
 
 
 

 
 
 

 
Analysis of veterinary pharmaceuticals in soil and their 

impact on microbial populations 

 
 
 

Dissertation 
 

zur 
 

 Erlangung des Doktorgrades (Dr. rer. nat.) 
 
 

der 
 

Mathematisch-Naturwissenschaftlichen Fakultät 
 

der 
 

Rheinischen Friedrich-Wilhelms-Universität Bonn 
 
 
 
 
 
 
 

vorgelegt von 
 

Yvonne Zielezny 
 

aus 
 

Tichau 
 
 
 
 

Bonn 2008 



 
 
 

 



 

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

 

 

 

 

 

 

 

 

   

1. Referent:  Prof. Dr. H. Vereecken 

2. Referent:   Prof. Dr. R. Galensa 

Tag der Promotion: 06. Mai 2008 

 

 

Gedruckt bei: Betriebsdirektion – Graphische Betriebe FZ-Jülich 
 
Erscheinungsjahr: 2008 
 
Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn 
http://hss.ulb.uni-bonn.de/diss¡online elektronisch publiziert. 



 



 
 
 

 
 
 
 
 

Meiner Tochter Sarah 
in Liebe gewidmet 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 



 
 
 

Abstract 
 

Veterinary medicines may enter agricultural soils by the use of animal excrements as fertilizers. In 

this study the impact of veterinary pharmaceuticals sulfadiazine (SDZ) and chlortetracycline (CTC) 

on soil bacterial communities was investigated. Additionally the SDZ concentration in the soil was 

analysed. Microcosms containing two sorts of agricultural soils, orthic luvisol and gleyic cambisol 

were used. The soils were spiked with the antimicrobial agents SDZ and CTC at three different 

concentrations (1, 10, 50 mg/kg) and incubated for 48 or 64 days at 20 °C. SDZ and the metabolite 

acetyl-SDZ were extracted from the aged soil samples using pressurized liquid extraction (PLE). 

Acetonitrile/water (80:20 v/v) at 100 °C was chosen as the extraction mixture, solid-phase extraction 

(SPE) or other clean-up of the samples was not necessary. The quantification was conducted using 

LCMS/MS with electro spray ionisation (ESI). The recovery rates were between 82.5% and 87%. 

SDZ dissipated very rapidly and strongly time-dependent from both soils. Furthermore, the impact 

on the microbial respiratory activity was measured continuously in a respirometer (Sapromat). 

Changes in bacterial community structure were visualized by means of PCR-denaturing gradient gel 

electrophoresis (DGGE) of 16S rDNA derived from the soil samples. Additionally, growth inhibitory 

effects of SDZ and CTC were tested in agar diffusion tests. In microcosms with soil and antibiotics 

only, no effects could be observed, either on respiratory activity or on bacterial population structure. 

Therefore, further incubations were conducted in the presence of an additional assimilable carbon 

source. In the presence of glucose, SDZ affected soil respiration as well the bacterial community 

structure: additional bands appeared and some bands already visible at the beginning of incubations 

increased in intensity. A clear relationship between SDZ concentrations and changes in DGGE 

patterns became visible. During 48 days of incubation, changes in DGGE patterns were minimal in 

microcosms with 50 mg SDZ/kg soil indicating an inhibition of strains, which were capable of 

growing on glucose in the presence of lower SDZ concentrations. Only a few soil bacterial isolates 

were weakly inhibited by SDZ in agar diffusion disk test. Contrastingly, CTC significantly inhibited 

growth of 12 soil bacterial isolates in disk tests, but no effects on soil respiration and bacterial 

community structure could be observed. In the presence of the soil matrix the growth inhibitory 

potential of CTC decreased due to adsorption or complexation. This was confirmed in growth 

inhibition experiments with soil suspensions and time-dependent sampling. 
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1. General Introduction 
 
 
1.1. Background 
 

Among the veterinary medicines used in intensive animal production more than 70% of the 

administered pharmaceuticals are antibiotic agents. In 1999, the total amount of antibiotics consumed 

in the EU and Switzerland amounted to 5000 tons while 3500 tons are used for therapeutic purpose 

and the remaining 1500 tons are used as feed additives for growth promotion [87]. Minor amounts of 

administered antibiotics are retained in the medicated animals and most of the agents are 

quantitatively excreted as the parent compound and as metabolites of which the acetylated form is 

temporarily inactivated [161]. The animal excrements are either directly released into the 

environment by grazing animals or indirectly by spreading animal excrements as fertilizer onto 

agricultural soils. 

The actual intention of using antibiotics is to inhibit bacterial growth or to kill bacteria, and thus 

there is a serious concern about qualitative and quantitative effects on resident microbial soil 

populations, possibly leading to disturbances in soil functioning.  

Drugs, contrary to heavy metals and pesticides, were rarely viewed as potential environmental 

pollutants although developed with the intention of performing a biological effect and thus they 

could have the potential to disrupt the natural microbial populations [162]. 

Systematic investigations of environmental behaviour of antibiotics and our knowledge about 

existing contaminations in soil are not sufficient and only few studies deal with this problem. Drugs 

in the environment did not capture the attention of the scientific or popular press until the last couple 

of years, with some significant papers presented by Halling-Sørensen et al. [161], Hirsch et al. [94], 

and Ternes [159]. First in the new millennium more studies dealt with this problem [1, 81, 29, 127, 

134, 136, 160, 185]. 

Besides chemical analysis of soils contaminated with antibiotics, ecotoxicological tests with a focus 

on the effects on microbial soil populations are necessary.  

As a first step in an environmental risk assessment it is necessary to elucidate the concentration and 

the stability of the drug [23]. Several chemical methods have been described for the analysis of 

antibiotics: high performance liquid chromatography (HPLC), gas chromatography (GC) or capillary 

electrophoresis (CE) [22, 61-67]. Among the various methods liquid chromatography mass 

spectrometry (LCMS) or even tandem mass spectrometry MS/MS seems to be the method of choice 

for estimating the low concentration of antibiotics in water and soil. The preferred extraction 

methods are liquid-liquid extraction followed by a sample clean up procedure. In a few cases, 
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pressurised liquid extraction (PLE), known as accelerated solvent extraction (ASE) was applied [10, 

25, 27]. 

To analyse the structure and diversity of bacterial communities in soil several methods have been 

developed. Agar-plating of soil suspensions is insufficient for estimating biodiversity, because less 

than 1% of the total bacterial population has been found to be culturable on standard media. Isolated 

bacteria may account for only a minor proportion of the total bacterial diversity in soil [30]. 

Recently, molecular techniques have been applied for assessing biodiversity. Denaturing gradient gel 

electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), ribosomal intergenic 

spacer-analysis (RISA), amplified ribosomal DNA restriction analysis (ARDRA) or sequencing are 

typical examples for molecular techniques in ecological microbiology [179, 211, 213, 221, 224]. A 

DGGE analysis of PCR-amplified 16S rDNA fragments is a relatively fast and simple method and 

has been used for several population structure analyses in soils [212, 213, 223, 231, 233]. For 

measuring the microbial activity soil respiration is widely used. Soil respiration and kinetics have 

been applied in this work also to assess the effects of xenobiotics on soil microorganisms [135, 202, 

203]. 

 

 

1.2 Selection of substances investigated in this thesis 

 
From the quantitative high usage antibiotic groups, tetracyclines and sulfonamides, two important 

representative compounds [138, 141, 170, 241] were selected: sulfadiazine (SDZ) and 

chlortetracycline (CTC) as chlortetracycline hydrochloride. In the current work SDS was used in 

chemical and microbiological experiments and CTC in biological experiments in order to include 

another common used antibiotic (see Consumption and use of antibiotics). Sulfonamides and 

tetracyclines are frequently found in waste- and surface-water and pig manure. Both are measured in 

concentration ranges able to effective inhibition or killing of bacteria [131, 142, 170].  

In the following sections details and mechanisms of inhibition of sulfonamides and tetracyclines are 

described. 
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1.3 Scope of this thesis 

 
Only a few studies investigated the effect of tetracyclines or sulfonamides on the soil microflora, 

especially the effect on microbial functions.  

The goal of this study was to determine if and how the veterinary medicines sulfadiazine and 

tetracycline in its pure form influence the bacterial population in soil. The procedure involved 

various amounts of sulfadiazine and chlortetracycline and two different kinds of soils. The 

antibacterial effects of these antibiotics were investigated with classical biological methods like plate 

counts and respirometry and were combined with modern molecular biological methods like 

polymerase chain reaction (PCR) and DGGE. The resistance of culturable soil bacteria against 

sulfadiazine and chlortetracycline was determined with the agar diffusion test method. Additionally, 

the growth inhibitory potentials of CTC in water-extractable soil solutions were tested with sensitive 

soil bacterial isolates in agar diffusion disk tests.  

All experiments (see materials and methods/design of the microcosm experiments) were carried out 

with microcosms to follow the changes in the population structure and microbial activity under the 

influence of the selected antibiotics.  

In addition, an analytical method was established for the simultaneous measurement of SDZ and its 

metabolite acetyl-sulfadiazine (acetyl-SDZ) in soil. Experiments were carried out to optimise and 

validate the chemical method. Methods published on extraction, chromatographic separation and 

detection of SDZ unfortunately describe only extraction solvents for mixtures of antibiotics and not 

the optimum conditions for sulfadiazine solely. This was the reason for optimising of the solvent 

mixture. 

The poor information on suitable storage procedures was the reason for studying the influence of 

storage conditions on the recovery of SDZ in this work. 

The main aim of the present work was to combine biological and chemical investigations to measure 

the effects of the important antibiotic substance sulfadiazine in soil. In addition the reaction of the 

soil microbial population to the supplementation of chlortetracycline was studied.  
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2. The state of the art and basics 
 
 

2.1 Antibiotics in the environment 

 

2.1.1 Definitions, classification and background 

 
Antibiotics are natural metabolic products of fungi, actinomycetes and bacteria that kill or inhibit the 

growth of microorganisms. Antibiotic production is particularly associated with soil microorganisms 

and in the natural environment it is thought to provide a selective advantage for organisms in their 

competition for space and nutrients. Although the majority of antibacterial and antifungal agents in 

clinical use today are derived from natural products of fermentation, most of them are then 

chemically modified to improve their antibacterial or pharmacologic properties. However, some 

agents are totally synthetic (e.g. sulphonamides, quinolones). Therefore the term “antibacterial” or 

“antimicrobial” agent is often used in preference to “antibiotic” [100]. 

The earlier used classification of antibacterial agents in synthetically gained chemotherapeutics and 

antibiotics, i.e. antimicrobial active substance of biological derivation, is nowadays extensively 

abandoned. In the meantime, antibiotics traditionally gained from microorganisms are even produced 

synthetically [101].  

The spectrum of efficacy of an antibiotic substance defines against which pathogen the substance is 

effective, in concentrations that can be achieved against infections in the human being. Substances 

with a narrow activity spectrum e.g. penicillin V is only affective against some Gram-positive 

bacteria as Streptococcus, Neisseria, Spirochetes and a few others. Antibacterial agents with activity 

against a multiplicity of diverse bacteria are called broad spectrum antibiotics (tetracyclines, 

sulfonamides).  

There are three ways of classifying antibacterial agents: 

• According to whether they are bactericidal or bacteriostatic. 

• By target site. 

• By chemical structure. 

Due to antibacterial effect of chemotherapeutic drugs it is possible to differentiate two different types 

of effects: bacteriostatic and bactericidal. Bacteriostatic agents inhibit growth of bacteria whereas 

bactericidal agents kill bacteria. Bacteriostatic agents are successful in the treatment of infections 

because they prevent the growth of the bacterial population.  

Also a convenient way of classifying antibacterials is on the basis of their site of action.  
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The four main target sites for antibacterial action are: 

• Cell wall synthesis. 

• Protein synthesis. 

• Nucleic acid synthesis. 

• Cell membrane function. 

A classification based alone on chemical structures is not of practical use because of the diversity. 

However a combination of target site and chemical structure provides a useful working classification.  

Classification of the antibacterial agents with some examples according to various textbooks [100, 

101, 105]:  

• Inhibitors of Cell Wall Synthesis: Beta-lactams, Glycopeptides, Cycloserine, Bacitracin.  

• Inhibitors of Protein Synthesis: Aminoglycosides, Tetracyclines, Chloramphenicol, 

Macrolides, Lincosamides. 

• Inhibitors of Nucleic Acid Synthesis: 

- Inhibitors of synthesis of precursors: Sulfonamides and Trimethoprim. 

- Inhibitors of DNA replication (Quinolones) and RNA polymerase (Rafamycins). 

 

 

2.1.2 Application of antibiotics 

 
Antibiotics are widely used in human and veterinary medicine to prevent or to treat microbial 

infections as well as in livestock production to promote the growth of animals. All antibiotics used in 

veterinary medicine are the same or closely related to antibacterials used in human medicine [93].  

In human medicine antibacterials are mostly used therapeutically against different bacterial diseases 

or as chemical prophylaxis (infection prophylaxis for travellers in malaria regions or complications 

prophylaxis in operations).  

In veterinary practice antibiotics are used to treat disease and protect livestock’s health but also are 

used precautionary as feed additives. The exact purposes with the appropriate definitions according 

to the National Committee for Clinical Laboratory Standards (NCCLS) are presented below. 

 

Therapeutic purpose 

Therapy is defined as the administration of an antimicrobial to an animal, or group of animals, which 

exhibit frank clinical disease.                

In that case the antibiotics should be exactly suitable (antibacterial spectrum as narrow as possible) 
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or in case of doubt an antibiogram should be done. Intermediate broad spectrum antibiotics as 

tetracyclines or sulfonamides can be used momentary.  

Prophylactic purpose  

Prevention/prophylaxis is defined as the administration of an antimicrobial to exposed healthy 

animals considered to be at risk, but before expected onset of disease and for which no aetiological 

agent has yet been cultured. 

This is typical at the beginning of pig fattening, to control bacterial infections of fish or to prevent 

recurrent urinary- infections with E. coli (sulfonamides-trimethoprim).  

Growth promoters 

Growth promotion is defined as the administration of an antimicrobial to growing animals, usually as 

a feed additive, over a period of time, resulting in improved physiological performance of the 

animals. 

This use of antibiotics for animal growth promotion has been controversial because of the potential 

transfer of antibiotic resistance. Also the food consumers have a demand for antibiotic free food. 

 

 

2.1.3 Consumption and use of antibiotics 

 
The available database on antibiotics used in husbandry in European countries is poor and 

incomplete because only few European Union (EU) member states (the Scandinavian countries and 

the Netherlands) have already started to collect those data. FEDESA, representing the most 

important companies in the veterinary pharmaceutical industry, has provided some data on the 

quantities of antibiotics on request of the EU Commission. Furthermore, information on the 

European use of antibiotics for animal husbandry has been compiled recently in reports on the 

situation of antimicrobial resistance prepared by the Scientific Steering Committee of DG XXIV of 

the European Commission and by the Committee of Veterinary Medicinal Products of the European 

Medicine Evaluation Agency (EMEA) [138]. In 1996, about 10,200 tons of antibiotics were used by 

EU countries of which 50% were applied in veterinary medicine and as growth promoters in animals 

[148]. In 1999, 13,288 tons of antibiotics were used in the EU and in Switzerland, of which 65% 

were used in humans, 29% in the veterinary medicine and 6% as growth promoters [152]. The EU 

Commission Press Release Food Law News reported similar data in 2002. In some estimates of 

antimicrobial use in veterinary medicinal products, farm animals consumed 4,700 tons (35%) of all 

antibiotics administered in the EU, largely for therapeutic purposes (29%), whereas humans 

consumed 8,500 tons (65%) [92]. 
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The most important groups of the predominant therapeutically used pharmaceuticals are tetracyclines 

(chlortetracycline (CTC) and tetracycline (TCY)), with 52%, followed by sulfonamides (sulfadiazine 

(SDZ) and sulfadimidin (SDM) with 19% [141].  

Tetracyclines and sulfonamides are broadband antibiotics and therefore they are widely used in 

livestock farming not only in European countries [69, 132]. Accordingly Kumar et al. [124] reported 

that tetracyclines (oxytetracycline (OTC) and CTC) were the most common antibiotics present in 

swine, beef, and turkey manures. 

Sulfonamides are among the most used chemotherapeutics in veterinary practice, because of their 

low cost, their broad spectrum of activity in preventing or treating bacterial infections, and their 

effectiveness as growth promoters [72]. According to Ungemach [138] sulfonamides are the fifth 

most widely used group of veterinary antibiotics within the EU, accounting for 2% of sales in 1997. 

Rassow and Schaper [168] reported that in the Weser-Ems region, Germany, the common 

antimicrobial agents are tetracyclines and sulfonamides. Also Thiele-Bruhn et al. [170] gave details 

on the administrated antibiotics in Mecklenburg-Western Pomerania, Germany, for the period from 

October 2000 until September 2001.  

The antibiotics tetracycline and sulfonamides were the most important groups prescribed with the 

main substances chlortetracycline and sulfadiazine. Details are shown in the figure 1. 
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Sulfonamides

Tetracyclines

others

a) 

TetracyclinesSulfonamides

Tetracyclines Sulfonamides Polypeptides Lincosamides
Aminoglycosides Pleuromutilines ß-Lactams Makrolides

others

b) 

 

Figure 1. 

 Administrated antibiotics in Mecklenburg-Western Pomerania, Germany, for the period from 

October 2000 until September 2001 via feed additives: a) husbandry, b) piggeries according to 

Thiele-Bruhn [170].  

 

 

2.1.4 Input and exposure of antibiotics into the environment 

 
After administration of antibiotics to humans or animals and passing through the organism, a 

significant amount is excreted through urine or faeces. However, the majority of the used antibiotics 

leave the organism as a mixture of the parent compounds and metabolites. For example CTC is 

excreted in 70% unchanged [94] and the parent sulfonamides are excreted between 40% and 90% 

from the treated organism [169]. 

Most medical substances are metabolised to phase I or phase II metabolites before being retrieved 

from the body. Phase I reactions (usually consist of oxidation, reduction or hydrolysis) cause the 

change of the structure of the pharmaceutical and the products are often more reactive and 

sometimes more toxic than the parent drug. Phase II reactions (involve conjugation with glucoronic 
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acid, sulphuric acid, acetic acid, amino acid etc.) are coupling reactions and the products are more 

water soluble and mostly biological inactive. In some cases the phase II products can be transformed 

by hydrolysis in to the parent drug [101]. Berger et al. [95] showed that N-4-sulfadimidine (phase II 

metabolite) was converted to the parent drug - sulfadimidine in samples of liquid manure. On the 

basis of these facts, not only the parent compound can be a risk for the environment, but also its 

metabolites. 

These drugs and their metabolites can enter the environment via several exposure routes (figure 2).  
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Exposure 

 
 

 

Figure 2. 

Anticipated exposure routes of both veterinary and human medicinal substances in the environment 

according to Halling-Sørensen [161]. 
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Human medical substances will enter the sewer system with the urine and faeces and attend the 

sewage treatment plant. If the drugs are not completely mineralized, they are released into surface 

water or absorpted by sludge and, if the sludge is used to fertilize arable land, they may enter the 

topsoil of fields [91]. In the case of veterinary medicines, the excrements are either directly released 

into the environment by grazing animals or indirectly by spreading manure onto agricultural soils. A 

direct release of contaminated excrements can result in a high local concentration of the specific 

pharmaceutical and may affect soil organisms. 

Antibiotics are also extensively used in aquaculture as feed additives in fish farms. The main groups 

of pharmaceuticals used in aquaculture are tetracyclines, sulfonamides and also chloramphenicol, 

which is forbidden for veterinary use in the EU since 1995 [94]. 

In addition soils are a natural source of antibiotics. Soils are a habitat and source of indigenous, 

antibiotics producing microorganisms. Among numerous other soil microorganisms, 30 to 50% of 

actinomycetes isolated from soil are able to synthesize antibiotics [173]. Such antibiotics, 

biosynthesized in situ, are found especially in the soil rhizosphere with concentrations of up to 5 

µg/g [174, 175]. 

 

2.1.4.1 Fate and occurrence  

Pharmaceutical compounds like antibiotics, from human and agricultural sources, have been detected 

in soils, sediments, surface waters and ground waters in many countries. Some of the antibiotics are 

hydrophilic and increased mobility may lead to ground water contamination [27] as found by 

Velagaleti [125] and Ternes [159].  

Heberer [165] reported, that in some investigations carried out in Austria, Brazil, Canada, Croatia, 

England, Germany, Greece, Italy, Spain, Switzerland, The Netherlands, and the US,  more than 80 

different pharmaceuticals and several drug metabolites have been detected up to µg/l-level in the 

aquatic environment, mostly due to the discharge of effluents of sewage treatment plants.  

The Federal Environmental Agency in Austria reported in 2002 on contaminated waste water from 

treatment-plants with pharmaceuticals e.g. sulfamethoxazole [130]. Sulfonamides were found in six 

of fifty-one samples of drinking water in Bavaria [143]. Hirsch et al. [94] found trimethoprim and a 

sulfonamide in a sewage treatment plant and in surface water and two sulfonamides 

(sulfamethoxazole 0.47 µg/L and sulfamethazin 0.16 µg/L) in groundwater.  

Sulfamethoxazole and sulfamethazine have also been detected in the US and Germany in a few other 

groundwater samples [15, 96, and 98] and Holm et al. [99] reported on the presence of different 

sulfonamides in high concentrations in groundwater samples in Denmark. Tetracycline drugs 

(chlortetracycline, oxytetracycline and tetracycline) were detected by Lindsey et al. [96] and Kolpin 
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et al. [97] in US surface water samples. However, tetracyclines could not be detected in the soil- and 

ground water [1, 69, and 96]. 

Several investigations report on findings of antibiotics in sediments from fish farms [166, 172]. 

In spite of the numerous findings of pharmaceutical compounds and their metabolites only relatively 

few studies exists on the effect of the antibiotics on the environment including uptake by plants from 

manure-amended soils. Kumar et al. [124] reported on the occurrence of antibiotics in plants after 

fertilisation of the soil with contaminated manure. The authors found that Zea mays, Allium cepa, 

and Brassica oleracea adsorbed increasing amounts of chlortetracycline with increasing amounts of 

antibiotic present in the manure. Also Migliore et al. [163] described effects of available residues of 

sulfadimethoxine on Panicum miliaceum, Pisum sativum and Zea mays.  

Little is known about the occurrence and fate of antibiotics in soil. Only few investigations have 

reported findings of medical substances in other field samples than sediment or treated waste water 

samples.  

Some antibiotics have been detected in soil in the range of several hundred µg/kg, but the margin of 

the residual concentrations range from a few µg up to g/kg. 

Hamscher et al. [1] found tetracycline in concentrations between 10 and 100 µg/kg in several soils 

after liquid manure fertilisation while Höper et al. [69] reported on concentrations of different 

antibiotics e.g. TCY, CTC and SDM below 20 µg/kg soil in pig manure treated field soils. CTC 

concentrations up to 249 µg/kg were measured in soil, and in the manure crust even up till 1435 

µg/kg.  

Hamscher et al. [1] found 86.2 µg/kg (0-10 cm), 198.7 µg/kg (10-20 cm), and 171.7 µg/kg (20-30 

cm) of TCY in soil samples and 4.6-7.3 µg/kg CTC (all three sublayers) after fertilization with liquid 

manure.  

Warman and Thomas [126] determined CTC in soil amended with poultry manure. They 

demonstrated that drug metabolites excreted by medicated livestock are decomposed by bacterial 

action in the liquid manure and reconverted into the active drug. 

 

2.1.4.2 Assessment of antibiotics  

Literature on the fate of pharmaceuticals in soil is still insufficient; however, research and 

publications on this topic have increased in the last few years. 

Hartig et al. [15] described sulfonamides as potential organic micropollutants in water. Samuelsen et 

al. [60] reported that no degradation of OTC, SDZ and other antibiotics in marine aquaculture 

sediment took place over a period of 180 days. Beside this, recent studies concerning other 
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pharmaceutical residues in the aquatic environment have clearly shown that elimination in municipal 

sewage treatment plants is often incomplete [94, 165]. 

Persistence of antibiotics in soils depends on many factors including soil type, climate, and class of 

antibiotics. The fate of antibiotics partly depends on degradation. The degradation of xenobiotics in 

soils is mainly driven by microbial processes and numerous antibiotics are susceptible to enzymatic 

transformation reactions [81]. However, the degradation of antibiotics is hampered by fixation to the 

soil matrix. Already persisting antibiotics were determined in soils [170]. The pharmaceuticals may 

accumulate in soil [83, 164] and influence soil organisms [151]. 

Höper et al. [69] classified CTC as persistent because the substance accumulated in the soil under 

specific conditions. Also Hamscher et al. [1] found that tetracyclines not only occurred in significant 

amounts in soil after repeated fertilizations with liquid manure but also persisted and accumulated in 

the environment. 

Kay et al. [122] and Blackwell et al. [239] investigated the fate of veterinary antibiotics e.g. OTC on 

agricultural clay soils. He found that the presence of slurry in combination with highly sorptive 

antibiotica, such as OTC, will not increase their mobility due to facilitated transport. OTC residues 

(0.2 µg/kg) from the experimental soil columns were only detected in one single sample collected 

from the 0-5 cm layer of one soil core. 

CTC has been shown to persist in soil; however, this was dependent on temperature [1]. 

Ungemach et al. [93] pointed out that tetracyclines may have a potential risk and that investigations 

on the environmental effects of these antibiotics are necessary. 

This shows that current knowledge and evaluation of fate, occurrence, assessment and potential risk 

of tetracyclines and especially sulfonamides in the environment is insufficient and more 

investigations are needed.  

 

 

2.1.5 Resistance of bacteria to antibiotics 

 
In medical science a resistant organism is defined as an organism that will not be inhibited or killed 

by an antibacterial agent at concentrations of the drug achievable in the body after normal dosage 

[100]. Two types of resistances are to divide: the primary resistance and secondary resistance. 

Primary resistant or born resistant means that some species are innately resistant to some families of 

antibiotics either because they lack a susceptible target or because they are impermeable to the 

antibacterial agent e.g. all strains of Pseudomonas aeruginosa against benzylpenicillin or some E. 

coli strains against tetracyclines [100, 101].  
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Secondary resistance or acquired resistance means that a spontaneous resistance occurs first during 

the antibiotic therapies. This resistance can be divided in one-step- and multi-step resistance. One-

step resistance occurs quickly after the beginning of a therapy. Multi-step resistance occurs first after 

repeated therapy with the same agent and is developed slowly and step by step. 

In parallel with the rapid development of a wide range of antibacterial agents since the 1940s, 

bacteria have proved to be extremely adept at developing resistance to each new agent that comes 

along. The rapidly increasing incidence of resistance associated with a decreasing in the discovery of 

novel antibacterial agents to combat resistant strains is now recognized worldwide as a serious threat 

against the treatment of life-threatening infections [100].  

An important question in the recent time is if the antibiotics used in agriculture have a great impact 

on the environment or can contribute to antibiotic resistance in pathogenic bacteria of humans. Many 

scientists hotly debate and try to answer this question. Smith et al. [146] carried out model studies 

and suggested that transmission of antibiotic-resistant bacteria from agriculture can have a bigger 

impact on human populations than hospital transmission and that the agricultural antibiotic use can 

have important quantitative effects on the spread of resistances in the community. 

Antibacterial resistance is a serious threat to the efficacy of antibacterial substances. Antibiotics must 

have various effects, because different kinds of bacteria with diverse features are the target organism 

of antibiotics. As antibiotics are nature’s own weapons for maintenance of all microbial ecosystems, 

the resistance is a natural part of the regulatory factors in any ecosystem and genes coding for 

resistance have existed as long as microbes. The increased use of antibiotics during the last five 

decades has caused a genetic selection of more harmful bacteria [129]. Although antibiotic 

concentrations in most soils are not at therapeutic levels which cause inhibitory effects on a bacterial 

population, they may still influence the selection of antibiotic resistant bacteria in the environment. 

Resistance can be transferred to other bacteria living in other environments such as ground water or 

drinking water. In general, knowledge of sub-inhibitory concentrations and their effects on 

environmental bacteria is poor, especially with respect to resistance [160, 191]. This development of 

resistance can be favoured by the use of antibiotics in concentrations below therapeutic levels or may 

be selected by antibiotic substances in hospital effluent, municipal sewage, aeration tanks, and the 

anaerobic digestion process of sewage treatment plants or in soil. Furthermore, resistant bacteria are 

excreted and discharged into sewage or soil and other environmental compartments [160] and the 

resulting antibiotic residues and resistant microorganisms can affect the natural soil microbial 

community and soil functions and may even harm animals and humans via the food chain [215, 216]. 

The resistance problem in the environmental compartments such as waste water, surface water, 

ground water, sediments and soil is described by Kümmerer [191]. The author concluded that the 
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increasing antibiotic resistance is seen as an ecological problem. Antibiotic resistance in sediment 

bacteria are often found in locations with fish farms as antibiotics are commonly used therapeutically 

in fish farming. Samuelsen et al. [166] reported findings of sediment bacteria resistant to various 

antibiotics used as feed additives in fish farms.  

 

2.1.5.1. Antibiotics as the growth promoters 

Since more than 50 years antibiotics in the low dosage have been used as growth promoters as feed 

additive of the feed animals [147]. This procedure based on the detection that some antibiotic 

substances cause significant better feed utilisation, accelerate the weight gain and reduce the 

frequency case of illnesses’ in the fattening farm. It is supposed that the mechanism of the growth 

promoting effect is associated with the inhibition of the gut flora of the animals by the antibiotics, 

but the exact mechanism has not been clearly elucidated [153].  

The concentrations of antibiotics in the feed for therapy and prophylaxis are usually higher than the 

concentrations of antibiotics for growth promotion. The risk of underdosing might favour the 

selection of bacterial resistance. In 1997, the WHO concluded that the use of antibiotics in any 

ecosystem may cause selection of resistant bacteria and that low dose and long-term treatment with 

antibacterials exert a higher pressure on selection of bacterial resistance than full-dose therapy [158]. 

Several studies dealt with this problem and described the growth promoting role in resistance 

development [146, 147, 154, 155, 156, 157]. 

In the US and several other countries, classes of antibiotics active against Gram-negative bacteria, 

such as tetracyclines, have been used for growth promotion for decades and are still being used today 

[154]. In the US tetracyclines belong to the most used antimicrobial growth promoters.  

Routine use of antimicrobials in food producing-animals for growth promotion constitutes a serious 

public health problem, especially in the case where the same classes of antimicrobials are used in 

humans [154]. Hence, in some countries, for instance Denmark, the farmers took a step in response 

to consumers concerns and voluntarily discontinued the use of all antimicrobial growth promoters 

[154]. In Sweden the use of them is banned since 1986 and in Switzerland since 1999. According to 

the EU Regulation 1831/2003, using of the antibiotic growth promoters in feed since 2006 is also 

forbidden. 
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2.1.6 Ecotoxicology of antibiotics  

 
Antibiotics are biologically active molecules. The intention of their use is to inhibit bacterial growth 

or to kill bacteria. As this use can lead to resistance of bacteria there is a serious concern about 

qualitative and quantitative effects on resident microbial soil populations, possibly leading to 

disturbances in soil functioning. Effective inhibition or killing of bacteria in therapeutic application 

of antibiotics is normally achieved by 1-25 mg/l [133]. Unfortunately, very little is known about the 

ecotoxicology of antibiotics.  

Bacterial toxicity tests mainly use a single species and other matrices as soil. The growth inhibition 

test with Pseudomonas putida and the bioluminescence test with Vibrio fischeri are among these 

[142]. Toxicological studies investigate the effects of antibiotics on aquatic organisms as Daphia 

magna, a micro-algae, an aquatic weed or on soil fauna etc. (see Table 1) but little is known about 

effects on total microflora in soil [69] and on the impact of antibiotics on environmental bacteria 

[167, 134]. Most of the toxicity tests presented in the literature are performed as acute toxicity tests. 

Halling-Sørensen et al. [161] suggested that, due to the fact that at least some of the antibiotics 

exposed to the environment are found to be rather persistent, it would be more relevant to perform 

life cycle test on organisms representing different trophic layers in order to identify the hazard of the 

substance in question rather than to perform acute toxicity tests.  

 

 

Table 1.  

Selected data on the toxicology of antimicrobial substances in environmental compartments. 

  
Substance Matrix Effects Effects on Reference/Year 

Oxytetracycline, Tylosine Soil Toxic effects EC10 

and EC50 

Earthworms, 

springtails and 

enchytraeids 

[151] 2000 

Sulfadimidin, sulfathiazol Manure Resistance E. coli, streptococci [131] 1988 

Sulfadiazine, 

Tetracycline, 

Oxytetracycline and other 

Water Toxicity (acute and 

chronic tests) 

Freshwater 

crustacean Daphnia-

magna 

[144] 2000 

Chlortetracycline and 

other 

Purified water Toxic effect EC50 Freshwater algal 

species 

(cyanobacteria and 

green algae) 

[145] 2000 
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The toxic effect data (EC50) of antibacterial agents on various aquatic species found in the literature 

show values in the range of mg/l. However, it is difficult to draw conclusions about effects in other 

habitats as water. For example, it was shown that inhibitory effects of tetracyclines on activated 

sludge bacteria occurred already at significantly lower contents. The EC50 for CTC was 0.03 mg/l, 

for OTC 0.14 mg/l and for TC 0.3 mg/l [134]. Another example is the minimal concentration of CTC 

for inhibition of microbes being between 0.01 and 0.5 mg/l [147, 148]. In soil however, much higher 

EC50 values were calculated for OTC, tylosin and sulfachloropyridazine of 50, 30 and 75 mg/kg dry 

soil, respectively [135]. Also average effective dose values (ED50) of 47.6 mg/kg soil for SDZ and 

25.4 mg/kg soil for CTC found by Thiele-Bruhn [132] were in the same range. In another recent 

paper, Thiele-Bruhn and Beck [136] report on ED10 values ranging from 0.003-7.35 mg/kg soil for 

sulfapyridine and OTC, depending on the antibiotic compound and its soil adsorption. In spite of 

this, Warman et al. [126] observed no influence on soil respiration even at high concentrations of 

CTC (50 mg/kg soil) in an investigation on ecotoxicity on soil microorganisms and neither Hund-

Rinke et al. [127] did find an influence of tetracycline on soil respiratory activity with concentrations 

up to 50 mg/kg soil.  

Thiele-Bruhn and Beck [136] considered that the effective doses and concentrations of antibiotics are 

lower than those reported from other organic pollutants, which documents the ecotoxic relevance of 

the antibiotics. In their experiments the microbial inhibition varied among antibiotics and soils and 

was influenced by the susceptibility and activity of the microbial community in the soil, the soil 

sorptive properties, and the intrinsic toxicity of the antibiotics. Consequently the effects of different 

antibiotics in different soils are depending on various factors and difficult to predict. Presently, there 

is a basic lack of information concerning the effects of sulfadiazine on soil microorganisms, their 

function, diversity or resistance. While some studies described the effects on selected bacteria [128] 

only a few investigations have shown that antibiotics inhibit soil microorganisms [139, 140]. 

 

 

2.1.7 Legal Regulations for veterinary pharmaceuticals  

 
Since 1992 the assessment of environmental effects of veterinary products is required prior to the 

marketing of new pharmaceutical products. According to the relevant directives (the Directive 

81/852/European Economic Council (EEC) and 92/18/EEC are today replaced by Directive 

2001/82/EC) [199]. These directives have been implemented in the national legislations of the 

Member States. Comparable with industrial chemicals and biocides it is necessary to explore the 
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properties of these substances, the exposure routes, the environmental fate and ecotoxicity to assess 

the risk.  

Thus, the environmental risk assessment consists of two phases. The first phase assesses the 

exposure of the drug to the environment. In the second phase, information about the 

physical/chemical, pharmacological and/or toxicological properties are obtained and assessed in 

relation to the extent of the environment exposure. All tests have to be performed under GLP quality 

standard. It is described as a practical guidance by the Committee for Veterinary Medicinal Products 

[225]. 

There are no regulations or requirements concerning the environmental properties or potential effects 

of existing “old” pharmaceuticals but also they can directly affect microorganisms and assessing 

their functionality. The “old” pharmaceuticals are defined as those pharmaceuticals registered 

between 1978 and 1998. From this group for example tetracyclines and sulfonamides may have a 

potential risk and investigations on the environmental effects of these antibiotics are therefore 

necessary.  

 

 

2.1.8 Characterisation of selected antibiotics 

 

2.1.8.1 Sulfonamides 

In 1932, Gerhard Domagk discovered the antibacterial effect of Sulfachrysoidin, one azo dye called 

Prontosil rubrum, on Streptococcus bacteria [102]. In 1935, the parent compound sulphanilamide 

became the first clinically effective antibacterial agent. The p-amino group is essential for activity, 

but modifications at the sulfonic acid side chain have produced many related agents.  

Sulfonamides have a selective toxicity on bacteria as they act in competition with para-amino 

benzoic acid (PABA) for the active site of dihydropteroate synthetase, an enzyme that catalyzes an 

essential reaction in the synthetic pathway of tetrahydrofolic acid (THFA), which is required for the 

synthesis of purines and pyrimidines and therefore for nucleic acid synthesis (see figure 3). 

The selective toxicity depends on the fact that many bacteria synthesize THFA, whereas human cells 

lack this capacity and depend on an exogenous supply of folic acid. Bacteria that can use preformed 

folic acid are similarly unaffected by sulfonamides.  
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Sulfonamides have an effect against some Gram-positive and Gram-negative bacteria and the activity 

spectrum is very broad. They are very efficient against Streptococci, Pneumococci, Actinomyzetae, 

Nocardieae, Chlamydia, E. coli, Salmonella, Shigella. In addition sulfonamides have also an affect 

on some Protozoa e.g. Toxoplasma gondii or Plasmodia.  

To this class of potentiated sulfonamides that frequently are applied in livestock husbandry belongs 

Sulfadiazine (N-[2-pyrimidinyl]-sulfanilamide) [16]. Sulfadiazine (SDZ) is used for skin infections 

or as a general antibiotic when the actual identity of the infecting organism is not known.  

The structural formula of sulfadiazine is shown in figure 4. 
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Figure 3. 

Sulfonamides and trimethoprim inhibit in series the steps in the synthesis of tetrahydrofolic acid by 

interacting with key enzymes in the pathway according to Mims [100]. 
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Figure 4. 

Chemical structure of sulfadiazine. 

 

 

The sulfonamides are metabolised in the human body as a detoxification step through N-4-

acetylation or oxidation. The acetyl metabolites are not bacteriostatic, besides, they are better soluble 

and less toxic as the parent compound [101]. 

After excretion metabolites can even be transformed back in to the original active drug [94]. Berger 

et al. [95] reported that N-4-acetylated sulfamethazine was converted to sulfamethazine in liquid 

manure. 

Beside acetyl-sulfadiazine (acetyl-SDZ) other sulfadiazine metabolites are known. In the urine from 

rhesus monkeys treated with SDZ, the presence of five metabolites of SDZ was revealed: N4-acetyl-

sulfadiazine, 4-OH-sulfadiazine, 5-OH-sulfadiazine, 5-OH-glucuronide sulfadiazine and 5-OH-

sulfate sulfadiazine. The last three 5-OH metabolites have not been found in humans [116]. Very 

little is known on the occurrence and fate of SDZ metabolites in soil or manure. Haller et al. [14] 

could quantify SDZ and the metabolite acetyl-SDZ in animal manure. Pfeifer et al. [80] examined 

the structural characterization of sulfadiazine metabolites in pig manure and found in addition to 

acetyl-SDZ 4-hydroxysulfadiazine as the major metabolites and a third unknown minor metabolite 

with the mass 295 m/z.  

In a study on sorption and transport of SDZ Wehrhan [232] found acetyl-SDZ and hydroxyl-SDZ, 

together with a third unknown metabolite after contact of SDZ to soil.    

 

 

2.1.8.2 Tetracyclines 

Tetracycline was first synthesized by Lloyd Conover working for Pfizer Inc. and was patented in 

1955. Within three years it became the best selling antibiotic in the U.S.A. Tetracyclines are a family 

of large cyclic-structures that have several sites for possible chemical substitutions. Tetracyclines 
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inhibit protein synthesis by preventing aminoacyl transfer RNA from entering the acceptor sites on 

the ribosome.  

Tetracyclines are easily distributed in the body and penetrate host cells to inhibit intercellular 

bacteria.  

They are antibiotics with a broad antibacterial spectrum and bacteriostatic activity, and have a good 

activity against acute diseases caused by Gram-positive and Gram-negative bacteria. In veterinary 

medicine they are routinely used for prevention and control of disease of food-producing animals 

[107, 109]. Among others they are used in the treatment of infections caused by mycoplasmas, 

chlamydia by some respiratory infections, urinary infections or systemic infections [100, 104, 105]. 

Administration of these antibiotics results in healthier and faster-growing animals. 

Chlortetracycline (CTC) is the oldest member of the tetracycline group or antibiotics. It is obtained 

through anaerobic fermentation of Streptomyces aureofaciens and is prepared industrially by bulk 

fermentation [109]. The chemistry of tetracyclines is complex. The structural formula of CTC is 

shown in figure 5. 

 

 
Figure 5. 

Chemical structure of chlortetracycline. 

 

Tetracyclines are well known to form chelate complexes with metal ions and to bind to proteins and 

silanol groups [1]. They build willingly complexes with Mg2+ und Ca2+ ions. Especially stable are 

trivalent aluminium- and iron-complexes [164]. Sithole et al. [119] suggested that tetracycline 

interaction with soil organic matter occurs as a result of binding to divalent cations, ion exchange 

interactions and hydrogen bonding between acidic groups in humic acids and polar groups on 

tetracycline. Tolls [164] described that sorption of tetracycline appears to be strongly related to the 

particle size of the solids, which in turn is related to the specific surface. Jones et al. [118] showed 

cation exchange with clay minerals, and surface complexation to soil iron and aluminium oxides. 

Hamscher et al. [1] have shown that tetracyclines are sorbed and accumulated in agricultural soils 
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amended with antibiotic-contaminated manure. Höper et al. [69] also noted that tetracyclines are 

very sorptiv. Those different effects reduce the antibacterial effect of tetracycline. Lunestad et al. 

[120] presented the reduction in the antibacterial effect of oxytetracycline in sea water by the 

formation of complexes with magnesium and calcium.  

Also for CTC many metabolites are known. Most investigations and effects of CTC in environmental 

samples are restricted to the parent substance and not to the metabolites.  

 

 
2.2 Soil microbiology and analysis of microbial community 
 
Soil microbiology is defined as a discipline that describes the fate, activity, number and interactions 

of microorganisms present in soil and how they are affected by their environment [178]. Soil 

microorganisms can be involved in plant-pathogenic reactions, as well as in biological 

transformations of xenobiotic compounds added to soil. Soil also represents a natural reservoir of 

genetic information and soil organisms, many of which are unculturable and hence unknown. 

Different methods are known to assess soil microbial populations (communities). In Domsch et al. 

[180] 15 of these methods for soil microbial population and biomass studies were compared 

including direct observations, physiological methods like total microbial, bacterial and fungal 

biomasses, O2 uptake, soil enzyme analyses and ATP-analyses. The authors concluded that such 

methods are of limited use in general soil ecosystem studies.  

Additional methods for the estimation of microbial activities, as for example dimethyl sulphoxide 

reduction (DMSO), soil respiration or aerobic biodegradation of 14C-labelled organic matter in soils 

are described in Alef [90]. 

In recent years new techniques have become available for the measurement of bacterial diversity and 

community structure. The molecular methods based on recovery of community DNA from soil offers 

a great potential for the investigation of the nonculturable part of complex microbial communities 

[183].  

A number of recent publication analysed and described molecular biological methods for the 

determination of changes in the microbial community in environmental samples [111, 208, 209, 210, 

211, 212, 213], other compare the diversity of the cultivable bacteria with the diversity of the total 

bacterial population [200, 211, 214]. Only few studies consider the use of both bulk community 

reactions and microbial community structure analysis to examine the effects of some antibiotic: 

tylosine [181] and TCY [127]. Up to now only a few studies are concerned with the influence of 

antibiotics on soil microbial community using molecular biological methods [136, 181, 183, 184]. 

The antibiotic substances sulfapyridine and OTC exerted a selective pressure on soil microbial 
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community in form of a shift from soil bacteria to soil fungi [136], the addition of tylosin to soil led 

to a permanent change in the bacterial community structure [183], and addition of 

sulfachloropyridazine resulted in small changes in the community level profile [184]. In contrast, the 

addition of TCY had no influence on the composition of phospholipids fatty acids [127]. Mueller et 

al. [181] investigated the effect of antibiotic tylosin on soil bacterial community with denaturing 

gradient gel electrophoresis (DGGE) analysis. A small difference in the diversity of 16 S rDNA of 

the samples compared to the control soil was found. The author concluded that there is no method 

currently available for exploring the whole bacterial community in one analysis, but that a 

combination of methods is necessary to obtain a detailed view of its structure and diversity. 

The objective of current study was to investigate the impact of SDZ and CTC on the bacterial 

community in soil and to compare these effects to those obtained with the measurements of 

microbial respiratory activity. Changes in the bacterial community structure were visualized by 

changes in patterns of DGGE.  

 

 

2.2.1 Molecular biological methods 

 
In the past, studies on the diversity of natural microbial populations have been restricted to culturable 

microorganisms. However, for at least half a century it has been known that the major part of the 

structurally intact bacterial cells in soil appears to lack the capacity to grow on standard laboratory 

media [178]. Therefore, the understanding and knowledge of the dynamics of natural microbial 

communities have remained limited because only a minor fraction of all cells in natural ecosystems 

is accessible to cultivation techniques. Only recently methods for direct extraction of nucleic acids 

from different environmental samples became available, allowing a cultivation-independent analysis 

of microbial communities. Nowadays, the isolation and analysis of DNA is a powerful approach with 

in soil and environmental microbiology.  

The 16S ribosomal DNA (rDNA) exists in all bacteria and contain the highly and less conserved 

primary and higher order structure elements. The more conserved regions occur in all organisms and 

report on earlier events during evolution and the less (variable) positions carry the information from 

lower levels of phylogenetic relationships [185, 218]. For this reason one of the most commonly 

applied molecular techniques in environmental microbiology during recent years has been the 

phylogenetic analysis of 16S rDNA gene sequences amplified by PCR from DNA or RNA extracted 

from samples of soil, water, or sediments [219]. The rDNA genes can be PCR-amplified directly 

from community DNA using so-called universal 16S rDNA primers [219, 220]. To determine the 
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community structure of microbial communities among the sequences of DNA fragments denaturing 

gradient gel electrophoresis (DGGE) [221], temperature gradient gel electrophoresis (TGGE) [179, 

211], ribosomal intergenic spacer-analysis (RISA) [224], and different other approaches can be used. 

An overview of these approaches has been given by Pedrós-Alió [227].  

A DGGE analysis of PCR-amplified 16S rDNA fragments is a relative fast and simple method for 

microbial ecological studies to obtain the genetic “fingerprints” of the microbiological population. 

This analysis provides a direct outline of the community composition in both a quantitative and 

semi-quantitative way. This makes it an excellent approach not only for the analysis of the genetic 

diversity of mixed microbial communities, but also in order to study population dynamics [226]. This 

makes the technique a powerful tool for monitoring community behaviour after environmental 

changes in mixed bacterial populations over time [223]. 

 

2.2.1.1 Structural analysis of soil microbial communities by denaturing gradient gel electrophoresis 

(DGGE) 

Gradient gel electrophoresis was originally developed and used in medical research to detect point 

mutations. Since Muyzer et al. [221] applied this method to environmental microorganisms, analyses 

of microbial communities using DGGE have become increasingly popular.  

DGGE is based on the electrophoresis of PCR-amplified 16S rDNA fragments in polyacrylamide 

gels. DNA fragments of the same length but of different sequences can be separated according to 

their melting properties. DNA is electrophoresed through a linearly increasing gradient of 

denaturants; the fragments remain double-stranded until they reach the conditions that cause melting 

of the lower temperature melting domains. Branching of the molecule caused by partial melting of 

the regions with low melting temperature sharply decreases the mobility of the DNA fragments in 

the gel. A GC-clamp (40-45 bases GC-rich sequence) attached to the 5’end of the forward primer 

prevents the complete melting of the PCR product. With DGGE, double-stranded DNA is separated 

in a linearly increasing denaturing gradient of urea and formamide at elevated temperature. The 

banding pattern visible after staining reflects the different melting behaviour of the DNA sequences 

amplified from mixed communities. For the optimal separation of the different products different 

condition how temperature, time, gradient conditions should be adjusted [179]. 
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2.2.1.2 Diversity Index 

The results of the differences in the bacterial community after the addition of a bacterial with and 

without antibiotics were evaluated by determining the Shannon-Wiener index, which is calculated as 

ppH
s

i

i ln'
1

∑
=

−=  

Where pi is the proportion of the total intensity accounted by the ith band and ln is the natural 

logarithm. Evenness (E) is calculated as E=H’/ln S, where S is the richness or total number of bands. 

Among a variety of different diversity indices, the Shannon index is one of the most widely used, 

although it has to be taken into account, that this index requires clearly defined species and a distinct 

identification of individuals, requirements that are not met when dealing with bacteria. Estimation of 

the Shannon index provides composite values for the number and distribution of morphotypes, 

DGGE bands, and substrates utilized that represent different aspects of bacterial diversity.  

 

 

2.2.2 Soil respiration 

 
Soil respiration is one of the oldest and still the most frequently used parameter for quantifying 

microbial activities in soils [90]. A bacterial population, also complex, can be tested e.g. in 

respiration inhibition test [142].  

The basal respiration is defined as the respiration without the addition of an organic substrate to soil. 

Substrate-induced respiration (SIR) is the soil respiration measured in the presence of an added 

substrate such as glucose, amino acids, etc. [90]. The activity of the soil bacteria can be estimated by 

measuring the CO2 production and/or O2 consumption with different techniques as e.g. incubation of 

soils in jars, adsorption the CO2 in NaOH and titration by HCl or estimation of O2 uptake in e.g. an 

apparatus called “Sapromat”. Some additional methods are described by Alef [90].  

Respiration methods are used to measure microbial activity in soil, studying different effects of 

biological processes in soils, often used for assessment of the side effects of chemicals such as 

pesticides and heavy metals [90, 202, and 203]. 

However, some papers describe the use of respirometry to study the effects of antibiotics. In a 

lysimeter study, Hund-Rinke et al. [127] investigated the potential effects of tetracycline on the soil 

microflora after application of manure containing tetracycline. 

The suitability of the respiration method to study effects of antibiotics was tested by Vaclavik et al. 

[135] who described this method as simple, fast, cost-effective and characterized it as suitable and 

stable for use.  
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2.2.3 Growth inhibition  

 
Originally the Microbial Inhibition Test (MIT) was used for the detection of bacterial sensitivity. 

MIT was developed already 1952 for milk (B. subtilis). It based on the detection of growth inhibition 

of various sensitive bacterial strains and in the clinical medicine based on microbial agar diffusion 

tests. The basic microbial inhibition assay involves a standard culture of a test organism, usually 

Bacillus stearothermophilus, Bacillus subtilis, Bacillus cereus and others. These are seeded in an 

agar or liquid growth medium which is then inoculated with milk or urine for example and incubated 

for periods of up to several hours. Samples can be applied directly to the medium or on a filter paper 

disk impregnated with liquid sample. During incubation the liquid diffuses into the medium and if 

the sample contains sufficient concentrations of inhibitory substances the growth of the indicator 

organism will be reduced or inhibited. Depending on the format of the test the presence of an 

inhibitory substance is indicated by zones of growth inhibition [176]. 

For environmental samples the antibiotic resistance can be determined using the agar diffusion test as 

described by Smalla, Niemi, Kresken and Schwartz [192, 193, 195, 196], minimal inhibitory 

concentration (MIC) test described by Stock and Wiedemann [194] and by Kresken and Hafner [195] 

or with a microdilution test system used by Kresken and Hafner [195].  

Only a few studies described the effects of sulfonamides or tetracyclines in the environment with the 

growth inhibition test, for example Samuelsen et al. [60] found no change in the antibacterial activity 

of SDZ-treated sediments after 6 months but they activity of OTC was lost already after 1 month.  

Hund-Rinke et al. [127] investigated the influence of TCY in soil. They studied the function and 

structure of the biocoenosis as well as the distribution of resistance genes. The results showed that 

the establishment of resistance genes was independent from the addition of tetracycline to the soil 

and no effects in the growth inhibition test could be revealed.  

 

 

2.3 Chemical analysis of sulfonamides and tetracyclines in environmental samples 

 
The determination of traces of organic substances in environmental samples usually requires 

following steps: extraction or enrichment of the substance, clean-up, chromatographic separation and 

detection. From the many techniques known, the choice of a method is dependent on the matrix and 

physicochemical properties of a substance. 

Many publications describe methods for the determination of sulfonamides in non-environmental 

samples [18, 22, 53-59] in particular in food or feed. For environmental samples water and waste 
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water are the principal matrices. However, during the last years methods for the determination of 

antibiotics in soil and manure gain in importance (see table 4 in section “chromatography and 

detection”).  

The first application of LC-MS for the analysis of sulfonamides dates from 1982 and reports on the 

detection of residues in urine und plasma from racehorses as described by Niessen [68] in his review 

on the analysis of antibiotic and antibacterial compounds. For environmental samples LC-MS was 

not used for analysis of antibiotics. According to Höper [69] no selective and sensitive analytical 

method for determination of antibiotics residues in complex matrices such as manure, soil or seepage 

existed before 1999. First protocols for the application of LCMS for antibiotic analysis in 

environmental matrices were developed for the determination of tetracycline by the Hamscher group 

[1].  

Based on available information in the literature a variety of methods has been proposed for the 

analysis of tetracycline in biological matrices [106]. Also in the food- or feed samples the HPLC 

methodology has been applied increasingly. However, the poor recoveries necessitate an 

improvement of existing methods. Recently Hamscher et al. [1, 186] described an improved method 

for the determination of persistent tetracycline residues in soil. In 2005 a few reports on the 

quantification of tetracycline in soil were published [122, 123]. The obtained recoveries in these 

studies varied between 33.0 – 75.9% and were concentration and soil dependent. The chemistry of 

tetracycline is very complex, due to the fact that the molecule is capable of a wide range of chemical 

reactions.  

Because a methodology for the determination of tetracycline was not available at the start of the 

present study the analysis of CTC was set aside. 

The following sections will treat in more details the extraction and chromatographic separation as 

well as the detection of sulfonamides known from literature and points out the open questions which 

were the basis for the analytical experiments in this thesis. 
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2.3.1 Extraction 

 
2.3.1.1 Basics of extraction 

Environmental samples are mostly not suitable for direct analysis. They are either too diluted (water) 

or too complex (soil, manure). For this reason sample preparation e.g. extraction is a very important 

step.  

A number of techniques have been developed to improve some important criteria such as 

automatisation of the extraction technique, reducing the sample preparation time, reducing the 

solvent consumption and cutting the costs. Poole and Poole [48] described such techniques e.g., 

MAE (microwave solvent extraction), PLE (pressurised liquid extraction) or SFE (supercritical fluid 

extraction). PLE-based methods have the advantage over MAE that no additional filtration step is 

required. As soil is a complex matrix, exhaustive extraction is important to obtain high recovery 

rates. 

The clean-up steps were simplified, because of the cleaner extracts provided by the modern 

extraction techniques. The high specificity of LC-MS/MS makes it possible to minimise clean-up 

procedures, and even a new trend is noticeable: no sample clean-up at all, possibly achieved by 

dilution [14, 51, 60, 65]. 

For the extraction of sulfonamides from environmental samples conventional liquid extraction is 

often used [14, 16, 17, 21, 23]. However, in the last years the new extraction technique PLE was 

increasingly used [3, 10, 25, 27, 75]. No reports could be found on the use of MAE as another 

modern and possibly advantageous extraction technique.  

Some publications compared modern extraction techniques with classical methods, e.g. Soxhlet [32, 

38, 43, 47, 48, 50, 52] and comparable efficiencies with acceptable reproducibility have been 

reported. 

Poole and Poole [48] wrote about the modern extractions techniques: “The initial capital costs are 

high compared with conventional solvent extraction approaches, and although this will be paid back 

over time through a higher level of automation and sample throughput, for some the ‘sticker shock’ 

factor has resulted in a conservative wait-and-see attitude…In any case, hot solvent extraction in the 

form of MASE, ASE or SFE…are about establish themselves as the main tools for extracting solid 

environmental samples as we move into the next millennium”. 

For those reasons PLE and MAE and not the traditional sample preparation techniques were used 

and compared in the present work. The extraction solvent must be able to solubilise the analytes 

from the matrix and minimise the co-extraction of other matrix components. The compatibility with 

the later treatment steps of such analytical technique is necessary [39]. 
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Mixtures of low- and high-polar solvents generally provide more efficient extractions than single 

solvents if analytes with a wide range of polarities are extracted [39]. 

The choice of the solvent is an important step in the extraction procedure and dependent on the 

analyte or analyte-mix. With more than one analyte a compromise has to be found. The best solvent 

for sulfadiazine is not the most suitable one for the whole sulfonamides group. The most common 

extraction solvent described in the literature for sulfonamides group is ethyl acetate and ethyl acetate 

with additives [14, 17, 16, 23]. Other authors prefer methanol/water [10, 25], methanol and citric 

acid [3] or acetonitrile [21]. For the multi-residue method the most efficient extraction solvent 

mixture was water/methanol (50:50, v/v). Pure solvents are used very seldom. 

The liquid-liquid extraction is realized mostly at room temperature. With PLE and MAE a high 

temperature increases the rate and extent of extraction. The reason is an increase in analyte solubility 

and a weakening of analyte-matrix interactions. In addition it allows fast and more complete 

extractions with a smaller solvent volume. The most common extraction temperature using PLE is 

100 °C [10, 25] or 80 °C [27].  

 

2.3.1.2 Extraction with superheated water (SWE) 

In 2002 Smith [78] reported in a review on the extractions with superheated water. Water as a non-

toxic and inexpensive solvent could be the new choice in the extraction procedure. He showed the 

application of SWE for the determination of alkylbenzenes, PAHs and PCBs in environmental 

samples with extraction temperatures between 50°C to 450°C, but mostly at about 200 °C. So far, 

there have been no reports of the applications of SWE in pharmaceutical analysis. The hot-water 

extraction procedure may be the method of choice for the liberation and quantification of extractable 

and probably bioavailable SDZ from soil. In the current work a few SWE were used to get an idea on 

the extraction power.  

 

2.3.1.3 Pressurised liquid extraction (PLE) 

Pressurised liquid extraction is also called accelerated solvent extraction (ASE). Until 2000, the most 

frequently used term was ASE. The Dionex Corporation (Sunnyvale, CA, USA) developed and 

commercialised the technique by introducing an extraction unit, ASE™ 200, that is used by many 

laboratories world-wide. The American Chemical Society has introduced the abbreviation PFE 

(pressurised fluid extraction) in their journals. PFE is also used by the US Environmental Protection 

Agency in their EPA Method 3545 [38]. Another term for PLE is PSE (pressurised solvent 

extraction). Most of the applications reported in the literature were performed with a Dionex ASE 

200, until now the only commercially available PLE system [37]. 
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Originally, the use of PLE was mainly focused on the extraction of environmental pollutants present 

in soil matrices, sediments, and sewage sludge [37, 38, 78]. Nowadays the ASE 200 is used not only 

in environmental analysis, but also in food analysis and synthetic material analysis and is a good 

alternative to the classical extraction techniques [40].  

PLE is a technique with short extraction times and low solvent consumption and is totally automated. 

With this system, a solid sample is enclosed in a sample steel cartridge with a stainless steel frit at 

the outlet that is filled with an extraction fluid and used to statically extract the sample under 

elevated temperature and pressure conditions for short time periods. Compressed gas is used to purge 

the sample extract from the cell into a collection vessel.  

With the ASE 200 system pressures up to 200 bar and temperatures up to 200°C can be applied and 

up to 24 samples can be extracted automatically. 

PLE is also described in the literature as a good extraction tool for pharmaceuticals in soil by 

Schlüsener et al. [27], Christian et al. [10], and Jacobsen et at. [3] or for other substances in 

environmental matrices by Luque-Garcia et al. [28], Goebel et al. [25] and Otaka et al. [77].  

 

2.3.1.4 Microwave solvent extraction (MAE) 

Microwave solvent extraction is also known as Microwave-assisted solvent extraction (MASE). 

The first applications of MAE were performed using domestic microwave ovens in the late 1980s, 

later several articles described applications where commercial extractors were used. The first 

application was related to the determination of PAHs and PCBs from soils and sediments. Since 

then, several other compounds have been extracted efficiently. 

A lot of studies used MAE as an extraction technique in environmental and non environmental 

samples [32, 33, 34, 35, 36]. MAE has been successfully applied to the simultaneous extraction of 

toxic organic contaminants from different solid matrices, such as PAHs, PCBs, phenols and 

pesticides [34]. 
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Table 2. 

MAE as an extractions method in different compartments. 

  
Matrix Extracted substance Reference/Year 

Rubber Plasticizer from polyethylene and polystyrene, softeners from 

PVC and other additives 

[35] 2000 

Soil Carbamate pesticides [34] 2003 

Soil Phenols [32] 1998 

TCMP Tongmaichongji Bioactive constituents (danshensu, puerarin, ferulic acid) [33] 2004 

Soil, sediments, mussels PAHs, PCBs, triazine herbicides [36] 2000 

Soil Organ chlorine pesticides (BHC, DDE, Dildrin) [43] 2004 

Soil Chlorophenols  [44] 2002 

Fly Ash and Sea Sediments Polychlorinated Biphenyls and Polychlorinated Dibenzo-p-

Dioxins 

[45] 2003 

Soils, clays, sediments, sludges, 

solid wastes 

Chlorinated pesticides, PAHs, PCBs, Chlorinated herbicides, 

Phenols, Organ phosphorus pesticides and chlorinated herbicides, 

Dioxins and furans 

[46] 2000 

Sediments Short-chain chlorinated alkanes [52] 2004 

PVC polyvinyl chlorine; PAH polycyclic aromatic hydrocarbons; PCB polychlorinated biphenyl; 

TCMP traditional Chinese medicinal preparation; BHC 1,2,3,4,5,6-hexachloro cyclohexane;  

DDE 1,1-dichloro-2,2-bis(p-chloro phenyl)ethane) 

 

None of them was used for extraction of pharmaceuticals. The numerous applications of MAE for 

the determination of different substances in environmental matrices are given in table 2. 

MAE consists of heating a sample, mostly in liquid organic solvents with microwave energy. 

Microwave energy is a non-ionizing radiation that causes molecular motion by migration of ions and 

rotation of dipoles. The effect of microwave energy is strongly dependent on the nature of the 

solvent and the matrix. Camel [47] described the details of the principle of MAE, the effects of 

microwaves and the main applications of MAE to environmental samples. 

MAE is a technique similar as PLE with short extraction times and low solvent consumption.  

Although this technique is older than PLE, only a few studies compared the performances of PLE 

and MAE. In terms of extraction efficiency, both techniques were comparable for several pollutants 

from real contaminated soils [47]. Frost et al. [121] reported that PLE is less matrix-dependent than 

MAE. Camel [47] reported that MAE gives extraction efficiencies comparable to SFE and PLE, with 

similar extraction times. 
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2.3.2 Storage of samples and extracts  

 
The effects of storage of environmental samples on the determination of antibiotics are only 

sporadically described in the literature. For example manure samples were both frozen and stored at -

20 °C [14] or directly stored in the refrigerator at 4 °C [23]. Goebel et al. [25] freeze-dried sludge 

samples and stored them at -25 °C until analysis and Samuelsen et al. [60] kept their marine 

sediment samples until analysis at -20 °C.  

Hamscher et al. [17] and Schlüsener et al. [27] stored their soil samples in the dark at 4°C while in 

the work of Christian et al. [10] the soil samples were frozen without a temperature declaration. 

Little information is also found in the literature on the influence of storage of the extracts from the 

environmental samples, e.g. Sorensen et al. [21] reported, that SDZ extracts from marine sediment 

were stable for at least 14 days when stored at 5-7 °C and Hirsch et al. [4] stored the water extracts 

after enrichment at -20 °C. 

 

 

2.3.3 Chromatography and Detection 

 
The chromatographic separation of different substances can be done essentially with the help of 

HPLC (high performance liquid chromatography), GC (gas chromatography) or CE (capillary 

electrophoresis). Other techniques like thin layer chromatography is not very often used in the 

environmental analysis. In contrast to the very few methods published on the determination of 

sulfonamides in environmental matrices many methods have been described for the determination of 

residues of sulfonamides in animal tissues, feed and food (table 3). A review of several analytical 

strategies for the screening of veterinary drugs in edible products was presented by Aerts et al. [71] 

and Gentili [72] presented 11 current LC-ESI-MS-MS (electro spray ionisation ESI) methods from 

different authors for determining sulfonamides residues in different food matrices. In these methods 

various extraction and clean-up techniques are utilized. The most widely used technique for 

quantitative analysis is high performance liquid chromatography combined with mass spectrometric 

[18, 22, 53-59] or UV detection [22, 64- 66, 79]. 

Also GC-MS or GC-MS/MS after derivatisation were used for the determination of sulfonamides 

[61-63]. The chromatographic techniques allow quantitative multi-analyte determinations and 

compound identification. In spite of the high resolving power of gas chromatography, liquid 

chromatography is the method of choice for determination of antibiotics, which are rather polar (like 

sulfadiazine) and sometimes heat sensitive. 
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Instead of HPLC, some authors also used capillary electrophoresis coupled with MS [67].  

Thanks to improvements in analytical chemistry, many pharmaceutical compounds are more easily 

detected in the surface-water and waste-water environmental compartments [74]. 

The determination of pharmaceuticals in solid environmental matrices is not easy because these 

substances can be non-accessible due to sorption or biodegradation and in addition the very low 

concentrations make the detection difficult. 

In the last few years the LC-MS/MS technique became the method of choice for determination of 

pharmaceuticals in environmental matrices [3, 10, 14, 17, 21, 23, 25, 75]. HPLC-UV was used 

sometimes [15, 16, 79] and GC/MS was used for groundwater and sludge samples [24, 75]. A review 

on the environmental determination of pharmaceutical compounds is given by Beausse [74]. 

For the separation of the sulfonamides with HPLC, the RP (reversed phase mode) was used. In all 

methods described in table 4 RP-C18 columns were used. The column length, diameter (i.d.) and 

particle size are variable. In environmental analysis most columns used were 150-250 mm in length 

and 2 mm i.d. with a particle size from 3-5 µm, except for some that had a length of 100 or 125 mm. 

In modern MS analysis the trend goes to the short columns with 100-125 mm in length and a particle 

size of 3 µm [84].  

Analytical techniques and chromatographic properties for the determination of sulfonamides in 

environmental matrices are outlined in table 4. 
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Table 3. 

LCMS/MS methods for detection of sulfadiazine in biological matrices. 

 
 

Matrix 
API tandem 

MS-technique 
Mobile phase Recovery (%) 

LOD/LOQ 

µg/kg 

Reference 

Year 

SDZ Pig’s kidney ESI (+)- QqQ* MeOH 7%, ACN 8%, 0.01 

mol/L ammonium acetate in 

water 85%  

71-77 Not reported [53] 1994  

SDZ Milk ESI (+)- QqQ Water und ACN with 0.1% 

formic acid; gradient elution 

72-96 LOD: 0.1-1   [54]1996 

SDZ Liver and 

kidney 

tissues 

ESI (+)- QqQ MeOH/ ACN/0.05M formic 

acid (10/15/75) 

71-98 LOD: 30 [55]2000 

SDZ Kidney 

tissues 

ESI (+)- QqQ A: Water and 0.3% formic 

acid 

B: acetonitrile and 0.3% 

formic acid 

gradient elution 

78-82 LOD: 5-14 [56]2000 

SDZ Milk ESI (+)- QqQ A: acetonitrile 

B: 10 mM ammonium acetate 

(pH 3.5): 

gradient elution 

69-87 LOQ: 5-10 [57] 2001 

SDZ Honey ESI (+)- QqQ A: 0.3% formic acid and 5% 

acetonitrile in water 

B: 0.3% formic acid in pure 

acetonitrile: 

gradient elution 

44-73 LODs 

dependent on 

the different 

kind of honeys  

[58] 2002 

SDZ Eggs ESI (+)-

tandem ion 

trap MS 

A: 0.1% formic acid in water 

B: methanol: 

gradient elution 

83 LOC: 5-10 [59] 2002 

SDZ 

and 

other 

Bovine 

kidney 

ESI (+)- QqQ A: water with 0.3% formic 

acid 

B: acetonitrile with 0.3% 

formic acid: 

gradient elution 

80,82-85,14 

concentration 

dependent 

LOQ: 27 [18] 2000 

SDZ 

and 

TMP 

Animal feed 1) HPLC-UV 

2) LCMSMS   

APCI (+)-

QqQ) 

2) A: 1% acetic acid in water 

B: MeOH; isocratic elution 

70%A/30%B 

1) 30.6   

2) 20.4 

1) LOD 1160   

2) LOD 52 

[22] 2002 

*QqQ triple quadrupole 

API atmospheric pressure chemical ionisation; ESI electro spray ionisation 

LOD limit of detection; LOQ limit of quantification 
ACN acetonitrile; MeOH methanol 
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Table 4. 
Analytical methods for detection of sulfonamides in environmental matrices.  
(Abbreviations see table 3). 

 
 

Matrix Analytical 
technique Mobile phase for HPLC Extraction 

SDZ 
Recovery 
(%) 

LOD/L
OQ 
µg/kg 

Refere
nce 

SDZ and 
TMP 

Marine 
sediment 

LCMS/APCI 
(+)-MS 

Acetate buffer and 10% ACN; 
isocraically 

Liquid-liquid 
extraction with 
ACN 

72 For SDZ  
LOD 4 

[21] 
2002 

SDZ, 
AcSDZ 
and other 

Manure LCMS/APCI 
(+)-MS 

A: 5% ACN in water with 0.1% 
HCOOH and 1mM ammonium 
acetate 
B: 0.1% HCOOH in ACN 
gradient elution 

Liquid-liquid 
extraction with 
ethyl acetate 

80.5 LOQ 5 [23] 
2003 

SDZ and 
other 

Groundwater LCMS/ESI-
QqQ 

A: 20mM ammonium acetate in 
water 
B: 20mM ammonium acetate in 
ACN/MeOH 2:1 
gradient elution 

SPE Tap 
water: 25 
Surface 
water: 14 

LOD 
(ng/l) 9.1 

[24] 
2001 

SDZ and 
other 

Agricultural 
soils 

LCMS/MS 
ESI (+) QqQ 

Methanol with formic acid and 
water  

Citric acid and 
Methanol  
PLE  

48.5-85.8 
soil and 
concentrat
ion 
dependent 

LOQ: 1-
10  

[3] 
2004 

SDZ and 
other 

Animal 
manure 

LCMS/ESI (+) 
and ESI (-) 

A: water with 1mM ammonium 
acetate and acetic acid and 10% 
ACN 
B: CAN 
Gradient elution 

Liquid-liquid 
extraction with 
KOH and ethyl 
acetate 

47-80 
pH 
dependent 

LOQ: 
>100 

[14] 
2002 

SDZ, 
AcSDZ 

Environment
al water 
samples 

LCMS/MS Not reported Online SPE SPE 
recovery: 
91 

LOQ in 
nanopure 
water: 10 
ng/l 

[19] 
2003 

SDZ and 
other 

Soil and 
manure 

LCMS/MS  
Ion trap with 
ESI (+) 

A: 0.5% formic acid in water 
with 1mM ammonium acetate 
B: acetonitrile 
Gradient elution 

Liquid-liquid 
extraction with 
1mM citrate buffer 
and ethyl acetate 

Soil: 41.8 
Manure: 
89.9 

LOQ 
Soil: 5 
manure: 
50 

[17] 
2005 

SDZ Soil LCMS ESI (+) A: 0.05 M ammonium acetate 
with 0.05% acetic acid 
B: acetonitrile  
Gradient elution 

Liquid-liquid 
extraction with 
acetate buffer and 
ethyl acetate 

85 LOD: 20 [16] 
2005 

SDZ and 
other 

Municipal 
waste water 

LCMS/MS 
ESI (+)  
Quattro LC 
(quadrupole-
hexapole-
quadrupole) 

A: acetonitrile-water 3:97 with 
1% formid acid 
B: acetonitrile-water 75:25 with 
1% formid acid 
Gradient elution 

Enrichment with 
SPE 

SDZ: 49-
94 

0.8 µg/l [15] 
1999 

SDZ and 
other 

Sewage 
sludge 

ESI (+)- QqQ  1) MeOH/Water containing 1% 
formic acid; gradient elution  
2) (A) Water,10% ACN, 
ammonium acetate and (B) 80% 
ACN and 20% A; gradient 
elution 

PLE Water/MeOH 
50:50  

1) For 
SDZ 63 
2) For 
SDZ 83 
 

For SDZ 
LOQ: 4 

[25] 
2005 

SDZ and 
other  

Swine 
manure 

  PLE mixture of 
80% methanol with 
0.2 mol L−1 citric 
acid (pH 3) 

Concentra
tions 
dependent  
59–73% 

 [70] 
2006 

SDZ and 
Metaboli
tes 

Pig manure Turbo 
ionspray (+)- 
QqQ 

A: 5% ACN in water with 0.1% 
HCOOH and 1mM ammonium 
acetate 
B: 0.1% HCOOH in ACN 
gradient elution 

Liquid-liquid 
extraction with 
ethyl-acetate 

Not 
reported 
 
 

Not 
reported 

[80] 
2005 
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2.3.3.1 Mass spectrometry 
 
Combined liquid chromatography-mass spectrometry (LC-MS) was originally developed as an 

alternative to gas chromatography-mass spectrometry (GC-MS). The field of applications of LC-MS 

mainly regards the determination of thermo labile compounds. The development of this technology 

started in the early 1970s. The theoretical and historical considerations are described in the 

encyclopaedia of analytical science [85] as well as in textbooks on MS and LC-MS [86, 87]. 

The combination of liquid chromatography and tandem mass spectrometry allows unequivocal 

identification of traces of antibiotics and antibacterial agents in complex biological matrices [72]. 

The power of a mass spectrometer as chromatographic detector lies in its capacity to determine, by 

means of the molecular weight, the precursor ion and its products of fragmentation. The combination 

of LC with mass spectrometry allows, in addition a more definitive identification than with LC only, 

namely the quantitative determination of compounds that, because they belong to the same class, 

could not be fully resolved with chromatographic methods. The European Commission states in the 

Decision 2002/657/CE [73] that “methods based only on chromatographic analysis without the use 

of molecular spectrometric detection are not suitable for use as confirmatory methods”. 

The high selectivity and sensitivity of MS/MS allows analysis of more complex matrices and 

simplification of the sample preparation.  

The summary of MS and MS/MS methods with HPLC-coupling for the analysis of sulfonamides in 

environmental and non environmental samples is presented in tables 3 and 4. 

 

Ionisation/Ion sources 

During the last 30 years different ionisation techniques were developed and used: moving-belt 

interface, thermospray interface, and particle beam interface. Nowadays the atmospheric pressure 

ionisation (API) with atmospheric pressure chemical ionisation (APCI), atmospheric pressure photo 

ionisation (APPI) and electro spray ionisation (ESI) are successful in use.  

With API ionisation the ions are created and/or evaporated at atmospheric pressure outside the mass 

spectrometer (analyser) in the laboratory atmosphere in the ion source. The effluent from the HPLC 

is sprayed into the ion source [82]. 

 

Short characteristic of API sources: 

ESI: the ionisation occurs in the liquid phase (in the spray) where ions might already be present or 

are created by application of a high electrical potential (3-5 kV) to the sprayer tip. Evaporation of the 

liquid is assisted by pneumatic pressure and by heat. 
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APCI: the first step is the heat-assisted evaporation of the solvent followed by a cascade of ionization 

reactions in the gas phase (vapour). 

APPI: like APCI but photo ionisation is induced by means of a xenon lamp (10 eV). 

 

Table 5. 

Comparison of electrospray (ESI) with atmospheric pressure chemical ionisation (APCI.) 

 
            ESI             APCI 

• Ions formed by solution chemistry • Ions formed by gas phase chemistry 

• Good for thermally labile analytes • Good for volatile/thermally stable 

analytes 

• Good for polar analytes • Good for non-polar analytes 

• Good for large molecules • Good for small molecules 

 

The ESI and APCI are the most successful ionisation techniques. With these sources it is possible to 

ionize the whole range of compounds from apolar to polar. ESI and APCI interfaces are the sources 

of choice to promote the ionisation of antibiotics; they complement each other well with regards to 

polarity and molecular mass of analytes [72]. 

 

Mass analyzer 

Depending on the requirements (quantitative analysis, qualitative screening, structure determination) 

different mass analyzers are in use. 

The quadrupole (single Quad), quadrupole ion trap (IT) and time of flight (TOF) are the analysers 

used most for the LC coupling, either alone or combined to give tandem mass spectrometers as the 

triple quadropole (QqQ or Q1 Q2 Q3) and hybrid instruments, such as the quadrupole/time of flight 

(QqTOF), the quadrupole ion trap/time of flight (QITTOF) and the quadrupole/linear ion trap 

(QqQLIT). 

The quadrupole has been the most widely used instrument for low resolving power applications for 

nearly 30 years. In terms of sensitivity and linear range, QqQ currently offers the best available 

performance for quantitative determination. For further improvement of MS-MS methods, the 

QqTOF mass spectrometer and the QqQLIT mass analyzer might be very promising approaches [72]. 
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2.3.3.2 Quantification and selection of internal standards 

The quantification of the analytes is often very problematic due to matrix effects.  Components from 

the complex matrices can co-elute with an analyte and compete for ionization with analyte 

molecules.  

The quantification of an analyte can be done in different ways, e.g. external standardization, standard 

addition (add a defined amount of the same substance) or internal standard addition. The simplest 

method of choice is the external standardization (calibration curve). In this method the occurrence of 

matrix effects is not compensated. Compensation may be achieved with the use of an internal 

standard (ISTD). However, it is only effective if the ISTD is subject to the same type and extent of 

matrix effect as the analyte. The ISTD should co-elute with the analyte. The best ISTD for LC-MS is 

the stable isotopically labelled analyte or a chemically very close homolog of the analyte which co-

elutes with the analyte. Also standard addition is a possible quantification tool.  

In the literature on determination of SDZ in environmental matrices some authors used external 

calibration methods [17, 23] others described the internal standard method as the preferred method 

[14, 15, 19, 20, 25]. The different calibration methods and standards used in the different matrices 

are shown in more detail in table 6. 

 

Table 6. 

Calibration methods for sulfonamides in environmental matrices. 

 
Matrix Calibration method References/Year 

Sewage sludge Internal calibration curve with d4SMX as surrogate standard for all sulfonamides [25] 2005 

Soil and manure External standard calibration [17] 2005 

Soil Internal standard calibration with chloridazone [20] 2005 

Municipal waste water Internal standard calibration with sulphaphenazole [15] 1999 

Manure External standard calibration [23] 2003 

Animal manure Internal standard calibration with sulfamethazine-phenyl-13C6 for all sulfonamides [14] 2002 

Environmental water Internal standard calibration with isotope labelled sulfonamides for almost each 

analyte (sulfonamides) 

[19] 2003 
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3. Materials and Methods 
 

 

3.1 Microbiological methods 

 

3.1.1 Design of the microcosm experiments 

 
Microcosms were spiked with two different pharmaceuticals. In experiment I the influence of 

sulfadiazine (SDZ) and in experiment II the influence of chlortetracycline (CTC) as chlortetracycline 

hydrochloride on the orthic luvisol soil (see section “Characterising the types of soil used in the 

microcosm experiments”) bacterial community structure and respiration was studied. Parallel to 

experiment I an experiment Ia with the gleyic cambisol was started. Both experiments (I and Ia) were 

used for the chemical analysis of sulfadiazine (and acetyl-sulfadiazine) during the incubation.   

  

Experiment I and Ia with sulfadiazine (SDZ) 

• Soil with annealed soil as control 

• Soil with annealed soil and glucose (5 g/kg soil) 

• Soil with annealed soil + 1 mg/kg SDZ 

• Soil with annealed soil + 10 mg/kg SDZ 

• Soil with annealed soil + 50 mg/kg SDZ 

• Soil with annealed soil and glucose + 1 mg/kg SDZ 

• Soil with annealed soil and glucose + 10 mg/kg SDZ 

• Soil with annealed soil and glucose + 50 mg/kg SDZ 

 

Experiment II with chlortetracycline (CTC) 

• Soil with annealed soil as control 

• Soil with annealed soil and glucose (5 g/kg soil) 

• Soil with annealed soil + 1 mg/kg CTC 

• Soil with annealed soil + 10 mg/kg CTC 

• Soil with annealed soil + 50 mg/kg CTC 

• Soil with annealed soil and glucose + 1 mg/kg CTC  

• Soil with annealed soil and glucose + 10 mg/kg CTC  

• Soil with annealed soil and glucose + 50 mg/kg CTC  
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Samples for microbial and chemical analysis were taken over a period of 64 days (some chemical 

analysis over 106 days).  

 

3.1.1.1 Characterising the types of soil used in the microcosm experiments 

The microcosm-experiments were carried out using two types of soil, a loamy sand and a sandy 

loam. The sandy loam is a typical orthic luvisol from the experimental test-site  

„Im Brühl“, Jülich/Merzenhausen in Northrhine-Westfalia (NRW), Germany. 

The loamy sand is a gleyic cambisol from the test-site Kaldenkirchen-Hülst, NRW, Germany. 

Both soils were used as natural soils, as annealed soil (heat treated at 600 °C for 48 hours) or after 

sterilisation with gamma radiation (14 h with 2.5 kGy/h or a total dosis of 35 kGy). 

The results of the physicochemical characterisation of both soils [41, 42] done by the 

Landwirtschaftliche Untersuchungs- und Forschungsanstalt (LUFA) Bonn and the Institut für 

Bodenkunde der Rheinischen Friedrich-Wilhelms-Universität Bonn are shown in table 7. 

 

Table 7.  

Physico-chemical characterisation on the soils from the two test-sites (means of two parallel 

measurements). 

 
 Orthic luvisol Gleyic cambisol 
   

pH (CaCl2) 7.0 5.35 

WHCmax[%] 45.8 27.42 

C [%] 0.92 0.99 

Total N [%] 0.081 0.06 

Sand, total [%] 3.3 73.3 

Sand, coarse [%] 0.5 1.8 

Sand, middle [%] 1.0 25.2 

Sand, fine [%] 1.8 46.3 

Silt , total [%] 80.6 23.1 

Silt, coarse [%] 56.5 17.9 

Silt, middle [%] 19.9 3.6 

Silt, fine [%] 4.2 1.7 

Clay [%] 16.1 3.6 
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3.1.1.2 Field sampling and microcosms experiments 

10 soil cores (Ø 30 mm) were taken randomly from the soil surface to 30 cm depth. The upper 5 cm 

were discarded and the remaining cores were mixed and sieved (< 2 mm). 

The microcosms consisted of 221 g of moist soil (200 g dry weight) in sterilised Erlenmeyer flasks. 

Antibiotics and glucose as additional carbon source (5 g/kg) were mixed with 10 g annealed soil. The 

annealed soil was blended with the moist soil to obtain homogeneously distributed final 

concentrations 1, 10 and 50 mg/kg soil (dw) of antibiotic.  

Soil moisture was adjusted to 40% of the maximum WHC with sterilised water. 

All microcosms (Erlenmeyer flasks) were plugged with sterilised cellulose, covered with aluminium 

foil and incubated at 20 °C in the dark. Soil moisture was regularly checked by weighing and 

deionised water was added if necessary. 

Soil samples were taken from the microcosms at different times (for example 1, 7, 14, 48 days) in 

order to obtain a representative sample from the microcosms at each sampling.  

5 samples of soil were taken randomly from different sites of the microcosm to obtain a sample of 

approximately 10 g and mixed well. An aliquot of 500 g was taken for DNA extraction and 5 g for 

the chemical analysis. The chemical- and DNA extraction from this soil was taken either within the 

same day or the samples were collected and stored at – 20 °C until further processing. All microcosm 

experiments were done in duplicate. 

 

 

3.1.2 Determination of water content in the soil samples 

 
The determination of water content in the soil samples was carried out gravimetrically following the 

method of Forster [90].  

About 10 g of field-moist soil was dried overnight at 105 °C in an open container and cooled down 

for 1 hour in an exsiccator before weighing. 

 

 

3.1.3 Isolation of bacteria 

 
For the extraction of bacteria from soil 0.5 g sieved soil was suspended in 1.7 ml sterile Ringer 

solution (1/4 strength), and ground for 1 min. in a Mikro-Dismembrator S (B. Braun Biotech 

International, Melsungen, Germany) at 2500 rev/min. After centrifugation (2 min, 500g), the 

supernatant was diluted in decadal steps and plated onto Mueller-Hinton agar. Morphologically 
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different colonies were subcultured in 10-1 Standard 1 nutrient broth and plated again. Isolates 

obtained this way were considered as pure cultures when PCR products (universal primers see 

below) had only one band in DGGE. The bacterial isolates were tested for susceptibility against SDZ 

and CTC in agar diffusion disc tests. 

 

 

3.1.4 Agar diffusion disc test 

 
The agar diffusion test was carried out according to the German DIN 58940 standard [197]. In this 

test, small filter paper disks (Ø 6 mm) were impregnated with antibiotic solution (10 µl each, in 

duplicating concentrations from 0.25 to 32 ml/l and for SDZ additionally 64 ml/l). The soil bacteria 

isolates were spread on Mueller-Hinton agar. The disks were placed onto agar surfaces containing a 

lawn of the test organisms. After 48 h of incubation at room temperature the diameters of the 

inhibition zones were measured, including the diameter of the disk. Strains were considered 

susceptible when growth inhibition zones were >10 mm at the highest concentration (32 mg/l). 

Smaller zones (<10 mm) indicated a weak inhibition. If no inhibition zone was detectable, strains 

were considered to be resistant. 

 

3.1.4.1 Bioavailability of CTC in soil slurry 

Due to negative respiratory activity of CTC (no changes) in soil but good results in the growth 

inhibition test (concentration dependant growth inhibition) the bioavailability of CTC in soil slurries 

was tested.  

In a separate experiment, the bioavailable fractions of CTC were determined using aqueous 

supernatants obtained from soil slurries of different concentrations (2, 10, 100 g soil in 100 ml milli 

Q-water) and after different incubation intervals (1, 2, 5, 10 min). The soil slurries were stirred and 

CTC was added to give final concentrations of 50 mg/l. Samples were taken after the respective time 

intervals and centrifuged (1 min, 10000g). The growth inhibition potentials of the supernatants were 

tested with the most CTC-sensitive soil bacterial isolate selected from the disc diffusion assays. The 

antimicrobial effective concentrations of CTC in the supernatants were calculated from a calibration 

curve obtained with standard CTC solutions (0.25-32 mg/l). The experiment was performed in 

duplicate.  
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3.1.5 Poured plate method 

 
Soil bacteria were extracted from 0.5 g sieved soil as described above. After centrifugation (2 min, 

500 g), the supernatant was diluted in decadal steps. 1 ml of the soil bacteria solution obtained this 

way was pipetted into a Petri dish with agar (Mueller-Hinton agar) containing antibiotic substances. 

The dishes were incubated at room temperature. The colonies having grown on the plates with 

different antibiotics concentrations were counted and photographed with the control plate (without 

antibiotics) after 48 h. 

The agar solution was prepared according to the manufacturer’s instructions. To the agar being still 

liquid at 40-45 °C the SDZ or CTC solutions were added. The final antibiotic concentrations were 

3.2; 6.4; 16; and 32 mg/l SDZ or CTC. Every step was done under a clean bench to avoid 

contamination.  

 

 

3.1.6 Soil respiration 

 
In parallel to the soil microcosms, the soil respiratory activity was determined using a “Sapromat” 

(Voith, Heidenheim, Germany). Concentration of chemical amendments (SDZ, CTC and glucose) 

and incubation conditions were identical to those described in section microcosms design except a 

smaller amount of soil (75 g) was used.  

The estimation is based on the measurement of the O2 uptake during the incubation of soil in a closed 

system. The O2 is delivered in the system electrochemically. A “Sapromat” consists of a regulated 

temperature water bath, containing the measuring units and an instrument for recording the results. A 

measuring unit consists of a reaction vessel (A) with a CO2 absorber, an O2 producer and a pressure 

meter (C). The produced CO2 will be adsorbed by a NaOH solution. O2 uptake during the soil 

respiration causes an underpressure. This is indicated by a pressure meter, which regulates the 

electrolytic oxygen production as well as the display and graphic recording (D) of the results. The O2 

uptake is shown on the display in milligrams of O2 [90]. The figure 6 shows the schematics of a 

“Sapromat”. The measurements were performed at 20 °C.  

The microbial activity of CTC treated soil was measured for a period of 16 days. For SDZ treated 

soil the period was longer and accounted 40 days. The data obtained from the measurement 

equipment were calculated as the cumulative O2 consumption (mg O2/100 g soil). Experiments were 

done in duplicate. 
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Figure 6. 

Estimation of soil respiration in a “Sapromat® E” according H + P Labortechnik GmbH. 

 

 

3.1.7 Molecular biological methods 

 
To assess the response of soil bacterial community structure to the two antibiotics used, the 

molecular biological technique PCR-DGGE was applied.  

The samples were obtained from the microcosm experiments with orthic luvisol and gleyic cambisol 

soil. The microcosms were prepared separately on the same day and from the same batch of soil as 

used for the respiration measurements. All incubations were done in duplicate and these duplicates 

gave identical banding patterns as shown exemplarily (figure 35) for samples taken after 6 weeks of 

incubation. 

 

In this section the DNA extraction and purification, the polymerase chain reaction (PCR) and the 

denaturing gradient gel electrophoresis (DGGE) are described. 

 

3.1.7.1 Total community DNA extraction and purification 

DNA of the total community was extracted from 500 mg aliquots of sieved soil (<2 mm) using “Fast 

DNA SPIN KIT for soil, BIO 101” (QBiogene, Carlsbad, CA, USA). The extracted DNA was 

purified by using “Wizard® DNA Clean-Up System” (Promega, Madison, WI, USA). Extraction and 

purification protocols were according to the manufacturer’s instructions. 
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3.1.7.2 Polymerase chain reaction (PCR) 

The segment of eubacterial 16S rDNA from nucleotide 968 to 1401 (Escherichia coli numbering 

[222]) was amplified from soil DNA using an eubacterial universal primer set  

U-968-GC and L-1401, described by Nübel et al. [107] for the detection of individual strains of 

Paenibacillus polymyxa and for the detection of soil bacteria by Ferris and Heuer [110, 111]. The GC 

clamp prevents complete melting of DNA during electrophoresis in the denaturing gradient 

polyacrylamide gels [112]. 

 

Used primers: 

U968GC:  

5’-CGC CCG GGG CGC GCC CCG GGC GGG GCG GGG GCA CGG GGG GAA 

CGC GAA GAA CCT TAC-3’ 

L1401:  

5’-CGG TGT GTA CAA GAC CC-3’ 

 

 

PCR was performed with the following approach: 

 
Primer U968 10 pmol/ml 2 µl MWG Biotech, Germany 

Primer L1401 2 µl MWG Biotech, Germany 

20 mM dNTP mix 2 µl  ABgene, Surrey, UK 

Reactionbuffer* 5 µl ABgene, Surrey, UK 

25mM MgCl2 3 µl ABgene, Surrey, UK 

DMSO 1.5 µl Sigma, Germany 

TermoStart Taq Polymerase 0.25 µl ABgene, Surrey, UK 

DNA extract 1 µl  

Water (sterile, pure 18,2 MΩcm) ad 50 µl Milli-Q® Synthesis A10, Millipore 

*Reaction buffer:  

750 mM Tris-HCl, pH 8.8 at 25 °C, 200 mM (NH4)2SO4, 0.1% (v/v) Tween) 
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The temperature program was as follows: 

 

First denaturation step  10 min  95 °C 

 

35 cycles: denaturation    1 min  95 °C 

  annealing    1 min  54 °C 

  elongation    1 min  72 °C 

   

Final elongation step   10 min  72 °C 

 

3.1.7.3 Agarose gel electrophoresis 

The success of the PCR was tested by the addition of one positive control (pure DNA from  

E. coli ) and one negative control (sterile, pure water) in every amplification. The quality of 

amplification products was checked with agarose gel electrophoresis (1.2% (w/v)). The wells were 

loaded with 5 µl PCR products and 1 µl loading dye (50 mM EDTA, 15% (w/v) Ficoll 400, 0.25% 

(w/v) Bromphenolblue, 0.25% (w/v) Xylencyanol, pH 8) and the electrophoresis was carried out in 1 

x TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA, pH 8) at 80 mA for 1 h. After 

electrophoresis the agarose gel was stained with ethidium bromide and documented using PDQuest 

(BioRad Laboratories, Hercules, USA). The length of the PCR products was checked with special 

molecular weight marker.  

 

3.1.7.4 Denaturing gradient gel electrophoresis (DGGE) 

DGGE of the PCR products was performed using a DCode system (BioRad Laboratories, Hercules, 

USA). The 6% (w/v) polyacrylamide gels (acrylamide-bis (37.5:1) were made with denaturing 

gradients ranging from 30% to 70% (100% denaturant contained 7M urea and 40% formamide; table 

8). Gels were polymerised to a sheet of PAG film. Polymerisation of the denaturing gel was induced 

by adding 1 µl TEMED and 1 mg ammonium persulphate. The polymerisated polyacrylamide gels 

were placed in the 60 °C warm tank containing 1 x TAE buffer. The wells were loaded with PCR 

products and loading dye (0.25 ml Bromphenolblue, 0.25 ml Xylencyanol, 7 ml Glycerin, 2.5 ml 

pure water) and the electrophoresis was carried out at 100 V and 16 h. The running conditions were 

taken from the work of Bulawa [114] and Liebich [115].  

The advantage of this system is that two gels can be run in parallel with a good reproducibility 

between different runs. 
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Table 8. 

Composition of acrylamide solutions. 

 
 

Acrylamide solutions 

 

 
0% 

denaturant 

100% 

denaturant 

    

Acrylamide  ready-to-use solution 40% (37.35:1) for 

electrophoreses; Merck KGaA, Germany 

15% (v/v) 15% (v/v) 

TAE (50x )- buffer  Bio-Rad Laboratories Central Europe 2% (v/v) 2% (v/v) 

Formamide  deionised min. 99.5%; Carl Roth GmbH & Co, 

Germany 

 40% (v/v) 

Urea min.99.5%, p.a.; Carl Roth Gmbh & Co., 

Germany 

 42% (v/v) 

 

3.1.7.5 Silver staining 

After DGGE the gels were stained with silver nitrate. During the staining the gels were completely 

submerged and carefully horizontally shaken. The silver staining protocol shows the individual steps 

(table 9). 

 

Table 9. 

Silver staining protocol. 

 
   

Fixation solution Ethanol   10% (v/v) 

Acetic acid  0.5% (v/v) 

3 x 3 min. 

Staining solution Silver nitrate  0.1% (v/v) 10 min, followed with careful 

rinse with water  

Developing solution* Sodium borohydride 0.01% (w/v) 

Formaldehyde  0.15% (w/v) 

NaOH   1.5% (w/v) 

10-20 min. develop 

Stop solution Sodium carbonate 0.75% (w/v) 5-10 min. 

*freshly prepared 

 

After silver staining the gels were scanned (DUOScan f 40, Agfa) and analysed using image analysis 

GelCompar ® II (Applied Maths, Sint-Martens-Latem, Belgium) or Quantity One 4.3.1. (BioRad, 

Hercules, USA). By careful inspection of the lane intensity curves in combination with enlarged 

images of the lanes, bands were detected and quantified. Background intensity was subtracted. The 

position and peak intensity of each band relative to the cumulative intensity value of all bands in the 
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given lane was recorded and only bands which accounted for more than 1% of the total lane intensity 

were considered. For the calculation of similarity and cluster analysis of the DGGE patterns the Dice 

correlation matrix and unweighted pair group method using arithmetic averages were used.  

To analyse the effects of the different amendments of antibiotics on the bacterial diversity the 

Shannon-Wiener index was used.  

 

 

3.1.8 Sterilisation of soil 

 
A sterile product is one that is free of viable microorganisms. The sterility of individual items within 

a batch of sterilized products cannot be guaranteed in the absolute sense.  

Through sterilisation of soil the microbial activity should be completely inhibited. Several methods 

for the sterilization are presented by Alef [90]: 

• Sterilization by autoclaving 

• Soil fumigation with chloroform 

• Irradiation of soils with gamma irradiation  

• Inhibition of microbial activity by azide, cyanide and toluene. 

By autoclaving and fumigation of soil the soil structure is destroyed. The toxicity of cyanide and 

azide is a big disadvantage of the last method. The main advantages of irradiation are that no 

disturbance of soils occurs during this process and no toxic substances are used. Alef recommends a 

dose of 2.5 Mrad for soils samples. 

Trevors [205] described numerous methods for soil sterilization and inhibition of microbial activity 

in detail. He reported that sometimes even a higher dose as 2.5 Mrad is used for sterilisation of soil, 

for example in Canada, where 4 Mrad was used.  

 

3.1.8.1 Gamma irradiation and sterility testing 

According to ISO 11137:1995(E) [88] radiation is a physical process, involving the exposure of the 

subject to ionizing radiation. The subject is exposed to gamma rays from cobalt 60  

(60Co) radionuclides or coesium 137 (137Cs) radionuclides, or to an electron or x-ray beam from an 

electron beam generator. When properly applied, radiation sterilization is a safe and reliable process.  

According to DIN EN 552 medicinal products are treated with 25 kilo Gray and according to ISO 

11137 [88] the sterility should be tested microbiologically. Soybean Casein Digest Broth, with an 

incubation temperature of 30 ± 2 °C and an incubation period of 14 days, is generally recommended 

for sterility test when a single medium is used. 
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In accordance to ISO 11137 [88] method using bioburden information exist. This method of 

choosing a sterilization dose is based upon experimental verification that the response to radiation of 

the microflora in the subject is higher than that of the microbial population standard resistance.  Also 

food products can be treated with gamma-radiation, for reason of preservation or in order to kill 

pathogenic microorganisms as for example: salmonella.  

At an irradiation dose of 10 kilo Gray all Gram negative bacteria and fungi, and most Gram positive 

bacteria, but not spores and virus will be affected [89].  

In the current work gamma irradiated soil was used as control soil for studies on degradation of SDZ.  

The sterilisation of the soil samples was done by the gamma irradiation. The soil samples in the PE-

bottles were irradiated with 35 kilo Gray for 24 hours at maximal 45 °C at the Research Reactor 

Division of the Research Center Jülich. 

The sterility test of the soil samples was tested according to the sterility test DAB 10 V.2.1.1 [206] 

using soy peptone-caseine peptone-medium (CSB).  

 

 

3.2 Analytical methods 

 

3.2.1 Selection of solvents for the extraction of antibiotics from soil 

 
The following solvents were considered as appropriate and the extraction potential of different 

extraction solvents was tested: methanol/water, acetonitrile/water and acetone/ acetonitrile/water in 

different proportions. 

Together with the solvent selection, the extraction temperature was investigated; of special interest 

was a comparison between 80 °C and 100 °C. 

For the extraction of SDZ from soil a solvent mixture had to be chosen, which was suitable for both 

PLE and MAE.  

Portions of 5 g soil (moisture 12% of the maximum WHC) were spiked with SDZ (concentration of 

SDZ was 3.33 mg/kg) and extracted with: Acetonitril/Water 50:50 (v/v); Acetonitril/Water 80:20 

(v/v); Methanol/Water 50:50 (v/v); Methanol/Water 80:20 (v/v); Acetonitril/Aceton/Water 45:45:10 

(v/v) at 80 and 100 °C. 

All sample extractions were carried out five fold as described below and were analysed with 

LCMS/MS. 
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3.2.2 Soil extraction  

 
3.2.2.1 Soil extraction with ASE 

The extraction of SDZ by PLE was performed using an ASE 200 system from Dionex (Dionex, 

Idstein, Germany). The system was operated with 24 pressure resistant steel extraction cells with a 

volume of 11 ml and lined with cellulose-fibre filters from Macherey & Nagel (MN GF-2; Ø 19 mm, 

Düren, Germany). Soil samples (orthic luvisol soil) of about 5 g from the microcosms were filled 

into the extraction cells between the cellulose filter and layers of diatomaceous earth (Bulk Isolute ® 

Sorbent; Isolute® HM-N; Separtis GmbH, Germany), spiked with SDZ (final concentration 3.33 mg 

SDZ/kg soil) and extracted with the respective extraction solvent. The extracts were flushed into the 

sample collection vial. The conditions for the ASE are given in table 10. 

 

Table 10. 

Example of ASE extraction conditions (for 100 °C and ACN/Water 80:20 (v/v)). 

 
  

Extraction solvent 

Temperature 

ACN/Water 80:20 (v/v) 

100 °C 

Pressure 1500 psi (10 MPa) 

Heat-up time 5 min 

Static extraction time 8 min 

Static cycles 2 

Cell flushing  50% cell volume 

Purge time 60 sec 

 

PLE extracts (approximately 20 ml) were flushed into the scale bottle and diluted with 5% 

acetonitrile in water with 0.1% formic acid (HCOOH) (v/v) to 25 ml. After mixing an aliquot for the 

liquid chromatography mass spectroscopy (LCMS/MS) measurement was filled in the vial. 

 

3.2.2.2 Soil Extraction with MAE 

For the extraction of SDZ with MAE (close microwave digestion system Ethos SEL, Milestone Inc., 

Shelton, CT, USA) pressure resistant glass in Teflon (PTFE) extraction vessels lined with cellulose-

fibre filters were used. This instrument is able to extract 6 samples concurrently. Homogeneous 

mixing of the sample is achieved by a special built-in magnetic stirring.  

About 5 g of the orthic luvisol soil samples from the microcosms were filled into the glass cells on a 

layer of diatomaceous earth and the cellulose filter, spiked with SDZ (final concentration 3.33 mg 
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SDZ/kg soil) and 5 ml ACN/ water 80/20 was added. The glass cell was transferred into a teflon jar 

filled with 5 ml ACN/ water 80/20 and closed. The extraction was carried out 10 min. static (after the 

heat-up period) at 100 °C and the current intensity was automatically adapted.  

In the current work a system with 6 vessels and fibre optic temperature control up to 300 °C was 

used. Associated EasyControl Software (Milestone Inc., Shelton, CT, USA) worked with 

sophisticated process control algorithms; the Ethos MAE can thus precisely follow the temperature 

curve (temperature increase, static temperature and time) by continuously modulating the microwave 

power for precise extraction (± 1°C). Declarations of pressure or power were not required. 

After the extraction procedure the extract was sucked out the teflon jar. A twofold extraction as with 

PLE was not possible because of clogging in the glass cell. Analysis of the extracts was as described 

for PLE-extracts. 

At the start of this work, only the microwave extraction was available at the institute. The 

optimisation of the extraction method with PLE was carried out at the Institute of Plant Nutrition 

(Dr. R.J. Schneider), University of Bonn.  

 

 

3.2.3 Chromatography and Detection 

 
The measurement of soil extracts was carried out using liquid chromatography separation coupled 

with mass spectrometry detection HPLC-MS/MS. 

The method of Pfeifer et al. [4] was utilized and optimised. The separations according to Pfeifer et al. 

were performed using a Luna RP18 column (2mm i.d., length 150 mm, particle size 3 µm) and a 

SavetyGuard (Phenomenex, Torrance, CA, USA) at 30°C. The flow rate was 0.3 ml/min. The HPLC 

gradient was produced by using two mobile phases: phase A consisted of 5% acetonitrile in water 

(v/v) with 0.1% HCOOH (v/v) and 1 mM ammonium acetate and phase B consisted of 0.1% 

HCOOH (v/v) in pure acetonitrile. Chromatographic separation was achieved with the following 

gradient: 0 min 5% B, 1.5 min 20% B, 5.5 min 40% B, 6 min 100% B, 8.5 min 100% B, 9 min 5% 

B, 16 min 5% B. Ten µl of each sample were injected. For the mass spectrometry an APCI 2 source 

was used. 

With this method a wide tailing occurred. The abandonment of 1 mM ammonium acetate in the 

phase A combined with a lower flow rate and a longer run time solved this problem.  

The separations were done using the same C18 (2) column LUNA (Phenomenex,  Aschaffenburg, 

Germany) as described above by Pfeifer et al. [4] with a security guard column C18, length 4 mm 

and 4 mm i.d. (Merck, Darmstadt, Germany). 
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The HPLC system (AGILENT HP 1100, Binary gradient pump version 1.3 (Agilent, CA, USA) 

consisted of an autosampler CTC Analytics HTC PAL, Version 1.3.1 (Chromtec Düsseldorf, 

Germany), a column oven AGILENT and degasser Chromtech (Düsseldorf, Germany). The 

massspectrometric detection was done with a triple quadropole mass spectrometer (TSQ Quantum 

1.0 SR1; Thermo Electron, San Jose, USA) (figure 7).  

Except for the comparison of the ionisation modes (APCI and ESI), the normal ionisation source 

used was ESI operated in a positive ion mode (ESI +).  

The purity of nitrogen for MS operation was 99.5%. As collisions gas argon 5.0 (Messer, Griesheim, 

Germany) was used. 

The software for the LCMS/MS system was X-Calibure Version 1.3 (Thermo Electron, San Jose, 

USA). The separation and detection conditions are given in tables 11 and 12. 

 

Table 11. 

Separation conditions of the HPLC method. 

 
  

A: 5% acetonitrile in water with 0.1% HCOOH (v/v) Eluent 

B: acetonitrile 100% with 0.1% HCOOH (v/v) 

Gradient Time Eluent A [%] Eluent B [%] 
 0 95 5 
 3 95 5 
 8 75 25 
 11 45 55 
 13 5 95 
 18 5 95 
 21 95 5 
 33 95 5 

Flow rate 0.2 ml/min 

Column temperature 25 °C 

Injectionvolume 5 µl injection loop 
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Table 12. 

ESI settings. 

 
  

Parameter Setting 
  

Spray voltage 4100 V 

Sheath gas pressure 45 arbitary units 

Aux gas pressure 10 arbitary units 

Capilary temperature 160 °C 

Capilary offset 35 V 

Scan Width  0.2 m/z 

Scan Time  0.4 s 

Collision Gas Pressure 1.5 mTorr 

Tube Lens Offset 138 V 

Mode SRM 

 

 

 

 

 
Figure 7. 

The Triple Quadropol LC-MS.  
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3.2.3.1 Qualitative and quantitative analysis 

The identification of SDZ and acetyl-SDZ was made by comparing retention times and substance 

specific mass spectra using liquid chromatography separation coupled with mass spectrometry 

detection HPLC-MS/MS (triple quad instrument); (figure 7). 

The quantification of SDZ and acetyl-SDZ was done by comparing the intensity of the characteristic 

fragmentation pathways of SDZ and acetyl-SDZ. 

 

SDZ Parent Mass (H+) 251.1  

Product Mass 156 (22 CE) 108 (32 CE) 92 (34 CE)  

D4-SDZ Parent Mass 255.1 

Product Mass 160 (22 CE) 112 (34 CE) 96 (34 CE)  

Acetyl-SDZ Parent Mass 293.3 

Product Mass 198 (22 CE) 134 (30 CE) 108 (36 CE)  

(CE= Collisonenergy) 

 

The retention times of SDZ and acetyl-SDZ and the product ion spectra of the substances are shown 

in figure 8. 

For the quantification of SDZ an isotope labelled sulfadiazine (SDZ - D4) was added as internal 

standard. Due to the identical behaviour of analytes and internal standards during measurement 

(figure 9), problems with ion suppression effects in the MS were eliminated. 
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SDZ

Acetyl-SDZ

 
 

Figure 8. 

LC-MS/MS chromatogram and product ion spectra of SDZ and acetyl-SDZ.   
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Figure 9. 

Chromatograms of pure SDZ and the internal standard D4-SDZ . 
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The internal standard was added after completing extraction procedures, but prior to LC-MS 

analysis. Samples were fortified with the internal standard at a concentration of approximately 0.02 

to 0.2 µg/ml. The peak areas from SDZ and SDZ-D4 were proportional and SDZ concentrations 

were calculated. All calculations were done using the following equations: 

 

• The correction factor (CF) was calculated using the integrated peak areas and the known 

concentrations of the both substances:  

 

( ) ( )
( ) ( )SDZPeakareaDSDZConc

DSDZPeakareaSDZConcCF
•−

−•
=

4.
4.  

 

• The concentration (M) of the unknown amount of SDZ in the samples was calculated using 

the known amount of added SDZ-D4 and the integrated peak areas of SDZ and  SDZ-D4: 

 

( ) ( )
( )4

4
DSDZPeakarea

CFSDZPeakareaDSDZAmountM
−

••−
=  

 

3.2.3.2 Selection of ionisation technique (ESI or APCI) 

The accuracy and stability of the measurements were compared using both ionisation sources. This 

was done by measuring the analyte repeatedly.  

A standard solution of SDZ in ACN with a concentration of 0.65 ng/ml was injected up to 20 times.  

Results should also give limits on handling and maintenance of the ionisation sources.  

 

 

3.2.4 Stability of SDZ in soil 

 
Soil samples of 5 g orthic luvisol soil (dry: moisture 12% of the maximum WHC and moist: 40% of 

the maximum WHC) were spiked with SDZ (concentration of SDZ was 3.33 mg/kg) and extracted 

with PLE and MAE (conditions see above) and analysed with LCMS/MS. 
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3.2.5 Storage of samples 

 
Soil samples were stored at –18 °C up to the maximum of two months.  

Extracts of soil samples were stored for 96 days at + 4 °C in a refrigerator and at – 18 °C and  

– 80 °C in a deep freezer. 

 

 

3.2.6 Measurements of SDZ and acetyl-SDZ in microcosms 

 
All samples from the microcosm experiments (see: Materials and methods/Design of the microcosm 

experiments/microcosm design) were periodically sampled and analysed in duplicate. 

In experiment I the samples were taken after 1, 7, 10, 17, 27, 37 and 64 days. In the repetition of the 

experiment I the intervals were: 1, 7, 14, 21, 30, 64 and 106.  

The microcosms were filled with SDZ-free orthic luvisol soil. 

  

 

3.2.7 Statistical analysis and validation 

 
Validation is the procedure which is used to prove that a test method consistently yields what is 

expected. In order to get appropriate results, adequate accuracy and precision during validation are 

required.  

According to the requirements of the validation of an analytical method the following validation 

characteristics were measured: 

• Precision and linearity 

• Recovery 

• Limit of Detection and Limit of Quantification (LOD, LOQ) 

 

Outlier values were analyzed with the outlier test according to Grubbs. 

ANOVA was used to test statistical significance P.  

LOD and LOQ were calculated with B.E.N. Version 1.0 for Microsoft Excel according to DIN 

32645 [9]. 

Graphical illustrations of the data were done with Origin 7G (OriginLab Corporation, Northampton, 

USA). 
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Coefficient of variation (CV) 

For the precision of the method the coefficient of variation was analysed. 

The coefficient of variation was calculated with Excel according to the following equation:  

 

CV = ×
x
s 100       (1) 

Outlier test according to Grubbs 

Significant differences were calculated according to the following equation:  

 

PW = 
s

xx −*
        (2)    

      

Decision:  

    PW ≤ rM (n, P = 90%) random difference  

 rM (f, P = 90%) <  PW ≤ rM (n, P = 95%) probable difference 

    PW > rM (n, P = 95%) significant difference 

 

Precision and linearity 

Precision describes the degree to which data generated from replicated or repetitive measurements 

differ from one another.  

The bigger the relative standard deviation the poorer is the precision of the measurement. These 

figures give a good indication of how stable the actual measurement system is, what the condition of 

the equipment is and how well selected the possible integration parameters are [5]. 

Which precision is acceptable depends on the complexity of the method, the matrix and the 

concentration of the analytes. In quality control of pharmaceutical products the precision of the 

method (CV) should be within 1 or 2% deviation. However, in the environmental analysis a practical 

limit (CV) of 10 to 15% is quite acceptable [12 and 13]. 

 

Instrumental precision of the measurement with LCMS/MS 

                                                 
1 x*: Data point; x : Arithmetic mean; s : Standard deviation 
 
2 PW: Examinationquantity; rM: Grubbs-table value 



59 

The instrumental precision of the measurements was assessed using SDZ standards in pure 

acetonitrile (0.375, 0.75, 7.5, and 25 ng/ml) and an average of six independent injections of each 

concentration. 

Influence of the matrix on the precision of the method 

SDZ free soil samples of 5 g were extracted and the extracts enriched with 25, 7.5, 0.75, and 0.375 

ng/ml SDZ. For the precision assessment an average of six injections of each concentration was 

used. 

Linearity 

Quantitation requires that one knows how the response measured depends on the analyte 

concentration. This knowledge is obtained using external or internal standardisation and formulated 

into a mathematical expression. The calibration equation reads as follows: 

y = bx + a          (3) 

For the proof of linear results of measurements, the samples used for the assessment of precision 

were used and the calculation conducted with ORIGIN 7 G. 

 

 

Recovery in soil 

The recovery of analytes is influenced by such factors as concentration of the analytes, sample 

matrix, and time of storage. Because recovery often varies with concentration, the spiked and the 

analyte concentrations should be as close as found in practical samples. Matrix effects can cause 

wide variability in recoveries, especially with organic compounds (e.g. in soil). Therefore, to be 

valid, recoveries of a spiked standard must be determined in the same matrix as the sample. 

According to the Guidelines for Data Acquisition and Data Quality Evaluation in Environmental 

Chemistry [6] recovery is derived from the measurement of „spiked blanks“. These may be controls 

or simulated field samples containing a variety of known added concentrations of the analyte. The 

recovery is calculated according to the equation: 

 

% recovery = ×
)(
)(

addedC
foundC 100  

 

C (found) is based on the net analyte signal for the “spiked” blank. 

 

                                                 
3 y: measured response (peak area); x: concentration; b: slope of calibration curve = sensitivity; a: intercept 
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All experiments on recovery were carried out fourfold with orthic luvisol and gleyic cambisol soil 

from Merzenhausen and Kaldenkirchen. Those soils were previously checked on the occurrence of 

sulfadiazine residues. 

As a negative control the orthic luvisol soil was used, as no sulfadiazine residues were detectable. 

For recovery SDZ was spiked in three concentrations: 1 mg/kg, 10 mg/kg and 50 mg/kg soil. Prior to 

spiking the SDZ to natural moist soil, an amount of SDZ standard solution dissolved in acetonitrile 

was mixed with annealed soil and after evaporation of the acetonitrile. The whole soil sample was 

than homogenised and immediately extracted. The extracts were prepared as described before and 

measured with LCMS/MS. 

 

Limit of Detection (LOD) and Limit of Quantification (LOQ).  

LOD and LOQ were examined according to Principles of Environmental Analysis [7]. 

The limit of detection is defined as the lowest concentration level that can be determined to be 

statistically different from the blank.  

The limit of quantification is defined as the level above which quantitative results may be obtained 

with a specified degree of confidence. Confidence in the apparent analyte concentration increases as 

the analyte signal increases above the LOD.  

LOD- and LOQ-values were determined for SDZ-solutions without soil and after the extraction of 

soil containing SDZ to get these values for the entire method [8].   

Therefore separate calibration curves in the range of (0.001- 1000 ng/g) were made according to DIN 

32645 [9]. 
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4. Results and discussion 
 

 

4.1 Optimisation of the Method for the Measurement and the Recovery of Sulfadiazine from 

soil 

 

4.1.1 Optimisation of extraction solvent and temperature 

 
For the recovery of SDZ from soil different mixtures of extraction solvents and extraction 

temperature were tested with both, Microwave solvent extraction (MAE) and Pressurised liquid 

extraction (PLE). The results are presented in table 13 and figure 10. 

 

Table 13.  

The influence of variation of the extraction solvent mixtures, extraction temperature and  

extraction device on recovery of spiked orthic luvisol soil. The recovery is given as mean with 

standard deviation(s) and coefficient of variation (CV) (n=3). 

 
 PLE MAE 
 

Extraction 
temperature (°C) recovery (%) s CV recovery (%) s CV 

A/A/W 45/45/10 100 107.88 15.91 14.75 95.05 2.23 2.35 

A/A/W 45/45/10 80 92.52 4.74 5.12 90.92 2.94 3.23 

Me/W  80:20 100 91.81 10.84 11.81 98.28 11.8 12.01 

Me/W  80:20 80 95.17 1.11 1.17 96.69 0.52 0.54 

Me/W  50:50 100 80.38 4.38 5.45 95.26 4.47 4.69 

Me/W  50:50 80 85.39 8.11 9.50 85.9 12.88 14.99 

A/W    80:20 100 82.35 1.54 1.87 94.32 1.63 1.73 

A/W    80:20 80 86.64 7.1 8.19 92.43 7.86 8.50 

A/W    50:50 100 89.34 7.19 8.05 100.51 4.14 4.12 

A/W    50:50 80 83.92 2.92 3.48 85.6 3.66 4.28 

        

A/A/W: Aceton/Acetonitril/ Water       

Me/W: Methanol/Water       

A/W: Acetonitril/Water       
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Figure 10. 

The influence of a variety of the extraction solvent mixtures, extraction temperatures and extraction 

device on recovery of SDZ spiked orthic luvisol soil. The recovery is given with standard deviation 

(n=3), with error bars indicating standard error of difference. 

 

A variety of solvents and solvent mixtures were tested to find the most efficient extraction medium 

for sulfadiazine. Each recovery value reached more than 80%. MAE recovery was between 85.6% 

and 100.51% with variable CV. However, two mixtures with CV > 10% were dropped; but the 7 

mixtures left were all strong and suitable extraction solvents. The selection for an extraction solvent 

equally suitable for both MAE and PLE, e.g. high recovery and high precision resulted in the choice 

of two solvents: methanol/water 80:20 (v/v) mixture at 80 °C and acetonitrile/water 80:20 (v/v) 

mixture at 100 °C extraction temperature. The applicable solvent mixtures do not correspond exactly 

to the until now known and used extraction methods (due to amount of examined substances). 

Extraction mixtures are described mostly for the extraction of many antibiotics and not for the 

optimum extraction of only one antibiotic. Although the recovery with acetonitrile/water decreases 

as with methanol/water, the acetonitrile/water mixture was selected because no further sample 

preparation for LCMS/MS was necessary.           

With methanol/water mixtures evaporation of the solvent would have been required followed by 
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resolution in the eluent acetonitrile/water used in HPLC. Losses would have been possible and thus 

the acetonitrile/water mixture was a good compromise. 

 

 

4.1.2 Comparison of extraction methods  

 
The soil extraction methods MAE and PLE were compared concerning recoveries, reproducibility, 

amount of used solvent and time necessary for sample preparation and extraction. 

 

The recovery using MAE was 92.43% (CV 8.5%) and using PLE 82.7% (CV 1.73%), however PLE 

showed a better reproducibility. As for environmental samples a precision of 10% is demanded [12, 

13] the precision and recovery of both methods are acceptable. The same amount of solvent is 

required for the extraction in both methods. A problem with MAE however is the amount of soil. It is 

not possible, to take more as 5 g soil for extraction, because of clogging in the suction equipment and 

problems of extract filtration. If bigger amounts of soil need to be extracted, because of an expected 

low concentration of the analyte, the PLE has an advantage over MAE. 

The MAE allows only one extraction procedure in contrast to the PLE, where up to three extraction 

steps are possible. The expenditure of time for the preparation of the extraction is the same for both 

methods, however MAE is more time consuming in total, because of the fact that the extracts have to 

be filtered. The PLE delivers ready filtered extracts. In addition PLE runs automatically. 

Concluding remarks: Both methods are equally suitable techniques for extracting SDZ from soil and 

they are rather environmental-friendly due to a low solvent consumption. With MAE the filtration of 

the extract is necessary, resulting in an increasing preparation time. The PLE is faster and more cost-

effective (no sample cleaning after extraction) due to reduced sample preparation time. The sample 

preparation scheme used is simple and easier to perform than the methods previously reported [23, 

27]. 

In any case, hot solvent extraction in the form of MAE or PLE can be the main tool for extracting 

solid samples [48] and is a good and fast alternative to conventional extraction techniques. PLE was 

already used in the antibiotic extraction from soil by Jacobsen et al. and Stoob et al. [3, 237]. 

Probably the recovery for one of the extraction techniques (either for MAE or for PLE) can be 

increased by further optimisation of the extraction solvents. 
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4.1.3 Choice of the LCMS/MS ionisation source 

 
To test both ionization sources a standard solution containing 0.65 mg SDZ/ml was injected 20 

times.  

The comparison of APCI and ESI showed that the APCI ionization source was instable especially 

after the heating up period. Maintenance and waiting time after cleaning were not very favourably 

for ESI. With APCI the relative standard deviation of the peak area obtained was 21.6%, while with 

ESI only 6.1%. Thus, results with ESI were much better which is probably also the reason why ESI 

is recommended in the literature (table 3 and 4). Jacobsen et al. and Stoob et al. [3, 237] also used 

ESI ionization method for LCMS/MS after extraction of sulfonamides from agricultural soil using 

PLE.  

 

 

4.1.4 Stability cheque of stored extracts 

 
The results of storage stability measured over a period of 96 days with LCMS/MS immediately after 

extraction and on day 21, 76, 85 and 96 are displayed in the figures 11, 12 and 13. 
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Figure 11.  

Recovery of SDZ (1 mg/kg soil) after extraction and storage at 3 different temperatures. The 

recovery is given with standard deviation (n=3), with error bars indicating standard error of 

mean. 
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Figure 12.   

Recovery of SDZ (10 mg/kg soil) after extraction and storage at 3 different temperatures. The 

recovery is given with standard deviation (n=3), with error bars indicating standard error of 

mean. 
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Figure 13.   

Recovery of SDZ (50 mg/kg soil) after extraction and storage at 3 different temperatures. The 

recovery is given with standard deviation (n=3), with error bars indicating standard error of 

mean. 
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With 1 mg SDZ/kg soil the mean values of SDZ concentration at the storage temperatures of +4 and 

–18 °C were not significantly different while storage at –80 °C yielded significantly lower values. 

The relative standard deviation of the mean values was rather high.  

The tendencies of the obtained results with 10 mg SDZ/kg soil are the same as with 1 mg/kg soil, but 

with a lower standard deviation at –80 °C. The mean values at 50 mg/kg soil did not differ 

significantly at all storage temperatures (table 14). 

 

Table 14. 

Differences in significance of different SDZ concentrations. Different letters indicate significant 

difference (P<0.05). 

 
    

 + 4 °C - 18 °C - 80 °C 
    

1 mg/kg SDZ a a b 

10 mg/kg SDZ a a b 

50 mg/kg SDZ a a a 

 

 

As a preliminary result it is not recommended to store extract samples at –80 °C, if concentrations of 

SDZ in soil of 10 mg and below are expected. 

Because SDZ concentrations as high as 50 mg/kg soil are not to be expected in environmental 

samples, the results of this experiment shows that storage of extracts at either + 4 °C or – 18 °C is 

advisable, if storage can not be avoided. Such an experiment was not described in the literature until 

now and thus not comparable with other findings. In most works the final extracts are applied 

directly to the analysis and not stored. 
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4.1.5 Durability of the analyte in frozen soil samples 

 
The durability of SDZ in frozen samples at -18 °C for 70 days is shown in table 15. 

 

Table 15.  

SDZ concentrations measured directly after addition and after 70 days of storage at -18 °C. 

  
   

 Fresh after 70 days 

SDZ conc. 
[mg/kg soil] 

 
MV 

 

SD CV MV SD CV 

       

50 82.50 2.47 2.99 82.49 6.24 6.71 

10 83.12 1.54 1.85 80.71 7.65 9.48 

1 87.02 2.95 3.39 53.72 3.60 7.56 

MV: mean value % of added conc. 

 

70 days of storage did not led to significant losses of SDZ in soils with either 10 or 50 mg SDZ/kg 

soil. In the sample with 1 mg SDZ/kg soil one third was lost after 70 days storage. However it is not 

clear, if the low end concentration measured was due to deep freezing and storage as such or due to 

soil adsorption during deep freezing and thawing.  

In summary it can be said that there was no decrease of concentration due to deep freezing and 

storage at the higher concentrations of SDZ tested. Stoob et al. [237] described a usual practise to 

freeze and store the samples at -20 °C directly after collection. The storage stability was confirmed 

by the extraction of the reference soil sample 1 year after the first extraction resulting in almost 

identical values with maximal deviations of ± 15%. Also Accinelli et al. [238] stored the samples at -

20 °C until they were analyzed.  

The storage of samples at -20 °C seems to be a good compromise if direct extraction is not 

practicable. Soils with an expected concentration of 1 mg SDZ/kg soil and below should be extracted 

as soon as possible or supplementary monitoring with low SDZ concentration should be done.  
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4.1.6 Method validation 

 
Precision and linearity  

The results of the LCMS/MS precision measurement, determined by repeated injections of standard 

SDZ solutions, are shown in table 16. 

 

Table 16. 

Precision of LCMS/MS measurement (coefficient of variation; n=6). 

 
     

Spiked amount of 

SDZ 

25 ng/ml 7.5 ng/ml 0.75 ng/ml 0.375 ng/ml 

CV [%] 2.76 2.83 2.79 2.66 

 

The CVs at all measured concentrations were between 2.6% and 2.8% which is satisfactory. 

However, the results allow no conclusions on matrix dependent precision of the method.  

 

Influence of the soil matrix on precision 

The influence of the soil matrix on precision, tested by spiking different concentrations of SDZ to 

soil extracts, is presented in table 17. 

 

Table 17.  

Precision including matrix effects (coefficient of variation; n=5) 

 
     

Added Sulfadiazin 22.5 ng/ml 6.75 ng/ml 0.675 ng/ml 0.337 ng/ml 

CV [%] 2.71 4.08 3.37 6.27 

 

The precision of the total method including soil matrix effects was between 2.7% and  

6.3%. These values are somewhat higher than those obtained without matrix effects. Matrix effects 

were more pronounced in lower concentrations.  

 

Linear calibrations curve was obtained with SDZ standard solutions and a regression coefficient (R) 

in the range of 0.99997 and a linearity range of 0.337-22.5 ng/ml.  
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Limit of Detection (LOD) and Limit of Quantification (LOQ) 

The LOD for SDZ in pure ACN was 43.67 pg/ml, the LOQ was 148.54 pg/ml (correlation 

coefficient: 0.999997; CV: 0.83%). These values show the high sensitivity of LCMS/MS 

measurements, proving that they are a good tool for the detection of low concentrations in 

environmental analytics. For validation in general however, these values are not very relevant 

because the sensitivity of the whole method, including extraction losses and matrix effects is crucial 

for LOD and LOQ estimations.  

 

LOD and LOQ of the total method 

The limit of detection for the orthic luvisol soil was 7.38 µg/kg and the limit of quantification 24.92 

µg/kg (correlation coefficient: 0.999966; CV: 2.49%).  

For the gleyic cambisol soil the limit of detection was 28.69 µg/kg and the limit of quantification 

was 24.92 µg/kg (correlation coefficient: 0.999966; CV: 2.49%).  

 

Concluding remarks: A sensitive and selective quantification of the investigated antibacterial agent 

SDZ in soil was achieved in the present study by using LCMS/MS and ESI as an ionisation source. 

The SDZ amount applied was in the range of 1 to 50 mg/kg soil and concentration could be 

measured down to 30 µg/kg. The demonstrated LOQ and LOD were higher than the limits obtained 

by Jacobson et al. [3] probably due to the missing SPE clean-up step. The obtained LOD for orthic 

luvisol is comparable with results obtained by Stoob et al. [237] who also did not use a cleanup step. 

PLE followed by a SPE clean-up can improve the limits and achieves an excellent applicability for 

environmental samples in very low residue concentrations but was not necessary in this work, when 

high concentrations of SDZ were applied. 
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4.1.7 Recovery of SDZ in soil samples 

 
As presented in table 18 the recoveries of spiked SDZ were between 82.5% and 87%.  In addition to 

the recovery standard deviation (SD) was calculated as well as the coefficient of variation (CV). 

 

Table 18.   

Recovery of SDZ from orthic luvisol soil (n=6). 

 
 

        Recovery 
    

 1 mg/kg 10 mg/kg 50 mg/kg 
    

Recovery (%) meanvalue 87.02 83.12 82.50 

SD 2.95 1.54 2.47 

CV (%) 3.39 1.85 2.99 

 

The mean recovery values for the three concentrations differ significantly (P = 0.00919). 

Nonetheless the obtained recovery values as well as the low CV and SD are acceptable for 

environmental analysis. 

Since the recovery depended on both, matrix and contact time, and therefore could not be estimated 

for every single sample, no corrections were made for possible incomplete extractions in the 

microcosm experiments. 

 

In conclusion, the response of SDZ residues detected in the LCMS/MS method was evaluated for 

linearity, and the LOD and LOQ for the instrument and LOD and LOQ for the whole method were 

determined. The validation data obtained in our recovery studies show that this method is suitable for 

the analysis of SDZ in soil. It is accurate, rapid and sensitive. No problems occurred with 

contamination of the LCMS/MS instrument or carry over from run to run. Due to lack of clean-up 

and possible matrix effects, the quantification was assured by a corresponding isotope labelled 

internal standard. The presented recoveries are satisfactory and comparable with Jacobsen et al. and 

Pfeifer et al. [3, 23], whose recovery was at the level of approximately 85% for SDZ. The validation 

shows that the soil extraction method used and described in this study is applicable for the compound 

analysed. 

All in all, a good precision was obtained for the whole procedure including the following steps: 

sampling, spiking, extraction, spiking an internal standard and quantification by LCMS/MS. 
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4.1.8 Extraction with hot and superheated water 

 
As routine method of the samples extraction acetonitrile (ACN)/water was used. It is not certain if 

this solvent extraction delivers the amount of analyte, that would be bioavailable to the bacteria. In 

the literature the possible bioavailable fraction of organic compounds is discussed in particular for 

pesticides like atrazine, phenanthrene, isoproturon, dicamba or carbaryl [187, 188, 189, 190], 

suggesting that extraction with calcium chloride (CaCl2) or hot water delivers the bioavailable 

fraction, while extraction with methanol would give the potential bioavailable fraction [187, 188, 

190]. Therefore we compared the hot water extraction with the ACN/water extraction (table 19 and 

20). 

 

 

Table 19.  

 Recovery of SDZ of the extraction with 100 °C water (due to n=2, the statistical error was set as the 

deviation of the mean from maximum and minimum value). 

 
 

     Recovery 
    

 1 mg/kg 10 mg/kg 50 mg/kg 
    

Mean recovery (%) 71.67 96.16 91.54 

SD 5.51 9.9 1.23 

CV (%) 7.69 10.29 1.34 

 

Table 20.   

Recovery of SDZ of the extraction with 200 °C water (due to n=2, the statistical error was set as the 

deviation of the mean from maximum and minimum value). 

 
 

     Recovery 
    

 1 mg/kg 10 mg/kg 50 mg/kg 

Mean recovery (%) 72.88 85.7 93.26 

SD 5.3 2.32 2.29 

CV (%) 7.27 2.71 2.46 
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The extraction of SDZ with hot water resulted in an extremely high recovery of the soils spiked with 

10 and 50 mg/kg, suggesting a high bioavailability of SDZ in soil. The influence of the extraction 

temperature (100 or 200 °C) seems to be irrelevant. Due to a lack of literature data on hot water 

extraction of antibiotics, there was no possibility to compare this result with literature data except 

perhaps for the study of Stoob et al. [237] who extracted sulfonamides from soil with a mixture of 

buffered water and acetonitrile (85:15) at 100 and 200 °C. His results showed a five-fold increase in 

soil in extraction efficiency at 200 °C compared to 100 °C for aged residues. The tests with the 

addition of ACN revealed slightly higher extraction efficiencies compared to pure water. The authors 

concluded that water is the solvent of choice for sulfonamides because of the polarity of the 

sulfonamides and the thermal stability of the sulfonamides makes it possible to use such high 

temperatures for extraction.  The presented results are similar to those obtained in this study, but 

additional experiments should be carried out for confirmation.  

Water used as extraction medium in PLE is not only friendly to the environment, but also very easy 

to couple with the eluents used in HPLC. Problems with evaporation of the extraction solvent and 

renewed dissolving are avoided in this case. The extraction power of water should not be disregarded 

but more appreciated than in past studies. One possibility could be to repeat the chemical analysis of 

the extracted material and to analyse bioavailability in parallel. 

 

 

4.1.9 Stability of SDZ in soil 

 

4.1.9.1 Influence of contact time on recovery 

The results of the stability of SDZ in dry soil followed over 140 hours are shown in figure 14. 

 

The amount of SDZ recoveries varied between 3.17 mg/kg after 2.5 h and 2.86 mg/kg after 140 h. 

The latter amount was still 86% of the spiked amount of SDZ. The extractable fraction of SDZ 

decreased from initially 95% to 86% slowly and without sudden decrease. 
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Figure 14.  

Measured SDZ concentrations over a period of 140 h in dry soil. SDZ amount spiked was 3.33 

mg/kg.  Bars with different letters differ significantly (P<0.005). The recovery is given with standard 

deviation (n=3), with error bars indicating standard error of difference. 
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Figure 15.  

Measured SDZ concentrations over a period of 120 h in moist soil. SDZ amount spiked was 3.33 

mg/kg. Bars with different letters differ significantly (P<0.05). The recovery is given with standard 

deviation (n=3), with error bars indicating standard error of difference. 
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The results of the influence of the contact time on the recovery of SDZ were at first in contradiction 

with those of Wehrhan [113] and Kreuzig [228] who found that the non extractable fraction increases 

with incubation time. Also Hamscher [17] reported that the recovery of SDZ from spiked soil 

samples decreased time dependent from 74% to 18% for samples extracted 5 minutes or 7 days after 

spiking. The negligible losses of the extractable SDZ in our experiment were not consistent with the 

present knowledge. The explanation for the obtained results was the absence of soil moisture.  

The experiment was repeated with moist orthic luvisol soil (40% of the maximum WHC) and the 

results are presented in figure 15. 
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Figure 16.  

Comparison of SDZ concentrations over a period of 140 h in dry and moist soil, SDZ amount spiked 

33.3 mg/kg. Bars with different letters differ significantly (P<0.05). The recovery is given with 

standard deviation (n=3), with error bars indicating standard error of difference. 

 

The amount of SDZ recovered in the moist soil, declined during 120 h from 2.81 mg/kg to 0.63 

mg/kg or 18.9% of the start concentration (figure 15). 

The concentration of SDZ in both experiments (dry and moist soil) decreased with increasing contact 

time (figure 16). In the case of the moist soil, the decrease was very rapid, while in dry soil the 

concentration was still high. In the moist soil, after about 2 days the concentration was below half of 

the spiked amount and after 5 days about 20% of the start concentration was reached. These results 

were consistent with other reports, which indicated that about 50% of SDZ was not detectable 
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anymore after three days of incubation [228] or by Stoob et al. [237] about 50% after 6 days. 

Wehrhan [232] observed that the extractable fraction of 14C-SDZ residues decreased from initially 

70% to approximately 20% of the applied radioactivity within 20 days and only about 30% was 

detectable already after 5 days.  

This observed dissipation of SDZ in orthic luvisol soil and thus the low extraction efficiency for aged 

SDZ residues can be a result of different processes like interaction with soil constituents through 

sorption or reaction with humic substances, or due to biological processes in the soil [237]. Also 

transformation into metabolic products is thinkable. Processes like mineralisation are of minor 

importance as shown by Wehrhan [232] and Kreuzig et al. [228], who observed that mineralisation 

of 14C-SDZ plays no role as potential sink of SDZ in moist soil under the prevailing laboratory 

conditions. 

The experimental results indicated that the sample matrix and moisture has a significant effect on the 

recovery of the target analyte. The extraction efficiency decreased significantly with increasing 

contact time between SDZ and the soil. 

 

4.1.9.2 Recovery and aging of SDZ in sterilized soil 

To evaluate the influence of microbial activity on the process of declining recovery of SDZ in time, 

two different soils were sterilised and spiked with SDZ and compared with non-sterilised moist soils 

(figure 17). 
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Figure17.  

 SDZ recovery over a period of 35 days in sterilised and non-sterilised MH(Merzenhausen, orthic 

luvisol) and KK (Kaldenkirchen, gleyic cambisol) soil. SDZ concentration spiked to the soils was 833 

µg/kg. (n=6).  

 

In both soils and variants (sterilised and none sterilised) the extracted concentrations of SDZ 

declined with time, although with some delay in the sterilised soils. After 2 days 51 or 45.9% 

(respectively for MH and KK) of the initial amount of SDZ could be extracted from the non 
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sterilised soil, for the sterilised soil these values were 68% , 42.8% respectively. After a period of 36 

days the recovery was below 10% and the differences between the sterilised and non sterilised soils 

were significant (table 22). 

Acetyl-SDZ could not be detected in any of the extracts.  

 

Table 22.   

Differences of significance in SDZ concentrations of sterile and non sterile soils measured over 36 

hours. Different letters mean, that the data differ significantly (P<0.05).  
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Figure 18.  

Combination of differences between sterile and non-sterilised MH (Merzenhausen, orthic luvisol) 

and KK (Kaldenkirchen, gleyic cambisol) soil. SDZ concentration spiked to the soils was 833 µg/kg. 

(n=6).  
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In sterilised as well as in non-sterilised soils the concentration of SDZ decreased with increasing 

contact time. The extractability in the sterilised gleyic cambisol soil was much higher at the 

beginning of the experiment than in the other soil. After 10 and 15 days these differences were still 

significant. The initial concentration of SDZ was in the sterilised soils decreased 75% after 10 days 

and in the non-sterilised soils significantly to below 90%. After 36 days contact time the differences 

had disappeared and all the recoveries were in the range from 2 to 5%.  The decreasing recoveries 

from soil with increasing contact time were already discussed in the previous subchapter. However, 

these results suggest that microbial degradation was not the predominant mechanism in the 

dissipation of the SDZ in both soils, although the influence of biological processes in the soil can not 

be fully excluded. These results were consistent with the findings of Stoob et al. [237].   

In contrast Accinelli et al. [238] found that the half-life for SDZ was significantly longer in 

autoclaved soils than in non-autoclaved soil and that microbial degradation was the predominant 

mechanism in the dissipation of the sulfonamides in soil. Because the differences in the degradation 

rates in his experiment between the two soils were consistent, it is possible that not only biological 

degradation but also the chemical reactions were responsible for the dissipation process.  

When degradation of the antibiotic would be mainly due to microbial processes, this could have been 

clarified with the use of sterile soils. Due to the lack of microorganisms, the substances can not be 

degraded microbial and hence sterile soils should give a higher recovery. The fact, that a continuous 

decrease of SDZ is measured, could either depend on an irreversible binding of SDZ to the soil 

matrix, or be the result of a transformation in different known (acetyl-SDZ) and unknown 

metabolites. 

Evaluating the results, in principle more SDZ could be extracted from sterilised soil compared to 

non-sterilised soils during the first days of storage. This trend decreases with time, and becomes 

minimal after 27 days.  
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4.2 Concentration effects on microbial population using microcosms experiments 

 

4.2.1 Results of chemical soil analyses from the microcosm experiments 

 
The soil samples from Merzenhausen (orthic luvisol soil) that were used for the microcosms can be 

regarded as uncontaminated with antibiotics. No manure has been applied during the last 10 years 

and SDZ measurements with LCMS/MS were below LOD. In contrast the soil from Kaldenkirchen 

(gleyic cambisol soil) had been manured and a SDZ contamination slightly above the LOD could be 

measured. Additionally, the orthic luvisol soil had a greater capacity for the dissipation of SDZ than 

the gleyic cambisol soil. 

The analyses were difficult due to the high LOD. The detected amounts of SDZ were not exceeding 

28 µg/kg and therefore close or below LOD. Under consideration of the stability it is supposed, that 

the values were significantly higher directly after manuring. The question is if the detected 

concentration is equivalent to the extractable amounts (10%) or if the natural dissipation in open land 

differs from laboratory conditions and thereby influences the SDZ recovery of the applied manure. 

 

In two microcosm experiments the fate of SDZ was followed by sampling in regular intervals over 

64 and 106 days. The results were checked by one way ANOVA to guarantee comparability. The 

differences in results of both series of all three concentrations of SDZ are not significant (1 mg/kg: P 

= 0.70203; 10 mg/kg: P = 0.90817; 50 mg/kg: P = 0.88519). 

For all three concentrations of SDZ, the greatest decrease took place within the first 24 hours after 

antibiotic application (figures 19 - 22, 24, 25). 

In the microcosms with 1 mg/kg SDZ added only 0.5 mg/kg soil could be extracted after one day. 

Thereafter the concentrations of SDZ decreased after 64 days to 0.03 and 0 mg/kg (below LOD), 

respectively. After 106 days the SDZ concentration was below LOD. 

Due to a lack of other reference material and the fact that not all of the metabolites of SDZ found in 

soil are identified, the soil samples of the microcosms were only tested for the presence of acetyl-

SDZ. In all samples from the 1 mg/kg microcosm series no acetyl-SDZ was detectable. 
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Figure 19. 

Changes in extractable SDZ concentrations over 64 days in microcosms with 1 mg/kg soil added 

(n=4) 
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Figure 20. 

Changes in extractable SDZ concentrations over 106 days in microcosms with 1mg/kg soil added 

(n=4). 
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Figure 21. 

Changes in extractable SDZ concentrations over 64 days in microcosms with 10 mg/kg soil added 

(n=4). 
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Figure 22. 

Changes in extractable SDZ concentrations over 106 days in microcosms with 10 mg/kg soil added 

(n=4). 
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In the microcosms with SDZ concentrations of 10 mg/kg soil the extractable concentration of SDZ 

was 6 mg/kg soil after one day, which means a reduction of 40%. After 64 days the SDZ 

concentration was 0.3 mg/kg in both series and after 106 days only 0.03 mg/kg could be measured 

which is a loss of almost 100%. In a few samples the metabolite acetyl-SDZ could be detected 

(figure 23). 
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Figure 23. 

Concentrations of SDZ and acetyl-SDZ in spiked soil (10 mg/kg) after 1 and 7 days. 
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Figure 24. 

Changes in extractable SDZ concentrations over 64 days in microcosms with 50 mg/kg soil added 

(n=4). 
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Figure 25. 

Changes in extractable SDZ concentrations over 106 days in microcosms with 50 mg/kg soil added 

(n=4). 
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The results give the opportunity to follow the dissipation kinetics of SDZ in soil in the microcosms 

experiment. 

A first order kinetic model described as: ln c = ln (c0 * e-kt), where t is the time, c the found 

concentration and k the rate was fitted to the data. 

The results are shown in figures 26, 27 and 28 and indicated that dissipation rate changes with 

concentration. First order kinetics only satisfactorily described the measurements with a coefficient 

of variation equal to 85% for the case of 10 mg/kg 80% and 92% for the case with an initial 

concentration of 50 mg/kg. For the case with an initial concentration of 1 mg /kg (figure 26) the 

coefficient of determination was only 48%.  This indicates that a one rate process is not sufficient to 

describe the measurements and improved model description with two or three different dissipation 

rates might provide better results. Wehrhan described [232] that the long-term adsorption kinetic 

indicates a time-dependent, non-linear sorption behaviour of SDZ and used a complex sorption 

model involving non-linear equilibrium and rate-limited reversible or irreversible sorption as flexible 

tool to describe all experimental data with one set of parameters.   
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Figure 26. 

Dissipation of SDZ over 64 days in microcosms with 1 mg/kg soil added. 
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Figure 27. 

Dissipation of SDZ over 64 days in microcosms with 10 mg/kg soil added.  
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Figure 28. 

Dissipation of SDZ over 64 days in microcosms with 50 mg/kg soil added.  
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Acetyl-SDZ could be detected after 1 and 7 days in low concentrations of 0.02-0.04 mg/kg. After 10 

days the metabolite concentration was below LOD. In the microcosms with 50 mg SDZ/kg soil 31-

35 mg of SDZ could be extracted after one day (35% of the added SDZ is dissipated). After a 

continuous decrease the concentration was 1-1.8 mg/kg after 64 days. Acetyl-SDZ was measured 

only in a few samples in low concentrations between day 1 and 37. The measured concentrations of 

acetyl-SDZ were in the range of 0.01-0.8 mg/kg, which is equal to maximally 3.7% of the amount of 

SDZ measured (figure 29). 
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Figure 29. 

Concentrations of SDZ and acetyl-SDZ in spiked soil (50 SDZ mg/kg) after 1, 7, 10, 14, 21 and 37 

days. 

 

Summarising, both series (over 64 and 106 days) showed an almost identical dissipation of SDZ over 

time at all three concentrations. The amount of detectable acetyl-SDZ was maximally 3.7% of the 

measured SDZ-concentration and dependent on the concentration of SDZ in the soil. The 

degradation test showed a steady dissipation of SDZ over time independent from the concentration 

and could be due to an irreversible adsorption of either the parent compound or the transformation 

metabolites to the soil compounds. This present study showed that the dissipation of SDZ is 
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dependent on the contact time with the soil. This is in agreement with other authors [16, 17, 136, 

232, 237]. Stoob et al. [237] observed that already after 90 minutes contact time of SDZ with soil the 

efficiency of the extraction decreased. After 6 days the recovery obtained about 55% and after 17 

days only 30%.  

Also Thiele-Bruhn and Beck [136] observed that the detectable concentration of sulfapyridine 

strongly declined with time and reached non-detectable concentrations within 14 days. Wehrhan 

[232] measured decrease in the concentration of total 14C (soil was spiked with 14C-SDZ) with 

increasing time (50% of 14C was not extractable after 3 days and about 90% after 28 days). The 

fraction of SDZ-metabolites increased during the course of her experiments. Wehrhan’s experiments 

hint towards a fast transformation of SDZ in the soil environment and showed that the particle 

surfaces of the soil material seem to be essential for the transformation processes. Heise et al. [235] 

reported about a laboratory test on the bioavailability of 14C-sulfamethoxazole where 93% ± 7% 

became non-extractable fraction in the test period of 14 days. Also the analysed extractability of 14C- 

SDZ was similar. The authors explained that the rapid disappearance of SDZ is mainly attributed to 

the formation of non-extractable residues, indicating the high affinity to the soil matrix. Also Kreuzig 

et al. [228] report on 93% of non-extractable residues of SDZ within 3 days and explained it as 

indication of rapid formation of non extractable SDZ residues in soil. 

In contrast the concentration of the metabolite acetyl-SDZ measured by other authors [232, 237] was 

much higher than in this study. Stoob et al. [237] showed that the amount of acetyl-conjugates 

showed constant responses in the dissipation over several weeks (contact time 60 days) and 

accumulated for about 15% at the end of the experiment. In this study, a decrease of the acetyl-SDZ 

concentration in time was also obtained but the extracted concentrations were lower. A possible 

explanation could be that the PLE solvent is not optimal for extracting acetyl-SDZ from soil and 

higher extraction efficiency may be achieved by using another solvent or solvent-mixtures. However, 

for SDZ, satisfactory recoveries were obtained. 

 

In conclusion, in agreement with other authors [16, 17, 136, 232, 237] it is assumed that SDZ as an 

example for sulfonamides dissipates with increased contact time in moist soil and the extractability 

of SDZ decrease very fast. The disappearance is due to chemical reactions, which led to the 

formation of non-extractable SDZ or of transformation products like acetyl-SDZ and partially as a 

result of biological processes in the soil. Probably non extractable sulfonamides may persist for a 

long time in the soil and may accumulate. The availability of the non-extractable sulfonamides for 

microorganisms, however, is unknown. 
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4.3. Effects of SDZ and CTC on microbial populations using microcosms experiments 

 

4.3.1. Soil respiration 

 
The results of the microbial activity for soil amended with SDZ are presented in figures 30-34 and 

those for soil amended with CTC in figures 35 and 36. 
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Figure 30. 

Cumulative oxygen consumption of SDZ-amended soil with and without glucose. Error bars indicate 

standard error of mean. 

 

 

Figure 30 shows the data obtained from soil respiration measurements in presence of glucose and 

SDZ and glucose. Without an additional carbon source the data did not differ from the soil basal 

respiration (without glucose and SDZ: 1.4 mg O2/100 g soil pro day).  

For all concentrations of SDZ (0 - 50 mg/kg soil) oxygen consumption increased immediately after 

the addition of glucose. During the first 36 hours, the oxygen consumption rates yielded identical 

values of 16 mg O2/100 g soil. A cut-out of the first period of the time is presented in the figure 31.  
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Figure 31. 

Cumulative oxygen consumption of SDZ-amended soil with and without glucose.  

 

After the first 36 hours, the kinetics of cumulative oxygen consumption displayed an increasing 

inhibition with increasing concentrations of SDZ. Glucose without SDZ induced the earliest increase 

in oxygen consumption followed by the incubations with glucose and 1 mg SDZ/kg soil and glucose 

and 10 mg SDZ/kg soil corresponding to the particular concentrations.   

The first order derivation of the cumulative oxygen consumptions (see figure 32) accentuates the 

onset of growth in the incubations with 1 mg SDZ/kg soil and glucose, and a weak increase with 10 

mg SDZ/kg soil and glucose. In the presence of 50 mg SDZ/kg soil and glucose, the oxygen 

consumption proceeded more or less at a constant or somewhat declining rate. This experiment was 

than continued by a repeated addition of glucose (5 mg glucose/kg soil) on day 19 (figure 33). 
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Figure 32. 

First order derivation of the cumulative oxygen consumption. 
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Figure 33. 

Cumulative oxygen consumption of soil amended with glucose and SDZ and repeated addition of 

glucose but without SDZ on day 19. Error bars indicate standard error of mean. 
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In the setups that had been spiked with 1 and 10 mg SDZ/kg soil, oxygen consumption started 

immediately without a detectable lag phase. The setup with initially 50 mg SDZ/kg soil continued to 

respire at a constant rate, similar to the rate observed in the first 19 days. The results are presented in 

the figure 33. 

The experiment with SDZ but without glucose addition was also continued by the addition of 

glucose on day 19th resulting in SDZ concentration-dependent oxygen-consumption rates without 

lag phases. The results are presented in figure 34.  
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Figure 34. 

Cumulative oxygen consumption of soil amended with SDZ only and subsequent addition of glucose 

without SDZ on day 19. Error bars indicate standard error of mean. 

 

 

Analogue to the previous experiments the influence of the presence of CTC in soil was also 

investigated. 

Similar to the experiment with SDZ, the soil respiration measurements with added CTC but without 

an external carbon source gave no detectable differences compared to the soil basal respiration. In 

contrast to the previous experiment the kinetics of the oxygen consumption were not affected, when 

soil with 50 mg CTC/kg was treated with glucose.  

The results are presented in figure 35. 
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Figure 35. 

Cumulative oxygen consumption of glucose-amended soil with CTC and without CTC. Error bars 

indicate standard error of mean. 
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Figure 36. 

Influence of 50 mg CTC/kg soil on oxygen consumption rates. First-order derivation.  
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The first-order derivation in the figure 36 shows that the maximum peak for the glucose 

supplemented soil was similar to CTC/glucose amended soil. The rates are indicative of exponential 

microbial growth and thus CTC in a dose as high as 50 mg/kg soil has no inhibition effect on the 

growth of the soil bacteria.  

 

To study the effects of SDZ and CTC on soil microbial activity, the respiratory activity in soil 

microcosms was measured. Neither with SDZ (1, 10, 50 mg/kg soil), nor with CTC (50 mg/kg soil) a 

suppression or a stimulation of respiration was detected during 20 days of incubation. This is in 

accordance with the results of Hund-Rinke et al. [127] who described slightly reduced mean 

respiration activities first at the highest tetracycline concentration (500 mg/kg) they used over the 

whole incubation period of 16 weeks but in contrast to the findings of Vaclavik et al. [135] who 

found a 1.3-1.7 times increase in respiration above background respiration with different 

tetracyclines, including CTC, and sulfonamides, sulfachloropyridazine, at initial concentrations of 60 

and 600 mg/kg soil. Samuelsen et al. [60] tested the stability of the antibacterial agents e.g. SDZ and 

no decrease in the sediment concentration was found for SDZ. According to the author these effects 

of tetracyclines and sulfonamides on the activity and biodiversity of soil microorganisms were 

expected [132]. He investigated the microbial activity after treatment with different antibiotics e.g. 

chlortetracycline and sulfadizine in different agricultural soils with the iron (III) reduction test. In 

aqueous solution tetracycline has a significant antimicrobial effect, however in soil, measurable 

effects are observed at considerably higher concentrations [127].  

Due to the absence of a lag phase and the fact that the antibiotics themselves could be quantitatively 

re-extracted at the end of the incubation, it can be concluded that the antibiotics did not serve as 

substrates, but the reason for the increased respiration remained unclear. For SDZ, it is rather 

unlikely, that a substantial degradation resulting in an increased respiration would have occurred. 

From the parallel chemical experiment (measurement of SDZ concentration in microcosms) it is 

clear, that within the first 7 days the extractable SDZ concentration in soil decreased rapidly leading 

to 20% of the initial concentration at day 7 and to less than 5% of the initial concentration after 40 

days in the present study. Kreuzig et al. [228] measured a microbial degradation of 14C-labelled SDZ 

to CO2 of less than 1% of the initial concentration of 250 µg/kg soil within 28 days and a rapid 

transfer to non-extractable residues.  

In these experiments, CTC had probably no effect on respiration due to the strong inactivation 

(binding to Calcium) in the presence of the used orthic luvisol soil.  

With glucose-induced respiration (SIR) concentrations of SDZ and CTC up to 50 mg/kg soil showed 

no differences in respiration rates during the first 6-8 hours in comparison to the addition of glucose 
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alone. This is not a surprising result, because the antibiotic activity of SDZ and CTC is based on the 

mechanism that the inhibition time should be long enough to enable microorganisms to grow. For 

that reason, Thiele-Bruhn and Beck [136] extended the incubation time in their experiments up to 48 

hours. Accordingly, the respiratory activity in this experiment showed a clear delay of 36 hours in 

the onset of exponentially increasing oxygen consumption.  

 

 

4.3.2. PCR DGGE 

 
DGGE profiles of amplified 16S rDNA fragments from DNA extracted from the bacterial fractions 

in soil were very complex. The profiles from both soils (orthic luvisol and gleyic cambisol) are 

shown in the figure 35. 

 

All incubations were done in duplicate and these duplicates gave identical banding patterns as shown 

exemplarily (figure 37 and 6.1 appendix) for samples taken after 3 or 6 weeks of incubation. 

gleyic cambisol orthic luvisolmarker

 
Figure 37. 

DGGE patterns of PCR amplified 16S rDNA fragments from soil bacterial communities in orthic 

luvisol and gleyic cambisol soil.  
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Figure 38. 

DGGE patterns of individual microcosms from duplicate runs after 6 weeks of incubation (control: 

without glucose and SDZ; SDZ 1, 10, 50 mg/kg soil with and without glucose). Orthic luvisol soil. 

 

All incubations with SDZ but without glucose gave identical banding patterns at any date of 

sampling and no differences were visible compared to the control soil.  

However, incubations with glucose only compared to incubations with glucose and SDZ caused 

significant differences between the different setups. The DGGE patterns are presented in figure 38 

and figure 6.2 in appendix. 
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Figure 37. 

DGGE patterns of soil samples taken from the microcosms after the respective incubation time 

periods (control: without glucose and SDZ; G: with glucose;  

G + SDZ: with glucose and SDZ and the respective concentrations of 1, 10, 50 mg SDZ/kg soil). r 

and K denotation refer to different assumptive strategists as discussed in the text; Orthic luvisol soil. 

 

Figure 37 (and 6.3 in appendix) shows the differences in the microbiological community during the 

incubation time of 48 days of the treated soil with different concentrations of SDZ. 

After day one, a few apparently new or more intensive bands (r(m)1, r(m)2, r(m)3 in lane 2) 

appeared in the soil samples amended with glucose (figure 37). Bands r(m)1 and r(m)2 became 

clearly visible in all glucose and SDZ treatments. Band r(m)3 the most intense one after glucose 

addition, also appeared in the samples with glucose and 1 mg SDZ/kg soil after day one. From day 7 

onwards this band became also visible in the treatment with glucose and 10 mg SDZ/kg soil but not 

in soils with glucose and 50 mg SDZ/kg soil. Other bands (K(m)1-K(m)3), prominent by band 

intensities, appeared in the course of the incubation. Although visible in the DGGE patterns from the 

control, the glucose and all glucose and SDZ-treated samples, K(m)1 and K(m)2 appeared as more 

intensive bands in the treatments with glucose, glucose and 1 mg and 10 mg SDZ/kg soil (except 

K(m)2) after 48 days of incubation. K(m)3 became more prominent in the treatment with glucose 

and 10 mg SDZ/kg soil and later an also in the treatment with glucose and 50 mg SDZ/kg soil. 
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Figure 40. 

DGGE patterns of soil samples taken from the microcosms after the respective incubation time 

periods (control: without glucose and SDZ; G: with glucose;  

G + SDZ: with glucose and SDZ and the respective concentrations of 1, 10, 50 mg SDZ/kg soil). r 

and K denotation refer to different assumptive strategists as discussed in the text; gleyic cambisol 

soil. 

 

In the experiment with gleyic cambisol soil after one day only one more intensive band (r(k)1) 

appeared in the sample treated with glucose (figures 40 and 6.4 in appendix). This band was visible 

in all samples with glucose and glucose with SDZ during the whole experiment. From day 14 on 

other more intensive bands appeared (K(k)1 and K(k)2) and after 49 day K(k)2 showed very 

intensive bands in all glucose- treated samples. K(k)1 appeared very clearly in the bands treated with 

glucose and glucose with 1 mg SDZ/kg soil. In the sample with glucose and glucose with 10 mg 

SDZ/kg soil the intensity of K(k)1 (after 14 days) was weaker and in the sample with glucose and 50 

mg SDZ/kg soil very week. The intensity of K(k)2 is time dependent and the same for every 

concentration and achieved after 49 days the maximum. Similar to the band pattern of the orthic 

luvisol soil, at the end of the incubation time other band (K(k)3) appeared very prominent by band 

intensity, most prominent in the treatment with glucose and 1 mg SDZ/kg soil. 

At least the orthic luvisol soil the appearance of new bands and bands with stronger intensities in the 

DGGE banding patterns shows a dependency on SDZ concentrations and correlates with the onset of 

exponentially increasing oxygen consumption. The correlation between bacterial community shifts in 
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DGGE and oxygen consumption kinetics indicates a significant role for bacteria in SDZ-dependent 

glucose utilization. However, it must be considered that fungi could also have contributed to the 

glucose mineralization and might be the reason for the weak increase in r-strategists in the gleyic 

cambisol soil. DGGE bands, which responded positively in the initial stages of the experiment, were 

designated as “r” to indicate that these sequences could belong to r-strategists which respond rapidly 

to input of nutrients. It is remarkable, that only relatively few bands appeared or became stronger in 

intensity after the addition of glucose (Figure 39). In orthic luvisol soil the number of these 

strategists was higher then in gleyic cambisol soil. Using the SIR method with glucose as substrate, 

Stenström et al. [201] often found that r-organisms constitute a minority of the biomass in arable 

soils. Combining these findings, one may conclude that r-organisms in arable soils are both low in 

biomass and numbers of species. 

For the orthic luvisol soil DGGE bands responded positively after consumption of the primary 

substrate, glucose (K(m)1-K(m)3, day 11 and 48 resp. 14 and 49), may be due to K strategists 

(specialists in utilizing resources when they are becoming scarce in the later course of a succession). 

K(m)3 and partly K(k)3 did not respond to glucose at all but increased in intensity in the presence of 

10 mg SDZ/kg soil in orthic luvisol soil and in gleyic cambisol soil in the presence of 1 mg SDZ/kg 

soil. An intensive band first appeared with 10 mg SDZ/kg soil (orthic luvisol) at day 7 and remained 

clearly visible until day 48. The possible explanation from Zielezny et al. [233] was that K(m)3 had 

an advantage in competition for metabolits, rather than the primary substrate glucose in the presence 

of 10 mg, and to some extent of 50 mg SDZ/kg soil.  

Both soils showed a similar behaviour of the K-strategist microorganisms. The difference was the 

smaller fraction of the r -strategists. Thus, the explanation of this behaviour could be the slightly 

different substrate availability and the presence of fungi in the gleyic cambisol soil which was not 

considered in this work. 

 

The influence of different soil treatments on the bacterial diversity based on DGGE bands and 

intensities is exemplary shown for the orthic luvisol soil in table 23.  

 

 

 

 

 

 

 



99 

Table 23. 

Diversity as indicated by Shannon-Wiener index (H’), richness (S) and evenness (EH) of all samples 

estimated by the DGGE band patterns. Orthic luvisol soil. 

 
     

Time Treatment Shannon-Wiener  

Index (H’) 

Richness (S) Evenness (EH) 

     

1 day Control 

Glucose (G) 

G + SDZ 1 

G + SDZ 10 

G + SDZ 50 

2.77 

2.29 

2.45 

2.45 

2.38 

18 

16 

15 

15 

15 

0.96 

0.81 

0.88 

0.91 

0.88 

7 days Control 

Glucose (G) 

G + SDZ 1 

G + SDZ 10 

G + SDZ 50 

2.72 

2.40 

2.05 

2.05 

2.59 

17 

16 

17 

16 

15 

0.96 

0.87 

0.72 

0.74 

0.95 

11 days Control 

Glucose (G) 

G + SDZ 1 

G + SDZ 10 

G + SDZ 50 

2.68 

2.57 

2.25 

2.15 

2.68 

19 

21 

19 

19 

18 

0.91 

0.82 

0.79 

0.77 

0.93 

48 days Control 

Glucose (G) 

G + SDZ 1 

G + SDZ 10 

G + SDZ 50 

2.82 

3.05 

3.09 

3.09 

2.88 

19 

27 

27 

28 

20 

0.96 

0.87 

0.87 

0.86 

0.96 

 

Species richness (S) was similar in all treatments and at all sampling days, except for the increase in 

S in the 48-day samples for glucose, glucose and SDZ 1 and glucose and SDZ 10 treatments. The 

diversity (Shannon-Wiener index, H’) decreased after the addition of glucose and glucose with SDZ 

for the first three sampling times. After longer incubation of 48 days the highest values for H’ were 

obtained for glucose, glucose and SDZ 1 and 10 mg. Evenness (EH) scored the highest values for the 

controls and the treatment with glucose and 50 mg SDZ. 

 

The addition of glucose + 1 mg SDZ and glucose + 10 mg SDZ had a strong influence on the 

diversity index (H’) and evenness (EH). Both values declined in the beginning, however, after 48 

days of incubation H’ and EH reached high values and richness (S) increased. The addition 50 mg 

SDZ/kg soil together with glucose suppressed the influence of glucose on H’, S, and EH for at least 
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up to 48 days. From these data the conclusion can be drawn that glucose addition leads to an increase 

in diversity after 7 weeks and this increase is not very much influenced be the addition of up to 10 

mg SDZ/kg soil. However, this interpretation should be handled with care because the calculation of 

Shannon index requires clearly defined species and a distinct identification of individuals, 

requirements that are not met when dealing with bacteria [181]. Whether the bands in DGGE 

represent the most abundant species, the most easily extractable or PCR amplifiable species, or a 

combination of all these groups is uncertain [181]. Additionally, only a part of the whole soil 

bacterial community is covered because data processing abolishes DGGE bands with intensities 

below 1% of total band intensities in a given line. 

 

The cluster analysis of DGGE patterns from the microcosms study after 48 and 49 days of incubation 

with glucose and SDZ of the orthic luvisol and the gleyic cambisol soil respectively are shown in 

figures 41 and 42. 

 

 
 

Figure 41. 

Cluster analysis of DGGE patterns from orthic luvisol soil generated from all samples taken after 48 

days of incubation and all controls using Dice correlation matrix and UPGMA. 
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Figure 42. 

Cluster analysis of DGGE patterns from gleyic cambisol soil treated with SDZ and generated from 

all 49 days samples and all controls using Dice correlation matrix and UPGMA. 

 

Overall changes of the DGGE patterns were summarized by constructing a phylogenetic tree of lane 

similarities for the controls and the DGGE patterns after 48 (49) days. The highest conformity 

existed between the soils amended with glucose only and with glucose + 1 mg SDZ/kg soil. This 

indicates only a marginal effect of SDZ in the lowest concentration. Pronounced differences in band 

pattern intensities were found between the soils treated with glucose only and soil samples with 

glucose + 10 mg/kg soil. In the treatment with 50 mg/kg soil oxygen consumption continued at a 

constant rate, showing the bacteriostatic effect of SDZ at this concentration. This effect was 

confirmed by the DGGE banding pattern. Glucose and 50 mg SDZ/kg soil gave only a weak 

intensification of bands at the beginning of the incubation and after 48 (49) days the intensity pattern 

was in highest concordance with the control (without glucose and SDZ).  

As described for SDZ the impact of CTC on the eubacterial community structure in both soils was 

examined by PCR-DGGE analysis.  
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All incubations done in duplicate gave identical banding patterns. Figure 43 shows exemplarily the 

similarity for samples taken after 7 days of incubation of the orthic luvisol soil.  

control without glucose with glucose
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Figure 43. 

 DGGE patterns of individual orthic luvisol soil microcosms from duplicate runs after 7 days of 

incubation (control: without glucose and CTC). 

The DGGE analysis of soil samples treated with CTC in the three different concentrations (1, 10, 50 

mg CTC/kg soil) revealed that none of the concentrations of CTC tested showed significant 

differences in neither the orthic luvisol (figure 44) nor the gleyic cambisol soil (figure 6.5 in 

appendix). 
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Figure 44. 

DGGE patterns of soil samples taken from the microcosms after the respective incubation time 

periods (control: without glucose and CTC; G: with glucose; G + CTC: with glucose and the 

respective concentrations of 1, 10, 50 mg CTC/kg soil). Orthic luvisol soil. 
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Figure 45. 

DGGE patterns of runs without glucose after 1 and 49 days in orthic luvisol soil.  
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Similar to the results obtained with SDZ all incubations with CTC (without glucose) gave identical 

banding patterns at any date of sampling and no differences were visible compared to the control 

soils (figures 43 and 45).  

However, the incubations with glucose (alone and with CTC) showed significant differences to the 

control soils. In the DGGE profiles a band became more intensive (r(m)1) after 1 day incubation. 

More clearly are the marked differences after 7 days. Band r(m)2 became clearly visible in all 

glucose + CTC treatments. In the treatments with glucose and CTC (concentration independent) 

from day 7 to 49 this two additional bands were intensive. No new bands became visible after a 

longer period of contact of glucose and CTC with the soil (figure 44). In contrast to the effects of 

SDZ no K strategists were detected.   

The analysis of the DGGE patterns showed that the microbial communities of the CTC (only) treated 

and non treated soil were similar. As expected the clustering of the DGGE profiles revealed that all 

DGGE patterns had a relatively high level of similarity (> 80%) to each other for samples taken 

during the time of 49 days. The results of the DGGE analysis (appendix figure 6.5) of these bands 

and their tentative phylogenetic affiliation are shown in figure 46. 
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Figure 46.  

Cluster analysis of DGGE patterns from gleyic cambisol soil treated with CTC and generated from 

all 49 days samples and all controls using Dice correlation matrix and UPGMA. 
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In the cluster analysis of the CTC treated soil (gleyic cambisol) it can be recognized that there is a 

high level of genetic homogeneity between the samples within two groups: soil without and with 

glucose. The soil samples belonging to the group with glucose and CTC (different concentrations) 

have barely genetic variation (matching 91%). Also in the orthic luvisol soil a very high conformity 

(>90%) existed between the patterns (figures 6.6 and 6.7 in appendix). These results indicate that soil 

bacteria were not affected by the added CTC. Halling-Sørensen et al. [123] measured the 

concentration of CTC in manured soil and observed a dissipation of CTC during a few weeks. The 

authors suggest a strong sorption of CTC to the organic fraction of the soils and in addition that a 

stronger sorption through increased residence time has possibly sequestered the compound within the 

matrix and may have rendered CTC non-extractable with time. In this experiment neither the 

respiratory activity nor the microbial population analysis gave suppression or showed influence of 

CTC on the soil microbial community probably due to strong sorption. 

To find explanations for the absence of inhibitory effects of CTC in the soil the results of an 

experiment with soil slurries will be presented in the next subsection.  

 

 

4.3.3 Bacteriological examination with the poured plate technique 

 
Poured plates were used to follow the influence of antibiotic concentrations on culturable soil 

bacteria. The supernatant of soil slurries after centrifugation and diluted 4-fold were spread on the 

Müller-Hinton-Agar containing the antibiotic concentrations.  

The results are shown in figures 47 and 48. 
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   Sample a)              Sample b) 
   

 
 

3.2 mg SDZ/l  
water 
 

 

 

 
6.4 mg SDZ/l  
water 

 

 

 

 
16 mg SDZ/l  
water 

 

 

 

 
32 mg SDZ/l  
water 

 

 

 

Figure 47. 

Bacterial growth on agar plates of centrifuged supernatant from soil slurries after addition of 

different SDZ concentrations (3.2, 6.4, 16 and 32 mg SDZ/l water) to the agar broth. 

 

With 3.2 mg SDZ/l 59/44 colonies could be counted and with 32 mg SDZ/l only 15/17 colonies grow 

(figure 51). Bacterial growth was clearly inhibited in dependence of the SDZ concentration which 

was in contrast to the inhibition with CTC. With the lowest concentration of 3.2 mg CTC/l the 

colony number obtained was 95/98 and with 32 mg CTC/l 117/102 were counted (figure 48). 
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   Sample a)   Sample b) 

 

 
3.2 mg CTC/l 
water 
 

 

 

 
6.4 mg CTC/l 
water 
 

 

 

 
32 mg CTC/l 
water 
 

 

 

 

Figure 48. 

Bacterial growth on agar plates of centrifuged supernatant from soil slurries after addition of 

different CTC concentrations (3.2, 6.4 and 32 mg CTC/l water) to the agar broth. 

 

The results suggest that culturable soil bacteria are sensitive to SDZ and CTC shows no inhibitory 

activity at all. The obtained results are in accordance with the respirometric and DGGE results 

presented above.  
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4.3.4 Bacterial examination with the agar diffusion disk test 

 
Sensitivity tests (agar diffusion disk test) of 47 soil bacterial isolates showed that the growth of only 

a small number of isolates was inhibited by SDZ or CTC. In presence of SDZ, 5 out of 47 strains 

tested were weakly inhibited but with a poor correlation to SDZ concentrations.  

CTC inhibited the growth of 12 strains (including the 5 strains sensitive to SDZ) and the extent of 

growth inhibition was clearly correlated to CTC concentrations (figure 49).  

An Example of absent inhibition by SDZ but a good, concentration dependent inhibition of CTC of 

one of the 47 strain is illustrated in figure 50.  

 

 

 
Figure 49. 
Concentration dependent growth inhibition of a soil bacteria strain by CTC. (On the left: above 0.25 
and 0.5/below 2 and 1; on the right: above 8 and 16/ below 4 and 32). 
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Figure 50. 

Concentration dependent growth inhibition of a soil strain by SDZ and CTC. A) Inhibition by CTC. 

(On the left: above 0.25 and 0.5/below 2 and 1; on the right: above 4 and 8/below 32 and 16). B) No 

inhibition by SDZ. (On the left: above 32 and 16/below 4 and 8; on the right: 64). 

 

 

Since these results were apparently not in agreement with the findings from the soil microcosms, the 

impact of the soil matrix on the growth inhibitory potential of CTC was tested in the supernatants of 

soil slurries as described in materials and methods. In supernatants from batches with the highest soil 

amendments, no growth inhibitory effects could be detected even after the shortest incubation time 

interval of 1 minute. The decrease in bioavailability of CTC in soil slurries is presented in figure 51.  
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Figure 51. 

Agar diffusion test of centrifuged supernatant from soil slurries in different concentrations (100, 10, 

and 2 g soil per 100 ml water) and at different time intervals (1, 2, 5, 10 minute) after addition of 

CTC (50 mg/l). 

 

A time dependent decrease in growth inhibition was detectable in slurries diluted 10 fold. Even in 

50-fold diluted soil slurries, an influence of the soil matrix on the antimicrobial effectiveness of CTC 

in the supernatants over time was detected. The strong matrix effect of soil is consistent with the 

results from the microcosm experiments and respirometric measurements insofar as there were no 

effects detectable in presence of CTC.  

The bioavailable concentrations of CTC were calculated from calibration curves obtained with the 

same soil bacterial isolate and are presented in the figure 52. 
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Figure 52. 

Attenuation of bioavailable CTC concentratios as a function of soil/water ratio and contact time. 

Bioavailable concentrations were calculated from calibration curves obtained with the same soil 

bacterial isolate. 

 

Considering the results obtained with soil bacterial isolates in the agar diffusion disk test, such a 

dramatic inhibition potential of SDZ as seen in soil respiration was not expected since only 5 strains 

out of 47 isolates were weakly inhibited by SDZ. However, cultured bacteria may not be 

representative for the soil bacterial population. Felske et al. [229] demonstrated that the predominant 

bacteria as identified by direct DNA/RNA extraction from soil were not correlated with the bacteria 

found by cultivation.  

In the agar diffusion disk test with CTC, 12 out of 47 soil bacterial isolates were growth inhibited. 

With CTC, contrary to SDZ, neither an influence on soil respiration (figure 35) nor on the bacterial 

community structure with the DGGE method (figure 44) was detected. This was probably due to 

inactivation of CTC on contact with soil. In the experiments with orthic luvisol soil, the impact of the 

soil matrix on the growth inhibitory effect of CTC was clearly demonstrated (figures 48 and 49). 

Even diluted soil slurries had the potential to mask the antimicrobial effect of CTC during a contact 

time of less than 1 min. The mechanism of inactivation of CTC is possibly due to a strong chelation 

with calcium and magnesium ions [120, 230]. In addition to chelation, adsorption to soil [81] is also 

an important factor for the mitigation of antibacterial effects of tetracyclines. These findings are in 

agreement with those of Hund-Rinke [127] who concluded that tetracyclines are not likely to cause 

undesired effects on the soil microflora. However, reports from other authors reveal that tetracyclines 
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are well able to affect microbial populations in soils [135, 136]. These controversial results 

accentuate the requirement for further studies concerning the impact of antimicrobial substances in 

the environment. 

 

The major processes leading to a reduction in antimicrobial activity of antibiotics after addition to 

soil are inactivation by chemical or biological modifications of the parent compound, chelation with 

polyvalent cations, biodegradation and adsorption to soil components. In batch equilibrium studies 

with 10 mg SDZ/kg soil Thiele-Bruhn and Aust [79] found a non-desorbable fraction of 24% after 1 

day. The non extractable fraction increased with incubation time [228]. After 28 days incubation 

time they found 90% of the applied radioactivity in the non-extractable fraction. Heise et al. [235] 

described the rapid formation of non-extractable residues of SDZ in manured soil, 95% of 14C –SDZ 

were transferred into the non-extractable fractions. The results obtained in this thesis are in 

agreement with those from Thiele Bruhn and Aust [79] and Heise et al. [235]. The non-extractable 

residues after one day of the contact time of SDZ with soil achieved 50% to 70% (concentration 

dependent) and after 30 days more than 90% of the amount of SDZ applied.  The high affinity of 

sulfonamides to the soil matrix resulting in a low bioavailability of the SDZ to microorganisms was 

clearly shown by Heise et al. [235]. However, strong sorption and consequently reduced 

bioavailability can only partly explain the results obtained in the respirometric experiments where 

glucose was added repeatedly (figure 33) or after 19 days SDZ contact with soil (figure 34). 

However, the nature of non-extractable sulfonamides residues and their accumulation potential in 

soil is unknown. 

Mineralization kinetics of glucose added to soil 19 days after initial amendment with 10 and 50 mg 

SDZ/kg soil (with or without glucose) were still inhibited compared to the 1 mg/kg treatment. 

Assuming that a fraction of SDZ had been adsorbed (about 90% of SDZ was not extractable) after 19 

days, the concentration would still be high enough to have antimicrobial effects. Addition of SDZ 

together with a carbon source (glucose) had a more pronounced and longer lasting impact on 

microbial response to a second addition of glucose compared to pre-incubation with SDZ alone. 

Although kinetics were inhibited, repeated applications of glucose, with the exception of the glucose 

+ 50 mg SDZ/kg soil treatment, mineralized more rapidly than in the first application. In addition to 

the possibility of adsorption, another explanation could be that the contact time of 3 weeks induced 

tolerance of the soil microbial biomass to the antibiotic, as has been shown for other sulfonamide 

antibiotics [184].  
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5. Conclusions and outlook 

 
 

In this study the influence of the veterinary antibiotics sulfadiazine and tetracycline on soil bacteria 

and the quantification of the extractable concentration of SDZ were investigated.  

It was demonstrated that LCMS/MS combined with PLE extraction and no further sample clean up, 

is an effective and time saving method for the detection of SDZ in environmental samples like soil. 

To my knowledge acetyl-SDZ was determined for the first time after spiking soil with non labelled 

SDZ. A comparison of the extraction methods (microwave solvent extraction MAE and pressurised 

liquid extraction PLE) revealed that both methods are suitable to obtain good recovery rates for SDZ. 

The soil extraction procedure was optimised for SDZ only and probably higher recoveries would 

have been achieved for acetyl-SDZ by modifying the method (solvent and temperature choice) in 

respect to this compound. Acetyl-SDZ was measured in small amounts in soil after spiking the soil 

with SDZ. Thus it is not only generated in animals as a detoxification reaction. 

Dissipation of SDZ was not observed in dry soil. After wetting the soil leading to a condition which 

is normal for natural conditions and especially after manuring SDZ dissipated rather fast. The 

dissipation in soil could not be described by first order kinetics.  

An explanation would be that the dissipation of SDZ over time exhibits at least two rates   due to a 

fast reversible and an irreversible adsorption of either the parent compound or transformation 

products to the soil compounds.  

The comparison of sterilised and non-sterilised soil showed that microbial transformation or 

degradation of SDZ in soil can not be excluded. After 104 days it was still possible to measure SDZ 

residues with the microwave solvent extraction), PLE (pressurised liquid extraction applied 

extraction method. However, the nature of the non-extractable sulfonamides residues and their 

accumulation potential in soil is unknown [235] and deserve further research. 

The influence of SDZ on the microbial communities was different in the different soils and effects 

were only measured in the presence of an assimilable carbon source. The results indicate that SDZ 

was only slightly (first at concentrations higher than 20 mg/ L, which is considerably above predicted 

soil concentrations of sulfonamides) active against the cultured bacteria, isolated from  the soil . This 

was confirmed by the results obtained with DGGE assuming, that the extracted soil bacteria are 

representative for the soil bacterial population. CTC in soil showed no antimicrobial effect with and 

without an additional carbon source which can be explained by a strong sorption to the soil resulting 

in a low bioavailability. 
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On the basis of the obtained results it is not very likely that SDZ and CTC potentially present in soil 

will have any direct effect on soil functions (except perhaps on nitrifiers [240], which was not 

chequed in this work) or microorganisms. However, Chander et al. [234] state that even if antibiotics 

are tightly sorbed to soil, they can still play a role in the emergence of antibiotic resistant bacteria in 

the environment and Hamscher et al. [1] and Thiele-Bruhn and Beck [136] concluded that although 

extractable concentrations of antibiotics in field soils are generally low, initial concentrations 

immediately after addition can be high enough to affect soil microorganisms. The potential risk of 

sulfadiazine for the environment is still unclear. 

 

Further research in the assessment of antimicrobial effects of veterinary antibiotics on soil bacterial 

populations and the fate of veterinary antibiotics should focus on: 

• Further characterisation of SDZ, acetyl-SDZ and other still unknown metabolites (as e.g. 

described by Wehrhan [232]) for example with hot water extraction, which could be a 

measure of bioavailability of these compounds. 

• Affinity of 14C-SDZ residues (metabolites) to the soil matrix and the formation of metabolites 

in sterilised and non-sterilised soils. 

• In contrast to the single application of antibiotics in the current study design, an increase in 

the effective concentration can be expected by repeated manuring, due to accumulation of 

SDZ and CTC in soil.  

• Microbial measurements should be carried out in the field to study the influence of manure as 

natural nutrient and carbon source together with antibiotics on soil microorganisms.  
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6. Appendix 
 

List of used chemicals 

 
• 20 mM dNTP mix; ABgene, Surrey, UK 

• 25mM MgCl2; ABgene, Surrey, UK 

• 50x TAE-buffer; Bio-Rad Laboratories Central Europe 

• Acetic acid 99-100% for synthesis; Merck KGaA, Germany 

• Acetone 98% p.a.; Merck KGaA, Germany 

• Acetonitrile 99,9% for HPLC; Biosolve, Valkenswaard, NL 

• Acrylamide–bis ready-to-use solution 40% (37.35:1) for electrophoreses; Merck KGaA, 

Germany 

• Ammonium acetate 98%; KMF, St. Augustin, Germany 

• Ammonium-persulphate min. 98%, p.a. ACS; Carl Roth GmbH & Co., Germany 

• Bulk Isolute® Sorbent; Isolute® HM-N; Separtis GmbH, Germany 

• Certified TM Molecular Biology Agarose; Bio-Rad Laboratories Central Europe 

• Chlortetracycline hydrochloride from Streptomyces aureofaciens for fluorescence; Vetranal®, 

standard for analytical purposes (84.4%); Riedel-de Haen®;Seelze, Germany 

• Copper(II)-sulfate pentahydrate; Merck KGaA, Germany 

• D(+)-Glucose monohydrate for biochemistry; Merck KGaA, Germany 

• Dimethylsulfoxide for molekcular biology ≥ 99.5%, p.a.; Carl Roth GmbH & Co., Germany 

• DMSO; Sigma, Germany 

• Ethanol absolute for synthesis; Merck KGaA, Germany 

• Ethidium bromide solution 1%; Carl Roth GmbH & Co., Germany 

• EZ Load TM Precision Molecular Mass Rulers (EZ Precision Molecular Mass Standard) 50 µg/ml; 

Bio-Rad Laboratories Central Europe 

• FastDNA® Spin® Kit (for soil); BIO 101 Systems; Q-BIOgene 

• Formaldehyde solution 37%, stabilised for synthesis; Merck KGaA, Germany 

• Formamid deionised min. 99.5%; Carl Roth GmbH & Co, Germany 

• Formic acid 98% for HPLC; Romil, UK 

• Methanol 99,9% for HPLC; Merck KGaA, Germany 

• Mueller- Hinton- Agar; Merck KGaA, Germany 

• PAG film: GelBond, Amersham Biosciences, Buckinghamshire, UK 
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• Primer L1401; 10 pmol/ml; MWG Biotech, Germany 

• Primer U968 10 pmol/ml; MWG Biotech, Germany 

• R2A Agar; Oxoid LTD, England 

• Reaction buffer; ABgene, Surrey, UK 

• Ringer-tablets for preparation of Ringer solution; Merck KGaA, Germany 

• Silvernitrate p.a.; Merck KGaA, Germany 

• Sodium hydroxide, pellets pure; Merck KGaA, Germany 

• Sodium borohydride, granulate for synthesis; Merck KGaA, Germany 

• Sodium carbonate waterfree p.a.; Merck KGaA, Germany 

• Standard I- Nutrient broth for microbiology; Merck KGaA, Germany 

• Sulfadiazine Vetranal®; min 99.9%  for HPLC; Riedel-de Haen®;Seelze, Germany 

• Sulfadiazine; min. 99.0%; Sigma- Aldrich Chemie GmbH, Germany 

• TEMED p.a. 99% for electrophoreses; Carl Roth GmbH & Co., Germany 

• TermoStart Taq Polymerase; ABgene, Surrey, UK 

• Urea, min. 99.5%, p.a.; Carl Roth GmbH & Co., Germany 

• Water, pure 18,2 MΩcm; Milli-Q® Synthesis A10, Millipore, Germany 

• Wizard® DNA Clean-Up System; Promega, USA 
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Figures  

 
Figure 6.1 
DGGE patterns of duplicates taken from orthic luvisol soil microcosms after 21 days. 
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(A) 
 

 
 
(B) 

 

 
 
 
Figure 6.2 
(A) DGGE patterns of orthic luvisol soil samples after 11 days incubation with SDZ and with and 
without Glucose. (B) Digital analysis of the DGGE with Gel Compar Software; Dice correlation. 
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Figure 6.3 
DGGE patterns of orthic luvisol soil samples taken from the microcosms after the respective 
incubation time periods after treatment with SDZ in different concentrations. 
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Figure 6.4 
DGGE patterns of gleyic cambisol soil samples taken from the microcosms after the respective 
incubation time periods after treatment with SDZ in different concentrations. 
 

 
 
Figure 6.5 
DGGE patterns of soil samples taken from the gleyic cambisol soil microcosms after treatment with 
CTC (the incubation periods of 49 days). 
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Figure 6.6 

Cluster analysis of microbial community profiles obtained with PCR-DGGE after 1 and 7 days after 

CTC treatment. Orthic luvisol soil. 

 
Figure 6.7. 

DGGE patterns of orthic luvisol soil samples after 1 and 7 days incubation with CTC with and 

without glucose. Digital analysis of the DGGE with Gel Compar Software: Dice correlation. 
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