luteal tissue during 

pregnancy, ovarian cycle and early lactation as revealed using immunohistochemistry 

(Bagnell et al. 1990).  

The porcine RLN3 was in the present study higher expressed in the uterus of non 

pregnant sows compared to the lower expression during pregnancy and again higher 

expression during lactation. Similar expression profiles of the relaxin gene were also 

reported during the early pregnancy in pigs and guinea pigs in the uterine endometrium 

(Knox et al. 1994, Larkin and Renegar 1986). The relaxin in the uteri of nonpregnant 

gilts is of luteal origin (Knox et al. 1994). Its level was minimal during the early 

pregnancy and increased by day 16. It seems likely that the presence of conceptus tissue 

during the early pregnancy may enhance the production of relaxin by the luminal 

epithelium in the uterus in pigs. The corpora lutea of pigs and rats are also the major 

source of circulating relaxin during late pregnancy (Crish et al. 1986). In pregnant pigs, 

relaxin can be detected in the corpus luteum where the amount of relaxin increases 

dramatically from days 17-106 of gestation (Anderson et al. 1973). This was in 

accordance with the findings in the present study that the RLN3 gene expression is 

increasing from day 42 of the pregnancy until the lactation using the semi quantitative 

RT PCR. 

 

5.2.1.2 G-protein coupled receptor 135 and 142 (GPCR135 and GPCR142) 

The human RLN3 gene has recently been identified as a ligand for two structurally 

related GPCRs GPCR135 and GPCR142 (Kuei et al. 2007, Liu et al. 2003a, Liu et al. 

2003b, Liu et al. 2005). It could be shown in the present study that the porcine 

GPCR142 mRNA expression pattern is very different from that of GPCR135. The 

porcine GPCR135 gene is high expressed in reproductive tissue while the GPCR142 

gene was found in a broader range of peripheral tissues. These results are in accordance 
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with the previous reports describing the inconsistent mRNA expression patterns 

between GPCR142 and GPCR135 (Liu et al. 2003a, Matsumoto et al. 2000). The 

GPCR135 gene is expressed in restricted tissues with the predominant expression in the 

brain (Matsumoto et al. 2000), whereas the GPCR142 gene is expressed in a broader 

range of peripheral tissues in rats (Liu et al. 2003a). These results of Liu et al. (2003a) 

suggest that GPCR135 and GPCR142 may share a ligand but seem to have different 

signal pathways. The two receptors exert different physiological functions but probably 

orchestrated by the common ligand RLN3. GPCR135 may be involved in the regulation 

of feeding, energy expenditure, metabolism, and other related central functions 

supplementing the reproductive needs of the body. The relative abundant expression of 

GPCR142 suggests the possible existence of an additional ligand expressed in the 

peripheral tissue (Liu et al. 2003a).  

 

5.2.2 Relative expression analysis using real-time PCR  

 

5.2.2.1 Relaxin 3 (RLN3) 

The RLN3 gene was higher expressed in the tissue samples of the mammary gland of 

inverted teats from sows with defect compared to the tissue of normal glands from sows 

with defect. There is only limited evidence that RLN3 gene may act locally on 

reproductive tissue in pigs but mouse RLN3 gene is expressed in the ovary. Both RLN1 

and RLN3
 were also detected in the mammary gland, ovaries of non pregnant, pregnant, 

and lactating mice, and the endometrium and myometrium of pregnant mice.  

  

5.2.2.2 G-protein coupled receptor 135 and 142 (GPCR135 and GPCR142) 

The mRNA of GPCR135 gene in the teat samples of sows with inverted teats was 

higher expressed compared to the tissue of sows without defect. This is supported by the 

regulation of cell growth and differentiation by G-proteins. The GPCR142 gene 

expression was similar between tissues of inverted and normal teats.  

The difference effect of gene expression between GPCR135 and GPCR142 can be 

explained in terms of signalling pathways activated by the GPCRs (Figure 42). GPCRs 

interact with heterotrimeric G proteins composed of , and subunits. The  subunits 

of G proteins are divided into four subfamilies (G s, G i, G q and G 12). GPCR142, is 

linked to G i subunits, inhibits adenylyl cyclase and lowers cAMP levels whereas 
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GPCR135, is linked to G q subunits, bind to and activate phospholipase C (PLC), and 

can also control the activity of key intracellular signal-transducing molecules, including 

small GTP-binding proteins of the Ras and Rho families and members of the mitogen-

activated protein kinase (MAPK) family and mediated the cell proliferation by the 

transactivation of EGFR (Halls et al. 2007, Liu et al. 2003b, Liu et al. 2003a). Because 

RLN3 is primarily expressed in the brain, the relative abundant expression of GPCR142 

in the peripheral tissues also suggests the possible existence of an additional ligand 

expressed in peripheral tissues (Liu et al. 2003a). 

 

Figure 42: Signalling pathways activated by the GPCRs. (A) GPCR135, is linked to G q 

subunits, bind to and activate phospholipase C (PLC) (B) GPCR142 is 

linked to G i subunits (adapted from the review of Halls et al. 2007)) 

 

5.2.3 Candidate gene sequencing analysis 

 

5.2.3.1  Relaxin 3 (RLN3) 

In recent years many new members of the relaxin/insulin/IGF superfamily have been 

identified. The derived amino acid sequences of these genes reflect the characteristics of 

members of the relaxin/insulin family of peptide hormones. The sequences show the 

highest amino acid homology to INSL5, but the presence of an amino acid motif in the 

B-chain (RXXXRXXI), which is essential for relaxin receptor binding, indicates that they 

are more relaxin than insulin like. Furthermore, the structure of the A-chain of RLN3 

gene is more typical to other members of the relaxin peptide family, wherein the 

terminal A-chain cysteine residue is separated from the intra-disulfide bond-linked 
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cysteine by eight amino acids. The human and mouse RLN3 share 93% homology 

within the A- and B-domains. The homology of the C-peptide chain between relaxins is 

also generally quite low. However, human RLN3 and mouse RLN3 show very high 

homology in this region and are also much shorter than other relaxins. Interestingly, the 

human RLN3 B-chain sequence shares 59% sequence homology to a newly discovered 

frog relaxin sequence, although it only shares 38% homology in the A-chain and 14% 

homology in the C-chain. Considering the high homology between the human RLN3, 

mouse RLN3, and rat RLN3 in the A-chain sequence, it is unlikely that this frog 

sequence is an human RLN3
 homologue (Bathgate et al. 2002). The porcine RLN3 gene 

amino acid sequence (NP_001039144) includes 140 AA showing 78%, 71% and 70% 

homology compared with human (NP_543140), mouse (NP_775276), and rat 

(NP_733767), respectively. A comparison of the amino acid sequences of RLN3 gene 

among human, pig, mouse, and rat showed that all genes and derived pro-hormone 

sequences contain a typical signal sequence after the ATG start codon (Figure 43).  

 

Figure 43: Multi-alignment of the full length amino acid sequences of the three chains 

of the porcine RLN3 gene to human, mouse and rat RLN3 gene including the 

consensus sequences. The position of the detected SNP in the porcine RLN3 

gene is underlined. Positions where the same amino acids were detected are 

highlighted 
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The arginine-arginine pair of basic amino acids (RR) at the beginning of the C-peptide 

(B/C junction) found with all species cleavage between tryptophan and arginine (WR) 

at the end of the B-chain. Similarly, cleavage at the C/A junction is most likely to occur 

between the arginine (R) and aspartic acid (D) (Bathgate et al. 2002). The porcine RLN3
 

comprise a B-chain of 27 amino acids, a C-peptide of 63 amino acids, and an A-chain of 

24 amino acids. The homology between the RLN1 and the RLN3 gene is only 38% and 

28% in the A- and B-chains, respectively (Figure 44).  

 

Figure 44: The alignment of partial amino acid sequences of the A and B chain of the 

porcine RLN1 and the porcine RLN3 gene. All cystein residues are 

highlighted in bold letters. Underlined amino acids show the amino acids 

that do not differ between RLN1 and RLN3 

 

The cysteine (C) residues are retained in the correct positions. They are together with 

conserved glycine (G) residues necessary for flexibility around the cysteine linkages 

(Bathgate et al. 2002). Interestingly, there is the difference of the motif in the RLN 

receptor binding in the core of the B-chain (RXXXRXXI/V) between porcine RLN1 and 

RLN3 gene. The porcine RLN1 gene has the motif B-chain as (RXXXRXXV) whereas 

the motif B-chain of porcine RLN3 gene is (RXXXRXXI). 

The phylogeny of the RLN peptides was investigated showing the relationships between 

the genes. Amino acid sequences are from GenBank (accession no. in parenthesis): 

human RLN2 (BC126419), human RLN1 (NM_006911), porcine RLN1 (NM_213872), 

mouse RLN1 (NM_011272), porcine RLN3 (NM_001045679), human RLN3 

(NM_080864), rat RLN3 (NM_170667), mouse RLN3 (NM_173184). The phylogenetic 

analysis of the known RLN peptides of pigs and of human are shown in the figure 45.  
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Figure 45: Unrooted NJ tree showing phylogenetic relationships among the RLN family. 

In total eight predicted amino acid sequences were used for constructing the 

tree. The numbers of the nodes are the bootstrap scores (of 1000 replicates) 

 

The result indicates a closer relationship of the RLN1 to RLN2 than to RLN3, similar to 

previously published results (Wilkinson et al. 2005). The phylogenetic analysis of the 

known insulin-relaxin superfamily shows homologies of both the RLN3 and INSL5 

genes (results not shown). This might implement that the two RLN3-like genes existed 

prior to the genome duplication event proposed to have occurred in the teleost ancestor. 

The human RLN1 and RLN2, appear to be derived from recent gene duplication in 

mammals. Therefore, RLN-family peptides could be important for the evolution and 

adaptation to lineage-specific physiological processes during evolution (Hsu et al. 

2005). 

 

5.2.3.2 G-protein coupled receptor 135 (GPCR135) 

GPCR135 is highly conserved among different species. The porcine GPCR135 gene 

sequence showed 90%, 85% and 85% homology with the human, rat and mouse, 

respectively. GPCR135 shares many features common to GPCR proteins (Chen et al. 

2005), including seven hydrophobic TM domains, potential N-linked glycosylation sites 

in the amino terminal extracel extracellular loop which may form a disulfide bridge. 

Also included are asparagine in TM I, aspartate in TM II, tryptophans in TM IV and 

TM VI, prolines in TMs IV–VII and the conserved NPXXY motif in TM VII. However, 

it does possess unique characteristics threonine replaces the aspartate or glutamate 

usually found in the (D/E)RY motif in the amino-terminus of the second cytoplasmic 

loop.  
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5.2.4 Association analysis 

 

5.2.4.1 Relaxin3 (RLN3) 

The association analysis revealed some evidence of the possible role of the porcine 

RLN3 gene during the teat development. In previous studies the related RLN1 gene was 

described with effects on the inverted teat defect in pigs (Chomdej 2005). Studies using 

RLN1 knock-out mice, showed furthermore that these animals could not deliver milk to 

their offspring (Kuenzi et al. 1995, Zhao et al. 1999). The present study should further 

investigate the relevance of the porcine RLN3 gene for the development of the 

mammary gland in pigs. Even though the RLN3 gene was described being expressed in 

mammary gland in mice, there is no clear evidence about its role during the mammary 

gland development (Bathgate et al. 2002). In the present study significant association 

was only found for the estimated haplotypes with the inverted teat defect in pigs. 

Endogenous relaxin is known to have dramatic effects on the development of the 

mammary apparatus in pregnant pigs, rats, and mice (Kass et al. 2001, Kuenzi et al. 

1995, Zaleski et al. 1996, Zhao et al. 1999). It has profound effects on the development 

of the mammary gland in pigs, the effects of the hormone on the development of the 

mammary nipples are most dramatic and vital in rodents (Sherwood 2004). In 

primiparous pigs, mammary lobulo-alveolar development begins around day 80 of 

pregnancy, and it continues until term, a period that coincides with rising levels of 

estrogen, relaxin but also relaxin-dependent growth and softening of the cervix. 

Endogenous relaxin plays a major role in promoting the development of the mammary 

gland parenchyma. A subsequent study in ovariectomized nonpregnant gilts provided 

evidence that the effects of relaxin on mammary parenchymal development are estrogen 

dependent in pigs, and that they are accompanied by a reduction in the organization of 

collagen fiber bundles in the stroma (Winn et al. 1994). Endogenous relaxin was found 

to have no apparent effect on the weight of the mammary glands during the second half 

of the pregnancy in rats and mice (Hwang et al. 1991, Winn et al. 1994, Zhao et al. 

2000). Nevertheless, relaxin influences the mammary gland differentiation. In rats, 

relaxin reduces the density and organization of collagen fiber bundles, reduces the 

length of elastin fibers, and increases the cross-sectional area of arterioles. Moreover, in 

both rats and mice, relaxin increases alveolar development. Relaxin likely mediates the 

mammary development through direct effects on the mammary glands. Relaxin-binding 

sites have been reported in epithelial cells associated with lactiferous ducts and lobulo-
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alveolar structures in rats, pigs, and humans (Kohsaka et al. 1998, Kuenzi and Sherwood 

1995, Min and Sherwood 1996). The endogenous relaxin is required for the 

development of the mammary nipples that occurs during the second half of pregnancy in 

rats. The nipples in relaxin-deficient rats are so small at term that the pups cannot grasp 

them to obtain milk. Analysis of rat and mouse nipple histology demonstrated that 

relaxin promotes a reduction in the density of collagen fiber bundles that is similar to 

that which occurs in the cervix, vagina, and mammary glands (Hwang et al. 1991, 

Kuenzi and Sherwood 1992). 

The results of QTL analysis revealed significant QTL for the inverted teat defect on 

SSC2 (Jonas et al. 2008, Oltmanns 2003). These results led also to the suggestion that 

RLN3 may be a positional candidate gene for the inverted teat defect. 

There is no good evidence that the identified variants of the RLN3 genotypes are the 

actual causative mutations. In fact, the location of the site makes it seem unlikely that it 

affects protein structure or expression. The SNP at nucleotide position 2338 (A2338G) 

of the RLN3 gene leads to an amino acid change from glutamine (Q) to arginine (R) in 

the C peptide region of the protein. Using the prediction of the SIFT analysis it was 

found that for the RLN3 gene the substitution at position 101 from R to Q is predicted to 

affect the protein function with a score of only 0.03. 

 

5.2.4.2 G-protein coupled receptor 135 and 142 (GPCR135 and GPCR142) 

The association analysis between GPCR135 and GPCR142 gene with the inverted teat 

defect showed no significant in both the experimental and the commercial pig 

population. It was suggested that this receptor may be not involved in reproductive 

tissue; RLN3 may influence the teat characteristic via other receptors. GPCR135 and 

LGR7 share a ligand but have a vastly different tissue expression pattern, these two 

receptors exert different physiological functions. The physiological role of GPCR135 

may involve feeding, energy expenditure, metabolism, or other related central functions 

with impact on the energy metabolism also regarding the reproduction. The results from 

LGR7 knockout mice indicate an essential role for the LGR7 receptor in nipple 

development during pregnancy. The timed expression of LGR7 during pregnancy in the 

nipple and pituitary gland suggests that pregnancy hormones such as E or P might be 

involved in regulating LGR7
 gene expression in these tissues (Krajnc-Franken et al. 

2004).  
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5.2.5 Physical and genetic mapping 

 

5.2.5.1 Relaxin3 (RLN3) 

The positions of the porcine RLN3 genes detected using linkage mapping are in good 

agreement with the published assignment to HSA19p13.2 (Bathgate et al. 2002, 

Matsumoto et al. 2000). By comparative mapping of pig chromosome to human, an 

evidence was found that the RLN3 gene mapped on SSC2 (Meyers et al. 2005) (Figure 

46).  

 

Figure 46: A comparative map of porcine chromosome 2 to the human chromosomes, 

whereas the location of RLN3 is most likely on SSC2 compared to its 

assignement to HSA19  

 

5.2.5.2 G-protein coupled receptor 135 (GPCR135) 

Also the position of the porcine GPCR135 gene is in good agreement with the published 

assignment to HSA5p15.1-p14 (Bathgate et al. 2002, Matsumoto et al. 2000). By 

comparative mapping of pig chromosome to human it was suggested that the porcine, 

GPCR135 gene is mapped on SSC16 (Meyers et al. 2005) (Figure 47). 
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Figure 47: A comparative map of the porcine chromosome 16 and the human 

chromosome 5 revealed the assignment of GPCR135 to SSC16 

 

5.2.5.3 G-protein coupled receptor 142 (GPCR142) 

The porcine GPCR142 gene could be mapped on SSC4 using genetic mapping. These 

findings are in good agreement with the assignment to the comparative human 

chromosome 1q22 (Fredriksson et al. 2003). Comparative mapping of the pig 

chromosome to human revealed the assignment of the porcine GPCR142 gene to SSC4 

(Meyers et al. 2005) (Figure 48). 

 

Figure 48: The comparative map of the porcine chromosome 4 and the human 

chromosomes 1 and 8 revealed the assignment of GPCR142 to SSC4 
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5.3 Future prospects 

Lifestock health and welfare traits are mostly complex and multifactorial. The 

identification of functional candidate genes and causative mutations is therefore a 

challenge. The detection of polymorphisms as well as the analysis of association and the 

trait associated alleles would lead to the functional characterization of genes 

(Hiendleder et al. 2005).  

In the present study three related genes, RLN3 and its receptors (GPCR135 and GPCR 

142), were molecularly characterized, the association of haplotypes of the RLN3 with 

the inverted teat defect could be demonstrated. As RLN3 and GPCR135 were found to 

be differentially expressed between normal and inverted teats, future studies should 

focus on the additional screening for potential SNPs in the promoter regions of these 

genes. 

The term of functional genomics refers to the development and application of holistic 

experimental approaches to assess gene function by using the information and reagents 

provided by structural genomics. It could be demonstrated in the present study that the 

application of whole genome microarrays is an useful tool to compare the expression 

patterns within relevant tissues. The results of the expression analysis delivered a list of 

differentially regulated genes that represent functional candidate genes for the inverted 

teat defect in pigs. Future investigations are ongoing; they will include the analysis of 

complex changes in the transcriptome during the development of the mammary gland in 

pigs. Further most promosing genes will be used for furher investigation of their protein 

profile in the target tissues. A proteomics strategy involves the localization of proteins 

by immunolocalization in cells as a necessary first step towards understanding protein 

function in complex cellular networks (Phizicky et al. 2003). A number of techniques 

including Western blot, immunohistochemical staining, or enzyme linked 

immunosorbent assay (ELISA) allow to test for proteins produced during a particular 

disease, which helps to understanding the proteome, the structure and function of each 

protein and the complexities of protein-protein interactions (Cheng et al. 2007, 

Shakhnovich et al. 2003). 
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6      Summary 

This study was carried out to detect and to analyze functional candidate genes for the 

inverted teat defect in pigs. Using two different strategies genes were selected due to (1) 

their expression in tissues of normal and inverted teats of phenotypically different sows 

using microarray experiments, and (2) their described function in the literature. The 

microarray analysis led to the selection of the five functional candidate genes CTGF, 

EGFR, IGF-II, EGF and GDF8. The RLN3 gene and its two receptors, GPCR135 and 

GPCR142 were selected due to their described physiology in literature.  

In total twelve commercial DL and crossbred DL×DE sows were selected for the 

collection of samples for the expression study. Ten sows with at least one inverted teat, 

and two animals without any defect teat were mated to different boars for which a high 

number of affected offspring were observed during the performance tests. For this study 

two teats from a sow with defect and one teat of a sow without defect were analyzed 

using eleven genome wide pig specific microarrays. In total 695 genes were detected 

being up and 558 genes being down regulated in inverted compared to normal teats. The 

combination with clustering analysis, the results of the expression analysis led to the 

selection of three genes which were shown to be higher expressed in the samples of 

animals with inverted teats (CTGF, EGFR and IGF-II), and two genes were shown to be 

lower expressed in animals with inverted teats (EGF and GDF8). 

Using real-time PCR to validate the expression results, CTGF and IGF-II genes showed 

higher transcript abundances in tissue of inverted teats compared to normal teats 

whereas the GDF8 gene was found to have lower transcript abundance in inverted teats 

compared to normal teats. For the two genes EGF and EGFR no significant different 

transcript abundances could be shown between inverted and normal teats. In summary 

these results suggest that the genes CTGF, IGF-II and GDF8 play a potential role for 

the development of the inverted teat defect in pigs. 

For the second approach the three functional candidate genes RLN3, GPCR135 and 

GPCR142 were selected due to their described function in literature. Based on the 

porcine cDNA RLN3 gene sequence available from NCBI (accession number 

AB076661) primers were selected at the end of  frist exon  and within the first part of 

second exon to sequence the intron part of this gene. Different primers were used for 

further sequencing of the 2033 bp long intron of the RLN3 gene. In accordance with 

previous publications an 193 bp first exon and an 230 bp second exon were identified. 

Screening for polymorphism revealed two SNP within the RLN3 gene located in the 
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intron (C1163T) and exon 2 (A2338G). Both base changes lead to a change of the 

cutting side of a restriction enzyme. To genotype experimental and commercial pigs at 

the first locus, an 434 bp fragment was amplified and further digested using RsaI 

endonuclease. To genotype animals at the second SNP, PCR-RFLP was used to detect 

the different alleles within an 334 bp fragment after digestion using TaqI endonuclease. 

The allele variante within the intron including the base C did not had any cutting side 

and due to that led to an 434 bp fragment, whereas alleles with the base T led to two, 

359 and 75 bp fragments. By digestion the fragment within the second exon, two 

possible alleles were generated including either the base A (no cutting side: 334 bp) or 

the base G (one cutting side: 217 and 117 bp).  

Different from the porcine RLN3 no prior information of the sequence of the porcine 

GPCR135 gene was available. The sequence of the porcine GPCR135 gene was 

therefore obtained starting with heterologous primers designed from conserved regions 

of the human, mouse and rat GPCR135 genes and subsequent sequencing using 

homologous primers. It was found that GPCR135 is highly conserved among different 

species, the porcine GPCR135 gene showed 90%, 85% and 85% homology with human, 

rat and mouse genes, respectively. A primer pair was designed to screen for 

polymorphism within an 859 bp fragment of the GPCR135 gene. Two SNP (C to A and 

C to T) were detected in the exon part of the GPCR135 gene and genotyped using PCR-

RFLP. The digestion using the MspI restriction enzyme validated the detected 

polymorphism and led to the detection of two alleles A (350 bp, 276 bp and 202 bp 

fragment), and C (276 bp, 202 bp, 186 bp, and 164 bp). To genotype animals for the 

other SNP, PCR-RFLP using MnlI endonuclease was performed. An 859 bp product 

was amplified showing the alternative alleles T (131 and 57 bp) and C (75, 57 and 56 

bp).  

Primers pairs were designed from published sequences (accession number AY633768) 

to screen for polymorphisms within an 1002 bp fragment of the porcine GPCR142 gene. 

The screening for polymorphism revealed a SNP (G to A) within the single exon of the 

porcine GPCR142 gene. Genotyping was performed by PCR-RFLP using the HaeIII 

endonuclease to verify the detected polymorphism. Two alleles could be detected with 

allele A leading to an additional 153 bp fragment, and allele A resulted in two different 

fragments after digestion (126 and 27 bp). Monomorphic fragments of 222, 170, 109 

and 96 bp were found in both allele variants.  
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Animals of an experimental pig population derived from a cross between Duroc and 

Berlin miniature pigs (DUMI) showing a high incidence of the inverted teat defect were 

used for genotyping. Additional association studies were also performed using samples 

of animals of the commercially used dam lines German Landrace (DL) and German 

Large White (DE). The Family-Based Association Test (FBAT) was used to analyse the 

association of the genotypes with different productive and reproductive traits. 

Association analysis using haplotypes revealed only a significant association of RLN3 

with the inverted teat defect. The association analysis between each SNP of RLN3, 

GPCR135 and GPCR142 gene with the appearance of the inverted teat defect showed 

no significant association in both pig populations. Haplotypes revealed no significant 

association between the GPCR135 and GPCR 142 gene and the inverted teat defect.  

The position of the RLN3 gene was mapped using linkage and physical mapping; the 

two receptors were mapped using only the genetic mapping. For the genetic mapping, 

two point and multipoint procedures of the CRI-MAP package version 2.4 were used. 

The multipoint linkage map revealed a good evidence of RLN3 being mapped to SSC2. 

This result could be confirmed by physical mapping using a RH mapping. The results 

are in accordance with the comparative mapping to human, additionally it was found 

that RLN3 might be located in the region of a QTL detected for the inverted teat defect 

on SSC2. The multipoint linkage map revealed that GPCR135 and GPCR142 are 

located on SSC16 and SSC4, respectively.  

Additional to the sequencing and association analysis, the expression of these three 

genes was tested. Total RNA was isolated from tissues of two different male pigs 

(muscle, heart, spleen, lymph nodes, skin, brain, teat, lung, testis, tonsil, liver and 

kidney) and one sow (uterus and inverted teat). First strand cDNA was synthesised to 

analyse the expression pattern of the genes in different tissues following the protocol for 

semi-quantitative RT-PCR. The expression of 18S rRNA was used as an internal 

reference. The expression profile of porcine RLN3 was similar to the RLN3 expression 

in mouse which is present in several tissues including the brain, thymus, spleen, lung, 

testis, ovary, and mammary gland.  

It was found that the mRNA expression pattern of 
GPCR142 and GPCR135 are 

different, the GPCR135 mRNA was higher expressed in reproductive tissue while the 

GPCR142 mRNA was found in a broader range of peripheral tissues. 

Both, the RLN3 and GPCR135 gene were also investigated using real-time PCR. Both 

genes were higher expressed in teats from sows with defect compared to sows without 
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defect, whereas the expression levels of inverted teat and normal teat from the same 

sows with defect were similar. The mRNA expression of the GPCR142 gene was 

similar in teats of sows with defect and the normal teats of sows without defect.  

In conclusion a number of functional candidate genes was identified and further 

analyzed to detect their impact on the inverted teat defect in pigs. A whole genome 

expression analysis showed for the first time the expression patterns of genes in relevant 

tissues of inverted compared to normal teats in phenotypic different sows. A list of trait 

dependent regulated genes that represent functional candidate genes could be validated 

using real-time PCR. Further this was the first study characterizing the porcine RLN3 

gene and its receptors GPCR135 and GPCR142. The association between haplotypes of 

the RLN3 gene and the inverted teat defect could be demonstrated. Further expression 

studies revealed impact of these genes on the heritable inverted teat defect in pigs. 



Zusammenfassung                                                                                                         114 
 

7      Zusammenfassung 

Diese Untersuchung wurde zur Identifizierung von funktionellen Kandidatengenen für 

den Stülpzitzendefekt beim Schwein durchgeführt. Mit Hilfe von zwei 

unterschiedlichen Strategien wurden Gene aufgrund (1) ihrer Expression in Geweben 

von normalen und Stülpzitzen von phänotypisch unterschiedlichen Sauen mit einer 

Microarray Analyse und (2) ihrer in der Literatur beschriebenen Funktion ausgewählt. 

Aufgrund der Microarray Analyse wurden die fünf funktionellen Kandidatengene 

CTGF, EGFR, IGF-II, EGF und GDF8 ausgewählt. Das RLN3 Gen und die beiden 

Rezeptoren GPCR135 und GPCR142 wurden aufgrund der beschriebenen Physiologie 

in der Literatur ausgewählt.  

Insgesamt wurden zwölf kommerzielle reine DL und Hybridsauen (DL×DE) für die 

Sammlung der Proben für die Expressionsanalysen selektiert. Zehn Sauen mit 

mindestens einer Stülpzitze und zwei Sauen ohne Stülpzitzen wurden an Eber angepaart 

für die eine hohe Anzahl an betroffenen Nachkommen in der Nachkommenprüfung 

beobachtet wurde. Im Rahmen dieser Untersuchung wurden zwei Zitzen von einer Sau 

mit und eine Zitze von einer Sau ohne Stülpzitze mit elf genomweiten 

schweinespezifischen Microarray analysiert. Insgesamt wurden 695 Gene identifiziert, 

die in Stülpzitzen im Vergleich zu normalen Zitzen stärker und 558 Gene die geringer 

exprimiert waren. Die unterschiedlich exprimierten Gene konnten spezifischen 

Genclustern zugeordnet werden, die relevant für verschiedene reproduktive 

Mechanismen wie Reproduktionsfähigkeit, Milchsynthese, Sekretion oder 

Milchdrüseninvolution sind. Die Ergebnisse der Expressions- und Clusteranalyse führte 

zu der Auswahl von drei Genen (CTGF, EGFR und IGF-II), die in Proben von 

Stülpzitzen stärker exprimiert waren und zwei Gene (EGF und GDF8), die in diesen 

Geweben geringer exprimiert waren. Die Gene wurden anschließend mit einer real-time 

PCR untersucht, um die Ergebnisse zu bestätigen. Dabei zeigten die CTGF und IGF-II 

Gene eine höhere Transkriptabundanz in Geweben von Stülpzitzen im Vergleich zu 

normalen Zitzen und das GDF8 Gen war geringer exprimiert in diesen Geweben. Für 

die beiden Gene EGF und EGFR konnte keine unterschiedliche Expression 

nachgewiesen werden. Zusammenfassend konnte an diesen Ergebnissen gezeigt 

werden, dass die Gene CTGF, IGF-II und GDF8 eine potentielle Rolle für die 

Entwicklung der Stülpzitze beim Schwein spielen. 

Für den zweiten Ansatz der Untersuchung wurden die drei funktionellen 

Kandidatengene RLN3, GPCR135 und GPCR142 aufgrund ihrer beschriebenen 
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Funktion in der Literatur ausgewählt. Basierend auf der porcinen cDNA RLN3 

Gensequenz der NCBI Datenbank (Nummer AB076661) wurden Primer am Ende des 

ersten Exon und am Beginn des zweiten Exons abgeleilet, um die Intronregion zu 

sequenzieren. Verschiedene Primer wurden für die weitere Sequenzierung des 2033 bp 

langen Introns des RLN3 Gens gebildet. In Übereinstimmung mit vorangegangenen 

Veröffentlichungen konnte ein 193 bp langes Exon 1 und 230 bp langes Exon 2 

identifiziert werden. Die Suche nach Polymorphismen ergab zwei SNP innerhalb der 

RLN3 Gensequenz, welche im Intron (C1163T) und im Exon 2 (A2338G) lokalisiert 

waren. Beide Polymorphismen führen zu eine Änderung der Schnittstelle für ein 

Restriktionsenzym. Zur Genotypisierung von experimentellen und kommerziellen 

Schweinen am ersten Genort wurde ein 434 bp langes Fragment vervielfältigt und mit 

der RsaI Endonuklease verdaut. Zur Genotypisierung von Tieren an dem Genort des 

zweiten SNP wurde ebenfalls eine PCR-RFLP zur Detektion der verschiedenen Allele 

innerhalb eines 334 bp langen Fragmentes nach dem Verdau mit TaqI Endonuklease 

durchgeführt. Die Allelvariante innerhalb des Introns mit einer C Base hatte keine 

Schnittstelle für das Enzym, während die Allele mit der Base T zu zwei 359 und 75 bp 

großen Fragmenten führte. Nach dem Verdau des Fragmentes innerhalb des zweiten 

Exons wurden zwei Allele produziert, welche entweder die Base A (keine Schnittstelle, 

334 bp langes Fragment) oder die Base G (eine Schnittstelle: 217 und 117 bp 

Fragmente) enthielten.  

Anders als für das porcine RLN3 Gen war keine Information für die Sequenz des 

porcinen GPCR135 Gens vorhanden. Die Sequenz dieses Gens wurde daher mit Hilfe 

von heterologen Primern analysiert, welche innerhalb von konservierten Regionen 

dieses Gens von Mensch, Maus und Ratte abgeleilet wurden. Weiteres Sequenzieren mit 

homologen Primern führte zur Identifizierung der Sequenz dieses Gens. Es wurde 

festgestellt, dass das GPCR135 Gen unter verschiedenen Spezies sehr stark konserviert 

ist, die Sequenz des porcinen GPCR135 Gens zeigt 90%, 85% und 85% Homologie mit 

den Sequenzen von Mensch, Ratte und Maus. Ein Primerpaar wurde zur Suche von 

Polymorphismen innerhalb eines 859 bp langes Fragmentes designed. Zwei SNP (C zu 

A und C zu T) wurden im Exon des GPCR135 Gens detektiert und mit einer PCR-RFLP 

genotypisiert. Der Verdau mit dem Restriktionsenzym MspI bestätigte einen 

Polymorphismus und führte zu den zwei Allelen A (350 bp, 276 bp und 202 bp 

Fragment) und C (276 bp, 202 bp, 186 bp und 164 bp). Zur Genotypisierung von Tieren 

an dem zweiten Genort wurde eine PCR-RFLP mit der MnlI Endonuklease 
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durchgeführt. Ein 859 bp langes Produkt wurde amplifiziert welches die alternativen 

Allele T (131 und 57 bp) und C (75, 57 und 56 bp) beinhaltete. 

Primerpaare wurden ausgehend von der publizierten Sequenz (Genbanknummer 

AY633768) des porcinen GPCR142 Gens zur Detektion von Polymorphismen innerhalb 

eines 1002 bp langen Fragmentes abgeleilet. Die Suche nach Polymorphismen führte zu 

einem SNP (G zu A) innerhalb des Exons. Die Genotypisierung wurde mit einer PCR-

RFLP mit der HaeIII Endonklease durchgeführt. Der SNP konnte verifiziert werden, die 

Restriktion führte zu einem Allel A mit einem zusätzlichen 153 bp langen Fragment und 

einem Allel G mit zwei zusätzlichen Allelen (126 and 27 bp). Weiterhin wurden die 

monomorphen Fragmente der Längen 222, 170, 109 und 96 bp in beiden Allelen 

identifiziert.  

Tiere einer experimentellen Schweinepopulation, einer Kreuzung zwischen Duroc und 

Berliner Miniaturschwein (DUMI), mit einer hohen Frequenz an Stülpzitzen wurden für 

die Genotypisierung verwendet. Zusätzlich wurden Proben der kommerziell genutzen 

Sauenlinien Deutsche Landrasse (DL) und Deutsches Edelschwein (DE) verwendet. Der 

Familien-basierte Assoziationstest wurde zur Analyse der Assoziation der Genotypen zu 

verschiedenen Reproduktions- und Produktionsmerkmalen verwendet. Die 

Assoziationsanalyse ergab eine signifikante Assoziation der Haplotypen des RLN3 Gens 

zu dem Stülpzitzendefekt. Die Assoziationsanalyse zwischen den SNPs der RLN3, 

GPCR135 und GPCR142 Gene und dem Stülpzitzendefekt ergab keine signifikante 

Assoziation in beiden Populationen. Haplotypen, welche mit dem FBAT Programm 

gebildet wurden, zeigten ebenfalls keine signifikante Assoziation zu dem 

Stülpzitzendefekt.  

Die Position des RLN3 Gens konnte mit einer genetischen und physischen Kartierung 

festgestellt werden; die relativen Positionen der beiden Rezeptoren konnten ebenfalls 

mit einer genetischen Kartierung identifiziert werden. Die genetische Kartierung des 

RLN3 Gens mit dem CRI-MAP Paket, Version 2.4 ergab die Zuordnung zu SSC2. 

Dieses Ergebnis konnte mit der physischen Kartierung mit einem RH Panel bestätigt 

werden. Die Ergebnisse stimmen ebenfalls mit der vergleichenden Kartierung zum 

Menschen überein. Es konnte darüber hinaus festgestellt werden, dass das porcine RLN3 

Gen in einer QTL Region für den Stülpzitzendefekt liegt. Die Kopplungskarte ordnete 

die Gene GPCR135 und GPCR142 den Chromosomen SSC16 und SSC4 zu.  

Zusätzlich zu der Sequenzierung und der Assoziationsanalyse wurde ebenfalls die 

Expression dieser drei Gene untersucht. Die RNA wurde aus verschiedenen Geweben 
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von zwei männlichen Schweinen (Muskel, Herz, Milz, Lymphknoten, Haut, Gehirn, 

Zitzen, Lunge, Hoden, Mandel, Leber und Niere) und einer Sau (Uterus und Stülpzitze) 

isoliert. Einzelstrang cDNA wurde zur Analyse der Expressionsprofile der Gene in den 

verschiedenen Geweben synthetisiert. Die Expressionprofile wurden mit einer semi-

quantitativen RT-PCR erstellt, die Expression des 18S rRNA Gens wurde als Kontrolle 

verwendet. Die Expressionprofile des porcinen RLN3 Gens waren ähnlich der 

Expression in Mäusen, wo dieses Gen in verschiedenen Geweben wie Gehirn, Thymus, 

Milz, Lunge, hoden, Ovar und Zitze, detektiert wurde. Es wurde ebenfalls festgestellt, 

das die Expressionsmuster der beiden Gene GPCR142 und GPCR135 sich 

unterschieden, die GPCR135 mRNA war stärker in reproduktiven Geweben exprimiert 

während die GPCR142 mRNA in mehr peripheralen Geweben detektiert wurde.  

Die beiden Gene RLN3 und GPCR135 wurden ebenfalls mit einer real-time PCR 

untersucht. Beide Gene waren stärker in Geweben von betroffenen Sauen exprimiert im 

Vergleich zu Geweben von normalen Sauen, während sich die Expression in Geweben 

von normalen und Stülpzitzen der gleichen Sau nicht unterschied. Die mRNA 

Expression des GPCR142 Gens unterschied sich in den untersuchten Geweben kaum.  

Zusammenfassend wurden verschiedene funktionelle Kandidatengene identifiziert und 

weiter analysiert, um ihren Einfluss auf den Stülpzitzendefekt beim Schwein zu 

untersuchen. Eine genomweite Expressionsanalyse zeigte zum ersten Mal die 

Expressionsmuster von Genen in den wichtigsten Geweben von normalen und 

Stülpzitzen in phänoypisch unterschiedlichen Sauen. Die merkmalsabhängige 

Regulation von verschiedenen Gene konnte mit einer real-time PCR bestätigt werden. 

Diese Untersuchung war weiterhin die erste zur Charakterisierung des porcinen RLN3 

Gens und seiner Rezeptoren GPCR135 und GPCR142. Die Assoziation zwischen den 

Haplotypen des RLN3 Gens und dem Stülpzitzendefekt konnte gezeigt werden. Weiter 

zeigten Expressionanalysen den Einfluss dieser Gene auf den Erbfehler Stülpzitze beim 

Schwein. 
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9       Appendixes 

 

9.1    The functional annotations of up-regulated genes in inverted teat  

 

Table 9.1: The functional annotations among 695 up-regulated genes in inverted teat 

 
Annotation Cluster 1 Enrichment Score: 30.76 Number 

of genes 

P-Value 

GOTERM_BP_ALL Antigen presentation 76 2.5E-59 

GOTERM_BP_ALL Immune response 81 3.3E-49 

GOTERM_BP_ALL Antigen processing 63 6.3E-48 

SP_PIR_KEYWORDS MHC II 48 7.0E-46 

GOTERM_BP_ALL Defense response 81 2.7E-45 

GOTERM_BP_ALL Response to biotic stimulus 81 8.5E-45 

GOTERM_BP_ALL Organismal physiological 

process 

85 1.1E-44 

GOTERM_MF_ALL MHC class II receptor activity 50 8.6E-40 

GOTERM_BP_ALL Response to stimulus 85 1.6E-39 

INTERPRO_NAME MHC class II, beta chain, N-

terminal 

46 4.3E-39 

GOTERM_BP_ALL Antigen presentation, exogenous 

antigen 

49 1.2E-36 

GOTERM_BP_ALL Antigen processing, exogenous 

antigen via MHC class II 

49 1.2E-36 

GOTERM_MF_ALL Transmembrane receptor activity 78 1.3E-35 

GOTERM_MF_ALL Receptor activity 81 6.0E-24 

GOTERM_MF_ALL Signal transducer activity 88 1.2E-18 

SP_PIR_KEYWORDS Transmembrane 56 6.7E-14 

GOTERM_CC_ALL Membrane 89 1.5E-11 

GOTERM_CC_ALL Intrinsic to membrane 64 1.2E-9 

GOTERM_CC_ALL Integral to membrane 64 1.2E-9 

GOTERM_BP_ALL Physiological process 105 4.3E-7 

GOTERM_CC_ALL Cell 99 2.4E-2 
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Continued Table 9.1 
 
Annotation Cluster 2 Enrichment Score: 15.5 Number 

of genes 

P-Value 

INTERPRO_NAME Immunoglobulin C1 type 43 8.8E-33 

INTERPRO_NAME Immunoglobulin/major 

histocompatibility complex 

39 6.3E-30 

SMART_NAME IGc1 36 1.8E-25 

INTERPRO_NAME Immunoglobulin-like 43 7.7E-24 

INTERPRO_NAME MHC class I, alpha chain, alpha1 

and alpha2 

25 1.8E-16 

GOTERM_MF_ALL MHC class I receptor activity 25 2.0E-15 

GOTERM_CC_ALL Immunological synapse 27 1.2E-13 

GOTERM_CC_ALL MHC class I protein complex 27 1.2E-13 

GOTERM_CC_ALL MHC protein complex 27 1.2E-13 

INTERPRO_NAME MHC class I, alpha chain, C-

terminal 

15 5.2E-12 

GOTERM_CC_ALL Plasma membrane 30 9.3E-10 

GOTERM_BP_ALL Antigen processing, endogenous 

antigen via MHC class I 

14 2.4E-8 

GOTERM_BP_ALL Antigen presentation, 

endogenous antigen 

14 2.4E-8 

GOTERM_CC_ALL Protein complex 32 6.7E-4 

Annotation Cluster 3 Enrichment Score: 2.46   

SP_PIR_KEYWORDS Immune response 5 2.7E-4 

SP_PIR_KEYWORDS Immunoglobulin domain 6 2.2E-3 

INTERPRO_NAME MHC class II, alpha chain, N-

terminal 

5 4.8E-3 

SP_PIR_KEYWORDS MHC II 3 5.0E-2 

Annotation Cluster 4 Enrichment Score: 1.12   

INTERPRO_NAME Peptidase C1A, papain C-

terminal 

4 3.2E-3 

INTERPRO_NAME Peptidase C1A, papain 4 3.2E-3 
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Continued Table 9.1 
 
Annotation Cluster 4 Enrichment Score: 1.12 Number 

of genes 

P-Value 

SP_PIR_KEYWORDS Lysosome 4 6.7E-3 

INTERPRO_NAME Peptidase, cysteine peptidase 

active site 

4 8.2E-3 

SMART_NAME Pept_C1 3 1.4E-2 

INTERPRO_NAME Proteinase inhibitor I29, 

cathepsin propeptide 

3 1.8E-2 

GOTERM_MF_ALL Cysteine-type peptidase activity 4 7.7E-2 

GOTERM_MF_ALL Cysteine-type endopeptidase 

activity 

4 7.7E-2 

SP_PIR_KEYWORDS Thiol protease 3 9.0E-2 

SP_PIR_KEYWORDS Zymogen 3 4.6E-1 

GOTERM_MF_ALL Endopeptidase activity 5 8.0E-1 

SP_PIR_KEYWORDS Protease 3 8.2E-1 

SP_PIR_KEYWORDS Hydrolase 8 8.7E-1 

GOTERM_MF_ALL Peptidase activity 5 9.2E-1 

GOTERM_MF_ALL Hydrolase activity 11 9.9E-1 

Annotation Cluster 5 Enrichment Score: 0.77   

INTERPRO_NAME Immunoglobulin subtype 6 6.7E-2 

SMART_NAME IG 5 2.4E-1 

INTERPRO_NAME Immunoglobulin V-set 3 3.2E-1 

Annotation Cluster 6 Enrichment Score: 0.37   

GOTERM_BP_ALL Response to wounding 5 8.4E-2 

GOTERM_BP_ALL Response to external stimulus 5 2.2E-1 

GOTERM_BP_ALL Development 5 6.6E-1 

GOTERM_BP_ALL Response to stress 6 7.2E-1 

GOTERM_BP_ALL Response to pest, pathogen or 

parasite 

3 8.0E-1 

GOTERM_BP_ALL Response to other organism 3 8.2E-1 
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Continued Table 9.1 
 
Annotation Cluster 7 Enrichment Score: 0.28 Number 

of genes 

P-Value 

UP_SEQ_FEATURE Glycosylation site:N-linked 

(GlcNAc...) 

14 3.9E-1 

SP_PIR_KEYWORDS Glycoprotein 16 5.3E-1 

UP_SEQ_FEATURE Disulfide bond 14 7.1E-1 

Annotation Cluster 8 Enrichment Score: 0.17   

GOTERM_BP_ALL Regulation of organismal 

physiological process 

3 1.7E-1 

GOTERM_BP_ALL Cellular biosynthesis 6 9.1E-1 

GOTERM_BP_ALL Biosynthesis 6 9.6E-1 

GOTERM_BP_ALL Regulation of physiological 

process 

8 9.8E-1 

Annotation Cluster 8 Enrichment Score: 0.17   

GOTERM_BP_ALL Regulation of biological process 8 9.9E-1 

Annotation Cluster 9 Enrichment Score: 0.12   

UP_SEQ_FEATURE Transmembrane region 10 6.3E-1 

SP_PIR_KEYWORDS Membrane 11 8.0E-1 

SP_PIR_KEYWORDS Phosphorylation 6 8.7E-1 

Annotation Cluster 10 Enrichment Score: 0.1   

GOTERM_BP_ALL Cell proliferation 3 2.5E-1 

GOTERM_BP_ALL Cell cycle 3 4.2E-1 

GOTERM_BP_ALL Development 5 6.6E-1 

GOTERM_MF_ALL Growth factor activity 3 8.5E-1 

GOTERM_BP_ALL Regulation of physiological 

process 

8 9.8E-1 

GOTERM_CC_ALL Extracellular region 9 9.9E-1 

GOTERM_BP_ALL Regulation of biological process 8 9.9E-1 

GOTERM_MF_ALL Receptor binding 5 9.9E-1 
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Continued Table 9.1 
 
Annotation Cluster 11 Enrichment Score: 0.08 Number 

of genes 

P-Value 

GOTERM_BP_ALL Regulation of cellular 

physiological process 

6 1.0E0 

GOTERM_MF_ALL Protein binding 9 1.0E0 

GOTERM_BP_ALL Regulation of cellular process 6 1.0E0 

GOTERM_BP_ALL Regulation of metabolism 3 1.0E0 

    

INTERPRO_NAME Calcium-binding EF-hand 4 5.5E-1 

GOTERM_MF_ALL calcium ion binding 5 7.1E-1 

INTERPRO_NAME EF-Hand type 3 8.1E-1 

GOTERM_MF_ALL Ion binding 7 1.0E0 

GOTERM_MF_ALL Metal ion binding 7 1.0E0 

GOTERM_MF_ALL Cation binding 6 1.0E0 

Annotation Cluster 12 Enrichment Score: 0.07   

GOTERM_BP_ALL Translation 3 2.2E-1 

GOTERM_BP_ALL Protein biosynthesis 5 6.4E-1 

GOTERM_BP_ALL Macromolecule biosynthesis 5 7.9E-1 

KEGG_PATHWAY Cytokine-cytokine receptor 

interaction 

3 8.9E-1 

GOTERM_BP_ALL Cellular biosynthesis 6 9.1E-1 

GOTERM_BP_ALL Biosynthesis 6 9.6E-1 

GOTERM_BP_ALL Protein metabolism 10 9.9E-1 

GOTERM_BP_ALL Biopolymer metabolism 4 1.0E0 

GOTERM_BP_ALL Cellular protein metabolism 8 1.0E0 

GOTERM_BP_ALL Cellular macromolecule 

metabolism 

8 1.0E0 

GOTERM_BP_ALL Macromolecule metabolism 10 1.0E0 

GOTERM_BP_ALL Primary metabolism 12 1.0E0 

GOTERM_BP_ALL Cellular metabolism 13 1.0E0 

GOTERM_BP_ALL Metabolism 16 1.0E0 

GOTERM_BP_ALL Cellular physiological process 21 1.0E0 

GOTERM_BP_ALL Cellular process 23 1.0E0 



Appendixes                                                                                                                142 
 

Continued Table 9.1 
 
Annotation Cluster 13 Enrichment Score: 0.01 Number 

of genes 

P-Value 

GOTERM_MF_ALL Structural molecule activity 3 9.3E-1 

GOTERM_CC_ALL Non-membrane-bound organelle 3 1.0E0 

GOTERM_CC_ALL Intracellular non-membrane-

bound organelle 

3 1.0E0 

Annotation Cluster 14 Enrichment Score: 0   

GOTERM_BP_ALL Regulation of physiological 

process 

8 9.8E-1 

GOTERM_BP_ALL Regulation of biological process 8 9.9E-1 

GOTERM_CC_ALL Cytoplasm 8 1.0E0 

GOTERM_CC_ALL Nucleus 4 1.0E0 

GOTERM_CC_ALL Intracellular membrane-bound 

organelle 

6 1.0E0 

GOTERM_CC_ALL Membrane-bound organelle 6 1.0E0 

GOTERM_CC_ALL Intracellular organelle 9 1.0E0 

GOTERM_CC_ALL Organelle 9 1.0E0 

GOTERM_CC_ALL Intracellular 13 1.0E0 

Annotation Cluster 15 Enrichment Score: 0   

GOTERM_BP_ALL Ion transport 4 9.9E-1 

SP_PIR_KEYWORDS Transport 3 1.0E0 

GOTERM_MF_ALL Transporter activity 3 1.0E0 

GOTERM_BP_ALL Establishment of localization 8 1.0E0 

GOTERM_BP_ALL Localization 8 1.0E0 

GOTERM_BP_ALL Transport 7 1.0E0 
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9.2   The functional annotations of down-regulated genes in inverted teat 

 
Table 9.2 The functional annotations among 558 down-regulated genes in inverted teat 
 
 
Annotation Cluster 1 Enrichment Score: 10.06 Number 

of genes 

P-Value 

GOTERM_CC_ALL MHC class I protein complex 27 7.3E-23 

GOTERM_CC_ALL MHC protein complex 27 7.3E-23 

GOTERM_CC_ALL Immunological synapse 27 7.3E-23 

INTERPRO_NAME MHC class I, alpha chain, alpha1 

and alpha2 

25 1.8E-21 

GOTERM_MF_ALL MHC class I receptor activity 25 4.8E-21 

INTERPRO_NAME Immunoglobulin C1 type 27 2.7E-19 

GOTERM_CC_ALL Plasma membrane 29 2.0E-18 

INTERPRO_NAME Immunoglobulin/major 

histocompatibility complex 

24 5.2E-17 

INTERPRO_NAME MHC class I, alpha chain, C-

terminal 

15 7.5E-15 

GOTERM_CC_ALL Protein complex 32 1.2E-12 

GOTERM_BP_ALL Antigen presentation 27 4.3E-12 

GOTERM_BP_ALL Antigen presentation, 

endogenous antigen 

14 1.3E-11 

GOTERM_BP_ALL Antigen processing, endogenous 

antigen via MHC class I 

14 1.3E-11 

INTERPRO_NAME Immunoglobulin-like 24 1.5E-11 

SMART_NAME IGc1 20 1.9E-11 

GOTERM_BP_ALL Immune response 28 1.5E-8 

GOTERM_BP_ALL Defense response 28 1.3E-7 

GOTERM_BP_ALL Response to biotic stimulus 28 1.8E-7 

GOTERM_BP_ALL Organismal physiological process 28 3.2E-6 

GOTERM_MF_ALL Transmembrane receptor activity 27 1.4E-5 

GOTERM_BP_ALL Response to stimulus 28 4.2E-5 

GOTERM_BP_ALL Antigen processing 14 5.5E-4 

GOTERM_CC_ALL Membrane 40 7.9E-4 
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Continued Table 9.2 
 
Annotation Cluster 1 Enrichment Score: 10.06 Number 

of genes 

P-Value 

GOTERM_MF_ALL Receptor activity 30 1.7E-3 

GOTERM_BP_ALL Physiological process 57 1.7E-2 

GOTERM_CC_ALL Cell 50 4.9E-2 

GOTERM_MF_ALL Signal transducer activity 32 6.1E-2 

GOTERM_CC_ALL Integral to membrane 21 2.0E-1 

GOTERM_CC_ALL Intrinsic to membrane 21 2.0E-1 

Annotation Cluster 2 Enrichment Score: 0.88   

UP_SEQ_FEATURE Domain:EGF-like 1 3 1.1E-2 

SP_PIR_KEYWORDS EGF-like domain 3 7.9E-2 

SMART_NAME EGF 3 1.4E-1 

INTERPRO_NAME EGF 3 1.9E-1 

INTERPRO_NAME EGF-like, type 3 3 2.5E-1 

INTERPRO_NAME EGF-like 3 3.5E-1 

INTERPRO_NAME EGF-like region 3 3.6E-1 

Annotation Cluster 3 Enrichment Score: 0.55   

GOTERM_BP_ALL Intracellular protein transport 3 1.6E-1 

GOTERM_BP_ALL Protein transport 3 2.3E-1 

GOTERM_BP_ALL Establishment of protein 

localization 

3 2.5E-1 

GOTERM_BP_ALL Protein localization 3 2.7E-1 

GOTERM_BP_ALL Intracellular transport 3 2.8E-1 

GOTERM_BP_ALL Cellular localization 3 2.8E-1 

GOTERM_BP_ALL Establishment of cellular 

localization 

3 2.8E-1 

GOTERM_BP_ALL Cell organization and biogenesis 3 7.6E-1 

Annotation Cluster 4 Enrichment Score: 0.54   

SP_PIR_KEYWORDS Glycoprotein 13 8.8E-2 

SP_PIR_KEYWORDS Membrane 11 1.1E-1 

UP_SEQ_FEATURE Glycosylation site:N-linked 

(GlcNAc...) 

12 2.8E-1 

UP_SEQ_FEATURE Transmembrane region 9 4.5E-1 
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Continued Table 9.2 
 
Annotation Cluster 5 Enrichment Score: 0.46 Number 

of genes 

P-Value 

UP_SEQ_FEATURE Disulfide bond 11 7.1E-1 

SP_PIR_KEYWORDS Transmembrane 11 7.2E-1 

GOTERM_MF_ALL Solute 3 2.7E-2 

GOTERM_MF_ALL Symporter activity 3 7.6E-2 

GOTERM_MF_ALL Electrochemical potential-driven 

transporter activity 

3 1.9E-1 

GOTERM_MF_ALL Porter activity 3 1.9E-1 

GOTERM_MF_ALL Transporter activity 11 2.5E-1 

GOTERM_MF_ALL Cation transporter activity 7 3.0E-1 

GOTERM_BP_ALL Metal ion transport 4 3.7E-1 

GOTERM_MF_ALL Ion transporter activity 7 5.0E-1 

GOTERM_BP_ALL Transport 14 5.7E-1 

GOTERM_BP_ALL Establishment of localization 14 6.0E-1 

GOTERM_BP_ALL Localization 14 6.1E-1 

GOTERM_BP_ALL Cation transport 4 6.4E-1 

GOTERM_BP_ALL Ion transport 5 7.3E-1 

GOTERM_MF_ALL Carrier activity 4 7.8E-1 

GOTERM_BP_ALL Cellular physiological process 26 1.0E0 

GOTERM_BP_ALL Cellular metabolism 14 1.0E0 

GOTERM_BP_ALL Metabolism 17 1.0E0 

GOTERM_BP_ALL Cellular process 29 1.0E0 

Annotation Cluster 6 Enrichment Score: 0.41   

UP_SEQ_FEATURE Nucleotide phosphate-binding 

region:ATP 

3 2.5E-1 

SP_PIR_KEYWORDS Nucleotide-binding 5 3.3E-1 

SP_PIR_KEYWORDS ATP-binding 3 6.9E-1 

Annotation Cluster 7 Enrichment Score: 0.36   

SP_PIR_KEYWORDS Calcium 6 4.2E-2 

INTERPRO_NAME Calcium-binding EF-hand 4 2.7E-1 

SMART_NAME EFh 3 3.0E-1 

GOTERM_MF_ALL Calcium ion binding 4 5.5E-1 
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Continued Table 9.2 
 
Annotation Cluster 7 Enrichment Score: 0.36 Number 

of genes 

P-Value 

INTERPRO_NAME EF-Hand type 3 5.8E-1 

GOTERM_MF_ALL Iron ion binding 3 6.2E-1 

GOTERM_MF_ALL Cation binding 8 7.0E-1 

GOTERM_MF_ALL Metal ion binding 8 7.6E-1 

GOTERM_MF_ALL Ion binding 8 7.6E-1 

GOTERM_MF_ALL Transition metal ion binding 4 8.7E-1 

Annotation Cluster 8 Enrichment Score: 0.33   

SP_PIR_KEYWORDS Metal-binding 7 3.4E-1 

GOTERM_MF_ALL Heme binding 3 4.5E-1 

GOTERM_MF_ALL Tetrapyrrole binding 3 4.5E-1 

SP_PIR_KEYWORDS Heme 3 5.2E-1 

SP_PIR_KEYWORDS Iron 3 6.1E-1 

Annotation Cluster 9 Enrichment Score: 0.33   

GOTERM_BP_ALL Translation 4 1.2E-2 

GOTERM_BP_ALL Protein biosynthesis 5 2.2E-1 

GOTERM_BP_ALL Biosynthesis 8 2.4E-1 

GOTERM_BP_ALL Nitrogen compound metabolism 3 2.7E-1 

GOTERM_BP_ALL Cellular biosynthesis 7 2.8E-1 

GOTERM_BP_ALL Macromolecule biosynthesis 5 3.5E-1 

GOTERM_BP_ALL Organic acid metabolism 3 4.6E-1 

GOTERM_BP_ALL Carboxylic acid metabolism 3 4.6E-1 

GOTERM_BP_ALL Biopolymer metabolism 5 8.4E-1 

GOTERM_BP_ALL Cellular protein metabolism 7 9.2E-1 

GOTERM_BP_ALL Cellular macromolecule 

metabolism 

7 9.3E-1 

GOTERM_BP_ALL Protein metabolism 7 9.4E-1 

GOTERM_BP_ALL Macromolecule metabolism 9 9.8E-1 

GOTERM_BP_ALL Primary metabolism 14 1.0E0 

GOTERM_MF_ALL Catalytic activity 22 1.0E0 

GOTERM_BP_ALL Cellular metabolism 14 1.0E0 

GOTERM_BP_ALL Metabolism 17 1.0E0 
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Continued Table 9.2 
 
Annotation Cluster 10 Enrichment Score: 0.19 Number 

of genes 

P-Value 

GOTERM_MF_ALL GTP binding 3 4.2E-1 

GOTERM_MF_ALL Guanyl nucleotide binding 3 5.0E-1 

GOTERM_MF_ALL Nucleotide binding 6 8.8E-1 

GOTERM_MF_ALL Purine nucleotide binding 5 9.3E-1 

Annotation Cluster 11 Enrichment Score: 0.05   

GOTERM_CC_ALL Organelle membrane 3 5.5E-1 

GOTERM_CC_ALL Cytoplasm 9 8.2E-1 

GOTERM_CC_ALL Nucleus 4 9.9E-1 

GOTERM_CC_ALL Intracellular 14 9.9E-1 

GOTERM_CC_ALL Intracellular membrane-bound 

organelle 

8 9.9E-1 

GOTERM_CC_ALL Membrane-bound organelle 8 9.9E-1 

GOTERM_CC_ALL Intracellular organelle 10 1.0E0 

GOTERM_CC_ALL Organelle 10 1.0E0 
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