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Nicht zuletzt möchte ich mich bei allen Kolleginnen und Kollegen der Abteilung für
Mathematische Methoden der Physik bedanken, die mir nicht nur mit fachlichen
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1 Introduction & Summary

In this thesis, we address the conformal finite element approximation to a reduced
model arising in thin–film micromagnetics. In [16], Antonio DeSimone, Robert V.
Kohn, Stefan Müller, and Felix Otto derived a reduced 2–d model for a thin–film
ferromagnetic element under external field. It generalizes an ad hoc model proposed
in [10]. The physical setting considered is purely stationary, no time dependence is
included. The interest in soft ferromagnetic films is due to applications in inductive
or GMR sensors, as well as magnetoelectronic memory elements, see [37] for an
extensive overview.

The thin ferromagnetic sample is described by its cross–section Ω′ ⊂ R
2 under an

in–plane external field H ′
ext. The micromagnetic energy E of the in–plane magneti-

zation m′ consists of two contributions: the energy of the stray field −∇u, and the
Zeeman energy. The energy E is degenerate in the following sense: it depends on m′

only via the “magnetic charge density” σ, which is simply the in–plane divergence
−∇′ ·m′. For weak external field, m′ arranges itself in such a way that the stray field
−∇′u compensates H ′

ext in the sample. This can be reformulated as a minimization
problem for σ. At a critical field strength |H ′

ext|, the constraint |m′| ≤ 1 becomes
active, and the determination of σ and m′ turns into a nonlinear problem.

In Section 3, we consider the approximation of m′ by Raviart–Thomas elements,
which makes the charge density σ a piecewise constant function on Ω′. This confor-
mal finite element approximation fits naturally in the theory of discrete de Rham
complexes, a common concept of computational electromagnetism. The numerical
challenge in micromagnetic simulations is the determination of the stray field, which
in our case amounts to the evaluation of the single layer potential operator. Efficient
numerical methods for stray field computation therefore occupy a major part of our
considerations. We start in Section 4.1 with quadrature schemes for the single layer
potential kernel, exploiting its homogeneity, as recommended in [4] for the numerical
integration of weakly singular kernels in lower dimensions.

In Section 4.2, we point out that for weak external fields the problem for σ is a
variational formulation of the Dirichlet screen problem. More precisely, it can be
seen as a boundary integral ansatz for the magnetostatic potential u in R

3 with
prescribed Dirichlet data H ′

ext · x′ on Ω′ × {0}. The potential u is written as the
convolution of σ with the single layer potential on Ω′ × {0}. The bilinear form in
the variational formulation is the homogeneous part of the H−1/2(R2)–norm of σ
(hereafter called “energy norm”, since it is the energy of the stray field −∇u).
We think of Ω′ as being polygonal, Ω′ = (0, 1)2 to fix ideas. The charge distribution
σ is known to have characteristic singularities near the edges and corners of Ω′.
In Section 4.3, we establish the minimal regularity theory we later require. We
only use elementary arguments and express the regularity by pointwise estimates in
Theorem 4.1. In Section 4.4, we introduce the Galerkin ansatz. It is based on a
regular triangulation Th of Ω′. The ansatz functions for σ are piecewise constant. If
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σ did not have singularities, the error ε in the Galerkin method would scale like h3/2,
where h denotes the maximal diameter of the triangles. Here and in the sequel, the
discretization error ε is measured in terms of the energy norm, which is the natural
norm in this context of micromagnetics. Because of the singularities of σ, the order
3/2 can only be preserved under a particular, but a–priori known refinement of Th

towards the edges. We characterize this refinement of Th by an exponent α. In
Theorem 4.2, we give an error estimate in terms of the diameter h of the triangles
in the bulk. Naturally, it depends on α and yields the optimal scaling h3/2 provided
α > 2/3. This estimate of the discretization error ε in the energy norm reduces to
an estimate of the approximation error and is based on the regularity theory from
Section 4.3. The corner singularities do not affect the scaling.

This impact of the singularities in the Dirichlet screen problem is known on meshes
which are anisotropically graded towards an edge, see [22, 52]. However, in view
of the succeeding computations including magnetizations m′, we are restricted to
isotropically refined triangulations Th, to which our regularity results adopt. In
Section 4.5, we explain in detail the numerical generation of these a–priori refined
triangulations.

In Section 4.6, we investigate how to numerically solve the discrete linear system for
σ derived on such triangulations. It amounts to solving a linear problem of the form
K z + b = 0. The non–sparse matrix K comes from the convolution operator with
the single layer potential. Since K turns out to be symmetric positive definite, we
can employ the conjugate gradient method for the solution of K z+ b = 0. In every
step of the conjugate gradient method, a matrix vector multiplication with K has to
be carried out. On Cartesian meshes Qh, the operator K preserves the convolution
structure. Hence the matrix vector multiplication can be efficiently carried out with
help of the Fast Fourier Transform (FFT). We recall complexity results of the FFT,
which is known to be of order O(N logN) in the number N of triangles.

In Section 4.8, we give a brief introduction into the alternative method of H2–
matrices [31]. It employs an approximation ofK based on a hierarchical organization
of the data structure. It is applicable not only on Cartesian meshes Qh, but also to
above locally refined triangulations Th. We restrict ourselves to our special setup.
We discuss its complexity, which roughly speaking is O(N).

In Section 4.9, we compare the performance of the FFT–method onQh–type triangu-
lations with that of the H2–matrices for the optimally refined triangulation Th. We
compare the methods in terms of the discretization error ε > 0 in the energy norm,
which we use as a stopping criterion in the conjugate gradient method. We measure
the CPU time, excluding the setup time (which is substantial for H2–matrices). We
find that the H2–matrices beat FFT if one imposes an error tolerance of 5 percent
or less. Moreover, the comparison to FFT allows for a “tuning of parameters” in
the H2–matrix method, on which we rely in the succeeding numerical simulations.

Starting with Section 5.1, we turn from mere stray field computation to the de-
termination of energy minimizing magnetizations with active constraint |m′| ≤ 1,
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which falls into the broad class of convex programming problems. We address
the numerical solution to this problem by an interior point method: the micro-
magnetic energy E(m′) of the reduced model is replaced by a composite function
Et(m

′) = E(m′) + tB(m′), t > 0, where the logarithmic barrier B models the con-
vex constraint |m′| ≤ 1. In case of our conformal finite elements m′

h, the Hessian
HessEt(m

′
h) is positive definite and there exists a unique minimizer m′

h(t) to Et for
each t > 0, which defines the so–called primal path. This is the content of Sections
5.1 up to 5.4.

Though the reduced micromagnetic energy E is degenerate in the sense that in-
finitely many minimizers m′ exist, the primal path converges to a unique, well–
characterized minimizer m∗

h, the so–called analytic center of the optimality region:
we apply a recent result from convex programming, [41], and give a brief introduc-
tion to this concept in Section 5.5. The notion of analytic centers finds a notable
illustration by our micromagnetic simulations: for sufficiently weak external field
we have |m∗

h| < 1 strictly, whereas for stronger fields the analytic center m∗
h is close

to unit length in those regions where the external field penetrates the sample, see
Sections 5.6 and 5.11.

For fixed t > 0, we compute the minimizer m′
h(t) of Et by Newton’s method. It then

serves as an initial guess for the minimizer of Et′ , where t′ < t. The barrier parameter
t is decreased until a suitable approximation to the analytic center m∗

h is attained.
Within Newton’s method, we apply an inexact Newton step with linesearch, and
the Hessian of Et is inverted by the conjugate gradient method, where the non–
sparse stray field matrix K is compressed to an H2–matrix. This ansatz, outlined
in detail in Sections 5.7 up to 5.10, leads to the formal algorithm and corresponding
numerical results that we present and comment on in Section 5.11.

Starting with Section 6.1, we consider how to construct minimizers m′ close to unit
length: these correspond to saturated magnetizations observed in physical exper-
iments. Indeed, for any magnetization satisfying the convex constraint |m∗| ≤ 1,
there exist many regular m′ of unit length with the same charge density: ∇′ ·m′ =
∇′ ·m∗. We may write m′ = ∇⊥ψ + m∗, and the continuous function ψ(x′) on Ω′

solves the boundary value problem

|∇⊥ψ +m∗| = 1 in Ω′, ψ = 0 on ∂Ω′ .

We choose the viscosity solution to this problem, which appears to single out a
minimizer of unit length with as few walls as possible. We apply well–established
numerical schemes provided for Cartesian grids as well as regular triangulations
briefly recalled in Sections 6.3 and 6.4. In the Cartesian case we apply a scheme
originally developed for solving numerically the shape–from–shading problem. On
general triangulations we apply a two–step algorithm: the first part is based on
a scheme approximating viscosity solutions as introduced in [6], and is followed
by a postprocessing step that adjusts the length of the resulting magnetization. To
reduce grid effects, the transition to an alternative refined triangulation turns out to
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be beneficial: in terms of discrete de Rham complexes, the resulting magnetization
may not be a minimizer on the underlying triangulation, but it is of the same energy
as the analytic center m∗

h. We confront our numerical simulations with pictures from
physical experiments, kindly provided by R. Schäfer and first published in [17].
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2 Fractional Order Sobolev Spaces

This section summarizes results on fractional order Sobolev spaces and their relation
to the single layer potential in [12] and [9, Chapter III.1]. We present the statements
without proof.

2.1 The Spaces Hs for |s| ≤ 1

For 0 ≤ s ≤ 1 and n ∈ {2, 3} we define the Sobolev spaces H s = Hs(Rn) via the
Fourier transform: a square integrabel function f ∈ L2(Rn) is said to be in Hs(Rn)
if and only if

||f ||2Hs :=

∫

Rn

(1 + |k|2)s/2 |f̂(k)|2 dk < +∞ , (2.1)

where f̂ denotes the Fourier transform of f .

Whenever we make use of the short hand notation Hs instead of Hs(Rn), it will be
clear from the context if the space Hs(R2) or the space Hs(R3) is under considera-
tion.

For s = 0, the space Hs(Rn) coincides with L2(Rn), the Hilbert space of square
integrable functions on R

n. For s = 1, the norm (2.1) may be replaced by the more
common definition of the H1–norm,

||f ||2H1 = ||f ||2L2 + ||∇f ||2L2 ,

where the gradient ∇ is to be understood in the distributional sense. The Sobolev
space H1(Rn) is a Hilbert space with scalar product

〈f, g〉H1 :=

∫

Rn

f(x) g(x) dx +

∫

Rn

∇f(x) · ∇g(x) dx (2.2)

for all f, g ∈ H1(Rn). For a fixed Lipschitz domain Ω ⊂ R
n we define H1

0 as
the completion w. r. t. (2.1) of the space of smooth functions that vanish on the
complement R

n − Ω.

For 0 < s ≤ 1 the space of distributions H−s is defined as the dual space of Hs.
Here the duality pairing 〈. , .〉 : Hs×H−s 7→ R is given by the continuous extension
of the standard scalar product in L2. Therefore, we write formally

〈f, g〉 =

∫

Rn

f(x) g(x) dx

for f ∈ Hs and g ∈ H−s.

Remark 2.1. We are especially interested in the case s = 1
2
, n = 2. To avoid any

misinterpretations due to the ambiguous use of two– and three–dimensional variables

10



in the following, a prime will indicate a two–dimensional variable. In particular, we
use the notation

x = (x′, x3)

with x′ ∈ R
2 and x3 ∈ R for any x ∈ R

3. The corresponding two–dimensional
gradient is denoted by ∇′.

The norm on H−1/2 = H−1/2(R2) can be written as

||σ||H−1/2 = sup
f∈H1/2

〈f, σ〉
||f ||H1/2

for every σ ∈ H−1/2(R2). An equivalent norm on H−1/2 = H−1/2(R2) is given by

(∫

R2

|(∇′)−1/2σ|2 dx′
)1/2

:=

(∫

R2

|k′|−1|σ̂(k′)|2 dk′
)1/2

, (2.3)

where σ̂ denotes the Fourier transform of the tempered distribution σ.

2.2 The Single Layer Potential

The expression (2.3) is closely related to the single layer potential 1/r. The single
layer potential defines a bijective and continuous linear operator

V : Hs−1(R2)→ Hs(R2), V σ(x′) :=

∫

R2

σ(y′)

4π |x′ − y′| dy
′ (2.4)

for any 0 ≤ s ≤ 1 and σ ∈ Hs−1(R2). For s = 1
2
, the operator V is strongly elliptic,

i. e. there exists a constant C > 0 such that

〈V σ, σ〉 ≥ C||σ||2H−1/2

for all σ ∈ H−1/2(R2). In particular, the bilinear form 〈V · , ·〉 defines a scalar
product on the Hilbert space H−1/2(R2) with corresponding norm

||σ||V :=
√
〈V σ, σ〉 . (2.5)

As a result of the Lax–Milgram theorem, for any f ∈ H1/2(R2) there exists a unique
σ ∈ H−1/2(R2) with V σ = f . Moreover, it turns out that (2.3) equals (2.5) up to a
constant factor, i. e.

1
2

∫

R2

|(∇′)−1/2σ|2dx′ =

∫

R2

∫

R2

σ(x′)
1

4π |x′ − y′| σ(y′) dy′ dx′. (2.6)

It is well–known (see e. g. [27, Chapter 8]) that (2.3) can also be expressed as a
three–dimensional Dirichlet integral

1
2

∫

R2

|(∇′)−1/2σ|2 dx′ =

∫

R3

|∇u|2 dx ,
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where the potential u ∈ H1(R3) ∩ C0(R3) is determined by

−∆u = 0 in R
3 − (Ω′ × {0}) ,

∂3u(x
′, 0+)− ∂3u(x

′, 0−) = σ(x′) for x′ ∈ Ω′ .

}
(2.7)

Here the one–sided derivatives are defined as

∂3u(x
′, 0±) := lim

x3→±0
∂3u(x

′, x3) .

Solving equation (2.7) for any σ ∈ H−1/2(R2) in Fourier space establishes indeed the
relation ∫

R3

|∇u|2 dx = 1
2

∫

R2

|k′|−1|σ̂(k′)|2 dk′ .

Last but not least, (2.3) can be written as a dual norm

(
1
2

∫

R2

|(∇′)−1/2σ|2dx′
)1/2

= sup

{ ∫
R2 σ u dx

′

(
∫

R3 |∇u|2dx)1/2
| u : R

3 → R

}
, (2.8)

resp.

1
2

∫

R2

|(∇′)−1/2σ|2dx′

= sup

{
−
∫

R3

|∇u|2dx− 2

∫

R2

σ u dx′ | u : R
3 → R

}
. (2.9)

2.3 The Spaces Hs(∇·)
We also need subspaces of (L2(Rn))2 for which the divergence ∇· is a well–defined
operator with values in Hs(Rn). This leads for 0 ≤ s ≤ 1 to the definition of the
Sobolev spaces

Hs(∇·) := { f ∈ (L2(Rn))2 | ∇·f ∈ Hs−1(Rn) } , (2.10)

with the norm

||f ||2Hs(∇·) :=

∫

Rn

f · f dx + ||∇·f ||2Hs−1 . (2.11)

In view of (2.2), the space H1(∇·) is a Hilbert space with scalar product

〈f, g〉H1(∇·) :=

∫

Rn

f · g dx +

∫

Rn

∇·f ∇·g dx

for all f, g ∈ H1(∇·) .

To point out the special case n = 2 we again use the notation H s(∇′·) introduced
in Remark 2.1. For s = 1

2
an equivalent norm on H1/2(∇′·) is given by

||f ||2H1/2(∇′·) :=

∫

R2

f · f dx′ + ||∇′·f ||2V ,
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where the V –norm is defined due to (2.5). The space H1/2(∇′·) may be viewed as a
Hilbert space with scalar product

〈f, g〉H1/2(∇′·) :=

∫

Rn

f · g dx + 〈V∇′·f,∇′·g〉

for all f, g ∈ H1/2(∇′·) . We note that the space H1(∇′·) is a subset of H1/2(∇′·)
by the inclusion

H1(∇′·) ↪→ H1/2(∇′·) .
By combining the operators V and ∇′· we may also construct a semi–scalar product
on H1/2(∇′·) as

〈V∇′·f,∇′·g〉 (2.12)

for all f, g ∈ H1/2(∇′·). This semi–scalar product becomes indeed a scalar product
on the quotient space

H1/2(∇′·) / { f ∈ H1/2(∇′·) | ∇′·f ≡ 0 } .

Remark 2.2. For any function space H on which the divergence ∇· is a well–defined
linear operator, we introduce the quotient space

H / Ker(∇·) := H / { f ∈ H | ∇·f ≡ 0 } .

For a fixed Lipschitz domain Ω ⊂ R
n we define the space H1

0 (∇·) as the completion
w. r. t. (2.11) of the space of n–dimensional smooth vector fields with vanishing
normal component on the boundary ∂Ω. In particular, Green’s formula implies

∫

Ω

g ∇·f dx = −
∫

Ω

f · ∇g dx

for all f ∈ H1
0 (∇·) and g ∈ H1. Thus we consider fields in H1

0 (∇·) as being set to
zero outside Ω.
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3 Conformal Approximation of a Reduced 2–d

Model

3.1 A Reduced Model for Thin–Film Micromagnetics

In [16], a reduced 2–d model for a thin–film ferromagnetic element under external
field was derived. The thin ferromagnetic sample is described by its cross section
Ω′ ⊂ R

2.

Here and in the following pages the prime denotes the projection on the in–plane
components, see Remark 2.1.

In the reduced 2–d model, the magnetization m is in–plane, i. e. m = m′, and
constant in the thickness direction, i. e. m′ = m′(x′) for x′ ∈ Ω′. Hence m′ : Ω′ → R

2

is a 2–d vector field. Appropriately non–dimensionalized, the reduced energy takes
the form

E(m′) =

∫

R3

|∇u|2dx− 2

∫

Ω′

m′ ·H ′
ext dx

′. (3.1)

Here H ′
ext denotes the in–plane external field and −∇u is the stray field. For sim-

plicity, we assume H ′
ext to be constant in R

3. The stray field potential u : R
3 → R

is generated by the “magnetic charges”: σ = −∇′ ·m′ on Ω′ and ν ′ ·m′ along ∂Ω′.
This can be formulated distributionally:
∫

R3

∇u · ∇ζ dx =

∫

Ω′

m′(x′) · ∇′ζ(x′, 0) dx′ for all test functions ζ : R
3 → R ,

which in turn is equivalent to the “classical” formulation (2.7). In particular, the
stray field energy can be expressed in terms of the Fourier transform σ̂ of σ (which
for this purpose we extend trivially on R

2):
∫

R3

|∇u|2 dx = 1
2

∫

R2

|k′|−1|σ̂(k′)|2 dk′.

According to Section 2, we interpret this expression as a (squared) H−1/2(R2)–norm
of σ: ∫

R2

|k′|−1|σ̂(k′)|2 dk′ =

∫

R2

|(∇′)−1/2σ|2 dx′. (3.2)

As the exchange energy is neglected, the saturation constraint |m′|2 = 1 relaxes to
its convexification

|m′|2 ≤ 1. (3.3)

This reduced model generalizes an ad hoc model proposed in [10]. Notice that the
reduced model embodies the competition between stray field energy and the effect
of the external field. The Zeeman term

∫
Ω′ m

′ ·H ′
ext dx

′ favors alignment, the stray
field favors pole avoidance. In particular, a finite stray field energy imposes that m′

is tangential to ∂Ω′, i. e. we have

ν ′ ·m′ = 0 on ∂Ω′ almost everywhere. (3.4)
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The space of admissible magnetizations m′ is thus defined as

A := { m′ ∈ H1/2(∇′·) | m′ = 0 on R
2 − Ω′, m′ · ν ′ = 0 on ∂Ω′, |m′| ≤ 1 on Ω′ } .

Assuming that stable magnetizations are modeled by local minimizers of the micro-
magnetic energy, we are led to the convex variational problem:

Minimize E(m′) among all m′ ∈ A . (3.5)

We notice that E depends on m′ only via σ. Indeed, (3.4) implies that the second
term in (3.1) can be reformulated as

+2

∫

Ω′

σH ′
ext · x′ dx′.

Hence the reduced energy may be rewritten as

E(σ) = 1
2

∫

R2

|(∇′)−1/2σ|2 dx′ + 2

∫

Ω′

σ H ′
ext · x′ dx′. (3.6)

The reduced problem is therefore highly degenerate: in general, there exists an
infinite number of minimizers m′. Nevertheless, some of the minimizers’ quantities
are determined uniquely: the in–plane divergence ∇′ ·m′ and the stray field potential
u ∈ H1(R3) ∩ C0(R3).

The situation is more subtle with regard to m′ itself: the Euler–Lagrange equation
of the reduced problem is given by

−∇′u+H ′
ext = λm′

λ(|m′| − 1) = 0

}
in Ω′ ,

where λ(x′) ≥ 0 is the Lagrange multiplier related to (3.3). For sufficiently weak
external field H ′

ext, the constraint (3.3) is not active leading to λ ≡ 0. Hence in this
case, the magnetization adjusts itself such that the stray field −∇′u compensates
the external field H ′

ext in Ω′. This magnetization m′ is not unique. For sufficiently
strong external field H ′

ext, the constraint (3.3) becomes active and m′(x′) is indeed
unique on the penetrated region, i. e. the subregion of Ω′ where λ(x′) > 0.

First numerical simulations of the reduced model based on finite differences and its
comparison to subsequently carried out experiments have been published in [17].

The 2–d model considered here is closely related to a macroscopic model for station-
ary micromagnetics, where the large–body limit is derived in [15] by Γ–convergence.
Numerical simulations for this model are carried out in [11]: for 2–d computations
the single layer potential in (2.4) is replaced by the 2–d Newtonian kernel − log |x|,
which yields ∇′u ∈ L2(R2). The numerical analysis of [11], which offers L2–a–priori
and a–posteriori error estimates, is not applicable to the reduced model considered
here: due to [16] we have only ∇′u ∈ L4

loc(Ω
′) for the stray field.

However, simulations and experimental observations are in good agreement in the
regime of sufficiently thick films where the wall type is the asymmetric Bloch wall,
see Section 6. In thinner films, the repulsion of the Néel wall from the sample edge
leads to some deviations with respect to wall expulsion.
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3.2 Conforming Elements in R
2

We suppress all primes for the two–dimensional variables in the following sections
dealing with the definition of finite elements.

For the approximation of A we choose a conforming method, which means that
we aim at an internal approximation of the function space H1/2(∇·) by a finite
dimensional subspace.

Since finite element methods require naturally a minimal regularity of L2 for all
the functions involved, we consider here conforming approximations of the subspace
H1(∇·) ⊂ H1/2(∇·). The finite element spaces we introduce are therefore not asymp-
totically dense in H1/2(∇·), but we circumvent the approximation of functions that
exist only in a distributional sense.

Raviart and Thomas introduced in [47] lowest–order conforming finite elements in
H1(∇·) for the two–dimensional case. These elements are nowadays called Raviart–
Thomas elements.

Due to [8, Chapter 3], there are three main ingredients in the definition of a finite
element space:

• First, a simplicial triangulation of the computational domain has to be con-
structed.

• Second, for each element of the triangulation a space of polynomials has to be
provided.

• Finally, a set of global degrees of freedom, which characterize uniquely a finite
element function, must be defined.

3.3 Regular Triangulations

We suppose that the domain Ω ⊂ R
2 has a polygonal boundary ∂Ω and is covered

by a regular triangulation T . Therefore T is a partition of Ω into closed, non–
overlapping triangles such that every vertex of a triangle is a vertex of all adjacent
triangles. In particular, there are no “hanging nodes”. For the closure of the domain
Ω we have

Ω =
⋃

T∈T
T ,

and the intersection of two distinct triangles is either empty, a vertex or an edge.
We abbreviate the set of all edges of the triangulation by E and the set of all vertices
by V.

We have to settle the issue of edges’ orientation. For each edge e ∈ E of the
triangulation T we assume a unique ordering of its endpoints a0, a1 ∈ e. This
induces a unique normal ν on e by setting

ν =
1

|e|(a0 − a1)
⊥ =

1

|a0 − a1|
(a0 − a1)

⊥ . (3.7)
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For a fixed edge e we denote the neighboring triangles by T+ and T−, such that ν
points from T+ into T−.

a1

a0
ν

T−

T+

Figure 3.1: Implicit orientation of an edge by ordering its endpoints.

For any vector field f ∈ (L2(Ω))2 and any edge e ∈ E with neighboring triangles T+

and T−, let [f ]e denote the jump of f across the edge e, i. e.

[f ]e(x) = f |T+(x)− f |T−(x) for almost every x ∈ e .

3.4 The Triangulations Qh and Th
In the case of a rectangular sample Ω we consider two more specific types of tri-
angulations: we start with a Cartesian grid divided into upper and lower triangles
as shown in Figure 3.2. The resulting triangulation consists therefore of isosceles
right triangles of equal size. For any triangle the two legs have length h, and the
hypotenuse has length h

√
2. We denote this class of triangulations by Qh.

Figure 3.2: Example for a triangulation of classQh on the unit square with h = 1/16.

On a triangle T ∈ Qh marked for refinement we apply the standard red refinement
strategy: we split T into four subtriangles of equal size and equal shape by bisection
of each edge, see Figure 3.3. Since a new node appears on each midside, an additional
splitting of the neighboring triangles is necessary to avoid hanging nodes. We use
the scheme in [49, Chapter 1.1] for this purpose, which terminates after finitely many
steps. This results in a triangulation that consists only of isosceles right triangles,

17



in general of different size. We denote these triangulations by Th. A typical example
is given in Figure 3.4. Obviously, the family of triangulations Qh is a subclass of Th.

Figure 3.3: Red refinement: the dashed line indicates the splitting of a marked
triangle into four subtriangles.

Figure 3.4: Example for a triangulation of class Th on the unit square with h = 1/4
and refinement levels 0 ≤ k ≤ 8.

A triangle T ∈ Th is said to be of refinement level k if the two legs are of length

h 2−k . (3.8)

The inradius rT is then given by

rT = 1
2
(2−

√
2)h 2−k .

The diameter diam(T ) is just the length of the hypotenuse,

diam(T ) = h 2−k+1/2 ,

and the area equals
|T | = h2 2−2k−1 .

The family of triangulations Th is quasiuniform in the sense of [7, Chapter II.5],
since for every triangle T ∈ Th there holds CrT ≥ diam(T ) with a universal constant
C > 0.
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3.5 H1–Conforming Elements in R
2

As a conforming finite element approximation of the space H1 we choose the sub-
space of continuous functions which are piecewise affine: for a given triangle T ∈ Th

the local trial space P 1(T ) is just the space of all polynomials on T up to degree
one. Each p ∈ P 1(T ) is uniquely defined by its values in the vertices of T , which
are thus chosen as degrees of freedom. The finite element space P 1

h is then defined
as the space of continuous functions on Ω which are of type P 1 if restricted to any
triangle T ∈ Th.

For any f ∈ H1 the corresponding interpolation operator Πv
h is given by the eval-

uation of f at the vertices of the triangulation and succeeding linear interpolation:
Πv

hf ∈ P 1
h is the uniquely defined function that fulfills

(Πv
hf) (x0) = f(x0)

for any vertex x0 of the triangulation Th. A corresponding finite element approxi-
mation of H1

0 is given by

P 1
0,h := {φh ∈ P 1

h | φh|∂Ω ≡ 0 } .
The gradient of φh ∈ P 1

h is a well–defined L2–function which is constant on any
given triangle T ∈ Th. Thus we may consider ∇φh as an element of the space P 0

h ,
the space of piecewise constant functions on Th. The corresponding interpolation
operator Πt

h : L2 → P 0
h is defined via the identity

∫

T

Πt
hσ dx =

∫

T

σ dx

for all T ∈ Th and σ ∈ L2. The subspace L2
0 is defined as the space of L2–functions

with zero average on Ω, i. e. we have
∫
Ω
σ dx = 0 for all σ ∈ L2

0. Implicitely, we set
σ ≡ 0 in the complement R

2 − Ω. The corresponding subspace of P 0
h is denoted by

P 0
0,h .

3.6 The Raviart–Thomas Element

3.6.1 Local Trial Space

For a given triangle T ∈ Th with vertices ai, i = 1, 2, 3, and corresponding edges ei,
such that ai faces ei for every i = 1, 2, 3, the local trial space is given by

RT (T ) = {T 3 x 7→ c+ βx | c ∈ R
2, β ∈ R } . (3.9)

The special choice of the ansatz function in (3.9) ensures that for mT ∈ RT (T ) the
normal component is constant along any line segment [x0, x1] that lies entirely in
the triangle T . Indeed, let x0, x1 ∈ T and 0 ≤ λ ≤ 1 be given, then we have for
ν = (x1 − x0)

⊥ :

mT (λx1 + (1− λ)x0) · ν = (c+ β(λx1 + (1− λ)x0)) · ν
= c · ν + λβ(x1 − x0) · ν + βx0 · ν ,

19



and with (x1−x0) ·ν = 0 it follows that mT (λx1 +(1−λ)x0) ·ν is independent of λ.
In particular, the normal component of mT is constant along the edges of T . The
following properties of the local trial space will be useful later.

In the local representation mT (x) = c + βx the divergence of mT on T is given by

∇·mT = 2β . (3.10)

Thus 1
2
∇·mT can be interpreted as a Lipschitz constant of the local vector field mT

on T : for x0, x1 ∈ T we have

|mT (x0)−mT (x1)| = 1
2
|∇·mT | |x0 − x1| . (3.11)

The following simple estimates will be useful later.

Lemma 3.1. Let mT ∈ RT (T ) and x0 ∈ T be given. If there are constants C0, C1 ≥
0 such that

|mT (x0)| ≤ C0 and |∇·mT | ≤ C1 , (3.12)

then we have the estimate

sup
x∈T
|mT (x)|2 ≤ 1

2
C2

1 diam(T )2 + 2C2
0 . (3.13)

Proof of Lemma 3.1.

For any x1 ∈ T we have by the assumptions (3.12)

|mT (x1)|2 ≤ 2 |mT (x1)−mT (x0)|2 + 2 |mT (x0)|2
≤ 1

2
|∇·mT |2 |x1 − x0|2 + 2C2

0

≤ 1
2
C2

1 diam(T )2 + 2C2
0 ,

which proves (3.13).

Lemma 3.2. Let mT ∈ RT (T ) be given. If there exists a constant C0 ≥ 0 such that

|mT (x)| ≤ C0 for all x ∈ T ,

then we have the estimate

|∇·mT | ≤
4C0

diam(T )
.

Proof of Lemma 3.2.

Let x0, x1 ∈ T be given such that diam(T ) = |x0 − x1|. Then we have

|mT (x1)−mT (x0)| ≤ 2C0 ,

and with (3.11) therefore

|∇·mT | ≤
4C0

|x1 − x0|
.
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3.6.2 Degrees of Freedom

Following [47], the degrees of freedom for mT ∈ RT (T ) are given by the edge fluxes

γi(mT ) =

∫

ei

mT · νi ds , i = 1, 2, 3 , (3.14)

which can be equivalently written as

γi(mT ) = (mT (x) · νi) |ei|

for any x ∈ ei, since the normal component of mT is constant on each given edge ei.
It is easily checked that with m

(i)
T (x) := (x−ai), i = 1, 2, 3, we have γi(m

(i)
T ) 6= 0 and

γj(m
(i)
T ) = 0 for j 6= i. So the linear forms γi, i = 1, 2, 3 are linearly independent as

elements of the dual space (RT (T ))′, and thus form a basis of the three–dimensional
space (RT (T ))′.

The finite element space RT h is now defined as the space of vector fields which are
locally of type RT (T ) and have continuous normal components along edges, i. e.

RTh = {mh ∈ (L2(Ω))2 | ∀T ∈ Th, mh|T ∈ RT (T ) and ∀e ∈ Eh, [mh]e · νe = 0} .
(3.15)

This makes ∇·mh ∈ L2(Ω) a well–defined, piecewise constant function for each
mh ∈ RTh, and thus we have RTh ⊂ H1(∇·). In view of (3.14) this means that for
mh ∈ RTh the degrees of freedom are unambiguously defined for each edge e ∈ Eh.
Since ∇·mh is piecewise constant on Th, we frequently use the notation (∇·mh)(T )
for the value of ∇·mh on T ∈ Th.

RT 0,h is defined as the subspace of fields mh ∈ RT h for which the normal component
of mh vanishes on ∂Ω. Therefore RT0,h ⊂ H1

0 (∇·).

3.6.3 Basis Functions

We now introduce a basis of RTh that is dual to the basis of (RTh)
′ defined by the

linear forms (3.14). The values of a finite element function mh ∈ RTh are then
uniquely determined by the values of its degrees of freedom (DOFs) and the values
of the basis functions connected with these DOFs.

The canonical basis function ϕ
(i)
h associated with a given edge ei is defined for x ∈ T±

by

ϕ
(i)
h (x) =

{
+ 1

2|T+|(x− a+
i ) for x ∈ T+ ,

− 1
2|T−|(x− a−i ) for x ∈ T− ,

and for x ∈ Ω−T± by ϕ
(i)
h (x) = 0. Here |T±| denotes the area of the triangle T± and

a±i is the vertex of T± facing the edge ei. In particular, we have suppϕ
(i)
h = T+∪T−.

For a point x ∈ ei the value ±(x−a±i ) ·νi is just the height 2|T±|/|ei| of the triangle
T± and thus the edge flux ∫

ei

ϕ
(i)
h · νi ds = 1
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is unambiguously defined. Moreover, if ej is another edge of T+ or T−, i. e. ei 6= ej,
then we have ∫

ej

ϕ
(i)
h · νj ds = 0 ,

since (x− ai) is tangential to ej for x ∈ ej and thus the normal component ϕ
(i)
h · νj

vanishes on ej.

In particular, we have ϕ
(i)
h ∈ RTh, and the set of basis functions ϕ

(i)
h , i = 1, ..,#Eh,

is a set of linearly independent functions.

It remains to show that the set of basis functions {ϕ(i)
h }i=1,..,#Eh

indeed forms a basis
of RTh : for given mh ∈ RT (Th) define

ph := mh −
#Eh∑

i=1

(∫

ei

mh · νi ds

)
ϕ

(i)
h .

Obviously ph ∈ RTh and ph · νi = 0 for all i = 1, ..,#Eh due to the definition of ϕ
(i)
h .

Therefore ∇·ph = 0 on all triangles T ∈ Th and ph is a piecewise constant vector
field. But then the property ph · νi = 0 for all i = 1, ..,#Eh implies that ph vanishes
identically.

The corresponding interpolation operator Πe
h : H1(∇·) → RTh is thus defined via

the identity ∫

e

(Πe
hm) · ν ds =

∫

e

m · ν ds (3.16)

for every edge e ∈ Eh and m ∈ H1(∇·) .

3.7 The Discrete De Rham Complex

We suppress all primes for the two–dimensional variables in this section.

H1(∇·)–conforming and H1–conforming elements are related in terms of the discrete
de Rham complex, which plays a paramount role in the theory of computational
electromagnetism. For details and proofs we refer the reader to the survey article
[35] and the references therein. Here we only state those results needed in the
following for our discussion.

Presuming a minimal regularity of L2 for all the functions involved, the de Rham
complex in two space dimensions can be stated as

R
⊂−→ H1 ∇⊥

−→ H1(∇·) ∇·−→ L2 −→ 0 . (3.17)

If the function spaces in (3.17) are restricted to a simply connected sample Ω ⊂ R
2,

then the sequence is exact, i. e. the range of each map coincides with the kernel of
the succeeding map. In particular, a field f ∈ H1(∇·) is divergence–free if and only
if there exists a function φ ∈ H1 such that

f = ∇⊥φ . (3.18)
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Moreover, the map from H1(∇·) to L2 is surjective: for any σ ∈ L2 there exists a
field f ∈ H1(∇·) such that

σ = ∇·f .
We may restrict (3.17) to fields and functions satisfying homogeneous Dirichlet
boundary conditions in the sense of Section 3.5 and Section 3.6.2. The corresponding
de Rham complex then reads:

0
⊂−→ H1

0
∇⊥

−→ H1
0 (∇·) ∇·−→ L2

0 −→ 0 . (3.19)

Given a regular triangulation Th of Ω, a discrete de Rham complex in two space
dimensions may be stated as

R
⊂−→ P 1

h
∇⊥

−→ RTh
∇·−→ P 0

h −→ 0 (3.20)

or

0
⊂−→ P 1

0,h
∇⊥

−→ RT0,h
∇·−→ P 0

0,h −→ 0 , (3.21)

respectively. The discrete de Rham complexes (3.20) and (3.21) may be considered
as conforming finite element approximations to the complexes (3.17) and (3.19),
respectively.

Referring to the interpolation operators in Section 3.5 and Section 3.6.3, the com-
bination of (3.17) and (3.20) yields a commutative diagram:

H1 ∇⊥

−→ H1(∇·) ∇·−→ L2

yΠv
h

yΠe
h

yΠt
h

P 1
h

∇⊥

−→ RTh
∇·−→ P 0

h

In particular, the discrete de Rham complex (3.20) shares several fundamental prop-
erties with (3.17): for simply connected samples Ω ⊂ R

2 the sequence is exact and
thus a field mh ∈ RTh is divergence–free if and only if there exists a function φh ∈ P 1

h

such that
mh = ∇⊥φh . (3.22)

Moreover, for any σh ∈ P 0
h there exists a field mh ∈ RTh such that

σh = ∇·mh .

But if we impose the constraint |mh| ≤ 1 on fields in RTh, the divergence ∇· fails to
be surjective on that restricted subset: due to Lemma 3.2 the constraint |mh| ≤ 1
implies the upper bound

|(∇·mh)(T )| ≤ 4 diam(T )−1 (3.23)

for every T ∈ Th, and the range of ∇· now depends on the triangulation. This obser-
vation becomes crucial if we discuss refinement strategies to deal with singularities
of the “magnetic charges” ∇·m, see Section 4.2.
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3.8 The Reduced Energy on RT0,h

We suppress all primes for the two–dimensional variables in this section.

Due to the use of divergence–conforming finite elements, the reduced micromagnetic
energy E ofmh ∈ RT0,h is given by the restriction of the energy to the linear subspace
RT0,h ⊂ H1/2(∇·). Thus we have

E(mh) = 1
2

∫

R2

|∇−1/2∇·mh|2 dx− 2

∫

Ω

Hext ·mh dx , (3.24)

where the magnetostatic part may be rewritten as

1
2

∫

R2

|∇−1/2∇·mh|2 dx =

∫

R2

∫

R2

∇·mh(x) ∇·mh(y)

4π|x− y| dy dx . (3.25)

In particular, we are allowed to oppress an additional subscript h on E. Thus we
consider the variational problem

Minimize

E(mh) =

∫

R2

∫

R2

∇·mh(x) ∇·mh(y)

4π|x− y| dy dx − 2

∫

Ω

Hext ·mh(x) dx

among all mh ∈ RT0,h with |mh| ≤ 1.

(3.26)

The question of how to deal with the constraint |mh| ≤ 1 numerically will be dis-
cussed in Section 5. Next we take a closer look on the energy E(mh).

Since ∇·mh is a piecewise constant function on Th, the evaluation of E(mh) forces
us to deal with the fully populated matrix K with entries

Kij =

∫

Ti

∫

Tj

1

4π|x− y| dy dx , 1 ≤ i, j ≤ N , (3.27)

where N = #Th is the number of triangles. In particular, we have to compute
matrix–vector products of the form

Kz ,

where the vector z ∈ R
N registers the piecewise constant values of ∇·mh ∈ P 0

h .
Efficient methods for the evaluation of products involving fully populated matrices
will be the content of Section 4.6 and following.

For a constant external field Hext ∈ R
2 the Zeeman term in (3.24) is computed

simply as ∫

Ω

Hext ·mh dx =
∑

T∈Th

|T | Hext ·mh(xT ) , (3.28)
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since mh is piecewise affine. Here xT denotes the barycenter of the triangle T and
|T | its area. The numerically challenging part of the energy E(mh) is thus the stray
field contribution, since it involves (3.27).

The first derivative of the energy acting on a test function uh ∈ RT0,h reads

DE(mh)uh = 2

∫

R2

∫

R2

∇·uh(x) ∇·mh(y)

4π|x− y| dy dx − 2

∫

Ω

Hext · uh dx , (3.29)

whereas the second derivative acting on test functions uh, vh ∈ RT0,h is given as

D2E(mh)(uh, vh) = 2

∫

R2

∫

R2

∇·uh(x)
1

4π|x− y|∇·vh(y) dy dx . (3.30)

By inserting the basis functions {ϕ(i)
h }i=1,..,n of RT0,h as test functions in (3.29) and

(3.30) we get the gradient and the Hessian of the energy E due to that basis. So
∇E(mh) is the vector with components

(∇E(mh) )i = DE(mh)ϕ
(i)
h i = 1, .., n , (3.31)

whereas HessE is the n× n matrix with entries

( HessE )ij = D2E(mh)(ϕ
(i)
h , ϕ

(j)
h ) (3.32)

for i, j = 1, .., n. We note that the matrix HessE depends only on the given trian-
gulation Th, but not on mh.

Now let χ
(1)
h , χ

(2)
h , .., χ

(N)
h be the characteristic functions associated to the triangles

T1, T2, .., TN ∈ Th. The set of functions {χ(j)
h }j=1,..,N forms a basis of the space P 0

h

of piecewise constant functions on Th.

Since the operator ∇· maps RT0,h to P 0
h , there is a matrix representation W ∈ R

N×n

of ∇· such that

Wij =
1

|Tj|

∫

R2

χ
(i)
h ∇·ϕ

(j)
h dx (3.33)

for all i = 1, .., N and j = 1, .., n. Due to the locality of the basis functions involved,
the matrix W is sparse. Since N < n, the rank of the matrix W is at most N . In
particular, the Hessian of E, which may be factorized in the way

HessE = 2 W TKW , (3.34)

is a singular matrix. More precisely, for γ ∈ R
n we have the relation

γT HessE γ = 0 ⇔ Wγ = 0 ,

since K is positive definite, and the condition Wγ = 0 itself is equivalent to the
property

∑
i γiϕ

(i)
h ∈ Ker(∇·). Thus we have
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Lemma 3.3. For each mh ∈ RT0,h we define the corresponding equivalence class
m̃h as

m̃h := {uh ∈ RT0,h | ∇·uh = ∇·mh} .
Then the quotient function Ẽ defined by

Ẽ(m̃h) := E(mh)

is a strictly convex and quadratic function on the quotient space RT0,h/Ker(∇·).

The reduced energy E belongs therefore to a general class of convex functions we
consider in the following useful lemma. This property of convex functions is stated
in [41]. We include an elementary proof here.

Lemma 3.4. Let f : R
n → R be a convex function that is constant on the (un-

bounded) line L ⊂ R
n. Then f is constant on every line L′ parallel to L.

Proof of Lemma 3.4.

Since two parallel lines, which are not identical, uniquely define a plane in R
n, we

may assume n = 2. Moreover, the property of convexity is invariant under affine
transformations, thus it is sufficient to consider the case f |L = 0 with L = {(a, 0) ∈
R

2 | a ∈ R} and L′ = {(a,−1) ∈ R
2 | a ∈ R}.

We note that f is continuous on all of R
2. Besides to that, f is constant on the

line L′ if it is bounded from above on L′. These facts follow from the well–known
properties of convex functions.

Thus we may assume that f is non–negative and monotonically increasing on the
ray L′

+ := {(a,−1) ∈ R
2 | a ≥ 0}. Let us define the convex sets

Q = {(a, b) ∈ R
2 | a ≥ 0 , 0 ≥ b ≥ −1}

and

L = {(a, b) ∈ Q | f(a, b) ≤ f(0,−1)} . (3.35)

By definition we have L ⊂ Q. Next we introduce for all a ≥ 0 the well–defined
function

g(a) = min{0 ≥ b ≥ −1 | f(a, b) ≤ f(0,−1)} .
We show that g is convex for a ≥ 0. It is sufficient to prove

g

(
a1 + a2

2

)
≤ 1

2
g(a1) + 1

2
g(a2)

for any given a1, a2 ≥ 0. By definition of L there exist 0 ≥ b1, b2 ≥ −1 such that
g(a1) = b1 and g(a2) = b2. In particular, (a1, b1), (a2, b2) ∈ L. Due to the convexity
of L we have also (

a1 + a2

2
,
b1 + b2

2

)
∈ L ,
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which gives

g

(
a1 + a2

2

)
≤ b1 + b2

2
= 1

2
g(a1) + 1

2
g(b2) .

But g is also bounded from above and below, i. e. we have −1 ≤ g(a) ≤ 0 for all
a ≥ 0. Therefore g is constant. Since g(0) = −1, we have g(a) = −1 for every a ≥ 0,
and thus f(a,−1) = f(0,−1) for all a ≥ 0.

Now, since g is constant for a ≥ 0, it has to be a decreasing function for a < 0. Thus
either g(a) → +∞ as a → −∞, or g is constant on R. By the same arguments as
before, we conclude that g is indeed constant on R.
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4 Stray Field Computation

Since the computation of the stray field energy in (3.1) amounts to the evaluation
of the single layer potential operator (2.4), it dominates our numerical simulations
with respect to CPU time. Efficient numerical methods for stray field computation
therefore occupy a major part of our considerations.

We start in Section 4.1 with quadrature schemes for the single layer potential kernel,
exploiting its homogeneity. Based on a thorough regularity analysis and a–priori
estimates, we introduce a refinement rule for triangulations Th, see Sections 4.2 up
to 4.5. The discretization of the single layer potential operator leads to a fully
populated stiffness matrix, demanding compression techniques that we consider in
Sections 4.7 and 4.8. As a first demonstration of the beforementioned methods in
practice, we present and discuss numerical results on a linear model problem: the
Dirichlet screen problem. This is the content of Section 4.9.

Major parts of Sections 4.2 up to 4.9 are joint work with Felix Otto and have been
published in the preprint [19].

4.1 Quadrature Rules

Since the numerical computation of the energy E(mh) involves the calculation of
the fourfold integrals

I(T0, T1) :=

∫

T0

∫

T1

1

4π|x− y| dx dy (4.1)

for pairs of triangles T0, T1 ∈ Th, we start this Section by introducing corresponding
quadrature schemes: for any source point y ∈ R

2 and any triangle T0 ∈ Th the
twofold integral

I(y) :=

∫

T0

1

4π|x− y| dx (4.2)

can be evaluated analytically, see [1]. But for y ∈ ∂T0 the first derivatives of
I(y) exhibit a singularity, thus we have to approach carefully the outer integration∫

T1
I(y) dy if T0 and T1 have common points.

We suppress all primes for the two–dimensional variables in this section.

4.1.1 The Self–Energy of Triangles in Th

If T0 and T1 in (4.1) are identical, we call I(T0) = I(T0, T0) the self–energy of the
triangle T0.

Now let the reference triangle Tref be given in Cartesian coordinates as depicted in
Figure 4.1.
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(0,0) (1,0)

(0,1)

Figure 4.1: The reference triangle Tref ⊂ R
2. It is an isosceles right triangle, both

legs are of length one.

Lemma 4.1. For the reference triangle Tref in Figure 4.1 we have the self–energy

4πI(Tref) =

∫

Tref

∫

Tref

1

|x− y| dy dx = −1
3
(2 +

√
2) log(−1 +

√
2) .

For a general triangle T ∈ Th of refinement level k (see Section 3.4) the self–energy
is computed in terms of I(Tref) as

∫

T

∫

T

1

4π|x− y| dx dy = h3 2−3k/2 I(Tref) ,

according to the scaling properties of the kernel. Lemma 4.1 is related to

Lemma 4.2. For the two–dimensional square Ω = (0, 1)2 we have the self–energy

4πI(Ω) =

∫

Ω

∫

Ω

1

|x− y| dy dx

= 4
3
(1−

√
2)− 2 log(−1 +

√
2)− 1

2
log(2 +

√
2) + 1

2
log(2−

√
2) + 3 artanh( 1

2

√
2) .

For any rectangular sample Ω the self–energy can be evaluated analytically by sub-
stitution to multiple integrals of the kernel function 1/r (see [37, Chapter 3.2.5 (C)]).
Since the corresponding analytic expressions for triangles are hardly found in liter-
ature, we present the proof of Lemma 4.1 in an appendix to this Thesis, see Section
7.

4.1.2 The Interaction Energy of Distant Triangles

For pairs of triangles T0, T1 ∈ Th with positive distance

dist(T0, T1) > 0

comparable to their diameters, we apply a semi–analytical ansatz, since the inte-
grand in (4.1) is smooth on T0×T1. We presume that T1 denotes the larger triangle.
On T1 we apply a symmetrical Gaussian quadrature rule of fixed degree d > 0 pro-
vided by [20]. Our numerical experiments in Section 4.1.6 suggest to set d = 5. For
any Gaussian point y ∈ T1 the twofold integrals

I(y) =

∫

T0

1

4π|x− y| dx

are evaluated analytically according to [1].
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4.1.3 The Interaction Energy of Neighboring Triangles

We introduce the following classification of neighboring triangles:

• Edge neighbors: these are pairs of non–identical triangles T0, T1 ∈ Th that
share an edge;

• Vertex neighbors: these are pairs of triangles T0, T1 ∈ Th that share a vertex
but no edge.

For these pairs of triangles the integrand in (4.1) becomes weakly singular. More-
over, the derivatives of the inner integration (4.2) become singular in the triangles’
common points, and a Gaussian quadrature as in the case of distant triangles is
therefore precarious.

In [4] a splitting strategy is presented for the numerical integration of weakly singular
kernels in two dimensions. We generalize this ansatz to the fourfold integrals (4.1).
Generally speaking, this strategy relies on the combination of the triangulation’s
structural properties with those of the integrand. In the case of vertex neighbors,
we split each triangle into subtriangles of equal size by virtual bisection. On pairs of
subtriangles where the integrand is regular, we apply standard Gaussian quadrature
rules. Due to the scaling properties of the kernel k(· , ·), the interaction energies
for the remaining pairs of subtriangles turn into the unknowns of a system of linear
equations. The splitting strategy for edge neighbors is quite similar.

The term “virtual bisection” indicates that this splitting is only a technical step in
the numerical quadrature scheme. It does not lead to a lasting refinement of the
given triangulation Th. In particular, we are not concerned with the occurance of
hanging nodes in a virtual bisection.

We briefly recall the basic properties of the function k. The kernel

k(x, y) =
1

4π|x− y|

is asymptotically smooth, i. e. we have for all n ∈ N and z ∈ {x1, x2, y1, y2} the
inequality ∣∣∣∣

∂nk

∂zn
(x, y)

∣∣∣∣ ≤
n!

4π|x− y|n+1
.

An analogous inequality for mixed partial derivatives is obvious. Furthermore, the
kernel has the following structural properties.

• Symmetry: for all x, y ∈ R
2 there holds

k(x, y) = k(y, x) .

• Translational invariance: given x, y ∈ R
2, we have

k(x, y) = k(x + a, y + a) for all a ∈ R
2 .
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• Rotational invariance: given x, y ∈ R
2, we have

k(x, y) = k(Ax,Ay) for all orthogonal matrices A ∈ O(2) .

• Homogeneity: given x, y ∈ R
2, there holds

k(rx, ry) = r−1k(x, y) for all r ∈ R
+ .

Next we turn to the structural properties of the triangulation Th. First we note
that any triangle T ∈ Th is a scaled, rotated, and translated copy of the reference
triangle Tref . But by construction, at least one of the triangle’s sides is parallel to
one of the coordinate axes. The triangle T ∈ Th is therefore up to translation and
scaling one of the sixteen triangles depicted in Figure 4.2. Here the two legs of each
triangle are assumed to have length one.

1

23

4

5
6 7

8

9

1011

12

13

14 15

16

Figure 4.2: The possible different orientations of the reference triangle.

For each index i ∈ {1, 2, .., 16} in Figure 4.2 we denote the corresponding triangle
by Ti. For any pair of such triangles we consider the interaction energy

I(Ti, Tj) :=

∫

Ti

∫

Tj

1

4π|x− y| dx dy , i, j ∈ {1, 2, .., 16} . (4.3)

For i = j we have I(Ti, Ti) = I(Tref), where I(Tref) is the self–energy of the reference
triangle Tref due to Lemma 4.1. W. l. o. g. , we may assume i = 1 in (4.3).

4.1.4 The Interaction Energy of Vertex Neighbors

We start by considering vertex neighbors of equal size with both hypotenuses meet-
ing at the common vertex. The following interaction energies never occur in our
calculations since they correspond to prohibited neighbor configurations:

I(T1, T9) , I(T1, T10) , I(T1, T16) .
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Due to symmetry considerations we may confine ourselves to the following permitted
neighbor configurations:

I(T1, Tj) with j ∈ {3, 4, 5, 6, 11, 12, 13, 15} . (4.4)

A virtual bisection of the vertex neighbors in combination with the homogeneity of
the kernel k(· , ·) leads to a system of linear equations, as indicated by the diagrams
on the following pages. Here the dashed lines indicate the virtual bisection, and the
indices in the figures are those of the subtriangles S1, S2, S3, and S4. The interaction
energy of two subtriangles like S1 and S3 is denoted by I(S1, S3).

The interaction energies I(Si, Sj) for 1 ≤ i, j ≤ 4 and dist(Si, Sj) > 0 are approxi-
mated numerically as described in Subsection 4.1.2 with a Gaussian quadrature rule
of degree d = 7. Solving the resulting linear system for the interaction energies (4.4)
yields the entries of Table 4.1.

j I(T1, Tj)

3 1.98414834e–2

4 1.57542299e–2

5 1.44450574e–2

6 1.53548034e–2

11 2.04871058e–2

12 1.55404669e–2

13 1.44545195e–2

15 1.92854249e–2

Table 4.1: Tight approximation of the interaction energies for the vertex neighbors
(4.4).
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1

2
3

4

I(T1, T3) = I(S1, S3) + I(S1, S4) + I(S2, S4) + 1
4

√
2 I(T1, T3)

1

23

4

I(T1, T4) = 2 I(S1, S3) + I(S1, S4) + 1
4

√
2 I(T1, T6)

1
2

3

4

I(T1, T5) = 2 I(S1, S3) + I(S1, S4) + 1
4

√
2 I(T1, T5)

1
2

3

4

I(T1, T6) = 2 I(S1, S3) + I(S1, S4) + 1
4

√
2 I(T1, T4)
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1

2

3

4

I(T1, T11) = 2 I(S1, S3) + I(S1, S4) + 1
4

√
2 I(T1, T15)

1

234

I(T1, T12) = I(S1, S3) + I(S1, S4) + I(S2, S4) + 1
4

√
2 I(T1, T12)

1

2

34

I(T1, T13) = 2 I(S1, S3) + I(S1, S4) + 1
4

√
2 I(T1, T13)

1

2

3

4

I(T1, T15) = 2 I(S1, S3) + I(S1, S4) + 1
4

√
2 I(T1, T11)
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Next we consider vertex neighbors T0, T1 ∈ Th of different size. This case is reduced
to the previous one by additional virtual bisections. First, modulo a virtual bisec-
tion, it is sufficient to consider vertex neighbors that meet at a common π/4–degree
vertex. Besides we note that any triangle has at most three edge neighbors and at
most seven vertex neighbors, since Th consists only of isosceles right triangles.

In the following, let T0 ∈ Th be of refinement level k. If the common vertex x0

lies on the boundary of the rectangular sample Ω, then the vertex neighbor T1 is of
refinement level k′ with

k − 3 ≤ k′ ≤ k + 3 ,

as illustrated in Figure 4.3. If the common vertex lies in the interior of Ω, the
same conclusion is evident from Figure 4.4. Thus, after performing at most three
additional virtual bisections, it is sufficient to consider vertex neighbors of the same
size. This is also evident from the formal algorithm included at the end of the
following Section.

x0

Figure 4.3: Vertex neighbors with common vertex x0 on the boundary of Ω.

Figure 4.4: Vertex neighbors: For a triangle of level 1, the smallest possible vertex
neighbor is of level 3.

4.1.5 The Interaction Energy of Edge Neighbors

Obviously, edge neighbors can differ in their size only by one refinement level. Thus,
up to rotations and scaling, there are only four possible neighbor configurations (the
legs of the solid line triangles are assumed to have length one):
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The corresponding splitting strategy is illustrated by the following diagrams. Again,
the dashed lines indicate the virtual bisection, and the indices in the figures are those
of the Triangles S1, S2, S3, and S4. The values of I(Ω) and I(Tref) are exactly known
from Lemma 4.2 and Lemma 4.1. The approximate value of I(T1, T3) can be read
off from Table 4.1. This gives the results in Table 4.2.

2
√

2 I(Tref) = 2 I(Tref) + I(T1, T8)

I(Ω) = 2 I(Tref) + 2 I(T1, T2)

1

23

4

I(S1 ∪ S2, S3 ∪ S4) = I(S1, S4) + 1
4

√
2 I(T1, T2) + 1

2

√
2 I(T1, T3)

1

23

I(S1 ∪ S2, S3) = 1
4

√
2 I(T1, T2) + 1

4

√
2 I(T1, T3)
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3.30631020e–2

3.84788042e–2

3.18705920e–2

2.06193354e–2

Table 4.2: Tight approximation of the interaction energies for the possible edge
neighbors.

The nunmerical quadrature scheme for (4.1) developed so far, is summarized in the
following abstract algorithm:

procedure I(T0, T1)
if T0 = T1

compute I(T0, T0) as described in Subsection 4.1.1 ;
else if dist(T0, T1) > 0

compute I(T0, T1) as described in Subsection 4.1.2 ;
else if T0, T1 are edge neighbors

read off I(T0, T1) from Table 4.2 (scaled appropriately) ;
else if T0, T1 are vertex neighbors

for i = 0 to 1
if Ti has π/2–angle at common vertex

split Ti into T ′
i and T ′′

i ,
then compute I(Ti, Ti+1) = I(T ′

i , Ti+1) + I(T ′′
i , Ti+1) ;

end

for i = 0 to 1
if |Ti| > |Ti+1|

split Ti into T ′
i and T ′′

i ,
then compute I(Ti, Ti+1) = I(T ′

i , Ti+1) + I(T ′′
i , Ti+1) ;

end

if |T0| = |T1|
read off I(T0, T1) from Table 4.1 (scaled appropriately) ;

return I(T0, T1) .

4.1.6 Numerical Tests

We compare the theoretical value for the self–energy of the unit square Ω in Lemma
4.2 with numerical results gained by the following method: choose a triangulation
of class Qh or Th consisting of triangles T1, T2, .., TN , and sum up all interaction
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energies of the triangles:

∫

Ω

∫

Ω

1

4π|x− y| dx dy =

N∑

i=1

N∑

j=1

∫

Ti

∫

Tj

1

4π|x− y| dx dy . (4.5)

Here the interaction energy for a given pair of triangles is approximated by the
quadrature scheme introduced in the preceding Sections. We choose different degrees
for the Gaussian quadrature rules involved. We document the CPU time in seconds
for the numerical approximation of (4.5), and the relative error (4.7). Our numerical
tests suggest a degree of five for the Gaussian quadrature rule in order to attain a
tolerance of 5.0e–4 for the relative error.

We notice that evaluating (4.5) amounts to the computation of the quadratic form

zTKz , (4.6)

where K is the matrix with entries (3.27) and z ∈ R
N is the vector

z = (1, 1, .., 1)T .

The relative error listed in the Tables 4.3 and 4.4 can then be written as
√∣∣∣I(Ω)− zTKz

I(Ω)

∣∣∣ . (4.7)

This definition of the relative error with respect to energy will be justified in detail
in Section 4.9.

d CPU time (s) relative error

3 6.18e+0 3.89e–3

4 9.16e+0 6.80e–4

5 1.05e+1 4.00e–4

6 1.74e+1 3.01e–4

7 1.87e+1 3.02e–4

Table 4.3: Numerical test on the Qh–type triangulation in Figure 3.2: d is the degree
of the Gaussian quadrature rule involved, the second column documents the CPU
time in seconds, and the relative error is defined in (4.7). All numerical experiments
were done on a Pentium III processor running at 700 MHz.

4.1.7 Quadrature Schemes for General Triangulations

For general, regular triangulations T and neighboring triangles A,B ∈ T we replace
the virtual green refinement by a virtual red refinement: the triangles A and B are
subdivided into the subtriangles A1, .., A4 and B1, .., B4, respectively, as indicated
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d CPU time (s) relative error

3 3.97e+1 6.13e–3

4 5.93e+1 7.21e–4

5 6.73e+1 2.32e–4

6 1.12e+2 3.77e–4

7 1.20e+2 3.72e–4

Table 4.4: Numerical test on the Th–type triangulation in Figure 3.4. Notations are
as in Table 4.3.

in Figures 4.5, 4.6, and 4.7. We notice that the subtriangles Ai, i = 1, 2, 3, 4, are of
equal size and are a scaled version of the original triangle A. The same observation
holds for Bi, i = 1, 2, 3, 4, and B.

The scaling properties of the kernel k(·, ·) now yield the formulas (4.8), (4.9), and
(4.10), where the right hand side of each equation contains only interaction energies
either of distant triangles or of neighbor configurations considered by one of the
other two formulas.

The implementation of an algorithm solving the corresponding system of linear
equations is straightforward. We apply a Gaussian quadrature rule of degree d = 5
on all distant triangles.

The quadrature schemes for general, regular triangulations are used in Section 5.11
in the stray field computation on circular domains.

1

2
3 4

1

2

3

4

(1− 1
8
) I(A,B) =

∑4
i=2 I(A1, Bi) +

∑4
i=2 I(Ai, B) (4.8)

Figure 4.5: Splitting strategy for general vertex neighbors.
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1 2

3

4

1 2
3

4

(1− 1
4
) I(A,B) =

∑2
i=1

∑
j 6=i I(Ai, Bj) +

∑4
i=1 I(A3, Bi) + I(A4, B) (4.9)

Figure 4.6: Splitting strategy for general edge neighbors.

1 2
3

4

(1− 1
2
) I(A,A) =

∑4
i=1

∑
j 6=i I(Ai, Aj) (4.10)

Figure 4.7: Splitting strategy for the self–energie of general triangles.

4.2 The Dirichlet Screen Problem

In the following sections, we adopt the prime notation of Remark 2.1 for two–
dimensional variables.

For sufficiently weak external field H ′
ext, the constraint (3.3) is not active, see [16].

In view of (3.6), the reduced problem turns into the quadratic variational problem

Minimize

E(σ) = 1
2

∫

R2

|(∇′)−1/2σ|2dx′ + 2

∫

Ω′

H ′
ext · x′ σ dx′

among all σ with
∫
Ω′ σdx

′ = 0.

(4.11)

From (2.9) we see that (4.11) can be understood as a saddle point problem in (σ, u)
with solution (σ∗, u∗). The first variation in u yields

∆u∗ = 0 in R
3 − (Ω′ × {0}),

∂3u
∗(x′, 0+)− ∂3u

∗(x′, 0−) = σ∗(x′) for x′ ∈ Ω′.
(4.12)

The first variation in σ yields, up to additive constants,

u∗(x′, 0) = H ′
ext · x′ for x′ ∈ Ω′. (4.13)
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Hence solving the variational problem (4.11) amounts to evaluating the Dirichlet–
Neumann operator of the bounded surface Ω′. For constant fields H ′

ext, this repre-
sentation shows that it is essentially the geometry of Ω′ which determines σ∗.

Problem (4.11) is mathematically equivalent to the Dirichlet screen problem. This
problem is usually encountered in an electrostatic instead of a magnetostatic context:
Given the surface potential u find the charge density σ of a thin–film conductor
described by Ω′. Mathematically, this amounts to the solution of a Dirichlet problem
in R

3 − (Ω′ × {0}) with the help of a single layer potential on Ω′ × {0}. In our
reduced thin–film model, the prescribed potential is related to the external field via
u(x′) = H ′

ext · x′.
The Dirichlet screen problem is a well–studied problem for domains Ω′ with polyg-
onal boundary ∂Ω′. In our setting the regularity theory and numerical analysis due
to [22, 52] is of particular interest: there it is shown that the solution σ∗ fails to be
a smooth function up to the boundary ∂Ω′.

The singularities of σ∗ near edges and corners raise the question of how to choose a
local refinement strategy for a triangulation of Ω′. In the case of graded meshes and
piecewise constant functions it is shown in [22] that it suffices to refine the mesh only
towards the edges to retain optimal convergence. In particular, it is observed that
near an edge, but away from the corners, the solution σ∗ of (4.11) becomes singular
only in the direction orthogonal to the edge. As a consequence, efficient numerical
approximations are based on meshes which are anisotropically graded towards an
edge, see Figure 4.8 for an illustration.

Figure 4.8: Illustration of a graded mesh. Near edges, but away from the corners,
elements become very long and thin.

For our type of finite element discretization such graded meshes are prohibitive.
Since subsequent computations not only involve σ, but also the magnetization m
itself, we have to keep in mind the conclusion of Lemma 3.2: the constraint ||mh||∞ <
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1 for any mh ∈ RT0,h leads to the upper bound

|σh(x
′)| = |∇′·mh(x

′)| ≤ 4 diam(T )−1 (4.14)

for any T ∈ Th and x′ ∈ T . Since the diameter of T in (4.14) can not be replaced by
the elongation of T in one of the two dimensions, we have to consider an isotropic
refinement strategy.

4.3 Regularity Theory

It is well–known and easy to understand that σ∗ diverges like r−1/2 where r denotes
the distance to a smooth edge of Ω′. Corner singularities are at least numerically
well–characterized: In [42], it is shown that σ∗ diverges like R−0.7034 where R denotes
the distance to a square corner, like the corner (− 1

2
,−1

2
) of Ω′ = (−1

2
, 1

2
)2. For our

purpose the special form of the corner singularity is irrelevant. Roughly speaking,
we only need the bound R−1. On the other hand, it is important to know how the
r−1/2–behavior near the middle of an edge degenerates as one approaches a corner.

In [52] it is shown that σ∗ allows for a decomposition into edge and corner singu-
larities in the vicinity of a corner of Ω′. This regularity result is used in [22] for the
numerical analysis of the Dirichlet screen problem on anisotropically graded meshes.

We give here an elementary and self–contained proof of the statement our numerical
analysis in Section 4.4 requires. In particular, we do not attempt to characterize
the corner singularities. Our analysis is elementary in the sense that it is based
exclusively on the maximum principle. For simplicity, we formulate the regularity
result for Ω′ =

(
−1

2
, 1

2

)2
. However, the statements of the following Theorem 4.1

generalize to arbitrary convex polygonal domains in a straightforward manner, see
Remark 4.2 at the end of this section.

We use the following language:

edges = ∂Ω′,

corners =
{(

1
2
, 1

2

)
,
(

1
2
,−1

2

) (
−1

2
, 1

2

)
,
(
−1

2
,−1

2

)}
.

For any given point x′ ∈ Ω′ we set

r := dist(x′, edges) , R := dist(x′, corners) . (4.15)

The method we present works for the general variational problem

Minimize

E(σ) = 1
2

∫

R2

|(∇′)−1/2σ|2dx′ + 2

∫

Ω′

g σ dx′

among all σ with
∫
Ω′ σdx

′ = 0.

(4.16)

Here we assume g ∈ C3(Ω′).

In the sequel, we use the notation “.” to denote “≤ C” with a generic universal
constant C.
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Theorem 4.1. For given g ∈ C3(Ω′) we set

G2 := sup
Ω′

|g|+ sup
Ω′

|∇′g|+ sup
Ω′

|(∇′)2g| ,

G3 := sup
Ω′

|g|+ sup
Ω′

|∇′g|+ sup
Ω′

|(∇′)2g|+ sup
Ω′

|(∇′)3g| .

Then there exists a universal constant δ > 0 such that the solution σ∗ of (4.16)
satisfies for all x′ ∈ Ω′

|σ∗(x′)| . r−1/2R−1/2+δ

(
sup
B1

|u∗|+G2

)
, (4.17)

|∇′σ∗(x′)| . r−3/2R−1/2+δ

(
sup
B1

|u∗|+G3

)
. (4.18)

Here u∗ ∈ H1(R3)∩C0(R3) is the solution to (4.12) with u∗(x′, 0) = g(x′) for x′ ∈ Ω′.

Remark 4.1. Problem (4.11) implies the choice g(x′) = H ′
ext · x′ with constant

vector H ′
ext ∈ R

2. The maximum principle on R
3 − (Ω′ × {0}) then yields

sup
R3

|u∗| ≤ sup
x′∈Ω′

|H ′
ext · x′| . |H ′

ext| . (4.19)

The inequalities (4.17) and (4.18) therefore turn into

|σ∗(x′)| . r−1/2R−1/2+δ |H ′
ext|, (4.20)

|∇′σ∗(x′)| . r−3/2R−1/2+δ |H ′
ext|. (4.21)

Theorem 4.1 relies on the following lemmata, which are proven in Section 4.3.2.
These proofs in turn rely on elementary applications of the maximum principle
considered in Section 4.3.1.

Lemma 4.3. Let u be harmonic in B1 − {x3 = 0} with

u ≤ g on B′
1

for a smooth function g defined on B ′
1. Then we have for all ρ ≤ 1

sup
Bρ

(u− g(0)) . ρ

(
sup
B1

(u− g(0)) + sup
B′

1

|∇′g|+ sup
B′

1

|(∇′)2g|
)

. (4.22)

By symmetry, there follows:

Corollary 4.1. Let u be harmonic in B1 − {x3 = 0} with smooth boundary values
g on B′

1. Then we have for all ρ ≤ 1

sup
Bρ

|u− g(0)| . ρ

(
sup
B1

|u− g(0)|+ sup
B′

1

|∇′g|+ sup
B′

1

|(∇′)2g|
)

. (4.23)
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Lemma 4.4. Let u be harmonic in B1 − {x3 = 0, x2 ≥ 0} with smooth boundary
values g on B ′

1 ∩ {x2 ≥ 0}. Then we have for all ρ ≤ 1

sup
Bρ

|u− g(0)| . ρ1/2

(
sup
B1

|u− g(0)|+ sup
B′

1∩{x2≥0}
|∇′g|+ sup

B′
1∩{x2≥0}

|(∇′)2g|
)

.

(4.24)

Lemma 4.5. There exists a universal δ > 0 with the property: for any u which
is harmonic in B1 − {x3 = 0, x2 ≥ 0, x1 ≥ 0} with smooth boundary values g on
B′

1 ∩ {x2 ≥ 0, x1 ≥ 0} we have

sup
Bρ

|u− g(0)| . ρδ

(
sup
B1

|u− g(0)|+ sup
B′

1∩{x2≥0,x1≥0}
|∇′g|

)
(4.25)

for any ρ ≤ 1.

Lemma 4.6. Let u be harmonic in B1 − {x3 = 0} with smooth boundary values g
on B′

1. Then we have

sup
B1/2

|∇′u| . sup
B1

|u|+ sup
B′

1

|∇′g| .

Proof of Theorem 4.1

We first address (4.17). Let x′ ∈ Ω′ be arbitrary and set

r := dist(x′, edges) ≤ dist(x′, corners) =: R ≤ 1 .

It suffices to consider points x with

4r ≤ R , (4.26)

since the right hand side of (4.17) diverges only as x′ approaches ∂Ω′. Applying
Corollary 4.1 (rescaled and translated), we get for ρ ≤ r

ρ−1 sup
Bρ(x′)

|u∗ − g(x′)| . r−1 sup
Br(x′)

|u∗ − g(x′)|+ sup
B′

r(x′)

|∇′g|+ r sup
B′

r(x′)

|(∇′)2g| .

In the limit ρ ↓ 0 this yields due to the definition of u∗

|σ∗(x′)| . r−1 sup
Br(x′)

|u∗ − g(x′)|+ sup
Ω′

|∇′g|+ r sup
Ω′

|(∇′)2g| . (4.27)

Now we need to estimate the term

r−1 sup
Br(x′)

|u∗ − g(x′)| .

For this purpose let y′ ∈ edges be such that

r = |x′ − y′| . (4.28)

44



Because of Br(x
′) ⊂ B2r(y

′) and

|g(x′)− g(y′)| ≤ r sup
Ω′

|∇′g| ,

we have
r−1 sup

Br(x′)

|u∗ − g(x′)| ≤ r−1 sup
B2r(y′)

|u∗ − g(y′)|+ sup
Ω′

|∇′g| . (4.29)

Now let z′ ∈ corners denote the corner next to y′. Then we have for the distance
R = |y′ − z′| the relation

R
√

15
16
≤ R ≤ R ,

due to (4.26). Thus a rescaled and translated version of Lemma 4.4 applied on
BR(y′) yields

sup
B2r(y′)

|u∗ − g(y′)|

.
( r
R

)1/2
(

sup
BR(y′)

|u∗ − g(y′)|+R sup
Ω′

|∇′g|+R2 sup
Ω′

|(∇′)2g|
)

. (4.30)

From (4.29) and (4.30) we get

r−1 sup
Br(x′)

|u∗ − g(x′)|

. (rR)−1/2

(
sup

BR(y′)

|u∗ − g(y′)|+R sup
B′

R(y′)

|∇′g|+R2 sup
B′

R(y′)

|(∇′)2g|
)

+ sup
B′

2r

|∇′g| .

(4.31)

Estimates (4.27) and (4.31) yield (we notice that (rR)−1/2 ≥ 1 due to (4.26))

|σ∗(x′)| . (rR)−1/2

(
sup

BR(y′)

|u∗ − g(y′)|+R sup
B′

R(y′)

|∇′g|+R2 sup
B′

R(y′)

|(∇′)2g|
)

.

(4.32)
Now we need to estimate

sup
BR(y′)

|u∗ − g(y′)| .

Because of BR(y′) ⊂ B2R(z′) for the corner z′ next to y′ and

|g(y′)− g(z′)| . R sup
Ω′

|∇′g|

we have
sup

BR(y′)

|u∗ − g(y′)| . sup
B2R(z′)

|u∗ − g(z′)|+R sup
Ω′

|∇′g| . (4.33)

A translated version of Lemma 4.5 yields

sup
B2R(z′)

|u∗ − g(z′)| . Rδ

(
sup
B1

|u∗ − g(z′)|+ sup
Ω′

|∇′g|
)
. (4.34)
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From (4.33) and (4.34) we get (with Rδ ≥ R)

sup
BR(y′)

|u∗ − g(y′)| . Rδ

(
sup
B1

|u∗ − g(z′)|+ sup
Ω′

|∇′g|
)
. (4.35)

Combining (4.32) and (4.35), we conclude

|σ∗(x′)|

. (rR)−1/2

(
Rδ(sup

B1

|u∗|+ sup
Ω′

|g|+ sup
Ω′

|∇′g|) +R sup
Ω′

|∇′g|+R2 sup
Ω′

|(∇′)2g|
)

. r−1/2R−1/2+δ

(
sup
B1

|u∗|+ sup
Ω′

|g|+ sup
Ω′

|∇′g|+ sup
Ω′

|(∇′)2g|
)
. (4.36)

With the definition of G2 this proves (4.17).

It remains to show (4.18). Our proof relies on the estimate

ρ−1 sup
Bρ(x′)

|u∗−g(x′)| . r−1/2R−1/2+δ

(
sup
B1

|u∗|+ sup
Ω′

|g|+ sup
Ω′

|∇′g|+ sup
Ω′

|(∇′)2g|
)

(4.37)
for ρ ≤ r, which follows directly from (4.17) and the definition of u∗. By symmetry
it is sufficient to bound the derivative ∂1σ

∗ from above. By applying Corollary 4.1
(translated and rescaled) to the harmonic function ∂1u

∗ we get

ρ−1 sup
Bρ(x′)

|∂1u
∗ − (∂1g)(x

′)|

. r−1

(
sup

Br(x′)

|∂1u
∗ − (∂1g)(x

′)|+ sup
B′

r(x′)

|∇′∂1g|+ sup
B′

r(x′)

|(∇′)2∂1g|
)

.

For ρ ↓ 0 this yields

|∂1σ
∗(x′)| . r−1

(
sup

Br(x′)

|∂1u
∗ − (∂1g)(x

′)|+ sup
Ω′

|(∇′)2g|+ sup
Ω′

|(∇′)3g|
)

. (4.38)

Now we apply Lemma 4.6 (translated and rescaled) to the harmonic function u∗(x)−
(g(x′) + (∂1g)(x

′)(x1 − x′1)) and get

r sup
Br(x′)

|∂1u
∗ − (∂1g)(x

′)|

. sup
B2r(x′)

|u∗ − g(x′)− (∂1g)(x
′)(x1 − x′1)|+ r sup

B′
2r(x′)

|∂1g − (∂1g)(x
′)|

. sup
B2r(x′)

|u∗ − g(x′)|+ r sup
Ω′

|∇′g| . (4.39)

Inserting (4.39) in (4.38) yields

|∂1σ
∗(x′)|

. r−1

(
r−1 sup

B2r(x′)

|u∗ − g(x′)|+ sup
Ω′

|∇′g|+ sup
Ω′

|(∇′)2g|+ sup
Ω′

|(∇′)3g|
)

. (4.40)
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Using (4.37) with ρ = r, we get from (4.40)

|∂1σ
∗(x′)|

. r−3/2R−1/2+δ

(
sup
B1

|u∗|+ sup
Ω′

|g|+ sup
Ω′

|∇′g|+ sup
Ω′

|(∇′)2g|+ sup
Ω′

|(∇′)3g|
)
.

With the definition of G3 this proves (4.18).

4.3.1 Three Applications of the Maximum Principle

We use the notations

B1 = {x ∈ R
3 | |x| < 1} and B′

1 = B1 ∩ {x3 = 0} .

Lemma 4.7. Let u be a harmonic function in B1 − {x3 = 0} with

u ≤ 1 in B1 ,

u(x) ≤ 1
2
(x2

1 + x2
2) for x ∈ B′

1 .

Then we have

u(0, 0, x3) ≤ 3|x3|
for all −1 ≤ x3 ≤ 1.

Proof of Lemma 4.7.

We start by considering the case 0 ≤ x3 ≤ 1. By assumption we have

u ≤ 1 on ∂B1 ∩ {x3 > 0} ,
u(x) ≤ 1

2
(x2

1 + x2
2) for x ∈ B′

1

}
. (4.41)

We choose as a suitable comparison function on B1 ∩ {x3 > 0}:

w(x) = 3x3 + x2
1 + x2

2 − 2x2
3 .

Obviously, w is harmonic. By construction we have for x3 = 0

w(x) = x2
1 + x2

2 ≥ 1
2
(x2

1 + x2
2)

(4.41)

≥ u(x) .

Further notice that for x ∈ ∂B1 ∩{x3 ≥ 0} we have because of x3 ≥ x2
3 the estimate

w(x) ≥ 3x2
3 + x2

1 + x2
2 − 2x2

3 = 1
(4.41)

≥ u(x) .

Hence by the maximum principle w ≥ u in B1 ∩ {x3 ≥ 0} and thus, in particular,

u(0, 0, x3) ≤ w(0, 0, x3) ≤ 3x3 . (4.42)
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It remains to consider the case −1 ≤ x3 ≤ 0. By assumption we have

u ≤ 1 on ∂B1 ∩ {x3 < 0} ,
u(x) ≤ 1

2
(x2

1 + x2
2) for x ∈ B′

1

}
. (4.43)

By choosing as comparison function on B1 ∩ {x3 < 0} the function

w(x) = −3x3 + x2
1 + x2

2 − 2x2
3 ,

we may conclude as before and yield

u(0, 0, x3) ≤ w(0, 0, x3) ≤ −3x3

for −1 ≤ x3 ≤ 0.

Lemma 4.8. Let u be harmonic in B1 − {x3 = 0, x2 ≥ 0} with

u ≤ 1 in B1 ,

u(x) ≤ 1
2
(x2

1 + x2
2) for x ∈ B′

1 ∩ {x2 ≥ 0} .
Then we have

u(0, x2, x3) .

(√
x2

2 + x2
3

)1/2

for all x2, x3 with x2
2 + x2

3 ≤ 1.

Proof of Lemma 4.8.

By assumption we have

u ≤ 1 on ∂B1 ,
u(x) ≤ 1

2
(x2

1 + x2
2) for x ∈ B′

1 ∩ {x2 ≥ 0} .

}
(4.44)

For notational convenience, we introduce the distance to the edge

r :=
√
x2

2 + x2
3 . (4.45)

Our comparison function is

w(x) = 6(r − x2)
1/2 + x2

1 + x2
2 − 2x2

3 .

The polynomial contribution is obviously harmonic. That the function (r − x2)
1/2

of the two variables (x2, x3) is harmonic outside of {x3 = 0, x2 ≥ 0} requires a
short calculation. Alternatively, it can be inferred from the representation in polar
coordinates

1√
2
(r − x2)

1/2 = r1/2 sin φ
2

for (x2, x3) = (r cosφ, r sinφ). This function is also chosen such that it vanishes on
{x3 = 0, x2 ≥ 0}. Thus we have on B ′

1 ∩ {x2 ≥ 0}

w(x) = x2
1 + x2

2 ≥ 1
2
(x2

1 + x2
2)

(4.44)

≥ u(x) . (4.46)
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Furthermore we notice for x ∈ B1

r − x2 =
√
x2

2 + x2
3 − x2 ≥ 1

4
x2

3

and thus √
r − x2 ≥ 1

2
|x3| ,

so that for x ∈ ∂B1

w(x) ≥ 3|x3|+ x2
1 + x2

2 − 2x2
3

≥ 3x2
3 + x2

1 + x2
2 − 2x2

3

= x2
1 + x2

2 + x2
3

= 1
(4.44)

≥ u(x) (4.47)

By the maximum principle, (4.46) and (4.47) propagate into B1−{x3 = 0, x2 ≥ 0},
so that in particular

u(0, x2, x3) ≤ w(0, x2, x3)

= 6(r − x2)
1/2 + x2

2 − 2x2
3

≤ 6(2r)1/2 + r2

≤ (6
√

2 + 1)r1/2

With the definition of the distance r in (4.45) this proves the lemma.

Lemma 4.9. For γ ∈ (0, π) let the sector

S = {x ∈ B′
1 | x = r(cosµ, sinµ, 0), r ∈ (0, 1), µ ∈ (0, γ) }

be given. Then there exists a universal θ < 1 with the property: for any u which is
harmonic in B1 − S with

u ≤ 1 in B1 and u ≤ 0 on S ,

we have
u ≤ θ in B1/2 .

Proof of Lemma 4.9.

We introduce the points
xR := R

(
cos γ

2
, sin γ

2
, 0
)

along the “diagonal” of the sector S. For R ≤ 1
2

and Rγ := R sin γ
2

we consider the
balls BRγ (xR) ⊂ B1. They have the property

BRγ (xR) ∩ S = BRγ (xR) ∩ {x3 = 0} .

Now we set
cγ := 1

12
sin γ

2
.
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Clearly we have
BcγR(xR) ⊂ BRγ/2(xR) .

Let further the point (x1, x2, x3) ∈ BcγR(xR) be given. Then we have

BRγ/2(x1, x2, 0) ⊂ BRγ (xR) ,

and hence by Lemma 4.7 (after shifting the origin to (x1, x2, 0) and rescaling by
Rγ/2)

u(x) ≤ 3
|x3|
Rγ/2

≤ 1
2
, (4.48)

where we have used that
|x3| ≤ cγR = 1

12
Rγ

for x ∈ BcγR(xR).

For given R ≤ 1
2

we now construct a comparison function wR on

B1 −
(
S ∪BcγR(xR)

)
. (4.49)

It is given by

wR(x) = 1
2

(
1 +

1− cγR
|x−xR|

1− cγR
1−R

)
.

Since wR is an affine transformation of the shifted fundamental solution |x− xR|−1,
it is harmonic in R

3 − {xR} and therefore also in (4.49). By construction we have

wR = 1
2

on ∂BcγR(xR) , (4.50)

and wR ≥ 1
2

in R
3 − BcγR(xR), so that in particular,

wR ≥ 0 on S − BcγR(xR) . (4.51)

Finally, for x ∈ ∂B1 we have

|x− xR| ≥ |x| − |xR| = 1−R ,

so that
wR ≥ 1 on ∂B1 . (4.52)

In view of (4.48), (4.50), (4.51) and (4.52) we conclude

u ≤ wR on ∂
(
B1 −

(
S ∪ BcγR(xR)

))
,

and thus by the maximum principle

u ≤ wR in B1 −BcγR(xR) .

Together with (4.48) this yields

u ≤ max{1
2
, sup
B1/2

wR} in B1/2 . (4.53)
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It remains to show that there exists an R ≤ 1
2

such that

θR := sup
B1/2

wR < 1 .

We notice that for x ∈ B1/2

|x− xR| ≤ |x|+ |xR| ≤ 1
2

+R , (4.54)

so that

sup
B1/2

wR ≤ 1
2


1 +

1− cγR
1
2
+R

1− cγR
1−R


 = 1− 1

2
cγR +O(R2) .

Hence θR < 1 for sufficiently small R > 0, which proves the lemma.

4.3.2 Concluding Proofs on Regularity

Proof of Lemma 4.3.

We go through several reductions of the claim so that we can apply Lemma 4.7. It
is obvious that it is enough to show (4.22) for all ρ ≤ 1

2
. We now argue that it is

sufficient to establish

u(x1, x2, x3)− g(x1, x2)

. |x3|
(

sup
B1/2(x1,x2,0)

(u− g(x1, x2)) + sup
B′

1/2
(x1,x2)

|∇′g|+ sup
B′

1/2
(x1,x2)

|(∇′)2g|
)

(4.55)

for all (x1, x2, x3) ∈ B1/2. Indeed, for any (x1, x2, x3) ∈ Bρ with ρ ≤ 1
2

we have

u(x1, x2, x3)− g(0) ≤ u(x1, x2, x3)− g(x1, x2) + |g(x1, x2)− g(0)|
(4.55)

. |x3|
(

sup
B1/2(x1,x2,0)

(u− g(x1, x2)) + sup
B′

1/2
(x1,x2)

|∇′g|+ sup
B′

1/2
(x1,x2)

|(∇′)2g|
)

+ |g(x1, x2)− g(0)|

. |x3|
(

sup
B1/2(x1,x2,0)

(u− g(0)) + sup
B′

1/2
(x1,x2)

|∇′g|+ sup
B′

1/2
(x1,x2)

|(∇′)2g|
)

+ sup
B′

1/2
(x1,x2)

|g(x1, x2)− g(0)| ,

where we have used the triangle inequality for the supremum in the way

sup(u− g(x1, x2)) ≤ sup(u− g(0)) + sup(g(0)− g(x1, x2))

≤ sup(u− g(0)) + sup |g(x1, x2)− g(0)| .
It remains to notice that (x1, x2, x3) ∈ Bρ and ρ ≤ 1

2
imply |x3| ≤ ρ, B1/2(x1, x2, 0) ⊂

B1, B
′
1/2(x1, x2) ⊂ B′

1 and

|g(x1, x2)− g(0)| ≤ ρ sup
B′

1

|∇′g| .
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By translational invariance and rescaling, (4.55) reduces to

u(0, 0, x3)− g(0) . |x3|
(

sup
B1

(u− g(0)) + sup
B′

1

|∇′g|+ sup
B′

1

|(∇′)2g|
)

(4.56)

for all |x3| ≤ 1. Since affine functions are harmonic, we may assume

g(0) = 0 and (∇′g)(0) = 0 , (4.57)

so that (4.56) is a consequence of

u(0, 0, x3) . |x3|
(

sup
B1

u+ sup
B′

1

|(∇′)2g|
)

(4.58)

for all |x3| ≤ 1. By rescaling u and g simultaneously, we may assume

sup
B1

u+ sup
B′

1

|(∇′)2g| ≤ 1 , (4.59)

so that (4.58) reduces to
u(0, 0, x3) . |x3| (4.60)

for |x3| ≤ 1. In view of (4.57) and (4.59), the function u now satisfies the assump-
tions of Lemma 4.7, which in turn yields (4.60).

Proof of Lemma 4.4.

We repeat the reduction of Lemma 4.3: it is enough to show (4.24) for all ρ ≤ 1
2
.

Moreover, we argue that it is sufficient to establish

|u(x1, x2, x3)− g(x1, 0)|

.

(√
x2

2 + x2
3

)1/2
(

sup
B1/2(x1,0,0)

|u− g(x1, 0)|+ sup
B′

1/2
(x1,0)

|∇′g|+ sup
B′

1/2
(x1,0)

|(∇′)2g|
)

(4.61)

for all (x1, x2, x3) ∈ B1/2. Indeed, for any (x1, x2, x3) ∈ Bρ with ρ ≤ 1
2

we have

|u(x1, x2, x3)− g(x1, 0)|
(4.61)

.

(√
x2

2 + x2
3

)1/2
(

sup
B1/2(x1,0,0)

|u− g(x1, 0)|+ sup
B′

1/2
(x1,0)

|∇′g|+ sup
B′

1/2
(x1,0)

|(∇′)2g|
)

+ |g(x1, 0)− g(0)| .

It remains to observe that (x1, x2, x3) ∈ Bρ with ρ ≤ 1
2

implies
(√

x2
2 + x2

3

)1/2

≤
ρ1/2, B1/2(x1, 0, 0) ⊂ B1, B

′
1/2(x1, 0) ⊂ B′

1 and

|g(x1, 0)− g(0)| ≤ ρ sup
B′

1

|∇′g| ≤ ρ1/2 sup
B′

1

|∇′g| .
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By translational invariance and rescaling, (4.61) reduces to

|u(0, x2, x3)− g(0)| .

(√
x2

2 + x2
3

)1/2
(

sup
B1

|u− g(0)|+ sup
B′

1

|∇′g|+ sup
B′

1

|(∇′)2g|
)

(4.62)
for all x2, x3 with x2

2+x2
3 ≤ 1. By substracting an affine and thus harmonic function,

we may assume that
g(0) = 0 and (∇′g)(0) = 0 ,

so that (4.62) reduces to

|u(0, x2, x3)| .

(√
x2

2 + x2
3

)1/2
(

sup
B1

|u|+ sup
B′

1

|(∇′)2g|
)

for all x2
2 + x2

3 ≤ 1. The same symmetry considerations as in Lemma 4.3 lead to the
claim that

u(0, x2, x3) .

(√
x2

2 + x2
3

)1/2

(4.63)

under the assumptions

u ≤ 1 on ∂B1 ,
u(x) ≤ 1

2
(x2

1 + x2
2) for x ∈ B′

1 ∩ {x2 ≥ 0} .

}

But this is the content of Lemma 4.8.

Proof of Lemma 4.5.

We may assume g(0) = 0 and δ ≤ 1, so it is enough to establish

sup
Bρ

|u| . ρδ

(
sup
B1

|u|+ sup
B′

1∩{x2≥0,x1≥0}
|∇′g|

)
. (4.64)

We notice that the function −u satisfies the assumptions of Lemma 4.5 with bound-
ary values −g. Since the sign of g does not enter the estimate (4.64), it is a conse-
quence of

sup
Bρ

u . ρδ

(
sup
B1

|u|+ sup
B′

1∩{x2≥0,x1≥0}
|∇′g|

)
. (4.65)

We now argue that it is sufficient to show

sup
Bρ

ũ . ρδ sup
B1

|ũ| (4.66)

for any ũ which is harmonic in B1 − {x3 = 0, x2 ≥ 0, x1 ≥ 0} and has boundary
values ũ ≤ 0 on B ′

1 ∩ {x2 ≥ 0, x1 ≥ 0}. Indeed, if u is harmonic in B1 − {x3 =
0, x2 ≥ 0, x1 ≥ 0} with boundary values g on B ′

1 ∩ {x2 ≥ 0, x1 ≥ 0}, we define the
function ũ for all (x1, x2, x3) ∈ B1 by

ũ(x1, x2, x3) := u(x1, x2, x3)− C0(x1 + x2), (4.67)
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where

C0 := sup
B′

1∩{x2≥0,x1≥0}
|∇′g| .

Obviously ũ is harmonic in B1 − {x3 = 0, x2 ≥ 0, x1 ≥ 0} and for all x1 ≥ 0, x2 ≥ 0
with

√
x2

1 + x2
2 < 1 we have

ũ(x1, x2, 0) = u(x1, x2, 0)−C0(x1+x2) ≤ u(x1, x2, 0)−C0

√
x2

1 + x2
2 ≤ 0 , (4.68)

since u = g on B′
1 ∩ {x2 ≥ 0, x1 ≥ 0} and g(0) = 0. Therefore ũ ≤ 0 on B ′

1 ∩ {x2 ≥
0, x1 ≥ 0} and (4.65) now follows from (4.66):

u = ũ+ (x1 + x2)C0

(4.66)

. ρδ sup
B1

|ũ|+ ρC0

(4.67)

. ρδ

(
sup
B1

|u|+ C0

)
+ ρC0

. ρδ

(
sup
B1

|u|+ C0

)
.

It remains to proof (4.66). It is well known that the exponent δ in (4.66) can be
characterized as the smallest eigenvalue of the Laplace–Beltrami operator on ∂B1

with non–positive boundary conditions on the quarter arc ∂B ′
1 ∩ {x2 ≥ 0, x1 ≥ 0}.

We give here an independent and elementary argument that relies on Lemma 4.9.

It is enough to show that there exists a universal θ < 1 such that for any ũ, which
is harmonic in B1 − {x3 = 0, x2 ≥ 0, x1 ≥ 0} and has boundary values ũ ≤ 0 on
B′

1 ∩ {x2 ≥ 0, x1 ≥ 0}, there holds

sup
B1/2

ũ ≤ θ sup
B1

ũ . (4.69)

Indeed, by scaling this implies for any k ∈ N

sup
B

2−k

ũ ≤ θ sup
B

2−k+1

ũ ,

and thus by iteration

sup
B

2−k

ũ ≤ θk sup
B1

ũ .

With δ := − log θ/ log 2 > 0, the latter can be rewritten as

sup
B

2−k

ũ ≤ (2−k)δ sup
B1

ũ ,

which yields for x ∈ B1/2

ũ(x) ≤ (2|x|)δ sup
B1

ũ .
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By scaling, it is enough to consider the case

sup
B1

ũ = 1 (4.70)

and to show

ũ ≤ θ on B1/2 . (4.71)

Now ũ satisfies the assumptions of Lemma 4.9, and (4.71) follows thereby.

Proof of Lemma 4.6.

By symmetry, it is sufficient to show

sup
B1/2

|∂1u| . sup
B1

|u|+ sup
B′

1

|∂1g| .

We use that

∂1u is harmonic in B1 − {x3 = 0}, (4.72)

∂1u = ∂1g on {x3 = 0}. (4.73)

We apply Bernstein’s argument. Fix a cut–off function η ∈ C∞
0 (B1) with η = 1 on

B1/2 and consider for a constant λ > 0

w := η2(∂1u)
2 − λu2 .

By construction of η and by (4.73),

w ≤ 0 on ∂B1 ∩ {x3 ≥ 0} , (4.74)

w ≤ sup
B′

1

|∂1g|2 on B1 ∩ {x3 = 0} . (4.75)

We claim that for λ = λ(η) sufficiently large

−∆w ≤ 0. (4.76)

Indeed

−∆w = −η2∆(∂1u)
2 − 4η∇η · ∇(∂1u)

2 −∆η2(∂1u)
2 − λ∆u2

(4.72)
= −2η2|∇∂1u|2 − 8η∂1u∇η · ∇∂1u−∆η2(∂1u)

2 − 2λ|∇u|2
≤ 8(∂1u)

2|∇η|2 −∆η2(∂1u)
2 − 2λ|∇u|2

≤ (8|∇η|2 + |∆η2| − 2λ) |∇u|2,

so that (4.76) holds provided λ ≥ 4|∇η|2 + 1
2
|∆η2|. By the maximum principle we

obtain from (4.76) and (4.74)

w ≤ sup
B′

1

|∂1g|2 in B1,
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that is

η2(∂1u)
2 ≤ λu2 + sup

B′
1

|∂1g|2 . (sup
B1

|u|)2 + sup
B′

1

|∂1g|2 in B1.

By construction of η this yields as desired

(∂1u)
2 . (sup

B1

|u|)2 + sup
B′

1

|∂1g|2 in B1/2.

Remark 4.2. The corner angles of the polygonal boundary ∂Ω′ enter our regularity
theory only via Lemma 4.9, which propagates into Lemma 4.5 and finally into The-
orem 4.1. Since Lemma 4.9 is established for general corner angles γ ∈ (0, π), the
statements of Theorem 4.1 hold analogously for arbitrary convex polygonal domains.

4.4 A–priori Error Estimate

We consider a triangulation of type Th on Ω′ with typical triangle diameter h. The
divergence–conforming finite element ansatz for the magnetization m′ with Raviart–
Thomas elements leads on the level of σ to the space P 0

0,h of all piecewise constant
σh’s with vanishing mean

∫
Ω′ σhdx

′ = 0 (which we extend trivially on R
2). Hence

we are investigating the following Galerkin ansatz for (4.11):

Minimize

E(σh) = 1
2

∫

R2

|(∇′)−1/2σh|2dx′ + 2

∫

Ω′

H ′
ext · x′ σh dx

′

among all σh ∈ P 0
0,h.

(4.77)

We now formulate our estimate of the discretization error.

Theorem 4.2. Let Ω′ = (−1
2
, 1

2
)2 and 0 < h, α < 1. Let the triangulation Th of Ω′

satisfy
∀T ∈ Th diam(T ) ≤ h dist(x′T , ∂Ω

′)α, (4.78)

where x′T denotes the barycenter of T . Then there exists a constant C, which only
depends on α, such that we have for the solutions σ∗ and σ∗

h of (4.11) resp. (4.77)

(∫

R2

|(∇′)−1/2(σ∗
h − σ∗)|2dx′

)1/2

≤ C |H ′
ext|
{
h3/2 for α > 2

3

(log1/2 1
h
)h

1
2(1−α) for α < 2

3

}
.

(4.79)

Proof of Theorem 4.2.
We denote by C a generic constant which only depends on α. In view of (4.11) and
(4.77), the disrectization error in the energy norm is given by the approximation
error. It thus suffices to show

(∫

R2

|(∇′)−1/2(Iσ∗ − σ∗)|2dx′
)1/2

≤ C |H ′
ext|
{
h3/2

(log 1
h
)h

1
2(1−α)

}
, (4.80)
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where the interpolation Iσ ∈ P 0
0,h is defined via

∀T ∈ Th

∫

T

Iσ dx′ =

∫

T

σ dx′.

In view of (2.8), i. e.

(
1
2

∫

R2

|(∇′)−1/2(Iσ∗ − σ∗)|2dx′
)1

2

= sup

{∫
Ω′(Iσ

∗ − σ∗) u dx′

(
∫

R3 |∇u|2dx)1/2
| u : R

3 → R

}
,

(4.80) amounts to show

∣∣∣∣∣
∑

T∈Th

∫

T

(Iσ∗ − σ∗) (Iu− u) dx′
∣∣∣∣∣

=

∣∣∣∣
∫

Ω′

(Iσ∗ − σ∗) (Iu− u) dx′
∣∣∣∣

=

∣∣∣∣
∫

Ω′

(Iσ∗ − σ∗) u dx′
∣∣∣∣

≤ C |H ′
ext|

(∫

R3

|∇u|2 dx
)1/2

{
h

3
2

(log
1
2 1

h
)h

1
2(1−α)

}
(4.81)

for an arbitrary test function u.

We will need the following trace estimate for u on each triangle T with area |T | and
for exponents p ∈ {2, 4}

(∫

T

|u− Iu|pdx′
)1/p

≤ C
diam(T )1/2

|T |1/2−1/p

(∫

T×R

|∇u|2dx
)1/2

. (4.82)

Indeed, let T̂ be the reference triangle on which we are sure to have the estimate,
which is a mixture of a Sobolev estimate, a trace estimate (recall thatH 1(R3) embeds
into L4(R2)) and a Poincaré estimate:

(∫

T̂

|u− Iu|pdx̂′
)1/p

≤ C

(∫

T̂×R

|∇̂u|2dx̂
)1/2

(4.83)

with a universal constant C. Let x̂′ 7→ Ax̂′ + b be the affine map which maps T̂ onto
T . We change coordinates x = (x′, x3) according to

x′ = Ax̂′, ∇̂′ = At∇′,

x3 = |At|x̂3, ∂̂3 = |At| ∂3.
(4.84)
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Then we have

(∫

T

|u− Iu|pdx′
)1/p

=

(
|detA|

∫

T̂

|u− Iu|pdx̂′
)1/p

(4.83)

≤ C |detA|1/p

(∫

T̂×R

|∇̂′u|2 + |∂̂3u|2dx̂
)1/2

(4.84)

≤ C |detA|1/p

(
|At|2

∫

T̂×R

|∇′u|2 + |∂3u|2dx̂
)1/2

= C |detA|1/p

(
|At| |detA|−1

∫

T×R

|∇′u|2 + |∂3u|2dx
)1/2

= C |detA|1/p−1/2|A|1/2

(∫

T×R

|∇′u|2 + |∂3u|2dx
)1/2

.

Now (4.82) follows because of 1
2
|detA| = |T | and |A| ≤ C diam(T ).

We will distinguish between interior and boundary triangles.

• Interior triangles T are those for which

dist(x′T , ∂Ω
′) ≥ (2h)

1
1−α . (4.85)

Those triangles satisfy in particular

diam(T )
(4.78)

≤ h dist(x′T , ∂Ω
′)α

(4.85)

≤ 1
2
dist(x′T , ∂Ω

′), (4.86)

so that

∀x′ ∈ T 1
2
dist(x′T , ∂Ω

′) ≤ dist(x′, ∂Ω′) ≤ 2dist(x′T , ∂Ω
′). (4.87)

These triangles furthermore have the property that

dist(T, ∂Ω′)
(4.86)

≥ 1
2
dist(x′T , ∂Ω

′)
(4.85)

≥ h
1

1−α ,

so that

T ⊂ {x′ ∈ Ω′ | dist(x′, ∂Ω′) ≥ h
1

1−α } =: Ω′
h. (4.88)

• Boundary triangles T are those for which (4.85) fails, i.e.

dist(x′T , ∂Ω
′) < (2h)

1
1−α . (4.89)

Since

diam(T )
(4.78)

≤ h dist(x′T , ∂Ω
′)α

(4.89)

≤ (2h)
1

1−α ,
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it follows from (4.89) that

∀x′ ∈ T dist(x′, ∂Ω′) ≤ (4h)
1

1−α .

We retain

T ⊂ {x′ ∈ Ω′ | dist(x′, ∂Ω′) ≤ (4h)
1

1−α } =: ∂Ω′
h. (4.90)

We call Th,int, Th,bdry the partitioning of Th.

We start with an interior triangle T ∈ Th,int. By Cauchy–Schwarz inequality

∣∣∣∣
∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣ ≤

(∫

T

|Iσ∗ − σ∗|2 dx′
)1/2 (∫

T

|Iu− u|2 dx′
)1/2

.

(4.91)
For the first factor, we use Poincaré’s estimate for a convex set T

(∫

T

|Iσ∗ − σ∗|2 dx′
)1

2

≤ C

(
diam(T )2

∫

T

|∇σ∗|2 dx′
)1/2

and appeal to Theorem 4.1

(∫

T

|∇σ∗|2 dx′
)1/2

≤ C |H ′
ext|
(∫

T

dist(x′, ∂Ω′)−3dist(x′, P )−1 dx′
)1/2

,

where P = {(1
2
, 1

2
), (1

2
,−1

2
), (−1

2
, 1

2
), (−1

2
,−1

2
)} denotes the set of corners.

For the second factor in (4.91), we use (4.82) for p = 2:

(∫

T

|Iu− u|2 dx′
)1/2

≤ C

(
diam(T )

∫

T×R

|∇u|2 dx
)1/2

.

The combination yields

∣∣∣∣
∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣

≤ C|H ′
ext|
(

diam(T )3

∫

T

dist(x′, ∂Ω′)−3dist(x′, P )−1 dx′
∫

T×R

|∇u|2 dx
)1/2

.

(4.92)

We now observe

diam(T )3

∫

T

dist(x′, ∂Ω′)−3dist(x′, P )−1 dx′

(4.78)

≤ h3dist(x′T , ∂Ω
′)3α

∫

T

dist(x′, ∂Ω′)−3dist(x′, P )−1 dx′

(4.87)

≤ C h3

∫

T

dist(x′, ∂Ω′)3(α−1)dist(x′, P )−1 dx′.
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Thus (4.92) turns into

∣∣∣∣
∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣

≤ C|H ′
ext| h3/2

(∫

T

dist(x′, ∂Ω′)3(α−1)dist(x′, P )−1 dx′
∫

T×R

|∇u|2 dx
)1/2

. (4.93)

Cauchy–Schwarz yields in view of (4.88)

∣∣∣∣∣∣

∑

T∈Th,int

∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣∣∣

(4.88)

≤ C|H ′
ext| h3/2

(∫

Ω′
h

dist(x′, ∂Ω′)3(α−1)dist(x′, P )−1 dx′
∫

R3

|∇u|2 dx
)1/2

. (4.94)

Hence we are lead to discuss the scaling of the singular integral
∫

Ω′
h

dist(x′, ∂Ω′)3(α−1)dist(x′, P )−1 dx′ (4.95)

in h. By symmetry, it is enough to consider one eighth of Ω′
h, say Ω′

h∩(−1
2
, 0)2∩{x1 >

x2}. After translation of the corner (− 1
2
,−1

2
) into (0, 0), we have

dist(x′, ∂Ω′) = x2 and dist(x′, P ) ≥ x1 , (4.96)

so that we need to consider
∫ 1/2

h
1

1−α

∫ x1

h
1

1−α

x
3(α−1)
2 x−1

1 dx2 dx1 =

∫ 1/2

h
1

1−α

x−1
1

∫ x1

h
1

1−α

x
3(α−1)
2 dx2 dx1.

We notice ∫ x1

h
1

1−α

x
3(α−1)
2 dx2 ≤ C

{
x3α−2

1 α > 2
3

h
3α−2
1−α α < 2

3

}
.

Hence we obtain for (4.95)

∫

Ω′
h

dist(x′, ∂Ω′)3(α−1)dist(x′, P )−1 dx′ ≤ C

{
1

(log 1
h
)h

3α−2
1−α

}
.

We use this in (4.94):

∣∣∣∣∣∣

∑

T∈Th,int

∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣∣∣

≤ C|H ′
ext|
(∫

R3

|∇u|2 dx
)1/2

{
h3/2 for α > 2

3

(log1/2 1
h
)h

1
2(1−α) for α < 2

3

}
. (4.97)
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We now turn to a boundary triangle T ∈ Th,bdry. We start with Hölder’s inequality
∣∣∣∣
∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣

≤
(∫

T

|Iσ∗ − σ∗|4/3 dx′
)3/4(∫

T

|Iu− u|4 dx′
)1/4

≤ 2

(∫

T

|σ∗|4/3 dx′
)3/4 (∫

T

|Iu− u|4 dx′
)1/4

.

For the first factor, we appeal to Theorem 4.1. For the second factor, we evoke the
trace estimate (4.82) with p = 4. This yields

∣∣∣∣
∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣

≤ C |H ′
ext|

(∫

T

dist(x′, ∂Ω′)−2/3dist(x′, P )−2/3 dx′
)3/4

×diam(T )1/2

|T |1/4

(∫

T×R

|∇u|2 dx
)1/2

. (4.98)

We now need the following reverse Hölder estimate
∫

T

dist(x′, ∂Ω′)−2/3dist(x′, P )−2/3 dx′

×
(∫

T

dist(x′, ∂Ω′) dx′
)2/3 (∫

T

dist(x′, P ) dx′
)2/3

≤ C |T |7/3. (4.99)

By symmetry, it is enough to consider triangles T in Ω′∩(−1
2
, 0)2∩{x1 > x2}. After

translation of the corner (− 1
2
,−1

2
) into (0, 0), we have

dist(x′, ∂Ω′) = x2 and x1 ≤ dist(x′, P ) ≤ 2x1 , (4.100)

so that we need to show
(∫

T

x
−2/3
2 x

−2/3
1 dx′

)(∫

T

x2 dx
′
)2/3(∫

T

x1 dx
′
)2/3

≤ C |T |7/3. (4.101)

The worst case is when T lies in the corner (0, 0), i. e. when T is half of the rectangle
(0, `1)× (0, `2). In this case (4.101) follows from

∫

T

x
−2/3
2 x

−2/3
1 dx′ ≤

∫ `1

0

x
−2/3
1 dx1

∫ `2

0

x
−2/3
2 dx2 ≤ C `

1/3
1 `

1/3
2 ,

∫

T

x2 dx
′ ≤ `1

∫ `2

0

x2 dx2 ≤ C`1`
2
2,

∫

T

x1 dx
′ ≤ `2

∫ `1

0

x1 dx1 ≤ C`21`2,

|T | =
1

2
`1 `2.
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We also need the following consequence of the standard Hölder inequality:

|T |3−α

(∫

T

dist(x′, ∂Ω′) dx′
)α−1 (∫

T

dist(x′, P ) dx′
)−1

≤
∫

T

dist(x′, ∂Ω′)α−1dist(x′, P )−1 dx′. (4.102)

Indeed (4.102) can be reformulated as

|T | ≤
(∫

T

dist(x′, ∂Ω′)α−1dist(x′, P )−1 dx′
) 1

3−α

×
(∫

T

dist(x′, ∂Ω′) dx′
) 1−α

3−α
(∫

T

dist(x′, P ) dx′
) 1

3−α

,

which follows from Hölder’s inequality by writing

1 = dist(x′, ∂Ω′)
α−1
3−α dist(x′, P )

−1
3−α dist(x′, ∂Ω′)

1−α
3−α dist(x′, P )

1
3−α .

We now use (4.78) in form of

diam(T ) ≤ Ch

(
|T |−1

∫

T

dist(x′, ∂Ω′) dx′
)α

and the reverse Hölder estimate (4.99) in (4.98). This yields

∣∣∣∣
∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣

≤ C |H ′
ext|
[
|T |7/3

(∫

T

dist(x′, ∂Ω′) dx′
)−2/3 (∫

T

dist(x′, P ) dx′
)−2/3 ]3/4

×|T |−1/4
[
h

(
|T |−1

∫

T

dist(x′, ∂Ω′) dx′
)α ]1/2

(∫

T×R

|∇u|2 dx
)1/2

= C |H ′
ext| h1/2

[
|T |3−α

(∫

T

dist(x′, ∂Ω′) dx′
)α−1 (∫

T

dist(x′, P ) dx′
)−1 ]1/2

×
(∫

T×R

|∇u|2 dx
)1/2

.

We now apply to the above the Hölder inequality (4.102):

∣∣∣∣
∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣

≤ C |H ′
ext| h1/2

(∫

T

dist(x′, ∂Ω′)α−1dist(x′, P )−1 dx′
)1/2

×
(∫

T×R

|∇u|2 dx
)1/2

. (4.103)
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Finally, we sum (4.103) over all T ∈ Th,bdry. In view of (4.90), this yields by Cauchy–
Schwarz

∣∣∣∣∣∣

∑

T∈Th,bdry

∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣∣∣

≤ C |H ′
ext| h1/2

(∫

∂Ω′
h

dist(x′, ∂Ω′)α−1dist(x′, P )−1 dx′

)1/2

×
(∫

R3

|∇u|2 dx
)1/2

. (4.104)

Hence we need to discuss
∫

∂Ω′
h

dist(x′, ∂Ω′)α−1dist(x′, P )−1 dx′. (4.105)

Analogously to (4.95) we see that (4.105) behaves as

∫ 1/2

0

∫ min{h
1

1−α ,x1}

0

xα−1
2 x−1

1 dx2 dx1

=

∫ 1/2

0

α−1 min{h α
1−α , xα

1 } x−1
1 dx1

≤ C(log
1

h
) h

α
1−α .

Therefore (4.104) turns into

∣∣∣∣∣∣

∑

T∈Th,bdry

∫

T

(Iσ∗ − σ∗)(Iu− u) dx′
∣∣∣∣∣∣

≤ C |H ′
ext|

(
(log

1

h
) h

1
1−α

)1/2 (∫

R3

|∇u|2 dx
)1/2

. (4.106)

Since 1
2(1−α)

> 3
2

for α > 2
3
, (4.81) follows from combining (4.97) with (4.106).

4.5 A–priori Refined Triangulation and Complexity Consid-

erations

The numerical analysis from Section 4.4 suggests to consider triangulations Th which
are refined at the boundary according to

diam(T ) ∼ h dist(x′T , ∂Ω
′)α, (4.107)

where
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• diam(T ) denotes the diameter of a triangle T and |T | its area,

• dist(x′T , ∂Ω
′) denotes the distance of the barycenter x′T of T to the boundary

∂Ω′.

Estimate (4.14) suggests to consider triangulations which are regular in the sense of

|T | ∼ diam(T )2. (4.108)

Given h > 0, we use the following algorithm to generate Th with properties (4.107)
and (4.108):

• We start from a uniform triangulation Qh of mesh size h, see Section 3.4.

• Then we mark all triangles which do not satisfy (4.107). The marked triangles
are divided into four subtriangles of the same shape; this preserves (4.108).
Neighboring triangles are divided so that the triangulation property is restored.

• This procedure is repeated until all triangles meet (4.107).

The algorithm produces evidently a triangulation of the type Th introduced in Sec-
tion 3.4. Figure 4.9 in Section 4.6 shows an example of such a locally refined trian-
gulation with property (4.107).

We now work out how the number of triangles scales in h, depending on α. We find
that there is a cross–over at α = 1

2
.

Lemma 4.10. For any constants Λ ≥ 1 and 0 ≤ α0 < 1 there exists a constant
C = C(Λ, α0) < ∞ with the following property: Let 0 ≤ α ≤ α0, 0 < h ≤ 1

4
and

triangulations Th of Ω′ = (0, 1)2, which are refined towards the boundary in the sense
of

∀T ∈ Th diam(T ) ≤ h dist(x′T , ∂Ω
′)α ≤ Λ diam(T ) (4.109)

and regular in the sense of

∀T ∈ Th diam(T )2 ≤ Λ |T | (4.110)

be arbitrary. Then the number #Th of triangles scales as

1
C

#Th ≤





1
1−2α

h−2 for h ≤ e
− 1

|1−2α| and α < 1
2

(log 1
h2 )h

−2 for h ≥ e−
1

|1−2α| or α = 1
2

1
2α−1

h−
1

1−α for h ≤ e−
1

|1−2α| and α > 1
2




≤ CTh.

(4.111)

Proof of Lemma 4.10.
It is convenient to think in terms of the local number density of triangles

n(x′) := |T |−1 for x′ ∈ T
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since we have

#Th =

∫

Ω′

n(x′) dx′. (4.112)

Hence we need to estimate the number density n by below and above.

Let C <∞ denote a generic constant which only depends on Λ and α0. We use the
notation A . B if there exists such a C with A ≤ CB. We write A ∼ B if A . B
and B . A.

In this notation our assumptions (4.109) and (4.110) read

diam(T ) ∼ h dist(x′T , ∂Ω
′)α, diam(T )2 . |T |, (4.113)

respectively. Since |T | . diam(T )2 comes for free, we have for any x′ ∈ T :

n(x′) = |T |−1

∼ diam(T )−2

∼ h−2 dist(x′T , ∂Ω
′)−2α. (4.114)

We now argue that

dist(x′T , ∂Ω
′) ∼ max

{
dist(x′, ∂Ω′), h

1
1−α

}
. (4.115)

To this purpose, we split (4.115) into the two statements

|dist(x′T , ∂Ω
′)− dist(x′, ∂Ω′)| ≤ 1

2
dist(x′T , ∂Ω

′) + Ch
1

1−α (4.116)

and
dist(x′T , ∂Ω

′)
>∼ h

1
1−α . (4.117)

Indeed, (4.116) implies

dist(x′T , ∂Ω
′) . max

{
dist(x′, ∂Ω′), h

1
1−α

}
, (4.118)

whereas the combination of (4.116) and (4.117) yields

dist(x′, ∂Ω′)
(4.116)

. dist(x′T , ∂Ω
′) + Ch

1
1−α

(4.117)

. dist(x′T , ∂Ω
′). (4.119)

Combining (4.119) once more with (4.117) we obtain the reverse of (4.118), i.e.

dist(x′T , ∂Ω
′)

>∼ max
{

dist(x′, ∂Ω′), h
1

1−α

}
.

So indeed (4.115) follows from (4.116) and (4.117).

Let us now argue in favour of (4.116):

|dist(x′T , ∂Ω
′)− dist(x′, ∂Ω′)| ≤ diam(T )

(4.109)

≤ Λh dist(x′T , ∂Ω
′)α

= Λ(2α)αh
(

1
2α

dist(x′T , ∂Ω
′)
)α
.
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We now appeal to Young’s inequality ab ≤ (1− α)a
1

1−α + αb
1
α and obtain

|dist(x′T , ∂Ω
′)− dist(x′, ∂Ω′)| ≤ (1− α) (Λ(2α)αh)

1
1−α + 1

2
dist(x′T , ∂Ω

′)

≤ Ch
1

1−α + 1
2
dist(x′T , ∂Ω

′).

We now establish (4.117). We notice that (4.113) implies that the angles of T are
uniformly bounded away from zero so that

dist(x′T , ∂Ω
′) ≥ dist(x′T , ∂T )

∼ diam(T )
(4.109)

>∼ h dist(x′T , ∂Ω
′)α.

This yields (4.117).

The combination of (4.114) and (4.115) gives

n(x′) ∼ h−2
(
max

{
dist(x′, ∂Ω′), h

1
1−α

})−2α

= h−2 min
{

dist(x′, ∂Ω′)−2α, h−
2α

1−α

}
.

Hence according to (4.112)

#Th ∼ h−2

∫

Ω′

min
{

dist(x′, ∂Ω′)−2α, h−
2α

1−α

}
dx′. (4.120)

It remains to analyze the asymptotic behaviour of the integral in (4.120) for h ↓ 0.
By symmetry, it is enough to consider one eighth of Ω′, namely Ω′

1
8

:= {(x1, x2) ∈
Ω′ | x2 < x1 <

1
2
}. There, we have

dist(x′, ∂Ω′) = x2 for x′ ∈ Ω′
1
8

so that for h ≤ 1
4

(and thus h
1

1−α ≤ 1
4
)

∫

Ω′

min
{

dist(x′, ∂Ω′)−2α, h−
2α

1−α

}
dx′

= 8

∫ 1
2

0

∫ x1

0

min
{
x−2α

2 , h−
2α

1−α

}
dx2dx1

= 8





∫ h
1

1−α

0

x1h
− 2α

1−αdx1 +

∫ 1
2

h
1

1−α

(
h

1
1−αh−

2α
1−α +

∫ x1

h
1

1−α

x−2α
2 dx2

)
dx1



 .
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In the case of α 6= 1
2

we therefore have

∫

Ω′

min
{

dist(x′, ∂Ω′)−2α, h−
2α

1−α

}
dx′

= 8

{
1
2

(
h

1
1−α

)2

h−
2α

1−α +
(

1
2
− h 1

1−α

)
h

1
1−αh−

2α
1−α

+ 1
1−2α

∫ 1
2

h
1

1−α

(
x1−2α

1 −
(
h

1
1−α

)1−2α
)
dx1

}

= 8

{
1
2
h2 + 1

2
h

1−2α
1−α − h2 + 1

1−2α
1

2(1−α)

((
1
2

)2(1−α) −
(
h

1
1−α

)2(1−α)
)

− 1
1−2α

(
1
2
− h 1

1−α

) (
h

1
1−α

)1−2α
}

= 8
{

α
2(1−α)

h2 + 1
1−2α

(
1

1−α

(
1
2

)3−2α − αh 1−2α
1−α

)}
. (4.121)

To have a closer look at 1
1−2α

(
1

1−α

(
1
2

)3−2α − αh 1−2α
1−α

)
for α ≈ 1

2
, we introduce

β := 1− 2α ∈ (−1, 1] and g := h
1

1−α ∈ (0, 1
4
),

so that for β � 1

1
1−2α

(
1

1−α

(
1
2

)3−2α − αh 1−2α
1−α

)

= 1
2β

(
1

(1+β)2β − (1− β)gβ
)

∼ 1
β
(1− gβ)

= (log 1
g
) 1

β log 1
g

(
1− e−β log 1

g

)

∼ (log 1
g
)





1
β log 1

g

for β log 1
g

>∼ 1

1 for |β log 1
g
| . 1

− 1
β log 1

g

e−β log 1
g for −β log 1

g

>∼ 1

=





1
|β| for log 1

g

>∼ 1
|β| and β > 0

log 1
g

for log 1
g

. 1
|β|

1
|β|g

−|β| for log 1
g

>∼ 1
|β| and β < 0




. (4.122)

Formula (4.121) and estimate (4.122) translate into

∫

Ω′

min
{

dist(x′, ∂Ω′)−2α, h−
2α

1−α

}
dx′

∼





1
1−2α

for h ≤ e−
1

|1−2α| and α < 1
2

(log 1
h2 ) for h ≥ e−

1
|1−2α| or α = 1

2
1

2α−1
h−

2α−1
1−α for h ≤ e−

1
|1−2α| and α > 1

2




.
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In view of (4.120), this yields the proposition for α 6= 1
2
. The case α = 1

2
follows by

continuity.

Table 4.5 and Table 4.6 show that the theoretical asymptotic result captures the
actual experimental behavior. The parameters h and α listed in the tables are
the ones specifying the refinement rule (4.107). The number #Th of triangles is
denoted by N . The last column in each table documents the experimental value
of the scaling predicted in Lemma 4.10. All the triangulations involved in the
numerical experiments are generated by the algorithm presented at the beginning
of this section.

h N Nh3

5.0e–1 2768 3.5e+2
4.0e–1 5824 3.7e+2
3.0e–1 15224 4.1e+2
2.0e–1 50464 4.0e+2
1.0e–1 416456 4.2e+2

Table 4.5: Experimental complexity for α = 2/3 and h as listed: N denotes the num-
ber #Th of triangles in Lemma 4.10 and the last column documents the approximate
proportionality factor predicted there.

h N Nh2 log−1(h−2)

2.0e–1 3136 3.9e+1
1.0e–1 15440 3.4e+1
5.0e–2 72216 3.0e+1
2.5e–2 328576 2.8e+1

Table 4.6: Experimental complexity for α = 1/2. Notations are as in Table 4.5
above.

In view of Theorem 4.2, which states that the discretization error ε is estimated as

ε .

{
h

3
2 for α ≥ 2

3

h
1

2(1−α) for α ≤ 2
3

}
, (4.123)

(we neglect logarithmic terms) and of (4.111) we now ask the following question:
For which degree of refinement is the ε − N relation most favorable? A glance at
(4.111) and (4.123) reveals

ε .





N− 3(1−α)
2 for 2

3
≤ α

N− 1
2 for 1

2
≤ α ≤ 2

3

N
− 1

4(1−α) for α ≤ 1
2





.
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Hence the α in the range
[

1
2
, 2

3

]
lead to the best ε − N relation. In the sequel, we

shall focus on α = 2
3
.

Remark 4.3. The ε−N relation predicted here is less optimal than the one proven
in [22] for anisotropically graded meshes: there the optimal scaling gives the relation
ε . N−3/4. For our type of triangulations Th justified in Section 4.2 with emphasis
on the bound (4.14), we can expect only ε . N−1/2 (with the choice α = 2

3
). Still,

this improves the scaling ε . N−1/4 related to Cartesian meshes, which becomes also
evident in the numerical experiments presented in Section 4.9.

4.6 A Fully Populated Stiffness Matrix

With this section, we start the discussion of algorithms to solve the Galerkin ansatz
(4.77). Let χ1, χ2, .., χN be the characteristic functions associated to the triangles
T1, T2, .., TN ∈ Th (with N = #Th). The ansatz

σh =

N∑

i=1

ziχi

for the solution of (4.77) leads to the linear system of algebraic equations

N∑

i=1

zi

∫

Ti

∫

Tj

1

4π|x′ − y′| dy
′ dx′ +

∫

Tj

H ′
ext · x′ dx′ = 0 .

These can be written in matrix–vector form as

Kz + b = 0, (4.124)

where K is a positive definite and symmetric matrix with entries

Kij :=

∫

Ti

∫

Tj

1

4π|x′ − y′| dy
′ dx′ , (4.125)

z = (zj)j=1,..,N is the vector of the unknowns and b is defined by

bj :=

∫

Tj

H ′
ext · x′ dx′ .

Kij represents the interaction energy of unit charges placed in Ti and Tj. We cal-
culate the entries Kij by the numerical quadrature scheme introduced in Section
4.1. Due to the non–locality of the magnetostatic interaction, the matrix K is fully
populated.

Using direct methods such as Gaussian elimination or Cholesky factorization to
solve (4.124) is prohibitive for large problems. Iterative solvers in general need
O(N2) operations per iteration, so computational cost still becomes excessive for
large N . Indeed, any algorithm based on an explicit representation of K has at least
O(N2)–complexity in time and memory.

To solve (4.124) in sub–quadratic time, we combine the conjugate gradient method
with two different methods of matrix compression:
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• For a uniform triangulation Qh as in Section 3.4, the interaction matrix K
bears a Toeplitz–type structure, i. e. the matrix entries depend only on the dis-
tance vector between the corresponding cells. This discrete convolution struc-
ture of course reflects the continuous convolution structure (2.6). A matrix–
vector product in form of a discrete convolution can be efficiently computed
by FFT with complexity O(N logN). By simply filling up the data by zeros
up to the next dyadic size, no periodicity is required [3, 46].

• For a–priori locally refined triangulations Th (see Figure 4.9) we implemented
a more flexible, yet (near) optimal–complexity algorithm to carry out the
convolution, based on the concept of H–matrices (hierarchical matrices) [28].
H–matrices are natural approximations of fully populated stiffness matrices as
they appear in the finite element–based Galerkin discretization of non–local
integral operators: Depending on the smoothness properties of the kernel,
submatrices of the stiffness matrix are replaced by suitable low rank approx-
imations. We implemented a new class of hierarchical matrices, the so–called
H2–matrices [29], see Section 4.8.

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

Figure 4.9: Section of a triangulation Th with α = 2/3 near the corner of Ω′ = (0, 1)2
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4.7 FFT–Based Algorithm

We consider a triangulation Qh which comes from a Cartesian grid and is divided
into lower and upper triangles, see Section 3.4. For a suitable choice of indices the
matrix K and the vector z have a special block structure

K =

(
K(l,l) K(l,u)

K(u,l) K(u,u)

)
, z =

(
z(l)

z(u)

)
, (4.126)

where z(l) represents the data on lower triangles and z(u) those on upper triangles.
K(l,l) is the interaction matrix for lower triangles, K (l,u) is the interaction matrix for
one fixed lower triangle with all the upper ones, and so on.

Since the given triangulation is translation invariant, each of the K–blocks bears
a Toeplitz–type structure, i. e. the matrix elements depend only on the distance
vector between the corresponding cells, thus instead of storing N 2/4 matrix ele-
ments we only have to store a vector of length N/2. The mathematical form of the
matrix–vector multiplication K(l,l)z(l) is that of a discrete convolution, reflecting the
continuous convolution structure (2.6).

Direct computation of the discrete convolution of two n–long sequences requires
O(n2) operations. Computational cost is reduced by taking advantage of the discrete
convolution theorem: the discrete Fourier transform (DFT) of the convolution of two
discrete periodic functions equals the componentwise product of the DFTs of the
two functions. By performing the DFT with the help of Fast Fourier Transform
(FFT) algorithms, the over–all complexity of the discrete convolution is reduced to
O(n logn). We use the implementation of the FFT documented in [24].

Due to the non–periodicity of our data we have to extend the vector z by zeros.
This technique of zero–padding avoids any end effects as described in [46, Chapter
12], but increases the size of the input data for the FFT in 2–d by a factor of four.

Once the DFTs of the K–blocks are given, the matrix–vector product Kz is com-
puted by applying a 2–d FFT routine four times (two forward and two backward
transforms). Since the input data is purely real we can take advantage of a special
real–to–complex variant of the FFT improving speed and memory usage roughly by
a factor of two.

Neither our special data structure (4.126), nor the zero padding technique affect the
O(n logn)–behavior of the FFT: if n is a power of 2, the classical Cooley–Tukey
FFT algorithm for n complex data requires asymptotically n

2
log2 n complex multi-

plications, whereas the real–to–complex FFT of n real data results in asymptotically
n log2 n real multiplications. So if N = 2ν is the total number of triangles (i. e. we
have N/2 lower and N/2 upper triangles), for each of the four FFTs the data–size
is n = 4 · N

2
(the factor 4 is due to zero–padding), which results in a total number

of approximately 8N log2N real multiplications in the computation of Kz. The
number of multiplications in frequency space is of order N and thus asymptotically
negligible.
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In practice, so–called split–radix FFTs that rely on a combination of elementary
2–point and 4–point transforms are more efficient than pure radix–2 algorithms like
the Cooley–Tukey.

4.8 H–Matrices

The notion of H–matrices (hierarchical matrices) was introduced in [28]. These
matrices are data–sparse: they can be described by relatively few data. H–matrices
are natural approximations of fully populated stiffness matrices as they appear in
finite element–based Galerkin discretization of non–local integral operators [32]. The
use ofH–matrices reduces storage requirements and the complexity of matrix–vector
multiplication to almost linear complexity O(N logN).

The reliability of H–matrices for the approximation of integral operators is based on
the smoothness properties of the kernel. Typically, one should think of the kernel
as a singular convolution kernel as in (2.6). Hence the kernel becomes singular
only at the diagonal of the stiffness matrix K. Away from the diagonal one replaces
submatrices of K by suitable low rank approximations. This is motivated by the fact
that off–diagonal submatrices are numerically of low rank, i.e. the columns are nearly
linearly dependent. The approximate matrix is then stored in a hierarchical data
structure of size O(N logN), thus allowing an evaluation of matrix–vector products
in O(N logN) time. This is a common strategy, particularly in boundary element
methods and the n-body problem, leading to algorithms like the panel clustering
technique [33] and the fast multipole method [26]. The basic idea can be summarized
by the following recipe: The near–field component of the long range interaction is
evaluated by direct computation whereas the far–field component is approximated
using a hierarchical clustering of distant elements.

The complexity of the matrix–vector multiplication is further reduced to optimal
complexity O(N) by a new class of hierarchical matrices, the so–called H2–matrices,
introduced in [31]. Let us focus on interpolation–based low rank approximations:
Polynomial interpolation in one argument of the kernel k(., .) leads to H–matrix ap-
proximation, interpolation in both arguments leads to so–called uniformH–matrices.
The polynomial interpolation allows for a hierarchical change from the finite element
basis to the cluster basis and vice versa; this is the H2–matrix approximation with
optimal complexity in the matrix–vector multiplication. For a comparison of the
different types of hierarchical matrices, see [30].

H2–matrices have already been applied in computational electromagnetism to deal
with non–sparse matrices arising from Galerkin boundary element discretizations
[5]. The first application of H2–matrices to 3–d and 2–d stray field computation in
micromagnetics is given in [11]: in the 2–d case the H2–matrix method is applied on
the 2–d Newtonian kernel − log |x|, and effective numerical simulations are carried
out. Further details on the H2–matrix approach in this context are presented in
[45].
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The H2–matrix method consists of a setup phase, i.e. the computation of the com-
pressed matrix representation (which has to be done only once for a given triangu-
lation), and an algorithm for fast matrix–vector multiplication.

We suppress all primes for the two–dimensional variables in this section.

4.8.1 Setup Phase

The setup phase starts with a rearrangement of the data structure. Let I denote
the index set of the finite element basis. In our case, I just enumerates the triangles
and has cardinality N .

• I is decomposed along a binary tree introducing clusters τ ⊂ I, see Figure
4.10. The subset Tτ ⊂ Ω is the union of the supports of the basis functions
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Figure 4.10: Cluster tree for I

χi, i ∈ τ . In our case Tτ is just the union of the triangles Ti, i ∈ τ , see Figure
4.11. The bounding box Bτ ⊂ R

2 is the smallest rectangle with axes in x1 and

Bτ

Tτ

Figure 4.11: Bounding box Bτ for Tτ

x2 direction which contains Tτ , see Figure 4.11. In order to generate the tree,
we use a geometry–based algorithm:

– I is the root of the binary tree.
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– For each cluster τ , we split the corresponding boundary box Bτ by bisec-
tion of its longer side. This defines the two son clusters.

– We stop when a cluster contains ≤ p2 triangles. This introduces a pa-
rameter p which we choose to be p = 3.

Notice that by construction on each level of the binary tree the bounding boxes
are not too anisotropic in the sense of area(Bτ ) ∼ diam(Bτ )

2.

• A pair of clusters τ1 × τ2 is called an admissible block if a geometric condition
is satisfied that bounds the diameter of the clusters by their distance, i.e.

max{diam(Bτ1), diam(Bτ2)} ≤ 2η dist(Bτ1 , Bτ2) .

This introduces a parameter η. It has turned out in our experiments that a
good value for the parameter η to choose here is η = 0.5. This defines a block
(= pair of clusters) tree, which is a decomposition of I × I, by the following
algorithm:

– I × I is the root of the block tree.

– Recursively, each block τ1 × τ2 is decomposed into the four sub–blocks
(formed by the pairs of son clusters of τ1, τ2) until one of the following
two termination criteria holds:

1. τ1 × τ2 is admissible,

2. τ1 or τ2 is a leaf.

The leaves of this block tree induce a partitioning of I × I, see Figure
4.12.

Figure 4.12: Block partitioning of I × I
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4.8.2 Low Rank Approximation of the Kernel

The block partitioning of I×I induces a block partitioning of the matrixK. The idea
is to approximate the restriction of K on each admissible block τ1 × τ2 (the shaded
ones in Figure 4.12) by a matrix of fixed rank p2. This is done by (tensor product)
Chebyshev interpolation of the kernel k(x, y), (x, y) ∈ Ω × Ω, with polynomials of
degree (p−1) in both arguments. More precisely, for every cluster τ , let (xτ

ι )ι denote
the p2 interpolation points in the bounding box Bτ . They are given by the zeros
of the Chebyshev polynomials. Let pτ

ι be the corresponding Lagrange polynomials.
For an admissible cluster τ1 × τ2, the kernel function k(x, y) is replaced by

k̃(x, y) =

p2∑

ι,κ=1

k(xτ1
ι , y

τ2
κ )pτ1

ι (x)pτ2
κ (y) (4.127)

for (x, y) ∈ Bτ1×Bτ2 . On the blocks which are not admissible (the non–shaded area
in Figure 4.12), K remains unchanged. Notice that this in particular holds for the
entries near the singular diagonal. Hence the approximation distinguishes between
the far–field and near–field components of the long range interaction described by
the kernel function k.

4.8.3 Matrix–Vector Multiplication

Consider the operator K̃ defined by the kernel k̃ in (4.127). Its matrix representation
(K̃ij)(i,j)∈I×I w. r. t. the canonical finite element basis is given by

K̃ij =
∑

ι,κ

∫

Ti

pτ1
ι (x)dx k(xτ1

ι , y
τ2
κ )

∫

Tj

pτ2
κ (y)dy , (4.128)

where τ1 × τ2 is the unique block in the partitioning of I × I which contains (i, j).
Remember that Kij is only replaced by K̃ij if τ1 × τ2 is an admissible block. We
write this as

K̃ij =
∑

ι,κ

V τ1
iι S

τ1×τ2
ικ V τ2

jκ =
[
V τ1Sτ1×τ2(V τ2)T

]
ij
, (4.129)

where

Sτ1×τ2
ικ := k(xτ1

ι , y
τ2
κ ), V τ1

iι :=

∫

Ti

pτ1
ι (x)dx

with the implicit understanding that i ∈ τ1. Notice that the action of V τ1 can
be interpreted as a transformation from the finite element basis (as enumerated by
i ∈ I) to the cluster basis (as parametrized by all the clusters of the binary tree).
We observe that each cluster corresponds to p2 data. Hence the matrix–vector
multiplication can be interpreted as a forward transformation V T , a matrix–vector
multiplication with S, and a backward transformation V .

The additional idea of H2–matrices is to organize the transformation V in a hierar-
chical way. It is based on the insight that the Lagrange polynomials (pτ

ι (x))ι for a
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cluster τ can be expressed as a linear combination of (pτ1
κ (x))κ for any other cluster

τ1, in particular one of the two son clusters of τ :

pτ
ι (x) =

∑

κ

pτ1
κ (x)pτ

ι (x
τ1
κ ) .

This implies the hierarchical relationship

V τ
iι =

∑

κ

V τ1
iκ B

τ1,τ
κι = [V τ1Bτ1,τ ]iι , (4.130)

provided i ∈ τ1 ⊂ τ where
Bτ1,τ

κι := pτ
ι (x

τ1
κ ) .

Hence the forward transformation requires an initial transformation from the fi-
nite element basis to the leaves of the cluster tree. Then one uses (4.130) to get
recursively down the binary tree to the root.

4.8.4 Complexity of the Matrix–Vector Multiplication

Within the above geometry–based algorithm, the cluster tree (see Figure 4.10) is
nearly balanced, which means

• it has approximately N/p2 leaves and

• it has approximately N/p2 internal nodes.

In our case, the generated block tree is well–behaved in the following sense:

• The number of blocks in the partitioning of I × I (see Figure 4.12) is ap-
proximately proportional to the number of leaves N/p2, see Table 4.7 for a
uniform triangulation and Tables 4.8 and 4.9 for a locally refined triangula-
tion as described in Section 4.5. This property can be theoretically derived for
any triangulation which is regular in the sense of 4.108, see [25, Lemma 4.5].
The prefactor depends on the type of the triangulation and, of course, on the
parameter η.

From these data we conclude

• Each involved V – and B–matrix has p2 · p2 = p4 entries. The V –matrices are
applied on the ≈ N/p2 leaves. Each time one moves from two son clusters to
their father cluster, two B–matrices are involved. There are ≈ N/p2 internal
nodes. Hence the forward transformation requires ≈ (p4+2p4)·(N/p2) = 3Np2

multiplications.

• The backward transformation likewise requires ≈ 3Np2 multiplications.

• Each S–matrix has p4 entries. There is an S–matrix for each of the O(N/p2)
blocks in the partitioning of I × I. Hence the matrix multiplication with S
takes O(Np2) multiplications.
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N #blocks #blocks/(Np2)

8192 24808 3.4e–1
32768 104530 3.5e–1

131072 430378 3.7e–1
524288 1744468 3.7e–1

Table 4.7: H2–matrix compression for uniform triangulations Qh. Here N is the
number of triangles and the polynomial degree is p = 3. The last column reflects
the expected complexity of the block tree.

h N #blocks #blocks/(Np2)

5.0e–1 2768 18684 7.5e–1
4.0e–1 5824 38038 7.3e–1
3.0e–1 15224 86482 6.3e–1
2.0e–1 50464 383446 8.4e–1
1.0e–1 416456 3215884 8.6e–1

Table 4.8: H2–matrix compression for locally refined triangulations Th with α = 2/3.
These are the triangulations documented in Table 4.5. The last column reflects the
expected complexity of the block tree.

h N #blocks #blocks/(Np2)

2.0e–1 3136 14260 5.1e–1
1.0e–1 15440 71956 5.2e–1
5.0e–2 72216 266554 4.1e–1
2.5e–2 328576 1149866 3.9e–1

Table 4.9: H2–matrix compression for locally refined triangulations Th with α = 1/2.
These are the triangulations documented in Table 4.6. The last column reflects the
expected complexity of the block tree.

4.8.5 Setup Time and Compression Rate

We notice that replacing the fully populated matrix K in (4.124) by the H2–matrix
K̃ introduces an additional approximation error. A thorough error analysis in terms
of the parameters η and p is presented in [29]. Here we test the quality of the
H2–matrix compression numerically: we compute the self–energy of the unit square
Ω = (0, 1)2 on several Th–type triangulations and compare the numerical results
with the exact value I(Ω) provided by Lemma 4.2. We consider the locally refined
triangulations Th with α = 2/3 from Table 4.8, which are also used in the suc-
ceeding Section 4.9. Our numerical experiments show that the relative error in the
computation of the self–energy does not exceed 1%.
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The relative error in Table 4.10 is defined as
√∣∣∣I(Ω)− zT K̃z

I(Ω)

∣∣∣ (4.131)

with z = (1, 1, .., 1)T ∈ R
N . This expression for the relative error in stray field

computations is justified in detail in the following section, see (4.132).

To conclude this section, we present in Table 4.11 the numerically observed setup
time and compression rate of the H2–matrix K̃.

N CPU (s) relative error

2.8e+3 3.1e–2 9.7e–3

5.8e+3 7.5e–2 9.8e–3

1.5e+4 3.1e–1 1.0e–2

5.0e+4 7.0e–1 1.0e–2

Table 4.10: Computing the self–energy of the unit square via theH2–matrix method:
N denotes the number of triangles (in scientific notation) of the triangulations dis-
cussed in Table 4.8. In the second column we document the CPU time (in seconds),
the last column shows the relative error (4.131). All numerical experiments were
done on a Pentium III processor running at 700 MHz.

N setup (s) compression

2.8e+3 5.5e+0 4.4e–2

5.8e+3 1.2e+1 2.2e–2

1.5e+4 5.6e+1 1.2e–2

5.0e+4 1.1e+2 1.7e–2

Table 4.11: In the second column we document the CPU time (in seconds) for the
setup of the H2–matrix. The last column shows the compression rate, i. e. the
ratio between the computer storage needed for the H2–matrix and the original fully
populated matrix.

4.9 Numerical Results

We suppress all primes for the two–dimensional variables in this section.

We compare the performance of the FFT–based algorithm and the H2–matrix
method for the square Ω = (0, 1)2 and external fields Hext = (0.2, 0.2) and Hext =
(0.3, 0.1). Since we do not know the exact solution σ∗ of (4.124), we derive a reliable
approximation E(σ∗) to the exact energy of σ∗ as follows: we compute the charge
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density σh by the FFT–based conjugate gradient method with relative residuum
10−12 for several values of h. Linear extrapolation to h = 0 then yields E(σ∗), since
E(σh) depends almost linearly on h (see Theorem 4.2 with α = 0). This process is
illustrated by Figure 4.13 for the external field Hext = (0.2, 0.2).

0    4.0e−3 8.0e−3 1.2e−2 1.6e−2
−8.33e−2

−8.31e−2

−8.29e−2

−8.27e−2

h

1

E
(σ
h
)

1

 

 

Figure 4.13: Tight approximation of E(σ∗) by the extrapolation of E(σh) on uniform
triangulations Qh. We choose h = 2−k with 6 ≤ k ≤ 10.

Then we start the FFT–based and the H2–based conjugate gradient method on tri-
angulations Qh and Th respectively, and terminate the iteration when a prescribed
error ε relative to σ∗ is attained. Here ε denotes the relative error between the ap-
proximate solution σh and σ∗ in the homogeneous part of the continuous H−1/2(R2)–
norm:

ε :=

(∫
R2 |(∇)−1/2(σ∗ − σh)|2dx

)1/2

(∫
R2 |(∇)−1/2σ∗|2dx

)1/2
.

We can express ε in terms of the energies since E is the sum of a quadratic form
and a linear functional

E(σh) = B(σh, σh) + L(σh),

where B(σh, σh) is one half of the squared homogeneous part of the H−1/2(R2)–norm
of σh. Therefore we have

E(σh)− E(σ∗) = B(σh + σ∗, σh − σ∗) + L(σh − σ∗)

= B(σh − σ∗, σh − σ∗) + 2B(σ∗, σh − σ∗) + L(σh − σ∗)

= B(σh − σ∗, σh − σ∗),
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since 2B(σ∗, σh − σ∗) + L(σh − σ∗) = 0 is just the weak formulation of the Euler–
Lagrange equation tested with (σh − σ∗). So the relative error ε can be rewritten
as

ε =

√
E(σh)− E(σ∗)

E(σ∗)
. (4.132)

In particular, the notion of error is independent of the chosen grid. We notice that
the conjugate gradient algorithm monotonically decreases the energy norm distance
(4.132) to the solution σ∗, i. e. we have E(σ∗) ≤ E(σ

(k+1)
h ) ≤ E(σ

(k)
h ) for each

iteration step k, see [46, Chapter 10.6]. We further stress that a stopping criterion
based on the energy norm was already recommended in the classical introductory
paper [34].

Table 4.12 and Table 4.13 show the CPU times in seconds for the prescribed relative
error ε in the case Hext = (0.2, 0.2). Here N is the number of degrees of freedom,
given in Table 4.12 for a triangulation Qh and in Table 4.13 for a triangulation Th

(with the refinement rate α = 2/3 a–priori predicted by the numerical analysis, see
the discussion in Section 4.4). Cells of the table without entry indicate that the pre-
scribed relative error is not attainable on the given triangulation. Since we want to
test the performance of FFT–based versus H2–based matrix–vector products in the
conjugate gradient iterations, we do not consider the CPU times for the setup phases
and the computation of ε. In the case of triangulations Th the conjugate gradient
method is preconditioned by the diagonal matrix D = diag(K11, ..., KNN ). This
simple preconditioning has absolutely no effect on the performance of the conjugate
gradient method in case of triangulations Qh. Our numerical experiments show that
both methods are comparable with respect to computation time at a relative error
of the order of 10%, and reveal advantages in favor of the H2–matrix method at a
relative error of the order of 5%.

In Tables 4.14 and 4.15 we document the number of iterations in the conjugate
gradient method necessary to attain the prescribed relative error ε. Tables 4.16 up
to 4.19 show the corresponding results for Hext = (0.3, 0.1).

In Figures 4.14 and 4.15 we display the minimal observed CPU times for given ε in
our numerical experiments.
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H
H

H
H

H
H

N
ε

1.0e–1 7.0e–2 5.0e–2 3.0e–2

4608 1.4e–1 — — —

8192 8.7e–2 — — —

18432 1.9e–1 7.4e–1 — —

32768 4.1e–1 7.0e–1 — —

73728 8.9e–1 1.4e+0 3.3e+0 —

131072 1.9e+0 2.6e+0 4.2e+0 —

294912 4.4e+0 6.0e+0 9.6e+0 —

524288 8.2e+0 1.1e+1 1.5e+1 —

1179648 1.7e+1 2.4e+1 3.2e+1 7.8e+1

2097152 3.6e+1 4.9e+1 6.5e+1 1.1e+2

Table 4.12: CPU times in seconds for the FFT–based algorithm: N is the number of
triangles of the uniform triangulation Qh, whereas ε denotes the prescribed relative
error (4.132). The conjugate gradient method is used as iterative solver for (4.124),
and the iteration is terminated when the prescribed relative error ε is attained. The
external field is Hext = (0.2, 0.2).

H
H

H
H

H
H

N
ε

1.0e–1 7.0e–2 5.0e–2 3.0e–2

2768 7.6e–2 1.8e–1 — —

5824 1.8e–1 2.4e–1 8.6e–1 —

15224 7.2e–1 7.2e–1 1.3e+0 —

50464 1.7e+0 1.7e+0 2.8e+0 5.1e+0

Table 4.13: CPU times in seconds for the conjugate gradient method withH2–matrix
compression. Notations as in Table 4.12
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H
H

H
H

H
H

N
ε

1.0e–1 7.0e–2 5.0e–2 3.0e–2

4608 18 — — —

8192 6 — — —

18432 6 19 — —

32768 5 9 — —

73728 5 8 18 —

131072 5 7 12 —

294912 5 7 11 —

524288 5 7 10 —

1179648 5 7 10 21

2097152 5 7 10 18

Table 4.14: The number of iterations in the conjugate gradient method correspond-
ing to Table 4.12.

H
H

H
H

H
H

N
ε

1.0e–1 7.0e–2 5.0e–2 3.0e–2

2768 2 6 — —

5824 2 3 13 —

15224 2 2 4 —

50464 2 2 3 8

Table 4.15: The number of iterations in the conjugate gradient method correspond-
ing to Table 4.13.
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H
H

H
H

H
H

N
ε

1.0e–1 7.0e–2 5.0e–2 3.0e–2

4608 1.3e–1 — — —

8192 8.8e–2 — — —

18432 1.9e–1 7.1e–1 — —

32768 4.0e–1 7.0e–1 — —

73728 8.9e–1 1.3e+0 3.1e+0 —

131072 2.0e+0 2.4e+0 4.1e+0 —

294912 4.4e+0 6.0e+0 9.5e+0 —

524288 8.2e+0 1.2e+1 1.6e+1 —

1179648 1.7e+1 2.2e+1 3.2e+1 6.2e+1

2097152 3.4e+1 5.1e+1 6.5e+1 8.6e+1

Table 4.16: The CPU times corresponding to Table 4.12, but with external field
Hext = (0.3, 0.1).

H
H

H
H

H
H

N
ε

1.0e–1 7.0e–2 5.0e–2 3.0e–2

2768 7.4e–2 2.0e–1 — —

5824 2.0e–1 2.4e–1 8.0e–1 —

15224 7.1e–1 7.1e–1 1.3e+0 —

50464 1.7e+0 1.6e+0 2.7e+0 5.9e+0

Table 4.17: The CPU times corresponding to Table 4.13, but with external field
Hext = (0.3, 0.1).
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H
H

H
H

H
H

N
ε

1.0e–1 7.0e–2 5.0e–2 3.0e–2

4608 17 — — —

8192 6 — — —

18432 6 17 — —

32768 5 9 — —

73728 5 8 16 —

131072 5 7 12 —

294912 5 7 11 —

524288 5 7 10 —

1179648 5 7 10 16

2097152 5 7 10 14

Table 4.18: The number of iterations in the conjugate gradient method correspond-
ing to Table 4.16.

H
H

H
H

H
H

N
ε

1.0e–1 7.0e–2 5.0e–2 3.0e–2

2768 2 7 — —

5824 2 3 11 —

15224 2 2 4 —

50464 2 2 3 9

Table 4.19: The number of iterations in the conjugate gradient method correspond-
ing to Table 4.17.
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Figure 4.14: The plot shows the relation between the prescribed relative error ε and
the minimal CPU time listed in Tables 4.12 and 4.13. The lower curve corresponds
to the H2–matrix method, the upper one to the FFT–based algorithm. The CPU
time (in seconds) is displayed logarithmically in the vertical axis.
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Figure 4.15: Relation between the prescribed relative error ε and the minimal CPU
time listed in Tables 4.16 and 4.17. Notation as in Figure 4.14.

A further remark on the computation of ε must be added in the case of the H2–
matrix method. Since in this method the evaluation of the energy E in (4.132) is
based on the approximate matrix K̃, we actually calculate only an approximation ε̃
to ε. To test the deviation numerically, we compute the exact energy norm distance
ε of solutions σh to σ∗ with the help of the full matrix K in the case of a prescribed
relative error of 5% and Hext = (0.2, 0.2). Table 4.20 shows that the deviation does
not exceed 1%, which coincides with our numerical results in Table 4.10.

N ε ε̃

5824 9.1e–2 1.0e–1

15224 8.4e–2 9.5e–2

50464 7.4e–2 8.5e–2

Table 4.20: Comparison of the prescribed relative error ε and its approximation ε̃
in the H2–matrix method: the deviation does not exceed 1%.

Figure 4.16 shows the graph of a solution σh on a triangulation Th with N = 5824
and prescribed relative error of 5%. The external field is Hext = (0.2, 0.2). For
the convenience of the reader the piecewise constant function σh has been linearly
interpolated by the MATLAB PDE Toolbox.

In Figure 4.17 we compare the performance of a single matrix–vector multiplication
Kz for the two matrix compression methods on triangulations Qh. As non–trivial
vector z we take the solution of the FFT–based conjugate gradient method computed
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Figure 4.16: Graph of a solution σh (linearly interpolated) on triangulation Th. The
number of triangles is N = 5824, the external field is Hext = (0.2, 0.2), and the
prescribed relative error is 5%.

above (see Table 4.12). Here the FFT–based method is exact up to rounding errors,
whereas the H2–matrix method computes an approximate solution K̃z. Figure 4.18
shows the relative error

ε =

√
zTKz − zT K̃z

zTKz

between the corresponding exact and approximate quadratic form evaluated on z.
This is the value of interest in our applications since zTKz is the discretized version
of the stray field energy.

As expected, the FFT–based method beats the H2–matrix method since for triangu-
lations Qh the Toeplitz–type structure is a much stronger property than the block
structure of the H2–matrix induced by the (mesh–independent) self–similarity in
the decay of the kernel function. Moreover, we take advantage of a highly optimized
FFT implementation [24] achieving practically optimal complexity over the range
accessible in our numerical experiments.
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Figure 4.17: CPU time (in seconds) required for matrix–vector multiplication with
the fully populated matrix K on triangulations of type Qh: here the FFT methods
beats the H2–matrix method.
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Figure 4.18: Relative error of H2 matrix–vector product corresponding to above
Figure 4.17.

All numerical experiments were done on a Pentium III processor running at 700
MHz.
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5 Computation of Minimizers

We suppress all primes for the two–dimensional variables in the following, since our
considerations are restricted to the cross–section of the thin film.

5.1 Convex Programming Problems

In the field of mathematical programming, our problem of constrained minimization
(3.26) belongs to the broad class of convex programming problems. For an elaborate
introduction we refer the reader to the classical textbook [23, Chapter 6] and the
recent monograph [44]. Here we briefly recall the basic notions, definitions and facts
we need. The generic statement of a convex programming problem is as follows:

Let f : R
n → R be a convex function (the so–called objective function) and let the

inequality constraints that restrict the acceptable arguments for f be given by a
mapping c : R

n → R
k, where each component function ci, i = 1, .., k is assumed to

be concave. The feasible region F is then defined as

F := {x ∈ R
n | c(x) ≥ 0} ,

where the relation c(x) ≥ 0 is to be understood componentwise, i. e. we have
ci(x) ≥ 0 for each i = 1, .., k. A point x ∈ F is called a feasible point.

The goal of convex programming is to find a feasible point x∗ ∈ F such that

f(x∗) = min
x∈F

f(x) . (5.1)

Since the objective function is convex and the feasible region defines a convex set,
every local minimum of f in F is a global minimum.

The strictly feasible region is given by

strict(F) := {x ∈ R
n | c(x) > 0} .

In most applications strict(F) will be just the interior of F , but there are examples
where equality fails, e. g. consider the set F = {(x1, x2) ∈ R

2 | x2
1 + x2

2 ≥ 0}.
A constraint ci is called active at x∗, if ci(x

∗) = 0. In general, at least one constraint
will be active at a minimizer x∗ (otherwise it is not reasonable to state (5.1) as a
constrained minimization problem at all) and so for generic minimizers we have x∗ /∈
strict(F). This means that in general a solution to (5.1) will be a boundary point of
strict(F). From a geometrical point of view two basic strategies to solve (5.1) can
be distinguished:

• approximate x∗ by a sequence of iterates that lie on the boundary of strict(F);
for the case of linear f and c this leads to the famous simplex method;

• approximate x∗ by a sequence of iterates that lie in the interior of strict(F);
this leads to the class of interior point methods (IPM).
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Before discussing the definition and implementation of an interior point method in
detail, we restate problem (3.26) in the language of convex programming. In our
case the reduced micromagnetic energy E defined on RT0,h according to (3.24) takes
the role of the objective function f .

In order to establish a finite number of constraints we will introduce a discrete subset
Sh = {x1, .., xk} ⊂ Ω.

Definition 5.1. Let the set of barrier points Sh = {x1, .., xk} ⊂ Ω be given such
that for any T ∈ Th there exists at least one xi ∈ Sh with xi ∈ T .

For each i = 1, .., k we define the pointwise constraint function

ci(mh) = 1− |mh(xi)|2 . (5.2)

Thus the feasible region Fh is given by

Fh = {mh ∈ RT0,h | c(mh) ≥ 0} (5.3)

and the strictly feasible region by

strict(Fh) = {mh ∈ RT0,h | c(mh) > 0} . (5.4)

In our setting the convex programming problem (5.1) thus reads: find a feasible
magnetization m∗

h ∈ Fh such that

E(m∗
h) = min

mh∈Fh

E(mh) . (5.5)

Lemma 5.1. For any C > 0 and with Sh as in Definition 5.1, the level set

Lh(C) := {mh ∈ Fh | E(mh) ≤ C}

is bounded. In particular, Lh(C) is compact.

Proof of Lemma 5.1.

For a fixed triangulation Th (and fixed paramter h > 0) the boundedness of the
energy E(mh) as defined in (3.24) implies the existence of a constant C1 ≥ 0, such
that

|∇·mh| ≤ C1

for all mh ∈ Lh(C). Here C1 depends on h and C, but not on mh. Moreover, for Sh

as in Definition 5.1, there exists at least one point xT ∈ T for each triangle T ∈ Th,
such that

|mh(xT )| ≤ 1 .

From Lemma 3.1 it thus follows that

sup
x∈Ω
|mh(x)|2 ≤ 1

2
C2

1 diam(Ω)2 + 2
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for all mh ∈ Lh(C). This proves that Lh(C) is bounded for any C > 0.

Since the reduced energy E is degenerate with respect to the divergence of mh,
(5.5) is a convex programming problem with non–unique optima. Therefore it is
convenient to define the following optimality region F ∗

h in Fh:

F∗
h = {m∗

h ∈ Fh | E(m∗
h) = min

mh∈Fh

E(mh)} , (5.6)

i. e. F∗
h is the set of all solutions to (5.5).

Definition 5.2. A constraint function ci, i ∈ I = {1, .., k} is called universally
binding at optimality if

ci(m
∗
h) = 0 for all m∗

h ∈ F∗
h .

If there exists at least one constraint function that is universally binding at optimal-
ity, then we denote by I∗ the subset of indices i for which ci is universally binding
at optimality, i. e. we have

ci(m
∗
h) = 0

for all i ∈ I∗ and all m∗
h ∈ F∗

h. If there exists at least one constraint function that
is not universally binding at optimality, then we denote by I+ the subset of indices
i for which ci is not universally binding at optimality. Obviously, I = I ∗ ∪ I+

and I∗ ∩ I+ = ∅. By the shorthand notation I = I∗ we designate the case in
which all constraint functions are universally binding at optimality. Otherwise we
use the shorthand notation I 6= I∗. Furthermore, we denote by c∗ the subvector of
constraint functions ci with i ∈ I∗, and by c+ the subvector of constraint functions
ci with i ∈ I+.

Definition 5.3. A solution m∗
h of (5.5) is called strongly optimal if the only active

constraints at m∗
h are those which are universally binding at optimality, i. e. we are

either in the case I = I∗ in the sense of Definition 5.2, or the subvector c+ has
strictly positive entries at m∗

h,

c+(m∗
h) > 0 .

Lemma 5.2. For Sh as in Definition 5.1, the regions Fh, strict(Fh), and F∗
h are

nonempty. Furthermore, F ∗
h is bounded.

Proof of Lemma 5.2.

For the zero magnetization mh ≡ 0 we have mh ∈ Fh as well as mh ∈ strict(Fh),
thus both regions are nonempty.

Since 0 ∈ Fh, and the reduced energy E vanishes for the zero magnetization, we
have for the optimality region (5.6)

F∗
h ⊂ Lh(0) = {mh ∈ Fh | E(mh) ≤ 0 } 6= ∅ .

Now the level set Lh(0) is bounded and compact by Lemma 5.1, and so there exists
at least one solution to problem (5.5), i. e. F ∗

h 6= ∅.
Moreover, as we have just seen, the optimality region F ∗

h is bounded.
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5.2 Constraint Qualifications

Convergence results for IPMs require additional conditions on the constraints:

Remark 5.1. The property

strict(Fh) 6= ∅ (5.7)

is called Slater’s constraint qualification [40, Definition 5.4.3]. It allows to establish
necessary and sufficient conditions for the solutions of (5.5), which is the content
of the Kuhn–Tucker theorem, Theorem 5.1 below.

The derivative of a constraint function ci at mh acting on a basis function ϕh of
RT0,h is computed as

Dci(mh)ϕh = −2mh(xi) · ϕh(xi) .

Thus the gradient of ci at mh with respect to the basis {ϕ(j)
h }j=1,..,n of RT0,h is given

as the vector ∇ci(mh) with components

(∇ci(mh) )j = Dci(mh)ϕ
(j)
h , j = 1, .., n .

Let us further define the n× k–matrix A of the constraint gradients at mh by

A(mh) = 1
2
(∇c1(mh) ∇c2(mh) . . ∇ck(mh) ) . (5.8)

Theorem 5.1. [51, Theorem 6.6.5] The feasible point m∗
h ∈ Fh is a solution to

(5.5) if and only if there exists a vector λ∗ ∈ R
k with λ∗ ≥ 0 such that the following

Kuhn–Tucker conditions hold:

λ∗T c(m∗
h) = 0 and (5.9)

∇E(m∗
h) = A(m∗

h)λ
∗ . (5.10)

The complementarity condition (5.9) means that for each i = 1, .., k at least one
of the two corresponding components ci(m

∗
h) and λ∗i vanishes. In particular, if the

ith constraint is inactive at m∗
h, then λ∗i must be zero. Thus ∇E(m∗

h) is a linear
combination of the active constraint gradients and we can rewrite (5.10) as

∇E(m∗
h) = Â(m∗

h)λ
∗ ,

where the matrix Â(m∗
h) originates from the original matrix A(m∗

h) by cancelling
those columns ∇ci(m∗

h) with ci(m
∗
h) > 0.

For strictly feasible points the Kuhn–Tucker Theorem therefore reduces to:

Corollary 5.1. A strictly feasible point m∗
h ∈ strict(Fh) is a solution to (5.5) if and

only if it satisfies

∇E(m∗
h) = 0 .
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The Lagrange multiplier λ∗ is in general not unique, since the columns of the matrix
Â(m∗

h) are not necessarily linear independent at a minimizer m∗
h. This is illustrated

by the following example.

Consider the patch of triangles in Figure 5.1. The volume of each triangle is given
by |T | = h2/4. If we set a0 = a4 and a5 = a1, then the evaluation of the basis

functions ϕ
(i)
h at the barycenters xi, i = 1, .., 4, gives

ϕ
(i)
h (xi) =

2

h2
(xi − ai−1) .

For the magnetization mh|Ti
= mh(xi) = 1

h
(ai − ai−1) we thus get

ϕ
(i)
h (xi) ·mh(xi) =

2

h3
(xi − ai−1) · (ai − ai−1) =

1

h

for all i = 1, .., 4. Analogously one computes

ϕ
(i)
h (xi+1) ·mh(xi+1) =

1

h
,

if we set x5 = x1. Thus det Â(mh) = 0, since Â(mh) has the form

Â(mh) = −h−1




1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


 .

It is easily checked that mh ∈ RT0,h, and so this example shows that the Lagrange
multiplier is in general not unique.

��

��

��

��

x1

x2

x3

x4

a1

a2
a3

a4 T1

T2

T3

T4

Figure 5.1: On this patch we discuss the role of above constraint qualifications.
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5.3 The Interior Point Method

We compute a solution to (5.5) by an interior point method (IPM). The main idea
of an interior point algorithm is to convert the constrained minimization (5.5) into
a sequence of unconstrained minimization problems. For this purpose we introduce
the composite functions

Et(mh) := E(mh) + tB(mh) , (5.11)

defined for every real parameter t > 0. Here B denotes a so–called barrier, i. e. a
function on Fh that exhibits a positive singularity at the boundary of strict(Fh). So
the composite functions Et balance the minimization of E as well as the impact of the
constraints. When the so–called barrier parameter t is reduced, the weighting of the
barrier is decreased and the minimizers of the composite functions can approach the
boundary. Thus we expect the unconstrained minimizers to converge to a solution
of the constrained problem as t is reduced to zero, in particular

lim
t↓0

minEt = min
Fh

E . (5.12)

Such a convergence result can be established under rather mild conditions, see The-
orem 5.2.

For our concrete problem we choose a logarithmic barrier, i. e. for each xi ∈ Sh ∩ T
we define the pointwise barrier function

Bi(mh) = −1
2
|T | log ci(mh) = −1

2
|T | log(1− |mh(xi)|2) ,

and summation over all i = 1, .., k gives the global barrier

B(mh) =
k∑

i=1

Bi(mh) . (5.13)

One easily computes the first derivatives

DBi(mh)uh = |T | mh(xi) · uh(xi)

1− |mh(xi)|2
(5.14)

and the second derivatives

1

|T |D
2Bi(mh)(uh, vh) =

uh(xi) · vh(xi)

1− |mh(xi)|2
+ 2

mh(xi) · uh(xi)

(1− |mh(xi)|2)2
mh(xi) · vh(xi) ,

(5.15)
where uh, vh ∈ RT0,h are test functions and the dot · denotes the euclidean scalar

product in R
2. By inserting the basis functions ϕ

(i)
h of RT0,h as test functions we

get the gradient and the Hessian of the barrier. So ∇B(mh) is the vector with
components

(∇B(mh) )i = DB(mh)ϕ
(i)
h , i = 1, .., n , (5.16)
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and HessB(mh) is the matrix with entries

( HessB(mh) )ij = D2B(mh)(ϕ
(i)
h , ϕ

(j)
h ) . (5.17)

Notice that HessB(mh) is a sparse n × n matrix due to the locality of the basis
functions.

Obviously, the composite function Et is defined only in strict(Fh) since the barrier
B becomes singular at the boundary of strict(Fh).

In correspondence to the definitions (3.31),(3.32),(5.16) and (5.17) we have

∇Et(mh) = ∇E(mh) + t ∇B(mh)

and
HessEt(mh) = HessE + t HessB(mh) .

Notice that HessEt(mh) differs from HessE only by the additional term t HessB(mh),
but since HessB(mh) depends explicitly on mh, so does HessEt(mh). Furthermore,
HessEt(mh) is a fully populated matrix.

5.4 The Primal Path

Lemma 5.3. For every mh ∈ strict(Fh) and any t > 0, the matrix HessEt(mh) is
positive definite. In particular, for fixed t > 0 the function Et is strictly convex and
has a unique minimizer mh(t) on strict(Fh).

Proof of Lemma 5.3.

For Sh given as in Definition 5.1 there exists at least one point xT ∈ Sh ∩ T for
each triangle T ∈ Th. In particular, for every uh ∈ RT0,h we have by Lemma 3.1 the
estimate

sup
x∈T
|uh(x)|2 ≤ 1

2
|(∇·uh)(T )|2 diam(T )2 + 2|uh(xT )|2 , (5.18)

where (∇·uh)(T ) denotes the uniquely defined value of the piecewise constant func-
tion ∇·uh on T .

Since the matrix K in (3.27) is positive definite, there exists a constant C > 0 such
that

D2E(mh)(uh, uh) ≥ C
∑

T∈Th

|(∇·uh)(T )|2 (5.19)

for all uh, mh ∈ RT0,h. Due to the additional assumption mh ∈ strict(Fh) we get
from (5.15) the inequality

D2B(mh)(uh, uh) ≥
∑

T∈Th

|T | |uh(xT )|2 , (5.20)

since for any i = 1, .., k there holds

1

|T |D
2Bi(mh)(uh, uh) ≥ |uh(xi)|2 + 2|mh(xi) · uh(xi)|2 ≥ |uh(xi)|2 .
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Combining (5.19) and (5.20) yields

D2Et(mh)(uh, uh) ≥ C
∑

T∈Th

|(∇·uh)(T )|2 + t
∑

T∈Th

|T | |uh(xT )|2 .

Now let t > 0 be fixed. By (5.18) we conclude that there exists a constant C̃ > 0
that depends not on mh or uh, such that

D2Et(mh)(uh, uh) ≥ C̃
∑

T∈Th

sup
x∈T
|uh(x)|2 .

(We note that for a fixed triangulation Th the diameter and the area of all triangles
T ∈ Th is bounded from below by a positive constant.) Therefore HessEt(mh) is
positive definite.

Since {Et}t>0 is a family of strictly convex and coercive functions which depends
continuously on the barrier parameter t > 0, the family of unique minimizers mh(t)
given by Lemma 5.3 itself depends continuously on t > 0. Thus we can interpret the
set {mh(t)}t>0 geometrically as a kind of trajectory, which we call in the following
the primal path.

The intuitive basis of IPM presented so far is justified by a convergence result due
to [23, Theorem 25], which takes the following form in view of Lemma 5.3:

Theorem 5.2. Let Et : strict(Fh) → R be defined as in (5.11) with the barrier B
given by (5.13). Then the primal path {mh(t)}t>0 defined by Proposition 5.3 has the
following properties:

1. limt↓0 E(mh(t)) = limt↓0 Et(mh(t)) = minFh
E ;

2. every accumulation point of mh(t) for t ↓ 0 solves the convex programming
problem (5.5);

3. Et(mh(t)) is a monotonically decreasing function in t > 0;

4. E(mh(t)) is a monotonically decreasing function in t > 0;

5. B(mh(t)) is a monotonically increasing function in t > 0.

5.5 The Analytic Center

Theorem 5.2 guarantees only the convergence of the function values E(mh(t)) and
Et(mh(t)), but it does not make any prediction about the convergence of the primal
path {mh(t)}t>0 itself. If the optimality region F ∗

h would consist only of a single
point, convergence of the primal path for t ↓ 0 would follow directly from Theorem
5.2. But since there exist multiple optimal solutions to our problem (5.5), the
following two questions arise:

• does a unique limit of the primal path {mh(t)}t>0 exist, and if so,
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• how can we characterize that particular optimal solution to (5.5)?

These questions were answered in [41], based on the notion of analytic centers of the
optimality region. We present these results and the related proofs in some detail,
since the concept of analytic centers allows us to proof a stability estimate for weak
external fields in the succeeding section.

Lemma 5.4. Let mh, mh ∈ strict(Fh) be given with mh 6= mh. If

log ci(λmh + (1− λ)mh) = λ log ci(mh) + (1− λ) log ci(mh) (5.21)

for all 0 < λ < 1 and a constraint function ci, then ci(λmh + (1−λ)mh) is constant
as a function of λ ∈ R.

Proof of Lemma 5.4.

Since ci(mh) > 0 for mh ∈ strict(Fh), (5.21) implies

ci(λmh + (1− λ)mh) =

(
ci(mh)

ci(mh)

)λ

ci(mh) = ci(mh)e
λ log

“

ci(mh)

ci(mh)

”

. (5.22)

Now ci is a positive concave function on strict(Fh), but the exponential function on
the righthand side of (5.22) is convex in λ. Thus we must have

ci(mh)

ci(mh)
= 1 ,

and ci(λmh+(1−λ)mh) is constant for 0 < λ < 1. But since λ 7→ ci(λmh+(1−λ)mh)
is an analytic function, it is constant for all λ ∈ R.

Lemma 5.5. If I = I∗ in the sense of Definition 5.2, then F ∗
h consists of a single

point.

Proof of Lemma 5.5.

We argue by contradiction. Let us assume that there exist mh, mh ∈ F∗
h with

mh 6= mh. Since F∗
h is convex, we have [mh, mh] ⊂ F∗

h for the line segment

[mh, mh] := {λmh + (1− λ)mh | 0 ≤ λ ≤ 1} .

In particular, E is constant on [mh, mh] and c∗ = c vanishes on [mh, mh] by assump-
tion. But since E and c∗ are analytic, this means that E is constant and c∗ = c
vanishes on the unbounded line

L := {λmh + (1− λ)mh | λ ∈ R} .

Therefore L ⊂ F ∗
h, but this contradicts the boundedness of the optimality region

F∗
h due to Lemma 5.2.

Due to Lemma 5.5, we may concentrate on the case I 6= I∗. By introducing the
shorthand notation

B(mh) = −1
2

∑
|T | log c(mh) (5.23)
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for the logarithmic barrier defined in (5.13), we may split in view of Definition 5.2
the contributions to the summation in (5.23),

B(mh) = B∗(mh) +B+(mh) ,

where

B∗(mh) := −1
2

∑
|T | log c∗(mh) and B+(mh) := −1

2

∑
|T | log c+(mh) ,

provided both subvectors exist and mh ∈ strict(Fh). Note that B+(mh) is also well–
defined if mh ∈ F∗

h is a strongly optimal solution in the sense of Definition 5.3. If
c+ is not strictly positive at mh, i. e. c+(mh) has vanishing entries, then we set

B+(mh) := +∞ .

Lemma 5.6. If I 6= I∗ in the sense of Definition 5.2, then there exists at least one
mh ∈ F∗

h, such that
B+(mh) < +∞ .

Proof of Lemma 5.6.

In view of Definition 5.2, for every i ∈ I+ there exists m
(i)
h ∈ F∗

h, such that

ci(m
(i)
h ) > 0 .

Now we set

mh :=
1

#I+

∑

i∈I+

m
(i)
h ,

where #I+ denotes the cardinality of I+. We have mh ∈ F∗
h since F∗

h is convex, and
c+(mh) > 0 since c+ is concave. Thus B+(mh) < +∞.

Definition 5.4. If I 6= I∗ in the sense of Definition 5.2, then we call any solution
to the following minimization problem

min
mh∈F∗

h

B+(mh) (5.24)

an analytic center of the optimality region.

Lemma 5.7. Let us assume I 6= I∗. Then the optimality region F ∗
h of the convex

programming problem (5.5) has a unique analytic center m∗
h. In particular, we have

c+(m∗
h) > 0.

Proof of Lemma 5.7.

By Lemma 5.6 there exists mh ∈ F∗
h, such that

B+(mh) =: B0 < +∞ .

Since the function B+ is convex, the sublevel set

Bh := {mh ∈ F∗
h | B+(mh) ≤ B0}
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is also convex. In particular, Bh ⊂ F∗
h is compact, and therefore B+ attains its

minimum on Bh.

If Bh consists of a single point, then there is nothing else to show. Now let us
assume that there exist at least two solutions mh, mh ∈ Bh to the minimization
problem (5.24) with mh 6= mh. Since Bh is convex, we have [mh, mh] ⊂ Bh ⊂ F∗

h for
the line segment

[mh, mh] := {λmh + (1− λ)mh | 0 ≤ λ ≤ 1} .

In particular, E is constant on [mh, mh] and c∗ vanishes on [mh, mh]. But this means
that E ≡ const and c∗ ≡ 0 on the unbounded line

L := {λmh + (1− λ)mh | λ ∈ R} .

It remains to consider the constraints c+. Since mh and mh are minimizers of
the convex function B+ on the convex set Bh, the function B+ is constant on the
line segment [mh, mh]. But if the sum of convex functions is constant, then each
individual function must be linear, thus the functions log c+i are linear on [mh, mh]
for each i ∈ I+. But Lemma 5.4 implies, that these functions are indeed constant
on the line L, therefore also the function B+.

But this would imply L ⊂ Bh ⊂ F∗
h, which contradicts the boundedness of the

optimality region F ∗
h.

Theorem 5.3. The primal path {mh(t)}t>0 converges to the unique analytic center
m∗

h of the optimality region F ∗
h.

Proof of Theorem 5.3.

We know from Lemma 5.7 that there exists a unique analytic center m∗
h of the

optimality region F ∗
h. Moreover, m∗

h is strongly optimal, i. e. we have c+(m∗
h) >

0. Now consider a sequence of barrier parameters {tj}j∈N with tj ↓ 0 as j →
+∞. Applying Theorem 5.2, we may assume that (after eventually extracting a
subsequence) mh(tj) converges to the point u∗h ∈ F∗

h as j → +∞.

Let us assume that m∗
h 6= u∗h. Then we define for every j

vh(tj) := mh(tj) +m∗
h − u∗h .

Since mh(tj)→ u∗h for j → +∞, we have

vh(tj) → m∗
h as j → +∞ .

Moreover, by continuity of the constraint vectors c and c+, it follows that

c+(vh(tj)) > 0 (5.25)

for j large enough. Since F ∗
h is convex, we have [u∗h, m

∗
h] ⊂ F∗

h for the line segment

[u∗h, m
∗
h] := {λu∗h + (1− λ)m∗

h | 0 ≤ λ ≤ 1} .
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In particular, E is constant on [u∗h, m
∗
h] and c∗ vanishes on [u∗h, m

∗
h]. But this means

that E ≡ const and c∗ ≡ 0 on the unbounded line

L := {λu∗h + (1− λ)m∗
h | λ ∈ R} .

Since vh(tj) − mh(tj) = m∗
h − u∗h by definition, the line segment [mh(tj), vh(tj)] is

parallel to [u∗h, m
∗
h] for every j. According to Lemma 3.4 there holds

E(vh(tj)) = E(mh(tj)) (5.26)

and
c∗(vh(tj)) = c∗(mh(tj)) (5.27)

for every j. In particular, due to (5.25) and (5.27) we have vh(tj) ∈ strict(Fh)
for j large enough, so the values of the barrier functions B(vh(tj)), B

+(vh(tj)) and
B∗(vh(tj)) are well–defined for those indices j, and we can write

tjB
+(vh(tj))− tjB+(mh(tj))

(5.27)
= tjB(vh(tj))− tjB(mh(tj))

(5.26)
= E(vh(tj))− E(mh(tj)) + tjB(vh(tj))− tjB(mh(tj))

= Etj (vh(tj))− Etj (mh(tj))

≥ 0 .

In the last step we have used the fact that mh(tj) is the minimizer of the strictly
convex function Etj for each j.

Since tj > 0 for every j, it follows that

B+(vh(tj)) ≥ B+(mh(tj)) .

Due to the continuity of B+, we get in the limit j → +∞

B+(m∗
h) ≥ B+(u∗h) .

But since m∗
h is the unique minimizer of B+ on F∗

h, we must have m∗
h = u∗h, which

completes the proof.

5.6 A Stability Estimate

In the following, we assume that the set of barrier points Sh in Definition 5.1 is the
set of all vertices of the triangulation Th. We denote this choice by

Sh = Sv
h . (5.28)

This ensures the estimate
||mh||∞ < 1 (5.29)

100



for every strictly feasible magnetization mh ∈ strict(Fh). Note that in this case any
vertex x0 ∈ Sh has to be counted with multiplicity: since the elements of the finite
element space RT0,h are in general not continuous at the vertices of the triangulation,
we have to implement a total number of constraint functions ci at x0 that equals
the number of triangles meeting there.

The following result is an immediate consequence of Corollary 5.1 and Definition
5.24.

Corollary 5.2. The analytic center m∗
h satisfies the strict inequality

||m∗
h||∞ < 1

if and only if m∗
h solves the equality–constrained optimization problem

B(m∗
h) = min

{mh∈RT0,h | ∇E(mh)=0}
B(mh) (5.30)

with B(m∗
h) < +∞.

Next we proof a type of stability estimate that ensures that the analytic center
m∗

h is strictly feasible for sufficiently weak external field Hext. The purpose of this
statement is twofold: first, it justifies our assumption in Section 4.2 that for suffi-
ciently weak external field Hext the computation of the minimal energy E and the
corresponding charge density σh reduces to the Dirichlet screen problem; second, it
allows for a consistency check of the numerical results in Section 5.11 concerning
our IPM implementation.

Lemma 5.8. We assume (5.28). For every triangulation Th there exists a positive
constant δ > 0, such that the analytic center m∗

h satisfies the strict inequality

||m∗
h||∞ < 1 (5.31)

for all external fields Hext ∈ R
2 with |Hext| < δ.

Proof of Lemma 5.8.

We show that for sufficiently weak external Hext there always exists a solution mh to
(5.5) that is strictly feasible. Inequality (5.31) then follows from the characterization
of the analytic center in Definition 5.24. We start by taking a closer look at the
optimality region F ∗

h.

From Lemma 3.3 we know that the quotient function Ẽ is a strictly convex and
coercive function on the quotient space RT0,h/Ker(∇·). Based on the definition of
the feasible region Fh in (5.3) we may now introduce a corresponding region

F̃h ⊂ RT0,h/Ker(∇·) ,

by demanding that for every equivalence class m̃h ∈ F̃h there exists at least one
feasible mh ∈ m̃h with mh ∈ Fh. By construction, F̃h is convex. Thus Ẽ has
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a unique minimizer m̃∗
h on F̃h. In particular, the optimality region (5.6) can be

characterized as

F∗
h = Fh ∩ m̃∗

h . (5.32)

Since Ẽ depends continuously on Hext, so does m̃∗
h, where the induced topology

of the quotient space RT0,h/Ker(∇·) is given for any norm || · || on RT0,h via the
distance

|||ũh − ṽh||| := min{||uh − vh|| | uh ∈ ũh, vh ∈ ṽh} (5.33)

for all ũh, ṽh ∈ RT0,h/Ker(∇·).
We continue by considering the linear subspaces {mh ∈ RT0,h | ∇E(mh) = 0}
appearing in (5.30). According to (3.29), the condition ∇E(mh) = 0 is equivalent
to ∫

R2

∫

R2

∇·mh(x)
1

4π|x− y|∇·mh(y) dy dx =

∫

Ω

Hext ·mh dx ,

which in turn gives the estimate

||∇·mh||2V ≤ ||mh||∞ |Hext| |Ω| .

Here we remind the definition of the V –norm in (2.5). Since the mapping m̃h 7→
||∇ · mh||V , for any mh ∈ m̃h, is a well–defined norm on the finite–dimensional
quotient space RT0,h/Ker(∇·), we conclude

|||m̃h|||2∞ . ||∇·mh||2V ≤ ||mh||∞ |Hext| |Ω| ,

where ||| · |||∞ has to be understood in the sense of (5.33). Since this inequality holds
for any mh ∈ m̃h, we may choose mh in view of (5.33) such that |||m̃h|||∞ = ||mh||∞,
and thus

||mh||2∞ . ||mh||∞ |Hext| |Ω| .
For sufficiently weak external field |Hext| � 1 we therefore have

mh ∈ strict(Fh) and ∇E(mh) = 0 .

But in view of Corollary 5.1 this means that mh is a solution to the convex pro-
gramming problem (5.5), i. e.

mh ∈ F∗
h.

In particular, none of the constraint functions ci is universally binding in the sense
of Definition 5.2, so the subvector c+ coincides with the total constraint vector c.
By Lemma 5.7 the unique analytic center is therefore strictly feasible.

5.7 The Dual Path

In this Section we introduce an a–priori bound for the deviation E(mh(t))−E(m∗
h)

for any given t > 0. We follow [23, Chapter 6.3].
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From Lemma 5.3 we know that for each t > 0 the composite function Et has a
unique minimizer mh(t) ∈ strict(Fh). Since the individual functions E and B are
differentiable in strict(Fh), the minimizer solves the equation

∇E(mh(t)) + t∇B(mh(t)) = 0 . (5.34)

With (5.14) and (5.8) we get

∇E(mh(t)) = 1
2
t

k∑

i=1

|Ti|
∇ci(mh)

ci(mh)
= A(mh(t))λ(t) , (5.35)

where λ(t) ∈ R
k is defined as the vector with components

(λ(t))i :=
t

ci(mh(t))
|Ti| > 0 . (5.36)

We call {λ(t)}t>0 the dual path that corresponds to the primal path {mh(t)}t>0.
Modern IPMs are commonly based on the so–called primal–dual formulation [41]:
the dual parameter λ is introduced as an additional independent variable and for
fixed t > 0 one attempts to compute a point (mh, λ), for which the Kuhn–Tucker
conditions (5.9) and (5.10) hold:

λT c(mh) = 0 , (5.37)

gradE(mh) = A(mh)λ . (5.38)

Primal–dual methods show in general better performance than purely primal meth-
ods. If the columns of the matrix A(mh) are linearly independent for every mh ∈
strict(Fh), the system (5.37), (5.38) is obviously equivalent to (5.34). But as we have
seen at the end of Section 5.2, this condition on A is not fulfilled and the system
(5.37), (5.38) is ill–conditioned. Thus we stay with the classical primal path method
based on (5.34).

Nonetheless, (5.37) and (5.38) motivate the introduction of a Lagrangian function
L : RT0,h × R

k → R, defined as

L(mh, λ) := E(mh)− 1
2
λT c(mh) . (5.39)

For each Lagrange multiplier vector λ ∈ R
k with λ > 0, the function

mh 7→ L(mh, λ) (5.40)

is convex and smooth on RT0,h, and we have

L(mh, λ) → +∞ as ||mh||∞ → +∞ .

Since
∇E(mh) = A(mh)λ
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is the corresponding Euler–Lagrange equation to (5.40) and mh(t) is the unique
solution to the equation (5.35), we have

L(mh(t), λ(t)) ≤ L(uh, λ(t))

for all uh ∈ RT0,h and all t > 0. In particular, if m∗
h denotes the unique analytic

center of the optimality region defined in (5.24), then we have the estimate

L(mh(t), λ(t)) ≤ L(m∗
h, λ(t)) .

With the definition of the Lagrangian (5.39) this gives

0 ≤ E(mh(t))− E(m∗
h) ≤ 1

2
λ(t)T c(mh(t))− 1

2
λ(t)T c(m∗

h)

≤ 1
2
λ(t)T c(mh(t))

(5.36)
= 3

2
t|Ω| . (5.41)

Thus the absolute deviation of E(mh(t)) from the minimum is bounded from above
by 3

2
t|Ω|. The factor 3

2
is due to the choice (5.28) as set of barrier points.

An a–priori bound for the corresponding relative deviation is less easy to find. Nev-
ertheless, our numerical experiments in Section 5.11 show, that the above bound is
helpful in defining a suitable stopping criterion.

5.8 The Role of Newton’s Method

From Lemma 5.3 we know that for each t > 0 the composite function Et has a
unique minimizer mh(t) ∈ strict(Fh). Since the individual functions E and B are
differentiable in the open set strict(Fh), the minimizer solves the Euler–Lagrange
equation

∇E(mh(t)) + t∇B(mh(t)) = 0 . (5.42)

We apply Newton’s method to solve the nonlinear equation (5.42) approximately. It
is well known that Newton’s method exhibits asymptotically quadratic convergence
and shows globally superlinear convergence in many practical problems if it is com-
bined with a globalizing linesearch. In our interior point method the linesearch has
to guarantee in particular the feasibility of the Newton iterates.

The starting point of our discussion is the genuine formulation of the exact Newton
method. For fixed t > 0 we attempt to approach the unique minimizer of the
composite function Et by iterates

m
(j+1)
h = m

(j)
h + αjp

(j)
h j = 0, 1, 2, .. , (5.43)

where p
(j)
h ∈ RT0,h denotes the Newton direction at m

(j)
h and has the following

representation in the basis {ϕ(i)
h }i=1,..,n of RT0,h:

p
(j)
h =

n∑

i=1

γ
(j)
i ϕ

(i)
h , γ(j) ∈ R

n . (5.44)
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Here the coefficients γ(j) solve the large system of linear equations

HessEt(m
(j)
h )γ(j) = −∇Et(m

(j)
h ) . (5.45)

The scalars 0 < αj < 1 define the step length such that {Et(m
(j)
h )}j=0,1,2,.. becomes

a monotonically decreasing sequence. A precise definition of αj will be given in
Section 5.10.

The choice αj = 1 in (5.43) leads to a pure Newton step. An iteration that is
solely based on pure Newton steps is what we call a “classical” Newton method.
It is known that the latter one exhibits quadratic convergence at least locally (in a
neighborhood of the solution) if the Hessian is nonsingular. But in the context of
a barrier method the pure Newton step may be infeasible, i. e. it may happen that
m

(j+1)
h /∈ strict(Fh) and the interior point algorithm breaks down.

In [53] two basic reduction strategies for the barrier parameter are compared which
lead to so–called “short–step” and “long–step” interior point algorithms. In short–
step IPM only a single pure Newton step is performed for each t, which is then
multiplied by a factor less than but very close to one. This careful reduction indeed
ensures feasibility of the Newton step. Though short–step algorithms are preferable
to prove theoretical complexity results for IPM, they are not reasonable in practical
implementations, since the number of outer iterations becomes too large. Instead,
we implement a long–step method. This allows for a factor of 0.1 in the reduction
of the barrier parameter, although one has to perform several Newton steps for each
unconstrained minimization problem, some of them involving a step length in (5.43)
considerably less than one.

5.9 The Inexact Newton Step

Since HessEt(mh) is a fully–populated matrix, direct methods in solving (5.45) are
prohibitive due to the complexity consdiderations in Section 4.6. Instead, we ap-
ply an iterative method based on the H2–matrix compression for fast matrix–vector
products: due to the factorization HessE = W TKW introduced in (3.34), the mul-
tiplication of HessEt(mh) with a vector γ ∈ R

n involves three multiplications of a
vector with a sparse matrix and one multiplication of a vector with an H2–matrix:

HessEt(mh)γ = W TKWγ + t HessB(mh)γ .

We also notice that entries of HessB(mh) may converge to +∞ when mh approaches
the boundary of strict(Fh), since then |mh(xi)|2 is close to 1 in (5.15) for constraints
ci which are nearly active at mh. Indeed it was shown by [43] that the Hessian of
a composite function like Et becomes increasingly ill–conditioned as t decreases to
zero and is singular in the limit. This behavior is also revealed by our numerical
experiments in Section 5.11.

We solve the linear subproblems (5.45) approximately by the conjugate gradient
method and replace the exact Newton step in (5.43) by an inexact one, i. e. we look
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for an approximate solution γ to (5.45) satisfying the condition

||∇Et(m
(j)
h ) + HessEt(m

(j)
h )γ(j)||2 ≤ ηj||∇Et(m

(j)
h )||2 , (5.46)

where ||·||2 denotes the euclidean norm in R
n. Here the scalar parameters 0 < ηj < 1,

the so–called forcing terms, determine how accurately the Newton system (5.45) is
to be solved.

The forcing terms ηj affect the efficiency of the inexact Newton method. On the
one hand, the efficiency may suffer by demanding too much subproblem accuracy
away from the minimizer mh(t), since this requires a relatively large number of
matrix–vector multiplications in the conjugate gradient method. On the other hand,
considerable accuracy may be appropriate in the vicinity of the minimizer mh(t) in
order to realize the quadratic local convergence of the exact Newton method.

A number of options for the forcing terms ηj are proposed in the literature. We
apply the choice suggested in [21], i. e. we set

ηj = min



ηj−1,

(
||∇Et(m

(j)
h )||2

||∇Et(m
(j−1)
h )||2

)2


 (5.47)

with initial value η0 = 0.1.

As a suitable initial guess m
(0)
h ∈ strict(Fh) in (5.43) we take the approximate mini-

mizer of Et′ computed for some greater t′ > t. Since we apply a long–step IPM, this
might be a poor guess for the minimizer mh(t). In particular, this starting point may
not lie in the range of quadratic convergence for Newton’s method. Even worse, the
matrix HessEt becomes increasingly ill–conditioned as t ↓ 0, from which Newton’s
method may severely suffer [18, Chapter 2.3]. This behavior is also revealed by our
numerical experiments in Section 5.11.

5.10 The Linesearch Procedure

Since we have to deal with fully–populated matrices in the evaluation of the compos-
ite function Et, the linesearch in (5.43) should require as few matrix–vector products
as possible. For fixed mh and ph we have

Et(mh + αph) = d2α
2 + d1α+ d0 + tB(mh + αph) , (5.48)

where

d2 =

∫

R2

∫

R2

∇·ph(x)
1

4π|x− y|∇·ph(y) dy dx ,

d1 = 2

∫

R2

∫

R2

∇·mh(x)
1

4π|x− y|∇·ph(y) dy dx − 2

∫

Ω

Hext · ph dx ,

d0 = E(mh) .
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Thus the function φ(α) := Et(mh + αph) consists of a quadratic term in α, where
the coefficients have to be computed only once for given mh and ph, and the barrier
term B(mh +αph), which has to be evaluated for each given α. The computation of
the coefficients d0, d1, and d2, involves the two H2–matrix–vector products K∇·mh

and K∇· ph, whereas the the computation of the barrier term only involves the
evaluation of k logarithms.

We apply an Armijo or pure backtracking linesearch, which is farely easy to imple-
ment: we generate trial steps α

(0)
j , α

(1)
j , α

(2)
j , ..., where each trial step is taken as a

fixed fraction τ of the previous one (we choose τ = 2 and α
(0)
j = 1 as initial step),

and this process is terminated once the new iterate m
(j+1)
h in (5.43) satisfies the

monotonicity condition

Et(m
(j+1)
h ) < Et(m

(j)
h ) . (5.49)

In particular, this guarantees the feasibility of the Newton step.

5.11 Implementation and Numerical Results

Now we present the formal algorithm for solving the Euler–Lagrange equation (5.42)
with given t > 0. This is the variant of Newton’s method described in detail in
Sections 5.8, 5.9, and 5.10.

procedure Newton(mh, t, tolNewton)
η ← 0.1 ;
while ||∇Et(mh)||2 > tolNewton

compute γ ∈ R
n such that

||∇Et(mh) + HessEt(mh)γ||2 ≤ η||∇Et(mh)||2
(by the conjugate gradient method, starting from 0 ∈ R

n) ;
γ ∈ R

n defines ph ∈ RT0,h by (5.44) ;
α← 1 ;
while mh + αph is infeasible or Et(mh + αph) > Et(mh)

α← 0.5α ;
end

ηnew ← (||∇Et(mh + αph)||2 / ||∇Et(mh)||2)2 ;
if ηnew < η

η ← ηnew ;
mh ← mh + αph ;

end

return mh .

With the above subroutine for Newton’s method, the formal algorithm for the IPM
reduces to:
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procedure IPM(mh, t, iterates)
for i = 1 to iterates

mh ← Newton(mh, t, 1.0e–3) ;
t← 0.1 t ;

end

return mh .

Here we choose the strictly feasible initial value mh ≡ 0. The barrier parameter is
initialized by t = 1. The a–priori bound 5.41 suggests the choice iterates = 4.

We test our implementation of the barrier method on a Th–type triangulation of
Ω = (0, 1)2 that is refined towards the boundary as described in Section 4.5. In view
of the numerical results in Section 4.9 we choose h = 3.0e–1. Since our computations
now involve not only the charge density σh but also the magnetization mh, we rely
on a slight modification of the algorithm to generate Th introduced in Section 4.5: we
start from a uniform triangulation Qλ of mesh size λ = 2−5 and apply the refinement
rule (4.107) with h = 3.0e–1 and α = 2/3. This guarantees that the triangulation
Th becomes fine enough in the interior of Ω, and leads to a triangulation with
N = 1.3e+4 triangles. The H2–matrix method takes 43 seconds for the setup phase
and allows for a compression rate of 9.8e–3. (Reference values can be found in
Section 4.8.5.)

We do not have a rigorous numerical analysis at hand as in [11] to judge the qual-
ity of our finite element solution m∗

h in terms of a–priori (and a–posteriori) error
estimates. However, the results on the Dirichlet screen problem in Section 4.4 com-
bined with the stability result in Lemma 5.8 allow for a reliable consistency check:
for the external fields Hext = (0.2, 0.2) and Hext = (0.3, 0.1) the barrier is not active.
We compare the tight approximation of the energy E(σ∗) in the Dirichlet screen
problem (as introduced at the beginning of Section 4.9 and illustrated in Figure
4.13) with the corresponding value for E(mh(t)), t = 1.0e–3, computed by our IPM
implementation above. This consistency check allows us to consider mh(1.0e–3) as a
suitable approximation to the analytic center m∗

h: Table 5.1 shows that the relative
error

ε =

√
E(mh(1.0e–3))− E(σ∗)

−E(σ∗)
,

introduced in Section 4.9, is of the order 5%.

We continue our numerical experiments by considering external fields Hext applied
along the diagonal of the square Ω = (0, 1)2. The external fields are of the form

Hext = 1√
2
|Hext| (1.0, 1.0) .

In Table 5.2 we document for each field strength |Hext| the energy E(mh(1.0e–3)),
the supremum ||mh(1.0e–3)||∞, the CPU time measured in seconds, and the total
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Hext (0.2,0.2) (0.3,0.1)

E(σ∗) -8.32368e–2 -1.03991e–1

E(mh(1.0e–3)) -8.31364e–2 -1.03739e–1

ε 3.47e–2 4.92e–2

Table 5.1: A consistency check with the results on the Dirichlet screen problem
promotes mh(1.0e–3) as a suitable approximation to m∗

h. The relative error with
respect to energy does not exceed 5%.

number of H2–matrix–vector products required. Figures 5.2 up to 5.6 illustrate
these results with additional comments. All numerical experiments were done on a
Pentium III processor running at 700 MHz.

To break down the data of Table 5.2 into more details, we also document the results
for each single barrier step in Tables 5.4 and 5.5.

|Hext| CPU (s) H2–products E(mh(1.0e–3)) ||mh(1.0e–3)||∞
1.4e–1 3.6e+2 6.4e+2 –2.07841e–2 1.82e–1

2.8e–1 3.5e+2 6.3e+2 –8.31364e–2 3.58e–1

4.2e–1 7.1e+2 1.2e+3 –1.87057e–1 5.22e–1

5.7e–1 8.6e+2 1.5e+3 –3.32544e–1 6.81e–1

7.1e–1 1.2e+3 2.1e+3 –5.19592e–1 8.40e–1

8.5e–1 2.3e+3 3.9e+3 –7.47736e–1 9.84e–1

9.9e–1 3.5e+3 6.0e+3 –9.98965e–1 9.93e–1

1.1e+0 1.1e+4 1.9e+4 –1.25627e+0 9.96e–1

1.3e+0 8.4e+3 1.5e+4 –1.51641e+0 9.98e–1

1.4e+0 9.9e+3 1.7e+4 –1.77837e+0 9.99e–1

Table 5.2: An overview of the most important IPM data in our numerical experi-
ments with external fields Hext applied along the diagonal of the square Ω = (0, 1)2.
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|Hext| CPU (s) H2–products E(mh(1.0e–3)) ||mh(1.0e–3)||∞
0.1 2.8e+3 1.2e+3 –5.32876e–2 2.13e–1

0.2 3.9e+3 1.5e+3 –2.13150e–1 4.17e–1

0.3 4.4e+3 1.7e+3 –4.79585e–1 6.17e–1

0.4 9.5e+3 3.7e+3 –8.52577e–1 8.11e–1

0.5 1.2e+4 4.6e+3 –1.33143e+0 9.81e–1

0.6 9.7e+3 3.9e+3 –1.88052e+0 9.98e–1

0.7 2.4e+4 1.0e+4 –2.45032e+0 9.99e–1

0.8 3.0e+4 1.2e+4 –3.03101e+0 9.99e–1

0.9 4.3e+4 1.7e+4 –3.61867e+0 9.99e–1

1.0 5.0e+4 2.0e+4 –4.21120e+0 9.99e–1

Table 5.3: An overview of the most important IPM data in our numerical experi-
ments with external fields Hext applied along the horizontal axis on a circular domain
Ω, as depicted in Figures 5.7 and 5.8.

To test our IPM implementation for more general geometries, we consider a convex
polygon Ω with boundary ∂Ω that approximates pointwise the circle ∂B1(0) ⊂ R

2.
We used the MATLAB PDE Toolbox to generate the triangulation shown in Figure
5.7. Then we apply the refinement rule (4.107) with h = 3.0e–1 and α = 2/3, which
leads to the triangulation illustrated in Figure 5.8. On this geometry we apply our
IPM implementation with external fields Hext in direction (1.0, 0.0). The numerical
results are presented in Table 5.3 and Figures 5.9 up to 5.13.
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Figure 5.2: We plot the energy of mh(1.0e–3) against |Hext| as the horizontal scale.
The domain is Ω = (0, 1)2. The case Hext = 0 is trivial since the analytic center is
given by m∗

h ≡ 0 for zero external field.
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Figure 5.3: We plot ||mh(1.0e–3)||∞ against |Hext| as the horizontal scale. The
domain is Ω = (0, 1)2. This illustrates some important feature of the analytic center
m∗

h (as approximated by mh(1.0e–3)): if |Hext| is sufficiently small, the barrier is not
active and ||m∗

h||∞ < 1 according to Lemma 5.8. This behavior is also evident from
the 3–d plots in Figures 5.5 and 5.6.
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Figure 5.4: We plot the CPU time (in seconds, and displayed logarithmically) against
|Hext| as the horizontal scale. The domain is Ω = (0, 1)2. This reveals the ill–
conditioning of our IPM implementation at field strengths where the barrier becomes
active.
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Figure 5.5: A MATLAB PDE Toolbox plot of |mh(1.0e–3)| on Th for external field
Hext = (0.4, 0.4), i. e. we have |Hext| = 5.7e–1. The domain of consideration is
Ω = (0, 1)2, the barrier is not active.
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Figure 5.6: A MATLAB PDE Toolbox plot of |mh(1.0e–3)| on Th for external field
Hext = (1.0, 1.0), i. e. we have |Hext| = 1.4e+0. The domain of consideration is
Ω = (0, 1)2, the barrier is active.
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Figure 5.7: A triangulated polygon approximating a circular domain, generated by
the PDE Toolbox of MATLAB. The number of triangles is 1.6e+4, each triangle is of
diameter strictly less than 2−5, the maximal diameter occuring in the triangulation
of the square domain in the numerical experiments above.
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Figure 5.8: Applying the refinement rule (4.107) with h = 3.0e–1 and α = 2/3 on the
circular triangulation in Figure 5.7, leads to a mesh refined towards the boundary
as illustrated here. The number of triangles becomes 3.9e+4, the setup phase for
the H2–matrix method takes 135 seconds and the compression rate is 1.0e–2.
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Figure 5.9: Results on the circular domain Ω. We plot the energy of mh(1.0e–3)
against |Hext| as the horizontal scale. The case Hext = 0 is trivial since the analytic
center is given by m∗

h ≡ 0 for zero external field.
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Figure 5.10: Results on the circular domain Ω. We plot ||mh(1.0e–3)||∞ against
|Hext| as the horizontal scale. This illustrates some important feature of the analytic
center m∗

h (as approximated by mh(1.0e–3)): if |Hext| is sufficiently small, the barrier
is not active and ||m∗

h||∞ < 1 according to Lemma 5.8. This behavior is also evident
from the 3–d plots in Figures 5.12 and 5.13.
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Figure 5.11: Results on the circular domain Ω. We plot the CPU time (in seconds,
and displayed logarithmically) against |Hext| as the horizontal scale. This reveals
the ill–conditioning of our IPM implementation at field strengths where the barrier
becomes active.
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t E(mh(t)) CPU (s) H2–products # Newton

1.0e+0 –1.24913e–2 7.1e+1 125 2

1.0e–1 –2.03146e–2 1.2e+2 207 2

1.0e–2 –2.07778e–2 1.6e+2 275 2

1.0e–3 –2.07841e–2 1.8e+1 33 1

1.0e+0 –4.97225e–2 6.9e+1 125 2

1.0e–1 –8.10740e–2 1.1e+2 194 2

1.0e–2 –8.31068e–2 1.5e+2 273 2

1.0e–3 –8.31364e–2 1.9e+1 33 1

1.0e+0 –1.10986e–1 6.8e+1 123 2

1.0e–1 –1.81568e–1 3.1e+2 547 3

1.0e–2 –1.86968e–1 1.8e+2 300 2

1.0e–3 –1.87057e–1 1.5e+2 256 2

1.0e+0 –1.95144e–1 1.6e+2 290 3

1.0e–1 –3.20296e–1 2.4e+2 421 3

1.0e–2 –3.32293e–1 2.1e+2 367 2

1.0e–3 –3.32544e–1 2.5e+2 434 2

1.0e+0 –3.00756e–1 1.5e+2 274 3

1.0e–1 –4.94171e–1 2.5e+2 428 3

1.0e–2 –5.18717e–1 5.2e+2 886 3

1.0e–3 –5.19592e–1 2.8e+2 469 2

Table 5.4: A detailed protocol of the barrier steps t = 1.0, 1.0e–1, 1.0e–2, 1.0e–3,
related to Table 5.2. The blocks of data presented here correspond to the upper five
rows in Table 5.2; the remaining blocks follow in Table 5.5. The block on the top of
this page gives therefore the detailed data for Hext = (0.1, 0.1), whereas the bottom
one presents that for Hext = (0.5, 0.5). In particular, we document the number of
Newton steps in the last column. Our experiments show that, as long as the barrier
is not active, the number of Newton steps remains almost constant with decreasing
t.

6 Minimizers of Unit Length

We suppress all primes for the two–dimensional variables in the following, since our
considerations are restricted to the cross–section of the thin film.

6.1 Hamilton–Jacobi Equations and Viscosity Solutions

In the preceeding sections we have considered solutions m∗
h to the minimization

problem (3.26) that are uniquely characterized as the analytic center of the opti-
mality region. In the following, we aim at a different type of minimizer: a solution
mh that is of unit length.
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Figure 5.12: A MATLAB PDE Toolbox plot of |mh(1.0e–3)| on the circular domain
Ω for external field Hext = (0.3, 0.0). The barrier is not active.
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Figure 5.13: A MATLAB PDE Toolbox plot of |mh(1.0e–3)| on the circular domain
Ω for external field Hext = (1.0, 0.0). The barrier is active.
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t E(mh(t)) CPU (s) H2–products # Newton

1.0e+0 –4.26126e–1 1.4e+2 246 3

1.0e–1 –6.97885e–1 3.0e+2 520 4

1.0e–2 –7.43504e–1 7.7e+2 1344 5

1.0e–3 –7.47736e–1 1.1e+3 1827 6

1.0e+0 –5.69434e–1 1.2e+2 217 3

1.0e–1 –9.24132e–1 3.4e+2 588 5

1.0e–2 –9.92370e–1 6.2e+2 1066 5

1.0e–3 –9.98965e–1 2.4e+3 4129 11

1.0e+0 –7.28840e–1 1.1e+2 183 3

1.0e–1 –1.16544e+0 3.9e+2 683 5

1.0e–2 –1.24904e+0 8.9e+2 1523 7

1.0e–3 –1.25627e+0 9.8e+3 17033 15

1.0e+0 –9.02426e–1 1.7e+2 290 4

1.0e–1 –1.41612e+0 4.2e+2 721 5

1.0e–2 –1.50902e+0 1.1e+3 1877 9

1.0e–3 –1.51641e+0 6.7e+3 11964 15

1.0e+0 –1.08857e+0 1.4e+2 233 4

1.0e–1 –1.67266e+0 3.1e+2 527 4

1.0e–2 –1.77101e+0 1.1e+3 1957 9

1.0e–3 –1.77837e+0 8.3e+3 14357 16

Table 5.5: Continuation of Table 5.4; these blocks correspond to the last five rows in
Table 5.2. For the external fields Hext = (0.6, 0.6) up to Hext = (1.0, 1.0) the barrier
becomes active, thus the number of Newton steps increases distinctly as t tends to
zero.

We have already observed that the reduced micromagnetic energy E of problem 3.5
is degenerate in the sense that minimizers are not unique. Only the charge density
σ = ∇·m and the stray field −∇u are uniquely determined. If we consider e. g. the
case of vanishing external field Hext = 0 and circular domain Ω = {x ∈ R

2 | |x| ≤ 1},
there are at least two admissible minimizers, namely the trivial magnetization m = 0
and the vortex field m(x) = (−x2, x1)/|x|. But even if we reimpose the nonconvex
constraint |m| = 1, uniqueness is not guaranteed as we shall see in the following.

Having identified a minimizer m∗ of the convex variational problem (3.5) with length
|m∗| ≤ 1, we may construct a solution m of unit length in the domain Ω by consid-
ering the following boundary value problem:

|∇ψ(x)− (m∗)⊥(x)|2 = 1 for x ∈ Ω, ψ(x) = 0 for x ∈ ∂Ω . (6.1)

Here the rotated magnetization (m∗)⊥ is defined as (m∗)⊥ = (−m∗
2, m

∗
1). Corre-
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spondingly, we set ∇⊥ψ = (−∂ψ/∂x2, ∂ψ/∂x1). Then

m := ∇⊥ψ +m∗ (6.2)

yields an admissible minimizer of E with |m| = 1, since we have ∇·∇⊥ψ = 0 and
therefore E(m) = E(m∗). The zero boundary condition ensures that∇⊥ψ(x)·ν(x) =
1 holds for all x ∈ ∂Ω, and so the normal component of m vanishes at ∂Ω.

We notice that (6.1) states a boundary value problem for a Hamilton–Jacobi equa-
tion with Hamiltonian

H(x, p) = | p− (m∗)⊥(x) |2 − 1 . (6.3)

For topological reasons there exists no classical solution to (6.1) that is everywhere
smooth in Ω. Moreover, (6.1) allows for infinitely many weak solutions, and so
we have to single out a weak solution of practical relevance. We will consider the
viscosity solution to (6.1), which is introduced in Definition 6.1. The choice of the
viscosity solution appears to single out a minimizer with as few walls as possible.
Moreover, it is the same as the one proposed in [10].

The notion of viscosity solution was first introduced in [14] for scalar nonlinear first
order partial differential equations. Viscosity solutions are continuous but need not
be differentiable anywhere. They represent a class of suitable generalized solutions
if crossing characteristics occur. The concept of viscosity solutions allows to derive
several uniqueness and existence results.

We recall the basic definitions and results referred to in the succeeding sections.
The considerate reader will observe that the results outlined hold for continuous
Hamiltonians, whereas the function H in (6.3) may exhibit discontinuities in the
space variable x. However, the notion of viscosity solutions serves as a motivation
for the numerical schemes introduced later, although we are not able to establish
convergence results for these schemes.

Definition 6.1. Let H : Ω × R
2 → R be a continuous function. A function ψ ∈

C0,1(Ω) is a viscosity subsolution of the first order equation

H(x,∇ψ(x)) = 0 , x ∈ Ω (6.4)

if for all test functions φ ∈ C∞
0 (Ω) the following condition holds: if ψ − φ attains a

local maximum at x0 ∈ Ω, then

H(x0,∇ψ(x0)) ≤ 0 . (6.5)

A function ψ ∈ C0,1(Ω) is a viscosity supersolution of (6.4) if for all test functions
φ ∈ C∞

0 (Ω) the following condition holds: if ψ − φ attains a local minimum at
x0 ∈ Ω, then

H(x0,∇ψ(x0)) ≥ 0 . (6.6)

If ψ is simultaneously a viscosity sub– and supersolution, then it is called a viscosity
solution of (6.4).
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The notions of viscosity and classical solutions are consistent in the following sense
[13]:

Theorem 6.1. If ψ ∈ C1(Ω) is a classical solution to (6.4), i. e.

H(x,∇ψ(x)) = 0 ∀x ∈ Ω ,

then ψ is a viscosity solution.

In particular, any classical solution to (6.4) satisfies the inequalities (6.5) and (6.6).
For topological reasons the minimizer m defined by (6.2) can not be of class C1(Ω)
since the normal component of m vanishes at the boundary of Ω. Due to [13] we
have the following partial result:

Theorem 6.2. If ψ ∈ C0,1(Ω) is a viscosity solution of (6.4) which is differentiable
at some x0 ∈ Ω, then we have

H(x0,∇ψ(x0)) = 0 .

Thus in regions of Ω where the viscosity solution ψ is smooth, it coincides with a
classical solution. The existence of viscosity solutions is guaranteed under suitable
conditions [39, Theorem 5.3]:

Theorem 6.3. Let the Hamiltonian H : Ω× R
2 → R satisfy the following assump-

tions:

1. H ∈ C0(Ω× R
2) ;

2. p 7→ H(x, p) is convex in p for all x ∈ Ω ;

3. H is coercive in p, i. e. H(x, p)→∞ as |p| → ∞ uniformly in x ∈ Ω ;

4. the Hamiltonian is compatible in the sense that H(x, 0) ≤ 0 for all x ∈ Ω .

Then the Dirichlet problem

H(x,∇ψ(x)) = 0 for x ∈ Ω ,

ψ(x) = φ(x) for x ∈ ∂Ω ,

has a viscosity solution if and only if the boundary values φ satisfy the compatibility
condition

φ(x)− φ(y) ≤ δ(x, y) for all x, y ∈ ∂Ω . (6.7)

Here δ denotes the optical distance given by

δ(x, y) = inf

{∫ 1

0

ρ(ξ(t),−ξ′(t))dt | ξ ∈ C0,1([0, 1],Ω), ξ(0) = x, ξ(1) = y

}
,

(6.8)
where ρ(x, q) := maxH(x,p)=0 p·q. Provided φ fulfills (6.7), a specific viscosity solution
can be represented by the Hopf–Lax formula

ψ(x) = inf
y∈∂Ω

(φ(y) + δ(x, y)) . (6.9)
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To establish a uniqueness result, we need a slightly stronger compatibility condition
on the Hamiltonian which allows for the following comparison principle [38].

Theorem 6.4. Let H fulfill the assumptions of Theorem 6.3 together with the strict
inequality

H(x, 0) < 0 for all x ∈ Ω .

Let further u, v ∈ C0,1(Ω) be viscosity sub– and supersolutions of (6.4), respectively.
Then the following comparison principle holds: If u ≤ v on ∂Ω then u ≤ v on Ω.

The uniqueness of the viscosity solution (6.9) is now a direct consequence of the
previous theorem.

6.2 Discretization

We recall the discrete de Rham complex (3.21) introduced in Section 3.7, namely

0
⊂−→ P 1

0,h
∇⊥

−→ RT0,h
∇·−→ P 0

0,h −→ 0 . (6.10)

The corresponding discrete version of problem (6.1) may now be stated as follows:

Given m∗
h ∈ RT0,h, find ψh ∈ P 1

0,h such that the field

∇⊥ψh +m∗
h ∈ RT0,h

is approximately of unit length.

(6.11)

This ansatz leaves the reduced micromagnetic energy unchanged, i. e. we have

E(m∗
h) = E(∇⊥ψh +m∗

h) . (6.12)

We can not expect that the new minimizer ∇⊥ψh +m∗
h is of unit length everywhere,

since ∇⊥ψh is a piecewise constant field whereas m∗
h is in general not. Moreover, we

observe that the corresponding Hamiltonian

H(x, p) = | p− (m∗
h)

⊥(x) |2 − 1

is discontinuous in the space variable x for generic m∗
h ∈ RT0,h. Therefore the results

on viscosity solutions outlined in the preceeding section are not directly applicable
to our setting. However, they serve as a promising motivation for numerical schemes
which compute minimizers close to unit length with as few walls as possible.

The interest in numerical techniques for solving time–dependent as well as station-
ary Hamilton–Jacobi equations is promoted by the success of level set methods and
fast marching methods in various areas of application, including geometry, fluid me-
chanics, combustion, seismology, and computer vision; see [50] for an introduction.
The most fundamental objection to these numerical methods in our setting is the
accuracy of the schemes: since the viscosity solution is continuous but not differen-
tiable everywhere, robuste schemes guarantee only first order accuracy on all of Ω.
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This conflicts with definition (6.2) that involves the gradient of the viscosity solu-
tion. However, the actual accuracy observed in practice increases in those regions
of Ω where the viscosity solution is smooth; we refer to [50, Chapter 8.8.1] for a
detailed discussion.

In case of problem (6.11) the transition to an alternative triangulation turns out
to be beneficial: let Tλ be a regular triangulation of Ω with typical mesh size
λ > 0. We do not presume that Tλ results from Th by any kind of mesh gener-
ating procedure. In particular, m∗

h may not be interpretable as a finite element
function on the triangulation Tλ. Let P 1

0,λ denote the space of continuous, piecewise
affine functions on Tλ with zero boundary values on ∂Ω. We consider the following
variant of problem (6.11):

Given m∗
h ∈ RT0,h, find ψλ ∈ P 1

0,λ such that the field

∇⊥ψλ + Πt
λm

∗
h ∈ (P 0

λ )2

is approximately of unit length.

(6.13)

Here Πt
λ : (L2)2 → (P 0

λ )2 denotes the interpolation operator onto the space of
piecewise constant fields on Tλ. Form∗

h ∈ RT0,h and triangles T ∈ Tλ with barycenter
xT it is given by

Πt
λm

∗
h|T = m∗

h(xT ) .

We stress that the field (6.13) is generally not even an admissible magnetization for
the reduced model (3.5). However, since ψλ is continuous on Ω, we may project this
function on the original finite element space P 1

0,h by setting

ψh := Πv
hψλ , (6.14)

where Πv
h denotes the standard interpolation operator introduced in Section 3.5.

The function ψh turns out to be a suitable solution to problem (6.11).

In the particular case of rectangular domains Ω we replace the alternative trian-
gulation Tλ by a Cartesian grid, since numerical schemes based on finite difference
approximations are easy to implement and show high degrees of accuracy in practice.
For fixed mesh size λ > 0 the Cartesian grid consists of a set of nodal points

xij = (iλ, jλ) ∈ Ω . (6.15)

We reinterpret the data m∗
h on this grid by evaluation at xij and construct an

approximate viscosity solution Ψ given by its values Ψij at the nodal points. The
Cartesian grid is then interpreted as a triangulation of type Qλ (see Section 3.4 for
the precise definition) with mesh size λ > 0 and corresponding solution ψλ ∈ P 1

0,λ,
which is projected thereafter as in (6.14).

The concept for approximating minimizers of unit length introduced so far may
be generalized even further: we let Tν denote a triangulation of typical mesh size
0 < ν < h that results from a refinement of the triangulation Th. In particular, we
have

P 1
0,h ⊂ P 1

0,ν and RT0,h ⊂ RT0,ν
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for the corresponding finite element spaces. Applying the standard interpolation
operator of RT0,ν on the magnetization m∗

h yields the identity

m∗
h = Πe

νm
∗
h . (6.16)

(We refer to Section 3.6.3 for the precise definition of the interpolation operator on
Raviart–Thomas spaces.) We stress that m∗

h is in general not a minimizer on RT0,ν .
Next we consider any solution ψλ to (6.13). We replace the projection (6.14) by

ψν := Πv
νψλ ,

and introduce the new magnetization mν ∈ RT0,ν by setting

mν := ∇⊥ψν + Πe
νm

∗
h . (6.17)

Here ∇⊥ψν defines a divergence–free field of class RT0,ν , i. e. we have

∇·∇⊥ψν = 0 . (6.18)

Again, mν is in general not a minimizer of the finite element space RT0,ν , but it
has the same energy as m∗

h:

E(mν) = E(∇⊥ψν + Πe
νm

∗
h)

(6.18)
= E(Πe

νm
∗
h)

(6.16)
= E(m∗

h) .

To recapitulate the various triangulations introduced in this section, we summarize:

• Th denotes the triangulation on which the analytic center m∗
h is defined;

• Tλ is introduced for the computation of the piecewise continuous function ψλ

in (6.13);

• Tν is an optional triangulation that allows for a magnetization mν with the
same energy as m∗

h but defined on a finer grid.

6.3 Implementation and Results on Cartesian Grids

We start with the concept for approximating minimizers of unit length on Cartesian
grids, such as (6.15) in the preceeding section.

We apply the scheme presented in [48] for solving numerically the shape–from–
shading problem. This ansatz is also recommended as the method of choice for
computing viscosity solutions on Cartesian grids in [50, Chapter 8].

We assume that Ω is a rectangular domain of R
2. For simplicity we consider the

case Ω = (0, 1)2. For given mesh size λ = 1/N , with N ∈ N, we introduce the nodal
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points xij = (iλ, jλ), i, j = 0, .., N . The value of our numerical approximation Ψ at
xij is denoted by Ψij.

We notice that for any given point x ∈ Ω the identity (6.1), i. e.

|∇ψ(x)−m⊥(x)|2 = 1 ,

holds if and only if
max
q∈S1

(∇ψ(x) · q −m⊥(x) · q) = 1 . (6.19)

The ansatz of [48] is to establish an implicit first–order finite difference scheme to
approximate (6.19), which is then used to propose an explicit scheme that can be
implemented efficiently. To do so, we define the following difference quotients: for
xij ∈ Ω we set

D+
1 Ψij = 1

λ
(Ψi+1 j − Ψij) ,

D+
2 Ψij = 1

λ
(Ψi j+1 − Ψij) ,

D−
1 Ψij = 1

λ
(Ψij −Ψi−1 j) ,

D−
2 Ψij = 1

λ
(Ψij −Ψi j−1) .

We evaluate m∗
h at the nodal points xij by setting

(
uij

vij

)
= (m∗

h)
⊥(xij) .

Next, we introduce a function gij : R
4 → R for every grid point xij ∈ Ω and all

a, b, c, d ∈ R by

gij(a, b, c, d) = max((a− uij)
+, (b− uij)

−)2 + max((c− vij)
+, (d− vij)

−)2 − 1 ,

where, as usual, ξ+ = max(ξ, 0) and ξ− = min(ξ, 0) for any ξ ∈ R. With these
notations, an implicit approximation scheme for (6.19) is given by

{
gij(D

−
1 Ψij, D

+
1 Ψij, D

−
2 Ψij, D

+
2 Ψij) = 0 for xij ∈ Ω ,

Ψij = 0 for xij ∈ ∂Ω .
(6.20)

Based on the implicit scheme (6.20), we now turn over to an explicit algorithm that
computes the approximate solution Ψ.

The proposed explicit scheme is defined by a Gauss–Seidel iteration; we do not
attempt to advance it to a fast marching method as in [50, Chapter 8], since the
computation of the analytic center m∗

h dominates our numerics with respect to CPU
time. To specify the stopping criterion we introduce the mean value,

ḡ := N−2

N∑

i,j=1

|gij(D
−
1 Ψij, D

+
1 Ψij, D

−
2 Ψij, D

+
2 Ψij)|2 .

The formal algorithm now reads:
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initialize Ψij = 0 for all i, j = 1, .., N
while ḡ ≥ 5.0e−3

for i, j = 1 to N
compute Ψzero as the upper zero of the function

Ψij 7→ gij(D
−
1 Ψij, D

+
1 Ψij, D

−
2 Ψij, D

+
2 Ψij)

(we apply Newton’s method for this purpose,
with a fixed number of 20 iterations);
replace Ψij by Ψzero.

end

end

For our numerical experiments on the square Ω = (0, 1)2 we choose N = 255. As
outlined in Section 6.2 we interpret the Cartesian grid as a triangulation of type
Qλ with λ = 1/255. The values Ψij at the nodal points xij then define in a unique
way a finite element function ψλ ∈ P 1

0,λ. In order to advance the resolution of the
constructed magnetization, we refine the original triangulation Th to Tν such that
|T | ≤ 5.0e–3 holds for all triangles T ∈ Tν. The new magnetization mν is then given
by (6.17).

The advantage of projecting ψλ onto the finer triangulation Tν instead of the original
triangulation Th is illustrated in Figures 6.3 and 6.4: the contour plot of ψν = Πv

νψλ

exhibits a reduction of grid effects as compared to ψh = Πv
hψλ.

To measure the deviation from unit length of the resulting magnetization mν , we
introduce the following average value:

Hdev = |Ω|−1
∑

T∈Tν

|T |
(
1− |mν(xT )|2

)2
. (6.21)

We note that in this definition mν(xT ) is nothing but the mean value of the field
mν on T ,

mν(xT ) = |T |−1

∫

T

mν(x) dx .

We also introduce the extremal values

max |mT | := max
T∈Tν

|mν(xT )| , and min |mT | := min
T∈Tν

|mν(xT )| . (6.22)

In Table 6.3 we document for each field strength |Hext| the average deviation from
unit length, the number of Gauss–Seidel iterations required, and the CPU time in
seconds. The external fields Hext are applied along the diagonal of Ω = (0, 1)2, and
the analytic center m∗

h is computed in advance by the IPM algorithm of Section
5.11. All numerical experiments were done on a Pentium III processor running at
700 MHz.
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Figure 6.1: Experimental pictures of ac–demagnetized Permalloy (Ni81Fe19, Js = 1.0
T). The square samples are of edge length 60 µm and thickness 230 nm in a digi-
tally enhanced Kerr microscope. The external magnetic field Hext is applied in–plane
along the diagonal of the square samples. The various field strengths are denoted
by H = |Hext|, scaled as in (6.23). The pictures show regions of nearly constant
magnetization, the domains, separated by thin layers, the walls. The pictures docu-
ment the response of the thin film to the external field: the magnetization tends to
align to Hext, a deformation of domains is thus observed. At a critical field strength
(here at about H = 0.77), walls are expelled from the sample. All pictures courtesy
of R. Schäfer and first published in [17].
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To visualize the solution mν , we present in Figure 6.2 a grayscale plot of the vertical
component of mν(xT ), T ∈ Tν , generated by the PDE Toolbox of MATLAB. We
confront our numerical plots with experimental pictures of Permalloy films published
in [17]. The experimental pictures in Figure 6.1 show ac–demagnetized Permalloy
(Ni81Fe19, Js = 1.0 T) square samples of edge length L = 60µm and thickness
D = 230 nm in a digitally enhanced Kerr microscope. The experimental field
strength hext, measured in Tesla, is scaled according to

|Hext| = H =
Lhext

DJs

. (6.23)

|Hext| sweeps CPU (s) Hdev max |mT | − 1 min |mT | IPM (s)

0.28 255 179 1.58e–3 4.43e–3 1.90e–1 3.5e+2

0.63 250 175 1.90e–3 8.73e–3 2.15e–1 9.0e+2

0.68 245 170 1.99e–3 5.44e–3 3.94e–1 9.5e+2

0.75 254 178 2.20e–3 8.70e–3 2.96e–1 1.5e+3

0.77 255 180 2.45e–3 1.09e–2 6.41e–2 1.8e+3

0.88 251 176 2.57e–3 1.00e–2 5.54e–2 2.5e+3

0.98 255 180 2.45e–3 5.21e–2 4.76e–2 3.4e+3

1.11 250 176 2.65e–3 2.27e–2 5.22e–2 1.1e+4

Table 6.1: Our simple finite difference scheme on Ω = (0, 1)2 shows high degrees of
accuracy in practice: here “sweeps” denotes the number of Gauss–Seidel iterations,
the CPU time is documented in seconds. The following three columns reveal that the
deviation from unit length is predominantly due to magnetization vectors that vanish
on Ω. In the last column we recall the CPU time (in seconds) for the preprocessing
IPM of Section 5.11; the IPM algorithm provides the analytic center m∗

h. The case
|Hext| = 0 is trivial, since then m∗

h ≡ 0 and ψλ is just the distance function w. r. t.
∂Ω.
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H = 0.00 H = 0.28 H = 0.63

H = 0.68 H = 0.75 H = 0.77

H = 0.88 H = 0.98 H = 1.11

Figure 6.2: Grayscale plots of the vertical component of mν(xT ) on Tν, generated by
the MATLAB PDE Toolbox. These plots correspond to the numerical simulations
documented in Table 6.3. Our numerical results are in good agreement with the
experimental observations of Figure 6.1, though the critical field strength at which
wall expulsion occurs is apparently higher in our simulations (at about H = 0.88).

128



0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6.3: A contour plot of Πv
hψλ with 20 lines for the external field Hext =

(0.7, 0.7). It reveals considerable grid effects along the diagonal from the upper left
to the lower right.
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Figure 6.4: A contour plot of Πv
νψλ with 20 lines for the external field Hext =

(0.7, 0.7). Grid effects are reduced. Moreover, the corresponding magnetization mν

is of the same energy as m∗
h.
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6.4 Implementation and Results on General Triangulations

We apply a two–step algorithm to solve problem (6.11) for arbitrary shaped domains
Ω: the first part is based on a scheme approximating viscosity solutions as introduced
in [6], and is followed by a postprocessing step that adjusts the length of the resulting
magnetization.

We consider the alternative triangulation Tλ and its vertices Vλ. Let V◦
λ denote

the subset of vertices that lie in the interior of Ω, and let ∂Vλ denote the set of
those vertices that lie on the boundary ∂Ω. Therefore we have V◦

λ ∪ ∂Vλ = Vλ and
V◦

λ ∩∂Vλ = ∅ . A function ψλ ∈ P 1
0,λ is uniquely determined by its values on V◦

λ. For
any xλ ∈ V◦

λ we define the simplicial neighborhood ωλ(xλ) of xλ as the union of all
triangles T ∈ Tλ with xλ ∈ T , see Figure 6.5.

xλ

Figure 6.5: The patch ωλ(xλ) is defined as the simplicial neighborhood of xλ ∈ V◦
h.

The main idea in [6] is to construct a solution ψλ to (6.13) that is defined implicitly
by a fixed point equation of the kind

ψλ = Λλψλ , (6.24)

where the operator Λλ : P 1
0,λ → P 1

0,λ is based on a local version of the Hopf–Lax
formula (6.9) as restricted to patches ωλ(xλ). Then we solve (6.24) explicitly by the
fixed point iteration

ψn+1
λ = Λλψ

n
λ , n = 0, 1, 2, .. , (6.25)

with the initial choice ψ0
λ ≡ 0. This nonlinear version of a Jacobi iteration is re-

placed in practice by a corresponding Gauss–Seidel iteration as in the finite difference
scheme of [48] that we presented in the preceeding section.

Provided the Hamiltonian H is continuous, the operator Λλ is defined in [6] by
setting

(Λλψλ)(xλ) = min
y∈∂ωλ(xλ)

(ψλ(y) + ρ(xλ, xλ − y)) for all xλ ∈ V◦
λ . (6.26)

The “freezing” of the x–dependence in the support function ρ is necessary to guar-
antee that the optical distance from xλ to a boundary point y of ωλ(xλ) is given
by

δ(xλ, y) = ρ(xλ, xλ − y) , (6.27)
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which implies that the infimum in (6.8) is attained for the straight line joining xλ

and y. This observation is crucial in constructing an explicit solution scheme for
(6.24), since otherwise we would have to consider the generally nontrivial variational
problem (6.8) on each patch ωλ(xλ). Moreover, the choice (6.26) allows for rigorous
first order convergence results as proven in [6].

The situation is more delicate in case of problem (6.11): for the Hamiltonian
H(x, p) = |p − m⊥

h (x)|2 − 1 the support function ρ of the zero–level set is given
by

ρ(x, q) = max
H(x,p)=0

p · q = |q|+m⊥
h (x) · q . (6.28)

This Hamiltonian H is not continuous in the space variable x for generic mh ∈ RT0,h.
Therefore we have to modify the definition (6.26) of Λλ.

To simplify our notation, we set for any given triangle T ∈ Tλ with barycenter xT

m⊥
T := (m∗

h)
⊥(xT ) =

(
Πt

λm
∗
h

)⊥
.

Next we introduce a solution scheme for problem (6.13): for given xλ ∈ V◦
λ we let

e1, .., em denote the triangle edges that make up the boundary of the patch ωλ(xλ)
and define

ψi := min
y∈ei

(ψλ(y) + |xλ − y|+m⊥
T · (xλ − y)) . (6.29)

The operator Λλ is then defined by setting

(Λλψλ)(xλ) = min
1≤i≤m

ψi . (6.30)

We notice that (6.29) constitutes a convex optimization problem since ψλ is affine
and y 7→ |xλ − y| + m⊥

T · (xλ − y) is convex. For vanishing m∗
h ≡ 0 the boundary

value problem (6.1) reduces to

|∇ψ(x)|2 = 1 for x ∈ Ω and ψ(x) = 0 for x ∈ ∂Ω , (6.31)

the corresponding problem for the eikonal equation. The operator (6.26) then re-
duces to

(Λλψλ)(xλ) = min
y∈∂ωλ(xλ)

(ψλ(y) + |xλ − y|) for all xλ ∈ V◦
λ ,

and both defintions (6.26) and (6.30) coincide, since the update (6.29) is now given
by

ψi := min
y∈ei

(ψλ(y) + |xλ − y|) .

This ψi can be determined explicitly as shown in [6]: we consider a triangle T ∈
Tλ with vertices xλ, yλ and zλ, and denote the angles at yλ and zλ by α and β,
respectively. See Figure 6.6.
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zλ

n1

n2

yλ

e0

xλ

Figure 6.6: A single triangle T of the patch ωλ(xλ).

For ψλ ∈ P 1
0,λ we define the slope

D :=
ψλ(zλ)− ψλ(yλ)

|zλ − yλ|
,

and if |D| ≤ 1 we introduce the parameter δ given by cos δ = D. Then we have

ψi = min
y∈[yλ,zλ]

(ψλ(y) + |xλ − y|) = ψλ(yλ) + min
y∈[yλ,zλ]

(D|y − yλ|+ |xλ − y|) (6.32)

=





ψλ(yλ) + |xλ − yλ| cosα ≤ D
ψλ(yλ) + cos(δ − α)|xλ − yλ| α ≤ δ ≤ π − β
ψλ(zλ) + |xλ − zλ| D ≤ cos(π − β) .

For an efficient implementation of formula (6.32) we refer to [6].

The local variational problem (6.29) requires to minimize edgewise in y the function

ψλ(y) + |xλ − y|+m⊥
T · (xλ − y) ,

where

m⊥
T · (xλ − y) = m⊥

T · (xλ − yλ)−m⊥
T · (y − yλ)

= m⊥
T · (xλ − yλ)−

m⊥
T · (zλ − yλ)

|zλ − yλ|
|y − yλ| .

However, since the restriction of ψλ on edges results in an affine function, we have

ψλ(y) = ψλ(yλ) +
ψλ(zλ)− ψλ(yλ)

|zλ − yλ|
|y − yλ| ,

and the combination of the preceeding two equations yields

ψλ(y) + |xλ − y|+m⊥
T · (xλ − y)

= ψλ(yλ) +m⊥
T · (xλ− yλ) + |xλ− y|+

ψλ(zλ)− ψλ(yλ)−m⊥
T · (zλ − yλ)

|zλ − yλ|
|y− yλ| .
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Thus the update (6.29) can be written as

ψi = min
y∈[yλ,zλ]

(
ψλ(y) + |xλ − y|+m⊥

T · (xλ − y)
)

= ψλ(yλ) +m⊥
T · (xλ − yλ) + min

y∈[yλ,zλ]
(D|y − yλ|+ |xλ − y|) , (6.33)

where now

D :=
ψλ(zλ)− ψλ(yλ)−m⊥

T · (zλ − yλ)

|zλ − yλ|
.

Since the first two terms in (6.33) do not depend on y, this update ψi is also given
explicitly by formula (6.32). Thus we compute an approximate solution to

ψλ
(6.24)
= Λλψλ

(Λλψλ)(xλ)
(6.30)
= min1≤i≤m ψi

ψi
(6.29)
= miny∈ei

(ψλ(y) + |xλ − y|+m⊥
T · (xλ − y))





(6.34)

by the Gauss–Seidel algorithm in [6]. We apply a fixed number of 100 Gauss–Seidel
iterations, i. e. every vertex xλ ∈ V◦

λ is reached exactly 100 times; we do not have
any advanced stopping criterion at hand yet that guarantees a comparable quality
of the approximate solution without slowing down the algorithm considerably.

Our final numerical solution to problem (6.13) depends on some postprocessing, a
length–correcting algorithm based on the following observation:

Lemma 6.1. Let the triangle T ∈ Tλ be given with notations as in Figure 6.6. Let
us further assume that the function ψλ ∈ P 1

0,λ satisfies

ψλ(xλ) = min
y∈e0

(
ψλ(y) + |xλ − y|+m⊥

T · (xλ − y)
)
. (6.35)

Then the gradient ∇ψλ fulfills on T the condition

|∇ψλ −m⊥
T |2 = 1 (6.36)

if and only if

(∇ψλ −m⊥
T ) · n1 ≤ 0 and (∇ψλ −m⊥

T ) · n2 ≤ 0 . (6.37)

Proof of Lemma 6.1.

Let y∗ ∈ [yλ, zλ] denote the point on edge e0 where the right hand side of (6.35)
attains its minimum. Then we have

ψλ(xλ) = ψλ(y
∗) + |xλ − y∗|+m⊥

T · (xλ − y∗) ,

or rather
ψλ(xλ)− ψλ(y

∗)

|xλ − y∗|
− m⊥

T · (xλ − y∗)
|xλ − y∗|

= 1 .
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Since ψλ ∈ P 1
0,λ, we may rewrite the last equation as

(
∇ψλ −m⊥

T

)
· xλ − y∗
|xλ − y∗|

= 1 . (6.38)

Thus, if (6.36) holds, (6.38) enforces the identity

∇ψλ −m⊥
T =

xλ − y∗
|xλ − y∗|

,

and this implies the normal condition (6.37). It remains to proof the converse
statement: for that purpose, let condition (6.37) be satisfied. Then there exists a
point ỹ ∈ e0 such that

∇ψλ −m⊥
T

|∇ψλ −m⊥
T |

=
xλ − ỹ
|xλ − ỹ|

. (6.39)

Now if ỹ 6= y∗, by (6.38) there follows

1 < |∇ψλ −m⊥
T |2

=
(
∇ψλ −m⊥

T

)
· xλ − ỹ
|xλ − ỹ|

=
ψλ(xλ)− ψλ(ỹ)

|xλ − ỹ|
− m⊥

T · (xλ − ỹ)
|xλ − ỹ|

.

Taking into account the definition of y∗ this implies

ψλ(xλ) > ψλ(ỹ) + |xλ − ỹ|+m⊥
T · (xλ − ỹ)

≥ ψλ(y
∗) + |xλ − y∗|+m⊥

T · (xλ − y∗)
= ψλ(xλ) .

So we have ỹ = y∗ by contradiction, and (6.36) is a consequence of (6.39) and (6.38).

Lemma 6.1 indicates a connection between the normal condition (6.37) and the unit
length property (6.36) for approximate solutions of (6.24). We are not able yet
to prove a deeper result; however, the normal condition (6.37) is well–known from
numerical schemes for time–dependent Hamilton–Jacobi equations on triangulated
domains, see [2] for details. There one defines numerical Hamiltonians for arguments
ψλ ∈ P 1

0,λ, xλ ∈ V◦
λ, and ψ+ ∈ R by

Hα(ψλ, xλ, ψ
+) := max

T⊂ωλ(xλ)
αT

(
|∇ψ+

λ −m⊥
T |2 − 1

)
,

where

αT :=

{
1 if ψ+

λ satisfies (6.37) on T ,
0 else .

Here ψ+
λ denotes the P 1

0,λ–function resulting from ψλ by replacing the value ψλ(xλ)
by ψ+ ∈ R and leaving all other nodal values unchanged.
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The function Hα is convex but not differentiable with respect to the variable ψ+ ∈ R.
Thus for fixed (ψλ, xλ) we compute the upper zero of ψ+ 7→ Hα(ψλ, xλ, ψ

+) by the
bisection method.

This motivates the following two–step algorithm:

initialize ψ0
λ ≡ 0

for n = 1 to 100
ψn+1

λ = Λλψ
n
λ ,

where Λλ is defined in (6.30)
and evaluated by the implementation [6] of (6.32);

end

for n = 100 to 110
sweep through all xλ ∈ V◦

λ

compute the upper zero ψ+
zero of

ψ+ 7→ Hα(ψn
λ , xλ, ψ

+)
by the bisection method (fixed number of 30 iterations);
ψn+1

λ (xλ) := ψ+
zero ;

end

end

In our numerical experiments we choose as Tλ the approximate circular triangulation
in Figure 5.7. The function ψλ := ψ110

λ computed by the above algorithm is pro-
jected thereafter as in (6.14), i. e. ψh = Πv

hψλ. Here Th denotes the refined circular
triangulation illustrated in Figure 5.8. With the analytic center m∗

h computed by
the IPM in Section 5.11, this yields a magnetization

mh = ∇⊥ψh +m∗
h (6.40)

close to unit length. We document and comment on the results of the above algo-
rithm in Table 6.2. As in the preceeding section, we measure the average deviation
from unit length by

Hdev = |Ω|−1
∑

T∈Th

|T |
(
1− |mh(xT )|2

)2
. (6.41)

We also introduce the extremal values

max |mT | := max
T∈Th

|mh(xT )| , and min |mT | := min
T∈Th

|mh(xT )| . (6.42)

All numerical experiments were done on a Pentium III processor running at 700
MHz.
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H = 0.0 H = 0.2

H = 0.4 H = 0.6

Figure 6.7: Numerical simulations on a circular, polygonal domain approximating
B1(0) ⊂ R

2. A vortex, visible at the center (0, 0) for H = 0.0, is deformed under
external field into a wall approaching the boundary. The physical setting is quasi–
stationary, no time–dependence is included. The external field Hext is directed along
the horizontal axis, the field strength is denoted by H = |Hext|. These numerical
simulations coincide with predictions of the ad hoc model [10]. Experimental obser-
vations in [36] confirm the simulations qualitatively.
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H = 0.8 H = 1.0

Figure 6.8: Additional numerical simulations on the circular domain. At a critical
field strength (H > 0.6) the external field is not compensated by the stray field
anymore: it penetrates the sample. These predictions go beyond [10]. The reduced
model [16] considered here holds also for non–vanishing fields −∇u + Hext, lines
show the level curves of the corresponding potential. Here the potential takes values
around zero in (−0.4, 0.4) and differs by 0.05 at neighboring lines.

In Figures 6.9 and 6.10 we provide contour plots of the approximate viscosity solu-
tions ψλ = ψ110

λ for two different external fields. To take a closer look at the features
of our two–step algorithm, a contour plot of the interim solution ψ100

λ is provided in
Figure 6.11: distinct grid effects are visible near the boundary ∂Ω. The corrections
by the postprocessing step are evident from Figure 6.10. This bisection step on
the discrete Hamiltonian Hα is not a suitable numerical scheme on its own for the
approximation of the viscosity solution: when started with initial value ψ0

λ ≡ 0, the
iterates fail to grow towards the viscosity solution in the interior of Ω; see Figure
6.12.
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0.4

0.6

0.8

Figure 6.9: A contour plot of ψλ with 20 lines for the external field Hext = (0.2, 0.0).
We have 0 ≤ ψλ ≤ 0.83.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 6.10: A contour plot of ψλ with 20 lines for the external field Hext = (0.6, 0.0).
We have 0 ≤ ψλ ≤ 0.24.

138



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.6

Figure 6.11: A contour plot of ψ100
λ with 20 lines for the external field Hext =

(0.6, 0.0). We have also 0 ≤ ψ100
λ ≤ 0.24, but grid effects are visible on the left. The

result is not improved even if we raise the number of iterations up to 1000. Thus a
postprocessing step is necessary.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 6.12: A contour plot of ψλ when only the postprocessing step is applied on
initial choice ψ0

λ ≡ 0; with 20 lines for the external field Hext = (0.6, 0.0). We have
only 0 ≤ ψλ ≤ 0.15. The result is not improved even if we raise the number of
iterations from 10 to 100.
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Further, in Figures 6.7 and 6.8, we provide grayscale plots of the vertical component
of mh(xT ), just as we did in Figure 6.2 before. So far, we do not have corresponding
pictures from physical experiments at hand to confront with. However, our numer-
ical simulations reveal a qualitative behavior of circular thin films under external
field that is also observed in practice: a vortex is expelled from a circular thin film
by an external field via domain wall formation.

|Hext| CPU 1 CPU 2 H1
dev H2

dev max |mT | − 1 min |mT |
0.2 12 59 3.7e–2 3.4e–3 2.2e–1 2.0e–2

0.4 13 55 5.8e–2 4.9e–3 3.8e–1 2.5e–2

0.6 11 57 3.2e–2 3.3e–3 1.9e–1 1.8e–3

0.8 12 61 6.1e–2 4.1e–3 3.1e–1 1.0e–3

1.0 12 60 2.2e–2 4.8e–3 4.0e–1 1.2e–3

Table 6.2: We document the CPU times in seconds for both steps of the above al-
gorithm; “CPU 1” denotes the time for the fixed point iteration, whereas “CPU 2”
denotes that of the postprocessing bisection method on the discrete Hamiltonian Hα.
We notice that the bisection method slows down the algorithm considerably. How-
ever, it guarantees a sufficient decrease in the average deviation from unit length,
from H1

dev for the fixed point iteration, to H2
dev due to the postprocessing. The last

two columns show that the pointwise deviation from unit length exceeds that of the
finite difference scheme on rectangular samples, see Table 6.3 in the preceeding sec-
tion. The case |Hext| = 0 is trivial, since then mh = Πe

hm with m(x) = (−x2, x1)/|x|.
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7 Appendix: The Self–Energy of Tref

Here we present the derivation of the self–energy I(Tref) for the reference triangle
in Lemma 4.1.

The following one–dimensional integrations will be helpful. They are based on an-
tiderivatives listed in the succeeding Lemma 7.2.

Lemma 7.1. We have
∫ a=1

a=0

a(1− a) log(1− a+
√
a2 + (1− a)2) da = −2

9
− 5

24

√
2 log(−1 +

√
2), (7.1)

∫ a=1

a=0

(1− a)2 log(±a+
√
a2 + (1− a)2) da = −1

9
± 1

12
∓ 1

24

√
2 log(−1 +

√
2). (7.2)

Proof of Lemma 7.1.

By partial integration we conclude
∫ a=1

a=0

a(1− a) log(1− a+
√
a2 + (1− a)2) da

= −
∫ a=1

a=0

(1
2
a2 − 1

3
a3) 1

1−a+
√

a2+(1−a)2

(
2a−1√

a2+(1−a)2
− 1

)
da

=

∫ a=1

a=0

1
2
a2 − 1

3
a3

1− a +
√
a2 + (1− a)2

− (1
2
a2 − 1

3
a3)(2a− 1)

(1− a +
√
a2 + (1− a)2)

√
a2 + (1− a)2

da .

The first integral yields

∫ a=1

a=0

1
2
a2 − 1

3
a3

1− a +
√
a2 + (1− a)2

da =

∫ a=1

a=0

(1
3
a− 1

2
)(1− a−

√
a2 + (1− a)2) da

(7.9),(7.10)
= − 1

36
− 1

12

√
2 log(−1 +

√
2) . (7.3)

The second integral gives
∫ a=1

a=0

(1
2
a2 − 1

3
a3)(2a− 1)

(1− a +
√
a2 + (1− a)2)

√
a2 + (1− a)2

da

=

∫ a=1

a=0

(1
3
a− 1

2
)(2a− 1)(1− a−

√
a2 + (1− a)2)√

a2 + (1− a)2
da

=

∫ a=1

a=0

(1
3
a− 1

2
)(2a− 1)(1− a)√
a2 + (1− a)2

da−
∫ a=1

a=0

(1
3
a− 1

2
)(2a− 1) da

= 1
4

+ 1
9

√
2 log(−1 +

√
2)− 1

18
, (7.4)

where we have used the easily checked formula

d

dξ

(
− 1

16

√
2 arsinh(2ξ − 1)− 1

9
ξ2
√
ξ2 + (1− ξ)2 + 13

36
ξ
√
ξ2 + (1− ξ)2 − 19

72

√
ξ2 + (1− ξ)2

)

=
(1

3
ξ − 1

2
)(2ξ − 1)(1− ξ)√
ξ2 + (1− ξ)2

.
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Summing up (7.3) and (7.4) yields (7.1).

Now we consider (7.2). By partial integration we get
∫ a=1

a=0

(1− a)2 log(±a+
√
a2 + (1− a)2) da

=

∫ a=1

a=0

1
3
(1− a)3 1

±a+
√

a2+(1−a)2

(
2a−1√

a2+(1−a)2
± 1

)
da

=

∫ a=1

a=0

±1
3
(1− a)3

±a+
√
a2 + (1− a)2

+
1
3
(1− a)3(2a− 1)

(±a +
√
a2 + (1− a)2)

√
a2 + (1− a)2

da .

For the first integrand we have

∫ a=1

a=0

±1
3
(1− a)3

±a+
√
a2 + (1− a)2

da =

∫ a=1

a=0

±1
3
(1− a)(∓a +

√
a2 + (1− a)2) da

(7.9),(7.10)
= − 1

18
± 1

12
∓ 1

24

√
2 log(−1 +

√
2) . (7.5)

The second integral yields
∫ a=1

a=0

1
3
(1− a)3(2a− 1)

(±a +
√
a2 + (1− a)2)

√
a2 + (1− a)2

da

=

∫ a=1

a=0

1
3
(1− a)(2a− 1)(∓a+

√
a2 + (1− a)2)√

a2 + (1− a)2
da

=

∫ a=1

a=0

1
3
(1− a)(2a− 1)(∓a)√

a2 + (1− a)2
da+

∫ a=1

a=0

1
3
(1− a)(2a− 1) da (7.6)

= − 1
18
, (7.7)

since the first integral in (7.6) vanishes due to the symmetry properties of the inte-
grand. Summing up (7.5) and (7.7) establishes (7.2).

Lemma 7.2. Let C > 0 be a positive constant and the function S = S(ξ) be defined
by S(ξ) =

√
ξ2 + (1− ξ)2. Then the following formulas for 0 ≤ ξ ≤ 1 are easily

checked by straightforward differentiation:

d

dξ
log(ξ +

√
C + ξ2) =

1√
C + ξ2

, (7.8)

d

dξ

(
(2ξ − 1)S(ξ) + 1

2

√
2 arsinh(2ξ − 1)

)
= 4S(ξ) , (7.9)

d

dξ

(
4
3
S(ξ)3 + (2ξ − 1)S(ξ) + 1

2

√
2 arsinh(2ξ − 1)

)
= 8ξS(ξ) , (7.10)

d

dξ

(
1
9
(1− ξ)3 − 1

3
(1− ξ)3 log(C(1− ξ))

)
= (1− ξ)2 log(C(1− ξ)) , (7.11)

d

dξ

(
ξ log(−ξ +

√
ξ2 + C) +

√
ξ2 + C

)
= log(−ξ +

√
ξ2 + C) . (7.12)

142



Proof of Lemma 4.1.

Since the function f(x, y) = 1/|x− y| is integrable on R
4, we reduce the calculation

of the fourfold integral to repeated one–dimensional integrations. First we consider
the integration w. r. t. the variables x1 and y1: for any positive constant C > 0 we
have

∫ y1=1−b

y1=0

∫ x1=1−a

x1=0

1√
(x1 − y1)2 + C

dx1 dy1

=

∫ y1=1−b

y1=0

∫ 1−a−y1

ξ=−y1

1√
ξ2 + C

dξ dy1

(7.8)
=

∫ y1=1−b

y1=0

log
(
1− a− y1 +

√
(1− a− y1)2 + C

)
− log

(
−y1 +

√
y2

1 + C

)
dy1

=

∫ y1=a−b

y1=a−1

log

(
−y1 +

√
y2

1 + C

)
dy1 −

∫ y1=1−b

y1=0

log

(
−y1 +

√
y2

1 + C

)
dy1

(7.12)
= (a− b) log(−(a− b) +

√
(a− b)2 + C) +

√
(a− b)2 + C

−(a− 1) log(−(a− 1) +
√

(a− 1)2 + C)−
√

(a− 1)2 + C

−(1− b) log(−(1− b) +
√

(1− b)2 + C)−
√

(1− b)2 + C +
√
C .

We notice that the result exhibits a logarithmic singularity for C ↓ 0, which is
integrable on R

2. With a = x2, b = y2, and C = (x2 − y2)
2 this gives

∫

Tref

∫

Tref

1

|x− y| dy dx

=

∫ y2=1

y2=0

∫ x2=1

x2=0

(x2 − y2) log(−(x2 − y2) +
√

2|x2 − y2|) dx2 dy2

−
∫ y2=1

y2=0

∫ x2=1

x2=0

(x2 − 1) log(−(x2 − 1) +
√

(x2 − y2)2 + (x2 − 1)2) dx2 dy2

−
∫ y2=1

y2=0

∫ x2=1

x2=0

√
(x2 − y2)2 + (x2 − 1)2 dx2 dy2

−
∫ y2=1

y2=0

∫ x2=1

x2=0

(1− y2) log(−(1− y2) +
√

(x2 − y2)2 + (1− y2)2) dx2 dy2

−
∫ y2=1

y2=0

∫ x2=1

x2=0

√
(x2 − y2)2 + (1− y2)2 dx2 dy2

+

∫ y2=1

y2=0

∫ x2=1

x2=0

(1 +
√

2)|x2 − y2| dx2 dy2 .

The formula for the self–energy I(Tref) in Lemma 4.1 now follows from the following
results regarding the integration w. r. t. x2 and y2:

∫ y2=1

y2=0

∫ x2=1

x2=0

(x2 − y2) log(−(x2 − y2) +
√

2 |x2 − y2|) dx2 dy2

= 1
3
log(−1 +

√
2) , (7.13)
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∫ y2=1

y2=0

∫ x2=1

x2=0

(x2 − 1) log(−(x2 − 1) +
√

(x2 − y2)2 + (x2 − 1)2) dx2 dy2

= 3
4

+ (2
3

+ 1
4

√
2) log(−1 +

√
2) , (7.14)

∫ y2=1

y2=0

∫ x2=1

x2=0

√
(x2 − y2)2 + (x2 − 1)2 dx2 dy2

= 1
6
(1 +

√
2)− 1

6
(1 + 1

2

√
2) log(−1 +

√
2) , (7.15)

∫ y2=1

y2=0

∫ x2=1

x2=0

(y2 − 1) log(y2 − 1 +
√

(x2 − y2)2 + (1− y2)2) dx2 dy2

= 3
4
− (2

3
+ 1

4

√
2) log(−1 +

√
2) , (7.16)

∫ y2=1

y2=0

∫ x2=1

x2=0

√
(x2 − y2)2 + (1− y2)2 dx2 dy2

= 1
6
(1 +

√
2)− 1

6
(1 + 1

2

√
2) log(−1 +

√
2) , (7.17)

and ∫ y2=1

y2=0

∫ x2=1

x2=0

|x2 − y2| dx2 dy2 = 1
3
.

The last integration in this list needs no proof, and formula (7.17) follows from
(7.15) by symmetry. We address (7.13):

∫ b=1

b=0

∫ a=1

a=0

(a− b) log(−(a− b) +
√

2|a− b|) da db

=

∫ b=1

b=0

∫ a=b

a=0

(a− b) log((b− a)(1 +
√

2)) da db

+

∫ b=1

b=0

∫ a=1

a=b

(a− b) log((a− b)(−1 +
√

2) da db

=

∫ b=1

b=0

∫ a=b

a=0

(a− b) log(b− a) da db−
∫ b=1

b=0

∫ a=b

a=0

(a− b) log(−1 +
√

2) da db

+

∫ b=1

b=0

∫ a=1

a=b

(a− b) log(a− b) da db +

∫ b=1

b=0

∫ a=1

a=b

(a− b) log(−1 +
√

2) da db

= −1
3
log(−1 +

√
2) .

Next we consider (7.14): for any 0 ≤ a ≤ 1 there holds
∫ b=1

b=0

(1− a) log(−(a− 1) +
√

(a− b)2 + (a− 1)2) db

= (1− a)
[
− b + (b− a) log(1− a +

√
(a− b)2 + (a− 1)2)

+(1− a) log(b− a +
√

(a− b)2 + (a− 1)2)
]b=1

b=0

= 2(1− a)2 log((1− a)(1 +
√

2))− (1− a) + a(1− a) log(1− a+
√
a2 + (1− a)2)

−(1− a)2 log(−a +
√
a2 + (1− a)2) ,
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where

∫ a=1

a=0

−(1− a) da = − 1
2
,

∫ a=1

a=0

2(1− a)2 log((1− a)(1 +
√

2)) da
(7.11)
= −2

9
− 2

3
log(−1 +

√
2) ,

∫ a=1

a=0

a(1− a) log(1− a+
√
a2 + (1− a)2) da

(7.1)
= −2

9
− 5

24

√
2 log(−1 +

√
2) ,

∫ a=1

a=0

−(1− a)2 log(−a+
√
a2 + (1− a)2) da

(7.2)
= 7

36
− 1

24

√
2 log(−1 +

√
2) .

Summing up gives (7.14). We turn to (7.15): for any 0 ≤ a ≤ 1 there holds

∫ b=1

b=0

√
(a− b)2 + (a− 1)2 db

= 1
2

[
(b− a)

√
(a− b)2 + (a− 1)2 +−(1− a)2 log(a− b +

√
(a− b)2 + (a− 1)2)

]b=1

b=0

= 1
2

√
2(1− a)2 − 1

2
(1− a)2 log((1− a)(−1 +

√
2)) + 1

2
a
√
a2 + (1− a)2

+1
2
(1− a)2 log(a+

√
a2 + (1− a)2) ,

where

∫ a=1

a=0

1
2

√
2(1− a)2 da = 1

6

√
2 ,

∫ a=1

a=0

−1
2
(1− a)2 log((1− a)(−1 +

√
2)) da

(7.11)
= 1

18
− 1

6
log(−1 +

√
2) ,

∫ a=1

a=0

1
2
a
√
a2 + (1− a)2 da

(7.10)
= 1

8
− 1

16

√
2 log(−1 +

√
2) ,

∫ a=1

a=0

1
2
(1− a)2 log(a +

√
a2 + (1− a)2) da

(7.2)
= − 1

72
− 1

48

√
2 log(−1 +

√
2) .

Summing up yields (7.15). Finally we consider (7.16): for any 0 ≤ a ≤ 1 there holds

∫ b=1

b=0

(a− 1) log(a− 1 +
√

(a− b)2 + (a− 1)2) db

= (a− 1)
[
− b− a log(b− a)2 + b log(a− 1 +

√
(a− b)2 + (a− 1)2)

+a log(1− a+
√

(a− b)2 + (a− 1)2) + (a− 1) log(b− a+
√

(a− b)2 + (a− 1)2)
]b=1

b=0

= −(a− 1) + 2a(a− 1) log(−1 +
√

2) + 2a(a− 1) log a

+a(1− a) log(1− a +
√
a2 + (1− a)2)− (1− a)2 log(−a +

√
a2 + (1− a)2) ,
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where

∫ a=1

a=0

−(a− 1) da = 1
2
,

∫ a=1

a=0

2a(a− 1) log(−1 +
√

2) da = − 1
3
log(−1 +

√
2) ,

∫ a=1

a=0

2a(a− 1) log a da = 5
18
,

∫ a=1

a=0

a(1− a) log(1− a+
√
a2 + (1− a)2) da

(7.1)
= −2

9
− 5

24

√
2 log(−1 +

√
2) ,

∫ a=1

a=0

−(1− a)2 log(−a +
√
a2 + (1− a)2) da

(7.2)
= 7

36
− 1

24

√
2 log(−1 +

√
2) .

Again, summing up establishes (7.16), which proofs Lemma 4.1.
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