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Zusammenfassung

In der folgenden Arbeit wird der Begriff eines ,,RNA fingerprints” eingefiihrt und an verschiedenen
Fragestellungen der Immunologie und medizinischen Diagnostik angewendet. Unter einem ,RNA
fingerprint“ versteht man transkriptionelle Verdanderungen, die durch ein molekulares Signal
hervorgerufen werden. Dieses molekulare Signal kann ein aktivierter Signalweg, hervorgerufen durch
Behandlung einer Zelle sein oder eine Krankheit, die bestimmte, fir diese Krankheit spezifische,
transkriptionelle Veranderungen hervorruft. In dieser Arbeit werden vier verschiedene Konzepte
eines ,,RNA fingerprints“ vorgestellt. Das erste Konzept befasst sich mit in vitro definierten ,RNA
fingerprints”. ,,RNA fingerprints“ von T-Zell-inhibitorischen Molekilen, unter anderem TGFB und PD-
1, wurden in vitro erstellt und dann unter Verwendung bioinformatischer Methoden in Patienten mit
Hodgkin Lymphom nachgewiesen. Somit konnten wir zeigen, dass T-Zellen im Tumormilieu des
Hodgkin Lymphoms unter dem Einfluss von TGFB und PD-1 stehen. Im zweiten Konzept wird die
Erstellung eines krankheitsspezifischen ,,RNA fingerprints“ vorgestellt. Mit Hilfe von
Transkriptionsprofilen von Lungenkrebs- und Kontrollpatienten wird hier ein Bronchialkarzinom-
spezifischer ,RNA fingerprint” erstellt, welcher das Auftreten einer Lungenkrebserkrankung, welche
noch nicht klinisch manifest ist, voraussagen kann. Ein weiteres Konzept befasst sich mit der
Verwendung von vordefinierten ,,RNA fingerprints”. Diese kdnnen aus biologischen Datenbanken
extrahiert werden und umfassen Gene, welche spezifischen Signal- oder Stoffwechselwegen
zugehorig sind. Ich habe eine neue, sehr einfache ,Gene class testing“-Methode entwickelt, welche
vordefinierte ,,RNA fingerprints” aus der Gene Ontology testet. Das letzte Konzept befasst sich mit
der Idee, das Microarray Experiment als solches als “RNA fingerprint” zu betrachten. Ich stellte die
Hypothese auf, dass alle transkriptionellen Veranderungen eines Experiments als ,,RNA fingerprint”
dieses Experiments betrachtet werden konnen. Hierfiir wurde die , Gene-class testing“-Methode um
einen Netzwerk-Algorithmus erweitert, um Spielmacher-Molekiile in diesem Experiment zu
identifizieren. Des Weiteren wird in der Arbeit ein Softwarepaket vorgestellt, welches es
Wissenschaftlern ermdglicht, die Konzepte der ,RNA fingerprints“ anzuwenden. Aufgrund einer
Grafik-basierten Benutzeroberflache kbnnen Microarray-Experimente analysiert werden, ohne dass
Programmierkenntnisse erforderlich sind. Essentiell fiir die Durchfiihrung und Anwendung aller
vorgestellten ,RNA fingerprint“-Konzepte ist die Verlasslichkeit der zugrundeliegenden Technologie,
in diesem Fall der Microarray-Technologie. Am Beispiel der lllumina BeadChip Technologie wird zum
Abschluss kritisch beurteilt, inwieweit die Veranderung eines Chips (Technologie-Verdnderungen,

Inhalt des Arrays) Einfluss auf die erzielten Resultate hat.
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Preface

The following thesis covers the main part of research generated during my doctorate studies in the
Molecular Tumor Biology and Tumor Immunology group of Prof. Dr. Joachim Schultze at the
University Clinics of Cologne from August 2005 to January 2008. | am very grateful to Prof. Dr.
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directly, but without their dedicated work | would not have had any data to work on. | have to thank
the other House 16UG people, especially Luise Gryschok, Michaela Patz and Tanja Liebig who made
the UG a fun place to work. Finally | would like to thank our clinicians Dr. Jens Chemnitz and Dr.
Thomas Zander for a good collaboration throughout my thesis. Especially the discussions with Dr.
Thomas Zander concerning statistics and bioinformatics very much contributed to the success of my
work. And a more private note, | would like to thank Peter for his encouragement and especially his
understanding in busy times. Also | would like to thank my parents for their continuous and

dedicated support during my years of study.

The results presented here were obtained in close collaboration with many different people. | would

therefore like to elaborate my specific contribution to each of the projects.

Chapter 4 introduces the term of RNA fingerprints in its original form applied to the immunological
problem of immune inhibition within the tumor environment. The study was performed in close
collaboration with Dr. Jens Chemnitz, who introduced the idea of interrogating the contribution of
different inhibitory molecules to the tumor environment of Hodgkin’s disease. All considerations
about stating this problem in the context of RNA fingerprints and all calculations were performed by

me. In July 2007, the results of this study have been published in Blood (Chemnitz, Eggle et al. 2007).
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Chapter 5 covers the concept of RNA fingerprints in a diagnostic setting. The research on this topic
was performed in close collaboration with Dr. Thomas Zander and Dr. Svenja Debey-Pascher. The

results of this study are currently prepared as a manuscript for submission.

Chapter 6 introduces a new gene-class testing approach (GOAna) to test pre-defined RNA
fingerprints for their contribution to changes between subgroups in a microarray experiment. The
algorithm is based on a preliminary idea of Dr. Benedikt Brors (DKFZ Heidelberg) and Dr. Thomas
Zander and has been implemented and enhanced by me. The application of GOAna to the
immunological problem of T cell homeostasis was performed in close collaboration with Sabine
Classen. The bioinformatics part of this study, including the application of the implemented approach
was carried out by me. In June 2007 the results of this study have been published in the Journal of

Immunology (Classen, Zander et al. 2007)

Chapter 7 expands the GOAna algorithm and aims for the identification of key players within a
microarray experiment by using the measured transcriptional changes as a RNA fingerprint. The
algorithm was designed and implemented by me and was further applied to an unsolved biological
question in T cell biology, the unraveling of detailed signaling mechanisms following inhibition of T
cells. All biological experiments for substantiating the findings in this study were carried out by Julia
Driesen. The results have been presented as a poster at the ISMB/ECCB 2007 in Vienna, Austria and

are prepared for publication.

Chapter 8 introduces a software application (llluminaGUI) which is intended to help researchers,
especially non-bioinformaticians to analyze microarray data derived from the lllumina BeadChip
platform. Idea, design and implementation of this software package were performed by me. Dr.
Svenja Debey-Pascher performed the beta-tests on the software. In June 2007 the results have been

published in Bioinformatics (Schultze and Eggle 2007)

Chapter 9 deals with critical considerations about the technology underlying the determination of
RNA fingerprints. All calculations and investigations in this project were performed by me. Dr. Svenja
Debey-Pascher supported this research by calculations of the whole blood data set introduced in this

chapter. The results of this study have been submitted for publication.
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INTRODUCTION

Part I: General Introduction

1 Introduction

This thesis focuses on the development of different concepts of RNA fingerprints on the basis of
transcriptional profiling using microarrays. DNA microarrays are the major technology used for
establishing genome-wide transcriptional profiles of cells, tissues or even whole organs (Schena,
Shalon et al. 1995). With the introduction of this technology, researchers have started to describe
changes in gene expression between different samples (Schena, Shalon et al. 1995; DeRisi, Penland et
al. 1996; Lockhart, Dong et al. 1996; Spellman, Sherlock et al. 1998) including the determination of
differentially expressed genes and the grouping of genes based on their expression pattern across
samples using unsupervised classification methods. Additionally supervised classification methods
have been used to systematically classify diseases based on transcriptional changes (Golub, Slonim et
al. 1999; Alizadeh, Eisen et al. 2000; Shipp, Ross et al. 2002; Valk, Verhaak et al. 2004). Several
different algorithms have been introduced, all aiming on the sub-classification, prediction and
diagnosis of different diseases (Vapnik 1998; Tibshirani, Hastie et al. 2002). The term RNA fingerprint
has been introduced in our lab and can be assigned to generally all predictive gene signatures which
are generated from transcriptional profiles that are based on biological differences between sample
groups. Starting out with a concept introduced by the Nevins’ lab in 2003 in which the group created
predictive gene signatures for different oncogenes in vitro and demonstrated the existence of these
molecules in vivo, | hypothesized that - in principle - this concept should be applicable to any other
molecular factor that leads to transcriptional changes upon stimulation and signaling. That means,
observed transcriptional changes are biological responses of any given cell in reply to a molecular
signal and can therefore be termed a RNA fingerprint of the respective signal. Molecular signals
include activated oncogenic pathways by introducing the oncogene as a transgene, receptor ligand
interactions, treatment of cells with inhibitory factors and responses of cells to different diseases.
Here | give a short overview of the different concepts of RNA fingerprints that are described within

this thesis.

The thesis is structured as follows:

In Chapter 2 | will present all background knowledge that is needed to understand and follow this
whole thesis. That means that all biological, technical and bioinformatics terms which are mentioned
throughout the thesis are clarified in this section. The fundamentals of molecular biology and

immunology will be explained as well as genome-wide transcriptional profiling using microarray
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technology with a special focus on the recently introduced lllumina BeadChip technology. Finally,
several data analysis methods that are applied in Part Il and Part Il of the thesis will be introduced.
Most of the presented material is textbook knowledge and can also be found in (Alberts, Bray et al.

2002; Speed 2003; Gentleman, Carey et al. 2005; Janeway, Travers et al. 2005; Crawley 2007).

Chapter 3 briefly introduces the most important Material and Methods used for this thesis. Since this
thesis focuses on the bioinformatics part of the studies introduced here, a detailed description of the
Material and Methods used for the experimental setups can be found in (Driesen 2005; Chemnitz,
Eggle et al. 2007; Classen 2008). An overview of the experimental methods used can be found in

Appendix C.

In Chapter 4 we generated gene signatures for different T cell inhibitory molecules, including TGFp
and PD-1, in vitro and introduced these signatures as RNA fingerprints of the molecules. These
fingerprints are then applied to gene expression profiles of human cancers to directly determine the
in vivo impact of the interrogated molecules on tumor infiltrating T cells. By applying supervised
and unsupervised classification methods based on the RNA fingerprints of both, TGFB and PD-1 it was
then shown that T cells derived from patients with Hodgkin’s lymphoma are indeed under the

influence of both, TGFB and PD-1.

Chapter 5 extends the concept to a disease specific RNA fingerprint in a diagnostic setting.
Transcriptional changes which are an image for the disease should be able to specifically distinguish
this disease not only from healthy controls, but also from any other disease and can therefore be
termed RNA fingerprint for this disease. In this chapter a lung cancer specific RNA fingerprint was

developed to predict the occurrence of lung cancer prior to clinical manifestation.

Chapter 6 introduces a further concept which deals with the use of pre-defined RNA fingerprints.
These can be extracted from biological databases that include information about genes belonging to
special pathways or groups of genes with similar functions. | have developed a new and very simple
gene-class testing method, GOAna, which is based on RNA fingerprints provided by the Gene
Ontology (GO) Consortium. Using GOAna, it is possible to perform an unbiased analysis based on all

branches of GO.

In Chapter 7 the fourth and last concept introduces the idea of using the microarray experiment itself

as a RNA fingerprint. | hypothesized that all transcriptional changes which are revealed by a




INTRODUCTION

microarray experiment can serve as a RNA fingerprint and can decipher underlying signaling
mechanisms. The algorithm presented in Chapter 6 was extended by a network-construction
algorithm to determine key player genes which link the identified significant gene spaces. Using this
approach a key player within the PGE, signaling pathway in CD4" T cells was identified and

experimentally validated.

Chapter 8 introduces a software package, IlluminaGUI, which allows the researcher to establish and
apply RNA fingerprints to gene expression data derived from lllumina’s Sentrix BeadChip technology.
IluminaGUI is implemented as a graphical user interface and is intended to enable the interested life
scientist who is not familiar with a command line based environment like the R language to analyze

microarray experiments.

In Chapter 9 critical issues concerning the used technology are raised. All described approaches for
the creation of RNA fingerprints are heavily dependent on the reliability of the microarray format
used for the study. Here the continuity of RNA fingerprints is discussed when a new version of a

microarray with updated probe content becomes available.

The last part of the thesis gives a summary of all previous discussions and aligns these discussions
into a broader context. Here future research directions are pointed out and possible difficulties

concerning the concept of RNA fingerprints are raised.
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2 Background information

In this chapter | would like to introduce the reader to all background knowledge that is needed to
understand and follow this whole thesis. Additionally all biological, technical and bioinformatics
terms which are mentioned throughout the thesis are clarified in this section. First | sketch the
fundamentals of molecular biology and immunology, starting with the definition of basic terms like
DNA, RNA and proteins and concluding with an overview over the human immune system and basic
immunological methods for immune cell extraction. Then | will briefly introduce the fundamentals of
cancer and present three examples of cancer types in more detail. Furthermore | will introduce the
reader to genome-wide transcriptional profiling using microarray technology with a special focus on
the recently introduced Illumina BeadChip technology. Finally, several data analysis methods that are

applied in Part lll of the thesis will be introduced.

2.1 A primer on molecular biology

2.1.1 DNA

The history of DNA goes back to 1868 when a young Swiss scientist called Friedrich Miescher isolated
a new substance from cell nuclei which he called nucleic acid (Dahm 2005). That this substance
holds the genetic information of the cell was discovered by Oswald T. Averyin
1943 (Avery, Macleod et al. 1979). In 1953, Watson and Crick determined the spatial
structure of DNA to be a double helix. Depicted on the left is the original figure
derived from their article in Nature (Watson and Crick 1974). DNA is a very long,
threadlike macromolecule arranged in two strings which are antidromic and is made
up of a large number of deoxyribonucleotides, each composed of an organic base
(adenine, guanine, cytosine or thymine), a sugar (Pentose) and a phosphate group.

The bases of the DNA molecules carry genetic information whereas their sugar and

phosphate groups perform a structural role.

2.1.2 RNA

Although DNA holds the genetic information, it is not the direct template for protein synthesis. The

direct template for protein synthesis is the RNA molecule, a long, unbranched macromolecule which,
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like DNA, consists of nucleotides. In contrast to DNA, the sugar unit in RNA is ribose and thymine is
replaced by the derivate uracil. Also, RNA molecules are usually single-stranded, except in some
viruses. There are two major types of RNA, coding and non-coding RNA. Table 2.1 lists the different

RNA molecules together with their function.

RNA name ‘ RNA type Function

Messenger RNA (mRNA) coding Template for protein synthesis
Transfer RNA (tRNA) non-coding Translation

Ribosomal RNA (rRNA) non-coding Translation

Antisense RNA (aRNA) non-coding Gene regulation

MicroRNA (miRNA) non-coding Gene regulation

Small interfering RNA (siRNA) | non-coding Gene regulation

Table 2.1 — Types of RNA molecules
There are two major types of RNA molecules, coding and non-coding RNA. RNA name (abbreviation), type and
function are depicted.

Messenger RNA (mRNA) is a coding RNA which serves as the template for protein synthesis. Non-
coding RNA genes are genes that encode RNA which is not translated into a protein. The most
prominent representatives of non-coding RNAs are transfer RNAs (tRNA) and ribosomal RNAs (rRNA).
tRNA carries amino acids in an activated form to the ribosome for peptide-bond formation, in a
sequence determined by the mRNA template. rRNA, the major component of ribosomes, plays both
a catalytic and structural role in protein synthesis. Other non-coding RNAs include antisense RNA
(aRNA), microRNA (miRNA) and small interfering RNA (siRNA) which all function as gene regulation

molecules.

2.1.3 Proteins

Proteins play crucial roles in virtually all biological processes. For instance, they facilitate biochemical
reactions, transfer signals, function as antibodies in the immune system, and actively transport other
molecules. Structurally, proteins are linear polymers built from 20 different amino acids, all of which
have a common base structure to which a specific side chain is attached; they are linked together by
peptide bonds. The side chains are critical for the function of a protein because they can have many

different chemical properties, for example, they can differ in size, shape, charge or chemical
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reactivity; the arrangement of different amino acids therefore lends a protein its function through a
specific combination of these chemical properties. Each protein has its own unique amino acid

sequence that is specified by the nucleotide sequence of the gene encoding this protein.

2.1.4 From DNA to RNA to protein

The flow of genetic information in normal cells is from DNA to RNA to protein. The synthesis of
RNA from a DNA template is called transcription, whereas the synthesis of protein from an RNA
template is termed translation. The relation between the sequence of bases in DNA (or its mRNA
transcript) and the sequence of amino acids in a protein is called the genetic code. The code is nearly
the same in all organisms and defines a mapping between tri-nucleotide sequences called codons

and amino acids; every triplet of nucleotides in a nucleic acid sequence specifies a single amino acid.

2.2 A primer on immunology
2.2.1 Innate vs. adaptive immune system

The immune system is composed of two major subdivisions, the innate or nonspecific immune
system and the adaptive or specific immune system. Although both systems function to protect
against invading organisms, they differ in a number of ways. In the early phases of the host
response to infection the cells of the innate immune system recognize and respond to pathogens in a
generic way. The innate immune system is therefore the first line of defense against invading
organisms, since most cells are constitutively present and ready to be mobilized upon infection. The
adaptive immune system, on the other hand, requires some time to react to an invading organism
since it is composed of highly specialized cells and processes that eliminate pathogenic challenges. It
is antigen specific and reacts only with the organism that induced the response. In contrast, the
innate system is not antigen specific and reacts equally well to a variety of organisms, and does not
discriminate between pathogens. Finally, the adaptive immune system demonstrates immunological
memory. It “remembers” that it has encountered an invading organism and reacts more rapidly on
subsequent exposure to the same organism. In contrast, the innate immune system does not

demonstrate immunological memory and does not increase with repeated exposure.
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2.2.2 The cells of the immune system

Both innate immunity and adaptive immunity responses depend upon the activities of white blood
cells or leukocytes. Leukocytes are found throughout the body, including the blood and lymphatic
system. Several different types of leukocytes exist, but they all derive from a pluripotent cell in the

bone marrow, the hematopoietic stem cell (Figure 2.1).

="

Macrophage

4. Mast cell
Dendritic \ e

cell

Erythrocytes

Bone

Hematopoietic \

stem cell

Q.

Myeloi

—p
) - progenitor
Multipotential cell
stem cell

Lymphoid
progenitor Megakaryocyte

Neutrophil

Dendritic

T lymphocyte cell

B lymphocyte Natural killer
cell

Figure 2.1 — All cells of the immune system arise from hematopoietic stem cells in the bone marrow

The pluripotent hematopoietic stem cells divide to produce several types of progenitor cells, the lymphoid
stem cell (lymphoid progenitor cell) and the myeloid stem cell (myeloid progenitor cell). The
lymphoid progenitor cell gives rise to lymphocytes, including T lymphocytes (T cells), B lymphocytes (B cells),
natural killer cells (NK cells) and dendritic cells (DCs). The myeloid progenitor cell gives rise to, for example,
monocytes, macrophages, eosinophils or basophils.

The pluripotent hematopoietic stem cells divide to produce several types of progenitor cells,
including lymphoid progenitor cells and myeloid progenitor cells. The myeloid progenitor cells
develop into the cells that respond early and nonspecifically to infection, i.e. cells which are part of
the innate immune system. Macrophages and neutrophils are primarily phagocytic cells that engulf

bacteria upon contact and send out warning signals. Eosinophils are involved in attacking parasites,

0o
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while basophils release the contents of their granules containing allergy-related molecules. The
lymphoid progenitor cells develop into the small white blood cells called lymphocytes. Lymphocytes
are the major component of the adaptive immune system and include two main classes, the B
lymphocytes (B cells) and the T lymphocytes (T cells). Upon activation B cells differentiate into
plasma cells that produce and release thousands of specific antibodies into the bloodstream. The T
cells differentiate into cells that can kill infected cells or activate other cells of the immune system,
thereby coordinating the entire immune response. A subset of T cells, the CD4" T cells, will be used in

the experiments throughout the thesis. This subset is introduced in more detail below.

2.2.2.1 Tcells

T cells are a subset of lymphocytes which work at the core of adaptive immunity. The abbreviation T,
in T cell, stands for thymus, the principal organ in a T cell's development. T cells are usually divided
into two major subsets that are functionally and phenotypically different, the cytotoxic T cells and
the helper T cells. The cytotoxic T cells, or killer T cells, eliminate cells which are infected with
parasites as well as cells that have been transformed by cancer but have not yet adapted to
evade the immune detection system. They are also responsible for the rejection of tissue and organ
grafts. Cytotoxic T cells are activated when their T cell receptor (TCR) recognizes a specific antigen
presented by another cell. This recognition is aided by a co-receptor on the T cell, called CD8, hence
the name CD8" T cells.

The helper T cells, also called CD4" T cells, are coordinators of immune regulation. CD4" T cells are
also activated by recognizing a specific antigen on an antigen-presenting cell. But these cells have no
cytotoxic activity and do not kill infected cells directly. Instead activation of a CD4" T cell causes it to
release cytokines that influence the activity of many immune cells and therefore, for example,
enhances the activity of cytotoxic T cells. In addition, activation of CD4" T cells leads to an up-
regulation of different molecules expressed on the T cell's surface, including CD40 ligand, which

provide extra stimulatory signals required to activate antibody-producing B cells.

2.2.3 Isolation of lymphocytes

Human lymphocytes can be isolated from peripheral blood by density gradient centrifugation using
the polymer Ficoll. In short, peripheral blood is layered over Ficoll and is centrifuged. Red blood cells
and polymorphonuclear leukocytes or granulocytes are more dense than mononuclear cells and

centrifuge through the Ficoll. This yields a population of mononuclear cells (peripheral blood
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mononuclear cells (PBMC)) at the interface that consists mainly of lymphocytes and monocytes. In
experimental animals, and occasionally in humans, lymphocytes can also be isolated from lymphoid
organs, such as spleen, thymus, bone marrow or lymph nodes.

For the isolation of a particular cell population from a sample or culture many different methods
exist, including magnetic cell separation (MACS). Here, the cells are incubated with magnetic beads
coated with antibodies against a particular surface antigen. Cells expressing this antigen attach to the
magnetic beads, while cells not expressing the antigen flow through. With this method, the cells can
be separated positively or negatively with respect to the particular antigen(s).

For the isolation of very rare or highly-purified cell populations a fluorescence-activated cell sorter
(FACS) can be used. Individual cells within a mixed population are first tagged by a fluorescently
labeled antibody. The cells are then forced through a nozzle in a single-cell stream that passes
through a laser beam. Photomultiplier tubes (PMTs) detect the scattering of light, a sign of cell size
and granularity, and emissions from the different fluorescent dyes. In this way, specific
subpopulations of cells, distinguished by the binding of the labeled antibody, can be purified from a

mixed population of cells.

2.3 A primer on cancer

Cancer is a generic term for a group of more than 100 diseases that can affect any part of the body. It
is defined by a rapid creation of abnormal cells which grow beyond their usual boundaries, and which
can invade adjoining parts of the body and spread to other organs, a process known as metastasis.
Cancer is a leading cause of death worldwide (Parkin, Bray et al. 2005). From a total of 58 million
deaths worldwide in 2005, cancer accounts for 7.6 million (or 13%) of all deaths (World Health
Organization 2008).

Cancers are classified by the type of cell that resembles the tumor and, therefore, the tissue

presumed to be the origin of the tumor. Two examples of general categories include:

e Carcinoma: Malignant tumors derived from epithelial cells. This group represents the most

common cancers, including the common forms of breast, prostate, lung and colon cancer.

e Lymphoma and leukemia: Malignancies derived from hematopoietic (blood-forming) cells.

Examples include acute myeloid leukemia, Hodgkin’s lymphoma and follicular lymphoma.

In the course of this thesis three different types of cancer are addressed within the introduced
studies; Hodgkin’s lymphoma, follicular lymphoma and lung cancer. Below is a short introduction to

these three diseases.
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2.3.1 Lung cancer

Lung cancer is a disease of uncontrolled cell growth in tissues of the lung. This growth may lead to
metastasis, invasion of adjacent tissue and infiltration beyond the lungs. The vast majority of primary
lung cancers are carcinomas of the lung, derived from epithelial cells. Lung cancer is the most
common cause of cancer-related death in men and the second most common in women (Parkin, Bray
et al. 2005) and is responsible for 1.3 million deaths worldwide annually. Symptoms of lung cancer
include shortness of breath, hoarseness, chronic fatigue, loss of appetite and unexplained weight loss
(World Health Organization 2008). Lung cancer is classified as two major types: small cell lung cancer
(SCLC) and non—small cell lung cancer (NSCLC). SCLC accounts for 15% of all lung cancers and is an
aggressive and fast-growing cancer that forms in tissues of the lung and can spread to other parts of
the body. The cancer cells look small and oval-shaped when looked at under a microscope. NSCLC is
the most common kind of lung cancer and includes a group of lung cancers. The three main types of
non-small cell lung cancer are squamous cell carcinoma, large cell carcinoma, and adenocarcinoma
(National Institute of Health 2008). Lung cancers are described in different stages, starting from an
occult stage in which lung cancer cells are found in sputum or in a sample of water during
bronchoscopy, but without a visible tumor in the lung to stage IV where malignant growths of cells

may be found in more than one lobe of the same lung or in the other lung.

2.3.2 Hodgkin lymphoma and follicular lymphoma

Hodgkin lymphoma or Hodgkin's disease is a type of lymphoma which is characterized by the
presence of Reed-Sternberg cells. The two major types of Hodgkin lymphoma are classical Hodgkin
lymphoma and nodular lymphocyte-predominant Hodgkin lymphoma. Symptoms include the
painless enlargement of lymph nodes, spleen, or other immune tissue. Other symptoms include
fever, weight loss, fatigue, or night sweats. Treatment of Hodgkin lymphoma is performed using
chemotherapy, radiation or stem cell transplantation (National Institute of Health 2008). Follicular
lymphoma is a common type of Non-Hodgkin Lymphoma (NHL). It is a slow growing lymphoma that
arises from B-cells and is therefore categorized as a B cell tumor. Symptoms include painless swelling
in the neck, enlarged lymph nodes, fatigue and loss of appetite. As with Hodgkin lymphoma, follicular

lymphoma is treated by radiation therapy, chemotherapy or monoclonal antibody therapy.
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2.4 Microarray technology

The ability to assess genome-wide transcriptional profiles of cells, tissues or even whole organs is a
cornerstone of the advances genomics has broad to the life and medical sciences (Pennacchio and
Rubin 2001; Reinke and White 2002). DNA microarrays are the major technology used for this
purpose (Schena, Shalon et al. 1995). Both in biology and medicine, important new findings have

been revealed by this technology.

2.4.1 Basics

Microarray technology represents a powerful functional genomics technology which permits the
expression profiling of thousands of transcripts in parallel. The technology is based on hybridization
of complementary nucleotide strands (DNA or RNA). Microarray chips consist of thousands of DNA
molecules that are immobilized and gridded onto a support such as glass, silicon or nylon membrane.
Each spot on the chip is representative for a certain gene or transcript. Fluorescently or radioactively
labeled nucleotides (targets) that are complementary to the isolated mRNA are prepared and
hybridized to the immobilized molecules (probes). Targets that did not bind to probes during the
hybridization process are washed away. The amount of hybridized target molecules is proportional to
the amount of isolated mRNA. The relative abundance of hybridized molecules on a defined array
spot can be determined by measuring the fluorescent or radioactive signal. This method provides the
advantage that it can interrogate the level of transcription of several thousands of different genes
from one sample in one experiment. Several competing technologies for microarray
probe implementation have emerged, including the use of full-length cDNAs, or presynthesized or in
situ synthesized oligonucleotides as probes. One of the “gold standard” technologies is the GeneChip
distributed by Affymetrix. The GeneChips are a constructed using a combination of two techniques,
photolithography and solid-phase DNA synthesis. Other distributors of DNA microarrays include GE
Healthcare, Applied Biosystems, Beckman Coulter, Eppendorf Biochip Systems, Agilent and very

recently lllumina.

2.4.2 The Illumina BeadChip system

In 2004, lllumina Inc. has developed a new microarray technology for quantitative gene-expression
profiling. The technology completely differs from the Affymetrix system and is based on randomly

assembled arrays of beads (Figure 2.2). Each glass slide is composed of six arrays each measuring

12



BACKGROUND INFORMATION

~50,000 transcripts. The probes used by lllumina are processed using standard oligonucleotide
synthesis methods as used for spotted long-oligonucleotides arrays. However, the oligonucleotides
are covalently attached to small microbeads (~700,000 copies of a particular oligonucleotide per
bead) which are then put onto microarrays using a random self-assembly mechanism (Kuhn, Baker et

al. 2004).
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Figure 2.2 — Design of an lllumina BeadChip
Each glass slide is composed of six arrays each measuring ~5000 transcripts. The gene specific oligonucleotides
are covalently attached to small microbeads together with an address sequence which is used to decode the
position of the oligonucleotide on the array.

There are multiple copies of each sequence-specific bead on an array (on average 30 copies on any
array), which contributes to measurement precision and reliability. Since the beads are randomly
assembled on the array, each probe has associated with it an address sequence (29 base pairs, Figure
2.2). During the scanning process, the arrays undergo a decoding step (Gunderson, Kruglyak et al.

2004) in which this address sequence is used to determine the location of each probe on the array.

2.5 A primer on microarray data analysis methods

The analysis of DNA microarrays poses a large number of statistical problems, including the

normalization of the data. A basic difference between microarray data analysis and much traditional
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biomedical research is the dimensionality of the data. In all applications of microarray technology,
the number of variables (transcripts) is much larger than the number of observations (chips): a
typical study includes from 20000 to 50000 transcripts for only 10 to 200 chips. In contrast, a large
clinical study might collect 100 data items per patient for thousands of patients. Based on this
difference, adapted data analysis methods are required. Here, different methods which are used

throughout this thesis are introduced.

2.5.1 Quality control

Quality control of microarray data is the first and probably one of the most important steps in a
microarray analysis. There are different ways to examine the quality of microarray data, some of

which are depicted here:

2.5.1.1 Basic diagnostic plots

Diagnostic plots include boxplots (Figure 2.3A), pairwise scatter plots (Figure 2.3B), and MA plots
(introduced by Dudoit et al. (Dudoit, Yang et al. 2002), Figure 2.3C).
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Figure 2.3 — Diagnostic plots for quality control
There are different diagnostic plot for quality control of microarray data. Depicted here are (A) a boxplot, (B) a
pairwise scatter plot and (C) a MA plot.

A boxplot (also known as box-and-whisker diagram) is a way of graphically depicting groups of
numerical data through their five-number summaries. These five numbers are (1) the smallest
observation, (2) the lower quartile (Q1), (3) the median, (4) the upper quartile (Q3), and (5) the
largest observation. The central box in the plot represents the inter-quartile range (IQR). The IQR is

the range between the lower quartile value and the upper quartile value within which the middle
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50% of the ranked data are found. Boxplots can be used to determine the distribution of intensity
signals across an array, thereby verifying the comparability of all arrays within an experiment. A
further common graphical display of microarray data is a scatterplot, in which the data is displayed as
a collection of points, each having one coordinate on the horizontal axis and one on the vertical axis.
A scatterplot therefore shows the linear relationship between variables. When, for example,
performing a two-channel microarray experiment, the two channels (usually red and green) are
plotted in a scatterplot to identify the relationship between dye-bias and signal intensity. When
performing a one-channel experiment, biological replicates can be plotted to detect
intensity-dependent differences. An MA plot is a rotation of the scatterplot by 45 degrees with a
subsequent re-scaling of the data. Foreach gene, the fold-change M-value
(M = log,(Array,/Array,)) is plotted on the vertical axisand the intensity A-value
(A= (logZ(Arrayl) + logz(Arrayz))/Z) is plotted on the horizontal axis (Figure 2.3C). The MA
plot therefore displays the relationship between differential expression and intensity and is used for

comparing arrays from different groups.

2.5.1.2 Determination of absent and present status of probes

For each transcript on the microarray the scanning software determines both an expression signal
and a detection p-value. The detection p-value is calculated by statistically comparing the expression
signal to a negative control usually present on the microarray and therefore depicts a significance
measure for the two signals being different. A probe is called present if the expression signal
significantly differs from the negative signal, otherwise absent. The absent resp. present status of
probes can be used to investigate sensitivity differences of arrays within an experiment. Here, the
percentage of present probes on each array is calculated and compared to each other. Within an

experiment, similar percentages for each array should be achieved.

If any of the quality measurements (different diagnostic plots or percentages of present probes)

indicates an outlier in the data set, the affected array is usually removed from further analysis.

2.5.2 Normalization

During a microarray experiment, different sources of systematic variation can affect the measured
gene expression levels, including unequal quantities of starting material, differences in labeling or
detection efficiencies between one experiment and the other. Usually, a normalization process is

used to remove such variation from the data in order to detect biological differences between
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samples. Many different normalization techniques have been implemented which are all based on
different assumptions concerning the nature of the raw data. There has been and is still extensive
research going on as to which normalization method performs best on which data. In my opinion, the
most frequently used methods for one channel microarray data are the quantiles method (Bolstad,
Irizarry et al. 2003), the vsn-method (Huber, von Heydebreck et al. 2002) and the gspline-method
(Workman, Jensen et al. 2002). As already mentioned, depending on the data set, different
normalization techniques give different results. Therefore, normalization techniques should be

tested within an analysis and the best performing technique should then be used for further analysis.

2.5.3 Identification of differentially expressed genes

The first method used to evaluate whether a transcript shows different signal intensities between
two groups, i.e. is differentially expressed, was to calculate a fold change (FC) between the two
sample groups. To date however, the FC measure alone is considered as an inadequate test statistic
because it does not incorporate variance and offers no associated level of ‘confidence’. The biological
question of differential expression was therefore restated as a problem in hypothesis testing: a test
of the null hypothesis of no association between the expression levels and the responses. The
different methods used for hypothesis testing within microarray data mainly differ in kind of test
statistic used (e.g. parametric test statistic, non-parametric test statistic). In any testing situation,

despite of the test statistic used, two types of errors can be committed (Table 2.2):

Test result
p-value > a p-value < a
no difference v type | er‘rf)r
(false positive)
Truth
Il
difference type errF)r \'
(false negative)

Table 2.2 — Types of errors in hypothesis testing

Two types of errors can be committed in a testing situation, a type | error which is committed by declaring that
a gene is differentially expressed when it is not, and a type Il error, which is committed when the test fails
to identify a truly differentially expressed gene.

A false positive, or Type | error, is committed by declaring that a gene is differentially expressed
when it is not, and a false negative, or Type Il error, is committed when the test fails to identify a

truly differentially expressed gene. In case of a microarray experiment, the large number of
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transcripts present on a single array represents a further problem, the problem of multiple testing:
each transcript which is called significantly different between the two analyzed groups has a
specified Type | error probability. The very high number of transcripts on an array multiplies this
error probability and makes it likely that, just by chance, the differential expression of some
transcripts represent false positives. There are different Type | error rates, including the family wise
error rate (FWER) and the false discovery rate (FDR). The FWER is defined as the probability of at
least one Type | error in the whole experiment. The FDR is the expected proportion of Type | errors
among the rejected hypotheses. A number of methods have been established that address
the question of multiple testing in microarray experiments and control a defined Type | error rate.
The most widely used methods include significance analysis of microarrays (SAM) (Tusher, Tibshirani
et al. 2001) which estimates the false discovery rate (FDR) and linear models for microarray analysis

(LIMMA) (Smyth 2004) which uses adjusted p-values to control the FWER.

2.5.4 C(Classification

Classification is an important data analysis method for microarray experiments, for purposes of
classifying biological samples and predicting clinical or other outcomes using gene expression data.
One discriminates between unsupervised and supervised methods of classification.

Unsupervised classification, also known as cluster analysis or clustering is the classification of objects
into different groups, or more precisely, the partitioning of a data set into subsets or so-called
clusters, such that the objects within each cluster are more closely related to one another than
objects assigned to different clusters. There are different clustering approaches, including
hierarchical clustering, k- means clustering, or clustering using Self Organizing Maps (SOMs).
Hierarchical clustering, although or even because it is a very simple and intuitive concept, is one of
the most widely used methods for unsupervised classification. It is described in more detail below.

In supervised classification, also known as class prediction, the class of each sample in the data set is
predefined. The task is to understand the basis for the classification from this data set (called training
or learning set) which is achieved by using various classification algorithms. This information is then
used to classify future samples into one of the predefined classes. Several classification algorithms
have been introduced in the past. For application to microarray data two of the most frequently used
methods are the nearest shrunken centroids method and support vector machines (SVMs). Both are

explained in more detail below.
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2.5.4.1 Hierarchical clustering

In hierarchical clustering the data is not partitioned in a single step. Instead, a series of partitions
takes place which may run from a single cluster containing all objects to N clusters each containing
asingle object or vice versa. Hierarchical clustering belongs to the so-called agglomerative
methods which proceed by series of fusions of the N objects into groups.

Given a set of N objects to be clustered as well as a N x N distance matrix, hierarchical

clustering proceeds as follows:

Start by assigning each object to its own cluster, resulting in N clusters.
Find the closest pair of clusters and merge them into a single cluster.

Compute distances between the new cluster and each of the old clusters.

i

Repeat steps 2 and 3 until all items are clustered into a single cluster of size N.

There are a number of methods that can be used to compute the new distances in step 3. Most

commonly used are single-linkage, complete-linkage and average-linkage clustering.

Single-linkage clustering
In single-linkage clustering the distance between two clusters A and B is defined as the shortest

distance from any member of one cluster to any member of the other cluster.

Distance (A, B) = mingepyep{d(x,y)}
Complete-linkage clustering
In complete-linkage clustering, the distance between two clusters A and B is defined as the greatest

distance from any member of one cluster to any member of the other cluster.

Distance (A, B) = maxyeayep{d(x,y)}

Average-linkage clustering
In average-linkage clustering, the distance between two clusters A and B is defined as the average
distance from any member of one cluster to any member of the other cluster.

TaB

Dist AB) = ——
istance (4, B) N, x Ny

Where Ty B is the sum of all pairwise distances between cluster A and B and N, and Ny are the sizes

of clusters A and B, respectively.
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For calculating the actual distance d of two objects in each of these methods, a number of different
distance measures are commonly used, including the Euclidean distance and the Pearson correlation

coefficient.

Euclidean distance

a=) G-

n
=1

Pearson correlation coefficient
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Where X = ;Z’L-lei is the average of the values in x and o, is the standard deviation of these

values, similarly for y and a,,.

2.5.4.2 Nearest shrunken centroid classification

Nearest shrunken centroid classification is a supervised classification method and is an enhancement

of the nearest centroid classification method (Tibshirani, Hastie et al. 2002).

A B

overall

centroid
| e b : centroid centroid
a4 = O class 1 class 2
N rianisc My C
e s overall
T IR centroid
centroid centroid
class 1 class 2

Figure 2.4 — Nearest shrunken centroid classification

(A) The nearest centroid method is a precursor method to nearest shrunken centroid classification and
computes a standardized centroid for each class. This is the average gene expression for each gene in each
class divided by the within-class standard deviation for that gene. In nearest shrunken centroid classification
the class centroids are shrunk (by A) towards the overall centroid for all classes. A gene which is shrunk to zero
for all classes, i.e. had similar expression values in al classes is eliminated from the analysis (B). A gene which is
shrunk to zero for all classes except one is used for classification (C).
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Briefly, the nearest centroid method computes a standardized centroid for each class. This is the
average gene expression for each gene in each class divided by the within-class standard deviation
for that gene (Figure 2.4A). The method then takes the gene expression profile of a new sample, and
compares it to each of these class centroids. The class whose centroid that it is closest to, in squared
distance, is the predicted class for that new sample. Nearest shrunken centroid classification makes
one important modification to standard nearest centroid classification. For each gene, it shrinks each
of the class centroids toward the overall centroid for all classes by an amount A. This shrinkage
consists of moving the centroid towards zero by A, setting it equal to zero if it hits zero (Figure 2.4B,
C). Genes that are shrunk to zero for all classes are eliminated from further analysis (Figure 2.4B).
Alternatively, genes that are shrunk to zero for all classes except one are then characterizing that
class by high or low expression (Figure 2.4C). After shrinking the centroids, the new sample is

classified by the usual nearest centroid rule, but using the shrunken class centroids.

2.5.4.3 Support Vector Machines

A support vector machine (SVM) is not a real machine, but a mathematical method used in pattern
recognition which has also been introduced as an approach for classification purposes (Vapnik 1998).
A SVM divides a set of objects into classes, so that the area between the class borders is maximized
(Figure 2.5). Since the SVM approach is a supervised classification approach, the starting point is

objects for which the class affiliations are known. Each object is thereby represented by a vector.

A B

Figure 2.5 - Fitting a hyperplane

In supervised classification, objects are assigned to predefined classes, here, circles and squares. In an SVM
approach, each object is represented by a vector in a multi-dimensional vector space. To separate the classes,
many possible hyperplanes can be fit into the data (A). A SVM aproach constructs a hyperplane with the
greatest area between the class borders by maximizing the margin between the vectors which are closest to
the hyperplane and the hyperplane itself. These vectors are called support vectors (B).
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The SVM now fits a hyperplane into this vector space which will separate the objects into two
classes. Since there are many possibilities for such a hyperplane (Figure 2.5A), the SVM constructs a
hyperplane which shows the greatest margin to the vectors which are closest to the hyperplane
(Figure 2.5B). These vectors are called support vectors. The larger the margin, the better the
classification of objects will be. A hyperplane cannot be bent; a separation is therefore only possible
for objects which are linearly separable like in Figure 2.5. This is usually not the case in real-world
applications (Figure 2.6A). In this case SVMs use the so-called kernel trick to still fit a hyperplane to

the data.

A B

Figure 2.6 — Using the kernel trick to separate objects which are not linearly separable

The objects in real-world applications are usually not linearly separable (A). The SVM approach therefore uses
the kernel trick to transform the vector space and the sample vectors to a higher dimensional space in which
the objects are linearly separable. Here the hyperpane is constructed and sample vectors and vector space are
transformed back to the original space.

The idea behind the kernel trick is to transform the vector space and also the sample vectors into a
higher dimensional space. In this high-dimensional vector space the objects are linearly separable
and the hyperplane can be constructed (Figure 2.6B). When transforming the vector space back to
the lower dimensional space the hyperplane becomes a non-linear hyperplane which separates the

objects into two classes.

2.6 The concept of RNA fingerprints

With the introduction of microarray technology, researchers have started to describe changes in
gene expression between different samples (Schena, Shalon et al. 1995; DeRisi, Penland et al. 1996;

Lockhart, Dong et al. 1996; Spellman, Sherlock et al. 1998). This research was performed in a rather
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descriptive than analytical way and included the determination of differentially expressed genes and
the grouping of genes based on their expression pattern across samples using unsupervised
classification methods, as for example hierarchical clustering. When researchers started using
clustering approaches on samples within an experiment (DeRisi, Penland et al. 1996; Lander 1996;
Khan, Simon et al. 1998; Kononen, Bubendorf et al. 1998), the question arose whether there is a
possibility to systematically classify diseases based on these transcriptional changes. In 1999, Golub
and colleagues for the first time performed class prediction to classify new, unknown samples based
on their distinct expression profiles. Using their proposed algorithm they developed a 50-gene
predictor and accurately predicted all samples according to the patients’ clinical diagnosis (Golub,
Slonim et al. 1999). Reams of different algorithms have been introduced since then, all aiming on the
sub-classification, prediction and diagnosis of different diseases (Vapnik 1998; Tibshirani, Hastie et al.
2002). Additionally, the type of tissue has been experimented with, starting from cell lines, biopsy
material (Bhattacharjee, Richards et al. 2001; Pomeroy, Tamayo et al. 2002) to peripheral blood
(Alizadeh, Eisen et al. 2000; Shipp, Ross et al. 2002; Valk, Verhaak et al. 2004).

In 2003, Joseph Nevins’ lab introduced an elegant approach for prediction of oncogenic pathway
activity in mouse tissue (Huang, Ishida et al. 2003). Huang and colleagues determined specific gene
signatures for different oncogenes in vitro and applied these gene signatures to tumor samples to
demonstrate the existence of these molecules in vivo. In 2006, Bild and colleagues adapted this
approach to human cells (Bild, Yao et al. 2006). By transfecting normal human cells with single
oncogenes followed by genome-wide transcriptional analysis they determined a specific gene
signature for each of these oncogenes. Using descriptive and analytical bioinformatics, this gene
signature was then applied to genome-wide transcriptional profiles of human malignancies. Here
they clearly demonstrated that these oncogene-specific signatures can be recognized within the
malignant cells.

We took up the described approach of in vitro generation of specific gene signatures and
hypothesized that - in principle - this concept should be applicable to any other cell and factor that
leads to transcriptional changes upon stimulation and signaling. In a research project concerned with
the interrogation of immune inhibition within the tumor environment, we generated gene signatures
for different inhibitory molecules. We termed the generated gene signatures RNA fingerprints of the
interrogated molecules. These RNA fingerprints should then provide direct evidence whether the
cells within a tumor environment are under the control of the interrogated molecules (Chemnitz,
Eggle et al. 2007). The term RNA fingerprint can therefore be described as the transcriptional
changes which are observed in response to a biological stimulus, in this case the response to an

inhibitory molecule. Following this concept we hypothesized that, in general, transcriptional changes
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which are observed in response to any molecular signal can be termed RNA fingerprints. These
signals include activated oncogenic pathways by introducing the specific oncogene (Vapnik 1998;

Huang, Ishida et al. 2003; Bild, Yao et al. 2006), the stimulus of an inhibitory molecule, as described

above, or the response to a given disease. A RNA fingerprint of a given disease is therefore a specific
image for this disease which can then be used for diagnostic and predictive purposes. Furthermore,
pre-defined RNA fingerprints of different processes and functions can be derived from establishes
databases, as for example the Gene Ontology (GO) consortium (Ashburner, Ball et al. 2000) or the
KEGG database (Kanehisa, Araki et al. 2008). All mentioned examples of RNA fingerprints will be

introduced in the course of this thesis.

23



24



MATERIAL AND METHODS

3 Material and Methods

3.1 Sample collection and isolation of cells

Generation of in vitro RNA fingerprints

For the generation of in vitro RNA fingerprints of TGFB and PD-1, blood samples were collected from
healthy blood donors after informed written consent was obtained in accordance with the
Declaration of Helsinki. CD4" T cells were isolated by negative selection as described previously
(Chemnitz, Driesen et al. 2006). Lymph node specimens of 9 patients with classic Hodgkin lymphoma
(HL), 9 patients with FL, and 9 patients with reactive lymph node reaction (RLN) of different causes
were included. This study was performed within the framework of the German Hodgkin Study Group.
When possible, samples were taken at primary diagnosis. Also included were 3 samples with
aberrant diagnosis: 1 patient with T-cell-rich B-cell lymphoma (B-NHL); 1 with lymphocyte-
predominant HL (LPHL), but with tumor-free tissue in the removed lymph node; and 1 with HL, with
histologically proven follicular lymphoma in prior medical history. CD4" T cells from lymph node
specimens were isolated by mechanical homogenization of the specimen and subsequently purified
by positive selection on ice using magnetic cell sorting columns (Miltenyi Biotech, Bergisch Gladbach,
Germany) according to the manufacturer’s instructions. All samples were taken after informed

consent following approval by the Ethik Kommission of the University of Cologne, Cologne, Germany.

Generation of a disease specific RNA fingerprint

In the prevalent cohort 2.5 ml blood was drawn directly into PAXgene vials providing stabilization of
the gene expression profile. Samples were rested over night at room temperature and then stored at
-80°C until further preparation. In the incident cohort snap frozen PBMC enriched blood (~ 300 ul)
from the EPIC study was used for RNA extraction. Blood samples were directly thawed in 5 ml of TRI

Reagent BD (Molecular Research Center, Inc, USA).

Pre-defined RNA fingerprints
Blood samples from healthy blood donors were collected after written informed consent had been
obtained. CD4" T cells were isolated from blood samples by using a RosetteSep CD4" enrichment kit

(StemCell Technologies); purity was >90% as determined by flow cytometry.
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3.2 RNA preparation and microarray hybridization

For all microarray experiments using the lllumina BeadChip technology, RNA was isolated according
to the manufacturer’s protocol with subsequent column purification using the RNeasy MinElute
Cleanup Kit (Qiagen, Hilden, Germany). Total RNA from PAXgene samples was prepared according to
the manufacturer’s recommendations including an optional DNAse digestion step. cDNA and biotin-
labeled cRNA synthesis was generated from 100 ng total RNA using the Illumina® TotalPrep™ RNA
Amplification Kit (Applied Biosystems, Darmstadt, Germany). cRNA (1.5 pg) was hybridized to
Human-6 Expression BeadChips V1 and V2 (lllumina, San Diego, CA) and scanned on lllumina
BeadStation 500x. For microarray experiments using the Affymetrix GeneChip technology, RNA
isolation, quantification and target preparation was performed according to standard protocols for

small samples and cRNA was hybridized to HG-U133A arrays.

3.3 Statistical and bioinformatic data analysis

Raw data collection for lllumina BeadChip and Affymetrix HG-U133A arrays was performed using
Illumina® BeadStudio software or Affymetrix MAS5.0 software. Further statistical and bioinformatic
analyses were performed using R language (R Development Core Team 2007) and packages from the
Bioconductor project (Gentleman, Carey et al. 2004). For normalization of data from the two
platforms we used quantile and invariant set normalizations implemented in the affy package.
Differentially expressed genes were selected using a fold change/p-value filter with the following
criteria: fold change 2 2, absolute difference in signal intensity between group means > 100 and p-
value < 0.05. Hierarchical cluster analysis was performed using the hcluster package. Before
clustering the data was log, transformed. Distances of the samples were calculated using a
correlation coefficient (correlation similarity metric) and clusters were formed by taking the average
of each cluster (average linkage). PCA analysis was performed using the pcurve package in R. When
visualizing PCA results the first three principal components (coordinates) were plotted in 3-
dimensional space. For supervised classification, the pamr package which uses the shrunken centroid

method and the e1071 package for support vector machine classification are used.
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Part II: Different concepts of RNA fingerprints

4 In-vitro generated RNA fingerprints

In this chapter the term RNA fingerprint is introduced in the context of an unsolved question in
immunology, the immune inhibition within the tumor environment in humans. We generate gene
signatures for different T cell inhibitory molecules in vitro and introduce these signatures as RNA
fingerprints of the molecules. These fingerprints are then applied to gene expression profiles of
human cancers to directly determine the in vivo impact of the interrogated molecules on tumor

infiltrating T cells.

4.1 Biological motivation

A hallmark of various human malignancies is the expression of immunoinhibitory factors within the
tumor microenvironment. There is indirect evidence based on in vitro experiments that tumor-
infiltrating T cells in human malignancies are suppressed by such factors. Still, direct evidence of the
influence of individual inhibitory factors on immune cells in human cancer in vivo is lacking. To
address this question we used Hodgkin’s lymphoma (HL) to determine whether HL cells are under the
control of a particular inhibitory factor. HL qualifies as a model since its histopathological
characteristics are thought to be mostly due to the effects of a wide variety of cytokines, including
TGFB or membrane bound receptors like PD-1. These cytokines are suspected to contribute to

immune evasion of tumor cells.

4.2 Results

The approach of generating in vitro RNA fingerprints from gene expression profiles should — for the
first time — provide direct evidence whether a particular cell is indeed under the control of a
particular inhibitory factor in vivo. We established specific TGFB and PD-1 RNA fingerprints in human
CD4" T cells and applied these RNA fingerprints to transcriptional profiles of CD4" T cells isolated
from HL lymph nodes. To determine whether the influence of TGFB on CD4" T cells is specific for HL

or can also be detected in other lymphomas, we also applied the fingerprints to CD4" T cells
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originated from follicular lymphoma (FL), thereby providing direct evidence that these inhibitory

factors are clearly signaling in T cells infiltrating HL but not FL.

Quantification of the inhibitory effect of TGFB and PD-1 on human CD4" T cells in vitro

To directly determine the in vivo impact of inhibitory cytokines such as TGFB or inhibitory surface
receptors such as PD-1 on tumor infiltrating T cells we postulated that the factor-dependent
transcriptional regulation assessed on a genome-wide scale should be comparable in T cells directly
isolated from tumor tissue and T cells exposed to TGFB or PD-1 in vitro. Prior to assessment of
transcriptional changes as a consequence of stimulation with TGFB or PD-1 we established the
functional impact of both factors on highly purified CD4" T cells derived from healthy donors. The
impact of TGFB resp. PD-1 was assessed in context of T cell receptor mediated activation since it has
been previously shown that T cells in vivo would be exposed to inhibitory factors in the context
of antigen recognition within the tumor microenvironment (Poppema 1996; Poppema, Potters et

al. 1998; Lin, Medeiros et al. 2004).

A B

CD3/CD28/MHC-I
+30 ng/ml T W
Resting TGFp CD3/CD28/PD1 T
0.9 i 67.9 | 60.4 1.6 £ s
a d1 | a
S | ‘ +- 100
=]
CFSE > ‘T3 m =
c Q
3 g8
é I | g
CD3/CD28/MHC1 O
oy
8

Figure 4.1 — Inhibition of T cell proliferation and IFN-y secretion by TGFB and PD-1

(A) Freshly isolated primary human CD4" T cells were labeled with CFSE and left unstimulated or were
stimulated with the indicated magnetic beads (artificial antigen presenting cells, CD3/CD28/MHC-I resp.
CD3/CD28/PD1) in the absence or presence of 30 ng/ml TGFB. After 4 days CFSE dilution was analyzed by flow
cytometry. The overall percentage of dividing cells is displayed inside the corresponding dot plot. (B) CD4" T
cells were stimulated as above. After four days of incubation the concentration of IFN-y was determined using
flow cytometric bead assays. The presented data is representative for at least 3 independent experiments,
error bars in B represent triplicates of one representative experiment.

The CD4" T cells were labeled with 5,6-Carboxyfluorescin-Diacetat-Succinimidyl-Ester (CFSE) and
subsequently stimulated with aAPC (CD3/CD28/MHC-1) with or without TGFB or aAPC coated with
CD3/CD28/PD-1 for up to 96 hours (Figure 4.1 and Appendix C — Supplementary Methods, shown

here is the 96 hour time point). As expected, stimulation of primary CD4" T cells with
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CD3/CD28/MHC-I resulted in robust T cell expansion and cytokine secretion. Addition of TGFB to the
cultures reduced T cell proliferation, albeit this effect was not as dramatic as that induced by PD-1
stimulation, which completely inhibited T cell proliferation (Figure 4.1A). In contrast, IFN-y secretion

was clearly decreased by both TGFp and PD-1 (Figure 4.1B).

TGFp and PD-1 RNA-fingerprints in CD4" T cells from healthy donors

For establishing the TGFB resp. PD-1 fingerprints, CD4" T cells from 4 donors were either left
unstimulated (resting cells) or stimulated with CD3/CD28/MHC-1 (activated cells) with or without
addition of TGFpB (TGFp-treated cells) or were stimulated with aAPC coated with CD3/CD28/PD-1
(PD-1 treated cells). To filter genes regulated under direct influence of TGFB or PD-1 we analyzed
transcriptional changes in two different ways: In a first step a) resting cells vs. activated cells and b)
resting cells vs. TGFB- resp. PD1-treated cells were compared. Genes specifically regulated under
the influence of TGFp resp. PD-1 were determined using set theory supported by Venn diagrams as

previously described (Chemnitz, Driesen et al. 2006).
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Figure 4.2 — Generalization of TGFB and PD-1 genomic fingerprints

Principal components analysis (PCA) using the RNA-fingerprints of TGFB or PD-1 was performed to distinguish
samples treated with TGFB or PD-1 from the respective control samples. The first three principal components
derived from (A) the TGFB and (B) the PD-1 fingerprints are plotted. Samples stimulated with magnetic beads
coated with CD3/CD28/MHC-I are depicted in red, samples treated with CD3/CD28/PD-1 in blue and samples
treated with CD3/CD28/MHC-I in the presence of TGFB in green, respectively.

In a second step we compared expression profiles of activated cells vs. TGFB- resp. PD1-treated cells.

We defined the union of lists from step one and two as direct impact of either factor on the CD4" T
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cell transcriptional profile and thus as the RNA-fingerprints of TGFp and PD-1 signaling in T cells (112
respectively 37 genes, see (Chemnitz, Eggle et al. 2007), Supplemental Table S1, S2).

When plotting the first three principal components derived from the two signatures, samples treated
with TGFp (Figure 4.2A) or PD-1 (Figure 4.2B) were accurately distinguished from the other samples.
This clear separation of samples treated with TGF or PD-1 from the remaining samples documents
the particular impact of TGFp and PD-1 on CD4" T cells and therefore provides the rationale

for defining these signatures as RNA-fingerprints.

CD4' T cells in Hodgkin’s lymphoma differ from T cells of reactive lymph nodes

To first assess overall differences between CD4" T cells derived from HL and FL versus RLN we
performed a descriptive bioinformatics analysis. CD4" T cells from RLN were used as a control
reflecting the characteristics of healthy T cells to the closest point possible. FL was used as a second
malignancy to determine disease specific differences. For this analysis we used expression profiles of
5 samples from RLN patients, 4 samples from HL patients and 3 samples from FL patients derived
from the Affymetrix HG-U133A microarray. Genes were defined as differentially regulated if FC >2 or
FC <-2, p-value < 0.05 and difference in sample means > 100. In total we found 108 differentially
expressed genes between CD4" T cells derived from HL and RLN samples (42 up-, 66 down-regulated)
and 144 differentially expressed genes between CD4" T cells derived from FL resp. RLN samples (144
down-regulated) (see (Chemnitz, Eggle et al. 2007), Supplemental Table S3). Interestingly, when
comparing for T cell activation induced genes no significant differences between the patient groups
were observed (data not shown). To link differential expression of genes to biological processes, we
postulated that it is possible to apply the RNA-fingerprints we established for TGF and PD-1 in our in

vitro system to answer the question, whether such inhibitory mechanisms play a role in HL in vivo.

CD4' T cells in Hodgkin’s lymphoma harbor the TGFp fingerprint

To separate distinct sample groups based on different biologies several approaches including
unsupervised as well as supervised approaches have been developed. If TGFp indeed acts on CD4" T
cells in HL, it should be possible to correctly separate T cells isolated from HL from CD4" T cells
isolated from RLN within the gene space of the TGFp fingerprint established in vitro. We therefore
applied a total of 4 independent approaches, namely (i) hierarchical clustering, (ii) principal
component analysis (PCA), (iii) classification based on nearest shrunken centroids (PAM), and (iv)

support vector machines (SVM). We first performed this analysis on the Affymetrix platform on a
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subgroup of patients, namely 5 samples from RLN patients, 4 samples from HL patients and 3
samples from FL patients. By applying hierarchical clustering using the TGFB fingerprint HL and RLN
were separated into two distinct clusters (Figure 4.3A). Correct separation was still achieved when

using less stringent filter criteria for generating the TGFp fingerprint (data not shown).
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Figure 4.3 — HL samples are separated from RLN samples on the basis of TGFp regulated genes

The RNA-fingerprint of TGFB was used to separate transcriptional profiles of HL from RLN. (A) Hierarchical
cluster analysis using average linkage and correlation distance metric. (B) Result of principal components
analysis (PCA) with the first three principal components is shown. (C) Supervised classification using PAM; for
each sample the posterior probability, i.e. the percentage of certainty of a correct class prediction is plotted.
(D) Supervised classification using SVMs. A fourfold table comparing the predicted class labels to the actual
class labels is depicted.

In contrast, when applying other gene sets established as biologically defined RNA-fingerprints
including the predictive gene signatures established by Bild et al (Bild, Yao et al. 2006), HL and RLN
samples were not correctly separated. This analysis included fingerprints associated with
transcriptional changes following activation of Ras, Myc, E2F3, Src, b-catenin, EGF, VEGF, or NFkB
respectively fingerprints associated with T-cell activation, cell cycle activity, apoptosis, inflammatory
response, or chemokine activity (data not shown). These findings further support the specificity of
the TGFB fingerprint within the HL samples. As a second unsupervised approach we applied PCA.

When plotting the first three principal components HL and RLN samples were again separated using
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the TGFB fingerprint. This was further supported by a larger inter-group distance (between HL and
RLN) compared to the respective intra-group distances (Figure 4.3B). To more formally assess the
existence of a TGFp fingerprint signature in HL we applied leave-one-out cross validation based on
PAM and SVMs. PAM analysis predicted HL respectively RLN cases with a 100% accuracy and
posterior probability based on the genes within the TGFp fingerprint (Figure 4.3C). Using the SVM
approach, again, a 100% accuracy was achieved (Figure 4.3D). So far, assessment of differential
transcriptional regulation in CD4" T cells from either HL or RLN based on specific RNA-fingerprints
indicated that TGFp is an important component of the HL environment leading to signaling events in

CD4" T cells infiltrating the tumor site.

PD-1 signaling is also prominent in T cells derived from Hodgkin’s lymphoma

The same four bioinformatics approaches were used to determine whether genes of the PD-1

fingerprint were also harbored in HL-derived CD4" T cells.
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Figure 4.4 — HL samples are separated from RLN samples on the basis of PD-1 regulated genes

The RNA-fingerprint of PD-1 was used to separate transcriptional profiles of HL from RLN. (A) Hierarchical
cluster analysis using average linkage and correlation distance metric. (B) Result of principal components
analysis (PCA) with the first three principal components is shown. (C) Supervised classification using PAM. (D)
Supervised classification using SVMs.
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As depicted in Figure 4.4A, HL and RLN samples were correctly separated when applying hierarchical
clustering based on the PD-1 fingerprint. Similarly, applying PCA led to a correct separation of HL and
RLN samples which was also supported by a larger inter-group distance (Figure 4.4B). When applying
PAM, one sample was always falsely predicted and the posterior probability never reached 100% for
all samples (Figure 4.4C). Using SVM though, the prediction accuracy was 100% based on the PD-1
fingerprint (Figure 4.4D). Taken together, the results indicate PD-1 to be a further important factor in

the HL environment.

RNA fingerprints reveal no impact of TGFB or PD-1 on CD4" T cells in follicular ymphoma

To determine whether the influence of TGFB on CD4" T cells is specific for HL or can also be detected
in other lymphomas, we analyzed CD4" T cells derived from patients with FL. We first assessed the

influence of TGFB by applying the TGFp fingerprint.
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Figure 4.5 — FL samples are not separated from RLN samples on the basis of TGFp regulated genes

The RNA fingerprint of TGFp was used to separate transcriptional profiles of FL from RLN. (A) Hierarchical
cluster analysis using average linkage and correlation distance metric. (B) Result of principal components
analysis (PCA) with the first three principal components is shown. (C) Supervised classification using PAM. (D)
Supervised classification using SVMs.
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When using hierarchical clustering, FL samples never correctly separated from RLN samples (Figure
4.5A). Similarly, the supervised approaches showed no correct prediction (Figure 4.5C, D). Only when
applying PCA, FL and RLN samples were correctly separated and the inter-group variance was larger
than the intra-group distances (Figure 4.5B). Similarly, none of the above mentioned fingerprints
(e.g. Ras, Myc) correctly separated FL from RLN samples indicating that none of these pathways play
a major role in CD4" T cells derived from FL tissue.

Next we applied the PD-1 fingerprint, however, none of the four tests achieved a correct separation
of FL and RLN samples (Figure 4.6). We conclude from these analyses that TGFB and PD-1 do not

induce major transcriptional changes in CD4" T cells from FL.
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Figure 4.6 — FL samples are not separated from RLN samples on the basis of PD-1 regulated genes

The RNA fingerprint of PD-1 was used to separate transcriptional profiles of FL from RLN. (A) Hierarchical
cluster analysis using average linkage and correlation distance metric. (B) Result of principal components
analysis (PCA) with the first three principal components is shown. (C) Supervised classification using PAM. (D)
Supervised classification using SVMs.

Validation of the method using additional patient samples and a different array platform

To validate our method and to show the independency of the results from the microarray platform

we used the lllumina© BeadChip platform for further analysis. Here we analyzed 5 patients with HL, 6
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patients with FL and 4 patients with RLN. Additionally we included three samples with aberrant
diagnosis to further specify our approach: one patient with T-cell-rich B-cell-Lymphoma (B-NHL), one
patient with Lymphocyte-Predominant HL (LPHL), however tumor free tissue in the removed lymph
node specimen and one patient with HL, however histologically proven FL in the prior medical
history. First, we tested the TGFp fingerprint. As depicted in Figure 4.7A the TGFB fingerprint
correctly separates the HL samples from the RLN samples with only one HL sample falsely allocated

to RLN.
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Figure 4.7 — Validation of the results using additional patient samples and a second array platform

CD4" T cells were isolated from lymph nodes of five patients with HL, 4 patients with RLN and 6 patients with
FL. Three samples with aberrant diagnosis are labeled as follows: B-NHL: T-cell-rich B-cell-lymphoma,
LPHL: Lymphocyte-Predominant Hodgkin’s Lymphoma, HL/FL: Hodgkin Lymphoma with premedical history of
Follicular Lymphoma. The RNA-fingerprints of (A) TGFB and (B) PD-1 were used to differentiate HL and RLN
samples using hierarchical clustering.

Interestingly, T cells derived from a tumor-free lymph node of a patient with LPHL clustered together
with the RLN samples, suggesting that TGFp mediated signaling events are restricted to the tumor in
HL. Similarly, T cells from the patient with prior history of FL were more closely related to T cells from
RLN samples. The results of the PCA analysis mirrored the hierarchical clustering. Moreover, both
supervised approaches resulted in a significant classification of the different samples, highlighting the
impact of TGFB on CD4" T cells in HL (data not shown).

When using the PD-1 fingerprint, HL and RLN samples were correctly separated. Figure 4.7B
displays the results of hierarchical clustering. The results of the PCA analysis and both supervised

methods confirmed the separation and correct classification of the different samples (data not
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shown). Taken together, even when using a different array platform, both, TGFB and PD-1
fingerprints separate HL from RLN samples. This result gives further evidence for the impact of both,

TGFpB and PD-1 on CD4" T cells in the tumor microenvironment of HL.
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Figure 4.8 — Validation of the results using additional patient samples and a second array platform

CD4" T cells were isolated from lymph nodes of five patients with HL, 4 patients with RLN and 6 patients with
FL. Three samples with aberrant diagnosis are labeled as follows: B-NHL: T-cell-rich B-cell-lymphoma,
LPHL: Lymphocyte-Predominant Hodgkin’s Lymphoma, HL/FL: Hodgkin Lymphoma with premedical history of
Follicular Lymphoma. The RNA-fingerprints of (A) TGFB and (B) PD-1 were used to differentiate FL and RLN
samples using hierarchical clustering.

When analyzing CD4" T cells from FL patients, FL and RLN samples were not separated by hierarchical
clustering using either the TGFB (Figure 4.8A) or the PD-1 (Figure 4.8B) fingerprint. Also, PCA and
both supervised methods failed to classify the samples accordingly (data not shown) thereby

supporting the specificity of both factors towards HL.

Cross-platform analysis further supports the impact of TGFB and PD-1 on CD4" T cells in HL but not

in FL

To analyze all samples together irrespective of array platform used we applied an approach for
cross-platform analysis introduced by Warnat et al. (Warnat, Eils et al. 2005). Due to the quantitative
nature of the method, hierarchical clustering was not a useful tool for analyzing data derived from
different array platforms since it regularly separates samples based on technology used rather than

biology. In contrast, supervised approaches can be performed on data derived by cross-platform
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analysis. As shown in Figure 4.9A, PAM analysis predicted HL respectively RLN samples with 79%

accuracy and high posterior probabilities based on the genes within the TGFp fingerprint.
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Figure 4.9 — Combined analysis of all samples irrespective of array platform used

Supervised classification (PAM) using the data derived from cross-platform analysis; 9 samples from HL
patients, 9 samples from FL patients and 9 samples from patients with a RLN were used for analysis. For each
sample the posterior probability, i.e. the percentage of certainty of a correct class prediction is plotted.
The TGFp fingerprint was used to classify (A) HL and RLN samples or (B) FL and RLN samples, respectively. The
PD-1 fingerprint was used to classify (C) HL and RLN samples or (D) resp. FL and RLN samples.

Using the PD-1 fingerprint we derived a total accuracy of 89% (Figure 4.9C). On the opposite, when
classifying FL and RLN samples, the overall prediction accuracy was only 53% for both the gene
spaces of the TGFB and the PD-1 fingerprints (Figure 4.9B, D). Again, we verified the specificity of the
fingerprints, this time by analyzing 335 biologically defined gene spaces (terms defined by Gene
Ontology; GO Terms) chosen based on size of the respective GO Terms (including 50-100 genes). Less
than 9% of these gene spaces derived a correct classification of HL versus RLN samples respectively
FL versus RLN samples (data not shown). This data further strengthens the hypothesis for both, TGF

and PD-1 to play a role in inhibiting CD4" T cells specifically in HL but not FL.
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4.3 Discussion and further research options

We have adapted the recently introduced approach of determining predictive gene signatures in
vitro (Bild, Yao et al. 2006) to derive a concept of RNA fingerprints. Applying this concept to the
problem of immune inhibition within a tumor, we provided direct evidence that RNA fingerprints of T
cells derived from healthy individuals activated in the presence of inhibitory cytokines such as TGFB
or inhibitory receptors like PD-1 can be used to directly determine, whether T cells isolated from
diseased tissue are indeed under the influence of these inhibitory factors in vivo. Moreover, we

showed that both, TGFB and PD-1 have distinct impact on CD4" T cells in HL but not in FL.
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Figure 4.10 — Defining RNA fingerprints of different inhibitory molecules

Fingerprints for CTLA4, PD-1, PGE,, TGFp, VEGF and IL10 were generated to quantify their influence on CD4* T
cells. Experiments were performed as described above (A). The generated fingerprints were plotted next to
each other to visually find differences and similarities (B)

An extension of this study has already been initiated which deals with the generation of RNA
fingerprints of different inhibitory molecules and the quantification of their influence on CD4" T cells.
In addition to the already established fingerprints of PD-1 and TGFp we have generated fingerprints
for CTLA4, PGE, (Chemnitz, Driesen et al. 2006), VEGF and IL10. For each of these inhibitory
molecules, in vitro experiments were performed as described above (Figure 4.10A) and fingerprints
were established accordingly. Genes which comprise the distinct RNA fingerprints were plotted next
to each other to visually find differences and similarities (Figure 4.10B). It is apparent that the

fingerprints of CTLA4, PD-1 and PGE, share common features which are quite distinct from
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fingerprints derived from TGFpB, VEGF and IL10. These common and distinct features resemble the
separation of the molecules in molecules with high inhibitory effect (CTLA4, PD-1 and PGE;) and
lower inhibitory effect (TGFB, VEGF and IL10). Right now methods are implemented which
numerically quantify the inhibitory effect of the different molecules. Additionally we are working on
distinguishing the RNA fingerprints of both the molecules with high inhibitory effect and molecules
with lower inhibitory effect to get specific inhibitory features of these molecules. This will hopefully

lead to further functional characterization of the signaling pathways these molecules are involved in.
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5 Disease specific RNA fingerprints

5.1 Motivation

As demonstrated in the previous chapter, we were able to use a biologically defined in vitro
fingerprint to predict an actual in vivo situation. This chapter introduces the concept of a disease
specific fingerprint. Here, the biologically defined RNA fingerprint of lung cancer was used to predict

the occurrence of lung cancer prior to clinical manifestation.

5.2 Biological motivation

Lung cancer is the most frequent cause of cancer related death in the western world. Prognosis has
remained disastrous during the last decades with a median overall 2 year survival rate of only 10%
(Mountain 1997). This is mainly due to late detection of the disease and therefore the development
of efficient tools for early detection thus represents the most promising strategy to improve
prognosis of lung cancer (Mulshine 2003). Numerous screening approaches have been tested over
the last decades including chest X-ray, spiral computed tomography (CT) and identification of
oncogene mutations, microsatellite losses and epigenetic changes (Swensen 2003; Bremnes, Sirera et
al. 2005; Ganti and Mulshine 2005; Swensen, Jett et al. 2005). None of these approaches was a real
breakthrough for early detection of lung cancer. Additionally, several limitations, as for example the
high costs and radiation exposure for spiral CT are apparent. Very recently Spira and colleagues
analyzed histologically normal large-airway epithelial cells obtained at biopsy from smokers with
suspicion of lung cancer (Spira, Beane et al. 2007). Using gene expression profiling they compared
smokers with and without subsequent diagnosed lung cancer and identified a 80-gene biomarker
that distinguished these two groups. In two validation studies they demonstrated the predictive
ability of the biomarker with a mean sensitivity of 80%. These findings indicate that gene expression
in cytologically normal large-airway epithelial cells can serve as a lung cancer biomarker which can be
used for early detection of lung cancer. Up to now several studies revealed the potential gene
expression profiling to establish predictive marker or signatures for diagnosis and prognosis of
different diseases in peripheral blood (Alizadeh, Eisen et al. 2000; Shipp, Ross et al. 2002; Valk,
Verhaak et al. 2004). We postulated that gene expression profiles of peripheral blood samples
derived from patients with manifest lung cancer can be used to develop a RNA fingerprint of lung

cancer. We further postulated that these transcriptional changes which are associated with lung
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cancer might be an early event in lung cancer development and might therefore be suitable as

marker for early detection.
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Figure 5.1 — Strategy for predicting lung cancer prior to clinical manifestation

Peripheral blood derived from both, diagnosed lung cancer patients and patients without diagnosed lung
cancer were used to obtain a RNA fingerprint predictive for lung cancer. This RNA fingerprint was then used to
predict lung cancer prior to clinical manifestation.

We therefore used expression profiles of peripheral blood cells derived from both, diagnosed lung
cancer patients and patients without diagnosed lung cancer to obtain a RNA fingerprint of lung
cancer. Phrasing this procedure in terms of the concept introduced in the preceding chapter, the
generation of this lung cancer associated RNA fingerprint was now performed in vivo. We then asked
the question whether patients who will develop lung cancer in the future already exhibit this RNA
fingerprint in their peripheral blood cells. We therefore tested the predictive nature of the RNA
fingerprint and applied it to gene expression profiles of patients with developing lung cancer but

prior to clinical manifestation. Figure 5.1 depicts an overview of the strategy.
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5.3 Results

To determine a lung cancer associated RNA fingerprint in peripheral blood, samples from 13 active
smokers with clinically manifest lung cancer comprising 11 patients with non-small cell lung cancer
(NSCLC) and 2 patients with small-cell lung cancer (SCLC) as well as 11 control samples from cancer
free smokers were studied (LC cohort). In a first step we determined differentially expressed genes
between SCLC, NSCLC and controls in the LC cohort using an ANOVA based filter (p-value < 0,003).
The ANOVA based filter was used to derive all genes which are differentially expressed in at least one
of the three groups. 151 genes satisfied the criteria and were referred to as the RNA fingerprint of
clinically manifest lung cancer. This fingerprint was then used for further analysis. When performing
hierarchical clustering bases on the RNA fingerprint a clear separation of the three different groups
(NSCLC, SCLC and controls) was demonstrated within this data set (Figure 5.2). The predictive ability
of the fingerprint was further demonstrated by a leave-one-out cross-validation within the data set

using the complete RNA fingerprint as a predictor (according to Chapter 4.2).
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Figure 5.2 — Hierarchical clustering distinguishes SCLC patients from NSCLC patients and controls
Differentially expressed genes between SCLC, NSCLC and controls in the LC group using an ANOVA based filter
(p-value < 0,003) and used these genes for hierarchical clustering.

To address the question whether patients who will develop lung cancer in the future already exhibit
the lung cancer associated RNA fingerprint in their peripheral blood cells we applied the RNA
fingerprint to the Heidelberg cohort of the EPIC trial (EPIC cohort). Within EPIC, data and biological
material from about 500.000 people from 10 European countries have been collected; the
Heidelberg cohort includes 25543 probands. Within this cohort, 14 actively smoking individuals had
developed either NSCLC (n=8) or SCLC (n=6) within 24 months (median 14 months) post sample
asservation. As controls, a group of active smokers (n=16), who had not developed lung cancer within

10 years post sample asservation was chosen based on matching of gender, age and smoking
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behavior. Within this data set quality control was especially crucial, as samples were stored as whole

blood and frozen without RNA stabilization.
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Figure 5.3 — Quality control of samples from the EPIC cohort
For quality control pairwise scatterplots were used in a first step (A). Then we calculated the deviation from the
overall mean for each of the arrays to detect outlier arrays (B).

Using the common quality measures described in Chapter 2.5.1 we determined 5 outlier arrays
where we detected systematic differences of low expression values (Figure 5.3B, shown are two
exemplified plots). Additionally we calculated the absolute deviation of each array from the overall
median. In short, the median expression value for each array was calculated. Next the median of
these medians (overall, median) was taken and the deviation of each array median from the overall
median was determined. When plotting the deviations (Figure 5.3A) 4 samples (7, 31, 34, 40) clearly
showed large deviations from the median (37.2 to 127.9) and were removed from further analysis.
Although sample 12 did not show a very large deviation from the median, we still removed the
sample from further analysis due to the noticeable differences of low expression values (Figure 5.3B).
The remaining samples (7 NSCLC samples, 5 SCLC samples and 13 controls) were used for analysis.
When performing hierarchical clustering based on the established lung cancer associated RNA
fingerprint we derived a separation of cases and controls; only 6 of the 25 samples were misgrouped
(Figure 5.4). To demonstrate the significance of this finding, we performed a permutation analysis.
We randomly assigned classes to samples in the LC cohort, identified differentially expressed genes
between NSCLC, SCLC and controls (p-value < 0.003) and used them to perform hierarchical
clustering in the EPIC cohort. From 1000 random permutations, only 3 resulted in a separation of

cases and controls with less than 6 misclassifications. This corresponds to a p-value of 0.003.
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Figure 5.4 — Hierarchical clustering of samples from the EPIC cohort
Differentially expressed identified in the LC cohort were used for hierarchical clustering of samples from the
EPIC cohort.

In a next step we performed prediction of developing lung cancer in the EPIC cohort. We therefore
used the RNA fingerprint established in the LC cohort and built a predictor based on the K-nearest
neighbor algorithm and validated it using leave one out cross validation (Gene Pattern, Boston USA).
This analysis resulted in a 65 feature predictor which was subsequently used to predict the samples
from the EPIC cohort. 5 of the 25 samples were not correctly predicted which corresponds to a 80%

prediction accuracy (Figure 5.5).
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Figure 5.5 — Prediction of cases and controls from the EPIC cohort

The list of differentially expressed genes from the LC cohort was used to build a predictor based on the K-
nearest neighbor algorithm and validated using leave one out cross validation (Gene Pattern, Boston USA). A 65
feature predictor was used to predict the samples from the EPIC cohort. Depicted is the prediction probability
for each sample.
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5.4 Discussion and further research options

In this study we demonstrated differential expression of several genes between patients with lung
cancer and controls and generated a RNA fingerprint predictive of lung cancer. Several other studies
detected similar differences in the absolute amount of RNA as well as the expression of single genes
e.g. c-met, hnRNP B1, hTERT ERCC1, XPD, RAI) (Bremnes, Sirera et al. 2005). We further show that
this RNA fingerprint can be used to detect individuals developing lung cancer prior to clinical
manifestation. The ability to define a group at high risk of developing lung cancer in smoking adults
with an easily applicable blood test may be very valuable to define candidates for further early
detection techniques such as spiral CT.

This study was a prospective study on the prediction of lung cancer prior to clinical manifestation. To
substantiate the findings within this study, the study has to be repeated within a larger setting,
composing at least 200 patients with lung cancer and 200 controls for the creation of the RNA
fingerprint. Additionally, the EPIC cohort has to be enlarged to analyze another 200-400 samples. We
have already started to at least substantiate the predictive ability of the RNA fingerprint on a

validation cohort composed of another 37 samples including 22 patients with manifest lung cancer.
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6 Pre-defined RNA fingerprints

In the preceding chapters we have defined RNA fingerprints based on our own experiments.
Additionally to self-defined RNA fingerprints one could consider the data stored in biological
databases as pre-defined RNA fingerprints. Biological databases include information about genes
belonging to special pathways or groups of genes with similar functions. These groups of genes could
definitely be considered as RNA fingerprints of pathways or functions. Applying these pre-defined
RNA fingerprints to a microarray experiment and searching for patterns of these fingerprints in the
data is called gene-class testing. Here, | will introduce the idea of gene class testing and will provide a

new method implementing this approach.

6.1 The idea of gene-class testing

Several methods have been applied to gene expression data in order to detect changes in expression
between different subsets of samples (Golub, Slonim et al. 1999; Tusher, Tibshirani et al. 2001). Since
most of these methods result in a list of differentially expressed genes the main challenge of
biologists lies in interpreting these long lists to extract biological meaning. Therefore, gene-class
testing (GCT) has been suggested as a powerful strategy to assess genome-wide gene expression
data. In GCT gene classes are determined by mapping genes to biological pathways using annotations
provided by the Gene Ontology (GO) Consortium (Ashburner, Ball et al. 2000). The GO Consortium
provides controlled vocabularies which model Biological Process, Molecular Function and Cellular
Component. Using a hierarchical tree structure gene products are annotated to one or more GO
nodes according to their function. The GO Consortium is the most widely accepted gene annotation
database and is updated in a daily manner. Many different tools have been introduced which analyze
gene expression data using a GCT approach. While all of them share the common approach of
searching for GO Terms enriched in a list of differentially expressed genes, they use different
statistical models including hypergeometric, binomial, x* and Fisher’s exact test. An overview of 14

different tools can be found in (Khatri and Draghici 2005).
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6.2 The “gold standard”: Gene set enrichment analysis (GSEA)

More recently a new method, gene set enrichment analysis (GSEA) has been introduced (Mootha,
Lindgren et al. 2003; Patti, Butte et al. 2003; Petersen, Dufour et al. 2004; Subramanian, Tamayo et
al. 2005). GSEA follows a completely different approach and overcomes some of the
major disadvantages of earlier tools. While other tools are dependent on a list of genes which have
been called significant at an arbitrarily predefined threshold (usually a p-value) and therefore lose
information from genes not satisfying the exclusion criterion, GSEA considers all genes in a dataset,
irrespective of any arbitrary threshold. Also GSEA does not use a predefined statistical model, but
uses an enrichment score which is statistically assessed using a permutation analysis. Figure 6.1

shows an overview of the GSEA algorithm (Subramanian, Tamayo et al. 2005).
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Figure 6.1 — GSEA overview

(A) An expression data set sorted by correlation with phenotype, the corresponding heat map, and the "gene
tags," i.e., location of genes from a set S within the sorted list. (B) Plot of the running sum for S in the data set,
including the location of the maximum enrichment score (ES) and the leading-edge subset (taken from
(Subramanian, Tamayo et al. 2005)).

In short, genes are ranked based on the correlation between their expression and the class
distinction by using any suitable metric, for example a test statistic, a signal-to-noise ratio or a fold
change (Figure 6.1A). Then, for a given set of genes (e.g., genes encoding products in a metabolic
pathway, located in the same cytogenetic band, or sharing the same GO category) an Enrichment
Score (ES) is calculated which reflects the degree to which a set of genes is overrepresented at the
extremes (top or bottom) of the entire ranked list (Figure 6.1B). The significance level of ES is

estimated by a permutation procedure in which the phenotypes of the samples are permuted. Lastly,
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the estimated significance level is adjusted for multiple hypothesis testing (Subramanian, Tamayo et

al. 2005).
6.3 A new approach: GOAna

Up to now GSEA is the "gold standard" of GCT tools, but albeit successfully applied, it suffers from
some important disadvantages. One of the main drawbacks of this approach is that prior
knowledge is needed to analyze a data set of interest. Computational issues (in the R version)
keep the researcher from performing an unbiased approach, i.e. gene sets have to be filtered
beforehand and will be biased towards previous knowledge and hypotheses. Also, the approach still
depends on a ranking criterion which introduces a further bias towards genes which show e.g. a high
signal to noise ratio or fold-change, respectively. Another disadvantage is the fact that GSEA is
restricted to the analysis of two subgroups and cannot be extended to more than two groups.
We therefore implemented a new algorithm called GOAna. GOAna, a Gene Ontology analysis tool
assesses contributions of gene spaces, here GO Terms, to changes in gene expression between
subgroups of an experiment. GOAna follows the simple approach of calculating distances of

subgroups within predefined gene spaces and assesses their significance by sample permutation.

6.3.1 The algorithm
GOAna is based on the following algorithm (Figure 6.2):

1. Define gene spaces

Based on Gene Ontology (GO) classifications different gene spaces are determined in a four-step

procedure:

1. Step: Retrieve GO IDs restricted to the specified category “Biological process”,
“Molecular Function” or “Cellular Component”.

2. Step: Extract GO IDs represented on the array in use.

3. Step: Exclude probe sets from the GO IDs which are absent in more than 50% of the samples.

4. Step: Filter out gene spaces which include fewer than 5 probe sets.

2. Calculate distance between subgroups of the data

Let n be the number of genes within a pre-defined gene space, k the number of subgroups in the

data. For each gene within a pre-defined gene space the mean expression value is calculated for each
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subgroup. The resulting n x kK matrix is transposed and the pairwise Euclidean distances between the

subgroups of the data are calculated.
3. Assess significance of respective distance

Significance of the calculated distance, i.e. contribution of a respected gene space to changes in gene
expression is assessed by a permutation analysis. Group assignments of the samples are permuted
followed by a recalculation of the Euclidean distance (1000 times). Corresponding p-values are
determined as the fraction of iterations where the distance obtained from the permuted groups is

greater than the distance in the original data. The result is a list of GO IDs with an associated p-value.

Calculate distance

Retrieve gene spaces for each gene space
Hierarchical Structure of GO Terms GO:0042991

r— GO:0008150: biclogical process

genel | || |
—— GO:0009987: cellular process
L GO:0007275: development gene2
GO:0040007: growth == |gene3 \
GO:0035264: body arowth
GO:0016049: cell growth gened E
: genes

— All: all subgroup1 SUETOUDZ

Permute class labels and

| - gene recalculate distance (1000 times)
— . gene’?
. L GO:0042991
—— GO:0008150; cellular component [ _J.-_l-
L 50:0008150: molecular function gene | ’, G0:0042991
gene2
gened genel }_‘ _—
gened gene2 j
gene space | p-value genes gene3 | _
gene6 gened
GO:0042991 0.000 s
ene’ gane
G0:0046209 | 0.000 gene7 ||
geneb
GO:0006105 0.001
GO:0006119 | 0.002 gene?

GO:0042828 | 0.002 /

Retrieve list of
significant GO IDs

Figure 6.2 — GOAna overview
After retrieval of gene spaces, Euclidean distances between subgroups are calculated and significance is
assessed by permutation and recalculation of distance (1000 times).

6.3.2 Proof of concept

To best possible compare GOAna and GSEA, we used the Diabetes data set published by Mootha et

al. (Mootha, Lindgren et al. 2003). It consists of 43 skeletal muscle biopsy samples, 17 with normal
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glucose tolerance (NGT), 8 with impaired glucose tolerance (IGT) and 12 with Type 2 diabetes
mellitus (DM2). Normalized data was derived from the supplementary information website.
Additionally the 149 manually curated gene sets analyzed in (Mootha, Lindgren et al. 2003) were
retrieved through the same website. In their paper the authors identified a set of genes, called the
OXPHOS gene set involved in oxidative phosphorylation whose expression is coordinately decreased
in human diabetic muscle. We applied GOAna to the Diabetes data set and compared NGT patients
to DM2 patients. In a first step, the GO category ‘cellular component’ was used. 376 GO IDs met the
criteria of the algorithm (step 1) and were chosen for analysis. 24 of these were called significant

with p-value < 0.05 (Table 6.1).

GOID GOTerm p-value
GO0:0005730 Nucleolus 0.006
G0:0005759 mitochondrial matrix 0.007
G0:0005739 Mitochondrion 0.01
G0:0005952 cAMP-dependent protein kinase complex 0.012
G0:0043235 receptor complex 0.012
G0:0019717 Synaptosome 0.013
G0:0005750 respiratory chain complex Il (sensu Eukaryota) 0.014
G0:0019866 inner membrane 0.014
G0:0042721 mitochondrial inner membrane protein insertion complex 0.014
G0:0005744 mitochondrial inner membrane pre-sequence translocase complex 0.015
GO0:0008305 integrin complex 0.015
GO0:0045275 respiratory chain complex IlI 0.016
G0:0005743 mitochondrial inner membrane 0.019
GO0:0005746 mitochondrial electron transport chain 0.02
G0:0000776 Kinetochore 0.021
GO0:0045202 Synapse 0.034
GO0:0000775 chromosome, pericentric region 0.035
GO0:0005593 FACIT collagen 0.036
GO0:0005740 mitochondrial membrane 0.038
G0:0016469 proton-transporting two-sector ATPase complex 0.038
G0:0016323 basolateral plasma membrane 0.04
G0:0045263 proton-transporting ATP synthase complex, coupling factor F(o) 0.04
G0:0005892 nicotinic acetylcholine-gated receptor-channel complex 0.049
G0:0031090 organelle membrane 0.049

Table 6.1 — Significant GO IDs identified by GOAna
Running GOAna on 376 GO IDs derived from the category “cellular component”, 24 were identified as
significant with p-value < 0.05. Depicted is the GO ID, the description of the term and the calculated p-value.

It is apparent that most identified GO IDs are associated with the mitochondrion, indicating that the

biological processes differing between DM2 patients and NGT patients are likely to occur at the
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mitochondrion. When analyzing the data based on 1531 GO IDs from the category ‘biological

process’ and 1138 GO IDs from the category ‘molecular function’, 96 respectively 69 GO IDs were

called significant with p-value < 0.05.

GOID GOTerm p-value
G0:0007286 spermatid development 0
G0:0048468 cell development 0
G0:0048515 spermatid differentiation 0.001
G0:0051321 meiotic cell cycle 0.001
G0:0007283 spermatogenesis 0.001
G0:0019953 sexual reproduction 0.001
G0:0009303 rRNA transcription 0.001
G0:0006383 transcription from RNA polymerase Ill promoter 0.001
G0:0048232 male gamete generation 0.002
G0:0051327 M phase of meiotic cell cycle 0.002
G0:0007126 meiosis 0.002
G0:0042592 homeostasis 0.007
G0:0042990 regulation of transcription factor-nucleus import 0.008
G0:0019725 cell homeostasis 0.008
G0:0006105 succinate metabolism 0.008
G0:0006119 oxidative phosphorylation 0.009
G0:0042136 neurotransmitter biosynthesis 0.009
G0:0042345 regulation of NF-kappaB-nucleus import 0.01
G0:0042773 ATP synthesis coupled electron transport 0.01
G0:0042775 ATP synthesis coupled electron transport (sensu Eukaryota) 0.011
GO:0006118 electron transport 0.011
G0:0006753 nucleoside phosphate metabolism 0.012
G0:0050954 sensory perception of mechanical stimulus 0.013
G0:0006538 glutamate catabolism 0.013
G0:0006626 protein-mitochondrial targeting 0.014
G0:0046328 regulation of JNK cascade 0.015
G0:0000279 M phase 0.015
G0:0006536 glutamate metabolism 0.015
G0:0007007 inner mitochondrial membrane organization and biogenesis 0.016
G0:0045039 mitochondrial inner membrane protein import 0.017
G0:0007006 mitochondrial membrane organization and biogenesis 0.017
G0:0006120 mitochondrial electron transport, NADH to ubiquinone 0.018

Table 6.2 — Excerpt of significant GO IDs retrieved by investigation of “biological processes”

1531 GO IDs from the category ‘biological process’ and 1138 GO IDs from the category ‘molecular function’
were analyzed. 96 respectively 69 GO IDs were called significant with p-value < 0.05. Depicted is the GO ID, the
description of the term and the calculated p-value.

52




DIFFERENT CONCEPTS OF RNA FINGERPRINTS

Within these results, we were able to recall oxidative phosphorylation, ATP metabolism and electron
transport. Table 6.2 shows an excerpt of the obtained GO IDs. However, these processes and
functions did not achieve the most significant p-values within the analysis. The GO IDs identified as
most significant by GOAna were all associated with the process of spermatogenesis in the context of

cell development.

6.3.3 Discussion

The new algorithm introduced here, GOAna, implements a gene-class testing approach. This very
simple approach makes it possible to perform an unbiased analysis bases on all branches of GO.
When comparing the result obtained by GOAna with the one obtained by GSEA, the overall result,
namely mitochondrial processes including electron transport and oxidative phosphorylation is
identical. Indeed, genes included in the OXPHOS gene set identified by Mootha et al. are involved in
oxidative phosphorylation which is associated with the mitochondrion. The OXPHOS genes identified
by Mootha et al. comprise 114 hand-curated genes. When comparing this gene set with the GO ID
‘Mitochondrion’ 106 of 114 are included in both, the OXPHOS set and the GO ID. The detailed results
though, are slightly different between GOAna and GSEA. Whereas GSEA identifies oxidative
phosphorylation as the most significant biological process, GOAna identifies processes involved in
spermatogenesis and cell development as most significant. The discrepancy between these results
can be mainly explained by the different approaches taken. While GOAna was carried out using all
processes included in GO, Mootha and colleagues used 149 hand-curated gene sets for their analysis.
The process of spermatogenesis was not included in these gene sets. Therefore Mootha and
colleagues were not even able to identify these processes. Indeed, when restricting the analysis to
the 149 gene sets used by Mootha and colleagues, we were able to recall the same results as GSEA
(data not shown). Therefore, we propose GOAna as an easy-to-use gene-class testing approach for

unbiased analysis of microarray experiments.

6.4 Application to T cell homeostasis

6.4.1 Biological Motivation

Next, we applied GOAna to an immunological question, namely the field of T cell homeostasis. Based
on studies in knockout mice, several exogenous inhibitory factors such as TGFB, IL-10, or CTLA-4 have

been implicated as gate keepers of adaptive immune responses. Lack of these inhibitory molecules
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leads to massive inflammatory responses mainly mediated by activated T cells. In humans, the
integration of these inhibitory signals for keeping T cells at a resting state is less well understood. It is
tempting to speculate that the same factors involved in murine T cell homeostasis are also involved
in human T cell homeostasis, especially because many of these factors have similar roles during
induction of immunity. However, so far no experimental evidence exists supporting such a postulate.
We therefore hypothesized that deprivation of resting human T cells of any exogenous signals should
reverse intracellular signaling cascades actively keeping T cells at a resting state. We further
postulated that such changes should certainly be recognizable on the genomic level. To this end, we
interrogated genome-wide transcriptional changes of human mature CD4" T cells in response to

deprivation of exogenous signals.

6.4.2 Results

To assess factors keeping T cells at a resting state, we exposed purified human CD4" T cells to an
environment depleted of blood-derived soluble factors present in serum. Early genome-wide
transcriptional changes were assessed using Affymetrix microarrays. Filtering based on fold changes
(FC) and significance (variable probe sets, FC > 1.5 or FC < -1.5 and p-value < 0.05) revealed a high
number of genes (878 genes, 443 up- and 435 down-regulated) with altered transcription after 2 h of
serum deprivation in highly purified CD4" T cells. Changes of transcription even further increased at a
later time point (910 genes at 8 h; 593 up- and 317 down-regulated) (Figure 6.3A). When performing
hierarchical clustering based on all variable probe sets, time of serum withdrawal was the major
factor separating the sample groups (Figure 6.3B).

Next, we were interested in determining which biological systems mainly contribute to these
changes of gene expression. Therefore, we applied GOAna. In the first step we defined the set of
gene spaces. Of the 18,455 currently known GO IDs, 9,805 comprise biological processes, 2,616 are
present on the HGU133A array, but only 1,336 of them included at least 5 probe sets (Figure 6.3C).
After the calculation of Euclidean distances between the three sample groups (time points t = 0, 2,
and 8 h) and the significance analysis we identified 384 GO IDs to be affected on a significance level
below 0.1%, 180 GO IDs between 0.1 and 1%, and 230 GO IDs between 1 and 5% after 8 h of serum
deprivation (Figure 6.3D). When analyzing the most significant GO IDs, it became apparent that
biological terms like cell cycle, cell growth, and transcription regulation were major contributors to
differences in gene expression after serum deprivation. Surprisingly, 31 of 56 cell cycle-related GO
IDs were affected on a significance level below 0.1% and only 5 cell cycle-related GO IDs did not

reach the 0.05 significance level (error rate <5%). To identify signals that might account for these
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changes in T cells after serum deprivation, we next searched for potential extrinsic signals upstream

of cell cycle, cell growth, and transcription regulation.
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Figure 6.3 — The TGFP pathway is significantly changed by serum deprivation in CD4" T cells

(A) To visualize significant changes in gene expression, Volcano plots were used. The FC (log, FC) of gene
expression was plotted against the negative p-value (logy,). All CD4" T cell samples assessed on the Affymetrix
platform are included. Plotted are genes changed betweent=0(n=10)andt=2h(n=3)aswellast=0and t
= 8 h (n = 3). Genes significantly changed are defined by FC < -1.5 or FC > 1.5 and a p-value < 0.05 (see
respective lines). (B) Hierarchical clustering of all T-cell experiments on the Affymetrix platform. Before
clustering, genes were filtered using all variable probe sets (0.5 < SD/mean < 10). (C) All GO IDs (all) were
filtered first on the category biological process (BP), next filtered on the presence on the HGU133a array
(HGU133a/BP), and finally on those represented with at least five probe sets (>5 PS/ID). (D) GOAna revealed
several significantly changed GO IDs (number of GO IDs) in CD4" T cells after 8 h of incubation in serum-free
medium. The number of cell cycle-related GO IDs is given; highlighted on the right site are offsprings of the
overall GO term cell cycle; *, TGFB targets is a set of known TGFp target genes. Significance levels are presented
as error rates (in percent).

This analysis identified the TGFB pathway to be the most significantly changed exogenous signaling
cascade (error rate <1%). To corroborate the GO- based approach, a set of genes containing
previously described TGFB1 target genes (Siegel and Massague 2003; Renzoni, Abraham et al. 2004)
was subjected to GO analysis. We postulated that these TGFp target genes should again reveal
significant changes in gene expression associated with serum deprivation. Indeed, this set of genes
was even more significantly changed in human primary CD4" T cells (error rate <0.1%) (Figure 6.3D).

To further evaluate the specificity of our results, GO IDs containing genes associated with immune
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regulation were studied. Strikingly, none of these GO IDs reached a level of significance exceeding 1%

(three GO IDs with an error rate between 1 and 5%, and eight GO IDs with an error rate <5%).

6.4.3 Discussion

In this study GOAna revealed that changes in TGFpB-related genes are major contributors to the
overall transcriptional changes observed after serum deprivation in human CD4" T cells. GOAna was
used as a starting point for further analyses to substantiate this finding (Classen, Zander et al. 2007).
One way to show that indeed TGFJ was the exogenous factor keeping T cells at a resting state was
the investigation of TGFp target genes. As already described, the self-defined gene space of TGFj
target genes was called significant and therefore showed a contribution to the differences of
different time points. When checking the signaling pathway of TGFp using GenMAPP, several of the
known TGFp target genes induced upon TGFp stimulation were shown to be under the permanent
control of TGFB in resting T cells. In the next step it was demonstrated that most of the known
TGFp target genes, which were identified as significantly regulated during serum deprivation were
counterregulated after addition of TGFB. Moreover, using this approach numerous novel TGFp target
genes were identified that are under the suppressive control of TGFB. So far, these genes have not
been recognized as TGFp target genes in other cellular systems. Expression of these genes was up-
regulated once TGFp signaling was lost during serum deprivation and again suppressed upon TGFf
reconstitution. The other way to demonstrate constitutive TGFB signaling in resting CD4" T cells was
the interrogation of SMAD signaling which is an early event after the binding of TGFp to its receptor
complex. Indeed, immunofluorescence and Western Blot analysis demonstrated phosphorylated
SMAD2 and SMAD3 in freshly isolated resting human CD4" T cells. Loss of transcriptional control by
TGFp should be accompanied by loss of SMAD phosphorylation which could be demonstrated in the
paper. This phosphorylation could be restored by addition of either exogenous TGFf or freshly
isolated human serum (which contains TGFB). Taken together, in our hands GOAna can be used in

different experimental settings as a starting point for functional analyses.
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7 The microarray experiment as a RNA fingerprint

Testing groups of genes or even whole pathways for differential expression was a huge advancement
in the analysis of gene expression data. It enabled the researcher to detect a pattern of commonly
regulated genes within a pathway when no differential expression was detected on a single gene
level. However, there are still processes which cannot be identified by searching for differentially
expressed genes or pathways, as for example processes which are not regulated on the
transcriptional level. We therefore would like to take our GCT approach one step further and tackle
the even more challenging question of whether the result of a gene expression analysis — we call it
the RNA fingerprint of the microarray experiment — will give us a hint on what had happened

upstream to the observed transcriptional changes.

7.1 Further development of GOAna

To achieve this goal, the GOAna algorithm was further developed to combine the already

implemented GCT approach with a network construction approach.
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Figure 7.1 — Overview of the extended GOAna algorithm

After retrieval of gene spaces, Euclidean distances between subgroups are calculated and significance is
assessed by permutation and recalculation of distance (1000 times). The hypothesis underlying the last step,
the construction of the Contrib-network is depicted in more detail in Figure 7.2. In short, genes included in
significant gene spaces are extracted and visualized using Cytoscape.
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To date GOAna therefore includes two major analysis steps: (1) identification of biologically systems
(defined by GO terms) affected by the experimental setting (original GOAna) and (2) identification of
genes playing a central role in these biological systems. Figure 7.1 briefly depicts the structure of the
enhanced GOAna algorithm.

The first step of the algorithm has been introduced in Chapter 6.3 and needs no further introduction.
The second step will be explained in detail here. After identification of the most significant gene

spaces a hetwork of contributing genes (Contrib-network) is constructed.

gene X called 4 times

gene X2 called 2 times \

gene X1 gene X3
gene X
gene X1.1 gene X2.1 gene X2.2 gene X3.1
pathway 2 pathway 4

Figure 7.2 — Hypothesis for identification of key players

Graphical description of the major hypothesis for identifying upstream key players. Genes acting as major
switches between gene spaces contributing to changes in gene expression between the analyzed subgroups
will be included in several significant gene spaces and will therefore be extracted several times.

We hypothesized that genes in key regulatory upstream positions are likely to be involved in multiple
biological processes (Figure 7.2) and would therefore appear several times in the list of significant GO
IDs. To identify these genes, all significant GO IDs are used and the genes contained in these GOIDs

are extracted. The network of contributing genes (contrib-network) is then constructed as follows:

Let GOIDs(gene;) be the number of significant GO IDs which gene 7is included in. Then gene; and

gene;j are connected by an edge if:
GOIDs(gene;) = 2 && GOIDs(gene;) = 2 (1)

GOIDs(gene;) N GOIDs(gene;) = x (2)
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Equation (1) makes sure that only genes which are represented by two or more GO IDs in the list of
significant gene spaces are used for the construction of the contrib-network. In equation (2) the
number of GOIDs xshared by gene; and gene; is specified. In an iterative process increasing x, genes

which appear most often in the list of significant GO IDs can be determined.

7.2 Application to T cell inhibitors

To demonstrate the utility of the algorithm, we applied it to an unsolved biological question in T cell
biology, the unraveling of detailed signaling mechanisms following inhibition of T cells. PGE, has
diverse effects on CD4" T cells which lead to inhibition of T cell activation. Recently an interference of
PGE, at an early step of T cell receptor signaling was suggested (Chemnitz, Driesen et al. 2006),
however the full signaling mechanism was not fully clarified. We therefore used GOAna to identify
possible central modulators for the PGE,-mediated inhibitory effect on activated T cells. In short,
CD4" T cells were stimulated with CD3/CD28/MHC-I beads with or without PGE, for 4 days (Figure
7.3A). The Inhibitory effect of PGE, was demonstrated by a proliferation assay (Figure 7.3B), IFN-y
and TNF-a. secretion (Figure 7.3C).
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Figure 7.3 — Experimental setup

CD4" T cells were stimulated with CD3/CD28/MHC-| beads with or without PGE, for 4 days. CFSE dilution was
determined using Flow Cytometry. Percentage of proliferating cells is shown. The amount of IFN-y (black bars)
and TNF-o. (grey bars) secreted by the resting (negative control), activated (CD3/CD28/MHC-I) and
PGE,-treated (CD3/CD28/MHC-I + PGE,) CD4" T cells was measured using a cytometric bead array. Shown are
triplicates of one representative experiment.

When comparing activated CD4" T cells and activated CD4" T cell treated with PGE, using the GOAna

algorithm, we identified 79 significant gene spaces (p-value < 0.05), including biological processes

59



EXPERIMENT AS RNA FINGERPRINT

concerned with ‘RNA processing’, ‘apoptosis’ and ‘regulation of cell growth’. These processes clearly
resemble the known biological differences between activated CD4" T cells and activated CD4" T cells
in the presence of the inhibitory molecule PGE,.

By iteratively increasing x (Equation (2)) we constructed several contrib-networks (Figure 7.4) and

revealed that three subunits of protein phosphatase type 2A (PP2A) — PP2R1A, PPP2R1B and PP2CA —

appeared in 24 of the 79 gene spaces (Figure 7.4D).

ISMNDC1

Figure 7.4 — Contrib-networks resulting from GOAna
Several contrib-networks were constructed by iteratively increasing x (Equation (2)). Shown are contrib-
networks based on (A) x=5, (B) x = 10, (C) x =15 and (D) x = 24.

PP2A has been identified as an important regulator of signal transduction and cell growth and
functions by dephosphorylation of downstream targets, for example ERK, PKA and PKB and AKT
(Garcia, Cayla et al. 2003; Van Hoof and Goris 2004; Mumby 2007). Indeed, no transcriptional
regulation of PP2A was observed (Figure 7.5A). If PP2A in fact acts as an upstream central modulator

in PGE; signaling, the phosphorylation status of downstream targets should alter based on the
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presence of PGE,. To interrogate this hypothesis, we performed a Western blot analysis using a

Jurkat cell line and the phosphorylation status of ERK as readout.
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Figure 7.5 — Functional investigation of PP2A and proposed mechanism

(A) Expression of the three key players PPP2CA, PP2R1A and PPP2R1B identified by GOAna. Shown are
expression values and fold changes between CD4" T cells stimulated with CD3/CD28/MHC-I (black bars) and
CD4" T cells stimulated with CD3/CD28/MHC-| after addition of PGE, (grey bars). (B) Western Blot analysis using
the phosphorylation status of ERK as readout. CD4" T cells were either left unstimulated (Resting) or were
stimulated with CD3/CD28/MHC-I beads with (CD3/CD28 + PGE,) or without PGE, (CD3/CD28). Ocadaic acid
(OA), a known inhibitor of PP2A, was used as a positive control. As a further control, PMA + lonomycin which

directly phosphorylates ERK was used. Shown is the phosphorylated ERK (green bands) as well as total ERK (red
bands).

Jurkat cell lines were stimulated with CD3/CD28/MHC-I beads in the presence or absence of PGE,.
Ocadaic acid, a known inhibitor for PP2A was used as a control. As a further control, PMA +
lonomycin which directly phosphorylates ERK was used.

As seen in Figure 7.5B, in the presence of PGE,, phosphorylation of ERK was detected, although to a
lesser extend as when treated with ocadaic acid (OA), a known inhibitor of PP2A. When treating
activated Jurkat cell with both PGE, and OA, the phosphorylation of ERK was enhanced compared to

treatment with PGE, or OA alone. Based on these results we propose PGE, to act as a repressor on

PP2A (Figure 7.5C).
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7.3 Discussion and further research options

Genome-wide transcriptional approaches have been extensively used to unravel the mode of action
of diverse signaling processes. However, getting insight into signaling processes which are not
reflected by transcriptional changes is still a challenging task. Here we propose, for the first time, a
method which uses a whole genome-wide gene expression dataset as a RNA fingerprint to predict
upstream events reflected by the observed transcriptional changes. Using this algorithm we
determined PP2A as a key player which links several biological processes involved in the separation
of activated T cells and activated T cells in the presence of PGE,. Additionally, we confirmed this
finding by Western blot analysis using a Jurkat cell line. Here PP2A was identified as central
modulator in PGE, signaling which is repressed in the presence of PGE,. Common approaches, as for
example searching for differentially expressed genes or even pathways, would have not resulted in
the identification of PP2A, since PP2A signaling depends on phosphorylation of target molecules. As
the confirmation was performed in a Jurkat cell line and there are known difficulties in the
comparability of Jurkat cell lines and primary T cells (Abraham and Weiss 2004), the logical
consequence is performing the same experiment in primary CD4" T cells. Right now the Western blot

analysis using ERK as readout is performed on freshly isolated CD4" T cells.
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Part III: Further developments and critical considerations

8 IlluminaGUI - an application for establishing RNA fingerprints

Establishing and applying RNA fingerprints requires sophisticated data analysis methods for gene
expression data. In this chapter | would like to introduce a software package which allows
researchers to perform the above mentioned investigations using Illumina’s Sentrix BeadChip

technology (see Chapter 2.4.2).

8.1 Motivation

One of the most recent technologies in the area of genome-wide transcriptional profiling is the
Sentrix BeadChip technology developed by Illumina (CA, USA) (Kuhn, Baker et al. 2004). Although the
technology has been proven to be of highest quality (Patterson, Lobenhofer et al. 2006; Shi, Reid et
al. 2006) widespread use by the novice as well as experienced life scientist is hampered due to the
lack of comprehensive analysis tools specifically developed for this technology platform. For users of
the Illumina BeadChip technology the options for sophisticated data analysis are currently limited to
Illumina’s BeadStudio or the Bioconductor packages ‘beadarray’ (Dunning, Smith et al. 2007), ‘lumi’
and ‘BeadExplorer’. The Bioconductor project (Gentleman, Carey et al. 2004) - primarily based on R
(R Development Core Team 2007) - is one of the most widely used open source software platforms
for computing microarray data. The three Bioconductor packages mentioned are ‘command line’-
based and are designed for scientists with sufficient programming skills. While the BeadExplorer’s
limited GUI interface is restricted to quality control methods and data normalization, lllumina’s
BeadStudio tool offers basic analysis tools in a GUI environment, however, lacks many methods
necessary for comprehensive microarray analyses including high-level statistical analyses. Moreover,
it does not make use of widely accepted algorithms e.g. implemented in R. To overcome the current
limitations of data analysis using the Illumina platform, | developed IlluminaGUI, a R package
implementing a graphical user interface (based on the R-Tcl/Tk interface (Dalgaard 2001) for
microarray data analysis. IlluminaGUI is designed specifically for life scientists who are not familiar
with a command line based environment like the R language but do not want to resign the vast

analysis opportunities of R. llluminaGUI is freely available under http://llluminaGUl.dnsalias.org.
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8.2 Results

IluminaGUI offers a collection of R functions combined to an easy-to-use GUI-based analysis tool
covering the key components of a microarray analysis - preprocessing, inference and classification. As
input files IlluminaGUI is using the primary data output files derived from Illumina’s Beadstudio.
These files are in tab-delimited format and include the non-normalized expression values together
with detection p-values for each probe. To date, all available BeadChip versions (Human-RefS,
Human WG6v1l, Human WG6v2, Mouse-Ref8, Mouse6vl, Mouse6vl.1, Rat-Refl2) are supported.
Preprocessing of the data includes visualization of the data using basic diagnostic plots (e.g. MA plots
(Dudoit, Yang et al. 2002), box plots (Figure 8.1A) and pairwise scatter plots), determination of
absent/present genes as well as normalization of the data using state-of-the-art normalization
techniques. Here, the quantiles-method (Bolstad, Irizarry et al. 2003), the vsn-method (Huber, von

Heydebreck et al. 2002) and the gspline-method (Workman, Jensen et al. 2002) are implemented.
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Figure 8.1 — llluminaGUI visualization methods

(A) For quality control IlluminaGUI provides visualization of the data using diagnostic graphical plots. These
include pairwise scatter plots, box plots and MA plots. Shown here is an example of a box plot of the data
before normalization. (B) Explore plot.

We also introduce a new graphical tool - ‘ExploreGenes’ - which has, to our knowledge, not been
described or implemented in any of the R packages yet. With ‘ExploreGenes’ the user can examine
the expression profile for predefined genes across the entire dataset or parts of the dataset. The
profile is displayed as a contour-plot showing mean values of biological replicates and can be
exported to an Excel-file or as graphical output (Figure 8.1B).

IlluminaGUI provides several methods for identifying differentially expressed genes. Besides the

combined t-test/fold change analysis, linear model analysis using LIMMA (Smyth 2004) is offered
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to investigate the dataset. The methods are combined with procedures to correct for multiple
testing, e.g. the FDR. In addition the user is able to perform SAM analysis (Figure 8.2) as described by
Tusher et al. (Tusher, Tibshirani et al. 2001).
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Figure 8.2 - llluminaGUI inference methods

Analysis of differentially expressed genes is provided by three different methods, conventional t-test/fold
change analysis, Linear Model analysis using LIMMA and SAM analysis. Shown here is the result of a SAM
analysis. The result is also saved to an EXCEL-file.

All inference methods provide a fully annotated output file which includes probeset IDs, symbols,
gene names, Entrez Gene IDs and a Gene Ontology annotation (Figure 8.2). For this purpose
annotation packages based on the original annotation provided by Illumina have been created and

will be distributed along with the IlluminaGUI package.

f ]
7 NluminaGUI B X 74 WuminaGUl EE|
Fie Data Analysis fielp Fie Data Analysis Help
Explore Genes Explore Genes
Quaity Control ’ Qualky Control v - =
. G L] Jol
Diferentialy expressed genes * b £y HlliminaGiH Diferwnaly searssedgeons > | 20 1L Principal Components Analysic B %]
Cssiication » Unsupervied andlysis - Classcarion , v
Prinical components analysis Supervised sndlysis P K-Means dustering B biste
Setoct duaset
Vou start by loadng an llumna File and a Sample| _Partiioning around medaids chisterng 7ou st by loading en lianina Fio | [N
Diection: on creation of theze fie: can be Directions on creation of these ] [VSwomeized
Thea Tah Thata Anakeis’ wil e e acnees to 5 L |93 phne-romakoed
R er— [ i i ok aantiles narmakzod
= Options e Seect |
g Setect Genes
Dehne vansble genes ~ 0 100
(stdev/mean) Lowerbound  Uppes bourd]
‘ Use predefined st of genes g Browie .
.
~ F1 |saing optons
Y Detine Name of cutgut  [PCA
Save routs 1 [Cropanne/AF  Browss . |
L] .‘
Perfom PCA I Qut

= O

Lowerbaurd  Ugoerbound)

el [ Br |

o] o |

Figure 8.3 — llluminaGUI classification methods and PCA

(A) Unsupervised classification provided in llluminaGUI includes hierarchical clustering. Here, samples can be
clustered based on a list of variable or pre-defined genes. (B) Principal components analysis in IlluminaGUI
provides an html-output of the data which can be viewed using a common browser and the Chime plug-in
(Chime Plugin 2008).
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For classification purposes both unsupervised and supervised classification methods are offered. At
present, unsupervised classification is provided in terms of hierarchical clustering, k-means clustering
and partitioning around medoids clustering. For hierarchical clustering, various distance measures
and linkage methods can be selected (Figure 8.3A).

Genes for clustering can be defined by filtering of variable genes based on normalized variance
across samples or predefined gene lists. Supervised classification is performed using two different
methods - nearest shrunken centroids (PAM) and support vector machines (SVMs). Here, different
feature selection techniques and cross-validation are provided. With both, the supervised and
unsupervised methods the user obtains written as well as graphical outputs of the results. For
example, when using PAM, the accuracy of each prediction, the overall accuracy and the certainty of
a prediction can be exported to an Excel-File. In addition, a probability plot displaying the result of all
predictions is created. Similarly to hierarchical clustering, principal components analysis (PCA) of
samples can be performed using variable genes or a predefined list of genes. Visualization of the
results is provided as an html-output using a common browser and the Chime plug-in (Chime Plugin
2008). IlluminaGUI not only enables the user to save graphical outputs and analysis results, but also
to save an entire project, i.e. the analysis can be continued at any time from the point of saving. This
feature avoids tedious computations to be repeated all over when restarting or continuing an

analysis.

8.3 Discussion and further research options

IlluminaGUI is a microarray analysis tool intended to enable the interested life scientist analyzing
microarray experiments based on the increasingly used lllumina technology. In addition, llluminaGUI
can support the experienced user to expedite gene expression data analysis e.g. in a service lab
environment. llluminaGUI covers all aspects of a microarray experiment, starting from graphical
quality controls to high-level statistical analyses as, for example, PCA or supervised classification.
While llluminaGUI will enable the life scientist to perform a basic microarray workflow without the
help of experts in bioinformatics, at the same time, it is intended to enable the novice microarray
user to achieve a rather sophisticated gene expression analysis as a basis for fruitful interactions with
experts in statistics and bioinformatics. It is planned to extend IllluminaGUI in several different ways.
Gene class testing approaches as introduced in Chapter 6.1 are more and important in analyzing
microarray experiments. Different gene class testing approaches, including the Bioconductor package
GOstats and the GOAna algorithm will be included in the interface. Additionally we are planning on

extending the interface for analysis of high throughput miRNA data.
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9 (ritical considerations about underlying technology

In the following chapter | would like to focus on the challenges the underlying technology might
implicate on the creation of RNA fingerprints. All described approaches for the creation of RNA
fingerprints are heavily dependent on the reliability of the microarray format used for the study.
Reasonable concerns would include the reproducibility of RNA fingerprints on different platforms or
the continuity of RNA fingerprints when a new version of a microarray with updated probe content
becomes available. The following study interrogates the latter concern and uses the Illumina

BeadChip technology as an example to assess the impact of probe changes on the achieved results.

9.1 Motivation

Several reports have raised concerns about the comparability of microarray results coming from
different platforms (Irizarry, Warren et al. 2005; Larkin, Frank et al. 2005; Kuo, Liu et al. 2006).
However, recently the MicroArray Quality Control (MAQC) project has made a significant
contribution assuring reliability and consistency of DNA microarray technology (Canales, Luo et al.
2006; Guo, Lobenhofer et al. 2006; Patterson, Lobenhofer et al. 2006; Shi, Reid et al. 2006; Shippy,
Fulmer-Smentek et al. 2006; Tong, Lucas et al. 2006). The major message from the MAQC project, a
community-wide effort initiated and led by FDA (US Food and Drug Administration) scientists, is that
microarrays with comparable content show inter- and intra- platform reproducibility of gene
expression measurements. Major regulatory agencies such as the FDA or the European Medicine
Agencies (EMEA) have recognized genomic technologies, particularly gene expression profiling by
DNA microarrays, as opportunities in advancing personalized medicine (Lesko and Woodcock 2004;
Frueh 2006). Therefore, the results established by MAQC are very promising for the use of DNA
microarrays in drug development, medical diagnostics and risk assessment, and the use of these
technologies has been encouraged by the regulatory agencies. However, as already outlined by the
MAQC project, an important aspect of DNA microarray technology needs further attention (Shi, Reid
et al. 2006). Advances in array technology as well as improvements of genomic database content will
lead to the development of new generations of microarrays in upcoming years (Hardiman 2006;
Hoheisel 2006). The currently available annotation of transcripts represented on DNA microarrays
(microarray content) is still incomplete. In fact, our knowledge about gene expression is far from
being complete, which is reflected by a continuous increase of content of gene databases such as

RefSeq (Pruitt, Tatusova et al. 2007). Moreover, still more than 50% of Human RefSeq entries are
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only preliminarily annotated (Johnson, Castle et al. 2003). Starting with a few hundred transcripts a
decade ago current versions of DNA microarrays interrogate transcripts in the order of 50,000. So far,
using the most recent DNA microarray technology has always been seen as an advantage - especially
when searching for novel transcripts (Classen, Zander et al. 2007). However, this might be different in
the setting of drug development, medical diagnostics or risk assessment, where patterns of
expression rather than single genes are of highest relevance. Here, permanent gene annotation and
probe sequence content are needed for long-term applications. The potential impact of advances in
technology and database content on successfully established diagnostic gene signatures (e.g. the
70-gene signature established by van’t Veer et al. for predicting therapy outcome in breast cancer
patients (van 't Veer, Dai et al. 2002; van de Vijver, He et al. 2002) or the RNA fingerprint predicting a
lung cancer incidence (see 1)) has not been fully appreciated. It is therefore mandatory to develop
approaches and methods that allow fast and decisive assessment of the global impact database
improvements, content changes of microarrays and technical advances might impose on the use of

DNA microarray technology.

9.2 Dealing with next generation microarrays: A solution strategy

As a consequence, fast, reliable and standardized assessment of technological advances in array
technology and content is critically needed leading us to propose a methodology that allows

assessment of

1. The amount of changes on a probe content level between subsequent versions of
microarrays
2. The technological improvements between subsequent versions and

3. The impact of these improvements on reproducibility and comparability of biological results.

We therefore describe a methodology allowing rapid determination of the impact of introducing
newer generation microarray technology with improved genomic content on gene expression
analysis results. This method consists of in-silico analyses of microarray content combined with a

performance analysis using real biological samples.

Significant dynamics of gene sequence content of current genome databases

One of the major resources for genomic research are databases such as RefSeq (Pruitt, Tatusova et

al. 2007), Unigene (Pontius, Wagner et al. 2003), Ensembl (Flicek, Aken et al. 2007), or GenBank
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(Benson, Karsch-Mizrachi et al. 2006). Due to the enormous gene cloning efforts during the last
years, the content of gene databases is dramatically increasing. Plotting the official release statistics
of the RefSeq database (ftp://ftp.ncbi.nih.gov/refseq/release/release-statistics/) shows the
continuing growth of gene RefSeq sequences (Figure 9.1A) mainly explained by constant addition of

new species.

A 1200

O

50

+ RefSeq IDs all |:| Identical RefSeq sequences
1000 o
2 40t - -
800 %_ e
§ 30
600 r R
;% BN
400 s
E\Z: 20
2004 /£ s
@
B g § 10}
£ RefSeq IDs human 2
2 0
g 40 Mo P L g R E
2 222229288 v ppupnnonwo?oan
& FNC")W!‘LO&D"‘-—EU>)>>)))’>)>)>>)
@ PN VO~RODD -N®
L 1 N i e ooy N
<
3 30 2l RefSeq release
‘:-? i
g mmm Removed RefSeq sequences
E 20k L [ Added RefSeq sequences
2 / 10l

R RefSeq IDs human
"transcript variants”

Number of RNA Sequences (in 10°)

8
6
4
20+

2 |||||||||||||||||||||||

NOTNO~ODOTNNTINORDIOT M T

P e R RN

o ~ wy w0 = >>>>>>>>m§mwmmmmwmmﬂmwm

8 = =1 = 8 ,_vammr\__w)°}>>>})>});)>>

(=] (=3 -— [y ] [Te] M~ - o

& & & & & P HRIR2CE2NNNE

RefSeq Release RefSeq release

Figure 9.1 — Dynamics of RefSeq database
Official release statistics retrieved from (ftp://ftp.ncbi.nih.gov/refseq/release/release-statistics/) shows the
development of the RefSeq database, including (A) all RefSeq IDs, (B) human RefSeq IDs, and (C) human RefSeq
IDs termed “transcript variant”. Consecutive releases were compared to each other to obtain (D) concordances
and (E) changes in the database over time.

One of the latest versions of RefSeq (September 14, 2007) covers 6,515,158 entries coding for
4,167,224 proteins from a total of 4,646 organisms. To determine the development of the content of
human gene sequences (human database entries, huDE) huDE from the RefSeq release catalog were
extracted (ftp://ftp.ncbi.nih.gov/refseq/release/release-catalog). Starting with almost 40,000 huDE in

release one (R1) the content dropped to less than 28,000 huDE, steadily increased to 30,000 huDE
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(R16) when almost 11,000 huDE were added in R17. Since then the overall number of huDE remained
stable (Figure 9.1B). The increase of huDE observed from R2 to R17 is mainly explained by new
knowledge concerning transcript variants (mainly splice variants). Transcript variants have been
added continuously to the database (Figure 9.1C). Since 2003 the number of known splice
variants more than doubled reaching now 10,000 huDE (R24). While reaching a plateau in overall
content of huDE (Figure 9.1D), assessment of absolute numbers does not necessarily reflect
additional dynamics of the database due to exchange of huDE. We therefore assessed changes of
huDE between subsequent releases over time. This analysis revealed a surprisingly high number of
changes between subsequent releases, even for the latest releases (Figure 9.1E). These changes can
be explained by constant curation of the database including nucleotide changes of existing
sequences, removal of redundant or non-informative content and addition of newly identified
sequences like splice variants. Based on these unexpected and still high dynamics of human genome
content, we hypothesized that the broadly applied microarray technologies, for which RefSeq is one

of the main repositories, will be strongly influenced by such changes.

Content and annotation of microarrays depends on the reference database

To address the influence of database content on array design and layout we first assessed the impact
of different RefSeq releases on array annotation. As a model we used three commercially available
oligonucleotide-based microarray platforms, the Whole Human Genome Oligo Microarray distributed
by Agilent (A-huGOM), the Human Genome Survey Microarray distributed by Applied
Biosystems (AB-huGSM) and the Human BeadChip distributed by Illumina (I-huBC). All three
microarray systems are based on long oligonucleotides (= 50-mers) which are used for hybridization
to their specific transcripts (Figure 9.2A) and are known to have RefSeq as one of their major
sequence repository (Applied Biosystems; Kronick 2004; Kuhn, Baker et al. 2004).

For this analysis the most recent versions of the respective microarrays were used. All
oligonucleotide probes present on the microarray were blasted against RefSeq releases R1 to R24 to
determine the proportion of annotated probes on the respective array. As can be seen in Figure
9.2B, all three microarray formats show similar constant levels of annotation for subsequent
releases. The large change in sequence content observed in RefSeq database R16 (see Figure 9.1B)
also showed a huge increase of the number of annotated probes on the microarrays with the most
prominent rise observed for the I-huBC. Again, when investigating annotation changes between

subsequent releases for all three microarray platforms (Figure 9.2C), the pattern of annotation
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changes showed a high similarity to the pattern of database changes (Figure 9.1E) which reflects a

high correlation of database content and annotated probes on microarrays.
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Figure 9.2 - Influence of Refseq database content on annotation of microarray probes

(A) Array type, feature type and number of features interrogated by three commercially available
oligonucleotide-based microarray platforms. (B) Influence of RefSeq version on annotation of probes used by
the three microarray platforms. (C) Differences in the annotation status based on differences of
consecutive Refseq versions for the A-huGOM, the AB-huGSM and the I-huBC.

The high dynamics in database content and subsequent annotation changes result in the need for
constant update of probe content on microarrays. We therefore were particularly interested in
characterizing the impact of content by comparing different generations of microarrays developed

on the basis of different database content.
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Consistency of consecutive array versions strictly depends on database content and annotation

To interrogate the impact of database content changes we investigated both the Human BeadChip
distributed by Illlumina (I-huBC) and the Human Genome Survey Microarray distributed by Applied
Biosystems (AB-huGSM). Both companies recently launched a second version of their original
product: AB-huGSM-V2, released in January 2005 and I-huBC-V2, released in December 2006. These
enabled us to examine changes in probe content between subsequent array releases. The two arrays
distributed by Applied Biosystems are comprised of 33,096 (AB-huGSM-V1) and 32,787
(AB-huGSM-V2) oligonucleotides, respectively. 30,469 oligonucleotides were identical between
version 1 and 2, whereas 2,627 oligonucleotides were removed and 2,318 oligonucleotides were

added to adapt the new array format to changes in the RefSeq database (Figure 9.3A).

A B

AB-huGSM-V1 AB-huGSM-V2 I-huBC-V1 I-huBC-V2

30469 38997 8299

Figure 9.3 — Comparison of probe level content on subsequent array versions
For (A) the AB-huGSM and (B) the I-huBC two subsequent array versions were compared regarding their probe
level content.

The lllumina BeadChip arrays included 47,296 (I-huBC-V1) and 48,401 (I-huBC-V2) probes,
respectively (Kuhn, Baker et al. 2004), but to our surprise, only 8,299 oligonucleotides were identical
between |-huBC-V1 and I-huBC-V2 (Figure 9.3B). This massive change in probe content from one
array version to the next led us to more closely examine the differences in probe content of the I-
huBC arrays. We postulated that comparability of array results is greatly challenged by
introducing significant changes in probe content. To address this issue in detail, we assessed the
overall magnitude of changes using I-huBC-V1 (version 1) and I-huBC-V2 (version 2) as a model.
Generally, probe sequence changes on consecutive array versions can lead to different numbers and
types of RefSeq hits in both array versions. Generally, probe sequence changes on consecutive array
versions can lead to different numbers and types of RefSeq hits in both array versions. Types of
RefSeq hits include “perfect” (100% sequence identity), “imperfect” (>90% sequence identity) or
“unspecific” (<90% sequence identity) hits. Furthermore, number and type of RefSeq hits depend on

changes within the RefSeq database.
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We categorized RefSeq hits resulting from probe sequence changes as follows:

e Hit Category 1: RefSeq hit obtained by identical probe sequences represented on both
array versions
e Hit Category 2: RefSeq hit obtained by distinct probe sequences (sequence changes in
RefSeq, design improvement, etc.)
0 Category 2a: Hit to the same RefSeq ID(s) by distinct probe sequences
0 Category 2b: Perfect RefSeq hit on version 1, imperfect RefSeq hit on version 2
0 Category 2c: Perfect RefSeq hit on version 1, unspecific RefSeq hit on version 2
0 Category 2d: Imperfect RefSeq hit on version 1, perfect RefSeq hit on version 2
0 Category 2e: Unspecific RefSeq hit on version 1, perfect RefSeq hit on version 2
e Hit Category 3: New RefSeq is added (splice variants, prediction (XM_ probe) was correct)
e Hit Category 4: RefSeq is deleted (prediction (XM_ probe) turned out to be wrong,

problems in synthesis, not important!)

We used this categorization to assess the impact of probe sequence changes on the comparability of
the consecutive array versions. To interrogate differences in RefSeq hit categories between
I-huBC-V1 and I-huBC-V2 we initially performed a BLAST analysis on all oligonucleotide sequences
from both arrays using three RefSeq releases. R24 represents the actual release, R17 the release at
the time of I-huBC-V2 array design, and R4 the release at the time of I-huBC-V1 array design.

In short, oligonucleotides from both array versions were blasted against the respective RefSeq
release and hits which were called perfect were grouped into one of the 4 described categories. The
obtained perfect hits by each array version and the distribution of hits to the respective categories
are displayed for RefSeq Versions R4 (Figure 9.4A), R17 (Figure 9.4B), and R24 (Figure 9.4C). The
BLAST analysis performed on R17 (Figure 9.4B) obtained the highest number of perfect hits for
I-huBC-V2 (36,405) as well as the highest number of shared RefSeq hits between I-huBC-V1 and
I-huBC-V2 (27,090). Also for this release the lowest number of removals (categories 4, 2b and 2c) as
well as the highest number of additions (categories 3, 2d and 2e) was obtained.

Surprisingly, these numbers changed dramatically when performing the BLAST analysis on the most
recent release R24 (Figure 9.4C). Both the number of obtained perfect hits for I-huBC-V2 and the
number for shared RefSeq hits dropped. Also the number of removals increased and the number of
additions decreased. This result clearly reflects the strong dependence of array content on database
content used for array design. When performing the comparison between I-huBC-V1 and |-huBC-V2
based on R4 (Figure 9.4A) we observed the least agreement in probe level content, as well as the

lowest gain of content and the highest number of removals.
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The observed differences concerning the concordance of probe level content between I-huBC-V1 and
I-huBC-V2 based on three different RefSeq releases raised the question whether the concordance

would achieve an optimum.
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Figure 9.4 — Comparison of probe level content on subsequent array versions

The I-huBC-V1 and the I-huBC-V2 arrays were investigated regarding RefSeq hit categories in the following
Refseq releases: (A) R4, (B) R17 (C), and (D) R24. (F) Concordances and differences in probe level
content between the I-huBC-V1 and the I-huBC-V2 array over all RefSeq releases.

Running the BLAST analysis on all official RefSeq releases (R1 to R24) revealed that concordance
between I-huBC-V1 and I-huBC-V2 reached an optimum at R16 and R17 (Figure 9.4D), the existent

releases at the time of array design of I-huBC-V2.

Number of cross-annotated probes on consecutive microarrays stays stable

For further analyses concerning performance issues of two different array versions we cross-
annotated the re-blasted probes from I-huBC-V1 and the I-huBC-V2 arrays principally using the
approach used by the MAQC project (Shi, Reid et al. 2006). In contrast to the MAQC project,
which condensed its mapping to a ‘one-probe-to-one-gene’ approach, we took all perfect hits into

account. Therefore, our cross-annotation approach had to consider three types of probes: (1) probes
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which show a single perfect hit to a Refseq, (2) probes with multiple perfect hits to more than one
Refseqg which are all splice variants of the same gene and (3) probes which show hits to more than
one Refseq comprising different genes. For each probe on the I-huBC-V1 array we compared its list of
perfect Refseq hits to all probes on the I-huBC-V2 array. When identifying a probe on the I-huBC-V2
showing an exact match in length and content of the hit list, the two probes were cross-annotated.
This approach ensured cross-annotation of probes within one probe type (1 to 3) but also excluded
probes of type (2) which showed multiple hits on both I-huBC-V1 and the I-huBC-V2 but had distinct
number of hits for both versions (distinct number of splice variants). In the latter case signals may
not be comparable due to different expression profiles of single splice variants which would
introduce further variation when investigating comparability of performance of two consecutive
microarrays. Using this approach we cross-annotated probes based on all 24 RefSeq releases. We
postulated that the number of cross-annotated probes would increase over time due to an increase
of previously non-annotated probes hitting Refseq IDs in later versions of Refseq. To our great
surprise, the number of cross-annotated probes stayed relatively constant over all releases (Figure

9.5) and did not show the expected increase at R16 and R17.
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Figure 9.5 — Cross-annotation of probes

For each release probes from I-huBC-V1 were cross-annotated to probes from I-huBC-V2. For each probe
I-huBC-V1 its list of perfect Refseq hits was compared to all probes on I-huBC-V2. Two probes were cross-
annotated when identifying a probe on the I-huBC-V2 which showed an exact match in length and content of
the hit list. Depicted is the number of cross-annotated probes for each release.

This can be explained by the huge increase in the number of splice variants for the two releases (see
Figure 9.1C) as well as the cross- annotation approach itself which prohibits cross-annotation of
probes targeting a distinct number of splice variants. For all further analyses we used the

cross-annotation based on the latest RefSeq release (R24) and therefore worked on 20,456 probes.
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Altogether, comparability of consecutive array versions even on a single platform is a function of
oligonucleotide design, database content and annotation available at the time of array design.
Unexpectedly, optimal comparability is not achieved with the newest annotation of the RefSeq
database but rather with the annotation available at the time of design of the newest array version.
As long as the database content is not yet finalized, updates in array design are mandatory to

correctly reflect genomic content.

Selection of data sets for best investigation of performance issues

The above described in silico analysis of consecutive array designs (based on updated database
releases) is an important first step to estimate the overall impact on array performance. However,
we postulate that site-by-site comparison of performance of consecutive array versions by applying
biological experiments is the most critical part of future array development as well as compatibility
analysis for long-term projects spanning the life time availability of different array versions.
Conceptually, these guiding experiments should fulfill the following criteria: representative data sets
to assess array performance in (1) a biological screening experiment (e.g. cell type comparison)
respectively (2) in a group analysis setting (e.g. clinical sub-classification of diseases), (3) coverage of
as many present probes as possible, and (4) availability of validating data for single genes. To achieve
these goals we performed two different sets of experiments. As an example for a biological screening
experiment we compared conventional CD25" CD127 regulatory T cells (T,e, n=3) as a specialized T
cell subpopulation and compared these with so-called conventional CD25 CD127" T cells (Tcon, N=3)

(Figure 9.6) (Liu, Putnam et al. 2006; Seddiki, Santner-Nanan et al. 2006).
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Figure 9.6 — Quality assessment of T, cells

Confirmation of the Treg cell population was performed using FACS analysis and sorting gates for CD4"
CD127low CD25* Treg cells and CD4" CD127" CD25 Teony cells (A) as well as expression of FOXP3 in the respective
T cell subsets assessed by flow cytometry (B) respectively quantitative RT- PCR (C).

CD4" T cells, isolated from peripheral blood were cell-sorted based on CD25 and CD127 expression

into CD25" CD127 T, cells and CD25 CD127" T cells (Figure 9.6A). Intracellular staining with
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FOXP3 mAbs confirmed that CD25" CD127 cells were indeed T, cells (Figure 9.6B). Moreover,
quantitative RT-PCR for the FOXP3 mRNA revealed high level expression of FOXP3 in CD25" CD127
Treg Cells but not CD25 CD127" Ty, cells (Figure 9.6C).

As a second set of experiments we chose a subgroup analysis of peripheral blood samples derived
from patients with either scleroderma (n=9) or bacteremia (n=7). These samples are part of a larger
study addressing diagnostic signatures of systemic diseases in peripheral blood (S. Debey-Pascher,
unpublished results). Since transcriptional programs in peripheral blood differ significantly between
scleroderma and bacteremia, we could restrict the comparison of the two consecutive arrays I-huBC-
V1 and I-huBC-V2 to a smaller subset of samples. For all samples, we performed microarray analysis
on both array types. Overall, the number of probes present in at least one sample (resp. sub-group)
was 28,358 (resp.13,104), representing 72.9% (resp. 46.7%) of cross-annotated probes on the I-huBC-
V1. The number of probes present in at least one sample (resp. subgroup) on I-huBC-V2 was 24,986
(resp. 18,096), representing 67.0% (56.0%) of cross-annotated probes, The larger number of probes
called present in individual samples on the I-huBC-V1 array is also indicative for a higher variability

of the earlier array version.

The new I-huBC-V2 outperforms the I-huBC-V1 array concerning sensitivity, signal-to noise-ratio
and dynamic range

To quickly assess improvement of performance by newer generation technology, we assessed 4
parameters describing important quality aspects, namely (1) the percentage of detected transcripts
reflecting sensitivity, (2) the dynamic range of signal intensities, (3) the values of background/noise
signals reflecting signal-to-noise ratio and (4) technical replication reflecting reproducibility.

To investigate sensitivity we used the detection p-value to classify a probe as absent or present. In
the T, data set on average 24.6% of all probes on I-huBC-V1 were called present, while on average
31.0% of all probes were called present on the I-huBC-V2 array. Similarly, in the peripheral blood
data set, we obtained mean percentages of 23.2% for I-huBC-V1 and 30.1% for I-huBC-V2 samples.
Additionally, probes with low signal intensities on both arrays were generally more often called
present on I-huBC-V2 in comparison to I-huBC-V1 suggesting that the more recent array version has a
lower detection limit. Next we determined the percentage of identical and cross-annotated probes
called present on the I-huBC-V1 array, but absent on the |- huBC-V2 array and vice versa for each
subgroup in the data sets (Table 9.1).

As expected from the higher percentage of probes called present on the I-huBC-V2 array, we also

saw a significantly higher number of cross-annotated probes present on the I-huBC-V2 array
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compared to the I-huBC-V1 array (up to 4 fold). Still, there was a small percentage of probes that

were present on I-huBC-V1 but absent on I-huBC-V2.

identical oligos cross-annotated oligos

viP&Vv2A viA& V2P viP&V2A vIA&V2P

Treg 43 (0.5%) 544 (6.6%) 814 (4.0%) 2766 (13.5%)
NoN Treq 47 (0.6%) 445 (5.4%) 755 (3.7%) 3068 (15.0%)
Whole blood | Scleroderma 107 (1.3%) 250 (3.0%) 627 (3.1%) 3559 (17.4%)
data set Bacteremia 82 (1.0%) 349 (4.2%) 762 (3.7%) 3207 (15.7%)

T.eq data set

Table 9.1 — Absent respectively present status of probes

For each subgroup in the data sets the percentage of identical and cross-annotated probes called present on
the I-huBC-V1 array, but absent on the I- huBC-V2 array (vl P & v2 A) and vice versa (vl A & v2 P) was
determined.

Since we observed a rather high variability of probes called present in single samples compared to
sub-groups on the I-huBC-V1, we hypothesized that these probes would have very low signal values
(just above background value) on the I-huBC-V1 array and would therefore have been false-positively
called present on the I-huBC-V1. Indeed, when determining these probes, ~75% showed values close
to background level (data not shown). Altogether, these data further support that the newer
generation array technology is of higher sensitivity respectively lower detection limit.

Boxplots can not only be used to determine the distribution of intensity signals across an array but

also to compare the dynamic range of signals between different array types.
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Figure 9.7 — Boxplots to determine the dynamic range of signal intensities
Boxplots were used to compare the dynamic range of signals on the arrays for (A) the Treg data set and (B) the
whole blood data set. Only signals for the 8299 identical oligonucleotides were used.
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When plotting the signals of the 8,299 probes that were identical on both array versions, we
observed an enlargement of the dynamic range in I-huBC-V2 in both data sets (Figure 9.7A, B).
Additionally a decrease in median signal intensities was observed which was due to reduced overall
background values on the I-huBC-V2. This approach can easily be adapted to either compare all
signals between two arrays or a subset of cross-annotated probes.

At least for identical oligonucleotide probes performance of a quidproquo technical replication
between different array versions can be assessed on a sample-by-sample basis. When comparing raw
signal intensities of such technical replicates we observed increased signal intensities for moderate to
highly expressed transcripts on the I-huBC-V2 (Supplementary Figure 1). For visualization we used
pairwise scatterplots, principal components analysis (PCA) and hierarchical clustering on normalized

data.
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Figure 9.8 — Technical replication is assessed by PCA and hierarchical clustering

Technical replicates were checked using principle component analysis (PCA) based on the 100 most variable
genes for (A) the Treg data set and (B) the whole blood data set and hierarchical cluster analysis of samples
from (C) the Treg data set and (D) the whole blood data set.
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For perfect technical replicates one would expect a straight diagonal line in pairwise scatterplots,
side-by-side clustering of samples when applying PCA or clustering approaches, and a high pairwise
correlation value. In fact, samples of the Treg data set showed a mean correlation of 0.97 + 0.005 and
samples of the whole blood data set a mean correlation of 0.91 + 0.17 (Supplementary Tables 1 and
2) which was visualized using pairwise scatterplots (Supplementary Figure 2). These results were
confirmed when performing PCA using the 100 most variable probes out of the 8,299 identical
oligonucleotides. When plotting the first three principal components of each sample in a 3D
scatterplot a perfect side by side plot of technical replicates was observed (Figure 9.8A, B).

Additionally, we performed hierarchical clustering on these samples. Almost all technical replicates
clearly clustered next to each other (Figure 9.8C, D). Altogether, the analysis revealed that technical
replication using the more recent I-huBC-V2 array revealed comparable results concerning signal

intensities.

Rank correlation metric reveals significant differences between subsequent microarray versions

Using a rank correlation metric is a common procedure to examine the comparability of results
across platforms (Shi, Reid et al. 2006). We followed the approach taken by the MAQC project and
used the ratio of differential expression (between defined groups, here T., versus Teony
resp. scleroderma versus bacteremia samples) as a basis for ranking transcripts between the
I-huBC-V1 and the I-huBC-V2 array.

Ideally, highly comparable results would show a rank correlation close to 1. In a first step we used
transcripts, which were moderately to highly expressed (signal intensity > 500) in either one of the
sub-groups of the data sets to eliminate possible impairment due to absent or low expressed
transcripts. Figure 9.9A shows the result of the analysis based on the 8,299 identical oligonucleotides
in the T, data set. Here, 252 transcripts were moderately to highly expressed throughout the
dataset and obtained a rank correlation of 0.95. When using the cross-annotated probes (628) the
rank correlation dropped slightly to 0.85 (Figure 9.9B), which can most probably be ascribed to the
differences in oligonucleotide placement in the gene (e.g. closer to 5°end). To our surprise, this high
comparability could not be achieved for the whole blood data set. Using highly expressed identical
oligonucleotides (99) we obtained a rank correlation of 0.77 (Figure 9.9C). In contrast to the T, data
set this rank correlation remained constant (0.78) when performing the analysis on 269

cross-annotated (Figure 9.9D).
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Figure 9.9 — Rank correlation comparison for moderately to highly expressed probes

Rank correlation was used as a metric to investigate comparability of hybridization results between the two
array versions. In a first step only moderately to highly expressed probes (signal intensity > 500) were used
for comparison. This analysis was performed for (A) identical oligonucleotides in the Treg data set, (B) cross-
annotated probes in the Treg data set, (C) identical oligonucleotides in the whole blood data set, and (D) cross-
annotated probes in the whole blood data set.

In a second step we used probes called present in either one of the sub-groups. Performing rank
correlation calculations within the T., data set, we observed a rank correlation of 0.84 for the
identical oligonucleotides and a rank correlation of only 0.69 for the cross-annotated probes (Figure
9.10A, B). When performing the comparison within the peripheral blood data set, the rank
correlations dropped to 0.66 for the identical oligonucleotides and to only 0.55 for the
cross-annotated probes (Figure 9.10C, D).

The strong decrease in rank correlation within the whole blood data set is most likely due to a
significant decrease in signal intensities of single probes on the I-huBC-V2 array resulting in large rank

differences. To prove this postulate we calculated differentially expressed genes (FC > 1.75, p-value
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<0.05, difference of means > 100) between scleroderma and bacteremia samples for the I-huBC-V1
array and determined the corresponding signal values for these genes onthe I-huBC-V2 array

(Supplementary Table 3).
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Figure 9.10 — Rank correlation comparison for non-absent probes

Rank correlation was used as a metric to investigate comparability of hybridization results between the two
array versions. In the second step all probes which were present in either one of the sub-groups were used.
Again, this analysis was performed for (A) identical oligonucleotides in the Treg data set, (B) cross-annotated
probes in the Treg data set, (C) identical oligonucleotides in the whole blood data set, and (D)
cross-annotated probes in the whole blood data set.

Indeed, we detected several probes, which were called differentially expressed on the I-huBC-V1
array, but had very low signal values for both sub-groups on the I-huBC-V2 array. Due to the lower
detection limit of the I-huBC-V2 array, these probes were not called absent. To rule out that this

difference was intrinsic to the peripheral blood samples we performed the same analysis for the T
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dataset. Again, several probes were detected that showed significant differences between T, and
Teonv Cells on the I-huBC-V1 but not on the huBC-V2 array. Similar to the peripheral blood dataset,
these probes showed low signal values for both T cell sub-groups on the I|-huBC-V2 array
(Supplementary Table 4). Among these probes was also FOXP3, which is the most important marker
of Treg cells. As shown in Figure 9.6C, differential expression of FOXP3 between T,.; and T,y cells was
already confirmed by quantitative RT-PCR as well as intracellular FACS analysis to assess protein
expression. Therefore, the data generated with I-huBC- V1 reflected real differences between the
tested sub-groups while the I-huBC-V2 did not. BLAST Analysis of the FOXP3 probes revealed distinct
yet perfect hits (100 % identity) for both I-huBC-V1 and I-huBC-V2 (data not shown) suggesting that a

functional probe was exchanged by a non- functional.

Generalized impact analysis on array performance when upgrading array technologies

To balance the constant need for updates of microarray technologies with the continuation of
long-term projects dependent on transcriptional profiling we propose a generalized impact analysis
consisting of the in silico analysis introduced here combined with an experimental performance
analysis as described above (Figure 9.11).

The in-silico analysis includes the following steps:

1. Re-blasting of probe sequences from both array types (A and B) using the most up-to-date
database annotation.

2. Collecting perfect hits (100% identity) for each probe.

3. Determining the number of hits which are achieved by both array types (“c”) or only by array

type A (“a”) or B (“b"”), respectively and categorization of hits according to Table 1.

For the subsequent performance analysis individual samples should be hybridized to both array types
A and B. The biological samples used for this performance analysis should fulfill the criteria
mentioned above.

The experimental analysis includes the following steps:

1. Cross-annotation of data sets generated on arrays to be compared.

2. Sensitivity analysis using determination of absent or present status of probes.
3. Analysis of dynamic range and background values visualized by boxplots.
4

Comparability of signal values using quidproquo technical replication.
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Array Type A Array Type B

(x probe sequences) (y probe sequences) \

BLAST sequences
against newest Refseq

v v
Perfect hits Perfect hits
(100% identity) (100% identity) in-silico
analysis
a small: b small:
No loss of information a No gain of information
on the new array on the new array
a large: b large:
First indication for loss Large gain of information
of information
Hybridize equal samples to both array type A and array type B
Limit analysis to cross-
annotated probes performance
analysis

- Sensitivity analysis using determination of absent resp. present status
of probes

- Analysis of dynamic range and background values visualized by
boxplots

- Comparability of signal values using quidproguo technical replication

- Comparability of analysis results using a rank correlation metric /

Figure 9.11 — Workflow diagram

Proposed method to quickly determine the impact of changes between subsequent microarray versions. This
generalized impact analysis consists of an in silico analysis combined with an experimental performance
analysis.

9.3 Discussion

Here we have addressed the overall impact of improvements of genomic database content and

annotation over time and the impact of technology optimization on major performance issues of a
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typical microarray analysis. Unexpectedly, database content and annotation as exemplified for the
Refseq database still remains highly dynamic, which by itself has a significant impact on microarray
probe annotation. Using an in silico approach based on BLAST analysis combined with categorization
of probes and respective cross-annotation approaches, we demonstrate that content changes on a
given microarray platform are also influenced by database dynamics. Moreover, we conducted a
performance analysis combining common quality control measures with a rank correlation metric
and show that the inclusion of real biological experiments is mandatory to estimate the overall
impact of technology improvements on data consistency. Using the I[llumina BeadChip platform as an
example, we demonstrate that a large change of probe content between subsequent array versions
results in incompatible data in addition to unexpected challenges, such as significant introduction of
non-functional probes. This has high impact on biological screening experiments, when signals for
known marker genes are lost (as exemplified for FOXP3). Even higher impact can be expected for
experiments within a diagnostic setting, where content and technology changes will lead to

incompatible diagnostic signatures.
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SUMMARY

Part I[V: Summary and future directions

In 2003, Joseph Nevins’ lab introduced an elegant approach for prediction of oncogenic pathway
activity in mouse (Huang, Ishida et al. 2003) which was further developed to derive human
oncogene-specific gene signatures in vitro. Bild and colleagues used this approach, created specific
gene signatures for different oncogenes and applied these gene signatures to tumor samples to
demonstrate the existence of these molecules in vivo (Bild, Yao et al. 2006). Up to then, different
types of signatures had been established for diseases and biological processes alike (van de Vijver, He
et al. 2002; Baechler, Batliwalla et al. 2003; Yagi, Morimoto et al. 2003; Bertucci, Borie et al. 2004),
but this was the first time to define signatures from cell lines in vitro and successfully applying these
signatures to obtain in vivo results. Taking up this approach, we hypothesized that - in principle - this
concept should be applicable to any other cell and factor that leads to transcriptional changes upon
stimulation and signaling. That means, observed transcriptional changes are biological responses of
any given cell in reply to a molecular signal and can therefore be termed a RNA fingerprint of the
respective signal. Additionally to molecule specific RNA fingerprints we further hypothesized that
generally all predictive gene signatures generated from transcriptional profiles could be considered
as RNA fingerprints, including disease specific signatures. Following these hypotheses several
different concepts of RNA fingerprints were developed and were introduced in the course of this

thesis.

To state the original concept of determining gene signatures in vitro and applying them in vivo as a
concept of RNA fingerprints , we generated gene signatures for different T cell inhibitory molecules,
including TGFB and PD-1, and termed the generated signatures RNA fingerprints of these molecules.
These RNA fingerprints should then provide direct evidence whether the cells within a tumor
environment are under the control of the interrogated molecules. Using supervised and
unsupervised classification methods based on the RNA fingerprints of both, TGFp and PD-1 we were
able to show that T cells derived from patients with Hodgkin’s lymphoma are indeed under the
influence of both, TGFB and PD-1. When interrogating T cells from patients with follicular lymphoma,
no influence of either TGFB or PD-1 could be determined. This study was a starting point for RNA
fingerprints which clearly demonstrated that this concept can be used to establish RNA fingerprints
of diverse signaling molecules in vitro and testing them in vivo. Next steps include the interrogation
of other molecules for which the direct evidence of contribution in vivo is still unclear. In terms of the
already mentioned inhibitory molecules within a tumor environment, the next step has already been

initiated. In addition to the already established fingerprints of PD-1 and TGFB, fingerprints for CTLA4,
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PGE, (Chemnitz, Driesen et al. 2006), VEGF and IL10 were generated. The fingerprints of these
different inhibitory molecules on the one hand share common features, but are on the other hand
also quite distinct from each other. These common and distinct features can now be used to
numerically quantify the inhibitory effect of the different molecules, but also to distinguish each RNA
fingerprint from each other by identifying specific inhibitory features for each of these molecules.
This will hopefully lead to further functional characterization of the signaling pathways these

molecules are involved in.

The second concept introduced the use of a disease specific RNA fingerprint in a diagnostic setting.
Here we biologically defined an RNA fingerprint and further used it to predict the occurrence of lung
cancer prior to clinical manifestation. For the determination of a lung-cancer specific RNA fingerprint
we postulated that there are specific genome-wide transcriptional changes in peripheral blood from
patients with clinical manifest lung cancer compared to control patients which can be used as an RNA
fingerprint for this disease. We furthermore hypothesized that this fingerprint is an early event in
lung cancer development and might therefore be suitable for early detection of lung cancer. Indeed
we demonstrated differential expression of several genes between patients with lung cancer and
controls and showed that the generated RNA fingerprint can be used to detect individuals developing
lung cancer prior to clinical manifestation. As already stated in Chapter 5.4, this study was a
prospective study using very few samples which provided a first hint on whether lung cancer can be
predicted prior to clinical manifestation. To substantiate these findings, the study has to be repeated
within a larger setting, composing at least 200 patients with lung cancer and 200 controls for the
creation of the RNA fingerprint. Additionally, the prospectively observed cohort has to be enlarged to
analyze another 200-400 samples. We have already started to substantiate the predictive ability of
the RNA fingerprint on a validation cohort composed of another 37 samples including 22 patients

with manifest lung cancer.

The third concept dealt with the use of pre-defined RNA fingerprints. In contrast to the preceding
concepts where the RNA fingerprint was determined by analyzing biological experiments, another
aspect would be to use pre-defined RNA fingerprints and test these fingerprints for their contribution
in separating interrogated subgroups in a microarray experiment. This concept then resembles a
gene-class testing approach and the pre-defined fingerprints used for this purpose can be extracted
from biological databases which include information about genes belonging to special pathways or
groups of genes with similar functions. Different algorithms have been introduced for gene-class
testing (Khatri, Bhavsar et al. 2004; Khatri, Desai et al. 2006) with Gene set enrichment analysis
(GSEA) as the “gold-standard” (Mootha, Lindgren et al. 2003; Patti, Butte et al. 2003; Petersen,
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Dufour et al. 2004; Subramanian, Tamayo et al. 2005). | have developed a new and very simple
method, GOAna, which is based on RNA fingerprints provided by the Gene Ontology (GO)
Consortium (Ashburner, Ball et al. 2000) and implements such a gene-class testing approach. Using
GOAnNa, it is possible to perform an unbiased analysis based on all branches of GO. Testing a new
algorithm always includes the comparison to the mostly applied method, in this case GSEA. Using the
original data set Mootha and colleagues initially performed GSEA on (Subramanian, Tamayo et al.
2005), GOAna was compared to GSEA. Both methods obtained differing results which was mainly
explained by the kind of approach taken. While GOAna was carried out using all processes included in
GO, Mootha and colleagues used 149 hand-curated gene sets for their analysis. The most significant
gene spaces obtained by GOAna were not included in these gene sets. Despite these differences,
when restricting the analysis to the 149 gene sets used by Mootha and colleagues, GOAna obtained
the same results as GSEA which qualifies GOAna as an easy-to-use gene-class testing approach for
unbiased analysis of microarray experiments. Further developments of the algorithm are already
planned. To date, GOAna is implemented as an R-package which, for computationally extensive
algorithms, is not the most well suited programming language. The effort goes towards
implementing the algorithm within a JAVA or C++ environment and additionally adding a graphical
user interface. These further developments could be part of a Diploma or Master student’s thesis. On
the other hand, GOAna could be included in the software project “llluminaGUI” which to date
implements a graphical user interface for diverse data analysis methods for gene expression data
from the lllumina platform (see Chapter 8). llluminaGUI was intended to enable the interested life
scientist who is not familiar with a command line based environment like the R language to analyze
microarray experiments. Besides the already mentioned extension of llluminaGUI towards GOAna it

is planned to add diverse features for analysis of high throughput miRNA data.

The fourth concept introduced the idea of using the microarray experiment itself as a RNA
fingerprint. We hypothesized that all transcriptional changes which are revealed by a microarray
experiment can serve as a RNA fingerprint and can decipher underlying signaling mechanisms. A
large amount of regulatory and signaling mechanisms are not happening on the transcriptional, but
on post-transcriptional/protein level. Reversible phosphorylation of proteins, for example, is an
important regulatory mechanism. Enzymes called kinases (phosphorylation) and phosphatases
(dephosphorylation) are involved in this process. Many enzymes and receptors are switched "on" or
"off" by phosphorylation and dephosphorylation. These mechanisms cannot be directly interrogated
by transcriptional profiling methods, but they introduce transcriptional changes which can then
indirectly be analyzed using a microarray experiment. In the original GOAna algorithm, we analyzed

transcriptional profiles in an unbiased way to determine processes involved in the separation of the
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examined subgroups. To further analyze the identified processes, the original GOAna algorithm was
extended by a network construction step to derive a network of contributing genes, i.e. genes which
appear several times in the gene sets called significant by the gene class testing step. We
hypothesized that these genes were likely to act as key players in underlying signaling events by
linking the different processes which were identified as separating the examined subgroups. Using
the extended algorithm we compared activated CD4" T cells to activated CD4" T cells in the presence
of PGE, to get a hint for the signaling events occurring in an inhibitory environment introduced by
PGE,. We identified PP2A as the most prominent gene included in the most significant gene spaces
and therefore linking these gene spaces. PP2A is a known phosphatase which has been described as a
central regulator in diverse signaling pathways. To interrogate whether PP2A is indeed involved in
PGE, signaling we subsequently analyzed the regulatory ability of PP2A in the presence or absence of
PGE, using a Jurkat cell line. In a Western blot analysis we found that PGE, acts as a repressor on
PP2A, at least in the Jurkat cell line. Many of the fundamental insights into T cell receptor signaling
came from studies carried out with transformed T cell lines, especially the Jurkat cell line. For
example, using Jurkat cell lines it was elucidated that TCR signaling works through protein tyrosine
kinase signaling. Other findings included insights into calcium signaling (Abraham and Weiss 2004).
However, there are several problems associated with the use of Jurkat cell lines. Compared to
primary T cells, Jurkat cells were shown to be defective in the expression of the lipid phosphatase
PTEN (phosphatase and tensin homologue). When PTEN is absent, an important signaling pathway,
the PI3K-signalling pathway, is constitutively activated. It is still unclear to what extent the abnormal
PTEN status of Jurkat cells alters their response to TCR stimulation and also the status of
comparability of primary T cells and the Jurkat cell line. The next step in this project is therefore to
perform the same experiment in primary CD4" T cells. This will either confirm the findings obtained in
the Jurkat cell line or conquer these findings. In the case of differing findings the difference of Jurkat

cell lines and primary T cells has to be taken into account.

All described approaches for the creation of RNA fingerprints are heavily dependent on the reliability
of the underlying technology, in this case the microarray format used for the study. Reproducibility of
RNA fingerprints on different platforms or the continuity of RNA fingerprints when new generations
of microarrays with updated probe content become available are only two considerations.
Concerning the reproducibility of RNA fingerprints, most recently, validity and comparability of
transcriptional profiling using different microarray platforms has been very elegantly demonstrated
by the MAQC consortium (Canales, Luo et al. 2006; Guo, Lobenhofer et al. 2006; Patterson,
Lobenhofer et al. 2006; Shi, Reid et al. 2006; Shippy, Fulmer-Smentek et al. 2006; Tong, Lucas et al.

2006). The MAQC project clearly demonstrated that comparability of microarray technology is
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already high 1) when restricting the analysis to a comparable set of data points (genes) and 2) when
comparing high throughput technologies developed approximately at the same time. Proving
consistency of these technologies when introducing technological advances, i.e. the analysis of new
microarrays with updated probe content was suggested by MAQC as a major issue for future
development. Indeed, when interrogating improvements of genomic database content and
annotation over time we saw that, unexpectedly, database content and annotation still remain highly
dynamic. This by itself has a significant impact on microarray probe annotation. Therefore, we have
embarked on the major task of comparing subsequent generations of microarrays and have
developed a methodology to rapidly determine the impact of probe changes on reproducibility and
comparability of microarray results. Using the lllumina BeadChip platform as an example, we
demonstrated that a large change of probe content between subsequent array versions results in
incompatible data in addition to unexpected challenges, such as significant introduction of
non-functional probes. This has high impact on biological screening experiments, when signals for
known marker genes are lost (as exemplified for FOXP3). Even higher impact can be expected for
experiments within a diagnostic setting, where content and technology changes will lead to
incompatible diagnostic signatures. A next important step in genomic sciences would therefore be to
quickly introduce standardized general impact analyses to assess newer generation technologies. It
would be desirable to introduce the presented approach as a starting point for further projects
within the MAQC consortium. Next steps could be to test the overall impact of the presented
approach in the larger consortium and perform such impact analyses on a grand scale respectively
when new technologies become available again. There is still the question of what influence the
presented difficulties in comparability and reproducibility of results imply on the concept of RNA
fingerprints. The concept or RNA fingerprints which is called like this because the fingerprints are
derived from transcriptional profiling studies is left with an aftertaste. If there are fingerprints
developed for diverse signaling molecules or even disease specific fingerprints, we would like to be
able to recall and reuse these fingerprints even if a new generation of microarrays is distributed. One
example of a collapsing RNA fingerprint is the lung cancer specific fingerprint presented in Chapter 5.
During this study Illlumina distributed the I-huBC-V2 array presented in Chapter 9 and we repeated
the study on this new array platform. Strikingly, since only 8299 probes were identical on both
platforms (see Chapter 9) only 74 of our 154 genes included in the RNA fingerprint could be recalled.
The RNA fingerprint could no longer be used as it was. Therefore a new fingerprint had to be
calculated based on the new array format. We were still able to achieve a new RNA fingerprint with
predictive ability, but when going into a clinical setting these difficulties have to be eliminated to

derive true disease specific RNA fingerprints which are predictive for the disease. On the other hand
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the different concept of RNA fingerprints presented in this thesis are still usable, since these are
concepts which can be used with any underlying technology which measures the abundance of
transcripts. With emerging technologies on the microarray side (Hardiman 2006; Hoheisel 2006; Shi,
Reid et al. 2006) and the use of methodologies like the one introduced in Chapter 9, these concepts
can be used without concern. The presented methodology will help researchers to evaluate whether
an established microarray format should be continuously used (see in the case of lung cancer specific
fingerprint) or whether a change to a newer generation can be carried out without damage of the
RNA fingerprint. A further new emerging technology is high throughput sequencing (Bentley 2006;
Kim, Porreca et al. 2007; Velculescu and Kinzler 2007). With this technology the concepts of RNA
fingerprints can be used without any concerns, since RNA abundance is digitally quantified which

avoids any probe sequence or annotation difficulties.
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Appendix A - Supplementary Figures

Supplementary Figure 1
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Supplementary Figure 1 — Comparison of signal intensities between subsequent array versions

Raw signal intensities for quidproquo technical replicates were compared using pairwise scatterplots. Depicted
is one example. log, signal values of the 8299 identical probes from I-huBC-V1 and I-huBC-V2are plotted on the
x-axis and y-axis, respectively.
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Supplementary Figure 2
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Supplementary Figure 2 — Correlation of technical replicates in the T, data set

To investigate the outcome of technical replication we used pairwise scatterplots. For perfect technical
replicates one would expect a straight diagonal line in a pairwise scatterplot. Data for both array versions was
limited to 8,299 identical oligonucleotides. Pairwise scatterplots of signal intensities were performed on the
normalized T set. Shown are scatterplots for samples 1-6 (A-F).
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Appendix B - Supplementary Tables

Supplementary Table 1

Comparison Correlation identical oligos  Correlation cross-annotated probes
1 Vivs1l V2 0.97 0.69
2 V1vs2 V2 0.97 0.66
3 Vivs 3 V2 0.97 0.65
4 Vivs 4 V2 0.97 0.67
5 Vlvs5 V2 0.96 0.65
6 Vivs 6 V2 0.96 0.7

Supplementary Table 1 — Pairwise correlations in the Treg data set
Depicted are pairwise correlations of technical replicates in the T, data set. Correlations were calculated using
Pearson’s correlation coefficient implemented in R (R Development Core Team 2007).

Supplementary Table 2

Comparison Correlation identical oligos  Correlation cross-annotated probes
1 Vivs1l V2 0.98 0.54
2_V1vs2 V2 0.96 0.62
3 V1vs 3_V2 0.99 0.55
4 Vivs 4 V2 0.96 0.58
5 Vlivs5 V2 0.98 0.64
6_V1vs 6_V2 0.94 0.62
7_V1vs 7_V2 0.98 0.68
8_V1vs 8_V2 0.96 0.64
9 Vivs 9 V2 0.96 0.71
10_V1vs 10_V2 0.96 0.58
11 Vivs 11 V2 0.97 0.56
12 V1vs 12_V2 0.97 0.72
13_V1vs 13 V2 0.94 0.69
14 V1vs 14 V2 0.98 0.63
15 V1vs 15 V2 0.98 0.61
16_V1vs 16_V2 0.96 0.71

Supplementary Table 2 — Pairwise correlations in the peripheral blood data set
Depicted are pairwise correlations of technical replicates in the T, data set. Correlations were calculated using
Pearson’s correlation coefficient implemented in R (R Development Core Team 2007).
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Supplementary Table 3

Probeset
5220477
4120707
7000608
2490056
3310091
2000025
6960440
3290605
7610544

130215
1820056
70722
1340192
6370367
1450390
1260278
7330129
4250035
430328
6960554
4730612
2940639
520161
5310369
6980474
6280576
6660220
4070164
7320709
5290523
3190193
1990634
3400551
1690605
160348
5670601
2900593
270451
2320403
6370181

mean
Sclero
Symbol Vi
IF127 634.5
RPL23 424.5
RPS7 553.8
LOC644972 1988
DEFA3 1196
RPL26 276.7
DEFA4 306.4

TOMM?7 350.8

LOC644790 1727
RPL39 2112
COX6C 241.8
COX7B 2211
Cl150rf15 229.7
GZMA 457.4
KLRB1 243.5
RPL41 6009
HINT1 682
RAP1GAP 227.5
ERAF 2433
LCN2 392.3
RPS17 496.4
RPL9 328.8
TPT1 1241
GZMK 264
LY96 3141
S100A8 4923
RPS10 2734
COX7C 1136
NA 5495
NA 5495
RPL30 1190
TIMMSB 189
MS4A3 127.4
RPS27L 185.9
RNASE3 168.8
RPL35A 2074
PFDN5 1025
NDUFA4 769.9
RPL27 1857
RPL11 1605

mean
Bact
V1

2296
1251
1646
5276
3089
693.6
766.8
853.3
4000
4949
558
500.4
510
1026
545.4
13460
1474
488.7
5212
811.9
1031
661.5
2497
525.5
614.5
9574
5408
2226
10820
10820
2310
366.6
246.5
353.7
316.6
3926
1950
1435
3461
2941

FC
-3.57
-2.94
-2.94
-2.63
-2.56
-2.50
-2.50
-2.44
-2.33
-2.33
-2.33
-2.27
-2.22
-2.22
-2.22
-2.22
-2.17
-2.13
-2.13
-2.08
-2.08
-2.00
-2.00
-2.00
-1.96
-1.96
-1.96
-1.96
-1.96
-1.96
-1.92
-1.92
-1.92
-1.89
-1.89
-1.89
-1.89
-1.85
-1.85
-1.82

pval diff

0.40
0.00
0.00
0.00
0.09
0.05
0.08
0.00
0.00
0.00
0.01
0.01
0.00
0.01
0.00
0.00
0.00
0.43
0.14
0.01
0.03
0.02
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.08
0.02
0.06
0.00
0.02
0.02
0.02
0.01

1661
827
1092
3288
1892
417
460
502
2273
2837
316
279
280
569
302
7451
792
261
2779
420
535
333
1256
261
300
4651
2674
1090
5325
5325
1120
178
119
168
148
1851
925
665
1604
1337

mean
Sclero
V2

301.1
588.2
60.09
1176
2870
428.1
276.3
1573
73.39
2420
294.1
97.64
174.5
977
165.5
56.34
632.7
324.8
2909
495.9
861.6
1767
4752
553.5
369.9
9568
7494
774.4
2959
8808
5137
71.97
94.32
1911
173.4
2809
1785
923.7
3767
3745

mean
Bact
V2

1416
1501
70.7
3199
6073
1353
726.7
3219
103.1
5211
681
247
424
2066
355
64.29
1381
781.4
5279
1026
2015
4511
8064
1255
788.9
15306
11017
1815
5382
16142
7657
91.75
257.6
479.9
415.8
4564
3401
1804
6282
6320

FC

-4.76
-2.56
-1.18
-2.70
-2.13
-3.13
-2.63
-2.04
-1.41
-2.17
-2.33
-2.50
-2.44
-2.13
-2.13
-1.14
-2.17
-2.38
-1.82
-2.08
-2.33
-2.56
-1.69
-2.27
-2.13
-1.59
-1.47
-2.33
-1.82
-1.82
-1.49
-1.28
-2.70
-2.50
-2.38
-1.61
-1.92
-1.96
-1.67
-1.69

pval
0.37
0.01
0.24
0.00
0.07
0.02
0.16
0.00
0.03
0.00
0.02
0.00
0.00
0.01
0.00
0.02
0.00
0.44
0.21
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.04
0.09
0.03
0.07
0.00
0.01
0.00
0.00
0.00

96

diff
1115
912
11
2023
3203
925
450
1645
30
2791
387
149
250
1089
189
8
748
457
2370
531
1154
2744
3312
702
419
5738
3523
1040
2423
7334
2520
20
163
289
242
1755
1616
880
2515
2574
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6400736
6770246
2190669
1170400
3190053
2900356
4390692
7330093
4490017
3060487
6370035
3400142
5890196
1400722
2690452
6200376
3310725
4220435
3850524
5870047
6620711
4060674

630450
1780632
2630110
7200255
2230601
1710259
1070528
4280725

Supplementary Table 3 — Differentially expressed genes in the peripheral blood data set

CAMP
EEF1A1
NA
C12orf57
SNRPD2
SCIN
HLA-DRB5
HLA-DRB1
NFATC3
LOC255374
OASL
TADA3L
1L18
TPPP3
IFIT3
IFITM2
PARP10
OAS3
CEP27
NA
RSAD2
ILARN
IFIT2
IFIT1
MX1
IFI44L
FOLR3
HERC5
ISG15
HES4

570.6
5356
127.2
315.8
717.4
6780
1500
371.1
1708
1658
436.5
905.3
2740
264.1
765.4
2629
981.9
433.9
920.4
1630
714.6
698.5
1373
553.3
1888
923.7
1005
1193
2733
485.6

1039
9594
225.8
567
1280
3827
849.7
208
958.9
928.1
242.6
500.3
1502
143.3
406.2
1392
517.2
220.7
465.4
815.5
338.9
325.1
631.6
250.2
847.8
409.5
430.3
503.6
1076
182.4

-1.82
-1.79
-1.79
-1.79
-1.79
1.77
1.77
1.78
1.78
1.79
1.8
1.81
1.82
1.84
1.88
1.89
1.9
1.97
1.98
2
2.11
2.15
2.17
2.21
2.23
2.26
2.34
2.37
2.54
2.66

0.02
0.00
0.03
0.01
0.01
0.00
0.13
0.45
0.00
0.00
0.12
0.00
0.00
0.00
0.16
0.00
0.01
0.10
0.00
0.04
0.04
0.00
0.04
0.07
0.06
0.15
0.13
0.08
0.11
0.07

469
4237
99
251
563
2952
651
163
749
730
194
405
1238
121
359
1238
465
213
455
814
376
373
742
303
1040
514
575
690
1658
303

923.3
5878
42.4
786.4
538.2
45.31
1126
1139
48.38
45.7
832.3
46.44
11716
82.03
2377
17389
899.6
474.3
1262
2458
610.3
905.5
2990
1608
6394
1502
2486
2445
2783
819.3

1578
7438
43.71
1309
1004
46.6
303.7
366.7
51.86
47.11
372.9
45.41
8570
53.68
931.8
14419
557.6
190.6
733
1353
181.5
525.1
1403
555.7
2751
596.3
1044
987.2
1037
266.3

-1.69
-1.27
-1.03
-1.67
-1.85
-1.03
3.71
3.11
-1.08
-1.03
2.23
1.02
1.37
1.53
2.55
1.21
1.61
2.49
1.72
1.82
3.36
1.72
2.13
2.89
2.32
2.52
2.38
2.48
2.68
3.08

0.03
0.10
0.66
0.04
0.01
0.25
0.04
0.12
0.50
0.51
0.08
0.38
0.00
0.00
0.09
0.04
0.02
0.06
0.00
0.06
0.07
0.02
0.05
0.06
0.04
0.12
0.09
0.08
0.10
0.05

655
1560

523
466

823
772

459

3146
28
1445
2970
342
284
529
1104
429
380
1587
1053
3643
906
1443
1458
1746
553

Differentially expressed genes (FC > 1.75, p-value < 0.05, diff > 100) between Scleroderma and Bacteremia
samples on I-huBC-V1 were calculated and corresponding values for these genes were checked on I-huBC-V2.

Marked in grey are genes which show very low signal intensities on I-huBC-V2.
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Supplementary Table 4

Probeset
2260148
7380181
1990446
4670092
5310369
6760075
6860129
4670056
7570079
2230152
4010301
2120500
4850128
6620279
5810392
6400242
2710239
1770332
5220259

830484
4480367
6270128
2470292
4540424

840427
6200397
1660403
6590561
2900463
2600706
6370367
6180427
3460397
5820397
2190678

840253

670132
5820465
1450400
4280440
4920315

Symbol
NELL2
LRRN3
CCL5
ID2
GZMK
EOMES
PCSK5
ANKRD55
IL7R
SATB1
Clorf162
ACTN1
GZMH
C60rf190
BHLHB2
TMEM71
LASS6
NA
TARP
AlF1
KRT72
CD40LG
MAN1C1
EPHX2
SLC40A1
OXNAD1
ANK3
CCR7
GNLY
RAB6IP1
GZMA
GPR160
FLOT1
VIPR1
ILAR
PLACS8
RNF144
PLXDC1
CHI3L2
HERPUD1
DUSP10

mean
Tregs
Vi

117
133
298
170
294
93
141
112
673
499
481
386
97
140
142
378
136
157
153
150
119
147
165
161
173
218
100
1261
135
119
376
145
436
235
922
442
196
114
135
236
207

mean
non-

Tregs
V1

617
670
1257
594
950
285
401
282
1668
1240
1133
901
225
319
317
822
292
334
323
315
246
297
334
319
338
421
194
2419
257
225
708
269
808
436
1698
803
353
203
238
134
118

FC
-5.27
-5.04
-4.22
-3.5
-3.23
-3.05
-2.84
-2.52
-2.48
-2.48
-2.35
-2.33
-2.31
-2.27
-2.23
-2.17
-2.15
-2.13
-2.12
-2.1
-2.07
-2.03
-2.02
-1.98
-1.95
-1.93
-1.93
-1.92
-1.9
-1.88
-1.88
-1.86
-1.85
-1.85
-1.84
-1.82
-1.8
-1.78
-1.76
1.76
1.76

pval
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.07
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.05
0.00
0.21
0.00
0.00
0.00
0.00
0.02
0.00
0.00
0.00
0.00
0.00

diff

500
537
959
424
656
192
260
170
995
741
651
515
127
179
175
443
156
177
171
165
127
151
169
158
164
203
94
1158
122
106
332
125
372
200
776
361
157
89
103
102
90

mean
Tregs
V2
87
84
134
236
700
72
97
113
735
141
1355
472
56
128
139
633
188
73
87
207
118
134
227
345
60
652
71
3513
63
193
882
64
368
203
1839
802
272
89
107
725
233

mean
non-
Tregs

V2

1118
1048
492
1491
2670
520
323
465
1812
490
3257
1036
385
338
541
1605
651
105
183
677
1176
440
492
678
68
1637
229
6266
372
708
1622
116
459
398
3415
1483
635
327
327
240
69

FC
-12.88
-12.41

-3.67
-6.32
-3.82
-7.18
-3.32
-4.11
-2.46
-3.47

-2.4
-2.19
-6.87
-2.65

-3.9
-2.53
-3.46
-1.44
-2.09
-3.27
-9.97
-3.29
-2.17
-1.96
-1.13
-2.51
-3.24
-1.78
-5.87
-3.66
-1.84
-1.83
-1.25
-1.96
-1.86
-1.85
-2.34
-3.66
-3.06

3.02

3.37

pval diff

0.00 1032
0.00 963
0.00 358
0.00 1255
0.00 1970
0.00 448
0.00 226
0.00 352
0.00 1076
0.00 349
0.03 1902
0.00 564
0.01 329
0.00 210
0.01 403
0.00 972
0.00 463
0.00 32
0.00 96
0.00 470
0.08 1058
0.00 306
0.01 265
0.00 333
0.10 8
0.00 986
0.00 158
0.07 2753
0.02 309
0.00 515
0.28 740
0.00 53
0.61 90
0.00 195
0.00 1576
0.09 681
0.00 363
0.00 238
0.00 220
0.01 485
0.00 164
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1340092
1850465
7160520

150296
2570564
6760048
1170092
2060196
2140598
2750528
1340170
2350647
3840019
2810110
1170356
5690477
3170598
5570010
5560577

830047
3520072
6100450

830070
2650678
5870280
5860300
4280253
6380088
5560328
7050075
1070435
2070634
5890139
3420274
2750730
4150253
5870743
3850131
7380671

670196

610273
5690553
1110273
3460224

130609
1580673

ATP2B1
SEC11C
Cé6orf129
RBX1
KLF13
MT2A
TBK1
AQP3
TUBB2C
NA
RFTN1
SYT11
ARHGAP25
TM9ISF2
PCQAP
EMP3
TULP4
NPC1
TMPIT
TXNLS
P4HB
SKAP2
PAM
C2orf24
NONO
HSPA1A
C9orf19
ADCY3
PRDX1
NT5C
B4GALT3
CERK
PRNP
TK1
TRIB2
FAM110A
HLA-DMB
LRIG1
TBCB
CBX7
OPTN
NDRG1
SLFN5S
SLC1A5
UBL3
GALM

197
519
382
1264
1276
920
346
342
582
194
371
252
790
623
201
1947
349
301
286
643
729
211
350
369
912
317
1153
419
2150
276
421
898
1004
186
1076
536
331
332
591
508
1254
764
992
364
574
320

112
295
217
718
726
524
195
194
326
109
208
142
444
350
163
1087
194
167
158
357
404
116
194
204
504
174
629
227
1170
150
229
488
541
101
583
289
178
178
318
273
671
409
530
194
306
170

1.76
1.76
1.76
1.76
1.76
1.76
1.77
1.77
1.78
1.78
1.78
1.78
1.78
1.78
1.79
1.79

1.8

1.8

1.8

1.8

1.8
1.81
1.81
1.81
1.81
1.82
1.83
1.84
1.84
1.84
1.84
1.84
1.85
1.85
1.85
1.86
1.86
1.86
1.86
1.86
1.87
1.87
1.87
1.88
1.88
1.88

0.00
0.02
0.10
0.12
0.14
0.33
0.00
0.13
0.00
0.00
0.00
0.01
0.09
0.09
0.00
0.01
0.00
0.01
0.05
0.06
0.15
0.00
0.00
0.09
0.22
0.14
0.00
0.00
0.00
0.06
0.10
0.11
0.00
0.00
0.24
0.00
0.00
0.02
0.09
0.09
0.00
0.00
0.13
0.00
0.00
0.02

85
224
165
546
549
396
151
148
256

85
163
111
346
274
128
860
155
134
127
286
325

95
156
166
408
143
524
192
980
126
192
410
463

85
493
247
153
154
273
235
583
355
461
170
268
150

133
1216
774
2075
2818
1401
486
467
787
979
1652
349
2139
926
326
5310
571
324
566
1432
810
284
287
652
206
1270
2792
929
6232
1886
1164
2199
1443
132
1704
926
501
722
1793
1646
820
1051
547
128
1001
621

73
680
308

1101

1612
715
180
214
305
135
727
119

1078
479
140

2968
213
140
206
662
506

91
136
274
135
372

1440
394

3393

1058
790

1015
733

54
762
422
216
261
843
698
450
476
397

60
443
201

1.82
1.79
2.51
1.88
1.75
1.96

2.7
2.19
2.58
7.24
2.27
2.94
1.98
1.93
2.33
1.79
2.68
231
2.75
2.16

1.6
3.13
2.11
2.38
1.52
3.42
1.94
2.36
1.84
1.78
1.47
2.17
1.97
2.47
2.24
2.19
2.74
2.76
2.13
2.36
1.82
2.21
1.38
2.14
2.26
3.09

0.00
0.05
0.18
0.17
0.17
0.35
0.05
0.18
0.00
0.00
0.00
0.05
0.16
0.15
0.11
0.05
0.05
0.08
0.08
0.08
0.27
0.00
0.02
0.18
0.19
0.16
0.01
0.00
0.03
0.05
0.16
0.18
0.03
0.02
0.28
0.01
0.00
0.08
0.15
0.17
0.12
0.00
0.14
0.08
0.03
0.06

99

60
536
466
973

1206
685
306
254
482
844
925
231

1060
447
186

2342
358
184
360
770
304
193
150
378

71

898

1352
535
2839
828
374
1183
710

79
942
503
375
461
950
948
369
575
150

68
558
420
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1710768
5090184
4540048
1980678
5050487
4070133
3840519
4180382
6060242
1770181
2940022

240468
1500768
6180008
6400309
3940068
5420717
2000136
1690605
3460382
1240349
7160164
6520497
1070528
2060497

450754
2690598
6040008
4280129
3440056
4200180

460324
5900286
2650079
2060241
5550435
2190360
2710253
4070681
3780300
3450692
3140280
3180452
6560452
5570270
4230021

TAP1
HEBP2
MCL1
uTS2
CCDhC23
RNPEPL1
BCAS1
ADAMS8
GSTK1
KIAA1949
LY6E
ANTXR2
DPYSL2
RAB37
CYBA
SGSH
EIF4EBP2
TAGLN2
RPS27L
CAPN2
TRIM69
C6orf108
ACTG1
ISG15
SLC4A7
ALDOA
GLB1
IQGAP2
Cl6orf24
COX8A
AES
BATF
GPR68
ACTB
NA
TBC1D4
RHOG
FAM38A
CENPM
TNIP1
TRAF1
RCSD1
PARP12
JARID1D
CCR5
CCR6

1480
394
1238
244
517
523
185
308
2254
514
590
414
337
891
1462
626
579
892
1824
2284
210
536
3611
1059
558
1464
287
482
311
1459
735
320
262
8087
928
792
836
1011
296
582
584
1209
493
444
360
227

789
209
660
129
274
277
98
163
1190
273
312
218
177
469
770
329
305
469
953
1192
110
279
1873
549
287
753
147
247
159
749
377
163
133
4131
470
403
424
510
149
292
292
603
246
223
178
112

1.88
1.88
1.88
1.89
1.89
1.89
1.89
1.89
1.89
1.89
1.89

0.06
0.08
0.16
0.00
0.02
0.05
0.08
0.10
0.10
0.14
0.26
0.00
0.00
0.00
0.00
0.07
0.09
0.12
0.01
0.00
0.01
0.10
0.03
0.05
0.01
0.24
0.00
0.00
0.01
0.03
0.14
0.00
0.00
0.10
0.02
0.06
0.11
0.00
0.00
0.05
0.00
0.00
0.00
0.55
0.01
0.07

691
185
578
115
243
246
87
145
1064
242
278
195
160
422
692
297
274
424
871
1093
101
257
1738
510
271
711
140
235
152
710
357
156
128
3956
458
389
412
501
147
290
291
605
247
222
182
116

4583
1315
177
359
1531
170
81
624
7957
2132
2250
605
857
55
4304
201
1765
897
3358
208
304
1191
4175
1811
266
2542
215
711
656
4270
4438
638
397
6174
1623
1425
2649
2784
721
922
318
779
1477
438
49
857

2582
652
154

90
858
97
60
209

4086

1016

1063
237
310

54

2169
180
828
579

1633
119

70
487

4208
731
162

1203

95
288
208

2374

2146
250
109

5689

1054
695

1205

1231
234
393
167
364
601
199

45
159

1.77
2.02
1.15
3.97
1.78
1.75
1.36
2.99
1.95
2.1
2.12
2.56
2.76
1.03
1.98
1.12
2.13
1.55
2.06
1.74
4.33
2.45
-1.01
2.48
1.65
2.11
2.27
2.47
3.15
1.8
2.07
2.55
3.64
1.09
1.54
2.05
2.2
2.26
3.08
2.34
1.91
2.14
2.46
2.19
1.08
5.4

0.16
0.09
0.26
0.00
0.08
0.18
0.37
0.17
0.17
0.12
0.28
0.00
0.03
0.76
0.06
0.23
0.17
0.05
0.10
0.01
0.07
0.15
0.99
0.16
0.00
0.27
0.01
0.03
0.03
0.12
0.21
0.01
0.04
0.84
0.34
0.14
0.11
0.01
0.00
0.14
0.01
0.01
0.05
0.57
0.39
0.05

100

2001
663
23
269
673
73
21
416
3870
1116
1187
368
547

2135
21
937
318
1725
89
234
704
33
1081
104
1339
120
423
448
1896
2292
387
288
485
570
730
1443
1553
487
529
152
415
877
238
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1090274
5270487
7160669

5890632
5810709
7400669
6270537
7330093
2320717
5810681
1710021

520711

460754
3400592
5720192

840110
1940082
2370673
5390121
2900626
5390504
4150161

830762
1710259
6660181
7650719
5720647
6200273
2970201
6330672
3310368
7160390
5570035
3460008
6560274
3520475
3420148
1400482
6330152
6130563
7160390
3940433
6650300
4390113
2680370

FAM53B
OGDH
APBB1IP
PALM2-
AKAP2
LOC26010
HLA-A
MGST2
HLA-DRB1
PLP2
ICAM3
CDC20
GDPD5
NA
CORO7
LSP1

NA
LMNA
CD99
HOXB2
HN1
BIRC3
CD58
TXN
HERCS
MYO1F
FAM26B
ADAM19
EPSTI1
Clorf78
ANXA5S
ID3
GAPDH
PPP1CA
KCNN4
VIL2
PTTG2
CLDND1
CHST7
KIAA0101
ECGF1
GAPDH
F5
PPP1R2P9
IL32
HLA-DRA

478
367
572

267
258
1419
236
255
1017
1622
210
391
1296
412
533
533
234
1055
364
1047
3864
295
1052
567
289
394
572
675
342
575
528
1631
1084
351
1690
339
1269
426
223
538
2545
290
305
3352
282

232
178
276

128
124
678
112
121
479
764
98
183
608
193
249
249
109
491
170
482
1775
135
476
255
130
176
255
300
151
253
230
711
472
152
729
145
544
182
95
229
1083
123
129
1408
118

2.06
2.06
2.07

2.08
2.09
2.09
2.11
2.11
2.12
2.12
2.13
2.13
2.13
2.13
2.14
2.14
2.15
2.15
2.15
2.17
2.18
2.19
2.21
2.23
2.23
2.24
2.24
2.25
2.27
2.28
2.29
2.29

2.3
2.31
2.32
2.33
2.33
2.35
2.35
2.35
2.35
2.36
2.37
2.38
2.39

0.00
0.05
0.24

0.00
0.00
0.01
0.00
0.42
0.07
0.16
0.00
0.01
0.07
0.12
0.08
0.08
0.00
0.11
0.11
0.00
0.07
0.00
0.00
0.00
0.02
0.00
0.01
0.00
0.00
0.00
0.03
0.04
0.08
0.10
0.00
0.00
0.01
0.00
0.00
0.01
0.03
0.00
0.12
0.00
0.00

246
189
296

139
134
741
124
134
538
858
111
208
688
219
284
284
125
564
195
565
2089
160
576
312
160
218
317
376
191
322
297
920
613
199
961
194
724
245
128
309
1462
167
176
1944
164

175
446
1365

67
261
16878
354
385
369
6270
211
682
5805
1334
184
138
435
2424
527
780
192
445
2064
1176
556
248
1067
1287
89
1603
843
2135
1274
919
4812
58
2131
720
410
67
2135
547
414
1664
1224

101
121
485

63
80
9011
103
96
157
4113
67
164
2476
374
127
98
90
1078
269
399
108
112
753
385
122
89
368
471
59
455
279
937
404
226
2126
55
839
187
63
54
937
120
112
712
133

1.74
3.69
2.81

1.08
3.25
1.87
3.43
4.02
2.35
1.52
3.15
4.15
2.34
3.56
1.45
141
4.85
2.25
1.96
1.96
1.78
3.98
2.74
3.05
4.57
2.79

2.9
2.73

15
3.53
3.02
2.28
3.15
4.06
2.26
1.06
2.54
3.84
6.45
1.24
2.28
4.54

3.7
2.34
9.21

0.13
0.09
0.27

0.13
0.00
0.05
0.00
0.38
0.10
0.25
0.00
0.01
0.17
0.15
0.10
0.01
0.00
0.11
0.23
0.12
0.03
0.01
0.03
0.01
0.09
0.02
0.04
0.04
0.02
0.00
0.09
0.07
0.09
0.12
0.01
0.42
0.03
0.01
0.00
0.00
0.07
0.00
0.11
0.00
0.00

101

75
325
880

181
7867
251
290
212
2157
144
518
3329
960
58
40
345
1346
258
382
84
333
1311
790
434
159
699
816
30
1149
564
1198
869
693
2685

1293
532
346

13

1198
426
302
952
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830762
7380056
1260181
3420356

50072
7050433
7320725
5700128
6480035
6350017
6520167
4610075
2100328
2320301
6480500
7400136
7570440
1440296
4200037
3450685
2060148

770019

990132
4670743
6040600
1090064
4540138
3850451
6560066
5260750

20373
2710044

430338
2350324
2470471
1240491
5220538
1400242
4010053
7100348
3140561
2710278
3780364
1740164
7100348
3140561

TXN
TP53INP1
SELPLG
RGS1
SEMA3G
CLiC1
CPNE2
MIAT
CTSA
CNTNAP1
BIRC3
TFRC
YWHAH
ITGB1
HLA-DPA1
HLA-DMA
E2F2
HLA-DQB1
PTPLA
LGALS3
TNFRSF4
NINJ2
FUT7
RNF214
NA

CDh74
GBP5
STAM
BFSP2
FOXP3
PTTG1
TRIB1
ACTA2
PRDM1
DUSP4
SELP
IL10RA
FANK1
HLA-DRB3
S100A4
S100A4
SHMT?2
ANXA2
PLEKHK1
S100A4
S100A4

1582
756
1433
1682
258
1634
270
716
1181
289
751
567
776
2284
1615
669
310
292
317
272
790
395
367
1105
468
1635
1615
407
359
294
374
329
520
668
424
417
1104
370
454
6188
6188
1386
1112
469
4160
4160

661
317
599
703
107
674
111
292
480
117
301
221
300
877
611
253
116
109
117
100
290
144
132
398
162
555
545
137
116
93
117
103
155
197
123
116
306
102
123
1635
1635
363
289
121
1072
1072

2.39
2.39
2.39
2.39

2.4
2.42
2.43
2.45
2.46
2.47

2.5
2.57
2.59

2.6
2.64
2.64
2.67
2.69
2.71
2.71
2.72
2.73
2.77
2.78
2.88
2.94
2.97
2.98
3.09
3.14

3.2

3.2
3.36
3.39
3.45

3.6
3.61
3.64
3.68
3.79
3.79
3.81
3.84
3.87
3.88
3.88

0.00
0.00
0.08
0.27
0.00
0.00
0.00
0.00
0.00
0.00
0.05
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.00
0.00
0.00
0.00
0.00
0.05
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

922
439
833
979
150
960
159
424
701
172
450
346
476
1407
1004
416
194
183
200
172
500
250
235
707
306
1080
1070
270
243
200
257
226
365
471
301
301
798
268
331
4554
4554
1023
823
348
3087
3087

2064
908
169

4304
141
204

94
906
603
519

2038

1892

2772

4717

1933

1629
847
157
315
508

93

1163

1063

1099

1052

3830

2301
618
175

73
528
564
672

1300
457
229

3732
264
390

14602
18183

2935
104
310

14602
18183

753
301
146
2046
48
135
54
313
154
83
768
614
891
1853
565
479
138
50
53
80
64
242
176
245
168
1088
618
109
56
64
113
57
113
294
68
61
788
50
80
4907
6061
608
58
52
4907
6061

2.74
3.02
1.16

2.1
2.93
151
1.74

2.9
3.91
6.24
2.65
3.08
3.11
2.55
3.42

3.4
6.13
3.11
5.94
6.38
1.46
4.81
6.06
4.49
6.26
3.52
3.72

5.7
3.13
1.14
4.67
9.85
5.96
4.42
6.72
3.74
4.74
5.26
4.88
2.98

4.83
1.78
5.94
2.98

0.03
0.01
0.20
0.31
0.00
0.00
0.00
0.00
0.08
0.00
0.07
0.00
0.01
0.00
0.00
0.00
0.00
0.27
0.00
0.01
0.02
0.00
0.01
0.00
0.00
0.08
0.03
0.00
0.00
0.02
0.00
0.00
0.00
0.02
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.01
0.02
0.00
0.00
0.00

102

1311
607
23
2258
93
69
40
594
448
436
1270
1278
1881
2864
1368
1150
709
106
262
428
30
921
888
855
884
2741
1683
510
119
9
415
507
559
1006
389
168
2944
214
310
9696
12122
2327
45
258
9696
12122
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2710577
2750528
1170307
1230632
5690382
2470110
6040379

160377
2710577
5090403

Supplementary Table 4 - Differentially expressed genes in the T, data set

NCF4

NA

IL2RB
TNFRSF1B
METTL7A
JAKMIP1
HLA-DRB4
LGALS1
NCF4
CTLA4

470
808
1086
1543
429
664
627
1334
967
999

119
203
264
360

99
153
132
266
185
162

3.96
3.98
4.12
4.28
4.32
4.33
4.74
5.01
5.22
6.17

0.00
0.00
0.00
0.00
0.00
0.00
0.06
0.00
0.00
0.00

351
605
822
1183
330
510
495
1068
781
837

501
979
2869
4107
119
55
1355
3773
501
4397

98
135
506
849

43

53
132
515

98
372

6.02
7.24
5.67
4.84
2.79
1.03
10.24
7.33
6.02
11.82

0.00
0.00
0.00
0.00
0.00
0.39
0.00
0.00
0.00
0.00

493
844
2363
3258
77

1222
3258

493
4025

Differentially expressed genes (FC > 1.75, p-value < 0.05, diff > 100) between T, and non-T,; samples on |-
huBC-V1 were calculated and corresponding values for these genes were checked on I-huBC-V2. Marked in grey
are genes which show low signal values on I-huBC-V2.
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SUPPLEMENTARY METHODS

Appendix C - Supplementary Methods

Stimulation of CD4" T cells

Cells were stimulated by mixing with artificial antigen-presenting cells (aAPCs) at a ratio of 1:3
(cells:beads) composed of magnetic beads (Dynal Biotech, Oslo, Norway) coated with the following
antibodies: anti-CD3 (OKT3), anti-CD28 (9.3), anti-PD-1-17, and anti-MHC-I (W6/32). For all
experiments, these aAPCs were coated with suboptimal anti-CD3Ab (5%), suboptimal levels of anti-
CD28 Ab (14%), and either anti-MHC-I Ab (CD3/28/MHC-I) or anti—PD-1 Ab (CD3/28/PD-1),
constituting the remaining 81% of protein added to the bead, as previously described.19 TGFB was
initially titrated at different concentrations ranging from 0 to 50 ng/mL to determine minimum
concentration for maximum inhibitory effect in T-cell functions such as proliferation and cytokine
production. For defining the TGFB fingerprint, 30 ng/mL TGFB was used. This concentration is also
within the range of TGFp described in serum derived from cancer patients of different origin (Shirai,

Kawata et al. 1994; Toomey, Condron et al. 2001).

Cytometric bead array for cytokines

The concentration of IFN-y in cell culture supernatants was measured using the human Th1/Th2
Cytokine kit Il (BD Pharmingen, San Diego, CA) as described previously (Chemnitz, Driesen et al.
2006).
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