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Chapter 1

Introduction

In this work, the adsorption of a prototype organic semiconducting material

on a crystalline silver surface was investigated.

Plastics, or polymers, exist everywhere in our environment. Most packing

materials (bags and bottles), many toys (e.g., LEGO), medical applications,

clothing and many other things are made out of this material. Cheap oil in

the sixties provided the spread of plastics in everyday life. In many �elds

plastics exhibit better properties than other materials. The main advantage is

the cheap and easy production, and that plastics can be tailored to any form.

Conventional plastics are electrical insulators, but with the discovery of con-

ductive polymers [Chi 77], many new applications became possible. For their

work on conductive polymers, the Nobel price was awarded to A. MacDiarmid,

H. Shirakawa and A. Heeger in 2000 [Shi 00].

As plastics, semiconductors are found throughout in everyday life. They

form the basis of �eld e¤ect transistors (FET), used millionfold in processors of

personal computers and many other microelectronic devices. The fabrication

of semiconductor-based devices has to be performed under extremely clean

conditions and requires highly pure materials. By photolithography the so-

called integrated circuits (IC) are produced in a relatively simple way and they

can be easily reproduced. Most devices are based on silicon and germanium.

The organic semiconductors (OSC) are an alternative to the rigid inorganic

material. Both, conducting polymers and small organic molecules belong to

this class of materials. They combine the advantages of plastics and conven-
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tional semiconductors. Due to the great variety of molecules, almost any size

and any property can be designed with the organic materials. Many applica-

tions already exist for organic semiconductors. The most prominent example

is the organic light emitting diode (OLED). Today, OLEDs cover the complete

spectrum of colors. They are found in displays of mobile phones, MP3-players

and many other devices. OLEDs do not need any background illumination,

they are extremely �at and they provide brilliant images with a high contrast.

Additional advantages are low fabrication costs and low power consumption.

Organic solar cells and organic �eld e¤ect transistors (OFETs) are other

promising applications of organic semiconductors. However, they do not reach

the performance of conventional semiconductors, yet. The charge-carrier mo-

bility, for instance, which is important for the switching frequency, is still much

lower for organic semiconductors (10�1�20 cm2=V s) than for the conventional

ones (1�104 cm2=V s). However, the combination of OLEDs and OFETs opens

the possibility of �exible displays, e.g., the electronic newspaper or a rollable

display for mobile phones. Regarding the prototypes for these devices, a rapid

further development can be expected. Moreover, due to the enduring fall in

prices for semiconductor devices, new concepts are required in semiconducting

industry. Therefore, OFETs represent an interesting �eld of further research.

In recent years, a broad research activity was focused on interfaces of or-

ganic semiconductors and inorganic materials. This is due to the fact that, e.g.,

in the OFET technology, the insulator-semiconductor interface plays a crucial

role for the performance of the device [Kla 06]. Also, the metal-semiconductor

interface is of technological importance, e.g. for OFETs and organic solar cells

[BarRav 03].

Since the �rst few layers of the organic material signi�cantly determine

the properties of the whole device, it is a major challenge to understand the

electronic and geometrical structure of organic semiconductors adsorbed on a

particular surface. However, a reliable model for predicting the properties of

a given molecular material is still not available. Calculations of the interface

based on density functional theory (DFT) often only give imprecise or wrong

results, and do not re�ect the real situation of the interface at all. By the

experimentally determination of as many parameters as possible for di¤erent
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interfaces, it will be possible to test and to improve the theoretical calculations.

Hence, the results of the calculations will become much more reliable in the

future.

The aim of the present work was to further solve the puzzle of the geomet-

rical properties of organic semiconductors on metal crystal surfaces. Therefore,

normal incidence x-ray standing waves (NIXSW) studies were performed on

3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), which represents an

extensively studied model system of the organic semiconductors.

Monolayer �lms of PTCDA were grown on a silver(111) surface at di¤erent

temperatures. Depending on the temperature, di¤erent lateral structures were

obtained. An introduction to this organic material and particularly to the

system of PTCDA adsorbed on Ag(111) will be given in chapter 2.

By the NIXSW technique, the vertical distances of an adsorbate to the

underlying substrate can be determined which is an important parameter for

any kind of calculations. The NIXSWmethod is based on a Bragg re�ection of

the underlying substrate. For varying energies of the incident x-ray beam close

to the Bragg energy, the photoemission (PE) yield (and also the electron yield

from Auger electron spectroscopy (AES) and the �uorescence yield) of the

adsorbate exhibits a particular pro�le, depending on the adsorbate�s position

on the substrate. A detailed description of this experimental method is given

in chapter 3.

At room temperature, PTCDA forms a long range ordered monolayer �lm

on the Ag(111) surface [Glö 98]. If the atoms of one element are chemically

di¤erent and on distinct vertical positions, it is possible to measure these

position, as it will be demonstrated. The results of the room temperature

phase, obtained in this work, are presented in chapter 4.

At low temperatures a metastable phase exists [Ere 03] [Tem 06b] [Kil 07]

which exhibits no long range order. The results for this so-called precursor

phase [Bar 00] are given in chapter 5.

Finally, in chapter 6, the results of the two distinct phases are compared.

The results are summarized in chapter 7.
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Chapter 2

PTCDA

The substance 3,4,9,10-perylenetetracarboxylic dianhydride (C24O6H8), or

PTCDA, is an organic semiconductor. A ball-and-stick model of this planar

molecule is shown in the inset of �gure 2.1. Due to its color and its thermal

stability, this molecule is used as a red pigment, e.g., in automotive applica-

tions. PTCDA often is referred to as the prototype of organic semiconductors,

since it has an unique electronic structure and it grows on surfaces in a well

de�ned way [Bul 96] [For 97]. The fact that PTCDA is an extensively studied

molecule can be seen by the numbers of publications on PTCDA in recent

years (�gure 2.1).

PTCDA is a large molecule with an extended conjugated �-electron system.

Its molecular weight is 392 u. The molecule consists of a perylene body with

two functional groups (dicarboxylic anhydride groups) at both sides. Due

to these partially negatively charged anhydride groups, the molecule has a

quadrupole moment. The bulk crystal structure is characterized by �at lying

molecules in the (102) planes, which form a stacking structure. Two di¤erent

morphological forms are known, the �- and �-modi�cation [MoeKar 92]. The

�-phase is the more compressed and more stable phase [Kil 04]. The space

group for both phases is P21/c. There are two molecules per unit cell. The

lattice parameters for the �-phase are a = 3:72�A, b = 11:96�A, c = 17:34�A,

�c = 98:8
� with a volume of 766:5�A

3
[Lov 84] and for the �-phase a = 3:78�A,

b = 19:30�A, c = 10:77�A, �c = 98:8
� with a volume of 780:8�A

3
[MoeKar 92].

In the (102) plane of the bulk, the molecules are arranged in the so-called
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herringbone structure. The short axis of one molecule faces the long axis of

another molecule. This plane is of particular importance. On the one hand

side, it is the cleavage plane of the crystal [AloGar 04]. On the other hand side,

on many substrates, PTCDA arranges in this particular way, when grown by

molecular beam epitaxy. The occurrence of the herringbone structure indicates

that the interactions of the molecules within this plane play a major role. This

structure of PTCDA is found for monolayers on various surfaces, as e.g. on

HOPG [Hos 94], on MoS2 [Lud 94], on Au(111) [SH 97], on Au(100) [SH 99],

on Ag(111) [Glö 98], and on Cu(111) [Wag 07].
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Figure 2.1: Increasing number of publications related to PTCDA from 1960 to
2006, as obtained from the search engine sci�nder scholar. Inset: Ball-and-stick
model of the planar molecule PTCDA. The carbon atoms are shown in dark grey,
the oxygen atoms in black color and the hydrogen atoms in white color. The latter
are located at the end of the short axis. The carboxylic oxygen atoms correspond to
the four outer O atoms. The anhydride oxygen atoms correspond to the two inner
O atoms.

The adsorption of PTCDA on various surfaces has been so far investigated

in great detail. In the following, details will only be presented for the speci�c
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features of the PTCDA (sub-) monolayer on Ag(111) at di¤erent temperatures,

as this is of importance for this work. For a more general introduction to

the epitaxial growth of PTCDA on various metal surfaces see e.g. the review

article of Barlow and Raval [BarRav 03] or the review article of Witte and

Wöll [WitWöl 04].

2.1 The room temperature phase of PTCDA

on Ag(111)

At room temperature, PTCDA forms a commensurate monolayer on Ag(111).

Due to the symmetry of Ag(111), the adsorbate grows in six symmetry equi-

valent domains. These domains exhibit an almost defect-free long-range order

[Umb 96].

The unit cell of the adsorbate consists of two molecules arranged in the

herringbone structure. The unit cell parameters agree within 2% with those

of the �-phase of the (102) net plane [Glö 98] [Umb 98]. It was found by

NEXAFS that in this structure, the molecules lie �at on the surface [Tab 95].

Kraft et al. revealed the lateral adsorption geometry by means of STM and

DFT calculations [Kra 06]. They found two distinct lateral positions for the

two molecules in the unit cell. However, for both molecules the central carbon

ring is positioned on a bridge site.

The monolayer exhibits a thermal stability up to approximately 560K,

it cannot be thermally desorbed from the Ag surface. However, it is found

to dissociate at temperatures above 560K [Glö 98] [Sei 93]. The multilayer

desorption takes place at about 510K, the desorption of the second layer occurs

at about 510K to 530K. Therefore, the monolayer can be easily prepared by

desorbing the multilayers at temperatures of 550K [Kil 04].

The desorption behavior as well as the ultraviolet photoelectron spectroscopy

(UPS) and the high resolution electron energy loss spectroscopy (HREELS)

data reveal a strong chemisorptive bonding of the �rst layer of PTCDA on

Ag(111) [Kil 02a] [Zou 06] [Shk 00]. Strong changes in the electronic structure

of the molecule were found for the monolayer. Compared to the multilayer, the
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Figure 2.2: Herringbone pattern of the monolayer PTCDA on Ag(111) found by
STM and high resolution LEED. This �gure was taken from [Glö 98].

HOMO-LUMO transition is shifted to lower energies in the monolayer [Jun 93]

[Tab 95] [Shk 00]. This can be attributed to a strong molecule-substrate in-

teraction. Eremtchenko et al. found hints that the bonding involves mainly

the carbon atoms and that it is restricted to the central carbon ring [Ere 03]

[Ere 04].

The lowest unoccupied molecular orbital (LUMO) of the molecule in the

multilayer is shifted in the monolayer to lower energies and is cut by the Fermi

level. Hence, it is the new highest occupied molecular orbital (HOMO) which

is partially �lled. This indicates that the monolayer of PTCDA on Ag(111) is

metallic [Zou 06]. Evidence for this metallic state was also found by means of

scanning tunnelling microscopy (STM) and HREELS. This metallicity leads

to strong interfacial dynamic charge transfer [Tau 02b]. The partial occupancy

of this orbital (the former LUMO) can be concluded from STM measurements,

because this orbital can be imaged under positive and negative bias condition

[Tau 02a].
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2.1.1 Adsorption of PTCDA at step edges

In the present work, the geometrical structure of the molecule PTCDA on

Ag(111) was investigated. By using normal incidence x-ray standing waves

(NIXSW), the geometrical properties of a large area on the sample are av-

eraged. If other geometrical arrangements are present besides the described

herringbone structure, this has to be taken into account, because it directly

in�uences the results. Speci�c geometric arrangements of PTCDA were found

on the step edges of the Ag(111) substrate which turn out to be relevant for

the present work. Thus, these are described in the following.

Glöckler et al. found that the steps of the silver (111) crystal are decorated

with PTCDA molecules. On single atomic steps no molecules were found, only

on double steps of 4:72�A height (and higher steps) the molecules were observed

[Glö 98]. The molecules stand upright at the steps, hereby the molecule ori-

entation alternates from one molecule with the long axis perpendicular to the

step to the next one with its long axis parallel to the step. After annealing

the sample, further step bunching is observed. The authors ascribe this pref-

erence of step edges to a stronger bonding mechanism which occurs on the

Ag(110)-like step sites.

Marchetto et al. investigated the growth behavior of PTCDA on Ag(111)

with UV photoelectron emission microscopy (UV-PEEM) [Mar 06]. In the

submonolayer range, they found a preferred growth of the molecules at the

step edges. They discuss models of either an attractive or a repelling (Ehrlich-

Schwoebel barrier [EhrHud 66] [SchShi 66]) potential for the di¤using PTCDA

molecules at the step edges. The authors point out the di¢ culty of the in-

terpretation of integrating measurements which average the signal over large

surface areas. The authors claim that the surface morphology plays an im-

portant role. Since the employed technique of this work, namely NIXSW, is

an integrating measurement, this is an important aspect for the interpretation

of the results of this work.

In his Ph.D. thesis, C. Seidel investigated PTCDA on Ag(775) [Sei 93].

This surface is similar to a Ag(111) surface which is highly stepped. He found

that PTCDA is adsorbed in chains on biatomic steps. On triatomic steps

he observed two lines of PTCDA molecules, very similar to the herringbone
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structure. In the submonolayer range up to 0.5 monolayers, no coverage of the

(111) terraces could be found. S. Schmitt described in his Ph.D. thesis that

the annealing of such a structure yields an adsorbate-induced reconstruction

of the steps, as shown in �gure 2.3.

Figure 2.3: Adsorbate induced reconstruction of a vicinal Ag(111) surface. The
reconstruction occurs after deposition of PTCDA and subsequent annealing. This
�gure was taken from reference [Sch 06]. This is of importance of the present work,
since the used Ag(111) crystal can be slightly stepped. For the preparation of a
monolayer, the organic material was evaporated on the crystal and then subsequently
annealed. Therefore, depending on the crystal quality, such a adsorbate induced
reconstruction can occur also for the thin �lms prepared in this work.

2.2 The low temperature phase of PTCDA on

Ag(111)

In 2001, Kilian discovered the metastable low-temperature phase of PTCDA

on Ag(111) [Kil 02a] which he identi�ed as a precursor state. He found this

phase of the molecules at coverages below the monolayer coverage of the room

temperature phase.

For the preparation of this phase, the PTCDA is deposited at temperatures

clearly below 160K onto the Ag(111) substrate. The precursor state only exists
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below 160K. No long range order was found neither by high resolution low

energy electron di¤raction (LEED) nor by STM [Kil 02a] [Tem 06b]. Heating

the sample with the precursor phase, the PTCDA molecules turn into the

commensurable ordered monolayer phase at temperatures of about 170K.

From UPS, Kilian deduced that the molecules are chemisorbed. In contrast

to the room temperature state, the precursor phase appears semiconducting

[Kil 02a]. Striking is also the di¤erence in the HREELS spectra in compar-

ison to the spectra of the room temperature phase, where (in the RT-phase)

enhanced inplane Raman modes were observed. These are due to charge trans-

fer of the central carbon rings to the substrate. This charge transfer only is

possible, because the partly �lled former LUMO strongly interacts with the

substrate. For the precursor phase, these modes were not observed [Ere 03]

[Ere 04].

In this thesis the room-temperature phase will be named monolayer and

the metastable low-temperature phase will be named precursor.
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Chapter 3

Introduction to NIXSW

In this chapter, the NIXSW method will be introduced. The theoretical back-

ground of the experiment is given by the dynamical x-ray di¤raction (see sec-

tion 3.1). The Auger process for XSW is shortly described in section 3.2, and

the PE process with the multipole contributions, and the systematic resulting

uncertainties of the results are described in section 3.3. The experimental setup

of the beamline ID32 at the ESRF in Grenoble, at which these experiments

were performed, is described in section 3.4. In section 3.5, an introduction is

given to the computer programs used for the data analysis, as well as to the

Argand diagrams commonly used to visualize NIXSW results.

3.1 Dynamical x-ray di¤raction theory

The NIXSW technique is based on Bragg scattering. However, for the descrip-

tion of x-ray standing waves, the kinematical di¤raction theory is failing. In the

kinematical theory, the scattering from each volume element in the sample is

treated as being independent. In contrast, the dynamical theory considers all

wave interactions within the crystalline particle. While di¤raction takes place,

the entire wave �eld inside a crystal is treated as a single entity. Generally,

this theory has to be applied, whenever di¤raction from large perfect crystals

is being studied.

The crucial change between kinematical and dynamical scattering theory

can be understood in the concept of the Ewald sphere. In reciprocal space,

http://www.esrf.eu
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there no longer is a single Ewald sphere for a single monochromatic incident

ray. Instead, one has to determine the loci of permitted Ewald spheres, the

so-called dispersion surface. Wave vectors drawn from points on this surface to

reciprocal lattice points represent waves that are permitted solutions of Max-

well´s equations in a periodic medium. The geometrical construction of the

dispersion surfaces is shown in �gure 3.1. For further reading, an excellent de-

scription of the dynamical theory is given in the review article from Batterman

and Cole [BatCol 64].

(hkl)

K0

L h

0

KH

(hkl)

K0

L
h

0

KH

Q

Figure 3.1: Left: Ewald sphere in reciprocal space; the Bragg re�ection is described
with the kinematical di¤raction theory. L is the so-called Laue point, the center of
the Ewald sphere. ~h is the reciprocal lattice vector of the (hkl) di¤raction. Right:
geometrical construction of the dispersion surface, obtained in the dynamical the-
ory. Instead of the Laue point, the center of the Ewald sphere (the kinematical
construction is still shown in grey) corresponds to Q. The distance between L and Q
is proportional to the average index of refraction. The spheres (shown with the black
dotted lines in the right �gure) through Q, which are centered on 0 and (hkl), form
asymptotes for the hyperbolas of the so-called "dispersion surface". The dispersion
surface corresponds to the �- and �-branch represented by the thick black lines. By
changing the angle (or respectively the energy) of the incident x-ray beam with re-
spect to the crystal, the di¤erent tie points on the dispersion surfaces are "excited",
and the re�ection curve is obtained (Darwin Prins curve - e.g., see top left in �gure
3.2 for silver(111)). For a better visualization, the distance from L to Q is strongly
exaggerated in this �gure, with respect to the radii of the spheres.
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3.1.1 The standing wave �eld
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Figure 3.2: By rocking the crystal angle or changing the photon energy Eh� , a
re�ection curve is obtained. Top Left: Ideal re�ection curve for Ag(111). Below:
Depending on the vertical position inside the crystal (with respect to the di¤raction
planes), the photon intensity pro�le I(�) (or I(�)) of the coupled wave�eld changes
with crystal angle or photon energy close to the Bragg condition (the data for this
�gure were calculated with the program DARE [Zeg 02]). The corresponding vertical
positions within the crystal are shown on the right and the normally incident x-rays.

Close to the crystal x-ray Bragg condition, an x-ray standing wave inter-

ference �eld with sinusoidal electric �eld intensity is created [BatCol 64]. The

total electric �eld is given by the superposition of the incident E0 and the

re�ected Eh monochromatic plane waves which are coherently coupled. The

wave-�eld intensity I(~r) at an arbitrary point ~r in space is given by the square

of the electric �eld. For � polarization this can be expressed as [Zeg 93]:

I(~r) = jE0j2 [1 +R(E) + 2
p
R(E) cos(�(E)� 2�~h � ~r)]. (3.1)
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Herein ~h is the reciprocal-lattice vector of the crystal, � is the phase of the

complex-�eld amplitude ratio Eh=E0 =
p
Rei� , and R = jEh=E0j2 is the re-

�ectivity function (Darwin-Prins curve [BatCol 64]). Both R(E) and �(E) are

functions of the photon energy or of the angle close to the Bragg condition.

� changes in its value by � across the width of Bragg re�ection. The period-

icity of the standing-wave �eld intensity is d = 2�=h, which is equal to the

di¤raction-plane spacing of the crystal. Equation (3.1) shows the dependence

of the wave-�eld intensity on the vector ~r. The scalar product ~h � ~r can be
simpli�ed by

~h � ~r = h � z, (3.2)

where z is de�ned to be the component of ~r parallel to ~h.

This transformation highlights a very important point. The wave-�eld

intensity I(~r) directly depends on the vertical position z, with respect to the

di¤raction planes. By varying the photon energy (or the crystal angle �, i.e.,

"rocking" the crystal), each individual vertical position z yields a particular

wave-�eld intensity pro�le I(~r,E). Hence, each intensity pro�le can be led

back to a particular vertical position within the crystal. In �gure 3.2, pro�les

are shown for di¤erent vertical positions with respect to the di¤raction planes.

The standing wave �eld also exists above the surface of the crystal. This

is an important fact for the application of the standing wave technique to

adsorbates on surfaces. Any adsorbate on the top of the crystal experiences

a particular x-ray intensity variation, by rocking the Bragg angle or changing

the energy in the vicinity of the Bragg peak. This variation depends on the

vertical distance of the adsorbate to the substrate surface.

Considering single site and multiple site adsorption

The essence of the x-ray standing waves (XSW) technique is that the adsorbate

on the surface experiences a speci�c x-ray intensity pro�le that is related to

its vertical distance above the surface. This pro�le can be measured by deter-

mining the photoemission (PE)-yield, the Auger-yield or the �uorescence-yield
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variation of the adsorbate atoms in a standing x-ray wave experiment.

However, in the so-called multiple site adsorption, an adsorbate occupies

several di¤erent vertical positions on the surface, hence equation (3.1) must

be modi�ed.

For a number N of atoms of a particular element the yield is the sum of

the yields from the individual atoms i at their positions ~ri.

I / 1 +R (�) + 2

N

p
R (�)

NX
i=1

cos(� � 2�~h � ~ri), (3.3)

herein the re�ectivity R is written as a function of � which is equivalent to

R (E). The scalar product ~h � ~ri = CPi corresponds to the so-called coherent

positions. It describes the vertical adsorbate position relative to the di¤raction

plane normalized to the di¤raction plane spacings ds.

In the so-called single site adsorption all adsorbate atoms occupy the same

vertical position. Therefore the sum in equation (3.3) can be transformed to

a cosine function with only one particular coherent position CP , instead.

In order to obtain a general description of the intensity pro�le, equation

(3.3) has to be further transformed. The distribution of the atoms can be

described as

G(~r0) =
1

N

NX
i=1

�(~ri � ~r0).

Therefore the normalized result for the intensity can be written as

I / 1 +R (�) + 2
p
R (�)

Z
V

G(~r) cos(� � 2�~h � �!r )d~r. (3.4)

The above equation can be transformed to

I / 1 +R (�) + 2
p
R (�)CF cos(� � 2�CP ). (3.5)

This can be understood since the sum of cosine functions of the common

variable � yield again a cosine function of �. In this equation, the so-called
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coherent fraction CF corresponds to the resulting amplitude of the cosine

[Zeg 93]. For single site adsorption, CF is equal to 1. For multiple site adsorp-

tion, CF takes in values below 1, and, depending on the particular adsorption

sites, it can even vanish.

The value CP often is explained as being the average vertical position of

the atoms. However, the resulting CP represents the phase shift of the integral

cosine function in the standing wave equation. Only in some particular cases,

CP corresponds also to the average vertical position. This is the case for two

distinct adsorption sites with equal CF . For more than two adsorption sites,

this is approximately true when the adsorption sites do not di¤er much in their

coherent positions. For further discussion on this topic see section 3.5.1.

It has to be pointed out that equation (3.5) is the key formula for the

NIXSW experiments, all following results are based on this equation. The

coherent parameters CP and CF can be �tted to the experimental data, because

the PE- and the Auger-yield in a standing wave �eld follow equation (3.5).

3.2 Auger emission for XSW

The Auger signal can be used for the determination of the structural paramet-

ers CP and CF in a NIXSW experiment.

By the x-rays a core hole is created which is �lled with an electron from an

outer shell. The energy gain of this electron is transferred to another electron

which emits with a de�ned kinetic energy. The detection of these electrons

corresponds to the so called Auger electron spectroscopy (AES) [HenGöp 94].

The determination of the structural parameters of an adsorbate with the

Auger signal is di¢ cult since the core hole can be excited by the incident x-rays

and by electrons. Therefore, the adsorbate Auger signal consists of two con-

tributions, one originating from the photon-excitation which carries the struc-

tural information from the adsorbate, the other originating from the excitation

by escape-electrons from the bulk which are caused by inelastically scattered

photoelectrons from the substrate. For the results of a NIXSW experiment

obtained from the Auger signal, this means that the resulting structural para-
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meters also correspond to the average of this two contributions (see chapter

4.5.1) [ShaCow 98] [Sta 04].

3.3 Multipole e¤ects in photoelectron emis-

sion

Unfortunately, equation (3.5) does not strictly describe the PE yield. This is

due to the so-called multipole e¤ects.

The PE yield has an angular distribution, depending on the direction of

the photons (see �gure 3.3) and the initial state. Therefore, for particular

experimental geometries (as used in this work), there is a di¤erence in the

photoelectron yield excited by the incident beam and the photoelectron yield

excited by the re�ected beam. In a standing wave experiment, the total pho-

toelectron yield is recorded for various excitation energies close to the Bragg

condition. Due to this described asymmetry in the photoelectron yield for the

incoming and outgoing x-ray waves, there is a non negligible di¤erence in the

photoelectron-intensity pro�le and the wave-�eld intensity pro�le I(~r) which

has to be taken into account for the PE-cross section.

Therefore, the multipole contributions have to be included in the evalu-

ation of the XSW data, in order to obtain correct results. This e¤ect was �rst

taken into account in an XSW evaluation by Fisher et al. in 1998 [Fis 98]. The

knowledge of the correct multipole parameters is essential for the identi�cation

of the true vertical position. In literature, several ways, as well experimental

as theoretical ones, are described for the determination of the multipole para-

meters. The citations for the multipole parameters needed in this work are

presented in section 3.3.3. The discussion about the correct multipole contri-

butions is still in progress (see section 3.3.3), also several di¤erent notations are

in use. The multipole formalism, presented here, follows the paper of Nelson

et al. [Nel 02].
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45°

hνout
hνin

e0

Figure 3.3: Angular photoemission distribution for the 1s core level transition.
Black: dipole approximation; light grey: electrical quadrupole approximation for the
electrons excited by the incoming x-rays; dark grey: electrical quadrupole approx-
imation for the electrons excited by the outgoing x-rays. The electron analyzer is
positioned at 45 degrees with respect to the beam in the experimental setup of this
work. The formalism is found in equation 3.12. The vector ~e0 corresponds to the
polarization which is the same for the incoming and outgoing x-rays in this work.

3.3.1 Photoelectric process and XSW

In the photoemission (PE), a photon is absorbed by an atom. Due to the

gained energy, an electron of the atom is excited from the ground state jii
to an excited �nal state jfi. For the PE process, one has to calculate the
photoelectron emission matrix element under excitation by the x-ray stand-

ing wave interference �eld. Therefore, the individual photoelectron emission

matrix elements from the incident and re�ected waves are needed. The dif-

ferential photoelectron yield dY=d
 in space is proportional to the squared

matrix element between the initial and the �nal states:

dY

d

/ jMfij2 , (3.6)
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where

Mfi = E0e
i~k0�~rcore

D
f
���ei~k0�~re (~e0p̂)��� iE+ Ehe

i~kh�~rcore
D
f
���ei~kh�~re (~ehp̂)��� iE . (3.7)

The incident and re�ected waves travel with the wave vectors ~k0 and ~kh,

and polarization vectors ~e0 and ~eh, respectively. p̂ = (~=i)5 is the momentum

operator, ~rcore is the position vector of the centre of the atom and ~re is the

position of the absorbing electron relative to the centre of the atom. The �rst

term of equation (3.7) corresponds to the incident wave and the second to the

re�ected wave.

The reason for the di¤erent angular distributions of the ingoing and outgo-

ing waves, is due to the fact that the PE-matrix element cannot be su¢ ciently

described within the so-called dipole approximation, for which the PE-yield is

identical for the incoming and outgoing x-rays. Higher order terms have to be

taken into account. This is done in the so-called quadrupole approximation.

Dipole and quadrupole approximation for the photoelectric process

Considering only one direction of the photons, i.e., either the incident or the

re�ected wave, exciting the photoelectric process, the exponential function in

the term of equation (3.7) D
f
���ei~k�~r (~e0 � p̂)��� iE

can be expanded in a Taylor series:

ei
~k~r = 1 + i~k � ~r � 1

2

�
~k � ~r

�2
� ::: (3.8)

Using only the �rst two terms, the matrix element becomes [Var 05]:
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D
f
���ei~k�~r (~e0p̂)��� iE (3.9)

)
D
f
����1 + i~k � ~r� (~e0p̂)��� iE (3.10)

= fim! hf j (~e0 � ~r)j iigel. dipole �
n
(m!=2)

D
f
����~k � ~r� (~e0 � ~r)��� iEo

el. quadrupole

+
n
(i=2)

D
f
���h~k � ~e0i L̂��� iEo

mag. quadrupole
(3.11)

where L̂ is the angular momentum operator [VarZeg 00].

In this equation, the �rst term corresponds to the electric dipole transition,

the second to the electric quadrupole and the third one to the magnetic di-

pole transition. For the photoelectric e¤ect, the magnetic transitions can be

neglected1 [VarZeg 00].

With the initial and �nal state wave functions jii and jfi in polar coordin-
ates, equation (3.9) can be written as [Coo 93]:

dY

d

/ d�

d

=

�
d�

d


�
dipole

+

�
d�

d


�
quadrupole

(3.12)

=
�

4�

h
f1 + �P2 (cos �)gdipole +

��
� + 
 cos2 �

�
sin � cos�

	
quadrupole

i
,

where P2 (cos �) = (3 cos2 � � 1) =2 is the second order Legendre polynomial
and � is the angle between the x-ray polarization vector ~e0 and the direction
~kf of propagation of the photoelectron. � varies from�1 to 2 depending on the
relative amplitude and the phase shift between the matrix element for the�l =

+1 and �l = �1 allowed dipole transitions. � is the azimuthal angle between
the re�ected photon wave vector ~kh and the photoelectron momentum ~kf in

the plane perpendicular to the polarization vector. The � and 
 parameters

determine the quadrupole contribution to the PE yield. In equation (3.12) d�
d


is the di¤erential photoelectron cross section and � is the total cross section

1For a central-�eld model and a one-electron approximation, the magnetic transition
probability for the photoelectric e¤ect is equal to zero due to the orthogonalitiy of the
initial and �nal state radial wave functions. If core relaxations are taken into account, the
probability for magnetic transitions does no longer vanish, but it is still much smaller than
the electric quadrupole contributions [Var 05].
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of a core level photoelectron excitation.

In the dipole approximation, only the electric dipole transition is con-

sidered. In the quadrupole approximation, the electric quadrupole transition

is considered in addition to the dipole transition. The di¤erence between these

two approximations is demonstrated in �gure 3.3. The angular distribution of

the dipole approximation, which is the same for the incoming and outgoing

x-rays, is shown in black color. The angular distribution of the quadrupole

approximation is shown in light grey color for the incoming and in dark grey

color for the outgoing x-rays. They di¤er signi�cantly from each other.

Using the dipole approximation for the evaluation of the PE yield in a

NIXSW experiment, the standing wave equation (3.5) can be directly employed

with no corrections. However, with using the quadrupole contributions (which

is necessary in many cases), the angular distributions of the photoelectrons

for the incoming and the outgoing beam di¤er signi�cantly from each other.

In order to take this e¤ect into account in the evaluation of the XSW data,

equation (3.5) has to be modi�ed.

Quadrupole parameters in the XSW equation

As discussed above, in order to correctly describe the photoelectron yield in a

standing wave experiment, a modi�cation has to be made to equation (3.5).

Woodru¤ et al. describe these changes in the following way [Woo 05]:

dY

d

/ 1 +RSR + 2CF

p
R jSI j � cos(� � 2�CP +  ). (3.13)

With the unit wave vectors of the incident and re�ected beam, ~s0 =
~k0

j~k0j
and ~sh =

~kh

j~khj , respectively, the (direct re�ection) term SR becomes

SR =
jMfi (~sh)j2

jMfi (~s0)j2
.
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The complex interference term SI becomes

SI = jSI j ei =
Mfi (~s0) �Mfi (~sh)

jMfi (~s0)j2
. (3.14)

In the dipole approximation, the matrix elements for the incident and re�ected

wave are identical, i.e. Mfi (~s0) =Mfi (~sh), and consequently the values of SR
and SI in equation (3.13) are equal to 1. In the quadrupole approximation2 SR
and SI di¤er from 1, and the phase  di¤ers from zero (see equation (3.14)).

Di¤erent notations for the description of SR and SI are found throughout

in the literature. Following the paper of Nelson et al. [Nel 02], the complex

interference term SI = jSI j ei has the magnitude jSI j =
p
1+q2 sin2�

1�q cos� with the

quadrupole amplitude parameter q and the phase tan = q sin�. The term of

the direct re�ection is quoted SR =
1+q cos�
1�q cos� . Herein, the quadrupole amplitude

parameter q is de�ned as

q = 2
jMquadrupolej
jMdipolej

= 2
jhf jik0;h (~s0;h � ~re) (~e0;h � p̂)j iij

jhf j~e0;hp̂j iij
. (3.15)

One can de�ne a phase shift between the complex dipole and the complex

quadrupole matrix element. With Mdipole = jMdipolej ei�d and Mquadrupole =

jMquadrupolej ei�q the phase shift is

� = �q � �d. (3.16)

Due to the quadrupole contribution, the modi�ed standing wave equation

(3.13) has three additional variables SR, jSI j, and  . As shown above, only
two of them are independent. The parameters alternatively can be expressed

with two parameters, namely the quadrupole amplitude parameter q and the

phase shift �. Therefore, when evaluating a standing wave experiment, these

parameters have to be identi�ed.

2Higher non-dipolar terms are not considered. Trzhaskovskaya et al. calculated the para-
meters for higher non-dipolar terms. For outer shells, these contributions become noticeable,
even at low energies [Trz 06]. However, in this work only 1s shells are considered.
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Phenomenological forward/backward asymmetry parameter

One experimental way to partly identify the multipole parameters lies in the

determination of the phenomenological forward / backward asymmetry which

can be described by the parameter Q. The photoelectron yield for the incident

x-rays correspond to I(1�Q), and the yield for the re�ected wave correspond
to I(1+Q). For the experimental setup used in the present work, the relation

of Q and the angular PE distribution will be given in the following based on

equation (3.12).

Referring to equation (3.13), Q can be related to the interference term SI

and to the re�ection term SR in the following way:

Q = q cos� (3.17)

with SR =
1+Q
1�Q and jSI j =

p
1+Q2 tan2�

1�Q and the phase  = arctan (q sin�) =

arctan (Q tan�).

Considering one x-ray beam which is not re�ected, the electron yield can

be written as follows (for linear polarization, or �-polarization)

dY

d

/ jMdipolej2 (1�Q) (3.18)

/ 1 + �P2 (cos �)�
�
� + 
 cos2 �

�
sin � cos�. (3.19)

With jMdipolej2 / 1 + �P2 (cos �) the asymmetry parameter Q can be written

as

Q =
(� + 
 cos2 �) sin � cos�

1 + �P2 (cos �)
. (3.20)

For the photoelectron emission3 from an s-state, � = 0 and � = 2 [Trz 01],

hence equation (3.20) becomes

Q =
(0 + 
 cos2 �) sin � cos�

1 + 2
2
(3 cos2 � � 1)

=

 sin � cos�

3
. (3.21)

3Depending on the energy, the value � di¤ers from � = 2 in a relativistic calculation.
For the investigated O1s and C1s transitions at a photon energy of 2:6 keV one calculates
� � 1:976 [Trz 01]. In the following this small di¤erence from 2 is neglected. However, for
outer s-shells of heavy atoms, the parameter � changes drastically with energy.
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In this work, only XSW experiments with normal incidence are considered,

therefore the angle � is 0� for the incident and 180� for the re�ected beam. The

angle � was 45�. Introducing these values into equation (3.21), the parameter

Q can be evaluated for the incident (i) beam to

Q = Qi =

 sin �

3
= 0:2357 � 
, (3.22)

and for the re�ected beam (r) to

�Q = Qr = �Qi = �

 sin �

3
= �0:2357 � 
, (3.23)

respectively.

3.3.2 Experimental determination of Q

The asymmetry parameter Q can be derived by calculations or can be exper-

imentally determined. Ideal conditions for measuring the anisotropy factor Q

are given by incoherent �lms, which can be produced by growing a multilayer

on the surface. For multilayers, it is assumed that the atomic distribution is

random with respect to the di¤raction planes of the substrate.

Another way to measure on an incoherent atomic distribution is the tilting

of the crystal-surface normal with respect to the beam. In this case, a partic-

ular Bragg re�ection is used for which the re�ecting lattice planes are tilted to

the surface normal. A monolayer or multilayer �lm, adsorbed on the crystal-

surface, is consequently also tilted with respect to the re�ecting lattice planes.

Therefore, under such experimental conditions these �lms become incoherent

to x-ray standing waves.

The point for the use of incoherent �lms is that the coherent fraction CF
in equation (3.13) becomes 0. Therefore, the measured electron yield should

follow the following function:

dY

d

/ 1 +RSR = 1 +R � 1 +Q

1�Q
. (3.24)
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In a XSW experiment, the re�ectivity R is directly measured as will be

shown in section 3.4. Therefore, by �tting equation (3.24) to the experimental

data, the parameter Q can be determined.

3.3.3 Quadrupole parameters in literature

The correct choice of the quadrupole parameters is of important consequence

for the results of an x-ray standing wave experiment. In literature many dif-

ferent values have been published for the asymmetry parameter Q. Depending

on the photon energy and on the experimental setup, di¤erences in the values

are expected. However, for a particular experimental setup (and a particular

photon energy), of course only one value should be appropriate for Q. By

transforming the values from literature to the experimental setup and photon

energy used in the present work, a large spread can be observed in the resulting

values for the parameter Q (see �gure 3.4).

In the following, an overview is given on the determination and on the

corresponding values for the multipole parameter Q found in literature. In

detail, only values for C1s and O1s will be considered due to their relevance

for the present work. In addition comments on the methods of determination

and the uncertainties of these methods will be shortly discussed.

In 1989 Bechler and Pratt [BecPra 89] presented nonrelativistic calculations

for the multipole corrections of the dipolar angular distribution. However, for

a long time, it was not realized that this e¤ect is also important for rather

small x-ray energies (around 3 keV and lower). For example, the correction

for the C1s transition at a photon energy of 2 keV turned out to be Q = 0:23

(for � = 45� as in this work). That means that the PE yield is 23% higher

for the photoelectron excited by the re�ected beam and 23% lower for the

photoelectrons excited by the incident beam. However, the total cross section

is not much a¤ected by these corrections. Since only the in�uence on the total

cross section � was investigated so far, the strong in�uence on the angular

cross section d�
d

was not considered for a long time.

In 1993, Cooper calculated the quadrupole asymmetry parameters for the

inert gas atoms in the energy range up to 5 keV [Coo 93]. In another theor-
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etical study, Vartanyants et al. estimated the multipole contributions to be

small [VarZeg 97]. However, in 1998, Fisher et al. published a study, where

they showed the strong in�uence of the asymmetry parameters onto the exper-

imental XSW results for the �rst time. They investigated the element Iodine

in the system Cu(111)(
p
3 �

p
3)R30�-I [Fis 98]. For the determination of

the asymmetry parameters, they compared Auger XSW results with results

from photoemission. The angular distribution of the Auger electrons is inde-

pendent of the direction of the x-ray beam, therefore the Auger electron yield

was directly taken for the XSW evaluation, without any further corrections.

However, in this investigation, the electron stimulated Auger electrons were

not considered (see [ShaCow 98]), which have a direct in�uence on the res-

ult for the asymmetry parameters. Thus, the values for Q, determined by this

method, have to be dealt with some caution. Nevertheless, the strong in�uence

of Q on the XSW results was demonstrated for the �rst time.

Stanzel et al. presented an alternative way for the evaluation of the Auger

electron yield [Sta 04]. In their work, the electron induced Auger electrons

were considered. By comparing the corrected XSW Auger results with the PE

results, they determined the non-dipolar parameter Q. However, this method

only gives an estimation of the non-dipolar parameters. The reason for this

is that four parameters have to be determined from only two XSW pro�les

(for the Auger and the PE yield). The four parameters correspond to the

contribution of the electron-induced Auger yield, to the multipole parameter

Q and to the values of the coherent position and coherent fraction of the

investigated system (the phase � was assumed to be known). In the work

from Stanzel an error in the �tting routine for the �t of the XSW pro�les

was found. Therefore, the estimation of the non-dipole parameters comes out

wrong [Sta 07]4.

Jackson et al. determined the asymmetry parameter in a di¤erent way

[Jac 00]. By growing �lms which are incoherent with the underlying crystalline

substrate, namely disordered �lms or multilayer �lms with a negligible coherent

fraction, they obtained the parameters for the photoemission from core levels

4In the work of Stanzel, the sign of  in equation (2) is wrong. This leads to an error
in the values for the non-dipole parameters �tted with this routine. See equation (3.13) in
this chapter.
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of s symmetry for C, O and P 1s. In subsequent publications, the same authors

revised their results. Due to an error in the �tting routine, the values for Q

came out to be too low (see [Woo 05] and [Lee 01]).

In 2000, Vartanyants and Zegenhagen published a theoretical work about

the photoelectron emission in a x-ray standing wave �eld. They especially

studied the in�uence of the multipole terms on the scattering process and

compared the di¤erent polarizations [VarZeg 00].

Relativistic calculations of the multipole parameters were done by Trzhas-

kovskaya, Nefedov and Yarzhemsky for the elements of Z = 1 to 54 [Trz 01].

For the 1s PE of carbon and oxygen, Schreiber et al. measured the asym-

metry parameter with the method of incoherent �lms [Sch 01]. They used the

same system as it was done in the present work, namely multilayers of PTCDA

on Ag(111). Therefore, the result of QO1s, C1s = 0:31 is especially interesting

for the present work.

Nelson, Woicik, Pianetta, Vartanyants and Cooper investigated the quad-

rupole e¤ects on crystalline Ge [Nel 02]. They placed a shutter in front of the

analyzer. By comparing the azimuthal angle resolved and azimuthal angle-

averaged electron yields, the multipole parameters were determined. The au-

thors emphasize the importance of the phase shift � for the result. However,

one year earlier, Lee et al. proposed that this phase shift can be neglected

[Lee 01]. In their paper, they experimentally determined the quadrupole para-

meters for the 1s PE at photon energies around 3 keV for �rst and second row

elements from C to Cl. Again, by growing incoherent thick �lms of various

systems on Cu(111) and Al(111) substrates, the parameter Q was determined.

In table 3.1, the experimental and theoretical results from literature for

the O1s and the C1s electron transition are given. For a better overview, the

results are adapted to the experimental geometry of this work5 with � = 45�.

The original values, given in the papers, are listed in appendix B.

Within the present work, the parameter Q was determined. However, the

analyzed data obviously did not represent incoherent �lms. The evaluation

is shown in appendix C. It could not be used for the determination of the

asymmetry parameter Q.

5Using Q = 
 sin �
3 .
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Figure 3.4: Values of the quadrupol parameter Q for the O1s and C1s transitions
taken from literature. They were converted to the detector geometry of the experiment
of this work. The value Q=0.31 (grey circle) was used in the present work for both
transitions.

In �gure 3.4, the spread of the reported values of Q can be seen. The theor-

etically calculated values for Q are signi�cantly lower than the experimentally

determined values. It seems to be obvious that the Q-values, derived from

theory, are underestimated. Regarding the large spread of values for the same

photon energy, it appears that Q must also depend on other factors than only

the photon energy. These could be due to the substrate itself, or to the struc-

tural order of the �lm, or to the fact whether one measures on a monolayer or

on a multilayer �lm.

The other multipole parameter, which was needed in this work is the phase

shift �. It has only been determined theoretically, until now [Lee 01] [Jab 03].

In table 3.2 the values for � were taken from the NIST electron elastic scat-
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tering cross section database [Jab 03].

The values for the parameter � used in the present work are based on

calculations done by Lee et al. [Lee 01]. The total range of the calculated

values of � for O1s and C1s extends from -0.20 to -0.35 (in the photon energy

range of approximately 2:2 keV to 2:7 keV).
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Q in literature

author method transition energy Q(� = 45�)
( keV)

Bechler [BecPra 89] theor. C1s 2:0 0:23
Jackson [Jac 00] exp. O1s 2:975 (0:25)

exp. O1s 3:046 (0:22)
Jackson [Jac 00] exp. C1s 2:978 0:30� 0:02
corrected by Lee [Lee 01] exp. C1s 2:978 0:32� 0:02
Lee [Lee 01] exp. O1s 2:661 0:27� 0:02

exp. O1s 2:978 0:28� 0:02
exp. O1s 3:072 0:30� 0:02
exp. O1s 3:439 0:29� 0:02
exp. C1s 2:661 0:31� 0:025
exp. C1s 2:978 0:24=0:28� 0:02
exp. C1s 3:072 0:32=0:37� 0:02
exp. C1s 3:439 (0:17)

Trzhaskovskaya [Trz 01] theor. O1s 2:6 0:26
theor. C1s 2:6 0:26

Schreiber [Sch 01] exp. O1s 2:6 0:31� 0:03
exp. C1s 2:6 0:31� 0:03

Stanzel [Sta 04] exp. O1s 2:6 (0:26)
Schulte [Sch 05b] exp. O1s 2:6 0:31
Jackson [Jac 00] corrected exp. O1s 2:975 0:34.
by Woodru¤ [Woo 05] exp. O1s 2:975 0:33
Gerlach [Ger 05] exp. C1s 2:980 0:275
Stadler [Sta 06] exp. C1s 2:6 0:24� 0:02
Gerlach [Ger 07] appl. O1s 2:63 0:31

appl. C1s 2:63 0:31
appl. O1s 2:98 0:26
appl. C1s 2:98 0:30

Stadler [Sta 07] exp. O1s 2:6 0:27
appl. C1s 2:6 0:27

Table 3.1: Overview on quadrupole parameter Q for the O1s and C1s transitions
found in literature. The parameter Q depends on the photon energy. The values
are converted to an experimental setup with the electron analyzer placed 45 degrees
with respect to the x-ray beam. The Q-values given in brackets appeared to be wrong
(see text). The second column denotes the method of the determination of the non-
dipolar parameters (experimentally, theoretically, or if the speci�c values of Q were
only applied in the evaluation presented in the noted reference). Comments to the
values and to the experimental conditions are given in the appendix.
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phase shift parameter �
[Jab 03]

photon energy �O1s �C1s

50 eV 1:5724 2:0132
2630 eV �0:2674 �0:2007
10000 eV �0:1440 �0:1096

[Lee 01]
photon energy �O1s �C1s

2630 eV �0:33 �0:22

Table 3.2: Values for the phase shift parameter � for di¤erent photon energies,
taken from the NIST database [Jab 03] and from the paper of Lee et al. [Lee 01].

3.3.4 Quadrupole parameters used in the present work

For the evaluation of an XSW experiment, it can be crucial to choose the

correct quadrupole parameter. For the present work, it seemed to be most

reasonable to use theQ values Schreiber et al. derived on incoherent multilayers

of the same material on the same substrate, PTCDA on Ag(111) [Sch 01]. For

�; the theoretically derived values by Lee et al. were used [Lee 01]. The

quadrupole parameters used in the present work are summarized in table 3.3.

For the �t of the photoelectron- NIXSW pro�les the following formula was

applied:

Y / 1 +RSR + 2CF
p
R jSI j � cos(� � 2�CP +  ). (3.25)

By varying the values of coherent fraction CF and the coherent position CP
in the �tting routine, the calculated curve is �tted to the experimental data.



34 Introduction to NIXSW

quadrupole parameters
(for the experimental geometry of this work
� = 45�, �incident = 0

�, �re�ected = 180
�)

transition
parameter C1s O1s

� �0:22 �0:33

 1:32 1:32
� 0 0
� 2 2

derived parameter C1s O1s

Q (�; 
; �; �; �) 0:31 0:31

q = Q
cos�

0:318 0:328

SR =
1+Q
1�Q 1:900 1:900

jSI j =
p
1+Q2 tan2�

1�Q 1:453 1:457

 = arctan(Q tan�) �0:069 �0:106

Table 3.3: Quadrupole parameters used in this work. The parameters, shown in
the upper table (bold letters), are independent of each other. See text for references.
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3.3.5 Error estimation: in�uence of the multipole para-

meters

Depending on the position of the detector, a backward / forward asymmetry

exists. Hence, for light elements, as for C or O, the XSW result can be strongly

falsi�ed, if this asymmetry in the angular distribution is neglected. The res-

ulting values for the coherent positions and the coherent fractions can be un-

derestimated or overestimated more or less strongly by only using the dipole

approximation. This e¤ect depends on the actual coherent position and coher-

ent fraction of the investigated system. Therefore, the size of the error cannot

be predicted in advance. [Lee 01].

For the evaluation, particular values of the quadrupole parameters Q and

� were selected. It is not clear, if those values are the correct multipole

parameters. Depending on the values for CF and CP , a small di¤erence in the

multipole parameters can in�uence the results more or less strongly [Lee 01].

In order to test this in�uence, the quadrupole parameters were changed

systematically and �tted to the experimental data.

In the �tting routine the parameters SR, jSI j and  were employed which
depend onQ and�. Rewriting the corresponding equation (3.25) as a function

of Q and � gives:

Y / 1+R1 +Q
1�Q

+2CF
p
R

p
1 +Q2 tan2�

1�Q
� cos(��2�CP +arctan(Q tan�)).

(3.26)

The phase  

The phase  = arctan(Q tan�) strongly depends on Q and �. The in�uence

of Q and � on  is shown in �gure 3.5.

For the results of this work, it appeared to be advantageous to work with

the e¤ective coherent position CP;e¤. Due to the uncertainty in the multipole

parameters, the variations in the coherent positions (in the present work) are

mainly dependent on the phase  . By neglecting the phase  (i.e. setting

 = 0) , the �tting routine does not change. Assuming the chosen value for Q
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Figure 3.5: The plane represents the resulting values for the phase  depending on
the multipole parameters Q and �.

to be true and provided that the exact phase � is known, the correct coherent

position CP can be calculated from the e¤ective coherent position as:

CP = CP;e¤+  =2�.

The negligence of the phase  in CP;e¤ leads to a shifted value for the

coherent positions, depending on the size of  . In table 3.4, this shift due to

the distinct values of  is given.
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error estimation for CP due to the phase  

error of CP error of CP
Q (� = 45�)  CP =  =2� in Å

C1s: � = �0:22 0:24 �0:054 �0:009 �0:020
Lee et al. [Lee 01] 0:31 �0:069 �0:011 �0:026

0:34 �0:083 �0:013 �0:031

C1s: � = �0:19 0:24 �0:046 �0:007 �0:017
Gerlach et al. [Ger 05] 0:34 �0:071 �0:011 �0:027

O1s: � = �0:33 0:26 �0:089 �0:014 �0:033
Lee et al. [Lee 01] 0:31 �0:106 �0:017 �0:040

0:34 �0:116 �0:018 �0:044

Table 3.4: Possible values for the systematical errors in the coherent position,
due to the disregard of the phase in the XSW equation. The error of the coherent
position in the last column is calculated with the distance of the Ag(111) lattice
planes. The bold values for C1s and O1s correspond to the necessary correction
of the e¤ective coherent positions obtained in this work, provided that the chosen
multipole parameter correspond to the correct values.

Systematic errors due to the multipole parameters � and Q

The errors of the results due to uncertainties of Q and � are strongly coupled

to the actual coherent positions and coherent fractions. In order to estimate

the error range for the results of this work, di¤erent multipole parameters were

tested on the data of this work.

The parameter � is found in the interference term jSI j =
p
1+Q2 tan2�

1�Q . In

order to test its in�uence on the XSW results, the parameter� was tentatively

set to zero in a �t of one exemplary C1s XSW pro�le. The data were �tted

with various values of Q. A second �tting series was done with non-zero values

of �, here the values derived by Lee et al. [Lee 01] were taken. In both cases

the phase  was set equal to zero, yielding an e¤ective coherent position CP;e¤.

No change in the e¤ective coherent position CP;e¤ was observed. In the values

of the coherent fraction CF , only a small di¤erence of less than 3% was found
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(see �gure 3.6b).

As can be seen from table 3.1, the proposed values for Q (� = 45�) at an

energy around E = 2:6 keV vary from Q = 0:26 to Q = 0:34 for the O1s

transition, and from Q = 0:24 to Q = 0:37 for the C1s transition. In order

to test the in�uence of Q on the XSW results, a systematic variation of Q

in the range of Q = 0:20 to Q = 0:36 was done. Fits of three di¤erent O1s

XSW pro�les were conducted with the various Q values (see �gure 3.6a). In

agreement with Lee at al. [Lee 01], for the data of the present work only a

small in�uence of Q on CP;e¤ was found. The maximal deviation occurred to

be �CP;e¤ = 0:025, in the most cases the deviation is below �CP;e¤ = 0:014

which is in the range of the statistical errors of the data. The in�uence of Q

on the CF values is signi�cantly larger, partially yielding CF values which are

too large and hence are not plausible (not shown here). This latter e¤ect has

to be attributed to incorrect values for Q. Hence, values of Q � 0:26 (for the
experimental setup and photon energies used in the present work) have to be

considered as to be too low leading to unphysical results, although these values

are theoretically predicted.
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Figure 3.6: Results for the e¤ective coherent position (black) and the coherent
fraction (grey) by �tting the calculated curves to the experimental data (monolayer
at room temperature). The asymmetry parameter Q was set to di¤erent values in
the �tting routine. a) Fit results for 3 di¤erent O1s data sets. The coherent position
only exhibits a small deviation, whereas the coherent fraction is very sensitive to the
change. b) Fit results for one C1s data set. The open symbols represent the results
with � = �0:22, the solid symbols represent the results with � = 0. It can be clearly
seen that the in�uence of � (in the tested range) on CP;e¤ is negligible.
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3.4 Experimental

The NIXSW experiment was conducted at the European Synchrotron Radi-

ation Facility (ESRF) in Grenoble in France. By circulating high-energy elec-

trons (6GeV), synchrotron light is produced in the large storage ring (844m

circumference) of the synchrotron. The experimental setup is located at the

end station of the undulator beamline ID32 , which has a spectral range from

2:5 keV to 30 keV. The photon energy can be tuned by two piezo motors, which

move a Si(111)-monochromator crystal (�E=E = 10�4). The synchrotron

beam is guided to the ultra-high vacuum (UHV) chamber which is equipped

with a hemispherical electron analyzer, a LEED optics, an ion gun, a quadru-

pole mass spectrometer, and gas lines for sample preparation. The sample is

mounted on a manipulator with three translational and two angular degrees

of freedom. Thereby, the sample can be moved to various positions, needed

for preparation (i.e. LEED, ion sputtering, sample heating, evaporation) and

measurements.

For the experiments in this work, the Ag(111) crystal had to be azimuthally

oriented in the sample holder. Otherwise, the Bragg re�ection of the (1̄11)

planes could not have been investigated. This orientation had to be done,

because the azimuthal rotation of the sample (��) is only possible up to a few

degrees. In order to use a (1̄11)-Bragg re�ection, the oriented crystal needs to

be rotated by an angle � = 70:5� perpendicular to the beam. If not oriented

properly, the (1̄11)-Bragg re�ection could eventually not be measured, because

the possible rotation �� on the manipulator is too small.

Before reaching the UHV chamber, the synchrotron beam passes a hori-

zontal slit with variable width from 1mm to 1:6mm. To measure the primary

photon intensity, a mesh of aluminum (MeshI0) is put into the beam. Thereby,

the intensity can be determined during the experiment. To measure the abso-

lute intensity, a Si photodiode can be moved into the direct beam. During the

experiment, the re�ected beam was detected on a �uorescence screen. This is

a copper plate, mounted directly behind the beam entrance of the chamber.

It is covered with �uorescent phosphorus, hence the re�ected beam can be

easily seen by the eye (via a camera). The photo current of this plate can be

http://www.esrf.eu/UsersAndScience/Experiments/SurfaceScience/ID32
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Figure 3.7: UHV chamber used for the NIXSW experiment in Grenoble. The
electron analyzer lies in the horizontal plane of the x-ray beam. In this plane they
include an angle of 45 degrees.

recorded, and the measured value is used for the re�ectivity in the evaluation.

The sample can be cooled via a �exible copper wire with liquid helium

or with liquid nitrogen. Thereby, temperatures of less than 90K or less than

170K can be achieved with liquid helium or liquid nitrogen, respectively. The

pressure in the chamber during the experiments was 5 � 10�10mbar at max-
imum.

The hemispherical electron analyzer was placed at 45� o¤ the beam direc-

tion. It lies in the same horizontal plane as the photon beam.

In order to deposit the organic material on the sample, a home-built Knud-

sen cell was attached to the UHV chamber. The organic material was located

in a glass crucible within this cell and could be resistively heated up to the

evaporation temperature.
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3.5 Data analysis

For the data analysis of the NIXSW experiment, �rst the PE yield for the

particular element was determined. Therefore, the large background had to be

subtracted from the PE feature of interest, as can be seen in �gure 3.8. This

was done with the program PHIXPS by T. L. Lee, or, alternatively, with the

program CasaXPS by N. Fairly.
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Figure 3.8: PE survey (O¤ Bragg) of PTCDA on Ag(111). For the evaluation of
the XSW experiment, the large background had to be subtracted from the total PE
signal of the investigated electron transition (O1s and C1s). In the insets the survey
spectra (grey) and the corresponding high resolution spectra (black) are shown.

In one standing wave experiment, typically 30 to 60 PE spectra, with dif-

ferent photon energies around the Bragg condition, were taken. From each

spectrum, the background had to be subtracted. If chemical shifted peak fea-

http://www.casaxps.com/
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tures occurred in the PE spectra, a peak �tting was performed, in order to

separate the distinct contributions. Using the program CasaXPS for the peak

�tting, the integral intensity was split into the di¤erent contributions. The

remaining integral intensities were plotted against the photon energy. These

plots are called NIXSW pro�les.

Next, the NIXSWpro�les were normalized with the beam intensity (meshI0).

This was automatically done in the program PHIXPS, or by hand for pro�les

obtained from CasaXPS .

Subsequently, the program DARE by J. Zegenhagen was used for the �t

of the NIXSW pro�les for the determination of the coherent position CP and

the coherent fraction CF . The �t was done in two steps. First, the re�ectivity

curves, normalized to the beam (meshI0), were �tted. Second, these curves

were used for the �t of the NIXSW pro�les.

The mosaic spread of the silver crystal was taken into account by using

constant default values for the crystal parameters. DARE uses one parameter

to describe the substrate and the experimental setup (monochromator). It

is presented in Appendix D for the experiments of this work. In DARE the

quadrupole parameters SR, jSI j and  have to be set before �tting the NIXSW
pro�les. The multipole parameters, used in this work, are found in section

3.3.4.

3.5.1 Graphical representation of the result: the Ar-

gand diagram

The NIXSW pro�le of an adsorbate on multiple sites is described by equation

(3.3), which is repeated here again:

I / 1 +R (�) + 2

N

p
R (�)

NX
i=1

cos(� � 2�CPi). (3.27)

The important part of this formula is the sum 1
N

NP
i=1

cos(� � 2�CPi) over all
atom positions. It is convenient to present this result in the complex Argand

diagram. In 1994 this type of diagram was introduced by Woodru¤ [Woo 98]

http://www.casaxps.com/
http://www.casaxps.com/
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for the presentation of NIXSW results, which is now commonly used. The

coherent position CP and the coherent fraction CF are interpreted as the phase

and the amplitude of the complex exponential function:

CF � exp (2�i � CP ) =
1

N

NX
i=1

exp(2�i � CPi) (3.28)

In an Argand diagram the imaginary axis is plotted versus the real axis.

Therefore, in this diagram the XSW result correspond to a polar vector starting

at the origin, the length is given by the coherent fraction CF , and the angle

is given by the coherent position 2�CP . The sum in equation (3.28) can be

conveniently performed by vector addition in this diagram, as illustrated in

�gure 3.9.
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Figure 3.9: Top: Di¤erent vertical positions of the adsorbate yield di¤erent phase
shifts of the cosine function. Regarding two uniformly distributed adsorption sites
(1 +2) (light grey curves), the resulting cosine function (dark grey curve) is phase
shifted by CP and has an amplitude of CF . The thick black curve represents the
cosine of the substrate. The dotted lines represent the values of CF cos (2�CP ) for
the distinct adsorption sites (Note: � = 0). Bottom: Argand diagram illustration.
The two adsorption sites are represented by the two light grey vectors. By vector
addition the resulting dark grey vector is obtained. Please note that the length of
this vector is drastically reduced, the value of the coherent fraction CF = 0:3 is
very low. In this particular case of two adsorption sites, the coherent position, CP ,
corresponds to the average vertical distance of the adsorbate.
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Chapter 4

NIXSW �the stable monolayer
phase

3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) deposited on Ag(111)

at room temperature adsorbs in a stable chemisorbed state with long-range

structural order, forming the so-called herringbone pattern [Glö 98]. More

information about the properties of this phase can be found in the chapter 2.

In the following the monolayer of this room temperature phase is named just

monolayer.

In this chapter the evaluation and the results of the NIXSW investigation

on the monolayer phase of PTCDA on Ag(111) are presented.

4.1 Experimental

In order to determine the vertical distances of the atoms in the PTCDA mono-

layer with respect to the silver substrate, NIXSW data were taken at the ESRF

in Grenoble / France at the beamline ID32. The layout of this beamline is

described in chapter 3.4. Data were taken in three beamtimes, in July 2003

(J�03), November 2003 (N�03) and November 2004 (N�04). The same silver

crystal and the same batch of PTCDA were used for all experiments con-

ducted in three beamtimes. The silver(111) crystal was cleaned by repeated

cycles of argon ion sputtering and annealing at temperatures from 650K to

750K. The crystal quality was checked by LEED and x-ray photoelectron
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spectroscopy (XPS).

The organic material, used in the experiments, was puri�ed by gradient

sublimation [For 97]. The preparation of well ordered monolayers of PTCDA

proceeded as follows: By evaporating of the material from a Knudsen cell,

multilayers of PTCDA were grown. Subsequent the sample was heated up

to 550K for several minutes. Thereby only the monolayer remained on the

substrate, while the multilayers were desorbed.

The vertical positions, obtained in an NIXSW experiment, are given in

units of the substrate lattice. Therefore, the exact value of the lattice distance

is essential. For the silver (111) lattice planes, this value is 2:3592Å at room

temperature [EckKan 71]. It was used in the evaluation of the data measured

at room temperature. The nominal Bragg energy for this lattice distance is

2627:7 eV (at a Bragg angle of 90�). At low temperatures, a thermal contrac-

tion of the lattice constant can be seen from the energy shift of 10 eV in the

Bragg energy. From the thermal expansion coe¢ cient � = 18:9 � 10�6K�1

[AshMer 76] of silver one calculates for the thermal expansion of a (111) lat-

tice plane from 100K to 300K a value of 0:0089Å1. From this contraction, the

nominal Bragg energy for the silver (111) lattice planes at 100K is calculated

at 2637:6 eV. At temperatures around 100K, the measured value indeed is

shifted by 10 eV with respect to the room temperature value.

In a standing wave experiment the photon energy is varied in the vicinity

of the Bragg energy. In contrast, the so-called "o¤-Bragg" survey spectra were

taken with a photon energy far o¤ the Bragg energy of the silver substrate

(ca. 10 eV below or above the nominal Bragg energy). Hence, no standing wave

e¤ects due to the vertical adsorbate position and distribution contribute to an

o¤-Bragg spectrum. Therefore an o¤-Bragg spectrum represents the intrinsic

PE spectrum. This is particularly relevant with regard to the chemical shifts

in a spectrum. If the chemical shifted atoms occupy distinct vertical positions

with respect to the crystal surface, the shape of an "on-Bragg" spectrum can

di¤er signi�cantly from the shape of the intrinsic PE spectrum, obtained at

o¤-Bragg photon energies.

For the determination of the coherent position and coherent fraction a

1The thermal expansion coe¢ cent is de�ned by � = 1
l
�x
�T .
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series of NIXSW experiments were conducted. The result for a particular

atom species, given below, correspond to the arithmetic mean of the results

for the di¤erent data sets of this atom species. The given error corresponds to

the standard deviation � =

rP
n
x2�(

P
x)2

n(n�1) of the arithmetic mean. If no error

is given, only one data set was used.

4.1.1 Monochromator instabilities

During beamtime J�03 the monochromator movement was not reliable. The

steps in photon energy were apparently not equally spaced. This can be already

seen from the re�ectivity curves (see �gure 4.1), whose shapes vary for the dif-

ferent data sets. Also, the �t of the theoretical re�ectivity does not match very

well to some of the data. The irregular steps in energy due to monochromator

instabilities can lead to modi�ed results of the experiment. Hence, only those

data sets were used, for which the re�ectivity curves �t su¢ ciently well to the

theoretical curve. This ensures that only data with regular steps in photon

energy were considered in the evaluation and no errors due to monochromator

instabilities change the results. In beamtime N�03 and N�04 the monochro-

mator ran much more stable, the measured re�ectivity curves �t well to the

theory (e.g. , see �gures 4.15 and 4.21).

4.2 Silver substrate results

An excellent quality of the silver crystal is essential for the standing wave

experiment. Before carrying out the NIXSW experiments, the quality of the

crystal surface was checked by LEED. A characteristic LEED pattern of the

Ag(111) surface, showing sharp LEED spots (�gure 4.2), was recorded, reveal-

ing a good quality of the Ag(111) surface. However, LEED only is a surface

sensitive and not a bulk sensitive method.

A good estimation of the bulk crystal quality can be given from an NIXSW

experiment which is a bulk sensitive method. The �rst indication for a good

bulk crystal quality is a sharp re�ectivity curve (Darwin-Prins curve), which

exhibits the typical shark �n shape, as can be seen in �gure 4.3. In addition,
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Figure 4.1: Measured re�ectivity curves in beamtime J�03. A big spread can be
seen in the curves that should be identical. The spread is due to monochromator
instabilities. In the evaluation, only data corresponding to re�ectivity curves with the
shape of the black curve were considered. All other re�ectivity data and corresponding
standing wave data were not used due to irregular steps in the photon energies.

the resulting values for the coherent fraction and the coherent position should

be close to the ideal value of CF = CP = 1.

In this work, the NIXSW investigation of the silver crystal was done with

the Ag MVV Auger signal. The o¤-Bragg Auger spectrum is shown in �gure

4.3. A typical NIXSW pro�le of the Ag MVV Auger signal and the corres-

ponding re�ectivity curve are presented in �gure 4.3. The value of the co-

herent position, obtained by the �t, is close to the theoretical value. Due to

the mosaicity of the crystal and presumably surface reconstruction, the coher-

ent fraction lies approximately 14% below the expected value. The results of

numerous NIXSW scans taken in the three beamtimes are given in table 4.1.

However, these results reveal a good quality of the silver crystal.
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Figure 4.2: LEED pattern recorded on the Ag(111) sample, used in the experiments
of this work.

The Auger signal is more surface sensitive than the PE signal which is

bulk sensitive, therefore, the resulting coherent fraction of the NIXSW exper-

iment can reveal surface reconstruction of the topmost layers of the substrate.

However, e¤ects, due to relaxation (contraction or expansion) of the outermost

layer spacings are small. For Ag(111) Soares et al. found a bulk-terminated sur-

face, with no contraction or expansion of the outermost layer spacings [Soa 99].

The reconstruction of the surface underneath the organic �lm, however, is not

clear, yet. Schmitt describes the reconstruction of the surface after anneal-

ing the PTCDA covered Ag surface in his thesis [Sch 06]. A stepped Ag(775)

surface transforms to (111) terraces with double atomic step edges, populated

with PTCDA molecules.

Exemplarily, the underlying bulk signal of an Ag MVV scan was evaluated

[Bau 07], the found values for the coherent fraction are slightly higher (approx-

imately 2%) than for the Auger values. The values for the coherent position

are closer to 1 This is a hint of the reconstruction of the topmost layers of the

silver crystal.
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Figure 4.3: Top: Auger spectrum of Ag MVV taken with a pass energy of the
electron analyzer of 46 eV. For analyzing the peak area, a Shirley background (see
appendix E.1) was adapted to the Auger signal. In the inset, an o¤-Bragg PE spec-
trum over a larger energy range is shown. Center: Typical Ag MVV NIXSW pro�le.
The points represent the data and the solid lines the corresponding �t. The data
were taken in beamtime N�03 with a pass energy of 58 eV. The corresponding results
for the coherent position and fraction are given in the �gure. Bottom: Correspond-
ing re�ectivity curve, it has the typical shark-�n shape which corresponds to a good
crystal quality.
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Ag MVV results

(111) di¤raction / RT

beamtime number of spectra CP CF
J�03 2 0:992� 0:003 0:893� 0:011
N�03 3 0:991� 0:007 0:876� 0:067
N�04 4 0:985� 0:004 0:855� 0:011

(1̄11) di¤raction / RT

beamtime number of spectra CP CF
J�03 1 1:000 0:964
N�03 2 1:000� 0:000 0:877� 0:055

(111) di¤raction / LT

beamtime number of spectra CP CF
N�03 1 0:965 0:868
N�04 12 0:972� 0:007 0:902� 0:029

Table 4.1: Results of the NIXSW �ts for the silver substrate based on the Auger
MVV transition. The results are listed for the di¤erent beam times, for di¤erent
sample temperature (room temperature and low temperature), and for the distinct
di¤raction planes. However, all resulting coherent positions and fractions are in the
same range and reveal a high quality crystal. The errors correspond to the standard
deviation of the results.
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4.3 (1̄11) results for carbon and oxygen

In order to determine the exact lateral position of the PTCDAmolecules on the

Ag(111) surface, (1̄11)-NIXSW scans were taken on the monolayer �lms. Such

a determination of the lateral position was done by Kilian for the molecule

end-capped quaterthiophene (EC4T) on Ag(111) via triangulation [Kil 02b].

Several (1̄11)-NIXSW scans on the C1s and O1s transition were recorded

in this work. The evaluation yielded values for the coherent fraction below

CF � 0:2 for both atom types. In that state of the evaluation, the used

quadrupole parameters was with Q = 0:20 quite too low. With the better

value for the quadrupole parameter of Q = 0:31, exemplary NIXSW scans

were evaluated again. These scans revealed an even lower value of the coherent

fraction.

Therefore, a further evaluation of these NIXSW scans was not done in this

work, since a triangulation as it was done for EC4T, is not possible due to

the low values of CF , which already are in the range for incoherent �lms. The

reason for these low values can be found in the high number of atoms for each

species in the monolayer.

4.4 Carbon results

The PTCDA molecule has seven chemically di¤erent carbon positions. This

is due to geometrical reasons (�gure 4.4) but only valid for the gas phase.

The unit cell of the monolayer of PTCDA/Ag(111) includes two molecules

on distinct positions on the silver substrate. The chemical environment is

also di¤erent for the carbon atoms on the distinct positions on the substrate

[Kra 06].

A typical o¤-Bragg PE spectrum for the C1s transition is shown in �g-

ure 4.5. The value for the o¤-Bragg photon energy for this spectrum was

E
 = 2:617 keV (the nominal Bragg energy has a value of E
 = 2:6277 keV).

The distinct contributions, due to chemical shift and to satellites, are not

resolved in the spectrum, because of the relatively low pass energy of the

electron analyzer (47 eV). Zou et al. presented high resolution photoelectron
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Figure 4.4: PTCDA molecule. Due to geometrical reasons the molecule has 7
chemically di¤erent positions.

spectroscopy results of 0:9 monolayer of PTCDA on Ag(111) [Zou 06]. In their

spectra the main C1s peak clearly consists of two peak features. The smooth

�ank at binding energies from 290 eV to 286 eV in �gure 4.5 (top) exhibits at

least three distinguishable peak features in their spectrum. In the C1s spectra

taken in the present work, all these features are not resolved due to the used

analyzer resolution.

Schöll analyzed the contributions of the di¤erent carbon atom types to the

total photoemission spectrum. He attributed the main peak feature to the ring

carbons, whereas the carbons of the anhydride group (denominated carbon 1

in �gure 4.4) contribute only at higher binding energies to the spectrum. If

these carbon atoms occupy di¤erent vertical positions on the substrate surface,

this should be seen in the PE spectra of a standing wave experiment. In

this case the shape of the C1s spectrum would change for various photon

energies (close to the Bragg energy). Indeed, the principal component analysis

(PCA)2 proposes two components for the carbon. The �t of these two principal

components to the PE spectra of the standing wave removes the noise from the

data (target factor analysis (TFA)). This result shows that there is a di¤erence

in the C1s-peak shape within the standing wave. However, the di¤erence is

only subtle (and therefore, not shown here), and the NIXSW pro�les obtained

from di¤erential �tting of the spectra were not reliable. Eventually NIXSW

scans with a high resolution pass energy of the electron analyzer and long

acquisition times could make a di¤erential analysis possible.

2A short introduction to PCA and TFA is given in appendix G.
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For the C1s spectra, only subtraction of a Shirley background (see Ap-

pendix E.1) was practicable. No region could be de�ned for adapting a linear

background. Therefore, in all C1s PE spectra of the standing wave experiment,

a Shirley background has been subtracted.

In the resulting NIXSW pro�le, each point corresponds to the remaining

area of the background subtracted PE spectrum. Figure 4.5 shows the NIXSW

pro�le and the corresponding re�ectivity curve for the C1s transition. In table

4.2 (on page 60) the results for carbon are listed for the di¤erent preparations

and pass energies.

In beamtime J�03 seven C1s scans were taken on one preparation. In table

4.2 the average value over these scans was taken. However, regarding each scan

after the other, a tiny declining trend for the values of the coherent position

and fraction can be observed (After 24 hours, a decline of 4:7% was found for

the value of the coherent position and a decline of 18% for the value of the

coherent fraction. Considering the distance of the carbon atoms to to the Ag

surface, the decline of the coherent position only corresponds to less than 1%).

The decline is shown in �gure 4.6.

These variations within values obtained from the �lm of preparation A in

beamtime J�03 can have di¤erent reasons. They can have a statistical origin.

Another possibility is a beam induced rearrangement of the molecules. Such

an e¤ect also can be a time depending e¤ect. However, this e¤ect is very small,

therefore, as resulting value the average of these values can be taken without

restriction.

In beamtime N�04 three NIXSW scans were taken on the C1s transition

again (on preparation C, D and E). However the di¤erences in the results are

striking compared to the results obtained from preparation A and B, as can

be seen in table 4.2.

The results obtained from preparation E are not reliable. This NIXSW

scan was acquired after half a monolayer of the precursor and an additional

large amount of co-adsorbed water was annealed at 600K for 3 minutes. It is

not clear, whether the molecules are still intact after such a procedure. Hence,

this values will not be further discussed.

Much more interesting are the results for preparation C and D. The �rst
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Figure 4.5: Top: survey spectrum of the C1s-transition for the monolayer. The
pass energy of the analyzer was 47 eV. This spectrum was taken in beamtime N�04.
(p114, p122, p126). For analyzing the peak area, a Shirley background was adap-
ted to the spectrum. Center: C1s NIXSW pro�le and re�ectivity (bottom) for the
monolayer phase. The points represent the data and the solid lines the corresponding
�tting result. The corresponding results for the coherent position and fraction are
given in the �gure. The data were taken in beamtime N�03 with a pass energy o¤
47 eV (Pt1_111).
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result corresponds to half a monolayer at room temperature, which was an-

nealed. The LEED spots of this �lm were not very intense (�gure 4.7, left).

Surprisingly, the value of the coherent position lies �CP = �0:05 below
the average value obtained from preparation A and B. This corresponds to

�CP = 0:1�A. By depositing additional PTCDA molecules on this �lm and

the subsequent annealing, the spots in LEED pattern became more intense

(�gure 4.7, right).

The results of this subsequent NIXSW scan reveal that the values for the

coherent fraction and coherent position obtained from preparation D are closer

to the values of preparation A and B. The reason for this is given in the

following.

It is known that the PTCDAmolecules �rst occupy the steps of the Ag(111)

surface, before they start to order in the typical herringbone structure on the

terraces [Glö 98] [Sch 06]. Therefore, at the coverage of half a monolayer,

all steps were decorated with molecules and the growth of the herringbone

structure did already begun. The existence of the herringbone structure can

be concluded from the LEED pattern, recorded on the 0:5 monolayer �lm.

Unfortunately, the ratio of molecules decorating the steps to molecules lying

�at in the herringbone structure is not known.

After the additional deposition of organic material, a coverage of the full

monolayer is reached. In this situation all (111) terraces are covered by �at

lying molecules arranged in the herringbone structure. Nevertheless, in the

results of the full monolayer approximately the same contribution of the steps

decorated with molecules is included. With the knowledge of the two cover-

ages, the values for the coherent fraction and coherent position of the pure

herringbone structure, without the contribution of the molecules on steps, can

be calculated. In vector notation of the Argand representation the vector for

the pure herringbone structure is given by

��!
C1scorr. = 50% � ��!C1s1 ML ���!C1s0.5 ML.

Thereby, 1 ML corresponds to a full monolayer and 0.5 ML to half a mono-

layer. This is graphically shown in �gure 4.8. The corrected values are given
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in table 4.2. The corrected value of the coherent position is in excellent agree-

ment with the averaged values of preparation A and B. From this result, it can

be concluded that in preparation A and B the quality of the crystal surface was

superior, and only suboptimal in the preparations C and D. Hence, the results

for preparation A and B can be considered as the �nal results for the carbon

in the monolayer PTCDA on Ag(111) ordered in the herringbone structure.
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C1s results with a pass energy of 47 eV

prep. spectra ML CP e¤ CP e¤(Å) CF
A J�03 7 1 0:214� 0:004 2:863� 0:010 0:547� 0:043
B N�03 1 1 0:211� 0:020 2:857� 0:047 0:489� 0:080
average 8 0:214� 0:004 2:863� 0:010 0:540� 0:045

C1s results with a pass energy of 58 eV

prep. spectra ML CP e¤ CP e¤(Å) CF
C N�04 1 0:5 0:168� 0:020 2:756� 0:047 0:256� 0:080
D N�04 1 1 0:200� 0:020 2:831� 0:047 0:418� 0:080
E N�04 1 0:5 0:280� 0:020 3:020� 0:047 0:245� 0:080
D corrected 1 1 0 :213 2 :862 0 :587

Table 4.2: Fitting results from the NIXSW pro�les. The �rst column corres-
ponds to the preparation and beamtime. The column "spectra" denotes the number
of evaluated spectra. The errors correspond to the standard deviation of the results
from the evaluated pro�les. The errors for the result of beamtime N�03 and N�04
were estimated by a con�dence analysis of Gerlach et al. [Ger 07]. The results ob-
tained in beamtime N�04 has to be considered with special attention, because for each
preparation only one XSW scan was measured. Preparation C corresponds to half
a monolayer �lm which was annealed for 3 minutes at 550 K. More PTCDA was
deposited (approximately 2ML) onto this �lm and subsequently annealed to obtain
preparation D. The preparation E corresponds to half a monolayer of the precursor
phase which was annealed at 600 K. The coherent parameters di¤er signi�cantly from
those obtained in previous preparations and are not reliable. For the explanation of
the corrected values for preparation D see text.
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C1s results - preparation A of beamtime J�03
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Figure 4.6: Results for the XSW scans of C1s. All data (solid symbols) correspond
to the same preparation, the structural parameter are plotted versus the age of the
monolayer �lm. The lines correspond to a linear regression of the presented data. It
has to be noticed that the y axes are greatly exaggerated in �gure a). In �gure b) the y
axes go over the whole possible range for the coherent fraction and position. However,
a trend to lower coherent positions and fractions with time (or beam exposure) can
be seen.
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Preparation C; 0.5 monolayer Preparation D; 1 monolayer

Figure 4.7: LEED patterns of the PTCDA �lms of preparation C and D in beam-
time N�04. The electron energy was approximately 20 eV.
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Figure 4.8: Argand diagram showing the C1s vectors for 0.5 monolayer (prep. C),
and for 1 monolayer (prep. D). The intrinsic C1s vector, describing the herringbone
structure, can be obtained by vector subtraction. For further details see text.
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4.5 Oxygen results

In this chapter the results for the oxygen are presented. The chapter starts

with the NIXSW investigation of the O KLL Auger transition.

For the O1s transition, the results di¤er for the di¤erent preparations.

In order to discuss the reasons for this, the experimental conditions for the

di¤erent preparations are described in the next section.

The NIXSW results of the total oxygen are presented in the following sec-

tion. "Total oxygen" stands for the signals that were averaged over all oxygen

atoms in the monolayer.

In order to describe the structural changes which were observed for the

oxygen, a correction model will be presented, subsequently.

The molecule PTCDA has two chemically di¤erent oxygen types: The 4

outer carboxylic oxygen atoms and the 2 inner anhydride oxygen atoms (see

�gure 4.4). It is possible that these chemically di¤erent atoms can occupy

distinct vertical positions. In the last section, the data were analyzed for the

two chemically di¤erent oxygen atoms.

4.5.1 Auger O KLL

In beamtime J�03 (preparation A), the Auger transition O KLL was investig-

ated with NIXSW. The advantage of the Auger emission is that no quadrupole

contributions add to the electron yield. Nevertheless, the results for the O KLL

scans are not identical to the quadrupole corrected O1s results.

Stanzel et al. [Sta 04] explain this discrepancy with di¤erent excitation

origins for the Auger process. They argue that a core hole can be excited by

photons and also by electrons. Therefore, the O KLL-NIXSW signal consists

of two contributions, one originating from the photon-excitation which carries

the structural information from the oxygen atoms in the overlayer, the other

originating from the excitation by escape-electrons from the bulk. The latter

contribution is mainly caused by (inelastically scattered) photoelectrons from

the Ag substrate which therefore exhibits the structural signature of Ag bulk-

atoms in an NIXSW-scan. Therefore, the measured O KLL position vector is

the weighted sum of a bulk position vector
�!
Ag and the �real�oxygen position
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Figure 4.9: Auger spectrum of O KLL. The pass energy of the electron analyzer
was 46 eV. For analyzing the peak area, a linear background was adapted to the
Auger signal.

vector
����!
OKLLcorr::

����!
OKLL = (1� a) � �!Ag + a � ����!OKLLcorr:.

The corrected values with (1� a) = 25% and 50% silver contribution, respect-

ively are shown in table 4.3. Stanzel et al. used for the 1,4,5,8-naphthalenetetra-

carboxylic dianhydride (NTCDA) a 50% silver contribution. For the PTCDA

the best agreement of the position vectors
����!
OKLLcorr: and

��!
O1slow res: was also

obtained for 50%.

A typical O KLL Auger spectrum is shown in �gure 4.9. In order to ob-

tain the integrated electron yield, a linear background was subtracted from

the Auger spectra. The composition of the O KLL Auger spectrum is relat-

ively complicated for the PTCDA. Nonetheless, it was tried to �nd a �tting

model which divides the two chemically di¤erent oxygen, in order to evalu-

ate the integrated electron yields of the distinct oxygen separately. However,
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OKLL results

CP CP (Å) CF
OKLL 0:091� 0:010 2:568� 0:023 0:631� 0:014
OKLLcorr:25%_Ag 0:191 2:805 0:612
OKLLcorr:50%_Ag 0:211 2:852 0:702

Table 4.3: O KLL result for the monolayer. The values were corrected for 25%
and 50% silver contribution. With the latter correction the same coherent position
as for the low resolution O1s data is obtained. The errors correspond to the standard
deviation of the results.

the statistics of the standing wave spectra was too low and no model, yield-

ing satisfactory results for the NIXSW pro�les, could be found in this work.

Therefore only the average oxygen position was evaluated with the O KLL

scans.

In beamtime J�03 the O KLL electron yield was taken during 9 NIXSW

scans. The correction of the O KLL vector is also shown in the Argand diagram

of �gure 4.10.
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Figure 4.10: Argand diagram for the total oxygen in the monolayer. The res-
ults, obtained from the O KLL NIXSW yield di¤er from those of the O1s NIXSW
yield. By correcting the O KLL values for a silver contribution of 50%, the O1s-low
resolution result is obtained (see text).
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4.5.2 Measuring conditions

Small di¤erences in the O1s-PE spectra of nominally identical layers were

observed during the experiments. These di¤erences can have their origin in

the experimental conditions and / or in the di¤erent monolayer preparations.

Therefore, the �lm preparation and the experimental conditions are described

in the following.
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Figure 4.11: Comparison of two o¤-Bragg PE spectra of the O1s-transition for the
monolayer taken during beamtime N�03. In both spectra, two main peak features, due
to the chemical shifted oxygen types of PTCDA, can be seen at the binding energies
of 530:6 eV and of 533:0 eV. The spectrum taken on the defrosted monolayer (black
curve - see text) di¤ers slightly in the shape from the spectrum taken on the freshly
prepared monolayer (grey). The peak at higher binding energy is slightly larger and
the separation of the two peaks is less pronounced. The pass energy of the analyzer
was 23:5 eV (Pt1_110, Pt1_164).

The results can be divided into two groups. It occurs that one group with
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similar results was measured with a low resolution of the electron analyzer.

Low resolution stands for a pass energy of the electron analyzer of 47 eV and

more. It is not clear, if the di¤erence between the results can be ascribed to

the resolution of the analyzer. However, in the following the results of the �rst

group will be nominated as low-resolution results. Those in the second group,

measured with a pass energy of 23:5 eV of the electron analyzer will be referred

to as high resolution results in the following.

Oxygen atoms are weak photoemitters. Even with the high-�ux rate at

the synchrotron in Grenoble (ESRF ) the counting time needed for the data

acquisition of the high resolution spectra was extremely long (up to 6 hours).

Therefore only few high resolution NIXSW scans of the O1s transition were

taken, due to the limit of time.

The low resolution scans were taken during three beamtimes. In the �rst

two beamtimes J�03 and N�03, the low resolution data for O1s were collected

shortly after the preparation of the monolayer (preparation A and B) and

hence are considered as being reliable. During beamtime N�04 three di¤erent

results from three di¤erent preparations were obtained. As will be discussed

in the caption of table 4.4 (on page 79) in more detail, none of the O1s results

from beamtime N�04 will be taken into account for the further discussion.

The high resolution O1s NIXSW spectra were taken during three peri-

ods. In J�03, six spectra were taken, but due to monochromator and beam

instabilities, only three spectra could be analyzed. The spectra were taken

approximately 24 hours after preparation of the monolayer. The sample was

kept at room temperature after preparation (preparation A).

In N�03, one high resolution NIXSW scan was taken six hours after the

monolayer deposition (preparation B). The sample was kept at room temper-

ature, the scan took six hours. During this time, the photon current lost

more than half of its initial intensity. This scan could not be evaluated so

far, because of problems in background subtraction in the re�ectivity curve.

However, because of the very good statistic of this scan, it can be clearly seen,

how the peak ratio of the two main peaks in the O1s PE spectrum (see �gure

4.11) changes in the standing wave experiment This gives a strong evidence

for the distinct vertical positions of the two oxygen species.

http://www.esrf.eu
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The third series of high resolution measurements was performed after meas-

uring the precursor phase in beamtime N�03 (preparation F). The sample with

the PTCDA precursor �lm was cooled for 24 hours at 100K. Then, the sample

was heated up to 550K, and, in order to increase the coverage, PTCDA was

evaporated on the sample again and the sample was heated to 550K again to

desorb the multilayers. LEED measurements revealed the monolayer structure

of PTCDA on Ag(111). Two o¤-Bragg spectra, one before and one after the

precursor preparation, are shown in �gure 4.11. It can be seen how the high

resolution spectra of the second period di¤er from the ones measured before.

The di¤erence is only subtle, however, the dip between the two peaks is less

deep for the spectra, taken after the precursor preparation. This feature can

also be found in the on-Bragg spectra.

This change in the peak shape could have di¤erent reasons. It could be due

to an intensity loss of the two peaks or due to the appearance of an additional

peak between them.

An additional peak might originate from H2O. The binding energy for the

oxygen of water on Ag(111) was recorded by Carley et al. [Car 90] at 534 eV.

The here observed peak is at a binding energy of 531:8 eV (calibrated after

Schöll et al. as noted in [Zou 06]). Hence, there is a big di¤erence in the

binding energies, but nevertheless Schöll found at this position (2 eV below

the value from Carley et al. ) an increasing peak with time in low temperature

experiments, which he attributed to co-adsorbed water [Sch 05a]. Carley found

that water on Ag(111) desorbs at 160K. The present experiment was done at

room temperature. Why should there be any water remaining on the sample?

Possibly, the water desorption is in�uenced by the PTCDA molecules. This

could explain also the shift in binding energy of this peak.

Another explanation of this feature could be the intensity loss induced by

beam damage of the PTCDA. This was recorded by Schöll for multilayers of

PTCDA on Ag(111) for very high beam �ux [Sch 03]. However, for monolayers

under high �ux from the undulator in the synchrotron experiment, no radiation

damage was found by Schöll et al. as noted in [Zou 06].

In the present work, a change in the spectra of the monolayer during a time

scale of six hours also could not be observed.
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In order to �t the PE spectra of the monolayer with the same model, an

additional peak was introduced. Otherwise the �tting was not possible with

the �tting model deduced on the o¤-Bragg survey spectrum. The binding

energy of this additional peak lies at 532:07 eV and it has a FWHM of 3:5 eV.

The �tting model which includes this peak feature is shown in �gure 4.12. In

section 4.5.5 the �tting models will be discussed in more detail.

Intrinsic O1s photoemission spectrum

In order to be sure that the x-ray beam does not induce any changes to mo-

lecular �lm (and consequential changes to the photoemission spectra), the

o¤-Bragg spectra of this work were compared with high resolution O1s spectra

measured by Schöll [Zou 06]. These spectra were taken on freshly prepared

PTCDA monolayer �lms on Ag(111) with a photon energy of 700 eV.

In order to compare the high resolution spectra of this work with the spectra

of Schöll, the identical background subtraction had to be done for both spectra

(for details see chapter 5.3.1). Figure 4.13 shows the background subtracted

spectrum of this work compared with a spectrum of Schöll. It can be seen

that the spectra are very similar, however, the peak features are broader in

the spectrum of this work. The �tting procedure of the spectra revealed that

the peaks in the spectra of Schöll correspond to several Voigt peaks. However,

the best �tting model for the spectra taken in this work was obtained with pure

Gaussian functions. The Lorentzian contribution, due to life time broadening

of the core states, could not be found in the data of this work, because of the

�nite resolution of the electron analyzer in the experiment.
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Figure 4.12: O¤-Bragg O1s PE spectrum of the monolayer where the additional
oxygen peak is included in the �tting model. The stoichiometry of the PTCDA O
atoms was constrained in the �t. The amount of the additional peak to the total
spectrum is 14:7%: For more details of the �tting models see section 4.5.5.
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Figure 4.13: Comparison of the O1s photoemission spectra of the PTCDA mono-
layer taken in this work (black) and by Schöll (grey) [Sch 05a]. In both spectra the
background was subtracted in the way Schöll proposed (see text). The peaks of the
spectrum of this work are broadened in comparison to the peaks of the spectra taken
by Schöll et al.
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4.5.3 Total Oxygen

In this section the total oxygen results are given, both, as well as for the low

resolution as for the high resolution spectra.

For analyzing the O1s part of the PE spectra, the large background which

is due to inelastically scattered electrons from the silver substrate has to be

separated from the oxygen signal. Two di¤erent types of backgrounds were

�tted to the spectra, a Shirley background and a linear background. It was

found that for the O1s spectra the result of the NIXSW �t is the same, regard-

less of which background was subtracted. Consequently, for all following O1s

spectra, a linear background was subtracted. The �t of the linear background

to a typical O1s o¤-Bragg spectrum is shown in �gure 4.14.
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Figure 4.14: O¤-Bragg Photoemission spectrum of the O1s transition for the mono-
layer. The pass energy of the analyzer was 23:5 eV. For analyzing the peak area, a
linear background was �tted to the PE spectrum (N�03; Pt1_110).
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Figure 4.15: O1s NIXSW pro�le and re�ectivity for the monolayer phase. The
data were taken in beamtime N�03 with a pass energy of 47 eV (black - Pt1_111)
and 23 eV (grey - Pt1_165 and Pt1_167). The points represent the data and the
solid lines the corresponding �tting result. The corresponding values for the coherent
position and coherent fraction are given.
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Figure 4.15 shows the NIXSW-pro�le and the corresponding re�ectivity

curve for the O1s transition. As noted before, the photoelectron counting

rate depends on the pass energy of the electron analyzer. In order to get a

similar statistics in the so-called high resolution scans with the pass energy

of 23:5 eV, as obtained for the so-called low resolution NIXSW scans with a

pass energy of 46:5 eV and higher, the acquisition time was raised. A typical

acquisition time for an O1s low resolution scan is between 20 minutes and one

hour. The high resolution scans take much longer: for one high resolution

scan with only 16 measuring points in beamtime N�03, six hours were needed.

Already a small shift in any experimental parameter during data acquisition

can make the data useless. For the acquisition of the high resolution data, the

experiment is close to its limits due to the monochromator stability. Therefore,

the data acquisition was performed in two steps for the high resolution scans

(see section 4.5.5).

The NIXSW results for the total oxygen are shown in table 4.4 (on page 79).

4.5.4 Correction of the oxygen result

As can be seen in table 4.4 and in the Argand diagram of �gure 4.16, a di¤er-

ence in the results for the O1s data depending on the preparation is found. A

possible reason for this could be found in the decoration of the step edges on

the Ag(111) surface with PTCDA molecules.

As discussed above for the carbon results, it can be assumed that the results

for O1s obtained on the freshly prepared �lms (preparation A and B) corres-

pond to the structural parameters of the herringbone structure. These results

are di¤erent compared to the results obtained from preparation A and F, which

were taken with a high resolution pass energy. With time (or beam in�uence)

structural changes occurred in the �lm of preparation A. As discussed in sec-

tion 4.5.2 the �lm of preparation F also exhibits structural di¤erences due to

the conditions of preparation. Therefore, it is clear that the high resolution

results have to be corrected, in order to obtain the results for the herringbone

structure.
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Figure 4.16: Top: Argand diagram showing the resulting vectors for the silver
substrate, and for the total oxygen (obtained from di¤erent preparations). Bottom:
Using a correction of the structural changed (high resolution) vectors with a bulk-
like contribution of 10 %, the results of freshly prepared �lms (low resolution) are
approximately obtained (average values of J�03 and N�03). It has to be noted that
individual corrections of the two high resolution vectors, reveal bulk-like contributions
of 7% and 17%, for J�03 and N�03, respectively.
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For the discussion of a correction it is more convenient to consider the Ar-

gand vectors (�gure 4.16). In the easiest case it can be assumed that the same

correction vector is needed for both preparations, only contributing with dif-

ferent percentages to the high resolution vectors. However, these percentages

are not known.

The lengths of the high resolution vectors are quite di¤erent for the two

preparations (CF = 0:41 for preparation A, and CF = 0:53 for preparation F).

As shown in the con�dence analysis of Gerlach et al. [Ger 07], the value for

the coherent position has only small error bars, whereas the coherent fraction

has much larger error bars. This point complicates the situation, since it is

not clear what the exact value for the coherent fraction is.

It must be concluded that the determination of the correction vector is not

possible from the available information. Too many parameters are unde�ned

or have an uncon�dent value. For the determination of a correction vector

at least the knowledge of the percentage contribution to the high resolution

vector would be required.

However, in the following a correction model is presented, which could

explain the observed di¤erences in the results. This model is based on the STM

investigation of Glöckler et al. [Glö 98]. The authors observed a decoration of

the biatomic steps with PTCDA molecules. Assuming the molecules standing

upright to the step edges with their long axis parallel the step, as shown in

�gure 4.17, in principle all PTCDA oxygen atoms at the step could occupy

positions very close to the substrate lattice planes. This position would give

for the oxygen atoms a value of the coherent fraction close to the value for

the substrate bulk. The resulting value for the coherent position would also

be close to the value for the silver. The vectors of the carbon atoms would

cancel each other out, because 12 atoms would occupy positions on bulk planes

and 12 atoms positions in between them. This yields in an Argand diagram

two opposing vectors of the same length. Hence, if such a situation exists, the

value of the coherent fraction for the total carbon (occupying The Ag(111)

terraces and the step edges as described) would decrease, however, the value

for the coherent position would not change. It has to be pointed out that this

situation can only exist, because the Ag(111) lattice plane distance (2:36�A)
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corresponds approximately to the width of half a molecule (2:2�A), as can be

seen in �gure 4.17.

The �tted coherent positions are in units of the lattice constant 2:36�A,

therefore, it seems to be reasonable that the distance of the upright standing

molecules to the (111) terraces corresponds to one lattice constant. However,

for step edges higher than two layers, it is also possible that this distance

corresponds to more than one lattice constant. However, from the data of

the present work, no conclusion can be drawn about the absolute adsorption

height of the upright standing molecules.

Ag(111): 2.36 Å

2.2 Å 4.4 Å

Figure 4.17: Model for upright standing molecules at step eges of the silver crystal.
The lattice planes of Ag(111) have a distance of 2:36�A. The carboxylic oxygen atoms
within the functional group exhibit in the molecules of the PTCDA bulk crystal a
distance of 4:4�A.

Assuming that 10% of the molecules are decorating steps, the vectors in

the Argand diagram would have to be corrected in the following way:

��!
O1shigh res = 10% �

�!
Ag + 90% � ��!O1scorr:high res (4.1)

The vector
��!
O1shigh res describes the actually measured high resolution res-

ult. For the correction vector, a bulk like vector,
�!
Ag, with a coherent position

of 1 and the measured value of the coherent fraction of the silver (CAgF = 0:9)

was used. By correcting the high resolution value with this bulk-like contribu-

tion of 10%, the coherent position of the low resolution data can be obtained.

This is shown in �gure 4.16. The values are listed in table 4.4.
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O1s total results

beamtime J�03 spectra CP e¤ CP e¤(Å) CF
prep. A - low res. 5 0:212� 0:011 2:859� 0:026 0:530� 0:058
prep. A - high res. 3 0:199� 0:015 2:818� 0:036 0:413� 0:027

beamtime N�03 spectra CP e¤ CP e¤(Å) CF
prep. B - low res. 1 0:213� 0:020 2:861� 0:047 0:467� 0:080
prep. F - high res. 1 0:170� 0:020 2:760� 0:047 0:539� 0:080

beamtime N�04 spectra CP e¤ CP e¤(Å) CF
prep. C - low res. 1 (0:170) (2:760) (0:312)
prep. D - low res. 1 (0:167) (2:753) (0:343)
prep. E - low res. 1 (0:182) (2:788) (0:172)

average (freshly prepared �lms)
spectra CP e¤ CP e¤(Å) CF

A+B - low res. 6 0:212� 0:010 2:859� 0:023 0:519� 0:058

average (structurally changed �lms)
spectra CP e¤ CP e¤(Å) CF

A+F - high res. 4 0:182� 0:013 2:799� 0:034 0:461� 0:086
corr. A+F - high res. 0 :212 2 :874 0 :480
with 10% bulk contr.

Table 4.4: Coherent position and coherent fraction for the total oxygen of the
monolayer phase, obtained in di¤erent preparations. The column "spectra" denotes
the number of evaluated spectra. The errors correspond to the standard deviation of
the results from the evaluated pro�les. The errors for the results of beamtime N�03
were estimated, based on a con�dence analysis for the C1s data of the monolayer
PTCDA on silver(111) of Gerlach et al. [Ger 07]. The values obtained in prepar-
ation C, D and E in beamtime N�04 are not very reliable and therefore stand in
parenthesis. The statistic of the O1s-NIXSW pro�le taken on preparation C is very
low. Therefore, it is not appropriate to recalculate the result of preparation D, in
the way it was done for the carbon. From the carbon results it was found that the
surface quality in beamtime N�04 was not optimal, a high amount of molecules on
step edges was assumed. The resulting values do not correspond to the molecules in
the herringbone structure alone. Preparation E, however, corresponds to the defros-
ted precursor. The �lm was highly contaminated with water. Due to the described
points, none of the result obtained in beamtime N�04 will be considered for the �nal
result. The average results obtained on the structurally changed �lms were corrected
with a Ag-bulk like contribution of 10 percent. With this correction the resulting
coherent position is similar to the value of the low resolution data.
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4.5.5 Oxygen separation

The high-resolution O1s PE spectra exhibit a double peak feature. These two

main peaks can be led back to the di¤erent chemical environment of the two

distinct oxygen atoms in the PTCDA molecule, the carboxylic and the anhyd-

ride oxygen, respectively. Additionally to these two (chemical shifted) main

peaks, a number of satellite peaks exist for each oxygen type. These satel-

lites are explained in the so-called sudden approximation of the photoemission

process. When a core hole is created, the �nal state can be one in which an

electron is in an excited bound state. This process leaves less energy for the

emitted photoelectron and gives rise to a satellite at lower kinetic energy (or

higher binding energy) which is called a shake-up satellite. Therefore the peak

features of each oxygen type (in PTCDA) is composed of a main peak and a

number of broader satellites at higher binding energies [WooDel 94].

The PTCDA molecule contains two anhydride- and four carboxylic-oxygen

atoms. Due to this stoichiometry, the peak area ratio should be 1 : 2 for

anhydride and carboxylic oxygen, respectively.

Due to di¤erent structural parameters of the two oxygen types, the pho-

toemission spectra should change in their shape in the range of the standing

wave excitation energies. In Fig. 4.18 several PE spectra are displayed for

which the x-ray excitation energy is near the Bragg condition. One can clearly

observe that the relative intensities of the two peaks change as a function of

x-ray energy. This indicates that the corresponding oxygen species are located

at di¤erent heights above the Ag(111) lattice planes. These contributions can

be separated in the PE spectra by peak �tting. With the appropriate �tting

model, the NIXSW pro�les and therefore, the coherent fraction and coherent

position can be determined for the anhydride and the carboxylic oxygen atoms

separately.

The unit cell of the monolayer structure contains two molecules. The ex-

act lateral position of these two molecules on the Ag(111) surface has been

revealed by Kraft et al. [Kra 06]. They found that the anhydride atoms are

symmetry equivalent for each molecule in the unit cell. This yields for the an-

hydride oxygen 2 distinct positions per unit cell. The carboxylic oxygen atoms

take in 2 symmetry equivalent positions for each molecule. Therefore, the
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Figure 4.18: O1s high resolution PE spectra of the standing wave on the monolayer.
With increasing photon energy, a change in the peak-height ratio clearly can be seen.
First the peak at higher binding energy is larger than the peak at lower binding energy.
This ratio changes across the XSW scan to the opposite. The �tting was performed
with the model described in the text. The Bragg energy was determined by the �t of
the corresponding re�ectivity curve.



82 RT-monolayer phase

carboxylic oxygen atoms occupy 4 di¤erent positions in the unit cell [Kra 06].

The NIXSW results, obtained from the di¤erential �tting, hence include 4 dis-

tinct adsorption sites for the carboxylic oxygen and 2 distinct adsorption sites

for the anhydride oxygen. However, it was found that these are not individually

resolved in the photoemission spectrum.

Fitting model

For individual evaluation of the two oxygen types, the knowledge of the peak

contributions to the total spectrum is essential. One has to �nd a �tting

model for the PE spectra which separates the distinct contributions as exact

as possible.

In the process of photoionization, core level electrons are ejected. De-

pending on their original chemical state and the physical processes involved,

they have di¤erent kinetic energies. Therefore the PE spectra are composed

of various peak contributions with appropriate shapes. Due to instrumental

resolution in a measurement, a broadening of these peaks occurs in the spec-

tra. Typically, such a peak can be described with a convolution of a Gaussian

and Lorentzian function. The Gaussian contribution can be led back to the

instrumental response, the photoelectron-line shape and to broadening due to

Doppler and thermal e¤ects. The Lorentzian contribution is due to lifetime

broadening.

In order to decompose the distinct peak contributions in a PE spectrum,

one has to �nd a suitable �tting model leading to the measured spectral en-

velope. In such a �tting model, the underlying physics has to be taken into

account. The number of chemical states correspond to the minimal number of

peaks. Due to stoichiometric reasons relative intensities have to be constrained,

as well as peak widths of peaks having an identical physical origin.

In literature a �tting model for the O1s transition of the molecule PTCDA

on InSb(111)A is proposed [Unw 03]. The shape of the there given PE spec-

trum looks similar to the shape of the O1s PE spectrum of a monolayer PTCDA

on Ag(111). In the �tting model Unwin et al. presented for the PE spectrum,

each of the two chemically shifted oxygen atoms leads to a peak at a partic-
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Figure 4.19: O¤-Bragg O1s PE spectrum of the monolayer. Peak 1+2 (light grey):
carboxylic O; peak 3+4 (grey): anhydride O. The ratio of carboxylic oxygen to anhyd-
ride oxygen is 2:1. Model 1: �tting model deduced in this work (see text); model 2:
�tting model developed by A. Schöll. The dark grey peak (5) in model 2 is attributed
to the background. In both spectra, a linear background was �tted.
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ular binding energy and also to appropriate shake up features. However, the

substrate, used in their work was di¤erent, therefore their �tting model only

can be used as a guideline. In the present work a �tting model was developed

for the decomposition of the O1s PE spectra on the basis of the NIXSW data.

Five high resolution o¤-Bragg spectra with high statistics were recorded in

beamtime N�03. Among these spectra there is one spectrum which is di¤erent

from the others, so it was dismissed and not used for the peak decomposition.

Using the program CasaXPS, di¤erent peak features and backgrounds were

�tted to the remaining spectra.

In order to minimize the �t residuals for all four o¤-Bragg spectra, various

number of peaks (the number of peaks was tried to keep small), various peak

shapes (Gaussian, Lorentz, Doniach Sunjic, and a number of Voigt peaks), and

a linear background, respectively a Shirley background were tested. The peaks

had to be attributed to the distinct origins, i.e. carboxylic oxygen, anhydride

oxygen, or background, respectively. For the development of the �tting model

several constraints on the peaks had to be ful�lled. Due to stoichiometric reas-

ons, the peak area ratio between carboxylic and anhydride oxygen (including

the shake up�s) had to be constrained to 2 : 1. Also the full width of half

maximum (FWHM) of the two main peaks were constrained to be equal in

value, because they have the same physical origin, namely the O1s transition.

After testing the di¤erent models with the corresponding constraints, a

selection of the best �tting models for the o¤-Bragg spectra was chosen. This

selection included models with 3, 4, and 5 peaks. The residuals from the �t of

the photoemission spectra gave the �rst estimation of the quality of the model.

By applying the di¤erent models to all PE spectra of the excitation energies

in a standing wave3, the coherent positions and fractions for the two oxygen

types were evaluated. Two parameters determined the "best �tting" model.

The residuals of all NIXSW-PE spectra had to be minimal, and the coherent

3The �tting procedure of the PE spectra of the standing wave experiment was as follows:
The peak positions, the FWHM, the peak ratios of the main peak and the shake-up peaks
were constrained in the �t of the standing wave PE spectra. Only the total yields for the
anhydride and carboxylic oxygen were left as free parameters. The �tting parameters are
given in table 4.5a.
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fraction of the resulting �t on the NIXSW pro�les had to be maximized for

both oxygen types. A high value for the coherent fraction indicates a good

separation of the di¤erent peak contributions in a PE spectrum. An incorrect

�tting model leads to a mixing of the distinct peak contributions which yields

lower values for the coherent fractions.

The best �tting result was obtained with four pure Gaussians peaks. It is

shown in the upper spectrum of �gure 4.19. In the following this model will

be named model 1. The presented spectrum is an O1s spectrum, taken at an

o¤-Bragg photon energy of 2:618 keV. The major peak at a binding energy of

530:7 eV is mainly due to the carboxylic oxygen. The minor peak at a binding

energy of 533 eV originates from a combination of the anhydride oxygen peak

and a shake-up feature from the carboxylic oxygen. The broad peak around

535:7 eV is a shake-up feature of the anhydride oxygen (see appendix F). The

�tting parameters are shown in table 4.5 a.

An alternative model for �tting the PE spectra was proposed from Schöll

[Sch 05a]. This model will be named model 2, it is shown in �gure 4.19. Schöll

investigated the monolayer phase of PTCDA on Ag (111) at room temperature

with high resolution PE experiments. He deduced the �tting model from

the comparison of PE spectra of several organic species adsorbed on di¤erent

surfaces (e.g.,NTCDA, NDCA, ANQ, BPDCA on Ag(111) and Au(111)). The

�tting parameters are shown in table 4.5b for this model. The model 2 was

tested on the NIXSW data, too. Contrary to model 1, the shake-up peak of the

carboxylic oxygen has less intensity (only 67% of the carboxylic shake up in

model 1). The anhydride shake-up feature proposed in model 1 is attributed to

the background in model 2. However, the NIXSW results (shown in table 4.6)

do not change signi�cantly if this peak is attributed to the anhydride oxygen

in model 2.
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a.) model 1 (this work)

Position ( eV) FWHM area(%)
(relative to the carbox. O) ( eV) (o¤ Bragg)

carboxylic (1) 0 ( BE 530:67 eV) 1:30 32:3
carboxylic satellite (2) +1:95 3:53 34:2
anhydride (3) +2:45 1:30 21:3
anhydride satellite (4) +5:09 5:42 12:2

b.) model 2 (Schöll)

Position ( eV) FWHM area(%)
(relative to the carbox. O) ( eV) (o¤ Bragg)

carboxylic (1) 0 ( BE 530:70 eV) 1:27 43:2
carboxylic satellite (2) +1:79 1:79 22:9
anhydride (3) +2:53 1:27 17:1
anhydride satellite (4) +3:26 1:90 16:7
background (5) +5:84 3:00 �

Table 4.5: Fit results for the energy positions, line widths and relative peak areas
of the PE and satellite peaks in the O1s spectrum for model 1 and the model 2.
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The NIXSW results, deduced by the two models, are shown in the Argand

diagram of �gure 4.20. In both models, the result for the vertical distance is

the same for the carboxylic oxygen. For the anhydride, the resulting vertical

distance is di¤erent. In model 2 it comes out to be closer to the carboxylic

oxygen (by 0:1�A, this corresponds to 34% of the di¤erence in the di¤erential

distance!) compared to the result of model 1.

However, the length of the vectors, derived from model 2 are shorter for

both oxygen positions (�CF = 0:07, and 0:12 for the carboxylic and anhydride

oxygen, respectively). The vector length represents the coherent fraction which

corresponds to the distribution of the oxygen species. These results reveal that

the model 1 of this work is the more appropriate one for di¤erential �t of the

O1s-PE spectra, because the higher the coherent fraction is, the better is the

separation of the two peak contributions. That means that in the result of the

�t with the model 2 by Schöll, the peak contributions of the two oxygen species

are mixed up, which yields a lower coherent fraction and coherent positions,

which are closer to each other. Therefore, the model of this work seems to be

the more reliable one.

For chemical shifted atoms, located on di¤erent vertical positions the NIXSW

method, hence, is a nice tool for the determination of the number, the shape

and the position of distinct peaks in the corresponding PE spectrum.

PCA

The Principal component analysis (see appendix G) for the oxygen spectra

proposes two components. Applying these two components to the spectra

with the target factor analysis, the change of the spectra in the standing wave

becomes nicely visible. This is especially the case for the high resolution data

from beamtime J�03, which have not such a good statistic. The �t of this

smoothed spectra gives also smoother NIXSW pro�les compared to those that

are obtained from the �t of the raw data. Anyway, the resulting values for

the coherent position and fraction remain the same for the processed and

unprocessed data. Therefore, the results presented here were obtained from

the measured spectra without any further processing.

The low resolution data (obtained on the freshly prepared �lms) gives two
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Figure 4.20: Argand diagram for the NIXSW result of the monolayer. The resulting
vectors deduced from the two di¤erent �tting models are given. It can be seen that
the vectors obtained from model 1 are longer.

components for the oxygen, as the high resolution (obtained on the structurally

changed �lms) data do. However, it was not possible to do a proper �t to this

data, in order to divide the di¤erent components from each other. Only the

high resolution data was useful for this.

Merged spectra

In order to get a su¢ cient counting statistics, the acquisition time for a high

resolution NIXSW scan can take six hours and more. If during that time

instabilities in the photon current or of the monochromator occur, the whole

dataset can become useless. To avoid the loss of spectra, the high resolution

data of the second period in N�03 were taken into two steps with shorter

acquisition times. Two NIXSW scans, with 16 energy steps each, were taken

very close to the Bragg energy. Two more scans were taken afterwards with

only 4 energy steps, consisting of 2 points close to Bragg energy and 2 points
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Figure 4.21: This �gure shows the measured NIXSW pro�les (dots) and the appro-
priate �ts (continuous line) of the beamtimes N�03 (left) and J�03 (right), obtained
from the high resolution PE spectra. The corresponding values for the coherent pos-
ition and coherent fraction are given. The pro�les for the carboxylic and anhydride
oxygen stem from the di¤erential �ts of the PE spectra. The pro�les for the N�03
data were measured in 2 steps and subsequently merged (see text). The pro�les for
the J�03 data originate from the addition of three high-resolution O1s spectra.
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at o¤-Bragg energy. In each case, only one scan could be analyzed due to

problems with the photon current.

The four point re�ectivity curve was normalized to the 16 point re�ectivity

curve. The normalization was performed in the following way. The intensity of

the four point spectrum was normalized to the 16 point spectrum by dividing

the re�ectivity curves by the photon current (meshI0). Then the two central

points (of the four point scan) were �tted to the 16 point curve by linear vari-

ation of the energy axis and the intensity axis. The change in the energy axis

became necessary due to small shifts (ca. 0:1 eV) of the monochromator which

can arise e.g. from small di¤erences in the temperature of the monochromator.

The gained energy shift was applied to the NIXSW spectra as well. The in-

tensity normalization was applied to the NIXSW pro�les in the same way as

for the re�ectivity curves. The resulting �ts are shown in Figure 4.21 on the

left.

Results

The statistics for the high resolution data sets from J�03 are not as good as the

statistics for the high resolution data sets from N�03. In order to have com-

parable statistics, the three high resolution O1s-photoemission spectra from

J�03 were added up and evaluated afterwards. The results are consistent with

those obtained from the averaged results of the single scans from J�03. The

�t of the NIXSW pro�le is shown in �gure 4.21 on the right hand side. For

the two oxygen species, the results for the high resolution spectra are shown

in table 4.6. The more reliable results are those obtained from model 1. The

coherent positions for the total and for the carboxylic oxygen di¤er only by

0:06�A and by 0:04�A for each beamtime (see table 4.6). However, the coherent

positions for the anhydride oxygen di¤er much more strongly by 0:11�A. This

striking di¤erence can be seen in the Argand diagram shown in �gure 4.22.

This di¤erence has several reasons. The monochromator did not run very

stable in beamtime J�03. Especially the data acquisition for the high resolu-

tion scans took a long time. A small drift in the photon energy could have

changed the results signi�cantly. Another reason is that the �tting results for

an NIXSW pro�le, yielding a coherent position in the region of CP = 0:25 de-
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Figure 4.22: Top: Argand diagram showing the vectors for the chemically di¤erent
oxygen atoms. The coherent positions for the caboxylic oxygen atoms are identical
in both beamtimes. This is not the case for the anhydride oxygen atoms. Bottom:
Argand diagram showing the averaged vectors of the diagram above. Additionally, a
correction with a bulk-like contribution of 10% is presented.
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pends very sensitive on small changes in the data. Regarding the data and the

�t for the NIXSW pro�le of the anhydride in �gure 4.21, no actual di¤erence

can be seen by eye. By comparing the data and �ts in one graph (�gure 4.23),

it can be seen, that the di¤erences in the data are only small.

As the most important reason for the di¤erence can be assumed the di¤er-

ent preparation conditions for the two �lms, as described in section 4.5.2. The

�lm of preparation A obtained in beamtime J�03 exhibits structural changes

with time (or with beam irradiation). The �lm of preparation F (beamtime

N�03) was freshly prepared, however, due to its particular preparation, it ob-

viously exhibits structural changes, too. As can bee seen from the results (co-

herent position and coherent fraction) of the total oxygen in table 4.6, these

observed structural changes are not exactly the same for preparation A and

preparation F. It is possible that in fact, the vertical position of the anhydride

oxygen exhibits such a di¤erence (0:11�A) in the two �lms.

Because the values for the coherent position of the carboxylic oxygen are

similar within the errors, and because the data of the NIXSW pro�les for the

anhydride look very similar, it seems to be reasonable to choose the average

value of both results with an adequate high error as the �nal result for the

high resolution NIXSW scans.

Regarding the results for the coherent position and fraction of the total

oxygen, identical result should principally be obtained by adding the vectors

of the anhydride and carboxylic oxygen in the Argand diagram with respective

weights. This is shown in �gure 4.24. The vectors of the total oxygen for

beamtime J�03 di¤er only slightly from the added vectors of the carboxylic

and the anhydride oxygen. The vectors for the beamtime N�03 vary in length.

Both di¤erences likely have statistical reasons. As noted before, the coherent

position and fraction of the anhydride oxygen is very sensitive on the �t of the

NIXSW pro�le. Therefore, in this case, it can be assumed that the statistical

data spread of the NIXSW pro�les is the reason for the di¤erence in the values

of the coherent fractions.

Concerning the bulk position correction for the high resolution O1s total
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Monolayer results (structurally changed �lms)

Total oxygen

spectra CP e¤ CP e¤(Å) CF
prep. A 3 0:199� 0:015 2:818� 0:036 0:413� 0:027
prep. F 1 0:170� 0:020 2:760� 0:047 0:539� 0:080
prep. A+F (av.) 4 0:182� 0:013 2:799� 0:034 0:461� 0:086

O1s carboxylic

spectra CP e¤ CP e¤(Å) CF
model 1- prep. A 3 0:120� 0:018 2:636� 0:043 0:317� 0:025
model 1- prep. F 1 0:137 2:676 0:623
model 1 (av.) 4 0:128� 0:012 2:656� 0:028 0:470� 0:216
model 2 (av.) 4 0 :139 � 0 :003 2 :682 � 0 :006 0 :403 � 0 :115

O1s anhydride

spectra CP e¤ CP e¤(Å) CF
model 1- prep. A 3 0:284� 0:010 3:024� 0:023 0:729� 0:011
model 1- prep. F 1 0:239 2:916 0:845
model 1 (av.) 4 0:261� 0:032 2:970� 0:076 0:787� 0:082
model 2 (av.) 4 0 :217 � 0 :020 2 :864 � 0 :047 0 :670 � 0 :089

Table 4.6: Results of the di¤erential �tting for the monolayer with model 1 of this
work and with model 2 proposed from Schöll. The results obtained from the �t of
model 1 are more reliable, as discussed in the text. The column "spectra" denotes
the number of evaluated NIXSW pro�les. For comparison, the results for the total
oxygen are given. The errors for the results of the data from preparation A (beamtime
J�03) correspond to the standard deviation of the results from the three evaluated
pro�les. For the error of the averaged results, the standard deviation resulting from
two datasets was taken: 1) the results of the merged pro�les obtained in preparation
F (beamtime N�03) and 2) the results from the �t of the sum of the three datasets
from preparation A (beamtime J�03).
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Figure 4.23: NIXSW pro�les (data points and corresponding �ts) for the anhyd-
ride oxygen of the monolayer for the two beamtimes in J�03 and N�03 are shown.
The di¤erence is only small, however, the resulting values for the coherent positions
exhibit signi�cantly di¤erences (see text).

result (see section 4.5.4), the corrected vectors of the two types of oxygen

change slightly in their vertical position when the correction with a 10% bulk-

like contribution to the di¤erential electron yield was applied. The resulting

vectors are shown in the Argand diagram in �gure 4.22, the resulting values

are listed in table 4.7. It has to be pointed out that this correction model

only is based on assumptions, nonetheless the correction of the high resolution

results nicely reproduce the low resolution results.

It can be concluded that the main result of this investigation of the mono-

layer is, that the molecules in the monolayer at room temperature are distor-

ted. The carboxylic oxygen atoms lie below and the anhydride oxygen atoms

lie above the perylene core of the molecule. The low resolution results of the

e¤ective coherent position and the coherent fraction for the carbon and for the
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Figure 4.24: Argand diagram for the high resolution oxygen results. The vec-
tors for the anhydride and carboxylic oxygen, obtained from the di¤erential �ts are
shown. In addition, the vector for the total oxygen, obtained from the addition of
the anhydride and carboxylic oxygen vectors and, on the other hand, obtained from
the direct evaluation of the data are displayed. However, the vectors for the total
oxygen, received on the two ways di¤er slightly for beamtime J�03 and vary in the
length for beamtime N�03 (see text).
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di¤erential results with a10% bulk like correction

spectra CP CP [Å] CF
O1s carboxylic 4 0:153 2:714 0:459
O1s anhydride 4 0:279 3:012 0:887

Table 4.7: Di¤erential results for the monolayer averaged over two preparations
(J�03- preparation A and N�03- preparation F), corrected by a bulk-like contribution
of 10%. The column "spectra" denotes the number of evaluated spectra.

total oxygen are reliable for the chosen multipole parameters. In chapter 6,

the discussion of these results is presented in comparison to the results of the

precursor.

Multipole parameter Q - Error estimation

For the evaluation in the present work, Q was �xed to Q = 0:31 (
 = 1:32)

for both elements, oxygen and carbon (see [Sch 01]). This value was measured

on the same system PTCDA on Ag(111) before. Theoretically obtained values

for Q are much lower. However, the above value seemed to be a better choice

for the system investigated in the present work, because a lower value of Q

(e.g. Q � 0:26) leads to an unphysical results in the coherent fraction for the
anhydride oxygen. The value of the coherent fraction should not exceed unity

CF � 1, however, with a value of Q � 0:26 this is the case for the anhydride
oxygen. The in�uence of the parameter Q on the e¤ective coherent positions

is shown in �gure 4.25 for the room temperature phase. It can be seen that no

strong in�uence on the e¤ective coherent positions is found for the anhydride

oxygen (� 1%) and for the carbon (� 5:5%). For the carboxylic oxygen,

however, the chosen value of Q can change the result quite drastically. For

Q = 0:26 the value of the coherent position is 14% larger and for Q = 0:36

the value of the coherent position is 17% smaller than the value obtained with

Q = 0:31.
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Figure 4.25: Results for the e¤ective coherent position obtained from �ts on the
PTCDA/Ag(111) data at room temperature. The �ts were done with various values
of the asymmetry parameter Q (from Q = 0:26 to Q = 0:36) on all data sets. The
given error is the statistical error. The solid lines correspond to the statistical error
of the data evaluated with Q = 0:31.
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Chapter 5

NIXSW �the precursor phase

PTCDA deposited on Ag(111) below 160K yields a metastable phase, which

is chemisorbed, but no long-range order exists. In the following this phase

will be named precursor, since it was believed that this phase due to its meta-

stability corresponds to a precursor of the stable phase at room temperature.

More information about the properties of the precursor phase, especially in

comparison to the room temperature phase, can be found in chapters 2 and 6,

respectively.

5.1 Experimental

The precursor NIXSW data were taken in two beamtimes, November 2003 and

November 2004. Only one precursor �lm was prepared in the �rst beamtime,

and two di¤erent �lms were prepared in the second beamtime. For the prepara-

tion of the precursor phase, the Ag(111) single crystal was cleaned as described

in chapter 4.1. Subsequently the sample was cooled down to low temperatures

(see table 5.1), this temperature was kept during the whole experiment. The

organic �lms were prepared by evaporating the organic material from a Knud-

sen cell. The PTCDA coverage of the precursor state amounts to less than

one monolayer (of the room temperature phase) on the Ag(111) sample. In

order to prepare a �lm below this coverage, the Knudsen cell was calibrated.

For the di¤erent preparations, the coverages and sample temperatures during

preparation and experiment are listed in table 5.1.
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The nominal Bragg energy at 100K for normal incidence has a value of

EBragg = 2637:6 eV, which is ca. 10 eV higher than the value at room temper-

ature. This is due to the thermal contraction of the crystal lattice (see chapter

4.1). The (111) lattice constant at 100K has a value of 2:3503Å as calculated

in chapter 4.1.

precursor preparations

abbr. preparation coverage Tsample
(1�monolayer of the RT phase)

N�03 Nov. 2003 0:30� 0:10 ca. 100K
N�04a Nov. 2004 1st prep. 0:56� 0:10 ca. 80K
N�04b Nov. 2004 2nd prep. 0:66� 0:10 ca. 80K

Table 5.1: PTCDA coverages for the precursor and sample temperatures during the
di¤erent beamtimes. The coverages were estimated by comparing the C1s XPS-signal
of a complete monolayer (of the room temperature phase (RT)) with the C1s signal
of the precursor. The error was estimated. The �rst column gives the abbreviations
for the di¤erent preparations used in the text.

Changes in the shape of the O1s photoemission spectra were found during

the measurements (e.g., see �gure 5.4 on page 111). This phenomenon occurred

by varying the beam position on the sample. However, in some cases it occurred

also during measurements on the same sample spot. This phenomenon, due

to the co-adsorption and desorption of water, will be described in detail in

section 5.3.2.

When the standing wave experiment was done on the precursor in N�03 for

the �rst time, only one spot on the sample was used for the measurements.

During data acquisition using the Ag(111)-Bragg re�ection, the sample was not

moved relative to the beam and the photoemission spectra for the same excit-

ation energies did not change during the experiment. Then, the experiment

was performed in the (�111)-Bragg condition and afterwards, for comparison,

in the (111)-Bragg condition again. For the data acquisition of the di¤erent

re�ection conditions, the sample was moved relative to the beam. Surprisingly,

the latter O1s spectra of the (111) plane were completely di¤erent to the data
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measured before on this plane. Since no beamtime was left, the investigation

of these changes in the spectra was done in the following beamtime N�04. This

time, the sample was moved several times relative to the beam and the oxygen-

spectra exhibited striking di¤erences in their shapes. It was found that the

observed changes in the data were due to the contamination of water of the

sample, as it is described in detail in section 5.3.2. Therefore, the results of

beamtime N�04 were not reliable for the precursor.

The data taken in N�03 are much more trustworthy, because in those ex-

periments only one spot on the sample was irradiated with the beam and

photon-stimulated desorption could take place (see section 5.3.2). Besides, in

N�03, the condensation of water on the sample was presumably smaller com-

pared to the beamtime N�04, because the sample temperature was slightly

higher (see table 5.1). The base pressure of the chamber was identical for both

beamtimes (p = 2� 5� 10�10mbar), but in N�03 the chamber was baked out
already six days earlier with respect to the experiment, which could also be a

reason for a lower amount of water in the chamber.

The same multipole parameters were used for the evaluation of the pre-

cursor as for the monolayer (see chapter 3.3.4).

5.2 Carbon results

In the precursor phase, the PTCDA molecules on silver (111) exhibit no

molecular ordering [Ere 03] [Kil 02a], however if is known from NEXAFS

[Sch 05a], and STM [Tem 06a] experiments that the molecules lie �at on the

silver (111) substrate. Therefore, a non-neglible coherent fraction is expected

from the NIXSW results for the carbon.

A typical o¤-Bragg photoemission spectrum for C1s transition is shown in

�gure 5.1. For the C1s spectra, it was only practicable to subtract a Shirley

background (for the Shirley function see appendix E.1). Due to the low statistic

in the PE spectra and the limited width of the spectra, no region could be

de�ned for adapting a linear background. Therefore, in all C1s PE spectra of

the standing wave experiment, a Shirley background was subtracted. Figure

5.1 also shows an exemplary NIXSW pro�le and the corresponding re�ectivity
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curve for the C1s transition.

In the gas phase, the PTCDA molecule has seven chemically di¤erent car-

bon positions (see �gure 4.4). Because of the relative high pass energy of the

electron analyzer (47 eV), the distinct contributions, due to chemical shift and

due to satellites, are not dissolved in the survey spectrum of �gure 5.1. The

binding energy, shown in �gure 5.1, is calibrated with spectra from Schöll for

the precursor [Sch 05a].

precursor C1s results

cov. PE
(monol.) spectra ( eV) CF CP e¤ CP e¤(Å)

N�03 0:30 3 46 0:621� 0:063 0:193� 0:010 2:805� 0:024
N�04a 0:56 5 59 0:344� 0:021 0:189� 0:012 2:795� 0:029
N�04b 0:66 8 96 0:321� 0:012 0:236� 0:009 2:904� 0:021

Table 5.2: Fitting results for the C1s NIXSW data. PE is the corresponding pass
energy of the electron analyzer. The errors correspond to the standard deviation
of the results for the di¤erent NIXSW scans. In the column spectra the number of
evaluated spectra is given.

Depending on the preparation of the �lm, di¤erent results for the vertical

carbon distance were obtained. These values are listed in table 5.2. The coher-

ent fraction for the carbon is signi�cantly higher in the N�03 data compared to

the N�04a and N�04b data. One reason for this is presumably the lower cover-

age of PTCDA in the earlier beamtime. The probability for the molecules on

the surface to be in�uenced by other PTCDA molecules is much lower. An-

other reason could be the co-adsorption of water, in N�04, which was clearly

found in the oxygen data, even though the C1s spectra of the precursor show

no evidence for this. Whereas the O1s pro�les exhibit signi�cant changes due

to photon-induced desorption of water, the C1s pro�les did not change during

x-ray irradiation of the sample. Therefore, it is not clear, if the co-adsorption

of water in�uences the position of the PTCDA molecules on the surface.

For preparations of N�03 and N�04a (with the pass energies of 46 and 59 eV,

respectively), the value for the coherent position for carbon comes out to be
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Figure 5.1: Top: survey spectrum of the C1s-transition for the monolayer. The
pass energy of the electron analyzer was 47 eV. For analyzing the peak area, a
Shirley background was adapted to the spectrum. Center: C1s NIXSW pro�le and
re�ectivity curve (bottom) for the monolayer phase. The data were taken in beamtime
N�03 with a pass energy of 47 eV (Pt1_139). The points represent the data and the
solid lines the corresponding �t. The corresponding results for the coherent position
and fraction are given in the �gure.



104 LT-precursor phase

approximately 2:8Å. This value shows no change for the di¤erent coverages of

N�03 and N�04a. In the case of preparation N�04b (with a low resolution pass

energy of 96 eV), the value is 0:1�A higher. However, due to the problem of

water adsorption in beamtime N�04, the results obtained from beamtime N�03

are the most reliable results. For the discussion in chapter 6, only this values

will be taken into account.
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5.3 Oxygen results

In the following section the evaluation of the oxygen data for the precursor

phase will be presented. Due to the co-adsorption of water, many di¤erent

peak shapes in the PE spectra were observed. It had to be found out, whether

among those there were spectra which represent the intrinsic O1s spectra of

the precursor, i.e. spectra of an uncontaminated sample. With the �intrinsic

precursor�spectrum, we refer to the O1s spectrum obtained from a �lm with

a coverage less than one monolayer, deposited at low temperatures with no

co-adsorbate contributing to the photoemission spectrum.
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Figure 5.2: Comparison of the photoemission spectra of the PTCDA precursor state
taken in this work during beamtime N�03 (grey) and by Schöll (black) [Sch 05a]. In
the black curve, the unresolved peak at 533 eV is more intense than in the grey curve.
This peak partially originates from water, condensed on the sample. The background
was subtracted from both spectra in the way as described in chapter 5.3.1.
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As for the monolayer, the O1s-PE survey spectra measured on the pre-

cursor within this work are compared to spectra from other measurements on

the same system. Other high resolution O1s-survey spectra on the precursor

were measured by Schöll. He took the data approximately 20 minutes after

preparation. It can be assumed that those spectra correspond to the intrinsic

precursor. In comparison with the high resolution O1s-photoemission spec-

tra taken by Achim Schöll, the high resolution O1s spectra of the beamtime

N�03 exhibit a similar shape [Sch 03]. In spectra which he took later, he �nds

an increasing peak with time due to water adsorption. In the spectra from

beamtime N�03 of the present work, this feature (at approximately 533 eV

binding energy) has even a smaller contribution to the spectrum. Therefore,

not much water could have been adsorbed on the PTCDA �lm investigated

during beamtime N�03 (�gure 5.2). No modi�cation with time was observed

for the subsequent O1s survey spectra of this preparation. Therefore these

spectra can be assumed to correspond to the intrinsic precursor spectra.

Schöll took his data with a photon energy of 700 eV, in our data we used

2:6 keV, so the cross section of x-ray absorption in our data is much smaller,

nevertheless the statistic in our data is good due to the long counting times.

5.3.1 Background

In all O1s PE-spectra of the standing wave experiment, a background had to

be subtracted in order to obtain the NIXSW pro�les. This had to be done very

carefully, because an incorrect subtracted background can in�uence the result.

Therefore, a model has to be developed in order to subtract the unwanted

background contributions. The background subtraction is discussed in more

detail in appendix E.

For comparison of the O1s photoemission spectra taken by Schöll with

our spectra, the background was subtracted here in the way Schöll used (see

�gure 5.2, and 5.3 ). For the evaluation of the PE spectra across the standing

wave, the best "model" for the background, however, appeared to be a slightly

modi�ed model. Each model will be described in the following.
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� background subtraction proposed by Schöll

The O1s precursor spectra exhibit a slanting background which was �tted

with a straight line. The slope was adapted to the background on the low bind-

ing energy side. After subtracting this line, a clear Shirley-type background

was left, which was subtracted, too. Applying this background subtraction

to the spectra taken by Schöll and to our survey data (o¤-Bragg-energy), the

peak pro�les became well comparable, as demonstrated in �gure 5.2.

� modi�ed background model

The statistics of the photoemission spectra taken in a standing wave ex-

periment is not as good as in most of the survey spectra. To approximate the

above described background subtraction of Schöll, the �t was done in one step

with a linear �t and an additional broad Gaussian peak, which approximates

the Shirley background, at a �xed position and a �xed FWHM. This model ap-

peared to be the best approach for the background, because the stoichiometry

for the two distinct oxygen types was reproduced very well in a subsequent �t

of the survey spectrum (2:1 - carboxylic O : anhydride O - with no constraints).

Also the di¤erence of these two models (see �gure 5.3 ) is small compared to

the remaining O1s spectrum.
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Figure 5.3: a) - c) Background subtraction of the O1s photoemission spectra the
way Schöll proposed. d) - e) For the background subtraction of the PE spectra applied
in the present work the model from Schöll was modi�ed. This was done, because the
counting statistics in the PE spectra taken at excitation energies close to the Bragg
condition was not as good as in the here presented survey spectrum. f) Di¤erence
obtained from the two ways of background subtraction. The y-scale is identical to
the scales of c) and e), respectively. The di¤erence amounts to ca. 4% of the total
O1s spectrum.
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5.3.2 Photon-stimulated desorption

At the end of beamtime N�03 the O1s photoemission spectra of the precursor

exhibited a signi�cant change in their shape. The �rst guess for this change

was a beam damage. This was investigated in beamtime N�04. However,

it appeared not to be a beam damage, but the so-called photon-stimulated

desorption (PSD) of water.

The sample was cooled down to less than 100K, and water adsorption oc-

curred. The oxygen atoms of the water occupied di¤erent adsorption sites than

the atoms of the investigated PTCDA molecule. Also their chemical bonding

is di¤erent. Therefore, depending on the amount of adsorbed water (i.e. how

long the sample was cooled), the photoemission spectra looked di¤erent and

the results from the evaluation of the NIXSW scans were di¤erent, too.

The questions were, why did the photoemission spectra of N�03 not show

any di¤erence with time during the �rst 24 hours measuring, and why did no

spectrum of beamtime N�04 looked like the other? The reason for this can

be found in the PSD of water. In N�03 the �lm was investigated with the

x-rays shortly after its preparation. Therefore, not much water adsorption

could have been occurred by that time. Due to the high energy of the x-

rays (2:6 keV), used in this experiment, photon-stimulated desorption of the

water was induced by the beam. The water adsorbed on this �lm was directly

desorbed by the beam. In beamtime N�03 the sample was not moved relatively

to the beam and in the corresponding spectra no contribution of water was

observed. However in beamtime N�04 the sample was moved relative to the

beam a couple of times, and strong changes within these spectra were observed

due to water adsorption and desorption.

Molecules, adsorbed on surfaces, can be desorbed by irradiating the sur-

face with electromagnetic radiation. The PSD mechanism can have di¤erent

origins. It can originate from light induced chemical reactions of the adsorbed

molecule, from surmounting the adsorption energy as a result of excitation

of molecular vibrations (physisorbed molecules), or from light induced elec-

tron transfer processes of the adsorbate and the surface [Gre 98]. It is not

clear which of the three processes is the dominant one for the system un-

der investigation, namely water on Ag(111) at 100K. Several models for the
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photon-stimulated desorption (PSD) process of water on metal surfaces are

discussed in literature [Mar 94] [Hsi 01] [Grö 94].

In �gure 5.4 (top), the photodesorption can clearly be seen. First, the

spectrum drawn in grey was measured. Nine hours later the spectrum shown

with the black curve was measured. The spot of the beam on the sample was

not changed between this two measurements. The spectra are normalized to

the beam intensity (meshI0). In the fresh spectrum (grey), the main peak is at

lower kinetic energy with a shoulder at higher kinetic energies. After six hours

of photon-stimulated desorption, this shoulder turned out to be the main peak,

with its position moved to slightly higher kinetic energy. The water was de-

sorbed under the in�uence of the beam, and with time, the O1s spectrum loses

in intensity. Also the shape changes. Presumably, multilayers of water covered

the thin �lm of PTCDA on the sample. By desorbing the water with the beam,

the spectrum of the PTCDA precursor is obtained with time. Unfortunately,

in the O1s data from beamtime N�04, no intrinsic PTCDA precursor spectrum

was taken. All spectra exhibit a composition of the contributions from the

PTCDA and from the water.

The contamination by water can also nicely be seen in �gure 5.4. During

defrosting the sample, the spectra change continuously with increasing tem-

perature. At low temperatures, the spectra show the contamination by water.

By warming up the sample to room temperature, the shape of the spectra

changes to that of the intrinsic monolayer spectrum at room temperature.

Only in N�03, the intrinsic precursor spectrum was obtained directly after

preparation. It exhibits no changes with the x-ray beam which continuously

illuminated the same spot on the sample. Besides, comparing it with the

spectra taken by Schöll very shortly after preparation, it shows no signi�cant

di¤erence in shape.

Therefore, the results presented for the precursor phase correspond to the

data obtained in beamtime N�03.
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Figure 5.4: Top: Photon stimulated desorption: O1s photoemission spectra taken
at di¤erent times (P_151, P_154). Eleven hours after preparation, the spectrum,
presented in grey, was taken. This was the �rst time this spot on the sample was irra-
diated by x-rays. On the same spot, nine hours later (with six hours x-ray exposure),
another spectrum, represented with the black curve, was taken. Below: Photoemis-
sion spectra during the defrosting of the sample, contaminated with water. At room
temperature, the typical PTCDA monolayer O1s spectrum is obtained. The water
was desorbed. The spectra are normalized by the beam intensity (meshI0).
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5.3.3 Total oxygen

As discussed above, only the data taken in beamtime N�03 could be used for

the evaluation of the vertical bonding distance of the oxygen atoms. Only

those spectra correspond to the intrinsic precursor, all other low temperature

spectra exhibit contamination with water. In �gure 5.10 (in section 5.4 on

page 124) on the left, the total oxygen NIXSW pro�les are presented for the

high resolution data. In table 5.3, the values for the coherent position and

coherent fraction are listed for the low and high resolution data.

precursor O1s total results
preparation N�03, 0:3 monolayer coverage

�rst period (beam exposure 5� 8 h)
(low resolution)

spectra CF CP e¤ CP e¤(Å)
4 0:466� 0:046 0:135� 0:009 2:667� 0:021

second period (beam exposure 18� 24:5 h)
(high resolution)

spectra CF CP e¤ CP e¤(Å)
2 (+2 merged) 0:230� 0:079 0:086� 0:014 2:553� 0:032

2 (+2 merged) 0 :390 � 0 :061 0 :109 � 0 :006 2 :606 � 0 :014
(Ocarbox.+Oanhyd.)

Table 5.3: Fitting results for the O1s NIXSW data. The results were averaged
from the results taken on the precursor �lm with a beam exposure of 5 to 8 hours
(�rst period) and on a precursor �lm with a beam exposure of 18 to 24.5 hours
(second period). The column "spectra" denotes the number of evaluated spectra. The
errors correspond to the standard deviation of the results for the di¤erent NIXSW
scans. The results obtained in the second period are given for the evaluation of the
NIXSW pro�les for the total oxygen and additionally for the evaluation of the sum
of the NIXSW pro�les obtained from the �tted electron yields for the carboxylic and
anhydride oxygen. In the latter result the additionally observed oxygen contribution
is subtracted from the total oxygen signal (see text).
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In the PE spectra of the XSW scan measured in the second period of

beamtime N�03, a new feature occurred in the spectra. It was possible to

deduce an Argand vector for this feature (see the section 5.4). This additional

oxygen vector occupies an opposite position to the total oxygen vector in the

Argand diagram. For the total oxygen result, the coherent fraction is lowered

due to this "opposite" contribution with the high coherent fraction of one.

The evaluation of the sum of the NIXSW pro�les for the carboxylic and

the anhydride oxygen yields a higher coherent fraction and a di¤erent value

for the coherent position, which also is given in table 5.3 for the second period

results. The observed additional vector did not occur in the PE spectra of the

�rst period. It was detected as a third component with PCA in the XSW PE

spectra of the second period, however, it was not found in the data of the �rst

period. Only two components were found with PCA there.

Two di¤erent vectors for the oxygen are shown in the Argand diagram of

�gure 5.5. One vector represents the result obtained with a pass energy of

47:0 eV (low resolution) which was measured in the �rst period. The other

vector shows the result where the additional oxygen vector was subtracted, it

was obtained with the pass energy of 23:5 eV (high resolution) in the second

period. In order to obtain the latter results, the 16 point spectra were merged

in the four point spectra for the evaluation, as it was done for the monolayer.

Correcting the vector of the second period, as it was done for the mono-

layer spectra (see chapter 4.5.4) with a contribution of a bulk like vector of

10%, the value of the coherent position rises to the value obtained in the �rst

period. This correction was introduced here, because the observed changes in

the results were assumed to be due to PTCDA molecules which were migrated

to step edges. On these steps the molecules are assumed to stand upright, as

it is observed for the monolayer with STM [Glö 98]. The value of 10% seems

to be a good approximation for the fraction of molecules decorating step edges

on bulk position, because with this correction the same values as obtained for

the �rst period were obtained.
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Figure 5.5: Argand diagram for the precursor results. Top: Resulting vectors of the
distinct NIXSW experiments with di¤erent pass energy of the electron analyzer. The
low resolution data were measured in the �rst period and the high resolution data
in the second period. The presented high resolution vector corresponds the oxygen
result without the observed additional oxygen contribution. Below: The correction of
the high resolution vector with a bulk like contribution of 10 % gives the same vector
position as for the low resolution data.
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5.4 Fitting model for the carboxylic and an-

hydride oxygen

In the following section the �tting model for the di¤erential �t of the O1s-PE

spectra will be presented.

Schöll determined for the precursor O1s spectra �ve peak contributions

by comparing the high resolution x-ray photoelectron spectra of NTCDA (1,8-

naphtalene-dicarboxylic acid anhydride) and PTCDA at di¤erent temperatures

on silver(111) [Sch 03]. This and many other models were tested on the PE

spectra of the standing wave scan, as it was done for the monolayer data. It

appeared that the model, proposed by Schöll, gave the best accordance to the

data and was used in this evaluation, too.

Two peaks were found to be due to the carboxylic oxygen, one main peak

and a shake up satellite. For the anhydride oxygen, also one main peak and

one shake up satellite could be identi�ed in the spectrum. At slightly higher

binding energy (at 537 eV binding energy, 6:3 eV higher compared to the main

carboxylic oxygen peak in binding energy), another shake up satellite was

found by Schöll. He leads it back to satellite contributions from both oxygen

types. This contribution is less than 4 %. Due to the poor statistic in the

NIXSW scan, this peak could not be separated in the spectra of the present

work.

As for the photoemission lines of the monolayer phase, pure Gaussian pro-

�les were used to �t the low temperature data. A Lorentzian contribution, due

to life time broadening of the core states, could not be observed in this data,

because of the �nite resolution of the electron analyzer in the experiment.

The �tting was done with the program CasaXPS. The background (see

chapter 5.3.1) and the derived peaks were �tted to the survey spectrum in one

step. The survey data were taken far o¤ the Bragg energy for the substrate.

For the four main peaks the positions and FWHM were constrained to the

values Schöll had found. In the �t with free areas for all peaks, the area ratio

for the carboxylic and the anhydride peaks came out to be 2:00 : 1:07, which

is in very good agreement with the stoichiometry of the molecule (�gure 5.6).

Surprisingly, the photoemission spectra taken within standing wave photon
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energies exhibit a new feature. It was reproduced in several measurements, so

that instabilities of the monochromator were excluded to be the reason. In

�gure 5.6 (center) an on-Bragg photoemission spectrum is shown with the o¤-

Bragg �tting of the described model. In the residuals at the binding energy of

530:0 eV, this new feature clearly can be seen.

PCA

Three principal components were found by applying the principal component

analysis to the high resolution data of the second period. The third principal

component corresponds to this new feature. So it can be assumed, that there

are at least three di¤erent vertical positions of the oxygen atoms. PCA on

the �rst period data only yield two components. This di¤erence indicates the

observed structural changes in the precursor �lm with time (or with beam

irradiation). A short description of the PCA can be found in appendix G.

Di¤erential results

In order to make a reasonable �t of the on-Bragg photoemission pro�les the

new peak was introduced 0:8 eV below to the low binding energy side of the

main carboxylic peak, with a FWHM of 1:1 eV. The �tting model is presented

at the bottom of �gure 5.6. By applying this model to the photoemission

pro�les of the standing wave, the area of this peak was found to vary from

0% to nearly 20%. In �gure 5.7, the photoemission spectra of the standing

wave are shown, including the �t with the new model. Another model with an

additional peak at the position of 533 eV binding energy (identi�ed by Schöll

as oxygen coming from water molecules) with various FWHM even improves

the �t quality (smaller residuals), but this additional feature mixes up with

the carboxylic and anhydride peaks, the �t becomes "unstable". Hence, the

NIXSW-pro�les become meaningless and cannot be �tted anymore. In the

following, this peak was neglected for the �tting procedure.

Due to di¤erent atomic positions, only the area ratio of the di¤erent com-

ponents changes in the standing wave. Therefore, the peaks were constrained

in their positions, in the FWHM and in the ratio of the main peak to the
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corresponding shake-up peak.

The �tting parameters are shown in table 5.4.

�tting parameter for the O1s precursor spectra

Position FWHM area
(relative to the caboxylic) (o¤ Bragg)

carboxylic 0 eV ( BE 530:84 eV) 1:139 eV 36%
carboxylic satellite +1:46 eV 1:505 eV 29%
anhydride +2:52 eV 1:139 eV 23%
anhydride satellite +3:28 eV 1:724 eV 12%
new oxygen peak �0:80 eV 1:1 eV ��

Table 5.4: Fit results for the energy positions, linewidths and relative intensities
of the main and satellite peaks in the O1s precursor spectrum. The sum of the
carboxylic and anhydride peak areas corresponds to 100 percent. The new additional
peak has a contribution of 3.9 percent to the total area of the oxygen PE spectrum.
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Figure 5.6: O1s-high resolution PE spectra of the precursor. Peak 1 and 2 corres-
pond to the carboxylic oxygen, peak 3 and 4 to the anhydride oxygen. The peak-area
ratio for the carboxylic to the anhydride oxygen is 2:1. Top: survey spectrum taken
at a photon energy of E = 2:618 keV. The background was subtracted in the way
Schöll proposed. Also the peak model of Schöll was applied. Center: PE spectrum
taken at the "on-Bragg" photon energy of 2635:4 eV. The �tting pro�le, deduced
from the survey spectrum at o¤-Bragg photon energy does not yield to a satisfying
�t result. A new structure at a binding energy around 530:0 eV appears. This can
be clearly seen in the residuals of the �t. Bottom: modi�ed �tting model for the
o¤-Bragg spectrum (E = 2:618 keV). Here the background was treated with the mod-
i�ed model from Schöll, as described in section 5.3.1. This model was used for the
evaluation of the PE spectra taken at photon energies close to the Bragg condition.
A new peak feature was introduced with approximately 4% of the total PE yield for
the oxygen.
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Figure 5.7: O1s-photoemission spectra taken at an excitation energies close to
the Ag(111) Bragg condition. Fitting was done with the model proposed by Schöll
[Sch 03] plus an additional peak 0:8 eV below the main carboxylic peak. The relative
intensities of the peak doublets for the carboxylic and anhydride oxygen exhibit a
clearly variation at excitation energies around the Bragg condition. As well the
additional oxygen feature at 530 eV exhibits a di¤erential variation in the spectra.



120 LT-precursor phase

Merged spectra

As for the monolayer, the high resolution data were taken in two steps, in order

to avoid the loss of spectra due to experimental / instrumental failure. Two

NIXSW scans with 16 points each were taken very close to the Bragg energy.

Two more scans with only 4 points each consisting of 2 points close to Bragg

energy and 2 points far o¤ the Bragg energy were taken afterwards.

The 4-point re�ectivity curve was normalized to the 16-point re�ectivity

curve1. Then the NIXSW-pro�les were normalized in the same way. So the

16-point pro�le could be inserted in the 4-point pro�le. The normalization of

the re�ectivity curves is shown in �gure 5.8.

The �tting results of the high resolution O1s NIXSW pro�les are shown in

�gure 5.9 and 5.10. The 16-point spectra were again merged in the 4- point

spectra. As can be seen, there is no signi�cant di¤erence in the results if

either the 4-point spectrum PT1_145 or PT1_146 was used to complement

the scan PT1_144. This demonstrates that the merging of the spectra can be

performed reliable.

The statistic of the XSW pro�le of the additionally found oxygen is low,

therefore, the �t of its pro�le is not very good, as can be seen in �gure 5.10.

The reason for such a low statistic is its small contribution of less than 5%

to the total oxygen peak. The other peaks dominate the spectra, and only in

the XPS spectra very close to the Bragg energy, its contribution to the total

spectrum rises due to its particular vertical position.

The �tting results of the NIXSW pro�les are given in table 5.5.

The given errors come from the statistical spread of the evaluated spectra,

they correspond to the standard deviation. The Argand diagram for the pre-

cursor result is shown in �gure 5.11, where the contribution of the additional

oxygen nicely can be seen. From the Argand diagram, it becomes clear that

such a contribution strongly lowers the value of the coherent fraction, even

with a contributions of only 4% to the total spectrum. In the Argand diagram

1The re�ectivity curves were normalized with the photon current (meshI0). Then the two
central points were �tted to the 16-point curve by varying the intensity axis. No background
was subtracted.
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precursor results

a) �rst period results

CF CP e¤ CP e¤(Å)
O1s total 0:466� 0:046 0:135� 0:009 2:667� 0:021
C1s 0:621� 0:063 0:193� 0:010 2:805� 0:024
Ag MVV 0:868 0:965 2:267

b) second period results

CF CP e¤ CP e¤(Å)
O1s total 0:230� 0:079 0:086� 0:014 2:553� 0:032
O1s carboxylic 0:402� 0:046 0:063� 0:015 2:499� 0:035
O1s anhydride 0:483� 0:056 0:204� 0:018 2:831� 0:042
sum anh. + carb. 0:390� 0:061 0:109� 0:006 2:606� 0:014
O1s additional 1:000 0:652� 0:013 3:882� 0:032
O1s additional 1:532� 0:032
O1s additional 6:232� 0:032

c) second period results with 10% bulk- like correction

CF CP e¤ CP e¤(Å)
O1s total 0:364 0:136 2:669
O1s carboxylic 0:360 0:080 2:538
O1s anhydride 0:518 0:233 2:898

Table 5.5: Fitting results of the NIXSW pro�les for the precursor. The most reliable
results are obtained in the �rst period (a) measurements. In the second period (b),
structural changes in the �lm were observed. The position of the additional oxygen
can be either above or below the PTCDA molecule. Therefore, three distinct positions
are given as result. The errors correspond to the standard deviation of the results
for the di¤erent NIXSW scans. The �tting result of the coherent fraction for the
additional oxygen is equal 1 for all evaluated pro�les. However, due to the low
statistic for this peak and due to the bad quality of these �ts, the result is not very
reliable. The error for the coherent fraction can be estimated at 0.3 and for the
coherent position at 0.1 at least. (c) Results obtained in the second period, corrected
with a bulk like contribution.
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Figure 5.8: Di¤erent normalized re�ectivity curves. The solid symbols represent
the two curves with the 4 data points (rn73 and rn74); the open symbols show the 16
point re�ectivity curves (rn71 and rn72) that were merged into the 4 point curves.
Solid line: re�ectivity �t to the data with the program DARE.

of the bottom of this �gure, additionally, the vectors corrected with a bulk like

contribution are shown.
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Figure 5.9: NIXSW pro�les for the carboxylic and anhydride oxygen. The 16 point
NIXSW pro�les (solid symbols) were merged into the 4 point NIXSW pro�les (open
symbols). The solid lines represent the �t of the data. The corresponding results for
the coherent position and fraction are given in the �gure.
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uation of the second period where structural changes in the precursor �lm occured.
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Additional oxygen positions

The evaluation of the additional oxygen peak in the PE spectra revealed a

certain vertical position for this species on the silver surface. Remarkably, the

value of the coherent fraction is equal to 1. This indicates that all atoms of this

type occupy an identical adsorption place. Several suggestions for the origin

of this oxygen type will be given in the following.

� CO

It could be a co-adsorbant from the residual gas, e.g. CO molecules. How-

ever, the desorption temperature for CO on Ag(111) was found to be 53K

[Han 91], therefore it is implausible that CO was co-adsorbed on the surface.

Also, no additional contribution as in the oxygen spectra has been found in

the carbon spectra.

� Water

The water adsorption with time was measured by Schöll. He found an

increasing peak at binding energy very close to the binding energy of the

anhydride oxygen. However the binding energy of the additional oxygen lies

0:80 eV below the binding energy of the carboxylic oxygen, far away from the

binding energy of the water oxygen atoms. Hence, it can be excluded that this

feature comes from the adsorbed water.

� Beam damage

It could be anticipated that the additional oxygen position originates from

atoms split-o¤ from the PTCDA molecules due to the high energy beam.

� Additional adsorption sites

The molecules in the precursor phase do not show long range order on the

surface. They lie �at, and in some local regions a herringbone structure is found

and in other a square phase [Tem 06a]. A possibility could be that an amount

of molecules in a speci�c local arrangement occupies a particular position. Due
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to the binding energy of the additional oxygen in the PE spectrum, it is only

possible that this feature stems from carboxylic oxygen atoms. It even has a

lower binding energy than the main peak of the carboxylic oxygen. Therefore

the question arises why no additional a feature is observed in the anhydride-

oxygen part of the PE spectra. However, such a feature can not be excluded.

It is possible, that it only cannot be observed due to the low statistic.

� On top

Another possibility could be that some PTCDA molecules are on top of

other molecules, i.e. in the second layer. In the bulk, the intermolecular dis-

tance of the PTCDA molecules is 3:23Å for the (102) planes [For 84]. The ver-

tical distance of the molecules in precursor phase was 2:80Å. The sum of these

values gives a vertical position of 6:03Å for the second layer molecules which

is close to the found value of 6:24Å. However, it was found that the second

layer is more strongly bonded than the higher multilayers [Kil 04]. Therefore,

it is not very plausible that the bonding distance for the second layer is larger

than in the bulk crystal. Hence, the model with �at lying molecules in the

second layer is not very reliable.

� Beam induced step edge decoration

Finally the additional position could stem from PTCDA molecules tilted

with respect to the Ag(111) surface, as described for the monolayer phase

on page 75, before. The assumed molecules2 are standing upright at the step

edges of the silver with their long axis parallel to the step. This is shown in

�gure 5.12. In contrast to the monolayer, this time two positions are necessary

in order to explain the structural di¤erences observed in the spectra. One

position corresponds to upright molecules at step edges, where the oxygen

2Both models are only possible due to the intramolecular distances in the PTCDA mo-
lecules. In one anhydride group, the distance between the carboxylic oxygen atoms is 4:4�A,
and between the carboxylic oxygen atom and the anhydride oxygen atom is 2:2�A. These
distances correspond approximatley to the substrate lattice plane distance of 2:35�A of the
silver or to a multiple of it. The intramolecular distances do not exactly correspond to
the substrate lattice planes, however, in a NIXSW experiment the resulting Argand vector
would correspond the observed coherent positions with high values for the coherent fraction,
because the di¤erence in the positions is only small (0:05�A) �CP = 0:05=2:35 = 0:02).
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atoms occupy a position of the bulk lattice planes, as it was described for

the monolayer (10% bulk like). The other position corresponds to upright

molecules where the oxygen atoms are 1:53�A displaced with respect to the

silver lattice at step edges (additional oxygen).

In the above model the contribution of the carbon in such positions can

only be seen by a decrease of the value of the coherent fraction for the total

carbon. This is already described on page 75 for the monolayer.

Final results for the precursor

The main result of this investigation of the precursor is that as for the mono-

layer the molecule is distorted. The carboxylic oxygen atoms are signi�cantly

closer to the silver surface than the rest of the molecule.

The �nal resulting values are listed in table 5.5.

The results corresponding to the �rst measuring period (a) are the most

reliable results. No structural changes were observed in these data. In the data,

taken in the second period (b), changes with time (or beam irradiation) were

observed. These changes could be explained, if one assumes that there are two

types of PTCDA molecules, which are not in the regular planar adsorption

geometry. There is indication that approximately 4% of the molecules are

tilted with respect to the surface and take a position 1:53�A displaced with

respect to the silver (111) lattice planes. There are also hints for the fact that

another amount of approximately 10% of the molecules are tilted with respect

to the surface and take in a position with the long axis on the substrate rows.

The high resolution measurements for the separation of the two oxygen

types were conducted on these structurally changed �lms. In order to obtain

the result for the �at lying molecules, a correction as described above was

applied to the results.
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Figure 5.12: Model of PTCDA molecules standing upright at step edges of the
silver with their long axis parallel to the step. The light grey lines represent the
silver lattice planes with a distance of 2:35 �A (at low temperatures). In order to
explain the experimental data, two di¤erent positions are necessary in this model.
Top left: The additional oxygen position can be explained with this model where
approximately 4% of the molecules take in the evaluated position. The dark grey
lines represent the oxygen atom positions which are 1:53�A displaced with respect to
the substrate lattice planes. Right: This model explains the 10% bulk like structural
changes in the O1s precursor data. As for the monolayer, the molecules occupy
adsorption sites with the oxygen atoms positioned on identical vertical positions as
the substrate lattice planes.
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Chapter 6

Comparison and discussion of
the experimental results �
monolayer versus precursor

In this chapter, a comparison of the experimental results, obtained within this

work, for the monolayer and the precursor phases is given. The nature of the

bonding state for both systems is of important interest. By comparing the

NIXSW results of the two phases some new conclusions can be drawn, as will

be seen in the following discussion.

6.1 Comparison of the PE-survey spectra

In �gure 6.1 the PE spectra of the C1s and O1s transitions for both phases are

shown. The excitation energy E
 was at least 10 eV below the Bragg energy.

The energy axes were calibrated with the high resolution PE spectra measured

by Schöll [Sch 05a]. For the O1s spectra the energy resolution is comparable

to the resolution Schöll used in his experiments. For the C1s spectra, however,

the energy resolution of the present work is considerably lower.

Due to the low resolution, the shapes of the C1s spectra, measured in this

work, exhibit no apparent di¤erences for the two phases. Only a small shift

can be observed in binding energies of the main peaks. This is in contrast

to the PE results of Schöll. He observed signi�cant di¤erences in the C1s
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spectra of the two phases. In his data, the main peak feature is slightly shifted

to higher binding energies for the precursor and the satellites are located on

completely di¤erent positions [Sch 03]. In the present data these satellites are

not resolved due to the employed (low) analyzer resolution. This resolution

was used because of the higher count rates for the spectra. The acquisition

time for such a NIXSW scan is much shorter compared to that of the high

resolution scans.

The di¤erence in binding energies and the shift of the satellite positions

indicate a complete di¤erent bonding state for the two phases [Sch 05a].

As for the carbon PE spectra, the shapes of the PE spectra of the O1s

transition are di¤erent for the two phases, too. This can be seen in �gure 6.1

on the right.

The minimum between the two peaks is more pronounced in the spectrum

of the monolayer. Furthermore, the peak feature at higher binding energies

(corresponding mainly to the anhydride oxygen) is broader. From peak �t-

ting of the main carboxylic and anhydride oxygen peaks, it is found that the

FWHMs are di¤erent for the two phases. In the previous chapters (chapter 4

and 5) the �tting models for the photoemission spectra have been presented.

In these, the FWHM of the main carboxylic and anhydride peaks have the

values of 1:30 eV for the monolayer and 1:14 eV for the precursor, respectively.

These values should be identical due to the same origin of the peaks and the

identical experimental setup. However, the reason for this di¤erence could be

the limited energy resolution of the analyzer and the much lower statistics of

the precursor data. Therefore, it is reasonable that the intrinsic FWHMs are

equal in their value and the observed di¤erences are only due to experimental

limitations
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Figure 6.1: Left: PE - C1s survey spectra of the monolayer and the precursor
phase. Right: PE - O1s survey spectra of the monolayer and the precursor phase.
All spectra were taken with an �o¤-Bragg�excitation energy. The precursor coverage
corresponds to 30% of a monolayer coverage. The energy axes were calibrated with
the PE spectra from Schöll [Sch 05a].
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6.2 Comparison of the �tting models for the

O1s-PE spectra

The �tting models of the O1s spectra are prerequisite for the structural res-

ults of the di¤erent oxygen types in the PTCDA molecules. As reported in

chapter 4, distinct �tting models on the same data set yield di¤erent results.

Here, the �nal �tting models are presented for the monolayer and for the pre-

cursor phase.

In �gure 6.2 the �nal models for the O1s spectra of the two phases are

shown. The di¤erence in the positions and FWHM of the carboxylic (peaks

numbered with 2 in the �gure) and anhydride (peaks numbered with 4) oxygen

satellites is striking.

These so called shake-up satellites can be attributed to excitation processes,

where a core hole is created and a valence electron excited to a higher state.

This process is considered to be so fast that no signi�cant changes of the inital-

state wave functions occur on this time scale (so-called sudden approximation).

Two holes are created, but only one photo-electron is emitted (2-hole-one-

particle state - 2hp) [FreBig 87].

In the monolayer spectrum the shake-up satellite peaks are much broader

(nearly three times for the carboxylic satellite, and four times broader for the

anhydride) than in the precursor spectrum. The peak area ratio of the main

peak to the satellite is very similar for the anhydride oxygen: 1 : 0:57 for the

monolayer and 1 : 0:52 for the precursor. For the carboxylic oxygen this ratio

is 1 : 1:06 for the monolayer and 1 : 0:80 for the precursor.

In particular this means for the monolayer phase that the satellite intensity

deduced by the �tting model is larger than the main PE peak intensity. (One

should note that in the multilayer PE spectra of PTCDA on Ag(111), no shake-

up satellite for the carboxylic oxygen is observed [Sch 04]). The relatively large

shake-up satellite in both phases indicates a good screening of the core hole

[FreBig 87].
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Figure 6.2: Comparison of the �tting models for the photoelectric O1s transition
of the monolayer (top) and the precursor phase (bottom), respectively. Both spectra
were taken with an o¤-Bragg photon energy of E
 = 2:618 keV. Peak 1 and 2
correspond to the carboxylic oxygen, peak 3 and 4 to the anhydride oxygen. Peak
5 is attributed to an additional oxygen, only observed in the precursor data. Peak
6 corresponds to the background signal in the precursor data. For the monolayer,
the shake-up features are much broader than for the precursor. In the monolayer
spectrum the intensity of the satellite carboxylic peak (2) is higher than the intensity
of the main carboxylic peak (1).
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6.3 Comparison of the NIXSW results

In table 6.1 the resulting vertical distances (CP eff) and the coherent frac-

tions (CF ) are listed for the monolayer and for the precursor, respectively.

The results are divided into two groups. The �rst part of table 6.1 gives the

structural parameters of the freshly prepared �lms for the monolayer and the

precursor phase measured with a low resolution pass energy of the electron

analyzer. For the monolayer phase it can be assumed that these are the struc-

tural parameters for the herringbone structure, as discussed in chapter 4.4.

For the precursor these results are considered as the structural parameters of

the intrinsic precursor phase as it was grown.

The second group (the rest of table 6.1) corresponds to the oxygen res-

ults where structural changes were observed due to beam damage or due to

structural di¤erences because of particular preparation conditions as discussed

in chapter 4.5.3 and chapter 5.3.3. These results were measured with a high

resolution pass energy of the electron analyzer.

In order to explain these structural changes, a correction was proposed in

the previous chapters. This correction is based on a 10% contribution of the

oxygen atoms of both sorts located on (111) lattice plane positions of the silver

crystal, presumably at step edge positions.

In the following, the NIXSW results for the two phases will be presented and

discussed. It has to be noted again that the given coherent positions correspond

to the e¤ective coherent positions (see chapter 3.3.4). Therefore, for these

results, a systematic error exists, whereas its size is not clear. However, the

�ndings and conclusions deduced from these results will not change much with

the application of the appropriate value for the phase � of the quadrupole

contribution. With the values for �, chosen for the evaluation of the present

work, the coherent position would be calculated by

CO1s
P = CP;e¤� 0:04�A

CC1s
P = CP;e¤� 0:03�A.
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NIXSW results: monolayer vs. precursor

Low resolution results (freshly prepared �lm)
monolayer precursor

CP e¤(Å) CF CP e¤(Å) CF

total C 2:86� 0:01 0:51� 0:05 2:80� 0:02 0:62� 0:06
total O 2:85� 0:02 0:52� 0:06 2:67� 0:02 0:47� 0:05

High resolution oxygen results (structurally changed)
monolayer precursor

CP e¤(Å) CF CP e¤(Å) CF

total 2:80� 0:03 0:44� 0:09 2:55� 0:03 0:23� 0:08
total* 2:61� 0:01 0:39� 0:06

carboxylic 2:66� 0:03 0:47� 0:22 2:50� 0:04 0:40� 0:05
anhydride 2:98� 0:08 0:79� 0:08 2:83� 0:04 0:48� 0:06
additional 3:88� 0:03 1:00

High resolution oxygen results,
corrected with 10% bulk position

monolayer precursor
CP e¤(Å) CF CP e¤(Å) CF

total 2:87 0:46 2:67 0:36
carboxylic 2:72 0:46 2:54 0:36
anhydride 3:02 0:89 2:90 0:52

Table 6.1: Comparison of the NIXSW results for the monolayer and the precursor
phase. The low resolution results correspond to the results of freshly prepared �lms.
In the high resolution oxygen results, an additional oxygen contribution, depend-
ing on preparation conditions or on beam damage e¤ects was observed. Therefore,
the high resolution oxygen results are slightly di¤erent in comparison to the low
resolution results. These high resolution results were corrected with an additional
contribution, located on the substrate lattice planes (see text). Two results for the
high resolution precursor data of the oxygen are given, total and total*. The �rst
result corresponds to the evaluation of the total PE yield. The second result of total*
corresponds to the �tting result for the sum of the carboxylic and anhydride oxygen
PE yield, for which the amount of the additional oxygen was not taken into account.
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6.3.1 Carbon: Molecular distances
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Figure 6.3: NIXSW pro�les of the C1s transition for the monolayer (black) and for
the precursor phase (grey), respectively. The di¤erence in the pro�les corresponding
to a height di¤erence of 0:6�A seems to be only subtle. However, in all pro�les of
each phase the individual shapes shown here can be found. This indicates distinct
structural parameters for the two phases. The points correspond to the electron yield
of the di¤erent photon energies, the solid lines to the �ts to these pro�les.

The structural results for carbon are based on �t results of the NIXSW

pro�les. Comparing the pro�les and the corresponding �ts for the two phases,

as shown in �gure 6.3, it can be seen that the di¤erence between the pro�les is

only small. However, the particular shape is similar within all pro�les of each

phase. From �t results, the di¤erence in the vertical position is obtained to be

�CP = 0:024 � 0:004 in units of the substrate lattice. This value lies clearly
outside of the error bars. The lattice distance of the Ag(111) plane is di¤erent

for the two distinct temperature phases. Taking this into account, one obtains

for the di¤erence in the coherent position a value of 0:06Å.



6.3 The NIXSW results 139

The results for the carbon contain most prominently the molecular informa-

tion, since the carbon is the main element in the PTCDA molecule. Therefore,

one can conclude that the molecules in the precursor phase lie closer to the

substrate surface than the molecules in the monolayer phase.

For an estimation of the absolute distance of the molecules from the sur-

face, always the corresponding values for the coherent fractions have to be

considered. For the two phases, the values for the carbon lie in the range of

CML-CF = 0:51� 0:05 for the monolayer1 (ML) and of CPC-CF = 0:62� 0:06 for
the precursor (PC). From NEXAFS measurements, it is known that in both

phases the molecules are not tilted and lie �at. It arises the question why

the value of the coherent fraction is not higher. One reason can be found in

the uncertainty of the �tted values for the coherent fraction. As shown in the

paper from Gerlach et al. [Ger 07], in the 99:7% con�dence level around the

minimum of the coherent fraction, the variation of the value is �CF = �0:1!
Additionally, CF varies with the asymmetry parameter Q as shown in chapter

3.

Interestingly, the coherent fraction for the carbon is higher for the precursor

than for the monolayer. If this is not attributed to the uncertainty of these

values, it indicates that the molecules in the precursor phase lie closer to one

plane of the same vertical distance than in the monolayer phase. However,

many e¤ects could decrease the value of the coherent fraction.

� A too high value of the asymmetry parameter Q.

� It could be an e¤ect of di¤erent heights of the two molecules in the
unit cell of the monolayer. Some indications for such an e¤ect exist: In

STM pictures of the stable monolayer phase, the two distinct molecules

in the unit cell exhibit di¤erent tunneling contrasts [Glö 98] [Ere 03].

Also, the electronic structure is di¤erent for the distinct molecules within

the unit cell as observed by scanning tunnelling spectroscopy (STS) ex-

periments (Tautz et al. as noted in [Kil 07]). Furthermore, from DFT

1Reliable values for the structural parameters of the pure herringbone structure in the
monolayer were estimated from the result of beamtime N�04. This was possible due to
di¤erent coverages of the monolayer phase. For the C1s data a coherent fraction of CF = 0:59
was obtained for the pure herringbone structure (see page 58).
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calculations, di¤erent adsorption heights for the two molecule types are

obtained (�CP = 0:06�A) [Roh 07]. However, the in�uence of such a

height di¤erence on the coherent fraction is only small. Assuming a co-

herent fraction of, e.g., CCF = 0:900 for the two average carbon positions

(from DFT), the resulting value for the coherent fraction would be cal-

culated at CCF = 0:897. This is a very small e¤ect, it can only become

stronger, if the di¤erence in the molecular heights would be larger.

� Another possibility is the bending of the carbon core of the molecules
themselves. DFT calculations indicate a small bending of the molecules

[Hau 05a] [Rur 05] [Hau 05b] [Roh 07]. However, as for the distinct ad-

sorption heights, the bending cannot be the reason for a low value of the

coherent fraction alone.

� As discussed in chapter 4 and chapter 5, the molecules adsorbed at step
edges presumably have a strong in�uence on the resulting coherent frac-

tion. The structural parameters of these molecules can be completely

di¤erent to the parameters of the herringbone structure. Depending on

the exact adsorption sites, this in�uence on the coherent fraction can

be more of less strong. Within this work it was possible to observe this

in�uence on the monolayer structure, by comparing the NIXSW results

of di¤erent coverages below the full monolayer (as shown in chapter 4.4

with one scan for each coverage.)

However, it can be concluded that the PTCDA molecules in the precursor

phase lie closer to the Ag surface than in the monolayer phase. This result is

very surprising, since the metastable precursor phase was assumed to be less

strongly bonded compared to the monolayer phase. The bonding distance,

obtained in this work for the precursor phase, however, gives a strong evidence

for an ever stronger chemisorptive bonding. This result leads to the question

why the (chemisorbed) monolayer phase is a stable phase, although the mo-

lecules are further away from the Ag surface than in the precursor phase. This

will be discussed at the end of this chapter.
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6.3.2 Oxygen

For the monolayer phase as well as for the precursor phase, time dependent

changes have been observed in the oxygen results. As for carbon, again, the

results obtained on freshly prepared �lms are the most reliable ones.

Unfortunately, only XSW scans with a low resolution pass energy of the

analyzer were taken on these (freshly prepared) �lms. Therefore, the results of

these data only correspond to the total oxygen results. High resolution data

have only been taken on the structural changed �lms. Therefore, a deviation

in the structural parameters (compared to results of the freshly prepared �lms)

is present in the results of the di¤erential analysis.

Total oxygen

For the monolayer, the total oxygen results (coherent position and coherent

fraction) are, within the errors, identical with the results obtained for carbon

as can be seen in table 6.1 on page 137.

The situation is di¤erent for the precursor phase, where the value of the

coherent position for oxygen lies 0:14Å below the value for carbon. This cor-

responds to a di¤erence in the vertical position of 0:19�A compared to the

monolayer oxygen. It is striking that the value of the coherent position for

the oxygen atoms is so much lower for the precursor phase. The values of the

coherent fraction, however, are similar for both phases (CML-OF = 0:52 � 0:06
and CPC-OF = 0:47 � 0:05). Furthermore, the values of the coherent fractions
have a size similar to that of the carbon atoms.

One reason for the relatively low coherent fractions of the total oxygen

data may be the distinct heights of the chemically di¤erent oxygen atoms to

the surface, which will be discussed in the following.

Di¤erential analysis:

The di¤erential analysis was performed on the high resolution data sets. Al-

though, for both phases, small structural changes have been observed with

time or with beam irradiation (see chapter 4.5.2 and chapter 5.3.3), the dif-

ferential analysis bears interesting results which still can be assumed to be
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valid. This is because the noted structural changes do a¤ect less than 15% of

the molecules (ca. 10% bulk like contribution and ca. 4% additional oxygen

contribution).

Another important point in the di¤erential analysis is the quality of the

�tting model used for the separation of the chemically di¤erent atoms. One

has to note that a wrong �tting model can strongly in�uence the results.

In particular, the values of the coherent fraction decrease by the use of a

wrong model. Therefore, a correct �tting model is essential for the evaluation.

However, a small value of the coherent fraction does not automatically imply

vice versa that the �tting model is wrong.

The main result that was found for both phases is that the value of the co-

herent position for the anhydride oxygen lies above the value for the carboxylic

oxygen2.

Monolayer phase: It is quite surprising that the resulting value of the co-

herent fraction for the anhydride oxygen in the monolayer phase (CML-O-anhyd.F =

0:79� 0:08) corresponds to 82% of the value observed for the silver substrate.

This indicates a highly ordered �lm and a good �tting model for the anhyd-

ride contribution in the PE spectrum. It reveals that all anhydride oxygen

atoms in the monolayer are close to the vertical position of CML-O-anhyd.P e¤ =

(2:98�0:08)�A. In contrast, the value of the coherent fraction for the carboxylic
oxygen (CML-O-carbox.F = 0:47 � 0:22) is much smaller. This is a hint that the
carboxylic oxygen atoms occupy di¤erent vertical positions within the unit cell.

The value of the coherent position for the carboxylic oxygen in the monolayer

is CML-O-carbox.P e¤ = (2:66 � 0:03)�A which lies clearly below the values for the

anhydride oxygen and for the carbon3.

2The NIXSW results for the monolayer in the herringbone structure represent 4 distinct
adsorption sites for the carboxylic oxygen and 2 distinct adsorption sites for the anhydride
oxygen (see chapter 4.5.5)[Kra 06].

3How much can the position of the four chemically di¤erent carboxylic oxygen atoms (in
the monolayer) be split? By assuming two distinct positions and by assuming the values
of the coherent fraction to be CF , A, B = 0:8 (as obtained for the anhydride oxygen), the
resulting values for the coherent positions are CP , B = 2:3�A and CP , A = 3:0�A. These
parameters yield for the total coherent position of CP = 2:65�A and for the coherent fraction
of CF = 0:48. These resulting values correspond to the measured values for the carboxylic
oxygens in the monolayer. This example shows that with the obtained value of the coherent
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In the herringbone structure of the monolayer phase, two chemically dif-

ferent types of PTCDA molecules were observed (A and B) [Kra 06]. For each

molecule type, two chemically di¤erent carboxylic oxygen atoms were found.

Their di¤erence is due to the distinct bonding to the neighboring PTCDA

molecules. However, the H-O bonding lengths are identical by coincidence for

both carboxylic oxygen types of one molecule, A or B respectively. It also

has to be noted that the carboxylic oxygen atoms of type A occupy on-top

positions on the silver atoms, whereas the carboxylic oxygen atoms of type B

occupy more or less bridge positions. Considering these �ndings and the res-

ult of the present work, particularly the coherent fractions for the carboxylic

oxygen atoms in the monolayer phase, it can be concluded that the carboxylic

oxygen atoms have di¤erent vertical distances for the di¤erent types of the

PTCDA molecules, A and B.

A model for the monolayer phase is given in �gure 6.4. In this model two

distinct vertical positions for the two molecules in the unit cell are assumed.

Only the anhydride oxygen atoms occupy the same position in both molecules.

With these distinct positions for the two molecules the values for the coherent

fractions of the carbon and of the carboxylic oxygen can be explained. The

corresponding values for this model are given in table 6.2

Precursor phase: In the precursor phase, within the errors, the value of

the coherent position is the same for the anhydride oxygen and for the carbon

(CPC-O-anhyd.P e¤ = (2:83� 0:04) �A and CPC-CP e¤ = (2:80� 0:02) �A). The value of
the coherent position for the carboxylic oxygen clearly lies below the value

for the carbon core (�CP = 0:31�A). This splitting of the two oxygen posi-

tions (�CP = 0:33�A) indicates a strong vertical distortion of the anhydride

groups in the PTCDA molecule. However, the value of the coherent fractions

CF is rather small and lies between 0:40 and 0:48 for both types of oxygen

atoms. Therefore, it can be assumed that the oxygen atoms, depending on

their particular chemical environment (molecular structure) occupy di¤erent

vertical heights which can di¤er quite strongly for the di¤erent structural en-

fraction, it cannot be excluded that the carboxylic oxygen atoms also occupy positions above
the anhydride oxygen atoms.
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Figure 6.4: Model, for the description of the observed values for the coherent
position and coherent fraction. It was assumed that the two molecules (A and B) lie
�at and occupy di¤erent vertical positions. See table 6.2 for the employed distances
in this model. The x; y-coordinates are calculated from Rohl�ng [Roh 05].

vironments. That means that, in the precursor phase, some of the molecules

lie even closer to the surface than it is indicated from the measured coherent

position of CPC-CP e¤ = 2:80
�A.

The strong distortion of the molecules in the precursor phase (particular

the carboxylic oxygen atoms of the molecules) compared to the monolayer

phase was not expected.

Additionally, it has to be noted that as the result for the carbon, the result

for the oxygen also indicates di¤erent bonding mechanisms of the two phases.

Molecules at step edges of the substrate

As described for the monolayer and for the precursor, a model of PTCDA

molecules populating the step edges of the substrate was developed within
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single molecules
(with CF = 0:80) resulting values
A B for one unit cell

CP e¤ CP e¤ CP e¤ CF

C 3:10�A 2:60�A 2:85�A 0:63

carbox. O 3:00�A 2:30�A 2:65�A 0:48

anhydr. O 2:98�A 2:98�A 2:98�A 0:80

Table 6.2: Structural parameters for the model which is one way to describe the
measured values for the monolayer. The parameters correspond to the employed
values in �gure 6.4.

this work (see chapter 4 and chapter 5). These, presumably upright standing

molecules are assumed to be one reason for the observed structural di¤erences

which were found for di¤erent preparations and also during the experiment.

A correction with a substrate like vector, contributing 10% to the result, was

applied for both phases. In doing so, the oxygen values can be corrected to

the values obtained on a freshly prepared �lm. The corrected values are given

at the end of table 6.1.

For the precursor phase, a second additional oxygen position was found. Its

contribution is around 4% to the total oxygen amount. It was only observed

at binding energies close to those of the carboxylic oxygen in the PE spectra.

However, it cannot be excluded that such a contribution exists at binding

energies in the region of the anhydride oxygen peak, too. This could be a

reason for the low value of the anhydride coherent fraction of the precursor

phase (CPC-O-anhyd.F = 0:48). In chapter 5, a model of molecules at step edges

of the silver substrate was given in order to explain this contribution.

6.3.3 Final geometric model

In �gure 6.5 and 6.6, the results are shown for the monolayer and for the

precursor phase. The values of the resulting coherent positions are presented
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by ball-and-stick models of the PTCDA molecules. The z-axis is expanded

with a factor of 3 for a better visualization. The low resolution results for the

carbon and the high resolution results for the oxygen are shown in part (a)

of the �gures. The corresponding Argand diagrams are presented below. The

hard sphere model and the appropriate Argand diagrams for the (10% bulk

like contribution) corrected values are given in part (b) of �gure 6.5 and 6.6.

6.4 Bonding states of PTCDA on Ag(111)

The results of this work give the structural information for a better insight of

the bonding mechanism of PTCDA molecules on Ag(111) for the two invest-

igated phases.

Monolayer From electron spectroscopies [Jun 93] [Ere 03] [Zou 06] and the

submolecular scanning tunneling contrast [Glö 98], some information on the

bonding to the Ag(111) surface has already been gathered: the bonding is

chemisorptive, it occurs presumably mainly on the perylene core of PTCDA,

and it involves the formation of a partially �lled hybrid orbital, originating from

the LUMO of the free molecule and Ag 5s electrons. However, the anhydride

groups must also be important, as the bonding distance of the carboxylic

oxygen atoms is considerably lower to the surface than for the perylene core.

DFT calculations revealed negative partial charges on the anhydride groups

causing the formation of secondary bonds of the four carboxylic oxygen atoms

to the Ag, thereby leading to the vertical distortion of the molecule [Hau 05a]

[Rur 05] [Hau 05b].

From DFT, it also can be concluded that the noted two bonding mechan-

isms, although involving di¤erent parts of the molecule, go hand in hand in

their mutual e¤ect onto each other: Charge transfer into the LUMO is pro-

moted by Ag-O interactions, supported by in-plane distortions in the perylene

skeleton. These distortions lower the energy of the LUMO and hence promote

its �lling [Hau 05a].
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Figure 6.5: Ball-and-stick model of molecules in the monolayer. The vertical length
scale is expanded by a factor of three. (a) Model directly derived from experimental
results. (b) Corrected model with 10% bulk like contribution. (1) - (3) Results
presented in Argand diagrams. (1) on a freshly prepared �lm. (2) Same result for
carbon as in (1), but for the oxygen, the structurally changed results are shown. (3)
Results as in (2) but with the bulk like correction for the oxygen results.
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Figure 6.6: Ball-and-stick model of molecules in the precursor. The vertical length
scale is expanded by a factor of three. (a) Model directly derived from experimental
results. (b) Corrected model with 10% bulk like contribution. (1) - (3) Results
presented in Argand diagrams. (1) on a freshly prepared �lm. (2) Same result for
carbon as in (1), but for the oxygen, the structurally changed results are shown. (3)
Results as in (2) but with the bulk like correction for the oxygen results.
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Precursor Within this work, it was found that the average vertical bond-

ing distance of the perylene core of the precursor phase is with CPC-CP e¤ =

(2:80� 0:02) �A smaller by 1.8% compared to the monolayer phase withCML-CP e¤ =

(2:86� 0:01) �A, the di¤erence being clearly above the error bar of the de-
termination. This small bonding distance is a strong evidence that the mo-

lecules in the precursor phase are chemisorbed, too. For comparison, phys-

isorbed PTCDA on Au(111) exhibits the much larger bonding distance of

3:27�A [Hen 07].

Additional support for a chemisorptive bonding is given by the internal ver-

tical distortion of the precursor phase compared to the monolayer phase: for

the precursor phase the carboxylic oxygen atoms lie (in average) 0:31�A below

the perylene core, which is a signi�cantly larger distortion than for the mono-

layer phase (0:20�A). As discussed above for the monolayer phase, the lowering

of the carboxylic oxygen atoms towards the Ag-surface can be interpreted by

the formation of secondary bonds between the negatively polarized carboxylic

oxygen atoms and the Ag surface. This indicates that in the precursor phase

there are signi�cant local bonds to the Ag on the anhydride groups, too.

In the commensurate ordered monolayer phase, however, it additionally

has to be considered that the speci�c intermolecular interactions noted above

compete with the O-Ag bonds. Possibly the intermolecular bonds withdraw

some electron density from the carboxylic oxygen atoms, thereby weakening

the O-Ag bonds and thus lower the distortion, as it is experimentally observed.

A further consequence is an increase in the vertical bonding distance of the

perylene cores with respect to the substrate.

In the above model, an activation barrier between the precursor and the

monolayer phase is related to the relaxation of the internal distortion (loosening

the O-Ag bonds) and the simultaneous increase of the overall bonding distance

to the substrate. However, the total energy gain is positive, since an energy

larger than the activation energy is gained by forming the speci�c attractive

intermolecular bonds, including their possible back-action on the interfacial

bonds which are formed in the commensurate, ordered phase.
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Chapter 7

Summary

In this work, the bonding lengths of a large �-conjugated molecule which was

adsorbed on a metal surface were determined for the �rst molecular layer.

For the growth of organic �lms on di¤erent substrates, the interactions

between the �rst molecular layer and the underlying substrate play a major role

for the properties and functionality of the whole system. This is because these

interactions determine the electronic properties of the interface, the molecular

order and the subsequent growth behavior of the �lm.

In this work, the system consisting of the organic molecules 3,4,9,10-Pery-

lenetetracarboxylic dianhydride (PTCDA) grown on a silver (111) surface was

investigated. PTCDA on Ag(111) appears in two phases in the �rst layer: The

commensurate long range ordered monolayer at room temperature (RT phase)

is a stable phase, whereas the disordered phase which is grown at temperatures

below 160K (LT phase) is a metastable phase. The LT phase changes at

temperatures above 160K to the stable RT phase.

For both phases, the planar molecules are adsorbed in a �at lying geometry.

The molecules of the �rst layer are chemisorbed on the Ag(111) surface. How-

ever, for the LT phase it was believed that the bonding is weaker than for the

RT phase. The bonding distance of the molecules from the surface is an indic-

ation for the bonding strength. Distortions of the molecules from the planar

geometry give additional information on the bonding mechanism.

Therefore, in this work, the vertical bonding lengths for PTCDA adsorbed

on silver(111) were determined with the NIXSW technique. The measurements
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on both systems, the RT and the LT phase were conducted at the ESRF in

Grenoble / France.

Using NIXSW, the vertical distance of the molecules was investigated by

the core-level C1s transition. Since carbon is the main element of the mo-

lecules, its vertical distance corresponds to the averaged molecular distance.

Furthermore, the distances of the oxygen atoms of the molecules were determ-

ined by using the O1s transition.

In the PTCDA molecule, two types of chemically di¤erent oxygen atoms

exist: the four outer carboxylic oxygen atoms and the two inner anhydride

oxygen atoms. For the �rst time, this chemical shift of one atom sort within

a molecule was utilized for a separation of the photoemission spectra which

were taken in a standing wave experiment. Within this work, di¤erent vertical

positions for atoms of the same element could be identi�ed.

The vertical positions of the molecules in the RT and the LT phase were

determined, as well as the intramolecular distortions. However, due to mul-

tipole e¤ects, systematic errors occur in the resulting values. This is because

the exact multipole parameters are not known, yet. These errors lead to small

changes in the structural results, however, they a¤ect the e¤ect of the in-

tramolecular distortion only little. Nonetheless, the comparison of the results

for the two phases is reliable, since the systematic errors are in a similar range

for both systems.

The main results of this work are summarized in �gure 7.1. It shows the

bonding distances of the atoms of the PTCDAmolecule to the Ag(111) surface,
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Figure 7.1: Main results of the present work. The vertical length scale is expanded
by a factor of three.
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obtained within this work. For the RT phase an average molecular bonding

distance of 2:86�A was measured (as de�ned from the average carbon distance).

For the LT phase the corresponding value is 2:80�A. Thus, the molecules in

the LT phase are 0:06�A closer to the Ag surface than the molecules in the RT

phase, this result clearly is signi�cant.

In the LT phase, a stronger intramolecular distortion was observed, the

oxygen atoms lie 0:14�A below the carbon core, whereas the molecules in the

RT phase do not exhibit such a strong distortion, the result for the (total)

oxygen atoms is the same as for the carbon atoms, within the errors.

By analyzing the separated oxygen types the surprising result was achieved

that these chemically di¤erent oxygen atoms occupy di¤erent vertical positions

on the surface. For both phases, it was found that the anhydride oxygen atoms

are clearly above the carboxylic oxygen atoms. For the RT phase this internal

distortion is 0:32�A. For the LT phase, this di¤erence corresponds to 0:33�A.

The average vertical distance of the carboxylic oxygen atoms in the RT

phase is 0:20�A below the carbon core and 2:66�A above the surface. For the

LT phase, however, this molecular distortion is larger, the carboxylic oxygen

atoms lie 0:31�A below the carbon core and the average vertical distance to the

surface is only 2:50�A which is 6% smaller than for the RT phase.

The main conclusion of the results obtained within this work is the strong

in�uence of the local environment on the bonding position of the PTCDA

molecules. The results also support that the molecules are chemisorbed, both

in the RT phase and in the LT phase, since the bonding distance is small for

both phases.

As the main bonding of the molecules occurs via the central perylene ring

in the RT phase, the internal distortions of the molecules indicate a second-

ary bonding mechanism between the negatively polarized carboxylic oxygen

atoms and the Ag surface. Since the distortion of the molecules in the LT

phase is even larger, this indicates that there are signi�cant local bonds to

the Ag on the anhydride groups in the LT phase, too. In the commensur-

ate ordered RT phase, however, it has to be additionally considered that the

speci�c intermolecular interactions compete with the O-Ag bonds. Possibly,

the intermolecular bonds withdraw some electron density from the carboxylic
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oxygen atoms, thereby weakening the O-Ag bonds and thus lowering the dis-

tortion, as it is observed experimentally. A further consequence is the observed

increase in the vertical bonding distance of the perylene cores with respect to

the substrate.

The result of this work reveals that the bonding mechanisms of large �-

conjugated molecules are even more complex than it was assumed in the past.

For the principal understanding of the bonding mechanisms, these newly ob-

tained results are very useful. With the geometrical results, obtained in this

work, the parameter space for calculations from �rst principles can be consid-

erably restricted, which will support the understanding of the involved bonding

interactions of such a system.

Finally, this result can help for the general understanding of the bonding at

interfaces as an important aspect for the design of future applications. With

this understanding, it might even become possible that organic electronics will

be completely designed by calculations.



Appendix A

Acronyms

AES Auger electron spectroscopy

DFT density functional theory

EC4T end-capped quaterthiophene

ESRF European Synchrotron Radiation Facility

FWHM full width of half maximum

HOMO highest occupied molecular orbital

HOPG highly oriented pyrolytic graphite

HREELS high resolution electron energy loss spectroscopy

LEED low energy electron di¤raction

LUMO lowest unoccupied molecular orbital

NIXSW normal incidence x-ray standing waves

OFET organic �eld e¤ect transistor

OLED organic light emitting diode

OSC organic semiconductors
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PCA principal component analysis

PE photoemission

PSD photon-stimulated desorption

PTCDA 3,4,9,10-perylenetetracarboxylic dianhydride

STM scanning tunnelling microscopy

STS scanning tunnelling spectroscopy

TFA target factor analysis

UHV ultra-high vacuum

UPS ultraviolet photoelectron spectroscopy

UV-PEEM UV photoelectron emission microscopy

XPS x-ray photoelectron spectroscopy

XSW x-ray standing waves



Appendix B

Multipole parameters in
literature

� [BecPra 89]; C1s; E = 2:000 keV; Q = 0:23 - similar result from nonre-

lativistic calculation and exact relativistic numerical calculation.

� [Jac 00]; Jackson et al. measured the non dipolar parameters on inco-
herent �lms at low temperatures, but they had an error in their �tting

routine. The values turned out to be too low.

�O1s; E = 2:975 keV [Cu(111) - (1̄11)-re�ection]; 
 = 1:04� 0:04;

�C1s; E = 3:046 keV [Ni(111) - (1̄11)-re�ection]; 
 = 0:92� 0:08;

� [Lee 01]; Lee et al. measured the non dipolar parameters on incoherent
�lms at low temperatures. The maximal error given for the Q values is

sQmax = 0:025.

�O1s; E = 2:661 keV [Al(111) - (1̄11)-re�ection]; Q (� = 50�) = 0:29

�O1s; E = 2:978 keV [Cu(111) - (1̄11)-re�ection]; Q (� = 50�) = 0:30
{0:32 / 0:35 values from [Jac 00] corrected, second value discussed

as outrider}

�O1s; E = 3:072 keV [Al(111) - (200) - re�ection]; Q (� = 50�) = 0:32

�O1s; E = 3:439 keV [Cu(111) - (200) - re�ection]; Q (� = 50�) =

0:31
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�C1s; E = 2:661 keV [Al(111) - (1̄11) - re�ection]; Q (� = 50�) = 0:34

�C1s; E = 2:978 keV [Cu(111) - (1̄11) - re�ection]; Q (� = 50�) =

0:26 / 0:30

�C1s; E = 3:072 keV [Al(111)-(200)-re�ection]; Q (� = 50�) = 0:35 /
0:40

�C1s; E = 3:439 keV [Cu(111) - (200) - re�ection]; Q (� = 50�) =

0:18 - The coherent fraction was relatively high, though it was meas-

ured on incoherent �lms. However, for the determination of Q, the

coherent fraction has to be zero. Therefore the �t of the parameter

Q to the data is rather not valid and the result for the Q-value is

less reliable.

� [Trz 01]; Trzhaskovskaya et al. calculated the values for the non-dipole
parameters. A relativistic treatment of the photo e¤ect was used. The

calculations were carried out in the one-electron approximation for a free

atom.

�O1s; 
 = 0:951 (E = 2keV) and 
 = 1:20 (E = 3keV)) extrapol-

ated for E = 2:6 keV is 
 � 1:10

�C1s; 
 = 0:979 (E = 2keV) and 
 = 1:22 (E = 3keV) ) extrapol-

ated for E = 2:6 keV is 
 � 1:12

� [Sch 01]; Schreiber et al. measured Q on incoherent �lms. However, by
regarding the XSW scans in paper of Schreiber (�gure 2), it can be seen

that in the �t of the O1s and the C1s electron yield not identical curves

were obtained. The O1s curve has a larger amplitude. This may originate

from a coherent fraction which is not equal zero, as it was assumed.

�O1s;E = 2:6 keV [Ag(111) - (111)-re�ection] Q (� = 45�) = 0:31 �
0:03

�C1s;E = 2:6 keV [Ag(111) - (111)-re�ection] Q (� = 45�) = 0:31 �
0:03
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� [Sta 04]; Stanzel et al. made a comparison of the O KLL Auger electron
yield with O1s electron yield of NTCDA monolayers on Ag(111). He

used for the O1s transition Q (� = 45�) = 0:26. However, in the �tting

routine, the non dipolar-parameter was not correctly implemented.

� [Sch 05b]; For the O1s transition, Schulte et al. used in their evaluation
Q (� = 45�) = 0:31. Only around that value, the right pro�les could be

obtained. Their work was done on functionalized fullerenes on Ag(111).

However the statistics for the O1s pro�les is very low.

� [Woo 05]; In this paper Woodru¤ et al. give the another correction for
the O1s value from Jackson et al. [Jac 00], the one previously discussed

as outrider (!) Q (� = 50�) = 0:37 ) Q (� = 45�) = 0:34. In this pa-

per also the corresponding value 
 = 1:42 is given, however, this value

corresponds to Q (� = 45�) = 0:33.

� [Ger 05]; Gerlach et al. investigated multilayers of copper phtalocyanine-
molecules on Cu(111) and Ag(111) substrates. They deduced the non-

dipolar parameter for the C1s transition from those incoherent �lms.

�C1s; E = 2:980 keV [Cu(111) - (111)-re�ection]; SR = 1:76� 0:01

�C1s; E = 2:630 keV [Ag(111) - (111)-re�ection]; SR = 1:74� 0:01

� [Ger 07]; Gerlach et al. determined the vertical distance of PTCDA on
Cu(111) and Ag(111). The Q value used for the PTCDA on the silver

substrate is higher than the Q value used for PTCDA on the copper sub-

strate (having a 350 eV higher photon energy). From theory is known,

that with increasing photon energy the Q-values increase. This incon-

sistency in this paper is compensated with relatively high errors for SR.

�C1s; E = 2:98 keV [Cu(111) - (111)-re�ection]; SR = 1:85� 0:1

�O1s; E = 2:98 keV [Cu(111) - (111)-re�ection]; SR = 1:72� 0:1

�C1s; E = 2:63 keV [Ag(111) - (111)-re�ection]; SR = 1:89� 0:05

�O1s; E = 2:63 keV [Ag(111) - (111)-re�ection]; SR = 1:89� 0:05
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� [Sta 07]; Stadler et al. determined the vertical distance of NTCDA on

Ag(111). For both transitions, O1s and C1s respectively they used a

Q (� = 45�) = 0:27.
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Evaluation of Q in the present
work

Within this work, the asymmetry parameter Q was determined on incoherent

�lms. For incoherent �lms the value of the coherent fraction is equal to CF = 0.

Therefore the measured electron yield should follow this function:

dY

d

/ 1 +RSR = 1 +R � 1 +Q

1�Q
. (C.1)

In beamtime N�04, multilayers of water were adsorbed at low temperatures

(100K) on the top of half a monolayer of PTCDA on Ag(111). Using the

obtained spectra, the anisotropy factor Q was �tted. However, for the pro�les

with the best conformity, the resulting values for Q vary from 0.10 to 0.37 even

though the statistical error is negligible (less than 3%). Examples of these �ts

are displayed in �gure C.1. Due to the wide range of values it becomes obvious

that the adsorbed water on the PTCDA �lm was not a totally incoherent �lm,

necessary for a precise evaluation of the parameter Q.
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Figure C.1: Variety of data sets, used for the evaluation of the asymmetry factor Q.
The circles represent the experimental data and the lines the corresponding �ts. The
spectra were measured on the same spot with increasing time (from top to bottom).
They were taken with distinct pass energies of the electron analyzer (high resolution:
23 eV, low resolution 58 eV). It is not clear, why the �rst two spectra are shifted.
Presumably there is a coherent contribution which changes with time. Therefore, the
�t of Q on this data is not reliable and can only be used as a rough estimation. The
given errors correspond to the standard deviation of the �t.
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Parameter �le for DARE

For the program DARE, the sample and the monochromator parameters are

included in a �le. The used parameters are listed below.

� Sample parameters

b value: �1
re�ection plan: (111)

compound lattice constant: 4:08516Å

d-spacing value: 2:35857Å

�0 = �0:00470000� i � 0:000570000
�1 = �0:00349000� i � 0:000560000
�2 = �0:00349000� i � 0:000560000
Debye-Waller factor: 0:980000

� Monochromator parameters

b value: �0:8
re�ection plane: (111)

compound lattice constant : 5:43070Å

d-spacing value: 3:13542Å

�0 = �0:001393990� i � 0:000299275
�1 = �0:000733302� i � 0:000209153
�2 = �0:000733302� i � 0:000209153
Debye-Waller factor: 0:988344
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D.1 b-value

The b-value in the above parameter �le corresponds for the monochromator

crystal and for the sample crystal to

b =
~n � ~s0
~n � ~s .

The vector ~n is the unit vector of the surface normal of the di¤racted

crystal, and ~s0 and ~s are the unit vectors in the incident and di¤racted beam

directions. For the symmetric Bragg re�ection b = �1. The Darwin-Prins
curve (re�ectivity) R(b) is a function of b.

In order to include the mosaicity of the sample, instead of broadening the

re�ectivity curve with a convolution of a Gaussian function, the b value of the

monochromator was changed from the value for the Bragg re�ection (b = �1).
In doing so, the width of the re�ectivity curve could be varied as well as its

height.

For a series of NIXSW experiments it was tested, which b-value of the

monochromator yield the best �tting result on the re�ectivity data. This

value was �xed for the evaluation of all data of that series.
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Background in�uence

In all PE-spectra of the standing wave experiment, a background had to be

subtracted in order to obtain the NIXSW pro�les. This had to be done very

carefully, because an incorrect subtracted background can in�uence the result.

Therefore, a model has to be developed in order to subtract the unwanted

background contributions.

With such a model, it occurs that also a contribution of the peak under

investigation is subtracted, too. That does not matter, because the shape (and

hence the result) of a NIXSW pro�le does not change, if a contribution which

follows the same intensity pro�le as the rest of the spectrum is missing. On

the other hand side, an incorrect subtracted background can change the result,

when the PE spectrum consists of di¤erent contributions with distinct NIXSW

pro�les.

Furthermore, if the background originating from the substrate is not cor-

rectly subtracted, a contribution of the substrate will remain in the data. That

means that the structural information of the substrate mixes up with inform-

ation of the peaks under investigation. Hence, in the results can be changed

slightly due to the background contribution.

E.1 Background types

Two di¤erent background were used in order to subtract the substrate con-

tributions, a linear background and a Shirley background type. The latter is
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exemplarily shown in �gure E.1.
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Figure E.1: C1s spectrum of the monolayer. A Shirley type background was sub-
tracted.

Almost any �tting program provides a Shirley type background in the �t-

ting routine, which is iteratively computed. In a �rst step an approximation of

the Shirley background S(E) is assumed which, in a second step, is iteratively

re�ned. The formula used is the following:

S(E) = I2 + (I1 � I2)
B(E)

(A(E) +B(E))
.

I1 and I2 correspond to the intensities of the PE spectrum at the two sides

of the investigated spectrum. The integrated areas A(E) and B(E) (shown

in �gure E.1) are calculated in the �rst step with an approximation for the

Shirley background.
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E.2 Statistical background contributions

The photoemission signal consists of the substrate count rate NAg and the

adsorbate count rate N0. In the �t of the NIXSW pro�le the term�
N0 �

p
NAg �

p
N0 �Nfit

�2

has to be minimized. However,
p
N0 � N0 and can be neglected due to its

small size. Therefore
�
N0 �

p
NAg �Nfit

�2
has to be minimized. With a low

count rate, the substrate contribution
p
NAg in a standing wave scan can come

up in the range of 10% of N0. However, this is only the case for spectra with

very low statistics. In the data of the present work a relation on the statistics

and the substrate contribution in the results could not be observed.
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Appendix F

Anhydride satellite in the O1s
monolayer spectrum

In the present work, a satellite peak of the anhydride oxygen was found in the

O1s spectra of the monolayer at a binding energy position of 535:8 eV. The

analysis from which it could be concluded that this peak in fact belongs to the

anhydride oxygen is presented in the following.

Di¤erent �tting models were investigated on the o¤-Bragg spectra. Those

with the smallest values for �2 were subsequently tested on the PE spectra of a

standing wave experiment. It was found that in the PE spectra of the standing

wave, the observed peak clearly has the same variation in the electron yield

as the anhydride peak. It was also tried to treat this feature as a shake up of

the carboxylic oxygen, but in that case, the residuals became larger. So, after

the minimization of the �2, it can be excluded, that this peak belongs to the

caboxylic oxygen.

This result is in contrast to that of Unwin et al. [Unw 03], who attributes

this peak to background scattering. However, Unwin et al. analyzed PTCDA

multilayers on InSb(111)A, so that a direct comparison of the spectra is not

possible.

In �gure F.1 the result of the �2 analysis is shown. Using the spectral

envelope fsjg and a synthetic model fmjg the �2 is de�ned in the following
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way

�2 =
X (sj �mj)

2

jsjj
.

The di¤erent �tting models shown in �gure F.1 correspond to the best

�tting models, found by the minimization of �2 in the �t of the o¤-Bragg PE

spectra.
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Figure F.1: Left: Fitting models for the di¤erent peak compositions and the corres-
ponding �2 values of the �t in an o¤-Bragg spectrum. Right a), b) and c): NIXSW
pro�les derived from the appropriate �ts on the PE spectra, taken with an excitation
energy close to the Bragg condition. Bottom on the right: �2 analysis for the �ts on
the PE spectra used for the NIXSW pro�les. Each point corresponds to the �2 of the
appropriate �t. It can be seen that the model used in this work leads to the lowest
�2 values.
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Appendix G

Principal-Component Analysis

The shape of a photoemission (PE) spectrum is the result of its composition

from di¤erent peaks with distinct origins convoluted with the instrumental

function, e. g., the O1s spectrum of the PTCDA on silver is a composition of

many peaks. Two contributions come from the two chemically di¤erent type of

oxygen atoms of the PTCDA molecule with slightly shifted binding energies.

In addition to this, there exist numerous shake up features from these two O1s

components. Due to the distinct vertical positions of the two type of oxygen

atoms the shape in PE spectra changes within photon energy in a standing

wave experiment. This is due to the fact that each component undergoes

its own intensity curve which results from the speci�c vertical position and

distribution. This gives rise to the question, whether it is possible to extract

the exact peak features of the distinct peaks from a set of XSW spectra. A

method for this would be the principal component analysis (PCA). In the

computer program CasaXPS [Fai 01] the PCA function for XPS spectra is

included. For the decision of the applicability of this method a closer look

onto the PCA method and onto the composition of standing wave spectra is

useful.

G.1 PCA introduction

The data matrix in XPS is composed of spectra where each acquisition channel

is viewed as a coordinate in an r-dimensional space: r is equal to the num-

http://www.casaxps.com
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ber of acquisition channels per spectrum. The problem addressed by PCA is

that of determining the number of distinct spectroscopic features present in a

particular set of c spectra. [Fai 01].

With the Principal Component Analysis (or Eigenanalysis) the spectra of

a set can be described with a linear combination of a number of principal com-

ponents (arti�cial spectra). If there exists a linear dependency, the principal

components (Eigenvectors) span the subspace, which has a lower dimension-

ality than the number of the spectra of the set. Whereas the original data are

interrelated, the resulting principal components are uncorrelated.

PCA provides a method for identifying the underlying spectra that form the

building blocks for the entire set of spectra. The data matrix is transformed

into a new set of r-dimensional vectors. These new vectors span the same

subspace as the original columns of the data matrix, however they are now

characterized by a set of eigenvalues and eigenvectors. The eigenvalues provide

a measure for the signi�cance of the principal components with respect to the

original data.

G.2 XSW spectra composition

How do the components of the PE spectra change in a standing wave exper-

iment? Do they follow mathematical functions, which can be separated by

PCA? For clari�cation, a closer look at the PE yield in a standing wave ex-

periment helps. The photoelectron intensity pro�le from an atom within the

interference �eld (characterized by ~h) is described by [Zeg 93]

I / 1 +R (�) + 2
p
R (�)(cos(� � 2�~h � ~r). (G.1)

Herein R(�) is the re�ectivity, ~r the vector of the atom-position and � the

phase,which changes from 0 to � in a standing wave experiment.

For a number N of atoms of a particular element the yield is the sum of

the scattered yields from the individual atoms at position ~ri.
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I / 1 +R (�) + 2

N

p
R (�)

NX
i=1

cos(� � 2�~h � ~ri) (G.2)

Herein, the scalar product ~h � ~ri is equal to the coherent position CP (for
more details see chapter 3.1).

As an example, an adsorbate will be considered with two di¤erent vertical

adsorption sites on the surface. The binding energies of the two types is as-

sumed to be chemically di¤erent. This yields two peak components in the PE

spectrum, which follow both the intensity curve of equation G.2. However

their phases of the cosines are di¤erent , depending on their particular vertical

position. Therefore, the PE yield follows

I1, 2 = 1 +R (�) + 2
p
R (�) cos(� � 2�CP 1, 2). (G.3)

Thus, for two adsorption sites, two principal components are necessary

for the description of the spectra. However, the two components, obtained

by PCA, are NOT equivalent to the two components of equation G.3. They

correspond to the mathematical necessary components for a linear combination

to describe the change in the set of PE spectra. These components also may

become negative.

In this work arti�cial spectra were tested with PCA. Spectra with one,

two, three and more components on di¤erent binding energy positions were

tested. Each spectrum changed in intensity with a cosine. All cosines had

distinct phases.

The testing revealed that maximal three principal components are neces-

sary for the description of the spectra1. That means, measuring the intensity

yield of the substrate leads to only one component (of course). Two distinct

adsorbate positions yield two principal components and three and more po-

sitions always yield three principal components. However, in this discussion

contributions with a phase shift of � to the observed coherent position was not

1Within this work, it could not be clari�ed why only three components and not more are
necessary for the description of the NIXSW data.
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considered. Such a component will not be identi�ed as a new component with

PCA.

Also, when the energy position is identical for two distinct contributions,

it is often not possible to observe this additional component with PCA.

If the analysis yields more than three principal components, there is a

systematic error in the experimental system, e.g. irregular steps of the mono-

chromator or desorption of the adsorbate during the experiment.

G.3 PCA on XSWPhotoemission spectra and

TFA

PCA is a nice tool for kicking out the noise of the spectra. After applying

a PCA, the determined principal components can be used for the so-called

target factor analysis (TFA). This is the �t of the principal components to

the real spectra. If there are spikes they can be identi�ed and omitted in the

analysis. The structure of the PE spectra becomes visible and the spectra are

much smoother.

If there is photon stimulated desorption or if the monochromator works

irregular, this can be seen, by comparing the analysis of a set of XSW experi-

ments on the same system. In short, PCA makes the changing peak features

visible for the eye. The target tested spectra yield to a �tting model, which

can be used on the measured spectra.

It was tested in this work that applying the �tting model to the target

tested spectra and to the purely measured spectra give the same results.
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