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Introduction

This thesis divides into four parts. The first chapter intro-

duces my part of contribution to economic theory. I describe

and motivate the questions that this branch in general aims

to give answers to and those questions that I ask in the chap-

ters that follow. I present the methodology I apply and the

results I obtain. I close the first part by relating my contribu-

tions to the literature. The remaining three chapters contain

my contributions that are all selfcontained and independent,

but connected by the same evolutionary perspective.

I.1 Game Theory

The subject of this thesis is Evolutionary Game Theory,

which is a section of Game Theory. To give a brief intro-

duction to the theory of games I describe the methodology

and motivate the questions to which a response can be re-

vealed by game theory.

A game is a setting in which several agents strategically in-
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teract. An agent represents an economic or social entity that

takes decisions, balances reasons for distinct alternatives, or

calculates the risk of accepting or rejecting an offer. An en-

tity can differ with respect to the abstraction of the model

under consideration: in one setting, the agent can represent

a firm, which competes with other firms – the agent then

seeks to maximize the profits of the firm given the output-,

quality- or price-choices of the other firms. In a different set-

ting, the agent may represent a firm’s manager has to decide

on the level of efforts to exert, given a known reward scheme

and the choices of his colleagues. In a completely different

setting, an agent can represent an individual who attaches a

value to the completion of a public project – as for example a

bridge. The agent has to determine the amount of money she

is willing to pay for that bridge, given that she knows other

individuals who also would value the bridge. For any setting,

the game theorist specifies the relevant and plausible level of

aggregation and defines the set of decision taking entities:

the players. In terms of game theory, the alternative op-

tions among the player can choose is called the set of strate-

gies. Several players strategically interact, if their choices

have joint consequences: when evaluating, which strategy to

choose, a player has to consider the strategies chosen by other

players, because they also are relevant for the consequence.

A complete description of a game in normal- or strategic

form consists of the set of players, the set of their strate-

gies and a representation of the players’ preferences over the
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set of consequences. It is a common assumption, that the

preferences satisfy three standard axioms1 and hereby can

be represented by a utility function that assigns a real num-

ber to each possible tupel of strategies for each player. The

preferences, and therefore the utility functions of the players

derive from some plausible economic or social interpretation

of the situation that is to be modelled. However, game the-

oretic methodology does not require that these preferences

relfect or neglect particular emotions or ways of thinking, as

selfishness or altruism, spite or goodwill, as long as the pref-

erences satisfy the three beforementioned axioms. However,

given the preferences, the concept of game theory requires

different degrees of rationality of the agents. Before describ-

ing the methodology of game theory and the questions that

game theory can respond to, I mention games in extensive

form. If a player knows the strategic decision of some other

players before she takes her own decision, the game exhibits

a sequential structure. Games with and without sequential

structure can yield strongly diverse predictions. My thesis is

focussed on simultaneous decisions.

Suppose agents choose the optimal strategy given their in-

formation on the strategy choice of all other players. A game

theorist calls such an agent rational. A further assumption is

that each agent knows that all other agents are rational, and

1The three axioms are Completeness (x � y ∨ y � x ∀x, y ∈ X),
Reflexivity (x � x ∀x ∈ X) and Transitivity (x � y, y � z ⇒ x �
z ∀x, y, z ∈ X).
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that each other agent knows that all other agents know that

the other agents are rational – and so on. This informational

structure is referred to as common knowledge of rationality

(Aumann (1976)). Given a game in normal form, game the-

ory asks “given that each player chooses a particular strat-

egy, does any player have an incentive to deviate from her

decision?” A tupel of strategies in which each player is con-

fident with the selected decision is called Nash-equilibrium.

This is a situation in which a game theorist expects that

the economic entities maintain the selected alternatives. If

agents have access to randomized strategies, a Nash equilib-

rium exists for any finite game in normal form.2 Moreover, a

question of interest concerns stability: at a given equilibrium,

do the players support this equilibrium, if they expect other

players to make an error with small probability? Do play-

ers persist to the equilibrium, if the expected consequences

are slightly different? Implicetely, to solve these problems,

even more rationality is imposed on the players. It is as-

sumed that players sophisticatedly form their expectations

(on the strategical choice of the co-players) on the result-

ing consequences. These and other questions led to a vari-

ety of equilibrium refinements,3 each imposing assumptions

upon the rationality of the players of different quality. Evo-

2‘Finite’ refers to the number of (pure, or deterministic) strategies
available to each player.

3An excellent compendium is van Damme (1991).
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lutionary Game Theory, which is introduced in the following

section, adresses whether certain situations are stable. How-

ever, unlike in the literature on equilibrium refinement, the

requirements on the rationality of the agents are drastically

reduced. The contribution of this approach results in: Even

if agents are extremely boundedly rational, some outcomes

that would be predicted by models of rational agents display

stability properties.

The next section defines what is meant by extreme

bounded rationality.

I.2 Evolutionary Game Theory

Methods of game theory have also been applied to promote

the analysis of animal conflicts. An intensively discussed

setting is that of the Hawk-Dove-Game. In a population of

two species, a large number individuals compete for a scarce

resource: breeding area. One species, the dove, acts coopera-

tively and shares the available area with other entities of the

population. The other species, the hawk, is aggressive and

fights for its territory. This situation is modelled as follows:

at each point in time two exemplars of the population are

selected at random. The probability of one exemplar being a

member of a particular species is proportional to the number

of its members in the population. Each of the two exemplars

are drawn independently. The pair can either consist of two

doves, two hawks or one dove and one hawk. If two doves
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meet, they share resources and each individual enjoys half

of its value. If two hawks encounter, they fight and subse-

quently one of them conquere the full resource but has to

bear costs in terms of energy and time. If a hawk and a dove

meet, the dove immediately withdraws and the hawk enjoys

the full resource without bearing costs. The value of the ac-

quired resources balanced by the cost of fighting is employed

to produce offsprings. In this model, the type of the species

is referred to as a strategy and the consequence is identified

with a number that represents the number of produced off-

springs. This number is also called fitness. In the biological

context, each individual is a member of a particular species

that fully prescribes the behavior of that individual. The

individual does not “choose” a particular strategy but be-

haves exactly as its parents and it produces offsprings that

behave in exactly the same manner as the parents. A species

that is successful, has a high fitness (produces a high number

of offspring) and the subpopulation of the members of that

species grows. For game theory, relative statements are of

interest. Therefore the model captures only relative sizes:

a species that is relatively successful shows a relative high

fitness and the representation of that species grows within

the entire population. Methodoligically, the growth of each

species is captured by a differential equation. If the number

of offspring is proportional to the fitness, the relative growth

rate of a particular species is linear and equals the difference

of its fitness and the average fitness of the population. In this
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case, the differential equation is termed replicator equation.

Given this apparatus, game theorists analyze rest points of

this dynamic and their stability properties (see section I.4

for a discussion). To provide a conclusion, all Nash-equilibria

are rest points of the replicator dynamic and all interior rest-

points of the replicator dynamic are Nash-equilibria. Evo-

lutionary game theory can hereby contribute to economics:

even if interacting agents are extremely boundedly rational,

an outcome that would remain unchanged if agents were ra-

tional, remains unchanged. Proceeding to stability issues,

the analogy continues: In asymmetric settings, an outcome

that is stable with respect to the replicator dynamics is also

stable for rational agents in the sense that a vast variety of

equilibrium refinements would predict that outcome.

How does a concept of animal behavior in which ‘choices’

or ‘strategic interaction’ are omitted, provide a plausible

foundation to analyze economic or social problems? Dawkins

(1990, chap. 11) illuminates the parallels between genetic

and cultural transmission. To illustrate this parallel, he

refers to language: “Language seems to ‘evolve’ by non-

genetic means, and at a rate which is orders of magnitudes

faster than genetic evolution.” (p.189) Obviously, language is

not inherited. Children learn a language from their parents

by imitation. Dawkins calls the cultural replicator, the ‘unit

of cultural transmission’ a meme, that underlies the same

logic of spreading within a population as a gene.

“Examples of memes are tunes, ideas, catch-
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phrases, clothes fashions, ways of making pots or

of building arches. Just as genes propagate them-

selves in the gene pool by leaping from body to

body via sperms or eggs, so memes propagate

themselves in the meme pool by leaping from

brain to brain via a process which, in the broad

sense, can be called imitation.” (Dawkins (1990,

chap. 11, p. 192))

Of course, biological evolution cannot provide a suitable

explanation for the change of human behavior, simply

because the genome essentially remains unmodified within

one lifespan. But, in concert with the abovementioned

interpretation, the mechanics of evolution is helpful tp

develop models in which agents learn by imitation (see

section I.4).

A concept, that is common among almost all pa-

pers on evolution in game theoryis described by Selten

(1991) (p. 21) as follows:

“We have identified a hierarchy of dynamic

processes which shape economic behavior. I

name these processes in the order of increasing

speed:

1. (the slowest process) gene substition by

mutation,
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2. adaptation of genotype frequencies without

mutation,

3. cultural transmission from generation to

generation,

4. learning (including imitation).

The speed differences are so great that for

many purposes an adiabatic approximation

seems to be justified. Adiabatic approximation

means that if we look at one of the four pro-

cesses, results of lower processes can be taken as

fixed and quicker processes can be assumed to

reach equilibrium instantly.”

In this thesis, two main types of processes are distinguished

that roughly correspond to numbers 1. and 4. in the list

above. One type of process, models the selection of strategic

choice and is based on the payoffs of the game. A process of

this type includes the classes of best- or better-reply dynam-

ics as well as imitation dynamics and others. All processes of

this type are subsumed as selection processes (see next sec-

tion). The second process type models ‘mistakes’ or ‘errors’

– in economic language (or ‘mutations’ with a biological in-

terpretation) – and is assumed to be completely independent

of the underlying payoffs. The first type of processes incor-

porates all factors that affect strategic choice, processes of

the second type are defined by residual factors that are ex-

ogenous to the model. I regard the second type to be slower
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than the selection process and analyse the extreme case in

which it is infinitely slower. I study dynamical systems that

– depending on the model under consideration – are defined

on a continuous or discrete state space with continuous or

discrete time.

I.3 Literature on Stochastic Stabil-

ity

Freidlin and Wentzell (1998)4 developed methods that have

been applied in dynamic game theoretic models of imitation,

best response-behavior and local interaction. They specify a

Markov chain that is disturbed by a noise term and derive

results for the limit case when the noise vanishes. Although

Freidlin and Wentzell (1998) analyse stochastic differential

equations defined on continuous phase spaces, they specify

a discrete concept of resistance minimizing graphs which are

defined on a finite index set, each index representing one ab-

sorbing subset of the continuous phase space. Hereby, their

method can conveniently be applied to models with discrete

state spaces. Foster and Young (1990) who introduced these

methods into game theory. Their definition of stochastic

4The seminal work originally cited in the literature is the book pub-
lished in 1984 of which I cite the second edition. I gained also very much
from Karlin and Taylor (1975) as an excellent reference for stochastic
processes.
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stability is widely accepted: A state (which can represent

a tupel of strategies or a distribution of strategies within

a population) is stochastically stable, if it receives positive

probability under the limiting invariant distribution. The

limiting invariant distribution is the long run distribution

of the perturbed Markov process as the perturbation van-

ishes to zero. The limiting invariant distribution has two

interpretations: i) as time goes to infinity, the density on

a state is proportional to the share of the time the process

spends in the state, and ii) if one stops the process in the

far future, the limiting invariant distribution specifies the

probability with which the process is in a particular state.

The contribution of Foster and Young (1990) to economics

is that the number of invariant distributions is reduced to

one, if one considers perturbed processes and that even ar-

bitrary small stochastic effects may qualitatively change the

asymptotic behavior of the system. This methodology was

taken up by Kandori et al. (1993), Young (1993) and Elli-

son (1993). Kandori et al. (1993) and Young (1993) study

best-response dynamics and show that in 2× 2-coordination

games, only the risk dominant Nash-equilibrium (Harsanyi

and Selten (1988)) is stochastically stable. The underlying

criteria of stochastic stability can be critizised for various

reasons. One criterium is that the process must be active

for a very long time. If evolution is slow, the implications

of stochastic stability may be uninteresting for settings in

which agents interact, who have a finite lifespan. From this
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point of departure, Ellison (1993) focuses on the speed of

convergence of such Markov processes and shows that evo-

lution is fast (and therefore relevant for economic and social

applications), if interaction is local. Another point of criti-

cism is the model of mutations, that defines the perturbed

process. Bergin and Lipman (1996) show that if the model

of mutations is not chosen appropriately, any state can be

implemented to be stochastically stable. They identify a

necessary condition for a non-arbitrary selection as the fol-

lowing: for any two states, the ratio of the probabilities of a

mutation, mistake or error, must have an upper bound as the

perturbation goes to zero. This means that the probability of

a mutation given a particular state must be of the same order

of magnitude for all states. The fact that events with very

low probability, in fact arbitrary improbable events, play a

crucial role for determining stochastic stability is the point

of critique implicetly put forward in Binmore and Samuelson

(1994) or Samuelson (1997). Suppose that the unperturbed

process has two absorbing sets A and B. If the perturbed

process transits from B to A, if n ∈ N mutations occur and

from A to B, if n + 1 mutations occur, the set A is stochas-

tically stable. In the limit, as the probability of a mutation

goes to zero, the probability of the transit from A to B is in-

finitely smaller than the probability of the reverse transit. It

may be difficult to provide a plausible economic explanation

why A is stable and B is not, if n is a large number. Binmore

and Samuelson (1994) propose to consider recurrent sets that
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consist of a collection of absorbing sets of the unperturbed

process that have overlapping ‘one mutation neighborhoods’.

A one mutation neighborhood of a state x is the subset of

all states that can be reached from x if one mutation occurs.

Binmore and Samuelson (1994) coin the term drift as the

movement between two different absorbing sets that are ad-

jacent in the sense that one mutation can cause the process

to transit from one absorbing set to the other.

I.4 Literature on Evolutionary Se-

lection Dynamics

A selection dynamic specifies which kind of behavior or

strategy-choice spreads in a population of many agents. Se-

lection dynamics differ with respect to various criteria. One

important distinction is

Individual versus Group Selection. The representa-

tive model of group selection is the hay stack model (May-

nard Smith (1964)). Translated to economic terms, the hay

stack model is a setting in which economic agents are ar-

ranged in groups. Interaction is possible only within a group,

there is no inter-group activity. For a long period of time,

selection of relative successful behavior takes place in each

group. The avarage success of each group determines its

weight in the total population. Once in a while a randomly

chosen group creates an exact copy, where the each group

is chosen with probability equal to its weight in the total
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population.5 In his comparison of models of individual- and

group selection, Bergstrom (2002) points out the importance

of non-assortative matching in prisoners’ dilemma games.

Matching is non-assortative, if the probability to be matched

with an opponent of a particular type is independent of one’s

own type. Bergstrom (2002) provides an extensive list of

models of assortative matching, I refer to a particular one

that is related to my thesis: Eshel and Shaked (1999) model

an infinite population whose agents interact with and im-

itate their neighbors. It is the local interaction structure

that induces assortative matching; two neighbors are likely

to use the same strategy. Eshel and Shaked (1999) show that

in this model agents display as if-kinship behavior. Kinship

behaviour is described as behavior among relatives who care

for the payoffs of their siblings, ‘inclusive fitness’ according to

Hamilton (1964). A particular gene of an individual is likely

to be present in a close relative – hence the gene is more likely

to survive if it induces behavior of the indivudual that par-

tially internalizes the fitness of its closes relatives. By means

of a local interaction structure, Eshel and Shaked (1999) of-

fer a socio-economic explanation of the primary biological

phenomenon of kinship behavior.

The results implied by selection dynamics also crucially

depend on finiteness or infiniteness of key components of

the model. Taylor et al. (2004) provide an example (Exam-

5The original model is about mice that reproduce in hay stacks
during summer and regroup after each winter.
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ple 1) in which selection favors a dominated strategy in small

populations, although their dynamic depends (positively) on

individual payoffs. The intuition for this result is that if the

population is small, the weight of an individuum cannot be

neglected as in infinite populations, and as Schaffer (1980)

finds: if the population size is small, ‘spite’ can be a driv-

ing determinant of most successful behavior. His finite ver-

sion of evolutionary stable strategies (ESS, Maynard Smith

(1964)) can apply for dominated strategies in small popula-

tions. As the population size gets large, Taylor et al. (2004)s’

and Schaffer (1980)’s results coincide with those of models

with infinite populations. I present the results on stability

for large populations in the section on evolutionary stabil-

ity below. Oechssler and Riedel (2002) show that if the set

of strategies is continuous, an ESS may not be asymptoti-

cally stable for the replicator dynamic in doubly symmetric

games, opposing results of models with a finite set of strate-

gies (Taylor and Jonker (1978)). They propose the stronger

concept of evolutionary robustness, if asymptotic stability is

a desired property. I apply Oechssler and Riedel (2001)’s

existence result6 and their variational norm in chapter 3.

Selection dynamics differ with respect to the rationality

imposed on the agents. In any dynamic system considered

6Oechssler and Riedel (2001) provide conditions for the existence
of a solution of a differential equation defined on continuous strategy
spaces. This result is analogous to the Picard-Lindelöf-Theorem for
finite dimensional state spaces.

15



here, agents are shortsighted. Among those myopic agents,

optimizers are the most rational ones and imitators re-

quire less rationality. The most extreme class are evolution-

ary selection dynamics, in which agents must ‘choose’ the

inherited strategy. The most famous representative of this

class is the replicator dynamic. Taylor and Jonker (1978)

define the replicator dynamic such that the growth rate of a

strategies equals the difference of its payoff and the popula-

tion average. Dawkins (1990) provides convincing social and

economic interpretations of the term replicator. Björnerstedt

and Weibull (1996) and also Schlag (1998) show that a model

of imitation can induce the replicator dynamic. Hofbauer

and Sigmund (1988) relate the Lotka-Volterra equation and

its mathematical insights to the symmetric replicator dy-

namics. In particular, they show that if each strategy re-

ceives a positive mass under the symmetric replicator dy-

namic at all times, there exists a unique interior restpoint.

Furthermore, they derive conditions on the parameters of

the underlying game to characterize the volume of the im-

age of the solutions of the replicator dynamics. This can be

seen as the key argument for the results on asymptotic sta-

bility that I discuss in the next subsection. The literature

on optimizing agents is vast and since they do not play a

central role in my thesis, I mention only very few models:

in Kandori et al. (1993), Hofbauer and Sandholm (2002),

Fudenberg and Levine (1995) or Hofbauer and Sandholm

(2002) agents choose best replies to their beliefs. In Berger
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and Hofbauer (2005) or Hofbauer et al. (2005) agents choose

better replies. An important difference to imitation dynam-

ics is that best- or better-reply-dynamics are innovative in

the sense that strategies that are absent in the population

can well receive positive probability at a particular time in

the future. In contrast, for imitation dynamics all homoge-

nous states are steady. In my thesis I apply general imitation

dynamics that include the replicator as a special case. Gen-

erally, an imitation dynamic must satisfy a continuity con-

dition, it must maintain constant measure and the growth

rates must be finite for any strategy at any state. As a con-

sequence, an imitation dynamic has a unique and continuous

solution for any initial condition. Furthermore, a strategy is

present at all times if and only if it is present at time zero. If

for any two strategies the one that yields higher payoffs has

the higher growth rate, the dynamics are (payoff-)monotonic

(Samuelson and Zhang (1992)). Another class of selection

processes are called convex monotonic dynamics (Hofbauer

and Weibull (1996)). Both convex– or payoff-monotonicity

is implied by aggregate monotonicity (Samuelson and Zhang

(1992)).

In the following section I summarize results on stability

for imitation dynamics.
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I.5 Literature on Evolutionary and

Dynamic Stability

In this section I consider only games with finitely many

strategies. Maynard Smith (1974) or Maynard Smith and

Price (1973) define the static concept of evolutionary stable

strategies in symmetric contexts. A strategy is evolutionary

stable, if agents applying that strategy in the presence of

a small fraction of (homogeneous) mutants fare better than

the mutants. Equivalently, a tupel of strategies is evolution-

ary stable, if i) it is a Nash equilibrium and if ii) it fares

better against alternative best replies than the alternative

best reply against itself. Selten (1980) considers asymmetric

context and assumes that each agent is randomly assign to a

player-role before interaction takes place. He shows that an

ESS in this symmetrized game must consist of the choice of

a strict Nash equilibrium strategy in the asymmetric game.

Swinkels (1992) provides a definition for an ESS in asymmet-

ric games with the same underlying intuition as in the ESS

for symmetric games and shows that in asymmetric games

an ESS is equivalent to a strict Nash equilibrium. Taylor

and Jonker (1978) show that for symmetric games a strat-

egy is an ESS if and only if it is asymptotically stable in

the replicator dynamics. If the ESS is in mixed strategies,

stability is an artefact of the single-population model ap-

plied for symmetric games. Ritzberger and Weibull (1995)

establish – analogous to Selten (1980)’s or Swinkels (1992)’s
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results that in multi-population models a tupel of strategies

is asymptotically stable in the n-replicator dynamic if and

only if it is a strict Nash equilibrium. It turns out that strict

Nash equilibria are the only asymptotically stable states for

general evolutionary selection dynamics. I discuss analogous

results for the stability of sets in the next subsection.

Setwise Stability

In the previous subsection, I reviewed the stability prop-

erties of strict Nash equilibrium. Balkenborg and Schlag

(2007) generalizes the definition of a strict Nash equilibrium

to a setwise concept: strict equilibrium set, SEset. A set

F is a SEset if it contains only Nash equilibria and if

it is closed with respect to mixed strategy best replies.

Balkenborg and Schlag (2007) and Cressman (2003) show

asymptotic stability of SEsets for general evolutionary

selection dynamics. If only two populations are considered,

they prove the according if and only if result. Thomas

(1985) and Balkenborg and Schlag (2001) define more

demanding Evolutionary stable sets.

The following three chapters contain my essays on

evolutionary game theory. Deviating from the models pre-

sented above, I analyze situations in which the population

of agents exhibits a particular structure. In chapters 1 and

2, the structure is given by non-uniform matching of the

19



agents. In ‘Aniticipated Stability in Social and Economic

Networks’, agents actively choose with whom to match. I

model link formation with agents that have constrained

capabilities to foresee the consequences of their decisions. I

show that under these circumstances a permanent change

of matching decisions can be stable. I use the methods

of Freidlin and Wentzell (1998) to characterize stochastic

stability of random graphs.

In my second contribution, the deviation of the uniform-

matching is more subtle. Agents receive signals and choose

a strategy conditionally. As Mailath et al. (1997) remark,

a signal generating process can have the interpretation of

a matching technology. One section is devoted to empha-

size this matter. The case of uniform matching is equivalent

to independent signals. I show that behavior can be stable

with respect to imitation dynamics even if strategy choices

lead to non-Nash outcomes due to correlated signals. I show

for generic games that only strict Nash equilibria are robust

against manipulation of signals. I apply methods and results

of Hofbauer and Sigmund (1988), Ritzberger and Weibull

(1995) and Balkenborg and Schlag (2007).

In chapter 3, I consider agents that hold non-verifiable in-

formation on the evolutionary relevant payoffs of the game.

The structure of the population refers to the distribution of

this information. I show that for any stable situation in 2×
2 games there can exist a positive mass of agents that opti-

mize given wrong information who are not selected against

20



by evolutionary payoff monotonic selection dynamics. I base

my model partially on Sandholm (2001).
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Chapter 1

Anticipated Stability in
Social and Economic
Networks

Jackson and Wolinsky (1996) introduce the con-

cept of pairwise stability for graphs that repre-

sent social and economic networks, Jackson and

Watts (2002) provide a dynamic model of myopic

network formation that incorporates the static

concept of pairwise stability. Dutta et al. (2005)

provide a model of farsighted agents: players

know the actions of their coplayers for any pos-

sible network, are able to foresee the complete

future of play and act optimally accordingly. I

introduce agents that are neither myopic nor

completely farsighted. The agents establish an

anticipation of how the own decision influences
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the behavior of the other players when choosing

whether to form, maintain or sever a link, for a

subset of all networks. An anticipation of player

i given network g is a probability measure over

the possible paths that leave g, but stay in the

subset of networks. Agents optimize given their

anticipation. I provide examples of small cycles à

la Jackson and Watts (2002) that include a net-

work that is stable in anticipation. The main

contribution of this chapter is hereby to pinpoint

that a cycle is an artificial concept resulting from

the assumption of myopia.

1.1 Introduction

When modelling social or economic interactions, some

economists focus on the issue of interaction patterns, in other

words, on the structure of agents interacting with each other.

If there is no such structure, groups of agents meet randomly,

as it is the case in simple evolutionary models. In a ba-

sic structure agents are located on a line and interact with

their neighbors. Given a specific model, for any agent in the

population, a structure defines a subpopulation of agents

with whom interaction is possible. Ellison (1993) or Eshel

and Shaked (1999) analyze the impact of various interaction

structures on the outcome of play. However, they assume

that agents cannot influence the interaction structure, that
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is, agents lack the ability of choosing whom to interact with.

Aumann and Myerson (1988) are among the first authors

studying a model of link formation. Starting in the empty

network, pair by pair the players involved are asked whether

they would want to form a link. Such a finite sequence of

pairs is called a rule of order. The authors show that for

each rule of order there exists a subgame perfect equilib-

rium. They raise the point of forward looking reasoning,

from the perspective of a player considering forming a link

with another one: “Suppose we form this new link, will other

players be motivated to form further new links that were not

worthwile for them before?”1 I analyse games in which the

rule of order is neither finite nor deterministic. I model the

structure of beliefs explicitely. This paper is close to Jackson

and Wolinsky (1996), who define the structure of interaction

as a network. Any node in such a network represents an

agent, only agents that are linked are able to interact. Inter-

action is voluntary, which means that no subgroup of agents

can be linked if not all members agree to interact. Jack-

son and Wolinsky (1996) consider coalitions of size two and

introduce the concept of pairwise stability. They find that

for any anonymous and component balanced allocation rule,

there is an open set of value functions such that no strongly

efficient graph is pairwise stable. Their framework is static;

it can characterise different types of networks as stable but

1Aumann and Myerson (1988), p.178

25



it cannot explain how these types of networks emerge.

Jackson and Watts (2002) construct a dynamic model of

network formation that builds upon the concept of pairwise

stability. At each point in time, nature draws a pair of

agents. Those two agents agree to form or maintain a link

if and only if both are better off. If the network does not

change, no matter which link is under revision, it is pairwise

stable. In this dynamic model, agents are myopic. When

creating or cutting a link, agents do not take into account

that this decision can trigger a sequence of link creations

or destructions. In other words, they optimise under ceteris

paribus assumptions. These assumptions can make sense, if

the agents face a very complex world. The number of po-

tential links within a network increases ‘very fast’2 with the

number of nodes. If the model consists of many agents, one

could argue that if their capability of computing optimal de-

cisions is limited, the best they can do is to assume that

everyone else will continue as they did before. This myopia

assumption can lead to cycles. A cycle is a finite sequence of

networks, such that if the last network is reached, the process

starts again at the first network.

Watts (2001) and Dutta et al. (2005) assume the other ex-

treme of rationality: in equilibrium, every agent knows what

every other agent will do, for any possible network. Given

some strategy-tupel, agents expect a sequence of networks

2of order O(2n(n−1)/2)
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to evolve and optimise, discounting future payoffs along this

expected sequence. This approach is intuitive if the number

of agents within the model is small, that is: small enough

such that it is plausible that each agent knows about the

strategic plans of all other agents, at least in equilibrium.

In this chapter, I introduce a dynamic model that

has a flexible boundary for the rationality of the agents.

First, I define the distance between any two networks. I

assume, that agents can optimise their expected utility

along discounted sequences of networks, if these sequences

consist only of networks that are closer than some boundary

κ. In settings with many agents, this boundary can be set

rather small, in models with very few agents, κ can be set

rather large. Further, I analise stochastic properties of the

model, where I apply the methods of Freidlin and Wentzell

(1998) on a continous state space.

This paper is organised as follows: in section 2, I con-

struct the model and define anticipated stability. In section

3 I define stochastically stable states and show that if a state

is stochastically stable, it must be stable in anticipation.

In section 4, I illustrate some properties of this concept by

three examples. In particular I show that a small myopic

cycle may include a network that is stable in anticipation.

In section 5, I conclude.
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1.2 Model

1.2.1 Definitions

I closely follow Jackson and Wolinsky (1996). Let there be

2 < n < ∞ players and each player i be identified with a

node of some undirected graph g. A graph is undirected,

if a link from node i to node j is the same as a link from

j to i. The graph consists of a set of nodes, I = {1, ..., n}
and a set of edges E . An edge or link between players i and

j is denoted by ij . A node i cannot be linked to itself, ie

ii 6∈ g ∀ i ∈ I. g is complete, if each player i is linked to

each other player j, E is the set of all possible edges Ec. I

denote the complete graph by gc. For all other graphs g, E
is an element of the powerset of Ec, P(Ec) = {E|E ⊆ Ec}.
g is empty, if no player i is linked to some other player j

and E = ∅. I denote the empty graph by ge. I denote the

set of undirected graphs with n nodes by G. Since I do not

vary the number of players n, I often will identify a graph g

directly with its set of edges E .

A permutation is a bijection π : I → I. The graph

gπ = {ij |i = π(k), j = π(l) ∀ kl ∈ g} is the network

obtained from graph g by relabelling the players according

to the permutation π. The set Gπ(g) = {g̃ ∈ G|∃ π such that

g̃ = gπ} is the set of networks with the same architecture as g.

An allocation rule Y : G → Rn assigns a real number
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to each player for a given graph g. Since G is finite, the

image of Y is bounded.

Pairwise stability is defined as in Jackson and Wolin-

sky (1996):

The graph g is pairwise stable if for all players i ∈ I and all

links ij ∈ Ec

(i) Yi(g) ≥ Yi(g \ {ij})
(no unilateral destruction)

(ii) Yi(g) < Yi(g ∪ {ij}) ⇒ Yj(g) > Yj(g ∪ {ij}).
(no bilateral formation)

Two networks g 6= g′ are adjacent if they differ only

with respect to one link ij , so either g = g′ ∪ {ij} or

g = g′ \ {ij}.

A path p(g, g′) = {g0, ..., gL} of length L is a sequence

of adjacent or equal graphs, with g = g0 and g′ = gL.

Associated to each path {g0, . . . , gL} denote by {ij l}L
l=1

the set of links to which respect the graphs g0, . . . , gL are

adjacent: ij l = gl 	 gl−1.
3

Unlike in Jackson and Watts (2002), here a path needs not

to be finite, i.e. I do not exclude the possibility of the same

network appearing infinitely often in one path.

3A	B = (A \B) ∪ (B \A) (symmetric difference)
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A path p(g, g′) is improving if for each l = 1, ..., L it

holds that ij l 6= ∅ and

if gl = gl−1 \ {ij l} ⇒ Yi(gl) > Yi(gl−1, v) ∨ Yj(gl) > Yj(gl−1)

if gl = gl−1 ∪ {ij l} ⇒ Yi(gl) ≥ Yi(gl−1, v) ∧ Yj(gl) ≥ Yj(gl−1),

one inequality being strict.

A cycle is a nonempty set of networks C = {gl} such

that there is an improving path p(g, g′) for all g, g′ ∈ C. A

cycle C is maximal if there is no cycle C ′ 6= C such that

C ⊂ C ′. A cycle C is closed if there exists no pair of graphs

g ∈ C and g′ 6∈ C such that there is an improving path

p(g, g′).

Jackson and Watts (2002) show that for any Y there

exists at least one pairwise stable network or closed cycle of

networks.

1.2.2 Dynamics without Mutations

At each point in time, one and only one link ij ∈ Ec is ran-

domly and independently drawn with uniform probability

f = 2
n(n−1)

.4

4Uniform probability is used to simplify the calculations of the
transit-probability along a sequence of networks. One could also al-
low for heterogeneous positive and constant probabilities.
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The two agents i and j decide simultaneously whether

to form or keep the link ij or not. I call the respective

action specific willingness to form links5 of player i, given

network g:

ai(g) = (ai1(g), . . . , ai,i−1(g), 0, ai,i+1(g), . . . , ain(g)).

aij (g) = 1 if i is willing to form or maintain a link to j,

given g and aij (g) = 0 if i strictly prefers not to be linked to

j. However, aij (g) can be any real in [0, 1] if i is indifferent

and denotes the probability with which i wants to form

a link to j. Since a player cannot be linked to herself,

aii(g) ≡ 0 ∀ i ∈ I, g ∈ G. ai(g) is an action. A strategy for

player i is a collection ai = {ai(g)}g∈G. a(g) = {ai(g)}i∈I

denotes the set of actions at network g. a denotes the

set {{ai(g)}g∈G}i∈I . For any given network g the space of

actions for player i is [0, 1]n−1. Since #G = 2
n(n−1)

2 , the

strategy space for player i is [0, 1](n−1)2
n(n−1)

2 . Obviously,

this space expands extremely fast with n, the number of

players. This is the reason why I introduce the notion of a

bounded strategy below.

If ij 6∈ g, the probability of moving from g to g′ = g ∪ {ij}
is f · aij (g) · aji(g). Analogous, if ij ∈ g, the probability of

moving from g to g′ = g\{ij} is f ·(1−aij (g)·aji(g)). In each

of both cases, there is only one event that makes it possible

5See Durieu et al. (2004) for a model of nonspecific networking.
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to move from g to g′, namely the event that {ij} = g 	 g′

is drawn. To calculate the probability of remaining in a

specific graph g, I need to consider more events. Suppose

a link ij ∈ g is drawn. Then, the probability to stay in g

is aij (g) · aji(g). Suppose a link ij 6∈ g is drawn, then the

probability that g remains unaltered is 1 − aij (g) · aji(g).

Hence, there is one possibility for each potential link

ij ∈ Ec to stay in a particular graph. Call f ·
[
g

a(g)→ g
]

the

probability to remain in g, given a(g), where[
g

a(g)→ g
]

=
∑

ij∈g aijaji +
∑

ij 6∈g 1− aijaji .

The probability of observing the path p(g, g′) = (g0, . . . , gL)

of adjacent or equal networks in the next L points of time,

given a = {{ai(g)}g∈G}i∈I and aij l
= aij l

(gl), is

Prob{p(g, g′)|a} =

fL·
L∏

l=1

{
1I(∪)aij l

· ajil + 1I(\)(1− aij l
· ajil) + 1I(=)

[
gl

a(g)→ gl

]}
,

(1.1)

where 1I(∪) = 1 if ij l ∈ gl and 0 otherwise,

1I(\) = 1 if ij l 6∈ gl and 0 otherwise,

1I(=) = 1 if ij l = {∅} and 0 otherwise.

In the following, I modify the concept of pairwise sta-

bility. As already indicated by Jackson and Watts (2002),
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the concept of pairwise stability is myopic, that is players

do not consider future changes of the network which they

may trigger when severing or forming a link. Jackson and

Watts (2002) argue that if the network includes many other

players it may be not too strong a restriction to assume that

players do not have the capacity to foresee the succeeding

changes of the network. Nevertheless, in some cases it would

suffice if a player could anticipate the next few alterations

he triggers to give that player an incentive to deviate from

myopic behavior. Dutta et al. (2005) consider the other

polar case of rationality: in equilibrium, each player has

some complete plan of action for each possible network and

this plan of action is common knowledge among all players.

In contrast to Jackson and Watts (2002), the requirements

for the rationality of the involved agents are extremely high

if there exist more than a few agents. Note that there are

2
n(n−1)

2 distinct networks with n nodes. If – for example

– there are only 5 players, each player has to know the

4 times 1024 strategic plans of his coplayers. Therefore,

in the current chapter I propose a flexible concept that is

applicable to settings with an arbitrary number of agents.

Players form beliefs concerning behavior in a subset of

networks “around” the current network. Their degree of

rationality is captured by some parameter κ. If κ = 1, our

model is similar to that of Jackson and Watts (2002) , if κ

is higher than some finite number I approximate the case

studied by Dutta et al. (2005) .
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Anticipation

Under pairwise stability, each player maximizes his utility

under the hypothesis that all other players behave as in

the last period. Alternatively, players could have more

sophisticated beliefs concerning the future behavior of

their coplayers. I assume that each player anticipates the

behavior of all players up to κ networks away from the

current one. More precisely, g̃ is up to κ networks away

from g, if g̃ is included in a path of length κ of adjacent

networks starting at g. In equilibrium, such anticipations

need to be correctly specified only for those states that are

actually reached – I am interested in equilibria that confirm

the beliefs.6

A belief Bi of player i is a set of matrices {Bi(g)}g∈G =


0 βi

12(g) . . . βi
1n(g)

βi
21(g) 0 . . . βi

2n(g)
...

...
. . .

...

βi
n1(g) βi

n2(g) . . . 0




g∈G

.

The element βi
jk(g) denotes i’s belief of the willingness

ajk(g) of player j to form or maintain the link jk with k,

given g. I assume that beliefs about own actions βi
i·(g)

coincide with the respective willingness ai· to form a specific

6See Fudenberg and Levine (1993) and Noeldeke and Samuelson
(1993)
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link. Denote by G(g)κ the set of networks that have distance

of at most κ from g.

Let Pκ(g) denote the set of all paths of infinite length

that start at graph g and consist only of networks in Gκ(g)

Pκ(g, g′) is the set of all paths in Pκ(g) that have g′ as a

direct successor of g, Pκ(g, g′) =
{
{gl}l ∈ Pκ(g)

∣∣ g1 = g′
}

.

Given Bi(g), player i believes that the network g will

remain unaltered with probability f ·
[
g
Bi(g)→ g

]
, where

[
g
Bi(g)→ g

]
=

maintain∑
jk∈g

βi
jk(g) · βi

kj(g) +
don’t form new∑

jk 6∈g

(
1− βi

jk(g) · βi
kj(g)

)
.

To give an example, consider the case in which player i

believes that the process will stay in network g. That

is, βi
kl = 1, if kl ∈ g and βi

kl = 0, if kl 6∈ g. In this

case,

[
g
Bi(g)→ g

]
=
∑

kl∈g 1 +
∑

kl 6∈g 1 = n(n−1)
2

and since

f = 2
n(n−1)

represents the unifom distribution over all links,

f ·
[
g
Bi(g)→ g

]
= 1.

An anticipation of player k starting at g, αk
g = {αk(p)}p∈Pκ(g)

is a probability measure over the set of paths p starting at g,
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Pκ(g), induced by the belief Bk. Define ∀ p ∈ Pκ(g), αk(p) :=

∞∏
l=1

{
1I(∪)f · βk

ij l
· βk

jil
+ 1I(\)f · (1− βk

ij l
· βk

jil
) + 1I(=)f ·

[
g
Bk(g)→ g

]}
(1.2)

A class of (infinitely many) paths may receive positive prob-

ability. I give a simple example: Suppose that g = {ij} and

g′ = {∅}, g′ ∈ G(g)κ. Define Bi(g) as βi
ij (g) = βi

ij (g
′) = 1

2

and βi
ji(g) = βi

ji(g
′) = 1, all other elements being equal to

zero. Given these beliefs, there are four transitions, which

occur with positive probability: g → g, g → g′, g′ → g′

and g′ → g. The probability for each transition is strictly

smaller than 1, but the process will follow a path that

consist only of g or g′ with probability one, if it starts at g.

Definition unbiased anticipation

An anticipation αi
g = {αi(p)}p∈Pκ(g) is unbiased if

αi(p) = Prob{p | a} ∀p ∈ Pκ(g), where Prob{p | a}
is defined in (1.1).

The set of beliefs that imply unbiased anticipations is

closed. Given network g, suppose the link ij will occur with

probability a = aij (g) · aji(g). If a > 0, the set of unbi-

ased beliefs (βk
ij , β

k
ji) is {βk

ij , β
k
ji ∈ (0, 1] : βk

ji = a/βk
ij}.

If a = 0, the set of unbiased beliefs (βk
ij , β

k
ji) is

{βk
ij , β

k
ji ∈ [0, 1] : min{βk

ji, β
k
ij} = 0}.

36



Discounted Utility

Let ui(p) denote the discounted utility of player i along the

path p = {g0, g1, ...}, given discount factor δ ∈ [0, 1).7

ui(p) =
∞∑
l=0

δlYi(gl, v).

Denote by Ui(g|αi
g) the expected discounted utility of player

i along paths starting at g given anticipation αi
g.

Ui(g|αi
g) =

∑
p∈Pκ(g)

αi
g(p)ui(p)

Since αi
g is a probability measure over Pκ(g), I have∑

p∈Pκ(g) αi
g(p) = 1. Since Yi(·) is bounded and δ < 1, ui(·)

is bounded and Ui(·) is well defined.

Given network g, beliefs Bi and actions ai·(·), I can

calculate the anticipation αi
g. Note that beliefs for networks

that are not in Gκ(g) are irrelevant for αi
g. Since the space

of all ai·(·), [0, 1](n−1)#Gκ(g) ⊆ [0, 1](n−1)2
n(n−1)

2 is compact

and αi
g is continous (linear, in particular) in ai, there exists

an a∗i that maximizes Ui(g|αi
g) and the set of all maximizing

a∗i is compact.

Definition optimal anticipation

I call αi
g optimal if it consists of a maximizing a∗i .

7If δ = 0, the model is similar to the one of Jackson and Watts
(2002) (with the convention 00 = 1) .
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An anticipation is induced by beliefs about the ac-

tions of other players and own actions. If the anticipation is

optimal, own actions are chosen optimally given the beliefs

about the actions of other players. For each g, there may

be multiple optimal anticipations αi
g supported by different

sets of beliefs Bi.

Suppose the current network is g and that the link

ij ∈ g is drawn. Suppose G′ can be obtained by remov-

ing ij from g. I say that g′ defeats g, or g I g′, if for

l ∈ {i, j} there exist an optimal anticipation αl
g such that∑

p∈Pκ(g,g′) αl
g(p) > 0. This means that g′ follows g with

positive probability, if l chooses al optimally. If ij 6∈ g, ie if

both i and j must agree to form the link ij , g′ defeats g or

g I g′ if there exist optimal anticipations αl
g for l = i ∧ j

such that
∑

p∈Pκ(g,g′) αl
g(p) > 0 for l = i ∧ j.

If there is a graph g with optimal anticipations αi(g) ∀ i

such that
∑

p∈Pκ(g,g) αi
g(p) = 1 ∀i, then g I g.

Definition improving in anticipation path or α−path

Given an action profile a and a set of beliefs {Bi}i, a

path p = {gl}l is improving in anticipation if the beliefs

induce optimal and unbiased anticipations such that

gl I gl+1 ∀l = 1, 2, . . . .

Definition stable in anticipation graph or α−stable graph
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A graph g∗ is stable in anticipation if there is no α−path

p = {gl}l leaving g∗.

g∗ α− stable ⇒ ∃α− path{g∗, g∗, . . .}

If there is no α−path leaving g∗, there is no network

g′ defeating g∗, ie
∑

p∈Pκ(g∗,g∗) = 1 ∀ i for all optimal

anticipations.

Analogous to Jackson and Watts (2002) I define a closed

anticipated cycle.

An anticipated cycle is a set of networks C = {gl} such that

there is an α−path p(g, g′) for all g, g′ ∈ C. An anticipated

cycle C is maximal if there is no anticipated cycle C ′ such

that C ⊂ C ′. An anticipated cycle C is closed if there exists

no pair of graphs g ∈ C and g′ 6∈ C such that there is an

α−path p(g, g′).

Lemma

There exists either a network that is stable in anticipation

or there exists a closed anticipated cycle.

Proof

Suppose there is no network that is stable in anticipation.

This means that for any network g ∈ G there exists a

α-path starting at g. Since the number of nodes n is finite,

so must be the set of networks G. Fix for any network
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g one particular α-path that starts at g and consider

only the first step of that path. Since G is finite, any

network g must be reached again after finitely many such

steps, hence there is an anticipated cycle. Since G is

finite, the union of any such anticipated cycles is finite.

Therefore, there is a maximal anticipated cycle. A maximal

anticipated cycle necessarily is a closed aniticipated cycle. �

Remark

The concept of beliefs appears quite demanding, concern-

ing the capabilities of the players. Note, for all that, if

the process is in a closed anticipated cycle C, any be-

liefs {B(g̃)}g̃ 6∈G(C)κ
8 are irrelevant to the unbiasedness of

αg ∀g ∈ G(C). Furthermore, there may be multiple beliefs

{B(g)}g∈G(C) that yield unbiased anticipations given some

profile of actions a.

1.3 Stochastic Stability

I define stochastic stability as in Foster and Young (1990)

who build upon the work of Freidlin and Wentzell (1998).

Firstly I define a state and the continous set of all states.

Thereafter I construct a non-ergodic Markov chain which

represents the anticipated dynamics of the game without

8G(C)κ denotes all networks that have distance of at most κ to the
set C, ie G(C)κ = ∪

g∈C
G(g)κ.
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mutations. Then I set up an appropriate model of mutations

that generates an ergodic Markov chain and allows us to

define the resistance of each state. As in any ergodic

process, there is a unique invariant distribution. I analyze

this distribution as mutations become very rare. If a state

receives positive probability in the invariant distribution as

the probability of a mutation goes to zero, I call this state

stochastically stable. I show that among the absorbing

states of the undisturbed process those who have minimum

resistance in the process with mutations are stochastically

stable. Finally, I show that a state is stochastically stable

only if it is stable in anticipation.

State Space Θ

A state θ consists of a network g ∈ G and a set of beliefs

B =
{
{Bi(g

′)}g′∈G

}
i∈N

∈ [0, 1]n
2(n−1)2

n(n−1)
2 ≡ B. a(θ) is the

profile of actions included in B, a(θ) = {{βi
i·(g

′)}g′∈G}i∈N .

Each agent i has some belief βi
kl(g

′) about k’s willingness

to form a link with l for each network g′ and each pair of

players k and l. Nevertheless, to calculate optimal actions,

each player i does only need to consider {Bi(g′)}g′∈Gκ(g),

which is small compared to B, if κ is small. Call B∗ ⊂ B

the subset of optimal and unbiased beliefs. That is, for each

g ∈ G, only those anticipations αi
g generated by beliefs in

B∗ are unbiased and optimal. I will define a finite partition

of Θ below and apply the methods to its index-set.
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Transitions

I assume that players update their beliefs infinitely faster

than they change their actions. I further assume that

players update their beliefs such that they do not contradict

the observed action profiles. Players choose any such beliefs

with uniform probability. This implies that I can model the

transitions of the process such that at each point in time the

beliefs yield unbiased anticipations. Given these unbiased

anticipations, players choose their actions optimally, the

process follows α−paths.

Absorbing Sets

A closed maximal anticipated cycle C together with unbiased

and optimal beliefs B ⊂ B∗ is absorbing. If C is singleton,

then it is a graph g∗ that is stable in anticipation. Call A
the set of states that represent graphs that are contained

in closed maximal anticipated cycles, together with their

unbiased and optimal beliefs. Since both the set of unbiased

beliefs and the set of optimal beliefs are compact, so is

A. Let {K1, . . . , KL} be a partition of A, let K0 = Θ \ A
and define K = {K0, . . . , KL}. Define the partition such

that two graphs g and g′ together with their unbiased and

optimal beliefs belong to the same Kl, l > 0, if and only if

they belong to the same closed maximal anticipated cycle

C. If g∗ is stable in anticipation and < g∗,B > ∈ Kl, there

is no other graph belonging to Kl. Since G is finite and the

set of optimal and unbiased beliefs is compact, so is Kl, in
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particular, the cardinality of K is finite, L < ∞.

Mutations

Suppose that in each period, each player follows the transi-

tion process described above with probability 1 − ε ∈ (0, 1)

and behaves differently, say ‘mutates’, with probability

ε > 0. If some agent i derived some optimal anticipation

and after mixing according to his specific willingnes to

form a link with j, i actually wants to form a link with

j, a mutation causes him to sever or deny that link and

vice versa. Concerning the beliefs, a mutation has more

drastic consequences. A mutating player chooses any beliefs

with uniform probability and chooses optimal actions with

respect to these new beliefs.9

It is possible to reach any state θ′ from any other

state θ only by means of (multiple) mutations.10 For

example, if θ represents the complete network, one muta-

tion for each of the n(n−1)
2

links can cause the process to

transit to a state θ′ which represents the empty network.

Another n mutations would be necessary to change all

9Alternatively, one could consider a weaker model of mutations:
instead of replacing the whole set of beliefs {Bi(g)}g∈G , a mutation
changes only one entry βi

kl of {Bi(g)}g∈G .
10There is one difference to the model of mutations of Jackson and

Watts (2002): to build up a link that should not exist without muta-
tions, I need two mutations instead of one. This difference is concep-
tually negligible.
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beliefs. However, to reach the complete network only

by means of mutations if the current network is empty,

the number of necessary mutations is 2 · n(n−1)
2

, because

for any link that is to be formed, both agents need to mutate.

The essential properties of this model of mutations,

are that (i) it is possible to reach any state θ′ from any state

θ with a finite number of mutations in finite time11 (⇒ irre-

ducibility) and that (ii) the probability of a single mutation

is of the same order in ε for any state θ ∈ Θ (see Bergin

and Lipman (1996)). Given this model of mutations, there

exists a stochastic kernel pε : Θ×Θ → R with the property

that for any pair of states θ, θ′ ∈ Θ the probability of a

transition from θ to θ′ is positive, pε(θ, θ′) > 0, for any ε > 0.

l−trees

Referring to Freidlin and Wentzell (1998), chp. 6, I define a

tree on the index set L = {0, . . . , L} of the partition K. An

l−tree is a set of directed edges m → n, m ∈ L \ {l}, n ∈ L
such that any index m ∈ L \ {l} has a unique successor

n and such that there are no closed cycles of the form

m1 → m2 → . . . → mk → m1. Consequently, in such a

graph, there is a unique sequence from any state k ∈ L \ {l}
to l. Denote by H(l) all l−trees.

11In my model of mutations such a transition is possible in one step
in which multiple mutations occur.

44



Volume of l−trees

For numbers pmn ∈ R+, m, n ∈ L define for any l−tree hl

the volume V (hl) =
∏

(m→n)∈hl

pmn.

Lemma 2.1: invariant measure µε on K (Freidlin

and Wentzell (1998))

Let us be given an irreducible Markov chain on space

Θ devided into disjoint sets {Kl}l∈L with kernel

pε : Θ × Θ → R. Suppose there exist non-negative

numbers plm(l 6= m, l,m ∈ L) and a number c > 1 such that

c−1plm ≤ pε(θ,Km) ≤ cplm ∀ θ ∈ Kl, l 6= m for the transition

probabilities of our chain. Then

c2−2L

(∑
m∈L

Qm

)−1

Ql ≤ µε(Kl) ≤ c2L−2

(∑
m∈L

Qm

)−1

Ql

for any normalized invariant measure µε of our chain, where

Ql =
∑

hl∈H(l) V (hl).

Proof:

I apply Lemma 3.2 of Freidlin and Wentzell (1998),

p.178. Our V (h) is their π(h) for any tree h. The

Markov chain is irreducible for any positive ε since

pε(θ, θ′) > 0 ∀ θ, θ′ ∈ Θ. Given the stochastic kernel

pε : Θ × Θ → R, define pε(θ,Kn) =
∫

Kn
pε(θ, θ′)dθ′ and

pmn = sup
θ∈Km

pε(θ,Kn) and c =
sup

θ∈Km

pε(θ,Kn)

inf
θ∈Km

pε(θ,Kn)
> 1. Then

45



c−1pmn ≤ pε(θ, Kn) ≤ cpmn ∀ θ ∈ Km.

Resistance

Define the resistance of a pair of states (θ, θ′) as the number

of mutations necessary for the process to move from θ

to θ′ with positive probability. For two adjacent states

θ =< g,B > and θ′ =< g′,B′ > define

Rθ,θ′ =



0 if B′ ∈ B∗ and g I g′

in some α− path induced by B′

if B′ 6∈ B∗ and g I g′

in some α− path induced by B′

1 or

if B′ ∈ B∗ and g I g′

in no α− path induced by B′

and g ⊃ g′

2 if there is no α− path

such that g I g′ and g ⊆ g′

For two non-adjacent states θ =< g,B > and θ′ =< g′,B′ >
define as P θ′

θ the set of shortest paths of adjacent networks

that start at g and end at g′. For any p = (θ1, . . . , θK) ∈ P θ′

θ ,

define R(p) =
∑K−1

k=1 Rθl,θl+1
. Define Rθ,θ′ = min

p∈P θ′
θ

R(p).
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Observe that for any two states θ, θ′ ∈ Kl for any

l > 0, the resistance of a transition from θ to θ′ is zero.

Resistance of l−trees

Define the resistance of a transition from set Kl to set Kk by

Rl,k = min
θ∈Kl

min
θ′∈Kk

Rθ,θ′ . The resistance of a tree hl is the sum

of the resistance of its elements: R(hl) =
∑

(m→n)∈hl
Rm,n.

Finally, the resistance of an index l ∈ L is defined by the

minimal resistance of an l-tree: Rl = min
hl∈H(l)

R(hl).

Lemma 2.2

If k = arg min
l∈L

Rl, then any θ ∈ Kk represents a graph g

and beliefs B such that either g is stable in anticipation

with respect to B or g belongs to a closed anticipated cycle C.

Proof:

If a graph g is not stable in anticipation or does not belong

to a closed maximal cycle, it belongs to a state θ ∈ K0,

by definition of the set K0. I showed that there exists at

least one network that is stable in anticipation or one closed

maximal anticipated cycle, i.e. Θ \ {K0} 6= ∅. Therefore

it remains to show that R0 > Rl for some l ∈ {1, . . . , L}.
Consider the tree h0 that minimizes the resistance over all

0−trees in H(0). Since in K0 there exists no graph that is

stable in anticipation or a closed maximal anticipated cycle,

there must be a state θ ∈ K0 with beliefs B∗ such that they
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generate an α−path that starts at θ and leads to a state

θ′ ∈ Kl, l > 0. By the definition of resistance, the edge

0 → l has resistance zero. Consider the edge l → m ∈ h0.

Since Kl is an absorbing set, the edge l → m must contain

a transition wich is not part of an α−path. Therefore, the

resistance of l → m must be greater or equal to 1. Now

remove the edge l → m and add the edge 0 → l. The

constructed tree has resistance of at most R0 − 1. �

Definition

A function f(ε) : R+ → R+ is called of order ε=k, de-

noted by O(ε=k), if (i) lim sup
ε→0

f(ε)/εk < ∞ and (ii)

lim sup
ε→0

f(ε)/εk+1 = ∞. If (i) holds, f(ε) is called O(ε≥k),

and if (ii) holds, f(ε) is called O(ε≤k).

Lemma 2.3 Ql = O(εRl) ∀ l ∈ L.

Proof

For two functions f(ε) = O(εa) and g(ε) = O(εb), a < b, I

have f(ε)g(ε) = O(εa+b) and f(ε) + g(ε) = O(εa).

Consider the l−tree hl, that minimizes the resistance in H(l).

For any arrow (i → j) ∈ hl, Ri,j is the miminum number of

mutations that is necessary to transit from a state in Ki to

a state in Kj. Hence pij = sup
θ∈Ki

∫
Kj

pε(θ, θ′)dθ′ = O(εRi,j ).

Hence V (hl) =
∏

(i→j)∈hl)
pij = O(ε

∑
(i→j)∈hl

Ri,j ) = O(εRl),

where Rl =
∑

(i→j)∈hl
Ri,j is the minimum number of
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mutations necessary to move along all arrows in hl. Since

Rl ≤ R(h) ∀ h ∈ H(l), I have
∑

h∈H(l) V (h) = O(εRl), which

completes the proof. �

Theorem 2.1 µε(K0) −→
ε→0

0.

Proof

Since k = arg min
l∈L

Rl 6= 0 and
∑

l∈L Ql = O(εRk) it follows

that O0/
∑

l∈L Ol = O(εR0−Rk) −→
ε→0

0. It follows directly

from lemma 2.1 that 0 ≤ limε→0 µε(K0) ≤ 0. �

I call states that receive positive probability by the

invariant distribution µ as the rate of mutations ε goes to

zero stochastically stable.

To conclude, I state the contraposition of the theo-

rem:

Corrollary 2.1

If a state is stochastically stable, it must represent a part

of a maximal closed anticipated cycle or it represents a

network that is stable in anticipation.
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1.4 Examples

1.4.1 Example 1

Let the allocation rule be defined as follows, and κ = 2:

r
0

r 0 r0

g0

r
x

r x r0�
�
�
�
�
�

g1

r
y

r z rz�
�
�
�
�
�

A
A

A
A

A
A

g2

r
w

r w rwA
A

A
A

A
A

�
�
�
�
�
�

g3

I assume the following inequalities: w > y > 0 > x > z.

Here, the allocation rule is anonymous, i.e. invariant to the

labels of the players. If players behave as in Jackson and

Watts (2002), two types of networks are pairwise stable: g0

and g3, the latter pareto dominating the former. One muta-

tion in g3 causes the process to reach g0 with positive proba-

bility while two mutations are necessary to cause the process

to transit from g0 to g3, hence g0 is the only network that

is stochastically stable, given the process is myopic. If play-

ers are nonmyopic and follow the anticipated dynamics pre-

sented in this paper with κ = 2 both g0 and g3 are α−stable

(with appropriate anticipations). I show that i) the process
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can move from g0 to g3 with positive probability, if one mu-

tation occurred and that ii) one mutation suffices to reach g0

from g3. Therefore both g0 and g3 are stochastically stable.

To start with i), suppose players have myopic beliefs à la

Jackson and Watts (2002) of the following form, where the

first row is i’s, the second is j’s and the last is k’s.

B(g0) = B({ij}) = B({ik}) = B({jk}) =

 0 0 0

0 0 0

0 0 0



B({ij , jk}) =

 0 0 1

0 0 0

1 0 0

 ,B({ij , ik}) =

 0 0 0

0 0 1

0 1 0

 ,

B({ik, jk}) =

 0 1 0

1 0 0

0 0 0

 , B(g3) =

 0 1 1

1 0 1

1 1 0


These beliefs support both g0 and g3 as stable in anticipa-

tion. I show that the process can drift12 to a state that

still supports g0 as α−stable, but from which one mutation

causes a transit from g0 to g3.

Suppose that by mutation, player i thinks that both j

and k are willing to form or maintain the link with i in the

networks {ij} and {ij , ik}. As long as the process is only in

12Drift is a sequence of single mutations with the property that after
each mutation, there is infinite time for the selection process to settle
at a rest point ((Samuelson, 1997, chap. 6)).
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g0 these beliefs cannot be falsified and hence are unbiased.

In {ij , ik}, it is optimal for i to maintain the links to j and k,

since i receives positive payoffs in {ij , ik} and non-positive

payoffs in g0 or {ij}. For the same reason it is optimal for

i to accept the link to k in {ij}. Given Bd
i , there is only

one type of path leaving {ij}:
(

K
{ij}

∞
{ij ,ik}

)
, where K

g
denotes

a K-fold sequence of g. This path occurs with probability(
2
3

)K−1 1
3

and generates discounted utility ui(p) = x+(y−x)δK

1−δ
.

Therefore, Ui({ij}) =
∑∞

K=1

(
2
3

)K−1 1
3

x+(y−x)δK

1−δ
= 3x(1−δ)+yδ

(1−δ)(3−2δ)

and if 3x(1 − δ) + yδ > 0, it is optimal for i to maintain

the link with j in {ij}. Furthermore, i is indifferent between

being willing to form a link with j in g0 since he believes

that j would reject this link anyway. Therefore, the beliefs

Bd
i listed below are unbiased and optimal, can be reached by

drift and still support g0 as α−stable.

Bd
i (g) = B(g) ∀ g ∈ G \ {g0, {ij}, {ij , ik}}

Bd
i ({g0}) =

 0 1 0

0 0 0

0 0 0

 , Bd
i ({ij}) =

 0 1 1

1 0 0

1 0 0

 ,

BM
i ({ij , ik}) =

 0 1 1

1 0 1

1 1 0


If player k believes that player i rejects the link ik in the

network ij , it is optimal for k to be willing to form the link

ik with i in ij . Hence the state, where k believes Bd
k as
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defined below can be reached by drift and still g0 would be

α−stable.

Bd
k({ij}) =

 0 0 0

0 0 0

1 0 0

 , Bd
k(g) = Bk(g) ∀ g ∈ G \ {ij}

Now suppose that in the empty network player j mutates

and is willing to form a link to i. Suppose that the next

three links that are drawn by nature are, in this specific

‘rule of order’, ij , ik and jk. In g0, players i and j form the

link ij , i because it is optimal given Bd
i , j because of the

mutation. Next period in the just established network {ij},
i and k form the link ik because it is optimal given Bd

i and

Bd
k and the process transits to {ij , ik}. There, it is optimal

for j and k to form the link jk to reach g3 in which both

receive maximal payoffs.

Since the observed path (g0, {ij}, {ij , ik}, g3) contradicts

the beliefs
(
Bd

i ,Bj,Bd
k

)
the players need to update and opti-

mize their beliefs to
(
B′i,B′j,B′k

)
. These new beliefs induce

anticipations such that g3 is stable in anticipation.

There are many more beliefs that support g3 as α−stable.

Each of these beliefs could have been reached by drift. One

of these is B0, as specified below:

B0(g3) =

 0 1 1

1 0 1

1 1 0

 , B0(g) =

 0 0 0

0 0 0

0 0 0

 ∀ g ∈ G\{g3}
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B0 is the one that makes a transition from g3 to g0 most

likely. B0 are quite pessimistic beliefs, hoIver they are unbi-

ased and optimal.

I now show that one mutation suffices to trigger the pro-

cess to transit from g3 to g0. Suppose the process drifted to

a state in which each player beliefs B0 and that player k mu-

tates in g3 and rejects to maintain the link ik and suppose

the link ij is drawn in {ij , jk} in the next period. Given B0,

i’s anticipation attaches positive probability to two types of

graphs:
(

K
{jk}

∞
g0

)
and

(
K
{ij}

∞
g0

)
. While i receives negative

discounted utility in paths of the latter type, the utility in

paths of the first type is zero. Hence in {ij , jk} i rejects the

link to j. In jk, both j and k will refuse to maintain the link

and therefore the process transits to g0.

To summarize, I showed that from a state in which g0 is

stable in anticipation, after drifting by single mutations, the

process needs one mutation to transit to a state in which g3

is stable in anticipation. Thereafter, after drift, the process

needs one mutation to transit back to a state in which g0

is stable in anticipation. In the words of Samuelson (1997),

chap. 7, both g0 and g3 are in a one-mutation-neighborhood

and hence are both stochastically stable.

1.4.2 Example 2

In the next example I show that inefficient outcomes may

be stable in anticipation. Suppose the allocation rule is as
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follows:13

r
0

r 0 r0

g0

r
1

r 1 r0�
�
�
�
�
�

g1

r
0

r 0 r0�
�
�
�
�
�

A
A

A
A

A
A

g2

r
1

r 1 r1 A
A

A
A

A
A

�
�
�
�
�
�

g3

Both g0 and g3 are pairwise stable and stable in anticipation.

g2 is in the basin of attraction of both graphs and it is only

“one mutation away” from each of the two absorbing graphs.

1.5 Conclusions

In this chapter, I construct a model of forward looking be-

haviour, however, I restrict the capability of the players.

Agents believe that the state of the game changes not too

much from the current state. I analyse a very special model

of network formation. I give examples in which boundedly

13This example is taken from Dutta et al. (2005)
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rational players are willing to forgo potential current payoffs

in order to wait for a more attractive network to evolve. In

our setup the beliefs of the agents are a part of the state of

the game. It could be interesting to generalise this concept

to infinitely repeated games of incomplete information, as,

for example, a bargaining game in which the share and the

beliefs about acceptance levels and outside options define the

state.
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Chapter 2

Evolution and
Correlated Equilibrium

In this chapter I show that a set of outcomes that

lies outside the convex hull of Nash equilibria

can be asymptotically stable with respect to an

evolutionary dynamic that satisfies convex mono-

tonicity. In the model presented here, boundedly

rational agents receive signals and condition the

choice of strategies on the signals. A set of con-

ditional strategies is asymptotically stable only

if it represents a strict (correlated-)equilibrium

set. There are correlated equilibria that cannot

be represented by an asymptotically stable signal

contingent strategy. For generic games I show

that if signals are endogenous but no player has

an incentive to manipulate the signal generating
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process and if the signal contingent strategy is

asymptotically stable, then and only then, the

outcome must be a strict Nash equilibrium.

2.1 Introduction and Related Lit-

erature

Consider a situation of strategic interaction in which agents

perceive signals before they choose their strateg. Restric-

ing the general setup of Aumann (1974), I demand that all

agents share common prior on the distribution of the sig-

nals. Given their own signal and given the conditional dis-

tribution of their opponents’ signals, each agent optimally

chooses a strategy. Finally, suppose that there is common

knowledge of rationality. According to Aumann (1987), a

resulting outcome must be a correlated equilibrium. Due to

the potential correlation between signals, a correlated equi-

librium does not need to be a Nash equilibrium. Indeed, a

situation of strategic interaction without signals seems arti-

ficial – signals are all around us in the real world, we can

hardly avoid perceiving them and then condition our behav-

ior on them in many situations. For example, in a financial

market agents may receive signals on the value of some asset

that are correlated. Several firms competing on a market for

some consumption good may receive correlated information

on the parametrization of the demand function. Consumers

observe signals displaying information on the quality of some
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good when planning their consumption. Football fans per-

ceive signals concerning the success of their favorite team

within some tournament and condition their betting behav-

ior on this information.

Rationality in the sense of Aumann (1987) requires that

agents understand the underlying probability space and that

this is commonly known. I support the concept of correlated

equilibrium from the perspective of bounded rationality. I

assume evolutionary dynamics on the game in which agents

receive signals and show that states persisting over time in

the presence of small mutations are correlated equilibria –

and therefore may be non-Nash outcomes. Before I describe

our model in detail in the next section, I discuss the con-

cept of evolution. In his survey on adaptive heuristics, Hart

(2005) describes evolutionary dynamics as one extreme of

bounded rationality: individuals’ behavior is completely de-

terministic. The concept of evolutionary game theory origi-

nates from biology; see Dawkins (1990) or Björnerstedt and

Weibull (1996) for socio-economic interpretations. Rational-

ity is imposed on an aggregate level: strategies with higher

relative success spread faster. Evolutionary game theory

contributes by showing that even if agents are boundedly

rational, certain outcomes predicted by concepts requiring

rationality persist over time.

This chapter characterizes the set of correlated equilib-

ria that persist over time, given boundedly rational agents.

The first part of the chapter assumes an exogenous and sta-
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tionary process of signal generation. A set of signal con-

tingent strategies is asymptotically stable with respect to

convex monotonic dynamics1, if it is a strict equilibrium set2

of the game with signals. Given this selection, I consider en-

dogenous signals. A signal generating process is robust, if no

population has an incentive to manipulate the process, given

equilibrium choice of the signal contingent strategies. I show

for generic games that a signal contingent strategy is asymp-

totically stable and the signal generating processs is robust,

if and only if the induced outcome is a strict Nash equilib-

rium. For the special case of the traditional example that

has an equilibrium outcome with payoffs outside the convex

hull of Nash-payoffs, the Chicken game, I show that a corre-

lated equilibrium has robust signals if and only if it induces

payoffs that lie inside the convex hull of Nash-payoffs.

In the remainder of this section, I relate this chapter to the

literature. It is well understood that the aggregate can dis-

play some rationality. Ritzberger and Weibull (1995) show

that only strict Nash equilibria are asymptotically stable in

the multipopulation replicator dynamics. For asymmetric

games (animal conflicts), Selten (1980) shows that evolution-

ary stable strategies must be strict Nash equilibria. I make

use of a concept introduced by Balkenborg (1994), strict equi-

librium set. Each element of a strict equilibrium set is a

1Hofbauer and Weibull (1996)
2Balkenborg (1994)
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Nash equilibrium, the set is closed under mixed best replies.

Balkenborg and Schlag (2007) show asymptotic stability of

restpoints within this set for general asymmetric games.3 I

rely on the concept of strict equilibrium set to characterize

sets of correlated equilibria that are asymptotically stable.

Lenzo and Sarver (2006) build up a model of subpopulations

in which agents are matched according to a distribution over

the set of subpopulations. They show that every interior4

Lyapunov stable state is equivalent to a correlated equilib-

rium. Their model is inspired by the work of Mailath et al.

(1997) who show that equilibria in a static model of local in-

teractions coincide with correlated equilibria in the original

game. In both models the correlation device is a “match-

ing technology” with which agents of different populations

are matched non-uniformly. I show that Lenzo and Sarver

(2006) is a special case of our model if one chooses a par-

ticular signal generating process. Cripps (1991) analyzes a

two player model in which in a first stage nature randomly

allocates row or column to the players and in a second step

assigns one role of a finite set of roles to each player. He

shows that an ESS in the symmetric game yields a distri-

3Other setwise concepts defined for symmetric one population games
are introduced by Balkenborg and Schlag (2001) and Thomas (1985).
Cressman (2003) also elaborates on the strict equilibrium set.

4Interiority in the subpopulation model means that the state is in-
terior for each subpopulation. It is more stringent than interiority in
our case.
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bution over the set of outcomes that is a strict correlated

equilibrium. I abstain from analyzing the symmetrization

and extend his model to dynamic analysis. Kim and Wong

(2007) define evolutionary stable correlation for symmetric

2 × 2-games. They apply a special signal space, I discuss

this matter after introducing the static model. Finally, I

consider exogenous signals. I imagine situations, in which

some agents exercise control over the generation of signals. I

do not restrict attention to situations in which a signal con-

sists of a message of each player. In such a case, the player

can manipulate a part of the signal. I consider players who

can replace a signal entirely and model this by considering

the choice of probability distributions over the set of sig-

nal generating elementary events. I characterize the set of

strategies in the original game for evolutionary dynamics of

signalcontingent strategies, if no population has an incentive

to manipulate the signal generating process.

The remainder of this chapter is structured as follows:

section 2 sets up the model, section 3 lists propositions which

are already available in the literature and which I transfer

to my model to characterize asymptotically stable sets of

correlated equilibria. Section 4 gives some examples. Section

5 shows the generalization of the subpopulation model of

Lenzo and Sarver (2006), section 6 characterizes the set of

stable outcomes that have a robust signal generating process

and the appendix collects the remaining proofs.
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2.2 Model

2.2.1 Static Model

We give a brief description of the model before I proceed to

define it formally. At each point of time, nature randomly

draws a tuple of agents from a fixed set of populations. A

signal generating process reveals information to each of the

active agents, this information may be correlated. Each

agent chooses a strategy to interact with the other agents

in a normal form game. Each agent is characterized by a

rule that prescribes the strategic choice given the received

signal. The resulting payoff determines wether the applied

rule spreads in the population.

Let Γ = {N , S, f} be a finite game in normal form

where N = {1, . . . , N} is the set of population, S = ×i∈NSi

and Si = {si
1, . . . , s

i
mi
} is population i’s finite set of pure

strategies and f : S → RN is a utility or fitness func-

tion. Each population consists of infinitely many agents.

Let Σi = ∆(Si) be the set of probability measures on

Si and let Σ̂i be a finite subset of Σi that contains the

vertices of Σi. Let Σ = ×i∈IΣi be the set of product

measures on S, define Σ̂ = ×i∈IΣ̂i accordingly. ∆ = ∆(S)

is the set of all probability measures on S. Denote by

s−i = (s1, . . . , si−1, si+1, . . . , sN) a vector of strategies

without the one of population i and by S−i = ×j∈N\{i}S
j

the Cartesian product of all but i’s strategy spaces. Define

63



Σ−i = ×j∈N\{i}Σ
j and ∆−i = ×j∈N\{i}∆(Sj). I extend f

to the space of mixed strategies, f : Σ → R, defined by

f i(σi, σ−i) =
∑

s∈S f i(s)
∏

j∈N σj(sj) ∀ i ∈ N .

A Strategy si ∈ Si is dominated if there exists some mixed

strategy σi ∈ Σi such that f i(si, σ−i) ≤ f i(σi, σ−i) ∀ σ−i ∈
Σ−i, with strict inequality for at least one σ−i. If the

inequality is strict for all σ−i, si is strictly dominated. It is

immediate to show that if si is dominated then there is a

dominating strategy σi with σi(si) = 0.

A strategy tuple σ = (σi, σ−i) is a Nash Equilibrium

(NE) in Γ, if ∀ i ∈ N , f i(σi, σ−i)−f i(si
h, σ

−i) ≥ 0 ∀ si
h ∈ Si.

Following Aumann (1987), I define a probability space

〈Ω,A, P 〉 which generates signals (that are potentially

correlated) on which agents can condition their strategic

choices. Both, the original game Γ and the probability

space constitute the primitives of my model. Assume Ω to

be a nonempty and finite set of generic elements ω. Let

A be the powerset of Ω and let {Ai}i∈N be a collection of

partitions of Ω. Ai represents an information structure for

population i; if nature draws an elementary event ω ∈ Ω,

population i knows Ai ∈ Ai if and only if ω ∈ Ai. Since for

each population i there may be events ω, ω′ that i cannot

distinguish, the agents are not able to ‘learn’ P . Therefore, I

need to assume P to be a common prior on (Ω,A). I regard

P as an objective statistic environment. Without loss of
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generality, I assume that P (ω) > 0 ∀ ω ∈ Ω. All subjectivity

enters the model via the set of partitions {Ai}i∈N . I define

the signaling structure I =
{
〈Ω,A, P 〉 , {Ai}i∈N

}
. I refer

to an element ω ∈ Ω as a complete description of a state

of the world while I call an element Ai ∈ Ai a signal for

the true state of the world. I assume that each agent has

access to some private randomization device that allows for

independent mixing, such that any mixed strategy in Σ̂i

is available. Wherever necessary, I assume that Σ̂i is rich

enough. Define Ai(ω) = {Ai ∈ Ai | ω ∈ Ai} the information

set available to an agent in population i if nature draws

ω. Throughout the model I make the assumption that the

populations’ fitnesses (represented by f : S ⇒ RN) do not

depend on any ω. This is because I want to show that even

if information is payoff-irrelevant, outcomes that are no

Nash-equilibra of Γ can be stable under boundedly rational

behavior, if agents perceive correlated signals.

Let a rule be a mapping from the set of states to strategies,

ri : Ω → Σ̂i. I assume for all i that ri is Ai-measurable, that

is if for some ω, ri(ω) = σi then ri(ω′) = σi ∀ ω′ ∈ Ai(ω).

In words, agents cannot distinguish states that are in the

same information set A. Define as ri
si(ω) the probability

with which an agent that uses rule ri chooses strategy si

given event ω, that is ri
si(ω) = σi(si), where σi = ri(ω).

Denote the finite set of all rule-profiles by R. I denote

the share of agents in population i applying rule ri by
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ρi(ri), the set of all shares in population i, ρi by ∆(Ri),

the set of all population shares ρ by ∆R = ×
i∈N

∆(Ri).

As before, I denote by r−i the vector r without the ele-

ment ri, and by ρ−i the vector ρ without the element ρi.

Denote by F : ∆R → RN the expected fitness from the

choice of the rules, where the components are defined as

follows: F i(ρ) =
∑
ω∈Ω

P (ω)
∑
r∈R

f i(r(w))
∏

j∈N
ρj(rj). Given the

signaling structure I and the normal form game Γ, I call

G(I,Γ) = {N ,R,F} the expansion of Γ.

A rule ri ∈ Ri is strictly dominated if there ex-

ists some population share ρi ∈ ∆(Ri) such that

F i(ri, ρ−i) < F i(ρi, ρ−i) ∀ ρ−i ∈ ∆(R−i).

To get a flavor of the model, I begin the analysis with

a very straight forward result that is helpful to show the

extinction of dominated strategies.

Lemma 1

If strategy si is strictly dominated in Γ by some mixed

strategy σ̂i ∈ Σ̂i, any rule ri with ri
si(ω) > 0 for some ω is

strictly dominated in the game G(I,Γ), if Σ̂i is rich enough.

Proof

Assume without loss of generality that σ̂i(si) = 0. Define for

each ω ∈ Ω the new rule r̂i
s̃i(ω) = ri

s̃i(ω)+ri
si(ω)·σ̂i(s̃i) ∀ s̃i 6=
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si and r̂i
si(ω) = 0. It is easy to verify that r̂i(ω) ∈ Σi ∀ ω,

however I need to assume that Σ̂i is rich enough

such that r̂i(ω) ∈ Σ̂i ∀ ω. For convenience I define

f i(ri(ω), ρ−i(ω)) =
∑

r−i f i(ri(ω), r−i(ω))
∏

j 6=i ρ
j(rj). We

then have ∀ ρ−i ∈ ∆R−i :

F i(r̂i, ρ−i) = F i(ri, ρ−i) +∑
ω∈Ω

ri
si

(ω)>0

P (ω)ri
si

[
f i(σ̂i, ρ−i(ω))− f i(si, ρ−i(ω))

]
︸ ︷︷ ︸

>0

�

A strategy si is iteratively strictly dominated in Γ if

there exists a sequence {sit , Γt}
n
t=0 such that sit is strictly

dominated in Γt, where Γt is obtained from Γt−1 by removing

sit−1 from it−1’s set of pure strategies in Γt−1, Γ = Γ0 and

si = sin . The same definition applies for a rule ri in the

game G.

As a consequence of Lemma 1 one can state an analo-

gous statement for iteratively strictly dominated rules:

Lemma 2

If strategy si is iteratively strictly dominated in Γ by some

mixed strategy σ̂i ∈ Σ̂i, any rule ri with ri
si(ω) > 0 for some

ω is iteratively strictly dominated in the game G(I,Γ), if Σ̂i

is rich enough.
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Definition Correlated Equilibrium (c.e.)

Given I, a correlated equilibrium in Γ is a mixed rule ρ ∈ ∆R

such that for all i, F i(ρ) ≥ F i(ρ̃i, ρ−i) ∀ ρ̃i ∈ ∆(Ri) . A

c.e. is strict, if inequalities hold strictly for all ρ̃i 6= ρi and

i ∈ N .

Here, an equilibrium is a point in the set of rules. The

original definition by Aumann (1987) is for distributions on

the space of strategies. See Fudenberg and Tirole (1991, pp.

56) for a short discussion. I regard the distribution over the

set of strategies as a result of the model, not a primitive.

Definition Induced Distribution

Let ρ ∈ ∆R be some distribution over the set of rules. Then

I and ρ induce a distribution over the set of outcomes. I

define ∀ s ∈ S:

λ(s) =
∑

ω

P (ω)
∏
i∈N

∑
ri∈Ri

ρi(ri) · ri
si(ω)

Definition Correlated Equilibrium Distribution

(c.e.d.)

A distribution λ ∈ ∆ induced by I and a c.e. ρ is a

correlated equilibrium distribution.

Given some expanded game G(I,Γ), there may exist

multiple c.e. ρ, some being strict and some other being

non-strict. See Example 5.1 .
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Fix some signal generating process I. Then, a mixed

rule ρ ∈ ∆R is a c.e. in Γ, if and only if ρ is a Nash

equilibrium of expanded game G(I,Γ). I discuss my choice of

the signal space. In an earlier version of this chapter, I had

Ω = S and Ai = {{si×S−i}si}, that is each population gets

a recommendation to play a particular strategy. I call this

signal space direct, Kim and Wong (2007) use this direct

signal space. With direct signals, it is optimal to follow the

recommendation if the signals are distributed according to

a c.e.d. . However, two problems come with this approach:

firstly, even if the distribution of signals P is a c.e.d., it

might still be an equilibrium if the agents deviate from the

recommendation (see example 4.1). Secondly, if one pins

down a special signal generating process, one can always

construct a meta game in which agents can condition their

choice of rules on some extra signals they might receive.

The general formulation of the signal space includes such

extra signals.

Definition Evolutionary Stability (Swinkels (1992))

ρ ∈ ∆R is evolutionary stable in G(I,Γ), if for every rule

profile ρ̃ 6= ρ there exists some ε̄ρ̃ ∈ (0, 1) such that for all

ε ∈ (0, ε̄ρ̃), and with ˜̃ρ = ερ̃ + (1− ε)ρ,

F i(ρi, ˜̃ρ−i) > F i(ρ̃i, ˜̃ρ−i) for some i ∈ N .
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It follows immediately that a rule is evolutionary stable if

and only if it is a strict Nash equilibrium of G.5 Note that

the above definition is for multi-population games.

The definitions of evolutionary stable sets by Thomas

(1985), Balkenborg and Schlag (2001) and Cressman (2003)

are all specified for symmetric one population games.

Therefore I do not list them but state a concept for general

asymmetric games:

Definition Strict Equilibrium set (SEset) (Balkenborg

(1994))

A nonempty set F ⊂ ∆R is a strict equilibrium set if

it is a set of Nash equilibria of G that is closed under

mixed-rule best replies by each population i, i.e. if for some

ρ ∈ F , (ρ̃i, ρ−i) ∈ F whenever F i(ρ̃i, ρ−i) = F i(ρ) for each

population i.

Such a set does not need to exist, see Example 5.4.

Theorem (Balkenborg and Schlag (2007)6, Cressman

(2003)7)

If F is an SESet of G, then F is a finite union of faces of

5See Swinkels (1992), Theorem 2.
6Proposition 2, p.299
7Theorem 3.1.2, p.71

70



∆R. In particular, F is closed and contains at least one

pure rule r ∈ R.

2.2.2 Dynamic Model

We assume that at each point in time, agents update their

behavior such that the population shares ρ = (ρ1, . . . , ρn)

change according to the regular differential equation

ρ̇i(ri) = gi(ri, ρ) · ρi(ri), ∀ ri ∈ Ri, ∀ i ∈ N , (2.1)

where regularity presumes that g = ×i∈N gi is (i)

Lipschitz continuous on ∆R = ×i∈N∆(Ri) and (ii)

gi(·, ρ) · ρi = 0 ∀ρ ∈ ∆R. By the Picard-Lindelöf Theorem8,

there exists a unique solution ρ̂(·, ρ) for each initial condition

ρ ∈ ∆R.

The following definition is taken from Hofbauer and

Weibull (1996):9

8A function φ : X → Rk, where X ⊂ Rk, is (locally) Lipschitz
continuous if for every compact subset C ⊂ X there exists some real
number λ such that it holds for all x, y ∈ C: ||φ(x)−φ(y)|| ≤ λ||x−y||.
If X ⊂ Rk is open and the vector field φ : X → Rk is Lipschitz
continuous, then the system ẋ = φ(x) has a unique solution x̂(·, x0) :
T → X through every state x0 ∈ X. Moreover, x̂(t, x0) is continuous
in t ∈ T and x0 ∈ X. (Weibull (1995) pp.232)

9Convex monotonicity is implied by aggregate monotonicity, it is
not implied by and does not imply monotonicity (both Samuelson and
Zhang (1992), Definition 3, p.369)
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(2.1) is convex monotonic (CM), if it satisfies

F i(ri, ρ−i) < F i(ρi
k, ρ

−i) ⇔ gi(ri, ρ) < gi(·, ρ) · ρi
k ∀ i ∈ N .

(2.1) is the replicator dynamics, if

gi(ri, ρ) = F i(ri, ρ−i)−F i(ρ) ∀ ri ∈ Ri and i ∈ N .

Define ρ+ = {ρ′ ∈ ∆R | ∃ t ∈ R+, ρ′ = ρ̂(t, ρ)}, as the

subset of ∆R that is reached if the dynamics start at ρ.

Definition Stability

A closed set Λ ⊆ ∆R is Lyapunov stable if for every

neighborhood U ′ of Λ there exists a neighborhood U ′′ such

that ρ+ ⊂ U ′ ∀ ρ ∈ U ′′ ∩∆R.

A closed set A ⊆ ∆R is asymptotically stable if it is Lya-

punov stable and if there exists a neighborhood U of A such

that ρ̂(t, ρ) −→
t→∞

A for all ρ ∈ U ∩∆R.

2.3 Propositions

This section collects the propositions.

Proposition 1

Let g be convex monotonic. If F ⊂ ∆R is a Lyapunov stable

set of rest points, then each ρ ∈ F is a c.e. .

Proof: see Appendix A.
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The converse of Proposition 1 is not true in general:

Fix some I and c.e. ρ in which for a population i,

the rule ri ∈ Ri : ρi(ri) > 0 is weakly dominated by

some mixed rule ρ̃i. Then there exists a neighborhood

U of ρ such that ∀ ˜̃ρ = (ρi, ˜̃ρ−i) ∈ U , ˜̃ρ−i ∈ int(∆R−i)

it holds that F i(ri, ˜̃ρ−i) < F i(ρ̃i, ˜̃ρ−i). Therefore, for

some ˜̃ρ−i there exists some ri
h ∈ Ri with ρ̃i(ri

h) > 0 such

that F i(ri
h, ˜̃ρ−i) > F i(ri, ˜̃ρ−i). Since (2.1) is monotonic,

gi(ri
h, ˜̃ρ) > gi(ri, ˜̃ρ), contradicting Lyapunov stability.

The next propositions specify the relationship of asymptotic

stability and correlated equilibrium:

Proposition 2 (cf Balkenborg and Schlag (2007), Theorem

6 and Cressman (2003), Theorem 4.5.3)

If a non-empty set F ⊂ ∆(R) of rules ρ is an asymptotically

stable set of rest points under the standard replicator

dynamic, F is a SEset.

Balkenborg and Schlag (2007) and Cressman (2003)

actually show equivalence, if (2.1) is the replicator dynamic.

Balkenborg and Schlag (2007) also show the reverse for a

wide class of other dynamics. I show the reverse for the

distinct class of convex monotone dynamics.10

10In Proposition 13 Balkenborg and Schlag (2007) demand (A) that
gi(ri, ρ) ≥ 0 whenever ri is a best response to ρ−i, (B) that gi(ri, ρ) > 0
whenever ri is a best response to ρ−i but ρi is not and (C) that
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Proposition 3

Let (2.1) be convex monotonic. If a set F is a SEset, then

F is an asymptotically stable set of rest points.

Proof: see Appendix A.

If the process does not start in the interior of ∆R,

there may exist some ρ0 ∈ ∆R such that λ(ρ̂(t, ρ0)) is not a

c.e.d. for all t > 0, even if an asymptotically stable set exists.

Proposition 4 (Hofbauer and Weibull (1996) Theo-

rem 1)

If a rule ri ∈ Ri is iteratively strictly dominated and

the process starts in the interior of the rulespace and if

the selection dynamics (2.1) is convex monotonic, ri gets

eliminated.

We do not give a statement whether induced distribu-

tion over outcomes converges. Viossat (2004) shows for

symmetric 3 × 3-games that the multipopulation replicator

dynamics eliminates all strategies not used in a correlated

gi(ri, ρ) < 0 whenever ρi is a best response to ρ−i but ri is not. Neither
does convex monotonicity imply (A),(B) and (C) nor vice versa. Con-
sider some ρ, ρ̃i and ri such that F i(ρ̃i, ρ−i) > F i(ρ) > F i(ri, ρ−i).
(A),(B),(C) imply that gi(ri, ρ−i) = 0. From regularity I have
ρi · gi(·, ρ) = 0, hence g cannot be convex monotonic.
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equilibrium (with interior initial conditions), however

Viossat (2007) gives an example of a class of symmetric

4 × 4 games for which the replicator dynamics eliminates

all strategies used in correlated equilibrium along interior

solutions. Lemma 2 and Proposition 4 allow me to pin

down a weaker result, namely to rule out iteratively strictly

dominated outcomes in the induced distribution in the long

run.

Corollary

If the process starts in the interior of the rulespace and

if the selection dynamics (2.1) is convex monotonic, then

lim
t→∞

λ(t) attaches zero probability to outcomes s that

involve strategies that are iteratively strictly dominated, if

Σ̂ is rich enough.

2.4 Examples

This section demonstrates how the model can be applied to

various examples. The examples are complementary to the

propositions of the preceeding section.

2.4.1 A Coordination Game

This example illustrates that one signal generating process

I allows for multiple stable rules r, r′ that do not induce

the same distribution λ over outcomes S. Even if the signal
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generating process I itself is a distribution over S and is

regarded as a ‘recommendation’, other strategy choices can

well be stable.

Let the game Γ be defined by N = {1, 2}, S = {u, d}×{l, r}
and

f =

l r

u (1,1) (0,0)

d (0,0) (1,1)

.

We specify I with Ω = S, A1 =
{
{ul, ur}, {dl, dr}

}
,

A2 =
{
{lu, ld}, {ru, rd}

}
. A rule for population 1 (row)

assigns a strategy for the first and the second element of

A1 respectively. UD means “choose u if ω ∈ {ul, ur} and

choose d if ω ∈ {dl, dr}”. I analogously denote the rules of

population 2.

Fi =

LL LR RL RR

UU 1 P ({ul, dl}) P ({ur, dr}) 0

UD P ({ul, ur}) P ({ul, dr}) P ({ur, dl}) P ({dl, dr})
DU P ({dl, dr}) P ({dl, ur}) P ({ul, dr}) P ({ul, ur})
DD 0 P ({ur, dr}) P ({ul, dl}) 1

for i = 1, 2

The rules (UU, LL) and (DD, RR) are the strict correlated

equilibria that correspond to the Nash equilibria of the orig-

inal game for any P with full support. Consider P to be
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a uniform measure over Ω. Then, (UD,LR) is a non-strict

c.e.. Even if the signal space Ω equals the set of outcomes

S, the induced distribution λ does not need to coincide with

P , although it still may be a c.e.d . Suppose P ({ul}) = p

and P ({dr}) = 1− p. The pair (DU, RL) is a strict c.e. and

induces the following distribution over the set of outcomes:

λ(ul) = 1− p and λ(dr) = p.

2.4.2 Chicken

A non-Nash outcome may be asymptotically stable.

Consider the “chicken game” originally presented in

Aumann (1974):

Γ =

l r

u (6,6) (2,7)

d (7,2) (0,0)

Let Ω = {ω1, ω2, ω3} and let A1 =
{
{ω1, ω2}, {ω3}

}
and

A2 =
{
{ω1}, {ω2, ω3}

}
, let P (ω) ≡ 1

3
. Given this I, the

resulting expanded game is

G(Γ,I) =

LL RL LR RR

UU (6,6) (42
3
, 61

3
) (31

3
, 62

3
) (2,7)

UD (61
3
, 42

3
) (5,5) (22

3
, 41

3
) (11

3
, 42

3
)

DU (62
3
, 31

3
) (41

3
, 22

3
) (3,3) (2

3
, 21

3
)

DD (7,2) (42
3
, 11

3
) (21

3
, 2

3
) (0,0)
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r = (UD,LR) is a strict c.e., hence r is a singleton evo-

lutionary stable rule and therefore asymptotically stable in

any convex monotonic dynamics. As is well known, the pay-

offs generated by r lie outside the convex hull of the Nash

equilibria of the original game Γ.

2.4.3 A SEset of correlated equilibria

The chicken example above shows that a single outcome can

be asymptotically stable producing payoffs that lie outside

the convex hull of the Nash equilibrium outcomes. This ex-

ample does the same for a set of outcomes. Consider the

following game

Γ =

l r

u (0,0) (0,6)

m (3,-6) (0,0)

d (9,9) (-3,6)

.

The pure Nash equilibria are (u, r), (m, r) and (d, l), the

unique mixed Nash equilibrium is (σ1(m) = 1
3
, σ1(d) =

2
3
, σ2(l) = 1

3
). Let Ω = {ω1, ω2, ω3}, A1 =

{{ω1, ω2}, {ω3}} ,A2 = {{ω1}, {ω2, ω3}}, P (ω) ≡ 3. Each

population has two signals, the row population therefore has

9 rules, column has 4 rules. The payoff matrix of the ex-

panded game is given by
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F =

LL LR RL RR

UU (0,0) (0,4) (0,2) (0,6)

UM (1,-2) (0,2) (1,0) (0,4)

UD (3,3) (-1,4) (3,5) (-1,6)

MU (2,-4) (1,0) (0,2) (0,2)

MM (3,-6) (1,-2) (2,-4) (0,0)

MD (5,-1) (0,0) (4,1) (-1,2)

DU (6,6) (2,7) (2,5) (-2,6)

DM (7,4) (2,5) (3,3) (-2,4)

DD (9,9) (1,7) (5,8) (-3,6)

.

In the figure, the shaded triangle is the convex hull of the

Nash equilibrium payoffs of Γ, the thick line connecting

the points (2, 5) and (2, 7) represents the SEset F = {ρ ∈
∆(R) | ρ1(DM) = 1 − ρ1(DU), ρ2(LR) = 1}, which is not

79



fully contained in the convex hull.

2.4.4 Matching Pennies

Non-existence of SEset.

Consider the original two population game with strategies

{h, t}2 and payoff matrix

Γ =

h t

h (1,-1) (-1,1)

t (-1,1) (1,-1)

Let the information structure be given by a singleton Ω =

{ω}, in other words let there be no signals. Therefore the

rules coincide with the strategies. The set of Nash equilibria

of G has only one element which is not strict (and hence is

not closed under mixed-rule best replies). In fact, any in-

formation structure I =
{
〈Ω,A, P 〉 , {Ai}i∈N

}
that has a

common prior induces an expanded game G{I,Γ} which has

no SEset. If instead of P there would exist some subjective

priors {P i}i∈I with P i : Ai → R violating the common prior

assumption, it would be straightforward to construct an ex-

pansion of Γ with strict equilibria, see Aumann and Dreze

(2005), example 6.5 .
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2.5 Subpopulations

In this section, I illustrate that the model of Lenzo and

Sarver (2006) can be expressed as a special case of the gen-

eral formulation of the model presented in this thesis. I give

a special interpretation of the signals: a signal assigns one of

finitely many subpopulations to each agent. Let each popu-

lation i have a set of subpopulations M i = {mi
1, . . . ,m

i
|M i|},

defining M = ×
i∈N

M i. Denote by xmi

si the share of agents in

subpopulation mi that choose strategy si. Let η ∈ ∆(M) be

a probability distribution over M , with η(mi, ·) > 0 ∀mi ∈
M i and i ∈ N . Note that this distribution may be corre-

lated and that there may be matches m ∈ M that receive

zero-probability.

We show that given a game Γ, for any M, η with state

x, there is an I and a state ρ such that the induced distri-

butions are the same. I therefore can represent any state

x of the subpopulations model by a state ρ of our model if

I give a particular specification of the signalling structure.

Furthermore I show that ρ needs not to be unique and that

the dynamic properties of x and ρ need not be the same.

Let Ω = M , Ai =
{
{mi × M−i}mi∈M i

}
, P =

η and ρi(ri) =
∏

mi∈M i

xmi

ri(mi).
11 First I show that

11More precisely: ri(mi) = ri(mi,m−i) for some m−i (ri(mi,m−i)
has the same value ∀ m−i).
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∑
ri∈Ri ρi(ri) = 1. Note that

∑
ri∈Ri

ri(mi
1)=si

∏
mi∈M i

mi 6=mi
1

xmi

ri(mi) =

∑
ri∈Ri

ri(mi
1)=si

h

∏
mi∈M i

mi 6=mi
1

xmi

ri(mi) ∀ si, si
h ∈ Si.

∑
ri∈Ri

ρi(ri) =
∑

ri∈Ri

∏
mi∈M i

xmi

ri(mi)

=
∑
si∈Si

∑
ri∈Ri

ri(mi
1)=si

x
mi

1

si

∏
mi∈M i

mi 6=mi
1

xmi

ri(mi)

=

(∑
si∈Si

x
mi

1

si

)
︸ ︷︷ ︸

=1

∑
ri∈Ri

ri(mi
1)=si

h

∏
mi∈M i

mi 6=mi
1

xmi

ri(mi)

...

=
∑
si∈Si

∑
ri∈Ri

ri(mi
1) = si

h
...

ri(mi
|M i|−1) = si

h

ri(mi
|M i|) = si

∏
mi∈M i

mi 6= mi
1

...
mi 6= mi

|M i|−1

mi = mi
|M i|

x
mi
|Mi|

si

=
∑
si∈Si

x
mi
|Mi|

si · 1
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Now I calculate λ(s) for some s ∈ S:

λ(s) =
∑
ω∈Ω

P (ω)
∏
i∈N

∑
ri∈Ri

ri(ω)=si

ρi(ri)

=
∑
m∈M

η(m)
∏
i∈N

∑
ri∈Ri

ri(mi)=si

∏
mi

k∈M i

x
mi

k

ri(mi
k)

=
∑
m∈M

η(m)
∏
i∈N

xmi

si

∑
ri∈Ri

ri(mi)=si

∏
mi

k∈M i

mi
k
6=mi

x
mi

k

ri(mi
k)

From the third line of the calculation of
∑

ri∈Ri

ρi(ri) I know

that
∑

ri∈Ri

ri(mi)=si

∏
mi

k∈M i

mi
k
6=mi

x
mi

k

ri(mi
k)

= 1 and have the desired result that

the distributions over outcomes are the same. However, there

is no one-to-one mapping from one model to the other model.

Consider the following simple example with M = M1×M2 =

{m1
1, m

1
2}×{m2

1, m
2
2}, S = {s1

1, s
1
2}×{s2

1, s
2
2}, η(m) = 1

4
∀m ∈

M , x
mi

1

si
1

= x
mi

2

si
2

= 1, in words: for each population i all agents

of subpopulation 1 choose their strategy 1 and all agents

from subpopulation 2 choose their strategy 2. If Ω = M ,

A1 =
{
{(m1

1, m
2
1), (m1

1, m
2
2)}, {(m1

2, m
2
1), (m1

2, m
2
2)}
}

(and A2

analogous), P = η and ρ as constructed above, I have prob-

ability mass one on the rule ri : ri(mi
1) = si

1, r
i(mi

2) = si
2.

Alternatively, but for the same Ω, Ai, P , I could assign

ρ̃i(ri) = 1
4
∀ ri ∈ Ri. Both ρ and ρ̃ induce the same dis-

tribution λ but while ρ is pure, ρ̃ is completely mixed and
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therefore ρ and ρ̃ have different dynamic properties.

2.6 Robust Signals

Until now, I assumed that the signal generating process is

stationary. This is plausible, if the signals originate from

an object that is completely exogenous, i.e. if they are

independent from interaction – a somehow polar case. The

other polar case would be that the agents themselves can

choose messages that serve as signals. I regard situations

in which one population i can alter the complete signal

and consider the case in which population i can choose a

particular probability distribution P . I offer the following

interpretation: suppose some institution determines P .

Every population knows the design of the institution and

therefore has access to the information how the institution

determines P . Population i can influence the institution,

because – for example – some key positions within the

institution are held by members of population i. In this

section I derive conditions such that population i does not

have an incentive to change P in a stable state ρ. Suppose

nature draws a certain elementary event ω ∈ Ω. Then, for a

given distribution of rules ρ = {ρi}i, population i’s expost

payoff is f i(ρ(ω)). Population i has an incentive to change

P if there is some other event ω′ with f i(ρ(ω)) < f i(ρ(ω′)).

This leads to the following definition:
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Definition Robust to Manipulation

Given ρ, P ∈ ∆(Ω) is robust to manipulation if for all

populations i

P (ω) > 0 ⇒ f i(ρ(ω)) ≥ f i(ρ(ω′)) ∀ω′ ∈ Ω .

If a distribution P is robust to manipulation given ρ, no pop-

ulation (regardless wether it has the capability to change P

or not) has an incentive to manipulate P . I do not demand

that any population can change P . I characterize those pairs

(P, ρ) such that no population wants to change P given ρ.

Nevertheless, I implicitly assumed some constrained reason-

ing. Suppose there is some mapping g : ∆(Ω) ⇒ ∆(R)

such that given distribution P , agents play an equilibrium

ρ ∈ g(P ). In the approach above, agents believe g to

be singlevalued and constant and agents compare the ex-

post payoffs. Alternatively, one could argue that popu-

lation i does not have an incentive to change P to P ′ if

F i
P (ρ) ≥ F i

P ′(ρ′) ∀ ρ′ ∈ g(P ′). That is, no population has

an incentive to change P , if P maximizes ex-ante payoffs for

all equilibrium choices ρ′, where the equilibrium choice well

depends on the distribution P . The consequences of this def-

inition are more exclusive in the sense that it is easy to find

a game such that no stable state ρ has a robust distribution

P .12

12For example, the chicken game, the battle of the sexes game,...

85



2.6.1 Results

Consider again the general setting, with Γ = {N , S, f},
I = {{Ω,P(Ω), P}, {A}i∈N} yielding the expanded game

GP = {N ,R,FP} (making the dependence on P explicit).

Define ∆∼
P ⊂ ∆(R) as the set of rules ρ such that P is

robust to manipulation. Define ∆CE
P ⊂ ∆(R) as the set of

correlated equilibria given P . Our first result is immediate:

Proposition 5

∆∼
P ∩∆CE

P 6= ∅ ∀ P ∈ ∆(Ω).

Proof

Consider a Nash equilibrium σ ∈ ∆(S) of the original

game Γ. Define the rule ρ such that for all i ∈ N and

si ∈ Si, ρi(ri) = σi(si) for ri : ri(ω) ≡ si. Clearly, ρ is a

correlated equilibrium of Γ given P , hence ρ ∈ ∆CE
P . No

population conditions the choice of strategies on signals,

hence f i(ρ(ω)) = f i(σ) ∀ω ∈ Ω and therefore no population

has an incentive to manipulate the generation of the signals.

Hence, P is robust given ρ, ρ ∈ ∆∼
P . �

We argue that there always is a trivial correlated equilibrium

in which agents choose Nash equilibrium strategies ignoring

any signals. Since all agents ignore any signals, no agent

has an incentive to manipulate the signals.
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We cannot give a full characterization of ∆∼
P ∩ ∆CE

P ,

the set of correlated equilibria given P that induce P to

be robust against manipulation. However, I suspect that

it is a subset of rules that induce a distribution λ on the

set of outcomes S that lies in the convex hull of Nash

equilibria (see the Chicken Game example below). I leave

this characterization to future work.

We can give a full characterization of ∆∼
P ∩ FP , FP

being an asymptotically stable set of rules given P if I

impose a further assumption on the payoffs of the original

game Γ. Suppose Γ is generic13. Then all asymptotically

stable sets are singleton. In this case, I can state that a

probability measure P is robust to manipulation given ρ if

and only if ρ puts probability one on rules that choose one

strict Nash equilibrium.

Proposition 6

Suppose for each population i, the frequency ρi(ri) updates

according to (2.1) and that (2.1) is convex monotonic.

Suppose further that the original game Γ is generic. A

set FP ⊂ ∆(R) is asymptotically stable given (2.1) and a

distribution P with full support on Ω, and P is robust given

a ρ ∈ FP , if and only if ρ attaches probability one to a rule

that maps all signals to the same strict Nash equilibrium.

13fi(s) 6= fi(s′) ∀s, s′ ∈ S, s 6= s′.
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Proof

Suppose FP is asymptotically stable and suppose P

is robust given any ρ ∈ FP . According to Proposition

2, FP is a SEset, from genericity follows that FP is

singleton, i.e. ρ = FP puts probability one to a strict

correlated equilibrium r ∈ R. Because no population has

an incentive to manipulate P given r, it must be that

f i(r(ω)) = f i(r(ω′)) ∀ω, ω′ ∈ Ω,∀ i. Since Γ is generic,

it must be r(ω) = r(ω′) = s ∀ ω, ω′ ∈ Ω and some

s ∈ S. Since r is a strict correlated equilibrium, I have

F i(r(ω)) > F i(r̃i(ω), r−i(ω)) ∀ r̃i 6= ri,∀ ω,∀ i ⇒ f i(s) >

f i(s̃i, s−i) ∀ s̃i ∈ Si, ∀ i. I conclude that s is a strict Nash

equilbrium of Γ.

Suppose ρ attaches probability one to a rule r ∈ R that

maps all signals to a strict Nash equilibrium s ∈ S of Γ,

r(ω) = s ∀ ω ∈ Ω. Then f i(r(ω)) = f i(r(ω′)) ∀ ω, ω′ ∈ Ω,∀ i

and no population has an incentive to manipulate P . Fur-

ther F i(r) > F i(r̃i, r−i)) ∀r̃i ∈ Ri ∀ i, ie r is a strict

correlated equilbrium. From Proposition 3, r is asymptoti-

cally stable. �

Proposition 6 claims that if the game Γ is generic, i.e.

if one considers the payoffs as random draws and disregards

those payoffs that appear with probability zero, if the agents

update their rules boundedly rational and if no population

would have an incentive to change the signal generating

88



process if it could, then there is nothing I can learn from

the concept of correlated equilibrium. Strict Nash equilibria

sufficiently explain behavior under such conditions. The

proof makes use of the fact that in generic games no two

outcomes provide the same payoff. If a population has the

capacity to choose certain signals at will, the population

will do so as to maximize ex post payoffs.

2.6.2 Example: Chicken Game

We elaborate on this subject for the Chicken example, for

which I can characterize ∆∼
P ∩ ∆CE

P . Let Ω = {ω1, ω2, ω3}
and A1 = {{ω1, ω2}, {ω3}} and A2 = {{ω1}, {ω2, ω3}}. Con-

sider a P ∈ ∆(Ω) with full support. The Chicken game

is generic, all asymptotically stable sets are singleton and

therefore strict correlated equilibria. I list the expected

payoffs and the best replies in Appendix B. For any P ,

there exist two strict correlated equilibria: (uu, rr) and

(dd, ll). If P (ω1) > max
{

1− 3P (ω3),
1
3
− 1

3
P (ω3)

}
, also

(ud, rl) is a strict correlated equilibrium. If further P (ω1) >

max
{

1− 3
2
P (ω3),

2
3
− 2

3
P (ω3)

}
, there exists a fourth strict

correlated equilibrium: (du, lr). The equilibria (uu, rr) and

(dd, ll) correspond to the two strict Nash equilibria of Γ.

In these equilibria, ex ante payoffs F equal ex post pay-

offs f(ω) for any signal ω, no population has an incentive

to manipulate the generation of signals. Suppose P is such

that (ud, rl) is a strict equilibrium. Then, the ex ante pay-
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offs for population 1 are 6 − 4P (ω1) + P (ω3). Population 1

has an incentive to increase P (ω3) at the expense of P (ω1).

After the manipulation, either P is outside the region in

which (ud, rl) is a strict correlated equilibrium or the in-

centives to manipulate P are still intact. Note that pop-

ulation 2 also has incentives to manipulate P in the equi-

librium (ud, rl). Analogous arguments hold for the equilib-

rium (du, lr). Wrapping up I get that P is robust given

the rules r ∈ {(uu, ll), (dd, rr)} and that these are the only

states that are asymptotically stable. Note that there are

other correlated equilibria, that are not asymptotically sta-

ble, that are generated by a robust P : ∆∼
P ∩ ∆CE

P = {ρ ∈
∆(R) |ρ1 = (1

3
+ ρ1(rr), 1

3
− ρ1(dd), 1

3
− ρ1(dd), ρ1(dd)), ρ2 =

(1
3

+ ρ2(rr), 1
3
− ρ2(rr), 1

3
− ρ2(rr), ρ2(rr)), ρ1(dd), ρ2(rr) ∈

[0, 1
3
]}∪{(uu, rr), (dd, ll)}. For any mixed correlated equilib-

rium ρ with a robust P , each population gets a payoff of 42
3
,

which is the outcome of the mixed Nash-equilibrium of the

original Chicken game. I conclude for the Chicken game: if

agents have the capability to influence the signal generating

process, and if the distriution P and the distribution of rules

ρ is such that agents do neither have an incentive to manip-

ulate the signals nor to change their behavior, the outcome

is a Nash outcome.
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2.7 Conclusions

In Aumann (1987), section 3, a player receives a signal and

conditions her strategic choice within a normal form game

on this signal. She takes into account that other players

receive signals that are potentially correlated to hers and

calculates conditional beliefs. Aumann (1987) shows that, if

players have a common prior on the signal space and if play-

ers choose strategies optimally given their beliefs, the equi-

librium outcome is a correlated equilibrium. There are cor-

related equilibrium outcomes that lie outside the convex hull

of the Nash outcomes. In this chapter I pursue the question

whether agents can achieve a correlated equilibrium without

being capable to calculate conditional expectations, indeed

even without being able to optimize. For this purpose, given

a signal generating process and a game in strategic form, I

define an “expanded game” whose strategies are mappings

from the set of the signals to the set of the strategies of the

original game. For this expanded game I transfer existing

and well established results on regular monotonic dynam-

ics, including the replicator dynamic. Applying a result of

Samuelson and Zhang (1992), it follows that an outcome

which supports a strictly dominated strategy of the original

game receives zero weight in the limit. Analogous to results

of Weibull (1995) and Ritzberger and Weibull (1995) I show

that a Lyapunov stable state of the expanded game repre-

sents a correlated equilibrium of the original game and that
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such a state is asymptotically stable if and only if it repre-

sents a strict correlated equilibrium (also Swinkels (1992)).

Furthermore, I make use of the setwise concept “strict equi-

librium set” introduced by Balkenborg (1994) and transfer

the result from Cressman (2003) and Balkenborg and Schlag

(2007) to my model that a set of restpoints is asymptotically

stable if and only if it is a strict correlated equilibrium set.

Therefore I can give a positive answer to our initial question:

even if agents are extreme boundedly rational a non-Nash

outcome can be robust to random perturbations if agents

use simple rules that condition their behavior on observed

signals. Finally I discuss endogenous signals. If behavior of

the agents can be modelled by convex monotonic dynamics

and if the game is generic, I show that an asymptotically

stable state has a robust distribution of signals if and only

if it corresponds to a strict Nash equilibrium of the original

game. I suspect that if the (potentially only Lyapunov sta-

ble) state is a correlated equilibrium and if the distribution

of signals is robust, then the expected payoffs lie in the con-

vex hull of those produced by Nash equilibria. I illustrate

this claim for the Chicken game.

This is not the first attempt linking evolutionary concepts

to that of correlated equilibria. Cripps (1991) constructs a

model in which nature randomly assigns roles to players in

bi-matrix games. Analyzing the statics of the model, he

shows that ESS in the symmetrized game represent strict

correlated equilibria. Lenzo and Sarver (2006) define a model
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of subpopulations in which an agent of some subpopulation

is non-uniformly matched to agents in other subpopulations.

I show that any kind of their subpopulation matching may

be represented by a particular signalling structure of our

model. Kim and Wong (2007) define an evolutionary stable

correlated strategy for symmetric 2× 2 games.
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Chapter 3

Persistent Ideologies

I analyse finite normal form games with two play-

ers in which agents are unable to observe payoffs.

Instead of knowing the true payoffs, an agent be-

lieves in an ideology that specifies a virtual payoff

matrix of the game. I define the set of ideologies

that are (strongly) equivalent to the true payoffs.

I may, but do not need to assume the presence of

ideologies that are equivalent to the true payoffs.

There may be infinitely many different ideologies

present at the same time. Given a diversity of

ideologies, agents maximize and choose actions.

I define an equilibrium concept and prove exis-

tence. I assume equilibrium play at each point in

time, however I refrain from assuming a particu-

lar equilibrium selection. Based on this setup, I

define an evolutionary dynamic on the distribu-
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tion of ideologies within the population. In this

meta game agents adapt new ideologies. I assume

a payoff monotonic imitation dynamic, i.e. ide-

ologies that lead to actions which are relatively

successful in terms of true payoffs spread faster in

the population than ideologies that recommend

relatively unsuccessful actions. I characterize the

set of stable distributions on the space of ide-

ologies. For general finite 2 player normal form

games with a Nash equilibrium in undominated

strategies I show that there is an open set of ide-

ologies being not equivalent to the true payoffs

that is not selected against by evolutionary pay-

off monotonic dynamics based on the true payoffs

of the game. I illustrate these results for generic

2× 2-games.

3.1 Introduction and Related Lit-

erature

Suppose rational agents meet to interact in a strategic situ-

ation and none of them has verifiable information about the

payoffs of the game. Instead, each agent has been social-

ized by some ideology that specifies a payoff matrix. Agents

then play the game as to maximise the believed payoffs. To

give an example, consider a measure taken to prevent terror-

ist attacks in airplanes: passengers are not allowed to bring
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flasks with their hand luggage that can contain more than

100 ml of liquid. Since this measure was taken until now, no

catastrophe was caused by a large amount of liquid in the

hand luggage. The reason for this could be that the measure

is indeed successful. Another reasoning could be that 150

ml of liquid in a single bottle is no threat to an airplane, in

other words that the measure is useless. In this paper the

view is taken that there is no objective knowledge on this

matter, because the real payoffs are not observable, maybe

not even available. Instead, interacting agents believe in cer-

tain payoffs. To stay in the example, some agents might feel

more secure and therefore more comfortable while airborne;

other agents might be annoyed due to the security restric-

tions and additional waiting times. I do not claim that a

particular position is true or false (actually, as the modeller

of the problem I assume that certain payoffs are true). I

aim to show that even if some perception of reality is wrong,

there might be no selection against this perception based on

the true payoffs.

In this paper I model an ideology as a bias by which the

true payoffs are perturbed. I allow for an unbounded con-

tinuum of biases, that is for any two player game with fi-

nite strategy space there may exist several groups of agents

at the same time, each group believing to face a different

strategic setting. Once in a while, agents change their ide-

ology, however I assume they do so boundedly rational and

model the adaptation of ideologies with an evolutionary pay-
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off monotonic process: ideologies that result in behavior that

produces relatively high real payoffs spread faster within the

population. Sandholm (2001) constructs a similar model for

symmetric 2 × 2-games in which the payoffs of some action

are biased, I build upon this model by allowing for biases

for outcomes of the game. I focus less on the dynamic that

yields equilibrium behavior, but assume equilibrium behav-

ior explicitly. I hereby gain tractability of the model and

can study general finite normal form games instead of sym-

metric 2×2-games. Ok and Vega-Redondo (2001) construct

a model in which agents either know the true payoffs of a

symmetric game or maximize some alternative symmetric

utility function, while they allow for the presence of only one

such alternative utility function. For symmetric two player

games they show global stability of states in which all agents

maximize the true payoffs, if – among other conditions – the

payoff function is strictly concave. It is exactly this “stan-

dard property” that turns out to be crucial for their results.

As a special result for the general model I show that for any

2×2-game there is an open set of ideologies that survive in an

evolutionary scenario and represent preferences that are not

equivalent to the preferences represented by the true payoffs

of the game. I give an example for a symmetric 3× 3 game

that confirms this result. Symmetric 2-player games with a

unique pure strategy equilibrium were also studied by Heifetz

et al. (2007) within in a similar framework. Ok and Vega-

Redondo (2001) state that behavioral distinguishability is
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necessary for the fact that agents who maximize the evo-

lutionary relevant payoffs have an evolutionary advantage.

However, this property is not sufficient: for some asymmet-

ric games I show survival of nonindividualistic preferences,

even if they are behaviorally distinguishable. I do so right

away for a simple example, to provide a flavor of my model.

Consider the well known matching pennies game. Suppose

that the row population has agents of three types. One third

knows the true payoffs. Another third has a bias towards

“(head, head)”, the last third is biased towards “(tail, tail)”.

I depict the biases below:

H T

H (-1,1) (1,-1)

T (1,-1) (-1,1)

original payoffs

H T

H (-1+1,1) (1,-1)

T (1,-1) (-1,1)

H T

H (-1,1) (1,-1)

T (1,-1) (-1+1,1)

bias for
1

3
of row bias for

1

3
of row

Each agent knows the sum of the true payoffs and her bias,

and knows the distribution of biases within the population.

Suppose the column population mixes equally between heads

and tails. Then, head-biased agents optimally choose head,

tail-biased agents optimally choose tail while those agents

who know the true payoffs are just indifferent (assume they
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mix equally between heads and tails). In this situation no

agent has an incentive to deviate. Any agent gets the same

real payoffs on average. Moreover, any type has different

equilibrium behavior.

Ely and Yilankaya (2001) study which set of outcomes is

supported by stable preferences in normal form games. As

they rely on static concepts to infer stability properties,1 I

define a dynamic process explicitely to analyze stability is-

sues. In their model, any set of alternative payoff specifica-

tions that is robust to exogenous shocks implies equilibrium

behavior that produces a probability distribution over the

set of Nash equilibria. However, Ely and Yilankaya (2001)

do not have results for the case in which there is zero mass

on ideologies that represent the true preferences. I do not

need to assume the presence of “true” ideologies to prove my

results.

3.2 Model

3.2.1 The Stage Game

We consider two infinite populations of agents from which at

each point of continuous time, a pair (one agent from each

population) is uniformly and independently randomly drawn

to play a finite two player normal form game G. An agent

1We feel uncomfortable accepting their definition 3.1 of stability
which I would rather call a steady state property.
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of population i chooses an element si of the finite strategy

set Si with cardinality ni. The true payoffs are represented

by the ni × nj matrix U i, where U i(si, sj) denotes i’s util-

ity from the outcome generated by (si, sj). I assume that

agents believe to be unable to observe the true payoffs. For

each population i, each agent is characterized by a vector

of parameters θi = {θi(s)}s∈S that describes how an agent

of type θi perceives the structure of the game. An agent

θi then believes to play a game that specifies her payoffs

as ui(s, θi) = U i(si, sj) + θi(si, sj), si ∈ Si, sj ∈ Sj. Let

u be extended to the space of mixed strategies and define

ui((si, σj), θi) =
∑

sj∈Sj σj(sj)(U i(si, sj) + θi(si, sj)).

I will show that depending on the game, some ideologies

that specify non-equivalent payoffs won’t have a long-run

evolutionary disadvantage in comparison with true payoff

equivalent ideologies.

We assume that for each population i types are distributed

among the agents by some atomless density fi : R(ni·nj) →
R+ with cumulative distribution function Fi : R(ni·nj) →
[0, 1]. The types are independently distributed across popu-

lations. We assume that {F}i is common knowledge.

Equivalent Ideologies

An agent with parameters θi(s) = 0 ∀ s ∈ S plays the game

given the true payoffs. These payoffs represent the evolu-

tionary relevant payoffs.

There is an affine subset of R(ni·nj) of parameters θi that
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also represent these evolutionary relevant preferences. Fix

some real payoffs U i. Any positive affine transformation

Û i(s) = αi + βi · U i(s), βi > 0 of these payoffs yields other

equivalent payoffs.

We call an ideology θi equivalent to the payoffs U i of

the original unbiased game, if sign{U i(s) − U i(s′)} =

sign{ui(s, θi) − ui(s′, θi)} ∀ s, s′ ∈ S. I call some ideology

θi strongly equivalent to U i, if there is some αi and some

positive βi such that ui(s, θi) = αi + βi · U i(s) ∀ s ∈ S.

If all agents had equivalent ideologies, the Nash equilibria

would be qualitatively maintained, that is any strict equilib-

rium would be the same, a mixed Nash equilibrium would be

offset. If all agents followed strongly equivalent ideologies,

the original Nash equilibria of the game would be exactly

maintained.

Equilibrium

Suppose some agent of population i believes σj to

be the probability distribution over the strategies of

population j 6= i. An agent of type θi chooses si iff

si ∈ arg max ui((s̃i, σj), θi). I assume that in equilibrium,

for all i, all agents of population i hold the same belief σj.

This assumption is critical to the concept I develop in the

following and therefore also to the results of this chapter.

Nevertheless, note that it is not as ad hoc as it might

seem at first sight. The beliefs are about something that

is unobservable – like preferences, ideologies or tastes. The
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belief is defined as a probability measure on something that

is verifiable: actual actions taken by opponents. Since all

agents observe this information, homogeneous beliefs seem

natural.

The set of types Θsi(σj) that choose strategy si are

defined as

Θsi(σj) := {θi ∈ R(ni·nj) | si ∈ arg max ui((s̃i, σj), θi)}

Any belief σj defines such a set Θsi(σj) uniquely.

Lemma for i, j = 1, 2, i 6= j, given any σj ∈ ∆(Sj)

there is no si ∈ Si such that Θsi(σj) = ∅.

Proof

Fix a constant K > max
si∈Si

|U i(si, σj)|. The max is well defined

since S is finite. Then the bias θi with θi(si, sj) = K

and θi(s̃i, sj) = −K for s̃i 6= si imposes the choice of si,

since ui((si, σj), θi) = U i(si, σj) + K > U i(s̃i, σj) − K =

ui((s̃i, σj), θi) ∀ s̃i 6= si. There is an open set Θ̃i around θi

such that si is optimal for all θi ∈ Θ̃i. Therefore, Θsi(σj)

cannot be empty. �

The lemma states that for any strategy si an agents

virtual payoff matrix can be biased so strongly towards si

such that the agent believes to maximize his payoffs by

choosing si.
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If all agents of population j share the same belief σi,

the true probability of facing some opponent of population

j choosing sj is:

Fj(Θsj (σi)) :=

∫
Θ

sj (σi)

Fj(dθj)

Lemma

Fj(Θsj (σi)) is continuous in σi ∀ sj, i.

Proof: see Appendix C.

Proposition Existence

There exists at least one pair of beliefs σ = (σi, σj) such

that σi(si) = Fi(Θsi(σj)) ∀si ∈ Si, i 6= j = 1, 2.

Proof:

To prove the result I apply Brouwer’s Fixed Point

Theorem: any continuous function G : Σ → Σ has

a fixed point b∗ ∈ Σ such that G(b∗) = b∗, where

Σ = ∆(S1) × ∆(S2). σ = (σ1, σ2) ∈ Σ. Define

gi
si(σj) = Fi(Θsi(σj)) ∀ σj ∈ Σj, ∀ si ∈ Si and ∀ i, j, i 6= j.

The function g(σ) = (g1(σ2), g2(σ1)) maps from Σ to Σ.

The lemma above states that gi
si(σj) is continuous in σj for

all si. Therefore, all requirements are met and I can apply

Brouwer’s Fixed Point Theorem to proof existence. �

We assume that in equilibrium j’s belief that i plays si,

σi(si), and the true probability that i plays si, Fi(Θsi(σj)),
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coincide: σi(si) = Fi(Θsi(σj)) ∀ si ∈ Si, i = 1, 2. Given a

cdf F , I call a collection {Θsi}si∈Si,i=1,2 that satisfies this

equilibrium condition equilibrium set. There may be many

σ = (σ1, σ2) that satisfy such equalities, the assumption is

not as innocent as it might seem: in fact I assume that the

agents manage to coordinate on one of potentially many

equilibria. However, I do not select any equilibrium; my

results require only that the agents coordinate on some, but

not on which equilibrium.2 Note that a distribution on the

set of outcomes S induced by an equilibrium set Θs and a

cdf F does not need to be a Nash equilibrium distribution.

Evolutionary Dynamics

Given some density f with cdf F and some equilibrium set

{Θs}s, agents of population i with type θi ∈ Θsi receive true

payoffs U i(si, Fj) =
∑

sj U i(si, sj)Fj(Θsj ). I assume that

once in a while agents adopt different ideologies and that

this dynamic process can be captured by the deterministic

differential equation

Ḟi(Θ
i) =

∫
Θi

gi(θ
i, F, Θs(F ))fi(θ

i)dθi , ∀Θi ∈ Bi, i = 1, 2

where gi(θ
i, F, Θs) is the growth rate of the marginal density

fi at θi given cdf F and some equilibrium set Θs and

2Implicitly, I assume that behavior adjusts with infinite speed.
Sandholm (2001) shows in a symmetric 2×2-games setting, that the
infinite speed dynamics can be expressed as the limit of finite speed
dynamics.
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Bi is the Borel σ-algebra of Rni . I require gi(θ
i, F, Θs)

to maintain the probability property of the marginals

(f1, f2), that is
∫

R2 gi(θ
i, F, Θs)fi(θ

i)dθi = 0, i = 1, 2

and I require gi(θ
i, F, Θs) to be Lipschitz continu-

ous in F . Then, as Oechssler and Riedel (2001)

show, for any F (0) a solution F (t) exists. If

gi(θ
i, F, Θs) = U i(si, Fj) −

∑
ŝi Fi(Θŝi) · U i(ŝi, Fj),

the dynamics is the well known replicator dynam-

ics. I assume that g(θ, F, Θs) fulfills the less de-

manding requirement of payoff monotonicity, that is

gi(θ
i, F, Θs) > gi(θ̂

i, F, Θs) ⇔ U i(si, Fj) > U i(ŝi, Fj) for

θi ∈ Θsi and θ̂i ∈ Θŝi .

Let ||F − F ′|| denote the variational norm: ||F − F ′|| =

suph

∣∣∫
Rni·nj h(θ)(f(θ)− f ′(θ))dθ

∣∣, where the supremum is

taken over all measurable functions h : Rni·nj → R satisfying

supθ |h(θ)| ≤ 1
2
.3

As in Oechssler and Riedel (2001)’s remark, I discuss

the relation of the variational norm to the concept of

mutations in evolutionary game theory. Consider a cdf F

that has measure zero on some set Θ. Now suppose a small

group (of size ε
1+ε

> 0), that has a cdf F ′ with measure

one on Θ enters the population. The new distribution is

F ε = (1−ε) ·F +ε ·F ′ and has distance ε from F . Therefore,

3We take the definition of the variational norm from Oechssler and
Riedel (2001).
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if the group of entering mutants is relatively small, the

distribution changes only little. Consider instead that the

original distribution F has mass one on a single point θ and

that each agent changes his belief of the payoffs only a little,

say to θ + ε · ι such that the new distribution F ε has measure

one on θ + ε · ι.4 Then, F and F ε have distance 1, which

is the maximal distance. That means, if all agents mutate,

even very little, the measure of change of the distribution

is maximal; if only a very small fraction of the population

mutates, even very starkly, the measure of change is very

small.

3.2.2 Results

Definition

Let F ∗ be a restpoint satisfying Ḟ ∗
i (Θ) = 0 ∀ Θ ∈ B, i = 1, 2.

Then F ∗ is called Lyapunov stable if ∀ ε > 0 ∃ η > 0 :

||Fi(0)− F ∗
i || < η ∀ i ⇒ ||Fi(t)− F ∗

i || < ε ∀ t > 0,∀ i.

Definition An equilibrium set {Θs}s is dynamically

stable with respect to some cdf F , if F is Lyapunov stable

and {Θs}s is an equilibrium set given F .

Theorem

Let {Θs}s be dynamically stable with respect to some cdf F .

Then σ with σi(s
i) = Fi(Θsi) ∀ si ∈ Si is a Nash equilibrium.

4ι = (1, 1, . . . , 1)
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Proof

F is Lyapunov stable. Therefore, Ḟi(Θ) = 0 ∀Θ ∈ B(Rni·nj
)

and Fi(Θsi) > 0 ⇒ gi(θi, F, {Θs}) = 0 ∀ θi ∈ Θsi . Hence

U i(si, σj) = U i(s̃i, σj) ∀ si, s̃j : Fi(Θsi), Fi(Θs̃i) > 0,

with σj(sj) = Fj(Θsj ) ∀ sj ∈ Sj. It remains to show:

U i(si, σj) ≥ U i(s̃i, σj) ∀ si : Fi(Θsi) > 0, s̃i : F (Θs̃i) =

0 ⇔ gi(θi, F, {Θs}) ≥ gi(θ̃i, F, {Θs}) ∀ θi ∈ Θsi : Fi(Θsi) >

0,∀ θ̃i ∈ Θs̃i : Fi(Θs̃i) = 0. I prove the claim by con-

tradiction. Suppose instead ∃Θs̃i : Fi(Θs̃i) = 0 and

gi(θ̃i, F, {Θs}) > 0 ∀θ̃i ∈ Θs̃i . Define F ε
s̃i as the set of cdf’s

F η satisfying F η
i (Θ) = (1− η) · Fi(Θ) ∀Θ ⊂ Rni·nj \Θs̃i and

F η
i (Θs̃i) = η, ε ≥ η > 0 and F η

j such that ||Fj − F η
j || ≤ η.

I note that ||Fi − F η
i || = η and that F ε is a connected

subset of cdf’s satisfying ||F − F̃ || ≤ ε ∀ F̃ ∈ F ε and

that there is a sequence {F η}η in F ε with lim
η→0

F η = F .

Since gi(·, F, ·) is (Lipschitz-) continuous in F , I have

gi(θ̃i, F̃ , {Θs}s) > 0 ∀θ̃i ∈ Θs̃i , ∀F̃ ∈ F ε
s̃i if I choose ε > 0

small enough. Consider some F η ∈ F ε
s̃i . I have Ḟ η

i (Θs̃i) > 0.

Therefore, for some t > 0 there is some η′ > η such that

F η(t) = F η′ . Since η ≤ ε, there is some t > 0 such that

for some η < ε, F η(t) = F η′ with η′ > ε. This contradicts

the property of Lyapunov stability of F and therefore it

must be that gi(θi, F, {Θs}s) ≤ 0 ∀ θi ∈ Θs̃i . Therefore

U i(si, σj) ≥ U i(s̃i, σj) ∀ si : Fi(Θsi) > 0, s̃i : F (Θs̃i) = 0

and I have established that σ is a Nash equilibrium, with

σi(si) = Fi(Θsi) ∀ si ∈ Si and i = 1, 2. �
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We note that the reverse statement, namely that a

Nash equilibrium implies dynamic stability is generally not

true. Consider, for example, a Nash equilibrium involving

strategies that are weakly dominated. It is clear, that for an

open environment of distributions with full support around

the Nash equilibrium distribution there are ideologies that

induce the choice of strategies that gain strictly higher (real)

payoffs than the Nash equilibrium strategies.

Main Theorem

For any game that has a Nash equilibrium σ without

dominant strategies there exists an equilibrium set {Θs}s

with respect to a cdf F such that Fi(Θ
i
s) = σi(si) ∀ si ∈ Si

and no θi ∈ Θi
si is equivalent to the bias 0 for any si in the

support of σi.

Proof

Since σ is a Nash equilibrium without dominant strate-

gies, for any si there exist strategies (s̃i, sj) such that

U i(si, sj) < U i(s̃i, sj). Define for K > maxs̃i∈Si |U i(s̃i, σj)|
the set Θsi = {θi ∈ Rni·nj |θi(si, sj) ≥ K, θi(s̃i, sj) ≤
−K ∀s̃i 6= si,∀sj}. Since for any θi ∈ Θsi , s̃i 6= si

and sj it holds that U i(si, sj) + θi(si, sj) > 0 and

U i(s̃i, sj) + θi(s̃i, sj) < 0, θi is not equivalent to the origin,

θi
0 = 0. Since si ∈ arg maxs̃i∈Si U i(s̃i, σj) + θi(s̃i, σj) for

any θi ∈ Θsi and σj ∈ ∆(Sj), it holds that Θsi ⊂ Θsi(σj).
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Set Fi(Θsi) = σi(si) ∀ si ∈ Si. Since the density of F is

atomless and the sets Θsi(σj), Θsi′(σj) overlap only at their

borders, Fi(Θsi(σj)) = σi(si) ∀si ∈ Si. The argument holds

for i = 1, 2.5 By definition, {Θs}s is an equilibrium set given

F . �

3.3 Dynamically Stable Sets in 2×2

Games

In the next two sections, we accompany this result by an

illustration for 2× 2 games and for a 3× 3 game.

We normalize an asymmetric 2 × 2-game to a symmteric

game with off-diagonal payoffs of zero (payoffs for player i):

A B

A ai
1 + θi

a1
ai

2 + θi
a2

B bi
2 + θi

b1
bi
1 + θi

b2

→
A B

A ai + θi
a 0

B 0 bi + θi
b

Assume without loss of generality ai > bi. A bias θi is

equivalent to the true payoffs, if the bias does not alter the

sign of the true payoff, that is if sign{ai} = sign{ai + θi
a}

and sign{bi} = sign{bi + θi
b}. For any σj ∈ ∆({A, B}),

Θi
A(σj) = {θ ∈ R2 | σj(A)(θi

a + ai) ≥ σj(B)(bi + θi
b)}

and Fi(Θ
i
A) =

∫
Θi

A(σj fi(θ
i)dθi. We can write U i(A, θi) =

ai · Fj(Θ
j
A) and U i(B, θi) = bi · (1 − Fj(Θ

j
A)). Therefore

5I suspect that it holds for games with an arbitrary number of pop-
ulations.
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gi(θi, F, {Θs}) can take only two values for any given F

and {Θs}; gi(θi, F, {Θs}) = gi
A(F, {Θs}) if θi ∈ Θi

A and

gi(θ̃i, F, {Θs}) = gi
B(F, {Θs}) if θ̃i ∈ Θi

B. This implies

then since Ḟi(R2) = gi
A(F, {Θs}) · Fi(Θ

i
A) + gi

B(F, {Θs}) ·
(1 − Fi(Θ

i
A)) = 0 that gi

A(F, {Θs}) = 0 if Fi(Θ
i
A) = 1

and that gi
B(F, {Θs}) = 0 if Fi(Θ

i
A) = 0. I conclude that

Fi(Θ
i
A) = 1 and Fi(Θ

i
A) = 0 are restpoints of the dynamic

of population i. If instead Fi(Θ
i
A) ∈ (0, 1), I can substi-

tute gi
A(F, {Θs}) = −gi

B(F, {Θs})
Fi(Θ

i
A)

Fi(Θi
B)

and the dynamics

simplify for all Θi ∈ B to

Ḟi(Θ
i) = gi

A(F, {Θs})
(
Fi(Θ

i|Θi
A)− Fi(Θ

i|Θi
B)
)
Fi(Θ

i
A) .

An interior steady state (0 < Fi(Θ
i
A) < 1) has the follow-

ing characteristics: gi
A(F, {Θs}) = gi

B(F, {Θs}) = 0 which

implies that U i
A(F, {Θs}) = U i

B(F, {Θs}) ⇔ Fj(Θ
j
A) = bi

ai+bi ,

which can only be in (0, 1) if ai(ai+bi) > 0 and bi(ai+bi) > 0.

To summarize, there always exist four restpoints: {Fi(Θ
i
A) =

1}i=1,2; {Fi(Θ
i
A) = 0}i=1,2; {Fi(Θ

i
A) = 2 − i}i=1,2; {Fi(Θ

i
A) =

i − 1}i=1,2. Additionally, if ai(ai + bi) > 0 ∧ bi(ai + bi) >

0, i = 1, 2, then {Fi(Θ
i
A) = bj

aj+bj }i=1,2,j 6=i is also a restpoint.

3.3.1 Classification of 2×2 Games

So far, I did not specify the true payoffs of the game,

{ai, bi}2
i=1. There exist five qualitative categories to char-

acterize the Nash equilibria of all 2× 2-games.6

6We ignore the cases in which a true payoff equals zero.
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a2 > b2 > 0

a1 > b1 > 0 (A1, A2), (B1, B2), (p1, p2)

a1 > 0 > b1 (A1, A2)

0 > a1 > b1 (p1, p2)

a2 > 0 > b2

a1 > b1 > 0 (A1, A2)

a1 > 0 > b1 (A1, A2)

0 > a1 > b1 (B1, A2)

0 > a2 > b2

a1 > b1 > 0 (p1, p2)

a1 > 0 > b1 (A1, B2)

0 > a1 > b1 (A1, B2), (B1, A2), (p1, p2)

Nash equilibria in nine different cases

(p1, p2) denotes a mixed Nash equilibrium in which a fraction

p1 = b2

a2+b2
of population 1 and a fraction p2 = b1

a1+b1
of pop-

ulation 2 choose A. In the next subsections, I explore these

nine cases. In any case, the distribution of play converges to

a Nash equilibrium, which was already observed by Ely and

Yilankaya (2001). In contrast to Ely and Yilankaya (2001),

I do not need to assume that the initial measure of ideolo-

gies has positive mass on payoffs that are equivalent to the

true payoffs. I show that for any parameters a, b there exist

initial measures such that ideologies persist even if they are

not equivalent to the true payoffs.
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(a1 > 0 > b1), (a2 > b2 > 0); (a1 > 0 > b1), (a2 > 0 > b2)
and (a1 > b1 > 0), (a2 > 0 > b2)

(a1 > 0 > b1), (a2 > b2 > 0):

Population 1 has A1 as a dominant strategy, population 2’s

best response to A1 is A2, the unique Nash equilibrium is

(A1, A2). There is no interior rest point, the set of restpoints

consists of the four pure strategy restpoints.

Since from payoff monotonicity I have gA1(F
′, Θ′

A) >

gB1(F
′, Θ′

A) for any F ′
1(Θ

′
A1

) < 1 and F2, I have that

F ∗
1 (Θ∗

A1
) = 1 is uniquely stable.

For any F ∗· = (F ∗
1 , F2), UA2(F

∗·, Θ∗·
A) = a2 > 0 =

UB2(F
∗·, Θ∗·) and therefore gA2(F

∗·, Θ∗·) > gB2(F
∗·, Θ∗·) for

any F2(ΘA2) < 1. Hence F ∗
2 (Θ∗

A2
) = 1 is uniquely stable.

The remaining two cases (a1 > 0 > b1), (a2 > 0 > b2) and

(a1 > b1 > 0), (a2 > 0 > b2) imply the same uniquely stable

restpoint, the argument is the same as above.

(a1 > 0 > b1), (0 > a2 > b2) and (0 > a1 > b1), (a2 > 0 > b2)

(a1 > 0 > b1), (0 > a2 > b2):

Population 1 has A1 as a dominant strategy, population 2’s

best response to A1 is B2, the unique Nash equilibrium is

(A1, B2). There is no interior rest point, the set of restpoints

consists of the four pure strategy restpoints.

Since from payoff monotonicity I have gA1(F
′, Θ′

A) >

gB1(F
′, Θ′

A) for any F ′
1(Θ

′
A1

) < 1 and F2, I have that

F ∗
1 (Θ∗

A1
) = 1 is uniquely stable.
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For any F ∗· = (F ∗
1 , F2), UA2(F

∗·, Θ∗·
A) = a2 < 0 =

UB2(F
∗·, Θ∗·) and therefore gA2(F

∗·, Θ∗·) < gB2(F
∗·, Θ∗·) for

any F ∗(∗·) with F2(ΘA2) < 1. Hence F ∗
2 (Θ∗

A2
) = 0 is

uniquely stable.

The case (0 > a1 > b1), (a2 > 0 > b2) is analogous.

(0 > a1 > b1), (0 > a2 > b2)

There are two strict Nash equilibria (A1, B2), (A2, B1) and

one mixed Nash equilibrium (p1, p2) = ( b2
a2+b2

, a1

a1+b1
). The

set of restpoints consists of the four pure restpoints plus the

unique restpoint in which F1(ΘA1) = b2
a2+b2

and F2(ΘA2) =
b1

a1+b1
.

(0 > a1 > b1), (a2 > b2 > 0) and (a1 > a2 > 0), (0 > a1 >
a2) (matching pennies)

(0 > a1 > b1), (a2 > b2 > 0):

The only Nash equilibrium is the mixed equilibrium

(p1, p2) = ( b2
a2+b2

, b1
a1+b1

), which is a steady state, additionally

to the four pure steady states. UA1(F, ΘA) = a1 · F2(ΘA2),

UB1(F, ΘA) = b1·(1−F2(ΘA2)), from payoff monotonicity fol-

lows gA1(F, ΘA) > gB1(F, ΘA) ⇔ F2(ΘA2) < b1
a1+b1

. For pop-

ulation 2 I have UA2(F, ΘA) = a2 ·F1(ΘA1), UB2(F, ΘA) = b2 ·
(1−F1(ΘA1)), from payoff monotonicity follows gA2(F, ΘA) >

gB2(F, ΘA) ⇔ F1(ΘA1) > b2
a2+b2

. Therefore a pure steady

state cannot be Lyapunov stable. The mixed steady state is

Lyapunov stable if Ḟ (Θ) is the above mentioned replicator
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dynamic, however it is not Lyapunov stable for all payoff

monotonic dynamics.

The case (a1 > b1 > 0), (0 > a2 > b2) is analogous.

(a1 > b1 > 0), (a2 > b2 > 0) (coordination games)

This class of games has three Nash equilibria, two in pure

strategies (A1, A2), (B1, B2) and one in mixed strategies

(p1, p2) = ( b1
a1+b1

, b2
a2+b2

). From UA1(F, ΘA) = a1 · F2(ΘA2),

UB1(F, ΘA) = b1 · (1 − F2(ΘA2)) and payoff monotonicity it

follows gA1(F, ΘA) > gB1(F, ΘA) ⇔ F2(ΘA1) > b1
a1+b1

, for

population 2 analogously. Therefore, only the strict Nash

equilibria are Lyapunov stable.

3.4 Conclusions

We study a model in which strategically interacting agents

follow an ideology that specifies the unobservable payoffs of

a symmetric 2×2-game. When drawn from an infinite popu-

lation, an agent knows his own ideology, but has incomplete

information of the ideology that his opponent follows. I as-

sume that the distribution of ideologies within the popula-

tion is common knowledge. I allow for a continuous variety

of ideologies that each specifies payoffs for games which can

be of any class of symmetric 2× 2-games. Given any distri-

bution of ideologies, I define equilibrium sets and show the

existence thereof. I assume that agents coordinate on such

an equilibrium set. My results do not depend upon the se-
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lection of such an equilibrium set in the case of multiplicity.

My focus is on the dynamics of ideologies. I assume that

evolution selects against ideologies that induce behaviour

which yields relatively low evolutionary relevant true pay-

offs. I characterize distributions that are stable with respect

to small changes (Lyapunov stability). My main result is

that for any two player game with a Nash equilibrium with-

out dominant strategies, there exists equilbrium sets that

consist only of non-equivalent ideologies. For any generic

2 × 2-game there exist stable distributions putting positive

mass only on those ideologies that represent preferences not

equivalent to preferences represented by the true payoffs. I

provide an example of 3×3-games that confirms this result.
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Appendix A

Proposition 1

Let g be convex monotonic. If F ⊂ ∆R is a Lyapunov stable

set of rest points, then each ρ ∈ F is a c.e. .

Proof: Since ρ ∈ F is a restpoint, gi(ri, ρ) =

0 ∀ ri ∈ supp (ρi). Suppose ∃ri
l , r

i
k ∈ supp(ρi) such

that F i(ri
l , ρ

−i) > F i(ri
k, ρ

−i). Then, by convex mono-

tonicity, gi(ri
k, ρ) < gi(ri

l , ρ) · 1, a contradiction. Therefore

F i(ri
l , ρ

−i) = F i(ri
k, ρ

−i) ∀ ri
l , r

i
k ∈ supp(ρi). If ρ is in the

interior of F with respect to ∆R, I are done. Suppose

instead that for some i there exists ri
k 6∈ supp(ρi) and

suppose that F i(ri
k, ρ

−i) > F i(ρ). Then, again by convex

monotonicity, gi(ri
k, ρ) >

∑
ri∈Ri gi(ri, ρ) · ρi(ri) = 0. Since

g is (Lipschitz–)continuous, there exists a neighborhood

U of ρ such that gi(ri
k, ρ̃) > 0 ∀ ρ̃ ∈ U ∩ ∆R. Define

U ′ = {ρ̃ ∈ U ∩ ∆R | ρ̃i(ri
k) > 0}. It holds that ρ̂i

ri
k
(t, ρ̃) is

strictly increasing in t for any ρ̃ ∈ U ′. However, Lyapunov

stability implies that ρ̂(t, ρ̃) ∈ U ′ ∀ t ≥ 0 and ρ̃ ∈ U ′′

for some neighborhood U ′′, which can only be the case if
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˙̃ρi(ri
k) ≤ 0 for some ρ̃ ∈ U ′, because ρi(ri

k) = 0. Since

gi(ri
k, ρ̃) > 0 ∀ ρ̃ ∈ U ′ this is not true for any subset of U ′

and U ′′ does not exist. Therefore, the existence of some

ri
k ∈ Ri for some i ∈ N such that F i(ri

k, ρ
−i) > F i(ρ)

contradicts Lyapunov stability of F and I have established

the claim. �

Proposition 3

Let (2.1) be convex monotonic. If a set F is a SEset, then

F is an asymptotically stable set of rest points.

Proof: Suppose F is an SEset and suppose that F 6= ∆R.

Each point in F is a restpoint of (2.1). Further I have

that F is a finite union of faces of ∆R and therefore is

closed. Consider some ρ∗ on the boundary of F with respect

to ∆R. For some population there is a pure rule ri such

that F i(ri, ρ−i
∗ ) < F i(ρ∗). Since gi(·, ρ) · ρi = 0 ∀ ρ ∈ ∆R

it follows that gi(ri, ρ∗) = 0 ∀ ri ∈ supp(ρi
∗). From

convex monotonicity I have that gi(ri, ρ∗) < 0 ∀ ri 6∈
supp(ρi

∗) and from continuity follows that there exists

some neighborhood U : U ∩ int(∆R) 6= ∅ of ρ∗ such

that gi(ri, ρ) < 0 ∀ ri 6∈ supp(ρi
∗), ρ ∈ U . Therefore

ρ̇i
ri(ρ) < 0 ∀ri 6∈ supp(ρi

∗),∀ ρ ∈ U \ F and from

gi(·, ρ) · ρi = 0 I have for at least one ri ∈ supp(ρi
∗) that

ρ̇i
ri(ρ) > 0 ∀ ρ ∈ U \ F , which establishes the result. �
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Appendix B

Row’s expected payoffs in the expansion of the Chicken

game

ll rl

uu 6 6− 4P (ω1)

ud 6 + P (ω3) 6− 4P (ω1) + P (ω3)

du 7− P (ω3) 7− 7P (ω1)− P (ω3)

dd 7 7− 7P (ω1)

lr rr

uu 2 + 4P (ω1) 2

ud 2 + 4P (ω1)− 2P (ω3) 2(1− P (ω3))

du 7P (ω1) + 2P (ω3) 2P (ω3)

dd 7P (ω1) 0

Column’s expected payoffs in the expansion of the Chicken

game

ll rl

uu 6 6 + P (ω1)

ud 6− 4P (ω3) 6− 4P (ω1) + P (ω3)

du 2 + 4P (ω3) 2− 2P (ω1) + 4P (ω3)

dd 2 2(1− P (ω1))

lr rr

uu 7− P (ω1) 7

ud 7− P (ω1)− 7P (ω3) 7− 7P (ω3)

du 2P (ω1) + 7P (ω3) 7P (ω3)

dd 2P (ω1) 0
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Best replies for P with full support:

BR1(ll) ≡ dd , BR1(rr) = uu

BR1(rl) =


ud , if 3P (ω1) + P (ω3) > 1

{ud, dd} , if 3P (ω1) + P (ω3) = 1

dd , if 3P (ω1) + P (ω3) < 1

BR1(lr) =


uu , if 3P (ω1) + 2P (ω3) < 2

{uu, du} , if 3P (ω1) + 2P (ω3) = 2

du , if 3P (ω1) + 2P (ω3) > 2

BR2(uu) ≡ rr , BR2(dd) = ll

BR2(ud) =


rl , if 3P (ω3) + P (ω1) > 1

{rl, rr} , if 3P (ω3) + P (ω1) = 1

rr , if 3P (ω3) + P (ω1) < 1

BR2(du) =


ll , if 2P (ω1) + 3P (ω3) < 2

{ll, lr} , if 2P (ω1) + 3P (ω3) = 2

lr , if 2P (ω1) + 3P (ω3) > 2
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Appendix C

Lemma Fi(Θsi(σj)) is continuous in σj ∀ i, j.

Proof:

Outline:

Given a convergent sequence {σn}n in ∆(Sj) and as-

sociated halfspaces {Hn}n we show Hn ∪ H ↓ H and

Hn ∩ H ↑ H and prove with Lemmata C1 & C2 continuity

from below and above. We define Hn such that Θsi(σj) is

the intersection of finitely many halfspaces and therefore is

also continuous from above and below.

For any σ, σ̂ ∈ ∆(Sj) define σn = σ n−1
n

+ σ̂ 1
n
, n ∈ N.

For any si, s̃i ∈ Si and σn ∈ ∆(Sj) define Hn = {θi ∈
Rni·nj |Ui(s

i, σn) + θi(si, σn) ≥ Ui(s̃
i, σn) + θi(s̃i, σn)}, the

set of types that weakly prefer strategy si over strategy s̃i

given belief σn.7

Hn ∩H ↑ H:

We show θi ∈ Hn ∩ H ⇒ θi ∈ Hn+1. Multiplying the

inequality implied by θi ∈ Hn with n
n+1

, the inequality

7The proofs for s̃i = si are trivially valid, however, only the cases
s̃i 6= si are relevant.
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implied by θi ∈ H with 1
n+1

and summing up yields

Ui(s
i, σn

n

n + 1
+ σ

1

n + 1
) + θi(si, σn

n

n + 1
+ σ

1

n + 1
)

≥ Ui(s̃
i, σn

n

n + 1
+ σ

1

n + 1
) + θi(s̃i, σn

n

n + 1
+ σ

1

n + 1
)

⇔ Ui(s
i, σn+1) + θi(si, σn+1) ≥ Ui(s̃

i, σn+1) + θi(s̃i, σn+1) ,

which implies θi ∈ Hn+1. θi ∈ H is trivially implied, we

conclude Hn+1 ∩H ⊂ Hn ∩H ∀ n ∈ N. Since H ∩H = H,

we have shown Hn ∩H ↑ H.

Hn ∪H ↓ H:

We start by showing θi ∈ Hn+1 ∩H1 ⇒ θ ∈ Hn. Multiplying

the inequality implied by θi ∈ Hn+1 with n2−1
n2 , the inequality

implied by θi ∈ H1 with 1
n2 and summing up yields

Ui(s
i, σn+1

n2 − 1

n2
+ σ̂

1

n2
) + θi(si, σn+1

n2 − 1

n2
+ σ̂

1

n2
)

≥ Ui(s̃
i, σn+1

n2 − 1

n2
+ σ̂

1

n2
) + θi(s̃i, σn+1

n2 − 1

n2
+ σ̂

1

n2
)

⇔
Ui(s

i, σ
n− 1

n
+ σ̂

1

n
) + θi(si, σ

n− 1

n
+ σ̂

1

n
)

≥ Ui(s̃
i, σ

n− 1

n
+ σ̂

1

n
) + θi(s̃i, σ

n− 1

n
+ σ̂

1

n
) ,

which implies θi ∈ Hn. We conclude θi ∈ Hn+1 \Hn ⇒ θi 6∈
H1.

We proceed by showing θi ∈ Hn+1 \Hn ⇒ θi ∈ H.

Multiplying the inequality implied by θi ∈ Hn+1 with n2−1
n2
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and adding the inequality implied by θi 6∈ Hn yields

Ui(s
i, σ) + θi(si, σ)− Ui(s̃

i, σ)− θi(s̃i, σ)

>
2n

n + 1

[
Ui(s̃

i, σ̂) + θi(s̃i, σ̂)− Ui(s
i, σ̂)− θi(si, σ̂)

]
As we have shown above, θi 6∈ H1 and therefore the right

hand side of the inequality is positive. Therefore θi ∈ H.

Since Hn+1 = (Hn+1\Hn)∪(Hn+1∩Hn) we conclude Hn+1 ⊂
Hn∪H ∀ n ∈ N. As H∪H = H, we have shown Hn∪H ↓ H.

We apply Lemmata C1 & C2 below with An = Hn∩H and

Bn = Hn ∪H and conlude that F is continuous from above

and below. From the definition of H, Θsi(σj) = ∩s̃i∈SiH s̃i

n

is a finite intersection and the desired properties of F carry

over for Θsi(σj). �

Lemmata C1 & C2 are taken from and proved in Bauer

(1992).

Lemma C1 (continuity from below)

Consider a sequence {An}n of subsets of Rni·nj with

An ↑ A ⊂ Rni·nj .

Then limn→∞ F (An) = F (A).

Proof:

Define A0 := ∅ and an := An \ An−1, n ∈ N. We have

An = ∪n
i=1ai and A = ∪∞n=1an. Since an ∩ am = ∅ ∀n 6= m

and σ−additivity of the measure F we have

F (A) =
∞∑

n=1

F (an) = lim
n→∞

n∑
i=1

F (ai) = lim
n→∞

F (An) . �
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Lemma C2 (continuity from above)

Consider a sequence {Bn}n of subsets of Rni·nj with

Bn ↓ B ⊂ Rni·nj .

Then limn→∞ F (Bn) = F (B).

Proof:

Since Bn ⊂ B1 ∀ n ∈ N it holds that F (B1 \ Bn) =

F (B1) − F (Bn) ∀ n ∈ N. Clearly, B1 \ Bn ↑ B1 \ B. From

Lemma C1 we know that F (B1 \ B) = limn→∞ F (B1 \ Bn)

and therefore F (B1 \B) = F (B1)− limn→∞ F (Bn). We also

have B ⊂ B1 and therefore F (B1 \ B) = F (B1) − F (B),

which establishes F (B) = limn→∞ F (Bn). �

Remarks

Symmetric difference A	B = A \B ∪B \ A:

Note since we do not require F (Θ) > 0 ∀Θ ⊂ Rni·nj ,

F (A 	 B) = 0 does not imply A = B. Therefore

dF (A, B) = F (A 	 B) is only a pseudo metric (satisfying

symmetry and the triangle inequality).

Upper hemi continuity:

Note further that Θ(σ) is not upper hemi continuous.

To give an example, consider the doubly symmetric 2×2

coordination game:

sj
1 sj

2

si
1 (1,1) (0,0)

si
2 (0,0) (1,1)
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Then each θi ∈ Θsi
1

(
1
3

)
satisfies

[1 + θi(si
1, s

j
1)]

1

3
+ θi(si

1, s
j
2)

2

3
≥ θi(si

2, s
j
1)

1

3
+ [1 + θi(si

2, s
j
2)]

2

3

Define E as the set of θi that satisfy

[1+θi(si
1, s

j
1)]

1

3
+θi(si

1, s
j
2)

2

3
> θi(si

2, s
j
1)

1

3
+[1+θi(si

2, s
j
2)]

2

3
−1

Clearly, Θsi
1

(
1
3

)
⊂ E. Consider some σ̂j(sj

1) arbitrarily close

to 1
3
, for example σ̂j(sj

1) = 1
3

+ ε for ε ∈ (0, 2
3
). Any θi ∈

Θsi(σ̂j) satisfies

[1 + θi(si
1, s

j
1)](

1

3
+ ε) + θi(si

1, s
j
2)(

2

3
− ε)

≥

θi(si
2, s

j
1)(

1

3
+ ε) + [1 + θi(si

2, s
j
2)](

2

3
− ε) .

The reader can verify that θi = (θi(si
1, s

j
1), . . . , θ

i(si
2, s

j
2)) =(

21−3ε
3ε

, 0, 0, 1
3ε

)
does belong to Θsi(σ̂j) but not to E. There-

fore, Θsi(·) is not upper hemi continuous.
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