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Diese Arbeit wurde mit Hilfe des Satzprogramms TEX und der Makrosprache

LATEX erstellt. Die verwendete Literatur ist in der Bibliographie aufgelistet.

Abbildungen 6.1, 7.1 und 7.2 wurden mit Hilfe des Programms MATLAB

erstellt. Bei den anderen Abbildungen wurde der Bildnachweis angegeben.

Anderweitige Hilfen (z.B. Anregungen, die sich Gesprächen mit anderen

Forschern verdanken) sind im Text als solche gekennzeichnet.
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Zusammenfassung

Die rechtfertigende Kraft sinnlicher Erfahrung und ihr Einfluss auf die Stärke

unserer Überzeugungen gehören zu den ältesten Fragen der Philosophie im

Allgemeinen und der Erkenntnistheorie im Besonderen. Letztere befasst sich

mit der Frage, was menschliches Wissen ausmacht, wie es gebildet wird und

wie es mit sinnlicher Erfahrung zusammenhängt. Eine Frage, die häufig in ex-

tremer Weise beantwortet wurde: Für Platon konnten sinnliche Erfahrungen

lediglich Meinungen (doxa) stützen wohingegen wahre Erkenntnis (epistêmê)

durch die Erinnerung an zeitlose Ideen, die uns angeboren sind, zustande

käme. Platons Schüler Aristoteles rehabilitierte hingegen die Erfahrung als

eine Basis für allgemeine Behauptungen, z.B. im Rahmen induktiver Schlüsse,

die vom Speziellen zum Allgemeinen aufsteigen. Selbst René Descartes, der

am Beginn der Neuzeit so sehr die prinzipielle Fehlbarkeit sinnlicher Erfah-

rung betonte, räumte am Ende der Meditationes de Prima Philosophia ein,

dass sinnliche Erfahrung viel häufiger zu wahren als zu falschen Überzeugun-

gen führe. Empiristen wie David Hume leugneten sogar, dass es Vorstellungen

im menschlichen Geiste gebe, die unabhängig von jeglicher sinnlicher Erfah-

rung seien. In der Vielfalt der Positionen, die zum Zusammenhang von Er-

kenntnis und Erfahrung in der Geschichte der Philosophie artikuliert wurden

und weitgehende Folgerungen aus der Antwort ableiteten, zeigt sich sowohl

der kontroverse Charakter dieser Frage als auch ihre zentrale Funktion in der

Erkenntnistheorie. Wie also verhält sich Erfahrung zu Überzeugungen und

wie können letztere durch Erfahrung gerechtfertigt werden?

Die Wissenschaftstheorie stellt diese Frage in einer speziellen Hinsicht –

nämlich im Hinblick auf das Verhältnis wissenschaftlicher Hypothesen und

Theorien zu Daten, die in wissenschaftlichen Experimenten gewonnen wer-

den. In der modernen Wissenschaft nimmt das rigorose Überprüfen und

Testen wissenschaftlicher Hypothesen unter Laborbedingungen einen breiten

Raum ein, so dass sich aus wissenschaftstheoretischer Perspektive die Frage
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stellt, nach welchen Prinzipien Experimente und Beobachtung zum Verwer-

fen bestimmter Hypothesen führen, während andere Hypothesen durch sie

gestützt werden. Diese Frage stellt auch den Kern meines Buches dar. Sie

kann allerdings in zweifacher Hinsicht gestellt werden: als Frage nach einem

Grund für die rechtfertigende Kraft der Beobachtung überhaupt und als Fra-

ge nach einer formalen Theorie der Bestätigung wissenschaftlicher Hypothe-

sen. Die erste Frage wirft das Problem der Begründung induktiver Schlüsse

auf: Was gibt uns das Recht, vergangene Erfahrung in die Zukunft zu projizie-

ren? Ich argumentiere jedoch, dass die zweite Frage – die nach den Prinzipien

wissenschaftlicher Bestätigung – sich auch sinnvoll stellen und diskutieren

lässt, wenn das Induktionsproblem ausgeklammert wird. Dieses Buch befasst

somit mit der Explikation der Beziehung zwischen Beobachtungsbelegen und

Hypothesen und versucht, die Struktur eines gültigen induktiven Arguments

zu erfassen, wobei besonderes Gewicht auf induktives Schließen in der Sta-

tistik gelegt wird. Die Antworten sind nicht nur für Bestätigungstheoretiker

und Statistiker relevant, sondern wirken sich auch auf mehrere Fragen in der

Wissenschaftstheorie aus. So haben zum Beispiel die logischen Empiristen

Bestätigbarkeit einer Aussage als Kriterium empirischer Signifikanz vorge-

schlagen. Zudem behaupten Argumente für den wissenschaftlichen Realismus

häufig, dass manche wissenschaftliche Theorien über einen weiten Zeitraum

hinweg hohe Bestätigung genießen und damit die Existenz der von ihr postu-

lierten Größen nahelegen würden. Ebenso ließe sich fragen, welche Rolle der

Bestätigungsgrad bei der Dynamik wissenschaftlicher spielt. Eine formale

Theorie der Bestätigung stellt somit die Werkzeuge bereit, die es ermögli-

chen, diese Fragen im Detail zu untersuchen. Davon abgesehen spielen die

Begriffe Bestätigung und Evidenz auch außerhalb der Wissenschaftstheorie

eine zentrale Rolle, jedoch erfolgt ihre Verwendung häufig in informeller Wei-

se, worunter die Präzision der vorgebrachten Argumente leidet. Ein Beispiel

dafür bildet die Diskussion von ‘evidence’ in der zeitgenössischen Erkenntnis-

theorie. Ebenso taucht der Evidenzbegriff in den Teilen der Philosophie der

Sozialwissenschaften, welche sich mit evidenzbasierten politischen Entschei-

dungen befassen, an zentraler Stelle auf. All diese Debatten sind jedoch zum

gegenwärtigen Zeitpunkt hochgradig informell und ich denke, dass sie stark

von den Einsichten profitieren könnten, die die Bestätigungstheorie über den

Evidenzbegriff gewinnt.

Die Struktur des Buches ist wie folgt: Ich beginne mit einer Abgrenzung

von Induktions- und Bestätigungsproblem (Kapitel eins) und diskutiere im
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Anschluss mehrere qualitative Theorien der Bestätigung (Kapitel zwei und

drei). Kapitel vier führt die subjektive Interpretation von Wahrscheinlich-

keiten als Theorie rationaler Glaubensgrade ein, während Kapitel fünf dies

auf die Quantifizierung des Stützungsgrades einer Hypothese anwendet. Der

Rest des Buches ist dem induktiven Schließen in der Statistik gewidmet: Ka-

pitel sechs stellt die verschiedenen statistischen Schulen einander gegenüber,

während Kapitel sieben Vor- und Nachteile des Evidenzbegriffs in diesen

Schulen diskutiert. Kapitel acht fasst schließlich die Ergebnisse zusammen

und skizziert einige offene Fragen, für die die gewonnenen Erkenntnisse rele-

vant sind.

Zunächst also der Zusammenhang von Induktion und Bestätigung. Da-

vid Hume (1777) hat bekanntlich den klassischen Versuch, das Induktions-

prinzip durch Verweis auf den vergangenen Erfolg induktiven Schließens zu

begründen, widerlegt. Ein solches Argument trägt nämlich selbst induktiven

Charakter, so dass die Rechtfertigung zirkulär wird. Eine mögliche Antwort

besteht im Bruch mit den Prinzipien des Inferentialismus: Solange die Induk-

tion faktisch einen reliablen Prozess zur Bildung wahrer Meinungen darstellt,

brauchen wir sie nicht begründen, um in ihrer Anwendung gerechtfertigt zu

sein. Nelson Goodman (1983) weist jedoch darauf hin, dass die entscheiden-

de Frage nicht darin besteht, ob Induktion zuverlässig ist, sondern welche

Art von Induktion zuverlässig ist und zu mehr korrekten als falschen Vorher-

sagen führt. Das klassische Beispiel hierzu stellt das ‘grot’-Problem (‘grue’

problem) dar – ‘grot’ bezeichnet ein Prädikat, das auf bereits untersuchte

Objekte zutrifft genau dann, wenn sie grün sind, und auf alle anderen Ob-

jekte genau dann, wenn sie rot sind. Nach den Prinzipien der Induktion wird

die Hypothese ‘alle Smaragde sind grün’ nun genauso durch die Beobach-

tung grüner Smaragde in der Vergangenheit gestützt wie die Hypothese ‘alle

Smaragde sind grot’. Beide Prädikate setzen in der Vergangenheit liegende

Beobachtungen in die Zukunft fort, jedoch gelangen sie zu miteinander inkon-

sistenten Ergebnissen. Nur der induktive Schluss, dass alle Smaragde grün

sind, scheint in erkenntnistheoretischer Hinsicht gültig zu sein. Dies wirft ein

skeptisches Licht auf Versuche, Prinzipien induktiven Schließens im Rahmen

einer formalen Theorie der Bestätigung zu erfassen. In der Tat scheinen wir

Zusatzannahmen zu benötigen, z.B. dass manche Prädikate induktiv fort-

setzbar sind (‘grün’), andere jedoch nicht (‘grot’). Diese Annahmen eröffnen

den Zugang zum eigentlichen Projekt der Bestätigungstheorie, nämlich die

Prinzipien induktiven Schließens aus der Praxis zu extrahieren und die Praxis
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wiederum durch solche Prinzipien zu korrigieren.

Viele wissenschaftliche Hypothesen sind in den formalen Rahmen einer

Logik erster Stufe eingebettet, zum Beispiel die meisten Theorien der klas-

sischen Physik. Andere sind hingegen statistischer Natur, so zum Beispiel

die Mendelschen Vererbungsgesetze. Eine Theorie der Bestätigung sollte sich

gleichermaßen mit probabilistischen wie mit nicht-probabilistischen Fällen

befassen. Hierfür haben sich zwei verschiedene Traditionen entwickelt: die

qualitative und die quantitative Tradition, die zumeist in bayesianischer Wei-

se expliziert wird. Ich beginne mit den qualitativen Bestätigungstheorien.

Qualitative Theorien stehen unter einem gewissen Rechtfertigungsdruck,

da häufig argumentiert wird, der auf Glaubensgraden aufbauende Bayesia-

nismus sei eine umfassende, allgemeine Theorie induktiven Schließens, die

qualitative Ansätze (im Rahmen einer Prädikatenlogik erster Stufe) über-

flüssig mache. Dem lässt sich jedoch entgegenhalten, dass solche probabi-

listischen Bestätigungsargumente auf eine große Menge von Fällen in der

Wissenschaftsgeschichte nicht anwendbar sind, weil die Struktur der induk-

tiven Argumente nicht korrekt erfasst wird und die Argumente häufig kei-

ne Glaubensgrade verwendeten (vgl. Glymour 1980a). Zum Beispiel finden

sich Glaubensgrade weder in Eddingtons Bestätigung der Allgemeinen Re-

lativitätstheorie noch in der Bestätigung der Newtonschen Theorie durch

die erfolgreiche Vorhersage der Wiederkehr des Halleyschen Kometen. Dies

rechtfertigt die Untersuchung qualitativer Ansätze. An einer Reihe von Bei-

spielen (unter ihnen das berühmte Rabenparadoxon) lässt sich ferner deut-

lich machen, dass die Bestätigungsrelation als dreistellige Relation aufgefasst

werden sollte, die neben Hypothese und Beobachtungsbelegen überdies noch

eine Menge an Hintergrundannahmen enthält.

Zwei grundverschiedene Ansätze prägen die qualitative Bestätigungstheo-

rie: induktivistische Ansätze, zu denen Hempels Erfüllungskriterium (‘satis-

faction criterion’) gehört und die hypothetisch-deduktiven Ansätze, die sich

auf Poppers (1963) Modell von Vorhersage, Test und empirischer Bewährung

berufen. Zwei hauptsächliche Kritikpunkte lassen sich gegen den Hempel-

schen Ansatz einwenden: Zum einen leidet er unter einer beträchtlichen Zahl

technischer Schwierigkeiten. Zum anderen diagnostiziert Hempel [1945] (1965)

zwar korrekt, dass das Rabenparadoxon lediglich paradox erscheint und dass

stillschweigendes Hinzufügen zusätzlichen Hintergrundwissens für diese pa-

radoxe Erscheinung verantwortlich ist. Insbesondere sind induktive Schlüsse

nicht monoton – wenn weiteres Hintergrundwissen zu den Prämissen hinzu-
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gefügt wird, kann die Gültigkeit des Schlusses verloren gehen. Dies unterschei-

det induktive Schlüsse wesentlich von deduktiven Schlüssen. Jedoch gelingt

es Hempel nicht, diese Erkenntnis in sein eigenes Bestätigungskriterium zu

integrieren, welches eine monotone Theorie induktiven Schließens darstellt.

Somit schlägt Hempels Kriterium nicht nur im Falle des Rabenparadoxons

fehl, sondern immer dann, wenn das Hintergrundwissen substantiell erweitert

wird.

Das Scheitern des Hempelschen Kriteriums motiviert eine Untersuchung

der zweiten, hypothetisch-deduktiven Tradition. Hiernach machen Hypothe-

sen Voraussagen mit der Hilfe von Hintergrundannahmen, und Bestätigung

besteht darin, dass diese Vorhersagen tatsächlich eintreten. Genauer formu-

liert, folgt die Evidenz oder der Beobachtungsbeleg logisch aus der Hypothe-

se und den Hintergrundannahmen. Dieser Ansatz erfasst ein Grundmuster

experimenteller Praxis in der Wissenschaft, jedoch gelingt es ihm zumin-

dest in seiner elementaren Form nicht, die Relevanz eines Beobachtungsbe-

legs für eine Hypothese einzufangen: Wenn ein Beleg E eine Hypothese H

im hypothetisch-deduktiven Sinn bestätigt (relativ zu Hintergrundannahmen

K), so bestätigt E auch die Konjunktion von H mit einer nahezu beliebi-

gen Hypothese X. Dies ist klarerweise unerwünscht, da E in aller Regel

nicht relevant für X ist. Mehrere Versuche, dieses Problem zu lösen, schei-

terten, und erst in den neunziger Jahren des letzten Jahrhunderts konnten

zufriedenstellende Ergebnisse (Schurz 1991, Gemes 1993) entwickelt werden.

Allerdings gibt es auch hier einen Aspekt, der nicht gelöst werden konnte,

nämlich die Bestätigung von Hypothesen, die aus mehreren Einzelhypothe-

sen bestehen, welche konjunktiv miteinander verknüpft sind. Die gängigen

Modelle hypothetisch-deduktiver Bestätigung implizieren häufig, dass, wenn

E1 H1 bestätigt und E2 H2 bestätigt, auch H1.H2 durch E1.E2 bestätigt wird

(alles relativ zu K). Ich zeige anhand eines der Wissenschaft entnommenen

Beispiels, dass solche induktiven Schlüsse nicht im Allgemeinen gültig sein

können. Insbesondere vernachlässigt dieses Schema, dass in vielen Fällen In-

stanzen einer Hypothese beobachtet werden müssen, um diese zu bestätigen.

In meinem eigenen Lösungsvorschlag verbinde ich daraufhin die bestätigende

Kraft von Instanzen einer Hypothese mit einem falsifikationistischen Krite-

rium in der Popperschen Tradition von Mutmaßungen und Widerlegungen.

Das neue, falsifikationistische Kriterium löst nicht nur die Probleme eviden-

tieller Relevanz ebenso wie die konjunktiv zusammengesetzter Hypothesen, es

ist überdies auch noch einfacher formulierbar als seine Konkurrenten. Mithin
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stellt es das meiner Meinung nach am weitesten fortgeschrittene und präzi-

seste Kriterium für qualitative Bestätigung dar.

Häufig geht es in der Wissenschaft nicht nur darum, einfache Hypothesen,

sondern Hypothesenkomplexe oder ganze Theorien durch eine Datenmen-

ge zu bestätigen. Darüber hinaus fehlen häufig externe, theorieunabhängi-

ge Hintergrundannahmen, gegen die sich eine Theorie testen ließe – dies

lässt sich anhand Kuhns (1962) Bemerkung zur Theorieabhängigkeit von

Beobachtungen illustrieren. Ein Modell, welches die Bestätigung einer gan-

zen Theorie auf Bestätigungsrelationen innerhalb dieser Theorie zurückführt,

wird durch Clark Glymours (1980a) Bootstrap-Bestätigung gegeben: Theo-

rien werden durch deduktive Schlüsse von Beobachtungsbelegen und Teilen

der Theorie auf andere Teile der Theorie bestätigt. Jedoch lassen sich dage-

gen mehrere technische Einwände aufstellen (Christensen 1983, 1990), welche

Glymours ursprüngliches Bestätigungsmodell widerlegen. Ich argumentiere,

dass zwei prinzipielle Antworten möglich sind: entweder fasst man Bootstrap-

Bestätigung als Modell der Kohärenz zwischen Theorie und Belegen (anstelle

von Bestätigung) auf, oder das Hempelsche Erfüllungskriterium, welches der

Bootstrap-Bestätigung zugrunde liegt, wird durch ein anderes Kriterium er-

setzt. Hier zeige ich, dass das falsifikationistische Kriterium in der Lage ist,

die Bootstrap-Bestätigung zu retten und – für eine derart modifizierte Form

der Bootstrap-Bestätigung – Christensens Einwände zurückzuweisen.

Wie alle Kriterien qualitativer Bestätigung hat auch das falsifikationis-

tische Kriterium und die falsifikationistische Version der Bootstrap-Bestäti-

gung mit dem Duhem-Quine-Problem zu kämpfen. Duhem (1914) argumen-

tierte, dass jeder Test einer empirischen Hypothese ein Konglomerat an

Hilfshypothesen benötige und ein negatives Ergebnis nur so sehr gegen die

getestete Hypothese spreche wie man Vertrauen in die verwendeten Hilfs-

hypothesen habe. Daraus folgerte Quine (1961), dass es keine Bestätigung

einzelner Hypothesen durch Beobachtungen geben könne – solche Beobach-

tungen würden zwar unser Theoriennetzwerk als Ganzes beeinflussen, jedoch

niemals einzelne Hypothesen. Nichtsdestoweniger glaube ich, dass man Du-

hems These zustimmen kann, ohne Quines Folgerung zu teilen. Zwar wirkt

sich ein Beobachtungsbeleg nicht nur auf eine einzelne Hypothese, sondern

auch auf die benutzten Hilfshypothesen aus, jedoch zumeistin unterschied-

lichem Maße. Wenn also eeine Hypothese in einem Test scheitert, werden

alle beteiligten Hilfshypothesen unterminiert, aber der Grad der Unterminie-

rung zeigt an, welche Hypothesen davon stärker betroffen sind als andere.
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Um diese unterschiedlichen Grade der Bestätigung oder Unterminierung ein-

zelner Hypothesen einzufangen, wird eine quantitative Bestätigungstheorie

benötigt. Diese soll im Folgenden skizziert werden. Die grundlegende Idee

bildet dabei, Bestätigung als Anstieg des rationalen Glaubensgrades in ei-

ne Hypothese zu modellieren. Dafür brauchen wir ein formales Modell, das

die Veränderung von Glaubensgraden abbildet und Rationalitätskriterien für

Systeme von Glaubensgrade formuliert. Ein solches Modell wird durch die

Wahrscheinlichkeitstheorie gegeben. Wenn die Stärke eines Glaubensgrades

als Urteil über die Fairness hypothetischer Wetten verstanden wird, dann

sind genau jene Systeme von Glaubensgraden rational, in denen sich keine

Systeme von Wetten konstruieren lassen, die einer Seite einen sicheren Vorteil

versprechen. Die Dutch-Book-Argumente zeigen, dass dies genau jene Syste-

me von Glaubensgraden sind, die den Axiomen der Wahrscheinlichkeitstheo-

rie genügen. Aufbauend auf diesem subjektiven, bayesianischen Verständnis

von Wahrscheinlichkeiten als Stärke eines Glaubensgrades lässt sich dann der

Bayesianismus als quantitative Bestätigungstheorie formulieren: Bestätigung

besteht im Anstieg des rationalen Glaubensgrades. Die entscheidende Frage

ist jedoch, wie die Stärke der Bestätigung expliziert wird, und es stellt sich

heraus, dass mehrere Probleme in der bayesianischen Bestätigungstheorie

davon abhängen, welches Bestätigungsmaß gewählt wird. Mit Hilfe plausib-

ler Adäquatheitskriterien lässt sich eine Reihe von Maßen ausschließen. Die

verbleibenden Maße explizieren dann zwei verschiedene Begriffe von Bestäti-

gung und induktiver Stützung: zum einen Bestätigung als Verallgemeinerung

logischer Folgerung (und Bestätigungsgrade als Stärke eines induktiven Argu-

ments), zum anderen Bestätigung als Einfluss eines Beobachtungsbelegs auf

den epistemischen Status einer Hypothese. Meines Erachtens hängt es stark

vom jeweiligen Anwendungskontext ab, welches Maß bevorzugt werden soll-

te. Diese Kontextabhängigkeit ist in der bestehenden Literatur vernachlässigt

worden und überträgt sich auch auf Versuche, das Problem alter Evidenzen

(‘problem of old evidence’) zu lösen.

Die bayesianische, wahrscheinlichkeitstheoretische Auffassung von Bestäti-

gung ermöglicht es in natürlicher Weise, quantitative Bestätigungstheorie auf

statistische Regelmäßigkeiten anzuwenden. Dies ist in der Tat die interessan-

teste Anwendung der quantitativen Bestätigungstheorie, da statistische Me-

thoden mehr und mehr Platz in den empirischen Wissenschaften einnehmen.

Zum Beispiel hat gerade in den angewandten Wissenschaften die Anzahl

der verfügbaren Daten in den letzten Jahrzehnten so stark zugenommen,
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dass statistische Analysen absolut unverzichtbar geworden sind. Ein Prob-

lem der bayesianischen Statistik stellt dabei dar, dass sie keine komplett

objektive Schule des induktiven Schließens liefern kann, da sie auf subjekti-

ven Glaubensgraden und Urteilen aufbaut. Wissenschaftler möchten jedoch

häufig die Ergebnisse ihrer Forschungen in objektiver Weise zusammenfassen

und keinen Spielraum für subjektiven Dissens lassen. Zwar gibt es Abarten

des Bayesianismus (wie das Prinzip der maximalen Entropie), welche einen

solchen Dissens ausschließen, aber dagegen lassen sich eigene Einwände ma-

chen – zum Beispiel, dass subjektive Expertise vernachlässigt wird und dass

Mangel an Information mit Hilfe bestimmter Wahrscheinlichkeitsverteilun-

gen dargestellt wird.

Dass der Bayesianismus eine im Ganzen subjektive Theorie induktiven

Schließens darstellt, impliziert nicht, dass er nicht in der Lage wäre, ei-

ne weitgehend objektive Theorie statistischer Evidenz zu liefern. Bayesia-

nische Evidenzmaße wie Likelihood-Quotienten genügen Birnbaums (1962)

Likelihood-Prinzip, dass alle statistische Evidenz als Funktion der Wahr-

scheinlichkeiten des beobachteten Ereignis unter den verschiedenen Hypo-

thesen darzustellen ist. Dies schließt subjektive Faktoren in der Regel aus.

Obwohl das Likelihood-Prinzip sich auf zwei plausible elementare Prinzipien

zurückführen lässt, wird es in der statistischen Praxis oft bewusst verletzt.

Viele Statistiker glauben nämlich, dass das Charakteristikum eines gültigen

induktiven Schlusses in der Reliabilität der verwendeten Methode bestehe

(Mayo und Spanos 2006). Darauf basiert die Test- und Fehlerstatistik : je

geringer die Wahrscheinlichkeit, dass sich eine Entscheidungsprozedur irrt,

desto eher sollten wir das Ergebnis akzeptieren. Der Hauptvorteil dieser Me-

thode liegt darin, dass der Subjektivitätsvorwurf, der gegen den Bayesianis-

mus erhoben wird, hier nicht greift.

Obwohl die Fehlerstatistik auf anscheinend plausiblen Prinzipien beruht,

lässt sich zeigen, dass fehlerstatistische Evidenzmaße wie Fehlerwahrschein-

lichkeiten, Signifikanzniveaus und p-Werte gravierende Probleme aufweisen.

Von eher technischen Einwänden abgesehen reagieren sie nämlich auf einen

Wechsel des experimentellen Designs, d.h. die Stärke der Evidenz wird da-

durch beeinflusst, ob der Wissenschaftler den Plan zur Durchführung des

Experiments korrekt wiedergegeben hat. Solche Faktoren lassen sich jedoch

nicht durch Replikation eines Experiments überprüfen, so dass sie nicht in

ein Evidenzmaß eingehen sollten, das quantifiziert, wie sehr eine Hypothese

durch Daten gestützt wird. Das bedeutet natürlich nicht, dass experimen-
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telles Design komplett irrelevant wäre – es spielt lediglich keine Rolle in der

post-experimentellen Beurteilung der Stärke der beobachteten Evidenz. Ich

argumentiere ferner, dass der Evidenzbegriff komparativ aufgefasst werden

sollte, d.h. nicht als Evidenz für eine einzelne Hypothese oder im Vergleich

zu einer unspezifischen Alternative. Statt dessen sollte ein fruchtbarer Evi-

denzbegriff immer zwei bestimmte Hypothesen miteinander vergleichen. All

dies impliziert, dass die bayesianische Explikation statistischer Evidenz als

Grundlage faktischer Entscheidungen der fehlerstatistischen Explikation vor-

zuziehen ist.

Abschließend möchte ich einige allgemeine Schlussfolgerungen ziehen und

offene Fragen skizzieren. Erstens lassen die grundlegenden Vorteile des bayesia-

nischen Ansatzes gegenüber seinem fehlerstatistischen Konkurrenten darauf

schließen, dass keine Theorie induktiven Schließens zugleich vollständig ob-

jektiv und universell anwendbar ist und dabei den Evidenzbegriff in vernünf-

tiger Weise expliziert. Qualitative Kriterien wie das falsifikationistische Kri-

terium scheiden aus, weil ihnen die quantitative Dimension fehlt, die für

einen Großteil moderner statistischer Anwendungen unverzichtbar ist. Je-

doch stellen sie wichtige Hilfsmittel dar, um Fälle von Bestätigung in der

Wissenschaftsgeschichte zu modellieren. Der den partiell subjektiven Cha-

rakter induktiver Schlüsse anerkennende Bayesianismus scheint im Großen

und Ganzen unser bester Kandidat zu sein. Das impliziert jedoch auch, dass

sich manche Fragen induktiven Schließens – insbesondere dann, wenn die Da-

tenlage dünn und die Evidenz nicht stark ist – nicht eindeutig klären lassen

und auf subjektive Expertise angewiesen bleiben.

Zweitens bietet es sich an, die Debatte zwischen Bayesianern und Fehl-

erstatistikern auf allgemeine erkenntnistheoretische Fragen auszuweiten. Der

erkenntnistheoretische Reliabilismus behauptet, dass Subjekte gerechtfertig-

te Meinungen unterhalten, insofern diese von einem zuverlässigen kognitiven

Kausalprozess erzeugt werden. In derselben Weise rechtfertigen die Methoden

der Fehlerstatistik einen induktiven Schluss dadurch, dass die ihn erzeugen-

de Methode eine hohe Reliabilität besitzt. Die Reliabilität einer verwendeten

Methode genügt jedoch nicht, um eine Handlung im Sinne der Entschei-

dungstheorie zu rechtfertigen, da die anfängliche Wahrscheinlichkeitsvertei-

lung stark variieren kann. Diese kann die Fehlerstatistik aber nicht liefern.

Für den erkenntnistheoretischen Reliabilisten stellt sich somit die Aufgabe,

den Begriff der reliablen, zuverlässigen Prozedur in nicht-trivialer Weise zu

explizieren.
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Drittens verdient Statistik als eigenständige wissenschaftliche Disziplin

mehr Aufmerksamkeit in der Wissenschaftstheorie als sie bisher erhalten hat.

Häufig als rein formale (Hilfs-)Wissenschaft aufgefasst, ist sie in Wirklichkeit

äußerst eng mit den empirischen Wissenschaften verbunden, aus denen sie

auch stammt und wo eine hohe Anzahl von Forschern sich der statistischen

Analyse verschrieben hat. Sie nimmt eine faszinierende Mittelstellung zwi-

schen mathematischer Theorie und empirischer Anwendung ein. Daneben zei-

gen die originellen Beiträge von Statistikern und empirischen Wissenschaft-

lern wie Allan Birnbaum, James O. Berger und Richard Royall die Bedeutung

der Statistik für die Erkenntnis der Grundlagen induktiven Schließens und

somit auch für die Wissenschaftstheorie als Ganzes.

Dieses Buch lässt eine Reihe von interessanten Themen (wie die Rolle der

nicht-parametrischen Statistik oder die Analyse statistischer Modelle) aus.

Nichtsdestotrotz erhoffe ich mir, dass es die Prinzipien induktiven Schließens

in verständlicher und gewinnbringender Weise darstellt und die Leser aus der

Auseinandersetzung mit meinen Thesen ihren Nutzen ziehen können.
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Introduction

The question how experience acts on our beliefs and how beliefs are changed

in the light of experience is one of the oldest and most controversial ques-

tions in philosophy in general and epistemology in particular. Hearing an

approaching thunderstorm leads to the expectation that it will soon rain.

Seeing a friend in a Greek restaurant makes us believe that she likes Greek

food. Feeling a permanent scratchiness in the throat triggers the fear to have

caught a cold. Epistemology has always been concerned with the question

how knowledge is formed and how the impact of experience on the formation

of knowledge can be described. For Plato, sensations and experience can only

form mere opinions (doxa) whereas true knowledge (epistêmê) is acquired by

perceiving and recognizing the timeless forms and ideas with which we were

born and which are buried in our souls (anamnesis). Plato’s student Aristo-

tle, however, rehabilitated experience as the basis for the assertion of general

claims, e.g. in inductive generalizations. Later on, at the beginning of the

modern era, René Descartes pointed out the fallibility of sensory experience,

but at the very end of his Meditationes de Prima Philosophia, he also ad-

mitted that sensory experience forms true beliefs much more often than false

beliefs. Empiricists as David Hume even went so far to claim that all ideas in

the human mind and all justification of human beliefs ultimately go back to

sensory impressions. The diversity of positions points to a substantial contro-

versy as well as to the central role of this question in epistemology. How does

empirical justification work and how can the relation between experience and

justified belief be spelled out?

Philosophy of science has replaced this question by the more specific en-

quiry how results of experiments act on scientific hypotheses and theories.

Since the Renaissance, science has developed a successful method to acquire

knowledge about the world by subjecting hypotheses to systematic experi-

mental scrutiny, eventually resulting in rejection, acceptance or modification
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of a hypothesis. This method of rigorous experimental testing has proved to

be incredibly fruitful and successful. Karl Popper (1963) even went so far to

claim that subjecting conjectures to empirical test and potential falsification

is the hallmark of scientific method as opposed to pseudo-science and dog-

matic belief. Still, the old question of empirical justification remains open

and triggers a lot of related questions: How do experimental observations act

on abstract theories and why do we maintain some theories while discarding

others? Why do some scientific models survive and why do others fail to

withstand experimental tests? How can abstract theories be connected at

all to concrete experiments? All those queries can be subsumed under two

general questions: First, what is our reason to accept the justifying power

of experience and more specifically, scientific experiments? Second, how can

the relationship between theory and evidence be described and under which

circumstances is a scientific theory confirmed by a piece of evidence? The

book focuses on the second question and maintains that the search for for-

mal criteria for confirmation and disconfirmation is meaningful even if the

answer to the first question is left open. We would like to explicate the re-

lationship between theory and evidence and to capture the structure of a

valid inductive, ampliative argument. Special attention is paid to statistical

applications that are prevalent in modern empirical science.

This project is not only relevant for issues of confirmation and induction,

it actually touches several areas in philosophy of science and beyond: In the

first half of the twentieth century, the logical positivists proposed confirma-

bility as a criterion for distinguishing empirically significant statements from

metaphysical nonsense. Arguments for scientific realism often stress that

some theories remain well-confirmed over a large time horizon, thus giving

us a reason to believe in their truth and in the existence of the quantities

which they posit. The dynamics of scientific theories can be studied as a

function of the confirmatory status of the theories. For instance, it might

be interesting to ask how much disconfirmation is imposed on a theory by

persistent anomalies or whether a series of disconfirming observations is able

to trigger a scientific revolution. Formal theories of confirmation open the

way to making such arguments explicit. Apart from that, the concepts of

confirmation and evidence are present in a wide range of debates outside

philosophy of science, but their vague and informal use often blurs the con-

troversy. Contemporary epistemology which has recently developed much

interest in the concept of evidence gives a salient example. There are other
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fields of application, too: In the philosophy of the social sciences, evidence-

based decisions and evidence-based policy-making are a major issue. Even in

practical philosophy, we might (given some realist intuitions) be interested in

evidence for moral claims or in the confirmation of moral hypotheses. Those

debates are largely informal and I believe that they could benefit a lot from

insights into the nature of scientific evidence.

After an introductory chapter about the link between confirmation and

induction, the project starts with discussing qualitative accounts of confirma-

tion in first-order predicate logic (chapter two). Two major approaches, the

Hempelian satisfaction criterion and the hypothetico-deductivist tradition,

are contrasted to each other. This is subsequently extended to an account of

the confirmation of entire theories as opposed to the confirmation of single

hypothesis (chapter three). Then quantitative theories of confirmation and

the Bayesian account of confirmation (chapter five) are explained and dis-

cussed on the basis of a theory of rational degrees of belief (chapter four).

After that, I present the various schools of statistical inference and explain

the foundations of these competing schemes (chapter six). Chapter seven

revolves around the concept of statistical evidence and tries to resolve and

to decide the dissent between the various statistical schools. Finally, chapter

eight summarizes the results.
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1

Chapter 1

Induction and Confirmation

Science aims at describing, explaining and predicting the real, empirically

given world. Physical theories describe the behavior of a harmonic oscillator,

biological theories explain photosynthesis, astronomical theories predict so-

lar eclipses. Therefore scientific theories have to stand up against experience

which can support, question or refute them. Theories which survive experi-

mental tests and are in agreement with observable phenomena have a better

reputation than those which fail to agree with experience. If a particular

astronomical theory successfully predicts solar eclipses, we prefer it to a rival

theory which does not enjoy that success. The empirical evidence seems to

speak in favor of the first and against the second theory. This book tries to

characterize how experiments and empirical observation on the one side sup-

port or undermine theories and hypotheses on the other side. More precisely,

we examine how observations support and undermine scientific theories, how

they lead to their endorsement and how they guide us towards their rejec-

tion. We would like to discover the mechanics of confirmation, evidence and

inductive support, and this book is devoted to studying them.

However, there is a fundamental problem which precedes our investiga-

tions: When we prefer a particular theory to another, when we accept one

theory but reject another, we express expectations about their future success.

But is it all possible to infer from past experience (e.g. observations that we

have made) to rational expectations about future success? How do we jus-

tify our expectations that ravens which we will observe in the future will be

black, like the ravens we encountered in the past? This is the problem of

induction. It is intimately tied to the confirmation of scientific theories, but,

as we will see, questions about induction are not identical to questions about
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confirmation. The first chapter of this book thus introduces the problem of

induction in more detail and illuminates its relationship to the main topic of

this book – the confirmation of scientific theories.

1.1 The classical problem

Classical logic is concerned with truth-preserving inferences – inferences that

preserve the truth in passing from the antecedens to the consequens, from

the premises to the conclusion. This kind of inference, henceforth called de-

ductive inference, plays an outstanding role both in scientific and everyday

reasoning. Assume that we know that Alice will come to Bob’s party if he

invites her. Moreover, we know that Bob invites Alice to his party. This en-

titles us to conclude that Alice will come to Bob’s party. This inference was

truth-preserving – the truth of the conclusion (Alice will come) was derived

from the (alleged) truth of the premises (that Bob invites Alice and that she

positively responds to an invitation). Similarly, deductive inferences play an

outstanding role in science. Mathematical inferences are truth-preserving –

given a set of fundamental axioms (e.g. the Zermelo-Fraenkel-axioms), math-

ematical theorems are valid formulae. Since mathematical methods are in-

dispensable in empirical science as physics, chemistry or economics, such

truth-preserving, deductive inferences are widespread in science. Moreover,

our everyday reasoning often relies on deductive inferences, as we have seen

in the Alice/Bob-case. However, they do no exhaust the inferences which

we make in science. For instance, we might be interested in the color of

ravens. We make an observational field study, observing a hundred ravens

all of which are black. Now, it seems to be the most natural thing to general-

ize these observations and to conclude that the next raven which we observe

will be black. But this inference, however justified it may be, it certainly

not deductively warranted. That we observed one hundred black ravens does

not have any logical consequences for the color of any other raven on Earth.

Such inductive inferences are ampliative – the content of the conclusion goes

beyond the content of the premises. By contrast, deductive inferences are

non-ampliative – everything that the conclusion might assert is already con-

tained in the premises.

Inductive inferences often occur in science – not only when we examine

natural kinds as ravens and observe their color but every time we generalize

from experience. Newton’s law of gravitation, for instance, makes a claim
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about the gravitational forces acting between two point masses m1 and m2:

F = γ
m1m2

r2
(1.1)

where γ is the gravitational constant and r the distance between the point

masses. The problem of idealization put aside (proper point masses with

zero extension do not exist), Newton’s law of gravitation cannot be inferred

deductively from single experiments or observations, even not approximately

so. Even if we had experimental data where any confounding factors could

be ruled out and where our observations were in agreement with Newton’s

law, we would merely have instances of the gravitational law, but we could

not derive it: For Newton’s law of gravitation is a universal hypothesis whose

domain are all (idealized) point masses in the universe, in the past as well

as in the future. Clearly, it is impossible to derive or to prove such a strong

claim just out of raw data. It is logically possible that Newton’s law holds

true of all situations in the past but that it fails to hold of future situations.

Actually, this is typical of scientific theorizing – we form strong and general

conjectures on the basis of paradigmatic examples and hope that they will

hold true although we are not able to demonstrate them in a rigorous way.

But in principle, space for doubt will always remain – almost no scientific

hypothesis is conclusively established.

So what did justify the NASA astronomers’ confidence in Newton’s law of

gravitation when calculating the path of the Voyager space probes through

space? Clearly, the empirical content of Newtonian (or relativistic) mechanics

was much stronger than what was warranted by observation. Nevertheless

we think that the NASA astronomers acted rationally when they trusted in

Newton’s gravitation law for calculating the orbit of the space probes and

determined a time point where the space probes would take off. Indeed,

merely to rely on claims that are proven in a strict sense seems to demand

too much from science. It would be too conservative a strategy to tackle real

problems. The correct predictions which Newton’s law of gravitation made

in the past justify our expectation that it will correctly predict the behavior

of the Voyager space probes. This kind of reasoning exemplifies the principle

of induction: past successes of a hypothesis justify the expectation that

the hypothesis will succeed in the future, too, although they do not logically

entail any future success. This principle sounds very plausible and in practice,

it is a basic pillar of all human action and theorizing. Nonetheless, in his

‘Enquiry Concerning Human Understanding’ (1777), David Hume revealed
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a lacuna in inductive reasoning and put into doubt the justification of the

inductive principle itself. When we presume that the past success of scientific

hypotheses transfers to their future success, we assume that nature is uniform

in time and that the future will resemble the past. Hume points out that this

is itself an inductive inference. Usually, it is justified on pragmatic grounds

– since the principle of induction was successful in the past, we should apply

it in the future, too. For instance, science largely relies on the principle of

induction, and since science is arguably a very successful human activity,

we are justified to apply the principle of induction in the future, too. But

this defense is viciously circular – for justifying the principle of induction we

make an inductive inference: the past success of the induction principle is

supposed to justify its future application. Hence, we end up in a circle. Thus

it is unclear whether experience really tells us what we should believe:

“To say [an inference from past to future instance] is experimen-

tal, is begging the question. For all inferences from experience

suppose, as their foundation, that the future will resemble the

past, and that similar powers will be conjoined with similar sen-

sible qualities. If there be any suspicion that the course of nature

may change, and that the past may be no rule for the future, all

experience becomes useless, and can give rise to no inference or

conclusion. It is impossible, therefore, that any arguments from

experience can prove this resemblance of the past to the future;

since all these arguments are founded on the supposition on that

resemblance.”1

Thus, Hume’s scepticism towards scientific reasoning is actually very deep

and concerns more than the trivial claim that scientific results cannot be

known with certainty. We have no logical basis and no convincing reason

to place confidence in any scientific prediction based on past and present

observations. The space of observations consistent with past observations is

endless – when we observe one hundred black ravens, the next 100 ravens

could be white, red, or whatsoever. Any defense based on past experience

and past success would itself employ the principle of induction and the uni-

formity of nature in time and thus beg the question. According to Hume,

any inductive inference is ultimately a matter of custom and habit – the past

1Hume 1777, 37-38.
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success of inductive inference creates the habit to trust in inductive inference,

but ultimately, we cannot justify why such inferences are valid.

In his answer, Hume gives a psychological explanation why we apply the

principle of induction and not an epistemically convincing reason to do so.

However, the search for such an ultimate justification might be misguided.

From the point of view of an epistemic reliabilist, we remain justified to apply

the principle of induction as long as induction is factually a reliable method

to generate successful predictions.2 The reliabilist requires no inferential

justification of a reliable method – all that is required is that “inductive

arguments lead on the whole to true opinions”3. Moreover, in ‘Fact, Fiction

and Forecast’, Nelson Goodman (1983) draws an analogy between inductive

and deductive inference. We do not judge the soundness of a deductive

inference by appeal to a superordinate principle, but by showing that the

inference conforms to the rules of deductive inference. Therefore, “to justify

a deductive conclusion [...] requires no knowledge of the facts it pertains to”4.

These rules of deductive inference are in turn justified by their conformity

to the practice of making deductive inference. This circle is a virtuous one,

or so Goodman argues: Rules and inferences are brought in agreement each

other by mutual adjustment. Rules are extracted from the practice of making

inferences, and inferential practice has to conform to the rules.

This book cannot discuss proposals to solve the problem of induction.

To recall, we wanted to focus on another question, namely: How does the

discipline of confirmation theory stand to the problem of induction? Here I

believe that Goodman is right in an important respect: The proper problem

of induction does not consist in justifying an inductive inference by appeal to

a superordinate principle or meta-principle. Instead, it deals with defining

the difference between valid and invalid inductive inference and in finding

out which rules capture a sound inductive inference, or so Goodman argues.5

Confirmation theory is not ‘inductivist’ in the sense that it makes any asser-

tion about the validity of the induction principle, rather, it sets up formal

2Credits to Thomas Grundmann for calling my attention to this possibility.
3Ramsey [1926] 1978, 99.
4Goodman 1983, 63.
5One might add that ultimately, it will also be necessary to prove soundness and com-

pleteness theorems for a logic of inductive inference, as it has already been done for
deductive logic, in order to show that valid inferences are precisely those inferences that
conform to the rules of induction.
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models in which our inductive practice can be formalized and analyzed.6

There is a division of labor between answering Hume’s challenge and struc-

turing inductive practice, and we focus on the second task. However, as

we will soon see, this requires a specification of the conditions under which

confirmation theory is really independent of the induction problem as such.

For instance, the observation of one hundred black ravens seems to better

support the hypothesis that all future ravens are black than the hypothesis

that all future ravens are white. We notice that this assertion employs a

nontrivial inductive principle, namely the assumption that nature is uniform

in time. For this very reason, we expect the next observed raven to be

black, too. Our task is now explicative: A vague and imprecise concept –

‘confirmation’ or ‘valid inductive inference’ – is to be replaced by a precise,

tractable, fruitful and simple concept that is as similar as possible to the

old, imprecise predecessor.7 Our rules wound then distinguish between valid

inductive inferences (as the step from the observation of many black ravens

to ‘all ravens are black’) and invalid inductive inferences (as the step from

the same observation to ‘all ravens are white’).8

The discipline of extracting rules from practice, putting them into a con-

sistent calculus and proving theorems for that calculus is often called induc-

tive logic (Fitelson 2005, Hawthorne 2008). Like deductive logic, it is neutral

with respect to potential applications in the real world. While deductive

logic develops a formalism that discerns truth-preserving inferences, induc-

tive logic studies inferences where the truth of the premises indicates the

truth of the conclusions without guaranteeing it. Since the main application

of induction is the confirmation of scientific hypotheses, inductive logic of-

ten figures as confirmation theory, too. In practice, the distinction between

inductive logic and confirmation theory concerns less the subject of inquiry

than the various research traditions. Confirmation theorists are interested

in applications to real science whereas inductive logicians investigate the re-

lationship between the validity of an inductive inference and inductive rules

and try to prove soundness and completeness theorems. But finally, they

would like to answer the same question: how do we explicate valid inductive

inferences? Answering that question involves a tradeoff between normative

and descriptive adequacy: On the one hand, if inductive practice in science

6This point was brought to my attention by Andreas Bartels.
7See Carnap 1950, §3.
8See Goodman 1983, 66.
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is thought to be fallacious, confirmation theory should not mirror it. This is

illustrated by many cases of misguided or misinterpreted statistical reason-

ing. Confirmation theory should be able to correct fallacious inferences in

the empirical sciences. On the other hand, there is a descriptive component,

too: confirmation theory has to extract its rules from practice and should be

able to model historical cases of theory confirmation and to bridge the gap

to the practice in the empirical sciences.

1.2 The new riddle of induction

The last section has pointed out, pace Goodman, that instead of giving an

ultimate justification for inductive inference, the proper problem of induction

consists in defining the correct rules of inductive inference. But even if we

presuppose inductive principles of inference, most accounts of confirmation

are underdetermined in an embarrassing way, as pointed out by Goodman

(1983). Assume that all emeralds that have been observed so far are green.

By all means, this seems to entitle the inductive inference to the conclusion

that emeralds to be observed in the future will be green. Now consider the

predicate ‘grue’. It applies to all objects that were examined in the past (=

before t0) in case they are green and to all other hitherto unexamined objects

in case they are blue:

Grue(x) ≡

{
Green(x) x examined before t0

Blue(x) otherwise.

It is very plausible to adopt the view that universal hypotheses like ‘all

emeralds are green’ are confirmed by their instances (as does Hempel [1945]

1965), i.e. the observation of a green emerald, and almost all accounts of

confirmation agree on that. However, this leads into problems. Surely, the

hypothesis ‘all emeralds are green’ is confirmed when all emeralds examined

so far have turned out to be green. But our epistemic intuitions resist to

say that ‘all emeralds are grue’ is confirmed by the observations of green

emeralds in the past. Instead, we would like to say that only the first,

‘natural’ hypothesis that all emeralds are green is confirmed by the past

observations. Unfortunately, almost all accounts of confirmation recognize

the observations of green emeralds in the past (=before t0) as instances of the

‘green’ hypothesis as well as of the ‘grue’ hypothesis. Goodman’s objection
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to existing accounts of confirmation is not a logical, but an epistemological

one – the principle of confirmation by instances which is prima facie plausible

conflicts with our epistemic intuitions.9 Goodman’s critique points out that

the principle of induction, allowing for a projection from the past to the

future, does not specify which kinds of projections are admissible. Both the

‘green’ and the ‘grue’ hypothesis make use of an inductive inference, but

there seems to be a difference: Projecting the ‘green’ hypothesis seems to

be sound, in contrast to the ‘grue’ hypothesis. I would like to anticipate

that this objection can be applied in a slight variation to other accounts

of confirmation, too. So the problem extends beyond the specific Hempelian

account of confirmation that was the historical target of Goodman’s criticism.

The natural reply to Goodman’s challenge consists in saying that only

lawlike hypotheses – those which use only ‘natural’ and no gerrymandered

predicates – are confirmed in practice. In fact, the ‘green’ hypothesis, but

not the ‘grue’ hypothesis seems to correspond to a natural law. The ‘grue’

hypothesis seems to be purely accidental. In particular, the predicate ‘grue’ is

gerrymandered from ‘green’ and ‘blue’ and involves reference to a particular

point of time. It is composed of various ‘timeslices’ (green before t0, blue

afterwards). This seems to be an indicator for accidental hypotheses – lawlike

hypotheses should not be ‘gerrymandered’ and be uniform in space and time.

Therefore,‘the ‘grue’ predicate does not seem to be admissible for genuine

confirmation. Goodman responds, however, that we could define a second

gerrymandered predicate ‘bleen’ which is dual to the predicate ‘grue’:

Bleen(x) ≡

{
Blue(x) x examined before t0

Green(x) otherwise.

Then Goodman notes that

“true enough, if we start with ‘blue’ and ‘green’, then ‘grue’ and

‘bleen’ will be explained in terms of ‘blue’ and ‘green’ and a tem-

poral term. [...] But equally truly, ‘green’, for example, applies

to emeralds examined before t[0] just in case they are grue, and to

other emeralds just in case they are bleen. Thus qualitativeness

[not being gerrymandered, J.S.] is an entirely relative matter and

does not by itself establish any dichotomy of predicates.”10

9See Fitelson 2008.
10Goodman 1983, 79-80.
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In other words, the reference to temporal elements in the predicates ‘grue’

and ‘bleen’ is entirely relative to an antecedent choice of primitive predicates;

those gerrymandered predicates could, by stipulation, be regarded as primi-

tive so that the predicates ‘green’ and ‘blue’ would count as gerrymandered.

The situation is completely symmetrical – there is no logical reason to claim

that the ‘green’/‘blue’ predicates are natural whereas the ‘grue’/‘bleen’ pred-

icates are gerrymandered. On logical grounds, we cannot deny confirmation

to ‘all emeralds are grue’ and to affirm it for ‘all emeralds are green’ since all

formal criteria of lawlikeness are relative to a choice of primitive predicates.

This ‘new riddle of induction’, as Goodman calls it, can be generalized.

For any set of observations that are instances of a certain predicate, there are

infinitely many interdefinable predicates that stand in the same relation to

the available evidence. For instance, the observation that all emeralds exam-

ined so far are green does not only support the hypothesis that all emeralds

are green, but also the hypotheses that all emeralds are grue, gred (where

‘gred’ is similarly defined as ‘grue’ before), etc. In other words, a nearly

arbitrary set of hypotheses is, on nearly all formal accounts of confirmation,

equally confirmed. This sounds plainly absurd and sheds a new light on the

relationship between the induction problem and confirmation theory. Recall

that we aimed at a logical separation of confirmation theory and replies to

the induction problem. Now it seems that Goodman’s new riddle is almost

a reductio of very basal intuitions in confirmation theory: Arbitrary theories

are confirmed by arbitrary evidence. Is it at all possible to distinguish some

inductive inference amongst an infinity of competing inferences? In his treat-

ment of the induction problem, Hume tried to comfort the sceptical doubts

by noting that only those predictions conforming to past regularities, to our

customs and habits, would give rise to valid inductive inferences. But, or so

Goodman objects,

“Hume overlooks the fact that some regularities do and some do

not establish such habits; that predictions based on some regu-

larities are valid while predictions based on other regularities are

not. [...] To say that valid predictions are those based on past

regularities, without being able to say which regularities, is thus

quite pointless.”11

In other words, the Humean problem of induction (is it justified to project

11Goodman 1983, 82.
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the past into the future?) has been replaced by a problem of confirmation:

to which method of projection, to which selection of ‘natural’ predicates

should the formal apparatus of confirmation theory be applied? Confirma-

tion theory therefore needs an antecedent selection of ‘natural’ predicates

whose instances can be projected and which can be (dis)confirmed in the or-

dinary way. This residual problem of distinguishing lawlike from accidental

hypotheses is leaved to another discipline – we are solely interested in the

formal characterization of confirmation on the grounds of a set of primitive

natural predicates.12 The assumptions on which confirmation theory stands

are actually much stronger than the minimal inductive assumption that na-

ture is uniform in time and that past regularities can be projected into the

future. It has to be presupposed in which way nature is uniform in time

and which regularities are projected. The usual tool of accomplishing that

is done by choosing and shaping a logical language – for instance, a lot of

confirmation theory takes place in the framework of first order logic and the

predicates of that language are simply assumed to be projectible. This does

not circumvent the new riddle of induction, but it puts the problem into

parentheses: If the predicates are projectible, then the so-and-so account

describes the rules of valid inductive inference, opening a way to model real

cases of scientific confirmation. A formal confirmation theory acknowledges

the open problems, but it does not abandon the project of finding the rules

of valid inductive inference.

1.3 The task of confirmation theory

Scientists frequently disagree whether an empirical finding really confirms

a theoretical hypothesis. Common scientific sense may not be able to settle

the question, first because the case under scrutiny might be very complicated

and second, because people might have different ideas of common sense in a

specific case. Formal criteria of confirmation would help to settle the discus-

sion, and once again, it is helpful to consider the analogy to deductive logic.

Whether a deductive inference is valid can be decided by applying formal cri-

teria and mechanical procedures – every valid formula can be deduced from

the logical axioms (that is Gödel’s famous completeness theorem). Hence,

12An attempt to determine the set of projectible predicates is made in the fourth chap-
ter of Goodman 1983. By the way, this problem is characteristic of inductive logic and
confirmation theory and has no counterpart in deductive logic.
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in case there is a disagreement about the validity of a deductive inference,

the formal tools can help us to settle the question. In the same way that

the validity of a deductive inference can be checked using formal tools (de-

ductions), it is desirable to have formal tools which examine the validity of

an inductive inference. Sometimes this project is deemed futile because sci-

entists do not always make their criteria of confirmation explicit. But that

objection conflates a logical with a psychological point (Hempel [1945] 1965,

9-10) – analogous to the frequently encountered conflation between context

of justification and context of discovery in philosophy of science. Confirma-

tion theory and inductive logic aim at a rational reconstruction of inductive

practice that is not only descriptively adequate, but also formally fruitful

and able to correct mistakes in science.

We should acknowledge, however, that confirmation is an ambiguous term

with two sub-concepts which fall into its domain: absolute confirmation and

relative confirmation. We often say that a certain theory is well confirmed,

but we also say that a certain piece of evidence confirms a hypothesis. These

two different usages correspond to different meanings of the word ‘confirma-

tion’. When we use the former way of speaking – ‘theory T is well confirmed’

– we say something about a particular theory: T enjoys high confidence and

the total available evidence speaks for T and favors it over all serious rivals.

To be confirmed or to be well confirmed becomes a property of a particular

hypothesis or theory. By contrast, the latter use says something about a

relationship between hypothesis and evidence – it is asked whether a piece of

evidence supports or undermines a hypothesis. Relative confirmation means

that an empirical finding, a piece of evidence, lends support to a hypothe-

sis or theory. This need, however, not imply that on account of the total

available evidence, the theory is well confirmed. Several reasons speak for

focussing one’s interest on relative confirmation: First, it is plausible that

absolute confirmation is secondary to relative confirmation: a theory is abso-

lutely confirmed if and only if it is relatively confirmed to a sufficiently strong

degree by the total available evidence. Therefore we have to study relative

confirmation if we want to understand when a theory is well-entrenched and

well-confirmed. Second, relative confirmation plays a much larger role in

scientific practice than absolute confirmation: when we perform an experi-

ment and proceed to the evaluation, we would like to assess the relationship

between the observed data and the hypothesis under test and to find out

whether and to which degree the data support the hypothesis, regardless
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of how credible was the hypothesis before. A suitably large number of ex-

periments where relative confirmation takes place can lead us to the belief

that a certain hypothesis is absolutely confirmed and highly credible, but

the converse does not hold: Absolute confirmation does not play a role in

determining whether a piece of evidence confirms a hypothesis. Third and

last, the notion of relative confirmation helps us to examine more general

issues in philosophy of science that touch the relationship between theory

and models on the one hand and data and phenomena on the other hand.

Such questions might be the problem of epistemic holism in science or the

theory-ladenness of observation. We will get back to all these issues in the

course of the book.

Once the relational character of confirmation is clarified, I feel the need

to say something about the objects of this relation. At first sight, it sounds

plausible to think of confirmation as a semantic relation between a first-

order sentence on the one side – the scientific hypothesis – and a real-world

object on the other side. For instance, a black raven seems to confirm the

hypothesis that all ravens are black. On the evidential side, we have objects,

and on the theoretical side, we have first-order sentences. But if we pursue

the project to assimilate confirmation theory to deductive logic and to find a

system of syntactic rules for valid inductive inference, a semantical relation

is clearly inadequate. As long as the evidence is an external object it cannot

figure in a syntactic relation.13 But framing the evidence into sentences of

a formal language gives us access to powerful logical tools, e.g. we would

be able to check whether the evidence can be deduced from the hypotheses

or whether it is consistent with the hypothesis. Working with real-world

objects as evidence would deprive us of all those tools and furthermore, the

evidence has to be expressed and communicated in sentences of a natural

or formal language. So if we aim at a model of scientific confirmation, at a

calculus for truth-conducive (though not truth-guaranteeing) inference, we

should establish syntactic relations and treat both sides as formulae of first-

order logic. The analogy to deductive logic which successfully works on a

syntactic level illuminates the point.

Making confirmation relative to a certain language allows, of course, for

some ambiguity: Different people will put the content of a ‘real world event’

into different linguistic frameworks. So, dependent on the language which

13See Hempel [1945] 1965, 21-22.
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is employed, the same event might lead to different ‘observations’, different

formulations of the evidence and finally different results. But this objection

does not need to trouble us: History of science (e.g. the tenth chapter in

Kuhn 1962) teaches us that scientists of different ages who perform the same

experiment have seen different things because they were placed in different

paradigms, implying a different vocabulary for describing their observations.

For example, the Aristotelians described the motion of a pendulum as a

constrained fall whereas Galilei was able to see a periodic oscillation. So lan-

guage dependency and paradigm dependency are quite natural things and

any account of confirmation can only work within a paradigm and the asso-

ciated scientific language. – For roughly the same reasons, I do not conceive

the relata of the confirmation relation as abstract objects like propositions

in a Platonic heaven. First, this would deprive us of the analysis tools that

are available for sentences and second, it would beset the entire projectwith

a metaphysical burden (what are propositions? what is their ontological and

epistemic status?). Therefore I follow the main tradition in confirmation

theory – the confirmation relation holds between sentences of a formal lan-

guage L. This relation is a purely structural relationship between evidence

and hypothesis in the sense that the confirmation relation holds regardless

of the meaning which we assign to the language parameters. The confirma-

tion relation is then characterized by means of relations between well-formed

formulae of L, independent of the chosen structure. In this respect, confir-

mation theory is a logic of confirmation, analogous to deductive logic where

valid inferences are precisely those which hold in any structure of L.

We have seen that the predicate of absolute confirmation applies to a hy-

pothesis alone whereas the predicate of relative confirmation says something

about the relation between hypothesis and evidence. So the predicate of rel-

ative confirmation (which is the predicate we are interested in) has one more

place than the predicate of absolute confirmation. But that is not the end of

the story. In determining the confirmation relation between hypothesis and

evidence we often make tacit reference to a corpus of background knowledge.

Take Kepler’s second law of planetary motion – a line joining a planet and

the sun strikes equal equal areas in a fixed interval of time, irrespective of

the planet’s position in his orbit. In particular, the closer planets get to the

sun in their period, the faster they travel. It is possible to derive Kepler’s

second law from the Newtonian theory of gravitation, but at the time Kepler

proposed his laws, that theory was not yet invented and Kepler had to draw
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Figure 1.1: Kepler’s second law in a graphical representation. Source: En-
cyclopædia Britannica (www.eb.com).

on the available observation data. He had to confirm it by observation, using

lots of observation data about planetary motion. But of course, Kepler was

not able to directly see the second law – when we look at the sky we do not

literally see that planets travel in ellipses and that the sweeped areas are

equal. Thereby he had to draw on a lot of auxiliary assumptions – that the

data had ben gained from reliable instruments, that the Copernican model

of the solar system was basically correct and that planets travel in ellipses

around the sun (Kepler’s first law), that the methods to infer the distance of

the planets from the sun were correct, and so on. Those auxiliary hypotheses

connected his abstract hypothesis to the available data.

Background knowledge and auxiliary assumptions enable us to judge

whether a piece of evidence confirms a hypothesis or not. Had the background

assumptions been different, there might have been no (dis)confirmation re-

lation between our observations and the theory. For instance, if we did not

know a method to determine the distance of the planets to the sun, we would

not be able to confirm or disconfirm Kepler’s second law by means of the ob-

servational data that were available to seventeenth-century astronomers. So

confirmation is relative to the kind of assumptions we make and to the back-
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ground with regard to which we evaluate this predicate. These assumptions

typically contain initial conditions, claims about the measurement apparatus

and auxiliary laws which gap the bridge between theoretical hypotheses and

observable consequences. Another equally famous example is the confirma-

tion of Einstein’s hypothesis that light is bent by massive bodies, a corollary

of the General Theory of Relativity. This claim entailed that passing starlight

would be bent by the sun to an angle of 43 seconds per arc, about the double

of what Newtonian physics predicted. Such an effect becomes, of course,

visible only during an eclipse. Famously, Eddington successfully checked the

prediction of GRT in 1919, and by comparing his photographs to pictures of

the relevant sky region that were taken at night, he was able to spot a differ-

ence between the pictures and to show that Einstein was right. But again,

Eddington required a lot of auxiliary assumptions, e.g. about the effect size

of atmospheric starlight aberration.

Of course, there are cases of confirmation where almost no background

assumptions are required and the hypothesis is close to the observations.

Statistical hypothesis often combine various forms of background assump-

tions into a single claim. But in general, science builds on a lot of auxiliary

assumptions. They are the less dispensable the more theoretical a hypothesis

under test becomes.14 So we are well advised to consider the background as-

sumptions as an integral part of the confirmation relation. Moreover we will

see in the next chapters that a two-place predicate of confirmation has seri-

ous deficits and cannot deliver an adequate theory of confirmation. Without

going into the technical details, we can state at this point that researchers

typically make a distinction between hypotheses under test and hypotheses in

use and that a two-place predicate of confirmation neglects that distinction,

thus failing to be descriptively adequate. In order to keep the presenta-

tion clear and readable, I will not always explicitly mention the background

knowledge in the book. Indeed, conditioning on background knowledge is an

important tacit assumption in confirmation theory.

Thus, the topic of the book is the relationship between theory and evi-

dence, between models and data, relative to certain background assumptions

or certain background knowledge. This approach does not only enable a more

fruitful and penetrating analysis of the concept of confirmation, as argued

above, it also opens a natural way to integrate statistical evidence and appli-

14See Duhem 1914, in particular p. 281.
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cations of statistical evidence in various problem areas of philosophy. Since

statistics and statistical methods are pervasive in the empirical sciences, no

analysis of confirmation that is interested in implications for real science can

neglect these issues. By means of the probabilistic framework, we also ob-

tain a quantification of the degree of support. When discussing statistical

evidence we will also notice the distinction between subjective and objective

accounts of confirmation – accounts which allow for distinctly subjective el-

ements in the confirmation of a scientific hypothesis and those who do not.

Scientific inference is supposed to be as objective and intersubjectively bind-

ing as possible, and this normative force of a scientific conclusion should not

be put in jeopardy by making the concept of confirmation too subjective.

But on the other hands, it is questionable whether an ‘objective’ theory of

inductive inference can ever be achieved.

All those questions will be discussed in the latter chapters of the book.

I would like to begin with the attempt to straightforwardly explicate the

confirmation predicate in a framework where many scientific theories can be

embedded: first order predicate logic. This is the subject matter of qualitative

confirmation – accounts of confirmation that do not come with a numerical

quantification of the degree of support lent by the evidence. They are pu-

tatively objective theories of confirmation and the most traditional tool of

tackling the problem of scientific confirmation.

1.4 Summary

The problem of induction – how to justify the projection from past to future

regularities – has been a vexing issue over a long time, but a satisfactory

resolution is still to be found. Two hundred years after David Hume for-

mulated the problem in a pressing way, philosophers have got used to living

with it and not spending too much worries on its resolution. Confirmation

theory can, or so the received view argues, nevertheless extract rules from

our inductive practice and in turn measure our practice against these rules.

However, Goodman’s ‘new riddle of induction’ directly affects confirmation

theory, too: the main question is not whether to project past regularities to

future expectations but which kind of regularities should be projected. Good-

man argues that confirmation theory alone cannot succeed in distinguishing

valid projections from invalid one, as famously illustrated by the ‘grue’ ex-

ample. Our epistemic intuitions urge us to project ‘lawlike’ regularities (like
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‘green’) and to forbid the projection of ‘accidental’ regularities (like ‘grue’).

Goodman’s argument shows that formal accounts of confirmation which are

supposed to distinguish valid from invalid inductive inferences cannot solve

this problem. Hence confirmation theory has to build on assumptions which

predicates are projectible and which are not – a concession that is actually

less dramatic than it sounds.

Confirmation theory tries to establish formal criteria for confirmation of

a scientific theory and to model the inductive practice of scientists. The

project of finding a formal explication of confirmation and rules for valid

inductive inference is similar to the project of finding deductive rules that

characterize a valid (deductive) inference. Here, we have to distinguish the

relative concept – ‘What is the relation between a piece of evidence and a

hypothesis?’ – and the absolute concept of confirmation – ‘Is a hypothesis

credible and well-entrenched?’. We have argued that the relative concept

of confirmation is the more fundamental concept and the more interesting

object of study. Moreover, due to the enormous role of auxiliary hypotheses

in science, we add a third element to the confirmation relation – background

assumptions. These preliminaries pave the way for the second chapter where

qualitative, structural accounts of confirmation are discussed.
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Chapter 2

Qualitative Confirmation

2.1 Introduction

In the last two decades, qualitative accounts of confirmation have largely been

superseded by probabilistic accounts, in particular Bayesian ones. While

probabilities certainly provide a powerful framework for inductive reasoning,

this does not imply that qualitative reasoning has become superfluous. In

a lot of empirical sciences probabilistic reasoning still plays a minor role, if

at all. Qualitative arguments are thus central for the confirmation of sci-

entific hypotheses, and their relativity to a set of primitive predicates of a

language does not diminish their significance. They allow us to reconstruct

cases of confirmation in science and develop normative constraints for theory

confirmation. Indeed, the most prominent cases of theory confirmation and

replacement are situated in a qualitative framework, e.g. the confirmation of

Kepler’s laws of planetary motion or Darwin’s theory of evolution. In order

to have a sensible model for such cases, an account of qualitative confir-

mation is indispensable – introducing subjective probabilities would simply

misrepresent the problem. Replacing qualitative by quantitative accounts in

the entire domain of science was succinctly criticized by Clark Glymour:

“The bearing of evidence on theory is thought to be established

by probabilistic connections, and confirmation and methodology

are to be explicated in probabilistic terms. [...] Such arguments

slide over much of the structure of scientific arguments that we

find in fact, and impose instead a probabilistic superstructure. In

providing an admirable, general account of confirmation and ra-

tional belief, probabilistic theorists are obliged largely to ignore,
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for example, the intricacies of Newton’s argument for universal

gravitation and of many other scientific arguments of major in-

terest.”1

Of course, quantitative (e.g. probabilistic) theories of confirmation are always

qualitative theories, too, so Glymour’s objection seems to be off the mark.2

Nonetheless, I believe that there are two important points in favor of purely

qualitative accounts: first, as pointed out by Glymour, a representation of

confirmatory arguments in the history of science by means of degrees of

belief is often inadequate – just because the arguments actually went another

way. This is especially plausible for non-stochastic theories as Newtonian

mechanics. Second, probabilistic confirmation theories often allow different

verdicts on the strength of a confirmatory argument, but in many cases, the

confirmatory power of the evidence seems to be beyond reasonable doubt and

to leave little room for subjectively based disagreement. Purely qualitative

theories of confirmation are, as we will see, more objective than quantitative,

probabilistic ones based on degrees of belief. They are much better able to

capture structural relations between theory and evidence that are essential

to scientific confirmation:

“[...] that relation [of evidential relevance] depends somehow in

structural, objective features connecting statements of evidence

and statements of theory. [...] There must be relations between

evidence and hypotheses that are important to scientific argument

and to confirmation but to which the Bayesian scheme has not

yet penetrated.”3

This gives a rationale for focussing on qualitative accounts, so much the

more as many empirical (and in particular, physical) theories are formulated

inside the framework of first-order logic. Thus, if we want to capture struc-

tural relations of evidential support, it is natural to take first-order logic as

a framework for non-probabilistic, qualitative confirmation theory, too. In

sharp contrast to probabilistic theories of confirmation, qualitative theories

of confirmation do not try to measure the degree of confirmation. Instead

they set up conditions for the question when something counts as evidence

1Glymour 1980a, 5.
2Rainer Stuhlmann-Laiesz urged me to clarify that point.
3Glymour 1980a, 93, my emphasis.
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for a hypothesis. Such qualitative accounts are often closer to scientific prac-

tice than the more expressive and fine-grained probabilistic account which

in many cases merely impose a ‘probabilistic superstructure’. Of course,

the power of such accounts is restricted because nowadays, many scientific

hypotheses have statistical character so that a comprehensive confirmation

theory requires the more expressive language of quantitative confirmation

and probability. Still, it is an attractive and worthwhile project to give an

‘objective’ account of confirmation, without recourse to subjective probabil-

ities. Apart from that, study of qualitative confirmation reveals the role of

deductive relations in scientific reasoning and illuminates typical features of

confirmation. Learning how the concept of confirmation works gives helpful

hints for a quantitative analysis, too (which is conducted in the later chapters

of this book). All these facts encourage philosophers of science not to give

up qualitative confirmation and to keep the field alive.

The outline of the chapter is thus. First, I present the two major ap-

proaches in qualitative confirmation theory – confirmation by instances, as

captured in the satisfaction criterion and the hypothetico-deductive tradi-

tion. Thereby I show that both approaches are subject to severe difficulties,

some of technical and some of a more principled nature. Then I discuss some

attempts to solve the problems before finally coming to my own suggestion

which aims at a reconciliation of falsificationist principles with confirmation

theory. This is accomplished in a refined account of hypothetico-deductive

confirmation that incorporates falsificationist principles to a higher degree

than its predecessors.

2.2 Hempel and the raven paradox

A very natural idea to explicate the concept of qualitative confirmation con-

sists in the idea that hypotheses are confirmed by finding their instances.

This approach was first suggested by Jean Nicod [1923] (1970) and has been

influential up to modern times (e.g. Glymour 1980a). The idea is thus: When

you have a hypothesis that all X’s are Y ’s, this hypothesis is confirmed by

the observation of a X that is also a Y . For example, if we want to confirm

the hypothesis that all ravens are black, only the observation of a black raven

seems to confirm that hypothesis. In other words, such universal conditionals

as ‘all ravens are black’ or, more formally, ∀x : Rx → Bx are confirmed by

any observation of the form Ra.Ba and by nothing else. Such an account
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seems to correspond precisely to our intuitions about confirmation.

Nicod Condition (NC): For a hypothesis of the form H = ∀x :

Rx → Bx and any individual constant a, an observation report

of the form Ra.Ba confirms H (relative to empty or irrelevant

background knowledge K).

However, this account runs into serious trouble. To see why, I would like to

motivate the

Equivalence Condition (EC): If H and H ′ are logically equiv-

alent sentences then E confirms H relative to K if and only if E

confirms H ′ relative to K.4

We have already said that scientific hypothesis are usually framed in the log-

ical vocabulary of first-order logic (or a reduct thereof). Furthermore, they

are often stated in different, but logically equivalent forms, e.g. the math-

ematical property of compactness can be stated using a topological or an

equivalent analytical formulation. The idea of the equivalence condition is

that ‘saying the same with different words’ does not make a difference with

regard to relations of confirmation and support: Hypotheses which express

the same content with different words are equally supported and undermined,

independent of the chosen formulation. For instance, if we assert that set

S is compact, the amount of (dis)confirmation another sentence lends to

this assertion is independent of whether we have analytical or topological

compactness in mind. To see this in more detail, note that for deductive re-

lations (e.g. whether A logically implies B), the Equivalence Condition holds

by definition: If A logically implies B, A also implies any B′ that is logi-

cally equivalent to B. An account of confirmation should contain relations

of deduction and entailment as special cases: If an observation entailed the

negation of a hypothesis, in other words, if the hypothesis were falsified by

actual evidence, this would equally speak against all equivalent versions and

formulations of that hypothesis. Deduction and logical entailment do not

make a difference between equivalent sentences, and such logical relation-

ships between hypothesis and evidence are clearly relevant for confirmation

4This condition can naturally be extended to a condition for evidence and back-
ground knowledge, asserting that the confirmation relation is invariant under replacing
evidence/background knowledge statements by logically equivalent statements. For the
purposes of discussing the raven paradox, this is, however, not necessary.
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in science. For instance, it is of major interest whether Kepler’s laws are a

logical consequence of Newton’s laws of motion and gravitation. Since the

Equivalence Condition holds for deductive relations and confirmation has to

build on them, we are well advised to demand the Equivalence Condition

for inductive relations, too. It would be very strange if choosing a different

formulation of a natural law invalidated the confirmation which empirical

evidence lent to the law. If the equivalence condition did not hold, the de-

gree of support would depend on the specific formulation of the law which

would counter all efforts for introducing logical and mathematical methods

into science, thereby making it more rigorous and finally more successful.

Hence, the equivalence condition should be accepted without contention.

This leads, however, to a problem for Nicod’s suggestion that hypotheses

are confirmed by observing their instances: Assume that we observe E =

¬Ra.¬Ba (e.g. imagine that E is a piece of white chalk). Obviously, E

confirms the hypothesis H2 = ∀x : ¬Bx→ ¬Rx – things that are not black

are no ravens either (by the Nicod condition). Furthermore H2 is logically

equivalent to its contrapositive H1 = ∀x : Rx → Bx – the original raven

hypothesis. Hence, by the equivalence condition, E confirms H1, too. This

conflicts with our intuition H1 – the hypothesis that all ravens are black –

should not be confirmed by observing a piece of white chalk (which has the

properties of neither being a raven nor being black). Hence, we have three

individually plausible, but incompatible claims at least one of which has to

be rejected:

1. Nicod Condition (NC): For a hypothesis of the form H = ∀x :

Rx → Bx and any individual constant a, an observation report of the

form Ra.Ba confirms H.

2. Equivalence Condition (EC): If H and H ′ are logically equivalent

sentences then E confirms H relative to K if and only if E confirms

H ′ relative to K.

3. Confirmation Intuition (CI): A Hypothesis of the form H = ∀x :

Rx→ Bx is not confirmed by an observation report of the form ¬Ra.¬Ba.

The main conflict in this sets of claims consists in the fact that (EC) merely

considers the logical form of scientific hypothesis whereas (NC) and (CI)

implicitly assume that there is an ‘intended domain’ of a scientific hypothesis.
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In particular, only ravens are allowed to confirm or disconfirm the hypothesis

that all ravens are black.

While we will discuss the raven paradox in greater detail later it is inter-

esting to note in the first place that in his [1945] 1965, Hempel argues against

(CI). We should learn to live with the paradox and not see anything para-

doxical in the fact that something that is neither a raven nor black confirms

the hypothesis that all ravens are black. His argument can be paraphrased

thus:5 Assume that we observe a grey, formerly unknown bird that is in all

relevant external aspects very similar to a raven. That observation puts the

raven hypothesis to jeopardy. It might thus be the case that we have seen

a non-black raven and have thus falsified our hypothesis. But a complex

genetic analysis reveals that the bird does not belong to the kind of ravens –

indeed, it is more related to crows than to ravens. Hence, it sounds logical to

say that due to the results of the genetic analysis, the observation of the grey

crow corroborates the raven hypothesis – the raven hypothesis has survived

a possible falsification. In other words, a potential counterexample has been

eliminated. Thus there is no paradox in saying that an observation report of

the form ¬Ra.¬Ba confirms H – in the sense that a satisfies the constraint

given by H that nothing can be both a raven and have a color different from

black. It might now be objected that the observation of a black raven seems

to lend stronger support to the raven hypothesis than the observation of a

grey crow-like bird. But this is a problem for a quantitative analysis of the

raven paradox and not for a qualitative one. By not being a counterexam-

ple to H the observation of the grey crow-like bird supports H, and this is

particularly salient when ¬Ba is learnt before ¬Ra. Hence (CI) is – at least

from the point of view of a qualitative theory of confirmation – plainly false.

The paradox vanishes since one of the three premises has been discarded.

Now we have to look for a full account of confirmation that respects

(EC), (NC) and the failure of (CI). To this end, Hempel suggests a further

criterion of adequacy for confirmation: When we confirm a hypothesis H,

the confirmation transmits to any hypothesis that is logically weaker than

H, i.e. to any hypothesis that is entailed by H. That is again motivated by

the analogy to deductive logic where, if Γ |= φ, any logical consequence of φ

is also entailed by Γ.

5Hempel [1945] (1965) makes the argument for quite a different example (‘all sodium
salts burn yellow’) but I would like to stick to the original raven example because I do not
want to confuse the reader.
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Consequence Condition (CC): If E confirms H relative to K and

H logically entails H ′ (H |= H ′) then E confirms H ′ relative to

K, too.

For instance, an observation that confirms the heliocentric model of the solar

system (as Galilei’s discovery of the Jupiter moons) also confirms the special

corollary that Earth revolves around the sun. Or observation data that con-

firm the wave nature of light implicitly confirm that light exhibits diffraction

patterns. In other words, an observation that makes us confident in a strong

and comprehensive theory makes us also more confident in its parts. We will

discuss that intuition later, but for the moment, we take it as granted.

Building on these and some other criteria for confirmation, Hempel de-

velops a full account of qualitative confirmation, the satisfaction criterion.

The idea is thus: Deductive entailment between evidence and hypothesis is

certainly too strong as a criterion of confirmation, but we may wish to say

that the evidence entails a restricted part of the hypothesis – namely the part

which that observation is able to verify. For example, if a confirming obser-

vation report says something about the singular terms a, b and c, the claims

a hypothesis makes about a, b and c have to be satisfied by the evidence.

From such an observation report we could conclude that the hypothesis is

true of the class of objects that occur in E. That is all we can demand of an

confirming observation report, or so Hempel argues. In other words, we gain

instances of a hypothesis from the evidence, and such instances confirm the

hypothesis. To make this informal idea more precise, we have to introduce

some definitions (taken from Gemes 2006a):

Definition 2.1 An atomic well-formed formula (wff) β is relevant to a wff

α if and only if there is some model M of α such that: if M ′ differs from M

only in the value β is assigned, M ′ is not a model of α.

So intuitively, β is relevant for α if at least in one model of α the truth

value of β cannot be changed without making α false. Now we can define

the domain of a wff:

Definition 2.2 The domain of a well-formed formula α, denoted by dom(α),

is the set of singular terms which occur in the atomic (!) well-formed formulas

(wffs) of L that are relevant for α.
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For example, the domain of Fa.Fb is {a, b} whereas the domain of Fa.Ga

is {a} and the domain of ∀x : Fx are all singular terms of the logical language.

In other words, quantifiers are treated substitutionally. The domain of a

formula is thus the set of singular terms about which something is asserted.

Those singular terms are said to occur essentially in the formula:

Definition 2.3 A singular term a occurs essentially in a formula β if and

only if a is in the domain of β.

So, i.e. a occurs essentially in Fa.Fb, but not in (Fa ∨ ¬Fa).F b. Now,

we are interested in the development of a formula for the domain of a certain

formula.

Definition 2.4 The development of a formula H for a formula E, H|E, is

the restriction of H to E, i.e. the restriction of H to the domain of E or all

singular terms that occur essentially in E. In particular, the restriction of

the formula ∀x : Fx is is satisfied if and only if ∀x : (x ∈ dom(E)→ Fx).6

In other words, the development of a hypothesis for a set of singular terms

is the restriction of H to that set. For instance, (∀x : Fx)|{a,b} becomes

Fa.Fb. Now we have the technical prerequisites for understanding Hempel’s

satisfaction criterion:

Definition 2.5 (Satisfaction criterion) A piece of evidence E directly Hempel-

confirms a hypothesis H relative to background assumptions K if and only

if E.K entails the development of H to the domain of E. In other words,

E.K |= H|dom(E).

Definition 2.6 A piece of evidence E Hempel-confirms a hypothesis H rel-

ative to background assumptions K if and only if H is entailed by a set of

sentences Γ so that for all sentences φ ∈ Γ, φ is directly Hempel-confirmed

by E relative to K.

So, for example, Fa (directly) Hempel-confirms the hypothesis ∀x : Fx

and Ra.Ba and ¬Ra.¬Ba both confirm the ‘raven hypothesis’ H = ∀x :

Rx → Bx , in agreement with Hempel’s rendering of the raven paradox.

Obviously, every piece of evidence that directly-Hempel confirms a hypothesis

6The development of a formula can be defined precisely by a recursive definition, see
Hempel 1943. For our purposes, the informal version is sufficient.
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also Hempel-confirms it, but not vice versa. Most intuitively clear cases of

confirmation are successfully reconstructed in Hempel’s account.

It is easy to see that any sentence that follows from a Hempel-confirmed

sentence is Hempel-confirmed, too.7 Hence, Hempel’s confirmation criterion

satisfies the Consequence Condition. Similarly, it satisfies the Equivalence

Condition because it builds on relations of logical consequence which are

invariant under equivalent transformation. However, there are some serious

drawbacks of Hempel’s classical suggestion.8

First, some hypotheses do not have finite developments and are therefore

not confirmable. Take the hypothesis

H2 = (∀x : ¬Gxx).(∀x : ∃y : Gxy).(∀x, y, z : Gxy.Gyz → Gxz)

which asserts that G is a serial, irreflexive and transitive two-place relation.

These properties entail that H2 is not satisfiable in any finite structure and

thus not Hempel-confirmable by a finite number of observations. But cer-

tainly, H2 is not meaningless – you might interpret G as the ‘greater than’

relation and then, the natural numbers with their ordinary ordinal structure

are a model of H2: H2 would assert the ‘greater than’ relation is transitive,

irreflexive and that for any natural number, there is another natural number

which is greater than it.

Second, consider c, an individual constant of our predicate language, and

the hypotheses H3 = ∀x : Ix and H4 = ∀x 6= c : ¬Lx. Take the set

of all planets of the solar system as the universe of our intended structure

and let the individual constant c refer to Planet Earth. Then H3 might be

interpreted as the claim that iron exists on all planets and H4 as the claim

that no life exists on other planets. Both are meaningful hypotheses open to

empirical investigation. Now, the observation report E = Ic (there is iron

on Earth) directly Hempel-confirms H3.H4 (there is iron on all planets and

life does not exist o other planets) relative to empty background knowledge.9

While this may be acceptable, it also follows that H4 is Hempel-confirmed by

E = Ic, due to the consequence condition. This is utterly strange since the

actual observation (there is iron on Earth) is completely independent of the

7More precisely, assume that H |= H ′ where H is Hempel-confirmed by E relative to
K. Then there is a set Γ so that any element of Γ is directly Hempel-confirmed by E
(relative to K) and that Γ |= H. Since by assumption H |= H ′, it follows that Γ |= H ′,
too. Thus H ′ is Hempel-confirmed.

8See also Earman and Glymour 1992.
9The development of H3.H4 with regard to c is Ic.
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hypothesis at stake (no life exists on other planets). Clearly, this conclusion

goes beyond what the available evidence entitles us to infer and is sheer

nonsense.

These formal problems may be mitigated in a more refined formulation of

Hempel-confirmation, but there are more fundamental problems, too. They

are in a similar vein connected to the fact that Hempel-confirmation satisfies

the Consequence Condition. When a hypothesis H is Hempel-confirmed by

a piece of evidence E (relative to K), any arbitrary disjunction X can be

tacked to H while leaving the confirmation relation intact. For example,

the hypothesis that all ravens are black or all doves are white is Hempel-

confirmed by the observation of a black raven, although it is not clear in how

far that observation is relevant for the hypothesis that all doves are white.

Even worse, the same observation also confirms the hypothesis that all ravens

are black or no doves are white. The tacked disjunction is completely arbi-

trary. Evidential relevance for the hypothesis gets lost, but a good account

of confirmation should take care of these relations.

Finally, consider the following case: A single card is drawn from a stan-

dard deck. We do not know which card it is. We consider, however, the two

hypothesis that the card is the ace of diamonds (H5) and that the card is a

red card at all (H6). Now, the person who draws the card tells us that the

card is a diamond and either an ace or a king. Obviously, the hypothesis

H6 is conclusively Hempel-confirmed by this observation report. But what

about H5? We are now much more confident that H5 is true because the

evidence supports the hypothesis that the card is an ace of diamonds over

the hypothesis that the card is no ace of diamonds, in the usual relative

sense of confirmation. However, the observation does not Hempel-confirm

the hypothesis that the card is an ace of diamonds. This is so because not

all assertions H5 makes about this particular card – that it is an ace and a

diamond – are satisfied by the observation report. This behavior of Hempel-

confirmation is somewhat strange and stands in contrast to the most popular

quantitative account of confirmation, the Bayesian account. This toy exam-

ple has analogues in science, too: it is not possible to confirm Kepler’s laws

in total by confirming only one of its three components. Any confirming

observation report would have to entail each of Kepler’s laws (with regard

to the planet that is observed). This is at least strange because we often

do not have the opportunity to check each of the predictions of a theory.

Or an observation of the diffraction pattern of light would not confirm the
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hypothesis that light is an electromagnetic wave because waves have more

characteristic properties than just the diffraction pattern – properties that

were not shown in that particular observation. This is all very strange. We

would like to be able to partially confirm a general hypothesis by success-

fully checking a particular prediction. Hence, Hempel’s satisfaction criterion

is not only liable to severe technical objections, but also fails to reconstruct

an important line of thought in scientific observation and experimentation.

We thus notice that these counterexamples do not only illuminate techni-

cal problems of Hempel’s account, but also that the Consequence Condition

leads us into big trouble. But why did it seem to be so plausible at first

sight? I believe that the missing distinction between the absolute and the

relative concept of confirmation is the culprit. The Consequence Condition is

plausible whenever absolute confirmation is examined. When a strong, com-

prehensive theory is strongly endorsed – in the sense of ‘strongly endorsed’

or ‘empirically supported beyond all reasonable doubt’ – any part of this the-

ory is also absolutely confirmed. Obviously, the less risky a conjecture is, the

more confidence can we put in it, and any proper part of a theory is logically

weaker and thus less risky than the entire theory. Therefore the Consequence

Condition makes perfect sense when it comes to endorsement and absolute

confirmation. It is, however, questionable whether the Consequence Condi-

tion is also a sensible condition with regard to relative confirmation, as the

above examples make clear. Here, we are interested in an account of relative

confirmation where a theory can also gain support from examining some of its

parts. Thus, it is natural to drop the consequence condition and to abandon

Hempel’s proposal, too. In the next section, we will review the main alterna-

tive to Hempel’s satisfaction condition, the venerable hypothetico-deductive

approach to confirmation.

Finally, Hempel’s proposal even fails to resolve the problem which moti-

vated the entire account: the raven paradox. Take again the hypothesis H

that all ravens are black. Compare two possible pieces of evidence: In the

first case, we take a crow which we know to be a crow and notice that it is

grey (E1 = ¬Ba.¬Ra10, K1 = ¬Ra). This seems to be a fake experiment if

evaluated with regard to the raven hypothesis – we knew beforehand that the

crow could not disconfirm the raven hypothesis. There was no risk involved

10For the confirmation relation it does not make a difference whether we write the
evidence as E1 = ¬Ba or as E1 = ¬Ba.¬Ra because K1 contains ¬Ra.



30 2.2. Hempel and the raven paradox

in the experimentation.11 In the second case we observe a grey crow which

we do not know to be a crow and realize only by means of a cumbersome

genetic analysis that the bird is not a raven, but a crow (E2 = ¬Ra.¬Ba,

K2 = ∅). That counts as a sound case of confirmation, as argued above (in

agreement with Hempel). Hempel spots the difference as thus: When we are

told beforehand that the bird is a crow

[...] “this has the consequence that the outcome of the [...] color

test becomes entirely irrelevant for the confirmation of the hy-

pothesis and thus can yield no new evidence for us.”12

In other words, the available background knowledge in the two cases makes

a crucial difference. Not taking this difference into account is responsible for

the fallacious belief (CI) that nothing that is neither a raven nor black can

confirm the hypothesis that all ravens are black. (CI) is plausible only if we

tacitly introduce the additional background knowledge that the test object

is no raven. Thus, in the above example, H should be confirmed if we do

not know beforehand that the bird under scrutiny is a crow (K1 = ∅) and

it should not be confirmed if we know beforehand that the bird is a crow

(K2 = ¬Ra). In Hempel’s own words,

“If we assume this additional information as given, then, of course,

the outcome of the experiment can add no strength to the hy-

pothesis under consideration. But if we are careful to avoid this

tacit reference to additional knowledge (which entirely changes

the character of the problem) [...] we have to ask: Given some

object a (that is neither a raven nor black, but we do not happen

to know this, J.S.): does a constitute confirming evidence for the

hypothesis? And now [...] it is clear that the answer has to be in

the affirmative, and the paradoxes vanish.”13

However, Hempel is unable to make that difference in his own theory of

confirmation. The reason is that his account is monotone with regard to

the background knowledge, i.e. extending the background knowledge can-

not destroy the confirmation relation.14 Hempel inherits this property from

11See Popper 1963.
12Hempel [1945] 1965, 19.
13Hempel [1945] 1965, 19-20.
14This argument was first made in Fitelson and Hawthorne (2006) and Fitelson (2006,

98-99).
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deductive logic, because E.K |= H|dom(E) is the crucial condition for di-

rect Hempel-confirmation, and thus also for Hempel-confirmation. Evidently,

logical entailment is preserved under adding additional conditions to the an-

tecedens. Therefore Hempel’s own account yields confirmation in both cases.

In the first case (we do not know beforehand that a is no raven) this follows

from

E1.K1 = ¬Ra.¬Ba |= (Ra→ Ba) = H|dom(E)

and in the second case, we have precisely the same implication

E2.K2 = ¬Ra.¬Ba |= (Ra→ Ba) = H|dom(E).

Hence, adding the background knowledge that the test object is no raven

does not destroy the (Hempel-)confirmation of H2. Certainly Hempel spots

two points correctly: First, the paradoxical conclusion of the raven example

should be embraced, contra (CI). Second, background knowledge plays a

crucial role when it comes to explaining the source of the paradox. But

while pointing into the right direction, his own theory of confirmation fails

to conform to this solution idea of the paradox.

The raven paradox drastically shows how valuable it is to distinguish

between evidence and background knowledge and how important it is to for-

malize this distinction in an adequate way, without running into Hempel’s

problem. It further shows the problem of monotonicity with regard to evi-

dence and background knowledge: When we happen to know more, confir-

mation might get lost. Therefore monotonicity in the background knowledge

does not see to be a desirable property for accounts of confirmation. The

problems of monotonicity and missing evidential relevance will continue to

bother us in the next section, when we discuss the hypothetico-deductive

approach.

2.3 Hypothetico-deductive confirmation

The hypothetico-deductive approach is one of the oldest and also most in-

tuitive approaches to qualitative confirmation. Roughly, the idea is that

from a theoretical hypothesis, we can deduce some predictions with the help

of background knowledge. If such predictions are observed, they constitute

a confirmation of the hypothesis. Theories whose predictions are observed

multiple times and whose predictions never go wrong are better corrobo-

rated by the evidence than those whose predictions fail to obtain. Thus,
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hypothetico-deductive confirmation bears a close resemblance to the falsifi-

cationist principles of conjecture and refutation. Take, for example, Thomas

Young’s famous double-slit experiment (1801) that contrasted the hypoth-

esis that light exhibits wavelike behavior and the hypothesis that light is

composed of particles. To confirm the wave hypothesis, Young set up the

double-slit experiment where a beam of light is shot at a solid and opaque

plate that has two open slits in it. Behind the plate, there is a white screen

where the light that passes through the slits is recorded. If light is indeed a

wave, we expect that wave fronts emerge from each slit, propagate in concen-

tric circles, interfere with each other and yield an interference pattern that

is characteristic of a wave. Indeed, when both slits are open, we see such

an interference pattern – a pattern of alternating light and dark bands on

the screen (see figure 2.1 and 2.2). This observation thus confirmed Young’s

contention that light exhibits wavelike behavior. The methodology of the ex-

periment is top-down and deductive: If light were an electromagnetic wave

then we would observe interference patterns on the screen. Since we do in

fact make those observations, the hypothesis about the wavelike nature of

light is confirmed. The wave hypothesis has survived a severe test and an

attempt to be falsified – had other results been observed, we would have had

to modify the wave hypothesis. On the other hand, the experiment shows

that something must be wrong with the classical corpuscular theory.

Formally, the employed scheme of reasoning can be put as

Definition 2.7 Hypothetico-deductive Confirmation (H-D confirmation): E

H-D-confirms H relative to K if and only if (1) H.K is consistent, (2) H.K

entails E (H.K |= E) and (3) K alone does not entail E.

In other words, an evidence report confirms a hypothesis if and only if it

is a joint implication of hypothesis and background assumptions, if the latter

are jointly consistent and if the background knowledge does not entail the

evidence. The last condition is adduced in order to avoid that an arbitrary

hypothesis is confirmed by the evidence just because the background assump-

tions already entail the evidence. To see an application of that scheme to

Young’s double-slit experiment, see 2.1.

In contrast to Hempel’s satisfaction criterion, the evidence is now de-

ductively entailed by the hypothesis (and the background knowledge). This

model of confirmation exhibits parallels to Popper’s falsificationist scheme
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Figure 2.1: The setup of Young’s double slit experiment. Source:
en.wikipedia.org.
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Figure 2.2: The interference pattern of light after passing through the double
slit. Source: en.wikipedia.org (left figure), www.paulfriedlander.com (right
figure).

Light exhibits wavelike behavior (Hypothesis)
A beam of light passes through two slits in
an opaque plate

(Background assumption)

The light is recorded on a screen behind the
plate

(Background assumption)

When sent through two slits, waves exhibit
interference patterns

(Background assumption)

An interference pattern is displayed on the
screen

(Observation report)

Table 2.1: Young’s double-slit experiment, interpreted as a case of H-D con-
firmation.
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of conjecture and refutation:15 a case of H-D confirmation lends partial, but

never full support to the hypothesis, but had another outcome been observed,

the hypothesis would have been falsified.

So how does the hypothetico-deductive account of confirmation deal with

the raven paradox? Recall that the raven paradox sets up the following prob-

lem: If we assume that the raven hypothesis H = ∀x : Rx→ Bx (‘all ravens

are black’) is confirmed by its instance E1 = Ra.Ba, contraposition yields

that H = ∀x : Rx → Bx is equally confirmed by E2 = ¬Ra.¬Ba (e.g. ‘a

is a white piece of chalk’). This looks unsound, and many philosophers, as

Carl G. Hempel, have tried to argue that it is plausible and desirable that

¬Ra.¬Ba confirms H. So it might be surprising that in a H-D account, in-

stances of universal conditionals often fail to confirm – in particular, neither

Ra.Ba nor ¬Ra.¬BaH-D-confirms H = ∀x : Rx → Bx relative to empty

background knowledge. This raises a number of important questions: Can

such hypotheses be H-D confirmed at all? Why is such a behavior not harm-

ful? I think a fair reply can be made. Biting the bullet (=the lack of instance

confirmation) does not do any harm since Ba H-D-confirms H relative to the

background assumption Ra. In science, several observations are seldom si-

multaneously made, rather, it seems to be more adequate to describe it as a

two-stage observation process: first, property P is checked, then, property Q

is checked. As H is intended as a hypothesis about ravens, it is sensible to

ensure the ravenhood of an object before proceeding to closer investigations.

(For scientific properties which are harder to determine than the color of an

object, this point is more obvious than in the raven case.) The proposed

surrogate confirmation is indeed in line with scientific method: if H is to be

tested, we observe some ravens first (Ra) and then examine their color (Ba).

So there is nothing to complain about the lack of direct instance confirma-

tion. – Second, I.J. Good (1967, 1968) has argued that instance confirmation

does not work in all conceivable circumstances. Assume that we either live

in world W1 with 10 black ravens, 990 crows and no other birdlike objects

or we live in world W2 with 100 black ravens, one non-black raven and 900

crows. Then the observation of a black raven would be more likely in W2

than in W1, indicating that we live in W2 – the world where the raven hy-

pothesis is false. So I conclude that the failure of instance confirmation is

not always harmful. So H-D confirmation avoids the problems of an account

15See Popper 1963.
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that satisfies the Consequence Condition and does not succumb to the raven

paradox.

Now I would like to discuss some suggestive objections against hypothetico-

deductive confirmation. Note first that H-D confirmation is no complete ac-

count of confirmation since existential claims can hardly be H-D-confirmed

by observations of individual objects. For instance, Fa does not H-D-confirm

the hypothesis ∃x : Fx although this seems to be a clear case of (conclusive)

confirmation. But it might be argued that the type of confirmation which H-

D confirmation captures – in particular the confirmation of universal claims

– is more important than the confirmation of existential claims and that ad-

ditional criteria should be set up for the latter. Therefore I will neglect this

criticism and focus on more direct objections.

Clark Glymour (1980b) believed that H-D confirmation could be led ad

absurdum. For this reductio, assume that E and H be contingent and con-

sistent with each other. Relative to the background knowledge H → E, E

can be derived from H. This would meet the crucial condition for H-D con-

firmation of H by E relative to H → E. Since E and H were contingent, it

is not the case that H → E alone entails E. Hence, the H-D conditions are

fulfilled, i.e. E H-D-confirms H relative to H → E. Now let the background

knowledge be empty at first and assume that the observed evidence E is

true as we normally do. Glymour continues that the (contingent) truth of E

implies the (contingent) truth of H → E for an arbitrary H since H → E

is just a material conditional. Hence, as the logical consequence of a true

statement, H → E can be added to our background knowledge. Then we

can infer that an arbitrary H is H-D-confirmed relative to true background

knowledge (H → E) by any true evidence E.

I would, however, deny that this is an embarrassing feature of hypothetico-

deductive confirmation. To my mind, Glymour misconstrues the relation

between background knowledge and evidence: In Glymour’s example, the

background knowledge is not really known, it is derived from the evidence.

Due to this ad hoc character, it fails to provide a background for the eval-

uation of the evidence. This might look like an untenable relativization of

confirmation relations to epistemic states. But all confirmation relations

must be evaluated in the light of background assumptions. Glymour com-

mits the fallacy to double-count the evidence: He infers from the evidence E

to the assumptions which serve as a background for evaluating whether the

same E confirms the hypothesis. Scientific method strictly prohibits this step
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and maintains that evidence must be counted only once. So it is no wonder

that we get strange results. On the other hand, if H → E is part of our

a priori background knowledge, we get completely sound confirmation: A

hypothesis is tested by checking its evidential consequences by means of the

bridge sentence H → E. Thus we confidently reject Glymour’s conclusion.

A really embarrassing group of objections are, however, the tacking para-

doxes. It is possible to tack irrelevant conjunctions to the hypothesis H and

to preserve the confirmation relation: If H is confirmed by a piece of evidence

E (relative to any K), H.X is confirmed by the same E for an arbitrary X

that is consistent with H and K. We can easily check the three conditions

for H-D confirmation: First, by assumption, H.K.X is consistent. Second,

if H.K |= E then also H.K.X |= E because logical implication is monotone

with regard to the antecedens. Third, K alone does not entail E because E

H-D-confirms H relative to K. Thus, tacking an arbitrary an irrelevant con-

junct to a confirmed hypothesis preserves the confirmation relation.16 It is

easy to see that this is highly unsatisfactory: Assume that the wave nature

of light is confirmed by Young’s double slit experiment. According to the

H-D account of confirmation, this also means that the following hypothesis

is confirmed: ‘Light is an electromagnetic wave and Earth is a disc.’ This

sounds completely absurd. The problem is pressing and we have to resolve

it.

The above problem has a counterpart with regard to the evidence. Tack-

ing irrelevant disjunctions to the evidence E equally preserves the confirma-

tion relation: If E confirms a hypothesis H, E∨E ′ H-D-confirms the same H

for an arbitrary E ′ unless K logically implies E ∨ E ′. By assumption, H.K

is consistent (condition 1) and from H.K |= E it follows that H.K |= E ∨E ′
(condition 2). And condition 3 of H-D confirmation (K alone does not entail

E) was already presupposed. Again, this tacking problem has unacceptable

consequences.17 The hypothesis ‘Light is an electromagnetic wave’ is H-D-

confirmed by the observations in the double-slit experiment (the interference

pattern on the screen). Hence, it is also confirmed by the experimental ob-

servations or the observation that my neighbor’s cat is black. This is as

absurd as the tacking of arbitrary conjunctions. Both objections exploit the

16The problem is mentioned in Glymour 1980b (among other sources). Nowadays, it is
present in any contemporary essay about H-D confirmation.

17Extensive discussions are given in Gemes 1993, 1998 and more recently in Moretti
2006.
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fact that classical H-D confirmation gives no account of evidential relevance.

All these failures of classical H-D confirmation might lead to the conclusion

that the entire approach is hopeless and should be replaced by a refined in-

stance view of confirmation, analogous to Hempel’s satisfaction criterion (see

Glymour 1980a, 1980b). Nevertheless, some philosophers have undertaken

remarkable efforts to rescue the H-D account of confirmation because it so

nicely fits our intuitive scheme for confirmation in science. I discuss several

attempts to reply to the above challenges and to introduce evidential rele-

vance into a H-D account of confirmation, beginning begin with a proposal

by Paul Horwich (1982).

Horwich does not assign a direct role to the background knowledge and

believes that a confirmation predicate with only two places can do the job.

The idea is thus: An evidence report E confirms a hypothesis if E can be

decomposed into conjunctions so that the classical H-D definition is satisfied.

One of the conjunctions takes the role of the (H-D-)evidence, the other one

the role of the (H-D-)background knowledge.

Definition 2.8 E H-D confirms H according to Horwich if and only if E

has a decomposition E = E1.E2 with wffs E1 and E2 so that (1) E1, E2 and

H are consistent (2) E1.H |= E2 (3) it is not the case that E1 |= E2.

In the above definition, E1 thus takes the role of the background knowl-

edge in H-D confirmation. Horwich’s tricky idea tries to get around ex-

plicit consideration of the background knowledge and he might argue for

this step by noting that reference to background knowledge does not oc-

cur in our everyday usage of the confirmation concept. Moreover, some

oddities of classical H-D confirmation disappear, e.g. Ra.Ba now confirms

H = ∀x : Rx → Bx (due to the decomposition E1 = Ra, E2 = Ba), in con-

trast to the classical definition. But the tacking paradoxes are not resolved.

If E = E1.E2 confirms H, E ′ = E1.(E2 ∨ E3) will do the job, too, for an

arbitrary E3. Hence, the problem of missing evidential relevance was not

solved, but only disguised in different clothes. But the main drawback of

Horwich’s proposal is a straightforward counterexample. For any contingent

E and H, E is logically equivalent to (H → E).E, → being read as a mate-

rial conditional. Now, we use this observation to confirm H by E with the

decomposition E1 = H → E and E2 = E. Obviously, this suffices for clas-

sical H-D confirmation – see Glymour’s previous objection. So an arbitrary
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piece of evidence confirms any hypothesis – and Horwich’s entire criterion is

trivialized.18 So let us look for other attempts.

In his 1990, John Grimes suggest to replace classical H-D confirmation by

‘disjunctive’ H-D confirmation. This applies only to truth-functional com-

pounds of atomic well-formed forms, but that is enough for most cases of

confirmation. First, any observation report E is transformed into its dis-

junctive normal form.

Definition 2.9 A logical formula φ is a literal if and only if φ is an atomic

formula or a negation thereof.

Definition 2.10 A logical formula φ is in disjunctive normal form (DNF)

if φ is a disjunction of one or more conjunctions of one or more literals.

For instance, Fa, ¬Ga and ¬Gb are literals, but not Fa.Ga. They are

atomic formulas that might be equipped with a negation symbols. To see

the significance of a DNF in informal terms, you might imagine it as the

enumeration of all states of the world that make the formula true. The for-

mula Fa∨Ga has the disjunctive normal form Fa.Ga ∨ ¬Fa.Ga ∨ Fa.¬Ga,

and so on. To cope with the tacking by disjunction paradox, Grimes now

suggests that a hypothesis need not entail the entire evidence, but only an

element of the disjunctive normal form. If we embed this proposal into our

account of H-D confirmation, we obtain

Disjunctive H-D confirmation: Let E = D1 ∨ . . . ∨Dn be an ob-

servation report in its disjunctive normal form. E H-D-confirms

H relative to K if (1) H.K is consistent, (2) there is a k ≤ n so

that H.K |= Dk and (3) K alone does not entail E.

A little example motivates why the disjunctive version of H-D confirma-

tion can indeed capture evidential relevance: Take the hypothesis that all

ravens are black (∀x : Rx → Bx). We face the ‘tacking by disjunction’

problem – relative to the background knowledge that a is a raven, this hy-

pothesis is H-D-confirmed by the observations that a is black (Ba) or the b

is a dove of indefinite color (Db). Now we construe the disjunctive normal

form Ednf = Ba.Db ∨ Ba.¬Db ∨ ¬Ba.Db. Obviously, the hypothesis makes

no claims about whether b is a dove or not so that, and indeed, no disjunctive

18See Gemes 1998, 3.
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component of Ednf it entailed by H.K. Thus the condition of disjunctive H-D

confirmation is not satisfied and spurious cases of confirmation due to the

tacking of irrelevant disjunctions vanish.

Unfortunately, Grimes’ suggestion is not as effective as it seems to be at

first sight.19 Assume that E1 and E2 are atomic sentences (e.g. Fa and Fb, a

and b being individual constants) which confirm H according to disjunctive

H-D confirmation. Assume further that neither piece of evidence implies the

other one and that the background knowledge is empty. Then E1 ∨ ¬E2

disjunctively confirms H, and again, non-confirming disjunctions have been

tacked to the evidence. To give an example: H = ∀x : Fx is confirmed

by E = Fa ∨ ¬Fb because the disjunctive normal form of E is Ednf =

Fa.Fb∨Fa.¬Fb∨¬Fa.¬Fb and the first element of E is entailed by H. But

the evidence only tells us that a prediction of H is true or H has been falsified.

Definitely, it does not support H. This should not count as confirmation of

H so that Grimes’ suggestion is seriously inadequate.

After seeing the failure of Grimes’ proposal, it might be argued that a

principle which seriously restricts the tacking paradoxes would be too strong

anyway (Moretti 2006). It is maybe not always the case that tacking irrele-

vant formulas to the evidence destroys the confirmation relation. However, I

am not satisfied with this reply. This exit road is an option in quantitative

confirmation theory, e.g. for a Bayesian, but certainly not in qualitative con-

firmation theory. The point of qualitative confirmation consists in singling

out relations of evidential relevance and in adequacy with regard to actual

cases of confirmation in science. Certainly, those disjunctively tacked pieces

of evidence do not fulfil those criteria. And indeed, there are suggestions how

to meet those problems.

The source of the tacking problem is the fact that logical implication is

insensitive to relations of evidential relevance. When H |= E, it does not

matter how many sentences we disjunctively add to E, the entailment re-

lation is preserved. Therefore any approach that would like to remedy the

problems of H-D confirmation has to develop a theory of relevant entail-

ment, too. We do not want to invoke relevance logic and leave the realm of

standard first-order logic because scientific theories are usually formalized in

first-order logic. A promising approach in this direction was made by Ger-

hard Schurz (1991, 1994, 2005). His criterion is based on the replaceability

19The following objection was raised by Ken Gemes (1993, footnote 4) and appears
again, seemingly independently, in Moretti (2004, 19).
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of a well-formed formula in the consequens of a logical implication. Such a

term is replaceable if we are allowed to replace it by another formula without

destroying the logical implication. Consider, for example, the logical impli-

cation Fa |= Fa.Fb. Obviously, we can replace Fb by Gb, ¬Hb or whatever

formula without invalidating the logical implication.20 To see the difference,

note that we cannot replace the formula Fa in the consequens by an arbi-

trary formula. Now, we would like to mark irrelevant conclusions by the fact

that they contain replaceable elements – or as Schurz puts it, predicates that

are replaceable on some of their occurrences. A little bit more technically,

Schurz distinguished relevant and irrelevant conclusions thus (Schurz 1991):

Definition 2.11 Assume Γ |= φ. φ is a relevant conclusion of Γ if and only

if no predicate in φ is replaceable on some of its occurrences by any other

predicate of the same arity, salva validitate of Γ |= φ. Otherwise, φ is an

irrelevant conclusion of Γ.

Definition 2.12 Assume Γ |= φ. If φ is an irrelevant conclusion of Γ,

Γ |= φ is an irrelevant entailment.21

Schurz’s definitions are of special interest to confirmation theory since

they naturally apply to the tacking problems. If we tack an arbitrary dis-

junction to a piece of confirming evidence, the new evidence will merely be

an irrelevant conclusion of the hypothesis. Similarly, Schurz comes up with

an account that discerns irrelevant premises – the other side of the tack-

ing paradox. I do not spell out the details here and direct the reader to

Schurz’s publications on that problem (in particular Schurz 1991). Here, it

is sufficient to state that the problem can be tackled in a similar way as the

problem of irrelevant conclusions. Therefore we get a definition of premise-

and conclusion-irrelevant entailment. It is now suggestive to demand that

the crucial entailment H.K |= E in the definition of H-D confirmation is nei-

ther premise- nor conclusion-irrelevant in order to cope with the objections

regarding evidential relevance.

Definition 2.13 E H-D-confirms H relative to K according to Schurz if

and only if (1) H.K is consistent, (2a) H.K entails E, (2b) H.K |= E is

20To be precise, this is the case as long as the consequens remains consistent.
21For the definitions, see Schurz 1991. Schurz gives a syntactic and not a semantic

account, focussing on (ir)relevant deductions, but the same definitions can be formulated
semantically, as I do it here.
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neither a premise- nor a conclusion-irrelevant entailment and (3) K alone

does not entail E.

In this definition, the tacking paradoxes vanish. For example, ∀x : Fx

is not H-D confirmed by Fa ∨ Ga according to Schurz. Similarly, the ob-

servation report Fa does not H-D-confirm ∀x : (Fx.Gx) in the modified

definition. But on the other hand, Fa.∀x : Fx → Gx is H-D confirmed by

Ga. So Schurz’s account seems to deal well with the standard objections to

hypothetico-deductive confirmation. A problem of that account is, though,

the lack of invariance of this account of confirmation under equivalent trans-

formation. (Note that in ∀x : Fx |= Fa, the (relevant) conclusion is logically

equivalent to Fa ∨ Fa which is no relevant conclusion of ∀x : Fx.) This

violates the equivalence condition for confirmation which is a indispensable

element of any account of confirmation: Confirmation should not depend on

the way a theory (or an observation report) is formulated and presented. To

cope with this problem, Schurz has to make a number of technical modi-

fications, involving an account of relevant consequence elements. It would

be beyond the scope of this work to discuss those technicalities in detail.

Rather, I would like to stress the general point underlying Schurz’s work:

Elaborating an account of relevant entailment (or relevant deduction) helps

to protect H-D confirmation against the menacing tacking paradoxes. A gen-

eral discussion of the strengths and weaknesses of Schurz’s account ensues

later, after introducing other approaches.22

Ken Gemes’s theory of content parts tries to discern irrelevant conclusions

along similar lines. Again, the fundamental idea is that relevant logical

entailments must not lead to conclusions that contain irrelevant elements.

This is captured in the notion of a content part (which is something like a

relevant conclusion). For instance, Fa∨Ga would not be a content part of Fa

because the element Ga were superfluous. The central concept in Gemes’s

theory is his account of relevant models (see Gemes 1997, 2006a):

Definition 2.14 A relevant model of a well-formed formula (wff) α is a

model of α that assigns values to all and only those atomic wffs that are

relevant to α.
22It might be of further interest to note that Schurz’s account of relevant entailment

is also applicable to other problem, i.e. an account of verisimilitude, deontic logic, etc.
Maybe it is due to the versatility of his account of relevant entailment and the fact that
a theory of confirmation is only one of several intended application that his account of
confirmation has to struggle with some objections which I will make explicit soon.
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In other words, there are atomic wffs whose truth value affects the truth

value of α. Those wffs count as relevant for α, and a relevant model is a

model of α that only cares for those atomic wffs. For instance, the model

that assigns ‘true’ to both Fa and Ga is a relevant model of Fa → Ga.

But the model of Fa → Ga that assigns ‘true’ to Fa, Ga and Ha is not

relevant. Based on the definition of relevant models, we get a definition of

content entailment – a relation that determines when the consequens in a

logical entailment counts as a proper content part of the antecedens:

Definition 2.15 For two wffs α and β, β is a content part of α (α |=cp β)

if and only if (1) α and β are contingent, (2) α logically entails β and (3)

every relevant model of β has an extension which is a relevant model of α.

In other words, β is a content part of α if α logically implies β and if we can

extend β to a model of the antecedens α by assigning truth values to further

wffs. The content part relation is a means of detecting irrelevant conclusions.

For instance, Fa∨Ga is no content part of Fa because the model that assigns

‘false’ to Fa and ‘true’ to Ga is a relevant model of Fa∨Ga but no model of

Fa. The content part relation marks such deductions as irrelevant. Similarly,

Fa is a content part of ∀x : Fx, but Fa ∨ Fb is no content part of ∀x : Fx

since the relevant model that assigns ‘true’ to Fa and ‘false’ to Fb cannot

be extended to a relevant model of ∀x : Fx. Moreover it is possible to give

a syntactic version of the content part definition (Gemes 1994). Instead of

the third condition in the above definition, we demand that any element of

the disjunctive normal form of α is a sub-conjunction of an element of the

disjunctive normal form of β. This shows that Grimes was on the right track

when paying attention to the disjunctive normal form of the evidence. He

just failed to draw the right conclusions.

From the above examples, it is clear that replacing H.K |= E by H.K |=cp

E in the definition of H-D confirmation would resolve the tacking by disjunc-

tion paradox. But what about tacking by conjunction – the problem of

irrelevant premises? The content part definition merely applies to one side

of the problem. To this end, Gemes introduces the notion of a natural ax-

iomatization as a set of sentences whose deductive closure is the theory and

which are non-redundant content parts of the conjunction of all members:

Definition 2.16 A set of well-formed formulae T ′ is a natural axiomatiza-

tion of a theory (a deductively closed set of sentences) T if and only if the
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following three condition are satisfied:23

1. T is the deductive closure of T ′

2. every member of T ′ is a content part of the conjunction of all members

of T ′

3. no content part of any member of T ′ is entailed by the set of the re-

maining members of T ′.

For instance, natural axiomatizations of a theory saying that all things

are F s and Gs are both {∀x : Fx;∀x : Gx} and {∀x : (Fx.Gx)}.
This leads to the following refined definition of H-D confirmation, imply-

ing a fourth component – the theory to which the hypothesis belongs:

Definition 2.17 E H-D-confirms axiom A of theory T relative to K accord-

ing to Gemes24 if and only if

1. E is a content part of A.K (A.K |=cp E)

2. there is no natural axiomatization N(T ) of T so that for some set

S ⊂ N(T ), E is a content part of (K.
∧
S∈S S) and A is not a content

part of (K.
∧
S∈S S).

To make this definition more understandable, Gemes claims that

“only those content parts of T that play a role in the derivation

of E can be confirmed by E. In doing so it provides for the type

of selective confirmation (or evidential relevance, J.S.) without

which H-D (confirmation, J.S.) would [...] be hopeless.”25

As seen above, taking natural axiomatization into account indeed rules

out the classical cases of irrelevant conjunctions. For example, the only

natural axiomatizations of T = ∀x : (Fx.Gx) are T itself and the set N(T ) =

{∀x : Fx; ∀x : Gx}. We would like to say that, relative to empty background

23I use a slight modification of Gemes’s (1993, 483) account.
24Gemes (1993, 486) actually suggests a slightly different version in order to meet Gly-

mour’s (1980b) criticism, but I have already suggested a rebuttal of this criticism so that
we can adopt a less strict formulation.

25Gemes 1993, 483-484.
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knowledge, T is not confirmed by E = Fa because the component ∀x : Gx is

not covered. And indeed, for S := {∀x : Fx} we obtain that E is a content

part of S, but T (which also takes the role of the axiom in definition 2.17)

is no content part of S. Therefore, E does not H-D confirm T according to

Gemes, in agreement with our desiderata. Similarly, the condition that E be

a content part of A.K rules out the cases of irrelevant disjunctions.

Summing up we state that developing notions of relevant entailment and

content parts is able to remedy the tacking paradoxes and thus a success-

ful research program to rescue H-D confirmation. Both Gemes and Schurz

arrive at important results with the help of their technical tools. How do

they compare to each other? Are there deeper problems which are still not

recognized? Gemes’s theory of content parts has some minor drawbacks

which transfer to his account of confirmation, too.26 For instance, some of

Gemes’s natural axiomatizations are quite coarse-grained and far from being

‘natural’. Let A, B and C denote first-order sentences. Then, the sentence

(A→ B).(B.C → A), A, B and C cannot be ‘naturally’ decomposed into its

two conjuncts. These drawbacks are no decisive blow to Gemes’s proposal,

but certainly, they leave room for improvements.

Schurz, on the other hand, has to give fairly complicated definitions in

order to achieve invariance under equivalent transformations of the formulae

at stake. Moreover, Gemes (1998, 4-8) has collected some technical objections

to Schurz, e.g. ∀x : Fx is not H-D-confirmed according to Schurz by Ga

relative to ∀x : (Fx → Gx) due to premise irrelevancy. In a similar vein,

Schurz must accept that Ba confirms H = ∀x : Rx→ Bx relative to Ra, but

deny that Ba confirms Ra→ Ba relative to Ra although evidential relevance

clearly speaks in favor of confirmation. In particular, the second hypothesis

is just a local restriction of the first one.

Hence, although both accounts fare reasonably well in total, they do not

give a completely satisfactory solution – if such a solution can ever be at-

tained. H-D confirmation exhibits some parallels to Popperian corroboration

– the confirming observation does not prove the hypothesis, but the hypoth-

esis survives a test which aims at the falsification of the hypothesis.27 For

instance, the claim that all ravens are black entails that object a must not

be a non-black raven – regardless of whether a is a white piece of chalk or

a black raven. Hypothetico-Deductive confirmation is much in line with this

26Several minor objections to Gemes are made in Schurz 2005.
27See Gemes 1998.
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‘negative’ understanding of confirmation. Indeed, we can see this best in

the confirmation of universal sentences (as ‘all ravens are black’) which can

never be proven, but only be supported. In that context, the idea of H-D

confirmation is still very widespread in science, and it is important to have an

adequate account for it. The next section introduces my own suggestion and

tries to solve the open problems by a recourse to falsificationist principles.

2.4 Falsificationist confirmation

Apart from the drawbacks mentioned above, Gemes’s and Schurz’s proposals

are deficient in an important respect. To see the problem in an example,

consider the following situation. We would like to test a new antibiotic A

against an infection with bacteria of strain S which are, unfortunately, re-

sistant against conventional antibiotics. We set up a clinical trial with a

group of infected persons who are given the drug. Besides, we do not set

up a control group – the infection might be so dangerous that it would be

irresponsible to give a placebo to the other patients. Then we administer

the drug to all patients a1, . . . , an in the treatment group and wait for the

results. Indeed, for the first n-1 patients everything works fine and all infec-

tion markers soon give negative results. Patient an, however, breaks out in a

rash before the effect of the drug can be measured. Since a causal connection

to the taking of A cannot be ruled out, we stop the treatment. In other

words, with regard to an, we cannot decide whether the drug is indeed as

effective as our hypothesis posits. Still, we have to evaluate the experiment.

Do the total observations confirm that antibiotic A eliminates all S-bacteria

and leads to skin rash?

Clearly, such a claim would stand on very shaky grounds. First, to con-

firm the effectiveness of A, we should in principle wait for the results of the

last patient an. Second and worse, the observations do certainly not confirm

that taking A always leads to skin rash. To confirm that hypothesis prop-

erly, we would have to prolong the experiment and to observe whether the

other patients break out in a rash at later time point. But in any case, no

responsible medical research report would conclude ‘A clinical trial with n

test persons has confirmed that antibiotic A is effective against an infection

with S-bacteria and leads to skin rash’. It is just outrageous to neglect that

both claims are not based on the full treatment group, especially since no

single patient has exhibited skin rash and lack of S-bacteria. We did not ob-



Chapter 2. Qualitative Confirmation 47

serve a single instance of the hypothesis that giving A eliminates S-bacteria

and leads to skin rash. Therefore we should (and would) not claim that

the composite hypotheses has been confirmed. However, neither the classi-

cal nor the refined versions of H-D confirmation agree. Using the plausible

formalization28

H1 = ∀x (Ax→ ¬Sx) K = Aa1.Aa2 . . . Aan (2.1)

H2 = ∀x (Ax→ Rx) E = ¬Sa1.¬Sa2 . . .¬San−1.Ran,

the combined hypothesis H1.H2 is H-D-confirmed by evidence E relative to

background knowledge K. This result is highly undesirable and does not

depend on whether we choose Gemes’s, Schurz’s or the classical formulation

of H-D confirmation. All existing accounts yield the same result (proofs

omitted). Nevertheless, the observations ¬Sa1,¬Sa2, . . . ,¬San−1 on the one

hand and Ran on the other hand are completely unrelated so that they should

not jointly confirm the composite hypothesis which the single parts clearly

fail to confirm.29 We strongly feel that the evidence should contain at least

one instance of H1.H2, i.e. a patient who, after being given the drug, is free

of S-bacteria and develops skin rash. That such an instance is not required

makes confirmation of a substantial hypothesis far too easy and opens the

door to deliberate manipulation of scientific experiments. To see the latter

point in greater generality, imagine that we would like to reason to a foregone

conclusion: all objects in a certain group have property P1 as well as property

P2. Assume now that we find P1 in some of the objects and P2 in others.

According to all existing variations of H-D confirmation, these observations

would confirm that all objects have property P1 and property P2. This is a

fallacy similar to the tacking paradox since in none of our observations, P1

and P2 are present in a single object. Therefore, the examined objects should

not confirm the composite hypothesis. Classical and modern accounts of H-D

confirmation open the door to spurious confirmation.

It might be objected that the failure of H-D confirmation should not dis-

turb us too much – there is no completely perfect account of confirmation,

and we should simply adjust our intuitions and learn to live with the coun-

terexamples. Such a reply would be fair if the problem were of minor impor-

tance and if we could not set up a better account of qualitative confirmation.

28Aa denotes that antibiotic A has been given to person a, Sb denotes that S-bacteria
are present in the body of patient b, R is the skin rash predicate.

29Here, we can spot the problem of irrelevant conjunctions in a new cloak.
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But first, we often want to confirm the conjunction of several hypotheses

from a single evidence set so that the problem is clearly pressing. Second,

we believe that a better account that takes a new, falsificationist approach,

is available, and we would like to sketch it now. The new account stands on

three pillars. First, a hypothesis is confirmed by checking its predictions. Sec-

ond, the evidence has to put the hypothesis to a serious test, in other words,

had a result different from the actual one obtained, the hypothesis would

have been falsified. Those two principles combine hypothetico-deductivist

principles with falsificationist philosophy of science – scientific theories can

be falsified, but usually not be verified. However, successful predictions that

put a theory in jeopardy confirm it. In Popper’s own words:

“Confirming evidence should not count except when it is the re-

sult of a genuine test of the theory; and this means that it can

be presented as a serious but unsuccessful attempt to falsify the

theory.”30

Third and last, instances of a hypothesis have a distinguished position when

it comes to confirmation, as the above example has made clear.

Now we can proceed to the formalization of those principles. First, evi-

dential predictions are logical consequences of a hypothesis H together with

background assumptions K. Hence, H.K |= E is a necessary condition for

the new account. As we would like to circumvent the problem of tacking

by disjunction, we restrict ourselves to relevant entailments and proceed to

the stronger condition H.K |=cp E. Second, evidence counts as confirming

when the conjecture under test has survived an attempt to be falsified, as

expressed in the above Popper quote. In other words, if E is to confirm H,

¬E has to falsify H. Usually, this falsificationist idea is formulated in terms

of standard logical entailment, ¬E |= ¬H, akin to classical hypothetico-

deductivism. But we have to be careful – the falsification relation should

take into account relations of evidential relevance, too. To spot the problem,

note that ¬E |= ¬H entails ¬E |= ¬(H.X) for an arbitrary X. Formalizing

falsification by means of standard logical entailment does not distinguish be-

tween the actual hypothesis under test and any logically stronger hypothesis

– both would be falsified even if only the actual hypothesis had a relevant

connection to the evidence. To remedy that problem, we reapply the content

part relation. More precisely, we demand that ¬H|dom(E).K, the restriction

30Popper 1963, 37, my italics.
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of H to the domain of E plus the background knowledge, be a content part

of ¬E.K.31 This amounts to the condition

¬E.K |=cp ¬H|dom(E).K (2.2)

and leads to the following definition of falsificationist confirmation or F-

confirmation.

Definition 2.18 (Falsificationist Confirmation (FC)): E F-confirms

H relative to K if and only if

• E is a content part of H.K (H.K |=cp E) and

• ¬H|dom(E).K is a content part of ¬E.K (¬E.K |=cp ¬H|dom(E).K).

Note in particular that deductively gained instances of a hypothesis usu-

ally satisfy (2.2) and F-confirm the hypothesis. And vice versa: if we do not

get a full instance of H, we normally fail to F-confirm H.32 So the falsifica-

tionist approach to confirmation assigns a special position to instances of a

scientific hypotheses – a point that was already stressed by Hempel (1965)

and Glymour (1980a) and that reappeared above.33

Now, it has to be seen whether the new account is able to deal both with

the classical and the novel objections to H-D confirmation. A main challenge

for deductive theories of confirmation consists in the tacking paradoxes that

clash with our view that confirmation must not be arbitrarily transmitted

(see section 2.3).

The second condition of (FC) ensures that, in the case of irrelevant con-

junctions, there are relevant models of ¬H|dom(E).K that cannot be extended

to relevant models of ¬E.K. For instance, if H = ∀xFx, X = ∀xGx, K = ∅
and E = Fa, E should not confirm H.X because it is irrelevant to X. In-

deed, ¬(H.X)|{a}.K = ¬Fa ∨ ¬Ga is no content part of ¬E.K = ¬Fa, thus

avoiding the undesirable result. Partial confirmation, though, is still possible:

31The idea to restrict a hypothesis to the domain of the evidence was introduced by
Carl G. Hempel [1945] (1965). Omitting the restriction would not work, because, for a
sufficiently general H, (2.2) would never be satisfied.

32This is especially pronounced when the evidence is a truth-functional compound of
atomic wffs.

33It is easy to see that (FC) satisfies the Equivalence Condition which is a basic require-
ment for all formal accounts of confirmation: if H is logically equivalent to H ′, then E
confirms H relative to K if and only if E confirms H ′.
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If we add the background knowledge K = Ga (instead of tautologous K),

E = Fa F-confirms H.X relative to K. This corresponds to our intuitions

that partial confirmation is sound as long as the background knowledge pro-

vides the missing piece of evidence that we need for a full instance of the

hypothesis. Put another way, partial confirmation counts as F-confirmation

whenever the background knowledge covers that part of the predictions of

the hypothesis which the evidence does not contain itself.

A corresponding problem for H-D confirmation arises if the evidence is

logically weakened, i.e. if irrelevant disjunctions are tacked to the evidence.

Assume that a hypothesis H is confirmed by a certain piece of evidence E. If

we tack an arbitrary disjunct E ′ to the evidence, classical H-D confirmation

of H remains intact because |= is a transitive relation and H |= E |= (E∨E ′).
But we do not think that such an E ∨ E ′ is still a relevant prediction of H

because E ′ could be anything. Indeed, the first condition of (FC) requires

confirming evidence to be a content part of H.K. If an irrelevant disjunction

is tacked to the evidence, there will be relevant models of the compound

evidence which cannot be extended to relevant models of H.K. For instance,

if H = ∀xFx, K = ∅, E = Fa and E ′ = Gb, E ∨E ′ = Fa∨Gb is no content

part of H.34

Finally, the behavior of falsificationist confirmation with regard to com-

posite hypotheses avoids the problems of conjunctive confirmation. I would

like to come back to the medicine example. Assume that E1 confirms H1 and

E2 confirms H2 relative to K in the H-D sense. In general, conventional ac-

counts of H-D confirmation now affirm that E1.E2 confirms H1.H2 relative to

K, too.35 Although this inference looks tempting, we have revealed the prob-

lems which come along with this property. Indeed, falsificationist confirma-

tion does not instantiate that scheme in general and thus differs from all pre-

vious accounts. In the antibiotics example (2.1), E = ¬Sa1. . . . .San−1.Ran
does not F-confirm H1.H2 = ∀x(Ax → ¬Sx).∀x(Ax → Rx) relative to

K = Aa1.Aa2 . . . Aan – the first condition of 2.18 is satisfied, but the sec-

ond, falsificationist condition is violated. Nonetheless this does not rule out

the confirmation of conjunctions of independent hypotheses. Consider the

34See Gemes 1993.
35This is also suggested by Goodman (1983, 71).
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following case:

H1 = ∀x (Rx→ Bx) E1 = Ba

H2 = ∀x (Dx→ Wx) E2 = Wb

K = Ra.Db.(∀x¬(Rx.Dx)) .

The situation is quite analogous to the antibiotics example. Let us interpret

H1 as the claim that all ravens are black and H2 as the claim that all doves are

white. Then the background knowledge K asserts that a is a raven, b is a dove

and nothing is both a raven and a dove. This guarantees that H1 and H2 are

truly independent from each other. Therefore, the observation E1.E2 that a is

black and b is white should confirm the composite hypothesis H1.H2 that all

ravens are black and all doves are white. Falsificationist confirmation agrees

and yields confirmation. But if we had omitted the background knowledge

that the sets of ravens and doves are disjoint, H1.H2 would not have been

confirmed. And rightly so because a could have been a non-white dove or

b could have been a non-black raven. Falsificationist confirmation is thus

fine-grained and sensitive to the peculiarities of the background knowledge

whereas Gemes’s and Schurz’s proposals unanimously affirm confirmation in

the above case as well as in the medicine example.

By combining deductivist and instantial views of confirmation, (FC)

avoids a lot of contentious properties of a purely H-D approach and com-

plies with our intuitions about evidential relevance. Apart from that, (FC)

is considerably simpler than other deductive accounts of confirmation. Al-

though the definition of (FC) has some parallels to Gemes’s account of H-D

confirmation (see, for instance, Gemes 1998), it is clearly more parsimonious:

Gemes suggests a criterion which involves the natural axiomatization of a the-

ory to which the hypothesis belongs. But first, this introduces a fourth place

into the confirmation relation – the theory to which the hypothesis belongs.

That is a pretty severe modification. Second, it is open to serious discussion

how to fix the notion of a natural axiomatization: As seen in the previous

section, Gemes’s natural axiomatizations are not very fine-grained and in

some cases far from being the ‘natural’ representations of a hypothesis. On

the other hand, Schurz’s own suggestion – hypotheses must be represented as

conjunctions of their relevant consequence elements – also involves complica-

tions. Thus, (FC) defines H-D confirmation in a simpler, less contentious and

more fruitful definition than the rival proposals: Neither natural axiomatiza-
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tions nor relevant consequence elements have to be introduced, contributing

to the overall attractivity of (FC).

2.5 Summary

Confirmation in science often refers to structural relations between theory

and evidence and not always to increase in degree of belief, as probabilistic

theories of confirmation suggest. Therefore, in spite of the present popu-

larity of probabilistic approaches, studying qualitative confirmation is indis-

pensable to understand and to reconstruct arguments in a large variety of

empirical sciences. We focus on a three-place version of the confirmation

relation – evidence confirms a hypothesis relative to background knowledge.

But finding a viable account of qualitative confirmation has proven to be

a demanding and intricate task. Hempel tried to establish the satisfaction

condition: the ‘development’ of a hypothesis for the special experiment is

entailed by the observed evidence. But apart from various minor concerns,

Hempel’s satisfaction criterion runs into great trouble when applied to the

paradox of the ravens. This calls our attention to the hypothetico-deductive

(H-D) tradition in confirmation theory: evidence confirms a hypothesis when

it is deductively entailed by the hypothesis (e.g. when it is a prediction of

the hypothesis). The classical version of H-D confirmation surrenders to

the tacking paradoxes – tacking irrelevant conjuncts and disjuncts to hy-

pothesis and evidence does not destroy the confirmation relation. The more

refined proposals of Gemes and Schurz are able to resolve those problems.

However, both accounts give an unintuitive and coarse-grained treatment of

confirmation of composite hypothesis. I have argued that my own proposal –

falsificationist confirmation – gives a convincing answer. Since that criterion

circumvents the tacking paradoxes, too, and can be formulated in a way that

is clearly simpler than the definitions of Gemes and Schurz, it is the most

hopeful candidate in a series of attempts to rescue the hypothetico-deductive

account of confirmation in science.

We may now wonder whether those basic accounts of confirmation can

be extended to an account of the confirmation of entire theories. Further-

more, we are interested in discussing the problem of holism and resuming

the discussion about the role of the background assumptions in confirmation

theory. These problems are the main topics of the next chapter.
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Chapter 3

Theory Confirmation

3.1 The holistic challenge

The idea that isolated scientific hypothesis can ever be confirmed was threat-

ened by the holistic challenge, forcefully articulated by Duhem (1914) and

later put forward by Quine (1961). The basic idea is very simple: When fal-

sifying a hypothesis by means of an observation, we rely on more factors than

the observation alone. We require auxiliary assumptions to derive actual pre-

dictions from a (theoretical) hypothesis. Only with the help of such auxiliary

assumptions we are able to make testable predictions. Duhem claimed that

modern experiments in physics do not only have effect on the special hypoth-

esis under scrutiny: Thermodynamics, mechanics and electrodynamics may

interact in a single experiment. In testing a sufficiently complex hypothesis

many auxiliary claims from other areas of physics are employed. If such an

experiment has a negative outcome, the question arises what has actually

been falsified – the hypothesis under test or one of the auxiliary claims?

“if the predicted phenomenon is not produced, not only is the

questioned proposition put into doubt, but also the whole theo-

retical scaffolding used by the scientist; the only thing experience

teaches us is that, among all the propositions which helped to

predict the phenomenon and to verify that it has not been pro-

duced, there is at least one error; but where the error lies is just

what the experiment does not tell us.”1

1The author’s translation of Duhem 1914, 181. The original passage reads: “si le
phénomène prévu ne se produit pas, ce n’est pas la proposition litigieuse seule qui est mise
en défaut, c’est tout l’échafaudage théorique dont le physicien a fait usage; la seule chose
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Hence, a negative outcome of an experiment does not force us to say that the

hypothesis under test has been falsified; instead, we could also claim that one

of the auxiliary assumptions is false. More generally, the negative outcome

of the experiment only tells us that one of the assumptions – either the main

hypothesis or a background assumption – must be dismissed. It remains

silent on which of these assumptions is to be blamed. More generally, Duhem

argues that it is impossible to submit single hypotheses to an empirical test;

auxiliary assumptions and theoretical background always comes into play.2

Duhem draws the following, famous conclusion:

“To seek to separate each of the hypotheses of theoretical physics

from the other assumptions on which this science rests, in order

to subject it in isolation to the control of observation, is to pursue

a chimera.”3

That no single hypothesis can be falsified and that predictive failures can-

not be ascribed to single hypotheses constitutes the thesis of falsificational

holism:

Falsificational Holism (FH): Observations only falsify entire the-

ories, not individual parts thereof.

This thesis makes a logical point about the mechanics of falsification, but it

can be extended to an epistemological point, too: Then we do not only claim

that can no hypothesis can be falsified without invoking auxiliary hypotheses,

but also that hypotheses cannot be confirmed in isolation. Instead, only

groups of hypotheses or entire theories are confirmed by observations. This

is the tenet of confirmational holism.

que nous apprenne l’expérience, c’est que, parmi toutes les propositions qui ont servi à
prévoir ce phénomène et à constater qu’il ne se produisait pas, il y a au moins une erreur;
mais où ĝıt cette erreur, c’est ce qu’elle ne nous dit pas.”

2This argument can be further reinforced by Kuhn’s (1962) famous point that all ob-
servation is theory-laden – there is no theory-independent observational language. Hence,
the background theory is not only present in the auxiliary assumptions, but also in the
observation itself. Therefore, no single hypothesis faces the test of experience alone, inde-
pendent of the theory. I will return to that point later.

3The author’s translation of Duhem 1914, 303. The original passage reads: “Chercher
à séparer chacune des hypothèses de la Physique théorique des autres suppositions sur
lesquelles repose cette science, afin de la soumettre isolément au contrôle de l’observation,
c’est poursuivre une chimère.”
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Confirmational Holism (CH): Observations only confirm entire

theories, not individual parts thereof.

Confirmational holism was endorsed by Willard Van Orman Quine, on the

grounds that Duhem had previously argued for falsificational holism. From

the fact that no contrary experience can falsify a single hypothesis Quine

concludes that there is a wide variety of choices which beliefs to maintain and

which to abandon in the face of experience. Quine argues that no relations of

evidential relevance decide over confirmation and disconfirmation – instead

we make the kind of adjustments that keep our entire system of beliefs in

balance:

“No particular experiences are linked with any particular state-

ments in the interior of the field, except indirectly through con-

siderations of equilibrum affecting the field as a whole. [...] Any

statement can be held true come what may, if we make drastic

enough adjustments elsewhere in the system.”4

Hence, Quine concludes that no stand-alone empirical statement can be re-

futed or supported by experience – our claims about the external world do

not face experience in isolation, but merely as a collective.

The distinction between (FH) and (CH) is not always explicitly made,

and in the holism debate these points are often conflated. In his insightful

discussion, Morrison (2008) illuminates the havoc that is wreaked by not

disentangling those tenets. Quite obviously, confirmational holism is logically

stronger than falsificational holism since falsification and verification are only

particular ways of (dis)confirming a hypothesis. Confirmational holism is a

major worry for confirmation theory: If that claim were true, we would not

be able to say whether (and to which degree) a piece of evidence bears the

relation of evidential relevance to a single hypothesis. Furthermore, we would

have problems to model the confirmation of scientific claims in the history of

science and to acknowledge the value of crucial experiments, etc. Endorsing a

confirmational holism would concede that we are not able to understand why

scientists argue and experiment as they do and why they are so successful

at doing so. But the holistic challenge is not only restricted to philosophy

of science – Quine (1961) uses the holistic argument against the reductionist

enterprise of the logical positivists and the analytic/synthetic distinction. To

4Quine 1961, 43.
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see this more clearly, the auxiliary assumptions which connect the theoretical

to the observational vocabulary of a scientific language are sometimes called

‘meaning postulates’ and awarded an ‘analytical’ character, bridging the gap

between theory and observation. Quine objects, however, that a negative test

of a theoretical hypothesis could not only lead to rejection of that hypothesis,

but equally to a rejection of the ‘analytic’ meaning postulates, putting in

jeopardy the analytic/synthetic distinction. Thus the problem is not only

restricted to philosophy of science – it has implications for philosophy of

language and in modern applications even for philosophy of mathematics

(Colyvan 2001). I do not want to discuss these issues in a deeper way, but

nevertheless, enumerating these implications helps to make clear that the

holistic challenge is enormously relevant and that a successful confirmation-

theoretic reply to confirmational holism is highly desirable.

A natural question concerns the relationship between the weaker falsifica-

tional holism and the stronger confirmational holism. Obviously, the former

is implied by the latter since falsification and verification are special forms

of (dis)confirmation. But which of the two claims is actually supported?

Duhem has argued for falsificational holism: Modern physical experiments

involve auxiliary hypotheses from various physical theories, thus making it

impossible to allocate the error to a specific hypothesis or theory. It is im-

possible to derive predictions from a theoretical hypothesis and to falsify it

without taking theoretical background or auxiliary theories into the boat.

Duhem’s observation is certainly correct, hence falsificational holism seems

to be well supported. But what about confirmational holism? If we look into

binoculars and see a black raven, this observation seems to be confirmation-

ally relevant to the hypothesis that all ravens are black. It is much harder to

see how it is relevant to the hypothesis that the binoculars are working prop-

erly although this hypothesis is required for claiming that a black raven has

really been observed. This is, for instance, captured in Hempel’s satisfaction

criterion – the observation of a black raven is an instance of the hypothesis

that all ravens are black, but not of the hypothesis that the binoculars work

fine. Hence, the relationship between (FH) and (CH) depends on the specific

way an account of confirmation spells out the relation of evidential. Only in

a very basic, primitive formulation of hypothetico-deductivism,

(2HD): E H-D-confirms T if and only if T logically implies E

(T |= E).
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confirmational holism follows from falsificational holism (see Morrison 2008).

Assume that T is an empirical theory (or a complex of theories) consisting of

various hypotheses. When T implies E but no proper part of T does, only the

theory T as a whole is confirmed according to (2HD). Confirming evidence

is entailed by the predictions of the theory, and confirmation is equated

with successful survival of an attempt to falsify the hypothesis. Using such a

definition of confirmation, falsificational holism entails confirmational holism.

However, we have seen in the previous chapter that such a primitive version of

H-D confirmation gives a poor account of evidential relevance and succumbs

to the tacking paradoxes. Therefore we are well advised to reject (2HD).

Furthermore it has been argued (e.g. Sober 1999) that confirmational

holism is a descriptively inadequate and scarcely understandable claim. In

empirical experimentation, there is a crucial distinction between hypotheses

in use (the auxiliary assumptions) and hypothesis under test (the target of

inquiry). A lot of experimental practice is concerned with isolating single

hypothesis and putting them to test, whereas other hypothesis only play an

auxiliary role. It is hard to imagine experimental practice that dismisses that

distinction and such a step would not correctly describe scientific activity.

There must be something about confirmation that allows scientists to ascribe

confirmation to specific claims while keeping others fixed. If we endorsed

confirmational holism, this distinction would completely get lost and a lot

of experimental practice could not be properly understood. Therefore we

should try to get around (CH).

The natural move that accommodates those worries consists in modify-

ing the confirmation predicate from a two-place predicate (hypothesis and

evidence) to a three-place predicate (hypothesis, evidence and background

knowledge). This allows a natural distinction between hypotheses under test

and hypotheses in use, the latter (=the auxiliary assumptions) being a part of

the background knowledge rather than of the tested hypothesis. Thus, they

are clearly separated from the hypothesis itself and single hypotheses can be

confirmed relative to a body of background assumptions. It can further be

asked whether accounts of confirmation always allow to interchange hypoth-

esis and background assumptions while preserving the confirmation relation.

That would be a major obstacle for a satisfactory reply to (CH) since such

an account would not distinguish between hypotheses in use and hypotheses

under test. Put the other way round, the less such an interchange is possible,

the more clearly do those accounts outline a relation of evidential relevance.
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Indeed, with respect to H-D confirmation, Gemes’s and my own falsification-

ist proposal do not allow an arbitrary exchange of auxiliary hypotheses and

hypotheses under test. For a full reply to the holistic challenge, it is, however,

desirable to quantify the degree of support which the evidence lends to the

various hypotheses in use and under test. In particular, it would be desirable

to show, however, that auxiliary hypotheses gain less support from a con-

firming piece of evidence than the main hypothesis under test. This asks for

a quantitative framework (see Strevens 2001, 2005, Fitelson and Waterman

2005a, 2005b) and transcends the power of qualitative confirmation theory.

However, some work can also be done in a qualitative framework. To be

sure, the confirmation of single hypotheses requires auxiliary assumptions,

but we might try to show that theories can be confirmed as a whole, without

recourse to theory-independent auxiliary hypotheses. We have already seen

how parts of a theory can help to confirm other parts of the theory and vice

versa. We might now examine the relation between confirmation of single el-

ements of a theory to the confirmation of the entire theory. This project was

pursued by Clark Glymour in his development of ‘bootstrap confirmation’

and it constitutes the subject of the rest of this chapter.5

3.2 Theory and evidence

The account of bootstrapping devised by Clark Glymour can be motivated

from two different sides. The one side is closely related to the holistic chal-

lenge outlined above, the other side (which is often neglected) stems from

Kuhn’s argument about the theory-ladenness of observation. Let us begin

with the first, better known motivation. One of the fundamental problems

of epistemology in general and confirmation theory in particular consists in

the question how observational data are able to affect the epistemic status

of high-level theories which are framed in a more theoretical vocabulary. We

have seen that auxiliary hypotheses connecting those two layers of scientific

description usually take that task. More precisely, in the confirmation of a

scientific theory or parts thereof, we often see intricate moves involving large

parts of the theory. This seems to involve a vicious circle – to confirm a the-

ory has to build on parts of the theory itself. In his 1980a, Clark Glymour,

however, argues that such arguments for the confirmation of a theory are

5See also Glymour 1975 for an analysis of the relationship between evidential relevance
and the holistic challenge.
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widespread in science and that they are not viciously circular: An argument

that employs parts of a theory in order to confirm the very same theory is

sound as long as the evidence on which the argument draws puts the theory

at risk.

“Large parts of a theory may be involved in confirming, from

given evidence, any of its hypothesis. But it is not true that all

of a theory’s hypotheses are equally confirmed or disconfirmed

(with respect to the theory) by given evidence. [...] We may very

well trace conflicts to some special set of claims of a theory makes

and dispense with them.”6

To this end, Glymour devises a formal criterion of theory confirmation,

the bootstrap criterion. When a conflict between the observations and the

theory occurs, the bootstrap criterion is supposed to show which parts of

a theory are to blame for the failure and which remain intact. There is a

kernel of truth in confirmational holism – we often want to confirm theories

as a whole and not just parts thereof. But this does not entail that all of the

elements of a theory are confirmed to an equal degree by an observation that

confirms the theory according to an ‘intuitive’ judgment. Glymour counters,

too, that embracing a holistic position makes it impossible to understand

sophisticated scientific arguments and the ability of scientists to modify ex-

actly those parts of a theory that lead to problems.7 In particular, Glymour

believes that the confirmation of single hypotheses can add up to confirma-

tion of an entire theory where no auxiliary hypotheses are required – more

on this later.

Now I would like to introduce the second motivation which is, however,

not given by Glymour himself. A major discovery in the history of sci-

ence that had a deep impact on philosophy of science, too, was the theory-

ladenness of observation and evidential statements (Kuhn 1962). The logical

positivists pursued the project of clearly separating an observational and a

theoretical vocabulary. Sentences in the observational and the theoretical

vocabulary were connected by a set of ‘bridge principles’, ‘meaning postu-

lates’ or ‘coordinating principles’ which were often supposed to have analytic

status. Thomas Samuel Kuhn (1962), however, found a variety of examples

6Glymour 1980a, 151-52.
7See Glymour 1980a, 45.
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from history of science where such a neat separation did not exist. Scientists

stated the observed evidence in the vocabulary which the prevalent theory –

the theory they endorsed themselves, the paradigm in which they thought –

imposed on them. Take for example, the case of a pendulum. In the Aris-

totelian tradition, the oscillation of a pendulum was seen as a constrained

fall: the body eventually moved from a higher to a lower position. In the

Renaissance, Galilei conducted quite the same experiments, but saw different

things: the energy which the swinging stone gained by moving downwards

was transformed into the impetus that displaced the stone to the amplitude

again. So where the Aristotelians saw a directed process, Galilei saw a sym-

metric oscillation that could in principle go on for indefinite time.8 These

observations led Galilei – but not the Aristotelians – to an argument for

the independence of mass and rate of fall. The difference between their ob-

servations can be traced back to two different paradigms of motions, or so

Kuhn argues. Similar examples can be found, in various scientific disciplines

(e.g. Lavoisier observed oxygen where Priestley had seen dephlogisticated

air). Hence, there are no neutral observations that are independent of the

paradigm in which they are made.

“None of these remarks is intended to indicate that scientists do

not characteristically interpret observations and data. [...] But

each of these interpretations presupposed a paradigm. [...] In

each of them the scientist, by virtue of an accepted paradigm,

knew what a datum was, what instruments might be used to re-

trieve it, and what concepts were relevant to its interpretation.”9

Here Kuhn stresses the indispensability of a theoretical framework, a

paradigm, for interpreting data. Whereas a lot of philosophers in the posi-

tivist tradition have affirmed that theories are simply human interpretations

of given data,10 Kuhn answers this question in the negative.

“The operations and measurements that a scientist undertakes

in the laboratory are not ‘the given’ of experience. [...] The

measurement to be performed on a pendulum are not the ones

relevant to a case of constrained fall.”11

8See Kuhn 1962, 118-120.
9Kuhn 1962, 122.

10See Kuhn 1962, 126.
11Kuhn 1962, 126.
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Hence, scientists holding different theories and paradigms would also state

the evidence in a different way. In other words, evidence takes a different

meaning in different theories and it cannot play the role of a neutral arbiter

between different theories: An observation report is itself entrenched in one

theory and alien to the other. Observations are not neutral, but theory-laden.

So in assessing a hypothesis and whether it is confirmed by the evidence, it

is important to take the theory into account in which the hypothesis and the

evidence are situated. This equally transfers to groups of hypotheses and

sub-theories. Of course, we are also interested in finding out which of two

competing paradigms or general theories is more successful in a specific dis-

cipline. Since observations cannot directly decide the matter and since there

is no external, theory-independent background against which they could be

measured, we need a formal framework that models how evidence fits into a

general theory, without recourse to external background assumptions.12 This

is, as we will soon see, close to the principal idea of bootstrapping which mod-

els deductive moves from the evidence plus parts of a theory to other parts

of a theory.

Of course, the theory-ladenness of observation is still a contentious is-

sue in philosophy of science. Thomas Kuhn was a historian of science and

it is questionable whether the lack of a theory/observation separation in

many episodes from the history of science should convince philosophers of

the general impossibility of such a separation: Maybe the scientists of earlier

centuries were just careless and lacked education in philosophy of science so

that their failure to separate theory and evidence should not lead us to the

conclusion that such a separation is impossible. But Kuhn certainly describes

an important problem for science and his argument has been enormously in-

fluential in philosophy of science. In the search of descriptive accuracy it

is mandatory to accommodate Kuhn’s observations in an account of theory

confirmation as far as possible. Indeed, Glymour assumes that the auxiliary

assumptions are part of the same theory where the hypothesis is taken from:

“[...] the bearing of evidence is sensitive to changes of theory [...].

For in considering the relevance of evidence to hypothesis, one is

ordinarily concerned either with how the evidence bears on a hy-

pothesis with respect to some accepted theory or theories, or else

one is concerned with the bearing of the evidence on a hypothesis

12At one point, Glymour seems to endorse a similar point, see Glymour 1980a, 121.
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with respect to a definite theory containing that hypothesis. In

the latter case, the issue is how well the theory is confirmed with

respect to itself.”13

Again, the latter case is typical of a situation where all evaluations of a theory

or paradigm can only refer to parts of the theory itself. Thus we encounter

cases where piecemeal confirmation of a theory proceeds merely by means

of theory-internal auxiliaries whereas we do not have theory-external back-

ground knowledge. The various accounts of instance and H-D confirmation

do not answer this challenge since they are only concerned with the confirma-

tion of single hypotheses relative to a specific set of background assumptions

which is clearly separated from the hypothesis under test. But in looking for

an account of theory confirmation, we would like to test a hypothesis relative

to the theory to which it belongs, and in general, we do not have a means of

separating the content of the hypothesis under test from the theory in which

it is embedded.

Showing how claims of a theory are tested against the background of

a joint, coherent theory is the core of Glymour’s project which is named

bootstrap confirmation – claims of a theory are tested against the theory

itself. Therefore the name ‘bootstrap confirmation’ – by taking the theory

itself as the background of the confirmation relation, one tries to ‘pull oneself

up by one’s own bootstraps.’ Consequently, an (axiomatizable) theory is

confirmed as a whole if and only if any of its axioms survives an evidential test

against the other axioms of the theory. A pretty and concise reconstruction

of Glymour’s main idea that dismisses the technicalities and builds on an

elementary (dis)confirmation predicate is given in Douven und Meijs 2006:

Definition 3.1 Let T = Cn(A1, . . . , An) be a finitely axiomatizable theory.

E bootstrap-confirms T if and only if T and E are consistent and for all

i ∈ {1, . . . , n}:

1. There is a T ′ ⊂ T so that (a) E confirms Ai relative to T ′ und (b) there

are possible (but not actual) observations E ′ so that E ′ disconfirms Ai
relative to T ′.

2. There is no T ′ ⊂ T so that E disconfirms Ai relative to T ′.

13Glymour 1980a, 121. Emphasis in the original.
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This definition illuminates an important feature of bootstrapping: the

theory itself or a subset thereof can be used in confirming one of its axioms

as long as the axiom under scrutiny is put at risk. If this is possible for all

axioms of the theory, we achieve bootstrap confirmation of the theory as a

whole and thereby unrelativized confirmation of the entire theory. (This is

again a concession to Kuhn’s point about the theory-ladenness of observation

– all possible auxiliary assumptions are themselves embedded in a theory.)

It remains open how the three-place confirmation predicate used in the

above definition is to be explicated. Glymour doubts that H-D confirmation

can do the job because sophistication is required to make H-D confirma-

tion immune to the tacking paradoxes and related objections (see Glymour

1980b).14 Moreover, Glymour believes that hypotheses are confirmed by pro-

ducing instances of them, and contrary to H-D confirmation, these instances

are gained from the evidence with the help of elements of the theory. The

contrast can be sketched thus:

“The H-D account looks chiefly at [...] deductive moves from

theory to evidence [..]. The new [bootstrap, J.S.] account looks

chiefly [...] at deductive moves from evidence plus theory to other

theory.”15

Therefore Glymour phrases his bootstrap confirmation with the help of a

predicate that models how instances of a hypothesis are derived from the

evidence – in the same way as Hempel.16 Indeed, Glymour adopts a minor

modification of Hempel’s satisfaction criterion as his elementary criterion of

confirmation. Here, the theory itself is used in a non-redundant way in order

to derive instances of a hypothesis that is a part of the theory. We can sum

up Glymour’s basic idea thus:

“Hypotheses are tested and confirmed by producing instances of

them; to produce instances of theoretical hypotheses one must

use other theoretical relations to determine values for theoretical

quantities; these other relations are tested in turn in the same

way. Ideally, we might hope for bodies of evidence that permit

each hypothesis to be tested independently.”17

14Contrary to Glymour, I believe that H-D confirmation is a perfectly proper elementary
confirmation predicate. We will come back to that point later.

15Glymour 1980a, 168.
16See Hempel [1945] 1965 and the previous chapter of this book.
17Glmyour 1980a, 52.
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Some remarks are due.

1. Glymour admits that many textbook examples of scientific reason-

ing correspond more to the hypothetico-deductive scheme than to bootstrap

confirmation although H-D confirmation has well-known problems with ev-

idential relevance. Glymour gives the following reasons: First, textbook

writers tend to simplify methodic subtleties in order to make the confirma-

tion of a theory more understandable. Complex bootstrap arguments are

simplified into hypothetico-deductive derivations.18 For example, Newton’s

laws of motion and his theory of gravitation do not make predictions about

the movement of the planets in the strict sense. For having that, we would

have to know the total force acting on the planet. Hence, Kepler’s laws can-

not confirm Newton’s law of gravitation in the hypothetico-deductive sense.

But Kepler’s laws and the three Newtonian laws jointly entail that a force

directed to the sun acts on every planet and that this force is proportional

to the inverse square of the planet radius (F ∼ 1
r2

). This dependency is thus

a special instance of the general law of gravitation which is derived from

Kepler’s laws with the help of Newton’s laws of motions.19 This is then a

classical case of bootstrap confirmation.

Furthermore, there are often clear expectations in the scientific commu-

nity what a theory should account for. Observation reports that fall into

the ‘intended domain’ of a theory are automatically relevant for it, and vice

versa. For example, elementary theories of matter (as Bohr’s early quantum

theory) should also determine the spectra of various chemical elements as hy-

drogen. So we do not have to wonder why Bohr derived spectral series in the

hypothetico-deductive way: it was clear beforehand that those observations

would be relevant to the theory. When such expectations exist, the classical

H-D account gets rid of his most salient problem: the lack of an account

of evidential relevance. Therefore Glymour concludes that bootstrap confir-

mation occurs whenever there are no clearly established, intuitive criteria of

evidential relevance. In such a situation the main vice of H-D confirmation

– the lack of evidential relevance criteria as exemplified in the tacking para-

doxes – would come out clearly. Hence, bootstrap arguments are especially

important when novel theories are introduced or when theories are extended

to novel fields of application. They are less popular in normal, puzzle-solving

science in established fields of research.

18See Glymour 1980a, 170-71.
19See Glymour 1980a, 169.
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2. Glymour’s bootstrap confirmation does not give a complete theory

of confirmation – it must be supplemented by an elementary criterion of

confirmation (confirmation of a single hypothesis with regard to a certain

background). Glymour opts for a modification of Hempel’s satisfaction cri-

terion, but in principle, he does not rule out the use of another criterion.20

On the one hand, he stresses that the other axioms of a theory are used

in order to derive an instance of the hypothesis – this speaks in favor of a

hypothetico-deductive approach. On the other hand, the idea that instances

derived from the evidence confirm a hypothesis is well-entrenched in Gly-

mour’s position and he is moreover sceptical of the H-D account’s ability to

account for relations of evidential relevance. But again, in principle, any fea-

sible account of elementary confirmation could be used, so a suitably refined

H-D criterion might do the job, too. But not only qualitative, also quanti-

tative theories could play a role here – see Douven and Meijs (2006) for a

Bayesian account of bootstrap confirmation.

3. In Glmyour’s original account, the confirmation relation between evi-

dence and theory is invariant under the choice of an axiomatization. Theories

are just assumed to be deductively closed sets of sentences. On the one hand,

this is very attractive since we need not care for a particular axiomatization.

But first, this move leads into technical problems as we will see later. Sec-

ond, scientists rather think about a theory in terms of a coherent network of

natural regularities than in terms of a deductively closed set of sentences.21

This suggests that there are natural axiomatizations of a theory – some that

capture the intuitive regularities and others which do not. Therefore boot-

strapping might be relativized to a particular axiomatizations of a theory.

This approach is pursued in my own and Ken Gemes’s (2006b) recent ac-

counts to bootstrapping.

4. Glymour’s account of confirmation may appear circular because the

background assumptions against which an axiom of the theory is tested con-

sists of a (possibly improper) subset of the theory. Critics may use this to

argue that no axiom of the theory is tested truly independently, but only rel-

ative to the rest of the theory. Therefore, bootstrap confirmation may appear

to be circular. – To my mind, this objection neglects three points: First, the

charge of circularity can be rejected because the evidence has to put the the-

ory at risk – this was the content of subclause 1b of definition 3.1. Second,

20See Glymour 1980a, 127.
21See Christensen 1983, 479-480.
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there is rarely theory-independent and neutrally describable evidence that is

able to decide between different theories and research programs. Some phys-

ical theories, e.g. cosmological theories are so fundamental and theory-laden

that it would be impossible to confirm such theories relative to a theory-

neutral background. That was the point of Kuhn’s famous dictum about

the theory-ladenness of observation. Instead, researchers attempt to insert

pieces of evidence into a coherent picture. But some piece of evidence might

coherently fit into a certain theoretical picture and fail to fit into another

one, and this is captured by bootstrap confirmation. Third, the coherence

of a theory contributes a lot to its acceptance and its epistemic status. We

prefer a coherent system of beliefs to a incoherent system of beliefs. Clearly,

bootstrap-confirmation is coherence-conducive: If a sentence that lacked co-

herence with the rest of the theory were tacked to a theoretical hypothesis,

we would not be able to confirm it relative to the theory because the theory

would not provide a bridge between the evidence and that particular hypoth-

esis. The statement would thus stand by itself and disparate from the rest

of the theory. Hence, incoherent systems are hard to bootstrap-confirm. In

particular, since the elementary confirmation predicate is supposed to take

care for evidential relevance, ‘irrelevant’ or incoherent axioms would quickly

be detected. To see the closeness to coherence in greater detail, note that we

are usually not able to derive instances of all elements of a theory from the

evidence because the relationships between the hypotheses and the evidence

are not tight enough. Therefore we have to decompose the theory into several

axioms and to ‘bootstrap up’ the evidence with the help of the rest the theory.

Thus only internally coherent theories can be bootstrap-confirmed. We may

thus obtain a more modest understanding of what bootstrap confirmation

amounts to.

5. Glymour has an original idea how to connect the falsifiability of a

theory to bootstrap confirmation and how to point out that falsifiability

is an epistemic virtue. We all presuppose that good theories are testable

in more than one way, i.e. that there is more than one method to check its

predictions for agreement with the observed data. In the Popperian tradition,

this is a requirement of scientific method in order to ensure that no pseudo-

scientific or ad hoc theory is maintained for a long time. Conversely, when

a theory survives a multiplicity of independent tests, it is better confirmed

than if only few tests speak for it. Analogously, there can be several ways

to bootstrap-confirm a hypothesis: For instance, we compute the value of
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certain quantities with the help of theoretical claims in order to test an axiom

of the theory that predicts a certain value. The more different ways exist to

calculate this value, the less likely it is that mistakes in the various axioms

of the theory cancel out each other and erroneously detect confirmation.

In other words, multiple falsifiability of a theory protects against erroneous

confirmation.22 Hence, varied evidence and multiple testability come out

as virtuous properties in the bootstrap account of confirmation. Glymour

gives an example from the history of science, too: Kepler’s First Law –

planet travel around the sun in ellipses – was not established as a result

of accommodating the observed data to a certain hypothesis. Rather, it

emerged as a result of the data together with another law – Kepler’s Second

Law that was confirmed by other data.23 In other words, for confirming

Kepler’s First Law the Second Law had to be presupposed. But obviously,

the Second Law presupposes the First Law. So sceptics might have raised

the suspicion that both laws were wrong but connected in a way that the

errors canceled out and the concordance with the data was ensured. It was

only after Galilei’s discovery of the four Jupiter satellites that it became

possible to confirm Kepler’s Second Law without explicitly asserting that

planets travel around the sun in ellipses. This opened a further way to check

the concordance of theoretical claims and observed data and an opportunity

to rule out that the errors just canceled out. Thereby the sceptical doubts

were eliminated. Glymour finishes:

“[...] it seems unlikely to me that the development and testing

of any complex modern theory in physics or in chemistry can be

understood without some appreciation of the way a variety of

evidence serves to separate hypotheses.”24

3.3 Bootstrapping under fire

Glymour’s original formulation of bootstrapping opts for Hempel’s satisfac-

tion criterion as an elementary criterion of confirmation. In two influential

articles, David Christensen (1983, 1990) has pointed out that (a) bootstrap

confirmation is too gullible (i.e. that it cannot be a sufficient criterion for

22See Glymour 1980a, 139-40.
23Kepler’s Second Law asserts that the area that a planet sweeps out in a fixed time

interval is equal for each set of points of the planet’s orbit.
24Glymour 1980a, 141.
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A1 = ∀x : Lx ≡ Zx ‘All Zoroastrians and only them have eternal
life.’

A∗1 = ∀x : ¬Lx ≡ Zx ‘All humans except Zoroastrians have eternal
life.’

A2 = ∀x : Sx→ Zx ‘All sudra-wearing humans are Zoroastrians.’
A3 = ∀x : Px ≡ Zx ‘All Zoroastrians and only them pray to Ahura-

Mazda.’

Table 3.1: The axioms of T and T ∗.

theory confirmation) and (b) that it is unable to discriminate plausible and

unacceptable cases of confirmation, just because they have the same syntac-

tical structure. From that, Christensen draws the general conclusion that no

account of confirmation that considers theories to be just deductively closed

sets of sentences runs into the evidential relevance problem. Let us consider

his objections.

The thesis that bootstrap confirmation is too gullible can be supported by

means of some examples. Take, for instance, the theories T = {A1, A2, A3}
and T ∗ = {A∗1, A2, A3}. Obviously, the two theories T and T ∗ are inconsistent

with each other. But the difference is not ‘empirically significant’ – it entirely

rests in the metaphysical question whether Zoroastrians or Non-Zoroastrians

have eternal life. It would therefore seem strange if one of the metaphysical

claims A1 or A∗1 were confirmed by normal, empirically significant evidence.

But this problem occurs with regard to bootstrap-confirmation. Take an

evidence of the form E = Pa.Sa (‘person a wears a sudra and prays to

Ahura-Mazda’). In both theories, this innocent observation seems to enti-

tle us to infer to the religion of a, but certainly not to whether a will have

eternal life or not. Unfortunately, on Glymour’s original account that uses

Hempel’s satisfaction criterion, E bootstrap-confirms both A1 and A∗1 with

respect to T (T ∗). First, E allows us to derive with the help of A2 that a

is Zoroastrian. This is uncontroversial. Second, the sentence ∀x : Px ≡ Lx

is part of the deductive closure of T in the same way that the sentence

H = ∀x : Px ≡ ¬Lx is part of the deductive closure of T ∗. Hence we may

use it in the bootstrap confirmation of A1 respectively A∗1 and we indeed see

that the actual evidence entails La.Za respectively La.¬Za. This logically

implies the development of A1/A∗1 for the object a. E is then a confirming

instance of A1/A∗1 that was derived with the help of the theory, in the very

spirit of Glymour’s bootstrapping account and Hempel’s satisfaction crite-



Chapter 3. Theory Confirmation 69

rion. Furthermore, the possible observation ¬Aa.Sa would speak against

A1/A∗1 so that the other criterion of bootstrap confirmation – falsification by

evidence must be possible – is satisfied, too. Both ‘metaphysical’ axioms,

A1 and A∗1, are bootstrap-confirmed by the innocent observation that a per-

son wears a sudra and prays to Ahura-Mazda although they contradict each

other. This is unacceptable since apart from A1 and A∗1, the two theories

are equivalent to each other and still, two outrightly contradictory hypothe-

ses are both confirmed by innocent evidence. True, bootstrap confirmation

was intended to model how seemingly neutral evidence gains relevance in a

broader theoretical context, but in this particular example, the relevance is

far too easy achieved.25

An example from the history of science illuminates the problems of boot-

strapping in a similar vein. Assume that we would like to test Kepler’s Third

Law – the quotient of the square of a planet’s period and the third power

of the average distance to the sun is (roughly) the same for each planet.

Call this constant k. Unfortunately, we only have measurements of a single

planet which enable us to calculate his orbit and his average distance to the

sun. On the other hand, these data are quite diverse, i.e. those quantities

could in principle be computed in various ways. But of course, for confirm-

ing Kepler’s law, we require data from at least two different planets. Now,

let k(a) := T 2(a)/r3(a) be Kepler’s constant, calculated for the planet a.

Kepler’s Third Law now demands that A3 = ∀x, y : k(x) = k(y), quantified

over all planets. This just asserts that the Kepler constant k is the same for

each planet. Let Oi(x) denote the i-th observation data of planet x which

enables us to calculate his Kepler constant by means of the function f . (Of

course, f is the same for each planet.) Then, the auxiliary assumptions can

be written as

A1 = ∀x : k(x) = f(O1(x))

A2 = ∀x : k(x) = f(O2(x))

which just means that each relevant measurement O1 or O2 opens the way for

calculating k. – Assume that we observe planet Mars twice, i.e. we get as our

input O1(Mars) and O2(Mars). This cannot confirm Kepler’s Third Law –

for that we would need at least the data of two planets. But the entire theory,

T = {A1, A2, A3} implies the claim H ′ = ∀x, y : k(x) = k(y) = O1(y) which

25See Gemes 2006b, 356.
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can thus be used in computing the k’s. This allows us to bootstrap-confirm

Kepler’s Third Law by the observations of a single planet: O1 delivers the

Mars data from which we infer to the Kepler constant k of Venus by means

of H ′. Moreover, O2 delivers directly the Kepler constant of Mars so that a

direct and allegedly meaningful comparison becomes possible.26 The problem

of bootstrapping in both cases, the everyday and the scientific case, can be

formulated thus: The dependency between the hypothesis under test and the

auxiliary hypotheses H (first example) and H ′ (second example) turns out

to be viciously circular although the hypothesis is put at risk. Therefore it

cannot yield a sound case of confirmation.

This objection put us into a dilemma. If we make the conditions for

bootstrap confirmation too restrictive, we cannot reconstruct many cases of

scientific confirmation. But if we make them too permissive, we obtain cases

of spurious confirmation, as seen above. The gullibility objection could be

accommodated by noting that bootstrapping models the coherence between

a piece of evidence and a system of scientific sentences. The above example

would then lose much of its pull. But although modeling coherence is cer-

tainly important, we are primarily interested in confirmation. A restriction

of bootstrapping to a formal model of scientific coherence and dismissal of

the model of confirmation would abandon the reconstruction of the most in-

teresting cases of confirmation in science – and that was the main idea of

bootstrap confirmation. Another reply consists in subtracting the axiom un-

der test from the auxiliary hypotheses which are used in the computations.

For instance, we could relativize bootstrap confirmation to a particular ax-

iomatization {A1, . . . , An} and simply demand that the confirmation of any

Ai must not rely on Ai itself, but only on Cn(A1, . . . , Ai−1, Ai+1, . . . , An).

The problem of gullibility would then vanish. This restriction might, how-

ever, invalidate bootstrap arguments in science which use all parts of a theory

in confirming an axiom of a theory. Furthermore it is not clear in which way

the content of a hypothesis H should be separated from the content of a

theory T , so much the more as the notion of a natural axiomatization is no-

toriously contentious. Hence the gullibility problem stands unscathed. What

26Things are actually not that easy since several formal requirements of bootstrapping
are violated when using H ′ in the computation of the Kepler constant. However, in
his 1990 Christensen has shown how to circumvent those technical problem by using a
suitable modification of H ′ which maintains the counterintuitive character of the example
(Christensen 1990, 651-54).
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T: A1 = ∀xDx→ V x T’: A′1 = ∀xDx→ V x
A2 = ∀xDx→ Bx A′2 = ∀xDx→ (V x ≡ Bx)

Table 3.2: Two equivalent theories.

about Christensen’s second objection?

Christensen’s second charge is directed against the failure of bootstrap-

ping to separate plausible and unacceptable cases of confirmation and to ac-

count for evidential relevance. Not only that bootstrap confirmation cannot

be sufficient for theory confirmation, it is not even necessary. This criticism

goes back to the observation that the way a theory is axiomatized plays a role

for bootstrap confirmation. Let us consider two equivalent theories, namely

those of table 3.2.

The predicate D is interpreted as the presence of a certain disease, V as

the presence of a certain virus and B as a the presence of a certain anti-

body. Although the deductive closure of both theories is the same (Cn(T ) =

Cn(T ′)), it seems to make a difference which of the axiomatizations is used

and to which axioms we ascribe a lawlike character. The axioms of the first

theory claim that a patient with disease D will have virus V and antibody

B whereas the axioms of the second theory tell a different story: According

to the first axiom, a patient with disease D will have virus V and according

to the second axiom, D-patients have virus V if and only if antibody B is

present. There is a direct link between antibody B and virus V in theory

T ′. This motivates observing antibody B as evidence for the presence of

virus V in D-patients. Such a connection between B and V is missing in

T : If A1 = A′1 is to be confirmed, A′2 establishes a link between the obser-

vation of antibodies and the hypothesis under scrutiny whereas A2 does not

render such an evidence (observation of B-antibodies) relevant. Although

both theories have the same set of logical consequences, they seem to mir-

ror different regularities in nature, and a theory of confirmation is supposed

to mirror that, or so Christensen argues.27 Glymour’s original bootstrap

confirmation fails to make such a distinction: The evidence E = Ba.Da

bootstrap-confirms A1 = A′1 relative to both theories in Glymour’s original

account and does not bootstrap-confirm A1 = A′1 relative to either theory in

the revised account (Glymour 1983). But the desirable result would be that

the evidence confirms A1 relative to T ′ (by means of the auxiliary law A′2)

27See Christensen 1983, 479-480, and Christensen 1990, 646-647.
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and fails to confirm A1 relative to T .

This result is obviously awkward. The fatal flaw in bootstrap confirma-

tion seems to consist in the fact that theories are just perceived as deductively

closed sets of sentences. Since by the basic principle of bootstrapping, the

entire theory is used in the confirmation process, the auxiliary hypotheses

can be too close to the hypothesis under test. Vicious dependencies between

the hypothesis under test and the hypotheses in use emerge. To avoid those

problems, we would have to distinguish accidental from lawlike hypotheses in

order to separate hypotheses under test from hypotheses in use. As already

said, this cannot be done when theories are merely perceived as deductively

closed sets of sentences. Therefore a viable modification of bootstrapping

has to introduce explicit dependence on the axiomatization of a theory and

to separate the hypothesis under test from the hypotheses in use. In the final

part of this chapter, we will have a look at attempts to do so.

3.4 Rescuing bootstrapping

The natural way to cure the deficiencies of bootstrapping consists in clearly

separating the hypothesis/axiom under test A from the auxiliary hypothe-

ses which are part of the theory. Or, in another vein, the content of the

hypothesis has to be separated from the content of the rest of the theory.

To this end, two roads can be pursued. First, we might demand that the

hypothesis under test A is independent of the ‘theoretical background’ T ′,

i.e. T ′ 6 `A and A 6 `T ′A. If T is a comprehensive theory that comprises

T ′ as well as A, this means that we have to decompose T ′ into two parts

– an auxiliary part T ′ and a part A which is to be tested. This proposal

is made by Ken Gemes (2006b) in his version of bootstrapping. This step

allows him to maintain the satisfaction criterion in bootstrap confirmation

although a large number of objections has been made against Hempel’s sug-

gestion.28 The rationale for sticking to the satisfaction condition is Glymour’s

argument that it is characteristic of many episodes in the history of science,

as opposed to hypothetico-deductive confirmation. However, the combina-

tion of the bootstrap principle and the satisfaction criterion for elementary

confirmation leads into technical problems, as seen above. Only by means

of Gemes’s stipulation that T ′ be logically independent of A, we obtain an

28See Christensen 1983, 1990 and Horwich 1982.
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account of bootstrap confirmation that maintains the satisfaction criterion

and is able to deal with Christensen’s objections. However, it is not clear

how a theory can be ‘factorized’ into hypothesis under test and hypothesis in

use without identifying the theory with a special set of axioms. This is the

core principle of the second approach.29 The motivation for that step was

already spelled out – scientists conceive theories not as deductively closed

sets of sentences, but as a conglomerate of lawlike statements. Hence, when

T = Cn(A1, . . . , An), we would simply demand that the confirmation of any

Ai must not build on Ai itself, but only on Cn(A1, . . . , Ai−1, Ai+1, . . . , An).

It might be objected that relativizing bootstrap confirmation to a partic-

ular set of axioms violates the Equivalence Condition which we have unani-

mously endorsed in the previous chapter. After all, when {A1, . . . , An} and

{A′1, . . . , A′n} have the same set of logical consequences, it seems odd to treat

the corresponding theories in a different way just because different axioma-

tizations were chosen. From a logical point of view, the two axiomatizations

seem to say the same with different words since their deductive closure is

identical. Hence, any account of confirmation that does not treat them on

a par apparently violates the Equivalence Condition. – I believe, however,

that this objection is subtly misguided. The Equivalence Condition attached

to single hypotheses that were confirmed by a piece of evidence relative to

a set of background assumptions. A scientific theory is more than the sum

of its parts and more than just a set of deductively closed sentences – it

expresses beliefs about the regularities of nature. Different axiomatizations

do not alter the deductive closure of a theory, but they may express different

regularities. Therefore the Equivalence Condition is sound with regard to

common hypothesis confirmation, but it does not transfer to theory confir-

mation.

Usually, this second approach additionally replaces the satisfaction crite-

rion by another criterion of confirmation. Douven and Meijs (2006) suggest

a Bayesian criterion, but given the focus of the preceding chapter, we would

prefer to work in a qualitative framework. Here, the falsificationist criterion

has proven to be very valuable in hypothesis confirmation, so it is very natu-

ral to to extend its scope to theory confirmation, too. The basic idea is that

an axiom of a theory is bootstrap-confirmed if and only it is falsificationally

confirmed relative to the other axioms to the theory:

29See Christensen 1990, 657-660.
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Definition 3.2 Assume that theory T is the deductive closure of a set of

axioms {A1, . . . , An}. Evidence E bootstrap-confirms axiom Ai, 1 ≤ i ≤ n,

relative to theory T and background knowledge K if and only if E falsifica-

tionally confirms Ai relative to A1 . . . Ai−1.Ai+1 . . . An.K.

In other words: When we test an axiom, we take the rest of the theory

as additional background knowledge and use it in deducing E from Ai (and

¬Ai from ¬E). Hence, evidence that is prima facie not relevant for Ai might

gain evidential relevance in the light of a broader theoretical context T . For

the classical cases of bootstrapping, the background knowledge K is assumed

to be tautologous.

Definition 3.2 extends the falsificationist confirmation of single hypotheses

to the confirmation of hypotheses which are part of a theoretical framework.

Now we transfer the confirmation relation to whole theories: A theory is

bootstrap-confirmed if and only if every axiom of T is bootstrap-confirmed.

Definition 3.3 Assume that theory T is the deductive closure of a set of

axioms {A1, . . . , An}. Evidence E bootstrap-confirms theory T relative to

background knowledge K if and only if E bootstrap-confirms every axiom of

T relative to theory T and background knowledge K.

So bootstrap confirmation amounts to bootstrap confirmation of any ax-

iom of the theory relative to the other axioms of the theory. Hence, defini-

tion 3.3 is relative to a particular axiomatization that is supposed to capture

the ‘natural’ regularities in T , as announced before. The precise conditions

for bootstrap confirmation of a theory are thus: first, E has to be a con-

tent part of T.K because for any axiom Ai, E has to be a content part of

Ai.A1 . . . Ai−1.Ai+1 . . . An.K. This is equivalent to T.K |=cp E. That condi-

tion accounts for the prediction/observation character of much scientific ac-

tivity, in the line of the H-D approach. Note that this condition is completely

independent of the particular axiomatization employed. Second, any axiom

of T has to be falsifiable by the evidence if the other axioms are held fixed. For

instance, it is necessary that ¬E.K.A2 . . . An |=cp ¬(A1)|dom(E).K.A2 . . . An,

and similarly for all other axioms. The latter condition ensures that the

evidence does not bootstrap-confirm theories that contain utterly irrelevant

axioms. Every axiom that is bootstrap-confirmed is open to falsification

through the evidence. This does not mean that each axiom of a theory is

independently testable, i.e. independent of the theoretical background. But

this must not trouble us because, after all, bootstrap confirmation is not in-
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T: A1 = ∀x : Dx→ V x T’: A′1 = ∀x : Dx→ V x
A2 = ∀x : Dx→ Bx A′2 = ∀x : Dx→ (V x ≡ Bx)

Table 3.3: Two equivalent theories.

tended as confirmation with regard to independent background assumptions.

Recall that the motivation of bootstrapping consisted in finding a model

for theory confirmation in the absence of external, theory-independent aux-

iliaries. So bootstrapping describes how a piece of evidence coherently fits

into a theoretical picture and how it can act on all relevant parts and axioms

of a theory.30 Hence, definition 3.3 successfully captures the spirit of boot-

strapping. Now, let us see how this revised model of bootstrapping deals

with Christensen’s objections.

David Christensen’s main criticism of Glymour’s bootstrap confirma-

tion was the lack of an account of evidential relevance. Remember the

virus/disease case: The problem is that there is a ‘natural’ connection be-

tween B and V in T ′ which is missing in T . A′2 establishes a link between

the observation of antibodies and the hypothesis under scrutiny whereas A2

does not render such an evidence (observation of B-antibodies) relevant.

Glymour’s original bootstrap confirmation fails to make a distinction with

regard to the evidential relevance of B-observations, but the falsificationist

account of bootstrapping solves the problem: E = Ba bootstrap-confirms

A1 = A′1 relative to K = Da and T ′, but not relative to K = Da and T .

The prediction criterion is fulfilled for both theories, but only T ′ fulfils the

second criterion of definition 3.3 since

A′2.¬E.K = ¬Ba.Da.¬V a |=cp Da.¬V a = ¬A′1|{a},

but on the other hand,

A2.¬E.K = ¬Ba.Da 6 |=cpDa.¬V a = ¬A1|{a}

In the new account, the particular axiomatization of a theory is allowed

to reflect nomological relations between the quantities of a theory.31

30See Meijs (2005, 133-34, 137-40, 162).
31The revised bootstrap account in Gemes 2006b comes to a similar result, see Gemes

2006b, 358-359. Unlike me, Gemes sticks to the satisfaction condition, so his version of
bootstrapping is closer to Glymour’s original work than my proposal.
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T: A1 = ∀xLx ≡ Zx K = Sa
A2 = ∀xSx→ Zx E = Pa
A3 = ∀xPx ≡ Zx

Table 3.4: The ‘Zoroastrian Theory’.

With the relevance problem resolved, Christensen’s gullibility argument

vanishes, too. Christensen interprets predicate L as having eternal life, Z

as being a Zoroastrian, S as wearing a sudra and P as praying to Ahura-

Mazda (the God of Zoroastrians). In Glymour’s original account, A1 (‘all and

only Zoroastrians have eternal life’) can be confirmed relative to the other

axioms of the theory by the observation of a sudra-wearing man praying to

Ahura-Mazda. This is obvious nonsense. However, if we apply the novel,

falsificationist bootstrap criterion, E = Pa does not confirm A1 relative to

T and K = Sa: No observation of sudra-wearing or praying men can ever

confirm A1 since predicate L occurs only in A1.32 As long as L denotes an

unobservable property, the internal structure of T rules out a confirmation

of A1 since no evidence could ever falsify A1, even with the help of the

other axioms.33 This shows that Christensen’s objections can be satisfactorily

answered when bootstrap confirmation is modified in a falsificationist way

and relativized to a peculiar set of axioms, at it was proposed by Christensen

himself in his 1990.

3.5 Summary

This chapter has discussed how hypothesis confirmation relates to and can

be transferred to theory confirmation. As a response to Kuhn’s point about

the theory-ladenness of observation, it became necessary to develop an ac-

count of confirmation that describes how it is possible to confirm theories

as a whole, without recourse to external background knowledge. Further-

more the holistic challenge triggered the need for an account of confirmation

where entire theories figure as the background against which a hypothesis is

tested. We would also like to build a model that describes under which cir-

32Technically spoken, there is no way ¬A1|dom(E) could be a content part of
¬E.K.A2.A3. In the particular case, ¬E.K.A2.A3 is even contradictory, but the argu-
ment in the main text is more general.

33Recall that Lx ≡ Px is part of (the deductive closure of) T , but since it is not included
in the list of axioms, it is not an admissible auxiliary hypothesis.
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cumstances cases of hypothesis confirmation add up to the confirmation of an

entire theory. First, such an account could model famous cases of theory con-

firmation in the history of science. Second, it could describe how evidence

is able to prefer an entire theory over a competitor without presupposing

theory-independent background knowledge. The main attempt in this direc-

tion is Clark Glymour’s work on bootstrap confirmation. Glymour’s original

proposal suffers under severe technical problems so that modifications or re-

interpretations have to be made. Either one might adopt a more modest

perspective of Glymour’s original bootstrapping – in the sense that it models

coherence between theory and evidence. Or the model of theory confirma-

tion has to single out a particular set of axioms of the theory. Pursuing

this road, I have suggested to replace the elementary confirmation predicate

in the definition of bootstrapping by the falsificationist criterion from the

previous chapter, yielding a viable account of theory confirmation. This is

not the uniquely feasible way, as Ken Gemes’s alternative approach shows,

but certainly it is a promising approach to rebut principal arguments for the

impossibility of bootstrap confirmation.
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Chapter 4

Varieties of Bayesianism

The two preceding chapters were concerned with qualitative confirmation:

the question how to define an adequate confirmation relation between sen-

tences of first-order logic. We have encountered two major traditions – confir-

mation by instances and hypothetico-deductive confirmation and examined

their respective virtues and vices. Finally, I have proposed the falsificationist

confirmation (FC) as the most adequate confirmation criterion: it is a refined

hypothetico-deductive account which respects that typical cases of confirma-

tion are generated by instances of a hypothesis. Falsificationist confirmation

can be applied to the more general problem of theory confirmation, too.

Beginning with this chapter, the book will revolve around the question

to which degree a hypothesis is confirmed by a piece of evidence. A purely

qualitative analysis cannot answer this question, and quantitative consider-

ations come into play. For instance, a large part of empirical science uses

statistical tools which rely on the probability calculus. Probabilistic data are

used to decide between competing hypotheses and to measure which support

they lend to a particular hypothesis. The trend towards quantification and

probabilification is well-known from the natural sciences and has most re-

cently reached the social sciences. Therefore, there is a strong demand of a

philosophy of inductive inference on the basis of probabilistic data. Scientists

and policy-makers alike are interested in the degree to which a hypothesis

is confirmed, and a solution to the Duhem-Quine problem equally requires

a quantitative approach. This chapter and the subsequent one are devoted

to the most venerable quantitative theory of confirmation – Bayesian con-

firmation theory. The Bayesian approach has strong similarity to research

in philosophical logic, especially to probabilistic and inductive logic (e.g.
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Hailperin 1996). This agrees with the logical positivists’ idea of confirmation

theory as the logic of inductive inference. In qualitative confirmation theory,

Carl Hempel took this position as we have seen in the second chapter. In

the quantitative tradition, this idea is usually associated with the works of

Rudolf Carnap (1950). We will examine in how far Bayesian confirmation

theory is able to provide a logic of inductive inference.

The basic idea of Bayesian confirmation can be expressed thus: confir-

mation consists in the increase in credibility of a hypothesis. Before seeing

the evidence, we have a certain (rational) degree of belief or credence in the

hypothesis at stake. As rational agents, we adapt our degree of belief to

the new information after seeing the evidence, in other words, we learn from

experience. Evidence that renders the hypothesis more credible is said to

support or to confirm the hypothesis, evidence that makes it less credible

is said to undermine it. That is, in a nutshell, the main idea of Bayesian

confirmation.

Making this idea more explicit requires, of course, the development of

appropriate technical tools and raises conceptual problems. We have to ask

how degrees of belief can be quantified, elicited and measured and what

makes them rational. More precisely, we have to find out the mathematical

constraints which rational degrees of belief should satisfy. This is the task

of finding a logic of partial rational belief, in the same way that deductive

logic provides a logic of full rational belief. Finally, we will try to establish a

connection to probabilities and the probability calculus as a means of quan-

tifying rational credences. The mathematical theory of probability is often

believed to give a logic of rational degrees of belief, in the sense that ratio-

nal agents whose degrees of belief violate the axioms of probability are not

fully rational. This can again be compared to deductive logic: agents whose

beliefs violate the logical axioms cannot have a consistent system of belief.

Probability generalizes this idea to partial beliefs. Thus, we have to find

an argument that rational degrees of belief should conform to the axioms

of probability. Then, the probability calculus would offer a mathematical

tool for calculating with degrees of belief and measuring the difference be-

tween prior and posterior degrees of belief, as the foundation of a theory of

confirmation.

All these questions will be the subject of the present chapter. Subse-

quently, the results are used to explicate the notion of confirmation with the

help of rational degrees of belief. Thus, the chapter does not only lay nec-
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essary foundations for the subsequent chapters, but it gives a rough survey

on ‘subjective probability’, too. The reader who is familiar with this subject

may therefore skip this chapter and directly proceed to chapter 5. Those

who do not feel confident about the connection between degrees of belief and

probability and those who are genuinely interested in learning more about

subjective analyses of probability, are, however, advised to continue in the

text.

4.1 Rational credences

Before explicating confirmation with the help of rational credences, we have

to know what rational credences (or degrees of belief) are and how they

behave. We follow the classical traditions and take propositions as the object

of degrees of belief. First, we have to fix a scale for degrees of belief in

a certain proposition, and by convention, they usually range between zero

(minimal degree of belief) and one (maximal degree of belief), exhausting the

set of real (or at least rational) numbers in between.1 Second, we have to ask

how degrees of belief can be elicited and even more fundamentally, what it

means for an agent to have degree of belief x in proposition A. Credences are

communicated by means of (oral or written) utterances, and it is hard to see

whether someone who says that he is ‘convinced that A is the case’ commits

himself to any particular numerical degree of belief. If we were to ask this

agent ‘But to which degree are you convinced? 0.7 or rather 0.8?’, such a

question would be incomprehensible because the agent would not know what

it means to have degree of belief 0.7. She strongly believes that A is the case,

but would not see any sense in assigning a particular number to her belief.

As stated above, we are interested in rational degrees of belief. The

conception of rationality which we utilize is the standard, economical one –

irrational degrees of belief would cost us money. Where in real life do degrees

of belief have economic significance? When we engage in ordinary action, we

are guided by subjective expectations, as Frank Ramsey [1926] (1978) makes

clear:

“[...] all our lives we are in sense betting. Whenever we go to the

1Of course, one could also imagine degrees of belief with a completely different range
(see Spohn 1990), but the unit interval has some mathematical benefits, and furthermore,
standard transformations can be used to map different ranges for credences onto each
other.
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station we are betting that a train will really run, and if we had

not a sufficient degree of belief in this we should decline the bet

and stay at home.”2

Although our ordinary life is guided by degrees of belief and subjective ex-

pectations, the above example does not quantify them. The most pervasive

example for quantification are probably transactions on financial markets –

stocks, certificates and options are traded and evaluated according to the

degrees of belief that they will rise or fall. Someone who has a strong degree

of belief that a (European call) option will become worthless evaluates the

option’s fair price differently than someone who is convinced that the un-

derlying asset will strongly increase the value. For this reasons, options are

often called bets on the future. We encounter such bets outside the financial

markets, too: People bet on the result of Bundesliga3 matches, on the future

European football champion, and so on. Let’s forget at the moment about

risk aversion and just presume that those bettors are expected utility max-

imizers. Obviously, someone who is convinced that Germany will become

European football champion will be ready to accept lower betting odds than

someone who believes that Germany is just one of several teams which have

a good chance to win the cup. Hence, there is a close connection between

degrees of belief on the one side and betting behavior on the other side.

Therefore, we would like to express degrees of belief as judgments about fair

betting odds and map both quantities to each other. Under a bet on the event

A we understand a triple 〈A|x|y〉 where x and y are positive real numbers:

The bookie pays the bettor y Euro if A occurs and the bettor pays the bookie

x Euro if A does not occur. x is the bettor’s stake, and the ratio (x + y)/x

is called the betting odds on A, indicating the bettor’s total gain (including

the stake) for a successful 1 Euro bet.4 An agent believes betting odds to

be fair if they offer no advantage to either side, i.e. if to the agent’s mind,

the bookie and the bettor have the same expected utility. Consequently, an

agent believes proposition A to degree p if he believes the associated bet to

2Ramsey [1926] 1978, 85.
3The ‘Bundesliga’ is the first German football division.
4Diverging from the convention in most of the philosophical literature, I use decimal

odds which are popular in Continental Europe instead of fractional odds that prevail in
the United Kingdom. Fractional odds give the net return the bettor gets for a successful
1 Euro bet, decimal odds give the total return for a successful 1 Euro bet, including the
initial stake. Decimal odds are easier to calculate with, e.g. when combining bets on several
events into a single bet, the total odds are just the product of the odds of the components.
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be fair. Numerical degrees of beliefs express judgments about the fairness of

bets.

It seems that betting odds offer a convenient way to express degrees of

belief. When we believe a sentence to be true low betting odds seem to be

fair whereas, when we believe a sentence to be false, we would ber ready to

grant high betting odds. So there is an intuitive connection between betting

odds and degrees of belief. Now it could be objected that an explication of

degrees of belief that relies on judgments about the fairness of bets is much

too close to the original concept (degree of belief) and therefore not very

illuminating. Furthermore, the notion of fairness used in this ‘definition’

of degrees of belief is problematic due to the vagueness inherent in that

concept. We might not be able to reveal the degree of beliefs of persons

whose concept of fairness deviates from our concept. Therefore we need a

standard definition of fairness: we might ask the agent to imagine that she

is going to be either the gambler or the bookie, but only after designing the

bets we will tell her which side she is going to play. This technique resembles

John Rawls’s (1971) ‘veil of ignorance’ for disclosing judgments about the fair

distribution of goods in a society. This operationalist definition of fairness

gives an argument for a fully dispositional, behaviorist definition of degrees

of belief (e.g. by De Finetti (1937)): agent S’s degree of belief in proposition

A is equal to p if and only if p utility units is the price at which S would sell

or buy a bet on A that pays 1 utility if A occurs.5 In other words, p is the

degree of belief where an agent would be indifferent between the two sides of

the bet if she were forced to choose. Or, put even another way, p is the degree

of belief she would submit under the veil of ignorance (whether she will be

the bettor or the bookie). These operationalist definitions match, of course,

the program of logical positivism. But on the other hand, they entail various

problems, e.g. the agent may draw some extra utility from being a particular

side of the bet.6 It is hard to define the ideal circumstances and the ideal

agent where an operationalist definition would apply. In particular, believing

betting odds to be fair does not mean that we would actually be willing to

take any side in the bet. We might be so risk-averse that we do not engage

in any bets for fear of losing the stake, even if we believe that the bet is quite

advantageous for us. This threatens the operationalist explication of degrees

of belief as hypothetical betting behavior – many people will for principled

5See Hájek (2007).
6See Mellor 2005, 65-66.
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reasons never engage in bets, thus they will never have dispositions to accept

certain bets. Therefore Howson and Urbach (1993) write:

“To believe odds to be fair is to make an intellectual judgment,

not [...] to possess a disposition to accept particular bets when

they are offered.”7

To say that a person has degree of belief x that event A will happen does

thus not mean that he would exhibit any particular betting behavior – it

just says something about which kind of bets he considers advantageous for

a particular side. Even someone who would never accept any bets seems

to be able to make judgments about the fairness of bets and to entertain

numerical degrees of belief. It is more convenient and less problematic to

conceive credences as judgments about the fairness of betting odds than as

dispositions to accept and to reject certain bets.

But wait a moment – didn’t we say that numerical degrees of belief are

normalized to the unit interval [0, 1]? Betting odds, however, live in the

interval [1,∞[. We showed that degrees of belief can be expressed by judg-

ments about fair betting odds, but they do not directly correspond to them.

Hence, we have to build an isomorphic map between the two intervals. The

higher the fair betting odds for an event A, the lower the agent’s credence

in A. The intuitive idea of fixing credences between zero and one is that

p ∈ [0, 1] expresses the credence that A actually occurs in fraction p of all

possible courses of events. Intuitively, it is clear what we mean by such a

‘definition’ – it explains the choice of the unit interval as the range for degrees

of belief, and in the next subsection, the benefits of this convention will be

seen. Nonetheless, it is a very abstract and vague idea and not suitable for

giving empirical meaning to credences. How can we establish the connection

between degrees of beliefs and betting odds? If agent S believes A to occur

in (100 ∗ p)% of all possible cases, he will consider the bet 〈A|x|y〉 to be fair

if and only if the zero-sum condition is satisfied:

p y + (1− p)(−x) = 0. (4.1)

The only value in [0, 1] that solves equation (4.1) for x, y > 0 is p = x/(x+y).

Hence, we can determine the degree of belief in an event A, understood as

the putative fraction of successful bets to total bets on A, from the fair

7Howson and Urbach 1993, 57.
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betting odds by taking the inverse. Similarly, if someone entertains credence

p in A, he commits himself to the fair betting odds 1/p. Hence, there is an

isomorphism between credences and betting odds. High credences yield low

betting odds and low credences yield high betting odds, as we know it all

from betting on sports events. Someone who assigns degree of belief p in

a proposition is, by the above isomorphism to betting odds, able to check

whether his degree of belief really corresponds to a bet which she would

consider fair.

So far we have introduced degrees of belief and explained the connection

between betting odds and degrees of belief. Typically, we have degrees of

belief in more than one proposition, e.g. there are two propositions A and B

in which we have definite degrees of belief. Then, this should put constraints

on the degrees of belief in truth-functional compounds of A and B: for

instance, the degree of belief in A.B should be lower than each of the degrees

of belief in A and B. (The conditions for winning a bet on A.B are harder

than the conditions for winning a bet on either A or B so that a bet on

A.B should have higher betting odds. Since higher betting odds entail lower

degrees of belief, A.B should be believed to a lower degree than A and B,

independent of the meaning of the propositions.) To elaborate that idea, we

have to define when a set of propositions is closed under the usual truth-

functional operators (conjunction, disjunction, negation, etc.).8 Such a set is

called a field or algebra.

Definition 4.1 A field of propositions A is a set of propositions so that

• any tautology is in A

• A ∈ A ⇒ ¬A ∈ A

• If A1, A2 ∈ A, then also A1 ∨ A2 ∈ A.

For instance, assume that we have degrees of belief in the propositions A,

B and C, each of them expressing assertions about the world. Then a field

of propositions that contains A, B and C also contains all truth-functional

compounds of A, B and C, e.g. A.¬B, A∨B ∨C, etc. On the other hand, a

8This entails that tautologies and contradictions are also part of that set. From any
proposition A, we can construct a tautologies and contradictions by means of A∨¬A and
A.¬A.
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field of propositions that contains A, B and C does not necessarily contain

proposition D if D is completely independent of A, B and C.

For technical reasons, the notion of a field is often amended to a sigma-

field (σ-field) which satisfies an additional condition, namely closure under

countable disjunction:

Definition 4.2 A σ-field of propositions A is a field of propositions so that

• If An ∈ A for all n ∈ N, then also
∨
n∈NAn ∈ A.

Hence, a σ-field of propositions is closed under logical negation and count-

able disjunction (and thus also under countable conjunction). Since the

countable additivity condition plays a major role in statistical applications

of quantitative confirmation theory, we will from now on work with σ-fields

instead of mere fields.9

4.2 Probability and the Dutch Book Argu-

ments

Assume that we have degrees of belief in all propositions that belong to

a sigma-field. Our system of beliefs is thus closed under truth-functional

combination. We are now concerned with the following questions: how do the

degrees of belief have to cohere with each other in order to form a consistent

system of partial beliefs and to count as rational credences? An argument

for a very simple constraint has already been given above: the credences in

9It might be objected that most countable disjunctions of standard propositions cannot
be written down in closed form. Therefore it is hard to intuitively make sense of the
condition that the σ-field be closed under countable disjunction – finite disjunction seems
to do the job, too. Two points can be replied. First, there are some very important
countable disjunctions of propositions – namely existential claims on a countable domain.
The sentence ‘There is a natural number that is the square root of 49’ is the disjunction of
the sentences ‘1 is the square root of 49’, ‘2 is the square root of 49’, etc. Sometimes there
are very elegant linguistic ways to express countable disjunctions of standard propositions.
Second, the problem that some of those countable disjunctions do not admit a closed form
can just be regarded as a problem of minor importance. Neither do countable disjunctions
of sets always admit a closed form even if any of the constituting sets has a closed form.
Nevertheless, such sets are very important in set theory. Moreover, we are interested in
applying our theory of credences to hypotheses about the empirical world. Such hypotheses
may be very strange disjunctions of ‘elementary’ hypotheses, and there is no reason to rule
out such hypotheses in advance.
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the conjunction of two propositions should not exceed the minimum of the

credences in each proposition. But there is more to be said as we will soon see.

Let P (A) ∈ [0, 1] be the degree of belief in proposition A. First, all logical

truths A should be assigned maximal degree of belief P (A) = 1 because bets

on them cannot lose. So, any betting odds that deviate from 1 would be

unfair to one of the two sides.10 In a similar vein, all contradictions B should

have minimal degree of belief P (B) = 0 – such bets can never be won so that

only infinitely large betting odds would be fair. Second, assume that A is

a contingent proposition. There is an alternative description for a standard

bet 〈A|x|y〉, namely that the bookie bets on ¬A and that the bettor takes

the bookie’s position. After all, the bettor’s net gain in the case of success

corresponds to the bookie’s stake and the bettor’s stake corresponds to the

bookie’s net gain in the case of failure. So, the betting odds on A also fix

the betting odds on ¬A: If the bettor makes a wager on 〈A|x|y〉, then the

bookie effectively makes a wager on 〈¬A|y|x〉. Hence, if the fair betting odds

on A are (x+ y)/x, the fair betting odds on ¬A are x+ y/y. For degrees of

belief, this entails that P (A) = x/x+ y whereas P (¬A) = y/x+ y. In other

words,

P (¬A) + P (A) =
x

x+ y
+

y

x+ y

P (¬A) = 1− P (A). (4.2)

Hence, the degrees of belief in a sentence and its negation add up to 1 so that

the more credible a sentence, the less credible its negation. This is arguably

a nice property of degrees of belief and motivates once more the choice of the

unit interval as the range of degrees of belief. Finally, it makes some sense to

postulate that for two mutually exclusive propositions, the credence that one

of them will come true exceeds the credence in each of the two propositions.

More precisely, it is plausible to ask for additivity : for two propositions A1

and A2 with A1 |= ¬A2, the degree of belief in A1 ∨ A2 is equal to the sum

of the degrees of belief in A1 and A2 – more on this later.

Thus, we have already spot some conditions which a consistent system

of rational credences should satisfy. The mathematical tool which is often

believed to describe the logic of rational credences and partial belief is the

probability calculus. This may sound a little bit far-fetched, but we can spot

10Clearly, this makes the idealizing assumption that agents are logically omniscient;
otherwise they would be unable to judge the unfairness of such a bet.
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the connection to degrees of belief in a variety of examples from ordinary

speech. People use probabilities in order to qualify the strength of their

conviction, i.e. if event A is said to be probable, it is also believed to be

subjectively credible. But what precisely is the connection between degrees

of belief and probabilities? To answer this question, we should introduce

probabilities as mathematical objects. A probability is a measure on a sigma-

field that satisfies the following constraints (see Kolmogorov [1933] 1956):

Definition 4.3 Let A be a sigma-field of propositions. P : A → [0, 1] is a

probability function on A if and only if

• P (A) = 1 for any tautology A.

• P (¬A) = 1− P (A).

• σ-additivity: For pairwise mutually exclusive propositions A1, A2, . . .

(i.e. Ai |= ¬Aj for all i 6= j), P (
∨
n∈NAn) =

∑∞
n=1 P (An).

The mathematically educated reader will have noticed that I introduced

probabilities different from their introduction in standard textbooks on prob-

ability theory. In the mathematical literature, probabilities assign real num-

bers to subsets of a (measurable) space and not to propositions. However,

the set-theoretic operators of complement, intersection and disjunction cor-

respond to the logical operators of negation, conjunction and disjunction so

that the definitions are more or less isomorphic. The sentential approach

was chosen in this presentation because it suits our intended applications

of probability theory better: we are interested in interpreting probabilities

as degrees of belief in empirical hypotheses. Then it is natural to define

probabilities for sigma-fields that consist of propositions and not of sets.

The three items of the above definition are henceforth called the axioms

of probability. The first two items of the above definitions implement our mo-

tivational remarks for degrees of belief (e.g. equation (4.2)) whereas the third

axiom still requires substantiation. More generally, while it looks plausible

that degrees of belief conform to the probability axioms, we have not yet

given a solid argument for this case. Why does a system of credences have to

conform to the probability calculus in order to count as rational credences?

Put another way, why would it be irrational to deviate from the axioms?

The upshot is thus: Our degrees of beliefs determine betting odds for all
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events in the sigma-field. Now, if one of the probability axioms is violated,

then the entire system of odds cannot have been fair – in the sense that it is

possible to construct a system of bets that assures a riskless positive gain to

the bookie or the bettor. In other words, arbitrage becomes possible. Such

a system of bets is called a Dutch Book, and the associated theorem – if the

axioms are violated, Dutch Books can be made – is called the Dutch Book

theorem.11

Theorem 4.1 Any function P : A → [0, 1] on a σ-field A that does not

satisfy the axioms of probability induces a system of bets that is vulnerable to

a Dutch Book. This means that there is a system of bets on elements of A
according to the betting odds given by P so that one side in the total system

of bets is guaranteed a positive net return.12

Proof: See appendix A.

The Dutch book theorem establishes that obeying the axioms of probabil-

ity is necessary for having a coherent system of fair betting odds. A system

of bets where one side has the opportunity of a riskless gain cannot be fair.

This directly transfers to degrees of belief if they are explicated as judgments

about fair bets:

“If anyone’s mental condition violated these laws [of the proba-

bility calculus], his choice would depend on the precise form in

which the options were offered him, which would be absurd.”13

Thus, probability provides a calculus for the logic of partial belief.14 The

converse Dutch Book Theorem, proved by Kemeny (1955), establishes the

counterpart of the Dutch Book theorem – any system of partial beliefs that

obeys the axioms of probability is indeed coherent, i.e. immune to Dutch

Books. Or in other words, if the axioms of probability are satisfied, no Dutch

Books can be construed. On the other hand, the Dutch Book theorem does

11For a more detailed discussion, consult e.g. the second chapter of Earman 1992, the
third chapter of Howson and Urbach 1993 or the earlier presentation in Kemeny 1955. The
converse theorem (if the axioms are not violated, there are no Dutch Books) is mentioned
later in the text.

12The normative force of Dutch Book arguments, in particular when combined with
σ-additivity, is a subject of philosophical debate, but it cannot be discussed here.

13Ramsey [1926] 1978, 84.
14This does not mean that probability calculus is the only conceivable logic of partial

belief – see, for instance, Spohn 1990, 2008.
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not put constraints on any specific degree of belief – it just states that if

we were to entertain degrees of belief in a set of propositions, our degrees of

belief have to respect the logical dependencies between those propositions,

on pain of irrationality.

Degrees of belief were explicated by means of judgments about fairness

in a hypothetical betting game. A system of partial beliefs in a set of in-

terconnected propositions is rational only if it is internally consistent, i.e.

immune to Dutch books. The Dutch Book theorem establishes a connec-

tion between degrees of beliefs and probabilities and explains why judgments

about probabilities are closely related to credences – they share the same cal-

culus.15 But we should distinguish two ways of speaking about probabilities

– the informal, everyday concept and the mathematically precise definition of

probability. So far, we were mainly interested in the connection between de-

grees of belief and the mathematical object probability, in particular because

rational degrees of belief respect the probability calculus. But there is also

an informal concept, and it has two different interpretations – the subjective

and the objective interpretation. If A is said to be probable, this can be

understood as an assertion that A is credible in the eyes of the agent. Here,

probability is interpreted as degree of belief. On the other hand, a statement

of probability often seems to say something about the objective chance of an

event, independent of all personal degrees of belief. Classically, probabilities

are either interpreted as degrees of belief or as objective chances. The ob-

jective probability of an event is normally either a property of a real-world

processes or the limiting relative frequency of the occurrence of an event in

a repeatable trial. Clearly, objective chances do not supervene on degree of

beliefs. Physical theories often use the objective interpretation, e.g. when

it is claimed that a deuterium atom has a 50% chance to decay within a

year. In a more mundane context, a particular die might have an objective

probability/tendency of 1/6 to come up with a ‘six’. Both examples use

15Again, countable additivity for rational credences might be questioned. But statistical
applications ask for countable additivity: Assume we have a integer-valued stochastic
process, and we are convinced that the process will eventually terminate. Nevertheless,
we have absolutely no idea at which point it will terminate. Denying countable additivity
would allow us to assign rational credence zero that the process will end at time point n, for
all n ∈ N. Now, there is an awkward tension between our conviction that at some point,
the process must terminate and our conviction that for any moment n, it is impossible
that the process terminates there. Intuitively, such a system of credences does not seem
to qualify as rational. Countable additivity circumvents that problem.
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the objective interpretation which is completely independent of belief states.

There is, however, an instructive connection between the subjective and the

objective interpretation which we are going to examine in the next section.

4.3 The essence of Bayesianism

The previous section has outlined how degrees of belief can be expressed

by fair betting odds in hypothetical games. Furthermore, the Dutch Book

theorems have argued that rational credences conform to the axioms of prob-

ability. But note that this justification only extends to the consistency of a

system of beliefs that are held simultaneously ! We did not give a principle

how degrees of belief should be changed in the light of incoming information.

Put another way, we have motivated synchronic, but no diachronic rational-

ity constraints on degrees of belief. The crucial idea of Bayesianism is that

learning from experience can be expressed by conditional probabilities. The

conditional probability of a proposition A given another proposition B is

defined as

P (A|B) =
P (A.B)

P (B)
. (4.3)

Conditional probabilities (or conditional degrees of belief) correspond to bets

on A that are canceled if B does not occur. We can read (4.3) as the fraction

of ‘cases’ where A and B are true, relative to the total number of cases

where B is true.16 In other words, the conditional probability of A given B

can be interpreted as the rational credence in A if we believed B to be true.

Thus, our rational degree of belief that a proposition H is true in the light of

incoming information E or after learning E is the conditional probability of

H given E. Degrees of beliefs are changed by conditionalizing on incoming

information. The principle of Bayesian Conditionalization describes how

to update degrees of belief in the light of incoming information:

Pnew(H) = P (H|E). (4.4)

(4.4) is also called the principle of strict conditionalization. Applying Bayes’s

theorem, a simple fact of probability theory, to calculate the conditional

16A major approach in the philosophy of mathematics takes conditional probabilities
as primitive and derives ‘normal’ probabilities from conditional probabilities, using an
isomorphic axiomatization, see Hájek 2003.
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probability yields

Pnew(H) = P (H|E) =
P (H)P (E|H)

P (E)
. (4.5)

Here, we see the connections between Bayesianism and probabilistic inductive

logic. The probabilities of some sentences impose constraints on the prob-

ability of other sentences, according to the laws of probability. Hailperin

(1984, 205) has suggested the following scheme: For sentences X1, . . . Xn, Y

and α1, . . . , αn, β ∈ [0, 1]

P (X1) = α1, . . . , P (Xn) = αn |= P (Y ) = β (4.6)

just in the same way that the valuations A = true and A → B = true

logically imply that A = true.17 In the case of Bayesian conditionalization

that we are interested in, the values of P (H), P (E) and P (E|H) determine

the values of P (H|E), the posterior credence in H:

P (H) = α1, P (E) = α2, P (E|H) = α3 |= P (H|E) =
α1α3

α2

. (4.7)

In other words, the posterior degree of belief in H – the degree of belief in

H after learning E – is the product of the prior degree of belief in H and

the likelihood of E given H, divided by the expectedness of the evidence E.

Bayesian inference can thus be represented by means of consequence relations

in a probabilistic inductive logic that extends deductive logic.18

How do we compute the probabilities on the left hand side of (4.7)? The

probability of the evidence can be decomposed as

P (E) = P (H)P (E|H) + P (¬H)P (E|¬H) (4.8)

and thus be traced back to the likelihood of E given H and ¬H as well as

the prior probability of H and ¬H. We see that Dutch Book arguments

are complementary to Bayesian Conditionalization: whereas Dutch Book ar-

guments govern the statics of degrees of belief, conditionalization describes

the dynamics of degrees of belief. Together they are able to give a theory

of partial rational belief and learning from experience: Degrees of belief are

rational if and only if they emerged from a consistent system of degrees of

17The consequence relation in (4.6) is, of course, not deductive entailment, but a prob-
abilistic consequence relation.

18See also the works of the PROGIC research group, e.g. Haenni et al. 2008.
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belief by Bayesian conditionalization. This is the orthodox Bayesian position

(De Finetti 1937): Subjective credences are rational if and only if they con-

form to the probability calculus and use Bayesian conditionalization as the

updating rule in the face of new evidence.

To give an example of Bayesian Conditionalization at work: Assume that

we know that a specific coin is either strongly biased towards heads, with

a 3:1 proportion of heads over tails (H), or it is a normal coin with equal

tendency to fall heads or tails (¬H). We have equal prior credences in H

and ¬H (P (H) = P (¬H) = 1/2). The coin comes up tails (E). If H is

true, this evidence has a 1/4 chance of occurring (P (E|H) = 1/4) and it

has a 1/2 chance of occurring when H is false (P (E|¬H) = 1/2). Then, the

probability of this event is

P (E) = P (H)P (E|H) + P (¬H)P (E|¬H)

=
1

2

1

4
+

1

2

1

2
=

3

8
. (4.9)

Hence, in the light of (4.9), the posterior probability of H (the hypothesis

that the coin is biased) in the light of the observed evidence becomes

Pnew(H) = P (H|E) =
P (H)P (E|H)

P (E)

=
1

2

1

4

8

3
=

1

3
. (4.10)

We see that the credence in H has decreased from 1/2 to 1/3 due to the

relatively unexpected event that the coin came up tails. This calculation

illustrates the way Bayesians change their degrees of belief in the light of

incoming information.

But wait a moment – didn’t we conflate the subjective and the objec-

tive concept of probability in the above calculation (4.10)? We correctly

stated that the objective chance of the event ‘tails’ under H is equal to 1/4.

Nevertheless, there is no logical point why this should transfer to rational

credences, too. So far, we have not clarified whether the probabilities that

occur in Bayes’s theorem are subjective or objective, but standardly, they are

considered to be subjective (since Bayesianism is a theory of belief revision).

Then, the above example of Bayesian updating needs more presuppositions:

We have only assumed that the objective chance of E under H equals 1/4,

but we did not mention any subjective credences in E given H or ¬H, in
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other words, we did not explicitly fix the value of P (E|H) and P (E|¬H). An

orthodox Bayesian might object to equation (4.10) and simply assert that for

some reason, he has degree of belief 1/3 that tails will come up if H is true.

This assignment is certainly strange, because objective chances then differ

from subjective credences. But it violates neither the axioms of probabil-

ity nor the conditionalization principle, and thus, the charge of irrationality

cannot be raised against the orthodox Bayesian.

Nevertheless, we somehow feel the need to calibrate our degrees of belief to

objective chances. Whatever those chances denote – limiting relative success

frequencies, tendencies of causal processes to yield a particular event or the

fraction of a subset of possible worlds – they always guide our subjective

expectations about future events. For instance, if a process has an objective

chance (e.g. a causal tendency of) 1/4 to yield success, we should adapt our

rational credences to that value if we happen to know it. This principle is so

intuitive that some authors even believe it to be an analytic statement. This

means that our degree of belief in an event should correspond to its objective

chance in the external world whenever we know the value of such chances.

For instance, if we knew that the objective chance of a ‘six’ in the toss of a

die were 1/6, we should set our rational credence to that very value (since

degrees of belief express the fraction of ‘successful’ and possible courses of

events). In this way, our background knowledge about objective chances puts

constraints on our rational degrees of belief.

How can we formulate this principle? Assume that a function P on a

σ-field A expresses rational degrees of belief of a subject (and thus satisfies

the axioms of probability) and let S be a proposition that asserts that a

certain event A occurs at time t. Furthermore, let Ap be the proposition

asserting that the objective chance of the occurrence of A at t is equal to p.

Now, the rational credence in S given the information Ap is equal to p, or in

mathematical form,

P (S | Ap.K) = p (4.11)

where K is any background knowledge that is admissible19 at point t and

compatible with S.20 This is David Lewis’s (1980) Principal Principle: If

19The notion of admissibility is a technical one and explicated in Lewis 1980. The point
is to rule out information that ‘interferes’ with the proposition Ap. Most standard back-
ground information, e.g. historical information about matters of fact prior to t, satisfies
the admissibility condition.

20This treatment is analogous to Earman (1992, 51-52).
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we know that the objective chance of a certain event A (whatever this is)

is equal to a number p, we should adapt our credence in the occurrence

of A to that very same number. Rational degrees of belief track objective

chances. This principle has to be refined, of course, in order to be immune

against counterexamples.21 For the purpose of this book, though, the basic

sketch is sufficient. Let’s come back to the above example of (4.10). If we

maintained credences different from 1/4 in P (E|H) (tails is the result of a

toss of the biased coin), we would be irrational. Our credences would imply

that we consider betting odds different from 1:4 to be fair for both sides.

But since the objective chance of tails is equal to 1/4, such a bet cannot

be fair – there will merely be a 25% success rate in the long run. So if

we knew that tails had a 1/4 chance of coming up, our rational degrees of

beliefs should be fixed to that very number.22 Hence, the above example for

Bayesian Conditionalization only works if we amend the Conditionalization

Principle with the Principal Principle. In fact, the Principal Principle is so

intuitively plausible and self-evident that most Bayesians accept it. If we

combine the axioms of probability with conditionalization and the Principal

Principle, we adopt the personalist Bayesian position or the empirically-

based subjective Bayesian position: All degrees of belief that conform to the

axioms of probability, emerge from Bayesian conditionalization and take into

account empirical constraints (via the Principal Principle) count as rational.

Degrees of belief which violate one of these constraints are irrational.23 In

other words, we could say that the personalist Bayesian requires both internal

21See Lewis 1980 and, for a comprehensive discussion of different versions of the Principal
Principle, Rosenthal 2004.

22Quite often, the likelihood of evidence under a statistical hypothesis is fixed. It seems
to be part of the meaning of H and E in the above example that the conditional probability
of E under H is 1/4. To see that in greater detail, note that the sentence P (E|H) = 1/4
can be reformulated as

‘If there is a 3/4 probability that the coin comes up heads (=H), the prob-
ability that the coin comes up tails (=E) is 1/4.’

has analytic character. Regardless of which interpretation of probability we select – some-
one who objects to the above sentence seems to have misunderstood the meaning of E and
H. Rational credences should not only track objective physical chances, but also those
chances which are fixed by the meaning of the assumptions (H) on which we conditionalize.
As mentioned at the beginning, this frequently occurs when we calculate the likelihood of
events under statistical hypotheses.

23A representative of this popular view is Colin Howson (2003) as well as most Bayesians
that are not explicitly associated with the objectivist or the orthodox position.



96 4.3. The essence of Bayesianism

validity of her credences (no Dutch book is possible) and external validity

(her credences correspond to objective chances).24

Still, in the personalist perspective, there is usually a plurality of ratio-

nal credence functions. Not all researchers in the field find that appealing.

Therefore, the rationality constraints on degrees of belief are sometimes fur-

ther sharpened: there is only a single rational degree of belief. This is the

tenet of objective Bayesianism.25 Objective Bayesians go beyond the per-

sonalist positions by claiming that only one of the belief functions that is

admissible for a personalist is factually a rational belief function.

Before comparing and discussing the various forms of Bayesianism, we

should discuss two objections to the standard Bayesian machinery. First, the

information on which we update is often not certain and subject to trans-

mission or measurement errors so that it is not completely clear whether E

or ¬E has occurred. Hence, it seems unwise to fully conditionalize on that

information and to take it for certain. To this end, the conditionalization

rule can be modified in the following way, proposed by Richard Jeffrey:

Pnew(H) = q P (H|E.K) + (1− q)P (H|¬E.K), q ∈ [0, 1]. (4.12)

(4.12) takes the weighted average of the posterior probability of H under E

and ¬E, taking q ∈ [0, 1] as a factor that quantifies the uncertainty whether

E has really occurred. This principle is named after his author – Jeffrey

Conditionalization (JC) –, and in the special case q = 1, it coincides with

the strict conditionalization principle. Jeffrey Conditionalization generalizes

Bayesian Conditionalization and accounts for evidential uncertainty.

Second, Bayesian updating can have some curious consequences. For in-

stance, we are in principle allowed to assign maximal degree of belief to

the proposition H that the moon consists of yellow cheese. According to

the probability calculus, such extreme beliefs can never be revised since the

negation of that proposition has degree of belief zero (P (¬H) = 0), entailing

P (E) = P (E|H) = 1. It is certainly strange to count someone as a rational

agent who dogmatically sticks to his conviction even in the face of strongly

undermining evidence. Rational agents should be open-minded towards em-

pirical hypotheses, i.e. no empirical and contingent statement should ever

24This point was brought to my attention by Andreas Bartels.
25I omit the discussion of interval-valued probabilities. The main topics of the book are

confirmation theory, inductive inference and statistical reasoning, and the debate about
rationality constraints on degrees of belief should not distract too much from the red line.
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receive degree of belief 1 or 0 since it might always be the case that we are

mistaken in our beliefs about the external world. Therefore, we might amend

the various Bayesian positions by a principle of regularity or non-dogmatism

(R). Rational agents should in principle be responsive to evidence:

(R) In a system of rational degrees of belief, only logical false-

hoods (contradictions) are assigned probability 0 and only logical

truths (tautologies) are assigned probability 1.

4.4 Varieties of Bayesianism

So far, we have encountered roughly three different Bayesian positions. First,

the subjective or orthodox Bayesian position where all degrees of belief that

respect the axioms of probability and Bayesian conditionalization count as

rational. Second, the personalist Bayesian position which supplements the

first view by the condition that rational degrees of belief have to track ob-

jective chances, i.e. the Principal Principle. Finally, the objective Bayesian

position asserts that there is only one rational degree of belief for each propo-

sition and that rational belief requires more than respecting empirically given

constraints.

The aim of this section consists in illuminating the virtues and vices of

these three basic forms of Bayesianism (which may, or may not, be amended

with constraints such as regularity). It is clear that the personalist position

is more attractive than the orthodox one, due to the intuitive plausibility

of the Principal Principle. It is less clear, however, whether the personalist

position is superior to the objective Bayesian view, too. This contrast will

be the main focus of the section.

The main principle of a particularly appealing form of objective Bayesian-

ism is entropy maximization and has been proposed by E. T. Jaynes (1957,

1968).26 Assume that we have a finite space of possible events or outcomes

Ω = {x1, x2, . . . , xn}. This set Ω generates a (set-theoretic) sigma-field σ(Ω)

that comprises all disjunctions, intersections and complements of subsets of

Ω. We can also interpret the elements of Ω as complete descriptions of mat-

ters of fact in a system. For instance, suppose that three propositions A,

B and C describe elementary matters of fact in a toy world W (e.g. W is

26See also Shannon and Weaver 1949 and Uffink 1996. The presentation in this book
follows Williamson 2007.
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a system of three independent electric bulbs which can be switched on and

switched off). Then, Ω = {T, F}A,B,C , e.g. the elements of Ω such as A.B.C

or A.¬B.¬C describe bulbs are switched on and which are switched off.

Consequently, the elements of σ(Ω) exhaust all kind of first-order assertions

about matters of fact in W , e.g. A.¬B or C.

Let PK be the set of probability distributions on the measurable space27

(Ω, σ(Ω)) that are compatible with the agent’s background knowledge K.

Objective Bayesians now single out the element of PK which minimizes the

distance to the uniform distribution on Ω, i.e. the distribution that assigns

equal weight to each element of Ω (i.e. P (xi) = 1/n for all i ≤ n). In

other words, objective Bayesians recommend to choose the most equivocating

distribution among all distributions that are compatible with the agent’s

background knowledge.

How is the distance to the uniform distribution measured? Usually, the

cross-entropy (Kullback and Leibler 1951) of the two distributions is utilized.

It figures under the names Kullback-Leibler (K-L) discrepancy, K-L diver-

gence, K-L information or relative entropy, too. The standard motivation

for using K-L divergence stems from coding theory when a string of symbols

from Ω has to be transmitted by means of 0-1-electric signals. To save time

and energy, this string is compressed during the transmission, i.e. frequently

occurring symbols are assigned short sequences of zeros and ones whereas

rarely occurring symbols are coded as longer sequences of zeros and ones.

Now, it may happen that we do not know the precise distribution f of the

symbols xi in the entire string (i.e. the relative frequencies of the xi). In-

stead, we use an approximating distribution g. Then, the expected loss of

efficiency in the transmission that emerges by using g instead of the optimal

distribution f is given by the cross-entropy

H(f, g) =
n∑
i=1

f(xi) log

(
f(xi)

g(xi)

)
(4.13)

where the sum is taken over the entire sample space Ω.28 log[f(xi)/g(xi)]

measures the information loss between f and g for every data point xi, and

averaging the loss according to f(xi) (the relative frequency of a symbol xi)

yields the expected information loss. Note, however, that this function is

27A measurable space is a space plus a sigma-field on that space.
28The definition easily generalizes to the continuous case, too – the sum is replaced by

an integral.
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not symmetric, hence it is no ‘distance’ in the proper sense of the word.

The terminus ‘discrepancy’ suits better.29 Cross-entropy is a mathemati-

cally tractable quantity and enormously significant in mathematical statis-

tics, information theory and even statistical mechanics (Boltzmann entropy).

For these reasons – and because there exists a clear, crisp and application-

oriented motivation – it is the most prominent measure of discrepancy be-

tween two probability distributions, despite the lack of symmetry.30

The cross-entropy between an element P from PK and the uniform dis-

tribution U can then be written as

H(P,U) =
n∑
i=1

P (xi) log

(
P (xi)

1/n

)
= log n+

n∑
i=1

P (xi) logP (xi). (4.14)

When H(P,U) is to be minimized over all elements P ∈ PK , the first addend

in (4.14) is a constant and can be neglected. Hence, we are looking for the

probability distribution P ∈ PK that has maximal entropy

H(P ) = −
n∑
i=1

P (xi) logP(xi). (4.15)

This procedure can be summarized thus:

Maximum Entropy Principle (MaxEnt): If PK is the set of

probability distributions compatible with the agent’s background

knowledge K the agent should select the element P ∈ PK that

maximizes the entropy H(P ) as defined in (4.15).

It is easy to show that in the absence of specific background information,

the uniform distribution maximizes entropy. In such a case, we are urged to

choose the ‘flat’ distribution, i.e. the distribution that assigns equal proba-

bility 1/n to any elementary sentence. Similarly, when substantial informa-

tion is available, we do not choose the uniform distribution itself, but the

distribution that equivocates the probabilities as far as possible. In agree-

ment with the coding-theoretic motivation, we choose the most uninformative

29Indeed, it would not make sense to average the loss according to the approximating
density instead of the true density.

30Among the symmetric alternatives, there are the Hellinger distance H(f, g) :=∑n
i=1(

√
f(xi)−

√
g(xi))2 and the usual Lp-metrics [

∑n
i=1(f(xi)− g(xi))p]1/p.
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and least committing distribution among all admissible distributions. Thus,

conditionalization is replaced by another form of belief revision. Objective

Bayesians do not update their probability distributions by conditionalization

– instead they choose the most equivocating probability distribution that is

compatible with the available background knowledge. This strategy is called

cross-entropy updating (because the cross-entropy to the uniform distribu-

tion is minimized). The advantage of cross-entropy updating consists in the

fact that some information that cannot be processed in Bayesian Condition-

alization is able to enter the game, e.g. information about the moments of

the target distribution (that it has expectation µ, variance σ, etc.). The

Principal Principle did not explain how this kind of information about ob-

jective chances affects rational credences. This is a serious drawback for the

personalist position and underlines the flexibility of the objective Bayesian’s

cross-entropy updating.

The principle to choose probability values that are as middling as possible

sounds attractive, but it requires substantiation. The standard idea is that

middling, equivocating probabilities are per se less biased and less committal

than extreme values (i.e. values near 0 and 1). But why should we avoid bias

and commitment? Isn’t a tendency towards middling probabilities not a form

of bias, too? A possible justification consists in the idea that in the absence of

further information, there is no justification for having a higher credence in a

specific element of the sample space than in another one. All elements should

be treated equally and be assigned the same probability unless background

knowledge forces us to do so. This is the Principle of Indifference (Laplace

[1814] 1951, Keynes 1921), a special case of the Maximum Entropy Principle.

However, this kind of reasoning runs into objections well-known as varieties

of Bertrand’s paradox.31 Assume that a factory produces miniature dice with

a side length between zero and one centimeter. What is the probability (i.e.

the rational credence) that a randomly selected die has a side length of more

than half a centimeter? The Principle of Indifference suggests to answer

‘1/2’ (and so does the Maximum Entropy Principle). So far, so good. Now,

what is the probability that a randomly selected die has a volume of more

than 0.125 cm3? It is tempting to reply ‘1/2’ again – the volume of the

dice ranges between 0 and 1 cubic centimeter and we apply the Principle

of Indifference. But our previous reply has already done the job – if the

31In my presentation of the paradox, I follow Hájek (2007).
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probability of selecting a die with a side length longer than half a centimeter

is equal to 1/2 then the probability of selecting a die with a volume greater

than 0.125 cm3 is also 1/2 and not 1/8. Two different applications of the

Principle of Indifference yield two different probabilities for one and the same

outcome. Everything depends on the quantity to which the Principle of

Indifference is applied, and it is not clear that we can always give a ‘natural’

quantity of reference. Hence, neither the Principle of Indifference nor the

Maximum Entropy Principle can be universally applied.

The Maximum Entropy Principle can be rescued from Bertrand’s para-

dox by noting that there is a basic outcome space Ω. Entropy maximization

merely applies with respect to the distributions of the members of Ω – and

not to all possible reparametrizations of Ω as the preceding example illus-

trated. In the above counterexample, choosing such a Ω would also fix the

parameter of interest (side length vs. volume). But then, the choice of the

appropriate outcome space becomes a non-trivial and important task. To

use the words of the above example: Shall we take side length or volume as

the basic parameter relative to which we equivocate our degrees of belief?

And if we have made a decision, how do we defend it? Making such decisions

sounds like a highly arbitrary and subjective task. The problem echoes Nel-

son Goodman’s (1983) point about formal theories of confirmation: whenever

a hypothesis is confirmed according to ‘reasonable’ formal accounts of confir-

mation, several gerrymandered hypotheses which are interdefinable with the

original hypothesis are equally confirmed. This was the upshot of the ‘grue’

paradox which we encountered in the first chapter. In the actual problem,

all parameters (side length and volume) can be interchangeably used and

isomorphically mapped onto each other so that it is not clear to which of

them entropy maximization should be applied.

We have tried to escape Goodman’s problem by delimiting the scope of

formal theories of confirmation – formal accounts of confirmation presuppose

a set of elementary, projectible predicates. But this does not entail that

constructing such accounts is a futile activity. Confirmation theory merely

has to be supplemented by a proper choice of elementary predicates. In a

similar vein, we should adopt a charitable reading of entropy maximization:

the principle does not hold unrestrictedly, but only relative to a reasonable

parameter. The syntax of MaxEnt alone cannot determine which parameter

is best for a problem at hand, in the same way that no formal account of

confirmation can determine which predicates are projectible. Therefore it is
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somehow unfair to charge the objective Bayesian with Bertrand’s paradoxes.

Instead, it should be acknowledged that Maximum Entropy gives prescrip-

tions for rational credences only relative to a suitable choice of the outcome

space – the set of elementary propositions. The defense of that partition,

however, depends on the specific case and is independent of the virtues and

vices of the Maximum Entropy Principle.

This objection to objective Bayesianism being rebutted, I would like to

scrutinize three arguments for preferring objective Bayesianism over a per-

sonalist position. The first argument stresses the objectivity and the lack of

subjective dissent of objective Bayesianism: it is a commonplace in science

to ask for objective inference and to have nothing but contempt and disdain

for ‘subjective’ (i.e. personalist) theories of rational belief (see Dennis 2004

for an example). For example, after conducting a scientific experiment we

are faced with the question which hypothesis we should rationally believe.

For the personalist, this question cannot be conclusively answered since by

adopting a sufficiently extreme prior opinion, any posterior credence may

be rendered rational. This looks somehow undesirable since all conclusions

and lessons from experience seem to be relative to prior opinion. For in-

stance, policy-makers could reject inconvenient recommendations based on

scientific insights by adjusting their prior beliefs – a strategy that is common

in the global warming controversy, too. But the call for absolute objectivity

has its drawbacks, too. Not all scientific applications require fully objective

methods, and sometimes, it can be sensible to leave some wiggle room for

subjective expert opinions. Such subjective expertise becomes the more im-

portant the more noisy and scarce our data. Furthermore, the objectivity

argument would only show the need for some form of objective Bayesian-

ism, but would not prove the superiority of entropy maximization over other

objective Bayesian principles.

The second argument brings up the issue of efficiency. The elicitation of

subjective beliefs is a time-comsuming activity that binds a lot of valuable

human resources. People have to be asked about their credences, and if

they shrug, it will be necessary to explain to them that they should imagine

a fair bet, and so on. This is especially salient for AI applications where

efficient resource allocation is especially important. For this reason, objective

Bayesianism should be adopted, or so its proponents argue, so much the more

as Bayesian nets nowadays greatly reduce the computational complexity of
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Action/State S ¬S
A 3 -3
¬A 0 -1

Table 4.1: A utility matrix in a decision problem.

entropy maximization.32 – Similar to the first argument, this point stresses

the drawbacks of a personalist position, but it does not make a case for a

specific form of objective Bayesianism. Such a case is allegedly delivered

by the third argument: the Maximum Entropy Principle is more cautious

and risk-averse than other forms of objective Bayesianism (e.g. a principle

that prescribes to minimize entropy). Of course, MaxEnt is not always more

cautious and risk-averse than other constraints on rational credences, but

due to its equivocating strategy, it rarely triggers a decision for which a

high degree of certainty is required. Such decision are paradigmatic cases

of ‘risky’ decisions (we will only make them if we feel very confident in the

underlying facts). Thus, MaxEnt is on average more risk-averse than other

constraints.33

Nevertheless I would like to bring up some arguments against the Max-

imum Entropy Principle, too. First, agents which are not risk-averse, but

risk-neutral have no reason to prefer Maximum Entropy over other forms of

objective Bayesianism. For such agents, the principle to minimize the entropy

is on average as cautious as the Maximum Entropy Principle.34 Indeed, such

risk-neutral agents might exist in real life, too, for example in the investment

department of high street banks. Second, there is a tension between the Max-

32See Williamson 2005.
33It might be argued that this result is not correctly stated. Here, a risky decision

is understood as a decision that is executed if and only if the probability of a specific
proposition S exceeds a very high value (e.g. take action A if and only if P (S) > 0.9). But
it would be equally natural to define risky decisions as decisions where we expose ourselves
to high potential losses. If we are expected utility maximizers, these definitions need not
coincide – high potential losses can be outweighed by high potential gains, leaving the
probability threshold for taking a decision unaffected. This is illustrated in table 4.1 – if the
probability of S exceeds 1/4, the expected utility of action A is higher than the expected
utility of action ¬A, although A is more risky in the sense that high potential losses
threaten. If risk aversion in the sense of the Minimax Principle enters the considerations,
i.e. if we want to avoid high potential losses under all circumstances, we will be less ready
to take action A although objective Bayesians have no qualms with A. The argument
for the Maximum Entropy Principle as opposed to other forms of objective Bayesianism
works only if the first understanding of a risky decision (‘high probability’) is adopted.

34See Wiliamson 2007.
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imum Entropy Principle and Bayesian Conditionalization. Recall that the

Maximum Entropy Principle builds on cross-entropy updating: we choose

the probability distribution that minimizes the cross-entropy to the uniform

distribution over all distributions compatible with the available information.

Seidenfeld (1979b, 1986) has argued that cross-entropy updating “commits

the agent to more information than he/she may be entitled to”35. The prob-

lem occurs when nuisance parameters enter the field – contrary to Bayesian

Conditionalization, cross-entropy updating neglects uncertainty about nui-

sance parameters and treats the distribution for the parameter of interest as

a nuisance-free distribution. Instead of properly representing the uncertainty

about the nuisance parameter, an ‘ignorance’ distribution is adopted for the

parameter – but that is a crucial difference.36 Third and last, allowing for

subjective prior probabilities seems to threaten the objectivity of scientific

inference, but in fact, it can also improve an inference. For instance, prior

probabilities typically depend on subjective expertise of a scientist and not

only on hard data. In an objective Bayesian framework, it would be impos-

sible to bring to bear this expertise on the posterior probabilities. But if we

adopt a personalist framework, several experts in a field are allowed to spec-

ify their prior beliefs and we can merge their opinions to obtain a conclusion

that is based on the ‘average’ opinion of a group of experts. This merged

posterior distribution may be more deliberate and precise than the objective

Bayesian’s posterior distributions. Objective Bayesianism does not make use

of the scientists’ knowledge about their field unless it is quantified in hard

data. To be sure, it depends on the specific application whether an objective

or a personalist approach should be preferred. Objective approaches can be

implemented mechanically and are more efficient than subjective ones which

require the elicitation of prior probabilities; furthermore they do not allow

for subjective bias. But in a situation where the danger of manipulation and

deliberate bias of prior probabilities is low, the personalist method incorpo-

rates a lot of subjective expertise which would otherwise get lost. Hence,

the debate between objective Bayesian and personalist positions cannot be

neatly decided the one or the other way. Both positions have their merits,

and often, the nature of the specific inference problem decides the question.

35Seidenfeld 1979b, 433.
36Seidenfeld’s (1979b) instructive example will be rehearsed in chapter six of the book.

See, however, Williams 1980 and Uffink 1996 for attempts to reconcile MaxEnt with
Bayesian conditionalization.



Chapter 4. Varieties of Bayesianism 105

This survey of Bayesian positions is, of course, far from complete – in

particular, we did not mention at all the concept of logical probability and

inductive probability – a concept introduced by Rudolf Carnap (1950) as ‘de-

gree of confirmation’ and subsequently developed by several logicians, among

them Roberto Festa (1986, 1993) and Patrick Maher (2006). In Maher’s read-

ing, inductive probabilities do not correspond to degrees of belief – instead,

inductive probability characterizes the relation between evidence and a hy-

pothesis. It is the explicatum for the ordinary concept of probability in so

far as this concept diverges from objective chance. Take the sentence

“WB. The probability that a ball is white, given that it is either

black or white, is 1/2.”37

Maher continues:

“Practically all competent speakers of ordinary language will as-

sent to WB. The reference in WB to evidence, and the lack of

any suggestion of a repeatable experiment, makes it clear that

this is a statement of inductive probability, not physical proba-

bility (=objective chance, J.S.). Consequently, the truth value of

WB does not depend on empirical facts but is determined by the

relevant concepts.”38

The idea is that statements as WB cannot be statements about objective

chance. Ordinary competent speakers are inclined to consider WB to be

true, although it is not about degrees of belief – it is about the relation be-

tween a hypothesis (the ball is white) and evidence (the ball is either white

or black). Thus, we should introduce a concept of probability that is inde-

pendent of both objective chance and subjective degrees of belief and where

the truth value of probability statements merely depends on the meaning of

its components (as in WB). In that sense, the concept of inductive proba-

bility is a logical one. Here, we see the difference to objective Bayesianism:

objective Bayesianism constrains rational degrees of belief whereas inductive

probability explicates a use of probability that is common in ordinary lan-

guage. Of course, there are some striking similarities – in the above example,

the objective Bayesian recommendation agrees with the inductive probability

that the ball is white (=1/2). Therefore, both positions are often thought to

37Maher 2006, 195.
38Maher 2006, 195.
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be closely related. But in fact, the projects of inductive probability and ob-

jective Bayesianism are quite different (although the probability values may

agree): inductive probability is concerned with explication of a concept of

ordinary language whereas objective Bayesianism cares for rationality con-

straints on degrees of belief. The motivation for objective Bayesianism is

completely a priori and independent of any use of the word ‘probability’:

several constraints on rational credences are introduced and motivated, and

the MaxEnt summarizes them in a single principle. On the other hand, pro-

ponents of inductive probability are tied to the use of probability by ordinary

speakers of a language. For instance, if nearly all speakers agreed on

“WB. The probability that a ball is white, given that it is either

black or white, is 1/3.”

the concept of inductive probability would have to be modified. Unlike ob-

jective Bayesianism, it is a descriptive theory of the probability concept, not

a normative theory of degrees of belief. For this reason, I refuse to classify

the logical/inductive probability concept as a form of Bayesianism.

The above survey of positions gives a rough idea of the varieties of

Bayesianism that are found in practice. For several aspects of Bayesian

confirmation theory, the differences between the positions are negligible, e.g.

the problem of finding a suitable measure of confirmation is equally pressing

in all varieties of Bayesianism.

4.5 Summary

This chapter has introduced how probabilities express degrees of belief and

how the calculus of probability is able to provide a logic of partial belief,

in the same way that deductive logic offers a logic of full belief. Degrees of

belief are explicated as hypothetical fair betting odds.

We have made the acquaintance of three principles – the Dutch Book the-

orem, the Principal Principle and Bayesian Conditionalization. The Dutch

Book theorem shows why probabilities are the adequate mathematical tool

for representing degrees of belief and that a set of bets that fail to conform to

the axioms of probability cannot be fair. The Principal Principle calibrates

rational credences with information about objective chances in real-world

processes. Finally, Bayesian conditionalization determines how degrees of
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Feature Orthodoxy Personalism Maximum
Entropy

intuitive no yes medium
empirical constraints no yes yes
efficient procedure available? no no yes (Bayes

nets)
subjective bias ruled out? no no yes
merger of opinion possible? yes yes no
especially risk-averse no no yes
compatible with (BC) yes yes no

Table 4.2: An overview over the advantages and drawbacks of the three main
Bayesian conceptions of rational belief.

belief have to be changed in the light of incoming information that is re-

garded as certain. While the Dutch Book theorem and the Principal Prin-

ciple impose constraints on synchronically held degrees of belief, Bayesian

Conditionalization is a diachronic constraint.

There are a variety of Bayesian positions that agree only in the fact that

the axioms of probability are unanimously accepted. Bayesian orthodoxy is

the most parsimonious position, adding merely the principle of Bayesian con-

ditionalization. Personalists moreover add the Principal Principle whereas

objective Bayesians replace conditionalization by the Maximum Entropy

Principle. Table 4.2 gives a survey over the properties of various Bayesian

positions and illustrates their virtues and vices. Now we can proceed to the

centerpiece of the book – the discussion of Bayesian confirmation theory.
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Chapter 5

Bayesian Confirmation

In the last decades, probabilistic models and probabilistic methods have

gained much ground in the empirical sciences, in particular the social sci-

ences. Due to the increasing application of probabilistic modeling in science,

confirmation theory should explicate the valid principles of probabilistic in-

ductive reasoning, too. By definition, qualitative models of confirmation can-

not accomplish that task. Moreover, they have struggled with some problems

(e.g. the Duhem-Quine problem) that ask for a quantitative treatment of con-

firmation and for measures of degree of support. The last chapter has done

some preliminary work in order to set up a probabilistic, quantitative theory

of confirmation: we have become acquainted with a probabilistic calculus for

degrees of belief. We have argued for specific constraints on a system of ratio-

nal degrees of belief, in particular for immunity to Dutch Books and adher-

ence to the Principal Principle. Furthermore we have introduced principles

of belief updating as Bayesian conditionalization and entropy maximization,

the latter being characteristic of an objective Bayesian framework. On these

grounds, the Bayesian account equates confirmation with increase in ratio-

nal degree of belief. However, such an explication does not automatically

answer the central question – to which degree is a hypothesis confirmed by

a piece of evidence? In this chapter, we discuss various measures of support

and present some successes of Bayesian confirmation theory, as well as open

questions.
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5.1 Confirmation measures

Qualitatively, Bayesian confirmation amounts to an increase in rational de-

gree of belief upon learning the new evidence E – in other words, evidence

E confirms H if and only if P (H|E) > P (H). But we have to remember

a lesson from the very first chapter of the book – confirmation is a three

place predicate, relative to background knowledge. As the Duhem-Quine

problem teaches us, background assumptions are a crucial part of scientific

reasoning and must be part of a proper confirmation theory. The natural

way to integrate them consists in taking those assumptions for granted and

in conditionalizing an agent’s degrees of belief on them.1 That said, we can

write down a first, qualitative definition of Bayesian confirmation:

Definition 5.1 A piece of evidence E confirms a hypothesis H relative to

background assumptions K if and only if P (H|E.K) > P (H|K).

This definition gives a probabilistic explication of relative confirmation,

not of absolute confirmation. Definition 5.1 describes the relevance of evi-

dence for a hypothesis, not high credibility of a hypothesis. But it is not dif-

ficult to imagine a probabilistic condition for absolute confirmation, namely

the condition that H enjoys a sufficiently high probability/rational credence.

For instance, we could demand P (H) > 0.99 – then H would be (absolutely)

confirmed ‘beyond reasonable doubt’. Nevertheless, our main interest is de-

voted to the relationship between theory and evidence so that we focus on

the incremental, relative concept of confirmation (=evidential relevance), as

we did in our discussion of qualitative confirmation theory. Definition 5.1

is purely qualitative and leaves open which degree of support a piece of evi-

dence E lends to a hypothesis H, relative to background K. Such a degree of

support is required in order to tackle resilient challenges as the Duhem-Quine

problem (see chapter 3): Duhem has rightfully argued that the test of a hy-

pothesis is only as reliable and powerful as the auxiliary hypothesis that enter

the testing process. But we would like to avoid the conclusion of confirma-

tional holism that it is not meaningful to speak about the (dis)confirmation

of single hypotheses. We require measures of support in order to show that

in the case of experimental failure, the blame can be unevenly distributed

over hypotheses under test and hypotheses in use.

1Nonetheless, for reasons of convenience, we will often speak (but not write) as if the
background knowledge were empty.
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Assume that a hypothesisH together with auxiliary hypothesis A predicts

a certain phenomenon E, but the observations fail to produce E, falsifying

the hypothesis. Then, on a Bayesian account, it is possible that the blame E

puts on H.A is not evenly distributed between H and A, i.e. for an adequate

measure of support, the hypothesis is much more disconfirmed than the aux-

iliary hypothesis, or vice versa.2 Recall Young’s double slit experiment from

chapter 2 that was set up to check the hypothesis that light propagates in

waves (H). Among the auxiliary hypotheses is the assumption A that the

lens used to focus the light behind the double slit is properly cut (see figure

2.1, p. 33). When conducting the experiment, we do not observe the char-

acteristic inference pattern shown in figure 2.1, but instead a diffuse image

(E). Clearly, this violates the predictions of H (light propagates wavelike),

so that P (E|H.A.K) = 0. By contrast, if the lens is not properly cut, we

will quite probably observe a diffuse image (P (E|H.¬A.K) = 4/5). More-

over, we know that the quality of the available lenses varies a lot – only fifty

percent of all lenses are properly cut. Hence P (A|K) = 1/2. Now we make

the further (ad hoc) assumptions that P (H|K) = 0.8 (H is quite likely) and

P (E|¬H.K) = 3/5 (under the alternative hypotheses, it is not clear what we

will observe). Some innocent independence assumptions with respect to A,

H and K then yield

P (E|H.K) = P (A|H.K)P (E|H.A.K) + P (¬A|H.K)P (E|H.¬A.K)

= 1/2 ∗ 0 + 1/2 ∗ 4/5 = 2/5,

and consequently,

P (E|K) = P (H|K)P (E|H.K) + P (¬H|K)P (E|¬H.K)

= 4/5 ∗ 2/5 + 1/5 ∗ 3/5 = 11/25.

In a similar vein, we calculate that P (E|A.K) = 4/25. Combining that all

with the help of Bayes’s theorem yields

P (H|E.K) ≈ 0.727 P (A|E.K) ≈ 0.181

which indicates that A suffers much more under the failure of the experi-

ment than H – recall that the prior probability of A was 1/2 and the prior

2Howson and Urbach (1993, 96-102) give a detailed and instructive example from the
history of chemistry, but I think that the basic point can be illuminated more easily.
Further discussion of Bayesian approaches to the Duhem-Quine problem takes place in
Strevens 2001, 2005 and Fitelson and Waterman 2005, 2007.
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probability of H was 4/5. This shows how the Duhem-Quine problem can

be tackled in a Bayesian framework: both hypothesis are disconfirmed, but

not to an equal degree. However, while we intuitively grasp that H is less

undermined than A, we require a measure of support to make this reasoning

precise. Therefore, this chapter revolves around the comparison of various

measures of support. In order to unify and to normalize the various measures,

we demand that all measures of confirmation c(H,E,K) satisfy

c(H,E,K)


> 0 E confirms H relative to K

= 0 E is neutral to H relative to K

< 0 E disconfirms H relative to K.

(5.1)

A measure of support takes a positive value if and only the evidence

confirms the hypothesis and a negative value if and only if the evidence

disconfirms the hypothesis.

There is an abundant list of confirmation measures proposed in the lit-

erature, and discussing them all would be too tedious even in a monograph

on confirmation and evidence. Instead, I follow Fitelson’s (2001a, 2001b)

strategy to select some measures of support that are (1) present in the

confirmation-theoretic debate (2) defended by a non-negligible part of the

research community (3) representative of different approaches to quantify

confirmation. Luckily, many measures can be eliminated from the list be-

cause they are ordinally equivalent to one of the measures in the list. Ordinal

equivalence amounts to the following condition:

Definition 5.2 Two confirmation measures c1 and c2 are ordinally equiva-

lent if and only if for all H, H ′, E, E ′, K and K ′:

c1(H,E,K) ≥ c1(H ′, E ′, K ′) ⇔ c2(H,E,K) ≥ c2(H ′, E ′, K ′). (5.2)

In other words, two ordinally equivalent measures may assign different

degrees of support to a tuple 〈H|E|K〉 as long as they impose the same

partial order. Thus, they agree with regard to the ordinal structure of in-

ductive support, i.e. with regard to judgments which hypotheses are better

or equally confirmed by pieces of evidence. In other words, by ‘stretching

and contracting’ the measures it is possible to map them onto each other.

The different degrees of support merely remain a matter of appropriate scal-

ing so that ordinally equivalent measures share most interesting properties.
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For those reasons, we will only pick a single representative of a particular

class of ordinally equivalent measures.3 The six classes of measures which

are now introduced represent the most popular and fiercely discussed sug-

gestions in confirmation theory and they also cover a significant part of the

ordinal structure that a measure of confirmation could possibly impose.4

Difference Measure

d(H,E,K) := P (H|E.K)− P (H|K)

Log-ratio Measure

r(H,E,K) := log
P (H|E.K)

P (H|K)

Counterfactual Difference Measure

s(H,E,K) := P (H|E.K)− P (H|¬E.K)

=
P (H|E.K)− P (H|K)

P (¬E|K)

Likelihood Ratio Measures

l(H,E,K) := log
P (E|H.K)

P (E|¬H.K)
(Log-Likelihood)

k(H,E,K) :=
P (E|H.K)− P (E|¬H.K)

P (E|H.K) + P (E|¬H.K)
(Kemeny-Oppenheim)

Covariance Measure

c(H,E,K) := P (H.E|K)− P (H|K)P (E|K)

= P (H|K)[P (E|H.K)− P (E|K)]

Crupi’s and Tentori’s z-measure

z(H,E,K) :=

{
P (H|E.K)−P (H|K)

1−P (H|K)
P (H|E.K) ≥ P (H|K)

P (H|E.K)−P (H|K)
P (H|K)

otherwise

3For historical reasons, a single exception (the log-likelihood-measure and the Kemeny-
Oppenheim measure) will be made.

4Further suggestions include the measures of Gaifman (1979), Nozick (1981), Mortimer
(1988) and Rips (2001).
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Some explanations are due, of course. The difference measure, advocated by

Earman (1992) and Rosenkrantz (1994), is an intuitive measure that takes

the difference between the posterior and the prior degree of belief in H as

a measure of the support evidence E lends to H. – The log-ratio measure

r, proposed by Howson and Urbach (1993) and Milne (1996), replaces the

difference between the posterior and the prior degrees of belief in H by the

(logarithmic) ratio of those two quantities. So r can potentially take very

high and low values whereas d is restricted to the interval [−1; 1]. – The

counterfactual difference measure s is a variation of the difference measure

that compares the posterior degree in H with the degree of belief that we

would put in H had ¬E occurred instead of E. In a simplified manner of

speaking, we could also say that s multiplies the difference between prior and

posterior credence in H with the expectedness of the evidence. That mea-

sure is most prominently backed by Christensen (1999) and Joyce (1999). –

The log-likelihood measure l takes the logarithmic ratio of the likelihoods of

the evidence, once under H and the other time under ¬H, as a measure of

support. It is ordinally equivalent to the Kemeny-Oppenheim measure k so

that the latter does not need special attention. However, it is noteworthy,

first for historical reasons, and second, because it is normalized to [-1; 1]. Ad-

herents include Kemeny and Oppenheim (1952), Good (1983), and Fitelson

(2001a, 2001b). More on this later – c is a variation of Carnap’s (1950, §67)

relevance measure that takes the degree to which H and E are correlated (in

other words, the covariance of E and H) as a measure of support. – Finally,

z is a recent proposal by the philosopher Vincenzo Crupi and the psychologist

Katya Tentori that is backed by ordinary people’s judgments about degree of

support (Tentori et al. 2007). Furthermore it has some theoretical symmetry

properties which single it out among all confirmation measures (Crupi et al.

2007; Crupi et al. 2008).

Of course, all measures satisfy minimal adequacy constraints in the sense

that they satisfy equation (5.1) (proofs omitted). Moreover, several measures

found in the literature differ from the above list only by means of adding

or omitting a logarithm symbol – e.g. there is a non-logarithmic version of

the log-ratio-measure r. Since the logarithm is a monotone function, such

measures are ordinally equivalent to measures in the list so that we can

neglect them.

If the measures are compared, the first criterion that could be used is a

kind of intuitive plausibility. But we should not rely too much on intuitions
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when we compare two measures in terms of intuitive adequacy. For instance,

both the difference measure d and the log-ratio measure r are based on the

increase in probability from P (H|K) to P (H|E.K). The log-ratio measure

seems to correctly capture that the increase in H’s probability from 0.000001

to 0.01 is far more significant than the increase in probability from 0.24

to 0.25. The difference measure yields the opposite result which we find

unintuitive. But on the other hand, the log-ratio measure also asserts that

an increase in probability from 0.001 to 0.01 lends more support to H than an

increase in probability from 0.1 to 0.9.5 Here, the difference measure seems

to be in agreement with our intuitions. This dilemma seems to show that

both measures cannot be adequate explications of the concept of inductive

support – and indeed, we will later encounter arguments for this claim. But

we should not be too hasty. For each intuitive example which seems to

favor a specific measure over another one, there might be other examples

which argue for the opposite claim. It will not be possible to account for

all intuitions that are connected with confirmation, evidential relevance and

inductive support. Rather, an adequate explication of these vague concepts

will also be assessed in terms of fruitfulness and precision whereas some

intuitions will be preserved and others will be abandoned. Christensen (1999,

438-39) presents a nice analogy that illustrates the problems of finding an

adequate measure of inductive support: how do we measure the extent to

which a politician P (e.g. someone who runs for the American presidency)

is financially supported by a group G? The proportion of G-donations in

P ’s funds? P ’s relative position in the presidential run as a function of the

G-donations? And so on. Christensen conjectures

“Thinking about these different measures of support suggests to

me that there is no single clearcut question being asked when we

ask ‘How much support does P get from G?’. It would not be

surprising if the same were true of the question ‘How much does

evidence E support hypothesis H [relative to K, J.S.]?’.6

Nevertheless, I do not endorse Christensen’s pessimistic suggestion. Admit-

tedly, it is unlikely that a measure of confirmation will ever succeed to capture

all intuitions that are connected to the concept of confirmation. But nev-

ertheless, it is possible and worthwhile to narrow down the list of proposed

5See Christensen 1999, 438.
6Christensen 1999, 439. Notation changed for convenience.
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measures by a list of clear-cut criteria: first, their ability to resolve classical

problems of confirmation theory, as the problem of irrelevant conjunctions.

Second, the satisfaction of appealing theoretical properties and the absence

of undesirable properties. Third, the explanatory power with respect to fea-

tures of scientific practice, as the power of independent or surprising evidence.

Indeed, we will see that many problems in confirmation theory are measure

sensitive, i.e. whether a problem remains or vanishes depends on the specific

measure which is used. The criteria which I set up are quite uncontentious

and liberal, so that a measure of confirmation that does not satisfy them is

really in trouble, independent of the specific application context. In the end

three measures will remain possible candidates for an explication of inductive

support. Finally, these three measures are discussed and compared to each

other.

5.2 Adequacy conditions on measures of sup-

port

Finding a suitable set of adequacy criteria for a measure of support is no

easy task, so much the more as the proposed measures exemplify various

ways to characterize the concept of confirmation. Indeed, there are two

grand traditions in quantitative confirmation theory. On the one hand, we

have measures like d, r and s which try to capture the increase in degree of

belief. On the other hand, measures like k, l and z quantify the strength of

an inductive argument which the evidence gives in favor of the hypothesis

(relative to the background knowledge). These two traditions fundamentally

disagree on certain aspects of inductive support, as we will soon see. So it

is worthwhile to see which measure (and which tradition) is more capable to

solve the various open problems.

One of the very basic desiderata on a measure of support consists in

accounting for the power of surprising evidence. When various pieces of

evidence are equally likely under a certain hypothesis, it seems that an unex-

pected piece of evidence E confirms the hypothesis to a stronger degree than

an expected piece of evidence E ′. The hypothesis takes more risk in predict-

ing E than it takes in predicting E ′. Theory testing is a contrastive activity

and E brings out the contrast between H and ¬H to a stronger degree than

E ′. Therefore, it should confirm it to a higher degree, too, as witnessed by
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the following equations:

P (E|K) = P (E|H.K)P (H|K) + P (E|¬H.K)P (¬H|K)

P (E ′|K) = P (E ′|H.K)P (H|K) + P (E ′|¬H.K)P (¬H|K).

If the first addend on the right hand side is the same for both equations (which

is guaranteed by assumption), the condition P (E|K) < P (E ′|K) implies

that E must be less likely under ¬H than E ′ – P (E|¬H.K) < P (E ′|¬H.K).

Thus E has a higher contrastive power than E ′. Indeed, in famous cases of

confirmation in science the observation of an unexpected event often plays

a crucial role: Eddington’s unexpected verification of Einstein’s predictions

about the bending of starlight by the sun was salient evidence for the General

Theory of Relativity as opposed to Newtonian mechanics. Indeed, the virtue

of surprising evidence is vindicated by all measures of support on our list:

Fact 5.1 Assume that P (E|H.K) = P (E ′|H.K), P (E|K) < P (E ′|K), and

that both E and E ′ confirm H relative to K. For all presented measures

of confirmation c ∈ {d,r,l,k,s,c,z}, E confirms H to a higher degree than E ′

(relative to K).

Proof: trivial for all measures but s. For s, note that by Bayes’s theorem,

s(H,E,K) = P (H)

[
P (E|H.K)

P (E|K)
− 1− P (E|H.K)

1− P (E|K)

]
. (5.3)

For fixed P (E|H.K) = P (E ′|H.K), the term in the brackets in (5.3) is

monotonously decreasing in P (E|K). (Calculating the first derivative easily

proves that.) Therefore s(H,E,K) > s(H,E ′, K). �

The next problem – the problem of irrelevant conjunctions – will be more

measure-sensitive. Hypothetico-deductive confirmation has struggled with

irrelevant conjunctions – if a hypothesis H is confirmed, the conjunction of

H and an arbitrary hypothesis X with which H is consistent is confirmed,

too. Since X need not be relevant to the evidence – it can actually be

an arbitrary hypothesis –, this result is unbearable. So we demand that

a quantitative account of confirmation must solve or at least mitigate that

problem.

In a Bayesian framework, we obtain that, if E confirms H relative to

K, E does not necessarily confirm H.X relative to K, for an arbitrary X.

The conditions for Bayesian confirmation are P (H|E.K) > P (H|K) respec-

tively P (H.X|E.K) > P (H.X|K), and neither inequality implies the other
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one. For instance, E can be positively (probabilistically) relevant to H, but

negatively relevant to X, relative to K. Thus, the problem of irrelevant

conjunction does not arise in its classical form.

Still, Bayesians are not out of trouble. Assume that H deductively entails

E. In such a case H.X will entail E for an arbitrary X. This special version of

the problem of irrelevant conjunctions posed serious problems for a deductive

theory of qualitative confirmation (see chapter 2). Deductive confirmation

is a special case of Bayesian confirmation: From H.K |= E it follows that

P (E|H.K) = 1 which, by an application of Bayes’s theorem, leads to

P (H|E.K) =
P (H|K)P (E|H.K)

P (E|K)
=
P (H|K)

P (E|K)
> P (H|K)

for any non-trivial evidence. So evidence that is logically entailed by the

hypothesis always confirms it. Since logical entailment is preserved under

strengthening the premises it follows that

If H.K |= E then E confirms H.X in the Bayesian sense relative

to K for any X that is consistent with H.K.

Hence, the problem of irrelevant conjunctions persists in a Bayesian frame-

work, too – namely in the special case that the evidence is logically implied

by the hypothesis. This result can be extended, as Hawthorne and Fitelson

show in their 2004, namely to all conjuncts X that do not change the likeli-

hood of E under H.7 Hawthorne and Fitelson prove this for the measures d, l

and r, but actually, their observation can be generalized to a result that holds

for all Bayesian measures of confirmation that satisfy the minimal constraint

(5.1):

Proposition 5.1 Assume that E confirms H relative to K according to def-

inition 5.1 and that P (E|H.X.K) = P (E|H.K) for a sentence X consistent

with H.K. Then E confirms H.X, too (and hence, all proposed confirmation

measures give values greater than 0).

Proof: The crucial condition P (H|E.K) > P (H|K) is equivalent to P (E|H.K) >

P (E|K) as an application of Bayes’s theorem makes clear. Therefore, due

to P (E|H.X.K) = P (E|H.K) we can infer that P (E|H.X.K) > P (E|K)

so that E confirms H.X relative to K according to definition 5.1. Since all

7See also Fitelson 1999, 2002 for precursors.
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measures of support on our list satisfy (5.1), they yield confirmation values

greater than zero.�

This states the problem: the problem of irrelevant conjunctions persists

if tacking an irrelevant conjunct to the hypothesis does not change the like-

lihood of the evidence. Indeed, if

P (E|H.X.K) = P (E|H.K) (5.4)

this seems to be a typical case of a tacked hypothesis X which is irrelevant to

E. For instance, the likelihood of tossing ‘heads’ with a coin is not changed

by taking into account the additional information that all ravens are black.

Such a kind of additional information has no impact at all on the outcome of

the coin flip. Similarly for the converse – if additional information changes the

likelihood of the evidence, it cannot have been completely irrelevant.8 Cases

in which P (E|H.X.K) = P (E|H.K) are just the probabilistic version of

tacking an irrelevant conjunct X. Therefore, this situation is the probabilistic

counterpart of the classical problem of irrelevant conjunctions. Hence, the

Bayesian approach does not give a straightforward resolution of the problem,

contrary to what we might have hoped. True, the probabilistic concept of

confirmation is wider than the concept of qualitative confirmation, and tiny

probabilistic support already counts as confirming evidence. Therefore it is

not so disturbing that irrelevant conjunctions get confirmed – probabilistic

confirmation is more liberal than qualitative confirmation which focuses on

structural relationships between evidence and hypothesis. This observation

somehow mitigates the pull of the problem. Still, we would like to have a

result showing that irrelevant conjunctions satisfying (5.4) are confirmed to

a lower degree than the original hypothesis.

Hawthorne and Fitelson (2004) prove such a theorem for some measures

of confirmation: the degree of confirmation is lowered by tacking irrelevant

conjunctions that satisfy some minimal conditions. Specifically, they demon-

strate that effect for the difference measure d and the log-likelihood measure

l whereas the degree of support remains constant under the log-ratio-measure

r. I amend this result by noting that the degree of confirmation is lowered

by tacking irrelevant conjunctions if measured according to the other three

measures suggested (s, c and z).

8See Fitelson 2002.
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Proposition 5.2 Assume that E confirms H relative to K and P (E|H.X.K) =

P (E|H.K) for a sentence X where P (X|H.K) 6= 1. Then the degree of

confirmation E lends to H exceeds the degree of confirmation E lends to

H.X, for the confirmation measures d, l, s c, z. For instance, d(H,E,K) >

d(H.X,E,K). But for the log-ratio measure r, it holds that r(H,E,K) =

r(H.X,E,K).

Proof: For d, l and r see the proof of Theorem 2 in Fitelson and Hawthorne

(2004). Furthermore, it is easy to see that

c(H,E,K) = P (H|K)[P (E|H.K)/P (E|K)− P (E|K)].

This entails that

c(H.X,E,K) = P (H.X|K)[P (E|H.K)/P (E|K)− P (E|K)]

≤ P (H.X|K)[P (E|H.K)/P (E|K)− P (E|K)]

< c(H,E,K).

The proof for s directly follows from the proof for d, due to s(H,E,K) =

d(H,E,K)/P (¬E|K). For the proof for z, note that z(H,E,K) = d(H,E,K)/[1−
P (H|K)]. Then, the proof for z again relies on the proof for d:

z(H.X,E,K) =
d(H.X,E,K)

1− P (H.X|K)
<

d(H,E,K)

1− P (H|K)
= z(H,E,K).

�

Hence, most confirmation measures mitigate the paradox of irrelevant

conjunctions in so far as the degree of confirmation is lowered by tacking

irrelevant hypotheses where the ‘irrelevancy’ of the tacked hypotheses is ex-

plicated by means of constancy in the likelihood (see equation (5.4)). These

results thus provide an argument against the log-ratio measure r since the

problem of irrelevant conjunctions clearly persists for this measure: tacking

irrelevant conjunctions does not alter the degree of confirmation. According

to r, the observation of a black raven confirms the hypothesis that all ravens

are black and all doves are white to an equal degree as the original hypothesis

that all ravens are black. That is unacceptable.9 There are, however, also

some arguments for r, and before dismissing r once and for all, we should

9This property of r, often called ‘deductive insensitivity’, was already discovered by
Rosenkrantz (1981) and Gillies (1986).
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listen to them. The most ambitious and famous argument is due to Peter

Milne (1996). He sets up a list of desiderata for a measure of support and

demonstrates that r is the unique measure of support which satisfies them

all. Fortunately, we need not rehearse his argument in detail – instead we

merely note that it relies on the requirement that

ifP (E|H.K) = P (E|H ′.K) then c(H,E,K) = c(H ′, E,K) (5.5)

for a suitable measure of confirmation c. This constraint is, however, rather

strong and unmotivated, as Fitelson notes in his 2001a. Fitelson makes a

good case against Milne’s argument, but I think (5.5) can be rejected even

more directly, by recalling the problem of irrelevant conjunctions. In fact,

if H ′ is H plus an irrelevant conjunct (i.e. H ′ = H.X for an arbitrary X)

we would very much want (5.5) not to hold. (5.5) just states the deductive

insensitivity of a confirmation measure, and any such measure falls prey to

the problem of irrelevant conjunctions: the degree of confirmation does not

change when tacking an arbitrary X. But clearly, the degree of support

should decrease when arbitrary many irrelevant conjuncts are tacked to the

evidence. Hence, Milne’s argument does not rise a new point in favor of r –

one of its premises is unacceptable, as we have already seen. In particular,

none of the other measures of support satisfy (5.5) and are thus immune to

the problem of irrelevant conjunctions in its strongest form. Thus, r can be

ruled out and five measures (more precisely, five ordinal classes of measures

of support) stay in the game.

Next, we investigate the symmetry properties which the measures possess.

Although symmetry properties are certainly attractive from a mathematical

point of view, I do not want to postulate that a specific kind of symmetry has

to be satisfied by an adequate confirmation measure. Of course, symmetries

can be very valuable (as they often are in physics), contributing to the mathe-

matical tractability and beauty of the underlying theory. But violating one of

these ‘beautiful’ symmetries (e.g. in favor of ‘approximate symmetries’) does

not constitute a knockdown argument against a measure of support. I believe

it to be more fruitful to focus on vicious symmetries – symmetries which a

measure of inductive support should not exhibit under any circumstances.

Since it is much easier to argue on conceptual grounds for the inadequacy of

a symmetry property, such symmetries serve as a means of detecting inap-

propriate measures of support. In their 2002, Eells and Fitelson argue that

an adequate measure of support should not exhibit two particular symme-
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tries, perspicuously demonstrated in the special cases E |= H and H |= E.

The first symmetry is commutativity symmetry and asserts that the degree

of support E lends to H equals the degree of support H lends to E (both

relative to K). This can be stated thus for a confirmation measure c:

c(H,E,K) = c(E,H,K). (5.6)

Now, assume that a friend of yours is drawing cards from a standard 52-

cards deck and the hypothesis H asserts that the uppermost card is a king

of spades. Your friend draws that card and tells you that it is a black card.

That seems to support the hypothesis that the uppermost card is a king of

spades merely to a very moderate degree – there are many black cards in the

game. Now consider the opposite situation: we hypothesize that the card is a

black card and we observe that the card is a king of spades. This observation

conclusively confirms the hypothesis that the card is black! The evidence in

the latter case is much more informative than in the former case, giving deci-

sive information for judging the correctness of H. Therefore commutativity

symmetry is an undesirable property of a confirmation measure, so much

the more as similar examples can be construed. Apart from that, inductive

inference is often taken to generalize deductive inference and logical entail-

ment, and clearly, logical entailment is no symmetric relation (i.e. A |= B

does not imply B |= A). Thus, conceptual reasoning and practical examples

both suggest that confirmation is no symmetric notion. Hence, measures of

support that satisfy (5.6) are problematic.

Second, I would like to turn to evidence symmetry. This symmetry asserts

that if E confirms H to degree x (relative to K), ¬E disconfirms H to the

same degree:

c(H,E,K) = −c(H,¬E,K). (5.7)

Put verbally, the positive impact E exerts on H equals the negative impact

¬E would have had (if observed). Negating the evidence changes the alge-

braic sign of the degree of support. – However, this property is not desirable

either. Assume that the hypothesis that all ravens are black (H) is well-

confirmed in the absolute sense, by a plethora of observations of ravens and

non-ravens. Suppose that we observe a further object of which we only know

that it is no counterexample to the raven hypothesis. Call this piece of ev-

idence E. Since E rules out a further potential counterexample to H, this
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observation makes H more credible, if only to a minute degree. But what

would have happened if ¬E had been observed? We would have observed

a non-black raven, conclusively falsifying H, in spite of all the support that

previous observations have lent to H. It is clear that the amount of disconfir-

mation we get by observing ¬E greatly exceeds the minute support we get by

observing E.10 The rationale behind that judgment is not difficult: evidence

can be quite unspecific and uninformative (such as E in the above exam-

ple), and observing the negation of unspecific evidence amounts to observing

highly specific and informative evidence. Therefore no sensible measure of

support exhibits evidence symmetry.

How do the various measures of support fare with respect to the symmetry

constraints? The answers are easily calculated:

Proposition 5.3 (Eells and Fitelson 2002)

• Among the confirmation measures d, r, k, l, s, c and z, only c and r

satisfy commutativity symmetry (5.6).

• Among the aforementioned measures, only c and s satisfy evidence sym-

metry (5.7).

Proof: trivial.

Hence, Eells’s and Fitelson’s findings give us a good reason to reject

the measures c, s and r. Measures that satisfy (5.6) and/or (5.7) in all

conceivable circumstances are certainly no good measures of support since

the crucial asymmetries regarding the hypothesis/evidence relationship and

the specificity of the evidence are neglected. Proposition 5.3 thus confirms

that r is no adequate measure of support (see the problem of irrelevant

conjunctions) and besides, it gives us a knockdown argument against c and

s. It is also interesting to note that z does not only violate the problematic

symmetries, but that it is the only measure that satisfies all (and only those)

symmetries which are satisfied by deductive entailment (Theorem 2 in Crupi

et al. 2007, 241). For instance, if E confirms H to degree x, ¬H will confirm

¬E to degree x, too, analogous to the law of contraposition. This makes z

a natural candidate for an explication of inductive support in the tradition

of inductive logic: confirmation and support are considered to be extensions

and generalizations of deductive entailment. We keep this property in mind

10See section 3 in Eells and Fitelson 2002.
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and meanwhile, we proceed to the next criterion: the Laws of Likelihood and

their relation to the confirmation measures.

The Laws of Likelihood express sufficient conditions for the case that a

hypothesis H is better confirmed than a hypothesis H ′ by the very same

piece of evidence E. The strongest formulation of such a law can be found in

Hacking (1965, chapter V); but for our purposes it will be more convenient

to work with a paraphrase by Richard Royall (1997):

Strong Law of Likelihood (SLL): If an event E is more likely

under hypothesis H than under hypothesis H ′, then H is better

supported by E than H ′ (relative to K). In other words, for a

suitable measure of support c,

P (E|H.K) > P (E|H ′.K) ⇒ c(H,E,K) > c(H ′, E,K).

The idea of SLL can be expressed thus: the degree of support is a function of

the degree to which the observed evidence is rendered likely by the various

hypotheses at stake. The more the evidence is likely under a hypothesis, the

better it supports the hypothesis. The main advantage of the SLL is the

fact that these likelihoods are easy to compute and do usually not require

assignment of prior probabilities. That paves the way for an objective theory

of inductive inference. On the other hand, endorsing the Strong Law of

Likelihood is not unproblematic either: First, assume that the confirming

evidence E is slightly more probable under H than under H ′. Assume further

that H is a negligible hypothesis with a very low prior probability whereas

H ′ is one of our best candidates for the true hypothesis. Then, the observed

evidence will not significantly change our epistemic attitude towards H – we

might be slightly more inclined to take it seriously, but still, it will remain a

very improbable hypothesis. On the other hand, E could significantly favor

H ′ over its main rivals that are not confirmed by E. The evidence seems

to make a real epistemic difference for H ′, but not so much for H. This

speaks against the SLL. Second, we may encounter the case H ′ |= E |= H.

Here, H is logically entailed by the observed evidence, but the SLL asserts

that H ′ is always more strongly supported than H. This contradicts an

important intuition about confirmation: the inductive argument in favor of

H has maximal strength, but still, the degree of support will always be lower

than in the case of observing deductive predictions.11 Third and last, note the

11See Fitelson 2007.
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similarity to (5.5): If we make the plausible requirement that the measure

of support be a continuous function, then it follows from the SLL that if

P (E|H.K) = P (E|H ′.K), then c(H,E,K) = c(H ′, E,K).12 This was just

the content of (5.5). In other words, the SLL makes us believe that the degree

of support does not change by tacking irrelevant conjunctions, certainly an

undesirable side effect. In total, we have listed three severe drawbacks of the

SLL. Admittedly, one might object that the latter two arguments against

the SLL are misguided: the proponents of the SLL wanted to apply it to

the case of mutually exclusive hypotheses H and H ′. This rules out the

cases H ′ |= E |= H and H ′ = H.X. But first, this form of the SLL is never

explicitly articulated in the literature, second, it is a substantial weakening of

SLL, and third, this modification does nothing to address the first criticism.

For these reasons, the SLL is usually considered to be too strong a re-

quirement for measures of support. A less contentious requirement is the

so-called Weak Law of Likelihood, which putatively captures an essential

message of Bayesian confirmation theory:13

Weak Law of Likelihood (WLL): If P (E|H.K) > P (E|H ′.K)

and P (E|¬H.K) ≤ P (E|¬H ′.K), then H is better supported by

E than H ′, i.e. for a suitable measure of support c, c(H,E,K) <

c(H ′, E,K).

Why is the WLL so plausible? Joyce (2003) argues that the two assumptions

of the WLL capture that H has uniformly higher predictive value than H ′.

On the one hand, the actual evidence E is better predicted by H than by

H ′ because the likelihood of E is higher under H. On the other hand, if H

had not been true, the actual evidence would have been less likely than if H ′

had not been true. Those two properties establish the predictive superiority

of H. Put another way, E highlights the contrast between H and ¬H to

a stronger degree than the contrast between H ′ and ¬H ′, generalizing the

considerations with respect to surprising evidence made at the beginning of

that section. This can be represented by the inequalities

P (E|H.K) ≥ P (E|H ′.K) > P (E|¬H ′.K) ≥ P (E|¬H.K) (5.8)

12If E is more likely under H than under H ′, then the inequality c(H,E,K) ≥
c(H ′, E,K) holds. In the opposite case (E more likely under H ′ than under H) it is
reversed, hence for the case P (E|H.K) = P (E|H ′.K) the degree of support must be
equal.

13See Joyce 2003.
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which are valid in case of confirmation. I would like to illuminate the plau-

sibility of the WLL with an example that satisfies (5.8). We find out that

Tom has an academic degree (E). This is better evidence for the claim that

exactly one of his parents has an academic degree (H) than for the claim

that none of his parents has an academic degree (H ′): First, parents with

exactly one academic degree are more likely to have children who will obtain

academic degrees themselves than parents without any academic degrees,

due to the impact of social background on educational career. Second, if at

least one of Tom’s parents had an academic degree (= ¬H ′), it would be

more likely that Tom has an academic degree than if either both or none

of his parents had an academic degree (= ¬H). The reason is the same –

academic background in the family positively affects the educational career

of the children. For this reason, H is better supported than H ′.

Clearly, the above example and the informal motivation underlying the

WLL demonstrate that conformity to the WLL is no vicious property for

a measure of support. But the opposite direction is contentious: Should

measures of support be rejected because they fail to satisfy the WLL? I

believe that this tenet goes too far. The above example examines a case where

H and H ′ are mutually exclusive. In examples where H and H ′ overlap,

it is much more challenging to appreciate the intuitive force of the WLL

and to construct convincing examples. So we have to invoke the theoretical

justification of WLL presented before the inequalities in (5.8). But even this

is more difficult since H and H ′ share common content, making it harder

to argue for the intuitiveness of the WLL. So it can rightfully be asked

whether the theoretical argument in favor of WLL already presupposes a

certain understanding of confirmation, namely in the sense of highlighting a

contrast in the likelihoods (see again (5.8)). We have not yet presented any

arguments for such an understanding which is, for instance, captured in the

log-likelihood measure l. Certainly, there is some aesthetic and theoretical

appeal in endorsing the WLL for the case of overlapping hypotheses, too,

but it is much more difficult to argue for the WLL in this case because

our intuitions are quite blurred. The WLL is often endorsed as a general

rule because it can be so easily motivated for the case of mutually exclusive

hypotheses, and in most motivations of the WLL (e.g. Joyce 2003), such a

tacit assumption is made. For that case, the motivation is indeed clear-cut

and plausible. Therefore I believe, contra Fitelson (2007) and Joyce (2003),

that merely for mutually exclusive hypotheses, there is a compelling reason
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to accept the WLL as an adequacy criterion for measures of confirmation.

Hence we replace WLL by

Weak Law of Likelihood (WLL), exclusive version: If

P (E|H.K) > P (E|H ′.K) and P (E|¬H.K) ≤ P (E|¬H ′.K), and

|= ¬(H.H ′), then H is better supported by E than H ′, i.e. for a

suitable measure of support c, c(H,E,K) < c(H ′, E,K).

Luckily, for our purposes, the distinction between the two versions of WLL

is not significant: All remaining confirmation measures satisfy WLL as well

as the disjoint version of WLL.14 Hence, for practical reasons, i.e. for adjudi-

cating between the various measures of support it is not important whether

we endorse only the disjoint or also the more general version of the WLL.

Nearly all proposed measures satisfy the WLL. Only the log-ratio measure

r satisfies the more demanding Strong Law of Likelihood whereas the other

measures violate the SLL. This agrees with our former judgments regarding

the inadequacy of r as a measure of support.

Another criterion of adequacy that has been proposed in the literature is

the ability to deal with independent evidence. We often want to say that two

pieces of evidence that are ‘disconnected’ from each other do jointly support

a hypothesis more than each single piece does. This intuition is quite sound:

if the support inherent in E1 is not mediated via E2 and does not depend on

E2 and vice versa, then the positive impact of E1.E2 on the rational credence

in H exceeds the positive impact of a single piece of evidence. This line of

reasoning can be defended in a counterfactual way, too: If the hypothesis

were wrong, independent pieces of evidence would give us a better chance to

spot the errors in the hypothesis than just one piece of evidence. This is a

paradigm case for independent evidence or evidential diversity.

Nevertheless, it is a non-trivial task to give a satisfactory explication of

evidential diversity. In his 2001b, Branden Fitelson compares different at-

tempts to formalize this concept. Obviously, probabilistic independence is a

good candidate for capturing evidential diversity (and independent evidence).

Then, the question arises whether we should aim for conditional or uncon-

ditional independence. Like Fitelson, I opt for independence conditional on

the hypothesis H, but my reasons are somewhat different: First, note that

either H or ¬H will be the case. Naturally, the relevant form of indepen-

dence between two pieces of evidence is independence in both possible cases

14See Joyce 2003 and Fitelson 2007.
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– H and ¬H. In probabilistic notation, this amounts to

P (E1.E2|H.K) = P (E1|H.K)P (E2|H.K)

P (E1.E2|¬H.K) = P (E1|¬H.K)P (E2|¬H.K),
(5.9)

and that is indeed the kind of independence which we mean when we speak

about independent trials in testing statistical hypotheses. Assume, for in-

stance, that we draw balls with from an urn. Our background knowledge en-

sures that one of the two following situations holds: Either there is an equal

number of white and black balls in the urn (H1) or there are 75% white balls

and 25% black balls in the urn (H2). Then, an ‘independent and identically

distributed trial’ is defined as a trial where the result of the first draw has

no impact on the result of any other draw, given one of the statistical hy-

potheses (i.e. either H1 or H2). For instance, conditionalizing on E2 does not

alter the probability of E1 given H1 (P (E2|H1.K) = P (E2|H1.E1.K)), or in

more colloquial terms, H1 screens off E1 from E2.15 Therefore, we describe

evidential diversity in terms of probabilistic screening-off.

Now we can state the condition that if evidential diversity (=screening-

off) is warranted, then the degree of support lent by the two pieces of evidence

should exceed the degree of support lent by any single piece:

(D)16 If E1 and E2 individually confirm H relative to K and if

H screens off E1 from E2 (i.e. if (5.9) is satisfied) then for an

adequate measure of confirmation c,17

c(H,E1.E2, K) > c(H,E1, K). (5.10)

Actually, (D) makes quite mild claims: nothing is said about the degree to

which adding a piece of independent evidence raises the degree of confirma-

tion. It is just claimed that an additional piece of confirming evidence which

is in some sense independent of the original piece of evidence raises the degree

of support at all. Since this requirement is so mild, all reasonable measures

of confirmation should satisfy (D).

Unfortunately, I did not manage to find analytic results (i.e. proofs or

countermodels) for all six measures with respect to (D). Countermodels have

15This corresponds, by the way, to independence conditional on a common cause. Re-
ichenbach (1956) discusses such ‘conjunctive forks’ in detail.

16The condition (D) is the condition (D’) taken from Fitelson 2001a, footnote 67.
17Of course, due to the symmetry between E1 and E2, equation (5.10) entails that

c(H,E1.E2,K) > c(H,E2,K).
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been found for s and c (Fitelson 2001a), and it is obvious that l satisfies (D),

but for d, r and z, the issue is more complicated. Computer searches indicate

that they ‘probably’ satisfy (D), but no rigorous proofs have been found so

far. The following fact shows that the behavior of d, r and z with respect to

(D) is closely tied to each other.

Fact 5.2 The following four claims are equivalent:

• Confirmation measure d satisfies (D).

• Confirmation measure r satisfies (D).

• Confirmation measure z satisfies (D).

• If the presuppositions of (D) are satisfied, then P (H|E1.E2.K) > P (H|E1.K).

Proof: It is obvious that the first three conditions are all equivalent to the

fourth, e.g. for d, we have

d(H,E1.E2, K) > d(H,E1, K)

⇔ P (H|E1.E2.K)− P (H|K) > P (H|E1.K)− P (H|K).

Analogously for r and z.�

Remark: Amending the presuppositions of (D) with the requirement that

E1 and E2 be unconditionally independent of each other (P (E1.E2|K) =

P (E1|K)P (E2|K)) yields satisfaction of (D) for d, r and z.

Hence, either d, r and z all satisfy (D), or they all violate (D). Since no

countermodels have been found, even with the help of computer programs,

we conjecture that they all satisfy (D). At least, in all existing examples these

three measures recognize the confirmational power of independent evidence.

Now we can summarize our results and compare the various measures of

support. To this end, let us have a look at table 5.1. Only three measures

have survived the test of seven uncontentious adequacy constraints: d, l

(plus its ordinal equivalent k) and z. All other measures violate at least two

constraints and drop out of the picture. The next section examines the three

remaining measures in detail.
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Measure of Support — Ade-
quacy Condition

d r k, l s c z

Surprising Evidence X X X X X X

Irrelevant Conjunctions X × X X X X

Evidential Diversity (D) X? X? X × × X?

Commutative Symmetry (CS) X × X X × X

Evidence Symmetry (ES) X X X × × X

Strong Law of Likelihood
(SLL)

X × X X X X

Weak Law of Likelihood (ex-
clusive version)

X X X X X X

Table 5.1: An overview over the adequacy constraints on confirmation mea-
sures.

5.3 A Bayesian account of evidential favoring

Measuring inductive support on a Bayesian account has been criticized as

being too subjective for scientific purposes. Indeed, all three measures that

have survived the scrutiny of the previous section exhibit subjective elements.

Usually, the likelihoods of the evidence under the hypothesis P (E|H.K) are

‘objective’, e.g. H posits a specific statistical distribution and E describes

specific events which naturally have a definite probability given H. For ex-

ample, if H asserts that a specific coin is fair, then the probability of ob-

serving ‘heads’ in three independent and consecutive tosses of that coin (E)

is equal to 1/8. Examples of this kind abound in the statistical literature.

But the degree of support depends on P (H|K) or P (E|¬H.K), too, and

unless one is an objective Bayesian, those probabilities are (partially) open

to subjective choice, affecting the degree of support E lends to H. This is

an outspokenly subjective component in Bayesian confirmation theory and

most obvious for d and z since both measures are based on the difference

between the a-priori-credence and the a-posteriori-credence. But also for l,

the calculation of P (E|¬H.K) is far from trivial. Admittedly, if there are

only two hypotheses H1 and H2 which impose definite likelihoods on E, then

P (E|¬H1.K) = P (E|H2.K), and the problem vanishes because the latter

term is fixed. But often, there are more than two hypotheses at stake – e.g.

we have three hypotheses, H1, H2 and H3 – and then, the computation of
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P (E|¬H1.K) is much less straightforward:

P (E|¬H1.K) =
1

1− P (H1|K)
[P (E|H2.K)P (H2|K) + P (E|H3.K)P (H3|K)]

(5.11)

so that prior probabilities come in again. This is also called the problem of

the catch-alls : first, the distribution of the prior probabilities is required for

computing (5.11), second, H3 may be an unspecified ‘catch-all-hypothesis’,

summing up all situations where neither H1 nor H2 is the case. Then, even

the calculation of P (E|H3.K) may be difficult because no finite decomposi-

tion may exist.

Since measures of support depend on subjective input, Bayesian reasoning

is often believed to be too subjective for scientific purposes (Mayo 1996,

Royall 1997, 9-11). Instead, Richard Royall (1997) suggests to turn one’s

attention to relations of evidential favoring, i.e. to claims of the sort that

evidence E favors a certain hypothesis H1 over another one H2, relative

to given background assumptions K. To Royall’s mind, these relations are

crucial for inductive inference in science – theory testing is always contrastive,

and observations are never evidence for a hypothesis simpliciter, but only

compared to the available rivals. There are just no practical cases where

we test hypotheses without having at least some vague alternatives in mind.

Therefore Royall suggests the following criterion:

(LL): E favors H1 over H2 relative to K if and only if (‘⇔’)

P (E|H1.K) > P (E|H2.K), and the strength of evidence for H1

over H2 is measured by P (E|H1.K)/P (E|H2.K).18

Indeed, that criterion avoids the cumbersome computation of prior probabil-

ities and the catch-all problem: the strength of the evidence is merely the

likelihood ratio of the competing hypotheses. The reader will have noticed

the strong analogy to the SLL, but here we are concerned with relations of

favoring, not of evidential support. So the objections to the SLL do not

directly apply. For a Bayesian, however, it is natural to reduce relations of

evidential favoring to relations of inductive support: the hypothesis that is

better confirmed is favored over its rival, too.

(B): E favors H1 over H2 relative to K if and only if evidence E

confirms H1 better than H2 with respect to an adequate measure

of support c, i.e. c(H1, E,K) > c(H2, E,K).

18See Royall 1997, 2 and Hacking 1965, chapter V.
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Again, it can be objected that the theory of evidential favoring stated in (B)

is too subjective: reference to prior probabilities or catch-all likelihoods is

inevitable, given what we have found out about measure of support. But

(LL) is vulnerable to serious criticism, too: Royall’s (1997) ‘likelihoodist’

theory of evidential favoring (LL) can be represented as a special Bayesian

theory of favoring, using the log-ratio measure r!19 Thus, his criticism that a

Bayesian cannot quantify scientific evidence in an objective manner does not

seem to be justified because his own theory is just a variation of a Bayesian

account of evidential favoring.

It would be premature, though, to argue that r’s inadequacy as a mea-

sure of inductive support disqualifies it for determining relations of evidential

favoring. Recall the problem of irrelevant conjunctions. I do not find it odd

to say that E confirms H more than H.X (let X be an irrelevant conjunct)

while holding at the same time that E does not favor H over H.X (since H

does not predict E any better than H.X). It is not so clear that support is

so intimately tied to evidential favoring as (B) insinuates: inductive support

measures strength of an inductive argument or increase in credibility. But

if an improbable and a probable hypothesis confer the same likelihood on

the evidence, the evidence seems to be neutral between the two, although

it can have a different relevance for the two hypotheses, in the sense that

their probability is more or less significantly changed. Therefore (LL) can-

not be ruled out on the grounds that it relies on an inadequate measure of

inductive support.20 When we disentangle support and favoring, it is not

clear why the representation of (LL) as a Bayesian theory of favoring should

trouble a likelihoodist. She could just argue that favoring and support mea-

sure very different things and that a Bayesian representation of (LL) is just a

representation and essentially a mathematical gimmick. Furthermore, (LL)’s

simplicity and its independence of prior probabilities are very attractive fea-

tures. In a sequel paper, Royall (2000) presents many fruitful applications

of an (LL)-based approach to statistical evidence (more on this in chapter

7) and develops it towards a full theory of inductive reasoning. Thus, the

debate between (LL) and the various forms of (B) remains open. The charge

of subjectivity raised against Bayesian confirmation theory is certainly mis-

guided with respect to measures of support (most forms of Bayesianism are

intended as a subjective theory), but it is equally clear that subjectivity is

19This was noted by Branden Fitelson (2007).
20Fitelson seems to make such an argument against r in footnote 22 of his 2007.
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less desirable in relations of evidential favoring (e.g. when testing theories

against each other and quantifying evidence).

I do not want to decide the debate, but before concluding, I would like to

point out some features of the various versions of (B). First, we could use the

log-likelihood measure l which is also a viable measure of support. Assume

that there are three mutually exclusive hypotheses (H1, H2 and H3) and that

H1 and H2 are confirmed by E, but that P (E|H1.K) = P (E|H2.K). Then,

the circumstances when l favors H1 over H2 can be easily described:

l(H1, H2, E,K) =
logP (E|H1.K)− logP (E|¬H1.K)

logP (E|H2.K)− logP (E|¬H2.K)

> 1 iff P (E|¬H1.K) < P (E|¬H2.K).

Under the given assumptions it is not difficult to see that

l(H1, H2, E,K) > 1 ⇔ P (E|¬H1.K) < P (E|¬H2.K)

⇔ P (H1|K) > P (H2|K).

In other words, if two mutually exclusive hypotheses confirmed by E confer

equal likelihood on E, then l always favors the hypothesis which had the

higher prior probability beforehand. Again – it may be perfectly fine that a

probable hypothesis H1 is supported to a higher degree because the change

in the credence in H1 will be much more pronounced than the change in the

credence in H2.21 This does not imply, however, that the evidence favors H1

over H2 since both hypotheses are equally good predictors of the observed

event. The property of l to always favor the more probable hypothesis in the

case of equal likelihoods is somewhat awkward for a measure of evidential

favoring.

Finally, relations of evidential favoring are often blurred by the fact that

hypotheses share common content. In principle, we would like to have an

account of favoring that is purely contrastive: it would be nice to have a

measure that reduces evidential favoring relations to evidential favoring rela-

tions between the proper (non-intersecting) part of the hypotheses. Among

the measures which are still in the game, d is the only measure that satisfies

that constraint. First, we note that d is additive:

21This is an instance of the Matthew effect in Bayesian confirmation theory.
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Fact 5.3 Let H1 and H2 be mutually exclusive, i.e. H1 |= ¬H2. The differ-

ence measure d fulfils

d(H1 ∨H2, E,K) = d(H1, E,K) + d(H2, E,K). (5.12)

Proof: trivial.

Now, let H1 and H2 be two overlapping hypotheses. First we decom-

pose H1 and H2 suitably, then we use the additivity of d to ‘cut out’ the

overlapping part:

‘E d-favors H1 over H2 relative to K’

⇔ d(H1, E,K) > d(H2, E,K)

⇔ d(H1.¬H2, E,K) + d(H1.H2, E,K) > d(¬H1.H2, E,K) + d(H1.H2, E,K)

⇔ d(H1.¬H2, E,K) > d(¬H1.H2, E,K). (5.13)

The two hypotheses in the last line are evidently disjoint. The calculation

shows that, in order to evaluate favoring relations, it is sufficient to look at

the parts of H1 and H2 which exceed the mutual overlap. According to d, fa-

voring relations between disjoint hypotheses determine all favoring relations.

So hypothesis testing is again a contrastive activity: Only those parts of a

hypothesis that are incompatible with the rival hypothesis are compared to

each other. All favoring relations are reduced to favoring relations between

mutually exclusive hypotheses which is convenient both from a systematical

and a practical point of view. Since l and z are not additive in the sense of

(5.12), they do not yield a similar result.

In this brief section, I have argued that the problems of inductive sup-

port and evidential favoring are not co-extensional. In particular, not all

good measures of support are good measures of evidential favoring, and vice

versa. Indeed, the most attractive ‘likelihoodist’ account of evidential favor-

ing (LL) can also be described as a Bayesian account of favoring based on an

inadequate measure of support. I have tried to dispel the worries associated

with that representation and discussed some properties of Bayesian theories

of evidential favoring.
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5.4 Logicality and the problem of old evi-

dence

A principled decision in the discussion of measure of support concerns the

question how seriously one should take the analogy to logical entailment. Two

projects in finding a measure of support interfere: on the one hand, we aim at

a quantitative generalization of logical entailment in the sense of an inductive

logic, i.e. we would like to quantify the strength of the inductive argument E

gives for H. This is a structural approach to Bayesian confirmation theory.

On the other hand, we would like to find an explication of support and

confirmation that is suitable for application to scientific examples and that

bears some resemblance to our ordinary concept of confirmation.

The first project leads us to the logicality condition:

Logicality (L): For an adequate measure of confirmation c,

c(H,E,K) takes its maximal [minimal] value if (‘⇐’) E.K |= H

[E.K |= ¬H].22 23

In other words, logicality demands that a measure of inductive support gen-

eralizes deductive entailment. The idea behind (L) seems to be that a mea-

sure of support should quantify the power of an inductive argument, and

clearly, conclusive, deductive arguments (i.e. arguments that leave no room

for doubt) are the strongest conceivable arguments. Maximal support corre-

sponds to maximal strength of argument, hence c should be maximal in case

of E.K |= H.

Which measures of support satisfy (L)? If E.K entails H, we get

P (H|E.K) = 1 P (E|¬H.K) = 0.

Hence,

k(H,E,K) =
P (E | H.K)− P (E | ¬H.K)

P (E | H.K) + P (E | ¬H.K)
= 1 if E.K |= H. (5.14)

22See Fitelson 2001a, 2006.
23Notably, there is a related condition (Ex1) suggested by Crupi et al. (2007, 232):

measures of support have to respect the ordinal structure of logical entailment, i.e. if
E1.K |= H, then E1 confers greater support to H than any piece of evidence that does
not entail H (jointly with K), etc. This condition is neither necessary nor sufficient for
logicality – the task of finding counterexamples is left to the reader. But in practice, all
measures of confirmation that satisfy logicality satisfy (Ex1), and vice versa. Therefore
the discussion of (Ex1) boils down to a discussion of logicality.
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From (5.14), it is clear that k fulfils (L) since it can only take values between

−1 and 1. Due to the ordinal equivalence of k and l, the satisfaction of

(L) transfers to l, too. An identical result can be shown for z. However,

d does not fulfil (L): If P (H|K) is already quite large, d(H,E,K) will not

be maximal if E.K |= H. d(H,E,K) would be greater if H were a quite

improbable hypothesis significantly boosted, but not conclusively supported

by E.K.24 Fitelson judges the disagreement in favor of l. He writes:

“I take it as intuitively clear that the strength of the support E

provides for H in this case should not depend on how probable H

is [a priori, J.S.]. [...] After all, evidential support is supposed to

be a measure of how strong the evidential relationship between

E and H is, and deductive entailment is the strongest that such

a relationship can possibly get.”25

This passage again insinuates the ‘strength of inductive argument’ explication

for a measure of support. In particular, if E deductively entails H, the prior

probability of H should be irrelevant for the degree of evidential relevance.

So Fitelson’s quote provides an argument against d and in favor of l and z.

I believe, however, that both (L) and Fitelson’s argument against depen-

dence on prior probabilities can be doubted in a reasonable way. We are

interested in the evidential relevance of E for H. Hence, we would like to

know the effect of the evidence on H. But for an estimation of the effects

of E on H, it is very reasonable to look at the priors. This is unanimously

accepted – for instance, the WLL, defended by Fitelson himself, entails that,

if the likelihoods of the evidence are (roughly) equal under two competing

hypotheses, the prior probabilities will often decide which hypothesis is bet-

ter supported (see the previous section). So it is not clear why this kind of

reasoning should be suspended in the case of E.K |= H. Imagine an apt

chess player P who has a completely winning position. His confidence in the

hypothesis H : ‘I (P ) will win the game’ will be very close to 1.26 Then evi-

dence E1 occurs – the opponent resigns. E1 implies H (together with some

innocent background knowledge), so E1 confirms H maximally according to

(L). Nonetheless we are inclined to believe that P would have won the game

24Crupi et al. (2007) show that among an exhaustive set of candidate measures of
support, only l and z satisfy the closely related condition (Ex1), see the previous footnote.

25Fitelson 2001a, 42, original emphasis.
26It is not equal to 1 since the player knows that he might still blunder, suffer a heart

attack or fail to win the game for another unusual reason.
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anyway, so the evidence E1 was not very informative.27 We can pursue the

issue further: In his next game P has a dreadful position, so his confidence

in H is quite low. By a matter of accident, his opponent forgets to press the

clock after making his move and loses on time (E2) – P wins the game. Due

to the different point of departure, event E2 seems to be much more rele-

vant for the result of the game than event E1. For any practical purposes,

the information given by E2 is much more valuable and important than the

information given by E1 because our judgments drastically shift. Moreover,

ceteris paribus, surprising evidence should confirm to a stronger degree than

expected evidence, as pointed out previously. In the above example, E2 was

much more surprising than E1, and this should be mirrored in the measures of

confirmation. However, l and z are unable to distinguish both cases, whereas

d assigns different values to the first and the second case. Thus, d accounts

for the informational richness and surprise inherent in E2 when compared to

E1. Evidential relevance is not only logical strength of argument, but is also

mirrored in the changes of our epistemic attitudes towards the hypothesis.28

This has a more general implication: If we subscribe to Fitelson’s view,

we are drifting away from relative confirmation to absolute confirmation. Ac-

cording to l, z and ordinally equivalent measures, E is maximally relevant

evidence for H if and only if (‘⇔’) P (H|E.K) = 1. This is characteristic of

measures of absolute confirmation and not in the spirit of relative confirma-

tion. In particular, the value of P (H|K) (e.g. whether it is close to 0 or 1)

does not matter at all. However, for d, neither direction of the above equiv-

alence holds. These points speak in favor of d and against its competitors

l and z. Logicality (L) presupposes the very claim that is at stake – that

degree of support is a quantitative generalization of deductive strength of

argument to inductive arguments.

The difference between the two views of relative confirmation – strength

of inductive argument and increase in credibility – is also crucial in the dis-

cussion of a very longstanding problem of Bayesian confirmation theory: the

problem of old evidence. The problem itself is very venerable, but the de-

bate between various resolution proposals has been blurred by the lack of

distinction between these two senses of confirmation which is incorporated

27In identifying a-posteriori plausibility and informativeness as confirmation-conducive
factors, Huber (2005) makes a similar point in different words.

28Of course, I do not doubt that E confirms H if E entails H. I only doubt that this is
a sufficient criterion for confirmation to a maximal degree.



138 5.4. Logicality and the problem of old evidence

in the measure d on the one side and the measures l and z on the other side.

But what is the problem itself? Traditionally, the context of discovery of

Einstein’s General Theory of Relativity (GTR) is used to explain it. In the

nineteenth century, it was noticed that the perihelion of the planet Mercury

was advancing, contrary to the model of Newtonian mechanics whose predic-

tions could not explain the entire precession effect. People tried to explain

the perihelion advance by the motion of the other planets, but those attempts

were not successful. Therefore astronomers and physicists were continually

worrying about Mercury’s anomalous perihelion precession which was much

larger than what experimental error could account for.29 For instance, the

French mathematician Urbain Le Verrier postulated a further, undiscovered

planet named ‘Vulcan’ inside the Mercury orbit. Others ascribed the ad-

vance to a slight oblateness of the sun. Such ad hoc hypotheses failed to gain

empirical corroboration and were eventually rejected. In the early twentieth

century, Albert Einstein tried hard to find a theory that was compatible with

the Mercury’s anomalous perihelion advance. In November 1915, he wrote

down the final version of the General Theory of Relativity which was able to

explain the perihelion advance by taking into account the curvature of space-

time. It was generally appreciated that the theory was able to resolve this

longstanding riddle of celestial mechanics. Earman (1992, 119) motivates the

significance of the old evidence problem by claiming that physicists assigned

a higher confirmatory value to the perihelion advance than to other classical

tests of GTR – the bending of light (demonstrated by Eddington in 1919) and

the gravitational redshift (proven in the Pound-Rebka experiment in 1959).

This is, however, a disputable claim, e.g. Wiechert (1920) outrightly claims

the converse.30

Be this as it may, Bayesians struggle with modeling old evidence. The

Mercury perihelion advance (E) was ‘old news’ at the time GTR was formu-

lated, i.e. it was a part of the available background knowledge: P (E|K) = 1.

Thus, E could not confirm GTR according to Bayesian conditionalization.31

29The difference between the predictions and the actual advance was about 43 seconds
of arc per century.

30“Die Sachlage für die Relativitätstheorie ist hier [bei der 1919 nachgewiesenen
Lichtablenkung] noch um vieles günstiger als bei der Perihelbewegung des Merkur, welche
lange bekannt war und für welche vielfach Erklärungen gegeben waren.” (Wiechert 1920,
301)

31Note that the problem would not vanish but only be slightly mitigated if E had been
known with ‘approximate certainty’, e.g. P (E|K) = 0.9999.
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The problem may actually be relabeled as the ‘problem of introducing new

theories’ since the fact that E was observed before GTR was formulated was

the cause of so many Bayesian headaches. In a similar vein, we can also ask

whether hypotheses are confirmed by data they were constructed to explain

– Einstein definitely aimed at a theory that could account for the Mercury

perihelion.

The Bayesian’s problem seems to be that in principle, all present, past and

future theories are included in her partition of possible theories and hypothe-

ses. In an idealized Bayesian picture, all those theories have been formulated

at the beginning of time and the rational degrees of belief which we assign to

them are simultaneously updated when new information is coming in. But

clearly, this is not the way science works.

Garber (1983), Jeffrey (1983) and Niiniluoto (1983) want to dissolve the

dilemma by means of relaxing the unrealistic condition that Bayesian agents

are logically omniscient. They would like to model the learning of logical

truths. To motivate their approach, note that the old evidence problem

occurred because at the time the perihelion advance E was discovered, GTR

was not yet formulated and thus not present in the agents’ belief states.

Therefore GTR could not be confirmed by E before E became ‘old evidence’.

Garber, Jeffrey and Niiniluoto make the following diagnosis: It was not the

formulation of GTR that led to a confirmation of GTR by E – rather it was

Einstein’s discovery that GTR entailed E which spoke so much in favor of

GTR. By allowing for the learning of logical truths and relaxing the condition

of logical omniscience that is imposed on an ideal Bayesian agent, Garber,

Jeffrey and Niniiluoto purport to dissolve the problem of old evidence. To this

end, they enrich the object language by sentences of the form H ` E which

are assigned degrees of belief between zero and one, just as all other sentences.

This provides a framework for updating one’s belief on such sentences. In

particular, it may happen that

P (H|(H ` E).E.K) > P (H|E.K). (5.15)

Thereby the Garber/Jeffrey/Niiniluoto approach is able to model that the

confidence in GTR was substantially raised by the discovery that it explained

the Mercury perihelion advance, although the perihelion data themselves

were old news (see equation 5.15). We then see how the introduction of GTR

and the discovery that GTR ` E raised the credibility of GTR and confirmed

it in the Bayesian sense. But it can rightfully be asked which question was
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actually answered by their approach. One question was whether Mercury’s

perihelion data confirmed GTR in 1915, given Einstein’s background knowl-

edge. This seems to be a question about the structural relationship between

E and GTR. Garber, Jeffrey and Niiniluoto instead answer the question

whether learning the logical truth GTR ` E increased Einstein’s confidence

in GTR. These questions are, however, not equivalent, as the preceding dis-

cussion of logicality makes clear. Modern physics textbooks accompany the

introduction of GTR with the derivation that GTR explained the Mercury

perihelion. For contemporary physics students who learn GTR, there is no

time point when P (GTR ` E|K) < 1, but still they want to say that E

confirmed GTR.32 The Garber/Jeffrey/Niiniluoto approach captures the ‘in-

crease in degree of belief’ rationale of Bayesian confirmation theory, but it

does not explicate the structural relation of inductive support between GTR

and E. This is the same discussion we already encountered when discussing

logicality, and it can be extended to a very principled criticism of Bayesian

confirmation theory, raised by Clark Glymour:

“[...] that relation [of evidential relevance, J.S.] depends some-

how on structural, objective features connecting statements of

evidence and statements of theory. [...] There must be relations

between evidence and hypotheses that are important to scientific

argument and to confirmation but to which the Bayesian scheme

has not yet penetrated.”33

We have already made the acquaintance of Glymour’s own answer: he aban-

dons probabilistic theories in favor of the qualitative bootstrap approach

which is, to his mind, able to capture the logic of scientific confirmation.34

But I do not think that Glymour’s conclusion is inevitable. To see this, I

would like to have a look at another proposal to resolve the problem.

Howson and Urbach (1993) suggest to modify the background knowledge

on which we conditionalize: instead of conditioning on the totality of the

background knowledge at the time GTR was introduced, we should omit the

old evidence E (i.e. the perihelion data) from the background knowledge.

Then we can measure the support for GTR by “the extent to which the ad-

dition of E to the remainder of what you currently take for granted, would

32See Earman 1992, 130.
33Glymour 1980a, 93.
34See chapter 3 for discussion.
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cause a change in your degree of belief in [GTR].”35 So instead of measuring

a change in our actual belief state, we measure a change in a counterfac-

tual belief state where the old evidence and all other pieces of confirming

or disconfirming evidence are not yet known. Instead of the background

assumptions K we have to work with K − {E}.
This kind of resolution has attracted much criticism. Replacing K by

K − {E} sounds easy, but in fact it is highly problematic how to construct

such a consistent and realistic belief function that eliminates E. What if

there are logical dependencies between E and other parts of K? Is E really

separable from K? What about the description of the experimental setup

used to generate E? The need to eliminate E (and all data that are closely

related to E) from the background knowledge conflicts with enormous prac-

tical difficulties:

“We cannot merely throw out E and whatever entails E out of

the body of accepted beliefs; we need some rule of determining a

counterfactual degree of belief in E.”36

Indeed, it is unclear how such a rule could ever be extracted from practice.

This is not surprising: such a rule would have to elicit the likelihoods of E

under the competing hypotheses as well as the priors of the hypotheses in

the counterfactual belief state. This objection is sound and shows that much

work has yet to be done in order to cope with the problem of old evidence.

But this does not entail that the idea to work with counterfactual degrees of

belief is entirely hopeless. Assume for reasons of simplicity that we have only

two competing hypotheses, H and ¬H. Let the likelihoods of the evidence un-

der the competing hypotheses be objectively determined probabilities (which

is often plausible in the case of statistical hypotheses, see chapter 4). Then

likelihood-based measures as l(H,E,K) = log[P (E|H.K)/P (E|¬H.K)] are

able to measure the support E lends to H without taking recourse to the fact

that E was in some sense old evidence. True, we have to eliminate E from

the background knowledge in order to avoid trivialization, but sometimes,

this may work. In many cases, e.g. when E is entailed by the hypothesis

or when H and ¬H are statistical hypotheses assigning definite probability

values to P (E|H.K) and P (E|¬H.K), such a calculation will be straightfor-

ward. For other measures, this need not be the case, e.g. conducting such a

35Howson and Urbach 1993, 271, notation of symbols changed.
36Glymour 1980a, 87.
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procedure with the difference measure d(H,E,K) = P (H|E.K) − P (H|K)

would require a cumbersome elicitation of prior probabilities (similar for z).

Hence, I recommend a double-tracked Bayesian strategy, corresponding

to the ambiguity of Bayesian confirmation and the different Bayesian explica-

tions of degree of support which also create different versions of the problem

of old evidence. If we understand support as increase in credibility (in the

sense of d or related measures as r), the problem can be tackled by means of

the Garber/Jeffrey/Niiniluoto route and the explicit incorporation of logical

learning. This strategy is misguided, however, if confirmation is identified

with the strength of an inductive argument (quite similar to qualitative con-

firmation, by the way). Here, the Howson/Urbach approach to work with

counterfactual belief function may work, and deviating from Howson and

Urbach, I believe that measures as l are best suited for this task. Thus, the

criticism of Bayesian solutions to the problem of old evidence and Bayesian-

ism in general is not always fair because it is not always clear which kind of

inductive support is the target of the problem. Therefore, all answers can

only be partially successful. Surely, the present accounts of the problem are

far from being complete, and their empirical success is uncertain. No sin-

gle approach can solve all aspects of the old evidence problem, but several

approaches can tackle different varieties of the problem.

An interesting variation of the problem of old evidence is discussed in

Fitelson (2001a, 2001b). Here, the question is discussed in how far knowing

previously observed evidence affects the degree of support inherent in later

evidence. We deal with the following model which is encapsulated in our

background knowledge K:

”An urn has been selected at random from a collection of urns.

Each urn contains some balls. In some of the urns the proportion

of white balls to other balls is x and in all other urns the propor-

tion of the white balls is y, 0 < x, y < 1. The proportion of urns

of the first type is z, 0 < z < 1. Balls are to be drawn randomly

from the selected urn, with replacement.”37

Now, select an urn U and let H be the hypothesis that the proportion of

white balls in U is x. Let Wi state that the i-th draw from U is a white ball.

Then, Fitelson proposes the following condition:

37Fitelson 2001b, 128-29.
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Urn Condition (UC): For all adequate measures of confirmation

c and all urn models, regardless of the values of x, y and z:

c(H,W1, K.W2) = c(H,W1, K)

c(H,W2, K.W1) = c(H,W2, K).
(5.16)

We realize that l satisfies (5.16) whereas d and z violate (5.16). – Accepting

(UC) amounts to saying that the (known) result of W1 does not influence

the evidential relevance of W2 for H – and vice versa. We obtain the same

evidential relevance like in a situation where the result ofW1 is indeterminate.

The idea is that the single draws are independent of each other – no result

of a draw has an impact on the evidential relevance relation between H and

the result of another draw. More generally, H screens off W1 and W2 relative

to K, so knowing one of the results should not affect the evidential impact

of the other result [c(H,W2, K.W1) = c(H,W2, K)]. Fitelson thus sharpens

(UC) into the following condition

Screening-Off Condition (SC): If c is an adequate measures of

confirmation and H screens off E1 from E2, then

c(H,E1, K.E2) = c(H,E1, K)

c(H,E2, K.E1) = c(H,E2, K).38
(5.17)

Now, let us come back to the urn model. Before conducting the actual

experiment, assume that a considerable number of balls has already been

drawn from the urn, all of them being white. Recall that H was the hypoth-

esis that the proportion of white balls in the urn is equal to x and assume

furthermore that x > y. Then we draw three white balls out of the urn (E).

Naturally we hold that E, given that the first balls were all white, will not

confirm H to the same degree as in a situation where no information about

other draws was available. If we know that the first N balls are white, we

assign H such a high credibility that further confirmation – in the sense of

increase in credibility – will be negligible. Three balls more do not seem to

make such a huge difference. However, this conflicts with the (SC)-intuition

that each draw of a white ball bears the same structural relation to H and

should have the same confirming power. Actually, we have discovered a sister

problem of the old evidence problem – the problem of probable hypotheses.39

39Christensen 1999, 448-49.
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If H is already very likely, there is little room for further support in the sense

of increase in credibility. Again, the fundamental ambiguity of confirmation

and support becomes evident: On the one hand, there is the reading of con-

firmation as increase in credibility, on the other hand, there is the reading

of confirmation as the strength of an inductive argument. The dissent on

(SC) and (UC) exemplifies this ambiguity again. It seems to me that both

readings have to be preserved: Certainly, structural, belief-state-independent

relations of evidential support are important for science, as argued by Gly-

mour. This corresponds to the intuition behind (SC), too, and the idea that

confirmation generalizes logical entailment. On the other hand, that reading

does no longer measure the evidential relevance of E – the impact which the

evidence exerts on the epistemic status of the hypothesis.

5.5 Summary

This long chapter has presented the main idea of Bayesian confirmation –

increase in degree of belief – and discussed various measures of support. A

set of mild adequacy rules out half of our proposed measures (various other

measures that were not discussed here also fail to satisfy those conditions).

The remaining measures mitigate the problem of irrelevant conjunctions,

account for the power of surprising evidence and evidential diversity and do

not exhibit vicious symmetry properties. Furthermore they satisfy the WLL,

vindicating the significance of successful prediction for inductive support.

At the end of the day, the difference measure d, the log-likelihood measure

l (plus its ordinal equivalent, the Kemeny-Oppenheim measure) and Crupi’s

and Tentori’s measure z are left in the basket. We have elaborated that the

difference measure d, although presently not fashionable, can be successfully

defended against attempts to prove its inferiority, e.g. in a Bayesian the-

ory of evidential favoring. The discussion of logicality (L) has revealed that

the three remaining measures of confirmation explicate at least two differ-

ent senses of inductive support: evidential relevance for the hypothesis and

increase in credibility (d) and strength of an inductive argument and gener-

alization of deductive entailment (l, z). Among the latter measures, l is often

easier to calculate, but z has the advantage of being the only measure of sup-

port whose symmetry properties mirror the symmetry properties of deductive

entailment. Ultimately, the context of application decides whether d, l or z

should be preferred. This does not transfer to other measures of support,
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though, since their drawbacks (e.g. certain vicious symmetry properties) are

brought to bear in any context of application.

The above distinction allows us to see the problem of old evidence in

greater clarity, too, and to be more charitable towards the attempted so-

lutions. Moreover, we note that evidential favoring and degree of support

can fall apart and that measures of evidential favoring need not be reduced

to Bayesian measures of support. In particular, we have defended the most

attractive, widespread and fruitful theory of evidential favoring – Richard

Royall’s likelihoodism – against Bayesian attacks presupposing that eviden-

tial favoring reduces to degree of support. In the remainder of the book, we

will contrast the Bayesian approach to other schools of statistical inference.
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Chapter 6

Statistical Hypothesis Testing

6.1 Statistics and the sciences

The last chapters have represented confirmation and support as changes in

rational credences, building on a probabilistic calculus for those credences. In

particular, we have compared various measures of support to each other. So

far, everything was applicable not only to statistical, but also to deterministic

theories and hypotheses. That was quite reasonable – many historical cases

of confirmation in science are located in a deterministic framework (as the

GTR/Mercury example discussed in the last chapter), and a confirmation

theory should cover those cases, too. But now, I would like to focus on con-

firmation in statistics – the science pertaining to the collection, analysis and

interpretation of data and the probabilistic explanation of observed events.

To fully understand the significance of statistical reasoning in confirmation

theory, some historical remarks may help.

The application of probabilistic models and statistical regularities emerged

in the natural sciences, as witnessed by famous applications like Gregor

Mendel’s laws of inheritance. Pioneer statisticians were often based in the

natural sciences, e.g. Ronald A. Fisher who expanded and refined Mendel’s

theory was not only an important mathematician, but also a leading ge-

neticist. The benefits of using probabilistic models in quantifying risk and

uncertainty were soon acknowledged, and nowadays, statistical reasoning is

the most everyday activity in the natural sciences. Many physical processes

are so complex and hard to understand that non-probabilistic models fail –

the related disciplines of geophysics, meteorology and climate science provide

the standard examples. Only models that explicitly account for the uncer-
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tainty about the underlying physical processes are descriptively adequate. In

any case, it is hard to imagine modern science without statistical methods

– even quite remote and formerly non-mathematical disciplines as ecology

have nowadays been invaded by statistical methods.1 Probabilistic models

often have instrumental value – they are not adopted because the stochas-

tic regularities are believed to give a realistic picture of the world or to be

fundamental laws of nature. Instead, they are adopted simply because they

make the best predictions. Thus, we are not interested in the matter that

is uncertain (e.g. meteorological processes), but in modeling uncertainty and

making predictions on the basis of uncertainty models.2

It took some more time to bring formal methods to the social sciences

which have recently undergone a strong formalization and mathematization.

At the beginning of the 20th century, the use of mathematical methods in

the social sciences was still in its early stages. The positivist program and

the rise of falsificationist methodology in philosophy of science had, however,

a deep impact on the social sciences. Abstract theorizing was more and more

replaced by experiment- and observation-based reasoning that focused on the

observability of the relevant quantities. The behaviorist program in psychol-

ogy gives a salient example. This development laid the foundations for the

rise of mathematical methods. In particular, statistical analysis of observed

data and mathematical modeling came into focus. In the middle of the 20th

century, the economist L. J. Savage even came up with an axiomatic theory

of rational behavior, the famous expected utility theory, and at a similar

time, John von Neumann developed the foundations of game theory which

is now a major branch of economics. Such highly abstract and mathemati-

cally non-trivial theories yielded a number of rewarding results and opened

the way to fruitful research programs. Nowadays, mathematical methods are

nearly omnipresent in the social sciences, and even applied sciences (such as

business studies) use mathematical tools as decision trees.

The success story of mathematics in the social sciences would be incom-

plete, however, without explicit consideration of the achievements of statis-

tics. Statistics emerged both from mathematics and the empirical sciences

at the beginning of the 20th century and proved to be an indispensable tool

in data analysis and inference from data to general conclusions. Statistical

methods are used to discover causal dependencies and to build and to assess

1See the contributions in Taper and Lele 2004.
2See Lindley 2000.
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mathematical models of real-world processes – take, for instance, goodness-

of-fit tests as the famous χ2-test or contrived model selection procedures.

Econometrics perspicuously illuminates the coherence of mathematical mod-

eling and statistical data analysis, e.g. in the analysis of time series. Most sta-

tistical analysis is performed in the framework of Neyman-Pearson statistics,

i.e. statistical inference builds on the reliability of the employed procedures

and prohibits the use of subjective probabilities which are prevalent in the

alternative Bayesian statistics. We will discuss and contrast both approaches

in this chapter.

Statistical methods are, however, easily misunderstood, and many scien-

tists who lack the necessary mathematical sophistication do not know how

to interpret them properly. For instance, the use of p-values in the social sci-

ences is such a major source of confusion so much the more as many journals

demand that p-values accompany experimental reports. Solving this prob-

lem and improving the statistical education of social scientists is actually a

major political issue in the social sciences which is reflected in the increas-

ing interest in mathematical training among empirical scientists. Therefore,

scrutinizing the foundations of statistics and the proper way to confirm sci-

entific hypotheses is an absolutely essential issue for scientific methodology.

This book can, of course, only discuss selected topics, but among them, there

will be central topics as the dissent between the various schools of statistical

inference, the role of p-values, desiderata for a measure of statistical evidence

and the role of experimental design. In the next two chapters, we present

the state of art of the debate and argue that Bayesian reasoning provides a

unified approach to mathematical modeling and statistical data analysis and

is therefore at least a serious alternative to the prevalent Neyman-Pearson

school of statistical inference.

6.2 Foundations of Bayesian statistics

The past chapters have introduced the subjective probability interpretation

and the Bayesian theory of inductive inference. Naturally, we would like to

know how this theory extends to statistical applications and real scientific

hypotheses, and whether Bayesian confirmation theory performs well when

applied to statistical hypotheses. First, we note that Bayesian confirmation

theory can directly be extended to a theory of statistical inference. Bayesian

conditionalizers compute posterior probabilities from prior probabilities, akin
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to the scheme of a probabilistic logic:

P (H) = α1, P (E) = α2, P (E|H) = α3 |= P (H|E) =
α1α3

α2

.

The same procedure can be applied in a statistical framework where we have

a parameter of interest (say, ϑ) whose true value we do not know and ran-

dom data which depend on ϑ. Then, the competing hypotheses correspond

to different values of ϑ and we can assign a prior distribution to ϑ, repre-

senting our prior credence in a particular value of ϑ. For instance, ϑ could

be distributed according to the standard normal distribution (ϑ ∼ N(0, 1))

or according to a uniform distribution on a specific interval (ϑ ∼ U [0, 1]),

etc. Then, those prior probabilities are updated on the observed data x to

posterior probabilities by means of Bayes’s theorem. Assume that ϑ ∈ R
(one of the most frequent cases) and that we would like to compute the pos-

terior probability that ϑ ∈ I, I ⊂ R. The prior distribution of ϑ is given by

the probability density φ(ϑ) and the likelihood of x given ϑ is described by

ρ(ϑ, x).3 Then, the posterior probability of ϑ ∈ I is equal to

P (ϑ ∈ I | x) =
P (ϑ ∈ I)P (x|ϑ ∈ I)

P (x)

=

∫
I

dϑφ(ϑ)

∫
I
dϑφ(ϑ)ρ(ϑ, x)∫
I
dϑφ(ϑ)

1∫
R dϑφ(ϑ)ρ(ϑ, x)

=

∫
I
dϑφ(ϑ)ρ(ϑ, x)∫

R dϑφ(ϑ)ρ(ϑ, x)
.

which can be computed from the probability densities. The main prob-

lem of Bayesian inference is the subjective component inherent in the prior

probability density φ(ϑ) – something that is often deemed inadequate for

an ‘objective’ activity as scientific research. There are some results that

try to mitigate the impact of subjective judgments, namely the often-cited

Gaifman-Snir theorem. Some technical presuppositions set aside, Gaifman

and Snir (1982) have shown that the rational credences of two agents who

assign credence 0 and 1 to the same events (called equally dogmatic agents),

will merge and eventually converge against each other as more and more

evidence comes in.4 This results gives a prima facie answer to the charge

3Assuming the existence of such densities facilitates the calculations and can often be
justified by scientific background theory (Hacking 1965).

4See Gaifman and Snir 1982, 208 and Earman 1992, 145-147.
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of subjectivity: yes, Bayesian inference is subjective, but as more and more

data come in, the opinions of two agents will eventually converge and the ini-

tial differences will become negligible. Having a huge set of observations and

data compensates for diverging initial opinions. Although the Gaifman-Snir

theorem is a major theoretical achievement, their result is not as powerful

as it seems at first sight. First, the convergence result is not uniform over

the agents’ prior probabilities – there is no fixed time point at which the

judgments of all equally dogmatic agents with arbitrary prior opinions will

have merged. This observation restricts the scope of the theorem. Second,

there is in general no bound for the rate of convergence. Sometimes, the

Central Limit Theorem (CLT) can do the job and describe the distribu-

tion of the (normalized) average of independent and identically distributed

random variables. In particular, that distribution becomes more and more

skewed around the mean of the random variables, with convergence rate
√
n.

But often, we do not have such results at hand, and the Gaifman-Snir does

not provide them either. Third and last, scientists often ask the question

whether a particular observation (say, Eddington’s observations of the 1919

eclipse) were evidence for a specific theory (say, GTR). A Bayesian theory

of inductive inference has to address this question independent of any con-

siderations about the long run because such long-run observations are not

made. Here, the presence of the subjective elements is not at all mitigated

by merger-of-opinion results for a long series of observations.

Thus, Bayesian attempts to solve the subjectivity problem have to take

recourse to objective Bayesianism or at least to some convention for choos-

ing prior probabilities. This endeavor has, however, a long history of dissent

among statisticians. It goes beyond the scope of this work to discuss all

proposals that have been made, from Haldane priors (Jaynes 1968) over con-

jugate priors (i.e. priors which are, given specific likelihood functions, in

the same family as the posterior distribution) to predictive priors which are

gained from training from the data, and so on. Some ideas to represent infor-

mationless or ‘ignorant’ prior distributions deserve, however, special mention.

To bound the effect of the subjective choice of a prior distribution, Bernardo

(1979) has suggested to choose the prior distribution that maximizes the ex-

pected Kullback-Leibler divergence between prior and posterior distribution,

relative to the data. The rational behind this idea is quite the opposite of

cross-entropy updating: whereas cross-entropy updating selects the posterior

distribution which is closest to the prior distribution, given the information,
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Bernardo’s reference priors maximize that distance (and thus assign maximal

informational content to the observed data). Jeffreys (1961) has suggested a

similarly reasonable criterion, namely to select a prior distribution that is in-

variant under reparametrization of the parameter space, thus replying to the

Bertrand-style paradoxes which we have encountered in chapter 4. All those

suggestions are free of subjective elements and constitute objective theories

of inductive inference. But the gain in objectivity has its drawbacks, too,

since it becomes much harder to incorporate subjective expertise into the

statistical inference. This flexibility is one of the attractive features of the

personalist version of Bayesianism, and it gets lost when using objective prior

distributions. Only objective Bayesianism seems to circumvent the problems

of ‘objective priors’ because cross-entropy updating (which is characteristic

of objective Bayesianism) also allows for explicit constraints which may be

given by background knowledge. However, the general problem of repre-

senting ignorance and uncertainty is not solved either. Seidenfeld (1979b)

gives an instructive example where Bayesian conditionalization is compared

to cross-entropy updating in the presence of a nuisance parameter whose

value is not known. More precisely, we are interested in the mean of a distri-

bution µ, the variance being the unknown nuisance parameter. Starting with

an (improper) uniform prior distribution, cross-entropy updating (see chap-

ter 4) leads, after a series of i.i.d. trials, to a normal distribution for µ. By

contrast, Bayesian conditionalizers who are, by construction of the example,

supplied with more information, instead end up with Student’s t-distribution

as the posterior distribution. This is quite sensible as the t-distribution is

closely related to the distribution of the mean µ when the variance is un-

known. Moreover, by adding more information (e.g. the true value of the

nuisance parameter), the t-distribution will be transformed into a normal

distribution for µ, too. Those technicalities set aside, Seidenfeld’s point can

be stated thus: cross-entropy updating ranks “the normal and t-distributions

in reverse order of informational content as they would be ranked by con-

ditionalization.”5 The objective Bayesian neglects the interaction between

two kinds of uncertainty: uncertainty about the parameter of interest and

uncertainty about the nuisance parameter. The marginal distribution for the

parameter of interest is actually not independent of the nuisance parameter,

but cross-entropy updating treats it as if that were the case. Therefore, cross-

5Seidenfeld 1979b, 433.
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entropy updating results in a “probability function that represents a state

richer in empirical content than the belief state targeted for representation.”6

At least when nuisance parameters are involved, it seems to be difficult to

represent uncertainty and ignorance by means of probability distributions,

posing serious problems for objective Bayesians.

Despite these methodological concerns and the charge of subjectivity,

Bayesian inference has proven to be incredibly fruitful in recent statistical

research; and the intuitive idea behind it makes it easily understandable, ap-

plicable and compensates for the lack of complete objectivity. I would now

like to pin down some foundational principles of statistical inference that are

characteristic of, but more general than the Bayesian paradigm of statistical

inference and that were developed by Allan Birnbaum (1962, 1972).7 Birn-

baum aims at a characterization of the evidential impact that an observation

x generated by experiment E exerts on the parameter of interest ϑ. Such

an ‘experiment’ corresponds, for instance, to a special experimental setup.

Birnbaum wants to characterize (and to rule out) factors which should (not)

affect our inference about ϑ. To this end, he introduces the function Ev(E, x)

as the “evidential meaning”8 of the experiment. The essential properties of

this Ev remain vague and to be clarified, but for the moment, it is sufficient

to know that Ev summarizes all factors in (E, x) that are relevant for our

inference about ϑ.

Birnbaum’s first principle which is unanimously accepted by statisticians

of all shades is the Sufficiency Principle. A statistic T : X → S is any func-

tion from the sample space X to another measurable space S (e.g. the real

numbers with their Borel sets). Such a statistic is called sufficient if the con-

ditional distribution of the full data X, given the value of T , is independent

of the parameter of interest ϑ, i.e.

P (X = x|T (X) = t, ϑ) = P (X = x|T (X) = t). (6.1)

In other words, given the value of T , the full data do not depend any more

on ϑ. Thus, the parameter ϑ affects the data only in so far as it affects the

sufficient statistics. By a simple application of Bayes’s theorem, it can be

6Seidenfeld 1979b, 433.
7See Berger and Wolpert 1984 and Edwards 1992 for more recent versions and a dis-

cussion of those principles.
8Birnbaum 1962, 270.
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shown that (6.1) is equivalent to

P (ϑ|X = x) = P (ϑ|T (X) = t). (6.2)

Thus, if T is a sufficient statistic, the conditional distribution of ϑ is the

same when conditioning on the full data X or on the transformation T (X).

In a subjective interpretation, our posterior degree of belief in ϑ and our

inference about ϑ will not be changed by working with T (X) instead of the

full information X. This gives another rationale for basing one’s inference

on sufficient statistics since they will not distort the content of the data

and suppress any important information. In total, working with sufficient

statistics is literally spoken sufficient for inference from data:

Sufficiency Principle (SP): “If E is a specified experiment,

with outcomes x; it t = T (x) is any sufficient statistic; and if E ′

is the experiment, derived from E in which any outcome x of E

is represented only by the corresponding value t = T (x) of the

sufficient statistic; then for each x, Ev(E, x) = Ev(E ′, t).”9

Birnbaum’s second principle is the Conditionality Principle which asserts

the irrelevance of experiments not actually performed. I forego Birnbaum’s

technical formulation in favor of a more informal one:

Conditionality Principle (CP): If the actually conducted ex-

periment E is chosen from a collection of experiments E in a way

that is independent of the parameter ϑ, then all other experiments

can be neglected.10

In other words, our actual inference about ϑ does not depend on what we

could have observed if other experiments had been conducted instead of the

actual one. We should merely focus on what the actual observations tells us.

The rationale for accepting conditionality is quite obvious – the evidence is a

function of actual observations and should not depend on which experiments

might have been performed instead. Therefore the CP is sometimes referred

to as the ‘Principle of Actuality’ (see Berger and Wolpert 1984). Now, it

is easy to see that both the Sufficiency and the Conditionality Principle are

entailed by the following, stronger principle:

9Birnbaum 1962, 270.
10See Birnbaum 1962, 271.
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Likelihood Principle (LP): In an experiment E with observed

data x, all experimental information about ϑ, is contained in the

likelihood function11 ϑ 7→ P (x|ϑ). All other information can be

neglected. More precisely, if E and E ′ are two experiments and

if the outcomes x and x′ generate the same likelihood function,

then Ev(E, x) = Ev(E ′, x′), without reference to the structure of

E and E ′.12

The Likelihood Principle entails that the probability of results that could

have been observed is irrelevant to the statistical inference, as well as all

other quantities that depend on the shape of the sample space X . Notably,

Bayesian inference conforms to the Likelihood Principle – it merely depends

on prior probabilities (which have nothing to do with the experiment) and

the likelihood of the data under the competing hypotheses, i.e. the likelihood

function. But there are also statisticians who accept the Likelihood Principle

without subscribing to Bayesian inference because they eschew the subjective

components of Bayesianism. Those statisticians are likelihoodists (Hacking

1965, Royall 1997): contrastive relations of evidential favoring are more im-

portant than those of inductive support where alternative hypotheses need

not always be specified. As already shown, favoring relations merely depend

on the likelihood function of the observed data. The higher that likelihood,

the more is a hypothesis favored over another one. As a measure of evidence,

likelihoodists endorse the likelihood ratio between two competing hypotheses

ϑ0 and ϑ1:

Evϑ1,ϑ0(E, x) :=
P (x|ϑ1, E)

P (x|ϑ0, E)
.

Likelihoodists thus have a tool for representing the evidential impact of ob-

served data and may also be characterized as ‘Bayesians without priors’.

Despite this obvious advantage, the scope of likelihoodism is quite restricted.

For instance, it is hard to express the likelihood ratio of composite hypotheses

without introducing subjective priors – if one of the hypotheses is H : ϑ ∈ I,

I being a set of parameter values, then P (x|H,E) cannot be computed with-

out assigning a prior distribution to the single elements of H.

11In slight contrast to the philosophical terminology, the label ‘likelihood function’ is
not a function of the data for fixed parameter: instead, it is a function on the parameter
space that maps each ϑ to P (x|ϑ) where the observed data x are held fixed.

12See Birnbaum 1962, 271.
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The Likelihood Principle is, for sure, quite strong, and may appear to be

ill-motivated. However, it does not only entail both the SP and the CP – it

is even equivalent to to their conjunction:

Theorem (Birnbaum 1962): The Likelihood Principle is equivalent to

the Conditionality Principle plus the Sufficiency Principle.

Hence, those who are convinced by the reasons for accepting SP and CP

have to swallow the LP, too. While many statisticians reject the Likelihood

Principle, it is much more difficult to find statisticians who reject the Suffi-

ciency or Conditionality Principle, putting deniers of the LP into a dilemma.

Therein lies the significance of Birnbaum’s theorem. Those who do not want

to accept the LP usually choose to reject the CP. In the next section, I in-

troduce a school of statistical inference which emphatically opposes the LP

and the CP – error statistics.

6.3 Error statistics

In the early twentieth century, statistical theory rapidly developed – mainly,

but not exclusively due to the enormous contributions of Ronald A. Fisher,

Jerzy Neyman and Egon Pearson. The latter two established a theory of

statistical testing known as Neyman-Pearson statistics. Error statistics is a

school of statistical inference that blends Neyman and Pearson’s statistical

testing theory with ideas by Ronald A. Fisher (significance testing, rejection

trials). Therefore, I first explain the basic principles of Neyman-Pearson

statistics.

The main idea of Neyman-Pearson statistics can be illustrated when two

mutually exclusive statistical hypotheses H0 and H1 are tested against each

other. At the end of the test, we are supposed to make a decision in favor of

one of the hypotheses, i.e. we either accept H0 and reject H1 or we accept H1

and reject H0. Naturally, the decision procedure is supposed to be reliable,

i.e. it should guide us towards the true hypothesis in the vast majority of

cases. (Assume for reasons of simplicity that either H0 or H1 is true.) This

is a position similar to epistemic externalism – beliefs are justified if they

are generated by reliable processes, i.e. processes that tend to generate much

more true than false beliefs. Here error probabilities come into play. In the

error-statistical framework, statistical tests (=decision procedures) are char-
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acterized by their probabilities to accept H1 if H0 is true and their probabili-

ties to accept H0 if H1 is true. These are the two characteristic tendencies to

make a wrong decision. How does this work in practice? Consider a Bernoulli

trial with merely two possible outcomes: success and failure. Examples are

the repeated toss of a coin and similar experiments where only two outcomes

are possible. A sequence of independent and identically distributed Bernoulli

trials with a fixed sample size n is called a Binomial experiment because the

number of successes k is distributed according to the Binomial distribution

with density

Bn,p(k) =

(
n
k

)
pk (1− p)n−k.

This means that if the tendency to get a success in a single trial is p, the

probability to get k successes after n trials will be equal to Bn,p(k). Of course,

the Bn,p(k) sum up to 1 in total.

Now consider the following situation.13 Someone (let’s call him S) claims

to possess the ability of extrasensory perception (ESP). As a proof of his

ability, S claims to be able to find out a particular playing card (say, the ace of

spades) out of two reversed cards with a success frequency that is significantly

higher than pure chance. To find out whether S’s claims are correct, we

present him two cards upside down, one of which is the ace of spades and

let him guess. Then we note success or failure. This trial is repeated twenty

times and the number of successes follows the Binomial distribution. Now, we

have two hypotheses about S’s success probability in such an experiment. On

the one hand, we have the default or null hypothesis (briefly: null) or H0 that

S is merely guessing and not better than ordinary human beings: H0 : p =

0.5. On the other hand, we have the alternative hypothesis that S has ESP

and that he has a significantly higher success probability than pure chance

would suggest: H1 : p = 0.7. A comparably high success frequency cannot be

explained by normal means if the experiment is properly conducted. Now,

we have to choose a decision rule. Due to the potential loss of reputation, we

have to avoid an unjustified ascription of extrasensory perception more than

we have to avoid an incorrect decision for the default hypothesis that S has

no extrasensory abilities. This illuminates the point of the label ‘null/default

hypothesis’. In particular, we would like to make an erroneous decision in

less than 5% of all cases when H0 is true. Hence, we decide to opt for H1 if

13The example is taken from Georgii 2002, 248-49.
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and only if S is right in at least 15 of 20 trials. See figure 6.1 for an intuitive

justification of that rule: the higher the probability of an observation under

H1 as compared to H0, the more we are willing to reject H0.

Figure 6.1: The probability densities of the Binomial distribution for H0 :
B20,0.5 (dark bars) and H1 : B20,0.7 (light bars).

Having formed a decision rule, we can calculate the probability of an error

of the first kind – to opt for H1 although H0 is true. It is the probability to

observe 15 or more successes when H0 is right:

P (decision for H1|H0) = PH0(k ≥ 15)

=
20∑

k=15

(
20
k

)
0.5k (1− 0.5)20−k

= 0.0207.

Hence the error the first kind, the probability of an erroneous decision for

H1 is indeed very small – it is just above 2 percent. On the other hand, the

error of the second kind – the probability of an erroneous decision for H0 is
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equal to

P (decision for H0|H1) = PH1(k ≤ 14)

=
14∑
k=1

(
20
k

)
0.7k (1− 0.7)20−k

= 0.5836.

This is clearly above 50%, indicating that in more than half of the cases, the

alternative hypothesis will not be detected even if it is true. This sounds

very high, but we have to recall that a decision for H1 might put to jeopardy

a lot of the experimenter’s reputation, given the widespread sceptical doubts

towards extrasensory perception. In the present example, it is thus more

important to control the error of the first kind. The name ‘error statistics’

is indeed derived from the desire to control the error probabilities in choos-

ing a statistical decision rule. The lower the error probabilities, the more

reliable the statistical test. Note that error probabilities are not subjectively

interpreted probabilities (i.e. some kind of personal credences), but objective

probabilities – probabilities of observing a given (set of) event(s) under a

specific hypotheses. Thus, the recourse to rational degrees of belief that was

prevalent in the Bayesian approach is avoided.

The problem with Neyman-Pearson statistics is that it is a theory of

statistical decision rules – it compares the reliability of various testing pro-

cedures between which we can select. But Neyman-Pearson theory does

not give (at least, not at first sight), a post-experimental quantification and

representation of the observed evidence. Scientists are often more keen on

measures of evidence than on the properties of specific decision rules that

neither quantify the strength of evidence against the rejected hypothesis nor

give a post-observational assessment of the tenability of the rejected hypothe-

sis. For this reason, Deborah Mayo and Aris Spanos, two leading proponents

of the error-statistical approach, have suggested that not only the result of

a hypothesis test be reported, but also the degree of severity with which the

accepted hypothesis has passed the test (Mayo 1996, Mayo and Spanos 2006).

This degree of severity is supposed to quantify the observed evidence:

Definition 6.1 “A statistical hypothesis H passes a severe test T with

data x0 if,

• x0 agrees with H, and
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• with very high probability, test T would have produced a result that

accords less well with H than x0 does, if H were false.”14

Clearly, the dependence on ‘counterfactual experiments’ expressed in the

second clause implies the violation of the Conditionality Principle. Thus, the

error-statistical approach stands in sharp contrast to the Likelihood Principle

and Bayesian inference. Moreover, the two clauses in the definition of a severe

test rely both on a measure of concordance and dissent between the observed

data and the two competing hypotheses. This requires the definition of a

statistic that measures in how far the observed result x0 diverges form H

(in the direction of ¬H). Furthermore, it is clear that the actually observed

result x0 plays a crucial role in determining whether H has passed a severe

test. Similar to Neyman-Pearson tests, error statistics justifies endorsal of

a hypothesis H by the reliability of the conclusion-generating procedure: it

would have been very unlikely to obtain a result fitting so well (namely, x0)

with hypothesis H if H had been wrong.

The standard statistic for ordering the sample space elements according

to their discrepancy to H is the likelihood ratio between ¬H and H or

a monotonous function thereof. The higher this value, the more do the

observed results diverge from H and the closer they are to ¬H. In the ESP

example, the number of successes of the person would be the most natural

choice. The more successes the person scores, the closer are the results to

the alternative and the more distant are they from the null. Now, the second

clause of definition 6.1 suggests that the degree of severity with which a

hypothesis passes a test be measured by the probability to observe a more

diverging result in case the hypothesis is false. Indeed, this is the definition

suggested by Mayo and Spanos in their 2006: The severity s : Θ×X → [0, 1],

X being the sample space and Θ being the hypothesis space, is defined as

s(H, x0) := P (dH(X) > dH(x0) | ¬H). (6.3)

where dH measures the distance between the observed result and H. In the

ESP example, after x0 = 14 successes and six failures, the default hypothesis

H0 (the person has no ESP) is accepted by the testing procedure, but it

passes the statistical test with quite low severity:

s(H0, x0) = P (X > x0 | H1) = P (X > 14 | p = 0.7) (6.4)

≈ 0.416.
14Mayo and Spanos (2006, 329), italics in the original.
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The low severity indicates that the result is quite weak evidence and does not

remove the uncertainty about the person’s abilities, quite in agreement with

our intuitions that 14 successes are quite impressive. But if we had observed

x1 = 15 successes, we would have rejected H0 and H1 would have passed the

test with high severity:

s(H1, x1) = P (X < x1 | H0) = P (X < 15 | p = 0.5) (6.5)

≈ 0.979.

Thus, if 15 success were observed, we could confidently assert H1. By taking

into account post-experimental quantifications of evidence that accompany

the result of statistical tests, the error-statistical approach blends and refines

both the Neyman-Pearson and the Fisherian approach to statistical infer-

ence. Neyman-Pearson testing suffered under the lack of post-observational

measures of evidence whereas Fisher’s approach to statistical inference is

objectionable because alternative hypotheses are not explicitly taken into

account (more on this in the next chapter). Error statistics combines both

approaches into a unified scheme of statistical inference without subjective

probabilities and in sharp contrast to the Likelihood Principle. We will now

see how the Neyman-Pearsonian emphasis on the predesignation of statistical

tests extends to error statistics and how it helps to distinguish spurious from

relevant correlations.

6.4 Error statistics and predesignation

Neyman-Pearson theory is a predesignationist theory of statistical inference,

in the sense that the decisions must be executed and the error probabilities

must be reported in the way that the procedure was designed. To see the

point of this remark, let us come back to our example about the person

with alleged extrasensory perception. There is a tempting kind of reasoning

which is not compatible with the error-statistical principles. Assume that

in the ESP example, we have observed 14 successes and only 6 failures.

Certainly, this is a remarkable success rate which casts some doubt on the

null hypothesis that S is just guessing. Moreover, the severity with which the

No-ESP-hypothesis passes the test is quite low. Strongly impressed by S’s

performance, the director of the experiment decides to modify her decision

rule post experimentum as to accept H1 (the alternative) for 14 or more
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successes, instead of demanding 15 or more successes. Consequently, she

actually accepts H1. Then, the error of the first kind is 0.0577 which is still

quite low and the error of the second kind is 0.392 which seems to be a

substantial improvement. But here, we see that Neyman-Pearson statistics

is a pre-experimental framework. The director’s reasoning points out that

she factually adopted another cutoff point for rejecting H0 than she claimed

at the outset. If S scores merely 14 successes, she accepts the hypothesis

that he has ESPs and reports an error probability of 0.0577 (and a degree

of severity of 0.9423). But if S had scored 15 or more successes she would

also have ascribed extrasensory perception to S, and have reported the ‘old’

error probability of α ≈ 0.02, as if she had accepted the null for k = 14. Her

sudden change of mind in the case of k = 14 biases the experimental report

in favor of H1 because the error probabilities for k ≥ 15 were incorrectly

reported. Neyman-Pearson theory is a theory of predesignated statistical

decision rules, and one must not post mortem modify those rules and report

rules which differ from those one had originally in mind.

There is a more relevant and maybe even more perspicuous example for

the vices of violating the predesignationist stance of Neyman-Pearson statis-

tics. Assume twenty variables X1, . . . , X20 are tested for correlation with a

response variable Y . We take a number of samples from each variable and

a computer program checks the data for significant correlations. We find

out that only the variable X1 is strongly correlated with Y – actually, the

hypothesis that X1 and Y are independent would be rejected at the 0.05

level by a statistical test. In other words, a test with a (first kind) error

probability of 0.05 would lead to a rejection of the independence hypothesis.

Now, it is tempting to claim that a strong correlation between X1 and Y

has been found and has been verified at the error level of 0.05. Furthermore,

we would report the observed degree of severity. But in fact, we would run

into a dangerous pitfall since we did not perform a proper test but we merely

scanned the data for correlations.

“When hypotheses are tested on the same data that suggested

them and when tests of significance are based on such data, then

a spurious impression of validity may result. The computed level

of [severity, J.S.] may have almost no relation to the true level.”15

15Selvin 1970, 104. I have replaced ‘level of significance’ by ‘level of severity’ in order
to keep a consistent terminology.
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How can we make this point precise? In checking twenty different input vari-

ables for correlations with the response variable Y , we will sooner or later

discover a correlation for one of the input variables even if there is no real

correlation. This is just a sampling effect – if you sample on long enough

(here, 20 times), at least one of a set of individually unlikely events will even-

tually happen with high probability. Hence, in scanning the data we did not

actually test the hypothesis that X1 and Y are correlated but the hypothesis

that at least one Xj, j ∈ {1, . . . , 20}, is correlated with Y since we would

have reported a correlation regardless of the value of j. This makes quite a

difference: if we select X1 beforehand (i.e. before peeking at the data) and

test it for correlation, the error probability is indeed 0.95 = 1-0.05, but if we

decide to scan the data for correlations and report those which are ‘significant

at the 0.05 level’, we end up with a poor error probability: The probability of

observing a strong correlation on one of the 20 factors given that there is no

genuine correlation is 0.64. Thus, in reporting error probabilities and degrees

of severity we have to correctly identify the procedure which was used:

“if you change the test procedure the error probabilities change,

and if you report significance levels in the usual way [...] then

you are going to get your error probabilities wrong.”16

Here we see another time that Neyman-Pearson testing theory relies on pre-

designation and faithful adherence to the decision procedure. Violating the

predesignationist stance makes us overly optimistic: we think spurious cor-

relations are genuine and claim that hypothesis can be rejected at high sig-

nificance levels/low error probabilities when they can’t. Thus, we bias our

error probabilities and lead the entire inference astray:

“since violating predesignation may alter the actual significance

level (by altering the test procedure), it is invalid to report the

results in the same way as if hypotheses were predesignated.[...] If

one fails to heed [the warning], tests will be construed erroneously

as having high severity.”17

Neyman-Pearson theory is thus able to explain what is going wrong when

scientists hunt a huge bulk of data for significant results and publish them

without mentioning the hunting procedure: they do not pay attention to

chance effects which will inevitably occur in a large set of data.

16Mayo 1996, 311.
17Mayo 1996, 317, original emphasis.
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6.5 Summary

This chapter has motivated why a special focus on statistical hypotheses is

important in examining theories of inductive inference. In particular, the

rapidly progressing introduction of probabilistic models in the empirical sci-

ences asks for a clarification of foundational methodological issues. Statistical

techniques are present in the formulation and analysis of models, in estimat-

ing unknown parameters, testing hypotheses and simulating real-world pro-

cesses, in other words, in all aspects of the interpretation of data. The chapter

has contrasted the two major schools to statistical inference, the Bayesian

and the error-statistical approach. The focal point of their disagreement was

the Likelihood Principle.

Bayesian statistics is a natural part of the Bayesian theory of inductive

inference which we have encountered in the previous chapters. Still, it is

a partially subjective theory, and some scientists might feel uncomfortable

with abandoning the pretensions for absolute objectivity and working with

rational degrees of belief instead. The various attempts to objectify Bayesian

inference by means of ‘objective prior distributions’ are often practically use-

ful, but representing lack of information and ignorance by special probability

distributions blurs the distinction between risk and uncertainty. Both the

personalist and the objectivist version of Bayesianism have their virtues and

vices.

The Likelihood Principle (LP) is a principle of statistical inference which

asserts that the evidential content of the data is captured in the likelihood

function. Birnbaum (1962) has shown that the Likelihood Principle is equiv-

alent to the conjunction of two more fundamental and intuitive principles,

making it hard to reject the LP. It forms a part of Bayesian and likelihood-

ist statistical inference whereas statisticians in the Neyman-Pearson-Fisher

tradition (e.g. error statisticians) deny it.

Error statistics is the label for a theory of statistical inference that mainly

builds on Neyman and Pearson’s theory of testing alternative hypotheses and

connects this theory with post-experimental quantifications of the observed

evidence. Here, degrees of severity (Mayo and Spanos 2006) play a crucial

role. Like Neyman-Pearson theory, error statistics is a predesignationist the-

ory of inference, in the sense that it is mandatory to stick to predesignated

decision rules in order not to bias the final conclusions. This last point

is illustrated in a series of examples. In the next chapter, we will devote
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more space to the controversy between the error-statistical and the Bayesian

approach: we will compare the different conceptions of evidence as well as

dissolve the dissent about the relevance of experimental design.
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Chapter 7

Evidence and Design

Which relevance does the design of a statistical experiment in science have,

once the experiment has been performed and the data have been observed?

Do data speak for themselves or do they have to be assessed in conjunction

with the design that was used to generate them? Few questions in the phi-

losophy of statistics are a subject of greater controversy. The debate about

the inferential role of experimental design standardly narrows down to the

inferential role of stopping rules that describe under which circumstances an

experiment has to be terminated. If these rules were relevant to the inter-

pretation of an experiment, it would be mandatory to fix them in advance,

i.e. before actually conducting the experiment. That would have severe im-

plications for scientific practice and affect the way data are collected and

experimental reports are written. Hence, both scientists and philosophers of

science should pay high attention to the role of stopping rules in statistical

inference.

The classical example for an application of stopping rules are sequential

trials. Sequential trials repeat a single experiment, accumulating evidence

from several independent and identically distributed trials. They can be com-

pared to the repeated toss of a coin and are standardly applied when testing

medical drugs and giving them to a group of patients. Possible stopping

rules could then be ‘give the drug to twelve patients’, ‘give the drug until

the number of failures exceeds the number of recoveries’ or ‘give the drug

until funds are exhausted’. In this example, we recast the question about the

relevance of experimental design as the question whether the evidence about

the effectiveness of the drug is sensitive to the proposed ways to conduct the
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experiment.1 In other words, we would like to investigate whether stopping

rules are evidentially and inferentially relevant.

This topic of inquiry is closely related to the debate about measures of

evidence. Obviously, asking for the evidential relevance of experimental de-

sign implies that the answer depends on what we expect from a measure of

evidence and which measures of evidence should be preferred. Measures of

evidence provide a way to transform the observed data into a basis of mean-

ingful scientific inference. Thus, they play a crucial role in post-experimental

analysis. Here, I would like to take a twofold perspective and to review the

problem of finding an adequate measure of evidence from a foundational as

well as a practical point of view, i.e. adequate measures of evidence should be

applicable and fruitful tools for scientists who work with statistical methods.

These results will then backfire on the evidential relevance of experimen-

tal design. The two conflicting positions in the debate are associated with

the error-statistical and the Bayesian school of statistical inference. We will

present both view in details and then try to adjudicate between them.

7.1 The controversy about experimental de-

sign

Neyman-Pearson statistics is concerned with statistical testing and the com-

parison of two mutually exclusive hypotheses (called the null hypothesis H0

and the alternative H1). After looking at the data, one of them is accepted

and the other one is rejected. The data are thus used to decide between the

two hypotheses. Tests are ranked according to their error probabilities, i.e.

the probability of erroneously opting for the alternative and the probability

of erroneously opting for the null hypothesis.2 We describe such tests by

the tuple 〈α, β〉 which encodes the probability of erroneously rejecting the

null (α) and the probability of erroneously accepting the null (β). Error

statisticians say that the lower the error probabilities, the higher the severity

1Technically, stopping rules are integer-valued random variables τ , i.e. functions from
the sample space into the set of natural numbers. They indicate the number of repetitions
of the trial as a function of the observed results. We strictly confine ourselves to nonin-
formative stopping rules – stopping rules that are independent of the prior distribution of
the parameter.

2Other Neyman-Pearson procedures (parameter estimation, construction of confidence
intervals) are equally justified by the error probabilities which characterize that procedure.
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with which the accepted hypothesis has passed a test. In other words, error

probabilities give a benchmark for the severity and reliability of statistical

inference.

Now, it is interesting to note that error probabilities depend on results

that could have been observed under the actual experimental design. For

instance, imagine that we would like to find out the probability of recovery

of when giving a drug against a specific disease. If the patients are not

treated, only half of them recover. We make some simplifying assumptions

and set up the experiment as a Bernoulli trial, i.e. for any patient there are

only two possible results (recovery/no recovery). Each patient has the same

probability of recovery ϑ when (s)he is given the drug, and the results for each

patient are independent of each other – in other words, we have a sequence of

i.i.d. Bernoulli trials. As our default or null hypothesis we choose the claim

that the new drug is no more effective than a placebo, i.e. that the probability

of recovery is equal to 1/2 (H0 : ϑ = 0.5). The alternative hypothesis posits

that the new treatment is more effective than a placebo (H1 : ϑ > 0.5).3

Now compare the following two stopping rules:

• τ1: Give the drug to exactly twelve patients (fixed sample size).

• τ2: Give the drug until three patients have failed to recover.

τ1 invokes an n-fold Binomial experiment, τ2 invokes a negative Binomial ex-

periment. Both designs are somewhat plausible: the Binomial design bounds

the total number of trial persons, the negative Binomial design bounds the

number of failures in the treatment group. We would like to test the hypoth-

esis H1 with severity α = 0.05, i.e. only in 5% of all cases where H1 is false

(and H0 is true) we erroneously reject H0 and opt for H1. According to the

Neyman-Pearson Lemma, there are uniformly optimal tests for testing H0

against H1, i.e. tests that minimize β for fixed α, regardless of the value of

ϑ. In the remainder, we assume that these tests are adopted in both designs.

Now, the tests are started, but (as interested readers of a medical research

report) we do not know the experimental design – in particular, we do not

the stopping rule – and are told that 12 patients have been examined and

that three patients did not recover (among them the 12th patient). Now, the

Binomial design and the negative Binomial design yield different decisions.

3Assume that it can be ruled out that the drug is conducive to the disease (ϑ < 0.5).
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Let k denote the number of recoveries and n the number of trials. In the

Binomial design, due to

B12,0.5({k ≥ 9}) =
299

4096
≈ 0.073

the actually observed result k = 9 lies in the acceptance area, i.e. H0 is

accepted whereas in the negative Binomial design,

B3,0.5({n ≥ 12}) =
67

2048
≈ 0.033

so that n = 12 lies in the rejection area and H0 is rejected in favor of H1. In a

Neyman-Pearson inference, different experimental designs curve the sample

space differently so that the associated optimal tests yield different decisions

for the same actual result. Hence, for the reader of the medical research

report, it is absolutely essential to know which design was adopted in or-

der to understand the scientists’ decision whether to accept or to reject the

null hypothesis. While this may sound awkward at first sight, there is also

a rationale for this property of hypothesis tests: some designs (as the neg-

ative Binomial design) are slightly biased towards a particular hypothesis

since the last observed patient in the row has to be a non-recovery. Pro-

ducing an experimental result that is favorable to H1 is therefore harder in

a negative Binomial design than in a Binomial design. A more everyday

example may illustrate that point: If a football match were terminated at

once if a certain team took the lead, the opponents would complain that

the design of the match was unfair to them and that the point of termina-

tion should not depend on the current score. Since experimental design and

stopping rules affect error probabilities and the outcome of hypothesis tests,

Neyman-Pearson and error statisticians conclude that experimental design is

inferentially relevant and crucially affects statistical inference.

By contrast, Bayesians and likelihoodists deny the inferential relevance of

experimental design. This is a direct consequence of the Likelihood Princi-

ple (LP), which both statistical schools accept and which rests on the more

primitive Sufficiency Principle and Conditionality Principle (see the previous

chapter). In particular, all inference about the unknown parameter merely

depends on the likelihood function of the observed result: If ϑ is our param-

eter of interest and x is the observed result, our inference depends merely on

P (x|ϑ)ϑ∈Θ and not on other results that could have been observed. Indeed,

both designs impose the same likelihood function (up to a constant factor).
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This has direct consequences for the role of stopping rules and leaves no

room for the inferential relevance of experimental design. That view can be

condensed into the following principle:

Stopping Rule Principle (SRP): In a sequential experiment

with observed data x(n) = (x1, . . . , xn), all experimental informa-

tion about ϑ is contained in the function Pn(x(n)|ϑ); the stopping

rule τ that was used provides no additional information about ϑ.4

But how does the SRP deal with the error-statistical charge that the fairness

of experimental design is important to the interpretation of an experiment?

Adherents of the SRP and the LP do not feel responsible for that problem.

For them, data have an evidential content which is not affected by the choice

of a stopping rule which is a ‘mere intention’ in the head of the experimenter.

For example, if the experimenters in the above medical trial had forgotten

to fix a stopping rule, the experimental results would be uninterpretable for

error statisticians. For defenders of the LP and the SRP, this is unacceptable

and a serious drawback of Neyman-Pearson (‘classical’) statistics:

“The irrelevance of stopping rules is one respect in which Bayesian

[and likelihoodist, J.S.] procedures are more objective than clas-

sical ones. Classical procedures [...] insist that the intentions of

the experimenter are crucial to the interpretation of the data.”5

Indeed, in a Bayesian measure of evidence and more generally, in a Bayesian

inference, stopping rules do not play a role. As a measure of evidence,

Bayesians standardly use Bayes factors, the ratio between prior and pos-

terior odds which generalizes the likelihood ratio:

B(H1, H0, x) :=
P (H1|x)

P (H1)

P (H0|x)

P (H0)
=

∫
H1

P (ϑ)P (x|ϑ) dϑ∫
H0

P (ϑ)P (x|ϑ) dϑ
. (7.1)

Eventually, the entire Bayesian inference only depends on the prior proba-

bilities of the hypotheses and the likelihood of the data under the competing

hypotheses. Both quantities are independent of the stopping rule.

To settle the dispute between Bayesians and likelihoodists on the one side

and Neyman-Pearson and error statisticians on the other side is no easy task,

4Berger and Berry 1988, 34, italics in original, notation changed for convenience. The
first formulation of the SRP goes back to Barnard, see e.g. his 1949.

5Edwards et al. 1963, 239.
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however. Typically, statisticians and philosophers of science in the Neyman-

Pearson tradition accuse the Bayesians of wearing Bayesian glasses and being

unable to see the problems associated with neglecting stopping rules in the

interpretation of an experiment.6 Indeed, Bayesians often argue for the Stop-

ping Rule Principle on foundational grounds: rejecting the SRP implies the

violation of either the Sufficiency Principle or the Conditionality Principle

which are both very plausible.7 Here, basic intuitions are invoked and it is

hard to convince those who do not share such intuitions. Vice versa, the

arguments against the SRP are based on an error-statistical understanding

of evidence and statistical inference. Bayesians generally deny the validity of

error-statistical arguments.8 Since both sides tend to presuppose what is at

stake, the debate seems to be in a stalemate.

Of course, it is not possible to re-invent a debate that has been ongoing for

several decades. But I think that the existent arguments could be structured

in a better way. Here is my project: First, it is asked which criteria a measure

of evidence suitable for scientific use should satisfy. Thus we combine argu-

ments from mathematical statistics with a methodological perspective on the

needs of experimental practice. Second, we check whether error-statistical

measures of evidence satisfy those criteria and how they perform in other

respects. This will eventually establish the inadequacy of such measures and

elucidate the comparative character of evidence measures. Third, we try to

readjust the function of putative error-statistical measures of evidence in sta-

tistical inference. Fourth, we infer from the previous results to the evidential

irrelevance of evidential design. This conclusion is integrated into a decision-

theoretic perspective and defended against classical counterarguments. Fifth

and last, we stress that it would be unwise to assert that careful experi-

mental design is negligible in science: Scientific inference arguably builds on

more factors than statistical evidence. When the cost of a single observation

in a sequential trial is substantial, experimental design helps to control the

costs of the experiment. Careful design is used to optimize the tradeoff be-

tween scientific insights and experimental costs and therefore indispensable

for conducting sequential trials.

6See Mayo 1996, 348, and Mayo and Kruse 2001.
7See Berger 1985, 507-509.
8See Berger and Berry 1988, 45 and in a similar vein, though from a likelihoodist point

of view, Royall 1997, 68-71.
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7.2 Measures of evidence and p-values

Evidence about a parameter is required for inferences about that parameter,

e.g. for sensible estimates and decisions to work with this rather than that

value. An evidence measure transforms the data as to provide the basis for

a scientific inference. In order to be suitable for public communication in

the scientific community and use in research reports, a measure of evidence

should be free of subjective bias and distortion. While we might disagree

on the a priori plausibility of a hypothesis, we should agree on the strength

of the observed evidence. Scientists and policy-makers often want to make

evidence-based decisions, but to take an evidence-based approach to statisti-

cal inference seriously presupposes consent on what the data tell us.9 There-

fore we need a method to quantify the information which the data convey

that is independent of idiosyncratic convictions and immune to deliberate

manipulations. We will now see whether error-statistical measures are able

to fulfil that task.

Error statisticians try to flesh out a full theory of statistical inference on

the basis of Neyman’s and Pearson’s work on statistical testing: Two mutu-

ally exclusive hypotheses (the null hypothesis and the alternative) are com-

pared to each other, and after looking at the data, one of them is accepted

and the other one is rejected. The data are thus used to decide between

the two hypotheses. Such tests are ranked according to their reliability, i.e.

their ability to guide us towards the true hypothesis. The benchmark for the

reliability of a Neyman-Pearson test are the error probabilities – the prob-

ability of erroneously rejecting the null in favor of the alternative (α) and

the probability of erroneously accepting the null hypothesis (β). Neyman-

Pearson theory is essentially a theory of statistical decisions, so it is quite

natural to report the properties of the decision procedure. While the error

probabilities give useful pre-experimental information about the reliability

of a statistical test which is going to be used, their post-experimental inter-

pretation is much more difficult: First, two results in the rejection area can

have different ‘discrepancies’ to the null hypothesis, e.g. a result close to the

acceptance/rejection cutoff seems to be weaker evidence against H0 than a

result far in the rejection area. Nevertheless, for the error probabilities of a

predesignated test, this difference is irrelevant. Second, there are severe con-

9To a certain extent, this aspect of the word ‘evidence’ is contained in the similarity to
the word ‘evident’.
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ceptual problems regarding the post-experimental use of error probabilities:

If H0 was rejected and the test had a probability of an erroneous rejection

equal to α = 0.05, this does not imply that we made the right decision with

a probability of 0.05. The null hypothesis is either true or false, but not

with a probability of 0.05 – error-statisticians sneeze at using probabilities

in the subjective sense. Hence, the evidential, post-observational meaning

of error probabilities is not clear. Confidence interval construction gives a

paradigmatic example: A confidence interval [x, y] for a parameter of interest

ϑ either contains or does not contain the true parameter value. Again, for

an error statistician, it is not possible to assign any degree of confidence to

the statement that ϑ ∈ [x, y]. So what is the meaning of the probability α

used to qualify confidence intervals? In fact, this α only describes properties

of the construction procedure, but it does not state whether we are factually

justified in believing that ϑ ∈ [x, y] (for this, we would need the prior dis-

tribution of ϑ). But it is precisely the question of factual justification that

experimenters are interested in, as witnessed by Pratt’s description of the

dilemma:

“We can say to an experimenter: ‘A method yielding true state-

ments with probability .95, when applied to your statement yields

the statement that your treatment effect is between 17 and 29,

but no conclusion is possible about how probable it is that your

treatment effect is between 17 and 29’. The experimenter, who is

interested not in the method, but in the treatment and this par-

ticular confidence interval, would get cold comfort if he believed

it.”10

Thus, it is not clear how the reliability of the statistical method transfers

to the actual confidence which the experimenter should have in his interval.

If confidence intervals are understood as matters of decision or statistical

inference, error probabilities alone give a rationale for using them. Neither

can error probabilities be used as a post-experimental, evidential basis for

scientific inference. Neyman-Pearson statistics is a theory of statistical de-

cision rules, but “it does not address the problem of representing statistical

evidence”11.

10Pratt 1961, 165.
11Royall 1997, 58
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Scientists often ask for a post-experimental quantification of the evidential

content of the data. Since Neyman-Pearson testing theory is unable to de-

liver such a quantification, it is in practice often blended with elements from

Fisherian statistics and significance testing. The error-statistical paradigm

accounts for that demands by means of degrees of severity. As mentioned in

the previous chapter, error statisticians build on elements of the Neyman-

Pearson theory of statistical testing and supplement them by inferential in-

terpretations of statistical tests and post-data assessments of strength of

evidence, i.e. the degree of severity with which a hypothesis passes a test. In

practice, this function is most often taken by p-values which are closely re-

lated to degrees of severity. The p-value sums up the H0-likelihoods of those

observations that fit the null model to a lower degree than the observed value

xobs:

pobs(x0) := P (dH0 ≥ dH0(x0) | H0) (7.2)

where dH0 is again a statistic measuring the discrepancy between H0 and the

data, as known from the definition of degrees of severity.12 In other words,

p-values measure the probability that, if the null hypothesis were true, a

more extreme result than the actual one would be observed. Often, they

are also called the ‘observed level of (statistical) significance’. Notably, the

severity of experimental tests is closely related to p-values: In the above

example, the severity with which ϑ > 0.5 passes a severe test against ϑ = 0.5

is 1− pobs = P(X < xobs|p = 0.5). In a little bit more detail:

s(ϑ > 0.5, x0) := P (dH1(X) > dH1(x0) | ¬H1)

= P (dH0 < dH0(x0) | H0)

= 1− pobs(x0).

Thus, in our discussion of p-values, we also cover Mayo’s degrees of severity.

In statistical practice, p-values are often used to assess the tenability of a

‘null’ (or default) hypothesis H0 in the light of observed data, low p-values

speaking against the null. Indeed, they are widespread in the empirical sci-

ences and often used as a summary of the evidential import of an experiment.

For instance, the level of the p-value often decides whether or not an experi-

mental result can be published, e.g. many psychologists consider only results

with a p-value lower than 0.05 to be (statistically) significant and therefore

12Such a statistic dH0(X) has to be minimal sufficient, i.e. representable as a function
of any other sufficient statistic. More explanation follows in the text.
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publishable. The precise role of p-values, however, is not clear, despite their

enormous popularity. They are often confounded with posterior probabilities

of a null hypothesis, e.g. when a p-value of 0.04 obtains, practitioners with-

out a sufficient mathematical education often tend to assert that ‘the null

hypothesis has a probability of 0.04’. Although this is a well-known fallacy

– p-values do not give posterior probabilities – practitioners often commit it.

These pitfalls put aside, p-values are often cited as a basis for the rejection

of a null hypothesis or, vice versa, for claiming that the evidence against the

null hypothesis is not sufficiently strong to warrant assertion of the alterna-

tive. There is a telling relationship between p-values and error probabilities:

a p-value lower than α means that the null hypothesis is rejected in a test

with error probability (of the first kind) equal to α. Figure 7.1 illustrates

this idea for testing H0 = N(0, 1) against an unspecified alternative where

dH0 is identified with the probability density of H0. By contrast, figure 7.2

exemplifies the one-sided testing problem where the null is tested against

a specific alternative N(1, 1) and dH0 is identified with the likelihood ratio

between H1 and H0.

Figure 7.1: The null hypothesis H0 : N(0, 1) (full line) is tested against an
unspecified alternative. The shaded area represents the set of results where
H0 is rejected in a test with predesignated error probability of 0.05 and where
an observation yields a p-value below 0.05.
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Figure 7.2: The null hypothesis H0 : N(0, 1) (full line) is tested against the
alternative H0 : N(1, 1) (dashed line). The shaded area represents the set of
results where H0 is rejected in favor of H1 in a test with predesignated error
probability of 0.05 and where an observation yields a p-value below 0.05.

It is now suggestive to conclude that a low p-value suggests poor evidence

for H0 and that a high p-value suggests good evidence for H0, independent

of the specific alternative hypotheses. But this is a misunderstanding: a low

p-value may indicate evidence against the null hypothesis, but a high p-value

is not very telling. For instance, the observation x0 = 0 leads to a maximal

p-value (pobs = 1), but while it fits the null well, it is obviously premature to

say it is strong evidence for the null.

“Although a significant departure [from the null] provides some

degree of evidence against a null hypothesis, it is important to

realize that a ‘nonsignificant’ departure does not provide positive

evidence in favor of that hypothesis. The situation is rather that

we have failed to find strong evidence against the null hypothe-

sis.”13

Due to the ubiquitous occurrence of p-values in scientific research reports,

their inferential role is of keen and abiding interest. Here it is essential to

note that p-values are sensitive to experimental design and stopping rules.

13Armitage and Berry 1987, 96.
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This point was made very often in the existing debate (e.g. Howson and

Urbach 1993, Royall 1997): p-values do not only depend on the probability

of the actually observed result, but also on the probabilities of results that

could have been observed as equation (7.2) makes clear. We can apply this

to our medical trial, too. If a standard discrepancy statistic is adopted for

computing the p-value, the Binomial design and the negative Binomial design

yield different p-values:

pobs = B12,0.5({k ≥ 9}) =
299

4096
≈ 0.073

pobs = B3,0.5({n ≥ 12}) =
67

2048
≈ 0.033.

In the remainder of this section, we will examine whether p-values are rea-

sonable measures of evidence or whether they should be replaced by other

quantities. We will start with noting some crucial properties of p-values.

First, there is the asymmetry noted in the above Armitage/Berry quote:

whereas the rationale for interpreting low p-values is quite clear (namely as

evidence against the null hypothesis), it is not clear what a high p-value

means – but in any case, it does not necessarily mean evidence for the null.

There is an additional issue if p-values are used to compute degrees of sever-

ity: a hypothesis can pass a test with quite high severity, but if the result

is only slightly modified, it can happen that the same hypothesis is rejected

and the alternative passes the test with quite low severity. We saw such an

example in the previous chapter (equations (6.4) and (6.5)): 15 successes in

a Binomial experiment with N = 20 meant rejection of of the null with high

severity, 14 successes meant acceptance of the null with low severity. We

would prefer a measure of evidence with more continuous transitions, but

due to the dichotomous accept/reject character of Neyman-Pearson tests,

degrees of severity (and p-values) cannot deliver that.

Second, the choice of the distance function is often a highly non-trivial

task. The tenability of a null (or default) hypothesis H0 is generally evalu-

ated in two types of situations, namely situations with specific alternatives to

H0 and situations where no other hypotheses compete with H0. In statistical

terminology, they correspond to the one-sided and two-sided hypothesis test-

ing problem. In a one-sided testing problem, the distance function dH0 has

a specific departure direction measures (towards the alternative hypotheses)

whereas in the two-sided problem, no such direction exists. For the one-sided
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problem, the likelihood ratio (or a monotone function thereof) of H1 and H0

L(H1, H0)(x) = P (x|H1)/P (x|H0) is certainly a good indicator for indicating

discrepancy to the null: the greater L(H1, H0)(x), the more diverges x from

the null, when compared to H1. Nevertheless, presupposing the existence

of a distance function without a specific direction of departure is far from

trivial. It is common to invoke the intuition that the less likely a result under

the null hypothesis, the more it diverges from the null. Thus, the probability

density constitutes a natural choice for a distance function, see again figure

7.1. The p-value is the sum of probabilities of those elements of the sample

space that are equally or less likely than the observed value x0.14 But we will

soon see that this view leads into trouble.

Third, p-values tend to grossly overstate the evidence against the null

hypothesis especially when a point null hypothesis is tested against an un-

specified alternative. Berger and Sellke (1987) examine the case of normal

distributions, testing H0 : N(0, σ2) against H1 : N(µ, σ2), µ 6= 0 by means

of several i.i.d. trials, with known σ. If the prior probabilities are impartial

(P (H0) = P (H1) = 0.5) and the observed results significantly diverge from

H0, the p-value is clearly lower than the posterior probability of H0. More

precisely, if the component hypotheses of the alternative H1 are weighed ac-

cording to a N(0, σ2) distribution (which is a standard choice), then a p-value

of 0.05 implies that the posterior probability of H0 is at least 0.30.15 In other

words, a p-value that is associated with ‘strong evidence against the null’

does not imply that H0 is no more sustainable (to say the least), quite to the

contrary. This problem occurs because the p-value is not based on the full

available knowledge (namely that x = xobs) but only on the knowledge that

the observed result is in the set {x|dH0(x) ≥ dH0(xobs)} – the set of all results

that have greater or equal discrepancy to the null hypothesis. Therefore it

is not surprising that the p-value substantially overestimates the evidence

against the null hypothesis.

Even more embarrassing, for a fixed p-value (e.g. pobs = 0.05) and increas-

ing sample size n, the posterior probability of H0 will eventually converge to

1. Table 7.1, taken from Berger and Sellke 1987, illustrates that phenomenon

14Neither is it obvious that there is only one sensible choice for the probability measure
in the evaluation of {T (X) ≥ T (x0)}. If H0 is a composite hypotheses, Bayesians have to
choose between the prior or the posterior distribution of H0. Some even suggest further
calibration. See Bayarri and Berger 2000, Robins et al. 2000.

15Theorem 2 in Berger and Sellke 1987, 116.
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p-value n = 5 n = 20 n = 100 n = 1000
0.05 0.33 0.42 0.60 0.82
0.01 0.13 0.16 0.27 0.53

Table 7.1: The posterior probability of H0 : µ = 0 as a function of the
sample size n for fixed p-values when H1 : µ 6= 0 is distributed according to
a N(0, σ2)-distribution.

for some values of p and n.

The posterior probability converges against 1 because under the given

assumptions,

P (H0|X1, X2, . . . Xn) =

[
1 +

1√
1 + n

exp
n (Φ−1(1− pobs/2))

2

2(n+ 1)

]−1

(7.3)

n→∞−→ 1

where Φ is the cumulative distribution function of the standard normal dis-

tribution N(0, 1).16 Thus, a p-value cannot be interpreted regardless of the

sample size – the strength of the evidence which they express is quite sensitive

to the sample size. In particular, a p-value can be smaller than 0.05 and indi-

cate strong evidence against the null although the observed results favor the

null hypothesis over the alternative. This is also called the Jeffreys-Lindley

paradox.17 Even if a hypothesis if strongly favored over the alternative by

a series of observations (e.g. if P (H0|X1, . . . Xn) → 1), the p-value can be

extremely low and unfavorable to H0. This is clearly inadequate. It might

be illuminating to track the problem to its sources: the higher the sample

size, the more skewed the probability distribution of the sample mean under

H0 and the lower the p-value also for results that only minutely diverge from

H0.

Fourth, p-values depend on the set of results that could have been observed.

This has some awkward implications for scientific practice. Assume that a

malicious experimenter conducts an experiment with stopping rule τ1. After

observing data D, she discovers that the evidence against the null hypothesis

is not as strong as she would like to have it. What does she do? She might

collect more data, but instead of this cumbersome and potentially expensive

activity she has a comfortable shortcut: in her research report, she does

16Equation (7.3) easily follows from equation (1.1) in Berger and Sellke 1987, 113.
17See Lindley 1957, Jeffreys 1961, Good 1983.
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not report the true stopping rule τ1, but a modified stopping rule τ2 under

which D yields a lower p-value. As readers of a scientific journal, we want

to be protected against such tricks. The crucial point is that the malicious

experimenter did not manipulate the data: she was just insincere about her

intentions when to terminate the experiment.18 Using fake data involves

considerable risk for an experimenter: if replications fail to reproduce the

results, she will lose all her reputation. By contrast, she can never be charged

for insincerely reporting her intentions – they are out of reach when double-

checking the results. By a post-mortem manipulation of the experimental

design, every experimenter has some wiggle room for biasing the results in

favor of her preferred conclusion without taking any personal risk. Measures

of evidence which have this consequence should not be admissible. The

results of experiments and the strength of the observed evidence should be

replicable, but this condition is odd if the strength of the evidence depends

on the experimenter’s personal intentions.

Even if all experimenters were completely sincere (certainly an idealiz-

ing assumption), caring for stopping rules would severely restrict scientific

practice. First, it would be impossible to interpret data that were collected

without a definite plan how to conduct the experiment. We would have to

conjecture under which circumstances the experiment would have been ter-

minated, but that is very speculative work. Second, stopping rules can be

highly contrived and hard to specify: For instance, research funds might be

withdrawn or technical problems in conducting an experiment might unex-

pectedly occur. Then, the experiment would have to be terminated although

the proper statistical design did not account for this possibility. In fact, no

journal article that reports p-values (and is implicitly committed to the rel-

evance of stopping rules) ever bothers about fine-tuning the stopping rule

to the external circumstances under which the experiment was conducted.

In principle, one would have to consider all those factors in fixing the stop-

ping rule, but this is practically impossible. Empirical scientists do not take

the relevance of stopping rules as seriously as their widespread adherence

to the Neyman-Pearson framework of statistical inference suggests. In fact,

they have no other choice when they want to maintain ordinary experimental

practice.

Fifth and last, it is questionable whether we can at all meaningfully speak

18This argument extends a point of Edwards et al. (1963, 239) who stress the irrelevance
of the experimenter’s intentions to scientific inference.
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of ‘evidence against H0’ simpliciter, without recourse to explicit alternative

hypotheses. This is nothing error or Neyman-Pearson statisticians would do,

but p-values are frequently used for this task. The standard example for

this kind of reasoning is due to R. A. Fisher (1959) who investigated the

hypothesis that the stars are uniformly distributed on the sky, i.e. that the

chance that a star is in a particular area of the sky is proportional to the

size of the area. Fisher notes that near a particular star (Maia), there are

five other stars and believes such an event to be unlikely enough to rule out

the hypothesis of uniform distribution. The core of the argument consists in

‘Fisher’s disjunction’:

“Either an exceptionally rare chance has occurred, or the theory

[the null hypothesis, J.S.] is not true.”19

In other words, results that are very unlikely under the null hypothesis count

as strong evidence against the null hypothesis and justify dismissal. Note,

by the way, the connection to p-values: The more the actual result diverges

from the null hypothesis, the higher the p-value and the stronger, according

to Fisher’s disjunction, the evidence against the null. But Hacking (1965,

81-82) has convincingly argued that Fisher’s disjunction is fallacious. Under

the hypothesis of uniform distribution, every possible constellation of stars

is equally likely or unlikely. Thus, there are no ‘likely chances’, but each

possible event constitutes an ‘exceptionally rare chance’. If Fisher’s disjunc-

tion were correct, we would always have to reject the hypothesis of uniform

distribution as long as there are enough events involved.

An attempt to rescue Fisher’s contention from Hacking’s objections con-

sists in the interpretation that observing an event that is exceptionally rare

compared to other possible events is sufficient to rule out the hypothesis at

stake. But as Royall (1997, 65-68) has pointed out, such an arguments

cannot work either. First, measures of relative unexpectedness involve the

likelihood of results that were not observed, thereby depending on the sample

space and violating the objectivity conditions. We have already seen that

such a dependence poses severe problems for scientific practice – think of

the malicious experimenter. But there is a more specific problem, too, as a

simple variation of Fisher’s example illuminates. We would like to test the

hypothesis H0 that a particular coin is fair. To this end, we take a series

of i.i.d. Bernoulli trials and note the observed sequences of heads and tails.

19Fisher 1959, 39.
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Now, all sequences of heads and tails are equally likely under H0. Since no

sequences is favored over other sequences, it is not possible to reject H0 on

the basis of the relative unexpectedness of the observed result, even if the ac-

tual result is ‘HHHHHHHHHH’ (or a similarly extreme sequence). But this

is absurd since by all means, a sequence that consists only of heads seems

to provide evidence against the fairness hypothesis (or at least stronger ev-

idence than ‘HTTTHTHHTH’). The full data – i.e. the most fine-grained

partition of the sample space that we can make – cannot always be the right

statistic when testing statistical hypotheses.20 Hence, we have to individu-

ate the possible observations in a way that avoids the above counterexamples

and makes sense of Fisher’s disjunction. There, it appears natural to count

only the number of heads or tails that occurred in the trial, because we be-

lieve that the order of heads and tails in the sequence does not matter at

all and because this is the most compressed form in which we can represent

the informational content of the data. Only if the data are compressed to a

minimal sufficient statistic, ‘equivalent’ sequences as ‘HHHHHTTTTT’ and

‘TTTTTHHHHH’ correspond to the same observation and counterexamples

of the above type are avoided. Now, since the number of heads is a minimally

sufficient statistic with regard to the propensity ϑ of the coin to fall heads, we

can say that ‘HHHHHHHHHH’ is an exceptionally rare chance with regard

to the fairness hypothesis ϑ = 0.5. Thus, our best candidate for explaining

Fisher’s notion of an ‘exceptionally rare chance’ seems to be an event that

is relatively improbable compared to other events, where events correspond

to possible values of a statistic that is minimally sufficient with regard to

the parameter of interest ϑ. In other words, there is no exceptionally rare

chance as such – any such chance is relative to the choice of a statistic that

determines the way in which it is exceptional.21

But actually, introducing a minimally sufficient statistic into the explica-

tion of ‘exceptionally rare chance’ introduces implicit alternative hypotheses,

too. When relativizing unexpectedness to a parameter of interest, we have

committed ourselves to a specific class of potential alternative hypotheses –

namely those hypotheses that correspond to the other parameter values. In

20See Seidenfeld 1979a, 80. Seidenfeld also discusses Fisher’s disjunction, but under the
(equivalent) label of ‘significance tests’.

21In the present case, it appears at superficial sight that there can be only one parameter
of interest. But some model families have two or more parameters, e.g. mean and variance
in the case of the normal distribution. For instance, the sample mean is minimally sufficient
for the population mean, but not for the population variance.
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our example, this was ϑ 6= 0.5. When applying Fisher’s disjunction, we do

not judge the tenability of H0 ‘in general’, without recourse to a specific pa-

rameter or comparison to alternatives – we always examine a certain way the

data could be surprising. Thus, when applying Fisher’s disjunction, we are

asking specific questions about a parameter as ‘why that value of ϑ rather

than another one?’. The choice of the minimally sufficient statistic required

to apply Fisher’s disjunction reveals a class of intended alternatives. This has

some general morals: what makes an observation evidence against a hypoth-

esis is not its low probability under this hypothesis, but its low probability

compared to an alternative hypothesis. An improbable event is not evidence

against a hypothesis per se, but

“[...] what it does show is that if there is any alternative hypoth-

esis which will explain the occurrence of the sample with a more

reasonable probability [...] you will be very much more inclined

to consider that the original hypothesis is not true.”22

To summarize: Fisher’s disjunction and the inference from relatively unlikely

results to evidence is caught in a dilemma: Either we summarize various

possible results into one equivalence class. Then the choice of the test statistic

reveals implicit alternatives to which the hypothesis is compared. Or we

apply Fisher’s disjunction based on the most fine-grained available partition

of the sample space (i.e. the space of possible observations). But then, some

hypotheses (as the fairness hypothesis in the coin flip example) cannot be

tested at all with the help of Fisher’s disjunction. Thus, evidence has to

be a comparative concept in the sense that evidence against a hypothesis is

always evidence for another hypothesis.

So far we have presented a negative characterization of evidence and

arguments why error probabilities and degrees of severity cannot figure as an

adequate measure of evidence. For establishing how a measure of evidence

should look like, it is now time to introduce some more formal constraints on

measures of evidence. So far, it has become clear that a measure of evidence

must be comparative – it depends on the observed data x ∈ X and two

competing hypothesis H0, H1 ⊂ Θ. For reasons of simplicity, we restrict

ourselves to point hypotheses, i.e. H0 and H1 correspond to ϑ0 ∈ Θ and

ϑ0 ∈ Θ so that Ev : X × Θ × Θ → R. In his penetrating discussion of the

22William S. Gosset (“Student”) in private communication to Egon Pearson, quoted in
Royall 1997, 68.
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subject matter, Subhash Lele (2004) suggests a list of criteria from which I

pick the central ones:

Antisymmetry The evidence which x gives for ϑ0 and against ϑ1 is the

negative of the evidence x gives for ϑ1 and against ϑ0: Ev(x, ϑ0, ϑ1) =

−Ev(x, ϑ1, ϑ0). In particular, ∀ϑ : Ev(x, ϑ, ϑ) = 0.23

Reparametrization Invariance Reparametrizing a parameter space, e.g.

with the help of a map ψ : Θ → Ψ should not modify the strength of

evidence because such a reparametrization amounts to a mere mathe-

matical manipulation.

Data Transformation Invariance If g : X → Y is a bijective transforma-

tion of the data, x and g(x) induce the same evidence function (relative

to the distributions which ϑ0 and ϑ1 induce on Y ): Ev(x, ϑ0, ϑ1) =

Ev(g(x), g(ϑ0), g(ϑ1)).

Maximization On average, the value of Ev is maximized at the true pa-

rameter value: Eϑ0 [Ev(x, ϑ0, ϑ1)] < 0 ∀ϑ1 6= ϑ0.

Laws of the Large Numbers In the long run, Ev converges against its

expectation. In other words, Pϑ1-stochastically,

1/n[Ev(x, ϑ0, ϑ1)− Eϑ0 [Ev(x, ϑ0, ϑ1)]]→ 0.

By means of these criteria and a number of other reasonable constraints, Lele

is able to show that for two point hypotheses, the log-likelihood ratio

log
P (x|ϑ1)

P (x|ϑ0)

emerges as the optimal evidence function, up to normalization. Such an

understanding of evidence opens the way to representing data as evidence

and as a basis for scientific inference. A log-likelihood ratio greater than 2

(-2) then counts as strong evidence and a log-likelihood ratio greater than

4 (-4) as very strong evidence whereas the are [−1, 1]-area merely indicates

weak evidence. There are a lot of further fruitful applications – for instance,

23In the special case that ϑ0 and ϑ1 exhaust the hypothesis space, antisymmetry reduces
to the symmetry constraint c(H,E,K) = −c(¬H,E,K) in Crupi et al. (2007).
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Royall (2000) gives upper bounds for the probability of observing mislead-

ing evidence in a statistical experiment which can be phrased as bound-

ing Pϑ1(Ev(x, ϑ0, vt1) > K), K very large. This procedure is analogous to

the pre-experimental specification of error probabilities in a error-statistical

framework.

It is easy to see that the log-likelihood ratio merely depends on the likeli-

hood function of the data and thus satisfies the Likelihood Principle, leaving

no room for subjective distortion. Therefore, they are sufficiently objective

in order to be suitable for scientific communication. These observations do

not change when H0 or H1 are composite hypotheses. Admittedly, prior

probabilities appear in computing

P (x|H1) =

∫
ϑ1∈H1

dϑ1P (ϑ1|H1)P (x|ϑ1).

So testing becomes more subjective for stating the evidence for and against

composite hypothesis. But still, dissent about the strength of evidence can

always be tracked to different assignments of prior probabilities. Further-

more, objective and noncommittal priors (Jeffreys 1961) can often be used

to solve that problem. Typically, likelihood ratios are generalized into Bayes

factors:

B(H1, H0, x) :=
P (H1|x)

P (H1)

P (H0|x)

P (H0)
=

∫
H1

P (ϑ)P (x|ϑ) dϑ∫
H0

P (ϑ)P (x|ϑ) dϑ
. (7.4)

Despite the inherent subjective component in (7.4), Bayes factors provide

useful measures of evidence. Think again of the example at the beginning

of this chapter: In a repeated Bernoulli trial, we test H0 : ϑ = 0.5 against

H1 : ϑ > 0.5. Assume that H1 itself is uniformly distributed, i.e. according

to H1, ϑ ∼ U(0.5, 1). After twelve tosses, nine recoveries and three failures

have been observed. This means that the logarithmic Bayes factor in favor

of H1 over H0 is

logB(H1, H0, x) := log
P (H1|x)

P (H1)

P (H0|x)

P (H0)
=

∫
P (ϑ|H1)P (x|ϑ,H1) dϑ∫
P (ϑ|H0)P (x|ϑ,H0) dϑ

= log

2
∫ 1

0.5
dϑ

(
12
9

)
ϑ9(1− ϑ)3(

12
9

)
0.512

= 0.437.
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The Bayes factor indicates evidence for H1 against H0, but it is far from

indicating very strong or overwhelming evidence. Thus, the Bayes factor

(a generalization of the likelihood ratio) allows for a more fine-grained and

meaningful representation of statistical evidence than the result of Neyman-

Pearson tests (‘accept/reject’) or the p-values/degrees of severity whose prob-

lems we have realized by now. Despite their subjective components, likeli-

hood rations and Bayes factors are superior to p-values. Before bringing to

bear the results on the debate around design and stopping rules, I would like

to make some remarks on the epistemological function of p-values.

7.3 P-values revisited

Despite the frequently found misinterpretations, the ubiquitous use of p-

values in the empirical sciences suggests that there is something p-values are

good for. This brief section presents another application of p-values which is

more adequate than their (mis)use as measures of evidence. Since more than

two decades, statisticians have been researching on the connection between

p-values and Bayesian measures of evidence. Indeed, there is a compatibility

result when p-values are used in testing a hypothesis against specific alter-

natives so that a specific direction of departure from the null hypothesis is

distinguished. This situation is quite different from the one we encountered

in the previous section where point null hypotheses were tested against un-

specified alternatives. There, p-values performed quite poorly and overstated

the evidence against the null, inter alia. In the new type of situations, the

situation is not as bad as there. Again, we focus our discussion on a normal

distribution N(µ, σ2) with known variance σ2 and unknown mean µ. The

rivalling hypotheses are H0 : µ ≤ 0 and H1 : µ > 0.

Casella and Berger (1987) show that the p-value of with regard to H0,

Xn and T (x) := x provides a lower bound for the posterior probability of H0,

taken over a certain class of prior densities π that assign equal weight to both

hypotheses. In mathematical terms,

inf
π
P (µ ≤ 0|x0) = pobs(x0) := P (X ≥ x0|µ = 0), (7.5)

or equivalently,

1− pobs(x0) = sup
π
P (µ > 0|x0) (7.6)
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(Theorem 3.2. in Casella and Berger 1987, 108).24) In other words, under

suitable (and ‘impartial’) prior assignments, the null hypothesis is at least

as likely as the p-value indicates, and in some cases, this bound is almost

attained. Hence, p-values come much closer to the posterior probability

of H0 than in the case of testing the point null hypothesis µ = 0 against

the unspecified alternative µ 6= 0. This result also explains why Bayesian

posterior probabilities and p-values are often conflated in statistical practice.

In the one-sided testing problem, the p-value pobs(x0) = P (X ≥ x0|µ = 0)

sums up the probability of those values where the evidence in favor of H1 and

against H0, as measured by the Bayes factor, is greater than at the actually

observed value x0. In a similar vein, under a suitably narrow class of prior

distributions π and alternatives H1, p-values can be calibrated as to provide

lower bounds on Bayes factors (see Sellke et al. 2001):

inf
π
B(H1, H0, x) = −epobs(x) log pobs(x). (7.7)

Hence, we see how p-values can be calibrated as to provide lower bounds

for the strength of the evidence and the posterior probability of the null. In

practice, this can be very useful: instead of a cumbersome and computation-

ally expensive Bayesian analysis, a quickly performed computation of the

p-values gives a rough idea of whether the null hypothesis is severely shaken

by the data. The p-value is easy to calculate and avoids careful deliberation

about prior probabilities etc. Therefore, computing p-values can be a quick

and dirty way to make further calculations superfluous. For instance, if the

p-value is greater than 0.1, we know that the null hypothesis has at least

a probability of 0.1 so that it remains a serious candidate. Rightfully, it

is often stressed that the use of p-values has merely auxiliary character; as

soon as a full analysis is possible, they cannot play any role. So, although

p-values can give a rough idea about a the evidential content of the data,

they are only preliminaries to the computation of the actual strength of ev-

idence or a final judgment on the tenability of a hypothesis. In the latter

case, this is particularly salient because they merely provide lower bounds

for the posterior probability of the null hypothesis (respectively the evidence

against the null) where an upper bound would be required. Hence, although

no scientific report should cite the observed p-value in favor of rejecting the

24Casella and Berger even derive this result for any distribution family that is indexed
by µ that is (1) symmetric around zero and (2) has a monotonously increasing likelihood
ratio.



Chapter 7. Evidence and Design 189

null hypothesis (as it is often done, unfortunately), working with p-values

remains practically useful and has a heuristic value.25

7.4 Putative reductios

The preceding arguments have driven us towards the evidential, post-observational

irrelevance of experimental design: The measures of evidence to which our

deliberations led us satisfied the Likelihood Principle and thus the Stopping

Rule Principle, too. Nonetheless, error-statistical intuitions about stopping

rules are resilient – somehow they seem to matter in spite of all arguments

to the contrary.

Defenders of the inferential role of experimental design usually try to beat

the Bayesians in their own game. Bayesians are allegedly unable to detect

that an experiment has been designed as to reason to a foregone conclusion.

Imagine a football match between Neyman-Pearson Wanderers and Bayesians

United. The rules of the game are slightly amended: Neyman-Pearson Wan-

derers are granted the right to terminate the match at any moment they wish.

We are told the result of the match: Neyman-Pearson Wanderers won 1:0.

Now the coach of Bayesians United, due to his Bayesian conviction, seems

to be unable to note that the design of the match was unfair to his team

and favored the opponents. Since a Bayesian only listens to the data, the

unfair experimental design falls out of his inferential scheme and the coach

of Bayesians United has no incentive to complain, or so error statisticians

argue.

We believe, however, that this objection (and similar ones) can be rebut-

ted. First, it will be shown that the error-statistical reconstruction of the

Bayesian position is not entirely fair. Hence, the error-statistical counterex-

amples to the Bayesian position are not compelling. Second, Kadane et al.

(1996a, 1996b) have shown that it is not possible to reason to a foregone con-

clusion and to discredit a true hypothesis ‘for free’. Posterior probabilities of

a hypothesis can not be arbitrarily manipulated with the help of a stopping

rule. If we stop an experiment if and only if the probability of a hypothesis

falls below a certain threshold, there will be a substantial chance that the

25Recall however, that these results hold for p-values with a specified direction of depar-
ture. When no such direction is specified, p-values grossly overstate the evidence against
the null, and their interpretation becomes much more difficult, as it was shown by Berger
and Sellke 1987.
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experiment will never terminate.

Let’s start with the putative error-statistical reductio of Bayesianism.

Bayesians typically argue that Bayesian measures of evidence (Bayes factors,

log-likelihood ratios) are superior to error-statistical measures so that they do

not need to care for error-statistical arguments that point to the relevance of

stopping rules. Error statisticians then try to show that Bayesian measures

of evidence, e.g. the posterior probability, are also affected by the stopping

rule. Consider the following example (due to Mayo and Kruse 2001): We

sample from a normal distribution with variance 1, N(µ, 1). According to

the null hypothesis, the mean of the distribution is 0, i.e. H0 : µ = 0 which

is tested against the unspecified alternative H1 : µ 6= 0. Now, we decide to

take samples from the sequence (Xn)n∈N (Xk are i.i.d. standard normals)

until the inequality ∣∣Xn

∣∣ :=

∣∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣∣ ≥ 2√
n

(7.8)

is satisfied, i.e. until the absolute value of the sample mean is greater than
2√
n
. For any n, P (

∣∣Xn

∣∣ ≥ 2/
√
n|H0) ≤ 0.05. Denote this stopping rule by

the letter τ . It is straightforward to show that τ is almost certainly bound to

terminate, regardless of whether H0 is true or not. Therefore, τ terminates

at a certain N . For any such N ,

P (H0|XN) =
P (H0)P (XN |H0)

P (XN)
< P (H0)

⇔ P (XN |¬H0) > P (XN |H0)

as it can be shown by a straightforward calculation. In other words, the prior

probability of H0 exceeds the posterior probability if and only if the observed

outcome XN is more likely under the alternative hypotheses than under the

null.26

For example, if the prior distribution of the mean µ under H1 := ¬H0 =

µ 6= 0 is uniformly distributed, i.e. µ ∼ U [−∞,∞], the prior probability will

exceed the posterior probability regardless of the precise time point when

the experiment terminates. Hence, for such priors, the stopping rule ensures

that our degree in belief in H0 is going to decline. In other words: Given

the stopping rule, it is almost certain that we will end with a posterior

26XN is a sufficient statistic. Then, the sufficiency principle asserts that we do not need
to know further details about the data, see Birnbaum 1962.
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probability of H0 lower than the prior probability, and this should trouble a

Bayesian who asserts the irrelevance of stopping rules. Stopping rules allow

to manipulate the posterior probability and thus bias the rational degrees of

beliefs. The outlined experiment artificially decreases the rational degree of

belief, regardless of the precise outcome.

However, the example only works if the alternative hypotheses are uni-

formly distributed over the real line. Such an ‘improper’ prior distribution

is mathematically tractable, but strictly spoken, it is not admissible because

the probabilities do not add up to 1. This is the reason for the decrease in

the posterior probability. In fact, we have already shown that the test works

the other way round for proper priors: Assume that the parameter values

H1 : µ 6= 0 are distributed according to N(0, 1) and assume furthermore that

P (H0) = P (H1) = 0.5. Then, the stopping rule

τ : XN → N
(XN)N∈N 7→ min

N∈N
(XN ≥ 2/

√
N)

amounts to terminating at the fixed p-value 0.05. For this case, the Jeffrey-

Lindley paradox applies and for increasing n, the posterior probability of H0

actually goes to 1. Thus, for increasing n, the p-values remains low, but

the posterior probability increases, as witnessed by table 7.1. Hence, the

argument against the Bayesian neglect of stopping rules dissolves for the

case of proper priors.

But why did the argument work for improper priors? When improper

priors are used with an increasing number of samples, most of the posterior

mass will concentrate on the alternatives close to the observed sample mean:

for each observed sample mean, there is a corresponding ‘optimal’ hypothesis

which will be favored by the data. The comparison to the finite case illumi-

nates the problems of such priors. Assume that the alternative hypothesis

consists of a finite set of mean values µ 6= 0. Then the above stopping rule

does not necessarily lead to a lower posterior probability because the cutoff

point 1
2
/
√
N will, as N increases, be closer to µ = 0 than to the available al-

ternatives, thus favoring H0 over H1. The effect on which Mayo and Kruse’s

example builds is random sampling variation – even if H0 : µ = 0 is the true

distribution, almost certainly a wrong distribution that is sufficiently close

to H0 will be favored over H0. But if the space of hypotheses is finite or if

proper priors are used – and that are the realistic cases – the argument is no
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more applicable. Hence, the attempt to beat the Bayesian according to his

own standards, fails.

More generally, define a stopping rule τ2 so that it terminates as soon as

the posterior probability of H0 falls under a certain value q: Then, Kadane,

Schervish and Seidenfeld show that

P (τ2 <∞) ≤ P (H0)

1− q
< 1

P (τ2 <∞|H0) ≤ (1− P (H0))

P (H0)

q

1− q
< 1

which implies that we cannot manipulate posterior probabilities without ex-

posing ourselves to the risk of infinite sampling (P (τ2 = ∞) > 0). In other

words, the above equations illustrate the impossibility of ‘reasoning to a fore-

gone conclusion’.27 If a certain posterior probability has to be achieved, there

is a non-trivial chance that sampling will continue forever. Thus, posterior

probabilities cannot be deliberately manipulated.

7.5 A decision-theoretic perspective

Finally, we have to integrate our conclusions into a decision-theoretic frame-

work and to defend it against attempts to render it incoherent. Furthermore,

we have to explain in how far experimental design is scientifically relevant

and why it often appears to be evidentially relevant, too.

A statistical decision rule is a function from the set of possible obser-

vations (which depends on the particular experimental design) to a set of

actions, e.g. acceptance or rejection of a hypothesis. Abraham Wald’s (1950)

criterion of admissibility demands that no statistical decision rule be (weakly)

dominated by another one. A decision rule is dominated if it selects an infe-

rior outcome in all circumstances, regardless of ‘nature’s choice’ with respect

to the truth or falsity of the available hypotheses. Choosing such a rule would

decrease the payoff uniformly and thus count as irrational behavior, like in

game theory. This is not only important for Neyman-Pearson statisticians,

but also for Bayesians, because only admissible decision rules minimize the

expected risk relative to some prior distribution. Inadmissible rules are al-

ways inferior. Now we can see what has gone wrong in the football match: By

27See Kadane et al. 1996b, S283.
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agreeing to the modified rules, Bayesians United have committed themselves

to an inadmissible decision rule which is weakly dominated by the normal

rules. Bayesians United have put themselves in a worse position, regardless

of the actual course of events and have thus acted irrationally. The need for

admissible decision rules illustrates why Bayesians should pay attention to

experimental design, too. When we claim the ‘intuitive’ relevance of stopping

rules and design, we normally have such considerations in mind.

But what about the post-observational evaluation of the football match?

Didn’t the unfair setup bias the available evidence? A positive answer is

tempting, but wrong. A famous result of statistics, the Rao-Blackwell-

theorem, helps us to see why. Strangely enough, it is not cited in the debate

about stopping rules. The theorem guarantees that no information beyond

the data (more precisely, a sufficient transformation of the data) is able to

improve a post-experimental decision rule and to lower the risk associated

with a decision for or against a hypothesis.28 In particular, any statistical

decision rule that sensitively depends on the stopping rule can be improved

by eliminating the stopping rule dependency and conditioning on the data

only. Thus, such rules are weakly dominated and inadmissible. Information

about the experimental design must be irrelevant to a rational decision that

is made after seeing the results. Thus, the Bayesian position on stopping

rules can be saved from attempts to render it incoherent. In the football

example, the evidence or insight which the match delivers about the abilities

of the teams is not affected by the reasons for terminating the match. Note

that the match could have been terminated due to a sudden rainfall, too.

In a decision-theoretic framework, any post-mortem decision on which team

is the better one is just a function of the match observations, as a conse-

quence of the Rao-Blackwell theorem. Thus, the evidential irrelevance of the

experimental design agrees with the principles of rational choice.

Furthermore, the choice of an experimental design may help to minimize

costs when single trials are expensive, e.g. in medicine. Assume that the

surveillance of every trial person costs a substantial and fixed amount of

money. Then, we want to avoid an experimental design which advises to

continue sampling when the evidence in favor of a hypothesis is already over-

whelmingly strong. This might happen in a trial with fixed sample size, for

instance. Making additional trials would imply unnecessary costs so that

28This holds for a convex loss function – an assumption that is usually satisfied.
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Utility/Design zero costs Binomial design neg. Bin. design
true hypothesis H0 H1 H0 H1 H0 H1

decision for H0 100 0 88 -12 94 -6
decision for H1 0 50 -12 38 -12 38

Table 7.2: A sequential Bernoulli trial of H0 : p = 1/2 against H1 : p = 1/4.
Each sample is either a success or a failure, p giving the success probability.
The table shows the utility of a decision for H0/H1 (rows) when H0/H1 is
the case (columns). The left table neglects the experimental costs, the other
tables discount the gains by the expected sample size, each sample having
a fixed cost of 1. In the middle table, the sample size is fixed to N = 12
(Binomial design), whereas the right table fixes the total number of successes
to K = 3 (negative Binomial design).

there is, at last, a connection between experimental design and rational be-

havior. For this reason, the design of sequential trials has developed into

an art of its own (see Wald 1947, Armitage 1975). The power of the cho-

sen decision rule to discern the true hypothesis has to be weighed against

the costs of the specific design, usually measured by the expected number

of samples. We have to optimize the number of sequential trials relative to

the gain that a correct decision promises. Table 7.2 illustrates this point and

compares three utility matrices: in the left one, costs are zero whereas in

the latter two matrices, the gains are discounted with the expected number

of samples under two different designs (see appendix B for details). Notice

that the negative Binomial design is more efficient than the Binomial design

which is not admissible. Thus, it is a misunderstanding that Bayesians do

not care at all for experimental design: the loss function is crucially affected

by the possible outcomes, viz. the experimental design. But the relevance

of experimental design is purely a pre-observational one and does not affect

statistical decisions once the data have been observed.29

This point can be generalized: A Neyman-Pearson hypothesis test cor-

responds to a statistical decision rule. Assume that we have two Neyman-

Pearson tests with different characteristic error probabilities < α, β > and

< α′, β′ >. The admissibility criterion implies that no test should be weakly

dominated by the other one (i.e. α ≤ α′ and β ≤ β′). If both tests are

admissible, it will depend on the prior probabilities and the utility matrix

29Experimental design is also important for secure reasoning and robust inference (Staley
2004). Exploring this connection would, however, go beyond the scope of this article.
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which of the two tests we should prefer. Here we spot the connection be-

tween admissibility as a rationality constraint for statistical decision rules

and the significance of error probabilities: once the priors and the utility

matrix are fixed, the goodness of a decision rule can be assessed by means of

the error probabilities (details omitted). It is therefore a misunderstanding,

though a widespread one, that Bayesians are indifferent to error probabili-

ties – and I believe that much of the heat in the Bayes vs. Neyman-Pearson

debate is owed to that wrong perception of Bayesianism. Error probabilities

play a crucial role in the pre-experimental assessment of a decision rule and

experimental design is important for cost optimization in sequential trials.

Philosophers of statistics in the Neyman-Pearson tradition (e.g. Mayo 1996,

Mayo and Spanos 2006) are right to point that out, but when they go beyond

this concession and base a theory of statistical inference on error probabilities,

p-values or degrees of severity, they are wrong, as argued above. Admittedly,

many scientists might be reluctant to specify prior degrees of belief that are

required for a Bayesian analysis because ‘scientific objectivity’ might get lost.

But prior beliefs are relevant for rational statistical decisions and scientific

inference, so it is only fair and honest not to neglect them and to make them

explicit.

7.6 Summary

The debate about the relevance of experimental design and stopping rules is

blurred by the lack of clarity which kind of relevance is meant. Equivocation

and confusion results. Moreover, the debate is characterized by a mutual

deadlock. To resolve it, we have argued that the post-experimental, evidential

relevance of experimental design should be denied, for foundational reasons

as well as for the needs of empirically working statisticians.

In order to bring out that argument, this chapter has elaborated the

connections between the dispute about measures of evidence and the post-

observational relevance of experimental design. The conflicting positions in

the design debate also take different stands on measures of statistical evi-

dence. I have pointed out that Neyman-Pearson theory of statistical testing

is not able to deliver an adequate post-experimental measure of evidence. The

more comprehensive error-statistical framework tries to integrate Neyman-

Pearson theory into a philosophy of statistical inference that also provides

post-observational measures of concordance and dissent. However, such mea-
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sures (as degrees of severity and p-values) fall prey to numerous objections.

The three most important ones were: (1) p-values and degrees of severity

often overstate available evidence (2) some implications (as the dependency

on the sample space, i.e. the experimenter’s intentions) severely restrict sci-

entific practice and (3) it is not possible to measure the strength of evidence

against or for a hypothesis simpliciter as the (mis)use of p-values suggests.

On these grounds, we have aimed for a comparative measure of evidence

that is immune to the above objections, and a number of reasonable ade-

quacy conditions has led us to accepting the (logarithmic) likelihood ratio

and its generalization, the Bayes factor, as a suitable measure of evidence.

Consequently, p-values cannot count as genuine measures of evidence, but

in certain circumstances, they can still figure as heuristic devices for giving

mathematical bounds on measures of evidence and posterior probabilities.

The failure of p-values and degrees of severity implies that error-statistical

inferences (and Neyman-Pearson tests) are caught in the dilemma of either

denying the significance of post-experimental data analysis or drawing con-

clusions which do not help the practicing scientist, as ‘this procedure had a

reliability of 0.95’. Reiterating a point from the main part of the chapter,

scientists do not want to know how frequently such a procedure is successful,

but how much actual confidence they should lend to a hypothesis which was

accepted by a statistical test.

A corollary of the above consists in the post-observational irrelevance of

stopping rules and experimental design. This position can be coherently in-

tegrated into statistical decision theory, despite the Neyman-Pearson coun-

terarguments. Nonetheless, we have also emphasized the general scientific

relevance of experimental design. This is illustrated by the need for ad-

missible statistical decision rules and cost minimization in sequential trials.

Experimental design is indispensable for scientific inference, though in a more

narrow sense than Neyman-Pearson statisticians believe.

There is a more general moral, too, which was mentioned in passing:

error-statistical inference is not as objective as its proponents believe. The

charge of subjectivity raised against the Bayesians turns out to be a boomerang

since the evidential relevance of the sample space and the stopping rule intro-

duces a source of subjective bias and distortion. Even worse, Bayesians are

honestly subjective whereas error statisticians are subjectivists who pretend

to be objective. Bayesianism is a subjective theory of inductive inference,

but its adherence to the Likelihood Principle also makes clear that it is able
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to give an objective theory of evidence. Moreover, the Bayesian’s subjectivity

can always be tracked to its sources, namely the assignment of prior prob-

abilities, whereas the subjectivity of the error statistician is not accessible

to open discussion (see the example on page 180). By eschewing the use of

rational credences and subjective probabilities in statistical inferences, the

error-statistical approach deprives itself of the ability to answer the central

questions in data analysis.
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Chapter 8

Summary and Conclusions

This book has compared and discussed various ways to model inductive infer-

ence and to capture confirmation, support and evidential relevance. At the

beginning, however, we had to connect confirmation theory – the theory of

valid inductive inferences – with the principal problem of justifying inductive

inferences (chapter one). Famously, David Hume showed that the standard

argument for the validity of induction which invokes the past successes of

inductive reasoning is itself an inductive argument so that the justification

becomes circular. Indeed, the search for a meta-principle that justifies the

induction principle opens the door to the classical justification trilemma:

regress (how can we justify such a meta-principle?), circularity, or abort. A

possible reply that abandons the search for such meta-principles consists in

epistemic reliabilism: We are justified in making inductive inferences as long

as they are factually reliable and produce more true than false beliefs. Nel-

son Goodman (1983) pointed out, however, that the crucial question is not

whether induction is a reliable principle but which kind of induction is reli-

able and makes more correct than incorrect predictions. The famous ‘grue’1

example illuminates this point – from a purely logical point of view, the in-

ference to ‘all emeralds are grue’ conforms to the principles of induction as

much as the inference to ‘all emeralds are green’. Both hypothesis are incon-

sistent with each other, and we strongly feel that only the ‘green’ hypothesis

is inductively supported. Goodman convincingly shows that confirmation-

theoretic attempts to capture the relevant difference between the ‘green’ and

the ‘grue’ predicate in purely formal terms are doomed. The task of discern-

1Recall that something is grue if and only if (1) it is green and has been examined in
the past (before t0) or (2) it is blue and has not been examined in the past.
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ing inductively projectible predicates falls outside the scope of confirmation

theory. So confirmation theory has to presuppose a set of projectible predi-

cates. Only then, it can extract valid rules of induction from our inductive

practice and formulates those rules in a way that they serve in turn as a cor-

rective for inductive practice. A proper confirmation theory should mirror

paradigmatic cases of confirmation in science as well as provide guidelines

for assessing the impact of evidence on theory and vice versa. Such a project

is sensible even in the face of the principal unresolved difficulties with induc-

tive inference because very often, we know that the predicates at hand are

lawlike and confirmable. On the other hand, we are still uncertain how to

describe the relation between theory and evidence. In so far as we pursue

a formal account of confirmation, our project is explicative – the vague and

informal concept of confirmation is replaced by a similar, but fruitful and

exact concept (see Carnap 1950, §3).

Quite obviously, confirmation in science is a very versatile and multi-

faceted concept. Kepler’s laws of planetary motion are confirmed by obser-

vations of planetary motions on the nocturnal sky and the wave nature of

light is confirmed by experimental scrutiny in Young’s double-slit trial. Dar-

win found evidence for his theory of evolution by excavating fossils in South

America. Eddington successfully checked the predictions of Einstein’s Gen-

eral Theory of Relativity during the 1919 eclipse. Statistical regularities as

Mendel’s laws of inheritance are confirmed in controlled, randomized experi-

ments with a large number of trial plants. All those cases are very diverse so

that there cannot be a single theory of confirmation – rather we need several

accounts of confirmation, corresponding to the different needs of empirical

scientists. Two grand traditions characterize the field of confirmation theory:

the qualitative and the quantitative (usually Bayesian) tradition. Proponents

of qualitative accounts as Clark Glymour (1980a) deny that quantitative,

probabilistic accounts are applicable to a wide range of cases of confirmation

in the history of science because the probabilistic superstructure which those

accounts impose fails to illuminate the intricate structure of confirmatory

arguments. On the other hand, purely qualitative accounts are not able to

model statistical regularities and to quantify which hypotheses are better

confirmed than others. All accounts of confirmation agree, however, that

background assumptions play a crucial and autonomous role in assessing the

relationship between theory and evidence. Hence, confirmation should be

modeled as a three-place rather than as a two-place relation.
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Since the mutual objections to qualitative and quantitative confirmation

theory are all eligible to a certain degree, both approaches have to be dis-

cussed in more or less detail in order to elicit in how far they are able to

give a convincing explication of inductive support. I started with qualitative

accounts of confirmation (chapter two) – a field that is characterized by two

major approaches: inductivist approaches as Hempel’s satisfaction criterion

and the hypothetico-deductive approach which goes back to Popper’s model

of prediction, test and empirical corroboration. Hempel’s satisfaction cri-

terion suffers under a lot of technically-minded objections (pp. 27-29), but

that was not even the main problem. In his [1945] 1965, Hempel gives a con-

vincing analysis of the raven paradox, pointing out that tacitly introduced

differences in the background knowledge are responsible for misleading in-

tuitions and the paradoxical appearance of the problem. Indeed, relations

of confirmation and support are in general sensitive to adding surplus back-

ground knowledge. This is one of the main differences between deductive and

inductive logic – contrary to deductive inference, inductive inference is not

monotonous. Unfortunately, Hempel does not integrate that insight into his

own criterion of confirmation – the satisfaction criterion respects monotony.

Thus, it does not only fail to give a convincing reading of the raven para-

dox, it also fails whenever relations of confirmation are changed by adding

substantial background information.

The second tradition – hypothetico-deductivism or briefly, H-D confirma-

tion, – is based on the idea that theories make predictions with the help of

auxiliary hypotheses and that those theories are confirmed just in case those

predictions are indeed observed. In other words, this model of confirmation

describes how hypotheses successfully survive experimental tests where the

predictions are derived from the hypothesis under test plus some hypotheses

in use. This account of confirmation has, however, longstanding problems to

correctly describe evidential relevance as the tacking paradoxes make clear: If

E H-D confirmsH, then E also H-D confirms H.X for an arbitrary X because

E is still logically entailed by H.X. But in general, E is not relevant at all

to X. Several attempts to solve these problems failed. Only in more recent

works by Schurz (1991) and Gemes (1993) satisfactory answers have been

found. Nevertheless, the latter suggestions are deficient in an important re-

spect, too, namely the confirmation of conjunctively composed hypotheses.

Schurz’s and Gemes’s models of H-D confirmation often imply that if E1

confirms H1 and E2 confirms H2 then E1.E2 confirms H1.H2, too. In a wide
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range of cases where scientific confirmation is modeled, such a reasoning is

misguided, as demonstrated in several examples. In particular, the intuition

that instances figure centrally in the confirmation of a hypothesis gets lost

in that scheme of inference. Therefore I make a new proposal that connects

the confirming power of instances with the hypothetico-deductive tradition:

the falsificationist criterion of confirmation.2 Then, I show that this falsifica-

tionist proposal resolves the tacking paradoxes as well as the problems with

the confirmation of composite hypotheses, unlike any other proposal. Due to

its simplicity and its combination of instantial and deductivist views about

confirmation, I believe the falsificationist criterion to be the most advanced

and accomplished criterion for qualitative confirmation.

Scientists often want to confirm or to refute theories as a whole – an

endeavor that is also motivated by the theory-ladenness of observation and

the lack of theory-independent neutral background knowledge (Kuhn 1962).

Thus, there is demand for a model of theory confirmation that supervenes

on relations of evidential relevance between parts of the theory and observed

evidence. Such a model, called bootstrap confirmation, has been developed

by Clark Glymour (1980a): theories are confirmed by deductive moves from

evidence plus parts of the theory to other parts of the theory. However,

several technical objections (Christensen 1983, 1990) have cast doubt on the

feasibility of Glymour’s approach – the relationship of evidential relevance is

not properly explicated. Two principled answers are possible: Either we con-

tent ourselves with bootstrap confirmation as a model of coherence between

theory and evidence, or we make some technical modifications, replacing

Hempel’s satisfaction criterion in the bootstrap account by the falsificationist

criterion. I pursue the latter road and show how the falsificationist criterion

is able to rescue bootstrap confirmation and to counter Christensen’s objec-

tions for a suitably modified account of bootstrapping. Thus, we obtain a

viable account of bootstrapping which could be expanded in future work.

Nevertheless, all accounts of confirmation have to defend themselves against

the Duhem-Quine objection (chapter three). Duhem (1914) elaborated that

falsification of a hypothesis is only as reliable as the auxiliary theories used

in the falsification of that hypothesis. Quine (1961) extended this obser-

vation to the epistemological tenet that there are no relations of evidential

2This criterion adds the requirement that the negation of the evidence relevantly en-
tails a local restriction of the negation of the hypothesis. Here, ‘relevant entailment’ is
explicated by Ken Gemes’s content part relation.
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relevance between specific hypotheses and specific pieces of evidence – our

scientific theories are instead revised by considerations of equilibrum affect-

ing the entire field of research. I believe that it is possible to accept Duhem’s

point without giving in to Quine’s contention: Admittedly, a piece of evi-

dence does not only affect the hypothesis under test, but also the hypotheses

in use. But generally, the degree of (dis)confirmation is quite different. Thus,

the Duhem-Quine problem can be resolved in the framework of a quantitative

theory of confirmation.

Quantitative accounts of confirmation usually explicate confirmation as

increase in rational degree of belief in a hypothesis. To this end, chapter four

has introduced a calculus for rational degrees of belief which are conceived as

judgments about the fairness of hypothetical bets. Then it was demonstrated

that this calculus conforms to the axioms of probability. This result, man-

ifested in the Dutch Book theorems, is of twofold importance: On the one

hand, it furnishes the calculus for degrees of belief with a tractable and well-

developed mathematical theory, on the other hand, it forges a natural link

between quantitative confirmation theory and statistical regularities which

are expressed in the theory of probability. The interpretation of probabilities

as rational degrees of beliefs constitutes the core of Bayesianism. Here, we

have discussed the miscellaneous rationality constraints which the varieties

of Bayesianism impose on rational credences. By the ‘increase in rational cre-

dence’ rationale, Bayesianism is naturally extended to a quantitative theory

of confirmation which allows us to tackle the Duhem-Quine objection and

to show that hypotheses under test and hypotheses in use can be supported

to different degrees. However, we require measures of support to make that

solution explicit, and this is the main topic of chapter five. A large set of

measures of support that are well-known in the literature fails to satisfy mild

adequacy criteria and falls through the grid. After consecutively narrowing

down the list of admissible measures, the remaining measures explicate two

quite different conceptions of confirmation and support: First, confirmation

as a generalization of logical entailment and strength of an inductive ar-

gument, corresponding to a structural relationship between hypothesis and

evidence. The log-likelihood measure l and the Crupi-Tentori measure z ex-

emplify that conception. Second, confirmation as impact of the evidence on

the epistemic status of the hypothesis and as actual increase in credibility.

This is captured in the difference measure d. Both aspects are closely related

to other virtues: posterior credibility of a hypothesis and informativeness of
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evidence. The second conception is, of course, highly contingent on the prior

probability of the hypothesis which merely plays a subordinate role in the

first explication. If there is at all a distinction between confirmation theory

and inductive logic, we can locate it at this point: the analogy to deductive

logic and the focus on the strength/validity of an inductive argument is typ-

ical of inductive logic whereas confirmation theory is more interested in the

actual relevance of evidence for the tenability of a specific hypothesis. To

my mind, it depends on the specific context of application which explication

of inductive support should be preferred. To the best of my knowledge, this

context-dependency of measures of support has not been elaborated in the

existing literature. The context-dependency also transfers to the problem of

old evidence where the way to resolve the problem depends on the concept

of confirmation which one has in mind.

The most interesting and fruitful domain of application for quantitative

confirmation theory consists in statistical regularities since statistical meth-

ods have recently made rapid progress in the empirical sciences (chapter six).

Many physical and social processes are so complex that only the explicit in-

corporation of uncertainty and the use of probabilistic models are able to

deliver adequate predictions of future events. Besides, the amount of avail-

able data has exponentially increased over the last decades, increasing the

need for statistical analysis. Such a phenomenon is the more pronounced the

more applied the field of inquiry. Since the application of statistical methods

is nowadays pervasive in most empirical sciences, there is an increased de-

mand for a thorough analysis of the foundations of statistical inference. Nat-

urally, the Bayesian conception of inductive inference can be transferred to

statistical inference, too. However, we recognize that mainstream Bayesian-

ism, due to the subjective assignment of prior probabilities, cannot deliver a

fully objective theory of inductive inference which is desired by many scien-

tists who have to sell their results to peer-reviewed journals and fundraising

agencies as ‘fully objective’ and ‘beyond the scope of sustainable subjective

disagreement’. Of course, it is possible to ‘objectify’ Bayesian inference –

the Maximum Entropy Principle constitutes the most prominent attempt.

But the Maximum Entropy Principle represents uncertainty (as opposed to

risk) and lack of information in specific ‘informationless’ prior distributions

– an endeavor against which many criticisms can be raised (e.g. Seidenfeld

1979b, 1986). Be this as it may, although Bayesianism is by and large a

subjective theory of inductive inference, its account of statistical evidence
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need not be equally subjective. Bayesian measures of statistical evidence as

Bayes factors and (log-)likelihood ratios conform to Birnbaum’s (1962) Like-

lihood Principle which asserts that all statistical evidence is just a function of

the likelihood of the observed data under the competing hypotheses. Thus,

subjective factors are ruled out on the whole.3

Although the Likelihood Principle is equivalent to the conjunction of two

plausible elementary principles, most statistical practitioners (and philoso-

phers of statistical inference) deliberately choose to violate it. Sociological

factors put aside, the rationale for this decision consists in the conviction that

valid inductive inference is characterized by the use of reliable procedures, i.e.

procedures which generate correct conclusions in the vast majority of cases.

This reliabilist approach to statistical inference is best articulated in error

statistics (Mayo 1966, Mayo and Spanos 2006) – the lower the probability

that a decision procedure errs, the more we should be confident to accept the

result. The error-statistical and the Bayesian approach disagree on the ques-

tion how to explicate statistical evidence, and the seventh chapter revolves

around this question and connects it to the relevance of experimental design,

i.e. the plans of an experimenter when to terminate a sequential trial.

The error-statistical concept of evidence is expressed in quantities as er-

ror probabilities, p-values, degrees of severity and significance levels. As

measures of evidence, those quantities have several serious drawbacks, some

of them located on a mathematical level whereas others are of conceptual

nature. In particular, all error-statistical measures of evidence are sensitive

to experimental design. This severely restricts scientific practice since those

measures can be manipulated by insincerely reporting intentions about con-

duct and termination of an experiment without biasing the data. Therefore,

those measures of evidence are not admissible which implies the evidential ir-

relevance of stopping rules and experimental design. Although the latter con-

clusions appear to be vulnerable and open to objections, a decision-theoretic

perspective vindicates their soundness. However, it would be premature to

infer from the evidential irrelevance of stopping rules, experimental design

and error probabilities to their pre-experimental irrelevance – in fact, even

for a Bayesian, error probabilities and experimental design affect the conduct

of an experiment and the choice of a decision rule. I have merely defended

3Notably, this claim cannot be fully maintained for composite hypotheses because the
relative weight of the single hypotheses has to be specified. But this is not only a problem
for Bayesians, but also for non-Bayesians.
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the claim that after observing the experimental results, those factors cannot

play any inferential role – all that they could tell us is already contained in

the observations.

Moreover, I have argued for a comparative understanding of statistical ev-

idence. Thus, the task of finding a suitable measure of support which vexed

us in chapter five has been replaced by the task of finding a suitable mea-

sure of evidential favoring, i.e. finding a quantity that measures to which

degree observations favor a hypothesis over another one. It was already ar-

gued in chapter five that those questions are not coextensive. Bayesians

often try to reduce evidential favoring to evidential support, but it has been

argued that not all objections against specific measures of support (e.g. the

log-ratio measure r) transfer to the induced measures of evidential favor-

ing. On the contrary, a measure of evidential favoring that corresponds to

a problematic measure of support (namely r) is the only one that satisfies

a number of reasonable adequacy criteria (see Lele 2004 and the results in

chapter seven). Adequacy criteria for measures of inductive support differ

from criteria for measures of evidential favoring, corresponding to their differ-

ent epistemic functions: While evidential support is especially important in

situations where few or no definite competitors to the hypothesis under test

can be identified, evidential favoring becomes central whenever there are var-

ious or many competing hypotheses – a situation characteristic of statistical

reasoning. Therefore it is not surprising that statistical confirmation theory

focuses on evidential favoring (chapter seven) while non-statistical confirma-

tion theory (chapter two, three and five) focuses on evidential relevance and

support.

In the remainder, I would like to sketch some more general conclusions

and mention open questions for future research. First, the foundational su-

periority of statistical inference that complies with the Likelihood Principle

over the error-statistical competitors suggests that the search for a universal

and objective account of inductive inference that gives a sound explication

of statistical evidence may be in vain. Subjective elements are required to

structure complex composite hypotheses and to assign relative weights to the

single elements of such a composite hypothesis. Such a subjective approach

might look undesirable since the pursuit of absolute objectivity is abandoned.

But first, assessing composite hypotheses without knowing the (subjectively

fixed) relative weights of the single parts is just impossible. For instance,

the less credible we find a hypothesis a priori, the less relative weight should
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it have in a composite hypothesis to which it belongs. Second, subjective

assignments of prior probabilities can express scientific expertise, too, and

ultimately, it is only logical that the premises of an inductive inference – the

prior opinions – affect the result, too. Thus, we should no longer discard

Bayesian inference on the grounds of its subjectivity – first, there is no sensi-

ble alternative and second, subjectivity need not be a vice. Clearly, the more

complex matters get and the more competing hypotheses are involved, the

less can qualitative accounts do the job, and even the falsificationist criterion

comes to its limits, due to its lack of a quantitative dimension. Those criteria

are valuable for modeling confirmation in the history of science, but they fail

to be applicable to modern statistical reasoning.

Second, it is interesting to transfer the results on Bayesian and error

statistics to the thesis of epistemic reliabilism: Agents that entertain belief

X are justified if and only if that belief was generated by a reliable causal

process, i.e. a process that tends to produce much more true than false beliefs

(see Goldman 1979). In a similar vein, error statistical methods as confidence

intervals justify conclusions by the reliability of the belief-forming procedure

(here: the method used to construct the confidence interval). It is, however,

unclear whether such a justification really helps us since we are not inter-

ested in the reliability of statistical methods that lead to a result R (e.g. a

specific confidence interval) but in the actual correctness of R and the ques-

tion whether we can put confidence in R and base our decisions on the belief

that R is true (see the Pratt quote on page 174). Rational decisions are –

this is another result of statistical decision theory – solely based on posterior

probabilities. Mathematically, it is impossible to infer from the reliability of

a method that yields the result R to a rational posterior credence in R. This

insight falls back on epistemic reliabilists as long as they want to maintain

a link between epistemic justification and rational decisions. Two related

issues that are suitable for further research deserve mention: First, the epis-

temological debate fails to consider and to examine the contrast between

counterfactual reasoning (which is exemplified in reliabilism) and reasoning

that is merely based on actual observations (as stated in the Conditionality

Principle). In particular, it is exciting to see whether the arguments that were

given for inductive reasoning according to the Likelihood and Conditionality

Principle directly count against epistemic reliabilism.

Third, statistics, the rapidly developing science of inductive reasoning,

deserves more attention from philosophical perspective. For a long time,
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statistics has been neglected by philosophers, Teddy Seidenfeld and Deborah

Mayo being notable exceptions. It seemed to be either a part of mathematics

or an appendix to the natural sciences, and the special role of statistics be-

tween the poles of inductive practice (science) and foundational rigor (math-

ematics) has not been acknowledged from a philosophical perspective. Most

of the literature on the statistical foundations of inductive inference has been

written by statisticians, among them people like James O. Berger or Richard

Royall who show a surprising openness to philosophical and methodological

questions (actually, some issues are sometimes explicitly described as ‘philo-

sophical’). Time is ripe that these issues are resumed by philosophers in

order to initiate an intense and fruitful exchange with statistical practition-

ers. In particular, the confusion about p-values and other statistical methods

in the empirical sciences clearly asks for a methodological clarification which

in turn calls for philosophical expertise. Moreover, the foundational work

on the principles of inductive inference that has been done in statistics (e.g.

Birnbaum’s derivation of the Likelihood Principle) has not yet been fully rec-

ognized in the philosophical community. Finally, the topic of chapter seven,

the inferential relevance of experimental design, gains social relevance in the

context of evidence-based decisions. Politicians often base their decisions on

competent scientific advice (at least they are supposed to do so), and those

advisors should be able to discern which factors (e.g. experimental design)

are relevant to the evidence which an experiment yields.

For all these reasons, I believe that the most interesting and exciting open

questions about inductive reasoning are found in statistics and not in clas-

sical confirmation theory or inductive logic although the latter can certainly

give fruitful impulses. Among those open questions are, for example: How

can the methodology of model analysis and selection be characterized from

a philosophical perspective? In particular, what is the relationship between

simplicity, goodness-of-fit and overall adequacy of a model? What is the

function of relative unexpectedness and surprise in a model selection analy-

sis? How do statisticians deal with the old evidence problem? Another major

and almost completely neglected issue is the inferential role of nonparamet-

ric reasoning – statistical techniques that do not take specific (parametric)

families of distributions as given and instead rely on ‘qualitative’ constraints

(such as the expectation value and the variance of the unknown distribution).

This book stayed in the realms of parametric statistical models, partly for

reasons of space, but nonparametric reasoning is actually a fast-growing and
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important kind of statistical inference which has to be examined in future

work.

A lot of question has been left open and some exciting issues could not

even be discussed in the relative brevity of this book. Other problems could

have been scrutinized in more depth. Nevertheless I hope that the reader has

gained some illuminating insights into the principles of inductive inference

and realized the central position of this field of research in philosophy of

science and beyond.
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Appendix A

Proof of the Dutch Book
theorem

We sketch the proof of the Dutch Book theorem here – readers without

interest in the mathematics can skip it, those with interest in the details

may have a look at Kemeny (1955) or Skyrms (1980). We start with the

first axiom. If any tautology were assigned a degree of belief less than 1,

the associated betting odds would be greater than 1 (because probability

p is mapped to fair betting odds 1/p). But this would allow to bet on a

tautology and to get back more money than the stake. This offers a riskless

gain to the bettor and is therefore no fair bet.

Now we come to the second axiom. Assume first that P (A) +P (¬A) < 1

and that neither A nor ¬A is a tautology. Then, by a series of equivalent

transformations, it follows that(
1

P (¬A)
− 1

)−1

<
1

P (A)
− 1 (A.1)

Now, choose a y so that

1
1

P (¬A)
− 1

< y <
1

P (A)
− 1 (A.2)

Such a y exists because of (A.1). Now, we propose a following system of fair

bets corresponding to the probabilities for A and ¬A (table A.1):

In other words, we bet on A with stake 1 Euro and on ¬A with stake

y Euro, where the return is given by the probabilities on A and ¬A and

the associated betting odds. Either A or ¬A has to occur, by the law of
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〈A | 1 | 1/P (A)− 1〉
〈¬A | y | y/P (¬A)− 1〉

Table A.1: A system of bets.

〈A1|P (A1)|1− P (A1)〉
〈A2|P (A2)|1− P (A2)〉
〈A3|P (A3)|1− P (A3)〉
. . .〈
¬(∨n∈NAn) | P (¬

∨
n∈NAn) | 1− P (¬

∨
n∈NAn)

〉
Table A.2: Another system of bets.

the excluded middle. Regardless of whether A or ¬A occurs, the bettor is

guaranteed a positive net return. Indeed, if A occurs, the bettor receives

1

P (A)
− 1− y > 0 (A.3)

due to the second inequality in (A.2). If ¬A occurs, the bettor receives

y

P (¬A)
− 1− y = y

(
1

P (¬A)
− 1

)
− 1 > 0 (A.4)

due to the first inequality in (A.2). Hence, equations (A.3) and (A.4) show

that the proposed system of bets promises a safe win for the bettor if he

bets according to the ‘fair’ odds. But then, the game is no longer a zero-sum

game and the odds have not been fair. A similar argument can be made if

P (A) + P (¬A) > 1. Hence, the second axiom of probability is mandatory

for degrees of belief if Dutch Books are to be avoided.

Finally, the third axiom. Consider a series of mutually exclusive events

A1, A2, A3, . . .. Now we construct the following system of individually fair

bets (table A.2). The system is so designed that exactly one of the bets is

going to win in any case. Hence, the net return R of the bettor is independent

of the course of events and identical to

R = 1−
∑
n∈N

P (An)− P (¬ ∨n∈N An)

= 1−
∑
n∈N

P (An)− 1 + P (∨n∈NAn)

= P (∨n∈NAn)−
∑
n∈N

P (An)
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Now, assume that P (
∨
n∈NAn) >

∑
n∈N P (An), in violation of the third Kol-

mogorov axiom. Then the system of bets in table A.2 cannot have been fair

since it guarantees the bettor a positive net gain. Hence, a Dutch Book has

been construed. Similarly, if P (
∨
n∈NAn) <

∑
n∈N P (An), the above system

will yield a positive net gain for the bookie, with equally devastating conse-

quences. Violating the third axiom of probability allows the construction of

Dutch Books. Hence, all three axioms of probability have to be obeyed when

Dutch books shall be avoided. �
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Appendix B

Sequential trials: details for
table 7.2

In a sequential trial, the experimental costs have to be deduced from the

total utilities. If costs are zero, the utility matrices are the same for each

experimental design. Assume now that each sample entails fixed costs. In a

fixed sample size experiment with N = 12, the same number is deduced from

each element of the matrix, see the middle columns of table 7.2. Finally,

sampling might terminate after a fixed number of successes K. Then, the

expected number of samples N(Hi) under the competing hypotheses H0 :

p = 1/2 and H1 : p = 1/4 is

N(H0) = K +K
1− pH0

pH0

= 2K = 6

N(H1) = K +K
1− pH1

pH1

= 4K = 12

This explains the numbers in the right part of table 7.2.
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De Finetti, Bruno (1937): “La prévision: Ses lois logiques, ses sources objec-

tives”, Annales de l’Institut Henri Poincaré 7, 1-68.
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Hájek, Alan (2003): “What Conditional Probability Could Not Be”, Synthese

137, 273-323.
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