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1 Introduction  1 

1 Introduction 
The overall scope of this study was to examine behavioural and morphological aspects of the 

infrared (IR) sense in three different snake species. For this purpose a pitviper and a python 

were behaviourally tested on their IR detection threshold. Furthermore, the structure of the IR 

sensitive labial areas of a pit-bearing boa was morphologically investigated. The following 

introduction provides the necessary background knowledge.  

 

1.1 Infrared radiation  
Electromagnetic radiation of wavelengths longer than that of visible light, but shorter than 

that of radio waves, is defined as infrared radiation. The spectrum spans three orders of 

magnitude with a wavelength between approximately 750 nm and 1 mm (e.g. Bergmann and 

Schaefer, 1987; Meschede, 2002).  

The IR spectrum is often subdivided into smaller sections, e.g. near infrared, which is the 

region closest in wavelength to the radiation detectable by the human eye (0.78-3 µm), 

followed by mid (3-50 µm) and far infrared (50-1000 µm) (Bergmann and Schaefer, 1987). 

However, international standards for the subdivision of the spectrum are not available.  

The source of IR radiation is heat or thermal radiation, produced by the motion of atoms 

and molecules in an object. Some animals have expanded their sensory information input by 

developing IR radiation detection mechanisms, in addition to other senses, e.g. the visible 

electromagnetic radiation detection mechanisms (vision). This enables them to additionally 

'see' emitted thermal radiation.   

 

1.2 IR perception in the animal kingdom 
Temperature is one important variable of the environment. Within the animal kingdom some 

species are known to perceive and utilize the presence of and the changes in thermal energy in 

their environment (Barrett et al., 1970). IR receptors enable them to detect the changes in 

thermal energy. The IR sense is employed in various ways, e.g. in prey detection, 

thermoregulation or protection from heat damage. Among mammals, the common vampire 

bat (Desmodus rotundus) is discussed in the context of IR reception (Kishida et al., 1984; 

Kuerten and Schmidt, 1982). In the world of insects, some blood-sucking bugs (e.g. Rhodnius 

prolixus) are discussed to be IR sensitive (Schmitz et al., 2000). Additionally, pyrophile 

beetles (e.g. Melanophila acuminata, Merimna atrata, Acanthocnemus nigricans) are known 

to possess an IR sense (e.g. Evans, 1964, 1966; Evans and Kuster, 1980; Kreiss et al., 2005; 
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Mainz et al., 2004; Schmitz and Bleckmann, 1998, Schmitz et al., 2002). Furthermore, two 

families of the snake taxa also include IR sensitive representatives (e.g. Barrett et al., 1970). 

Depending on the species, the IR receptors are of diverse structure and position, e.g. in the 

snout region of snakes, in the case of beetles on the ventral side of the thorax (M. acuminata, 

A. nigricans) or of the abdomen (M. atrata). 

 

1.3 IR sense in snakes 
The IR sense evolved independently within two distantly related families of snakes: in the 

primitive Boidae (boas and pythons) and in the subfamily Crotalinae (pitvipers including 

rattlesnakes, copperheads and bamboo vipers) of the advanced Viperidae (e.g. Barrett et al., 

1970; Bullock and Diecke, 1956; Kluge, 1991; Molenaar, 1992; Nobel and Schmidt, 1937).  

The integration of both IR and visual information enables IR sensitive snakes to achieve a 

unique portrayal of their surrounding by 'seeing' different regions of the electromagnetic 

spectrum. They image visual light with their eyes and also perceive images of their thermal 

environment by detecting IR radiation at wavelengths centred around 10 μm, which matches 

the IR emission peak of homoeothermic animals, i.e. potential prey (e.g. Gamow and Harris, 

1973; Grace et al., 1999).  

Despite their structural differences, the IR sensitive organs of crotaline and boid snakes are 

analogous and serve similar biological functions (de Cock Buning, 1984), i.e. primarily the 

detection of mainly homoeothermic prey and accurate predatory targeting, even in the absence 

of visual cues (e.g. Barrett et al., 1970; Bullock and Barrett, 1968; Bullock and Diecke, 1956; 

de Cock Buning et al., 1981; Goris and Nomoto, 1967; Grace et al., 2001; Hartline, 1974; 

Kardong and Mackessy, 1991; Kardong, 1993, 1996). Furthermore, it is known that pitvipers 

also use their IR sense for spatial orientation, e.g. finding basking places for thermoregulation 

(Krochmal and Bakken, 2000, 2003; Krochmal et al., 2004). In addition, their IR sense is 

discussed in the context of selecting a den site (Sexton et al., 1992) or avoiding predators 

(Greene, 1992).  

 

1.4 Differences in pit morphology  
Pitvipers possess a forward-facing loreal pit situated between the nostril and the eye on each 

side of the head (see 2.1.1 Fig. 1 for a representative). These (1-5 mm deep) cavities (Barrett 

et al., 1970; de Cock Buning, 1985) expand into a depression of the maxillary bone 

(Dullemeijer, 1959). The pit opening is narrower than the base. A 10-15 μm thick IR receptor 
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bearing membrane suspended near the cavity back divides the latter into an inner and outer 

chamber (e.g. Barrett et al., 1970; Molenaar, 1992). This membrane consists of three layers: 

the richly innervated nervous layer sandwiched between two cornified (0.5-1.5 μm thick) 

epidermal layers (Bullock and Fox, 1957; Lynn, 1931; Nobel and Schmidt, 1937). The 

nervous layer is associated with a high concentration of vascular beds (Barrett et al., 1970).  

The loreal pits function similarly to a pinhole camera. The radiation of an IR source 

impinges on a certain part of the TNM bearing membrane, which allows a determination of 

the angle (therefore position) of the IR source (Bakken and Krochmal, 2007; Gamow and 

Harris, 1973; Newman and Hartline, 1982). Due to the frontal position of the loreal pits the IR 

visual fields of each pit overlap strongly and cover the frontal region.  

In contrast to the pitvipers, the pit-bearing boid snakes show a wide variety in shape, size 

and positioning of more simply constructed pits (Lynn, 1931; see 2.1.2 Fig. 2 for a python and 

2.1.3 Fig. 3 for a boa representative). Unlike pitvipers, boids usually possess their IR 

receptors within simple, shallow depressions in (pythons) or between (boas) specialised labial 

scales (Noble and Schmidt, 1937; Ros, 1935; Warren and Proske, 1968). The position, 

number, size and shape of these supra- and/or infralabial depressions differ from species to 

species (Maderson, 1970; Molenaar, 1992). Some IR sensitive snakes (e.g. Boa constrictor) 

even lack labial depressions altogether (Barrett et al., 1970; von Duering, 1974; von Duering 

and Miller, 1979). In this case the IR receptors are located in the labial scales (von Duering, 

1974). In all boids the receptors are located in the outer epithelium of the labial scales and are 

supported by epithelial cells (Amemiya et al., 1996b; Molenaar, 1992).  

In pit-bearing boids each pit functions similarly to a pinhole camera. However, the 

information of several pinhole cameras is computed in a specific brain area (tectum opticum, 

see below) (Newman and Hartline, 1982). Due to the arrangement of the pits not only the 

frontal but the lateral regions are covered in the IR visual field. It is assumed that the variation 

of forms of the pits or labial depressions and the distribution of the IR receptive areas 

influence image formation. However, this has not yet been examined for any pit-bearing boa 

so far.  

 

1.5 Scale surface structure above IR receptors  
Not only does the scale morphology have an influence on the IR perception, but also the 

surface structure of the scale above the IR receptors might influence the perception 

mechanism. The surfaces show an array of microscopic pores, which seems to be unique in IR 

sensitive snakes (Amemiya et al. 1995). According to Amemiya et al. (1995) and Campbell et 
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al. (1999) they appear to function as a sort of optical grating to reflect the visible light while 

facilitating the passage of IR rays. These microscopic pores are always associated with the IR 

receptor-bearing scales (Amemiya et al., 1995).  

 

1.6 Morphology of IR receptors and the neural pathway of IR reception 
The IR receptors of all IR sensitive snakes are similar (Molenaar, 1992). The IR receptors are 

unmyelinated free nerve endings, so-called terminal nerve masses (TNMs), which contain 

dense concentrations of mitochondria and oxidative enzymes, e.g. succinate dehydrogenase 

and ATPase (Bleichmar and de Robertis, 1962; Meszler, 1970; Meszler and Webster, 1968). 

The function of the TNMs as IR receptors has already been proven in previous investigations 

(e.g. de Cock Buning et al., 1981 a, b; Warren and Proske, 1968). The transduction process is 

unknown so far. The TNMs are closely associated with a capillary bed, which is discussed in 

the context of energy and oxygen supply and cooling (Amemiya et al., 1996a; Molenaar, 

1992). The TNMs arise from palmate preterminal swellings and extend between the epithelial 

cells (Bleichmar and de Robertis, 1962; Bullock and Fox, 1957; von Duering, 1974). The 

dendrites of the TNMs converge to nerves whose bundles lead to the Vth cranial nerve 

(Nervus trigeminus). The pit organs of pitvipers are innervated by branches of the ophthalmic 

and maxillary nerve; thereby each branch supplies a different area of the membrane (Barrett et 

al., 1970; Bullock and Fox, 1957). The innervation of the boids IR receptors also involves the 

mandibular branch of the trigeminal nerve (Molenaar, 1992). In comparison to pitvipers in 

boids the innervation pattern is more complex and even varies among species. According to 

de Cock Buning (1985), in pythons the first rostral pits of the supralabial scale are innervated 

by the ophthalmic branch whereas the other supralabial pits are innervated by the maxillary 

branch. Molenaar et al. (1979) found distinct groups of IR receptors in Python reticulatus, 

which are innervated by distinct nerve bundles. Moreover, individual pits seem to be 

innervated by the same branches that diverge from bundles to neighbouring pits of the same 

group (Molenaar, 1992).   

The trigeminal system of IR sensitive snakes consists of the common trigeminal system 

(equivalent to the one found in other vertebrates) and the lateral descending trigeminal 

system, which is placed lateral to the first mentioned in the medulla oblongata (Kishida et al., 

1984; Molenaar, 1992; Newman and Hartline, 1982). The primary afferent fibres of those 

sensory branches of the trigeminal nerve that lead to the TNMs build the Lateral trigeminal 

tract descendens (lttd) and terminate ipsilateral in the Nucleus of the lateral trigeminal tract 

descendens (LTTD) in the medulla oblongata. There, the projections from the different 
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branches of the Nervus trigeminus are still topographically distinguishable (Molenaar, 1978). 

This LTTD is unique to all IR sensitive snakes (Molenaar, 1974; Schroeder and Loop, 1976). 

From there on the neural processing pathways of IR information differ in the crotaline and 

boid snakes. In boids, the efferent projections from the LTTD reach the nuclear complex of 

the nuclei N. rotundus and N. pararotundus, located in the dorsal thalamus and pretectum 

(Molenaar, 1992), and then directly ascend to the tectum opticum in the mesencephalon 

(Molenaar, 1992; Molenaar and Fizaan-Ostveen, 1980; Welker et al., 1983). In pitvipers, 

there is an intermediate nucleus (RC: Nucleus reticularis caloris) between the LTTD and the 

Tectum opticum (Kishida et al., 1980; Newman et al., 1980; Stanford et al., 1981). 

The Tectum opticum of IR sensitive snakes is not only the target of the ascending IR 

pathways, but also of the visual information processes by revealing IR, visual and visual-IR 

neurons terminating in a similar region (Kass et al., 1978; Terashima and Goris, 1975, 1976). 

Cross-modality interactions take place in IR and visual neurons (Molenaar, 1992). Similar to 

in boids, the efferent fibres in crotalines run from the Tectum opticum to the Nucleus 

rotundus in the diencephalon and from there to the ADVR (anterior dorsal ventricular ridge), 

a processing area in the telencephalon (Berson and Hartline, 1988).  

 

1.7 Background of the objectives and working hypothesis 
Several behavioural studies have addressed IR perception in snakes (e.g. Grace et al., 2001; 

Grace and Woodward, 2001; Theodoratus et al., 1997). Early studies revealed the pit organs 

to be heat sensitive organs (e.g. Ros 1935; Noble and Schmidt 1937). Other behavioural 

investigations focused on prey detection (Chiszar et al., 1986; de Cock Buning et al., 1981a; 

Grace et al., 2001; Grace and Woodward, 2001; Haverly and Kardong, 1996; Kardong, 1996; 

Kardong and Mackessy, 1991) and the functional usage of the IR sense in the context of 

thermoregulation (Krochmal and Bakken, 2000, 2003; Krochmal et al., 2004).  

Young and Aguiar (2002) used behavioural changes during stimulus presentation as 

evidence for sensory perception in rattlesnakes in order to investigate the auditory system. In 

this study a similar methodical approach was used to investigate the IR sense. Unlike an 

electrophysiological approach (which can only record a part of the neural processing 

mechanisms, depending on the methods, e.g. evoked potentials, single cell recordings or 

multi-unit recordings), the behavioural approach does not only take the entire neural 

processing of stimulus perception into account, but also adds information on the relevance of 

the perceived. Up to now, no study has used this advantage of a behavioural approach to 

explore the IR detection range, i.e. the IR sensitivity of snakes. In one part of this dissertation 
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a behavioural approach was used to examine the IR sensitivity of two different ground-

dwelling snake species, i.e. one representative of a pitviper (Crotalus atrox) and one 

representative of a python (Python regius).  

The sensitivity of their IR senses, i.e. their detection ranges, should give further insight into 

the different possible functions of the pit organs. The IR detection threshold is defined as the 

minimum IR irradiance contrast of an object against the background at a critical distance. The 

IR irradiance of an object is defined as the amount of radiant flux impinging on a unit surface 

area-unit (W/cm2). The threshold level is the minimal irradiance contrast i.e. the thermal 

differential between target and ambiance (Theodoratus et al., 1997) which leads to a neural 

and/or behavioural response.  

Several electrophysiological investigations were performed on the IR sensitivity and 

detection thresholds of pitvipers. A temperature rise of 0.003 °C applied via flowing water on 

the pit membrane of Crotalus was the threshold determined by recordings at the trigeminal 

nerve (Bullock and Cowles 1952; Bullock and Diecke 1956). Stimulation of the pit organ 

with IR-lasers revealed a threshold of 0.1 mW/cm2 at the membrane (e.g. Goris and Nomoto 

1967; Moiseenkova et al. 2003; Terashima et al. 1968). Recordings of the stimulation in the 

midbrain tectum of Calloselasma with a heating element revealed a threshold of  

10.76 x 10-3 mW/cm2 (de Cock Buning et al. 1981a, de Cock Buning 1983a, b). Calculated 

detection ranges span from 66.6 cm for a mouse whose body temperature was 10 °C above 

ambient temperature (de Cock Buning 1983b) to less than 5 cm for a mouse-like stimulus at 

37 °C (Jones et al. 2001). In contrast to the extensive electrophysiological research on 

pitvipers, only one IR irradiance threshold level for boids was investigated in Python 

reticulatus by means of electrophysiological recordings in the Tectum opticum (de Cock 

Buning, 1983b). Applying a modified Stefan Boltzmann formula for his results, de Cock 

Buning calculated an energy value of 59.8 x 10-6 W/cm2 and a detection distance of 28.3 cm 

for an IR stimulus of the size (25 cm2) and temperature (30 °C) of a mouse (10 °C higher than 

the ambient temperature). The Stefan Boltzmann formula describes the total energy radiated 

per unit surface area of an object which is proportional to the fourth power of the 

thermodynamic temperature. 

All these estimates on IR detection thresholds are based on electrophysiological recordings 

of IR sensitive neurons. So far, a behavioural set-up has never been used to examine detection 

thresholds. One aim of this study was to compare detection thresholds of separately evolved 

IR sensory systems, i.e. pitviper perception versus python perception in a behavioural context. 

Based on the above mentioned advantages of the behavioural approach, it is assumed that the 
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detection threshold to a similar stimulus is lower than revealed in previous 

electrophysiological studies.  

 

Most IR sensitive snakes possess pit organs, which accommodate IR-sensitive 

thermoreceptors. However, some morphological (e.g. shape) and functional (e.g. structure, 

processing) properties of the pit organs in the crotaline and boid snakes differ. The general 

morphology of the pits of pitvipers and pythons, as well as pitless boas are reasonably well 

investigated (e.g. Amemiya et al., 1996a, b; Bleichmar and de Robertis, 1962; 

Gopalakrishnakone, 1984; Hisajima et al., 2002; Ros, 1935; von Duering, 1974, von Duering 

and Miller, 1979).  

However, up to now boas with labial pits have not been paid much attention to. This lack 

of knowledge probably results from the fact that most snakes of the subfamily Boinae do not 

possess labial pits; the only exceptions are species of Epicrates, Corallus and Sanzinia (Lynn, 

1931). In contrast, most snakes of the subfamily Pythoninae have labial pits. Therefore, 

python species have usually been employed in investigations of pit-bearing boids (e.g. Grace 

et al., 1999; Lynn, 1931; Noble and Schmidt, 1937; Ros, 1935; Warren and Proske, 1968). In 

general, only limited work has been done on boas, and then it was primarily associated with 

the pitless Boa constrictor (e.g. Bullock and Barrett, 1968; von Duering, 1974; von Duering 

and Miller, 1979). Lynn (1931) briefly described the histological structure of the labial pits of 

the boa Corallus caninus (formerly Boa canina). His examination focused on the description 

of the nerve distribution. Ros (1935) provided a description of the labial scales of Sanzinia 

madagascariensis (formerly Corallus madagascariensis) in her examinations of different 

boid (mainly pythons) species and emphasised the difference of the pit positioning of this boa 

species (between scales) and various python species (in the scales). However, she described 

the histological pit structure for Python sebae in greater detail. Nobel and Schmidt (1937) 

carried out histological examinations after demonstrating Corallus hortulanus to be  

IR-sensitive in behavioural experiments. They showed unmyelinated nerve fibres for the first 

time, which end in 'knoblike enlargements' in the epidermis and described rich capillary 

supply in the underlying dermal region associated with the nerve fibres.  

In this study C. hortulanus was chosen, because of its extraordinary zigzag-shaped labial 

scales, forming directionally arranged depressions rather than mere pits (e.g.  

C. caninus). The unique morphology of these labial depressions is assumed to be significant 

for C. hortulanus´ mechanism of IR perception, but nothing is known about the enhancement 

mechanism for image formation or sensitivity.  
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Prerequisite for an elucidation of the significant functional morphology is the knowledge of 

the location and the structure of the IR receptive TNMs in the labial scales. This was 

investigated at the light- and electron microscopic level, revealing TNM areas which pick up 

IR radiation from different directions. This led to the assumption of a possible topological 

representation of the labial scales´ TNM areas in the LTTD, in order to facilitate directional 

IR perception. The projection from the forward-oriented TNM area is hypothesized to lead to 

a different part of the LTTD than the projection of the backward-oriented TNM areas of the 

same pit.  

In addition, the surface structure of the TNM bearing labial scales is observed to be 

different to the surface structure of other body scales. This difference presumably aids IR 

reception.  

The extraordinary labial scale form, correlated with the knowledge of the location and size 

of the TNM areas led to a three dimensional (3-D) reconstruction of a precise directional IR 

perception model for C. hortulanus. The resulting IR reception field allowed the decoding of 

the underlying directional reception mechanism. This model helps to understand how labial 

scale morphology can enhance spatial resolution by a mechanism completely different from 

any other IR system that we know.  
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2 Material and methods 

2.1 Natural history of the study species  
Three different snake species were involved in the investigations. Each study species is a 

representative of the three known IR sensitive subfamilies (e.g. Barrett et al., 1970; Bullock 

and Diecke, 1956). Western diamondback rattlesnakes (Crotalus atrox) belong to the 

Crotalinae, whereas ballpythons (Python regius) belong to the Pythoninae and Amazon tree 

boas (Corallus hortulanus) belong to the Boinae.  

 

2.1.1 Western diamondback rattlesnake (Crotalus atrox)   

 
Fig. 1: Crotalus atrox photographed from the front and side. Rattlesnakes possess a pair of loreal pits, 

which are located just below the nostrils on each side of the head (yellow arrows).  

 

Western diamondback rattlesnakes occur almost from coast to coast in the southern United 

States and northern Mexico, their distribution ranging in a broad band from central southern 

California and Sonora to the Gulf of Mexico in Texas and extending into the north-east of 

Mexico (Mattison, 1996). Animals of this species usually exceed 100 cm in length, but rarely 

grow larger than 200 cm (Mattison, 1996). They have a heavy-bodied habitus. The name 

rattlesnake is derived from the rattle (consisting of loose interlocking segments, which are 

remnants of shedded skin) on the end of the short black and white annulated tail. Rattlesnakes 

possess a wide and spade-shaped head with a round snout region (Rubio, 1998). The IR 

sensitive receptors are embedded in the two loreal pits (see Fig. 1). The rattlesnakes´ 

retractable fangs are long, curved and hollow, to enable the injection of the potent venom into 

the prey. 
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C. atrox is a terrestrial species and usually inhabits arid lowlands with scrubby vegetation and 

rocky outcrops, e.g. low desert regions and prairies, but it can also be found in rocky hills as 

well as in low mountainous areas (Mattison, 1996; Rubio, 1998). The activity pattern of the 

rattlesnakes is closely linked to seasonal and daily temperature cycles. During periods of 

excessive heat they are primarily nocturnal, but also active during daytime at more moderate 

temperatures. During winter they go into hibernation (Klauber, 1982; Mattison, 1995, 1996). 

Rattlesnakes are ambush hunters; however, they actively choose their hunting spot (Greene, 

1992). They largely prey on mammals (e.g. different mice and rat species, chipmunks, 

squirrels, prairie dogs and rabbits) as well as on birds, but rarely on amphibians, lizards and 

other snakes (Mattison, 1996).  

Western diamondback rattlesnakes are easily excitable and quick to react (Klauber, 1982; 

Mattison, 1996). When threatened they display their typical defensive behaviour of rattling 

and coiling up into a striking position (i.e. forming a S-shaped loop with the body and raising 

the head well off the ground), which is sometimes accompanied by hissing and lunging 

(Mattison, 1995).    

 

2.1.2 Ballpython (Python regius)   

 
Fig. 2: Python regius photographed from the front and side. This species possesses five pits on the 

supralabial scale row and two to three small infralabial pits (yellow arrows).   

 

Ballpythons, also known as Royal pythons, are native to western Africa. According to Walls 

(1998) they occur in Senegal and Gambia, their range extending southwards to Ghana and the 

Nigeria area and eastwards over the savannas to Sudan and northern Uganda. P. regius is 
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considered to be the smallest member of the python species. It has a strong body with a short 

tail, rarely exceeding a length of more than 150 cm in total (Kirschner and Seufer, 2003). The 

head is clearly set off from the neck with a narrowing but round snout region (see Fig. 2). 

There are five pits on the supralabial scales on each side and usually two to three smaller pits 

situated caudally on each infralabial scale row (see Fig. 2). The IR receptive areas are 

embedded in these pits.  

P. regius is a primarily ground-dwelling species, although capable of climbing, and a 

typical inhabitant of savanna regions (e.g. Mehrtens, 1987; Stafford, 2000). Although 

occasionally discovered in rainforests (e.g. Butler and Reid, 1986; Luiselli et al., 1998), 

ballpythons are usually found in bushland as well as in cultivated land with numerous rodent 

burrows and termite mounds to withdraw to during the day (Greer, 1994). The burrows 

provide shelter with a constant temperature and humid conditions and therefore are used as 

hiding places, especially during the breeding season (from October to February; Trutnau, 

2002).  

Pythons primarily hunt during the time between dusk and dawn. They are ambush hunters, 

thereby employing the typical sit-and-wait strategy (Merthens, 1987). They prey on various 

small mammals, e.g. mice, rats, shrews, squirrels, and occasionally on bats and birds as well 

(Luiselli and Angelici, 1998; Luiselli et al., 1998), which they constrict.  

Ballpythons are docile snakes. Eponymous is their typical defensive posture, i.e. they coil 

their body into a ball with the head on the inside for protection when threatened.   

 

2.1.3 Amazon tree boa (Corallus hortulanus)    

 
Fig. 3: Corallus hortulanus photographed from the front and side. Note the extraordinary and variably 

shaped eleven supra- and eight infralabial scale depressions of this boa (yellow arrows).  
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The Amazon tree boa is a geographically wide-ranging neotropical snake species. It occurs in 

northern South America, its range extending throughout the entire Amazon rain forest basin to 

drier regions in Brazil and Peru, as well as on several West Indian Islands (Henderson, 1993; 

Mattison, 1995; Merthens, 1993). As the name tree boa implies C. hortulanus is an arboreal 

species. The body shape is slender and higher than wide with a long tail, which is well 

adapted to holding onto branches. Usually, adult Amazon tree boas attain a length of about 

150 cm to 200 cm (Mattison, 1995). The head is of triangular shape, relatively large and 

clearly set off from the thin neck region. The IR sensitive receptors are situated in the 

depressions between the scales of the upper and lower lip (see yellow arrows, Fig. 3).  

C. hortulanus occurs in a variety of habitats, encompassing dense rainforest vegetation as 

well as a wide array of shrub and tree species of cooler forests and drier areas or even banana 

plantations (Merthens, 1993; Seigel and Collins, 1993; Henderson and Winstel, 1995). The 

Amazon tree boa is an active forager but will also ambush prey, hunting largely at twilight 

hours and during the night (Merthens, 1993). Its diet mainly consists of mammals (e.g. 

rodents), birds and bats, as well as lizards (Henderson, 1993; Merthens, 1993). Similar to 

other snake species, the boas exhibit ontogenetic variation in diet (i.e. they feed on lizards as 

juveniles and on birds and mammals as adults). Like pythons, they kill their prey by 

constriction.  

The Amazon tree boa exhibits a natural defensive aggression. When provoked it readily 

adopts a typical S-shaped striking position, lunges and strikes.  

 

2.1.4 Animal husbandry of the study species 

All snakes were captive bred, either born in the Institute or obtained from commercial dealers. 

The snake housing rooms (one of them was also the experimental room) were kept at a 

constant temperature of 22 °C ± 2 °C during the time of experiments. The terrestrial snakes 

(C. atrox and P. regius) were housed individually or in pairs in heated terrariums with a hide 

box as a shelter. C. atrox was kept at an ambient temperature of 28 °C ± 1 °C  

(humidity: 35 % ± 5 %) and a 12 h light/12 h dark cycle. P. regius had an ambient 

temperature gradient of 25 °C up to 30 °C ± 1 °C (humidity: 65 % ± 5 %) with a natural 

light/dark cycle. The arboreal C. hortulanus was communally housed in a heated terrarium 

provided with tree branches as climbing and resting possibilities. The ambient temperature 

was 28 °C ± 1 °C with a high humidity (80 % ± 10 %) and the light/dark cycle was 12 h/12 h. 

All snakes were provided with water ad libitum and were maintained on a diet of one 

mouse every 10 to 14 days (juvenile rattlesnakes, juvenile pythons and all Amazon tree boas) 
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or one to two juvenile rats once a month (adult pythons). If a snake showed signs of shedding 

(indicated by a milky blur over the eyes), it was not fed until shedding had occurred. 

Depending on the individual feeding frequency and housing temperatures, shedding on 

average took place every 6 to 12 weeks, in rare cases almost up to 6 months.  

Animal husbandry and all experiments were conducted in accordance with the 'Principles 

of Animal Care' Publication No. 86-23, revised 1985 by the National Institutes of Health.  

 

2.2 Behavioural experiments  
The behavioural investigations of the IR thresholds were conducted with 12 juvenile western 

diamondback rattlesnakes (Crotalus atrox) and 22 ball pythons (Python regius) (14 juveniles 

and eight adults) of both sexes. The rattlesnakes’ ages varied from four to 12 months with 

snout-vent lengths of 45 cm to 80 cm. The ages of the pythons varied from one-and-a-half up 

to eight years with snout-vent lengths of 69 cm to 85 cm for the juvenile and 108 cm to 

141 cm for the adult pythons.  

The behavioural investigation of the pythons was conducted in cooperation with Sarah 

Mueller in the course of her diploma thesis (Mueller, 2005) under my supervision. Both, the 

rattlesnake and the python experiments are published (Ebert and Westhoff, 2006; Ebert et al., 

2007). They are presented in the following.  

 

2.2.1 Snake preparation  

To exclude visual information all snakes were blindfolded with a strip of black duct tape 

(Fig.4, insets) prior to experimenting. To apply the strip of duct tape to the head and eyes, the 

pythons merely had to be held gently behind the head. The rattlesnakes were pinned down 

with a snake hook behind the neck, then gripped behind the neck and made to bite into a piece 

of plastic foam to avoid bite injuries. The whole procedure usually did not take longer than 2 

to 3 minutes and had to be repeated after each shedding, as the duct tape was also cast off. 

The pythons additionally were marked with white lines (1 cm in length), starting between the 

eyes and continuing along the spine in 5 cm steps. This was necessary for the video 

recordings, with which the behavioural responses were later evaluated. The snakes were 

allowed to adapt to the blindfolding (and marking in the case of pythons) for at least one day 

before testing. If the snakes managed to rub off part of the tape, they were excluded from the 

experiments until their next shedding. Only snakes that were not in moulting and had had 

their last meal at least two days previous to testing were involved in the experiments.  
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2.2.2 Experimental set-up 

The snakes were tested in a circular arena with a diameter of 220 cm (Fig. 4). Surrounding the 

arena, a 150 cm high barrier made out of 1 cm thick white Styrofoam shielded the snake from 

unwanted IR stimuli.  

A square Peltier element (PKE 128 A 0021, Peltron GmbH, Germany) of 16 cm2 was used 

as an IR stimulus. The Peltier element (PE) was mounted at the lower end of a motor driven 

pendulum, which could be presented to the snake at any (horizontal) position within the 

circular arena (see Fig.4). The pendulum with the IR source was attached to a sliding rail of a 

beam (c.f. Fig.4). The distance between the snake’s head and the IR source was measured to a 

precision of 0.5 cm. As previous recordings with a thermoscanner and IR camera (2.2.6) 

revealed that the emitted body temperature of a mouse (N=5) lies between 34 °C and 35 °C, 

the temperature of the PE was adjusted to 34.4 °C ± 0.5 °C (rattlesnakes) or to  

34.5 °C ± 0.5 °C (pythons). The temperature of the PE was constantly monitored with a 

sensor (PT 100, Peltron GmbH, Germany; height: 10 mm, width: 2 mm), which was attached 

to the surface of the PE and connected to a thermal feedback control unit (PRG H75, Peltron 

GmbH, Germany) to keep the temperature constant. The IR radiation was controlled by a 

shutter (shielded with insulating Styrofoam), which was positioned in front of the PE. When 

the shutter was closed the temperature in front of the shutter was 23.5 °C ± 0.5 °C, which 

hardly differed from the ambient room temperature of 23 °C ± 1 °C. The rattlesnakes had an 

average body temperature of 24 °C ± 1 °C and the pythons of 28 °C ± 1 °C as measured with 

an IR-thermometer (minitemp TM, Raytech, USA).  

At the beginning of each session the rattlesnakes and juvenile pythons were placed in a 

lockable hide box on a platform elevated 30 cm from the floor to prevent them from escaping. 

The platform was placed in the centre of the arena for testing distances from 10 cm to  

100 cm. For experiments with adult pythons the platform was elevated to 80 cm above the 

floor. For rattlesnake sessions with distances above 100 cm the platform was moved towards 

one side of the barrier utilising a minimum testing distance of 70 cm and a maximum testing 

distance of up to 160 cm. Overlapping distances (70-100 cm) were tested for reasons of 

comparability.  
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Video recordings of all experimental sessions of Python regius  

A (black and white) CCD module camera (Conrad, Germany) with a 2.5 mm focal distance 

objective was mounted above the platform (c.f. Fig. 4) and connected to a computer (IBM, 

USA). The software used for recording was the Vidcap32.exe program (Microsoft, USA) 

with a frame rate of 3 frames per second. A video analysis program developed by M. 

Hofmann (Version 1.01) was employed for frame by frame analysis of the behavioural 

responses (compare 2.2.4, P. regius).  

 

 
Fig. 4: Schematic sketch of the experimental set-up. 1: IR source (PE), 2: scale (100 cm), 3: video 

camera (not shown). Arrows indicate the moving directions of the IR source. Insets show 

representatives of the two snake species C. atrox and P. regius, both blindfolded.  

 

2.2.3 Snake exposure protocol  

The behavioural experiments were performed according to the following protocol:  

Enclosed in a hide box the snake was placed on the platform in the arena set-up. After an 

adaption phase (10 min for the rattlesnakes; 2 min for the pythons) the lid of the hide box was 

lifted. The pythons received a further adaption phase of at least 2 min. Thereafter, as soon as 
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the snake faced the PE, the pendulum was set into oscillation (0.5 Hz, oscillation amplitude: 

30 cm, speed: 0.3 m/s) while the shutter was simultaneously opened to expose the PE for 10 s 

before it was shut and the oscillation was stopped again. Then the behavioural response of the 

snake was documented: the behaviour of the rattlesnakes was evaluated directly and written 

down. The behaviour of the pythons was also evaluated directly, but it was also additionally 

video recorded and independently re-evaluated again later. These video recordings were 

started 2 s before the stimulus presentation and ended after 20 s. During the further 

experimental session the distance between the PE and the snake’s head was arbitrarily varied 

within predetermined 10 cm intervals (e.g. 10-20 cm, 20-30 cm, etc.). The stimuli 

presentation distances for the rattlesnakes ranged from 10 cm to 100 cm (maximum testing 

distance: 100 cm) and 70 cm to 160 cm respectively, whereas juvenile pythons were tested 

from 10 cm to 60 cm and adult pythons were tested from 10 cm to 100 cm. The arbitrary 

stimuli distance dispersal had been determined beforehand. At most one IR stimulus was 

applied to the rattlesnakes per minute and maximally one IR stimulus per 90 s to the pythons. 

The experimental sessions lasted 60 min for the rattlesnakes and adult pythons and 45 min for 

the juvenile pythons. Despite shorter sessions for juveniles, it was possible to apply a similar 

number of IR stimulus presentations to both the adult pythons and juvenile pythons per 

session (because they were more attentive). If a snake escaped from the platform the session 

was terminated. In the case of the rattlesnakes, experimenting was also terminated if the 

animal showed no behavioural responses to five consecutive stimuli, one of which had to be 

at a distance of less than 40 cm (test range: 10-100 cm) and one less than 85 cm (test range: 

70-160 cm). After each session the hide box was cleaned with liquid soap and water and dried 

thoroughly to eliminate possible olfactory influences of the predecessor. 

To test habituation, IR stimuli were presented to both the rattlesnakes and pythons from 

constant distances in 60 min sessions with one stimulus per 90 s at most. The rattlesnakes 

were tested at the distances of 30 cm, 60 cm, 90 cm and 120 cm, whereas the pythons were 

tested at the distances of 15 cm and 30 cm. Moreover, habituation was tested over the course 

of sessions.   

Several precaution steps were undertaken to minimise habituation: the length of a session 

was restricted; rattlesnakes were not tested more often than every second day; pythons were 

not tested more often than every third day and did not undergo more than four experimental 

sessions altogether. 
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2.2.4 Evaluation criteria of behavioural responses 

The behaviour of the snakes was scored as a response if a distinct change was observed while 

presenting the stimulus. The following behaviours were observed and evaluated:  

 

Crotalus atrox: 

'Head jerks': The rattlesnake showed rapid lateral head movements towards the PE 

independently of directed movements of the body during the 10 s of IR stimulus presentation. 

'Tongue-flicking': The rattlesnake showed directed tongue-flicking towards the PE. Tongue-

flicking could occur once or several times. In rare cases the tongue followed the movement of 

the pendulum.  

'Freezing': The rattlesnake paused abruptly for 2 s to 10 s during body movement.  

'Fixing': The rattlesnake was coiled up, but its head was in motion. It directed its head 

frontally to the IR source, stopped moving and fixed it (for at least 3 s), when given an IR 

stimulus. 

'Rattling': The rattlesnakes rattled at least once during the presentation of an IR stimulus, 

while their head was directed towards the PE. 

 

Python regius:  

'S-Form': The upper third of the python’s body tensed further in comparison to the previous 

video frame, so that the S-shaped posture tightened. The tense S-shaped body posture is the 

typical striking posture (defence or attack) for P. regius (own observations). To measure the 

posture tightening, a straight line was drawn between the marking on the head and on the 

second spine marking. The lengths of the line in the last frame before the S-form started and 

in the frame in which the snake showed the most distinctive body tension were compared to 

measure whether there was a minimal length reduction of at least 1 cm (see Fig. 5a). The head 

had to be directed frontally (± 25°) towards the PE.  

'Freeze and fix': The python paused abruptly during body movement, directed its head 

frontally (± 25°) towards the PE and 'fixed' it for at least 3 s. In the analysis a line was drawn 

from the tip of the snout to the marking on the head (see Fig. 5b). This line was copied to the 

corresponding video frames. The position of the head had to be unaltered for at least nine 

frames which is equivalent to 3 s.  

'Follow and fix': The python followed the movement of the pendulum with its head or in 

addition with its whole neck region. The reciprocation of this head/neck movement had to 

occur synchronously to the oscillating pendulum. A line between the tip of the snout and the 
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marking on the head was drawn for analysis (see Fig. 5c). This line was copied to the 

following frames, in which minimally half of the head had to cross the line at least three 

times. The head had to stay within a 25° angle.   

 

 
Fig. 5: Depiction of the video analysis of the python’s behavioural responses. (a) 'S-form': reduction of 

the length of the markings of at least 1 cm; (b) 'freeze and fix': the position of the head had to be 

unaltered for at least 3 s; (c) 'follow and fix': minimally half of the python’s head had to cross the line 

at least three times. 

 

2.2.5 Control experiments for both species 

The above named responses are also part of the normal, i.e. non-stimulus-evoked behavioural 

repertoire. To differentiate between the above defined behavioural responses and the 

coincidence of these behaviours, control trials were conducted. These trials were performed 

with 1) an oscillating pendulum but inactive PE, 2) an inactive PE and fixed pendulum 

(sham), or 3) using an active PE and oscillating pendulum but obscuring the pit organs with 

Styrofoam balls and tape. For the latter, Styrofoam was cut into small pieces (Ø < 0.5 mm) 

and inserted in layers into the pits. Then the whole labial pit region was covered with black 

duct tape.    

As a further control of the evaluation of the behavioural criteria of C. atrox, a number of 

the video recordings (N=5, n=39) were scored twice, once by the experimenter and again by 

naïve volunteers.  

 



2 Material and methods   19

2.2.6 IR images of mice 

Most information dealing with body temperatures of mice and rats presents temperature 

values between 37 °C and 38 °C (e.g. Beynon and Cooper, 1997). Thereby, the emitted 

temperature of the body is not considered. However, for the behavioural experiments 

described above it was a prerequisite to know the emitted body temperature of the typical 

snake prey, i.e. mice.  

Recordings with a thermoscanner (AGEMA-Thermovision THV 450 D, resolution:  

0.1 °C) revealed that the emitted body temperature of laboratory mice (N=3) lies between 

34 °C and 35 °C at an ambient room temperature of about 23 °C ± 1 °C. This result was 

confirmed by a subsequent measurement of mice (N=2) with an IR camera (IR-Flex Cam, 

Goratec) under similar conditions. An exemplary IR image of the temperature radiation of a 

mouse is depicted in Fig. 6. The image revealed a heterogeneous thermal profile of the 

mouse, which underlay changes when the mouse moved. The warmest radiating areas were 

the face region, especially the eyes and ears, and the upper neck and back region as well as 

the tail.  

 

 
Fig. 6: The image shows the thermal profile of a laboratory mouse measured with an IR camera at an 

ambient temperature of about 23 °C.  

 

2.2.7 Statistics 

The applied statistical standard methods were gathered from common literature (Zoefel, 1992; 

Sternstein, 1996; Kesel at al., 1999). The data was statistically analysed with the aid of the 

calculation programmes Microsoft Office Excel (2003) and SPSS (Version 10.1) as well as 

OriginPro 7.0.  
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Chi2 –Tests were used to determine whether a result (e.g. behavioural response rate) differed 

significantly from control level or equipartition. A Mann-Whitney-U-Test was used when 

comparing data obtained from different groups of individuals. A Friedman-Test was used to 

determine whether the snakes habituated over all experimental sessions.  

 

2.2.8 Calculation of the irradiance contrast 

For both rattlesnakes and pythons, the irradiance contrast of the presented IR stimulus was 

calculated for the respective distance range using a modified Stefan Bolzmann formula 

(compare de Cock Buning, 1983b). The irradiance contrast is the temperature contrast 

between stimulus and background.    

 

Irradiance contrast (W/cm2) = 2
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σ : constant of Stefan Bolzmann (5.6522 x 10-12 W/(cm2·K4))  

            A: radiating area (cm2)  
T2: temperature (°K) of heat exchanger  
T1: temperature (°K) of the shutter  
D: distance (cm) 

 

2.3 Anatomical investigations  
In total 12 Amazon tree boas (9 juvenile and 3 adult Corallus hortulanus) of both sexes and 

one horned viper (Vipera ammodytes) were involved in the anatomical investigations. The 

snakes’ ages varied from 1 month to several years with snout-vent lengths of 58 cm to  

175 cm. Most boas were employed in different methodical approaches, i.e. light microscopy 

as well as transmission and scanning electron-microscopy, succinate dehydrogenase (SDH) 

staining and tracer experiments. The boas involved in the investigations of the receptor areas 

(SDH staining and for light and transmission electron-microscopy) were 'freshly' shedded  

(2 to 10 days after shedding their skin). This is important, because in boids, the 

intraepidermal terminal nerve masses (TNMs) are shedded and renewed periodically with 

each shedding cycle (Amemiya et al., 1996 a).  

 

2.3.1 Succinate dehydrogenase staining  

Six boas were anesthetised with 3-4 ml isoflurane (1-chloro-2,2,2-trifluoromethyl 

difluoromethyl ether, Curamed, Delta Select GmbH, Germany) in an air tight plastic box and 

were then decapitated with a sharp pair of scissors. For the SDH staining the (freshly) 
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dissected labial scales were immediately frozen and stored at -20 °C until further treatment. 

The labial scale rows were serially cross- or horizontally-sectioned (20 µm thick sections, see 

Fig. 7) with a cryostat (2700-Frigocut, Reichert-Jung, Austria) and mounted on microscopic 

slides (Super Frost Plus, Menzel GmbH, Germany). Thereafter, the sections were air dried for 

2-3 hours at room temperature, before they were incubated in a nitro blue tetrazolium (NBT)-

succinate-solution (N6876 - 500 MG, Sigma-aldrich, Germany, see appendix 8.1.1) for  

3-4 hours.  

SDH was successfully used by Goris et al. (1989) to stain and therewith locate the 

mitochondria-rich TNM areas. Therefore, as a control every other cross-section of the entire 

upper scale row was incubated in NBT solution without succinate, whereas the other sections 

were incubated with succinate. As it is succinate which evokes the enzyme reaction in the 

mitochondria and stains the mitochondria in the TNMs, solutions without succinate should 

fail to stain the cross-sections.  

After phosphate buffer washing, the sections were dehydrated with a graded ethanol series, 

transferred into isopropanol and xylene, and covered with glass slides. The sections were 

investigated with a light microscope (Leitz DM RBE, Germany) and used for the examination 

of size and placement of the IR-receptive areas. The dimensions of the SDH-stained 

individual TNM areas were measured with the aid of a micrometer mounted on a microscope, 

the respective distances of sections and losses in between (in total 6 %) considered, and 

plotted onto the photograph of the labial scale of the investigated boa.  

Pictures were taken with a digital camera (Nikon Coolpix 950, Japan) of the head and of 

all sections with the aid of a microscope.  

 

 
Fig. 7: The dissected supra- and infralabial scale rows are depicted, as well as the two cutting planes 

for the 1: cross-sections and 2: horizontal-sections.   
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One horned viper (V.  ammodytes) was used as a control. Since representatives of vipers are 

not IR sensitive, no TNMs are expected in the labial scales, hence no SDH staining should 

occur. The dissected labial scale row of one side (see Fig. 8) was serially cross-sectioned  

(20 μm). The SDH staining procedure was identical to that of the boas and conducted 

simultaneously.   

 
Fig. 8: As a control investigation the dissected supralabial scale row (see white frame) of the viper 

 V.  ammodytes was stained with SDH.  

 

2.3.2 Light microscopy and transmission electron-microscopy  

For the investigation of the ultra-structure of the IR-receptive areas a juvenile and an adult 

boa were used. The juvenile boa (age: 1 month, snout-vent length: 53 cm) was anaesthetised 

with 3-4 ml isoflurane and dispatched, before the labial scale rows and control areas (scales of 

the head and neck area) were dissected. The adult boa (age: at least 3 years, snout-vent length: 

175 cm) underwent a perfusion procedure before decapitation. It was anaesthetised with 

(3-4 ml) isoflurane and in addition treated with an injection of ketamin (60 mg/kg body mass, 

Curamed, Delta Select GmbH, Germany) to relax the muscles and to immobilize the boa. 

Then, the snake was perfused on ice by rinsing with 0.1 M and 325 mOsm phosphate buffer at 

pH 7.2 using a catheter inserted in the left aortic arch, followed for at least 20 minutes by a 

2.5 % glutardialdehyde fixation in 0.1 M phosphate buffer. After decapitation, the labial scale 

rows and control areas were dissected.  

The dissected labial scale rows and control scales of the boas were prepared for electron 

microscopy. Fixation was carried out by incubation in a 2.5 % glutardialdehyde in 0.1 M 
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phosphate buffer solution (325 mOsm, pH=7.2) overnight. The samples were washed with 

phosphate and cacodylate buffer and fixed in 1.5 % osmium tetroxide for 2 hours in 0.1 M 

cacodylate buffer (400 mOsm, pH=7.1). After dehydrating with a graded ethanol series, the 

samples were embedded in Epon 812 (see appendix 8.1.2 for detailed procedure description). 

Semi-thin cross sections (0.5 µm) were cut with glass knives (Plano GmbH, Germany) as well 

as with a diamond knife (Diatom, Switzerland) on a microtome (OMU 3, Reichert, Austria). 

The semi-thin sections were stained with a 0.05 % toluidine blue-borax-solution (for about 

1 min) and examined with a light microscope (Leitz DM RBE, Germany). Occasionally, when 

TNM areas were visible in the semi-thin sections, ultra-thin (60-80 nm) sections were 

prepared for transmission electron-microscopy (TEM) with a diamond knife (DDK, Delaware 

Inc., USA) on an ultracut microtome (Reichert-Jung, Austria). The ultra-thin sections were 

stained with uranyl acetate and lead citrate according to the standard procedure (see appendix 

8.1.2.3). Examination was conducted with a transmission electron microscope (Zeiss EM 109, 

Germany).  

TEM picture slides (Ilford Pan F 50 Plus) were taken with the installed camera of the 

TEM. The picture negatives were scanned (Epson F3200) and edited with the programmes 

Adobe Photoshop® (Version 7.0, Adobe® Systems Incorporated 2007) and Corel Draw 

(Version 12, Corel Corporation 2007).  

 

3-D reconstruction of an exemplary IR sensitive labial scale area 

A series of 230 semi-thin sections covering a region of 3740 μm in length (i.e. rostral caudal 

extent along the supralabial scale) were used for the reconstruction of the exact position and 

dimension of the TNM areas of the three last caudal supralabial scale depressions (8th, 9th and 

10th) of the left side of the head. For this purpose the semi-thin sections were photographed 

with a Nikon Coolpix 950 (Japan). The digital images were fed into the graphic programme 

The GIMP (Version 2.2.10, http://docs.gimp.org/) to trace the outline of the epidermal layer 

of the sections and to mark the position of the TNM areas (see Fig. 9). The data was then 

transferred to the software Amira (Version 3.0, TGS Inc., San Diego, USA), which was used 

for the 3-D reconstruction. The respective distances between the sections were calculated, the 

losses of semi-thin sections in between (in total 5 %) were also considered.  
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Fig. 9: (A) The location of the TNMs in the semi-thin sections was marked and the outline of the semi-

thin sections was traced. (B) Both pieces of information were combined and functioned as the basis for 

the 3-D reconstruction.  

 

2.3.3 Scanning electron microscopy  

For the investigation of the scale surfaces by means of scanning electron microscopy (SEM), 

three boas were anaesthetised with 3-4 ml isoflurane and decapitated. The supra- and 

infralabial scale rows and scales from control areas (e.g. upper head and neck region as well 

as dorsal and ventral body scales, see Fig. 10) were dissected. The scale tissue was kept in  

70 % ethanol until further processing. Prior to the dehydration procedure, the samples were 

cleaned in an ultrasonic water basin for 30-40 s. The labial scale tissue was dehydrated by a 

graded ethanol series (80 % (for 1h), 90 %, 96 %, 100 %, isopropanol (I-II), 15 min in each), 

immersed in a hexamethyldisilazane (HMDS; Art. 3840.2, Roth, Germany) and isopropanol 

solution in a ratio 1:1 and then in pure HMDS for 5 min. Thereafter, the material was allowed 

to air dry for at least 24 hours at room temperature.  

HMDS has been used with success on a variety of insect tissues (Nation, 1983). Therefore 

HMDS was chosen, because, according to Nation (1983), it avoids shrinking or distortion of 

the tissue and thus preserves good surface detail.  

After drying, the sample was mounted on standard stainless steel stubs with carbon glue 

(Leit-C, Neubauer, Germany) and allowed to dry before it was sputter-coated with a 

(palladium) gold layer (thickness: 30 nm) and inspected with a scanning electron microscope 

(SEM) (Leo 440i, Leica, Nensheim; Cambridge Stereoscan 200) at a magnification factor of 

about 21000.  
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Fig. 10: Aside from the scale surfaces of the supra- and infralabial scale row several other control 

areas were investigated by SEM: 1, 2: upper head region; 3: lower head region; 4: neck region;  

5: dorsal body scales; 6: ventral body scales. 

 

Scanning electron microscope picture analysis 

In order to investigate surface pores of the labial scales, the magnification of the SEM 

pictures had to be standardized: in each picture 9 μm2 of the upper right corner was taken (see 

Fig. 11 (step 1)). Then, the SEM pictures were imported into a graphic programme (The 

GIMP, Version 2.2.10, http://docs.gimp.org/). There, in the first step, the black and white 

values were emphasized (via filter function). Then, the colour threshold value was shifted 

towards black, i.e. dark grey values turned black and the light ones white (see Fig. 11 (step 

2)). A self-programmed Matlab file (Version 6.5, The Mathworks Inc., USA) enabled a 

qualitative analysis of the pore areas (in percent) by comparing the black and white parts of 

the SEM pictures.  

The ratio of the pore (black) to the non-pore (white) areas as well as the total number of 

pores of the respective excerpt was calculated. The truncated pore areas in the margin region 

of the analysed excerpts were only valued if they were of the same size or larger than the 

smallest complete pore area of the respective excerpt.  
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Fig. 11: The SEM pictures were standardized (step 1) and converted into black and white (step 2), 

before the ratios of the pore areas (black) and non-pore areas (white) were calculated.   

  

2.3.4 Tracing experiments  

In total 7 boas (4 juveniles and 3 adults) were involved in the tracing experiments. In all 

experiments the boas were anaesthetised with 3-5 ml isoflurane (Curamed, Delta Select 

GmbH, Germany). Then, the skin of the respective labial scales was scraped off with a sharp 

scalpel and/or a needle. The tracer, usually biotinylated dextran amine (BDA) and in one case 

biocytin (see boa 7, appendix 8.2, Tab. 9), was applied with a needle and rubbed into the 

injury with a drop of distilled water. Thereafter, the boas lived for varying periods of time  

(2-10 days, see appendix 8.2, Tab. 9) before they were again anaesthetised and finally 

dispatched. After decapitation, the brain was immediately dissected and fixed in a  

4 %-paraformaldehyde solution with 0.1 M phosphate buffer for two days in a fridge (6 °C). 

Before the brain was embedded in agar (4 %) the remaining parts of the meninges of the brain 

were removed. The relevant brain area (grey square, Fig. 12) was cut cross-sectionally 

(cutting plane: grey arrow, Fig. 12) into 100 µm slices with a razor-blade using a vibratom 

(752M Vibroslice, Campden Instrumentals Ltd., UK). The slices were treated with ABC-Kit 

(Elite PK-6100 standard, Vector Laboratories, USA) before they were stained with triton-

diaminobenzidin(DAB)-solution. For a precise description of the AB-Complex treatment and 

staining procedure see appendix 8.1.3.1. The brain slices were examined with a light 

microscope (Leitz DM RBE).  
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Fig. 12: The tracer was applied to the TNMs of the selected labial scale area (here: the red arrow 

depicts the location of the BDA tracer application on the backward-pointing scale area in the second 

last caudal depression of the left supralabial scale row). The tracer was allowed a certain amount of 

'running time' (e.g. seven days) via the dendrites of the trigeminal nerve leading to the Nervus 

trigeminus (V) to reach the LTTD in the Medulla oblongata (MO).  

 

The experimental procedure for each boa differed slightly to test for possible influences on 

the result, since only the very first experiment was successful and could not be clearly 

repeated thereafter (compare results, 3.2.4). In the successful case, the BDA tracer (MW 

3000, Lot: 65A11, Molecular Probes, Eugene, USA) was applied onto the backward-pointing 

scale area on the left second caudal supralabial depression (see Fig. 12), as well as on the 

backward-pointing scale area on the right second rostral infralabial depression. The tracer was 

allowed a running time of seven days. The respective differences in the following experiments 

(e.g. location of the tracer application, tracer and the time of survival) are shown in the 

appendix (appendix 8.2, Tab. 9).  

After successful staining the relevant brain slices were dyed with neutral red (Sigma-

Aldrich, Germany) by following the typical standard procedure (see appendix 8.1.3.2). The 

digital picture of the brain section shown in the results (3.2.4, Fig. 35) was only edited in 

brightness, contrast and colour intensity.  
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2.3.5 Cast of a boa head as a functional model 

A cast of a C. hortulanus head made out of plaster was built as a functional model for the 

receptive areas of IR radiation. A decapitated head of an adult boa was kept in fixative (see 

appendix 8.1.4). The head was entirely covered with one component silicone (734, Dow 

Corning Corp., Germany) in multiple layers and was allowed to dry thoroughly. The silicone 

was stiff enough to maintain the exact proportions of the head. The silicone layer was cut 

longitudinally and carefully pulled off the head. The cut was pasted with silicone and the cast 

was filled with plaster, which was allowed to dry overnight (Ceramofix casting powder, 

Eberhard Faber GmbH, Germany). The silicone was removed and the TNM areas were 

marked in colour onto the cast, using the measurements of the size and placement of the SDH 

stained areas of the cross-sections. For this purpose acrylic matt paint (Marabuwerke GmbH, 

Germany) in four different colours was painted onto the cast with a fine hair brush under a 

dissecting microscope (Zeiss, Germany). The upper labial TNM areas pointing forwards were 

coloured in blue and the areas pointing backward in red. In contrast the TNM areas at the 

lower labial scales pointing forward were coloured in yellow and the areas pointing backward 

in green (see Fig. 13).  

The boa cast was mounted on a tripod with its reference point positioned in the centre of a 

perimeter. The reference point on the cast was the centre between the eyes at the height of the 

lower edge of the supralabial scale row. A position fixed camera (Nikon D200, Japan) with a 

macro lens (Nikon AF-S Micro Nikkor 105mm 1:2,8 G ED VR, Japan) was directed towards 

the reference point in the same horizontal and vertical plane, at a distance of 20 cm.  

Pictures of (the left side of) the cast in the horizontal and vertical plane were taken in 

different angles by adjusting the orientation of the boa cast in the perimeter: different angles 

in the horizontal plane (starting from – 40° in 10° steps to the front of the head (0°) and then 

up to 150°, see Fig. 13), under three conditions in the vertical plane: 1. horizontal head 

position (0°), 2. head pointing upwards in a 45° angle (+45°), 3. head pointing downwards in 

a 45° angle (-45°). To consider the complete receptive field of view the angle range of 0° to 

40° had to be included because frontal IR radiation impinges on both sides of the head.  

Each of the different coloured areas of the labial depressions were measured for the 

respective angle and their total area size was calculated with the image processing and 

analysis programme ImageJ (Version 1.3; Rasband, 1997-2006) and calculated with Excel 

(Version 2003, Microsoft). The values of the TNM areas from the left side of the head of a 

single individual served as the basis for the reconstruction of the infrared-receptive field of 

view.  
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Fig. 13: Exemplary picture of the boas head cast photographed in a 90° angle in the horizontal plane 

and head position. The differently coloured TNM areas in the depressions of the supra- and infralabial 

scale rows and their length are shown as well as the height of the head cast. The purple dotted circle 

line depicts the complete rotational angle of the photographed cast ranging from -40° over the frontal 

head position (0°) to 150°.   
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3 Results 

3.1 Behavioural experiments  

3.1.1 Behavioural responses of Crotalus atrox  

During 130 experimental sessions the rattlesnakes (N=12) were exposed to 1705 IR stimuli, 

offered at distances between 10 cm and 160 cm. In 1655 cases the snakes’ responses could be 

scored unequivocally; the remaining 50 trials produced equivocal results and were not 

included in the data analysis. Of the 1655 unequivocal trails, 760 trails produced a positive 

response. At distances of up to 100 cm (10 ≤ N ≤ 12)  80 sessions with 1304 stimuli were 

conducted, and within the distance range of 70 cm to 160 cm (7 ≤ N ≤ 12) 50 sessions with 

396 stimuli (see also Tab. 1) were conducted. Data from these two separate acquisition sets 

was pooled for the overlapping distances (70–100 cm).  

 

Tab. 1: Overview of the databases for the analysis of C. atrox´ responses and control experiments.  

 

Experiment Number 
of 
Animals 

Number 
of 
Sessions 

Number of IR 
Stimuli Settings

Remarks 

IR detection range  12 130 
 

1655 
 

80 sessions with 1304 
stimuli presentations (up to 
100 cm) 
 
50 sessions with 396 
stimuli presentations (from 
70-160 cm) 

control experiment 
for hidden cues 

9 9 108 cold PE 
 

control experiment to 
assess spontaneous 
response-like 
behaviour 

8 8 158 sham experiment: 
fictive IR stimuli, i.e. 
inactive PE 

control experiment 
with blocked pit 
organs 

4 8 201 IR stimuli at close 
distances  
(≤32 cm) 

habituation 6 24 292 Four constant distances  
(30, 60, 90, 120 cm) 

control of response 
assessment  

5 5 39  

 

The rattlesnakes responded to the IR stimulus with a variety of combinations of the five 

classified behavioural reactions (see 2.2.4), of which only 'tongue flicking' (29.2 %), 'head 

jerks' (4 %) and 'fixing' (1.8 %) occurred solitarily. 'Freezing' and 'rattling' only occurred in 

combination with 'tongue flicking' and/or 'head jerks' and/or 'fixing'. Four main responses 
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were observed, which amount to 82 % of all positively-scored responses. These responses 

were stimulus-directed 'tongue-flicking' (29.2 %), 'head jerks' and 'tongue-flicking' (21.8 %), 

'tongue-flicking' and 'fixing' (15.6 %), and 'head jerks' in combination with 'tongue-flicking' 

and 'fixing' (15.2 %). Other combinations of behavioural responses including 'rattling' and 

'freezing' did not exceed 3 % occurrence in any combination. The proportions of the (total 

number of) behavioural responses (solitarily or in combination) exceeding 2 % are depicted in 

the respective 15 distance intervals in Fig. 14.  

 

 
 

Fig. 14: Total number of positive behavioural responses shown over the IR stimulus distance intervals 

(class width: 10 cm). Behaviours are broken down into 'tongue flicking' (black), 'tongue flicking and 

head jerk' (dark grey), 'tongue flicking and fixing' (light grey), 'head jerk, tongue flicking and fixing' 

(rhombic grey pattern), 'head jerk' (chequered pattern), and 'head jerk and fixing' (striped).   

 

Positive responses (pooled in 10 cm distance classes) ranged from 67 % (shortest source 

distance: 10 cm) to 13 % (farthest source distance: 160 cm) (see Fig. 15). The relationship 

between source distance and response rate was not constant; the response rate roughly 

remained constant between 50 cm and 80 cm source distance, and decreased sharply beyond 

the 100 cm source distance (Fig. 15). At 100 cm the response rate was significantly above 
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(Chi2 = 12.202, df = 1, p = 0.0001) the control level of 29 % (see below 3.1.1.1), but beyond 

100 cm values the snakes’ responses to the stimulus cannot be distinguished from the control 

level (Chi2 = 0.301, df = 1, p = 0.787).  

 

 
 

Fig. 15: Percentages of behavioural responses as a function of IR source distance (black dots). Class 

width was 10 cm. Dotted line: Irradiance contrast of the IR stimulus calculated in mW/cm2 and plotted 

as a function of the distance. Solid line: Baseline of spontaneously occurring behaviour (i.e. non-

stimulus-bound behaviour) resulting from control trial data. 

 

3.1.1.1 Control experiments  

As expected, individual rattlesnakes responded at different rates during the control trials. 

Overall, the following ranges of positive responses were observed: trials with oscillating 

pendulum but inactive PE (0 % - 29 %), inactive pendulum and inactive PE (0 % - 22 %), and 

blocked pit organs (0 % - 13 %). The highest positive response rate observed (29 %) is taken 

as the control level or baseline. 
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3.1.1.2 Control of response assessment  

In addition to the experimenter two further control persons independently assessed the 

behaviour of the rattlesnakes. Five snakes were exposed to 39 IR stimuli in five sessions. One 

person judged three cases (8 %) differently from the experimenter and the second person two 

cases (5 %). In all but one case the behavioural responses were judged more critically (i.e. 'no 

response') by the experimenter.  

 

3.1.1.3 Habituation  

IR stimuli were presented at a distance of 30 cm (N=6, 10 ≤ n ≤ 37), 60 cm (N=6, 7 ≤ n ≤ 29), 

90 cm (N=6, 4 ≤ n ≤ 18) and 120 cm (N=6, 5 ≤ n ≤ 9) (see Fig. 16). All rattlesnakes (N=8) 

habituated to the IR stimuli. The percentage of positive responses decreased with increasing 

stimulus number and with increasing IR source distance. However, the habituation curves of 

individual rattlesnakes differed. For instance, at a distance of 30 cm one snake responded to 

the first six stimuli in 67 % of the cases, thereafter no responses occurred. At the distance of 

30 cm another individual responded to the IR stimuli with the same percentage even after  

30 stimulus presentations.  

 
Fig. 16: Behavioural responses plotted as a function of repeated stimulation for four different 

distances. Note the response decrement to IR stimuli (N=6, in each case three consecutive responses 

were pooled) at the distances 30 cm (squares), 60 cm (dots), 90 cm (triangles) and 120 cm (diamonds).  
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3.1.2 Behavioural responses of Python regius 

In total 1552 IR stimuli were presented to Python regius (N=22) in 79 experimental sessions 

with 20 stimulus presentations per session on average (see below). Thereof, 140 IR-stimulus 

presentations produced ambiguous results and were excluded from data analysis. In these 

cases the snakes had left the experimental platform or technical difficulties had led to an 

abortion of the recording. In the remaining 1412 IR stimulus presentations the pythons 

responses could be scored unequivocally. Of these, 221 stimulus presentations evoked 

positive responses (see also Tab. 2). The IR stimulus presentations and the responses were 

pooled in distance classes of 10 cm. Video analysis allowed a precise evaluation of the 

behavioural responses and furthermore a verification of the experimenter’s unbiased 

assessment by control persons.  

 

Tab. 2: Overview of the database for the analysis of P. regius´ responses and control experiments.  

 

Experiment Number of 
animals 

Number of 
sessions 

Number of 
IR stimuli 

presentations 

Remarks 

IR stimulus detection 
distance 

18 79 1412 
 

juvenile & adult 
pythons 

control experiment for 
hidden cues  

6 6 116 cold but moving PE 

control experiment to 
assess spontaneous 
response-like behaviour 

6 6 355 sham experiment: 
fictive IR stimulus, 
i.e. inactive PE 

control experiment with 
blocked pit organs 

6 6 93 IR stimulus 
presentations at close 
distances (≤ 30 cm) 

habituation 12 12 245 two constant 
distances (15, 30 cm)  

 

Three main behavioural reactions were observed during IR stimulus presentations and 

evaluated. These responses were the 'S-form' (36.2 %), 'freezing and fixing' (31.9 %) and 

'following and fixing' (2.8 %). These responses also occurred in combination: 'S-form' with 

'freezing and fixing' (17.4 %), 'S-form' with 'following and fixing' (9.4 %), 'following and 

fixing' with 'freezing and fixing' (1.9 %) and all three combined (0.5 %). The proportions of 

the (total number of) behavioural responses exceeding 2 % are depicted in Fig. 17 in the 

respective distance intervals.  
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Fig. 17: Total number of positive behavioural responses shown over the IR-stimulus distance intervals 

(class width: 10 cm). Behaviours are broken down into 'S-form' (black), 'freeze and fix' (dark grey), 

'S-form' with 'freeze and fix' (light grey), 'follow and fix' (chequered pattern) and 'S-form' with 'follow 

and fix' (rhombic pattern). 

 

Assuming that the body length might influence the behavioural reaction to the IR stimulus at 

farther distances (within the snakes´ direct reach), adult pythons (N=8) were tested up to 

distances of 100 cm, whereas juvenile pythons (N=10) were tested up to 60 cm. All other 

experimental conditions were identical. The Mann-Whitney-U-Test showed no significant 

difference in the response behaviour of juvenile and adult pythons (10-20 cm interval: N1=10, 

N2=8, U=38.5, p=0.897; 20-30 cm interval: N1=10, N2=8, U=29, p=0.36; 30-40 cm interval: 

N1=10, N2=8, U=28.5, p=0.315) (Fig. 18). Therefore, data from all individuals were pooled. 

In any case, the adult pythons did not consistently respond to stimuli greater than 60 cm.  
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Fig. 18: Relative behavioural responses of juvenile (black triangles) and adult (white triangles) 

pythons as a function of IR source distance. Class width was 10 cm. Dotted line with white dots: 

Irradiance contrast of the IR stimulus calculated in mW/cm2 and plotted as a function of distance. 

Solid line: Baseline of spontaneously occurring behaviour resulting from control data.  

 

The decline of the irradiance contrast of the IR source over the increasing distance is shown in 

Fig. 18. The behavioural response rate followed the decline. It dropped below the control 

level of 8.6 % (see below 3.1.2.1) in the 30-40 cm interval. Single behavioural responses of 

single individuals occurred up to 90 cm. One individual responded quite continuously over all 

distance intervals to the IR stimulus. As there were very few IR stimulus presentations for the 

interval 80-90 cm this resulted in a high response rate value for this interval. However, as this 

response rate value does not differ from the baseline, it is considered to be not significant.  

The pythons only significantly responded up to a distance of 30 cm. The response rate in 

the distance intervals up to 30 cm is significantly above (Chi2=54.731, df=1, p=0.0001) the 

control level of 8.6 %, but beyond 30 cm distances the python’s responses to the IR stimulus 

cannot be distinguished from the control responses (Chi2=1.596, df=1, p=0.138).  

 

3.1.2.1 Control experiments  

The pythons responded individually at different rates during the control trials. The following 

positive responses were observed: trials with an oscillating but inactive PE (8.6 %), trials with 
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a non-moving and inactive PE (2.5 %), and trials with an oscillating and active PE, whilst the 

pit organs were blocked (3.3 %). The highest average positive response rate (8.6 %) was taken 

as the control level.  

 

3.1.2.2 Habituation 

To test habituation, IR stimuli were presented at two constant distances (see Fig. 19). At a 

distance of 15 cm (N=6, 15 ≤ n ≤ 25) the percentage of positive responses decreased with 

increasing stimulus number. At most 21 stimulus presentations were responded to 

consecutively. The results of the samples were significantly different from equipartition 

(Chi2=18.168, df=8, p=0.019), which shows that the pythons habituated at this distance.  

Stimuli presentations at 30 cm distance (N=6, 15 ≤ n ≤ 30) hardly evoked any responses 

(in 7.3 % of the cases), and therefore did not allow any conclusions about habituation. 

 

 
Fig. 19: Relative behavioural responses plotted as a function of repeated stimulation for the distances 

of 15 cm (black dots) and 30 cm (circle).   
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In addition, the habituation effect over the course of sessions (only main sessions) was 

investigated. The Friedman-Test (Chi2=2.719, df=3, p=0.437) revealed that the pythons 

(N=18) did not habituate over the course of all main experimental sessions.  

 

3.1.2.3 Video analysis versus direct response assessment 

In contrast to the real time evaluation of the rattlesnake experiments, all of the experimental 

sessions with pythons were evaluated from videotape, as well as in real time during the 

experiments. Ninety-eight percent of the real-time evaluated behavioural responses were 

identical to the results of the independently re-evaluated video recordings. The remaining 2 % 

of the responses were assessed more critically during direct evaluation.  

 

3.2 Anatomical investigations 
C. hortulanus´ labial scale morphology is especially conspicuous in the frontal region of the 

supralabial scale row, showing zigzag-shaped depressions between the front scale and the two 

following rostral scales on each side of the head, as well as from the 6th scale on, where they 

form zigzag-shaped deep folds with ridges in between. Moreover, the 8th to the 10th 

supralabial caudal scales possess an outgrowth on the bottom edge, which partly shields the 

scale emarginations and depressions, just as the bulge of the scale row above the supralabials 

does. The infralabial scales however, only possess deep depressions in approximately the 

caudal half of the labial scale rows. 
 

3.2.1 Succinate dehydrogenase staining experiments 

The cross- and horizontal cryostat sections of the entire supra- and infralabial scale rows 

revealed TNMs that are especially rich in mitochondrial enzyme succinate dehydrogenase 

(SDH) (Fig. 20 and Fig. 21). The control sections, which were incubated in NBT solution 

without succinate, did not show any stained structures. This clearly confirmed that SDH is an 

excellent marker for the presence of TNMs in the labial scales. In contrast to those of the boa, 

sections of labial scales of the IR non-sensitive horned viper (V. ammodytes) were not stained 

by SDH, again confirming that the SDH staining is specific for IR receptors.  

The size of the stained areas varied depending on the investigated section of the scale (see 

encircled purple areas in Fig. 20). The stained areas occurred in a repetitive pattern (Fig. 21), 

namely in the fundus of the depressions, with unstained areas in between.  
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Fig. 20: Three exemplary cross-sections (20 μm) with SDH-stained TNM areas (encircled in black) 

along the supralabial scale row (for location see black bars above). Section orientation guide: left part 

of the section is the edge of the upper lip; right is the upper part of the supralabial scale; top is the 

surface of the supralabial scale; bottom is the inner tissue of the supralabial scale. Only the encircled 

areas are SDH stained, all other darker areas result from pigmentation.  

 

 
Fig. 21: Horizontal-sections of A) two depressions of the supralabial scale and B) the entire caudal 

infralabial scale area (see black box on the respective labial scale, black arrow on the left depicts the 

cutting plane). Overlapping areas of the digital pictures were put together in one picture. Section 

orientation: top is the interior tissue of the scales, bottom is the outer edges of the scales. TNM areas 

are stained in blue along the scale surface (compare also Fig. 20).  

 

Both, the supra- and the infralabial scale rows were stained. The horizontal-sections of the 

supralabial scale row and their staining are similar to the infralabial scale row (see Fig. 21). 
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However, in contrast to the supralabial scale row only the caudal half of the infralabial scale 

row was stained, since the TNMs are only present there.  

The horizontal-sections show that all labial scale depressions contain TNM areas. The 

length sizes of the SDH-stained TNM areas in the cross-sections of the supralabial scale row 

ranged from 3 μm up to 82 μm. The cross-sections of the infralabial scale row revealed TNM 

area length sizes of 1 μm up to 62 μm. The cryostat sections are only partially dimensionally 

stable due to straining. However, the results allow an approximation of the dimensions of the 

TNM areas along the supra- and infralabial scale row (see Fig. 22).  

 
Fig. 22: Reconstruction of the size and location of the TNM areas (hatched in black) for the A) supra- 

and B) infralabial scale row drawn onto a photograph of the snakes´ labial scales.  

 

The reconstruction reveals that the TNM areas are only situated within the labial depressions. 

The size of the depressions varies (see Fig. 22 A, B) as well as the size of the TNM areas. The 

3rd to the 5th supralabial depressions are much shallower and narrower than the others and 

have much smaller TNM areas (Fig. 22 A). The dimensions of the TNM areas in the 

infralabial depressions are similar except the first two, which are distinctly smaller  

(Fig. 22 B). The TNM areas in the infralabial depressions lie underneath the deep depressions 

of the caudal supralabial scale row.  

 

3.2.2 Light microscopic and transmission electron microscopic investigations of the 

labial scales  

The presence, distribution and approximate dimensions of the TNM areas were revealed by 

the SDH staining. However, the frozen sections were 20 μm thick which only allowed an 

approximation of the size. For a more precise resolution (especially of the epidermal and 

dermal structures) thinner sections were necessary. The supralabial scale row (8th to the 10th 

scales) with its TNM areas was three-dimensionally (3-D) reconstructed. For this purpose, a 
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series of semi-thin sections of the 5th to the 12th supralabial scales (total length: 9 mm) 

interspersed with ultra-thin sections of a juvenile boa were prepared. Moreover, the scales of 

an adult boa were prepared; unfortunately, they turned out to be too large to be cleanly 

transferred onto the microscopic slides.  

As the scale morphology varies greatly, the size and shape of the semi-thin sections 

differed within the series. A picture of a semi-thin section within a TNM area is shown in 

Fig. 23 and an excerpt of higher magnification in Fig. 24. The layer at the top of the sections 

is the epidermal layer, which contains a monolayered array of TNMs and other epidermal 

receptors such as bubble receptors. The TNMs consist of accumulations of free nerve endings. 

Usually the epidermal area, which contains TNMs, is (slightly) thicker than the regular 

epithelial layer. Beneath the epidermal layer, nerve fibres and capillaries are visible  

(see Fig. 24). The dendrites of these nerve fibres derive from the TNMs and congregate in the 

Nervus trigeminus. The capillaries are periodically arranged in a regular capillary bed and are 

always associated with the TNM areas. Furthermore, glands (presumably saliva glands) lie 

within the scale structures.  

 



3 Results  42 

 
Fig. 23: A) Semi-thin section and B) an enlargement of the TNM area of the rostral part of the 7th 

supralabial scale containing blood vessels (bv), bubble receptors (br), nerve fibres (nf), presumable 

salivary glands (sg), terminal nerve masses (TNM). Section orientation guide: top of the section is the 

scale surface (dark grey layer); left is the upper edge of the supralabial scales; right is the edge of the 

upper lip; bottom of the section is the interior tissue of the scales. 
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Fig. 24: Semi-thin section excerpt of a representative TNM area. Beneath the TNMs in the epidermal 

layer the associated off-branching nerve fibres (nf) towards the IR receptive TNMs and a capillary bed 

(bv: blood vessel) are present in the dermal layer.  

 

TEM investigations were conducted for a more detailed insight into the epidermal layer and a 

closer look at the TNMs (Fig. 25). The TNMs are embedded between epithelial cells and are 

densely packed with mitochondria (see Fig. 25 B). These TNMs are located 2 μm to 6 μm (on 

average about 4 μm, n=7 TEM pictures) below the surface of the scales, i.e. beneath the three 

strata (see below). The TNM layer spanned the entire epithelium. The height of the boas’ 

epithelium containing TNMs ranged from 11 μm up to 30 μm (median: 18 μm; n=20 

investigated areas measured within the reconstructed region). The width of the TNM areas 

ranged from 10 μm up to 324 μm (n=20 semi-thin sections, measured in the regions of the 

largest supralabial depressions with the longest TNM areas according to the SDH staining, see 

3.2.1, Fig. 22 A). The total TNM area sizes vary greatly in accordance to the variance 

between the supralabial scales.  
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Fig. 25: A) Ultra-thin section showing TNMs. B) The detail shows the densely packed mitochondria 

(round shaped dark grey areas) in the TNMs. Abbreviations: blood vessel (bv), nucleus of the 

epithelial cell (ec), terminal nerve mass (TNM), mitochondrion (m), red blood cell (bc), stratum 

corneum (stc), stratum germinativum (stg)  
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The TEM investigations also allowed a detailed look at the structure of the layers above the 

epithelium. As depicted in Fig. 26 the stratum germinativum, the stratum intermedium and the 

stratum corneum form the outer layers of the epidermis. The investigation of three random 

samples of the stratum corneum revealed that the stratum corneum above the TNM areas is 

about one-half up to two-third as thick (Fig. 26 and Tab. 3) as areas bordering the TNM areas.  

 

 
Fig. 26: Ultra-thin section depicting the declining thickness of the stratum corneum from an TNM-

void area (left) towards the TNM-rich area (right). Abbreviations: epithelial cell (ec), stratum corneum 

(stc), stratum germinativum (stg), stratum intermedium (sti) 
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Tab. 3: Thickness of the stratum corneum investigated at four different labial scale areas (see markings 

on labial scale row below) on six TEM pictures, n= 32 

 

Labial scale 

area 

Range of the stratum 

corneum thickness (μm) 

Remarks 

1 2.1 – 3.0  

2 2.1 – 3.0 above TNMs 

3 1.8 – 3.1  

4 2.3 – 4.6 area bordering TNM area (compare Fig. 26) 

 

 
Moreover, microscopic pores covering the scale surface were found (see Fig. 27). Their 

diameter and depths were investigated exemplarily in three different TNM areas (6 TEM 

pictures, n=35 pores) of the labial scale (see scale row below Tab. 4). The results are shown in 

Tab. 4. The diameter of the pores ranged between 0.28 μm and 0.81 μm. The range of the 

pore depth lay between 0.14 μm and 0.31 μm.  

 

 
 
Fig. 27: Ultra-thin section showing the stratum germinativum (stg), stratum intermedium (sti) and 

stratum corneum (stc) layer above a TNM area. In the stratum corneum layer small indentations, so-

called microscopic pores are visible (black arrows).  
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By comparing the pores of Fig. 26 and Fig. 27 it becomes visible that the distribution of the 

pores is irregular within one region and also between regions; in Fig. 26 the pores are densely 

distributed and in Fig. 27 they occur sporadically with larger inter-pore-intervals.  

 

Tab. 4: Ranges of the pore diameters and depths shown for six TEM pictures in three different labial 

scale row areas above TNMs (see markings on labial scale row below) 

 

Labial scale area  Range of pore diameters (μm) Range of pore depths (μm) 

1 0.41 – 0.81  0.14 – 0.31  

2 0.32 – 0.41 0.16 – 0.23 

3 0.28 – 0.79 0.14 – 0.28 

Total range 0.28 – 0.81 0.14 – 0.31 

 

 
 

3-D reconstruction of the TNM areas in the 8th-10th supralabial scale depressions 

A precise computer-based three-dimensional (3-D) reconstruction of the TNM regions was 

conducted. The selected area of the three depressions in the 8th, 9th and 10th caudal supralabial 

scale for the 3-D reconstruction is shown in Fig. 28 A and C (white rectangle).  

Two different perspectives of the 3-D reconstruction are depicted for the selected area: the 

first shows a lateral view (Fig. 28 B), whereas the second shows a semi-frontal view from 

slightly above (Fig. 28 D). Especially, the lateral view of the labial scales shows that the 

depressions are arranged in a zigzag formation. Both endings of each scale fall inwards, thus 

the caudal edge of one scale and the rostral edge of the next scale form the depression (fold). 

The rostral and the caudal side of one scale together form a ridge. Therefore, each scale has a 

rising caudal side which reaches up to the ridge and a declining rostral side which drops away 

from the ridge.  

The reconstructions (Fig. 28 B and D) reveal that the TNM areas (coloured in red) are 

located in the rostrally-forward and caudally-backward-facing scale areas. It is conspicuous, 

that the forward facing TNM areas (rostral part) extend up to the ridge, however do not reach 

down into the deep fold between the scales. On the caudal side of the scale ridge the TNM 

area begins in close proximity to the fold of the depression however does not reach more than 
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three quarters up the ridge. The exact reconstruction revealed the TNM areas to be quite 

different in size: the backward-pointing TNM area of the 8th scale (Fig. 28 B, first on the left) 

had a size of 56 x 10-3 μm2, the forward-pointing TNM area of the 9th scale was almost of the 

same size (52 x 10-3 μm2), the backward-pointing area of the latter scale turned out to be the 

biggest with 128 x 10-3 μm2. The forward-pointing TNM area of the 10th scale was  

69 x 10-3 μm2 in size; the backward-pointing area of the latter scale was 77 x 10-3 μm2 in size, 

forming the depression with the forward-pointing area of the 11th scale, which had a TNM 

area size of 8 x 10-3 μm2.   

Each supralabial scale possesses an outgrowth on the bottom edge which curves up and 

away from the scale emargination and depression. This outgrowth partly shields the scale 

emargination and depression, just as the bulge of the scale row above the supralabials does 

(compare lateral view (B) and semi-frontal view (D) of the reconstructions in Fig. 28). 

 

 
Fig. 28: The white rectangles in the two picture excerpts A and C mark the selected area for the 3-D 

reconstruction. The details B (lateral view) and D (semi-frontal view) depict the 3-D reconstruction of 

the TNM areas (marked in red) in the 8th to the 10th supralabial scales.   
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3.2.3 Scanning electron microscopic examination of the labial scale surface 

In order to complement the knowledge of the exact dimensions of the TNM areas in the 

selected scale area ranging from the 8th to the 10th supralabial scale (see Fig. 29 and compare 

3.2.2) and the finding of the pores (and thinning stratum corneum) above these TNM areas an 

investigation of the scale surface was conducted with the SEM. The aim of this examination 

was to find out whether there is a correlation between the organisation of the surface structure 

(i.e. microscopic pores) and the distribution of the TNM areas situated underneath.  

 

 
Fig. 29: This picture shows the investigated labial scale area (white rectangle). The blue areas of the 

black-bordered detail exemplarily depict what is defined as an emargination area of a scale, which is 

important in the following analysis.  

   

In total 552 SEM pictures of the labial scale surface (above-depicted area of the three last 

caudal depressions (Fig. 29)) and of control surfaces (e.g. upper head and neck region, dorsal 

and ventral body scales) were taken. Thereof, a total of 5237 pore areas in 142 SEM pictures 

of the selected labial scale area and 6 control pictures (with 161 pore areas) were analysed. 

For the analysis a standardised excerpt of 9 μm2 of each picture was used.  

The size and shape of the pores vary greatly. Fig. 30 shows pictures of the diversity of 

pores. The pores are not arranged in a regular pattern; however, with a few exceptions they 

are more or less evenly distributed within the 9 μm2 excerpts. The smallest pores are of a 

regular round shape (e.g. Fig. 30 B, E), whereas the shapes of the bigger pores differ from 

round over oval to elliptical (e.g. Fig. 30 C, D, F). In general, the distance between the pore 

centres are similar, independent of the pore size, i.e. the larger the pores become, the less 

interspace is left. In the largest pore sizes this leads to a mesh-like structure (e.g. Fig. 30 A).  
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Fig. 30: Each exemplary picture (A-F) shows the distribution and shape of the pores within the defined 

9 μm² sections (scale bar is 1 μm).  

 

To analyse the diverse pore pictures, a distinguishing criterion was needed. It was not possible 

to categorise the pore areas (e.g. into small, middle and large pores) as they represent a 

continuous set of data without obvious gradations. Therefore, the relative pore area (pore area 

divided by the total area of the 9 μm2 sized excerpt) and the number of pores were analysed.  

The mean number of pores increases with increasing relative pore areas, but on average the 

number of pores only increases minimally. The results of the investigated SEM pictures  

(n=142) are shown in Tab. 5.   

 



3 Results   51

Tab. 5: The range of the number of pores and their average is shown for the respective pore area 

interval.  

 

Relative pore area Range of the 

number of pores 

Average number of pores 

%  per 9 μm2 per 1 μm2 

  0 < x ≤ 5 [11, 57] 28 3 

  5 < x ≤ 10 [24, 60] 39 4 

10 < x ≤ 20 [25, 55] 40 4 

20 < x ≤ 30 [34, 59] 44 5 

30 < x ≤ 40 [40, 41] 41 5 

 

The average number of pores ranged from 3 to 5 per μm2 (28-44 per 9 μm2). The calculation 

of the mere pore diameter was neither feasible nor expressive due to the greatly variable pore 

shapes. Moreover, the shape of the pores can already vary greatly within one 9 μm2 excerpt 

(see Fig. 30 C, E). To compare the size of the pores in different areas, the total pore area was 

measured and divided by the total excerpt area (i.e. 9 μm2) 

 

The relative pore areas were categorised into five intervals (I: 0 % < x ≤ 5 %,  

II: 5 % < x ≤ 10 %, III: 10 % < x ≤ 20 %, IV: 20 % < x ≤ 30 %, V: 30 % < x ≤ 40 %; compare 

Fig. 31 for examples) and plotted onto the SEM labial scale overview picture (Fig. 32). In the 

following two pictures (Fig. 31 and Fig. 32) the five categories are referred to in a short 

version (I: ≤ 5 %, II: ≤ 10 %, III: ≤ 20 %, ect.).  

 

 
Fig. 31: SEM pictures of the microscopic pores for the five categories of relative pore area sizes. Scale 

bar is 1 μm.  
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Fig. 32: Overview of the relative pore areas (%) of the SEM pictures randomly taken of the three last 

caudal supralabial scale depressions. The relative pore areas are depicted in five different colours 

depending on their percentage value. The TNM areas are encircled in white.   

 

The smaller relative pore areas (≤ 20 %) are mainly distributed over the scale emarginations 

and also depressions, except on the outgrowths at the lower bottom edges of the scales. The 

smallest (blue) are centred on the scale. The relative pore areas up to 10 % (green) are 

similarly distributed as the smallest areas; however, they are shifted more to the scale edges. 

Except for a few exceptions the relative pore areas ranging between 10 % and 20 % (yellow) 

lie on the edges and in the depressions of the scales. The larger relative pore areas above 20 % 

(red and purple) are mainly distributed on the bottom-edge outgrowths of the supralabial 

scales and on the scales above.  

With the knowledge of the exact position and dimension of the TNM areas (gained by the 

3-D reconstruction, compare 3.2.2) it was possible to compare whether the distribution of the 

relative pore areas is linked to the infrared-receptive TNM areas (see white surroundings in 

Fig. 32). This is under the presumption that the dimension and distribution of the TNM areas 

of all individuals are similar. The distribution of the specific relative pore areas do not seem 

to be related to the TNM areas, though in general it seems as if smaller relative pore areas 

primarily are present in the labial scale emarginations and depressions, whereas the larger 

pore areas lie outside of these.   
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To verify this, the amount of relative pore sizes in the respective TNM areas, in the 

emarginations and outside the emarginations (bottom edge outgrowth of supralabial scales 

and the scales above the supralabial scales) were examined. The following two tables (Tab. 6 

and Tab. 7) show the distribution of the relative pore areas in regard to a) the scale area 

outside of the emargination and the area within the emargination and b) the area of the TNMs 

in relation to the emargination area.  

 

Tab. 6: Distribution of the relative pore areas differed from the ones above the emargination areas and 

the ones outside of the emargination areas.  

 

Relative pore area Outside 

emargination area 

Emargination area 

% % % 

0 < x ≤ 5 0 100 

5 < x ≤ 10 13 87 

10 < x ≤ 20 17 83 

20 < x ≤ 30 62 38 

30 < x ≤ 40 50* 50* 

                      * account for measurements of only two SEM picture areas 

 

Tab. 7: distribution of the relative pore areas above the TNM areas in relation to the emargination 

areas.  

 

Relative pore area On TNM areas in 

relation to the 

emargination areas 

% % 

0 < x ≤ 5 64 

5 < x ≤ 10 40 

10 < x ≤ 20 41 

20 < x ≤ 30 33 

30 < x ≤ 40 0 

 

Within the emarginations most relative pore area sizes do not exceed 20 %; the TNM areas lie 

within the emargination areas and therefore show similar results. In contrast, the non-

emargination areas do not contain relative pore areas smaller than 6 %. The subdivision of the 
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first 10 % into two categories (≤ 5 % and ≤ 10 %) was sensible, since over ¾ of the relative 

pore areas above the TNMs are smaller than or equal to 5 %. All relative pore areas with sizes 

of ≤ 5 % lie entirely within the emargination areas and thereof 64 % lie on the TNM areas. 

 

3.2.3.1 Examination of the surface structure of control scale areas  

The surfaces of the control areas revealed more or less meshlike structured pores (see Fig. 33 

for examples) with relative pore areas ranging from just below 30 % up to more than twice as 

much (Tab. 8). The number of pores per μm2 varies between 2 and 7 for the SEM pictures of 

the control areas shown in Fig. 33.  

 

 
 

Fig. 33: Examples for SEM pictures of the surfaces of control scale areas. C1: scale of the upper neck 

region, C2, C4: dorsal body scale, C3: ventral body scale; scale bar is 1 μm.  
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Tab. 8: The relative pore areas and the number of pores depicted for the respective control scale areas 

shown in Fig. 33.  

 

Scale area  Relative pore area 

(%) 

Number of pores 

(per 9 μm2)  

Number of pores 

(per 1 μm2)  

C1 41 36 4 

C2 65 18 2 

C3 28 65 7 

C4 60 42 5 

 

The shape of the pores differ, however, they all are more or less meshlike in structure. The 

pores of the upper neck region (Fig. 33 C1) are similar to the pores of the non-emargination 

areas and to the scales above the labial scale row, whereas the pores of the dorsal and ventral 

body scales (Fig. 33 C2, C3, C4) differ completely in their shape, even within one similar 

region (compare Fig. 33 C2 & C4, both are dorsal body scales).   

 

3.2.4 Tracer experiments 

The scale morphology of the boas clearly possess forward- and backward-pointing labial scale 

areas (zigzag), which leads to the hypothesis that the forward- and backward-pointing TNM 

areas are processed in different parts of the IR processing brain area (LTTD), i.e. the (IR) 

information of one direction is processed in a different LTTD region than the information 

from the other direction.  

In total 7 tracing experiments were conducted. For the investigation, the brain stem was 

cross-sectioned from the caudal end of the mesencephalon to the caudal end of the medulla 

oblongata (see Fig. 34). The first tracing experiment (BDA on the left 2nd caudal supralabial 

depression, scale area pointing backward) revealed staining in the ipsilateral LTTD region 

(Fig. 35). Approximately half of the lower LTTD region contained stained fibres (see Fig. 35, 

detail on the left). The exact location of the cross-section (A) depicted in Fig. 35 is shown in 

Fig. 34.  
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Fig. 34: Schematic sagittal section of a boid brain altered after Molenaar & Fizaan-Oostveen (1980) 

depicting the position of the cross-section (A) shown in Fig. 35. Abbreviations: CB: Cerebellum, 

LTTD: Nucleus descendens lateralis nervi trigemini, MES: Mesencephalon, MO: Medulla oblongata, 

TEL: Telencephalon, V: Nervus trigeminus  

 

 
Fig. 35: Cross-section (100 μm) of the brain stem. The LTTD on the left side of the picture is partly 

stained (see detail on the left) in contrast to the LTTD region on the right side (see detail). 

Abbreviations: CB: Cerebellum, LTTD: Nucleus descendens lateralis nervi trigemini, Vedl: Nucleus 

vestibularis dorsolateralis, Vmv: Nucleus motorius nervi trigemini, Vpr: Nucleus sensorius principalis 

nervi trigemini, V: Nervus trigeminus  
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The successful staining in just approximately the lateral half of the LTTD region encouraged 

the working hypothesis that the zigzag-morphology (forward- and backward-pointing TNM 

areas) of the labial scales might be directionally represented in the infrared processing LTTD 

region.  

 

Although the first tracing experiment was successful, none of the six following experiments 

revealed any staining, despite systematically altered parameters of the procedure protocol to 

check for methodical errors (compare 2.3.4 and appendix 8.2). Thus, the hypothesis of a 

directional representation of the special labial scale morphology in the LTTD could neither be 

verified nor disproved.  

 

3.2.5 Investigation of the IR visual field  

The extraordinary zigzag-shape of the labial scale areas containing the IR receptors led to the 

investigation of the field of view for IR radiation. A head cast made out of plaster was built as 

a functional model. The positions of the TNM areas were marked onto the forward- and 

backward-pointing labial scales on the basis of the SDH staining results (see 3.2.1). To 

examine the 3-D IR field of view of the boa, the head cast was investigated in a horizontal as 

well as in a 45° upward- and downward-pointing position. The summed TNM areas of the 

respectively forward- and backward-pointing supra- and infralabials, which were visible at the 

respective angles (-40° to 150°) were put in relation to each other. These resulting percentage 

values were the basis for the calculation of the entire 3-D IR visual field.     

Pictures of the head cast are shown exemplarily at different angles in the three different 

head positions (+45°, 0°, -45°) in Fig. 36 (A-C).  
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3 Results   59

 
Fig. 36: Exemplary pictures of the boa head cast photographed in A) the horizontal head position (0°), 

B) the head pointing upwards position (+45°), C) the head pointing downwards position (-45°) at 

different angles.  

 

The picture series shows that the proportions of the visible coloured areas shifted in 

accordance to the different angles. On the basis of this series the total TNM area sizes 

pointing forward and backward for the supra- and infralabial scales were calculated and 

plotted against the respective angles (Fig. 37 and Fig. 38). The measurements were not 

restricted from 0° to 150°, because frontal IR radiation does not only impinge on one side of 

the head (see 0° angle in Fig. 36A), therefore, the range of -40° to 0° was included. 

Furthermore, the receptive areas span the entire supralabial scale row, whereas the receptive 

areas in the infralabial scale row are confined to approximately the posterior half (see 2.3.5, 

Fig. 13) of the scale row. Accordingly, the supralabial TNM areas (coloured blue and red) are 

larger in total than the infralabial TNM areas (coloured yellow and green) (see Fig. 37 and 

Fig. 38). Yet, the exact sizes of the TNM areas are not paramount. The main focus lies on the 

proportions of the backward- and forward-pointing areas of the supra- and infralabial TNM 

areas to one another at different angles in the respective head positions. Errors resulting from 

the plotting of the SDH results onto the head cast are uniformly distributed and are therefore 

negligible.  
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Fig. 37: Sizes of the TNM areas of the supra- (blue) and infralabial (yellow) scales pointing forward in 

the three different head positions (+45°, 0°, -45°) at different angles (from -40° up to 150°). The black 

line depicts the envelope for the total area of the forward-pointing TNMs in the respective head 

position. 
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Fig. 38: Sizes of the TNM areas of the supra- (red) and infralabial (green) scales pointing backward in 

the three different head positions (+45°, 0°, -45°) at different angles (from -40° up to 150°). The black 

line depicts the envelope for the total area of the backward-pointing TNMs in the respective head 

position. 
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The values of the graphs in Fig. 37  and Fig. 38 show the different measured visible forward- 

and backward-pointing TNM areas in cm2 of the supra- and infralabial scale row of one head 

side. As the total areas of the forward- and backward-pointing supra- and infralabial TNMs 

are different, all forward pointing areas were added up to one total graph (see Fig. 37, black 

line: envelope), likewise all backward pointing areas were added up to one total enveloping 

curve (see Fig. 38, black line). In all three head positions the sum of all forward-pointing 

TNM areas show a peak (see enveloping curve) in the horizontal angle range of 20° to 50°. In 

contrast, the sum of all backward-pointing visible TNM areas peak in the angle range from 

70° to 100° in the three head positions, i.e. they mainly cover the lateral and caudal part of the 

IR visual field. 

At certain angles (0° to 30°/40°) not only one side of the head receives IR radiation, the 

frontal part of the other side of the head does, too. Thus, the values of the TNM areas of the 

other head side need to be added, i.e. the values for the -10° angle have to be added to the 

values of the +10° angle, the values for the -20° angle have to be added to the values of the 

+20° angle, and so on. In the horizontal head position this was necessary for angles up to 40°, 

whereas for upward- and downward-pointing head positions it was necessary up to an angle 

of 30°. Furthermore, in the frontal head position (horizontal plane: 0°) the respective TNM 

areas receive full input from both head sides, i.e. double input.  

Fig. 39 (A-C) depicts the IR field of view for all four coloured TNM areas. To reveal the 

relations of the respective areas to one another, the proportions are expressed in percent. The 

maximal TNM area size value (i.e. in the 0° angle of the horizontal head position the forward- 

pointing areas of the supralabial scales (blue)) was set as 100%. All other values were put into 

relation to this maximal TNM area value. 
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A 

 
B 

 
C 

 
Fig. 39: IR vision field of C. hortulanus in the three different head positions: A: horizontal (0°), 

B: upward (+45°), C: downward (-45°).  The y-axis depicts the percentage of the receptive TNM area.  
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In the horizontal and downward-pointing head positions the forward-facing supralabial  TNM 

areas (blue) receive most of the frontal IR input (about –30° to +30° angles in the horizontal 

plane). However, in the upward-pointing head position the forward-facing infralabial areas 

(yellow) are slightly larger than the forward-facing supralabial areas (blue). Conspicuously, 

the size of the forward-facing infralabial area (yellow) alters greatly between the upward-

pointing (large area) and the downward-pointing head position (small area).  

In all three head positions the backward-facing supralabial areas (red) are mainly involved 

in the lateral IR reception (approx. 50° to 90° on each side), however they additionally cover 

the caudal IR reception in the horizontal (up to 120°) and upward-pointing (up to 150°) head 

positions. Their sizes and proportions hardly differ within the different head positions. The 

backward-facing infralabial areas (green) are of similar size in all three head positions. They 

also cover a similar angle range in the horizontal (50° to 130°) and downward- (70° to 150°) 

pointing head positions, i.e. the lateral to caudal range. In contrast, in the upward-pointing 

head position the backward-facing infralabial areas (green) only play a role for angles from 

30° to 90°. Furthermore, in all three head positions it is conspicuous that the IR visual field 

shows a peak at 0° due to the double input (see above) and a drop in input at the -10° and 

+10° angles.    

In the horizontal head position the supralabial TNM areas both the forward- (blue) and 

backward- (red) pointing areas cover the receptive field of view (see Fig. 39 A). In the range 

of -40° to +40° the forward-pointing supralabials (blue) make up most of the visual field. In 

the upward-pointing head position (see Fig. 39 B) the frontal field of view is about half the 

size of the forward-pointing supralabial area (blue) in the horizontal head position. The frontal 

field is mostly covered by the forward-orientated infralabials (yellow) and the rear field of 

view by the backward-orientated supralabial scales (red). In the downward-pointing head 

position (see Fig. 39 C) the field of view has about the same dimensions as the upward-

pointing head position. It is frontally formed by the forward- (blue) and partially by the 

backward-facing (red) supralabial TNMs, whereas the rear field of view is covered by the 

backward-pointing infralabial areas (green). 

To reconstruct the complete 3-D IR visual field of the boa, the sum of the forward- and 

backward-orientated TNM areas of the supra- and infralabial scales per head position were 

added. Again, the highest cm2 value was classified as 100 % and all other values set into 

relation thereof. The complete IR fields of view in the three investigated head positions are 

shown in Fig. 40. 
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Fig. 40: IR vision fields at the three investigated head positions (horizontal (0°): black, upward-

pointing (+45°): light grey, downward-pointing (-45°): dark grey).  

 

The IR visual field reaches to about 120° on both head sides in the horizontal and upward-

pointing head position, and even up to 150° on both head sides in the downward-pointing 

head position. The largest IR visual field is in the horizontal plane (black), especially in the 

20° to 80° on both head sides with an obvious peak at the 0° angle and a drop in the -10° to 

+10° angle area. A similar 'frontal pattern' can be revealed in the upward-pointing head 

position (light grey). It is almost as large as in the horizontal head position, although it does 

not cover the areas between 20° and 70° as extensively as in the horizontal head position. In 

comparison, the downward-pointing head position (dark grey) has the smallest field of view 

and its emphasis lies more on the lateral angles than on the frontal angles.  
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4 Discussion 

4.1 Behavioural experiments 
The aim of the behavioural investigations was to determine and compare the behavioural 

detection thresholds of the western diamondback rattlesnake (C. atrox) and the ball python  

(P. regius) by quantifying the distance at which the snakes behaviourally responded to a 

moving IR source resembling a mouse in temperature and size. The outstanding advantage of 

this behavioural approach was not only that the snake’s entire neural processing of the 

stimulus perception was taken into account; but that additional information on the relevance 

to the snake of the perceived information was revealed, too.  

 

4.1.1 Detection distance of the IR stimulus and behavioural responses 

The results reveal a detection distance of 100 cm for C. atrox and of 30 cm for P. regius. At 

these source distances the incidence of positive responses is still significantly above baseline 

value for these behaviours, but beyond 100 cm for the rattlesnakes and beyond 30 cm for the 

pythons the responses to the IR stimulus could not be distinguished from baseline 

(rattlesnakes: 29 %, pythons: 9 %). The baseline reveals the rate of spontaneously occurring 

behaviour (i.e. arbitrary and not stimulus-elicited behavioural changes). The statistical testing 

of the evaluated responses in respect to the baseline reveals that the evaluated responses of the 

snakes were responses to the presented IR stimulus. 

The rattlesnakes’ continuing responses do not only reflect a greater sensitivity (than the 

pythons), but also reflect the relevance of the stimulus at farther distances. C. atrox responded 

most frequently with 'tongue flicking', 'head jerks' and 'fixing'. These behaviours were 

displayed solitarily or in combination with each other. 'Tongue flicking' occurred 

independently of the IR source distance and is interpreted as an attempt to perceive a possible 

odour from the direction of the stimulus. Smelling is a long-distance sense (accounts for all 

vipers; Greene, 1992; Schwenk, 1995) and is employed to gather further information about 

unknown stimuli. Furthermore, 'head jerks', especially in combination with 'fixing' (which 

occurred more often in distances below 100 cm) are interpreted as an assessment-behaviour to 

evaluate a stimulus and its distance. The last mentioned interpretation also accounts for the 

'freezing and fixing' behaviour of P. regius, which was the most frequent behavioural 

response within the 30 cm distances, together with the 'S-form' and the combination of both. 

The 'S-form' is an essential posture for a precise strike application, which is only possible 

within a given fraction of the python’s body length. A response to a stimulus is assumed to be 
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a combination of detection ability and the relevance of the IR stimulus to the python. 

Assuming that the striking distance of juvenile and adult pythons differs, it is possible that the 

distances at which they respond to the IR stimulus also differ. Yet, the response rates of 

juvenile and adult pythons were not significantly different from each other in each distance 

interval.   

 

4.1.1.1 IR detection threshold of C. atrox 

For the rattlesnakes the irradiance contrast of the presented IR stimulus was calculated for the 

distance range of 10 cm to 160 cm using a modified Stefan Bolzmann formula (see 2.2.8 or  

de Cock Buning, 1983b). The temperature difference between the IR source and the shutter  

(T2 - T1) as well as the radiating area (A) of the IR source determine the irradiance contrast at 

the critical distance (D) to the snake. The temperature of the IR stimulus and the temperature 

of the shutter revealed a difference of 10.9 °C ± 1.0 °C. Taking the IR source size of 16 cm2 

and this temperature difference into account at distances from 10 cm to 160 cm, the calculated 

irradiance contrasts range from (0.3463 ± 0.0335) mW/cm2 to (0.0014 ± 0.0002) mW/cm2 

respectively. Viewing the curve of the irradiance contrast it is conspicuous that the decline of 

the rattlesnakes’ positive responses is not aligned to it. The sharp drop of responses at a 

distance of about 100 cm has no relation to the decline of the irradiance contrast. As this is a 

typical characteristic progression for sensory response curves (Bleckmann, 1980), the 

percentage of positive responses is rather related to motivation than sensitivity of the 

rattlesnakes to the stimulus.  

C. atrox detected the IR stimuli up to a distance of 100 cm. In the theoretical model of 

Jones et al. (2001) the size and surface temperature of a mouse and the absorption of the 

atmosphere of IR radiation was taken into account to calculate the respective detection 

distance. According to their model the temperature of the membrane surface increases at the 

threshold of 0.003 °C at a distance of 5 cm (shown by Bullock and Diecke, 1956). The 

detection distance in the rattlesnake study exceeds this value about 20 times. Furthermore, it 

also exceeds the calculated detection range of 66.6 cm proposed by de Cock Buning (1983a). 

The responses of tectal neurons of the pitviper Calloselasma rhodostoma were examined at 

different IR source distances. Applying the modified Stefan Bolzmann formula in the current 

study, the irradiance contrast of the behavioural IR threshold of C. atrox is  

3.35 x 10-3 mW/cm2 at a distance of 100 cm. Thus, this study presents the lowest threshold 

value reported for any IR sensitive snake and any IR sensory system known in animals so far 

(compare Campbell et al., 2002). For Calloselasma de Cock Buning (1983a) calculated a 
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value of 10.76 x 10-3 mW/cm2, i.e. a value that is 3.2 times larger. This difference might be 

due to the different species used in the study but more likely reflects differences in the 

methodology (behavioural versus electrophysiological investigation). In addition, the stimulus 

in the present study was moving and presented for 10 s, whereas in de Cock Bunings study a 

stationary stimulus was presented for 3.6 s. Neither the duration of the IR stimulus 

presentation nor the velocity of movement within the receptive field influences the irradiance 

contrast of the IR stimulus. In the current studies, the motion of the IR stimulus was necessary 

to evoke a behavioural response. In contrast, a moving stimulus is not necessary to evoke an 

electrophysiological response recorded from the peripheral receptor, the afferent nerve or the 

primary sensory area (midbrain tectum) within the central nervous system (e.g. Bullock and 

Diecke, 1956; de Cock Buning, 1983b).  

 

4.1.1.2 IR detection threshold of P. regius  

To calculate the detection threshold for the pythons, again the Stefan-Boltzmann was applied 

to a radiating area of 16 cm2, a temperature difference of 11°C ±1°C between stimulus and 

background and a distance range from 10 cm to 100 cm, resulting in an irradiance contrast 

range from (0.3496 ± 0.0335) mW/cm2 to (0.0035 ± 0.0003) mW/cm2 respectively. As the IR 

stimulus was detected up to a distance of 30 cm by P. regius, the corresponding irradiance 

contrast for the applied IR stimulus is 38.83 x 10-6 W/cm2. This was determined as the 

behavioural IR detection threshold for P. regius, which is about one third lower (revealing a 

1.5-times higher sensitivity) than de Cock Bunings (1983b) electrophysiological results for  

P. reticulatus (59.79 x 10-6 W/cm2). Although the threshold level of P. regius is one third 

more sensitive than the value reported by de Cock Buning, the calculated distance of IR 

stimulus detection seems to be similar in both studies (28.3 cm de Cock Buning versus 30 cm 

current study). However, in the calculation of de Cock Buning a much larger surface area of 

the stimulus was used (25 cm2 versus 16 cm2 current study). If we take the same surface area  

(16 cm2) and background temperature (difference 11°C) into account and calculate the critical 

distance for de Cock Bunings value (about 60 x 10-6 W/cm2) we gain a value of 24 cm as the 

critical distance for detecting the IR stimulus.  

The link between the different methods is the calculation of a detection threshold using the 

modified Stefan Bolzmann formula, which necessitates a critical distance, the size of a 

stimulus, as well as the temperatures of a stimulus and its background. The method of 

determining these factors differs, considering whether single neurons and neural pathways in 

anesthetized snakes were investigated (electrophysiologically) or whether an intact sensory 
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system of an alert snake was tested (behaviourally). Behavioural thresholds are usually lower 

than physiological thresholds (e.g. Bleckmann, 1994), which is confirmed by the results of the 

two studies. They indicate that the IR detection thresholds of the rattlesnakes and pythons are 

lower and the detection range for a mouse-like stimulus farther than assumed so far. The 

design of these experiments suggests that some IR perception did not lead to a behavioural 

response, so these studies probably under-report the IR sensitivity and detection threshold in 

both snake species.  
 

4.1.2 Possible influences on the results 

A distinct behavioural change had to be displayed during the 10 s period of stimulus 

presentation to be counted as a positive response to the IR stimulus. Independent blind 

scoring of the videos confirmed the accuracy of the evaluation of the responses and showed 

that the behavioural results were rather under- than over-estimated.   

Nonetheless the willingness to behaviourally respond to stimuli was a crucial factor in the 

present studies, because conclusions can only be drawn from positive reactions. The pythons, 

though alert, were overall less responsive than the rattlesnakes. They responded to only about 

a third of the stimuli within their detection distance (i.e. up to 30 cm), whereas the 

rattlesnakes responded to over half of the stimuli within their detection distance  

(up to 100 cm). In contrast to P. regius, C. atrox is a very alert and irritable species  

(e.g. Tennant and Bartlett 2000), which will display distinct behavioural responses to IR 

stimuli even while in their accustomed housing boxes. However, even if the snakes sensed a 

stimulus, they might not display a distinct behavioural response. Therefore, it cannot be ruled 

out that some IR stimuli were perceived, but did not evoke a behavioural response. So it 

might be possible that the actual detection thresholds of C. atrox and P. regius are lower than 

determined by these studies. It is also possible that P. regius has detected the stimulus at 

greater distances, but there is normally no obvious behavioural response in this species. In 

contrast, the more agile C. atrox could show responses even at greater distances. So the 

differences in detection range here may be due to species-specific behavioural differences. 

The differences in behaviour and nature between the two species are reflected in the 

baseline. The large difference between the baseline values of C. atrox and P. regius probably 

results from the difference between the previously determined evaluation criteria for the 

behavioural responses of each snake species. For example, tongue flicking is a frequently 

observed behaviour in vipers generally (Schwenk, 1995) and mainly caused the relatively 

high percentage values of arbitrary responses in the control experiments of the rattlesnakes 



4 Discussion  70 

(3.1.1.1). In contrast, pythons hardly show distinct arbitrary behaviours, therefore most 

behaviours were clearly stimulus-evoked, keeping the baseline low. 

The influence of habituation on the experimental results was tested. The pythons 

habituated to the stimulus presented at the near distance of 15 cm, with increasing number 

over the course of a session. However, the pythons did not show a habituation effect over the 

course of all experimental sessions with varying distances. Though there were large inter-

individual differences, habituation seems to have only played a minor role in the investigation 

of pythons. In contrast, all rattlesnakes habituated to IR stimuli, with habituation increasing 

over the course of a session with increasing number of stimuli. The rattlesnakes might have 

learned quicker than the pythons that IR stimuli were neither harmful nor an indication of 

prey. Furthermore, in contrast to the pythons, each rattlesnake underwent more than four 

experimental sessions during the study. This could have enhanced the habituation effect. It 

should be noted that there were also large inter-individual differences. While some 

rattlesnakes habituated rapidly, others continued to respond to the IR stimuli. The inter-

individual differences shown by P. regius and C. atrox confirm that response readiness is not 

only a function of the IR stimulus applied, but also a function of the general response 

readiness of the snake. In general, habituation increased with increasing source distance. This 

also indicates that the drop of responsiveness with source distance is more an issue of 

motivation than of IR perception sensitivity. In terms of the present studies it is important to 

note that habituation would produce false negative, not false positive results, and thus would 

lead to an underestimation of the snakes’ IR sensitivity range. 

Generally, P. regius is a rather defensive species that is not inclined to immediately 

interact with altered surroundings. Thus, it has to be expected that the level of general 

response is lower than in a more offensive species like C. atrox. This is confirmed by the 

investigation with C. atrox, in which the rattlesnakes initially responded with 67 %. 

Considering that both snake species feed on a similar diet the artificial stimulus should be 

regarded with the same relevance, hence motivation. Furthermore, the snakes which were 

used in the current studies were always hungry regardless whether they had been recently fed 

or not. A single mouse (or in case of the adult pythons one rat) was not sufficient for them to 

be fully fed, thus it seems unlikely that time spans longer than two days between feeding and 

experiments would have altered the motivation of the snakes. Nonetheless, the snakes were 

kept hungry by way of precaution; however, it is unlikely that the snakes regard the stimulus 

as potential prey considering the artifice of the IR stimulus, including its constant speed 

(unmoved IR stimuli failed to evoke a response) and constant amplitude as well as the square-
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typed form and the almost homogenous thermal profile of the IR emitter. The area of the 

temperature regulatory sensor covered about 1 % of the upper edge of the IR emitter and, 

although only 0.2 mm thick, might have thermally insulated this area marginally affecting the 

homogenous profile. In contrast, a mouse shows a heterogeneous (2.2.6) and, when in motion, 

constantly changing thermal profile based on numerous minute thermal gradients. A 

biological IR stimulus presented in a natural environment may be more likely to evoke a 

behavioural response. Nevertheless, the stimulus needed to fulfil the requirements of defined 

experimental conditions, to ensure the exclusion of other hidden sensory cues. However, 

temperature and size were chosen to reflect natural conditions of stimulus intensity and the 

initial response rate of 55 % of the pythons in the first distance interval (10-20 cm) is a hint 

that there is no general motivational problem concerning the artifice of the stimulus. Even 

more, if the artifice of the IR stimulus decreased the responsiveness, this would again support 

the hypothesis that the detection threshold is actually lower than determined here.   

 

4.1.3 Considerations on the results 

The behavioural approach, applied for the first time in this context, allowed an examination of 

the entire process of IR perception (i.e. the reception of the IR stimulus, the processing of the 

stimulus and the response to the stimulus) and thus provides an ecologically-relevant 

perspective on the sensory abilities of both investigated snake species as discussed below 

(4.1.4). However, the employed IR stimulus, which resembled a mouse in temperature and 

size, stands for just one typical prey item. Changes in the surface temperature and size of prey 

items could alter the findings (compare Fig. 41).  

Interestingly, laboratory mice seem to be less insulated (i.e. have a higher surface 

temperature) than small mammals in the wild. The surface temperature of the latter is just a 

few degrees above ambient (Bakken and Krochmal, 2007, Krochmal pers. comm.). Therefore, 

it has to be assumed that the employed IR stimulus was more intense than a natural target of 

the same size. It is in the nature of IR stimuli that objects of higher temperature or larger 

surface emit more energy. Thus, applying the Stefan Boltzmann equation (see 2.2.8), a larger 

or warmer stimulus would result in a farther detection distance considering a constant 

detection threshold of the snake. This would implicate that a rat can be detected from a farther 

distance than a mouse. The correlation of the detection distance with stimuli of different sizes 

but same temperature and stimuli of different temperatures but the same size is illustrated in 

Fig. 41.  
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Fig. 41: Correlation of either varying IR stimulus size (white squares) but same temperature (34.5 °C) 

or varying stimulus temperature (black dots) but same size (16 cm2) plotted against the calculated 

critical distance using the threshold level of the irradiance contrast according to the Stefan Boltzmann 

formula.  

 

Furthermore, Fig. 41 shows that variances of the stimulus size have a much lower impact on 

the detection distance than changes in temperature (quadratic increase, see Stefan Bolzmann 

equation). Consequently, marginal changes in temperature can be perceived more easily than 

size differences. Small deviations in surface temperatures of the snakes’ environment seem to 

play an important role in IR perception.  

 

4.1.4 Pythons’ versus rattlesnakes’ IR sensitivity and its implications  

The pythons prove to be less sensitive than pitvipers, both in electrophysiological studies (de 

Cock Buning, 1983b) as well as in the presented behavioural investigations. The value in 

behavioural threshold sensitivity is 3.88 x 10-5 W/cm2 in P. regius and 3.35 x 10-6 W/cm2 in 

C. atrox. The different detection thresholds of the two species to the IR stimulus, determined 

using similar methods, derive from the morphological differences of their pit organs (see 

Molenaar, 1992). Pit organs of pitvipers are more sensitive as their IR receptors are situated in 

a thermally insulated membrane located between the outer and the inner cavity of the loreal 
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pits. In boids with labial pits, the receptors are located in the fundus of the labial pits which 

lack an insulating underlying cavity. Thus, the incoming energy flux from IR radiation is lost 

by heat conduction into the underlying tissue. Hence, the IR threshold of neural response is 

lower in pitvipers.  

The relative importance of infrared perception in the behaviour of these snakes is reflected 

in the threshold sensitivity of their pit organs (Molenaar, 1992). Both snake species are 

terrestrial, exhibiting lurking behaviour and sedentary hunting tactics. Ball pythons usually do 

not forage in open sites, preferring to feed in underground cavities, e.g. rodent burrows, or 

under rock crevices with a 'sit-and-wait' hunting strategy (Merthens, 1987). Their IR sense 

would primarily be applied within narrow and branching tunnel systems, i.e. it needs to 

function in close distances (within 30 cm). Rattlesnakes are described as active ambush 

hunters, i.e. they are actively searching for an optimal hunting spot and often approaching 

visible moving prey (Greene, 1992). This is in accordance with the findings of the presented 

study. The IR sense of C. atrox is a longer-distance sense with at least 100 cm of coverage, 

which is suitable for ambush hunting while surveying the surrounding area. Furthermore, the 

use of the IR sense for purposes other than hunting has been shown for pitvipers (Krochmal 

and Bakken, 2000, 2003; Krochmal et al., 2004). Using a behavioural approach, Krochmal 

and Bakken (2003) tested C. atrox´ ability to direct successful thermoregulatory movements 

and decisions on thermal radiation cues with intact or disabled pits. The results indicated the 

pits to be part of a more generalised sense, used to survey the environment aiding behavioural 

thermoregulation, i.e. escaping stressful temperatures of their natural habitats in addition to 

prey acquisition. Furthermore, the IR sense is hypothesised to be involved in predator 

detection or den site selection (e.g. Greene, 1992; Sexton et al., 1992); however, experimental 

data still awaits conduction. There is no reason to assume that the IR sense is confined to 

hunting behaviour in boid snakes either. Although experimental data for pythons (and boas) is 

lacking, the IR sense may be involved in thermoregulatory behaviour as well. The presented 

data suggest that the IR sense of P. regius rather functions as a close distance sense. 

Regardless of the use of their IR sense for hunting in burrows, the low distance may either be 

an adaptation to the secluded way of life (thermoregulation in burrows is not a priority) or a 

general attribute of pythons. In contrast to C. atrox, P. regius inhabits a natural habitat with 

relatively constant temperatures.  
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4.2 Anatomical investigations 
The anatomical investigation of C. hortulanus´ IR sense is discussed in four sections. The first 

deals with the experiments investigating the processing pathway from the IR receptors via the 

Nervus trigeminus to the first relay station (LTTD) in the brain and the possible role of the 

exceptional labial scale morphology. The main topic of the second section is the examination 

of the IR receptor areas themselves. In the third section investigations of the outer labial scale 

surface are discussed in context to the receptor areas. The fourth section covers the 

examination of the IR visual field of C. hortulanus and takes its environment into 

consideration.  

 

4.2.1 Examination of a possible directional representation with tracing experiments 

The distribution of the neuronal marker in all tracing experiments is based on the axonal 

transport system within nerve cells. Limiting factors of the active tracer transport are the 

tracer molecule size, the axon diameter, and the metabolic activity of the experimental animal 

or nerve cell, all of which determine the optimal tracer running time. Histological processing, 

i.e. fixation of the tracer in the tissue, allows an examination of the connection between brain 

areas or the projections of peripheral nerves. 

The aim of this part of the study was to find out whether IR receptors facing backward 

project to different areas within the LTTD than IR receptors facing forward. The application 

of BDA to a small injury in the TNM area of a backward-pointing labial scale led to stained 

neural terminals in the ipsilateral LTTD (3.2.4, Fig. 35). This shows that the fibres of the 

TNMs took up the tracer and transported it via the trigeminal nerve and ganglion to the 

LTTD. This is further evidence that the TNMs in the labial scales are indeed specialized IR 

receptors since the LTTD is a derived structure, only present in IR sensitive snakes and solely 

involved in IR reception (e.g. Kishida et al., 1982; Molenaar, 1974; Schroeder and Loop, 

1976).  

After tracer application to a backward-facing IR receptor area, labelled fibres were present 

in the ventral half of the LTTD only. This clearly shows that this receptor projects to only a 

restricted portion of the LTTD. Tracer was also applied to other IR receptors on the upper or 

lower lip in scales facing backward or forward, but none of these experiments were 

successful. What was expected is that the projection area within the LTTD depends more on 

the direction the IR receptor is facing than on its topographic position. Due to the zigzag- 

pattern of scale morphology, neighbouring IR receptors face alternating directions. If the 

direction of a given receptor would determine the projection area within the LTTD, 
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neighbouring receptors would terminate in different areas since they face alternating 

directions. 

Unfortunately, only one tracer experiment was successful. But this experiment proposes 

that a certain IR receptor only innervates a certain part of the LTTD. The critical question is 

whether there is a topographic representation of the receptor position within the labial scales 

or a representation of the field of view. The zigzag-pattern of the labial scales of  

C. hortulanus offers a unique way to distinguish between these possibilities because of the 

alternating directional sensitivity (see below). 

 

It remains unclear, why the tracer experiments were only successful in one case. Presumably, 

the tracer application was faulty. The injuries had to be deep enough to reach the TNMs 

(which are situated only 20 μm below the scale surface on average), but not too deep to cause 

heavy bleeding (as this would wash out the tracer and prevent it from reaching the TNMs).  

In principal, BDA tracer seems to be a suitable tracer as it led to a successful result in the 

first experiment and was frequently used with success in other tracing experiments (e.g. 

Fritsch and Wilm, 1990). As an alternative tracer biocytin was applied. Biocytin has the 

advantage of a much smaller molecule size than BDA and therewith underlies a much faster 

active transport.  

Furthermore, different batches of tracer were used, which avoided the use of a 

malfunctioning tracer. As proven by the background staining, the AB-complex reaction 

procedure was successful in all cases. All involved boas were healthy and survived the tracer 

application procedure without any complications. 

Because of the low number of animals available, further tracer experiments were not 

possible. However, more experiments are needed to find out whether there is a map in the 

LTTD that represents the location of objects in space as opposed to the location of the 

receptor in the labial scales. 

 

4.2.2 Structure and location of the IR receptors 

To understand the functional morphology it is essential to determine the location and structure 

of the IR-receptive TNMs. Despite differences in methodology in the SDH staining of the 

frozen sections (i.e. no whole body perfusion, staining was applied directly onto the sections; 

compare Amemiya et al., 1995, 1996a; Goris et al., 1989), the enzyme reaction was successful 

in this current investigation.  
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A sequence of semi-thin sections functioned as the basis for a 3-D reconstruction of the TNM 

areas of the conspicuously formed three last caudal supralabial scale depressions. The 3-D 

reconstruction had the advantage of allowing a more detailed and precise examination of 

TNM distribution. For example, the SDH- reconstruction did not indicate that what appears to 

be one TNM area of a depression actually consists of two separate TNM areas. The 3-D 

reconstruction revealed one TNM area on the caudal edge of the preceding scale and one on 

the rostral edge of the following scale. Furthermore, these two areas do not lie adjacent to 

each other; the folds of the depressions do not contain TNMs. The TNM area width of the 

SDH stained sections and of the semi-thin sections differ greatly despite being measured in 

similar supralabial regions. This difference (80 μm SDH opposed to 320 μm semi-thin 

sections) derives from the different methodical approaches, i.e. different thicknesses of the 

sections (20 μm versus 0.5 μm) and the fact that losses of sections in between lead to a larger 

gap in the SDH staining. Another reason for this difference lies in the form-unstable sections, 

which only allow a linear approximation of the SDH stained areas. Possible differences of the 

cutting planes might also have influenced the precision of measurements. Moreover, different 

individuals, though of similar size and age, have been employed. In her study of the pitless  

B. constrictor, von Duering (1974) found the position of the TNM areas of equally sized 

individuals to be relatively constant. Von Duering (1974) reconstructed the TNM areas of a 

selected supralabial scale area of a juvenile B. constrictor (from a series of semi-thin 

sections). She revealed two TNM areas in the supralabial scales, one upper rostral and one 

lower caudal TNM area. Furthermore, B. constrictor possesses TNM areas in the scale rows 

above the labial scale row, although these areas are smaller and positioned on the midfrontal 

part of each scale. In comparison to B. constrictor the TNM areas of C. hortulanus were much 

larger and restricted to the labial scale rows and the depressions. These differences can be 

ascribed to the fact that these are two different boa species with differently structured (and 

sized) labial scales. The correlation between scale morphology, TNM distribution and IR 

detection sensitivity in other boid species has to be investigated until a structure-function 

correlation can be established.  

 

Cross-sections revealed the macroanatomy of the labial depressions of C. hortulanus to be 

slightly different in comparison to pythons (e.g. P. regius, Amemiya et al., 1995). P. regius 

pits appear as U-shaped invaginations, in which the fundus contains an array of IR receptors. 

In C. hortulanus, only in the labial scale areas with the deep depressions was the U-shape 

present. However, the TNMs are also only restricted to the epithelium of the fundus.  
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The irregularity of the labial scale structure around the TNMs varies somewhat even from 

depression to depression. Thus, the impinging IR radiation of an IR source moves across the 

TNM areas when moving past the depressions, i.e. the impinging IR radiation on the TNM 

arrays will vary in shape and length in relation to the angle and position. The structure of the 

labial scales of C. hortulanus does not act as a pinhole camera as there is no pit as such in 

pitvipers or 'pit-like' structures as in some other boid species (e.g. P. regius).  

In general, the microstructure of the labial scales of C. hortulanus is similar to the labial 

scale structures of other IR sensitive boids (e.g. Amemiya et al., 1995, 1996a; von Duering, 

1974). Both, the surface depth of the TNMs and the TNM epithelium width of C. hortulanus 

are concordant with the structures of B. constrictor and P. regius. The TNMs are located 

2 μm to 6 μm just below the surface of the scales, i.e. beneath the three cornified strata  

and span over the entire epithelium. This is consistent with findings of  

B. constrictor (von Duering, 1974) and of P. regius (Amemiya et al., 1996a), in which the 

intraepithelial TNMs were situated about 5-8 μm beneath the scale surface. Furthermore, von 

Duering (1974) described the epithelium containing the TNMs to attain a width of 15 μm, 

which is consistent with the findings of Amemiya et al. (1996a) who presented a width range 

of 15-20 μm, and is also consistent with the width of C. hortulanus´ (11-30 μm, median:  

18 μm). The epidermal area containing TNMs was usually thicker than the regular epithelial 

layer.  

The TNMs were embedded between epithelial cells and were densely packed with 

mitochondria, as has been described for other boids (e.g. Amemiya et al., 1996a; de Robertis 

and Bleichmar, 1962; Hirosawa, 1980; Terashima et al., 1970; von Duering, 1974). The 

confirmation of the densely packed mitochondria in the TNM areas fortifies that the SDH 

staining is confined to the TNM areas, as the mitochondria contain SDH, whose activity can 

be demonstrated with NBT (Nachlas et al. 1957; Ogawa and Barrnett, 1964, Rosa and Tsou, 

1965).  

The TNM areas are associated with nerve bundles deriving from the Nervus trigeminus, 

which branch off, sending their dendrites to the receptors. According to von Duering (1974) 

and Amemiya et al. (1996a, b) IR sensitive areas are always associated with capillary beds 

beneath the epidermal layer. This was also the case for C. hortulanus. Amemiya et al. (1996a, 

b; 1999) postulated the capillaries to be essential for a quick energy and oxygen supply for the 

mitochondria in the TNMs. Even more importantly, the capillaries are considered to carry off 

excess heat and thereby stabilise the temperature of the receptors (Goris et al., 2007; Nakano 

et al., 2000). Nakano et al. (2000) found special octopus-like pericytes on the TNM associated 
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capillaries. These pericytes seem to control (i.e. by increasing) the amount and velocity of 

blood flow when the TNMs are stimulated. An increase of both causes a cooling effect on the 

TNMs. Moreover, Goris et al. (2007) showed the TNMs to directly and locally control the 

pericytes of the blood vessels in response to stimulation.  

All in all it was possible to show that the ultra-structure of the TNMs is similar to other 

boid species.  

 

4.2.3 Surface structure of the receptor-bearing labial scales 

The investigation of the labial scale surface of C. hortulanus revealed an array of microscopic 

pores that are different from the ones found on other scale areas of the body (e.g. dorsal or 

ventral body scales). The microscopic pores situated on the labial scales however, look 

similar to the pores described by Amemiya et al. (1995), which they also found on the labial 

scale area of B. constrictor. Amemiya et al. (1995) described the pores to be a characteristic 

of the surface structure of snake IR receptor organs, which is different from any other surface 

structure in squamate reptiles. According to Amemiya et al. (1995) the array of pores can only 

be found in IR sensitive snakes and amongst them, only in immediate association with the IR 

receptors themselves. The pores have been hypothesized to function as spectral filters or anti-

reflective coatings with respect to incident electromagnetic radiation by reflecting away 

longer wavelengths of the visual spectrum (as these might have enough energy to raise the 

temperature of the receptors), and thus facilitate IR perception by sharpening the IR image 

(Amemiya et al., 1995, 1996a; Campbell et al., 1999). Thereby, the longer IR wavelengths are 

supposed to have unimpeded passage through the three strata to the TNMs. However, 

physical background to support this hypothesis is lacking. 

 

With the knowledge of the exact location of the TNM areas it was able to investigate a 

possible correlation between the labial scale surface structure (i.e. pores) and receptor 

distribution. The examination revealed that the surface of the labial scales exhibit a variety of 

different and considerably smaller pores than those of other scale areas of the snake body 

(which are also diversely shaped, but larger in comparison). As these smaller pores are 

restricted to the TNM bearing labial scale depressions (emargination area), it can be assumed 

that their presence is not coincidental and fulfils a function. On the labial scales, the area sizes 

of the pores were arbitrarily distributed. It was conspicuous that most pores within the labial 

scale depressions had relative pore area sizes of up to 20 %, whereas the pores with relative 

area sizes above 20 % were mainly distributed on the bottom edge outgrowths of the 
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supralabial scales and on the scales above the labial scales. The surface of the body scales 

displayed even larger relative pore area sizes of about or above 30 %. So, two-thirds of the 

smallest pore area sizes (≥ 5 %) were found above the TNM areas, and although they were not 

restricted to the TNM areas, they were nonetheless confined to the emargination areas of the 

labial scales. This means that the distribution of the smallest pores loosely correlates with the 

distribution of the receptive areas. Nevertheless, the correlation is not a sufficient condition 

for causation. Various explanations can be considered for the association of the small pores 

and the TNM areas without necessarily implying a connection to IR reception.  

Chaisson and Lowe (1989) hypothesized the pores to act as fasteners which secure the 

outer keratinized epidermal layer to the inner layer until the skin is removed during shedding. 

Furthermore, it has been suggested that the pores allow the transport of a lipid containing 

exudate to the surface of the scales (Chaisson and Lowe, 1989). However, the speculated 

function of lipid secretion and shedding facilitation has not been proven yet. Ultra-thin 

sections of C. hortulanus labial scales revealed no evidence for this hypothesis as the 

microscopic pores only occur in the uppermost layer of the stratum corneum with no channels 

leading from a lipid-secreting organ or other organ (neither in the epidermis nor in the dermis) 

to the pores.  

It could also be possible that the small pores occurring in the labial depressions are caused 

by (massive) restructuring of the labial scales during the development of the pit organs. Each 

scale would originally have a 'model pattern' of a certain amount of pores per scale. When the 

pit organs evolved, this model pattern was consistently forced to change with the 

morphological reconstruction of the labial scales. Since these small pores occur on the surface 

of loreal as well as on labial pits, it would mean that the pores developed (likewise the IR 

sense) independently from each other repeatedly. Since the shapes of the labial pits are quite 

diverse even within closely related IR sensitive snake species but the microscopic pores are 

merely of the same size (in all IR sensitive snake species) and even occur on the labial scales 

of the pitless B. constrictor, this hypothesis seems unlikely.  

Furthermore, it could be possible that the pore area size is simply subject to mechanical 

strains. During the feeding process the labial scales are much demanded by tractive forces. 

The smallest pores (≤ 5 % relative pore area) were restricted to the emargination areas of the 

labial scales, which are also the least demanded areas while opening the mouth widely. The 

more mesh-shaped pores likely have a greater structural flexibility, and accordingly were 

mainly distributed on the edges and in the folds of the depressions of the scales. 
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All the above mentioned possibilities imply that the pores do not necessarily stand in a 

functional context to the snakes´ IR sense. However, certain findings support the assumption 

of the surface structure to facilitate IR reception in some way. It is conspicuous that in 

contrast to surrounding skin structures the pit membranes of crotaline loreal pits as well as the 

depressions of the boids labial pits are shiny and light in colour (see 2.1.2, Fig. 2 for an 

example). According to my own observations, but also to Amemiya at al. (1995), the pit 

surfaces are extremely reflective of visual light. In vivo, the pit organ epidermis is 

significantly more reflective of visible light than the non-pit organ epidermis (Grace 

unpublished results in Campbell et al., 1999). Grace at al. (1999) found that the in vivo pit 

organ was highly absorptive of IR radiation in the ranges of 3 μm to 5 μm and 8 μm to 12 μm, 

while non-pit organ epidermis reflects incident IR radiation. Furthermore, video camera 

analysis revealed that the pit organ scales appear to scatter visible light more readily than the 

other investigated scale types (Campbell at al., 1999). However, this is difficult to 

comprehend from a physical point of view. If the scale surface should support scattering 

visible light then one would expect an even grating structure of the pores.  

Moreover, all structures of less than 1 μm in size are too small to have an effect on the 

longer wavelengths, even of the visual spectrum (Bergmann and Schäfer, 1987). Amemiya et 

al. (1995) took pore measurements (diameter, depths, distribution, density per μm2) of 

representatives of crotaline (Agkistrodon blomhoffii) and boid species (Python molurus, 

P. regius, B. constrictor). Although the results differ a certain amount according to species, 

all (including my results of C. hortulanus) fall below 1 μm in size. Therefore, there is no 

plausible explanation for the assumption of the array of pores to effect IR radiation by 

reflecting away the longer wavelengths. 

Amemiya et al. (1995) hypothesised, the pore sizes were suitable to influence wavelengths 

of the visual spectrum. There are some arguments against this assumption. The first argument 

is that the boas (as most IR sensitive snakes) are primarily nocturnal, usually hunting between 

dusk and dawn. Therefore the wavelengths of the visual spectrum can be considered to play a 

minor role in situations where the IR sense is employed (e.g. hunting). Another argument 

against an advantageous influence of the microscopic pores on the wavelengths of the visual 

spectrum is the irregular distribution pattern of the pores. If serving as a spectral filter one 

would expect the pore pattern to be regular. Furthermore, the pore diameters of C. hortulanus 

(0.3-0.8 μm) but also of other investigated snake species (e.g. B. constrictor: 0.3-0.5 μm,  

P. regius: 0.1-0.15 μm, Agkistrodon blomhoffii: 0.25-0.5 μm; compare Amemiya et al., 1995) 
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correspond loosely with the wavelengths of the visual spectrum (about 400-750 nm). This 

could mean that the pores are not suitable for reflection but rather for dispersion. 

It can be assumed that small pores were developed to achieve an utmost thin and 

homogenous surface structure. This would imply that the normal surface structure of snake 

scales is not so suitable for optimal IR reception. However, the finding of the thinner Stratum 

corneum above the TNM areas leads further to the assumption that the thickness possibly 

influences the absorption ability for the IR wavelengths (by impeding transmission). The 

stratum corneum above the TNM areas is only about one-half up to two-third as thick as areas 

bordering the TNM areas. This finding indicates that the structures directly above the TNMs 

are different in comparison to the common scale surface and therefore encourages the 

assumption that the IR reception and the surface structure (i.e. the pore size) are causally 

associated. But from a physical point of view, the small pore size is not advantageous for 

reflecting visible light. It is more likely that the small pores serve to homogenise the surface 

structure and thus the surface temperature.  

In conclusion, it can be assumed that the small pores of the labial scale surface and the 

thinning stratum corneum above the TNM areas, thus the entire structure above the TNMs, 

support the reception of IR radiation, i.e. functionality of the TNMs.  

 

4.2.4 Considerations to the IR visual field and environmental relevance 

The extent of the IR receptive field of the sensory labial scales of C. hortulanus was measured 

by using a head cast onto which the SDH reconstructed TNM areas were painted on. This 

method was used to gain information about the dimension and directionality of the boas IR 

receptive field. Therefore, the focus lay on the proportions of the backward- and forward-

pointing areas of the supra- and infralabial TNM areas to one another at various receptive 

field angles in three different head positions and not on exact TNM area sizes. Thus, the 

inaccuracy of the method (e.g. copying the SDH based TNM reconstructions onto the cast) is 

of no account. Quite the reverse, this methodical approach has the great advantage of being 

relatively simple and is here used for the first time to size an IR receptive field. This method 

was especially suitable for the reconstruction of the IR receptive field of the complex-

structure of the labial scale morphology of C. hortulanus.  

However, in order to determine the IR receptive field a few preconditions had to be 

assumed: 1. the supra- and infralabial scale rows of both head halves are symmetrical (so that 

the measurement values of one head side can be mirrored); 2. IR sensitive receptors are 

functionally identical and have the same distribution density in different pits; 3. the 
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receptivity of the TNM area correlates with the size of the TNM area, i.e. the larger the 

receptive area, the higher the sensory IR input. 4. the placement of the TNM areas of 

individuals is alike (proven by von Duering, 1974).  

 

C. hortulanus is primarily an arboreal snake. Thus, a 3-D perception for precise location and 

targeting can be considered as essential. This examination reveals that C. hortulanus´ 

extraordinary labial scale morphology (zigzag-formation, forward- and backward-pointing 

TNM areas are not equally sized, and areas forming the depressions exhibit varying 

inclination angles) in combination with its head form (broadens from rostral to caudal) 

strongly supports the snakes’ ability to precisely detect the direction of an IR source. In the 

horizontal head position both the supra- and infralabial depressions receive input from an IR 

stimulus in the horizontal plane. In this plane the forward- and backward-pointing areas of the 

supra- and infralabials are necessary to locate the position of the IR stimulus. If the head is 

elevated or lowered the relative portions with which the supra- and infralabial areas receive 

IR stimulation differ, i.e. they are not equally exposed. In the vertical plane the assessment of 

the direction of the IR stimulus presumably does not only occur with the aid of the forward- 

and backward-pointing areas, but rather more by means of computation between the 

stimulated supra- and infralabial TNM areas. As described previously, the supralabial caudal 

scales (from the 7th to the 11th scale) have an outgrowth on the lower edge which probably 

enables the directional perception in the vertical plane by shielding off the radiation from the 

TNM areas relative to the position of the IR source. It is striking that the location of the 

infralabial TNM areas are restricted to the area beneath the supralabial scales with the 

outgrowth. This enhances the difference between the supra- and infralabial input (hypothesis 

of contrast enhancement), because the outgrowths shield the caudal supralabial depressions 

from IR input coming from beneath the head as well as shielding off the infralabial 

depressions from IR input coming from above the head. Furthermore, this special scale 

morphology most likely causes a contrast enhancement, especially in the horizontal head 

position (blue: maximum). If the snake raises its head then the forward-pointing infralabial 

TNMs (yellow) take over the IR reception from the forward-pointing supralabial TNMs 

(blue). If the boa lowers its head then the forward-pointing supralabial TNMs (blue) play the 

leading role in IR reception as it is the case in the horizontal head position.   

In the horizontal plane the forward- and backward-directed areas are presumably 

responsible for the directional (front/back) perception. In the vertical plane the supralabial and 

infralabial depressions in association with the supralabial outgrowth probably allows the 
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directional (above/below) perception. The combination of these two planes results in a 3-D 

directional perception.  

The IR receptive field encompasses in total 240° for the horizontal and upward-pointing 

head positions, and even about 300° in the downward-pointing head position. The large size 

of the IR field, especially in the downward-pointing head position, along with the well 

covered side regions, supports the assumption, that the IR sense is primarily applied in prey 

acquisition. The premise is that the boas primarily prey on flying animals, or at least on 

animals that live at about 'eye-level' of the boa. A few studies and random field observations 

of C. hortulanus´ diet supports the precise capture of such prey items, e.g. birds and bats, but 

also rodents and frogs (e.g. Cundall et al., 2007; Pendlebury, 1974). Hardly anything is known 

about the capacity of the visual sense (of snakes in general). It can be assumed that  

C. hortulanus mainly relies on its IR sense, at least when capturing prey such as bats. Precise 

prey capturing under visually deprived conditions (dawn/dusk) or even under exclusion of the 

visual sense (night time) in a 3-D environment is an outstanding achievement which 

necessitates a high-performance directional IR sense. The underlying mechanism 

(predetermined by the scale morphology) has been elucidated in this study.  

 

In comparing the importance of the specific proportions of the boas’ IR visual field as 

deduced from the head cast, the front region is optimized in comparison to the lateral regions, 

and the lateral regions are optimized in comparison to the hind region of the snakes’ head. 

The upward-facing IR field of view is optimized in comparison to the downward-facing one.  

When viewing the single receptive IR fields the focus clearly lies in the frontal head region 

with the horizontal plane, as expected for a predator. The IR input of the forward-pointing 

TNM areas along the supralabial scale row in the horizontal head position seems to be most 

important, as deduced from the TNM area sizes. A special enhancement occurs when the 

angle of the boas head reaches 0° frontal to the IR source (see 3.2.5). Here the boa receives 

double IR input, because the TNMs areas of both sides of the head are fully exposed to the IR 

source. 

A small deviation of an IR source from the frontal (0°) position leads to a lower IR input 

through a smaller receptive area. (This principle is given in all three head positions.) Thus, 

when in movement (either the boa itself or potential prey) the boa receives a sudden drop in 

IR stimulation (at about 10°) immediately before facing the IR source (e.g. prey) frontally and 

receiving double input. This immediate drop of IR radiation input most probably serves as the 

neural trigger for precise targeting when striking (speed and accuracy is required). If there 
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were a continuous linear increase of IR sensory input until it reached a maximum, it would be 

too late to accurately behaviourally respond to the stimulus (as a flying bird would have 

already passed the optimal (frontal) striking position). However, the neural response will be 

triggered while the potential prey still moves through the boas IR receptive visual field 

towards its maximum sensory IR input. As a result the given narrow time frame (of 

perception and response) is herewith used optimally. All the combined information (increase, 

sudden drop, double IR radiation input) enables the boa to a precise and fast striking 

performance. And in fact, this horizontal head position is the position in which the boa 

actually conducts a strike.  

 

The boa inhabits an environment offering places of deprived view, e.g. dense trees and 

woodland bushes, suggesting that the IR sense is of advantage even during daytime. 

Information of the TNMs as well as of the eyes converges in the brain (tectum opticum), 

where it is processed together. The IR and visual sensory systems can cooperate, but also 

substitute each other under the deprivation of one sense, as Grace and Matsushita (2007) have 

shown for P. regius.  

This anatomical examination suggests that the IR sense in C. hortulanus has surpassed the 

visual sense with respect to functional importance (i.e. to utilize its 3-D environment best 

possible). This is in accordance with Grace and Matsushita (2007), who suggested a possible 

dominance of the IR sensory system over the visual system in boids. However, the size of the 

field of view does not solely determine its importance, as the principles of the visual and IR 

system differ. Although the focus probably lies on the IR system, the visual system has 

several advantages in resolution due to structures such as a lens, and functions like 

accommodation and motility (Grace and Matsushita, 2007).  

C. hortulanus´ IR sense covers the lateral to near caudal angles very well (up to 300°), 

therefore it is probable that the IR field of view is larger than the visual field of view. Large 

IR and or visual fields of view are usually typical for arboreal snakes, as a good 3-D overview 

improves both prey detection and predator avoidance. Indeed, (homeothermic) vertebrates are 

not only important sources of prey, but are also potential predators of boids. Therefore, one 

could speculate that the IR sense is also employed in defence behaviour, e.g. for detecting and 

identifying predators such as birds of prey or monkeys. One incidental field observation 

documented a C. hortulanus being attacked by a group of saddleback tamarins (Saguinus 

fuscicollis) (Bartecki and Heymann, 1987). Greene (1992, 1997) suggested predator-
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avoidance to possibly be an important selective factor in the evolution of the IR imaging 

system.  

Apart from the IR sense functioning as a prey/predator detection and targeting mechanism 

other uses of the IR sense are also possible. Associated with prey detection is the ambush 

perch site selection. As proposed for the pitviper Gloydius shedaoensis (Shine et al., 2002) it 

is possible that the arboreal perch site selection for C. hortulanus also serves to provide a high 

thermal contrast between flying prey (e.g. bird) and the cool background of the sky. This is in 

accordance with Bakken and Krochmal (2007) who also assume a high thermal background 

contrast of importance for snakes and furthermore even suggest thermoregulation as the 

driving force for the evolution of the IR sense. As observed for the above mentioned arboreal 

pitviper G.  shedaoensis (Shine et al., 2002), it is likely that C. hortulanus also uses its IR 

sense for thermoregulation.  

 

Whatever the exact function and selective pressure for evolving such a complicated IR 

receptor morphology, C. hortulanus shows a unique and so far unknown mechanism of IR 

reception to enhance spatial resolution. In all investigated IR sensitive snakes, the main 

principle to increase spatial resolution is to lower the receptors into a cavity and to decrease 

the size of the aperture in order to form a kind of pinhole camera. In rattlesnakes, only one 

pair of pits is present, whereas pythons have a series of pits along the lips. C. hortulanus, in 

contrast, evolved a zigzag-pattern in the labial scales that divides each scale into a forward-

facing and a backward-facing part. Together with the curvature of the head and labial scale 

rows, this enhances spatial resolution while maintaining sensitivity. The biggest problem in a 

pinhole camera is that spatial resolution is increased by decreasing the aperture. This at the 

same time decreases sensitivity, because less radiation can enter the pit. In the visual system, 

this problem was solved by evolving a lens. C. hortulanus may have solved this problem by 

evolving a zigzag-pattern that increases spatial resolution without sacrificing sensitivity. 

Future studies should focus on this mechanism by either computer modelling of such a 

'perception-type' or actually constructing a model with (photo)-receptors in a zigzag-

formation to see how spatial resolution could be increased while maintaining sensitivity.  

In this study, a new 'perception-type' may have been discovered that is different from all 

other IR systems and perception mechanisms.  
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5 Summary 
The ability to detect infrared (IR) radiation is a characteristic of boids and pitvipers. These 

snakes possess highly sensitive IR receptors, often embedded in pit organs, which enable 

them to locate IR sources independently of visual cues. It was aimed to behaviourally 

determine IR detection thresholds of two separately evolved IR sensory systems. 

Electrophysiological studies have been conducted to determine IR detection thresholds in 

boids and pitvipers. This is the first behavioural study which focuses on the detection 

thresholds of a pitviper and a boid snake to IR stimuli. Blindfolded Western diamondback 

rattlesnakes (Crotalus atrox) and Ball pythons (Python regius) were exposed to a moving IR 

stimulus of constant size and temperature at various distances (C. atrox: 10-160 cm, P. regius: 

10-100 cm). The threshold for eliciting distinct behavioural changes during stimulus 

presentation was used to assess their IR detection thresholds. C. atrox can detect a moving IR 

stimulus resembling a mouse in temperature and size up to a distance of 100 cm, which 

corresponds to an irradiance contrast of 3.35 x 10-6 W/cm2. P. regius detected the IR stimulus 

up to a distance of 30 cm, which corresponds to an irradiance contrast of 3.83 x 10-5 W/cm2. 

These irradiance contrast detection thresholds reveal a sensitivity 3.2-times higher (C. atrox) 

or 1.5-times higher (P. regius) than sensitivities found in previous electrophysiological 

investigations, confirming that behavioural approaches determine sensory sensitivities far 

more accurately. The differing IR sensitivities of C. atrox and P. regius presumably result 

from their different habitats, i.e. C. atrox prefers open spaces, whereas P. regius primarily 

inhabits narrow burrows and rocky areas. Naturally, their IR detection thresholds should be 

adapted to the distance ranges at which they can be employed usefully. 

 

The pit morphology of pitvipers, pythons and boas varies greatly. Pitvipers possess loreal pits, 

and most pythons have labial pits, whereas most boas lack labial pits or depressions. Pitvipers 

and pythons are quite well investigated; however, the pit morphology of pit-bearing boas has 

hardly been examined. The IR sensitive Amazon tree boa (Corallus hortulanus) possesses 

extraordinarily shaped deep labial scale depressions, which are arranged in a zigzag-formation 

resulting in backward- and forward-facing scale areas. This unique directional morphology is 

assumed to be the basis for the IR perception mechanism of C. hortulanus. To build a model 

for assessing the function of this pit arrangement for IR reception, it was necessary to 

determine the occurrence, structure and distribution of the IR receptors, i.e. terminal nerve 

masses (TNMs), within the labial scales. Their structure was investigated by light microscopy 

and transmission electron-microscopy, whereas the location and size of the TNM areas was 
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determined by succinate dehydrogenase staining. Furthermore, tracing experiments with 

neurobiotin should have exhibited the central neural projection of the TNMs, however only 

one trial successfully revealed projections up to the IR processing LTTD. 

Certain small pores have previously been hypothesised to aid IR reception therefore the 

surface of the labial scales was inspected with scanning electron microscopy (SEM). These 

SEM results were combined with a precise 3-D reconstruction of the labial scales, revealing a 

loose correlation between TNM areas and specific small pores. However, these pores do not 

seem suitable for reflecting away non-IR wavelengths as hypothesised. Indeed it seems more 

probable that these pores aid IR reception by homogenising the surface structure, and thereby 

the surface temperature. 

To investigate the functional morphology, the SDH staining results were necessary to 

reconstruct the TNM areas of the supra- and infralabial scales and transfer these onto a plaster 

head cast of C. hortulanus. This model was used to decode the directional reception 

characteristics of the 3-D IR field of view, which covers an angular range of up to 300°. It 

was possible to show that the radiation of an IR source impinges on different proportions of 

forward- and/or backward-facing TNM areas when coming from different angles, thus giving 

exact directional information. Additionally, the spatial resolution is enhanced by the 

sophisticated shape of some labial scales. Moreover, a novel enhancement mechanism was 

discovered: when a boa turns its head to frontally face an IR source, it receives a sudden drop 

in IR stimulation at the 10° angle, before receiving doubled IR radiation input when facing the 

IR source frontally (0° angle). Only then does the IR radiation impinge fully on both sides of 

the boas head and labial scales. The swift drop at 10° most probably serves as a neural trigger 

for precise targeting when striking. With C. hortulanus a new IR sensing system has been 

discovered and the results help to understand how morphology can function to increase the 

spatial resolution power of sensory systems.   
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7 Abbreviations 
 
 

Aqua dest.  distilled water 

BDA  biotinylated dextran-amine 

DAB  diaminobenzidin 

HMDS  hexamethyldisilazane 

Hz   Hertz 

IR   infrared 

M   molar 

MW  molecular weight 

NBT  nitro blue tetrazolium 

PE    Peltier element 

pH   potentia hydrogenii 

SDH  succinate dehydrogenase 

SEM  scanning electron microscopy 

TEM  transmission electron microscopy 

TNM  terminal nerve mass 
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8.1 Recipes  

8.1.1 SDH staining 

Unfixed, fresh tissue was frozen and cut on a cryostat at 20 µm. Sections were collected 

directly onto slides and allowed to dry for a few hours. A solution of 10 ml 0.1M phosphate 

buffer (pH=7.4) with 0.5 g succinate and 10 mg NBT (approx. 98%, Sigma-Aldrich, 

Germany) sufficient for about 5 slides was mixed and the slides were incubated for 3-4 hours 

at room temperature. Then, the slides were fixed in 4% paraformaldehyde (1 l 0.1M 

phosphate buffer solution mixed with 40 g paraformaldehyde) over night. Dehydration was 

conducted by an increasing ethanol series (70%, 80%, 90%, 96%, 100%, isopropanol (I-II), 

xylol (I–III)) with 10 min incubation time in each. The slides were covered with Roti 

Histokit-II (Roth, Germany) and allowed to dry thoroughly.  

 

Phosphate buffer: 2l Aqua dest. + 28.4 g Na2HPO4 + 5.4 g KH2PO4  

 

8.1.2 Light microscopy and transmission electron-microscopy 

8.1.2.1 Epon embedding procedure 

The material fixation was conducted by incubation in a solution of 2.5% glutardialdehyde in 

0.1M phosphate buffer overnight. Then, the samples were washed with phosphate buffer (3x) 

and thereafter cacodylate buffer (3x), both at 2°C. An incubation of the samples in 1.5 % 

osmium tetroxide solution on ice for 2 h followed. The samples needed to be washed in 

cacodylate buffer (3x, 2°C), before they underwent dehydration with an increasing ethanol 

series (70% at 2°C, 80%, 90%, 98%, 100%, isopropanol) for 10 min in each, except in the 

70% ethanol, which was for 60 min to warm to room temperature. Then, the samples were 

transferred in intermedia, for 10 min in each: 1. 50% propylen oxide (1,2-Epoxypropan) in 

isopropanol, 2. 75% propylene oxide in isopropanol, 3. 3x 100% propylene oxide. Thereafter, 

the samples were transferred into a propylene oxide- epon –suspension in a ratio of 9:1 for  

12 h. Then, the propylen oxide was left to evaporate. The samples were transferred into 100% 

Epon for 24 h and embedded in silicon-rubber-troughs filled with Luft’s Epon. Polymersation 

occurred in an incubator at 60°C for about 48 h. 
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Sörensens phosphate buffer 

Solution A: 27.6 g 0.2M NaH2PO4 · H2O (Natriumdihydrogenphosphate-monohydrate) 

dissolved in 1l Aqua dest.  

Solution B: 28.4 g 0.2M Na2HPO4 (Di-natriumhydrogenphosphate) dissolved in 1l Aqua dest.  

 

The pH of the buffer was adjusted to 7.2 by mixing 280 ml of solution A and 720 ml of 

solution B. This buffer solution had an osmolarity of approximately 226 mOsm and was 

0.1M. For reptile tissues, an adjustment to 300-340 mOsm with NaCl was needed.  

 

0.05M Cacodylate buffer: 1.06 g cacodylate (approx. 98%), 9.2 g sucrose, 0.4 ml HCl (1 n) 

dissolved in 100 ml Aqua dest., (pH=7.1) 

 

2.5% Glutardialdehyde fixative: 25 ml glutardialdehyde (25%) in 125 ml phophate buffer 

 

1.5% Osmium tetroxide solution: 1 ml osmium tetroxide (4%) in 1.7 ml 0.1M cacodylate 

buffer  

 

Epon 812 after Luft:  

Mixture A: 15.5 g Epon 812 (Glycidether 100) + 25 g DBA (dodecenyl- succinic acid- 

anhydride)  

Mixture B: 10 g Epon 812 + 8.9 g MNA (methylen- domethylenphtal acid- anhydride) 

 

Mixture A and mixture B were mixed in a ratio of 7:3 (40.5 g mixture A and 17.38 g mixture 

B) and 0.86 g accelerator (DMP-30,2,4,6-tri(dimethylaminomethyl)phenol was added.  

 

8.1.2.2 0.05% Toluidine blue-borax-solution 

2.5 g Toluidine blue (0.5%) and 2.5 g borax (0.5%) was mixed with 1 l distilled water. The 

solution was diluted in a ratio of 1:5 and filtered before use.  

 

8.1.2.3 Uranyl acetate and lead citrate staining 

The ultra-thin sections were applied onto grids (slit 2x1 mm, Plano), which were coated with 

a pioloform layer.  
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Pioloform solution: 1.5 g pioloform (Polyvinylformaldehyde) diluted in 100 ml chloroform 

 

For the TEM investigation the ultra-thin sections needed to be contrasted. To do so, each 

section was transferred onto one drop of uranyl acetate and incubated for 30 min in darkness. 

Uran(yl acetate) contrasts the nucleine acids and proteins.   

 

Uranyl acetate solution: 2 g uranyl acetate and 100 ml distilled water  

 

The sections were washed in boiled Aqua dest. and dried. Then, each section was transferred 

onto a drop of lead citrate and incubated for 15 min under the removal of CO2 with NaOH 

pellets. Lead (citrate) contrasts lipoprotein-membranes, glycogen and proteins.  

 

Lead citrate solution after Reynolds:  

Solution A (1.33 g lead nitrate + 15 ml Aqua dest.) 

Solution B (1.76 g sodium citrate + 15 ml Aqua dest.) 

 

Solution A and B was mixed and 8 ml 1n NaOH added, then diluted with 50 ml Aqua dest..  

Again, the sections were washed and dried as described above.  

 

8.1.3 Tracer injections  

8.1.3.1 ABC-Elite-Kit 

ABC –solution preparation: 1 drop of solution A and 1 drop of solution B of the ABC-Elite-

Kit dissolved with 10 ml phosphate buffer with 50 μm 0.1% TritonX100 

Brain sections were washed in phosphate buffer (I-III) for 5 min in each, followed by 10 min 

incubation in 1% H2O2. Then, the sections were washed again in phosphate buffer (I-III) for 

5-10 min in each, before they were incubated in the ABC- solution for at least 2 h. Again, the 

sections were washed in phosphate buffer (I-III) for 5-10 min in each.  

 

8.1.3.2 DAB solution 

10 ml phosphate buffer mixed with 50 μl DAB, 50 μl CoCl (1%) were added and then 50 μl 

NiSO4 (1%) as well as 50 μl H2O2 (0.3%). The sections were incubated for some minutes 

until staining was visible and were then washed in phosphate buffer (I-III), mounted on slides 

and allowed to dry.  
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8.1.3.3 Neutral red staining procedure 

After the DAB reaction some sections were counterstained with neutral red. Slides were 

incubated in a decreasing ethanol series (xylol (I-III), isopropanol (I-II), 96%, 90%, 80%, 

70%) for 5 min in each. Then, the sections were kept in neutral red/ kresylviolett for about  

1 min followed by phosphate buffer (pH=7) for 30 s. Then, the sections underwent 

dehydration in an increasing ethanol series (70%, 80%, 90%, 96%), isopropanol (I-II) and 

xylol (I-III) for 5 min in each. Thereafter, the sections on the slices were coversliped with 

Roti Histokit-II.  

 

8.1.4 Head cast 

The fixative consisted of phosphate buffer mixed with 2% paraformaldehyde and 2% 

glutaraldehyde.  

 

8.2 Additional data 
Tracer investigation 

Tab. 9: The variations of the experimental procedures in chronological progression of the 

involved boas (j=juvenile, a=adult) are shown. The running time of the tracer equals the 

survival time of the boa, except in one case (see boa 7).  

boa 1  
(j) 

left side, 2nd caudal supralabial pit, 
scale area pointing backward: 
biotinylated dextran-amine (BDA), 
(MW 3000, Lot: 65A11, Molecular 
Probes, Eugene, USA) 

right side, 2nd rostral infralabial pit, 
scale area pointing backward: 
BDA (MW 3000, Lot: 65A11,  
Molecular Probes, Eugene, USA) 

tracer running 
time:  
7 days  

boa 2 
(j) 

left side, 2nd caudal supralabial pit, 
scale area pointing backward: 
BDA (MW 3000, Lot: 65A11,  
Molecular Probes, Eugene, USA) 

right side, 2nd rostral infralabial pit, 
scale area pointing backward: 
BDA (MW 3000, Lot: 65A11, 
Molecular Probes, Eugene, USA) 

tracer running 
time:  
7 days  

boa 3 
(j) 

left side, 2nd caudal supralabial pit, 
scale area pointing backward:  
BDA – fluorescein  
(MW 3000, Lot:R0720, Molecular 
Probes, USA) 
 
left side, 2nd caudal infralabial pit, 
scale area pointing forward: 
DBA – texas red (MW 3000, Lot: 
Q0507, Molecular Probes, USA) 

right side, 2nd caudal supralabial pit, 
scale area pointing forward:  
dextran, tetramethylrhodamine (MW 
3000, Lot: 65A11, Molecular 
Probes, USA) 
 
right side, 2nd caudal infralabial pit, 
scale area pointing backward:  
dextran – fluorescein (MW 3000, 
Lot: 65011, Molecular Probes, USA) 

tracer running 
time:  
10 days 

boa 4 
(a) 

left side, 2nd caudal infralabial pit, 
 
scale area pointing forward: 
BDA – fluorescein (MW 3000, 
Lot:R0720, Molecular Probes, USA) 
 

right side, 2nd caudal supralabial pit, 
 
scale area pointing forward: 
BDA – fluorescein (MW 3000, 
Lot:R0720, Molecular Probes, USA) 
 

tracer running 
time:  
6 days 
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scale area pointing backward: 
dextran, tetramethylrhodamine (MW 
3000, Lot: 65A11, Molecular Probes, 
USA)  

scale area pointing backward:  
dextran, tetramethylrhodamine (MW 
3000, Lot: 65A11, Molecular 
Probes, USA) 

boa 5 
(j) 

left side, 2nd caudal infralabial pit, 
 
scale area pointing forward: 
BDA – fluorescein (MW 3000, 
Lot:R0720, Molecular Probes, USA)  
 
scale area pointing backward: 
dextran, tetramethylrhodamine (MW 
3000, Lot: 65A11, Molecular Probes, 
USA)  

right side, 2nd caudal supralabial pit, 
 
scale area pointing forward: 
BDA – fluorescein (MW 3000, 
Lot:R0720, Molecular Probes, USA) 
 
scale area pointing backward:  
dextran, tetramethylrhodamine (MW 
3000, Lot: 65A11, Molecular 
Probes, USA) 

tracer running 
time:  
4 days 

boa 6 
(j) 

left side, 2nd caudal supralabial pit, 
 
scale area pointing forward: 
BDA – fluorescein (MW 3000, 
Lot:R0720, Molecular Probes, USA)  
 
right side, 2nd caudal infralabial pit, 
 
scale area pointing backward: 
dextran, tetramethylrhodamine (MW 
3000, Lot: 65A11, Molecular Probes, 
USA) 

right side, 3nd caudal supralabial pit, 
 
scale area pointing backward: 
BDA – fluorescein (MW 3000, 
Lot:R0720, Molecular Probes, USA) 
 
right side, 3nd caudal infralabial pit, 
 
scale area pointing forward: 
dextran, tetramethylrhodamine (MW 
3000, Lot: 65A11, Molecular 
Probes, USA) 

tracer running 
time:  
5 days 

boa 7 
(a) 

left side, 2nd and 3rd caudal supralabial 
pits, scale area pointing forward:  
BDA (MW 3000, Lot: 65A11, 
Molecular Probes, USA) 
 
tracer running time: 6 days 

right side, 2nd and 3rd caudal 
supralabial pits, scale area pointing 
forward:  
biocytin (FW: 372.5, Lot: 
117H9190, Sigma-Aldrich, 
Germany) 
 
tracer running time: 2 days 

tracer running 
time:  
6 days  
 -> biocytin 
tracer running 
time differs 
from survival 
time!  
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