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Zusammenfassung
Auf der Baily-Borel-Kompaktifizierung einer Shimura-Varietät gibt es

zwei kanonische Komplexe von Garben: Den Schnittkohomologiekomplex
mittlerer Perversität und den L(2)-Komplex. Nach der von Looijenga und
Saper und Stern bewiesenen Zucker-Vermutung sind diese Komplexe quasi-
isomorph.

Ausgehend von Frankes Beweis der Borel-Vermutung konstruieren wir
eine Spektralsequenz, die den Halm der Kohmologiegarbe des L(2)-Komplexes
an einem Punkt berechnet. Durch eine einfache Anwendung der Vogan-
Zuckerman-Klassifikation unitärer Darstellungen mit Kohomologie und kom-
binatorischer Argumente, wie sie von Borel, Casselman, Saper und Stern
entwickelt wurden, zeigen wir die Verschwindungsaussagen, die den Schnit-
tkohomologiekomplex charakterisiert. Auf diese Weise erhalten wir einen
neuen Beweis er Zuckerschen Vermutung und darüber hinaus eine analytis-
che Beschreibung der Einschränkung des Schnittkohomologiekomplexes auf
ein Randstratum.

Summary
On the Baily-Borel-Compactification of a Shimura-Variety there are two

canonical complexes of sheaves: The intersection cohomology complex of
middle perversity and the L(2)-complex. Zucker’s conjecture as proved by
Looijenga and Saper and Stern states that they are quasi-isomorphic.

Using Frankes proof of the Borel-Conjecture, we construct a spectral se-
quence that computes the stalk cohomology of the L(2)-complexes at a point.
By an easy application of the Vogan-Zuckerman classification of irreducible
unitary representations with non-trivial cohomology and the application of
combinatorial arguments developped by Borel, Casselman, Saper und Stern,
we prove the vanishing assertions, that characterizes the intersection com-
plex. In this way we obtain a new proof of Zucker’s conjecture as well as
an analytic description of the restriction of the intersection complex to a
boundary stratum.
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0 Introduction

Let A denote the adèle ring of Q and Af its finite part. Let G be a connected
reductive group defined over Q. Let AG be the maximal Q-split torus in
the center of G and let AG = AG(R)+ the identity component of its real
points. We assume that AG coincides with the maximal central R-split
torus. Let K∞ be a maximal compact subgroup of G(R) and K ⊆ K∞ an
open subgroup. Let

(0.1) X = G(R)/AGK

be the symmetric space attached to these data. The group G(Q) is embedded
diagonally in G(A) and as such acts on the space

X× G(Af ) = G(A)/AGK

from the left. Let R denote the G(Q)-relation on X×G(Af ) and let R be its
closure. One is interested in the quotient space

(0.2) Sh = R\X× G(Af ),

the ”Shimura-Variety” attached to G and the particular choice of K. Clas-
sical examples are G = Gm/Q and G = Gl2/Q. In the first case AG = R>0

and with K = {1} one can identify X with {±1}. Hence (0.2) equals

Q×\{±1} × A×
f = Q×\A×/R>0

which is simply the idèle class group of Q divided by R>0. In the second
case AG = R>0 and with K = SO(2) one can identify X with C\R. Hence
(0.2) becomes

Gl2(Q)\(C\R)×Gl2(Af ).

The group G(Af ) acts on (0.2) from the right. For arithmetical applications
it is important to keep track of this action.

If X is a hermitian symmetric space (0.2) has a natural G(Af )-equivariant
compactification

(0.3) j : Sh ⊆ Sh∗,

its Satake-Baily-Borel-compactification, which has a natural G(Af )-equivariant
stratification

(0.4) Sh∗ =
⊔

O∈P∗

∂O Sh∗,

where P∗ is a certain set of standard rational parabolic subgroups O of G.
The strata ∂O Sh∗, O ∈ P∗, are called rational boundary components. The
space Sh appears on the right hand side of (0.4) as ∂G Sh∗.
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Let E be finite dimensional algebraic representation of G(C) and let E be
the associated automorphic local system on Sh. It carries a natural G(Af )-
action compatible with the action on Sh making it a G(Af )-equivariant sheaf.
Since the j : Sh ↪→ Sh∗ is canonical, the intersection cohomology sheaf
I •(E) as an object of the derived category of G(Af )-equivariant sheaves
on Sh∗ is interesting. Our aim is to find an expression of I •(E) in analyti-
cal terms.

The possibility of doing this was conjectured by Zucker in [Zuc83]. In the
rank one case Zuckers conjecture was proofed by Borel, see [Bor87]. Borel
and Casselman proofed it for groups of rank 2, see [BC85]. The first proofs
were given independently and by completely different methods in [SS90] and
[Loo88]. Later there were proofs by [LR91] and more recently in [Sap05].
Among other things we add a new proof this list.

Let us give an overview over this thesis.
In the first section we sketch the construction of Satake-compactifications

of Sh ⊆ Sh∗ which form a more general class of compactifications than the
Satake-Baily-Borel compactification. This is done mainly by straightfor-
ward passage to the limit over compact open subgroups of G(Af ) using
known results. We recall Zucker’s quotient map from the reductive Borel-
Serre compactification to a Satake compactification and use it to describe
convenient neighborhood basis for points in Sh∗.

In the second section we introduce, using the language of (g,K)-modules,
certain complexes

(0.5) A •
(2)(E)

of G(Af )-equivariant sheaves on Sh∗. Up to a simple twist (0.5) is G(Af )-
equivariantly isomorphic to a sub-complex of the direct image of deRham
complex of smooth E-valued differential forms on Sh. For technical rea-
sons we introduce logarithmic modifications A •

(2)±log(E) of (0.5) where the
weight condition are slightly relaxed in the (+ log)-case or strengthend in
the (− log)-case. Let us denote by A •

(2)+?(E), ? ∈ {+ log,− log, 0}, any one
of these complexes. We prove a local regularization result to be used later.

As a next step we study the restriction

(0.6) A •
(2)+?(E)|∂O Sh∗

to a fixed rational boundary component ∂O Sh∗. The first step is to express
(0.6) by means of an induction procedure. The second step then is to show
that we may pass to NO-invariants using Hodge theory. As a result we get:
0.7 Theorem: The restriction of A •

(2)+?(E) to ∂O Sh∗ is a possibly infinite
dimensional automorphic local system.

In the proof Theorem 0.7 we have to make a certain assumption (*). It
is fullfilled for example if K is maximal or even stronger if we assume G to
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be semi-simple and simply connected. As long as one is interested only in
Zucker’s conjecture this may be seem to be a weak assumption but in view
of possible applications to Shimura varieties in the sense of Deligne it would
be desirable to proceed without (*). We assume it from now on.

As a consequence of Theorem 0.7 we obtain the following generalization
of a Theorem of Nair.
0.8 Theorem: If Sh∗ is an equal-rank Satake-compactification there are
natural quasi-isomorphisms

A •
(2)−log(E) ↪→ A •

(2)(E) ↪→ A •
(2)+log(E).

of G(Af )-equivariant sheaves on Sh∗.

The complexes A •
(2)+?(E) are our candidates for the intersection coho-

mology sheaf I •(E).
The Levi component L of O contains a certain normal Q-subgroup Ll,

its ”link” or ”linear” factor. There is also a ”hermitian” factor L̃h ⊆ L such
that L is the almost direct product of L̃h and Ll. For a parbolic subgroup
R ⊆ Ll we set R̃ = RL̃hNO ⊆ G. We assume for the simplicity of this
introduction that Ll(R) is the full centralizer of ∂OX∗ inside L(R).

Passing to functions invariant under AO(R)+, where AO ⊆ LO is the
maximal central Q-split torus in the Levi component of O we reduce the
computation of the stalk of the local systems of Theorem 0.7 to weighted
cohomology of the link factor. Applying the main results of [Fra98] we
obtain.
0.9 Theorem: Let EG,Λ denote the representation of G(C) with highest
weight Λ ∈ ȟ+, where h ⊆ g is some Cartan subalgebra of g containing
aO. Let s ∈ ∂O Sh∗ and Os = s.Ll(Af ) be its right orbit under Ll(Af ).
Then there is a spectral sequence of Ll(Af )-modules converging to

(0.10) Hp+q(A •
(2)+log(EG,Λ)(Os)).

Its Ep,q1 -term is

(0.11)
⊕
{P}

rk({P})⊕
k=0

⊕
w

colim
t∈Mk,T,p

Jw,{P},τw,+

IndLl(Af )

Rt(Af )

(
H
p+q−l(w)
(mRt

,K∩Rt(R))(V (ut)⊗ EL,w(Λ+ρh)−ρh
)⊗ C−λt−ρRt

)
where w ∈W (hC, gC) is an element satisfying

(1) w−1α is positive for all positive roots α appearing in l
eRt,C,

(2)
λt = −w(Λ + ρh)|ǎO

fRt
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(3)
<(w(Λ + ρh)|a

fRt
) ∈ ǎO+

eRt
+ ǎG

O

(4)
λt = −w(Λ + ρh)|ǎO

fRt

and <(w(Λ + ρh)|aO
) ∈ +ǎO

0 .

For a proof of Zucker’s Conjecture it is not nessessary to understand
all the notation in the statement of Theorem 0.9 but let us at least try to
explain some of it here. The first sum is over associate classes of parabolics
in Ll whose rank is denoted by rk({P}). The third sum is explained in the
Theorem. The colimit is over a certain finite groupoid Mk,T,p

Jw,{P},τw,+ of cer-
tain triples t = (Rt, λt, . . .) whose morphisms encode the various functional
equations satisfied by the Eisenstein series used in the construction of the
spectral sequence in [Fra98]. The entry Rt is a parabolic Q-subgroup of Ll
satisfying a certain conditions depending on k and {P}. The space V (ut) is
a space of cusp forms on the Levi component of Rt. The group R̃t denotes
the unique parabolic subgroup of O containing the full hermitian factor of
L as explained above. The second entry λt in t denotes the point at which
a certain Eisenstein series is to be evaluated. Since certain infinitesimal
characters must match in order that the to give a non-trivial cohomology
class we get condition (2). The real part of λt has to lie in the closure of
the positive Weyl chamber of the link group. This condition gives condition
(3). The first condition comes out of Kostant’s Theorem on n-cohomology
applied to n

eRt
-invariants. Finally the fourth condition comes from a growth

condition on certain functions.
In any case, the direct sums and the colimit are finite. From a well-known

finiteness result for the space of cusp forms we infer thatH•(A(2)+log(E)(Os))
is an admissible Ll(Af )-module and consequently that the automorphic lo-
cal system of Theorem 0.7 is constructible. Finiteness also allows us, using
the previously mentioned regularization result, to show that A •

(2)+log(E) is
Verdier dual to A •

(2)−log(E
∨).

To prove Zucker’s Conjecture it remains to show that the Ep,q1 -term
vanishes provided

(0.12) p+ q + prkQ(R̃t) ≤
1
2

codimR(∂O Sh∗ ⊆ Sh∗).

In fact this estimate is somewhat better than needed. It implies in particular
that only cuspidal Eisenstein classes contribute in the critical dimension.
Since the E1-term vanishes iff

H
p+q−l(w)
(mRt

,K∩Rt(R))(V (ut)⊗ EL,w(Λ+ρh)−ρh
) = {0}

it suffices to prove the following abstract vanishing result.
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0.13 Theorem: Let R ⊂ Ll be rational standard parabolic subgroup. Let
F ⊆ Hp

n
eR
(E) be an irreducible L

eR
(C) submodule in degree p. Assume that

the lowest weight of F is of the form λ̃+ ρh with

(0.14) λ = λ̃|a
eR
∈ (−+ǎ

eR
) ∩ (ǎO+

eR
+ ǎO)

and that there exists an irreducible unitary (mR,KR)-module V such that

Hq
(mR,KR)(V ⊗ F ) 6= {0}.

If Sh∗ is the Satake-Baily-Borel-compactification of a hermitian locally sym-
metric space then (0.12) holds.

The prove uses the Vogan-Zuckerman classification of irreducible unitary
representation with cohomology and combinatorial results of Borel, Cassel-
man and Saper and Stern.

The result is that
I •(E) ∼= A •

(2)+?(E)

and consequently we may use Theorem 2.69 to obtain information about the
restriction I •(E)|∂O Sh∗ . Of course the spectral sequence need not converge
at E1. It does however if the highest weight of E is regular. If it does
not converge one may still use it to compute Euler characteristics or virtual
characters.

Let us recall some standard notation. Let P0 be a minimal Q-parabolic
subgroup of G and A0 be the maximal Q-split torus in the center of a Levi
component of P0. Let X∗(P0) be the group of rational characters of P0 and
X∗(A0) the group of rational cocharacters of A0. Set

ǎ0 = X∗(P0)⊗Z R

and
a0 = X∗(A0)⊗Z R.

A rational parabolic is called standard if it contains P0. Similarly define
for a pair (P,AP) of a standard rational parabolic P ⊃ P0 and a maximal
Q-split torus AP ⊇ A0 in the center of some Levi-component of P vector
spaces ǎP = X∗(P)⊗Z R and aP = X∗(AP)⊗Z R. Restriction of characters
from P to AP is one-to-one and identifies X∗(P) with a subgroup of finite
index in X∗(AP). We identify X∗(P)⊗Z R with X∗(AP)⊗Z R via this map.
The natural pairing X∗(A0)⊗Z X∗(A0)→ Z gives a canonical isomorphism
of ǎ0 with the dual of a0. In particular a0 is up to canonical isomorphism
independent of the chosen Levi decomposition. The same applies to aP for
any standard parabolic P ⊃ P0. Let us denote 〈 , 〉 the canonical pairing
between ǎP and aP. Restriction of characters from P to P0 induces a natural
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injection ǎP ↪→ ǎ0 that is split by the dual of the natural inclusion aP ↪→ a0

given by the inclusion AP ⊂ A0. We get a natural direct sum decomposition

ǎ0 = ǎP ⊕ ǎP
0 .

Similarly we have
a0 = aP ⊕ aP

0 .

These are orthogonal with respect to 〈 , 〉. In this way we identify aP etc.
as subspaces of a0 and similarly for ǎP. For another standard pair (Q,AQ)
we let aQ

P be the intersection of aP and aQ
0 in a0. Let g be the Lie algebra

of G(R). Denote by Φ0 ⊂ X∗(A0) ⊂ ǎ0 the system of roots in g. The pair
(Φ0, ǎ

G
0 ) is a root system. Let Φ̌0 ⊂ a0 be the dual root system. For α ∈ Φ0

there is a unique dual root α̌ ∈ Φ̌0. Let ∆0 ⊆ Φ0 be the set of simple
roots. For to rational parabolics R ⊇ P ⊇ P0 let ∆R

P be the set of those
simple roots α ∈ ∆0 which occur in the Lie algebra of the radical of P but
not in the Lie-algebra of the radical of R. For α ∈ ∆R

P we denote by α̌
the corresponding coroot and by {$R

α}α∈∆R
P

the base of ǎR
P dual to the base

of aR
P given by {α̌}α∈∆R

P
. Dually define $̌R

α ∈ aR
P . Write $α for $G

α. The

positive open Weyl chamber ǎR+
P is the open cone spanned by the $R

α for
α ∈ ∆R

P Denote by +ǎR
P ⊂ ǎR

P the open cone spanned by all α ∈ ∆R
P . Define

ǎR+
P and +ǎR

P ⊂ ǎR
P dually. The Weyl WR

P is the group of automorphisms of
ǎR

P generated by the reflections

sα(λ) = λ− 2
〈λ, α̌〉
〈α, α̌〉

α.

We let it operate trivially on the orthogonal complement of ǎR
P in ǎ0. It

operates in a natural way on ǎR
P . We simply write W for WG

P0
.

Recall the definition of the standard height function. Let V be the set of
places of Q and let A denote the its adèle group. Let P ⊆ G be a standard
Q-rational parabolic. For v ∈ V and p ∈ P(Qv) we define HP,v(p) ∈ aP by

(0.15) exp(〈χ,HP,v(p)〉) = |χ(p)|v

for every rational character χ of P. This is well defined since ǎP is spanned by
the rational characters of P. It is a group homomorphism and factorizes over
P(Q)NP(A)\P(A). IfKv is a good maximal compact subgroup of G(Qv)HP,v

can be extended be means of the Iwasawa decomposition G(Qv) = P(Qv)Kv

by setting
HP,v(gv) = HP,v(pv)

where gv = pvkv. This is well defined since HP,v(P(Qv) ∩Kv) is a compact
subgroup of aP and hence trivial. Since aP is abelian it depends only on the
choice of the conjugacy class of Kv and hence is independent of any choice
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for the infinite place. Let Kf = K2×K3×K5× . . . ⊂ G(Af ) be a fixed good
maximal compact subgroup of G. Define HP on G(A) by

HP(g) =
∑
v∈V

HP,v(gv).

Its dependence on the choice of K = K∞Kf will be suppressed for simplicity.
By definition and the product formula it factorizes over

P(Q)NP(A)\G(A)/K∞Kf .

The function HP can be computed from the action of G(A) on a suitably cho-
sen set of finite dimensional K-spherical representations, see [Fra98], proof
of Theorem 1.

The universal enveloping algebra of g is a C-algebra and denoted by
U(gC) or simply U(g).

If it exists, we denote by limD and colimD the categorial limit and colimit
over a small category D. Filtered (co-)limits, inductive limits and projective
limits are denoted by the same symbols.

If S is a topological space and B a basis for its topology, we use the
notion of a B-(pre-)sheaf as in [Gro60], §3.2.

The algebraic dual space of a vector space V will be denoted V ∨. If V
is a topological vector space we write V ′ for its topological dual.

If E and F are two locally convex spaces we denote by E⊗̂πF respectively
E⊗̂εF Grothendieck’s completed π- respectively ε-tensor products. If one
of the factors is nuclear we write ⊗̂ = ⊗̂π = ⊗̂ε instead.
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1 Satake Compactifications

We introduce Satake compactifications of symmetric spaces via spherical
representations as in [Cas97, §6]. The equivalence with Satakes original con-
struction is discussed in [Sap04]. See [BJ06] for examples. Our discussion of
the adelic Satake compactifications is similar to expositions in [Fra], [Oss07]
and [Roh96] for the case of the (reductive) Borel-Serre compactification. Let
G, AG, AG, K∞, K, X, R, R and Sh be as in the introduction.

1.1 Compactification of the symmetric Space

Let RP0 be a minimal real parabolic subgroup with unipotent radical N0.
We may assume that RL0(R) = RP0(R) ∩ θ(RP0(R)), where θ is the Cartan
involution associated to K∞ is, defined over R. Let RA0 be the maximal
R-split torus in the center of RL0.

Let Ra0 be the Lie algebra of RA0(R) and RaG+
0 the positive Weyl cham-

ber in it. Let W (Ra0, g) be the Weyl group generated by reflections about
α ∈ R∆0, the set of simple restricted roots.

A finite dimensional irreducible representation (π, V ) of G(R) is called
spherical if

V K = {v ∈ V |π(k)v = v for all k ∈ K} ⊆ V

is non-trivial. A spherical vector is a non-zero element of V K . Up to scalars
there is at most one spherical vector. Let h = t0 ⊕ Ra0 be a fundamental
θ-stable Cartan subalgebra of g and introduce a compatible ordering on the
set of roots of gC with respect to hC, e.g. by choosing a Borel subalgebra
of gC contained in Rp0,C = Lie(RP0(R))C. Let χ0 ∈ h∨C be the highest
weight of π. The Theorem of Cartan-Helgason, [Kna02], Theorem 8.49,
characterizes spherical representations by the vanishing of χ0|t and a certain
parity condition on the restricted highest weight λ0 = χ0|Ra0 . It implies
that there is up to R-equivalence a unique real structure on V such that π
is defined over R. Fix such a real structure and write V = V (R) for the set
of real points of V . Let

V = Vλ0 ⊕
⊕
λ6=λ0

Vλ

be the restricted weight decomposition of V with respect to the action of
Ra0. Let v be a spherical vector and write

v =
∑
λ

vλ

accordingly. The Iwasawa decomposition for G(R) implies vwλ0 ∈ Vwλ0−{0}
for all w ∈W (a0, g) since by [Kna02], Proposition 7.32, w has representative
in K. A triple (π, V, v) with (π, V ) a spherical representation and a spherical
vector v ∈ V K is called a spherical triple.
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Set xG = AGK ∈ X. Let
X+ ⊆ X

be a connected component of X. Since K∞ meets all connected components
of G(R) there is a class kK ∈ K∞/K such that x̃G = kxG ∈ X+ and the map

G(R)+K/AGK → X+

g 7→ kgk−1x̃G

is a diffeomorphism. A spherical triple (π, V, v) yields a smooth map

ι : X+ → P(V )
kgk−1x̃G 7→ [π(g)v].

It maps x̃G ∈ X+ to the line generated by v and is independent of the
particular choice of v. Call a spherical triple (π, V, v) admissible if π is non-
trivial on every non-compact R-simple factor of G. If (π, V, v) is admissible,
ι is one-to-one. In this case the closure of ι(X+) ⊂ P(V ) is called the Satake
compactification of X+ ⊆ X. Let us denote it by X+. Let X be the disjoint
union of X+ where X+ runs through π0(X). The natural action of G(R) on
X is continuous and leaves X fixed.

The strategy for analyzing the connected components X+ is to use affine
coordinates of P(V ) corresponding to the hyperplane

vλ0 +
⊕
λ6=λ0

Vλ ⊂ V − {0}

in conjunction with the Cartan decomposition of KRA0(R)+K of G(R)+K.
Here RA0(R)+ is the image of the closure of the positive Weyl chamber in
Ra0 under the exponential mapping. For example the action of a ∈ RA0(R)+

is given by

a.xG = [π(a)v] = v0 +
∑
λ6=λ0

∏
α∈R∆0

e−〈λ0−λ,$̌α〉〈α,log(a)〉vλ

where log denotes the inverse of exp: Ra0 → RA0(R)+. We recall that
($̌α)α∈R∆0 is the basis of Ra0 dual to the basis R∆0 of Rǎ0. The behavior of
a.xG as a varies is governed by the factors

e−〈λ0−λ,$̌α〉〈α,log(a)〉.

There are uniquely determined non-negative integers mα such that

λ0 − λ =
∑

α∈R∆0

mαα.

Define the support of λ to be the set

supp(λ) = {α ∈ R∆0| mα > 0} = {α ∈ R∆0| mα 6= 0} ⊆ R∆0.
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Set
δ = {α ∈ R∆0| sαλ0 6= λ0}.

A subset κ ⊆ R∆0 is said to be δ-connected if κ∪ δ is connected as a subset
of the Coxeter graph. Equivalently κ ∪ {λ0} is connected as a subset of the
inner product space Rǎ0.

The following proposition gives a rough description of the possible re-
stricted weights of V that turns out to be sufficient for the study of Satake
compactifications.
1.1 Proposition (Satake): Let λ be a restricted weight of Ra0 on V . Then
supp(λ) ⊆ R∆0 is δ-connected. Conversely every δ-connected subset of R∆0

is the support of some weight of V .

A subset θ ⊆ R∆0 is called δ-saturated if it cannot be enlarged without
enlarging its δ-connected component κ(θ). Under the action of G(R) the
space X decomposes into a disjoint union of G(R) orbits one for each δ-
saturated subset of R∆0. The orbit X corresponds to R∆0.

A real parabolic subgroup O ⊆ G is called δ-saturated (resp. δ-connected)
if it is conjugate to a standard parabolic O′ such that R∆0 − R∆O′ is a
δ-saturated (resp. δ-connected). For any real parabolic subgroup O let
Oκ ⊆ O be the unique parabolic such that the associated subset of R∆0 is
the δ-connected component of the set associated to O. In particular O is
δ-connected iff Oκ = O.

Let O be a δ-connected parabolic subgroup, LO(R) = O(R) ∩ θO(R) the
unique θ-stable Levi-component of O and AO ⊆ LO the maximal R-split
torus in LO. Let X be an element of the positive Weyl chamber aG+

O . Then

vO = lim
n→∞

e−n〈λ0,X〉π(enX)v ∈ V

exists and defines a point [vO] ∈ X. The boundary component

∂OX ⊆ X

is the orbit of [vO] under the action of O(R). It is easy to see that ∂OX is
contained in the set NO(R)-fixed points in X. Hence the action of O(R) on
∂OX induces an action of LO. An element g ∈ G(R) induces a bijection

g : ∂OX→ ∂gOg−1X.

The orbit decomposition of X is refined by the decomposition into so called
(real) boundary components It turns out that the union

X =
⊔
O

∂OX

where O runs through the set of all δ-saturated parabolics in G is disjoint.
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It follows that the stabilizer of ∂OX ⊆ X in G(R) is O(R). The actions
of NO and AO on ∂OX are trivial and MO acts transitively on ∂OX. The
closure of ∂OX is the union of all ∂O1X such that Oκ1 ⊆ Oκ, i.e.

∂OX =
⊔
O1

Oκ1⊆Oκ

DO1 .

It agrees with the set of fixed points of NO(R) on X.
As it turns out the construction is hereditary. More precisely set VO =

V NO and let πO be the representation of LO = O/NO on VO. Then vO ∈ V KO
O

and ∂OX is the image of LO(R)/KO in an affine subspace of P(V ) isomorphic
to P(VO). In general the representation of LO(R) on VO will be trivial on
some simple non-compact real factor of LO(R) and ∂OX will only be the
symmetric space of a suitable quotient of LO.

1.2 Compactification of the locally symmetric Space

A real boundary component ∂OX ⊆ X is called geometrically rational if O

is defined over Q and if there is a normal Q-subgroup LO,l ⊆ LO such that
LO,l(R) is normal and cocompact in

LO(R)l := Ker(LO(R)→ P Gl(VO))

This determines LO,l up to Q-simple R-anisotropic factors.
The Satake compactification X is called geometrically rational if the

closure of every classical Siegel S ⊂ X as defined in [Bor69] meets only geo-
metrically rational boundary components. The definition guarantees that
for every boundary component ∂OX met by S the image of O(R) ∩ Γ in
Aut(∂OX∗) is arithmetic. In [Cas97] Casselman gives a criterion for a spher-
ical representation to be geometrically rational involving only the Q-index
of G. It is a result of Baily and Borel, [BB66], Lemma 4.5, that the class of
Satake compactifications corresponding to the Baily-Borel compactification
in the hermitian case is geometrically rational. This result was extended
to cover most equal-rank Satake compactifications by Saper in [Sap04]. A
Satake compactification is equal-rank if the real boundary components ∂OX

are equal-rank symmetric spaces.
Assume geometric rationality from now on. Boundary components ∂OX

met by the closure of Siegel sets are called rational and are written as ∂OX∗.
For every ∂OX∗ make some fixed choice of LO,l ⊂ LO. Then LO,h = LO/LO,l

is a semi-simple adjoint Q-group.
Let P be the set of rational parabolic subgroups of G and let P∗ be the

subset of those that appear as normalizers of rational boundary components.
Let

X∗ =
⊔

O∈P∗

∂OX∗
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be the disjoint union of all rational boundary components. Consider this for
the moment equipped with the topology of the disjoint union. In [Cas97] it is
proven that P∗ consists precisely of the G(Q)-conjugates of rational standard
parabolic subgroups that are δ-saturated real parabolic subgroups.

It is well known that for an arithmetic subgroup Γ ⊂ G(Q) one may
choose a classical Siegel domain S ⊆ X and elements γ1, . . . , γn ∈ G(Q) such
that

F =
n⋃
i=1

γiS,

is a fundamental domain for Γ. In particular ΓF = X.
1.2 Theorem (Satake): Fix some arithmetic subgroup Γ ⊂ G(Q) and let F

be a fundamental domain for Γ as above. Then there exists a unique topology
on X∗ such that

(1) The topology induced on the closure F∗ of F in X∗ is the usual topology
on F∗ as a subset of P(V ).

(2) The group Γ acts as a group of homeomorphisms on X∗.
(3) If x and x′ are in different Γ-orbits then there exist neighborhoods

U 3 x and U ′ 3 x′ such that ΓU ∩ U ′ = ∅.
(4) If x ∈ X∗ is a point and Γx ⊂ Γ is its isotropy group then there is a

Γx invariant neighborhood U 3 x such that γU ∩ U 6= ∅ implies γ ∈ Γx for
all γ ∈ Γ.

This topology on X∗, the Satake topology, is Hausdorff and does not
depend on the particular arithmetic subgroup Γ and F used in its definition.
The quotient space Γ\X∗ is compact and Hausdorff.

By definition the space Γ\X∗ is the Satake compactification of Γ\X with
respect to the representation (π, V, v). Recall that G(Q)\G(Af )/Kf is finite
by [PR94], Theorem 5.1. Let us define the Satake compactification of

Sh(Kf ) = G(Q)\(X× G(Af ))/Kf .

The inclusion G(R) ⊂ G(A) yields a natural homeomorphism⊔
[h]∈G(Q)\G(Af )/Kf

G(Q) ∩ hKfh−1\X
∼=→ Sh(Kf )

(G(Q) ∩ hKfh−1)gAGK 7→ G(Q)AG(g, h)KKf .

Identifying Sh(Kf ) with the right hand side of (1.2) we define the Satake
compactification of Sh(Kf ) as

Sh(Kf )∗ :=
⊔

[h]∈G(Q)\G(Af )/Kf
G(Q) ∩ hKfh−1\X∗.

It is a Theorem of Zucker, [Zuc83], that Sh(Kf )∗ is a quotient of the
reductive Borel-Serre compactification. Let us briefly recall how the latter

20



is constructed. Let O ∈ P and qO : O � LO be the Levi quotient. Set
ZO = q−1

O (AO) ⊃ NO and let

∂OX∧ = X/ZO

be the quotient space. For O ⊆ P we have ZP ⊆ ZO and there is a canonical
quotient map

π̂P,O : ∂PX∧ � ∂OX∧.

Let
X∧ =

⊔
O∈P

∂OX∧

be disjoint union (of topological spaces). For O ∈ P let

X∧(O) =
⊔

O⊆P∈P

∂PX∧ ⊆ X∧

and set
π̂O = tO⊆P∈P π̂P,O : X∧(O) � ∂OX∧.

This is a continuous map. One has π̂O = π̂P,Oπ̂O and X∧(O) ⊇ X∧(P) for
O ⊆ P. For x ∈ X∧ let O(x) be the unique rational parabolic such that
x ∈ ∂O(x)X

∧. There is a unique extension of the G(Q)-action on X to an
action on X∧ with the property that

π̂γOγ−1(γx) = γπ̂O(x)

for all O ∈ P and x ∈ X. Indeed, write x ∈ ∂OX∧ as x = π̂O(y) for some
y ∈ X and set for any γ ∈ G(Q) set γx := π̂γOγ−1(γy) = π̂G,γOγ−1(γy). This
is well defined since γZOγ

−1 = ZγOγ−1 and is clearly the unique action with
the required properties. Let

R = R ∪∞.

and define a function

dO : X∧(O)→ aO =
∏
α∈∆O

R$α

as follows:
dO(x) = HO,∞(o) +

∑
α∈∆O(x)

∞ ·$α

where o ∈ O is such that πG,O(x)(o.XG) = x. The function dO is well defined
since HO,∞ vanishes on O ∩ K. Let O ∈ P, V ⊆ ∂OX∧ an open set and
T > D be a real number. Set

U∧(O, T, V ) = {x ∈ X∧(O)|〈α, dO(x)〉 > T, α ∈ ∆O, π̂O(x) ∈ V }
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It is clear that any element of X∧ is contained in some U∧(O, T, V ). If

x ∈ U∧(O1, T1, V1) ∩ U∧(O2, T2, V2)

and x ∈ ∂OX∧ let T be the maximum of T1 and T2 and

V = ∂OX∧ ∩ U∧(O1, T1, V1) ∩ U∧(O2, T2, V2).

Then V is open and

x ∈ U∧(O, T, V ) ⊆ U∧(O1, T1, V1) ∩ U∧(O2, T2, V2).

Define a topology on X∧ by letting U ⊆ X∧ be open iff for any x ∈ U there
are O, T , V as above such that x ∈ U∧(O, T, V ) ⊆ U .
1.3 Lemma: Let O ∈ P. Then

(1) The sets X and X∧(O) are open in X∧ and the complement ∂X∧ of
X is closed.

(2) The set U∧(O, T, V ) is open.
(3) The action of G(Q) on X∧ is continuous.
(4) The action of O on ∂OX∧ is continuous.
(5) X∧ is Hausdorff and contains X as an open dense subset.

The proof is easy.
For Kf ⊂ G(Af ) the reductive Borel-Serre compactification of Sh(Kf ) is

the quotient space

Sh(Kf )∧ = G(Q)\X∧ × G(Af )/Kf .

1.4 Theorem (Borel, Serre, Zucker): The space

Sh(Kf )∧ = G(Q)\X∧ × G(Af )/Kf .

is a compact Hausdorff space containing Sh(Kf ) as an open dense subspace.

To treat the various Satake compactifications and the reductive Borel-
Serre compactification on the same footing let ? stand for either ∗ or ∧.
Clearly Sh(Kf ) = Sh /Kf since the G(Q) left action commutes with the
G(Af ) right action. Given compact open subgroups Kf

1 ⊂ Kf
2 there is a

canonical quotient map

Sh(Kf
1)? � Sh(Kf

2)?

extending a similar map Sh(Kf
1) � Sh(Kf

2). Hence (Sh(Kf )?)Kf is a projec-
tive system of compact Hausdorff spaces. Its projective limit

lim
Kf

Sh(Kf )?,
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is a compact Hausdorff space receiving a canonical map from Sh. We will
see that this gives the desired compactification Sh? of Sh. We need another
description. Let R? ⊂ (X? × G(Af ))2 be the graph of the G(Q)-relation on
X? × G(Af ) and let R? be its closure. Let

Sh? = R
?\(X? × G(Af ))

be the quotient space of X? × G(Af ) by R?.
The following Theorem is probably well-known. It extends Proposi-

tion 2.1.10 in [Del79] to Satake compactifications.
1.5 Theorem: There is a canonical homeomorphism

Sh? ∼=→ lim
Kf

Sh(Kf )?.

The space Sh? is a compact Hausdorff space. The closure R? of the G(Q)
relation on X?×G(Af ) may be described as follows: Let (x, g), (x′, g′) ∈ X?×
G(Af ) be two points. Denote by Z?

x = {γ ∈ G(Q)|γx = x} the stabilizer of x
and by Z?

x ⊂ G(Af ) its closure in G(Af ). Then (x, g)R?(x′, g′) if and only if
there are elements γ ∈ G(Q) and m ∈ Z?

x such that (x′, g′) = (γx, γmx).

Theorem 1.5 is probably well-known. It extends Proposition 2.1.10 in
[Del79] to all Satake-compactifications and the reductive Borel-Serre com-
pactification.

Since we mostly consider a fixed Satake compactification we write Zx
instead Z∗x for simplicity.
Proof: The proof is straightforward. Assume ? = ∗ and let us proceed in
several steps.

(Step 1) The space Sh∗ is compact. It suffices to show that there is a
compact set F ⊂ X∗×G(Af ) such that G(Q)F = X∗×G(Af ). Since R∗ ⊆ R∗

this implies
R
∗[F] = X∗ × G(Af )

where R[F] denotes the R∗-saturation of F. Fix a compact open subgroup
Kf ⊂ G(Af ). Let gi ∈ G(Af ), 1 ≤ i ≤ n, be a set of representatives for
G(Q)\G(Af )/Kf . Let

F∗i ⊂ X∗

be a compact fundamental domain for the action of

Γi = G(Q) ∩ giKfg−1
i

on X∗ as in Theorem 1.2. Set

F =
⋃
i

F∗i × giKf .
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Let (y, h) ∈ X∗ × G(Af ) be some point. There are an index 1 ≤ i ≤ n and
elements δ ∈ G(Q) and k ∈ Kf such that h = δgik. Furthermore because
F∗i is a fundamental domain for Γi there are γ ∈ Γi and x ∈ Fi such that
y = δγx. Hence

(y, h) = (δγx, h) = δ(γx, gik) = δγ(x, gig−1
i γ−1gik) ∈ G(Q)F

since g−1
i γ−1gik ∈ Kf .

(Step 2) The space lim Sh(Kf )∗ is Hausdorff since its diagonal can be
written as

∆lim Sh(Kf )∗ =
⋂
Kf
p−1

Kf (∆Sh(Kf )∗).

(Step 3) Existence of the map f . Let Kf ⊂ G(Af ) be some compact open
subgroup. Then there is a canonical quotient map

fKf : Sh∗ � Sh∗ /Kf =: Sh∗(Kf ) = Sh(Kf )∗

since in the presence of the Kf -relation the difference between R and its
closure R disappears, i.e.

R ◦RKf = R
∗ ◦RKf

where RKf denotes the Kf -relation and ”◦” denotes the composition of rela-

tions. For Kf
1 ⊆ Kf

2 these maps satisfy fKf2
= π

Kf1
Kf2
◦fKf1

. Hence a continuous
map

f = lim fKf : Sh∗ → lim Sh∗(Kf ).

(Step 4) The map f is onto. This follows immediately from the following
well-known fact from general topology, see [Roh96], Lemma 1.8.
1.6 Lemma: Let (Xα, παβ ) and (Yα, π

ρ
β) be two projective systems of topo-

logical spaces with Xα compact and Yα Hausdorff for every index α. Let
X = lim Xα and Y = lim Yα. Let fα : Xα → Yα be a compatible system
of continuous maps such that every fα is onto with non-empty compact fi-
bres. Then the limit map f = lim fα is continuous with non-empty compact
fibres.

(Step 5) The map f is injective and the relation R is given as in the
theorem. Indeed let Kf

n ⊂ G(Af ), n ∈ N, form a basis of neighborhoods of
the unit element. Let s,s′ ∈ Sh∗ be two points such that fKfn

(s) = fKfn
(s′)

for every n ∈ N. In terms of representatives (x, g),(x′, g′) ∈ X∗ × G(Af ) of s
and s′ this means that there is a sequence of γn ∈ G(Q) and kn ∈ Kf

n such
that

(x′, g′) = (γnx, γngkn)

for every n. Rewrite this as

γ1(x, g′′) = (x′, g′) = (γnx, γngkn) = γ1(µnx, µnk′ng)
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with g′′ = γ−1
1 g′, µn = γ−1

1 γn and k′n = gkng
−1 ∈ gKf

ng−1. From this
we see that µn ∈ Zx and µnk

′
n = g′′g−1. Since the sets gKf

ng−1 form a
neighborhood base of the identity, the series of the µn ∈ Zx converges to
g′′g−1. Now set

m = lim
n
µn = g′′g−1 ∈ Zx.

Then
(x′, g′) = γ1(x,mg)

and this implies (x′, g′)R∗(x, g) or s = s′ and f is injective as claimed. On
the other hand we already know f to be onto and hence the closure of the
G(Q)-relation cannot be bigger than claimed.

(Step 6) The map f is a homeomorphism. By the preceding steps there
is a canonical continuous bijection

f : Sh∗ → lim Sh∗(Kf ),

the space Sh∗ is compact and lim Sh∗(Kf ) is Hausdorff. Hence f is an
homeomorphism.

Note that by the description of R? the right action of G(Af ) on X? ×
G(Af ) induces a right action of G(Af ) on Sh?. For every standard parabolic
subgroup O ∈ P? we set

∂O Sh? = R
?\R?(∂OX? × G(Af )) = R

?\(∂OX? × G(Af )).

1.7 Corollary: (1) The set B? of open subsets of Sh? that are invariant
from the right under some compact open subgroup of G(Af ) is a basis for the
topology of Sh?.

(2) If the point s ∈ Sh? is represented by (x, g) ∈ X? × G(Af ) then its
stabilizer Zs is the closed subgroup g−1Zxg ⊆ G(Af ).

(3) We have
Sh? =

⊔
O

∂O Sh?

or in other words Sh∗ is the disjoint union of the spaces ∂O Sh∗ where O ∈ P∗

runs through the set of standard δ-saturated rational parabolic subgroups.
(4) The canonical map Sh→ Sh? identifies Sh with the open dense subset

∂G Sh? ⊆ Sh?. In particular the set B = B∗∩Sh of open sets in Sh invariant
from the right under some compact open subgroup is a basis for the topology
of Sh.

(5) The quotient mapping p : X? × G(Af ) � Sh? is an open mapping.
Similarly its restriction

p|∂OX?×G(Af ) : ∂OX? × G(Af ) � ∂O Sh?

is open.
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Proof: (1) results from the description of Sh? as projective limit and (2)
from the explicit description of the equivalence relation in the theorem. (3)
is implied by the similar assertion about X? and the fact that every rational
parabolic subgroup is conjugate by some γ ∈ G(Q) to a standard parabolic
subgroup. (4) follows from the existence of arbitrarily small neighborhoods
invariant under some compact open subgroup Kf and the analogous fact for
the classical Satake compactifications which is an immediate consequence of
Theorem 1.2. (5) is a consequence of the description of R? in Theorem 1.5.
Indeed, let V × Ω be a basic open subset. Then its R?-saturation is⋃

x∈V
G(Q)({1} × Z?

x)(V × Ω).

which is visibly open.

1.3 Zucker’s Quotient Map

Recall that in [Zuc83], 3.7-3.10, Zucker constructs a continuous G(Q)-equi-
variant surjection p : X∧ � X∗ extending the identity mapping X → X.
Furthermore p is compatible with the stratifications, i.e.

p−1(∂OX∗) =
⋃

P⊆O

∂PX∧

where P runs through all elements of P contained in O whose δ-saturation
is O and the diagrams

∂PX∧

bπP,Q

��

p

$$HH
HH

HH
HH

H

∂OX∗

∂QX∧
p

::vvvvvvvvv

commute for all rational parabolics P∗ 3 O ⊃ P ⊃ Q whose δ-saturation is
O.
1.8 Theorem: There is a unique quotient map q : Sh∧ � Sh∗ extending
the identity map on Sh.

Proof: There can be at most one such map since Sh is dense in Sh∧ and
Sh∗ is Hausdorff. For the existence note that p : X∧ � X∗ induces a natural
continuous G(Q)-equivariant surjection p′ = p×1: X∧×G(Af ) � X∗×G(Af ).
Equivariance implies that R∧ ⊆ (p′ × p′)−1(R∗) and consequently

R
∧ ⊆ (p′ × p′)−1(R∗) ⊆ (p′ × p′)−1(R∗).
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Hence p gives rise to a natural continuous surjection q : Sh∧ � Sh∗ which
is automatically a quotient map since Sh∧ and Sh∗ are compact Hausdorff
spaces.

For an open set V ⊆ ∂OX∗ set

U∗(O, T, V ) = image of U∧(O, T, (p|∂OX∧�∂OX∗)−1(V )) in X∗

where p : X∧ � X∗ is the map constructed by Zucker. From the construction
of p it follows that the image of U∧(P, T, V ) in X∗ is U∗(O, T, π̂−1

O,P(V )) where
O ⊃ P is the δ-saturation of P and π̂O,P : ∂OX∧ � ∂PX∧ is the projection
map. It is easily checked that these sets satisfy the conditions to be a
neighborhood base for a uniquely determined topology on X∗. This topology
will in general be different from the Satake topology on X∗. So let us write
X̃∗ for it.
1.9 Proposition: The product topology on X̃∗ × G(Af ) induces the Satake
topology on the quotient space Sh∗.

Proof: In the commutative diagram

X∧ × G(Af )
p′

//

π

��

X∗ × G(Af )

ρ

��

Sh∧ q
// Sh∗

all maps are continuous and onto. The maps π, q, ρ are quotient maps. Let
s ∈ ∂O Sh∗ be represented by (x, g) ∈ ∂OX∗ × G(Af ). Let s ∈ U ⊆ Sh∗ be
some subset containing s. We have to show that ρ−1(U) is a neighborhood of
(x, g) in X∗×G(Af ) iff an only if it contains some set of the form U∗(O, T, V )×
Ω with x ∈ V ⊂ ∂OX∗, T > 0 and Ω chosen appropriately.

To see this assume that every point (x, g) of ρ−1(U) contains a set of
the form U∗(O, T, V ) × Ω. Then any point in (ρ ◦ p′)−1(U) contains a set
U∧(O, Ṽ , T )× Ω where Ṽ ⊆ ∂OX∧ is the preimage of V under the quotient
mapping p|∂OX∧ : ∂OX∧ � ∂OX∗. It follows (ρ ◦ p′)−1(U) is open. Since it
equals (q ◦ π)−1(U) and q ◦ π is a quotient mapping U is also open in Sh∗.

Conversely assume that U is a neighborhood of s ∈ ∂O Sh∗. Then (q ◦
π)−1(U) is a neighborhood of (q ◦ π)−1({s}). Hence (q ◦ π)−1({s}) can be
covered by sets U∧(Pi, Vi, Ti)×Ωi ⊆ (q ◦ π)−1(U) for i in some indexing set
I where Oκ ⊆ Pi ⊆ O, Vi ⊆ ∂PiX

∧ open, Ti > 0 and Ωi ⊆ G(Af ) is an open.
Since q−1({s}) ⊆ Sh∧ is compact there are finitely indices i = 1, . . . , N ∈ I
such that the images of U∧(Pi, Vi, Ti)×Ωi cover q−1({s}). Since the quotient
maps ∂PiX

∧ × G(Af ) � ∂Pi Sh∧ are open we may replace Vi, i = 1, . . . , N
by the larger open set

Ṽi = pr∂Pi
X∧×G(Af )�∂Pi

Sh∧ R
∧[Vi × Ωi]) ⊆ ∂PiX

∧.
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Having done this the sets U∧(Pi, Ṽi, Ti) × Ωi also cover (q ◦ π)−1({s}) and
are contained in (q ◦ π)−1(U). Replacing Pi by O and Ṽi by its preimage
under the map π̂O,Pi : ∂OX∧ � ∂PiX

∧ we see that

(q ◦ π)−1({s}) ⊆
N⋃
i=1

U∧(O, π̂−1
O,Pi

(Ṽi), Ti)× Ωi ⊆ (q ◦ π)−1(U)

Now setting V =
⋂N
i=1 π̂

−1
O,Pi

(Ṽi), T = maxNi=1{Ti} and Ω =
⋂N
i=1 Ωi we find

that
(q ◦ π)−1({s}) ⊆ U∧(O, V, T )× Ω ⊆ (q ◦ π)−1(U)

or
σ−1({s}) ⊆ U∗(O, V, T )× Ω ⊆ σ−1(U).

Hence σ−1(U) is open in X̃∗ × G(Af ).
1.10 Corollary: (1) Let x ∈ ∂OX∗, x′ ∈ ∂O′X

∗, g ∈ G(Af ) and let Kf ⊂
G(Af ) be an open compact subgroup. Then there exist neighborhoods x ∈
V ⊆ ∂OX∗ and x′ ∈ V ′ ⊆ ∂O′X

∗ and a real number T such that for all
γ ∈ G(Q)

γ(U∗(O, V, T )× gKf ) ∩ (U∗(O′, V ′, T )× gKf ) 6= ∅

implies γO′γ−1 = O. In particular γ ∈ O(Q) ∩ gKfg−1 if O = O′.
(1) If x ∈ ∂OX∗ and Kf ⊂ G(Af ) is compact then there exists a neigh-

borhood x ∈ V ⊆ ∂OX∗ and a real number T such γ ∈ G(Q) and

γ(U∗(O, T, V )× gKf ) ∩ (U∗(O, T, V )× gKf ) 6= ∅

implies γ ∈ Zl(Q) ∩ gKfg−1 where Zl is the preimage of Ll in O.

Proof: (1) By the preceding Proposition it suffices to produce some neigh-
borhoods U ∈ X∗ and U ′ ∈ X∗ of x and x′ such that γ(U×Kf )∩(U ′×Kf ) 6= ∅
implies γO′γ−1 = O. Let Γ = G(Q)∩Kf . If x and x′ are in the same Γ-orbit
we are done. Otherwise there exist by Theorem 1.2(3) neighborhoods U ′

and U ′ such that ΓU ∩ U ′ = ∅ and this implies

γ(U ×Kf ) ∩ (U ′ ×Kf ) = ∅

for all γ ∈ G(Q).
(2) is proved analogously using Theorem 1.2(4).
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2 Weighted L2-Cohomology

2.1 Basic Sheaves and Modules

Let (E, σ) be an irreducible finite dimensional algebraic representation of
G(C) in a complex vector space E. By irreducibility AG acts on E by a
character ζE which is nessecarily rational since AG is Q-split. Let

p : G(A)/AGK → Sh

be the projection. For an open set U ⊆ Sh let

(2.1) E(U) = {s : p−1(U)→ E locally constant|s(γg) = σ(γ)s(g)}

where the transformation rule is assumed to hold for all γ ∈ G(Q). This
defines a sheaf E on Sh - the automorphic local system associated to E.
2.2 Proposition ([Oss07]): Let H ⊆ G(Af ) be a closed subgroup, S be a
locally compact space on which H acts continuously on right and F a sheaf
of complex vector spaces on S. Then the following assertions are equivalent:

(1) The group H acts continuously on the left on the étale space |F | π→ S
such that for all s ∈ S, h ∈ H and f ∈ Fs

π(hf) = sh−1.

(2) For h, h1 ∈ H there is an isomorphism of sheaves

T (h) : F → h∗F

such that T (hh1) = T (h)T (h1) and for all open sets V ⊂ U ⊆ S with V ⊂ U
compact and all sections s ∈ F (U) there is an open compact subgroup K of
H with VK ⊆ U and T (k)(s|V ) = s|V k−1 for all k ∈ K.

If F satisfies one of these conditions then it said to be an H-equivariant
sheaf on S.

One easily checks that

T (h) : E(U)→ (h∗E)(U) = E(Uh−1)

mapping s(·) to s(·h) makes E a G(Af )-equivariant sheaf. Let ζ ∈ ǎG,
let U ⊆ Sh be open and C(ζ)(U) the space of locally constant C-valued
functions on U . With the G(Af )-action given by

T (h) : C(ζ)(U)→ C(ζ)(Uh−1)

f 7→ e〈ζ,HG(h)〉f(·h)

C(ζ) becomes a G(Af )-equivariant sheaf on Sh. If F is any G(Af )-equivariant
sheaf on Sh let

(2.3) F (ζ) = F ⊗ C(ζ)
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be the twisted sheaf.
Recall that a U(g)-module V together with a K-action is called (g,K)-

module if
(a) K acts locally finite, i.e. every v ∈ V lies in a finite dimensional

K-invariant subspace on which K acts smoothly and
(b) the actions of g and K are compatible, i.e. the action of k ⊆ g on V

is the differentiation of the K-action on V and Ad(k)(D)(k.v) = k(D.v) for
all D ∈ U(g) and all k ∈ K.

A morphism of (g,K)-modules is linear map that commutes with the
actions of U(g) and K.

For a (g,K)-module V one defines the a complex of vector space

(C•
(g,K)(V ), d)

by setting
Cp(g,K)(V ) = HomK(Λp(g/k), V )

and for η ∈ Cp(g,K)(V ) and

dη(X0, . . . , Xp) :=
p∑
i=0

(−1)iXi(η(X0, . . . , X̂i, . . . , Xp))+∑
i<j

(−1)i+jη([Xi, Xj ], X0, . . . X̂i, . . . , X̂j . . . , Xp).

Here the Xi ∈ g are lifts of Xi + k. The differential d is well-defined since
[k, k] ⊆ k, we consider only K-equivariant linear mappings η and the differen-
tiation of the K-action on V agrees with the k-action. The equation d2 = 0
follows from the Jacobi identity for g and (XY − Y X)v = [X,Y ]v for all
v ∈ V and X,Y ∈ g. The formation of (C•

(g,K)(V ), d) is functorial in V and
commutes with direct limits of (g,K)-modules. The (g,K)-cohomology of
V is the cohomology H•

(g,K)(V ) of the complex (C•
(g,K)(V ), d). It commutes

with direct limits as well. The zeroth (g,K)-cohomology space is

V (g,K) = {v ∈ V |Xv = 0, kv = v for all X ∈ g, k ∈ K}.

We shall also need for a g-module V the associated Chevalley-Eilenberg
complex

C•
g (V ) = C•

(g,{e})(V ).

Its cohomology is denoted by H•
g (V ).

For applications it is preferable to work with a slightly smaller complex
than the full (g,K)-complex to be defined as follows. Set

mG = gder + k.
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where gder = [g, g] ⊆ g is the derived algebra of g. This subalgebra of g

stable under Ad(K) and equals the orthogonal complement of a0 = Ra0 in
g. Now define

(2.4) C•
(mG,K)(V ) = HomK(Λ•(mG/k), V )

in the same way as before.
The category of (g,K)-modules is complete. The kernel of a morphism is

the kernel of the underlying linear map. The product of a family of (g,K)-
modules is the space of K-finite elements in the usual product of vector
spaces. The existence of arbitrary limits allows one to define sheaves of
(g,K)-modules on a topological space in the usual way.

For U ∈ B let
S(U)

be the space of K-finite smooth functions on the preimage in G(Q)AG\G(A)
of U . With the usual actions of g and K by (infinitesimal) right translations
S(·) is a B-presheaf of (g,K)-modules on Sh. Right translation by h ∈ G(Af )
defines an isomorphism

T (h) : S(U)→ (h∗S)(U) = S(Uh−1).

It is easy to see that the sheaf associated to S is G(Af )-equivariant. By the
Poincaré Lemma, the map

E(U)→ C0
(mG,K)(S(U)⊗ E)→ C•

(mG,K)(S(U)⊗ E)

s 7→ (g 7→ σ(g∞)−1s(g))

induces an G(Af )-equivariant quasi-isomorphism E→ C•
(mG,K)(S ⊗ E).

An admissible weight function is a smooth function

ρ : G(Q)AG\G(A)/Kf → (0,∞)

with the property that for every D ∈ U(g) there exists a constant cD > 0
such that

(2.5) |(Dρ)(g)| < cDρ(g)

holds for all g ∈ G(A). For such a weight function, there exists a neighbor-
hood U of the identity in G(A) such that

(2.6)
1
2
ρ(gh) < ρ(g) < 2ρ(gh)

holds for g ∈ G(A) and h ∈ U . Two admissible weight functions ρ and ρ′ are
called equivalent, written ρ ∼ ρ′, if there are positive constants c, C such that
cρ′ ≤ ρ ≤ Cρ′. By (2.6) all admissible weight functions are equivalent if Sh
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is compact. Otherwise there are many weight functions by Proposition 2.7
below. For real numbers D we define Siegel-like sets

S(D) = {g ∈ G(A)|〈α,H0(g)〉 > D for all α ∈ ∆0}.

It follows from reduction theory that we may find some D << 0 such that
G(Q)S(D) = G(A). We will often assume some D with this property chosen
and fixed. For any other standard parabolic subgroup P ⊃ P0 and and any
real number T > D we set

S(P, D, T ) = {g ∈ S(D)|〈α,HP(g)〉 > D for all α ∈ ∆0 −∆P
0 }.

2.7 Proposition ([Fra98], Proposition 1): For every λ ∈ ǎG
0 there exists up

to equivalence a unique admissible weight function ρλ whose restriction to
S(D) is equivalent to exp(〈λ,H0(.)〉). There is up to equivalence only one
admissible weight function satisfying this condition. In addition ρλ may be
assumed to satisfy the following condition: If D has been fixed as above, then
there exists a real number T such that

ρλ(ng) = ρλ(g)

where P = MAN is a standard parabolic subgroup, n ∈ N(A), and g ∈
S(P, D, T ).

As a warning, we note that ρ0 denotes the half sum of positive roots as
well as the weight function corresponding to λ = 0.

For U ∈ B and ρ an admissible weight function let

(2.8) Sρ(U) ⊆ S(U)

be the subspace of functions f ∈ S(U) such that for any left invariant
differential operator D ∈ U(g) there is a constant CD,f depending only on
D and f such that

(2.9) |(Df)(g)| ≤ CD,f · ρ(g)−1ρρ0(g)

for all g in the preimage W ⊆ G(Q)AG\G(A) of U . For a finite set S ⊂ K̂ of
K-types let Sρ(U)S be the subspace of functions whose translates under K
span a finite dimensional representation of K that decomposes into a finite
sum of irreducible representations lying in S. The space Sρ(U)S is a Fréchet
space with seminorms

pρ,D,U (f) = sup
g∈W
|(Df)(g)|ρ(g)ρρ0(g)−1.

Give
Sρ(U) = colim

S⊂bK
Sρ(U)S

32



the direct limit locally convex topology.
Fix some λ ∈ ǎG+

0 , let ρλ be as in Proposition 2.7 with ρλ ≥ 2 and set

wn = (log ρλ(g))n

for every n ∈ Z. The functions wn are admissible weight functions. Using
the Leibniz rule one easily sees that the product of any admissible weight
function ρ with wn is again admissible. Set

Sρ−log(U) = lim
n
Sρwn(U) (intersection)

and
Sρ+log(U) = colim

n
Sρwn(U) (union)

and equip them with the limit respectively colimit locally convex topologies.
Let j : Sh ↪→ Sh∗ be the inclusion map. Let here and in the following ?

denote an element of {− log, 0,+ log}. Let

Sρ+? = Sheaf(j∗Sρ+?)

be the sheaf on Sh∗ associated to the presheaf j∗Sρ+?. The sheaves Sρ+?

are G(Af )-equivariant sheaves of locally convex (g,K)-modules. Since Sh∗

is compact

(2.10) Sρ+?(Sh∗) = Sρ+?(Sh).

2.2 Borel’s Regularization Result

For any open set U ⊂ Sh∗ let us endow

(2.11) Γc(U,Sρ−1−?) = Γc(U, j∗Sρ−1−?) = colim
L⊂U

ΓL(U, j∗Sρ−1−?)

the direct limit locally convex topology where of course L ⊆ U runs through
the directed set of compact subsets of U .

Let S ′
ρ+? be the sheaf associated to the B∗-presheaf

B∗ 3 U 7→ colim
S⊆bK

(Γc(U,Sρ−1−?)
′)S.

Integration against the fixed quotient measure dg on G(Q)AG\G(A) yields
an inclusion

(2.12) Sρ+? ⊂ S ′
ρ+?.

We want to show that it induces a quasi-isomorphism

C•
(mG,K)(Sρ+? ⊗ E) ∼= C•

(mG,K)(S
′
ρ+? ⊗ E)
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with coefficients in any finite dimensional representation E of G(C). To this
end we need a suitably localized version of Theorem 2.5 in [Bor83]. This was
known in some form to Borel but never published, see [Bor83], introduction,
and [BC85], §3.

Recall that a Polish space is a separable complete metrisable topological
space. A Suslin space is a locally convex space such that there exists a Polish
locally convex space mapping onto it. Separable Fréchet spaces are Suslin
and the class of Suslin space is stable under closed subspaces, arbitrary lim-
its, inductive limits and the formation of the strong dual. A locally convex
space is called quasi-complete if all its closed bounded sets are complete.

Fix some norm | · | on g. Let

S′0
ϕ0→ S′1

ϕ1→ S′2
ϕ2→ · · ·

be an inductive system of quasi-complete nuclear Suslin spaces with K-
action such that every element of S′i lies in some finite dimensional K-
invariant subspace. Assume that there exists a descending sequence Ui of
connected open neighborhoods of K ⊆ G(R) such that KUiK = Ui. Assume
that for every g ∈ Ui there is a linear continuous map

πi(g) : S′i → S′i+1

satisfying

a: For all k ∈ K and f ∈ S′i

ϕi(kf) = πi(k)f.

b: For all g ∈ Ui, h ∈ Ui+1 with hg ∈ Ui and all f ∈ S′i

ϕi+1(πi(hg)f) = πi+1(h)πi(g)f.

c: For X ∈ g and f ∈ S′i the limit

πi(X)f :=
d

dt
πi(exp(tX))f

∣∣∣∣
t=0

∈ S′i+1,

exists and for every continuous seminorm µ on S′i there exists a con-
tinuous semi norm ν on S′i and ε > 0 such that

µ
(
exp(X)if − f −Xif

)
≤ |X|ν(f)

for all f ∈ S′i and |X| < ε.

¿¿From these conditions it follows easily that

ϕi+1πi(X)m = πi+1(X)ϕi(m)
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and g acts on
S′ = colim

i
S′i

which gets the structure of a (g,K)-module in this way. Let α ∈ C∞
c (Ui) be

Ad(K)-finite. Then the integral1

πi(α)f =
∫
Ui

α(g)πi(g)f dg

preserves K-finiteness and defines a linear continuous map from S′i to S′i+1.
Let (Si)∞i=0 ⊆ (S′i)

∞
i=0 be an inductive subsystem consisting of quasi-complete

nuclear Suslin spaces with K-action such that the embedding Si ⊆ S′i is
continuous and πi(Ui)Si ⊆ Si+1. Assume that condition c holds for the
system (Si)∞i=0 and set S = colimi Si. For g ∈ Ui define an operator

θi,g : Hom(Λpg, S′i)→ Hom(Λpg, S′i+1)

by

(θi,gη)(X1, . . . , Xp) = πi(g)η(Ad(g)−1X1, . . . ,Ad(g)−1Xp) ∈ S′i+1.

Similarly for X ∈ g define

θX,i : Hom(Λpg, S′i)→ Hom(Λpg, S′i+1)

by

(θX,iη)(X1, . . . , Xp) = πi(X)ηi(X1, . . . , Xp)−∑
k

ϕi(η(X1, . . . , [X,Xk], . . . , Xp)).

Define differentials

di : Hom(Λpg, S′i)→ Hom(Λp+1g, S′i+1)

by

(diη)(X0, . . . , Xp) =
∑
k

πi(Xk)ηi(X0, . . . , X̂k, . . . , Xp)+∑
k<l

(−1)k+lϕi(η([Xk, Xl], X0, . . . , X̂k, . . . , X̂l, . . . , Xp)).

1 The integral is to be understood in the sense of Pettis, see Definition 3.26 in [Rud91].
In the situations we consider its existence follows in some cases from [Rud91] Theorem 3.27.
More generally one can invoke [Sch73] to see that the locally convex spaces we consider are
in fact all Suslin and [Tho75] where Pettis-integrals of functions with values in complete
Suslin spaces are considered.
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If one defines operators

iX : Hom(Λpg, S′i)→ Hom(Λp−1g, S′i)

by
(iXη)(X1, . . . , Xp−1) = η(X,X1, . . . , Xp−1)

then

(2.13) θi,Xη = iXdiη + diiXη

holds in Hom(Λpg, S′i).
Assume that the exponential map is one-to-one on a neighborhood of

the the support of α and let ln : supp(α) → g denote its inverse. Define
operators

Ei,α : Hom(Λpg, S′i)→ Hom(Λp+1g, S′i+1)

by

(2.14) Ei,αη =
∫
Ui

α(g)
∫ 1

0
θi,et ln(g)iln(g)ηdtdg.

If α ∈ C∞
c (Ui+1) is Ad(K)-finite with∫

Ui

α(g)dg = 1

equation (2.13) implies that

(2.15) ϕi+1(θi,αη − ϕiη) = di+1Ei,αη + Ei+1,αdiη.

The prove of equation 2.15 uses Fubini’s Theorem and the fundamental The-
orem of calculus. In our situation (complete nuclear Suslin spaces) every
weakly Pettis integrable function is automatically automatically Lebesgue-
Bochner integrable by Theorem 7 and its Corollary in [Tho75]. The funda-
mental Theorem of Calculus follows from the definition of the Pettis integral,
the Hahn-Banach Theorem and the complex valued case for continously dif-
ferentiable functions from elementary calculus.
2.16 Proposition: Let E be a finite dimensional representation of G(C).
Assume that πi(α)S′i ⊆ Si+1 for all Ad(K)-finite α ∈ C∞

c (Ui),

Ei,αC
•
g (S′i ⊗ E) ⊆ C•

g (S′i+1 ⊗ E)

and similarly for Si. Then the inclusion S ⊆ S′ induces an isomorphism in
(g,K)-cohomology with coefficients in E.

36



Proof: We claim that the inclusion S ⊆ S′ induces an isomorphism

(2.17) H•
g (S ⊗ E) ∼= H•

g (S′ ⊗ E).

The inductive systems S′i = S′i⊗E and S′i = Si⊗E satisfy our assumptions
from above. Hence we assume E to be trivial. Let

η ∈ C•
g (S′)

satisfy dη = 0. Since Hom(Λ•g, ·) commutes with direct limits we may
assume that η is the image of

ηi ∈ C•
g (S′i)

satisfying dηi = 0. Formula (2.15) implies

ϕi+1(θi,αηi − ϕi(ηi)) = di+1Ei.αηi

for a suitable α ∈ C∞
c (Ui). Since by assumption θi,αηi ∈ C•

g (Si+1) this
implies that (2.17) is onto. Similarly let

η ∈ C•
g (S′)

such that there exists µ ∈ C•
g (S′) with dµ = η There exist representatives

µi ∈ C•
g (S′i) and ηi+1 ∈ C•

g (S′i+1) such that diµi = ηi+1. Applying (2.15) to
µi one finds

ϕi+2ϕi+1ηi+1 = di+2(ϕi+1θi,αµi − Ei+1,αηi+1) ∈ C•
g (Si+3)

for a suitable α ∈ C∞
c (Ui+1). This finishes the proof of (2.17). The argument

given by Borel in the proof of part (ii) of Theorem 2.5 in [Bor83] now carries
over to our situation without change.

Let Vi ∈ B∗, i ∈ N0, be a neighborhood base of s ∈ Sh∗ such that
Vi+1 ⊂ Vi. Let Wi be the preimage of Vi ∩ Sh in G(Q)\G(A). Define locally
convex spaces with K-action by

Sρ,i = j∗Sρ(Vi)

and
S′ρ,i = colim

S⊂bK
(Γc(Vi, j∗Sρ−1)′)S

where the last space carries the topology of the K-finite elements in the
strong topological dual of Γc(Vi, j∗Sρ) as in (2.11). Restriction makes (Sρ,i)∞i=0

an inductive continuously embedded subsystem of (S′ρ,i)
∞
i=0. On both sys-

tems K acts by right translations.
By our assumption on Vi there is a neighborhood Ui of K in G(R) such

that KUiK = Ui and Wi+1UiUi ⊆ Wi. Replacing Ui by
⋂i
j=0 Ui we may
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assume that the Ui form a descending sequence. Let f ∈ S′ρ,i and g ∈ Ui.
Define πi(g)f by the composition

C∞
c (Wi)′

Rg−→ C∞
c (Wig

−1)′
·|Wi+1−→ C∞

c (Wi+1)′.

In this way S′ρi form an inductive system of which Sρ,i is a continuously
embedded subsystem. It has the properties a.-c. as described before the
statement of Proposition 2.16. Set Sρ,s = colimi Sρ,i and S′ρ,s = colimi S

′
ρ,i.

2.18 Proposition: The inclusion (Sρ,i)∞i=0 ⊆ (S′ρ,i)
∞
i=0 satisfies the condi-

tions of Proposition 2.16. It defines isomorphisms

H•
(g,K)(Sρ,s ⊗ E) ∼= H•

(g,K)(S
′
ρ,s ⊗ E)

and
H•

(mG,K)(Sρ,s ⊗ E) ∼= H•
(mG,K)(S

′
ρ,s ⊗ E)

with coefficients in every finite dimensional representation E of G(C).

Proof: It follows easily from (2.14) that Ei,αSρ,i ⊆ Sρ,i+2 and Ei,αS
′
ρ,i ⊆

S′ρ,i+2 provided α ∈ C∞
c (Ui+1).

It remains to show that πi(α)S′ρ,i ∈ Sρ,i+1 for all Ad(K)-finite α ∈
C∞
c (Ui). Let f ∈ S′ρ,i+1. There exist finitely many differential operators

Dj ∈ U(g) such that

|f(ψ)| ≤ max
j
‖Djψ|L2,ρ−1(Wi)‖

for all ψ ∈ ΓK(Vi, j∗Sρ−1) where Vi+1 ⊆ K ⊆ Vi is compact. Since ρ
is admissible, there exists A > 0 such that ρ(g)−1 ≤ Aρ(gh)−1 for all h ∈
supp(α). For β ∈ C∞(Ui) with supp(β) ⊆ supp(α) and every φ ∈ C∞

c (Wi+1)

‖πi(β̌)φ|L2,ρ−1(Wi)‖2 =
∫
Wi

∣∣∣∣∣
∫

G(R)
φ(gh)β(h−1)dh

∣∣∣∣∣
2

ρ(g)−2dg

≤ A2‖β|L1‖
∫

G(R)

∫
Wi

|φ(gh)|2ρ(gh)−2d(gh)|β(h−1)|dh

≤ A2‖β|L1‖2‖φ|L2,ρ−1(Wi+1)‖2.

This implies

|Dπi(α)f(φ)| ≤ max
j
‖Djπi(α̌)D∗φ|L2,ρ−1(Wi)‖

≤ max
j
‖πi(((Dj)rDα)∨)φ|L2,ρ−1(Wi)‖

≤
(
Amax

j
‖(Dj)rDα|L1(Ui)‖

)
‖φ|L2,ρ−1(Wi+1)‖
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for any φ ∈ C∞
c (Wi+1). It follows that Dπi(α)f(φ) extends uniquely to a

continuous linear functional on L2,ρ−1(Wi+1). By the Riesz representation
theorem there exists fα,D ∈ L2,ρ such that

Dπi(α)f(φ) =
∫
Wi+1

fD(g)φ(g) dg

for all φ ∈ C∞
c (Wi+1). For D = 1 ∈ U(g) the function fα,1 ∈ L2,ρ is in

fact representable by a K-finite smooth function in Sρ,i+1. This shows that
πi(α)f ∈ Sρ,i+1 as claimed.

2.19 Theorem: The inclusion (2.12) induces a quasi-isomorphism

C•
(mG,K)(Sρ+? ⊗ E)→ C•

(mG,K)(S
′
ρ+? ⊗ E)

for every finite-dimensional representation E.

Proof: Since (mG,K)-cohomology commutes with direct limits, the ques-
tion is local. For ? = 0

Sρ,s = colim
i

Sρ,i

and
S ′
ρ,s = colim

i
S′ρ,i

and the assertion follows from Proposition 2.18. In case that ? = ± log
express the stalks as

Sρ−log,s = colim
i

lim
n
Sρwn,i

and
Sρ+log,s = colim

i
colim
n

Sρwn,i

and similarly for the primed spaces. The assertion follows now from the
passage to the (co-)limit.
2.20 Proposition (Zucker): Every open covering of Sh∗ (or Sh∧) has a
subordinate smooth partition of unity with bounded differentials, i.e. for any
function ϕ of this partition of unity and any differential operator D ∈ U(g)
there is some constant CD such that |Dϕ(s)| ≤ CD for all s ∈ Sh.

Proof: Any open covering of Sh? may refined by a finite B?-covering
(Ui)ni=1. Let Kf

i ⊆ G(Af ) be an open compact subgroup fixing Ui. If we
set Kf =

⋂
Kf
i then the open sets (Ui/Kf )ni=1 cover Sh?(Kf ). In this situa-

tion it is proved in [Zuc83], proof of Proposition 4.4, that there is a partition
of unity with bounded differentials. Pulling it back to Sh? we get the result
in the adelic setting.
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2.21 Corollary: The sheaves Sρ+?, S ′
ρ+? are fine. The complexes

C•
(mG,K)(Sρ+? ⊗ E)

and
C•

(mG,K)(Sρ+? ⊗ E)

consist of fine sheaves.

Proof: The sheaves Sρ+? and S ′
ρ+? are are modules over the sheaf of

continuous functions on Sh∗ restricting to smooth functions on Sh whose
differentials with respect to any D ∈ U(g) extend to continuous functions
of Sh∗. By Proposition 2.20 this is a soft sheaf of rings with unity and the
result follows from standard facts from sheaf theory.
2.22 Corollary: The map (2.12) induce isomorphisms

H•
(mG,K)(Sρ+?(Sh)⊗ E) ∼= H•

(mG,K)(S
′
ρ+?(Sh∗)⊗ E).

for every finite dimensional representation E.

Proof: This follows from equation (2.10), Theorem 2.19, Corollary 2.21
and an application of the hypercohomology spectral sequence to the cone

Cone(H•
(mG,K)(Sρ+?))⊗ E → C•

(mG,K)(S
′
ρ+? ⊗ E)).

2.3 Restriction to the Boundary

Let ∂O Sh∗ ⊆ Sh∗ a rational boundary component. Since O will be fixed
from now on we will omit the index O if possible, i.e. we will write L instead
of LO, Ll instead of LO,l and so forth. Set KO = K ∩O(R). Let BO be the
set of open subsets of

lim
Kf

O(Q)\X× G(Af )/Kf

that are invariant under some compact open subgroup of G(Af ). For U ∈ BO

let Ũ be its preimage in O(Q)AG\O(R)× G(Af ). Denote by

Sρ,O(U)

be the space of smooth KOKf -finite functions f on Ũ such that for every
D ∈ U(o) there exists a constant CD,f ≥ 0 such that

(2.23) |(Df)(g)| ≤ CD,fρρ0(g)ρ(g)−1.

Set
Sρ+log,O(U) = colim

n∈Z
Sρwn,O(U)

40



and
Sρ−log,O(U) = lim

n∈Z
Sρwn,O(U).

It is easy to see that U 7→ Sρ+?,O(U) is a BO-presheaf of (o,KO)-modules
with respect to the natural actions of o and KO. Set

Sh∗(O) = (lim
Kf

O(Q)\X× G(Af )/Kf ) t ∂O Sh∗

with the topology defined by glueing along the natural projection

lim
Kf

O(Q)\X× G(Af )/Kf � ∂O Sh∗ .

Let
j′ : lim

Kf
O(Q)\X× G(Af )/Kf ↪→ Sh∗(O)

denote the inclusion and let
Sρ+?,O

be the the sheaf of (o,KO)-modules on Sh∗(O) associated to the presheaf
j′∗Sρ±log,O. It is a G(Af )-equivariant sheaf of (o,KO)-modules on Sh∗(O).
Let

κ : Sh∗(O)→ Sh∗

denote the natural mapping and let

κ′ : lim
Kf

O(Q)\X× G(Af )/Kf → Sh

be its restriction. Since κ commutes with the G(Af )-action

κ∗(Sρ+?,O)

is a G(Af )-equivariant sheaf of (o,KO)-modules. There is a canonical homo-
morphism

Sρ+? → κ′∗Sρ+?,O

of presheaves of (o,KO)-modules on Sh induced by restricting functions on
G(Q)AG\G(A) to functions on O(Q)AG\O(R) × G(Af ). Hence a canonical
homomorphism

j∗Sρ±log → j∗κ
′
∗Sρ±log,O = κ∗j

′
∗Sρ±log,O → κ∗Sρ±log,O

which by the universal property of the associated sheaf and adjunction gives
a canonical homomorphism

(2.24) κ∗Sρ+? → Sρ+?,O

of G(Af )-equivariant sheaves of (o,KO)-modules on Sh∗(O).
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Recall that the restriction functor from the category of (g,K)-modules
to the category of (o,KO)-modules has a right adjoint functor

Ind(g,K)
(o,KO) : 〈(o,KO)−Mod〉 ⇒ 〈(g,K)−Mod〉.

To ease notation let us write Ind for this functor in the following. It can be
described as follows: For a (o,KO)-module W let Ind(W ) be the space of
functions f : K →W satisfying

(2.25) k1f(k) = f(k1k)

for all k1 ∈ KO and whose right translates

(kf)(·) = f(· k)

for k ∈ K span a finite dimensional subspace on which K acts smoothly.
Define an action of X ∈ g on Ind(W ) by

(Xf)(k) = Xo(f(k)) +
d

dt
f(ketXk)

∣∣∣∣
t=0

where X = Ad(k)−1Xo +Xk with Xo ∈ o and Xk ∈ k is some decomposition.
The action is well-defined by (2.25) and together with right translation by
elements of K turns Ind(W ) into a (g,K)-module. Evaluation at the unit
element is a homomorphism

εW : Ind(W ) → W

f 7→ f(e)

of (o,KO)-modules. One easily checks that for every (g,K)-module V

Hom(g,K)(V, Ind(W )) � Hom(o,KO)(V,W )
ϕ 7→ ψφ = εw ◦ ϕ

ψϕ(v)(k) = ψ(k−1v) ← ψ

are natural inverse bijections.
It follows from the finiteness condition in its definition that Ind commutes

with direct limits. Being right adjoint it is clear that Ind commutes with
arbitrary limits. In particular Ind transforms sheaves of (o,KO)-modules to
sheaves of (g,K)-modules and (2.24) induces a canonical homomorphism

κ∗Sρ+? → IndSρ+?,O

of G(Af )-equivariant sheaves of (g,K)-modules on Sh∗(O). Induction com-
mutes with passage to the stalk.
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2.26 Proposition: The canonical homomorphism

κ∗Sρ+? → Ind(g,K)
(o,KO)(Sρ+?,O)

restricts to an isomorphism

(2.27) Sρ+?|∂O Sh∗
∼= Ind(g,K)

(o,KO)(Sρ+?,O)|∂O Sh∗

of G(Af )-equivariant sheaves of (g,K)-modules over the boundary stratum
∂O Sh∗. In particular for every s ∈ ∂O Sh∗ there is a canonical isomorphism

(2.28) Sρ+?,s
∼= Ind(g,K)

(o,KO)(Sρ+?,O,s).

of (g,K,Zs)-modules.

Proof: Let
ε : Sρ,s → Sρ,O,s

be the map obtained from the canonical homomorphism

κ∗Sρ → Sρ,O

by passage to the stalk at s. It is a homomorphism of (o,KO,Zs)-modules.
To prove the proposition for ? = 0 it suffices to show that for every (g,K)-
module V the natural map

Hom(g,K)(V,Sρ,s) ↔ Hom(o,KO)(V,Sρ,O,s)
ϕ 7→ ψϕ(v) = ε ◦ ϕ

ϕψ(v)(g, h) = ψ(kv)(o, h) ← ψ

where g = ok ∈ O(R)K = G(R) is a bijection. More precisely ϕψ is defined
as follows: Let g = ok be an Iwasawa decomposition of g and v in V . Let
fψ,v,k be an Kf -invariant representative of ψ(kv). Let (x, g) represent s,
U ⊂ ∂OX∗ a bounded neighborhood of x and T a large real number. Let

(2.29) W ∗(O, T, U) ⊆ O

be the preimage of U∗(O, T, U)∩X. We may assume fψ,v,k to be defined on

O(Q)AG\O(Q)W ∗(O, T, U)× gKf

By choosing T larger, V and Kf smaller we may assume by Corollary 1.10
that the natural map

O(Q)AG\O(Q)(W ∗(O, T, U)K × gKf )/Kf →
G(Q)AG\G(Q)(U∗(O, T, U) ∩ X× gKf )/Kf
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is one-to-one. Here we view U∗(O, T, U) ∩ X as a subset of G(R). Now let
ϕψ(v) be the the image in Sρ+?,s of the function

G(Q)AG(U∗(O, T, U) ∩ X× gfKf ) → C
γ(g, gfkf ) 7→ fψ,v,k(δo, δgfkf )

where we choose δ ∈ O(Q), o ∈ O(R), kf ∈ Kf and k ∈ K such that

δ(ok, gf lf ) = γ(g, gfkf ).

The germ ϕψ(v) satisfies the estimates in (2.9) because it satisfies (2.23) and
U is bounded. This is a well-defined function whose germ depends only on
ψ and v. One checks that v 7→ ϕψ(v) is a homomorphism of (g,K)-modules
and that ψϕψ = ψ and ϕψϕ = ϕ. The cases ? = ± log follow by passage to
the limit.

The inclusion o ∩mG ⊆ mG induces natural isomorphisms

Λ•o/kO
∼= Λ•g/k

as well as
Λ•(o ∩mG)/kO

∼= Λ•mG/k.

One can show that for every finite-dimensional representation E of G(C)
and every (o,KO)-module W the map εW : Ind(W ) → W induces natural
isomorphisms

C•
(g,K)(Ind(g,K)

(o,KO)(W )⊗ E) ∼= C•
(o,KO)(W ⊗ E)

and
C•

(mG,K)(Ind(g,K)
(o,KO)(W )⊗ E) ∼= C•

(o∩mG,KO)(W ⊗ E)

of cochain complexes. Passage to cohomology yields natural (Frobenius
reciprocity) isomorphisms

(2.30) H•
(g,K)(Ind(g,K)

(o,KO)(W )⊗ E) ∼= H•
(o,KO)(W ⊗ E)

and
H•

(mG,K)(Ind(g,K)
(o,KO)(W )⊗ E) ∼= H•

(mG∩o,KO)(W ⊗ E).

For a sheaf V of (g,K)-modules on a topological space let us denote by

H •
(mG,K)(V )

the cohomology sheaves of the complex C•
(mG,K)(V ).

2.31 Corollary: There is a canonical Frobenius reciprocity morphism

H •
(mG,K)(κ

∗Sρ+? ⊗ E)→H •
(o∩mG,KO)(Sρ+?,O ⊗ E)

of G(Af )-equivariant sheaves on Sh∗(O) that restricts to a canonical isomor-
phism

H •
(mG,K)(Sρ+?|∂O Sh∗ ⊗ E) ∼= H •

(o∩mG,KO)(Sρ+?,O|∂O Sh∗ ⊗ E)

on ∂O Sh∗.
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2.4 Hodge Theory in N-Direction

Let U ⊆ ∂O Sh∗ be open and f ∈ Sρ+?,O(U). Then for every X ∈ n the
function Xf is again an element of Sρ+?,O(U) and we get a natural action
of n on the sheaf Sρ+?,O. Let

S n
ρ+?,O ⊆ Sρ+?,O

be the subsheaf of n-invariant sections.
2.32 Proposition: For every finite dimensional representation F of O the
inclusion

(2.33) S n
ρ+?,O ⊂ Sρ+?,O

induces a quasi-isomorphism

C•
(o∩mG,KO)(S

n
ρ+?,O|∂O Sh∗ ⊗ F ) ⊂ C•

(o∩mG,KO)(Sρ+?,O|∂O Sh∗ ⊗ F )

of complexes of G(Af )-equivariant sheaves of vector spaces on ∂O Sh∗, i.e.
the induced map on the cohomology sheaves

H p
(o∩mG,KO)(S

n
ρ+?,O|∂O Sh∗ ⊗ F ) ∼= H p

(o∩mG,KO)(Sρ+?,O|∂O Sh∗ ⊗ F )

is an G(Af )-equivariant isomorphism.

Proof: It is clear that the inclusion (2.33) induces a G(Af )-equivariant ho-
momorphism of the cohomology sheaves. This reduces us to a local problem.
Let s ∈ ∂O Sh∗ be a point. Let

K = Sρ+?,O,s/S
n
ρ+?,O,s = (Sρ+?,O/S

n
ρ+?,O)s

be the quotient (o,KO)-module. We have to show that H•
(o∩mG,KO)(K⊗F ) =

0. Looking at the E2-term of the Hochschild-Serre spectral sequence

Ep,q2 = Hp
(mL,KO)(H

q
n(K ⊗ V ))⇒ Hp+q

(o∩mG,KO)(K ⊗ F )

one sees that it suffices to show thatH•
n(K⊗F ) vanishes. Since n is nilpotent

F n 6= 0.

The long exact sequence in n-cohomology associated to

0→ F n → F → F/F n → 0

and induction on the dimension of F shows that we may assume F to be
the trivial one dimensional representation of n. Assume this from now on.
Let

{1} = N0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ Nl = N
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be the ascending central series for N , i.e. Ni is the preimage in N of the
center of N/Ni−1. All Ni are connected algebraic subgroups of N defined
over Q. If we set ni = Lie(Ni) then

{0} = n0 ⊂ n1 ⊂ n2 ⊂ . . . ⊂ nl = n

is an Ad(N)-stable filtration of n. Then

S n
ρ+?,O,s ⊆ S

nl−1

ρ+?,O,s ⊆ . . . ⊆ S n1
ρ+?,O,s ⊆ Sρ+?,O,s

is an ascending sequence of N -modules. Hence it suffices to show that the
inclusions

S
ni+1

ρ+?,O,s ⊆ S ni
ρ+?,O,s

induce an isomorphism in n-cohomology. Since ni acts trivially on both sides
using the Hochschild-Serre spectral sequence again for the normal subalge-
bra ni+1/ni ⊂ n/ni it suffices to show that it induces an isomorphism on
ni+1/ni-cohomology. Since ni+1/ni-cohomology commutes with direct limits
it suffices to show that the inclusion

Sρ+?,O(O(Q)AG\O(Q)W ∗(O, T, V )× gKf/KO)Kf ,ni+1 ⊆

Sρ+?,O(O(Q)AG\O(Q)W ∗(O, T, V )× gKf/KO)Kf ,ni

induces an isomorphism on ni+1/ni-cohomology for every compact open sub-
group Kf ⊆ Kf . This inclusion is split in an ni+1/ni-equivariant way by

σ? : f 7→
∫
Ni+1/(gKfg−1∩Ni+1(Q))Ni

f(n.)dn.

Hence it suffices to show that the ni+1/ni-cohomology of the module

K? = Ker(σ?)

vanishes. Let ν1, . . . , νn be an orthonormal basis of ni+1/ni with respect to
some fixedKO-invariant inner product and set ∆ = −

∑
ν2
i . Then ∆ induces

the zero endomorphism on the ni+1/ni-cohomology of every ni+1/ni-module
since ∆, having zero constant term, acts by zero on the trivial ni+1/ni-
module C. Hence to show that the ni+1/ni-cohomology of K? vanishes it
suffices to show that ∆ is an automorphism of K?. Let L ⊃ K? be the
space of smooth KO-finite and Kf -invariant functions on

O(Q)AG\O(Q)W ∗(O, T, V )× gKf

such that ∫
Ni+1/(gKfg−1∩Ni+1(Q))Ni

f(n.)dn = 0.
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We claim that ∆ is invertible on L and that ∆−1(K?) ⊆ K?. Indeed we
will write down the inverse ∆−1 explicitly using Fourier series as follows.
Let Γ ⊂ G = ni+1/ni be the preimage of (gKfg−1 ∩ Ni+1(Q))Ni/Ni under
the exponential mapping exp: G

∼=→ Ni+1/Ni. The function

(ν, o) 7→ f(exp(ν)o, g)

is a Γ-invariant, KO-finite and smooth function on G × W ∗(O, T, V ). Its
Fourier expansion is

f(exp(ν)o, g) =
∑
χ∈Γ′

cχ(f, o) exp(i〈χ, ν〉)

where
cχ(f, o) =

∫
Γ\G

f(exp(ν)o, g) exp(−i〈χ, ν〉)dν

is the χ’s Fourier coefficient and the sum runs over all elements of the lattice

Γ′ = {χ ∈ G′|χ(Γ) ⊂ 2πZ}.

We want to compute the coefficient cχ(∆f, o). For the vector field νi we get

cχ(νif, o) =
∫

Γ\G
(νif)(exp(ν)o, g) exp(−i〈χ, ν〉)dν

=
d

dt

∫
Γ\G

f(exp(ν + tAd(o)νi)o, g) exp(−i〈χ, ν〉)dν

∣∣∣∣∣
t=0

=
d

dt
exp(it〈χ,Ad(o)νi〉)

∣∣∣∣
t=0

cχ(f, o)

= i〈Ad(o)′χ, νi〉 · cχ(f, o).

Since the νi are an orthonormal basis of G we find

cχ(∆f, o) =
∑
i

〈Ad(o)′χ, νi〉2cχ(f, o) = ‖Ad(o)′χ|G′‖2cχ(f, o).

Hence if all zeroth Fourier coefficients c0(f, o), o ∈ W ∗(O, T, V ), vanish we
may set

cχ(∆−1f, o) =
cχ(f, o)

‖Ad(o)′χ|G′‖2
for all χ 6= 0

c0(∆−1f, o) = 0.
(2.34)

This defines a function ∆−1f ∈ L since a function on a torus is smooth
precisely if its Fourier coefficients are rapidly decaying and the euclidian
product on G was chosen in a KO-invariant way so that ∆ and ∆−1 commute
with the action of KO.
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For k ∈ Z let Lk ⊂ L be the space of functions f ∈ L that satisfy
(2.23) for k and all A ∈ U(ni+1). We claim that ∆−1 preserves Lk. Indeed
it follows from (2.34) that

cχ(f, o) = ‖Ad(o)′χ|G′‖−2lcχ(∆lf, o)

for all l ∈ N and χ 6= 0. If we assume V to be bounded then by the definition
of W ∗(O, T, V ) there is a constant C such that

1
‖Ad(o)′χ|G′‖

≤ C

‖χ|G′‖
.

Recall that we may assume after enlarging T if necessary that the weight
functions ρτ , ρρ0 and wk are N -invariant from the left. Assuming this we
estimate for every l such that 2l + 2 > dim(G)

|∆−1f(o, g)| ≤
∑
χ6=0

|cχ(∆−1f, o)|

=

∑
χ6=0

1
‖Ad(o)′χ|G′‖2l+2

 |cχ(∆lf, o)|

≤

∑
χ6=0

C2l+2

‖χ|G′‖2l+2

 max
n∈N
|∆lf(no)|

≤ (C2l+2 · C∆l,f ) ·max
n∈N

ρτ (no)−1ρρ0(no)wk(no)

≤ (C2l+2 · C∆l,f · C ′) · ρτ (o)−1ρρ0(o)wk(o)

where in the last inequality we have used that f ∈ Lk. Hence ∆−1(Lk) ⊆
Lk.

Let Lk,l be the subspace of f ∈ Lk such that Af ∈ Lk for all A ∈ U≤l(o).
Because [o, ni+1] ⊆ ni+1 and hence U≤l(o)U(ni+1) = U≤l(o)U(ni+1) it follows
that Lk,l is U(ni+1)-invariant since Lk is U(ni+1)-invariant by definition. We
will show by induction on l that Lk,l is invariant under ∆. For l = 0 this is
true since Lk,0 = Lk. Let l > 0 and A ∈ U≤l+1(o). We may assume that
A = A′X with X ∈ o and A′ ∈ U≤l(o). For f ∈ Lk,l+1 we get using the
induction hypotheses, [∆, X] ∈ U(n) and the U(n)-invariance of Lk,l+1 that

A∆−1f = (A′∆−1)(∆X)∆−1f

= (A′∆−1)(X∆ + [∆, X])∆−1f

= A′∆−1(Xf) +A′(∆−1[∆, X]∆−1)f ∈ Lk

Hence ∆−1f ∈ Lk,l+1 as claimed.
It follows that the space Lk,∞ =

⋂∞
l=0 Lk,l is ∆−1-stable. But now we

are done since
K0 = L0,∞,
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K+ log =
⋃
k∈Z

Lk,∞

and
K− log =

⋂
k∈Z

Lk,∞.

Hence the trivial endomorphism induced by ∆ on H•
(o,KO)(K?) is invertible.

Similar arguments may be found in [BL84, §1.2], [Lan73, §2], [Oss07]
and [Zuc83, §4].
2.35 Corollary: There is a canonical isomorphism of G(Af )-equivariant
sheaves

Tot• H •
(l,KO)(S

n
ρ+?,O|∂O Sh∗ ⊗H•

n(E)) ∼= H •
(o,KO)(S

n
ρ+?,O|∂O Sh∗ ⊗ E)

where Tot• denotes the total complex.

Proof: For any subset V ⊆ ∂O Sh∗ there is a natural spectral sequence
with E2-term

Ep,q2 = Hp
(l,KO)(H

q
n(S n

ρ+?,O|∂O Sh∗(V )⊗ E))

= Hp
(l,KO)(S

n
ρ+?,O|∂O Sh∗(V )⊗Hq

n(E))

converging to
Hp+q

(o,KO)(S
n
ρ+?,O|∂O Sh∗(V )⊗ E).

It follows from Kostant’s Theorem on n-cohomology and its proof that there
is a canonical L(C)-equivariant splitting H•

n(E) ↪→ Z•n(E) in the derived
category of L(C)-modules. Furthermore any irreducible representation F of
L(C) appears at most once in H•

n(E). Hence the spectral sequence degen-
erates to a canonical splitting:⊕
p+q=n

Hp
(l,KO)(S

n
ρ+?,O|∂O Sh∗(V )⊗Hq

n(E)) ∼= Hn
(o,KO)(S

n
ρ+?,O|∂O Sh∗(V )⊗ E)

that is compatible with restriction to smaller open sets.

2.5 Automorphic Local Systems

Let L̃h ⊆ L be a semi-simple Q-subgroup such that that the projection
L → Lh restricts to an isogeny L̃h → Lh. Since Lh is semi-simple we
may choose L̃h to be the image of the universal covering of Lh under the
morphism associated to some splitting of l→ lh in L. Fix L̃h and let l̃h ⊆ l

be its Lie algebra. In general L̃h(R)→ Lh(R) will be neither one-to-one nor
onto. Let

∂OX̃∗ ⊆ ∂OX∗
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be some L̃h(R)-orbit and
L(R)1 ⊆ L(R)

be the subgroup normalizing ∂OX̃∗. Let L(R)l ⊆ L(R) the normal subgroup
acting trivially on ∂OX∗. Because L(R) acts transitively on ∂OX∗ one has

(2.36) L(R)1 = L(R)lL̃h(R).

Set
L(Q)1 = L(R)1 ∩ L(Q)

we have
Ll(Q) ⊆ L(Q)l.

Similarly define O(L)1 and O(L)l for any Q-algebra L. Since there exist
sections L → O defined over Q, the images of O(L)1 and O(L)l in L(L)
agree with L(L)1 and L(L)l for L|Q. Let L(Q)l be the closure of L(Q)l in
L(Af ). It is the image of Zs under the quotient p : O(Af )→ L(Af ).

Let K ⊆ KOL̃h(C) be a maximal compact subgroup and set K̃l = L(R)l∩
K and Kl = Ll(R) ∩K.

We assume from now on that matters can be arranged in a way that

(*) L(R)l ∩K = L(R)l ∩KO.

This is for example always the case, if we start with the full maximal compact
subgroup or, even stronger, if we assume G to be semi-simple and simply
connected. Set

K̃l = L(R)l ∩K = L(R)l ∩K

and
Kl = Ll(R) ∩K.

Set
K̃f
l = L(Q)l ∩ p(K

f ∩ O(Af ))

where p : O(Af )→ L(Af ) is the projection and Kf ⊆ G(Af ) is any compact
open subgroup and let K̃l = K̃l(K̃f )l. The groups Kf

l form a neighborhood
basis of the identity in L(Q)l consisting of compact but not necessarily open
subgroups. Similarly set Kf

l = Ll(Q) ∩ K̃f
l . For an open K̃f

l -invariant set

W ⊆ L(Q)lAG\(L(R)l/K̃l)× L(Q)l

let
Sl,ρ(W )

be the space of K̃l-finite smooth functions on the preimage in L(Q)lAG\L(R)l×
L(Q)l of W satisfying (2.23). Let

W ∗(O, T )l ⊆ L(R)l
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be the image of W ∗(O, T, V ) ∩ O(R)l in L(R) and similarly

W ∗
l (O, T ) = W ∗(O, T )l ∩ Ll(R).

It is independent of V ⊆ ∂OX∗. The direct limit

(2.37) Sl,ρ,s = colim
T,Kf

Sl,ρ(W ∗(O, T )l × K̃f
l )
eKfl

is a (̃ll, K̃l,L(Q)l)-module where an element of L(Q)l acts by the inverse of
a rational approximation on the left and l̃l denotes the Lie algebra of L(R)l.

Set
Λ = L(Q)1L(Q)l.

and let RepO,C denote the category of all complex representations V of Λ
with the following properties:

(1) The restriction to L(Q)l is admissible in the sense that the spaces of
K̃f
l -invariants, for every Kf ⊆ G(Af ) compact and open, are finite dimen-

sional and exhaust V .
(2) For every Kf ⊆ G(Af ) the action of L̃h(Q) on the finite dimensional

space V eKf is algebraic.
The category RepO,C is a semi-simple abelian category as is easily seen.

2.38 Lemma: There is a canonical differential graded action of Λ on

C•
(ell, eKl)

(Sl,ρ,s ⊗H•
n(E)).

making it an object of RepO,C. The restriction of the Λ-action to L(Q)l
agrees with the one induced from right translations on Sl,ρ,s.

Proof: Let S̃l,ρ,s be the direct limit of the space of smooth K̃lL̃h(C)-finite
functions defined on open subsets

W ∗(O, T )lL̃h(C) ⊆ L(Q)lC\L(R)lL̃h(C)× L(Q)l

such that for every k ∈ K the function l 7→ f(lk) of l ∈ L(R)l belongs to
Sl,ρ(W ∗(O, T )l × L(Q)l). Note that elements of S̃l,ρ,s are algebraic in the
direction of L̃h(C). The restriction map

(2.39) S̃l,ρ,s → Sl,ρ,s

is (̃ll, K̃l)-equivariant and defines an isomorphism

S̃l,ρ,s ∼= Ind(l,K)

(ell, eKl)
(Sl,ρ,s).

As in the discussion before Corollary 2.31 (2.39) induces an isomorphism

(2.40) C•
(l,K)(S̃l,ρ,s ⊗H

•
n(E)) ∼= C•

(ell, eKl)
(Sl,ρ,s ⊗H•

n(E))
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By (2.36) and since L(R)1 normalizes L(R)l the inclusion L(R)l ⊆ L(R)1

induces a natural homeomorphism

L(Q)lAG\L(R)lL̃h(C)× L(Q)l ∼= L(Q)1AG\L(R)1L̃h(C)× (L(Q)lL(Q)1)

(2.41)

[(l, ll)] 7→ [(l, ll)]

[(γ−1l, γ−1llγ)]← [(l, llγ)].

for every l ∈ L(R)lL̃h(C) = L(R)1L̃h(C), ll ∈ L(Q)l and γ ∈ L(Q)1. The
action of Λ on (2.41) by right multiplication can be transported to a Λ-action
on S̃l,ρ,s and yields the desired Λ-action via the identification in (2.40). The
action is obviously admissible when restricted to L(Q)l. Since E is algebraic,
the action of O on H•

n(E) is algebraic as well. Since K ∩ L̃h(C) is Zariski-
dense in L̃h(C) and the formation of the Chevalley-Eilenberg complex in-
volves the passage to K-invariants the action of L̃h(Q) is algebraic.

Let ∂OS̃h
∗

be the image of ∂OX̃∗ × G(Af ) in ∂O Sh∗ and let

p : ∂OX̃∗ × G(Af )→ ∂OS̃h
∗

denote the projection. For V ∈ RepO,C define the associated automorphic

local system AV on ∂OX̃∗ as follows: For an open set U ⊆ ∂OS̃h
∗

let

AV (U) = {s : p−1(U)→ V locally constant| s(γ(x, g)) = γs(x, g)}

where the transformation rule is assumed to hold for all γ ∈ L(Q)1 ⊆ Λ.
The association V 7→ AV defines a functor

A : RepO,C → G(Af )-equivariant sheaves ∂O Sh∗ .

Recall that a sheaf on Sh∗ is called weakly constructible if its restriction
to each boundary component is a locally constant sheaf of possibly infinite
dimensional vector spaces.
2.42 Theorem: (1) The inclusion
(2.43)
C•

(mLl
,Kl)

((S n
ρ,O|∂O

fSh
∗ ⊗H•

n(E))elh) ↪→ C•
(mL,KO)((S

n
ρ,O|∂O

fSh
∗ ⊗H•

n(E)))

is a quasi-isomorphism.
(1)Restricting differential forms to the link defines a canonical G(Af )-

equivariant isomorphism of complexes of sheaves on ∂OS̃h
∗

(2.44) C•
(mL,Kl)

((S n
ρ,O|∂O

fSh
∗ ⊗H•

n(E))elh)→ AV •
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where AV • is the differential graded automorphic local system associated to
the Λ-action on

V • = C•
(ll,Kl)

(Sl,ρ,s ⊗H•
n(E))

constructed in Lemma 2.38. More precisely, the map sends an element f on
the LHS that is defined over a suitable neighborhood of a boundary point to
the class of the function defined on a suitable subset of ∂OX̃∗ × G(Af ) that
maps (x, g) to the function

(ll, lf ) 7→ σ(l)f(lll, lfg; Ad(l)−1X) ∈ H•
n(E)

where (ll, lf ) is contained in a suitable subset of L(R)l × L(Q)l,

X ∈ Λ•ll,C/kl,C = Λ•lC/Lie(K)C

is a polyvector, l ∈ L(R)1 is a preimage of x ∈ ∂OX̃∗ and σ denotes the
action of L(C) on H•

n(E). In particular for s ∈ ∂OS̃h
∗

there is a canonical
isomorphism

(2.45) C•
(mL∩ell, eKl)

((S n
ρ,O,s ⊗H•

n(E)))elh) ∼= C•
(mL∩ell, eKl)

(Sl,ρ,s ⊗H•
n(E))

of differential graded Zs-modules.

Proof: The first point follows from the Poincaré Lemma. To prove the
second point it suffices to construct the map (2.44) prior to sheafification of
the B∗-presheaf j∗Sρ,O on neighborhoods of the form U = [U∗(O, T, V ) ×
gKf ] ∈ B∗ provided it is sufficiently natural. Then it will be compatible
with restrictions and extend to the associated sheaf.

The map sends

f ∈ Cq
(mL∩ell, eKl)

(
(Sρ,O(U)n,Kf ⊗H•

n(E))elh
)

to a function

sf : p−1(U)→ V = C•
(mL∩ell, eKl)

(Sl,ρ,s ⊗H•
n(E))

defined as follows. Let (x, g) ∈ ∂OX̃
∗, [(l∞, lf )] ∈ L(Q)lAG\L(R)l × L(Q)l.

Let (l, g) ∈ L(R)1 × G(Af ) represent (x, g) and set

(sf (x, g))(l, lf ;X) = σ(l)f(lll, lfg; Ad(l)−1X) ∈ H•
n(E).

We have to check that it is well-defined. It does not depend on the choices
of l and ll since f is n- as well as KO-invariant. It does not depend on the
choice of lf since f is right Kf -invariant. It does not depend on the choice of
(l, lf ) representing its class [(l∞, lf )] because f is O(Q)-invariant on the left.
The function sf is locally constant and K̃f

l -invariant on ∂OX̃∗×G(Af ) since
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f is l̃h as well as Kf -invariant. It is K̃l-invariant because f is KO-invariant.
It remains to show that

(1) (γsf )(x, g) = sf (γ(x, g))

for all γ ∈ L(Q)1. Let s̃f be the image of sf under (2.40) considered as a
function on the right hand side of (2.41). Then (1) is equivalent to

(s̃f (x, g))(lllh, lfγ;X) = sf (γ(x, g)(lllh, lf ;X)

for all ol ∈ L(R)l, lh ∈ L̃h(C), lf ∈ Λ, X ∈ lC and γ ∈ L(Q)1. By continuity
we may assume that lf ∈ L(Q)1 and replacing γ by lfγ we may assume
that lf = e. Choose a decomposition γ−1 = mlmh ∈ L(R)lL̃h(C). Since
L̃h(C) is connected and Lie(K)C contains l̃h,C, K-invariance implies L̃h(C)-
invariance. By (2.36) there is a decomposition γ−1 = mlmh ∈ L(R)lL̃h(R).
We calculate:

s̃f (x, g)(lllh, γ;X) =

(s̃f (x, g))((γ−1llγ)mlmhlh, e;X) =

σ(mhlh)−1s̃f (x, g)(γ−1llγml, e; Ad(mhlh)X) =

σ(mhlh)−1sf (x, g)(γ−1llγml, e; Ad(mhlh)X) =

σ(mhlh)−1σ(m−1
l l)f(γ−1llγml(m−1

l l), g; Ad(m−1
l l)−1 Ad(mhlh)X) =

σ(lh)−1σ(γl)f(γ−1ll(γl), g; Ad(γl)−1 Ad(lh)X) =

σ(lh)−1σ(γl)f(ll(γl), (γg); Ad(γl)−1 Ad(lh)X) =

σ(lh)−1sf (γ(x, g))(ll, e; Ad(lh)X) = s̃f (γ(x, g))(lllh, e;X).

Hence the map (2.44) is well-defined. Since both sides of (2.44) are local
systems it suffices to show that (2.44) induces an isomorphism of the stalks.
This is easy to see.

Theorem 2.42 describes the restriction of

C•
(mGl,KO)(S

n
ρ,O|∂O

fSh
∗ ⊗H•

n(E)))

to ∂OS̃h
∗
. In general we may find finitely many L̃h(R)-orbits

∂OX̃∗
1, . . . , ∂OX̃∗

n ⊆ ∂OX∗

such that the images

∂OS̃h
∗
i = [∂OX̃

∗
1 × G(Af )] ⊆ ∂O Sh∗

are disjoint and

∂O Sh∗ =
n⋃
i=1

∂OS̃h
∗
i .

is a G(Af )-stable decomposition of the boundary component. Hence Theo-
rem 2.42 describes the situation completely.
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2.6 Logarithmic Modifications in the Equal Rank Case

From results of [BC83] and [Fra98] Nair deduced the following
2.46 Theorem ([Nai99], Theorem 4.1): If Sh is an equal-rank locally sym-
metric space then the natural inclusions

C•
(mG,K)(S(2)−log(Sh)⊗E) ⊂ C•

(mG,K)(S(2)(Sh)⊗E) ⊂ C•
(mG,K)(S(2)+log(Sh)⊗E)

induce isomorphisms in cohomology.

We need the following generalization of this:
2.47 Theorem: If Sh∗ is an equal-rank Satake compactification then the
natural inclusions of complexes of sheaves

C•
(mG,K)(S(2)−log ⊗ E) ⊆ C•

(mG,K)(S(2) ⊗ E) ⊆ C•
(mG,K)(S(2)+log ⊗ E)

are quasi-isomorphisms.

Proof: Set A •
(2)+? = C•

(m,K)(S(2)+? ⊗ E). Let

K • = Cone(A •
(2) ↪→ A •

(2)+log)

be the cone of the second inclusion. We have to show that its cohomology
sheaves vanish. Assume the contrary and let ∂O Sh∗ be inclusion maximal
with the property that

H •(K •)|∂O Sh∗ 6= {0}.

Let
P∗

O,K • ⊂ P∗ − {O}

be the set of all standard parabolics P ∈ P∗, P 6= O, such that there is some
Q ∈ P∗ with

H •(K •)|∂Q Sh∗ 6= 0

and
∂P Sh∗ ⊆ ∂Q Sh∗.

Set
Sh∗O,K • = Sh∗−

⋃
P∈P∗

O,K •

∂P Sh∗

This is an open subset of Sh∗ containing ∂O Sh∗ as a closed subset. Let

j : Sh∗O,K • ↪→ Sh∗ ←↩ ∂O Sh∗ : i

denote the inclusions. By our assumption on O and the definition of P∗
O,K • ⊂

P∗ − {O} the natural homomorphism

j∗K • → i∗i
∗j∗K •
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is a quasi-isomorphism. Since the formation of the cone commutes with
exact functors there is a natural isomorphism

i∗j∗K • = Cone(A •
(2)|∂O Sh∗ → A •

(2)+log|∂O Sh∗)

By Theorem 2.42 A •
(2)|∂O Sh∗ and A •

(2)+log|∂O Sh∗ are quasi-isomorphic to a
graded automorphic local systems on ∂O Sh∗. Since the category of auto-
morphic local systems is semi-simple there is a graded automorphic local
system AV • and a quasi-isomorphism

AV • → i∗j∗K •.

By definition of Sh∗O,K • the cohomology sheaves of j∗K • are supported on
∂O Sh∗ and it follows the the induced map

i∗AV • → i∗i
∗j∗K •.

is a quasi-isomorphism as well. There results a commutative diagram

H•
c(Sh∗O,K • , j∗K •) //

��

H•(Sh∗O,K • , j∗K •)

��

H•
c(Sh∗O,K • , i∗i

∗j∗K •) // H•(Sh∗O,K • , i∗i
∗j∗K •)

H•
c(Sh∗O,K • , i∗AV •) //

OO

H•(Sh∗O,K • , i∗AV •)

OO

H•
c (∂O Sh∗,AV •) //

OO

��

H•(∂O Sh∗,AV •)

OO

H•
cusp(∂O Sh∗,AV •)

33gggggggggggggggggggg

of graded vector spaces where the vertical arrows are isomorphisms and the
horizontal arrows are induced by the natural map from hypercohomology
with compact supports to ordinary hypercohomology. We have used the
well-known fact that there is a natural isomorphism from cohomology with
compact support to cuspidal cohomology with values in an automorphic local
system. It is a result of Borel that the diagonal arrow is a split inclusion.
On the other hand the top horizontal arrow naturally factors over

H•(Sh∗,K •)

))RRRRRRRRRRRRRR

H•
c(Sh∗O,K • , j∗K •)

55llllllllllllll
// H•(Sh∗O,K • , j∗K •)
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where the diagonal arrows are extension by zero and restriction respectively.
Now there is a converging spectral sequence

Epq2 = Hp(Hq(Sh∗,K •), dK •)⇒ Hp+q(Sh∗,K •).

Since by Proposition 2.21 the sheaves K p are fine we have Hq(Sh∗,K •) = 0
for q > 0. The terms E•,0

2 vanishes by Theorem 2.46. Hence Hp+q(Sh∗,K •)
vanishes and therefore

H•
cusp(∂O Sh∗,AV •) = 0.

But by a Theorem of Clozel [Clo86] any non-zero automorphic local system
on the equal-rank boundary stratum ∂O Sh∗ has non-zero cohomology. Since
cohomology with compact support commutes with direct limits by [God58],
Theorem 4.12.1, we may apply this in our situation and it follows that

H •(K •)|∂O Sh∗
∼= AV • = 0

contrary to our assumption on O ∈ P∗. This proves that A •
(2) → A •

(2)+log
is a quasi-isomorphism. The remaining case is proved in the same way.

2.7 Reduction to Weighted Cohomology of the Link

Let Ll(Q) be the closure of Ll(Q) in Ll(Af ). Consider the inclusion

Ll(Q)AG\Ll(R)× Ll(Q) ⊆ L(Q)lAG\L(R)l × L(Q)l.

Let U be K̃l- and L(Q)l-invariant open subset of the RHS and U1 its inter-
section with the left hand side. Then U1 is Kl- and Ll(Q)-invariant and the
restriction of functions defines a (ll,Kl,Ll(Q)l)-equivariant map

(2.48) Sl,ρ+?(W )→ Sρ+?(W1).

Recall the smooth induction functor for example from [Car79], §1.8. We
claim that (2.48) it induces a canonical isomorphism
(2.49)

Sl,ρ+?(W ) ∼= Ind(ell, eKl,L(Q)l)

(ll,Kl,Ll(Q))
(Sρ+?(W1)) := IndL(Q)l

Ll(Q)
Ind(ell, eKl)

(ll,Kl)
(Sρ+?(W1))

of (̃ll, K̃l,Ll(Q)l)-modules. Indeed, by our choice of Ll the quotient

L(R)l/Ll(R)

is a compact group and hence L(R)l = Ll(R)K̃l. This enables us to de-
fine the inverse map in (2.49). By Frobenius reciprocity (2.49) induces an
isomorphism
(2.50)

C•
(mL∩ell, eKl)

(Sl,ρ+?(W )⊗H•
n(E)) ∼= IndL(Q)l

Ll(Q)
C•

(mLl
,Kl)

(Sl,ρ+?(W1)⊗H•
n(E)).
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Let F ⊆ H•
n(E) be an irreducible L(C)-submodule. Let λF,O − ρO ∈ ǎ

be the character by which a acts on F . Define for a weight τl ∈ ǎLl
0 the

(ml,Kl,Ll(Af ))-module

(2.51) Sρ−τl+?(LO,l(Q)AO(R)+\LO,l(Af ))

as the space of global section defined after (2.8) with G replaced by Ll. More
precisely for ? = 0 (2.51) is the space of smooth Kl = KlKf

l -finite functions
on Ll(Q)AO(R)+\Ll(Af ) such that

|Df(l)| � ρ
ρ

Ll
0

(l)ρ−τl(l)
−1.

for all D ∈ U(ll). Here ρLl
0 is the half sum of positive roots of aLl

0 in the
Lie algebra of the unipotent radical of P0,l := Ll ∩ (P0/NO) and the weight
functions are produced by Proposition 2.7. For ? = ± log modify in the
same way as after (2.8).
2.52 Proposition: Let F ⊆ H•

n(E) be an irreducible L(C)-submodule and
λF,O − ρO ∈ ǎO the rational character by which AO acts on F . Assume that
ρ = ρ−τ with τ ∈ aG

0 as in Proposition 2.7 and let ρ−τF be the one associated
to

(2.53) τF = −
∑

α∈∆0−∆O
0

〈λF,O + τ, $̌α〉α|aO
0,l
∈ ǎO

0,l.

on Ll(A). Then

Hp
a (Sl,ρ−τ+log(Ll(Q)AG\Ll(Q)W ∗(O, T, V ) ∩ Ll(R)× Ll(Q))⊗ F )

is (ll,Kl,Ll(Q))-equivariantly isomorphic to

Sρ−τF +log(Ll(Q)AO(R)+\Ll(R)× Ll(Q))⊗ F

if p = 0 and (λF,O + τ)|aO
∈ +ǎO and zero otherwise. Similarly

Hp
a (Sl,ρ−log(Ll(Q)AG\Ll(Q)W ∗(O, T, V ) ∩ Ll(R)× Ll(Q))⊗ F )

is (ll,Kl,Ll(Q))-equivariantly isomorphic to

Sρ−τF−log(Ll(Q)AO(R)+\Ll(R)× Ll(Q))⊗ F

if p = 0 and (λF,O + τ)|aO
∈ +ǎO and zero otherwise.

Proof: We treat only the (+ log)-case the (− log)-case being similar (and
not needed in the following). Let us treat the case p = 0 first. Let

f ∈ H0
a (Sl,ρ−τ ([W

∗
l (O, T )×Kf

l ])
Kfl ⊗ F )
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and assume that f(l), l ∈W ∗
l (O, T ), is non-zero. The setsW ∗

l (O, T ) ⊆ Ll(R)
were defined on page 51. The set W ∗

l (O, T ) is stable under multiplication
by elements of the form eX with X ∈ a+

O . Since f is aO-invariant

f(l, k) = e〈λF,O−ρO,X〉f(leX , k)

for all X ∈ a+
O . Hence there exists n ∈ Z such that

0 6= |f(l, k)| = et〈λF,O−ρO,X〉|f(letX , k)|
� et〈λF,O−ρO,X〉ρ−τ (letX)−1ρρ0(le

tX , e)wn(letX , e)(1)

� et〈λF,O−ρO+ρ0+τ,X〉wn(letX) = et〈λF,O+τ,X〉wn(letX , e).

for X ∈ a+
O and all t ≥ 0. For t → +∞ wn(letX) growth at most poly-

nomially in t. Then (1) forces 〈λF,O + τ,X〉 ≤ 0. Since X was arbi-
trary λF,O + τ ∈ +ǎO as claimed in the (+ log)-case. In the (− log)-case
〈λF,O + τ,X〉 = 0 is excluded since wn(letX) tends to zero for t → +∞ if
n < 0. This proves the vanishing assertion in degree p = 0.

For α ∈ ∆0 −∆O
0 the function

Ll(R)→ R

l 7→ 〈α,H0(l̃)〉,

where l̃ ∈ O(R) is a preimage of l, is a well-defined smooth function. Hence

φ : Ll(R)→W ∗
l (O, T )

l 7→ l exp
( ∑
α∈∆0−∆O

0

(T + 1− 〈α,H0(l̃)〉)$̌α

)

is also well-defined and smooth. The function

Ll(Q)AO(R)+\Ll(R)× Ll(Q) 7→ F

f̃ : (l, γk) 7→ e〈λF,O−ρO,H0(γ−1 l̃)〉f(φ(γ−1l), e)

is well-defined and smooth. Let us compute the weight τF ∈ ǎO
0,l we have to

choose in order to get the desired isomorphism in degree zero. SetX = H0(l̃)
and compute

〈λF,O − ρO + ρ0 + τ,X −
∑

α∈∆0−∆O
0

(T + 1− 〈α,X〉)$̌α〉

= 〈ρo,l + λF,O + τ,
∑

α∈∆0−∆O
0

〈α,X〉$̌α〉+ CT

= 〈ρo,l +
∑

α∈∆0−∆O
0

〈λF,O + τ, $̌α〉α|aO
0,l
, X〉+ CT
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with some constant CT . Since the constant CT changes the estimates in
question only by a non-zero constant it follows that

τF = −
∑

α∈∆0−∆O
0

〈λF,O + τ, $̌α〉α|aO
0,l
.

does the job.
To prove the vanishing in higher degrees let $̌1, . . . , $̌r be the basis of aO

dual to the basis α1, . . . , αr ∈ ∆0−∆O
0 . Using the Hochschild Serre spectral

sequence inductively for the filtration

{0} ⊆ 〈$̌r〉 ⊂ 〈$̌r−1, $̌r〉 ⊂ . . . ⊂ 〈$̌1, . . . , $̌r〉 = a

of a we see that it suffices to prove that the endomorphism induced by Dj ,
1 ≤ j ≤ r, on

H0
R$̌j+1

(H0
R$̌j+2

(. . .H0
R$̌r(Sl,ρτ ([W

∗
l (O, T )×Kf

l ])
Kfl ⊗F ) . . .)) =

⋂
i>j

Ker(
∂

∂$̌i
)

is an epimorphism. Let us treat (− log)-case first. We have to distinguish
two cases:

(CASE A): 〈τ −λF,O, $̌j〉 ≤ 0: In this case we may define a right inverse
to the action of $̌j on

⋂
i>j Ker( ∂

∂$̌i
) by setting

(Rjf)(p) := −
∫ ∞

0
f(p exp(t$̌j))dt.

This is well-defined since the function we integrate decays faster the any
polynomial if t → ∞. For the same reason we may differentiate under the
integral sign. It follows that Rj leaves

⋂
i>j Ker( ∂

∂$̌i
) stable. We compute

($̌jRjf)(p) = −
∫ ∞

0

d

ds
f(p exp((s+ t)$̌j))

∣∣∣∣
s=0

dt

= −
∫ ∞

0

df(p exp(.$̌j))
dt

dt

= −(f(∞)− f(p))
= f(p)

and Rj is a right inverse to $̌j .
(CASE B): 〈τ − λF,O, $̌j〉 > 0: In this case we define Rj by the formula

(Rjf)(p) :=
∫ 〈αj ,HO,∞(p)〉−T

0
f(p exp(−t$̌j))dt.
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and find compute again

($̌jRjf)(p) =
d

ds

∫ 〈αj ,HO,∞(p)〉+s−T

0
f(p exp((s− t)$̌j))dt

∣∣∣∣∣
s=0

= lim
s→0

1
s

∫ 〈αj ,HO,∞(p)〉+s−T

〈αj ,HO,∞(p)〉−T
f(p exp((s− t)$̌j))dt+

d

ds

∫ 〈αj ,HO,∞(p)〉−T

0
f(p exp((s− t)$̌j))dt

∣∣∣∣∣
s=0

= f(p exp((T − 〈αj ,HO,∞(p)〉)$̌j))+
(f(p)− f(p exp((T − 〈αj ,HO,∞(p)〉)$̌j)))
= f(p).

In the (+ log) case the definition of Rj is the same besides that we have to
distinguish the cases are A : 〈τ−λF,O, $̌j〉 < 0 and B: 〈τ−λF,O, $̌j〉 ≥ 0.

For any τl ∈ ǎLl
0 the canonical restriction map

Sρ−τl+log(Ll(Q)AO(R)+\Ll(A))→ Sρ−τl+log(Ll(Q)AO(R)+\Ll(R)× Ll(Q))

induces an isomorphism

(2.54) Sρ−τl+log(Ll(Q)AO(R)+\Ll(A)) ∼=

IndLl(Af )

Ll(Q)
Sρ−τl+log(Ll(Q)AO(R)+\Ll(R)× Ll(Q)).

On the level of G(Af )-equivariant sheaves induction corresponds to sections
over an Ll(Af )-orbit. For s = [(x, g)] ∈ ∂O Sh∗ let

Os = s.g−1Ll(Af )g

be the orbit of s under right action of g−1Ll(Af )g. By reduction theory the
quotient Ll(Q)\Ll(Af ) is compact, the orbit map

L(Q)l\L(Q)lLl(Af )→ Os

l 7→ s.(g−1lg)

is a homeomorphism and Os is compact. It is in fact just a profinite set.
Recall that for a sheaf F on ∂O Sh∗ one defines its sections over Os as the
direct limit

F (Os) = colim
Os⊆U

F (U)

where U runs through the set of neighborhoods of Os. If F is a G(Af )-
equivariant sheaf then F (Os) is an admissible Ll(Af )-module because Os
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is compact. It is not difficult to see that the restriction of section over Os

to {s}
Sn
ρ+?(Os)→ Sn

ρ+?,s

is L(Q)l-equivariant and induces a canonical isomorphism
(2.55)

H•
(l,KO)(S

n
ρ+?(Os)⊗H•

n(E)) ∼= IndL(Q)lLl(Af )

L(Q)l
H•

(l,KO)(S
n
ρ+?,s ⊗H•

n(E)).

Induction in the stages along the diagram

Ll(Af )L(Q)l

qqqqqqqqqqq

LLLLLLLLLL

Ll(Af ) L(Q)l

Ll(Q)

MMMMMMMMMMM

rrrrrrrrrr

and collecting our results obtained so far immediately gives.
2.56 Theorem: Let Os ⊆ ∂O Sh∗ be the Ll(Af )-orbit of a point s ∈ ∂O Sh∗.
Let τ ∈ ǎG

0 . For irreducible L(C)-submodule F ⊆ H l
n(E) let λF,O − ρO ∈ ǎO

be the character of A on F . Let ρ−τF be the weight function associated to

τF = −
∑

α∈∆0−∆O
0

〈λF,O + τ, $̌α〉α|aO
0,l
∈ ǎO

0,l.

Then there is a canonical Ll(Af )L(Q)l-equivariant isomorphism

(2.57) H
•
(mG,K)(Sρ−τ±log(Os)⊗ E) ∼=⊕

F

IndLl(Af )L(Q)l
Ll(Af ) H•

(mLl
,Kl)

(Sρ−τF±log(Ll(Q)AO(R)+\Ll(Af ))⊗ F )[−l]

where F runs through all irreducible submodules of H l
n(E) such that (λF,O +

τ)|aO
∈ +ǎO in the (+ log)-case and (λF,O + τ)|aO

∈ +ǎO in the (− log)-case
respectively.

2.58 Corollary: The local cohomology group at s ∈ ∂O Sh∗

H
p
(g,K)(Sρ−τ±log,s ⊗ E)

vanishes (is an admissible L(Q)l-module) precisely if

Hp−l
(mLl

,Kl)
(Sρ−τF±log(LO,l(Q)AO(R)+\LO,l(Af ))⊗ F )

vanishes (is an admissible Ll(Af )-module) for all F ⊆ H l
n(E) satisfying the

conditions in Theorem 2.56.
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Proof: This follows from the fact that a module smoothly induced from
an admissible non-zero representation is non-zero. This is easy to see (with
the notation of [Car79] §1.8): For K ⊆ G compact open and small enough
there is a non-zero vector v ∈ V H∩K . Now define f : G → V by f(g) = hv
for g = hk ∈ HK and zero otherwise. Then f ∈ IndGH(V ) and f(e) = v 6= 0.
Similarly a Ll(Af )L(Q)l-equivariant sheaf on Os is zero if its global section
vanish since this is true for sheaves on a finite Hausdorff set.

2.8 The Eisenstein Spectral Sequence for the Link

To compute the right hand side of (2.57) we apply the main results of [Fra98]
to the group Ll and a fixed irreducible L(C)-submodule F ⊆ H•

n(E). The
fact that the restriction of F to Ll is a multiple of an irreducible representa-
tion of Ll(C) doesn’t cause any trouble. Let us briefly recall some notation.
For unexplained notation we refer to [Fra98].

Let P be a standard Q-parabolic subgroup of Ll, {P} its associated class
and k ≥ 0 a non-negative integer. Let Uk{P} be the set of triples (R, Λ̃, χ)
with the following properties:

(1) R = MRARNR is a standard parabolic subgroup containing an ele-
ment of P and rk({P}) = rk(R) + k.

(2) Λ̃ : AR(Q)AR(R)+\AR(A)→ U(1) is a continuous character.
(3) χ : Z(mR,C)→ C is a unitary character of the center of the universal

enveloping algebra of mR. Recall that χ is called unitary if

χ(D∗) = χ(D)

for all D ∈ Z(mR,C). Here D∗ denote the adjoint operator, i.e.

(cX1 · · ·Xk)∗ = (−1)k · c ·Xk · · ·X1

where the bar denotes complex conjugation with respect to R ⊂ C or mR ⊆
mR,C respectively.

We associate to any such triple u = (R, Λ̃, χ) the space V (u) of square
integrable K ∩ R(A)-finite functions

R(Q)NR(A)AR(R)+\R(A)→ C

with the following properties:
(i) For every rational standard parabolic Q ⊆ R not belonging to {P},

the constant term
fNQ

(.) =
∫

NQ(Q)\NQ(A)
f(n.)dn

of f along NQ is orthogonal to the space of cusp forms on MQ(Q)\MQ(A)
(ii) f(ag) = Λ(a)f(g) for all a ∈ AR(A).
(iii) f lies in the χ-eigenspace of Z(mR,C).
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2.59 Lemma: The subspace of functions in V (u) having some fixed K∩R(A)-
type is a finite dimensional.

Proof: The space of Kf ∩ R(Af )-invariant functions in V (u) for some
fixed u and Kf decomposes into a finite direct sum of irreducible unitary
(mR,KR)-modules. Indeed any function f ∈ V (u) is by (iii), K-finiteness
and elliptic regularity is automatically real analytic. Hence f generates some
irreducible unitary (mR,KR)-submodule of

L2,discrete(LR(Q)AR(R)+\LR(A))Kf∩R(Af )

by [Wal88], Proposition 1.6.6. But the latter is known to decompose into a
direct sum of irreducible unitary (mR,KR)-modules with finite multiplicities.
By [Wal88], Theorem 5.5.6, there are only finitely many irreducible unitary
(mR,KR)-modules having infinitesimal character χ and the claim follows.

Let W (u) be the space of K ∩ Ll(A)-finite functions

f : R(Q)NR(A)AR(R)+\O(A)→ C

such that for every k ∈ K ∩ Ll(A), the function

R(Q)AR(R)+\R(A)→ C
r 7→ f(rk)

lies in V (u).
Let JF ⊆ Z(mLl) be the annihilator of F∨ in the center of the universal

enveloping algebra of mLl . It is an ideal of finite codimension. Let h ⊇ aG
0

be a Cartan subalgebra of g.
Let Mk

JF ,{P} the set of triples t = (R,Λ, χ) such that (1) holds and
(2)’ Λ: AR(Q)ALl(R)+\AR(A)→ C× is a continuous character. If λt ∈

(ǎLl
R )C is the differential of the archimedean component of Λ. We assume

that its real part <(λt) is contained in ǎLl+
R and that

λt ∈ supput JF = {µ ∈ (ǎLl
R )C|γ(JF )(µ+ χt) = {0}}

where
γ : Z(mLl,C)→ S(h ∩mLl,C)W (mLl,C,h∩mLl,C)

is Harish-Chandra’s isomorphism as in [Wal88], Theorem 3.2.2.
(3)’ If Λ̃(a) = Λ(a)e−〈λt,H(a)〉 then ut = (R, Λ̃, χ) ∈ Uk{P}.

For τF ∈ ǎLl+
0 let Mk

JF ,{P},τF ,+ ⊆ Mk
JF ,{P} be the subset consisting of

those triples for which

(2.60) <(λt) ∈ τF − +ǎLl
0 .
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For t = (R,Λ, χ) ∈Mk
JF ,{P},τF ,+ letM(t) be the (ll,Kl,Ll(Af ))-modules

M(t) = W (ut)⊗Dt = IndLl(A)
R(A) V (ut)⊗Dt

where Dt is the symmetric algebra S((aLl
R )C). These spaces can be given

the structure of (ll,Kl,Ll(Af ))-modules.
Let

(2.61) FinJF
(Sρ−τF +log(Ll(Q)A(R)+\Ll(A))){P},

the subspace of functions in Sρ−τF±log(Ll(Q)A(R)+\Ll(A))){P} that are an-
nihilated by some power of JF . Note that (2.61) is a space of automorphic
forms on Ll(A). By considering the constant term of f along standard
parabolics P ⊆ Ll Franke defines a filtration of finite length on the spaces
in (2.61). It depends on the choice of a certain integer valued functions

T : ǎLl+
P → Z. The filtration steps are denoted by

(2.62) FinJF
(Sρ−τF +log(Ll(Q)A(R)+\Ll(A)))T,i{P}

where i ∈ Z. For i ∈ Z let
Mk,T,i

JF ,{P},τF ,+

be the set of those elements of Mk
JF ,{P},τF ,+ such that T (<(λt)+) = i where

we let for µ ∈ ǎLl
P denote µ+ the unique point in the closed convex set

ǎLl+
P with minimal distance to µ. The set Mk,T,i

JF ,{P},τF ,+ can be turned
into a groupoid with certain Weyl sets as morphism sets in such a way
that the Eisenstein transform factorizes over its colimit encoding the various
functional equations satisfied by Eisenstein series.

2.63 Theorem ([Fra98], Theorem 14): If τF ∈ ǎLl+
0 there is an isomor-

phism

(2.64)
rk({P})⊕
k=0

colim
Mk,T,i

JF ,{P},τF ,+

M(t) ∼=

∼= Gri
(
FinJF

(Sρ−τF +log(Ll(Q)ALl(R)+\Ll(A)))T,•{P}
)

of (ll,Kl,Ll(Af ))-modules.

The existence of the filtration implies that there is a convergent spectral
sequence associated to the filtered (ll,Kl,Ll(Af ))-module (2.62) with E1

term

(2.65) Ep,q1 =
rk({P})⊕
k=0

colim
Mk,T,i

JF ,{P},τF ,+

Hp+q
(ml,Kl)

(M(t)⊗ F )

⇒ Hp+q
(ml,Kl)

(FinJF
(Sρ−τF +log(Ll(Q)ALl(R)+\Ll(A))){P} ⊗ F ).
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Under the assumptions τF ∈ ǎLl+
0 as in [Fra98],Theorem 2.63, the higher

right derived functors of FinJF
vanish on the modules Sρ−τF±log(Ll(Q)ALl(R)+\Ll(A))

by Theorem 16 in the same paper. In this case there is by ibid., Theo-
rem 7(4), a canonical isomorphism

(2.66) Hp+q
(ml,Kl)

(FinJF
(Sρ−τF±log(Ll(Q)ALl(R)+\Ll(A))){P} ⊗ F ) ∼=

Hp+q
(ml,Kl)

(Sρ−τF±log(Ll(Q)ALl(R)+\Ll(A))){P} ⊗ F ).

Now consider τF with F satisfying λF,O + τ ∈ +ǎG
O as in Theorem 2.52.

Combining (2.66), (2.65) and summing over the associated classes of par-
abolic subgroups {P} we see that (2.65) computes the summand corrsepond-

ing to F ⊂ H•
nO

(E) in (2.57) provided that τF ∈ ǎLl
0 lies in ǎLl+

0 . Before we
state the Theorem let us prove this and let us review Kostant’s Theorem.
Clearly 〈α, β〉 ≤ 0 for all α ∈ ∆0 −∆O

0 and β ∈ ∆O
0 and consequently

〈τF , β〉 = −
∑

α∈∆0−∆O
0

〈λF,O + τ, $̌α〉〈α, β〉 ≥ 0

for all β ∈ ∆O
0 since we only consider F ’s with λF,O + τ ∈ +ǎG

O.
For a parabolic Q-subgroup R ⊆ Ll let R̃ ⊆ O be the unique parabolic

Q-subgroup of O with R̃/NO = RL̃h. There is a canonical isomorphism

(2.67) Hr
n
eR
(E) =

⊕
p+q=r

Hp
n
eR
/nO

(Hr
nO

(E)),

for any parabolic Q-subgroup R ⊆ Ll, see [Sch94], §4.10. Write EG,Λ of
the representation of G(C) with highest weight Λ ∈ ȟ+. Let us assume
that E = EG,Λ has highest weight Λ ∈ ȟ+. By Kostant’s theorem on n-
cohomology, [Wal88] Theorem 9.6.2, the LHS of (2.67) can be computed as
a sum:

(2.68) Hr
n
eR
(E) =

⊕
w

EL
eR
,w(Λ+ρh)+ρh

where w runs over all elements of length l(w) = r in the Weyl group
W (hC, gC) of h ⊆ g with the property that w−1α > 0 for all positive roots of
h in l

eR,C. Let us write τw instead of τF if F = EL
eR
,w(Λ+ρh)+ρh

and similarly
Jw instead of JF .

2.69 Theorem: Assume that τ ∈ ǎG+
0 and let Λ ∈ ȟ+ be the highest weight

of E. With the notations as in Theorem 2.56 there is a spectral sequence of
Ll(Af )L(Q)l-modules converging to

Hp+q
(mG,K)(Sρ−τ+log(Os)⊗ E).
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Its E1-term is

(2.70)
⊕
{P}

rk({P})⊕
k=0

⊕
w

colim
t∈Mk,T,i

Jw,{P},τw,+

IndLl(Af )L(Q)l
Rt(Af )

(
H
p+q−l(w)
(mRt

,K∩Rt(R))(V (ut)⊗ EL,w(Λ+ρh)−ρh
)⊗ C−λt−ρRt

)
where w ∈W (hC,mG,C) is an element satisfying

(1) w−1α is positive for all positive roots α appearing in l
eRt,C,

(2)
<(w(Λ + ρh)|a

eR
∈ ǎO+

eRt
+ ǎG

O

(3)
λt = −w(Λ + ρh)|ǎO

eR

and <(w(Λ + ρh)|aO
) ∈ +ǎO

0 .

2.71 Remark: If Λ is regular, the spectral sequence degenerates at the
E1-term by [Fra98], Theorem 19. By the same Theorem, the objects of
the groupoids Mk,T,i

J ,{P},τ,± don’t have non-trivial automorphisms. Hence the
colimit becomes isomorphic to a direct sum once representatives for the
isomorphism classes of Mk,T,i

J ,{P},τ,± are chosen.
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3 Theorem of Loojenga, Saper and Stern

3.1 Statement of Zucker’s ”Conjecture”

Let us briefly recall the definition of middle perversity intersection cohomol-
ogy of the stratified space Sh∗. Let

I •(E)

be a bounded complex of G(Af )-equivariant sheaves on Sh∗ with the follow-
ing properties:

(1) The cohomology sheaves H p(I •(E)) vanish for p < 0.
(2) There is a G(Af )-equivariant quasi-isomorphism of E with I •(E)|Sh.
(3) The cohomology sheaves H •(J •(E)) are weakly constructible with

respect to the stratification of Sh∗ by its boundary components, i.e.

H •(I •(E))|∂O Sh∗

is a graded G(Af )-equivariant locally constant sheaf of vector spaces on
∂O Sh∗.

(4) The stalk of the locally constant G(Af )-equivariant sheaves in (3) at
a point s ∈ ∂O Sh∗ are admissible modules under the stabilizer Zs.

(5) If
DSh∗(I •(E))•

denotes the Verdier dual complex of I •(E) there is a G(Af )-equivariant
quasi-isomorphism

DSh∗(I •(E))• ∼= I •(E∨).

(6) If s ∈ ∂O Sh∗ then

H p(I •(E))s = 0

for p ≥ 1
2 codimR(∂O Sh∗).

It is known that the properties (1)-(6) characterize I •(E) uniquely up
to quasi-isomorphism. It follows that the intersection cohomology with co-
efficients in E

IH•(Sh∗,E) := H•(Sh∗,I •(E))

is well-defined.
(7) If I •(E) consists of fine sheaves, the hypercohomology spectral se-

quence degenerates to an isomorphism

IH•(Sh∗,E) ∼= H•(I •(E)(Sh∗)).

Set
A •

(2)(E) := C•
(mG,K)(Sρ0 ⊗ E)(ζE).
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3.1 Theorem: There is a quasi-isomorphism

(3.2) I •(E) ∼= A •
(2)(E).

In particular

(3.3) IH•(Sh∗,E) ∼= H•
(mG,K)(Sρ0(Sh)⊗ E)(ζE).

as G(Af )-modules.

Theorem 3.1 is our version of the Theorem of Loojenga and Saper-Stern
the of which will take up the rest of this section. If the properties (1)-(7)
are known (3.3) follows from (2.10). Hence it suffices to check properties
(1)-(7) for A •

(2)(E).

3.2 First Part of the Proof - Verdier Duality

Proof (of 3.1, properties (1)-(4) and (7)):
(1) is obvious for A •

(2)(E).
(2) follows from the twisted Poincaré Lemma and the obvious isomor-

phism
A •

(2)(E)|Sh
∼= A •(E)|Sh.

(3) is immediate from Theorem 2.42
(4) follows from Theorem 2.69 and Lemma 2.59.
(7) is Proposition 2.20.
To prove (5) let us more generally prove

3.4 Theorem: Let E∨ be the automorphic local system associated to the
dual representation of E. There is an isomorphism

DSh∗(C•
(mG,K)(Sρ±log ⊗ E))• ∼= C•

(mG,K)(Sρ−1∓log ⊗ E∨)

in the derived category of G(Af )-equivariant sheaves on Sh∗. Here DSh∗

denotes the Verdier duality functor.

3.5 Lemma: Let D• be a bounded complex of ultrabornological spaces each
possessing a web of type C , i.e. such that the closed graph theorem of
De Wilde holds (see [Obe82], Folgerung 6.1.4). Assume that cohomology
spaces are finite dimensional. Then the natural inclusion

D•,′ ⊆ D•,∨

of the topological dual into the algebraic dual is a quasi-isomorphism.

Proof: We prove this by induction on the length n of the interval in which
C• is non-zero. If n = 0 there is nothing to prove. Let n > 0. After
translation we may assume that Cp = 0 for p < 0. The sequence

0→ H0(C•)[0]→ C• → C•/H0(C•)[0]→ 0
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is topologically exact since H0(C•) is finite dimensional. The algebraic and
topological dualizing functors are exact. The exactness of the latter follows
from the Hahn-Banach Theorem. Since

H0(C•)

is finite dimensional by assumption the canonical inclusion

H0(C•)′ ⊆ H0(C•)∨

is an isomorphism. Hence we may replace C• by C•/H0(C•) and assume
that H0(C•) = 0. Since Im(d0) is of finite codimension in Ker(d1) it is
a closed subspace of C1. Hence Im(d0) possesses a web of type C . By
De Wildes closed graph theorem the canonical map

d0 : C0 → Im(d0) ⊆ C1

is an isomorphism and identifies C0 with a closed subspace of C1. If we let
D• be the complex

C0 idC0→ C0 → 0→ 0→ . . .

there is a sequence

0→ D• (idC0 ,d0)
→ C• → τ≥1C

• → 0

of locally convex spaces. We have seen that it is topologically exact. By
induction the assertion of the Lemma is true for τ≥1C

•. It is trivially true for
D•. Functoriality of the long exact sequence shows the Lemma for C•.
Proof (of 3.4): It suffices to show

DSh∗C
•
(mG,K)(Sρ±log ⊗ E) ∼= C•

(mG,K)(Sρ−1∓log ⊗ E∨).

Since C•
(mG,K)(S

•
ρ±log ⊗ E) is a complex of fine sheaves the Verdier dual

complex is

DSh∗C
•
(mG,K)(Sρ±log ⊗ E) = CdimR Sh∗−•

(mG,K) (Γc(U,Sρ±log)⊗ E))∨.

By definition of the locally convex topology Γc(U,Sρ±log) is an ultrabornolog-
ical space. It possesses a web of type C in the sense of De Wilde by [Obe82],
Satz 6.2.7. Consequently the Lemma applies to

C• = C•
(mG,K)(Γc(U,Sρ±log)⊗ E)

provided that the cohomology spaces are finite dimensional. We have seen
that the cohomology sheaves H •(A(2)+?(E)) are constructible on any Sa-
take compactification. Hence every point of Sh∗ has a neighborhood base
consisting of open sets U ∈ B∗ such that the cohomology groups of C• are
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finite dimensional (after passage to a Kf -invariant subspace). It follows from
Lemma 3.5 that

CdimR Sh∗−•
(mG,K) (Γc(U,Sρ±log)⊗ E))′ ⊂ CdimR Sh∗−•

(mG,K) (Γc(U,Sρ±log)⊗ E))∨

is a quasi-isomorphism for such U . Using the perfect pairing

Λp(mG,C/kC)∨ ⊗ ΛdimR Sh∗−p(mG,C/kC)∨ → ΛdimR Sh∗(mG,C/kC)∨ ∼= C

there is an isomorphism

CdimR Sh∗−•
(mG,K) (Γc(U,Sρ±log)⊗ E))′ ∼= C•

(mG,K)(Γc(U,Sρ±log)′ ⊗ E∨))

By Theorem 2.19 the inclusion

C•
(mG,K)(Sρ−1∓log ⊗ E∨)) ⊂ C•

(mG,K)(Γc(U,Sρ±log)′ ⊗ E∨))

is a quasi-isomorphism.
3.6 Corollary: If Sh∗ is an equal-rank Satake compactification there is a
quasi-isomorphism

DSh∗A
•
(2)(E) ∼= A •

(2)(E
∨).

Proof: This is immediate from Theorem 3.4 and Theorem 2.47.

3.3 Second Part of the Proof - Estimates

Choose a fundamental θ-stable Cartan subalgebra b ⊆ m
eR

and extend it to
a θ-stable Cartan subalgebra h = a

eR
⊕b of g. Fix a θ-stable positive system

Φ(m
eR,C, hC)+ of roots. Set

Φ(gC, hC)+ = Φ(m
eR,C, hC)+ ∪ Φ(n

eR,C, hC).

The aim of this section is to prove the following:
3.7 Theorem: Let F ⊆ Hp

n
eR
(E) be an irreducible L

eR
(C) submodule in

degree p. Assume that the lowest weight of F is of the form λ̃+ ρh with

(3.8) λ = λ̃|a
eR
∈ (−+ǎ

eR
) ∩ (ǎO+

eR
+ ǎO)

and that there exists an irreducible unitary (mR,KR)-module V such that

Hq
(mR,KR)(V ⊗ F ) 6= {0}.

If Sh∗ is the Satake-Baily-Borel-compactification of a hermitian locally sym-
metric space then

(3.9) p+ q + prkQ(R̃) ≤ 1
2

codimR(∂O Sh∗ ⊆ Sh∗).
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Property (7) is an immediate consequence of Theorem 3.7 since it shows
that the E1-term of the spectral sequence in Theorem 2.69 vanishes if the
total degree is large enough.

A similar Proposition is proved in [SS90], Proposition 11.1, for λ in the
cone

(3.10) {µ|〈µ, α̌〉 ≤ 0 for all α ∈ Φ(a
eR
, nO)}

and the proposition will be proved if we can show that the cone described
by (3.8) is contained in the one described by (3.10).

Recall that l(F ) equals the number of positive roots α ∈ Φ(gC, hC) such
that w−1α is negative. Since Λ + ρh is regular and dominant the condition
w−1α̌ < 0 is equivalent to

〈λ̃, α̌〉 = −〈Λ + ρh, w
−1α̌〉 > 0.

Recall that in Kostant’s theorem only Weyl group elements w are considered
with the property that w−1α is positive for any positive root appearing in
l
eR,C. Using this fact we may compute l(F ) as

(3.11) l(F ) = number of roots α ∈ Φ(n
eR,C, hC) such that 〈α, λ̃〉 > 0

or in other words the number of root hyperplanes separating λ̃ from the
negative Weyl chamber in h. We also write l(λ̃) for l(F ).

The Cartan subalgebra h decomposes under θ as

b = bs ⊕ bk

where bs = b∩s and bk = b∩k. Note that bs∩m
eR,h

= 0 since b is fundamental
and m

eR,h
equal-rank by assumption.

Recall that a θ-stable parabolic subalgebra of mR is a parabolic subal-
gebra q ⊆ mR,C such that

• θq = q and

• lq,C = q ∩ q is a Levi subalgebra of q.

It is clear that lq,C is defined over R. Write lq ⊆ mR for the set of its reals
points. The Levi-group of q is defined to be

Lq ⊆ {g ∈MR(R)|Ad(g)(q) ⊆ q} ⊆MR(R).

Note that θ-stable parabolic subalgebras of mR are only defined over C and
that not every parabolic subalgebra of mR,C that satisfies θq = q is θ-stable.
After conjugation by an element of KR we may assume that b ⊂ q and q∩kC
is a standard parabolic subalgebra of kC∩oC with respect to some of positive
compact roots.
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Conversely, any θ-stable parabolic subalgebra q of mR such that q∩ kC ⊆
kC ∩ oC is standard is of the form

q(ν) = bC ⊕
⊕

〈ν,α̌〉≥0

mR,C,α

where ν ∈ ib̌k is some dominant character and α is positive with respect to
the standard Borel subalgebra of mR,C ∩ kC. In this case

L(ν) = Lq(ν) ⊆ {g ∈MR(R)|Ad(g)(ν) ⊆ ν}.

Associated to q(ν) and some µ ∈ ib̌ inducing a unitary character of Lq

one associates an irreducible unitary (mR,KR)-module Aq(µ), c.f. [KV95].
These modules interpolate between the discrete series representations (if
existent) corresponding to Aq(µ) for q a θ-stable Borel subalgebra and the
trivial representation AmR,C(0). If

H•
(mR,KR)(V ⊗ F ) 6= {0}

then there exists by [Wal88], Theorem 9.7.1., a θ-stable parabolic subalgebra
of the form q(ν) of mR such that F/nqF =: Cµ is a unitary character µ of
L(ν) and such that V is unitarily equivalent to Aq(ν)(µ). Hence we may
assume V = Aq(ν)(µ) for our purpose. By [Wal88], Theorem 9.6.6, the
(mR,KR)-cohomology of the module Aq(µ) can be non-zero only in degrees
less or equal than

(3.12) m(F, V ) =
1
2
(dimR(mR ∩ s) + dimR(lq ∩ s)).

This number is independent of the nilradical of q and consequently we may
assume q to be standard if we are only interested in the vanishing assertion.
Since F/n(ν)F is one-dimensional µ = λ̃+ ρh is the lowest weight of F . By
[BC83], §1, (λ̃+ ρh)|b ∈ ib̌k and in particular

(3.13) θ((λ̃+ ρh)|b) = (λ̃+ ρh)|b

where we write θ for the induced involution on the dual b̌ of the θ-stable
Cartan subalgebra.
3.14 Lemma: Let λ ∈ ǎ

eR
then

λ ∈ (−+ǎG
eR
) ∩ (ǎO+

eR
+ ǎG

O)

implies that
〈λ, α̌〉 ≤ 0

for all roots α ∈ Φ(nO, aR).
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Proof: The Q-root system Φ(g, a0) is of type Cl or BCl where l is the Q-
rank of G. It follows that the restricted root system Φ(g, a

eR
) is of type Cr

or BCr where r is the Q-parabolic rank of R̃. Let β1, . . . , βr ∈ ǎ
eR

such that

Φ(nO
eR
, a
eR
) = {1

2
(βi − βj)|i < j}

and

Φ(nO, aeR) =
{
{1

2(βi + βj)|i ≤ j} , Cr

{1
2(βi + βj)|i ≤ j} ∪ {1

2βi} , BCr

in the case BCr. This description follows from [BB66], Proposition 2.9 and
its proof. The condition λ ∈ (−+ǎ

eR
) is equivalent to

〈λ, β̌1〉, 〈λ, β̌1 + β̌2〉, . . . , 〈λ, β̌1 + · · ·+ β̌r〉 ≤ 0

while the condition λ ∈ ǎO+
eR

+ ǎG
O is equivalent to

〈λ, β̌i〉 ≤ 〈λ, β̌j〉 for every i > j.

It follows that

〈λ, β̌i〉 ≤
1
i
(〈λ, β̌1〉+ · · ·+ 〈λ, β̌i〉) =

1
i
〈λ, β̌1 + · · ·+ β̌i〉 ≤ 0

for i = 1, . . . , r. This implies the Lemma since any α ∈ Φ(nO, aeR) is con-
tained in the positive cone spanned by the βi. .
Proof (of 3.7): As explained above, the proposition will follow from [SS90],
Proposition 11.1, in view of Lemma 3.14. It remains to see how. As a first
step let us rewrite the RHS of (3.9). The decomposition

g = l
eR
⊕ l̃h ⊕ n

eR
⊕ θn

eR

implies

codimR(∂O Sh∗ ⊆ Sh∗) = dim(g ∩ s)− dim(̃lh ∩ s)(3.15)
= dim(l

eR
∩ s) + dim(n

eR
).

As in [SS90] let Φ+
s ⊆ Φ(mR,C, hl,C), hl,C = hC∩mR,C, be a subset containing

all positive imaginary roots and exactly one root from each pair {α, θα} of
positive complex roots. If

A− = Φ+
s ∩ Φ(lq, hl,C)

then
〈λ̃+ ρh, α̌〉 = 0
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for all α ∈ A−. Lemma 3.14 guarantees condition (i) of Proposition 11.1 in
[SS90] with

β = −λ̃− ρh +
1
2

∑
α∈Φ(n

eR,C,hC)

α

since
ρh|a

eR
= ρ

eR
=

1
2

∑
α∈Φ(n

eR,C,hC)

α|a
eR
.

Condition (ii) of the same Proposition 11.1 is satisfied since

1
2

∑
α∈Φ(n

eR,C,hC)

α|bs = 0

and (3.13). Hence we may apply that Proposition and get

l(F ) + |A−|+ 1
2

dim(h ∩ s) ≤ 1
2

dim n
eR

or

l(F ) +
1
2
(dim mR ∩ s + 2|A−|+ dim(b ∩ s)) +

1
2

dim a
eR
≤

1
2
(dim mR ∩ s + dim n

eR
).

Now using
dim(lq ∩ s) = 2|A−|+ dim(b ∩ s)

and adding 1
2 dim a

eR
on both sides we get

l(F ) +m(F, V ) + dim a
eR
≤ 1

2
(dim l

eR
∩ s + dim n

eR
) =

1
2

codimR(∂O Sh∗ ⊆ Sh∗)

by (3.12) and (3.15).
Let us remark that it is not difficult to check (3.9) case by case. The

reason is that the ”extra space” (prkQ(R̃) − 1) in (3.9) allows one to get
rid of the Q-structure. More precisily it is sufficient to show an estimate
similar to (3.9) for real parabolics and real boundary components of X. But
there are only a few irreducible hermitian bounded symmetric domains. In
the general equal-rank case the list expands and the calculations become
a little more involved. The author has proved (3.9) all classical hermitian
symmetric domains and some equal rank cases in this way.
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École Norm. Sup. (4), 31(2):181–279, 1998.
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des schémas. Inst. Hautes Études Sci. Publ. Math., (4), 1960.

[Kna02] A. Knapp. Lie groups beyond an introduction. Birkhäuser Boston
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