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Apo E                         Apolipoprotein E 
GSLs                         Glycosphingolipids 
GCS                            Glucosylceramide synthase / Glycosylceramide synthase 
LCS/GalT1                   Lactosylceramide synthase/ galactosyltransferase I 
PDMP                               D, L-threo-1-Phenyl-2-decanoylamino-3-morpholino -1-propanol. HCl  
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DNA                             Deoxy ribonucleic acid 
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1 Summary/Abstract 
 

Alzheimer’s disease (AD) is associated with extracellular deposits of the amyloid β-
peptide (Aβ) and intraneuronal aggregates of hyperphosphorylated tau protein in the brain. Aβ is 
generated by sequential proteolytic processing of the β-amyloid precursor protein (APP) by β- 
and γ-secretases. γ-secretase is a multimeric protein complex with presenilins as catalytic 
subunits, which cleave APP C-terminal fragments (APP-CTFs) generated by β-secretase cleavage 
of APP. Several studies have indicated dysregulation of protein transport and lipid metabolism as 
an important aspect of AD. The cleavage of APP by secretases which occurs predominantly in 
post-Golgi secretory and endocytic compartments is influenced by cholesterol, indicating a role 
of the membrane lipid composition in the processing of APP. Moreover, γ-secretase activity has 
been shown to be dependent on membrane lipids. In the present study, on one hand the effects of 
perturbations in membrane lipid composition on APP processing were analyzed in detail. On the 
other hand, the role of presenilins in maintenance of membrane lipid homeostasis was 
investigated as well. 

 
By various approaches, it was established that APP transport, stability, maturation and 

processing is affected by glycosphingolipids (GSLs). Importantly, the inhibition of GSL 
biosynthesis decreased secretion of Aβ, whereas addition of exogenous GSLs lead to higher Aβ 
levels as well as strong accumulation of APP-CTFs. Thus, the presented studies identified GSL 
metabolism as a novel target to regulate the levels of Aβ. Moreover, there is a growing perception 
that the increased levels of APP-CTFs contribute to AD pathology by exerting toxic effects. 
Elevated levels of APP-CTFs were also detected in various sphingolipid storage disorders 
(SLSDs). Interestingly, tau pathology and inflammation caused by microgliosis is observed both in 
AD as well as some sphingolipid storage disorders (SLSDs). Therefore, an accumulation of APP-
CTFs associated with altered sphingolipid metabolism might be an important common aspect of 
these disorders, which contributes to the observed neurodegeneration.  

 
In the course of these studies, a novel way by which presenilins regulate the cholesterol 

and sphingolipid metabolism was also revealed. Inhibition of γ-secretase activity results in 
inefficient endocytosis of LDL, which led to increased cellular de novo cholesterol biosynthesis 
via transcriptional up-regulation of CYP51.  Evidence is provided for the global role of presenilins 
in regulation of endocytosis and degradation of membrane lipids and a broad range of proteins. 
The lack of γ-secretase activity causes an accumulation of membrane sphingolipids as well as 
membrane proteins. Thus, results validate the previously proposed hypothesis that presenilin are 
necessary for membrane protein clearance. Moreover, familial Alzheimer’s disease (FAD) 
associated mutations in presenilin disturbed the membrane lipid-protein homeostasis in a similar 
fashion by blocking endocytosis, indicating loss of function.  

 
The inhibition of γ-secretase activity is a rational strategy to decrease Aβ generation in 

AD therapy. However, since γ-secretase is involved in the cleavage of different substrates, a 
general inhibition of this enzyme could affect different biological processes. The finding that the 
inhibition of γ-secretase activity also impaired membrane lipid-protein homeostasis underscores 
the necessity of targeting γ-secretase cleavage of APP, without affecting other cellular pathways. 
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2 Introduction 

2.1 Alzheimer’s Disease  
 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the most 

common cause of dementia. Age is considered the major risk factor for AD. Millions suffer from 

AD worldwide and with continuous rise in life expectancy, the number of AD patients is set to 

increase steeply in coming years (Ferri et al., 2005). Clinically, AD is characterized by 

progressive loss of memory associated with cognitive deficits extending to language skills, 

decision-making ability, movement and recognition (Forstl and Kurz, 1999; Arnaiz and 

Almkvist, 2003). Neuropathologically, presence of extracellular amyloid plaques and 

intracellular neurofibrillary tangles (NFTs) (Fig. 1A,B) associated with widespread loss of 

neurons in brain, first described in 1907 by the German neurologist Alois Alzheimer, still 

remains the most robust and invariable features of AD. A major component of amyloid plaques is 

the hydrophobic 4kD amyloid β peptide (Aβ), while NFTs are formed by hyperphosphorylated 

tau (Selkoe, 2001; Masters and Beyreuther, 1991).  

Gradual deposition of Aβ into plaques together with loss of communication among 

certain neurons, leading to eventual neurodegeneration and inflammation could underlie the 

clinical progression of disease. No medical tests other than brain autopsy are available to 

diagnose AD conclusively pre-mortem. The clinical diagnosis is primarily made on the basis of 

family history, clinical observation, and memory tests. In typical cases, initially there is an 

isolated impairment of learning and short-term memory, without alterations in other areas of 

cognition or consciousness. This is followed by changes in long-term memory, personality, 

orientation and executive function. Cognitive losses are followed by behavioral/psychological 

problems (e.g. hallucinations, delusions). Finally deterioration of language and visuospatial skills 

together with impaired motor function leads to loss of activities of daily living (Scarmeas et al., 

2005). Additionally, evolving contemporary neuroimaging techniques could offer a great promise 

for early diagnosis (Hintersteiner et al., 2005). 

Currently available therapies, for the most part target a deficiency in the cholinergic 

neurotransmitter system, a neurochemical system largely thought to be involved in short term 

memory, which is severely affected in AD. These medications, however, offer only palliative 

symptomatic relief (Birks, 2006). Recent findings suggest that the therapies based on 

immunological interventions hold a great promise against AD. However, these therapies face a 
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challenge of overcoming associated immune-related complications such as encephalitis and T-

cell response (Weiner and Frenkel, 2006). 

2.1.1 Neuropathological lesions of AD 
 

A                B                    C 
                                                                                                
                 

 

 

 

 

 

 

 

 
 

NFTs consist of paired helical filaments (PHFs) of the microtubule associated tau 

protein arranged in a double helix (diameter 20 nm). They are found in the cytoplasm of neurons, 

particularly of pyramidal cells of the cerebral cortex and hippocampus (Fig. 1). Deposition of 

NFTs is reported to occur in six stages (Braak and Braak, 1991a). The insidious onset and 

gradual progression of symptoms in patients with AD are thought to parallel the progression of 

AD-related brain deterioration from entorhinal cortex to hippocampus to neocortex (Braak and 

Braak, 1991b). Six isoforms of tau derive by alternative mRNA splicing from a single gene 

located on chromosome 17. So far more than 20 abnormal phosphorylation sites in tau have been 

shown to be associated with AD. In AD hyperphosphorylated tau competes with normal tau as 

well as with microtubule associated protein 1 and 2 inhibiting their microtubule assembly 

promoting activities. The disruption of the microtubule network probably compromises axonal 

transport and starts retrograde degeneration of affected neurons. Moreover, the neuronal 

cytoskeleton is progressively disrupted and is replaced by bundles of PHFs, leading to the 

formation of NFTs. To date no mutations in tau have been found to be associated with AD. 

However, mutations in tau are associated with frontotemporal dementia supporting the role of tau 

in the pathogenesis of neurodegenerative disorders (Lee et al., 2001; Mandelkow et al., 1996). 

Fig.1 Neuropathological hallmarks of Alzheimers disease. A-B, Photomicrograph of a section of brain from AD 
patient demonstrating the classical neuropathological lesions of this disorder – amyloid plaques and neurofibrillary 
tangles (NFTs) (A). Higher resolution picture of AD brain section, depicting amyloid plaque and NFTs, red and
black arrowheads indicate amyloid plaque and NFT respectively (B), (taken from Selkoe et.al., 1998). C, 
Ultrastructural visualization of neurofibrillary tangle using electron microscopy showing paired helical filaments
twisted around each other that are composed of hyperphosphorylated tau. (Source http://www.mpasmb-
hamburg.mpg.de/) 

http://www.mpasmb/
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In contrast to intraneuronal NFTs, amyloid plaques are extracellular, round, spherical 

structures with diameters of 15 to 20 µM. They consist of a peripheral rim of intimately 

associated abnormal neuronal processes - dystrophic axons and dendrites (neurites) along with 

activated microglia, astrocytes as well as blood vessels surrounding a core of densely deposited 

Aβ . Deposits of amyloid peptide that lack altered neurites and glia are known as diffuse plaques 

and may be found in the brains of normally aged people, as well as in other neurodegenerative 

diseases (Armstrong, 2006). Plaques are heterogeneous aggregates containing many other 

components like sulfated glycosaminoglycans, Apo E, α1-antichymotrypsin, complement 

factors, cytoskeletal proteins and lipids such as cholesterol etc. The predominant Aβ species 

found in the plaque is the 40 amino acid long Aβ40. A less abundant, more hydrophobic 42 

amino acid long species, Aβ42, is considered more toxic and the initiator of aggregation. An 

altered Aβ42 to Aβ40 ratio and overall increase of total Aβ load is thought be one of the primary 

causes for plaque formation. Aβ deposition in the entire brain follows a hierarchical sequence in 

different regions of the brain. A large numbers of non-demented elderly people also show 

deposition of Aβ plaques in brain, however, plaques are restricted to neocortex, allocortex, basal 

ganglia and diencephalic nuclei (phase 1 to 3), whereas in AD cases with clinically apparent 

dementia additional Aβ deposits are found in brainstem and cerebellum (phase 4 and 5) (Thal et 

al., 2002). 

Significant correlations have been made between Aβ load, plaques deposition and 

cognition (Beer and Ulrich, 1993), dementia severity (Cummings and Cotman, 1995) as well as 

between NFT numbers and dementia. However, contradictory reports showing little relation 

between plaques and tangles with progression of AD have also been published. Studies also 

suggest a possible role of Aβ in the formation of NFTs. Aβ appears to promote tau 

hyperphosphorylation via modulation of glycogen synthase kinase 3β (GSK3β), mitogen-

activated protein kinases (MAPKs) and cyclin-dependent kinase 5 (Cdk5), the other kinases 

which phosphorylate tau (Hardy, 2003). 
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2.1.2 Generation of Aβ 

2.1.2.1 Amyloid Precursor Protein – Proteolytic processing and subcellular 
transport 

 

Aβ is derived from a larger precursor called β-amyloid precursor protein (APP). APP is a 

type I transmembrane protein and is co-translationally translocated into ER and subjected to 

several co- and post-translational modifications such as N’ and O’ glycosylation, sulfation and 

phosphorylation as it is transported through the ER to the cell surface via the Golgi compartment. 

Most of the APP is turned over with relatively short half-life time of 45-60 min in most cell 

types. APP isoforms exist as immature (APP im; N-glycosylated) and mature (APP m; N- and O-

glycosylated) species. Immature APP is localized in the ER and cis-Golgi, and mature APP is 

present within trans-Golgi, on the plasma membrane and in the endocytic and lysosomal 

compartments. Sequential proteolytic processing of APP by secretases in secretory and endocytic 

pathway could result in generation of Aβ (Fig. 2). β-secretase cleaves APP before Asp 1 of Aβ 

predominantly in endosomal and lysosomal compartments after its internalization from the cell 

surface. Cleavage of APP by β-secretase results in the secretion of soluble APP (APPs-β) and 

generation of a 99 amino acids long APP C-terminal fragment (APP-CTFβ) that is tethered 

within the membrane bilayer  and is substrate for a multimeric protein complex called γ-

secretase, which cleaves CTFβ within the transmembrane domain leading to generation of Aβ. 

Therefore, this pathway of APP processing is termed amyloidogenic pathway. Cleavage of CTFβ 

by γ-secretase can occur at variable amino acid positions leading to generation of different Aβ 

peptides e.g. Aβ40, Aβ42 and Aβ38. Alternatively, APP can also be processed in a non-

amyloidogenic fashion, predominantly at cell surface. Initial cleavage by α-secretase within the 

Aβ domain between amino acids 16 and 17 precludes the later formation of Aβ peptides. The α-

secretase cleavage produces α-soluble APP (APPs-α) and 83 amino acids long CTFα. 

Subsequently, CTFα could also be cleaved by the γ-secretase complex to generate p3. Unlike Aβ, 

the p3 fragment does not have the propensity to aggregate. Moreover, APP-CTF can also be 

cleaved by γ-secretase at ε- and ζ-site which liberates APP intracellular domain (AICD). Because 

of the differential actions of α- and β-secretase, the non-amyloidogenic and amyloidogenic 

processing pathways of APP are mutually exclusive (Walter et al., 2001; Selkoe, 2000). 
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Fig. 2. Proteolytic processing of APP by secretases. The respective cleavage sites within APP molecule are 
indicated by arrowheads. The lipid bilayer is indicated in yellow. In amyloidogenic pathway APP is first cleaved by 
β-secretase and then by γ-secretase to generate Aβ (indicated in green). In the non-amyloidogenic pathway APP is 
first cleaved by α-secretase within the Aβ domain and then by γ-secretase to generate non-amyloidogenic p3 (red). 
Additionally γ-secretase can also cleave APP at ε- and ζ-cleavage site as indicated, ε-cleavage of CTFα/β generates 
AICD, (adapted from Walter et al., 2001). 
 

Besides the amyloidogenic and non-amyloidogenic processing pathways, APP is also 

degraded by lysosomal and proteasomal pathways. Treatment of cells with the lysosomal 

protease inhibitor leupeptin and proteasomal inhibitors MG132 or lactacystein results in the 

accumulation of different species of APP-CTFs with molecular weights higher than the expected 

for α- or β-secretase cleavage (Haass et al., 1992). Various factors and biological processes that 

affect APP subcellular transport and metabolism also modulate the processing of APP, eventually 

affecting Aβ generation (Haass and de Strooper, 1999). 

Levels of Aβ in the brain are determined by the balance between production and 

degradation. Neprilysin, insulin degrading enzyme, endothelin converting enzyme-2, angiotensin 

converting enzyme, plasmin and cathepsin D have been implicated in the degradation of Aβ  

(Eckman and Eckman, 2005). Age dependent and brain region specific alterations in the 

expression of these enzymes have been reported, this may contribute to distinct susceptibilities of 

particular brain regions in AD as well as the age dependence of this disease. Especially, 

expression of neprilysin was found to be reduced in AD. Recent in vivo and in vitro studies 

demonstrate that the up-regulation of Aβ degrading enzymes can significantly reduce Aβ 

accumulation in brain (Marr et al., 2003). 
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2.1.2.2 Amyloid Precursor Protein – Characteristics and functions 

APP and its related family members, the amyloid precursor like proteins-1 and -2 (APLP-

1 and APLP-2), are homologous type-I transmembrane proteins with relatively large extracellular 

domains and short intracellular domains that are similarly posttranslationally modified and 

processed and have overlapping expression in brain. However, only APP contains the unique 

amyloidogenic Aβ sequence and therefore receives intense scrutiny. The gene encoding APP is 

located on human chromosome 21 and contains 19 exons. Several isoforms of APP are generated 

by alternative splicing of exons 1-13, 13a, and 14-18. The predominant transcripts are APP695 

(exons 1-6, 9-18, not 13a), APP751 (exons 1-7, 9-18, not 13a), and APP770 (exons 1-18, not 

13a) where respective isoform number indicates the length of amino acid sequence. APP751 and 

APP770 isoforms contain exon 7, which encodes a kunitz protease inhibitor (KPI) domain. 

APP770 also contains exon 8, which encodes the proposed domain with homology to the MRC 

OX-2 antigen. All APP family members are ubiquitously expressed. APP695 is the predominant 

form in neuronal tissues, whereas APP751 and APP770 are the predominant variants in 

peripheral tissues (Selkoe, 2001).  

APP knockout mice are fertile and viable. Knockout mice of all three genes or of APP 

and APLP-2 as well as APLP1 and APLP2 are lethal in utero, indicating functional redundancy 

among APP family members. As shown in Fig. 3, APP harbors multiple domains and sites for 

interaction with other proteins, metal ions and heparin as well as for posttranslational 

modifications. It is suggested that the APP holoprotein may be involved in cell-cell interaction, 

cell adhesion, protease inhibition (via the KPI domain in 751 and 770 APP isoforms), and neurite 

outgrowth, formation of forebrain commisures, postnatal somatic growth, neurobehavioral 

development and locomotor activity (Mattson, 1997). There is also biochemical evidence for 

anti-coagulant properties of APP. The secreted APPs is known to have neuroprotective and 

neurotrophic properties. Indeed, memory-enhancing effects were observed when soluble APP 

was administered intracerebroventricularly into mice. Binding of APP to metal ions like Fe2+, 

Cu2+, Zn2+ and Pb2+ via its cysteine rich domain is known to affect APP processing. Interestingly, 

the binding of APP with copper is thought to be essential for copper reduction and homeostasis. 

Moreover, binding of heparin oligosaccharides to APP also modulates APP processing. APP also 

participates in the regulation of signal transduction via association with a brain G protein, Go 

protein (Bayer et al., 1999; Bush et al., 2003).  
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Fig. 3. Diagrammatic overview of APP domains, based on isoform 770.  Domains involved in major interaction 
with metal ions, other proteins as well as regions where APP is modified posttranslationally are indicated. Briefly, 
CuBD/ZnBD/HPD are copper binding, zinc binding and heparin binding domains respectively, KPI - kunitz protease 
inhibitor domain, Ox2 - Ox2 antigene domain, T – TIMP (tissue inhibitor of metalloproteinases) homology domain 
are some of the domains present in ectodomain of APP. G0 - G0 protein binding site, NPTY - GYENPTY motif 
present in APP C-terminal is essential for binding of various adaptor proteins like X11, Fe65 and ARH, C – clathrin 
binding domain. Sulfation and glycosylation sites are marked as SO4 and Gly respectively. Arrows indicate caspase 
cleavage sites present in APP.  Transmembrane (TM) and amyloid β peptide (Aβ) domains are indicated.  
 

APP was also shown to function as membrane receptor for kinesin-I, a microtubule 

motor protein, mediating the axonal transport of vesicles containing β-secretase and presenilin-1. 

Adaptor proteins with phosphotyrosine-binding (PTB) domains, including those in the Fe65, 

X11, c-Jun N-terminal kinase (JNK)-interacting protein (JIP) families and ARH (autosomal 

recessive hypercholesteremia) bind specifically to the highly conserved –GYENPTY- motif in 

the APP C-terminal (King and Scott, 2004). These interactions play critical roles in tyrosine 

kinase mediated signal transduction, protein trafficking, phagocytosis, cell fate determination and 

neuronal development. Especially Fe65 links APP to cytoskeletal dynamics and cellular motility 

and morphology which could be important for highly dynamic processes such as neurite growth 

and synapse modification. Binding of adaptor proteins also facilitates the interaction of APP with 

lipoprotein receptors like the low density lipoprotein related protein (LRP). The GYENPTY and 

YTSI domains in APP are involved in the regulation of endocytosis of APP. Therefore, binding 

of adaptor proteins influences processing of APP and regulates generation of Aβ (de Strooper and 

Annaert, 2000).  

AICD, which is released by γ-secretase cleavage, was shown to translocate to nucleus 

and regulate gene transcription, especially the expression of KAI 1, GSK3β, neprilysin and 

cellular APP itself was shown to be affected by AICD (Cao and Sudhof, 2004). However, recent 

findings that AICD could also affect gene transcription by association with Fe65 or X11 

independent of γ−secretase and transactivation of wide variety of different promoters by Fe65 

alone, casts doubts about translocation of AICD to nucleus and its role in nuclear signaling (Hass 

and Yankner, 2005). Intriguingly, a number of functions have been attributed to Aβ. It has been 
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shown that the Aβ peptides compete with insulin for the insulin receptor. Moreover, soluble 

Aβ40 was shown to induce NMDA-dependent degradation of postsynaptic scaffolding protein 

postsynaptic-95 (PSD-95), which plays a critical role in synaptic plasticity and the stabilization 

of AMPA and NMDA receptors. Furthermore, Aβ can also regulate the trafficking of NMDA 

receptors and homeostasis of cellular cholesterol and sphingolipids (Pearson and Peers, 2006).  

2.1.2.3 α -secretase 

In non neuronal cells, APP is mainly cleaved within the Aβ domain between Lys16 and 

Leu17 by α-secretase (the first amino acid of amyloid sequence is taken as number 1). α-

secretase is a member of the ADAM (a disintegrin and metalloprotease) family of proteases and 

is ADAM10, ADAM17/TACE (tumor necrosis factor-a converting enzyme) or ADAM9. 

Embryonic lethality of ADAM10 deficient as well as ADAM17 deficient mice prevented a 

reliable analysis of adult mice. Therefore, at present, it is unclear whether only one or all three 

together constitute the physiologically relevant α-secretase. By crossing an AD mouse model 

with ADAM10 transgenic mice, Postina et al. (Postina et al., 2004) recently showed that 

overexpressed ADAM10 could contribute to α-secretase cleavage of APP in vivo and thus is 

indeed anti-amyloidogenic. Observed reduction in Aβ peptide generation was sufficient to almost 

completely prevent amyloid plaque formation in brains of these mice. Overexpression of 

ADAM10 also alleviated deficits in spatial learning and synaptic plasticity observed in AD mice. 

ADAMs are membrane-anchored proteins with several domains, including a 

metalloprotease domain which requires a zinc co-factor for activity. The cleavage of APP by α-

secretase is either constitutive or regulated through activation of protein kinase C (PKC). 

Stimulation of phosphorylation by PKC activators increases α-secretase dependent processing of 

APP, thereby lowering secretion of Aβ (Etcheberrigaray et al., 2004). It has been suggested that 

TACE might play a role only in the regulatory component of α-secretase cleavage, whereas 

ADAM10 and ADAM9 are implicated in both, constitutive and regulatory processing of APP by 

α-secretase. The PKC-dependent α-secretase is shown to compete with β-secretase for cleavage 

of APP (Fahrenholz et al., 2000).  

ADAM10 and ADAM17 also mediate the ectodomain shedding of Notch, p75, TNF-α-

receptor, cell adhesion molecule L-selectin, growth factor co-receptor syndecan and many other 

type-I transmembrane proteins. Therefore, they are important in many aspects of biology ranging 
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from cell proliferation, differentiation, remodeling of extracellular matrix and signaling 

(Primakoff and Myles, 2000). 

2.1.2.4 β-secretase 

β-secretase is predominantly expressed in neuronal cells where it cleaves APP at the N-

terminus of the Aβ peptide sequence. Four independent approaches led to the identification of 

the same candidate β-secretase: BACE-1 (β-site APP-cleaving enzyme). BACE-1 can also cleave 

APP and APP-CTFβ at Glu-11 site of Aβ, which results in decreased Aβ. BACE-1 shares 55% 

homology with a second enzyme called BACE-2. Both proteins contain putative prodomains and 

two characteristic aspartyl protease catalytic motifs D (T/S) G (T/S) in their extracellular 

domains. They also share a significant homology with other members of the pepsin family of 

aspartyl proteases. However, in contrast to other proteases of this family, BACE-1 and BACE-2 

are type I transmembrane proteins. In addition, BACE-1 is not inhibited by the classical aspartyl 

protease inhibitor pepstatin and functions optimally at lower pH (4.5-5.5). Heparin sulfate was 

found to be a negative natural regulator of BACE-1 activity (Vassar, 2004). 

Although BACE-1 and BACE-2 are highly homologous, evidence indicates that BACE-

1 is the main enzyme involved in neuronal Aβ production. BACE-2 is predominantly expressed 

in peripheral tissue as well as in glia and is rather implicated in non-amyloidogenic processing of 

APP. BACE-2 was shown to be able to cleave in the middle of the Aβ domain between 

phenylalanines 19 and 20 of Aβ sequence. Thus BACE-2 appears to process APP very much like 

α-secretase, thereby precluding Aβ formation (Fluhrer et al., 2002). 

BACE-1 undergoes complex N’-glycosylation and phosphorylation, as it is transported 

in the secretory and endosomal lysosomal pathway. It is stable for longer time, with a half life of 

8 hr. Phosphorylation of BACE-1 cytoplasmic domain within the di-leucine motif modulates its 

interaction with Golgi-localized, γ ear-containing, ADP ribosylation factor-binding (GGA) 

proteins, which appear to regulate BACE-1 intracellular trafficking, especially sorting in the 

endosomal compartments (Wahle et al., 2006). 

Initial reports suggested that the BACE-1 deficient mice were healthy, fertile and 

showed no obvious phenotype and also lacked Aβ, which suggested BACE-1 as a target of 

choice for AD therapy. However, more recent studies indicated synaptic deficits and behavioral 

changes in BACE-1 knockout as well as transgenic mice. Increased morbidity, subtle 

electrophysiological alterations associated with hyperactive behavior has also been reported for 
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BACE-1 knockout mice. Interestingly, although generation of Aβ was completely blocked in 

neurons, glial cells from these mice still secreted significant amount of amyloid (Walter, 2006). 

BACE-1 does not seem to have stringent substrate specificity for APP. Similar to APP, 

APLP1 and APLP2 are also cleaved by BACE-1 (Li and Sudhof, 2004). P-selectin glycoprotein 

ligand-1 (PSGL-1), a protein which mediates leukocyte adhesion to endothelial cells and is 

critically involved in the inflammation, low density lipoprotein-related protein (LRP), β subunits 

of voltage-gated sodium channels are some other type I transmembrane proteins shed efficiently 

by BACE-1.  A type II membrane protein, α2, 5-sialyltransferase (STGal1), which transfers 

sialic acid residues from CMP-sialic acid to acceptor glyco chains, was reported to be another 

physiological substrate of BACE-1. Recently, neuregulin III, a type I protein involved in axonal 

myelination was identified as physiological substrate of BACE-1 (Willem et al., 2006). 

2.1.2.5 γ-secretase  

γ-secretase is a multimeric membrane bound protein complex that catalyses regulated 

intramembranous proteolysis (RIP) of APP-CTFs generated by either β-secretase or α-secretase 

to liberate Aβ and p3, respectively. Four essential components of γ-secretase, namely Presenilin 

(1/2), Nicastrin, PEN-2 and APH-1 (Fig. 4) form a series of high molecular weight complexes 

and cooperatively regulate each others expression and maturation. The γ-secretase complex is 

sequentially assembled within the ER and cis-Golgi compartments. After maturation of its 

components, the assembled complex may be targeted to its sites of biological activity in late 

secretory/endocytic compartments and at the PM. Enzymatically active complexes have a mass 

that is much higher than the predicted mass for a 1:1:1:1 stoichiometric complex, which suggests 

the presence of other proteins in the complex or alternative stoichiometry. Recently, TMP21, a 

member of the p24 cargo protein family, was characterized as a protein associated with γ-

secretase, which negatively regulates γ-secretase activity. PS1 is also known to interact with β-

catenin, an important regulator of cadherin-based cell adhesion and intermediate in the Wnt 

signaling pathway. Moreover, kinases like GSK3β, PKA and PKC have been shown to associate 

with presenilin and regulate its phosphorylation and binding with β-catenin as well as caspases. 

Recent 3D electron microscope structure of γ-secretase complex reported by Lazarov and 

colleagues revealed a large cylindrical interior chamber which is postulated to provide a 

hydrophilic milieu necessary to accomplish peptide bond hydrolysis. Contribution of presenilins 
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trans-membrane domain 6 (TMD6) and TMD7 to such water containing cavity was verified by 

cysteine scanning. Pores at the top and bottom of the cylinder may release products of RIP into 

distinct subcellular compartments (Verdile et al., 2007). 

 

 

 

 

 

 

 

 

 

 

Nicastrin is a type I transmembrane glycoprotein, Yu et al. identified it biochemically as 

a genuine component of γ-secretase complex by co-purification with presenilin. This was further 

validated by the fact that nicastrin plays a crucial role in notch cleavage in Drosophila 

melanogaster, notch is another important type I protein reported to be cleaved by γ-secretase.  

Nicastrin plays an important role in stabilization and transport of other γ-secretase components. 

In turn, transport and stability of nicastrin is dependent on presenilin expression. Nicastrin acts as 

a gatekeeper of the γ-secretase complex. The extracellular domain of nicastrin binds specifically 

to the amino terminal residue of membrane bound protein fragments generated by sheddases and 

is then able to position the bound substrates to facilitate their cleavage by the catalytic presenilin 

subunit in the γ-secretase complex. Nicastrin knockout mice exhibit a very similar phenotype as 

that of notch and presenilin knockout mice as described later. Francis et al. identified two 

presenilin enhancers in C. elegans namely APH-1 and PEN-2. Both are multipass polytopic 

membrane proteins. APH-1a and APH-1b are the human orthologs of APH-1. APH-1a exists in 

two splice forms APH-1aS and APH-1aL. APH-1 stabilizes the presenilin holoprotein in the 

complex, whereas PEN-2 is required for endoproteolytic processing of presenilin thus conferring 

γ-secretase activity to the complex (Kaether et al., 2006). 

Fig. 4. Diagrammatic overview of the core components of γ-secretase. Minimum 18 transmembrane domains 
provided together by presenilin, nicastrin, APH-1 and PEN-2 form the necessary milieu for RIP. PS belongs to a 
group of polytopic aspartyl proteases with GXGD motif at the active site. Nicastrin is the largest component of 
complex, DYIGS domain in its extracellular region is required for its interaction with presenilin whereas a DAP
domain is crucial for substrate recognition.  Conserved motif GXXXG in APH-1 is essential for assembly and activity 
of complex. DYLSF domain in the c-terminal region of PEN-2 is required for its interaction with other components. 
The length of C-terminus of PEN-2 is critical for γ-secretase activity. 
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2.1.3 Presenilins 
Presenilins constitute the catalytic subunit of the γ-secretase complex and are conserved 

throughout evolution. Presenilin 1 (PS1) and Presenilin 2 (PS2) are the mammalian prototype 

members of a steadily growing protein family with a highly conserved GXGD motif at the 

catalytic site (Haass and Steiner, 2002). Two conserved aspartate residues, each present within 

the GXGD motifs of TMD6 and TMD7 are essential for γ-secretase activity. Additionally, the 

GXGD motif is also involved in substrate selection by the γ-secretase complex. This property 

could be exploited to explore specific means to inhibit cleavage of APP specifically. Lack of 

Aβ/p3 and accumulation of APP-CTFs in primary neurons from PS1 knockout mice embryos as 

well as the characterization of γ-secretase as aspartyl protease established presenilins as 

mediators of γ-secretase activity. These studies also indicated that PS1 is the major presenilin 

involved in cleavage of APP, while PS2 although has the ability, does not seem to contribute 

much to APP cleavage by γ-secretase. 

Presenilins are polytopic transmembrane proteins that are cleaved endoproteolytically 

shortly after biosynthesis, in the cytoplasmic loop located between TMD6 and TMD7. The 

cleavage yields characteristic 30-kD N-terminal fragment (NTF) and 20-kD C-terminal fragment 

(CTF). The NTF and CTF fragments are stable and incorporated in a 1:1 stoichiometry in a γ-

secretase complex. Both PS1 and PS2 undergo phosphorylation in vivo. Moreover, PS1-CTF 

phosphorylation by PKC at Ser 346 is involved in the regulation of apoptosis (Fluhrer et al., 

2004). 

Prior proteolytic shedding of the large extracellular domain of a type I membrane 

protein seems to be a major prerequisite for it to be a γ-secretase substrate (Struhl and Adachi, 

2000). In line with this, in addition to APP, more than two dozen PS1 substrates with diverse 

functions have been identified including notch, LRP, cadherin family members, APLP1/2, notch 

homologs, notch ligands delta and jagged, Erb4, CD44, nectin-1, voltage-gated sodium channel 

β2-subunit, MHC class I protein HLA-A2. This has lead to the hypothesis that the γ-secretase 

complex plays an important role in the degradation of membrane proteins (Kopan and Ilagan, 

2004). 

Knocking out PS1 in mice results in a phenotype that resembles a notch knockout to 

some extent. Moreover, a double knockout of both PS1 and PS2 shows a phenotype that is 

almost identical to the phenotype caused by the knockout of notch. Similar phenotypes were 
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observed in Caenorhabditis elegans and Drosophila melanogaster which could be functionally 

rescued by human PS1 or PS2. Notch is a type I transmembrane protein cleaved constitutively in 

the Golgi by furin like convertase, later interaction with ligand at the plasma membrane (PM) 

induces a subsequent cleavage by a disintegrin/metalloprotease, similar to cleavage of APP by α-

secretase, generating the notch extracellular truncation (NEXT)/notch C-terminal fragment. 

NEXT is processed by the γ-secretase complex to liberate notch intracellular cytoplasmic domain 

(NICD). NICD translocates to nucleus where it acts as a regulator of transcription. NICD 

dependent notch signaling pathway controls embryonic cell-fate decisions in variety of cell 

lineages. Hence, the lack of NICD generation in presenilin knockout mice results in notch 

phenotype (Sisodia, 2000).  

Conditional inactivation of presenilins restricted to postnatal forebrain in mice results in 

reduced Aβ generation and impairments in hippocampal memory and synaptic plasticity. With 

increasing age these mice also show neurodegeneration in the cerebral cortex, associated with 

worsening memory and deterioration of synaptic function. With its ability to cleave several type I 

membrane proteins, presenilins are involved in multitude of important biological processes, 

mainly via the regulation of gene transcription by intracellular domains of various substrates 

which are released after γ-secretase cleavage. Additionally, presenilins have also been implicated 

in β-catenin turnover, cellular Ca2+ homeostasis, apoptosis, protein transport and phagocytic 

response (Shen and Kelleher, III, 2007).  

2.1.4 Genetics of AD  
 

While 95% of all AD cases are sporadic with late age of onset (above 65 years), in a 

small group of patients, familial Alzheimer’s disease (FAD) is inherited with an early age of 

onset. Mutations in three genes located on the chromosomes 21, 14 and 1, which are essential for 

Aβ generation and are encoding APP, PS1 and PS2, respectively, have been shown to segregate 

with the disease. Indeed, presenilins were originally discovered by genetic approaches while 

searching for mutations causing early onset familial AD. Additionally, a trisomy of chromosome 

21 (Down’s Syndrome) which results in a triplication of APP-encoding gene and due to increased 

gene dose causes overproduction Aβ as well as shows AD pathology (Roubertoux and 

Kerdelhue, 2006; Kahlem, 2006). 

The majority of FAD associated mutations affect the generation of Aβ, for example; the 

“Swedish” APP mutation (i.e. double mutation, K670N/M671L) causes enhanced production of 
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the two forms of Aβ, Aβ40 and Aβ42 due to increased processing of APP by BACE-1. PS 

mutations seem to elevate Aβ42 selectively, which is thought to be more amyloidogenic and  

toxic form of the peptide (Butterfield et al., 1999). The mutations within the APP or PS genes 

result in a pathological and clinical phenotype that is indistinguishable from the more common 

late-onset sporadic forms of AD. Overexpressions of mutant human APP in mice produces 

plaque pathology, co-expression of mutant presenilins further hasten the plaque deposition. 

These mice also show behavioral and memory deficits and hence are widely used as animal 

models to study AD (Dewachter et al., 2001). 

So far little more than 25 AD related mutations in APP and 10 in PS2 have been 

reported. More than 150 mutations in PS1 have been found to be linked with AD (a list of FAD 

mutations in each gene can be found at http://www.molgen.ua.ac.be/ADMutations/). Mutations in the 

APP protein are mainly located in and around the Aβ domain where APP is cleaved by different 

secretases. The PS1 FAD mutations are more dispersed and are located within or around the all 

of the highly conserved hydrophobic TMDs (Fig. 5). Most of these are missense mutation with 

few other types like ΔExon 9 mutation, which is caused by mutations in the splice acceptor site 

of exon 9. This results in the deletion of residues 291-391 of the protein and change of S290 to 

cysteine at the splice site. This mutation alters metabolism of presenilin as it deletes the 

endoproteolytic cleavage site within presenilin. A splice donor site mutation Δ4 has also been 

reported. This mutation causes many transcripts of the gene leading to truncated forms of 

proteins.  All of these mutations lead to increased plaque deposition and early age of onset AD. 

Some mutations, for example the polish mutation, P117L, lead to death as early as 28 yrs of age, 

underscoring the importance of proper PS1 function. Another very aggressive PS1 mutation, 

L166P, not only induces an exceptionally high increase of Aβ42 production as mentioned 

previously but also impairs NICD production and notch signaling, as well as AICD generation. 

However, no other obvious phenotype is observed in the AD patients carrying these mutations 

(Menendez, 2004; Tanzi and Bertram, 2005; Perez-Tur et al., 1995). 
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HL1
Tyr115His
Pro117Leu
Pro117Leu

TM2

Met139Val
Ile143Phe

Met146Leu

TM4
Ile213Thr

TM5
Ala231Thr
Met233Thr
Leu239Pro

HL6
Cys263Arg
Arg269His
Leu392Val

TM1
Ala79Val

Val182Leu
Val96Phe

HL2
His163Tyr
His163Arg

TM6
Ala246Glu
Leu250Ser
Ala260Val

TM7

1 2 3 4 5 6 7 8

Cys410Tyr

 
Fig. 5. PS1 FAD mutations.  Some of the missense FAD mutations in PS1 protein are shown in the diagram. As 
indicated mutations are not localized in a particular region of themolecule. So far, more than 150 such mutations 
have been reported in PS1, however only 10 such mutations have been identified in PS2, (adapted from 
www.alzforum.org). 

 

In addition, the ε4 allele of apolipoprotein E (Apo E) is a major risk factor for 

developing late onset AD. The Apo E gene is present on chromosome 19 and encodes a 

circulating lipid transport glycoprotein. It is expressed predominantly in liver, but is also 

expressed in brain primarily by microglia and astrocytes. Neurons in CNS also express Apo E, 

albeit at a lower level. (St George-Hyslop, 2000; Tanzi and Bertram, 2005).  

In humans, there are three common Apo E alleles present: ε2, ε3 and ε4. The three differ 

only by one or two amino acids (ε2 - Cys112Cys158; ε3 - Cys112Arg158; ε4 - Arg112Arg158) 

but confer at least twenty fold difference in the risk for developing AD  (ε4 > ε3 > ε2) . Presence 

of the ε4 allele also decreases the mean age of onset significantly. Increased frequency of ε4 

allele in AD patients, compared to age-matched healthy controls, has been widely reproduced in 

numerous epidemiological studies from variety of populations of diverse ethnic origin. By 

contrast, inheritance of the other alleles appears to reduce the risk of developing AD, even when 

combined with ε4 allele or in patients with downs syndrome (Strittmatter and Roses, 1995). It 

should be emphasized, however, that the ε4 allele of Apo E does not confer an absolute 

predisposition to develop AD. Thus, the ε4 allele is a true genetic risk factor, most likely 

interacting with other genetic and/or nongenetic factors to facilitate AD. Apo E seems to play a 

critical role in deposition and fibrilization of Aβ to form amyloid and neuritic plaques in an 
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isoform dependent manner. However, the detailed cellular mechanism behind this remains to be 

elucidated. Possible explanation could be the involvement of Apo E in Aβ endocytosis and 

subsequent clearance as well as differential affinity of Apo E isoforms to Aβ (Carter, 2005). 

2.1.5 Amyloid Hypothesis 
 

Over the past two decades understanding of molecular mechanisms involved in AD has 

increased considerably, which has led to the formation of several hypotheses. Especially the 

“amyloid hypothesis” and “neuronal cytoskeletal degeneration hypothesis”, emphasizing the role 

of Aβ in neurodegeneration (Hardy and Selkoe, 2002) and tau in axonal transport respectively, 

have been widely discussed. Other hypotheses focussed on dysfunction of cholinergic system 

(Francis et al., 1999), Ca2+ signaling deficits (Mattson, 2002), NMDA receptor hypofunction, 

disruption of APP signaling and cell cycle abnormalities, mitochondrial dysfunction forward 

(Swerdlow and Khan, 2004) have also been put. However, none of the hypotheses is clinically 

proven and each hypothesis falls short of offering clear molecular basis for AD. Nonetheless the 

“amyloid hypothesis” has gained widespread acceptance and is the predominant scientific 

explanation for the cause of AD over the past two decades. An emerging consensus in the field 

indicates that AD is a complex disorder with involvement of multiple environmental and genetic 

factors, in other words AD could be considered as a multifactorial syndrome (Shua-Haim and 

Gross, 1996; George-Hyslop and Petit, 2005). 

The "amyloid hypothesis" states that AD is initiated by the enhanced production, 

aggregation and deposition of the toxic amyloid beta (Aβ) peptide leading to impaired cell-to-

cell communication compromising synaptic function, eventually causing the death of neurons in 

the brain (Fig. 6). The strongest evidence for the “amyloid hypothesis” comes from studies of the 

rare familial forms of AD from fact that all the FAD mutations have been shown to affect 

generation/aggregation of Aβ. 

Other multiple factors which affect Aβ generation, clearance and deposition are believed 

to be involved in the onset of sporadic forms of AD. Various factors like age, ischemia, oxidative 

stress, higher caloric intake, and head injury, inflammation etc. in concert with Apo E or alone 

could further modify Aβ metabolism and deposition (Behl, 2005). The “amyloid hypothesis” is 

further amended and extended to accommodate more recent findings such as the predominant 

role of Aβ oligomers in the disease than monomers or amyloid plaques (Walsh and Selkoe, 2007) 

and the presence of toxic intracellular amyloid, as well as modulation of tau phosphorylation by 
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Aβ through regulation of kinases and phosphtases ( Blurton-Jones and LaFerla, 2006; Billings et 

al., 2005). 

 

Autosomal Dominant Forms of AD Sporadic Forms of AD

Missense mutations in APP or PS genes
Failure of Aβ clearance mechanism
e.g. inheritance of Apoε4 ; faulty Abeta degradation 

Increased Aβ production throughout life Gradually rising Aβ42 levels in brain

Accumulation and oligomerization of Aβ42 in limbic and association cortices

Subtle effects of Aβ oligomers on synaptic efficacy

Gradual deposition of Aβ42 oligomers as diffuse plaques

Microglia and astrocytic activation 
and

Altered neuronal ionic homeostasis; oxidative injury

Altered kinase/phosphatase activities              Tau Tangles

Widespread neuronal / synaptic dysfunction and 
some neuronal loss with neurotransmitter deficits

Onset of symptoms of DEMENTIA

Autosomal Dominant Forms of AD Sporadic Forms of AD

Missense mutations in APP or PS genes
Failure of Aβ clearance mechanism
e.g. inheritance of Apoε4 ; faulty Abeta degradation 

Increased Aβ production throughout life Gradually rising Aβ42 levels in brain

Accumulation and oligomerization of Aβ42 in limbic and association cortices

Subtle effects of Aβ oligomers on synaptic efficacy

Gradual deposition of Aβ42 oligomers as diffuse plaques

Microglia and astrocytic activation 
and

Altered neuronal ionic homeostasis; oxidative injury

Altered kinase/phosphatase activities              Tau TanglesAltered kinase/phosphatase activities              Tau Tangles

Widespread neuronal / synaptic dysfunction and 
some neuronal loss with neurotransmitter deficits

Onset of symptoms of DEMENTIA  
Fig. 6. The “amyloid cascade”.  The sequence of pathogenic events leading to AD as proposed by the “amyloid 
hypothesis”. The cascade of events is initiated by altered Aβ metabolism, leading to elevated Aβ levels in limbic and 
association cortices. Aβ can also directly affect neuronal ionic homeostasis and induce oxidative stress or alter tau 
phosphorylation. 

 

The toxic nature of the Aβ peptide has been demonstrated by its ability to interfere with 

many important biological processes such as apoptosis, Ca2+ storage and release, proteasomal 

activity, receptor endocytosis as well as synaptic function and long term potentiation (LTP). Aβ 

also contributes to oxidative stress and binding of Aβ to membrane lipids is proposed to disrupt 

the metabolism and function of various membrane proteins and lipids (Marchesi, 2005) 

(Mattson, 1997). Indeed, there is a large body of evidence in support of the “amyloid 

hypothesis”, but there are also several inconsistencies with the idea that Aβ in one form or the 

other is unitary cause of AD. Nevertheless, the “amyloid hypothesis” successfully links most 

genetic findings with pathological and biochemical changes characteristic of AD (Hardy, 2006).  
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2.2 Membrane lipids – classification, structure, function 
 

Biological membranes are composed of a lipid bilayer with associated proteins and form 

a semi-permeable barrier, which not only separate the interior of the cell from its environment 

but also define the internal compartments of eukaryotic cells, including nucleus and vesicular 

organelles (Singer and Nicolson, 1972; Singer, 2004). Most membrane lipids are amphipathic, 

with polar/hydrophilic head groups and long non-polar/hydrophobic tails. Lipid molecules 

spontaneously associate in aqueous surrounding to bury their hydrophobic tails in the interior 

and expose their hydrophilic heads to water that causes them to form bilayers. Each monolayer 

of the bilayer shows strikingly different lipid composition, which gives rise to a characteristic 

asymmetry to bilayer. Depending on the structure, membrane lipids are broadly classified into 

three groups - phospholipids, glycolipids and sterols as depicted in Fig. 7 (Spector and Yorek, 

1985; Fantini et al., 2002). 
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Fig. 7. Classification of membrane lipids.  Phospholipids are principal types of lipids in almost all cellular 
membranes, whereas cholesterol amounts vary depending upon the type of membrane, plasma membrane may have 
one cholesterol molecule per phospholipid. Glycolipids type and amounts changes greatly with cell type. 
Representative structural depiction along with one example is denoted in the picture. GalCer stands for a 
glycosphingolipid (GSL) galactosyl ceramide, (adapted) from Fantini et al., 2002). Note that the drawings of the 
lipids in above figure represent the general structure and do not describe the stereochemical nature of covalent bonds 
therein. 
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2.2.1   Phospholipids 
The most common phospholipids, phosphatidyl choline consists of a glycerol linked to 

two fatty acid chains, phosphate and choline (Fig. 7). Besides, the other head groups such as 

serine, ethanolamine and inositol form the respective glycerophospholipids namely 

phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol. Since these types of 

phospholipids contain glycerol, they are called glycerophospholipids. Another type of 

phospholipids contain a sphingosine backbone instead of glycerol. Sphingosine has a long 

hydrocarbon chain and a polar amino group. The amino group of sphingosine can form an amide 

bond with a carboxyl group of fatty acids to yield ceramide. Ceramide is esterified at the 

terminal hydroxyl group with phosphocholine to form sphingomyelin, which is the most 

common type of phosphosphingolipid (Bishop and Bell, 1988).  

Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and sphingomyelin 

– these four phospholipids constitute more than half of the lipid mass in most membranes. 

Phosphatidylserine is predominantly present in the cytosolic monolayer and carries a net 

negative charge at neutral pH, which contributes to the asymmetry of the membrane. Certain 

cellular kinases like PKC that are activated in response to extracellular signals require negatively 

charged lipids in the inner membrane leaflet for binding and activity. Phospholipids such as 

inositol phospholipid, are present in smaller quantities but are essential for the recruitment of 

kinases and proteins from cytosol that are involved in signaling and protein transport. The 

cleavage of phosphoinositols and sphingomyelin by lipases generates active lipid molecules 

involved in cell signaling, apoptosis, ER Ca2+ release etc (Ikeda et al., 2006). 

2.2.2 Glycolipids 
Glycolipids, the minor components of cellular membranes mainly present in the non-

cytosolic leaflet are named so because of the presence of sugar moiety as a hydrophilic head 

group. Glycosphingolipids (GSLs) are the most common type of glycolipids. Apart from species 

dependence, GSLs form cell type specific patterns on the cell surface. These patterns change 

with cell growth, differentiation, viral transformation, ontogenesis and oncogenesis (Hakomori, 

1981; Levery, 2005). Together with glycoproteins and glycosaminoglycans, GSLs contribute to 

the glycocalyx, which covers the cell surface with a protective carbohydrate layer. In plants and 

bacteria glycolipids are build on glycerol backbone, therefore termed as glyceroglycolipids. In 

animals glycolipids predominantly have a sphingosine (ceramide) backbone and hence they are 

called glycosphingolipids. Cerebrosides are simple GSLs with a monosaccharide moiety such as 
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glucose or galactose as a polar head group. Sulfate esters of galactosylcerebrosides, called 

sulfatides, are a special class of GSLs (Thompson and Tillack, 1985).  

 

 

 

 

 

 

 

 

 

 

 

Gangliosides are GSLs with complex oligosaccharides as head groups including the 

acidic sugar derivative sialic acid and are predominantly present in the outer leaflet of bilayer. 

Variations in type, number, linkage and further modification of sugar- and sialic acid residues 

within the oligosaccharide chain, but also within the lipid moiety gives rise to a large variety of 

naturally occurring GSLs.  The biosynthesis of GSLs starts with the synthesis of ceramide from 

serine and palmitoyl-CoA in the ER (Sandhoff and Kolter, 2003; Tettamanti, 2004). Ceramide is 

later transported to cis-Golgi where it acts as a substrate for glucosylceramide synthase (GCS). 

GCS transfers the glucose residue from UDP-glucose to ceramide, to form glucosylceramide. 

Glucosylceramide is modified to lactosylceramide with addition of galactose by the action of 

lactosylceramide synthase (LCS)/galactosyltransferase I (GalT1). In subsequent steps a variety 

of sugar residues, including negatively charged sialic acid are added to lactosylceramide in the 

Golgi compartment in a combinatorial GSLs biosynthesis (Fig. 8). Ceramide also acts as a 

substrate for galactocerebrosides and sulfatides. 

Gangliosides and sulfatides of the myelin layer are the major constituents of neuronal 

membranes. Besides being structural components of the membrane, gangliosides are modulators 

of important biological processes such as cell proliferation and adhesion, inflammation, neuronal 

differentiation as well as establishment of cellular polarity. Particularly, the ganglioside GM1 has 

been shown to regulate axonal elongation and synaptogenesis. GSLs also potentiate the effect of 

neurotrophic factors and act as ligands for various receptors involved in nerve regeneration. One 

Fig. 8. Combinatorial biosynthesis of GSLs in 
humans. Lactosylceramide and its sialyated 
derivatives, the hematosides GM3, GD3 and GT3 
serve as precursors for complex gangliosides of the 
0-, a-, b- and c-series. These different series are 
characterized by the presence of no (0-series), one 
(a-series), two (b-series) or three (c-series) sialic acid 
residues linked to inner galactose moiety. In adult 
human tissues, gangliosides from 0- and c-series are 
found only in trace amounts. Presence of sialic acid 
gives rise to negative charge to ganglioside, 
respective sialic acid transferase (SAT) at distinct 
stage adds sialic acid residue. β1,4-N-
acetylgalactosaminyltransferase (GalNAcT) transfers 
N-acetylgalactosamine, (modified from Kolter et al., 
2002).
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example of such lipid receptor is the myelin associated glycoprotein (MAG). Recently, GSLs 

were also shown to induce microglial activation and thereby contribute to inflammation in brain 

via toll like receptor 4 and the JAK-STAT signaling cascade. Moreover, certain GSLs, for 

example the GM3, act as a modulator of neuronal cell death. Ganglioside GM3 is also reported 

as a negative regulator of insulin signaling, making it a potential therapeutic target in type II 

diabetes. On the cellular level, gangliosides could prevent glutamate and kainate toxicity as well 

as participate in signal transduction and protein transport. Additionally, gangliosides also serve as 

functional receptors for various bacterial toxins and are responsible for endocytosis of such 

toxins. Importantly, sphingolipid biosynthesis has been shown to be necessary for dentritic 

growth and survival of Purkinje cells (Hoekstra et al., 2003; Smith and Merrill, Jr., 2002).  

Sphingolipids are highly enriched on the plasma membrane, but are also internalized 

and transported to late endosomes and lysosomes where they are degraded in a stepwise fashion, 

finally resulting in the cleavage of ceramide to sphingosine and fatty acid (Kolter and Sandhoff, 

2005). Each of the steps in degradation is carried out by a specific enzyme, water-soluble acid 

exohydrolase, usually assisted by helper proteins termed sphingolipid activator proteins (SAPs) 

which present the substrate to hydrolytic enzyme. The SAPs known to date are encoded by only 

two genes. One gene carries the information for the GM2-activator and other for the Sap–

precursor also called prosaposin. Prosaposin is post-translationally processed to four homologous 

mature proteins, Saps A-D, or saposins A-D. Mutations in either hydrolases or activator proteins 

lead to defective hydrolysis and accumulation of lipids (Neufeld, 1991; Kolter and Sandhoff, 

2006). Fig. 9 depicts the major sphingolipid storage disorders (SLSDs) with the respective 

deficient enzymes. In Niemann Pick C (NPC) disease and Mucolipidosis Type IV, lipid 

accumulation appears to occur as a result of a defect in the transport to or from lysosomes rather 

than degradation (Abe et al., 2001). 
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Fig. 9. GSLs catabolism pathways and disease. The lysosomal enzyme deficiency diseases are indicated in parentheses. 
NeuAC, N-acetylneuramic acid; Cer, ceramide; Glc, glucose; Gal, galactose; GalNAc, N-acetylgalactosamine; SM, 
sphingomyelin; HO3SGalCer, sulfatide; Sph, sphingosine; FA, fatty acid; SAP, sphingolipid activator protein. Genetic defect in 
respective enzymes affects the degradation of particular GSLs causing accumulation, (adapted from Abe et al., 2001). 

2.2.3   Cholesterol 
The most abundant member of the sterol family is cholesterol. Cholesterol contains a 

four-ring steroid structure with a short-branched hydrocarbon chain. Cholesterol is largely 

hydrophobic, but its polar hydrophilic hydroxy group makes it amphipathic. The interior of a 

lipid bilayer is normally highly fluid. Presence of cis double bonds in the hydrophobic fatty acid 

chains as well as relatively rigid structure of cholesterol act as important regulators of membrane 

fluidity. In eukaryotic cells, non-esterified/free cholesterol is found in membranes (primarily in 

the plasma membrane and to a lesser extent in organelle membranes) whereas, cholesteryl esters 

are present in cytosolic lipid droplets (Liscum and Underwood, 1995; Soccio and Breslow, 2004; 

Martin and Parton, 2006). An over accumulation of free cholesterol can be toxic to cells (Tabas, 

2002). To regulate the cholesterol content in the membranes, it is converted to cholesterol esters 

primarily by the enzyme acyl CoA: cholesterol acyltransferase (ACAT). On the other hand, 

neutral cholesterol ester hydrolase breaks down cholesterol esters liberating free cholesterol. 
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Cholesterol is needed for the growth and viability of mammalian cells. Besides being an 

important structural and functional element of cellular membranes, cholesterol also serves as a 

precursor to other bioactive metabolites, like bile acids, oxysterols and steroid hormones that 

have important physiologic functions. Cholesterol is derived from the diet as well from 

endogenous biosynthesis. Both, overall cholesterol content of the cell as well as its distribution in 

specific organell membranes is stringently controlled. Cellular cholesterol homeostasis is 

achieved by a number of molecular mechanisms that regulate its uptake and secretion, as well as 

biosynthesis and metabolism. The biosynthesis of cholesterol occurs at membranes of the 

Endoplasmic Reticulum and involves multiple enzyme activities (see 4.2.2). Endogenously 

synthesized cholesterol is readily transported from its site of synthesis to the plasma membrane 

(DeGrella and Simoni, 1982; Lange and Matthies, 1984; Kaplan and Simoni, 1985). The plasma 

membrane of animal cells is thought to contain many small lipid microdomains (~70 nm in 

diameter), which are rich in sphingolipids and cholesterol (Simons and Ikonen, 1997). Proteins 

with lipid anchors tend to accumulate in such microdomains. Importantly, caveolin, a protein 

important for endocytosis, is found to be associated with cholesterol rich microdomains. 

However, since no current technique can provide the sufficient proof for the presence of such 

microdomains, their existence remains highly controversial. 

Between organs and cells, cholesterol is mainly transported by lipoprotein particles that 

can be taken up by cells via surface receptor-mediated endocytosis (Fielding and Fielding, 1997; 

Herz, 2001). The major lipoprotein particle involved in cholesterol transport in the peripheral 

system is the low density lipoprotein (LDL) that binds to the LDL receptor (LDLR) at the surface 

of receiving cells. The binding to LDLR results in the clathrin-dependent endocytosis of LDL, 

containing cholesterol, into early endosomes and subsequent transport to endocytic recycling 

compartments. Here LDLR dissociates from LDL and is recycled back to the PM. Internalization 

of LDLR is dependent on a tyrosine-based signal within its cytoplasmic domain that is 

recognized by the autosomal recessive hypercholesterolemia (ARH) protein , that facilitates 

internalization of LDLR by connecting the receptor to clathrin in coated pits and vesicles (Mishra 

et al., 2002; Chang et al., 2006).  

 The uptake of extracellular cholesterol decreases the de novo-synthesis of cholesterol 

by feed-back mechanisms that control the expression of genes encoding metabolic enzymes. The 

major factors in the transcriptional regulation of biosynthetic enzymes are the sterol regulatory 

element binding proteins (SREBPs) that are activated at low cholesterol levels by proteolytic 
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cleavage and ensuing translocation in the nucleus. In fact, the first example of RIP was described 

for the sterol regulated element binding protein (SREBP) that controls cholesterol homeostasis in 

vertebrate cells. At low cholesterol levels SREBP is transported from the ER to a post ER/Golgi 

compartment, where it undergoes sequential cleavage by site-specific proteases site-1 protease 

(S1P) and site-2 protease (S2P), thereby allowing translocation of the cytoplasmic domain from 

the membrane to the nucleus to regulate transcription of target genes involved in cholesterol 

metabolism, including the low density lipoprotein receptor and the key enzymes in cholesterol 

biosynthesis. Higher cholesterol levels inhibit transport of SREBP from the ER to the post 

ER/Golgi compartment precluding proteolytic processing by S1P and S2P leading to down-

regulation of cholesterol biosynthesis (Goldstein et al., 2006).  

Besides SREBPs, liver X receptors (LXRs), members of the nuclear receptor 

superfamily also play a pivotal role in maintaining cholesterol and lipid homeostasis via 

transcriptional regulation (Rigamonti et al., 2005). In the excess of cholesterol, certain oxidized 

derivatives of cholesterol act as natural ligands of LXRs. Binding with ligand leads to their 

activation and attachment at LXR responsive elements (LXREs) of target genes, as obligate 

heterodimers with 9-cis-retinoic acid receptors (RXRs). LXREs have been identified in the 

regulatory regions of a number of genes involved in cholesterol metabolism including CYP7A1, 

which catalyzes the first and rate-limiting step in bile acid synthesis, cholesterol ester transport 

protein,  the transcription factor SREBP-1c, Apo E and some LXR genes itself. LXREs have also 

been identified in the genes encoding the ATP binding cassette transporters (ABC) A1 and G1, 

which mediate the efflux of cholesterol as well as phospholipids. Thus, LXRs are important 

components of the complex regulatory system that senses cholesterol levels and modifies gene 

expression accordingly (Desvergne et al., 2006; Zelcer and Tontonoz, 2006). 

Although brain accounts for only 2% body mass, approximately 25% of the total body 

cholesterol is found in the brain. It is largely present in two pools comprised of the cholesterol in 

the plasma membranes of glial cells and neurons, and myelin associated cholesterol. Unlike most 

other extrahepatic tissues more than 95% of the cholesterol content in the brain can be accounted 

for by de novo synthesis, and there is little if any exchange of plasma and brain cholesterol. 

Under steady state conditions, synthesis of cholesterol in the brain is balanced by excretion of the 

cytochrome P-450 generated 24S-hydroxycholesterol, which is capable of travesting the blood-

brain barrier (Bjorkhem and Meaney, 2004). It is widely believed that neurons depend on glial 

cells for their cholesterol needs. However, recent studies have demonstrated the ability of 
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neurons to synthesize cholesterol under certain conditions (Pfrieger, 2003). Notably, Apo E, a 

major risk factor for AD, is one of the important lipoproteins involved in cholesterol shuttling 

between neurons and astrocytes. Apo E is also essential for remodeling and reorganization of 

neuronal networks after injury, stress and in maintaining neuronal plasticity (Bales et al., 2002). 

2.3 Rationale and Aim of the study 
 

A strong etiological association exists between dysfunctional metabolisms of brain 

lipids, age related changes in cerebral vasculature and neurodegenerative features characteristic 

of AD brain (Walkley, 1998; Han, 2005). Changes in membrane fluidity in AD were reported in 

the early 90s. Several independent studies have shown that the ganglioside pattern, distribution, 

metabolism and amounts are significantly different in the brains of AD patients. However, the 

exact role and molecular mechanism by which these lipids regulate the APP processing is not 

well understood. At the cellular level, APP and GSLs follow very similar transport routes and to 

some extent common metabolic fates. Following synthesis in the ER, APP undergoes extensive 

posttranslational modifications in the Golgi, from where it is routed to the cell surface and 

endosomal-lysosomal recycling compartments, where it is either sequentially cleaved by 

secretases or degraded in lysosomes and proteasomes. In a similar fashion GSL biosynthesis 

starts in the ER with the synthesis of ceramide, which is later transported to the Golgi, where a 

variety of sugar molecules are added to it to give rise to complex GSLs, from here they are 

transported to the cell surface and endosomal lysosomal recycling compartments. The 

degradation of GSLs takes place in lysosomes (van Meer, 1989; Schwarzmann and Sandhoff, 

1990; Kolter and Sandhoff, 2005). Therefore, in the first part of the present studies, it was 

planned to investigate the role of GSLs on APP processing. Accordingly, various approaches 

undertaken to modulate cellular GSL levels would be introduced in this part. First, the use of 

pharmacological inhibitors to deplete the cells of GSLs and the treatment of cells with purified 

bovine brain gangliosides to enrich them with GSLs along with effects of these treatments on 

APP metabolism would be described in detail. Secondly, analysis of genetic models for GSLs 

deficiency as well as excess would also be discussed. Besides pre-existing genetic models, the 

use of RNAi technology to suppress the key enzymes involved in GSL biosynthesis would also 

be presented here. Studies addressing the APP processing and subcellular transport with 

associated mechanisms in all of the above conditions would be discussed. Towards this end the 

metabolism of full length APP as well as individual metabolic products of APP, namely, soluble 
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APP, APP-CTFs and Aβ studied by various biochemical and cell biological techniques after 

manipulation of cellular GSL levels would be revealed. 

Number of studies have focused on the effect of cholesterol metabolism on the 

regulation of AD associated proteins and Aβ generation (Wolozin et al., 2006). However, few 

studies addressed the role of AD associated proteins and their processing products on cholesterol 

metabolism. Importantly, an alteration of cholesterol distribution by U17666A treatment or as it 

is observed in the NPC disease model mice have been shown to cause redistribution and 

accumulation of presenilin into endosomal compartments (Burns et al., 2003). These studies 

indicate a close link of presenilin and cholesterol subcellular localization, which might further be 

extended to cholesterol metabolism and γ-secretase activity. γ-secretase has also been shown to 

be associated with lipid microdomains rich in cholesterol. The second part of the studies is an 

attempt to decipher the link between presenilins and cholesterol. More precisely the role of 

presenilin mediated RIP in regulation of cholesterol homeostasis would be addressed in this part. 

Few earlier studies looked at the effect of cholesterol metabolism on presenilin activity and 

transport. To elucidate the role of presenilins in cholesterol metabolism, a comprehensive 

analysis of cholesterol metabolites in various genetic models with presenilin deficiency and 

expression, as well as after pharmacologic inhibition of γ-secretase activity would be presented. 

Furthermore, the mechanism by which presenilins affect the cholesterol metabolism would also 

be addressed to some extent. 

Together the aim of the study would be to elucidate the co-regulatory mechanisms 

involved in the metabolism of membrane lipids and AD associated proteins.
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3 Materials and Methods 
All the standard chemicals used for analysis were from Roth. Radiochemicals were obtained from 

MP Biomedicals. Nucleotides were ordered from Sigma Genosys. Cell culture medium and other 

biochemicals for cell culture were from Invitrogen. Plastic ware for cell culture was from 

Corning. For quantitation three independent experiments (n=3) were carried out. Statistical 

analysis was carried out using Student’s T-test. Significance values are as follows: * (p<0.05); ** 

(p<0.01); *** (p<0.001). 

 

3.1 DNA recombination techniques 

3.1.1 Instruments and materials 
PCR-machine (Mastercycler) Eppendorf 
Agarose gel electrophoresis unit Amersham Pharmacia 
Thermomixer Eppendorf 
Agarose gel electrophoresis unit Eppendorf 
UV transilluminator Syngene 
Documentation system (CCD camera, printer) INTAS 
37 oC bacterial incubator  Binder  
Bacterial shaker  Edmund Bühler 
Block heater Stuart Scientific   
Photometer (Genesis) Thermo   

3.1.2 Quantitation of nucleic acid 
 
Following equation was used to quantitate dsDNA 

DNA concentration (µg/µl)  = O.D. 260 X 10-3 X 50 X Dilution factor (1 to 20) 

                                        = O.D. 260 X 10-3 X 103  

DNA concentration (µg/µl) = O.D. 260  

 

Following equation was used for RNA quantitation 

RNA concentration (µg/µl)    = O.D. 260 X 10-3 X 40 X Dilution factor (1 to 40) 

                                          = O.D. 260 X 1.6  

RNA concentration (µg/µl)  = O.D. 260 X 1.6  
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3.1.3 Constructs and Cloning 
Vectors 

Vector Name Source Expression System Resistance 

pcDNA3.0  Neo Invitrogen Eukaryote cells Neomycin 

pcDNA3.1  Zeo (+) Invitrogen Eukaryote cells Zeocin 

pSUPER Dr. Agami Eukaryote cells ----------- 

pTER Dr. Agami Eukaryote cells Zeocin 

 

 

 

DNA constructs 
Gene Vector Restriction sites 

APP695 pcDNA3.0 Neo HindIII; XbaI; BamH1(internal) 
APP695 pcDNA3.1 Zeo (+) HindIII; XbaI; BamH1(internal) 
PS1-WT pcDNA3.1 Zeo (+)  

PS1-L166P pcDNA3.1 Zeo (+)  
PS1-M146L pcDNA3.1 Zeo (+)  
PS1-dEX9 pcDNA3.1 Zeo (+)  

 

 

3.1.4 Polymerase chain reaction (PCR) 
 
Reaction volume (1X Mix) 
10X PCR Buffer with MgSO4  (MBI) 5 µl 
dNTPs (10mM) (MBI)  1 µl   
Forward Primer  (100 pmol/µl) 1 µl   
Reverse Primer   (100 pmol/µl) 1 µl 
Template cDNA (conc. 100ng/µl) 1 µl 
pfu polymerase (MBI) 0.5 µl ( 1U/µl) 
make final volume to 50µl with dH2O  X µl  

50 µl 
                              
            
                                                                                    

Gene Oligonucleotides (Sigma) 

APP695-fw CCCAAGCTTGATGCTGCCCGGTTTGGC 
APP695-rev GCTCTAGAGGGTCTAGTTC 
APP695-fw CATGGTGGATCCCAAG 

 

 

 

Table 1. Overview of the vectorsystems used.  Mentioned vector systems were used in the study. pcDNA3 and
3.1 has neomycin (Neo) and zeocin (Zeo) resistance gene respectively, for stable expression. pSUPER vector does
not have any resistace for expression into eukaryotes whereas pTER has zeocin resistance.  

Table 2. Overview of the DNA constructs.  The APP 695 gene was subcloned from pcDNA3.0 Neo into
pcDNA3.1 Zeo. Presenilin DNA constructs were generous gift from Dr. Haass. 

Table 3. Primers used for cloning. Primers mentioned in table were used to subclone APP.  
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PCR Programme 

Following program was used to amplify various respective constructs. Amplification time for 

each construct was variable and was approximately set according to 1 min per 1000 bps. 

95°C, 4 min 

           95°C, 45 sec  

           60°C, 45 sec      22 cycles 

          72°C, X min Y sec 

72°C, 20 min 

Respective PCR products were visualized in agarose gels. Further purification of PCR was 

performed by gel extraction (Machery-Nagel gel extraction kit). 

3.1.5 Purification, analysis and modification of DNA 

3.1.5.1 Agarose Gel electrophoresis 

TAE Buffer 
40 mM Tris, 0.05% Acetic acid (v/v), 1mM EDTA in dH2O. Adjust pH to 7.5 – 8.0 with HCl 
 
TBE Buffer 
9 mM Tris-borate and 2 mM EDTA in dH2O 
 
5X loading dye 
30% Glycerol, 0.25% Bromophenol blue and 0.25% Xylenecynol FF in dH2O 
 
Agarose gel electrophoresis was used to resolve DNA constructs. 1-2% agarose gels were casted 

in TAE Buffer, 0.2 µg/ml ethidiumbromide was added to molten agarose before casting. Samples 

were diluted in 5X loading dye before loading. 1 kb and 100 bp molecular weight ladder (MBI) 

were used to analyze the size of DNA. Gels were run at 100 volts in TAE/TBE buffer. 

3.1.5.2 Purification of DNA from agarose gels 

Desired bands were cut out from the gel using scalpel under UV-light. DNA was extracted from 

the cut bands using Nucleo Spin Extract Kit (Machery-Nagel). 

3.1.5.3  Restricting digestion of DNA 

Restriction enzymes Hind III (10 U/µl, MBI), Xba I (10 U/µl, MBI), Bam H I (10 U/µl, MBI), 

Bgl II (10 U/µl, MBI) were incubated with 20 µg DNA to be digested with appropriate buffer in a 

final volume of 30 µls for 1- 2 hr at 37°C. Later, the dephosphorylation of DNA was performed 
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in the same tube if necessary, after heat inactivation of restriction enzymes (65°C/5 min). DNA 

was purified by agarose gel extraction. 

3.1.5.4 Dephosphorylation  

Before ligation 5’-Phosphate group was removed from the linearized vector with Shrimp alkaline 

Phosphatase (SAP; 1 U/µl, MBI), to avoid self re-ligation of vector. 1 U of enzyme was 

incubated with DNA for 2 hr at 37°C. 

3.1.5.5 Ligation 

200-400 ng of purified linearised vector and PCR product were taken in molar ratio of 1:2 

respectively. Ligation was carried out using T4 ligase (5U/µl, MBI) and ligase buffer in 20µls 

final reaction volume in a PCR machine with alternate 99 cycles of incubation at 30°C followed 

by incubation at 10°C respectively. 10 µl of ligation reaction volume was used to transform 

competent E. coli. 

3.1.5.6 Transformation 

LB medium 
1% Tryptone, 0.5% Yeast Extract and 0.5% NaCl in dH2O. Adjust pH to 7.0 with NaOH, autoclave at 120oC / 1.2 bar 
for 20 min 
 
LB Agar plates 
1% Tryptone, 0.5% Yeast Extract and 0.5% NaCl in dH2O. Adjust pH to 7.0 with NaOH, add 15 g/lit agar and 
autoclave at 120oC/1.2 bar/20min, nearly at 50oC add the desired antibiotic (Ampicillin 100 µg/ml) and pour plates.  
 
Bacteria 
DH5α was the preferred bacterial strain for all transformations 
 
10 µls of ligation product was mixed with 100 µls of competent E.coli  DH5α and incubated on 

ice for 30 min. Then the cells were given a heat shock at 42°C for 1 min and were again put back 

on ice for 2 min. 1 ml warm LB-medium was added and cells were incubated in thermomixer at 

37°C with shaking for 1 hr. Tubes were then centrifuged in a tabletop centrifuge for 1 min/ 12000 

rpm. The pellet was resuspended in 200 µls of LB medium and cells were streaked on LB-plates 

containing respective antibiotic. After 14-20 hr incubation at 37°C colonies were picked and 2 ml 

overnight cultures were grown in LB-liquid medium with respective antibiotic.  

3.1.5.7 Crude plasmid preparation from over-night cultures (crude mini – prep) 

STET  Buffer 
0.1 M NaCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 5 % Triton-X100 
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Lysozyme  
10 mg/ml in 10 mM Tris-HCl pH 8.0 
1.5 ml of overnight cultures were centrifuged at 13,500 rpm for 1 min at room temperature. The 

pellet was resuspended in 375 µl STET buffer and 25 µl lysozyme by vortexing, followed by heat 

shock at 95°C for 40-50 sec. Lysates were centrifuged at 13,500 rpm/10 min and pellets were 

carefully fished out of the tube using sterile 200 µl yellow pipette tip. 35 µl 3M Na-acetate pH 

5.0 and 420 µl isopropanol was added to the cleared lysates. After 5 min of intermittent shaking, 

samples were centrifuged 5min/13,500 rpm. Pellets were washed with 70% ethanol, air dried and 

later resuspended in 100 µl dH2O. 2 µl of RNAse (10 µg/µl) was added to solution and incubated 

at 37°C for 10 min. 10 µl of the crude plasmid was used for further restriction analysis to check if 

the cloning was successful. New over-night cultures were grown from positive colonies. Plasmid 

was isolated using plasmid extraction kit (Sigma). Positive cloning was further confirmed by 

sequencing. A higher amount of DNA was obtained from 200 ml over-night cultures by using 

maxi-preparation kit (Sigma). 

3.1.5.8 DNA sequencing 

DNA sequencing was performed at GATC Biotech AG 

3.2 Gene expression analysis by RT- PCR 
 

Materials 
Trizol Reagent (Invitrogen) 
BCP (1-Bromo-3-chloro-propane, Sigma) 
DEPC (Dimethylpyrocarbonate, Sigma) 
Oligo(dT)12-18 primer 0.5 µg/ml (Invitrogen) 
Superscript IIITM  Rnase H- Reverse Transcriptase (Invitrogen) 
DNA polymerase (Invitrogen) 
 
DEPC treatment of water 

Add 0.1% (v/v) DEPC to dH2O and shake vigorously to mix.  Let the solution incubate for 12 hr 

at room temperature. Next day autoclave at 120oC/1.2 bar for 20 min. All the reagents were made 

in DEPC treated water. 
 

Primers 

DNA sequence for the respective gene was obtained from NCBI web site. Primers for PCR were 

designed loosely based on following rules. Length of the primer should be around 19 bps, melting 

temperature (Tm) of the primer should close to 60°C. Nucleotide at 3’ end should be either G or 
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C. Primers to be used in same PCR reaction were checked carefully to avoid formation of primer 

dimers. Melting temperature (Tm) of primer was calculated according to following formula. 

Tm = 4(G+C) + 2(A+T) 

 

Gene Primer sequence 
hLCS                                    GAACAGACTGGCACACAACC 
hLCS                                    CCTAAGTCTCCCTCTGGTC 
hGCS                                    GCTGCCACCTTAGAGCAGG 
hGCS                                    ACATGGTGGGCTGCCCATC 
hGCS                                    GGTGGACTCTGTGCCAGC 
hGCS               TTATACATCTAGGATTTCCTCTGCTG 

hERGIC                                    GAGGAATTCCAGAAGGGCC 
hERGIC    TACTTGTCTCAGAATCTCATGC 

hAPP-KPI  GAGGAACCCTACGAAGAAGC 
hAPP-KPI                                    CCTGGGACATTCTCTCTCG 
h-β-actin   CACGAAACTACCTTCAACTCC 
h-β-actin                                    ACATCTGCTGGAAGGTGGAC 
hGAPDH                                    GAAGGTGAAGGTCGGAGTC 
hGAPDH GAAGATGGTGATGGGATTTC 

mAPP                                    GGTGGACTCTGTGCCAGC 
mAPP TCCGTTCTGCTGCATCTTGG 

mCYP51                                     CTGGACAGCACACATCCTC 
mCYP51                                     CACACACCTGATGTCCTGG 

mLanoSyn  AGGAAGCAGAGAGCCGATG 
mLanoSyn                                     TGATCCCTCTCTCCTGAGC 
mSeladin1  GAGACACTACTACCACCGAC 
mSeladin1                                     TGTCCACGTAGAGCTCTGC 
m-β-actin    TGCGTGACATCAAAGAGAAG 
m-β-actin  GCTCATAGCTCTTCTCCAGG 
mGAPDH                                     TGCACCACCAACTGCTTA 
mGAPDH GGATGCAGGGATGATGTTC 

 

 

 

 

3.2.1 Extraction of RNA from eukaryotic cells 
 

Cells were washed with cold PBS and lysed with 1.6 ml of Trizol directly in a 3.5 cm diameter 

culture dish. Cells were further homogenized using syringe by passing through 21-G needle 10 

times. Homogenized samples were left at room temperature for 5 min in a 2 ml eppendorf tube to 

allow complete dissociation of nucleoprotein complexes. 160 µl of BCP was added to the tubes. 

Table 4. Primers used for RT-PCR. Primers mentioned in the table were used to amplify the fragment of
respective gene product. Each primer pair was designed to amplify a gene sequence of ~ 300 bp except primers for
house keeping genes which were designed to amplify 150-200 bps. Species from which cDNA sequence was
obtained are indicated, human (h) and mouse (m). 
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Tubes were vortexed briefly and centrifuged at 13,500 rpm for 15 min at 4°C. Later aqueous 

phase was carefully transferred into a fresh tube and 800 µl of isopropanol was added to it. 

Samples were again vortexed briefly and incubated at room temperature for 10 min. RNA pellets 

were obtained by centrifugation at 13,500 rpm, which were washed with 1 ml, 75% cold ethanol 

and resuspended in 100 µl DEPC- H2O after drying. RNA concentration was estimated by 

reading O.D. at 260 nm after appropriate dilution. 

3.2.2 cDNA synthesis 
 

5 µg of RNA was used for cDNA synthesis and RNA volume was adjusted to 10 µl with DEPC- 

H2O. 1 µl of oligo(dT) was added to RNA and mixture was incubated at 60°C for 5 min. In the 

meantime, mastermix was made ready in the proportions mentioned below. 

1µl DEPC- H2O, 1µl 10 mM dNTPs, 4 µl 5X First Strand Buffer, 2 µl 0.1 M DTT and 1 µl 

reverse transcriptase.      

9 µl master mix was added to each tube and tubes were incubated at 42°C for 1 hour followed by 

15 min incubation at 70°C in the PCR machine. cDNA was diluted 1 to 10 by adding 180 µl of 

DEPC treated water for further usage. 

3.2.3 PCR 
 
Reaction volume (1X Mix)              
10 X PCR Buffer (without Mg) 5 µl 
10 mM dNTPs 1 µl 
MgCl21 5 µl 
Forward Primer (100 pmol/µl) 1 µl   
Reverse Primer   (100 pmol/µl) 1 µl 
Template cDNA 20 µl 
Taq polymerase  0.5 µl (1U/µl) 
H2O 20 µl  
 

50µls 
 

PCR Program 

   95°C, 3 min     

           95°C, 45 sec  

           58°C, 45 sec                   22 cycles 

          72°C, 1 min 30 sec 

72°C, 20 min 
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3.3 RNA interference (RNAi) 

3.3.1 Generation of pSupZeo, a vector for stable expression of siRNA 
into mammalian cells  
 

Usage of pSUPER vector system, which directs the synthesis of small interfering RNAs (siRNA) 

in mammalian cells, was described in 2002 by Brummelkamp et al. (Brummelkamp et al., 2002). 

This vector contains a polymerase-III H1-RNA gene promoter that produces a small RNA 

transcript lacking a polyadenosine tail and has a well-defined start of transcription and a 

termination signal consisting of five thymidines in row (T5). The cleavage of transcript at 

termination site is after the second uridine yielding a transcript resembling the ends of synthetic 

siRNAs, which also contain an overhang of TT or UU nucleotides at 3’ end. Later in 2003 

Wetering et al. described a modified pTER vector system that contained doxycycline-regulated 

form of the H1 promoter with Tet operator upstream of the transcription site (van de et al., 2003). 

This vector, when transfected together with Tet-repressor expression vector regulates expression 

of siRNAs in tetracycline dependent manner. It was obtained by cloning the nucleotide sequence 

containing H1 promoter with the Tet operator into pcDNA3.1-Zeo. Thus, this vector contains 

zeocin resistance for stable expression in mammalian cells.  

Using above two vectors a new vector system, pSupZeo was generated for stable expression of 

siRNAs into mammalian cells. However, this vector lacked Tet operator and therefore expression 

of siRNAs was constitutive. To achieve this H1-promoter with Tet operator was cut out from 

pTER vector and H1-promoter from pSUPER vector was cloned into digested pTER. Thus new 

vector pSupZeo contained zeocin resistance for stable expression and H1-promoter without 

inducible system. 

Digestion of pTER was performed with Xho I and Xba I to excise H1 promoter with Tet operator 

and vector backbone was purified from agarose gel. H1 promoter was cut out using EcoR I from 

pSUPER and purified subsequently. Klenow polymerase reaction was performed on purified 

pTER vector as well as H1 promoter to generate a product with blunt ends. Briefly, 25 µl of 

cDNA was incubated with 3 µl of klenow buffer, 1µl dNTPs (10 mM) and 1 µl klenow fragment 

for 10 min at 37oC. The vector backbone was further dephosphorylated and purified, H1 

promoter was purified as well and the ligation of both was performed as described above. 

Screening of successful ligation product in proper orientation was done by performing 

sequencing with BGH-reverse primer. The vector with H1-promoter in right orientation was 

named as pSupZeo, which was used for cloning RNAi oligos.  
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3.3.2 Selection of target sequence 
 

Two different targets were chosen for each gene using Ambion RNAi Target finder 

(http://www.ambion.com/techlib/misc/siRNA_finder.html). Target sequence (Tar.Seq.) which fulfilled the 

necessary criteria for generated siRNAs to be effective in gene suppression was selected. Briefly, 

nucleotide sequence in the target began with AA, which would offer overhang of UU in siRNA at 

3’ end. GC content ranged from 30-50 %. Care was taken that chosen sequence did not contain 

stretch of more than four T’s or A’s and that the sequence did not have significant homology with 

other genes.  

3.3.3 Designing RNAi oligonucleotides 
 

Complementary DNA oligos were designed to direct synthesis of 19 base pair double stranded 

target sequence, containing a loop of nine nucleotides, seen in small letters in oligo templates 

indicated below. Oligos contained Bgl II (5’) and Hind III (3’) restriction sites, indicated in big 

letters in the template below, for cloning into pSupZeo. Together with the target sequence in 

sense and anti sense orientation plus loop sequence and restriction sites, each oligo (primer) 

consisted 64 base pairs in total. 

Forward oligo template 
GATCCCC-Tar.Seq (sense orientation)-ttcaagaga-Tar.Seq. (anti sense orientation) 
Reverse oligo template 
AGCTTTTCCAAAAA-Tar.Seq. (Sense orientation)-tctcttgaa-Tar.Seq. (anti sense orientation) 
 

Name Target gene                           Oligonucleotide Sequence 
GCS1-fw hGCS 

(D50840) 
gatcccGCTCCCAGGTGTCTCTCTTttcaagagaAAGAGAGACACCTGGG
AGCtttttggaaa 

GCS1-rev hGCS 
(D50840) 

AGCTtttccaaaaaGCTCCCAGGTGTCTCTCTTtctcttgaaAAGAGAGACAC
CTGGGAGCgg 

GCS2-fw hGCS 
(D50840) 

gatcccGCAGGAGGACTTATAGCTTttcaagagaAAGCTATAAGTCCTCCT
GCtttttggaaa 

GCS2-rev hGCS 
(D50840) 

AGCTtttccaaaaaGCAGGAGGACTTATAGCTTtctcttgaaAAGCTATAAGT
CCTCCTGCgg 

LCS1-fw hLCS 
(AF097159) 

gatcccGCTCGAGGTATAATGTTGAttcaagagaTCAACATTATACCTCGA
GCtttttggaaa 

LCS1-rev hLCS 
(AF097159) 

AGCTtttccaaaaaGCTCGAGGTATAATGTTGAtctcttgaaTCAACATTATAC
CTCGAGCgg 

LCS2-fw hLCS 
(AF097159) 

gatcccCAGACTGGCACACAACCTTttcaagagaAAGGTTGTGTGCCAGT
CTGtttttggaaa 

LCS2-rev hLCS 
(AF097159) 

AGCTtttccaaaaaCAGACTGGCACACAACCTTtctcttgaaAAGGTTGTGTG
CCAGTCTGgg 

 

 
Table 5. DNA oligo sequence for RNAi knockdown. Table indicates the sequence of oligos used for knocking down
respective genes. Oligos were cloned into pSupZeo vector. When expressed in eukaryotic system, oligos express 19 
bp hairpin structures with a loop consisting of 9 base pairs. 

http://www.ambion.com/techlib/misc/siRNA_finder.html
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3.3.4 Cloning oligonucleotides into pSupZeo  
 
Annealing of oligonucleotides 
 

Annealing Buffer 
100 mM Potassium acetate 
30 mM HEPES-KOH pH 7.4 
2 mM Magnesium acetate 
 

Forward and reverse oligos were dissolved in distilled water at 100 pmol/µl concentration. 1µl of 

each oligo with 5 µl of annealing buffer and 43 µl dH2O were incubated at 95oC for 5 min 

followed by cooling at 4oC 

1 µl of the annealed oligo (forward + reverse) were cloned into Bgl II – Hind III digested 

pSupZeo vector. Screen for positive colonies was done by digestion of isolated plasmid with 

Hind III - Xba I. Further verification of proper orientation as well as exact sequence was done by 

sequencing. Finally, pSupZeo containing right oligo in proper orientation was transfected into 

HEK293 cells and stable clones were selected using zeocin resistance. Obtained clones were 

further screened by RT PCR for knockdown of respective target genes. 
 

3.4 Cell Culture 

3.4.1 Instruments and materials 
-80oC freezer Thermo 
Autoclave HP 
37oC CO2 incubatorBinder 
Cell culture hood Thermo 
Nitrogen tank Linde 
Centrifuge Eppendorf 
Culture dishes, flasks, pipettes Corning 
Vortex Scientific Industries 
Cryo tubes Nunc 
  
Phosphate Buffered Saline (PBS) 
140 mM NaCl, 10 mM NaH2PO4 and 1.75 mM KH2PO4 in dH2O, adjust to pH 7.4 with HCl, autoclave at 120oC and 
120 bar for 20 min. 
 
Poly-L-Lysine solution 
100 µg/ml poly-L-lysine (Sigma) in sterile PBS 
Coverslips or dishes were coated with 100 µg/ml  
 
Trypsin-EDTA 
0.05 % Trypsin, 0.53 mM EDTA.4Na in Hank’s B.S.S (Invitrogen) 
Bovine Fetal Calf serum (FCS) 
FCS (Invitrogen) was heat inactivated at 56oC for 30 min. 
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Basic medium for HEK293, HEK293, H4, HeLa and mouse embryonic fibroblast cells 
DMEM (Dulbecco’s modified Eagle’s Medium) High Glucose (Invitrogen) with 2 mM L-Glutamine, supplemented 
with 10 % heat inactivated fetal calf serum (FCS; Invitrogen), 50 U/ml Penicillin and 50 µg/ml Streptomycine 
(Invitrogen). FCS was inactivated by heating at 570C for 30 min. 
 
Antibiotics 
Neomycin/Gentamycin : (G418) 200 µg/ml , Zeocin : 200 µg/ml, Hygromycin : 150 µg/ml 
 
Freezing media 
90 % FCS + 10 % DMSO  
 
Cell lines 
Human embryonic kidney (HEK293) cells, HEK293T that stably express the large T-antigen of SV-40 virus were 
provided by Dr. Mathias Ekhhardt, HeLa cell line, Human neuroglioma (H4) and human neuroblastoma SH-SY5Y 
were obtained from ATCC. Mouse melanoma B16 and GM95 cells were obtained from RIKEN cell bank, Japan. All 
cell lines were cultured at 5% CO2 concentration in incubator maintained at 37oC. Wild type and presenilin knock 
out mouse embryonic fibroblasts were generous gift from Dr. Bart de Strooper  

3.4.2 Transfection 
 

Transfection was done using Lipofectamine (Invitrogen), according to manufactures instructions. 

Briefly 4 µg cDNA and 10µl lipofectamine were suspended in 100 µl optimem separately, Tubes 

were vortexed and centrifuged briefly. After 10 min cDNA solution was transferred to 

Lipofectamine solution and was incubated for 10 min at room temperature before adding to cell 

media. 

3.4.3 Generating stable cell lines 
 

Cells were transfected with desired vector in a 6 cm dish as described above.  After 48 hr, cells 

were split in dilutions 1 to 500, 1 to 250, 1 to 100, 1 to 50 and 1 to 10 in 10 cm dishes. Same time 

respective antibiotic was added to cells and cells were cultured for 2-3 weeks. Also, non-

transfected cells were split and cultured in presence of antibiotic in similar way. Antibiotic 

concentration was adjusted to achieve death of all non-transfected cells within 8 days. During 

selection period of 2-3 weeks, there was heavy cell death; however, cells left behind were 

allowed to grow into a cell colony, which was mostly derived from single cell giving rise to 

single cell clone. When clones were grown up to 5 mm - 10 mm in diameter, they were washed 

with PBS and cloning cylinders (8 X 8 mm; DUNN Labortechnik) were place around each clone. 

Clones were trypsinised and transferred to 96 well plates, further each clone was expanded in 

presence of antibiotic by subsequent subculturing in 48, 24, 12 and 6 well plates and later 

screened by either western immunoblotting or RT-PCR. 
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3.5 Biochemical and Cell Biological Methods 

3.5.1 Instruments and materials 
Polyacrylamide gel electrophoresis unit                                 Amersham Pharmacia 
Western blotting unit                                                        Amersham Pharmacia  
Microwave                                                                   LG 
Overhead rotor                                                              Scientific Industries 
Orbital shaker                                                               Stuart Scientific  
pH meter                                                                     Mettler Toledo 
Weighing balances                                                       Mettler Toledo 
Block heater                                                                Stuart Scientific 
Water bath                                                                  Medigen 
Phosphoimager                            Fuji Inc.  
Phosphoimager plates                            Kodak       
X-ray films                                Kodak 
Chemiluminiscence imager                                                  Biorad 
Ultracentrifuge                                                                        Beckman 
Ultracentrifuge rotor (SW40Ti)                                              Beckman 
Fluorescence microscope                     Nikon 
 

 

 

Biochemicals 

D, L-PDMP (Sigma) was dissolved in warm dH2O at 50 mM concentration. L-PDMP (Matreya) 

was dissolved in ethanol at concentration of 50 mM. GM1 (Sigma) was dissolved in dH2O at 

concentration of 5 mg/ml. 3-Sn-Phosphotidylserine (Sigma), 3-Sn-Phosphotidic acid (Sigma), 

Sphingomyelin (Sigma) were all dissolved at concentration of 5 mg/ml in ethanol. Brefeldin A 

(Alexis Biochemicals) was dissolved in methanol at concentration of 10 mg/ml. C6-Ceramide 

(Sigma) was dissolved in ethanol at 10 mM concentration. 10 mg/ml (1000X) Bacitracin A 

(Sigma) was dissolved in dH2O. 50 mM Itraconazole (Jackson lab) solution was made in DMSO, 

Aβ40 (EZ Biolab) was dissolved at concentration of 1 mg/ml in dH2O. Apo B100 (bovine LDL) 

was from Calbiochem, DAPI (Roth) was dissolved in dH2O at concentration of 1 mg/ml 

(10,000X). 
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Primary Antibodies 

Name Species Antigen IP WB IF Source 
5313 rabbit MBP-hAPP695-NT 

(a.a. 444-592) 
1:500 1:1000 1:100 Walter et.al., 2000 

6687&5818 rabbit Peptide-hAPP695-CT 
(a.a. 676-695) 

1:500 1:1000 1:100 Walter et.al., 2000 

140 rabbit  1:500 1:1000 1:100 Raised in lab 
3926 rabbit Aβ 1-40 1:100   Raised in lab 
2964 rabbit Aβ 1-40 1:100   Raised in lab 
6E10 mouse Aβ 1-17  1:2500  Senetec/Signet Inc 
3109 rabbit MBP-hPS1-CT 

(a.a. 263-407) 
1:500 1:1000 1:100 Raised in lab 

LDLR Chicken Peptide hLDLR 
a.a. 29-205 

 1:1000  abcam 

LDL goat hLDL  1:1000  Sigma 
Anti-CTX rabbit Vibrio cholerae  1:5000  Sigma 

Giantin mouse hGiantin   1:2500 Dr. Hauri, Basel 
Calnexin rabbit hCalnexin (a.a. 1-17)   1:1000 Santacruz, Inc 
Bap-1a mouse Aβ 1-40 1:250   Tamboli et.al., 2005 

Fas-receptor    1:1000  Upstate biochemicals 
Insulin Receptor rabbit hInsulin receptor β chain - 

CT 
 1:1000  Santacruz, Inc 

β-actin mouse hβ-actin-CT  1:5000  Sigma 
TGN46 sheep hTGN46   1:1000 Serotec 

IG7/5A3 mouse APP ectodomain   1:200 From Dr. Edi. Koo 
 

 

 

 

 

 

Secondary Antibodies 

Name Species Antigen Application Dilution Source 
anti-rabbit-HRP Rabbit Rabbit IgG WB 1:40,000 Sigma 
anti-mouse-HRP Rabbit Mouse IgG WB 1:40,000 Sigma 

anti-chicken-HRP Rabbit Chicken IgG WB 1:10,000 Sigma 
anti-goat-HRP  Goat IgG WB 1:5000 Sigma 

Alexa Fluor 594 Goat Rabbit IgG IF 1:1000 Molecular Probes 
Alexa Fluor 594 Goat Mouse IgG IF 1:1000 Molecular Probes 
Alexa Fluor 594 Donkey Chicken IgG IF 1:1000 Molecular Probes 
Alexa Fluor 488 Goat Rabbit IgG IF 1:1000 Molecular Probes 
Alexa Fluor 488 Goat Mouse IgG IF 1:1000 Molecular Probes 

 
 
 
 
 

Table 7. Secondary antibodies:  Peroxidase (HRP) conjugated secondary antibodies were used to detect primary
antibodies bound to respective proteins or lipids.  

Table 6. Primary Antibodies:  Table describes briefly the epitope and source of each antibody, as well as dilutions
which were used in various applications are also indicated. Besides above mentioned antibodies peroxidase
conjugated streptavidin (calbiochem) and TRITC-conjugated wheat germ agglutinin (WGA, molecular probes) 
were used to  detect biotinylated proteins and glycoproteins respectively. Cholera toxin B subunit conjugated to
peroxidase was used to detect GM1 by western blot. 
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3.5.2 Sample preparation 
 

Total protein extraction  
 
1X STEN buffer 
50 mM Tris pH 7.6, 150 mM 5M NaCl, 2 mM EDTA, 0.2 %  Igepal CA-630 in dH2O 
 
1X STEN-lysis buffer (without BSA) 
1% Triton X-100 (v/v), 1%  Igepal CA-630 in 1X STEN 
 
Cells were washed with cold PBS and scraped off the plate in PBS on ice. Cells were pelleted by 

centrifugation at 1000 rpm/5 min/4oC and lysed with STEN-lysis buffer (200 µls for 6 cm dish 

and 400 µls for 10 cm dish) on ice for 30 min in the presence of protease inhibitor mix. The 

lysates were cleared by centrifugation at 16000 rpm. Protein estimation was performed and 20 µg 

of protein was aliquoted from each sample. Samples were boiled with loading dye. 
 

Extraction of membrane proteins 
 
Hypotonic Buffer 
10 mM Tris pH 7.6, 1 mM EDTA and 1 mM EGTA in dH2O 
 

Cells were washed with cold PBS and scrapped off the plate in PBS on ice. Cells were pelleted 

by centrifugation at 1000 rpm/5min/4oC. Pellet was resuspended in 750 µls cold  hypotonic 

buffer and incubated on ice for 10 min. Cell suspension was then passed through 2 ml syringe 

with 0.6 mm diameter needle for 15 times. Cell debris and nuclear fraction was pelleted by 

centrifugation at 2000 rpm/10 min/ 4oC. Supernatant was transferred to new tubes and 

centrifuged at 16,000 rpm/ 4oC for one hour to obtain a membrane fraction pellet. Membrane 

pellet either was resuspended in 100 µl loading dye and boiled or was further lysed with 100 µl 

STEN-lysis buffer as described in 2.4.5.1 and samples were prepared. 

 

Immunoprecipitation 

1X STEN buffer 
50 mM Tris pH 7.6, 150 mM 5M NaCl, 2 mM EDTA, 0.2 % Igepal CA-630 in dH2O 
 
1X STEN-lysis buffer  
1% Triton X-100 (v/v), 1% Igepal CA-630, 2% BSA in 1X STEN  
 
1X STEN-NaCl 
50 mM Tris pH 7.6, 500 mM 5 M NaCl, 2 mM EDTA, 0.2 % Igepal CA-630 in dH2O 
 
Protein A/G sepharose suspension (Zymed) 
100 mg/ml protein A/G bound sepharose beads were washed with STEN buffer and resuspended in it. If required 
beads were blocked with 2 mg/ml BSA to avoid non-specific binding. 
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Cells were lysed in 700 µl STEN-lysis buffer on ice for 10 min in presence of protease inhibitors. 

Lysates were cleared by centrifugation for 10 min at 14,000 rpm. Appropriate amount of primary 

antibody and 40 µl washed sepharose beads (protein A for rabbit polyclonal and protein G for 

mouse monoclonal) were added to cleared lysates. Antibody was allowed to bind to respective 

protein as well as beads by rotation on overhead shaker for 2 hr at 4°C. For Aβ 

immunoprecipitation rotation time was extended to 12 hr. Antigen-antibody complex bound to 

beads was separated by centrifugation for 5 min at 5000 rpm and washed twice with STEN-NaCl 

and once with STEN buffer. 

Loading Dyes 
 

2X Loading dye 
100 mM Tris HCl pH 6.8 (100 ml), 4% SDS, 0.2 % bromophenol blue, 20 % (v/v) glycerol, Add 10 % β-
mercaptoethanol fresh every time. 
 
5X Loading dye 
2.5 ml upper tris, 1 g SDS, 100 mg DTT, 5 ml glycerol, 8 µg bromophenol blue. Make up volume to 10 ml with 

dH2O, freeze aliquots at -20oC. 
 

Estimation of protein concentration 
 

UV-absorption method 
 

The UV-Absorption of undiluted sample at 280 nm was measured with a photometer. Quartz 

cuvette was used for measurement. The protein concentration was obtained by following formula. 

Protein concentration (mg/ml) = OD280 X 0.5  

BCA method 
 

Samples were diluted appropriately and BCA kit was used to analyze protein concentration.  
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3.5.3 Protein metabolic labeling with [ 35S ] – methionine / cysteine 
 

[ 35S ] – Methione/Cysteine label (MPI biomedicals) 
L-Methionine, [35S]: L-Cysteine, [35S] , ~10 mCi/ml; ~370 MBq/ml   

Starvation Medium 
Methionine/Cysteine free medium (MPI biomedicals, modified DMEM), 2 4.5 g/l Dextrose  
 

Labeling Medium 
Methionine free medium with 3.7 MBq/ml Trans [ 35S ] – Methione/Cysteine label and 5 % FCS 
 

L-Methionine 
30 mg/ml L-Methionine (100X) in DMEM 
 

Chase medium 
Basic medium with 0.3 mg/ml L-Methionine  
 
80-85 %  confluent cells were washed with PBS and incubated with starvation medium for 1 hr. 

Depending on protein to be analyzed cells were then pulse labeled with labeling medium (1.5 ml 

for 6 cm dish and 2 ml for 10 cm dish) for desired time. For APP and APP-CTFs analysis cells 

were labeled for 10 min, for Aβ analysis however, cells were labeled for 1 hr. Subsequently cells 

were washed with PBS and incubated in chase medium for desired time points. For APP 

maturation and transport studies cells were chased up to 2 hr, for APP-CTFs chase period was 

extended up to 12-16 hr and 5 hr chase was done for Aβ analysis. After chase, medium was 

collected and cells were lysed with 700 µl STEN-lysis buffer. Lysates were later cleared by 

centrifugation at 14,000 rpm/10 min and medium was centrifuged at 1000 rpm/5 min. 

Immunoprecipitation, followed by blotting was performed and radiolabeled protein intensities 

were analyzed with a phosphoimager (Fuji, FLA2000) and the Fuji Image Gauge 3.0 software. 

3.5.4 Polyacrylamide-SDS gel electrophoresis 
Acrylamide : bis 
40% ready to use solution of acrylamide:bisacrylamide (19:1) was used. 
 

4X Upper Tris 
10 ml 20 % SDS, 15.1 g Tris base dissolve in 500 ml dH2O and adjust pH to 6.8 
 

4X Upper Tris 
10 ml 20%SDS, 90.8 g Tris base dissolve in 500 ml dH2O and adjust pH to 8.8 
 

10X Running Buffer 
100 ml 2 0% SDS, 60.8 g Tris base and 288 g glycine dissolve in 2 liters dH2O.  
 

APS 
10% (w/v) Ammonium persulfate in dH2O 
 
TEMED 
 N,N,N’,N’-tetramethylethylenediamine (Merck) 
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Gel casting scheme - separating gel 
For 15% gel For 12% gel For 10% gel For 7% gel  

4 gels 2 gels 4 gels 2 gels 4 gels 2 gels 4 gels 2 gels 
dH2O (ml) 5.0 2.5 7.0 3.5 8.3 4.2 10.3 5.5 

Acrylamide:Bis (40%) (ml) 10.0 5.0 8.0 4.0 6.7 3.4 4.7 2.3 

4X Lower Tris (ml) 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 

TEMED (µl) 50 25 50 25 50 25 50 25 

APS (µl) 50 25 50 25 50 25 50 25 

 
 
Gel casting scheme - stacking gel 
 

For 4%  stacking gel  
4 gels (10ml) 2 gels (5ml) 

dH2O (ml) 6.5 3.25 

Acrylamide:Bis (30%) (ml) 1.3 0.65 

4X Upper Tris (ml) 2.5 1.25 

TEMED (µl) 25 12 

APS (µl) 25 12 

 
(Note: 8M (48g/100ml) urea was used instead of dH2O for casting urea gels. Samples for 
presenilins detection were always loaded on urea gels.) 

3.5.5 Tricine gel system for low molecular weight protein detection 
 
Acryamide: bis (50%) 
48 g acrylamide and 1.5 g bisacrylamide was weighed and dissolved in 100 ml dH2O. 
 
Anode buffer (5X) 
1 M Tris HCl, pH 8.9 (121.1g Tris base/l) 
 
Cathode buffer (1X) 
0.1 M Tris (12.11 g Tris/l), 0.1 M Tricine (17.92 g/l), 0.1% SDS (5 ml/l from 20% SDS)  
 
Gel Buffer (store at 4oC) 
3 M Tris HCl (182 g/l), 0.3% SDS (1.5 g/l), pH 8.45 
 
Glycerol 
32% (v/v) glycerol in dH2O 
 
Gel run 
80 V at the beginning, later run at 100 V 
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 16.5% Separating gel 
(10.5 ml) 

10% spacer gel 
(7.5 ml) 

4% stacking gel 
(6.25 ml) 

Acrylamide.bis 
Gel buffer 
dH2O 
32% Glycerol 

3.5 ml 
3.5 ml 
------- 
3.5 ml 

1.5 ml 
2.5 ml 
3.5 ml 
------- 

0.5 ml 
1.55 ml 
4.2 ml 
------- 

10% APS 
TEMED 

45.0 µl 
5.0 µl 

45.0 µl 
5.0 µl 

25.0 µl 
5.0 µl 

Vol. for 1 gel (1.5mm) 5 ml 2.5 ml 2 ml 
 

 
 

Coommassie staining solution 
50% (v/v) Isopropanol, 10% (v/v) Acetic acid, 0.5% (w/v) Coommasie-Blue-R in dH2O. Filter and store in glass 
bottle. 
 
Destainer 
5% Isopropanol (v/v), 7% (v/v) acetic acid.  
 

3.5.6 Western immunoblotting 
 

Blot Buffer 
25 mM Tris, 0.2 M Glycine and 10 % (v/v) methanol in 1 liter dH2O. Adjust pH to 9.0 
 
PBS-Tween 
140 mM NaCl, 10 mM NaH2PO4 and 1.75 mM KH2PO4 0.5 % Tween in dH2O, adjust to pH 7.4 with HCl. 
 
Transfer conditions 
400 mA constant current for 2 hr 
 
Stripping solution 
0.2 M Glycine pH 2.2, 0.1% SDS, 10% v/v Tween  
 
Ponceau S 
0.2% ponceau S red in 1% Acetic acid 
 
After electrophoresis, proteins from polyacrylamide gel were transferred to nitrocellulose 

membrane in a blotting chamber and the transfer was confirmed by ponceau S stain. 5% milk in 

PBS-T for 1 hr was used as a blocking reagent. Blots were then incubated with appropriately 

diluted primary antibody solution for 2 hr at room temperature or overnight at 4oC. Blots were 

then washed 5 times each for 5 minutes, with PBS-T and later incubated with appropriate 

secondary antibody conjugated to HRP (Horseradish peroxidase) for 1 hr at room temperature. 

Blots were again washed with PBS-T like earlier and chemiluminescent peroxidase substrate was 

used to visualize protein bands. Signals were obtained using either chemiluminescence detection 

film or chemiluminescence imaging. For enhanced chemiluminescence detection, signals were 

measured and analyzed using an ECL imager (ChemiDocTM  XRS, BioRad) and the Quantity One 

software package (BioRad).   

Table 10. Gel casting scheme. Pour the separating and spacer gels immediately one after other carefully, so that
they ploymerize at the same time. Schägger gel can be stored at 4°C. 
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3.5.7 Immunocytochemistry 
 

4% Paraformaldehyde 
Dissolve paraformaldehyde (w/v) in PBS by boiling. Cool down the solution on ice and filter it using filter paper. 
Adjust the pH to 7.0. Aliquot and store at -20°C 
 
0.1% Triton 
Dissolve the triton X100 (v/v) in appropriate amount of PBS 
 
5% BSA 
Dissolve appropriate amount of BSA in PBS 
 
Cells were cultured on poly-L-lysine-coated glass coverslips to 50-80% confluence. Cells were 

fixed in 4% paraformaldehyde for 10 min followed by permiablization with 0.1% triton for 10 

min and blocking with 5% BSA. Cells were then incubated with desired primary 

antibody/antibodies at appropriate concentration, for 2 hr in 1% BSA. Primary antibodies were 

detected by Alexa 488- or Alexa 594-conjugated secondary antibodies (Molecular Probes Inc.) 

diluted at 1:1000. Coverslips were mounted on glass slides using 15% mowiol containing 50 

mg/ml DABCO. Images were acquired on fluorescence inverted microscope (Nikon Eclipse 

E800). 

3.5.8 Cholesterol Stain 
 
Filipin (Matreya) 
Stock 1 mg/ml in DMSO. Used at 100 µg/ml in PBS for staining 
 
For staining of cholesterol, cells were washed with PBS and fixed with paraformaldehyde. Cells 

were then incubated with 100 μg/ml filipin in PBS for 30 min at room temperature. After 

washing with PBS cells were analyzed by fluorescence microscopy (λex = 360 nm; λem = 460  ± 

50 nm).  

3.5.9 Analysis of protein and lipid transport 

3.5.9.1 Treatment with Brefeldin A  

Brefeldin A (BFA) 
10 mg/ml in methanol (1000X stock) 
 
Cells were grown up to to 80% confluence and treated with 10 µg/ml BFA for 10 min at 37°C. 

Fusion of the cis-Golgi compartments with ER was confirmed by immunostaining the Golgi 

compartment and the ER marker proteins, giantin and calnexin respectively. 
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3.5.9.2 Detection of cell surface proteins 

EZ-link Sulfo-NHS-Biotin (Pierce) 
50 mg/ml in DMSO (100X stock). Used at 50 µg/ml in PBS. 
 
Glycine 
20 mM Glycine in PBS 
 
Streptavidin Sepharose (Pierce) 
Streptavidin sepharose beads were washed with STEN buffer and were resuspended in the same. 
 
Cells grown on the poly-l-lysine coated dishes up to 70-80% confluency were washed with cold 

PBS. Cells were then incubated with 50 µg/ml EZ-link Sulfo-NHS-Biotin on ice for 30 min. 

Excess of biotin was later quenched with 20 mM Glycine washes for 3 times, 10 min each. After 

one final wash with PBS, cells were lysed in STEN-lysis buffer with BSA and biotinylated cell 

surface proteins were isolated using streptavidin sepharose beads. Specific protein present at cell 

surface was detected by western immunoblotting with respective antibody. For detection of cell 

surface APP-CTFs, total APP-CTFs were first immunoprecipitated from lysates after 

biotinylation and detection of biotinylated APP-CTFs was performed by probing the blot with 

streptavidin-HRP. 

3.5.9.3 Analysis of cell surface protein endocytosis 

EZ-linkTMSulfo-NHS-SS-Biotin (Pierce) 
50 mg/ml in DMSO (100X stock). Used at 50 µg/ml in PBS. 0.5 mg/ml Glycine 
 
Cleavage buffer 
50 mM Glutathione, 90 mM NaCl, 1.25 mM CaCl2, 1.25 mM MgSO4, 0.2% BSA in dH2O. Adjust to pH 8.6 with 
NaOH. 
 

Biotinylation of cell surface proteins was performed as above and excess biotin was quenched 

with glycine. Endocytosis of biotinylated cell surface proteins was allowed by incubation at 37oC 

and cells were lysed, while other set of cells was lysed directly after biotinylation. At each time 

point cells were also stripped to cleave biotin. For stripping cells were washed with fresh 

cleavage buffer three times, 15 min each on ice. Biotinylated proteins were precipitated with 

streptavidin sepharose. 
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3.5.9.4 Analysis of extracellular protein endocytosis 

BODIPY-LDL (Molecular probes) 
Stock 1 mg/ml. Used at the concentration 10 µg /ml in DMEM. 
 
TRITC-BSA (Molecular probes) 
Stock  25 mg/ml in dH2O. Used at the concentration of  50 µg/ml in DMEM. 
 
Cells grown on coverslips were washed with DMEM three times and labeled on ice, with 

BODIPY-LDL/TRITC-BSA for 30 min. Cells were then washed three times with DMEM and 

incubated for 10 min in culture media at 37oC. After subsequent washes cells were fixed and 

analyzed by immunofluorescence for LDL uptake. 

3.5.9.5 Analysis of GSLs endocytosis 

Cholera toxin (Sigma) 
Stock 1 mg/ml in dH2O. Used at 10 µg/ml in DMEM. 
 
Cells grown on coverslips were washed with DMEM three times and labeled with cholera toxin 

on ice for 30 min. Cells were then washed three times with DMEM and incubated for 10 min in 

culture media at 37oC. After subsequent washes, cells were fixed and stained with anti-cholera 

toxin antibody, which was visualized using alexa secondary dyes. 

3.5.10 Subcellular fractionation using iodixanol gradient 

3.5.10.1 Isolation of cellular membrane vesicles 

Cellular membranes were isolated as described in 2.4.5.2. However, glass hand homogenizer was 

used instead of needle syringe for homogenization. Membrane pellets were resuspended in 500 µl 

hypotonic buffer (2.4.5.2) and were left overnight at 4oC for formation of vesicles with small 

magnetic bar rotating inside suspension. Next day vesicle suspension was loaded on the top of 

iodixanol gradient. 

3.5.10.2 Ultracentrifugation 
 

Iodixanol / OptiprepTM (AXIS-SHIELD) 
60 % (w/v) iodixanol in dH2O (Optiprep), density 1.32 g/ml 
 
Diluent 
0.25 mM Sucrose, 6 mM EDTA, 60 mM HEPES-NaOH, pH 7.4 
 
50 % Iodixanol 
5 volume of 60 % iodixanol + 1 volume of diluent. 
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% layer 50% working soln (ml) Diluent (ml) Total volume 
50% 10 0 10ml 
30% 6 4 10ml 
20% 4 6 10ml 

17.5% 3.5 6.5 10ml 
15% 3 7 10ml 

12.5% 2.5 7.5 10ml 
7.5% 1,5 8.5 10ml 
5% 1 9 10ml 

2.5% 0.5 9.5 10ml 

 
 
 
Prepare discontinuous gradient by layering 1.2 ml of each % of iodixanol from bottom to top in a 

decreasing density starting with 50 % iodixanol. Pre-cool the tubes with gradients at 4oC before 

loading membrane vesicle suspension on top. Insert gradient tubes with membrane vesicles into 

cups for SW41Ti swinging-bucket rotor. All the cups with tubes were balanced for equal weight. 

Centrifuge for 8 hr at 40,000 rpm. Collect the gradient from top to bottom into 1 ml each fraction. 

3.5.10.3 Protein Precipitation with TCA 

2 % Sodium deoxycholate  
2 g  Sodium deoxycholate in 100 ml dH2O 
 
100 % TCA (Trichloroacetic acid) 
1 kg TCA in 454 ml dH2O. Store at 4oC in a brown bottle 
 
Add 10 µl of 2 % sodium deoxycholate (0.02 % final) to each of the 1 ml gradient fraction. Mix 

and leave the tubes on ice for 15 min. Add 100 µl of 100 % TCA to the sample, mix and keep at 

room temperature for 30 min. Spin at 16000 rpm at 4oC for 10 min, discard the supernatant and 

wash the pellet with ice cold acetone twice. Finally dry the pellet in air and resuspend it in 50 µl 

of loading dye. Presence of residual TCA might give a yellow colour because of the acidification 

of loading dye, titrate with 1 N NaOH or 1M Tris HCl pH 8.5 to obtain normal blue colour of 

loading dye. 

3.5.11 In vitro  γ-secretase assay 
Citrate Buffer 
150 mM Sodium citrate in dH2O, adjust pH to 6.4 with citric acid 
 
DAPT - N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester 
100 µM DAPT in DMSO (final concentration in assay 1 µM) 
 

Table 11. Dilution scheme for iodixanol: Iodixanol with gradually decreasing concentration from 50 % to 2.5 % 
was obtained from 50 % iodixanol solution by diluting with diluent. 
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Cellular membranes were isolated as described in 2.4.5.2. and membrane pellet was resuspended 

in citrate buffer containing protease inhibitors. 100 µls resuspended membrane solution aliquoted 

in various tubes, depending on the treatment. Tubes were later incubated at 37oC for 2 hr in the 

presence or absence of DAPT as well as in presence of the lipid/substance to be analyzed for its 

effect on γ-secretase activity. After two hours tubes were centrifuged at 16,000 rpm for 1 hr. 

Supernatant was analyzed by western immunoblotting for generation of AICD by the action of γ-

secretase, whereas APP-CTFs were detected in pellets. 

3.5.12 Cell viability assay 
MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) 
5 mg/ml MTT in PBS  
 
Cells were cultured in 96 well microtiter plates with 180 µls medium per well. 20 µl MTT was 

added directly to the cells (final concentration 0.5 mg/ml). Cells were further incubated at 37°C 

and 5% CO2 to allow the MTT to be metabolized. After two hours media was discarded and 

metabolized product of MTT, formazan, was dissolved in 200 µl DMSO per well. The optical 

density at 540 nm was determined photometrically, the wells without any cells served as blank. 

Only living cells can metabolize MTT, optical density at 540 nm is a direct indicator of cell 

viability. Therefore, lesser the optical density at 540 nm, higher is the toxicity of the tested drug. 

3.5.13 Analysis of cellular sterols 
For quantitation of sterol concentrations five independent experiments (n=5) were carried out. 

Statistical analysis was done using Student’s T-test. Significance values are indicated by asterisks 

as follows: * (p<0.05); ** (p<0.01); *** (p<0.001). Analysis of sterols was performed in 

collaboration with Institute of pharmacology, University Hospital Bonn. Briefly, lipids were 

extracted with chloroform/methanol (2:1; v/v) from cultured cells and dried to constant weight in 

a Speedvac® (Servant Instruments, Inc., Farmingdale, NY, USA). 5α-cholestane (Serva 

Electrophoresis Inc., Heidelberg), epicoprostanol (Sigma-Aldrich Chemie Inc), and racemic 

[23,23,24,25-2H4] 24(R,S)-OHchol (Medical Isotopes Inc., Pelham, NH, USA were added as 

internal standards. After saponification, extraction and derivatization, cholesterol was determined 

as trimethylsilyl-ethers by using gas-liquid chromatography-flame ionization detection (GC-FID), 

while, concentrations of lanosterol, desmosterol and cholestanol were estimated by GC- mass 

spectrometry (GC-MS). 
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4 Results  

4.1 Role of GSLs in APP processing  

4.1.1 Pharmacological inhibition of GSL biosynthesis 
 

In order to analyze the function of glycosphingolipids (GSLs) in the proteolytic 

processing of APP and generation of Aβ, GSL biosynthesis was inhibited using PDMP (D, L-

threo-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride), a specific inhibitor of 

GSL biosynthesis. PDMP is a selective competitive inhibitor of glucosylceramide synthase (GCS), 

the very first enzyme involved in complex GSLs biosynthesis (Fig. 1B). Moreover, previously 

PDMP has also been shown to inhibit synthesis of GSLs efficiently in cell culture as well as in 

animals (Radin, 1996). 
     
 A                                                      B           

 

 

 
 

Treatment of HEK293 or HeLa cells with 10 µM PDMP for 48 hr led to a significant 

decrease in GSLs as demonstrated by a strong reduction of GM1 levels in cellular membranes (Fig. 

1B), confirming that the treatment with 10 µM PDMP is a useful pharmacological tool to reduce 

cellular GSL levels. As indicated by MTT assays, PDMP did not exert toxic effects up to 25 µM 

(Fig. 2A, 2B). 

Fig. 1. Inhibition of GCS by PDMP. A, Schematic showing of glycosphingolipid biosynthesis pathway and targeted 
inhibition of glucosylceramide synthase (GCS) by PDMP. B, Detection of GM1 after PDMP treatment - HEK293 (top 
panel) and HeLa (bottom panel) cells were cultured in the presence (+) or absence (-) of 10 µM PDMP for 48 hr. 
Cellular membranes were separated by SDS-PAGE and GM1 was detected by western immunoblotting with cholera 
toxin. 
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However, high concentrations of PDMP (≤ 100 µM) are known to inhibit brefeldin A 

(BFA) induced disintegration of the Golgi complex. BFA is a fungal antibiotic widely employed 

in studies addressing subcellular protein transport and secretion. BFA treatment is known to 

cause fusion of early secretory compartments e.g. cis-Golgi with ER, as well as it also results in 

fusion of trans-Golgi network (TGN) compartments with endosomal vesicles. BFA exerts its 

effects by targeting ADP ribosylation factor (Arf) (De Matteis et al., 1999). Since PDMP 

interferes with ADP-ribosylation and cellular calcium homeostasis at higher concentration, it 

could also abrogate the effects of BFA. To ensure that the PDMP at concentrations used here to 

inhibit GSL biosynthesis, does not affect important biological functions such as ADP-

ribosylation and calcium metabolism, the effect of higher and lower concentrations of PDMP in 

terms of its ability to inhibit BFA induced redistribution of the Golgi compartment was studied. 

The effects of PDMP on fusion of cis-Golgi vesicles to ER after BFA treatment was 

studied by immunocytochemical detection of the Golgi and ER maker proteins, giantin (red) and 

calnexin (green) respectively (Fig. 3). Treatment of HeLa cells with 10 µM BFA for 30 min caused 

the redistribution of giantin into calnexin positive compartments, indicating fusion of ER and cis-

Golgi (Fig. 3A-D). Pre-treatment of cells with 100 µM PDMP for 30 min inhibited the effect of 

BFA (Fig. 3E), however, pre-treatment with 25 µM PDMP did not inhibit BFA induced co-

localization of giantin and calnexin (Fig. 3F-H). Treatment of 100 µM PDMP alone for 30 min did 

not affect the distribution of giantin (Fig. 3I). Moreover, when cells were incubated together with 

PDMP and BFA for 30 min, PDMP was effective in stalling the effect of BFA on giantin 

localization only at 100 µM concentration (Fig. 3J-L). Pre-treatment of cells with 25 µM PDMP 

for 48 hr had no effect on giantin and calnexin distribution by itself as well as on BFA induced 
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Fig. 2. Cell viability of HEK293 and HeLa cells upon PDMP treatment. Cells (A: HEK293; B: HeLa) were split 
into 96 well microtiter plates and cultured for 24 hr. Cells were then cultured in the absence or presence of PDMP 
for 48 hr with one medium change after 24 hr. MTT was added directly to the cells. Cells were incubated at 37°C 
and 5% CO2 for two hr. Subsequently, the medium was discarded and 100 µl DMSO was added to each well. After 
solubilization of MTT precipitate, the optical density at 540 nm was determined photometrically.  
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redistribution of giantin (Fig. 3M-P). Thus, effect of BFA on giantin redistribution was inhibited by 

100 µM PDMP, whereas PDMP at 25 µM concentration did not have any effect on this process, the 

latter is not only true for short incubation time but is also valid for longer treatment with PDMP 

(48 hr) which was used in the study to inhibit the GSLs biosynthesis. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Effects of PDMP on BFA induced changes in Golgi and ER morphology. A-D, Redistribution of giantin by 
BFA - HeLa cells were incubated in absence (A) and presence (B) of 10 µM BFA for 30 min and were stained for 
giantin, BFA treated cells were also stained for calnexin (C). Overlay of giantin and calnexin in BFA treated cells
(D). E-H, Inhibition of giantin redistribution by 100 µM but not by 25 µM PDMP pre-tretment -  Hela cells were pre-
treated with either 100 µM (E) or 25 µM (F) PDMP for 30 min before incubation with 10 µM BFA for 30 min and
stained for giantin. 25 µM PDMP and BFA treated cells were also stained for calnexin (G). Overlay of giantin and
calnexin in 25 µM PDMP pre-treated and BFA treated cells (H). I-L, Inhibition of giantin redistribution by co-
incubation with 100 µM PDMP – Giantin stain after 30 min, 100 µM PDMP treatment (I). HeLa cells were treated
with 100 µM PDMP and 10 µM BFA together for 30 min and stained for giantin (J) and calnexin (K), overlay of 
giantin and calnexin in 100 µM PDMP and giantin treated cells (L). M-P, 25 µM PDMP treatment for 48 hr does not 
affect the redistribution of giantin by BFA - HeLa cells were stained for giantin after 25 µM, 48 hr PDMP treatment 
(M). HeLa cells were treated with 25 µM PDMP for 48 hr and 10 µM BFA was added to the cells for last 30 min.
Cells were then stained for giantin (N) and calnexin (O), overlay of giantin and calnexin in these cells (P).  
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At higher concentrations, PDMP is also known to alter subcellular protein distribution; 

therefore, the effect of PDMP on APP localization was studied. In control as well as treated cells, 

APP co-localized predominantly with the Golgi marker protein giantin (Fig. 4, right panel) in 

juxtanuclear compartments and not with ER marker calnexin (Fig. 4, left panel). There was no 

significant effect on the overall morphology of the ER and Golgi after PDMP treatment for 48 hr. 

However, it should be noted that subtle effects on distribution of APP might not be observed with 

this staining method. 
 

 

 

 

              

 

 

                                        

 

 

 

 

 

 

 

 

 

 

4.1.1.1 Reduction of APP secretion upon PDMP treatment  

Thus treatment with 25 µM PDMP does not affect cell viability, morphology of the Golgi 

and ER and does not show other non-specific effects reported for higher doses, but it can 

effectively reduce the cellular GSL content. Therefore treatment with PDMP was used as a first 

approach to analyze the effects of GSLs modulation on APP processing. HEK293 or HeLa cells 

were incubated in the presence or absence of PDMP for 48 hr and APP was immunoprecipitated 

from conditioned media and cell lysates. As shown in Fig. 5, treatment with PDMP of both 

HEK293 and HeLa cells markedly decreased the secretion of APPs into conditioned media (Fig. 5 

A-D). It should be noted that the effects of PDMP on APP secretion were selectively observed in 

non-transfected cells, but not in cells that stably overexpress APP (data not shown). This might be 

Fig. 4. Distribution of APP after PDMP treatment – HeLa cells were cultured without (control) and with (PDMP)
25 µM PDMP for 48 hr and were co-stained with anti-APP monoclonal antibody IG7/5A3  and anti-calnexin 
polyclonal antibody (left panel) or with anti-APP polyclonal antibody 5313 and monoclonal anti-giantin antibody 
(right panel) as described in materials and methods (2.5.1). 
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due to a tight regulation of the interaction of APP with membrane lipids (see "Discussion"). 

Therefore, exclusively non-transfected cells were used for further experiments. 
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Next, it was confirmed that the reduced secretion of APP by PDMP is indeed due to the 

depletion of GSLs and is not the result of direct interference of PDMP with APP secretion. After 48 

hr treatment with PDMP, HeLa cells were washed three times with PBS to remove the residual 

PDMP which was present in the medium. Control and PDMP treated cells were then cultured in 

starvation medium for 1 hr followed by [35S]-methionine metabolic labeling as described in the 

methods (2.5.3). APPs secretion was investigated in control and treated cells. A strong decrease in 

APPs levels was observed in cells, which were treated with PDMP (Fig. 6A & 6B). Note that the 

cells were pre-treated with PDMP for 48 hr and PDMP was not included in medium during the 

course of experiment. The effect of short-term PDMP treatment was also analyzed. In contrast to 

long term treatment (48 hr), incubation of cells with PDMP for only 2 hr did not significantly 

reduce levels of GSLs (data not shown). Under these conditions, the secretion of APPS was not 

significantly changed (Fig. 6C). APP secretion was also studied after treatment of cells with L-

PDMP, which is an inactive enantiomer of PDMP. Long-term treatment of cells for 48 hr with L-
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Fig. 5. Inhibition of GSL biosynthesis decreases the secretion of APPs. A-D, HEK293 (A,B) and HeLa (C,D) cells 
were cultured in the absence (-) or presence (+) of 10 µM PDMP for 48 hr. APP was immunoprecipitated from
conditioned media (A,C; upper panels) and cell lysates (A,C; lower panels) and separated by SDS-PAGE. Secreted APP 
(APPs) and cellular APP were detected by western immunoblotting. The migration of mature (m) and immature (im) 
APP is indicated by arrowheads. Secretion of APPs in HEK293 (B) and HeLa (D) cells was quantified by ECL imaging
and normalized to cellular APP expression. Values represent means of three independent experiments ± s.d. (solid bar, 
no PDMP; open bar, 10 µM PDMP).  
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PDMP did not reduce APPs secretion (Fig. 6D). Together, these control experiments indicate that 

the reduced secretion of APPs observed upon PDMP is due to decreased GSL levels in cellular 

membranes. 

 
A                                                         B 
 
 
 
 
 
 
C                                                          D 
                                                   
 
 
 
 
 
                       
 
 
      
     

Two distinct cleavage products of APP, α-soluble APP (APPs-α) or β-soluble APP (APPs-

β) are generated by α-secretase or β-secretase, respectively. Since any alteration in the ratio of 

APPs-α to APPs-β reflects alterations in amyloidogenic v/s non-amyloidogenic processing of APP, 

the effect of PDMP treatment on the generation of APPs-α and APPs-β was analyzed. The decrease 

in APP secretion was observed for both variants APPs-α and APPs-β, indicating that both APP 

processing pathways are affected by GSL depletion (Fig. 7).  

Fig. 6.  Decreased APPs secretion is specific to the depletion of GSLs.  A-B, After culturing in the absence (-) or 
presence (+) of 10 µM PDMP for 48 hr, HeLa cells were washed and starved for 1hr and subsequently labeled with 
[35S]-methionine for 1 hr. APP was immunoprecipitated from cell lysates, separated by SDS-PAGE and detected by 
phosphoimaging (A). Secretion of APPs was quantified (B). C-D, HEK293 cells were cultured without or with 10 µM 
PDMP for 2 hr (C), without or with 10 µM L-PDMP for 48 hr (D), APP was immunoprecipitated from conditioned
media and cell lysates. Secretion of vehicle treated cells was set as 100% and secretion of APPs was quantified by
ECL imaging and normalized to cellular APP expression. Values represent means of three independent experiments ±
s.d. (solid bar, no PDMP; open bar, 10 µM PDMP) 
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4.1.1.2 Effects of PDMP on APP processing and Aβ generation in neuronal cells 
 

Decreased APPs secretion by PDMP treatment in SH-SY5Y cells 
 

Next, human neuroblastoma SH-SY5Y cells were used to prove a role of GSLs in the 

processing of APP. Two variants of endogenously expressed APP that represent distinct APP splice 

variants, including the neuron-specific APP695 form were detected in cell lysates after pulse 

labeling (Fig. 8A). The presence of distinct splice variants in SH-SY5Y cells was also confirmed 

by RT-PCR using isoform-specific primers, which amplify different length fragments of APP 

depending on the isoform. Note the presence of APP695 isoform only in SH-SY5Y and not in 

HEK293 cells (Fig. 8C). PDMP treatment did not affect the expression of the distinct APP variants, 

as demonstrated by the similar levels of cellular APP after pulse labeling (Fig. 8A). As observed in 

HEK293 and HeLa cells, PDMP treatment also resulted in a significant reduction of APPs in SH-

SY5Y cells (Fig. 8A, 8B). The reduction was observed for the APP751/770 as well as for the neuron-

specific APP695 splice variant.  

Fig. 7. PDMP decreases secretion of both APPs-α and APPs-β.
HEK293 cells were cultured in the absence or presence of 25 µM
PDMP for 48 hr. Cells were then radiolabeled with [35S]-
methionine for 15 min and incubated for a chase period of 2 hr in
the presence or absence of PDMP. APPs was immunoprecipitated
from conditioned media with monoclonal antibody BAP-1a that
recognizes APPs-α (epitope: amino acids 4 - 6 of human Aβ).
Conditioned media was depleted by three sequential
immunoprecipitations (IP) with BAP-1a. The medium was
subsequently cleared from remaining antibody by incubation with
protein G sepharose (PGS). Remaining APPs was
immunoprecipitated with antibobody 5313 recognizing both
APPs-α and APPs-β. Immunoprecipitates were separated by
SDS-PAGE and radiolabeled proteins were detected by phospho-
imaging. As expected, APPs-α migrates slightly slower than
APPs-β in SDS-gels (arrow heads). PDMP treatment reduced the
secretion of both APPs-α and APPs-β.   
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The ability of PDMP to selectively affect APP secretion in SH-SY5Y cells was further 

confirmed by quantitative analysis of total protein secretion from control and PDMP treated cells. 

Cells were pulse labeled with [35S]-methionine and chased for 24 hr. Proteins secreted during pulse 

were precipitated with TCA and pellets were redissolved in 1N NaOH. Secretion of labeled 

proteins was analyzed by scintillation counting.  There was no significant quantitative change in 

the total protein secretion (Fig. 9A). The inhibition of GCS might lead to the accumulation of its 

substrate ceramide. Since ceramide was shown to alter the proteolytic processing of APP by 

stabilizing BACE-1, the effect of C6-ceramide on the secretion of APPS was tested. The treatment 

of cells with ceramide at concentrations of 10 µM, which was shown to stabilize BACE1, did not 

inhibit the secretion of APPS,  indicating that the inhibition of APP secretion after PDMP was due to 

decreased levels of GSLs (Fig. 9B). 

Fig. 8 GSL depletion inhibits secretion of APPS in human SH-SY5Y cells. A, SH-SY5Y cells were cultured in the
absence (-) or presence (+) of 25 µM PDMP for 48 hr and then pulse labeled with [35S]-methionine for 15 min. One set
of cells was immediately lysed after the pulse. Another set of cells was incubated for additional 2 hr in the absence or
presence of PDMP. APP was immunoprecipitated from the cell lysates (lower panel) and chase media (upper panel)
and separated by SDS-PAGE. Radiolabeled APP was detected by phosphoimaging. The migration of APPs and full-
length APP (fl APP) for the different splice variants APP751/770 and APP695 is indicated by arrow heads. B
Quantification of APP secretion was carried out by phosphoimaging. Values represent means of three independen
experiments ± s.d. C, Total RNA was extracted from SH-SY5Y and HEK293 cells, cDNA synthesis was carried out
using oligo(dT) primer and reverse transcriptase. 18 rounds of PCR cycles were performed using synthesized cDNA as
a template. Forward and backward PCR primers were designed in the consensus region of the APP, flanking the
variable sequences in each isoform. 
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GSL depletion decreases levels of secreted Aβ 

In order to investigate the role of GSLs in the generation of Aβ, SH-SY5Y cells were 

incubated in the presence or absence of PDMP for 48 hr and Aβ was immunoprecipitated from 

conditioned media. Secretion of Aβ was significantly reduced upon the inhibition of GSL 

biosynthesis (Fig. 10A, 10B).  
 

A                                                     B 
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PDMP: + +

CTF *
CTF

PDMP: + +

Fig. 10. GSLs modulate secretion of Aß. A, Human SH-SY5Y cells were cultured in the absence (-) or presence (+) of 
25 µM PDMP for 48 hr and endogenously generated Aβ was immunoprecipitated from conditioned media and detected 
by western immunoblotting. B, Aβ secretion was quantified by ECL imaging, normalized to cellular APP. C, Membranes 
were isolated from PDMP-treated (-) and untreated (+) cells. After separation by SDS-PAGE, CTFs were detected by 
western immunoblotting. CTFs generated by β-secretase cleavage (CTF-β) and α-secretase cleavage (CTF-α), are 
indicated by arrow heads. The CTFs generated by alternative β-secretase cleavage are indicated by an asterisk. D, 
Quantification of the relative amounts of CTFs was done by ECL imaging. Values represent means of three independent
experiments ± s.d.  

ceramide: + +
APPS 751/770

APPS 695

fl APP 751/770
fl APP 695 *

Fig. 9. GSL depletion selectively inhibits secretion of APPS in SH-SY5Y cells. A, Total protein secretion was 
analyzed by TCA precipitation of [35S]-methionine labeled proteins from the conditioned medium after 24 hr chase
period as described in methods (2.5.10.3). Radioactivity was determined by liquid scintillation counting. Values 
represent means of three independent experiments ± s.d. B, Cells were treated with 10 µM C6-ceramide for 48 hr and 
APP was immunoprecipitated from conditioned media and cell lysates and detected by westernblotting. The band 
marked by an asterisk likely represents mature APP695. 
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Levels of APP-CTFs that derive from proteolytic processing of APP by β- or α-secretase 

were also analyzed. Two major species of APP-CTFs were detected that represent CTF-β and CTF-

α resulting from β- and α-secretase cleavage, respectively (Fig. 10 C). In addition, an intermediate 

band was detected that likely represents CTF-β', a variant generated by an alternative cleavage of 

APP by β-secretase at Glu-11 within the Aβ domain (Liu et al., 2002). Consistent with predominant 

secretion of APPS-β in this cell type, CTF-β was the predominant species in control cells (Fig. 10C, 

10D). GSLs depletion resulted in almost similar levels of CTF-β and CTF-α (Fig. 10C, 10D), 

probably due to further processing of CTF-β by α-secretase (see "Discussion"). 

 
 

Thus, above studies establish a role of GSLs in APP processing. Depletion of GSLs 

using a pharmacological inhibitor PDMP leads to decreased APP secretion. Importantly, 

secretion of Aβ  is strongly reduced upon treatment with PDMP. 

 

 

4.1.1.3 Modulation of APP transport by GSLs 

It has been shown that proteolytic processing of APP occurs predominantly in post-Golgi 

secretory and endocytic compartments and at the cell surface. Therefore, expression of APP at the 

cell surface was assessed by biotinylation with sulfo-N-hydroxysuccinimide-biotin. In SH-SY5Y 

cells, biotinylated APP could not be detected (not shown), probably due to very efficient proteolytic 

processing and secretion in this cell type that results in low levels of surface APP. In contrast, 

biotin-labeled APP could be readily detected in HEK293 cells (Fig. 11A). In GSL-depleted cells, 

the levels of biotin-labeled APP were markedly reduced, demonstrating that suppression of GSL 

biosynthesis reduces the expression of APP at the cell surface. In contrast, the cell surface 

expression of the endogenous Fas receptor, also a type I membrane protein, was not decreased upon 

GSL depletion, indicating a selectivity of PDMP in decreasing the levels of APP at the cell surface 

(Fig. 11B). 
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Next, the effect of PDMP on the general expression of cell surface proteins was assessed 

by cell staining with fluorescently labeled wheat germ agglutinin (WGA). WGA is a lectin that 

binds to glycoproteins with high affinity. In order to to label the cell surface glycoproteins control 

and PDMP treated cells were washed, fixed and incubated with TRITC conjugated WGA without 

permeabilization. When analyzed by microscopy, no significant difference in the expression of cell 

surface glycoproteins was observed between treated and non-treated cells (Fig. 12A).  
A                                                            B 
 
 
 
 
        
 
 
 
 
 
 
 

Together, these experiments demonstrate that GSL depletion selectively reduced the cell 

surface expression of APP without generally affecting the other membrane proteins. In addition, the 

levels of total surface biotinylated proteins detected by streptavidin-conjugated horseradish 

peroxidase were very similar in PDMP treated and non-treated cells (Fig. 12B). However, the data 

do not exclude the possibility that cell surface expression of other selected membrane proteins is 

also affected by GSL depletion.  

PDMP: + +
APP m

APP im
membranes

+ +
Fas
PDMP: + + + +

membranes

Fig. 11. GSL depletion decreases the expression of APP at the cell surface. A, B, Cell surface proteins of control (-) 
and PDMP treated (+) HEK293 cells were labeled with sulfo-NHS-biotin and isolated with streptavidin-conjugated 
agarose beads as described in the methods section (2.5.9.3). Precipitates were separated by SDS-PAGE and 
endogenously expressed APP (A) or Fas (B) was detected by western immunoblotting (right panels). As control, 
cellular levels of APP (A, left panel) and Fas (B, left panel) were also analyzed by western immunoblotting of isolated
cell membranes with the respective antibodies. Note the selective biotinylation of mature APP (APPm). 

Fig. 12. GSL depletion does not affect general cell surface protein expression. A, Control (left panel) or PDMP-
treated cells (right panel) were stained with TRITC-WGA to detect cell surface glycoproteins and analyzed by 
fluorescence microscopy. B, Cell surface proteins of control (-) and PDMP treated (+) HEK293 cells were labeled 
with sulfo-NHS-biotin and isolated with streptavidin-conjugated agarose beads. Precipitates were separated by SDS-
PAGE and biotin labeled total surface proteins were detected by western immunoblotting using streptavidin

j d id

Control PDMP - - + +PDMP:
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4.1.1.4 Decreased APP maturation and stability upon GSLs depletion 

The decreased expression of APP at the cell surface and reduced secretion of APPS-α and 

APPS-β after GSL depletion suggested that GSLs might be implicated in the forward transport of 

APP in the secretory pathway. To address this possibility, pulse-chase experiments were performed 

and the maturation of APP that occurs in the Golgi compartment was analyzed. Cells were labeled 

with [35S]-methionine for 10 min and then chased for various time periods.  

After pulse labeling, a prominent band was detected representing endogenous immature 

(N'-glycosylated) APP. After 30 min of chase, a slower migrating form appeared that represents 

mature (N'/O'-glycosylated) APP. The mature form becomes predominant after 60 to 90 min (Fig. 

13A). GSL depletion by PDMP reduced the transport of APP to or within the Golgi compartment as 

indicated by decreased maturation of APP in PDMP-treated cells (Fig. 13A, 13B). In addition, 

decreased levels of total APP were observed in GSL-depleted cells after chase periods of 60 and 90 

min (Fig. 13A, 13C). Since PDMP also reduced the secretion of APPS (see Figs. 5 and 6), these 

data indicate an increased degradation of cellular APP in GSL-deficient cells. Indeed, when cells 

were cultured in the presence of PDMP for 2 weeks a marked decrease in the levels of mature APP 

was observed at steady state conditions (Fig. 13D, 13E). In addition, accumulation of immature 

APP was also evident in these cells. After 2 weeks PDMP treatment GM1 levels were strongly 

reduced in cellular membranes (Fig. 13D). 
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Fig. 13. Suppression of GSL biosynthesis affects maturation and stability of APP. A,  After culturing in the 
absence or presence of 10 µM PDMP for 48 hr, HeLa cells were labeled with [35S]-methionine for 10 min and chased 
for the indicated time periods. APP was immunoprecipitated from cell lysates, separated by SDS-PAGE and detected 
by phosphoimaging. The migration of mature (m) and immature (im) APP is indicated by arrow heads. B, C, 
Quantitation of APP maturation (B) and stability (C). In PDMP treated cells (open squares) the maturation of APP is
significantly decreased as compared to untreated cells (closed circles) (B). In addition, the stability of cellular APP is
reduced in PDMP treated cells (C). Values represent means of three independent experiments ± s.d. D-E, HEK293 
cells were treated with 10 µM PDMP for two weeks. APP (upper panel) and GM1 (lower panel) were detected from
isolated cellular membranes. The migration of mature (m) and immature (im) APP is indicated by arrow heads (D). 
Ratio of mature to immature APP was significantly lower after two weeks PDMP treatment (E). 
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4.1.2 Analysis of APP processing in GSL deficient GM95 cells 
 

GM95, a cell line deficient in GSLs, first described in 1994 was derived from parent B16 

mouse melanoma cells by sequential chemical mutagenesis. GM95 cells were characterized for 

absence of GSLs and the lack of GCS activity. Notably levels of the GCS substrate, ceramide were 

found to be unchanged in the mutant cell line. Previously, GM95 cells have been used as a model 

to investigate effects of GSL deficiency in various biological processes. Therefore, to validate the 

findings in an independent genetic model, B16 and GM95 cells were used to study the effect of 

GSL depletion on APP processing. As expected, very little if any GM1 could be detected in GM95 

cells, whereas B16 cells express robust amounts of GM1 (Fig. 14A) (Ichikawa et al., 1994).  

 

 
 
 
 

To verify the effect of GSLs depletion by PDMP on APP maturation and stability 

observed in the HeLa, HEK293 and SH-SY5Y cells, pulse-chase experiments in B16 and GM95 

cells were performed. In B16 cells, endogenous APP undergoes maturation as indicated by the 

appearance of a slower migrating band during the chase period (Fig. 15, left panel). In contrast, the 

GSL-deficient GM95 cell line revealed significantly reduced maturation of APP (Fig. 15, right 

panel), which is consistent with the data obtained with pharmacological inhibition of GSL 

biosynthesis (see Fig. 13A).  

 
     
 
 
 
 
 
       

 

 

 

 

Fig. 15. Decreased maturation and cellular levels of APP in GSL deficient cells. Pulse-chase experiment for APP
in B16 (left panel) and GM95 (right panel) cells was carried out as described in Fig. 13A. The maturation of APP
was strongly inhibited in GSL-deficient GM95 cells as compared to B16 cells.  

Fig.14. GSLs deficiency in GM95 cells. Cellular membranes 
were isolated from mouse melanoma B16 and GM95 cells 
and GM1 was detected by western immunoblotting.
Choleratoxin-HRP was used for immunodetection of GM1.  
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The steady state levels of cellular APP were strongly decreased in GM95 (Fig. 16A), 

consistent with decreased stability of cellular APP in absence of GSLs. Expression of APP in both 

cell lines at the mRNA level was also investigated by RT-PCR. APP mRNA expression was 

comparable in both cell lines (Fig. 16B), further supporting the finding that APP levels are 

regulated by GSLs at post-translational steps. Two distinct transcripts of APP were detected by RT-

PCR in B16 and GM95 cells. One of which corresponds to 751 amino acids long isoform of APP. 
 
A                                                     B  

 
 
 
 
 
 
 
 
 
 

4.1.3 Targeted suppression of lactosylceramide synthase (LCS) by 
shRNA 
 

Although B16 and GM95 can be used as an independent genetic model for GSL 

deficiency, it has certain limitations. First, GM95 cells were generated by random mutagenesis 

and later characterized for the lack of GSLs, second APP processing in mouse is considerably 

different than in humans. Therefore, to study effects of GSL deficiency in an independent human 

genetic cellular model, knock down of expression of the key genes involved in GSLs biosynthesis 

was sought after using RNA interference (RNAi) technology. In recent years RNAi has emerged 

as a powerful tool to analyze gene function. Targeted suppression of particular gene expression 

with small interfering RNAs (siRNA) is much quicker compared to classical knockout techniques 

(see “3.3”).  

 

Fig. 16 Decreased cellular levels of APP in GSL deficient cells. A, Steady state levels of APP in B16 and GM95 
cells were compared by western immunoblotting. Actin was used as a loading control. B, mRNA expression of APP 
was analyzed by RT-PCR as described in the methods section (upper panel). Expression of actin mRNA was
analyzed as control (lower panel). 
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Two key genes, GCS and lactosylceramide synthase (LCS), involved in GSL 

biosynthesis were targeted by RNAi technology (Fig. 17A). HEK293T cells were stably 

transfected with a vector encoding RNA targeting sequence (shRNA) and zeocin resistance. 

Selected clones were then screened for suppression of expected target gene by RT-PCR. All 

clones analyzed for GCS knock down still expressed comparable levels of GCS mRNA similar to 

control HEK293T cells (Fig. 17B). However, successful knock down of LCS was achieved as 

indicated by efficient down regulation of LCS expression in clones 10, 15 and 20.  Expression of 

other house-keeping genes actin, GAPDH and unrelated gene ERGIC53 was not changed in 

clones with prominent LCS suppression (Fig. 17C). 

Fig. 17. Specific knock down of LCS expression. A, Schematic showing of GCS and LCS knock down by RNA
interference. B, HEK293T cells were stably targeted with pSupZeo vector (see methods section 3.3) containing a 19
nucleotide target sequence for GCS. Stable clones were selected and screened for GCS expression by RT-PCR. Actin 
was amplified as a control. C, HEK293T cells were stably targeted with pSupZeo vector (see methods section 3.3)
containing a 19 nucleotide target sequence for LCS. Selected clones were screened for efficient LCS supression with 
RT-PCR (top panel). Expression of actin (middle panel), GAPDH and ERGIC53 (ERGIC) (bottom panel) were also 
analyzed in the same samples. 
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4.1.3.1 Altered metabolism of APP in LCS deficient cells 

Consistent with GM95 cells and pharmacological suppression of GSL biosynthesis, 

strongly reduced levels of cellular APP were observed in LCS deficient cells, indicating a 

decreased stability of APP in these cells. The ratio of mature to immature APP was also altered in 

RNAi targeted cells. In control cells higher amount of mature APP was present compared to 

immature APP, whereas in LCS deficient cells immature APP levels were much higher compared 

to mature APP (Fig. 18). This suggests a slower maturation of APP in LCS suppressed cells. The 

secretion of APP was also strongly reduced in these cells. Together, these results support earlier 

findings that the GSLs depletion results in decreased stability, maturation and secretion of APP. 

 
 

 
 
 
 
 

Next, the subcellular localization of APP in control and LCS suppressed cells was 

analyzed by co-staining APP with antibodies against calnexin and giantin marker proteins for ER 

and Golgi, respectively (Fig. 19). In control cells, most APP co-localized with giantin. However, 

in LCS deficient cells, APP stain appeared to be vesicular with more even distribution within the 

cell body. Some of these vesicles also co-stained with the ER marker calnexin as evidenced by 

yellow dots in the overlay. Notice the similar distribution of marker proteins in control and LCS 

suppressed cells, indicating selective effect of knock down of LCS on APP localization. However, 

further studies need to be performed to characterize the nature of APP positive vesicles in more 

detail. Since immature APP is the predominant species detected after LCS suppression, vesicles 

containing APP in LCS suppressed cells should most likely be derived from ER membranes. 

 

 

 

 

 

Fig. 18. Decreased cellular and soluble APP in 
LCS deficient cells. A, Cellular (top panel) and 
soluble (middle panel) APP levels were analyzed 
by western immunoblotting in the clones which 
showed successful knock down of LCS. Actin was 
detected as control (lower panel). Arrow heads 
indicate migration of the respective APP product. 
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To ensure that the observed effects were due to the lack of GSLs in RNAi targeted cells, 

exogenous bovine brain GSLs were added to these cells for 48 hr and APP secretion as well as 

APP expression was analyzed. Indeed, incubation with GSLs increased the cellular APP levels as 

well as restored the secretion of APP (Fig. 20). This result also indicates that the exogenously 

added GSLs can confer stability to APP in LCS deficient cells and thereby facilitate its transport 

and secretion. 
 
 

 

 

 

Thus, independent of cell type, depletion of GSLs decreases APP expression, secretion 

and stability. GSLs seem to modulate the transport of APP in the secretory pathway. Depletion 

of GSLs by PDMP decreased the maturation and cell surface expression of APP. Strongly 

reduced levels of matured APP in GSL deficient GM95 cells as well as in LCS suppressed cells 

further confirmed the effects observed with PDMP. Moreover, suppression of LCS also caused 

redistribution of APP, suggesting a role of GSLs in APP subcellular localization. Interestingly, 

exogenous GSLs treatment could normalize the secretion of APP in LCS targeted cells. 

Fig. 19. Subcellular APP distribution in LCS deficient cells. HEK293T control and LCS deficient cells were co-
stained with anti-APP polyclonal antibody and anti-giantin monoclonal antibody. Samples were analyzed by 
immunofluorescence microscopy (left panel). Similarly, control and LCS deficient cells were co-stained with anti-
APP monoclonal antibody and anti-calnexin polyclonal antibody (right panel). 

Fig. 20. Increased cellular and secreted APP 
after GSLs repletion in LCS deficient cells. 
LCS deficient cells were incubated with indicated 
concentrations of bovine brain GSLs for 48 hr. 
Cellular APP (top panel) and secreted APP 
(bottom panel) were analyzed by western 
immunoblotting.  
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4.1.4  Addition of exogenous GSLs increases levels of cellular and 
secreted APP as well as APP-CTFs 
 

Pharmacological treatment and independent genetic models (B16-GM95, LCS RNAi) 

established the role of GSLs in APP maturation, stability and processing. These studies were 

based on a GSLs depletion model. Next, the effect of elevated levels of GSLs on APP metabolism 

was analyzed in detail. Contrary to depletion, addition of GSLs increased cellular APP levels at 

various GSLs concentrations (Fig. 21A). A dose dependent accumulation of APP-CTFs was also 

apparent upon incubation with GSLs, which appeared to reach saturation at 50 µg/ml after 48 hr 

incubation. Since APP-CTFs represent the immediate precursor to Aβ by acting as a substrate of 

the γ-secretase complex, a strong accumulation of APP-CTFs could indicate an impaired γ-

secretase activity. Alternatively, APP-CTFs degradation in proteasomes and lysosomal 

compartments might be affected by GSLs. Thus, any alterations in APP-CTFs metabolism by 

either of these pathways would probably result in their accumulation, which might affect the 

generation of Aβ. Hence, studies were extended to understand the mechanism by which GSLs 

cause accumulation of APP-CTFs. Effects of addition of 50 µg/ml GSLs on APP secretion and 

maturation as well as on APP-CTF levels were validated in HEK293 cells. Increased levels of 

soluble APP, cellular APP along with strong accumulation of APP-CTFs was obvious in GSLs 

treated cells (Fig. 21B). Notably, levels of another membrane protein, insulin receptor, were not 

altered after GSLs treatment.  
 

A                                                          B  

 
 
 

 
 
  
 
 
 
 
 
 

Fig. 21. Increased expression and secretion of APP and accumulation of APP-CTFs by exogenous gangliosides.
A, HEK293 cells were incubated with indicated concentrations of bovine brain GSLs for 48 hr. Cellular APP (top 
panel) and APP-CTFs were analyzed by western immunoblotting (bottom panel). B, HEK293 cells were cultured for 
48 hr in the absence (-) or presence (+) of 50 µg/ml purified ganglioside mixture from bovine brain. APPs in 
conditioned media (top panel) and cellular APP (second panel), APP-CTFs (third panel) in isolated cell membranes, 
were detected by immunoblotting. Mature (m) and immature (im) APP is indicated by arrow heads. Actin (fourth 
panel) and insulin receptor (bottom panel) were detected as a loading and specificity control, respectively. 
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Previous studies have established the uptake of exogenous GSLs in cultured cells, 

however, a portion of the GSLs are also merely adsorbed to the cell surface rather than getting 

inserted into the plasma membrane. Effects described here do not distinguish between these two 

pools (see “Discussion”) (Schwarzmann et al., 1983). GSLs are catabolized by various lysosomal 

enzymes and generated products could be re-utilized for biosynthesis of other or the same 

sphingolipids. Since the effects of GSL treatments on APP processing were analyzed after 48 hr, 

it is important to demonstrate that the GSL levels were still higher at this time point to attribute 

observed effects to higher amounts of GSLs. After addition of GSLs to cells, cellular GM1 levels 

were found to be elevated already at 12 hr. This increase in GSLs persisted at least for 72 hr (Fig. 

22A). Accordingly, there was also a slight increase in APP-CTFs at 24 hr and a stronger increase 

was seen at 48 hr. 72 hr after addition of GSLs, APP-CTF levels dropped slightly, but were still 

much higher than control (Fig. 22B). The second addition of GSLs after media change during the 

last 12 hr of incubation further boosted the APP-CTFs levels, probably indicating a partial 

degradation of GSLs during the incubation period that could lead to destabilization of APP-CTFs. 
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Cells, stably overexpressing APP695 (Fig. 23A, 23B) or APP695 and BACE-1 (Fig. 23C, 

23D) did not show comparable increase in APP and APP-CTF levels when treated with GSLs. 

Thus, consistent increase in APP and APP-CTF levels after GSLs treatment were observed 

selectively for endogenous APP. This also indicates a saturation effect of higher amounts of APP, 

with very little or no scope for further up-regulation of APP expression after GSLs treatment. 

Furthermore, the effect of increased GSLs on APP subcellular localization was analyzed 

by immunofluorescence microscopy. Simultaneously, cells were stained for ER and Golgi marker 

proteins, calnexin and giantin, respectively (Fig. 24). Treatment of cells with GSLs did not cause 

any gross changes in ER and the Golgi morphology, however, the giantin stain appeared to be 

more condensed in treated cells. Most of the APP co-localized with giantin in control as well as 

Fig. 22. Time and dose dependent accumulation of APP-CTFs upon incubation with GSLs. A, HEK293 cells 
were incubated with 50 µg/ml GSLs for indicated times and GM1 was detected in cellular membranes by western
immunoblotting. B, HEK293 cells were incubated with 50 µg/ml GSLs for indicated time, in the last two lanes
(indicated with asterisk) fresh GSLs were added to cells after media change during the last 12 hours. APP-CTFs 
were detected in cellular membranes. 
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GSLs treated cells. Since more subtle alterations in protein distribution might not be detected by 

immunofluorscence, subcellular fractionation of control and GSL enriched cells was also 

performed (see “Results, Fig. 30”). 
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 Fig. 24. Distribution of APP in GSLs enriched cells – HEK293 cells were incubated with 50 µg/ml GSLs for 48 hr 
and co-stained with anti-APP monoclonal antibody and anti-calnexin antibody (right panel), anti-APP 5313 antibody 
and anti-giantin antibody (left panel) as described in materials and methods. Samples were analyzed by microscopy. 

Fig. 23 No prominent accumulation of APP-CTFs after GSL enrichment in HEK293 cells overexpressing 
APP695. A-D, HEK293 cells stably expressing APP695 (A, B) and APP695 together with BACE-1 (C,D) were incubated 
with 50 µg/ml GSLs for 48 hr and cellular APP (top panesl-A, C ) and APP-CTFs (bottom panesl-C, D) were detected 
in isolated cellular membranes by western immunoblotting. The migration of mature (m) and immature (im) APP is 
indicated by arrow heads. B and D represent the quantitation of of APP-CTF levels after GSLs treatment in cells 
expressing APP695 and APP695 together with BACE-1 respectively. 
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Incubation of human neuroglioma H4 cells with GSLs resulted in a very similar 

increase in APP levels as well as strong accumulation of APP-CTFs (Fig. 25A). The major 

constituents of the bovine brain GSL preparation are GM1 (21%), GD1a (40%), GD1b (16%) and 

GT1b (19%). The ability of these individual GSLs to accumulate APP-CTFs was tested. All four 

GSLs led to similar accumulation of APP-CTFs after 48 hr of treatment (Fig. 25B). Next, the 

effect of other type of lipids on APP-CTF levels was analyzed in H4 cells. As demonstrated in 

Fig. 25C, accumulation of APP-CTFs was also observed with sphingomyelin apart from GM1. 

Interestingly, phospholipids such as phosphatidyl serine and phosphatidic acid which have di-

acylglycerol backbone did not cause accumulation of APP-CTFs. These results demonstrate that 

the metabolism of APP-CTFs is selectively affected by sphingolipids, whereas, other lipids like 

phospholipids, do not have this effect. 
 
A                                                   B 
        
 
 
 
 
 
 
C 
 
 
 
 
 
 
 
 
 
 
 

Fig. 25. Accumulation of APP-CTFs is specific to sphingolipid A, H4 cells were incubated with 50 µg/ml GSLs, 
cellular APP (top panel) and APP-CTFs (third panel)  were detected from isolated membranes as well as soluble APP
(second panel) was detected from conditioned media. B, H4 cells were incubated with 50 µg/ml of individual GSL as
indicated for 48 hr. As control, cells were also incubated with GSLs mix. APP-CTFs were analyzed in control and 
treated cellular membranes by western immunoblotting. C, H4 cells were treated individually with GM1, 
sphingomyelin (SM), phosphotidylserine (PS), phosphotidicacid (PA) at the concentration of 50 µg/ml or solvent
alone (*) for 24 hr. Cellular APP-CTFs generation was analyzed by western immunoblotting. Actin was detected as
loading control. 

Control +GM 1 +SM +PA *

APP-CTF

actin

+PS

GSLs :

APP im

APP s

actin

APP-CTF

APP m

Control +GSLs

Co
nt

ro
l

GM
 1

 
GD

 1
a 

GD
 1

b 
GT

 1
b 

GS
Ls

APP-CTF

actin



Results 

 76 

4.1.4.1 Effect of GSL enrichment in human neuronal cells 

To analyze the effect of increased GSLs on Aβ production, SH-SY5Y cells that secrete 

high amounts of Aβ were used. Earlier observed effects of GSL enrichment, namely, increased 

cellular and soluble APP as well as accumulation of APP-CTFs were confirmed in these cells 

(Fig. 26A, 26B). Since sphingolipids can be catabolized into ceramide and respective fatty acids, 

it could be possible that the accumulation of APP-CTFs is mediated by increased levels of 

ceramide, rather than sphingolipids themselves. Treatment of SH-SY5Y cells with C6-ceramide 

caused only mild increase in APP-CTFs as compared to the strong increase observed after GSLs 

treatment (Fig. 26C, 26D) (“See Discussion”). The generation of Aβ after GSLs treatment was 

investigated in SH-SY5Y cells by pulse labeling the cells with [35S]-methionine for 2 hr and a 

subsequent chase for 5 hr, followed by immunoprecipitation and detection of Aβ. Secretion of Aβ 

was found to be significantly enhanced in GSLs treated cells (Fig. 26E, 26F).  
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Fig. 26. Increased Aβ secretion upon GSL enrichment. A-B, APP processing after GSL enrichment was analyzed 
in SH-SY5Y cells. Cellular APP (top panel), secreted APP (second panel), APP-CTFs (third panel; B) and actin 
(bottom panel) were analyzed without (-) and with (+) GSLs as described earlier. C-D, SH-SY5Y cells were 
incubated with 10 µM C6-ceramide for 48 hr and APP-CTFs were detected by western immunoblotting. Actin was 
detected as loading control. E-F, SH-SY5Y cells were cultured in the absence (-) or presence (+) of exogenous 
GSLs and secretion of Aβ was analyzed. 
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Simultaneous accumulation of APP-CTFs with increased Aβ levels upon GSL treatment, 

suggest that γ-secretase dependent effects contribute to the observed effects of GSLs on APP 

processing. Therefore, the effect of exogenously added GSLs on γ-secretase activity was 

analyzed by performing an in vitro γ-secretase assay. Cellular membranes from control and GSLs 

enriched cells were resuspended in citrate buffer and incubated at 37oC. Bacitracin A, an inhibitor 

of insulin degrading enzyme, was added to the assay to stabilize the reaction product, AICD. 

Incorporation of GSLs into cellular membranes for 48 hr did not affect the generation of AICD. 

In contrast, the specific γ-secretase inhibitor N-[N-(3, 5-Difluorophenacetyl-L-alanyl)]-S-

phenylglycine t-butyl ester (DAPT) hampered the generation of AICD effectively (Fig. 27A). 

Note the increased levels of APP-CTFs in membranes from GSLs treated cells. Also, unlike 

DAPT GSLs did not inhibit AICD generation when added directly to isolated membranes during 

the in vitro assay (Fig. 27B). 
A                           B                                                     
 
 
 
 
 
 
 
 
 
 
 
     

 

Thus, in various cell types, including human neuronal SH-SY5Y cells, enrichment of 

GSLs led to enhanced cellular and soluble APP levels. Moreover, addition of exogenous GSLs 

also up regulated secretion of Aβ and increased cellular APP-CTF levels. The observed 

accumulation of APP-CTFs after GSLs enrichment was not due to γ-secretase inhibition. 

 

 

Fig. 27. GSLs do not affect γ-secretase activity directly. A, Cellular membranes were isolated from control H4 
cells (-) and from the cells incubated with 50 µg/ml GSLs (+) for 48 hr. In vitro γ-secretase assay was performed
using membranes in presence (+) and absence (-) of 1 µM DAPT. Later membranes were centrifuged at 13,000 rpm
for 1 hr to separate pellet and supernatant. APP-CTFs were detected in the pellet and AICD was detected in the
supernatant by western immunoblotting with APP CT antibody. B, Cellular membranes were isolated from H4 cells 
and in vitro γ-secretase assay was performed in the presence (+) and absence (-) of GSLs at indicated concentrations 
as well as in presence (+) of 1 µM DAPT. Similarly, APP-CTFs and AICD were detected in pellet and supernatant 
after centrifugation. 
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4.1.4.2 Distribution of APP-CTFs in GSLs enriched cells 

The above described results indicate that GSLs do not appear to cause accumulation of 

APP-CTFs by direct inhibition of γ-secretase. An alternative explanation could be an inefficient 

degradation of APP-CTFs by the proteasome and/or by lysosomal compartments. This could 

occur either because of improper trafficking of APP-CTFs to these compartments or there could 

be proper transport of APP-CTFs to these compartments but lack of degradation, due to burden of 

degradation of excess lipids in these compartments. To address these issues the subcellular 

distribution of added GSLs as well as accumulated APP-CTFs was analyzed. 

The distribution of GSLs, GM1 in particular, was analyzed by staining cells with cholera 

toxin. GM1 was found to be accumulated at the cell surface as well as within intracellular 

vesicular compartments (Fig. 28). There was a strong over all accumulation of GM1, indicating 

incorporation and accumulation of exogenously fed GSLs in varied cellular membranes. 

 

 
 
 
 
 
 
 
 

 

Studies with GCS inhibition revealed that the GSLs facilitate the forward transport of 

APP and thereby increase cell surface localization of APP. Therefore, the expression of APP-

CTFs at the cell surface was analyzed in order to address the effect of GSLs on transport of APP-

CTFs in the secretory pathway. Surprisingly, cell surface expression of APP-CTFs was markedly 

reduced in GSLs enriched cells (Fig. 29). Note, the increase in APP-CTFs in total cellular lysates 

and the reduction in biotinylated APP-CTF levels in the same lysates upon GSLs treatment. The 

decreased expression of APP-CTFs at the cell surface can be either due to enhanced endocytosis 

or slower forward transport of CTFs in presence of excess GSLs. 

 

 

Fig. 28. Exogenously added GSLs accumulate at 
cell surface and in intracellular compartments. 
H4 cells were incubated in absence (control) or 
presence (+GSLs) of GSLs 50 µg/ml of exogenous 
bovine brain GSLs for 48 hr. One set of cells was 
fixed, permeabilized with triton and stained for GM1 
using cholera toxin and polyclonal anti-cholera toxin 
antibody, followed by fluorscent Alexa dye. Other 
set was fixed and stained for GM1 without 
permeabilization with triton.  

GM1 GM1

co
nt

ro
l

+G
SL

Permeabilised cells Non-permeabilised cells



Results 

 79

 

 

 
 
 
 
 

 

 

 

Reduced expression of APP-CTFs at the cell surface in GSL treated cells indicated an 

accumulation of CTFs in intracellular compartments. Subcellular fractionation was performed to 

determine the compartments where APP-CTFs accumulate upon GSLs treatment. Fractionation of 

ER, cis-/medial -Golgi, TGN as well as early endosomal and lysosomal compartments was 

performed by density centrifugation using iodixanol gradients. Distribution pattern of the ER 

marker calnexin and the Golgi marker TGN46 in gradient fractions was not significantly changed 

upon GSLs treatment. Distribution of full-length APP and APP-CTFs was studied by comparison 

with distribution of the corresponding marker proteins (Fig. 30A). In control H4 cells, immature 

APP was predominantly found in calnexin positive compartments whereas mature APP was 

predominantly detected in the TGN46 positive fractions as expected. In control cells, APP-CTFs 

were present in calnexin positive fractions in higher amounts compared to the TGN46 positive 

fractions. Noticeably, a protein migrating lower than APP-CTFs, which was characterized as 

AICD, was found to be present mainly in the fractions containing TGN46. On the other hand in 

GSLs treated cells, full-length APP and APP-CTFs were predominantly found in the TGN46 

fraction. Interestingly, a significant amount of immature APP was localized into the TGN46 

positive fractions. In addition, strong accumulation of APP-CTFs with efficient generation of 

AICD was evident in these vesicles, further proving that γ-secretase is not inhibited by excess of 

GSLs. This shift in distribution of full-length APP as well as APP-CTFs from ER marker positive 

vesicles to the Golgi marker positive compartment indicates that the forward transport in initial 

secretory compartments of both could be facilitated by GSLs. However egress of APP-CTFs from 

Golgi to cell surface is probably inhibited by excess of GSLs which might lead to their 

accumulation at the TGN.  

Fig. 29. APP-CTFs accumulate in intracellular compartments in GSLs treated cells. H4 cells were cultured in 
absence (-) or presence (+) of 50 µg/ml exogenous bovine brain GSLs for 48 hr in two sets. One set with control and
GSLs enriched cells was further used for biotinalytion of cell surface proteins with sulfo-NHS-biotin. Both sets were 
lysed with STEN-lysis buffer and APP C-terminal fragments were immunoprecipitated with APP CT antibody. Each
immunoprecipitated material was split in two parts and loaded on two separate gels. Proteins were transferred to 
nitrocellulose membrane. Total cellular APP-CTFs (top panel) and cell surface APP-CTFs (bottom panel) were 
detected by western immunoblotting using APP-CTFs antibody and streptavidin-HRP respectively. 
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AICD is degraded very fast after its generation (Edbauer et al., 2002). Accordingly, only 

modest levels of AICD could be detected in the vesicles from control cells (Fig. 30A). Inhibition 

of AICD degradation by Bacitracin A during gradient run further increased its levels (Fig. 30B). 

This indicates that AICD was most likely produced during fractionation. The generation of AICD 

was γ-secretase dependent. As indicated, treatment with DAPT completely abolished generation 

of AICD, note that cells were treated with DAPT for 48 hr as well as DAPT was added during 

fractionation (Fig. 30B). Absence upon inhibition of γ-secretase, stabilization by insulin 

degrading enzyme (IDE) inhibition with Bacitracin A, expected molecular weight and detection 

with specific antibody (140) against APP-CTF validates the identity of the detected protein as 

AICD. Although significant amounts of APP-CTFs were detected in calnexin positive fractions, 

both in control as well as GSLs enriched cells, AICD was found to be present only in TGN46 

positive fraction. This could be due to presence of an inactive γ-secretase complex in very early 

compartments like ER.  

Inhibition of γ-secretase by DAPT led to an accumulation of APP-CTFs in similar 

compartments, as that of GSLs treated cells. However, accumulation after DAPT treatment is 

mostly caused by inhibition of APP-CTFs processing in the Golgi compartment, whereas 

accumulation upon GSLs treatment appears to be the consequence of deficient exit of APP-CTFs 

from the Golgi to subsequent compartments. Importantly, localization of AICD in similar 

fractions in control and GSLs enriched cells also suggest that there is no effect of GSLs on the 

distribution of γ-secretase. Higher AICD levels after GSLs enrichment in TGN46 positive 

fractions are most likely due to higher amounts of APP-CTFs present there. 

However, further analysis is necessary to support above findings. Additional methods 

such as immunoisolation of the APP and APP-CTF containing vesicles and their biochemical 

characterization as well as visualization of these vesicles using electron microscopy could be 

carried out. 
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4.1.4.3 Increased stability of APP-CTFs upon GSLs treatment 

The decreased expression at the cell surface and accumulation in Golgi compartment 

suggested altered metabolism of APP-CTFs by GSLs. APP is known to be degraded by various 

pathways (see “Introduction/Discussion”), therefore one possible explanation for increased 

amounts of APP-CTFs can also be the result of altered APP processing to generate higher 

amounts of APP-CTFs. Therefore generation and degradation of APP-CTFs in control and GSLs 

treated cells was monitored by pulse chase experiments, with simultaneous analysis of the fate of 

APP. As shown in Fig. 31A, generation of APP-CTFs was detected 1 hr after labeling which 

coincided with maturation of significant amounts of APP at this time point. The generated APP-

CTFs were stable for four hours of chase.  

Notably, the generation of APP-CTFs, with respect to initial amounts of APP appeared to 

be slower in GSLs treated cells (Fig. 31B). Much lower amounts of APP-CTFs were generated in 

GSLs enriched cells than control cells after 1 hr, 2 hr and 4 hr of chase period.  As indicated in 

Fig. 30. Subcellular distribution of APP and 
APP-CTFs in GSLs enriched cells. A, Isolated 
membrane vesicles from control and GSLs 
treated H4 cells were floated on 2.5-30% 
discontinuous iodixanol gradient as described in 
methods. Fractions were probed for full length 
APP and APP-CTFs. In additions fractions were 
also probed for the trans-Golgi marker TGN and 
ER marker calnexin. GSLs treatment did not 
alter the markers distribution within fractions. 
The migration of mature (m) and immature (im) 
APP is indicated by arrow heads. Notice, the 
AICD band detected below APP-CTFs. The box 
indicates TGN46 positive fraction rich in mature 
APP, APP-CTFs and AICD. Note that the 
distribution ER and Golgi marker protein was 
analyzed to assign respective compartments. 
Distribution of other vesicles (such as 
endosomes and lysosomes) is indicated 
according to manufacturer’s protocol.   B, 
Homogenates from control and DAPT (10 µM, 
48 hr) treated cells were fractioned as described 
above. DAPT was included at all stages of 
homogenisation and fractionation in DAPT 
treated cells. IDE inhibitor bacitracin A (10 
µg/ml) was also included at homogenisation and 
fractionation steps of both control and DAPT 
treated cells. Fractions were probed for APP-
CTFs. 
 

APP-CTF

TGN46

Calnexin

APP-CTF

ctrl

ctrl

+GSL

+GSL

APP m
APP im

AICD

AICD

APP m
APP im

ER

TGN
cis-/medial-

Golgi

GolgiOther vesicles

+DAPT
APP-CTF

APP-CTF
AICD ctrl



Results 

 82 

Fig. 31B, CTFα was the predominant species present in H4 cells, CTFβ and CTFβ’ (CTFs 

generated by alternative β-secretase cleavage at Glu-11 site) were also detected. All three 

different CTFs followed the similar pattern. Overall accumulation of APP-CTFs by treatment 

with GSLs for 48 hr was confirmed by western immunoblotting. Thus, although there was an 

overall accumulation of APP-CTFs in GSLs enriched cells during 48 hr of incubation with GSLs, 

the generation of APP-CTFs, when analyzed by pulse-chase experiment appeared to be relatively 

decreased. APP maturation followed the expected pattern as described earlier; however, full-

length APP appeared to be much more stable in GSL treated cells. Notice after 1 hr of chase 

relatively higher amount of full-length APP is present in GSLs treated cells compared to control 

(indicated by box). This indicates stabilization of full-length APP at early stages after its 

biosynthesis.  
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Fig. 31. Generation of APP-CTFs upon
GSLs enrichment studied by pulse-chase.
After culturing in the absence or presence of
50 µg/ml GSLs for 48 hr, H4 cells were
labeled with [35S]-methionine for 10 min
and chased for the indicated time periods.
GSLs were excluded from both pulse and
chase media of cells. APP was
immunoprecipitated from cell lysates using
APP ectodomain antibody, followed by
immunoprecipitation with APP-CT
antibody to precipitate APP-CTFs. Full
length APP was separated by SDS-PAGE
(middle panel) whereas APP-CTFs were
separated by tricine gel (top panel), and
detected by phosphoimaging. The migration
of mature (m) and immature (im) APP is
indicated by arrow heads. CTFs generated
by β-secretase cleavage (CTF−β) and α-
secretase cleavage (CTF-α), respectively,
are indicated by arrow heads. The CTFs
generated by alternative β-secretase
cleavage are indicated by an asterisk. In
addition, APP-CTFs from the above
experiment were also detected using
western immunoblotting (bottom panel). B,
Generation of APP-CTFs with respect to
initial amounts of cellular APP was reduced
in presence of GSLs. (See Quantitation in
Fig. 33) 
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Next, turnover of APP-CTFs upon GSLs enrichment was analyzed in HEK293 and H4 

cells by pulse-chase experiments. As indicated in Fig. 32A, APP-CTFs degradation was readily 

detected only after 10-12 hours after generation in H4 cells, indicating relatively higher stability 

of APP-CTFs in these cells. Whereas in HEK293 cells a significant degradation of APP-CTFs 

was already seen at 6 hr of chase, suggesting relatively lower stability of APP-CTFs in these cells 

compared to H4 cells (Fig. 32B). Nonetheless, GSLs treatment increased the half life of APP-

CTFs in both cell types. (Fig. 32A, B). Cellular APP fate was also analyzed in the same 

experiment at different time points. Most of the APP underwent maturation and was degraded 

within 2 hr, however some amount of immature APP was stable through out the chase period. 

Also, stabilization of full-length APP in GSLs treated cells was evident by increased levels of 

APP in these cells at all time points. 
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Fig. 32. Stability of APP-CTFs.  A, B, H4 cells (A) and HEK293 (B) cells were cultured with and without of
50µg/ml GSLs for 48 hr, cells were labeled with [35S]-methionine for 10 min and chased for the indicated time 
periods. A pulse-chase was performed in absence of GSLs for control as well as treated cells. APP was
immunoprecipitated from cell lysates using 5313 antibody against the APP-ectodomain, followed by 
immunoprecipitation with APP-CT antibody to precipitate APP-CTFs. Full length APP was separated by SDS-PAGE 
(bottom panels) whereas APP-CTFs were separated by tricine gel system (top panels), and detected by 
phosphoimaging. The migration of mature (m) and immature (im) APP is indicated by arrow heads. CTFs generated 
by β-secretase cleavage (CTF-β) and α-secretase cleavage (CTF-α), respectively, are indicated by arrow heads and 
CTFs generated by alternative β-secretase cleavage are indicated by an asterisk in H4 cells. Note the longer stability
of APP-CTFs in both cell types after GSL treatment.  
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The results above suggest enhanced stability of APP-CTFs by increased cellular GSLs. 

This was further validated and quantified by chasing the radiolabeled APP-CTFs for 16 hr in 

control and GSLs treated H4 cells. After 16 hr there was almost complete degradation of APP-

CTFs in control cells, whereas in GSLs enriched cells, APP-CTFs were still stable, indicating 

attenuated degradation of APP-CTFs in presence of excess of GSLs (Fig. 33A-C). When 

compared with initial levels of APP-CTFs generated after 2 hr, 99.03% of APP-CTFs were 

degraded in control cells whereas only 33.5% of APP-CTFs were degraded in GSLs treated cells 

after 16 hr. Both mature and immature APP was detected in control and GSLs enriched cells at 2 

hr. At 16 hr significantly reduced levels of cellular APP were detected in control as well as GSLs 

treated cells, indicating efficient turnover and secretion of APP. Low levels of immature APP (~ 

24%) were still stable after 16 hr of chase in control as well as GSLs enriched cells. Increase in 

full-length APP levels after GSLs addition was obvious after 2 hr and after16 hr of chase (Fig. 

33A, 33G). There was nearly 20% more APP present in GSLs treated cells at 2 hours as well as at 

16 hours. However, unlike the rate of APP-CTFs degradation, the rate of degradation of full-

length APP during 16 hours chase was similar in control and GSLs enriched cells (Fig. 33F). This 

suggests that GSLs selectively slow down the degradation of APP-CTFs leading to their 

accumulation. Therefore, increased levels of cellular APP upon GSLs treatment are most likely 

because of stabilization of APP by GSLs at earlier time points, as discussed earlier. 

 

Together these data indicate that the GSLs appear to stabilize full-lengths APP at 

initial stages after its biosynthesis in early secretory compartments and contribute to 

stabilization of APP-CTFs at later stages. The ratio of APP-CTFs to full-length APP was 

higher for control cells at 2 hr, whereas at 16 hr it was higher for GSLs treated cells. This 

reversal of APP-CTFs to full-length APP ratio from 2 hr to 16 hr further corroborates the 

above findings (Fig. 33H, 33I). The ratio in GSLs treated cells at two hours is lower compared 

to control indicating a slower generation of APP-CTFs in GSLs treated cells most likely 

because of an initial stabilization of APP by GSLs, whereas at 16 hours the ratio is reversed, 

indicating inefficient degradation of APP-CTFs in GSLs treated cells.  
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Fig. 33. Stabilization of APP-CTFs by GSLs. A, H4 cells were grown with and without  50 µg/ml GSLs for 48 hr,
cells were then labeled with [35S]-methionine for 10 min and chased for 16 hr. Pulse-chase as well as detection of 
cellular APP (bottom panel) and APP-CTFs (top panel) was performed as described in previous figure. Migration of
immature APP (APP im) and mature APP (APP m) is indicated by arrow heads. B-D, Analysis of APP-CTF 
metabolism. Relative amounts of radiolabeled APP-CTFs present at 2 hr and 16 hr in control and GSLs treated cells 
(B). The rate of APP-CTFs degradation in control and GSLs treated cells showing almost complete degradation of
APP-CTFs in control cells (99.03%) after 16 hr, whereas only 33.5% of CTFs were degraded in GSLs enriched cells 
when compared to amounts present at 2 hr (C). Initial amounts of APP-CTFs at 2 hr in control and GSLs treated 
cells suggesting a slower rate of generation of APP-CTFs in GSLs treated cells (D). E-G, Analysis of cellular APP 
metabolism. Relative amounts of cellular APP present at 2 hr and 16 hr in control and GSLs treated cells (E). Rate of
degradation of APP was not significantly altered in control (73.04%) and GSLs treated (73.50%) cells during 2 hr to
16 hr chase period (F). Nearly 20% more APP was present in GSLs treated cells compared to control H4 cells after 2
hr as well as after 16 hr of chase (G). H-I, Ratio of APP-CTF levels to levels of cellular APP at 2 hr (H) and 16   hr 
(I) in control and GSLs treated cells. At 2 hr the ratio was higher in control cells compared to GSLs supplemeted
cells, however after 16 hr of chase a higher ratio was observed for GSLs treated cells.  
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4.1.5  APP-CTF levels in sphingolipid storage and deficiency genetic 
cellular models  

 
Next, the effect of GSLs on metabolism of APP-CTFs was verified in primary 

fibroblasts from patients suffering from sphingolipid storage diseases i.e. NP-A, NP-B, Tay-

Sachs and Sandhoff’s disease. All tested conditions showed prominent accumulation of APP-

CTFs, along with a slight increase in cellular APP levels (Fig. 34). However, in cellular 

membranes from fibroblasts of Farber disease patient no such accumulation of APP-CTFs was 

observed. Since in Farber disease there is deficiency of ceramidase resulting in an accumulation 

of ceramide, these results further prove the selective effect of sphingolipids on APP-CTF 

metabolism in an independent genetic model. 

 
 
 
 
 
 
 

 

 

Next, the expression of APP-CTFs in wild type B16 and GSLs deficient GM95 cells was 

analyzed. While robust amounts of APP-CTFs were detected in B16 cells, APP-CTFs were 

almost absent in GM95 cells (Fig. 35). Besides direct effect of GSLs on the metabolism of APP-

CTFs, much lower APP levels in GM95 cells (Fig. 16) might contribute to the strong reduction in 

APP-CTFs in these cells. 
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Fig. 34. Increased APP-CTFs in sphingolipid storage
disease.  Primary fibroblasts from indicated sphingolipid
storage disease patients and healthy control were obtained and
expanded by culturing them further. Cellular APP (top panel)
and APP-CTFs (bottom panel) were detected in isolated
membranes of these cells. Note the strong increase in APP-
CTFs observed in sphingolipid storage conditions selectively,
no accumulation is observed in fibroblast from Farber disease
with ceramidase deficiency. The migration of mature (m) and
immature (im) APP is indicated by arrow heads. 

Fig. 35. Strongly reduced levels of APP-CTFs in GM95 
cells.  APP-CTFs were immunoprecipitated from B16 and 
GM95 cells using an APP-CT antibody and were detected 
by western immunoblotting. Actin was detected as protein 
loading control. 
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4.2 Regulation of cholesterol metabolism by presenilins 
 

In order to address the influence of AD associated proteins on lipid metabolism, the role 

of presenilins in cellular sterol homeostasis was analyzed in detail. More specifically, involvement 

of presenilin mediated γ-secretase activity in the regulation of membrane lipid and protein 

metabolism was investigated. 

4.2.1 Cellular cholesterol content and distribution regulated by 
presenilin 

 

To analyze the involvement of PS proteins in cholesterol metabolism, cholesterol levels 

in embryonic fibroblasts of WT and PS1/PS2 double knock-out (PS dKO) mice were analyzed by 

mass spectrometry. As compared to WT cells, cholesterol levels in the PS dKO cells were 

significantly increased by approximately 30 % (Fig. 36A). Stable over-expression of human PS1 

(hPS1) in PS dKO cell (Fig. 36B) partially normalized cholesterol levels to that of WT cells (Fig. 

36A). To test whether cellular cholesterol concentrations are dependent on γ-secretase activity, WT 

fibroblasts were treated with DAPT, a γ-secretase inhibitor. The inhibition of endogenous γ-

secretase activity led to a significant increase in cholesterol (Fig. 36A), demonstrating that PS-

dependent γ-secretase activity is implicated in the regulation of cellular cholesterol levels.  
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Fig. 36. Increased cholesterol levels in PS deficient cells. A, Cholesterol levels in wild type mouse embryonic 
fibroblasts (WT), fibroblasts treated with γ-secretase inhibitor (10 µM DAPT) for 48 hr (WT+DAPT), PS deficient 
fibroblasts (dKO) and dKO cells stably overexpressing hPS1 (dKO+hPS1) were determined by GC-FID. Values 
represent means of five independent experiments ± s.d. (p values are indicated by asterisks **, p < 0.01 ***, p < 0.001). 
B, stable re-expression of human PS1 in dKO cells. dKO MEFs were transfected with cDNA  encoding human PS1 
(hPS1) and selected in zeocin (200 µg/ml). PS1 was immunoprecipitated from the indicated cell lines and detected by 
western immunoblotting. Migration of endogenous mouse PS1 C-terminal fragment (mPS1-CTF) and transgenic hPS1-
CTF is indicated by arrow heads. CTF and CTF(P) denote non phosphorylated and phosphorylated forms of hPS1, 
respectively.  C, Visualization of cholesterol in WT and PS dKO cells with filipin by fluorescence microscopy. 
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Also the distribution of cholesterol in WT and PS dKO cells was analyzed by 

fluorescence microscopy using the cholesterol-binding antibiotic filipin. WT cells showed 

cholesterol localization in the plasma membrane as well as in juxtanuclear compartments, while 

PS deficient cells showed prominent staining of cholesterol in the plasma membrane (Fig. 36C). 

Overall, the staining intensity appeared increased in PS deficient cells, also indicating elevated 

levels of cholesterol and enrichment in the plasma membrane. Interestingly, PS deficiency also 

results in morphological changes. PS dKO cells appeared to be much more flat, spreadout and 

bigger compared to WT cells. 

4.2.2 Up-regulation of cholesterol biosynthesis in PS deficient cell 
 

Cellular cholesterol homeostasis is achieved by a number of molecular mechanisms that 

regulate its uptake and secretion, as well as biosynthesis and metabolism. The biosynthesis of 

cholesterol occurs at the membranes of ER and involves multiple enzyme activities (Fig. 37A). To 

address whether the increased cholesterol levels in PS-deficient cells were associated with 

increased de novo synthesis, the levels of cholesterol precursors as well as its degradation products 

in WT and PS dKO cells were analyzed by GC-MS. 

The concentration of desmosterol, an immediate precursor of cholesterol, was 

significantly increased in PS dKO (~ 40%) compared to WT cells (Fig. 37B). As observed for 

cholesterol, desmosterol levels were decreased upon re-expression of hPS1 in PS dKO cells, while 

treatment of WT cells with DAPT led to increased levels of desmosterol (Fig. 37B). Several 

downstream metabolites of cholesterol, including cholestanol, a reduction product of cholesterol, 

and the hydroxylated derivative 27-OH-cholesterol were also detected in both cell types. The 

levels of these metabolites were also increased in PS deficient cells (Fig. 37 C-D), indicating that 

the elevated levels of cholesterol in PS dKO cells, are not caused by impaired downstream 

metabolism of cholesterol. These data indicate that PS deficiency or inhibition of γ-secretase 

activity results in increased biosynthesis of cholesterol. 
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4.2.3  Up-regulation of CYP51 leads to increased turnover of lanosterol 
in PS deficient cells 
 

The first cyclic metabolite in cholesterol biosynthesis is lanosterol that is generated by 

cyclization of squalene; a reaction catalyzed by lanosterol synthase (Fig. 37A). The analysis of 

lanosterol revealed decreased levels of this precursor in PS dKO cells as compared to WT cells 

(Fig. 38A). DAPT treatment of WT cells resulted in decreased lanosterol levels (Fig. 38A). These 

data indicate that PS proteins affect cholesterol metabolism already at the earlier steps in the 

biosynthesis pathway. The decreased lanosterol levels in PS deficient cells suggested either 

decreased synthesis or increased metabolism of lanosterol.  
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Fig. 37. Increased cholesterol biosynthesis of cholesterol in PS deficient cells. A, Schematic showing of the 
biosynthesis pathway of cholesterol. Lanosterol is the first cyclic metabolite in cholesterol biosynthesis. Metabolites
and enzymes involved in lanosterol metabolism are indicated. Cholestanol and hydroxy-sterols are down-stream 
metabolites of cholesterol. B, Desmosterol levels from indicated cells were measured with GC-MS. C- D, Cellular 
levels of cholesterol downstream metabolites cholestanol (C), 27-hydroxycholesterol (D) were determined by GC-
MS. Values  represent means of five independent experiments ± s.d. p values are indicated by asterisks **, p < 0.01 
***, p < 0.001). 
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The regulation of cholesterol biosynthesis involves transcriptional control of metabolic 

enzymes (Horton et al., 2002; Rodriguez et al., 2001). Since there was a significant difference in 

lanosterol levels in PS deficient cells, mRNA levels of the enzymes involved in lanosterol 

metabolism, namely, lanosterol synthase, lanosterol-14α-demethylase (CYP51), and Δ24-

reductase/seladin-1 were analyzed. While lanosterol synthase catalyzes the synthesis of lanosterol 

by cyclization of squalene, CYP51 and seladin-1 metabolize lanosterol to Δ8,14,24-dimethylsterol 

(FF-MAS) and dihydrolanosterol, respectively (Fig. 37A). As revealed by RT-PCR, mRNA levels 

of lanosterol synthase and seladin-1 were not significantly altered in PS dKO cells as compared to 

WT cells (Fig. 38B). In contrast, mRNA expression of CYP51 was markedly increased in PS dKO 

cells, indicating that PS deficiency led to increased cholesterol biosynthesis by up-regulation of 

CYP51 expression, and increased metabolism of lanosterol. 
                      A                                                    B                 
 
 
 
 
 
 
 
 
 

4.2.4   Inhibition of CYP51 reverses increased cholesterol levels in PS 
deficient cells 
 

To test whether the increased cholesterol biosynthesis in PS deficient cells could be 

reversed by inhibition of CYP51 activity, the effect of itraconazole, a selective inhibitor of 

CYP51, was investigated (Fig. 39A). The treatment with itraconazole strongly increased levels of 

lanosterol in PS dKO cells (Fig. 39B), proving the inhibition of CYP51. A subtle, but highly 

significant, decrease in cholesterol and desmosterol levels was also confirmed upon itraconazole 

treatment, demonstrating that increased cholesterol biosynthesis in PS deficient cells could be 

reduced by selective pharmacological inhibition of CYP51 (Fig. 39C, 39D).  
 
 
 
 

Fig. 38. Increased metabolism of lanosterol in PS deficient cells. A, Decreased levels of lanosterol in PS deficient 
cells. Lanosterol levels were measured in indicated MEFs using GC-MS. WT cells were treated with 10 µM DAPT for 
48 hr. B, Transcriptional up-regulation of CYP51 in PS dKO MEFs. mRNA of CYP51, LS, and Sel-1 were analyzed 
by RT-PCR. mRNA  analysis of β-actin served as control. 
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B                          C                                    D 
 
 
 
 
 
 
 
 

4.2.5  Increase in cholesterol levels in PS deficient cells is 
independent of exogenously added Aβ  
 

      Earlier studies by Grimm et al. (Grimm et al., 2005) suggested that Aβ 40 peptide 

decreases cholesterol levels by inhibition of HMG-CoA reductase and that the lack of Aβ, either 

by deficiency of γ-secretase activity or absence of APP, leads to increased levels of cholesterol. 

Therefore, to check, if increased levels of cholesterol in PS deficient cells observed in this 

experimental set are caused by lack of Aβ, the PS dKO cells were treated with Aβ 40 for 48 hr. 

Addition of exogenous Aβ to PS dKO cells did not normalize the levels of lanosterol, cholesterol 

or desmosterol (Fig. 40A-C), indicating that the lack of Aβ in PS deficient cells may not be 

responsible for increased levels of cholesterol. 
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Fig. 39. Inhibition of CYP51 in PS dKO cells. A, Inhibition of cholesterol biosynthesis by itraconazole. Itraconazole
is a selevtive inhibitor of CYP51 (lanosterol 14-α-demethylase). C-D, Normalization of increased cholesterol and 
desmosterol levels in PS dKO cells by CYP51 inhibition. PS dKO cells were treated with 50 µM itraconazole (+itra)
for 48 hr and cellular levels of lanosterol (B), cholesterol (C) and desmosterol (D) were determined. 

Fig. 40. Treatment of PS dKO cells with Aβ40. A-C, PS dKO cells were treated with 40 ng/ml Aβ 40 for 48 hr and 
cellular levels of lanosterol  (A), cholesterol (B) and desmosterol  (C) were determined as described earlier. 
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4.2.6   Inhibition of γ-secretase in human neuroglioma cells increased 
cholesterol levels 
 

To prove above findings in an independent cellular model, human neuroglioma H4 cells 

were chosen, because of their neuronal origin. Cholesterol levels were significantly increased 

after DAPT treatment (Fig. 41A), whereas lanosterol levels were decreased (Fig. 41B). These 

results suggest that the metabolism of lanosterol was increased upon inhibition of γ-secretase 

activity in H4 cells. Thus, similar to MEF cells, inhibition of γ-secretase in H4 cells could lead to 

an enhanced cholesterol biosynthesis. 
 

 A                                                                     B 
 
 
 
 
 
                      
 

 

4.2.7 PS deficiency is associated with inefficient LDL uptake  
 

Together, these data suggest that the increased levels of cholesterol in PS deficient cells 

are caused by increased biosynthesis, as a result of transcriptional up-regulation of CYP51. The 

expression of CYP51 has been shown to be suppressed by the uptake of extracellular LDL. LDL 

present in bovine serum acts as a source of cholesterol in cultured cells. Therefore, it was 

speculated that the increased expression of CYP51 in PS dKO cells might be due to impaired 

uptake of LDL. To address this, the endocytosis of LDL in WT and PS deficient cells was 

analyzed by immunocytochemical experiments using fluorescently-labeled BODIPY-LDL. WT 

cells efficiently internalized BODIPY-labeled LDL into cytoplasmic vesicular structures, 

demonstrating endocytosis of LDL (Fig. 42A). In contrast, very little internalization of BODIPY-

labeled LDL was observed in PS dKO cells, indicating impaired endocytosis of LDL. To prove 

this, total cellular levels of LDL in PS WT and dKO cells were analyzed by western-

immunoblotting with an antibody against apolipoprotein B100 (Apo B100), a major component of 

Fig. 41. Inhibition of γ-secretase in human neuroglioma, H4 cells. A-B, H4 cells were cultured in the presence or 
absence of 10 µM DAPT for 48 hr. Concentrations of cholesterol (A) and lanosterol (B) were determined by GC-MS 
as described under methods. Values represent means of five independent experiments ± s.d.; * (p<0.05). 
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LDL. Cellular levels of Apo B100 were significantly higher in WT cells as compared to PS dKO 

cells, also indicating decreased internalization of LDL in PS-deficient cells (Fig. 42B). 
 

A                                                  B     

 
 
 
 

4.2.8  Increased levels of LDL receptor (LDLR) in PS deficient cells 
 

Lipid rich LDL binds to LDLR at the cell surface and is endocytosed into endosomal 

and lysosomal compartments where it dissociates from LDLR because of acidic pH. Most of the 

LDLR is recycled back to cell surface while LDL is degraded and cholesterol is utilised 

according to cellular requirements. In order to understand more about the regulation of LDL 

uptake by presenilins, the expression of LDL receptor in WT and PS deficient cells was analyzed. 

Western-immunoblot analysis revealed that the level of LDL receptor was increased in PS dKO 

cells (Fig. 43A). The increased expression of the LDL receptor in these cells was attenuated by 

re-expression of hPS1 (Fig. 43B). In addition, treatment of WT cells with DAPT also increased 

LDL receptor levels (Fig. 43C). Together these data indicate that PS dependent γ-secretase 

activity affects cellular levels of the LDL receptor.   
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Fig. 42. Inhibition of LDL uptake in PS dKO cells. A, Inhibition of LDL endocytosis in PS dKO cells. WT and PS 
dKO MEFs were incubated in the presence of BODIPY-labeled LDL and analyzed by fluorescence microscopy. WT 
cells internalized LDL into peripheral vesicular structures, while PS dKO cells showed very little internalization. 
Scale bar 25 µm. B, Decreased levels of LDL in PS dKO cells. Cellular levels of LDL in WT and PS dKO cells were 
analyzed by immunoblotting with an antibody against apolipoprotein B100 (Apo B). Purified LDL was used as 
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Fig. 43. PS dependent expression of LDL receptor (LDLR). The expression of the LDLR in WT and PS dKO 
(A), PS dKO and PS dKO re-expressing hPS1 (B), WT MEFs and MEFs treated with 10 µM DAPT for 48 hr (C) 
was analyzed by western immunoblotting. Lack of γ-secretase acitivity increased the levels of LDLR while re-
transfection of PS dKO cells with hPS1 reversed increased levels of LDLR. 
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4.2.9  Cell surface expression of LDLR is regulated by presenilin 
 

Next, the subcellular distribution of the LDL receptor was studied by fluorescence 

microscopy. While LDL receptor was localized predominantly in juxtanuclear structures in WT 

cells, PS deficient cells showed also a prominent localization of the receptor at the cell surface 

(Fig. 44A). Re-expression of hPS1 in PS dKO cells decreased the localization of LDL receptor at 

the cell surface and led to predominant localization in juxtanuclear compartments, very similar to 

WT cells (Fig. 44A). Notice the presenilin dependent alteration in shape and size of fibroblasts, 

as mentioned earlier. Importantly, to some extent the re-expression of hPS1 in PS dKO cells 

restored the normal morphology of cells to that of WT fibroblasts. To specifically analyze the 

expression of the LDL receptor at the cell surface, biotinylation experiments were carried out. 

The specific labeling of cell surface proteins with biotin revealed increased levels of LDL 

receptor at the cell surface of PS deficient cells as compared to WT cells (Fig. 44B). Thus PS 

deficiency resulted in increased expression of LDL receptor and altered subcellular distribution.  
  

A                                                                          B 
 
 
 
 
 
 
 
 
 
 

4.2.10  Impaired endocytosis of LDLR in PS deficient cells 
 

The increased expression of LDL receptor at the cell surface together with the 

decreased uptake of LDL strongly suggested impaired endocytosis of the LDL receptor in PS 

deficient cells. Therefore, next endocytosis of LDLR was analyzed. Reversible labeling of cell 

surface proteins with cleavable biotin and subsequent incubations to allow endocytosis as well as 

stripping with reducing buffer to cleave off the biotin was performed as depicted in Fig. 45A. 

Most of the biotin from labeled LDLR was cleaved off efficiently in both, WT and PS dKO cells 

dKO + hPS1dKOWT 

surface
LDLR

actin
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Fig. 44. PS dependent subcellular localization of LDL receptor. A, The subcellular localization of endogenous 
LDLR in WT, PS dKO and PS dKO cells stably over-expressing hPS1 was analyzed by fluorescence microscopy. 
Prominent localization of LDLR at the cell surface in PS dKO cells is indicated by arrow heads. PS dKO cells stably 
over-expressing hPS1 showed predominant localization of LDLR in juxtanuclear structures, similar to WT cells.  B, 
Expression of LDLR at the cell surface. After cell surface biotinylation, biotin labeled-proteins were precipitated 
with streptavidin-conjugated agarose beads and LDLR was detected by western blotting. 
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when cells were not allowed to endocytose labeled surface proteins at permissible temperature 

i.e, 0 min time point as indicated in Fig. 45B. However, when cells were incubated at permissible 

temperature (37°C) for 15 min to allow endocytosis of biotin labeled proteins, a significant 

amount of biotin labeled LDLR in WT cells was protected from stripping, indicating efficient 

internalization. On the other hand, most of the biotin was cleaved off from LDLR in PS dKO 

cells even after incubation at 37oC for 15 min, indicating inefficient internalization of LDLR in 

PS deficient cells (Fig. 45B). Thus, inefficient endocytosis of LDLR results in abrogation of LDL 

uptake in PS deficient cells, which ultimately leads to up-regulation of cellular cholesterol 

biosynthesis. 
 
A                                                    B 

 
 
 
 
 

4.3 Regulation of general endocytosis by presenilins 

4.3.1  Impaired endocytosis of APP and BSA in PS dKO cells 
 

Previous studies have shown that the endocytosis of APP and BSA is also reduced in PS 

deficient cells. Accordingly, it could be predicted that the levels of full-length APP should also 

increase in absence of γ-secretase activity, as observed for LDLR. Indeed, WT cells when treated 

with DAPT, showed the increased cellular APP levels, as well as cellular APP expression was 

higher in PS dKO cells compared to WT cells. Re-expression of hPS1 in PS dKO partially 

reduced the increased APP levels (Fig. 46A). It should be noted that PS proteins are not only 

involved in endocytosis of APP but they also regulate the forward transport of APP in the 
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Fig. 45. PS dependent subcellular localization of LDL receptor (LDLR). A, Schematic representation of the 
experimental set up to study LDLR endocytosis.  B, Surface proteins of WT and PS dKO cells were labeled with
sulfo-NHS-SS-biotin. Cells were incubated for the indicated time periods at 37°C to allow endocytosis and biotin
from residual cell surface proteins was removed by treatment with cleavage/stripping buffer containing glutathione.
Internalized biotin-labeled proteins were precipitated and LDLR was detected by western immunoblotting. 
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secretory pathway. Thus, the accumulation of full-length APP in PS dKO cells would be the result 

of an overall impaired subcellular transport of APP in the absence of presenilins.  
 
A                                                    C                                              

B                                                      

 
 
 
 
 
 
            

 

 

 

Inhibition of BSA endocytosis in PS dKO cells was confirmed by analyzing the uptake 

of TRITC-BSA conjugate (Fig. 46B). In WT cells TRITC-BSA was endocytosed in vesicular 

compartments in 15 min incubation at 37oC, whereas no such TRITC-BSA positive structures 

were detected in PS dKO cells at this time point. Sitosterol is a plant sterol found to be bound to 

albumin in bovine serum and is taken up by cells along with BSA but can not be metabolized by 

cells. Sitosterol levels in PS dKO cells were significantly reduced, also indicating decreased 

endocytosis (Fig. 46C). 
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Fig. 46. PS dependent endocytosis of APP and BSA. A, WT MEFs were cultured in the absence or presence of 10 
µM DAPT. After 48 hr, the expression of APP was analyzed by western blotting of isolated cellular membranes. In
addition, APP was also detected in PS dKO and PS dKO cells re-expressing hPS1 (dKO+hPS1). B, WT and PS dKO 
MEFS were grown on coverslips and incubated with 10 µg/ml TRITC labeled BSA in DMEM for 15 min at 37°C. 
Cells were washed, fixed and processed for fluorescence microscopy. Scale bar 25 µm. C, Sitosterol levels in WT and 
PS dKO cells were determined by GC-MS. Values represent means of five independent experiments ± s.d.; *** 
(p<0.001). 
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4.3.2 Inefficient endocytosis of GM1 in PS deficient cells 
 

The altered endocytosis of distinct extracellular (LDL, BSA) and membrane proteins 

(LDLR, LRP), indicated a general impairment of endocytosis in PS deficient cells. To prove a 

more general defect in membrane uptake, the internalization of cholera toxin (CTX), which 

specifically binds to the ganglioside GM1, was analyzed. CTX was readily internalized in WT 

cells and found at peripheral and juxtanuclear vesicular structures. Under the similar conditions, 

significant amounts of CTX were still detected at the plasma membrane of PS dKO cells, 

indicating impaired internalization of GM1 (Figure 47A). Moreover, levels of GM1 were 

markedly increased in PS dKO cells as compared to WT cells. Inhibition of γ-secretase with 

DAPT also led to increased GM1 levels (Figure 47B). These data further demonstrate an intimate 

relation between γ-secretase activity and endocytic membrane transport of proteins and lipids.  
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Fig. 47. Accumulation of GM1 in PS deficient cells. A, Decreased endocytosis of cell surface GM1. Cells were 
incubated with cholera toxin for 30 min on ice, followed by incubation at 37°C for 30 min. Cholera toxin was 
then detected with specific primary and Alexa-594 conjugated secondary antibodies. B, Detection of GM1 by 
western immunoblotting. Cellular levels of GM1 were increased in PS deficient cells (left panel) or upon 
pharmacological inhibition of γ-secretase with DAPT (right panel). 
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4.4 PS1 FAD mutations affect homeostasis of membrane 
lipid and proteins  
 

The above described studies established an important role of presenilins in endocytosis 

as well as membrane homeostasis. Mutations in PS1 are a major cause of early onset FAD. It has 

been shown that several FAD mutations also led to decreased cleavage of other γ-secretase 

substrates, including APP, notch and cadherins, indicating a partial loss of function. Thus, PS FAD 

mutants not only impair specificity, but also total activity of γ-secretase; therefore it was 

investigated if PS1 FAD mutants also show loss of function with respect to maintenance of 

membrane homeostasis. To address this, HEK293 cell lines stably expressing PS1 FAD variants 

were generated. Cells expressing WT PS1 and mutant PS1 were incubated with cholera toxin on 

ice to allow the binding of toxin with cell surface GM1. Cells were later shifted to 37°C and 

endocytosis of GM1 was studied as described above (See Fig. 47). Interestingly, the expression of 

FAD associated mutants of PS1 caused impaired internalization of GM1 (Fig. 48A). Since GSLs 

are degraded in lysosomal compartments after endocytosis, deficient endocytosis would also lead 

to impaired degradation of GM1. Accordingly, the accumulation of GM1 was observed in cells 

expressing PS1 mutants compared to cells expressing WT PS1 (Fig. 48B). Together, these data 

indicate that a partial loss of γ-secretase function, induced by FAD associated mutations of PS1, 

led to global impairment of membrane trafficking.  

As observed in PS deficient cells, impaired membrane flow in cells which express PS1 

with FAD associated mutations should also show an accumulation of membrane proteins because 

of improper endocytosis. Therefore, the levels of LDLR and APP in cells expressing PS1 FAD 

mutants as well as WT PS1 were analyzed by western immunoblotting. Expression of these 

proteins was found to be increased in cells expressing mutant PS1 compared to cells expressing 

WT PS1 (Fig. 48C). However, the expression of cytosolic actin was not affected in these cells. 

Thus, PS1 FAD mutations not only affect metabolism of membrane proteins, but also alter the 

lipid metabolism as indicated by the accumulation of GM1. 
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Fig. 48.  PS1-FAD mutations impair endocytic membrane flow. A, PS1 FAD mutations affect endocytosis of GM1. 
Endocytosis of GM1 in cells expressing PS1 WT or the indicated FAD mutants was analyzed by the uptake of cholera
toxin. Localization of GM1 at cell surface is indicated by red arrow heads. B, PS1 FAD mutants also led to increased 
levels of GM1 as detected by western immunoblotting of isolated cellular membranes with cholera toxin. C, 
Endogenous LDLR and APP in cellular membranes of HEK293 cells stably expressing PS1 WT or the indicated PS1
FAD were detected by western immunoblotting. β-Actin was detected as a loading control. 
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5 Discussion 
The aim of the work presented here was to characterize the role of membrane lipids in 

the regulation of AD associated proteins and also to address if there is some influence of AD 

associated proteins on lipid metabolism. Accordingly, it was demonstrated that membrane lipids, 

especially GSLs, are implicated in the regulation of proteolytic processing and subcellular 

transport of APP. On the other hand, the results indicate that γ-secretase also affects cellular 

cholesterol metabolism and homeostasis of membrane lipids and proteins. Notably, different 

approaches undertaken to modulate cellular lipids or γ-secretase activity in various cell types led 

to overlapping findings, which established a close relationship between membrane lipids and AD 

associated proteins.  

As mentioned in the introduction, the cellular distribution, metabolism and amounts of 

gangliosides are significantly different in the brains of AD patients as compared to brains of non-

affected people. Especially, the loss of GSLs along with other lipids leading to loss of nerve 

endings was described as primary event in AD pathophysiology. AD patients also show the 

presence of anti-ganglioside antibodies. Moreover, anti-ganglioside antibodies label intracellular 

neurofibrillary tangles and extracellular senile plaques specifically. A complex of the 

glycosphingolipid GM1 and Aβ  could act as a seed for Aβ aggregation by inducing a 

conformational transition from α-helix to β-sheet rich structure. This might facilitate the 

fibrillization of Aβ and deposition in amyloid plaques (Hayashi et al., 2004). On the other hand, 

the high affinity of Aβ for GM1 has been exploited in the therapeutic application against AD. 

Peripheral administration of GM1 in AD patients as well as in AD mice has been shown to 

reduce brain amyloid load, possibly by sequestration effect of GM1 on Aβ (Svennerholm, 1994). 

Furthermore, Aβ induced cytokine release in cell culture can be blocked by simultaneous 

treatment of GM1 (Ariga and Yu, 1998). Significantly reduced levels of sulfatides, sulphate 

esters of galactosylcerebrosides have also been reported to be a characteristic of AD subjects 

even with very mild dementia. The role of sphingomyelin and ceramide in AD is often discussed 

with respect to oxidative stress induced by Aβ . One of the mechanisms by which Aβ induces 

cell death could be by increasing sphingomyelinase activity and ceramide levels (Lee et al., 

2004). On the other hand, alterations in lipid metabolism and catabolism are known to affect APP 

processing and Aβ generation. For example, irregular trafficking and accumulation of cholesterol 

and sphingolipids in endosomal lysosomal compartments observed in lipid storage diseases like 
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NP-C lead to an abnormal processing of APP and increased amyloid production (Jin et al., 2004; 

Runz et al., 2002). 

Thus, physiologically there is already plenty of evidence to implicate GSLs in AD. The 

studies presented here provide molecular mechanisms by which these lipids could affect APP 

processing and Aβ generation. 

5.1.1 Modulation of APP metabolism by GSLs 
 

The present results indicate that irrespective of APP isoform APP metabolism is 

modulated by GSLs in neuronal and non-neuronal cell types. Changes in cellular GSLs content 

affected APP stability, transport, maturation, secretion, subcellular distribution and eventually its 

proteolytic processing. The depletion of GSLs either by pharmacological inhibition or by genetic 

deletion affected the APP metabolism in a similar way. The effects observed upon GSLs 

enrichment further convincingly established the role of GSLs in these processes. 

Pulse-chase experiments in these cellular models revealed that GSLs affected the 

stability of APP after its biosynthesis in early secretory compartments. Moreover, results 

obtained by RT-PCR indicate that GSLs do not modulate the expression of APP at the mRNA 

level.  In addition to the metabolism of APP by amyloidogenic and non-amyloidogenic pathway, 

APP is also degraded in a α- and β-secretase independent fashion. When analyzed by metabolic 

pulse-chase experiment, a pool of initially synthesized APP is processed by secretases whereas 

another pool is apparently degraded by alternative pathways. The α- and β-secretase independent 

pathways of APP degradation have not been characterized in detail. Several groups have shown 

the presence of APP in lysosomes. Moreover, the degradation of full length APP in lysosomes 

and in autophagic vacuoles was also reported. Inhibition of lysosomal proteases results in 

accumulation of APP proteolytic fragments that are potentially amyloidogenic. An array of these 

fragments consists of proteolytic products that are higher in molecular weight than that of CTFs 

generated by either α- or β-secretase. Besides, calpains and caspases have also been implicated 

in APP metabolism. Especially, the inhibition of calpains causes partial redistribution of APP to 

the cell surface leading to increased APPs-α and APPs-β secretion as well as elevated APP-

CTFs. Therefore, initial stabilization of APP by GSLs, appears to be the result of protection of 

APP from degradation via alternative less understood pathways, directing more of it into the 

secretases mediated processing (Galvan et al., 2002; Mathews et al., 2002; Battaglia et al., 2003; 

Pasternak et al., 2004; Mizushima and Hara, 2006). 
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Incidentally, sphingolipids have been shown to affect the membrane flow along the 

endosomal and lysosomal pathway. Especially, proteins which are important for endocytic 

trafficking, namely, annexin 2 and 6 show distorted distribution upon GSLs accumulation. This 

could have an impact on sorting of lysosomal enzymes. Prosaposins, the cofactors essential for 

GSLs degradation were shown to be transported to lysosomes in a GSL dependent manner 

(Lefrancois et al., 1999; Sillence and Platt, 2004; Pagano et al., 2000). GSLs also mediate 

apoptosis by changing mitochondrial membrane potential and release of reactive oxygen species 

from mitochondria. Specifically, ganglioside GD3 seems to be crucial for TNF-α as well as FAS 

induced apoptosis. These studies also suggest modulatory interaction between GD3 and caspases. 

In particular, caspase-3 was shown to co-localize with GD3 in tissue sections from Farber’s 

disease patients. Moreover, GD3 also caused the release of caspase-9 from mitochondria. Thus, 

GSLs might affect APP stability indirectly by modulating lysosomal function or by affecting 

caspases (Garcia-Ruiz et al., 2002; Farina et al., 2000; Sohn et al., 2006). In addition, GSLs 

metabolism has been linked to the generation of autophagic vacuoles, which could in turn affect 

APP processing in these compartments. Interestingly, macroautophagy was shown to be critically 

involved in AD progression. Moreover, recent studies point to a common role of autophagy in 

neurodegeneration in different neurological disorders (Komatsu et al., 2006; Yu et al., 2005). 

Lower amounts of APP at the cell surface analyzed by biotinylation of cell surface 

proteins as well as attenuated APP maturation after PDMP treatment, could suggest decreased 

transport of APP in the secretory pathway after GSLs depletion. The role of GSLs in APP 

transport was further demonstrated by analyzing the subcellular distribution of APP in control 

and GSLs enriched cells. Immunofluorescence analysis with RNAi mediated suppression of LCS 

revealed the accumulation of APP in reticular structures, partially co-staining with the ER marker 

protein calnexin. Since only immature APP is detected in LCS deficient cells, it is likely that 

these vesicles are derived from ER membranes. Further studies are necessary to characterize the 

more defined nature of APP containing vesicles in GSL depleted cells.  

The modulation of forward transport of APP affects its secretion. Accordingly, the 

decreased forward transport and slower maturation of APP in GSLs deficient cells was associated 

with decreased secretion of APP. Importantly, both APPs-α as well as APPs-β levels in 

conditioned media were reduced after incubation with PDMP, indicating that the overall 

secretion of APP was regulated by GSLs. Feeding of exogenous GSLs, on the other hand, 

increased APP secretion due to increased stabilization, maturation and transport.  
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These data support the hypothesis that GSLs are involved in stability, maturation and 

transport of APP in early secretory compartments. However, the presence of GSLs in early 

secretory compartments like ER is a matter of debate, since the post-ceramide stage GSLs 

biosynthesis occurs in Golgi, it is not yet clear if GSLs are transported back to the ER (Funato 

and Riezman, 2001; van Meer and Lisman, 2002). Therefore, it can not be predicted if the 

observed effects of GSLs on APP metabolism are direct or there are some intermediate proteins 

or lipids that indirectly link GSLs with APP metabolism. Apparently elevated glucosylceramide 

levels were shown to modulate intracellular Ca2+ levels possibly via activation of ryanodine 

receptor, the major Ca2+ release channel of ER, indicating an ability of GSLs to affect a protein 

located in ER (Lloyd-Evans et al., 2003). As mentioned in the results section, the effects of 

addition of exogenous GSLs to cultured cells could be attributed either to the insertion of these 

lipids in the plasma membrane and subsequent uptake or mere adsorption on the plasma 

membrane. Accumulation of APP and APP-CTFs in the adsorbed micelles on cell surface could 

also partly contribute to their strongly increased levels observed after GSLs addition. However, 

very similar results were obtained in the primary fibroblasts from sphingolipid storage disease 

patients indicating an emulation of the in vivo situation by addition of exogenous GSLs, at least 

in parts.  

GSLs have also been implicated previously in the intracellular membrane transport 

(Holthuis et al., 2001). Especially caveolar endocytosis is reported to be stimulated by GSLs 

(Sharma et al., 2004). Studies with yeast cells have shown that the inhibition of GSL biosynthesis 

affects forward transport and stable membrane association of GPI-anchored proteins. Furthermore, 

the role of phosphatidylinositols in endocytosis has been well documented (Haucke, 2005). Less is 

known about the role of GSLs in protein transport in the secretory pathway in mammalian cells. 

Recently, it has been shown that GSLs are involved in the sorting of tyrosinase, another type I 

transmembrane protein in mouse melanoma cells. The proper transport of tryrosinase from the 

Golgi to melanosomes (organelles involved in melanin biosynthesis) is essential for melanin 

biosynthesis. The lack of GSLs in GM95 cells causes inhibition of transport of tyrosinase to 

melanosomes. This, in turn, affects the melanization in these cells. In agreement with our data, 

these studies, both yeast and mouse melanocytes, also demonstrated that the inhibition of GSL 

biosynthesis does not generally impair protein transport or secretion (Sprong et al., 2001). Thus, 

GSLs appear to regulate the transport of individual proteins, probably at distinct steps in the 

secretory pathway. 
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5.1.2 Role of GSLs in APP-CTF metabolism  
 

The metabolism of the APP-CTFs is particularly important in the generation of Aβ. The 

present data demonstrated that the generation as well as degradation of APP-CTFs is strongly 

affected by sphingolipids. Lipids specifically present in the outer leaflet of PM, the sphingomyelin 

and GSLs influenced the metabolism of APP-CTFs, whereas glycerophospholipids that are present 

in both membrane layers did not show similar effects (Daleke, 2003; Hanshaw and Smith, 2005). 

Increased sphingolipid levels caused a strong accumulation of APP-CTFs. When analyzed by 

pulse-chase experiments, the generation of APP-CTFs appeared to be retarded in GSLs loaded 

cells. However, the degradation of APP-CTFs was strongly reduced in GSLs treated cells, which 

eventually resulted in accumulation of APP-CTFs. Importantly, GSLs did not inhibit γ-secretase 

activity as shown by in vitro γ-secretase assay. In contrast to previous studies, APP-CTFs were 

found to be relatively stable species. This discrepancy could be due to the over expression of APP 

in most of the earlier studies. A prolonged stability of endogenous APP-CTFs has several 

implications regarding the fate of APP-CTFs and Aβ generation. Especially, APP-CTFs have also 

been shown to interact with presenilin independent of γ-secretase activity (Pitsi and Octave, 2004). 

Therefore, it would be interesting to investigate if elevated levels of APP-CTFs directly affect the 

presenilin functions and metabolism. 

Exogenously added GSLs were incorporated both in intracellular compartments as well 

as in the plasma membrane, as indicated by immunofluorescence labeling of GM1 by cholera 

toxin. However, APP-CTFs selectively enriched in intracellular compartments upon GSLs 

treatment, while levels of APP-CTFs at cell surface were rather decreased. As compared to control 

cells the subcellular distribution of APP-CTFs was also considerably changed upon GSLs 

enrichment. When analyzed by subcellular fractionation in control cells APP-CTFs were present in 

the ER marker positive and Golgi marker positive compartments, albeit in higher amounts in ER 

positive fractions. Upon addition of GSLs, APP-CTFs accumulated in Golgi marker rich fractions, 

probably also because of enhanced ER to Golgi transport of APP-CTFs by GSLs, similar to that of 

full length APP. However, more biochemical and microscopic evidence is required to strengthen 

this point. Immunoisolation of the vesicles containing APP-CTFs and then checking for respective 

compartment markers, as well as detection of structures positive for APP-CTFs with immuno-

electron microscopy could help to address this issue. Previous studies have shown the presence of 

APP-CTFs in pre-Golgi compartments including ER. This is mostly because of ability of BACE-1 
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to cleave APP there, also it is speculated that APP-CTFs can be transported back to ER from 

endocytic compartments where they are predominantly generated. 

Initial studies regarding the subcellular distribution of presenilins with respect to 

localization of γ-secretase activity were confusing as presenilins were shown to be located 

predominantly in ER, whereas cleavage of APP-CTFs was reported to take place in Golgi and 

post-Golgi compartments. Later, however, many subsequent studies showed the presence of 

presenilins at Golgi and post-Golgi compartments as well as at plasma membrane where γ-

secretase cleavage occurs (Checler, 2001; Walter et al., 1996). Results here suggest that GSLs 

might enhance the export of APP-CTFs from ER to Golgi where they could be processed by γ-

secretase with higher efficiency leading to increased Aβ levels. Accordingly, previous studies have 

shown that retention of APP/APP-CTFs in the ER by addition of the ER retention motif inhibits 

the generation of Aβ (Maltese et al., 2001). This is further supported by the presence of immature 

and inactive γ-secretase complex in ER. Interestingly, familial mutations in presenilins, which 

cause accumulation of Aβ, also showed increased GSLs levels (Kumar-Singh et al., 2006; 

Bentahir et al., 2006). Moreover, as observed with GSLs enrichment, expression of presenilins 

with FAD mutations also caused accumulation of APP-CTFs, further supporting a probable role of 

GSLs in FAD, caused by mutations in presenilin. Similar accumulation of APP-CTFs was also 

observed in cells expressing APP with FAD mutation, however it remains to be determined if FAD 

mutations in APP also cause similar increase in GSLs. Thus, increased GSL levels might probably 

explain the altered Aβ metabolism in FAD (McPhie et al., 1997). 

Degradation of APP-CTFs in proteasomes and lysosomal compartments has been shown 

to be critical in determining their cellular levels as well as Aβ generation. In a study by Nunan et 

al.  only 30% APP-CTFs were found to be processed by γ-secretase (Nunan et al., 2001). 

Treatment with proteasome inhibitors increased levels of both, APP-CTFs as well as Aβ. 

Inhibition of lysosomal proteases either by lysotrophic agents such as NH4Cl or specific inhibitors 

such as leupeptin also elevates APP-CTFs. Although, GSLs too seem to decrease degradation of 

APP-CTFs and increase Aβ secretion, GSLs may not directly inhibit proteases in these 

compartments. Moreover, reduced expression of APP-CTFs at the cell surface and accumulation in 

intracellular compartments upon GSLs enrichment together indicates a delayed transport of APP-

CTFs to the lysosomal compartments and proteasomes. Thus, the data suggests that degradation of 

APP-CTFs by γ-secretase independent pathways is inhibited by GSLs, however it might not be 
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due to direct inhibition degradation of CTFs in these compartments but might rather be due to an 

inefficient transport of CTFs to these compartments. Proteasomes and lysosomal compartments 

have been implicated in AD before (Keller et al., 2000; Lam et al., 2000). Immunohistochemical 

observation of ubiquitin-conjugated tau in NFTs was first insinuation of ubiquitin-proteasomal 

system in AD. Significant decrease in the proteasomal activity was reported in post-mortem AD 

brains. In addition, a mutant form of ubiquitin, Ub+1, which potently inhibits degradation of 

polyubiquitinated substrates, was predominantly detected in AD brains. Moreover, abnormalities 

in the endosomal-lysosomal systems have also been shown to precede the Aβ deposition in AD 

(Cataldo et al., 2000). Interestingly, the dysfunction of endocytic-lysosomal system appears to be 

also a characteristic of certain SLSDs such as NPC (Jin et al., 2004). Thus, regular degradation of 

proteins by proteasomal and lysosomal system seems to be very important for proper neuronal 

function and any deficiencies in degradation either directly by lysosomes and protesomes 

inadequacies or due to inappropriate protein transport might lead to neurodegeneration (Ding et 

al., 2007). 

The strong influence of sphingolipids on the metabolism of APP-CTFs was substantiated 

by the observed accumulation of APP-CTFs in primary fibroblasts from SLSD patients. These 

findings also support the use of exogenous GSLs applied to cells as a valid model to study the 

storage of GSLs. GSL deficient GM95 cells on the other hand showed a strong reduction in APP-

CTFs, but the PDMP treatment did not result in APP-CTFs decrease, rather there was shift from 

CTFs generated by β-secretase to CTFs generated by α-secretase, which could be most likely due 

to further cleavage of β-CTFs by α-secretase into α-CTFs as reported previously. Moreover, 

certain lipid dependent biological functions such as protein transport can be carried out efficiently 

even at much lower than normal cellular concentrations of these lipids. This might be due to tight 

regulation of lipid levels in microdomains present in cellular membranes. Therefore, to study the 

role of lipids with respect to such processes it might be necessary to achieve complete depletion of 

these lipids (Platt and Butters, 2000). Since there was only a partial reduction in GSL levels after 

PDMP treatment it might be difficult to achieve similar effects on APP-CTFs as in GM95 cells. 

Moreover, the strongly reduced levels of APP-CTFs in GM95 cells could also partially be due to 

reduced levels of APP in these cells. 

Besides Aβ, APP-CTF accumulation could also contribute to neurodegeneration in AD 

(Yankner et al., 1989). An age dependent accumulation of APP-CTFs as well as APP in AD 

patients was suggested to contribute to AD with advanced age and the accumulation of APP-CTFs 
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seems to correlate much better with AD progression (Chang and Suh, 2005). Furthermore, CTFs 

are known to impair calcium homeostasis, learning and memory through blocking LTP and trigger 

a strong inflammatory reaction through MAPKs- and NF-κB-dependent astrocytosis as well as 

iNOS induction. CTFs, via their binding with the adaptor protein Fe65, could affect the 

transcription of genes including glycogen synthase kinase-3, which might result in the induction of 

neurofibrillary tangles and subsequently cell death. Single intracerebroventricular injection of 

CTFs to mice caused significant disruption of cued, spatial and working memory performances in 

a dose dependent manner. Furthermore, spatial memory of transgenic mice overexpressing CTFs 

was significantly impaired and CTFs were detected in neurons as well as in plaques (Lahiri et al., 

2002). As discussed above sphingolipids might play an important role in AD. Especially, the 

density of GSLs such as GM1 and GM2 within the microdomains was reportedly increased in AD 

brains. On the other hand, SLSDs are associated with neurodegeneration at early ages (Neufeld, 

1991; Tifft and Proia, 2000). Although the cause for these disorders is the defect in proteins 

involved in lipid transport and degradation, the potential mechanism as to how accumulation of 

lipids leads to severe neurodegeneration is not fully understood. Thus, the alteration in 

sphingolipid metabolism with the associated accumulation of APP-CTFs and/or other membrane 

proteins might underlie the pathophysiologic events in AD as well as sphingolipid storage 

disorders along with other reported factors such as impaired membrane trafficking, dysfunctional 

endosomal-lysosomal and proteasomal system as well as inflammation (Nixon et al., 2000). 

5.1.3 Role of GSLs in Aβ generation 
 

Studies presented here clearly demonstrate the importance of membrane GSLs in the 

generation of Aβ. Depletion of GSLs using PDMP reduced Aβ secretion, whereas addition of 

exogenous GSLs to cultured cells increased Aβ secretion in neuronal SH-SY5Y cells. The 

decrease in Aβ secretion could be attributed to the reduced stability, forward transport and cell 

surface expression of full length APP. The attenuated transport of APP to the cell surface in GSL 

deficient cells is consistent with decreased secretion of APP by α-secretase, which is known to 

occur during transport to or directly at the cell surface. In contrast, β-secretase cleavage occurs 

predominantly in endocytic compartments after re-internalization of APP from the cell surface 

(Koo and Squazzo, 1994). Thus, the decreased generation of Aβ upon depletion of cells from 

GSLs might also be due to decreased access of β-secretase to APP in endocytic compartments. The 
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decreased levels of CTF-β in GSL depleted cells could support this notion. The decrease in 

Aβ secretion upon PDMP treatment appears to be primarily due to modulation of full-length APP 

metabolism. However, increased levels of Aβ after GSL enrichment might be due to modulation of 

both, the metabolism of APP as well as APP-CTFs. Enhanced stability and forward transport of 

APP by GSLs would lead to increased Aβ production. Similarly, GSLs also inhibit the degradation 

of APP-CTFs by alternative pathways like lysosomal or proteasomal degradation, making them 

more available for γ-secretase cleavage. Upon GSL treatment, APP-CTFs probably accumulate in 

compartments rich in γ-secretase activity, which could further boost the Aβ generation. 

Incidentally, as discussed earlier, proteasomal and lysosomal inhibitors have been shown to 

enhance Aβ generation in a similar way.  

The inhibition of β-secretase and γ-secretase has been put forward as a promising 

approach to reduce Aβ secretion. However, recent studies suggest an important role of presenilins 

in learning, memory, cognition and cell differentiation. Therefore, the search for alternative ways 

to reduce Aβ levels is becoming increasingly important. Since, the data presented here clearly 

indicated that increased amounts of cellular (Hamaguchi et al., 2006). GSLs shift APP metabolism 

towards higher Aβ levels and the reduction in cellular GSL levels might be a reasonable approach 

to suppress Aβ levels. The pharmacological inhibition of GCS, touted as substrate deprivation 

therapy, has been identified as an effective approach to lower high sphingolipid levels in SLSDs 

(Platt and Butters, 2000). Thus, the respective enzymes involved in GSLs biosynthesis could also 

represent targets to decrease the formation of Aβ in therapeutic strategies for AD.  

During the course of the present work, three more related studies addressing the role of 

sphingolipids in Aβ generation were published. Similar to presented study, these studies also 

showed that sphingolipids potentiate Aβ generation, however, experimental approaches and 

interpretation of molecular mechanisms differed to some extent. In the first study, inhibition of 

ceramide synthesis in chinese hamster ovary cells resulted in an elevated secretion of APPS, likely 

due to an increase in α-secretase cleavage (Sawamura et al., 2004). In the current study, a 

significant decrease in the secretion of endogenous APP upon depletion of GSLs was observed. 

This discrepancy might be explained by strong overexpression of APP in the former study that 

might mask some effects on transport and/or processing of APP. Moreover, in the present study 

GSL biosynthesis was targeted selectively, while the inhibition of ceramide synthesis would also 

lead to a strong decrease in the biosynthesis of sphingomyelin and ceramide itself that might serve 
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additional functions in APP metabolism. In another study, the direct addition of GM1 to cells led 

to increased secretion of Aβ, while secretion of APPS-α was attenuated specifically without 

affecting cellular APP levels (Zha et al., 2004). These studies too, were performed in cells 

overexpressing APP and studies here clearly demonstrated that the cells overexpressing already 

high levels of cellular APP as well as APP-CTFs do not cause any further increase in APP and 

APP-CTFs with addition of GSLs. Moreover, they also showed increase in p3 while APPS-α levels 

were decreased upon treatment with GM1. Simultaneous an increase in p3 along with decreased 

APPs-α levels cannot be explained, as levels of both should be affected in similar ways. Although 

most of the effects of GSLs on APP processing can be explained by altered trafficking of APP and 

APP-CTFs, subtle changes in activities of different secretases can not be ruled out completely. 

Recently, cerebrosides, anionic glycerophospholipids and sterols were shown to stimulate BACE-

1 activity. However, only in vitro experiments with reconstitution of purified BACE-1 in 

unilamellar vesicles were performed to analyze the effects of lipids on BACE-1 activity. The role 

of these lipids in modulating BACE-1 activity in cultured cells or in vivo remains to be examined 

(Kalvodova et al., 2005). 

In addition, studies by Puglielli et al. (Puglielli et al., 2003a) showed that stabilization of 

BACE-1 by ceramide results in higher APP-CTF levels, thereby promoting Aβ generation. With 

inhibition of GSL biosynthesis as well as GSLs enrichment one might expect increased ceramide 

levels. First, although both treatments should elevate ceramide levels, opposite effects were 

observed by GSL depletion and GSL excess suggesting that the effects are indeed caused by two 

different mechanisms and not because of increased ceramide levels. Moreover, analysis of GM95 

cells and PDMP treated cells did not show highly increased levels of ceramide (Komori et al., 

1999). Nonetheless, addition of C6-ceramide increased levels of APP-CTFs subtly, however this 

effect was far weaker compared to the accumulation of CTFs after GSLs addition. Still higher 

concentrations of ceramide might be toxic to cells. This slight increase in APP-CTFs after 

ceramide treatment could be attributed to increased levels of sphingolipids caused by increased 

biosynthesis because of higher substrate availability. Moreover, results here showed an increased 

stability of APP-CTFs due to an excess of sphingolipids, ruling out their increased generation, as 

would be expected by stabilization of BACE-1.  

Thus, all studies together, including the one presented here establish a clear role of 

sphingolipids in Aβ generation. Unlike other studies, evidence provided from independent genetic 
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models here, further strengthens the argument that the effects of GSLs on Aβ generation are 

mediated by altered subcellular transport and stability of APP as well as of APP-CTFs. 

5.2 Link between cholesterol metabolism and AD 
 

Several studies in cellular and animal models have shown that the concentration and 

distribution of cholesterol affects Aβ generation. Moreover, clinical and epidemiological studies 

have revealed a link between cholesterol and AD pathogenesis. Although initial findings led to the 

assumption that the reduction in cholesterol is protective in AD, recent developments warn for a 

more cautious approach. Importantly, the amyloidogenic processing of APP is dependent on lipid 

microdomains rich in cholesterol and sphingolipids. The γ-secretase complex is also associated 

with such microdomains (Abad-Rodriguez et al., 2004) (Puglielli et al., 2003b; Simons and 

Ehehalt, 2002).  

The levels of total cholesterol and LDL in serum were reported to correlate positively 

with the amount of Aβ in AD brains. Epidemiological studies showed that the elevated cholesterol 

levels during mid-life increases the risk of developing AD (Kivipelto and Solomon, 2006). 

Additionaly, elevated dietary cholesterol increased amyloid plaque formation in AD mice. 

Retrospective and prospective clinical studies indicate that the inhibition of cholesterol 

biosynthesis by statins cause a significant decrease in the incidence of AD and dementia. In 

cellular models, the decrease in cholesterol content strongly reduced secreted Aβ. Ehehalt et 

al.(Ehehalt et al., 2003) showed that the depletion of cholesterol causes a disruption of lipid 

microdomains resulting in decreased cleavage of APP by BACE-1, indicating the necessity of 

intact lipid microdomains for BACE-1 activity. More recently, however, Abad-Rodriguez et al., 

showed that the moderate reduction in cholesterol causes a disorganization of lipid microdomains, 

allowing more BACE-1 to cleave APP and resulting in enhanced Aβ generation. On the other 

hand, a strong reduction in cholesterol inhibits BACE-1/ γ-secretase activity and results in a 

dramatic drop in Aβ generation, even though BACE-1 and γ-secretase can now contact APP 

directly. There are also in vivo findings to support that the depletion of cholesterol can be 

deleterious. Treatment of female APP transgenic mice with statins enhanced Aβ production and 

plaque deposition. Recently APP transgenic mice were reported to show an age dependent 

decrease in cholesterol content (Fassbender et al., 2001).  
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In addition, the inhibition of acyl-coenzyme A: cholesterol acyltransferase (ACAT) also 

led to a strong reduction of Aβ generation in cultured cells and transgenic mice, indicating that 

cholesterol esters could also influence the proteolytic processing of APP. The inactivation of 

ACAT results in redistribution of intracellular cholesterol. Incidentally, the drugs which inhibit the 

backward transport of cholesterol from late endocytic compartments to the ER cause a 

redistribution of cholesterol and increase the Aβ generation (Hutter-Paier et al., 2004). This might 

mainly be due to decreased β-secretase cleavage of APP. However, γ-secretase activity is strongly 

increased by treatment with such drug. In NPC disease there is aberrant cholesterol transport 

resulting in accumulation of cholesterol in endosomes/lysosomes, especially in the brain (Liscum, 

2000). In NPC mouse brain α- and β-secretase activity is not changed but γ-secretase activity is 

greatly enhanced, which is consistent with increased Aβ levels (Jin et al., 2004).  

Thus, there is enough epidemiological, pathological as well as experimental evidence 

which links cholesterol metabolism to AD. Attempts have also been made to understand the 

influence of altered cholesterol levels on Aβ generation and metabolism of AD associated 

proteins. In the present study, however, evidence is provided for the probable role of AD 

associated presenilins, especially the RIP mediated by them, in maintaining membrane lipid 

homeostasis, particularly the regulation of cholesterol metabolism. 

5.2.1 Role of RIP in maintenance of membrane lipid – protein 
homeostasis 

γ-secretase mediated RIP of type I membrane proteins within or close to their 

transmembrane domains, results in the generation of soluble intracellular domains and short 

secreted peptides. The numbers of γ-secretase substrates is steadily increasing and include cell 

adhesion molecules, surface receptors, and channel proteins (Wolfe and Kopan, 2004). The 

cleavage of these proteins is predominantly regulated by precedent shedding of their ectodomains. 

However, a biological function of γ-secretase dependent cleavage has only been demonstrated for 

some substrates, including notch, N- and E-cadherins, CD44 and receptor tyrosine kinase Erb4. 

The soluble intracellular domains of these proteins can translocate to the nucleus and modulate 

transcription of target genes. The function of γ−secretase dependent cleavage of most other 

substrates is poorly understood. Although AICD could also regulate gene transcription by 

association with Fe65 and Tip60, release of AICD from cellular membranes by γ−secretase is not 

absolutely required (Hass and Yankner, 2005). A global function of γ-secretase dependent RIP in 
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maintaining membrane lipid and protein homeostasis particularly via regulation of endocytosis is 

indicated by this study. 

5.2.2 Role of presenilins in cellular cholesterol homeostasis 
 

PS deficient cells showed a decreased capacity in internalization of extracellular proteins, 

including LDL. Despite the decreased uptake of LDL, cholesterol levels in PS deficient cells were 

found to be increased, suggesting an up-regulation of cholesterol de novo synthesis. The 

comprehensive analysis of cholesterol precursors and metabolites together with mRNA expression 

of cholesterol biosynthetic enzymes indeed demonstrated an enhanced cholesterol biosynthesis in 

PS deficient cells. Notably, levels of most precursors, including desmosterol, were found to be 

elevated in PS dKO cells, while levels of lanosterol were strongly decreased. In addition, PS-

deficient cells showed transcriptional up-regulation of CYP51 mRNA. mRNA levels of other 

enzymes involved in lanosterol metabolism, like seladin-1 and lanosterol synthase, were not 

significantly altered in PS deficient cells. CYP51 is critically involved in cholesterol biosynthesis, 

since it catalyzes the demethylation of lanosterol, the first cyclic metabolite after squalene 

biosynthesis. The strong up-regulation of CYP51 mRNA was associated with decreased levels of 

lanosterol, which indicated increased CYP51 activity in these cells. These data are consistent with 

a previous study showing that addition of exogenous LDL to porcine vascular endothelial cells led 

to suppression of CYP51 mRNA expression via SREBP dependent mechanisms (Rodriguez et al., 

2001).  

Since the levels of cholesterol degradation products were also increased in PS dKO cells, 

increased cholesterol levels were not caused by impaired degradation of cholesterol. Importantly, 

pharmacological inhibition of γ-secretase in MEF and human neuroglioma H4 cells altered the 

cholesterol metabolism similar to genetic deletion of presenilins. Re-expression of PS1 in PS dKO 

cells partially reversed the observed effects on cholesterol and cholesterol metabolites, further 

validating the importance of PS1 in the regulation of cellular cholesterol metabolism. Moreover, 

the treatment of PS dKO cells with itraconazole, a specific inhibitor of CYP51, partially reduced 

elevated cholesterol and desmosterol levels.  

It has been shown recently that Aβ could directly inhibit HMG-CoA reductase activity 

and it was speculated that the lack of Aβ leads to an up-regulation of HMG-CoA reductase activity 

(Grimm et al., 2005). However, the addition of Aβ to PS deficient cells did not normalize 

cholesterol levels, indicating that the lack of Aβ in these cells is not responsible for enhanced 
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biosynthesis of cholesterol. The present data are consistent with the up-regulation of cholesterol 

biosynthetic enzymes in response to decreased uptake of LDL.  

The present findings might be especially relevant for cholesterol metabolism in the brain. 

Neuronal cells are dependent on cholesterol uptake from lipoprotein particles that derive from 

glial cells (Herz and Bock, 2002). Since cholesterol has been shown to modulate dendrite 

differentiation and synaptogenesis , PS proteins might affect these processes through the 

regulation of cholesterol uptake. It is noteworthy that PS proteins have been involved in synaptic 

plasticity and neuronal survival (Vance et al., 2005; Vance et al., 2006). Mice with conditional 

inactivation of PS in neurons reveal a strong impairment in learning and memory, and show 

significant synaptic and neuronal loss associated with decreased cAMP responsive element (CRE)-

dependent gene expression. Since CYP51 expression is also dependent on CRE/CREB activation, 

the impaired cholesterol uptake in PS deficient cells might affect synaptogenesis of neurons via 

these pathways (Harris et al., 2004; Fink et al., 2005; Beglopoulos and Shen, 2006). 

5.2.3 Presenilin dependent subcellular distribution of cholesterol 
 

The levels of cholesterol in membranes of mammalian cells differ strongly between 

different subcellular compartments. The plasma membrane is reported to contain nearly 85% of 

cellular cholesterol and only 0.5% of total cholesterol is found in ER (Fielding and Fielding, 

1997). In MEF WT cells along with PM staining, significant juxtanuclear cholesterol stain was 

observed. There might be relatively higher density of cholesterol present in compact perinuclear 

structures while at the PM cholesterol is distributed with other phospholipids in expanded 

membrane sheets. In PS dKO cells, the overall stronger cholesterol stain was consistent with 

increased cholesterol levels. PS deficient cells revealed strong PM stain with relatively reduced 

juxtanuclear labeling. 

 Changes in plasma membrane cholesterol near the physiologic set points evoke large 

responses in ER cholesterol within minutes (Lange and Matthies, 1984; Liscum and Dahl, 1992). 

This is achieved by the influx of cholesterol from plasma membrane to ER in special transport 

vesicles likely originating from plasma membrane itself. This backward transport of cholesterol 

regulates cellular cholesterol homeostasis by controlling cholesterol biosynthesis and esterification 

in the ER. This is achieved by two cholesterol sensing membrane-embedded proteins – SCAP and 

HMGCoA reductase, in conjunction with other regulatory proteins like Insigs, SREBPs and site-

1/2 proteases (see introduction) (Espenshade, 2006). In PS dKO cells, high cholesterol levels do 
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not seem to affect ER cholesterol levels, as increased cholesterol biosynthesis in PS dKO cells is 

not checked/controlled by ER mediated suppression of cholesterol biosynthesis. This could be 

partly due to improper backward transport of cholesterol from the PM to the ER in PS deficient 

cells, thus uncoupling cellular cholesterol sensing machinery from increased cholesterol levels. 

Although the data do not show an inhibition of PM to ER cholesterol transport, the decreased 

endocytic membrane flow and altered subcellular cholesterol distribution in PS dKO cells supports 

this idea. Another probable reason could be the altered metabolism of proteins involved in 

cholesterol regulation, namely Insigs, SCAP, SREBPs, HMGCoA reductase etc. in PS deficient 

cells . Studying the metabolism of these proteins and analysis of subcellular cholesterol pools in 

WT and PS KO cells would further improve the understanding of the complex role of presenilins 

in regulation of cholesterol homeostasis.  

5.2.4  Regulation of global endocytosis and protein transport by 
presenilin 
 

Previously, presenilins have been shown to regulate endocytosis of APP and BSA. 

Increased levels of APP caused by a possible impairment of APP endocytosis alongwith defective 

BSA uptake were confirmed in PS dKO cells. Endocytic function of PS proteins was further 

extended to internalization of LDL, LDLR and LRP. Although proteins like LRP and APP are γ-

secretase substrates, precedent shedding of ectodomain is essential. Inhibition of γ-secretase 

activity leads to the accumulation of these proteins, mostly due to inefficient endocytic transport to 

the compartments where they could be degraded. Thus, presenilins seems to play an important role 

in general turnover of membrane proteins (Wood et al., 2005; Zhang et al., 2006).   

Presenilins together with PS mediated γ-secretase activity have been previously shown to 

be involved in the regulation of transport of selected proteins. The forward transport of APP in 

early secretory compartments as well as endocytosis appears to be PS1 dependent. Sorting of 

tyrosinase is also regulated by γ-secretase activity and deletion of PS in mice results in decreased 

skin pigmentation. Transport of nicastrin and N-cadherin has also been shown to be influenced by 

presenilin PS1. Interestingly, the turn over of telencephalin, a neuron specific intercellular 

adhesion molecule that is involved in dendritic outgrowth and long-term potentiation is also 

regulated by PS1, but it is not a γ-secretase substrate. In PS deficient cells telencephalin 

accumulates in autophagic vacuoles because of improper sorting to lysosomes (Annaert and de 

Strooper, 2002; Wang et al., 2006). 
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The role of presenilins in the regulation of transport of lipoprotein receptor family 

proteins was established in this study. Moreover, the data also indicate that the presenilins are 

involved in general endocytosis. Decreased uptake of GM1 suggests that endocytic membrane 

flow is globally impaired in the absence of γ-secretase activity. Endocytosis is a vital and 

indispensable biological process. In addition to initiating or attenuating cell signaling, endocytosis 

shapes morphogen gradients, activates ligands, and spatially regulates the receptor activation 

within single the cell. Cells also depend on endocytosis for uptake of nutrients, maintenance of 

cell polarity and antigen presentation. Thus, presenilin deficiency would affect several important 

biological processes essential for cell survival (Mukherjee et al., 1997). 

The LRP mediated Apo E endocytosis is critically involved in the clearance of 

extracellular Aβ (Waldron et al., 2006). Extracellular Aβ binds to lipoprotein particles like Apo E 

and then the complex is internalized via LRP. Subsequently, endocytosed Aβ is degraded via 

lysosomes. Moreover binding of Aβ to Apo E enhances the fibrillization and deposition of Aβ. 

Considering these data with the findings that presenilins regulate lipoprotein particles endocytosis, 

it is conceivable that PS proteins play an important role in clearance and deposition of Aβ as well 

(Trommsdorff et al., 1998; Rochet and Lansbury, Jr., 2000). 

5.2.5 GSL metabolism is affected by presenilins 
 

A strong accumulation of gangliosides was observed in PS deficient cells. This can be 

explained by an inefficient uptake of these lipids into lysosomes where they are degraded. 

However, other mechanisms involving saposins or exohydrolases could also contribute to the 

observed effects. Nonetheless, the inhibition of general membrane flow should also lead to an 

accumulation of other membrane lipids like sphingomyelin. Recently an accumulation of 

sphingomyelin in PS dKO cells was reported, but increased levels were attributed to the lack of 

Aβ42 in these cells, as these studies showed that the endogenous Aβ42 stimulates 

sphingomyelinase, the key enzyme required for sphingomyelin degradation. Thus, decreased 

sphingomyelinase activity in the absence of Aβ42 in PS dKO cells was shown to cause increase in 

sphingomyelin levels (Lee et al., 2004). 

The proper degradation of sphingolipids is essential for the function of the nervous 

system. Genetic defects in key enzymes involved in the degradation and transport of sphingolipids 

or sphingolipid activator proteins (SAPs) cause severe neurodegeneration and dementia (Kolter 

and Sandhoff, 2006). Interestingly, some of these storage disorders like NPC also show prominent 
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tau pathology as it is observed in AD and other neurodegenerative disorders. Sandhoff’s disease, 

which is characterized by GM2 accumulation in neurons, shows presence of microglial activation 

and associated inflammation in brain. Incidentally, these processes are also characteristic of AD 

brains (Griffin, 2006; Terai et al., 2001). Therefore, the finding that presenilins are involved in 

metabolism of sphingolipids could direct further research to understand the complex relation 

between AD and SLSDs with respect to common features like tau pathology, glial activation and 

inflammation observed in both (Distl et al., 2003; Wada et al., 2000).   

5.2.5.1 PS1 FAD mutations are loss of function mutations with respect to 
maintenance of membrane homeostasis and endocytosis 
 

The egg laying defect observed in Sel-12, a presenilin orthologue, deficient C. elegans 

due to inhibition of notch cleavage could only be rescued by WT human PS1 but not by PS1 FAD 

mutants suggesting that PS associated mutations are loss of function mutations. However, 

increased levels of the more toxic Aβ species, Aβ42, by PS1 FAD mutants in mammalian cells is 

also considered as gain of malfunction of PS1 FAD mutations (Haass and de Strooper, 1999; de 

Strooper, 2007). Current studies demonstrate that PS1 FAD mutants can not maintain normal 

membrane lipid and protein homeostasis and hamper endocytosis. Thus, PS1 FAD mutations 

might be deleterious because of their inability to regulate membrane flow and hence should be 

termed as loss of function mutations (Sambamurti et al., 2006). In addition, alterations in Aβ 

levels might further cause more damage by a variety of different routes as described in the 

introduction. PS1 FAD mutants also led to an accumulation of the ganglioside GM1 because of 

defective endocytosis. These findings might also predict increased levels of other sphingolipids 

upon expression of PS1 FAD mutant. However, significant decrease in sphingomyelin levels were 

reported upon expression of PS1 with FAD mutations compared to WT presenilin (Grimm et al., 

2005). These findings were explained by the ability of Aβ42 to stimulate neutral sphingomyelinase 

and increased Aβ42 levels in PS1 FAD mutant expressing cells. However, recent studies indicate 

that most FAD mutations increased Aβ42 to Aβ40 ratio due to decreased production of Aβ40 

rather than increased Aβ42 levels as was believed earlier. Therefore, it is unlikely that increased 

sphingolipid levels in PS KO cells are due to absence of Aβ in these cells (Bentahir et al., 2006; 

Kumar-Singh et al., 2006). 

Subtle changes in γ-secretase activity caused by PS1 FAD mutations leading to altered    

metabolism of transcriptionally active intracellular fragments of various substrates resulting in 
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transcriptional dysregulation has also been proposed as one of the ways by which these mutations 

might cause early onset AD (Robakis, 2003). Moreover, PS1 FAD mutations have also been 

shown to alter PS1 conformation resulting in altered interaction between PS1 CTF and PS1 NTF 

as well as between PS1 and APP-CTF. Expression of presenilins with FAD mutations are also 

known to perturb important biological processes like intracellular Ca2+ metabolism and cell cycle 

control. PS1 FAD mutations have also been shown to be associated with increased ER and 

oxidative stress (Tomita and Iwatsubo, 2006; Zatti et al., 2006). One of the PS1 FAD mutations 

(A260V) affected the vesicle transport from TGN to PM. Expression of PS1 A260V significantly 

reduced the Rab8 levels which is a GTPase involved in TGN to PM transport. Accumulation of 

APP-CTFs upon expression of A260V mutant PS1 was also reported in the same study. 

Interestingly, the present studiy also indicated an inhibitory effect of excess GSLs on TGN to PM 

transport which lead to accumulation of APP-CTFs. Elevated GM1 levels were observed in the 

cells which expressed mutant PS1 and recent reports also indicated an accumulation of APP-CTFs 

associated with PS1 FAD mutations. Therefore, cellular levels of GSLs and APP-CTFs appear to 

be regulated co-ordinately, which in turn might regulate TGN to PM transport. Thus, the 

modulation of GSLs and APP-CTFs metabolism leading to inefficient protein transport could be 

one of the ways by which FAD associated mutations could cause neurodegeneration (Uemura et 

al., 2004). 
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