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Summary

During the last eight years cosmological weak lensing, the gravitational lensing effect caused by
the inhomogeneous large-scale matter distribution, developed into a powerful probe of cosmol-
ogy. By studying the distortions which are imprinted onto theobserved shapes of distant galaxies,
the power spectrum of matter fluctuations can be constrainedfree of assumptions on the relation
between luminous and dark matter. However, due to the weakness of the effect it is challenging
to measure and can only be detected statistically from an ensemble of coherently lensed back-
ground galaxies. In addition, a careful correction for systematic effects is indispensable, first of
all for the image point-spread-function (PSF).

In this PhD thesis I present a detailed cosmological weak lensing analysis using deep ob-
servations from the Advanced Camera for Surveys (ACS) on boardthe Hubble Space Telescope
(HST). Including data from the ACS Parallel Cosmic Shear Survey, the HST/GEMS Survey, and
the HST/COSMOS Survey, this data set constitutes the largest survey used to measure cosmo-
logical weak lensing from space today. Space-based weak lensing studies are not affected by
Earth’s atmosphere, whose blurring effect (“seeing”) strongly limits the number density of suf-
ficiently resolved galaxies in ground-based surveys. The higher number density obtained from
space helps to locally beat down the shape noise induced by the intrinsic ellipticities of the source
galaxies. This is particularly important in order to constrain the small-scale power spectrum and
reconstruct the projected matter distribution.

Before being able to use the ACS data for weak lensing studies, it was necessary to develop
several technical tools and carefully test our weak lensingpipeline: Firstly, we developed an
image reduction pipeline for ACS data, which fulfils the strict requirements weak lensing places
on the data quality, e.g. regarding careful image registration and bad pixel masking. This pipeline
has also been used in several independent studies. Secondly, the detection of strong temporal
variations of the ACS PSF, which are interpreted as focus changes due to thermal breathing of
the telescope, led to the development of a new PSF correctionscheme. Classically, PSF variations
across the field-of-view are modelled by interpolating measured stellar shape parameters using
polynomial functions. However, due to the small field-of-view of ACS (3.′3× 3.′3), high galactic
latitude fields contain only of order 10 stars, which are too few for a direct interpolation. In our
correction scheme we fit the stars present in a galaxy field with PSF models derived from dense
stellar fields. We determine the correction on the basis of single exposures in order to obtain an
optimal time-dependence of the solution and exclude noise in the ellipticity measurement caused
by resampling. Using a principal component analysis we verify that most of the PSF variation
indeed occurs in a one-dimensional parameter space, which can be related to the focus position.
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We estimate that our PSF correction scheme reduces the systematic contribution to the shear
correlation functions due to PSF distortions to< 2× 10−6 for galaxy fields containing at least 10
stars. This corresponds to. 5% of the cosmological signal expected on scales of a single ACS
field. Thirdly, we carefully tested our weak lensing pipeline using simulated images from the
Shear TEsting Programme1 (STEP), which have been analysed by several independent groups in
blind tests. After eliminating biases identified in the firstround of simulations (Heymans et al.
2006b), our pipeline performed among the most accurate methods with an average (relative)
shear recovery accuracy of∼ 2% on the second simulation set (Massey et al. 2007a). As the only
method we achieve the same average accuracy for the third setof STEP simulations (Rhodes et
al. in prep.), which features space-based weak lensing data, partially with ACS-like properties.
In this test our pipeline also yields a good correction as a function of galaxy size and magnitude
(∼ ±5% variation), which is important if one aims at measuring the shear signal as a function of
source redshift. Concluding from STEP, the systematic accuracy of our pipeline should be well
within the statistical noise of the ACS weak lensing data.

The analysis of the ACS data was done in two steps: We first present results from a pilot
study published in Schrabback et al. (2007), in which we testthe capabilities of ACS for cos-
mological weak lensing measurements with early parallel observations and the combined GEMS
and GOODS ACS mosaic of theChandraDeep Field South (CDFS). We perform a number
of diagnostic tests indicating that the remaining level of systematics is consistent with zero for
the GEMS and GOODS data confirming the success of our PSF correction scheme. For the
parallel data we detect a low level of remaining systematicswhich we interpret to be caused
by a lack of sufficient dithering of the data. Combining our shear estimate of the GEMS and
GOODS observations using 96 galaxies arcmin−2 with the photometric redshift catalogue of the
GOODS-MUSIC sample, we determine alocal single field estimatefor the mass power spectrum
normalisationσ8 = 0.59+0.13

−0.17 (stat)± 0.07 (sys) (68% confidence assuming Gaussian sampling
variance) at a fixed matter densityΩm = 0.24 for aΛCDM cosmology, where we marginalise
over the uncertainty of the Hubble constant and the redshiftdistribution. This estimate agrees
only marginally with the WMAP-3 result ofσ8 = 0.761+0.049

−0.048 (Spergel et al. 2007) and is signifi-
cantly below values found by recent ground-based surveys (e.g. Benjamin et al. 2007). From this
discrepancy we conclude that the CDFS is subject to strong sampling variance with a significant
under-density of compact foreground structures. This is consistent with a recent study by Phleps
et al. (2007), who find a strong deficiency of red galaxies in this field.

As a second step we present a preliminary cosmological weak lensing analysis of the
HST/COSMOS Survey. With 1.64 deg2 its sky area is approximately seven times larger than
GEMS. The significantly increased statistical accuracy revealed previously undetectable residual
systematic errors indicated by a significant B-mode signal. So far we have not been able to un-
ambiguously identify its origin, but note that similar indications for remaining systematics have
been found in an independent analysis of the same data by Massey et al. (2007c). Using only
B-mode-free scales (> 1′ in the shear two-point correlation function), we findσ8 = 0.71± 0.09
(68% confidence) from COSMOS for fixedΩm = 0.24, where the error includes the uncertainties
in the redshift distribution, the Hubble constant, and the shear calibration, as well as a Gaussian

1http://www.physics.ubc.ca/˜heymans/step.html
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estimate for sampling variance. This result is in excellentagreement with the WMAP-3 con-
straints, but is significantly below the estimates found by Massey et al. (2007c). Due to the
presence of remaining systematics our COSMOS analysis is still preliminary, leaving room for
further development in the time after the PhD project.

In addition to the cosmological weak lensing analysis we present a projected mass map for
the COSMOS field, as well as first results from a weak lensing analysis of the HST/STAGES
Survey targeting the galaxy super-cluster Abell 901/902. Furthermore, I briefly summarise ACS
studies of galaxy clusters led by some of my collaborators, which make use of the developed
data reduction and weak lensing pipeline.
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Chapter 1

Introduction

Cosmology is currently experiencing a dramatic transition:Although being based on solid the-
ory, many observational constraints used to be weak until large surveys and new probes were
launched in the late 1990s. The dawn of precision cosmology can probably be pinpointed to the
year 2003, when the first-year results of theWilkinson Microwave Anisotropy Probe(WMAP)
were published measuring the anisotropies of the Cosmic Microwave Background (CMB) with
unprecedented accuracy (Bennett et al. 2003). These measurements of the early Universe are
particularly powerful when combined with constraints fromthe local (present day) Universe,
lifting degeneracies between different cosmological parameters. Tight constraints were found in
combination with the2 degree Field Galaxy Redshift Survey(2dFGRS) or theSloan Digital Sky
Survey(SDSS), which investigate the large-scale distribution ofgalaxies in the relatively nearby
Universe (Spergel et al. 2003; Tegmark et al. 2004b). The recently published three-years results
of WMAP (WMAP-3) tighten the parameter constraints further (Spergel et al. 2007) leading to
the current standard model of cosmology, where the spatial geometry of the Universe is close to
Euclidean (flat) with a total energy content consisting of 4%normal matter (baryons) and 20%
non-baryonic dark matter. The remaining 76% consist of a field or substance named dark energy,
which is responsible for the observed accelerated expansion of the Universe.

Although this relative distribution can be measured with good accuracy, we are still lack-
ing physical understanding for the Universe’s dominant constituents: Not interacting electro-
magnetically, dark matter can only be detected via its gravitational influence on nearby luminous
matter or its distortion of the surrounding space-time metric. The latter is measurable through
the effect of gravitational lensing, which describes the deflection and distortion of light bundles
emitted from distant objects in the gravitational potential of foreground structures. Therefore, it
provides a way to constrain the projected foreground mass using well understood physics with-
out any assumptions on the relation between luminous and dark matter. Gravitational lensing
has already provided substantial contributions to our understanding of dark matter, showing for
example that dark matter is well-traced by luminous matter on large scales (see e.g. Massey
et al. 2007c). Another important finding was the observationof dark matter separated from the
major baryonic mass component in the special environment ofthe merging “Bullet” galaxy clus-
ter (Clowe et al. 2006; Bradač et al. 2006), which was announced as the first “direct” proof
for the existence of dark matter also yielding constraints on the cross-section for dark matter

5



6 Chapter 1. Introduction

self-interaction (Randall et al. 2007). Affirmed by these and further findings nowadays most cos-
mologists and physicists have a rather clear expectation ofdark matter consisting of one or more
types of elementary particles, which might be detected directly in upcoming particle physics
experiments.

On the other hand fundamental physics is currently unable toprovide any convincing ex-
planation for dark energy: In order to allow for stationary cosmological models, it was first
introduced by Einstein as the special case of acosmological constantin the field equations of
General Relativity. Yet, it was dropped after Hubble discovered the expansion of the Universe in
1929. 70 years later measurements of the expansion history using supernovae of type Ia as stan-
dard candles provided first convincing evidence that this expansion is in fact accelerating (Riess
et al. 1998; Perlmutter et al. 1999), bringing the cosmological constant back into the discussion.
However, the only natural explanation coming from quantum physics, which interprets dark en-
ergy as ground-state energy of the vacuum, yields an estimate for its energy density which is
too large by a factor of∼ 10120, indicating that our theories of fundamental physics and gravity
are either incorrect or incomplete. Due to this extremely low density, dark energy properties can
never be observed in particle physics experiments, but onlyby studying the expansion history
and structure growth in the Universe. It is this potential for new physics which has strongly
boosted the interest in observational cosmology, and has led to the planning and conduction of
new and ambitious surveys over the next∼ 12 years. One of the key questions is whether the
equation-of-state parameterw, the ratio of pressure and density of dark energy is truly−1, as
would be the case for a cosmological constant, or if it differs from this value, with a possible
time dependence. Using WMAP-3 in combination with SDSS data and results from the Super-
nova Legacy Survey (SNLS), Spergel et al. (2007) are able to place the currently best constraints
on the equation-of-state parameterw = −1.08± 0.12, assuming it to be constant.

The Dark Energy Task Force (DETF, Albrecht et al. 2006) and the ESA-ESO Working Group
on Fundamental Cosmology (Peacock et al. 2006) compare different techniques concerning their
prospects to constrain and study the evolution of dark energy arriving at consistent conclusions:
It will be necessary to combine the precise measurements of the CMB soon provided by the
PLANCK satellite with probes of the expansion history and structure growth at lower redshifts.
The DETF identifies the four major probes: baryonic acousticoscillations, galaxy cluster sur-
veys, supernova surveys, and weak gravitational lensing surveys as being most promising for
this task, with the distinction that weak lensing surveys will potentially be able to yield the tight-
est constraints, if systematic errors prove to be well enough controllable.

In the weak lensing regime gravitational shear distortionsare small and can only be measured
statistically from a large ensemble of background source galaxies. This is relevant in the outer
regions of galaxy clusters and, in particular, for gravitational lensing of the large-scale-structure
itself, which is also termed “cosmic shear” or “cosmological weak lensing”. Measuring the latter
provides a powerful tool to constrain the power spectrum of the total matter density field. If the
source population can accurately be split into redshift bins, the change of the shear signal with
redshift additionally yields constraints on the power spectrum evolution which depends on the
evolution of dark energy properties. Due to the weakness of cosmological shear it is, however,
challenging to measure, with the first detections only reported seven years ago (Bacon et al. 2000;
Kaiser et al. 2000; Van Waerbeke et al. 2000; Wittman et al. 2000). Since then cosmic shear has
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developed into a flourishing field of cosmology, where growing surveys and better corrections for
systematic effects do not only yield constraints on the matter contentΩm and the normalisation of
the power spectrumσ8 (Maoli et al. 2001; Van Waerbeke et al. 2001, 2002, 2005; Hoekstra et al.
2002a; Refregier et al. 2002; Bacon et al. 2003; Brown et al. 2003; Jarvis et al. 2003; Hamana
et al. 2003; Heymans et al. 2004, 2005; Rhodes et al. 2004; Massey et al. 2005; Hetterscheidt
et al. 2007; Massey et al. 2007c; Schrabback et al. 2007; Benjamin et al. 2007) but recently
also on the dark energy equation of state parameterw (Jarvis et al. 2006; Hoekstra et al. 2006;
Semboloni et al. 2006; Kitching et al. 2007).

Given that the typical cosmic shear signal-to-noise ratio per background galaxy is only of
order 1/30, a proper correction for systematic effects is indispensable, first of all for the image
point-spread-function (PSF). The PSF dilutes the shear signal by isotropic blurring and creates
spurious signal due to anisotropy, which can easily exceed the cosmological signal. This is par-
ticularly important in view of the next generation of cosmicshear surveys, which will provide
the statistical power to measure cosmological shear with percent and sub-percent level accuracy
aiming at precision measurements of dark energy properties. This will only be possible if the
methods used to extract the shear signal by measuring galaxyshapes have a comparable sys-
tematic accuracy. In order to assess the accuracy of existing methods and to provide a platform
for further development the Shear TEsting Programme1 (STEP) was launched in 2004, with first
results published by Heymans et al. (2006b) and Massey et al.(2007a). So far blind analyses
of simulated images containing a hidden shear signal were conducted. From these we conclude
that several shape measurement techniques already reach a systematic accuracy of a few percent,
which is sufficient for current studies, but substantial development is still required for upcoming
surveys.

Both the majority of the previous cosmic shear measurements were, and most of the planned
surveys will be, conducted using ground-based wide-field imaging data. Ground-based data are
however strongly affected by the variable conditions of Earth’s atmosphere, where image blurring
due to atmospheric turbulence (seeing) erases the shape information of small galaxies. Alterna-
tive concepts for future space-based wide-field imaging missions such as DUNE2 or SNAP3 are
currently being proposed to funding agencies. These would provide shear information without
the disturbing influence of the atmosphere, which would be enormously helpful concerning the
high systematic accuracy sought when targeting dark energy. In addition, the resolution of space-
based imaging provides a substantially higher number density of usable background galaxies,
which is important both for measurements of the small-scalepower spectrum and for dark matter
mapping. Space missions can furthermore provide deep infrared imaging, which is very valu-
able for an accurate estimate of the source redshift distribution via the technique of photometric
redshifts.

In order to prepare for this future generation of space-based surveys it is not only important to
improve and develop shape measurement methods, but also to test existing methods on currently
available data, in order to better assess the feasibility and identify possible obstacles.

1http://www.physics.ubc.ca/˜heymans/step.html
2http://dune-mission.net/
3http://snap.lbl.gov/

http://www.physics.ubc.ca/~heymans/step.html
http://dune-mission.net/
http://snap.lbl.gov/
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The only currently available space telescope useful for weak lensing measurements is the
Hubble Space Telescope(HST). Cosmic shear studies have already been carried out with the
HST cameras WFPC2 (Rhodes et al. 2001; Refregier et al. 2002; Casertano et al. 2003) and
STIS (Ḧammerle et al. 2002; Rhodes et al. 2004; Miralles et al. 2005).With the installation of
theAdvanced Camera for Surveys(ACS) Wide-Field Channel(WFC) detector in March 2002, a
camera combining improved sensitivity (48% total throughput at 660 nm) and a relatively large
field-of-view (∼ 3.′3× 3.′3) with good sampling (0.′′05 per pixel) became available. This unique
tool for weak lensing measurements at small angular scales has already provided exceptional
results for the study of galaxy clusters (Jee et al. 2005a,b,2006, 2007; Lombardi et al. 2005;
Clowe et al. 2006; Bradač et al. 2006; Leonard et al. 2007) and galaxy-galaxy lensing(Heymans
et al. 2006a; Gavazzi et al. 2007).

In this thesis project I have now conducted a cosmological weak lensing analysis using im-
ages from the ACS archive, which provides the largest available dataset for space-based cos-
mic shear measurements. With a total area of approximately two square degrees this dataset is
smaller than most current ground-based surveys, but the substantially higher number density of
background sources provides the capability for competitive constraints on the small scale power
spectrum. In addition, the analysis of the ACS archive provides a pathfinder role for future space-
based surveys. During the course of this project independent analyses of two subsets of these
data have been published, the GEMS (Heymans et al. 2005) and COSMOS (Massey et al. 2007c)
surveys, allowing for independent tests of the different analysis pipelines.

A large fraction of the data in the ACS archive is provided withrudimental calibration only.
On the other hand weak lensing places very high demands on data quality. Therefore a major
aspect of this work was the development of a sophisticated data reduction pipeline for ACS,
which additionally has been used in several other projects.Besides the work on ACS data, a
large portion of the thesis project has been devoted to the testing and improvement of the applied
shape measurement method within the STEP project.

This manuscript is organised as follows: I will first summarise the theoretical background
on cosmology and structure formation in Chapter 2, followed by an introduction to gravitational
lensing in Chapter 3. Chapter 4 will be devoted to shape measurement tests conducted within the
STEP project. I will detail on the instrument, data, and datareduction in Chapter 5. The cosmic
shear analysis is divided into a pilot study conducted with early data from theACS Parallel
Surveyand theGEMS Survey, as described in Chapter 6, and a preliminary analysis of the ACS
COSMOS data presented in Chapter 7. I will briefly summarise further projects which make use
of our ACS pipeline in Chapter 8 and finally conclude in Chapter 9.



Chapter 2

Cosmology and structure formation

In this Chapter I will summarise aspects of cosmology and structure formation, which are rel-
evant for the understanding of this thesis. In the first Section I will give a brief introduction to
standard cosmology, which describes the evolution of the Universe as a whole, assuming that it is
homogenous and isotropic. I will then proceed with the theory of structure formation describing
the evolution of density inhomogeneities in Section 2.2. Both theories are presented in-depth
for example in the extensive monograph by Peacock (1999). A detailed description, particularly
of structure formation, is also given by Dodelson (2003). The chapter will be completed with a
summary of different probes for cosmological parameter estimation in Section 2.3.

2.1 Cosmology

In theTheory of General RelativityEinstein (1916) describes the Universe by a four dimensional
space-time, which is characterised by its metric tensorgαβ. The geometry and the energy content
of the Universe are interrelated byEinstein’s field equations

Gαβ = −
8πG
c2

Tαβ − Λgαβ , (2.1)

where theEinstein tensor Gαβ is a function of the metric and its first and second derivatives. G
andc are the gravitational constant and the speed of light in vacuum. The energy-momentum
tensor for the matter and radiationTαβ is that of an ideal fluid, which can be characterized by its
densityρ(~x, t) and pressurep(~x, t). Λ is a possiblecosmological constant.

2.1.1 Homogeneous and isotropic world models

Although Einstein’s field equations cannot be solved generally, solutions can easily be found
if one imposes two strong constraints on their possible form, which are also referred to as the
cosmological principle: It postulates that the matter distribution and motion isisotropicon suf-
ficiently large scales as seen by a comoving observer, who participates in the cosmic expansion
without any peculiar velocity, and that every comoving observer experiences the same history of
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the Universe. The latter characteristic is also namedobserver homogeneous. While it is not a
priori clear if these assumptions are really justified, observations show that the matter distribu-
tion and motion indeed appear to be isotropic on sufficiently large scales& 200 Mpc (see Section
2.2). In the discussion we will thus follow the “standard” approach to examine the impact of a
smoothed homogeneous densityρ(t) and pressurep(t) field on the space-time metric, which is
justified by the argument that the Universe is much larger than this scale. However, note that this
approach is currently questioned in the literature (e.g. Kolb et al. 2006; Wiltshire 2007).

Robertson (1935) and Walker (1936) showed independently that the most general form for a
line element ds fulfilling the cosmological principle is given by

ds2 = gαβdxαdxβ = c2dt2 − a2(t)dr2; dr2 = dχ2 + f 2
K (χ)

(

dθ2 + sin2 θdΦ2
)

, (2.2)

with the timet measured by a comoving observer, the cosmic scale factora(t), and the comoving
line element dr of a three-dimensional space with constant curvature. Thisline element dr de-
pends on a radial coordinateχ and two angular coordinatesΦ andθ. Under the assumption that
the Universe is homogeneous and isotropic,K has to be uniform. ThenfK (χ) takes the form

fK (χ) =























1√
K

sin
(√

Kχ
)

K > 0
χ K = 0 .

1√
−K

sinh
(√
−Kχ

)

K < 0
(2.3)

Assuming homogeneity the scale factora may only depend on timet, and all distances in three-
dimensional space scale directly witha(t). With these constraints, (2.1) simplifies to theFried-
man equations

( ȧ
a

)2

=
8πG

3
ρ − Kc2

a2
+
Λ

3
, (2.4)

and
ä
a
= −4πG

3

(

ρ +
3p
c2

)

+
Λ

3
, (2.5)

which describe the evolution of the cosmic scale factor withtime. The left-hand side of (2.4) is
the square of theHubble parameter

H(t) =
ȧ(t)
a(t)

. (2.6)

Its value at the present epocht0 is theHubble constant H0, which interrelates the distances and
apparent recession velocities of objects in the nearby Universe. Since the distance of a nearby
object can be approximated byD ≈ a (t0) χ, its apparent recession velocity is then given by

v = ȧ(t0)χ =
ȧ(t0)
a(t0)

D = H0D . (2.7)

H0 is of order 70 km s−1 Mpc−1 (see Sect. 2.3.1), where the uncertainty in its value is usually
parameterised asH0 = 100hkm s−1 Mpc−1. The inverse of the Hubble constant is calledHubble
time H0

−1 ≈ 10h−1 Gyr and would be equal to the age of the Universe if the expansion rate
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would have been constant. The maximum distance a photon could have travelled during this
time defines theHubble radius RH = c/H0 ≈ 3h−1 Gpc.

As detailed in Sect. 2.3.2, several independent probes confirm that the expansion of the Uni-
verse is currently accelerating with ¨a > 0. With (2.5) this implies that either

1. The cosmological constant is indeed non-zero, or

2. A particle or field with negative pressure such that
(

ρ +
3p
c2

)

< 0 dominates the Universe, or

3. The underlying theory of General Relativity is wrong or incorrectly applied.

For the second case the unknown constituent has been nameddark energy. We define the
equation-of-state parameter

w =
p

c2ρ
, (2.8)

which must be smaller than−1/3 for dark energy. Combining the time-derivative of (2.4) with
(2.5) yields

ρ̇ = −3H
(

ρ +
p
c2

)

, (2.9)

which holds for each contributor to the energy density separately. For constantw we find

ρ̇ = ȧ
dρ
da
= −3

ȧ
a

(1+ w)ρ , (2.10)

so that dρ/da = −3(1+ w)(ρ/a) and

ρ = ρ0a
−3(1+w) , (2.11)

whereρ0 denotes the contributor’s density today and we normalise the cosmic scale factor to
today,a(t0) = 1.

For non-relativistic matter, which is often called dust,w is of order (v/c)2, and can be ig-
nored, whereas relativistic particles and radiation have significant pressurepr = ρrc2/3 yielding
w = +1/3. From (2.11) follows the dependence of the dust, radiation, and dark energy density
on the scale factor

ρm ∝ a−3

ρr ∝ a−4 (2.12)

ρX ∝ a−3(1+w) .

For normalisation we define thecritical density

ρcr =
3H2

0

8πG
(2.13)

and the dimensionless parameters

Ωm =
ρm

ρcr
, Ωr =

ρr

ρcr
, ΩX =

ρX

ρcr
. (2.14)
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Then (2.4) can be rewritten as

H2(t) = H2
0

[

Ωra(t)−4 + Ωma(t)−3 − Kc2

H2
0

a(t)−2 + ΩXa(t)−3(1+w)

]

, (2.15)

where the case of a cosmological constant instead of a dark energy field is absorbed in
ΩX(w = −1) = ΩΛ = Λ/(3H2

0). At present constraints onw are rather weak and unable to distin-
guish fromw = −1. To shorten the notation we will therefore useΩΛ instead ofΩX whenw = −1
is implicitly assumed.

WhileΩm andΩΛ are both of order unity (see Sect. 2.3.2),Ωr ≈ 10−5 can be neglected at the
present epoch1. Radiation played an important role only in much earlier phases of the Universe.
For the rest of the chapter we will therefore neglectΩr. The geometry of the Universe depends
on the total sum of the density parameters:

Ωtot = Ωm + ΩX . (2.16)

If we insertt = t0, the curvature today follows from (2.15)

K =
(H0

c

)2

(Ωm + ΩX − 1) =
(H0

c

)2

(Ωtot − 1) . (2.17)

The different signs thatK can have correspond to different geometries of the Universe:

Ωtot < 1 ⇐⇒ K < 0 open universe,

Ωtot = 1 ⇐⇒ K = 0 flat universe, (2.18)

Ωtot > 1 ⇐⇒ K > 0 closed universe.

The special case of a flat universe withΩm = 1 andΩX = 0 is calledEinstein–de Sitter(EdS)
universe. EliminatingK in (2.15) by inserting (2.17) leads to

H2(t) = H2
0

[

Ωma(t)−3 + (1−Ωm −ΩX)a(t)−2 + ΩXa(t)−3(1+w)
]

. (2.19)

For the case of a time-dependentw the dark energy dependence on the scale factor can be gener-
alised as

a(t)−3(1+w) −→ exp

(

3
∫ 1

a

da′

a′
[1 + w(a′)]

)

. (2.20)

2.1.2 Redshift and distances

Due to the expansion of space-time photons are redshifted ontheir way through the Universe.
Theredshiftof a source is defined as

z≡ λobs− λem

λem
, (2.21)

1The dominant contribution toΩr at the present time comes from the photons of the Cosmic Microwave Back-
ground (see Section 2.1.3) withΩCMB ≈ 2.4× 10−5h−2.
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with the emitted wavelengthλem and observed wavelengthλobs of a photon travelling from the
source to the observer. Redshift and scale factor are directly related by

1+ z=
a(t0)
a(tem)

=
1

a(tem)
. (2.22)

Different measurement prescriptions for distances exist, yielding the same results in static
Euclidian space, as was tacitly assumed in (2.7). However, they can give different results in an
expanding or curved space-time. Thus one clearly has to define which measurement prescription
is applied, if distances are used in cosmology.

Most important for this thesis is theangular diameter distancerelating the cross-sectionδA
of an object to the solid angleδΩ under which it appears

Dang=

(

δA
δΩ

)1/2

. (2.23)

It is defined such that the relation between the physical separation X of two light rays and the
angleθ between them, remains valid also in curved space-time:

Dang=
X
θ
. (2.24)

Thus it is the appropriate distance definition for gravitational lensing theory (see Section 3.1).
The angular diameter distance between an objects at redshift z2 and an observer at redshiftz1 is
given by

Dang(z1, z2) = a(z2) fK
[

χ(z2) − χ(z1)
]

, (2.25)

which can be expressed in terms of the density parameters as

Dang(z1, z2) =
1

1+ z2
fK















c
H0

∫ z2

z1

dz′
√

(1−Ωm −ΩX) (1+ z′)2
+ Ωm (1+ z′)3

+ ΩX (1+ z′)3(1+w)















.

(2.26)
In the special case of an EdS universe (2.26) can be integrated to

Dang(z1, z2) =
2c

H0(1+ z2)

(

(1+ z1)
−1/2 − (1+ z2)

−1/2
)

. (2.27)

The luminosity distanceis defined via the ratio between the luminosityL of a source at
redshiftz2 and the fluxS measured by an observer at redshiftz1

Dlum =

√

L
4πS

, (2.28)

which is related to the angular diameter distance as

Dlum(z1, z2) =

(

1+ z2

1+ z1

)2

Dang(z1, z2) . (2.29)
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The extent of structures in the Universe at different redshifts is usually compared in terms
of thecomoving distance. This distance scale expands together with the Universe andis defined
on the spatial hypersurfacet = t0 between the world lines of the source and the observer. With
a(t0) = 1 it is directly given by∆Dcom = ∆χ. From the metric (2.2) followscdt = −adχ, because
light rays propagate with ds = 0. By inserting (2.19) into dDcom = −a−1 cdt = −cda (ȧ a)−1 =

−cda (a2 H)−1 we find that the comoving distance between a source atz2 and an observer atz1 is
given by

Dcom(z1, z2) =
c

H0

∫ a(z2)

a(z1)

[

Ωma′ + (1−Ωm −ΩX)a′2 + ΩXa′1−3w
]−1/2

da′ . (2.30)

2.1.3 The Cosmic Microwave Background

With the Universe expanding today, the cosmic scale factor must haven been smaller in the past,
with higher photon energies due to redshifting. This leads to the conclusion that the Universe
originated from a dense and hot state with much higher particle interaction rates than today. At
early times photons and electromagnetically interacting particles were in thermal equilibrium,
with photon energies described by the Planck distribution.Once electrons and protons combined
to create neutral hydrogen, and photon energies became too low to ionise the hydrogen atoms
again, the cross-section for photon-particle interactions dropped strongly. After passing thislast
scattering surface, the photons travelled almost freely through the expandingUniverse, continu-
ously being redshifted. It can be shown that photon energiesdescribed by a Planck distribution at
an initial timeti, still follow a Planck distribution after being redshiftedwith the new temperature

T(t) = T(ti)
a(ti)
a(t)

. (2.31)

In the present Universe this radiation can be observed as theCosmic Microwave Background
Radiation(CMB), which was first detected by Penzias & Wilson (1965). The absolute temper-
ature of the CMB was measured very precisely by theCosmic Background Explorer(COBE)
to beT(t0) = 2.728± 0.004K (Fixsen et al. 1996). Comparing the temperature in different di-
rections, fluctuations of the order∆T

T . 10−5 have been detected by many different experiments.
The currently most precise all-sky map of the CMB fluctuationswas measured by theWilkin-
son Microwave Anisotropy Probe(WMAP, Bennett et al. 2003), see Fig. 2.1. The analysis of
the WMAP data yielded unprecedented constraints on numerouscosmological parameters (see
Sect. 2.3), including the redshift of photon-baryon decoupling zdec= 1088+1

−2, which corresponds
to the peak in the photon visibility function. The FWHM of the visibility function can be used to
define the effective thickness of the decoupling surface∆zdec= 194± 2 (Spergel et al. 2003).

2.2 Structure formation

In Section 2.1 we assumed that the Universe is isotropic and homogeneous. This assumption is
obviously wrong on scales of our ordinary lives. Also in stars, galaxies, and galaxy clusters the
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Figure 2.1: All-sky map of the temperature fluctuations in the Cosmic Microwave Background
as measured by the WMAP satellite with 13′ FWHM resolution (WMAP-3). In this plot a linear
scale is used ranging from−200µK (dark blue) to+200µK (red) deviation from the average tem-
perature. For this map, measurements in five different frequency bands have been combined in or-
der to subtract foreground contaminations. Note that thereis a chance alignment of a particularly
warm feature and a cool feature near the Galactic plane. Figure from http://map.gsfc.nasa.gov.
Credit: NASA/WMAP Science Team.

matter distribution is very concentrated and thus inhomogeneous. Observations of the large-scale
distribution of galaxies, like the2dF Galaxy Redshift Survey(2dFGRS) or theSloan Digital Sky
Survey(SDSS), show that galaxies are located preferentially along filaments, which are sepa-
rated by almost empty regions calledvoids(see Fig. 2.2). At the intersections of filaments one
often finds galaxy clusters. Together with the underlying dark matter distribution, the large-scale
galaxy distribution is termedlarge-scale-structure. Smoothed over regions of approximately
200h−1Mpc, the matter distribution appears to be largely homogeneous, justifying the use of the
mean densityρ(t) in the Friedman equations.

A useful quantity to describe the growth of structures is thedensity contrast

δ(~r , t) =
ρ(~r , t) − ρ̄(t)

ρ̄(t)
, (2.32)

which is defined as the relative deviation of the densityρ(~r , t) from the average density ¯ρ(t) =
ρ̄(t0)/a3, and is always≥ −1 given thatρ ≥ 0. As the CMB temperature fluctuations are of order
∆T/T ∼ 10−5, we also expect that|δ| ≪ 1 atz∼ 1100. On the hand massive galaxy clusters in the
present Universe haveδ & 200 in their central∼ 1.5 Mpc. The growth of these inhomogeneities is
driven by gravitational instability: while the dynamic of cosmic Hubble expansion is controlled
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Figure 2.2: Redshift distribution of the galaxies in the complete 2dF Galaxy Redshift Survey. In
the survey reliable redshifts have been measured for 221,414 galaxies. The projected map clearly
shows the large-scale structure of the luminous matter, traced by galaxy clusters, filaments and
voids. (Image credits: M. Colless et al., 2dF Galaxy Redshift Survey)

by the mean density ¯ρ(t), the density deviation∆ρ(~r , t) = ρ(~r , t) − ρ̄(t) creates an additional
gravitational field. For∆ρ > 0 and henceδ > 0 the stronger field leads to a slower local
expansion. Therefore, the density decreases slower than the mean density ¯ρ(t), leading to a
further increase inδ.

The origin of the initial density fluctuations is still underdebate, but it is most widely assumed
that they arose from quantum fluctuations in the very early Universe (∼ 10−43 s), which were
inflated during a phase of exponentially accelerated expansion calledinflation. In this scenario,
the statistics of the original density fluctuations can be described by Gaussian random fields.

2.2.1 Linear structure growth

For |δ| ≪ 1 the growth of structures can be described by linear perturbation theory, where we
make two additional simplifications:

• We only consider length scales much smaller than the HorizonrH, which is given by the
maximum distance a photon can have travelled since the Big Bang. Hence, we only con-
sider scales which are much smaller than any scale relevant for the Universe as a whole,
enabling us to apply Newtonian gravity.
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• We limit the discussion to non-relativistic pressure-lessmatter (dust).

Furthermore, we only consider the case of dark energy as a pure cosmological constant here.
The non-relativistic matter can be treated as a pressureless fluid with densityρ(~r , t) moving

with velocity~u(~r , t) under the influence of a gravitational field, which obeys thefollowing set of
differential equations:

∂ρ

∂t
+ ∇r ·

[

ρ~u
]

= 0 Continuity equation (2.33)

∂~u
∂t
+

(

~u · ∇r
)

~u = −∇rφ Euler equation (2.34)

∇2
rφ = 4πGρ − Λ Poisson equation, (2.35)

whereφ denotes the gravitational potential. The Poisson equationhas been modified to allow for
a cosmological constant, where the form has been chosen to reproduce the Friedmann equation
(2.5). The homogeneous solution of this set of equations is given by the Hubble expansion

ρ(~r , t) = ρ̄(t) = ρ0a
−3 (2.36)

~u(~r , t) =
ȧ
a
~r (2.37)

φ(~r , t) =
1
6

(4πGρ̄ − Λ) |~r |2 . (2.38)

For |δ| ≪ 1 deviations from the Hubble expansion will be small. Hence,general solutions can be
found as linear perturbations of the homogeneous solution.For this we transform to comoving
coordinates~x = ~r/a, decompose the velocity into homogeneous expansion and peculiar velocity
~u(~r(~x), t) = ȧ~x+~v(~x, t), define the comoving potentialΦ(~x, t) = φ(a~x, t)+(äa/2) |~x|2, and substitute
the density by the density contrast, so that (2.33) to (2.35)read

∂δ

∂t
+

1
a
∇x ·

[

(1+ δ)~v
]

= 0 Continuity equation (2.39)

∂~v
∂t
+

ȧ
a
~v+

1
a

(

~v · ∇x
)

~v = −1
a
∇xΦ Euler equation (2.40)

∇2
xΦ =

3H2
0Ωm

2a
δ Poisson equation. (2.41)

We consider only small perturbations|δ| ≪ 1 and therefore neglect terms non-linear inδ und~v.
By combining the time derivative of (2.39), and the divergence of (2.40) with (2.41), we find the
linearised evolution equation of the density perturbations:

δ̈ +
2ȧ
a
δ̇ −

3H2
0Ωm

2a3
δ = 0 . (2.42)

This equation no longer has an explicit dependence on~x. Hence, the temporal and spatial depen-
dences of the solution factorise. The general solution of the second-order differential equation
(2.42) is therefore given by

δ(~x, t) = D+(t)∆+(~x) + D−(t)∆−(~x) , (2.43)
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whereD±(t) are the two linearly independent solutions ofD(t) obeying

D̈ +
2ȧ
a

Ḋ −
3H2

0Ωm

2a3
D = 0 . (2.44)

With D+(t) we denote thegrowing modewhich increases with time, whileD−(t) refers to the
decreasingdecaying mode. Any early contribution ofD−(t) will have faded away at current
epochs so that only the growing mode is present, which we normalise toD+(t0) = 1 for today.

In the special case of an EdS universe the time-dependence ofthe scale factor is given by
a(t) = (t/t0)2/3 with t0 = 2/(3H0), leading to the solutionsD+ = (t/t0)2/3 andD− = (t/t0)−1 =

(3t0/2)H(t). By computingd
dt (Ḣ +H2) it can be shown that the Hubble parameterH(t) generally

provides one solution of (2.44), which, however, refers to the decaying mode. With it the growing
solution can be constructed using Sturm-Liouville theory as

D+(t) ∝ H(t)H2
0

∫ t

0

dt′

a2(t′)H2(t′)
. (2.45)

The explicitly computed growing solution of the EdS universe also provides a very rough
approximation for other cosmologies (see Fig. 2.3). Since we observe large density contrasts
δ ≫ 1 today, we would expectδ(z= 1100)& 10−3 leading to∆T/T & 10−3 at the time the CMB
radiation was emitted. However, the observed fluctuations in the CMB are weaker by approx-
imately two orders of magnitude (see Section 2.1.3). This isa very strong indication that the
major fraction of the matter is not in baryonic form, but has to be dark matter which only inter-
acts gravitationally. At the time the CMB was emitted, the dark matter must already have formed
stronger density fluctuations, whereas the distribution ofthe baryonic matter was smoother due
to the pressure of the matter-radiation fluid.

In the linear perturbation theory applied above, the spatial distribution∆+(~x) of the initial
fluctuations does not change in comoving coordinates, whileonly the amplitude of the fluctu-
ations grows in time withD+(t). Thus, fluctuations on different scales do not mix. With the
normalisationD+(t0) = 1 chosen,∆+(~x) would describe the present day fluctuations,if the evo-
lution had been linear. We will discuss the impact of non-linear evolution in Sect. 2.2.6.

2.2.2 Statistical properties of the density field

Due to the clustering of matter it is more likely to find an overdense region near to another
one than at a random location. In real-space this is typically described in terms of correlation
functions.

While the expectation value for the density at location~x is simply given by the mean density
〈ρ(~x)〉 = ρ̄, the expectation value for the product of the densities at locations~x and~y becomes

〈ρ(~x) ρ(~y)〉 = ρ̄2〈[1+ δ(~x)
] [

1+ δ(~y)
]〉 = ρ̄2 (

1+ 〈δ(~x) δ(~y)
)

=: ρ̄2 (

1+ ξ(~x, ~y)
)

, (2.46)

where we have defined thetwo-point correlation functionof matter fluctuationsξ(~x, ~y) and used
〈δ(~x)〉 = 0. Due to the homogeneity of the Universeξ may only depend on the separation vector
(~x− ~y), and isotropy further limits its dependence to the modulusr = |~x− ~y| of this vector.
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Figure 2.3: Growth factorD+(t) for three different cosmological models in dependence of the
scale factora (left) and the redshiftz (right). Source: P. Schneider.

Alternatively, the description can be performed in Fourier-space with the transformed density
contrast

δ̂(~k, t) =
∫

d3xei~k·~xδ(~x, t) , (2.47)

where~k denotes the comoving wave vector, and thepower spectrum

P(|~k|) =
∫

d3xe−i~k·~xξ(|~x|) = 2π
∫ ∞

0
dr r 2 sinkr

kr
ξ(r) . (2.48)

The larger its value is for a modek, the larger is the amplitude of fluctuations at length scale
L ≃ 1/k.

Both ξ(r) and P(k) are time-dependent, evolving as structures grow. As they dependent
quadratically onδ, which evolves as

δ(~x, t) = D+(t)∆+(~x) , (2.49)

their linear time evolution reads

ξ(x, t) = D2
+(t) ξ(x, t0) (2.50)

P(k, t) = D2
+(t) P(k, t0) =: D2

+(t) P0(k) , (2.51)

where we have definedP0(k) as thelinearly extrapolatedpresent day power spectrum.
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2.2.3 The initial power spectrum

The currently most popular scenario for the origin of the observed density fluctuations are quan-
tum fluctuations in the early Universe, which can be described by Gaussian random fields and
have been exponentially enlarged during the phase of inflation.

At very early timesafter inflation, all length scales which are relevant today, have been much
larger than the horizonrH. Hence, there was no distinguished length scale, so that theinitial
power spectrum could only have the form of a power law

P(k) ∝ kns , (2.52)

with the spectral index ns. For ns = 1 the fluctuation in the potential and hence space-time
become scale independent, leading to theHarrison-Zeldovich spectrum

P(k, ti) = Akns ; ns = 1 , (2.53)

where the normalisationA cannot be predicted but only determined by observations. Indeed a
detailed quantitative treatment of inflation predictsns close to, but slightly smaller than 1 (see
e.g. Dodelson 2003).

2.2.4 Transfer function

So far we have only considered sub-horizon matter fluctuations, which in a matter-dominated
flat cosmology grow withδ ∝ a. A generalised treatment, for example discussed in Dodelson
(2003), shows that this is also the case for super-horizon fluctuations, if matter dominates the
expansion.

On the other hand the early expansion history was dominated by radiation, which can be seen
from (2.15). The transition from radiation to matter dominance happens at

zeq = a−1
eq − 1 ≃ 23900Ωmh2 . (2.54)

Fora≪ aeq modes of scaleL grow as

δ ∝ a2 if L ≫ rH ,and (2.55)

δ ≈ const if L ≪ rH , (2.56)

where the suppression of growth forL ≪ rH originates from the radiation dominated expansion
entering in (2.44).

We define the scale factoraenter(L), at which the length scaleL of a fluctuation enters into the
co-moving horizon, or – more correct – the horizon grows above the length scaleL:

rH(aenter(L)) = L . (2.57)

Small-scale fluctuations enter into the horizon earlier andare hence stronger suppressed, as il-
lustrated in Fig. 2.4. We define the special length scaleL0 for whichaeq = aenter(L0):



2.2. Structure formation 21

L3 L2

L1

L  <2L  <1 L3

entera       (L  ) 2

entera       (L  ) 3 

entera       (L  ) 1

eq log(a)a

radiation dominance matter dominance

  =const

  ~a

  ~a

log(  )δ

δ δ2

δ

Figure 2.4: Growth of density fluctuations as a function of scale factora for three different
co-moving length scalesL1 < L2 < L3. After entering the horizon ata = aenter(L) the growth
is suppressed during radiation dominance untila = aeq. The fluctuation of scaleL1 enters the
horizon first leading to the strongest suppression. TheL3-fluctuation enters the horizon after the
time of matter and radiation equality and is therefore not suppressed.

L0 = rH(aeq) =
c√
2H0

1√
Ωm

a1/2
eq =

c√
2H0

1√
23900Ωmh

≃ 12
(

Ωmh2
)−1

Mpc . (2.58)

Scales smaller thanL0 are suppressed by the factor [aenter(L)/aeq]2.
Furthermore, structure growth depends on the nature of darkmatter. The theory of linear

structure growth as summarised above correctly applies to so-called “cold” dark matter (CDM)
consisting of non-relativistic particles. Dark matter particles which are relativistic or “hot”
(HDM) are not bound to the potential wells. Hence, if all darkmatter was hot, small-scale
fluctuations would be washed out due to free streaming. In this scenario large structures would
form first, later fragmenting into smaller ones. Different observations such as the presence of
galaxies atz ∼ 6 show that this cannot be the case and the dominant part of dark matter must
be cold. Nonetheless, a small contribution of hot dark matter is expected from neutrinos, which
were relativistic atzeq.

Corrections to structure growth, such as the ones discussed,but also effects due to pressure
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and dissipation, are summarised in thetransfer function Tk defined as

Tk =
δ(k, t0)

δ(k, tini)D+(tini)
, (2.59)

with the linear growth factorD+ between an initial timetini and the presentt0. The initial time
is arbitrary, as long as it refers to a time before any scale ofinterest became smaller than the
horizon.

For a CDM-only Universe Efstathiou et al. (1992) derive a fitting formula:

Tk =
[

1+
(

6.4q+ (3.0q)3/2 + (1.7q)2
)ν]−1/ν

, with ν = 1.13, (2.60)

which depends on the dimensionless parameter

q =
k

Ωmh2Mpc−1
=

k/(hMpc−1)
Γ

, (2.61)

with theshape parameter
Γ = Ωmh . (2.62)

For largek andq (2.60) reproduces the suppression of sub-horizon modes∝ k−2. The shape
parameter corresponds to the wave modek/(hMpc−1), where the transfer function turns over from
a constant to this suppression. Sugiyama (1995) provide a modification of the shape parameter
in the presence of baryons

Γ = Ωmhexp [−Ωb(1+
√

2h/Ωm)] , (2.63)

whereΩb denotes the baryonic matter content.
Taking the transfer function into account, the time-dependent linearly extrapolatedpower

spectrum reads
P(k, t) = D2

+(t)T
2
k Akns . (2.64)

2.2.5 Power spectrum normalisation

The normalisation of the power spectrumA cannot be predicted, but has to be determined from
observations. WhileA is often used in the context of CMB science, observations in the low-
redshift Universe usually use an alternative normalisation given by

σ8 = σ(δ)[R=8h−1Mpc] =

√

〈δ2〉[R=8h−1Mpc] , (2.65)

which measures the dispersion of thelinearly extrapolateddensity contrastδ determined in
spheres of radiusR = 8h−1Mpc. This at first sight arbitrary length scale was chosen because
the dispersion of the number of galaxies measured in this volume is of order unity, so that also
σ8 should be of order unity assuming that galaxies trace the underlying dark matter well.
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2.2.6 Non-linear evolution and simulations

The theory of linear structure growth breaks down forδ & 1, and hence fails to explain, for exam-
ple, the formation of galaxies and galaxy clusters. Here an analytic treatment is only possible in
special cases such as the spherical collapse model (e.g. Peacock 1999). For the general case one
has to rely on numerical N-body simulations, where the state-of-the-art is currently given by the
Millennium Simulation containing 1010 particles (Fig. 2.5). Such simulations of cold dark matter
particles in a universe with cosmological constant (ΛCDM) efficiently reproduce the filamentary
cosmic webobserved in galaxy redshift surveys.

In contrast to linear structure growth, perturbations of different scales (differentk-modes)
interact in non-linear evolution creating non-Gaussian features in the density field. Hence, the
statistical properties of the density field are no longer fully described by the power-spectrum, but
higher-order statistics have to be taken into account. Basedon numerical simulations Peacock
& Dodds (1996) found a fitting function for the power spectrumin the non-linear regime, which
was later revised by Smith et al. (2003) to better describe the small-scale signal.

In Fig. 2.6 the predicted power spectrum is plotted for different CDM cosmologies, once
considering only linear structure growth and once taking non-linear corrections by Peacock &
Dodds (1996) into account. The cosmological parameters used in the different models are listed
in Table 2.1.

Table 2.1: Overview of cosmological parameters used in Fig.2.6.

Ωm ΩΛ Γ σ8 model name
1.0 0 0.25 0.6 EdS(0.6,0.25)
0.3 0 0.25 1.0 OCDM(1.0,0.25)
0.3 0.7 0.25 1.0 ΛCDM(1.0,0.25)
1.0 0 0.25 1.0 EdS(1.0,0.25)
1.0 0 0.5 0.6 EdS(0.6,0.5)
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Figure 2.5: Dark matter density field in the Millennium Simulation projected within slices of
15h−1 Mpc. The simulation has a side-length of 500h−1 Mpc and contains 1010 particle. For the
lower two panels slices taken at different angles were combined to obtain the large side-length
while avoiding replicating structures (from Springel et al. 2005).
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Figure 2.6: Power spectrum for five different cosmological models, with parameters detailed
in Table 2.1. Thin lines display the linearly extrapolated power spectrum, whereas the non-
linear corrections given by Peacock & Dodds (1996) were taken into account for the thick
lines. At smallk the models show the∝ kns dependence of the initial power spectrum. Close
to (c/H0)k = 100 the power spectrum turns over due to the suppression of sub-horizon modes
during radiation dominance. Non-linear corrections are important for largek (source: P. Schnei-
der).
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2.3 Measurement of cosmological parameters

Nowadays many different techniques are used to constrain cosmological parameters. As a de-
scription of all of them is beyond the scope of this work I willlimit the discussion to a non-
exhaustive list of important parameters and probes.

2.3.1 Hubble constant

Hubble (1929) first measured a positive Hubble constant of approximately 500 km s−1 Mpc−1

and thus realised that the Universe is actually expanding. However, the estimated value of the
Hubble constant was far too large, given that Hubble under-estimated the brightness of cepheids
used as distance indicator for nearby galaxies. Later the necessary distinction between cepheids
of different stellar populations was found by Baade (1956). Additionally, Hubble’s measurement
was strongly influenced by the peculiar velocities of the observed galaxies and galaxy groups.

More recent measurements from theHST Key Project(see Fig. 2.7) yield a value of the Hub-
ble constant of 72± 3 (stat)± 7 (sys) km s−1 Mpc−1 (Freedman et al. 2001). This is in good
agreement with recent measurements of Cepheid distances to nearby galaxies hosting type Ia
supernovae, which yieldH0 = 73 ± 4 (stat)± 5 (sys) km s−1 Mpc−1 (Riess et al. 2005), and
combined Sunyaev-Zeldovich and X-ray measurements of galaxy clusters, where Bonamente
et al. (2006) findH0 = 77+4

−3 (stat)+10
−8 (sys) km s−1 Mpc−1. Under the assumptions of a spatially

flat geometry and pure cosmological constant the WMAP-3 results also yield tight constraints
H0 = 73± 3 km s−1 Mpc−1 (Spergel et al. 2007).

Another, purely geometric approach to estimateH0 comes from the measurement of time-
delays between the different images of multiply-imaged quasars in strong lensing systems (see
Sect. 3.1). While constraints onH0 from individual systems are often limited by degeneracies
with the radial mass profile of the lensing galaxy, estimatesfrom a larger ensemble seem to be
promising, see Oguri (2007) who findsH0 = 68± 6 (stat)± 8 (sys) km s−1 Mpc−1 from 16 mea-
sured time delays. Currently several large observing programmes such as COSMOGRAIL2 and
HOLIGRAIL3 are conducted, in order to increase the number of accuratelyknow time-delays
and improveH0 estimates from lensing.

2.3.2 Density parameters

The density parametersΩm andΩΛ can be constrained in various ways, which can be grouped
into probes examining the expansion history of the Universe, probes constraining the geometry
of the Universe, and probes measuring the power spectrum of density fluctuations.

During the last decade supernovae of type Ia have been used asstandard candles to probe the
expansion of the Universe. Almost simultaneously the Supernova Cosmology Team (Perlmut-
ter et al. 1999) and the High–z Supernova Search Team (Riess et al. 1998) found evidence for

2http://www.cosmograil.org/
3http://www.astro.uni-bonn.de/˜holigrail

http://www.cosmograil.org/
http://www.astro.uni-bonn.de/~holigrail
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Figure 2.7:Top: A Hubble diagram of distance versus velocity for secondary distance indicators
calibrated by cepheids. A slope ofH0 = 72 km s−1 Mpc−1 is shown, flanked by lines of 10%
error. Beyond 5,000 km s−1 (indicated by the vertical line), both numerical simulations and ob-
servations suggest that the effects of peculiar motions are small.Bottom: Value of the Hubble
constantH0 as a function of distance (Fig. 4 of Freedman et al. 2001).

an accelerating expansion, which is only possible in the presence of dark energy or a positive
cosmological constant.

The geometry of the Universe and henceΩtot can be constrained best using the CMB. The an-
gular power spectrum of CMB temperature fluctuations contains characteristic accoustic peaks,
which originate from accoustic oscillations of the baryon-photon fluid. These oscillations are
driven by the gravitational potential of the dark matter concentrations on the one hand, and the
photon pressure on the other. The physical size of the largest oscillation mode depends on the
well-known scale of the horizon at the time of last scattering. The angular scale of this mode
is then determined by the angular diameter distance to the surface of last scatteringDang(zrec),
which depends on the geometry of the Universe. Hence, the geometry can be well constrained
by measuring the location of the first accoustic peak in the CMBpower spectrum, which was first
determined by the ballon experiments BOOMERANG (de Bernardis et al. 2000) and MAXIMA
(Hanany et al. 2000) to be atℓ ∼ 200 consistent with a spatially flat geometry of the Uni-
verse. These results were confirmed with better accuracy by the WMAP satellite, which yielded
Ωk = 1−Ωtot = −0.014±0.017 when combined with the HST Key Project estimate forh (Spergel
et al. 2007).

Density parameters, particularlyΩm, can also be constrained by measuring the statistical
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properties of the large-scale structure (see Sect. 2.3.3),for example using galaxy clusters or the
large-scale distribution of galaxies. The analysis of supernovae, CMB, and large-scale structure
data yields remarkably consistent and hence independentlyconfirmed parameter constraints (see
Fig. 2.8), which is often termedconcordance cosmology.

Figure 2.8: Consistent constraints onΩm andΩΛ from supernovae, CMB, and galaxy cluster
data. Figure from Knop et al. (2003).

The tightest overall constraints were so far found using theWMAP-3 data, which can be well
fit using a flatΛCDM cosmology with parameters (Ωmh2,Ωbh2,h,ns, τ, σ8) = (0.1277+0.0080

−0.0079,

0.02229±0.00073,0.732+0.031
−0.032,0.958±0.016,0.089±0.030,0.761+0.049

−0.048) (WMAP3 only, Spergel
et al. 2007).τ denotes the optical depth for scattering of CMB photons at free electrons which
were released in the so-called phase of reionisation. Hence, we live in a Universe which is dom-
inated by dark energy (ΩΛ ≈ 0.76), and for which only∼ 1/6 of total matter contentΩm ≈ 0.24
is in baryonic form (Ωb ≈ 0.042). Given these parameters and assuming that dark energy really
behaves like a cosmological constant, the Universe will accelerate and expand forever.
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2.3.3 Power spectrum estimation

Different techniques can be used to contrain the power spectrum of matter density fluctuations.
The main features one aims to extract are

1. the overall normalisation expressed asA orσ8;

2. the spectral indexns defining the slope of the inital fluctuation power law;

3. the shape parameterΓ defining the turn-over point of the power spectrum;

4. cosmological parameters affecting the growth factorD+(t).

It is important to note that currently good predictions onlyexist for the linear and moderately non-
linear part of the power spectrum. At highly non-linear scales (physical scales. 300 kpc) fitting
formulas derived from dark matter simulations are expectedto fail, as the impact of baryons on
the power spectrum becomes important, which is still difficult to model (Rudd et al. 2007).

Different techniques often have very different dependencies on cosmological and power spec-
trum parameters, so that parameter degeneracies can be efficiently broken by combining different
probes. Techniques to extract power spectrum information include:

• Under the assumption that galaxies trace the dark matter fluctuations, their distribution can
be used to probe the power spectrum. The currently largest galaxy redshift surveys, the
2dFGRS and the SDSS have been used to probe the power spectrum on a wide range of
scales (Cole et al. 2005; Percival et al. 2007, and reference therein). A problem of this
method is that the exact bias between galaxies and dark matter, which is expressed in the
bias factorb, is unknown and has to be estimated.

• The temperature anisotropies measured in the CMB (see Section 2.1.3) can be used to
study the power spectrum atz ∼ 1100 out to very large physical scales and thus smallk
(see e.g. Jones et al. 2006; Spergel et al. 2007; Page et al. 2007; Hinshaw et al. 2007).

• The power spectrum can also be normalised by measuring the abundance and mass func-
tion of galaxy clusters (see for example Reiprich & Böhringer 2002; Bahcall et al. 2003;
Sievers et al. 2003; Viana et al. 2003; Henry 2004). This probes the power spectrum on
scales of the order 10h−1 Mpc.

• The Ly−α forest in quasar spectra can be used to investigate how clumpy intergalactic
hydrogen is distributed. This can be used to probe the power spectrum on very small
physical scales atz . 6 (see e.g. Gnedin & Hamilton 2002; Jena et al. 2005; Seljak etal.
2005; Desjacques & Nusser 2005).

• During the last years weak gravitational lensing became a powerful tool to probe the power
spectrum. We will discuss this in detail in Section 3.3.
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In Figure 2.9 some recent measurements with different techniques are shown, which can be
translated into the power spectrum under certain assumptions.

A relatively young technique which makes use of a special feature of the power spectrum
are baryonic acoustic oscillations: The baryonic oscillations observed in the CMB leave a weak
but non-vanishing impact on the total matter power spectrum, which can still be observed in
the present day Universe, hence providing a standard ruler at two very different redshifts. After
Eisenstein et al. (2005) detected this effect for the first time in the SDSS data, Percival et al.
(2007) use it in combination with the peak location in the CMB data to constrain the matter
density toΩm = 0.256+0.029

−0.024.

2.3.4 Dark energy equation of state parameter

Most studies assumed so far that dark energy behaves like a cosmological constant. Deviations
from w = −1 lead to modifications both of the expansion history and the rate of structure growth.
Yet, with current data the subtle differences are challenging to measure, where currently the
tightest constraints have been found by combining high-z type Ia supernovae with further probes
to constrain the expansion history: Wood-Vasey et al. (2007) analyse data from the ESSENCE
Supernova Survey yieldingw = −1.05+0.13

−0.12(stat.) ± 0.11(sys.), where they assume flatness and
include priors from baryon acoustic oscillations. This is consistent with a combined analysis
of WMAP-3, SDSS, and supernovae data from the Supernova Legacy Survey (SNLS) yielding
w = −1.08± 0.12 (Spergel et al. 2007).

Weaker constraints have also been found by other probes suchas weak gravitational lensing
(see Sect. 3.3). The Dark Energy Task Force (DETF, Albrecht et al. 2006) identifies four major
probes as being most promising for future constraints onw and its time-dependence, namely
baryonic acoustic oscillations, supernova surveys, galaxy cluster surveys, and weak gravitational
lensing surveys. Aiming at precision measurements ofw the combination of several of these
techniques will be a key issue, both to break parameter degeneracies and provide external checks
for systematics. Additionally, it will be important to verify if the impact of dark energy on the
expansion history (to which all probes are sensitive) agrees with its impact on structure growth
(to which only the latter two are sensitive). Any deviation might provide an essential clue for our
understanding of the nature of dark energy.
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Figure 2.9: Measurements of the power spectrum with different methods. The CMB data com-
bines the Boomerang, MAXIMA, DASI, CBI, VSA, ACBAR, and WMAP data (Hinshaw et al.
2003). The points of the SDSS galaxies are from Tegmark et al.(2004a). The point of the cluster
abundance reflects the spread in the recent literature. The plotted weak lensing data are from the
Red-Sequence Cluster Survey (Hoekstra et al. 2002a). The Lyα forest points are from Gnedin &
Hamilton (2002). Note that the location of CMB, cluster abundance, weak lensing, and the Lyα
forest points depends on the density parameters, and for theCMB additionally on the reionisa-
tion optical depthτ. This figure is for the case of a so-called “vanilla” flat scalar scale-invariant
model withΩm = 0.28, h = 0.72, Ωb/Ωm = 0.16, andτ = 0.17. A bias factorb = 0.92 is
assumed for the SDSS galaxies (Figure 37 from Tegmark et al. 2004a).
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Chapter 3

Gravitational lensing

According to Einstein’s Theory of General Relativity, lightrays propagate along null geodesics
of the space-time metric. Thus, light is deflected by the inhomogeneous gravitational potential
of the matter distribution in the Universe.

In many applications of the theory of gravitational lensing, single galaxies or galaxy clusters
deflect light of background sources. As their extend along the line-of-sight is much smaller than
the distances involved, the lens effect can be approximated by a single kink. In the first two
sections of this chapter gravitational lensing in thisthin lens approximationis discussed. After
introducing some general terminology and formalisms of gravitational lensing in Sect. 3.1, I will
summariseweak gravitational lensingin Sect. 3.2. Here the distortions are weak and can only
be measured statistically from an ensemble of coherently lensed galaxies. In Section 3.3 I will
then describecosmic shear, the gravitational lensing effect by large-scale structure, which is also
termedcosmological weak lensing. In this case the thin lens approximation cannot be used and
a more general treatment is required. I will conclude this chapter with a discussion of practical
issues concerning gravitational shear measurements in Sect. 3.4.

For a detailed description of gravitational lensing and itsderivation from General Relativity,
the reader is referred to the monograph by Schneider et al. (1992). A review about weak lensing
was published by Bartelmann & Schneider (2001). Cosmic shear has been reviewed e.g. by
Refregier (2003) and Van Waerbeke & Mellier (2003).

In this chapter three-dimensional vectors~xare denoted by an arrow over the symbols, whereas
bold-face is used for two-dimensional vectorsx.

3.1 Basics of lensing in the thin lens approximation

3.1.1 The lens equation

In thethin lens approximation, light emitted from a background source is deflected in the gravita-
tional potential of a single localised foreground mass distribution on its way to the observer. Such
a situation is sketched in Fig. 3.1, where a mass distribution at distanceDL from the observer acts
as gravitational lens and deflects light rays emitted by a source at distanceDS. Given that the
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Figure 3.1: Geometry of gravitational lensing in the thin lens approximation:DL, DS, andDLS

are the angular diameter distances from the observer to the lens, from the observer to the source,
and from the lens to the source. Without lensing the source would be observed at an angular
positionβ. Due to lensing, a light ray passing the lens at distanceξ will be deflected by an
angleα̂. Thus, the image will be observed at angular positionθ. Angular positions are measured
relative to the line-of-sight from the observer to an arbitrary image centre of the lens. The planes
perpendicular to this axis at the distance of the lensDL and the sourceDS are called lens and
source plane, respectively.

region in which a light ray is actually curved is much smallerthanDL and the distance between
lens and sourceDLS, the deflection can be approximated by a single kink near the deflector (thin
lens approximation).η andξ denote the two-dimensional angular position of the source and the
kink respectively from the line-of-sight to the lens. In this context all distance definitions refer
to angular diameter distances (see Sect. 2.1.2), for which we can read off the following relation
from Fig. 3.1

η =
DS

DL
ξ − DLSα̂(ξ) , (3.1)

with thedeflection anglêα(ξ). Inserting angular coordinatesβ = D−1
S η andθ = D−1

L ξ into (3.1)
leads to thelens equation

β = θ − DLS

DS
α̂(DLθ) ≡ θ − α(θ) , (3.2)

where we have defined thescaled deflection angleα(θ). According to the lens equation, a source
at the true positionβ will be seen by an observer at an angular positionθ, if it satisfies (3.2).
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3.1.2 From the deflection angle to the deflection potential

We will first consider the case of gravitational light deflection by a point massM. Under the
assumption that the impact parameterξ = |ξ| is much larger than the Schwarzschild radius of the
lens,ξ ≫ RS = 2GMc−2, the gravitational field is weak, and the absolute value of the deflection
angleα̂ can be calculated from General Relativity to be

α̂ =
4GM
c2ξ

. (3.3)

Due to the assumed weak field, the field equations of General Relativity can be linearised. In
order to determine the deflection angle of an extended matterdistribution with densityρ(~r), we
can then simply add up the deflection caused by each mass element dm(~r) = ρ(~r)dV of the matter
distribution. If we choose the coordinate system such that the line-of-sight to the lens is in ther3

direction, the total deflection angle is

α̂(ξ) =
4G
c2

∫

d2ξ′
∫

dr ′3 ρ(ξ′1, ξ
′
2, r
′
3)
ξ − ξ′
|ξ − ξ′|2 =

4G
c2

∫

d2ξ′ Σ(ξ′)
ξ − ξ′
|ξ − ξ′|2 , (3.4)

where we have defined thesurface mass density

Σ(ξ) =
∫

dr3 ρ(ξ1, ξ2, r3) . (3.5)

A gravitational lens is calledstrong, if it is capable to produce multiple images, meaning
that there is more than one angular positionθ for a certainβ obeying (3.2). To quantify this, we
define the dimensionlessconvergence

κ(θ) =
Σ(DLθ)
Σcr

, (3.6)

with thecritical surface mass density

Σcr =
c2

4πG
DS

DLDLS
. (3.7)

If a lens hasκ ≥ 1 somewhere, it produces multiple images for certain sourcepositions1. An
example for thesestrong lensingeffects is shown in Fig. 3.2.

From (3.4) and the definition ofκ, we find that the scaled deflection angle can be written as

α(θ) =
1
π

∫

d2θ′κ(θ′)
θ − θ′
|θ − θ′|2 . (3.8)

If we define the two-dimensional scalardeflection potential

Ψ(θ) =
1
π

∫

d2θ′κ(θ′) ln |θ − θ′| , (3.9)

the scaled deflection angle is given as its gradientα(θ) = ∇θΨ. The deflection potential is the
two-dimensional analogue of the three-dimensional Newtonian gravitational potential. It obeys
the Poisson equation

∇2
θΨ(θ) = 2κ(θ) . (3.10)

1Note thatκ ≥ 1 is sufficient, but not necessary for multiple images to occur.
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Figure 3.2: Gravitational lens SDSS1004+4112: A quasar at redshiftzs = 1.734 is quadruply
lensed by a galaxy cluster at redshiftzl = 0.68. Between the quasar images the central galaxy
and a further cluster member are visible. Image taken with the Hoher List 1m-telescope (credits:
Schrabback, Joachimi; AIfA).

3.1.3 Image distortion and magnification

The lens equation (3.2) yields the image positionsθ of a source at angular positionβ. Since pho-
tons are neither absorbed nor emitted in gravitational light deflection, lensing conserves surface
brightness. Therefore the surface brightness distribution in the source planeI (s)(β) and the lens
planeI (θ) must be equal,I (s)(β(θ)) = I (θ). If we assume that the source is small compared to the
scale on which the mass distribution of the lens varies, we can locally linearise the lens mapping.
Then the surface brightness at a pointθ in the lens plane is given by

I (θ) = I (s) [β0 +A(θ0) · (θ − θ0)
]

, (3.11)

whereβ0 is a reference point within the source which is mapped ontoθ0. The distortion of the
lensed images is then described by the Jacobian matrix

A ≡ ∂β
∂θ
=

(

δi j −
∂αi(θ)
∂θ j

)

=

(

δi j −
∂2Ψ(θ)
∂θi∂θ j

)

, (3.12)

which we can decompose into a diagonal and a trace-free part

A =

(

1− κ − γ1 −γ2

−γ2 1− κ + γ1

)

(3.13)

= (1− κ)
(

1 0
0 1

)

− |γ|
(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)

.
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Figure 3.3: Illustration of the first order effect of convergenceκ and shearγ on an intrinsically
round source with un-lensed radiusR0. The convergence produces an isotropic magnification,
whereas the shear creates an anisotropic distortion.

Here we have introduced theshearγ = γ1 + iγ2, which is a complex number with modulus

|γ| =
(

γ2
1 + γ

2
2

)1/2
and polar angleφ. The convergence and the shear can be expressed as deriva-

tives of the deflection potential

κ =
1
2

(

Ψ,11+ Ψ,22
)

, γ1 =
1
2

(

Ψ,11− Ψ,22
)

, γ2 = Ψ,12 = Ψ,21 . (3.14)

Their different effects in lens mapping are illustrated in Fig. 3.3. While the convergence produces
an isotropic magnification, the image is anisotropically distorted by the shear. An intrinsically
round source with un-lensed radiusR0 is mapped onto an ellipse with major and minor semi-axes

a =
R0

1− κ − |γ| , b =
R0

1− κ + |γ| . (3.15)

The total flux observed from the source in the lensed and un-lensed case is given by the integral
over the corresponding brightness distribution. From (3.11) follows that themagnification factor
of the source is given by

µ =
1

detA =
1

(1− κ2) − |γ|2 , (3.16)

whereµ can have either sign, depending on the parity of the lensed image with respect to the
unperturbed image. The flux of the source is magnified by|µ|. Regions with different parity
are separated bycritical curves in the lens plane, which are defined by detA = 0. Critical
curves are mapped back ontocausticsin the source plane. Formally the magnification is infinite
on critical curves. However, real sources are extended. Therefore, the magnification has to be
calculated by averagingµ over the source, weighted by the surface brightness. Additionally the
geometrical-optics approximation fails near critical curves. In a wave-optics description also
the magnification of a point source remains finite (e.g. Schneider et al. 1992). Nevertheless the
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magnification can still attain large values (. 100) in real images. Very prominent features are
the giant luminous arcs in the strong lensing regions of galaxy clusters (compare Fig. 3.4), where
faint background galaxies are highly magnified. Some of these sources would be too faint to
be observable without lensing. Thus galaxy clusters can be regarded as naturalgravitational
telescopes.

Obviously this magnification effect influences the local number density of background galax-
ies. Galaxies which are intrinsically too faint to be observed, can be magnified above the detec-
tion threshold. This increases the observed number densityof galaxies. However, the magnifica-
tion effect also stretches the sky locally, resulting in an effective decrease of the number density.
Which of both competing effects wins depends on the shape of the luminosity function of the
source population. The lensed number countsn(> S, z) of sources at redshiftz, which are above
a flux limit S, are related to the un-lensed countsn0(> S, z) by

n(> S, z) =
1

µ(θ, z)
n0

(

>
S

µ(θ, z)
, z

)

. (3.17)

If one neglects the redshift dependence and assumes that thesource counts follow a power law
n0(> S) = N0S−α, the relation between the lensed und un-lensed number counts in a certain
region of the sky with magnificationµ is given by

n(> S)
n0(> S)

= µα−1 . (3.18)

Thus forα > 1 the source counts are enhanced, otherwise they are depleted. While the number
counts are enhanced for bright quasars, a depletion is expected for the faint galaxies used in weak
lensing studies (see Sect. 3.2).

In principle thismagnification biascould be used to measure the local strength of the dis-
tortion, for example in galaxy clusters. Although a depletion in local number counts has been
reported for some clusters (Fort et al. 1997; Dye et al. 2002;Taylor et al. 1998; Dye et al. 2001),
this approach is limited by our lack of knowledge of the un-lensed galaxy number counts at a
particular position (galaxies tend to be clustered, see Sect. 2.2). A much more successful ap-
proach is to estimate the local shear from the ellipticitiesof background galaxies, which will be
discussed in the next section.

3.2 Principles of weak gravitational lensing

In the close vicinity of massive galaxy clusters, highly distorted images of background galax-
ies can be observed (see Fig. 3.4). Further away from the central regions, the tidal gravitational
forces distort the images only slightly. Thisweak lensingeffect cannot be measured from sin-
gle galaxies, but can only be studied statistically by investigating an ensemble of background
galaxies.

The goal of basically all weak lensing studies is to learn something about the matter distribu-
tion of the lens and thus the convergence fieldκ, which however cannot be measured directly. In
Section 3.2.1, I will first illustrate how the local shear field can be measured from the ellipticities
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Figure 3.4: HST/ACS image of the most X-ray-luminous galaxy cluster RXJ1347–1145. Around
the bright cluster galaxies several giant arcs and arclets can be seen, which are highly distorted
and magnified images of faint background galaxies. (Credits:Schrabback, Erben; NASA, ESA,
AIfA)
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of background galaxies. In Section 3.2.2, I will then show that κ can in principle be inferred
from the shear fieldγ, up to the so-called mass-sheet degeneracy (see Eq. 3.31). The practical
difficulties for measuring the shear are discussed in Section 3.4. I will limit the discussion to the
caseκ ≪ 1 and|γ| ≪ 1. This limitation may not be correct in the inner regions of massive galaxy
clusters, but is perfectly applicable in cosmic shear studies (see Sect. 3.3).

3.2.1 Ellipticities as a measure of shear

The local gravitational shear distorts the image of background sources. As discussed in Sect. 3.1.3,
round sources are transformed into ellipses. Thus, if all galaxies were intrinsically circular, the
shear could directly be estimated from the shape of the observed galaxies. However, with galax-
ies being intrinsically elliptical, the shear cannot be measured from single galaxies. Yet, it is
reasonable to assume that the intrinsic orientation of galaxies is random. Thus the local shear
can be estimated by averaging over an ensemble of backgroundgalaxies, if the strength of the
shear exceeds the Poisson noise from the intrinsic ellipticities.

The shapes of galaxies can be very irregular, in which case they are only poorly represented
by ellipses. Since gravitational lensing conserves surface brightness, it is convenient to define
the ellipticity of a galaxy in terms of its second-order brightness moments:

Qi j =

∫

d2θ θiθ j I (θ)
∫

d2θ I (θ)
, i, j ∈ {1,2} , (3.19)

with the surface brightness distributionI (θ). θ is the position relative to the centre of the galaxy,
which is chosen such that the first moment of the brightness distribution vanishes:

∫

d2θ θI (θ) = 0 . (3.20)

The shape of a galaxy is usually quantified by a complex ellipticity, for which the most widely
used definitions are given by

χ = χ1 + iχ2 =
Q11− Q22+ 2iQ12

Q11+ Q22
, (3.21)

ǫ = ǫ1 + iǫ2 =
Q11− Q22+ 2iQ12

Q11+ Q22+ 2
√

Q11Q22− Q2
12

. (3.22)

The ellipticity definitions are interrelated as

χ =
2ǫ

1+ |ǫ |2 , ǫ =
χ

1+
√

1− |χ|2
. (3.23)

For an image with elliptical isophotes these ellipticity definitions are connected to the ratio of
the major and minor axes of the ellipsea andb, and to the position angle of the major axisφ by

χ =
1− r2

1+ r2
e2iφ , r ≡ b

a
(3.24)

ǫ =
1− r
1+ r

e2iφ , (3.25)
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where the factor 2φ in the exponent signifies that an ellipse is invariant under rotations byπ.
Seitz & Schneider (1995) showed that the transformation between the source ellipticityχ(s)

and the image ellipticityχ is given by

χ(s) =
χ − 2g+ g2χ∗

1+ |g|2 − 2ℜ(gχ∗)
, (3.26)

where the asterisk denotes complex conjugation, and we havedefined the reduced shear

g =
γ

1− κ . (3.27)

In terms of the ellipticityǫ the transformation (3.26) reads

ǫ(s) =















ǫ−g
1−g∗ǫ for |g| ≤ 1
1−gǫ∗

ǫ∗−g∗ for |g| > 1 ,
(3.28)

as shown by Seitz & Schneider (1997).
Assuming the Universe is statistically isotropic, the intrinsic orientation of galaxies is ran-

dom, and hence the expectation value of the source ellipticity is zero:

〈χ(s)〉 = 0 = 〈ǫ(s)〉 . (3.29)

Therefore, in the weak lensing regime (κ ≪ 1, |γ| ≪ 1, and thus|g| ≪ 1) the expectation value
of the observed ellipticity is given by

1
2
〈χ〉 ≈ 〈ǫ〉 = g =

γ

1− κ ≈ γ . (3.30)

Hence, the ellipticity of each galaxy is an unbiased, but very noisy, estimator for the local (re-
duced) shear.

The reduced shearg is invariant under the transformation

κ 7→ κ′ : κ′ = λκ + (1− λ) , (3.31)

which is equivalent to multiplyingA in (3.13) by a factorλ implying a transformationγ 7→ γ′ :
γ′ = λγ. Thus, replacingκ by a scaled version ofκ and adding a mass–sheet of constant surface
mass density does not change the measured ellipticities. This means that from the observed
image distortions alone,κ can only be inferred up to this so-calledmass–sheet degeneracy.

From (3.16) followsµ ∝ λ−2. Therefore the mass–sheet degeneracy can be lifted, if mag-
nification effects are also taken into account, e.g. by measuring the magnification bias (see
Sect. 3.1.3). According to Eqs. (3.6) and (3.7),κ depends on the distances in the lens system.
Thus, the discussion above strictly holds only if all sources are at the same redshift. By observing
galaxies which are distributed in redshift, the mass–sheetdegeneracy is in fact weakly broken
(Seitz & Schneider 1997; Bradač et al. 2004).
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3.2.2 Mass reconstruction

According to (3.14), both the convergence and the shear are second derivatives of the deflection
potential. Therefore, the convergence field can in principle be recovered from the shear field.
However, such a reconstruction is limited by the mass–sheetdegeneracy, which was discussed in
the last subsection. If we take the Fourier transforms of thefields involved

κ̂(l) =
∫

d2θ κ(θ) ei l·θ , γ̂ j(l) =
∫

d2θ γ j(θ) ei l·θ , Ψ̂(l) =
∫

d2θΨ(θ) ei l·θ , (3.32)

with j ∈ {1,2} and the two-dimensional wave vectorl, Eqs. (3.14) read in Fourier space

κ̂(l) = −1
2

(l21 + l22)Ψ̂(l)

γ̂1(l) = −1
2

(l21 − l22)Ψ̂(l) (3.33)

γ̂2(l) = −l1l2Ψ̂(l) .

Thus, in Fourier space the convergence and the shear are related as

κ̂ =
1

l21 + l22

(

(l21 − l22)γ̂1 + (2l1l2)γ̂2

)

. (3.34)

(3.34) is not defined for|l| = 0, which actually leads to the mass-sheet degeneracy. By transform-
ing (3.34) back into real space we find that the convergence can be expressed as a convolution of
the shear

κ(θ) − κ0 =
1
π

∫

R2
d2θ′D∗(θ − θ′)γ(θ′) (3.35)

with the complex kernel

D(θ) =
θ2

2 − θ2
1 − 2iθ1θ2

|θ|4 , (3.36)

which was first found by Kaiser & Squires (1993). Here the asterisk denotes the complex con-
jugate. In principle,κ(θ) should be real. However, noise in real data can produce an imaginary
component. To ensure thatκ is real, usually only the real part of the integrand in (3.35)is taken
into account. Since the integration in (3.14) has to be performed over the entireθ′ plane, this
method should not be applied to finite and thus realistic datafields. Different finite field inversion
algorithms have been developed to solve this problem (Kaiser 1995; Seitz & Schneider 2001; Hu
& Keeton 2002).

Schneider (1996) introduced theaperture massor Map statistic

Map(θ) =
∫

d2θ′ κ(θ′)U(θ − θ′) , (3.37)

which measures a weighted integral of the local surface massdensity around a pointθ. Often a
circular aperture and a compensated filter functionU(θ = |θ − θ′|) with

∫ ϑ

0
dθ θU(θ) = 0 (3.38)
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andU(θ) = 0 for θ > ϑ are used. Schneider (1996) showed thatMap can then be expressed in
terms of thetangential componentof the shear

γt = −ℜ
(

γe−2iφ
)

, (3.39)

with the polar angleφ relative to the centre of the aperture. The aperture mass is then given by

Map(θ) =
∫

|θ−θ′ |≤ϑ
d2θ′γt(θ

′)Q(|θ − θ′|) , (3.40)

where the filter functionQ(θ) is given in terms of the filter functionU(θ) by

Q(θ) =
2
θ2

∫ θ

0
dθ′ θ′U(θ′) − U(θ) . (3.41)

Analogously we define

M⊥(θ) =
∫

|θ−θ′ |≤ϑ
d2θ′γ×(θ

′)Q(|θ − θ′|) (3.42)

for thecross componentof the shear relative to the centre of the aperture

γ× = −ℑ
(

γ e−2iφ
)

. (3.43)

Note thatM⊥(θ) is expected to vanish for pure lensing (see Sect. 3.3.3).
For the filter functions we use a form proposed by Schneider etal. (1998)

U(θ) =
9
πϑ2

[

1−
(

θ

ϑ

)2] [1
3
−

(

θ

ϑ

)2]

H(ϑ − θ) , (3.44)

where H(ϑ − θ) denotes the Heaviside step function, leading to

Q(θ) =
6
πϑ2

(

θ

ϑ

)2 [

1−
(

θ

ϑ

)2]

H(ϑ − θ) . (3.45)
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3.3 Cosmological weak lensing

Figure 3.5: Illustration of cosmic shear: In this figure N–body simulations of dark matter parti-
cles by S. Colombi are shown. Brighter colours indicate denserregions. The three blue ellipses
in the rear represent distant galaxies. Light rays emitted from these galaxies are continuously de-
flected and distorted due to the inhomogeneous gravitational field created by the matter density
fluctuations. The deflections shown here are highly exaggerated to illustrate the effect. (Image
credit: DESCART project at IAP, France)

In the previous sections, I summarised gravitational lensing by relatively localised lenses,
which can be approximated by a single mass sheet. This approximation can be made, if very
massive objects like galaxy clusters act as lenses, since they dominate the integrated mass on
the line-of-sight to background galaxies. In this section,I will summarise the theory ofcosmic
shear, which is also termedcosmological weak lensingand describes weak lensing by large-scale
structure. Here, light rays are continuously deflected and distorted while travelling through the
inhomogeneous gravitational potential created by the density fluctuations (illustrated in Figure
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Figure 3.6: Ray tracing through N-body simulations by Jain, Seljak, & White (2000). The top
two panels show the magnification, whereas the lower two panels indicate the corresponding
shear field for sources at a redshiftzs = 1. Theleft panels correspond to an Einstein-de Sitter
cosmology and theright panels to an open model withΩm = 0.3. The two cosmological models
can be distinguished from the statistics of the shear field, which is stronger correlated for the EdS
model. The field size is 1◦ × 1◦. (Figures 5 and 6 of Jain, Seljak, & White 2000)
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3.5). Thus a more general theoretical description is required. The statistics of the shear field
reflect the statistics of the large-scale structure of the Universe. Therefore, measurements of the
strength of cosmic shear are a powerful tool to probe the darkmatter distribution of the Universe
and therewith distinguish between different cosmological models. Jain, Seljak, & White (2000)
demonstrated this with ray tracing calculations through N-body simulations for two different
cosmological models, shown in Fig. 3.6. In this section I will partially follow the train of thought
as presented in Schneider et al. (2006).

3.3.1 Gravitational lensing by the 3-D matter distribution
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Figure 3.7: Illustration of light propagation in an inhomogeneous universe: In this sketch two
light rays are shown, which intersect at the positionχ = 0 of an observer. The propagation of the
upper light ray is considered relatively to the lower fiducial ray. At a comoving distanceχ the
light rays have a transverse separationx(χ), which in the absence of lensing would appear under
an angular separationβ(χ) as seen by the observer. Both light rays are continuously deflected
by the gravitational potential of the mass inhomogeneitiesin the universe, where the relative
deflection depends on the difference of the transverse gradient∇⊥ of the Newtonian potential
along both paths.

In order to investigate the deflection of light in the inhomogeneous Universe, we consider a
light ray propagating from a source relative to a fiducial ray(Fig. 3.7). For the relevant case of
weak gravitational fields (Φ ≪ c2), which typically vary on scales much smaller than the cur-
vature scale of the Universe, and matter with non-relativistic motions, the comoving separation
x(θ, χ) between the two light rays, which are separated by an angleθ at the observer, obeys the
propagation equation

d2x
dχ2
+ Kx = − 2

c2

[

∇⊥Φ(x(θ, χ), χ) − ∇⊥Φ(0)(χ)
]

, (3.46)

with the comoving radial distanceχ, the spatial curvatureK as defined in (2.17), and the New-
tonian gravitational potential along the light rayΦ(x(θ, χ), χ) and along the fiducial rayΦ(0)(χ).
∇⊥ = (∂/∂x1, ∂/∂x2) denotes the transverse comoving gradient operator. A derivation of (3.46)
can for example be found in Bartelmann & Schneider (2001).
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(3.46) can formally be solved by the method of Green’s functions yielding

x(θ, χ) = fK(χ) θ − 2
c2

∫ χ

0
dχ′ fK(χ − χ′)

[

∇⊥Φ(x(θ, χ′), χ′) − ∇⊥Φ(0)(χ′)
]

, (3.47)

where fK(χ) was defined in (2.3). Without lensing the source would be seen at the angular
separationβ(χ) = x(χ)/ fK(χ) from the fiducial ray. Therefore,β can be interpreted as the un-
lensed angular position in a hypothetical source plane at a comoving distanceχ. In analogy with
standard lens theory we can then calculate the Jacobian matrix

Ai j (θ, χ) =
∂βi

∂θ j
=

1
fK(χ)

∂xi

∂θ j
(3.48)

= δi j −
2
c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

∂2Φ(x(θ, χ′), χ′)
∂xi∂xk

Ak j(θ, χ
′)

to describe the locally linearised lens mapping. ExpandingA in powers ofΦ and truncating
non-linear terms yields

Ai j (θ, χ) = δi j −
2
c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

∂2Φ(x = fK(χ′)θ, χ′)
∂xi∂xj

. (3.49)

Therefore, in first-order ofΦ, the distortion can be approximated by an integral along theunper-
turbed rayx = fK(χ)θ, whereas corrections are of orderΦ2. This approach corresponds to the
Born approximation, and is justified because the expected deflections are small. We define the
deflection potential

Ψ(θ, χ) ≡ 2
c2

∫ χ

0
dχ′

fK(χ − χ′)
fK(χ) fK(χ′)

Φ( fK(χ′)θ, χ′) , (3.50)

for which

Ai j = δi j −
∂2Ψ

∂θi∂θ j
(3.51)

holds similarly to (3.12) in the thin lens approximation. Hence, lensing by the large-scale struc-
ture can be treated as lensing by a lens plane with effective deflection potentialΨ. Correspond-
ingly to (3.14) we define the effective mass densityκ and shearγ as

κ =
1
2

(

Ψ,11+ Ψ,22
)

,and (3.52)

γ =
1
2

(

Ψ,11− Ψ,22
)

+ iΨ,12 . (3.53)

Using the three-dimensional Poisson equation in comoving coordinates

∆Φ =
3H2

0Ωm

2
δ

a
, (3.54)



48 Chapter 3. Gravitational lensing

we can expressκ in terms of the density contrastδ as

κ(θ,w) =
1
c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

[

∂2

∂x2
1

+
∂2

∂x2
2

]

Φ( fK(χ′)θ, χ′)

=
3H2

0Ωm

2c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

δ( fK(χ′)θ, χ′)
a(χ′)

, (3.55)

where we used the fact that the line-of-sight integration of(∂2/∂x2
3)Φ gives an average contribu-

tion of zero.
The convergenceκ depends on the distanceχ to the source. For sources distributed in redshift

according topz(z)dz= pχ(χ)dχ, the effective surface mass density reads

κ(θ) =
∫

dχ pχ(χ)κ(θ, χ) =
3H2

0Ωm

2c2

∫ χh

0
dχg(χ) fK(χ)

δ( fK(χ)θ, χ)
a(χ)

, (3.56)

with the effective source-redshift weighted lens efficiency factor

g(χ) =
∫ χh

χ

dχ′ pχ(χ
′)

fK(χ′ − χ)
fK(χ′)

, (3.57)

whereχh = Dcom(0,∞) denotes the distance to the horizon.
We define the power spectrumPκ(l) of the convergence by

〈κ̂(l)κ̂(l′)〉 = (2π)2δD(l + l′)Pκ(l) , (3.58)

whereκ̂ is the Fourier transform of the convergence as defined in (3.32). The convergence power
spectrum is related to the three-dimensional power spectrum Pδ, which was discussed in Sect. 2.2,
by

Pκ(l) =
9H4

0Ω
2
m

4c4

∫ χh

o
dχ

g2(χ)
a2(χ)

Pδ

(

l
fK(χ)

, χ

)

. (3.59)

Therefore, observations which constrainPκ also yield information aboutPδ. Theoretical predic-
tions for the convergence power spectrum are plotted in Fig.3.8. From these plots it can be seen
that the non-linear evolution dominates the power spectrumfor angular scales below 30′, which
correspond to wave numbersl ≥ 200. A derivation of (3.59) can be found in Kaiser (1998).

Following from the definitions of the convergence and the shear in Eqs. (3.52) and (3.53),
their Fourier transforms are related by

γ̂(l) = e2iφκ̂(l) , (3.60)

with the polar angleφ of the wave vectorl. Hence, the two-point correlation functions of the
Fourier transformed convergence and shear are identical:

〈γ̂(l)γ̂∗(l′)〉 = 〈κ̂(l)κ̂∗(l′)〉 , (3.61)

and the convergence power spectrum can directly be calculated from the shear correlation func-
tion.
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Figure 3.8: The convergence power spectrumPκ(l) (left panel) and its dimensionless forml2Pκ(l)
(right panel) plotted for different cosmological models (abbreviations see Table 2.1). For the
power spectra shown, a mean redshift of the galaxy distribution of 〈zs〉 = 1.5 was assumed.
While the thin curves were calculated taking into account linear evolution only, the thick curves
were derived using the fully non-linear evolution according to Peacock & Dodds (1996). For
wave numbersl ≥ 200, which correspond to angular scales below 30′, the non-linear evolution
leads to much stronger power. (Figure from Schneider et al. 1998)

3.3.2 Cosmic shear measures and theoretical predictions

In this subsection I will discuss statistical measures for the shear and theoretical predictions for
their values on different scales.

3.3.2.1 The shear dispersion

By measuring the mean shear ¯γ(θ) in a circular aperture of radiusθ, we can define the shear
dispersion〈|γ̄|2〉(θ) = 〈γ̄γ̄∗〉(θ). Here the average denoted by〈...〉 is defined as the ensemble
average over many independent circular apertures, which all contain different realisations of the
shear field. When the shear dispersion is practically measured, it has to be ensured that many
independent lines-of-sight are probed, in order to reduce the influence of cosmic variance. It can
be shown that the shear dispersion is related to the convergence power spectrum by

〈|γ̄|2〉(θ) = 〈γ̄γ̄∗〉(θ) = 1
2π

∫

dl lPκ(l)WTH(lθ) , (3.62)

with the top-hat filter functionWTH(η) = 4J2
1(η)/η

2. Jn denotes thenth-order Bessel function of
the first kind. In Figure 3.9, the predicted shear dispersionfor different cosmological models is
plotted in dependence of the aperture radiusθ. The shear dispersion increases towards smallθ

for all cosmological models, which is due to the fact that light rays coming from galaxies closely
separated in the sky travel through similar regions of the large-scale structure. The predicted
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shear dispersion is plotted both for the case of purely linear structure growth and for the case of
non-linear evolution according to the description of Peacock & Dodds (1996). On scales below
10′ the non-linear evolution becomes important and creates a much stronger shear signal.

By comparing measurements of the shear dispersion at different scales with these theoretical
predictions, one can discriminate between different cosmological models. To first order, the am-
plitude of the shear signal is proportional toσ8Ω

0.6
m . Qualitatively these dependencies can easily

be understood, since an increase of the normalisationσ8 directly increasesPδ and therefore also
Pκ. A higherΩm also leads to an increase of the shear signal, since gravitational lensing depends
on∆ρ and not only the relative density contrastδ = ∆ρ/ρ. The quantitative dependence onΩ0.6

m

is only approximate and has been found by fitting likelihood contours in cosmological parameter
estimations (e.g. Heymans et al. 2005). The shear signal additionally increases with the mean
value of the source redshift distribution, which is due to two effects: First, higher redshift galax-
ies are deflected along a longer path through the inhomogeneous matter distribution. Second,
the lens efficiency given by (3.57), which depends on the factorfK(χ′ − χ)/ fK(χ′), increases for
sources at higher redshiftsz(χ′).

Figure 3.9: The square root of the aperture mass dispersion (left) and the shear dispersion (right)
in dependence of the aperture radiusθ for the same cosmological models as in Fig. 3.8. Again
thin curves correspond to purely linear structure growth, whereas the thick curves have been
calculated with the fully non-linear evolution as described in Peacock & Dodds (1996). (Figure
from Schneider et al. 1998)
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3.3.2.2 The aperture mass dispersion

Similarly to the shear dispersion one can define the dispersion of the aperture mass in a circular
aperture with radiusθ as given in (3.40), which is related to the convergence powerspectrum by

〈M2
ap〉(θ) = 2π

∫ ∞

0
dllPκ(l)

[∫ θ

0
dϑϑU(ϑ)J0(lϑ)

]2

, (3.63)

where〈...〉 again denotes the ensemble average. For weight functionsU andQ as defined in Eqs.
(3.44) and (3.45), (3.63) reads

〈M2
ap〉(θ) =

1
2π

∫ ∞

0
dl l Pκ(l)Wap(θl) , (3.64)

with

Wap(η) ≡
576
η4

J2
4(η) . (3.65)

The theoretically predicted aperture mass dispersion is plotted in Fig. 3.9 for various cos-
mological models and the cases of purely linear and also non-linear structure growth. The de-
pendence on the cosmological parameters is similar to the dependence of the shear dispersion
as discussed above. Note that the filter functionWap in (3.64) is much more localised than the
wide filter functionWTH used for the shear dispersion. Therefore, the aperture massdispersion
measures the convergence power spectrum highly localised at a scale ofl ∼ 5/θ (Schneider et al.
1998). However, the higher resolution is gained on the cost of less power, since only a narrow
range of wave numbersl contributes.

3.3.2.3 The shear correlation functions

A very important estimate for the cosmic shear is the shear two-point correlation function〈γγ〉θ
for pairs of points with separationθ (e.g. pairs of galaxies). With the polar angleϕ of their
separation vector, we define the tangential and cross-component of the shear at their positions
for this pair as

γt = −ℜ(γ e−2iϕ) , γ× = −ℑ(γ e−2iϕ) , (3.66)

and the following shear correlation functions

ξ±(θ) = 〈γtγt〉(θ) ± 〈γ×γ×〉(θ) , ξ×(θ) = 〈γtγ×〉(θ) . (3.67)

Under parity transformationξ× changes sign. Thus, it is expected to vanish if estimated from
sufficiently many fields. The shear correlation functions are related to the convergence power
spectrum by

ξ+(θ) =
1
2π

∫ ∞

0
dl l J0(lθ)Pκ(l) , ξ−(θ) =

1
2π

∫ ∞

0
dl l J4(lθ)Pκ(l) . (3.68)
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3.3.2.4 Interrelations of the shear measures

All of the second-order shear estimates discussed measure the convergence power spectrum,
although with different filter functions. Therefore it can be expected that they are actually inter-
related. This can be shown by first inverting (3.68) using theorthonormality of Bessel functions:

Pκ(l) = 2π
∫ ∞

0
dθ θ ξ+(θ)J0(lθ) = 2π

∫ ∞

0
dθ θ ξ−(θ)J4(lθ) , (3.69)

which we can plug into (3.68) to yield the interrelation of the correlation functions:

ξ+(θ) = ξ−(θ) +
∫ ∞

θ

dϑ
ϑ
ξ−(ϑ)

(

4− 12
θ2

ϑ2

)

, (3.70)

ξ−(θ) = ξ+(θ) +
∫ θ

0

dϑϑ
θ2

ξ+(ϑ)

(

4− 12
ϑ2

θ2

)

. (3.71)

By inserting (3.69) into the equations for the shear dispersion (3.62) and the aperture mass dis-
persion (3.64), we find:

〈|γ̄|2〉(θ) =
∫ 2θ

0

dϑϑ
θ2

ξ+(ϑ)S+

(

ϑ

θ

)

=

∫ ∞

0

dϑϑ
θ2

ξ−(ϑ)S−

(

ϑ

θ

)

, (3.72)

〈M2
ap〉(θ) =

∫ 2θ

0

dϑϑ
θ2

ξ+(ϑ)T+

(

ϑ

θ

)

=

∫ 2θ

0

dϑϑ
θ2

ξ−(ϑ)T−

(

ϑ

θ

)

, (3.73)

with S± andT± as given in Schneider et al. (2002):

S+(x) =
1
π

[

4 arccos
( x
2

)

− x
√

4− x2
]

H(2− x) ,

S−(x) =
x
√

4− x2(6− x2) − 8(3− x2) arcsin (x/2)
πx4

H(2− x)

+
4(x2 − 3)

x4
H(x− 2) ,

T+(x) =

{

6(2− 15x2)
5

[

1− 2
π

arcsin
( x
2

)

]

+
x
√

4− x2

100π
(120+ 2320x2 − 754x4 + 132x6 − 9x8)















H(2− x) ,

T−(x) =
192
35π

x3

(

1− x2

4

)7/2

H(2− x) ,

where H denotes the Heaviside function.

3.3.2.5 Advantages of the shear correlation functions

For several reasons, the shear correlation functionsξ± are nowadays the preferred shear measure:
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• The correlation functions contain the full information about the convergence power spec-
trum, which also allows one to calculate the other estimators directly fromξ± as seen
above.

• Real data contains regions which cannot be used for the analysis, for example due to bright
stars or CCD defects, making it difficult to employ circular apertures on the field. On
the other hand, the correlation functions at scaleθ can simply be measured by selecting
all usable pairs of background galaxies on an image within a separation bin of width∆θ
around the separationθ.

• Practically, also the computing time for the correlation function is much shorter than e.g.
for the shear dispersion, if estimated in many angular bins.

3.3.3 E-modes and B-modes

The deflection potentialΨ, which is given in (3.50), is a one-component (real) quantity, whereas
the shear fieldγ, which is given in terms ofΨ in (3.53), is a two-component (or complex) quan-
tity. This implies that the two components of the shear cannot be independent. From Eqs. (3.52)
and (3.53) follows

∇κ =
(

γ1,1 + γ2,2

γ2,1 − γ1,2

)

= u , (3.74)

where we defined the gradient fieldu. Althoughu is expected to be curl-free for pure lensing,
noise in the data produces a curl component. A significantly non-zero curl component can be
created by various effects like artefacts from the image co-addition or anisotropy correction, but
also intrinsic alignment of sources. The gradient and the curl part of u can be projected out by
taking another derivate

∇2κE = ∇ · u , ∇2κB = ∇ × u = u2,1 − u1,2 , (3.75)

where we have defined the E-mode and B-mode components ofκ, which are named after the
similar decomposition of CMB polarisation into electric curl-free and magnetic curl modes. An
alternative way to define these components is to introduce a complex part in (3.35)

κE(θ) + iκB(θ) − κ0 =
1
π

∫

R2
d2θ′D∗(θ − θ′)γ(θ′) . (3.76)

The different effects of E/B-modes are sketched in Fig. 3.10. In principle one can then define
the E/B-mode components of the deflection potentialψ(θ) = ψE(θ)+ iψB(θ) and the convergence
power spectraPE andPB in full analogy to the case of pure lensing.

Crittenden et al. (2002) show thatξ± can be decomposed into the curl-free E-mode component
ξE(θ) and the curl B-mode componentξB(θ) as

ξE(θ) =
ξ+(θ) + ξ′(θ)

2
, ξB(θ) =

ξ+(θ) − ξ′(θ)
2

, (3.77)
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Figure 3.10: Illustration of the effect of curl-free shear modes (E-modes,top patterns) and curl
modes (B-modes,bottompatterns) on intrinsically circular sources. E-modes can be produced
by gravitational lensing. Theupper leftpattern corresponds to a local matter over-density and the
upper rightpattern to a local under-density. Probably, observed B-modes are due to systematic
effects in the data analysis or intrinsic alignment of sources (figure from Van Waerbeke & Mellier
2003).

with

ξ′(θ) = ξ−(θ) + 4
∫ ∞

θ

dϑ
ϑ
ξ−(ϑ) − 12θ2

∫ ∞

θ

dϑ
ϑ3
ξ−(ϑ) . (3.78)

Note that the integral in (3.78) formally extends to infinity. Thus, due to finite field size, real data
require the substitution of the measuredξ−(θ) with theoretical predictions for largeθ.

This problem does not occur for the aperture mass statistics, for which Crittenden et al. (2002)
show thatMap purely measures the E-mode signal, whereasM⊥ contributes to the B-mode only:

〈M2
ap〉(θ) =

1
2π

∫ ∞

0
dl l PE(l)Wap(θl) , (3.79)

〈M2
⊥〉(θ) =

1
2π

∫ ∞

0
dl l PB(l)Wap(θl) . (3.80)

Thus,Map is sensitive to E-modes only, whereasM⊥ measures B-modes only. As in the case of
pure E-modes both can be calculated from the shear correlation functions:

〈M2
ap〉(θ) =

1
2

∫ 2θ

0

dϑϑ
θ2

[

ξ+(ϑ)T+

(

ϑ

θ

)

+ ξ−(ϑ)T−

(

ϑ

θ

)]

, (3.81)

〈M2
⊥〉(θ) =

1
2

∫ 2θ

0

dϑϑ
θ2

[

ξ+(ϑ)T+

(

ϑ

θ

)

− ξ−(ϑ)T−

(

ϑ

θ

)]

. (3.82)
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Since lensing is expected to produce a pure E-mode signal, itis an important test for the data
analysis to check whether a B-mode is present in the final data catalogues. Many systematic
effects introduced by errors in the image reduction or an incomplete anisotropy correction will
create both a spurious E-mode and B-mode shear signal. Therefore, the strength of B-modes
present should give a rough estimate of the contamination ofthe shear signal with systematics.

But not all B-modes are due to systematic effects. The clustering of sources can produce
a finite B-mode (Schneider et al. 2002). Also the application of the Born approximation (see
Sect. 3.3.1) might not be fully sufficient, which can be tested with ray-tracing simulations (e.g.
Jain et al. 2000). However, these two effects are expected to produce only very small B-modes.
Additionally, intrinsic alignment of sources can produce finite B-modes. Although this is ex-
pected to have major influence on shallow cosmic shear surveys, deep surveys should only be
affected at a. 10% level (Heymans et al. 2006c).

3.4 Practical concerns for measuring shear

3.4.1 Measurement difficulties

The observed galaxy images are not only distorted by gravitational shear, but are additionally
affected by various effects of the telescope and the camera used for the observation, and in case
of ground-based observations also by the atmosphere. Theseeffects have to be accounted for
properly. Otherwise they can lead to a wrong estimate of the gravitational shear.

• Different effects cause a point-like source to be imaged as an extended object. Observed
images are a convolution of the unperturbed images with thepoint-spread-function(PSF),
which summarises these effects. For ground-based observations the major contribution
comes from the isotropic blurring caused by atmospheric turbulence. Space-based ob-
servations have a much higher resolution, which is mainly determined by the diffraction
limit of the telescope. Coma, chromatic aberrations, astigmatism, and field curvature of
the telescope optics also affect the PSF, as well as charge diffusion in the CCD camera.
Usually one decomposes the PSF into isotropic smearing and anisotropic distortions. An
anisotropic PSF can be created by astigmatism, field curvature, wrong offsets in the im-
age co-addition (see Sect. 5.2.2), tracking errors, or windat the telescope site. Whereas
isotropic smearing dilutes the signal, an anisotropic PSF can mimic a false shear signal.

• Optical and near infrared observations are usually done with CCD cameras. Here the in-
formation is discretised into pixels. Ideally, the size of the pixels is much smaller than the
width of the PSF, which is then well sampled. However, for cost optimisation the PSF is
often only poorly sampled, with a PSF FWHM of∼ 2 pixels (“Nyquist-sampling”) or less,
making proper PSF correction particularly challenging. For under-sampled data, the effec-
tive sampling and resolution can be somewhat improved by using dithered observations,
where several images are taken with sub-pixel shifts (see Sect. 5.2.3).

• Furthermore, observations are affected by various sources of noise, like sky background,
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read-out electronics, dark current, and photon noise, but also image defects like cosmic
rays and hot or cold pixels (see Sect. 5.1.6).

• A particularly unpleasant systematic effect is the degradation of the charge-transfer-
efficiency (CTE), the efficiency with which the pixel charges are transfered during read-
out. If the efficiency degrades, objects loose a fraction of their electrons to neighbouring
pixels creating CTE-trails. This is particularly problematic for space-based cameras, where
the continuous bombardment with cosmic rays create charge traps reducing the CTE sub-
stantially.

3.4.2 The KSB+ method

The correction of PSF effects is of fundamental importance for weak lensing studies.A correc-
tion is in principle possible, if the PSF is properly sampledon the pixel grid and across the image.
Kaiser, Squires, & Broadhurst (1995); Luppino & Kaiser (1997); Hoekstra et al. (1998) (here-
after referred to as KSB+) developed a formalism for the PSF correction, which is still the most
widely used weak lensing shape measurement technique. In this method, stars are used to model
the PSF across the field, since they are practically point sources. Then the galaxy ellipticities are
corrected for smearing and anisotropy. Whereas I only summarise the KSB+ formalism in this
subsection, a more detailed description is given in App. A. Although the KSB+method was de-
veloped for ground-based data dominantly affected by smearing due to atmospheric turbulence,
Hoekstra et al. (1998) showed that it can also be applied to space-based images. In Chapter 4
I will present detailed tests of the algorithm carried out inthe frame of STEP project, also for
simulated space-based images.

3.4.2.1 General description

In Sect. 3.2.1 we defined the ellipticity parameters of galaxies in terms of the second-order bright-
ness momentsQi j , which were defined in (3.19) by an integral over the whole image plane. In
real images the integration has to be replaced by a sum over pixel values and has to be truncated
due to neighbouring objects. The truncation is done with a weight functionW, which gives low
weight at large distances from the galaxy centre. Then the second-order brightness moments are
defined in analogy to (3.19) as

Qi j =

∫

d2θW(θ2)θiθ j I (θ) , i, j ∈ {1,2} , (3.83)

where the weight function usually depends only on the distance from the object centreθ = |θ|
and is typically chosen to be a Gaussian with filter scalerg. The centre of the coordinate system
is again chosen such that the first moment of the surface brightness vanishes

∫

d2θW(θ2)θI (θ) = 0 . (3.84)

The appropriate filter scalerg depends on the size of the objects and is determined in the process
of object detection (see Sect. 3.4.2.2). From now on we will useQi j as defined with a weight
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function in (3.83). The complex ellipticity is then defined from the second-order brightness
moments as in (3.21). To indicated that this ellipticity has, in contrast toχ, been measured with
a weight function, we denote it ase:

e= e1 + ie2 =
Q11− Q22+ 2iQ12

Q11+ Q22
. (3.85)

The total response of a galaxy ellipticity to the reduced shearg and PSF effects is given by

eα − es
α = Pg

αβgβ + Psm
αβq
∗
β , (3.86)

with the intrinsic source ellipticityes, the “pre-seeing”shear polarisability

Pg
αβ = Psh

αβ − Psm
αγ

[

(Psm∗)−1
γδ Psh∗

δβ

]

, (3.87)

and theshearandsmear polarisability tensors Psh andPsm, which are calculated from higher-
order brightness moments as detailed in Hoekstra et al. (1998) and App. A. Theanisotropy kernel
q∗(θ) describes the anisotropic component of the PSF and has to bemeasured from stellar images
(denoted with the asterisk), which are not affected by gravitational shear and havees∗ = 0:

q∗α = (Psm∗)−1
αβe
∗
β . (3.88)

We define theanisotropy corrected ellipticity

eani
α = eα − Psm

αβq
∗
β , (3.89)

and thefully corrected ellipticityas

eiso
α = (Pg)−1

αβe
ani
β , (3.90)

which is an unbiased estimator for the reduced gravitational shear〈eiso〉 = g, assuming a random
orientation of the intrinsic ellipticityes. For the weak distortions measured in cosmic shear
κ ≪ 1, and hence

〈eiso〉 = g ≃ γ . (3.91)

The KSB+ formalism relies on the assumption that the image PSF can be described as a
convolution of an isotropic part with a small anisotropy kernel. Thus, it is ill-defined for several
realistic PSF types (Kaiser 2000), being of particular concern for diffraction limited space-based
PSFs. This shortcoming incited the development of alternative methods (Rhodes et al. 2000;
Kaiser 2000; Bernstein & Jarvis 2002; Refregier & Bacon 2003; Massey & Refregier 2005;
Kuijken 2006; Nakajima & Bernstein 2007). Nevertheless Hoekstra et al. (1998) demonstrated
the applicability of the formalism for HST/WFPC2 images, if the filter scalerg used to measure
stellar shapes is matched to the filter scale used for galaxy images.

As stated above, the anisotropy kernelq∗ has to be measured from stellar images. The ampli-
tude and direction of this kernel typically varies smoothlyacross the field of view, with possible
discontinuities between chips, e.g. created by different chip heights. Thus,q∗ has to be inter-
polated for the galaxy positions, for example with a low-order polynomial fit, if enough stars
are present in the image. If this is not the case, an often attempted approach is to fit the PSF in
different observations with more stars present (e.g. of globular clusters), and then apply this fit
to the galaxy fields. However, this works only if the PSF variation is sufficiently stable in time. I
will discuss the situation for the ACS/WFC PSF in detail in Sect. 6.2.



58 Chapter 3. Gravitational lensing

3.4.2.2 Special features of the KSB+ implementation

Our analysis is based on the Erben et al. (2001) implementation of the KSB+ formalism, with
further modifications. There are currently several independent KSB implementations in use,
which differ in the details of the computation, yielding slightly different results (see Heymans
et al. 2006b and Chapter 4 for a comparison of several implementations).

Before shapes can actually be measured, objects have to be detected. For this purpose the
Erben et al. (2001) pipeline usesSExtractor (Bertin & Arnouts 1996), which also provides a
first estimates of the centroid position. Then the pipeline refines the centroid position iteratively
until (3.84) is fulfilled.

As a particular feature the Erben et al. (2001) implementation splits each pixel into 4×4 sub-
pixels linearly interpolating the pixel flux. The KSB integrals in the computation ofQi j , Psm

αβ , and
Psh
αβ are then evaluated at the sub-pixel centres using the float value of the distance to the object

centre. For poorly sampled data this approach yields results which are more stable with respect
to the relative position of the object centre on the pixel grid.

In principle the Gaussian filter scalerg can be chosen arbitrarily. However, in order to max-
imise the signal-to-noise of the shape measurement,rg should be somehow related to the true size
of the galaxy. In the pipelinerg can be defined as a function of theSExtractor FLUX RADIUS
parameter

rg = X · FLUX RADIUS , (3.92)

where we typically setX = 1.0.
In addition to the KSB+ quantities Erben et al. (2001) compute for each object the half-light

radiusrh and the signal-to-noise ratio

S/N =

∫

d2θWrg(|θ|) I (θ)

σ1

√

∫

d2θW2
rg

(|θ|)
, (3.93)

which is based on the same filter function as the one used for shape measurements and depends
on the single-pixel dispersion of the sky backgroundσ1. Stars and galaxies are usually selected
with cuts in the magnitude–rh plane.

Erben et al. (2001) also propose a weighting scheme, to down-weight the shear estimate from
low signal-to-noise galaxies, which we adopt in parts of theanalysis. Here they define a distance
measure between galaxies in a two-dimensional parameter space, for which we use magnitude
andrh

2. The weightwi for each galaxy is then given by the inverse variance of the shear estimate
of the galaxy and itsN neighbours in the parameter space, where we typically useN = 20 or
N = 50

wi ∝ 〈(eiso)2〉−1
N (rh,mag). (3.94)

As a modification to the original Erben et al. (2001) pipeline, we measures all stellar quanti-
ties needed for the correction of the galaxy ellipticities as a function of the filter scalerg following

2For mag in magnitudes andrh in pixels a simple Euclidian distance measure is usually sufficient, as applied
in this work. However, if parameters are used which vary overseveral orders of magnitudes, such as flux, a rea-
sonable distance definition can, for example, be found by sorting the galaxies in each quantity and defining the
one-dimensional distance between neighbours to be unity.
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Hoekstra et al. (1998). For the calculation ofPg
αβ in (3.87) and its inversion in (3.90) we usually

use the approximations

[

(Psm∗)−1
γδ Psh∗

δβ

]

≈
Tr

[

Psh∗
]

Tr [Psm∗]
δγβ , (Pg)−1

αβ ≈
2

Tr [Pg]
δαβ , (3.95)

as the trace-free part of the tensor is much smaller than the trace (Erben et al. 2001). Only if we
explicitly refer to a “full tensor correction” this approximation has not been applied. To simplify
the notation we define

T∗ ≡
Tr

[

Psh∗
]

Tr [Psm∗]
. (3.96)

Note that the KSB+ correction scheme can lead to unphysical ellipticities dueto noise in the
data. Small galaxies can have small or even negative TrPg/2 leading to|eiso| > 1. Thus, they
must be down-weighted or rejected with appropriate cuts either in TrPg/2 or |eiso|.

We have extensively tested and optimised this implementation using image simulations of
the STEP project, as detailed in Chapter 4.

3.4.3 Practical shear estimators

In this section I will discuss practical estimators of the second-order shear statistics, which are
actually used to measure the shear from the data. In practise, the KSB+ algorithm is first applied
to correct the measured ellipticities for PSF effects (see Sect. 3.4.2). The fully corrected galaxy
ellipticity eiso is an unbiased estimator of the local shearγ as is the ellipticityǫ. Here I will present
the discussion in terms ofǫ, as it is usually done in the literature. In practice, the estimator of the
correlation function is calculated fromeiso.

According to (3.28), the ellipticityǫi of a galaxy at positionθi is related to the shearγ (for
|γ| ≪ 1) as

ǫi = ǫ
s
i + γ(θi) , (3.97)

whereǫs
i denotes the intrinsic ellipticity of the galaxy. The shear two–point correlation function

is calculated in bins of angular width∆ϑ. It is convenient to introduce the function∆ϑ(φ) = 1 for
ϑ−∆ϑ/2 < φ ≤ ϑ+∆ϑ/2, and zero otherwise, which defines the angular bin. If we allow weight
factorswi assigned to each galaxy, an estimator for the correlation functionξ+(ϑ) is given by

ξ̂+(ϑ) =

∑

i j wiw j(ǫitǫ jt + ǫi×ǫ j×)∆ϑ(|θi − θ j |)
∑

i j wiw j∆ϑ(|θi − θ j |)
, (3.98)

where the denominator corresponds to an effective number of pairs considered in the angular bin.
Under the assumption that the source ellipticities are randomly oriented, it follows that

〈ǫitǫ jt + ǫi×ǫ j×〉 = σ2
ǫδi j + ξ+(|θi − θ j |) , (3.99)

with the dispersion of the intrinsic galaxy ellipticityσǫ. Sinceδi j∆ϑ(|θi − θ j |) vanishes for all
pairsi, j, it follows thatξ̂+ is an unbiased estimator ofξ+: 〈ξ̂+〉(ϑ) = ξ+(ϑ). Correspondingly

ξ̂−(ϑ) =

∑

i j wiw j(ǫitǫ jt − ǫi×ǫ j×)∆ϑ(|θi − θ j |)
∑

i j wiw j∆ϑ(|θi − θ j |)
(3.100)
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is an unbiased estimator forξ−: 〈ξ̂−〉(ϑ) = ξ−(ϑ). As explained in Sect. 3.3.2, the correlation
functionξ× defined in (3.67) is expected to vanish. Thus, also its estimator

ξ̂×(ϑ) =

∑

i j wiw jǫitǫ j×∆ϑ(|θi − θ j |)
∑

i j wiw j∆ϑ(|θi − θ j |)
(3.101)

is expected to vanish. Instead ofξ̂± sometimes the correlation between the tangential- and cross-
components of the ellipticities are considered directly inthe literature

〈γtγt〉(ϑ) =

∑

i j wiw jǫitǫ jt∆ϑ(|θi − θ j |)
∑

i j wiw j∆ϑ(|θi − θ j |)
, (3.102)

〈γ×γ×〉(ϑ) =

∑

i j wiw jǫi×ǫ j×∆ϑ(|θi − θ j |)
∑

i j wiw j∆ϑ(|θi − θ j |)
, (3.103)

which are unbiased estimators forγtγt(ϑ) andγ×γ×(ϑ).
As shown in Sect. 3.3.2, the shear dispersion and the aperture mass dispersion can be cal-

culated from the correlation function. Accordingly, theirestimators can be determined from̂ξ+
and ξ̂−. If the centres of the bins, in which the correlation function is calculated, are given by
ϑn = (n − 1/2)∆ϑ, and the aperture radiusθ is an integer multiple of the bin width (θ = m∆ϑ),
the integrals in Eqs. (3.72) and (3.73) can be replaced by sums over the bins. This yields the
estimators

S(θ) =
∆ϑ

θ2















K+
2m
∑

n=1

ϑnξ̂+(ϑn)S+

(

ϑn

θ

)

+ (1− K+)
∞
∑

n=1

ϑnξ̂−(ϑn)S−

(

ϑn

θ

)















, (3.104)

M(θ) =
∆ϑ

θ2

2m
∑

n=1

ϑn

[

K+ξ̂+(ϑn)T+

(

ϑn

θ

)

+ (1− K+)ξ̂−(ϑn)T−

(

ϑn

θ

)]

, (3.105)

whereS andM are unbiased estimators for the shear dispersion〈|γ|2〉(θ) and aperture mass
dispersion〈M2

ap〉(θ) respectively.K+ describes the relative contributions of the two expressions
in Equations (3.72) and (3.73). Due to the infinite support ofS−, S(θ) should be calculated from
ξ̂+ only. Note, that it is then sensitive both to E-modes and B-modes. To separate E-modes and
B-modes,M(θ) can be calculated withK+ = 1/2. Then it is sensitive to E-modes only. The
strength of the B-modes can then be measured from the estimatorM⊥(θ)

M⊥(θ) =
∆ϑ

2θ2

2m
∑

n=1

ϑn

[

ξ̂+(ϑn)T+

(

ϑn

θ

)

− ξ̂−(ϑn)T−

(

ϑn

θ

)]

, (3.106)

which is an unbiased estimator for〈M2
⊥(θ)〉. Note that in real data the correlation functions

can only be measured from a minimal separation, e.g. due to confusion between neighbouring
galaxies. Hence, the summation has a lower cut-off, which can lead to biased estimates and E–
/B–mode mixing (Kilbinger et al. 2006). However, for space-based data the impact of this effect
is small due to the high resolution and galaxy number density.

In order to simplify the notation we will relax the distinction between the shear statistics and
their estimators when plotting actual estimates, e.g. we will write 〈M2

ap〉(θ) instead of〈M(θ)〉(θ).



Chapter 4

Testing and improving KSB+ with the
STEP simulations

A major part of this thesis project was the stepwise testing and improvement of the applied KSB+
implementation using the simulations of the Shear TEsting Programme (STEP). The conclusion
of this study is that the KSB+ formalism can reach a systematic average relative accuracyat the
2% level, with a deviation. 5% as a function of galaxy magnitude and size, if slightly tweaked
and carefully applied. This is well within the statistical errors of the ACS cosmic shear project.
However, due to a number of fundamental limitations of the method it seems unlikely that its
accuracy can be further improved substantially. Hence, it most likely cannot serve as a proper
tool for future generations of weak lensing surveys aiming at sub-percent-level accuracy. Given
that more advanced techniques are still in development, it is, however, likely that KSB+ will
still be applied within the next few years for upcoming surveys. Hence, the in-depth analysis
presented here may prove valuable for this transient period.

This chapter is organised as follows: I will first introduce the STEP Project in Sect. 4.1.
In Sections 4.2 to 4.4 I will then summarise the results of three subsequent rounds of blind
shear analyses with increasingly complex image simulations (STEP1, STEP2, STEP3), where
STEP3 was particularly designed to mimic space-based data,partially with ACS-like properties.
The blind analyses were followed by a central evaluation of the catalogues submitted by the
different collaborators. When referring to this first shear analysis and central evaluation I use the
term “original” analysis, to distinguish from followed non-blind tests and analyses conducted by
myself to improve the method. I will then conclude this chapter in Sect. 4.5.

4.1 Introduction

Erben et al. (2001); Bacon et al. (2001) and Hoekstra et al. (2002b) presented the first detailed
tests of shape measurement pipelines on image simulations containing an artifical shear signal.
They all used the KSB+ method, but arrived at somewhat different conclusions: Bacon et al.
(2001) found that they could recover the input shear with∼ 5% accuracy, if they apply a cal-
ibration factor of 0.85−1 to increase the KSB shear estimate. On the other hand Erben etal.
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(2001) found an accuracy of 10− 15% without the need of a calibration factor. Hoekstra et al.
(2002b) concluded that they could recover the input shear with better than 10% accuracy. The
differences between these results are important: although theyall use the same KSB+ method,
subtle differences in the implementation lead to significantly different results. This underlines
the importance to test every shear measurement pipeline on simulations.

Systematic errors of order 10% were at best comparable to thestatistical errors of surveys
conducted at the time of the tests mentioned in the previous paragraph. However, statistical errors
of large present day surveys have already shrunken below this value, and for upcoming and future
surveys the shear measurement accuracy will have to drop to the percent and sub-percent level.

With this perspective the Shear TEsting Programme1 (STEP) was launched in 2004. The
first goal of STEP was to test various shear measurement techniques on different sets of image
simulations, hence providing benchmarks on the current accuracy. In these tests the input shear
was kept secret to ensure a fair and creditable comparison. The number of independent groups
and methods who participated in the tests is impressive, andnowadays all seriously developed
shear measurement methods have been tested on the simulations of at least one of the STEP
projects.

As part of this thesis work, I tested our KSB+ pipeline in all previous STEP analyses, start-
ing with relatively simple simulations of ground-based data (STEP1, Sect. 4.2). Several biases
identified with this first blind test were fixed for the analysis of the second set of simulations
(STEP2, Sect. 4.3), which includes more realistic PSF models and galaxy morphology. Finally
the third set of simulations (STEP3, Sect. 4.4) resembles space-based data, providing a test which
is particularly useful for this thesis project.

4.2 STEP1: Simple simulations of ground-based data

The STEP1 analysis has been published by Heymans, Van Waerbeke, Bacon, Berge, Bernstein,
Bertin, Bridle, Brown, Clowe, Dahle, Erben, Gray, Hetterscheidt, Hoekstra, Hudelot, Jarvis,
Kuijken, Margoniner, Massey, Mellier, Nakajima, Refregier, Rhodes, Schrabback, & Wittman
(2006b), which I abbreviate as H06 henceforth. Here I will focus the discussion on the results
of different KSB+ pipelines. For a more detailed description also concerningthe results of other
shape measurement methods see the original publication. Additionally, I will present results
from subsequent tests conducted on the STEP1 data with our pipeline.

In total 13 different shear measurement methods or implementations have been tested in the
original analysis of the STEP1 image simulations (Table 4.1), including several implementations
of KSB+ which differ in subtle details of the coding, see Appendix A of H06 for a detailed
comparison. The analysis was carried out blindly by all authors except LV, CH, and KK.

1http://www.physics.ubc.ca/˜heymans/step.html

http://www.physics.ubc.ca/~heymans/step.html


4.2. STEP1: Simple simulations of ground-based data 63

Table 4.1: Shear measurement methods and implementations tested in the original analysis of
the STEP1 image simulations.

Author Key Method
Bridle SB im2shape (Bridle et al. 2002)
Brown MB KSB+ (Bacon et al. 2000 pipeline)
Clowe C1&C2 KSB+
Dahle HD K2K (Kaiser 2000)
Hetterscheidt MH KSB+ (Erben et al. 2001 pipeline)
Heymans CH KSB+
Hoekstra HH KSB+
Jarvis MJ Bernstein & Jarvis (2002): Rounding kernel method
Kuijken KK Kuijken (2006): Shapelets to 12th order
Margoniner VM Wittman et al. (2001): Elliptical weight function
Nakajima RN Bernstein & Jarvis (2002): Deconvolution fitting method
Schrabback TS KSB+ (Erben et al. 2001 pipeline+ modifications)
van Waerbeke LV KSB+

4.2.1 Skymaker simulations

The STEP1 image simulations were created by Ludovic van Waerbeke using theSKYMAKER2

package. Galaxies were populated in redshift space and modelled as a sum of an exponential
disk and a de Vaucouleurs-type bulge, hence neglecting further substructure and morphology.
The source ellipticity (e(s)

1 ,e
(s)
2 ) was randomly drawn from a zero mean Gaussian distribution with

σe = 0.3. To these galaxies five different shears were applied withγ1 = (0.0,0.005,0.01,0.05,0.1),
γ2 = 0.0.

After adding∼ 10 stars/[′]2 the images were convolved with six different ground-based PSFs

2http://terapix.iap.fr/cplt/oldSite/soft/skymaker

Table 4.2: Overview of the PSF models used in the STEP1 image simulations (compare to
Fig. 4.1).

PSF Seeing PSF type Ellipticity
0 0.′′9 no anisotropy 0.00
1 0.′′7 coma ∼ 0.04
2 0.′′7 jitter, tracking error ∼ 0.08
3 0.′′7 defocusing ∼ 0.00
4 0.′′7 astigmatism ∼ 0.00
5 0.′′7 triangular ∼ 0.00

http://terapix.iap.fr/cplt/oldSite/soft/skymaker
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Figure 4.1: STEP1SKYMAKER PSF models, as described in Table 4.2. The upper panel shows the
PSF core, with contours marking 3, 25, and 90 per cent of the peak intensity. The lower panel
shows the extended diffraction spikes, with 0.003, 0.03, 0.3, and 25 per cent contours (adapted
from H06).

that are listed in Table 4.2 and shown in Fig. 4.1. These PSF models were selected to provide a
realistic representation of the types of PSF distortions seen in ground-based observations. They
were realised through ray-tracing models of the optical plane. Additionally, they include atmo-
spheric turbulence (seeing) yielding an effective stellar FWHM∼ 0.′′9. The ellipticity of PSF1
is a good representation for typical realistic ground-based surveys. For comparison PSF2 is very
elliptical featuring tracking errors. The other PSFs are used to test the impact of non-Gaussian
PSF distortions. The simulations have a pixel scale of 0.′′206, hence the PSFs are well sampled.
A uniform background (19.2 mag/[′′]2) was added to the data, with uncorrelated Poisson pho-
ton shot-noise and Gaussian read-out noise. A small cutout of one simulated image is shown in
Fig. 4.2.

Each of the 5× 6 shear and PSF combinations contain 64 images with 4096× 4096 pixels
and an effective galaxy number densityN ∼ 15/[′]2 yielding a total of∼ 1.7 · 105 galaxies per
combination. Hence, shot noise due to the intrinsic ellipticities was reduced to the≃ 0.1%-level.

4.2.2 Shear estimation

We used our KSB+ pipeline with special characteristics detailed in Sect. 3.4.2.2 to determine
shear estimates for the galaxies in all data sets. For objectdetection withSExtractor we used
a Gaussian filter function (gauss2.5 5x5) and required objects to comprise at least 4 adjacent
pixels (DETECT MINAREA) which are 1.2σ (DETECT THRESH) above the sky background.

To exclude stars and poorly resolved galaxies we applied a very conservative cutrh > 1.2r∗h,
wherer∗h denotes the half-light radius of stars (see Fig. 4.3). In addition, we select galaxies with
cuts|eiso| ≤ 0.8, TrPg/2 > 0, and S/N > 4. We performed the PSF correction twice, once using
a third-order polynomial interpolation, and once assumingthat the PSF was constant across the
field-of-view, with only marginal differences for the final shear estimate.
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Figure 4.2: Cutout of oneSKYMAKER STEP1 image with PSF 0 (width 3′).

Figure 4.3:rh–magnitude distribution of objects in one of the STEP1 PSF 1 frames withγ1 = 0.0.
The stellar locus is clearly visible atr∗h ∼ 2.05 pixels. The lines indicate cuts to select galaxies at
1.1r∗h and 1.2r∗h.



66 Chapter 4. Testing and improving KSB+ with the STEP simulations

Table 4.3: Table to compare the different number densitiesNgal/[′]2, percentage of stellar con-
tamination and false detection, and detection software forthe different pipelines tested in STEP1.
S/Ns gives the signal-to-shot-noise for the shear estimate in the γ1 = 0.005 simulations. S/N′s
has been calculated taking weights into account if provided(adapted from Table 4 in H06).

Author Ngal/[′]2 % stars %false Software S/Ns S/N′s
SB 18 1.9 3.8 SExtractor 7 6
MB 14 7.1 0.1 hfindpeaks 10 –
C1 12 2.7 0.0 hfind+ SExt 9 11
C2 12 2.8 0.0 hfind+ SExt 9 11
HD 17 44.9 0.0 hfindpeaks 8 –
MH 14 3.9 0.0 SExtractor 11 14
CH 12 3.0 0.0 SExtractor 11 –
HH 16 10.8 0.1 hfindpeaks 10 11
MJ 9 0.1 3.6 SExtractor 8 22
KK 9 0.8 0.0 SExtractor 10 12
VM 13 3.8 0.0 SExtractor 10 –
RN 9 0.9 0.4 SExtractor 10 24
TS 10 1.4 0.0 SExtractor 11 14
LV 13 0.0 0.0 hfindpeaks 11 12

4.2.3 Analysis

The joint analysis of the submitted blind catalogues was conducted by CH.

4.2.3.1 Object detection

For the different methods the galaxy number densities, contaminationswith stars and false detec-
tions, and achieved signal-to-shot-noise are listed in Table 4.3. The conservative selection criteria
applied in our analysis led to a low contamination with stars(1.4%) and false detections (0.0%)
on the cost of a rather low galaxy number density (10 galaxies/[′]2). However, the rejection of
the noisy galaxies did not lead to a lower unweighted signal-to-noise of the shear estimate (11).
Also, the weighted signal-to-noise (14) ranks among the highest values after the MJ and RN
estimates, which use a very aggressive weighting scheme introducing a problematic non-linear
response (see Sect. 4.2.3.2).

4.2.3.2 Calibration bias and PSF contamination

For each method and PSF model the data were fitted as

〈γ1〉 = q · (γtrue
1 )2 + (1+m) · γtrue

1 + c1 〈γ2〉 = c2 , (4.1)
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Figure 4.4: Difference of input and measured shear as a function of input shear for the TS analysis
of the STEP1 simulations with PSF 2. Forγ1 the short-dashed line shows the estimated linear fit
(plot by CH).

where〈γ1,2〉 denotes the mean shear estimate computed from all galaxies with the same input
shear. For a perfect method〈γ1〉 would be consistent withγtrue

1 and 〈γ2〉=0, henceq = m =
c1 = c2 = 0. For a method which systematically under- or over-estimates the shear a calibration
bias is present withm , 0. If a method shows non-linear response to the shear signalq , 0.
Residuals in the PSF anisotropy correction will show up independently of the input shear as non-
zero constantsc1,2. If q is consistent with zero the fit was repeated without quadratic dependence.
As an example we plot the fit for the TS analysis of the highly elliptical PSF 2 in Fig. 4.4. The
method shows a linear response to shear, with a systematic under-estimation bym∼ −16%, and
good correction for PSF anisotropy with|c1,2| ∼ 0.001.

From all PSF types we compute the mean calibration bias〈m〉, the mean non-linear coeffi-
cient〈q〉 (if significant), and the dispersionσc from c1 andc2, which provides an estimate for PSF
anisotropy residuals. This allows us to compare the performance of the different methods con-
densed into a single plot (Fig. 4.5). While our KSB+ implementation (TS) ranks among the best
methods concerning PSF anisotropy correction without introducing a non-linear shear response,
it suffers from a substantial under-estimation of the shear with〈m〉 = −0.167± 0.011. An inter-
esting comparison can be made with the MH analysis, which stems from the sameSExtractor
catalogue and also applies the Erben et al. (2001) KSB+ implementation, but uses different se-
lection criteria and, in particular, does not perform the PSF anisotropy correction as a function
of filter scalerg. The reduction of PSF anisotropy residualsσc by more than a factor of two
for our method compared to the MH analysis clearly shows the advantage of a scale-dependent
anisotropy correction, which we hence recommend for all KSB+ implementations.
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Figure 4.5: STEP1 measures of calibration bias〈m〉, PSF residualsσc, and non-linearity〈q〉 for
the methods listed in Table 4.1. For the non-linear cases where 〈q〉 , 0 (points enclosed within
a large circle),〈q〉 is shown with respect to the right-hand scale. Results in the shaded region
suffer from less than 7 per cent calibration bias (Fig. 3 from H06).
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4.2.3.3 Selection bias

Weak lensing measurements rely on the fact that the mean intrinsic source ellipticity vanishes
〈e(s)
α 〉 = 0 when averaged over many galaxies. Therefore it is very important that no selection

biases are introduced in the compilation of source catalogues, which might alter the mean ellip-
ticity of the source galaxies.

Kaiser (2000) points out, that there is a preference to select galaxies oriented in the direc-
tion of the PSF anisotropy, which have a higher surface brightness after PSF convolution than
galaxies oriented perpendicular to the PSF. Detection algorithms which require objects to have a
certain number of pixels above a given threshold (such asSExtractor) might then lead to aPSF
selection bias. This can be avoided by first choosing a low detection threshold in combination
with a later rejection of noisy objects using significance orsignal-to-noise cuts.

In addition, there is a preference to select objects which are anti-aligned with the shear. This
shear selection biaswas first described by Hirata & Seljak (2003). The overall magnification of a
source is independent of the direction of the shear. Additionally, surface brightness is conserved
under gravitational shear (in contrast to the effect of PSF ellipticity). Hence, if objects were
selected purely by the number of pixels above a certain threshold, no bias would be introduced.
However, usually images are smoothed with a Gaussian kernelbefore object detection, in order to
reduce the impact of noise. This will, however, lead to a preferred detection of round objects, and
hence galaxies anti-oriented with the shear. In addition, object detection or shape measurement
methods might fail to converge for highly elliptical objects, again introducing shear selection
bias. Furthermore, shear selection bias can also be createdwhen cuts are applied to reject highly
elliptical galaxies.

In order to test the different STEP1 analyses for selection bias, we reject the falseand stellar
detections from the catalogues and perform a similar fit as in(4.1), but use the intrinsic input
source ellipticitye(s)

α instead of the shear estimate

〈e(s)
1 〉selc= mselcγ

true
1 + c1 〈e(s)

2 〉selc= c2 , (4.2)

from which we compute the mean shear selection bias〈mselc〉 and the dispersionσs
c from all PSF

models. PSF-anisotropy-dependent selection bias as estimated fromσs
c was found to be very low

for all methods withσs
c < 0.001. In contrast, shear selection bias〈mselc〉 is significantly non-zero

for several methods including our KSB+ analysis, for which〈mselc〉 = −0.045± 0.006. For our
analysis the selection bias is mainly due to the cuts appliedto the data, as discussed in Sect. 4.2.4
and 4.2.6.

In Fig. 4.6 we compare the shear selection bias〈mselc〉 to the calibration bias〈muncontaminated〉,
which is computed similarly to〈m〉 in (4.1), but after rejection of false and stellar detections.
Given the low contamination rate of our catalogues (see Table 4.3),〈muncontaminated〉 = −0.158±
0.010 differs only marginally from the contaminated〈m〉. For our analysis selection bias accounts
for 〈mselc〉/〈muncontaminated〉 ∼ 28% of the total calibration bias, while the rest must eitherbe due
to a systematic bias in the shear estimate of individual galaxies, or due toweight bias, which we
discuss next.
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Figure 4.6: STEP1 measures of shear selection bias〈mselc〉 compared to calibration bias measured
rejecting false detections and stars, but taking weights into account (〈muncontaminated〉). Methods
for which the calibration bias is solely due to selection lieon the 1:1 line over-plotted (Fig. 4
from H06).
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4.2.3.4 Weight bias

Ideally, weights should reduce noise in the shear estimate without introducing bias. To test for a
possible bias, we perform a fit to

〈e(s)
1 〉selc− 〈e(s)

1 〉′selc= mweightγ
true
1 + c1 , (4.3)

where〈e(s)
1 〉selc denotes the unweighted and〈e(s)

1 〉′selc the weighted average of the intrinsic input
source ellipticity. Note the unusual sign definition in (4.3), where a weight leading to an under-
estimation of the shear has a positive bias. We keep this convention to be consistent with H06.

From the fit we find thatc1 is consistent with zero for all methods, hence there is no PSF-
dependent weight bias as expected. The mean shear-dependent weight bias〈mweight〉 is at or below
percent level for most methods, with exceptions being the KKshapelet code (0.020±0.002), our
KSB+ implementation (0.024±0.003), and the MH KSB+method (0.032±0.003). Hence, about
0.024/0.167= 14% of the total calibration bias in our analysis is caused bythe weighting scheme
(3.94), which also has been used by MH. This bias might originate from a possible correlation
between half-light radiusrh and ellipticity modulus. Regions inrh–space with a lower ellipticity
modulus receive a higher weight. However, lower ellipticity moduli are preferentially found for
galaxies oriented orthogonal to the shear, which introduces the bias. One might therefore prefer
to apply a different weighting scheme, such as the one proposed by Hoekstraet al. (1998).

4.2.4 Dependence on galaxy properties and scale factorX

Future weak lensing surveys aim at measuring the redshift dependence of the shear signal. Hence,
a shear calibration bias depending on redshift-dependent quantities, such as magnitude or galaxy
size, will mimic an evolution of the shear power spectrum which can easily doom any mea-
surement ofw. Also for surveys not using redshift bins (“2D–lensing”), aredshift-dependent
calibration bias will for example lead to a wrong estimate ofσ8 due to the dependence of the
shear power spectrum on the source redshift distribution (van Waerbeke et al. 2006). Hence,
besides being negligible on average, calibration bias should also be negligible as a function of all
properties used as redshift proxies.

In the H06 analysis the different shear catalogues were briefly tested for dependenciesof the
calibration bias on magnitude or flux radius. Different significant trends were detected for most
methods, but not discussed in detail.

Here we present a more thorough analysis based on our shear catalogue for the simulations
with PSF model 1 (to also test the dependence of anisotropy residuals) and the strongest shear
γtrue

1 = 0.1, which provides the highest discriminating power. We plotthe estimate for〈eiso
α 〉

as a function of half-light radius, magnitude, and signal-to-noise ratio in Fig. 4.7, where the
middle row corresponds to the default scale factorX = 1.0, see (3.92), which was also used in
our original analysis. The upper (lower) row corresponds toa smaller (larger) valueX = 0.7
(X = 1.5), which we additionally tested. As it can be seen from Fig. 4.7 and Table 4.4, the choice
of X has a significant impact on the overall average shear calibration bias, with a more negative
bias for smallerX.
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Dependence on half-light-radius For all three values ofX there is a striking dependence of the
shear estimate〈eiso

1 〉 on rh, where a larger value forrh corresponds to stronger under-estimation of
the shear. For theSExtractor FLUX RADIUS parameter, a similar, even slightly stronger trend
was observed. Hence, different cuts on these parameters introduce different selection bias, which
can also be seen from Fig. 4.6: The MH analysis, which includes all objects larger than the upper
limit of the stellarrh interval, suffers from relatively little selection bias (〈mselc〉 = −0.017±
0.001) on the cost of higher stellar contamination (3.9%). On the other hand we use a more
conservative selectionrh > 1.2r∗h leading to lower contamination (1.4%) but higher selectionbias
〈mselc〉 = −0.045± 0.006.

A possiblerh dependence of the shear estimate is not too surprising, given that the half-
light-radius of an object does not only depend on the overallscale, but also the shape of the
object. Half-light-radius is additionally measured from the PSF convolved image. Hence, anrh

dependence does not automatically imply a dependence on intrinsic galaxy size, which would be
problematic for the cosmological application. This has to be tested independently, which will be
done for the STEP2 simulations (Sect. 4.3.6). Neverthelessone wishes to avoid selection bias,
and should therefore ideally apply no cuts in half-light-radius. This is, however, not feasible due
to the required star rejection. One therefore has to find a trade-off between rejecting stars and
hardly resolved galaxies on the one hand, and selection biason the other. When plotting therh

dependence in Fig. 4.7, we include all objects withrh > 1.1r∗h. A peculiar behaviour can be seen
for the first bin, where〈eiso

1 〉 drops while〈eiso
2 〉 is significantly positive, which indicates a con-

tamination with poorly PSF corrected stars and/or galaxies. In order to exclude this peculiarity,
we recommend a cut atrh > 1.15r∗h, which is indicated by the vertical line. This should provide
a sufficient rejection while introducing little bias. In any case it is preferable to select galaxies
with cuts inrh compared toFLUX RADIUS, as the latter introduces a slightly stronger bias.

Dependence on magnitude, signal-to-noise, and scale factor X Within the fit interval 21.5 <
MAG AUTO < 25.5 our shear estimate changes only weakly by∼ 0.0025 in shear corresponding
to a∼ 2.5% calibration bias. For the relatively low number of even fainter galaxies we observe
a deterioration of the shear estimate both forX = 1.0 andX = 1.5. Most of these galaxies
also have a low signal-to-noise, which shows a similar trendof a stronger bias for lower S/N
values. However, here the degradation is less abrupt, with asteeper slope over the total relevant
lg(S/N) range. Hence, the problematic faint galaxies affected by strong bias can more efficiently
be rejected with cuts in magnitude than S/N.

For X = 0.7 the S/N dependence is much flatter compared to the larger values ofX, and
no deterioration occurs at the faint magnitude or S/N end. Here it is important to realise that
for individual objects S/N depends on the size of the Gaussian filter function and henceon X.
Although the exact behaviour depends on the slope of the object brightness profile, a smaller
value ofX will make the analysis more sensitive to the inner bright core of the object, increasing
the S/N estimate. Hence, the applied cut S/N > 3.0 will not yield exactly the same object
selection for the different values ofX.

The downside of the better behaved S/N and magnitude trend is given by a larger overall
calibration bias and stronger leakage of PSF anisotropy indicated by〈eiso

2 〉 (see also Table 4.4).
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Figure 4.7: Dependence of the shear estimate for the STEP1 PSF1 simulations withγtrue
1 = 0.1

on half-light radiusrh (left), magnitude (MAG AUTO, middle) and signal-to-noise S/N (right), for
three scale factorsX specifying the KSB Gaussian filter scale. The curves show a box-average
of the data, where the error-bars indicate individual bins.The bin width was chosen such that all
bins receive equal numbers of galaxies. The deviation of〈eiso

1 〉 from γtrue
1 = 0.1 is due to shear

calibration bias. A deviation of〈eiso
2 〉 from γtrue

2 = 0.0 is an indication for residual PSF anisotropy
contamination. For the plots as a function ofrh the vertical line indicates the suggested cut at
1.15r∗h, which has been applied for the other panels. For all plots galaxies have additionally
been selected with S/N > 3.0, trPg/2 > 0.0, and|eiso| < 2.0. Hence, the selection criteria were
relaxed compared to the H06 analysis to reduce selection bias and increase the number density
of galaxies. The black lines show a linear fit to the binned〈eiso

1 〉 points, where the length of the
line indicates the region considered. The slopea and offsetb of the linear fit are also given.
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Table 4.4: Dependence of the overall (average) shear calibration biasm1, PSF anisotropy residu-
als indicated by〈eiso

2 〉, and the selected number of galaxiesNgal on different selection and analysis
parameters for the STEP1 PSF1 simulations withγtrue

1 = 0.1. We ignore the influence of PSF
anisotropy in the computation ofm1 = (〈eiso

1 〉 − γtrue
1 )/γtrue

1 due to the dominance of the gravita-
tional shear. “full tensor” indicates a full tensor inversion ofPg, while modification (4.5) has been
applied for “HH cor”. For the two bottom rows TrPg/2 has been fit using third-order polynomials
in rh and magnitude or ellipticity respectively.

X rmin
h /r

∗
h (S/N)min |eiso|max m1 〈eiso

2 〉 Ngal special
1.0 1.2 4.0 0.8 −0.114± 0.005 −0.0007± 0.0005 138461
1.0 1.2 4.0 2.0 −0.105± 0.006 −0.0003± 0.0006 140411
1.0 1.1 4.0 2.0 −0.095± 0.006 −0.0002± 0.0006 152676
1.0 1.15 4.0 2.0 −0.095± 0.006 −0.0002± 0.0006 152676
1.0 1.15 3.0 2.0 −0.101± 0.006 −0.0004± 0.0006 159429
0.7 1.15 3.0 2.0 −0.169± 0.005 0.0012± 0.0005 148537
0.7 1.15 4.0 2.0 −0.165± 0.005 0.0010± 0.0005 142462
1.5 1.15 3.0 2.0 −0.081± 0.007 −0.0004± 0.0007 149113
1.5 1.15 4.0 2.0 −0.074± 0.007 −0.0007± 0.0007 142585
1.0 1.15 3.0 0.8 −0.107± 0.005 −0.0025± 0.0006 140980 full tensor
1.0 1.15 3.0 1.4 0.016± 0.007 0.0015± 0.0007 152627 full tensor
1.0 1.15 3.0 2.0 0.057± 0.008 0.0039± 0.0008 155523 full tensor
1.0 1.15 3.0 2.0 −0.062± 0.006 0.0008± 0.0006 159172 HH cor
1.0 1.15 3.0 2.0 −0.115± 0.005 −0.0010± 0.0005 159424 Pg(rh,mag)
1.0 1.15 3.0 2.0 −0.114± 0.005 −0.0012± 0.0005 159429 Pg(rh, |eiso|)

The latter can easily by understood: By choosing a smallerX one is more sensitive to the galaxy
cores, whose shape is more strongly affected by PSF effects. The increased overall bias is sur-
prising and maybe provides hints concerning the actual origin of the bias. This trend would be
expected, if the bias originates from pixelisation effects, which will be enhanced for less resolved
objects. Alternatively, an under-estimation of the PSF smearing correction would be enhanced
for smallerX, which amplifies PSF effects.
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4.2.5 Improving the cuts

In order to reduce the impact of selection bias we modified ourselection criteria when revising
our pipeline after the original H06 analysis. In particular, we decided to use less conservative
cuts for the star rejection, where a cutrh > 1.15r∗h seems to be preferable, as shown in Sect. 4.2.4.
We also relax the cut on the corrected ellipticity, where|eiso| < 2.0 performs well in combination
with trPg/2 > 0.0. As can be seen from Table 4.4, each of both modifications change the overall
calibration bias by∼ 1%. Reducing the cut in half-light radius further to 1.1r∗h does not improve
the calibration significantly, but introduces undesired PSF anisotropy leakage.

We also tested the usage of a lower signal-to-noise cut S/N > 3.0, which works best if the
faintest galaxies in the magnitude-incomplete tail are additionally rejected (∼ 5 − 10%), see
Fig. 4.7. Note that the conservative cut S/N > 4.0 applied in the original analysis led to a high
signal-to-noise in the shear measurement, while using a rather low number of galaxies (Table
4.3). On the contrary, the faintest galaxies significantly add noise leading to little gain in the
overall signal-to-noise.

We decided not to change the selected scale factorX = 1.0. While reducing it improves the
behaviour at the faint end on the cost of stronger overall bias and more PSF anisotropy leakage,
increasing it would reduce the average bias, but introduce astronger deterioration at the faint
end plus slightly largen the errors in the shear estimate (see Table 4.4). Hence, keepingX = 1.0
seems to be a good compromise. Yet, it might be interesting toinvestigate this previously ignored
effect in further detail in the future.

4.2.6 Understanding the different KSB+ results seen in STEP1

At first sight, the different performances of the various KSB+ implementations in the original
STEP1 analysis (see Table 4.5) might appear disconcerting.However, a closer look reveals that
most of the differences can be well understood. Here we base the analysis on the calibration
bias〈muncontaminated〉 after rejection of stars and false detections. Their impactis obvious and can
be minimised by optimising the selection. In order to understand the bias in the actual shape
measurement we estimate the shape measurement bias

mshape≃ 〈muncontaminated〉 − 〈mselect〉 + 〈mweight〉 . (4.4)

Note that this provides only an approximation, which we expect to be accurate to the 1− 2%
level. This is however sufficient when one aims to understand the large discrepancies between
the methods.

Concerning PSF anisotropy residuals our approach to model the PSF anisotropy kernel as a
function of filter scalerg shows by far the best performance of all tested KSB+ codes. Hence, we
generally recommend this approach.

4.2.6.1 Performance of the different pipelines

MB The MB analysis is based on the Bacon et al. (2000) KSB+ pipeline, which utilises a shear
calibration factorγcor = γ/0.85 found from image simulations.Without this calibration factor
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Table 4.5: Performance of the KSB+ implementations used in the original STEP1 analysis,
where each author’s key is given in the first column.〈m〉 denotes the overall calibration bias,
while false detections and stars have been excluded for〈muncontaminated〉. σc is an estimate for PSF
anisotropy residuals.〈mselect〉 and〈mweight〉 denote selection and weight bias. We also compute
the shape measurement biasmshape≃ 〈muncontaminated〉 − 〈mselect〉 + 〈mweight〉 (based on Table 5 in
H06).

〈m〉 σc 〈muncontaminated〉 〈mselect〉 〈mweight〉 mshape

MB −0.071± 0.015 0.0008 −0.009± 0.021 −0.008± 0.002 – −0.001± 0.021
C1 −0.100± 0.018 0.0006 −0.090± 0.018 −0.046± 0.022 0.011± 0.004 −0.033± 0.029
C2 −0.084± 0.018 0.0115 −0.074± 0.018 −0.045± 0.022 0.010± 0.003 −0.019± 0.029
MH −0.161± 0.014 0.0008 −0.142± 0.015 −0.017± 0.001 0.032± 0.003 −0.093± 0.015
CH −0.032± 0.028 0.0035 0.004± 0.027 −0.010± 0.003 – 0.014± 0.027
HH −0.015± 0.006 0.0008 0.018± 0.004 −0.001± 0.001 0.006± 0.001 0.025± 0.004
TS −0.167± 0.011 0.0003 −0.158± 0.010 −0.045± 0.006 0.024± 0.003 −0.089± 0.012
LV −0.068± 0.025 0.0006 −0.068± 0.025 −0.001± 0.002 0.005± 0.001 −0.062± 0.025

Figure 4.8: Dependence of
T∗ = Tr

[

Psh∗
]

/Tr [Psm∗] on the Gaussian
filter scale rg computed from stars in the
STEP1 PSF1 simulations withγtrue

1 = 0.1.
The error-bars indicate the scatter between the
different stars.

their analysis would yieldmshape∼ −15%. MB do not measurePsm∗ andPsh∗ as a function of
filter scale. Given thatT∗ = Tr

[

Psh∗
]

/Tr [Psm∗] increases for largerrg (see Fig. 4.8), this will lead
to an over-estimation ofPg and hence an under-estimation of the shear. The quantitative impact
of this effect can be estimated by comparing the C1 and C2 analysis. In the MB analysis TrPg/2
was fit as a function ofrg.

C1/C2 For the two analyses by Clowe a calibration factorγcor = γ/0.95 was applied, which
would imply a shape measurement bias of∼ −8% for C1 and∼ −7% for C2 if no calibration
factor had been used. The major difference between the two catalogues is the measurement
of Psm∗ and Psh∗ as a function of filter scale in C2 but not C1. Hence, the additional under-
estimation by∼ 1.5% in C1 can be accounted to the negligence of its scale dependence. We
expect that the bias measured for the MB analysis has a similar contribution from the neglected
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scale dependence. In the C1/C2 analysis TrPg/2 is fit as a function ofrg and ellipticity.

MH, TS The MH analysis differs from our analysis (TS) only in the galaxy selection and
PSF anisotropy correction. Hence it is expected that the shape measurement bias corrected for
selection bias agree very well. No calibration factor has been applied in both analyses, which
then consistently yieldmshape∼ −9%.

CH The CH KSB+ implementation yields a shape measurement bias which is consistent with
zero without applying a calibration factor. However, in thecomputation of thePsh andPsm tensors
this implementation approximates the separation between the object centre and each pixel by the
integer separation to the central pixel. Preliminary testsdone with an adapted version of our
pipeline indicate that this approximation can effectively boost the average shear signal by a few
percent. Hence, without this “correction” the CH pipeline would probably also yield a slightly
negative shear measurement bias.

HH The HH pipeline yields a slightly positive shape measurement bias of∼ 2.5%. In earlier
studies with simulations HH found a significant dependence of Psh on ellipticity. In order to
compensate this effect they introduce an ellipticity dependent correction factor

Psh→ (1− e2/2)Psh . (4.5)

Applying this factor in our analysis of the STEP1 PSF1 data with γtrue = 0.1 boosts the shear
signal by∼ 4% (see Table 4.4). Hence, without this correction the HH pipeline would probably
also yield a slightly negative shear measurement bias. Besides the MH and TS pipelines, the HH
implementation is the only tested KSB+ implementation which uses sub-pixel interpolation. In
the HH analysis TrPg/2 is fit as a function ofrg.

LV The major differences between the LV implementation and our method are that LV does
not use sub-pixel interpolation, but applies a fit of TrPg/2(rg,mag). His method yields a shear
measurement bias of∼ −6%.

4.2.6.2 A common trend but differences in details

Ignoring all the “corrections”, which are applied to boost the shear signal, all KSB+ pipelines
show a trend to provide an under-estimated shear measurement. This shear measurement bias
ranges from a few per cent (HH, CH) to∼ −15% for the MB implementation. A part of this bias
can be understood due to the negligence of therg dependence ofPsm∗ andPsh∗ for the methods
MB and C1.

One might suspect that pixelisation gives rise to the overall trend that shear is under-estimated.
This becomes, however, unlikely if one realises that both methods that do and methods that do
not use sub-pixel interpolation suffer from large bias (MH and TS versus MB). Also, among the
methods yielding rather small bias some do and some do not apply sub-pixel interpolation (HH
versus CH).
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In addition, we performed tests with our pipeline using simple simulations with Gaussian
profiles, for which the measured KSB quantities can be compared to analytic predictions (Erben
et al. 2001). These tests indicate that pixelisation can introduce systematic size-dependent bi-
ases, which can be as big as∼ 10% for certain KSB+ parameters. In particular, the ellipticity
and diagonal components of thePsm tensor are typically under-estimated, whereas the diagonal
elements of thePsh tensor are typically over-estimated. Linear interpolation makes the KSB es-
timates more stable with respect to the relative position ofthe object centroid on the pixel grid,
but does not correct for the bias. However, galaxies and stars are affected in a similar way, so
that – at least in the Gaussian case – the impact on the final shear estimate partially cancels.

It seems likely that the dominant reason for the overall trend to under-estimate the shear
is connected with thePg–correction, which we will discuss in the next subsection. However,
it is important to note that probably several other effects depending on the detailed coding are
responsible for the remaining large scatter between the methods. A very good example is given
by theX dependence of our method, where a change fromX = 1.5 to X = 0.7 worsens the bias
from ∼ −8% to∼ −17% (for S/N > 4.0, see Table 4.4).

4.2.7 Impact of thePg–correction

In the original STEP1 analysis all KSB+ implementations use the trace approximation (3.95) for
the inversion of thePg tensor to reduce noise. Several of the methods additionallyfit TrPg/2 as a
function of size, magnitude, and/or ellipticity, in order to further reduce noise (see Sect. 4.2.6.1).

4.2.7.1 Tensor correction

Hetterscheidt (2007) argues that the trace inversion ofPg leads on average to an under-estimation
of the shear compared to the tensor inversion. We test this prediction by applying the full tensor
inversion to our analysis of the PSF1 images withγtrue

1 = 0.1. Indeed, this leads to a substantially
increased shear measurement withm1 ∼ +5% for |eiso| < 2.0 (Table 4.4). However, the results
become very noisy and unstable with a strong dependence on the ellipticity cut. We therefore do
not follow this approach for our science analysis. Nonetheless, the negligence of the trace-free
part ofPg is a very good candidate for the overall trend to under-estimate the shear. In fact, this
agrees with the observed dependence of the bias onX, which was enhanced for smallX where
the analysis is more strongly affected by PSF effects.

4.2.7.2 Pg–fitting

TrPg/2 is a noisy quantity. Hence its inversion might introduce a bias. The MB, C1, C2, HH, and
LV implementations of KSB+ attempt to reduce this bias by fitting TrPg/2 as a function of less
noisy observables, such as magnitude and size. The fact thatmethods with weak, but also meth-
ods with strong bias belong to this group indicates that fitting does not solve the overall problem.
It might, however, be useful to better control the dependence of the shear estimate on size or
magnitude. To test this, we re-applied our analysis using two-dimensional third-order polyno-
mial fits of TrPg/2 as a function ofrh and magnitude, andrh and uncorrected ellipticity, where
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Figure 4.9: Dependence of〈TrPg/2〉 on rh and magnitude (left) as well asrh and the modulus
of the un-corrected ellipticity|e| (right) for the STEP1 PSF1γtrue

1 = 0.1 galaxies. Bins without
galaxies show the mean value.

outliers have been rejected at the 3σ–level. The variation of the mean TrPg/2 in this parameter
space is shown in Figure 4.9. In both cases fitting changes theoverall bias only marginally (Table
4.4). If TrPg/2 is fit as a function ofrh and ellipticity, the slope of the shear calibration bias as a
function of magnitude and signal-to-noise is, however, significantly increased (Figure 4.10). In
fact, this provides a slight overkill, with a shear signal increasing with magnitude.

4.2.8 Conclusions from STEP1

In the original H06 STEP1 analysis the different KSB+ pipelines show a remarkably different
performance, with systematic average calibration errors ranging from∼ −2% to∼ −17%. For
several methods a large fraction of this bias arises from easily correctable effects, namely stellar
contamination, false detections, selection bias due to cuts, and possibly bias due to the weighting
scheme. Subtracting these effects and compensating for artificially included corrections to boost
the shear signal, we estimate the true bias in the object shape measurement for each method,
which ranges from−2% to−15%, and amounts to∼ −9% for our method. We conclude that
the overall trend for all tested KSB+ implementations to have a negative shear measurement
bias probably originates from the negligence of the trace-free component in the inversion of the
Pg tensor. Fitting of TrPg/2 seems to have little impact on the overall average bias. Thelarge
remaining scatter between the different methods probably stems from subtle differences in the
coding, e.g. the treatment of pixelisation, possibly usingsub-pixel interpolation. In particular,
we identify a strong dependence of the shear calibration bias on the scale factorX relating the
flux-radius of an object to the filter scalerg used for shape measurements.

We estimate that with optimised selection criteria (Sect. 4.2.5) a bias of∼ −1% will remain
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Figure 4.10: Dependence of the shear estimate for the STEP1 PSF1 simulations withγtrue
1 = 0.1

on half-light radiusrh (left), magnitude (MAG AUTO, middle) and signal-to-noise S/N (right),
for TrPg/2 fit as a function ofrh and magnitude (top) as well asrh and the modulus of the un-
corrected ellipticity|e| (bottom). Compared to Figure 4.7 TrPg/2(rh,mag)–fitting has only little
influence, whereas fitting as a function ofrh and|e| significantly increases the slope of the shear
estimate depending in magnitude and signal-to-noise.
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from stellar contamination and selection bias for our method. Hence, the overall shear calibration
bias in our analysis amounts to∼ −10%. As the origin of this bias seems to be understood, and
given that it appears to be stable between different PSF models on the 1− 2% level (see Table
4.5), it is reasonable to compensate this bias by the introduction of a shear calibration factor,
where we define the corrected estimator

γα = ccale
iso
α , (4.6)

with ccal = 1/0.91. Therefore, we decided to use this factor in the analysis of the STEP2 simula-
tions (Sect. 4.3). Nonetheless, the actual value of the calibration obviously depends on the details
of the implementation. Hence, we urge everybody using KSB+ to test their own implementation
on image simulations, instead of blindly using calibrationfactors found for other pipelines.

In the original STEP1 analysis dependencies of the shear estimate on flux-radius and magni-
tude were identified, which we investigated further in this work. In particular, there is a strong
dependence of the shear signal on half-light-radiusrh, which can introduce selection bias if the
cut to reject stars and poorly resolved galaxies is chosen too high. We find that a cut at 1.15r∗h
provides a good compromise between selection bias on the onehand, and PSF anisotropy leakage
and stellar contamination on the other.

In our default KSB+ pipeline a deterioration of the shear estimate at the faint magnitude end
occurs. For a low signal-to-noise cut S/N > 3.0 this can be efficiently cured by rejecting the
faintest∼ 5 − 10% of the galaxies with a magnitude cut. The same effect could be achieved
by reducing the filter scale factor toX = 0.7, which however increases the overall bias and
introduces PSF anisotropy leakage and is hence not recommended. Besides this deterioration
we find a weak decline of the shear estimate with magnitude, amounting to a calibration bias of
∼ 2.0% over the magnitude range 21.5 < MAG AUTO < 25.5, which is unproblematic for current
weak lensing analyses, but could be of concern for future constraints onw. A possible way to
correct for this trend might be given by fitting TrPg/2 as a function ofrh and ellipticity, which in
the currently tested version however over-does the job. We will test this further using the STEP2
simulations in Sect. 4.3.8.

Concerning PSF anisotropy correction our approach to model the stellar anisotropy kernel as
a function of filter scale provides the best correction of allKSB+ implementations. Hence, we
recommend this approach for all methods.



82 Chapter 4. Testing and improving KSB+ with the STEP simulations

4.3 STEP2: High precision simulations

After improving shear measurement methods based on the STEP1 results, the collaboration con-
ducted a second blind analysis of simulated ground-based images. These simulations comprise
a number of more realistic refinements such as galaxy morphology and more complex PSFs. In
this analysis we achieved a significantly improved statistical measurement accuracy via a com-
bination of more extensive simulations and pairs of galaxy images which have been rotated with
respect to each other byπ/2, efficiently reducing noise due to intrinsic ellipticities. This al-
lowed us to split the data into subsets enabling tests for several effects which might affect future
high-precision cosmic shear analyses, such as calibrationbias which differs for different galaxy
populations.

The detailed analysis has been published in Massey, Heymans, Berǵe, Bernstein, Bridle,
Clowe, Dahle, Ellis, Erben, Hetterscheidt, High, Hirata, Hoekstra, Hudelot, Jarvis, Johnston,
Kuijken, Margoniner, Mandelbaum, Mellier, Nakajima, Paulin-Henriksson, Peeples, Roat, Re-
fregier, Rhodes, Schrabback, Schirmer, Seljak, Semboloni,& van Waerbeke (2007a), which I
will abbreviate as M07. Here I will mostly limit the discussion to the KSB+ performance and
detail on further tests conducted with our method.

The tested methods and associated authors are listed in Table 4.6.

4.3.1 Shapelet simulations

The STEP2 simulations have been created by Richard Massey andWilliam High using the
Massey et al. (2004) simulation package. Based on the shapelet algorithm, which (de-)composes
images of galaxies and stars using sets of orthogonal 2D functions, it allows for the inclusion
of complex PSF models and galaxy morphology. Image parameters have been chosen to mimic
deepr–band data taken in good conditions with the Suprime-Cam camera on the Subaru tele-
scope.

For STEP2 six types of images with different PSF or galaxy types have been modelled, whose
properties are summarised in Table 4.7, and which are plotted in Figure 4.11. Each set of sim-
ulations contains 128 7′ × 7′ images with pixel scale 0.′′2. For each set, the images have been
split into two halves, which feature the same patch of the sky, but where the second half has
been rotated by 90 degrees compared to the first half. The images have been sheared by a ran-
dom amount given by a flat PDF with|γinput| < 0.06, where corresponding images between the
different halves have been equally sheared.

In ordinary simulations the error in the estimated mean shear decreases with the number of

galaxiesN as
√

〈|eint
i |2〉/N, whereeint

i denotes the intrinsic ellipticity of galaxyi, and
√

〈|eint
i |2〉 ∼

0.1 for the STEP2 simulations.
Due to the rotated pairs we can form a shear estimator for eachgalaxy pair

γ̃ =
eobs,unrot+ eobs,rot

2
. (4.7)
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Table 4.6: Shear measurement methods and implementations tested in the analysis of the STEP2
image simulations (Table 2 from M07).

Author Key Method
Berǵe JB Shapelets (Massey & Refregier 2005)
Clowe C1 KSB+ (same PSF model used for all galaxies)
Clowe C2 KSB+ (PSF weight size matched to galaxies)
Hetterscheidt MH KSB+ (Erben et al. 2001 pipeline)
Hoekstra HH KSB+
Jarvis MJ Bernstein & Jarvis (2002)
Jarvis MJ2 Bernstein & Jarvis (2002) (new weighting scheme)
Kuijken KK Shapelets (Kuijken 2006)
Mandelbaum RM Reglens (Hirata & Seljak 2003)
Nakajima RN Bernstein & Jarvis (2002) (deconvolution fitting)
Paulin-Henrikson SP KSB+
Schirmer MS1 KSB+ (scalar shear susceptibility)
Schirmer MS2 KSB+ (tensor shear susceptibility)
Schrabback TS KSB+
Semboloni ES1 KSB+ (shear susceptibility fitted from populations)
Semboloni ES2 KSB+ (shear susceptibility for individual galaxies)

Table 4.7: Summary of the different PSF and galaxy types used in the STEP2 image simulations
(Table 1 from M07).

Image set PSF description Galaxy type
A Typical Subaru PSF (∼ 0.′′6) shapelets
B Typical Subaru PSF (∼ 0.′′6) pure exponential
C Enlarged Subaru PSF (∼ 0.′′8) shapelets
D Elliptical PSF (x-axis) shapelets
E Elliptical PSF (45◦) shapelets
F Circularly symmetric Subaru PSF shapelets
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Inverting (3.28) and considering that for the rotated pairseint,unrot = eint = −eint,rot, we find

γ̃ =

(

eint + γ

1+ γ∗eint
+
−eint + γ

1− γ∗eint

)

/2 =
γ − γ∗(eint)2

1− γ∗(eint)2
, (4.8)

where we again approximateγ ≃ g due to the weak shears applied. Averaging this shear estima-
tor overN/2 galaxy pairs yields the significantly reduced shot-noise error in 〈γ̃〉 of

σ〈γ̃〉 = |γ|

√

〈|eint
i |4〉

N/2
, (4.9)

where
√

〈|eint
i |4〉 ∼ 0.05 and|γ| < 0.06 for the STEP2 simulations.

The shapelet-generated galaxy images are based on the size–magnitude morphology distri-
bution estimated from galaxies in the HST COSMOS survey. As these data have not been de-
convolved for the ACS PSF, small galaxies in the simulations are intrinsically slightly rounder
than in reality. To test the impact of morphology, the galaxies in simulation set B have be realised
using simple exponential profiles with concentric, elliptical isophotes.

In contrast to the STEP1 simulations, STEP2 images contain correlated noise to mimic driz-
zled stacked images. This has been realised by smoothing thesky noise, which has an rms of
4.43 counts s−1, with a Gaussian kernel of FWHM 3.5 pixels.

4.3.2 Shear measurement

For the STEP2 analysis we used our KSB+ pipeline as detailed in Sect. 3.4.2.2, but applied im-
proved selection criteria derived from STEP1. For object detection withSExtractor we used
a Gaussian filter function (gauss4.0 7x7.conv) and required objects to comprise at least 10 ad-
jacent pixels (DETECT MINAREA) which are 1.5σ (DETECT THRESH) above the sky background.
We selected galaxies with cuts|eiso| ≤ 2.0, TrPg/2 > 0.1 (which has only minimal impact com-
pared to TrPg/2 > 0.0), S/N > 4, and withrh > 1.05r∗,upper

h , wherer∗,upper
h denotes the upper limit

of the 0.1 pixel wide interval for star selection, which approximately corresponds torh > 1.1r∗h.
When measuring PSF quantities from stars we integrate to a radius of 4 stellar flux-radii in order
to properly account for the scale dependence of the shapeletPSFs. The noise correlation has not
been taken into account in the computation of the sky rms or S/N, but led to the raised detection
thresholds. In order to take account for the stable calibration bias detected in STEP1, we applied
a constant shear calibration factor of 0.91−1. We do not apply a weighting scheme for our STEP2
analysis.

4.3.3 Analysis

The joint analysis of the shear catalogues created in the blind test has been performed by Richard
Massey and Catherine Heymans. After the extensive tests for selection and weight bias con-
ducted in STEP1, the main STEP2 analysis was based on the matched rotated-pairs catalogue,
which strongly reduces selection and weight bias isolatingthe actual shape measurement bias.
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Figure 4.11:Left: The PSFs used for the six different sets of STEP2 image simulations. The
colour scale and contour spacing is logarithmic (Figure 1 from M07). Right: 1.′5 wide cutout
from one image of simulation set A.
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Table 4.8: Estimates of stellar parameters from the TS KSB+ pipeline.r f denotes the stellar flux
radius fromSExtractor. The stellar ellipticitiese∗α have been measured with a filter scalerg = 3
pixels (Table 5 from M07).

Set rf e∗1/% e∗2/%
A 0.′′334 −0.68± 0.10 1.21± 0.07
B 0.′′334 −0.66± 0.07 1.28± 0.05
C 0.′′406 −0.47± 0.07 0.97± 0.06
D 0.′′390 11.49± 0.11 2.20± 0.14
E 0.′′390 −2.21± 0.14 11.29± 0.16
F 0.′′392 −0.01± 0.12 0.01± 0.01

4.3.3.1 Object detection

In STEP2 contamination with stars or false detections was low except for the SP implementation
of KSB+, which suffers from a∼ 30% contamination. The number density of galaxies in our
matched catalogue for image set A amounts to 36/arcmin2, which is significantly above the
average of all methods (31/arcmin2). For details see Table 6 in M07.

4.3.3.2 PSF modelling

An interesting effect identified in the STEP2 analysis is PSF anisotropy leakage between the
two ellipticity components. The two PSFs D and E are highly elliptical (∼ 11%), but according
to the input shapelet model they should contain a puree1 ellipticity (D) or e2 ellipticity (E)
respectively. Table 4.8 summarises PSF properties measured with our KSB+ implementation.
For PSFs D and E, a∼ 20% cross-contamination of the measured ellipticity is observed between
the two components, which is not expected from the input model. This effect already occurs
during the stellar ellipticity measurement and hence cannot be caused by neglected off-diagonal
components of thePsm tensor. The mixing might be caused by skewness in the PSF.

4.3.3.3 Shear calibration bias and PSF anisotropy contamination

As for STEP1, the performance of the methods was estimated with fits to test for calibration bias
mα and PSF anisotropy residualscα. Given that now alsoγ2 , 0, the calibration bias could be
tested independently for both ellipticity components. Theanalysis was conducted twice, once
keeping the rotated image pairs separate but using only galaxies which were detected in both
sets, and once including the rotated-pair analysis providing the increased sensitivity. By default
values given in the test refer to the rotated-pair analysis,and errors of the mean calibration bias
give the scatter between the different PSF models and shear components.

The performance of our pipeline and the HH implementation ofKSB+ are compared in Fig-
ure 4.12 for the different image sets and ellipticity components. For the round or moderately
elliptical PSFs A, B, C, and F our pipeline performs very well, with PSF residuals and calibra-
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Figure 4.12: Fitted values of calibration biasmα and PSF anisotropy residualscα for the TS
(left) and HH (right) implementations of KSB+. For each method theleft sub-panel corresponds
to theγ1 component, whereas theright sub-panel refers toγ2. The dotted error-bars show rms
errors computed without the rotated-pairs shear estimator, but only including common detections
between the rotated and unrotated sets. The solid errors have been obtained after removal of the
intrinsic ellipticity using the rotated-pairs shear estimator. The red, black, pink, dark blue, light
blue, and green points correspond to image sets A, B, C, D, E, andF respectively. Note the
different axis scales in the two panels (from Figure 5 in M07).

tion bias〈m〉 = (−0.6 ± 1.9)% consistent with zero. This confirms the robustness of theshear
calibration factor estimated from the STEP1 simulations. For the highly elliptical PSFs D and
E we under-estimate the shear on average by (−3.8 ± 2.5)%, where the bias is strongest for the
e2 component of PSF E withm2 = −(7.8± 2.0)%. Additionally, for these PSFs significant PSF
anisotropy residuals are measured, indicated by non-zero values ofcα. In particular, we measure
a significantly negativec2 for PSF D and positivec1 for PSF E. From the shapelet input PSF
models these components should not be affected by PSF anisotropy. The reason for this spuri-
ous signal is probably given by the false cross-terms found in the stellar ellipticity measurement
(Sect. 4.3.3.2), which are then (falsely) subtracted from the the galaxy ellipticities. For PSFs
D and E significant PSF anisotropy residuals have been detected for all methods, see e.g. the
HH analysis in Figure 4.12. The presence of these residuals is disturbing but not too worrying
for current surveys, given the fact that these PSF models have such a strong PSF ellipticity that
similar data would probably be rejected for real cosmic shear surveys. The most effective PSF
anisotropy suppression has been achieved by the MJ implementation of the Bernstein & Jarvis
(2002) method reachingcα < 0.002.

A comparison of all methods achieving shear calibration errors smaller than 7% is given in
Figure 4.13, where the mean calibration〈m〉 is compared to the mean PSF anisotropy residuals
〈c〉. Note that this parameterisation is somewhat misleading given that anisotropy residuals with
opposite signs partially cancel, which, however, is not thecase for real data.
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Figure 4.13: Comparison of the different STEP2 analyses in terms of their mean shear calibra-
tion bias〈m〉 and PSF anisotropy residuals〈c〉, also averaged over the two shear components. In
the left panel all image sets have been considered, whereas the highly elliptical PSFs D and E
have been excluded in theright panel. Note that methods with〈c〉 consistent with zero may still
have significant residuals for the individual PSF models, which then average out. The results
from C1, SP, MS1, and ES1 are not shown here (Figure 6 from M07).
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4.3.3.4 Performance of the other KSB+ pipelines

Concerning calibration bias the KSB+ pipelines already tested in STEP1 perform with simi-
lar results: The HH implementation still achieves accuracyat the 1− 2% level with 〈m〉 =
(−1.7± 1.8)%, still including the ad-hoc correction toPsh. Similarly to our method the MH im-
plementation has optimised the selection criteria and introduced a shear calibration factor 1/0.88,
which is slightly overzealous with〈m〉 = (3.8 ± 2.5)%, as expected from the STEP1 compari-
son, where the MH analysis yields similar shape measurementbias as our method (Table 4.5).
The C1/C2 methods yield an under-estimation of the shear with〈m〉 = (−12.1 ± 4.6)% for C1
and〈m〉 = (−7.7 ± 2.6)% for C2. As this already includes the 1/0.95 shear calibration factor,
the calibration bias seems to be slightly enhanced comparedto STEP1. The new SP imple-
mentation of KSB+ numerically integrates within pixels and uses a trace inversion of Pg. Its
performance is very interesting, with a strong (−11.7 ± 2.2)% bias for theγ1 component, but
only (−6.1± 2.1)% bias forγ2. The MS1 and MS2 methods use sub-pixel integration and fitPg

as a function ofrg and magnitude, where MS1 applies a trace inversion, whereasMS2 uses the
full Pg tensor. As seen from our tests on STEP1, the full tensor correction yields a substantially
higher shear estimate with a mean bias〈m〉 = (−4.1 ± 4.8)% for MS2 compared to MS1 with
〈m〉 = (−15.7± 3.5)%. The ES1 and ES2 implementations use sub-pixel integration and a trace
inversion ofPg, where TrPg/2 has been smoothed as a function ofrg and magnitude for ES1.
They achieve a typical negative bias〈m〉 = (−16.3 ± 4.3)% for ES1, but interestingly a slightly
positive bias〈m〉 = (3.1 ± 6.9)% for ES2. This might suggest that smoothing ofPg instead of
fitting is more effective. However, the method shows a disturbingly large scatter between the
different PSF models.

4.3.4 Pixelisation effects

For most methodsγ1 is estimated more accurately thanγ2 with m1 > m2 (typically 〈m1〉 − 〈m2〉 ∼
(1 − 5)%), which is the case even for the circular PSF F. Here, the only preferred direction is
given by the pixel grid, indicating that the difference might originate from pixelisation. For the
square pixels, theγ1-direction is sampled better than theγ2-direction by a factor

√
2, which could

explain the better estimates. However, this does not explain the reverse trend observed for the SP
method.

4.3.5 Galaxy morphology

Complex galaxy morphologies included in the shapelet galaxies seem to slightly hinder the shape
measurement accuracy for the majority of the KSB+ implementations. This can be seen by
comparing image set A (shapelet galaxies) with set B (simpleexponential profiles). For set A the
KSB+ implementations C1, C2, MH, SP, MS1, TS, and ES1 yield a more negative calibration
bias than for set B, while the trend is reversed only for the HH and MS2 methods. In the case of
our method the difference amounts to 4.2± 2.1%. The reason for this trend is probably given by
the fact that KSB measures ellipticity for one window scale only. Several of the newer methods
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tested in STEP2 deal with the complex morphologies very well, particularly the KK, MJ, and
MJ2 methods.

4.3.6 Magnitude and size dependence

Due to the high discriminating power the STEP2 data could be split into several subsets to study
calibration bias and PSF anisotropy residuals as a functionof different parameters. Figure 4.14
shows the dependence on the input magnitude and galaxy size for the HH and our implementa-
tion of KSB+, where the galaxy sizeR was computed according to equation (53) in Massey &
Refregier (2005)

R2 =

∫

R2 d2x |x|2 f (x)
∫

R2 d2x f(x)
, (4.10)

with the position relative to the object centrex and surface brightnessf (x). For both methods the
calibration bias becomes more negative for fainter magnitudes and weakly increases with galaxy
size, where both effects are more pronounced for our analysis. Our method over-estimates the
shear by∼ 6% at the bright end while under-estimating it by∼ (20− 30)% for faint galaxies.
Trends to under-estimate the shear for faint galaxies have been detected for all methods tested
in STEP2, and are particularly problematic for 3D shear analyses. The method which was least
affected is the ES2 implementation of KSB+ showing a∼ 5% decline. We will further investigate
the detected dependencies in Sect. 4.3.7. As expected PSF anisotropy residuals are most strongly
pronounced for small galaxies.

4.3.7 Impact of noise correlations

In the original STEP2 analysis all methods suffer from a degradation of the shear estimate for
faint galaxies. We will see that – at least for our KSB+ implementation – this is mostly due to
the negligence of the noise correlations when applying signal-to-noise cuts.

In the case of uncorrelated noise the dispersion of the sum ofthe pixel values overN pixels
scales as

σN =
√

Nσ1 , (4.11)

whereσ1 is the dispersion computed from single pixel values. Drizzling, or convolution in the
case of the STEP2 simulations, reducesσ1 but introduces correlations between neighbouring
pixels. For example, even for pure noise it becomes more likely to find a “high” pixel value near
to another “high” pixel than at a random position. The signal-to-noise of an object is usually
defined as the ratio of the summed object flux convolved with some window or weight func-
tion, divided by an rms estimate for the noise in an equal areaconvolved with the same weight
function. If the noise estimate is computed fromσ1 and scaled according to (4.11), or a version
taking the weight function into account such as (3.93), the correlations are neglected and the
noise estimate is too small compared to the uncorrelated case.

Together with the sheared images, the STEP2 simulations include one image without objects
providing a pure noise realisation. We use this image to estimate the effective influence of the
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Figure 4.14: Shear calibration bias (top) and PSF anisotropy residuals (bottom) computed from
galaxy bins in input magnitude and size for the TS (left) and HH (right) implementation of
KSB+. Measurements of the two components have been averaged. Thered, black, pink, dark
blue, light blue, and green points correspond to image sets A, B, C, D, E, and F respectively
(extracted from Figure 7 in M07).

noise correlations. Here we compute the rms of the pixel sumσmeasure
N in independent quadratic

subregions of the image with side lengthM =
√

N. We then determine the ratio

r =
σmeasure

N√
Nσmeasure

1

, (4.12)

which in the absence of correlated noise would be equal to 1 for all N. In the presence of
noise correlations it will converge for largeN to the factor by whichσmeasure

1 under-estimates
the uncorrelatedσ1. This can be understood as drizzling or (normalised) convolution typically
re-distributes pixel flux within a relatively small area. Assoon as this is much smaller than the
area spanned byM2 pixels, the correlations become unimportant for the area pixel sum. The
estimatedr(M) is plotted in Figure 4.15. Extrapolating forM → ∞ we estimate that ordinary
noise estimates based on the single pixel dispersion ignoring the noise correlation will over-
estimate the signal-to-noise of objects by a factorr ≃ 2.8 for the STEP2 simulations. Hence, our
selection criterion S/N > 4.0 corresponds to a rather brave true cut S/Ntrue

& 1.4 and includes
objects with much lower true signal-to-noise than in STEP1.

We plot the dependence of our STEP2 shear estimate on the (uncorrected) S/N in the top left
panel of Figure 4.16. For S/N . 7, corresponding to S/Ntrue

. 2.5, a significant deterioration
of the shear signal occurs, with a calibration bias〈m〉 ∼ −10% and a large scatter between the
different PSF models. Hence, this probably marks the limit whereour KSB+ implementation can
yield reasonable shear estimates. This also agrees with theSTEP1 results, where shear estimates
appeared to be stable with only moderate bias down to the applied cut S/Ntrue = 3.0. We there-
fore reject the very noisy and strongly biased STEP2 galaxies with a modified cut S/N > 7.0.
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Figure 4.15: Ratio of the dispersionσmeasure
N measured from large areas ofN = M2 pixels to the

estimate from the normal single dispersion
√

Nσmeasure
1 as a function ofM, determined from an

object-free STEP2 image. In the absence of noise correlationsr = 1 for all M. The valuer ≃ 2.8
for M → ∞ gives the factor by which an object signal-to-noise is over-estimated when measured
from the single pixel dispersionσmeasure

1 ignoring the correlations.
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Table 4.9: Calibration biasmα and PSF anisotropy residualscα for different correction and cut
schemes for the modified TS KSB+ analysis of the STEP2 data. The first line for each scheme
givesmα andcα computed from all image sets, whereas the highly ellipticalPSFs D and E have
been excluded for the second line. The errors correspond to the scatter between the different
image sets. In all cases a modified calibration factor 1/0.93 and cuts|eiso| < 2.0, TrPg/2 > 0.1
were applied. The first row corresponds to the standard correction with TrPg/2 from individual
galaxies, whereas TrPg/2 has been fit as a function ofrh and mag from the galaxies with S/N > 7
for the other rows (compare to Figure 4.16, Figure 4.17, and Figure 4.19). In the table mag refers
to MAG AUTO from SExtractor.

Correction Cuts 〈m1〉/% 〈c1〉 × 10−3 〈m2〉/% 〈c2〉 × 10−3

TrPg/2 no fit S/N > 7 0.6± 3.8 3.0± 4.9 0.4± 2.5 −0.4± 0.1
mag< 24.4 2.4± 2.6 −0.4± 0.1 2.0± 1.3 0.1± 0.3

TrPg/2 fit S/N > 4 1.2± 4.9 3.2± 4.8 −0.6± 4.6 −1.9± 2.8
(rh,mag)S/N>7 4.0± 3.0 −0.2± 0.4 2.3± 2.1 0.1± 0.1

TrPg/2 fit S/N > 7 0.0± 5.0 2.6± 4.7 −0.5± 3.8 −1.6± 2.9
(rh,mag)S/N>7 mag< 24.4 2.6± 2.4 −0.6± 0.3 1.9± 1.3 0.2± 0.3

The remaining galaxies are best corrected with a slightly reduced calibration factorccal = 0.93−1

leading to a mean calibration bias〈m1〉 = (0.6± 3.8)% and〈m2〉 = (0.4± 2.5)% (see Table 4.9).
If the highly elliptical PSFs D and E are excluded, the biasesrises to〈m1〉 = (2.4± 2.6)% and
〈m2〉 = (2.0± 1.3)%. For the following analysis we shall adapt the slightly modified calibration
factorccal = 0.93−1, as the value derived from STEP1 (ccal = 0.91−1) was based on a smaller data
set. The difference between the two values agrees with the estimated∼ 2% accuracy.

We also test our STEP2 analysis for a possible dependence of the calibration bias on half-
light-radius rh (bottom left panel of Figure 4.16). As for STEP1, we detect a more negative
bias for large galaxies, which, however, only sets in forrh & 4 pixels for the STEP2 simulations.
Hence, a more careful rejection of stars and poorly resolvedgalaxies with increasedrh cuts would
not introduce selection bias for the STEP2 data.

In Figure 4.17 we revisit the dependence of calibration biasand PSF anisotropy residuals
on galaxy magnitude and size for our KSB+ analysis. In contrast to the original M07 analysis
we treat the two shear components seperately in order not to average out PSF residuals. Addi-
tionally, we apply the refinded calibration factorccal = 0.93−1. The left panel corresponds to the
cut S/N > 4 applied in the original blind analysis, whereas we utilisethe adapted cut S/N & 7
(S/Ntrue

& 2.5) in the right panel. This cut rejects 30% of the originally selected galaxies from
the faint end, leading to the modified binning, see the S/N–magnitude correlation shown in Fig-
ure 4.18. Furthermore, we apply a cut in the measured magnitudeMAG AUTO < 24.4 to increase
the homogeneity of the data, which however only leads to an additional rejection of 2.2% of
the remaining galaxies. With these modifications the average calibration bias remains consis-
tent with zero and the variation with magnitude is reduced tom ∼ +4% at the bright end and
m∼ −4% for the faintest magnitude bin.
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Figure 4.16: Calibration biasm as a function of the uncorrected signal-to-noise S/N (top) and
half-light-radiusrh (bottom) for the TS analysis of the STEP2 simulations. Theleft panels corre-
spond to the default correction with TrPg/2 from individual galaxies, whereas TrPg/2 was fit as
a function ofrh and observed magnitude using only galaxies with S/N > 7 for theright panels.
For all plots an adapted calibration factorccal = 0.93−1 (original 0.91−1) was applied, and for the
bottompanels additionally cuts S/N > 7 andMAG AUTO < 24.4. Thin solid (dashed) lines show
γ1 (γ2) estimates for individual PSFs, where we show individual errorbars only for one PSF for
clarity. Bold solid lines and errorbars show the mean and standard deviation of the individual
PSF estimates and shear components. Note the deteriorationof the shear estimate for the STEP2
galaxies with S/N . 7 (S/Ntrue

. 2.5) if no TrPg/2 fitting is done.
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For comparison we also repeat the analysis with an alternative cut TrPg/2 > 0.0 instead of
TrPg/2 > 0.1. In this case the bias in the faintest magnitude bin is slightly enhanced (m ∼ 6%),
but the calibration bias shows no more dependence on galaxy size.

Figure 4.17: Calibration biasmand PSF residualsc as a function of input galaxy magnitude and
size for our refined analysis of the STEP2 data. Thin solid (dashed) lines showγ1 (γ2) estimates
for individual PSFs, where we include individual errorbarsonly for one PSF for clarity. Bold
solid lines and errorbars show the mean and standard deviation of the individual PSF estimates
and shear components. For theleft panel all galaxies with S/N > 4 are included, showing the
strong deterioration at the faint magnitude end already seen in Figure 4.14. In theright panel only
galaxies with S/N > 7 (S/Ntrue > 2.5) andMAG AUTO < 24.4 are taken into account, strongly
reducing the deterioration. For both plots the default correction with TrPg/2 from individual
galaxies and an adapted calibration factorccal = 0.93−1 (original 0.91−1) were applied.

4.3.8 Pg–fitting

We also tested the impact of TrPg/2–fitting as a function of less noisy observables for the STEP2
data.

Considering only the sample with S/N > 7, fitting as a function ofrh and magnitude leads to
a slightly flatter slope in the magnitude range 20< r < 23.5, but amplifies the bias at the faint
end to∼ −10% (top right panel of Figure 4.19). Interestingly, a fit derived from the on average
unbiased sample with S/N > 7, which is then applied to all galaxies with S/N > 4, leads to an
almost flat slope down tor ∼ 24.2, and only in the faintest magnitude bin a substantial calibration
bias of∼ −12% occurs (top left panel of Figure 4.19). Hence, a fit of TrPg/2 as a function of
rh and magnitude derived from sufficiently high signal-to-noise galaxies, but applied to a larger
sample, might be a possibility to increase the number density of galaxies usable with KSB, if
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Figure 4.18: Distribution of galaxies in S/N–magnitude-space for a simulated STEP2 set A
image. The line indicates the adjusted cut S/N > 7, corresponding to S/Ntrue > 2.5 when
corrected for noise correlations. This cut rejects 30% of the galaxies originally selected with
S/N > 4.

an additional magnitude cut is applied to reject objects in the faint magnitude tail. However, the
actual behaviour in the faint magnitude bins depends significantly on the exact cut to select the
fit sample, which is not surprising given that S/N and magnitude are not independent quantities.
As a further side-effect, the described fitting scheme introduces a significant size dependence of
the calibration bias, which might be similarly problematicas a magnitude dependence for a real
cosmic shear survey. Furthermore, it slightly enhances thescatter in the calibration bias between
the different PSF models. Therefore, we decided not to follow this approach in our cosmic shear
pipeline.

On the other hand we found that TrPg/2–fitting as a function ofrh and|e|worsens the negative
shear calibration bias for faint galaxies and introduces a strong dependence on size (bottom
panels of Sect. 4.19). This is in contrast to the STEP1 results, where this fitting approach led to
a higher shear estimate for faint galaxies (Sect. 4.2.7.2).Due to this apparent dependence on the
exact image properties the approach seems to be little useful. Hence, we also do not include it in
our cosmic shear pipeline.

4.3.9 Conclusions from STEP2

The shear calibration factor and improved selection criteria derived from the STEP1 analysis
for our KSB+ implementation proved to be robust providing good results also for the STEP2
simulations. The resulting average calibration bias was consistent with zero at the two-percent
level except for the highly elliptical (e∼ 12%) PSFs D and E, which led to a significantly negative
shear calibration bias of (−3.8± 2.5)%. For these PSFs significant PSF anisotropy leakage was
detected for all KSB+ methods. Complex morphologies seem to increase the overall trend of
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Figure 4.19: As Figure 4.17, but with TrPg/2 fitted as a function ofrh and observed magnitude
(top) or rh and uncorrected ellipticity (bottom). For all panels the fit was derived using only
galaxies with S/N > 7 (S/Ntrue > 2.5). It was then applied to all galaxies with S/N > 4 for the
left panels. For theright panels only the brighter galaxies with S/N > 7 andMAG AUTO < 24.4
are taken into account. In all cases fitting increases the calibration bias for the faintest magnitude
bin and introduces a strong size dependence.
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KSB+ implementations to under-estimate the shear. The STEP2 analysis also identified a trend
for most tested shear measurement pipelines that theγ1 component is typically measured with
less bias than theγ2 component, where the difference is probably caused by pixelisation.

All methods tested in STEP2 suffer from an under-estimation of the shear at the faint magni-
tude end. Tests conducted later suggest that for our method this deterioration originates from the
negligence of noise correlations, which lead to an over-estimation of objects’ signal-to-noise by
a factor∼ 2.8. Adjusting the cut to S/N > 7 (S/Ntrue > 2.5) cures the deterioration and reduces
the overall bias, so that a slightly reduced calibration factor 1/0.93 fits the data better, with a
weaker dependence of the calibration bias on magnitude, ranging from∼ +4% for the brightest
galaxies to∼ −4% at the faint end.

Our tests to fit TrPg/2 as a function of half-light-radius and magnitude or half-light-radius
and ellipticity did not help to reliably reduce the remaining magnitude-dependent calibration
bias, without introducing a size dependence. Therefore we abstain from applying TrPg/2 fits in
our cosmic shear analysis.
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4.4 STEP3: Simulated space-based images

In parallel to the STEP2 analysis a third STEP project was launched in 2005, STEP3, the blind
analysis of shear simulations with properties of space-based data. Given that a large fraction
of this data mimics the PSF and image properties of ACS, the analysis became a particularly
valuable test for this thesis project. Before, it has been unclear how well KSB+ is able to correct
for the PSF of the space-based instrument due to the fundamental limitations of the method. The
results summarised here have not been published at the time of the write-up.

4.4.1 Simulations

The STEP3 simulations were created by William High and Richard Massey and are, similarly to
the STEP2 data, based on the Massey et al. (2004) shapelet simulation package.

The different STEP3 data sets are summarised in Table 4.10. Sets A, B, and C resemble
3.′33 × 3.′33 1 ks i–band exposures from the planned SNAP satellite, where the different sets
correspond to different telescope apertures and pixel scales. Image sets D to Lmimic the PSF
properties of the ACS Wide-Field-Channel (WFC) Detector (see Sect. 5.1.2) with a 2.′67× 2.′67
field-of-view and 2 ks exposure time, where the PSF was modelled using a modified version of
theTinyTim package described in Rhodes et al. (2007) for different stellar positions within the
ACS field-of-view . Whereas the true WFC features a pixel scale of0.′′05, most simulated ACS
data sets have a pixel scale of 0.′′04, which reflects the slightly improved sampling achievable
for drizzled dithered data. On the other hand image sets E andG have coarse pixels sized 0.′′10
resembling the pixel scale of WFPC2, which is the major workhorse for HST since the failure of
ACS. A small cutout from an ACS-type image of set D is shown in Figure 4.20.

In addition to the STEP3 image simulations five times oversampled PSF images were pro-
vided, which some methods used to derive a PSF model. The galaxies have been modelled
including complex morphologies with shapelets using theHubbleDeep Field North as a training
set, except for image sets F and G which contain simplified galaxies with exponential profiles.
The images contain stars with surface densities predicted at the galactic poles. In additional, one
stellar field with increased number density was provided, which can be used to characterise the
PSF similarly to periodical observations of globular cluster fields in real WL surveys. The PSF
does not change across the field-of-view or within one image set. This is a simplification com-
pared to real data, which allows the separation of two important, but different problems, namely
shape measurement as tested here, and second PSF interpolation and stability, which we test for
ACS in detail in Sect. 6.2. In contrast to STEP2, the STEP3 datacontain uncorrelated noise.

4.4.2 Shear estimation

The different methods tested in the STEP3 blind analysis are listed in Table 4.11.
We applied our KSB+ pipeline with some minor modifications compared to the STEP2

analysis, in order to keep it as similar to the analysis of real ACS images presented in Chap-
ter 6 as possible. We apply different detection parameters for image sets with large pixelsof
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Table 4.10: Overview of the STEP3 image sets. The ACS-type PSFs H to L differ in the PSF
model, which has been computed for different image positions but the same telescope focus using
TinyTim.

Image set Instrument Pixel scale/ ′′ Galaxy model Number of images
A 2.0m SNAP 0.05 Shapelet 100
B 2.0m SNAP 0.10 Shapelet 100
C 1.4m SNAP 0.10 Shapelet 100
D ACS 0.04 Shapelet 100
E ACS 0.10 Shapelet 100
F ACS 0.04 Exponential 100
G ACS 0.10 Exponential 100
H ACS 0.04 Shapelet 50
I ACS 0.04 Shapelet 50
J ACS 0.04 Shapelet 50
K ACS 0.04 Shapelet 50
L ACS 0.04 Shapelet 50

Figure 4.20: Cutout from one STEP3 image from set D with ACS-like properties (width 30′′).
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Table 4.11: Shear measurement methods and implementationstested in the analysis of the STEP3
image simulations.

Author Key Method
Berǵe JB Shapelets (Massey & Refregier 2005)
Heymans CH KSB+
Mandelbaum RM Reglens (Hirata & Seljak 2003)
Nakajima RN Bernstein & Jarvis (2002) (Nakajima & Bernstein 2007)
Paulin-Henrikson SP KSB+
Rhodes JR RRG (Rhodes et al. 2000)
Schrabback TS KSB+
Schrabback T2 KSB+ (high resolution PSFs)

size 0.′′10 (DETECT MINAREA=6, DETECT THRESH=1.5, filter gauss2.5 5x5.conv), and for im-
age sets with pixel scales 0.′′04 and 0.′′05 (DETECT MINAREA=8, DETECT THRESH=1.4, filter
gauss3.0 7x7.conv). In the case of more than one detection within a radius of 1.′′2 we only
keep the brightest object in order to exclude possible contamination from galaxy substructures,
as done for real ACS data. When measuring PSF quantities from stars we integrate to a radius of
4.5 stellar flux-radii in order to properly account for the extended wings of the ACS PSFs.

Our default PSF correction and analysis (TS) is based on the stars present in the simulated
star field images. As an additional test we derive alternative PSF models from the over-sampled
high-resolution PSF images. The ellipticity definition (3.85) is normalised and dimensionless,
and hence does not depend on the coordinate system or pixel scale. The same is true for the
Psh tensor, as follows from (A.24). This is different for thePsm tensor (A.18), which is not
normalised and scales as (pixel scale)2, as can be seen by comparing the definitions ofQi j (A.4)
andXαβ (A.12). We therefore need to scale the estimates for thePsm components derived from
the high-resolution images by 52, in order to correct the galaxies. This alternative correction
scheme has the key T2. However, we expect that it will preformworse than the TS method as
pixelisation effects can no longer cancel out between stars and galaxies.

For the TS analysis we list stellar flux-radii and ellipticities in Table 4.12. Note that the
simulated STEP3 PSFs are only moderately elliptical with|e∗| . 2.3% for rg = 0.′′16.

Given the flatrh dependence of the shear calibration bias found in STEP2, we apply a more
conservative rejection for stars and poorly resolved galaxies rh > 1.15r∗,upper

h ≃ 1.2r∗h. Further-
more, we select galaxies with cuts|eiso| ≤ 2.0, TrPg/2 > 0.1, and S/N > 4. In order to take
account for the overall calibration bias detected in STEP1,a constant shear calibration factor
of 0.91−1 was applied in the blind analysis. We do not use a weighting scheme in our STEP3
analysis.
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Table 4.12: PSF quantities estimated for the STEP3 simulations using the TS KSB+ pipeline,
with PSF estimation from the low-resolution stars in the simulated stellar field. r f is the
SExtractor FLUX RADIUS. The ellipticities have been estimated using a Gaussian weight func-
tion with filter scalerg = 0.′′16.

Image set Pixel scale/ ′′ rf /
′′ 〈e1〉/% 〈e2〉/%

A 0.05 0.0792± 0.0001 0.49± 0.03 0.51± 0.04
B 0.10 0.0934± 0.0002 0.54± 0.05 0.48± 0.03
C 0.10 0.1132± 0.0003 0.01± 0.03 −0.04± 0.03
D 0.04 0.0721± 0.0001 −0.07± 0.03 −2.25± 0.03
E 0.10 0.0895± 0.0003 0.05± 0.14 −1.57± 0.03
F 0.04 0.0721± 0.0001 0.00± 0.03 −2.30± 0.02
G 0.10 0.0896± 0.0003 0.09± 0.14 −1.60± 0.03
H 0.04 0.0721± 0.0001 2.31± 0.04 −0.15± 0.04
I 0.04 0.0721± 0.0001 0.15± 0.03 2.29± 0.04
J 0.04 0.0721± 0.0001 −2.27± 0.03 0.21± 0.04
K 0.04 0.0721± 0.0001 −0.18± 0.03 −2.22± 0.04
L 0.04 0.0721± 0.0001 −0.01± 0.03 0.02± 0.04

4.4.3 Analysis

The analysis of the submitted shear catalogues was done by Catherine Heymans and Jason
Rhodes. The estimates for calibration bias and PSF anisotropy residuals are summarised in
Table 4.13, where our TS analysis yields the best results, followed by the CH analysis also using
KSB+ and the JR implementation of RRG (Rhodes et al. 2000). These methods have all been
used and optimised for space-based data before. On the otherhand, methods not yet used for
space-based data suffer from stronger calibration bias or PSF residuals.

Interestingly, all KSB+ implementations and the related RRG method yield higher shear
estimates (less negative calibration bias) for the poorly sampled image sets than for the sets with
pixel scale 0.′′04. This indicates that pixelisation in fact increases the shear estimate, in contrast
to the effects seen in STEP2 (Sect. 4.3.4). The difference in the shear estimate is in fact lowest for
the TS and T2 methods amounting to∼ 1%, which is probably due to the interpolation scheme
used. The trend of a higher shear estimate for the poorer sampled data is also seen for the RM
reglens method and the JB implementation of shapelets.

The TS and T2 results for the individual image sets are shown in Figure 4.21. The T2 analysis
yields a shear estimate which is lower than the TS estimate by∼ 7%, consistently for the better
and worse sampled image sets. This difference provides an approximate estimate for the impact
of pixelisation effects, which largely cancel out for the TS but not T2 method. However, note
that the high resolution PSF was not additionally convolvedwith the larger pixel size. Hence,
it is effectively slightly narrower than the low resolution PSF, which will lead to lesser seeing
correction and a smaller shear estimate, explaining at least parts of the difference between TS
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Table 4.13: Number density of galaxiesN, calibration biasmα and PSF anisotropy residualscα
for the methods tested in the STEP3 blind analysis. The first row for each author was computed
from the simulations with pixel scale 0.′′04, whereas the second row corresponds to the sets with
coarse sampling (analysis by CH).

Key N 〈m1〉 〈c1〉 〈m2〉 〈c2〉

TS 71± 3 −0.01± 0.01 0.001± 0.000 0.01± 0.01 0.001± 0.000
TS 57± 13 0.01± 0.01 0.001± 0.001 0.02± 0.01 0.001± 0.000
T2 71± 3 −0.07± 0.01 0.001± 0.001 −0.06± 0.01 0.001± 0.001
T2 57± 13 −0.06± 0.00 0.001± 0.000 −0.05± 0.01 0.001± 0.000
RM 159± 3 −0.10± 0.01 −0.007± 0.001 −0.10± 0.01 0.002± 0.001
RM 112± 25 −0.04± 0.00 0.018± 0.009 −0.02± 0.02 0.003± 0.002
RN 74± 7 −0.06± 0.01 0.001± 0.001 −0.03± 0.01 0.001± 0.001
RN 106± 25 −0.09± 0.01 0.001± 0.000 −0.09± 0.01 0.000± 0.000
JR 67± 0 0.03± 0.02 0.003± 0.000 −0.02± 0.02 −0.002± 0.001
JR 46± 9 0.07± 0.02 0.003± 0.001 0.00± 0.01 0.000± 0.000
JB 175± 7 −0.22± 0.01 −0.001± 0.001 −0.23± 0.01 −0.001± 0.001
JB 132± 28 −0.11± 0.03 0.000± 0.000 −0.10± 0.04 −0.001± 0.001
CH 105± 4 −0.05± 0.01 0.001± 0.000 −0.06± 0.01 0.000± 0.000
CH 101± 24 −0.02± 0.01 0.000± 0.000 −0.03± 0.01 0.000± 0.000
SP 64± 2 −0.19± 0.01 0.001± 0.000 −0.17± 0.01 −0.002± 0.001
SP 46± 7 −0.10± 0.01 0.000± 0.001 −0.11± 0.01 0.000± 0.000

and T2. In any case we would expect a larger difference for the PSFs with 0.′′10 pixel scale,
being more strongly affected by pixelisation, but maybe this is compensated by the interpolation
scheme.

4.4.4 Subtraction of the intrinsic ellipticity

After receiving the results for the mean calibration bias and PSF residuals in the blind analysis,
I conducted a more detailed analysis to study their behaviour as a function of galaxy parameters
similarly to STEP2. Here I relaxed the signal-to-noise cut to S/N > 3 and adapted the calibration
factor to 1/0.93 due to the conclusions from STEP2. Due to the lacking rotated image pairs in
STEP3, the derived constraints for a magnitude or size dependence were however weak com-
pared to the STEP2 results. In order to decrease the disturbing shape noise, we therefore decided
to subtract the intrinsic ellipticity

ǫ int =
ǫ input− γ

1− γ∗ǫ input
, (4.13)

which we estimate from the shearγ and input ellipticity

ǫ input =
a− b
a+ b

e2iφ , (4.14)



104 Chapter 4. Testing and improving KSB+ with the STEP simulations

Figure 4.21: STEP3 calibration biasmα and PSF anisotropy residualscα for the standard TS
analysis (top) and the T2 analysis (bottom), in which the PSF model was determined from a five
times oversampled PSF images. Theleft panels correspond to theγ1 component, whereas the
analysis forγ2 is shown in theright panels. Biases in the KSB+ estimates due to pixelisation
largely cancel out for stars and poorly resolved galaxies, if measured from the same pixel scale
(TS). If only the stars are measured with high sampling the effects can no longer cancel, which
explains the poor performance of the T2 method (plot by CH).
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Table 4.14: Estimates for calibration biasmα and PSF anisotropy residualscα for the different
image sets using the TS method with a modified cut S/N > 3, a calibration factor 1/0.93, and
the intrinsic ellipticity subtracted shear estimator ˆγ.

Image set 〈m1〉/% 〈c1〉 · 104 〈m2〉/% 〈c2〉 · 104

A −1.9± 1.0 −5.3± 4.8 −0.7± 1.0 −3.7± 4.9
B −1.0± 1.4 0.8± 5.0 0.7± 1.5 8.5± 5.0
C −0.4± 1.6 −6.4± 5.4 0.0± 1.6 8.3± 5.4
D 0.1± 1.5 7.9± 5.3 0.3± 1.6 2.3± 5.4
E 1.9± 1.6 6.6± 5.5 0.4± 1.6 8.5± 5.6
F 0.9± 1.1 12.8± 3.8 0.7± 1.1 11.3± 3.9
G 6.4± 1.2 12.6± 4.2 4.2± 1.2 3.8± 4.2
H −1.0± 2.2 −1.8± 7.4 1.6± 2.2 0.0± 7.6
I −0.4± 2.1 −7.8± 7.4 3.2± 2.2 −9.5± 7.6
J 1.1± 2.1 4.0± 7.4 2.8± 2.2 −11.0± 7.6
K −0.6± 2.2 10.3± 7.5 −2.5± 2.2 −1.9± 7.6
L −1.4± 2.2 2.5± 7.4 −1.8± 2.1 −3.0± 7.6

where the galaxy major axisa, minor axisb, and position angleφ are computed from the shapelet
coefficients and included in the input catalogues. We then use the shape noise reduced shear
estimator

γ̂ = ccal e
iso− ǫ int . (4.15)

We list the global estimates for calibration bias and PSF anisotropy residuals derived from ˆγ

in Table 4.14. On average the uncertainties in the estimatedcalibration bias for the different
image sets shrink by 39% when using the shape noise reduced shear estimator. For the ACS-type
simulations only, we then compute the overall calibration bias and anisotropy residuals

〈m1,m2〉ACS = (−0.1± 1.1, 0.6± 2.0) % , (4.16)

〈c1, c2〉ACS = (3.1± 5.7, −2.1± 6.2) · 10−4 , (4.17)

where the errors correspond to the 1σ–scatter between the different image sets. If all image sets
are considered, these values become

〈m1,m2〉ACS+SNAP = (0.3± 2.1, 0.8± 1.9) % , (4.18)

〈c1, c2〉ACS+SNAP = (3.0± 7.0, 1.1± 7.0) · 10−4 . (4.19)

4.4.5 Dependence on galaxy properties

In the STEP3 simulations we detect no degradation of the shear signal down to S/N = 3 (top
panels of Figure 4.22), similarly to the behaviour for the true signal-to-noise in STEP2. The
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strong dependence of the shear estimate onrh seen in STEP1 does not occur for our STEP3
analysis (bottom panels of Figure 4.22), as it was the case for STEP2. We therefore consider
this behaviour to probably be a peculiarity of the STEP1 simulations and conclude that more
conservative cuts inrh used to exclude poorly resolved galaxies should not introduce a strong
selection bias in the analysis of the ACS images.

The signal-to-noise cut S/N > 3 roughly corresponds to a magnitude cuti . 26.5 (Fig-
ure 4.23). Down to this limit we detect no significant magnitude-dependent calibration bias in
our shear estimate (Figure 4.24), but only a large increase in the noise for the faintest bin. For
the ACS-type simulations there seems to be a slight trend to over-estimate shear by∼ 6% in the
brightest bin, but the scatter is too large to be conclusive.

The simulations with a coarse pixel grid show a trend to systematically over-estimate the
shear for intrinsically small galaxies. This agrees with the interpretation of more positive average
calibration bias being caused by pixelisation issues (see Sect. 4.4.3), which will have the strongest
influence for small galaxies.

PSF anisotropy residuals are generally small. The ACS-type simulations appear to have a
slight deterioration in the faintest magnitude bin, but again the scatter is too large to be conclu-
sive.

4.4.6 Conclusions from STEP3

For the ACS cosmic shear project the most important conclusion from STEP3 is that our KSB+
implementation performs very well for simulated ACS data. The calibration correction 1/0.93
derived from STEP2 leads to a calibration bias consistent with zero, which shows a 1σ–scatter of
2% (4.16) between all ACS and SNAP type simulated images. PSF anisotropy residuals are also
consistent with zero, with a scatter of 7×10−4 (4.17). Although the ACS-type simulations do not
exactly resemble all possible configurations of the spatially and temporarily variable ACS PSF
(e.g. simulated ellipticities. 2.3%), the inclusion of the SNAP-type simulations should provide
a fair estimate of the expected scatter for real ACS data. Hence, we conclude that the average
shear calibration should be accurate to 2% in the analysis ofthe ACS data. For a proper PSF
interpolation scheme PSF anisotropy residuals should be suppressed to a level well below the
statistical accuracy of the ACS data.

We do not detect a significant dependence of the shear estimate on half-light-radiusrh. Hence,
conservative cuts to reject poorly resolved galaxies should not lead to a significant selection bias.
The magnitude and size dependence of the shear calibration is flat except for a slight trend to
over-estimate the shear at the bright end by∼ 6%, but the statistical accuracy is too low to be
conclusive.

Additionally, in the simulations with pixel scale 0.′′10 we significantly over-estimate the shear
for intrinsically small galaxies. This agrees with the general trend of all KSB+ implementations
and the related RRG method to obtain a higher shear estimate forthe poorly sampled data than
the 0.′′04 ACS simulations. This indicates that pixelisation, whichhas most impact for poorly
sampled data and small galaxies, in fact leads to an over-estimation of the shear, an effect which
partially cancels with the under-estimation due to the TrPg/2 approximation. The comparison of
the TS and T2 analysis, where the latter one uses super-sampled high-resolution PSFs, indicates
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Figure 4.22: Calibration biasm as a function of (true) signal-to-noise S/N (top) and half-light-
radiusrh (bottom) for the TS analysis of the STEP3 simulations, computed fromthe intrinsic
ellipticity subtracted shear estimator ˆγ. The left panels show the ACS–type image sets with
pixel scale 0.′′04, whereas theright panels correspond to the larger pixel scales. For all plots
TrPg/2 was computed from individual galaxies and an adapted calibration factorccal = 0.93−1

(original 0.91−1) was applied. Galaxies were selected with cuts S/N > 3, |eiso| < 1.4, and
TrPg/2 > 0.1. Thin solid (dashed) lines showγ1 (γ2) estimates for individual PSFs, where we
show individual error-bars only for one PSF for clarity. Boldsolid lines and error-bars show
the mean and standard deviation of the individual PSF estimates and shear components. In the
bottom rightpanel the errors increase for largerh due to the low number of remaining galaxies.



108 Chapter 4. Testing and improving KSB+ with the STEP simulations

Figure 4.23: Distribution of galaxies in S/N–magnitude-space for simulated STEP3 images from
set C (1.4m SNAP-like,left) and D (ACS-like,right).

that pixelisation has an impact on the shear estimate of order ∼ 7%, which however largely
cancels out if both the galaxies and stars are measured from the same images.
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Figure 4.24: Calibration biasmand PSF residualsc as a function of input galaxy magnitude and
size for the TS analysis of the STEP3 simulations, computed from the intrinsic ellipticity sub-
tracted shear estimator ˆγ. The left panel shows the ACS-type image sets with pixel scale 0.′′04,
whereas theright panel corresponds to the larger pixel scales. For all plots TrPg/2 was computed
from individual galaxies and an adapted calibration factorccal = 0.93−1 (original 0.91−1) was ap-
plied. Galaxies were selected with cuts S/N > 3, |eiso| < 1.4, and TrPg/2 > 0.1. Thin solid
(dashed) lines showγ1 (γ2) estimates for individual PSFs, where we show individual errorbars
only for one PSF for clarity. Bold solid lines and errorbars show the mean and standard devia-
tion of the individual PSF estimates and shear components. Note the significantly more stable
correction for the space-based data shown here compared to the simulated ground-based STEP
data shown in Figure 4.17.
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4.5 Conclusions

The Shear TEsting Programme has demonstrated that nowadaysseveral shear measurement
pipelines reach an accuarcy at the 2% level, whereas tests prior to STEP yielded 10− 15%
only. Within the subsequent projects of STEP we identified the origin of biases which originally
affected our analysis. After elliminating biases introduced by object selection and our weighting
scheme for the case of a constant shear, our KSB+ implementation suffers from a remaining
bias at the 7% (STEP2, STEP3) to 9% (STEP1) level, which seemsto mostly originate from the
approximate trace-inversion of thePg tensor required for noise minimisation. Similarly, all other
tested KSB+ implementations which apply a trace-inversion show a tendency to under-estimate
shear, if calibration corrections boosting the shear signal are ignored.

For our method the bias is stable at the∼ 2% level between the different simulation sets,
justifying the use of a calibration correction. However, the derived correction cannot directly be
applied to independent KSB+ implementations, as details of the coding modify the bias shown
by the scatter of the different KSB+ results. In particular, we identify a significant dependency
on the choice of the scale factor for the Gaussian filter function. Hence, we urge independent
methods to verify their accuracy, e.g. on the public STEP simulations. In addition, we identify
a moderate increase of the bias for highly elliptical PSFs asgiven by image sets D and E for
STEP2. However, real cosmic shear surveys will most likely discard images taken under such
poor conditions.

Although the KSB+ method is based on assumptions which are strictly fullfilledonly for
certain simple PSF types, the analysis of the STEP3 simulations has revealed that our modified
KSB+ implementation also yields 2% accuracy for simulated space-based data. Within the sta-
tistical accuracy of the simulations we detect no significant dependence of the shear estimate on
magnitude or size. For the analysis of the ACS data we therefore conclude that systematic errors
due to shape measurement will be well within the statisticalerrors.

Finally, we want to highlight the importance to apply propersignal-to-noise cuts. For our
pipeline we found that galaxies selected with S/N > 3 show only a weak dependence of the
calibration bias on magnitude. Possibly, this cut can even be relaxed to S/N > 2.5, where
the additional galaxies are, however, very noisy, so that a weighting scheme should probably
be applied. These signal-to-noise cuts refer to the case of uncorrelated noise. Correlated noise,
introduced for example by drizzling, leads to an under-estimation of the background noise, which
must be taken into account for the computation of a meaning-full signal-to-noise estimate. In the
case of the STEP2 simulations this modifies the S/N estimate by a factor∼ 2.8.

The reachable 2% accuracy of shear measurements with KSB+, which has been demon-
strated for the CH, HH, and our implementation, is reassuringconcerning its use on current
and upcoming surveys. Nonetheless, KSB+ suffers from fundamental shortcomings, namely it’s
assumptions regarding the image PSF and the lack of proper treatment both of noise and pixeli-
sation. We therefore regard it unlikely that KSB+ will be tuneable to serve as tool for precision
cosmology with sub-percent accuracy, underlining the urgent need to develop and improve more
sophisticated methods.



Chapter 5

Instrument and data reduction

In this chapter I will first summarise relevant properties oftheHubble Space Telescopeand its
Advanced Camera for Surveys, which are relevant for weak lensing analyses. I will then describe
our data reduction pipeline, which has been upgraded throughout the course of this project. For
the data used in the cosmic shear study, we distinguish between two different development stages
named Mark-I and Mark-II reduction. During the developmentof the Mark-II reduction we
joined forces with the HAGGLeS1 project, which aims at the detection of galaxy-scale strong
lenses in the ACS archive.

In this chapter I describe the general scheme of the data reduction. The particular data sets
are then described in the following chapters.

5.1 The Advanced Camera for Surveys on-board the Hubble
Space Telescope

5.1.1 The Hubble Space Telescope

TheHubble Space Telescope2 (HST) is a 2.4 meterf /24 Ritchey–Chretien Cassegrain telescope
deployed in April 1990 into a low Earth orbit with a period of 96 minutes. Being unaffected by
Earth’s atmosphere, it provides high-resolution imaging in UV, optical, and near-infrared wave
bands. In addition, space-based observations have a lower sky background, which in combination
with the high resolution enables very deep observations. For weak lensing measurements it
provides the great advantage of a high number density of resolved galaxies, allowing accurate
weak lensing measurements at small angular scales.

1http://www.slac.stanford.edu/˜pjm/HAGGLeS/
2The HST is a joint programme of the National Aeronautics and Space Administration (NASA) and the European

Space Agency (ESA).
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5.1.2 The Advanced Camera for Surveys

The Advanced Camera for Surveys(ACS) was installed on board theHubble Space Telescope
during Servicing Mission 3B on March 7, 2002. ACS consists of three independent detectors:

• TheWide Field Channel detector, called ACS/WFC, consists of two 2048× 4096 pixel
thinned, backside-illuminated CCDs, with∼ 0.05 arcseconds per pixel, thus covering a
nominal field-of-view of 202× 202 arcseconds. ACS/WFC is sensitive in the spectral
range from∼ 3700Å to 11,000Å.

• TheHigh Resolution Channeldetector, called ACS/HRC, is a 1024×1024 pixel thinned,
backside-illuminated CCD, with∼ 0.028×0.025 arcseconds per pixel, covering a nominal
29× 26 arcsecond field-of-view, with a spectral response from∼ 2000Å to 11,000Å.

• The Solar Blind Channel detector, called ACS/SBC, is a solar-blind CsI Multi-Anode
Micro-channel Array (MAMA), with 1024× 1024 pixels. With one pixel corresponding
to ∼ 0.034× 0.030 arcseconds, ACS/SBC has a nominal 35× 31 arcsecond field-of-view,
with a far-UV spectral response from 1150Å to 1700Å.

For weak lensing measurements the ACS Wide Field Channel detector is the instrument of
choice, as it provides the largest field-of-view and highestsensitivity in optical bands of all HST
cameras, in combination with relatively good sampling enabling accurate shape measurements.
I will hence limit the discussion to the Wide Field Channel in the following subsections. For a
detailed description of ACS, the reader is referred to theACS Instrument Handbook(Pavlovsky
et al. 2006b).

5.1.3 Instrument design of the ACS Wide Field Channel

The Wide Field Channel was designed to increase the survey capabilities and therefore the dis-
covery efficiency of HST. On one hand this is achieved by a field-of-view (202′′×202′′) which is
larger than the field of any other HST camera. Furthermore, the quantum efficiency of the WFC
(48% at maximum including the optical telescope assembly) is about a factor of three to four
higher at optical and near-infrared wavelengths than for STIS and WFPC2 (see Fig. 5.1).

The high throughput is possible due to the use of very sensitive thinned, backside-illuminated
CCD chips with anti-reflection coatings optimised for red wavelengths. Additionally, the number
of optical elements is minimised, since only three mirrors with silver coating are used inside
the camera. The design of the ACS/WFC is sketched in Fig. 5.2: Light coming from the HST
secondary mirror is reflected by these three mirrors throughtwo filter wheels onto the WFC CCD
chips. The mirrors are also used to correct for the sphericalaberration of the HST primary mirror
and field dependent astigmatism.

The two filter wheels are shared by the WFC and the HRC and allow the use of the following
filters for the WFC: F435W, F475W, F502N, F550M, F555W, F606W, F625W, F658N, F660N,
F775W, F814W, F850LP, and the grism G800L. The throughput ofthe different broad-band
filters is compared in Figure 5.3.
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Figure 5.1: The total throughput for the CCD systems of ACS/WFC, ACS/HRC, WFPC2–4, and
STIS. For optical and near-infrared observations ACS/WFC has by far the highest sensitivity
(Fig. 5.7 from Pavlovsky et al. 2006b).

The two CCD chips are usually denoted WFC1 and WFC2, where WFC1 is located at higher
Y positions in the composite image. Both have 2048× 4096 pixels with a nominal pixel size of
0.050 arcseconds per pixel. The WFC PSF has a FWHM of∼ 2.3 pixels for the F775W filter.
The CCDs are read-out by four read-out amplifiers in the cornersof the camera. For gain= 1,
which is the default value, the number of photons which can beaccumulated without saturation
in a single exposure is limited by the 16 bit-per-pixel internal buffer, which corresponds to 65,535
counts. For higher gains (2, 4, 8 possible), the dynamical range is limited by the depth of the
potential well (84,700 e−). The read-out noise amounts to 5.0 e−. The nominal dark current is
0.002 e−/s. For further details the reader is referred to Pavlovsky etal. (2006b).

5.1.4 Geometric distortion of the WFC

The two chips of the WFC are located about 200 to 500 arcsecondsfrom the optical axis of
the telescope. This results in a tilted focal surface with respect to the optical axis, creating a
strong geometric distortion. As a result the pixel scale is smaller along the radial direction from
the optical axis than along the tangential direction. Thus,the square pixels are projected onto
trapezoids of varying area across the field. In Fig. 5.4, the projected position of the WFC field-of-
view relative to the optical axis and the other cameras is shown. Similarly to the single pixels, the
whole WFC field-of-view is stretched along the direction tangential to the optical axis relative to
the radial direction, which approximately coincides with the diagonal from the upper left corner
of WFC1 to the lower right corner of WFC2. This leads to a projectedangle of thex-/y-detector
axes on the sky of∼ 85 degrees.
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Figure 5.2: Design of the ACS Wide Field Channel. Light coming from the HST secondary
mirror is imaged by a spherical mirror (IM1) onto mirror IM2,which is an anamorphic asphere
designed to correct for the spherical aberration in the HST primary mirror and the field dependent
astigmatism of the HST at the centre of the WFC field-of-view. The light is then reflected by a
Schmidt-like plate (IM3) through the two filter wheels onto the WFC CCD chips (Fig. 3.2 from
Pavlovsky et al. 2006b).

Meurer et al. (2003) measure the field-dependent distortionof the WFC from dithered, i.e.
relatively shifted observations of 47 Tucanae taken with the F475W filter (Sloan g′). Fitting the
measured distortions with polynomials they find that fourth-order fits characterise the distortion
to an accuracy of better than 0.2 pixel over the entire field, with an rms of∼ 0.04 pixels inx and
y. The largest offset is required for pixels in the upper left corner of WFC1, which are shifted by
∼ 82 pixels. An updated distortion model including a look-up table for filter-dependent residual
distortions was found by Anderson (2006). The derived distortion coefficients are provided by
the Space Telescope Science Institute (STScI) as so-calledIDCTAB tables, which are used for
the distortion correction withMultiDrizzle (Sect. 5.2.4).

Proper correction for camera distortion is essential for a weak lensing analysis due to various
reasons: First, dithered images can only be co-added if theyare mapped to a distortion-free coor-
dinate system. Otherwise local residual shifts lead to a degradation of the image PSF. Second, the
varying pixel scale across the field-of-view influences the flux measurement of compact sources.
Finally geometric distortions influence the shape and position of objects leading to wrong shear
measurements.

Note that Anderson (2007) recently reported on detected temporal variations of the distortion
solution, similar to our findings from the ACS GOODS observations detailed in Sect. 6.1.2. Such
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Figure 5.3: Transmission curves for the ACS broad-band filters (left) and the ACS SDSS filter set
(right). Thetoppanels show the filter transmittance, whereas thebottompanels refer to the total
system throughput. The Sloan filters are also named:g′ = F475W,r ′ = F625W,i′ = F775W,
z′ = F850LP (from http://acs.pha.jhu.edu/instrument/filters/).

changes are not taken into account in the data reduction. We discuss possible implications for
the shear measurement in Sect. 7.8.

5.1.5 Parallel observations

The HST scientific instruments are located at fixed positionsin the focal plane of the telescope.
Therefore it is possible to use one or more instruments in addition to the primary instrument. In
theseparallel observations, regions in the sky close to the primary pointing are observed, where
the offset can be read off from Fig. 5.4.

Since parallel observations must not interfere with the primary observation, the choice of
exposure time and, in case of shared filter wheels, also the choice of the filter is restricted by
the primary instrument. Additionally, the dither pattern (relative shifts between the different
exposures) is determined by the primary observation.

Parallel observations are possible for the ACS/WFC and the ACS/HRC in combination with
any other instrument on-board HST. One distinguishes betweenACS coordinated parallels, which
are coordinated observations with another HST instrument of specific targets,ACS auto-parallels,
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Figure 5.4: The HST field-of-view after Servicing Mission 3B.The positions of the cameras
mounted in the HST focal plane and the Fine Guidance Sensors (FGS) are shown. The offsets
from the optical axis in the V2 and V3 direction are given in arcseconds. The stretched shape
of the ACS/WFC CCDs is due to the strong geometric distortion (Fig. 3.3 fromPavlovsky et al.
2003).

where two ACS channels are used simultaneously, andACS pure parallels, which are taken com-
pletely independent of the observation of the primary instrument.

Especially in the early phase of ACS many observations were still conducted with the HST
cameras WFPC2 and STIS, so that ACS parallel observations couldbe executed on many oc-
casions, leading to a relatively quickly growing data set. Pure parallels additionally have the
advantage that the data becomes publicly available immediately, whereas other HST observa-
tions are protected (proprietary) for one year. Cosmic shearstudies benefit from the relatively
large data volume available for parallel observations. In addition, parallel observations are sep-
arated by several arcminutes from the primary target (e.g.∼ 6′ for WFPC2) providing nearly
random pointings for most classes of primary targets.

5.1.6 Cosmic rays, hot pixels, and other image defects

As in the case of any other CCD camera, ACS/WFC images are affected by image defects like hot
and cold pixels or bad columns. In contrast to ground-based CCDs, cosmic rays (cosmics) are of



5.1. The Advanced Camera for Surveys on-board the Hubble Space Telescope 117

Figure 5.5: Number of permanent hot pixels in the ACS/WFC as a function of time, for different
dark current thresholds (Fig. 4.9 from Pavlovsky et al. 2006b).

special concern for space-based cameras. These are highly energetic particles of extraterrestrial
origin, which deposit energy while passing through the CCD leading to pixels with very high
signal. Depending on the angle under which a cosmic passes through the chip, its signature in
the image can range from only very few neighbouring pixels tolong traces of affected pixels. As
can be seen in Fig. 5.6, the number of cosmics in a typical 500 sec ACS/WFC image is much
larger than the number of galaxies in the field. Also, many galaxies are affected by cosmic rays,
making any reliable brightness and shape measurement impossible. However, since cosmic rays
occur at random positions, they can be rejected if several separate exposures are combined.

Another concern is the steadily increasing number of hot pixels in the ACS/WFC (∼ 1200
new hot pixels per day), which are largely created by the strong bombardment of the camera
with cosmic rays. As for the other HST CCD cameras, a fraction ofthese new hot pixels can be
annealed by heating the camera, which is usually done once per month by pointing HST at Earth.
However, the rate of successful annealing is with∼60-65% significantly lower than for the other
HST CCDs (∼80-85%). Figure 5.5 shows the number of persistent hot pixels as function of time
for different thresholds. Due to the rapid increase dithering becomes particularly important for
later observing cycles. Unfortunately, a large fraction ofthe GO (guest observer) observations
were taken without proper dithering, also affecting simultaneous parallel observations.

Furthermore, the ACS/WFC includes a significant number of bad or variable columns (see
Sect. 5.3.5) and cold pixels with very low response, which can only be corrected using dithered
data.
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5.1.7 Charge-transfer efficiency

For space-based cameras a degradation of the charge-transfer efficiency (CTE) can significantly
influence weak lensing shape measurements. The continuous cosmic ray bombardment in space
creates chip defects acting as charge traps. If the image of an object moves across such a trap
during parallel read-out transfers, a fraction of its charge will first be trapped and then statistically
released during the following read-out steps. This effectively creates charge-trails behind objects
in the readout direction.

The ACS/WFC has two read-out amplifiers per chip, which are located in the four corners of
the instrument. During parallel transfer charges are movedalong their column towards the top of
the upper chip (WFC1) or bottom of the lower chip (WFC2) respectively. Also in the distortion
corrected drizzled images (Sect. 5.2.4) the read-out direction is approximately parallel to the
y−direction. The created charge trails lead to an average alignment of objects in they−direction,
corresponding to a negative averagee1 ellipticity component. CTE degradation is increasing with
time due to the continued cosmic ray bombardment. As the depth of charge traps is limited, faint
objects loose a larger fraction of their charges than brightones, leading to a signal-to-noise and
shape dependence of the effect. Therefore PSF models derived from high signal-to-noise stars
do not provide a sufficient CTE correction for faint and more extended galaxies. Inaddition, the
effect depends on the number of transfers (position) and sky background, where high sky values
fill the traps continuously, reducing the effect of charge trails.

For the photometric loss due to CTE degradation empirical corrections have been found
(Riess & Mack 2004; Riess 2004; Mutchler & Sirianni 2005). The non-linear influence of CTE
degradation on object shape has however not been modelled indetail yet. For the GEMS and
early parallel data we detect no significant CTE signature from the galaxy ellipticity (Sect. 6.4.1.2).
However, from the galaxies in the COSMOS data, which have beentaken later in time, we mea-
sure a highly significant CTE signal manifesting in a negativemeane1 ellipticity (Sect. 7.2.5).

5.1.8 Tracking precision and velocity aberration

Pointing and tracking of the HST is done with the Fine Guide Sensors (FGS) system, which uses
stars of the Guide Star Catalog as reference. The accuracy of the absolute pointing is typically
precise to. 2′′, except for a low number of exposures where we detected substantial offsets in
the world coordinate system (WCS) defined in the image header, of up to∼ 1′. Such WCS errors
complicate proper image registration, but do not affect the final weak lensing analysis.

For weak lensing analyses the tracking precision is of larger concern, because deviations from
the nominal position broaden the image PSF within an exposure, and in case of non-isotropic
pointing errors also introduce an additional anisotropy ofthe PSF. Random pointing errors can
be created by various effects, such as jumps due to thermal expansion of telescope material or
impacts of cosmic dust particles. The tracking quality is usually good if two guide stars are
available. Then one star is used to control the pitch of the telescope and the other one to stabilise
the roll-angle. In this case the tracking precision typically scatters between 0.′′005 and 0.′′03
during a single visit, if the same guide stars can be used continuously. If only one or no guide
star is available, the HST gyros are used for tracking. Here substantially larger drifts and rotations
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can occur. In this work we therefore only use exposures takenwith two guide-stars.

Another concern is differential velocity aberration, bothbetweendifferent HST cameras, but
alsoacross the field-of-viewof the WFC CCDs: Due to the orbital motion, velocity aberration
shifts the apparent positions of objects. If the HST would track onto a guide starexactly, the po-
sitions of all other points in the HST focal plane would slowly change due to differential velocity
aberration. However, this effect is taken into account and the HST always tracks correctlyfor
the image centre of the primary instrument. Nevertheless, differential velocity aberration leads
to imperfect tracking for a secondary (parallel) instrument. The strength of this effect of course
depends on the geometrical alignment of the source positionand the HST orbit, as well as the
separation of the primary and the secondary instrument.

For a typical separation of 600′′ between a primary and a secondary camera (compare Fig. 5.4),
drifts introduced by differential velocity aberration during 1/2 orbit (∼48 min) do not exceed
0.′′023 (0.46 WFC pixels) according to theHST Observation Logs Documentation3. Since indi-
vidual exposures are much shorter (∼400-600 sec), the un-corrected drift during one exposure
will typically be smaller than∼ 0.′′01 (0.2 WFC pixels). We investigate the tracking accuracy for
the early parallel data in Sect. 6.1.1.

Resulting from the relatively large field-of-view, also differential velocity aberrationacross
the field-of-viewplays a role for ACS/WCS. Cox & Gilliland (2002) found that differential ve-
locity aberration can create a shift of 0.3 pixels across a diagonal of the ACS/WFC during one
full orbit. Due to the movement of the Earth relative to the Sun, images taken six months apart
can even have misregistrations up to 1.4 pixels. This effect is corrected in the data reduction with
MultiDrizzle (Sect. 5.2.4).

5.1.9 ACS status

After suffering malfunctions in the primary electronics ACS was operated using the backup side-
two electronics since June 30th, 2006. On January 27th, 2007a serious failure of the side-two
electronics led to the loss of the ACS WFC and HRC. Since then, theWide Field Planetary
Camera 2(WFPC2) became the major workhorse for optical observations with HST. However,
due to its smaller field-of-view, poorer resolution, lower sensitivity, and worse CTE degradation
it provides only limited capabilities for weak lensing measurements.

Currently Servicing Mission 4 is scheduled for autumn 2008. During the mission WFPC2
will be replaced by theWide Field Camera 3(WFC3), which has a slightly reduced area and
optical sensitivity compared to ACS, but adds UV and infraredsensitivity. In addition plans
for a possible repair of ACS are being considered at the moment. However, due to the strongly
degraded ACS CTE, WFC3 will probably become the instrument of choice for most weak lensing
studies.

3http://www.stsci.edu/hst/observatory/pointing/obslog/OL 1.html
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5.2 Mark-I reduction

In this section I will detail on our “Mark-I” data reduction pipeline, which was used for the pilot
study (Chapter 6). Later upgrades (“Mark-II”) are then described in Sect. 5.3.

5.2.1 On-the-fly re-processing by the archive

The data archives at the Space Telescope Science Institute (STScI) and the Space Telescope
European Coordinating Facility (ST-ECF) usually provide data products for different reduction
stages. Hence, users can choose which of the automatically performed reduction steps are suf-
ficient for their science goals, and which they have to redo with refined parameters. This is
possible as the basic reduction packages used by the archives,CALACS andMultiDrizzle, are
publicly available. The data products provided are automatically reprocessedon-the-flyusing the
most up-to-date calibration files, once data is requested byusers.

We decided to base our Mark-I reduction on the flat-fieldedFLT (* flt.fits) images provided
by the archives. These files have been pre-processed with theACS Calibration PipelineCALACS.
The reduction steps are fairly straightforward and critical steps regarding the weak lensing anal-
ysis should only occur afterwards. For the ACS/WFCCALACS performs the following tasks:

1. Creation of a simple noise map by calculating a noise model for each pixel as
σ =

√

|signal− bias|/(gain) + (readnoise/gain)2, where the first addend in the square root
is an estimate for the Poisson noise, while the second one accounts for the readout noise;

2. Creation of a static bad pixel mask by flagging known bad and saturated pixels;

3. Bias subtraction from bias images and the over-scan regions;

4. Subtraction of a dark image, which was scaled with the exposure time;

5. Division by a flat field image;

6. Calculation of photometry header keywords and some image statistics;

7. Trimming of the over-scan regions.

The calibrated science frames of the two chips are then savedtogether with the corresponding
static bad pixel masks and noise maps in a multi-extensionFLT fits file. An example for a science
frame and the associated bad pixel mask is given in Fig. 5.6.

Additionally to theFLT-images we also use the so-called jitter files containing information
about the tracking accuracy. In this work I denote all files belonging to a single exposure as a
dataset. For a detailed description of the ACS Calibration Pipeline the reader is referred to the
ACS Data Handbook(Pavlovsky et al. 2006a).
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Figure 5.6: The pre-calibrated science frame (top) and static bad pixel mask (bottom) in the
file j8hodtkiq flt.fits, created with theCALACS pipeline for the ACS/WFC2 chip. Note the large
number of cosmic rays present in the science frame. The exposure time of this image is 500
seconds.
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5.2.2 Association identification

From the individual datasets we define associations containing all exposures which shall later
be co-added. Here we allow for a maximal dither of 50′′ corresponding to 1/4 of the field-of-
view. For the parallel fields in the pilot study we aimed at a maximal stability of the observing
conditions, keeping datasets from different visits separate (Sect. 6.1.1). Due to the good results
achieved for the combination of two GOODS epochs of the CDFS (Sect. 6.1.2), we however later
abandoned this limitation in order to obtain deeper data.

5.2.3 Drizzling and distortion correction

5.2.3.1 Drizzling

“Drizzling” denotes a technique to map the pixels of an inputimage onto another output pixel
grid. It was originally developed by Fruchter & Hook (2002) to reconstruct a higher resolution
image from the under-sampled WFPC2 data of the HDF–North. Drizzling is implemented into
the dither package of STSDAS (drizzle). The reconstruction of a higher resolution image re-
quires that the individual exposures are dithered by non-integer shifts, so that different exposures
sample the PSF- and pixel-convolved light-distribution atdifferent positions. For this applica-
tion, the output pixel grid also has to be finer than the input grid, which is controlled by the factor
scale in drizzle. All individual exposures are then mapped and added onto thesame output
grid.

In the simplest approach, the flux of one input pixel is simplydistributed to the output pixels
it covers after the mapping, according to the fraction of theoverlapping area. However, this
will lead to a final image which is still convolved with the window function of one input pixel.
Furthermore, in this case the additional sampling leads to an effective further broadening of the
PSF. This can be avoided by shrinking the input pixels by a factor pixfrac ∈ [0,1]. Drizzling
is schematically illustrated in Fig. 5.7. In this sketch, the original input pixels are drawn in red,
whereas the shrunken pixels are depicted in blue. For the configuration plotted, the central pixel
of the output grid receives no flux from this input image. Thisillustrates that thepixfrac
parameter should significantly be reduced below 1 only if thedata is properly dithered, so that
gaps are filled by other input frames. Additionally, one has to be aware of the fact that drizzling
produces correlated noise in the output image, since flux from one input pixel is distributed over
several output pixels. Here the degree of correlation depends on the relative size of the shrunken
input pixels to the output pixels.

The properties of the output image strongly depend on the drizzlekernel, the function de-
scribing how the flux of each input pixel is distributed across the output image. In the description
above this has always been thesquarekernel, with variablepixfrac. Other kernels which are
often used aregaussian, which leads to smooth object profiles but strong noise correlations, and
lanczos3, which is a 3rd-order polynomial approximation of the sinc–function. In principle the
latter yields an optimal reconstruction with minimal noisecorrelations. For space-based data it
however has the disadvantage to introduce “ringing” aroundthe large number of masked pixels.
Hence, it should only be used if a large number of exposures isstacked.
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Input Pixel Grid

Output Pixel Grid
Transformation
Geometric

Figure 5.7: Schematic illustration of drizzling: The inputpixel grid (left) is mapped onto a finer
output grid (right). In the mapping a shift, rotation and geometric distortioncan be taken into
account. The input pixels can be “shrunken” to smaller pixels, which are called drops (the inner
blue squares). Output pixels only receive flux from overlying drops. In the depicted situation the
central pixel in the output grid receives no flux from any shrunken input pixel.

In principle, the mapping carried out bydrizzle can be any geometric transformation. Be-
sides accounting for relative shifts and rotations, it can therefore be used to correction for geo-
metric field distortion. However, if strong field distortions are present, as it is the case for ACS,
half-pixel shifts commanded for the image centre translateinto different shifts for different cam-
era positions. For very deep observations the best strategyis then often given by large dither
steps, which are necessary to correct for bad pixels or fill gaps between chips, in combination
with random sub-pixel shifts.

For a detailed introduction into the drizzling method the reader is referred to theHST Dither
Handbook(Koekemoer et al. 2002).

5.2.3.2 Motivation for drizzling ACS/WFC images

The ACS/WFC suffers from strong geometric distortions (see Sect. 5.1.4). Hence, drizzling is
required for the co-addition of separate exposures. Furthermore, accurate point source photome-
try requires distortion correction: Owing to the distortion, the area of sky one pixel covers varies
between 0.89 and 1.08 times the central value. Correcting forthis effect with simple flat-fielding
will artificially brighten or respectively dim poorly resolved objects with steep brightness profiles
in the centre. In contrast, drizzling by construction conserves surface brightness and enables us
to perform correct point source photometry.

The issue of reconstructing a higher resolution image is less important than for WFPC2,
since the ACS/WFC pixels sample the HST PSF better by a factor of two than the pixels of the
Wide Field chips of WFPC2. In addition, due to the strong field distortion of ACS, complex
dither patterns are required for a uniform reconstruction with higher resolution across the whole
field-of-view (Sect. 5.2.3.1). Additionally, the WFC PSF is significantly broadened by charge
diffusion, which cannot be recovered by dithering.
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5.2.3.3 PyDrizzle

PyDrizzle was developed by STScI to automatise the usage ofdrizzle for ACS. It combines
the flat-fielded frames of the two WFC CCDs onto one output grid taking the camera distortion
stored in the IDCTABs (see Sect. 5.1.4) into account. In addition, it includes a correction for
differential velocity aberration across the field-of-view (Sect. 5.1.8).PyDrizzle is able to pro-
cess any number of input images, where their relative shiftsand rotations have to be specified in
an association table. The input images are then drizzled onto the same output grid taking these
transformations into account.
PyDrizzle also takes bad pixel masks into account, so that flagged pixels do not contribute

to the output image. In principle each input pixel can be assigned a specific weight. As default
option the different exposures are weighted according to their exposure time, which performs
reasonably well in the case of sky-limited images if sky conditions are stable. Given that all the
data used for weak lensing are taken in broad-band filters with relatively long exposure times,
they are sky-limited. In addition, the co-added exposures have usually been taken closely in time
with similar sky background. We therefore use this simple weighting scheme for the Mark-I
reduction. Then the created output weight image gives the cumulative exposure time contributing
for each output pixel, scaled with the relative area of output to input pixels.

In the actual drizzling process,PyDrizzle allows the user to choose between different ker-
nels. Besides the already mentionedsquare, gaussian, andlanczos3kernels, further options are
point (assquarewith pix frac = 0), turbo (square kernel ignoring rotations), andtophat(top
hat). Concerning units it converts electrons as given in theFLT-images to electrons per second
for the drizzled output science image (DRZ-image). PyDrizzle does not reject cosmic rays
and previously unknown bad pixels, a task performed byMultiDrizzle, as detailed in the next
section.

5.2.4 Cosmic ray rejection and co-addition with MultiDrizzle

To automatise the rejection of cosmic rays and the co-addition of several input images, Koeke-
moer et al. (2002) developed the python based packageMultiDrizzle4, which usesPyDrizzle
and several task of the STSDAS dither package. Here I will summarise the main steps performed
by the software. For a more detailed description the reader is referred to theACS Data Handbook
(Pavlovsky et al. 2006a) and the MultiDrizzle Homepage5.

First MultiDrizzle creates an association table for the providedFLT-files, computing rel-
ative shifts and rotations from the image WCS possibly updatedby user-provided absolute or
residual (“delta”) shifts (see Sect. 5.2.5). Next, the static bad pixel masks of the input images
are updated for pixels which are more than 5σ below the median value. Also, the median sky
background in the field is subtracted. The following major steps are also illustrated in Fig. 5.8:

1. The sky-subtractedFLT-images are drizzled separately but onto the same output coordi-
nate system, i.e. relative shifts and rotations are taken into account.

4In the Mark-I reduction we useMultiDrizzle version 2.7.0.
5http://stsdas.stsci.edu/multidrizzle/

http://stsdas.stsci.edu/multidrizzle/
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2. The median image of the separately drizzled images is calculated taking their pixel masks
and weights into account. This median image provides a first estimate for the cosmic
ray-cleaned image. However, double- and triple-incidences of cosmic rays can lead to
remaining artifacts, especially if the number of combined images is small. To make the
rejection more efficient, thecombine nhigh pixels with the highest values are generally
rejected, wherecombine nhigh = 1 by default.

3. The median image is transformed back to the coordinates ofeach input image. This inverse
drizzling is calledblotting.

4. For each exposure the blotted median image is compared to the correspondingFLT-image
in order to identify cosmic rays in this image. Pixels for which the absolute difference of
these images is larger than expected by noise statistics, orthe flattening effect of taking the
median, are flagged as cosmic rays.

5. Finally, all sky-subtractedFLT-images are drizzled onto the same output grid taking both
relative shifts and a combined mask of bad pixels and cosmic rays into account. The result
is a cosmic ray-cleaned and distortion-corrected image with a weighted mean co-addition.

Compared to a pure median image this approach provides cleaner cosmic ray rejection and better
statistics.
MultiDrizzle also provides an alternative rejection mechanism for the median image called

minmed, which further improves the cosmic ray rejection in the caseof few input images. In
this algorithm, first the median is calculated, again with rejecting thecombine nhigh highest
pixels. If this median is more thann sigma above the minimum pixel value, it is replaced by the
minimum, wheren is by default 6 and sigma is approximated as the square-root of the median
counts. In case the minimum is taken for a certain pixel, the procedure is repeated for all pixels
in a radius ofcombine grow (default 1.0 pixel) around this particular pixel, but now with a
lower threshold (3 sigma by default). The latter is done to properly reject the “halos” around
cosmic rays. Similarly, lower thresholds are used for neighbours of already masked pixels in the
comparison of the blotted median image to theFLT-image.

Note that the cosmic ray rejection carried out byMultiDrizzle also removes previously
un-flagged hot pixels, if the data are well dithered.

5.2.5 Shift refinement

Usually the image WCS is not accurate enough to provide proper alignment of the single frames.
If datasets have been taken at different visits their astrometry may be misaligned by several
arcseconds. Even for data taken within one orbit sub-pixel shifts may occur which would signifi-
cantly degrade the image PSF if the data was simply co-added.We therefore refine relative shifts
and rotations by matchingSExtractor (Bertin & Arnouts 1996) positions of compact sources
detected in the separately drizzled frames. Here we useSExtractor positions measured with
a Gaussian window function which are more accurate than simple first moments. The rotations
and shifts between the separate frames are then computed using the IRAF taskgeomap. The
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Figure 5.8: Flow chart for the main stepsMultiDrizzle performs to create cosmic ray-cleaned,
distortion-corrected, co-added images. Whereas the rectangles indicate un-drizzled images, the
rhomboids correspond to drizzled, distortion-corrected images. The grey ellipses represent real
objects (galaxies), whereas the solid black lines correspond to cosmic rays and the dashed-dotted
black lines to cosmic ray artifacts. The red lines representflagged pixels in the cosmic ray masks.
The sketch only shows two input images. A higher number is processed completely analogously.
The depicted situation corresponds to small (in the sketch unnoticeable) shifts between the two
exposures. Note that there is a chance alignment (double-incidence) of two cosmic rays in the
upper chip, which therefore cannot be rejected completely.
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derived transformations are then passed toMultiDrizzle as “delta”-shifts. For not yet under-
stood reasons the frames usually do not line up perfectly after the first correction. We therefore
iteratively repeat the procedure adding derived residual shifts and rotations until they converge
to residuals< 0.04 pixels. For the early parallel data we quantify the derived shifts and rotations
in Sect. 6.1.1.1.

For the alignment of multi-epoch GOODS observations (Sect.6.1.2) we determined signifi-
cant residual rotations (∼ 0.1◦). When we passed these “delta” rotations toMultiDrizzle, we
found that it falsely introduces a significant change in the applied image scale, which would lead
to a significant misalignment in the outer regions of the field-of-view. As a work-around we
correct theFLT image header for the derived rotation, which seems to work fine.

Note that we do not align multi-colour data in the Mark-I reduction.

5.2.6 Parameters for the data reduction

Deviating from the default parameters, we use theminmed algorithm during the creation of the
median image as it is more efficient to reject cosmic rays for a low number of co-added ex-
posures. For the cosmic ray masks we let rejected regions grow by one pixel in each direc-
tion (driz cr grow=3) in order to improve the rejection of neighbouring pixels affected due to
charge diffusion and pixels with cosmic ray co-incidences in different exposures.

In the final drizzle step we use a finer pixelscale of 0.′′03 per pixel in combination with the
square kernel in order to increase the resolution in the co-added image and reduce the impact
of aliasing. For the default pixel scale (0.′′05 per pixel) resampling adds a strong artifical noise
component to the shapes of un- and poorly resolved objects (aliasing), which depends on the
position of the object centre relative to the pixel grid and most strongly affects thee1-ellipticity
component. According to our testing with stellar field images, thegaussian kernel leads to even
lower shape noise caused by aliasing. However, as it leads tostronger noise correlations between
neighbouring pixels, we decided to use thesquare kernel for the analysis. In the Mark-I analysis
we usepixfrac = 1.0.

Aliasing most strongly affects unresolved stars, which is critical if one aims to derive PSF
models from a low number of stars in drizzled frames. However, since we determine our PSF
model from un-drizzled images (see Sect. 6.2.4), this does not affect our analysis. Consistent
with the results from Rhodes et al. (2005, 2007) we find that a further reduction of the pixel scale
does not further reduce the impact of aliasing significantly, while unnecessarily increasing the
image file size.

In the subsequent chapters the termpixel refers to the scale of the drizzled images (0.′′03 per
pixel) when dealing with ACS data, unless we explicitly allude toWFC pixels. An example for
a fully processed single filter image is shown in Fig. 5.9.
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Figure 5.9: Example for a cosmic ray-cleaned, distortion-corrected, co-added ACS/WFC image,
which was processed withMultiDrizzle and our Mark-I pipeline. For this GEMS F606W field
three exposures with a total exposure time of 2160 seconds were co-added. The dither pattern
was selected in order to cover the gap between the two WFC CCDs. Note the slightly higher
background level in the upper left image quadrant, which is due to a residual bias level. We
correct for this blemish in the Mark-II version of our pipeline. Near the upper and lower image
border objects have falsely been rejected as cosmic rays byMultiDrizzle, because only one
input exposure contributes to these regions. They are excluded from the shear analysis by our
manual masks.
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5.3 Mark-II reduction and the HAGGLeS pipeline

In our analysis of the early ACS parallel data we detect a significant mean alignment of the galax-
ies with the image y–axis for poorly dithered data (Sect. 6.4.1.3). We interpret this effect to be
caused by galaxies whose images are affected by artifacts of insufficiently rejected bad columns
and pixels. In order to properly reject affected galaxies, accurate knowledge of problematic pix-
els is required. Unfortunately not all affected pixels are flagged in the static bad pixel masks.
After finishing this pilot study it was therefore one of the primary goals to upgrade our reduction
pipeline by introducing improved bad pixel masks and optimised weighting of pixels.

At this point Phil Marshall (KIPAC, UC Santa Barbara), who is leading the HAGGLeS
Project, theHST Archive Galaxy-scale Gravitational Lens Survey, and I decided to join forces
as we independently planned to reduce a large fraction of theACS archive, where HAGGLeS
aims at the detection of galaxy-scale strong lenses. Together with Chris Fassnacht (UC Davis),
Eric Morganson (KIPAC), and Marusa Bradač (KIPAC, UC Santa Barbara) he had already set
up aMultiDrizzle-based pipeline for ACS data reduction at the computing farm of the Stan-
ford Linear Accelerator Center (SLAC). After adding some of myscripts we developed several
upgrades and additional functions for this joint pipeline.

I will give an overview about the pipeline in Sect. 5.3.1 and then detail on my major contri-
butions to the code being improved pixel masks, background subtraction and weighting, but also
optimised shift refinement and the development of efficient tools for masking and image inspec-
tion in Sections 5.3.2 to 5.3.7. In the following chapters I will refer to this improved reduction
as “Mark-II” reduction.

A paper on details of the HAGGLeS data reduction and first results from the lens search is
currently been written (Marshall et al. in prep.). The data processed in the frame of HAGGLeS
will be made publicly available through theHST Legacy Archive6 starting with multi-colour
observations used for the strong lens search around the end of 2007. The weak lensing fields
used for the cosmic shear analysis (see Sect. 8.3) will be added in 2008 after completion of the
shear analysis.

5.3.1 HAGGLeS pipeline overview

The HAGGLeS pipeline performs the following tasks:

1. Work space set up: The raw image files are identified and moved to a temporary directory
tree.

2. CALACS : The ACS calibration pipeline processes the raw exposures using the adequate
reference files to create flat-fieldedFLT frames.

3. Background subtraction: The sky background is subtracted as detailed in Sect. 5.3.2.

6http://hla.stsci.edu/hlaview.html

http://hla.stsci.edu/hlaview.html
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4. Manual inspection ofFLT-images: Using the web inspection tool detailed in Sect. 5.3.3,
we markFLT frames affected by satellite trails or variable scattered light. In a second step
we manually create masks for the affected frames (see Sect. 5.3.4).

5. Improving the bad pixel masks: We update the static bad pixel masks using the manual
masks from the last step plus automatically created masks for hot pixels, bad or variable
columns, and other persistent defects (Sect. 5.3.5).

6. Computation of an accurate noise model: We compute accurate noise estimates for each
input pixel as detailed in Sect. 5.3.6, from which we derive optimal weights for the image
co-addition.

7. Shift refinement: All exposures from all filters belonging to one field are drizzled together
but without co-addition usingMultiDrizzle7. We iteratively refine their relative shifts
and rotations until the frames are optimally aligned (Sect.5.3.7).

8. MultiDrizzle : UsingMultiDrizzle we create cosmic ray masks and co-add the single
exposures as generally described in Sect. 5.2.4. Here we treat different filters separately.
Deviations from the defaultMultiDrizzle parameters are detailed in Sect. 5.3.8.

9. Computation of an output RMS image: We transform the inverse-variance map com-
puted byMultiDrizzle into a RMS map, which can directly be used bySExtractor as
weight image ifWEIGHT TYPE = MAP RMS is specified. Then theSExtractor detection
parameters do not require a correction for noise correlation.

10. WCS correction: In order to correct for the astrometric uncertainty of the Guide Star
Catalog we match the positions of bright objects to their USNO-B counterparts and correct
the image header for the average shift.

11. Colour JPG: In case observations in multiple filters are available a colour JPG is created,
otherwise a grey-scale JPG.

12. Catalogue creation: Automatically aSExtractor catalogue is created, which is used as
input for the strong lens search. However, due to the different detection requirements this
catalogue is not used for the weak lensing analysis.

The HAGGLeS pipeline in Bonn For the reduction of the COSMOS (Chapter 7), STAGES
(Sect. 8.4), and RXJ1347 data (Sect. 8.2) in Bonn I used a slightly modified version of the HAG-
GLeS reduction pipeline which starts with theFLT-images provided by the archives. This ap-
proach is not followed at SLAC to save disk space on the cost ofmore CPU time. In addition,
the Bonn version concludes with the WCS correction, for which I replaced the originally used
IDL routines by an self-written Perl script. These differences will have no impact on the weak
lensing analysis. As an example for a Mark-II-reduced imagesee Figure 3.4.

7In the Mark-II reduction we useMultiDrizzle version 2.7.2
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Table 5.1: Keywords added toFLT headers during the background subtraction.

Keyword Possible value Description
BG MODEL MEDIAN |MODE Statistic used for subtraction
BG MODUL 1|0 Request residual modulation with flat-field
BG MFLAT String Name of modulation flat-field
BGMED i j Float Sky median in chipi and amplifierj
BGMOD i j Float Sky mode in chipi and amplifierj
SKY SHAG Float Mean subtracted sky estimate
BG FLAGS Flag First bit: residual modulation done

Second bit: Background difference above threshold

5.3.2 Improved background subtraction

Sometimes ACSFLT-images show a moderate jump in the background level betweendifferent
image quadrants, which is caused by uncorrected residual bias offsets (Anton Koekemoer, private
communication). These jumps are typically in the order of a few tenths of an electron, but
can amount to∼ 2e− and more. Although such residuals are usually not critical given that
most science applications apply their own background subtraction, we still aim at removing this
blemish.

For this we first runSExtractor on eachFLT-image to detect and mask all kinds of objects
including cosmic rays. The created mask is then combined with the static bad pixel mask. From
the unmasked pixels we next estimate the background value separately for each chip, where
we by default use the median and optionally the mode statistics. In the next step we subtract
the mean background estimate from all chips. The difference between the individual and mean
estimate is then modulated with the inverse flat-field variation in the quadrant, normalised to
1. This difference is then subtracted from the corresponding image quadrant. The modulation
is necessary as theFLT-images have been divided by a flat-field image after the imperfect bias
subtraction.

We found that for crowded fields or fields containing very bright and extended objects, the
background estimates can be significantly disturbed. In order to ensure that our method does not
lead to an erroneous over-correction of the background jumpfor such cases, we adopt a maximal
accepted difference in the background estimates (by default 4e−). If this is exceeded we only
subtract the minimal background estimate for all quadrants. Our pipeline also adds a number of
header keywords, which are listed in Table 5.1.

5.3.3 Web inspection tool

In the HAGGLeS project a huge amount of data is centrally stored at SLAC, with several re-
mote users processing and analysing the data. Hence, soon the need arose for an efficient tool
to quickly browse and inspect large numbers of images using limited band-width. This was
necessary for the pre-selection ofFLT-images which require manual masking (Sect. 5.3.4), but
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also the inspection and classification of strong lens candidates identified by a lens robot, and the
verification of automatically created masks for the stackedimages (Sect. 7.2.1).

To fulfil these needs I wrote a perl/cgi-based web interface which displays compressed JPG
versions of the images requiring inspection, in combination with form elements allowing efficient
image selection and annotation. The entered data are storedin asci-tables with user- and time-
stamps, and are automatically parsed by subsequent scripts. Screen-shots of the interface are
shown in Figure 5.10.

Figure 5.10: Screen-shots of the perl/cgi-based web interface for efficient image inspection via
the Internet. Theleft panel shows theFLT-inspection mode, in whichFLT frames can quickly be
scanned visually by scrolling a web browser window. In the example shown the image has been
selected for manual masking due to the satellite trail present. Theright panel shows an example
for the lens inspection mode, in which strong lens candidates identified by a robot are visually
inspected and classified one-by-one. Here a static web page produced as output from the robot
is converted into dynamic cgi-output.
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5.3.4 Efficient masking of FLT frames

Using the web inspection tool (Sect. 5.3.3) we visually inspected allFLT-images processed with
the HAGGLeS pipeline, amounting to more than 12,000 files at the time of the write-up. About
20% of these files were marked for manual masking, as they either showed satellite trails or
scattered light which moves between dithered observations(see Figure 5.11). These features are
only incompletely masked by the cosmic ray rejection inMultiDrizzle, as they have less sharp
edges than cosmic rays. Hence, we mask them manually in orderto achieve optimal data quality
and maximal usable area in the co-added frames.

To make this tedious work most efficient I wrote a further script which is run on the user’s
local computer. It automatically transfers the inspectionfile lists from the cgi server and down-
loads the JPG images of markedFLTs. These are locally converted to low resolution fits files
and automatically displayed usingds9. Here the user manually creates polygonal region files to
mask the disturbing objects. These files are automatically renamed and scaled to the correctFLT
scale. Then they are checked into a repository making sure that no file is unnecessarily inspected
twice.

For a survey of this size manual masking is still feasible, ifit is combined with efficient image
display tools. However, this will be impossible for dedicated future weak lensing surveys, which
will require the development of fully automated masking routines.

Figure 5.11: For dithered data scattered light often changes its appearance and position relative
to the locations of stars and galaxies, which can be seen by comparing theleft andright panels
showing dithered data from the COSMOS survey. By masking thesefeatures in theFLT-frames
we increase the usable sky area in the co-added frames. Note that the chips displayed in thetop
andbottomdo not belong to the same pointing.
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5.3.5 Improved bad pixel masks

Due to the results from the early parallel data (Sect. 6.4.1.3) we invested a considerable effort
into optimising the bad pixel masks in the Mark-II pipeline.To fulfil the lensing requirements
we follow a philosophy to aggressively reject problematic pixels, possibly excluding a fraction
of pixels which might still be usable for other applications.

5.3.5.1 Mask creation

For eachFLT-image we combine the existing static bad pixel mask with thefollowing new time-
dependent masks:

1. Updated hot pixel mask: We reject all pixels with dark current> 0.04e−/sec in the asso-
ciated dark reference file. By default pixels with dark current > 0.08e−/sec are rejected as
hot pixels in the static bad pixel mask, whereas pixels with dark current> 0.02e−/sec are
only marked as warm pixels.

2. Bias variance mask: The ACS/WFC shows different bias structures, most prominently
columns with high bias values. If this bias value is time-dependent, high or low column
values will occur in the science frames after subtraction ofa bias reference file. To identify
variable columns we use all available bias reference frames. For each one we compute the
variance from itself and the four bias reference frames taken closest in time, providing a
good estimate for the degree of variability in a time-windowof ∼ 2 months. An example
for such a variance image is shown in Figure 5.12. From this variance image we create
masks usingccdmask as detailed in Sect. 5.3.5.2.

3. Median image mask: The other masks are usually able to identify most of the problematic
pixels and columns. Yet, a small number of culprits still tends to efficiently resist capture.
As a solution we found that a median image mask in most cases does the job: Here we
compute the median image from theFLT-frames of 50 different pointings observed closely
in time, after sky-subtraction and masking of objects detected withSExtractor. In order
to exclude domination of few very deep pointings we limit themaximal number ofFLTs
from one pointing to six. An example for such a median image, which is similar to what is
usually called asuper-flat, is shown in Figure 5.13. From these median images we create
masks usingccdmask as detailed in Sect. 5.3.5.2.

4. Manual masks: The manual masks for satellite trails and scattered light,which have been
described in Sect. 5.3.4, are also included at this stage.

All of these masks are time-dependent. Hence, a scienceFLT-image is always corrected with
the proper mask for the time of observation. The names of the applied mask files are stored in
theFLT image header.
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Figure 5.12: Variance image computed from five ACS/WFC super-bias frames for gain=1, which
combine bias frames taken in December 2004 and January 2005.After the 5× 5 binning (aver-
age), the dynamic range is 0.5 COUNTS2 (black) to 4.5 COUNTS2 (white).
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Figure 5.13: Median image computed from the background-subtractedFLT-frames of 40 COS-
MOS pointings observed in May 2005. Besides some remaining large-scale variation and hot
pixels a number of bright and dark columns are visible, wherethe latter usually represent over-
corrections in the bias subtraction. After the 5× 5 binning (average), the dynamic range is−1 e−

(black) to 4 e− (white).
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Table 5.2: Lower and upperσ thresholds for pixel masking using theccdmask task for the bias
variance and median images.

Image type lsigma hsigma

Bias variance 100 25,+5 if more than 2.5% masked
Median, gain=1 13 11
Median, gain=2 15 15

5.3.5.2 Column masking with ccdmask

In order to create masks from the bias variance and median images described in the previous
subsection, we realised that simple thresholding is not well suited for the noisy images with
large-scale variation, as it either leads to fragmented badcolumn masks or falsely rejected noisy
pixels. We achieve better results using theIRAF taskccdmask, which is part of the NOAOimred
package. It computes the local median signal and rms variation in moving rectangles. A pixel is
then masked if its values is eitherlsigma below orhsigma above the local median value. This
is done for individual pixels and sums of pixels in column sections, where in the latter case the
background dispersion is scaled by the square root of the number of pixels in the section. In
the end each column is scanned for short segments of un-flagged pixels between bad pixels. We
additionally mask these segments if their length is less than 15 pixels.

The selection of proper thresholdslsigma andhsigma strongly depends on the image noise
properties. Therefore we had to manually tune these thresholds for the different image types
investigated, where we summarise the derived parameters inTable 5.2. Note that sometimes
even between images of one type significant variations in thenoise properties occur, e.g. due to
the growing number of hot pixels. Therefore the performancewas not optimal in all cases. This
was particularly troublesome for a number of bias variance images, where the parameters listed
in Table 5.2 lead to a false flagging of a significant fraction of good pixels. As a solution we
iteratively increasehsigma by 5 until the fraction of flagged pixels drops below 2.5%, yielding
acceptable results.

5.3.6 Computation of an accurate noise model

We compute a noise image for each inputFLT, which is used for inverse-variance weighting in
the co-addition yielding optimal signal-to-noise in the stacked frame. Here we do not use the
simple noise model computed byCALACS (Sect. 5.2.1), as it includes photon shot-noise, which
would lead to a subtile bias towards an under-estimation of object flux8.

TheFLT science frames are in units of electrons. This is also handy for the computation of a
noise image given that electrons are the relevant unit for the Poisson noise from sky background

8Including photon noise would down-weight exposures with positive deviations from the expectation value and
up-weight exposures with negative deviations, leading to an effective bias.
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and dark current. Hence, we compute the rms noise image for the flat-fielded science frame as

ERR= F−1
√

sF+ tD + σ2
r + γ

2V , (5.1)

with the normalised flat-field reference imageF. The sky backgroundswas estimated in Sect. 5.3.2
and is given in e−. For the error contribution from dark current, the corresponding dark reference
imageD, which is given in e−/s, has to be scaled with the exposure timet. A further contribution
comes from the read-noiseσr, which is about 5 e−. Finally, we also take the bias variance image
V into account, which was described in Sect. 5.3.5. As the ACS bias frames are given in counts
instead of electrons, a conversion using the gainγ (expressed in e−/count) is required. We store
the computed noise image in theERR-extension of theFLT image. An example noise image is
shown in Figure 5.14.

5.3.7 Robust shift refinement

Similarly to the Mark-I reduction (Sect. 5.2.5) we iteratively refine relative shifts and rotations
by drizzling the frames separately but onto the same output pixel grid. We match windowed
SExtractor positions of compact sources, which we select with filter-dependent size and mag-
nitude cuts. “Delta” shifts and rotations are then computedusing theIRAF taskgeomap with a
rejection at the 2σ-level.

In this step we include the exposures from all filters, leading to stacks for different filters
which are aligned on the same pixel grid. However, due to the sometimes relatively large WCS
errors, the dominance of cosmic rays, various different dither patterns, and differences in depth
and object morphology between the different filters, proper catalogue matching turned out to be
challenging for a large fraction of the HAGGLeS data.

We ended up with a complex combination of scripts to catch various special cases. One of the
central procedures is a pixelised catalogue cross-correlation, which was the best methods to find
initial off-sets in the case of large WCS errors. Fortunately, the HST role-angle is usually well
constrained (. 0.1◦), so that delta rotations do not need to be considered in the initial matching.
Another challenging task was the robust automatic detection of matching failures, with merged
catalogues based on chance alignments mostly of cosmic rays. We found that these could be well
identified by their rms shift residuals after applying thegeomap transformation to the catalogues,
in combination with the number of positive matches.

Using only exposures from one of the broad-band lensing filters, matched catalogues typi-
cally consist of order& 100 compact sources for typical extra-galactic fields. When aligning
exposures from different filters typically 30− 60 pairs of matched positions are available, which
is still sufficient to constrain relative shifts and rotations with high accuracy. The iterative align-
ment is continued until shifts and rotations change by less then 0.05 WFC pixels and 0.0004◦

respectively, where the latter corresponds to a maximal displacement of 0.02 WFC pixels in the
corners of the FOV.

We apply the same work-around for “delta” rotations as used in Sect. 5.2.5, since the reported
problem also occurs forMultiDrizzle version 2.7.2, as used in the Mark-II reduction.
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Figure 5.14: This image shows the rms noise model computed for the COSMOSFLT-image
j8xi24lx (stored in the updatedERR-image extension). After the 5× 5 binning (average), the
dynamic range is 9 e− (black) to 11 e− (white).
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5.3.8 MultiDrizzle parameters and output RMS image

As for the Mark-I reduction (Sect. 5.2.6) we use a finer outputpixel scale of 0.′′03, in combination
with thesquare drizzle kernel. Here we choose to slightly shrink the pixels(pix frac = 0.9),
to reduce the degree of noise correlation. We found that a further reduction ofpix frac leads
to significantly enhanced aliasing. Further pixel shrinkage therefore only seems useful for deep
stacks of well dithered data. As done for the Mark-I reduction, we use theminmed algorithm in
the computation of the median image, and grow cosmic ray masks by one pixel in all directions
(driz cr grow = 3) in order to reliably reject charge diffusion halos of cosmic rays.

As weighting scheme we specifyfinal weight type = ERR, so thatMultiDrizzle uses
the ERR-extension image of theFLT-file to perform inverse-variance weighting. Note that we
over-write the originalERR-image with a noise image including all noise sourcesexceptphoton
noise, as detailed in Sect. 5.3.6. In this way we exclude a possible bias in the co-addition due to
the photon shot-noise. Furthermore, using our noise schemethe final weight image computed by
MultiDrizzle provides an accurately scaled inverse variance noise map. We save its inverse
square root image using the “rms.fits” extension (RMS-image). ThisRMS-image can directly
be specifies as noise map toSExtractor (WEIGHT TYPE = MAP RMS). For proper photome-
try, SExtractor requires an rms image, which includes all noise sources except photon noise,
exactly as provided by the pipeline.



Chapter 6

Analysis of the GEMS and early ACS
parallel data

In this chapter I present results from a pilot study testing the capabilities of ACS for cosmic shear
measurements with early parallel observations and the combined GEMS and GOODS data of the
ChandraDeep Field South (CDFS). The results of this study have been published in Schrab-
back, Erben, Simon, Miralles, Schneider, Heymans, Eifler, Fosbury, Freudling, Hetterscheidt,
Hildebrandt, & Pirzkal 2007, A&A, 468, 823–847.

In this work we developed a new correction scheme for the time-dependent ACS point-
spread-function (PSF) based on observations of stellar fields. At the time the paper was sub-
mitted this represented the only technique which takes the full time variation of the PSF between
individual ACS exposures into account and can be applied for arbitrary dither patterns and ro-
tations. We estimate that our PSF correction scheme reducesthe systematic contribution to the
shear correlation functions due to PSF distortions to< 2× 10−6 for galaxy fields containing at
least 10 stars, which corresponds to. 5% of the cosmological signal expected on scales of a
single ACS field. We perform a number of diagnostic tests indicating that the remaining level
of systematics is consistent with zero for the GEMS and GOODSdata confirming the success
of our PSF correction scheme. For the parallel data we detecta low level of remaining system-
atics which we interpret to be caused by a lack of sufficient dithering of the data. Combining
the shear estimate of the GEMS and GOODS observations using 96 galaxies arcmin−2 with the
photometric redshift catalogue of the GOODS-MUSIC sample,we determine alocal single field
estimatefor the mass power spectrum normalisationσ8,CDFS = 0.52+0.11

−0.15(stat)± 0.07(sys) (68%
confidence assuming Gaussian cosmic variance) at a fixed matter densityΩm = 0.3 for aΛCDM
cosmology marginalising over the uncertainty of the Hubbleparameter and the redshift distri-
bution. We interpret this exceptionally low estimate to be due to a local under-density of the
foreground structures in the CDFS.

This chapter is organised as follows: After describing the data and data reduction in Sect. 6.1,
we present our analysis of the ACS PSF and the correction scheme in Sect. 6.2. Next we elaborate
on the galaxy selection and determined redshift distribution (Sect. 6.3), and compute several esti-
mators for the shear and systematics in Sect. 6.4. After presenting the results of the cosmological
re-analysis of the GEMS and GOODS data in Sect. 6.5, we conclude in Sect. 6.6.
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6.1 Data

In this pilot project we use pure parallel ACS/WFC F775W observations from HST proposal
9480 (PI J. Rhodes), denoted as the “parallel data” for the rest of this chapter.

For comparison we also apply our data reduction and analysispipeline to the combined
F606W ACS/WFC observations of the GEMS field (Rix et al. 2004) and the GOODSobserva-
tions of theChandraDeep Field South (CDFS, Giavalisco et al. 2004). A cosmic shear analysis
of this∼ 28′ × 28′mosaic has already been presented by Heymans et al. (2005) (H05 henceforth),
allowing us to compare the different correction schemes applied.

Both datasets were taken within the first operational year of ACS (August 2002 to March
2003 for the parallel data; July 2002 to February 2003 for theGEMS and GOODS observations).
Therefore these data enable us to test the feasibility of cosmic shear measurements with ACS at
an early stage, when the charge-transfer-efficiency (CTE) had degraded only slightly (Riess &
Mack 2004; Riess 2004; Mutchler & Sirianni 2005).

6.1.1 The ACS parallel data

The data analysed consist of 860 WFC exposures, which we associate to fields by joining ex-
posures dithered by less than a quarter of the field-of-view observed with the guiding mode
FINE LOCK. In order to permit cosmic ray rejection we only process associations containing at
least two exposures. Furthermore, in this pilot study we only combine exposures observed within
one visit and with the same role-angle in order to achieve maximal stability of the observing con-
ditions. With these limitations, which are similar to thoseused by Pirzkal et al. (2001) for the
STIS Parallel Survey, we identify 208 associated fields (including re-observations of the same
field at different epochs), combining 835 exposures.

For a weak lensing analysis, accurate guiding stability is desired in order to minimise vari-
ations of the PSF. In case of parallel observations, differential velocity aberration between the
primary and secondary instrument can lead to additional drifts during observations with the
secondary instrument (Cox 1997). In order to verify the guiding stability for each exposure
we determine the size of the telemetry jitter-ball, which describes the deviation of the pointing
from the nominal position. While the jitter-balls typicallyhave shapes of moderately elliptical
(〈b/a〉 = 0.68) distributions with〈FHWM〉 = 9.8 mas (0.196 WFC pixel), we have verified that
FHWM < 20 mas (0.4 WFC pixel) andb/a > 0.4 for all selected exposures. Therefore the track-
ing accuracy is sufficiently good and expected to affect the image PSF only slightly. Any residual
impact on the PSF will be compensated by our PSF correction scheme, which explicitly allows
for an additional ellipticity contribution due to jitter (see Sect. 6.2.4).

6.1.1.1 Data reduction

For this pilot study we used the Mark-I reduction detailed inSect. 5.2. When refining shifts
for the star and galaxy fields selected for the analysis (see Sect. 6.1.1.2), we find a median
“delta” shift relative to the first exposure of an association of 0.17 WFC pixels, with 7.3% of the
exposures requiring shifts larger than 0.5 WFC pixels. Refinements of rotations were in most
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Figure 6.1: Examples for fields which were rejected by visualinspection for the following rea-
sons (panelsleft to right): erroneous calibration, galactic nebula, many saturatedstars, almost
empty field.

cases negligible with a median of 1.6×10−4 degrees corresponding to a displacement of≃ 0.008
WFC pixels near the edges of the FOV. Only in 1.5% of the exposures rotation refinements
exceeded 3× 10−3 degrees, corresponding to displacements of≃ 0.15 WFC pixels.

6.1.1.2 Field selection

The 208 associations were all visually inspected. We discard in total 31 fields for the following
reasons:

• Fields which show a strong variation of the background in thepre-processed exposures (4
fields).

• Fields containing galactic nebulae (10 fields).

• Fields of significantly poorer image quality (6 fields).

• Fields which contain a high number of saturated stars with extended diffraction spikes (5
fields).

• Fields in M31 and M33 with a very high number density of stars,resulting in a strong
crowding of the field, which makes them even unsuitable for star fields (4 fields).

• Almost empty galactic fields affected by strong extinction (2 fields).

Examples of the discarded fields are shown in Fig. 6.1.
After this pre-selection, fields fulfilling the following criteria are selected as galaxy fields for

the cosmic shear analysis:

• Fields have to be located at galactic latitudes|b| ≥ 25◦ in order to be affected only weakly
by galactic extinction.

• Only fields co-added from at least three individual exposures are used, facilitating suffi-
ciently good cosmic ray rejection.
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Table 6.1: Observation dates and position angles (ORIENTAT) of the ACS/WFC F606W
GOODS/CDFS observations.

Epoch Observation dates Position angle
1 2002-07-31–2002-08-04 −112◦

2 2002-09-19–2002-09-22 −67◦

3 2002-10-31–2002-11-03 −22◦

4 2002-12-19–2002-12-22 23◦

5 2003-02-01–2003-02-05 68◦

• Fields are required not to be dominated by a single object or stars resolved in a local group
galaxy.

• In the case of re-observations of the same field at different visits, the observation with the
longest exposure time is used.

55 independent fields fulfil these selection criteria. Additionally four fields with 20◦ < |b| < 25◦

are included, which contain a high number density of galaxies indicating rather low extinction,
making a total of 59 galaxy fields. This corresponds to 28.4% of the fields and 36.2% of the
co-added exposures.

All fields passing the preselection and containing at least 300 stars are used as star fields for
the PSF analysis (see Sect. 6.2). These 61 fields consisting of 205 exposures amount to 29.3% of
the fields and 24.5% of the co-added exposures.

6.1.2 The GEMS+GOODS data

The GEMS F606W data consist of 63 ACS/WFC tiles imaged with three exposures of 720 to 762
seconds each. They are arranged around the ACS GOODS/CDFS observations, which have been
imaged in five epochs with different position angles (see Tab. 6.1) consisting of two exposures
per tile and epoch with 480 to 520 seconds per exposure.

In total the ACS GOODS/CDFS field is covered with 15 tiles during epochs 1, 3, and 5,
whereas 16 tiles were used for epochs 2 and 4. H05 limit their analysis to the epoch 1 data. In or-
der to reach a similar depth for the used GOODS and GEMS data wedecided to combine the data
of epoch 1 with either epoch 3 or 5 as they have an optimal overlap. The combination of epoch 1
and epoch 5 exposures is unproblematic. In contrast we find significant, FOV dependent residual
shifts between matched object positions in exposures from epochs 1 and 3 after applying refined
image shifts and rotations (Fig. 6.2). Possible interpretations for these remaining shifts are slight
medium-term temporal changes in the ACS geometric distortion or a slightly imperfect treat-
ment of the distortion correction in theMultiDrizzle version used. Pirzkal et al. (2005) report
similar effects for two epochs ofHubbleUltra Deep Field (UDF) data. As remaining shifts also
occur for UDF images observed with position angles that are∼ 90◦ apart, theMultiDrizzle
interpretation might be more plausible. The largest residual shifts have a comparable magnitude
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of ∼ 0.5 pixels for both the GOODS and UDF data. A combination of exposures with remaining
shifts would in any case degrade the PSF of the combined image. Additionally central pixels of
some stellar images could falsely be flagged as cosmic rays byMultiDrizzle. Therefore we
only use the combined epoch 1 and 5 exposures for the cosmic shear analysis that follows.

Figure 6.2: Residual shifts [pixel] computed from windowed SExtractor positions of compact
sources between epochs 3 and 1 (left) and between epoch 5 and 1 (right) of the F606W ACS
GOODS/CDFS observations. For these plots compact objects from all 15 tiles are used, and
residual shifts are averaged in bins of 7002 pixels. For each tile the exposures of each epoch
were drizzled onto one output pixel grid, with a common WCS per tile defined by epoch 1.
Possible interpretations for the residual shifts in the left panel are slight temporal changes in
the ACS geometric distortion or a slightly imperfect treatment of the distortion correction in the
MultiDrizzle version used.

In order to investigate the ACS F606W PSF, we additionally analysed 184 archival F606W
exposures of dense stellar fields containing at least 300 stars, which were observed between July
2002 and July 2003.

6.1.3 Catalogue creation

We useSExtractor (Bertin & Arnouts 1996) for the detection of objects and the Erben et al.
(2001) implementation of the KSB formalism for shape measurements. The pipeline version
is the same as the one used for the original STEP2 analysis (Sect. 4.3), i.e. we apply a shear
calibration factorccal = 1/0.91 and uniform weightswi = 1.

We analyse the images of galaxies in the combined drizzled images. However, for the time-
dependent PSF correction described in Sect. 6.2.4, we additionally perform stellar shape mea-
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Table 6.2: Relevant parameters for the object detection withSExtractor for the galaxy fields
and the star fields. Note that the number of pixels for a detection DETECT MINAREA corresponds
to the sub-pixel of the drizzled images except for the valuesin brackets, which are used for object
detection in the un-drizzledCOR-images.

Parameter Galaxy fields Star fields
BACK TYPE AUTO MANUAL
BACK SIZE 100 –
BACK FILTERSIZE 5 –
BACK VALUE – 0.0
DETECT MINAREA 16 16 (5)
DETECT THRESH 1.5 3 (4)
DEBLEND NTHRESH 16 32
DEBLEND MINCONT 0.05 0.1
FILTER NAME gauss2.5 5x5 (gauss2.0 3x3)

surements in the un-drizzled but cosmic ray-cleanedCOR-images, which are also created by
MultiDrizzle, and the drizzled un-combined frames (DRZ-images).

TheSExtractor object detection and deblending parameters are summarisedin Table 6.2.
We use a rather low detection threshold for the galaxies in order to minimise the impact of
PSF-based selection bias (Kaiser 2000; Bernstein & Jarvis 2002). Spurious detections are later
rejected with cuts in the signal-to-noise ratio. We find thatthe deblending parameters applied
perform well except for the case of spiral galaxies extendedby several arcseconds, for which sub-
structure components are in some cases detected as separateobjects. Thus, we mask these galax-
ies manually. If more than one object is detected within 1.′′2, only the brighter component is kept.
We furthermore reject galaxies containing pixels with low values in theMultiDrizzle weight
image (wmin = 100 s)1 within theirSExtractor isophotal area and also semi-automatically cre-
ate masks to reject bright stars with diffraction spikes and extended image artifacts like ghost-
images.

We use different detection parameters for the star fields (see Table 6.2). Due to the increased
detection thresholdDETECT THRESH, the object detection becomes less sensitive to the faint and
extended stellar diffraction spikes, reducing the time needed for masking.

We use theSExtractor FLUX RADIUS parameter as Gaussian filter scalerg for the shape
measurements of the galaxies. Here the integration is carried out to a radius of 3rg from the
centroid. This truncation was introduced to speed up the algorithm and is justified due to the
strong down-weighting of the outer regions in KSB. We also verified from the data that it does
not bias the shape measurement. For the stellarDRZ-images we repeat the shape measurements
for 18 different filter scales ranging from 2.0 to 15 pixels, which are later matched to the filter
scales of the galaxies. For larger filter scales we find that itis essential to continue the integration

1The weight image pixel value corresponds to the effective exposure time contributing for the pixel, scaled with
the relative area of output and input pixels.
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out to sufficiently large radii due to the wide diffraction wings of the PSF. Therefore, we employ
a stellar integration limit of 4.5× FLUX RADIUS∗ ≃ 9 pixels. For the stellar shape measurements
in theCOR-images we use a fixed Gaussian filter scalerg = 1.5 WFC pixels, which according to
our testing roughly maximises the signal-to-noise of the stellar ellipticity measurement for most
of the occurring PSF anisotropy patterns (see Sect. 6.2).

For object selection we use the signal-to-noise definition given in (3.93). In the computation
of S/N we do not take the correlation of noise in adjacent pixels into account, which is created
by drizzling. However, Casertano et al. (2000) estimate a correction for the noise in a large area
(e.g. the extent of a galaxy), given by their Eq. A19

σN

σ1
= m

p
s

[

1− p
3ms

]

[

1− s
3p

]−1

, (6.1)

whereσ1 = σsky is the single pixel background dispersion, whileσN denotes the dispersion
computed from areas of sizeN = m2 (drizzled) pixels. The variablesp ands denote the drizzle
parameterspix frac andscale, both given in input pixels. Inserting the applied valuesp = 1.0
ands= 0.6 yields
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The expression in squared brackets gives the correction factor to the area scaling expected for
uncorrelated noise. Using the effective area of the Gaussian weight functionA = 2πr2

g and

m=
√

A we estimate a noise correction factor which increases from 1.86 for unresolved sources
(rg ≃ 2.1 pixels) to 2.05 for the largest galaxies considered. Form→ ∞ (6.2) yields a correction
factor of 2.08. The true S/N will be lower than the directly computed value by this factor. The
cuts applied to the data refer to the directly computed value.

6.2 PSF analysis and correction

Due to the low number of stars (∼ 10− 30) present in galaxy fields at high galactic latitudes we
examined the ACS PSF from stellar fields (see Section 6.1.1.2)containing∼ 300− 20000 stars.
We do this analysis on the basis of single exposures instead of combined images, in order to
optimally investigate possible temporal PSF variations. We investigate the PSF both in the un-
drizzled, but cosmic ray cleansedCOR-images created byMultiDrizzle, and also the drizzled
and cosmic ray cleansed single exposures (DRZ). Here we limit the discussion to the F775W
data. Our analysis of the F606W PSF was performed in an identical fashion with only minor
differences in the resulting PSF models. A detailed KSB+ analysis of the F606W PSF can be
found in H05.

6.2.1 Star selection

In theDRZ-images (COR-images) we select stars with 0.6 pixel (0.45 WFC pixel) wide cuts in
half-light radiusrh (Erben et al. 2001) and cuts in the signal-to-noise ratio S/N > 40 (S/N > 30).
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We furthermore reject stars with saturated pixels using magnitude cuts, and, in the case of crowed
fields, stars with a neighbour closer than 20 (10) pixels, which would otherwise affect the shape
measurements for largerg.

6.2.2 PSF anisotropy variation

Figure 6.3: Stellar “whisker plots” for an example F775W stellar field exposure. Each whisker
represents a stellar ellipticity. Theleft panel showse∗α in the un-drizzledCOR-image measured
with rg = 1.5 WFC pixels (PSF core). Themiddleandright panels correspond to the drizzled
DRZ-image showing the PSF core (rg = 2.4 pixels,middle) and the PSF wings (rg = 10.0 pixels,
right). The fit to the ellipticities in the middle panel is shown in the lower right panel of Fig. 6.5.

Investigating stellar fields we find that the stellar ellipticity e∗α and anisotropy kernelq∗α vary
smoothly across each WFC chip and can well be fit with third-order polynomials. Fig. 6.3 shows
the FOV variation ofe∗α for a 400 second stellar field exposure both for the un-drizzled COR-
image (left panel) and the drizzled and thus distortion correctedDRZ-image, where the middle
panel corresponds to the PSF core measured withrg = 2.4 pixels, whereas the right panel shows
the PSF wings (rg = 10.0 pixels). The observed differences between the PSF core and wings,
which mainly constitute in a stronger ellipticity for larger rg, underline the importance to measure
stellar quantities as a function of filter scalerg (see also Hoekstra et al. 1998; H05).

In Fig. 6.4 we compare the stellar ellipticity distributionin the COR-image and theDRZ-
image for similar Gaussian filter scales ofrg = 1.5 WFC pixels andrg = 2.4 pixels, both uncor-
rected and after the subtraction of a third-order polynomial model for each chip. Here drizzling
with theSQUARE kernel increases the corrected ellipticity dispersionσ(eani∗

1 ) by ≃ 24% and thus
decreases the accuracy of the ellipticity estimate. For thegalaxy fields we therefore determine the
PSF model from the un-drizzledCOR-images (see Sect. 6.2.4). Note that the stellar ellipticities
in theCOR-images (left panels in Fig. 6.3 and 6.4) are created by the combined image PSF and
geometric camera distortion, whereas theDRZ-image ellipticities correspond to pure image PSF.
However, since the resulting pattern can in both cases well be fit with third-order polynomials,
the corrected ellipticity dispersions are directly comparable.
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Figure 6.4: Stellar ellipticity distribution (PSF core) for an example F775W stellar field exposure
measured in the un-drizzledCOR-image (left) and the drizzledDRZ-image (right). The open cir-
cles represent the uncorrected ellipticitiese∗α, whereas the black points show the ellipticitieseani∗

α

corrected with a third-order polynomial for each chip. In the right panelσ(eani∗
1 ) is significantly

increased, which is a result of the re-sampling in the drizzle algorithm. In these plots outliers
have been rejected at the 3σ level.

Note that we always plot the FOV variation in terms ofe∗α in order to simplify the comparison
to other publications. However, for the actual correction scheme we employ fits ofq∗α defined in
(3.88) due to a slight PSF width variation leading to a variation of Psm∗

αβ (see Sect. 6.2.3).
Comparing stellar field exposures observed at different epochs, we detect significant tempo-

ral variations of the PSF anisotropy already within one orbit. Time variations of the ACS PSF
were also reported by Krist (2003); Jee et al. (2005a,b, 2006); H05; Rhodes et al. (2005, 2007)
and Anderson & King (2006), and are expected to be caused by focus changes due to thermal
breathing of the telescope. Krist (2003) illustrates the variation of PSF ellipticity induced by
astigmatism, which increases for larger focus offsets and changes orientation by 90◦ when pass-
ing from negative to positive offsets. This behaviour is approximately reproduced in Fig. 6.5
showing polynomial fits to stellar ellipticities in two series of subsequent exposures.

6.2.3 PSF width variation

Additional to the PSF ellipticity variation we also detect time and FOV variations of the PSF
width. Fig. 6.6 shows the FOV dependence of the stellar half-light radiusrh for three different
exposures. Among all F775W stellar field exposures the average half-light radius varied between
1.89≤ rh ≤ 2.07, with an average FOV variationσ(rh) = 0.085. We find that the variation of the
stellar quantityT∗ needed for the PSF correction of the galaxy ellipticities (3.96) closely follows
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Figure 6.5: Third-order polynomial fits to stellar ellipticities in theDRZ-images of two series of
subsequent exposures. The 400 second exposures were taken on 2002-08-28 (upperpanels) and
2002-08-17 (lower panels), where the time indicated corresponds to the middleof the exposure
(UT). The variations are interpreted as thermal breathing of the telescope. Theupper rightand
lower leftplots are near the optimal focus position, whereas the otherexposures represent positive
focus offsets (upper leftpanel) or negative focus offsets (lower rightpanel).

the variation ofrh and can well be fitted with fifth-order polynomials in each chip. For a further
discussion of the PSF width variation see Krist (2003).

6.2.4 PSF correction scheme

In order to correct for the detected temporal PSF variationsusing the low number of stars present
in most galaxy fields (see Fig. 6.7), we apply a new correctionscheme, in which we determine
the best-fitting stellar field PSF model for each galaxy field exposure separately.

6.2.4.1 Description of the algorithm

Due to the low number of stars present in galaxy fields, we require a PSF fitting method with as
few free parameters as possible, excluding the possibilityto use for example a direct polynomial
interpolation. As the main PSF determining factor is the focus position, we expect a nearly
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Figure 6.6: Field-of-view variation of the stellar half-light radiusrh in theDRZ-images of three
F775W stellar field exposures with positive focus offset (left), near optimal focus (middle) and
negative focus offset (right). For these plotsrh was averaged within bins of 300× 300 pixels.
Bins without any stars show the average value.

1-parameter family of PSF patterns. With the high number of stellar field exposures analysed
Nsf = 205 for F775W andNsf = 184 for F606W, we have a nearly continuous database of the
varying PSF patterns. This database consists of well-constrained third- or fifth-order polynomial
fits to qα(x, y, rg) andT(x, y, rg) for numerous values ofrg, both for theCOR- andDRZ-images.
In this section we omit the asterisk when we refer to these polynomial fits derived from the stellar
fields in order to allow for a clear distinction toq∗α measured from the stars in the galaxy fields.

Given the noisiere∗α andq∗α measurement in drizzled images (see Sect. 6.2.2), we estimate
the PSF correction for a galaxy field from the stellar images in eachCOR-exposure of the galaxy
field. However, we apply the correspondingDRZ-image PSF model as galaxy shapes are also
measured on the drizzled co-added image.

In order to determine the correction for a co-added galaxy field, we fit the measured
q∗,COR
α (rg = 1.5) of theNstars,k stars present in galaxy field exposurek with the stellar field PSF

modelsqCOR
α, j (x, y, rg), with j ∈ 1, ...,Nsf and identify the best fitting stellar field exposurejk with

minimal

χ2
k, j =

Nstars,k
∑

i=1

[

q∗,COR
α,i (rg = 1.5)− qCOR

α, j (xi , yi ,1.5)
]2
. (6.3)

Here we choose the Gaussian window scalerg = 1.5 WFC pixels to maximise the signal-to-noise
in the shape measurement (see Sect. 6.1.3). In this fit we reject outliers at the 2.5σ level to ensure
that stars in the galaxy field with noisy ellipticity estimates do not dominate the fit.

Having found the “most similar” (best-fitting)COR-PSF modeljk for each galaxy field ex-
posure, we next have to match the coordinate systems of the correspondingDRZ-image and the
co-added galaxy field. This is necessary, as the singleDRZ-images used to create the PSF mod-
els are always drizzled without extra shifts in the default orientation of the camera, whereas the
galaxy field exposures are aligned byMultiDrizzle according to their dither position. For this
we trace the position of each object in the co-added galaxy field back to the position it would
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Figure 6.7: Histogram of the number of galaxy fields withNstar selected stars in the co-added
images for the Parallel Survey (dashed line) and the GEMS+GOODS data (solid line).

have in the single drizzled exposurek without shift and rotation. Letφk and (x0, y0)k denote the
rotation and shift applied byMultiDrizzle for exposurek. For a galaxy with coordinates (x, y)
in the co-added image we then compute the “singleDRZ”-coordinates

(

x̃
ỹ

)

k

=

(

cosφk sinφk

− sinφk cosφk

) (

x− x0,k

y− y0,k

)

(6.4)

and the PSF model

qDRZ
k (x, y, rg) = qDRZ

jk (x̃, ỹ, rg) e2iφk (6.5)

TDRZ
k (x, y, rg) = TDRZ

jk (x̃, ỹ, rg) , (6.6)

where we denote the components ofqDRZ
k asqDRZ

α,k .
In order to estimate the combined PSF model for the co-added galaxy image, we then com-

pute the exposure timetk-weighted average

qDRZ
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of all shifted and rotated single exposure models, with∆k = 1 if the galaxy is located within the
chip boundaries for exposurek and∆k = 0 otherwise.
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Figure 6.8: Comparison of the stellar quantitiesq∗α andT∗ measured from a co-added stellar field
to the same quantities computed as an exposure time-weighted average of the estimates in the
singleDRZ-images. In both cases a fixed Gaussian filter scalerg = 2.4 pixels was used. The good
and unbiased agreement justifies the direct use of these quantities in the PSF correction scheme
without the need to work on individual moments. For these plots the three stellar field exposures
shown in the bottom of Fig. 6.5 have been used. Note the largerscatter forq∗1 compared toq∗2
which is mainly due to the noise created by re-sampling (compare Sect. 6.2.2).

Another factor which is expected to influence the image PSF besides focus changes are jit-
ter variations created by tracking inaccuracies (Sect. 6.1). To take those into account we fit an
additional, position-independent jitter termq0

α(rg). We already take this constant into account
while fitting the galaxy field stars with the stellar field models to ensure that a large jitter term
does not bias the identification of the best-fitting star field. Yet, as the number of stars with suf-
ficient signal-to-noise is higher in the co-added image and since only the combined jitter effect
averaged over all exposures is relevant for the analysis, were-determine the jitter term in the
co-added drizzled image after subtraction of the combined PSF modelqDRZ

α,comb(x, y, rg). The final
PSF model used for the correction of the galaxies is then given by

qDRZ
α,total(x, y, rg) = qDRZ

α,comb(x, y, rg) + q0
α(rg) (6.9)

andTDRZ
comb(x, y, rg).

Note that this correction scheme assumes that the PSF model quantitiesqDRZ
α,k (x, y, rg) and

TDRZ
k (x, y, rg) determined for each galaxy field exposure can directly be averaged to determine

the correction for the co-added image. While only brightnessmoments add exactly linearly,
this computation-simplifying approach is still justified,as both the PSF size variation and the
absolute value of the stellar ellipticities are small (see Sections 6.2.2 and 6.2.3). Computing the
flux-normalised trace of the stellar second brightness moments

Q̂ ≡ Q11+ Q22

FLUX∗
(6.10)

for all stars in the F775W stellar field exposures with fixedrg = 2.4 pixels, we find thatQ̂ has a
relative variation of 3% only (1σ). Therefore we can well neglect non-linear terms induced bythe
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denominator in (3.85). The same holds for non-linear contributions ofPsm∗ andT∗, which show
1σ-variations of only 6% (Tr[Psm∗]) and 5% (T∗). As a (very good) first-order approximation
we can therefore simply averageqDRZ

α,k (x, y, rg) andTDRZ
k (x, y, rg) linearly, as also demonstrated in

Fig. 6.8, where we compare the exposure time-weighted average of the quantities measured from
stars in individual drizzled frames to the value measured inthe co-added image.

6.2.4.2 Test with star fields

In order to estimate the accuracy of our fitting scheme we testit on all co-added stellar field
images. For each stellar field we randomly select subsets ofNstar stars from theCOR-images
and the co-added image, in order to simulate the low number ofstars present in galaxy fields.
This subset of stars is used to derive the PSF model as described in Sect. 6.2.4.1 which we then
apply to the entirety of stars in the co-added image. For the fitting of a particular stellar field
exposure, we ignore its own entry in the PSF model database and only consider the remaining
models. The strength of any coherent pattern left in the stellar ellipticities after model subtraction
provides an estimate of the method’s accuracy. In order to determine the actual impact of the
remaining PSF anisotropy on the cosmic shear estimate, one has to consider that although galaxy
ellipticities are less affected by PSF anisotropy than stars, they are additionally scaled with the
Pg correction (3.89, 3.90). We thus “transform” the remainingstellar ellipticity into a corrected
galaxy ellipticity (see e.g. Hoekstra 2004)

e∗,iso
α =

2ccal

TrPg
gal

[ TrPsm
gal

TrPsm∗(rg)
e∗α(rg) − Psm

αβ,gal q
DRZ
β,total(x, y, rg)

]

, (6.11)

where we randomly assign to each star the value ofPg
gal, Psm

gal, andrg from one of the parallel
data galaxies used for the cosmic shear analysis (see Sect. 6.4). Fig. 6.9 shows the estimate of
the two-point correlation functions ofe∗,iso

α averaged over all star fields and 30 randomisations
for different numbers of random starsNstar. This plot indicates that already forNstar= 10 stars
present in a galaxy field the contribution of remaining PSF anisotropy is expected to be reduced
to a level〈e∗,iso

t/× e∗,iso
t/× 〉 < 2× 10−6 corresponding to≃ 1−5% of the cosmological shear correlation

function expected on scales probed by a single ACS field. Sinceall of the examined parallel fields
and the large majority of the GEMS+GOODS fields contain more than 10 stars (see Fig. 6.7), we
are confident that the systematic accuracy of this fitting technique will be sufficient also for the
complete ACS parallel data.

The further reduction of the remaining systematic signal for largerNstar shows that the accu-
racy is mainly limited by the number of available stars and not by a too narrow coverage of our
PSF database or the linear averaging ofqDRZ

α,k (x, y, rg).
For comparison we also plot in Fig. 6.9 the correlation functions calculated from thePg-

scaled, butnot anisotropy corrected stellar ellipticity, which for larger scales is of the same
order of magnitude as the expected shear signal. Note that the plotted values depend on the
selection criteria for the galaxies (see Sect. 6.3.1). Particularly, the inclusion of smaller, less
resolved galaxies would increase both the corrected and uncorrected signal. Additionally, it is
assumed that the distribution of PSFs occurring is the same for the star and galaxy fields. For
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Figure 6.9: Estimate for the PSF fitting accuracy: In order tosimulate the low number of stars
in galaxy fields, the PSF correction technique was applied tothe 61 parallel data star fields,
from which only small random subsets ofNstar stars were used to determine the fit. We plot the
correlation functions〈e∗,iso

t e∗,iso
t 〉 (left) and〈e∗,iso

× e∗,iso
× 〉 (right) of the “transformed” and corrected

stellar ellipticitye∗,iso
α (6.11), which accounts for the different susceptibility of stars and galaxies

to PSF effects. The numbersNstar= (5,10,20,50) indicate the number of random stars used
in each subset. Note that the uncorrected PSF signal computed from the transformed butnot
anisotropy corrected ellipticity (nocor) and its 1σ upper limit (nocor+1σ) are only slightly lower
thanΛCDM predictions for the cosmological lensing signal shown bythe dashed-dotted curves
for σ8 = 0.7, zm = 1.34.

more homogeneous surveys (e.g. the GEMS+GOODS data) one might expect that more similar
PSFs occur more frequently than for the quasi random parallel star fields, for which the stellar
correlation function is expected to partially cancel out. Thus, we also plot the one sigma upper
limit of the uncorrected correlation function in Fig. 6.9, which might be a more realistic estimate
for the uncorrected systematic signal for such surveys.
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6.2.4.3 Discussion of the algorithm

The applicability of the proposed algorithm relies on the assumption that the stellar fields densely
cover the parameter space of PSF patterns occurring in the galaxy fields. This is likely to be the
case if

1. both datasets roughly cover the same time span,

2. the number of star field exposures is sufficiently large,

3. and no significant additional random component occurs besides the constant jitter offset
that we have considered.

For both the F606W and F775W data (1.) is fulfilled and from theensemble of observed stellar
field PSFs we are confident that (2.) and (3.) are also well satisfied. This is also confirmed
by the test presented in Sect. 6.2.4.2. Yet, the reader should note that datasets might exist for
which conditions (1.) to (3.) are not well fulfilled, e.g. dueto observations in a rarely used
filter with only a low number of observed stellar fields. In such a case the algorithm described
might be adjusted using a principal component analysis (Jarvis & Jain 2004, see also Sect. 7.7) or
theoretical PSF models (Rhodes et al. 2005, 2007). Note that the differences in the observed PSFs
are interpreted to be mainly driven by different focus offsets. However, the suggested algorithm
will work just as well if further factors play a role, as long as sufficient stellar field exposures are
available.

6.2.4.4 Advantages of our PSF correction scheme

Finally we want to summarise the advantages our method provides for the high demands of a
cosmological weak lensing analysis on accurate PSF correction:

1. Our technique deals very well with the low number of stars present in typical high galactic
latitude fields, which inhibits direct interpolation across the field-of-view.

2. The ACS PSF shows substantial variation already between consecutive exposures (see
Fig. 6.5), which is adequately taken into account in our technique. When exposures from
different focus positions are combined, a single-focus PSF model, as e.g. used by Rhodes
et al. (2007), is no longer guaranteed to be a good description for the co-added image.

3. Our PSF models are based on actually observed stellar fields and are thus not affected by
possible limitations of a theoretical PSF model.

4. We determine the PSF fits in the un-drizzledCOR-images, which excludes any impact
from additional shape noise introduced by re-sampling.

5. The algorithm is applicable for arbitrary dither patterns and rotations, and can easily be
adapted for other weak lensing techniques (e.g. Nakajima etal. in prep.).
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6.2.4.5 Comparison to independent correction schemes

H05 use a PSF correction scheme, in which they combine the stars within each of the two GEMS
observation epochs. Although this approach is expected to correct for longer term trends in the
average focus position, it does not take short-term PSF variations into account. Hence, it is likely
that some residual PSF residuals are present in their analysis. Although the tests for systematics
presented by H05 indicate zero contamination for the GEMS data, remaining systematics are
indeed measured at small scales if the GOODS data are included.

Rhodes et al. (2005, 2007) propose a correction scheme, in which they fit co-added frames
with theoretical single-focus PSF models created with a modified version ofTinyTim2. Although
this approach will probably yield a better time-dependent correction than the H05 method, it
also fails to capture inter-exposure variations. Also there are residual discrepancies between
their TinyTim-model and actual stars in the COSMOS field (Fig. 6.10). The discrepancies are
neither symmetric between the two chips, nor vanish at the top or bottom of the field, as would
be expected for CTE effects. Hence, they cannot be mainly explained by CTE degradation as
argued by the authors.

Figure 6.10: Rhodes et al. (2007)TinyTim PSF model (left) for a focus value of−2µm and
the average of many observed stars (right) from COSMOS fields with a similar estimated focus
value. The discrepancies are neither symmetric between thetwo chips, nor vanish at the top or
bottom of the field. Hence, they cannot be mainly explained byCTE degradation (Fig. 8 from
Rhodes et al. 2007).

2http://www.stsci.edu/software/tinytim/tinytim.html

http://www.stsci.edu/software/tinytim/tinytim.html
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6.3 Galaxy catalogue and redshift distribution

6.3.1 Galaxy selection

We select galaxies with cuts in the signal-to-noise ratio S/N > 4, half-light radius 2.8 < rh < 15
pixels, corrected galaxy ellipticity|eiso| < 2.0, and TrPg/2 > 0.1. From the analysis of the STEP1
image simulations (Heymans et al. 2006b) we find no indications for a significant bias in the shear
estimate introduced by these conservative cuts for|eiso| and TrPg. However, due to a detected
correlation of the shear estimate both withrh and theSExtractor FLUX RADIUS, cuts in the
latter quantities may introduce a significant selection bias. For the analysis of the STEP2 image
simulations we therefore choserh-cuts closely above the stellar sequence (Massey et al. 2007a).
Yet, as the magnitude-size relation is very different for ground- and space-based images, we

Figure 6.11:rh–magnitude distribution of the Parallel data F775W objectsafter applying a cut
S/N > 4. The vertical lines indicate two different cuts for the galaxy selection: Although a cut
rh > 2.4 pixels is sufficient to reliably exclude stars, we additionally reject very small galaxies
(2.4 pixels< rh < 2.8 pixels), which are most strongly affected by the PSF.

expect that a cut at largerrh will introduce a smaller shear selection bias for space-based images.
In Fig. 6.11 we plot therh–magnitude distribution of the objects in the F775W galaxy fields after
a cut S/N > 4 was applied. Considering the PSF size variation (Sect. 6.2.3) and increased noise
in the rh measurement for faint objects, stars can reliably be rejected with a cutrh & 2.4 pixels.
With the cuts in|eiso|, and TrPg applied, increasing the size cut torh > 2.8 pixels rejects only
6.1% of the remaining galaxies. As these galaxies are most affected by the PSF, and considering
the possible limitations for the application of the KSB formalism for a diffraction limited PSF
(Sect. 3.4.2), we decided to use the more resolved galaxies with rh > 2.8 pixels. At the time
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the Schrabback et al. (2007) paper was submitted, it was still unclear if this conservative cut
might introduce significant selection bias, as it was the case for STEP1. However, the recent
STEP3 results indicate that no significant selection bias should be introduced by the cut inrh

(Sect. 4.4.5).
In total we select 39898 (77749) galaxies corresponding to an average galaxy number density

of 63 arcmin−2 (96 arcmin−2) for the parallel F775W fields (GEMS+GOODS F606W tiles) with
a corrected ellipticity dispersionσ(ccaleiso

α ) = 0.32 (0.33) for each component.
H05 found that the faintest galaxies in their catalogue werevery noisy, diluting the shear

signal. Therefore they use a conservative rejection of faint galaxies (m606 < 27.0, significance
ν > 15) leading to a lower galaxy number density of∼ 60 arcmin−2 for the GEMS and GOODS
F606W data. For our primary analysis we use a rather low cut S/N > 4 (see above). In order
to assess the impact of the faintest galaxies and ease the comparison to H05, we repeat the
cosmological parameter estimation in Sect. 6.5 with more conservative cuts S/N > 5,m606 < 27.0
leading to a number density of 72 arcmin−2, which is roughly comparable to the value found
by H05 given the deeper combined GOODS images in our analysis. Note that the primary cut
S/N > 4, corresponding to S/Ntrue

& 2 if (6.2) is taken into account, is in fact relatively low given
the recent results from the STEP2 and STEP3 simulations. Therefore, the more conservative cut
should yield more reliable results, which however was not yet clear at the time the cosmic shear
paper was finalized.

We plot the average galaxy number density as a function of exposure time for the different
datasets in Fig. 6.12, indicating that F606W is more efficient than F775W in terms of the average
galaxy number density. However one should keep in mind that the parallel fields are subject to
varying extinction, sky background, and less homogeneous data quality.

For the GEMS+GOODS tiles we rotate the galaxy ellipticities to a common coordinate sys-
tem and reject double detections in overlapping regions which leaves 71682 galaxies for S/N > 4
and 53447 galaxies for S/N > 5,m606 < 27.0.

6.3.2 Comparison of shear catalogues

In regions where different GEMS and GOODS tiles overlap, we have two independent shear
estimates from the same galaxies with different noise realisations corrected for different PSF
patterns. This provides us with a good consistency check forour shear pipeline. We compare
the two shear estimates in the left panel of Fig. 6.13. Although there is a large scatter created by
the faint galaxies, which are strongly affected by noise, the shear estimates agree very well on
average confirming the reliability of the pipeline.

Additionally, we match our shear catalogue to the H05 catalogue, which stems from an in-
dependent data reduction and weak lensing pipeline, and compare the two shear estimates in the
right panel of Fig. 6.13. Overall there is good agreement between the two pipelines with a slight
difference in the shear calibration, where our shear estimate isin average larger by 3.3%. This is
also consistent with results of the STEP project given a 3% under-estimation of the shear for the
Heymans pipeline in STEP1 (Heymans et al. 2006b) and an errorof the average shear calibration
consistent with zero for the Schrabback pipeline in STEP2 (Massey et al. 2007a). The slightly
different results for the two KSB+ pipelines are likely to be caused by the shear calibration factor
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Figure 6.12: Number density of selected galaxies (S/N > 4) for the parallel data F775W fields
and the GEMS/GOODS F606W tiles as a function of exposure time.

used in our pipeline and the different treatment of measuring shapes from pixelised data, where
we interpolate across pixels while H05 evaluate the integrals at the pixel centres. See Sect. 4.2.6
for a further comparison of the two KSB+ pipelines. For the GEMS and GOODS data a shear
calibration error of∼ 3% is well within the statistical noise.

6.3.3 Redshift distribution

In order to estimate cosmological parameters from cosmic shear data, accurate knowledge of the
source redshift distribution is required. This is of particular concern if the redshift distribution is
constrained from external fields (see e.g. van Waerbeke et al. 2006; Huterer et al. 2006). How-
ever, as theChandraDeep Field South has been observed with several instrumentsincluding
infrared observations, accurate photometric redshifts can directly be obtained for a significant
fraction of the galaxies without the need for external calibration. In this work we use the pho-
tometric redshift catalogue of the GOODS-MUSIC sample presented by Grazian et al. (2006).
This catalogue combines the F435W, F606W, F775W, and F850LPACS GOODS/CDFS images
(Giavalisco et al. 2004), theJHKs VLT data (Vandame et al. in prep.), the Spitzer data provided
by the IRAC instrument at 3.6, 4.5, 5.8, and 8.0µm (Dickinson et al. in prep.), andU–band data
from the MPG/ESO 2.2m and VLT-VIMOS. Additionally the GOODS-MUSIC catalogue con-
tains spectroscopic data from several surveys (Cristiani etal. 2000; Croom et al. 2001; Wolf et al.
2001; Bunker et al. 2003; Dickinson et al. 2004; Le Fèvre et al. 2004; Szokoly et al. 2004; Stan-
way et al. 2004; Strolger et al. 2004; van der Wel et al. 2004; Mignoli et al. 2005; Vanzella et al.
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Figure 6.13: Comparison of the shear estimates between overlapping ACS tiles (left) and between
the H05 and our catalogue (right). The grey-scale indicates the number of galaxies. Note the
slight difference in the shear calibration between the two pipelines (∼ 3.3%). In theleft panel
galaxies from different noise realisations are compared, leading to the larger scatter. The solid
line shows a 1:1 relation.

2005), which are also compiled in a Master3 catalogue by the ESO-GOODS team. We match the
GOODS-MUSIC catalogue to our filtered galaxy shear catalogue, yielding in total 8469 galaxies
with a photometric redshift estimate, including 408 galaxies with additional spectroscopic red-
shifts and a redshift quality flagqz≤ 2. In the area covered by the GOODS-MUSIC catalogue
95.0% of the galaxies in our shear catalogue withm606 < 26.25 have a redshift estimate, and
only for fainter magnitudes substantial redshift incompleteness occurs (Fig. 6.14). Grazian et al.
(2006) estimate the photometric redshifts errors from the absolute scatter between photometric
and spectroscopic redshifts to be〈|∆z/(1+ z)|〉 = 0.045.

In cosmic shear studies the redshift distribution is often parametrised as
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β

z0Γ
(

1+α
β

)

(

z
z0

)α

exp













−
(

z
z0

)β










(6.12)

(e.g. Brainerd et al. 1996; Semboloni et al. 2006; Hoekstra etal. 2006). In order to extrapolate
the redshift distribution for the faint galaxies with redshift-incomplete magnitudes we consider
p(z) = p(z,m606) and assume a linear relation between the magnitudem606 and the median red-
shift zm of an ensemble of galaxies with this magnitude

zm = rz0 = a(m606− 22)+ b , (6.13)

wherer(α, β) is calculated from numerical integration of (6.12). For a single galaxy of mag-
nitudem606, (6.12) corresponds to the redshift probability distribution given the parameter set

3http://www.eso.org/science/goods/spectroscopy/CDFS_Mastercat/

http://www.eso.org/science/goods/spectroscopy/CDFS_Mastercat/
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(α, β,a,b). Thus, we can constrain these parameters via a maximum likelihood analysis, for
which we marginalise over the photometric redshift errors∆z. The total redshift distribution of
the survey withN galaxies is then constructed as

φ(z) =

∑i=N
i=1 p(z,m606(i))

N
. (6.14)

Note that this approach is similar to the one used by H05, but does not require magnitude or
redshift binning.

Figure 6.14: Number of selected GOODS-CDFS galaxies as a function of m606. The solid line
corresponds to galaxies for which spectroscopic or photometric redshift are available from the
GOODS-MUSIC sample (Grazian et al. 2006), whereas the dotted line shows galaxies in the
shear catalogue without redshift estimate located in the same area.

For the maximum likelihood analysis we apply the CERN Program Library MINUIT4 and
use all galaxies with redshift estimates in the magnitude range 21.75< m606 < 26.25. Vary-
ing all four parameters (α, β,a,b) we find the best fitting parameter combination (α, β,a,b) =
(0.563,1.716,0.299,0.310), for whichzm = 0.7477z0. In order to estimate the fit accuracy, we
fix α andβ to the best fitting values and identify the 68% (95%) confidence intervals fora andb:
a = 0.299+0.006(0.013)

−0.007(0.014), b = 0.310+0.018(0.037)
−0.017(0.033).

Using these parameter estimates, we reconstruct the redshift distribution of the galaxies used
for the fitting (Fig. 6.15). The reconstruction fits the actual redshift distribution very well except
for a prominent galaxy over-density atz≃ 0.7 and an under-density atz& 1.5, which are known

4http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/

http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/
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large-scale structure features of the field (Gilli et al. 2003, 2005; Szokoly et al. 2004; Le Fèvre
et al. 2004; Adami et al. 2005; Vanzella et al. 2006; Grazian et al. 2006). Yet, given that the
reconstruction and the photometric redshift distributionhave almost identical average redshifts
〈zrecon(fit sample)〉 = 1.39, 〈zphoto(fit sample)〉 = 1.41, we estimate that the impact of the large-
scale structure on the cosmic shear estimate via the source redshift distribution will be small.
Also, we find thatPκ(ℓ) computed for the two distributions differs by< 1% for 200< ℓ < 10000
assuming a flat WMAP-3ΛCDM cosmology. However, the large-scale structure significantly in-
fluences the estimate of the median redshiftzm,recon(fit sample)= 1.23,zm,photo(fit sample)= 1.10.
Thus, a redshift distribution determined from the computedmedian redshift of the galaxies would
most likely be biased to too low redshifts. Note that in Fig. 6.15 the reconstruction falls off slower
for highz than the actual distribution of the data. To exclude a possible bias we thus always trun-
cate the high redshift tail forz> 4.5.

For comparison we also determine a reconstruction from the best fitting values for (a,b) with
fixed values (α, β) = (2,1.5), which are sometimes used in the literature (e.g. Baugh & Efstathiou
1994; H05). While they seem to provide a good parametrisationfor shallower surveys (see e.g.
Brown et al. 2003), they lead to a distribution that is too narrowly peaked with a maximum at too
high redshifts for the deep GEMS and GOODS data (Fig. 6.15).

Figure 6.15: Redshift distribution for the matched shear catalogue galaxies with redshift estimate
from the GOODS-MUSIC sample in the magnitude range 21.75< m606 < 26.25 (solid line his-
togram). The dashed curve shows the reconstructed redshiftdistributionNφ(z) for these galaxies
using the best fitting values for (α, β,a,b) = (0.563,1.716,0.299,0.310). The dotted curve was
computed for fixed (α, β) = (2,1.5).

A maximum likelihood analysis can only yield reasonable parameter constraints if the model
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is a good description of the data. To test our assumption of a linear behaviour in (6.13), we bin
the matched galaxies in redshift magnitude bins and determine a singlezm for each bin using
an additional likelihood fit with fixed (α, β) = (0.563,1.716), see Fig. 6.16. A linearzm(m606)
description is indeed in excellent agreement with the data in the magnitude range used for the
joint fit. Only at the bright end the large-scale structure peak atz≃ 0.7 induces an increased
scatter. However, the likelihood fit is much less affected by large-scale structure than the directly
computed median redshift, which in contrast under-estimates the slope of thezm(m606) relation
for zm . 24.7 (see Fig. 6.16). This is the reason why H05, who use the median redshift computed
from spectroscopic data in the magnitude range 21.8 < m606 < 24.4, derive a significantly flatter
zm(m606) relation

zH05
m = −3.132+ 0.164m606 (21.8 < m606 < 24.4) (6.15)

leading to an estimate ofzm = 1.0± 0.1 for their shear catalogue.
In order to verify the applicability of (6.13) for our fainter shear galaxies, we also plot

zm(m606) in Fig. 6.16 computed from photometric redshifts for the HUDF (Coe et al. 2006), find-
ing a very good agreement.

Using the parameters (α, β,a,b) we construct the redshift distribution for all GEMS and
GOODS galaxies in our shear catalogue from (6.14). The resulting redshift distribution has
a median redshiftzm(GEMS+GOODS)= 1.46± 0.02(0.05), where the statistical errors stem
from the uncertainty ofa andb. Systematic uncertainties might arise from applying (6.13) for
galaxies up to 1.5 magnitudes fainter than the magnitude range used to determine the fit. Ad-
ditionally, the photometric redshift errors used in the maximum likelihood analysis do not take
catastrophic outliers or systematic biases into account, but see Grazian et al. (2006) for a com-
parison to the spectroscopic subsample. Furthermore the impact of the large-scale structure on
the source redshift distribution will be slightly different for the whole GEMS field compared
to the GOODS region. We estimate the resulting systematic uncertainty as∆z ≃ 0.1, yielding
zm(GEMS+GOODS)= 1.46± 0.02(0.05)± 0.10. The constructed redshift distribution is well
fit with a magnitude independent distribution (6.12) with (α, β, z0) = (0.537,1.454,1.832).

Given that we derive the redshift parametrisation from the matched GOODS-MUSIC galax-
ies in the magnitude range 21.75< m606 < 26.25, while a low level of redshift incompleteness
already occurs form606 & 25.75 (see Fig. 6.14), we repeat our analysis as a consistency check
using only galaxies with 21.75< m606 < 25.75 yielding a very similar redshift distribution with
zm = 1.44. We thus conclude that the low level of incompleteness does not significantly affect
our analysis.

For the brighter galaxies in our shear catalogue with S/N > 5,m606 < 27.0, the constructed
redshift distribution is shallower as expected withzm = 1.37± 0.02(0.05)± 0.08. It can well be
fit with a magnitude-independent distribution (6.12) with (α, β, z0) = (0.529,1.470,1.717). Using
our redshift parametrisation we also estimate the median redshift for the H05 shear catalogue
yielding zm = 1.25± 0.02± 0.08. Here we estimate slightly lower systematic errors due tothe
lesser extrapolation to fainter magnitudes.

In Sect. 6.5 we will use our derived redshift distribution toconstrain cosmological parame-
ters marginalising over the statistical plus systematic error in zm. Furthermore we will use this
redshift distribution when we compare cosmic shear estimates for the GEMS and GOODS data
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Figure 6.16: Median redshift of the galaxies in the matched shear-photo-z catalogue computed
in m606 bins. The median has been estimated directly from the data (thin crosses) and determined
from a maximum likelihood fit forzm with fixed (α, β) = (0.563,1.716) (triangles), with errors-
bars indicating the error of the mean or the 1σ confidence region, respectively. The solid line
corresponds to the best fitting parameters of the joint likelihood fit, whereas the dashed line
shows the fit determined by H05 for the magnitude range 21.8 < m606 < 24.4. Note that a large-
scale structure peak atz≃ 0.7 induces both the flatter slope for the directly computedzm for
m606 . 24.7 and the increased spread for the fitted points form606 . 23.3. For m606 & 26.25
substantial redshift incompleteness occurs. For comparison we also plot the directly computed
median photometric redshift from the HUDF (open circles, Coeet al. 2006).
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with theoretical models. The theoretical cosmic shear predictions shown in this chapter are cal-
culated for a flatΛCDM cosmology according to the three year WMAP-only best-fitting values
for (ΩΛ,Ωm,Ωb,h,ns) = (0.76,0.24,0.042,0.73,0.95) (Spergel et al. 2007) for different power
spectrum normalisationsσ8 calculated using the non-linear correction to the power spectrum
from Smith et al. (2003).

At this stage we use the parallel data to test our pipeline andsearch for remaining systematics,
while presenting a cosmological parameter estimation in a future paper based on a larger data
set. Given the inhomogeneous depth and data quality of the parallel data, this cosmological
parameter estimation will require a thoroughly estimated,field-dependent redshift distribution.
For the purpose of comparing the different estimators for shear and systematics to the expected
shear signal in the current work, we apply a simplified globalredshift distribution estimated from
the F775W magnitudes in GOODS-MUSIC catalogue. Similarly to the F606W data we apply
our likelihood analysis to all GOODS-MUSIC galaxies with 22.0 < m775 < 26.0 yielding best
fitting parameters (α, β,a,b) = (0.723,1.402,0.309,0.395), for whichzm = 0.9395z0. The upper
magnitude limit was chosen due to a similar turn-off point of zm(m775) as in Fig. 6.16 indicating
redshift incompleteness. To account for the different extinction in the parallel fields and the
CDFS (ACDFS

775 = 0.017 mag), we apply an extinction correction based on the mapsby Schlegel
et al. (1998).

Using the extinction-corrected magnitudes of all F775W galaxies in the parallel data shear
catalogue, we construct a redshift distribution withzm = 1.34, which can be fit with a magnitude-
independent distribution with (α, β, z0) = (0.746,1.163,1.191).

6.4 Cosmic shear estimates and tests for systematics

In this section we compute different cosmic shear statistics and perform a number of diagnostic
tests to check for the presence of remaining systematics. For the GEMS and GOODS data the
plots in this section correspond to the larger galaxy set with S/N > 4 including the faint galaxies
which are stronger affected by the PSF.

6.4.1 Average galaxy ellipticity

For data uncontaminated by systematics the average galaxy ellipticity is expected to be consistent
with zero5. Any significant deviation from zero indicates an average alignment of the galaxies
relative to the pixel grid. We plot the average corrected butnot rotated (see Sect. 6.3.1) galaxy el-
lipticity 〈eiso

α 〉 for each field in Fig. 6.21. Whereas the global average is essentially consistent with
zero for the GEMS and GOODS data (〈eiso

1 〉 = −0.0004± 0.0011,〈eiso
2 〉 = 0.0012± 0.0011), the

averageeiso
1 -component is significantly negative for the parallel data (〈eiso

1 〉 = −0.0084± 0.0015,
〈eiso

2 〉 = 0.0020± 0.0015) corresponding to an average orientation in the direction of they-axis.

5Note that for a single field the average galaxy ellipticity may significantly deviate from zero due to a net mean
gravitational shear in the field. For GEMS, however, we combine tiles observed under different role-angles. Thus,
we expect that the average corrected but not rotated galaxy ellipticity should vanish with good accuracy.
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Figure 6.17: Mean galaxy ellipticity before (〈eα〉, left) and after (〈eiso
α 〉, right) PSF correction as a

function of the mean PSF anisotropy kernel averaged over allgalaxies in a field〈qα〉, computed
on afield-by-fieldbasis for the F775W parallel fields. The lack of a correlationafter PSF cor-
rection (correlation cor= 0.08) is a clear indication that PSF anisotropy residuals cannot be the
origin for the negative average ellipticity〈eiso

1 〉.

6.4.1.1 Could it be residual PSF contamination?

There are different effects which could in principle cause such an average alignment: For ex-
ample one could speculate that our PSF fitting technique fails for the parallel data or that our
implementation of the KSB+ formalism under-estimates the PSF anisotropy correction,e.g. due
to neglected higher-order moments. Yet, the average corrected galaxy ellipticity is consistent
with zero for the GEMS and GOODS data, while the average uncorrected ellipticity is signif-
icantly non-zero for both datasets (parallel:〈e1〉 = −0.0102± 0.0012, 〈e2〉 = 0.0028± 0.0012;
GEMS+GOODS: 〈e1〉 = −0.0090± 0.0009, 〈e2〉 = 0.0045± 0.0009). Therefore this explana-
tion becomes quite implausible, particularly as the average number of stars usable to derive the
fit is higher for the parallel data (Fig. 6.7).

To further test whether imperfect PSF correction could be the cause, we plot the mean galaxy
ellipticity as a function of the mean PSF anisotropy kernel on a field-by-fieldbasis for parallel
data in Fig. 6.17. While there is a substantial correlation between〈qα〉 and the mean uncorrected
ellipticity 〈eα〉 (correlation cor= cov[〈qα〉, 〈eα〉]/(σ〈qα〉σ〈eα〉) = 0.38), the mean PSF corrected el-
lipticity 〈eiso

α 〉 is basically uncorrelated with〈qα〉 (cor= 0.08), clearly indicating that imperfect
PSF correction is not the culprit here.

We also plot the mean corrected galaxy ellipticity〈eiso
α 〉 computed inqα-bins in Fig. 6.18. The

absence of a correlation both for the GEMS+GOODS data and additionally〈eiso
2 〉 in the parallel

data again confirms the success of the PSF correction. For theparallel data a moderate correlation
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Figure 6.18: Mean PSF-corrected galaxy ellipticity〈eiso
α 〉 binned as a function of the PSF

anisotropy kernelqα for the parallel data (left) and the GEMS+GOODS data (right). The binning
(indicated by the horizontal error-bars) was chosen such that all bins contain an equal number of
galaxies. The lack of a correlation for the GEMS+GOODS data and〈eiso

2 〉 for the parallel data
confirms the success of the PSF correction. The interpretation of the moderate correlation de-
tected for〈eiso

1 〉 in the parallel data is ambiguous as it can also be caused by a position dependence
of 〈eiso

1 〉.

is observed between〈eiso
1 〉 andq1, which at first sight might be interpreted as an indication for

imperfect PSF anisotropy correction. However, it is important to keep in mind thatqα is position
dependent. Hence, if a different position dependent effect causes the non-zero〈eiso

1 〉 it will also
mimic a dependence onqα. From Fig. 6.5 we find for example that highly negative valuesfor
q1 appear mainly near medialy-positions close to the gap between the two chips. Thus, the
apparent correlation between〈eiso

1 〉 andq1 shown in Fig. 6.18 could also be caused by a different
effect which acts most strongly near the chip gap, such as CTE degradation (see Sect. 6.4.1.2)
or artefacts due to bad columns (see Sect. 6.4.1.3). In this sense thefield-by-fieldcomparison
shown in Fig. 6.17 is a better test for imperfect PSF anisotropy correction, as it is independent of
a possible position dependence. Given the fact that this test does not show a significant indication
for imperfect PSF anisotropy correction, we conclude that it is most likely not the explanation for
the non-zero〈eiso

1 〉. We investigate the position dependence further in Sect. 6.4.1.2 and compute
the star-galaxy cross-correlation as an additional test for PSF anisotropy residuals in Sect. 6.4.3.

6.4.1.2 Impact of CTE degradation

Another possible explanation is a degradation of the charge-transfer efficiency (CTE), which can
lead to a spurious negativee1 ellipticity component, as described in Sect. 5.1.7.
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Figure 6.19: Average corrected galaxy ellipticity〈eiso
α 〉 for the parallel F775W galaxy fields as a

function of∆y, they-position relative to the gap between the two camera chips. The curve shows
〈eiso
α 〉(∆y) box-averaged over 3000 galaxies. For certain∆y the error-bars indicate the width of the

averaging in∆y and the error of the estimate. The straight lines indicate the expected dependence
if the negative〈eiso

1 〉 was purely caused by CTE degradation assuming a linear dependence of the
mean ellipticity on the CTE charge loss.

For a uniform distribution of charge traps, the impact of CTE degradation depends linearly
on the number of parallel transfers, so that objects locatednear the gap between the two chips
will be affected the most. Mutchler & Sirianni (2005) find no significantdifference in the parallel
CTE for the two chips, indicating that also any impact on the weak lensing measurement should
be symmetric between the two chips. In Fig. 6.19 we plot〈eiso〉 as a function of∆y, the y-
position relative to the gap between the two camera chips. Although for the lower chip (∆y <
0) 〈eiso〉(∆y) roughly agrees with the linear trend expected for a CTE degradation, there are
significant deviations for the upper chip (∆y > 0).

Furthermore the ACS/WFC CTE decreases nearly linearly with time (Riess & Mack 2004;
Riess 2004; Mutchler & Sirianni 2005) so that one would also expect a linear decrease of〈eiso

1 〉
with time, which is not in agreement with the data (Fig. 6.20). In addition, again, the discrepancy
does not occur for the GEMS and GOODS data, which were taken nearly in the same time period
as the parallel data. We thus conclude that CTE degradation isnot the dominant source for the
observed negative〈eiso

1 〉.
As a further test we also split the data shown in Figures 6.19 and 6.20 into a low and a high

signal-to-noise subset. Here the observed dependencies are qualitatively unchanged, but at a
lower significance, with a slightly larger absolute values of the negative〈eiso

1 〉 for the fainter sam-
ple: 〈eiso

1 〉(S/N < 7.5) = −0.0092± 0.0022,〈eiso
1 〉(S/N > 7.5) = −0.0077± 0.0018. If the effect
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Figure 6.20: Average corrected galaxy ellipticity〈eiso
α 〉 for the parallel F775W galaxy fields as a

function of time since the installation of ACS on March 7, 2002. The solid line shows a linear
fit. If the negative〈eiso

1 〉 would be created by degradation of CTE an increase of the effect with
time would be expected, which is not supported by the data.

was caused by CTE, one would probably expect a stronger dependence on the signal-to-noise
ratio.

Note that we do detect a signature of CTE degradation in the COSMOS data (Sect. 7.2.5),
similarly to Rhodes et al. (2007). This is not in contradiction with the results presented here, as
the COSMOS data were taken at later epochs with significantly increased CTE degradation.

6.4.1.3 Impact of dithering

In order to understand the origin of the negative〈eiso
1 〉 for the F775W parallel data it is helpful to

consider the differences between the two surveys, as the problem does not occur for the F606W
GEMS and GOODS images. Besides the different filters and more homogeneous depth of the
GEMS and GOODS tiles there are only two effects which can significantly affect the image qual-
ity: Firstly the F775W fields are taken in parallel in contrast to the F606W data. Although this
could have some impact on the image PSF (Sect. 6.1.1), it is taken into account in our PSF cor-
rection scheme (Sect. 6.2.4). Secondly the GEMS and GOODS data are well dithered, whereas
most of the parallel fields were observed with no or only smalldithering as defined by the primary
observations. To test the impact on the galaxy shape measurement we split the parallel fields in
Fig. 6.21 into three sets according to the maximal shift∆X between the exposures inx−direction.
Indeed〈eiso

1 〉 is almost consistent with zero for the well-dithered fields with ∆X > 10 pixels (6
WFC pixels), whereas it is significantly negative for the lessdithered fields.
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Figure 6.21: Average corrected galaxy ellipticityeiso
α for the parallel data (left) and the

GEMS+GOODS data (right). The open symbols represent single field averages, whereasthe
bold symbols with error-bars (1σ) show global averages. The large error-bars in the lower right
corner correspond to the average single field 1σ error, where the GEMS+GOODS error-bar is
smaller compared to the parallel data error-bar due to the higher average galaxy number density
(Fig. 6.12). The parallel data was split according to the maximal dither between the exposures
in the x−direction∆X [pixels], as thex−dithering determines the possibilities to correct for bad
columns.

Proper dithering is important to correct for bad or hot pixels, which otherwise create artifacts
in the co-added frame. Without dithering, known bad pixels lead to output pixels receiving zero
weight, which we set to zero pixel value, while unknown bad pixels such as spontaneously hot
pixels or variable bias structures directly contribute with their bad pixel value.

Bad pixels are not completely randomly distributed on the CCD chips, but sometimes occur
as bad columns or clusters of bad pixels, which are preferentially aligned in the readout direction
and therefore they−direction. Thus, without proper dithering the shapes of faint objects contain-
ing bad columns or pixel clusters could possibly be influenced such that a slight average align-
ment in they-direction is created and a negative〈eiso

1 〉 is measured. We expect that faint galaxies
are more strongly, and due to their size more likely, affected than compact high signal-to-noise
stars, which additionally might be rejected as noisy outliers during the PSF fitting, explaining
why this effect is not taken into account by the PSF correction.

We try to minimise the impact of known bad pixels by rejectinggalaxies containing low
weight pixels within theirSExtractor isophotal area (see Sect. 6.1.3). However, also a bad
column located near the edge of a galaxy image might bias the shape estimate without being
rejected in this way. Note that bad column segments appear with a higher density near the chip
gap, which might qualitatively explain the∆y dependence plotted in Fig. 6.19.
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Although the comparison shown in Fig. 6.21 supports our interpretation that the negative
〈eiso

1 〉 is caused by a lack of dithering, we will need to further investigate this effect on the basis
of the complete ACS Parallel Survey for a final judgement, as itextends over a much larger time
span allowing a clearer distinction from CTE effects.

So far we co-add parallel data observed within one visit to maximise the stability of the
image conditions. Due to the successful PSF correction for the two-epoch GOODS data (see
also Sections 6.4.3 and 6.4.4) we are confident that a combination of different visits will also be
possible for parallel data with re-observations, which will reduce the number of fields with poor
dithering. Additionally we are working on an improved search algorithm for galaxies which are
affected by bad columns.

6.4.2 Error estimates

In the following subsections we compute several estimatorsfor the cosmic shear signal and
remaining systematics. The statistical errors of these estimates are always computed in a similar
way.

6.4.2.1 Parallel data

Bootstrapping on galaxy basis. To derive statistical weights forξ± and〈M2
ap〉, we generate for

each fieldi 200 bootstrap samples of the galaxy catalogue and computeξ±,i j and〈M2
ap〉i j for each

angular bin j. The weightwi j for this field and bin is then given as the inverse bootstrapping
variancewi j = 1/σ2

i j , yielding the combined estimates

ξ±, j =

∑Nf ields

i=1 ξ±,i j wi j
∑Nf ields

i=1 wi j

, 〈M2
ap〉 j =

∑Nf ields

i=1 〈M2
ap〉i jwi j

∑Nf ields

i=1 wi j

. (6.16)

The estimate for the galaxy-star cross-correlation (see Sect. 6.4.3) is calculated accordingly, with
bootstrapping of the galaxy catalogue and a fixed stellar catalogue.

Bootstrapping on field basis. We determine the measurement error of the field combined es-
timates forξ±, j and〈M2

ap〉 j from 300 bootstrap samples of our fields, combining the estimates for
each realisation according to (6.16). The error of the combined signal in each angular binj is
then given by the bootstrap varianceσ2

j . This error estimate accounts both for the shape noise
and cosmic variance.

6.4.2.2 GEMS and GOODS

Bootstrapping on galaxy basis. For the combined GEMS and GOODS mosaic catalogue we
analogously perform bootstrapping on galaxy basis to derive the shape noise error. The er-
rors plotted for the galaxy-star cross-correlation and theE-/B-mode decomposition within Sec-
tions 6.4.3 and 6.4.4 correspond to this bootstrap variance.
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For the cosmological parameter estimation in Sect. 6.5 covariances are required, which addi-
tionally take sampling variance into account. We compare covariances estimated directly from
the data using a jackknife method with estimates from Gaussian realisations of the cosmic shear
field.

Jackknife method. We use the modified jackknife method applied by H05 to estimate the
covariance matrix of the cosmic shear estimators. In contrast to the bootstrapping on galaxy
basis, the jackknife method includes an estimate for small-scale cosmic variance. However, it
must under-estimate cosmic variance on scales of the order of the field size. We describe the
algorithm in terms of the correlation functionsξ±: We first compute the correlation functionξ±, j
in the angular binj from the complete galaxy catalogue. Next, we divide the whole survey into
N separate sub-regions on the sky, where for convenience we use theN = 78 individual ACS
tiles. Then, the correlation functionξ±,i j is computed omitting thei-th subregion fori = 1, ...,N.
With

ξ∗±,i j = Nξ±, j − (N − 1)ξ±,i j , (6.17)

the jackknife estimate forξ±, j is given by the averagêξ±, j = 〈ξ∗±,i j 〉, and the jackknife estimate of
the covariance between binsj andk can be computed as

〈∆ξ±, j∆ξ±,k〉 =
1

N(N − 1)

i=N
∑

i=1

(

ξ∗±,i j − ξ̂±, j
) (

ξ∗±,ik − ξ̂±,k
)

. (6.18)

Note that this jackknife method is expected to slightly underestimate the error even on scales
much smaller than the field size due to the mixing of power between different scales in the non-
linear regime.

Sampling variance from Gaussian random fields. Given that the GEMS and GOODS mo-
saic samples only one particular field in the sky, the large scale sampling variance errors cannot
be determined from the data itself. In order to derive a theoretical error estimate we have created
2000 1◦ × 1◦ Gaussian realisations of the shear field for aΛCDM cosmology withσ8 = 0.7 and
the GEMS redshift distribution, which we populate with 96 galaxies arcmin−2 with ellipticities
randomly drawn from our shear catalogue. We then select a∼ 28′ × 28′ subregion representing
the actual masked geometry of the mosaic. From the sheared ellipticities we then compute the
covariance matrix of the correlation functions from the different realisations (see Simon et al.
2004). This provides us with a robust estimate of the error covariance in the Gaussian limit
also including the shape and shot noise contribution. Note,however, that the Gaussian assump-
tion strongly under-estimates the sampling variance forθ . 10′ (Kilbinger & Schneider 2005;
Semboloni et al. 2007), which we further discuss in Sect. 6.5.

6.4.3 Star-galaxy cross-correlation

An important diagnostic test for the effectiveness of the PSF anisotropy correction is given by
the cross-correlation between uncorrected stellar ellipticities e∗ and PSF and calibration cor-
rected galaxy ellipticitiesγ, which can be used as an estimate for residual PSF contamination.
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Following Bacon et al. (2003) we compute

Csys(θ) =
〈γe∗〉(θ)|〈γe∗〉(θ)|
〈e∗e∗〉(θ) . (6.19)

For the parallel data we substitutee∗ with the smearing corrected PSF model ellipticity

e∗mod,α ≡
2ccal

TrPg
gal

Psm
αβ,gal q

DRZ
β,total(x, y, rg) , (6.20)

(see Eq. 6.11), at all galaxy positions, which is necessary as〈e∗e∗〉 is very noisy and undetermined
in many bins due to the few stars present in most of the single parallel fields.

Figure 6.22: Star-galaxy cross-correlationCsys for the parallel data (left) and the GEMS and
GOODS data (right), whereCsys is calculated from the uncorrected stellar ellipticitiese∗ for the
GEMS and GOODS data and the PSF anisotropy modele∗mod for the parallel data. The squares
showCsys computed from the corrected galaxy ellipticities. For the parallel data this can be
compared to the crosses (stars), where the PSF correction was derived using the second-best
fit PSF models. The negligible difference between the two indicates that the F775W stellar
field exposures sample the PSF variations sufficiently well. For comparison we also plotCsys

determined from the smearing but not anisotropy corrected galaxy ellipticities (triangles), and in
case of the parallel data also computed from corrected galaxy ellipticities after subtraction of the
mean corrected ellipticity (circles). The different data sets are displayed with differentθ-offsets
for clarity. The dashed (dotted) line showsΛCDM predictions for〈γtγt〉 (〈γ×γ×〉) for σ8 = 0.7.

As can be seen from Fig. 6.22,Csys is consistent with zero for the GEMS and GOODS data
for all θ indicating that the PSF correction works very well for this dataset. For comparison
we also plotCsys computed from the smearing but not anisotropy corrected galaxy ellipticities,
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which exceeds the theoretically expected cosmic shear signal, emphasising the need for proper
PSF correction.

In contrast,Csys is non-zero for the parallel data for mostθ. Considering the results from
Sect. 6.4.1.3 we interpret this remaining systematic signal as cross-correlation between the (av-
erage) PSF pattern and the mean ellipticity component induced by the lack of dithering. This
interpretation is supported by the fact thatCsys is almost consistent with zero when computed
from the corrected galaxy ellipticities minus the mean ellipticity (Fig. 6.22), suggesting that the
PSF correction also performs well for the parallel data.

The underlying assumption of our PSF correction algorithm is that the stellar fields sample
the parameter space of PSF variations in the galaxy fields sufficiently well (see Sect. 6.2.4.3). To
test this assumption we repeat the analysis always using thesecond-best fit PSF model instead
of the best fitting model. If the sampling of the PSF variations was not sufficient, we would
expect a significant impact on the PSF corrected ellipticities and particularlyCsyswhen switching
to thesecond-best fit PSF model. However, as the observed impact is negligible both forCsys

(left panel of Fig. 6.22) and the mean corrected galaxy ellipticity (〈eiso,mod2
1 〉 = −0.0085± 0.0014,

〈eiso,mod2
2 〉 = 0.0018± 0.0014, compare to Sect. 6.4.1), the sampling of the PSF parameter space

indeed seems to suffice.

6.4.4 E-/B-mode decomposition

As a further test for contamination of the data with systematics we decompose the shear signal
into E- and B-modes using the shear correlation functionsξE(θ), ξB(θ) (Fig. 6.23) and the aperture
mass dispersion (Fig. 6.24). For this we first calculateξ+(θ) andξ−(θ) in 300 (1800) finite linear
bins of width∆θ = 0.′′83 (1.′′17) from 1′′to 4.′2 (35′) for the parallel (GEMS and GOODS) data.
ξE,B(θ) and〈M2

ap,⊥〉(θ) are then computed according to equations (3.77, 3.81) and logarithmically
re-binned to reduce noise.

6.4.4.1 ξE/ξB decomposition

As the computation ofξE,B(θ) requires knowledge ofξ− also forθ larger than the field size (see
Sect. 3.3.3), we substitute the measuredξ− for θ > 4′ in the case of the parallel data andθ > 35′

for the GEMS and GOODS data with theoretical predictions fora fiducialΛCDM cosmology
with σ8 = 0.7. The impact of the fiducial cosmology on the E-/B-mode decomposition can be
estimated by comparingξE,B(θ) computed forσ8 = 0.6 andσ8 = 1.0 (dotted lines in Fig. 6.23).
While the difference is small for the GEMS and GOODS data (∼ 2× 10−5), the small size of the
single ACS fields leads to a stronger cosmology dependence (∼ 1.5× 10−4) for the parallel data.
The B-mode componentξB is consistent with zero for both datasets indicating that weare not
subject to major contaminations with systematics. The onlyexception is the slightly negative
ξB for the GEMS and GOODS data at large scales, which is an artefact of the discontinuity
between the fiducial cosmological model and the low shear signal measured at large scales (see
the E-mode signal and Sect. 6.4.5.1) in combination with thebootstrap errors, which do not take
cosmic variance into account.
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Figure 6.23: E-/B-mode decomposition of the correlation functions for the parallel data (left) and
the combined GEMS and GOODS data (right). The open circles showξE andξB computed using
a fiducialΛCDM model withσ8 = 0.7 for the extrapolation in Eq. (3.78), whereas the dotted
lines correspond toσ8 = 1.0 (upper line forξE, lower line forξB) andσ8 = 0.6 (lower line for
ξE, upper line forξB). The thin solid lines showΛCDM predictions forσ8 = (0.6,0.8,1.0). In
the right panels we also plot the H05 GEMS only estimate forξE andξB for σ8 = 0.7 (crosses).
Note that the H05 catalogue is slightly shallower.

6.4.4.2 〈M2
ap〉/〈M2

⊥〉 decomposition

We also compute the B-mode component of the aperture mass dispersion〈M2
⊥〉(θ), which is con-

sistent with zero for both datasets indicating the success of our PSF correction scheme (Fig. 6.24).
Note that the E-/B-mode mixing due to incomplete knowledge ofξ±(θ) for small θ, which was
recently discussed by Kilbinger et al. (2006), only leads tominor effects for theθ range consid-
ered here, since we truncateξ±(θ) only for θ < θmin = 2′′. See Schneider & Kilbinger (2007) for
a E-/B-mode decomposition which can also be used for largerθmin.

6.4.5 Shear correlation functions

We plot our estimate for the logarithmically binned shear two-point correlation functions〈γtγt〉(θ)
and〈γ×γ×〉(θ) in Fig. 6.25. Note that we useξ±(θ) for the cosmological parameter estimation in
Sect. 6.5, but plot the equivalent data vectors〈γtγt〉(θ) and〈γ×γ×〉(θ) in order to enable the com-
parison with H05.
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Figure 6.24: E-/B-mode decomposition of the aperture mass dispersion for theparallel data (left)
and the combined GEMS and GOODS data (right). The thin solid lines showΛCDM predictions
for σ8 = (0.6,0.8,1.0).

6.4.5.1 GEMS and GOODS data

As we have shown in the previous sections, the GEMS and GOODS data are not contaminated
with significant non-lensing signals. We are therefore confident that the measured shear signal
(right panel of Fig. 6.25) is of cosmological origin. While wedetect significant shear correlations
at small angular scales consistent with predictions forσ8 ∼ 0.6, both〈γtγt〉(θ) and〈γ×γ×〉(θ) are
consistent with zero forθ & 5′, which we interpret as caused by a large-scale under-density of
the foreground structures in the CDFS.

There is good agreement between the error-bars determined from the jackknife method and
from Gaussian realisations. Only for scales of the order of the field size the jackknife method
significantly under-estimates the modelled errors as it does not account for large-scale cosmic
variance. Note the good agreement of the data with the results from H05.

6.4.5.2 Parallel data

While the measured shear correlation functions are roughly consistent with the plottedΛCDM
predictions forσ8 ∼ 0.8 (left panel of Fig. 6.25), one must be careful with its interpretation due
to the detected indications for remaining systematics (Sect. 6.4.1 and 6.4.3), even if they do not
show up as B-modes. We thus postpone the cosmological interpretation of the parallel data shear
signal to a future analysis based on a larger data set with further corrections for the remaining
systematics.
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Figure 6.25: Two-point correlation functions〈γtγt〉 and〈γ×γ×〉 for the parallel data (left) and the
combined GEMS and GOODS data (right). In the right panels we plot our estimate (open circles)
both with the errors determined from Gaussian realisations(bold error-bars) and the Jackknife
errors (thin caps), and for comparison also the H05 results (crosses). The thin solid lines show
ΛCDM predictions forσ8 = (0.6,0.8,1.0). Note the very low cosmic shear signal measured from
the GEMS and GOODS data for largeθ.

6.5 Cosmological parameter estimation from the GEMS and
GOODS data

In the last section we have shown that our GEMS and GOODS shearcatalogue is not subject
to significant non-lensing systematics. We therefore use our estimate of the shear correlation
functions, binned in 14 logarithmic bins for 0.′058< θ < 28.′1, in combination with the redshift
distribution determined in Sect. 6.3.3, for a cosmologicalparameter estimation. Here we apply a
Monte Carlo Markov Chain (MCMC) technique (see e.g. Tereno et al.2005) as detailed in Het-
terscheidt et al. (2007) and utilise the covariance matrix derived from the Gaussian realisations.
This is motivated by the good agreement with the errors determined from the jackknife method
at small scales indicating rather low impact of non-Gaussianity. However, using ray-tracing sim-
ulations Kilbinger & Schneider (2005) and Semboloni et al. (2007) found that Gaussian statistics
strongly under-estimate the covariances also for GEMS likesurveys, which we further discuss
below.

For the parameter estimation we consider two simpleΛCDM cosmological models:

A: aΛ-universe withΩm,ΩΛ ∈ [0,1.5],

B: a flat universe:Ωm + ΩΛ = 1 withΩm > 0,
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both with fixed (w,Ωb,ns) = (−1,0.042,0.95). We assume a strong constrainth = 0.70±0.07 for
the Hubble parameter, as supported by the HST key project (Freedman et al. 2001) and compute
the non-linear power spectrum usinghalofit (Smith et al. 2003), with the shape parameter
calculated according to Sugiyama (1995):Γ = Ωmhexp [−Ωb(1+

√
2h/Ωm)], and the transfer

function as given in Efstathiou et al. (1992). In the likelihood analysis we marginalise over the
uncertainty in bothh and our redshift distribution.

We plot the derived likelihood contours forσ8,Ωm, andΩΛ in Fig. 6.26, where we use all
galaxies with S/N > 4 (Ngal = 96 arcmin−2) corresponding to a median redshiftzm = 1.46± 0.12.
For the more general modelA the data only weakly constrainΩΛ(Ωm = 0.3) = 0.64+0.49

−0.41, whereas
more stringent constraints are found forσ8(Ωm = 0.3) = 0.52+0.11

−0.15, or respectively,Ωm(σ8 =

0.6) = 0.26+0.07
−0.09, reflecting the marginalised 68% confidence regions with strong priors on

Ωm or σ8 respectively. Assuming flatness (modelB) changes the estimates only marginally
toσ8(Ωm = 0.3) = 0.51+0.09

−0.13 andΩm(σ8 = 0.6) = 0.25+0.07
−0.08, respectively.

Using the more conservative sample selection with S/N > 5,m606 < 27.0, Ngal = 72 arcmin−2,
zm = 1.37± 0.10 leads to a higher estimate ofσ8(Ωm = 0.3) = 0.59+0.11

−0.14 or
Ωm(σ8 = 0.6) = 0.30+0.08

−0.08 for modelA without significantly affecting the error. In principle, one
would expect that the inclusion of the faint galaxies increases the signal-to-noise of the shear
measurement as both the galaxy number density and the lensing efficiency increase. However,
we can confirm the trend seen by H05 that the faintest galaxiesappear to mainly add noise, possi-
bly leading to a slight under-estimation of the shear. This is also consistent with the results from
the STEP2 image simulations, where we find that the shear calibration of our KSB+ implemen-
tation is on average accurate to∼ 3%, but shows a significant dependence on magnitude, with a
slight over-estimation at the bright end and a∼ 20% under-estimation of the shear for the faintest
galaxies (Massey et al. 2007a). Given the on average good calibration found for our analysis of
the STEP2 simulations, which incorporate a cut S/N > 4, we consider the estimate ofσ8 for the
same cut to be more robust. Yet, as the magnitude and size distribution, and additionally also the
noise correlations are somewhat different for the STEP2 simulations and our data, we expect a
slight remaining systematic error also for the average shear calibration6. Therefore, we use the
difference of the two estimates forσ8 as a conservative estimate of this uncertainty and take it
into account as additional systematic error, yieldingσ8(Ωm = 0.3) = 0.52+0.11

−0.15(stat)± 0.07(sys).
For a future shear tomography analysis this issue will need to be revisited, as it does not only
require accurate shear calibration on average, but also over the whole magnitude range.

The constrained value forσ8 is significantly lower than the estimates from other recent lens-
ing surveys, e.g.σ8 = 0.86± 0.05 (Semboloni et al. 2006) andσ8 = 0.85± 0.06 (Hoekstra et al.
2006), both from the CFHTLS forΩm = 0.3; see Hetterscheidt et al. (2007) for a compilation
of recent estimates. Our results are consistent withσ8 = 0.8,Ωm = 0.3 only at the 3σ-level as-
suming Gaussian cosmic variance, which we interpret as a substantial local under-density of
the foreground structures in the CDFS. In order to allow a clear comparison to the H05 results,
who determineσ8(Ωm/0.3)0.65 = 0.68± 0.13, we recompute our redshift distribution using their
zm(mag) relation (6.15), yielding a median redshiftzm = 1.12 (zm = 1.07) for the galaxies with

6Note that we conducted the detailed analysis of the STEP2 noise correlations (Sect. 4.3.7) after the cosmic shear
paper was accepted. Hence, the results are not taken into account at this point.
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Figure 6.26: Constraints onσ8,Ωm, andΩΛ from the GEMS and GOODS data using all galaxies
with S/N > 4. The three large contour plots show marginalised joint 2-dimensional 1,2, and
3σ likelihood contours for modelA, whereas the small one was computed assuming flatness
(modelB). For modelA the marginalised probability is plotted on the right forΩm (top), ΩΛ
(middle), andσ8 (bottom), where the thick solid curves correspond to the total marginalised
values, while the thin solid (dotted) lines correspond, from top to bottom, to fixedΩΛ = 0.7
(σ8 = 0.6),Ωm = 0.3 (σ8 = 0.6),ΩΛ = 0.7 (Ωm = 0.3).
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S/N > 4 (S/N > 5, m606 < 27.0). Then we repeat the cosmological parameter estimation assum-
ing a redshift uncertainty∆zm = 0.1 to be consistent with H05. For this redshift distribution we
find σ8(Ωm = 0.3) = 0.62+0.12

−0.16 (σ8(Ωm = 0.3) = 0.66+0.11
−0.14) in excellent agreement with the H05

results. We thus conclude that our lowerσ8 estimate compared to H05 is mainly a result of our
new redshift distribution based on the GOODS-MUSIC sample,and that the two independent
shear pipelines yield consistent results (see also Sect. 6.3.2).

Our estimate of the statistical error includes the shape noise contribution, the estimated un-
certainty of the redshift distribution, and a Gaussian estimate for cosmic variance. Although
there is good agreement of the errors from the jackknife method and Gaussian realisations at
small scales, we expect to under-estimate cosmic variance due to non-linear evolution. Kilbinger
& Schneider (2005) and Semboloni et al. (2007) found that theGaussian approximation can lead
to a substantial under-estimation for the correlation function covariance matrix in the non-linear
regime. Using a fitting formula found by Semboloni et al. (2007) we estimate that the diagonal
elements of theξ+ covariance matrix will be under-predicted by a factor of∼ 2.9 for a single
source redshift plane atz= 1.4 andθ ∼ 2′. As this corresponds to the median redshift of our
galaxies and since our shear signal has the highest significance for 0.′6 . θ . 5′ (see Fig. 6.25),
which (logarithmically averaged) roughly corresponds to ascaleθ ∼ 2′, we estimate very broadly
that we on average under-estimate the cosmic variance contribution to the covariance matrix by a
factor of∼ 2.9 leading to an error ofσ8 which is actually larger by∼

√
2.9 ≈ 1.7. Note that this

is probably a conservative estimate, given that the correlation function forθ > 5′, which shows a
rather low signal, still influences the parameter estimation significantly. However, at larger scales
the corrections due to non-Gaussianity become less important.

Apart from the shear calibration uncertainty considered above, further systematic errors
might be introduced by intrinsic alignment of sources (Brownet al. 2002; King & Schneider
2002; Heymans & Heavens 2003; Heymans et al. 2004, 2006c; Mandelbaum et al. 2006) or
a correlation between the intrinsic ellipticities of galaxies and the density field responsible for
gravitational lensing shear, detected by Mandelbaum et al.(2006). Given the depth of the data
analysed here, we however expect that the impact of these twoeffects will be small compared
to the statistical uncertainties (see Heymans et al. 2006c). Further uncertainties arise from the
limited accuracy of the predictions for the non-linear power spectrum. Yet, given that the mea-
sured shear signal is particularly low for largeθ (see Sect. 6.4.5.1), which are less affected by
non-linear evolution, this cannot explain the low estimateof σ8 for the GEMS and GOODS data.

6.6 Conclusions

We have presented a cosmic shear analysis of a first set of HST/ACS pure parallel observations
and the combined GEMS and GOODS data of the CDFS. We estimate that our new correction
scheme for the temporally variable ACS PSF reduces the systematic contribution to the shear
correlation functions due to PSF distortions to< 2× 10−6 for galaxy fields containing at least
10 stars. This is currently the only technique taking the full time variation of the PSF between
individual ACS exposures into account. In the GEMS and GOODS data the success of the PSF
correction is confirmed by a number of diagnostic tests indicating that the remaining level of
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systematics is consistent with zero. For the parallel data we detect a low level of remaining
systematics manifesting in a slight average alignment of the measured galaxy ellipticities in the
y−direction, which we interpret to be due to a lack of proper dithering. This has led to the
implementation of improved bad pixel masks in the Mark-II pipeline (Sect. 5.3). Although the
degradation of the ACS charge-transfer-efficiency has not been found to be a problem for the
early data analysed in this work, an in-depth analysis and correction will be required for later
datasets. Furthermore the parallel data are rather inhomogeneous regarding depth and extinc-
tion, raising the need for a well calibrated field-dependentredshift distribution. It will also be
necessary to carefully exclude any selection bias which might arise for certain classes of pri-
mary targets, particularly galaxy clusters. Once these remaining obstacles are overcome, it will
be possible to measure cosmic shear at small angular scales with unprecedented accuracy from
the complete ACS Parallel Survey, with a strong reduction both of the shape noise and cosmic
variance error due to many independent pointings. The main limitation of the cosmological inter-
pretation of the data might then arise from the current accuracy of theoretical predictions for the
non-linear power spectrum at small scales. An interesting comparison will be possible with the
ACS COSMOS data (Massey et al. 2007c, Chapter 7), from which cosmic shear can be measured
on a wide range of angular scales.

Given the high demands concerning the control over systematics for cosmic shear measure-
ments with ACS, the derived technical expertise (see also H05; Jee et al. 2005a; Rhodes et al.
2005; Rhodes et al. 2007; Leauthaud et al. 2007) will also be ofbenefit for other weak lens-
ing studies with the instrument, and possibly also other research fields requiring accurate PSF
modelling.

Due to the weakness of the shear signal on the one hand, and thestrong impact of poorly
understood systematics on the other hand, an analysis of identical datasets with more than one
independent pipeline is of great value to check the reliability of the algorithms employed. In this
work we have independently re-analysed the ACS observationsof the GEMS and GOODS fields.
If we assume the same redshift parametrisation, our shear estimates are in excellent agreement
with the earlier results found by H05 indicating the reliability of both lensing pipelines. Such an
independent comparison will also be highly desired both forthe complete ACS Parallel Survey
(Rhodes et al. in prep.) and the ACS COSMOS field (Massey et al. 2007c). These comparisons,
together with the results from the STEP project, will aid thepreparations of future space-based
cosmic shear survey such as DUNE or SNAP, which will reach a very high statistical accuracy
(Refregier et al. 2004) requiring the continued advancementof improved algorithms such as
shapelets (Bernstein & Jarvis 2002; Refregier & Bacon 2003; Massey & Refregier 2005; Kuijken
2006; Nakajima & Bernstein 2007).

Finally, we want to stress the possible impact of the field selection on a cosmic shear anal-
ysis: TheChandraDeep Field South was originally selected in a patch of the skycharacterised
by a low Galactic neutral hydrogen column density (NH = 8× 1019cm−2) and a lack of bright
stars (Giacconi et al. 2001). Additionally, it neither contained known relevant extragalactic fore-
ground sources nor X-ray sources from the ROSAT ALL-Sky Survey Catalogue7 excluding e.g.
the presence of a low redshift galaxy cluster. Adami et al. (2005) present a detailed analysis of

7seehttp://www.mpe.mpg.de/˜mainieri/cdfs_pub/index.html

http://www.mpe.mpg.de/~mainieri/cdfs_pub/index.html
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compact structures in the CDFS showing the presence of a chain-like structure atz = 0.66, a
massive group atz = 0.735 embedded into a galaxy wall extending beyond the 21′ × 21′ field
covered by the Vimos VLT Deep Survey (Le Fèvre et al. 2004), and a further massive group
at z = 1.098 (see also Gilli et al. 2003; Szokoly et al. 2004; Vanzellaet al. 2006). Wolf et al.
(2004) identify a strong galaxy over-density atz∼ 0.15, which is too close to produce a sig-
nificant lensing signal. Given the lack of massive structures at lower redshifts 0.3 . z . 0.6
with high lensing efficiency, one would expect to measure a shear signal biased to lower values
in this field as a result of strong sampling variance. Therefore it is not surprising that our local
single field estimate ofσ8,CDFS(Ωm = 0.3) = 0.52+0.11

−0.15(stat)± 0.07(sys) based on a source redshift
distribution derived from the GOODS-MUSIC sample (Grazianet al. 2006), is incompatible at
the ∼ 3σ-level assuming Gaussian cosmic variance with recent results of other weak lensing
studies (e.g. Hoekstra et al. 2006; Semboloni et al. 2006), which probe much larger regions
on the sky. Kilbinger & Schneider (2005) and Semboloni et al.(2007) investigate the impact
of non-Gaussianity on cosmic shear covariances. From theirresults we broadly determine an
under-estimation of the cosmic variance contribution to our error onσ8 by a factor≈ 1.7, in-
dicating that the CDFS is still an exceptionally under-densefield, but with a lower significance
(∼ 2σ) than under the Gaussian assumption. Ourσ8 estimate is also significantly lower than the
H05 results ofσ8(Ωm/0.3)0.65 = 0.68± 0.13 due to the deeper redshift distribution found in our
analysis with a median source redshiftzm = 1.46± 0.12. Recently Phleps et al. (2007) found a
strong deficiency of faint red galaxies in the CDFS for the redshift range 0.25. z. 0.4 indicat-
ing a substantial under-density, which is in excellent agreement with the low shear signal found
in our analysis.

We believe that the CDFS represents a somewhat extreme case. However, also other cosmic
shear studies which observe a low number of small “empty fields” could be slightly biased just
due to this prior selection. Such a bias can of course be eliminated either with the observation of
sufficiently large fields or truly random pointings, which are realized in good approximation for
a large fraction of the fields in the ACS Parallel Survey.

We plan to further investigate the peculiarity of the CDFS based on a shear tomography anal-
ysis with photometric redshifts derived for the full GEMS field, also using deep ground-based
optical images from the MPG/ESO 2.2m telescope (Hildebrandt et al. 2006) in combinationwith
infrared images from the ESO 3.5m NTT (Olsen et al. 2006b,a).If the low estimate forσ8,CDFS

indeed stems from an under-density of foreground structures we would expect an increased shear
signal for a high-redshift sample of source galaxies due to the spectroscopically confirmed struc-
tures atz = 0.735 andz = 1.098. Comparing the results with ray-tracing through N-body
simulations we aim to further quantify the rarity of such an under-dense foreground field.
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Chapter 7

Preliminary analysis of the ACS COSMOS
Survey

The COSMOS Survey is the largest continuous field ever imaged by the Hubble Space Tele-
scope, spanning a total area of 1.64 deg2. In combination with accurate photometric redshift cat-
alogues derived from deep multi-colour ground-based observations, COSMOS provides a unique
dataset for weak lensing measurements. It is particularly well suited for dark matter mapping,
galaxy-galaxy lensing, and cosmological weak lensing studies at small and intermediate scales.
Although the cosmic shear signal can be measured out to relatively large scales in the COSMOS
Survey, large-scale constraints are subject to strong sampling variance.

I conducted an analysis of the COSMOS data in the last five months of this thesis project.
Because of the special requirements our weak lensing pipeline places on the data reduction, such
as the creation of the cosmic ray cleaned, un-drizzledCOR-images, we independently reduced
the COSMOS data and did not use the public reduced images. Given that the data volume is
huge, COSMOS provides a substantial increase in statisticalaccuracy compared to the seven
times smaller sky area of the GEMS Survey analysed in Chapter 6. This revealed previously
undetectable residual systematic errors indicated by a significant B-mode signal, whose origin
could not be identified unambiguously in the short time remaining. Therefore, the analysis pre-
sented here is still preliminary, leaving room for further development in the time after the PhD
project. The analysis has been carried out in collaborationwith Patrick Simon and Jan Hartlap.

A cosmological weak lensing analysis of COSMOS has already been presented by Massey
et al. (2007c), as well as dark matter maps of the field (Masseyet al. 2007b), allowing for inde-
pendent tests of the analysis. Interestingly, a similar signal for remaining systematic errors has
been reported by Massey et al. (2007c).

This chapter is organised as followed: In Sect. 7.1 I will summarise important properties of
the data and data reduction. I will then detail on the creation of the shear catalogue in Sect. 7.2
and our estimate of the redshift distribution in Sect. 7.3. We compute dark matter maps of the
field as described in Sect. 7.4. After summarising tests for remaining systematics in Sect. 7.5, the
cosmic shear analysis is presented in Sect. 7.6. In order to further investigate the origin of the
detected B-mode I performed a PCA analysis of the ACS PSF, as described in Sect. 7.7. Finally,
I will draw preliminary conclusions and discuss planed future projects based on COSMOS in
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Sect. 7.8.

7.1 Data and data reduction

The ACS/WFC COSMOS data consist of 583 pointings observed with the F814W filter (“broad
I”), each consisting of four 507 second exposures. The mosaic is centred at R.A. = 10h00m28.6s,
decl. = +02◦12′21.′′0 (J2000.0) and covers a total area of 1.64 deg2, with approximately 77′

along each side. In addition, the central 3× 3 tiles have also been imaged using the blue F475W
filter. However, due to the relative size we do not use these additional data for the shear analysis.
The exposures are well dithered to cover the chip gap and allow for proper correction of bad
columns. In addition, half-pixel shifts have been applied to improve the sampling of the PSF, see
Koekemoer et al. (2007) for further details on the dither pattern.

For the data reduction we use our “Mark-II” reduction pipeline as set-up in Bonn (see Sect. 5.3).
Here we match the astrometry of the co-added frames to the USNO-B1 catalogue. However, due
to the small field size of ACS, several pointings end-up with only one or no USNO source, raising
the need for an additional registration of neighbouring tiles, as detailed in Sect. 7.2.3.

The correctly scaled RMS maps created in the Mark-II reduction allow us to test the ap-
proximate correction for noise correlations given by (6.1), which yields a correction factor of
f predict= 1.93 for the Mark-II drizzle parameterss= 0.6, p = 0.9 andm→ ∞. Figure 7.1 shows
the RMS map for a typical COSMOS tile. The median value of this map is 0.00565e−/sec. Com-
pared to theSExtractor estimate for the median single pixel RMSσmeasure

1 = 0.00299e−/sec
computed from the science frame, we find a measured correction factor f measure= 1.89, in good
agreement with the predicted value.

7.2 Catalogue creation

We create catalogues similarly to our analysis of the GEMS and early parallel data described in
Sect. 6.1.3. Here we therefore only describe updates included after this earlier analysis.

7.2.1 Automated masking in co-added images

The huge COSMOS data volume rose the need for a further automatisation of the image masking
process. In the mask creation we consider the following steps, which are included as different
bits in the final flag image:

1. We detect bright stars with diffraction spikes usingSExtractor (DETECT MINAREA = 50,
DETECT MINTHESH = 50, uncorrected RMS from the science frame) and select them ac-
cording to their location in size–magnitude space. We create magnitude dependent polyg-
onal regions, which cover the diffraction spikes and extended halos of the selected stars,
and which are converted into masks usingWeightWatcher.
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Figure 7.1: RMS map of a typical co-added COSMOS tile, centred at R.A. = 09h58m50s, decl. =
+02◦39′20′′. The grey-scale ranges from 0.0045e−/sec (black) to 0.014e−/sec (white). The
median value 0.00565e−/sec agrees well with theSExtractor RMS estimate 0.00299e−/sec
from the science frame, if scaled with the noise correlationcorrection factorf = 1.93, yielding
0.00577e−/sec. The feature near the left end of the upper chip is caused by a saturated star with
substantial blooming.
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2. We also create masks usingSExtractor with a very low detection threshold but large de-
tection area (DETECT MINAREA = 5000,DETECT MINTHESH = 0.5, uncorrected RMS from
the science frame). Then theSExtractor “OBJECTS” check image provides masks for all
detected large objects including extended galaxies, but also bright stars and stellar “ghost”
images if present. We furthermore grow these masks by 10 pixels using theIRAF task
noao.imred.crutil.crgrow. Our usual detection parameters are tuned to include the
faint and typically small galaxies relevant for the shear analysis. Therefore, large galaxies
are sometimes falsely de-blended into multiple objects. Their exclusion from the lensing
analysis using our masks is unproblematic as they anyway carry very little shear informa-
tion.

3. Our properly scaled RMS maps allow us to robustly flag objects containing problematic
pixels in the co-added image. Here we distinguish between pixels containing basically
no more information (RMS> 10 e−) and poorly constrained pixels with high noise. To
define the threshold for the latter we first compute the mean RMSof all pixels with
RMS< 0.05 e−. Pixels are then flagged if their RMS exceeds

√
N − 0.5 〈RMS〉, where

N is the number of combined exposures (four in case of COSMOS). The subtracted value
of 0.5 has been tuned such that an output pixel is accepted if two ormore input exposures
contribute to it with reasonably good pixels.

4. We reject pixels near the image boundaries by creating a mask of all science frame pixels
which are exactly equals 0 and growing this mask by 15 pixels.This procedure also per-
forms well for most dither patterns in the Extended ACS Parallel Survey (Sect. 8.3.2). As
all the COSMOS tiles have been dithered exactly in the same way, we additionally include
a manually created static region file to precisely define the image boundaries used.

The automatically created masks are then inspected using the web tool (Sect. 5.3.3). Here we cre-
ate a JPG image with green markings for the masked sections and red markings for the detected
objects (Sect. 7.2.2). This enables us to quickly check if manual corrections to the automati-
cally created masks are required. Minor corrections, whichare usually done within less then
one minute, are necessary for about half of the images. An example for a marked JPG image is
shown in Figure 7.2.

7.2.2 Object detection and shape measurement

Object detection and shape measurement are done similarly to our analysis of the GEMS and
early parallel data (Sect. 6.1.3). As a modification we now utilise our properly scaled RMS maps
as input weight images forSExtractor, leading to adjusted detection parameters
DETECT MINAREA = 16 andDETECT MINTHESH = 0.8.

7.2.3 Astrometric registration of neighbouring tiles

The astrometric accuracy of our images matched to USNO-B1 is not sufficient to directly iden-
tify double detections in neighbouring tiles. We thereforecross-correlate the galaxy catalogues
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Figure 7.2: Example for a mask inspection image computed fora typical co-added COSMOS
tile, centred at R.A. = 10h01m16s, decl. = +02◦06′59′′. Masked regions are shown in green,
whereas included objects are highlighted in red.
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starting from the central pointing and then adding neighbouring tiles in a spiral pattern. As a last
step we subtract the mean shift from the matched positions. In the properly matched overlapping
regions we keep the detection with the higher signal-to-noise estimate.

7.2.4 PSF correction and galaxy selection

For COSMOS we again utilise our new PSF correction scheme as detailed in Sect. 6.2.4, with a
PSF library built from a total of 577 stellar field F814W exposures. We select galaxies with cuts
TrPg/2 > 0.1, |eiso| < 2.0, 2.8 < rh < 10.0, and S/N > 5.5 corresponding to S/Ntrue > 2.9 using
the measured correction factorf measure= 1.89 (Sect. 7.1). For the final shear catalogue we also
apply a cutMAG AUTO < 26.1, which rejects 4.8% of the galaxies, to minimise calibration bias
introduced by the faintest galaxies and make the sample morehomogeneous. We use a shear
calibration correction of 0.93−1 as supported for example by the ACS-type STEP3 simulations
(Sect. 4.4). Our final shear catalogue consists of 251057 galaxies, corresponding to a number
density of 43/arcmin2. In the analysis presented here we do not apply a weighting scheme.

7.2.5 CTE correction

The ACS COSMOS images were taken between October 2003 and November 2005, significantly
later than the early parallel or GEMS data analysed in Chapter6. Therefore we expect a much
stronger impact of CTE degradation for COSMOS. Indeed, Rhodes et al. (2007) clearly show that
CTE degradation significantly affects thee1 ellipticity component of galaxies in their COSMOS
analysis. They apply a parametric correction for their shear catalogue, which is based on similar
assumptions as our investigation for CTE degradation in Sect. 6.4.1.2. Rhodes et al. (2007)
assume a linear dependence of the spuriousγ1 signal on the number of parallely−transfers, time,
and inverse S/N. They optionally also include a size dependent term, whichleads to similar
results if the power of the S/N term is also adjusted.

Here we follow their approach, but additionally vary the power law exponents of the different
contributing terms and check for a dependence on sky background, which would be expected
given that high sky values lead to a higher fraction of already filled charge traps. Dependencies
on S/N and sky background might be somewhat degenerate, because higher sky values lead to
stronger noise. Therefore we alternatively fit for a dependence on flux and sky background.
Hence, our general CTE model is given as

ecte
1 = e0

(

yCTE

〈yCTE〉

)A (

FLUX
〈FLUX〉

)B (

S/N
〈S/N〉

)C (
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〈r f 〉

)D (
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〈SKY〉

)E (
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〈tACS〉
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, (7.1)

wheretACS denotes the time since the installation of ACS, andr f is the flux radius fromSExtractor.
For the y-distance the charge of an object is transfered during read-out

yCTE = ygap(x) − |y− ygap(x)| (7.2)

we approximateygap(x) as a straight line along the middle of the chip gap, neglecting minor
effects from the dither pattern. We constrain the fit parametersin (7.1) by minimisingχ2 =
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Table 7.1: Coefficients for three tested parametric CTE models, based on (7.1). In the first data
row the fitted value for the CTE amplitudee0 is given. In the other data rows the first column
specifies the considered parameter, for which the fitted power law exponent (A, B, C, D, E, or F,
respectively) is given in columns 2 to 4. The mean value of thecorresponding parameter, which is
used for normalisation, is listed in column 5. Note that the sky value has been averaged between
the co-added exposures. The errors refer to the diagonal covariance matrix elements computed
by MINUIT from the Hessian, and thus only provide a rough estimate of the true uncertainty. If
exponents have been fixed for a certain model their values aregiven without errors.

X Exp. model 1 Exp. model 2 Exp. model 3 〈X〉
e0 −0.00306± 0.00085 −0.00341± 0.00093 −0.00321± 0.00095

yCTE 1 1 1.193± 0.453 2008 pixels
FLUX −0.134± 0.228 −0.039± 0.221 0 4.423 e−/s
S/N 0 0 −0.072± 0.254 16.51
r f 0 −0.264± 0.487 −0.317± 0.451 6.226 pixels

SKY −1.355± 0.781 −1.274± 0.778 −1.265± 0.774 57.81 e−

tACS 1 0.449± 0.448 0.443± 0.449 836.4 days

∑

[(eani
1 −ecte

1 )/σe]2 usingMINUIT. Note that we determine the CTE model from the anisotropy but
not isotropy corrected galaxy ellipticity. This is done as CTE effects occurafterPSF convolution
and should therefore in principle be corrected first. However, for our parametric correction the
data first has to be corrected for PSF anisotropy, as it also influences the diagnostice1 ellipticity
component. Estimating the CTE correction from the fully corrected galaxy ellipticity (as done
by Rhodes et al. 2007) would introduce a mixing with thePg correction, probably leading to a
different size dependence of the CTE model.

We have tested several combinations of varied and fixed exponents and summarise the re-
sults for three models in Table 7.1. In order to better constrain the time dependence, we use
both our COSMOS and GEMS catalogues for the fit, where GEMS has been observed at a sig-
nificantly earlier epoch. Interestingly, the time dependence seems to be weaker than the linear
trend expected from photometric losses due to CTE degradation (e.g. Riess 2004). However, the
estimates for the dependence on time and sky background are somewhat degenerate due to the
different sky conditions in GEMS and COSMOS. Therefore the observed trend is not really con-
clusive. Furthermore, we measure a strong dependence of theCTE signature on sky background,
which is not taken into account in the Rhodes et al. (2007) model. The dependencies on FLUX,
S/N, andr f seem to be rather weak, so that the choice which of the quantities are considered is
probably of minor importance. With model 3 we verify that thedependence onyCTE and hence
the number of parallel transfers is in good agreement with the expected linear trend.

We base our primary cosmic shear analysis on CTE model 1, with fixed linear dependencies
on time andyCTE, and fitted dependencies on sky background and total object flux. We verified
that the choice which of the three CTE models is applied, has only minor impact on the shear
correlation functions and residual B-mode component reported in Sect. 7.5. Hence, we conclude
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that the CTE correction should be sufficient for the preliminary 2D shear analysis presented
here. For a future tomographic analysis further testing might however be required to ensure a
good correction as a function of magnitude and size.

The correction for field distortion leads to a mean rotation of the originaly-axis and hence
readout direction byφ ∼ −2.5◦. Thus, CTE degradation also has a minor effect on thee2 elliptic-
ity component, which we also correct in our analysis as

ecte
2 = tan (2φ) ecte

1 ≃ −0.088ecte
1 . (7.3)

7.3 Redshift distribution

In our analysis we make use of the public photometric redshift catalogue by Mobasher et al.
(2007) which covers the full ACS mosaic. It is based on SuprimeCam/SUBARU data taken
in BgVriz and the NB815 narrow band filter,u∗ and i band data from CFHT,Ks near-Infrared
imaging (Flamingos/CTIO and Kitt Peak) and F814W HST/ACS images. Mobasher et al. (2007)
estimate the accuracy of the redshift catalogue via the comparison to 868 spectroscopic redshifts
of galaxies withz< 1.2, where they find a very low rms scatter of

σz/(1+ z) = 0.031. (7.4)

In order to match our shear catalogue containing 251057 galaxies to their photo-z catalogue
we subtract a residual astrometric shift of∆α = 1.134× 10−4deg, ∆δ = 0.344× 10−4deg from
our catalogue and match sources in a radius of 0.′′8, providing a total of 142569 unique matches.
The magnitude distribution of matched and unmatched galaxies in our shear catalogue is shown
in Figure 7.3. 95.3% of the shear catalogue galaxies withm814 < 24.7 have a redshift estimate,
whereas significant redshift incompleteness occurs for fainter magnitudes.

As done in Sect. 6.3.3, we use a maximum likelihood analysis to estimate the redshift distri-
bution parameters (α, β,a,b) from the galaxies withm814 < 24.7, where we now assume a linear
dependence between the F814WI -band magnitude and the median redshift

zm = rz0 = a(m814− 21)+ b . (7.5)

In order to include the uncertainties on the redshift estimate, we marginalise over the 1σ redshift
confidence interval using the rms scatter (7.4). From the best fitting parameters (α, β,a,b) =
(1.228,1.484,0.199,0.345), for whichzm = 1.120z0, we reconstruct the redshift distribution of
the matched galaxies withm814 < 24.7. It agrees well with the input distribution as shown in
Figure 7.4, with similar median redshiftszm,input = 0.88 andzm,recon= 0.89.

We test the assumed linear relation between magnitude and median redshift by binning the
matched galaxies as a function of magnitude and fittingzm for fixed (α, β) = (1.228,1.484).
As can be seen in Figure 7.5, the linear relation fits the data very well in the redshift complete
magnitude range 21.5 < m814 < 24.7, justifying the approach. Note that the derived slopea
is significantly flatter than the value found from the GOODS/CDFS data (Figure 6.16). The
main reason for this difference is probably given by the different filters, but also the detected
foreground under-density in the CDFS will likely lead to a steeper slope.
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Figure 7.3: Number of selected COSMOS galaxies as a function of m814. The solid line cor-
responds to galaxies for which photometric redshift are available from the public catalogue by
Mobasher et al. (2007), whereas the dotted line shows galaxies in the shear catalogue without
redshift estimate.

We construct the redshift distribution for our complete shear catalogue withm814 < 26.1
yielding a median redshiftzm = 1.07. The constructed distribution can well be fit with a magni-
tude independent distribution with (α, β, z0) = (1.251,1.279,0.807). To account for the magni-
tude extrapolation we consider a 8% error in the derived median redshift.



194 Chapter 7. Preliminary analysis of the ACS COSMOS Survey

Figure 7.4: Redshift distribution of the matched COSMOS galaxies with m814 < 24.7
(black histogram), and reconstruction using the best fitting parameters (α, β,a,b) =

(1.228,1.484,0.199,0.345) (red curve). The peak atz ∼ 0.7 is caused by a large-scale-structure
concentration.
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Figure 7.5: Median redshift of the matched COSMOS galaxies computed in F814W magnitude
bins. Black crosses show the directly computed value, where error-bars indicate the error of the
mean. Red triangles show the results for a likelihood fit with fixed (α, β) = (1.228,1.484). They
show a nearly linear trend in the redshift complete magnitude range 21.5 < m814 < 24.7. For
fainter magnitudes redshift incompleteness leads to significant deviations. The directly computed
median redshift shows significant deviations form814 . 22.5 due to the large-scale-structure peak
at z ∼ 0.7. The much higher number of galaxies leads to strongly reduced error-bars compared
to the GOODS/CDFS data shown in Figure 6.16.
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7.4 Dark matter mapping

We use our mosaic weak lensing catalogue to reconstruct the 2D-projected foreground mass in
the COSMOS field. The algorithm is based on the Kaiser & Squires(1993) formalism detailed
in Sect. 3.2.2, but includes noise propagation and Wiener filtering as proposed by Hu & Keeton
(2002) to derive a maximum likelihoodκ-reconstruction. The algorithm has been implemented
and applied by Patrick Simon, and is further detailed in Hetterscheidt et al. (in prep.). In Fig-
ure 7.4 we compare our reconstruction to the earlier work by Massey et al. (2007b), who apply
a wavelet transform to efficiently reduce noise and combine information from different scales as
detailed in Starck et al. (2006). The two analyses make use ofdifferent shape measurement and
PSF correction schemes, apply different selection criteria, and utilise different mass reconstruc-
tion techniques. Therefore it is not surprising that the maps show differences in details, especially
at low κ values. Nonetheless the prominent features are in good agreement, like the clusters in
the left and upper image regions. Note the low signal in the lower right quadrant, where obvi-
ously several voids are aligned along the line-of-sight. Also note the good agreement with the
baryonic tracers shown in the Massey et al. (2007b) map, confirming that baryons do trace the
underlying dark matter distribution well. We postpone the detailed quantitative comparison to a
future analysis based on an improved, ideally B-mode free catalogue.

7.5 Shear statistics and tests for systematics

We compute the shear two-point correlation functions, as well as the star-galaxy cross-correlation
in 4800 linearly spaced angular bins between 1′′ and 75′, from which we compute further shear
statistics. The logarithmically re-binned correlation functionsξ± and the normalised star-galaxy
cross-correlation functionsCsys are compared in Figure 7.7: We find that the shear correlation
functions yield a significant signal almost over the entireθ−range probed. For 1′ . θ . 20′ we
also detect a marginally significant signal inCsys, which indicates remaining systematics possibly
related to the PSF anisotropy or CTE correction. However, in this θ−range the signal is smaller
than the expected cosmological signal by factors of about 100 to 10, so that we expect only a
minor impact. AsCsys extends to relatively large scales, a residual CTE signatureseems to be
the more likely explanation. CTE degradation creates a largecoherent saw-tooth pattern across
the whole mosaic, whereas PSF effects should mainly be present on scales of single tiles.

As further tests we perform E/B-mode decompositions using the correlation function (Fig-
ure 7.8) and the aperture mass dispersion (Figure 7.9). Both statistics show a significant B-mode
signal at small scales, indicating that remaining systematics are present. The affected scales are
θ . 0.′7 for ξB andθ . 5′ for 〈M2

⊥〉, which is consistent given that the latter measures the power
spectrum at smaller scales (see Sect. 3.3.2). For comparison see the E/B-mode estimates from
Massey et al. (2007c) in Figure 7.8 and Figure 7.9, who detecta similar B-mode signal at small
scales using〈M2

⊥〉. Their B-mode estimate usingξB is consistent with zero. However, at small
scales their error-bars highly exceed ours, which we currently do not understand as both analysis
utilise similar galaxy number densities.

Until the time of the write-up we have not been able to identify the origin of the B-mode
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Figure 7.6: Reconstruction
of the convergence (projected
mass) in the COSMOS field.
Top: Maximum likelihood
reconstruction from our shear
catalogue applying noise
propagation and Wiener fil-
tering as suggested by Hu &
Keeton (2002). The algorithm
has been implemented by
Patrick Simon and is further
described in Hetterscheidt et
al. (in prep.). The absolute
scale has been set such that
the meanκ vanishes.Bottom:
Figure 3 from Massey et al.
(2007b): The contours show
a wavelet κ–reconstruction,
while the colour coding indi-
cates baryonic tracers (blue:
stellar mass; yellow: galaxy
number density; red: X-ray
gas). For both maps the con-
tours start at and are spaced in
steps ofκ = 0.005. Note that
we use less galaxies due to
our more stringent selection
criteria (43/arcmin2 versus
71/arcmin2). This leads to
a larger effective smoothing
scale for our Wiener filtered
reconstruction compared to
the wavelet reconstruction.
Also note that the two maps
are based on independent data
reduction pipelines, shape
measurement techniques, PSF
correction schemes, and mass
reconstruction codes.
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Figure 7.7: Left: Shear two-point correlation functionsξ± computed from our COSMOS
catalogue. The curves show predictions for a flatΛCDM cosmology withΩm = 0.3 and
σ8 = (0.6,0.7,0.8,0.9,1.0). Right: Star-galaxy cross-correlation functionsCsys normalised
by the star auto-correlation function. The dashed (dotted)curve shows predictions for〈γtγt〉
(〈γ×γ×〉) assumingΩm = 0.3 andσ8 = 0.7. In both panels the error-bars have been computed
using bootstrapping. They include the uncertainty due to shape noise but not cosmic variance.

signal. For the parameter estimation presented in Sect. 7.6we therefore only consider B-mode
free scales.

7.6 Cosmological parameter estimation

For the cosmological parameter estimation we closely follow Sect. 6.5 using a MCMC tech-
nique. We assume a flatΛCDM cosmology and marginalise over the uncertainty of the Hubble
parameterh = 0.70± 0.07. The non-linear power spectrum is estimated usinghalofit (Smith
et al. 2003), with the shape parameter calculated accordingto Sugiyama (1995). In order to ex-
clude the B-mode affected scales we base the parameter estimation on the correlation function
measured in 20 logarithmic bins between 1′ and 80′. The B-mode affected scalesθ < 1′ are
anyway problematic given that theoretical predictions arepoor at such small scales due to the
neglected influence of baryons on the power spectrum. We utilise a covariance matrix estimated
from Gaussian shear field realisations and the redshift distribution derived in Sect. 7.3, where we
marginalise over the redshift uncertainty. The estimated correlation between the angular bins of
the covariance matrix is shown in Figure 7.10.

In Figure 7.11 we plot the estimated likelihood distribution for σ8 for fixed values ofΩm,
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Figure 7.8: E/B-mode decomposition of the COSMOS data using the shear correlation functions.
Left: Analysis based on our shear catalogue. The curves indicateΛCDM predictions as in Fig-
ure 7.7. For the required extrapolation of the shear signal to infinity σ8 = 0.7 was assumed. The
error-bars include the uncertainty due to shape noise but not cosmic variance.Right: Analysis by
Massey et al. (2007c), where the inner error-bars are statistical without cosmic variance, whereas
the outer error-bars (without caps) include an estimate forcosmic variance. The solid points
show the E-mode, whereas the open circles refer to the B-mode signal. The curves show theo-
retical predictions for a flatΛCDM cosmology withΩm = 0.3 andσ8 varying from 0.7 (bottom)
to 1.2 (top) (Figure 6 from Massey et al. 2007c).

where we both test the default lensing reference valueΩm = 0.3 andΩm = 0.24 as suggested
e.g. by WMAP3. From these we find the median estimates

σ8 = 0.60± 0.08 for Ωm = 0.30, (7.6)

σ8 = 0.71± 0.09 for Ωm = 0.24, (7.7)

where the 1σ-error includes the statistical uncertainty assuming Gaussian cosmic variance, the
uncertainty in the redshift distribution and the Hubble parameter, and a 2% error in the shear cal-
ibration as estimated from the STEP3 simulations (Sect. 4.4). Note that the neglected influence
of non-Gaussian cosmic variance is expected to lead to an under-estimation of the true uncer-
tainty. However, the effect should be smaller than for the GEMS data due to the much larger area
of COSMOS, and hence stronger contribution of quasi-linear scales. For comparison we also
estimateσ8 using〈M2

ap〉 computed in 20 linear bins between 5′ and 40′, which allows for a more
stringent E/B-mode separation than the correlation function. From this we find a very similar
estimate ofσ8 = 0.71+0.08

−0.09 for Ωm = 0.24.
Our estimate forσ8 is in good agreement with the WMAP3 result ofσ8 = 0.761+0.049

−0.048
(Spergel et al. 2007), if we assumeΩm = 0.24 as suggested both by WMAP3 and the SDSS



200 Chapter 7. Preliminary analysis of the ACS COSMOS Survey

Figure 7.9: E/B-mode decomposition of the COSMOS data using〈M2
ap〉. Left: Analysis based on

our shear catalogue, with error-bars including the uncertainty due to shape noise but not cosmic
variance. Right: Analysis by Massey et al. (2007c), where the inner error-bars are statistical
without cosmic variance, whereas the outer error-bars (without caps) include an estimate for
cosmic variance. The solid points show the E-mode, whereas the open circles refer to the B-
mode signal. The curves show theoretical predictions as in Figure 7.8 (Figure 6 from Massey
et al. 2007c).

baryonic acoustic oscillation measurements (see Sect. 2.3). Recently Benjamin et al. (2007)
presented a joint cosmic shear analysis of several large ground-based surveys (CFHTLS-Wide,
RCS, VIRMOS-DESCART, and GaBoDS) with a total area of approximately 100 deg2 yielding
σ8(Ωm/0.24)0.59 = 0.84± 0.05. Together with the WMAP3 results this suggests that ourσ8 esti-
mate is rather low, but within the errors the results are consistent. In fact, given that for example
no extra-ordinarily massive galaxy cluster is present in the COSMOS field at redshifts with high
lensing efficiency, one might expect a rather lowσ8 estimate from the field.

Surprisingly, Massey et al. (2007c) derive a significantly higher value forσ8 from their cos-

mic shear analysis of the COSMOS field. Using a similar 2D analysis they findσ8

(

Ωm
0.3

)0.44
=

0.81 ± 0.075 (stat.) ± 0.094 (syst.), corresponding toσ8 = 0.90 ± 0.083 (stat.) ± 0.104 (syst.)
for Ωm = 0.24, which is still consistent with our results if all error sources are considered.
Additionally, they perform a 3D analysis by splitting the galaxies into three redshift bins yield-

ing tighter constraintsσ8

(

Ωm
0.3

)0.44
= 0.866± 0.033 (stat.)+0.052

−0.035(syst.), corresponding toσ8 =

0.96± 0.037 (stat.)+0.058
−0.039(syst.) for Ωm = 0.24. This result is no longer consistent with our esti-

mate. However, note that they do not include the correction for covariance matrices estimated
from data, which was described by Hartlap et al. (2007). Thiscould lead to a significant under-
estimation of the statistical error.
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Figure 7.10: Correlation matrix derived from Gaussian shearfield realisations for our COSMOS
analysis, in which we use the correlation function computedin 20 logarithmic bins between 1′

(top left of each quadrant) and 80′ (bottom right of each quadrant).

In any case the fact that two analyses of the same data set yield at most marginally consistent
results is somewhat disconcerting. However, both analysisare based on independent data reduc-
tion, shear measurement, and PSF correction methods. In particular, different galaxy selection
criteria are applied, so that differences within both the statistical and systematical errors are not
unexpected.

For GEMS the difference between the Heymans et al. (2005) and our estimate ofσ8 could
be explained due to the different estimates of the redshift distribution, while the shear estimates
were consistent (Sect. 6.5). For COSMOS the contrary effect seems to be the case: Both analyses
are based on the photometric redshifts estimated by Mobasher et al. (2007), where Massey et al.
(2007c) make use of an internal catalogue of the COSMOS collaboration, while we use the public
catalogue, which is based on slightly fewer bands and only includes objects withI < 25. We
therefore need to include an extrapolation for the redshiftdistribution. This difference might be
responsible for some deviation within the systematic errors, but cannot explain the total effect.
Note also that the median redshifts of the estimated distributions agree well, where we find
zm = 1.07 while Massey et al. (2007c) estimatezm = 1.11 including their weighting scheme.
However, Massey et al. (2007c) seem to measure a significantly higher shear signal, which can be
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Figure 7.11: Histogram showing the likelihood distribution for σ8 estimated from our COS-
MOS data assuming a flatΛCDM cosmology. The green histogram corresponds to the default
Ωm = 0.3, whereas the red histogram has been computed forΩm = 0.24, as suggested e.g. by
WMAP3. The likelihood has been marginalised over the uncertainties ofh and the redshift dis-
tribution.

seen from Figure 7.8 and Figure 7.9. Of course different selection criteria can yield significantly
different shear estimates, but given the similar median redshifts we would expect more coinciding
signal levels.

One reason for the different shear estimates could be given by a shear calibration bias of
one of the methods, but due to the low bias estimated for both pipelines in STEP3, where the
Massey et al. (2007c) analysis corresponds to the JR implementation of RRG, this explanation
becomes rather implausible. The differences could also originate from the different PSF and CTE
correction schemes, which could be related to the remainingB-modes detected at small scales
for both analyses. Within the short time available for the COSMOS analysis we have not been
able to unambiguously identify the reason for the different shear signal and postpone this task
for a later stage, when we hopefully have a B-mode free catalogue at hand.
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7.7 Principal component analysis of the ACS PSF

Earlier tests of our PSF correction scheme indicate that itsaccuracy should be sufficient for the
statistical accuracy of the ACS data (Sect. 6.2.4.2). However, these tests were based on a limited
sample of stellar fields, all taken with the F775W filter. Central assumptions of our correction
scheme are that the PSF variation mainly occurs in a one-dimensional parameter space, and that
the stellar fields sample this variation well. We decided to further test these assumptions given
that we detect a significant small-scale B-mode in COSMOS (Sect. 7.5), which could be related
to PSF residuals. For this test we perform a principal component analysis (PCA) of the ACS PSF
variation.

A principal component analysis, which is often also referred to as Karhunen-Lòeve trans-
form, is a linear transformation of the coordinate system providing new basis vectors pointing
in the direction of the principal axes of data variation. Here we perform a PCA of the stellar
field PSF patterns in coefficient space. This allows us to verify if the observed PSF variation is
dominated by focus changes.

7.7.1 General description

As described in Sect. 6.2, we fit each of the two anisotropy kernel components in the stellar fields
with third-order polynomials for each chip, resulting in a total of M = 40 coefficients for each
field. For the jth field, we arrange these coefficients in aM-dimensional data vectord j, where
we denote theith component of the vector asdi j . Computing the mean and standard deviation of
the ith coefficient from all vectors

mi =
1
N

j=N
∑

j=1

di j , σi =

√

√

√

1
N

j=N
∑

j=1

(

di j −mi

)2
, (7.8)

whereN denotes the number of fields, we define the mean-subtracted and standard deviation-
normalised vectorx j for each field with components

xi j =
di j −mi

σi
, (7.9)

which we arrange in aM × N dimensional data matrix

X = {x1, ..., x j, ..., xN} . (7.10)

The central step of the PCA is a singular value decomposition of X

X =WΣVT , (7.11)

where the orthonormal matrixW consists of the singular vectors ofX and the diagonal matrix
Σ = {si} contains the ordered singular values ofX as diagonal elements. Here thekth largest
singular value corresponds to thekth singular vector, which is also named thekth principal
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component. The first singular vector points in the directionof the strongest variation (largest
scatter) of the data vectorsx j from the subtracted mean vector. Then the higher singular vectors
define orthogonal directions along which the data vary less and less.

In the coordinate system spanned by the singular vectors, the correlation matrix of the data
vectorsC becomes diagonal

C = XXT =WΣVTVΣTWT =WΣΣTWT =WΛWT . (7.12)

Hence, the singular vectors ofX can be computed as the eigenvectors ofC. The eigenvalues
λi = s2

ii of the diagonal matrixΛ are equal to the variance of the vectorsx j along the direction of
the ith principal component.

Due to the normalisation applied in (7.9), the variance of the ith coefficient computed from
all N fields becomes

vi =
1
N

j=N
∑

j=1

(

xi j − 0
)2
=

1

Nσ2
i

j=N
∑

j=1

(

di j −mi

)2
= 1 . (7.13)

Using the invariance of the trace under orthonormal transformations we then find that

TrΛ = Tr C =
i=M
∑

i=1

vi = M . (7.14)

Hence,λi/M gives the relative fraction of the total variation of the data along the direction of the
ith principal component.

Again, the variation of the vectorsx j is largest in the direction of the (most important) first
principal component, which we name “focus position” (in an arbitrary unit) in our case. The
higher principal components are getting less and less important, as the data show less variation
in these directions. Depending on the accuracy sought, one might therefore choose to only keep
the firstL principal components and neglect the data variation along all higher ones. In some
applications this is used for data compression. Yet, for a PSF analysis it is the main aim to
describe the PSF variation with a low number of parameters.

Dropping the higher principal components corresponds to a projection ofX onto the reduced
space spanned by the firstL singular vectors

YL =WT
L X , (7.15)

where we denote the components ofYL asyl j andWT
L has been formed out ofWT by filling rows

L + 1, ...,M with 0. The data points projected onto the reduced space can then be transformed
back to the original coordinates as

XL =WYL . (7.16)

Note that a PCA is sometimes performed without the standard deviation-normalisation in
(7.9), which yields the covariance matrix instead of the correlation matrix in (7.12), and a differ-
ent normalisation with theλi beingabsolutevariances. The analysis presented here is partially
based on public PCA code by F. Murtagh1.

1http://astro.u-strasbg.fr/˜fmurtagh/mda-sw/pca.c

http://astro.u-strasbg.fr/~fmurtagh/mda-sw/pca.c
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7.7.2 Application to the PSF models

In this subsection we apply the PCA formalism described in Sect. 7.7.1 to the stellar fieldDRZ-
PSF models. Here we limit most of the discussion and detailedplots to the F814W PSF models
being the relevant filter for COSMOS and a specific Gaussian filter scale ofrg = 2.8 pixels. The
derived results and conclusions are in qualitative agreement with those for other filters and Gaus-
sian filter scales (e.g. similar eigenvalues, see Fig. 7.14)differing in details such as the higher
singular vectors.

Figure 7.12: Mean PSF model computed from all F814WDRZ-PSF models forrg = 2.8 pixels.
This model is subtracted during the first step of the PCA.

For the F814W star fields, we plot the subtracted mean PSF model in Fig. 7.12, and the first
four singular vectors in Fig. 7.13. The first singular vectorclosely resembles what has been
labelled a typical PSF pattern with negative focus offset in Sect. 6.2.2 (compare to Fig. 6.5).
Consistent between different filters about 60% of the total PSF variation (variance of the models
in coefficient space) occurs in the direction of this first principal component, which can be seen
from the normalised eigenvaluesλl/M plotted in Fig. 7.14 and tabulated in Tab. 7.2. Given that
the first eigenvalue exceeds all higher eigenvalues by at least one order of magnitude, the first
principal component by far represents the most important term. However, it is unable to describe
the full PSF variation, where due to the rather slow decreaseof the eigenvaluesλl/M for 2 ≤ l .
23 (see Fig. 7.14), 12 (24) principal components are required to capture 90% (99%) of the total
variance.

We plot the coefficientsyl j of the PSF models projected onto the parameter space spanned
by the first four singular vectors in Fig. 7.15. Except for a low number of outliers the apparent
distribution of occurring PSF models seems to be sampled well by the star fields confirming the
applicability of our PSF correction scheme. We note that there are indications for substructure
in the model distribution within the plane spanned by the first and third singular vectors. This
possibly indicates some non-linear dependence, which would not be accounted for by the PCA.
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Figure 7.13: The first four singular vectors for the F814WDRZ-PSF models forrg = 2.8 pixels.

However, due to the dominance of the first principal component we did not attempt to correct for
this effect.

In order to further illustrate the relative impact of the different principal components we pick
six PSF models according to their position projected onto the first principal componenty1 = y1 j,
but randomly concerning the higher principal components. In Fig. 7.16 we plot these models
as well as a reconstruction using only the first principal component (L = lmax = 1) and residuals
after subtraction of this reconstruction. The first principal component already provides a good
approximation for the overall coherent pattern. However, if residuals should be suppressed with
high accuracy, a high number of principal components has to be taken into account (L & 20).
This can be seen from the also shown residuals forL = 10, which provides only moderate im-
provement compared toL = 1.

As an additional test we perform the analysis using the covariance matrix instead of the
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Table 7.2: Eigenvaluesλl/M of the first 10 principal components for filters F606W, F775W,and
F814W, for filter scalerg = 2.8 pixels.

l λ606
l /M λ775

l /M λ814
l /M

1 0.665 0.588 0.637
2 0.038 0.056 0.040
3 0.034 0.044 0.038
4 0.029 0.042 0.032
5 0.027 0.040 0.031
6 0.025 0.028 0.023
7 0.024 0.022 0.023
8 0.020 0.021 0.020
9 0.019 0.019 0.018
10 0.015 0.016 0.016

correlation matrix, with very similar overall results. Thecovariance analysis behaves mildly less
stable for high principal componentsl & 15, on average leading to slightly stronger residuals if a
large number of principal components are considered.
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Figure 7.14: Eigenvaluesλl/M of the first 30 principal components for filters F606W, F775W,
and F814W, for filter scalesrg = (2.8,6.0) pixels.
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Figure 7.15: Location of the F814W stellar fieldDRZ-PSF models in the parameter space
spanned by the first four singular vectors (principal components), scaled with the singular values
sll =

√
λl to illustrate their relative importance. Note the different scaling of the axes in the dif-

ferent panels and the apparent substructure in the plane spanned by the first and the third singular
vector (top middle).
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Figure 7.16: PSF models (1st row), PCA reconstruction using only the first principal component
L = 1 (2nd row), residuals forL = 1 (3rd row), and residuals forL = 10 (4th row) for six F814W
stellar fieldDRZ-exposures, of which three are shown on the next page. All models have been
computed for a filter scalerg = 2.8 pixels. (Continued on the next page)
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Figure 7.16: (continued) The fields are sorted according to their positiony1 along the first princi-
pal component, which relates to the focus position. The increase fromL = 1 to L = 10 principal
components reduces the residuals only moderately. For a robust suppressionL & 20 is required.
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7.8 Conclusions

In this chapter we have presented an independent weak lensing analysis of the ACS COSMOS
Survey. Compared to the data sets analysed in Chapter 6, COSMOS provides an increase in sky
area of approximatly a factor seven. The increased sensitivity reveals previously undetectable
indications for remaining systematics, which could not be identified in the short time remaining
for the analysis. Therefore, the results presented here areonly preliminary, and further tests,
which will hopefully yield a catalogue free of detectable systematics, are planned for the time
after this thesis write-up.

As a first result, we reconstruct the projected mass in the COSMOS field. Our results agree
well with the dark matter maps and baryonic tracers presented by Massey et al. (2007b). Ad-
ditonally, our 2D cosmological parameter estimation yields σ8 = 0.71± 0.09 forΩm = 0.24,
which is in good agreement with the WMAP-3 results. It is slightly lower than most of the re-
cent ground-based shear estimates, e.g.σ8(Ωm/0.24)0.59 = 0.84± 0.05 found by Benjamin et al.
(2007). This is not too surprising given the lack of exceptionally massive structures in the COS-
MOS field, which still suffers from significant sampling variance. Surprisingly however, Massey
et al. (2007c) derive a significantly higher value forσ8 from their cosmic shear analysis of the
COSMOS field yieldingσ8 = 0.90± 0.083 (stat.) ± 0.104 (syst.) for a similar 2D analysis and
σ8 = 0.96± 0.037 (stat.)+0.058

−0.039(syst.) for a 3D analysis, both forΩm = 0.24. We do expect varia-
tions within the errors given that both analyses are based onindependent data reduction pipelines,
shape measurement and PSF correction methods, and different selection criteria. However, the
large discrepancy might suggest that further systematic errors may be present in one or both of
the analyses. Our preliminary analysis suggests that this difference rather originates from the
shear measurement than the estimates of the photometric redshift distribution. Note that both
analyses still suffer from B-mode signals at small scales. If the origin for the B-modes can be
identified and corrected, the difference inσ8 might become less significant.

In any case it will be important to understand the cause for the different results. While STEP
tests the actual shape measurement in shear pipelines on simulated data, this is only one step of
a cosmic shear analysis. Comparisons of different pipelines on the same dataset as done here are
an important additional test to verify the creditability ofcosmological weak lensing studies. In
order to understand the reason for the different estimates it might be helpful to perform a direct
comparison of the shear catalogues.

Using a principal component analysis (PCA) we have been able to verify that most of the
PSF variation occurs in a one-dimesional parameter space, which can be identified as the focus
position. This is an important confirmation for the applicability of our PSF correction scheme.
Higher principal components do play a role if very high accuracy is sought. For a future analysis
we are considering to upgrade our PSF correction scheme withthe PCA, which will allow the
inclusion of higher principal components in the fit depending on the number of stars present in
the field. A similar correction scheme will surely be necessary for dedicated future weak lensing
missions. In addition, the PCA will allow us to split the galaxy field ACS tiles into groups with
similar PSF properties, which could prove helpful in order to identify the origin of the B-mode
component.

Possibly the detected B-mode signal could also be related to changes of the ACS camera
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distortion. We have reported on a possible medium-term variation in Sect. 6.1.2. In addition,
Anderson (2006, 2007) find indications for variations of thelinear distortion terms, where they
detect both a long-term trend and short-term breathing-induced variations. For COSMOS, long-
term variations are unproblematic given that each COSMOS tile was observed within one orbit
and the overall distortion is only of order∼ 10−4, about two orders of magnitude below the cosmic
shear signal. However, breathing induced variations mightlead to significant misalignments
between the individual exposures, which would be uncorrected by our pipeline. This effect could
significantly degrade the PSF in the co-added frame, which would not be taken into account by
our PSF correction scheme. Hence, it could possibly cause the detected B-mode signal.
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Chapter 8

Other ACS projects

Besides the major ACS science projects described in Chapters 6 and 7, parts of the developed
ACS data reduction and shear measurement pipeline have also been used in further studies led
by some of my collaborators. In addition, we are still working in further gravitational lensing
studies using ACS data. Here I will briefly summarise several of these projects, following a
chronological order. For details the reader is referred to the corresponding papers.

8.1 Measuring the mass distribution of the merging galaxy
cluster 1E0657–56 with strong and weak lensing

Bradǎc, Clowe, Gonzalez, Marshall, Forman, Jones, Markevitch, Randall, Schrabback, & Zarit-
sky (2006) study the strong and weak lensing signal of the merging galaxy cluster 1E0657–56,
dubbed the “Bullet cluster”, and compare it to the emission ofhot X-ray gas. In this cluster,
which is located at a redshiftz = 0.296, recently two sub-components merged nearly in the
plane of the sky, where the sub-cluster left the core of the main cluster with a relative velocity of
4500+1100

−800 km s−1 as deduced from the gas bow shock seen in X-rays. Due to dissipation the gas
is slowed down and trails behind the galaxies, which follow basically collisionless trajectories.

Using new HST/ACS images, Bradǎc et al. (2006) and Clowe et al. (2006) have been able
to study the mass distribution of the system using gravitational lensing. While Clowe et al.
(2006) uses pure weak lensing constraints, Bradač et al. (2006) combine weak and strong lensing
measurements. I contributed to this work during the reduction of the ACS images, where Maruša
Bradǎc’s pipeline was based on our Mark-I pipeline.

The result of the analysis is illustrated in Figure 8.1 showing that the major mass compo-
nent resides with the galaxies andnot the gas, which contains most of the baryonic mass. This
observation is consistent with the picture that galaxies are surrounded by (nearly) collisionless
dark matter halos, which follow the trajectories of the stellar component. Hence, it is currently
considered to be the strongest evidence for the existence ofdark matter. Note that Angus et al.
(2007) claim that they are able to to describe the Clowe et al. (2006) weak lensingκ-map of the
system in the framework of modified Newtonian dynamics (MOND) without CDM, if neutrinos
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Figure 8.1: The merging “Bullet” galaxy cluster 1E0657–56,Left: Press-release image, where
the central region shows the HST/ACS colour image, whereas the outer regions use data from the
Magellan telescope. Red overlays show the location of hot X-ray gas observed by Chandra. Blue
overlays show the location of the major mass components inferred from gravitational lensing.
Due to the merger the hot gas, which contains most of the baryonic mass, is observed offset from
the major mass component deduced from gravitational lensing. This observation is currently
considered to be the most direct evidence for the existence of (collisionless) dark matter (image
courtesy: Marǔsa Bradǎc). Right: HST/ACS image, where the overlaid red contours show the
strong and weak lensingκ–reconstruction, linearly spaced with∆κ = 0.1 starting atκ = 0.5 for
a fiducial source redshiftzs→ ∞. The white contours indicate X-ray brightness measured from
500 ks Chandra ACIS-I observations. North is up and East is left, the field is 4.′9 × 3.′2, which
corresponds to 1300× 830 kpc2 at the redshift of the cluster (Figure 4 from Bradač et al. 2006).

have masses of∼ 2 eV. The Karlsruhe Tritium Neutrino Experiment1 (KATRIN) was designed
to measure the mass of the electron neutrino with an accuracyof 0.2 eV. Thus, this loophole
for MOND may be closed soon. In addition, it has not been shownthat MOND is also able
to describe the steep inner mass profiles derived from the combined strong and weak lensing
analysis.

8.2 Comparing X-ray and gravitational lensing mass estimates
of the most X-ray luminous galaxy cluster RXJ1347.5–1145

The galaxy cluster RXJ1347.5–1145 (z= 0.451) is the most X-ray luminous galaxy cluster know
to date. It has already been subject of numerous lensing and X-ray studies (see e.g. Gitti et al.
2007; Bradǎc et al. 2005; Cohen & Kneib 2002, and references therein), which however led to
significantly discrepant results.

1http://www-ik.fzk.de/˜katrin/index.html

http://www-ik.fzk.de/~katrin/index.html
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Our collaboration successfully applied for HST/ACS observations of the cluster, which have
been carried out in HST Cycle 14 (proposal 10492, PI: Thomas Erben) on March 9-11, 2006.
The cluster was observed in the three filters F475W, F814W, and F850LP for 5280s each.

My task was the reduction of the data, first with an upgraded version of the Mark-I pipeline,
and later the improved Mark-II pipeline. In addition, I created weak lensing catalogues from the
co-added F814W image, similarly to our analysis of the COSMOSdata (Chapter 7).

Figure 8.2: The F475W–F814W–F850LP colour composite of thecluster RXJ1347.5–1145.
Overlaid in red contours is the preliminary surface mass density from the combined weak and
strong lensing mass reconstruction. The contour levels arelinearly spaced with∆κ = 0.2, starting
at κ = 0.5, for a fiducial source at a redshift ofzs → ∞. The linearly spaced X-ray brightness
contours are overlaid in yellow and have been determined from 67 ks Chandra ACIS-I observa-
tions. North is up and East is left, the field is 2.′5× 2.′5, which corresponds to 870× 870 kpc2 at
the redshift of the cluster (from Bradač et al. in prep.).

The data have been used for a strong lensing analysis (Halkola et al. 2007) and a combined
strong and weak lensing analysis (Bradač et al. in prep.). A central aspect of these analyses is the
identification of new multiple-image candidates from the ACSdata. The preliminary combined
strong and weak lensing analysis yields a projected mass estimate for the cluster centreML(<
350kpc)= (5.9± 0.5)× 1014M⊙, which is in in excellent agreement with X-ray mass estimates
from Chandra data yieldingMX(< 350kpc)= (6.6+0.6

−0.4) × 1014M⊙. Figure 8.2 shows an image of
the cluster core with a preliminaryκ–reconstruction using the strong and weak lensing analysis,
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in comparison with X-ray estimates. For the full ACS image seeFigure 3.4.

8.3 HAGGLeS: The HST Archive Galaxy-scale Gravitational
Lens Survey

As already mentioned in Sect. 5.3, we joined forces with the HAGGLeS Project lead by Phil
Marshall for the reduction of a large fraction of the ACS archive. Most of the HAGGLeS fields
have been reduced at the time of the write-up using our Mark-II reduction pipeline, and are now
being further analysed.

For the HAGGLeS field selection we excluded large surveys with publicly available reduced
images such as GEMS, GOODS, COSMOS, EGS, and the Hubble Deep fields. Also galac-
tic fields or observations of nearby galaxies filling the entire field-of-view have been rejected.
HAGGLeS consists of two main data sets, which partially overlap:

8.3.1 The HAGGLeS strong lens search fields

Fields with an exposure time of at least 2 ks in two or more broad-band filters have been selected
for the strong lens search. For the automatic lens search colour information is critical to reliably
select multiple image candidates. The strong lens portion of HAGGLeS comprises a total of 224
fields.

Strong lens candidates identified by the lens robot are visually inspected using our web-tool
(Sect. 5.3.3). A first paper describing the project, data, data reduction, and first results is currently
been written (Marshall et al. in prep.).

8.3.2 The HAGGLeS weak lensing fields

For the cosmological weak lensing analysis we do not requireobservations in multiple filters,
but it is crucial that we select quasi random pointings. For example, the ACS archive contains
a large number of observations of galaxy clusters. If included, these fields would lead to a
significant over-estimation ofσ8. To minimise potential selection bias we require that a fieldis
either observed in parallel mode or has been pointed at a target withz< 0.07 orz> 1.2, yielding
very low lensing efficiency at the target redshift. In the case of parallel observations a potential
bias may arise from primary observations pointing at galaxyclusters, which could significantly
affect the shear signal in the parallel field. However, it is possible to test for such a bias, e.g. by
investigating the shear signal as a function primary targetclass. In addition, such a bias will lead
to a net mean shear depending on the relative position of the cameras, e.g. a mean positiveγ2

signal for primary observations with WFPC2.
For this survey we require a minimal exposure time of 1200 s inone of the broad band filters

F606W, F625W, F775W, or F814W, with a minimum number of threeexposures to enable good
cosmic rays rejection. With these selection criteria we estimate that the whole data set will
amount to approximately 440 pointings or a total area of 1.22 deg2, consisting of∼ 69% parallel
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and∼ 31% primary observations. We also refer to this data set as the “Extended ACS Parallel
Survey”.

This survey is relatively complimentary to COSMOS: due to themany independent lines-
of-sight the impact of cosmic variance will be minimal. Yet,the survey will be limited to rela-
tively small scales, for which we expect to constrain the total matter power spectrum with high
accuracy. At a typical lens redshift with high lensing efficiency (z∼ 0.4) the ACS field size
corresponds to a physical (co-moving) separation of∼ 1 Mpc, for which current predictions of
the non-linear power spectrum seem to be sufficiently good to obtain interesting constraints on
σ8. We also expect to obtain tight constraints on the small-scale, sub-arcminute power spectrum.
These cannot be used to constrainσ8 due to the current lack of accurate theoretical predictions
at a regime when baryons become important. However, these measurements can then be used to
test simulations helping to understand the impact of baryons on the power spectrum.

8.4 STAGES: the A901/A902 super-cluster field

STAGES (HST GO-10395, PI M. E. Gray) is a 30′×30′ mosaic consisting of 80 ACS/WFC tiles,
each imaged for one orbit (1960 s) with four dithered exposures using the F606W filter. It has
been pointed at the known galaxy super-cluster Abell 901/902 (z = 0.16) and is therefore not
suited for cosmic shear measurement, but can be used for different weak lensing studies.

We have reduced the images using our Mark-II pipeline and created weak lensing catalogues
similarly to our analysis of the COSMOS data. Figure 8.3 showsa preliminary weak lensing
mass reconstruction of the field. With this study we aim to constrain the total cluster mass and
projected mass distribution. We also want to verify the existence of a dark matter filament be-
tween A901a and A901b, which has been reported by Gray et al. (2002) on the basis of shallower
ground-base data.

A key ingredient for further studies with the data are accurate photometric redshifts. Photo-
metric redshifts have been measured for the field as part of the COMBO-17 project. However,
these data are relatively shallow, so that redshift estimates are only available for a minor fraction
of the source galaxies. Kitching et al. (2007) use the COMBO-17redshifts in combination with
the ground-based weak lensing catalogue of Brown et al. (2003) to apply the so-called shear-
ratio-test for the field. Here the relative strength of the shear signal is measured as a function of
redshift, which is a sensitive cosmological test. In combination with a deep photometric redshift
catalogue the high-resolution ACS images would allow us to dothis analysis with substantially
increased statistical accuracy. The low dependence of shear measurements with our pipeline on
galaxy magnitude and size, which was demonstrated for STEP3(Sect. 4.4), would be very useful
for such a 3D analysis.
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Figure 8.3: Preliminary reconstruction of the projected mass in the 30′×30′ STAGES A901/A902
super cluster field using our shear catalogue. The maximum likelihood reconstruction takes noise
propagation and Wiener filtering into account as suggested by Hu & Keeton (2002), implemented
by Patrick Simon, and detailed in Hetterscheidt et al. (in prep.). North is up and East left. The
known galaxy clusters A901a, A901b, and A902 are marked, as well as the signal of a galaxy
group discovered by Gray et al. (2002). Note the much steeperκ–scale compared to Figure 7.4.
Contours showκ-levels spaced by∆κ = 0.01 starting atκ = 0.03.



Chapter 9

Conclusions and outlook

I will summarise the main results and conclusions in Sect. 9.1, and elaborate on future perspec-
tives in Sect. 9.2. For a more detailed discussion and conclusions from the individual science
projects see the concluding sections given at the end of eachanalysis chapter (chapters 4, 6, and
7).

9.1 Conclusions

With this thesis project I was given the extraordinary opportunity to contribute to the exciting
field of cosmological weak lensing at a time when it was turning into a mature field of preci-
sion cosmology. Besides growing surveys, such as the ongoingCFHT Legacy Survey, this time
has seen substantial development of weak lensing methods initiated and enhanced by the STEP
Project, in preparation of future generations of surveys.

With the STEP blind tests we provided benchmarks quantifying the accuracy of the different
weak lensing pipelines and helping to identify and eliminate systematic errors and biases. During
the course of three STEP projects we successfully improved the mean shear recovery accuracy
of our KSB+ pipeline from the∼ 20% to the∼ 2% level, with a∼ ±5% variation as a function of
magnitude and size only. Similarly well tuned pipelines have the potential to serve as sufficiently
accurate tools for current surveys, such as the work presented here, but also surveys as large as
the CFHT Legacy Survey. For the coming generation of surveys,such as PanSTARRS-1 and
VST/KIDS, a systematic accuracy of∼ 2% will be sufficient for the early phase but ultimately
dominate the total error budget for the completed surveys. Proper correction for systematic errors
will be even more crucial for fourth generation surveys suchas DES, PanSTARRS-4, LSST,
DUNE, and JDEM/SNAP, requiring sub-percent level accuracy. Due to severalfundamental
shortcomings and limitations we do not expect that the KSB+ formalism will be able to reliably
reach this level of accuracy. This underlines the urgent need to develop and improve new methods
such as the ones described by Kuijken (2006) and Nakajima & Bernstein (2007), combined with
continued STEP-like tests.

Previous ground-based surveys have measured the cosmic shear signal from several tens of
square degrees. Recently, Benjamin et al. (2007) presented a joint analysis of cosmic shear data
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from the CFHTLS-Wide, RCS, VIRMOS-DESCART, and GaBoDS surveys, amounting to a
total sky area of∼ 100 deg2, from which they findσ8(Ωm/0.24)0.59 = 0.84± 0.05.

For space-based surveys covering a mosaic of a single field itis difficult to provide compet-
itive constraints onσ8 due to strong influence of sampling variance. Especially the0.22 deg2

GEMS Survey targeting theChandra Deep Field Southseems to suffer from strong sampling
variance. For this field we obtain an estimate for the power spectrum normalisation ofσ8 =

0.59+0.13
−0.17 (stat)± 0.07 (sys), for a fixed matter densityΩm = 0.241 assuming Gaussian sam-

pling variance (see Sect. 6.5). This estimate agrees only marginally with the WMAP-3 result
of σ8 = 0.761+0.049

−0.048 (Spergel et al. 2007) and is significantly below the value found by Ben-
jamin et al. (2007). From this discrepancy we conclude that there is a significant under-density
of compact foreground structures in the CDFS. This is also consistent with results from Phleps
et al. (2007), who find a significant depletion of red galaxiesin the field. Note that Heymans
et al. (2005) originally derived a higher valueσ8 = 0.79± 0.15 (forΩm = 0.24) from the GEMS
data. While we have been able to show that their and our shear measurements agree with a
relative accuracy of∼ 3%, we found that theirσ8 estimate is most probably biased due to an
under-estimation of the mean redshift of the survey.

Studies performing ray-tracing through N-body simulations indicate that non-linear evolution
leads to significant non-Gaussian sampling variance (Kilbinger & Schneider 2005; Semboloni
et al. 2007; Hartlap et al. in prep), which suggests that we actually under-estimate the statistical
uncertainty. The frank conclusion is that the sky coverage of GEMS is too small to yield repre-
sentative cosmological parameter constraints using cosmic shear. The concluding picture is that
the line-of-sight in the CDFS mostly passes through voids, whereas compact structures are rare.
Following from the preliminary ray-tracing comparison by Hartlap et al. (in prep.), this seems to
be a peculiar, but not extraordinary rare configuration, assuming a WMAP-3 cosmology.

Note that ourσ8 estimate from the CDFS was more discrepant with other weak lensing results
at the time of the analysis. For example, early results from the CFHTLS yielded significantly
higherσ8 estimates ofσ8 = 0.86± 0.05 (Semboloni et al. 2006) andσ8 = 0.85± 0.06 (Hoekstra
et al. 2006) computed forΩm = 0.3, which corresponds toσ8 = 0.98± 0.06 andσ8 = 0.97± 0.07
for Ωm = 0.24. However, with the new Benjamin et al. (2007) analysis, which makes use of a
carefully calibrated redshift distribution and considersrecent STEP results, the tension has been
significantly reduced. It will be interesting to observe if this trend towards lowerσ8 estimates
from cosmological weak lensing studies continues in the post-STEP era.

We presented a preliminary analysis of the ACS/COSMOS Survey in Chapter 7. Although
this is also a single mosaic field, the approximately seven times larger sky area of 1.64 deg2

considerably reduces the influence of sampling variance compared to GEMS. From our analysis
we have been able to confirm the main features of the projecteddark matter maps published
by Massey et al. (2007b). Both maps show several mass peaks associated with galaxy clusters
and groups, partially connected with filamentary structures (see Figure 7.4). In addition, a huge
relatively empty region is visible in the lower right (south-west) quadrant of the mosaic, with

1Note that the results in Chapter 6 are quoted forΩm = 0.3, as traditionally done in cosmic shear studies. For
the comparison presented here we follow the example of Benjamin et al. (2007) to refer to the best-fitting WMAP-3
value to ease the comparison.
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a diameter& 9h−1 Mpc at a typical lens redshiftz ∼ 0.4 (assuming a flatΛCDM cosmology).
We expect that this line-of-sight has similar statistical properties as the GEMS Survey, being a
projecting of mostly voids along the line-of-sight, but we did not test this quantitatively.

From the COSMOS data we have been able to measure the cosmic shear signal at a wide
range of scales 0.′1 . θ . 80′. At small scales we detect a significant B-mode signal, where
the affected scales areθ . 0.′7 for ξB andθ . 5′ for 〈M2

⊥〉. Similar indications for remaining
systematics have been reported by Massey et al. (2007c) for their analysis of the data. In our
preliminary cosmological parameter estimation we only useB-mode free scales, and a redshift
distribution based on the public redshift catalogue by Mobasher et al. (2007). From the COS-
MOS data we obtain an estimate for the power spectrum normalisationσ8 = 0.71± 0.09 for
Ωm = 0.24 assuming Gaussian cosmic variance, which is fully consistent with the WMAP-3 re-
sults. Yet, our estimate agrees only marginally with recentground-based estimates, which favour
slightly higher values ofσ8. However, the fact that no extraordinarily massive galaxy cluster is
present in the field at redshifts with high lensing efficiency (see e.g. Massey et al. 2007b) might
suggest aσ8 estimate rather at the low end of the expected range. Thus, wefind it surpris-
ing that our measurement differs significantly from the Massey et al. (2007c) estimate forthe
same field, who findσ8 = 0.90± 0.083 (stat.) ± 0.104 (syst.) from a similar 2D analysis and
σ8 = 0.96± 0.037 (stat.)+0.058

−0.039(syst.) from a tomographic analysis, both forΩm = 0.24. Note that
differences within the statistical and systematic errors are not unexpected, given that independent
data reduction and shear measurement pipelines have been applied, as well as different selection
criteria. Yet, their 3D and our 2D results are clearly not consistent. Until the time of the write-up
we have not been able to unambiguously identify the origin for this discrepancy, but prelimi-
nary results suggest that it is rather related to the actual shear measurement than uncertainties
of the redshift distribution. We will continue to investigate this discrepancy, but note that both
catalogues still contain indications for systematic at small scales. Once these are eliminated, the
discrepancy might (partially) resolve.

Compared to ground-based surveys the strength of current space-based weak lensing mea-
surements is clearly given by the strongly increased galaxynumber density. This is crucial for
dark matter mapping which requires local shear information, but also helpful to constrain the
cosmic shear signal at small scales. Measurements of the cosmic shear signal at sub-arcminute
scale (corresponding to physical separations. 300 kpc for typical lens redshifts), are only mod-
erately useful to constrainσ8 due to uncertainties in theoretical predictions which arise from the
influence of baryons (Rudd et al. 2007). However, measurements of the small-scale signal can
be used to actually study the inter-relation of dark and baryonic matter. Also, they are useful
to estimate the achievable accuracy of local weak lensing corrections, being relevant for exam-
ple for type Ia supernovae studies. To a certain degree such measurements can be derived from
mosaic observations such as GEMS and COSMOS. However, non-linear structure growth is ex-
pected to mix power from different scales, so that the small-scale signal measured from alargely
under-dense field such as GEMS cannot be expected to be truly representative. For this purpose a
shear measurement from a large number of random pointings asprovided by the Extended ACS
Parallel Survey (Sect. 8.3.2) is expected to be more useful,given that it minimises the error due
to sampling variance. In addition, the field-of-view of ACS islarge enough to provide additional
shear estimates in the angular range 1′

. θ . 4′ from single pointings, which can be used to
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constrainσ8.
In Chapter 6 we have already investigated a sample of 59 early fields from the ACS Paral-

lel Survey. From these data we clearly detect a significant shear signal (Figure 6.25), which we
however do not yet use to constrainσ8 because of remaining systematics in the data, manifesting
in a significant average alignment of the galaxies with the image y–axis. Several tests indicate
that this spurious signal is not related to the degradation of the ACS charge transfer efficiency,
which leads to a similar signature for later observations such as COSMOS, but is caused by the
poor data quality of a large fraction of the data. For these fields the lack of dithering leads to
various artifacts such as bad columns in the reduced data, which seem to be responsible for the
false signal. Due to these findings we spent a substantial effort into further improving our data
reduction pipeline (to the Mark-II state), which should allow us to reliably reject affected galax-
ies. However, the analysis of the Extended ACS Parallel Survey, which comprises approximately
440 independent fields, is only just starting. Thus, the improved accuracy of the updated pipeline
still has to be demonstrated.

Cosmological weak lensing studies with ACS, such as the one presented here, but also the
work by Heymans et al. (2005); Rhodes et al. (2007); Leauthaudet al. (2007) and Massey et al.
(2007c) play a pathfinder role for dedicated future cosmic shear missions from space such as
DUNE or JDEM/SNAP: Firstly, current surveys act as proof of concept for envisaged future
projects. They also provide first estimates for the small-scale signal, which can be used as input to
estimate the accuracy of future studies. Furthermore, current projects with ACS yield substantial
technical expertise, which will be very valuable for the planning, conduction, and analysis of
future surveys. Following from the experience with ACS future mission should for example
aim to achieve maximal thermal stability to minimise temporal variations of the point-spread-
function. Also, it will be crucial to use hardened CCD chips, which are subject to less CTE
degradation. Concerning the analysis of future surveys, tools such as our PSF interpolation
scheme (Sect. 6.2.4), possibly upgraded using a principal component analysis (PCA) similarly to
the one described in Sect. 7.7, will be very valuable to achieve the systematic accuracy sought.

In addition to the cosmological weak lensing studies, partsof our ACS data reduction and
weak lensing pipeline have also been used for studies of galaxy clusters, led by some of my
collaborators. Here the high resolution and sensitivity ofHST/ACS enables detailed studies of
the total matter distribution using strong and weak gravitational lensing. These include investi-
gations of the galaxy clusters 1E0657–56 (Sect. 8.1, Bradač et al. 2006) and RXJ1347.5–1145
(Sect. 8.2, Halkola et al. 2007, Bradač et al. in prep.), where the first one yielded the currently
most direct evidence for the existence of dark matter, and the second one allows for a very accu-
rate comparison of X-ray and gravitational lensing mass estimates.

9.2 Outlook

The results of this thesis project provide the starting point for several future projects:
It will be one of the first goals to improve the COSMOS shear catalogue, ideally to achieve

a B-mode signal consistent with zero. An upgrade of the PSF correction scheme using the PCA
results might be a useful tool to reach this goal. In addition, I plan to investigate if changes in the
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ACS field distortion could be responsible for the systematic signal. If this is the case, a further
upgrade of our pipeline and re-reduction of the data will be required. Once an improved cata-
logue is found, it can be used for several interesting science applications, such as a tomographic
analysis which might resolve some of the discrepancy to the Massey et al. (2007c) results. In
addition, we plan to use it for a detailed comparison with ground-based shear estimates from the
CFHTLS Deep Survey and galaxy-galaxy lensing studies.

The progress of our study of the STAGES A901/A902 field (Sect. 8.4) depends on the avail-
ability of good photometric redshifts. If we are granted access to the COMBO-17 redshift cat-
alogue of the field, we will be able to study the detailed mass distribution of the clusters in the
field. In addition, we are aiming at measuring the shear signal of A901 as a function of source
redshift. This geometric shear-ratio test can be used to constrain cosmological parameters in-
cluding the dark energy equation-of-state parameterw as demonstrated by Kitching et al. (2007)
from a shallower ground-based catalogue of the field. The accuracy of our analysis would then
be limited by the depth of the COMBO-17 redshift catalogue, so ideally one would aim to obtain
deep multi-colour ground-based data from a wide-field imager on a telescope in the 6–8m class.

After completing the data reduction we are currently starting the analysis of the Extended
ACS Parallel Survey. This survey will provide an interestingcomparison to COSMOS, and
possibly help to identify the origin of the COSMOS B-mode signal. Once free of systematics,
we want to constrain the small-scale power spectrum from thedata with high accuracy, providing
constraints onσ8 and the inter-play of baryons and dark matter. We also plan toconduct a galaxy-
galaxy lensing study from the survey.

The combined data from COSMOS, GEMS, and the Extended ACS Parallel Survey will form
the largest space-based dataset for cosmological weak lensing measurement for several years.
After the loss of ACS, the Wide Field Camera 3, which is currently scheduled for installation on
board HST in August 2008, will constitute an instrument withsimilar weak lensing capabilities
as ACS. It will be very powerful for studies of galaxy clusters, but due to its slightly smaller
field-of-view and optical sensitivity, no significant improvement for cosmic shear measurements
is expected compared to ACS. On the other hand large dedicatedground-based surveys are either
already on their way (CFHTLS2) or soon to begin (PanSTARRS-13, VST/KIDS4, DES5). There-
fore, cosmic shear will mostly become the domain of wide-field ground-based surveys for several
years. The extreme accuracy sought for detailed studies of dark energy might, however, only be
reachable using a dedicated space-based mission such as DUNE6 or one of the Joint Dark Energy
Missions (JDEM) SNAP7 and DESTINY8, which are currently proposed to funding agencies.

2http://www.cfht.hawaii.edu/Science/CFHLS/
3http://www.ps1sc.org/
4http://www.astro-wise.org/projects/KIDS/
5http://www.darkenergysurvey.org/
6http://www.dune-mission.net/
7http://snap.lbl.gov/
8http://www.noao.edu/noao/staff/lauer/destiny.htm

http://www.cfht.hawaii.edu/Science/CFHLS/
http://www.ps1sc.org/
http://www.astro-wise.org/projects/KIDS/
http://www.darkenergysurvey.org/
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http://www.noao.edu/noao/staff/lauer/destiny.htm
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Appendix A

The KSB+ formalism

In this section I will outline the technique developed by Kaiser, Squires, & Broadhurst (1995),
Luppino & Kaiser (1997), Hoekstra et al. (1998) for the point-spread-function (PSF) correc-
tion of galaxy ellipticities, closely following the description in Section 4.6.2 of Bartelmann &
Schneider (2001).

The observed brightness distributionIobs(θ) of a galaxy image is given as the convolution of
the PSF unaffected brightness distributionI (θ) with the PSFP(θ)

Iobs(θ) =
∫

d2ϕ I (ϕ)P(θ − ϕ) , . (A.1)

In the KSB formalism it is assumed that the anisotropic part of P is small and thatP can therefore
by decomposed into an isotropic partPiso and an anisotropic partq, such that

P(θ) =
∫

d2ϕq(ϕ)Piso(θ − ϕ) , (A.2)

wherePiso andq are both normalised to unity and have vanishing first moments.
The coordinate system is chosen such that the image center islocated at the origin. The

position of the image center is definded by a vanishing first brightness moment
∫

d2θW(θ2)θI (θ) = 0 , (A.3)

whereW(θ2) is a weight function, which truncates the integration for large distancesθ = |θ|
from the image center. Since gravitational lensing conserves surface brightness, the center of
the image is in principle mapped onto the center of the source. Although this is not strictly
true anymore due to the introduction of the weight functionW(θ2), deviations are expected to be
very small. We will assume that all image centers are locatedat the origin of the corresponding
coordinate systems.

Galaxy ellipticities are defined in terms of the second–order brightness moments

Qi j =

∫

d2θW(θ2)θiθ j I (θ) , i, j ∈ {1,2} (A.4)
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as

e=
Q11− Q22+ 2iQ12

Q11+ Q22
. (A.5)

A.1 Influence of PSF anisotropy

By inserting (A.2), we can rewrite (A.1) as

Iobs(θ) =
∫

d2ϕ q(θ − ϕ)I iso(ϕ) , (A.6)

where we have definded the brightness profile

I iso(θ) =
∫

d2ϕ I (ϕ)Piso(θ − ϕ) , (A.7)

which would be observed if the true image would only be smeared by an isotropic PSF. Inserting
(A.7) into (A.6) it can be shown that

∫

d2θ f (θ)Iobs(θ) =
∫

d2ϕ I iso(ϕ) f (ϕ) +
1
2

qkl

∫

d2ϕ I iso(ϕ)
∂2 f

∂ϕk∂ϕl
+ O(q2) , (A.8)

with

qkl =

∫

d2ϕq(ϕ)ϕkϕl , (A.9)

holds for an arbitrary functionf (θ). Here we used thatq is normalized and has vanishing first
moments. In the KSB formalism it is assumed that the anisotropy of the PSF is weak. Therefore,
only terms linear inq are considered henceforth. By insertingf (θ) = θiθ jW(θ2) into (A.8), we
find that the second–order brightness momentsQobs andQiso are interrelated by

Qiso
i j = Qobs

i j −
1
2

qkl

∫

d2ϕIobs(ϕ)
∂2

∂ϕk∂ϕl

[

ϕiϕ jW(ϕ2)
]

, (A.10)

where we used Einstein summation convention. By calculatingthe relevant combinations ofQi j

tr(Qiso) = tr(Qobs) − xαqα ,

(Qiso
11 − Qiso

22) = (Qobs
11 − Qobs

22 ) − X1αqα , (A.11)

2Qiso
12 = 2Qobs

12 − X2αqα ,

where we defined

Xαβ ≡
∫

d2ϕIobs(ϕ)
[(

W+ 2|ϕ|2W′
)

δαβ + ηα(ϕ)ηβ(ϕ)W′′
]

, (A.12)

q1 ≡ q11− q22 , (A.13)

q2 ≡ 2q12 , (A.14)

xα ≡
∫

d2ϕIobs(ϕ)ηα(ϕ)
(

2W′ + |ϕ|2W′′
)

, (A.15)



A.2. Influence of PSF smearing 229

with the Kronecker symbolδαβ and

η1(ϕ) = ϕ2
1 − ϕ2

2 , η2(ϕ) = 2ϕ1ϕ2 , (A.16)

we find that the ellipticitieseiso andeobs, which were defined in (A.5), are interrelated as

eiso
α = eobs

α − Psm
αβqβ . (A.17)

Here we defined thesmear polarisability

Psm
αβ =

(

trQobs
)−1 (

Xαβ − eobs
α xβ

)

(A.18)

which characterises the response of the ellipticity to a PSFanisotropy.
The anisotropy kernelq has to be measured from the observed shape of stellar images.Since

stars are point-like sources which are not effected by lensing, they would have zero ellipticity in
the absence of PSF anisotropy and thuseiso,∗ = 0. Here the asterix indicates that stellar images
are considered. Therefore the anisotropy kernel at the stellar position is given by

qα = (Psm,∗
αβ )−1eobs,∗

β . (A.19)

A.2 Influence of PSF smearing

As the next step we relate the intrinsic brightness distribution with I iso. Inserting the brightness
distribution of a lensed image as given in (3.11) into (A.7) and transforming to source coordinates
yields

I iso(θ) =
∫

d2ϕ I s(Aϕ)Piso(θ − ϕ)

=
1

detA

∫

d2ζ I s(ζ)Piso(θ −A−1ζ) ≡ Î (Aθ) . (A.20)

In the last step we defined the brightness moment

Î (θ) =
∫

d2ϕI s(ϕ)P̂(θ − ϕ) with P̂(θ) ≡ 1
detAPiso(A−1θ) , (A.21)

where the normalised function̂P has zero mean and is anisotropic in the presence of shear.
In order to find a relation between the ellipticities ofI iso and Î , we consider the second-order

brightness moments of the latter as definded in (A.4)

Q̂i j =

∫

d2β βiβ j Î (β)W(β2) . (A.22)

In the weak lensing regime, and thus for small distortions, one can employ a Taylor expansion
of the weight functionW(β) in (A.22) to first order, yielding the following relation between the
ellipticities êandeiso:

eiso
α − êα = Psh

αβgβ , (A.23)
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where we have defined theshear polarisability Psh
αβ as

Psh
αβ = 2δαβ − 2eiso

α eiso
β + eiso

α Mβ + Dαβ ,with (A.24)

Mβ = −
2

trQiso

∫

d2θ |θ|2I iso(θ)W′ηα(θ) and

Dαβ =
2

trQiso

∫

d2θ I iso(θ)W′ηα(θ)ηβ(θ) .

(A.25)

AlthoughPsh
αβ is defined in terms ofI iso, we can directly calculate this tensor from the brightness

profile Iobs, since the difference only yields terms in second order ofq.
We can decomposêP into an isotropic and an anisotropic part analogously to (A.2)

P̂(θ) =
∫

d2ϕ q̂(ϕ)P̂iso(θ − ϕ) . (A.26)

If we then define the brightness profile

Î0(θ) =
∫

d2ϕ I s(ϕ)P̂iso(θ − ϕ) , (A.27)

which would be observed from a source only smeared by an isotropic PSF, we find

Î (θ) =
∫

d2ϕ Î0(ϕ)q̂(θ − ϕ) . (A.28)

Since the relation between̂I andÎ0 is the same as the one betweenIobsandI iso, the corresponding
ellipticities fulfill in analogy to (A.17):

ê0
α = êα − Psm

αβ q̂β , (A.29)

wherePsm in principle has to be calculated from̂I . However, we can again calculatePsm from the
observed brightness distributionIobs, since differences are of second order inq, and are therefore
neglected.

Combining (A.23) with (A.29) we find

eiso
α = ê0

α + Psh
αβgβ + Psm

αβ q̂β . (A.30)

From the fact that ˆe0
α andeiso

α both vanish for stellar images follows

q̂α = − (Psm,∗)−1
αβ Psh,∗

βγ gγ . (A.31)

If we then define
Pg
αβ = Psh

αβ − Psm
αγ

[

(Psm,∗)−1
γδ Psh,∗

δβ

]

, (A.32)

and combine Eqs. (A.17) and (A.30), we finally obtain

ê0
α = eobs

α − Psm
αβqβ − Pg

αβgβ . (A.33)

This equation interrelates the observed ellipticity to theellipticity of the source under the influ-
ence of an anisotropic PSF and a gravitational shear. Since the expectation value of ˆe0 is zero,
eobs yields an estimate of the reduced shearg, if the PSF anisotropy is corrected.
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